14061100

@ CONTROL DATA
CORPORATION

00000

MP-60
- COMPUTER SYSTEM

FORTRAN |
'REFERENCE MANUAL

OO0 0/ OO0 -0

000000

REVISION RECORD |
(Standard Product Manualis)

. h
Revision Description Acutgg?i:y

—— = —

- , Final

A 3~15-75, Manual completely revised. Document

number changes.

B 8-15-76, Manual revised per ECO ECO CB33609

C 1-15-78, Manual revised per ECO ECO CB39833

D 10-15-78, Manual revised per ECO, ECO CB41974

E 6-15-79, Manual revised per ECO ECO CB43462

© 1975, 1976, 1978, 1979
by Control Data Corporation

Printed in the United States of America
AA6802 12/78
®ii

REVISION LETTERS |, 0, @ AND X ARE NOT USED

.Use COMMENT SHEET in the back of this manuai

14061100

[]
>
O IICCLLIICCCCCT S << VOVVLDVLVVVVVDVULULLLLL AAA =
3 . ;
.. m
23 _ ¥
23 |o < :
€5 o = R m O H N MW~ ®©
.mt <] <H U O D= 0 D ord v v o= e o~ N N M =~ &N AN OO0 Do o e e N
m.mD.________._.___________-_-___.___.__n|_“~Wal_M
t 3 COOLVVVLVUVLDUVUL AARA KR R R RR R R R RR R R R R R R
£$
£§
i
£ [8] U I CACCCCCCCACCCT << CCAT MAMA << <<
» mm © o
S it |, ¢ g
& mm gl AR naovoeorwaIRIRIASE 779795 vaoy Ha mae
" el dvadd dddddaddddddddddd 232238388 444l 44 &40
2 e
£
S
1) i}
it .
T £ 2| ¢ T<<ACCAN CACCCCCCA AL L L€
i £E .
W H
o 22 % =
S el B e
[ol Ol ~ O-HANMIFID O~ Q
s mac.. o} [~ N M DO b~ ~ N M <HI O D L BN - T~ N T T T T S e o T = R R S S i s e i B A N |
QP______________________________________
u s e O © OO WO ® 0~ B~ b~ P~ DD~ D= b~ b Q0 00 00 GO 00 G0 00 QG0 00 00 00 GO 00 Q0 00 00 G0 OO0 OO0 0O
>
| FREAHHAEAEEEERN << <<<0U< << << CCaT << << << <A <

- NN HNNHWOO HNM IO~ =N
m .l.m 11 | VO N T | R R R R N R 1
-l MW e NN NAANN DO NDMHmMMM M <t

iii
iv
v/vi
vii
viii

New features, as well as changes, deletlons,
ii

near the page number If the entire page is a

Page
Title Page

4

5

5

5

5

5

5
AA 6799 2/78
PRINTED IN U.S.A

14061100 E

CLO0OCOLO0O0OCOUCO =S < I = T = I = I - I - - Y -

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot

near the page number If the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

Page

Rev.

Page

Rev.

Page

Rev.

Page

Rev.

G-4

I-10

>O0>>Q>>>0> H

AA 6799 12/78
PRINTED IN U.S.A.

eiv

14061100 E

AN

L“k_,;r.‘/’

S O

PREFACE

This publication is a reference manual for the programmer using the MP-60 FORTRAN
compiler., The manual defines the external characteristics of MP-60 FORTRAN, that is,
those features which are observable or under the active control of the user.

Knowledge of the MP-60 computer operation is assumed for this manual. The operation of
the MP-60 machine instructions is described in the MP-60 hardware reference manual
(publication No. 14306500).

COoO0000000CO0

14061100 E v/vi |

2P 000000 0OHO60O

Q00 LYWL

£
A

>

{
.

OCHYO0OO0O0O00000O0C0C

o

00000000

Section

1 INTRODUCTION........

Optional Outputs
Coding Format.

FORTRAN Character Set

2 BASIC ELEMENTS ..

Constants « ¢ v ev o v

Integer
Hexadecimal
Real..........

Double Precision Real
ASCII.......cov..
Logical...........

Variables

Simple Variables .

Subscripted Variables.

3 EXPRESSIONS

Arithmetic Expressions-

Relational Expressions

Logical Expressions - -

Masking Expressions -

Evaluation of Expressions
Mixed Mode Arithmetic

4 REPLACEMENT STATEMENTS

Replacement Statement

Multiple Replacement Statement
Mixed-Mode Replacement Statement

14061100 E

.

CONTENTS

LY

o s o 0 .0 0 0 0 s
. LR . .
s . . o s o s o »
o . o . .
. o s 2 0 o s .
. .« o 0 . ..

. L I) ’
v e e LR

3 s 0 0 (Y
o v 0 * s 00

. . ..

s e 0 s . LR
. L3R . .

1-1
1-1
1-2

4-1
4-3
4-4

vii ||

Section

5

§ viii

CONTENTS (CONT.)

DECLARATIVE STATEMENTS .

Type Statements
Dimension Statement

Variable Dimensions

COMMON Statements

EQUIVALENCE Statement

L)

DATA Statement s » ¢« oo

CONTROL STATEMENTS

GO TO Statements

Unconditional GO TO

Computed GO TO
Assigned GO TO.

Assign

IF Statements «...

Arithmetic IF .
Logical IF ...

DO Statement

DO Loop Execution

DO Nests
DO Loop Transfer

CONTINUE Statement

PAUSE Statement . .

STOP Statement

SUBPROGRAMS . ..

Main Program and Subprograms
~ Subroutine Subprograms

SUBROUTINE Statement .

CALL Statement

Page

7-1
7-1

7-2
7-2

14061100 E

=l ol ool el

O000000O0

=2e]

020000000 OB 0O

CONTENTS (CONT.)

Section

Function Subprograms

Defining Function Subprograms
Referencing Function Subprograms

EXTERNAL Statement e ceeocoooe o

ENTRY Statement
ENTRY Call or Reference

RETURN Statement «+....
END Statement +.o0o0 0.
Program Arrangement ...

8 FORMAT SPECIFICATIONS
FORMAT Statement e e

Field Descriptors ...
Field Separators

Conversion Specifications .
Ew.d Output «.¢....

EWodInput LI A L)
FW.d Output ® o 0 0 0 0 0

Fw.d Input o000

Dw.d Output « « e+ ¢« o
Dw.d Input e eececooe.
Iw Output o e e e s s e
IwInput oeeeeeoeen
$Ww Output + o v e e v e oo
$w Input c e e e en o
Lw Output o+ +eceve
LwInput ecoceoees
Aw Output +eveoses
Aw Input cesoe e

RWOutput o e 06 0000 0 o

RwiInput vecoeeeoe

14061100 E

Page
7-4

7-4
7-5

7-7
7-8
7-8

7-9/7-10

7-9/7-10
7-9/7-10

8=3

8-4

8-7

8-9

8-10
8~11
8-11
8~12
8-12
8-13
8-13
8-13
8~13
8-14
8-14
8-14

ix §

©C O C

- CONTENTS (CONT.)

Section . Page @

NP Scale FACLOT o v o o e oo oo ooesececsososcsscssssssesssssssssssssss 8=1B

,4\\\
Fw.d SCAINE o v e vveeuesunsonncnsonscnssnnranssnasnsasss 815 1o
EW.dSca].ing ooooooooooocoa.ocoo-nooaooo.ooooooo'-o;.ouo 8"16
Scaling RestrictionS +cceeceeev oo sssososrocsssssscsoconcsns 8-16 _ @

Editingspecifications © 6 ¢ & 6 8 6 5 0 5 8 0 0 0 2 9 0 60 0 0+ 0 0 0 00 0 s OB 00 s 8—16

Space(WX) @ 9 6 0 0 ¢ 0 2 0 6 06 5 0 0 P 0 0 o 20 S s P 0 0B L L OO S0l 8-17
WHoutput ® 0 8 0 0 0 0 0 6 5 0 5 ¢ 0 P P 0 O S OO S OO0 0L e e e s 0 s e 00 8-18

WH INDUEL oo s e seveveososossosesossesssascssesssessscosse 8-18 o
New Record (/) «eeceoescscesscocoscsessosssnsssssosssssossse 8=19 "~
Repeated SpecificationS o ¢« o e oeeeececssesesocossosssossescscrcsccs 8-21 s
Variable FOrmat « e« ccooooooovooscoooccooscsossccsssocsssossosccsos 8-22
Format Control « .. eecececocccococosososscossssossscossesnooncsese 8-23 o
Carriage Controlceeveescococcoosssonsssssonsosnsosceces 8-24 .

9 INPUT/OUTPUT STATEMENTS ..iveceecoocons

At

[y
A
N4

I/OLiStS T I I I R A A A B R B T A B R Y B NI SR T I I A A I B B A A AR A O 4 9-1

DO—Implying Segments ® © 0 0 0 0 9 0 & 0 0 O ¢ 9 S 0 0 0 O 0 0B e 0000 0 0000 . 9-1
TransmissionOfAI‘rayS © 6 0 06 06060 0600606000600 0060000000000 00 000000 9-5

I/O UnitS ® s & 5 0 0 0 0 0 o © 6 8 06 06 0 06 0 006 6 06 060 % 0 0 00 0 s e G s e ee 0O e e 9"5
Partial Records ® 0 ¢ 0 0 0 0 0 0 8 0 0 0 P 0 0 E O 5 0 S0 G L L O 0O e 9SS0 e o0 9— 5
Outpu.t State mentS “ ® 000 0 000000000 o0 o © 0 0 060 0 0 00 0.0 00 0 0 00 ¢ 00000000 9-6

PrintRecord ® 9 06 ¢ 0 0 0 0 0 0 00 00 PO s e LL N s 00 e e e e 9-6

WriteBinaryReCOI'd ..0..'.00'0.’0..‘00!.l..'l’c.t'...-0'.0 9-6
WriteASCIIRecord ® 0 0 0 0 6 0 0 6 8 0 s 0 0 0 e 0 0 0 0 00 0 s s O P s0 e00o0eee 9"‘7

P

Inputstatements © 6 ¢ 0 0 0 06 6 0 0 ¢ 069 0 0 0606 060 6060 0 060006 0600 000000000000 00 9—8
ReadcardRecord ® 6 96 006 0000606080 00e 0000000000000 00000000 o0 9-8

Read Binary Record «..cceceecoceoccossosssossooscssosscoscnss 9-8
ReadASCIIReCOI‘d -.ooano..‘.oo.oO-oco’oc‘ooootooonoooooo 9-9

Ix ’ ' 14061100 E

S0 0 C

=

(o)
O
o
o
o
o
o
o
0

OO0 00000C0CO0C

Section

Buffer Statements

BUFFER IN ce oo
BUFFER OUT

File Control Statements

REWIND

ENDFILE

s 8 o 0 8 s 0

BACKSPACE

o e s 0 o 0

CONTENTS (CONT.)

Internal Transmission Statements

ENCODE
DECODE

e o o ¢ 0 s 0 o

D A L L)

Status Checking Routine

1/0 Complete Check.

10 PROGRAM OPERATION

FORTRAN Control Card

Control Card Notes
Calling Sequences ..
Sample Deck Structures

APPENDIXES

HEOOQW >

»®Q

INDE

14061100 E

Library Routines

* .

o .

FORTRAN Standard Output
FORTRAN Diagnostics

FORTRAN Statements

Character Codes

FORTRAN Interface Routines

MPX/OS Special Features

o o

Page
9-10

9-10
9-11

9-12
9-12
9-12
9-13
9-13

9-13
9-15

9-17/9-18

9-17/9-18

10-1

10-1
10-3
10-3
10-5

Table

10-1

) xii

Parameter/LU

TABLES

14061100 E

INTRODUCTION a

MP-60 FORTRAN (FTN-60) is a FORTRAN compiler that is hosted on the CONTROL
DATA® MP-60 Computer and generates object code for execution on the MP-60. FTN-60
runs in conjunction with the MPX-RT, MPX-MP, and MPX-MC operating systems.

O000600C

-

OPTIONAL OUTPUTS

Outputs that may be selected include:

e Relocatable binary cards or card images

o0

o Source program listing
e Assembly language listing of machine instructions
e Load-and-go object program for immediate execution

e Symbolic cross reference list

Diagnostic messages are printed when the compiler detects coding errors.
CODING FORMAT

Statements are coded in one of the following formats.

Columns Content
1 through 5 Statement label
6 Continuation designator (nonzero character)
7 through 72 Statement
or
1 Comment designator (C)
2 through 72 Comments
73 through 80 Identification and sequencing

A line contains a string of up to 72 FORTRAN characters. The character positions in a
line (referred to as columns) are numbered consecutively 1 through 72.

14061100 A 1-1

000000606695

The character C in column 1 identifies the line as comment. Comments are for the

convenience of the programmer and permit him to describe the program steps; they do not affect

program execution. A comment may be inserted at any point in the program. Comment cards
are listed along with the source statements when the source list option is selected.

Columns 1 through 5 may be blank or may contain a label that identifies the line for

reference elsewhere in the program. A statement number (label) must be unique within a

subprogram and in the range 1 through 99999.

A statement that is labeled and never referenced (a null) causes an informative diagnostic
during compilation but does not inhibit execution of the compiled program.

The compiler ignores blanks and leading zeros in statement numbers,

Statements in the formats outlined in this manual appear in columns 7 through 72. A
statement that exceeds the 66 characters allowed on a single card may be continued on
successive (continuation) cards., A maximum of 19 continuation cards is allowed per
statement. - Continuation cards are not labeled; columns 1 through 5 must be blank. A
character other than a zero or a blank in column 6 designates continuation.

FORTRAN statements within a program, subroutine, or function must appear in the order
of their classes (e.g., every class 1 statement in a program must come before a class 2
or higher statement, etc.). For a list of the FORTRAN statement classes, refer to
Appendix D.

The compiler does not interpret columns 73 through 80, These columns appear on the
source listing and are for sequencing or program identification.

FORTRAN CHARACTER SET

The character set has two subsets, alphanumeric characters and special characters.
Alphanumeric characters are as follows:

A through Z
0 through 9

Special characters are as follows:

blank | left parenthesis
+ plus) right parenthesis
- minus $ comma
= equals . period
* asterisk $ currency symbol
/ slash
1-2 | 14061100 A

O CC

-

~

@

A

W

OO000000CO0C

O
C
O
O
O
o
o
0
o
o

BASIC ELEMENTS 2

An FTN-60 program or subprogram consists of source language statements necessary to
define a problem and the steps in its solution. The source language consists of basic
language elements that make up expressions and statements.

CONSTANTS

FTN-60 accepts six basic types of constants: integer, hexadecimal, real, double precision
real, ASCII, and logical. The type of a constant is determined by its form. Double pre~
cision real constants occupy two consecutive computer words (64 bits); integer, hexadecimal,
real, and ASCII constants occupy one computer word (32 bits); and logical constants occupy
one bit.

If a constant exceeds the allowed range, the statement that contains it is rejected during a
compilation and a diagnostic is provided.

INTEGER

An integer constant consists of 1 through 10 decimal digits in the range -231 <M <231
(-2,147,483,648 to 2,147,483,647). The constant is translated as a 31-bit value and a
sign bit. A negative number is stored in two's complement format.

HEXADECIMAL

A hexadecimal constant is up to eight hexadecimal digits preceded by a currency symbol in

the form: $n_....n,. .
1 i

Each digit corresponds to four bits of the translated constant. If fewer than eight digits

are written when expressing a hexadecimal constant, the constant is right justified and zero

filled. When a minus sign precedes the constant, the constant is stored in two's comple-

ment format.

14061100 A 2-1

REAL
O
A real constant is represented by a string of decimal digits. It is expressed as real
either with a decimal point or with an exponent representing a power of ten, or with both, ’
in the forms: {}v
inE+s +n, n, E+s
+n.n +n, nEts +,0 +.nE+s . @
Ry
s is the exponent to the base ten. The constant is translated into the MP-60 single b
precision floating point format. '
¥
DOUBLE PRECISION REAL :
“"m
A double precision real constant is expressed in the same manner as a real constant but
expressed with a D in the forms: SN
+nD+s +n.D 0, D+s
#,nD+s *.,0D . nD+s .
The constant is translated into the MP-60 double precision ﬂoating/ point format. f{\
&y
ASCll AN
L

An ASCH constant is a string of characters of the form nHw, nAw, or nRw.
nHw - left justified blank filled
nAw - left justified zero filled

nRw - right justified zero filled

The constant is translated into four 8-bit ASCII codes within a single computer word, If .
n is greater than four, a diagnostic is issued, @

-~
Ny

2-2 ' 14061100 A

e e C

f"Oo000000C

000000000 HO

LOGICAL

A logical constant is a truth value:

.TRUE. or .FALSE.
A logical constant.occupies one bit of storage: 1 for true and 0 for false.
For example:

LOGICAL X1, X2:

X1 = .TRUE.
X2 = ,FALSE.
VARIABLES

A variable name consists of 1 to 8 alphanumeric characters; the first character must be
alphabetic. It represents a specific storage location.

The FTN-60 compiler recognizes simple and subscripted variable names. A simple
variable name represents a single quantity; a subscripted variable name represents a
single quantity within an array of quantities. The type of a variable is designated either
explicitly in a type declaration or implicitly by the first letter of the variable name. A
first letter of I, J, K, L, M, or N indicates an integer (fixed point) variable; any other
first letter indicates a single precision real (floating point) variable,

SIMPLE VARIABLES

A simple variable name identifies the location where a variable value can be stored. A
variable which has been defined as double precision real occupies two consecutive memory
locations. Integer and single precision variable names refer to single memory locations.
Variable names which have been declared as character or logical types correspond to
character addresses and bit addresses, respectively.

SUBSCRIPTED VARIABLES

A subscripted variable name identifies the location in an array where a variable value can
be stored.

14061100 A _ 2-3

An array is a block of successive memory locations comprising the elements of the array.
Each element of an array is referenced by the array name plus a set of subscripts. The
type of an array is determined by the array name or a type declaration.

Arrays may have one, two, or three dimensions; the maximum number of array elements

is the product of the dimensions. The maximum number of words used in an array cannot

exceed 65,535. The array name and its dimensions must be declared at the beginning of
the program in a DIMENSIQN, COMMON, or SCRATCH COMMON statement.

Subscript Forms

A subscript has one of the following forms; ¢ and d are integer constants and I is a
simple integer variable.

(c*Ixd) (1=d) (c*D

@ (c)
More than three subscripts cause a compiler diagnostic. Program errors may result if
subscripts are larger than the dimensions initially declared for the array. A single
subscript notation may also be used for a two- or three-dimensional array if it is the
structural location of the variable. However,diagnostics will occur if the elements of a

one-dimensional array, A(dl), are referred to as A(I, J, K) or A(, J).

For example:

A@,J) B@I+2, J+3, 2*K+1) Q(14)
PKLIM, J, LIM+5) SAM(J-6) A(133)
B(1, 2, 3) A(233)

At no time during program execution can a simple integer variable used as an index
variable take on a value greater than 65,535.

Array Structu:e

lElements of an array are stored by column in ascending storage locations. The location of
an array element with respect to the first element is determined by the maximum array
dimensions and the type of the array.

The first element of array A(l, J, K) is (1,1,1). The location of element A(i, j,k) with
respect to A(1,1,1) is: ‘

Loc Ad,j,k) = loec A(1,1,1) + ((i=11(j-1)*I+ (k=1)*I*J) *E

2-4 14061100 C

cCcocC

00O

©O00000C

500

C

000060000

The quantity in brackets is the subscript expression. E is the element length (the number
of storage locations required for each element of the array). For integer and real arrays,
E = 1; for double precision real arrays, E = 2; for character arrays, E = 1; and for

logical arrays, E = 1. Subscripts i, J» and k may be any of the allowed subscript forms.

Factoring the expression produces:
Base address S, the first loéation of A(1,1,1) ' , I
Constant addend = (1-I+I*J)*E
Index function ({+I*jH*J*K)*E

When i, j, k are other than simple variables (for example, C*I+d), constants such as d
appear in the constant addend. For example:

In the array declared as A(3,3,3); where A is type doﬁble precision real:
I=3; i-1,2,3
J=3; j=1,2,3
K=3; k=1,2,3

The elements of this double precision real array are stored two words per element starting
with A(1,1,1) in S, the lowest location reserved for the array.

Locations Array Element A

_ Lk
S, S+1 Alu
S+2, S+3 A211
S+4, S+5 A311
§+6, S+7 Al
S+8, S+9 Ayns
5+10, S+11 A321
S+12, S+13 A131
14061100 C | 2-5

Locations Array Element A

ij,k
S+48, S+49 Al
S$+50, S+51 A233
S+52, S+53 Agas

Referring to the example, if loe A(1,1,1)=S, the locations of A(2,2,3) with respect to
A(1,1,1) are:

Loc A(@2,2,3) = loc A(1,1,1) + [(2-1)+(2-1)*3+(3-1)*3*3] *2=S+44, S+45

~ The following relaxation on the representation of subscripted variables is permissible
(di represents an integer constant):

A@,,d,,d,)

A(,J,K) implies A(, J,K)
A(IMJ) implies A(IMJ,1,1)
A implies A(1,1,1)
A(d1’d2)

A(,J) implies A(,J)

A() implies A(@,1)

A implies A(1,1)

2-6 14061100 A

o)

>

coococcoce

S

5000

EXPRESSIONS 3

“

An expression is formed from elements and operators. The four kinds of expressions
are arithmetic, relational,logical, and masking., Arithmetic expressions have numeric
values. Relational and logical expressions have truth values. Masking expressions have
32-bit logical arithmetic values. Each type of expression is associated with a specific
group of operators and operands.

0000000

ARITHMETIC EXPRESSIONS

®

The arithmetic operators are:

-

+ addition
~ Subtraction

* multiplication

/ division

** exponentiation
The arithmetic elements are:

Constants

Simple‘ or subscripted variables

Function references
Any constant, variable, or function reference by itself ’can be an arithmetic expression.
If X 18 an expression, then (X) is an expressifon. If X and Y are expressions, then the
following are expressions.

X+Y X-Y -X

X*Y X/Y X**y

If op is an arithmetic operator and X and Y are arithmetic expressions, then X op op Y is
not a valid expression.

14061100 A 341

200000000606

Examples of expressions:
A
3.14159
B + 16.427
XBAR + (B(I, J+1,K)/3.)
-(C + DELTA*AERO)
(B-SQRT(X/Y))/(2. 0*A)
GROSS - (TAX*0, 04)

(TEMPT+V (M, MAX)*Y**C)/(H-FACT (K+3))
RELATIONAL EXPRESSIONS

A relational expression is:

€ P

e. and e_ are arithmetic expressions and op is an operator that belongs to the set. The

r%lationaf expressions are:

<EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to
.LT. Less than

.LE. Less than or equal to

3-2

14061100 A

CoOO0Ccoe0e

¢
\

5
/

\k)

cHeoN*E®

A
N

7

C e C

OOCHOO060000C0

=)

2000000

A relation is true if e, and e_ satisfy the relation specified by op; otherwise, it is false.
A false relational expression {s assigned the value of the logical constant .FALSE.; a true

relational expression is assigned the value of the logical constant . TRUE..
Rules for relational expressions are as follows:

1) Evaluation is from left to right in a relation of the form:

op e

1

€ 2

The following relations are equivalent:

e, op e,

e1 op (e2)
(el) op e2
(el) op (e2)

2) Use a relational operator between two arithmetic expressions.

3) In a relational expression, do not use more than two arithmetic expressions
connected by a relational operator. Not allowed: '

e, op e, ope,

4) Separate two relational expressions with a logical connector, .AND. or .OR.,
in the forms:

e. op e - AND. e ope
1 °? %2 ¥ .0R. 2 P %3

e ope - AND, e ope
1 %" 29 .or. 3 P

Examples of relational expressions:

A .GT. 16. R(@I) .GE. R(I-1)

R-Q(I)*Z .LE. 3.141592 K .LT. 18

B-C .NE, D+E I .EQ. JIK)
14061100 A

LOGICAL EXPRESSIONS

A logical expression is formed with logical operators and logical elements and has the
value true or false (the values have the same internal representation as relational
expressions).
The logical operators are:

.OR. logical disjunction

.AND, logical conjunction

.NOT. logical negation
A logical expression has the general form:

L1 op L2 op L3...
L; are logical variables, logical constants, logical functions, logical expressions enclosed
in parentheses, or relational expressions; and op is the logical operator .AND. (indicating
conjunction) or .OR, (indicating disjunction).
The logical operator that indicates negation appears in the form:

.NOT. L1

Each expression is evaluated by scanning from left to right, with logical operations being
performed according to the following hierarchy of precedence.

1) .NOT.
2) .AND.
3) .OR.

A logical variable, logical constant, or a relational expression is, in itself, a logical
expression. If L; and L, are logical expressions, then the following are logical
expressions:

.NOT. L,

L1 .AND, L2

L, .OR. L,

3-4 ‘ 14061100 A

) OO OO0O00C OO0

N

OO0 00000

o lle)

If L is a logical expression, then (L) is a logical expression. If Lj, Lo are logical
expressions and op is .AND., or ,OR., then L op op Lo is never legitimate, However,
«NOT. may appear in combination with .AND. or .OR. only as follows:

Ll .AND. .NOT. L2
L. .OR. .NOT. L2
Ll oANDt (0N0T0 oo 0)
.OR., (NOT....)

-NOT. may appear with itself only in the form .NOT, (.NOT. (,NOT.L))
Other combinations cause compilation diagnostics,

If Ll’ L, are logical expressions, the logical operators are defined as follows:
.NOT. Lg is false only if L; is true
L, .AND, Ly is true only if L;» L, are both true
L; .OR. L, is false only if L, L, are both false

Examples:

1) B-CSASB+C
is written B - C .LE. A .AND. A .LE. B+C

2) FICA greater than 737,10 and PAYNMB equal to 12600.00
is written FICA ,GT. 737.10 ,AND., PAYNMB .EQ. 12600.00

MASKING EXPRESSIONS

Masking expressions consist of masking operators and elements; they resemble logical
operations in appearance only.

200000000606

In a masking expression, 32-bit logical arithmetic is performed bit-by-bit on the operands

within the expression. The operands may be any type variables, constants, or expressions
other than logical. No mode conversion is performed during evaluation. If the operand

is double precision, operations are performed on the higher order word. The result of a

masking operation is integer. Although the masking operators are identical in appearance

14061100 A 3-5

to the logical operators, their meanings are different. They are listed according to
hierarchy. The following definitions apply:

«NOT, bit-by-bit logical negation
.AND, bit-by-bit logical multiplication
.OR. bit-by-bit logical addition
«XOR, bit-by~bit exclusive OR

The operations are as follows:

P X - p.AND, v p:OR. v pP.XOR.v .NOT,p

1 1 1 1 0 0
1 0 0 1 1 0
0 1 0 ‘1 1 1
0 0 0 0 0 1

If B; are masking expressions, variables, or constants of any type other than logical, the
following are masking expressions:

.NOT. B;
Bl. AND. Bz
B,.OR.B,

If B is a masking expression, then (B) is a masking expression. .NOT. may appear with
.AND, or ,OR. only as follows:

.AND, .NOT,
.OR,.NOT
+AND, (. NOT. ...)
.OR, (.NOT, ...)
Masking expressions of the following forms are evaluated from left to right.
A .AND, B .AND, C...
A .OR. B .OR, C...
Masking expressions must not cbn_tain logical operands.

3-6 14061100 A

ISR=N-N-N-

O OO0

Y
;

<

)

£
N S/

= Nelele

~

®

-

> O O

o6 66060600 O0

5000000000

EVALUATION OF EXPRESSIONS

Evaluation of expressions is generally from left to right with the precedence of the

~ operators and parentheses (the deepest nested parenthetical subexpression is evaluated

first) controlling the sequence of operation. The precedence of operators for arithmetic
evaluation is as follows: '

** (exponentiation) Class 1

/ (@division) Class 2
* (multiplication) Class 2
+ (addition) Class 3
- (subtraction) Class 3
Relationals Class 4
.NOT, Class 5
.AND. Class 6
.OR. } Class 7
.XOR, Class 7

In an expression with no parentheses or within a pair of parentheses in which unlike
classes of operators appear, evaluation proceeds in the order indicated above (lowest
class operators first). In expressions containing like classes of operators, evaluation
proceeds from left to right (A**B**C) is evaluated as (A**B)**C),

When writing an integer expression, it is important to remember the left-to-right scanning
process; in addition, if dividing an integer quantity by an integer quantity yields a
remainder, the result will be truncated (thus 11/3 = 3). ‘

An array element name (a subscripted variable) used in an expression requires the

evaluation of its subscript. The type of expression in which a function reference or
subscript appears does not affect, nor is it affected by, the evaluation of the actual
arguments or subscripts. , :

14061100° A 3=7

MIXED-MODE ARITHMETIC

Arithmetic expressions can contain mixed types of constants and variables. FTN-60
performs the arithmetic operations by converting to one type according to established rules.

In arithmetic expressions, the operand types are double precisibn real, real, integer, and
character. The following rules establish the relationship between the type of an evaluated
expression and the types of the operands it contains:

1) The order of dominance of the operand types within an expression from highest
to lowest is:

a) Double

b) Real

c) Integer

d) Character

2) The dominant operand type determines the type of an evaluated arithmetic
expression. The mode/type relationships are:

Type A
Character Integer Real Double
Type B '
Character Integei' Integer Real Double
Integer Integer Integer Real Double
Real , Real Real Real Double
Double Double Double Double Double

For example, when A is real and B is integer, the mode of A op B is real. In mixed-
mode arithmetic, the mode used to evaluate any portion of an expression is determined by
the dominant type thus far encountered within the expression and the normal hierarchy of
arithmetic operations; integer mode will be used when an integer type is first encountered
and will be converted to the appropriate real mode when a real type is encountered.

3-8 14061100 A

cecoe

& e O

-

£
-

“\v
J
7

cl-N=-NeRtNsRe

OO0 0000CQC

C
C
o
O
O
©
o
[+
o
a

REPLACEMENT STATEMENTS - 4

Expressions, operators, and operands may be combined to form two types of statements,
executable and nonexecutable. An executable statement performs a calculation or directs
control of the program; a nonexecutable statement provides the compiler with information
regarding variable structure, array allocation, and storage-sharing requirements. A
source program is a group of FTN-60 statements.
Statements can be divided into four classes:

e Replacement

e Declarative

e Control

e Input/output and encode/decode

Arithmetic replacement statements incorporate expressions for addition, subtraction, multiy
plication, division, and exponentiation. Logical replacement statements may include
relational and logical operators.

Declarative statements permit a programmer to define the mode of a variable as logical,
character, real, integer, or double precision; enter data; reserve common storage and
overlay the same storage locations with variables and arrays during program execution.
Control statements conditionally or unconditionally alter the sequence of program executiouY
Input/output and encode/decode statements permit transfer of data from one storage location

to another or between computer storage and external equipment. Conversion and editing
specifications provide diversity in input/output formats.

14061100 A 441

REPLACEMENT STATEMENT

The general form of the arithmetic replacement statement is:
v=e
e is an arithmetic, logical, or relational expression, and v is any éimple or subscripted

variable name. The operator = means that v is replaced by the value of expression e,
with conversion for mode if necessary.

For example:

1 5 7

RESLT=X+Y-2, *R

SUMX=X+Y+2

ARG(LAB)=2 *X+COMP**2

SCEL=BIG .LE. SMALL

TAB= .NOT. X .OR. Y .OR. Z .AND. A
EE=AA.GE.BB.OR.CC.GE.DD

BOOL= .TRUE.

. 4= ‘ 14061100 A

=
% S

-

> © QO

g

20000000060 HOODOOO0OOOO

MULTIPLE REPLACEMENT STATEMENT

The multiple replacement statement is an extension of the arithmetic replacement statement.
It is evaluated right to left.

e must be an arithmetic expression; vi represents simple or subscripted variables and may
be any of the standard types.

The multiple replacement statement indicates that each of the variables v. EEAA is
replaced by the value of the succeeding variable or by the value of e, in a manner
analogous to that employed in mixed-mode arithmetic statements.

For example:

Problem: Convert radians to degrees and minutes.

Solution:
1 5 7
DEGI=IDEG=DEG=BETA*57,296

- IMIN=(DEG-DEGI)*60

Where:

BETA = 2.6 radians (real)

DEG = 148.9696 degrees (real)

IDEG = 148 degrees (integer)

DEGI = 148.000 degrees (real)

IMIN = 58 minutes (integer)

Result: 2,6 radians = 148 degrees 58 minutes

14061100 A 4-3

MIXED-MODE REPLACEMENT STATEMENT

Although the type of an evaluated expression is determined by the type of the dominant
operand, this does not restrict the types that an identifier may assume.
chart shows the v-to-e relationship for all of the standard modes.

Arithmetic replacement statement:

v Identifier

v=e

e Evaluated arithmetic expression

The foilowing

Type of
Type e Double Real Integer Character
of v
Convert e to Convert e to Convert e to
Double e —bv double precision double precision | double preci-
real —»v real —» v sion real—»v
Real Convert e to Convert e to Convert e to
real—dv e —bv real —b»v real —»v
Convert e to Convert e to Right justify
Integer integer—»v integer —dv e —bv and zero fill;
e then —»v
Convert to Convert e to
Character integer; lower 8 integer; lower Lower 8 bits & =——by
bits~—» v 8 bits —»v of e—»v
4-4 14061100 A

ccoe

OO 0000

=N

OO O

e l=

» © 00O

DECLARATIVE STATEMENTS S

Declarative statements are nonexecutable statements that:
o Assign word structure to variables (type)

® Reserve storage for arrays and single variables (DIMENSION, COMMON, and
SCRATCH COMMON)

o Assign initial values to variables (data)

The declarative COMMON, SCRATCH COMMON, EXTERNAL, TYPE, and DIMENSION
statements may be placed in any order prior to the first executable statement of a program
or subprogram. If the statements EQUIVALENCE and DATA are used, they must follow
other declaratives in the indicated order and must precede the first executable statement.

O
O
O
o
O
O
O
C
O

TYPE STATEMENTS

A type statement designates the word structure of variable and function identities. FTN-60
recognizes five standard types of fixed length as follows:

Type Declaration Word Structure

DOUBLE PRECISION Two .words per element

REAL One word per element

INTEGER ~ One word per element

CHARACTER Eight bits per element

LOGICAL , One bit per element
Rules:

1) Place the type declaration with other declaration statements prior to the first
executable statement in a program or subprogram.

2) Unless declared, a variable is integer if the first character of its identifier is I,
J, K, L, M, or N and real if the first character is any other letter.

14061100 A 51

000000000

3) In type statements, an identifier declared more than once causes a compiler
diagnostic.

4) An array identifier in the list designates the entire array.

For example:

1 5 [7

DOUBLE PRECISION EL, CAMINO
REAL IDE63, JEWEL

INTEGER QUID, PRO, QUO
CHARACTER ALPHA, BETA, GAMMA
LOGICAL Al, B2 (4), A147

- DIMENSION STATEMENT

The nonexecutable statements DIMENSION, COMMON, and SCRATCH COMMON reserve
storage for arrays. A subscripted variable in an expression represents an element of an
array of variables.

DIMENSION v1 (sl, 32, 83), Vo (4, 35, ss),...

An array name, vy has up to three unsigned integer subscripts, sl, separated by commas.
The number of storage locations reserved for a given array is determined by the product
of the subscripts in the subscript string and the number of words per type. An array may
occupy a maximum of 65,535 words.

For example:

1 5 7

REAL HERCULES
CHARACTER BEAT
DIMENSION HERCULES (10,20), BEAT (5,3)

5-2 V 14061100 A

HOOO0O00C00

J

{
o

€

3

» ©OC O O0CO0C

=)

OO0 6 000000

2000000006

VARIABLE DIMENSIONS

If an entry in a declarator subscript is an integer variable name, the array is
variable and the variable names are called variable dimensions. Such an array
may appear only in a procedure subprogram. The dummy argument list of the
subprograms must contain the array name and the integer names that represent
the variable dimensions. The values of the actual parameter list of the reference
must be defined prior to calling the subprogram and may not be redefined or
undefined during execution of the subprogram. The maximum size of the actual
array may not be exceeded. Every array in an executable program requires at
least one associated constant array declaration through subprogram references.

For example:
SUBROUTINE XMAX (DATA,K,J)

DIMENSION DATA (K,86,J)

In a subprogram, a symbolic name that appears in a COMMON statement may not
identify a variable array.

14061100 A

COMMON STATEMENTS

A program may be divided into independently compiled subprograms that use the same data.
The COMMON statements reserve storage areas, scratch or data, that can be referenced by
more than one subprogram.

COMMON/name/list assigns data common storage locations to variables and arrays
designated in the list. Values in data common may be preset with a DATA statement.

COMMON, COMMON// or SCRATCH COMMON/name/list assigns scratch common locations
to variables and arrays designated in the list. These may not be preset with data.

A maximum of 30 common (scratch and data) storage blocks may be allocated per sub-
program. The number of common blocks in a program is limited only by available
memory.

A subprogram may declare and use some of the same common blocks dzfined by another
subprogram and at the same time define additional common storage.

Associated with each reserved storage block is an alphanumeric name that identifies the
storage area. The name may be up to eight characters in length, and the first character
must be alphabetic. Common with no name is treated as scratch common and is given a
unique storage block.

Ruies:

1) Place COMMON and SCRATCH COMMON statements with other declarative state-
ments prior to the first executable statement in the program.

2) The list is composed of subscripted or nonsubscripted variable identifiers. If a
nonsubscripted array name appears on the list, the dimensions must be defined
by a DIMENSION statement in the subprogram.

3) Attempting to list an identifier in both scratch and data common doubly defines the
variable and causes a diagnostic.

4) The order of identifiers in the COMMON and SCRATCH COMMON statements
determines their order in the common storage block.

5) At the beginning of program execution, the contents of common (if not preset with a
DATA statement) are undefined.

6) The type and quantity of identifiers determine the length of the common block.

7) A subprogram may rearrange the allocation of storage locations in common.

14061100 A

C O

coCoo

N
/

o O C

@

e
LW

- ©

o
o
C
O
)
O
C
C
C
0

2000000006006

8) A subprogram may not increase the length of a common block assigned by
the first subprogram loaded. However, it may use less common than the
first program, The first program defining a common block must declare
the maximum size of the block.

9) When a subprogram does not need all of the locations reserved in common,
dummy variables in the statement achieve correspondence or reserved areas.

For example:
SCRATCH COMMON list
COMMON list
SCRATCH COMMON/BLK/list
COMMON/list
COMMON/CAT/list

COMMON/CAT/list/BLK/list l

EQUIVALENCE STATEMENT

An EQUIVALENCE statement permits storage to be shared by two or more entities; it does
not imply equality of entities. Each element in a given list is assigned the same storage
(or part of the same storage) by the processor.

i

EQUIVALENCE (k1), (Kg),..., (ky)
Each k is a list of the form:
3.1, 32, coe ,am

Each a is either a variable name or an array element name (but not a formal parameter);
the subscripts may contain only constants. m is greater than or equal to 2.

EQUIVALENCE may not be used to reorder COMMON or reposition the base. The base

of an equivalence group is the element with the smallest address, or, if in common, it is
the beginning element of the common block. The effect of an EQUIVALENCE statement
upon a common assignment may be the lengthening of a common block beyond the last
assignment for that block made by a COMMON statement. An element or array is brought
into COMMON if it is equivalenced to an element in COMMON. Two elements in COMMON
must not be equivalenced to one another.

14061100 D 5-5

The following example illustrates changes in block lengths as the result of an EQUIVA-
LENCE declaration.

Given: Arrays A and B
Sa subscript of A
Sb. subscript of B
For example:
A and C in common; B not in common
Sb £ Sa is a permissible subscript arrangement

Sb > Sa is not a permissible subscript arrangement

Block 1
origin A(l) COMMON/BLOCK1/A#4),C
AQ) B(Q) DIMENSION B(5)
A@3) B@) EQUIVALENCE (A(3),B(2))
A@) B(@3)
C B@)
- B

EQUIVALENCE statements must appear before DATA or executable statements in the
program unit,

5-6 14061100 A

cooo

SHN-l-

b

<

P

)

e

-
A

e 0

O 00006000

O

2000006000606 O

DATA STATEMENT

The DATA statement enables the programmer to assign values to program variables or
variables in data common at compile time. The DATA statements appear after the
specification statement group and prior to the first executable statement of the program
unit. The general form of the DATA statement is:

DATA kl/dl/, kz/dz/, coes kn/dn/

Each k; is a list containing names of variables, array elements, or array names implying
the entire array. Each dj is a list of constants, any one of which may be preceded by a
constant repeat factor, j*, where j is an integer constant. If a list contains more than
one entry, the entries are separated by commas.
Rules:
1) The form of the constants in the list dj, rather than the type of the identifier in
the list kj, determines the data type of the stored constants.

2) If the specified constant has a different storage requirement than the corresponding
variable, a usage diagnostic is given and the constant is ignored.

3) Any subscript expression must be an unsigned integer constant.
4) Formal parameters may not appear in a list kj.

5) When the form j* appears before a constant, it indicates that the constant is to be
repeated j times.

6) An ASCIH or hexadecimal constant may appear in the list dj.

7) A variable or array defined by a DATA statement may not be in scratch common.

For example:

1 5 7

DIMENSION ARRAY(10)
DATA X,Y,Z/1.,1.5,2.0/, FACT(1)/1./
DATA ARRAY/IO*O. /, BLANK/$20202020/, LIST/4HDATA/

14061100 A 5-7/5-8

S5O0l LOLLLLLOLOOOOCE

00000

C
C

e 0

o

»000000

CONTROL STATEMENTS 6

Program execution normally proceeds from one statement to the statement immediately
following it in a FORTRAN program. Control statements are used to alter this sequence
or to repeat program segments.

GO TO STATEMENTS

The statement labels used in the GO TO statements must be associated with executable
statements in the same program unit as the GO TO statement.

UNCONDITIONAL GO TO

The form of the unconditional GO TO statement is:
GO TO k
k is a statement label.

Execution of this statement discontinues the current sequence of execution and resumes
execution at the statement labeled k.

COMPUTED GO TO

The form of the computed GO TO statement is:
GO TO (kl,kz,...,kn),i

ki represents statement labels, and i is a simple integer variable., Variable i may only
assume values 1 £1<n. The transfer of control is to statement ki'

This statement acts as a many-branch GO TO; i is preset or computed prior to its use in
the GO TO statement. The variable i must not be specified by an ASSIGN statement. No
compilation diagnostic is provided for this error, but the branching is undefined.

14061100 A ” 6-1

For example:

GO TO (100, 200, 300, 400, 500), K

. Statement number 400 will be executed next.

ASSIGNED GO TO
The form of the assigned GO TO statement is:

GOTOm,(k k)

1 2,.0»,

ki represents statement labels, and m is a simple integer variable.

This statement acts as a many-branch GO TO. The variable m is assigned an integer

value k in a preceding ASSIGN statement; m cannot be defined as the result of a computation.
No diagnostic is given if m is computed, but the branching is undefined. A compile-time
diagnostic is given if the list is missing. '

ASSIGN

The form of the GO TO assignment statement is:

ASSIGN k TO m

k is one of the statement labels appearing in the GO TO list; m is the simple integer
variable in the assigned GO TO statement. At the time of execution of an assigned GO
TO statement, the current value of m must have been assigned by an ASSIGN statement.
For example:

ASSIGN 10 TO NN

GO TO NN, (5, 10, 15, 20)

Statement number 10 will be executed next.

.6-2 ' 14061100 A

e e 0O

SN~

IF STATEMENTS

Conditional transfer of control is provided with the IF statements.
ARITHMETIC IF

The form of the arithmetic IF statement is:

IF () k k) k,

e is an arithmetic expression of type integer, real or double precision, and ki represeants
statement labels. :

This statement causes expression e to be evaluated and control transferred according to
that value,

o000 006000

e< 0 jump to k1
e =0 jump to k2
e> 0 jump to k3

For example:

IF (A*B-CSIN(X)) 10, 10, 20
IF (N) 5, 6, 7
IF (A/B*C) 10, 11, 12

LOGICAL IF

- The form of the logical IF statement is:
IF (£) s

Lis a logical expression and S is an executable statement (not a statement label). S must
not be a DO or another IF. If e is true, S is executed. If e is false, S is treated as a
CONTINUE statement.
For example:

IF (L) GO TO 3

IF (A.GT.16.0.0R.A.EQ.0,) A=B

14061100 A 6-3

2 0000000006

DO STATEMENT

The DO statement makes it possible to repeat a group of statements immediately following
the DO statement a number of times, changing the value of a simple integer variable for
- each repetition. The form of the DO statement is:

DPOni-= my, My, Mg

n is the label (number) of the statement ending the DO loop; i is a simple integer index
variable. The m; are indexing parameters; they must be unsigned nonzero integer con-
stants or simple integer variables. i is initially set equal to m;, and after each execution
of the DO loop, mg is added to i. (When omitted, mg assumes a value of 1.) When i

becomes greater than mg9, the DO loop is satisfied.

The DO statement, the statement labeled n, and any intermediate statements constitute a
DO loop. Statement n may not be a GO TO, FORMAT, another DO statement, an arith-
metic IF statement, RETURN, STOP, PAUSE, or a logical IF containing any one of these
statements,

DO LOOP EXECUTION

Should mj exceed mg on the initial entry to the loop, the loop is executed once and control
passes immediately to the statement following statement n. If it does not exceed mg, the
loop is executed. The value of i is increased by mg and again compared with mg. The
process ‘continues until i exceeds my. The DO loop is then satisfied, and control passes to
the statement immediately following statement n.

If a transfer out of the DO loop occurs before the DO is satisfied, the value of i is pre-
served and may be used in subsequent statements,

6-4 14061100 D

ceooocoe

PN
« s

-

> O C

OH6 00000 0C0C

O

2 000000060606

DO NESTS

When a DO loop contains another DO loop, the grouping is called a DO nest. The last
Statement of a nested DO loop must either be the same as the last statement of the outer
DO loop or ocecur before it. If Dy,Dy,...,Dy, represent DO statements where the sub-
scripts indicate that D; appears before Ds (which appears before D3, etc.) and n1,N2,.00.,0y,
represent the corresponding limits of the Dj, then ny must appear before (or coincide with)

dm-1,...,0m-m and np must appear before (or coincide with) nj. Nesting may be to 50
levels.

r-—Dz
—D
3
—n3
n ""n2
1

When two or more DO loops end with the same statement, the innermost DO loop is
satisfied first.

Examples:
1) DO 1 I=1,10,2 D1
‘DO 2 J=1,5 D2
DO 3 K=2,8 D3 —_—
3 CONTINUE n, —
2 CONTINUE » n, ———
DO 4 L=1,3 ’ D s
4 EZONTINUE n4 —
1 CONTINUE n,
14061100 A 6-5

2) DO 5 I=1,5 D,
DO 5 J=1,10 D,
DO 5 K=J,15 D,
5 CONTINUE ISR
3) DO 100 L=2,LIMIT D,
DO 10 I-1,10 D,
DO 10 J=1,10 D,
10 CONTINUE nz,na
DO 20 K=K1,K2 D,
20 CONTINUE _ n,
100 CONTINUE n,

DO LOOP TRANSFER

In a DO nest, a transfer may be made from one DO loop into a DO loop that contains it
and a transfer out of a DO nest is permissible.

The special case is transferring out of a nested DO loop and then transferring back to the

nest. In a DO nest, if the range of Dj includes the range of Dj and a transfer out of the
range of Dj occurs, then a transfer into the range of Di or Dj is permissible.

6-6 14061100 A

coocoeC

) O O 0O 0

N

o
e

'/lf_‘ ™

©C0000C0C

O 0

C
C
o
O
o
o
©
o
o
0

In the following diagram, EXTR represents a portion of the program outside of the DO nest.

[Di
D -
)
>
Out
L
I EXTR
L
- In

If two or more DO loops terminate at the same logical point and a transfer is made to the
terminal statement for the outer DO loop, then the inner DO should have its own terminal
statement.

CONTINUE STATEMENT

The form of the CONTINUE statement is:

CONTINUE
The CONTINUE statement acts as a do-nothing instruction; control passes to the next
sequential program statement. The CONTINUE statement is frequently used as the last

statement of a DO loop to provide a loop termination when a GO TO or IF would normally
be the las_t statement of the loop.

PAUSE STATEMENT

The forms of the PAUSE statement are:
PAUSE
PAUSE Message

The PAUSE statement transfers control to a system subroutine. The following message is
outputted on the console CRT.

PAUSE Message

The operator response is to accept the line,
14061100 B

STOP STATEMENT

The forms of the STOP statement are:
STOP
STOP Message

A STOP statement terminates object program execution, prints STOP Message on the
standard output unit, and exits to the MPX,

PROGRAMMING CONSIDERATIONS

The MP-60/20 and MP-60/30 CPUs include lookdhead stack (LAS) hardware and supporting
firmware and software, The LAS significantly increases the instruction execution rate
of the CPU by the incorporation of integrated circuit memory in the CPU for the retention
of program loops. Each MP-60 program state is allocated a stack of 128 instructions,

The MP-60 FORTRAN compiler has been designed to generate object code that uses the
capabilities of the 1LAS. The FORTRAN programmer does not generate any special state-
ments, but should be aware of internal compiler operation,

DO LOOP statements are analyzed by the compiler to determine if the loop can execute
completely in the stack, A DO LOOP qualifies if it contains no external references
(e.g., CALL statements or functions) and consists of 125 or less machine instructions
(one instruction is needed for loop control and two instructions following are automatically
loaded into the stack). The loop length can be determined by obtaining an assembly
listing (A~option on FTN control statement) or a cross-reference listing (R-option) and
computing the length from relative program locations. A program branch instruction

(GO TO, IF, etc.) potentially causes the LAS pointers to be reset. The LAS pointers
are reset (and the stack effectively reloaded) when a branch is attempted beyond stack
limits. The compiler, therefore, substitutes stack fill branch instructions for normal
branch instructions in DO LOOPs that qualify for stack execution. Thus, the first pass
through the loop causes it to be loaded entirely into the stack. Normal sequential program
execution can also take advantage of the LAS. This is due to the automatic read of the
next two sequential instructions. However, each branch causes a reload of stack pointers
and excessive branching can degrade performance.)

® 6-8 » 14061100 D

cococoo

>

)

)

 C Q0O

O
O
C
O
O
O
O
C
O

2 000000000600

SUBPROGRAMS 7

MAIN PROGRAM AND SUBPROGRAMS

A main program is a set of FORTRAN statements bounded by a PROGRAM statement and
an END statement. Execution starts at the beginning of the main program,

Subprograms (subroutines and functions) are sets of instructions that may be written and
compiled separately from the main program and may be referred to by the main program.

A calling program is a main program or subprogram that refers to subroutines and
functions.

A subprogram name must be unique within the subprogram. The name of a function
determines the type of a subprogram in the same manner that variable names determine
types of variables. Names of subroutine subprograms are not classified by type.

The PROGRAM statement is the first statement of a main program; it can be used only
once within a main program. The form of the PROGRAM statement is:

PROGRAM name

name is a one-to-eight alphanumeric identifier beginning with an alphabetic character.

SUBROUTINE SUBPROGRAMS

A subroutine subprogram is composed of a set of FORTRAN statements bounded by a
SUBROUTINE statement and an END statement. A subroutine subprogram performs
operations or calculations that may or may not return values to the calling program.

Subroutine subprograms are compiled independently of the main program and may be
compiled in a separate run.

14061100 A 7-1

SUBROUTINE STATEMENT

A subroutine begins with one of the following statements:
SUBROUTINE name

SUBROUTINE name (Pl, P2’ ceey Pn) ‘

A subroutine name contains up to eight characters; the first character is alphabetic. The
name must not appear in a declarative statement or within the subroutine subprogram.

A SUBROUTINE statement can contain one to 63 formal parameters, p,; they may be array
names, nonsubscripted variables, or names of other functions or subroutine subprograms.
Formal parameters must not appear in COMMON, DATA, or EQUIVALENCE declarative
statements within the subroutine subprogram.

CALL STATEMENT

A reference to a subroutine is a call upon a computational or operational procedure. No
resultant value is identified or associated with the name of the subroutine. The subroutine
subprogram returns values, if any, to the main program through formal parameters or

common. The executable statement in the calling program for referring to a subroutine is:

CALL name

CALL name (pla pzy e ypn)

The CALL statement transfers control to the subroutine named. A RETURN or END
statement in the subroutine subprogram returns control to the calling program. A called
subroutine may not call the calling program or itself.

The actual parameters, p,, of a subroutine call must agree in order, number (1 to 63),
and type with the formal parameters of the subroutine subprogram. The following forms
are acceptable for actual parameters: :

o Arithmetic expression e Array name
e Constant ' e Function reference
e Variable, simple or subscripted e Subroutine name
¢ Relational expression e Logical expression
7-2 14061100 D

oo 0cCc000

q

v

AN

©COC O

4

o~
e

> © OO

2 000000000 FM™M O0OODONOOOOOO O

A function reference, used as an actual parameter, must also be used in an EXTERNAL
statement in the calling program.

When a subroutine is used with a parameter list, the subroutine name and its parameters
must appear as separate actual parameters.

Examples:

1) Subroutine Subprogram

1 5 7

SUBROUTINE ISHTAR (Y, Z)
COMMON//X(100)

Z=0

DO 5 I=1,100

5 Z=Z+X(I)

CALL Y

RETURN

END

Calling Program Reference

COMMON//A (100)
EXTERNAL PRNTIT

CALL ISHTAR (PRNTIT, SUM)
The formal parameters, Y and Z, in the subroutine subprogram are replaced by

PRNTIT and SUM. CALL Y is a call to subroutine PRNTIT; PRNTIT must appear
in an EXTERNAL statement for the compiler to recognize it as a subroutine name.

14061100 A 7-3

2) Subroutine Subprogram

1 5 7

SUBROUTINE BLVDLR (A,B,W)
W=2. *B/A
END

Calling Program Reference

1 5 7

CALL BLVDLR (X(I), Y(I), W)

CALL BL\.IDLR X@+H/2., YA)H+C(1)/2., W)

CALL BLVDLR (X()+H, YA}C(@3), Z)

FUNCTION SUBPROGRAMS

A function subprogram is defined externally to the program unit that references it. It is
headed by a FUNCTION statement and terminated with an END statement. At least one
RETURN statement is required to return control to the referencing program unit.

DEFINING FUNCTION SUBPROGRAMS

The form of the FUNCTION statement is:

t FUNCTION name (al, az, ceey an)

t is either INTEGER, REAL, DOUBLE PRECISION, LOGICAL. or empty; name is the

symbolic name of the function to be defined. a,, called a dummy argument, represents
a variable name, an array name, or an externail procedure name.

7-4 14061100 A

ccoe

© o0

—
- 7/

A

f_‘
%

o,

-

o0

+

> © O O

© 0

OO 660000

¢
C
o
o
o
©
o
®
®
0

The following restrictions apply to the construction of a function subprogram.

1) A function must be typed in the calling program unit and in the function subpro- °

2)

3)

4)

5)

6)

gram. Typing may be implicit or explicit (refer to Section 5). In the function
subprogram, explicit typing may be done with the FUNCTION statement or with a
type statement. Character functions can only be explicitly defined with a type statement.
The symbolic name of the function must also appear as a simple variable name

in the defining subprogram. During every execution of the subprogram, this
variable must be assigned a value at least once, either by appearing on the left-
hand side of an arithmetic assignment statement or through its inclusion in an

input list. The value of the variable at the time of execution of any RETURN
statement in this subprogram is called the value of the function.

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,
COMMON, or DATA statement in the function subprogram.

The function subprogram may assign values to one or more of its arguments in
order to return results in addition to the value of the function,

The function subprogram may contain any statement except the following:
PROGRAM, SUBROUTINE, another FUNCTION statement, or any statement that
directly or indirectly references the function being defined.

The argument list must not be empty.

REFERENCING FUNCTION SUBPROGRAMS

A function reference consists of the function name followed by an actual argument list
enclosed in parentheses. This reference may be used as a variable in an arithmetic or
logical expression. The actual arguments, which constitute the argument list, must agree
in order, number, and type with the corresponding dummy arguments in the defining pro-
gram unit. The function name must assume type implicitly or appear in a type statement.

An actual argument in an external function reference may be one of the following:

Variable name
Array element name
Array name
Expression

Name of an external procedure

14061100 A

7-5

If an actual argument is an external function name or a subroutine name, then the corres-
ponding dummy argument must be used within the called function as an external function
name or a subroutine name. respectively. If the actual argument is an expression, then
this association is by value rather than by name. If an actual argument corresponds to a
dummy argument that is assigned a value in the referenced function subprogram, the
actual argument must be a variable name, an array element name, or an array name.
Unless it is also a dummy argument, an external function name that is used as an actual
argument must be specified in an EXTERNAL statement.

Examples:

1) Function Subprogram

FUNCTION GREATER (A, B,)

IF (A .GT. B) GO TO 2

1 GREATER = A+B
RETURN

2 GREATER = A-B
RETURN
END

Function Reference

W(@,J) = FA + FB - GREATER(C-D, 3. *AX/BX)

2) Function Subprogram

FUNCTION PSYCHE (A, B,X)
CALL X(A)

PSYCHE = A/B*2.0+(A-B)
RETURN

END

7-6 14061100 A

coccoceocoe

SR

O

)

Function Reference

EXTERNAL EROS

R = S-PSYCHE (TLIM, ULIM, EROS)

NOTE:

X 18 not the name of an external subroutine, but is a parameter
that represents the name of a subroutine. The subroutine that "
is eventually called is EROS.

OO0 0000 0C0C

O

EXTERNAL STATEMENT

o}

When a CALL statement or function reference contains the name of a subroutine or function
in its list of actual parameters, the name must be declared in an EXTERNAL statement as
follows:

EXTERNAL namel. name PO name

name 1 is a function or subroutine name used as a parameter,

The EXTERNAL statement must precede fhe first executable statement of any program in
which it appears.

For example:
To make function reference PHI(p_, p,) in the statement C=D-PHI (Q(K), SINF),

14
function SINF {s an actual parame‘ier 2of the function PHI and must be declared in the
EXTERNAL statement.

EXTERNAL SINF

PHI, the function originally referenced, begins with the following statements.

1 5 7

FUNCTION PHI(ALFA, PHI2)
PHI=PHI2 (ALFA)

Formal parameter ALFA takes the value Q(K); formal parameter PHI2 calls for SINF.
Thus, the function subprogram PHI calculates the sine of Q(K).

14061100 A 7-7

2 09000000606

ENTRY STATEMENT

The form of the ENTRY statement is:

ENTRY name

The ENTRY statement identifies an alternate entry point in a subprogram to be entered if
the name of the entry point rather than the normal function name is referenced in a
statement. ENTRY may not be labeled or be within a DO loop.

ENTRY CALL OR REFERENCE

To enter a subprogram at the ENTRY statement, the name of the entry point is called
(subroutine) or referenced (functfon) in the same way as a subroutine or function.

ENTRY names must agree with the type of the function name when used in a function

subprogram.

The actual parameters with the ENTRY statement must agree in type and mode with the
formal parameters in the FUNCTION or SUBROUTINE statement for the subprogram.

For example:

1 5 7

45 R=S+JAM (Q,2.*P)
Subprogram execution would begin at ENTRY JAM in the subprogram.
1 5 7

10 FUNCTION JOE(X,Y)

JOE=X+Y
RETURN
ENTRY JAM
IF ...

END

14061100 A

OO0 000

¢
%

)

s

{
{

»

=3
J

-

o0

2 © QO O

00000000600 MHOOOHOO0O0O0O00O0OCOC

'RETURN STATEMENT

The form of the RETURN statement is:

RETURN

A subprogram normally contains one or more RETURN statements to indicate the end of
logic flow within the subprogram and return control to the calling program.

In function references, control returns to the statement containing the function. In most

subprograms, control returns to the calling program. A RETURN statement in the main
program causes an exit to the monitor.

END STATEMENT

The form of the END statement is:
END
The END statement marks the physical end of a program, subroutine subprogram, or

function subprogram. The END statement acts as a return to the calling program or
function reference. '

PROGRAM ARRANGEMENT

FORTRAN compilation assumes that all statements and comments inserted between a
PROGRAM, SUBROUTINE, or FUNCTION statement and an END statement belong to one

‘program. Comments inserted between END and a SUBROUTINE or FUNCTION statement

are associated with the preceding program. A FINIS card follows the last program.

14061100 D 7-9/7-10

QOO0 JLLLELOLWLOLSOC

CHYOOHOO0OO00000O0O0

o 0

20000000

FORMAT SPECIFICATIONS 8

“

Data transmission between internal and external storage requires an I/O control statement
and, in some cases, a FORMAT statement. The I/O statement specifies the I/O device
and the process and a list of data to be moved., The FORMAT statement specifies the
manner in which the data is to be converted, edited, and moved. In binary and buffered
I/0 statements, no FORMAT statement is used.

FORMAT STATEMENT

The ASCII 1/O control statements (except BUFFER IN and BUFFER OUT) require a format
list for internal and extermal conversion of the I/O list elements. A FORMAT statement is:

FORMAT (q1t1z1t2z2' .o tnznqz)

Qpt1z3te29...ty2,00) is the format specification. Each q is a series of slashes or is
empty. Each t is a field descriptor or group of field descriptors., Each z is a field
separator. n may be zero.

A FORMAT statement must be labeled. It is nonexecutable and can appear anywhere in
the program.

FIELD DESCRIPTORS

The format field descriptors are:

nPrFw.d Real conversion without exponent
nPrEw.d Real conversion with exponent
nPrDw,.d Double precision conversion with exponent
riw Integer con&ersion
r$w Hexadecimal integer
rLw Logical conversion
14061100 A 8-1

TAwW ASCII conversion, left justified
rRw ASCII conversion, right justified
Wthhz‘ . .hw Heading and labeling
wX Intra-line spacing

Where:

1) The letters F, E, D, I, $, L, A, R, H, and X indicate the manner of conversion
and editing between the internal and external representations and are called the
conversion codes,

2) 'w is a nonzero integer constant representing the width of the field in the external
character string.

3) d is an integer constant representing the number of digits in the fractional part of
the external character string.

4) r, the repeat count, is an optional nonzero integer constant indicating the number
of times to repeat the succeeding basic field descriptor.

5) nP is optional and represents a scale factor designator,
6) Each h is one of the characters capable of representation by the processor.
For all descriptors, the field width must be specified. For descriptors of the form w.d,

the d must be specified, even if it is zero. Further, w must be greater than or equal
to d.

FIELD SEPARATORS

The format field separators (also called delimiters) are the slash and the comma., A
series of slashes is also a field separator. The field descriptors or groups of field
descriptors are separated by a field separator.

The slash is used not only to separate field descriptors, but to specify demarcation of
formatted records,

8-2 : 14061100 A

oo o000

<

)
/

¢

Sl

s

N-ReR-Rel=

OO0 00000

O 0

2000006000060

CONVERSION SPECIFICATIONS

The data elements in I/O lists are converted from external to intermal or from interual to
external representatlon according to FORMAT conversion specifications,

Ew.d OUTPUT

The Ew.d specification converts floating-point numbers in storage to the ASCII character
form for output. The field occupies w positions in the output record; the corresponding
rounded floating-point number appears right justified in the field as:

A.X,.,.XEzee when -38< ee £38

@...x are the most significant digits of the integer and fractional part; ee are the digits
in the exponent. If d is zero, the digits to the right of the decimal do not appear, but the
exponent does. The fractional part contains a maximum of 11 digits. Field w must be
wide enough to contain the integer portion, sign, decimal point, E, and the exponent; that
is, w 2 6 + d is required.
When the field is not wide enough to contain the output value, asterisks are inserted in the
entire field, A field width, w, of less than five causes a format error. If the field is
longer than the output value, the quantity is right justified with blanks in the excess
positions to the left.
Examples:
1) Proper use of Ew.d specification:
A contains +67.32 or -67.32
Right
WRITE (10,10) A
10 FORMAT (E10.3)

Result: AA.673E+02 or A -.673E+02

14061100 A 8-3

2) Minus sign not provided for:

A contains +67,.32 or -67,32

Wrong

HO0O0eC0C e

WRITE (10,10) A
10 FORMAT (ES.3)
Result: .673E+H02 or *¥¥ix¥xkx

3) w is larger than required:

A contains 412,679 8
WRITE (10,25) A)

AN

25 FORMAT (E14.4) g

Result: AAAAA .4127E+03 o

Ew.d INPUT N

. ‘4»\».

The Ew.d input specification converts the number in the input field to real and stores it NS
in the appropriate location in memory.

, P

w specifies the total number of characters in the input field, In the left-to-right scanning %

process, blanks in the field are interpreted as zeros,

14061100 A (}

O00000 OO0

o

2 000000060 O

The subfields for an input value may include integer, fraction, and exponent.

n.m N, M+8§ +n, mEs . mEss
+n, +n, +8 +n,Es +n, E+s
*,m +, M8 +.mEs ., mE+s
H 1N+ +nEs +nE+s

Subfield structure of the input field:

Input field

+ +
- ‘1 =s
digit E °°
integer 1 fraction exponent
decimal point

An integer subfield begins with a sign (+ or -) or a digit followed by a string of digits and
ends with a decimal point, E, sign, or the end of w.

A fraction subfield begins with the decimal point, includes a string of digits, and ends with
a sign, E, or the end of w.

An exponent subfield may begin with E or a sign. When it begins with E, the sign may
appear between E and the digits in the exponent. The digits in the exponent must be less
than or equal to 38; the entire input quantity must be in the range of 10 38to 1038.

When no decimal point is present in the input field, d in the Ew.d specification is a
negative power factor of ten. The internal representation of the input quantity becomes:

(integer subfield) x lo_d.x lo(exponent subfield)

- For example, if the specification is E7.7, the input quantity 3267+05 is converted and

stored as 3267 x 10~7 x 10° = 32.67.

When E conversion is specified and a decimal point occurs in the input field, the decimal
point overrides d. The input quantity 3.67294+5 may be read by any specification allotting
necessary field length but will always be stored as 3. 67294x105

14061100 A 8-5

The field length w must be the same as the length of the input field. When w is too long,
incorrect numbers may be read, converted, and stored as shown in the following example.
When w is too short, a portion of the input field may be left unread. The field w includes
significant digits (maximum of 17), sign, decimal point, E, and exponent.

For example:

Input Card

21E+02

+6.47E-01-2.36+5.3
I'_9‘—'|‘ 50|o— 10 —-—l

Incorrect Specification

READ 20, A,B,C
20 FORMAT (E9.3,E7.2,E9.3)

Reading proceeds as follows:

e
-‘1-—9——4

+6.47E-01 |-2.36+5 .321E+02A

+6,47E-01 |-2.36+5].321E+02A

+6,47E-01 -2,36+5].321E+02 A

First, +6.47E-01 is read, converted, and placed in location A.

Next, -2,36+5 is read, converted, and placed in location B, The number desired was
-2.36 but the specification error (E7.2 instead of E5.2) caused the two extra characters

to be read. The number read (-2,36+5) is legitimate under the definitions and restrictions.

Finally, .321E+020 is read, converted, and placed in location C. Here again, the input
number is legitimate although it is not the number desired.

In this example, numbers are incorrectly read, converted, and stored, yet there is no
immediate indication that an error has occurred.

8-6 : , 14061100 A

coC

=

O O

.

i*,

<

2N
J

K<

=,
O

6o

OO0 00000CO0

)

)

2000000006

Examples:
: Ew.d Input
Input Field Specification
+143.26E-03 - Ell.2

-12.437629E+1 E13.6

8936E-+004 E9.9
327.625 E7.3
4,376 E5.0
-.0003627+5 E11.7
-.0003627E5 E11.7
1E1 E3.0
E+06 E10.6

1.EAl E6.3

Fw.d OUTPUT

Converted
_Value

.14326
-124,37629

. 08936

327.625

4,376

-36.27

-36.27

10.

10.

Remarks
Subfields all present
Subfields all present

Input number converted as
8936x10™9x10

No exponent subfield

Decimal point overrides
specification

Integer subfield contains
only minus

Integer subfield contains
only minus

Input number converted as
1.x101

No integer or fraction subfield;
zero stored regardless of

exponent

Blanks interpreted as zeros

The Fw.d specification converts floating-point numbers in storage to ASCII form for out-
put. The field occupies w positions in the output record; the corresponding list element
must be a floating-point quantity that is converted and rounded to a decimal number, right

justified in the field, as:

Am...a. (...«

@ represents the most significant digits of the number (maximum of 17 significant digits).
The number of decimal places to the right of the decimal point is specified by d. If d is

zero, the digits to the right do not appear.

If the number being converted is positive, the

+ sign is suppressed. w must be large enough to include d, the decimal point, and the

sign, in addition to the digits to the left of the decimal.

14061100 A

8-7

If the field w is too short to accommodate the number, asterisks appear in the field.

If the field w is longer than required to accommodate the ‘number, it is right justified with
blanks occupying the excess field positions to the left.,

Examples:

)

2)

3)

Proper specification:

A contains +123.45678 or -123.45678

Right
WRITE (10,10) A

10 FORMAT (F10.5)

Result: A 123.45678 or -123.45678

w too small to accommodate integer portion:

A contains +123,45678
Wrong

WRITE (20,10) A
10 FORMAT (¥8.5)

Result: ****%kik

w too small to accommodate sign:

A contains -67.460
Wrong

WRITE (42,12) A
12 FORMAT (F6.3)

Result: *x¥xxx

14061100 A

HOO000000

O

\.
J

®

7

00000

+

00000000

o

C
C
L
C
O
o
O
o
o
®n

4) w larger than required
A contains 412,6727
Right

WRITE (10,25) A
25 FORMAT (F10.3)

Result: AAA 412,673
Fw.d INPUT

The Fw.d specification converts a number in an input field (w columns wide) to real and
stores it in memory. The input field consists of an integer and a fraction subfield. An
omitted subfield is assumed to be zero.,
Permissible subfield combinations are:

¢ Integer and fraction

e Integer by itself

e Fraction by itself

e Any of the above followed by an exponent subfield

An integer subfield begins with a digit, + or -; blanks in the field are interpreted as
zeros. The integer field is terminated by a decimal point or by the end of the input field,

A fraction subfield begins with a decimal point; it is terminated by the end of the input
field. '

In the Fw.d specification, d acts as a negative power factor of ten when the fraction
subfield is not present. The internal representation is (integer subfield) x 1074, For
example, the specification F4.3 causes the input quantity 3267 to be converted and stored
as 3267 x 10-3 = 3.267.

A decimal point in the input quantity causes d to be ignored. For example, 3.6789 may
be read under any F6.d specification but will always be stored as 3.6789,

The maximum number of significant digits that may appear in the combined interger-

fraction field is 19. Excess digits are discarded from the right during the conversion
process,

14061100 A 8-9

The field length specified by w in Fw.d should always be the same as the actual length of
the input field containing the input number, When it is too long, incorrect numbers may

coce

be read, converted, and stored.

When it is too short, significant digits may be lost.

Examples:
~ Fw.d Input Converted

Input Field Specification Value Remarks

367.2593 F8.4 367.2593 Integer and fraction field

37925 F5.5 . 37925 No fraction subfield; input
number converted as 37925
x 1079

-4,7366 F7.0 -4,7366 Decimal point overrides
specification

«62543 F6.5 . 62543 - No integer subfield

«62543 , F6.2 . 62543 Decimal point overrides d of
specification

+144.15E-03 F11.2 .14415 Exponents are allowed in

Dw.d OUTPUT

D conversion corresponds to Ew.d output.

F input

The field occupies w positions of the output

record; the list item is a double precision quantity which appears as a decimal number,

right justified.

A . a...XEzee

8-10

when -38< ee < 38

14061100 A

-

SN

®

¢

-

OO0 0000000

)

200000000606

Dw.d INPUT

D conversion corresponds to E conversion except that the list variables should be double
precision names, D is acceptable in place of E as the beginning of an exponent subfield,

For example:

~ Input Card

(—6. 31675298443E-03+2.7189264531476293477528869D-09
A\ / \ / \ /

v A "V
18 15 17

DOUBLE Z,Y,X
READ 1, Z,Y,X

1 FORMAT (D18,11,D15.0,D17.4)

Iw OUTPUT

The Iw specification converts decimal integer values in the output list to ASCII character
form for output. The output quantity occupies w output record positions; it will appear
right justified in the field w, as:
A
_t!ld

2.0- an

«; represents decimal digits (maximum 19) of the integer. When the integer is positive,
the + sign is suppressed,

When the field w is larger than required, the output quantity is right justified with blanks

occupying excess positions to the left, When the field is too short, asterisks are inserted
in the field. ’

For example:

J contains -3762
K contains +4762937
L contains +13
WRITE (11,10) J,K, L
10 FORMAT (18,110,15)

Result: |AAA23762AAA 4762937, AAAL3
\ s v 7\ /

8 10 5

14061100 A 8-11

Iw INPUT

The Iw input specification converts the input field to a decimal integer. The field is w
characters in length, and the corresponding list element must be a decimal integer quantity.
Input field w consists of an integer subfield that contains only a plus or minus, 0 through 9,
or blank which is interpreted as zero, When a sign appears, it must precede the first
digit in the field. The value is stored right justified in the specified variable,

For example:

Input Card

col, 1

W
39AA-15AA18AATA3AIAS
' 3l 7 IZ!SIZI 4

READ (13,10) I,J,K,L,M,N

10 FORMAT (13,17,12,13,12,14)

Result: 1 contains 139 L contains 7
J contains -1500 M contains 3
K contains 18 N contains 104

$w OUTPUT
The $w output specification converts internal binary to ASCII hexadecimal integers. The
output quantity occupies w output record positions and appears as:

‘1... ¢w

& ; represents hexadecimal digits (maximum sixteen). No sign appears; a negative hexa-
decimal number is represented as it appears in storage in two's complement form. If w
is greater than required, the number is right justified. If w is too small, the rightmost
hexadecimal digits in storage occupy the output field; the left portion of the word is lost.

8-12 \ 14061100 A

HOHOeoc60e

#
{
'«

Z

C ‘Q\
. 7

J

% |7

> O C OO0 e 0

OO0 0000000

o

2 000000006 O

$w INPUT

The $w input specification provides a method of entering hexadecimal quantities into
storage, The input field w has a maximum of 16 hexadecimal digits, The string of
hexadecimal digits may be preceded by a sign; a negative sign causes the two's complement
of the quantity to be stored. Blanks in the field are interpreted as zeros. Only
hexadecimal digits (0-9, A-F) may appear.

Lw OUTPUT

The Lw specification is used to output logical values. The output field is w characters
long, and the list item must be a logical element. A value of TRUE or FALSE in storage
causes w-1 blanks followed by a T or F to be outputted,
For example:

I, K, L are TRUE; J is FALSE

LOGICAL L,J,K,L

PRINT 5, I,J,K,L
5 FORMAT (4L3)

Result: AAT AAF AAT AAT
Lw INPUT

This specification accepts logical quantities as list items, The field is considered true if
the first nonblank character in the field is T; otherwise, it is false,

Aw OUTPUT

With the Aw output specification, internal code is converted to external alphanumeric
characters.

“i”'aw

c:i represents alphanumeric characters (maximum is eight characters), When w is
larger than required, the character string is right justified with blank fill to the left.
When the field is too small, the leftmost characters appear in the output field; any other
characters are lost.

14061100 A 8-13

Aw INPUT

The Aw input specification accepts up to eight 8-bit characters. A blank in the input field
is converted to the 8-bit equivalent ASCII code for blanks (20). If w exceeds the number of
characters for the storage word, only the rightmost characters are stored in the variable
defined in the I/0 list. If w is less than the allowed number, the characters in the input
field are stored left justified in the variable with blank fill to the right.

Rw OUTPUT

The Rw output specification is similar to the Aw specification for converting internal codes
to external alphanumeric characters. The w output field is:

L3
-

(1...¢w

& represents alphariumeric characters (maximum is eight characters). When w is larger
than required to represent the characters, the character string is right justified with zero
fill to the left, When the field is too small, the rightmost characters appear in the output
field; any other characters are lost.

Rw INPUT

The Rw input specification, like the Aw specification, accepts up to eight 8-bit characters.
A blank in the input field is converted to the 8-bit equivalent ASCII code for blanks (20).

If w exceeds the allowed number of characters for the storage word, only the rightmost
characters are stored in the variable defined in the I/O list. If w is less than the allowed
number, the characters in the input field are stored right justified with binary zero fill to
the left.

8-14 ; 14061100 A

coeo

[=

© 0O

¢ O

O

2o OO0 O e 00

O00000000

o

o
m
O
O
o
O
O
o
0

nP SCALE FACTOR

The D, E, and F conversions may be preceded by a scale factor:
external number = internal number x loscale factor

The scale factor applies to Fw.d on both input and output and to Ew.d and Dw.d on output
only. A scaled specification is written as:

nPDw.d
nPEw.d
nPFw.d

n js a signed integer constant.
Fw.d SCALING

For scaled input, the number in the input field is multiplied by 10 and stored. For
example, if the input quantity 314,1592 is read under the specification 2PF8.4, the internal
number is 314,1592x10"2 = 3,141592,

For scaled output, the number in the output field is the internal number multiplied by 108,
In the output representation, the decimal point is fixed; the number moves to the left or

‘right depending on whether the scale factor is plus or minus. For example, the internal

number 3.1415926536 may be represented on output under scaled F specifications as follows:

Specification Output Representation
F13.6 3.141593
1PF13.6 31.415927
3PF13.6 3141.592654
-1PF13.6 . 314159
14061100 A

8~15

Ew.d SCALING

The scale factor has the effect of shifting the output number left n places while reducing

the exponent by n.

scaled E specifications are:

Specification Output Representation

E20,.2 «31E+01
1PE20.2 3.14E+00
2PE20.2 31.42E-01
3PE20,2 ‘ 314.16E-02
4PE20.2 3141.59E-03
5PE20.2 31415, 93E-04
-1PE20.2 . 03E+02

SCALING RESTRICTIONS

The scale factor is assumed to be zero if no other value has been given; however, once a

Using 3.1415926536, some output representations corresponding to

value has been given, it will hold for all D, E, and F specifications following the scale

factor within the same FORMAT statement.

To nullify this effect in subsequent D, E, and

F specifications, a zero scale factor, 0P, must precede a D, E, or F specification.
Scale factors which result in exponents that exceed +38 may cause overflow conditions.

EDITING SPECIFICATIONS

Editing specifications define spacing between characters and lines, skip records, begin new
records, and provide a method of adding headings and comments,

8-16

14061100 A

SO o000

—_— o,

)

\,
J

OO0 000000O0

2 0000000060

SPACE (wX)

The wX specification produces blanks in an output reco
quantities., '

Examples:

1)

2)

Output spacing:
A contains 7
B contains 13.6
C contains 1462, 37
INTEGER A
WRITE (11,10) A, B, C
10 FORMAT (12,6X, F6.2, 6X, E12.5)
Result: ATAAAAAAALS. 60AAAAAAAL. 4623TE+03
2] 6 6 6 12
Skipping on input:

Input Card

15,62 $13.78, COST ,15.97

B

READ (K3,11) R,S, T

3 5 6 5

11 FORMAT (¥5.2,3X, F5,2,6X, F5.2)

Result: R contains 15.62
S contains 13.78 (A$ spaced over)
T contains 15.97 (ACOSTA spaced over)

14061100 A

rd or skips w characters of input

8-17

wH OUTPUT

The wH output specification provides a method of including a set of w 8~bit ASCII characters

in the output record in the form of comments, titles, heading, and carriage control
characters.

An unsigned integer w specifies the number of characters to the right of the H to be
included in the output record.

Examples:
1) No I/0 list:
WRITE (17,20)
20 FORMAT (28H BLANKS COUNT IN AN H FIELD.)
Output record: ABLANKS ACOUNTAINAANAH AFIELD.
2) Mixed specifications:
A contains 1.5
WRITE (14,30) A
30 FORMAT (6H LMAX=,F5,.2)

Output record: ALMAX = A1,50
wH INPUT

With the H specification, a new heading is read into an existing H field. When the new

characters on an input record are read, the corresponding characters are placed into the
format list designated in the I/O statement. A subsequent output statement puts the new
characters in the output record. The field width, w, specifies the number of characters
in the input field.

8-18 14061100 A

O LO0Cco00CCC

s
\“l

\
/

AN

-

000000

For example:

Input Card

Kcrms AIS AA AVARIABLE A HEADING
, 27 cols.
READ (K4, 10)

10 FORMAT @THAAAAA ,..AAAAA)
. 27 spaces

WRITE (K5, 10)

Result: ATHISAISAA AVARIABLE AHEADING

OO0 00000000

NEW RECORD (/)

A slash, signaling the end of an ASCII record, may appear anywhere in the specifications
list. It may be separated from other list elements by commas; consecutive slashes may
appear., During output, the slash is used to start new records, cards, or lines. During
input, a slash specifies the beginning of the next record.

Examples:

1) WRITE (12, 10)

C

10 FORMAT (20X, 7THHEADING///6X,5HINPUT, 19X, 6HOUTPUT)

Output record:
AAAAA)\AAAAM\AM\AAAA/\ HEADING line 1
line 2
line 3
AAAAAA INPUTAAAAAAAAAAAAAAAAAAA OUTPUT line 4

Each line corresponds to an ASCII record. The second and third records are null
and produce the line spacing illustrated.

14061100 A 8-19

20000000

8-20

2)

3)

A contains -11.6
B contains .325
C contains 46,327
D contains -14.261
WRITE (11,11) A,B,C,D
11 FORMAT (2E10.2/2F17.3)

Result: A-.116E+02AA. 325E+00
A46.327-14. 261

WRITE (12,11) A,B,C,D
11 FORMAT (2E10.2//2F7.3)
Result: A-1.16E001 AA3,25E-01
A46. 327-14. 261

AMAX(1) contains 3,62
AMAX(2) contains -4,03
AMAX(3) contains -9,.78
WRITE (11,15) (AMAX(D),I=1,3)
15 FORMAT (8H ANSWERS,2(/),3F8,2)
Result: A ANSWERS

AAAA 3,62AAA -4.03AAN-9.78

line 1
line 2

line 1
lgne 2

line 1
line 2
line 3

14061100 A

cooce

Sl -N=

®

®

}

Y,

oo 00

2 O 0 C

OO0 0000 0O

O

PO0OCOOOOOOOE™O

4) Read a pair of cards:
DIMENSION ARRAY(16)
READ 10, ARRAY
10 FORMAT (8F10.4)

Result: Two cards are read, both in the same format, to fill the 16 elements
of ARRAY.

DIMENSION A (10), NT(20)
READ 11, A,NT
11 FORMAT (10F8.2/2014)

Result: Two cards are read; the first fills the 10 elements of A; the second fills
the 20 elements of NT.

REPEATED SPECIFICATIONS

Repetition of the field descriptors (except nH and nX) is accomplished by using the repeat
count., If the I/O list warrants, the specified conversion will be interpreted repetitively
up to the specified number of times.

Repetition of a group of field descriptors or field separators is accomplished by enclosing
them within parentheses and optionally preceding the left parenthesis with an integer
constant, called the group repeat count, indicating the number of times to interpret the
enclosed grouping. If no group repeat count is specified, a group repeat count of one is
assumed. This form of grouping is called a basic group.

A further grouping may be formed by enclosing field descriptors, field separators, or

basic groups within parentheses, Again, a group repeat count may be specified, The

parentheses enclosing the format specification are not considered as group delineating

parentheses, MP-60 FORTRAN allows three inner levels of nesting,

For example, if two quantities, K and L, are to be printed, the program could be written:
WRITE (11,10) K, L

10 FORMAT (12, 12)

14061100 A 8-21

Since the specifications for K and L are identical, the FORMAT statement may be written:
10 FORMAT (2I2)

When a group of format specifications repeats itself, a group repeat count may be used to
simplify the statement.

FORMAT (E15.3,F6.1,14,14,E15.3,F6.1,14,14)

FORMAT (2(E15.3, F6.1,214))
VARIABLE FORMAT

Format lists need not be supplied by FORMAT statements; instead, they can be placed in
integer arrays. Placing format lists in arrays and referencing the arrays instead of the
FORMAT statement permit the programmer to change, index, and specify formats at the
time of execution. -

Format arrays are prepared by storing a format list, including left and right parentheses,
as it would otherwise appear with a FORMAT statement. Variable specifications can be

read in from cards, changed with assignment statements, or preset in labeled common with
a DATA statement.

For example:

Prepare an array for format list:

((€12.2, F8.2,17,2E20, 3, F9.3,14)
DIMENSION IVAR(@8)
READ (K1,1) (IVAR(), I=1,8)
1 FORMAT (8A4)

Result: IVAR(1) contains (E12 IVAR(5) contains E20,
IVAR(2) contains .2,F IVAR(6) contains 3,F9
IVAR(3) contains 8.2, IVAR(7) contains .3,1
IVAR(4) contains 17,2 IVAR(S) contains 4) AA
8-22 | » 14061100 A

Heoo00e e

<

%P

a
J

&

o

o 00 O 0O

OO0 000000 0¢0C

2 000000006BKO

When using the specifications, reference the array:
WRITE (12,IVAR) A,B,I,C,D,E,J

Specifications can be changed with assignment statements:
IVAR(4) = 4HAAA2

This removes I7 from the format list, permitting:

WRITE (12,IVAR) A,B,C,D,E,J

FORMAT CONTROL

Execution of a formatted READ or formatted WRITE statement initiates format control.
Each action of format contro! depends on information jointly provided by the next element
of the I/O list, if one exists, and the next field descriptor obtained from the format
specification, If there is an I/O list, at least one field descriptor other than nH or nX
must exist,

When a READ statement is executed under format control, one record is read when the
format control is initiated, and thereafter additional records are read only as the format

. specification demands,

When a WRITE statement is executed under format control, a record is written each time
the format specification demands that a new record be started. Termination of format
control causes writing of the current record.

Except for the effects of repeat counts, the format specification is interpreted from left
to right, : '

To each I, F, E, D, $, A, R, or L basic descriptor interpreted in a format specification,
there is one corresponding element specified by the I/O list. To each H or X basic
descriptor there is no corresponding element specified by the I/O list, and the format
control communicates information directly with the record. Whenever a slash is

-encountered, the format specification demands that a new record start or the preceding

record terminate. During a READ operation, any unprocessed characters of the current
record will be skipped at the time of termination of format control or when a slash is
encountered.

Whenever the format control encounters an I,” F, E, D, $, A, R, or L basic descriptor
in a format specification, it determines if there is a corresponding element specified by
the 1/0 list. If there is such an element, it transmits appropriately converted information
between the element and the record and then proceeds. If there is no corresponding
element, the format control terminates.

14061100 A 8-23

If the format control proceeds to the last outer right parenthesis of the format specification,
a test is made to determine if another list element is specified. If not, control terminates.
However, if another list element is specified, the format control demands a new record
start and control reverts to the group repeat specification terminated by the last preceding
right parenthesis, or if none exists, then to the first left parenthesis of the format
specification. This action of itself has no effect on the scale factor.
Examples of format control interaction with an 1/0 list are as follows:
1) List longer than format specifications:
DIMENSION NP(4)
WRITE (6,10) NP, TMAX, PMAX,DRPD,G,C, P1,T1,H1,S1

10 FORMAT (4110/(4F10.2))

Result: 101 98 121 97
1337.28 540.68 -.47 53.70
71.20 123.00 -823.23 .00

-.25

2) List shorter than format specifications:
WRITE (6,10) N1,N2,1,J,A,B
10 FORMAT (4110/(4F10.2))
Result: 100 200 10 20

.23 100.00

CARRIAGE CONTROL

The first character of a listable output record is used for printer carriage control and is
not printed., Usually, this character is in H format in a FORMAT specification used to
print or write on the standard output file.

Control Character Action Before Print Action After Print

1 Eject page No space
0 (zero) Space two lines No space
+ No space No space
- Space three lines No space

{blank) Space one line No space
other Space one line No space

8-24 14061100 A

J
e

)

A
J

© OO0

© O

= ol

OO00O0060O00O0O0

o 0

20000000006

INPUT/OUTPUT STATEMENTS 9

—

I/0 statements control the transfer of information between the storage unit and an external
device.

In the I/0O control statements:

i Indicates the unit number and must be a simple integer variable or an
integer constant.

n Identifies the format list and is either a FORMAT statement number or the
name of the array containing the format list. Binary and buffered data
transmission do not require n.

list Indicates the variables for input or output.

I/0 LISTS

The list portion of an I/O control statement indicates the data elements and the order of
transmission from left to right., Elements may be variable names, array names, array
elements, or DO-implying segments. If ASCII transmission is indicated, the type of each
element must correspond to an appropriate conversion specification in the FORMAT
statement,

DO-IMPLYING SEGMENTS

A DO-implying segment consists of one or more list element and indexing values.,
Dimensioned arrays may appear in the list with values specified for the range of the
subscripts in an implied DO loop.

The general form for a DO-implying segment is:
(oo« ((list, 71=m1, m2’ m3)’ 72=n1. n29 n3), cees Y i=z1’ Z2’ z3)

m,, nk,...,zk Unsigned integer constants or predefined positive integer variables,
When the third indexing parameter (mg3,ng,...,z3) is omitted, a
value of one is used for incrementing.

yi Index variables which must be simple integer variables,

14061100 A 9-1

A list element may be a simple variable, a dimensioned variable, or an array name,

The first index variable (71) defined in the list is incremented first. Data named in the
implied DO loops is transmitted by increments of mg until my is exceeded. (When mj is

omitted, the increment value is 1.) When the first index variable reaches my, it is reset;

the next index variable to the right (7j,) is then incremented, and the process is repeated
unti the last index variable (7;) has been incremented.,

The general form for arrays is:
Y = Y = Y -
(AqJ,K, 7 =m,m,m,, 7,=n,n,,0), 7, P12 Py Pg)

I,J,K Subscripts of A; must be in standard form

71, 72, 73 May represent I, J, K; Yl;é 72{ 73

A DO-implying segment for an array may replace a nest of DO loops.

DO 10 72 = nl,nz,n3

DO 10 71 = ml,mz,m3
Transmit list elements by an input or output statement

10 CONTINUE

An implied DO loop may also be used to transmit a simple variable, a sequence of

variables, or an array a number of times., In the segment ((A),K=1,10),- A will be
transmitted 10 times.,

The limit to which implied DO loops may be nested is determined by the length of the
statement.

92 14061100 A

OO0 O 0CCC0O

SO0 0060

» QO O

»

P 0000000006 FHYOOHODOOOOOOOC

Examples:

1)

Example of a DO-implying segment nested five deep:
«Aagd,K)y, BM), C@N), N=1,10,1), M=1,5), K:KIQKZ)KS)’ J=1,60,15), I=1,10,1)

During execution, each subscript (index variable) is set to the initial index value:
I=1, J=1, K=K1, M=1, N=1. The segment replaces a DO loop nest:

DO 15 I=1,10,1
DO 15 J=1,60,15
DO 15 K=K1,K2,K3
DO 15 M=1,5

DO 15 N=1,10,1

READ (61,1) A(1,J, K), B(M), C(N)

1 FORMAT (...)

15 CONTINUE

2) Elements of A, a three-by-three matrix, will be transmitted by columns using:
Ay, 1=1,3), J=1,3)
3) Elements of A will be transmitted by rows using:
((A(I,J), J=1,3), I=1,3)
14061100 A ~ 9-3

4)

5)

In the list segment (B({J), L, (A, L), I=1, L), J=3,9,3), L must have a value
before it can be used as an index variable. The segment replaces a DO loop nest:

DO 11 J=3,9,3

izEAD 61,1) B@), L

1 FORMAT (...)

DO 11 I=1,L

READ (61,2) A(I,L)

2 FORMAT (...)

11 CONTINUE
CAT, DOG, and RAT will each be transmitted 10 times with the segment:

(CAT, DOG, RAT, I-1,10)

14061100 A .

©CCc o0

GO e e

-

)

2 000 OC

TRANSMISSION OF ARRAYS

In an I/O list, an array name without subscripts causes the entire array to be transmitted.
For example:

DIMENSION SPECS (7, 5, 3)

WRITE (20) SPECS

This example transmits the array SPECS as if under control of the following implied
DO loop or nested DO loops.,

ceoey (((SPECS(I’ J,K),I-1,7),J=1, 5),K=1,3),...

O
C
O
O
O
O
o
m
C
O

DO 10 K-1,3
DO 10 J=1,5

DO 10 I=1,7

WRITE (20) SPECS (I,J, K)

10 CONTINUE

I/0 UNITS

In FORTRAN programming, the user performs his I/O in terms of integer unit numbers.
This unit number may be either an integer constant or a simple integer variable,

PARTIAL RECORDS

Information processed by the 1/O statements is divided into records; each time an I/0O
statement is executed, a new record is processed. Thus, it is not possible to read or
write several parts of a single record with more than one statement.

14061100 A 9-5

20000000006

OUTPUT STATEMENTS
PRINT RECORD

The form of the print record statement is:
PRINT n, list

Transfers information from the storage locations in the list to the standard output unit.
This information is transferred as line printer images, 136 characters or less per line,
in accordance with format list n. The maximum record length is 136 characters; the first
character of every record is used for carriage control on the printer and is not printed.

For example:
PRINT 16, A

16 FORMAT (10H A RESULT A = A ,F7.3)

WRITE BINARY RECORD

The form of the write binary record statement is:
WRITE (i) list

Transfers binary information from the storage locations given by the list identifiers to the
specified unit i, If the list is omitted, the statement acts as a no-operation.

The number of elements in the list determines the number of physical records to be written
on the unit. A physical record contains 118 words; the first word is a count word, and the
remaining 117 words contain the transmitted data. The physical records written by one
write binary record statement constitute one logical record. Physical records are blocked
in 480-word blocks (to mass storage devices only).

For physical records in the logical record, the first word of all records except the kth
contains zero; the first word of the kth record contains the integer k., If there is only
one physical record, the first word contains the integer 1.
For example:
DIMENSION A(260), B(4)
WRITE (10) A, B
DO 5 I-1,10
5 WRITE (6) AMAX(I), M(,J), J=1,5) ,
9-6 14061100 A

Scocoocoe

a
J

S

-

o

OO0 0

g

o 0

C
C
L
o
O
©
L
O
|
n

WRITE ASCIlI RECORD

The form of the write ASCII record statement is:
WRITE (i,n) list

Transfers information from storage locations given by identifiers in the list to unmit i,
according to the format list n.

A logical record containing up to 136 characters is written on unit i as ASCII characters.
Each logical record is one physical record. The number of elements in the I/0O list and
the format list n determines the number of records to be written on a unit. If the logical
record is less than 136 characters, the remainder of the record is filled with blanks.
Records are blocked in 480-word blocks (to mass storage devices only).

When the contents of the output file is to be printed, the first character of a record is a
printer control character that will not be printed. If the programmer fails to allow for a

printer control character, the first character of each output record is-lost on the printed
listing.

14061100 A 9-7

INPUT STATEMENTS
READ CARD RECORD

The form of the read card record statement is:
READ n, list
Reads one or more card images from the standard input unit, converts the information

from left to right in accordance with format list n, and stores the converted data in the

locations named in the I/0 list. The images are in the form of 80-column Hollerith cards
read from the standard input unit.

For example:
READ 10, A,B,C

10 FORMAT (3F10.4)
READ BINARY RECORD

The form of the read binary record statement is:
READ (i) list

Transfers one logical record of information from unit i to storage locations named by the
list identifiers.

|
The record being read must have been written in binary mode by a WRITE (i) list statement.
The word count generated by the write statement is not transmitted to the input area. The

number of words in the list must be equal to or less than the number of words transmitted
in the corresponding write statement.

9-8 14061100 A

cCo00Ce

Sl

-

¢

S0 66

:’?

e C

-

o 0

Mo

200000600

OO0 000000

When the list is omitted, the binary read statement spaces over one logical record.

For example:

DIMENSION C(264), BMAX(10), M2(10, 5), A (100, 50)

.

READ (10) C

DO 7 I=1,10
7 READ (6) BMAX(D), M2(1, J), J=1,5)
READ (5) (skip one logical record on unit 5)

READ (6) (A(,J),1=1,100),J=1, 50)
READ ASCIlI RECORD

The form of the read ASCII recoi'd statement is:
READ (i,n) list

Transfers one logical record of information from unit i to storage locations specified in the
list, according to format list n.

The number of words in the list and the format specifications must conform to the record
structure on the input unit (up to 136 characters). The record being read must have been

written in ASCII mode,
Examples:

DIMENSION MB(1)

READ (10,11) X,Y,Z
11 FORMAT (3F10.6)

READ (2,MB) (Z(K),K=1,8)
MB(1) contains (F7.2) AA
14061100 A oo

BUFFER STATEMENTS

The differences between the buffer statements and the read/write statements are:

1) In a buffer statement, mode must be specified (ASCII or binary).

2) The buffer statements are not associated with 1/0 lists' or formatted lists. Data
transmission occurs to or from an area of storage.

3) Only one physical record is transferred for each buffer request (for mass storage,
a block is considered a record).

4) A buffer statement initiates data transmission and then returns control to the
program, permitting it to perform other tasks while data transmission is in
progress. Before the buffered data is used, the status of the buffer operation
must be checked (by calling the IFUNIT function).

5) Buffer I/0 is not allowed on unit numbers 61, 62, and 63,

6) Logical arrays cannot be transmitted with a buffer statement.

BUFFER IN

The form of the BUFFER IN statement is: -

BUFFER IN (i,p) (a,b)

Where:

Unit number; an integer constant or variable 1 € i £ 60
Mode; an integer constant or variable

0 Mode is ASCII
1 Mode is binary

First variable in the block to be transmitted; a variable, array name, or array
element reference (must not be type logical)

Last variable in the block to be transmitted; a variable, array name, or array
element reference (must not be type logical)

This statement transmits one physical record of information in mode p from umit i to
storage locations a through b. If the file being read was written by an ASCII write state-

ment, only one physical record of 136 characters is read.

count word buffered in with the data that was written with binary write statements.

9-10

14061100 A

Provision must be made for the

%

z‘{f;

o6

2 © O

o
o
O
O
O
o
O
¢
c
O

When BUFFER IN requests transmission of more words than are on the record; the words
are stored from a to k, where k is less than b and contains the last word on the record.
If the reccrd is larger than the buffer size, the remainder of the record is ignored,

The first word address must be less than or equal to the last wg~d address or the job: is
terminated.

For example:

DIMENSION TEMP(50)

BUFFER IN (NT,0)(TEMP, TEMP (25))

BUFFER IN (10, 0)(TEMP(26), TEMP(50))
BUFFER OUT

The form of the BUFFER OUT statement is:

BUFFER OUT (i,p) (@,b)
Where:
i Unit number; an integer constant or variable 1€ i £ 60
p Mode; an integer constant or variable

0 Mode is ASCII
1 Mode is binary

a First variable in the block to be transmitted; a variable, array name, or
) array element reference (must not be type logical)

Last variable in the block to be transmitted; a variable, array name, or
array element reference (must not be type logical)

This statement transmits information from storage locations a through b and writes one
physical record on unit i in mode p. The physical record contains all the words from
a to b,

The first word address must be less than or equal to the last word address or the job is
terminated.

14061100 A 9-11

9 000000006 O

Because only one physical record is transmitted, the block size for a mass storage file
must be large enough to contain the largest data block buffered out,

For example:

DIMENSION A (100)

BUFFER OUT (10,1) A (1), A (100))
FILE CONTROL STATEMENTS

The auxiliary 1/O statements REWIND, BACKSPACE, and ENDFILE may not reference
unit numbers 61, 62, and 63.

REWIND
The form of the REWIND statement is:
REWIND i

Rewinds magnetic tape file i to the load point. When the tape is already rewound, the
statement acts as a do-nothing statement. :

A REWIND statement on a mass storage file is interpreted as a locate to block one,
BACKSPACE

The form of the BACKSPACE statement is:

BACKSPACE i

Backspaces magnetic tape file i one physical block. When the tape is already at the load

point (rewound), BACKSPACE acts as a do-nothing statement.

A BACKSPACE statement on a mass storage file is interpreted as a locate to the beginning

of the previous block,

9-12 14061100 A

oo

CCeCOoCO0OCOCC

/

&

\

A

-y

v

e

v

.

P

:‘ ‘#'

OC000O0O00O0

o 0

2000 00000060

ENDFILE

The form of the ENDFILE statement is:

ENDFILE i

Writes an end-of-file on magnetic tape or mass storage file i, The file is positioned at
the end-of-file upon completion of the request.

INTERNAL TRANSMISSION STATEMENTS

The ENCODE and DECODE statements are comparable to ASCII read/write statements
except that no peripheral equipment is used in the data transfer. Information is
transferred under format specifications from one area of storage to another.

ENCODE

The form of the ENCODE statement is:
ENCODE (c,n,v) list

c is an integer constant or variable describing the number of characters per record in
storage; n is the statement label of a FORMAT statement or the name of an integer array
containing the format specifications; v is a variable, array element, or array name at
which the first record is to start; and list is the list containing the data to be converted.
The list has the same format as an I/O list.

14061100 A ' 9-13

The execution of this statement converts the information in the list according to the
FORMAT statement and stores it in records starting at v, with ¢ ASCII characters per
- record. If the format list attempts to convert more than c characters per record, a
diagnostic is given. If the number of characters converted by the format list is less
than ¢, the remainder of the record is filled with blanks.

Examples:

1) ENCODE may be used to calculate a field definition in a format specification at
object time. - Assume that in the statement FORMAT (2A8, Im) the programmer
wishes to specify m at some point in the program, subject to the restriction
2 £ m £ 9, The following program permits m to vary.

PROGRAM VARY

INTEGER FMT(1)

IF M .LT. 10 ,AND. M .GT. 1) GO TO 1
STOP
1 ENCODE (8,100, FMT) M

100 FORMAT (6H(2A8,I, I1, 1H))

L]

PRINT FMT, A, B, J

.
3

9-14 14061100 A

e C

&6

c O

>}

¢ O

»

J

e O

%

=

-

2) ENCODE may be used to convert internal integer data to ASCII codes and
suppress printing of zero data.

PROGRAM CONVERT

DIMENSION IA (100)

OO0 00000

l.)O 20 I=1,100

IF (A(I) .EQ. 0) GO TO 10

ENCODE (4,100,IA (1)) IA(T)
100 FORMAT (A4)

GO TO 20

o6 0O

10 IA(I) = 4H
20 CONTINUE

PRINT 101, IA

101 FORMAT (10A12)

END

DECODE

The form of the DECODE statement is:
DECODE (c,n,v) list

c is an integer constant or variable indicating the number of characters per record in
storage; n is the statement label of a FORMAT statement or the name of an integer array
containing format specification; v is a variable, array element, or array name at which
the first record starts; and list is the list in which converted information is stored. The
list has the same format as an I/O list.

14061100 A 9-15

C
C
o
O
L
©
[)
O
o
n

The execution of this statement converts and edits the information from records, starting
at v and consisting of ¢ ASCII characters each, and stores it in the variables specified by
When the FORMAT statement specifies more than c¢ characters per record, a

the list,
diagnostic is given.

of the record is ignored.

For example:

When fewer than c characters per record are specified, the remainder

DECODE may be used to read an input card under one of three different formats
depending on the code punched in column one. Cards are read until -1 appears in
column one. '

PROGRAM READIN

DIMENSION BUFFER(10), DATA (20), IDATA (20), LDATA (20)

EQUIVALENCE (DATA (1), IDATA(1), LDATA (1))

5 READ 100, KEY, BUFFER

100

10

101

20

102

30

103

9-16

40

FORMAT (2, 9A8,A6)

IF (KEY .EQ. -1) GO TO 40

GO TO (10, 20, 30), KEY
DECODE (78,101, BUFFER) IDATA
FORMAT (I2,1914)

GO TO 5

DECODE (78,102, BUFFER) DATA
FORMAT (F2.0,19F4.0)

GO TO 5

DECODE (78,103, BUFFER) LDATA
FORMAT (L2,19L4)

GO TO 5

STOP

END

14061100 A

=

© OO0

¢

=
>

- ©

o

STATUS CHECKING ROUTINE

The status checking routine provides extra capabilities in the I/O phase of FORTRAN
programming,

o666 o06

I/O COMPLETE CHECK

o

Function: IFUNIT(i)

O

The 1/0 complete function is referenced with a unit number as its only parameter., It
returns an integer result reflecting the status of the previous buffer operatiorn on that unit.
The result is not returned until the buffer operation is complete, The possible results are:

1 I/O operation is complete with no errors.

C
O

2 End-of-file mark was encountered
3 End of allocated area was detected during last operation

4 End of device was detected on the last operation

5 Irrecoverable I/O error was detected on the last operation
An example of a reference to the function is:
I=IFUNIT (3)

GO TO (10,20, 30,40, 50), I

14061100 A 9-17/9-18

2P 0 000000 OHO

QOO0 OI JLULLEBLOWLWOEC

o600 00

O 00

O

O

50000000006

PROGRAM OPERATION 10

M

The MP-60 FORTRAN compiler (FTN-60) is called into execution via an MPX library task
control card. Parameters on this control card define compile options and are passed to
the compiler through the PARM area assigned to the job.

A description of the FORTRAN control card and other information needed to compile and
execute MP-60 FORTRAN programs under MPX are contained in this section. For
detailed descriptions of control cards, both necessary and optional, refer to the MP-60
Reference Manual, Control Data publication No. 14306500.

FORTRAN CONTROL CARD

The MPX task name control card that causes MP-60 FORTRAN to be called, loaded, and
executed appears as follows:

N . .
l/ FIN (field , field,, ..., field)

All fields are optional and may appear in any order on the card. Blanks are ignored, and
illegal characters are assumed to be commas. Fields are of the following formats:

Parameter = logical unit,

Parameter,

Parameter can be one of the following letters: LL,R,A,X, or P (refer to Table 10-1).
Refer to the MPX/RT Reference Manual, Control Data publication No. 14062300, for
legal logical unit (LU) numbers.

'/ *FTN (L, A, X, P)

Sample *FTN card:

14061100 A 10-1

TABLE 10-1. PARAMETER/LU

Parameter

No LU

LU

No Field Present

I

Source input
from LU 63,
standard input
unit,

Source language
listing and
diagnostics
appear on LU
62, standard
output unit.

Cross-reference
list written on
LU 62.

Assembly language
listing written on
LU 62,

Relocatable binary
output written on
LU 57, standard
load and go file.

Relocatable binary

Source input
from named LU.
If LU is other
than 63, user
must ensure that
file is OPEN to
job.

Source language
listing written
on specified LU,

Cross-reference
list written on
specified LU,
Note: it is
recommended that
cross reference
unit be same as
source listing
unit.

Assembly language
listing written on
specified LU,

Relocatable binary
card images of
compiled programs
written on named
LU.

Relocatable binary

Source input from
LU 63.

No source listing
provided.

No cross-reference
listing provided.

No listing of assembly
language produced,

No relocatable binary
file written.

No binary deck

E
=4

output written on card images of provided.
LU 61, standard compiled programs
punch unit, written on named
LU.
10-2 14061100 A

OO Ce OO0 CC0

e

\ 954

E4

S0 COCC

OO0

2 000000006

14061100 A

Source language and assembly listings are written on the standard output unit, LU 62,
The punchable output is written on the standard punch unit, LU 61, and automatically

punched., Executable output is written on the standard load and go file, LU 57. Input
source was read from the standard input unit, LU 63,

r *FTN ([=10, L, R, X = 11

Source input is from LU 10. Source output listing with cross-reference listing is on LU
62. Executable binary is written on LU 11,

CONTROL CARD NOTES

For a detailed description of all MPX control cards, refer tc the MPX/RT Reference

Manual (Section 2). Information relevant to FORTRAN is, however, contained in this
section, "

Core memory assigned to a job should be requested by the user via the MPX schedule
statement (*SCHED). A minimum of 9 pages is needed to compile small FORTRAN
programs. Larger programs require more memory, up to a maximum of 16 pages. When
executing FORTRAN-compiled programs containing ASCII input or output statements, memory
must be scheduled for I/O buffers (a 480-word buffer for each unique logical unit),

The FORTRAN compiler uses system scratch files 1 and 2 (LUs 59 and 60) as intermediate
files. The user should reposition these files if they are to be used later in the job.

A FINIS card is used to notify the compiler that there are no more programs to be
compiled. The word FINIS must begin in column 10.

1 10

|/ FINIS

CALLING SEQUENCES

Programs written in MP-60 assembly language (COMPASS) may call or be called by
programs compiled by MP-60 FORTRAN. Calling sequence conventions have been
established for this purpose.

10-3

The calling sequence compiled for an external reference of the form
CALL NAME (pl,pz. e3Py) is:

RTJ NAME
uJp *+(n+1)
VFD | 16/0,16/p,
VFD 16/0,16/p,
VFD 16/0, 16/pll
Where:
NAME Entry point of the program unit being referenced
pi* Address of the ith parameter

The main program, the set of FORTRAN statements bounded by a PROGRAM statement and
an END statement, is entered initially by MPX, If the main program contains either
ASCII I/O statements or STOP statements, a FORTRAN library routine with entry points
Q8QENTRY and Q8QEXITS is provided to interface with MPX. The initialization performed

by the main program includes clearing register X1, which is needed for double precision
arithmetic operations and tests,

Subroutines, entered by the CALL statement or from COMPASS programs, use all registers.
Functions save and restore all registers except RA-RF (registers 26 through 31) and return
the function value in register RE (or RE-RF if the function is a type double precision),

Both subroutines and function require register X to be zero upon entrance. Refer to
Section 7 for further explanation of subprogram relationships.

*Note that if P, is type character, address field would be 14/0,18/pi.

10-4 14061100 A

©CC o0

SR-N

€ ¢ O Y

-

=%

sl-Ne

2000

O 0 C

OO0

o

29 0000000066

SAMPLE DECK STRUCTURES

Compile only from standard input:
*JOB (ID=RLD, AC=645)
*SCHED(TL~=30, CM=10)
*FTN(L, R)

[FORTRAN source deck]
END
FINIS
*EOJ

Cdmpile and execute:

*JOB (ID=JJG, AC=645)
*SCHED(TL~200, CM=12)
*FTN(L,R,X, A)

[FORTRAN source deck]

END

FINIS
*LOAD
*RUN
[DATA]

*EOJ

14061100 A

10-5

Object time execution with PCC:

*JOB(LD=RLD, AC=645)
*SCHED(T L=200, CM=14)
*EQUIP(01=DP})

*TASK(ID=JJG, PCC=01)

[FORTRAN binary deck]

*RUN
[DATA]

*EOJ

FORTRAN program with COMPASS subprogram:

*JOB(ID=RLD, AC=645)

*SCHED(TL=200,CM=12, MT=1)

*EQUIP(01=MT)

*FTN(X=01) (Note:

[FORTRAN source deck]

END

FINIS (Note:

*REWIND(01)

*CMP(L, X)

[COMPASS source deck]

END

FINIS (Note:

*REWIND(57)

10-6

load and go to magnetic tape 01)

FINIS starts in column 10)

FINIS starts in column 10)

14061100 B

&

3

cocceoecoce

OO

-

- O O

9000000000 HYO0COHDOOODOOOOO

*LOAD(01, 57)
*RUN
[DATA]

*EOJ

14061100 A

10-7/10-8

SO0l JLULYLOWLOLC

O00O6O0606O0

O

m :

POeO0oGOOOOOO

Library Function

ABS(a)

AINT (a)

ALOG(a)
ALOG10(a)
AMAXO(al, az, ese)
AMAXl(al, a2. ese)
AMlNO(al, gy eee)
AMINl(al, a2, ese)
AMOD(al, a2)
AND(al. a2)
ATAN(a)
ATAN2(2a;,a)
COs(a)

DABS(a)

"DATAN(a)

DATAN2 (al, a2)

14061100 B

LIBRARY ROUTINES

Definition

|a] (absolute value)
Truncation |

log (a)

log, ,@)

max(al, a2, cee)
max(al, az. ces)
min(al,az, ees)
min(al, az, cee)

al (mod a2) *

81/\ 3.2

arctan(a)
arctan (al/ a2)
cos(a)

Ja}
arctan(a)

arctan (al/az)

Type of
Argument

Real
Real
Real
Real
Integer
Real
Integer
Real
Real

Integer

Real
Real
Real
Double
Double

Double

Type of
Result

Real
Real
Real
Real
Real
Real
Real
Real
Real

Integer

Real
Real
Real
Double
Double

Double

Library Function

DBLE(a)

DCOS(a)

DDIM(al, a2)
DEXP(a)

DIM(al, a2)

DINT (a)
DFLOAT(a)
DLOG(a)
DLOG10(a)
DMAXl(al,az, ces)
DMINl(al,az, eoe)
DMOD(a 1’ a 2)
DSIGN(a 1’ az)
DSIN(a)

DSQRT (a)

ENABLE%

EXP(a)

FDATE(a)

FLOAT (a)

Definition

Express single precision argument
in double precision form

cos(a)

al-min(a a_)

1,72

a
e

al-min(al, a2)

Sign of a times largest integer

<|af
Convert from integer to double

log (a)

log, ,(@)

)

max(al, az, cee

min (al,az,...)
*
al(mod a2)
Sign of a, times |a]

sin(a)

Ja~

Initialize fault 'indicators and enable

arithmetic class interrupts
a
e

Subroutine to obtain system data

Conversion from integer to real

ol ol « i

T

Type of Type of
Argument Result
Real Double O
Double Double 0
Double Double
"' i
Double Double @
Real Real @
Real Double “
Integer Double U
Double Double N
b
Double Double .
Double Double
Double Double L
Double Double —
o
Double Double
Double Double '
Double Double @
Not Integer
Applicable ' C
Real Real
Any Type Ascn @
(2 words)
Integer Real @
C
14061100 B

1

i

OO0

o
C
O
o
O
0
o
O
®
O

Library Function

IABS(a)
IDIM(al, a2)

FTIME (a)

IARCHK(T)

IDINT(a)

IDVCHK(T)

IFIX(a)

IFNCHK(T)

INT (a)

IOVERFL(I)

ISHFT(al, az)

ISIGN(al, az)
MAXO(al,az, eee)

MAX1(a1,a2, ces)

14061100 B

_ Definition

lal

al-min(al, a2)

Subroutine to obtain system time

Determine if arithmetic overflow has
occurred. Returns 1 if there is a
fault, 2 if there is no fault

Sign of a times largest integer
<lal

Determine if divide fault has occurred.
Returns 1 if there is a fault, 2 if
there is no fault

Conversion from real to integer

Determine if function fault has
occurred. Returns 1 if there is a
fault, 2 if there is no fault

Sign of a times largest in(;eger

<le

Determine if exponent overflow has
occurred. Returns 1 if there is a
fault, 2 if there is no fault

Value is first argument shifted by
second. If second argument is
negative, shift is right; if positive,
shift is left circular

Sign of a, times Ia.l'
max (al,az....)

max(al, a2, eee)

Type of
Argument

Integer
Integer

Any Type

Integer
variable

Double

Integer
variable

Real

Integer
variable

Real

Integer
variable

Any Type

Integer
Integer

Real

Type of

Result

Integer
Integer

ASCII
(2 words)

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer
Integer

Integer

Library Function

MINO(al, a2, ees)
M]Nl(al, a2, eos)
MOD(a, ,a,)

NOT (a)

OR (al, a2)
SECOND(a)
SIGN(al, az)

SIN (a)

SNGL(a)

SQRT(a)/SQRTF (a)

TAN(a)
TANH(a)

XOR(a,,a,)

* : -
al(mod a2) is defined as a, [a

not exceed the magnitude of X and whose sign is the same as X.

Definition

)

min (al,az,...

min(al, a2, ees)
*

al(mod a2)

a

81V 3,

System time in seconds

Sign of a2 times a1

sin(a)

Obtain most significant part of
double precision argument

va
tan(a)
tanh(a)

2,8

3

2

Type of
Argument

Integer
Real
Integer
Integer
Integer
Any Type
Real

Real

Double

Real
Real
Real

Integer

8y where [X] is the integer whose magnitude does

Type of
Result

Integer
Integer
Integer
Integer

Integer

Real

Real

Real

s

Real NS

e

é\

Real

Real

A

Real

Integer

ey
Y,

14061100 B

S0 00000

i

SE-N-N-N-W-R-

O
O
O
O
C
C
o
O
C
O

292 000000000

FORTRAN STANDARD OUTPUT | B

MP-60 FORTRAN DIAGNOSTIC RESULTS

The diagnostic results consist of null statement numbers, error messages, and program
and common lengths. Null statements are statement labels that are not referenced in
either assigned GO TO, format, or DO statements. Error messages are one of the
following types: I - informative, E - fatal to execution, or F - fatal to compilation. The
program length is given in decimal and does not include any associated object routines,

All data and scratch common blocks are listed with their decimal lengths.

MP-60 FORTRAN CROSS-REFERENCE TABLE (SYMBOLS)

The cross-reference table contains a sorted listing of all symbols and their references.
The relative program address, type, and line number of each appearance are printed for
each symbol. The relative address is prefaced by a character representing the relocation
type: C - common, P - program, X - external. In addition, for character or logical
symbol types, the character or bit position is included. The type may be integer, real,
double precision, character, or logical. All references refer to the line number on which
the symbol appears. Multiple references per line are also listed. The character in
parentheses indicates the type of reference:

e C Symbol appears in a common statement

e D Symbol appears in a dimension statement

e E Symbol appears in an equivalence statement

¢ O Symbol is used as operand

¢ S Symbol appears on lefthand side of replacement statement

® P Symbol appears in parameter list

® U Symbol represents LU number

e F Symbol represents format array

14061100 A

MP-60 FORTRAN CROSS-REFERENCE TABLE (LABELS)

The cross reference table also contains a sorted listing of all statement labels. The
relative program address and all references are given for each label. In addition, labels
representing formats are flagged as such. All references refer to the line number where
the label appears. The character in parentheses refers to the type of reference:

B-2

L

A

Label 1s defined at this line

Label appears in ASSIGN statement
Label appears in GO TO or IF statement
Label is referenced as format

Label represents end of DO loop

14061100 A

cCcoCOCCOCC

&

-

O

4

i

FORTRAN DIAGNOSTICS C

M
DIAGNOSTIC CLASSIFICATION AND ERROR MESSAGE CONVENTION

FORTRAN diagnostics are listed at the end of the source listing. Each diagnostic is
classified by the code letter in the first column of the diagnostic, The code letters are
as follows:

I Informative diagnostic

E Fatal to execution

OO0 0

F Fatal to compilation

The error messages use the following conventions:

$0 Line number

$1 Integer number
w $2 Integer number
ﬂ $3 Single character

" $4 Single character

0' $5 Symbol
0 $6 Symbol -

$7 Label
0 $8 Start next line
O
O
O
. 14061100 A c-1
a

MISCELLANEOUS ERROR MESSAGES

1)

- 2)

3)

4)

o)

$0 TABLE OVERFLOW, CROSS REFERENCE TABLE DISCARDED

$0 MANAGED MLMORY TABLES OVERFLOWED ($1)

Remarks: The integer number ($1) is the absolute address of the compilér
subroutine that increased the table size. This number is intended
mainly for compiler checkout.

$0 NO HEADER CARD

Remarks: Every FORTRAN compilation must begin with a PROGRAM, SUB-
ROUTINE, or FUNCTION header card. The statement PROGRAM
% JOB% is provided if the header card is missing.

$0 UNRECOGNIZABLE STATEMENT

$0 CARD OUT OF ORDER

Remarks: The required order of statements is:

Class 1: HEADER STATEMENT
PROGRAM
SUBROUTINE
FUNCTION
Class 2: DECLARATVIVE STATEMENTS
DIMENSION
COMMON
TYPE
EXTERNAL
Class 3: EQUIVALENCE STATEMENTS
Class 4: DATA STATEMENTS

Class 5: EXECUTABLE STATEMENTS

Class 6: END

14061100 A

ool ol <IN

SN-3

-

O

J

‘» =
/
{

©

)

0006

6)

7)
8)

9

O000000O0

10)

O

11)

o

12)

13)

'$0 R-LIST TABLE OVERFLOWED

Remarks: Thé R-list table is a fixed length table; statement could be shortened.
$0 THIS STATEMENT CANNOT HAVE A LABEL

LABEL $7 IS UNDEFINED |

VARIABLE $5 DID NOT START ON A CHARACTER BOUNDARY

Remarks: The variable $5 must be equivalenced to a logical variable that
forced it off a character boundary.

VARIABLE $5 DID NOT START ON A WORD BOUNDARY

Remarks: The variable $5 must be equivalenced to a character or logical
variable that forced it off a word boundary.

VARIABLE $5 ATTEMPTS EXTEND ORIGIN OF COMMON
ARRAY $6 HAS TOO MANY ELEMENTS

Remarks: An array may have a maximum of 65K elements. A double
precision array may have a maximum of 32K elements.

$0 ILLEGAL CHARACTER

w ‘ 14) $0 ILLEGAL SYMBOL NAME
| 15 $0 SYMBOL NAME EXCEEDS 8 CHARACTERS

m/ 16) $0 UNBALANCED PARENTHESIS

0> 17) $0 ASCII CONSTANT CONTAINS MORE THAN 4 CHARACTERS

| 0 18) $0 END OF STATEMENT REACHED BEFORE END OF ASCII CONSTANT
19) $0 E-LIST OVERFLOW -- SIMPLFY STATEMENT

0 20) $0 TWO . IN NUMERIC CONSTANTS

o 21) $0 SYNTAX ERROR
22) $0 CONSTANT TABLE OVERFLOW,SIMPLFY STATMENT

0 23) $0 MORE THAN 255 CHARACTERS IN A CONSTANT

0o

o 14061100 A c-3

]

24)

. 29)
26)

27)

$O COMPILER ERROR -- CONVERT,SCANNER

-Remarks: This error should never occur.

$0 CONSTANT TOO LARGE
$0 MORE THAN 4 CHARACTERS IN AN ASCII CONSTANT

$0 SYNTAX ERROR

HEADER STATEMENT ERROR MESSAGES

D

2)

3)

4)

$0 SYNTAX ERROR
$0 SYNTAX ERROR IN PARAMETER LIST
$0 PARAMETER LIST ILLEGAL

$0 PARAMETER LIST MISSING

DECLARATIVE STATEMENT ERROR MESSAGES

1)
2).
3)
4)
5)

6)

7)
8)
9)

10)

$0 CANNOT DIMENSION AN EXTERNAL

$0 ARRAY PREVIOUSLY DIMENSIONED

$0 CANNOT DIMENSION A PROGRAM NAME

$0 ILLEGAL CONSTANT IN DIMENSION

$0 SYNTAX ERROR IN DIMENSIONS

$0 ARRAY NAME MUST BE A FORMAL PARAMETER
Remarks: Refer to variable dimensions

$0 VARIABLE DIMENSION MUST BE A FORMAL PARAMETER
$0 DIMENSION MUST BE TYPE INTEGER

$0 MORE THAN 3 DIMENSIONS

$0 SYMBOL PREVIOUSLY TYPED

14061100 A

.\.1‘

/

-
N

N
/

=
]
4

2000600

OO0 000000OO0

C
C
o
L
O
o
o
O
®
O

11)
12)
13)
14)

15)

$0
$0
$0
$0
$0

ILLEGAL EXTERNAL

NUMBER OF COMMON BLOCK NAMES IS LIMITED TO 30
BLOCK NAME IN BOTH DATA AND SCRATCH COMMON
PROGRAM NAME CANNOT BE IN COMMON

ILLEGAL SYMBOL IN VARIABLE LIST

- EQUIVALENCE STATEMENT ERROR MESSAGES

1)

2)

3)
4)
5)
6)

)

$0 EXTERNAL OR FORMAL PARAMETER IN EQUIVALENCES

$0 EQUIVALENCE RELATION ERROR

Remarks: The relation error is caused by inconsistent equivalencing, such as:
EQUIVALENCE (A(1), B(1)), (A(2),B(3))

$0 PROGRAM OR FUNCTION NAME IN EQUIVALENCE

$0 TWO ELEMENTS OF SET IN COMMON’

$0 CANNOT SUBSCRIPT A SIMPLE VARIABLE

$0 SYNTAX ERROR IN SUBSCRIPTS

$0 TOO MANY SUBSCRIPTS IN ARRAY

Remarks: The number of subscripts must not exceed the number of dimensions.

DATA STATEMENT ERROR MESSAGES

1)
2)
3)
4)
5)

6)

14061100 A

$0
$0
$0
$0
$0
$0

SYMBOL $5 IS A FORMAL PARAMETER

VARIABLE $5 IS IN SCRATCH COMMON

VARIABLE $5 HAS A CONSTANT OF DIFFERENT WORD SIZE
LIST CONTAINING $5 HAS TOO MANY CONSTANTS

LIST CONTAINING $5 HAS TOO MANY VARIABLES

REPEAT FACTOR MUST BE TYPE INTEGER

EXECUTABLE STATEMENT ERROR MESSAGES

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)

23)

$o0

$0
$0
$0
$0
$0
$0
$0
$0
$0
$0
$0
30
$0
$0
$0
$0
$0
$0
50
$0
$0
$0

LEFT SIDE OF REPLACEMENT MUST BE A VARIABLE
SYNTAX ERROR IN LEFT SIDE OF REPLACEMENT
SYNTAX ERROR IN LIST

VARIABLE MUST BE TYPE INTEGER

ILLEGAL USE OF SYMBOL

ILLEGAL STATEMENT AFTER THE LOGICAL IF
ENTRY NAME PREVIOUSLY USED

ILLEGAL SUBROUTINE NAME

SYNTAX ERROR IN EXPRESSION

ILLEGAL USE OF PROGRAM OR ENTRY POINT NAME

FUNCTION MUST HAVE ARGUMENTS

kFUNCTION NAME MUST BE AN EXTERNAL

ILLEGAL USE OF FUNCTION NAME

ILLEGAL USE OF EXTERNAL PROCEDURE NAME
SUBSCRIPTED VARIABLE NOT DIMENSIONED
TOO MANY SUBSCRIPTS

SYNTAX ERROR IN SUBSCRIPTS

CONSTANT IN SUBSCRIPT OUT OF RANGE
R-LIST TABLE OVERFLOWED

OPERATOR TABLE OVERFLOWED

OPERAND TABLE OVERFLOWED

FUNCTION TABLE OVERFLOWED

ILLEGAL SYMBOL USED AS AN INDEX

14061100 A

o

Sl -Ne

=

S0 C

<

COO0COO00C0OC0

OO000060O00O00

(Jﬁ:

58000006000 OO

24)
25)
26)
27)
28)
29)
30)
31)
32)
33)
34)
35)
36)

37)

$0 NO PATH TO THIS STATEMENT

$0 DOUBLY DEFINED STMT LABEL

$0 STMT LABEL MUST BE BETWEEN 1 AND 99999

$0 ILLEGAL STATEMENT LABEL

$0 STMT LABEL USED AS A FORMAT NUMBER

$0 ILLEGAL MODE CONVERSION

$0 ILLEGAL OPERATION LOGICAL .OP, ARITHMETIC

$0 LOGICAL OPERAND IN AN ARITHMETIC EXPRESSION

$0 .XOR. IS MASKING ONLY

$0 RELATIONAL OPERATOR CANNOT BE USED WITH LOGICAL OPERANDS
$0 ILLEGAL EXPRESSION LOGICAL .OP. LOGICAL .OP, = + -*/
$0 WRONG ARGUMENT COUNT FOR INTRINSIC FUNCTION

$0 ILLEGAL EXPONENTIATION

$0 RIGHT-HAND SIDE OF LOGICAL REPLACEMENT STMT . OR LOGICAL IF
EXPRESSION IS NOT TYPE LOGICAL

DO LOOP STATEMENT ERROR MESSAGES

1)
2)
3)
4)
5)

6)

)

$0 SYNTAX ERROR IN DO STMT

$0 ILLEGAL DO-LOOP CONTROL VARIABLE

$0 DO-LOOP CONTROL VARIABLE USED IN A PREVIOUS LOOP
$0 ILLEGAL DO-LOOP PARAMETER

$0 DO-LOOP DEPTH EXCEEDED

$0 THE TERMINAL LABEL FOR THIS DO IS PREVIOUSLY DEFINED OR IS A
FORMAT NUMBER

THE DO-LOOP DEFINED AT LINE $1 TERMINATES AT THE END STMT.

14061100 A . C-7

8)

9)
10)
11)

12)

'THE CONTROL VARIABLE FOR THE LOOP DEFINED AT LINE $1 IS MODIFIED

IN THE LOOP

DO PAR M2 FOR THE LOOP DEFINED AT LINE $1 IS MODIFIED IN THE LOOP
DO PAR M3 FOR THE LOOP DEFINED AT LINE $1 IS MODIFIED IN THE LOOP
THE LOOP DEFINED AT LINE $1 IS ENTERED FROM OUTSIDE OF ITS RANGE

THE TERMINAL LABEL FOR THE LOOP DEFINED AT LINE $1 IF REFERENCED
FROM OUTSIDE OF THE LOOP

1/0 STATEMENT ERROR MESSAGES

1)
2)
3)
4)
o)
6)
7

8)

9)

10)

11)

12)

13)

$0 ILLEGAL FORMAT NUMBER

$0 FORMAT NO. MUST BE BETWEEN 1 AND 99999
$0 ~ FORMAT NO, NOT ASSIGNED TO A FORMAT

$0 SYNTAX ERROR, FORMAT

$0 VARIABLE FORMAT NOT A VARIABLE

$0 1/0 SYNTAX ERROR, UPC NOT TYPE INTEGER
$0 1/0 SYNTAX ERROR, UPC GREATER THAN 65535

$0 I/O SYNTAX ERROR, UPC MUST BE INTEGER CONSTANT OR INTEGER
VARIABLE

Remarks: UPC = unit mode (ASCII or binary) or characters per record.

$0 ENCODE/DECODE/BUFFER STMT. SYNTAX ERROR, $8 RECORD OR
BUFFER ADDRESS MUST BE A VARIABLE

$0 ENCODE/DECODE/BUFFER STMT.,$8 RECORD OR BUFFER ADDRESS
IS A FUNCTION OR ROUTINE NAME

$0 ENCODE/DECODE/BUFFER STMT., $8 RECORD OR BUFFER ADDRESS IS
NOT DIMENSIONED

$0 R-LIST OVERFLOW, SIMPLFY STATEMENT

$0 SYNTAX ERROR, I/O STMT (UNIT, FORMAT) LIST OR (UNIT) LIST

14061100 A

cocococ

-1

)

O e

N

w

SO0 O CO

6Oo00000000C

L
C
O
o
o
O
O
0
o
o0

14)

15)
16)
17)

18)

19)
20)
21)
22)

23)

$0 SYNTAX ERROR, I/O STMT (UNIT, PARITY) (A,B)

Remarks: A = First variablé of the block

B = Last variable of the block

"

$0 SYNTAX ERROR IN I/O LIST

g

SYMBOL IN I/O LIST IS NOT A VARIABLE

$0 SYNTAX ERROR, I/O STMT.

$0 SYNTAX ERROR, I/O STMT. (C,F,W)L

Remarks: Reference to encode/decode statements:
(C,F,W)L = (characters per record, format statement number, start
of record) list,

$0 ILLEGAL ARRAY REFERENCE, VARIABLE IS NOT DIMEN.

UNBALANCED PARENTHESIS IN I/O LIST

FORMAT DOES NOT HAVE A LABEL

ILLEGAL FORMAT LABEL

2 2 2 8

MULTIPLY DEFINED FORMAT LABEL

MAIN CONTROL TASK ERRORS

1) FTN ABORT - INSUFFICIENT CORE
Remarks: There is not enough core scheduled to open all the managed internal
compiler tables.
2) FTN ABORT - BLK/DEBLK ERROR XX, ON LU YY
Remarks: An irrecoverable blocker or deblocker error has occurred on LU YY.
Refer to MPX/RT Reference Manual, Section 6, for an explanation of
the error XX.
3) FTN ABORT - INSUFFICIENT SCRATCH
Remarks: An end-of-file status was encountered on system scratch 1 (LU 60),
The size of this file is a system parameter. To compile under the
current system, the program must be segmented.
14061100 A C-9

4) MORE THAN 19 CONTINUATION CARDS IGNORED

Remarks: The previous statement contained more than 19 continuation cards.

Subsequent cards are ignored.

5) END OF FILE REACHED ON LU XX

Remarks: An end-of-file status was received on LU XX when one was not

expected,

6) ERROR TABLE OVERFLOW - SUBSEQUENT ERRORS NOT LISTED

Remarks: The error table may be expanded to allow more errors by

reassembling FTN,

OBJECT TIME INFORMATIVE ERROR MESSAGES

Format:

Where: (Name)

ERROR IN (Name) CALLED FROM XXXX (Message)

The name of the object routine called by the user

XXXX

The address of the user call

(Message) = The unique error messagé

Messages:

1)

2)

3)

C-10

RECORD OVERFLOW

Remarks: The format specification associated with the last I/O call causes a
record overflow. For ASCIH read or write, the record limit is
136 characters; for ENCODE/DECODE, the record limit is C
characters. '

ILLEGAL CHARACTER

Remarks: An illegal character appears in an input field (i.e., character not
0 through 9 for format type I). The input record is displayed.

NUMBER OUT OF RANGE

Remarks: The input value cannot be represented without loss of significant
digits. Zero is returned to the user. The input record is
displayed.

14061100 A

C C

coe

& OO

A
U

SN

Sl -Nol-Ns

occ oo

s

5
E:

O006000600600O0CC

O
o
O
O
L
o
o
O
o
0

OBJECT TIME FATAL ERROR MESSAGES

Format: ERROR IN (Name) CALLED FROM XXXX (Message)

Where: (Name)

The name of the object routine called by the user

]

XXXX = The address of the user call

(Message) = The unique error message

Messages:

1)

2)

3)

4)

%)

6)

7

14061100 A

ILLEGAL LOGICAL UNIT
Remarks: The LU number is not in the range 1 through 63.
REFERENCE CONFLICT ON LU, XX

Remarks: LU XX cannot be referenced by both buffered and nonbuffered
statements.,

UNCHECKED END OF FILE ON LU, XX

Remarks: An end of file was encountered on LU XX on the previous read, and
function IFUNIT was not called to clear the status.

UNCHECKED END OF ALLOCATED AREA ON LU, XX

Remarks: An end of allocated area status was received on LU XX on the
previous read/write, and function IFUNIT was not called to clear
the status.

UNCHECKED END OF DEVICE ON LU, XX

Remarks: An end of device status was received on LU XX on the previous
read/write, and function IFUNIT was not called to clear the status.

BLOCKER/DEBLOCKER ERROR XX, ON LU YY

Remarks: Blocker/deblocker returned the fatal error status XX on LU YY.
Refer to MPX/RT Reference Manual for explanation of blocker/
deblocker error codes.

EXECUTION DELETED - NO TRANSFER ADDRESS

Remarks: A FORTRAN PROGRAM statement or COMPASS END card with a

name in the address field generates the transfer address.

C-11

'8) EXECUTION TERMINATED - INSUFFICIENT MEMORY

Remarks: More memory is needed for I/O buffers.

9) IL

LEGAL SPECIFICATION

Remarks: The output field width for the associated format statement is not

large enough to accommodate the value (i.e., w2 6 + d is required).

10) BUFFER LENGTH ERRCR

Remarks: The first word address specified in a BUFFER IN/OUT statement

is greater than the last word address.

OBJECT TIME FORMAT ERRORS

Format:

Where:

All format

Error Number

C-12

1
2

FORMAT ERROR N - XXXX
N = The unique format error number
XXXX = The address of the format statement
errors are fatal,
Significance
Format list does not begin with a left parenthesis.

Illegal repeat factor was encountered:
a) Repeat factor = 0
b) Repeat factor is not an integer

Unrecognizable format conversion; the format conversion is
designated by a symbol other than E, F, D, I, A, R, $, L,
H, X, or P,

Illegal field width or missing field width:
' a) Field width = 0
b) No field width present
c) Illegal character in field width specification

A number precedes a slash, comma, or right parenthesis.

Parenthesis error:
a) Repeat groups may not be nested
b) A parenthetical grouping may not appear within a repeat
group

More than one decimal point appears in the numeric field.
Numeric value exceeds 32767,

No non-H, non-X specification preseﬁt in format when needed.

14061100 A

t =)

©

0000 COO0

MATHEMATICAL LIBRARY INFORMATIVE ERROR MESSAGES

1) ERROR IN DSQRT CALLED FROM hhhh NEG ARGUMENT
2) ERROR IN SQRT CALLED FROM hhhh NEG ARGUMENT
3) ERROR IN ATAN2 CALLED FROM hhhh BOTH ARGUMENTS ARE ZERO

4) ERROR IN DATAN2 CALLED FROM hhhh BOTH ARGUMENTS ARE ZERO

O00060O00O0C0

5) ERROR IN MOD CALLED FROM hhhh SECOND ARG IS ZERO

o

6) ERROR IN AMOD CALLED FROM hhhh SECOND ARG IS ZERO
7) ERROR IN DMOD CALLED FROM hhhh SECOND ARG IS ZERO

8) ERROR IN ALOG CALLED FROM hhhh ARGUMENT TOO SMALL

C

9) ERROR IN ALOG10 CALLED FROM hhhh. ARGUMENT TOO SMALL
10) ERROR IN DLOG10 CALLED FROM hhhh ARGUMENT TOO SMALL

11) ERROR IN DLOG CALLED FROM hhhh ARGUMENT TOO SMALL

Remarks: For arguments less than or equal to zero, messages 8 through 11 are
reported for logarithms.

12) ERROR IN ISIGN CALLED FROM hhhh FIXED POINT OVERFLOW
Remarks: For the argument $80000000, the above message is reported,

13) ERROR IN SIN CALLED FROM hhhh ARGUMENT TOO BIG

14) ERROR IN COS CALLED FROM hhhh ARGUMENT TOO BIG

Remarks: For arguments whose absolute value is greater than 216, messages 13
and 14 are reported.

15) ERROR IN TAN CALLED FROM hhhh ARGUMENT IS MULTIPLE OF pi/2 -- TAN
IS UNDEFINED

16) ERROR IN TAN CALLED FROM hhhh ARGUMENT TOO BIG

Remarks: For arguments whose absolute value is greater than 219, the above

message is reported for tangent.

17) ERROR IN DSIN CALLED FROM hhhh ARGUMENT MAGNITUDE TOO BIG

14061100 A C-13

2 000000060

C-14

18)

19)

20)

21)
22)
23)
24)
25)

26)

27)
28)
29)

30)

31)
32)
33)

34)

35)
36)

37)

ERROR IN DCOS CALLED FROM hhhh ARGUMENT MAGNITUDE TOO BIG

Remarks: For arguments whose absolute value is greater than 250, messages
17 and 18 are reported.

ERRQR IN EXP CALLED FROM hhhh ARGUMENT TOO BIG

ERROR IN DEXP CALLED FROM hhhh ARGUMENT TOO BIG

Remarks: For arguments greater than 127 1n2, messages 19 and 20 are reported,
ERROR IN IEI CALLED FROM hhhh NEG ARGUMENT

ERROR IN IEI CALLED FROM hhhh BASE AND POWER ARE ZERO

ERROR IN REI CALLED FROM hhhh BASE AND POWER ARE ZERO

ERROR IN DEI CALLED FROM hhhh BASE AND POWER ARE ZERO

ERROR IN RED CALLED FROM hhhh BASE IS ZERO AND POWER IS NEGATIVE

ERROR IN RED CALLED FROM hhhh BASE IS NEGATIVE AND POWER IS
NONZERO

ERROR IN RED CALLED FROM hhhh BASE AND POWER ARE ZERO
ERROR IN RED CALLED FROM hhhh ARG MAG TOO BIG
ERROR IN RER CALLED FROM hhhh BASE IS ZERO AND POWER IS NEGATIVE

ERROR IN RER CALLED FROM hhhh BASE IN NEGATIVE AND POWER IS
NONZERO

ERROR IN RER CALLED FROM hhhh BASE AND POWER ARE ZERO
ERROR IN RER CALLED FROM hhhh ARG MAG TOO BIG
ERROR IN DER CATLED FROM hhhh BASE IS ZERO AND POWER IS NEGATIVE

ERROR IN DER CALLED FROM hhhh BASE IS NEGATIVE AND POWER IS
NONZERO

ERROR IN DER (ALLED FROM hhhh BASE AND POWER ARE ZERO
ERROR IN DER CALLED FROM hhhh ARG MAG TOO BIG

ERROR IN DED CALLED FROM hhhh BASE IS ZERO AND POWER IS NEGATIVE

14061100 A

SH-J-N-N-N-N-

o O

,xr’“\

s

~

L

~Helle

j

Fé‘

\ T4

oli>

20 e 0

38) ERROR IN DED CALLED FROM hhhh BASE IS NEGATIVE AND POWER IS
NONZERO :

39) ERROR IN DED CALLED FROM hhhh BASE AND POWER ARE ZERO
40) ERROR IN DED CALLED FROM hhhh ARG MAG TOO BIG
Remarks: Messages 21 through 40 are error messages for exponentiation with

I representing integer arguments, R representing real arguments,
and D representing double precision arguments.

OO000000

14061100 A C-15/C-16

50000000006

S000CCc0O0OO0Ol OLOLOLOoOOOCCC

FORTRAN STATEMENTS : D

L EE——
CLASS 1 STATEMENTS

1) PROGRAM s

OO000O0OO0C

2) SUBROUTINE s

3) SUBROUTINE s(al, Byreees an)

-

4) FUNCTION f (al,az,..., an)

o

5) REAL FUNCTION f (al’ Byreeey an)

6) DOUBLE PRECISION FUNCTION f (al" 3.2, ceey an)

7) INTEGER FUNCTION f (al' Byreees an)

8) LOGICAL FUNCTION f (2,,8,,..., 2)
CLASS 2 STATEMENTS

1) EXTERNAL Vis Voreees Vo

2) CHARACTER Vir VgreeesV,

3) INTEGER vl,vz, eee ,vn

4) REAL VisVgreeesV

5) DOUBLE PRECISION Vir VgreeosVy

6) LOGICAL Vis Vgseees Vo

7) DINIENSION vy (ll), vy (12), eoss vn(ln)

8) COMMON //a/ .

9) COMMON /xl/al/ coe /xn/an

14061100 A : - D-1

L8
C
O
O
O
o
o
L
o
o

10) SCRATCH COMMON /xl/al/' .o /xn/au

11)

COMMON al, a2, ooy an

CLASS 3 STATEMENTS

1)

EQUIVALENCE (kl), (kz), ooy (kn)

CLASS 4 STATEMENTS

1

DATA k1/d1/’k2/d2/’ vee ’kn/dn/

CLASS 5 STATEMENTS

D-2

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)

14)

1l
<
]
(]

v, = Vg = e n
GO to k

GO TO m, (kl, 2’...’1{1‘1)
GO TO (kl. kyseees kn),’i
IF (e) kl’ kz, k3

IF (e) s

DOni=m, m, m

A A
ASSIGN k TO i
CONTINUE

PAUSE

PAUSE n

STOP

STOP n

ENTRY s

14061100 A

OO0 00000C0

kS

sco0c0c0C o

=

15) RETURN

16) CALL s

17) CALL s (el, ez, ...,en)
18) FORMAT ()
19) READ (u, f) 1

20) WRITE (u,f) 1

21) READ (@)l

22) WRITE @) 1

23) REWIND u

24) BACKSPACE u

OO0 060060000

25) ENDFILE u

Class 5 statements that are not USA standard FORTRAN include the following:

1) READf 1

2) PRINT f, 1

3) BUFFER IN (,p) (a,b)
4) BUFFER OUT, (u, p)(a, b)
5) ENCODE (c,n,w)l

6) DECODE (c,n,w)l

CLASS 6 STATEMENTS

1) END
2) END s
14061100 A : D-3/D-4

C
C
O
o
O
0
o
o
®
@

QO RWLUWERLWLWLL.I JLULLYLWELWV.W

CHARACTER CODES E
“

Character Keypunch ASCII

O00000000C

A 12-1 41
B 12-2 42
C 12-3 43
D 12-4 44
E 12-5 ’ 45
F 12-6 ; 46
0} G 12-7 47
H 12-8 48
I 12-9 49
J 11-1 4A
K 11-2 4B
0”“ L 11-3 _ 4C
M 11-4 4D
w N 11-5 4E
o) 11-6 4F
ob P 11-7 50
Q 11-8 51
0 R 11-9 52
s 0-2 53
0 T 0-3 54
U 0-4 55
o \' 0-5 56
w 0-6 57
O
O
PY 14061100 A | E-1
o

Character

Keypunch

S O ©
1] !
W @ =3

W O I O B W N =

None

3-8

12

11
11-4-8

0-1
0-4-8
12-4-8
12-3-8
0-3-8

ASCII

58
59
5A
30
31
32
33
34
35
36
37
38
39
20
3D
2B
2D
2A
2F
28
29
2E
2C

14061100 A

cocococc

¢

¢

4

18

o0 o

o000

o -

o000

-

290000600000

FORTRAN INTERFACE ROUTINES F

m

The FORTRAN interface library subroutines are designed to allow the FORTRAN user to
directly call routines within MPX from FORTRAN. Thus, the need for assembly level
code to perform functions previously not available under MP-60 FORTRAN has been
eliminated. These subroutines will pick up the parameters passed by the FORTRAN call,
set up the necessary registers, and perform either a monitor call or jump and reset
index to the appropriate MPX routine. Upon completion of the MPX routine, control will
return to the interface subroutine which will return control to the calling FORTRAN user.

The FORTRAN interface library subroutines have been divided into four groups. The
groupings are as follows:

Group 1 - Blocker/deblocker interface subroutines

Group 2 - Console display, status, logical unit to hardware type
correlation interface subroutines

Group 3 - OCARM (FILE MANAGER) and miscellaneous I/0 function
interface subroutines
Group 4 - Miscellaneous subroutines.

Table F-1 contains the FORTRAN interface library subroutine names, the MPX Operating
System routines associated with each, and a brief description of the function(s) performed
by the MPX routine. For a detailed description of the MPX Operating System routines
referenced in Table F-1, refer to the MP-60 Computer System MPX/RT Reference Manual,
or the MP-60 Computer System MPX/OS Reference Manual, '

GROUP 1 FTNINT1

FTNPACK

This subroutine is called as follows:

CALL FTNPACK (P1,P2, P3, P4,P5)

14061100 C F-1e

TABLE F-1. FORTRAN INTERFACE LIBRARY SUBROUTINES
MPX .

Grp Subroutine Routine Function Performed Within MPX Routine

| 1 FTNPACK PACK Transfer fecord to PACKD buffer area

1 FTNPACKC PACKC Remove LU from blocker/deblocker tables

1 FTNPACKD PACKD Establishes blocking area (buffer)

1 FTNPACKO PACKO Output partially filled buffer

1 FTNPICK PICK Transfer record to user's record area

1 FTNPICKC PICKC Remove LU from blocker/deblocker tables

1 FTNPICKD PICKD Establish the deblocking area (buffer)

1 FTNPICKI PICKI Skip record(s) |

2 FTNCTOC CcTOC Send command message to operator via CRT
2 FTNCTOI CTOI Send information message to operator via CRT
2 FTNULOC ULOC Locate to specified block

2 FTNUST UST Status logical unit -

2 FTNUTYP UTYP Determine hardware type assigned to LU
*2 FTNXSTAT XSTAT Status logical unit (expanded)
*2 FTNCLEAR CLRIO Cancel the last command to specific aevice
*2 FTNRDSTA RDSTAT Obtain RTC status for a particular device
*2 FTNFVFC FVFC Vertical format control for printer
*2 FTNFMODE FMODE Select or suppress echo mode to plasma
*2 FTNFHS FSS Select high speed mode on printer/plotter

3 FTNALLOC ALLOCATE Create file label in system label directory

3 FTNCLOSE CLOSE Remove reference to a file froxﬁ the system tables

*This routine not available to MPX/OS users.

o F-2

14061100 C

cecococooe

C

-

Y

e

===

O 00

PO0O0O0OO0OO0OOOE™OON

TABLE F-1. FORTRAN INTERFACE LIBRARY SUBROUTINES (Cont.)
MPX .
Grp Subroutine Routine Function Performed Within MPX Routine
3 FTNERASE ERASE Erase specific area or logical unit
3 FTNMODFY MODIFY Change the label of an existing closed file
3 FTNOPEN OPEN Prepare existing file for data transmission
3 FTNREAD READLU Data transfer from logical unit to user
designated buffer area
3 FTNRELES RELEASE Release some or all of the space allocated
to a file
*3 FTNSELDN SELDEN Select recording density of LU
*3 FTNSELTR SELTRK Select specified track of logical unit
3 FTNSEOF SEOF Search for end-of-file (forward, backward)
*3 FTNSFNCT SFNCT Issue special function command to LU
3 FTNUNLD UNLD Unload logical unit
3 FTNWRITE WRITLU Data transfer to logical unit from user
designated buffer area
4 FTNPARM Transfer specified area of PARM to user
designated area.

r"Thls routine not available to MPX/OS users.

14061100 C

F-3e

where P1 = Mode of record (0=ASCII, 1 = binary)
P2 = Logical unit number
P3 = First byte of record to be transferred
P4 = Number of bytes to be transferred
P5 = Locafion (2 words) where status will be returned.

This subroutine will load the appropriate parameters, P1 through P4, into registers
RB,RC and RD and jump to MPX routine pack. Upon return of control, this subroutine
will retrieve status from PARM and store it in the area specified by parameter P5 before
returning controller to the calling program.

FTNPACKC

This subroutine is called as follows:
CALL FTNPACKC (P1,P2)

where P1

Logical unit number

P2

Location (2words) where status will be returned.

This subroutine will load the parameter P1 into register RB and jump to MPX routine
PACKC. Upon return, this subroutine will retrieve status from PARM and store it in the
area specified by parameter P2 before returning to the caller.

FTNPACKD

This subroutine is called as follows:

CALL FTNPACKD (P1,P2, P3, P4, P5,P6)

where P1 = Type of buffering (0=double, 1l=single)
P2 = Logical unit number
P3 = First word of record to be transferred
P4 = Number of words to be transferred

eF-4 | 14061100 C

OO0 O0O0C0CC

f‘f

£
N/

W,

O

SN

o 00O

O0000000

e o

c
w
o
o
o
°
°
°
®
]

PS5 = Block number of first write' (mass storage files only):

| Less than 0 = file is positioned to highest block + 1
Equal to 0 = file is not positionéd
Greater than 0 = file is positioned to specified block

P6 = Location (2 words) where status will be returned.

This subroutine will load the appropriate parameters, P1 through P5, into registers
RB,RC,RD and RE and jump to MPX routine PACKD. Upon return of control, this
subroutine will retrieve status from PARM and store it in the area specified by P6
before returning to caller.

FTNPACKO

This subroutine is called as foilows:
CALL FTNPACKO (P1,P2, P3)
where P1 = Logical unit number
P2 = Block number of first write (mass storage files only):
Less than 0 = outpuﬁ to highest block written +1
Equal to 0 = output to next sequential block
Greater than 0 = output to specified block
P3 = Location (2 words) where status will be returned.
This subroutine will load parameters P1 and P2 into registers RB and RE, respectively,

and jump to MPX routine PACKO. Upon return of control, this subroutine will retrieve
status from PARM and store it in the area specified by P3 before returning to caller.

FTNPICK

This subroutine is called as follows:

CALL FTNPICK (P1, P2, P3,P4)

14061100 C F-5e

where P1 = Logical unit number
P2 = First byte address of the record to be transferred
P3 = Length of record in bytes
P4 = Location (2 words) where status will be returned.

This subroutine will load the appropriate parameters, P1 through P3, into registers

RB, RC and RD and jump to MPX routine PICK. Upon return of control, this subroutine
will rvetrieve status from PARM and store it in the area specified by P4 before returning
to the caller.

FTNPICKC

This subroutine is called as follows:

CALL FTNPICKC (P1,P2)

where P1 = Logical unit number

P2

]

Location (2 words) where status will be returned.

This subroutine will load parameter P1 into register RB and jump to MPX routine PICKC.
Upon return of control, this subroutine will retrieve status from PARM and store it in
area specified by P2 before returning control to caller.

FTNPICKD

This subroutine is called as follows:

CALL FTNPICKD (P1,P2,P3,P4,P5,P6)

where P1.= Type of buffering (0=double, 1=single)
P2 = Logical unit number
P3 = First word of record to be transferred
P4 = Number of words to be transferred
® I'-6 14061100 C

cecoco0ceo

&

N
)
d

SNl -le

*

» O e

®6000000O0C

O

(=)

0000000

P5

Block number of first read (mass storage files only):

Less than or equal to 0 = file is not positioned

Greater than 0 = file is positioned to specific block

Pé6

Location (2 words) where status will be returned.

This subroutine will load the appropriate parameters, P1 through P5, into registers
RB, RC, RD and RE and jump to MPX routine PICKD. Upon return of control, this
subroutine will retrieve status from PARM and store it in the area specified by Pé

before returning to caller.

FTNPICKI

This subroutine is called as follows:

CALL FTNPICKI (P1,P2,P3)

where P1 = Logical unit number

P2

Less than or equal to 0

Block number of block to be input (mass storage only):

= input next sequential block

Greater than 0 = input specified block

P3

I

Location (2 words) where status will be returned.

This subroutine will load parameters P1 and P2 into registers RB and RE, respectively,
and jump to MPX routine PICKI. Upon return of control, this subroutine will retrieve
status from PARM and store it in area specified by P3 before returning to caller.

GROUP 2 FTNINT2

FTNCTOC

This subroutine is called as follows:

CALL FTNCTOC (P1,P2)

14061100 C

F-Te

where P1 = The first byte of data to be output to CRT

P2

The location where accept or reject status is to be returned.

NOTE

Data pointed to by P1 must be characters ending
with hexadecimal 03. On accept location, P2
will contain hexadecimal 00000041, On reject
location, P2 will contain hexadecimal 00000052,
This subroutine will set value of Pl into register, perform monitor call to MPX routine

CTOC; upon return, this subroutine will load appropriate accept or reject code into P2
and return control to the caller.

FTNCTOI

This subroutine is called as follows:
CALL FTNCTOI (P1)
where P1 = The first byte of data to be output to CRT.

NOTE

Data pointed to by P1 must be characters ending
with hexadecimal 03.

This subroutine will set value of Pl into register, perform monitor call to MPX routine
CTOI; upon return, this subroutine will return control to the caller.

FTNULOC

This subroutine is called as follows:

CALL FTNULOC (P1,P2)

where P1 = Logical unit number

P2

Block number to locate to.

®F-8 14061100 C

o0 0Cc000C

¢

,, \\,
S/

NOTE

If P2 equals value of -1, the file is positioned to
the last block written + 1,

This subroutine will set the values of P1 and P2 into registers and perform a monitor
call to MPX routine ULOC. TUpon return of control, this subroutine will return to caller,

FTNUST

O0600060060O6000

This subroutine is called as follows:

CALL FTNUST (P1, P2)

»)

]

where P1 = Logical unit number to status

=

]

P2 = Location where status word is to be stored.

This subroutine will load the addresses of P1 and P2 into registers and perform a monitor
call to MPX routine UST. Upon return of control, this subroutine will return to caller.

FTNUTYP

This subroutine is called as follows:

CALL FTNUTYP (Pl, P2)

where Pl = Logical unit number to be tested for
P2 = Location where hardware type code is to be returned.
NOTE

Refer to MPX/RT Reference Manual Section 3 for hardware
type codes or MPX/OS Reference Manual Section 4.

This subroutine will set the address of Pl into a register and perform a monitor call to

MPX routine UTYP. Upon return this subroutine will retrieve the hardware type code
from PARM and store into P2 before returning to caller.

14061100 C F-9e

o
C
o
L
o
O
o
o
®
o

FTNXSTAT

This subroutine is called as follows:

coooocC

CALL FTNXSTAT (P1,P2)

Logical unit number of device to be tested

where P1 =
P2 = Location where 2 words of returned status is to be written, (D
This subroutine will set the values of P1 and P2 into registers and perform a monitor
call to MPX routine XSTAT. Upon return of control, this subroutine will return to caller. I Ib
FTNCLEAR Y
L
This subroutine is called as follows:
CALL FTNCLEAR (P1)
where P1 = Logical unit number of device to be cleared. h
This subroutine will set value of P1 into a register and perform a monitor call to MPX \;\/
routine CLRIO, Upon return of control this subroutine will return to caller. -
A
L

FTNRDSTA

This subroutine is called as follows:

CALL FTNRDSTA (P1, P2)

where P1 = Logical unit number of device for which status is desired

P2

1

Location where 2 words of returned status is to be written.

sl=

This subroutine will set the value of P1 into 2 register and perform a monitor call to
MPX routine RDSTAT. Upon return this subroutine will retrieve status from PARM + 1
and PARM + 2 and store this status in address specified by P2 before returning control
to caller,

-~
R

e F-10 ‘ 14061100 C

o 0O

FTNFVFC

This subroutine is called as follows:

CALL FTNFVFC (Pl, P2)

0600660 C

where P1 = Logical unit number of device
P2 = Format contfol command, defined as follows:
Format Command Description
0-7 4 Space to 'channel 0-7 of tape,
respectively
16-31 Space 0-15 lines, respectively

This subroutine will set the values of P1 and P2 into registers and perform a rionitor
call to MPX routine FVFC. Upon return of control this subroutine will return to caller.

FTNFMODE

o

This subroutine is called as follows:

>

CALL FTNFMODE (P1, P2)

where P1 = Logical unit number of device

P2

Enable/suppress echo mode designator (0 = suppress, 1 = enable).

This subroutine will set the values of P1 and P2 into registers and perform a monitor
call to MPX routine FMODE. Upon return of control this subroutine will return to caller.

FTNFHS

This subroutine is called as follows:

CALL FTNFHS (P1, P2)

14061100 C F-11 e

peocooooo

1

where P1 = Logical unit number of device

P2

Turn ON/OFF high speed mode (0 = OFF, 1 = ON),

This subroutine will set values of P1 and P2 into registers and perform a monitor call
to MPX routine FSS.

GROUP 3 FTNINT3

FTNALLOC

This subroutine is called as follows:
CALL FTNALLOC (P1, P2)

where Pl = The first word of the parameter list

P2 = The location where OCARM/File Manager status is to be returned.

This subroutine will set value of P1 into register, perform monitor call to MPX routine
ALLOCATE; upon return, this subroutine will retrieve OCARM/File Manager status from

PARM region, store OCARM/File Manager status in address specified by P2, and return
control to the caller,

FTNCLOSE

This subroutine is called as follows:

CALL FTNCLOSE (P1, P2)

I

where P1 = The logical unit number of the file to be closed

P2

The location where OCARM/File Manager status is to be returned.

This subroutine will set value of Pl into register, perform monitor call to MPX routine
CLOSE; upon return, this subroutine will retrieve OCARM/File Manager status from PARM
region, store OCARM/File Manager status in address specified by P2, and return control
to the caller.

® F-12 14061100 C

cocoecoc

-

DO O

f
S

=
~

L/

A
N

-/

-
€3

o O

sli=

O0O0O000000O0C

292 00000000600

FTNERASE

This subroutine is called as follows:
CALL FTNERASE (P1)
where P1 = Logical unit number of device to erase on.
This subroutine will set value of Pl into register, perform monitor call to MPX routine

ERASE and upon regaining control will return to caller.

FTNMODFY

This subroutine is called as follows:

CALL FTNMODFY (P1, P2)

where P1 = First word of parameter list

p2

1}

Location where OCARM/File Manager status will be returned.
This subroutine will set the value of Pl into register, perform monitor call to MPX

routine MODIFY and upon return will load the OCARM/File Manager status from PARM
and store into P2 before returning control to caller.

FTNOPEN

This subroutine is called as follows:

CALL FTNOPEN (P1, P2, P3)

where P1 = First word of parameter list
P2 = Logical unit number to be assigned to file
P3 = Location where OCARM/File Manager error status will be returned.

This subroutine will load P1 and P2 parameters into registers and perform a monitor call
to MPX routine OPEN. Upon return of control, this subroutine will retrieve OCARM

14061100 C F-13 e

status from PARM and save this status in the area specified by P3. Control will then be
returned to the caller.

FTNREAD

This subroutine is called as follows:

CALL FTNREAD (P1, P2, P3, P4)

where P1 = First word/byte of buffer area (see P3 for word/byte explanation)
P2 = Number of words/bytes in buffer (see P3 for word/byte explanation)
P3 = Mode control (2 digits in hexadecimal format): .
00 = ASCIHI record, word format
10 = ASCH record, byte format
20 = BINARY record, word format
P4 = Logical unit number.

NOTE

Caution must be exercised when calling this sub-
routine that the FORTRAN user does not intermix
with FORTRAN I/O statements without checking
for completion status. '

This subroutine will load the address of P1 and the values of P2 through P4 into registers

and perform a monitor call to MPX routine READLU.. Upon return of control, this sub-
routine will return to caller.

FTNRELES

This subroutine is called as follows:

CALL FTNRELES (P1, P2)

where P1 = First word of parameter list

P2

1]

Location where OCARM/File Manager error status will be returned.

® F-14 | 14061100 C

cececececoc

O

/

£
N

"=\
»

O

S

sl-Ne

scoecc

This subroutine will load P1 parameter into a register and perform a monitor call to

MPX routine RELEASE. Upon return of control, this subroutine will retrieve OCARM/
File Manager status from PARM and save this status in the area specified by P8. Control
will then be returned to the caller.

FTNSELDN

This subroutine is called as follows:

CALL FTNSELDN (P1, P2)

where P1 = Logical unit number of device density is to be selected on
P2 = Density control code: 0 = low density (556 BPI NRZI - 667)
1 = high density (800 BPI NRZI - 667/669)
2 = hyperdensity (1600 BPI PE -669).

This subroutine will set values of P1 and P2 into registers and perform a monitor call
to MPX routine SELDEN. Upon return, this subroutine will return control to the caller.

FTNSELTR

This subroutine is called as follows:

CALL FTNSELTR (P1, P2)

where P1 = Logical unit number of device on which track select is to be done
P2 = Track control code: 0 = SELECT TRACK 0
1 = SELECT TRACK 1
2 = SELECT TRACK 2
3 = SELECT TRACK 3.

This subroutine will load P1 and P2 values into registers and perform monitor call to
MPX routine SELTRK. Upon return of control, this subroutine will return to the caller.

14061100 C F-150

0000000060

FTNSEOF

This subroutine is called as follows:

CALL FTNSEOF (Pi,P2)

where P1 = Logical unit number of device search is to be performed on

P2 = Mode control code: 0 = SEARCH FORWARD

1

SEARCH BACKWARD.

This subroutine wiil load P1 and P2 parameters into registers and perform a monitor call
to MPX routine SEOF, Upon return of control, this subroutine will return to caller.

FTNSFNCT

This subroutine is called as follows:
CALL FTNSFNCT (P1, P2, P3, P4)

where parameters P1 through P4 will be specified by the system into which the MPX
routine SFNCT is used.

This subroutine will set the values of P1 through P4 into registers RB through RE,

respectively, and perform a monitor call to MPX routine SFNCT. Upon return of control,
this subroutine will return to caller. '

FTNUNLD

This subroutine is called as follows:
CALL FTNUNLD (P1)
where P1 = Logical unit number to be unloaded.

This subroutine will load the value of P1 into a register and perform a monitor call to
MPX routine UNLD., Upon return of control, this subroutine will return to caller.

o F-16 14061100 €

cooee0ce

&

FAERN

s

00000000

52000000000

FTNWRITE

This subroutine is called as follows:

QALL FTNWRITE (P1, P2, P3, P4)

where P1 = First word/byte of data to be written (see P3 for word/byte)
P2 = Number of words/bytes to be written (see P3 for words/bytes)
P3 = Mode control (2 digits in hexadecimal format):

00 = ASCII record, word format
10 = ASCIH record, byte format

20

]

BINARY record, word format
P4 = Logical unit number.

NOTE

Caution must be exercised when calling this
subroutine that the FORTRAN user does not
intermix with FORTRAN I/O statements with-
out checking for completion status.

This subroutine will load the address of P1 and the values of P2 through P4 into registers
and perform a monitor call to MPX routine WRITLU. Upon return of control, this sub-

routine will return to caller.

GROUP 4 FTNINT4

FTNPARM

This subroutine is called as follows:

CALL FTNPARM (P1, P2, P3)

14061100 C

F-17 ®

where P1 = Address of area where data from PARM is to be saved
P2 = This value plus PARM will be first word retrieved from PARM
P3 =

Number of words to be retrieved from PARM starting at word specified by P2,

This subroutine will load the appropriate parameters, P1 through P3 into registers. The
subroutine will retrieve the locations within PARM specified by P2 and P3 and store the

contents of these locations in the area specified by P1. Upon completion of this function,
control will be returned to the calling program.

e F-18 14061100 C

CooceoccocCC

¢

)
/s

.
P

y

O

0000000

000

OO000

C
C
O
L
o
o
o
O
®
F Y

MPX/OS SPECIAL FEATURES

MPX/0S INTERFACE ROUTINES

The interface routines pertaining to FORTRAN are called the FORT

RAN Interface Utility

(ESRUTIL). This module consists of five individual routines which allow the caller (usually

FORTRAN) to perform standard system executive service request (ESR) functions.

A brief description of each routine follows.

Routine: IESR

Description: Generate monitor call to specified ESR.
Calling Sequence:

CALL IESR (TYPE, P1, P2, P3, P4) or
K = IESR (TYPE, P1l, P2, P3, P4)

Input Parameter:

TYPE = ESR to perform (must be declared in an
EXTERNAL statement)

P1-P4 = Parameters one through four, dependent on ESR

Output Parameter:

K = Contents of PARM+0, dependent on ESR.

Routine: IAPAW

Description: Specifies relative location in PARM (word access).

Calling Sequence:

K = IAPAW (OFFSET); access in word mode

14061100 D

G-1e@

Input Parameter:
OFFSET = Relative location in PARM (i.e., PARM + OFFSET).
OFFSET starts from 1, as in FORTRAN indexing (i.e., OFFSET = 1
for PARM-+0).

Output Parameter:

K = Contents of word from PARM

Routine: IAPAH
Description: Specifies relative location in PARM (half-word access).
Calling Sequence:
K = IAPAH (OFFSET); access in half-word mode
Input Parameter:
OFFSET = Relative location in PARM (i.e., PARM + OFFSET).
OFFSET starts from 1, as in FORTRAN indexing (i.e., OFFSET = 1
for PARM+0),

Output Parameter:

K = Contents of half-word frbm PARM

Routine: IAPAC

Description: Specifies relative location in PARM (character access)
Calling Sequence:
K = JAPAC (OFFSET); access in character mode

Input Parameter:

OFFSET = Relative location in PARM (i.e., PARM + OFFSET).
OFFSET starts from 1, as in FORTRAN indexing (i.e., OFFSET =1
for PARM+0).

® G-2 14061100 D

e oo OO0

¢

¥

2 OO C

R ¢

OO0 00000

Output Parameter:

K = Contents of character from PARM

Routine: LOCF

Description: Provides the address of a variable instead of the data itself. LOCF actually
modifies the caller's code to load the address, hence LOCF is entered one time per
occurrence,
Calling Sequence:

K = LOCF (VAR)

Input Parameter:

O 00

VAR = Variable for which address ié desired.
Output Parameter:
K = Address of VAR

{
To illustrate the use of the above routines, an example is provided.

PROGRAM EXAMPLE

EXTERNAL STATGC

DIMENSION BLOCK(2)
SCRATCH COMMON/GLOBAL/A (4096)

DATA BLOCK/4HBLOC, 4HKONE/

STATUS GLOBAL COMMON BLOCKONE

oo

ISTATUS = IESR (STATGC, BLOCK(l), BLOCK(2), LOCF(A))
ISIZE = IAPAW(2)

.

14061100 D G-3 @

900000000

Routine: IBD
Description: Generate JSX call to specified blocker/deblocker routine.
Calling Sequence:
CALL IBDB (TYPE,P1, P2,P3,P4)
K = IBDB (TYPE, P1, P2, P3,P4)
Input Parameters:

TYPE = blocker/deblocker routine to execute (must be declared in an .
EXTERNAL statement)

P1-P4 = Parameters one thru four, dependent on blocker/deblocker routine.
_Output Parameter:

K = Contents of Parm+0, from blocker/deblocker call,

GLOBAL COMMON DECLARATIONS

A special reserved scratch common block name (GLOBAL) is to be used by the program-
mer to signal the beginning of global common block declarations. Scratch common blocks
encountered by the loader before the occurrence of the common block name GLOBAL
constitute local scratch common., All subsequent scratch common blocks including
GLOBAL will start on a page boundary and comprise global common.

An example of FORTRAN coding is shown below.

SCRATCH COMMON/A(100), B(100)

SCRATCH COMMON/BLOCK 1/C(4096)
SCRATCH COMMON/GLOBAL/D(2048), E(2048)
SCRATCH COMMON/BLOCK 2/F(8192)

The example generates two pages of local scratch common and three pages of global
scratch common, Global common would start at logical address 2000. Global common
blocks could be mapped into addresses 2000 through 4FFF;q and referenced by the arrays
D, E, and F.

The following ESRs support the GLOBAL common feature.
GETGC
STATGC
RETGC

Refer to the MPX/OS Reference Manual, Section 4.1, Executive Service Requests, for
the usage of the above ESRs.

G-4 o 14061100 E

i

OO0O000000O0C

e

000000000

INDEX

-T : A |

Item

Aw input
Aw output
Actual arguments
Actual parameters
See actual arguments
Alphanumeric identifiers
. AND.
Arguments
Arithmetic replacement statement
Form of
Mixed mode
Arithmetic elements
Arithmetic evaluation
Arithmetic expressions
Arithmetic IF statement
Arithmetic operators
Array
Declaration
Dimensioning
Element
Location of elements
Number of subscripts
Number of words per element
Structure
Subscripts

Transmission of

Type
14061100 A

Page
8-14
8-13
7-2, 7-3

2-3
3-7
7-2, 7-3

4~2
4-1 through 4-4
3-1

- 3-3, 3-7

3-1, 3-2
6-3
3-1, 3-7

2-4

2-4

2-4, 2-5, 2-6
2-4, 2-5

2-4

2-5

2-4, 2-5
2-4, 2-5, 2-6
9-5

2-5

Item
ASCII codes
ASCII constants
ASCII conversions
ASSIGN statement
Assigned GO TO statement
Assignment statements
See replacement statements
BACKSPACE statement
Blanks
Buffer statements
BUFFER IN
BUFFER OUT
Status checking
CALL statement
Calling program
Calling sequence
Card format
Carriage control
Character codes
Character set
Codes
ASCII
Character
Keypunch
Coding format
Comment card format
COMMON statement
Block identifier
Data common
Form of
Order of appearance

Seratch common

INDEX (CONT.)

Page
Appendix E
2-2

8-13, 8-14, 8-18, 8-19

6-2
6-2

9-12

1-2

9-10, 9-11, 9-12
9-10, 9-11
9-11, 9-12
9-17/9-18
7-2, 7-3, 7-4
7-1

10-4

1-1, 1-2°
8-24
Appendix E
1-2

E-1

E-1

E-1

1-1, 1-2

1-1

5-3, 5-4, 5-5
5-4, 5-5

14061100B

ccoooece

<P

A
{ }
.

S

®

./

{

c00 000

O00CO0O0 00

© 0

o
o
o
LY
o
o
o
o
®
o

Item
COMPASS calling sequence
COMPASS subprograms
Compile time options
Computed GO TO statement
Constants

ASCII

Double precision

Hexadecimal

Integer

Logical

Real
Continuation cards
CONTINUE statement
Control cards

FIN card

FINIS card
Control statements

CONTINUE statement

DO statement

GO TO statements

IF statements

PAUSE statement

STOP statement
Conversion specifications

Format

Dw.d input
Dw.d output
Data common
DATA statement

Data transmission

14061100 A

INDEX (CONT.)

Page
10-4
10-4
1-1
6-1, 6-2
2-1, 2-2, 2-3
2-2
2-2
2-1
2-1
2~3
2-2
1-2
6-7
10-1, 10-2, 10-3
10-1, 10-2, 10-3
10-3

Chapter 6

6-17
6-4
6-1, 6-2
6-3
6-7
6-8

8-3 through 8-20

8-11
8-10
5-4
5-7, 5-8
8-1

Item

Data types
Explicit declaration
Implicit declaration

Declarative statements
COMMON statement
DATA statement
EQUIVALENCE statement
EXTERNAL statement
Type statements
Order of appearance

DECODE statement

Delimiters

Diagnostics

DIMENSION statement

Dimension of arrays

DO-implying segments

DO loop execution

DO loop transfer

DO nests

DO statement

Double-precision constants

Dummy arguments

Ew.d input

Ew.d output

Ew.d scaling

Editing specifications
ENCODE statement
END statement
ENDFILE statement
ENTRY statement

INDEX (CONT.)

Page

2-2

2-2, 5-1, 5-2
2-2

Chapter 5
5-4, 5-5
5-7/5-8

5-5, 5-6

7-7

5-1, 5-2

5-1

9-14

1-2

Appendix C
5-2, 5-3

2-4, 2-5

9-1, 9-2, 9-3
6-4, 6-5

6-6, 6-7

6-5, 6-6

6-4 through 6-7

2-2

7-4 through 7-6

8-4, 8-5, 8-6
8-3, 8-4
8-16

8-16 through 8-21
9-13, 9-14, 9-15

7-1, 7-9/7-10
9-13
7-8

14061100 A

coecooceco0C

O

=N
-

O O

7

©C O

-

OO0 0000000O0O0

c
c
o
o
o
o
o
o
o
[

Item

. EQ.
EQUIVALENCE statement
Arrays in
Form of
Interaction with COMMON
Order of appearance
Error messages
Evaluation of expressions
Arithmetic
Logical
Masking
Mixed mode
Relational
Executable program
Explicit data type association
Exponentiation
Expressions
Arithmetic
Evaluation of
Logical
Masking
Mixed mode
Relational
Extensions to ANSI FORTRAN
EXTERNAL statement

Fw.d input
Fw.d output
Fw.d scaling

. FALSE,

Field descriptors

14061100 A

INDEX (CONT.)

Page

3-2

5-5, 5-6
5-5, 5-6
5-5

5-5, 5-6
5-6
Appendix C

3-7
3-4
3-6
3-8
3-3
7-1
5-1, 5-2
3-1, 3-7
" Chapter 3
3-1, 3-2
3-7, 3-8
3-4, 3-5
3-5, 3-6
3-8
3-2 through 3-5
D-3/D-4
7-7
8-9, 8=10

8-7, 8-8, 8-9
8-15

INDEX (CONT.)

Item
Field separators
File control
BACKSPACE statement
ENDFILE statement
REWIND statement
FINIS card
Formal parameters
See also dummy arguments
Format arrays
Format control
Format specifications
ASCII conversion
Blank field descriptor
Carriage control
Double-precision conversion
Field descriptors
Hexadecimal conversion
Integer conversion
Logical conversion
New record specification
’R.eal conversion
Repeéted specifications
Scale factor
FORMAT statement
FORTRAN interface routines
FORTRAN standard output
FORTRAN statements

FTN (MP-60 FORTRAN compiler)

FTN card
FUNCTION statement

Page
8-3
9-12, 9-13
9-12
9-13
9-12
10-3
7-2, 7-3

8~22, 8-23
8-23,- 8-24
Chapter 8

8-13, 8-14, 8-18, 8-19

8-17

8-24

8-10, 8-11
8-1, 8-2
8-12, 8-13
8-11, 8-12
8-13

8-19, 8-20, 8-21
8-3 through 8-10

8-21, 8-22
8-15, 8-16
8-1

Appendix F
Appendix B
Appendix D
10-1

10- through 10-5

7-4

14061100 C

(

A

7

C

e
)
J

w

e 06

> O 0 O

cooccoccce

*

K

0000

O 06060

=

000000000606

INDEX (CONT.)

Item

Function subprogram
‘ Defining
Referencing

Restrictions on construction

.GE,

GO TO statements
Assigned GO TO statement
Computed GO TO statement

GO TO assignment statement
Unconditional GO TO statement

* GT.

wH input

wH output

Hexadecimal constants
Hexadecimal input ($w)
Hexadecimal output ($w)

Iw input
Iw output
IF statements
Arithmetic IF statement
Logical IF statement
IFUNIT (status checking routine)
Implicit data type association
Input statements
READ (i) list
READ (i,n) list
READ n, list

14061100 A

Page

7-4, 7-5, 7-6
7-4
7-5
7-5

3-2
6-1, 6-2
6-2
6-1, 6-2
6-2
6-1
3-2

8-18, 8-19
8-18

2-1

8-13

- 8-12

8-12
8-11

6-3

6-3

6-3
9-17/9-18
2-3

9-8, 9-9
9-8

9-9

9-8

I-7

I-8

Item

1/0 lists
DO-implying segments
Transmission of arrays

I/0 format reference

I/O statements

I/0 units

Integer constants

Integer data

Integer division

Internal transmission
DECODE statement
ENCODE statement

Lw input
Lw output
. LE.

Library routines

Logical replacement statement

Logical constants

Logical data

Logical expressions
Elements
Hierarchy of evaluation
Operators
Value

Logical IF statement

Logical unit

. LT,

INDEX (CONT.)
Page

9-1 through 9-4
'9-1, 9-2, 9-3
9-5

9-1

Chapter 9

9-5

2-1

2-1

3=-7

9-15 through 9-16
9-15, 9-16

9-13, 9-14, 9-15

8-13

8-13

3-2
Appendix- A
4-2

2-3

2-3

3-1, 3-4, 3-5
3-4

3-4

3-4

3-4

6-3

10-1

3-2

14061100 A

C

00060

ﬂ
< 7

£
s

J
S

=N
J

;}

oo O

)rt'

oo o

“

INDEX (CONT.)

Item Page

Main program 7-1

MPX operating system 1-1, 10-1, 10-5, 10~6, 10-7/10-8

OO0 0000000

@)

00000000 OO0

Control cards 10-1
Deck structure examples 10-5, 10-6, 10-7/10-8
Special features G-1
Mixed-mode arithmetic expressions 3-8
Mixed-mode replacement statements ’ 4-2, 4-3, 4-4
.NE. 3-2
Nested DO loops 6-5, 6-6
New record specification 8-19, 8-20, 8-21
.NOT. 3-2
Null labels 1-2
Optional outputs 1-1
.OR. 3-2
Output statements 9-6, 9-7
PRINT n, list 9-6
WRITE (i) list 9-7
WRITE (i,n) list 9-7
Parameters
See arguments
Partial records 9-5
PAUSE statement 6-7
PRINT n, list 9-6
Printer carriage control 8-24
Program communication 7-1, 7-2
Program operation Chapter 10
PROGRAM statement 7-1

14061100 D

I-9

Item

Rw input

Rw output

READ (i) list

READ (i,n) list

READ n, list

Real constants

Real data

Relational expressions
Elements
Evaluation
Operators
Rules
Value of

Repeated specifications

Replacement statements
Arithmetic replacement
Logical replacement

Mixed-mode replacement

Multiple replacement
RETURN statement
REWIND statement

Sample deck structure
Scale factor

Scaling restrictions
SCRATCH COMMON
Simple variables
Source format

Source language
Source program

Space (wX)

I-10

INDEX (CONT.)

Page

8-14

8-14

9-8, 9-9
9-9

9-8

2-2

2-2

3-2 through 3-5
3-2

3-4

3-2

3-3

3-3

8-21, 8-22
Chapter 4
4-2

4-2

4-2, 4-3, 4-4
4-3
7-9/7-10
9-12

10-5, 10-6, 10-7/10-8
8-15

8-16

5-4

2-3

1-1, 1-2

1-2

1-1

8-17

14061100 A

=24

-

O

i

S

O«

S
-

o
j
€ 7

ce o0

~

cCooo0oo00cC

-

OO0O0O6006000

O 0 O

0000000000

INDEX (CONT.)

Item

Specification statements

See declarative statements
Statement card format
Statement label
Statement numbers
Status checking routine
STOP statement
Storage, reserved for array
Storage unit size
Subprograms

Alternate entry

Arguments

Calling

Functions

Returning

Subroutine

Terminating
SUBROUTINE statement
Subroutine subprograms

CALL statement

Defining

Referencing

Restrictions on construction

SUBROUTINE statement
Subscript expressions
Subscript forms

Subscript variables

14061100 A

Page

1-1, 1-2

1-2

1-2

9-17/9-18

6-8

2-5

2-3

2-1, 7-1.

7-8

7-2, 7-3

7-2

7-4 through 7-7
7-9/7-10

7-1 through 7-4

7-9/7-10

7-2

7-1 through 7-4
7-2, 7-3, 7-4
7-1

7-2

7-2

7-2

2-3, 2-4

2-4

2-3, 2-4

I-11

I-12

INDEX (CONT.)

Item

Task name card

. TRUE,

Type declaration
Explicit declaration
Implicit declaration

Type of function

Type statements

Unconditionsl GO TO statement

Variable format
Variable dimensions
Variables

WRITE (i) list
WRITE (i, n) list

. XOR,

Page

10-1

2-3

2-1, 2-3, 5-1
5-1

2-1, 2-3
7-4, 1-5
5-1, 5-2

6-1

8-22, 8-23
5-3
2-3
9-17
9-7

3-17

14061100 A

COCOoO00OCCC

&

2

J

»

-

iy

e 00

COMMENT SHEET

MANUAL TITLE MP-60 Computer System FORTRAN Reference Manual

PUBLICATION No, _ 14061100 REVISION E

FROM: NAME:

BUSINESS
ADDRESS.

COMMENTS:

This form is not intended to be used as an order blank, Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

OCOoO00O00000O0

——-——-——-——--——-———-——-—-———--—---————n-—-————————-—————————-—'—'—".w =

W
5
2
X
<
O :
I
0] {
° |
o |
|
o
I
0 |
I
0 %}
¢l
0 {
» :;': NO POSTAGE STAMP NECESSARY IF MAILED IN U. S, A.
gl FOLD ON DOTTED LINES AND STAPLE
D |

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
3101 East 80th Street, HQG 346B
Box 609
Minneapolis, Minnesota 55440

e e e e v - e —— — —— — - — e = wmn - ewn m—— e mem e e e e e s em e e e S e e e s S e S S S

B I U U G G U g
~ CUT ALONG LINE : :

O 0.0 0 0C0C

-/

O

©O000O0C

Q000 CHOOH60O00O0

000000

@ 9 CONTROL DATA
CORPORATION

MP-60
COMPUTER SYSTEM

FORTRAN
'REFERENCE MANUAL

14061100

REVISION RECORD

(Standard Product Manualis)

Revision Description A%};ﬁg?i:y
b: — —— ===
- Final
A 3-15-75. Manual completely revised. Document
number changes,

B 8-15-76., Manual revised per ECO ECO CB33609 |

C 1-15-78, Manual revised per ECO ECO CB39833

D 10-15-78, Manual revised per ECO, ECO CB41974

E 6-15-79, Manual revised per ECO ECO CB43462
1o¢- 1174

F 9-15-81. Incorporate PSRs P237 and P255 ECO CB48332

7244

1
4

o o ¢

o 1975, 1976, 1978, 1979, 1981

by Control Data Corporation

Printed in the United States of America
AA 6802

ii

12/78

REVISION LETTERS |, 0, @ AND X ARE NOT USED

.Uss COMMENT SHEET in the back of this manuai

14061100

50006

Ay
N/

D,

Bl c<<d<cc<Cgt<C €<< €< VOVLOVUVVOLOUOVUOLL AAA o
g
. ©
23 0 N
d |o L -
£ | O O N MmO e © - N MO
S ISR I Ty I IeS NG I NI ATy 19
Mm COLLVVVLUOVVLVOY ANA HM REREEEABREREBERAEAEREAMEEE obd
£§
[
B
d.m. Ke CILCL AL ALCALCELCLCALCLLCACS S < RGCCAS MAAM << < <<
25
@ 23 = it
w . £ =
o 2 |, ¢ <
M 52 Mvﬂmn(zo%. NN YVoOrOR AN aNESS M%%MR_UMJ TRARY Hq e
" S lalcodd ddddddddddddddddd 3332533 << Aad OO
2e
> 5
- ££
Q gz
™ 1
r £ |@] © “<<m<<mn <A<dICICCCn CCCCCCCCICCCCCCCACCC
. | i
s o
o s< T N
B | [1o} i~
= =3 B B Mo on® Moo~ oS HN G WOEOS A A NS SSS3R
\ L P I R O A A A N R N A R S B RN AN
Se
22
s 8
sg
L
£% >
T [R/HHFREAREEMEME << <<<0UC <<<<CCOT CCCC << < <A<
-
| -
m’
22
sE m R4
£ |5 ~ g i
g2 S RS- o PG Ol 0O Y00 =M M F IO =2 3
£2 [0 g HBEF P PHERER Ah Addddd ddbddddd Jddd LLdLbLd oz -
e
g0

2 CO0C0000CCOQ 00006060060

“ .

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information In this manual, are indicated by bars in the margins or by a dot
near the page number If the entire page is atfected. A bar by the page number indicates pagination rather than content has changed.

Page

Rev.

Page

Rev.

Page

Rev.

Page Rev.

G-4

I-9
I-10

>O0>2>Qbr>wWr> H

AA 6799 (2/78
PRINTED IN U.8.A.

®iv

14061100 E

o o 0 C

S
.

o
O
0O
O
O
O
O
O
O

0000000000

IF STATEMENTS

Conditional transfer of control is provided with the IF statements.
ARITHMETIC IF

The form of the arithmetic IF statement is:

IF () kK, k,

e is an arithmetic expression of type integer, real or double precision, and k
statement labels.

" represents

This statement causes expression e to be evaluated and control transferred according to
that value.

e< 0 jump to kl
e =0 jump to k2
e> 0 jump to k3

For example:

IF (A*B-CSIN(X)) 10, 10, 20
IF N) 5, 6, 7
IF (A/B*C) 10, 11, 12

LOGICAL IF

The form of the logical IF statement is:

IF ({) S
Lis a logical expression and S is an executable statement (not a statement label). S must
not be a DO or another IF, If e is true, S is executed. If e is false, S is treated as a

CONTINUE statement.

For example:
IF (L) GO TO 3
IF (A.GT.16.0.0R.A.EQ.0.) A=B

14061100 A 6-3

DO STATEMENT

The DO statement makes it possible to repeat a group of statements immediately following
the DO statement a number of times, changing the value of a simple integer variable for
each repetition. The form of the DO statement is:

DOni-= ml,mz,ms

n is the label (number) of the statement ending the DO loop; i is a simple integer index
variable. The m; are indexing parameters; they must be unsigned nonzero integer con-
stants or simple integer variables. i is initially set equal to my, and after each execution
of the DO loop, mg is added to i. (When omitted, mg assumes a value of 1.) When 1
becomes greater than m2, the DO loop is satisfied. Maximum value of the index constant
is 65,535,

The DO statement, the statement labeled n, and any intermediate statements constitute a

DO loop. Statement n may not be a GO TO, FORMAT, another DO statement, an arith-

metic IF statement, RETURN, STOP, PAUSE, or a logical IF containing any one of these
statements,

DO LOOP EXECUTION

Should mj exceed mgy on the initial entry to the loop, the loop is executed once and control
passes immediately to the statement following statement n. If it does not exceed mg, the
loop is executed. The value of i is increased by mg and again compared with ms. The
process continues until i exceeds my. The DO loop is then satisfied, and control passes to
the statement immediately following statement n.

- If a transfer out of the DO loop occurs before the DO is satisfied, the value of i is pre-
. served and may be used in subsequent statements.

6-4 14061100F

Sl -N-N=

O

P

e

o

s
AN

I
L

%\
J

.

J

C

Source language and assembly listings are written on the standard output unit, LU 62.
The punchable output is written on the standard punch unit, LU 61, and automatically

punched. Executable output is written on the standard load and go file, LU 57. Input
source was read from the standard input unit, LU 63.

(*FTN(I=10, L, R, X =11

Source input is from LU 10. Source output listing with cross-reference listing is on LU
62. Executable binary is written on LU 11.

CONTROL CARD NOTES

For a detailed description of all MPX control cards, refer to the MPX/RT Reference
Manual (Section 2). Information relevant to FORTRAN is, however, contained in this
section,

©O0000000O0C

Core memory assigned to a job should be requested by the user via the MPX schedule
statement (*SCHED). A minimum of 11 pages is needed to compile small FORTRAN
programs. Larger programs require more memory, up to a maximum of 16 pages. When
executing FORTRAN-compiled programs containing ASCII input or output statements, memory
must be scheduled for I/O buffers (a 480-word buffer for each unique logical unit).

The FORTRAN compiler uses system scratch files 1 and 2 (LUs 59 and 60) as intermediate
files, The user should reposition these files if they are to be used later in the job.

A FINIS card is used to notify the compiler that there are no more programs to be
compiled, The word FINIS must begin in column 10,

1 10

(FINIS

CALLING SEQUENCES

Programs written in MP-60 assembly language (COMPASS) may call or be called by
programs compiled by MP-60 FORTRAN, Calling sequence conventions have been
established for this purpose.

14061100 F 10-3

O
O
o
]
o
O
L
o
L
0

The calling sequence compiled for an external reference of the form
CALL NAME (pl,pz...,pn) is:

RTJ ' NAME
uJP *+(n+1)
VFD 16/0,16/p,
VFD 16/0,16/p,,
VFD 16/0,16/p
Where:
NAME Entry point of the program unit being referenced
p.* Address of the ith parameter

1

The main program, the set of FORTRAN statements bounded by a PROGRAM statement and
an END statement, is entered initially by MPX, If the main program contains either
ASCII 1/0 statements or STOP statements, a FORTRAN library routine with entry points
QB8QENTRY and Q8QEXITS is provided to interface with MPX. The initialization performed

by the main program includes clearing register X1, which is needed for double precision
arithmetic operations and tests,

Subroutines, entered by the CALL statement or from COMPASS programs, use all registers.
Functions save and restore all registers except RA-RF (registers 26 through 31) and return
the function value in register RE (or RE-RF if the function is a type double precision),

Both subroutines and function require register X to be zero upon entrance. Refer to
Section 7 for further explanation of subprogram relationships.

*Note that if P, is type character, address field would be 14/0,18/pi.

10-4 14061100 A

© o0 C

A
O

<

o

COMMENT SHEET

MANUAL TITLE MP-60 Computer System FORTRAN Reference Manual

PUBLICATION No, _ 14061100 REVISION __E

FROM: NAME:

BUSINESS
ADDRESS:

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by -
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

©O0000000O0C

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE

00000086000

STAPLE STAPLE
FOLD FOLD
FIRST CLASS
PERMIT NO. 8241
MINNEAPOLIS, MINN.
I
BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. —
]
[]

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION —
3101 East 80th Street, HQG 346B L
Box 609 —
Minneapolis, Minnesota 55440 I
I
]
]

"0~ - - - - "-"""-"=-""""="7"¥"7/""/""”=/"°"=”""~”"“”"¥”/""™/""”/"7/'"7/7~ fob.

e e G GHn EED W G e EED W e e G me mm e e wm ——

CUT ALONG LINE

cocoe

OO e O

O

)

COCOCO0OCOo

14061100

@ CONTROL DATA
| CORPORATION

MP-60
COMPUTER SYSTEM

eggggrgeeg@

FORTRAN

-

REFERENCE MANUAL

o 6 0O &2

...O.Qi

REVISION RECORD
(Standard Product Manuals)
. . ‘ . h
Revision Description / Acutﬁg?ify
e
~ Final
A 3-15-75, Manual completely revised. Document
number changes,
B 8-15-76, Manual revised per ECO ECO CB33609
C 1-15-78, Manual revised per ECO ECO CB39833
D 10-15-78. Manual revised per ECO. ECO CB41974
E 6-15-79, Manual revised per ECO ECO CB43462
| P¢-1r 24
F 9-15-81. Incorporate PSRs P237 and P255 ECO CB48332
| YN
G 10-1-82, Incorporate PSRs P337, P338, P336, ’.,CB50481
P321, P305, and P309 T ey s
© 1975, 1976, 1978, 1979, 1981, 1982 REVISION LETTERS 1, 0, @ AND X ARE NOT USED

by Controil Data Corporation

Printed in the United States of America

AA6802 [2/78

ii

Use COMMENT SHEET in the back of this manual

14061100 G

Oe o e CC

£
S

h
(S

SO O

> -
.Ke Do <m< UDO0UU <. Il gggg << <L << Bai
3
® ©
: ©
23 & in <
wE |0 & o N 2 a
m.u O YLDy rame wa ~aodwomonad a9 S a0 o
A T - I N N N S A T N N N N G A i G R S R R T R N
mm e e e e S anjias} O0DO00VDODODLODLLOLLOLOO faAA (S
£2
<
> >
mm QLA LCCCT AL A <L <VUU
5
7] g2 it
w o £ 1
S tE |, ¢
- T3 |9 DB YERSR]RIIYE A SH3zdEEs 7997
o mu o WY TTTTTTTYYYSq _o/_do_o,a_a:_upmn.lo_oo_u___..__d oSS
w EL |0]| 00 ®00OODNWODWDDODODNDD NDAARDPDRANRDRDRNDNRNDD®D D ™
QLe
> £
— @
= =
C vw..n
@
E rmm >
_.:J ..m.m gl <d<dACd << mA <AL <L <<
e
Sb
EY o © i
[=3 |® S ~
n Eo o ~ ~ o
2 S| TR TIReT IIRISLNS TOTILENTT TUTISCNILG
- £° OO WYV IOW ©O© OO OO OO bbb bebebebeteb 000 0 WWOWO®W W M W
i
° 3
n o
Sy || HFOUUHMMEEHUOE << <<<U0 U0 <I<<<<<C<d <a<<
£ .
© .]
=7 i 0
WM o L | O w
82 & g W ©
g8 |9l A oo S T~ I TR Ry SR R 0 © MDD N
£t |o : o » O
(B g=EEETaamd 1] taadd I& TAIITLEIL TIIT s ¢
53 g | : 2o =
) [l v
Zc 0z ©
<& K

CQLOLOOCO0O00O0O0OLCOCLLOOO0OO0OO0CO0COOe 000

LIST OF EFFECTIVE PAGES (continued)

Rev.

Page

Rev.

Page

Rev.

Page

Rev.

F-18a/F-18b

[

L N D U |
oy
O U WN O

R
Pt e e e e e e €O 00 =3

F-18

G-1
G-2
G-3
G-4

G-4a/G-4b

I-1
I-2
I-3
I-4
I-5
I-6
I-7
I-8
1-9
I-10

sNoNoNoNoNoNoNoNoNoNoNoNoRoNoNoNoNoNo!

QOoQbo

o> Q>>>0

AA 6800 12/78
PRINTED IN U.S.A.

iv

14061100 G

000000000 O0ECEOO0OO0O0O0O0O0O0O0O0C

CONTENTS

(CONT.)

Section Page
Buffer Statements¢¢ ...t 9-10
BUFFER IN e e ettt e e e et e et e e e e 9-10
BUFFER OUT S e ettt i e e e e e e ettt e e 9-11
File Control Statements ., 0.0 vttt iieneinenn. 9-12
REWIND et et e e e e e e et e e e e e e 9-12
BACKSPACE Gt t e e s e s e s e s e e e e et e 9-12
ENDFILE e e e e e e e Gt e e e et ettt e et et e e e e e 9-13
Internal Transmission Statementso v v v v v ot o vt oot v v vr o veveons . 9-13
ENCODE . * s s o . ® o s o 0 ® 0 8 2 2 s % 0 0t B 8 e e st 2 s v e e v e . ¢ o 0 9"13
DECODE c e et e et s e e e e 6 6 s 8 s s 0 8 s e e s e s e e s e e e s 9-15
Status Checking Routine e e e e e e e et eee. 9-17/9-18
I1/0 Complete Check. . . . oo v v vu . e ettt e e .. 9-17/9-18
10 PROGRAM OPERATION e e e e e s e e oo o ewr s b o b s m s e e st .. 10-1
FORTRAN Control Cardt v vt vt oneensn e e e e 10-1
Control Card Notes .+« e v vt et v v v e v e e e e e e et e e e . 10-3
Calling Sequences v s s e e e s et et 10-4a
Sample Deck Structures e s e et e e . 10-5
APPENDIXES
A Library Routines
B FORTRAN Standard Output
C FORTRAN Diagnostics
D FORTRAN Statements
E Character Codes
F FORTRAN Interface Routines
G MPX/0S Special Features
INDEX
14061100 G xi

Table Page

10-1 Parameter/ LU . . v v ittt ettt ettt ettt ettt 10-2

OO0 006 06CC0CC0

ey

&
_/

C OO0 0O

O

xii 14061100 E

'
O

VO LUVOOOOUOO0OO0OO0oC20 00 0000000

LOGICAL

A logical constant is a truth value:
. TRUE. or .FALSE.
A logical constant occupies one bit of storage: 1 for true and 0 for false.
For example:
LOGICAL X1, X2:
X1 = .TRUE.

X2 = ,FALSE.
VARIABLES

A variable name consists of 1 to 8 alphanumeric characters; the first character must be
alphabetic. It represents a specific storage location.

The FTN-60 compiler recognizes simple and subscripted variable names. A simple
variable name represents a single quantity; a subscripted variable name represents a
single quantity within an array of quantities. The type of a variable is designated either
explicitly in a type declaration or implicitly by the first letter of the variable name. A
first letter of I, J, K, L, M, or N indicates an integer (fixed point) variable; any other
first letter indicates a single precision real (floating point) variable.

SIMPLE VARIABLES

A simple variable name identifies the location where a variable value can be stored. A
variable which has been defined as double precision real occupies two consecutive memory
locations. Integer and single precision variable names refer to single memory locations.
Variable names which have been declared as character or logical types correspond to
character addresses and bit addresses, respectively.

SUBSCRIPTED VARIABLES

A subscripted variable name identifies the location in an array where a variable value can
be stored.

14061100 A 2-3

An array is a block of successive memory locations comprising the elements of the array.
Each element of an array is referenced by the array name plus a set of subscripts. The
type of an array is determined by the array name or a type declaration.

Arrays may have one, two, or three dimentions; the maximum number of array elements
is the product of the dimensions. The maximum number of words used in an array cannot
exceed 65,535. The array name and its dimensions must be declared at the beginning of
the program in a DIMENSION, COMMON, or SCRATCH COMMON statement.

Subscript Forms

A subscript indicates the position of a particular element in an array. A subscript con-
sists of a pair of parentheses enclosing from one to three subscript expressions which

are separated by commas. The subscript follows the array name. A subscript expression
can be any valid arithmetic expression. The value of the expression must be integer.

If the number of subscript expressions is less than the number of declared dimensions, the
complier assumes the omitted subscripts have a value of one. The number of subscript
expressions in a reference must not exceed the number of declared dimensions.

The value of a subscript must never be zero or negative. It should be less than or equal
to the product of the declared dimensions, or the reference will be outside the array. If
the reference is outside the bounds of the array, results are unpredictable.

Valid subscript forms:

A(,K) ARRY1(ARRY2(, J*K-M-+4), ARRY3(I), 10)
B(1+2,J-3, 6%K+2)

LAST(6)

ARAYD(, 3, 2)

STRING (3*K*ITEM+3)

Invalid subscript forms:

ATLAS(0) zero subscript causes a reference outside of the array

D(.GE. K) relational or logical expression illegal

A(;1) or A(1,,K) commas can only be used to separate adjacent subscript
expressions '

[]
9-4 14061100 G

©c O CCC

oo

o O 0O 0

3

o0 O O

o0 OO0 0

O0O00O000O0OOEMMONODOOOOOOO

Example:
Plane 1 : Plane 2 Plane 3
Col 1 Col 2 Col 3 Coll Col2 Col 3 Coll1 Col2 Col 3
Row 1 3 7 4 22 51 7 2 1 552
Row 2 7 8 9 0 98 6 7 60 3
Row 3 ,0 33\ 3 207 99 85 100 8

/the single \—NEXT(3,MEXT(2,2)

subscript represents represents
NEXT(3) NEXT@, 2,1) NEXT(2,2,1)
represents

NEXT(@3,1,1)

In the three-dimensional array NEXT when only one or two subscripts are shown, the
remaining subscripts are assumed to be one,

At no time during program execution can a simple integer variable used as an index
variable take on a value greater than 65,535,

Array Structure

Elements of an array are stored by column in ascending storage locations. The location
of an array element with respect to the first element is determined by the maximum array

dimensions and the type of the array.

The first element of array A{, J, K) is (1,1,1). The location of element A(i, j, k) with
respect to A(1,1,1) is:

Loc A(,j,k) = loc A(l,1,1) + (G-1)+(-1)*I+ (k-1)¥I*J) *E

14061100 G 2-4a/2-4b ®

SO0 O00000O00CL HLOLLULOLLLLwo oS

o ©

9990000000 CTHDO0OO0O00O00O00O0O0

The MP-60 FORTRAN compiler (FTN-60) is called into execution via an MPX library task
control card. Parameters on this control card define compile options and are passed to
the compiler through the PARM area assigned to the job.

A description of the FORTRAN control card and other information needed to compile and
execute MP-60 FORTRAN programs under MPX are contained in this section. For
detailed descriptions of control cards, both necessary and optional, refer to the MP-60
Reference Manual, Control Data publication No. 14306500.

The MPX task name control card that causes MP-60 FORTRAN to be called, loaded, and
executed appears as follows:

(*FTN (field , field, ..., field)

All fields are optional and may appear in any order on the card. Blanks are ignored, and
illegal characters are assumed to be commas. Fields are of the following formats:

Parameter = logical unit,
Parameter,
Parameter can be one of the following letters: I,L,R,A,X, or P (refer to Table 10-1).

Refer to the MPX/RT Reference Manual, Control Data publication No. 14062300, for
legal logical unit (LU) numbers.

'/ *FTN (L, A,X,P)

Sample *FTN card:

14061100 A 10-1

TABLE 10-1. PARAMETER/LU
Parameter No LU LU No Field Present

I Source input Source input Source input from
from LU 63, from named LU, LU 63.
standard input If LU is other
unit, than 63, user

must ensure that
file is OPEN to
job.

L Source language Source language No source listing
listing and listing written provided.
diagnostics on specified LU,
appear on LU
62, standard
output unit.

R Cross-reference Cross-reference No cross-reference
list written on list written on listing provided.
LU 62. specified LU,

Note: It is
.. recommended.-that}. ...
cross reference
unit be same as
source listing
unit.

A Assembly language| Assembly language No listing of assembly
listing written on listing written on language produced,
LU 62, specified LU.

X Relocatable binary | Relocatable binary No relocatable binary
output written on card images of file written,

LU 57, standard compiled programs
load and go file, written on named
LU,
P Relocatable binary | Relocatable binary No binary deck
output written on card images of provided.
LU 61, standard compiled programs
punch unit, written on named
LU,
O Optimization is = 2 Associativity will] No optimization is per-

performed.

also be performed,

formed,

NOTE: The cross reference (R) must be turned on to remove the dead variables when the
optimizer is on,

10-2 !

14061100G

coo0c00C

O O O

v

|

"

(A
(5
Y

N

& O

J

OO0 6

SO C

o O

O 0 00

O 0 0 0

OS2

OO LUUOe OO0 00

Source language and assembly listings are written onthe standard output unit, LU 62. The
punchable output is written on the standard punch unit, LU 61, and automatically punched.
Executable output is written on the standard load and go f11e, LU 57. Input source was
read from the standard input unit, LU 63.

l/ *FTN @ =10, L, R, X = 11

Source input is from LU 10. Source output listing with cross-reference listing is on LU
62. Executable binary is written on LU 11. ~

| CONTROL CARR NOIES

For a detailed description of all MPX control cards, refer to the MPX/RT Reference
Manual (Section 2). Information relevant to FORTRAN is, however, contained in this
section.

Core memory assigned to a job should be requested by the user via the MPX schedule
statement (*SCHED). A minimum of 11 pages is needed to compile small FORTRAN
programs. Larger programs require more memory, up to a maximum of 16 pages. When
executing FORTRAN-compiled programs containing ASCII input or output statements, memory
must be scheduled for I/O buffers (a 480-word buffer for each unique logical unit).

The FORTRAN compiler uses system scratch files 1 and 2 (LUs 59 and 60) as intermediate
files. The user should reposition these files if they are to be used later in the job.

A TFINIS card is used to notify the compiler that there are no more programs to be com-
piled. The word FINIS must begin in column 10,

1 10

(FINIS
QPTIMIZATION

If the O option is on the control card, optimization is performed on the program, = The
types of optimizations performed are described below, :

Whenever the program is changed due to the OPTIMIZATION process, an informative mes-
sage is output to the list unit, giving the number of the statement that was modified.

14061100 G , 10-3

1.

3.

_If O=2 is on the control card, associativity will be performed.

Redundant code within a sequence of statement (block) is removed. Redundant code is
that code that is duplicated in a block of statements that has one entrance.

EXAMPLE

DIMENSION A(10, 10), B(10, 10)
DO 10 I=1,10
A(, J)=K
B(I, J)=0
10 CONTINUE

The subscripts for both A and B produce the same code for the index. Therefore the
code is redundant, and the calucaltion of the second index is removed. The index cal-
culation for A is also used for B,
Constants within a statement are combined where possible.
EXAMPLE
A=5+10 -B + 10
This statement would have the 5 + 10 combined and the statement would become:
A=15-B + 10
Note that associativity does not apply

Code that doesn't change values during execution of a DO loop is moved outside of the
loop.

EXAMPLE
DO 101 = 1,10
J=K
A(L)+J*I
10 CONTINUE

In this set of statements, the statement J = K does not change values after the initial
evaluation. The evaluation of this statement can be moved outside of the loop to give
a statement sequence similar to the sequence below:

J=K
DO 10 I = 1,10
A(I)=J*I
10 CONTINUE

10-4° 14061100 G

©C OO0 00 C0CC

€3
~

]

A
S

=

e O

oSO 00

-

e O

c 00000

O 0 SO G O

o 0O

" = B~ L - = e

4. Variables that are not used or referenced are deleted from the generated code.
EXAMPLE
PROGRAM EX

INTEGER A (10)
DO 10 I = 1,10

A@=1I
B@-=1I

10 CONTINUE
PRINT 100, B

100 FORMAT (10I4)
STOP
END

The array A is never used in this program. Because it isn't used, it can be removed
from the generated code and reduce the amount of memory required for the program.

NOTE: The cross-reference (R) must be turned on to remove dead variables when the
optimizer is on.

5. Statements that are not referenced are eliminated. A referenced statement is one
that can be executed sometime during a program's execution. A nonreferenced state-
ment usually occurs following a GOTO statement because of a missing label.

EXAMPLE
I=4Jd*10
GOTO 30
A=B+J

30 CONTINUE

The statement A = B + J (and any other statement following this and prior to the 30
continue) are nonreferenced statements. Because it is never executed, the statement(s)
can be deleted and have no effect on the program execution and reduce the amount of
memory needed for the program.

' CALLING SEQUENCES

Programs written in MP-60 assembly language (COMPASS) may call or be called by pro-
grams compiled by MP-60 FORTRAN. Calling sequence conventions have been established
for this purpose.

14061100 G 10-42®

-

The calling sequence compiled for an external reference of the form
CALL NAME (p1,Pg-+-sPn) is:

o
ﬁl)
JsX NAME, R9
~
UJP *+(n+1) M
VFD 16/M, 16/p; @
VFD 16/M, 16/pg
O
. uﬂ
3 A"W,\’
. ‘ch W
VFD 16/M, 16/p,
(4—\'«
Where: W
NAME Entry point of the program unit being referenced N
N
M Mode of P,
Bit 2 Set Bitaddress
Bit 3 Set Char address Sl
Bit 4 Set Half-word address
Bit 5 Set Word address . w«
Bit 6 Set Double word address b
pi* Address of the ith parameter /a
The main program, the set of FORTRAN statements bounded by a PROGRAM statement and
an END statement is entered initially by MPX. If the main program contains either ASCI o
I/0 statements or STOP statements, a FORTRAN library routine with entry points ~
Q8QENTRY and QSQEXITS is provided to interface with MPX,
A

Subroutines, entered by the CALL statement or from COMPASS programs, use all registers. L
Functions return the function value in register RE (or RE-RF if the function is a type

double precision). Both subroutines and functions require register X1 to be zero upon Ef
entrance. Refer to Section 7 for further explanation of subprogram relationships. et

*Note that if p; is type character, address field would be 14/0, 18/pi.

10-4p° 14061100 G C

© e

©C 0O

OO0 00 00

O 00000

Library Function
ABS(a)

AINT(a)

ALOG(a)
ALOG10(a)

AMAXO(al, a2, ces)

AMAXl(al, By ‘))

AMINO(al, az, ees)
AMIN1 (al, a2, eea)
AMOD(@,,2,)
AND(al, az)
ATAN(a)
ATAN2(2a1,a9)
COS(a)

DABS(a)
DATAN(a)

DATAN2 (al, a2)

14061100 G

Definition

Y ROUTINES

|a] (absolute value)**

Truncation **
log (a)

log, ;@
max(al, az, ces)
max(al, az, cee)
min(al, a2, eee)
min(a.l, a2, ees)
a (mod az)**

K%
alA az

arctan(a)
arctan (al/az)
cos (a)**

Ja] +x
arctan(a)

arctan(al/ az)

** Function is performed in-line (not a library routine),

Type of
Argument

Real
Real
Real
Real
Integer
Real
Integer
Real
Real

Integer
Real

Real
Real
Double
Double

Double

Type of
Result

Real
Real
Real
Real -
Real
Real
Real
Real
Real

Integer

Real
Real
Real
Double
Double

Double

A-1

Library Function

DBLE (a)

DCOS(a)
DDIM (al, a 2)
DEXP(a)
DIM(al, a2)
DINT (a)
DFLOAT (a)
DLOG(a)
DLOG10(a)

DMAX1(a, ,2)

2,0.-

DMl‘Nl(al,az, ees)

DMOD(a 1’ a2)
DSIGN(a 1 'a2)
DSIN(a)
DSQRT(a)

ENABLE%

EXP(a)

FDATE(a)

FLOAT(a)

Express single precision argument
in double precision form **

" cos(a) *x*

-mi sk
a1 mm(alz a2)

a
e

-mi *k
a1 mm(al,az)

Sign of a times largest integer < |a|**

Convert from integer to double **
log (2)
1og10(a)

)

max(al,az,...

min (al,az,...)
*k /%%

al(mod a2) /

Sign of a, times |a;| **

sin(a) **

Ja~

Initialize fault indicators and enable

arithmetic class interrupts

a
e

Subroutine to obtain system data

Conversion from integer to real **

*% Function is performed in-line (not a library routine),

A-2

Type of
Argument

Real

Double
Double
Double
Real

Real

Integer
Double
Double

Double

; D_Ouble S

Double
Double
Double
Double

Not
Applicable

Real

Any Type

Integer

Type of
Result

Double

Double
Double
Double
R eal

Double
Double
Double
Double

Double

Double
Double
Double
Double

Integer

Real

ASCII
(2 words)

Real

14061100 G

Double R

J

s

029 O 0 0 00 000 0O 0O

" - - AL - B~ e = e e e

Library Function

IABS(a)
IDIM (a 1’ az)

FTIME (a)

IARCHK(T)

IDINT (a)

IDVCHK(I)

IFIX (a)

IFNCHK(T)

INT (a)

IOVERFL()

ISHFT (2 ,,)

ISIGN(al,aZ)
MAXO(al,az, vee)

MAXl(al’ az, LR)

14061100 G

Definition

|a| *k

-mi kk
al mm(al, a2)

Subroutine to obtain system time

Determine if arithmetic overflow has
occurred. Returns 1 if there is a
fault, 2 if there is no fault

Sign of a times largest integer

< la] **

Determine if divide fault has occurred,
Returns 1 if there is a fault, 2 if
there is no fault

Conversion from real to integer **
Determine if function fault has
occurred. Returns 1 if there is a

fault, 2 if there is no fault

Sign of a times largest integer

.g]al *k

Determine if exponent overflow has
occurred. Returns 1 if there is a
fault, 2 if there is no fault

Value is first argument shifted by
second. If second argument is
negative, shift is right; if positive,
shift is left circular **

Sign of a, times lall *ok

max (al,az,...)

max(a,,ay,...)

'** Function is performed in-line (not a library routine).

Type of
Argument

Integer
Integer

Any Type

Integer
variable

Double

Integer
variable

Real

Integer
variable

Real

Integer
variable

Any Type

Integer
Integer

Real

Type of

Result

Integer
Integer

ASCII
(2 words)

Integer:

Integer

Integer

Integer |

Integer

Integer

Integer

Integer

Integer
Integer

Integer

Library Function

MINO(al,a)

2, coo
MINl(al, az, ss e)
MOD(al,az)

NOT (a)
OR(al,az)
SECOND(a)
SIGN(al, a2)
‘SIN(a)

SNGL(a)

SQRT(a)/SQRTF(a)

TAN@)
TANH(a)

XOR(al, a2) or
EOR(a,, ,)

Definition

min (al,az,.co)

min(al,az, ves)
, * kk
al(mod a2)

q **

kok
1V 3y
System time in seconds
i i *%
Sign of a, times a1

sin(a) **

Obtain most significant part of
double precision argument **

VT

- tamay -

tanh(a)

3) "3y

2

Type of
Argument

Integer
Real
Integer
Integer
Integer
Any Type
Real

Real

Double

Real

Real

Real

Integer

Type of
Result

Integer
Integer
Integer
Integer
Integer
Real
Real
Real

Real

Real

Real

Integer

*al(mod a2) is defined as a_-| a a2, where [X] is the integer whose magnitude does

not exceed the magnitude of X and whose sign is the same as X.

** Function is performed in-line (not a library routine),

A-4®

1 2

14061100G

DO 000CC

Real

~
/

¢C

®

)

.)

IoNeNeNe

O e o

0000000000 CTHYTOODODODODODOOO O

FTNWRITE |

This subroutine is called as follows:

CGALL FTNWRITE (P1, P2, P3, P4)

where P1 = First word/byte of data to be written (see P3 for word/byte)
P2 = Number of words/bytes to be written (see P3 for words/bytes)
P3 = Mode control (2 digits in hexadecimal format):
00 = ASCII record, word format
10 = ASCIH record, byte format
20 = BINARY record, word format
P4 = Logical unit number.

NOTE

Caution must be exercised when calling this
subroutine that the FORTRAN user does not
intermix with FORTRAN I/O statements with-
out checking for completion status,

This subroutine will load the address of P1 and the values of P2 through P4 into registers
and perform a monitor call to MPX routine WRITLU. Upon return of control, this sub-

routine will return to caller.

GROUP 4 FTNINT4

FTNPARM

This subroutine is called as follows:

CALL FTNPARM (P1, P2, P3)

14061100 C

F-17

where Pl = Address of area where data from PARM is to be saved

P2 = This value plus PARM will be first word retrieved from PARM

P3 = Number of words to be retrieved from PARM starting at word specified by P2,
This subroutine will.load the appropriate parameters, Pl through P3 into registers. The
subroutine will retrieve the locations within PARM specified by P2 and P3 and store the
contents of these locations in the area specified by P1. Upon completion of this function,
control will be returned to the calling program.
Q8QMOVE

This subroutine is called as follows:

CALL QSQMOVE(P1, P2, P3)

Where:

Pl = buffer first word/character address of from area.

P2 = buffer first word/character address of to area
P3 = number of elements to move
NOTE:

P1, P2, P3 must not be logical
The subroutine will move P3 data items from Pl to P2, P3 assumes the mode of Pl,

The MOVE subroutine is provided primarily to allow for the fastest possible movement of
relatively large blocks of central memory. It employs the move machine instructions which
were fetch and store one word (32-bits) of physical memory at a time directly from the orig-
inating block to the receiving block., Caution must be observed when the originating and re-
ceiving blocks overlap in physical memory. Review the following examples to see the effects
of the move. Example 4 shows the effects of overlapped buffers.

Examples:
@) INTEGER A,B
DIMENSION A (100), B(100)
CALL Q8QMOVE(A(1), B(1), 100)
This example will copy array A into array B
e F-18 14061100 G

T OO0 0000 0C0CC0C

f/
N

o O O

oSO 600

oo

O 0 0

VO VYVOUOOUOOUOUO OO0 OOO0ODO0OOL DD

@)

@

@)

B(l)
B(@2)
B(3)
B(4)
B(S)

B(6)

14061100 G

CHARACTER B

INTEGER A

DIMENSION A (100), B(500)
CALL Q8QMOVE(A(1), B(1), 100)

This example will copy 100 elements from array A into character array B.
The first 400 elements of array B will be filled. No check is made for
bounds.

CHARACTER A
INTEGER B

DIMENSION A (100), B(100)
Call Q8QMOVE (A (1), B(1), 100)

This example will copy 100 elements of A into B filling the first 25 elements
of B .

INTEGER B
CHARACTER A

DIMENSION A(100) -
DIMENSION B(100)
EQUIVALENCE (A(3), B4))
CALL Q8QMOVE (A(1), B(1), 100)
CALL Q8QMOVE (B(1), A(1), 10)

The first call will cause a left shift of array A by 10 characters. The second
call will cause a right shift of array B by 10 characters, repeating the first
10 characters every 10 characters.

data before data after

overlapped arrays 1st move . 1st move
011123 AlB |C|D
4|56 |7 E|F|cl|lu

A@) | A@) 8l9(A|B I |J |[K|L

AGB) | A@) | ApB) | AG) C|D|E|F M|{N|O]|P
AT | A@®) | A©) | AQO) G|lH|I |J QIR |S]|T
A(11l)] A@2)| A@3)| A(14) K|L|M|N U|V |W|X

F-182°

D900 00 QL O LY mw DWW W ,C w o @O

14061100 G

cmlalEm|lalm|ln]A

[

20

dg|o|Uo]| <|H®H| =] O

8

..mom m < L) A fas] m
<|®m| ~]OolO| <

F-186

e o0

Q9000000000 COHOOODODOOD

Output Parameter:
K = Contents of character from PARM

Routine: IAPAA

Description: Allows passing of multiple cells to/from user PARM.
Calling Sequence:
CALL IAPAA (1A, IB, IE)

Input Parameters:

IA = Location where the multiple cells are to be stored.
IB = Beginning cell to be passed to/from PARM
IE = End cell to be passed to/from PARM., Maximum value of IE is 50.

Routine: LOCF

Description: Provides the address of a variable instead of the data itself. LOCF actually
modifies the caller's code to load the address, hence LOCF is entered one time per
occurrence. ‘
Calling Sequence:

K = LOCF (VAR)
Input Parameter:

VAR = Variable for which address is desired.
Output Parameter:

K = Address of VAR

14061100 G G-3

To illustrate the use of the above routines, an example is provided.

G-4

PROGRAM EXAMPLE

EXTERNAL STATGC

DIMENSION BLOCK(2)
SCRATCH COMMON/GLOBAL/A(4096)

DATA BLOCK/4HBLOC, 4HKONE/

L
.

C

C STATUS GLOBAL COMMON BLOCKONE

c

ISTATUS = IESR (STATGC, BLOCK(l), BLOCK(2), LOCF(4))

_ISIZE = IAPAW(2)

14061100 G

o o600

e oo

e 0

OO0 000000

Vo OO oo oo e

Routine: IBDB
Description: Generate JSX call to specified blocker/deblocker routine,
Calling Sequence:
CALL IBDB (TYPE, P1, P2, P3, P4)
K = IBDB (TYPE, P1, P2, P3,P4)
Input Parameters:

TYPE = blocker/deblocker routine to execute (must be declared in an .
EXTERNAL statement)

P1-P4 = Parameters one thru four, dependent on blocker/deblocker routine.

Output Parameter:

K = Contents of Parm+0, from blocker/deblocker call.

GLOBAL COMMON DECLARATIONS

A special reserved scratch common block name (GLOBAL) is to be used by the program-
mer to signal the beginning of global common block declarations. Scratch common blocks
encountered by the loader before the occurrence of the common block name GLOBAL
constitute local scratch common, All subsequent scratch common blocks including
GLOBAL will start on a page boundary and comprise global common.

An example of FORTRAN coding is shown below.

SCRATCH COMMON/A(100), B(100)

SCRATCH COMMON/BLOCK 1/C(4096)
SCRATCH COMMON/GLOBAL/D(2048), E(2048)
SCRATCH COMMON/BLOCK 2/F(8192)

The example generates two pages of local scratch common and three pages of global
scratch common, Global common would start at logical address 2000. Global common
blocks could be mapped into addresses 2000 through 4FFF, g and referenced by the arrays
D, E, and F.

The following ESRs support the GLOBAL common feature.
GETGC

STATGC
RETGC

Refer to the MPX/0OS Reference Manual, Section 4.1, Executive Service Requests, for
the usage of the above ESRs.

14061106 G G-4a/G-4b

2 000

7 JJ
.

SIS

P

-

;-

//r\

o

00 00000 OO0 0

g

o

o

© 0 0

0O 00 0

CUT ALONG LINE

PRINTED IN USA

AA3419 REV. 11/69

" MANUAL TITLE

COMMENT SHEET

MP-60 Computer System FORTRAN Reference Manual

/

PUBLICATION No, _ 14061100 Revision ___G

FROM: NAME:

BUSINESS
ADDRESS:

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

FOLD ON DOTTED LINES AND STAPLE

STAPLE

. e o o e G e - e e wm— e wme e e awm s em— e e eSS

STAPLE

— v — ——— —— —— . e wm— - e G— am—

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
3101 East 80th Street, HQG 305
Box 609

Minneapolis, Minnesota 55440

e e e e e - ——— — —— - . e —— - = e e e e e e W S = e =S

- e o wmm wmr wmn v o e e e e ew Gan e e

CUT ALONG LINE

