14061305 Jy

(G CORPORATION
MP—32 COMPASS
C REFERENCE MANUAL

CONTROL DATA®

MP-32
COMPUTER SYSTEMS

REVISION RECORD

REVISION DESCRIPTION

A Original release.
(01/03/83)

w

Document No.

14061305
Please address comments
Revision letters I, 0, Q, and X are not used. concerning this manual to:
°COPYRIGHT CONTROL DATA CORPORATION 1983 CONTROL DATA CORPORATION
All Rights Reserved SYSTEMS TECHNOLOGY DIVISION
Printed in the United States of America 215 Moffett Park Drive

Sunnyvale, California 94086

e

Or use the Comment Sheet in —
the back of this manual. @:

ii

o

LIST OF EFFECTIVE PAGES

Page

Revision

Page

Revision

1-1
2-1
3-1
4-1
A-1
B-1
Cc-1
D-1
I-1

Cover
Title Page
ii through x

through 1-4
through 2-10
through 3-22
through 4-6
through A-19
through B-2
through C-2
through D=2
through I-4

Comment Sheet

b B B |

14061305 A

iii/iv

(
\“-;4

%

P
7 N

£
p;(“, .

PREFACE

L -~~~

This publication is a reference manual for the programmer using the MP-60
COMPrehensive ASsembly System (COMPASS) language. The manual defines the
external characteristics of the MP-60 COMPASS, that is, those features which are
observable or under the active control of the user.

Knowledge of the MP-60 computer operation is assumed for this manual., The
operation of the MP-60 machine instructions is described in the MP-60 Computer
System Reference Manual (Control Data publication No. 14306500).

61305 A
14061 o/vi

»}
o]

s

N

k\)‘;

CONTENTS

Section Page

1 INTRODUCTION ,.,......00.. cea e e e e v ee e .o 1-1

MP-60 COMPASS Languageo e s vt eoovnonsnsononsens .o 1-1
COMPASS Subprogramsev o000 e e e e . 1-2

2 COMPASS PROGRAMS . ..t it i ittt i et e e e e et e e e e . 2-1

Statement Format e e e et e e 2-1

Location Field e e e 2-83
g Operation Field e e 2-4
Address Field e et et e e e e e e . 2-4

| Symbols e e et . 2-5
Constants e et e e e e et e et e e e e .o 2-6

. Expressionsc.000000n

0} Literals et e et e e e e e e 2-8
Comments Field ittt eennneeneenns . 2-9

3 PSEUDO INSTRUCTIONS . . i it ittt ittt e v osenooneeanss 3-1

Program Sectioning and Linking ., 3-1

L
L

O B 3-4

CONDITIONALS-.. v e s 0 s 0 e e e s s e e o e 0 8 s e 0 s 0 0 0 e s e e s

IF o ¢ 0+ ¢ 0 ¢ v ¢ o oo 0 o ¢ 00060 c0s0606e6ss a0 sees 000020000 3-6a

14061305 A vii

Section

IFZ oco0ee
IFG o050
IFGE oo
IFGT o060
IFL oo
IFLE ¢
IFLT coc.
IFN oocoo

ENDIF o e 00 0@
FINIS © 6 e 00 00

Symbol Definitions

EQU cocoocaos
EQU,H cocsoo
EQU,C cosess
EQU,W «cosoo
SET ecoocons

Storage Definitions

BSS cococseco
BSS,H coeoe-
BSS,C ceovcs
BSS’B e o o0 0 O
BSS,Dccocess

Data Definitions . »

GEN cccoevac
VFD cecoecos
TEXT cocoeese
TEXTC, TEXTH

Listing Control ..

TITLE coooos
EJECT cccoos
SPACE «eecss
LISTF e oo eoos
LIST veocoso

viii

CONTENTS (CONT.)

Page

.. 3-6a }
s 3-6b
.o 3-6b
«s 3-6b
«o 3-6C
oo 3-6C

<, i
Ve

* o 3-60 73

.. 3-6d

ee 3-7 ;

o e 3_8

o o 3"9 *

o . 3"9

o o 3"10 £
AN

° o 3-10 ;'/ \“’ '
.. 3-11 N

.. 3-11
.o 3-11 5

oo 3-12

oo 3-13
oo 3-14 -
.o 3-14 ,
e 3-15 N

e o 3"'15

.o 3-15
oo 3-17
.s 3-18
oo 3-18

o e 3"‘19

oo 3-19
s 3-19
.. 3-19
ee 3-20

.. 3-20 @

14061305 A

&
%

Ry

AR

\“’Ln;x

Section

LISTCC® *
LISTIF °*°
LISTMC °
BOX ***°
EBO LI

4 MACROS **°°°*

Macro Heading
Prototype °** **

Macro Terminator
Macro Calls *°*
Nesting of Macros

Library Macros

APPENDIXES

U a w »

INDEX

14061305 A

CONTENTS (CONT.)

Machine Language Instructions
COMPASS Control Card
COMPASS Output
COMPOOL/Library Macros

Page

3-21
3~-21
3-21
3-22
3-22

ix

ILLUSTRATIONS

Figure

2-1 Typical COMPASS Coding Form....... Ce s ce s it e e 2-2

e r.};\

£
{ i
N

W b 2 Rt % 7

o

14061305 A i

INTRODUCTION : 1

MP-60 COMPASS is the COMPrehensive ASsembly System for the CONTROL DATA®
MP-60 Computer System. MP-60 COMPASS translates the programmer's symbolic
o, assembly language into machine language instructions, assigns storage locations, and
{ produces a printed assembly listing and a loadable output.

MP-60 COMPASS LANGUAGE

Wit
4 N 1;

The MP-60 COMPASS assembly language is designed to enable efficient use of all the
computer resources while giving the programmer maximum flexibility in program
construction. The language allows all hardware functions of the MP-60 computer system
to be expressed symbolically., The user writes machine language programs in

;o mnemonic instructions and symbolic addresses. In addition to individual computer

(S instructions and data items, MP-60 COMPASS accepts programmer-defined macros.

Programmer-defined macros allow definition of a sequence of instructions as a macro.
b Once the macro is defined, each time the associated macro name appears, the
? sequence of instructions will be inserted by the MP-60 COMPASS assembler.

In order to simplify program coding and debugging, MP-60 COMPASS provides a
number of pseudo instructions which control the assembly process. A number of
the features of MP-60 COMPASS are summarized in the following listing.

o Address Arithmetic and Validation

Constants, symbolic addresses, and arithmetic expressions may be used to
represent the value of the address field.

e DPreloaded Data

s

Data storage areas may be specified and loaded with values at the same time
the program is loaded. These areas may be used for subprogram communications.

o~

(: i e Common Assignment

Common areas may be designated to provide for communication among MP-60
COMPASS subprograms.

e Data Definition

Integer, floating point, ASCII, and hexadecimal constants may be coded using
familiar notation.

14061305 A 1-1

e Variable Field Definition

Structured information can be linked as arbitrary fields within core storage
with little regard for word boundaries.

e Listing Control

The format of assembly listings may be controlled with pseudo instructions,

e Diagnostics

Diagnostics (error flags) for source program listings are included in the
output listing.

e Macro

The capability to define, retrieve, and expand macros is provided. Macros may
be nested.

e I[IF Statements
The conditional assembly of statements is provided by IF and ENDIF statements.
e Relocation

Subprograms may be defined at absolute or relocatable origins. Multiple use of
the ORG or ORGR statements is allowed, within specified limits.

e Subprogram Linkage

Statements that define the entry points and external linkage of a subprogram
are provided.

o Assembled Listing

A listing containing source program statements, the resulting object code,
program size, core storage assignments, and a cross-reference of symbol
definitions and address field use is given.

COMPASS SUBPROGRAMS

To execute a program, the operating system often loads and links together several
routines that have been assembled separately. For this reason, it is customary to
refer to individual COMPASS routines as subprograms.

14061305 A

",
2

gt

%
%
3

COMPASS accepts assembly language subprogram inputs on cards, magnetic tape, or
disk in source language. It translates these source language statements into machine
language instructions, and data, which are referred to as object code. Object code
is prepared in a loadable format that can be loaded into memory when the program
is to be executed. The assembler produces the following outputs:

e A printer listing of the assembled subprogram with hexadecimal object code
and symbolic source instructions side by side. Error diagnostics automatically
accompany this listing.

£

e Loadable binary output for subsequent loading and execution of the assembled
subprogram,

AR
W

Each subprogram consists of an IDENT pseudo instruction, subsequent lines of coding,
and an END pseudo instruction. The last subprogram must be immediately followed
by a FINIS pseudo instruction. Subprograms communicate with each other by use of
entry points and external symbols (ENTRY and EXT pseudo instructions).

Py
i

Three main regions provide storage for assembled subprograms.

e Data common region

A
4
13

e Scratch common region
e Subprogram region
The three types of regions are defined at assembly time. When more than one sub-

program is to be loaded for execution at run time, the first specification of a data
or common region must be the maximum length region for all programs loaded.

o,
#

COMPASS object code may contain relocatable addresses, which are modified by a
relocation factor during loading to obtain the actual address in the computer memory,
When assembling subprograms, COMPASS assumes that the initial location in each of
o the three types of regions (data, subprogram, common) has a relocatable address of
L zero. Locations are then assigned sequentially from zero unless the pseudo instruction
ORGR is encountered. ORGR instructs COMPASS to assign the value in the address
field of ORGR as the relocatable address of the following instruction and assign storage
{ sequentially from that relocatable address. The address counter affected by ORGR
is the counter in use when ORGR is processed. All counters are initialized to zero
before assembling a new subprogram.

14061305 A 1-3/1-4

o
PN

LN,

ewian

e

£

4

%

‘.

COMPASS PROGRAMS 2

An MP-60 COMPASS subprogram consists of a sequence of symbolic source statements.
These statements are made up of language elements combined in accordance with a set
of definable rules.
Statements fall into four categories:

e A normal statement, which is assembled and which may produce loadable output

e A control statement, which affects the operation of the assembler

e A statement that is part of a definition (those lines contained between a macro
and its ENDM)

e A comment statement, which appears in the listing but has no effect upon the
assembly

Elements are classified as follows:
e Operation codes
e Pseudo operation codes
e Symbols
o Constants
e Literals
e Operators
e *(asterisk)
e Macro names
STATEMENT FORMAT
COMPASS statements are written on coding forms (refer to Figure 2-1) and subsequently
punched into cards or prepared on other media for input to COMPASS, Each line on the

coding sheet is normally punched into a single card. The correspondence between
columns on coding sheets and cards is one to one.

14061305 A 2-1

‘ COMPASS SYSTEM CODING FORM

PROGRAM

ROUTINE

CONTROL DATA

NANE

PAGE

DATE

LOCN

OPERATION MORIFIERS ADDRESS FIELD

COMMENTS

Leivisysiegte

18Ty rrre e

L T Y O Lt O L D L LT BT Tt Leapenyssy o " o

i 1

N TSN W T W S S Y 0 W Y T O W | § U WS RN U R VA T T U U U A WU WS U W0 W A ST 0 PO | P T . N T T S S N S |
1 [

P G S R R | Y I U T T U T S S S U N N N R e VU0 N T TS5 T T T U TR U0 T VRN TN TS WY S S0 S W U S N B} 1.1 1 4.8 0 T T WO N T S O S S ¥
[[

Ldliyi N I A A S S A S S W AT U B T 0 S S B B R B S T G A T O S S AR SR A O Ll PRI S A
1

Aok L 01§ 1 5 U T T T R U T N N U T S O Y T N O T T 0 W S TN O T W T T T TN A T00 W0 W00 S Y SN 8 R ' Y 1L § N W S |
' i

NI T T W S Y U S0 VNS W W T T T T S OO N N Y W § 0 T U W W T T Y T S Y T T TS T U A S Y S G B G G U | Lol a1l 4) N R TN T NN T T Y SO
| t

¥V TS TR S SO T T T N T T N A Y ¥ U TSN T W T T O Y T W T W S W A O 0 S N S SO S R 1 i S T OO D S W T N
) 1

R NS VY T U T TS T W N T Y T A 1 U T T W 00 N T T T A O W0 W D U WO U B O MO B N { I - § S T U T T T T O T N O
1 '

B SR W T T | D S S W O S W TN T U U S Y TS T T NS Y T T S T 0 T 0 S T T W 0 U O O T S Il 1 i T T T T S Y TR I WY O A W
1 t

dded L4 L T TS S WY VU T U Y T N T U)) T U T T U A T T ST S A U G S U Y U U U N N SO A S S 6 W B T | L I T U T S |
) 1

R T S U T T TS W N Y T O N W U T Y I 10 N T T T Y O W N Y W S WY T 1 I .) S O O TR Y T S N S T 1 .

1 1

o L Ly § G O W W T T S T S TN 4 S50 W S T W 1 § I W W T D T T T O O W Y W T T W S0 A T 20 0 U S O A1 U - FUS W S S S W T S Y
1 '

Ly I A A A A ST S AT S U U R T U W S B S U S IS S S R R W AR B G A AT AT SR PO NI A A
| [

NI T W I | WO W T T 0 W O Y O WU O N O N O | ¥ R N T SV S T T S T U T T A S O UG WS NS O O W A OO O 0 't i B NG S S TN S B A I
! 1

Lol 1 | VI S S D S S S O S U B R N B 1 S 100 S T S50 D T T T U O U O S S SO T S SO0 S U G VO ST SN | T L i L L2 i 4 i 2
| [

I T N T U T T U T O N W ¥ VSRS W TN VW0 U5 W T T T T NS T T WY S B S O S B Y A G A Y | I I W T T W O O I T
} . i

- VT TN T T TN U N S T T 0 0 O Y B W)00 T W T TV U T T O T T T T B W WA B S TS O S A § E I T T § S T T N T VI O |
| 1

N U W S W W W T W I I B B | YN T N S S T T S S W T Y W W N0 S A S WY WY SPUI SO SN SN S U B U I | Al GO T S W W A N 1
f i

I T T |)N S W U 0 O S W I N B G € | NS O TN T U 0 T N N U W0 W U SO TS W N S A { 11 Al it] I T O W U VO T A
1 ;

Aol 1) U T WY R W S S R S U N A N S | S U WO 00 WO S Y S N VAN T T SO0 S U0 0 W W Y S O O B O | A1 S T |
1 1

Ll L g T A A A A A AU SR S I S O O A N AT A T MR AT AT I AU I
I 1

P I A SN I I A AT SN U A N W I A S S A S AT A A SN ST AT S ST b Ll b g
| '

U S O N 1 S USSR IO T T S Y O TN T S O | | WS VS N0 5 T S T YU U O T T T ST T S U S U S U0 U S A | I | Ll 11 O W)
] '

Lol i 1) ISR W W T T W SN IO U WS S TS S B A O | N TS R T T O VU S S S T 1 T S S W S Y L U B I WS S U T N H0 SO0 G S W

i
I i
oo el agenim e

30039100 ¢ o1

1ralragregrsire vy v eive

AL

NOTE: The coding form shown is presented as an illustration of a typical

form.

of COMPASS.

Figure 2-1.

Typical COMPASS Coding Form

Field boundaries shown are not to be construed as limitations

14061305 A

-

s)

s 5

ot

Each line of code is field free; all statements are defined in terms of the contents of
the following fields.

Field Columns
1) Location The location field begins in column 1 and is terminated

by the first blank column,

2) Operation The operation field contains the operation code. The
. field begins after the first blank column and is terminated
3@ " by a blank,
3) Address The address field begins after the blank terminating the
{ operation field and terminates with a blank or column 80.

4) Comments If an address field is used, the comments field starts
after the blank ending the address field. If an address
field is not required, the comments field is separated from

; the operation field by at least one blank., If an address

U field is required but is blank, comments must start after

!

i

%

prezoes

column 40. Comments may extend through column 80.

LOCATION FIELD

The location field begins in column 1 and is terminated by the first blank. It may

not extend for more than eight characters. The location field may contain a symbol
.. or an asterisk (*), or it may be left blank.

§ , The location field symbol is used to identify a position within a subprogram or may be
equated to a value. This symbol can be referenced by an instruction or pseudo
instruction throughout the program. A location field symbol consists of from one to

{" .) eight characters. The first character of a symbol must be alphabetic and must be
placed in column 1.
(Embedded blanks are illegal. An illegal symbol is flagged as an L error on the

assembly listing.

When an asterisk appears in column 1, columns 2 through 80 are treated as a comment.

14061305 A ; 2-3

Examples of location field symbols:

Acceptable Unacceptable

A123456 12345678

H3 .2345678

ABCDEFGH TOOMANYCHARACTERS

OPERATION FIELD
The second field on the COMPASS coding form is defined as the operation field.
The operation field may contain instruction mnemonics with specific related modifiers,

pseudo instruction mnemonics, or macro instruction names.

An operation code modifier may occur after the mnemonic to further define the
desired instruction, Modifiers are separated from operation codes by commas.

Illegal operation codes and modifiers are flagged as diagnostic errors on the
assembly listing,

Examples of acceptable and unacceptable operation fields are as follows:

Acceptable Unacceptable Reason

STC, F | STC, Illegal terminator
LDH, F LDHF Missing comma
BSS,D R No modifier

ADDRESS FIELD

The third field coded on the COMPASS coding form is the address field. The contents
of the address field are dictated by the operation code. The address field begins after
the blank terminating the operation field and terminates with a blank or column 80.
The following terms can be used in the address subfields:

e Symbols (location or value)

e Constants

14061305 A

N

%
¥

. i
Sy

N o

St

kS

Sameia W

J

N
A

e,

Register designators [constant or symbol (value)]

Expressions consisting of symbols and constants joined by operators
e Asterisk

e Double Asterisk

SYMBOLS

A symbol is a string of one to eight characters representing a value or an address.
A symbol conforms to the rules described for the location field. An address field
symbol may constitute the entire field or it may be one of several elements in the
field. Any symbol used in the address field must be defined by the appearance in
the location field of another statement in the subprogram, or it must be declared
external (EXT). A symbol may be nonrelocatable or relocatable.

#7

A nonrelocatable symbol references an absolute address. = The value assigned to the
nonrelocatable symbol will not be modified during loading. A symbol can be defined
as nonrelocatable through the use of an EQU pseudo instruction. 2

M

CD A relocatable symbol represents a symbolic address. Relocatable addresses are

values related to a predefined memory area. These values are incremented or
decremented by the loader prior to loading of the instruction in which the address
occurs. Relocatable symbols may be:

L

e Subprogram relocatable
e External symbols

e Data relocatable

s

{

]
S

e Common relocatable

A symbol may represent a 16-bit (word), 17-bit (halfword), 18-bit (character), or
21-bit (bit) address, and the usage of symbols is interchangeable. If, for example,
a word address defined symbol is used in a byte addressing instruction the word
address is effectively shifted left two places with zero fill.

If a symbol is used in a smaller subfield (such as 18 bit to 16 bit) the address is
shifted right; if a one bit is lost by the shift, a T error occurs.

The special symbol, *, may be placed in the address field and used as any symbol.
The * is interpreted as the current value of the COMPASS counter in effect when the *
is encountered (program or data), I the machine instruction occupies two words, * is
the address of the first word.

14061305 A 2-5

The special symbol, **, may be used as the only entry in a field or subfield, The
** yields a subfield containing a one in each bit position. Normally, the field
represented by the ** will be modified during the execution of the program.

CONSTANTS

The address field may contain signed or unsigned decimal, hexadecimal, or ASCII
integers. If the sign is not present, the integer is assumed to be positive.

The allowable formats in the address field of an instruction are:

e Decimal

Any numeric value is processed as decimal., The decimal value may be modified
by a decimal power of 10 (P), a binary scale factor (S), or both.

Examples:
Address field Hexadecimal
Constant Result (16-bit address)
1 0001
-1 FFFF
1P1 000A
1P1S-1 0005

e Hexadecimal

Data preceded by a $ specifies a hexadecimal constant. The specified value may
be modified by a binary scale factor.

Examples:
Address Field Hexadecimal
Constant Result (16-bit address)
$A0 00A0
$A0S1 , 0140
-$1 FFFF

14061305 A

e o

i

g

NS

4
Fid

e ASCII

Data enclosed within apostrophes specifies 8-bit ASCII code characters. Characters
are right justified with zero fill. Blank is a significant character.

Examples:
(Address field Hexadecimal
- Constant Result (16-bit address)
B! 0042
i

' B 2042

£
-TAA! BEBF
L EXPRESSIONS

In an address field or subfield, symbols, the special symbol, *, and constants

may be combined with the operators, plus or minus, to form an address expression.
The value of the expression is calculated by substituting the numeric value of the
symbol and performing 16-, 17-, 18-, or 21-bit arithmetic with the designated operators.
External symbols, the double asterisk, and literals may not appear in an address
expression. '

. ATEIRS ey
R o

If relocatable symbols are part of an address expression, the result of the evaluated
expression must be relocatable within a single area. Subprogram, data, or common
relocatable symbols may be mixed:

e,

B} Dl-P 1+P2-D2 +C 1—02 nonrelocatable value
é; D—C1+C2 positive data relocatable value
Cl—P~CZ negative subprogram relocatable value
D = data common relocatable addresses

e
i

subprogram relocatable addresses

@]
I

scratch common relocatable addresses

In an expression containing relocatable symbols, the algebraic sum of the relocation
indicators must be either an area relocation increment or decrement, or no relocation
designator and, therefore, a nonrelocatable value.

The result of an address arithmetic symbol depends on the number of bits assigned to
the subfield in the object code.

14061305 A 2-7

LITERALS

If the address field or subfield of an instruction refers to an operand which may be a
single or double precision value, the entry may be a literal expressed as an equal

sign followed by a mode designator and a value (=mv). The absence of a mode i
designator implies decimal mode. it

The equal sign denotes that the field contains a literal; m indicates the mode of }
the literal; v is the value of the literal. The precision of the literal is derived o
from the precision of the operation performed (LD, LDD, etc.).

“Nenan?

The mode of a literal may be decimal, hexadecimal, ASCII, or symbolic.

Decimal Literals: =v

Ry

The value of the decimal literal is expressed in the same manner as the GEN pseudo
instruction; they may be signed, cannot be more than 10 digits (20 for double precision),
and may be followed by a scaling factor. A blank terminates the field, If a decimal
point (.) is encountered in the literal,the value is converted to floating point format.

“apagtd

Hexadecimal Literals: =3v S

TN
o g
The value of the hexadecimal literal is written in the same manner as a GEN pseudo k"’y,’
instruction; it may be signed, cannot be more than eight digits (16 for double precision),
and may be followed by a scaling factor. A blank terminates the field. A nonhexadeci- 3
mal character is illegal. o
ASCII Literals: ='v' Ty
The ASCII literal is expressed as a string of up to four or eight characters enclosed in
quote (') marks. Blanks are significant in an ASCII literal. }
Symbolic_Literals: =Sv
The symbolic literal is expressed as a legal COMPASS symbol, The symbolic literal j

causes storage to be reserved for the symbol.

During assembly, a literal is converted to binary and assigned a relocatable address
which is substituted for the literal in the object code. Literals are assigned to contig-
uous storage locations at the end of the subprogram. Literals of the same value and
size are not duplicated in the object subprogram. Each time COMPASS encounters a
literal, the value is compared against all previously assembled literals; and if an iden-
tical value exists, the address of the previously assigned literal is substituted in the"
object code.

14061305 A

.

o,
s,
i

Sk,
; N

e Q

e

i

{

COMMENTS FIELD

Comments may be included with any instruction.
after the blank column that terminates the address field and may extend through

column
column

are printed on the output listing.
assembler interprets the entire line as comments.

REGISTER EQUATES

80.
41.

If the instruction has no address field, comments can begin in
The comments field has no effect on the assembly but its contents
If an asterisk is placed in column 1, the

The comments field may begin

The COMPASS assembler will preset the following equates which are used as a
coding convention in defining register equates.

X0
X1
X2
X3
X4
X5
X6
X7
HO
H1
H2
H3
H4
H5
Hé6
H7

14061305 A

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

W 0 3 O U s W N = O

I S)
(3 O TS NC R SO

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
RA
RB
RC
RD
RE
RF

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

2-9/2-10

AR

PR T8

]

A,

PSEUDO INSTRUCTIONS

{ Pseudo instructions are nonmachine language instructions used to prepare a
- subprogram for COMPASS assembly. Some of the pseudo instructions provide the
- COMPASS assembler with the required information. Others are programmer aids
3‘" for defining parts of a program, allocating storage, declaring symbols and constants,
e and generally controlling the assembly and listing processes. The pseudo instructions
associated entirely with macros are discussed in Section 4.
PROGRAM SECTIONING AND LINKING
0 This group of pseudo instructions defines the name, beginning, and end of a sub-
: program and the linkage between subprograms during execution.
IDENT
Location II Operation Address Comments
i 1 8 n 10 ! 20 | 41
| |
IDENT | m]

IDENT defines the name and beginning of a subprogram, The address field contains
the subprogram name. It may include from one to eight characters, The sub-
program name is printed as the title on the output listing unless a TITLE listing

{ : control pseudo instruction intervenes. The location field should be blank; it is ignored
by COMPASS. IDENT must be the first statement of a subprogram. Instructions
following the IDENT statement are assembled using the subprogram address counter.

14061305 A 3-1

3-2

END

Location Operation Address Comments
T I
1 8 10 | 20 | 41
|
)
Symbol END : m I
or blank | :

END terminates a subprogram. The symbol (m) in the address field is used as
the symbolic transfer address. This is the starting address for execution. The
symbolic transfer address, if used, must also be defined as an entry point in the
subprogram. The location field may be used to define the last location of the
subprogram.,

ENTRY
Location Operation Address Comments
! |
1 8 10 : 20 | 41
1 1
ENTRY . :ml, m2,....... : .,mn

ENTRY defines one or more locations which may be referenced by another sub-
program if the same location is defined as external in the other subprogram. The

address field contains one or more location names separated by commas; it may not
contain blanks. The location names must be defined in the subprogram ;otherwise, an

error occurs.

EXT
Location Operation Address Comments
v]
18 10 | 20 ! 41
— -
EXT lml,mz,....... 1 rnn
1 1

EXT declares the symbols in the address field to be external to the subprogram.

address field contains one or more names separated by commas; it may not contain
The symbol may not be defined within the subprogram which declares it as

blanks.
external.

14061305 A

j?%

Y

~

f‘éA»
N/

i L A A

o g

y
."K

SCOM

Location “ Operation Address Comments
1 1]
1 8 10 : 20 : 41
T T
f K Symbol SCOM } m !
The SCOM statement defines storage in common. The location field defines the name
o of the (scratch) common block. The address field may specify the block length, or
L if the address field is blank, the assembler determines the block length. An attempt
to allocate more memory than declared as the block length is an error. The location
¢ name and address field are used to establish subprogram linkage. The block is used
. by the subprogram in common with all other subprograms declaring, by location field
symbol, the same block.
m A subprogram may contain up to 30 common blocks (scratch and data). A program,
: consisting of many subprograms, may contain as many common blocks as available
: memory allows. The programmer may label, reserve, or otherwise organize scratch
common, but -information may not be assembled in scratch common.
i Example:
IS BLOCK1 SCOM
k1
ARRAY BSS 10
Q v BUFFER BSS,C 100
{ BLOCK2 SCOM
SCRATCH BSS 5
{ TEMP BSS 1
TEMP2 EQU TEMP
14061305 A

DCOM
Location Operation Address Comments
1 8 10 : 20 :41
Symbol DCOM : m :

The DCOM statement defines data common. The location field defines the name of the
common block. The address field may specify the block length or, if the address field is
blank, the assembler determines the block length. An attempt to allocate more memory
than declared as the block length is an error. Data common differs from scratch common
in that data may be assembled in the data block.

Example:

DATA1 DCOM 3

LETTERS GEN $41, 32400, $43

DATA2 bDCOM 11

DIGITS GEN 0,1,2,3,4,5,6,7,8,9,$F
COMPOOL

Location . Operation Address Comments

1 8 10 | 20 | 41

COMPOOL : m ;

The COMPOOL statement causes COMPASS to search the library file for the named com-
mon source code string. The address field specifies the name of the common structure to
be extracted from the library file (refer to Figure D-1). A COMPOOL entry on the
library must conform to the rules of the SCOM and DCOM statements. COMPOOL is
intended to aid the programmer in managing common blocks between a number of subpro-
grams. An alternate library (other than the system library) file may be specified on the

COMPASS control card (refer to B-1). Appendix D contains a description of the library
file. ‘

24 | 14061305 A

2 Naws

g

Sipratit”

et

ens.

. };
,;""q

S’

PROGRAM CONTROL

This group of pseudo instructions defines the beginning and end of an assembly of one or
more subprograms. This group also includes pseudo instructions which control the
conditional assembly of source statements,

ORG

é\ "
8
) Location Operation Address Comments

| |

H 1 8 10 | 20 1 41
I T

ORG I m |

l |

ORG defines the subprogram to be absolute. The ORG pseudo must precede any
instruction or data generation statements. The address field (m) term may contain

a nonrelocatable symbol, value, or *., If the address field is not blank, the address counter
is set to the value specified. The subprogram address counter may be reset to the pro-
gram address (not common) it had prior to the last ORG occurrence by entering an asterisk
(*) in the address field of the ORG statement. Either an ORG or an ORGR statement, but
not both, may be used an unrestricted number of times in a subprogram.

e AR ar
ﬂ Q ‘V f{ |

Example:
IDENT ROUTINE7
¢ ORG $100
0100 LD,4 WORK
g}} L4
L .
01FF ST, 1 BUFF
{ - Subprogram 0200 ST, 2 BUFF+1
Address 0201 ST, 3 BUFF+2
Counter ORG $400
0400 P1 GEN 3.14
0401 DTORAD GEN 0.0175
ORG *
0202 LDC,3 =1X!
14061305 A

ORGR

Location II Operation

Address Comments
1
1 8 10 ! 20 : 41
1 T
ORGR | m I

The address field (m) term must contain a relocatable symbol or an asterisk, If

the address field is not *, the address counter is set to the value specified. The
subprogram address counter may be reset to the program address (not common) it had
before the last ORGR statement by entering an asterisk (*) in the address field of the

ORGR statement. Either an ORG or an ORGR statement, but not both, may be used
an unrestricted number of times in a subprogram.

CONDITIONALS

The source of subprogram assembly may be conditional as stated by the pseudo instruc-

tions listed below. COMPASS tests for the condition and includes or omits subsequent
lines of code, depending on the outcome of the test,

IF

IFZ

IFG

IFGE

IFGT

IFL

IFLE

IFLT

IFN

Zero

Zero

Greater than or equal to zero
Greater than or equal to zero
Greater than zero

Less than or equal to zero
Less than or equal to zero
Less than zero

Not equal to zero

14061305 A

A
¥

\e-w’

“rep ¥

g

?,.-
%,
hat

P .

A

",

RPN ‘:smf jw\

PN

g.

IF

Location Operation Address Comments
i |
1 8 10 : 20 : 41
IF \ x
sl :

If the value of m, is zero, begin assembly with the next statement. If the value of m,
is not zero, input cards are skipped depending on the value of m,.

m, An expression, the value of which is computed as any address
expression and evaluated module 216_1 with sign extended.

m If the term is a symbol, cards are processed according to the
conditional until an ENDIF card with the same symbol in the
location field is encountered. If m, is blank, cards are pro-
cessed according to the conditional until an ENDIF card with
a blank location field is encountered.

The range of the conditional will be terminated by a FINIS or END statement, and if the
conditional started within a macro definition, its range cannot extend beyond the macro
definition.

IFZ
Location Operation Address Comments
] |
1 8 10 1 20 : 41
!
IFZ ' \
Y o :

IFZ is the same as IF,

14061305 A 3-6a

IFG

Location Operation Address Comments
1 8| 10 t 20 41
. , -

IFG is the same as IF, except the test is for the value of m

1 greater than or equal to

Zero.
IFGE
Location Operation Address Comments
1
1 8 10 § 20 v 41
1
IFG)
FGE ; m 1 m2
IFGE is the same as IFG,
IFGT
Location Operation Address Comments
$
1 8 10 } 20 41
IFGT ! m, m,
1

IFGT is the same as IF, except the test is for the value of m, greater than zero,

3-6b

14061305 A

et

ES
4
£

o

-

IFL
Location Operation Address Comments
t }
1 8 10 ; 20 : 41
1 |
IFL ; m 1 m 9 ;

IFL is the same as IF, except the test is for the value of m, less than or equal to zero,

£ IFLE
%
Location Operation Address Comments
£ z ,
' 1 8 10 : 20 1 41
1
IFLE ' !
| o :

P g

IFLE is the same as IFL,

R

IFLT
E Location Operation Address Comments
. 1 8l| 10 i 20 541
) IFLT ; m,, m, E

IFLT is the same as IF, except the test is for the value of m, less than zero.

g

14061305 A 3-6c

IFN

Location Operation Address Comments s

20 41

1 8 10

IFN

3
O

— e vo | o e -

1’

IFN is the same as IF, except the test is for a value of m 1 not equal to zero, : }

s

\
T v s

"‘nc‘no“

3
¥

O
3-6d 14061305 A s

ENDIF

Location Operation Address Comments
1 8 10 ! 20 S|
£ 1 t
L Symbol | i
or blank ENDLF 1 1
& The ENDIF statement is used with the IF statement. An ENDIF ends the skipping of
e source statements initiated by an IF statement. If the symbol in the location field of
) an ENDIF statement does not match the symbol in the address field of an IF statement,
{ : the ENDIF statement is ignored and the skipping of input cards continues.

7, A

£,

o
F

5

14061305 A 3-7

FINIS

Location Operation Address Comments

1 8 | 10 20 41

FINIS

FINIS is the final instruction of an assembly run and indicates that all subprograms
have been submitted for assembly. Location and address fields are ignored. FINIS
should immediately follow an END pseudo instruction,

COMPASS recognizes FINIS at any point. The occurrence causes the assembler to
return to the operating system.

l Example:
IDENT TEST
END
IDENT : TEST 1
END
FINIS

3-8 14061305 A

3

Nyt

T spM

NG
A

Fongpar”

- "'Xa
ey

SYMBOL DEFINITIONS

A symbol in the location field may be defined by equating it to the value of another
symbol, a constant, an asterisk, or an expression of the address field. It may be de-
fined as an absolute value or a relocatable address (word, half word, byte or bit). If a
symbol is declared an entry point, it must not be equated to a symbol declared as

{-‘3 external. When symbols are equated, they are identical and interchangeable.
All symbols in the address field must have been previously defined by appearance
% in the location field of a preceding instruction or pseudo instruction.
EQU
o Location Operation Address Comments
H
1 8 || 10 ! 20 i 41
.
Symbol " EQU I m ;

I G‘

The location symbol is equated to the symbol, value, or expression in the address field.
The symbol in the location field takes on the attributes of a relocatable symbol in the
address field (word, half word, byte or bit). If the location field does not contain a

{ symbol, an error occurs.

The address field determines the definition of the symbol in the location field. It may

%%- contain:
. . 16 _ -
{ e An integer modulo 2~ -1.

e A symbol defined by appearance in the location field of a preceding instruction.
£ If the symbol in the address field is relocatable to a given area (program,
S SCOM, DCOM), the symbol in the location field is also relocatable to that area.
{ e An address expression containing symbols defined as above and conforming - -
i to the rules for address subfields.

& 14061305 A 3-9

EQU.H

Location Operation Address Comments
I T

1 8 10 | 20 : 41

Symbol EQU,H | b I
The symbol is equated to a 17-bit address, 17-bit constant, or another symbol. If }
the location field does not contain a symbol, an error occurs. e
The address field determines the definition of the symbol in the location field, as : }
for the EQU pseudo. However, the resultant value must be consistent with

modulo 217-1 arithmetic and half-word address subfields.

%
E
EQU,C
Location Operation Address Comments ‘
Y T
I £
1 8 10 1 20 l 41 N
i] ‘ i3
Symbol EQU, C ; c ; — ;
The symbol is equated to an 18-bit address, 18-bit constant, or another symbol, If)
the location field does not contain a symbol, an error occurs. 3
The address field determines the definition of the symbol in the location field, as o
for the EQU pseudo., However, the resultant value must be consistent with modulo Fi
218-1 arithmetic and byte address subfields.
™
o
EQU,B
)
Location Operation Address Comments
|}
1 s |[10 | 20 | 41
Symbol EQU, B | b |

The symbol is equated to a 21-bit address, 21-bit constant, or another symbol. If the
location field does not contain a symbol, an error occurs.

The address field determines the definition of the symbol in the location field, as for the
EQU pseudo. However, the resultant value must be consistent with modulo 221-1 arith- L
metic and bit address subfields. O;%

3-10 _ 14061305 A

N

EQUW
Location Operation . Address Comments
1 I
1 8 10 I 20 | 41
£ i |
% Symbol EQU,W | m l
| |

The EQU, W pseudo instruction differs from the EQU pseudo in that it forces the symbol
in the location field to be defined as a word address symbol.

The address field determines the definition of the symbol in the location field and consists
of a 16-bit constant, symbol or expression consistent with word address subfields.

K

SET
0 Location Operation : Address Comments
T 1
1 sll 10 | 20 | 41
| : :
Symbol SET | m :
|

o

SET functions in almost the same manner as an EQU pseudo instruction. The only
difference is that SET may be used to repeatedly redefine a location field symbol, If a

§ location field symbol is redefined with the EQU instruction, an error occurs. The same
h modifiers apply to SET as to EQU with the results being identical.
i
- STORAGE DEFINITIONS

Storage definition statements are used to reserve storage for specific symbols. This
group of statements usually has a location field symbol which allows other source
{ statements to reference the defined block of reserved storage.

14061305 A 3-11

BSS
Location Operation, Modifier Address Comments
18 10 20 | a1
T T
Symbol | |
or blank Il BSS Iom l

BSS reserves and labels a block of words in any area. The location field may be blank
or contain a symbol defined as the first word in the reserved block. The address field
specifies the number of words to be reserved and must contain a constant, a symbol,

or an address expression which results in a nonrelocatable value. The double asterisk

in the address field is illegal; symbols in the address field must be defined in the
location field of a preceding instruction.

If the address field is in error or is zero, no storage is reserved but a symbol in the
location field is defined. If the preceding instruction assigned memory in other than
word mode,a BSS forces the next instruction,which consumes space to a new word,

Examples:
ALPHA TEXTC 3,ABC ALPHA A B C
BSS 0
TEXTC 3, GHI ALPHA+1 G H I
ALPHA TEXTC 3,ABC ALPHA A B C G
TEXTC 3, GHI ALPHA+1 H I
3-12 14061305 A

2 QJ_/

3
3

h
_/

“aeTiv Ha L e

W
N
Tt

““wm'?"

Cetrgatt”

§
S

BSS,H
Location “ Operation Address Comments
T T
1 8 JI 10 ! 20 : 41
Symbol |r H |
or blank BSS, H ;] m |

BSS, H reserves and labels a block of half-word positions. The location field may be
blank or contain a symbol which is defined as a 17-bit address of the first half word

in the block to be reserved. The address field specifies the number of half words to

be reserved. It must contain a constant, a symbol, or an address ‘expression which will
result in a nonrelocatable value.

A zero address field does not reserve space, but the location field symbol is defined.
BSS, H will assign the first half-word position at a half-word boundry consistent with
preceding memory usage.

g
L
i

H

H

Examples:
; ALPHA BSS, C 3 ALPHA c1 | c2 |cs3
- BETA BSS, H 3 BETA H1 12
{ =
é: ALPHA BSS,C 2 ALPHA c1 | c2
BETA 'BSS,H 3 BETA H1

{ v 14061305 A 3-13

BSS,C

Location Operation Address Comments ;’jf"‘”?}

1] T M‘
1 8l 10 , 20 41 |
Symbol ' o |
o¥ blank BSS, C | m ;

BSS, C reserves and labels a block of byte or character positions.
be blank or contain a symbol which is defined as an 18
the block to be reserved. The address field s
It must contain a constant, a symbol,
relocatable value.

The location field may
-bit address of the first byte in
pecifies the number of bytes to be reserved.
oran address expression which will result in a non-

Sears”

St

A zero address field does not reserve space, but the location field symbol is defined.
BSS, C will assign the first byte position at a byte boundary and consistent with preceding
memory usage, as shown for BSS,H,

s

BSS,B

N,
/

S In 2 A PR T e

Location Operation Address Comments

1 8 10

"o

20 41

Symbol
or blank BSS, B

l
|
1
!
m l

e

BSS,B reserves é.nd labels a block of bit positions. The location field may be blank or
contain a symbol which is defined as a 21-bit address of the first bit in the block to be ’}
reserved. The address field specifies the number of bits to be reserved. It must

contain a constant, a symbol, or an address expression which will result in a nonrelocat-
able value.

A zero address field does not reserve space, but the location field symbol is defined.
BSS, B will assign the first bit position following the last entity boundry assigned by the
preceding instruction (word, half word, byte, or bit).

3-14

14061305 A

BSS,D

Location“— Operation Address Comments
(fs‘lz-;l . T T
A 1 8 10 { 20 : 41
1
Symbol 1]

BSS,D reserves and labels a block of double-word positions. The location field
may be blank or contain a symbol which is defined as a 16-bit address of the
first word pair in the block to be reserved. The address field specifies the
number of double words to be reserved., It must contain a constant, a symbol or
an address expression which will result in a nonrelocatable value.

Pries
2 ",

A zero address field does not reserve space, but the location field symbol is
defined. BSS,D will assign the first position of the block at a word boundry.

L,

DATA DEFINITIONS

Data may be stated as hexadecimal, decimal, or ASCII character strings in the
source language. They may occupy fixed or variable positions in memory, consistent
with the various address modes of COMPASS.

P RO o
B - -~ N

GEN N
Locationjl Operation Address Comments

] T
1 8| 10 i 20 | a1
h Symbol GEN .]
or blank " ml’m2"""" : .,mn
% ' |
GEN, H 1 :

|
£ GEN, C | ‘

GEN, B | |]
| cexp l |

The GEN pseudo instruction causes numeric constants to be assembled in storage. The
data is organized as single entities of the size specified by the modifier (GEN defines
word data items, GEN, H half words, GEN,C bytes, GEN,B bits, and GEN,D double word
{ data items). The location field may be blank or contain a symbol which specifies the

L address of the first constant in the address field.

14061305 A 3-15

The address field may express as many constants as can be written through column 80;
they are separated by commas. Terms cannot be combined into expressions with

the use of operators. Negative constants are specified by a minus (-) sign; a plus (+) .
sign is optional. Constants are right justified in storage if the definition does not %
fill the data field. A constant may not exceed the size of the specified data field
(word, half word, byte, bit, or double-word).

B i
toar .

Examples of address field constants are:

10 decimal integer)
-2 decimal integer .
+38 decimal integer /
5P1 decimal integer, decimal scale factor

5S5-1 decimal integer, binary scale factor
5P1S-1 decimal integer, both scale factors . 4
1.5 floating point NS
1.5P3 floating point, decimal scale factor N
$FFF hexadecimal constant |
-$A hexadecimal constant

'ABC' ASCII charactefs

Necas”

-3

3-16 14061305 A s

;
&

VFD
Location l Operation Address Comments
' T H

1 8 10 : 20 : 41
£ Symbol ‘ :
£ ymbo i '

or blank VFD I n/ml,n/mz,.... b n/mn

2 s Variable field definition (VFD) enters data into variable length fields assigned as continuous

strings of specified length. Entries in the address field define the list of data stored.
Each entry consists of a decimal value (n), a slash, and a term (m) which may be either
a symbol or a constant. The decimal value specifies the length in bits of the term,
Symbols evaluated as addresses are assembled right-justified in the address .field of a
word, The address field represents the lower 16 bits (full word), lower 17 bits
(half word), lower 18 bits (character), or lower 21 bits (bit). The decimal bit
count determines which type of address is assembled. The data is inserted without
regard to full word, half word, character, or bit boundaries. The symbol in the

0) location field (optional) is assigned the address of the first n/m definition in the
address field. '

e S AN AP,

Examples:
2 DATAY VFD 16/$EF00, 8/44, 8/'Z'
" VFD 16/0, 16/DATA7. . . . word address
; VFD 11/0, 21/WORK bit address
B VFD 32/Symbol not legal
?;: VFD 16/A, 16/B not legal if symbol A is
relocatable

14061305 A 3-17

TEXT
1‘_}%'
Location Operation Address Comments b
1 I
1 | K
Symbol H] i
or blank TEXT : n, Cl Czno.oocn ; .
. 3
TEXT causes characters to be assembled into words. A character count (n) is specified in ’
the address field, followed by the characters to be assembled in the text form. The charac- '
ters are stored as 8-bit ASCII codes in byte format. The character count in the address ;
field is expressed in decimal. If n is greater than the number of characters that can be ex-
pressed on the card through column‘ 80, the additional characters are stored as blanks. If a
symbol is entered in the location field, the symbol is assigned the address of the first full
word of text data. If n is not specified, the assembler counts the number of characters
specified and reserves (through the last non-blank character in or before column 80) enough »
words to contain the characters; then the characters are stored in successive character
positions. Unused character positions in the last word are filled with blanks. 0
‘\‘K“r)j %
TEXTC, TEXTH
3
Location Operation Address Comments
' I B
1 8 10 120 | 41 J
1
Symbol H I .
or blank TEXTC ! n, Clczcocoo,cn | . }
1
Symbol TEXTH | n,C CyeeeesC !
or blank ! n "

TEXTC is similar to the TEXT statement., The TEXTC statement causes the
symbol appearing in the location field to reference the first character address of the
block of text data stored in memory.

TEXTH is similar to the TEXT statement. The TEXTH statement causes the
symbol appearing in the location field to reference the first half-word address of
the block of text data stored in memory.

3-18 14061305 A o

LISTING CONTROL

s

TITLE
S (Location Operation Address Comments
¥
~ 1 8 10 I 20 { 41
L + t
” TITLE | Heading !

TITLE causes a heading to be printed at the top of each page of an assembly listing. The
heading is described in the address field of the statement. The pseudo instruction TITLE
; does not appear on the output listing. Up to 56 characters may be included in the heading.

) EJECT
g Location Operation Address Comments
T)
1 8 10 i 20 ! 41
1
;] i
L " EJECT | |
x EJECT causes the next line of the assembly listing to appear at the top of a new page.
;
SPACE
U Location Operation Address Comments
i
gﬁf"~ 1 8 10 20 : 41
i T
" SPACE : m :

SPACE causes the number of lines (m) specified in the address field to be skipped
on the printed output listing.

14061305 A 3-19

LISTF

Location Operation Address Comments b
1 §]
1 8 10 | 20 | 41 0
! ! L
LISTF | m }
LISTF is used to inhibit listing large quantities of data associated with certain statements
like GEN. The address field can contain either ON or OFF. If a LISTF statement is N
used with OFF specified, the pseudo instruction operation code (GEN, for example) is
printed but multiple lines of associated data are inhibited. Normal listing of statements
is restored with another LISTF statement, which specifies ON in the address field.
Normally this switch is ON.
LIST .
AN
Location Operation Address Comments k,L F
1] 1)
1 8 10 \ 20 | 41
] '

LIST is used to suppress the listing of all or parts of the source program, When the
address field specifies OFF, statements are inhibited until another LIST statement
occurs with an address field specifying ON, Normally this switch is ON.

&

3-20 14061305 A

§o LISTCC
Location Operation Address Comments
. l T
1 8 10 ' 20 ; 41
4 T i
. LISTCC { m \

B LISTCC causes COMPASS listing control cards (SPACE, EJECT, LISTF, LIST, etc.) to

i be printed; these are normally not listed. When the address field specifies ON, control
statements are printed until another LISTCC statement appears with OFF in the address
field., Normally this switch is OFF,

LISTIF

P Location Operation Address Comments
C - '

1 8 10 : 20 : 41

> 1]

| " LISTIF | m '

LISTIF allows listing control over cards to be skipped within an IF range. If m is an
alphabetic OFF, listing of skipped cards will be suppressed. If m is an alphabetic
ON, skipped cards will be listed. Normally this switch is OFF.

) LISTMC
Location H . Operation Address Comments
{ . T T
1 8 10 120 I a1

(]

1)

S |
{ LISTMC | m \

LISTMC allows listing control over the listing of macro calls. I m is an alphabetic
OFF, listing of macro call lines is suppressed. If m is an alphabetic ON, macro call
lines are listed. Normally this switch is ON.

14061305 A 591

BOX
Location Operation Address ’ Comments *}
1 8 10 | 20 | 41
1 1 *
! 1 3
BOX , |
BOX provides a convenient way to offset a collection of comments from machine "’}

instructions, When the BOX pseudo is encountered, its position on the assembly listing

is replaced by a string of alternate column asterisks in the card image portion of the ‘
COMPASS output, This results in the BOX pseudo being treated as a comment card,
COMPASS then inserts asterisks in columns 1 and 80 of all source statements following

the BOX pseudo until and EBOX pseudo instruction is encountered. This action converts

the source statements into comments.

EBOX

Location Operation Address Comments ~

1 8 10 20 41

- e e
-]

EBOX

EBOX terminates a BOX pseudo instruction. The EBOX is replaced on the assembly
listing by a string of alternate column asterisks.

3-22 14061305 A

(o _ MACROS

A macro is a sequence of instructions that may be assembled (called) whenever
needed by a single instruction - a macro name, A macro name in the operation
field of a statement (a macro call) results in the sequence of instructions being
assembled at that point in the program. The use of a macro requires two steps,
defining the sequence of instructions and calling the macro. The macro definition is
to precede the first call to the macro in the subprogram.

%

P
B

All macro definitions are composed of the following:

i ® Macro headings: Names the macro and declares parameters, if any,
used in the prototype.

e Prototype: Contains the sequence of instructions with variable elements
0 expressed as parameters.

| A R

e Macro terminator: Defines the end of the macro definition.

MACRO HEADING

ey

Location “ Operation Address Comments
"‘%i» 4 1
1 8 10 : 20 : 41
g i i
I MACRO | !
e The MACRO pseudo instruction marks the beginning of a macro definition, It
¢ consists of the MACRO statement followed by a dummy parameter line. The

dummy parameter line specifies the name of the macro and the parameters associated
with the macro. The name of the macro is specified in the operation field of the
{ dummy parameter line. The name must be at least one character in length and is
terminated by the occurrence of a comma or blank.

The parameters may be specified in the location field, operation field, or address
field. The parameters must begin with an alphabetic character and consist of
alphanumeric characters. If more than one parameter is specified in one field,
the parameters must be separated by commas.

14061305 A

Examples of macro headings:

Location Operation Address }
MACRO MACRO A macro named TABLE .
HEADING BETA TABLE, A DATA has parameters in the 3
prototype called BETA, '
EQU A, and DATA which are .
PROTOTYPE GEN, in the location, modifier, 3}
GEN, and address field, respec-
s — tively. .
TERMINATOR ENDM Y
MACRO A macro named ABORT y
ABORT has no parameters _
within the prototype.
o
N
3
1
MACRO A macro named TIMES
has parameters in the
prototype called A and {
B which are in the
address field.
4-2 ' o
14061305 A S

PR

P

7
A7

¢

PROTOTYPE

A set. of instructions called the prototype follows the macro heading. These instruc-
tions may be machine instructions or pseudo instructions. They include use of the
parameters specified in the macro heading.

Reference may be made within the prototype to symbols external to the subprogram
if they are declared by EXT pseudo instructions within either the macro or the sub-
program. An EXT declaration within the macro remains in force for the entire
subprogram,

Within a macro, references can be made to symbols defined elsewhere within the
subprogram.

MACRO TERMINATOR

Location Operation Address Comments

1 8 10

NAME
or blank ENDM

20 41

ENDM terminates a macro definition. The name of the macro may be specified
in the location field but is optional except for macros within macros.

MACRO CALLS

Location Operation Address Comments
1 T
1 8 10 | 20 : 41
" T
L3N] ‘
NAME : Pl,Pz, ,Pn !

The macro call names the macro to be inserted at that point in the subprogram and
assigns a set of actual parameters to be substituted for the dummy parameters in the

prototype. The actual parameters must appear in the same order as the parameter
list in the macro heading.

The operation field may contain any macro name defined for the subprogram by the
MACRO pseudo instruction, if the macro is defined for the subprogram. COMPASS
assembles and inserts the macro code at the point at which the macro name appears
in the operation field.

14061305 A 4-3

The address field of the macro call contains the list of actual parameters, separated
by commas. Single parameters may also be enclosed in parentheses within the list,
Single parameters may not include blanks or commas unless the entire parameter is
enclosed in parentheses.

Example A shows how the macro call may specify symbolic name in the location field

‘as well as parameters in the operation and address fields.

Example A:

MACRO
DEFINITIONS

.

MACRO <r

CALL

“~
g

ASSEMBLED S
STATEMENTS

4-4

Location Operation Address
MACRO
MNAME P3, P4, P5
LD,2 P3
AD,2 P4
ST, 2 P4
P5
ENDM
MROUT3 MNAME BUF,WORK, (UJP A3)
MROUT3 EQU *
LD,2 BUF
AD,2 WORK
ST, 2 WORK
UJpP A3

14061305 A

N

=

=

K
i

P g T

L

N

€

When a macro call initiates the assembly of a macro definition, actual parameters are
matched with dummy parameters by position. Character strings are extracted from the
call statement and assigned to dummy parameter positions until each parameter is
defined. The insertion of parameters within a field is terminated when a blank is
encountered where a parameter separator should be, Dummy parameters that appear in
the location field and are not specified in the macro call are defined with "created"
symbols to avoid doubly defined symbols. Created symbols have the form SN, where

il

S special character

N

four-digit decimal sequence number

Example B shows the result of created symbol insertion during assembly. When the
operation field or operand field is terminated before all parameters in the prototype are
defined, -zeros are substituted for the undefined parameters.

Example B:
Location Operation Address
MACRO
LPARM MACIO EXIT, FIRST,
SECOND
MACRO ID,1 FIRST
DEFINITION AD,1 SECOND
ST, 1 LPARM
UJP EXIT
LPARM BSS 10
ENDM
lgﬁglff()l MACIO ABORT, SUMI,
SuM2
LD,1 SUM1
ASSEMBLED AD,1 ‘ - SuM2
INSTRUCTIONS ST,1 <0001
UJP ABORT
<0001 BSS 10
MACRO ABORT, SUM1
CALL 2 { MACIO SUM2
LD,1 SUM1
9
INSTRUCTIONS UIP ABORT
<0002 BSS 10

14061305 A 4-5

NESTING OF MACROS

The nesting of macros is a technique which allows the programmer to define a a
macro within a macro. The inside macro must have its name specified in the
location field of its ENDM statement, The name of the outside macro is not re-

quired with its associated ENDM statement. Any number of macros may be defined r
within an outside macro. o

Example: ' .
Location Operation -
/ MACRO
SUBR NAMX, PARMS .
EXT NAMX
— " MACRO
NAME, PARM .
OUTSIDE < INSIDE RTJ . NAMX a
MACRO MACRO RTJ PARM NS
NAME ENDM ’
MACRO
INSIDE NAMP
MACRQ RTJ NA MX .
NAMP ENDM
e —————
LIBRARY MACROS oy
. LJ
Location Operation Address Comments
LJ ' ':u;’);
1 8 © 10 : 20 ! 41
! '
LIBM ! ceves |
T 1 P

LIBM instructs COMPASS to obtain the named library macros from the system

library or as specified by the M = parameter on the COMPASS control card. The
symbols in the address field name the library macros.

4-8 14061305 A

%
i
¥

MACHINE LANGUAGE INSTRUCTIONS A

iR

g All the instructions of the MP-60 computer may be coded in the COMPASS language

. using mnemonic codes and symbolic programming techniques. This appendix describes
how machine language instructions are expressed in COMPASS, how COMPASS
assembles them, and how they appear in the object program.

o,

O
INSTRUCTION SUBFIELDS
(5 Instruction fields may be optional or mandatory. An optional field may be expressed or
not, as the programmer requires; a mandatory field must be present and must contain
¢ only specific parameters.
0 ADDRESS SUBFIELDS
‘ m, h, ¢, b, n and y The operand portion of a machine instruction may be
represented by a symbol, literal, constant, external symbol,
expression, or the special characters * and **. The m, h,
¢,and b nomenclature represents operand addresses of type
£ word, half word, byte or character, and bit, respectively;
n and y represent an immediate operand.
{ r and s Machine language instructions requiring byte buffer addressing
* contain r and s subfields. The fields may be represented by
a symbol, literal, constant, external symbol, expression,or
,-;;’ the special characters * and **, The r subfield represents

the buffer first word address; the s subfield represents the
buffer last address plus one,

X The X subfield may be represented by a constant 1 through
31, symbols equated to the value 1 through 31, or an
expression with nonrelocatable value 1 through 31. The X
subfield designates an index register usage of the register
file. The value must be consistent with the address type of
the instruction. The specification of an index is optional
unless specified otherwise.

A, B, and C Register operation class instructions require one, two or
three register designators. The subfields A, B, and C

, may be represented by constants, equated symbols,or non-

L relocatable expressions in the range 0 through 31.

14061305 A A-1

BIT

The bit subfield may be represented by a constant, equated
symbol, or a nonrelocatable expression in the range 0 through

31.

The relative displacement subfield of the test instructions
may be represented by a signed constant, symbol,

INSTRUCTION LIST FORMAT

. expression, or the special character*.

The machine language instruction list table format is as follows:

lymemonic
AD,F
Instruction mnemonic

code in COMPASS and
required modifier

SYMBOL DEFINITIONS

Code
14

6-bit hexadecimal
operation code or
6-bit hexadecimal
operation code

and 5-bit suboper-
ation code; express-
ed as n.m, The
code is not in
packed machine
representation
address subfields.

Address field

m, X

The address mode
of the instruction,
for the operand, is
indicated by the
symbol used,

The following designators are used throughout the instruction list:

A = file register A, specifying one of 32 source operands
b = unmodified bit address
B = effective bit address, after indexing; file register B,
specifying one of 32 source operands
A-2

Operation
F=(F) + M
Representation

of the instruct-
ion operation.

14061305 A

}

NG

i
¥

BIT

BR

14061305 A

bit number 0 through 31
bit register
unmodified byte or character address

effective byte or character address, after indexing; file
register C, specifying one of 32 operand destinations

relative displacement

one of 32 file registers; specifying the operand register
unmodified half-word address

effective half-word address, after indexing

interrupt mask register

unmodified shift count

effective shift count, after indexing

unmodified word address

effective word address, after indexing

1/0 controller number, page register number, console CRT select
code

program address register

buffer first byte address

buffer last byte address plus one

machine state

unmodified immediate operand

effective immediate operand, after indexing

index designation; specifying one of 32 file registers

INDEXING AND

O < ® W O T R
woon
B < ® o 0

+

+

+

<+

=m + (X);
=h + (X);

(x);
(x);
(x);
(x);
«(p)

ADDRESS MODIFICATION

+ B o M MK X XM

registers
registers
registers
registers

registers

o O ©O O O Oo

registers

through 31
through 15
through 7
through 31
through 31
through 31

16-bit
17-bit
18-bit
21-bit

result
result
result

result

6-bit result
16-, 17-, 18-, or 21-bit result

1); D can be plus or minus

INSTRUCTION LIST

Mnemonic

AABL

AABR

BJPF

BJPT

BSK

Code Address Field
37.05 A,B,C
37.06 A,B,C
31 A,B,C
14 m,X

15 m,X

13 y,X

26 b,X
2F.0B m,X
2F.0A m,X
2E.10 A,BIT,m

Operation

(c) =

(B) = (4)
(c) = (A
(B) = (4)
(c) = (4)
F = (F) +
F, F+1

(A) * 32 + (B)

.AND. 1Fjg
/ 32

~

(M)

(F, F+1) + (M, M+ 1)

F = (F) + Y; y sign extended

BR = (BR) .AND. (B)
P=Mif (BR) = 0; else
P=(P) +1

P=Mif (BR) = 1; else
P=(P) +1

P=(P) + D if BIT of

»
non

1; else P = (P) + 1

14061305 A

@

Mnemonic Code Address Field Operation

BSK,C 2E.12 A,BIT,m P =(P) + D if BIT of
A = 1, clear BIT; else
P=(P) + 1, clear BIT
BSK,S 2E.11 A,BIT,m P =(pP) + D if BIT of
: A =1, set BIT; else
P=(P) +1, set BIT
BSK,T 2E.13 A,BIT,m P =(P) + D if BIT of
A =1, toggle BIT; else
P =(P) + 1, toggle BIT
BSK,Z 2E.14 A,BIT,m P =(P) + D if BIT of
A=0; else P =(P) +1
BSK,ZC 2E.16 A,BIT,m P =(P) + D if BIT of
A = 0, clear BIT; else
P=(pP) +1, clear BIT
BSK,ZS 2E.15 A,BIT,m P = (P) + D if BIT of
A = 0, set BIT; else
P =(P) + 1, set BIT
BSK,ZT 2E.17 A,BIT,m P =(P) + D if BIT of
A = 0, toggle BIT; else
P=(P) + 1, toggle BIT
CBIT,F 37.02 bit,X bit + (X) = number of bits to

clear in the F register

CBR 30.0C BR =0

CONT,F 3F.03 CXPA = (NXPA)

DINT 3F.0F Disable interrupts
DLD,F 32 m,X F = (M), M = FFFFFFFF

14061305 A

Mnemonic

DST,F

DV,F

DVS,F

DXJP

EINT

EXM,F

F,AB

F,ABD

F,ABI

F,CS

F,DTS

F,F

F, SN

Code

Address Field

3F.13

20

36

2F.1E

3F.05

3F.03

31.09

31.0A

31.08

31.01

31.08

31.03

31.00

A,C

Ogeration

Deadstart emulator n; n indicated
by bits 29-31 of F

F-(F,F+1)/ M), F+1-= ’

remainder

F = (F)/(M), no remainder
P=P+1if X # 0. Then
P=M, X=X-1
P=P+2if X=20

Enable interrupts; one more
instruction executed before
recognition

P = (F14-31), BR = (F11),

§ = (F12-14),

IMRG.7 = (Fp-7); the interrupt
system is enabled and internal
faults are cleared

C = abs((A))(floating point)

C,C+1 = abs((C,C+1)) floating point

(c) = abs((A))

cos(A)

(@}
(]

Cc = (A, A+ 1); double floating
point —s single floating point

C = (A); integer to floating format

(@]
"

sin (A)

14061305 A

N

Mnemonic
F,SQ

F, STD

F,UF
FAD,F

FADD,F
FD,F
FD,UF
FDV,F
FDVD, F
FILL
FMP,F
FMPD, F

FSB,F

FSBD,F

14061305 A

Code

Address Field

31.02

31.07

31.04

16

17

31.05

31.06

21

22

37.12

1E

1F

1A

1B

A,C

A,C

Ogeration
c= v(a)

C, C + 1= (A); single floating
point — double floating point

(¢}
(]

(A); floating point to integer

vy
"

(F) + (M), floating point

F, F+1=(F, F+1) + (M, M+ 1),
floating point

C, C+1=(A, A+ 1); integer to
floating point

C, C+1=(A, A+1); floating
point to integer

F = (F)/(M), floating point

F, F+1=(F, F+1)/(M, M+ 1),
floating point

c=(A), c+1=(A)...C+ () -1

= (A) character mode if bit zero of
C not set, word mode if zero of C
set

F = (F) * (M), floating point

F, F+1=(F, F+1)* (M, M+ 1),
floating point

F = (F) - (M), floating point

F,F+1=(F, F+1) - (M, M+ 1),
floating point

Mnemonic

FSK,EQ

FSK,GE

FSK,GT

FSK, LE

FSK,LT

FSK,NE

-~ HLT

IN

JSX

LCPN,F

LD,F

LDA,F

Code

Address Field

2F.02

2F.00

2F.04

2r.01

2F.05

2F.03

2F.0C

3A.00

2F.09

2F.1F

09

08

y,X

y.X

y,X

y,X

y,X

A,C

m, X

Ogeration

L]
0o

(p) +

(p) +
(P) +

-]
nou

(p) +
(pP) +

Ly~]
[}

(p) +
(p) +

g~}
[}

(p) +
(p) +

-]
non

(p) +
(p) +

1

- N - N

[

—

(P) + 2 if (X) = y; else

if (X) >; elsé
if (X) > y; else
if (X) < y;‘else
if (X) < y; else

if (X) # y; else

Halt Program execution; on restart

P=M

Perform input operation from I/0 TTY
card with address register A and
data to register C. On internal

reject, P = (P) + 1; external
reject, P = (P) + 2; normal return P
= (P) +3

X=(P) +1, P =m, X must be
specified

F = CPU number

F = (M)

F =M, zero extended

14061305 A

Mnemonic

LDB

LDBA,F

LDC,F

LDCA,F

LDD,F

LDF

LDH, F

LDHA,F

LDI,F

LDM,F

LDP,F

LOPR

LOR,F

14061305 A

Code Address Field
01 b,X
07 b

02 c,X
06 c,X
0A m,X
37.03 A,B,C
03 b,X
05 b,X
04 y,X
2F.11 n,D
33 m, X
3F.15 A,C
3F.12 A,C
2A y

OEeration

BR = (B)

F = b, zero extended

Fo4-31 = (C), zero extended

F = C, zero extended

F, F+1=(M,M+1)

Load Register A with the number of
bits specified in Register C
beginning with the bit address
Register B

Fi6-31 = (b), zero extended

F = H, zero extended
F = Y; y sign extended
F=(p) +1 F+1=(P)+2+0D,

+ D,
veee, F+n=(P) +n+1+D

F = (M); M is relocated by contents
of relocation register

Micro address C = (A)

Operand registers, state (Ag9p-22) =
(c, c+1, ..., C+30)

F = (F) .OR. y; y is 21 bits zero
extended

Mnemonic

LP,F

LPIR

LXPA,F

LXR,F

MON, F

MOVA

MOVC

MOVE

A-10

Code

Address Field

29

3F.14

3F.04

2B

2F,0E

37.14

37.11

37.10

37.17

A,B,C

A,B,C

Operation

F = (F) .AND. y; y is 21 bits zero
extended

Page index register for state
(A20-22), PIR - 0 = (Cop-15);

PIR - 1 = (C16-31); «++s; PIR = 15
= (C + 716-31)

F = CXPA

F = (F) .XOR. y; y is 21 bits zero
extended

(F) through (F + 3) to state zero
registers 28 through 31; mg-31=
(P), my-14=(S), m11= BR,

Mg-7= (IMRg-7), P = m + 1; the
interrupt system is disabled

Move and align data
(A) = word address - from
(B) = bit offset in first from word

(B + 1) = number of words to transfer
(B + 2) = number of bits in last
transfer

(C) = word address - to

C=A,C+1=A+1...
C+(B)-1=A+ (B) -1; byte
transfer

C=A,C+1=A+1...
c+(B)-1=A+(B) -1; word
transfer

Move and reformat 6-bit data bytes
into 8-bit data bytes

(A) = byte address - from ,
(B) = number of 6-bit bytes to unpack
(Cc) = byte address - to

14061305 A

/

£
\\

O

Mnemonic

MOVP

MOVT

MOVU

MP,F
MPI,F

MPS,F

NIO

NOP,F
OR

0sT

14061305 A

Addresstield

Code

37.16 A,B,C
37.13 A,B,C
37.15 A,B,C
ID m, X
IC y,X
35 m,X
30.0A

3A.02 A,C
00 m, X
27 b,X
3F.1D A,B,C

Operation

Move and reformat 8-bit data bytes
into 6-bit data bytes

(A) = byte address - from
(B) = number of 8-bit bytes to pack
(C) = byte address - to

Move and transliterate

(A) = byte address - from

(B) = number of 8-bit bytes to move
(B + 1) = byte address — trans-
literation table

(C) = byte address - to

Move and unalign data

(A) = word address - from

(B) = bit offset in first "to" word
(B + 1) = number of words to transfer
(B + 2) = number of bits in last
transfer

(C) = word address - to

F, F+1=(F)* M)

F = (X) * y; 16-bit result
F = (F) * (M); 32-bit result
BR = (BR)

Set/sample data channel with address/
control register A and data
register C

No operation

BR = (BR) .OR. (B)

(A) = new entry address
(B) = list offset and flag
(C) = pointer to top of list

A-11

Mnemonic

0osu

ouT

PAUS, F

PTHD

R, AND

R, NOT
R,OR
R,S*

R,S/

R,SCL
R,XFR

R, XOR

A-12

Code Address Field
1E.A A,C
3A.01 A,C
3F.19

37.1D A,B,C
30.04 A,B,C
30.08 A,B,C
30.05 A,B,C
30.0D A,B,C
30.0E A,B,C
30.07 A,B,C
30.09 A,B,C
30.04 A,B,C

Operation

(A) = address of list entry to be
removed .

(C) = list offset (16-bit, right
justified)

Perform output operation on I/0 TTY
card with address register A and
data register C; P = (P) + 1 if
internal reject/timeout; P = (P) + 2
if external reject; P = (P) + 3 if
normal return

Pause for (F) microseconds

Add
(a)
(8)
()

new entry to threaded list
address of new entry
placement flag and offset
address of list pointer

(A) .AND. (B)

(B); B = (A), one's complement
(A) .OR. (B)
(A) * (B); 32-bit result

(A) / (B); 32-bit result

(A) .AND. (B), one's complement
(B); B = (A)

(A) .XOR. (B)

14061305 A

Mnemonic
R,+

R,-

R,/

RAD, F

RD, XFR

RD, -

RET

RFD, -

14061305 A

Code Address Field
30.00 A,B,C
30.01 A,B,C
30.02 A,B,C
30.03 A,B,C
25 m, X
30.1E A,B,C
30.1C A,B,C
30.1D A,B,C
3F.12 m,X
30.14 A,B,C
30.15 A,B,C
30.16 A,B,C
30.17 A,B,C
30.18 A,B,C
30.19 A,B,C

Ogeration

c = (A) + (B)
c = (A) - (B)
C, C+1=1(a) * (B)

c=(A, A+1)/ (B); C+ 1=
remainder ’

M= (F) + (M); C is unmodified

c,c+1=(B, B+1); B, B+1*=
(A, A= 1)

c,C+1=(a A+1)+ (B, B+1)

c, C+1=1(A A+ 1) - (B, B + 1)
Restore data stored by SAV

c = (4)

+

(B), floating point

c = (A) - (B), floating point

c = (A) * (B), floating point

@)
"

(4) / (B), floating point

c,c+1=¢(a A+1)+ (B, B+ 1),
floating point

c,C+1=1(A A+1)-(B, B+1),
floating point

A-13

Mnemonic

RFD,*

RFD, /

RIM,F

RMIO

RMS

RPF

RPG.F

RRM.F

RSR

RTJ

SAV

SB,F

SBD, F

SBR

SBIT,F

A-14

Code Address Field
30.1A A,B,C
30.1B A,B,C
3A.0D

3A.05 A,C
30.0F c
3A.07 A,C
3F.07 n
3A.0E

3A.0A A,C
2F.08 m,X
3F.1l1 m, X
18 m,X
19 m,X
30.0B

37.01 bit,X

Operation

C,C+1=¢(A A+1) * (B, B+1),
floating point

C, C+1=(A, A+1)/ (B, B+1),
floating point

F = (IMR)

C, C + 1 = (ADT register (A))

C = time of day clock

C = (page index file address (A))
F = (page index register n)

F = (RTIM)

C = read from DMA channel number A
M=(P+1); P=M+1

Store contents of file register and
page index register for the state
indicated by bits 20-22 of X

F = (F) = (M)

F, F+1=(F, F+1) - (M, M+ 1)

BR =1

bit + (X) = number of bits to be set
in the F register

14061305 A

7N

NS

Mnemonic Code Address Field Ogeration

SCIM,F 3F.09 ™R = (IMR) .AND. (F)

SCPN, F 3F.1A CPU number = (F17-19)

SCRM, F 3A.0C RTIM = (RTIM) .AND. (F)

SF,F 23 k,X shift (F) by shift count K; +K

specifies left end around; -K
specifies right sign extended

SFD,F 24 k,X shift (F, F + 1) by shift count
K; +K specifies left end around;
-K specifies right sign extended

SIT,F 3F.0D Transfer (F) to real-time clock
interval timeout register

SMIO 3A.04 A,C ADT register (A) = (C, C + 1)

SOPR 3F.1l1 A,C C, C+1, esoee, CH 30 = operand
registers, state (Agp-22)

SPF 3A.08 A,C Page index file address = (A); PIR -0
= ((Cg-15)); PIR -1 = ((C16-31))
vee. PIR =15 = ((C + 716-31))

SPG,F 3F.06 n Page index register n = (F)

SPS 3A.03 A,C Sample position and status after ADT
end of operation interrupt

SRTC,F 3F.0C Transfer (F) to real-time clock
register
SSIM,F 3F.08 IMR = (IMR) .OR. (F)

14061305 A . A-15

Mnemonic

SSRM, F

SST,F

ST,F

STB

STBA, F

STC,F

STCA, FOF

STD,F

STF

STH, F

STHA,F

STM, F

STP,F

TBIT,F

A-16

Code . Address Field
3A.0B

3F.10

11 m, X
0B b,X
10 m,X
0ocC c,X
m,X

12 m,X
37.04 A,B,C
0D b,X
OE m,X
2F.10 n,D
34 m, X
37.00 bit,X

Ogeration

RTIM = (RTIM) .OR. (F)

Set relocation register to state
defined by bits 20-22 of F

M = (F)

-+
"

(BR)
Mj1-31 = (F)11-31

C = (F)4-31

My4-31 = (F)14-31

M,M+1=(F, F+1)

(A) = Store field

(B) = to bit address

(C) = number of bits to store from
(A), right justified

H = (F)16-31

My5-31 = (F)15-31

(P) +1+D=(F), (P) +2+D-=
(F+1), ¢ee, (P) +n+1+D-=
(F + n)

M = (F); M is relocated by contents
of relocation register

Bit + (X) = number of bits to toggle
in the F register

14061305 A

Mnemonic Code Address Field Ogeration

TRC,F 3F.0E Transfer contents of real-time clock
register to F

TSK, S 3F.04 m P = m, state = S; the interrupt
. system is enabled and internal faults
are cleared

TST,EQ 2C.02 A,B,m P =(pP) + D if (A) = (B); else
P=(P) +1

TST,GE 2C.00 A,B,m p=(p) +Dif (A) 2 (B); else
P=(pP) +1

TST,GT 2C.04 A,B,m P=(pP) +Dif (A) > (B); else
P=(P) +1

TST,LE 2C.01 A,B,m P=(P) +Dif (A) < (B); else
p=(p) +1

TST,LT 2C.05 A,B,m P=(pP) +Dif (A) < (B); else
P=(P) +1

TST,NE 2C.03 A,B,m p=(P) +Dif (A) # (B); else
P=(p) +1

TSTD,EQ 2D.02 A,B,m p=(pP) +Dif (A, A+1) =
(B, B+1); elseP = (P) +1

TSTD,GE 2D.00 A,B,m P=(p) +Dif (A, A+1) 2
(B, B+1); else P = (P) +1

TSTD,GT 2D.04 A,B,m p=(p) +Dif (A, A+ 1) >
(B, B+ 1); else P = (P) +1

TSTD, LE 2D.01 A,B,m P=(pP) +Dif (A, A+1) <
(B, B+1); else P = (P) +1

14061305 A A-17

Mnemonic Code Address Field Operation

TSTD,LT 2D.05 A,B,m P=(P) +Dif (A, A +1) < @;j@
(B, B+ 1); else P = (P) +1

TSTD,NE 2D.03 A,B,m P=(pP) +Dif (A, A+ 1) #
(B, B+ 1); else P =(P) +1

TSTF,EQ 2C.0A A,B,m P=(P) +Dif (A) = (B), floating

format; else P = (P) + 1

TSTF,GE 2C.08 A,B,m P=(P) +Dif (A) 2 (B), floating
format; else P = (P) + 1

TSTF,GT 2¢.0C A,B,m P=(p) +Dif (A) > (B), floating
format; else P = (P) + 1

TSTF,LE 2C.09 A,B,m P=(P) +Dif (A) < (B), floating
format; else P = (P) + 1

TSTF,LT 2C.0D A,B,m P=(P) +Dif (A) < (B), floating TN
format; else P = (P) + 1 N
TSTF,NE 2C.0B A,B,m P=(P) +Dif (A) # (B), floating

format; else P = (P) + 1

TSTFD,EQ 2D.0A A,B,m P=(P)+Dif (A, A+1) =
(B, B + 1), floating format;
else P = (P) + 1

TSTFD,GE 2D.08 A,B,m P=(P) +Dif (A, A +1) 2
(B, B + 1), floating format;
else P = (P) + 1

TSTFD,GT 2D.0C A,B,m P=(P) +Dif (A, A+1) >
(B, B + 1), floating format;
else P = (P) +1

TSTFD,LE - 2D.09 A,B,m P=(P) +Dif (A, A +1) <
(B, B + 1), floating format;
else P = (P) +1

A-18 14061305 A

Mnemonic Code Address Field Ogeration

TSTFD,LT 2D.OD AB,m P =(p) +Dif (A, A+ 1) <
(B, B + 1), floating format;
else P=(P) +1

TSTFD,NE 2D.0B A,B,m P=(P) +Dif (A, A+ 1) #
' (B, B + 1), floating format;
else P = (P) +1

uJI 2F .07 m,X P = (M)

uJP 2F.06 m,X P=M

UTHD 37.1E A,C Remove an entry from a threaded list
(A) = address of entry to be removed
(¢) = offset

WPF 3A.06 A,C Page index file address (A) = (C)

‘:3} WSR 3A.09 A,C Write (C) to DMA state register (A)

XJp 2F.0D m, X P=mif (X) #0, X=(X) - 1;
else P = (P) + 1

XOR 28 b,X BR = (BR) .XOR. (B)

XSK 2F . OF y,X X=(X) +1; P=(P) +2if (X) +1
=y, zero extended; else P = (p) +1

14061305 A A-19

SN

R

€

pr
LSS

'COMPASS CONTROL CARD | B

The COMPASS control card causes the assembler to be loaded and executed under
control of the MPX operating system., This appendix describes the parameter options
available to the programmer.

CARD FORMAT

*CMP I=u, L=u, P=u, X=u, M=1u,N)

Parameter definitions:

I =u:
L=u
P=u

X =u:
M=u

- N:
14061305 A

Source input is from logical unit or file u. I = u is absent, standard
input is assumed. Input must be specified,

Assembly listing is on logical unit or file u. I = u is absent, standard
output is assumed. If L is absent, no listing is generated, However,

the subprogram name and error lines will be output on standard output.

Binary output is on logical unit or file u.- If = u is absent, standard
punch is assumed. If P is absent, no binary output is generated.

Load and go binary output is on logical unit or file u. If = u is absent,
standard load and go is assumed. If X is absent, no load and go is

generated.

Library input is from logical unit or file u. If M is absent, the system
library is assumed.

Suppresses the automatic register equate assignment.

B-1/B-2

.

C: COMPASS OUTPUT ' C

“

The output produced by COMPASS is an assembly listing consisting of a side-by-side list
of assembly error codes, location, machine language, and source card image.

ASSEMBLY ERRORS

ig 4
\,

Error Code Meaning
f A address field error

a) too many address subfields

) b) subfields improperly terminated

{ _ c) subfield contains illegal elements
d) relocation error occur

e) constant too large for data field

)/
0 C preset SCOM error
g doubly defined symbols

COMPASS table full
a). symbol table
b) reference table
c) macro table

{ L location field error
a) location is improperly formatted
M modifier error

{/
.

a) improper or undefined modifier
b) modifier where none allowed
¢) modifier missing

N null symbol
(0] op code error .
p program location counter error

a) counter different on pass 2 than on pass 1

R register usage
T address truncation error
U undefined symbol

14061305 A C-1/C-2

LN

PN

COMPOOL/LIBRARY MACROS D

”

A COMPASS program may include source code which is not explicitly supplied by the
programmer but is extracted from a library file as a named block of COMPASS statements.
Common data structures (COMPOOL) and macro prototypes (LIBM) are examples of named
source blocks. A library file (either the standard system library or an auxiliary library)

{” : containing code is generated using the PRELIB facility (Control Data publication No, 14062200),

o Such code blocks may have any name of eight or fewer characters, except for the reserved
name COMAC for library macros. Briefly, a library file as illustrated in Figure D-1

{’ : would be generated by PRELIB using the following control statements:

. *PRELIB

w * TEXT({ID=COMAC)

Source code statements

*ENDT

A

*TEXT(ID=CBLK1)

Source code statements

o~

*ENDT
{ *TEXT (ID=CBLK2)
s Source code statements
*ENDT
(*ENDPLIB

- 14061305 A D-1

PROGRAM NAME = COMAC
ENTRY POINT = FFFFFFFF
MACRO | Ny
PROTOTYPES
LIBRARY
MACROS y
PROGRAM NAME* = CBLKI*
ENTRY POINT = FFFFFFFF
3
COMMON
DECK 1 NG
COMPOOL S
CBLK1 .
i
¥
PROGRAM NAME* = CBLK2*
COMPOOL ENTRY POINT = FFFFFFFF)
3
CBLK2
COMMON B
DECK 2
LIBRARY
FILE
*Address field of COMPOOL statement ‘ £
Figure D-1. Library Source Code Formats U

14061305 A

INDEX

”

Item Page
£ Ascr
Literal 2-8
{ : Constant 2=7
Text 3-18
f Asterisk
- Comments 2-9
{ Double 2-6
ORG 3-5
™ ORGR 2-6
(. BOX 3-22
BSS 3-12
= BSSQ B 3"'14
BSS, C 3-14 .
BSS, D 3-15
t BSS, H 3-13
g‘ - Common
| DCOM 3-4
{ scoM 3-3
s
COMPOOL 3-4, Appendix D
l; Symbols 2-5
COMPOOL 3-4, Appendix D
Constants 2-6, 3-16
Control Card Appendix B
DCOM 3-4

14061305 A I-1

Item

EBOX
EJECT

END

ENDM
ENDIF
ENTRY
EQU

EQU, B
EQU,C
EQU,H
EQU,W
Error Codes
Expressions
EXT

FINIS
GEN

IDENT
IF

Instruction Formats

Listing
Control

Format

Logical Unit

LIBM
LIST

-2

INDEX (CONT.)

Page
3-22
3-19
3-2
4-3, 4-6
3-7
3-2
3-9
3-10
3-10
3-10
3-11
Appendix C
2-7
3-2

3-8
3-15

3-1
3-6
Appendix A

3-1, 3-19 to 3-22

Appendix C
Appendix B

4-6
3-20

14061305 A

3
>

g s

e

N

s
Y
@”&,

INDEX (CONT.)

Item Page

LISTCC 3-20
{ LISTF 3-20
LISTIF 3-21
t LISTMC 3-21
P Literals 2-8
i Macros 4-1, 3-21, Appendix D
‘ ORG 3-5

ORGR 3-6
0 SCOM 3-3
f SET 3-11
L SPACE 3-19
v Statement Format 2-1
3 Symbols 2-5
= TEXT 3-18
TEXTC 3-18
. TEXTH 3-18
- TITLE 3-19
{ VFD 3-17

14061305 A | I-3/1-4

a

TR

)

; ()’“ COMMENT SHEET

TITLE: MP-60 COMPASS Reference Manual

PUBLICATION NUMBER: 14061305 REVISION: A

NAME :

COMPANY:

STREET ADDRESS:

CITY: STATE: Z1P CODE:

Control Data Corporation welcomes your evaluation of this manual. Please

indicate any errors, suggested additions or deletions, or general comments
below (please include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

TAPE TAPE
FOLD FOLD
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
]
BUSINESS REPLY MAIL R —
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.]
]
POSTAGE WILL BE PAID BY T —
CONTROL DATA CORPORATION L
-]
Systems Technology Division
.]
215 Moffett Park Drive
Sunnyvale, California 94086 (]
]
SN
‘ ST
]
FOLD FOLD

CUT ALONG LINE
N
~_ S

O

