17329110

@ E CONTROL DATA
CORPORATION

MP-60
MPX/0S |
REFERENCE MANUAL

|
CONTROL DATA®
MP-32
COMPUTER SYSTEMS

MPX/0OS CONTROL CARD INDEX

Pagre
*ABS(lu) 3-18
*ALLOCATE(FN, OWNER, ED, AK, BLKSIZE, NOBLKS, S, USE,DT,DIDI, . ,DIDn) 3-9
*CLOSE(LUN) 3-13
*CTO message 3~7
*EOF(lul, luz, cey lun) 3-12
*EOJ 3-20
*EQUIP(1u2=1u1, e lun=lum) 3-12
*EQUIP(lu=d1, 1u=d2, ces 1u=dn) 3-7
*EQUIP(lu=hh,. .., lu=hh) . 3-8
*JOB(ID= ,AC=) ' 3-4
*LOAD(lul, luz, 1u3, 1u4) 3-18
*MODIFY (FN, OWNER, ED, AK,NFN, NOWNER, NED, NAK, NOBILKS, S, USE,DIDI, ceey DIDn)3_14
*OPEN(LUN, FN, OWNER, ED, AKEY, USE, BLOCK) 3-11
*PAUSE message : 3-7
*RELEASE(FN, OWNER, ED, AK, NOBLKS) 3-
*REWIND(lul, 1112, cees lun) | 3-13
*RJOB(@ID= ,AC=) 3-4
*RUN() . : 3-18
*SCHED(CM= ,TL~= ,PL= ,PC= ,SCR= ,hh= ,dt=) 3-5
*SEOF (1u1=B, lu2=F, lun) _ 3-12
*TASK@D= ,PCC= ,DMP,PRTY= ,CPU=) 3-16

*UNLOAD (lul, 1u2, - lun) o 3-13

@ E CONTROL DATA
CORPORATION

MP-60
MPX/0S
REFERENCE MANUAL

CONTROL DATA®
MP-32
COMPUTER SYSTEMS

17329110

REVISION RECORD

REVISION DESCRIPTION
A Original Release.
(78-02-24)

©

\//
"
Publication No.
17329110
Address comments concerning
REVISION LETTERS I, O, Q AND X ARE NOT USED this manual to:
CONTROL DATA CORPORATION
215 MOFEETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086
Control Data Corporation or use Comment Sheet in the i
Printed in the United States of America

ii

back of this manual K\)’)

PREFACE

|
This document describes CONTROL DATA® MP-60 Computer Systems in general, and the

CONTROL DATA® MPX Operating System (MPX/OS) specifically.

Although this document contains sufficient information to be studied independently, the fol-
lowing documents are required to achieve a thorough understanding of total MP-60 systems:

CDC
Publication
No. Title
41618300 ’ MP-60 Emulation Reference Manual
Q 14061300 MP-60 Computer System COMPASS Reference Manual
14061100 MP-60 Computer System FORTRAN Reference Manual
14062100 MP-60 Computer System COSY Reference Manual
14062200 MP-60 Computer System PRELIB Reference Manual
14063800 MP-60 Computer System Utility Reference Manual
14063900 MP-60" Computer System Peripheral Equipment
Reference Manual -
17328900 MASS/MPSIM Reference Manual

c

17329110 A iii/iv

W’

CONTENTS

Section Page
1 INTRODUCTION 0 9 0 0 9 6 9 + & 06 0 0 8 0 0 5 8 6 0 0 0 P e 0 e s s G s 00 0o 0 1 -1
MP—'60 Overview e 6 8 0 8 9 0 8 0 0 0 8 S 6 8 S S G S % P8 90 0% s e e 0 L e 0 o 1—1

Conﬁgurations s s e s s st e s e s s ss s e se e e s es s e 19
Main MemoOTy:s « ¢ ¢ oo o s e v oo oo co v o 00 oo s o se v o oe oo 1-4
CentralProcessingUnits........................... 1-4
INtEYTUPtS: ¢ o ¢ ¢ ¢ v v o e v st st st se te b e ts s s e e 1-4
Machine States « s » ¢ ¢ ¢ ¢ e 0 s ¢ 65 60 60 s 0 06 s s sssssssoess 1-5
Paging: « « e e v v ot v ti i st s s s te s e e e 1-7
Input/Output Controllers « « o« ce et s o ov oo svoeoeveoeves 1-8

MPX/OS Operating System OVEerview « « v oo e s e oo vo eevsoesos 1-8

MPX/OS CONCEPES: « ¢ + o e v o v o v ansonsnooeasaesasasas 1
JODbS ¢ ¢ ¢ 0 oo e e e 0 s e e s s s s s s s st s e s se s te ee ee e oo]
TASKS ¢ ¢+ ¢ ¢+ s ¢0 00 ¢ ¢ 60 08 60 sc ev 0o oo oo o0ss0eeesesces]
Multitasking, Multiprogramming, and Multiprocessing: + <+ +-- 1
Master-SlaveOrganization.......-................. 1-
ListProcessing.......;..-.....................- 1
Priorities <« ¢ s ¢ o ¢ s s ¢ 06 6 s 08 00 0 006 0000 vs 0 eecossee]
I/O‘Processi_ng..-............................... 1
Real_timecapabilities @ o 06 0 0 06 00 s 0 0% s s s s e e s 0 e 1
MPX/OS Operation « + «« s+ et esee et ecocoscccececesss 1220
System and Slave Startup. « o« co e v e e v et st o s oo oo 1-20
DisSpatCher « « v o vttt vt vt ti oo cooesessossacsosseess 1-20
Idle System Task « « ¢ e e ot e v ve ve vt oo e ee e eeoeooass 1-23
Task Execution. T]
Job Management « « « ¢ « o c o vt o oo oo s e vt ss e or oo e 1-24
Input (BKI) System Task -« ¢ e v cv oo tovvoacoooesonsoes 1-24
Job Manager System Task « « « + o ¢ o oo v ot v veennennoeoen 1-24

17329110 A \

e

CONTENTS (CONT.)

Section Page

Output and Punch (BKO and BKP) System Tasks....... ... 1-25
Task Management e]
FileManagement....--.......................-.. 1-25
TaskAccounting..........-..............-...... 1-25
Job Accounting » + s s e e vt e i et it it i i, 1226
Timed Functions« * * s ¢ s st e e s o vttt ot ot vssoessees 1-98
I/OManagement------°-'-------'--- vecee 1-26
Interprocessor Communication Management « «« co e 1-26
SCHED and RTSCHED ¢ + ¢+ ¢+ 0 e s oo seneeeennssssees 1-28

[\V]
1
et

2 FILE STRUCTURE -« + ¢« oo oo v o oo s s o oo seasononoenesennss

~Devices c e et escnsee
Device LabelS: « « ¢ o ¢ v o v et o0 o0 0o 00 oeosceeeessosoeess
FileS« o o o o o v oo oo o0 o0 st 20 00 05 sv 08 s s sovesoonosoeas
File Labels « c o o o ¢ ¢ o oo s 0 06 s 0 s 8 s s e0 o6 o0 0eos osoecesns
FileIdentification..b................................
File Access Privacy « « e« e o et s o oo e 0 st s s v v os oo teoeneas
File Segmentation « + « ¢ ¢ v e o et oot tie e v e vt ittt ot oo
File Allocation Method « - + « » O

)
DO

|
[\V]

!
N NN

NN DNDDNDDNDDNDNDN
I

1
9V

3 JOB PROCESSING: - « + » et et e e e e I
Job Definition Statements «. .. .¢ et et e e et e ce e e 3-4

Nonreal-time Job Statement « « + « « ¢ ¢ v vt o vttt et e 3-4
Real-time Job Statement . . « v c v v v vt vt ot ot e e e e e 3-4
Schedule Statement . . . v v vt v it vt it vt ot e e e e e e e 3-5

Job Activity Control Statements D T T 3~-6

Miscellaneous StatementSs » ¢ = c ¢ o ¢ o0 e 0 s 0 s 0 s b 060 00 a0 o 3-6
Comment-to-Operator Statement » + = ¢« ¢ v ¢ v 00 v v o0 v u e e e 3-7
Pausestatement-..o.-.......... e s e 0 0 e 0 s e 3_7
Data Set Identification Statements : - - - - - R I R - P
Equipment Assignment Statement: ¢« ¢ -+ o e e e i 3-7
Assigning Unit Record Devices: + « - ¢+« v oo . ve e . 3-8

vi 17329110 A

Section

~.

C

17329110 A

CONTENTS (CONT.)

Allocate Statement + . ¢ ¢+ oo &

Open Statement oo e
Logical Unit Equivalencing. . .

@ o o 0 0 ¢ o6 2 ¢ 6 00 o 0 s e 0 0 o e o .

Data Set Modification Statement « « ¢ ¢ ¢ ¢« ¢ ¢ o0 a0 o0 o e e

Write End-of-File Statement. .
Search End-of-File Statement.

Rewind Statement . .« ¢ ¢ ¢ ¢ o0

Unload Statement
Close Statement . « « c e ¢ oo o

4 @ 8 6 0 0 o 6 &6 0 o 0 o o s e o s 0 . o

0 ¢ © 0 & 0 0 0 0 8 06 0 0 0 s 0 0 0 e v e

Modify Statement e e 0o s e et e o s s s s e s e s e e s
Release Statement. e ae e PN .
Task Preparation and Use Statements. e e e e s oo

Library Task Statement.
Task Statement: « « « « o ¢ 0 o
Tooad Statement: ¢ » ¢ » ¢ ¢ o ¢ o

Build Absolute Task Statement « « « ¢ ¢ o e ¢ v o o0 o0 v o e 00 v o

Run Statement « » ¢« ¢ o ¢ v e 0 o0 s 0 o0 o0 &

Job Termination -« -« « .« .«
End-of-Job Statement

® & & & ¢ 6 o 0 0 0 0 % 0 0 0 e s s o 0 o 0

Abnormal Job Termination (Job Aborted).¢ec oo

Job Accounting Statistics....

EXECUTIVE SERVICE REQUESTS ...

@ ® 0 0 5 0 o6 4 0 0 06 0 06 0 & 0 & & s 0 8 ¢

® ® o 6 ¢ ¢ 0 8 0 0 8 0 o 0 0 & & 0 0 0 & 0

File Manager ESRS« « « « » .o .
ALLOCATE, Allocate Mass Storage File Space -+ « -« - - SRR
CLOSE, Close Mass Storage File Space - - - - - R IR B
MODIFY, Modify Mass Storage File Space « ¢« ¢« ¢ o e e e ..
OPEN, Establish Access to Mass Storage File -« «« ¢ o oo o
RELEASE, Release Mass Storage File <« « - ¢ o 0 e oo ceeen
Standard Unit « « ¢ -« o ¢ e ¢ o ¢ o0 c 0 0 c s 0 a0 s o oo o0 00 00 c0 o0

Physical I/O ESRS « ¢ ¢ e ¢ o o0 o

BKSP, Backspace Logical Unit One Record.

BSY, Busy Logical Unit Test

vii

Section

viii

CONTENTS (CONT.)

ERASE, Erase Magnetic Tape Segment . « . .
READLU, Read Record From Logical Unit .

REWD, Rewind Logical Unit
SEOF, Search for End of Fileeo s ¢ «.
SELDEN, Select Density «« ¢« o oo e v v
SELTRACK, Select Track « « « o v oo cs s

ULOC, Locate Block on Logical Unit - - . .

UNLD, Unload Logical Unit«« ¢« «c oo o
[JST, UnitstatuSTeSt----'--------

UTYP, Return Logical Unit Hardware Type- - -

WEOF, Write End-of-File Mark « .+
WRITLU, Write Record to Logical Unit

Task Manager ESRS ¢+ ¢ s oo co et 0o 00 00 oo

Initial Task Entry....... ... B T T T T e 4-97

ABORT, Voluntary Job Abort
CALL, Establish And Execute Task sececeeees.

DWAIT, Deferred Wait . « v ¢ e ¢ e 00 o0 o

ENABLE, Enable and Select Interrupt Control .

- OPENMEM, Assign Page of Open Memory -
PFAULT, Return Control on Program Faults - -

RELMEM, Release Memory Pages + « « « -

RETURN, Terminate Task Execution =+ ¢« <+« ¢« «+ A S Y T 3 |
TSCHED, Time Schedule Reactivation of Task °
TSTATUS, Return Task Status c e e o eooos oo

MiscellaneouSESRS0.:‘.0.....'..

~

CTOC, Send Command Message to Operator - .
CTOI, Send Informative Message to Operator.
DATE, Return Current Date « e e eeeoeoeeee
TETIME, Task Elapsed Timee e e« e« o o s o s 00
TIME, Return Current Time of Day s s« e«

BLOCKER/DEBLOCKER.--...o.'oo.oo-ooco-oo

Block and Buffer Formats ¢ e s eecececoosesce

® ® ¢ 0 O 0 0 0o 4—44

ceseesssee 4-44
sceecesssee 4-45
cecsecesee 4-46
cevceeceens 4-47
ceeecscene 44T

17329110 A

-

C ' CONTENTS (CONT.)

Section

BlOCkDeViceS @ © 6 9 0 9 8 066 68 S 0 B % S e 00 0 e s 0 st e s o0
Record DEvVICeS « « ¢ v oo t o so e o oo s e s s sosssosssecsns

Blocker.

PACKD, Pack Definecovoeveceoeoecececccennnn
PACKO, Pack Outfit. e v e v ceeecrorcevocecnns
PACKC, Pack CloS€. .. et vt vt ettt vs s oosononccees
Status Return, . ..

o ® ® 6 8 8 68 o ® ® 8 06 ° 0 0 0 6 o 2 % O 6 0 0 0 0 0 o0

PICKC, Pick Close......
StatusRemrn.'..“......0..........‘....'...'.

C PICKI, Pick Input. ° o e 8 e ® o & o & o o o 2 oo e e & o o o ® o o o & 0 o o
)

6 MPX I_IOADERocoooocooocoooa'oacooococvlo'oo.coooooo

LoaderCards-..........‘..0...0....'........'0.'0
Binary Card Structure ¢ cc oo ce oo oeoececscscens

Loader Directory Card
Identification Carde 0 o6 eeoeoessoesocccsos
Block Common Table Card e oo oo ceeoonsecoosos
Entry-point Card . .. v vevevevooeoeesononassceess
Relocatable Information Card......... c e e e se e
External Card . .« c o oo s o s6 e s s 0 066 00 s s s o scososococs
Transfer Address Card . . « «c oo e o o s oo 06 s s s s oo s e so s
Hexadecimal Correction Cards . . c « e o oo o9 a0 00 00 o6 s 0 0
HCC Examples. e
MAP, Memory Allocation Printout -

.
.
.
.
°
°
.
.
.
.
.
.
.
.

C

17329110 A

Page

5-5
5-7
5-8
5-9
5-10

5-11
5-13
5-13
5-14
5-15

[« 2]
1
[J-I]

i 1
kS

I
W oo =0 W,

DAOHOHOHDNDDNDNDDD
[i
-t
o

ix

CONTENTS (CONT.)

FIGURES
Page
A Multiprocessor Configurationc it vt vttt v e eeeesess 1-3
Task Memory Layout Gt te t et e e e e B O
Normal System Flow (Master Processor) 4 s e ta cs e en e 1-21
Normal System Flow (Slave ProCessors) . « . v v v oo v e v e oo v oo . 122
ESRProcessingFIOW..............'........... I 44

Job Processing Flow. e v. 3-2
Batch Job Deck Example..,......... R B
*TASK Control Statement Example - I

Examples of Abort Listing of Registers0....
s e 0 0 6 0 0 o 3_23

Abort Message and Accounting Statistics Example e e

ESR Description Format « « « ¢+« e v o0 oo t e as s 0 as oo

MultiprogrammingTaskso-o-c---ooo-o-o. e o+ o0 o

e e e . 3-21

. * 8 o s 0 0 o o 4-28

MAPExample ooooo co.oo-ouoooocococcoo-ooocncooooo00‘06—15
TABLES

Page

Minimum, Maximum MPX/OS System Configurations 1-2

IntermptPriority-.-o.....-...o.....-..-o.. 01_6

Task Status Assignment Definitions« «« c ¢ cocv v vv vt vt oi i, 1214

TaskPriorityAssignments © s e s e s e s s s s s e s e e0 se se s . 1-17

Physical 1/0 ESRs As A Function of Device Type «+ «« « «
Bit Interpretation Per Device Type: R T

17329110 A

17329110 A

CONTENTS (CONT.)

APPENDICES

Character Set

Glossary

Blocker/Deblocker

System Errors Code Definitions
Error Recovery

Mass Storage Devices

Mass Storage Labels
Programming Conventions
Engineering File

Engineering File Report Generator

T xi/xii

N
N

INTRODUCTION 1

The Control Data MP-60 computer system, using advanced concepts in microprogramming
architecture, can be configured to:

e Utilize one to eight central processing units (CPUSs).

e Provide a multiprocessing environment.

e Provide service to one or more independent work requests (jobs) per CPU.

e Provide service to one or more job subdivisions (tasks) per job.

C:) The microprogrammable processor (MP32) is microprogrammed to provide the MP-60 soft-
ware environment described in the MP-60 Emulation Reference Manual. Additional

instructions can be added to enhance the performance of the MP-60 for specific applica-
tions.
The MP-60 Operating System (MPX/OS) was developed in modular building blocks and

establishes basic system functions. The modular structure of the system software facili-
tates the incorporation of software modifications to enhance the performance of MPX/OS

for specific applications.

MP-60 HARDWARE OVERVIEW

Complete details of the MP-60 hardware are contained in the MP-60 Emulation Reference
Manual. The details presented in this section are provided in support of the operating

system definition.

O

17329110 A

CONFIGURATIONS

Table 1-1 presents the minimum and maximum configurations supported by MPX/OS for s
single- and multiple-processor systems. Figure 1-1 illustrates a two-slave multiprocessomk)
configuration as an example.

1-2

17329110 A

TABLE 1-1. MINIMUM, MAXIMUM MPX/0OS SYSTEM CONFIGURATIONS
Single Processor Multiple Processor
Configurations Configui'ations
Minimum Maximum Minimum Maximum
Program states 3 6 6 48
Main memory 388K Bytes | 16768 Bytes 524K Bytes | 16768 Bytes
96K Words 4096K Words | 131K Words | 4096K Words
Card reader 1 1 1 1
Line printer 1 1 1 1
Display console 1 1 1 1
Display station 0 6* 0 6* \ ;
Mass storage 10M Bytes 720M Bytes* | 20M Bytes 720M Bytes*
Magnetic tape 1 8* 1 8*
Card punch 0 1 0 1
Teletype 0 2% 0 2%
Number of processors 1 1 1 5
*These values represent typical limits.
£

y

Slave CPU

Slave CPU

['}

CRT
Master CPU
Peripheral
Equipment ‘
10C
Peripheral \ 4
Equipment
Memory
>
Control
Data
Figure 1-1. A Multiprocessor Configuration
17329110 A

1-3

e
~

MAIN MEMORY

The main memory of the MP-60 is modular and in increments from a minimum of 65,536
32-bit words to a maximum of 4,194, 304 32-bit words.

CENTRAL PROCESSING UNITS

System configurations containing more than one MP-60 CPU provide direct connection
between the CPUs, as well as an indirect connection through the main memory.
The direct connection provides one signal path in each direction, an associate

CPU interrupt signal. The associate CPU interrupt signal is used during normal
operation to direct the attention of a CPU to a message area maintained in the
main memory. The interprocessor communication facility is accessible only to

the monitor state environment. All CPUs in a multiprocessing environment
provide identical capabilities to the program state tasks. One CPU is designated
the master CPU; the remaining CPUs are designated slave CPUs. The master
CPU conducts system startup, has all connections to the IOCs, and has connections
to all slave CPUs. Slave CPUs have a connection to the master CPU only.

INTERRUPTS

The MP-60 utilizes interrupts to signal event occurrences in a processing environment in
which many activities may be occurring concurrently and asynchronously. At the start of
each MP-60 instruction, a test is made for interrupt conditions. If an interrupt condition
exists, execution of the current code sequence halts and execution of an interrupt routine
is initiated. Upon regaining control of the CPU, the interrupted code resumes without
notice of the interrupt processing.

The MP-60 recoghizes two categories of interrupts: external and internal. External inter-
rupts consist of input/output (I/O}, real-time, and interprocessor interrupts. Internal
interrupts consist of monitor call, clock, arithmetic (arithmetic overflow, divide, exponent,
function) faults, and environmental (page, memory parity error, illegal instruction, memory
reject, power failure) faults.

Under MPX/0S, the master CPU recognizes and services all interrupts which occur on the
master CPU. Slave CPUs recognize monitor call interrupts, interprocessor interrupts,
clock interrupts, arithmetic fault interrupts, and environmental fault interrupts. Of those
interrupts recognized by slave CPUs, only the interprocessor, power failure, and clock
interrupts are serviced by the slave CPUs. The remaining interrupts are routed to the
master CPU for servicing.

O

1-4 17329110 A

O

O

C

Interrupts are used by MPX/OS to facilitate task switching, and to continue 1/0
processing. During task mode execution, master and slave CPUs operate with

all recognizable interrupts enabled (except possibly the arithmetic fault interrupts).
During executive mode execution of the master CPU, only the environmental fault
interrupts are unconditionally enabled. Real-time interrupts are disabled only
during list processing, and/or real-time executive execution. All other interrupts
are always disabled. During executive mode execution of a slave CPU, only the

environmental fault interrupts are unconditionally enabled. All other interrupts are
always disabled. :

MPX/0S gains control of the CPU when any interrupt is recognized. Tasks may elect to

regain control if they cause an arithmetic fault, page fault, or an illegal instruction fault.
An executive service request {(ESR) is provided to enable the task (see Section 3, ENABLE
Enable and Select Interrupt Control) to recognize these interrupts. If the interrupt condi-
tion is recognized, but the task has not elected to regain control, MPX/OS terminates the
task and its job. The MP-60 recognizes the interrupt conditions according to the priority
order defined in Table 1-2.

MACHINE STATES

The MP-60 provides nearly identical resources for eight execution environments
called states. Each environment includes 32 full-word (32-bit registers, one 1-bit
register, a 65,536 32-bit word address space, and a status flag for each of the
four arithmetic fault conditions. Machine state 0 differs from the remaining seven
states through its ability to execute privileged instructions and by its obligation

to process interrupts.

MPX/OS uses state 0 to execute the system executive code. The terms monitor state and
executive state are used as synonyms for state 0. State 0 on each CPU provides the CPU
interrupt recognition and interrupt service processing. State 0 on the master CPU addi-
tionally provides system resource management, console CRT management, job accounting,
and real-time executive processing.

‘MPX/OS uses states 1, 2, 3, 5, 6, and 7 to execute nonsystem code. These states,
together with state 4, are referred to as program states. Execution in these seven states
is referred to as program mode or task mode execution. State 4 is used to support exe-
cution of most system tasks.

17329110 A | 1-5

1-6

TABLE 1-2. INTERRUPT PRIORITY
LEVEL INTERRUPT GROUPS
1 Power Failure
2 CPU Memory Errors
3 DMA Memory Errors
4 Illegal Instruction
5-12 Micro I/O 0-8
13-28 Macro 1/0 0-15
29-44 Real-Time 0-15
45-50 Open
51 Open
52 Clock Interval
53-55 Open
56 Inter-Processor
57-60 Faults Divide-Arithmetic

1 — highest, 60 — lowest

17329110 A

ﬂf’fk‘
O

C

PAGING

All references to main memory are routed through the MP-60 paging hardware

for potential relocation. Addresses that originate from the eight states are

relocated by the paging hardware.

The paging hardware contains 16 16-bit registers for each paged state.
page register has the following format:

Each

16 17 18 19 20 21 22 31

.Q?..Q.

10-bit physical page address

0 = page has not been accessed

1 = page has been accessed

0 = page assigned, access permitted
1 = page not assigned, access not permitted

read/write permitted

read (only) permitted

0 = page has not been modified

1 = page has been modified (written)

page is resident read/write permitted

page is non-resident read/write not permitted

o
I

I

0

1
parity indicator of lower 10 bits

17329110 A

1-7

The upper 4 bits of an address originating from a state are used to select one

of the 16 page registers assigned to that state. Bits 17, 19 and 20, maintained

by the operating system software, are used by the hardware to detect unauthorized =
use of a memory address. Bit 18, maintained by the hardware, is available J
to the operating system and is forced to 1 on memory write operations. Bit 18

is also forced to 1 by the operating system when read functions are processed.

Bit 23 maintained by the hardware, is available to the operating system and is

forced to 1 on memory reference. Address relocation is accomplished by

substituting the 8-bit physical page address for the 4-bit page register selector.

The relocated address began as a 16-bit value. Removing four bits to select a page
register yields a page size of 4096 32-bit words. The main memory of an MP-60
computer system, therefore, consists of a minimum of 16 4096-word pages, and
can be expanded in increments of 16 pages to a maximum of 1024 pages.

INPUT/OUTPUT CONTROLLERS

Input/output controllers (IOCs) are logically connected to the master CPU, to the main
memory, and to the peripheral devices they control. The master CPU invokes the
IOC to request status, to initiate I/O data transfers, or to initiate device functions.
The IOC interrupts the master CPU to signal the completion of a requested service.

The IOCs are not operating system components in the same sense that MPX/OS coded
modules are. They do, however, provide services traditionally provided by CPU code
modules. IOCs allow MPX/OS to program I/O operations at a high level, providing a

level of device independence, error detection and recovery functions, and I/O functions 7Y
parallel with normal system operation. N

The IOCs accept and process one or more CPU requests, maintaining a list of requests in
their own memory. When the list becomes full, additional CPU requests are rejected. In
addition to accepting multiple requests, the IOCs return request status to CPU-designated
areas of main memory. These features allow MPX/OS to maximize system effectiveness
within acceptable overhead limits. MPX/OS sends requests to the IOC until the IOC cannot
accept new requests. Rejected requests are saved and reissued one at a time as the I0C
completes processing accepted requests. Since the status data is placed at request-
designated areas of main memory, minimal system overhead is required to save status in-
formation and process the interrupt to a point where additional interrupts can be accepted.
By maintaining a list of requests in the IOCs, the peripheral devices are not left unused
while the CPU processes interrupts, ensuring minimal system delays.

MPX/0OS OPERATING SYSTEM OVERVIEW

The following sections describe the operating system from two views. The first view is
a conceptual view. The second view is a physical/functional view.

1-8 17329110 A

o

(:”’h,
S

C

MPX/OS CONCEPTS

The following sections describe the significant design philosophies adopted for MPX/OS.
These descriptions cut across the physical/functional organization of the operating system
code.

JOBS

A job is a request from a user to have the computational facility perform work. The work
request is submitted to the operating system in the form of a card deck. The card deck is
processed by an operating system task, the job manager. The job manager interprets the
control statements in the card deck and initiates any additional system activity required to
satisfy the work request.

A job is established in the operating system environment by building a table entry (a job
control table entry) and by initiating execution of the job manager system task. In response
to appropriate job control statements, the job manager system task causes additional tasks
to execute. The additional tasks may be system tasks, library tasks, or user tasks. Sys-
tem tasks are part of MPX/0S, and may receive special treatment. Library tasks operate
under the same rules as user tasks, but are maintained in the system library mass storage
file. User tasks receive no special treatment by the executive.

Each job in the system has its own job control table (JCT) entry. The total number of
JCTs is an installation-controlled parameter. The contents of a JCT include the
following:

e Job identification (from *JOB or *RJOB control card).

e Job accounting information (account number and CPU charges).
e Job resource parameters (see *SCHED control card).
® I/O assignments (see *OPEN and *EQUIP control cards).

e List of tasks established for the job.

L Standard file disposition.

TASKS

A task is an independent unit of work that competes for the resources of the system. The
work requested by a job is accomplished as the summation of task efforts. The CPU
always executes executive or task code. The executive executes on demand, either from
user-issued ESRs or from event occurrences signaled by interrupts. Tasks compete for
use of the CPU and other resources on the basis of their priority.

17329110 A 1-9

TASK ORIGIN

Tasks can reside in the core, on the library, or in a data set accessible to the user's (Jj
job. Core resident tasks are system tasks or user tasks that have previously executed

within a job, but on their return did not request release from memory (see Section 3,

RETURN, Terminate Task Execution).

Tasks that reside in the system library data set are referred to as library tasks. Library
tasks are brought into execution with a job control statement that uses the name of the
library task as the control card name (Section 2, Library Task Statement).

Tasks that reside in data sets accessible to and maintained by the user are referred to as
user tasks. User tasks are brought into execution by *LOAD and *RUN control cards, or
by a CALL ESR from within an executing task, by specifying the data set(s) containing
the task.

Library tasks and user tasks may be maintained in two forms: relocatable and absolute
binary. The relocatable binary form normally originates from an assembler (COMPASS)
or compiler (FORTRAN). Absolute binary form is obtained using the *ABS job control
statement to record an image of the task after it has been prepared for execution.

TASK IDENTIFIERS

A task identifier is established through the *TASK job control statement and the CALL N
ESR. The task identifier is used to request status of tasks, label diagnostic messages,
and construct operator displays reflecting system activity.

A task identifier is valid for the entire duration of the task. That is, when the task re-
turns to the system after completing execution, the identifier continues to exist if the
RETURN ESR specifies retention in memory. It does not continue to exist if the RETURN
does not specify retention in memory.

Library tasks are assigned their library names as task identifiers when placed into execu-
tion. Library tasks specify release of memory in their RETURN ESRs.

TASK LOADING

Each task executed under MPX/OS control is assigned a program state and up to 65,536
words of main memory. The tasks reference memory with logical addresses as assigned
by the MPX/OS loader, that are transformed into physical addresses through the MP-60
paging hardware.

1-10 17329110 A

®

i

Figure 1-2 illustrates the important features of loaded tasks. Logical page 15 of each task
in a job is the same physical page of memory. Logical page 15, the intrajob data area,
is used to support MPX/OS functions provided as a part of each task (through the blocker/
deblocker library subroutines) and functions provided by the job manager system task.

'Loch_al page 14 contains an area reserved for communications between the 'system and

tasks and, on CALL and RETURN ESRs, between the tasks. (The job manager task
communicates through an area of job manager tables in logical page 15.) The communi-
cation area (PARM) is 50 words* in length. Its format and content are described by the
ESRs which utilize the area.

Logical pages 0 through 14 are prepared with an executable image of the task by the
loader. The memory is loaded with program code and data common blocks from logical
page 14 downward, and with blank and numbered common blocks from logical page 0 up-
ward. 'If some pages are left unused after loading is complete, the corresponding page
registers are protected to reflect the unassigned pages. As a result, task address refer-
ences that are out of range are detected by the hardware and generate a fault interrupt.

During the load process, the loader code occupies logical page 0 and the loader symbol
table occupies logical page 1. The blank and numbered common blocks of the task are
allocated over the loader code and tables. The task can only achieve full use of the 15
logical pages by allocating 8192 or more words of space to the blank and numbered com-
mon blocks. Any pages occupied by the loader, and not used for blank or numbered com-
mon allocation, are returned to the system for reuse.

TASK RELATIONSHIPS

‘The mu’lftfta—élﬁr'ié'féatﬁ‘fe of MPX)OS allows one task to establish and initiate execution of

another task. Two terms, caller and callee, are used to identify the relationship between
two such tasks. A caller is the task that issues the CALL ESR. A callee is the task
that the CALL establishes and initiates. A task can be both a callee and a caller at the
same time. '

For example, the job manager interprets the *TASK, *LOAD, and *RUN job control state-
ments and thereby establishes and initiates execution of a user task, TASKA. TASKA can
issue a CALL ESR to establish and initiate execution of a second user task, TASKB. The
job manager is the caller of TASKA, and TASKA is the callee of the job manager. At
the same time, TASKA is the caller of TASKB.

*An installation option.

17329110 A 1-11

INP, OUT, PUN Buffers

P+

Blocker/Deblocker Tables

Job Manager Tables (Includes job manager/
exec communication)

TTO= ®H 3

O oH

EXEC/USER TASK
Communication

Task
Program
and Data

l

(Unas si.gned
Pages)

Task
Common

Loader Tables
or ;
Task Common

Loader Code
or
Task Common

Task-1 Task-...
Figure 1-2. Task Memory Layout

1-12

Task-n

I
Logical

Page
15

Logical
Page
14

Logical
Page
13-2

Logical
Page

Logical
Page

| U

17329110 A

0

o

TASK STAGING

A task running under MPX/OS exists in several stages. These stages are defined by

Table 1-3. A task in the ready stage can only go to the running stage. A task in a wait
stage must go to the ready stage before running. The running task can voluntarily go to
wait or terminated stages, or it may involuntarily go to the ready stage if a higher-priority
task becomes ready in the same CPU. A terminated task may be released or simply be
allowed to go dormant.

TASK CONTROL

Each task in the system has its own task control table (TCT) entry. The total number of
TCTs per job is an installation-controlled parameter. The contents of each TCT include
the following:

e Task identifier.

e Task accounting information (accumulated task CPU time).

e Task priority.

e Task status definition.

e Caller wait list thread.

e Current caller definition.
The TCT is the task identification used by the executive for implementing prioritized

delivery of the CPU and resources to the task (see List Processing and Priorities of this
section).

MULTITASKING, MULTIPROGRAMMING, AND MULTIPROCESSING

MPX/0S provides a multitasking capability which enables a task to initiate execution of one
or more tasks concurrent (simultaneous, if a multiprocessor system) with its own execu-
tion. The maximum number of concurrently established tasks within a single job is con-
trolled through an installation parameter at system build time. :

MPX/0S provides a multiprogramming capability, which means that the system shares the
CPU between two or more tasks over a period of time. Multiprogramming occurs when
system tasks share the CPU with user tasks, when tasks from two or more separate jobs
share the CPU, when two or more tasks of the same job share the CPU, and when any or
all combinations of these occur.

17329110 A 1-13

1-14

TABLE 1-3.

TASK STATUS ASSIGNMENT DEFINITIONS

Status

Description

Dormant

Active, Ready

I/O Wait

File Manager Wait

Call Wait

Callee Wait

Deferred Wait

Finis

TSCHED Wait

CRT Wait

TCT Wait

The task has corﬁpleted its work and returned, with-
out release, to its caller. Status remains dormant
until the task is called again.

The task is currently executing or ready to resume
execution.

The task has requested I/O on a data set that is
currently busy. The task is threaded by priority -
in a wait list for the data set.

The task has requested a file manager function and
the file manager is active. The task is threaded
on a priority basis in a call list for the file
manager.

The task has called another task. Until the call
can be connected, the caller remains in call status;
it cannot resume execution.

The task has called another task and, as a param-
eter of the call, requested not to be multiprogrammed
with its callee. After the callee returns, the caller's
status will be set to active.

The task has called other tasks, multiprogrammed
with them, and then requested that it not be per-
mitted to resume execution until one of a set of
callees returns.

The task has returned but has outstanding callees.

The task issued a TSCHED request. After the
specified time interval has elapsed, the task
status will be set to active.

The task is waiting for the operator to respond to
a pending message. Task becomes ready after
the operator responds.

The task has attempted to call another task and the
call cannot be connected due to an insufficiency of
TCTs.

17329110 A

)
'

MPX/O0S provides a multiprocessing capability, which means that the system services are
delivered by two or more CPUs.

Multitasking and multiprogramming provide service to the user from, a single CPU in the
form of nonsimultaneous, interleaved task execution. They can provide service from
multiple CPUs in the form of simultaneous execution of two or more jobs and/or tasks.

MASTER-SLAVE ORGANIZATION

MPX/OS utilizes a master-to-slaves architecture to provide multiprocessor capabilities.
Under this architecture, one CPU (the master) manages system resources, performs all
I/0 operations, provides all executive service functions, and distributes program execution
assignments to all other CPUs (the slaves) and to itself.

Slave CPUs are computational resources to which the master CPU assigns user tasks for

execution. A slave CPU provides no I/O operations or ESR functions. Any such request
from an executing user task is routed to the master CPU for servicing.

Under MPX/0S, each CPU operates independently of all others. This allows each CPU to
move from task to task with occasional interrupt processing and very little synchronized
activity. Executive functions are provided by the slave CPUs where system resource
management is not involved. Current examples of such functions are the CPU ready list
and CPU state availability list management and task level accounting.

LIST PROCESSING

MPX/OS uses the concept of list processing to reserve and allocate system resources.
Tasks making ESRs which cannot be serviced immediately are placed in a list and are
serviced as time and resources permit. Each list is ordered according to the priority
of the tasks in the list. At each opportunity, the highest-priority task in the list is
readily obtained for servicing. Examples of lists maintained by MPX/OS include:

e CPU ready list for tasks awaiting control of the CPU.

e I/0 wait lists for tasks awaiting access to a data set, IOC, or device.

e Task wait lists for tasks awaiting access to an already active task.
Opportunities to service a task in a list occur as a function of the list. CPU ready list
members are serviced as higher-priority tasks, leave the system, or are placed on wait

lists. I/O wait list members are serviced as I/O completes or tasks release resources.
Task wait list members are serviced as tasks complete execution.

17329110 A 1-15

PRIORITIES

Control of resources under MPX/OS is on a priority basis, managed through the various (W
lists. Priorities range from 255 (highest) to 0 (lowest) with ranges 240 through 255 and -
1 through 9 reserved for real-time and system tasks. Table 1-4 summarizes the priority

scheme and defines the priorities normally assigned to system tasks.

Priorities are maintained on an individual-task basis. Priorities are established with the
CALL ESR from executing tasks or with the *TASK control statement from batch jobs. If
the priority of the called task (callee) is not made explicit, the callee task inherits the
priority of the calling task (caller).

An executing task may cease to execute by issuing an ESR, causing a fault, or by the
occurrence of an interrupt beyond the control of the task. In the first instance, the task
is entered into lists at the bottom of its priority group, eventually including the ready list.
In the second instance (faults), the task reenters the ready list at the bottom of its priority
group if control is returned or the job enters the ready list for termination processing at
the bottom of the job manager priority group. In the final instance (nonuser interrupts),
the task is placed at the top of its priority group in the ready list with one exception -

a real-time clock interrupt can result in the task being scheduled at the bottom of its
priority group as an installation option effectively creating time slicing.

1/0 PROCESSING &

MPX/OS provides both logical and physical 1/O facilities for data transfer. MPX/OS pro-
vides ESRs to perform physical data transfer, device control, and status checking. A
system logical I/O routine (blocker/deblocker) can be loaded from the system library with
a task to perform automatic blocking/deblocking of data records with single or double
buffering and truncating individual records.

MPX/OS utilizes peripheral devices which are classified as unit record devices or mass
storage devices. Unit record devices are serially accessible from only one user job.
Mass storage devices are randomly accessible from one or more user jobs. Logical I/O
functions are device-type (unit record versus mass storage) independent. Physical I/O
functions are definitions for each device type. '

The system user accumulates a data set and stores the data set on peripheral equipment.
The method of storage differs if the peripheral equipment is a unit record device or a
mass storage device, but the method of identifying the data set to the logical I/O routines
and the physical I/O executive routines is the same. The data set is identified by a num-
ber in the range of 1 to 63. The number may be called a data set number, a logical umit
number, or a logical file number. The logical I/O routine deals with data set numbers
(device-independent functions). The executive converts the data set number into a logical
unit number or logical file number using tables defined with the user's assistance.

~
7

1-16 17329110 A

TABLE 1-4. TASK PRIORITY ASSIGNMENTS
=
0 Idle
Low 1
priority
real-time Real-time
and
system
tasks
9
10 Job Manager
Real-time
and
system Nonreal-time
and Real-time
nonreal-time
tasks
239
High 240
priority BKI
real-time BKO
and BKP
system File manager
tasks
Real-time
255

17329110 A

1-17

Unit record devices are accessible to the user through the *SCHED and *EQUIP control
statements in the batch job control statement card deck. The *SCHED control statement
reserves the device for the job, and the *EQUIP control statement connects the data set
number to the device and defines the number as a logical unit number.

Mass storagé devices are accessible to the user through the file management services
ALLOCATE, CLOSE, MODIFY, OPEN, and RELEASE. Job control statements and ESRs
by the preceding names are provided. The mass storage capacity of the system is treated
as one device from the user's viewpoint, unless explicit action to the contrary is taken.

In the default circumstance, the user's data set may reside in '"bits and pieces'" on several
physical mass storage devices, a condition which is transparent to the user. Each of the
bits and pieces is called a segment. MPX/OS requires a file to consist of 32 or fewer
segments. Each physical mass storage device is assigned a name or device identifier
(DID) that can be used in ALLOCATE and MODIFY functions to control the spread of
segmented files.

During execution of a job under MPX/OS, unit record devices are secure from access by
other jobs because unit record devices are assigned to only one job. Mass storage de-
vices, on the other hand, are normally accessible to all users of the system. Any mass
storage file is accessible to any job if four pieces of data are known: the file name code,
the file edition code, the file owner code, and the file access privacy code.

In actual use, a unit record device has a defined position and often a variable capacity.
For example, the number of physical records a job will be able to place on a magnetic
tape is not generally known. Mass storage devices can be accessed in the same sequential
fashion as a unit record device, but also provide less rigidly defined positioning (random
access) and known capacity. MPX/OS maintains three data values which enable the system
to provide the indicated modes of mass storage use: the next block number, the block
count, and the number of allocated blocks. The next block number is a position indicator
and defines the next block that will be transmitted to/from memory. The block count
records the highest block of the file actually written and serves the same function that a
magnetic tape file mark serves. The number of allocated blocks is the number of the
highest block allocated and serves the same basic function that the magnetic tape end-of-
tape (EOT) mark serves.

Use of physical I/O allows the user to format the data in each physical record according
to need. Logical I/O provides the same basic format, a system-defined format for all
device types (Section 5, Blocker/Deblocker).

Data sets may be shared under MPX/0S. For unit record devices, two tasks of the same
job could read or write the device. For mass storage devices, this means that more than
one task (not necessarily from the same job) may open the same file for read only at the
same time. Each logical file number has its own next-block number. An attempt to share
the file for both reads and writes causes tasks to be wait-listed. Only one logical file
number from one job may have access to a mass storage file with write permission.

&

1-18 17329110 A

O

7N

\\‘“

~~

O

REAL-TIME CAPABILITIES

MPX/0S design emphasizes support of real-time (or time-critical) applications. The pri-
mary concept is the ability to respond quickly to time-critical events. MPX/OS provides
this fast response by:

® Providing high-priority interrupt recognition.

e Allowing tasks to be scheduled with reserved high priority in response to
real-time events.

e Minimizing CPU time in monitor mode per executive entry.
e Performing selected executive functions in program state 4.
® Servicing I/O requests by priority.

® Dispatching tasks for execution by priority.

A real-time environment consists of a real-time executive, real-time interrupt processors,
and real-time tasks. The real-time executive shares monitor state with the MPX/OS
executive. A set of monitor-state machine registers is reserved for real-time executive
use when responding to real-time interrupts.

Real-time tasks are established in program states and communicate with the real-time
executive via the normal MPX/OS ESRs mechanism. Real-time ESRs are routed to the
real-time executive for processing. All normal MPX/OS services are available to the
re:’il—time tasks unless eliminated as a result of real-time environment tailoring of the
system.

The real-time environment is established through submission of a real-time job (Section 3,
Real-time Job Statement) through the normal standard input unit., The real-time job must
load real-time tasks. Execution of loaded real-time tasks includes initializing calls to the
real-time executive to establish interrupt linkage. Following initialization steps, the real-
time tasks remain in memory in a dormant state until activated by the real-time executive
in response to real-time interrupts, or umntil called by another real-time task. Real-time
activity is sustained through task calls, time scheduling, real-time interrupts, and any
variety of combinations of the above. The bulk of real-time processing is performed as
tasks scheduled by the real-time executive. Real-time tasks can be executed at high-
system reserved priority.

The real-time executive is integrated into the MPX/OS resident system by defining real-

time ESRs and their necessary processing codes. In this fashion, the real-time executive
becomes an integral part of the MPX/OS operating system.

17329110 A 1-19

MPX/OS OPERATION

The operating system code is divided into components that execute as part of the executive @
(from state 0), components that execute as system tasks competing for resources with other)
tasks, and components that execute from library and user tasks. The division of the sys-

tem code into dispersed parts serves two purposes: it places the component where the job

can be performed with the least overhead and facilitates prioritized delivery of services.

Figures 1-3 and 1-4 illustrate the normal system flow on the master and slave CPUs.
These figures illustrate the system from its functional divisions and do not illustrate the
physical divisions to any meaningful extent. The following descriptions of the functional
divisions address the physical structure of the system.

The figures show the CPU startup followed by a predominantly counterclockwise loop begin-
ning with the DISPATCHER. The following descriptions proceed according to the same pat-
tern. In addition, the system is maintained as a single copy of core resident code (except
for the startup code). The two figures are described in parallel.

SYSTEM AND SLAVE STARTUP

System startup accomplishes CPU initialization (firmware loading), operating system loading,
operating system initialization, slave CPU normal activity startup, and master CPU normal
activity startup. Among the operating system initialization activities are the scheduling of
two system tasks: IDLE and BKL. The IDLE system task is scheduled for all CPUs, and
BKI is scheduled for the master CPU only.

Slave startup accomplishes CPU initialization (firmware loading) and slave identity definition
and awaits the signal to start normal activity (Section 3, CALL, Establish and Execute
Task).

DISPATCHER

DISPATCH (executive code) selects the highest-priority task ready to execute and gives that
task control of the CPU.

Low-priority tasks only obtain service when there are no higher-priority tasks or when the
higher-priority tasks are unable to execute (awaiting I/O completion, for example).

The initial entry into the normal cycle of execution on a slave CPU causes the IDLE sys-
tem task to be placed into execution. As the only task, it is the highest-priority task until
another task assignment arrives from the master CPU. The initial entry into the normal
cycle of execution on the master CPU causes the BKI system task to be placed into execu-
tion since its priority exceeds that of the IDLE system task (see Table 1-4). ({m‘;

<

1-20 17329110 A

C

lSYSTE M, LIBRARY|

SYSTEM
STARTUP

l

PLACE HIGHEST |

17329110 A

PRIORITY TASK
“—|OR USER TASK [¢ INTO EXECUTION [* 2
EXECUTION
: DISPATCHER
JOB
MANAGEMENT
EXECUTIVE TASK SCHEDULE
SERVICE MANAGEMENT PROCESSED .
REQUEST FILE | TASK
FUNCTIONS MANAGEMENT SCHED
MISCELLANEOUS |
2
RESCHEDULE
INTERRUPTED TASK, JOB ' PERFORM
T ASK ————1 ACCOUNTING TIMED - >
FUNCTIONS F IONS
SCHED UNCTIO
‘o
RESCHEDULE INPUT/OUTPUT ' SCHEDULE
INTERRUPTED < MANAGEMENT PROCESSED
"
T ASK TASK >
SCHED SCHED
RESCHEDULE INTERPROCESSOR SCHEDULE
INTERRUPTED COMMUNICATION INDICATED
TASK ®| MANAGEMENT TASK
RTSCHED " RTSCHED
>
Figure 1-3. Normal System Flow (Master Processor)
1-21

.
2
>
TN
-
>
SCHEDULE
INDICATED
TASK
RTSCHED

SLAVE
STARTUP
4
PLACE HIGHEST
| %%?{ARY' USER PRIORITY TASK
INTO EXECUTION
EXECUTION
DISPATCHER
EXECUTIVE
SERVICE SEND TASK
L"’ REQUEST TO MASTER -
FUNCTIONS
RESCHEDULE TASK
v INTERRUPTED ACCOUNTING
TASK FUNCTION
SCHED
RESCHEDULE INTERPROCESSOR
| INTERRUPTED ; COMMUNICATION
TASK MANAGEMENT
RTSCHED
Figure 1-4. Normal System Flow (Slave Processors)
1-22

17329110 A

IDLE SYSTEM TASK

The IDLE system task is placed on each CPU ready list so that the CPU always has a task
it can execute. IDLE is given control of the CPU when all other tasks are awaiting com-
pletion of requested executive services. IDLE frees the executive to await interrupts
signaling progress on services underway in IOCs or in other CPUs, or signaling a time
interval lapse which may allow a task to be scheduled for execution.

TASK EXECUTION

Task execution is initiated by the DISPATCHER and continues until the task requests ser-
vice from the operating system (voluntary interrupt) or until an interrupt condition arises
and the task is (involuntarily) interrupted. A task voluntarily interrupted is serviced and
then scheduled (by the SCHEDULER) at the bottom of its priority group. Involuntary inter-
rupts are of two types: faults (task) and nonfaults. If the task fault interrupts out of exe-
cution, it is serviced and rescheduled at the bottom of its priority group. If the task
elects to regain control (see ENABLE and PFAULT ESRs), it is rescheduled for abort
processing at the bottom of the job manager system task priority group (see the ABORT
ESR). If the task nonfault interrupts out of execution, it is placed at the top of its priority
group and the interrupt is processed (also see Priorities in this section). '

Two system functions are normally loaded with user tasks: the task monitor and the
blocker/deblocker modules. Both are obtained from the system library file.

The task monitor provides the task entrance, a task exit, and the task-system communica-
tion area. The task-monitor entry point is the starting point for task execution. It
immediately passes control to the user task main entry point. The task monitor is inserted
to allow for main programs which exit with a normal subroutine return sequence instead of
with a RETURN ESR. If the task returns to the task monitor, the task monitor issues a
RETURN (with release) ESR to bring about a normal task termination.

The standard input (INP), standard output (OUT), and standard punch (PUN) files are re-
quired to have a specific format. The format of these files is generally processed by a
collection of subroutines, supplied by MPX/O0S, called the blocker/deblocker modules (see
Section 6, Blocker/Deblocker). The standard file buffers are maintained by the blocker/
deblocker modules in logical page 15 of the job tasks. The same physical page is logical
page 15 of all tasks of the job (see Figure 1-2). Blocker/deblocker also maintains tables
in logical page 15, which are used to control the blocker/deblocker functions and to ensure
that only one task is reading or writing the same file at the same time.

17329110 A Y1-23

JOB MANAGEMENT

Job management is totally a system function. It is carried out in large measure by sys- (\m
tem tasks. Job management accomplishes defining a job in the system (BKI system task),
identifying and initiating job requested work (job manager system task), and returning the

job output listings and punched cards to the user (BKO and BKP system tasks).

INPUT (BKI) SYSTEM TASK

BKI obtains job control decks from the card reader and establishes the job manager system
task. When the card reader is empty, a message is sent to the operator. When the
operator responds to the message, BKI is activated and again processes card reader data.

When a deck becomes available, BKI reads the deck and saves it in a file. The *JOB or
*RJOB control statements and any *SCHED statements are read and interpreted for system
resource requirements. The content of these two control cards form the initial content of
the JCT entry created for the job.

BKI attempts to fill the resource requirements of the job. If the resources are not avail-
able, BKI assumes a dormant status and remains inactive until the necessary resources
become available. When all resources are reserved for the job, BKI establishes the job
manager and returns to the card reader to process/await additional input.

BKI implements the job management philosophy as described, which influences the level of NS
system activity. MPX/OS does not oversubscribe any system resource except program

states. This means that once a job starts into execution, it cannot be delayed due to insuf-
ficient resources. Introduction of more tasks than there are program states to directly

support them simply causes state swapping, an activity which increases system overhead

but which does not prevent task execution.

JOB MANAGER SYSTEM TASK

The job manager assumes control of the job until normal or abnormal job termination.*
Job termination is complete when the job accounting information has been summarized and
written on the OUT and the standard files have been closed or released. The job manager
exits by making an executive service call which releases the job resources to the system
and assigns the OUT and PUN to the BKO and BKP system tasks for post processing.

*The externally observable features of the job manager are the subject of Section 2 and
are not described here.

C

1-24 17329110 A

C

OUTPUT AND PUNCH (BKO AND BKP) SYSTEM TASKS

BKO prints the OUT file. BKP punches the PUN file. These two post processors are com-
pletely independent of each other but are treated alike by MPX/0OS. Once activated, the
post processor processes all files of the specified type that exist, and goes dormant. They
are activated by the job terminator when necessary, if not already active.

TASK MANAGEMENT

Task management (executive code) establishes tasks in the system, manages intertask
activities, and manages task access to the CPU. Establishing a task involves defining the
task in system tables (TCT) and ensuring that the task is loaded into main memory.
Managing intertask activities involves the CALL, RETURN, TSTATUS, and DWAIT ESRs.
CALL establishes and initiates execution of new tasks. RETURN' signals the end of a task
execution (for a specific CALL). TSTATUS allows one task to determine the status of
another task. DWAIT allows a task to suspend operation until one or more called tasks
have completed execution. Managing task access to the CPU involves task scheduling,
dispatching, memory limit changes, task termination, task suspension, and task fault

- control recovery.

FILE MANAGEMENT

The file manager is a system task activated by MPX/OS to service ALLOCATE, CLOSE,
MODIFY, OPEN, and RELEASE functions. The servicing of such requests may involve
disk reads/writes and task queueing, which result in unpredictable patterns of service com-
pletion. An execution of the file manager services one task. Other queued tasks must await
the next entry to the executive. A first task may request service and be queued, allowing
a second task to request and receive service while the first task waits. File manager
execution time is charged to the job for which the function is provided.

TASK ACCOUNTING

Task accounting (executive code) is simply accumulating CPU execution time on a task
basis. File management time is charged directly to the job. Accumulated task-execution
time serves as a task clock and can be used for task-performance analysis (Section 3,
Executive Service Requests).

17329110 A 1-25

- JOB ACCOUNTING

Job accounting (executive code) consists of accumulating the task CPU times as tasks ter-
minate, and of testing for job time limit being exceeded. Also, resources such as core
memory, mass storage scratch, print lines, and punch cards reserved and not used are
maintained and summarized on the job's OUT listing. '

TIMED FUNCTIONS

MPX/OS periodically totals the job accumulated times and the outstanding task accumulated
times and compares the sum to the time limit defined on the *SCHED control card. When
the sum exceeds the limit, the job is aborted.

MPX/0S schedules tasks for execution when requested time intervals lapse.
1/O0 MANAGEMENT

I/O management (executive code) controls the access to devices and mass storage files and
controls usage of the IOCs. The I/O manager accepts the data set number from the ESRs,
determines the device and/or file and/or IOC access conflicts, and administers the delivery
of resources to the requesting tasks on a priority basis.

A requested service may involve several distinct entries to the I/O management modules.
When all required steps have been completed, the requesting task may need to be re-
scheduled for execution (Section 3, UST, Unit Status Test).

INTERPROCESSOR COMMUNICATION MANAGEMENT

Figure 1-5 illustrates the flow of a service request originating on the master CPU and on
a slave CPU. Requests that originate on a slave CPU (upper triangle) are recognized by
the slave (INT PROC - interrupt processing) but are routed to the master for service.
After servicing is complete, the task status (READY for execution) is relayed back to the
slave, causing the task to appear on the slave ready task list.

While on the master CPU, the task is placed in the master ready list so that the granting
of services can be accomplished according to priority.

Requests that originate on the master CPU more directly enter the executive for servicing.

Since the task was executing, it is the highest-priority task at that time. After the ser-
vice is supplied, the task is placed on the master ready list.

1-26 17329110 A

SLAVE

C\ < \ TASK <@— /

7 \ / | [
70,004

EXEC SERVICES

PROC.

O

INT.

PROC

EXEC
SERVICES

VA
/

Cm Figure 1-5. ESR Processing Flow

MASTER

17329110 A 1-27

The executive may be interrupted by real-time (master only) or associate CPU interrupts

but only to schedule a task for execution. That is, once the processing of a service re- -
quest has started, it runs to completion or to a standard point of suspension (waiting for \/ ™
file access, for example). S

Note ‘that since every exit from the executive is through the DISPATCHER, every interrupt
and every ESR provides an opportunity for a higher-priority task to obtain control of the
CPU.

SCHED AND RTSCHED

Two modules (executive code), SCHED and RTSCHED, perform an identical function - they
place a task on the CPU ready list. Two copies are required because the executive can
be interrupted to service real-time interrupts, including the scheduling of real-time tasks
for execution. '

N

W

1-28 17329110 A

FILE STRUCTURE 2

The MPX/OS system operates in an environment in which all files have an identical basic
structure. All mass storage for MPX/OS is subdivided into two levels. The device label
is the higher level and represents the on-line units in the form of disk drives and disk
packs. The unit of allocatable storage is the lower level and represents a multiple of
physical hardware records (sectors).

DEVICES

Mass storage devices are hardware entities with independent schemes of addressing.
MPX/O0S distinguishes between devices which are logically or physically affixed to drives
(system devices) and devices which are removable (user devices).

System devices must be on-line at all times. User devices need be on-line only when the
device is referenced by the user (ALLOCATE, OPEN, etc.). System devices are defined
by system installation or by modifying the system executive (EXEC).

DEVICE LABELS

MPX/0S uses device labels to identify all mass storage devices. Each removable disk
pack, as well as each drum and nonremovable disk, has a device label written on its first
hardware address. Device labels are written by the MPX/OS utility routine (*FMP) prior
to using the device.

Device labels contain information pertaining to mass storage devices, including a DID,
which is used for internal and external identification, and a device allocation map, which

identifies the used and unused allocation units.

The content and format of device labels are described in Appendix G. The physical
characteristics of various devices are described in Appendix F.

17329110 A 2-1

- FILES

All mass storage data operated on by MPX/OS must be in entities of logical block struc- /z))
ture. These entities are called files. A logical block size is the number of 32-bit words
in each block. Each logical block starts at the beginning of a physical hardware record.

FILE LABELS

File labels are entries in the system LABEL file that identify, describe, and reserve
space (files) on mass storage. A mass storage file exists in the system when the user
defines a label (allocates a file). The user makes monitor calls to the MPX/OS system
task ALLOCATE to create a file label. These calls provide the file identification, access
code, block size, block count, etc. MPX/OS uses the caller-supplied information to create
a file label and to update the allocation map of necessary device labels. File labels are
described in Appendix G. ‘

FILE IDENTIFICATION

File name, edition, and owner make up a file identification. The file label contains the

file identification for MPX/0OS comparison during label modification calls (RELEASE,

MODIFY). If identification in a call does not match identification in a label, an error RN
results. N

FILE ACCESS PRIVACY

Each file label has a provision for an access privacy code and an access type code (USE).
The access privacy code protects a file from unauthorized use. If the access privacy code
in an access call (OPEN) does not match the one in a file label, the call is rejected. The
access type code allows the user to specify the file as read-only. If the access type code
is read-only in the file label, USE in the OPEN call must be read-only.

FILE SEGMENTATION

When space must be segmented on mass storage to satisfy a file allocation call, MPX/OS
maintains a threaded map of segments and inserts it in the file label. MPX/O0S allows
files to contain up to 32 segments. One or more segments of a file may be on one or
more devices. MPX/OS allows a file to be segmented on to a maximum of eight devices.

O

2-2 17329110 A

o

When allocating space for a file, the user may specify that the space be contiguously allo-
cated. If insufficient contiguous space is available on the device, ALLOCATE rejects the
request.

FILE ALLOCATION METHOD

ALLOCATE and MODIFY (expand file) assign space sequentially on a device basis beginning
with the first specified device; however, when allocating space on a specific device,
ALLOCATE and MODIFY check the device label map to find the smallest contiguous area
large enough to satisfy the request. If such an area does not exist, the largest available
area becomes the first segment, followed by the next largest, and so on.

17329100 A 9-3/2-4

JOB PROCESSING 3

Job processing flow is illustrated by Figure 3-1. The processing of a job is initiated by
loading the job deck into the card reader (standard input unit). From this point on,
MPX/O0OS assumes control of the job. :

The operating system task, BKI, reads a batch job card deck and places it in a mass
storage file (job input file). BKI examines the job (both real- and nonreal-time) and the
schedule statements, determines the resource requirements for the job, and attempts to
secure the necessary resources. When all of the resources have been acquired, BKI
establishes the job in the system and initiates execution of the job manager system task
(JMTR). BKI is now free to process any new jobs that might appear at the card reader.

The job manager system task reads and interprets the job control statements in the se-
quence they appear in the batch job deck (now the mass storage file). These control
statements consist of a statement name and the parameters necessary to define the opera-
tion. The specified operaticns allow for the management of the peripheral environment of
a job, for the loading and execution of user and library tasks (TSKMGR and TASK1 ...
TASKn), and for job termiuation (JTRM).

Control cards contain an asterisk (*) in column 1, followed by the requested function name.
The parameter list extends through the remaining columns of the card. One additional
card may be used to further extend the parameter list, if necessary. The additional card
does not contain the asterisk in column 1, but continues the parameter list from the pre-
ceding card. The parameter list is enclosed in parentheses with commas separating each
parameter. Comments are permitted on the control cards, but must follow the correspond-
ing parentheses that terminate the parameter list.

The batch job card deck must be organized in three sections: job definition, job activity,
and job termination. Figure 3-2 defines a batch job card deck and identifies the three
sections. The job definition section contains sufficient information to define the job in the
system. The job activity section manipulates the peripheral environment and causes task
executions. The job termination section releases resources assigned to the job, adds job
accounting information to the OUT file, eliminates the job from the system, and initiates
processing by the BKO and BKP system tasks. (BKO prints the OUT file, BKP punches
the PUN file.)

17329110 A 3-1

Standard
Input
Unit

r—-——=—>-== - === _"""l
] i |
,__l__,,_| |
b : !
R ¢ 4
1| Task N .
g ! ‘ Job Build Input
1! Task Input File {+] Establish JMTR
I { | BKI
I Task +
F e e ---1
.
Task ™ ‘
d asil —
Task 1 n ; Establish Job Process Control
1 : L | Tasks Statements
b
--} : ' : TSKMGR 'JMTR
11
s e o r-—-——
-—————— - |
|
l |
Job | Job ! Terminate
Punch File fe—— List File - Job
JTRM
| e e R -
e ey 1
i |
¥ ¥
Post Process Post Process
D ————— L] ¢12 {01 §
contro Punch File List File
BKP BKO
@— — ———~ Data T .
' |
I |
Card Printer
Punch
Figure 3-1. Job Processing Flow

O

17329110 A

Job /%JOB(ID=EXAMPLE, AC=1234)
C Dt tion < :SCHED(CM=12,MT=1)
i (¥SCHED(9427=SCRATCH1)
(*EQUIP (1=MT)
*ALLOCATE(FN, OWNR, 01,Q00Q, 480,50, , RW, 3, SCRATCH1)
*OPEN(2, FN, OWNR, 01,Q00Q, W)
*FTN(I, L, X)
PROGRAM RW
INTEGER CARD (20)
Job 10 READ (1,99) CARD
© Activity < WRITE (2,99) CARD
Section IF (CARD (1). EQ.4H*EﬁD) STOP
GO TO 10
99 FORMAT (20A4)
END
| FINIS.
O *LOAD (57)
(*RUN
Job
Termination {*EOJ
Section ‘

Figure 3-2. Batch Job Deck Example

C

17329110 A . 3-3

JOB DEFINITION STATEMENTS

The job definition statements characterize the job as a real-time or nonreal-time job and
identify the resources required to successfully complete the job. The job is not started
until all required resources are available. If insufficient resources are requested, the
job is aborted when the undeclared resource is used.

NONREAL-TIME JOB STATEMENT

[*JoBAD= ,AC=)

A nonreal-time job (*JOB) statement serves as identification of a nonreal-time job, and of
an input deck. Any additional job statements are ignored if they are encountered before
the end-of-information statement (*EOJ).

Parameter Definition
ID One to eight characters indicating the job identification. This
parameter is optional. If omitted, ID=,JOB. is supplied by
MPX/OS.
AC One to eight characters indicating the job account number. This
is an optional parameter, If omitted, blanks are supplied by
MPX/OS.

REAL-TIME JOB STATEMENT

(*RJOB(ID= ,AC=)

The real-time job (*RJOB) statement replaces the *JOB statement when identifying a real-
time job. The parameters are identical to those of the *JOB statement. ‘

A real-time job is expected to cause a real-time task to be loaded. The real-time job
differs from the nonreal-time job in its ability to use the reserved priorities (1 to 9,
240 to 255) for its tasks. The real-time task is established and control is passed to the
task. After the real-time task has initialized itself, it returns to MPX/OS without
releasing its resources.

3-4 17329110 A

C

SCHEDULE STATEMENT

FSCHED(CM= ,TL= ,PL= ,PC= ,SCR= ,hh= ,dt=)

The schedule (*SCHED) statement, if present, follows the job statement (*JOB or *RJOB),
and is used to allocate and reserve resources. The number of *SCHED cards per job is

a system parameter.

Parameter

CM=

TL=

PL=

PC=

SCR=

hh=

17329110 A

The value of the last appearance of a parameter is the one used.

Definition

Core memory limit (in pages) assigned to the job. The upper limit
for this parameter is dependent on the amount of physical core mem-
ory available. The parameter may be omitted, in which case an
MPX/0S-defined limit is applied to the job. -

Job time limit in CPU seconds, value from 1 to 99,999, A value of
99999 is regarded as infinity. Time charged against this limit is
CPU usage only. The parameter may be omitted, in which case an
MPX/0OS-defined time limit is used.

Print line limit assigned to job, value £ 65,535. The parameter may
be omitted, in which case an MPX/OS-defined print limit is used.

Punch card limit assigned to job, value £ 65,535. The parameter
may be omitted, in which case an MPX/OS-defined punch limit may
be used.

Maximum total number of mass storage segments to be shared among
system scratch 1 (SCR1), system scratch 2 (SCR2), standard Hollerith
scratch (SHC), and standard load and go (LGO) for a job. The size
of a segment is a system parameter. This parameter may be
omitted, in which case an MPX/OS-defined scratch limit is used.

The number of this type of peripheral equipment to be reserved for
the job, where hh has the following definitions.

Mmemonic Hardware Type
MT7 Seven-track magnetic tape
| MT Nine-track magnetic tape (800 bpi)
MT9 Same as MT
MT9M Same as MT

Parameter (Cont.)

Definition (Cont.)

Mmemonic Hardware Type
MT9H Nine-track tape, 1600 bpi
MT™ Same as MT7
MTT7L Seven-track tape, 556 bpi
TT Telétypewriter
CT Cartridge tape
CP Card punch
DP CRT display
PR Printer
PL Plotter
CR Card reader

dt=DID The device types and device identifications on which class B

files will be accessed in the job (for example, 9427=SCR1, 844=SCR2).

JOB ACTIVITY CONTROL STATEMENTS

The job activity section of a batch job consists of four types of control statements: mis-
cellaneous, data set identification, data set modification, and task preparation and use
control statements. A batch job normally has at least one of the control statement types

but need not have each type represented.

MISCELLANEOUS STATEMENTS

The miscellaneous statements allow messages and action requests to be sent to/received
from the operator through the console cathode-ray tube (CRT).

3-6

17329110 A

7N

N S

COMMENT-TO-OPERATOR STATEMENT

FCTO message

The comment-to-operator (*CTO) statement causes the message appearing on the card to
be output on the console CRT. The *CTO card may appear anywhere in the control state-
ment deck between the *SCHED card and the end-of-job card, except among the task data
areas.

PAUSE STATEMENT

F"PAUSE message

The pause (*PAUSE) statement causes job processing to be suspended. The message is
copied to the console CRT. The operator then performs the requested action and continues
the job by acknowledging the message. If the message is rejected, the job is aborted.

DATA SET IDENTIFICATION STATEMENTS

The data set identification statements associate a logical unit number with a data set. For
a mass storage file, an *ALLOCATE/*OPEN statement sequence, or an *OPEN statement
is used. For a unit record device data set, an *EQUIP statement is used. A new logical
unit number can also be defined as being equivalent to an already-defined logical unit num-
ber with an *EQUIP statement.

EQUIPMENT ASSIGNMENT STATEMENT

[*EQUIP (lu=d_,lu=d,, ... ,lu=d)

The equipment assignment (*EQUIP) statement assigns physical equipments to logical units
for the job. The statement includes declarations (d) regarding logical units (lu). The
legal logical unit assignments are 1 through 63, with the following fixed assignments.

Logical Unit Number Assignment
63 Standard input (INP)
62 Standard output (OUT)

17329110 A 3-7

Logical Unit Number (Cont.) Assignment (Cont.)

61

60

59

58

57

56

55

54

53

52

51

50

Standard punch (PUN) @

System scratch 1 (SC1)

System scratch 2 (SC2)

Library (LIB)

Standard load and go (LGO)
Standard Hollerith scratch (SHC)
Label file (LBL)

Reserved

Reserved

PCC change file

Reserved

Reserved N

ASSIGNING UNIT RECORD DEVICES

[FEQUIP (lu=hb, .. ,lu=hh)

The parameters of this statement assign a hardware type (hh) to a logical unit number (lu). *
The following hardware mnemonics are used in making the assignments.

Mnemonic

MT

MT9
MTIM

MT9H

3-8

Type

800 bpi density selection, 9-track tape format (CONTROL
DATA® 659 and 669 Magnetic Tape Units)

Same as MT
Same as MT

1600 bpi density selection, 9-track tape format

@

4

17329110 A

Mnemonic (Cont.) Type (Cont.)

O MT?7 800 bpi density selection, 7-track tape format (CONTROL
N DATA® 667 Magnetic Tape Unit)

MT™ Same as MT7

MT7L 556 bpi density selection, 7-track tape format
CR Card reader

PR Line printer

CP Card punch

TT Teletypewriter

DpP CRT display

CT Cartridge tape

PL Plotter

The designated logical unit is assigned to an available equipment of the specified hardware
type. If hardware of the designated type is not available, or if the assignment request

(jb results in exceeding the number of scheduled equipment of this type, a diagnostic will
result.

ALLOCATE STATEMENT

‘{ALLOCATE (FN, OWNER, ED, AK, BLKSIZE, NOBIKS, S, USE, DT, DID1,...,DIDn)

The allocate (*ALLOCATE) function is used to describe (and thus create) a file in the
mass storage system. Once a file has been created, it remains allocated until released.

Parameter | Definition
FN One to 14 characters specifying the file name
OWNER One to four characters specifying the file owner
0 ' ED One or two characters specifying the edition number

17329110 A 3-9

Parameter (Cont.) Definition (Cont.)

AK One to four characters specifying the access privacy key. This
field is not copied on the job's OUT file

BIKSIZE Number of words in a logical block. Decimal constant in the
range of 1 to 65,535
NOBIKS Number of logical blocks in the file. Decimal constant in the
range of 1 to 65,535
S Segmentation flag:
Entry Indicates
Blank File may be segmented
S File may be segmented
NS File may not be segmented
USE Protection flag:
Entry Indicates
Blank File may be accessed as read/write
R File may be accessed as read only. It
may not be written until modified
RW File may be accessed as read/write
DT Deviée type:
Entry Indicates
Blank or 0 File allocated on system device
1 CONTROL DATA® 9425 Cartridge Disk Drive
2 CONTROL DATA® 844 Disk Storage Unit
3 CONTROL DATA® 9427 Cartridge Disk Drive
4 CONTROL DATA® 9760/9762 Storage Module
o Drive
DID One to eight characters identifying the device to be used

for the file. Up to eight devices may be specified

3-10 17329110 A

The parameters must appear in the indicated order with omitted parameters specified by
adjacent commas.

O When *ALLOCATE detects an error, the entire control statement is, ignored and a diagnos-
tic is written on the job OUT file. '

OPEN STATEMENT

|40PEN(LUN, FN, OWNER, ED, AK, USE, BLOCK)

The open (*OPEN) statement is used to prepare an existing mass storage file for data
transmission by locating the file and requesting the device be put on-line, if necessary.

Parameter Definition
LUN Logical file number
FN One to 14 characters specifying the file name
Q OWNEF{ One to four characters specifying the file owner
ED One or two characters specifying the edition number of

file to be opened

AK One to four characters specifying the access privacy key.
This field is not copied on the jcb OUT file

USE Protection flag:
Entry Indicates
Blank File may be accessed as read/write
R File may be accessed as read only
RW File may be accessed as read/write
w File may be accessed as read/write and the
block count (highest block written) is set to 0
BLOCK If 0 or blank, the file is completely opened; otherwise, only the
0 device containing the referenced block is opened (partially open)

"

17329110 A 3-11

LOGICAL UNIT EQUIVALENCING

»r*EQUIP (u =lu,,..,1lu =lu) ()

This statement equates logical units., The logical unit (lul) is equated to (lu2). The unit
(1u2) must have previously had a hardware type assigned to it.

DATA SET MODIFICATION STATEMENT

The data set modification statements change the position, content, access and/or attributes
of the data set. Three of the statements apply only to mass storage file data sets. The
remaining statements have definitions, summarized by Table 4-1, for both mass storage
device and unit record device data sets. o

WRITE END-OF-FILE STATEMENT

*
|’ EOF (lu_, 14, .., 10)
The write end-of-file (*EOF) statement causes an end-of-file mark to be written on the o/

specified logical units that have magnetic tapes or cartridge tapes assigned to them.
Logical units with any other type of assignment are ignored.

SEARCH END-OF-FILE STATEMENT

% = =
[*SEOF (lu ,~Be1u,~F,1u)

The search end-of-file (*SEOF) statement positions a magnetic tape, cartridge tape, or file
to an end-of-file. A second parameter of B indicates a search backward (lu = B). The F
parameter (lu = F) indicates a search forward. If no second parameter (lu) is included,
the search is performed forward.

An *SEOF forward causes a magnetic tape unit to be positioned immediately after an end-
of-file mark.

An *SEOF backward causes a magnetic tape unit to be positioned immediately before an
end-of-file mark.

O

3-12 17329110 A

o

When the *SEOF statement is used on a logical unit number that has a file assigned to it,
a search backward positions to the first block of the file. A search forward positions to
the block past the highest block written.

REWIND STATEMENT

E 3
(% REWIND(lu,, lu lu)

29 e

The rewind (*REWIND) statement positions a magnetic tape, cartridge tape, or file to the
initial location. That is, a magnetic tape is rewound to load point, and a file is positioned
to the first block of the file. The units to be rewound are indicated by the parameters lu1
through lun, which are logical unit numbers.

If a logical unit number is illegal, unassigned, or not assigned to magnetic tape or a file,
the parameter is ignored and the remainder of the statement is processed.

UNLOAD STATEMENT

ﬁUNLOAD(lul,luz, .o ,lun)

The unload (*UNLOAD) statement rewinds and unloads the specified logical units that have
magnetic tapes assigned to them. Logical units with any other type of assignment are
ignored. Note that dismounting the tape does not affect the logical unit to physical device
assignment.

CLOSE STATEMENT

[*CLOSE(LUN)

The close (*CLOSE) statement clears the LUN definition from the system tables. The file
must be opened following a *CLOSE to be referenced again., The LUN parameter indicates
the logical unit number of the file to be closed.

17329110 A 3-13

MODIFY STATEMENT

—
(
[*MODIFY (FN, OWNER, ED, AK, NFN, NOWNER, NED, NAK, NOBIXKS, S, USE, DID_, ..., DID) *k})

The modify (*MODIFY) statement is used to change the attributes of an existing, closed
mass storage file. *MODIFY can be used to expand an existing file, or to change the
control parameters of the file.

Old control parameters:

Parameter Definition
FN One to 14 characters specifying the file riame
OWNER One to four characters specifying the file owner
ED One or two characters specifying the edition number
AK One to four characters specifying the access privacy key for

the existing file. This field is not copied on the job OUT file

New control parameters:

Parameter Definition

NFN One to 14 characters specifying the new file name (blank = no
change)

NOWNER One to four characters specifying the new owner (blank = no
change)

NED One or two characters specifying the new edition number (blank =
no change)

NAK One to four characters specifying the new access privacy key.

This field is not copied on the job OUT file (blank = no change)

File expansion parameters:

Parameter Definition
NOBIKS The number of logical blocks to be added to the file (a decimal

constant in the range of 1 to 65,534. The total number of blocks
in the expanded file may not exceed 65,535. If blank, there is no
change. «

3-14 17329110 A

@

Parameter (Cont.)

S

USE

DID

RELEASE STATEMENT

Definition (Cont.)

Segmentation flag:

Entry Meaning -

Blank Added blocks may be segmented

S Added blocks may be segmented

NS Added blocks may not be segmented

New protection flag for the modified file:

Entry Meaning

Blank Does not modify e:;istmg usage parameter
R File may be accessed as read only

RW f‘ile may be accessed as read/write

One to eight characters identifying the device to be used for the

expanded blocks. If this parameter is omitted, the device of the
last segment is used. The total number of devices used by the

file may not exceed eight

[FRELEASE(FN, OWNER, ED, AK, NOBLKS)

The release (*RELEASE) statement is used to release some or all of the space allocated

to a mass storage file.
Parameter
FN
OWNER

ED

17329110 A

Definition
One to 14 characters specifying the file name
One to four characters specifying the file owner
One or two characters specifying the file edition number

One to four characters specifying the access privacy key for the
file. This field is not copied to the OUT file

3-15

Parameter (Cont.) Definition (Cont.)

NOBIKS . The number of logical blocks to be deleted from the file. The
highest-numbered blocks are released

N
L)
-

Entry Meaning
Blank or 0 Entire file is released

R All blocks following the highest block
written are released

TASK PREPARATION AND USE STATEMENTS

The task preparation and use statements define attributes of a task, prepare an executable
image of a task in memory, save the prepared task in a data set and/or initiate execution
of the prepared task.

LIBRARY TASK STATEMENT

A library task, such as the assembler or compiler, is loaded and executed by a library SN
name control statement. L

r*name(parameter list)

A program may be called by a library name statement by using PRELIB to place the pro-
gram on the library (LIB) file. A library program is automatically executed after loading.
For example:

[*FIN(, L, X)

TASK STATEMENT

FTASK(ID: pCcC= ,DMP ,PTY= ,CPU=)

C
-

3-16 17329110 A

A task (*TASK) statement precedes a load statement. It establishes run time control
parameters for the next task loaded.

Parameter

ID=

PCC=

DMP=

PRTY=

CPU=

One to eight characters indicating the task identification; this
parameter is optional. If not present, the system default
DUMMYTASK is assigned. The task identification is used to
identify abort messages.

A copy of program control console (PCC), a debug aid, is re-
quested. If PCC is to be used, the PCC parameter is required.
The value assigned to PCC is the logical unit for I/0. The
logical unit must have previously had a CRT assigned to it with
an *EQUIP statement.

Dump control, indicating that all of task memory is to be dumped
upon recognition of an abnormal condition. If the parameter is
omitted, only the contents of the page and operand registers are
dumped.

One to three numeric characters indicating the task priority.

This parameter is optional. It must be a number, n, where

1< n £ 255 for real-time jobs and 10 ng 239 for nonreal-time
jobs. If ng 10 or > 239 for a nonreal-time job, the task priority
is set respectively to 10 or 239. If the parameter is not present
or zero, the system default of 10 is assigned. This value is
passed to the executing task in PARM-+4 (Section 3, Iitial Task
Entry).

Numeric identifier of a CPU in the configuration. Any undefined
value is treated as a default. The default placement of a task is
an operating system determination chosen to level the CPU load-
ing. A nondefault value constrains the execution of the task to
the designated CPU except for ESR processing.

In the instance where the task will be multitasking (that is, calling subtasks), the following
apply (Section 4, Task Manager ESRs):

e If PCC is specified, only one task will be loaded with a copy of PCC. This
task is specified in parentheses after the logical unit number [for example,
PCC = 10 (TASKNAME)]. If no task name is specified, the default is to
assign PCC to the next task loaded. For library tasks, ID must be used
where ID = library task name.

17329110 A

3-17

e If the DMP parameter is specified, the memory of a task and all its subtasks
will be dumped.

A *TASK statement pertains to one and only one *LOAD statement. Therefore, for each
task to which run-time parameters are assigned, a *TASK statement must be included.
Figure 3-3 illustrates a job control deck with three task executions. In the example,

tasks 1 and 3 are assigned run-time controls via their corresponding *TASK statements.
Task 2 would be assigned default run-time controls, since it does not have a corresponding
*TASK statement.

LOAD STATEMENT

%
|/LOAD(1u1,1u2,lu3,1u4)

The load (*LOAD) statement specifies the sources for a binary load. Up to four defined
logical units may be used as parameters of this statement. Programs are loaded from
the assigned units in order of appearance prior to the loading of any binary information
contained on INP. If the parameter list is omitted, the LGO file is assumed for the load
source. When the statement is omitted, the occurrence of a binary deck initiates the load
process. Only one logical unit should be specified when an absolute formatted file is to be
loaded (see Section 6, MPX/OS Loader).

BUILD ABSOLUTE TASK STATEMENT

r?ABs (lu)

The build absolute task (*ABS) statement causes an absolute.copy of a loaded task to be
written on the logical unit specified by lu. The *ABS statement must follow any load com-
mand (*LOAD statement or binary decks) and precede the *RUN statement, if used. The
absolute file is preceded by a header record describing the contents of the file. An abso-
lute file may be used in a task call sequence to decrease the load time of the called task.

RUN STATEMENT

FRUN (parameter list)

The run (*RUN) statement initiates program execution by transferring control to the object
program. This statement is necessary to execute any user-defined task. The *RUN

3-18 17329110 A

3

“

0

17329110 A

*JOB (. . .)
*SCHED (. . .)

*TASK (ID=TASK1,PCC=10,DMP, PRTY=25)

*LOAD(20) Load Task 1
*RUN

*LOAD(30) Load Task 2
*RUN

*T ASK ID=TASK3, PCC=10, DMP, PRTY=26)

*LOAD(40) Load Task 3
*RUN

*EOJ

Figure 3-3. *TASK Control Statement Example

3-19

statement follows the binary decks if the program is on INP. It follows the *LOAD state-
ment if the program is on any other unit. Any parameter list is passed to the executing
task in the PARM region starting at PARM+5 (see Sectlon 4, Initial Task Entry).

JOB TERMINATION

The job termination phase is initiated by one of two means. Normal job termination is
initiated by the job manager upon encountering the *EOJ control statement in the job con-
trol stream. Abnormal job termination is initiated by any task through the ABORT ESR
or by the system executive when one of the abort conditions identified in Appendix D

occurs.

END-OF-JOB STATEMENT

(Fzoi

The end-of-job (*EOJ) statement causes the normal termination of the job. This statement-

is the last statement processed for the job.
ABNORMAL JOB TERMINATION (JOB ABORTED)

When a condition causing abnormal termination occurs, MPX/OS responds with a diagnostic
and task dumps. The dump is according to the format specified on the *TASK statement.
If a *TASK statement has not been included in the job, MPX/OS dumps only the contents
of the task registers. The format of the diagnostic is illustrated in Figure 3-4.

JOB ACCOUNTING STATISTICS

MPX/OS writes the following job-related information on the standard output file after a
job has terminated.

e Job name
® Account number
e Date (mm/dd/yy)

® MPX/OS resident edition number

3-20 ‘ 17329110 A

qof uy
jSe} Yoes
a0y pojeadax

60900000 3IH
¥8€00000 LY
¥1000000 LH
60000000 LX
JA1000020

*s19)5189y Jo Sunsry ja0qy jo sojdwexy °H-¢ oInSig

pafeidsip jou

04100000
00000000
2040000
10000000
00200020

88000000
00000000
$0000000
avooo000
00200020

asyo
pue gz¥0
S891ppe Or}S [enjoy

ssaappe spels amdwod
0} saajurod yoeIs

proye
3{00] 0} ssappe Moqe
Jo sndip om) je 1 ppe

3-21

jjoels Jo sseappe pue - (g
jovls Jo ssaappe jaels - €2
s1 aois18ea 0X I + ssaJppv 1a0qe - DEV0

0000€000 HE000000 02VPAVSY €9000000 86100000 SYU
£0000000 TO6L0000 VE000000 02030203 6SE€SA¥Ey O
00000005 OH

0€v0aedc

20000032 00000000 TOE00000 dALDJ0000
30000000 00000000 OVILATOO0 000600000

00200020 00200020 00200030 00200030 0050S0%0 s1e15130Y oded
10 = SNLVLS HLINL = AWVN JMSY.L
pojroqe qof uaym 3se) Jo sniels .V js®} JO dweu L

17329110 A

Library edition nurﬁber
Time on (hh/mm/ss)
Time off (hh/mm/ss)
Time used (hh/mm/ss.sss)
Facilities not used:

- Core memory

- Scratch segments

- Print lines

- Punch cards

The job accounting statistics are illustrated in Figure 3-5.

3-22

17329110 A

J

G

LT/81/%1 = 440 TNILL

O

ojdwexy SOIISIIRIS SUIUNOOOY pue o8essolN 30QVy °G-€ 2an31I

YLINC = JSVL T0 = HQOD LI0odV 20 = AdAL 1¥0dV JdLrygodyv dor

0000 = YVO
VO0TL = HNIT
g10 = H¥DS
000 = HYOD

aasn ILON SHDYNOSHY
NOILLVINMOANI ONILNNODOV
002°85/00/00 = HINIL GEHEDEDOU«.
g0 = NOILLIQHd A¥vddIT V10 = NOISHIA €0 = NOILLIGH INJJISHY

98/91/%T = NO IINIL LL/2%/€0 = HLVA = *ON *IOOV dDYVINI = HNVN dOr

, ©c , @)

3-23/3-24

17329110 A

EXECUTIVE SERVICE REQUESTS 4

All executive service request (ESR) descriptions follow one basic format illustrated by

Figure 4-1. Each description assumes that the ESR was issued by the monitor call instruc-

tion, MON,R ESRID. R is the first of four registers. The contents of all four registers
are passed to the executive as ESR parameters. ESRID is the name of the executive ser-
vice requested. The name appears in the description title. Some requests pass and/or
receive data through the PARM area. The PARM area is allocated by the loader, the
ESRID values are defined by the loader; they are accessed in the COMPASS code modules
by their declaration as externals, The format of data to pass through registers, through
the PARM area, and through any additional data area is drawn, and the data fields labeled
and explained for each ESR.

ESRs are requested by execution of the MON instruction. This is the only voluntary method
for user and system tasks to request action from the executive. Involuntary entry to the
executive occurs as a result of interrupt recognition and is transparent to the interrupted
task, except for task fault interrupts. Task execution resumes with the instruction follow-
ing the MON instruction for all but a few system ESRs. Task execution resumes at a
specified address for fault execution interruptions if such a return has been requested;
otherwise, the job is terminated.

Register names specified in calling sequences using an executive service routine are only
examples. (See Appendix H for register conventions.)

FILE MANAGER ESRs

The following file manager ESRs provide the executing task with the same mass storage
management facilities available to the batch job. The batch job control statements have the
same names as the file manager ESRs. For example, after processing file manager
returns a code to PARM. A nonzero code indicates an error response (see Appendix D).

17329110 A 4-1

jewiao uondrroseq YSA I~ 9anSig

‘Paje)s 9SIMISYJ0 SSIUN [BUIIO9P Ul possaxdxd aae sonjea [y ‘9I9Y
pajussaxd axe uopdixosep YSH O1SBQ O} WIOJJ JUSPIA® JOU pUB SUOT}
-d1xosep proy oy} Aq paJIsaA0d Jou SIUTBIISUOD IO SUTY o8eSn [BUONIPPY

*0I9Z M PAI[J 9 PINOYS PIOLI “YuB[q 1JO1 A[[BUIIOU 9IB SBAIIB pOsSNU()
*pay1oads jou s1 9Z1S JI9Y} “J101[dXo 9JB SUOISIAIPANS 31q [B

SHILON

J1 pue ‘soz1s P[OY PIBPUL)S YA SPIOM Ul SULINDOO USYM ‘SPIeYy Ndg 8d-1d
*gode asuodsod TBWLIOU SAIINOIXH WIVd
*S9z1s proy oY} Ayroads
pmom suonjdLIosop JI19Y], ‘SPIOY 9Z1S (PIepur)suou) OJqBLIBA 99T, ZA-0A
*(s9z1s pxepuejsuou jo
uoyusw 31O1dxe ou puB SUOISIAIPGNS INO) SPAY (319-8) I9YOBILYO INOJ €D0-0D
*(sez1s paepugjsuou jo
uoyusuwr 3101[dXe Ou puB SUOISIAIPQNS OM}) SP[OY (31q-9T) PIOM-J[EY OMT, TH-0H
*(suoisiAlpgns ou) onfeA xajoweaed paom-[mJg M
*aA1NOSXe oY} 03 passed son[eA J9}si3ax Jo 39S OYL a
uoyuaq Jojowrered
Ll9|syivi|ele|ty|o
0-+HNYVd dig|gjdld|g|d|d fewiaoy WYVJ
e+d SA TA 0A
o+d €D 40 0 0D
+4 TH 0H
0+ M ewraoy YSH

*sBumeap oy} SMOT[O] PIO1} PoOIaqe] yoes jo uoneue[dxe ue pue porage] aIe SpIolf
Sumeap ayy, *se) oY) puB SANNOSXd OY} UdAM)aq poassed elep e Jjo Suimeap e

£q pamoioy st uondirossp usylamM Y], °‘pojussoxd Suidq 3sonbax 901AIOS 9AIPNOOXD
9y} jo uonouny oiseq pue suondo ayj surerdxe uondixossp oy} Jo uorjxod STYT,

J3141INIAl AS3 ‘anisa

BOIY
9J0N

-

, suopdLIose(
: PIoLI

\

/—V. SPIeTL
po[eqeT] yum

sSumeaqg

7’

uonydirroseq
UuontIM
‘opILL

asd

v

&

17329110 A

ALLOCATE, ALLOCATE MASS STORAGE FILE SPACE

(\\ This ESR reserves space in the mass storage system and builds a file label entry in the
system label directory. Once the file is successfully created, it remains allocated until
released (see RELEASE, Release Mass Storage File Space in this section).

ESR format ADDRESS R+0
ADDRESS format FN (0-3) ADDRESS+0
FN (4-7) ADDRESS+1
FN (8-11) ADDRESS+2
FN (12-13) ED ADDRESS+3
OWNER "ADDRESS+4
ACCESS ADDRESS+5
USE S NOBLKS ADDRESS+6
BLKSIZE DT ADDRESS+7
LE or DID, (0-3) ADDRESS+8
(““\ DID; 4-17) ADDRESS+9
P
END OF LIST ADDRESS+n
Parameter Definition
ADDRESS The full-word address of the first word of a file definition
FN Fourteen-character string that defines the file name
ED Two-character string that defines the file edition
OWNER Four-character string that defines the file owner
ACCESS Four-character string that defines the file access privacy key
USE Binary value that defines the allowed file usage:
Entry Indicates
=0 File may be opened for read/write use

C ”

17329110 A 4-3

File may be opened for read use only

Parameter (Cont.)

S

NOBIKS

BLKSIZE

DT

DID

LE

Definition (Cont.)

Binary value defining acceptable segmentation mode for file
allocation:

Entry Indicates

=0 File may be allocated in segments

=1 File may not be segmented when allocated

Binary value defining the size of the file in each logical block.
Value may be from 1 to 65,535.

Binary value defining the number of words in each logical block.
Value may be from 1 to 65,535.

Binary value defining a specific device type to be used for file
allocation. The defined values and devices represented are as
follows: '

Entry Indicates

=0 System device

=1 Control Data 9425 Cartridge Disk Drive

=2 Control Data 844 Disk Storage Unit

=3 Control Data 9427 Cartridge Disk Drive

=4 Control Data 9760/9762 Storage Module Drive

Eight-character string defining the device or devices to be used for .
file allocation

The list-end flag:

Entry Indicates
= -1 The list has ended
-1 Another DID specification begins

17329110 A

-.\F p

‘An example of a calling sequence is as follows:

O LDA,RO - ALLOCTBL Define file
MON, RO ALLOCATE Call
™ LD,RT i)ARM
TST,NE R7,X0, ERRPROC Test for errors
ALLOC:I'BL TEXTC 14, FILE-NAME File name
TEXTC 2,01 Edition
TEXTC 4,0WNR Owner
TEXTC 4, AKEY Access key
VFD 8/0,8/0,16/1000 Read/write, segment, 1000 blocks
VFD 16/480,16/0 480-word block, system device
TEXTC 8, SYSTEMO01 Device identification
Q GEN -1 List has ended

NOTE: A maximum of eight devices and between 20 to 40 segments may be specified
for one file.

CLOSE, CLOSE MASS STORAGE FILE SPACE

The CLOSE ESR clears the file logical unit definition, and the job no longer has access to
the file. When the file is open for write access, the CLOSE ESR allows other tasks to
obtain access to the file. CLOSE accomplishes two things: it frees a logical unit number,
and it may remove restrictions on file usage. Since all files are closed by the system
when a job terminates, the CLOSE ESR is used for overall efficiency.

ESR format LU R+0
Parameter Definition
LU Number of logical unit to be closed

C

17329110 A 4-5

An example of a calling sequence is as follows:

LDI, R1
MON, R1
LD, R2

TST,NE

10 Logical unit number
CLOSE Call
PARM Check for errors

R2, X0, ERRORPROC

MODIFY, MODIFY MASS STORAGE FILE DEFINITION

The MODIFY ESR is used to alter the file label definition of an existing, closed file. This
ESR can be used to expand an existing file or to change the control parameters of the file.

ESR format

ADDRESS format

4-6

ADDRESS

OFN (0-3)

OFN (4-7)

OFN (8-11)

OFN (12-13) OED

OOWNER

OAK

NFN (0-3)

NFN (4-7)

NFN (8-11)

NFN (12-13) NED

NOWNER

NAK

718 15|16

USE S NOBILKS

31

LE or DID, (0-3)

DID, (4-7)

.
»
L]

END OF LIST

R+0

ADDRESS+0
ADDRESS+1
ADDRESS+2
ADDRESS+3
ADDRESS+4
ADDRESS+5
ADDRESS+6
ADDRESS+7
ADDRESS+8
ADDRESS+9
ADDRESS+10
ADDRESS+11

ADDRESS+12
ADDRESS+13

ADDRESS+14

L
L]
o

ADDRESS#!

17329110 A

J

O

C

Parameter

ADDRESS

OFN

OED

OOWNER

OAK

NFN

NED

NOWNER

NAK

USE

NOBILIKS

17329110 A

Definition

Full-word address of the first word of the file-definition
modification specifications

Fourteen-character string that is the name of the file to be
redefined (old file name)

Two-character string that is the edition number of the file to be
redefined (old edition)

Four-character string that is the file owner identification of the
file to be redefined (old owner)

Four-character string that is the access key of the file to be
redefined (old access key)

Fourteen-character string that defines the new file name (no change
if blank)

Two-character string that defines the new edition number of
the file (no change if blank)

Four-character string that defines the new owner identification
of the file (no change if blank)

Four-character string that defines the new access key for the
file (no change if blank)

Bifnary value that defines the (new) allowed file usages:

Entry Indicates
=0 File may be opened for read/write use
=1 : File may be opened for read-only use

Binary value defining the permitted segmentation mode for the
added file space:

Entry Indicates
=0 Addition may be allocated in segments
=1 Addition may not be segmented

Binary value defining the number of blocks to be added to the
file. Total file allocation may not exceed 65,535 blocks.

Parameter (Cont.)

Definition (Cont.)

LE The list-end flag: N
s
Entry Indicates
= -1 The list has ended
£ -1 Another DID specification begins
DID Eight-character string defining the device or devices to be used
for the expanded blocks
An example of a calling sequence is as follows:
LDA,RC MODLIST Address of mod#y list
MON, RC MODIFY Call
LD, X7 PARM Check for errors
TST,NE X7,X0, ERRPROC
MODLIST TEXTC 14, FILE-NAME File name - old N
TEXTC 2,01 Edition - old -
TEXTC 4,0WNR Owner - old
TEXTC 4,AKEY Access key - old
TEXTC 14, FILE-NAME Keep same file name
TEXTC 2,02 New edition
TEXTC 4, OWNR Keep same owner
TEXTC 4,NKEY New access key
VFD 8/0,8/0,16/1000 Read/write, segmented, add 1000 blocks
TEXTC 8, SYSTEMO2 Device for addition
GEN -1 | List has ended
NOTE: A maximum of eight devices and 20 to 40 segments may be specified for one .
file. £
L

4-8

17329110 A

OPEN, ESTABLISH ACCESS TO MASS STORAGE FILE

(ﬁ\ The OPEN ESR is used to prepare an existing file for data transmission by locating the
file and requesting the device to be put on-line, if necessary. .

ESR format ADDRESS | R+0
LU R+l
ADDRESS format FN (0-3) ADDRESS+0
FN 4-7) ADDRESS+1
FN (8-11) ADDRESS+2
FN (12-13) ED ADDRESS+3
OWNER ADDRESS+4
AK . ADDRESS+5
USE BLOCK ADDRESS+6
Bit 0 7 8 _ 15 16 31
Parameter Definition
C ADDRESS Full-word address of the first word of the file identification
specification
LU Number of the logical unit to be assigned to the file being opened
FN Fourteen-character string that is the name of the file to be opened
ED Two-character string that is the edition number of the file to be
opened
OWNER Four-character string that is the owner identification of the file
AK Four-character string that is ‘the access key of the file
USE Binary value defining the intended use of the file during this access.

The file-label definition field for the file defines the allowed access
modes. If the file-label definition allows only read usage, the open
must specify read-only use. The three values allowed for USE are:

Entry Indicates
(} =0 File to be used for read/write

17329110 A ' 4-9

Parameter (Cont.)

BLOCK

An example of a calling sequence is as follows:

OPNTBL

4-10

Entry (Cont.)

Definition (Cont.)

Indicates (Cont.)

=1 File to be used for read only

=2 File to be used for read/write, set the highest

block written count to 0 (next block written will
be the first block of the file)

The first block to be read/written is defined by the value of block:

LDA,R3
LDI, R4
MON, R3
LD, X7

TST,NE

TEXTC

TEXTC

TEXTC

TEXTC

VFD

=0

#0

Entry

Indicates

First block of file to be accessed next

The number of the block to be accessed next

(The device containing block number BLOCK is
opened in a partial open of the file)

OPENTBL
10

OPEN
PARM

X7,X0, ERRPROC

14, FILE-NAME
2,02

4, 0WNR
4,NKEY

8/0,8/0,16/0

Address of open parameters

Logical unit number

Check for errors

File name
Edition
Owner
Access key

Read/write, access first block

17329110 A

{é‘,
e~

£
U

RELEASE, RELEASE MASS STORAGE FILE SPACE

("“\ The RELEASE ESR is used to release some or all of the space allocated to a file.

J
ESR format ADDRESS R+0
ADDRESS format FN (0-3) ADDRESS+0
FN (4-7) ADDRESS+1
FN (8-11) ADDRESS+2
FN (12-13) ED ADDRESS+3
OWNER ADDRESS+
AK ADDRESS+5
NOBILKS ADDRESS+6
Parameter Definition
ADDRESS The full-word address of a file release specification
FN Fourteen-character string that is the name of the file
O ED Two-character string that is the edition number of the file
OWNER Four-character string that is the owner identification of the file
AK Four-character string that is the access key of the file
NOBIKS The number of blocks by which the file is to be reduced in lkength.

If NOBLKS = -1, all blocks beyond the highest block written are
released. If NOBLKS = 0, all blocks are released

An example of a calling sequence is as follows:

LDA,RO RELTBL Address of release parameters
MON, RO RELEASE Call
LD, X5 PARM Check for errors

C

17329110 A ' 4-11

TST, NE X5,X0, ERRPROC

B

RELTBL TEXTC 14, FILE-NAME File name
TEXTC 2,02 Edition
TEXTC 4, OWNR Owner
TEXTC 4,NKEY Access key
GEN -1 Release unused space

STANDARD UNIT

Standard units such as INP, OUT and PUN (see Section 3, EQUIP Assignment) may be
accessed by the user. The user should access these units through blocker/deblocker with
PICK and PACK (see Section 6). The block pointer, record headers and trailers, block
numbers, etc. are defined for the job by the system (block size is 480 words).

Using direct physical I/O ESRs may be destructive to the job.

PHYSICAL 1/0 ESRs

The following ESRs are more extensive than the functions provided at the batch-job control-
statement level. All of these ESRs may be used on unit record devices and mass storage
devices. The ESRs are summarized in Table 4-1.

BKSP, BACKSPACE LOGICAL UNIT ONE RECORD

The BKSP ESR repositions the logical unit before the immediately-preceding record. If
the logical unit is at the beginning of the file, no action is taken.

ESR format LU R+0
Parameter Definition
LU Number of the logical unit to be repositioned -

4-12 ' ‘ 17329110 A

TABLE 4-1. PHYSICAL 1/0 ESRs AS A FUNCTION OF DEVICE TYPE

0 Routine - Operation Applicable Unit Mass Storage Device
- Record Devices* Operation
READLU Data transfer from MT,CR,TT,DP,CT Read record
logical unit
WRITLU Data transfer to MT,PR,CP,TT,DP, | Write record
logical unit CT,PL
WEOF Write end-of-file MT,CP,CT Set highest block written
count equal to current
block position
ERASE Erase 6 inches of MT,CT Illegal
tape
SEOF Search for end of MT,CT Set next block number
: file : to block 1 or block
count +1
UTYP Return hardware MT,PR,TT,CT,CR, | Return hardware type
type CP,DP,PL and file attributes
BKSP Backspace one MT,CT Reduce the next block
record ' number one block
O UST Await completion MT,PR,TT,CT,CR, | Await completion of
of 1/0 CP,DP,PL 1/0
REWD Reposition to MT,CT Set the next block num-
starting point ber to first block
UNLD Unload unit MT NOP
BSY Return busy/not- MT, PR, TT,CT,CR, | Return busy/not-busy,
busy status CpP,DP,PL status
ULOC Locate NOP Set the next block num-
ber to specified block
SELDEN Select density MT NOP
SELTRK Select track CT NOP
*MT = Magnetic Tape CR = Card Reader
PR = Line Printer CP = Card Punch
TT = Teletypewriter DP = CRT Display
CT = Cartridge Tape PL = Plotter

NOTE: MPX/0S performs error recovery on standard peripheral units when an error
is detected during data transmission (see Appendix E). If the error is not re-
() coverable, the status indicates the error type (Section 4, UST, Unit Status Test).

LY

17329110 A | 4-13

An example of a calling sequence is as follows:

LDI, R4 15 Logical unit number \/f ')D
A 4

MON, R4 BKSP Call

BSY, BUSY LOGICAL UNIT STATUS TEST

The busy/not-busy status of a logical unit may be tested using the status test ESR, BSY.
The status is not a function of a particular I/O request, but rather of the umit itself. The
requestor is immediately placed on the ready list after the request is processed.

ESR format LU R+0
PARM format | STATUS PARM+0
Parameter Definition
LU Number of the logical unit to be tested
STATUS Unit busy/not-busy status code: SN
w
Entry Indicates
=0 Unit is not busy
£0 Unit is busy
- An example of a calling sequence is as follows:
LDI, R2 15 Logical unit number
MON, R2 BSY Call
LD, X5 PARM Check status

T

4-14 17329110 A

ERASE, ERASE MAGNETIC TAPE SEGMENT

faulty material.

ESR format

Parameter

LU

LU

Definition

C\; The ERASE ESR erases approximately 6 inches of magnetic tape in an effort to bypass

R+0

Number of logical unit to which the magnetic tape is assigned

An example of a calling sequence is as follows:

LDI,RA 33 Logical unit number

MON, RA ERASE Call

READLU, READ RECORD FROM LOGICAL UNIT

The READLU ESR initiates a data transfer from the specified logical unit to a buffer allo-

‘ cated in the issuing task address space.
‘) placed on the ready list.

transmission is complete.

ESR format

Parameter

ADDRESS

LENGTH

C

17329110 A

ADDRESS

LENGTH

MODE

LU

Definition

R+0
R+1
R+2
R+3

The address of the buffer that is to receive the transmitted
record. The value is an 18-bit byte address or a 16-bit full-

word address (see MODE definition on next page).

The number of elements to be transmitted to the buffer. The
number is a byte or word count depending on the specification

of MODE

After the read is initiated, the issuing task is
The UST or BSY ESRs are provided to determine when the

4-15

Parameter (Cont.) Definition (Cont.)

MODE : Selects the data element size and recording method of the record:
Entry Indicates
=0 ASCII record, word format
=16 ASCII record, byte format
=32 Binary record, word format
LU Number of the logical unit to be read

NOTES: 1/ The maximum buffer size is 4096 words (16,384 bytes).

2/ T LENGTH is specified as zero, the maximum length buffer
is transmitted.

3/ I LU idenfifies the CRT, a LENGTH value of zero is used to request
that the manual interrupt be enabled. The detection of a manual inter-
rupt from the operator is accomplished with the UST ESR (returns key
code value of nonzero).

An example of a calling sequence is as follows:

LDA,RO BUFF Address of data
LDI, R1 20 Number of words
LDI, R2 0 ASCII record, words
LDI,R3 10 Logical unit number
MON, RO READLU Call

REWD, REWIND LOGICAL UNIT

The REWD ESR repositions the logical unit to the initial position (magnetic tape loadpoint,
disk file first block).

ESR format LU R+0

®

4-16 17329110 A

AN

C

Parameter Definition
LU Number of the logical unit to be repositioned

An example of a calling sequence is as follows:
LDI,RB 21 Logical unit number

MON, RB REWD Call

SEOF, SEARCH FOR END OF FILE

The SEOF ESR initiates a search operation (forward or backward) on a specified logical
unit for the next file marker, initial point of the file (for backward searches), or the end
of the file (for forward searches). The issuing task is scheduled for execution after the
search is initiated. The issuing task must issue a BSY or UST ESR to determine when
the operation is complete. :

ESR format LU R+0
DIRECTION R+1
Parameter Definition
LU Number of the logical unit to be repositioned
DIRECTION Flag word that defines the direction of the search:
Entry Indicates
=0 Search forward
=1 Search backward

An example of a calling sequence is as follows:

LDI, RO 10 Logical unit number
LDI,R1 0 Search forward
MON, RO SEQOF Call

17329110 A E ‘ 4-17

SELDEN, SELECT DENSITY

The SELDEN ESR initiates a select density on the specified logical unit.

ESR format LU R+0
DENSITY R+1
Parameter Definition
LU Number of logical unit to which the tape is assigned
DENSITY Density control:
Entry Indicates
=0 Low density (656 bpi NRZI - 667)
=1 High density (800 bpi NRZI - 667/669)
=2 Hyper density (1600 bpi NRZI - 669)

An example of a calling sequence is as follows:

LDI,RA
LDI,RB

MON, RA

SELTRACK, SELECT TRACK

11
1

' SELDEN

Logical unit number
Select 800 bpi

Call

The SELTRACK ESR initiates a select track on the specified logical unit.

ESR format

LU R+0

TRACK R+1

4-18

17329110 A

J

Parameter

C =

TRACK

Definition
Number of logical unit

Track control:

Entry Indicates
=0 Select track 0
=1 Select track 1
=2 Select track 2
=3 Select track 3

An example of a calling sequence is as follows:

LDI, RO 10 Logical unit number
LDI, R1 3 Select track 3
MON, RO SELTRACK Call

N
C' ULOC, LOCATE BLOCK ON LOGICAL UNIT

The ULOC ESR sets the next block number of a logical unit to a requested block. If the
requested block number is greater than the allocated area, the next block number is set to
the last block written +1.

ESR format

Parameter

LU

NUMBER

C

17329110 A

LU

NUMBER

Definition

Number of the logical unit to be positioned

Number’ of the block to which the unit is to be set.
identified will be the next block read or written.

R+0
R+1

The block

NUMBER = -1

is used to request the NBN to be set to the last block written +1.

4-19

An example of a calling sequence is as follows:

LDI,R3 10 Logical unit number
LDI, R4 24 Block number ‘
MON, R3 ULOC Call

UNLD, UNLOAD LOGICAL UNIT

The UNLD ESR rewinds and dismounts a magnetic tape reel. If applied to a disk file, the
ESR is functionally a nonoperation. Note that the magnetic tape drive is still assigned to
the job and to the unit number.

ESR format LU R+0
Parameter Definition
LU Number of the logical unit to be dismounted

An example of a calling sequence is as follows:
LDI,R3 24 Logical unit number

MON, R3 UNLD Call

UST, UNIT STATUS TEST

The status of a logical unit for which the user has an operation in progress may be tested
using the UST ESR. The request places the issuing task in the I/O WAIT status until the
end-of-operation interrupt has been processed on the unit, but only if the issuer has a re-
quest pending for that unit; otherwise a null status (=0) is returned in PARM. The status
is returned in PARM and PARM+1,

ESR format LU R+0

LY

4-20 17329110 A

-

O PARM format

C

20 21 24 25 26 27 28 29 30 31
I |E|E E|N
Unused I0C O|O|M|OJ|R PARM+0
EJA]D F
PARM+1

Parameter Definition
LU Number of the logical unit to be tested
I0C Four-bit field (bits 21 through 24) defining the status of the IOC

to which the unit is attached. Bit interpretation is device dependent

(see Table 4-2). (Also, see MP-60 Computer System Peripheral

Reference Manual, CDC Publication No. 14063900.)

TABLE 4-2. BIT INTERPRETATICN PER DEVICE TYPE
Bit

Device 21 22 23 24
Magnetic Load- Lost Hardware
tape EOT point data error

SEEK Address Lost Hardware
Disk error error data error
Line Out of paper/ Hardware
printer paper fault N/A N/A error
Card Hopper Hardware
punch N/A N/A empty error
Card Input tray Hardware
reader N/A N/A empty error
CRT
display FUNCTION KEY CODE
Cartridge Beginning Lost Hardware
tape End-of-tape of tape data error

17329110 A

*

4-21

Parameter (Cont.) Definition (Cont.)

IDE : Irrecoverable data error flag (bif 25): /(}D
Entry Indicates b
=0 No error
=1 Error l(bit 31 also set)

EOA End-of-allocated blocks (mass stofage files, only) or irre-

coverable memory error flag (bit 26):

Entry Indicates
=0 Not end-of-allocated blocks
=1 End-of-allocated blocks (bit 31' also set)
EOD End-of-device (system use for mass storage) or EOT (magnetic

tape files) flag (bit 27):

Entry Indicates

=0 Not end-of-device .

=1 End-of-device (bit 31 also set) ~
M Mode of transmission flag (bit 28):

Entry Indicates

=0 ASCII transmission

=1 Binary transmission
EOF End-of-file flag (bit 29):

Entry Indicates

=0 Not end-of-file

=1 End-of-file (bit 31 also set)

4-22 17329110 A

Parameter (Cont.) Definition (Cont.)

C NR Not ready flag (bit 30):

Entry Indicates
=0 Unit ready
=1 Unit not ready (bit 31 also set)

R Reject flag (bit 31): |
Entry Indicates
=0 Request accepted
=1 Request rejected

ES Extended status word. Definition is device dependent. A complete

explanation can be found in the MP-60 Computer System Peripheral
Equipment Reference Manual (CDC Publication No. 14063900)

An example of a calling sequence is as follows:
0 LDI1, H4 10 Logical unit number

MON, H4 UST Call

UTYP, RETURN LOGICAL UNIT HARDWARE TYPE

The UTYP ESR obtains the hardware type of a specified logical unit. In addition, if the
device type is a disk file, additional file description information is returned.

NOTE: Standard files such as INP, OUT, and PUN will be defined as mass storage files
and not as card reader, printer, or punch.

ESR format LU R+0

C

17329110 A 4-23

PARM format

Parameter

LU

HT

WORDS

LBN

4-24

HT

WORDS

NBN

LBN

w =

Number of the logical unit for which information is

Definition

Hardware type definition code:

Entry

=12

Indicates
No assignment
Disk
Magnetic tape
Card reader
Card punch
Line printer
Keyboard/display
Teletypewriter
Cartridge tape
Plotter

Magnetic tape (7-track)

PARM+0
PARM+1 e
PARM+2 L
PARM+3
PARM+4

to be returned

The number of words per block of file. Returned for HT=1 only

The number of the next block to be read or written (that is, the

current block position of the file).

~ The number of the last block written for the file.

HT=1 only

Returned for HT=1 only

Returned for

®

17329110 A

.

Parameter (Cont.) Definition (Cont.)

O - MS Bit 0, if set means the device is a mass storage unit (disk)

T Bit 1, if set means the device is a tape (9-track, 7—track;
cartridge, cassette, etc.)

B Bit 2, if set means the device is a blocked device

1 Bit 3, if set means the device is an input-only device

0] Bit 4, if set means the device is an output-only device

A Bit 5, if set means the device is an ASCII-only output device

An example of a calling sequence is as follows:
LDI, X7 11 Logical unit number

MON, X7 UTYP Call

WEOF, WRITE END-OF-FILE MARK

(:l) The WEOF ESR causes an end-of-file mark to be written on the specified logical unit
(magnetic tape), or sets the last block written value to the current block number (disk

file).

ESR format LU R+0
Parameter Definition
LU Number of the logical unit to be written

An example of a calling sequence is as follows:
LDI,R3 33 Logical unit number

MON, R3 WEOF Call

17329110 A . 4-25

WRITLU, WRITE RECORD TO LOGICAL UNIT

The WRITLU ESR initiates a data transfer to a specified logical unit from a buffer in task \/(
memory. Once the data transfer is initiated, the issuing task is again placed on the ready
list for continued execution. The task issues a BSY or UST ESR to determine when the
transfer is complete.

ESR format ADDRESS R+0
LENGTH R+1
MODE R+2
LU R+3
Parameter Definition
ADDRESS The address of the first word or the first character of the buffer
to be written. The address type is determined by the MODE
parameter
LENGTH The number of words (characters) to be transferred from the

buffer. LENGTH values may be from 1 to 4096 words (1 to 16,384
characters). A value of 0 is treated as the maximum field-length
value. The count type (word versus character) is determined by the
MODE parameter i

MODE The data transmission mode (format) code:
Entry Indicates
=0 ASCII records in word format are transmitted
=16 ASCII records in character format are transmitted
=32 Binary records in word format are transmitted
LU Number of the logical unit to which the data is transmitted

An example of a calling sequence is as follows:

LDCA,RO BUFA Character address of buffer
LDI,R1 48 Number of characters

LDI,R2 16 ASCII records in character format
LDI,R3 15 Logical unit number

MON, RO WRITLU Call

4-26 + 17329110 A

C

TASK MANAGER ESRs

The following descriptions explain the relationships between tasks. The initial task entry
description explains the relationship between the job manager and tasks that the job manager
brings into execution. The CALL ESR description is used by the job manager in response
to the *LOAD/*RUN, statement sequence. The remaining descriptions are an extension of
the capabilities provided at the batch-job level.

When a task is loaded and placed in execution, a library routine (TSKMON) is loaded with
the task and performs a return jump to the task's primary entry point. If the task exits
through the primary entry point, TSKMON executes a return with release (the task is re-
leased from the system).

For example: MAIN UJP *k (primary entry point)

.
L]
*

UJI MAIN (task exits through TSKMON)

Alternately, a task may execute its own return operation with or without release. If a
task returns without release, and is called again, it regains control after the RETURN
monitor call. Such considerations only apply to tasks which multiprogram with each other.
Figure 4-2 illustrates a multiprogramming relationship between tasks in a job. In Figure
4-2, task A calls task B and multiprograms with it. Task B calls task C and passes its
common memory space. Task B may not multiprogram with task C. While each task has
its own PARM area, they share access to the standard files (INP, OUT, and PUN). These
files and their data must be accessed through the BLOCKER/DEBLOCKER package.

INITIAL TASK ENTRY

Upon entering a task from the job manager, the PARM region contains data associated

with the task call. This includes task transfer addresses and task name parameters. For
example, a task name control statement, such as *TST (=01, L, X, R), would produce the
following data in the PARM area.

17329110 A) 4-27

Task A

Y

Program

Task A

Common

4-28

INP, OUT, PUN - I
» -
Buffers
r
PARM B PARM C
Task A Calls Task B Task B Calls Task C
Task B Program Task C Program
"//"\7\\'
‘\\ 7
Task B/C
—_—p Common e
Figure 4-2, Multiprogramming Tasks N

17329110 A

PARM format EP 1 PARM+0
EP 9 PARM+1
EP 3 PARM+2
EP 4 PARM+3
PRI PARM-+4
I = 0 1 PARM+5
’ L ’ X PARM+6
’ R ETX PARM+7
Parameter Definition
EP Entry-point addresses obtained from TRA loader directives. The
first four encountered are saved. Execution begins at EP 1
PRI Priority of the task
ETX End-of-text (03) control character. The parameter string begins

in PARM+5. The end is defined by the ETX character

ABORT, VOLUNTARY JOB ABORT

The ABORT ESR causes the job to enter the abort termination sequence. This sequence
results in the production of abort dumps for all active tasks, the release of all job re-
sources, the initiation of post processing of the standard output and standard punch files,
and the removal of the job from the system. (This same sequence is entered upon the
occurrence of task fault conditions for which the task has not requested return of control).

An example of a calling sequence is as follows:

MON, RO ABORT Call

17329110 A) 4-29

CALL, ESTABLISH AND EXECUTE TASK

The call function is performed by MPX/OS for the user whenever a *LOAD, *RUN control (}
statement is processed by the job manager. In a multiprogramming (or multiprocessing/
multiprogramming) structure, the first task is placed into execution in this mamner. Addi-

tional tasks are placed in execution by the user through the CALL ESR.

A task (the caller) that requires execution of some other task (the callee) issues a CALL
ESR to establish the task and initiate its execution. The caller has the options of passing
caller common to the callee, and/or of passing a copy of caller registers to the callee,
and/or passing up to 40 words of parameter information through memory to the callee. If
the caller does not pass common and does not expect to receive parameters to be returned
from the callee, the caller also has the option to continue execution concurrent with the
callee or to await the return of the callee before continuing execution. The caller may use
the DWAIT or TSTATUS ESRs to effect synchronization with the callee(s). The caller may
issue a maximum number of CALL ESRs as determined by the system configuration. Any
attempt to exceed the maximum will cause the job to be terminated.

The CALL ESR may be issued with the callee in one of three states: nonexistent, dormant,
or active. If the callee is active, the caller may elect to be scheduled by priority for
connection to the callee or the caller may elect to have the CALL ESR rejected. This

call status is returned in PARM. If the callee does not exist, it is established by the
loader and placed on the ready list. If the callee is dormant, it is simply placed on the
ready list.

The caller cannot be placed on the ready list for concurrent execution until the callee is NS
placed on the ready list. During callee loading, or while awaiting access to an active

callee, the caller has a CALL status. If no TCT is available, the task is assigned a

TCT wait status. After the call connection is complete, the caller goes to the callee wait

status until the callee returns or goes to the ready status for concurrent execution.

ESR format TID (0-3) R+0
TID (4-7) R+1
LU(1) LU@2) LU@3) LU@) R+2
Cl|C|CI|Q|R CPU PRI NPRMS R+3
P|l|A|WI|R |P
Bit 0 1 2 3 4 5-7
PARM format STATUS PARM+0
Parameter Definition
TID Eight-character task name. This task identifier is maintained by

MPX/0S for use in DWAIT and TSTATUS ESRs {’A\
i/
4-30 17329110 A

Parameter (Cont.)

C =
e

Cp

CA

QR

C

17329110 A

Definition (Cont.)

Logical unit numbers of files to be used as loader source if the
callee must be loaded. The logical unit number values are ex-
pected to be in the range of 1 to 63. Out-of-range values are
ignored. The loader examines the bytes in R+2 from left to right
and attempts to load from all units with in-range values. The load
terminates after all four bytes have been processed or after pro-
cessing an ABS file. (Loading an ABS file overrides any pre-
viously loaded material.) An ABS file is recognized as such from
the contents of the file header record :

Common pass flag (bit 0):

Entry Indicates
=0 Caller common not passed to callee
=1 Caller common passed to callee

Common access flag (bit 1):

Entry Indicates
=0 Common passed with read/write access
=1 Common passed with read-only access

Callee wait flag (bit 2):

Entry Indicates
=0 Caller waits for callee completion to continue
=1 Caller can continue execution when call connection

is complete

Queue/reject flag (bit 3):

Entry Indicates
=0 Caller should be queued by priority for access to

active callee

=1 Call should be rejected if callee is active

4-31

Parameter (Cont.)

RP

CpPU

PRI

NPRMS

STATUS

Definition (Cont.)

Register pass flag (bit 4): ()
Entry Indicates
=0 Copy of caller registers not passed to callee
=1 Copy of caller registers is passed to callee

CPU designation. Valid values are 0 to the number of processors
in the configuration. The value 0 requests default assignment.
Values 1 through n require the task execution to occur on pro-
cessor number CPU (bits 8 through 15).

Priority designation. Valid values for real-time jobs are 1
through 255, and for nonreal-time jobs are 10 through 239. If
the priority definition is outside of the allowed range, the value
is reset to the nearest permitted value. If the priority is 0, the
callee assumes the priority of the caller (bits 16 through 23).

Defines the number of parameter words to be passed to the callee.
Maximum value is 40, a 0 value indicates that no words are

passed. The parameter words are moved from caller memory

area PARM+5 through PARM-+4+NPRMS to callee memory area P,
PARM+5 through PARM-+4+NPRMS [see Initial Task Entry in this \)
section (bits 24 through 31)]. T

ESR completion status is returned in PARM as follows:

Entry Indicates
= =1 Call was rejected (callee active)
=0 Call was successfully completed

An example of a calling sequence is as follows:

4-32

LDD,RO TID Task name

LD,R2 LUTBL Logical unit number
LD,R3 CONTRL

MON, RO CALL CALL

O

17329110 A

LD,HO PARM Check status

C z

TID TEXT 8, TASKIDNT

LUTBL VFD 8/LU1,8/LU2,8/LU3,8/LU4

CONTRL VFD 1/CpP,1/CA,1/CW,1/QR,1/RP, 3/0,8/CPU,
8/PRI, 8/NPRMS

NOTES: 1/ A callee may not call its caller nor may a caller call itself (circular
calls).

3/ Caller must await callee completion if common is passed.

§/ Caller must await callee completion if parameters are expected on
return of callee.

i/ A user attempting to execute two or more tasks concurrently and share
the same logical unit between the tasks must exercise caution. For
example, if TASKA and TASKB are executing concurrently and both are
performing I/O on the same unit, the following conditions can occur:

O) a) TASKA requests I/O on the unit, making the unit busy.

b) TASKB requests I/O on the unit but is threaded against the unit
due to TASKA request.

c) TASKA I/O is completed, and the TASKB request is issued.

If TASKA requests unit status (UST), TASKA will receive a 0 (null)
status because the I/O operation is not of TASKA. The safest ap-
proach to this type of concurrent usage problem is to develop a third
task, TASKC, through which all job I/O on the shared file is routed.

L4

_§/ Core scheduling for tasks within a job should be treated as if the tasks
occupy totally separate areas of memory, even if common is passed.
For example, assume that TASKA calls TASKB and passes common, that
TASKA requires two pages of memory, that TASKB requires two pages
of memory, and that common area is two pages of memory. It would
appear that the core requirement would be six pages of memory. How-
ever, the following sequence occurs.

a) TASKA is loaded and is put into execution. Four pages of memory
(two program and two common pages) are in use.

C

17329110 A ' | C 433

b) TASKA calls TASKB, passing common. The loading process for
TASKB requires three new pages: two for TASKB program code
and one for common. Seven pages of memory are now allocated N
for the job. \&)
c) TASKB releases its common pages to accept the common pages
from TASKA. Six pages of memory are now in use by the job.

6/ The job must schedule seven pages of memory, even though six pages
are sufficient to run the job.

DWAIT, DEFERRED WAIT

A task that has called one or more callees and is executing concurrent with them may reach
a point beyond which it should not continue until one or more of its callees have returned.
The caller uses the DWAIT to defer the wait for callee completion until the most opportune
time. By issuing a DWAIT ESR, the CPU becomes available for reassignment to another
task, possibly a task for which the caller is waiting.

The DWAIT can specify one or more tasks. When any task on the wait list issues a
RETURN ESR, the caller is placed on the ready list. If all tasks in the wait list have
already returned, the caller is immediately rescheduled for execution.

VAN
ESR format ADDRESS R+0 N
PARM format STATUS or RTID (0-3) PARM+0
RTID (4-7) PARM+1
ADDRESS format TID L (0-3) ADDRESS+0
TID, (4-7) ADDRESS+1
LE or TID, (0-3) ADDRESS+2
TID, (4-7) ADDRESS+3
LE or TID, (0-3) ADDRESS+4

4-34 17329110 A

C

C

Parameter

ADDRESS

STATUS

RTID

LE

TID

An example of a calling sequence is as follows:

TIDTBL

17329110 A

Definition

The full-word address of a list of task identifiers. Each identifier

is eight characters.

The list is variable in length, the first word

following the last entry contains a -1 in place of an identifier. The
maximum length of the list depends on the number of tasks allowed
per job, an installation parameter

ESR

status code:

Entry Indicates
= -1 No task in the list is active
£ -1 A task on the list has returned. Its identifier is

in PARM and PARM+1

The eight-character identifier of the returned task

List

end flag:

Entry Indicates

= -1 The list has ended

-1 Another TID specification begins

Eight-character string defining the name of a task

LDA,H1
MON, H1

LD,RO

TEXT
TEXT

GEN

TIDTBL
DWAIT

PARM

8, TASK-ID1
8, TASK-ID2

-1

Address of list

Call

Check status

List has ended

4-35

ENABLE, ENABLE AND SELECT INTERRUPT CONTROL

The ENABLE ESR enables hardware detection of the arithmetic faults and defines the inter- (;D
rupt routine that will process the interrupts when they occur. MPX/OS provides a default
interrupt processor that will abort the job. The user may select one interrupt for each

fault, one interrupt routine for all faults or other combinations. The interrupt processor
definition may be changed as often as desired but once the interrupt checking has been

enabled, it cannot be disabled (see also PFAULT, Return Control on Program Faults in
this section),

The ENABLE ESR does not receive a response from MPX/0S. The response format des-
cribed applied to a return of control upon the occurrence of a fault.

Bit 0 1 2 3 4 15 16 31
ESR format A|F|E|D ADDRESS R+0
PARM format ‘ PARM+0
PARM+1
P PARM+2
Parameter Definition N
A Select arithmetic fault detection/control if bit =1.
F Select function fault detection/control if bit =1.
E ' Select exponent fault detection/control if bit =1.
D Select divide fault detection/control if bit =1.
ADDRESS Sixteen-bit field containing address of interrupt processor:
Entry Indicates
=0 MPX/0S default routine is used (job abort)
#0 Task is placed in ready list with program counter set

to ADDRESS. (ADDRESS applies to one or more fault
conditions as selected by A, ¥, E, and D settings)

P When control is returned to ADDRESS, the address of the instruction
causing the fault is returned in PARM+2.

O

4-36 17329110 A

An example of a calling sequence is as foliows:
(}9 LD,RO INTRMSK

MON, RO ENABLE CALL

INTRMSK VFD 1/1,1/0,1/1,1/0,12/0,16/INTADR Go to INTADR on an arith-
metic fault or exponent fault

OPENMEM, ASSIGN PAGE OF OPEN MEMORY

The OPENMEM ESR allows a task to expand its scratch common or program area (in
multiples of a page) within the limits specified on the *SCHED control statement. MPX/OS
supplies the updated memory boundaries after each change. In addition, one call is pro-
vided to obtain the next available address in both regions without alteration of the memory

limits.
ESR format AREA R+0
OPTION R+1
PARM format STATUS or ADDRESS(1) PARM+0
ADDRESS(2) PARM+1
Parameter Definition
AREA A flag that selects the program or common limit to be expanded:
Entry Indicates
= -1 Program area is expanded
=0 Common area is expanded
OPTION A flag or value that determines the amount of memory increase

desired and the content of the response words:

C

17329110 A 4-37

Parameter (Cont.)

STATUS

ADDRESS

Definition (Cont.)

Entry Indicates
= -1 All memory allowed by *SCHED and task unused A
space is added to the area selected by the AREA Ny

flag (MPX/OS response defines new limits of
area selected by AREA flag)

=0 Memory limits are not changed [MPX/OS response
defines the next available program address
(PARM+0) and the next available common address
(PARM+1)]

>0 OPTION number of pages are added to the area
selected by AREA flag [MPX/OS (MEM) response

defines new limits of area altered]

Status of the ESR returned in PARM.

Entry Indicates
= -1 ESR was rejected. Memory limits were not
altered
£ -1 Memory limits were returned as per ADDRESS
description ;
7N
Except for the OPTION=0 case described above, ADDRESS(1) con- S

tains the address of the next available word and ADDRESS(2) con-
tains the address of the last available word of the area selected by
AREA flag. The next available address is the address adjacent to
the allocated space for the region (small address for common,
large address for program) and the last available address is the
address most distant from the allocated space (large for common,
small for program) - but still in the page already allocated.

In the event the space requested (OPTION > 0) is not available,
the call is rejected and PARM+0 is set to -1.

An example of a calling sequence is as follows:

LDI, RO 0 Request common pages
LDI,R1 -1 All scheduled pages
MON, RO OPENMEM Call

LD, X7 PARM Check status

4-38

O

17329110 A

C

PFAULT, RETURN CONTROL ON PROGRAM FAULTS

The PFAULT ESR defines an address in the issuing task (or in the executive, if address is
zero) to which control should be directed upon the occurrence of a page fault or an illegal
instruction fault interrupt. Each PFAULT ESR may define one of the conditions and its
return-of-control address.

ESR format ADDRESS R+0
FAULT R+1
PARM format PARM+0
PARM+1
P PARM+2
Parameter Definition
ADDRESS The address at which the task will be restarted after the fault is
detected
FAULT A flag defining the fault condition for which the address is valid:
Entry Indicates
=0 Page faults return address
=1 Illegal instruction return address
P Address of instruction executed at the time the fault was detected

An example of a calling sequence is as follows:

LDA,R1 PFALTADR Address for return
LDI, R2 1 An illegal instruction
MON, R1 PFAULT Call

17329110 A 4-39

RELMEM, RELEASE MEMORY PAGES

The RELMEM ESR is used to return common or program pages to the operating system.
For program pages, only pages obtained through the use of the OPENMEM ESR may be
released. MPX/OS returns the new memory limit definitions to the task in PARM.

ESR format

PARM format

Parameter

AREA

OPTION

STATUS

4-40

AREA

OPTION

STATUS

or

ADDRESS(1)

ADDRESS(2)

Definition

R+0
R+1

PARM+0
PARM+1

A flag that selects the program or common area limit to be

reduced:
Entry
= -1

= 0

Indicates

Program area is reduced

Common area is reduced

A flag or value that determines the amount (in pages) of the reduc-

tion and the content of the response from MPX/OS:

Entry

= -1

= 0

> 0

Indicates

Releases all common pages

Returns memory limits only (see OPENMEM)

Defines the number of pages to release

A flag that defines the status of the ESR:

Entry

Indicates

ESR was rejected and memory limits were not

altered

Memory limits were returned as per ADDRESS

description

17329110 A

fb
S

C

Parameter (Cont.)

ADDRESS

Definition (Cont.)

Except for the OPTION=0 case described above, ADDRESS(1) con-
tains the address of the next available word and ADDRESS(2) con-
tains the address of the last available word of the area selected by
AREA flag. The next available address is the address adjacent to
the allocated space for the region (small address for common,
large address for program), and the last available address is the
address most distant from the allocated space (large for common,
small for program) - but still in the page already allocated.

An example of a calling sequence is as follows:

LDI, R2 -1 Reduce program area
LDI,R3 2 Release two pages
MON, R2 RELMEM

LD, X6 PARM Check status

RETURN, TERMINATE TASK EXECUTION

A task issues a RETURN ESR to notify its caller of completion of execution.

When the

returning task has active callees, the return cannot be completed until all active callees
have returned; it is maintained with a FINIS status.

Every task must issue a RETURN to terminate normally.

The loader supplies the module

TASKMON from the system library; a subroutine exit from the primary entry point will
return control to TASKMON which then issues the RETURN (with release).

ESR format RELEASE R+0
NUMBER R+1
Parameter Definition
RELEASE The memory release flag:
Entry Indicates
= 0 Release the task memofy and clear task identi-

17329110 A

fication from the system

4-41

Parameter (Cont.) Definition (Cont.)

Entry (Cont.) Indicates (Cont,)

= -1 Do not release the task memory. The task
assumes the dormant status

NUMBER The number of words that are to be passed back to the caller.
The maximum number is 40. The parameter words are moved
from callee memory area PARM+5 through PARM+4+NUMBER to
caller memory area PARM+5 through PARM+4+NUMBER. If
NUMBER=0, no parameter words are moved. The caller must
specify call with wait to receive parameters from its callee.

An example of a calling sequence is as follows:

LD,RO 0 Release flag
LDI,R1 10 Pass back 10 words
MON, RO RETURN Call

NOTE: If a task is called after issuing a return without release, execution of the
dormant task resumes with the instruction following the RETURN ESR.

TSCHED, TIME SCHEDULE REACTIVATION OF TASK

The TSCHED ESR allows a task to suspend its own execution for a specified length of time
(in milliseconds). The issuing task regains control at the instruction following the MON
instruction. The task is assigned a TSCHED status until the time period elapses. It is
then assigned the READY status and is placed on the ready list to resume execution. The
task is not charged for time when in TSCHED status.

ESR format DELTAT R+0
Parameter Definition
DELTAT The millisecond time interval that task execution is to be

suspended. DELTAT must be positive.

4-42 17329110 A

o

An example of a calling sequence is as follows:
O LDI, RO 100 Time interval

MON, RO TSCHED Call

TSTATUS, RETURN TASK STATUS

The TSTATUS ESR is used to obtain the status of a callee.

ESR format TID (0-3) R+0
TID 4-7) R+1
PARM format STATUS PARM+0
Parameter Definition
TID Eight characters defining the identifier of the task, of which the
status is to be returned
0 STATUS A code defining the current status of the identified task is returned
in PARM as follows:
Entry Indicates
= -1 Task does not exist within job
=0 Dormant
=1 Active
= 2 I/0 wait
=4 File manager wait
=5 Call wait
=6 Callee wait
=17 Deferred wait

0 =8 FINIS

17329110 A 4-43

Entry (Cont.) Indicates (Cont.)

=9 TSCHED wait
= 10 CRT wait
= 11 TCT wait

An example of a calling sequence is as follows:

LDD, RO ='TASKIDNT' Task identifier
 MON, RO TSTATUS call
LD,H2 PARM Check status

Refer back to Table 1-3 for descriptions of each status.

MISCELLANEOUS ESRs

The following ESRs allow a task to communicate with the operator and obtain the date and
time from the system.

CTOC, SEND COMMAND MESSAGE TO OPERATOR

The CTOC ESR allows a task to send a message to the operator and requires a response.
The message will not be accepted by MPX/OS if there is not room to display the message.
If the message is accepted, the issuing task is assigned the I/O WAIT status. The task
cannot resume execution until the operator responds to the message with either an Accept

or Reject.

ESR format

PARM format

Parameter

ADDRESS

4-44

ADDRESS R+0
STATUS PARM+0
Definition

Byte address of the first byte of the message to be displayed. The
message is 65 characters in length or is terminated at the occur-
rence of a 03 (end-of-text, ETX) character value

17329110 A

Parameter (Cont.) Definition (Cont.)

(m> STATUS ESR status or operator response code:
- Entry Indicates
= -1 CRT screen full or busy (ESR reject)
= 0 Accept response from operator
= +1 Reject response from operator

An example of a calling sequence is as follows:

LDCA, RO ADDRMSG Address of message

MON, RO CTOC Call

LD, X7 PARM Check status
ADDRMSG TEXTC 30, This is a message to operator

GEN, C $03 End of text

C

CTOI, SEND INFORMATIVE MESSAGE TO OPERATOR

The CTOI ESR allows a task to send a message to the operator and does not require a
response. The ESR will be rejected if MPX/OS cannot display the message (screen full
or CRT busy). The issuing task is scheduled for execution after the ESR has been pro-

cessed.
ESR format ADDRESS R+0
PARM format STATUS PARM+0
Parameter Definition
ADDRESS Byte address of the first byte of the message to be displayed.

The message is 65 characters in length or is terminated at the
occurrence of 03 (end-of-text, ETX) character value.

C

17329110 A 4-45

Parameter (Cont.) Definition (Cont.)

STATUS ESR status code:
Entry Indicates
= -1 CRT screen full or busy (ESR rejected)
=0 Message accepted and displayed

An example of a calling sequence is as follows:

LDCA,R3 ADDRMSG Address of message

MON, R3 CTOI Call

LD, X7 PARM Check status
ADDRMSG TEXTC 18, This is a comment

GEN,C $03

DATE, RETURN CURRENT DATE

The DATE ESR obtains the current date in ASCII format.

PARM format M M / D PARM+0
D / Y Y PARM+1
Parameter Definition
MM ASCII codes for the month of the year (01 through 12)
/ ASCII code for slash graphic
DD . ASCII codes for the day of the month (01 through 31)
YY ASCII codes for the year (00 through 99)

4-46 17329110 A

AN

(W

An example of a calling sequence is as follows:

(‘\ MON, RA DATE Call
S

TETIME, TASK ELAPSED TIME

'I:he TETIME ESR obtains the time in milliseconds accumulated from the time the task was
called until the time the monitor call to TETIME was made. Each time the task is called
the accumulated time is initialized at zero. The time is returned in PARM.

PARM format TIME PARM+0
Parameter Definition
TIME Task time (in milliseconds) accumulated

An example of a calling sequence is as follows:

MON, RO TETIME Call

O TIME, RETURN CURRENT TIME OF DAY

The TIME ESR obtains the current time of day from the executive in ASCII and binary
formats and returns them in PARM, PARM+1, and PARM+2.

PARM format H H / M PARM-+0
/ -8 S PARM+1
TIME PARM+2
Parameter Definition
HH ASCII codes for hour of day (00 through 23)
/ ASCII code for slash graphic
MM ASCII codes for minute of hour (00 through 59)

O

17329110 A ’ ' 4-47

Parameter (Cont.) Definition (Cont.)

SS ' ASCII codes for second of minute (00 through 59)

TIME Time of day in milliseconds since midnight

An example of a calling sequence is as follows:

MON, RO ' TIME - Call

4-48

17329110 A

AN

ra

'

O

BLOCKER /DEBLOCKER 5

Logical I/O, referred to as blocker/deblocker, consists of library routines the user calls
for transferring logical records to and from user-defined core buffer areas. As buffers
fill or empty, blocker/deblocker transfers the buffers to or from a physical I/O device.
This reduces the actual number of data transfers and allows efficient use of the MPX I1/0
system.

A double buffering option (that is, the ability to fill or empty one buffer while a second
buffer is being transferred to or from a physical I/O device) is provided to allow over-
lapped operation.

Blocker/deblocker may be used for both mass storage devices (disk) and unit record de-
vices (magnetic tapes, card equipment, etc.). Mass storage and magnetic tape are block
devices (accessed in block format) while all other devices are record devices (accessed in
record format).

A block number parameter (BN) is required for certain blocker/deblocker functions on mass
storage files. Thus a user may, if he wishes, access a mass storage file randomly with
blocker/deblocker.

For a working understanding of blocker/deblocker, the user should be familiar with block
and buffer formats (refer to Appendix C).

BLOCK AND BUFFER FORMATS

BLOCK DEVICES

The data format for block devices (disk or magnetic tape) is characterized by a series of
alternate record headers and record data areas, ending with a zero record header. One or
more records constitute a block. The size of a block, for a file, is determined by the
ALLOCATE function of the file manager. The size of a block on magnetic tape is

17329110 A .) 5-1

established when a PACKD function is performed. The MPX standard block size is 480

words. A block is transferred to the peripheral device from a blocking buffer, which is

specified by PACKD or PICKD. The following is a block format. /}
L

Record Header

Record Data

Record Header

Record Data

Record Header

Record Data

Record Header = 0

The record header is a single word containing information about the record that follows it.
A record header appears as follows:

0 1 14 31
M RLENGTH

M - Mode of record data (bit 1)

M
M

0, ASCII record
1, binary record

1l

RLENGTH - Number of bytes of data in the record

5-2 17329110 A

C

The block is contained in a user-defined buffer area. For single buffering, the buffer area
is one word larger than the block size. The additional word contains a pointer to the next
record header and is maintained by the blocker/deblocker. Thus, the user buffer area
appears as follows:

Block Pointer

Record Header

Record Data

Record Header

Record Data

Record Header

Record Data

Record Header = 0

When double buffering is specified, the buffer area must be twice the block size plus two
(double the required value for single buffering). The minimum size of a block is four
words (pointer, header, one-word record, and zero header).

RECORD DEVICES

The data format for record devices is characterized by a record header, followed by a
record data area, and ending with a zero record trailer. The maximum size of a record
is determined by the size of the user's buffer area but must always be less than 4096
words. The block format appears as follows:

17329110 A . 5-3

Record Header

Record Data

Record Trailer = 0

The block is contained in a user-defined buffer area. The buffer area is one word larger
than the maximum record size. The additional word contains a pointer to the record

header and is maintained by the blocker/deblocker. Thus, the user buffer area appears
as follows:

Block Pointer

Record Header

Record Data

Record Trailer = 0

Only the actual record data is transferred to/from the peripheral device (refer to
Appendix C). -

BLOCKER

The blocker is a set of functions that perform blocking on user files/devices. All files to
be blocked must have been previously allocated and opened. Unit record devices must be
equipped.

The blocker includes the following functional routines:

e Pack define - PACKD

° Pack - PACK

5-4 17329110 A

C

C

e Pack output - PACKO

° Pack close - PACKC

PACKD, PACK DEFINE

The PACKD function establishes the blocking area (buffer) to be associated with a file or

unit record device.

I/O entries.

Before the user calls PACKD, registers RB through RF should be set as follows:

The blocker/deblocker logical unit definition table has space for 63

0 15 16 24 31
RB B LUN
RC BFWA
RD BLENGTH
RE BN
RF RETURN ADDRESS
LUN - Logical unit number of device
B - Type of buffering
B = 0, double buffering
- B = 1, single buffering
BFWA - First word address of user's buffer area
BLENGTH - Length of user's buffer area. It must be consistent with block size and
buffering requirement
BN - Block number of first write. It pertains to mass storage files only
BN < 0, file is positioned to highest block written +1
BN = 0, file is not positioned
BN > 0, file is positioned to specified block
RETURN
ADDRESS - Address in user's program to which PACKD must return

17329110 A

A calling sequence to PACKD from a user's program is as follows:

Only one PACKD (output) or PICKD (input) definition may be active for a logical unit at one
time. The typical sequence of events for accessing logical unit 10 as a read/write file is

as follows:

LDI, RB
LDA,RC
LDI, RD
LDI, RE
JsX
LD, X7
TST, NE

LDI,RO
MON, RO

LDI, RB
LDA,RC
LDI, RD
LDI, RE
JSX

LDI, RB
LDCA,RC
LDI, RD
JSX

LDI,RB
JSX

B/LUN

BFWA

BLENGTH

BN

PACKD,RF Call

PARM Check for errors
X7,X0, ERRPROC

10
REWD Initial positioning

10

BFWA
BLENGTH
0

PACKD, RF

10
RFBA

RLENGTH
PACK, RF

10
PACKC, RF

Define output buffer

Output data records

End of output phase, close definition

17329110 A

LDI,RB 10

() MON, RB REWD Reposition file

LDL,RB 10

LDA,RC BFWA

LDI,RD BLENGTH

LDL, RE 0

JSX PICKD,RF Define input buffer

LDI,RB 10

LDCA,RC RFBA

LDI,RD RLENGTH

JSX PICK,RF Input data records
C .

LDI,RB 10

JSX PICKC,RF End of operational sequence

PACK

The PACK function transfers a record to the buffer area defined by PACKD for the
referenced logical unit. In moving the record, the blocker removes trailing zeros (binary
record) or trailing blanks (ASCII record) from the record data. When the buffer area is
full, the buffer is written on the file/device specified by the logical unit.

O

17329110 A) 5-7

Before the user calls PACK, the registers RB through RF should be set as follows:

0o ' 15 16 24 31
RB M LUN
RC RFBA
RD . RLENGTH
RE
RF RETURN ADDRESS
M - Mode of record
M = 0, ASCI record
M = 1, binary record
LUN | - Logical unit number
RFBA - TFirst byte address of the record to be transferred
RLENGTH - Length of the record in bytes

A calling sequence to PACK from a user's program is as follows:

LDI,RB M/LUN

LDCA,RC RFBA

LDI,RD RLENGTH

JSX PACK,RF Call

LD,X5 PARM Check for errors
TST,NE X5,X0, ERRPROC

PACKO, PACK OUTFIT

The PACKO function is used to output a partially filled buffer. For single-buffered record
devices, PACKO has no function. For double-buffered record devices, PACKO outputs the
last record.

5-8 17329110 A

O.

c

Before the user calls PACKO, registers RB through RF should be set as follows:

0 16 24 31
RB LUN
RC
RD
RE BN
RF RETURN ADDRESS
LUN - Logical unit number
BN - Block numbers to which block is output (pertains only to mass storage)

BN < 0, output to highest block written +1
BN = 0, output to next sequential block
BN > 0, output to specified block

A calling sequence to PACKO from a user's program is as follows:

LDI, RB
LDI, RE
JSX

LD, X3
TST,NE

PACKC, PACK CLOSE

LUN

BN

PACKO, RF Call

PARM Check for errors
X3,X0, ERRPROC

The PACKC function is used to remove a logical unit definition from the blocker/deblocker
table. The PACKC function checks to see if any records remain in the buffer and if so,

writes them to the file/device before removing the logical unit definition from the blocker/
deblocker table. It should be noted that this function only removes the logical unit defini-
tion from the blocker/deblocker table and does not close the unit.

17329110 A

Before the user calls PACKC, registers RB through RF should be set as follows:

RB
RC
RD
RE
RF

LUN -

16

24 : 31

LUN

RETURN ADDRESS

Logical unit number

A calling sequence to PACKC from a user's program is as follows:

Call

Check for errors

LDI, RB LUN

JSX PACKC, RF

LD, X6 PARM

TST,NE X6, X0, ERRPROC

STATUS RETURN

Upon completion of a call, the blocker returns status to the parameter area, which is
defined external to the user's program. The parameter area is set as follows:

0 15 16 24 31
PARM ES El
PARM+1 BN
EI - Error indicator

EI = 0, no error
EI # 0, refer to Appendix D for the blocker error indicators and their description

BN - Block number, if EI # 0, BN has no meaning

Routine

Block Type Device

PACKD

5-10

Block number of next
block to be written

Record Type Device

Record number of next record to be

written

17329110 A

™

U

J

C

Routine Block Type Device

PACK Block number of block
which contains the record

PACKO Block number of next
block to be written

PACKC Block number of next

block to be written

Record Type Device

Record number of record

Record number of next record to be

written

Record number of next record to be
written

ES (bits 00 through 15) - Equipment status, returned if EI = 1 or 12

DEBLOCKER

The deblocker is a set of functions that performs deblocking on user files/devices.

files to be deblocked must have been previously allocated and opened.

must be equipped.

The deblocker includes the following functional routines:

Pick define
Pick
Pick input

Pick close

PICKD
- PICK
PICKI
PICKC

PICKD, PICK DEFINE

All

Unit record devices

The PICKD function establishes the deblocking area (buffer) to be associated with a file or

unit record device.

1/0 entries.

17329110 A

The blocker/deblocker logical unit definition table has space for 63

5-11

Before the user calls PICKD, registers RB through RF should be set as follows:

15 16 24 31
RB B ' LUN
RC BFWA
RD BLENGTH
RE BN
RF RETURN ADDRESS
LUN - Logical unit number of device
B - Type of buffering
B = 0, double buffering
B = 1, single buffering
BFWA - First word address of user's buffer area
BLENGTH - Length of user's buffer area. It must be consistent with block size and
buffering requirement
BN - Block number of first read, pertains only to a mass storage file
BN £ 0, file is not positioned
BN > 0, file is positioned to specified block
RETURN
ADDRESS - Address in user's program in which PICKD must return.

A calling sequence to PICKD from a user's program is as follows:

5-12

LDI, RB B/LUN

LDA,RC BFWA

LD, RD BLENGTH

LDI, RE BN

JSX PICKD, RF Call

LD, RO PARM Check for errors
TST,NE R0, X0, ERRPROC

17329110 A

e

L

B
)

C

C

PICK

The PICK function transfers a record from the buffer area defined by PICKD to the user's
record area established by the PICK call. If the record to be moved is larger than the
user's record area, PICK truncates the record. If the record to be moved is smaller
than the user's record area, PICK fills the remaining record area with zeros (binary
record) or blanks (ASCII record).

Before the user calls PICK, registers RB through RF should be set as follows:

0 14 16 24 31
RB LUN
RC RFBA
RD RLENGTH
RE
RF RETURN ADDRESS
LUN - Logical unit number
RFBA - First byte address of the area the record is to be transferred to

RLENGTH - Length of the record in bytes

A calling sequence to PICK from a user's program is as follows:

LDI,RB LUN

LDCA,RC RFBA

LDI,RD RLENGTH

JSX PICK, RF Call

LD,RO PARM Check for errors
TST,NE R0, X0, ERRPROC

PICKI, PICK INPUT

The PICKI function is used to input a new block of data before the last block has been
exhausted. For record type devices, PICKI results in skipping one record. For block
type devices, PICKI results in skipping one or more records.

17329110 A " 5-13

Before the user calls PICKI, registers RB through RF should be set as follows:

. o
0 16 24 31 ")/
RB LUN
RC
RD
RE BN
RF RETURN ADDRESS
LUN - Logical unit number
BN - Block number of block to be input (pertains only to mass storage)
BN g 0, input next sequential block
BN > 0, input specified block
A calling sequence to PICKI from a user's program is as follows:
LDI,RB LUN
LDI, RE BN
Jsx PICKI, RF Call
LD, X7 PARM Check for errors
TST,NE X7,X0, ERRPROC
PICKC, PICK CLOSE
The PICKC function is used to remove a logical unit definition from the blocker/deblocker
table. It should be noted that this function only removes the logical unit definition from
the blocker/deblocker table and does not close the unit.
"/ o g
_

5-14 17329110 A

Before the user calls PICKC, registers RB through RF should be set as follows:

0 16 24 31
RB LUN
RC
RD
RE BN
RF RETURN ADDRESS
LUN - [Logical unit number

A calling sequence to PICKC from a user's program is as follows:

LDI,RB LUN P1

JSX PICKC,RF Call

LD,X4 PARM Check for errors
TST,NE X4,X0, ERRPROC

'STATUS RETURN

Upon completion of a call, the deblocker returns status to the parameter area, which is
defined external to the user's program. The parameter area is set as follows:

0 _ 12 15 16 24 31
PARM M EI
PARM+1 ‘ BN
M - Mode bit, M = 0, record passed by PICK is ASCII

M = 1, record passed by PICK is binary

EI - Error indicator

EI = 0, no error _

EI # 0, refer to Appendix D for the deblocker error indicators and their

description

NOTE: If EI = 1 or 12, bits 0 through 15 of PARM contain the equipment status

17329110 A “ 5-15

BN - Block number, if EI # 0, BN has no meaning

Routine Block Type Device Record Type Device @
PICKD Block number of next block to Record number of next record

be read to be read
PICK Block number of block con- Record number of record

taining the record

PICKI Block number of next block to Record number of next record
be read to be read

PICKC Block number of next block to Record number of next record
be read to be read

5-16 17329110 A

O

O

MPX LOADER | | 6

The MPX relocatable loader performs the following services for the user.

e Loads relocatable binary information into memory from the sources named in
the call to the loader (*name, *LOAD, or binary decks)

e Loads absolute tasks created by the *ABS control statement

e Links independently compiled or assembled subprograms that reference each
other through symbolically named entry points

e Loads and links any externally referenced library routines into a task

e Detects and records format errors and/or violations of loading procedures
detected during the loading process

e Prepares a memory map of all subprograms, entry points, and common data
areas (except for library tasks)

Programs are loaded from specified files and the system library file in blocked card
image form.

Each subprogram loaded must contain a binary identification card (IDC). The information
from the IDC is used to allocate subprogram storage in upper memory. Subprogram
allocation begins in logical page 14 and continues downward as needed. If the program
name on the IDC has been previously encountered during the load process, the current
program is not loaded.

The information from the block common table (BCT) card is used by the loader to allocate

data and scratch common blocks. Data common is loaded in the same way as subprograms,
while scratch common is allocated upward beginning with logical page 0.

17329110 A ‘ 6-1

As subprograms are loaded, a table of subprogram names, block common names, entry

point names, and external symbol names is created. This table is referred to as the i
loader symbol table (LST). When the transfer (TRA) card of a subprogram is reached, ()
an attempt is made to link the externals declared by the subprogram with previously loaded “-
entry points. Upon detection of an end-of-load condition, the LST is checked for any

external symbols for which no corresponding entry point symbol was declared. The sys-

tem library is then searched in an attempt to satisfy these external declarations. This is

done by comparing unlinked externals against entry points of the loader directory cards
contained on the system library. Each library program has a directory card associated

with it containing all of its unprotected (accessible) entry points. If a match is found,

the library program is loaded as a subprogram. After all external symbols have been

linked, or (having not located all externals) after two searches through the library, library
loading is ceased. Any external symbols still not linked to an entry point are listed as
undefined in the memory map.

The loader requests physical memory as needed on a page basis during the loading pro-
cess. If the number of physical pages needed to complete the load exceeds the number
of pages scheduled by the job, the job is aborted. Regardless of the number of pages
scheduled, only the physical pages needed to satisfy the loading process are assigned to
the resources of the job. To gain access to other pages requested on the associated job
*SCHED control statement, the user must utilize the OPENMEM call.

LOADER CARDS

The loader accepts the binary cards produced by assemblers and compilers in the
following order.

1) IDC Program identification

2) BCT Data and common block declarations
3) EPT Entry point names

4) RIF Relocatable information

5) EXT External names

6) TRA Transfer address

.
O

6-2 17329110 A

BINARY CARD STRUCTURE

The binary record occupies 30 computer words of 32 bits each. The general format of a

binary record is:

BITO
4

12

LSCHXOMIO

NN EE

IS N W W WY NN NN TN NN NN AN TN TN WU NN NN SN SN NN NS NN NN BN AR NN A
| 2 34 567 891011121314151617 1819 202|222324252627282930
WORDS

c\ Word 1
y’)

Bits 0 through 7

Two hexadecimal digits identifying card type and, for an
RIF card (W = 1 through 16,¢), the number of words of
information on the card

It

Bits 8 through 11 Hexadecimal 5, indicating binard card

Bits 12 through 31 Defined on card types as required. See individual cards

in this section
Word 2

32-bit 2's complement sum of all other words contained on the card

C

17329110 A

6-3

LOADER DIRECTORY CARD

When the user calls subprograms from LIB, the loader refers to a directory card that
aids the loader in searching for entry points. Only those entry points in a program that
are unprotected can be referenced by a user program or another LIB file program. The
loader processes the directory card and determines if the associated program is to be
loaded. Every entry point name on the directory card is unprotected and can be refer-
enced by the user program. All other entry points for that program are protected entry
points.

The directory card also aids the loader in finding the next program on the library.

The directory consists of a binary card placed on the library ahead of the IDC card for
the associated program. The format for the directory card is as follows:

7 P
E E E
F c R N N N
5 O lT1T | T T
HI 6 R R R
1Rl R | Y | Y Y
B a 4
cSIM 8|5 o |
N
8 a 2 ! I ? ’
N N N
K N N T
NO E
I 2 3 4 5 6 7 8 9 o 12| 13
3} 2 3 4 5 6 7 8 9 10 Il 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Word 1

Bit 10, if set. Library routine is absolute

Bits 12 through 31 = Block number of next LIB entry. Zero indicates end of LIB

Words 3 and 4

Eight-character program name

Words 5 and 6

Eight-character entry point name T

O

64 17329110 A

IDENTIFICATION CARD

C

8
0
8 c
SIHIWIW],
|2/(E: ol|o D N
R A
'6/ K[o[o|E m
i
20 uisilae|T
24/M
26
A
| 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Word 3
Bit 0 = 0, absolute program
= 1, relocatable program
O Bits 6 and T = Addressing type
)
0 = Word
1 = Half word
2 = Byte
3 = Bit

Bits 11 through 31 = Start address

Word 4
Bits 6 and 7 = Addressing type
Bits 11 through 31 = End address

Words 5 and 6

Name in ASCII codes, left adjusted

17329110 A

6-5

BLOCK COMMON TABLE CARD

o~
(
8 %)
C
¢ M
HIWIW|M
12 Elolo|O N
CIR|R|N A ETC.
‘6l |KlD|D|g M
Sls B g
201E|jU|3|4|L
24 QM 0o
N c
26| 0 K
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Word 1
Bits 16 through 31 = Sequence number (1 to 5)
Word 3
Bit 0 = 0, DCOM area
= 1, SCOM area
Bits 6 and 7 = Addressing type
AN 4,/’
0 = Word
1 = Half word
2 = Byte
3 = Bit
Bits 11 through 31 = Starting address of the common block
Word 4

Bits 6 and 7 = Addressing type
Bits 11 through 31 = Ending address of the common block

Words 5 and 6

Common block name in ASCII codes, left justified
NOTES: 1/ A maximum of five BCT cards is permitted per module
2/ Words 3 through 6 are repeated for each common block defined by the BCT card
3/ The information content of the card image is terminated by a zero field Q\\

6-6 17329110 A

ENTRY-POINT CARD

C .

4|2 E E
8 c N N
SInlwlT wiT
i2[]e|ofR N|o|R
. C R Y A R Y N
lsggopnopa ETC.
olalils|? &3]0 €
24| N N N
: (o] T T
26
I 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Word 0
Bit 0 = 1, negative relocatable
Bit 1 = 0, absolute address
= 1, relocatable address
Bits 6 and 7 = Addressing type
@ 0 = Word
1 = Half word
2 = Byte
3 = Bit

Bits 11 through 31 = Address of entry point

Words 4 and 5

Entry-point name in ASCII codes, left justified

NOTE: The information content of the card image is terminated by a zeros field.

C

17329110 A ‘ 6-7

RELOCATABLE INFORMATION CARD

°FNT Talr[RIR][R[R
0 4|8|I12]16]20
5|SRIR[R|R|R|R
12
N AN E2 E2 (] Lid 1) P . o
16 KIR|R|R|R[R|R
DS
200 " |Ul2 |6 |10}14]18]22
24|0 M
R R|R|R|R]|R|E
26 . 3|7 |nfishe
1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Word 1
Bits 0 through 7 = Number of words on card, 1 through 224
Bit 8 and bits 12 through 31 = Address of first loadable information
Word 3
Bits 0 through 7 = Address information: bit 0 = 0, bits 1 and 2 are unused and
bits 3 through 7 = relocation of the starting word address. N

Bit 0 = 1, first word on card is not a full word and address field ‘.
gives the starting bit address

Words 3 through 8

Relocation bytes for each address field on the card
Bit 0 = 1, negative relocation

Bits 1 and 2 = Addressing type

0 = Word
1 = Half word
2 = Byte
3 = Bit

‘Bits 3 through 7 = Relocation of each address field
0 = Nonrelocatable (absolute)
1 = Program relocatable
2 through 31 = Common block relocatable (defined by BCT)

Word 8
Bits 24 through 31 = End information: bit 0 = 1, last word on card not a full word.

Bits 3 through 7 = last used bit (0 through 30) 7

6-8 17329110 A

Words 9 through 30

Loadable information

O

EXTERNAL CARD

°ls
*l3
8 c
S(Hiw|w|1 wlwj2
12 E{0|O|S N|O|O|N N
SCRRTARRDA ETC.
‘¢1E[X|o|o]e M|D[D[E M
20{a|5|3[ea|X E|s]|a|XE
M T T
24| N
0.
26
I 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 |7 18 19 20 21 22 23 24 25 26 27 28 29 30
Word 3
O Bit 0 = 1, negative relocatable
Bits 14 and 15 = Addressing type of string
0 = Word
1 = Half word
2 = Byte
3 = Bit
Bits 16 through 31 = Word address of end of string
Word 4
Bit 0 = 1, negative additive

Bits 11 through 31

Words 5 and 6

= Additive

External name in ASCII codes, left justified

0)

17329110 A

6-9

TRANSFER ADDRESS CARD

o
0
40 5
8 C
5|H NT
R
17N
|6/§ E p
00
zo/a F I
24 ¥
26
/
1 2 3 4 5 6 7 8 9 10 1l 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Checksum is running checksum of IDC through TRA cards.

Words 3 and 4

Name of primary entry point in ASCII codes, left justified. Zero implies no transfer
address

HEXADECIMAL CORRECTION CARDS

I{HCC, location hexadecimal correction and relocation factor, .

Hexadecimal corrections may be made to binary subprograms after loading. *HCC state-
ments may be used to enter corrections or to add code through the establishment of a
program extension area. The program extension area is created after the subprogram
area. Corrections to subprograms referring to the extension area, or additional instruc-
tions that are to be stored in the extension area, may not be submitted until all subpro-
grams have been loaded.

The location field symbolically defines the location to be amended through the use of
subprogram names and displacement values. The extension area is given a unique identi-
fication. The values that are allowed in the location field of the card are:

Location Contents Interpretation

(Program name + K) Corrections on this *HCC card are loaded
beginning with location K in the named
subprogram.

6-10 17329110 A

U

Location Contents (Cont.) Interpretation (Cont.)

/data name + K) Corrections are loaded beginning with location K in the
™,
J named data area.
XK) First occurrence - defines a program extension area of

length K. Corrections on the first card of this type
are ignored.

Subsequent occurrences - corrections are loaded beginning
with location K of the program extension area.

(+K) Continuation *HCC cards. +K is an increment from the
last location plus one corrected by the previous *HCC
statement.

Hexadecimal corrections of up to eight characters and their relocation factor, if any,
follow the location term. Fields are separated by commas. All values are hexadecimal.
Each value is stored right, justified in successive words. Values of less than eight
digits are zero filled. Acceptable values for this field are:

Hexadecimal Correction Interpretation

Hexadecimal correction The correction replaces the contents of the memory
location determined by the location defined on the card
C and the position of this hexadecimal correction field.

Contiguous commas Commas do not alter the location.

Hexadecimal correction Replaces the contents of memory determined by the location

with relocation factor stated on the card and the position of this field on the card.
The address portion of the hexadecimal correction is to be

relocated as dictated by the relocation factor.

This relocation factor may take any of the following forms:

Relocation Factor* Interpretation
No relocation factor Correction is stored as absolute correction.
(Subprogram name) Relocate the word address portion of the correction

relative to the address of the first location in the sub-
program enclosed in parentheses.

*A relocation factor followed by H, C, or B indicates that half-word, character (byte),
or bit addressing modes are to be performed.

c

17329110 A ‘ 6-11

Relocation Factor* (Cont.) Interpretation (Cont.)

(D/data block) Relocate the address portion of the correction relative to

(C/common block) the address of the first location of the named common or
data block. ' :

X) Relocate the address portion of the correction relative to

the first location of the previously defined extension area.

(%) Relocate the address portion of the correction relative to
the last relocation factor defined in any field of this or
any preceding *HCC statement.

HCC EXAMPLES

The following are examples of various formats and uses of the *HCC statement.

1) |/*HCC, (PROG1+170)21600100 ($)

Enter hexadecimal correction 2160XXXX at address 0070 relative to subpro-
gram PROG1l. The $ relocation factor relocates address 0100 relative to
subprogram PROGI.

2) ﬁﬂcc, (SUB1+7F)21600100($), 47310101 (SUB2)

Enter correction 2160XXXX in location SUB1+7F. Relocate 0100 relative to
subprogram SUBl. Enter correction 4731XXXX in location SUB1+80. Relocate
address 0101 relative to subprogram SUB2.

3) (FHCC, SUB1+20)00000036, 000036, 00036, 0036, 036, 36

Enter the hexadecimal value 00000036 into locations 20,21, 22, 23,24, and 25
of subprogram SUB1. All corrections are right justified and stored in
memory as 00000036.

4) ﬁHcc, (X2E)

Assign 2E locations to the program extension area.

*A relocation factor followed by H, C, or B indicates that half-word, character (byte),
or bit addressing modes are to be performed.

6-12 17329110 A

5) |4Hcc, (X)20000100 (SUBL1), 40000101 ($), 20000102($), 40000103 ($)

™,

o Enter 2000XXXX into the first location of the extension area. XXXX is the
relocated address relative to subprogram SUB1. 4000XXXX goes to the
second location of the extension area. 2000XXXX goes to the third and
4000XXXX to the fourth. All XXXX addresses are relocated relative to
subprogram SUBI.

6) '/*HCC, (+)20000400 (SUB2), 40000401($), 20000402(SUB3), 40000403 ($)

Continue inserting corrections in the program extension area. The addresses
of the first two corrections are relocated relative to subprogram SUB2, The
last two are relative to subprogram SUBS3.

7) ﬁﬂcc, (X1F)20000420(SUB4),40000621($), 20000622 (SUB5), 40000623($)

Load the corrections with relocation factors of subprograms SUB4 and SUB5
into the extension area beginning with location 1F.

8) |/*Hcc, (D/DATA1)5, 10, 15, 20, 25, 30, 35,40
C? 9) |’*Hcc, (+)45, 50, 55, 60, 65, 70

Examples 8 and 9 - Enter the 14 hexadecimal values 5 through 70 into the
data block DATA1 in successive locations starting with location zero.

10) ﬁHcc, (D/DATA1+20)75, 100, 105, 110, 115, , 125, , 13C

Enter the five hexadecimal values 75 through 115 in successive locations starting
with location 20 of the data area DATAL. Location 25 will be unchanged,
26 will hold 00000125, 27 will be unchanged, and 28 will hold 0000013C.

11) ﬁHcc, (SUB1+70)01000010(X), 20000005 (C/COM1), 40000007 (D/DATA1)

Enter correction 0100XXXX into location 70 of SUB1. XXXX is modified
relative to the program extension area. Put 2000XXXX into SUB1+71.
XXXX is modified relative to the common area COM1. Put 4000XXXX into
SUB1+72. XXXX is modified relative to the data area DATAL1,

O

17329110 A 6-13

12) chc, (+2)20000007(SUB1)C

s
Put hexadecimal correction 20000007 into SUB1+75. Modify the 18-bit (w,
character address relative to subprogram SUB1.

13) ﬁHCC, (+)20000030 ($)H

Put hexadecimal correction 20000030 into SUB1+76. Modify the 17-bit half-
word address relative to subprogram SUBL.

MAP, MEMORY ALLOCATION PRINTOUT

The loader automatically produces a map of memory allocation of a loaded program at the
time the load operation is complete. The MAP consists of information from the loader
symbol table and appears as follows:

Heading Category
SUBP Name of each subprogram and the absolute address of the first

location in each subprogram.

ENTR Entry-point symbols in the program and the absolute address N
of each entry point in the subprograms.

COMM Each common block name and the absolute starting address of
each common block.

DATA Each data block name and the absolute starting address of each
data block. '

The MAP is illustrated in Figure 6-1.

®

6-14 17329110 A

MEMORY MAP
PROGRAM NAMES

ENLARGE EBD2 ASCIIINP EA46 AScliouT E861 CONTROL EE19
FORMAT E528 Q8QERROR E4E0 Q8QSTP E4CC AMATHER E49E
BIKDEBLK E1B9 TSKMON E1AE
SCRATCH COMMON BLOCKS
Q8QBUF 0000
ENTRY POINT NAMES
ABORT 0128 ABORTIM 0129 ABPACKD E692 ABPICKD E68A
ACTIVECK E66D ALLOCATE 0111 ARCHKI% E4B3 BDBWTIME 0064
BKSP 0105 BSY 013C CALL . 011D CLOSE 0110
CTOC C115 CTOI 0114 DATE 0117 DEVICE 0118
DVCHKI1% E4B1 DWAIT 013E ENABLE 0124 ENABLE% E49E
o, ENLARGE EEES ERASE 012F FNCHKI1% E4B2 ILLUNIT E61E
(/\ JACC FOEO JCIJNUM Fo8D JCIIPC FO09A JCIJPL F099
/ JCIISCRL F09A LUNITBL F3ED MATHE%P E4C2 MATHE%S E4BD
MODIFY 0113 OPEN 010F OPENMEM 0119 OVCHK1% E4B4
PACK E28E PACKC E2F8 PACKD E1BF PACKO E2DF
PARM EFCE PFAULT 0123 PICK E230 PICKC E280
PICKD E1B9 PICKI E266 Q8QENGIN EA60 Q8QENGOT E8TA
QB8QENTRY E646 Q8QERROR E4E0 QB8QEXIIS E65C Q8QIFRMT E528
Q8QINDEC EASS8 QS8QINENC E872 QB8QINGIN EA46 QS8QINGOT E861
Q8QIOINT E619 Q8QIOTAB E732 QS8QISCAN E53D Q8QITERM E539
Q8QLGIN1 EA67 QB8QLGIN2 EA6B Q8QLGOT1 E882 Q8QLGOT2 E886
QB8QPAUSE E4CC Q8QSTOP E408 Q8QTABLE E8OF READIN E6CO
READLU 0102 RELEASE 0112 RELMEM 011F RESTREG E717
RETURN 011C REWD 0106 SAVREG E704 SEOF 0104
STATUS E6D5 STDFEXPS 0002 STDPSEG 0010 TIME 0116
TSCHED 0127 TSKMON ElAE TSTATUS 013D ULOC 010A
UNLD 0107 UST 0108 USTUP E6FA UTYP 0109
WEOF 0103 WRITLU 0101 WRITOUT E6C5
TRANSFER ADDRESS NAMES ,
ENLARGE EEEB QBQENTRY E646
*RUN

Figure 6-1. MAP Example

C

17329110 A 6-15

)
N/

CHARACTER SET A

The following table illustrates the MP-60 system character set for certain types of
peripheral equipment. The MP-60 Internal Code column shows the hexadecimal byte
code (8 bits) sent to or received from a peripheral device in ASCII mode. The Card
Punch 026 Code column shows the Hollerith code punched for the MP-60 code. The
Printer Graphic column shows the print character for a CONTROL DATA® 595-4 Print
Chain. The Card Reader Code column shows the transmitted code for the corresponding
026 code. Only codes 20 through 5F are defined for the card reader. The Console
CRT Graphic column shows central codes and graphic characters (refer to Appendix E
of the MP-60 Computer System Reference Manual, CDC Publication No. 14306500). The
ASCII Character column shows the relationship between MP-60 internal codes and the
standard definition.

C

17329110 A) A-1

MP-60 Card Punch Card Console

Internal 026 Printer Reader CRT ASCII
Code Code Graphic Code Graphic Character
00 12 0981 Blank None Control NUL
01 12 91 Codes SOH
02 12 9 2 STX
03 12 93 ETX
04 9 7 EOT
05 0 985 ENQ
06 0 986 ACK
07 0 987 BEL
08 11 9 6 BS
09 12 95 HT
0A 0 95 LF
0B 12 983 vT
0oC 12 9 8 4 | FF
0D 12 985 ! CR
OE 12 986 | SO
OF 12 987 SI
10 1211981 DLE
11 1191 DC1
12 11 9 2 DC2
13 11 9 3 DC3
14 9 84 DC4
15 985 NAK
16 9 2 SYN
17 096 . ETB
18 11 9 8 X | CAN
19 11981 ' EM
1A 9 87 SUB
1B 097 ESC
1C 11 9 8 4 FS
1D 11 9 8 5 GS
1E 11 9 86 Control RS
iF 11987 Blank None Codes Us

A-2

17329110 A

U

o

C

MP-60 Card Punch Card Console

Internal 026 Printer Reader CRT ASCII
Code Code Graphic Code Graphic Character
20 Blank Blank 20 Space Space
21 1287 ! 21 ! !
22 8 7 " 22(1) " "
23 8 6 # 23 # #
24 11 8 3 $ 24 $ $
25 1285 % 25 % %
26 12 8 6 & 26 & &
27 8 4 ' 27 ' '
28 084 (28 ((
29 12 8 4) 29))
2A 11 8 4 * 2A * *
2B 12 + 2B + +
2C 083 , 2C , ,
2D 11 - 2D - -
2E 12 8 3 . 2E . .
2F 01 / 2F / /
30 0 0 30 0 0
31 1 1 31 1 1
32 2 2 32 2 2
33 3 3 33 3 3
34 4 4 34 4 4
35 5 5 35 5 5
36 6 6 36 6 6
37 7 7 37 7 7
38 8 8 38 8 8
39 9 9 39 9 9
3A 8 2 : 3A : :
3B 11 8 6 ; 3B ; :
3C 11 85 < 3C < <
3D 8 3 = 3D = =
3E 086 > 3E > >
3F 087 ? 3F ? ?

(1) Interpreted as end of file in column 1

17329110 A

ASCII
Character

=

om

5B M

CRT
Graphic

Console

H 2z

o

D> B K

E
TEY

< .

S g9 © O HNMPI © D0 O RO ARMNOHNMYTWBLOEomLMO AR KM
OxpO o FHF A IO DO IO DD OO IG IO OO
o O

3 &

=3

2 8 A=z gl P>EBX NN~
AT
=

g

Q

ARTZ w o~
MOC W~ NMH OOV DN =N P ONODNMNE L O D 0 © o

« NN NNNNNNNN A HMAHHHAHRNOCO0O00O0O O S
(@] Lo I B I I I I I I I I B B I] L]
01
© 3o
AETS |oaaneworn® O RHMO-NMmYIL OO O QK K&
MMC o P FHA PO OO N W WO R ERT)

17329110 A

A4

MP-60 Card Punch Card Console
Internal 026 Printer Reader CRT ASCII
Code Code Graphic Code Graphic Character
60 81 Blank None \ \
61 12 01 a a
62 12 0 2 b b
63 12 03 c c
64 12 0 4 d d
65 12 05 e e
66 12 0 6 f f
67 12 07 g g
68 12 08 h h
69 12 09 i i
6A 12 11 1 | j j
6B 12 11 2 I k k
6C 12 11 3 1 1
6D 12 11 4 m m
6E 12 11 5 n n
6F 12 11 6 (o] o
70 12 11 7 p p
O 71 12 11 8 q q
‘ 72 12 11 9 T T
73 11 0 2 S]
74 11 03 X t t
75 11 0 4 u u
76 11 05 v v
i 11 0 6 ! w w
78 11 07 X X
79 11 08 y y
TA 11 09 z Z
7B 12 0 { {
7C 12 11] i
7D 11 0 } }
TE 11 01 ~ ~
7F 12 9 7 Blank None Del Del
¥,
17329110 A ‘A-5/A-6

C

GLOSSARY B

Abort

Absolute

Assemble

Block

Buffer

CALL

Callee
Caller

Compile

Common

Data

17329110 A

The premature termination of a process whenever an irrecover-
able situation (either hardware of software) occurs.

Refers to actual machine addresses (i.e., not relocated).

The process by which an object (binary) module is created from
a symbolic language program (e.g., COMPASS assembler).

A grouping of machine words or bytes. Usually a collection of
one or more records used in I/O to reduce the number of
physical operations.

A portion of core memory used to collect data in order to com-
pensate for speed differences between the processor and periph-
eral devices.

The transference of control to a closed routine or task. A moni-
tor function, CALL, is used to activate a specific task.

The task called by a caller.
A task that calls another task.

The process by which an assembly (and usually an object) module
is created from a problem solving language such as FORTRAN.
A compiler usually generates several machine instructions from
a single symbolic statement.

An area of memory that may be shared between programs.
Tasks may communicate through common areas.

An area of memory that may be prestored with data at load time
and can be shared only between programs of one task; not between
tasks.

Dispatcher

Establish

File

Interrupt

Job
Job Control Table (J C’f‘) ,

Job Manager

Library

Linkage
Loader

Logical Units

Ordinal

An operating system routine that unthreads a task from the top of
the ready list and places it into execution.

Acquire a task control table for a task and initiate the loading
process. S S S

A collection of blocks and/or records, usually of related data.
Each mass storage file has an entry in the system file label
directory.

A break in the normal processing flow usually caused by a hard-
ware generated signal (involuntary interrupt). Interrupts can be
enabled or disabled and occur with an associated priority. Pro-
cesses that are interrupted are later resumed at the point of
interruption. A software generated interrupt occurs when a task
makes a monitor request (voluntary interrupt). An exchange
package describing machine conditions at the point of interruption
is generated by the hardware/firmware.

The sequential and/or parallel execution of tasks. Begins with
*JOB card and ends with *EQJ card.

An area of storage containing information for controlling a given -
job.

A task that processes the input stream of the job. The job mana-

ger is a set of reentrant programs shared by all user jobs.

A collection of frequently-used, checked-out programs maintained
on an external device that can be loaded and executed separately
(by a control card) or in conjunction with a user's program (via
an external). Libraries must be arranged to minimize searching
(one library program may declare another external, etc.).

The interconnection between routines. The loader matches
externals and entry points to establish linkage.

A subtask of the job manager that is used to load, relocate, and
link binary object modules.

A number from 1 to 63 that is used to identify a physical unit or
a file. Logical uhit assignments correspond to a specific job and
are in effect only during the life of the job.

The relative location of an entry in a table. The absolute loca-
tion of an entry can be obtained by multiplying the ordinal by the
number of machine words per entry and adding the starting
address of the table.

17329110 A

&

O

Page

Post Processor
Preprocessor

Priority

Queue

Ready List

Reentrant

Relocatable

Resident

Return

Schedule

Spooling

Stack

Status

System Initialize

17329110 A

A block (4K words) of core memory. Paging is a technique where
a logical address is transformed via a set of page registers to
a physical address.

A system task that spools the standard output of a job.
A system task that spools the standard input of a job.

A value (0 to 255) assigned to a task that facilitates scheduling
and processing within the operating system.

A first-in, first-out list used to control, for example, the
work to be done. (See Stack).

A prioritized list of tasks waiting for control of the CPU.
(See Schedule and Dispatcher).

A routine coded such that it can be called while executing at a
higher priority or during a wait and resume processing later at
the point of interruption. Usually, all intermediate results are
maintained in registers.

Refers to a program that has been prepared by a source
language compiler or assembler to be loaded into any area of
available memory.

The portion of the operating system which resides permanently
in core memory.

A monitor function that terminates a task and transfers control
to the point in the caller where the call originated. A task
may return with or without release of memory.

The process of placing a task on the ready list by priority. A
task may be scheduled at the top or behind other tasks of
equal priority.

Refers to the simultaneous I/O of standard units while the CPU
is processing other tasks (see Preprocessor and Post Proces-
sor).

A last-in, first-out list (see Queue).

A stage or condition of an I/O request or a task itself (e.g.,
busy, ready, etc.).

Refers to the initial system load process where the resident is
loaded, memory initialized, and the input preprocessor task is
started. -

B-3

Task

Task Control Table (TCT)

Terminate

Thread

Utility

An independent unit of work that can compete for the resources
An area of memory containing information used to control a
task.

The process of completing a job. A job may terminate
normally or abnormally.

A linked list of elements, the contents of each thread cell
contains the address of the next thread cell and so on until a
thread cell of zero which indicates the end of the list.

A routine or procedure that supports the operation of a system
(e.g.,. an I/O transfer routine).

17329110 A

of the system. A task may call and be called by other tasks. (})

™
1 1

BLOCKER/DEBLOCKER C

The following diagram illustrates the relationship of records, buffers, and blocks for a
‘block type device. Block i is within the user-defined core buffer area. Block i con-
tains records 1 through n with appropriate headers.

User-Defined
i 7
Device Buffer Area User Record Area

Block Pointer
Block 1 i Record i

O Record 1 Header

Block 2 Record 1

Record 2 Header

Record 2

sscccsccss e

Block i >«

Record i Header

Record i }

XXX RN

Block a

Record n Header

Record n

L Record Header = 0

Blocker/DCeblocker
Record/Buffer Formats
Block Type Device

C

17329110 A C-1

The following diagram illustrates the relationship of user records, buffers, and physical

records (i.e., data actually transferred to or from an I/O device). Physical record i is

within the user-defined buffer area with appropriate headers. Physical record i is the . \//j)
same as record i in the user record area. L.

User-Defi
Device ser-Defined User Record Area
Buffer Area

Block Pointer
Record 1 > Record i

Record i Header

Record 2 ‘4 , Record i

Record Traijler = 0

Record i TN
NS
.
Record n .
Blocker/Deblocker
Record/Buffer Formats ' s
Record Type Device L/

C-2 17329110 A

The following diagram illustrates double buffering when blocking a block or record type
device. For a blocking type device, block i is transferred physically to the device at the

N same time records are being passed to block i+l. For a record type device, record i
(/ is transferred physically to the device at the same time record i+l is being transferred to

the user-defined buffer area.

. User-Defined i ‘ e
Block Type Device Buffer Area User Record Area
Block 1 Block i Pointer
Current Record

Block 2 Block i

Block i+1 Pointer

Block i =
Block i+1 -

Block i+1

Block n
W\
)

Record Type Device
Record 1 Block Pointer
Current Record
R .
Record 2 ecord i Header
H Record i
Record i “ Record Trailer = 0
Record i+1 Block Pointer

V Record i+1 Header

Record n
Record i+1

Record Trailer = 0

O’ Blocker

17329110 A Double Buffering . cos

The following diagram illustrates double buffering when deblocking a block or record type
device. For a blocking type device, block i+l is transferred physically from the device
at the same time records are being passed from block i. For a record type device,
record i+l is transferred physically from the device to the user-defined buffer area at
the same time record i is being transferred from the user defined buffer area.

User-Defined User Record Area

Block Type Device Buffer Area
Block 1 Block i Pointer
| Current Record
Block 2 Block i

Block i+1 Pointer

Block i
Block i+l Block i+l
Block n
Record Type Device
Record 1 Block Pointer
—p{ Current Record
Record 2 Record i Header
: Record i
Record i Record Trailer = 0
Record i+1 \ Block i+l Pointer
- Record i+1 Header
Record n
Record i+l

Record Trailer = 0

Deblocker
Double Buffering

c-4 17329110 A

SYSTEM ERRORS CODE DEFINITIONS D

ABORT TYPES AND CODES

Abort
Type

1

17329110 A

Abort
Code

© ® T o o R W N H
=

Mo R
W »<

Description

1/0 abort

Operator rejected request to ready a unit for operation
Buffer size larger than 4096 words

Logical unit unassigned

Attempt to write on read-only file

An input was attempted into a read-only page

I0C reject

An input or output- was attempted upon a protected page
Illegal logical unit number

Illegal command

Operator abort

Operator aborted the job from the console CRT

Job time limit expired

Page fault

Read-only violation

Protect violation

Memory problem

Memory parity error - instruction

Memory reject - instruction

Abort Abort

Type Code Description
=
Memory parity error - operand , .

4 Memory reject - operand .

5 YY Arithmetic fault
1 Arithmetic fault
2 Function fault

Exponent fault

4 Divide fault

6 YY Illegal instructions
1 Privileged instruction encountered in program state
2 Illegal address encountered in a monitor call
3 Illegal monitor call

7 YY Voluntary abort
1 User's program made a monitor call to ABORT

8 YY Parameter address error
1 Caller's parameter address is in a protecfed page P
2 Parameter address in unassigned page for CTOI

12 YY Control card errors
1 Unrecognized card
2 Irrecoverable error on OUT
3 Incomplete parameter list
6 Logical unit number already assigned .
7 Invalid logical unit number
9 Unidentified parameters on dump request
10 Unrecognized parameter
11 LUN equated to unassigned logical unit number
12 Exceeded scheduled hardware
13 Operator rejected request on PAUSE card
14 Operator rejected EQUIP request
15 Parameter list improperly terminated
20 PACKD on standard output unit s

\\u/

D-2 17329110 A

Abort Abort

. Type Code Description
(\) 21 Illegal control card
22 Too many *TASK cards
23 Error on ABS file
25 Standard file error
26 Print lines limit exceeded
27 Punch cards limit exceeded
28 Blocker/deblocker error
30 Scratch limit exceeded
13 YY Loader error
14 YY Hexadecimal correction card error
1 Location is undefined
2 Location is in common
3 Location field is missing
4 Program is undefined
™ 5 Illegal program name
Q 6 Program name too large
7 Illegal hexadecimal field
8 Extension area overflows memory
15 1 Caller calling itself
2 Caller not waiting on common pass
3 Too many tasks
4 Circular call
5 Caller not waiting on parameter pass
6 Not enough memory

O}

17329110 A " D-3

MPX LOADER DIAGNOSTICS

Several conditions can arise during the loading of a program that result in a diagnostic. (: j
Some conditions result in the job being aborted while others are merely reported. The
format of the loader diagnostic is as follows:
(program name) ERROR NO. 02 WORDS 1 AND 2 = XXXXXXXXXXXXXXXX
The error conditions and the actions taken are described below:
Action
C = Continue
Error No. _ Cause A = Abort
0001 Checksum error (IDC,BCT,EPT,RIF, or EXT) C
0002 LST table overflowed loaded program A
0003 Doubly defined program name - not loaded C
0004 Current program will overlay LST table A
0005 Current absolute program overlays loaded program A
0006 Mixed program types - absolute and relocatable C \ /
0007 Current absolute program overlays LST table A
0008 Current program will overlay scratch common A
0009 BCT name occurred before as other type - use %%000000 C
0010 BCT card out of sequence A
0011 Data common block overlays LST table A
0012 Data common block overlays scratch common area A
0013 Scratch common overlays loaded program A
10014 Second SCOM of same name greater than first SCOM A
0015 Second DCOM of same name greater than first DCOM A
A

D-4 17329110 A

C

0

Error No.

0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034

0035

17329110 A

Cause

EPT card out of sequence

Two entry points of same name - ignore second
EXT card out of sequence

Next string address out of program area

EXT string in tight loop

Next string address out of memory

Running checksum error - card missing perhaps
More than three transfer addresses - use last three found
Transfer name not an entry point - ignore name
IDC card not first card of deck

Nonbinary cafd between IDC and TRA cards
Second IDC card before TRA card

Current card out of sequence

Unrecognized card - out of sequence perhaps

. *(library name) not found in library directory

No TRA card

Program size exceeds schedfxled memory
Irrecoverable error on load umit

Library sequence error

Task monitor not loaded

Action

C = Continue

A = Abort

C

FILE MANAGER ERRORS

)

When a file manager control card error is encountered, a diagnostic is output on the OUT y
file, and the job processing continues. ' -

When a file manager call error is detected, an error code is returned to the parameter
area, PARM. PARM must be defined as an external in the user's program. An error
code of 0 specifies normal processing.

CONTROL CARD ERROR DIAGNOSTICS

The format of the control card error diagnostic is:
FILE MANAGER ERROR XX

where XX is the error code.

FILE MANAGER ERROR CODES

Error N
Code Description ‘\“ p

3 Incomplete parameter list

4 No file name specified

5 No block size specified

6 ' No block count specified .

7 Illegal logical unit number

11 Label file read error*

12 File previously allocated

13 Insufficient label file space*

14 Illegal dévice type

15 Too many devices

s
N

*Consult system analyst
D-6 17329110 A

Error
Code

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

*Consult system analyst

17329110 A

Description

Insufficient contiguous space
Insufficient space available on the specified devices
File size exceeds system limits

Number of blocks to release exceeds the number of allocated
blocks

File not allocated

Cperator cannot place devices on-line

Device label read error*

Invalid logical unit number

Ldgical unit previously defined by EQUIP or OPEN

File is allocated as read-only and the OPEN call specifies
read/write use ‘

File was previously opened and the use in the OPEN call con-
flicts with the previous OPEN use. A file can be opened
only once with read/write usage

Insufficient table space*

File is open. A file cannot be modified or released while
it is open

Illegal access key

Too many DIDs

Label file cannot be closed
Block size is 0

Number of blocks is 0

Segment count exceeded

BLOCKER ERROR INDICATORS

Indicator Routine Description
1 PACK, PACKO, PACKC Write attempted beyond file limits
2 PACKD, PACK Logical unit is not open
PACKO, PACKC
3 PACK, PACKO, PACKC Write attempted on a read-only file
or device
4 PACKD Buffer area already defined by
previous PACKD or PICKD
5 PACKD Buffer size too large | inconsistent
with file blocking
6 PACKD Buffer size too small | definition
7 PACK, PACKO, PACKC Buffer area not defined by PACKD
8 PACK Record size (after removal of trailing
blanks or zeros) is greater than
buffer size
9 PACK, PACKO, PACKC Buffer area has been defined by PICKD
10 PACKD, PACKC Cannot perform these functions on
logical unit 61 or 62
ef{/ o
11 PACKD, PACK, PACKO, PACKC Logical unit invalid (not 1-63) -
12 PACK, PACKO, PACKC Irrecoverable I/O error
13 PACK Block pointer out of bounds;
BLOCKER/DEBLOCKER pointers have
been modified
14 PACK " Record length = 0
D-8 17329110 A

N

N

7

DEBLOCKER ERROR INDICATORS

Indicator Routine Description
1 PICKD, PICK, PICKI End-of-file
2 PICKD, PICK, PICKI, Logical unit is not open
PICKC
3 PICKD Device is a write-only device
4 PICKD Buffer area already defined by
previous PICKD or PACKD
5 PICKD Buffer size too large
6 PICKD Buffer size too small; inconsistent
with file blocking definition
7 PICK, PICKI, PICKC Buffer area not defined by PICKD
9 PICK, PICKI, PICKC Buffer area has been defined by
PACKD
10 PICKD, PICKC Cannot perform these functions
on logical unit 63
11 PICKD, PICK, PICKI, Logical unit invalid (not 1-63)
PICKC
12 PICKD, PICK Irrecoverable I/O error
13 PICK Block pointer out of bounds;
BLOCKER/DEBLOCKER pointers
have been modified
14 PICK, PICKI Record length = 0
17329110 A D-9/D-10

ERROR RECOVERY ‘ ' E

MPX/0OS performs error recovery on standard peripheral units when an error is detected
during data transmission. If the error is not recoverable, the status indicates the error
type (see subtitle, '"UST, Unit Status Test" in Section 3). Error recovery for specific
error conditions is a function of the device and the command issued. Standard error
recovery by device is given in the following:

Device Error Command Procedure

Disk Memory All 1. Repeat operation three times; if
error persists, it is irrecoverable.

Data Read 1. Repeat operation three times; if
error persists, it is irrecoverable.

Hardware All 1. Irrecoverable.

Lost data All 1. Repeat operation three times; if
error persists, it is irrecoverable.

Address All 1. Locate to sector 0.
2. Repeat operation three times; if
error persists, it is irrecoverable.

Seek All 1. Repeat operation three times; if
error persists, it is irrecoverable.

-t

Magnetic Memory Read/Write
tape

Backspace one record.

Repeat operation.

3. Repeat procedures 1 and 2 three
times; if error persists, it is
irrecoverable.

[\

17329110 A E-1

Device

Card reader

Error

Data

Hardware

- Lost data

Write
protect

End-of-tape

Memory

Data

Command

Erase
Read/Write/

Write Tape
Mark

Erase
All

Read/Write

Write/Write
Tape Mark/
Erase

Write/Write
Tape Mark/
Erase

Read/SEOF

Read

Read

[

Procedure

Irrecoverable.

Backspace one record.

Repeat operation.

Repeat procedures 1 and 2 three
times.

If error persists, backspace three
records; check for load point after
each backspace (irrecoverable if
loadpoint).

Skip forward two records and
repeat operation.

If error persists repeat procedures
1 through 5 three times; if error
persists, it is irrecoverable.

Irrecoverable.
Irrecoverable.

Backspace one record.

Repeat operation.

Repeat procedures 1 and 2 three
times; if error persists, it is
irrecoverable.

Request that the operator enable

write function; the operator responds
with accept or reject.

Request that the operator mount a
new reel.
Request that the operator mount a
new reel.

Irrecoverable.

Request operator to recycle card.
Repeat operation.

O
i/

17329110 A

C

Device

Card punch

Printer

CRT

Teletypewriter

All

17329110 A

Error

Hardware
Feed failure

Input tray
empty

Memory

Stacker full

Hardware
Hopper empty
Memory

Data
Hardware
Paper fault
Memory
Memory

Data
Hardware

Not ready

Reject (only)

Command

Read
Read

Read
Write

Write

Write
Write
Write
Write
Write
Write
Read/Write
Read/Write
Read/ Write
Read/Write

All

All

Procedure

Irrecoverable.

(See Not Ready.)

(See Not Ready.)

Repeat operation three times; if
error persists, it is irrecoverable.

Notify operator.
sary.)

(No repeat neces-

Irrecoverable.
(See Not Ready.)
Irrecoverable.
Notify operator. (No repeat.)
Irrecoverable.
Notify operator. (No repeat.)
Irrecoverable.

frrecoverable.

Irrecoverable.

Irrecoverable.

Request operator ready unit.
Repeat operation.

Thread request against IOC.
Repeat operation on time basis.

E-3/E-4

C

~MASS STORAGE DEVICES

CONTROL DATA 9425 CARTRIDGE DISK DRIVE

The Control Data 9425 Cartridge Disk Drive contains a removable and a nonremovable
device. Each device must contain a device label. The two devices have the following
identical characteristics:

Sector size 100 words
Track size 16 sectors
Q Number of tracks 408 tracks
Allocation unit size 1 track
Capacity 652,800 words
Cylinder size 2 tracks

CONTROL DATA 844 DISK STORAGE UNIT

The Control Data 844 Disk Storage Unit contains one removable device. Each device
has the following characteristics:

Sector size 120 words
Track size , 24 sectors
Number of tracks 7,806 tracks
Allocation unit size 80 sectors
Capacity 22,483,200 words
Cylinder size 19 tracks

C

17329110 A F-1

CONTROL DATA 9427 CARTRIDGE DISK DRIVE

The Control Data 9427 Cartridge Disk Drive contains a removable and nonremovable device. (C)&)
The two devices have the following identical '

Each device must contain a device label.

characteristics:
Sector size 100 words
Track size 16 sectors
Number of tracks 816 tracks
Allocation unit size -1 track
Capacity 1, 305,600 words
Cylinder size 2 tracks

CONTROL DATA 1867-1 DISK UNIT

The Control Data 9760 Disk Unit contains one removable device.
following characteristics: '

Sector size 48 words
Track size 64 sectors
Number of tracks 2055 tracks
Allocation unit size i track
Capacity 25 Mega-byte
Cylinder size 5 tracks

CONTROL DATA 1867-2 DISK UNIT

The Control Data 9762 Disk Unit contains one removable device.
following characteristics:

Sector size 48 words
Track size - 64 sectors
Number of tracks 4110 tracks
Allocation unit size 2 tracks
Capacity 50 Mega-byte
Cylinder size 10 tracks

™

Each device has the

Each device has the

[4

17329110 A

P!""Ir\‘
(M_)"'

C

MASS STORAGE LABELS G

Two types of labels are associated with mass storage; the device label, which defines a
physical disk pack (fixed or removable), and the file label, which defines files on mass

storage devices. Labels can be listed in various formats by the FMP utility program.
These labels are shown on the following pages.

17329110 A

DEVICE LABEL

I) 4‘\\1

Word

DEVICE IDENT

2 LBLLSL

3 . LBLBS

5 CHECKSUM

DEVICE STORAGE ALLOCATION MAP T

79

Words 6 through 79 contain a bit mapping of allocation units on the device and represent
units 0 through 2304 of the device. The size of an allocation unit is device dependent
(see ‘Appendix F for mass storage device characteristics). A bit set to 1 indicates the
corresponding allocation unit is assigned. A bit set to 0 indicates the allocation umit is
available. '

G-2 17329110 A

FIELD DESCRIPTIONS

C“’“.

e Field Size
DEVICE IDENT 8 bytes
LBLLSL 16 bits
LBLBS 16 bits
CHECKSUM 32 bits

17329110 A

Description

Identity of the device pack

Sector address of the beginning of the label file
(only appears on the primary system device,
disk unit 0)

Block size, in words, of the label file

Binary checksum of the entire device label

FILE LABEL

Wordo a1 (J)
0
1 FILE NAME
2 16
3 EDITION
4 - OWNER
5 ACCESS KEY
6 SPARE
7 CHECKSUM
8
9
10
11 SPARE
12
13
14 7 8 1516 o
15 SC P LBN -
16 NAB NHRPB
17 BS NBN
18 DT DC BC
19 DEVICE IDENT .

20 11 12

21 E LSL

22 | SL

23

4 4
; ¥
99
.
U
G-4 17329110 A

C

™

'

)

FIELD DESCRIPTIONS

Field Name
FILE NAME

EDITION NO.

OWNER
ACCESS KEY
SC

P

LBN
NAB

DT

BS

BC
NHRPB
DC

CHECKSUM

17329110A.

Size

14 bytes

2 bytes

4 bytes
4 bytes
1 byte

1 byte

2 bytes
2 bytes

1 byte

2 bytes

2 bytes

2 bytes
2 bytes
1 byte

4 bytes

Description

Identifies the file and is used in file manager
references to the file

Parameter to identify different versions of the same
file

Identity of the owner of a file

Controls access to the file

Number of segments in the file
Protection flag used by the I/O system:

= 0, file is read or write
1, file is read only

Block number of the label in the label file
Number of blocks allocated to the file

8-bit code to indicate the type of mass storage device
containing the file:

=1, 9425

=2, 844
=3, 9427

Block size; number of words per block

Next block number; next block number to read from
or to be written into

Highest block written
Number of sectors per block
Number of devices on which the file resides

32-bit binary checksum of the entire device label

Field Name

DEVICE IDENT*

LSI **

ST **

Size

2 words

20 bits

1 bit

20 bits

Description

Identity of the device containing the segment map
following the device identification

Lower sector address; sector address at which this
segment begins

Flag to indicate end of device map; 1 = end of device
segments

Segment length; number of secters in this segment

NOTE: A maximum of eight devices and/or 38 segments may be specified for one file.

*Repeated for each device
**Repeated for each segment on device

G-6

17329110 A

PROGRAMMING CONVENTIONS H

REGISTER NAMING CONVENTIONS

Operand/index registers used in coding examples in this document are given symbolic
names as specified below:

Name Register Name Register
X0 0 RO 16
X1 1 R1 17
X2 2 R2 18

O X3 3 R3 19
X4 4 R4 20
X5 5 R5 21
X6 6 R6 22
X7 7 R7 23
HO 8 R8 24
H1 9 R9 25
H2 10 RA 26
H3 11 RB 27
H4 12 RC 28
H5 13 RD 29
H6 14 RE - 30
H7 15 RF 31

C

17329110 A H-1

FORTRAN CALLING SEQUENCE CONVENTIONS

The calling sequence generated by FORTRAN for external subroutines and functions is as CI:))
follows: . =
RTJ name
UJP *+n+1 (n = number of parameters)
NOP apl (ap = actual parameter address)
NOP ap2 .
NOP apn

Function subprograms expect the results to be returned in register RE (single-precision
result) or registers RE and RF (double-precision results).

C

17329110 A

C

ENGINEERING FILE I

L
This appendix describes the system engineering file facility of MPX/0S. The engineering
file is provided to collect system error information, such as device or memory errors

for equipment maintenance. The file is allocated at autoload unless it is already allocated.
The I/O interrupt processor (IOIP) collects information for the file everytime an I/0
operation indicates an error condition. The information content and the format of an
engineering file record are shown in Figure I-1. IOIP blocks the engineering file records
(12 entries per block), which when written to the disk, occupies one sector. Before each
write, the file is opened and after each write, the file is closed. This ensures all blocks
are physically transferred to the disk and the file block number is updated. In the case
of a system abort from MPX, or if the system reautoloaded, the last partial block may
be lost. IOIP monitors the number of blocks written to the engineering file and when the
file is within 10 blocks of the end of allocated area, the operator is informed that he
should dump the file. The operator is informed when the file is full and no further
records are written to the file. The file should be dumped at the end of the day and/or
before reautoload. The file is initially allocated at 100 blocks. Figures I-2 through

I-4 illustrate expanded status for various equipments.

17329110 A I-1

Bit No.

Word

DT
HT

MM
DD
BT

0 78 15 16 23 24 31
1 N
7
2 DT [HT | U / Status Bits
2
3 Expanded Status
4 M M D D
5 BT
6 AET or MST Entry
Not applicable for memory
7
Job Iden (ASCII Codes)
8

Number of consecutive errors of the same type
Device type for the system devices (bits 0 through 2)
Hardware device type code (bits 3 through 7)

Unit number of device (bits 8 through 11)

ASCII codes for month (0 through 12)

ASCII codes for day (0 through 31)

Binary value of time in milliseconds

Engineering File Record Format

17329110 A

Y

snjels pspuedxy X9

aanjieg JUdIIN) ISBIG
paddoag doory adey,
‘ojny adej, peo] 0} aanjreg

ysig ool aameaadwaj, jouiqe)
aanssaad Mo J _

9 ¢ e 210

Joaxy 4jl1ed sweryg
Joxxsy DI

J0XIY DUD I..—

) =

9 ¢ et O

snjels popuedxy

ssoappy AIOWSN 31-0Z

[g

C
C

JOIIT SIBMpIBY

I0X1Y ®ye(q —

I0aay Axowo

XXX

068
to0oo

sne)g dIseg

1-3

17329110 A

snjelg papuedxy 3s1Q

pioy seJ, Ssaappy
woiJ peay SSaIppy ASIq

pa3o9dxy
"SSAIpPVY ASIA

-©
-0

o0

PoIINdO(IOAXY OIYM
S894ppY ASIA

0—

oo

ssaappy AI1owolN 31g-02

[Y.

1BWIO] pPIOp SnIB)g popusdxy

(o]

0117 SS9IppPY

Ioxxy wyeq

xoaay Ar1owaN

snjelg oIseg

17329110 A

snjels popuedxy

smejg popuedxy

§591ppy AIOWAN 11H-03

e

et

C

Aeldsi(q ewseld

LYO €31-¥1L

1apo01d dwooie)n
JOJUIXJ QUI']

Jopeay pie)d

nup edey, Snsusq y3iH
sadey, 93plajae)d

;sjuowdinby ojqearjddy

JOXIs Axowd

sne)g oIseq

91

-Q

1-5/1-6

17329110 A

J

ENGINEERING FILE REPORT GENERATOR J

The engineering file report generator on the MPX/OS library is used to format the engi-
neering file into a report. The user may selectively receive a report on a hardware type
by unit number or obtain a report on the entire file. Optionally, the file may be cleared
after generating the report. The report generator is executed as a job from the ENGRPT
control statement. Figure J-1 describes the control card options and Figure J-2 describes
the format of the engineering report.

The form of an engineering report generator job is as follows:

*JOBID=RPT)
*SCHED
*ENGRPT(M, U, C)

C
: *ENGRPT(H, U, C)

H = Hardware type to be reported. If this parameter is null, all
errors for all devices will be reported.

U = Unit number of specified hardware type to be reported. If this
parameter is null, all errors for the specified hardware type
will be reported. If H is null, this parameter is meaningless.

C- = This parameter specifies whether to clear or not clear the

engineering file at the completion of the report generation.
This parameter is mandatory.

C

17329110 A J-1

The parameters must appear in the indicated order with null parameters specified by

adjacent commas.

as follows:

J-2

H =
U =
C =
Examples:
1)
2)
3)

The acceptable parameters for the MPX/OS system devices will be

MEM

M667 (667 magnetic tape)

M669 (669 magnetic tape)
MCAR (cartridge magnetic tape)
MIEC (IEC high density tape unit)
D927 (9427 disk drive)

CARD (card reader)

LINE (line printer)

DIGV (DIGIVUE plasma display)
DISP (714-123 display)

PLOT (plotter)

0 through 7
1 clear engineering file after report generation

0 do not clear engineering file after report generation

*ENGRPT(,, 1) report errors for all devices and then clear file.

*(ENGRPT(MCAR,,0) report errors for all cartridge tapes; do not
clear file.

*(ENGRPT(MCAR, 6,0) report all errors for cartridge tape, unit 6;
do not clear file.

ENGRPT Control Card

17329110 A

U

1 N 4 b - B
“0”"E:§=!E$:§mi2: 3[R’ &] 3[5[9 EEIK] (EE
>
3
s
J .

e

o3 n 2, o
ze — or o

5 - 4
RS = il
ctl

308l ENENT
N

- s 2
2 | R g
- & &
1 o
a -
5 SE-essc: 2
3 ' ’ 2
. Q
’ ~
v 2 5 ~—
- i)
\al [
. o ~ 4 p
vy RS -«
™ : & P
- =
= 4
! ()]
s Q
5 4 £
: : = 2
o N =
> -y i b
= - | 4
‘ : E 3
H o 8 <
= - : 4 E
: : s | 432
% 1 E o0 o g |H98%
- : . q¢3
T B m :kU
o Q
- -~ =
. 2
e oo L T
H - o
= e -
o
2
= - 3
= I
i - = EE
= il & R
R REEENENUREEEEEDEBEEEREREE BEERE R sl 9 LRI F1IE RIRRBEIE P

17329110 A J-3/J3-4

U
k\ Iy

CUT ALONG LINE

PRINTED IN USA

AA3419 REV, 11/69

COMMENT SHEET

MANUAL TITLE MP-60 MPX/0OS Reference Manual

PUBLICATION NO. 17329110 REVISION A

FROM: NAME:

BUSINESS
ADDRESS:

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S, A,

FOLD ON DOTTED LINES AND STAPLE

SN

O

e

&

FILE MANAGER ESRs

ALLOCATE

- CLOSE

MODIFY
OPEN
RELEASE

PHYSICAL I/0 ESRs

BKSP
BSY
ERASE
READLU
REWD
SEOF
SELDEN
SELTRACK
ULOC
UNLD
UST
UTYP
WEOF
WRITLU

TASK MANAGER ESRs

ABORT
CALL
DWAIT
ENABLE
OPENMEM
PFAULT
RELMEM
RETURN
TSCHED
TSTATUS

MISCELLANEOUS ESRs

CTOC
CTOI

DATE

TETIME

TIME
BLOCKER/DEBLOCKER
PACK

PACKC

PACKD

PACKO

PICK

PICKC

PICKD

PICKI

CORPORATE HEADQUARTERS' P.0. BOX O, MINNEAPOLIS, MINNESOTA 55440 LITHO IN US.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD.

Go

CONTROL DATA CORPORATION

