17329120 C

G corroration

MP—60 EMULATION
REFERENCE MANUAL

CONTROL DATA®
MP-32
COMPUTER SYSTEMS

REVISION RECORD

Say

(, «
e ¥
<A

REVISION DESCRIPTION

{ '

A Original release.

(02/01/78)

‘B Incorporate new instructions.

(08/15/80)

C Correct typographical errors for customer release.

(03/11/83)

Document No.
17329120

Revision letters I, 0, Q, and X are not used.

CCOPYRIGHT CONTROL DATA CORPORATION
1978, 1980, 1983
All Rights Reserved
Printed in the United States of America

i1

Please address comments
concerning this manual to:

CONTROL DATA CORPORATION

SYSTEMS TECHNOLOGY DIVISiON
215 Moffett Park Drive

Sunnyvale, California 94086

' Or use the Comment Sheet in

the back of this manual.

: w.wb

LIST OF EFFECTIVE PAGES

Page Revision
Front Cover -
ii/iii c
v B
vii B
viii C
xi B
1-1 through 1-7 A
2-1 through 2-15 A
3-1 A
3-2 B
3-3 c
3-4 through 3-14 A
4-1 through 4-11 A
4-12 B

A

5-1 through 12

6-1

6-2

6-3

6-4 through 6-8
6-9

6~10 through 6-13
6-14 through 6-45
6-46

6-47

6-48

6-49 through 6-57
6-58

6-59 through 6-79
6-80

6-81/6-82

6-83

6~84 through 6-86
6-87

6-88

6-89

6-90 through 6-96

A-1
B-1 through B-7

Cc-1

WowoOowowowowaoawoOoOE>EP>POPO

>

Page Revision
D-1 through D=4 A
E-1/E-2 A
E-3 through E-10 c
Comment Sheet c

17329120 C

iii

.;%ﬁﬁwj R, N

o)

-

. PREFACE
“‘

This manual provides information for the machine language use of the MP-60
Emulated computer system. Its intention is to describe the capabilities and

programming restraints of the hardware.

COMPASS mnemonics are used to abbreviate titles of instructions; however, no
software systems are used in describing instructions. Detailed descriptions
for those systems in operation are available in the appropriate software

reference manuals.

‘t(CONTENTS

s

Section Title Page
1 SYSTEM DESCRIPTION : . 1=-1
System Modularity 1=2
CPU Module 1-2
1/0 Module 1-2
Memory Module 1-2
Console 1=5
Computer Organization 1-5
Computer Word Format 1-5
Register Files 1=5
P Register 1-6

M Registers

‘Zi} I Register 1-6
¢ 1-6

Bit Register 1-6
Relocation Register 1-6
Real-Time Clock 1-7
Parity 1-7
2 INPUT/OUTPUT CHARACTERISTICS 2-1
Internal Input/Output Interface 2-1
Register Input/Output 2~2
Addressing - In/Out Protocol 2-3
Data Transfer = In/Out 2-4
Director Functions = In/Out 2-4
Director Status - In/Out 2-7
Automatic Data Transfer) 2-12
Direct Memory Access 2-15

CONTENTS (Cont'd)

Section " Title Page
3 EXCHANGE PACKAGE/INTERRUPT SYSTEM 3-1
Exchange Package Area 3-1
Interrupt System 3-4
Internal Interrupts 3-4
Arithmetic Overflow Fault 3-4
Function Fault 3-5
Exponent Fault 3-5
Divide Fault 3-5
Illegal Instruction 3-6
Page Fault 1 3-6
Page Fault 2 3-6
Page Fault 3 3-6

Memory Parity Error 3-6 ;/~3

Memory Reject 3-6 N
Power Failure 3-7
1/0 Interrupts 3-7
Real-Time Interrupts 3-7
Inter-Processing Interrupts 3-7
Interrupt Mask Register 3-8
Interrupt Control 3-8
Interrupt Recognition 3-8
Interrupt Priority 3-9
4 DISPLAY CONSOLE 4-1
Panel Interface L-2
Functional Operation 4-5
Control Functions 4-5
H Control Function 4-5

1 Control Function 4-5 Q?L

55
Nl

viii 17329120 C

CONTENTS (Cont'd)
Section Title

J Control Function
K Control Function
L Control Function
Stop/Go Control
Master Clear
Breakpoint (BP)

Auto Display

Special Considerations

Micro Mode

Macro Mode

MP-60/Panel Interface Displays

‘Zj> 5 MEMORY SYSTEM

Multi-Port Memory
CPU Memory Management Interface
Lookahead Registers
CPU Data Formatting
Paging
Page Index File
Page Index
Program State Register
Memory Address Generation
Memory Errors and Protection
DMA Data Formatting
DMA State Register

6 INSTRUCTION SET DESCRIPTION

‘ J Instruction Formats
, .
}“;

Symbol Definitions

Indexing and Address Modification

17329120 R

Section

1-1
1-2
2-1
2-2
3-1
4-1
5-1
5-2
5-3
5-4

CONTENTS (Cont'd)

Title

Use of Registers

Number Representation
No Operation

Load

Store

Fixed Point Arithmetic
Floating Point Arithmetic
Shift

Logical

Test

Register Bit Operations
Bit Skips

File Skips

Jumps

Register Operations
Function

Block Transfers

Special Functions
External Functions

Supplementary Functions

FIGURES

Typical MP-60 System

MP-60 Emulated CPU Module

ADT Table Entry Format

Current Memory Address Format
Exchange Package Description
Function Control Register (FCR)
Memory Page Structure

Page Index File Addressing

Page Index Register

Memory Address Generation

Page

6-7
6-7

6-8

6-9

6-15
6-19
6-23
6-28
6-29
6-32
6-39
6-41
6-44
6-46

6-63
6-67
6-78
6-84
6-93

17329120 B

i

A

Section

5-5
5-6
5-7
5-8
6-1
6-2
6-3
6-4
6-5
6-6

3-1
3-2
3-3
3-4
4-1
4=2

MmO 0O w >

17329120 B

CONTENTS (Cont'd)

Title

Memory Error Table

CPU State Register

DMA State Register

Typical Address Snapshot

Word Addressed Instruction Format

Half Word Addressed Instruction Format
Byte Addresed Instruction Format

Bit Addressed Instruction Format
Relative Displacement Instruction Format

Three Address Instruction Format

TABLES

Real-Time Interrupt Mask Bit Assignment
Interrupt Mask Bit Assignments

Low Memory Assignments

Interrupt Priority

Display Code Definitions

MP-60 Register Utilization

APPENDIXES

Powers of Two Table
1/0 Programming Formats
Hexadecimal Conversion Tables

IOC Interface

MP-60 Machine 'Language Instruction Formats

3-10
3-11
3-12
3-14
4-4

4-13

A-1
B-1
C-1
D-1

x1i

A ¢

S
b
E‘ ;
e GO

-

o~

o~

*

LB

man, L,

-~

SYSTEM DESCRIPTION 1

The CONTROL DATA® MP-32 is a medium scale, solid state, general purpose
digital computer system. Advanced design techniques in the field of
microprogrammable architecture are used throughout the system fo provide a
flexible, extendable, compact and high-performance system for wuse in
scientific, real-time, data management applications. Modular packaging of the
basic MP-32 facilitates expansion of the system components to accommodate

increased customer needs.

The MP-32 provides a general-purpose computer capability with a basic firmware
emulation package. This package utilizes the wealth of hardware resources to
present a state-of-the-art 32-bit architecture, termed the MP-60. As such,
the MP-60 represents an optimum emulator design using the CDC MP-32 series of

architectural components.

The advantages of the MP-60 for the system designer are an instruction set
which can be extended to include user-defined functions, large, fast local

store and flexible input/output (I/0) structure, interrupt structure and

memory address range. Briefly, the MP-60 system provides the following
features:
¢ 32-bit, two's complement single precision arithmetic and 64-bit,

two's complement double precision arithmetic.

¢ Eight sets of register files, 32 registers per set.
¢ Fixed point integer and floating point arithmetic.

* Double word, full word, half word, byte and bit addressing modes.

Read/write control store containing the MP-60 microprogram

(firmware).

* Extendable instruction set with the ability to define wunique

instruction sets for new applications.

17329120 A 1-1

* Features to allow expansion to multiprocessor, multiprogramming

systems.

d Addressing capability to 16 million bytes.

SYSTEM MODULARITY

A basic MP-60 system consists of a central processor unit (CPU) with I/0
controllers (IOC), one 65K bank of memory with two ports and an operators
console. Figure 1-1 shows a typical MP-60 system with a possible expansion in
dotted lines. Memory may be increased to a maximum of sixteen (16) chassis,
each chassis containing 256K words. In addition, each of these banks may be
equipped with up to eight ports. It is also possible to create other
configurations by the addition of one or more CPUs in a multi-computer

environment.
CPU MODULE

The MP-60 emulated CPU module, Figure 1-2, consists of the arithmetic,
control, control memory, I/0 and memory interface hardware. The CPU is a 32-

bit, file organized, two's complement, single precision integer processor.
1/0 MODULE

The 1/0 module consists of the available peripheral controllers and interface

cards. These cards are normally inserted in open slots, located in the CPU

chassis.

MEMORY MODULE

The Multi-Port Memory (MPM) is a modular semiconductor memory capable of
expanding the number of banks, access ports and memory chassis. A bank of
memory consists of either 32K, or 65K words, and a memory chassis may contain
from 1 to & banks. The number of access ports per chassis may vary between
two and eight in increments of two. The maximum number of memory chassis a
single CPU may be connected to is sixteen (16); therefore, the maximum amount

of memory a single CPU may reference is four million words.

1-2 : 17329120 A

Mo

Vaiw

LA

1-3

wa3sAS (09-dW TEOFdAL °T-1 2andyg

S1dNYHILNI
JYVYMAHVYH S1ININJINO3 SININGINDI INILIVIY
SNOILYIINddY VY IHJINI IvuIHdin3d IVNY3LX3
I
| ! U R
|
e N ¢
' | | I T
! | I . I | 149
. | | i 201 | ! % 3705N03
o ndd I TUNY3LX3 NV SV | so | * ndd
reesainy _ “ Q@UN9IINGD NdD _ #..z:.."
!
¥ - ¥ a
| |
| |
| |
[|
_ |
|
¥ _
llllllllll -4 —— e o —— — — e d — o ——— —— — ..
1 . :H T ._r
D S Ghn D Gae GEUS maw Weum e |eme G W NI GEED e Geme . G = G e] e G —p —— G- G == Cous G WS WA S e— —d
rYor JI...!...hJ.«J.h._ =T o 4!1«4*-14:_ o= Jlﬂﬁ..l«.._n.«.. P P P f C
1 .o.n.v.n-u-..o_. 1419, S1p182,310 1419161 b €2 110, .N.O n_v_n_u I | 0] Siuod
-..lsll.l..tl..-l..‘.lvl..l.l'_ [Y A o _lL.IL-nlrL.l._l.l.l.l..l.J =t
! 4 | la I 1 | DI007 2IV4UILNI MNVE ANORIW
Fer To T T [ty 176 176 F=m =g rg-r371 il e zs
nn..:_n..u_ L 0] o el P Lo 9 S v L B A T O | wunvaubo
! “ [! | ' _ . H | ' ! i | “ " ' v ¥O M 2¢€
"Plﬁmmwdnu,l ——-) r l'mlmﬂW‘—m-nW.LllL rll_.llhll.....l.rl".“rllluL B SQUR N R N, <
VH 2_SISSVHD . |_SISSVHI
AHOW3N TWIISANG ANON3N WOISAH AYONIN WDISAHd AYOWIN WOISAHd o
o~
v~
=8
o~
(32}
™~
—

o~ i P S e A, G o, £, £,
R U T YN A
u..(ﬁ!& .f, M\
9TINPOR NdD paIeTnWy 09-dKW “¢-1 2india
viva viva je—1p
| i
T114 o~ mivis AUOWH
1 d vd YALSIHTE
M _. SsSTUAAV
JO&%”«U o1901 ¢ TId
3000 a | ndo indino [P SUTTIONINOD grvis —¥ 3oVd
Inani ® TveaHdT¥Ed
SNOI1IANOD
TVNYILXT Y3LSIHTE WALSAS SYILSIOTH
anv INITIOH # LIMNIIND [ASWH
TVNYILNI SNIVLS

«
o
o~
~
(=)}
~N
(28]
~
-

Py

Lt
£ B

e,

-
FAReN

CONSOLE

The MP=-60 is equipped with an operator comsole. The operator comsole is a cpc®
CRT display, which includes a keyboard, a CRT and a controller, all self-

contained.

COMPUTER ORGANIZATION

COMPUTER WORD FORMAT

The MP-60 computer word consists of 32 binary digits. Each word is divided
into four 8-bit bytes. An odd parity bit is generated in storage and checked
for each of the four bytes, lengthening the storage word to 36 bits. Figure

1-3 illustrates the bit assignments of a computer word in storage.

0 7 8 15 16 23 24 31
PoiP1|P2|P3 Byte 0 Byte 1 Byte 2 Byte 3
\ A /
V V
Parity bits Byte designators

Figure 1-3. Computer Word Format

REGISTER FILES

The MP-60 contains eight sets of register files. Each file consists of 32
general-purpose registers which may be used as accumulators or indexes. The
program state setting determines which file is addressed by an inmstruction. A
register within a register file can only be accessed while executing in its

associated program state.
The registers in any given register file are numbered sequentially from O

through 31 and are specified by various fields in the instruction formats.

For some operations, two adjacent registers are coupled together, providing a

17329120 A) 1-5

double register capacity. In this type of instruction, the referenced
register contains the most significant portion of the operand and the next
higher addressed register contains the least significant portion. Any
register, with the exception of register 31, may be referenced as the first

register in a double register instruction.
P REGISTER

The 32-bit P register is the program address counter. Only the lower order 16

bits of P are used for program addressing (bits 16 through 31).

| REGISTER

The 32-bit I register holds the instructions read from memory by the read next

instruction (RNI) cycle.
M REGISTERS

The 16-bit or 32-bit M registers hold the interrupt mask bits and control the
recognition of interrupts by the interrupt system. A bit set in M enables its

corresponding interrupt, while a clear bit disables the interrupt.

BIT REGISTER

A single register is used to perform single bit operations. The bit register

is not part of the general register files.
RELOCATION REGISTER
A single register is used by the system to hold the relocation state for the

LDP and STP instructions. The relocation register is not included in the

general register files.

1-6 17329120 A

:,‘?
P
{

o’

Suq

Novar’ S

S’

i’

'*\M,I

{

REAL-TIME CLOCK

The real-time clock is a 32-bit counter that is incremented each millisecond
to a maximum period of 4,294,967,296 milliseconds. The clock, which is
controlled by a 1 KHz signal, starts as soon as power is applied to the
computer. Instructions are available to set the real-time clock count (time-
of-day) and to set an interrupt interval. If the interrupt system is enabled
and the real-time clock mask bit is set in the interrupt mask register, an
interrupt will be generated each time the specified interval time elapses.
The counter is always updated and can be read as a source of time-of-day
regardless of the status of the interrupt system. An interrupt interval must

be specified in milliseconds.

PARITY

During each write cycle, a parity bit is stored along with each byte. When
part or all of a word is read from storage by the central processor, parity is
checked for a loss or gain of bits. Failure to produce the correct parity

during read operations results in a memory parity error.

17329120 A

o,

o AT S R S

TN
NS

s,

AT

5’- N

INPUT/OUTPUT CH.ARACTERISTICS 2

20—

The minimum MP-60 system consists of a CPU, an IOC and one bank of memory.
The IOC subsystem contains the logic necessary to route 1/0 requests to the
peripheral equipment. The CPU initiates 1/0 operations by establishing an I/0
request and invoking the IOC subsystem. The I0C subsystem responds by
accepting the request, performing the operation, returning status and
generating an interrupt. An IOC may be internal or external to the requesting
CPU. When the IOC is external, it may be in an MP-60 emulator or a

specialized I/0 handler.

The CPU invokes the IOC subsystem with the following five instructioms: CFO,
CTO, SEL, SIO and CIO. The IOC subsystem will route the request to the proper
processor. This processor will then perform the required 1/0 operation,
return status and interrupt the requesting processor when the operation is

complete.

INTERNAL INPUT/OUTPUT INTERFACE

The MP-32 microprogrammable processor is composed of many components used in
the CDC CYBER 18 line of computers. Since the internal I/0 interface is among
those borrowed components, the MP-32 can, therefore, be connected to most
CYBER 18 peripheral controllers. <The MP-60 emulator on the MP-32 provides
enhanced instructions which communicate to these peripheral controllers via a
register I/0 bus. The controllers are then cabled to their associated
peripheral devices. 1If a controller has a CYBER 18 compatible direct memory
access (DMA) channel, then the channel is connected to one of four DMA
assembly/disassembly ports of the MP-32 memory system. The peripheral
controllers may use three techniques to transfer data to and from the MP-60
system: Register Input/Output, Automatic Data Transfer (ADT) and Direct
Memory Access (DMA).

The Register I/0 method uses two registers to communicate commands and data to

a peripheral controller. The "Y" register is used to designate the equipment

17329120 A 2-1

to be used, while the "D" register is used to hold function codes, to accept
status information or to transfer data in and out of the MP-60 emulator. The
MP-60 emulator allows the programmer to specify which of his 32 registers is
the "D" and "Y" registers. During a data transfer, either a 16-bit half word
or 8-bit character is transmitted to/from the "D" register, depending upon the
peripheral controller. The data transfer rate of this technique depends on
input/output instruction execution time and the peripheral hardware

characteristics.

The Automatic Data Transfer (ADT) technique enables data transfers to and from
memory in a buffered-type operation. ‘At the MP-60 macro level, the transfer
appears as a direct memory access (DMA). However, at the micro level, the MP-
60 emulator processes each data interrrupt and inputs/outputs the next element
of data. Thus, the micro interrupt is fully transparent to the macro program
and the macro program continues to execute while the data transfer is
occurring at the micro level. The maximum data transfer rate is dependent
upon the following:

* Interrupt sense time

Micro data transfer time

The MP-60 emulator can process a maximum of 80K ADT interrupts per second.

The MP-32 memory interface has four (4) direct memory access (DMA) ports. The
purpose of the DMA ports is to allow a controller to transfer data to/from
main memory independent of processor intervention. This feature allows faster
data transfer rates than 1is possible using the register I/0 and ADT
techniques. The maximum aggregate data transfer rate is approximately 1.6M

transfers per second.

REGISTER INPUT/OUTPUT

All control information for a peripheral controller is transmitted via the
register I/0 technique and is, therefore, the basis for all data transfers.
Automatic Data Transfer (ADT) and direct memory access (DMA) controllers
receive control information on the register I/0 bus which initiates their

buffered operations.

2-2 17329120 A

A——

e

E—

i\

s

There exists two different register 1/0 protocols, in/out and set/sample, in
the MP-32 peripheral controllers. These two types of I/0 protocols use the
same data and control paths. The difference between the two internal I/0
busses is basically resolved in the MP-60 emulator, which controls the

appropriate I/0 signals and timings.

The MP-60 emulator on the MP-32 offers four macro register I/0 instructionms,
two for each protocol (IN/OUT and NIO/SPS). The usage and format of the "Y"

(address) and "D" (data) registers is supplied in the following paragraphs.
ADDRESSING — IN/OUT PROTOCOL

The "Y" register in the MP-60 emulator is used to send addressing codes to
peripheral equipments. The format of the "Y" register is shown below. Each
level of peripheral equipment (converter, equipment, station and unit), except
a unit, is addressed by a unique section of the "Y" register.

2 2 3
1 5

2 2
0 4

Not Used W E Command

The W field, bits 16 through 20, are reserved for addressing the converter.
The W field must be zero for lower level peripheral devices and standard

peripheral controllers.

The equipment field (E), bits 21 through 24, are used to contain the equipment
number of the peripheral equipments on the I/0 bus. Each device responds when
the equipment number of the peripheral device, which is selectable, matches

the code specified in bits 21 through 24.

The command code, bits 25 through 31, are not specifically used by the
equipment and are, therefore, available to meet specific requirements of the
station and unit within the equipment. These. bits control and direct

information on the 1/0 bus in the following ways:

17329120 A - 2-3

Specify the data transfer.
Direct the control funétions and function level.

Direct the status and status level.

Address the data bus to specific stations under one equipment having
multiplexing capabilities.

"S" contains the station code

The command code is divided into two sections:
and "D" contains the director. The station code is located in bit 25 and
adjacent lower order bits as required. The director is located in bit 31 and
adjacent higher order bits as required. The S and D sections obviously cannot

overlap and not all bits in the command code will necessarily be used.

Units are controlled by a higher-level peripheral controller and respond only
to the controller. Units on the controller are selected by a function code

which directs the data bus to select the unit.
DATA TRANSFER — IN/OUT

To transfer data, the appropriate command must be coded in the director
portion of the "Y" register. An IN or OUT instruction specifies the direction
of data flow. If the peripheral equipment can receive data from or send data
to the I/0 bus, it will send a reply. If the peripheral device is not able to
receive or send data, a reject will be returned. The data for the transfer

originates or finishes in the "D" register.
DIRECTOR FUNCTIONS — IN/OUT
Equipment functions must also be coded in the director bits. An OUT

instruction is used with the "D" register containing the information necessary

to control the functions of the equipment.

2-4 17329120 A

\ A

~

;
“nap

e

e

AT TR e

“hases”

“aenn’

A
3

*

B ;
e

ey,
v

ey

e -
. o

L it a A

e

o~

-
N kY

PN

FUNCTION BIT DEFINITIONS (CLASSICAL EXAMPLE)

16 -— 24125126}27]28]29}30]31

W

Unassigned l—— Clear Controller

Clear Interrupt

Data Interrupt Request

L End of Operation Interrupt Request

_——Alarm Interrupt Request

L_Start Motion

| Stop Motion
CLEAR CONTROLLER

Bit 31 clears all interrupt requests and responses, motion requests, errors
and other logic. A function code in which bit 31 is set and any of bits 25
through 29 are set will first clear all previous functions and then

immediately set the function conditions indicated by bits 25 through 29.

CLEAR INTERRUPT

Bit 30 clears all interrupt requests and responses. A function code in which
bit 30 is set and any of bits 25 through 29 are set will first clear all
previous interrupt functions and then immediately set the function conditions

indicated by bits 25 through 29.

DATA INTERRUPT REQUEST

Bit 29 sets a Data Interrupt Request, which enables the generation of an
interrupt response by the peripheral equipment whenever a data transfer is
possible. Both the interrupt request and response are cleared by either the
Clear Controller or Clear Interrupt Director Functions, or by the Master Reset

Control signal.

17329120 A 2-5

END OF OPERATION INTERRUPT REQUEST

Bit 28 selects the End of Operation Interrupt Request. An End of Operation
results any time the continuous data transfer is interrupted; e.g., End of
Record. Both the interrupt request and response are cleared by either the

Clear Controller, Clear Interrupt or Master Reset signals.
ALARM INTERRUPT REQUEST

Bit 27 selects the Alarm Interrupt Request. An alarm may indicate a change of
status (Ready to Not Ready) or it may be an indication of an error (Lost Data)
or a warning (End of Tape). Each equipment must specify the manner in which
the alarm is used and must provide a status indication for each condition
causing an alarm. Both the interrupt request and response are cleared by

either the Clear Controller, Clear Interrupt or Master Reset signals.
START MOTION

Bit 26 directs the device to start motion in its storage medium. If Start
Motion is received while a block of data is being transferred, the remaining
data within the block is not transferred. Data transfer resumes at the start
of the next block. On machines which can halt between characters (non~
interrupt on Data Mode), Start Motion initiates data transfer from the Hold
régister. Motion occurs only after the computer honors the process. If Start
Motion does not apply to the particular device, this bit may be optionally

redefined and used in some other manner.

STOP MOTION

Bit 25 halts the operation started by Start Motion. Stop Motion takes
precedence over Start Motion. If Stop Motion is received while a block of
data is being transferred, the remaining data within the block 1is not
transferred. Motion, however, does not cease until the end of the block is

reached.

2-6 17329120 A

Sl

“

UNASSIGNED

Bits 16 through 24 are unassigned and may be used at the discretion of the

controller.

NOTE: Motion control may be received at any time from various parts of the

program. The last function received is the one honored.

DIRECTOR STATUS — IN/OUT

Equipment status is obtained by the appropriate command in the director field
of the "Y'" register, and an IN instruction directs the data lines containing

the status of the equipment into the MP-60 emulator.

STATUS BIT DEFINITIONS (CLASSICAL EXAMPLE)

16 - 22123|24125]26]27]28]29 3031
N— s’
Unassigned Equipment Ready
L Busy
f——1Interrupt
L—Data Ready
e— End of Operation

L Alarm

t——Lost Data

L—Protected

L—Parity Error

EQUIPMENT READY

Bit 31 indicates that an equipment is Ready and an operation can be performed
when requested by a Start request. Once Ready, an equipment remains so until
operation is no longer possible. An equipment cannot become Not Ready while
information transfer is actually in progress. Those equipments which require

manual intervention must be made Ready manually.

17329120 A 2-17

BUSY

Bit 30 indicates that an equipment is Busy, or in operation. The equipment
becomes Busy immediately wupon initiation of the Start operation if the
operation can be performed. Normally, an equipment remains Busy until it has

finished all activity and is able to perform another operation.

INTERRUPT

Bit 29 indicates an interrupt response has been sent from this controller.

Other bits must be monitored to determine the cause of the interrupt.
DATA READY

Bit 28 indicates that the controller is ready to perform a data transfer. If
a data interrupt has been selected, this bit also indicates the type of

interrupt which has occurred.

A director function sets the interrupt request. Another director function

clears both the interrupt request and response.

During a Read operation, the interrupt response occurs when data has been
loaded into the Data Hold register and is ready for transfer to the CPU. The

interrupt response is cleared by the reply to data transfer.

During a Write operation, the interrupt occurs when data from the CPU can be
loaded into the Data Hold register of the output device. The interrupt

response is cleared by the reply to data transfer.
END OF OPERATION

Bit 27 indicates an End of Operation which means continuous transfers of data
can no longer occur. It may also indicate the source of the interrupt
response if the request had been selected. Each equipment specifies the

particular conditions which constitute an End of Operation.

2~-8 17329120 A

-%\n "

Yowime™’

“wat

3
R g

£

FrN

e,

M,

A director function sets the interrupt request. Another director function

clears both the interrupt request and response. The operation may or may not

be in progress at the time of the selection.

An EOP Interrupt cannot occur from an operation which has ended before the

selection was made.

An operation and an End of Operation must be defined for each peripheral

device.
ALARM INTERRUPT
Bit 26 indicates an alarm which may be caused by one of several conditions.

A director function sets the interrupt request and enables the device to
generate the interrupt. Another director function clears both the interrupt
request and response. An alarm condition that exists at the time of the

interrupt request provides an immediate response.

The alarm conditions must be defined for each peripheral device. A status bit
should indicate the state of each possible alarm condition. See reference

information for the specific conditions on each device.

LOST DATA

Bit 25 indicates that data may have been lost. This occurs when the computer
does not service the controller within the prescribed time for the device.

This loss should be detected and displayed as Lost Data. This may be a

condition for an Alarm Interrupt.

PROTECTED

Bit 24 indicates that the Program Protect switch for an equipment has manually

been placed in the Protected position.

17329120 A 2-9

PARITY ERROR

Bit 23 indicates that a Parity Error has occurred in those storage devices

that do incorporate parity as part of their format.

UNASSIGNED

Bits 22-16 are unassigned and may be used at the discretion of the controller.
Where more practical, it may be desirable to assign another status level in

the address and repeat use of the lower bits.)

Ncr®

SET/SAMPLE PROTOCOL

The Set/Sample I/0 structure provides eight port addressing and an eight-way

priority scheme. Each port is numbered from O to 7. Port 7 has the lowest

N

priority. Each port can communicate with a peripheral directly, or each port f
may optionally be further multiplexed to communicate with up to eight
peripherals. Thus, up to 64 peripherals can be controlled. The second level

of eight operates on a priority or scanning scheme supplied by external means.

Information is transferred to or from the device via the NIO instruction. The yw\Ej
NIO instruction causes 16 bits to be input to the MP-60 processor or 16 bits A
to be transferred to the device called out in the instruction. The direction

of the transfer is implied to the interface by the address bit 28, called

""SMB9".

When address bit 28 is a "1", the 16 bits of information contained in the "D"
register are placed on the output bus. Hence, during a sample condition, "Y" S
register bit 28 is a "0" and the 16 bits of information on the input bus are

transferred to the "D" register. o

2-10 17329120 A

The "Y" register is defined as follows:

0 11 222 22 22 3 3
56 012 45 78 0 1
Not Used W 1] PORT | POS | MODE 0

Bits 16 through 20 and 31 must be zero.
The code in bits 22 through 24 specify the port number of the device.

Bit 21 must be a "1". The code in bits 21 through 24 are directly analogous
to the IN/OUT protocol's E field and must not conflict with any of these

equipment codes.

The position of any multiple Set/Sample devices that are on the same port is

specified by the code in bits 25 through 27.

Bits 28 through 30 specify the mode in which the selected device is to
operate. Bit 28 is defined as the set/sample condition bit. When bit 28 is a
"]", ome 16-bit value will be set (output) from the "D" register. When bit 28
is a "0", one 16-bit value will be sampled (input) into the "D" register.

Bits 29 and 30 are device dependent.
The SPS instruction (inputs) the position and status of a set/sample device.

It is used whenever a set/sample device causes a macro interrupt to determine

the position of the device generating the interrupt.

The "Y" register is defined as follows:

oN
N
NN
P]
v N
o

Not Used W 1 PORT

17329120 A 2-11

Bits 10 through 20, and 25 through 31, must be zero.
Bits 22 through 24 specify the port number of the device.
Bit 10 must be a "1".

Upon completion of the SPS instruction, the "D" register contains the

following:

W
Pl]
wN
[30
~N N
N
ow
2

ZERO STATUS POS

Bits 0 through 19, 24 through 26 and 30 through 31, will be zero.

The position of the device that generated the macro interrupt on the port will

be in bits 27 through 29.

Bits 20 through 23 will contain four bits of status information. If these
four bits of status are insufficient, the controller may provide additional

status bits via the NIO instruction.

AUTOMATIC DATA TRANSFER

The MP~60 emulator supplies an I/0 technique which transfers data to and from
memory in a buffered-type operation. At the MP-60 macro level, the Automatic
Data Transfer (ADT) appears as a direct memory access. However, at the micro
level, the MP-~60 emulator processes each data interrupt and transfers the next
data element in a method similar to the register I/0 technique. Thus, the
micro interrupt is fully transparent to the macro program and the macro

program continues to execute while the data transfer is occurring.

The MP-32 Processor is configured with eight ADT interrupt lines. These eight

interrupt lines are connected via backpanel wiring to a particular controller.

2-12 17329120 A

prives

).

/
Nt et omma o e 209"

i 0

e

L

o,

i)

l’a&"y

R

AN

ik

. PN - s
’.7:!? SR ot W I

The controller may be either protocol, In/Out or Set/Sample. The MP-60

emulator logically ties these eight interrupt lines to an ADT table entry.

The ADT table entry is set by the MP-60 instruction SMIO, and is used by the
emulator to control the data transfer. The following information is contained

in the ADT table:

¢ "Y" register for addressing controller

number of transfers
* mode of transfer (halfword or character)

¢ current memory address

The MP-60 emulator uses two 32-bit registers to contain the above ADT table

information. The formats of this table entry are given in Figure 2-1.

The MP-60 programmer performs the following operations to initiate the ADT

micro-sequence.
1. Status controller and wait for busy status to drop.
2. Set up two registers with ADT table entry.
3. Execute SMIO instruction.

4. Condition controller for ADT and initiate ADT transfer.

When the MP-60 ADT micro sequence detects a transfer count of zero, or the
controller detects an error or end of record, an end-of-operation interrupt is

generated. The MP-60 programmer then performs the following sequence:
1. Status controller and clear interrupt.
2. Read ADT table using (RMIO) to determine record length.

3. Process interrupt status.

Since the MP-60 emulator is performing In/Out or Set/Sample protocols to the
controller, extreme care should be taken when performing 1/0 instructions to a

controller conditioned for an ADT micro sequence.

17329120 A 2-13

1 1 3
0 1 2 8 9 5 6 1
L
n transfer count "Y" register iijﬁ
I M .
n+l |/ |D current memory address-

o ,\‘!
3
register n bits 0~15 transfer count, decremented by 1 each transfer 3
5
bits 16-31 "Y" address register for associated controller A
register n+l bits 0 Input/Output (In/Out Protocol only) i
0 = input, 1 = output .

bit 1 Transfer mode (In/Out Protocol only)
0 = halfword, 1 = character :
bits 9-31 current memory address, incremented by 1 each |
transfer. See Figure 2-2. i
\.,,/-
Figure 2-1. ADT Table Entry Format ,
3
1 111 3 ;

90 789 1
Halfword Page File Index Halfword in Page ”3
Character Page File Index Character in Page

Page File Index -- address of page file entry applicable for this

transfer (2 - if transfer crosses page boundary).

See Section 5.

o §

Figure 2-2., Current Memory Address Format

.5, e
S’

14 17329120 A

!
Sl

£,

T

DIRECT MEMORY ACCESS

The four Direct Memory Access (DMA) ports, contained in the MP-32, supply
medium and high-speed peripherals a direct data path to the external main
memory. Since the DMA ports interface with the main memory interface, they

gain use of its paging and lookahead capabilities.

Each DMA port contains separate request and accept control lines, but share
the address and data busses. The address bus is 17 bits wide and specifies a
halfword address associated with the 16-bit data value contained on the data
bus. The DMA port creates a 16-bit DMA bus to 32-bit memory interface which

includes the operating modes, full word and half word.

In the half-word mode, each DMA memory request results in a memory cycle while
the full-word mode makes only one memory request to the DMA memory requests.
The half-word mode is intended to be used on DMA devices which perform memory
accesses randomly or terminate on uneven transfer counts. The full-word mode
requires transfer in multiples of two and start/terminate on 32-bit word

boundaries. These modes of data transfer are controlled by the DMA state

register explained in the memory section.

The MP-60 programmer supplies all needed information to the DMA controller and
includes the starting address in either bytes or halfwords and transfer count.
This information is sent to the controller using either the register or
set/sample protocols and once the transfer begins, no additional intervention

is required. When the data transfer is complete, the controller may send an

end-of-operation interrupt to the MP-32 processor.

17329120 A

S’

©
"ﬁm_\-% f

¢
N8

‘-‘k\:y“

e

EXCHANGE PACKAGE/INTERRUPT SYSTEM 3

o ————————————,————— e 7]

The MP-60 emulator has been designed to support real-time applications. The
primary criteria is the ability to respond quickly to time-critical events.

The emulator provides this response by:

1. Reducing information saved during a state change.

2. Vectoring the priority interrupt system.

The information saved during a state change is minimized by having multiple
register sets and page files. Only the information needed to place the
interrupted state back into execution is collected and saved in the exchange
package area. This reduction in saved information increases the rate at which

state changes can be made and improves response time.

The vectored, priority interrupt system saves a software priority scheduling

and vectoring system, thus reducing processing overhead.

EXCHANGE PACKAGE AREA

The exchange package area is a main memory buffer used to save the definition
of environmental conditions associated with a machine state between executions
in that state. Execution in a state begins by reading and establishing the
environment's conditions from the exchange package area. Termination of
execution in a state is complete only after the environment's conditions have
been restored to the exchange package area. Execution is initiated with a
CONT instruction and terminates at the occurrence of an interrupt or as a
result of executing a MON instruction. Several instructions and the interrupt
processing description refer to the exchange package area. The area layout

and field definitions are provided in Figures 3-1 and 3-2.

17329120 A 3-1

NG

o

uojidiadsaq a8eoeg aBueyosxy °1-¢ Iandjy
9d
€d
ud
1d
vdXs vdXd
n
d w olalalalv
a V.o a df avis nao |2 1|y Il simva
s1nvd ASYR IWIL TVII=NON
Toée 8 [9 | N 4 0 6 9 S 0 6 8 (s 9 € 2 T O
tEeT T T T ¥ 2 4 Tt 1 T1 1

qion

17329120 B

™,

‘ !
i
3 N

VA

- {‘ §

B
N

BR

CPU
cw

F
FAULTS

10
IP

P1,P2,P3,P4
PXPA

RTC

STATE
SXPA

Figure 3-2.

17329120 C

Arithmetic overflow (mask or condition)
Contents of bit register

Central processor number

Current instruction word pointer
Divide fault (mask or condition)
Exponent fault (mask or condition)

Function fault (mask or condition)

Four fault mask bits or condition occurrence

1/0 interrupt enable

Inter-processor enable
Operating mode (program or monitor)

Parameter values passed to executive

Predecessor exchange package address
Millisecond lock interrupt mask bit

Executive state

Successor exchange package area

Exchange Package Area Field Descriptions

INTERRUPT SYSTEM

The interrupt control section of the MP~60 computer is capable of testing for
the existence of certain internal and external conditions and, upon
recognition of a condition, interrupting the main program flow. At the start
of each RNI cycle, a test is made for interruptable conditions. If an
interrupt exists, execution of the main program terminates, the current
exchange package is updated, the interrupt system is disabled and an interrupt
routine 1is initiated. After the interrupt routine has completed its
processing, main program execution is resumed by executing a CONT instruction.
Each interrupt in the MP-60 is assigned a unique memory address containing the

entry point of the interrupt processing routine.

INTERNAL INTERRUPTS

The internal interrupts represent operational fault conditions that may be
detected by the programmer on a conditional or unconditional basis. Four
internal interrupts are in the conditional category and are controlled through
the use of the interrupt mask register (refer to Table 3~1). The other
interrupts are always enabled regardless of the state of the interrupt system

or interrupt mask register.

ARITHMETIC OVERFLOW FAULT

The arithmetic overflow fault is set when the capacity of the adder is
exceeded. The adder capacity, including sign, is 32 and 64 bits for single

and double precision, respectively. The arithmetic overflow fault is a
maskable (conditional) interrupt. The following instructions can cause an

arithmetic fault.
Mnemonics:

AD SB ADD SBD
R,+ R,~ RD, + RD,~

3-4 17329120 A

W’v

e P
Vi’

Sovit”

-
-
I}

x

-~

£

<o, N ;,am%‘ M o~ '

Bk it

et R

e

FUNCTION FAULT

The function fault is set when a function instruction encounters a fault
condition. The function fault is a maskable (conditional) interrupt. The

following instructions can cause a function fault.

Mnemonic Cause

F,SQ Negative value

F,UF Integer value greater than 32 bits
FD,UF Integer value greater than 64 bits

EXPONENT FAULT

During all floating point operations, overflow occurs if the resultant
exponent exceeds +7F¢ and underflow occurs if the resultant exponent exceeds
-804 The exponent fault is a maskable (conditional) interrupt. The

following instructions can cause an exponent fault:

Mnemonics:
FAD FADD RF,+ RFD, +
FSB FSBD RF,=~ RFD,~
FMP FMPD RF,* RFD, *
FDV FDVD RF,/ RFD,/

DIVIDE FAULT

The divide fault is set if a quotient, including sign, exceeds the capacity of
the adder (DV and R,/ instructions). A divide fault also occurs when an
attempt is made to divide by zero, fixed or floating point. The divide fault

is a maskable (conditional) interrupt.

17329120 A 3=5

ILLEGAL INSTRUCTION

When a privileged instruction is encountered in program mode, an illegal

instruction interrupt is generated. This interrupt is also generated upon

detection of an illegal operation code. Illegal operation codes are those
reserved for instruction set expansion. The illegal instruction is always

enabled.
PAGE FAULT 1

The page fault 1 interrupt is generated when an attempt is made to store an

operand into a read only page. The page fault 1 interrupt is always enabled.
PAGE FAULT 2

The page fault 2 interrupt is generated when a protected memory location is

referenced as either an instruction or operand. The page fault 2 interrupt is

always enabled.
PAGE FAULT 3

The page fault 3 interrupt is generated when a nonresident memory location is
referenced as either an instruction or operand. The page fault 3 interrupt is

always enabled.
MEMORY PARITY ERROR

When a memory parity error is sensed on either an instruction or operand
reference, a parity error interrupt is generated. The memory parity error is

always enabled.

MEMORY REJECT

The memory reject interrupt signifies that an attempt was made to address
beyond the range of available system memory, either as an instruction or
operand. A memory reject may indicate loss of power in a memory module. The

memory reject interrupt is always enabled (unmaskable).

3-6 17329120 A

't»d‘".

4 Y
N . .
"M R LB Fes

T

o,
. J
iv ot

POWER FAILURE

A power failure interrupt is generated upon detection of loss of power. The
power failure interrupt overrides all other interrupts regardless of the state
of interrupt control. This interrupt causes the disabling of the normal

interrupt system. The power failure interrupt is nonmaskable.

1/0 INTERRUPTS

The MP-60 may be configured with a number of peripheral controllers. These
controllers may generate interrupts which inform the peripheral drivers of

external conditions. These 1/0 interrupts are maskable.

REAL-TIME INTERRUPTS

The MP~60 has been designed to facilitiate its use in a wide range of real-
time applications. To accomplish this, a group of sixteen priority-ordered
interrupts 1is available for use in each unique system. All real~time

interrupts are maskable.

Real-time interrupts are external signals to the MP-60 System. A real-time
source must generate an interrupt by transmitting a pulse from 500-1000
nanoseconds. This pulse is captured in an internal register, which generates
the interrupt condition. When the interrupt is recognized by the MP-60, the
appropfiate bit in the holding register is cleared, thus removing the

interrupt condition.
INTER—PROCESSOR INTERRUPTS

The emulator has been designed to simplify multiprocessor communications.
When a processor executes a DST instruction, then the appropriate processor
will sense the inter-processor interrupt. The inter~processor interrupts are

maskable, as a group.

17329120 A 3-7

INTERRUPT MASK REGISTER

The programmer may choose to honor or ignore an interrupt by means of the
interrupt mask register. These mask registers can be selectively set and
selectively cleared, thus controlling interrupt recognition. Tables 3-l and

3-2 show the assignment of these interrupt mask registers.

INTERRUPT CONTROL

The enable interrupt system (EINT) and continue (CONT) instructions enable the
maskable interrupts. The nonmaskable interrupts are enabled at all times.
Receipt of any interrupt results in the disabling of the maskable interrupts.
The interrupt system will also be disabled by executing either a disable

interrupt system (DINT) or monitor call (MON) instructionms.
INTERRUPT RECOGNITION

Those interrupts which are not under mask control are always recognized during
the RNI sequence. Maskable interrupts are recognized if the following

conditions exist:
1. The interrupt system is enabled.
2. The appropriate bit in the interrupt mask register is set.

Recognition of an interrupt causes execution to the discontinued for the
current state and initiates execution in the privileged monitor mode (state

0).

Discontinuation of execution proceeds as follows:

1. The execution environment is collected and stored into word 1 of the

current exchange package area (refer to Figure 3-1).

2. The instruction address pointer is stored into word 2 of the current

exchange package area.

3-8 17329120 A

e aomn®

s

3
¥

o~

:“6 e, R Py v, Faa Y
: : E . ’ N oA

PRI et

6.

The SXPA (successor exchange package address) field of word 3 of the
current exchange package is read and defines the address of the new

monitor mode exchange package area.
The interrupt system is disabled.

Word 3 of the new exchange package is redefined by writing the
address of the old exchange package area into the PXPA (bredecessor

exchange package address) field.

A location defined for the interrupt is read and establishes the

initial execution address for execution in the monitor.

These unique locations for each interrupt are given in Table 3-3.

INTERRUPT PRIORITY

Table 3~4 shows the priority of interrupt on the MP-60 System. Within a

group, the order specifies the priority with highest given first.

17329120 A 3-9

TABLE 3~1.

REAL~-TIME INTERRUPT MASK BIT ASSIGNMENT

MASK INTERRUPT
BIT CONDITION
00 REAL TIME 15
01 REAL TIME 14
02 REAL TIME 13
03 REAL TIME 12
04 REAL TIME 11
05 REAL TIME 10
06 REAL TIME 9
07 REAL TIME 8
08 REAL TIME 7
09 REAL TIME 6
10 REAL TIME 5
11 REAL TIME 4
12 REAL TIME 3
13 REAL TIME 2
14 REAL TIME 1
15 REAL TIME 0

17329120 A

-

ey

NV

o

Sran e

TABLE 3-2.

INTERRUPT MASK BIT ASSIGNMENTS

MASK
BIT INTERRUPT CONDITION
00 Arithmetic Fault
o1 Function Fault
02 Exponent Fault
03 Divide Fault
04
05
06
07
08 Clock Interval
09
10
11
12
13
14
15
16 Macro 1/0 Number 0
17 Macro 1/0 Number 1
18 Macro 1/0 Number 2
19 Macro 1/0 Number 3
20 Macro 1/0 Number 4
21 Macro 1/0 Number 5
22 Macro 1/0 Number 6
23 Macro 1/0 Number 7
24 Macro 1/0 Number 8
25 Macro 1/0 Number 9
26 Macro 1/0 Number 10
27 Macro 1/0 Number 11
28 Macro 1/0 Number 12
29 Macro 1/0 Number 13
30 Macro 1/0 Number 14
31 Macro 1/0 Number 15

17329120 A

TABLE 3-3.

LOW MEMORY ASSIGNMENTS

moMm YU A » W0 00N LN+ O

om0 A > W 000N BN~ O

Inter-Processor
Inter-Processor
Inter-Processor
Inter-Processor
Inter-Processor
Inter-Processor
Inter-Processor
Inter-Processor
Inter=-Processor
Inter~Processor
Inter-Processor
Inter-Processor
Inter-Processor
Inter-Processor
Inter-Processor

Inter-Processor

CFO Table Pointer
CTO Table Pointer
SEL Table Pointer

SI0 Table Pointer
CIO Table Pointer

Illegal Instruction

15
14
13
12
11

o
o

O = N W & v o0 N Y

N
o

s
(=] LT < T = I o TR - - - V- I - SN N (S O, T - N VLR LI

Lo T > T = B o TN - - - RV~ B« - IR B NV R - B

Inter-Processor 1/0
Inter-Processor 1/0
Inter-Processor 1/0
Inter-Processor 1/0
Inter-Processor 1/0
Inter-Processor I/0
Inter-Processor 1/0
Inter-Processor I/0
Inter-Processor 1/0
Inter-Processor 1/0
Inter-Processor 1/0
Inter-Processor 1/0
Inter-Processor I1/0
Inter-Processor I/0
Inter-Processor I/0

Inter-Processor 1/0

Arithmetic Fault
Function Fault
Exponent Fault
Divide Fault

Clock Interval - lms

15
14
13
12
11
10

O = N W s 0N

17329120 A

s o A L

[y

Vo

LG

Ty

e

j

£ P -
oA/

.

!ﬁfi’.’.‘

£
Ed
.
bA

-~ - PN s

TABLE 3-3. LOW MEMORY ASSIGNMENTS (Cont'd)

50 - REAL TIME 15 60 - MACRO 1/0
1 - REAL TIME 14 1 - MACRO I/0
2 - REAL TIME 13 2 - MACRO I/0
3 - REAL TIME 12 3 - MACRO I/0
4 - REAL TIME 11 4 - MACRO I/0
5 - REAL TIME 10 5 - MACRO I/0
6 - REAL TIME 9 6 - MACRO I/0
7 - REAL TIME 8 7 - MACRO I/0
8 - REAL TIME 7 8 - MACRO I/O
9 - REAL TIME 6 9 - MACRO I/O
A - REAL TIME 5 A - MACRO I/O
B - REAL TIME 4 B - MACRO I/0O
C - REAL TIME 3 C - MACRO I/O
D - REAL TIME 2 D - MACRO I/0
E - REAL TIME 1 E - MACRO I/0
F - REAL TIME 0 F - MACRO I/0

70 - MICRO I/O 7 80 - MONITOR CALL
1 - MICRO I/0 6
2 - MICRO /0 5
3 - MICRO I/0 4
4 - MICRO I/O 3
5 - MICRO I/O 2
6 - MICRO I/0 1
7 - MICRO 1/0 0
8 -

9..

A-

B-

C...

D - DMA Memory Error Table Pointer
E - CPU Memory Error Table Pointer
F - POWER FAILURE

[T I
0 O = N W W,

O = N W s ;NN

17329120 A

3-13

3-14

TABLE 3-4.

INTERRUPT PRIORITY

LEVEL INTERRUPT GROUPS
1 Power Failure
2 CPU Memory Errors
3 DMA Memory Errors
4 Illegal Instruction
5-12 Micro 1/0 0-8
13-28 Macro 1/0 0-15
29-44 Real-Time 0-15
45-50 Open
51 Open
52 , Clock Interval
53-55 Open
56 Inter-Processor
57-60 Faults Divide-Arithmetic

1 - highest, 60 - lowest

17329120 A

N ¥
e

"o

K-

G

=
| W

e’

DISPLAY CONSOLE 4

L —.

The MP-32 is equipped with a CDC 1811-1 CRT display console. The CDC 1811-l
CRT display console consists of a display with a detachable keyboard. The MP-
32 display console is a multi-functional unit performing as the processor
control panel, besides providing to the software an interface with the

operator.

The CDC 1811-1 uses a 12-inch rectangular CRT to display alphanumeric data and
special symbols. The display area is made up of 24 lines; each line may
contain 80 symbols. The repertoire that may be displayed is the USASCII
(ANSI) X3.4-1968 character set. A cursor or entry marker (a blinking dash on

the screen) indicates where a symbol will display on the screen.

The operator enters data onto the display and controls routing of data to the
processor via the display keyboard. The keyboard contains a character set of
128 characters. In addition, the keyboard contains all the necessary controls
to regulate cursor positioning, display presentation and data transmission to

the processor.

The display console is connected to the MP-32 via backpanel connection and
uses asynchronous RS-232-C/CCITT V.25 compatible line protocols. The CRT
display console's normal modes are even parity, 9600 baud, and full duplex,

all switch selectable on the display console.

Software communications with the MP-32 display console uses the standard MP-60
register IN/OUT and Automatic Data Transfer (ADT) protocols. Appendix B gives
the complete details of the "Y" address and "D" data register commands and

formats.

17329120 A 4-1

PANEL INTERFACE

The MP-32 display console combines the functions of a software display and
processor control panel. This console sharing is accomplished by processing

particular special character codes as control characters.

These special codes (ESCape, 1Bjg; a, 4016; BELL, 0716) are reserved as
control codes and cannot be accepted as message data, The ESCape code causes
the display console to be transferred from software control to processor
control. The @ code transfers the display console back to software control

from processor control. The final code, BELL, is used to send a manual

interrupt to the software.

Basic to the operation of the processor control console is the Function
Control Register (FCR). The FCR is a 32-bit register that has access to the

MP-32 similar to the way switches on a conventional panel have access to the

CPU.

The FCR register, as depicted in Figure 4-1, is grouped into eight hexidecimal
digits (0 through 7). These hexadecimal digits are divided into four types as

follows:

®* Display == Digits 0 and 1
Control =- Digits 2 and 3
®* Modes == Digits 4 and 5
* Status == Digits 6 and 7

The display digits determine which registers of two groups, shown in
Table 4-1, may be displayed and/or modified. The control digits are used to
set such conditions as step and run. The mode bits control display modes and
micromemory modifications. The two least significant digits (6 and 7) of the
FCR indicate the status of the processor, such as monitor/program mode and

CPU/DMA memory error.

4=2 17329120 A

v\

&

)

Seaptr” T ave”

et

e

et
[RTIOPR

e

fewnd

N Ly Ry s’

N

e’

o~

s

P

£ f:g

PN

A~ D‘w\ ' ?ﬂ, fm.,‘ : ,m - - e

. ‘Jl‘.\va»\vw‘n.‘..[.r‘;‘?' il ot arin,

11 11 12 22 22 3
0 34 78 12 56 90 34 78 1
DISPLAY DISPLAY CONTROL CONTROL MODE MODE STATUS STATUS
BIT DIGIT BIT DEFINITION
31 IF (LSB) CPU State Reg 31)
30 1E 7 CPU State Reg 30
29 1D CPU State Reg 29
28 1C Monitor/Program Status
Only
27 1B CPU MEM 1/F Error
26 1A 6 DMA MEM I/F Error
25 19 Micro Running
24 18 Macro Running)
23 17
22 16 5
21 15 Enable Auto Display
20 14 Enable Console Echo
19 13 Enable Micromemory Write
18 12 4
17 11
16 10 Suppress Console Transmit
X X Modes
15 OF Refer to BP Description in
14 OE 3 Control Functions Section
13 0D BP Int. (BP Int. (BP Stop
12 ocC if Clr) Micro BP, Step,
Go, Stop (Macro if Clr)
11 OB Step
100 o©0A 2
09 09 Debug
08 08
07 07
06 06 1
05 05 DISPLAY 1
04 04
Display
03 03 Selection
02 02 0 DISPLAY O
01 01!
00 00 (MSB)
Figure 4-1. Function Control Register (FCR)
17329120 A 4-3

TABLE 4-1.

DISPLAY CODE DEFINITIONS

SELECT DISPLAY 1 SELECT DISPLAY O
CODE CODE "K FUNCTION" CODE "L FUNCTION"

0 0000 J10: FCR - J0O: F2

1 0001 J11: Jol: N

2 0010 J12: I JO2: K

3 0011 - Jo3: X

4 0100 J14: A J04: Q

5 0101 J15; MIR JO5: F

6 0110 J16: BP/P-MA J06: Fl (F3, providing

setup of the ad-
dressing method
is fulfilled.)

7 0111 J17: BP/P-MA -

(Display only)

8 1001 J18: SM1 -

9 1001 J19: M1 J09: RTJ

A 1010 J1A: SM2 -

B 1011 J1B: M2 -

c 1100 - Joc: MM

D 1101 - -

E 1110 - -

F 1111 - - (dash specifies
an undetermined
result).

4-4 17329120 A

._‘M‘j

Saw”

fr—

: S
o - K
e

ot

.!M‘/

FUNCTIONAL OPERATION

The interface accepts nine different control characters: H, I, J, K, L, @, G,

and ?. G and @ are functionally identical to a colon; however, in this
manual all operator functions use the colon (:). H through L identify the
type of data or operation entered or returned. The character colon (:)

terminates all entries except Master Clear.

A question mark will generate a Master Clear to the computer, memory and

peripherals. There is no response to this entry.

A normal entry consists of one control character = H through L; zero, two,
four or eight hexadecimal digits O through F; and the colon (:), in that
order. If a transmission or operator error occurs on the entry, the control
character is preceded by an asterisk (*) and the Function Control Register is
displayed. All entries except ? cause a response unless bit 10, of the FCR

is set (suppress console transmit).

CONTROL FUNCTIONS

The control functions are used as follows:

H CONTROL FUNCTION

This function is used to clear a specific bit in the FCR.
Example: Hl4:

This would clear bit l4;¢ in the FCR and the response would be a display of
the updated FCR.

| CONTROL FUNCTION

This function is identical to H except it sets a bit in the FCR. H and 1 are

also used for Stop/Run control.

17329120 A 4-5

) CONTROL FUNCTION

The J control function is used to replace the contents of the function comtrol
register in a digit mode. While it may be used to change the value of any FCR
digit, it is generally used to change digits 0 and 1. The value of display 0
and display 1 specifies which MP register is displayed on display requests or
entered on enter requests. J functions always consist of J followed by two
hexadecimal digits and the :. The first hexadecimal digit specifies the FCR

digit 0 through 5 and the second hexadecimal digit specifies the value is to

assume, 0 through F.
Example: Jl4:

This would set FCR digit 1 to 4 (select the A register) and the response would
be a display of the updated FCR.

The J code is also used to alternately display the upper and lower 16 bits of

a 32-bit register on the maintenance panel.
Example: J:

This would cause display of the other 16 bits and would complement the U/L

indicator on the maintenance panel.

K CONTROL FUNCTION

The K control function is used to display or enter data onto the parameter
specified by Display 1. The K functions use two formats. The first format is

a request to display the parameter specified by Display 1.
Example: K:

The second format is an enter data request. The data is entered into the
register specified by Display 1. It consists of K followed by four or eight

hexadecimal digits, terminated by the :. The hexadecimal digits are the data

to be entered. Some examples are:

To display the P register, perform the following:
J11: ~ Set Display 1 to P register (1)

K: Display register selected in Display 1.

4-6 17329120 A

N

.

S

Nabtactar a7 e

Yo ar”

o

“«u

N [y

(:

-~

S,

(ERESOY
s

Paiani

o~

s}

-~

To enter 14E16 into the breakpoint register, perform the following:
J16: Set Display 1 to BP register (6).

K16FE: Enter into register selected in Display 1.
L CONTROL FUNCTION

Operationally, the L function is the same as the K function, except it is

associated with Display O.

When micromemory is displayed or entered, the K register is the least

significant eight bits of the address, and the N register provides the
remaining bits. The K register is incremented by 1 after the display.

STOP/GO CONTROL

The following entry will cause a go:
Entry: 1I:

This is a micro go when bit 12 of FCR is set. It is both a micro and macro go

when bit 12 of FCR is clear.

The following entry will cause a stop:
Entry: H:

This is a micro stop when bit 12 of FCR is set. It is a macro stop when bit

12 of FCR is Clear. The response to a start or stop entry is a display of the

FCR.

MASTER CLEAR

A master clear can be generated in several ways:

* A question mark from remote console.
* A signal from a peripheral controller.
* A power on Master Clear.

17329120 A

BREAKPOINT (BP)
There are two types of breakpoint: micro and macro. When bit 12 of the FCR
is set, micro BP is selected. Use of the micro and macro BP is described

below:

Micro BP = FCR bits 14 and 15 are used to select two types of micro

breakpoint.
Bit 14 Bit 15
0 0 BP not selected
0 1 Upper/lower micro instruction BP
1 0 Micro=-word BP
1 1 Micro-word BP

The upper/lower micro instruction breakpoint requires that the micro memory
address P/MA and upper/lower micro instruction selections are equal to the
lower 13 bits of the breakpoint register to cause a micro stop. The micro=
word breakpoint only requires that the 12 bits of micro-memory address

register P/MA are equal to the lower 12 bits of the breakpoint register.

¢ Macro BP = FCR bits 14 and 15 are used to select three types of

macro breakpoint.

Bit 14 Bit 15
0 0 BP not selected
0 1 BP on Lookahead Register 3
1 0 BP on Lookahead Register 2
1 1 BP on all Lookahead Registers

(LAl, LA2, LA3)

A macro breakpoint stop occurs when the breakpoint register is equal to the
least significant 16 bits of the main memory address and the select conditioms
are met, If FCR bit 13 is set, an interrupt, rather than a stop, occurs when

the breakpoint conditions are met.

48 17329120 A

; _‘ 3 \

3 g i pl

S’

.

Y
]

A

S

\
Sat?

AUTO DISPLAY

The auto-display feature is selected by setting bit 15;¢ in the FCR. It is
removed by clearing this bit. When auto-display is selected, the panel
interface continuously displays the register determined by the last control
code and the display O or display 1 function. No line feeds are issued in
this mode, so the display stays at the same link on the screen. Note that

this precludes using auto-display with a teletypewriter.

1f a terminator (colon, G or @) is pushed with no characters preceding it, a

Go signal is generated. This feature is convenient for stepping through

either macro or microprograms.

SPECIAL CONSIDERATIONS

The Enable Auto Display and Enable Console Echo bits of the FCR
(1516 and 1416) are mutually exclusive; that is, the user may select

either one or the other, but not both at the same time.

* Display 1 selection of BP, P/MA permits changing contents of BP
only. P/MA cannot be modified by the FCR.

¢ Display 0 for N or K will cause both N and K to be displayed.

However, for code 0001, only N can be modified and for code 0010,

only K can be modified.

¢ Selecting invalid display codes (undefined) may result in abnormal

MP-32 operations.
Transmit operation = During this operation, in response to the
control command, the contents of the selected register are

transmitted to the display console.

The input and transmit operations are performed entirely by the panel

interface module. To perform the change/fetch operation, the panel interface

17329120 A 49

must generate micro-instructions acceptable to the MP-32 processor. The panel
interface must determine if it needs the MP-32 processor; the processor is
normidlly required except when the MIR, FCR or BP/MA are the scheduled

registers. If the processor is required, the sequence of operations depends

e
>

upon the setting of the FCR mode bit 12;¢.

MICRO MODE

L

When the panel interface is in micro mode (FCR bit 12y4=1), the panel

LN

interface may only gain control of the MP-32 processor when the processor is

halted. When the panel interface gains control of the processor, the

E—"

following is performed:

* Set the status mode register bit SM214. ;
Clear the microinstruction register.

Disable the micromemory and enable the Panel I/F microinstructions

to the micromemory 3-state bus.

¢ Disable the macromemory address buffer register except for

Read/Write Macromemory operation.

Save the micromemory address. [

\«\ S

o gttt

* Save test bit TB.

The panel interface now causes the MP-32 to begin running and be in micro
mode. The NOP microinstruction, MIR = 0, is executed. The panel interface
generates a microinstruction sequence with M field = 01, which is executed by
the processor to change/fetch the selected register. Prior to execution of
the last panel interface microinstruction, the panel interface clears status
mode bit SM214. The panel interface now generates the last microinstruction
with M field = 00 and T field = 000 to exit the processor. The M field = 00
causes the re-enabling of micromemory and the disabling of the panel interface
to the microinstruction register. Now the proessor reads up the
microinstruction awaiting in MIR prior to the panel interface sequence. The

panel interface also stops the processor with a micro halt.

4=10 17329120 A

. “;\“;

MACRO MODE

When the MP-32 is in macromode, the MP-60 emulator is required to prepare the
processor before giving up the control to panel interface. When the panel
interface determines that it needs the CPU, it generates micro interrupt INTOS
which indicates to the emulator the panel interface request. - Once the
interrupt 05 is recognized by the MP-60 emulator during the read next
instruction (RNI) loop, the emulator performs the following:

Sets the Status Mode Interrupt bit SM214 to pre-enable panel I/F to

the microinstruction register (MIR).

Set RTJ register to re-entrance address for firmware execution after
the panel interface sequence.

Execute a GO return (M field = 00) microinstruction which disables

microinstruction fetching from micromemory.

This disabling of micromemory enables the panel interface module to the 3-
state bus. The panel interface now has the control of the processor. The
panel interface generates a microinstruction sequence with M = 0l to be
executed by the MP-32. After the MP-32 completes the required operation, the
panel interface exits clearing INTO5 and SM214 in the processor. This action
re-enables micromemory to the micromemory bus. The 1last panel interface
microinstruction is executed with M field = 00 and T field = 001. The M = 00
causes enabling the micromemory and disabling the panel interface to the
micromemory 3-state bus. The M field = 00 also selects the content of RTJ
register as the address of the next microinstruction pair. Note that the RTJ
contained the re-entrance address for the emulator. The T field = 00l selects
the upper microinstruction at the address specified by RTJ register. The
emulator now has control back and continues at the point that it left off

prior to panel interface sequence.

17329120 A 4-11

This interaction between the panel interface and the MP-60 emulator allows the

emulator to set up certain display registers with pertinent data. The
interaction also allows the panel interface MP-60 emulator to operate in a

special debug mode.

MP—-60/PANEL INTERFACE DISPLAYS

Prior to allowing the panel interface to assume control of the processor, the

MP-60 emulator forces control information into predetermined registers. Table

4=2 defines the register allocation which the MP-60 emulator utilizes.

TABLE 4-2, MP-60 REGISTER UTILIZATION
REGISTER REGISTER CONTENTS
P J1lG KG Program Counter
I J12G KG Next Instruction to be executed

17329120 B

.

[
o s
i s

X

£ PO

o5,

A,
. g

SThe,

{

e

-

MEMORY SYSTEM | 5

The MP~32 memory system is composed of two basic modules: the Multi~Port
Memory (MPM) Chassis and the CPU Memory Management Interface (MMI). The
multi-port memory chassis may support as many as eight (8) different CPU
memory management interface modules. The CPU memory management unit may be

daisy~chained to sixteen (16) multi~port memory chassis.
MULTI—-PORT MEMORY

The MPM chassis may be configured with two to eight CPU MMI ports. These
ports are added in increments of two and each port may be disabled to
facilitate the support of an odd number of CPU memory management interfaces.
The MMI ports provide the interface and buffering between the CPU MMI and the
independent memory banks. The MPM chassis may contain from one to four
independent memory banks, each bank containing either 32K or 64K words of MOS
semiconductor memory. Each of the eight ports has access to all four memory
banks and all four banks may be active simultaneously if they are accessed by

different ports.

The independent memory bank control logic resolves memory request conflicts
from the eight ports and refresh. If a bank is not busy, the first request
presented is accepted. When a bank is about to go not busy, the eight ports
and refresh are scanned in order, starting one higher than the current active
port. If a request is active, it is accepted; thus, a port will never wait

longer thanveight cycles to be accepted.

The bank control logic provides a method of reading and altering memory
locations with the assurance that no other port has read or modified those
locations between the read and write. Processors may use this method to
communicate without the danger of logic discontinuities. This method is done
by locking a bank to a port, which locks all other ports (but not refresh)
from accessing the "locked" memory bank. This locking technique is used by

the MP=60 emulator in the destructive load (DLD) instruction sequence. The

17329120 A 5-1

MP~60 emulator 1locks the bank on the load and unlocks the bank after

destroying the memory location.
CPU MEMORY MANAGEMENT INTERFACE

The CPU memory management interface consists of logic cards housed in the MP-

32 chassis. The main functions of the memory interface include the following:

Provide logic and control necessary to interface to a large multi=

port, multi=bank external main memory.
¢ Provide addressing capability to 4 million words of memory.

¢ Decouple memory references from CPU operations with random access,

firmware~supported lookahead logic.
Four-port interface supporting CYBER 18 DMA compatible devices.
Provide paging, parity, fault detection and error reporting logic.

Support full=-word, half-word and character operatioms.

The memory management interface has four major components: lookahead holding
registers, CPU data formatting, DMA data formatting and Page File. The

general flow of a memory request is as follows:

Memory address through Page File into one of the four lookahead

address holding registers.

Memory data through data formatter and into a write data lookahead

register associated with an address holding register.
Memory address and data are then sent to memory.

Memory data is returned and formatted before being saved in a read

data holding register until requested.

LOOKAHEAD REGISTERS

The purpose of lookahead is to decouple CPU and memory operations and to aid

in producing minimum average memory cycle times. This is not a classical P+l

lookahead, but a random access scheme with addresses supplied by the firmware.

5~2 | 17329120 A

N1
&

o

e

)

2
4
LY

P

~

LT

w‘umm.‘
<ﬂ©
. y

L R 0t

~

o~

The lookahead consists of four pairs of read/write data and address output
registers, four data input registers and associated control logic to manage
register and data availability. These four sets of lookahead registers are
divided between the CPU and DMA channels as follows: three for the CPU and
one for the DMA.

The MP-60 emulator attempts to optimize memory references by using the three

lookahead registers as follows:

Operand fetching (reading memory);
Operand storing (writing memory);

Instruction prefetching (read memory).

It is important to note the MP-60 emulator overlaps instruction fetching with
instruction execution and, therefore, instruction modifications at P+l are not

supported.
CPU DATA FORMATTING

The CPU data formatting logic supports the MP-60 emulator in performing full-
word, half-word and character memory references. The data formatter positions
the half-word (character), supplied by/to the CPU, into the proper place in

the word.
PAGING

The MP-60 memory system is logically separated into pages, with each page
containing 4096 consecutive memory locations, A fully expanded memory
configuration contains 1024 pages or 4 million words. To facilitate memory
management, a page index file is referenced by a program during every memory
request to map the logical pages into physical pages and provide memory
protection features. Figure 5-1 illustrates the relationship between physical
memory pages and physical memory addresses. Thus, physical page 0 contains
low-order addresses (0 through 4095), while physical page 1023 contains the
highest possible address, 4,193,303,

17329120 A 5-3

4194303

Physical Page 1024
4190208
~~
L
a4
-yt
12288
. Physical Page 3
8192
Physical Page 1
4096
Physical Page 0
0

Figure 5-1, Memory Page Structure
PAGE INDEX FILE

The page index file is functionally divided into 32 distinct reference areas.
One area is associated with each possible program state. Each reference area
within the page index file consists of sixteen 16-bit page index registers.
This provides each program state with exclusive use of 16 of these registers.
The upper four bits of a program address are concatenated with the program
state register to specify which of the 512 page index registers contains the

physical page map. Figure 5-2 gives the page index file addressing format.
PAGE INDEX

Each page index register has the same basic format. Three of the 16 bits are
used for memory protection indicators. Two bits are used for page status.
One of these bits, modified, is set when an operand write is performed into

the page. The other status bit, accessed, is set whenever an operand read or

5-4 17329120 A

ot

g’

N~
5

‘\‘ 3
o/
R Py Qe L T 1

Mo e

wwss '

W

~ it

3

Pt

A v,

write is performed on the page. The most significant bit is a parity bit for
the 10 low-order bits. The 10 low-order bits contain the page address to be
used in creating the physical address. Figure 5-3 shows the format of a page

index register.
PROGRAM STATE REGISTER

This 5-bit register is used to define the portion of the page index file and
operand register file which are currently valid. The contents of this
register are modified by the emulator during interrupt recognition, CONT and

MON instruction processing.

MEMORY ADDRESS GENERATION

Figure 5-4 shows how a physical memory address is generated using the paging
system. The program state register addresses one of the thirty-two sections
of the page index file. The upper four bits of the operand address specify
one of the 16 page indexes within the section. The contents of this page
index register contain the address of one of the 1024 possible pages. The

lower 12 bits of the operand address specifies a location within the 4096 word

page.
MEMORY ERRORS AND PROTECTION

Any physical page may be assigned as non-resident, fully protected or read
only for a given program state. This is done by setting the proper bit within

the page index which addresses the physical page.

An attempt to write into a read only page will result in a page fault 1
interrupt. A page fault 2 interrupt is generated when a memory location
within a protected page is referenced as either an instruction or operand. A
reference to a non-resident page results in a page fault 3 interrupt. An
attempt to reference a non-existent physical page results in a memory reject
interrupt, while reading a memory word with a parity error results in
generating a parity error interrupt. Memory locations 6D and 6E point to a

set of memory locations used as depicted in Figure 5-5 , Memory Error Table.

17329120 A 5-5

1 6 9 0 .
{5 y n)
. .
PSR/DSR Logical Memory Address Whli
€¢)
74 -
W)

PIF Add}eas

.‘*M}:

Page Index File

AL

Figure 5-2. Page Index File Addressing

1111222 3 S
6789012)
}
10-Bit Page Address »
accessed _j

full protect

read only

modified

3

non-resident

parity of low-order 10 bits

Figure 5-3. Page Index Register

5-6 17329120 A

_,sxtlmwnx

<A,

UOTJIBIDUIY) SSAIPPY LAIoWAl °H-C 2an81g

2OoMAO

s @ o

¢

Be b O A

8379 01

1€
S
S
q
¥
a
a
v
a
¥
$31q 71 0
M
1
v oz
0" 76T
1
o 9
S 8319 ¢ 0
KT:nu; 1
i 91
ATLA ¥
a
B 1€
X4aNT e 1 v
i b |
s
9vd 1 [1
d
Lz
R ﬂ%ﬁii% S " L N WV W

5-7

17329120 A

R

0 CPU STATE REGISTER

)

AW

1 DMA 0 STATE REG. DMA 1 STATE REG. \k'),
2 DMA 2 STATE REG. DMA 3 STATE REG. :)
3 DMA SNAPSHOT :)
4 LA 1 SNAPSHOT)
5 LA 2 SNAPSHOT 5’
6 LA 3 SNAPSHOT ;
7 PAGE FAULT 3 TRAP R
8 PAGE FAULT 2 TRAP :
9 PAGE FAULT 1 TRAP ,\;
!

10 PARITY ERROR TRAP .
11 REJECT TRAP ;
K

Figure 5-5. Memory Error Table >}

See Figures 5-6 through 5-8 for CPU State Register, DMA State Register and

Typical Address Snapshot.

17329120 A qw?:

it

™

o,

PP

-, "

s ™

o~

RN

EZS

DMA DATA FORMATITING

The DMA data formatting logic performs the function of
assembling/disassembling the 16-bit DMA chamnel words into 32-bit memory data
words. The DMA channels have two modes of operation, half-word and full-word.
In the half-word mode, each DMA memory request results in a ﬁemory cycle,
while the full-word mode makes only one memory request for two DMA memory
requests. The half-word mode is intended to be used on DMA devices which
perform random memory access or could terminate on an uneven transfer count.
Mode selection is on a port and transfer basis under program control, making

each port flexible in its operation and independent of all other ports.

In the half-word mode, the DMA port acts as if a 16-bit memory is being used.
One memory cycle is initiated for each request from a DMA controller., To
place any port in this mode, the half-word mode bit is set by the programmer

in the DMA state register.

The full-word mode assembles or disassembles a 32-bit word on all read/write
operations. The programmer must force all write transfers to an even number
of 16-bit half words. All transfers must begin with the upper half word.
This mode is selected by clearing the half-word mode bit in the DMA state

register.

DMA STATE REGISTER

The four DMA ports have a corrresponding DMA state register. These DMA state
registers perform two functions, selecting the transfer mode and selecting the
page file section. The format of a DMA state register is depicted in Figure

5-7. The mode control bits 23 through 26 are shared among the four DMA ports.
The mode control bits 23 through 26 are used to select the transfer mode of

the DMA port. Bit 23 corresponds to port 0 and bit 26 to port 3. When the

mode bit is a 1, the corresponding port is placed in half-word mode.

17329120 A 5.9

The DSR portion of the DMA state register is used instead of the PSR, when a
DMA port has control of the paging logic, to select one of the 32 page index
file sections. Each DMA port has unique DSR so that the DMA ports may access

different sections of the page index file.

The DMA state registers may be read and written using the privileged RSR and

WSR instruction.

5-10 17329120 A

Naa

el

///,. \,\\\, .

N

{
L}

1 1 1 1 1 1 2 2 2 2 2
0 1 2 3 2 3 4 5 6 9 0 2 3 6 7
DMA T PARITY LIL}IL ERROR
ONES PE 0 CHAR AlA]A PSR
Ol 1' 21 3] 112]3 Oll 213
BITS
0-12 Ones
13 - 14 DMA PORT IN ERROR
15 Time Out Error (Reject)
- 16 - 19 Character Parity Error Flags
{ 20 - 22 010
23 - 26 Discrete Error Flags
-
£ LAO-3
27 - 31 Program State Register
£
- Figure 5-6., CPU State Register
C
2 2 2 2
. 0 2 3 6 7 1
’ HALFWORD
. ONES o|1|2|3 DSR
L
{ BITS
) 0 - 22 Ones
{ 23 - 26 Halfword/fullword mode selections
) One per port
(n 27 - 31 DMA State Register used like PSR during
' DMA page file accesses
: Figure 5-7. DMA State Register
{

¢ 17329120 A 5-11

01 2 3 4 5 6 7 8 9 0
P N R FIR R R C|JL}jA
F R O P|W W W ClK|]P 22-Bit Memory Address
E P 0 1 2
e enns”’
Address Parity Bit
Bank Lock
CC - CPU Cycle/DMA Cycle
RWO RW1 RW2
0 0 0 Full Word Read
1 0 0 Full Word Write
0 1 0 Upper Half Word Write
0 1 1 Lower Half Word Write
1 0 0 Character 0 Write {MSB}
1 0 1 Character 1 Write
1 1 0 Character 2 Write
1 1 1 Character 3 Write {LSB}
Full Protect Fault
Read Only Fault
Non-Resident Protect Fault
Any Page Faults
Figure 5-8. Typical Address Snapshot
5-12 17329120 A

I

NN Ve

/
s\ .

Ta,

%;f i:}) Q;} Yme’ Mg —

\ ,’h

’gl LAY

INSTRUCTION SET DESCRIPTION

INSTRUCTION FORMATS A

The MP-60 machine coded instruction is 32 bits in length and organized in
various formats. An instruction occupies one memory word. Instructions are
classified as full word, half-word, byte, or bit oriented, as having a

relative displacement address, or as being three-address-file oriented.
Word address instructions consist of 16 bits allocated for an unmodified
storage address, immediate operand, or shift count. Figure 6-1 illustrates

a word address instruction.

Bit Position

0 56 10 11 15 16 31
6 Bits 5 Bits 5 Bits 16 Bits
\ - N N N\]
A\ v . A4 v
op code F X m
sub=-op y
k

Figure 6-1. Word Addressed Instruction Format

Half-word address instructions consist of 17 bits allocated for an
unmodified storage address or immediate operand. Address modification is
available for these instructions; however, the range of permissible indexes
is limited to specific registers in the file. Figure 6~2 illustrates the

format of the half-word oriented instruction word.

17329120 C 6-1

0 56 10 11 14 15 31

6 Bits 5 Bits 4 Bits 17 Bits
\ ~ P A\ l‘
v v A4 ' v

op code F X I h |

| y -

! |

15 . 30 31

\ \ da'a

word address half word
0-1
Figure 6=2. Half Word Addressed Instruction Format
Half words in a data word are always specified in the following manner:

0 15 16 31

‘\\\‘ half word designators ’/)'

Byte address instructions consist of 18 bits allocated for an unmodified
storage address or immediate operand. Address modification is available for
these instructions; however, the range of permissible indexes is limited to
specific registers in the file. Figure 6=3 illustrates the format of the byte

oriented instruction word. A byte is referred to as a character.

0 56 10 11 13 14 31
6 Bits 5 Bits 3 Bits 18 Bits
\ A\ A A /
v A4 v . v .
op code F X | c |
y I
| |
14 29 30 31
\ vV A-V—l
word address byte
0-3

Figure 6~3. Byte Addressed Instruction Format

17329120 A

Aﬂ Byte or characters in a data word are always specified in the following manner:

0 78 15 16 24 25 31

byte designators

Bit address instructions consist of 21 bits allocated for an unmodified

storage address or immediate operand. Address modification is available for
bit address instructions with the data being stored in the bit register;
otherwise, an unmodified 21-bit immediate operand is available. Figure 6-4

{llustrates the format of these instructions.

0 56 10 11 31
6 Bits 5 Bits 21 Bits

\ v A Vv () y |

op code X | b {

F | y {

|

!11 26 27 31

N\ v Vv f

word address bit 0-31

Figure 6-4. Bit Addressed Instruction Format
Bits in a data word are always specified in the following manner:
0 31
‘ 0 | oo 00 l 31 ‘

\ bit designators /

Relative displacement dinstructions consist of 11 bits allocated for an

unmodified relative storage address. The displacement is sign extended and
added to the current contents of the P register to generate the referenced
address. Thus, an addressing range of +1023 to -1024 1locations can be
referenced by this type of instruction. Figure 6-5 illustrates the format

of these instructions.

17329120 C 6-3

0 56 10 11 15 16 20 21 31
6 Bits 5 Bits 5 Bits 5 Bits 11 Bits
— A / A A)
vV vV A\"4 A4 v -
op code sub=op A B D
bit

Figure 6=5. Relative Displacement Instruction Format

Three address instructions consist of three operand designators of five bits
each, Two of the designators (A and B) are operand sources and the third (C)
is the result destination. All operations are to and from the register file.

Figure 6~6 illustrates the format of these instructions.

0 56 10 11 15 16 20 27 31
6 Bits 5 Bits 5 Bits 5 Bits :>:>Q>:}Q>Q::§ 5 Bits
\ A A A /s
v A v v
op code sub=op A B c
bit

Figure 6=6. Three Address Instruction Format

SYMBOL DEFINITIONS

The following designators are used throughout the list of instructions:

A = file register A, specifying one of the 32 registers in the
file.

b = base bit address.

B = effective bit address, after indexing; or file register B,

specifying one of the 32 registers in the file.
BIT = bit number 0-31.
BR = bit register.

c = base byte or character address.

c = effective byte or character address, after indexing; or file

register C, specifying one of the 32 registers in the file.

6~4 17329120 A

RN PR
o N

1,
4

o \f:".‘\lad
Loy (;

)

-

ot

-
£
14

N

D = displacement; relative address class instructions

F = file register F, specifying the operand register

h = base half word address

H = effective half word address, after indexing

k = unmodified shift count

K = effective shift count, after indexing

m = base word address

M = effective word address, after indexing

P = P register, program address counter

y = base immediate operand

Y = effective immediate operand, after indexing

X = index designator, specifying one of the 32 registers in the
file

INDEXING AND ADDRESS MODIFICATION

In some instructions, the operand address m, h, ¢ or b, the immediate operand,
y, or the shift count, k, is modified by adding to the base, or unmodified
value, the contents of an index register, X. For these types of instructions,
the contents of one of the 32 registers in the file is always added to form
the operand address or immediate operand. Thus, file register 0 should always
contain the value zero, since an X field of zero points to file register 0.
Operationally, the programmer may find it convenient to clear both file
registers 0 and 1 to zero and use one to provide a source of constant zero in
both single and double precision modes. Symbols representing the respective
modified quantities are as follows:

M=

+ (X), lé~bit result
(X), 17-bit result

= - |
+

+ (X), 18-bit result
+ (X), 21-bit result
+ (x), 16, 17, 18 or 21-bit result
+ (X), 8~bit result

® =< w O =
~ <% o 0

In each case, the contents of X is a full 32-bit value and the base value is

the length of the result.

17329220 A 6-5

All index registers are 32 bits in length; however, omnly the lower order bits,

consistent with the addressing mode,

address of an instruction, base address plus index, is

0000 through 65,535 words of memory.

are significant.

Examples:
LD, RO 0100, Xl (X1) = FFFF0050
0 0 0 0 0 1 0
+
F F F F 0 0 5
F F F F 0 1 5
LDC, RO 00401, X1 (X1) = FFFF0003
0 0 0 0 0 4 0
+
F F F F 0 0 0
F F F F 0 4 0

- - -

Thus, the effective

always in the range of

address portion of
load instruction

index register X1

operand word
address 0150

address portion of
load byte instruction;
word 0100, byte 1

index register Xl

operand address;
word C10l, byte O

In this case, certain upper order bits of the index register were significant

because byte addressing consists of 18 bits (refer to Figure 6-3). An index

value of FFFC003, for this example, would have effectively added 3 to the

operand address or word 0101, byte O.

17329120 A

f
R—

)

N

All addressing operations yield a 16-bit word address and possibly a 1, 2 or
5-bit half-word, byte or bit designator. The same comment applies to jump-
type instructions; while indexing on a jump produces a 32-bit result and all
32 bits are gated to the P register, only the lower 16 bits of the P register

are significant as instruction addresses.

USE OF REGISTERS

A1l 32 registers in a machine state may be used to contain operands or
indexes, except as noted for specific addressing modes. Register O of a state
must contain zeros in at least the lower 21 bits because an index field of
zero references register 0. However, this register may be used as one source
of a test or register operation instruction. Any register may be used to
specify the most significant part of a double precision operation. If a
double precision operand destination specifies register 31 as the most
significant portion, register 0 of the adjacent program state is destroyed.
However, when a state change occurs in the MP-60, register 0 of the new state

is unconditionally cleared. Thus, programs in the various program states are

protected from programming errors.

NUMBER REPRESENTATION

Fixed point numbers in the MP-60 occupy 32 or 64 bits of memory (one or two

words). All fixed point operands are expressed as signed integers. Positive
numbers are represented in true binary notation with the sign bit set to O.
Negative numbers are represented in two's complement notation with the sign

bit set to 1.
0 31

32-bit fixed point S Integer

0 63

64-bit fixed point

S Integer

Two's complement notation includes one more negative number than positive
numbers; 80 - 0. However, this number has no positive complement. Thus,

subtracting this number from zero yields the number itself and an overflow

fault.

17329120 A 6-7

NO OPERATION

Operation Field

Ty
Address Field Interpretation Wg;)i

NOP,F

m,X

No Operation

NOP No Operation

Description: No operation is performed.

56 1011 1516 31

00 F X m

= operand register

index register

base word address; M. = m + (X)

-7

N k,

N

17329120 A U
3

)

R

Operation Field Address Field Interpretation

LDB b,X load bit register
LDC,F c,X load byte or character
LDH,F h,X load half word
LDI,F y,X load immediate
LDHA,F h,X load half word address
LDCA,F c,X load byte or character address
LDBA,F b load bit address
LDA,F m,X load word address
LD,F m,X load word
LDD,F m,X load double word

‘zj: DLD,F m,X destructive load

¢ / LDP,F m,X load paged

: LDM, F n,D load multiple
LDF A,B,C load field

LDB Load Bit 56 10 11 31
01 X b

index register

base bit address; B = b + (X)

Description: Load the bit register BR with the value of the bit from memory

specified by B.

BR = (B)

17329120 B

6-9

LDC Load Byte 0 56 10 11 13 14 31

02 F X c

F = operand register
X = index register (0-7)
¢ = base byte address; C = c + (X)
Description: Load the operand register F with the byte from memory specified
by C. The byte is loaded into the lower eight bits of F (24-31)
with zero fill. '

F = (C)

Note: Only registers 0-7 can be used for indexing in an
LDC instruction.

LDH Load Half Word 0 56 10 11 14 15 31
03 F X h
F = operand register
X = index register (0-F)
h = base half word address; H = h + (X)

Description: Load the operand register F with the half word from memory
specified by H. The half word is loaded into the lower 16 bits

of F (16-31) with zero fill.
F = (H)

Note: Only registers O-F can be used for indexing in an
LDH instruction. '

LDI Load Immediate 0 56 10 11 15 16 31

04 F X y

F = operand register
X = index register
y immediate operand; Y =y + (X)

Description: Load the operand register F with the operand Y; y is sign
extended to 32 bits before generating Y. Bit 16 of y is the

sign bit.

6-10 s 17329120 A

L

1\\”,/”“

3
{ %
4

LDHA Load Half Word Address 0 56 10 11 14 15 31

05 F X h

F = operand register
X = index register (0-F)
h = base half word address; H = h + (X)

Description: Load the operand register F with the 17-bit operand H; the base

operand h is zero extended before the index is added. However,
the 32-bit result is loaded into F.

F=H

Note: Only registers O-F can be used for indexing in an
LDHA instruction.

LDCA Load Byte Address 0 56 10 11 13 14 31

) X
& c

Description: Load the operand register F with the 18-bit operand C; the base

06 F X c

operand register
index register (0-7)
base byte address; C = ¢ + (X)

operand ¢ is zero extended before the index is added. However,

the 32-bit result is loaded into F.

F=2¢C

Note: Only registers 0-7 can be used for indexing in an

LDCA instruction.

LDBA Load Bit Address 0 56 10 11 31

07 F b

F = operand register
b base bit address

Description: Load the operand register F with the 21-bit operand b. The
0 operand is loaded into the lower 21 bits of F (11-31) with zero
fill. Indexing is not allowed.

F=5»

17329120 A oo

LDA Load Address 0 56 10 11 15 16 31

08 F X m

F = operand register
X = index register
m = base word address; M = m + (X)

Description: Load the operand register F with the 16-bit operand m; the base
operand is zero extended after the index is added and the 32-bit
result is loaded into F.

F=M

LD Load Word 0 56 10 11 15 16 31

09 F X m

= operand register
index register
base word address; M = m + (X)

8 X m
[}

Description: Load the operand register F with the word from memory specified

by M.
F=(M)
LDD Load Double Word 0 56 10 11 15 16 31
0A F X m
F = operand register
X = index register
m = base word address; M = m + (X)

Description: Load the operand register F with the word from memory specified
by M; load F+l1 with the word from memory specified by Mtl.
Location M represents the most significant portion of the 64-bit

operand; M+l represents the least significant portion.

F,F+l = (M,M+1)

6-12 17329120

A

DLD Destructive Load 0 56 10 11 15 16 A 31

32 F X m

F = operand register
X = index register
m = base word address; M = m + (X)

Description: Load the operand register F with the word from memory specified

by M. The contents of M are set to ones.

F = (M), M = FFFFFFFF

LDP Load Paged 0 56 10 11 15 16 31

33 F X m

C F

X
m

operand register

index register
base word address; M = m + (X)

Description: Load the operand register F with the word from memory specified
by M, relocated to the state specified by the contents of the
relocation register. The relocation register must have
previously been initialized with an SST instruction. The word
loaded from memory is specified by the contents of the page

index register indicated by M and the referenced state.

F= (M

LDM Load Multiple 0 56 10 11 1516 20 21 31

2F 11 F ‘n D

‘:ﬁ> Description: Multiple registers are loaded starting at M = (P) + 14D into
' register F and continuing with consecutive memory locations

until F+n is loaded.

LDF Load Field

(a)
(b)
(¢)

0 56 1011 1516 2021

26 27 31

37 03 A B

Extracted field
FROM bit address
Number of bits to extract (1 < C < 32)

Description: Register A is loaded with the number of bits specified in

register C beginning with the bit address specified in register

B,

6-14

17329120 B

R

STORE

Operation Field Address Field Interpretation
STB b,X store bit
STC,F c,X store byte or character
STH,F h,X store half word
STHA,F m,X store half word address
STCA,F m,X store byte address
STBA,F m,X store bit address
ST,F m,X store word
STD,F m,X store double word
STP,F m, X store paged
ST™M,F n,D store multiple
STF A,B,C store field

STB Store Bit 0 56 10 11 31
OB X - b

‘ZZD X = index register
? : b = base bit address; B = b + (X)
I

Description: Store the contents of the bit register BR, 0 or 1, in the bit of

memory specified by B. Other bits of the word in memory are not

modified.
B = (BR)
STC Store Byte 0 56 10 11 13 14 31
0cC F X c
F = operand register
X = index register (0-7)
¢ = base byte address; C = ¢ + (X)

Description: Store the lower eight bits of register F (bits 24-31) in the byte

of memory specified by C. Other bytes of the word in memory are

0 not modified.

¢ C = (F)y4-3)

17290y 9N

Note: Only registers 0-7 can be used for indexing in an STIC

instruction.
STH Store Half Word 0 56 10 11 14 15 31
0D F X h
F = operand register
X = index register (0-F)
h = base half word address; H = h + (X)

Store the lower 16 bits of register F (bits 16-31) in the half of

Description:
the memory word specified by H. The other half of the word in
memory is not modified.
H= (P31
Note: Only registers O-F can be used for indexing in an STH
instruction.
STHA Store Half Word Address O 56 10 11 15 16 31
OE F X m
F = operand register
X = index register
m = base word address; M = m + (X)
Description: Store the lower 17 bits of register F (bits 15-31) in the lower
17 bits of the memory word specified by M. The upper bits of the
word in memory are not modified.
Mis-31 = (F)}s5-31
STCA Store Byte Address 0 56 10 11 15 16 31
OF F X m
f = operand register
X = index register
m = base word register; M = m + (X)

6-16

17329120 B

Description: Store in the lower 18 bits of register F (bits 14-31) in the
lower 18 bits of the memory word specified by M. The upper bits

of the word in memory are not modified.

Mj1-31 = (F)14-312
STBA Store Bit Address 0 56 10 11 15 16 31

10 F X m

F
X
m

operand register
index register
base word address,; M = m + (X)

Description: Store the lower 21 bits of register F (bits 11-31) in the lower

2] bits of the memory word specified by M. The upper bits of the

word in memory are not modified.

Mj1-31 = (F)11-3;

ST Store Word 0 56 10 11 15 16 31
11 F X m
F = operand register
X = index register
m = base word address; M = m + (X)

Description: Store the contents of register F in the memory word specified by M.

M= (F)
STD Store Double Word 0 56 10 11 15 16 31
12 F X m
F = operand register
X = index register
m =

base word address; M = m + (X)

Description: Store the contents of register F in the memory word specified by

M; store the contents of F + 1 in the memory word specified by M
+ 1. Register F contains the most significant portion of the 64-

bit operand and F + 1 contains the least significant portion.

M,M+1 = (F,F+1)

STP Store Paged 0 56 10 11 15 16 31

34 F X m

F = operand register
X = index register

m = base word address; M = m + (X)
Description: Store the contents of register F in the memory word specified by
M, relocated to the state specified by the contents of the
relocation register. The relocation register must have
previously been initialized with an SST instruction. The word of
memory is specified by the contents of the page index register

indicated by M and the referenced state.

M= (F)

O -
—
Ul s
[« 3
o~

STM Store Multiple 0 56

2F 10 F n D

Description: Multiple registers are stored starting at M = (P) + D + 1 with

register F and continuing in consecutive memory locations until

register F + n is stored.

STF Store Field 0 56 1011 1516 20 21 26 27 31

371 04 A B C

(a) Store field
(b) TO bit address
(c) Number of bits in field (1 < C < 32)

Description: Store the contents of register A into the bit address specified

in register B for the number of bits specified in register C.
Data in register A is assumed to be right justified, zero filled.

6-18 17329120 B

5

Nt

FIXED POINT ARITHMETIC

Operation Field Address Field Interpretation
ADI,F y,X add immediate
AD,F m,X add
ADD,F m,X add double
SB,F m,X subtract
SBD, F m,X subtract double
MPI,F y,X multiply immediate
MP,F m,X multiply
DV,F m,X divide
RAD,F m,X replace add
MPS,F m,X multiply, single precision
DVS,F m,X divide, single precision
ADI Add Immediate 0 56 10 11 15 16 31
13 F X y
(/ F = operand register
T X = index register
1 y = base operand; Y = y + (X)

Description: Add the contents of register X to operand y and add the result to
F; y is sign extended to 32 bits before generating Y. Bit 16 of

y is the sign bit.

F=(F)+Y

AD Add 0 56 10 11 15 16 31

14 F X m

F = operand register
X = index register

m = base word address; M = m + (X)
Description: Add the contents of register F and the contents of meaory

specified by M and store the result in F,

"
é‘:; F=(F)+ (M)

ADD Add Double 0 56 10 11 15 16 31

15 F X m

F = operand register
X = index register
m = base word address; M = m + (X)
Description: Add the contents of registers F and F+l to the 64-bit quantity

specified by M and M+l. The 64-bit result is stored in registers
F and F+l1,

F,F+l1 = (F,F+1) + (M,M+1)

SB Subtract 0 56 10 11 15 16 31
18 F X m
F = operand register
X = index register
m = base word address; M = m + (X)
Description: Subtract the contents of memory specified by M from the contents >,\§
of register F and store the results in F. S
F=(F)- (M
SBD Subtract Double 0 56 10 11 15 16 31
19 F X m
F = operand register
X = index register
m = base word address; M = m + (X)

Description: Subtract the 64-bit quantity specified by M and M+l from the
contents of registers F and F+l. The 64-bit result is stored in

F and F+l1.

F,F+1 = (F,F+l1) - (M,M+]1)

6-20 17329120 B

~7

MPI Multiply Immediate 0 56 10 11 15 16 31

1C F X y

F = result register
X = operand register
y = immediate operand
Description: Multiply the contents of register X by y and store the result in
F. The operands are treated as unsigned 1l6-bit quantities

yielding an unsigned 16-bit result.

MP Multiply 0 56 10 11 15 16 31

1D F X m

F = operand address
X = index register
m = base word address; M = m + (X)

Description: Multiply the contents of register F by the contents of memory
specified by M and store the 64-bit result in registers F (most

significant part) and F+l (least significant).

F,F+l = (F) * (M)

DV Divide 0 56 10 11 15 16 31

20 F X m

F
X
m

operand register
index register
base word address; M = m + (X)

Description: Divide the 64-bit quantity contained in registers F and F+1 by

the contents of memory specified by M. The quotient is stored in

F and the remainder in F+l.

F = (F,F+1)/(M), F+l = remainder

1729Nn12Nn n

RAD Replace Add

Description:

specified by M and store the result in M.

ummodified.

M= (F) + (M)

MPS Multiply, Single
Precision

Description:

0 56 10 11 15 16 31

25 F X m

F = operand register
X = index register

m = base word address; M = m + (X)

Add the contents of register F and the contents of memory

The contents of F are

0 56 10 11 15 16 31

35 F X m |

F = operand register
X = index register
m = base word address; M = m + (X)

Multiply the contents of register F by the contents of memory

specified by M and store the least significant 32 bits of the

result in F,.

F=(F) * (M

DVS Divide, Single
Precision

Description:

0 56 10 11 15 16 31

36 F X m

X
X

m

operand register
index register
base word address; M = m + (X)

Divide the contents of register F, sign extended to 64 bits, by

the contents of memory specified by M and store the quotient in

register F.

F=(F)/(M)

6-22

17329120 B

N A

e

}

-~ FLOATING POINT ARITHMETIC

{

Operation Field Address Field Interpretation

FAD,F m,X floating point add

FADD,F m,X floating point add double precision

FSB,F m,X floating point subtract

FSBD,F m,X floating point subtract double
precision

FMP,F m, X floating point multiply

FMPD,F m,X floating point multiply double
precision

FDV,F m,X floating point divide

FDVD,F m,X floating point divide double
precision

The MP-60 floating point format is shown below:

{‘Zj} single precision

i 0 1 23 24 31

S Coefficient E

double precision

0 1 55 56 63
S Coefficient E
Coefficient

The coefficient consists of a 24-bit or 56-bit signed fraction in the upper
bits of the data word. The coefficient is a normalized fraction; it is equal
to or greater than 0.5, but less than 1. The highest order bit is occupied by
the sign bit (S) of the coefficient. If the sign is a 0, the coefficient is
positive; otherwise, the sign is a 1 and the coefficient is a negative fraction
) (negative fractions are represented in two's complement notation). Floating
point operations generate normalized results such that bits 0 and 1 always

differ. An exception is the representation of negative powers of two; the

17329120 B conT

coefficient of such numbers is CO-0 in hexadecimal. The exponent of such a

result is adjusted to represent the true value of the number.

Exgonent

The exponent is expressed as a true biased 8-bit quantity with a value ranging

from 00,¢ to FFgq. Positive exponents range from 8016 to FFyg and negative
exponents from 00, to 7F¢.

The representation of floating point numbers is similar to scientific notation,

that is, a fraction multiplied by a number raised to a power.
F * 2E where: F = fraction
E = exponent
Note: The value zero is represented by a data value of all

Zeros.

FAD Floating Point Add 0 56 10 11 15 16 31

16 F X m

F
X
m

operand register
index register
base word address; M = m + (X)

Description: Add the contents of register F and the contents of memory

specified by M in floating point format and store the result in
F.

F=(F) + (M

FADD Floating Point Add 0 56 10 11 15 16 31
Double Precision
17 F X m
F = operand register
X = index register
m = base word address; M = m + (X)

Description: Add the double precision contents of register F and F+1 and the

contents of memory specified by M and Mtl. The result is stored

in registers F and F+l.

6-24 17329120 B

-

g

:.~ Fpwg s
s

= e

F,F+l = (F,F+1) + (M,M+1)

FSB Floating Point Subtract 0 56 10 11 15 16 31
1A F X m
F = operand register
X = index register
m = base word address; M = m + (X)

Description: Subtract the contents of memory specified by M from the contents

of register F and store the result in F.

= (F) - (M)

‘Zj> FSBD Floating Point Subtract 0 56 10 11 15 16 31
3 Double Precision

1B F X m

F
X

m

operand register
index register
base word address; M = m + (X)

Description: Subtract the double precision contents of memory specified by M
and M+l from the contents of registers F and F+l. The result is

stored in registers F and F+l.

F,F+l = (F,F+1) - (M,M+1)

FMP Floating Point Multiply 0 56 10 11 15 16 31

1E F X m

operand register
= index register
base word address; M = m + (X)

> T
i

‘[:B i
Lo

172790197 Nn o . s

Description: Multiply the contents of register F by the contents of memory
specified by M and store the result in F,

F= (F) * (M)

FMPD Floating Point Multiply O 56 10 11 15 16 31
Double Precision
1F F X m
F = operand register
X = index register
m = base word address; M = m + (X)

Description: Multiply the double precision contents of registers F and F+l by
the contents of memory specified by M and M+l., The result is
stored in F and F+l1.

F,F+l = (F,F+l) * (M,M+l)

FDV Floating Point Divide 0 56 10 11 15 16 31

21 F X m

F
X
m

operand register
index register
base word address; M = m + (X)

Description: Divide the contents of register F by the contents of meaory

specified by M and store the result in F.

F=(F)/(M

FDVD Floating Point Divide 0 56 10 11 15 16 31
Double Precision

22 F X m

operand register
index register
base word address; M = m + (X)

g %™
wonoun

6-26 17329120 B

o/

Description:

Divide the double precision contents of registers F and F+1 by

the contents of memory specified by M and M+l. The result is
stored in registers F and F+l.

F,F+l = (F,F+1)/(M,M+1)

SHIFT

Operation Field Address Field Interpretation
SF,F k,X shift
SFD,F k,X shift double
SF Shift 0 56 10 11 15 16 31
23 F X k
F = operand register
X = index register
k = unmodified shift count; K = k+(X)
Description: Shift the contents of register F the number of places specified
by the low order eight bits of K. The quantities k and (X), with
the sign of k extended, are added to obtain K. The sign of Kis
tested. If positive, the quantity in F is shifted left circular;
otherwise, it is shifted right end-off with sign extension.
SFD Shift Double 0 56 10 11 15 16 31
24 F X k
F = operand register
X = index register
k = unmodified shift count; K = k+(X)
Description: Shift the contents of registers F and F+l the number of places
specified by the low order eight bits of K. The quantities k and
(X), with the sign of k extended, are added to obtain K. The
sign of K is tested. If positive, the quantities in F and F+1
are shifted left circular; otherwise, they are shifted right end-
off with sign extension.
6-28 17329120 B

‘Mﬂ"%
o ’,\\‘ “:"

LOGICAL
Operation Field Address Field Interpretation
AND b,X AND of BR and memory
OR b,X OR of BR and memory
XOR b,X EXCLUSIVE OR of BR and memory
LP,F y AND of register and immediate
operand
LOR,F y OR of register and immediate
operand
LXR,F y EXCLUSIVE OR of register and
immediate operand
AND Logical AND of Bit 0 56 10 11 31
Register

26 X b

F = index register
b = base bit address; B = b + (X)

m\“
i!:jf Description: Perform the logical AND of the bit register (BR) and the bit from
‘ menory specified by B. The result is stored in BR.

AND Operation

BR B RESULT
1 1 1
1 0 0
0 1 0
0 O 0 BR = (BR) (B)
OR LOGICAL OR of Bit Register O 56 10 11 31
27 X b

F = index register
b = base bit address; B = b + (X)

Description: Perform the logicaIVOR of BR and the bit from memory specified by

¥ B. The result is stored in BR.

OR Operation

BR B Result
1 1 1

1 0 1
0 1 1

0 O 0
BR = (BR) | (B)

XOR Logical EXCLUSIVE OR 0 56 10 11
of Bit Register

28 X b

X = index register
b = base bit address; B = b + (X)

Description: Perform the EXCLUSIVE OR of BR and the bit from memory specified
by B. The result is stored in BR.

EXCLUSIVE OR Operation

BR B Result
1 1 0
1 0 1
0 1 1
0 0 0
BR = (BR) (B)
LP Logical Product 0 56 10 11 31

29 F y

F. = operand register
y = immediate operand; 21 bits zero extended

Description: Perform the logical product of the contents of register F and the

operand y. The result is stored in F.

F = (F) y

6-30 17329120 B

P
¥

ﬂmb
BRSNS

LOR Logical OR 0

56

10 11

31

2A

F

F = operand register :
y = immediate operand; 21 bits zero extended

Description: Perform the logical OR of the contents of register F and the

operand y. The result is stored in F.

F=(F) vy

LXR EXCLUSIVE OR 0

56

10 11

31

2B

F

y

F = operand register
= immediate operand; 21 bits zero extended

Description: Perform the exclusive OR of the contents of F and the operand

y. The result is stored in F.

F=(F) vy

172901 "y n

TEST

Operation Field Address Field Interpretation
TST A,B,D test
TSTF A,B,D test floating point
TSTD A,B,D test double precision
TSTFD A,B,D test double precision floating point

The test instructions have the following format:

0 56 10 11 15 16 20 21 31
2C/2D sub-op A B D
Sub-op = type of test
A = operand register 1
B = operand register 2 i
D = relative displacement; the range of D is +1023, -1024 ’\My;
(P) = location of test instruction

TST,GE Test Greater Than 0 5 6 10 11 15 16 20 21 31
or Equal '

2C 00 A B D

Description: Test the fixed point contents of A greater than or equal to
(B). If true, branch to the address specified by (P)+1+D.

Otherwise, execute the next instruction.

TST,LE Test, Less Than 0] 56 10 11 1516 20 21 31
or Equal

2C 01 A B D

Description: Test A less than or equal to (B). If true, branch to the address

specified by (P)+1+D. Otherwise, execute the next instruction.

6-32 17329120 B

-

TST,EQ Test, Equal 0 56 1011 1516 20 21 31

2C 02 A B D

Description: Test (A) equal to (B). If true, branch to the address specified
by (P)+1+D. Otherwise, execute the next instruction.

TST,NE Test, Not Equal 0 56 10 11 1516 20 21 31

2C 03 A B D

Description: Test (A) not equal to (B). If true, branch to the address
specified by (P)+1+D. Otherwise, execute the next instruction.

TST,GT Test, Greater Than 0 56 10 11 1516 20 21 31

2C 04 A B D

Description: Test (A) greater than (B), If true, branch to the address

specified by (P)+1+D. Otherwise, execute the next instruction.

TST,LT Test, Less Than 0 56 10 11 1516 20 21 31

2C 05 A B D

Description: Test (A) less than (B). If true, branch to the address specified

by (P)+1+D. Otherwise, execute the next instruction.

TSTF,GE Test Floating Point 0 56 10 11 15 16 20 21 31
Greater Than or Equal

2C 08 A B D

Description: Test floating point operands for (A) greater than or equal to
(B). If true, branch to the address specified by (P)+1+D.

Otherwise, execute the next instruction.

TSTF,LE Test Floating Point 0 56 10 11 15 16 20 21 31
Less Than or Equal

2C 09 A B D

Description: Test floating point operands for (A) less than or equal to (B).
If true, branch to the address specified by (P)+1+D. Otherwise,

execute the next instruction.

TSTF,EQ Test Floating 0 56 10 11 15 16 20 21 31
Point Equal

2C 0A A B D

Description: Test floating point operands for (A) equal to (B). If true,
branch to the address specified by (P)+l1+D. Otherwise, eXecute

the next instruction.

TSTF,NE Test Floating 0 56 10 11 1516 20 21 31
Point, Not Equal

2C 0B A B D

Description: Test floating point operands for (A) not equal to (B). If true,
. branch to the address specified by (P)+l+D. Otherwise, execute

the next instruction.

6-34 17329120 B

- ‘"’%

Y

TSTF,GT Test Floating 0 56 10 11 1516 20 21 31
Point, Greater Than

2C oc A B D

Description: Test floating point operands for (A) than (B). If true, branch
to the address specified by (P)+1+D. Otherwise, execute the next

instruction.

TSTF,LT Test Floating 0 56 10 11 1516 20 21 31
Point, Less Than

" 2C 0D A B D

Description: Test floating point operands for (A) less than (B). 1If true,
branch to the address specified by (P)+l1+D. Otherwise, execute

the next instruction.

TSTD,GE Test Double Precision, O 56 1011 1516 20 21 31
Greater Than or Equal

2D 00 A B D

Description: Test fixed point double precision operand contained in registers
A and A+l for greater than or equal to operand in B and B+l. If
true, branch to address specified by (P)+1+D. Otherwise, execute

the next instruction.

TSTD,LE Test Double Precision, 0 56 10 11 15 16 20 21 31
Less Than or Equal

2D 01 A B D

Description: Test fixed point double precision operands for (A,A+l) less than

or equal to (B,B+1). If true, branch to address specified by

(P)+1+D. Otherwise, execute the next instruction.

TSTD,EQ Test Double Precision, O 56 10 11 1516 20 21 31
Equal

2D 02 A B D

Description: Test fixed point double precision operands for (A,A+l) equal to
B,B+1). If true, branch to address specified by (P)+1+D.

Otherwise, execute the next instruction.

TSTD,NE Test Double Precision, O 5 6 10 11 15 16 20 21 31
Not Equal .

2D 03 A B D

Description: Test fixed point double precision operands for (A,A+l) not equal
to (B,B+l). If true, branch to address specified by (P)+1+D.

Otherwise, execute the next instruction.

TSTD,GT Test Double Precision, 0 56 10 11 1516 20 21 31
Greater Than

2D 04 A B D

Description: Test fixed point double precision operands for (A,A+l) greater
than (B,B+1). If true, branch to address specified by (P)+1+D.

Otherwise, execute the next instruction.

TSTD,LT Test Double Precision, O 5 6 10 11 15 16 20 21 31
Less Than

2D 05 A B D

Description: Test fixed point double precision operands for (A,A+l) less than
(B,B+1). 1f true, branch to address specified by (P)+1+D.

Otherwise, execute the next instruction.

6-36 17329120 B

RN
f

i

TSTFD,GE Test Double Precision O 56
Floating Point, Greater
Than or Equal 2D 08

10 11 1516 20 21 31

Description: Test double precision floating point operand in (A,A+l) greater

than or equal to double precision floating point operand

in
(B,B+1). If true, branch to address

specified by (P)+i+D.
Otherwise, execute the next instruction.

TSTFD,LE Test Double Precision O 56 10 11

Floating Point, Less

1516 20 21 31
Than or Equal 2D 09

Description: Test double precision floating point operands for (A,A+l) less

than or equal to (B,B+1). If true, branch to address specified by
N
C (P)+1+D. Otherwise, execute the next instruction.

TSTFD,EQ Test Double Precision O 56 10 11
Floating Point,

Equal 2D 0A A B

15 16 20 21 31

Description: Test double precision floating point operands for (A,A+l) equal to

(B,B+1). If true, branch to address specified by (P)+1+0.
Otherwise, execute the next instruction.

TSTFD,NE Test Double Precision 0 56 10 11
Floating Point,
Not Equal 2D 0B A B

15 16 20 21 31

Description: Test double precision floating point operands for (A,A+l) not

‘CBﬁ equal to (B,B+1). 1f true, branch to address specitied by
%h;‘ (P)+1+D. Otherwise, execute the next instruction.

&

Rl e Na WATE UL WANNEEN

TSTFD,GT Test Double Precision O

56

10 11

15 16

20 21

31

Floating Point,
Greater Than

2D

oc

Description: Test double precision floating point operands for (A,A+l) greater
than (B,B+1). If true, branch to address specified by (P)+1+D.

Otherwise, execute the next instruction.

»

TSTFD,LT Test Double Precision O
Floating Point,

56

10 11

15 16

20 21

31

Less Than

2D

0D

A

B

Description: Test double precision floating point operands for (A,A+l) less

than (B,B+l1). If true, branch to address specified by (P)+1+D.

Otherwise, execute the next instruction.

6-38

17329120 B

 ;1{

-

REGISTER BIT OPERATIONS

1729Ny AN n

Operation Field Address Field Interpretation
TBIT,F bit,X toggle bit
SBIT,F bit,X set bit
CBIT,F bit,X clear bit
The Register Bit Operations have the following format:
0 56 10 11 15 16 20 21 31
37] sub-op F BIT]
Sub-op = type of operation
F = register
X = register
BIT = bit (0-31) + (X)
TBIT Toggle Bit in Register 0 56 1011 1516 20 21 31
137100‘17151']?] -!
_____________]
Description: Toggle the BIT in register F.
SBIT Set Bit in Register 0 56 1011 15 16 20 21 31
ST T e]
Description: Set BIT in register F.

.20

CBIT Set Bit in Register 0

Description:

6-40

56

10 11

15 16

20 21

31

37

02

F

BIT

Clear BIT in register F.

17329120 B

Yy,

Ay
i

BIT SKIPS

Operation Field Address Field Interpretation

BSK A,BIT,D bit skip

The bit skip instructions have the following format:

0 56 10 11 15 16 20 21 31
2E sub-op A BIT D

Sub-op = type of test and bit modification
A = test register

Bit = bit number to test; 0-31
D = relative displacement; the range of D is +1023, -1024
(i3> (P) = location of bit skip instruction
BSK Bit Skip if Set 0 56 10 11 1516 20 21 31

2E 11 A BIT D

Description: Test the referenced BIT in register A equal to one. If true,
branch to the address specified by (P)+1+D. Otherwise, execute the

next instruction.

BSK, S Bit Skip if Set 0 56 10 11 15 16 20 21 31
and Set

2E 10 A BIT - D

Description: Test the referenced BIT in A equal to one. 1f true, branch to the

address specified by (P)+1+4D. Otherwise, execute the next

instruction. Unconditionally set the bit after the test.

BSK,C Bit Skip if Set
and Clear

Description:

0

56

10 11

15 16

20 21

31

2E

12

BIT

S—

address specified by

instruction.

BSK,T Bit Skip if Set
and Toggle

Description:

Test the referenced BIT in A equal to one.
(P)+1+D.

Otherwise,

execute

If true, branch to the

the next

Unconditionally clear the bit after the test.

0

56

10 11

15 16

20 21

31

2E

13

BIT

address specified by

instruction.

BSK,Z Bit Skip if Clear

Description:

the address specified by (P)+1+D.

instruction.

BSK,ZS Bit Skip if Clear
and Set

Test the referenced BIT in A equal to one.
(P)+14D.

Otherwise,

execute

If true, branch to the

the next

Unconditionally toggle the bit after the test.

0

56

10 11

ot

15 16

herwise,

20 21

0 56 10 11 1516 20 21 31
2E 14 BIT D
Test the referenced BIT in A equal to zero. If true, branch to

execute the next

31

2E

15

BIT

Description: Test the referenced BIT in A equal to zero.

the address specified by (P)+1+D.

instruction.

6-42

Unconditionally set the bit after the test.

ot

herwise,

If true,

branch to

execute the next

17329120 B

o}

>

O
4
€ .

BSK,ZC Bit Skip if Clear 0 56 10 11 15 16 20 21 31
and Clear

2E 16 A BIT D

Description: Test the referenced BIT in A equal to zero. If true, branch to
the address specified by (P)+1+D. Otherwise, execute the next

instruction. Unconditionally clear the bit after the test.

BSK,ZT Bit Skip if Clear O 56 10 11 1516 20 21 31
~and Toggle

2E 17 A BIT D

Description: Test the referenced BIT in A equal to zero. If true, branch to
the address specified by (P+14D). Otherwise, execute the next
instruction. Unconditionally toggle the bit after the test.

T TAAAY A~ e

FILE SKIPS

Operation Field Address Field Interpretation

FSK y,X file skip

The file skip instructions have the following format:

0 56 10 11 15 16 31
2F sub-op X y
Sub—-op = type of test
X = operand file
y = immediate operand; 16 bits zero extended

(P) = location of file skip instruction

FSK,GE File Skip, 0 56 10 11 15 16
Greater Than
or Equal 2F 00 X y

Description: Test the contents of register X greater than or equal to the
immediate operand vy. If true, skip to instruction specified by

(P)+2. Otherwise, execute the next instruction.

FSK,LE File Skip, 0 56 10 11 15 16 31
Less Than
or Equal 2F 01 X y

Description: Test the contents of register X less than or equal to the
immediate operand vy. If true, skip to address specified by

(P)+2. Otherwise, execute the next instruction.

6-44 17329120 B

NG

\ - ‘/

4
A

FSK,EQ File

Description:

FSK,NE File

Not Equal

Description:

FSK,GT File

Greater Than

Description:

FSK,LT File
Less

Description:

1722901 an n

Skip, Equal 0 56 10 11 15 16 31

2F 02 X y

Test the contents of register X equal to the immediate operand

Y. If true, skip to address specified by (P)+2. Otherwise,

execute the next instruction.

Skip, 0 56 10 11 15 16 31

2F 03 X y

Test the contents of register X not equal to the immediate operand
Y. If true, skip to the address specified by (P)+2. Otherwise,

execute the next instruction.

Skip, 0 56 10 11 1516 31

2F 04 X y

Test the contents of register X greater than the immediate operand

y. If true, skip to the address specified by (P)+2. Otherwise,

execute the next instruction.

Skip, 0 56 10 11 15 16 31
Than

2F 05 X y

Test the contents of register X less than the immediate operand
y. 1If true, skip to the address specified by (P)+2. Otherwisec,

execute the next instruction.

JUMPS

"
\
Operation Field Address Field Interpretation

uJp m,X unconditional jump

UJI m,X unconditional jump indirect
/ RTJ m,X return jump

JsX m,X jump, set index
1 AIF arithmetic IF
t AIFD arithmetic IF, double precision

BJPT m,X BR jump, true

BJPF m,X BR jump, false

HLT m,X halt

XJp m,X index jump

MON,F y monitor call

XSK y,X index skip
t EDOI End-Do, increment one ,ng
t EDO2 End-Do, increment constant K\,J
t EDO3 End-Do, increment variable

DXJP m,X delayed XJP

LCPN,F load CPU number

t Not available as a C?MPASS mnemonic instruction.
|

These instructions use a suboperation field for further definition of the

function.
uJp Unconditional Jump 0 56 10 11 15 16 31
2F 06 X m
X = index register
m = base word address; M=m+(X)

Description: Unconditional jump to the address specified by M.

6-46 17329120 C

UJI Unconditional Jump 0 56 10 11 15 16
Indirect

2F 07 X m

X = index register
m = base word address; M=m+(X)
Description: Unconditionally jump to the address specified by*‘(M).

P=(M

RTJ Return Jump 0 56 10 11 15 16 31

2F 08 X m

X = index register
= base word address; M=mt+(X)

Description: Replace the address portion of M with (P)+l; jump to the memory
(Zl} address specified by M+l.

P =M+l; (P) + 1 M16_31

JSX Jump and Set Index 0 56 10 11 15 16 31

2F 09 X m |

X = index register
m = base word address

Description: Place (P)+]l in X and jump to the address specified by m.

X = (P)+l; P =n

ATF Arithmetic IF 0 56 10 11 15 16 31

2F 12 X " ml ,

m2 m3 '

X = index register

m] = Base word address; Ml = ml
m2 = Base word address, M2 = m2 + P + 1
m3 = Base word address; M3 = m3

Description:

Jump to the address specified by ml 1if the index register is
zero. Jump to the address specified by m2 if the index register
is negative., Jump to the address specified by m3 if the index
register is positive, # O.

AIFD Arithmetic IF 0 56 10 11 15 16 31
Double Precision
2F 13 ml
m2 m3
X = index register
ml = base word address; Ml = ml
m2 = base word address; M2 = m2 + P =1
m3 = base word address; M3 = m3
Description: Jump to the address specified by Ml if the index register 1is
zero, Jump to the address specified by M2 if the index register
is negative. Jump to the address specified by M3 if the index
register is positive, # O.
BJPT Bit Jump True 0 56 10 11 15 16 31
2F 0A X m
X = index register
m = base word address; M=mt+(X)
Description: Jump to the address specified by M if the contents of the bit
register = 1. Otherwise, execute the next instruction.
P =M
BJPF Bit Jump False 0 56 10 11 15 16 31
2F 0B X m
X = index register
m = base word address; M=m+(X)
6-48 17329120 C

f ;;\ .

;

SJJJ
g g

o

Description: Jump to the address specified by M if the contents of the bit
register = 0. Otherwise, execute the next instruction.

P=M

HLT Stop Program Execution O 56 10 11 15 16 31

2F 0oc X m

X = index register
m = base word address; M=mt+(X)

Description: Unconditionally stop program execution. Upon restart, jump to the
address specified by M. This instruction can only be executed in

Monitor Mode.

P=M
XJP Index Jump and 0 56 10 11 15 16 31
Decrement
2F 0D X m
X = index register
m = base word address

Description: Test the contents of register X = 0. If (X) # 0, jump to the
address specified by m and replace the (X) by (X)-1. Otherwise,

execute the next instruction.

MON Monitor Call 0 56 10 11 15 16 31

2F OE F y

F = start of parameter list
y = monitor service request

L}

Description: This instruction discontinues execution in the current state and
initiates execution in the privileged monitor mode (state U). The
constant y and the four registers F through F+3 are made available
to the monitor. Execution of the monitor call instruction

proceeds as follows:

17329120 B PN

2.

4.

5.

XSK Index Skip

Description:

6-50

The execution enviromment is collected and saved in word 1 of

the current exchange package area.

The instruction pointer is stored into word 2 of the current

exchange package area.

The contents of registers F through F+3 are written into

words 4 through 7 of the current exchange package area.

The y field of the instruction is loaded into register 31 of

state zero.

The SXPA (successor exchange package address) field of word 3

of the current exchange package is read and defines the

address of the new exchange package area.

The interrupt system is disabled.

Word 3 of the new exchange package is redefined by writing
the address of the old exchange package area into the PXPA
(predecessor exchange package address) field.

The location defined for the MON instruction trap is read and

establishes the initial instruction address for execution in

the monitor.

0 56 10 11 15 16 31

2F OF X y

X = index register
y = immediate operand

\

[}

Add one to the contents of register X and compare the result equal

to the immediate operand y, not sign extended. If (X)+1 = vy,

execute the next instruction from (P)+2. Otherwise, execute the

next instruction.

17329120 B

3
E

k)

: .

C

EDO1 End-Do

Increment One

Description:

EDO2 End-Do

Constant

Description:

YIAANTAN

0 56 10 11 15 16 31

2F 14 X A

m B

(A) = address of the Do loop index variable

(B) = address of the Do loop control variable
(m) = base word address; M = m + 1
(X) = index register

The EDO! instruction performs a Do loop which is equivalent to the
following FORTRAN expression:

Do A = n,B,] where n is any integer value.

The content of the index variable is incremented by one and stored
in the index register. The content of the index register is then
tested against the control variable. If (X) > B, a jump is
performed to the next instruction. If (X) < B, a jump is
performed to the address specified by M, and the value in the

index register is stored into the index variable.

Increment 0 56 10 11 15 16 31

2F 15 X A

(A) = address of the Do loop index variable

(B) = Do loop increment constant

(C) = address of the Do loop control variable
(m) = base word adress; M=m + 1

(X) = index register

The EDO2 instruction performs a Do loop which is equivalent to the

following FORTRAN expression:

Do A = n,C,(B) where n is any integer value.

The content of the index variable is incremented by the content of
the B register and stored in the index register. The content of
the index register is then tested against the control variable.
If (X) > (B), a jump is performed to the next instruction. If (X)
£ (B), a jump is performed to the address specified by M, and the

value contained in the index register is stored into the index

variable.
EDO3 End-Do Increment 0 56 10 11 15 16 31
Variable
2F 16 X A
B
m C
(A) = address of the Do loop index variable

Description:

6-52

(B) = address of the Do loop increment variable
(C) = address of the Do loop control variable
(m) = base word address; M=m + 2

(X) = index register

The EDO3 instruction performed a Do loop which is equivalent to
the following FORTRAN expression:

Do A =n,C,B where n is any integer value

The content of the index variable is incremented by the content of
the increment variable and stored into the index register. The
content of the index register is then tested against the control
variable. If (X) > (B), a jump is performed to the next
instruction. if (X) < (B), a jump is performed to the address
specified by M, and the value contained in the index register is

stored into the index variable.

17329120 B

Q
S

W

ar e sty

DXJP Delayed XJP 0 56 10 11 15 16 31

2F 1E X m

X = index register

base word address; M= m

B
L}

Description: Test the contents of register X = 0., If (X) = 0, execute: the
instruction following the DXJP instruction and jump to the address
specified in M. Replace (X) by (X)~1. If X=0 jump to P+2 and

execute that instruction.

LCPN Load CPU 0 56 10 11 15 16 31
Number

2F 1F F

;‘:i} Description: Load register F with the CPU number, The CPU number may be

between one and five.

30
i
%

17220y AN n

REGISTER OPERATIONS

Operation Field » Address Field Interpretation
R A,B,C single precision fixed point
NBR complement bit register
CBR clear bit register
RMS C read Millisecond Clock
RF A,B,C single precision floating point
RD A,B,C double precision fixed point
RFD A,B,C double precision floating point

t RJD C read Julian day time
t Not available as a ?OMPASS mnemonic insiruction.

The register operation instructions have the following format: ;mi

"/
0 56 10 11 15 16 20 21 27 31
< ~
AN
30 sub-op A B :Siii N C
AN AN
Sub-op = operation
A = source operand register 1
B = source operand register 2
C = destination register
R,+ Register Add 0 56 10 11 15 16 20 21 26 27 31

30 00 A B E;igii;;b C

Description: Add the contents of register A to the contents of register B and

store the result in register C. . R
,f;;%é
C = (A)+(B) @;;W

6-54 ‘ 17329120 B

{§»~‘ R,- Register Subtract O 56 10 11 15 16 20 21 26 27

31

) 30 01 A B \\::l

Description: Subtract the contents of register B from the contents of register
A and store the result in register C.
C = (A)-(B)
R,* Register Multiply O 56 10 11 15 16 20 21 26 27 31
30 02 A B §:<>§:j c
Description: Multiply the contents of register A by the contents of register B
and store the result in registers C and C+l.
‘:j; C,C+1 = (A)*(B)
L
R,/ Register Divide 0 56 10 11 15 16 20 21 26 27 31
30 03 A B \:\<>\;f c |

Description:

Divide -the contents of registers A and A+l by the contents of

register B and store the quotient in register C and the remainder

in register C+l.

C = (A,A+1)/(B); C+l = remainder

R,AND Register 0 56 10 11 15 16 20 21 26 27

31

Logical Product
30 04 A B

NN

Description:

! it
% a
fh
tz

C= (A) A (B)

13901 A n

contents of register B and store the result in register C.

Perform the logical AND of the contents of register A and the

4;]§
26 27 3] \»

R,0R Register, 0 56 10 11 15 16 20 21

Logical OR . N

30 05 A B \\\\\\ c
Description: Perform the logical OR of the contents of register A and the
contents of register B and store the result in register C.
C = (A) v (B)

R,XOR Register, 0 56 10 11 15 16 20 21 26 27 31

Logical =

EXCLUSIVE OR 30 06 A B NN C J

Description: Perform the EXCLUSIVE OR of the contents of register A and the

contents of register B and store the result in register C.

C = (A) v (B)

R,SCL Register, 0 56 10 11 15 16 20 21 26 27 31
Selective <
RN \
Clear 30 07 A B \}:\;<t§\ o l
Description: Selectively clear the contents of register A by the mask in
register B, For each bit set to 1 in B, the corresponding bit in
the result is set to O. The result is stored in register C.
C = (&) Vv (B)
R,NOT Register, 56 10 11 15 16 20 21 20 27 31
One's
Complement 30 08
Description: Transfer the one's complement of the initial contents of register
B to register C and the one's complement of register A tu register
Bo ,_A‘;""'

C=(B); B= (A) L/

6-56 17329120 8

B

e

R,XFR Register, 0 56 10 11 15 16 20 21 26 27 31

Transfer y
30 09 A B \:S::§:f c l

Description: Transfer the initial contents of register B to register C and the

contents of register A to register B.

C= (B); B= (A)

Note: By selecting various values for fields A, B and C, a move,

copy or swap operation is performed.

move R,XFR A,B,C result A= (A), B= (A), C = (B)
copy R,XFR A,B,B result A = (A), B = (A)
swap R,XFR A,B,A result A = (B), B = (A)
R,S* Register Single 0 56 10 11 15 16 20 21 26 27 31

Precision AN
Multiply 30 oD A B \:\:t\\ C

Description: Multiply the contents of register A by the contents of register B

and store the least significant 32 bits of the result in register
Cc.

C=(A) * (B)

R,S/ Register Single 0 56 10 11 15 16 20 21 26 27 31
Precision v
Divide 30 OE A B \<\§\\ c

Description: Divide the contents of register A, sign extended to 64 bits, by

the contents of register B and store the quotient in register C.

C = (A)/(B)

NBR Complement Bit Register
0 ’ 56 10 11 31

30 OA NN NN NN

Description: Complement the contents of the bit register.
BR = (BR)

SBR Set Bit Register
0 56 10 11 31

30 0B NN

Description: Set bit register to one.

BR =1

CBR Clear Bit Register ”
.

0 56 10 11 31
30 oc NN NN
Description: Clear bit register to zero.
BR =0
RMS Read Millisecond Clock Into Register
0 56 10 11 16 17 31
30 OF 111111 c
Descriptién: The millisecond time of day clock is transferred to register C.
C = time of day clock
!f;%
L

6~58 17329120 C

RF,+ Register 0 56 10 11 15 16 20 21 26 27 31
Floating

Point Add 30 14 A B \C\<\Q§Cw c

Description: Add the contents of register A to the contents of register B, in

floating point mode, and store the result in register C.

C= (A) + (B)

RF,- Register Float- 0 56 10 11 15 16 20 21 26 27 31
ing Point

Subtract 30 15 A B \\Q>\\\\~ c

Description: Subtract the contents of register B from the contents of register

A and store the result in register C.

C= (4 - (B)

RF,* Register Float- 0 56 10 11 15 16 20 21 26 27 31
ing Point AN NN
Multiply 30 16 A B \ J c |
Description: Multiply the contents of register A by the contents of register B

and store the result in register C.

C = (4) * (B)

RF,/ Register Float- 0 56 10 11 1516 20 21 20 27 31
ing Point

Divide 30 17 A B AP\E\ﬁ*S* ¢ I

Description: bivide the contents of register A by the contents of register b

and store the result in register C.

C = (A)/(B)

Precision

Floating Point 30 18 A B ti;ii;t;: c |
Add

Description: Add the contents of registers A and A+l to the contents of B and

RFD,+ Register Double 0 56 1011 1516 20 21 26 27 31 i:;k}

B+l in floating point mode. The result is stored in registers C
and Ct+l.

C,C+1 = (A,A+1) + (B,B+1)

RFD,~ Register Double O 56 10 11 15 16 20 21 26 27 31
Precision : —T =
Floating Point 30 19 A B ~Q§>\:\§ ''c
Subtract

Description: Subtract the contents of registers B and B+l from the contents of

registers A and A+l and store the result in registers C and C+1.

C,C+1 = (A,A+1) - (B,B+1)

RFD,* Register Double 0 56 1011 1516 20 21 26 27 31
Precision — ‘ S
Floating Point 30 14 A B tQEQ:QF\:j c
Multiply -

Description: Multiply the contents of registers A and A+l by the contents of

registers B and B+l and store the result in registers C and C+l.

C,C+1 = (A,A+1) * (B,B+1)

RFD,/ Register Double 0 56 10 11 15 16 20 21 26 27 31
Precision - - S :
Floating Point 30 | 1B A B l “:\:FQ\ o i

L l NN x
Divide
Description: Divide the contents of registers A and A+l by the contents of

registers B and B+l and store the result in registers C and C+l.

C,C+1 = (A,A+1)/(B,B+1)

=60 ' 17329120 B

RD,+

Register Double 0 56 10 11 15 16 20 21 26 27 31
Precision

Add 30 1c A B \\\\\] C

Description: Add the contents of registers A and A+l to the contents of
registers B and B+l in fixed point mode. The result is stored in
registers C and C+1.

C,C+1 = (A,A+1) + (B,B+1)
RD,- Register Double O 56 10 11 15 16 20 21 26 27 31
Precision

Subtract 30 1D A B r§§<?\:\\ C

Description: Subtract the contents of registers B and B+l from the contents of
registers A and A+] and store the result in registers C and C+l.
C,C+l1 = (A,A+1) - (B,B+1)
RD,XFR Register 0 56 10 11 15 16 20 21 26 27 31
Double

NI
Precision 30 1E A B t§\<>\:\\ C
Transfer

Description: Transfer the initial contents of registers B and B+1 to registers
C and C+l. Transfer the contents of registers A and A+l to
registers B and B+l.

C,C+l = (B,B+1); B,B+1 = (A,A+l)
Note: By selecting various values for fields A, B and
C, a move, copy or swap operation is performed.
move RD, XFR A,B,C result A, A+l (A,A-1)

W

B, B+1

TIAAAYTA S -

C,C+l = (B,B-1)
copy RD, XFR A,B,B result A,A+l = (A,A-1)
B,B+1 = (B,B-1)
swap RD,XFR A,B,A result A,A+l = (B,B-1)
B,B+l = (A,A-1)
RJID Read Julian 0 56 10 11 26 27 31

Day Time

30 IF \\\\\\\ c

Description: The millisecond Julian time of day is transferred to register C.

C = Julian time of day clock

e

N »/’

6-62 17329120 B

FUNCTION

Operation Field Address Field Interpretation
AAL A,B,C address adjust left
F A,C perform named function

These instructions use a suboperation field for further definition of the

function.

AALL Address Adjust 0 56 10 11 15 20 21 26 27 31

\\\

Description: Convert the word address contained in register A to a half word

address (store in register B) and a character address (store in

register C).

(B) = (A)*2
(C) = (A)*4
F,F Convert Value 0 56 10 11 15 16 26 27 31
To Floating
Point 31 03 A \\\\\\\ C
Description: Convert the integer value in register A and store the floating
point equivalent in register C. Since the floating point

coefficient is 24 bits in length, large 32-bit integer values mayv

be truncated.

C = (A); floated

F,UF Convert
To Fixed
Point

Description:

FD,F Convert
To Float
Point Do
Precisio

Description:

FD,UF Convert
To Fixe

Double

Description:

6-64

value 0 56 1011 15 16 26 27 31
3l 04 A \\\\\\\\\\ c

Convert the floating point value in register A and store the

integer equivalent in register C. If the floating point value is

beyond the range of numbers expressable in 32 bits, either too

large or too small, the value zero is stored in C and the
function fault is set.

C = (A); integer part

Value 0 56 10 11 15 16 26 27 31
ing

uble 31 05 A AN e

n ‘

Convert the integer value in registers A and A+l and store the

floating point equivalent in registers C. and C+l. Since the
double precision floating point coefficient is 56 bits in length,

large 64-bit integer values may be truncated.

C,C+l = (A,A+1); floated

Value 0 5.6 10 11 15 16 26 27 31

irecision 31 06 A \:}\:\:\<:\:\Q>§<§ c l

Convert the floating point value in registers A and A+l and store

the integer equivalent in registers C and C+l. If the floating
point value is beyond the range of numbers expressable in 64
bits, either too large or too small, the value zero is stored in

C and the function fault is set.

C,C+l = (A,A+1); integer part

17329120 B

&

F,STD Convert Single 0 56 10 11 15 16 26 27 31

Precision : - <
Floating Point to 31 07 A :Si:::g::::::gi:\\' o

Double Precision

Description: Convert the single precision floating point value in register A

to double precision and store the result in registers C and C+l.

C,C+l = (A)

F,DTS Convert Double 0 56 10 11 15 16 26 27 31

Precision Float- <
ing Point to 31 : 08 A \\\\\\\\ c

Single Precision

Description: Convert the double precision floating point value in registers A

and A+1 to single precision and store the result in register C.

§ C = (A,A+])
F,AB Floating Point 0 56 10 11 15 16 26 27 31
Absolute Value AV
31 09 A \\\\\\\\ C
N
Description: The floating point number in C is set to the absolute value of

the floating point number in A.

F,ABD Floating Point 0 56 10 11 15 16 26 27 31
Double Precision
Absolute Value 31 0A A \<>\f\;§\><:<:\:\i} C
Description: The double precision floating point number in C,C+l is set to the

absolute value of the double precision floating point number in

0’ A A+].

17329120 B h=hS

F,ABI Absolute Value O

Description:

6-66

56

10 11

15 16 26 27

31

31

0B

NN

The absolute value of the number in A is transferred to (C).

17329120 B

o

R

é« i

>

C

LYy e

.vw“xg”‘iG
s

BLOCK TRANSFERS

Operation Field Address Field Interpretation
MOVE A,B,C move memory block
MovC A,B,C move character block
FILL A,B,C fill memory block
MOVT A,B,C move and transliterate
MOVA A,B,C move and align data [
MOVU A,B,C move and unalign data |
MOVP A,B,C pack byte
MOVN A,B,C unpack byte
0 56 10 11 15 16 20 21 26 27 31
MOVE Move Memory T
Block 37| 10 A BN NN
A = FROM first word address
B = number of words to transfer
C = TO first word address
Description: The number of words specified in register B are transferred from

successive memory locations starting with the location specified
in register A, and continuing to the location specified in
register C, If the high order bit in register C is set, the
transfer is "last to first" with registers A and C decrementing
by one. If the high order bit in register C is not set, the
transfer is "first to last” with registers A and C incrementing
by one. Register B is decrementing by one following each

transfer. Interrupts are checked after each word transfer.

If an interrupt occurs during the transfer, the transfer and the
instruction are terminated, P is not advanced and the interrupt
is processed normally. On return from the interrupt, the
instruction is reinitiated and the transfer is resumed at the

point of interruption.

MoOvC

6-68

Move Character

Block

If this instruction is executed from Program Mode, the memory
addresses are normal 16-bit addresses specifying memory assigned
to that state. Memory protect violations apply and are treated

in the normal way.

If this instruction is executed from Monitor Mode, the memory
addresses are 2l-bit addresses as described below. Normal

protect violations apply and are treated in the normal way.

0 10 11 20 21 31
Page Number Word Number in
(A) and (C) = of (1-1024) (1-4096) Page(s)

Upon completion of the transfer, registers A, B, and C contain

the following:

(A) = address of the last FROM word transferred + 1
(B) =0
(C) = address of the last TO word set + 1

NOTE: 1If this instruction is used to propagate data, as in zero-

filling a vector, the address in C must be at least 2

words beyond the address in A. This is due to the look-

ahead feature of the hardware.

0 56 10 11 15 16 20 21 26 27 31

o

37 11 A ' B

FROM memory first byte address

-]
"

nunber of bytes to transfer

TO memory first byte address

17329120 B

i
g

£
G

3

Description:

The number of characters specified in register B are transferred
from successive memory 1locations starting with the location
specified in register A, and continuing to the location
specified in register C. If the high order bit in register C is
set, the transfer is "last to first” with registers A and C
decrementing by one. If the high order bit in register C is not
set, the transfer is “"first to last" with registers A and C
incrementing by one. Register B is decremented by one following

each transfer. Interrupts are checked after each byte transfer.

If an interrupt occurs during the transfer, the transfer and the
instruction are terminated, P is not advanced and the interrupt
is processed normally. On return from the interrupt, the
instruction is reinitiated and the transfer is resumed at the

point of interruption.

If this instruction is executed from Program Mode, the memory
addresses are normal 16-bit addresses specifying memory assigned
to that state. Memory protect violations apply and are treated

in the normal way.

If this instruction is executed from Monitor Mode, the memory
addresses are 23-bit addresses as described below. Normal

protect violations apply and are treated in the normal way.

0 8 9 18 19 31
Page Number Byte in
(A) and (C) = of (1-1024) Page

Upon completion of the transfer, registers A, B, and C contain
the following:

(A) = address of the last FROM byte transferred + 1
(B) =0
(C) = address of the last TU byte set + 1

NOTE: If this instruction is used to propagate data, as in

FILL Fill Mem
Block

Description:

MOVT Move and
Translit

6-70

zero-filling a vector, the byte address in (C) must be at
least 2 bytes beyond the address in (A). This is due to

the look-ahead feature of the hardware.

ory 0 56 10 11 15 16 20 21 26 27 31
I 37 | 12 A B \\\\ c,
| N,
(A) = fill value
(B) = number of words to move

()

TO first word address or byte

The Fill instruction allows MP-60 programs to fill successive
buffer locations with the value specified in register A. If the
high order bit of register C is set, the value contained in
register C is the TO first word address. In that case the unit
transfer size is a word. If the high order bit of register C is
not set, the value contained in register C is the TO first byte

address, and the unit transfer size is a byte.

On completion of the transfer, registers A, B, and C contain the

following:
A = unchanged
B=0
C = last TO word address + 1
0 56 10 11 15 16 20 21 26 27 31
erate S
37| 13 A B \\\\ c |
(A) = FROM first byte address
(B) = number of bytes to move
(C) = TO starting byte address
(B+1) = starting byte address of the

transliteration table

17329120 B

5;;§%

e~ Q

Description:

The transliteration table has the following format:

ordinal - 1 char 1
ordinal - 2 char 2
ordinal - i char 1
ordinal - n char n

where ordinal 1 - n are input characters and char 1 - n are the

replacement characters to be written by MOVT to the next TO

address.,

The MOVT instruction performs a character by character transfer
of data beginning with the byte address specified in register A

and continuing to the area beginning with the byte address

bspecified in register C. As the transfer takes place data is

translated by indexing into the transliteration table whose
starting byte is specified in register B+l. Registers A and C
are incremented and register B is decremented following each

transfer. Interrupts are checked following each byte transfer.

If an interrupt occurs during the transfer, the transfer and the
instruction are terminated, P is not advanced, and the interrupt
is processed normally. On return from the interrupt, the
instruction is reinitiated and the transfer resumed at the point

of interruption.

If this instruction is executed from Program Mode, the memory
addresses are normal 18-bit addresses specifying memory assigned

to that state. Memory protect violations apply and are treated

in the normal way.

1f this instruction is executed from Monitor Mode, the memory
addresses are 23-bit addresses as described below. Normal

protect violations apply and are treated in the normal way.

MOVA

0 89 18 19 31

Page Number Byte in
(A) and (C) = of (1-1024) Page

Upon completion of the transfer, registers A, B, and C contain
the following:

(A) = last FROM byte address +1
(B) =0
(C) = last TO byte address set +1

Move and Allign 0 56 10 11 1516 20 21 26 27 31
Data :
37 14 A B CJ
(A) = FROM first word address
(B) = bit offset in first word
(C) = TO starting word address
(B+l) = number of words to transfer, where a
partial word is counted as a word
(B+2) = number of bits in the last transfer

Description: The MOVA instruction allows MP-60 programs to specify a data

6-72

transfer with a non-word aligned FROM address. Starting with
the bit offset specified in register B of the word address
specified in register A, data is transferred in 32-bit chunks to
the area whose starting address is specified in register C,
When all but one of the words to be transferred have been moved,
the value in register B+2 is used to make the last transfers.
As each 32-bit chunk is transferred, register C is incremented
and register B+l is decremented. Interrupts are checked

following each word transfer.

If an iﬁtettupt occurs during the transfer, the transfer and the
~ instruction are terminated, P is not advanced and the interrupt
is processed normally. On return from the interrupt, the
instruction is reinitiated and the transfer resumed at the point

of interruption.

17329120 B

If this instruction is executed from Program Mode, the memory
addresses are normal 16-bit addresses specifying memory assigned
to that state. Memory protect violations apply and are treated

in the normal way.
If this instruction is executed from Monitor Mode, the memory

addresses are 2l-bit addresses as described below. Normal

protect violations apply and are treated in the normal way.

0 10 11 20 21 31

Page Number | Word Number in
(A) and (C) = of (1-1024) ! (1-4096) Page(s)

Upon completion of the transfer, registers A, B, C, B+l, and B+2
contain the following:
(A) = last FROM word address + 1
(B) = unchanged
(c) last TO word address set + 1
(B+1) = 0
(B+2) = unchanged

MOVU Move and 0 56 10 11 15 16 20 21 26 27 31

Unalign Data

Description:

37 | 15 A B !cg

FROM first word address

starting bit number in destination word

TO starting word address

if (B) = 1, number of words to transfer

if 1 < (B) < 32, number of words to transfer
+ 1

number of bits in last word

(4)
(B)
(©)
(B+1)

|

(B+2)

The MOVU instruction allows MP-60 programs to specify a data
transfer to a non-word aligned address. Data is transferred from
the area beginning with the address specified in register A to the
area beginning with the word specified in register C and bit
position specified in register B. Data is transferred in 32-bit

chunks. When all but one of the words to be transferred have becen

moved, the value in register B+2 is used to make the last

MOVP

6-74

transfers, As each 32-bit data group is moved, register A is
incremented and register B+l 1is decremented. Interrupts are

checked following each word transfer.

If an interrupt occurs during the transfer, the transfer and the
instruction are terminated, P is not advanced and the interrupt is
processed normally. On return from the interrupt, the instruction
is reinitiated and the transfer resumed at the point of

interruption.

If this instruction is executed from Program Mode, the memory
addresses are normal 16-bit addresses specifying memory assigned

to that state. Memory protect violations apply and are treated in
the normal way.

If this instruction is executed from Monitor Mode, the memory
addresses are 2l-bit addresses as described below. Normal protect

violations apply and are treated in the normal way.

0 10 11 20 21 31
Page Number Word Number in
(A) and (C) = of (1-1024) (1-4096) Page(s)

Upon completion of the transfer, registers A, B, C, B+l and B+2
contain the following:

(A) last FROM word address + 1
(B) = unchanged

(C) = last TO word address set + 1
(B+1) = 0
(B+2) = unchanged

Pack Byte 0 56 10 11 15 16 20 21 26 27 31

37 | 16 A B c‘

(A) = FROM byte address
(B) = number of bytes to pack (multiple of 4)
(C) = TO byte address

17329120 B

v

i s
P

L

\
(Kk

Foo
¢
*

Description:

17329120 B

The MOVP instruction allows an MP-60 program to reformat 8-bit
bytes which contain only 6 bits of data into 6-bit bytes. The
data to be placed into the resulting 6-bit bytes must be right
justified in the FROM bytes as the highest order two bits of
the 8-bit FROM bytes are ignored. Data is transferred by
packing 32-bit data groups into 24 bits. It is therefore
necessary that the data to be packed end on a 32-bit
multiple. If the data does not terminate in a multiple of 32
bits, zeros must be added to fill out the last 32 bits of the
FROM data.

Interrupts are checked following each 32-bit transfer. If an
interrupt occurs during the transfer, the instruction is
terminated, P is not advanced, and the interrupt is processed
normally. On return from the interrupt, the instruction is
reinitiated and the transfer resumed at the point of

interruption,.

If this instruction is executed from Program Mode, the memory
addresses are normal 16-bit addresses specifying memory
assigned to that state. Memory protect violations apply and

are treated in the normal way.
If this instruction is executed from Monitor Mode, the memory

addresses are 2l-bit addresses as described below. Normal

protect violations apply and are treated in the normal way.

0 10 11 20 21 31

Page Number Word Number in
(A) and (C) = of (1-1024) (1-4096) page(s

Upon completion of the transfer, registers A, B, and C contain
the following:

(A) = last FROM byte transferred + 1
(B) =0
(C) = last TO byte packed + 1

MOVN Unpack Byte 0 56 10 11 15 16 20 21 26 27 31

Description:

6-76

37| 17 A B r\\\\\ c

(A) = FROM byte address

(B) = number of bytes to unpack (in multiples
of 3) ‘

(C) = TO byte address

The MOVN instruction allows the user to reformat 6-bit data
bytes into 8-bit data bytes. The highest order 2 bits of the
resulting 8-bit bytes are guaranteed to be unset,

Data is transferred by unpacking 24-bit data groups into 32
bits and moving the result to the next TO address. It is there-
fore necessary that the data to be unpacked end on a 24-bit
multiple. If the data does not terminate on a multiple of 24
bits, zeros must be added to fill out the last 24 bits of the
FROM data.

Interrupts are checked following each 24-bit transfer. If an
interrupt occurs during the transfer, the transfer and the
instruction are terminated, P is not advanced, and the
interrupt is processed normally. On return from the interrupt,
the instruction is reinitiated and the transfer resumed at the

point of interruption.

If this instruction 1is executed from Program Mode, the memory

addresses are normal 18-bit addresses specifying memory
assigned to that state. Memory protect violations apply and

are treated in the normal way.
If this instruction is executed from Monitor Mode, the memory

addresses are 23-bit addresses as described below. Normal

protect violations apply and are treated in the normal way.

17329120 B

'

e

4
) 0 89 18 19 31
Page Number _Byte i
(A) and (C) = of (1-1024) Page

Upon completion of the transfer, registers A, B, and C contain

the following:

(A) = last FROM byte transferred + 1
(B) =0
(C) = last unpacked TO byte + 1

SPECIAL FUNCTIONS

Operation Field Address Field Interpretation
IN A,C input
ouT A,C output
NIO A,C set/sample input/output
SPS A,C sample status
SMIO A,C set Micro 1/0 Table
RMIO A,C read Micro I/0 Table
WPF A,C write page file
RPF A,C read page file
SPF A,C set page files
WSR A,C write State Register
RSR A,C read State Register
SSRM, F selectively set Real Time Mask
SCRM, F selectively clear Real Time Mask
RIM,F read Interrupt Mask
RRM, F read Real Time Mask
t SJD,F set Julian day

t Not available as a COMPASS mnemonic instruction.

This group of instructions are only legal when executed in Monitor Mode.

IN Input From 0 56 10 11 15 16 26 27 31
Data Channel . 1
3A 00 A c
Description: The IN instruction uses register A as the address register and
performs an input operation from the I/0 TTY card with the data
destinated to register C. If an internal reject occurs, then
control internal passes to P+l, and if an external reject
occurs, then control passes to P+2, and on normal return
control pass to P+3.
OUT Output on 0 56 10 11 15 16 26 27 31
3A 01 A c |
6-78 17329120 B

;
A

Description: The OUT instruction uses register A as the address register and
register C as the data register and performs an output
operation to the 1/0 TTY card. If an internal reject/time out
occurs, then control passes to P+]. If an external reject
occurs, then control passes to P+2 and on a normal return

control passes to P+3.

NIO Set/Sample 0 56 10 11 15 16 26 27 31

Data Channel " " N ‘\;\::\:\<>\;T<:\ .

Description: This instruction performs a set/sample of the data channel.

Register A is used for addressing and control, while register C
is the data register. Register C contains the data to be
output in a set operation, while on a sample operation, the
data is destinated to register C.

SPS Sample Position O 56 10 11 15 16 26 27 31
and Status T . ~
3a 03 A \\:>t§:5:5i>\ c
\v
Description: This instruction is used to éample the position and status

information after an ADT end of operation interrupt.

SMIO Set Micro 0 56 10 11 15 16 26 27 31
1/0 Table " -
L 3A 04 A ::z?:tit<:<:§i\ c
Description: This 1instruction 1is wused to set up the micro 1/0 ADT

registers. Register A contains the ADT register number, while

registers C, C+l contain the information set into the ADT
registers.

RMIO Read Micro 1/0 Table

Description:

0 56 10 11 15 16 26 27 31

| s | o5 | a NN ERRN, c

This instruction is used to read the micro I/0 ADT registers.

Register A contains the ADT register number, while registers

C, C+1 receive the information contained in the ADT registers.

WPF Write Page File

Description:

0 56 10 11 15 16 26 27 31
B 06 | & |//////////! c [

The WPF instruction is used to write page index file entries.
Register A contains the page index file address and register C

contains the data to be written into the specified page index

file.

RPF Read Page File

Description:

0 56 10 11 15 16 26 27 31

34 o7 | |//////////| ¢ |

The RPF instruction is used to read page index file entries.
Register A contains the page index file address and register C
receives the data in the specified page index file.

SPF Set Page File

Description:

6-80

0 56 10 11 15 16 26 27 31

|] s | AR

The SPF instruction 1is used to set 16 page index file

" entries. Register A contains the page index file address and

register C contains the address of 8 words which are to be set
into the specified page index file. The formats of the 8
words are defined as follows:

17329120 C

N3

;{C
#
\'F

0 15 16 31

0 PIR-0 PIR-1

1 PIR-2 PIR-3

2 PIR-4 PIR-5

3 PIR-6 PIR-7

4 PIR-8 PIR-9

5 PIR-10 PIR-11

6 PIR-12 PIR-13

7 PIR-14 PIR-15
WSR Write State 0 56 10 11 15 16 26 27 31

Register
8 BN BN \N\\\\\N

Description: The WSR instruction is used to write the DMA state registers.

Register A contains the DMA channel number and register C

contains the data. Bit 28 in register A must be set.

RSR Read State 0 56 10 11 15 16 26 27 31
Register
34 0A A \\\\\\\\ c
Description: The RSR instruction is used to read the state registers.

Register A contains the channel number and register C will
contain the data read from the specified state register.

Register A is as follows:

Bit 27 set, then the CPU state register is returned.

Bit 28 set, then bits 30-31 specify the DMA channel number
returned.

Bit 29 set, then bits 30-31 specify the snapshot repister

returned.

17329120 B A-R1

SSRM Selectively O 56 10 11 15 16 26 27 31
Set Real - -
Time Mask 3A 0B F \\\\\\X\\\\]
Description: For bits set in register F, set the corresponding bits in the

real-time interrupt mask.

SCRM Selectively O 56 10 11 15 16 31
Clear Real [1 LN O N O N O N
Time Mask l_ 3A J oc F \X\;\\XA\X_ VO
- —— - ..-L.._a.-"
Description: For bits set in register F, clear the corresponding bits in the

real-time interrupt mask.,

RIM Read Inter- 0] 56 10 11 15 16 31
rupt Mask - T —--r - -w- N
SN IS I N NN SR
Description: Read the contents of the interrupt mask into register F.
RRM Read Real 0 56 10 11 15 16

N R B NN\

Description: Read the contents of the real-time interrupt mask into register
F.

6-82 17329120 B

(Txﬁ SJD Set Julian Day
5% 0 56 10 11 15 16 31

| ss | w0 [¥ [rrv000000070777070

Description: Set Julian day time to the value contained in register F. .

| “‘”D

17329120 C 6-83

EXTERNAL FUNCTIONS

Operation Field

Address Field

Interpretation

CONT, F
LXPA,F
EINT
SPG
RPG
SSIM,F
SCIM, F
SRTC, F
SIT,F
TRC,F
DINT
SST, F
SOPR
LOPR
DST,F
LPIR
MM
PAUS, F
SCPN, F
0ST
0su

F >
Qo

continue

load exchange package address
enable interrupt system

set Page Register

read Page Register
selectively set Interrupt Mask
selectively clear Interrupt Mask
set Real Time Clock

set Interval Timer

transfer Real Time Clock
disable Interrupt System

set State Relocation Register
save Operand Registers

load Operand Registers

send Interrupt to CPU

load Page Index Registers
load Micro Memory

pause

set central processor number
operating system thread
operating system unthread

This group of instructions are privileged and are only legal when executed in

monitor mode.

CONT Continue

Description: This instruction establishes a new enviromment and execution is

56

10 11

15 16

3F

03

2 NN\

started under its control.

state or in the same at a new location.

CONT instruction has an exchange package address, CXPA, known to

the emulator,

'exchange pa

ckage

area.

The new environment may be in a new

Register F contains the address, NXPA, of a new
The following establishes the

environment and the execution initiation:

6-84

17329120 B

The state issuing the

3
4
¥

. y“’j‘,ér"*o-.:

Word 1 of the new exchange package defines the non-real time
interrupt mask, the bit register, the next state in which
execution will continue, and provides the initial/restored fault

conditions,

Word 2 of the new exchange package defines the next instruction

to be executed.

Word 3 of the new exchange package is redefined by writing the
value CXPA into the SXPA field.

The NXPA becomes the new exchange package address known to the
emulator, CXPA = NXPA.

The interrupt system is enabled.

LXPA Load Ex- 0 56 10 11 15 16 31

idress RSN

Description: This instruction returns the predecessor exchange package address

to register F.

EINT Enable 0 56 10 11 31
Interrupts <\\ N, TS \W

- N AN N \\\ AN .

| 3IF 05 ;j:i<::::>\;:?\\:\\\\x NN

Description: Enable the real-time interrupt system.

SPG Set Page 0 56 10 11 15 16 26 27 31
Register
IF 06 A \\\\\\\ c
NN
Description: Set the page register specified by the contents of register A to

the contents of register C. Both the logical page (0-15) and
state (0-7) are specified by the contents of register A. The
state is specified in bits 20-22 and the logical page in bits 16-

19.

15 16 26 27 31

DN\ c

RPG Read Page 0 56
Register

10 11

3F 07 A

Description: Read the page register specified by the contents of register A
into register C. Register A specifies the logical page (0-15) in
bits 16-19, and the state (0-7) in bit 20-22,
SSIM Selectively O 56 10 11 15 16 31
Set Mask <
3F 08 F \\\\\\\ \\\ AR
Description: For bits set in register F, set the corresponding bits in the
interrupt mask register.
SCIM Selectively O 56 10 11 15 16
Clear Mask \\
O \\\\\\\\\\\\ \4
Description: For bits set in register F, clear the corresponding bits in the

interrupt mask register.

6-86 17329120 B

S

.

™ SRTC Set Real-Time Clock

i
4

0 56 10 11 15 16 31

| s | o | ® |sisiiiiiiir0007

Description: Set the real-time clock to the millisecond value contained in

register F.

SIT Set Interval Time Clock

0 56 10 11 15716 31
| s | oo | F (/0000000007717

Description: Set the interval timer to the millisecond count contained in

register F.
C
\

i+ TRC Transfer Real=Time Clock

0 56 10 11 15 16 31
BERECE

Description: Transfer the contents of the real-time clock to register F.

DINT Disable Interrupts

0 56 10 11 31

BERECE Iy

Description: Disable the recognition of maskable interrupts.

17329120 C 6-87

SST Set State 0 56 10 11 15 16 3

PR

Relocation AW
3F 10 F L

Description: Set the state relocation register to the state (0-7) specified by
bits 20-22 in register F.

SOPR Save Operand O 56 10 11 15 16 26 27 31
Registers

3F 11 A c

Description: Save the operand registers of the designated state into a memory
buffer. The state is specified in register A bits 20-22
(normally obtained by loading word 1 of the exchange package).
The specified register set is stored into the 3l-word buffer
defined by register C.

LOPR Load Operand O 56 10 11 15 16 26 27 31
Registers

3F 12 A c

Description: Load the operand registers of the designated state from a memory
buffer. The state is specified in register A bits 20-22
(normally obtained by loading word 1 of the exchange package).
The specified register set is loaded from a 3l-word buffer,

defined by register C.

DST Send Inter- 56 10 11 15 16 31

0
rupt to
Another CPU [3F 13 F

Description: Sends interrupt to CPU specified in the lower three bits of F.

6-88 17329120 B

/

0 56 10 11 15 16 26 27 31

| s | w | & |ssirrrrrr| e |

Description: This dinstruction sets new values into all 16 page index
registers for a given state. Register A contains the state in
bits 20-22 (normally obtained by loading word 1 of the
exchange package). Register C contains the address of the 8
words which are to be set into the specified page register

set. The 8 words are defined as follows:

0 15 16 31
0 PIR - 0 PIR - 1
1 PIR - 2 | PIR - 3
‘ij: 2 PIR - 4 PIR - 5
) 3 PIR - 6 PIR - 7
4 PIR - 8 PIR - 9
5 PIR - 10 PIR - 11
6 PIR - 12 PIR - 13
7 PIR - 14 PIR - 15

MM Load Micromemory

0 56 10 11 15 16 26 27 31

BEREEE e

Description: Move microcode in main memory specified by the FWA in register
A into micromemory specified by the micromemory address in

register C.

17329120 C 6-89

PAUS Pause 0 56 10 11 15 16 3
\ ON N
¥ | w9 QNN N
G AN NN\
Description: This instruction is a variable time-length NOP. Register F
specifies a delay interval in micro seconds. During the pause
time span, interrupts are continuously sampled. The instruction
terminates when the specified time has elapsed or an interrupt is
sensed,
SCPN Set CPU 0 56 10 11 15 16 31
Number = N R
RV N N N
3F 1A PNV Y \\\\J
Description: This instruction defines the processor number. The processor ‘
number is contained in register F, bits 17-19. This number is N
stored into word 1 of each exchange package defined by the
emulator during interrupt and MON instruction processing.
OST Operating 0 56 10 11 15 16 20 21 26 27 31
System }
Thread IF 1D A B \\\\\] c
Description: This instruction implements a 1list threading operation by
scanning through a linked list of ordered entries to find a
position to enter a new entry into the list.
Register A contains the address of the new entry to be added.
Register C contains the address of the top-of-list pointer for
the list to be scanned. Register B contains the two quantities,

6-90

a flag and an offset.

Register B has the following format:

17329120 B

[
I3

AT
A .

B OFFSET

The list of entries and the new entry have the following format:

1727201950 n

0 15 16 31
+0
/1/ i Jv
~ ~
+0FFSET~-1
Order Value +0FFSET
Predecessor Successor +0FFSET+1
Address Address

The offset is used to locate the two thread “"control” words. The
order value for the new entry is compared against the order value
of the list entries to determine the placement of the new entry
in the list. The list is maintained in descending order. If the
new entry order word is the same value as one or more list entryv
order words, then the value of the B flag is used to determine
the placement of the new entry. If B = 0, then placement 1is
after equivalent values, and if B = 1, then placement is before

equivalent values.

An empty list is denoted by a zero value in the top of list
pointer. The successor address field of the last 1list entry

contains the value zero.

When the new entry's position is identified, the new entry iz

inserted into the linked list by the following steps:

Y
1. The new entry's predecessor field and successor field is WMJ®
defined.
2. The successor field of the predecessor is redefined to point
to the new entry.
3. The predecessor field of the successor is redefined to point
to the new entry.

4. The new entry is now linked into the threaded list.

0SU Operating 0 56 10 11 15 16 26 27 31

Uathread 3F IE A \<>\>\:§><><><>QFQ? C

Description: This instruction removes an entry from a threaded list created by

the OST instruction. Register A contains the address of the list

entry to be removed, while register C contains the offset in bits

16 to 31.

A

The removal operation 1is accomplished by redefining the
predecessor and successor fields in the "adjacent” entries in the

list, if any.

Co

6-92 17329120 B

E("».

LA

SUPPLEMENTARY FUNCTIONS

Operation Field Address Field Interpretation
AABL A,B,C address adjust bit left
AABR A,B,C address adjust bit right
PTHD A,B,C prioritized thread
UTHD A,C unthread
AABL Address Adjust 0 56 10 11 15 16 20 21 26 27 31
Bit Left

37 05 A B :i;:gig:i:g c

‘::} Description: The AABL instruction computes a bit address from a word address

£

c
v

specified in register A and a bit offset specified in register

B. The result is stored in register C according to the formula:

C = (A) * 32 + (B)

AABR Address Adjust 0 56 10 11 15 16 20 21 26 27 31
Bit Right] I H\\\Y\ -
37| 06 A B L C
(A) = bit address
(B) = bit offset
(c) =

Description:

17329120 B

word address
The AABR instruction computes the word address and bit offset
from the bit address specified in register A. The bit offset 1is

stored into register B according to the formula:

(B) = (A) .AND. 1Fjq

6-93

-’

0

The word address is stored into register C accofding to the

formula:
(c) = (A)/32
PTHD Prioritized 0 56 10 11 15 16 20 21 26 27 31
Thread \\
37 1D A B \\::Si:z C J
NN
(A) = address of new entry
(B) = flag and offset as below:
0 16 31
B OFFSET J
(C) = address of the top of ‘
linked list pointer od

A

Description: This instruction implements a 1list threading operation by
scanning through a linked list of ordered entries to find a

position to enter a new entry into the list.

The list of entries has the following format:

0 15 16 31
+U
~/ :
- ~/ .
N7
+0FFSET-1
i Order Value +orrseT
Predecessor Successor +OF ST+l
Address Address !

6-94 17329120 B

0
!
7
i

L

The offset is used to locate the two thread "control” words. The
order value for the new entry is compared against the order value of
the list entries to determine the placement of the new entry in the
list. The list is maintained in descending order. If the new entry
order word is the same value as one or more list entry order words,
then the value of the B flag is used to determine the placement of the
new entry. If B = 0, then placement is after equivalent values; if B

= 1, then placement is before equivalent values.
An empty list is denoted by a zero value in the top of list pointer.
The successor address field of the last list entry contains the value

Zero.

When the new entry's position is identified, the new entry is inserted

into the linked list by the following steps:

1. The new entry's predecessor and successor fields are defined.

2. The successor field of the predecessor is redefined to point to

the new entry.

3. The predecessor field of the successor is redefined to point to

the new entry.

4. The new entry is now linked into the threaded list.

UTHD Unthread 0 56 10 11 15 16 20 21 26 27 31

1720501 2

(a)
(©)

address of list entry to be removed

offset in bits 16 to 31

n

Ay
Description: This instruction removes an entry from a threaded list created by wk;»
the OST or PTHD instructions.

The removal operation 1is accomplished by redefining the
predecessor and successor fields in the “"adjacent” entries in the

list, if any.

6-96 17329120 B

®eN -

17
3
10

140

283
562
V128
2 25!
4 503
9 007
18 014
38 028

72 08?7
144 115
288 230
576 460

921

-
w
~

17329120 A

A N -

137
274
549

099
199
398
796

892
184
368
737

474
949
293
199

599
199
398
79?

594
188
are
752

179
59

719
438
877
755

S1t
023
046
093

186
372
744
488

876
953
906
813

627
254
508
o1s

037
a7s
151
303

POWERS OF TWO TABLE

3 233" ~
a8 G283 ean- w

192

708

536
or2
144
288

576
152
304

218
432

728

456
912
824
e48

296
592
184
368

738
472
944
ses

76
$52
104
208

416
832
664
328

856
312
624
248

496
992
984
968

936
872
744
488

976

N oo wm -
O VBONG PALUN «“00E wvevs Wh0

NN
W N -

NN NN
NP S

w NN
XX]

WWWww W
PEWN -

W W
® o

w
°

bR

-3 X3
~NORCS

2838

L &
waAWN

3B 43
LR N3

3

10
os
[R{}
0128

0082 &

0031 28
0018 62§
0007 812

0003 906
000! 953

0000 488

0000 244
0000 122
0000 061
0000 030

0000 015

0000 003
0000 00t

0000 000
0000 000
0000 000
0000 000

0000

0000
0000

0000

0000
0000

0000

0000
0000

0000
0000
0000
0000

0000

0000
0000

0000

0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0 000
0 000
0 000

0 000

§ 8888 8888 2888 38388 3887 8888 3888 8888 3888

§ 8888 8838 ¥888 888¢ 3888 8888 3388 88
§ 888 3888 3388 3888 8888

§ 8888 3888 88

25
125

062
83
265
632

318
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551

25
625
812

406
203
101
550

775
387
193
$96

298
149
(323
287

643
N
660
830

915
957
978
989

494
747
3
(1]

84}
LAl
210
105

882
776
888
444

222
1y
058
027

013

003
001

25

125
$62
81

3%
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701
350
675
837

L3]
709
854
427

n3
356
178
089

044
022
S5
755

877
938
489
734

867

25

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

m2
886
443
m

860
430
n"s
3s?

678
839
419
209

604
302
151
575

787
893
446
123

36

25
125

062
031
515
257

628
are
407
703

851
425
n2
856

928
464
232
816

808
404
202
601

400
100
850

925
462
23
615

807
903
951
475

25
625
812

906
453
226
613

806
903
951
4715

237
s
059
029

014
007
003
001

250
125
062

031
516
257
628

814
907
983
976

25

125
562
2.

640
320
660
830

915
957
478
739

869
43¢
"?
858

929
464
232
616

308
654
827
913

456
228
614
807
403

25

625
32
156
or8

038
$19
759
39

689
844
422
AR

35%
677
338
169

084
021
510

7%
an
188
094

547

25
128

062
$31
765
882

94
970
485
242

621
810
90%
452

726
363
181
$80

295
647
823
4

205

25
625
812

406
103
s
875

337
668
334
667

333
166
583
791

395
697
848
924

962

25

125
562
181

890
945
472
236

818
809
404
702

851
92%
862
48

240

25

625
32
656
328

164
082
541
270

135
567
183
a9

695

25
12%

062
031
01%
507

293
826
813
906

95

w

5

25
625
8125

906 25
953 125
476 562 5
738 28! 2%

369 140 625

A-1/A-2

g

vty

C I/O PROGRAMMING FORMATS B
{&

COMMUNICATIONS COUPLER PPU FUNCTION CODES

' 11109|876(5 af3|210
{ Equip 100j0j0}|XIXXX Clear Coupler
Code |010]0 X|x x x| Clear cp
¢ =1 loo1}o x|x x x| stopce

000]1 XX XX Start CP
L XXX X ojooo0 Input Memory Address Zero*
. XXX X ojoo1 Input Memory Address One*

;C XXxXx X ojo1lo

i 8
E“— XXX X 0jo11 Input Data
; XXX X ojr100 Input CP Status
‘ XXX X 0j101 Input Coupler Status
p XXX X oj110 Input Order Word*
% XXX X 0l111 Input Program
: XxXx X 1jo00 Output Memory Address Zero' (upper byte)
3
: XXX X 1j001 Output Memory Address One (lower byte)
) XXX X 1j010
¢ xxx x Ji1jo11

. XXx X l1j]100 Output Data
(_ XXX X 1j101 Output Program

XXX X 1110 Output Order Word

{ XXX X 1111
€“(*Hardware Maintenance feature
P
!\.C

17329120 A . B-1

COMMUNICATIONS COUPLER STATUS FORMAT

l. LMemory Parity Errore+
Memory Protect Fault*e
NPU Status Register Loaded

Memory Address Register Loaded

Reserved

~Transmission Completet®

~Transfer Terminated by NPU*

L‘rransfer Terminated by PPU®

~Order Word Register Loaded*

L NPU Status Accepted*

- PPU Channel Timeout*

- PPU Channel Parity Error (CYBER 170)**

- ' Available to NPU Only
~Chain Address Zero* ’

-Alarmt#*

ttplarm Condition (all alarms generate NPU Interrupt)
*NPU Interrupt Condition

NOTE: All non-alarm interrupt conditions except OWRL are cleared by input

coupler status command, clear coupler function, and clear coupler
command. OWRL interrupt condition is cleared by input OW command,

clear coupler function and command, and Master Clear. Alarm interrupt
conditions are cleared only by clear coupler functions and commands

and Master Clear.

COMMUNICATIONS COUPLER INPUT SWITCH STATUS FORMAT

- NV -
Not Used
Enable Data Channel Parity Switch

On-Line Switch
Protect Switch
Coupler Busy
— Equipment Code Bit 0 Switch
— Equipment Code Bit 1 Switch
-— Equipment Code Bit 2 Switch
“— Character Request

B=2 17329120 A

B
Nt

. <
[S

'.:w .x/;

Jod

at’

Pandac N

PN
1

RETH

ar

=,

COMMUNICATIONS COUPLER - CP SET/SAMPLE INSTRUCTION FORMAT

0 0 0 O O|J]lEE|E

_V_J
Equipment Address

NSt
Used

First Coupler = (
1100 ('C')
(Standard)
Second Coupler =
1101 ('D')
(Optional)

Input
Input

Input

Memory Address Zero*
Memory Address

First/Present Character

Displacement

Input
Input
Input
Input

CpP Status*
Coupler Status
Order Word

10*

Sample <
(Read)

Input
Input
Input
Input

Input

Input

Last Word From Data Channelt
FDMARO/FDMAR1*

FDMARO/Flag Mux* ,
FDMAR1/Flag Mux/Flag Register*

Switch Status

Character?t

N

It e et OO0 | imoooo | e ocooo

Output Memory Address Zero*

Output FCD, PCD, LCD*
Output CP Status
Output Buffer Length
Output Order Word*

Set <
(Write)

QOO O OO OO HePOOMM~OO -0 0 [l - X =]
~OMMOMMOMO HOMHMOMMOMO ~OoOrFOKFOMO - O -=o o ro

O OO0

L

MR s | i~ ~ | cOO0OOCOOOO0O | O0O0CO ©0O0O0OOS
Mot b bt | OOOCOO0O0O0O | MMM mEMEIEMHEIIL]| O0O0O0 ococoo

Clear

Coupler

Terminate Transfer

Output Test®*

Input

Test*

Output Memory Address
Output Character®*

tHardware maintenance feature

17329120 A

PERIPHERAL (CARD READER) CONTROLLER - DIRECTOR FUNCTION FORMAT

MSB LSB
" We=0 E=B |0 o2
|
MSB LSB
1 § ¥ L]
._®
o | . | L
b . -~ -, ,.8
MOT USED 3 b Clcar Controller
e Clear Interrupts
= ——JInterrupt on data
Interrupt on EOP

Interrupt on alarm
ADT Mode
e—e—Feed Request

B=4 17329120 A

e

St

it

i

[
.

et

———

a——

PERIPHERAL (CARD READER) CONTROLLER - DIRECTOR STATUS 1 FORMAT

Y

MSB L6B
.. LS
1
MSB LSB
v L { 1] LI 1 §) f 1
il 1 1 1 1 I 4
N, e’ Ready
NOT USED L Busy
—=1Interrupt
Data
- End of Operation
b Alarm
-— Lost Data
— Protected
t—— Not Used

b Not ready

b ADT Mode

PERIPHEPAL (CARD READER) CONTROLLER - DIRECTOR STATUS 2 FORMAT

MSB LSB
| §
|," =
Y ws=0 E B 0 1‘1
MSB LSB
i ¥
- []
‘ ° 1 1
J
Y
Not Used Hopper Empty

17329120 A

Stacker Full
Fail to Feed
Stacker Area Jam

posn QON{

PERIPHERAL (CARD READER) CONTROLLER - DATA TRANSFER COMMAND FORMAT

MSB LSB
'Y‘ W=0 E=0B 0 00
MSB LSB
13 L 3 L L] 14 v L4 ¥ R 4 L ¥
o 1211 0 1 2 3 4 5 6 7 8 9 |=——CARD ROW
'S 1 2 2 2 2 ' 1) S | 4
\ AL J
¥ v
ZERO DATA

PERIPHERAL CONTROLLER ~ SELF-TEST COMMAND FORMAT

MSB LSB
e W=0 E=<B |0 1,0
MSB LSB
nou
L. J
h 2
Not Used L—-—set Test Mode

PERIPHERAL (LINE PRINTER) CONTROLLER - DIRECTOR FUNCTION FORMAT

MSB LSB
'y W=0 E =4 0 BT I
MSB LSB
pn U ¥ \J v Lt AR |
Y | EE— L _|
\ J
T 3
Not Used b—= Clear Printer
Clear Interrupts

Interrupt on data
Interrupt on EOP
Interrupt on alarm
Y Print

b ADT Mode

17329120 A

)
)
3

(-

o’

Trunt

oy

-

i
R

-

po,
RS

i

£

PERIPHERAL (LINE PRINTER) CONTROLLER - DIRECTOR STATUS RESPONSE FORMAT

MSB LSB
Y W=0 E=4 0 1
MSB LSB
- - LA LS L1 L 1 3 R L] L] L L
1] L :
- 1 L L Ny 1 L 1 A L L ’
g_._Y__./
Not Used | S Ready
Busy
Interrupt
Data
End of Operation (EOP)
Alarm
Error
Protected
Load image
ADT Mode
Paper out

& Buffer overflow

PERIPHERAL (LINE PRINTER) CONTROLLER - DATA TRANSFER COMMAND FORMAT

MSh LSB
5" =0 E=4 0 0
MSB LSB
L | L] T T 1 1 v T
mgn
o . A 1 1 1 1 1
J\ J

17329120 A

Y Y
Not Used Character

;;.,T.\l

o

{

P

Y F

le 2R RANAE .
=

HEXADECIMAL CONVERSION TABLES

C

HEX. DEC.|] HEX. DEC.] HEX. DEC. HEX. DEC. HEX. DEC.

1 1 10 16 100 256 1000 4096 10000 65536

2 2 20 32 200 512 2000 8192 20000 131072

3 3 30 48 300 768 3000 12288 30000 196608

4 3 40 64 400 1024 4000 16384 40000 262144

5] 50 80 500 1280 5000 20480 50000 327680

6 6 60 96 600 1536 6000 24576 60000 393216

7 7 70 112 700 1792 7000 28672 70000 458752

8 8 80 128 800 2048 8000 32768 80000 524288

9 9 90 144 900 2304 9000 36864 90000 589824

A 10 A0 160 A00 2560 A00O 40960 A0000 655360

B 11 BO 176 BOO 2816 B0O0O 45056 B0O0OO 720896

C 12 co 192 coo 3072 €000 49152 €0000 786432

D 13 DO 208 DOO 3328 D000 53248 D0000 851968

E 14 EO 224 EOO 3584 E000 57344 E0000 917504

F 15 FO 240 FOO 3840 FO00 61440 FO000 983040

HEX. DEC. HEX. DEC. HEX. DEC.

100000 1048576 1000000 16777216 10000000 268435456
200000 2097152 2000000 33554432 20000000 536870912
300000 3145728 3000000 50331648 30000000 805306368
400000 4194304 4000000 67108864 40000000 1073741824
500000 5242880 5000000 83886080 50000000 1342177280
600000 6291456 6000000 100663296 60000000 1610612736
700000 7340032 7000000 117440512 70000000 1879048192
1800000 8388608 8000000 134217728 80000000 2147483648
900000 9437184 9000000 150994944 90000000 2415919104
A00000 10485760 A000000 167772160 A0000000 2684354560
B0O00OO 11534336 BO0000O 184549376 BO000000 2952790016
C00000 12582912 C€000000 201326592 €0000000 3221225472
D00000 13631488 D0O00000 218103808 D0000000 3489660928
E00000 14680064 E000000 234881024 E0000000 3758096384
F00000 15728640 'FO00000 251658240 FO000000 4026531840

17329120 A

c-1/C-2

IOC INTERFACE D

{u [EUIIIIIINRRRRE_———————————
This appendix describes the operational characteristics of the IOC interface.

f COMMAND FORMAT

The format of the I/O controller (I0OC) command word is shown below. All IOCs use the
same command format for all peripheral equipment.

01 2 4 5 9 10 11 12 15 16 31

E U //////// // M //// Comm IADDR

o, ‘ | 0 = ASCII mode
: 1 = binary mode
v Meaning:
E ~ 2-bit device equipment number (0-3) for the referenced 10C
U - 3-bit device unit number (0-7); applicable to multiunit equipment
M - 1-bit data mode indicator. A set bit indicates binary mode data; a
clear bit indicates ASCII (character) data
‘ Comm - 4-bit device operation command (0-Fy¢)
: IADDR - 16-bit interrupt subroutine address. The interrupt subroutine address

is stored by the IOC in the lower 16 bits of the first interrupt cell in
memory assigned to the referenced IOC (refer to Table 3-2) upon
completion of the requested command. In addition, the device status
is stored in the lower 16 bits of the interrupt subroutine address.

17329120 A D-1

For example (I0C 0):

Location 000E

10C stores interrupt
subroutine address

i

000F

/

Interrupt
Subroutine

v/

IOC stores
device status

Note: The interrupt subroutine address is restricted to the
lower 8192 locations of memory

COMMAND TABLE FORMAT

The command word is included as the first word in the command table.- The command
table occupies memory locations 0001 through 0005.

Location

0001
0002
0003
0004
0005

Command

IADDR

Contents

Command word
P1
P2
P3
P4

The start I0C (SIO) instruction signals the referenced I0C (0-3) to read one or more
words from the command table.
(P1-P4) and the format of the parameters may vary by IOC and device type. However,
P1 and P2 generally specify data buffer control.

The number of parameters associated with a command

17329120 A

" wa

Nt

e’

LR

M
y

SRIVIELSAAN T

‘,""3 P AT, Fadnt PN

.:-\) m

PRt

BUFFER SPECIFICATION FORMAT

The data buffering region for a read or write command is specified by parameter words
Pl and P2,

8 10 17 18 31

or (777777777 oention 1 PR ———

810 17 18 31

P2 ‘; / / / / // / / / / relocation 2 number of bytes

The starting address (P1) indicates the first byte address (lower 14 bits) of the data buffer in
the buffer's logical page. The relocation 1 field (bits 10-17) specifies the buffer starting physi-
cal page, the buffer length (P2) contains the buffer length in number of bytes, and the
relocation 2 field specifies the buffer ending physical page. A buffer length of zero

(bits 18-31 of P2) specifies a transfer of the maximum allowable size, 16,384 bytes or
4006 words. A buffer may cross page boundries, in which case the relocation fields of
P1 and P2 will be different values. It is the responsibility of the I/O initiating routine

to ensure that memory protection violations do not occur. Certain devices or modes of
operation may only transfer data in whole words. For these devices, the IOC assumes
that the first byte address is on a word boundary and that the length specifies the number
of words times four.

DEVICE COMMANDS

An IOC may accept up to 16 commands per equipment and unit. In general the command
structure is as follows:

Command Number Function

Rewind unit/return to zero seek
Read (unit to memory)

Write (memory to unit)

Write end of file/format disk
Erase/autoload disk

Backspace one record

Search end of file forward .
Undefined

Unload unit

Read

WO U WK KO

17329120 A D-3

g
Command Number Function O‘

‘A Write 2
B . Write end of file
C Erase
D Backspace)
E Search end of file backward
P Undefined

A given command may be undeﬁned for certain device types or may differ as to function.

DEVICE STATUS

The format of the status word returned by an IOC is as follows:

16 17 18 20 21 30 31 ')

E U status M 3
[0 = accept 2
1 = reject H
b \‘}

Meaning: ' N
E - 2-bit device equipment number)

4] - 3-bit device unit number

Status

One or more set bits to indicate device conditions

A/R - Zero signifies no errors detected; one signifies an error
condition was detected.

-’ "’

Certain bits in the status word are defined for all device types. The remaining bits in
the status are device dependent. The defined bit positions are as follows:

Bit No. Meanin;
30 1 = device not ready
28 1 = binary data mode; 0 = ASCII data mode
26 1 = memory error detected

Additional information on specific peripheral devices is contained in the MP-60 system
peripheral reference manual.

~§‘)
D-4 17329120 A \{J

N

o

[N A S

FORMAT

10

11

17329120 A

MP—-60 MACHINE LANGUAGE
INSTRUCTION FORMATS

0123456789

111111112
234567890

BIT NUMBER IN INSTRUCTION WORD

22
12

a N
o w

2222
3456

OP CODE X b =-- BASE BIT ADDRESS

OP CODE F y == IMMEDIATE OPERAND

OP CODE F XC ¢ -- BASE BYTE ADDRESS

OP CODE F XH h =- BASE HALF WORD ADDRESS
OP CODE F X m —- BASE WORD ADDRESS

OP CODE F X y == IMMEDIATE OPERAND

OP CODE SUB OP B D - RELATIVE ADDR.
OP CODE SUB OP A BIT D - RELATIVE ADDR.
OP CODE SUB OP A B UNUSED c
OP CODE SUB OP m -~ BASE WORD ADDRESS

OP CODE SUB OP y == IMMEDIATE OPERAND

10

11

"y

»x > > >

DEFINITION OF FIELDS IN INSTRUCTIONS BY FORMAT

FILE

FILE

FILE

FILE

FILE

FILE

(0-=31) b = 21 BIT MEMORY BIT ADDRESS

(0-~31) .y = 21 BIT UNSIGNED IMMEDIATE OPERAND

(0--31) XC -'INDEX (0--7)

c = 18 BIT BYTE ADDRESS

(0=-=31) XH = INDEX (0--15) h = 17 BIT HALF WORD ADDRESS

(0--31) X = INDEX (0--31)

(0--31) X = INDEX (0--31)

m = 16 BIT WORD ADDRESS

Y = 16 BIT SIGNED IMMEDIATE

OPERAND FILE (0--31) B = OPERAND FILE (0~-31) D = JUMP ADDRESS

OPERAND FILE (0--31) BIT = BIT NUMBER (0--31) D = JUMP ADDRESS

OPERAND 1 (0--31)

B = OPERAND 2 (0--31) C = DESTINATION (0--31)

INDEX OR FILE (0--31) m = 16 BIT WORD ADDRESS

FILE

B=b
C=c¢
Y=h
Y=y
M=m

(0--31) y = 16 BIT SIGNED IMMEDIATE OPERAND

INDEXING MODES:

(x)
(xc)
(XH)

(X) NOTE:
(X)

+ + o+

+ +

REGISTER ZERO MUST BE ZERO

17329120 A

9}

\ H
N ;

v\nﬂl.:

k\\ /)

0
g

17329120 C

Op_Code

NOP
LDB
LDC
LDH
LDI

LDHA
LDCA

LDBA
LDA

LD
LDD

STB
STC
STH
STHA

STCA
STBA

ST
STD

AD
ADD
FAD
FADD
SB

SBD
FSB

FSBD
MPI
MP
FMP
FMPD

00
01
02
03
04
05
06

07
08

09
0A
0B
0c
0D
OE

10
11
12
13
14
15
16
17
18
19
1A

1C
1D
1E
1F

INSTRUCTION CROSS REFERENCE

Page

6-8

6-9

6-10
6-10
6-10
6-11
6-11
6-11
6-12
6-12
6-12
6-15
6-15
6-16
6-16
6-16
6-17
6-17
6-17
6-19
6-19
6-20
6-24
6-24
6-20
6-20
6-25
6-25
6-21
6-21
6-25
6-26

Format

LV, V. V. B - NV, IR NV O RV . I NV, B« S BV B Y Y N " I BV, BT G, R R L e - T R " B)

Time

0.676

2.8

1.568

1.568

0.896 or 1.75
1.232

1.232

1.008

0.896

1.446

2,128

2,856

1.232

1.232

2,128

2.128

2.128

1.076

1.15

1.12 or 1.288
1.456

2.345

2.52 - 5.8 - 9,24

1.456
2.296

2.52 - 5.8 - 9.24

4.032 -~ 4.928

INSTRUCTION CROSS REFERENCE (Contd)

Op Code Page Format Time
DV 20 - 6-21 5
FDV 21 6-26 5 X
FDVD 22 6-26 5 X
LEFT SF 23 6-28 6 1.512 + .056(N)
RIGHT SF 23 6-28 6 1.904 + .056(N)
LEFT SFD 24 6-28 6 2.016 + .056(N)
RIGHT SFD 23 6-28 6 2.408 + .056(N)
RAD 25 6-22 5 2.016
AND 26 6-29 1 1.008 or 2.968
OR 27 6-29 1 1.008 or 2.968
XOR 28 6-30 1 2.8
LP 29 6-30 2 1.008
LOR 2A 6-31 2 1.008
LXR 2B 6-31 2 1.008
TST,GE 2C.00 6-32 7 1.344 —— 2,464 ;w;;
TST,LE 2C.01 6-32 7 1.344 —— 2,464
TST,EQ 2C.02 6-33 7 1.12 -- 2.464
TST,NE 2€.03 6-33 7 1.344 —- 2,352
TST,GT 2C.04 6-33 7 1.344 -— 2,464
TST,LT 2C.05 6-33 7 1.344 —- 2,464
TSTF,GE 2C.08 6-34 7 1.344 —- 2.632
TSTF,LE 2C.09 6-34 7 1.344 —— 2,632
TSTF,EQ 2C.0A 6-34 7 1.12 -- 2.464
TSTF,NE 2C.0B 6-34 7 1.344 -- 2.352
TSTF,GT 2C.0C 6-35. 7 1.344 —- 2,632
TSTF,LT 2C.0D 6-35 7

1.344 -- 2.632

E-4 17329120 C

N,
)
{ .

17329120 C

Op Code

TSTD, GE
TSTD,LE
TSTD, EQ
TSTD, NE
TSTD, GT

TSTD, LT

TSTDF,GE
TSTDF,LE
TSTDF, EQ

TSTDF, NE
TSTDF,GT

TSTDF, LT

BSK
BSK, S
BSK, C
BSK,T
BSK, Z
BSK, ZS
BSK, ZC
BSK,ZT

FSK,GE
FSK,LE
FSK,EQ
FSK,NE
FSK,GT

FSK,LT
uJp

LINDS

INSTRUCTION CROSS REFERENCE (Contd)

2Dp.00
2D.01
2D.02
2D.03
2D.04
2D.05
2D.08
2D.09
2D.0A
2D.0B
2D.0C
2D.0D

2E.10
2E.11
2E.12
2E.13
2E.14
2E.15
2E.16
2E.17

2F.00
2F.01
2F.02
2F.03
2F.04
2F.05
2F.06
2F.07

Page

6-35
6-35
6-36
6-36
6-36
6-36
6-37
6-37
6-37
6-37
6-38
6-38

6-41
6-41
6-42
6-42
6-42
6-42
6-43
6-43

6-44
644
6-45
6-45
6-45
6-45
6-46
6-47

Format

NN N NN N NN NN N

@ 00 O 00 0 00 00 o

11
11
11
11
11
11
10
10

Time

1.736 —— 1.136°

1.736 —- 1.136
1.568 —— 2.744
1.848 —- 3.08
1.736 —— 1.136
1.736 -—- 1.136
1,736 -- 3.64
1.736 -~ 3.64
1.568 - 2,744
1.848 -- 3,08
1.736 -- 3.64
1.736 -- 3.64

1.456 —- 2.688
1.456 -- 2.688
1.456 —— 2.688
1.456 -- 2.688
1.456 ——- 2,688
1.456 -- 2.688
1.456 -- 2.688
1.456 -- 2.688

1.4 —
1.4 —
1.4 —
1.4 —-
1.4 -
1.4 -
1.456

2.52

1.96
1.96
1.96
1.96
1.96
1.96

E-5

Op Code

RTJ

JSX
BJPT
BJPF
HLT

XJP
MON

XSK

STM

LDM
AIF
ATFD
EDO1
ED02
EDO3
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
DXJP
LCPN
R,+
R,-

R, *

R,/
R,AND
R,O0R
R,XOR
R,SCL

INSTRUCTION CROSS REFERENCE (Contd)

2F.08
2F.09
2F.0A
2F.0B
2F.0C
2F.0D
2F.0OE
2F . OF
2F.10
2F.11
2F.12
2F.13
2F.14
2F.15
2F.16
2F.17
2F.18
2F.19
2F.1A
2F.1B
2F.1C
2F.1D
2F.1E
2F.1F
30.00
30.01
30.02
30.03
30.04
30.05
30.06
30.07

Page

6-47
6-47
6-48
6-48
6-49
6-49
6-49
6-50
6-18
6-13
6-47
6-48
6-51
6-51
6-52

6-53
6-53
6-54
6-55
6-55
6-55
6-55
6-56
6-56
6-56

Format

10
10
10
10
10
10
11
10

7

7
10
10
10
10
10

-
= O

O W W YV VW W WV Y

Time

1.512

1.456

1.288 —- #1.792
1.288 -- #1.792
IDLES CPU

1.232 -- 1.512
8.624

1.624 — 2.184
2.184 + .616(N)
2.352 + .84(N)

ILLEGAL SUB-OP
ILLEGAL SUB-OP
ILLEGAL SUB-OP
ILLEGAL SUB-OP
ILLEGAL SUB-OP
ILLEGAL SUB-0OP
ILLEGAL SUB-OP

2.52
1.008

1.008

0.952

0.952
0.952
0.952

17329120 C

fEE:?

17329120 C

Op Code

R,NOT
R,XFR
NBR
SBR

CBR
R,S*
R,S/
RMS
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
RF,+
RF,-
RF,*
RF,/
RFD,+
RFD, -
RFD, *
RFD, /
RD,+
RD,-
RD, XFR
RJD
AAL
ILLEGAL
ILLEGAL
F,F
F,UF
FD,F
FD,UF
F,STD

INSTRUCTION CROSS REFERENCE (Contd)

30.08
30.09
30.0A
30.08B
30.0C
30.0D
30.0E
30.0F
30.10
30.11
30.12
30.13
30.14
30.15
30.16
30.17
30.18
30.19
30.1A
30.1B
30.1C
30.1p
30.1E
30.1F
31.00
31.01
31.02
31.03
31.04
31.05
31.06
31.07

Page

6-56
6-57
6-58
6-58
6-58
6-57
6-57
6-58

6-59
6-59
6-59
6-59
6-60
6-60
6-60
6-60
6-61
6-61
6-61
6-62
6-63

6-63
6-64
6-64
6-64
6-65

Fbrmat»

W W YW YW W vV WV Vv

W W W WV OV W W YW VW W W W VW VW © W VW OV Vv Vv

Time

1.12
1.12
1.008
1.008
1.008

1.456

ILLEGAL SUB-OP
ILLEGAL SUB-OP

2.128
2.128

2.296

ILLEGAL SUB-OP
ILLEGAL SUB-OP

~1.736 —- 6.888

2.296 -- 7.504
1.456

INSTRUCTION CROSS REFERENCE (Contd)

Op Code Page Format Time
F,DTS 31.08 6-65 9 1.624
F,AB 31.09 6-65 9 1.456 -- 1.512
F,ABD 31.0A 6-65 9 1.68 -- 2.016
F,ABI 31.08 6-66 9 1.176 -- 1.232
DLD 32 6-13 5 1.736
LDP 33 6-13 5 1.736
STP 34 6-18 5 1.568
MPS 35 6-22 5 1.736 - 8.68 - 1.576
DVS 36 6-22 5 11.592 -- 11.7
TBIT 37.00 6-39 8 1.456
SBIT 37.01 6-39 8 1.456
CBIT 37.02 6-40 8 1.456
LDF 37.03 6-14 9 |
STF 37.04 6-18 9 e F
AABL 37.05 6-93 9 .
AABR 37.06 6-93 9
ILLEGAL 37.07
ILLEGAL 37.08
ILLEGAL 37.09
MOVE 37.10 6-67 9 2.016 + .952(N)
MOVC 37.11 6-68 9 2.016 + .952(N)
FILL 37.12 6-70 9
MOVT 37.13 6-70 9
MOVA 37.14 6-72 9
MOVU 37.15 6-73 9
MOVP 37.16 6-74 9
MOVN 37.17 6-76 9
‘ILLEGAL 37.18 ILLEGAL SUB-OP
ILLEGAL 37.19 ILLEGAL SUB-OP
ILLEGAL 37.1A ILLEGAL SUB-OP -
ILLEGAL 37.18 ILLEGAL SUB-OP ;fmj?
ILLEGAL 37.1C ILLEGAL SUB-OP L

17329120 C

C
£ :
N

17329120 C

Op Code

PTHD
UTHD

ILLEGAL
ILLEGAL

IN
ouT
NIO

SPS
SMIO

RMIO
WPF

RPF
SPF
WSR
RSR
SSRM
SCRM

RIM
RRM

ILLEGAL
SJD

ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL

CONT
LXPA

EINT

INSTRUCTION CROSS REFERENCE (Contd)

37.1D
37.1E

38
39

3A.00
3A.01
3A.02
3A.03
3A.04
3A.05
3A.06
3A.07
3A.08
3A.09
3A.0A
3A.0B
3A.0C
3A.0D
3A.0E
3A.0F
3A.10

3B
3C
3D
3E

3F.03
3F.04
3F.05

Page

6-94
6-95

6-78
6-78
6-79
6-79
6-79
6-80
6-80
6-80
6-80
6-81
6-81
6-82
6-82
6-82
6-82

6-83

6-84
6-85
6-85

Format

O W W W OV YW VYV VWV VW VvV v

I R
b b s

|
[

11
11
11

Time
2.464 — 1.568(N)
2.464 — 4.032

ILLEGAL OPEN OP CODE
ILLEGAL OPEN OP CODE

CONTROLLER DEPENDENT
CONTROLLER DEPENDENT
2.856

2.688

1.96

2.128

2.184
1.792

22.456

1.456

1.456

1.512

1.512

1.512

1.512

ILLEGAL SUB-0OP

ILLEGAL OPEN OP CODE
ILLEGAL OPEN OP CODE
ILLEGAL OPEN OP CODE
ILLEGAL OPEN OP CODE

6.496 -- 6.944
2.24
1.512

Op Code

SPG

RPG
SSIM
SCIM
ILLEGAL
ILLEGAL
SRTC
SIT

TRC
DINT
SST
SOFR
LOPR
DST
LPIR
MM
ILLEGAL
ILLEGAL
ILLEGAL
PAUS
SCPN
ILLEGAL
ILLEGAL
OST
0su
ILLEGAL

INSTRUCTION CROSS REFERENCE (Contd)

3F.06
3F.07
3F.08
3F.09
3F.0A
3F.0B
3F.0C
3F.0D
3F.0E
3F.OF
3F.10
3F.11
3F.12
3F.13
3F.14
3F.15
3F.16
3F.17
3F.18
3F.19
3F.1A
3F.1B
3F.1C
3F.1D
3F.1E
3F.1F

Page

6-86
6-86
6-86
6-86

6-87
6-87
6-87
6-87
6-88
6-88
6-88
6-88
6-89
6-89

6-90
6-90

6-90
6-92

Format

11
11

11

11
11

11
11

11

11

11
11

Time

3.808

3.404

1.512

1.512

ILLEGAL SUB-OP
ILLEGAL SUB-OP
1.456

1.456

1.456

1.68

2.128

21.784

25.368

X

23.296

X

ILLEGAL SUB-OP

ILLEGAL SUB-OP
ILLEGAL SUB-OP

VARIABLE TIME DELAY
2.296

ILLEGAL SUB-OP
ILLEGAL SUB-OP
2.464 —— 1.568(N)
2.464 == 4,032
ILLEGAL SUB-0OP

17329120 C

N

RSt
Lo

}
K
oy

' COMMENT SHEET

TITLE: MP-60 Emulation Reference Manual

PUBLICATION NUMBER: 17329120 REVISION: C
NAME :

COMPANY:

STREET ADDRESS:

CITY: STATE: ZIP CODE:

Control Data Corporation welcomes your evaluation of this manual. Please
indicate any errors, suggested additions or deletions, or general comments
below (please include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

TAre

1

FOLD FOLD
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

]
BUSINESS REPLY MAIL e ——
FIRST CLASS PERMIT NO. 8241 MINNEAPOUS, MINN. I
]
POSTAGE WILL BE PAID 8Y N
CONTROL DATA CORPORATION S
.]

Systems Technology Division
.

215 Motfett Park Drive
Sunnyvale, California 94086 R
]
]
R
e]
FOLD FOLD

CUT ALONG LINE

BSC/MP60 Instruction Times

Page 2
MIN MAX Pty BSC/MP60_INSTRUCTION TIMES
we - 1.50 o , HIN Max heed
ux 2.41 . NoP .75
RTJ 1.87 2.24 2,06 LDEA 1.01
JSX 1.50 .
X3P 1.18 1.81 1.81 Lbca/LDHA "5
_ TST,GE/GT/LE/LT . 1.35 2.86 1.35 (JUMP is exception) STBA/STCA/STHA 2.90 2.35 2.10
TST, EQ/NE 1.12 2.80 1.35 (JUMP is exception) STH 0 00 P
TSTD,GE/GT/LE/LT 1.91 3.53 " 2.24 (JUMP is exception) MPI -00 3. .
- TSTD,EQ/NE 1.68 3.20 1.91 (JUMP 1is exception) DI 90 1.07 %0
\TSTF/GE/GT/LE/LT 1.35 3.60 1.35 (JUMP is exception) ‘ LP/LOR/LXR 1.01
TSTE.EQ/NE 1.12 2.80 1.35 (JWMP is exception) : ant 1 32 = (05638 0 ¢n <31
Tore. sy T 1o A 151 (JUMP ds exception) SF - Rrcar 1.68 3.64 C1.91 + (.056)n 04n £31
TSTDF.EQ/NE . 1.68 3.20 1.91 (JUMP is exception) gFD-- LEi“T 2‘02 5'55 (2‘:@4, (.056)11 02,1263
BSK , 1.46 2.69 1.46 (JUMP is exception) SFD - RIGHT 2.35 5.94 2041 + (.056)n 0 <n =63
BJPT 1.29 2.19 1.29 (JUMP is exception) LB 2.5 39 2.8
BJFF 1.29 2.19 1.29 (JUMP is exception)) zt?lg/OR 1'01 3‘15 2‘20
FSX,CE/GT/LE/LT 1.40 . 2.36 1.88 ‘ XOR 2.50 3.15 2.90
FSK, EQ/NE 1.35 ©2.30 1.83 : NBR/SBR/CBR 1o
X$K 1.57 2.52 1.57 (SKIP is exception) Is*gg;’ggg 1.58
FAD/FSB : 5.30 7.20 5.50
RF,+/RF,~ . 4.80 6.90 5.60 ; LD- 1.40
PMp 9.35 11.10 9.95 . ST 1.10
RF, * 9.20 10.95 8.80 AD/SB 1.45
rz:v/ 12.25 12.95 12.45 « f‘f’ 7.50 9.30 3‘18 2
EF, 11.95 12.65 12.15 ‘ ’ S 4g 15
i DV 12.05 12.72 12.40
FADD/FSBD 6.45 11.65 7.90
RFD,+/RFD,~ 6.45 11.65 7.90 MPS 7.28 9.02 7.90
FYPD/RFD, * 17.45 38.00 29.75 ; Vs 11.54 11.70 11.60
FDVD/RFD,/ 19.35 47.10 36.75 ‘ DD , ' 1.90
¥, 1ABS : 1.18 1.24 1.21 §TD 1.80
F,5Q 24.36 . ADD/SBD 2.30
(/,R,,logical .96
\ R,+/- 1.01
' R, XFR/NOT v 1.13
RD, +/~ i 2.14

(RD,XFR v , 2.30

