CCSYSTM-023-RMA

C |
@B CORPORATON
Z-80 RELOCATABLE
o MACRO ASSEMBLER

REFERENCE MANUAL

CONTROL DATA®
MP-32 |
COMPUTER SYSTEMS

O

C
g

180ASM Control Card Format

The 780 Cross Assembler (Z380ASM) is envoked by the following
Control Card:

#780ASM(I=10,L=20sR=22)
The table below describes‘the defaults ahd ranges of the various

parameters. Parameters may be omittedy may stand alones, or may
be equated to a numeric value in the range shown.

ABSENT ALONE =XX
I 63 56 1-63 INPUT
L 62 62 1-62 LISTING
R 4 4 1-60 RELOCATABLE OBJECT GuUTPUT
All values above are logical unit numberse. The Relocatable

Object Dutput is intended to become input for the Linking
Cross Loader (Z8GLDR). g

CCS-A00X-01

PROFESSIONAL SERVICES DlVlSlON |

@ S aconsulting service of
CONTROL DATA CORPORATION

KiicrolEC

Z-80 RELOCATABLE MACRO ASSEMBLER

FLEET NUMERICAL WEATHER CENTRAL
CONSOLIDATED COMMUNICATIONS SYSTEM

e’/

REVISION RECORD

REVISION : DESCRIPTION

A . Manual teleasca.

(10-01-79)

Publication No.
CCS-A00X-01
REVISION LETTERS 1, 0, Q AND X ARE NOT USED Address comments concerning
this manual to:
CONTROL DATA CORPORATION
Professional Services Division
205 Montecito Avenue
© 1979 Monterey, Ca. 93940)
Control Data Corporation (™
A

Printed in the United States of America

J
LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the

margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

Page Revision Page Revision Page Revision

Cover -

Title Page -

ii thru vi A

1-1 A

1-2 A

2-1 thru 2-7 A
0 3-1 thru 3-7 A

4-1 thru 4-20 A

k5—1 thru 5-9 A

6-1 thru 6-11 A

7-1 thru 7-9 A

A-1 thru A-3 A

B-1 A

c-1 A

D-1 thru D-6 A

1

C

CCS - AOOX - 01 Rev A

(i? TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 ASSEMBLER LANGUAGE

Statements ,

Comment Statement

Reserved Keywords and Symbols
Symbolic Addressing

Assembly Program Counter

3.0 SYNTAX

Character Set
Symbols

Constants
Expressions
Relative Addressing

4.0 DIRECTIVES

Assembler Commands
ORG
END
EQU

= DEFL
(i/ DEFB

DATA
DB
DEFW
DW
DDB
DEFS
DS
DEFM
EJEC
SPAC
TITLE
LIST
NLIST
COND
1F
ELSE
ENDC
ENDIF

CCS-A00X-01 Rev. A v

P N A R o
[

[on
]
et

MR N
] 1
~NuUmesesWw =

WWwwww W
1
Nuvw N

s~
[}
[

FoN R
I T I |
own s wk

t
= W0 00 00NN

5.0 MACROS

Macro Heading
Macro Body =
Macro Terminator
Macro Call

LOCAL

EXITM

w
1

]
ONBWNOHE -

(U NV RV RV RV B
]

6.0 RELOCATION

Relocatable Symbols
Relocatable Expressions
Relocation Directives

[«)}
]
(W)

o e Mo W Mo}
t
[JLV, B - VI L]

ASEG -
CSEG -
DSEG 6-7
ORG 6-8
PUBLIC 6-9
EXTRN 6-10
NAME 6-11
STKLN 6-12
7.0 HOW TO USE THE ASSEMBLER 7-1
The Assembler 7-1
Assembler Operation 7-1
Assembler Listing 7-2
Sample Assembly Listing 7-6
The Object Module 7-7
Sample Object Module Listing 7-8
Cross Reference Format. 7-9
APPENDIX A - Assembler Error Codes A-1
APPENDIX B - ASCII and EBCDIC Codes B-1
APPENDIX C - HEXADECIMAL NOTATION c-1
APPENDIX D - Hexadecimal-Decimal D-1

Conversion Tables

vi CCS-A00X-01 Rev. A

C

INTRODUCTION

Microtec has developed a Relocatable Macro Assembler for
the 280 microprocessor that translates symbolic machine code
{into relocatable object code which may then be processed by
Microtec's Linking Loader. The Assembler program is written
{n FORTRAN IV to achieve compatibility with most computer
systems. It is modular and may be executed in an overlay
mode should memory restrictions make that necessary. The
program is approximately 4500 FORTRAN statements in length,
20% of which are comments. The program is written in ANSI
standard FORTRAN IV and no facility peculiar to any one
machine was utilized. This was done in order to eliminate
FORTRAN compatibility problems. ‘

The mnemonic Operation Codes as well as Directives are
ijdentical to those utilized by Zilog or MOSTEK in their
literature and in their software products, except for the
relocation directives. This has been done to eliminate
any possible problems of program compatibility and to

obviate the necessity of learning new assembly languages.

The assembler is a two pass program that builds a symbol
table, issues helpful error messages, produces an easily read

program listing and symbol table, and outputs a computer

readable relocatable object (load) module.

The assembler features relocation, macro capability,
conditional assembly, symbolic and relative addressing, forward
references, complex expression evaluation, cross reference

listing and a versatile set of directives.

CCS-A00X-01 Rev. A

These features aid the programmer/engineer in producing
well documented, working programs in a minimum of time.
Additionally, the assembler is capable of generating data in
several number based systems as well as both ASCII and EBCDIC

character codes.

Microtec does not present any information in this manual
that will help the user understand the 280 microprocessor,
nor has any information been included to help the user write
working programs. The reader is referred to the Zilog or
MOSTEK manuals and specifications to achieve an understanding
of their microprocessor. It is recommended that this be done

‘before reading this manual.

CCS-A00X-01 Rev. A

(:z ASSEMBLER LANGUAGE

The assembler language provides a means to create a
computer program. The features of the Assembler are designed

to meet the following goals:

e Programs should be easy to create
e Programs should be easy to modify
e Programs should be easy to read and understand

e A machine readable load module to be generated

This assembler language has been developed with the

following features:

e Symbolic machine operation codes (opcodes, directives)

e Symbolic address assignments and reference

Relative addressing

Data creation statements

Storage reservation statements

Assembly listing control statements

Addresses may be generated as constants

Character codes may be specified as ASCII or EBCDIC
Comments and remarks may be encoded for documentation

Cross Reference Table listing

Relocatable object format
An assembly language program is a program written in
symbolic machine language. It is comprised of statements.

A statement is either a symholic instruction, a directive

statement, a8 macro statement, Oor a comment.

C

CCS-A00X-01 Rev. A

The symbolic machine inStrqction is a written specification

for a particular machine operation expressed by symbolic @;ﬁ
operation codes and sometimes symbolic addresses or operands.
Example: ‘ ‘
ISAM LD A, (HL)
where: :
ISAM - is a symbol which will represent the memory

address of the instruction.

LD - is a symbolic op-code which represents the bit
pattern of the "load" imstruction.

A - is a symbol, in this case a keyword, which
represents the accumulator.

(HL)

is a symbol, another keyword, which represents

memory accessed through registers H and L.

A directive statement is a statement which is not
translated into a machine instruction, but rather is
interpreted as a command to the assembler program.

Example:
ABAT DEFW DELT

where:

ABAT - is a symbol. The assembler is to assign the
memory address of the first byte of the two
allocated bytes to this symbol.

DEFW - is a directive which directs the assembler program
to allocate two bytes of memory.

DELT - is a symbol representing an address. The assembler
is directed to place the equivalent memory address

into the two allocated bytes.

-

2-2 CCS-A00X-01 Rev. A

Statements

(i> ' Statements are always written in a particular format.
This format is depictéd below. '

r LABEL FIELD | OPERATION FIELD | OPERAND FIELD] COMMENT FIELD

The statement is always assumed to be written on an 80

column data processing card or as an 80 column card image.

The Label Field is provided to assign symbolic names to a

byte of memory. If present, the label field may begin in
any column if it is terminated by a colon. It may also begin
in column one and not be terminated by a colon. A label may

be the only field on the statement.

The Operation Field is provided to specify a symbolic

™ operation code or a directive. If present, the Operation
(/ Field must either begin past column one or be separated from

the Label Field by one or more blanks, tabs, or a colon.

The Operand Field is provided to specify arguments for
the operation in the Operation Field. The Operand Field, if

present, is separated from the Operation Field by one or more
blanks or tabs. Arguments in the Operand Field may not be

separated by blanks or more than one comma.

The Comment Field is provided to enable the assembly

language programmer to optionally place an English message
stating the purpose oOr intent of a statement or group of
statements. The Comment Field must be separated from the
preceding field by one or more blanks or tabs or by a semi-

colon.

C

CCS-AQ00X~-01 Rev. A

Comment Statement : @:}

A Comment statement is a statement that is not processed
by the assembler program. It is merely'reprbduced on the
assembly listing. A comment statement is indicated by encoding
an asterisk or a semicolon as the first non-blank character on
a line. Care should be taken when using an asterisk to indicate
a comment as it may "be interpreted as an assembler directive
(see section 4). It is recommended that a blank follow an
asterisk if it indicates a comment. Only an asterisk in column
one may be interpreted as a directive.

Example:

rr; THIS IS A COMMENT STATEMENT

Logical columns 73-80 are never processed by the assembler.

This field is a good place for sequence numbers, if desired.

Reserved Keywords and Symbols

Certain keywords have been defined internally by the o
assembler. This will save the user the trouble of defining
them in each program. Twenty -six keywords have been defined
by the assembler. These symbols are not stored in the symbol
table and consequently they may be used in the Label Field of
a statement. However, it is recommended that this practice
be avoided. The keywords are as follows:
A B c D
E F H L
BC DE HL sP
AF AF' IX 1Y
I R Z NZ
NC PE - PO
M
Ay

CCS-A00X-01 Rev. A

. In addition the following two symbols denote the
(:/’ "STACK" and "MEMORY" segments of a program (see Section 6).
They are stored in the symbol table any thus may not be
used in the Label Field of any statement.

STACK MEMORY

Symbolic Addressing

When writing statements in symbolic machine language,
i.e. assembler language, the machine operation code is usually
expressed symbolically. For example, the machine instruction
that moves data from register B into the memory location
addressed by the contents of register pair H,L may be expressed

as:
LD (HL),B

When translating this symbolic operation code and its
o, arguments into machine language for the 280, the assembler
(j: defines one byte containing 70H at the memory location in the
current Assembly Program Counter. The address of the translated
byte is known because the Assembly Program Counter is always

set to hold the address of the byte currently being assembled.

The user can optionally attach a label to such an

instruction. For example:
SAVR LD (HL),B

The assembler, upon seeing a valid symbol in the label

field, assigns the equivalent address to the label. The
equivalent address is the address contained in the Assembly
Program Counter. In the given example, if the LD instruction
is to be stored in the address 127, then the symbol SAVR
would be made equivalent to the value 127 for the duration

of the assembly.

C

CCS-A00X~-01 Rev. A

The symbol could then be used anyﬁhere in the source
program to refer to the instruction location. The important
concept is that the address of the instruction need not be
known; only the symbol need be used to refer to the imstruction
location. Thus when jumping to the LD instruction, the user

could write:

JP SAVR

When’the jump instruction is transiated by the assembler,
the address of the LD instruction is placed in the address
field of the jump instruction. '

It is also possible to use symbolic addresses which are
near other locations to refer to those locations without
defining new labels. This may be done through use of the +

and - operators. For example:

JP BEG

JP PE,BEG+4
BEG LD A,B

HALT

LD c,'B'

INC B

In the above example, the instruction "JP BEG" refers
to the "LD A,B" instruction. The instruction "JP PE,BEG+4"

refers to the "INC B" instruction.

BEG+4 means the address of BEG plus four bytes. This type
of expression is called relative symbolic addressing and given
a symbolic address such as "BEG" it can be used as a landmark

to express several bytes before or after the symbolic address.

2-6 CCS-A00X-01 Rev. A

O

C
,

Assembly Program Counter

During the assembly process the assembler maintains a
FORTRAN word that always contains the address of the mnext
memory location to be assembled. This word is called the
Assembly Progrém Counter. It is used by the assembler to
assign addresses to the assembled bytes, but it is also

available to the programmer.

The character "$" is the symbolic name of the Program
Counter. It may be used like any other symbol, but it may
not appear in the label field.

When using the "$", the programmer may think of it as
expressing the idea; wg" = "address of myself." For

example:

3F JR $

The jump instruction is in location 3FH. The instruction

directs the microprocessor to "jump to myself." The Program

Counter in this example contains the value 3FH and the
instruction will be translated to a "JR 3FH". This could

be used for example when waiting for an interrupt.

CCS-A00X-01 Rev. A

O

C

SYNTAX

The Assembler Language is a language like any other. That
is, it has a character set, vocabulary, rules of grammar, and
allows for individuals to define new words or elements. The‘
rules that describe the language are termed the syntax of the

language.
For an expression or statement in assembler language to
be translated by the assembly program, it must be written

correctly in accord with the rules of syntax.

Character Set

The following list of characters describes the characters
that the assembler will recognize. They are the only valid
characters. Use of any other characters will cause the

assembler to generate an error message.

Alphabetic Characters

ABCDETFGHIJKLMND PQRSTUVWXYZ

Numeric Characters

0123456789

Special Characters

¥ blank | / slash

greater than $ dollar sign
< less than % asterisk
' single quote (left parenthesis
, comma) right parenthesis
+ plus sign @ commercial at
- minus sign . period

CCS-A00X-01 Rev. A

& ampersand colon

! exclamation semi-colon

-s

" double quote ' B =y = equal sign
sharp sign , B 7 question mark
% percent : underbar

vertical bar

a

béck slash

tab character

Sxmbols

A symbol is a sequence of characters. The first character
of a symbol may not be & numeric character. A symbol may
consist of any alphanumeric character plus any of the following
special characters: ',%,?,@, . Imbedded blanks are not
permitted. The user is cautioned not to use symbols that
start with the ? character as the assembler generates "local"

symbols starting with this character (see LOCAL directive).

Only the first six characters of a symbol are used by
the assembler to define that symbol; the reﬁaining characters
are for documentation. The parameter that dictates‘the number
of characters used to define a symbol may be changed in the

Fortran source code.

The assembler's symbol table can contain up to 200 symbols.

If more symbols are required, the symbol table may be increased

in size by changing a parameter in the Fortran source program.

Symbols are used to represent arithmetic values, memory

addresses, bit arrays (masks), etc. Examples of valid symbols:

LAB1
MASK_ONE
LOOPNUMS (symbol used is LOOPNU)

3-2 CCS-A00X-01 Rev. A

£

L

C

Examples of invalid symbols:

ABORT* (contains nonallowed special character)

1LAR (begins with a numeric)

PAN N (embedded blank - symbol would be PAN)
Constants

A constant is an invariant quantity. It‘may be an arith-
metic value or a character code. There are several ways of

specifying constants in this assembler language.

Decimal constants may be deflned as a sequence of numeric
characters optionally preceded by a plus sign or a minus sign.

1f unsigned, the value is assumed to be positive.

All constants are evaluated modulo 65536. A one byte
constant can contain an unsigned number with a value from O
to +255. A two byte unsigned number can range from 0 to +65535.
When a constant is negative, its equivalent two's complement

representation is generated and placed in the field specified.

Whenever an_ attempt is made to place a constant in a field
for which it 1is too large, an error message is generated by

the assembler.

Other constants are defined by utilizing 2 descriptor
after the value. The following list indicates the available
descriptors and their meaning. If no descriptor is given,
the number is assumed to be decimal. A leading @ must be

added to hexadecimal constants that start with A-F.

B - binary (base 2)
0 - octal (base 8)
Q - octal (base 8)
D - decimal (base 10)
H - hexadecimal (base 16)

CCS-A00X~-01 Rev. A

Examples of these constants are:

1¢¢11B 25 @FFE 37Q 255D 13570

An ASCII or EBCDIC charactef constant may be specified
by énclosing a single character within quoté marks and preceding
it with a A for ASCII or an E for EBCDIC. If no descriptor
is specified, the string is assumed to be ASCII. Examples of

this constant form are:

LD A,'1'

LD AE'Z’
OR . '¢1,

A character string may be specified by using the DEFB,DB,
DATA, or DEFM directives. Character strings must follow the
format described for these directives (see sectiom 4). Characters
may be specified as ASCII or EBCDIC in a manner similar to the

character constant. Examples of the character string are:

A'TELETYPE CODES'
E'TERMINAL CODES'
! 123.8"

Note that one byte of memory is required for each character
in a string. When a string is specified in a DEFB, DB, DATA, or
DEFM directive, characters are stored in sequential bytes of

memory beginning at the first available byte.

To cause the code for a single quotation mark to be gener-
ated in the character constaht or string, it must be specified
as two single quote marks. Example:

'DON''T'

The character code for a single quotation mark will be
generated once for every two marks that appear contiquously

within the character string.

CCS-A00X-01 Rev. A

e

Expressions

An expression is a sequence of one or more symbols, constants ,
or other expressions separated by arithmetic operators. Expressions
are evaluated left to right subject to the precedence of operators
shown beiow. Parenthesis may be used to establish the correct
order of the arithmetic operators and it 1is recomménded they be
used in complex expressions involving operafors such as SHR,

AND, EQ, etc. B

Precedence ' Operator
1 ' -+ (unary plus)
- , (unary minus)
2 * % (exponentation)
3 LI (multiplication)
/ (division)
.MOD. (modulo)
.SHR. (logical shift right)
.SHL. (logical shift left)
4 + (addition)
- (subtraction)

,.NOT. (logical NOT)
&,.AND (logical AND)

|,.OR. (logical OR)

.XOR. (exclusive OR)

8 =,.EQ. (equals)
>,.GT. (greater than)
<,.LT. (less than)
.UGT. (unsigned greater than)
.ULT. (unsigned less than)

9 .RES. (result)

10 .LOW. (low 8 bits)

.HIGH. (high 8 bits)

CCS-A00X-01 Rev. A

The comparison operators (.EQ.,.GT.,.LT.,.UGT.,.ULT.) (;)
return a logical True (all ones) if the comparison is true
and a logical False (zero) if the comparison is not true.
The operators .GT. and .LT. deal with signed numbers while
.UGT. and .ULT. assume unsigned values. For .GT. and .LT. the
high order bit of an expression is treated as a sign bit.
Hence values greater than 32767 will be treated as negative

numbers.

The Result operator (.RES.) does not perform any function

but is supplied for compatibility.

The Shift operators (.SHR.,.SHL.) shift their first
argument right or jeft the number of bits specified by the
second argument. Zeros are shifted into the high or low

order bits.

The .HIGH. and .LOW. operators have been provided to
help the user define two byte addresses as individual bytes
whenever that is desirable. The result of application of
either of these operators is a onevbyte value. These operators
are unary and may be used anywhere in an expression. When
.HIGH. or .LOW. are used in a relocatable expression the
result will remain relocatable. This enables the user to
relocate 8 bit values. The following example demonstrates

the utility of these operators.

LD HL,BUFF
LOOP LD A, (HL)
cP 13
JP Z,MAIN
INC HL
LD L,A
cP _LOW. (BUFF+40) ;CHECK FOR END
JP Z ,MAIN

JR LOOP ﬂ;}

CCS-A00X-01 Rev. A

C

o

An expression must resolve to a single unique value.

Consequently, character strings are not permitted in expressions.

All expressions are evaluated modulo 65536. Whenever an
attempt is made to place an expression in a one byte field
and the expression is too large, an error message is generated.

Examples of valid expressions:

PAM+3

(PAM+45H) /CAL
IDAM.AND.255

LOOP+ (ADDR.SHR.8)/2
VAL1.EQ.VAL2

Note: for certain opcodes, an expression enclosed in
parenthesis indicates a memory address. A leading plus sign
may be used to avoid any problems if the expression is

actually an immediate value.

Relative Addressing

For those instructions that use relative addressing (JR,
DIJNZ), the program counter, "$" may or may not be subtracted
from the relative address depending upon the option specified
in the LIST/NLIST directive. Thus the user has the option of
specifying the operand of a relative address in either of the

following two ways:

DINZ MAIN DJINZ MAIN-$

The default is that the "$" must be specified. It is
recommended that the user let the assembler subtract the
"g" from the relative address instead of explicitly doing
so in the assembly statement. This allows certain error
detection to be performed on relocatable program segments

that cannot otherwise be done. {(See section on Relocation)

CCS-A00X-01 Rev. A

C

DIRECTIVES

The directives or pseudo-operations are written as
ordinary statements in the assembler language, but rather
than being translated into equivalent machine language, they

are interpreted as commands to the Assembler itself.

Through use of these directives the Assembler will
reserve memory space, define bytes of data, control the

listing, assign values to symbols, etc.

This section of the manual describes all directives
and assembler commands except those primarily associated
with macro assembly and relocation. Some directives such

as ORG apply to both absolute and relocatable assembly.

Assembler Commands

Assembler commands are directives that begin with an

asterlsk in column one. Column two jdentifies the type of

command. The user should be aware of these commands when
denoting comments with an asterisk in column one. Depending
upon the character in column two, it may be interpreted as

a command. The Assembler Commands are equivalent to the

following directives.

*EJECT EJEC
*HEADING S TITLE 's!
*LIST ON LIST S
*LIST OFF : NLIST S
*MACLIST ON LIST M
*MACLIST OFF NLIST M

CCS-A00X~01 Rev. A

Thé directive

‘OR’GM

; ENDJY .

EQU
DEFL
DEFB
DB
DATA
DEFW
DW
DDB
DEFS
DS
DEFM
EJEC
SPAC
TITLE
LIST
NLIST
IF
COND
ELSE
ENDIF
ENDC

s described in this section are:

Set Program Origin
End of Assembiy |

Equate a Symbol to an Expression

Define a Label

Define a Byte .
Define a Byte (same as DEFB)
Define a Byte (same as DEFB)

Define a Word

Define a Word (same as DW)

Define Double Byte

Define Storage

Define Storage (same as DEFS)

Defime Message

Advance Listing Form to next page

Space lines on listing

Set Program Heading

List the elements specified

Suppress listing of elements specified
Conditional Assembly Statement

Conditional Assembly Statement (same as IF)
Conditional Assembly Statement Converse
End Conditional Assembly Code

End Conditional Assembly Code (same as ENDIF)

In the following descriptions, the brackets, { }, are

used to indicate optionality, or if more than one item appears

within the same pa

ir of brackets, they indicate a choice.

4=-2 CCS-A00X-01 Rev. A

ORG — Set Progranm Qrigin (non relocatable mode)

——

The ORG directive is used to inform the assembler of the
memory address to which the next assémbléd byte should be
assigned. All subsequent bytes will be‘assigned sequential
addresses beginning with this address.

1f the program does not have an ORG as’the first statement,
an ORG @ is assumed and assembly will begin at location zero

with absolute assembly.

Example:
ORG 10@¢H

'1 {label} ORG expression

label - is an optional label which if present will
be equated to the given expression.
expression - a value which will replace the contents of
the Assembly Program Counter and bytes
subsequently assembled will be assigned
memory addresses beginning with this value.
_Any symbols used in the expression must

be previously defined.

CCS-A00X-01 Rev. A

END — End of Assembly (:)

The END directive is used to inform the assembler that
the last card of the source program has been read, as well
as indicate thaf load module starting address. Any statements
following the END directive will not be procéssed.'

Eiample: »
‘ END MAIN
rr END {expression}
where:
expression - is an address that is placed in the end

record of the load module and informs

the loader where program execution is to
begin. If expression is not specified the
load address is set to zero. Specifying a
load address in this directive also implies
that this is a main program to the loader.
If multiple load modules are combined by the
Linking Loader, only one module may specify

a load address and hence be a main program.

CCS-A00X-01 Rev. A

EQU — Equate a Symbol to an Expression

The EQU directive is used to cause the assembler to
assign a particular value to a new label. This value may be

an absolute value or a relocatable value (see Section 6).

Example:
SEVEN EQU 7

{ label] EQU I expression

where:

label - is a symbol defined by this statement

expression - is an expression whose value will be
assigned to the given label for the
duration of the assembly. An attempt
to reequate the same label will result
in an error. Any symbols used in the
expression must be previously defined.
An external symbol may not be used in

the expression.

CCS-A00X-01 Rev. A

DEFL — Define a Label

The’DEFL directive may be used to set a s&mbol equal
to a vélue.‘ Unlike the EQU directive, multiple‘DEFL directives
may be éncoded in the same source program for the same symbol.
The most recént DEFL dirécﬁlve determines the value of the

symbol at any given place in the source program.

Example:
GO DEFL 5
GO DEFL GO+10
(f label DEFL expression
where:
label - is a symbol defined by this statement

expression - is a value that will be assigned to the
given label until changed by another DEFL S
directive. Any symbols used in the g
expression must be previously defined.
An external symbol may not be used in

the expression.

4-6 CCS-A00X-01 Rev. A

C

=

DATA

IS

The DEFB, DATA,

EFB — Data Defini;ion

and DB difectives are used to define

up to 70 bytes of data. The assembler will allocate one

byte if an expression is given and will allocate several

bytes if a character string is given. All expressions must

evaluate to an one byte value or an error is generated.

Negative values are
representation. If
it must be preceded

neither operator is

stored using their two's complement
an éperand is a relocatable expression,
by the .LOW. or .HIGH. operators. If

present, an error is generated and the

.LOW. operator is assumed.

Example:

ITEM DEFB +122,17,.LOW.EXP1]
DATA 6,1FH,'A'+1,32Q
0UT2 DB A'ERR 1',7

r, {1abel) I DEFB
DATA

operandl,{operandz}, .o

DB
where:
label - is an optional label which will be assigned
the address of the first byte defined.
operandi - is an evaluatable expression contained in
one byte, a character constant or an ASCII

or FBCDIC character string of up to 70 characters.

CCS—-A00X-01 Rev. A

DEFW — Define Word
DW
The DEFW or DW directive informs the assembler to
allocate two bytes per operand. Each operand is stored
in successive bytes. The operands are stored with the low
order 8 bits in the first byte and the high order 8 bits
in the second byte. Negative values are stored using their

two's complement representation.

Example:
ADD1 DW 1BH,40
DEFW 1000,10000

operandl,{operandz}, ces

{label}l l DEFW
DW

where:
label - is an optional label which will be assigned
the address of the first byte defined.
operandi - is an evaluatable expression contained in

two bytes. A total of 70 bytes may be
allocated by this directive.

4-8 CCS-AO0X-01 Rev. A

\
N

C

DB — Define Double Byte

m——

This directive 1is similar to the DEFW directive except
for the order in which the 16 bit value of each operand is
stored. The 16w order 8 bits of the operand are stored in
the second byte of the double byte and the high order 8 bits
are stored in the first byte. Negative values are stored

using their two's complement representation.

Example:
REV1 DDB 1000,10000

operandl,{operandz}, .o

(rﬁ {1abel} ‘ DDB

where:
label - is an optional label which will be assigned
the address of the first byte defined.
operandi - is an evaluatable expression contained in

two bytes. A total of 70 bytes may be

allocated by this directive.

CCS-A00X-01 Rev. A
4-9

— Define Storage

The DEFS and DS‘diréctives‘are used to reserve a

block of sequential bYtes of storage.

Thesé directives

merely cause ‘the program counter to be advanced. Therefoté,

the contents of the reserved bytes are unpredictable.

vExamp

le:
PAT DEFS 62H
r, {label} l DEFS expression
where:
label - is an optional label which will be assigned

expression -

the address of the first byte allocated.

a value which specifies the number of bytes

to be allocated by this directive. Any

symbols used in this expression must be

previously defined.

This expression may

not contain any relocatable symbols.

CCS-A00X-01 Rev. A

O

DEFM — Define Message

o

, The DEFM directive is used to define up to 70 bytes as an
ASCII or EBCDIC string. This is the same as using the DEFB

directive with only the string as an operand.

Example: ;
DEFM '"MACRO ASSEMBLER'
f’ {labell DEFM 'string'
where:
label - is an optional label which will be assigned the
address of the first byte allocated.
string - is a string of up to 70 characters. The string

must be enclosed in quotes. A single quote
within the string must be represented by two
single quotes. The leading quote may be preceded
by an A for ASCII or an E for EBCDIC. If no

character precedes the quote ASCII is assumed.

CCS-A00X-01 Rev. A

EJEC — Advance Listing Form to next Page

; This directive instructs the assembler to skip to the
top of the next page on the listing form. Its purpose 1is to
make program listings easier to read. Some programmers prefer

to start each subroutine on a nev page.

(EJEC

CCS~-A00X-01 Rev. A

SPAC — Space lines on listing

The SPAC directive causes one Oor more blank lines to
appear on the output listing. It enables the programmer to
format the program listings for easier reading. The directive

itself does not appear on the listing.

Example:
SPAC 7

f’k SPAC expression

where:

expression - evalues to a value that determines how
many lines are to be skipped. This

expression may not be relocatable.

CCS-AO0OX-01 Rev. A

TITLE — Set Program Heading

The TITLE directive is used to print a heading at the
beginning of each page of the listing. The default heading
defined by the assembler and used if the user does not specify
one via this directive is "Z80 ASSEMBLER VER _. | MR". For a
‘user specified title to appear on the first‘page of the
output listing, the TITLE directive must be the first

statement in the program.

Example: _

TITLE '*TEST PROGRAM'
[/ TITLE] heading
where:

heading - title which will be placed at the beginning
of each page. The heading may be up to 50
characters, with any additional characters
not appearing in the title. The heading is
delimited by single quotes but if the ter-
minating quote is not present the first 50
characters will be used as the title. Heading
may contain no characters in which case the

title will be set to blanks.

Note: The Assembler Command *HEADING S; is similar to the
TITLE directive with the following differences:
- *HEADING also causes a page eject
- title displayed with the *HEADING command begins
with the first non blank character in the operand

- *HEADING statement is mot displayed on listing

CCS-A00X-01 Rev. A

Cf?‘

LIST — List the Elements Specified

The LIST directive may be used to generate listings of the
elements specified in the directive. The defaults are that the
source text, symbol table, macro expansions, and conditional
assembly statement notiassemhled are listed and in addition
an object module is produced. The symbol table is not placed
into the object module and system generate& local symbols are
not listed. Errors are always l1isted regardless of the elements

specified.

Example:
LIST X,B produce cross reference
table and put symbol table

in object module

r LisT | B,G6,1,M,0,R,S,T,X

where:

B - specifies that the symbol table will be placed into
the object module and may be used for debugging.

G - specifies that system generated symbols (see Section 6)
will be listed in the symbol table and object module.

I - specifies that the instructions not assembled due to
conditional assembly statements will be listed.(default)

M - specifies that expanded macros will be listed in the
source text.(default)

0 - specifies that the object module will be produced.
(default)

R - specifies that the user must subtract the progrcm
counter, "$", when using a relative addressing
instruction. E.g. JR LABEL-$. See section on
relative addressing. (default)

CCS~-A00X-01 Rev. A 4-15

S - specifies that the source text will be listed.(default)
T - specifies that the symbol table will be listed. (default)
reference table will be listed.

X - specifies that the cross
 This'parameter ovgrri&es
Thus if T and X are both
~table will be generated.

Note: 1if the user specifies tﬁe B
at the start of the program

that generates any code.

the T option if specified.
specified, a cross reference

(see page 7-9)

or G option, it must be done

before the first instruction

CCS-A00X-01 Rev. A

O

NLIST -— Suppress\Listing of the Elements Specified

The NLIST directive instructs the assembler to suppress
the listings of the elements specified. The 1ist1ngs may be
enabled again by the LIST directive. Errors generated by the
assembler are always listed regardless of the 1ist flags. Thus
to obtain an output listing of only errors the user should

specify "NLIST S" at the‘beginning of the program.

Example:
NLIST (0] do not produce an
object module
(NLIST l B,6,I,M,0,R,8,T,X
where:

B - specifies that the symbol table will not be placed
into the object module.

G - specifies that system generated symbols will not be
listed in the symbol table or object module.

I - specifies that the instructions not assembled due to
conditional assembly statements not be listed.

M - specifies that expanded macros not be listed.

o
1

specifies that the object module will not be produced.

R - specifies that the program counter, "$", need not be
subtracted from the address of a relative address
instruction. See section on relative addressing.

S - specifies that the source text will not be listed.
Only those statements with errors will be listed.

T - specifies that the symbol table will not be listed.

X - specifies that a cross reference table will not be

produced or listed.

CCS-A00X-01 Rev. A 4-17

— Conditional Assembly Statement

The‘COND or IF directive may be used to conditionally

assemble source text between the 1F o

ENDIF, or ENDC directive.

ELSE,

r COND directive and the
1f the expression in the

operand field is evaluated to any non- zero value, the code

will be assembled

of zero the code will not be assembled.

may be nested up to 16 1

any place.

Example:

If the expression evaluates to a value

COND SYSTEM

Conditional statements

evels and appear in the source text at

IF DATA.EQ.7FH

-

COND expression

IF

where:

expression -

evaluates to a value which determines whether

or not the assembly between the IF¥ and the

following ELSE, ENDC,

or ENDIF will take place.

Any symbols used in this expression must be

previously defined.

be relocatable.

The expression may not

CCS-A00X-01 Rev. A

O

®

ELSE - Conditional Assembly Statement Converse

The ELSE directive is used in conjuction with the IF
directive and is the converse of the IF. If the expression
in the operand field of the IF or COND directive was zero,
all statement between the ELSE directive and the next ENDIF
or ENDC directive are assembled. If the expression in the
operand field of the IF or COND directive was non-zero, all
statements between the ELSE directive and the next ENDIF or

ENDC are not assembled.

The ELSE directive is optional and can appear only once
within an IF-ENDIF block.

Example:
IF MAIN

ELSE

ENDIF

(ﬁ ELSE

CCS-A00X~-01 Rev. A

ENDC — End Conditional Assembly Code ' M:)

The ENDIF or ENDC directive is used to inform the assembler
where the source code subject to the conditional assembly
statement ends. In the case of nested conditional statements,
an ENDC or ENDIF is paired with the most recent COND of IF

statement.

Example: :

In the follow1ng code, if the expression SUM-4 is equal
to zero, the instructions between the IF and ELSE directive
will not be assembled and those between the ELSE and ENDIF
will be assembled. If SUM-4 is non-zero the opposite occurs.
To not list the non assembled instructions, the "NLIST 1"

directive may be used.

EIN

—1F SUM=-4 N
assembled if OR 200 N
SUM-4 is non-zero| ADD A,VALUE '

— ELSE
assembled if OR 07FH
SUM-4 1is zerxo ADD, A,C

— ENDIF

rf ENDC
ENDIF

4-20 CCS-A00X-01 Rev. A

(i) MACROS

A macro is a sequence of instructions that can be inserted
in the assembly source text by encoding a single instruction, the
macro call. The macro definition is written only once and can
be called any number of times. The macro definition may contain
parameters which can bé'changed for each call. The macro facility
simplifies the coding of programs, reduces the chance of programmer
error, and makes progféms easier to understand, as the source

code need only be changed in one location, the macro definition.

A macro definition consists of three parts; a heading, 2
body, and a terminator. This definition must precede any call
to the macro being defined. A macro may be redefined at any
time with the latest definitioh of a macro name applying to the
macro call. A standard mnemonic (e.g. BIT) may also be redefined
by defining a macro with the name BIT. 1In this case all sub-
(:D sequent uses of the mnemonic BIT in the program will cause the

macro to be expanded and placed into the source program.

Macro Heading

The heading, which consists of the directive MACRO or MACR,

gives the macro a name and defines any formal parameters.

Example:
GET MACRO # ADDR, #fVALUE

rrf label l MACRO {parameter list}

CCS-A00X-01 Rev. A 5-1

Label specifies the macro name and may be any user defined
symbol. This name may be the same as other program defined
symbols since it has meaning only in the operation field. For

example, TAB could be the ngme of a symbol as well as a macro.

If a macro name is identical to a machine instruction or
an assembler difective, the mnemonic is redefined as the macro.
Once a mnemonic has been redefined as a macro, there is no way
of returning that name to be a standard mnemonic. A macro name

may also be redefined as a new macro with a new body.

The operand field of the MACRO line contains the name of
dummy formal parameters in the order in which they occur on the
macro call. Each parameter is separated by commas and each
begins with a sharp sign (#). The parameters may consist of
any arbitrary text, e.g. #12XYZ. The parameter list is ter-

minated by either a blank, tab, or semicolon after a parameter.

Parameters are scanned from left to right for a match, so the user

is cautioned not to use parameter names which are prefix sub-

strings of later parameter names. E.g. #AB,#ABC. The scope

of a formal parameter is limited to its specific macro definition.

Macro Body

The first line of code following the MACRO or MACR directive
which is not a LOCAL directive is the start of the macro body.
These statements are placed in a macro file for use when the
macro is called. At expansion time an error will be generated
if another macro is defined within a macro. No statements are
assembled at definition time including Assembler directives and

Assembler Commands.

Within the macro body, in any field, the name of a formal

parameter listed on the MACRO or MACR line may appear. If a

5-2 CCS-A00X-01 Rev. A

N
Mo’

//(M \\,
L

parameter exists, it is marked and the actual parameter from

the macro call will be substituted when the macro is called.
Formal parameters may exist anywhere in the macro body including
in the‘commeht field. A formal parameter in the macro body

'4s indicated by a sharp sign (#) just as in the macro heading.

For every macro definition there is an internally defined
macro parémeter jndicated by #$YM. This parameter may be
referenced in the macro body buﬁ should not éppear in the formal
parameter list. When the macro is called, each occurrence of
#$YM in the macro body is réplaced by a string representing
a 4 digit hexadecimal constant, e.g. 0001. The four digit
string is constant over a given level of macro expansion and
increases by one for each macro call. The typical usage
of the #S$YM string is to provide unique labels to a macro
that is expanded multiple times so as to avoid a duplicate
label error. This may also be done however, by use of the

LOCAL directive.

Macro Terminator

The ENDM directive terminates the macro definition. During
a Macro definition, an ENDM must be found before another MACRO
or MACR statement may be used. an END statement that is found
during a macro definition will terminate the macro definition

as well as the assembly. The format of the ENDM is as follows:

r {1abel} ENDM

where:
l1abel - is an optional symbol which becomes the symbolic
address of the first byte of memory following

the inserted macro.

CCS-A00X~-01 Rev. A

Macro Call : k o ()

A macro may be called by encoding the macro name in the
operation’field'of the statement. The format of the macro call

is shown below.

(r {labell l name I{parameter list}

where: .
label - is an optional label which will be assigned
a value equal to the address of the first
instruction in the macro.
name - is the name of the macro called. This name

should be defined by the MACRO or MACR directive
or an error message will be generated.
parameter - is a list of parameters separated by commas.
list These parameters may be constants, expressions,
symbols, character strings or any other text W

separated by commas.

The parameters in the macro call are actual parameters and
their names may be different than the formal parameters used in
the macro definition. The actual parameters will be substituted
for the formal parameters in the order in which they are written.
Commas may be used to reserve a parameter position. In this case
the parameter will be null. Any parameters mnot specified will
also be null. The parameter list is terminated by a blank, tab,

or a semicolon.
All actual parameters are passed as character strings into

the macro definition statements. Thus symbols are passed by

name and not by value. In other words, the parameters are not

CCS-A00X-01 Rev. A

O

evaluated until the macro expansion is produced. Thus DEFL
directives within a macro may alter the value of parameters

passed to the macro.

During the macro expansion, the assembler recognizes
certain characters to have special meaning. The ampersand,
"&", i{s used to concatenate the text of the definition line
and any actual parameters. During macrb expansions, an amp-
ersand immediately preceding or immediately following a formal

parameter is removed and the substitution of the actual parameter

~occurs at that point. If the ampersand is not immediately

adjacent to the parameter, the ampersand is not removed and

remains part of the definition line.

Single quotes are used to delimit actual parameters that
may contain other delimiters. All characters between the quotes
are considered part of the parameter and the quotes are removed
before being substituted for the formal parameters. Single
quotes are the only way to‘pass a parameter that contains a
blank, comma, tab, or other delimiter. For example, to use
the instruction "LD HL,0" as an actual parameter, would require
placing 'LD HL,O0' in the actual parameter list. A null
parameter may consist of the quotes with no intervening characters.
A quote in the actual parameter is represented by two quotes in

sequence.
An example of a macro call and its expansion is shown

below. Note the use of concatenation and the special #SYM

parameter. Expanded macro code is marked with plus signs.

CCS~A00X-01 Rev. A 5-5

Definition:

Macro Call:

Source Code

Generated:

GET

#z

L L#SYM

MACRO
LD
Y

JP
ADD
SET

 ADD

LOOP

LOOP
+
+
+ENTRY
+
+L0001

ENDM

SCF
GET
JR

SCF
GET
LD
INC
JP
ADD
SET
ADD
JR

#x,#y,#z
B,#X&.AND.OFH

C,MAIN
HL,HL
0,C
A,C

200, "INC B',ENTRY
NZ,GO

200, 'INC B",ENTRY
B,200.AND.OFH

B

C,MAIN

HL, HL

0,C

A,C

NZ,GO

CCS-A00X-01 Rev. A

Yo S

-

LOCAL — Define Local Symbol

As all labels, including those within macros, are global
to the complete program, a macro which contains a label and
which is called more than once will cause a duplicate label
error to be generated. To avoid this problem, the user may
declare labels within macros to be "local" to the macro. Each
time the macro is called the assembler assigﬁs each local
symbol a system generated symbol of the form ??nnnn. Thus the
first local symbol will be 270001, the second 7?0002, etc.

The assembler does not start at 770001 for each macro but
jncreases the count for each local symbol encountered.. The
symbols defined in the LOCAL directive are treated 1ike formal
macro parameters and hence may be used in the operand field of
instructions. The operand field may not contain any formal
parameters defined on the MACRO directive line. As many LOCAL

directives as necessary may be included within a macro def-

ipition, but they must occur immediately after the MACRO or

MACR directive and before the first line of the macro body.
LOCAL directives will not appear in the output l1isting during
a macro expansion. LOCAL diréctives that appear outside a
macro definition will generate an error. To avoid duplicate

labels within macros, the user may of course use the #$YM symbol.

Example: ,
Definition: WAIT MACRO #R
LOCAL #LAB1
LD B, #R
" #LAB1 DEC B
JR Nz,#LAB1l
ENDM

CCS-A00X-01 Rev. A 5-7

First call + ’ LD
with R = 5 ~+1770001 DEC
' R S , JR
Second ball ‘ ’ <+ | ' LD v
with R = OFFH = +770002 DEC

+ : JR

B,S
B
NZ,?70001

B,0FFH
B
NZ,?7?70002

-

where:

LOCAL] symbol list

symbol 1list - is a list of parameters similar to those

used on the MACRO directive that are to

defined local to this macro. These local

symbols must be separated by commas.

CCS-A00X-01 Rev. A

EXITM -— Alternate Macro Exit

The EXITM directive provides an alternate method for
terminating a macro eXpansion. During a macro expansion, an
EXITM directive causes expansion of the current macro to stop
and all code between the EXITM and the ENDM for this macro
to be ignored. If mactosvére nested, EXITM causes code generation
to return to the previous level of macro expénsion, Note that
an EXITM or an ENDM may be used to terminate a macro expansion,

but only an ENDM may be used to terminate a macro definition.

In the following example the code following the EXITM
will not be assembled if DATA is zero.

STORE MACRO #DATA
IF #DATA
EXITM
ENDM

r {label} | EXITM

where:
label - is an optional jabel which will be given the

address of the instruction assembled after the

m:cro terminates.

CCS-A00X~01 Rev. A

C

RELOCATION

The object module p:oduced by this aésembler is in a
relocatable format. This allows users to write programs
whose final addresses will be adjusted by Micrgtec's Linking
Loader and which may also be changed without reassembling the
complete program. It also allows separate object modules to

be linked together into a final program.

Relocatable programming provides many advantages for the
user. Actual memory addresses are of no concern until the
final load time. Large programs may be easily separated into
smaller segments, developed separately, and linked together.

If one segment contains an érror, only it need be reassembled.
A library of routines may be used by many users once developed.

The Loader will adjust addresses to meet each user's requirements.

To take advantage of relocatability, the user should under-
stand the concept of program segments and how separate object
modules are linked together. A prograﬁ segment is that part
of a program which contains its own program counter and is
a logically distinct section of the program. At load time

the addresses for each segment may be specified separately.

This assembler provides for four program segments. The
CODE segment is typically the segment that contains the actual
machine instructions. In a ROM/RAM system it would be the
segment that would be placed into ROM. The data area of a
program 1s typically placed into the DATA segment. This segment
usually resides in RAM. This segment could contain actual
machine instructions. The STACK §egment is used to contain
the program stack area and resides in RAM. Typically only

the main program makes references to the STACK segment and

CCS~-A00X~-01 Rev. A

spécifies the STACK segment length. References are made to ‘ {:)
‘the stack segment with the reserved symbol STACK. The MEMORY -
segment is that portion of memory Space not allocated to the

other three segments.. eferences are made to this segment with

the reserved symbol MEMORY.

Although users may place actual code in the CODE or
DATA segments, only references may be made to the STACK and
MEMORY segments at assembly time.

As with non relocatable assemblers, users may also
specify absolute addresses when assembling a program. In this
case the object module will contain an absolute program

designed to run in a particular memory location.

The object modules of the assembler are combined or linked
together by a Linking Loader. The Loader converts all relocatable
addresses into absolute addresses and resolves references from {
one module to another. Linkage between modules is provided by
PUBLIC and EXTRN symbols. PUBLIC symbols are defined in one
object module and made available to all other object modules via
the Linking Loader. EXTRN symbols are symbols referenced in
one module but defined in another module. The Linking Loader
l1inks the PUBLIC's from one module with the EXTRN's from other
modules to resolve these references. A program may contain

both PUBLIC and EXTRN symbols.

Relocatable Symbols

Each symbol in the assembler has associated with it a
symbol type which denotes the symbol as absolute or relocatable,
and the program segment to which the symbol belongs. Symbols
whose values do not change value depending upon program origin

are absolute symbols. Symbols whose value change when the

O

CCS-A00X-01 Rev. A

O

program origin is changed by the Linking Loader are termed
relocatable symbols. The reserved symbols STACK and MEMORY
discussed above’are special forms of relocatalbe symbols.
EXTRN symbols are also relocatable. Absolute and relocatabdble

symbols may both appear in an absolute or relocatable segment.

Absolute symbols are defined as followé:

1. A'symbol is in the label field when the program'is
assembling an absolute segment of code.

2. A symbol is defined equal to an absolute expression
by the EQU or DEFL directives. This occurs even if

the program is assembling a relocatable segment.

Relocatable symbols are defined as follows:

1. A symbol is in the label field when the program
is assembling a CODE or DATA segment of code.

2. A symbol is definéd equal to a relocatable expression
by the EQU or DEFL directives.
The reserved symbols STACK and MEMORY are relocatable.
External (EXTRN) symbols are relocatable

5. A reference to the program counter ($) while

assembling a relocatable segment is relocatable.
Relocatable symbols are also classified as CODE, DATA,
STACK, or MEMORY relocatable depending upon how they were

defined.

Relocatable Expressions

The relocatability of an expression is determined by
the relocation of the symbols that comprise the expression.
All numeric constants are considered absolute. Relocatable
expressions may be combined to produce an absolute expression,
a relocatable expression or in certain instances illegal

expressions. The following list shows those expressions

CCS-A00X-01 Rev. A

wvhose result is relocatable. ABS denotes an absolute symbol or

constant and REL denotes a relocatable symbol;

ABS+REL | .LOW.REL

 REL+ABS .HIGH.REL
REL-ABS L |

In addition the following expressions are valid and produce
an absolute expression. Both relocatable expression must

be relocatalbe in the same program segment.

REL-REL REL.LT.REL
REL.EQ.REL REL.UGT.REL
REL.GT.REL REL.ULT.REL

Relocatable symbols that appear in expressions with any other
operators will cause an error, e-.g. REL*REL. Any combination
of two relocatable symbols from different segments including

externals (EXTRN) is an error condition.

Relocation Directives

The following pages describe those directives in the
assembler that pertain primarily to relocation. The nomen=
clature is the same a8 for the directives described in

Section 4. The directives are:

ASEG Specify Absolute Segment
CSEG Specify Code Segment
DSEG specify Data Segment

ORG Specify Origin

PUBLIC Specify PUBLIC symbols
EXTRN Specify External symbols
NAME Specify Module Name
STKLN Specify Stack Length

CCS-A00X-01 Rev. A

C

ASEG — Specify Absolute Segment

The ASEG directive specifies to the assembler that the
following statements should be assembled in the absolute mode.
The ASEG remains in effect until a CSEG or DSEG directive is
assembléd. The starting address for the ASEG program counter
is zero. At the start of the assembly, the program assumes an
ASEG directive has been specified and assemfly proceeds in

the absolute mode.

({label)} | ASEG

where:

label - is an optional label that Qill be assigned the

address of the next assembled instruction.

CCS-A00X-01 Rev. A

CSEG — Specify Code Segmeﬁt

The CSEG directive specifies to the assembler that the
following statements should be’assembled in the reiocatable
mode using the CODE segment program counter. Initially the
CODE segment program counter is set to zero.‘ In addition,
this directive may specify an operand which 'i{s passed to the
Loader and has no effect on the assembly. The operand is

described below.

Example: ; _
CSEG PAGE

({label} I CSEG ‘ {blank,PAGE,INPAGE}

where:

label - is an optional label which will be assigned
the address of the next instruction.

blank - a blank operand field specifies that the CODE
segment may be relocated to the next available
byte.

PAGE - specifies that the CODE segment must begin
on a page boundary (i.e. 0,100H,200H,...)
when relocated by the Linking Loader.

' INPAGE - specifies that the CODE segment must fit

within a single page when relocated. The
Loader will start the segment at the next
page boundary if the segment will not fit

within the current page.

Note: if multiple CSEG directives are specified
in the same assembly, each must specify the same

operand.

6-6 CCS-AQ0X-01 Rev. A

C

C

CCS-A00X-01 Rev. A

DSEG — Specify Data Segment

The DSEG directive specifies to the assembler that the
following statements should be assembled in the relocatable
mode using the DATA segment program counter. Initially the
DATA segment program counter is set to zero. In addition,
this directive may specify an operand which is passed to the
Loader and has no effect on the assembly. The operand is
described below.

Example:
DSEG INPAGE

l {label}l DSEG I {blank,PAGE, INPAGE}

where:

label - is an optional label which will be assigned
the address of the next instruction.

blank - a blank operand field specifies that the DATA
segment may be relocated to the next available
byte during Loading.

PAGE - specified that the DATA segment must begin
on a page boundary (i.e. 0,100H,200H,...)
when relocated by the Linking Loader.

INPAGE - specifies that the DATA segment must fit

within a single page when relocated. The
Loader will start the segment at the next
page boundary if the segment will not fit

within the current page.

Note: if multiple DSEG directives are specified

in the same assembly, each must specify the same

operand.

o

RG — Se

|

The O
the memory
be assigne
the segmen
or data.
the origin
relocatabl

current se

Example:

t Program Origin (relocatable mode)

RG directive is used to inform the assembler of
address to which the next assembled byte should -
d. This directive changes ‘the program counter of

t which is currently being assembled, absolute, code

When the ORG is in a relocatable program segment,
address must be an absolute expression of a

e expression which is relocatable within the

gment.

ORG $+30H

r/ {labe

where:
label

expre

1} l ORG I expression

- is an optional label which will be equated
to the given expression.
ssion - a value which will replace the contents of
the current segment program counter. Any
symbols used in the expression must- be

previously defined.

CCS-A00X-01 Rev. A

O

PUBLIC — Specify PUBLIC symbols

The PUBLIC directive specifies a 1ist of symbols which
will be given the PUBLIC attribute. These symbols will then
be made available to other ﬁodules to establish the necéssary
linkage between modules. Only those symbols declared PUBLIC
and defined in the assembly are placed in the object module ‘

and made available to other object modules.

The PUBLIC directive may appear anywhere in the program
and each symbol may be declared in only one PUBLIC directive.

Example:
PUBLIC SCAN,LABEL,SYMBOL

r {label} ‘ PUBLIC | symbol list

where:
label - is an optional label which will be assigned
the address of the next instruction.
symbol list - is a 1ist of symbols separated by commas

whichyspecify the PUBLIC names available

to other modules.

CCS-A00X-01 Rev. A

EXTRN — Specify External Symbols

The EXTRN directive specifies a list of symbols which
will be given ‘the EXTRN attribute. These are symbols that

are referenced in this program module but defined within

another program. This directive provides the linkage to those

symbols through the Linking Loader.

The EXTRN directive may appear anywhere in the program

and each symbol may be declared in only one EXTRN directive.

Example:
EXTRN INPUT,OUTPUT

(’* {label} | EXIRN | symbol list

where:
label - is an optional label which will be assigned
the address of the next instruction.
symbol 1list - ijs a list of symbols separated by commas

which specify the EXTRN names available

in other modules.

CCS-A00X-01 Rev. A

S

/

(:j>

C

NAME — Specify Module Name

The NAME directive is used to assign a name to the object
module produced by the assembly. Only one NAME directive may
appear in a program. The module name is a handle used by the

Linking Loader when combining programs.

- If no NAME directive is specified by the user, the default
name "MODULE" is used.

Example:
NAME MULT

r, {labell I NAME ' name

where:
label - is an optional label which will be assigned
the address of the next instruction.
name - is the name to be placed in the object module to
denote the module name toO the Loader. This name

must follow all the rules of a symbol.

CCS-A00X-01 Rev. A

STKLN — Specify Stack Length

The STKLN directive allows the user to specify the length ;(;}
of the STACK segment generated by the Linking Loader. Typically
this directive is only used in the main program, but other
programs may also Specify a stack length. The Loader comblnes

all STACK segments into one segment.

If the user does nof‘séecify a STKLN directive, the
assembler uses a default length of zero. More that one
STKLN directive may be placed in a program, only the last

one is used.

Example:
STKLN 20H

(, {label} l STKLN l expression

where: e
label - is an optional label which will be assigned
the address of the next instruction.
expression - an expression which indicates the length of

the stack segment. This expression may

not contain a relocatable symbol.

CCS-A00X-01 Rev. A

C

HOW TO USE THE ASSEMBLER

The Assembler

The Assembler program is usually supplied as an unlabeled
unblocked magnetic tape with 80 character card image records.

Other media may be requested.

The Assembler is written entirely in Fortran and is com-
prised of a main program and several subroutines. The main
program appears first on the tape and the last subroutine is
followed by 2 tape.mark. The Assembler may be compiled from
the tape.

The Assembler Installation Notes describe program
installation and any modification that may have to take place
for a particular computer. It is helpful to read these notes

before installing the program.

Assembler Operation

The Assembler 4is a two pass Assembler wherein the source
code is scanned twice. During the first pass the labels are
examined and placed into a symbol table. Certain errors may
be detected during Pass One; these will be displayed on the
output listing.

puring Pass Two, the object code is completed, symbolic

~addresses resolved, a listing and object module are produced.

Certain errors, not detected during Pass One may be detected

and displayed on the listing.

At the end of the Assembly process a symbol table or

cross reference table may be displayed.

CCS-A00X-01 Rev, A

The following steps are taken to assemble a source program:

1. WVrite a program utilizing instruction mnemonics and
; directives. Encode the arguement fields with constants

labels, symbolic addresses, etc.

2. Transfer the source program to some cbmphter readable
" medium; cards, tape, etc. This medium should correspond
to the input device expected by the Assembler. On
some systems, device assignments méy be changed during
the course of an assembly by utilizing proper system

control cards.

3. 1Include the source code as shown in the sequence in

Illustration I.
4. Execute the Assembler Program.

5. Get listing and object module as output.

Assembler Listing

During Pass Two of the assembly process a program listing
is produced. The listing displays all information pertaining
to the assembled program; both assembled data and the users

original source statements.

The listing may be used as a documentation tool through
the inclusion of the comments and remarks that describe the

function of the particular program segment.

The main purpose of the listing is to convey all pertinent
information about the assembled program, i.e. the memory addresses
and their contents. The load module, also produced during Pass
Two, contains the address and content information but in a format

that can be read only with great effort.

CCS-A00X-01 Rev. A

\". . .
C CARD ORDER

Jllustration 1

Read theylnput Stream

first : ~
l JCL or Other System Control Cards
Required to Execute the Assembler
s Prograﬁ '
Read
by Source Code to be Assembled
Assembler
END Assenbler End Statement

CCS-A00X~01 Rev. A

, The illustration on page 7-6 is a sample of a typical
program listing. Referring to the listing illustration, the
following information 1s pertinent:

e The assémbler may detect error conditions during the
assembly process. The column titled "ERR" will contain
‘the error code(s) should the assemblef detect one or
"more errors in the associated line or source code. An
explanation Qf the individual error codes is given in

Appendix A.

e The column titled "LINE" contains decimal numbers which
are associated with the listing line numbers. The

maximum number of lines is a source program is 9999.

e The column titled "ADDR" contains a value which repre-
sents the first memory address of the data shown in
bytes one to four on a given line or the value of
an EQU or SET directive. The hexadecimal number
under Bl represents one byte of data to be stored in
the memory address. If there is a number under B2 it
represents data to be stored in the given memory address
plus one. Columns B3 and B4, if they contain a number,
similarly represent data to be stored in the memory

address plus two or three.

e To the right of the data bytes are the relocation types
of any relocatable operands. The types are as follows:

¢ - code, D - data, S - stack, M - memory, E - external.
¢ The users original source statements are reproduced

without alteration to the right of the above information.

Macro expansions are preceded with a plus sign.

CCS-A00X-01 Rev. A

O

e At the end of the listing the assembler prints the
message "ASSEMBLER ERRORS = " with a cumulative count
of errors. The assembler substitutes four bytes of
NOP's when it cannot translate a particular opcode and

so provides room for patching the program if desirad.

e A symbol'table or cross reference table is generated
at the end of each assembly listing. The table lists
all symbols utilized in alphabetic order along with any

relocation types as described above.

CCS-A00X-01 Rev. A

ERR LINE

0

1]

zr

nOo®

-

EaR LI

ADDR

OB AT R

onoo
vood
nooe
onnd

ooo0f
0010
00148
(1284
0n19
001
0021

0001
00e8
0oeR
0068
0060
0neF
onto

5000
0001
0002
anoa
9005
0006
0009
onoR
000¢
©o11
0012
onya
onty
001A

ADDR

0019
0ALR

[{13]
8010
004E
0021
9028
9023
2029
0027

0028

0035
0638
on3e
003D

0n3F

A1 a3 BT 4a

L1

(43
of

(3]
3

Do
Ve

no

21
3

3E
ER

ASBEMALER ERRORS

c
F
12
4
"

»

20 2D

VaLuf

ooon
LET}]
anne
onot
aoth
ooan
LET]
anae
onno
[LT
VOKF
[LER)
[NL]

L]
r
on
fn

L]
0o
Re
"2
no
L)

. #o

AL}

o6

[

A 1]

LU
A

1%
"

L]
ne

14
(13
ey
A\

»”?
"

FF

LI

LL]
on
00
oS
00

LL]
(1]

30

on

o0
09

L)

(3]

24

1]
on

t?

on

L
L1

aa
0o

$

“g

L3}

c.»

-4

TR xR

TR0 ASBEMALFR VER

1 0mR PaGE

o ganPLF PROGRAY FOR 280 RELOCATAALE #ACRO ASSEMBLER

+ gNpilT 18 FREE FORM,Y

NamE fampLE
L1sY ¥ :
susLIC STOKL, AN
EXTRN e1.t2

® gYAWPIE NF MACRN CAPABTLITY
gy waACKO ey
sur 2
Ln X OFF™
L334 0,4
(%] (IXevy),*a’
OO

§SET PRNGRAM NAME
$GEY & CROSS REFERENCE TABLE
$DECLARE PUBLICY
NECLARE FXTERNALS

1
3 FYauPLE (F VARINUS ASSFMALER EPRORS

1
STaky Rt . .
aun A,%00
in €,hnn
L LA B4
EOuU 15
3P STAkseS
Lo (RC)H,C
or (1neSy,
81,0 INNR
Ln 0,
ADN Ao,
LD ML/ BUB#S
* ANQFMRLER DYRFCTIVES
0SE
(L] 100
OoNg €ou 1
DFFu F LT
Smy
DEFS <
QTNRLY Nu STAR
STnR> Liad] 23,48

[4.119
2 gxa™PLE UF TWE vaRI0US TNSTRUCTIONS

REG? Lo 4,n
“aLY
Le Cotht
INC L]
(43 (L8]
Je NZ,Eted
.14 4,8TA4 AND, 285
Lo P, 8vaCK
catL se8g
sun ®ET
™ 4,(2%0)
tn (Sire1ngind,a
pusH LY
b id [L19]
280 ABSENALER VER { OWR
ADC Ay LOw SUN
Lo C,oHIGH,SUM
L]
L
canTel DEFL 1
MAIN ADN .,8
LN 8p,100%
L114} 8,244
LIk) 22
Lo B,0FFH
(244 0,4
L0 (Ixe2aW), 4"
NLTST -
MACY L2
1¥ CNNTR| o
Lo 4,6
€x OF »HL
FLSE
Lo WL, 22w
Je “aTH
ENDLF
COND CONTRL
Lo bye}
€x NE,HL
ELAE
Ln ML HFFFF™
Je AN
[L]:14
Enp “ATH

700 ASSEMR{ER VER 1,0MR

Congs ReFpPENCE

REFEDENCE

e8!
-k®

17

Y

A4]
as

onl

»
=36

.0
L1

L1

”"n "y
.28 36 [
LTI 13

HNREFINED NPCODE
TLLEGAL VALUF
CUYNREFINED SYNROL
LABEL ERROR .
“ISSING LAREL

SYNTAX ERROR

TLLEGAL OPERAND PalR
FORMAY ERRDR
wyULTTIPLE DEFINED LAREL
ARGUMENT ERROR
KEYNRN ERBOS
RELOCATINN ERROR
$SET 0ATA SEGMENT
$8ET OPIGIN

FOUATE | AND ONE
DEFINE & STYRING
RESERVE BYARAGE
DEFINE A WORD

¢SEY CODF REGMENY

LOAD ASCIT CHARACYER
JEXTEANAL WEFERENCE

AND OPERATNOR

LOCATINN CNUNTER REFERENCE

NCTaL CONSYANY
BINARY CNNSTANTY

PAGE

sLOwER & BTYS
sUPPER & BITS

HONIT EXPAND NEXT CALL
JCALL MACRO AGAIN
CONDTTIONAL ASSEMRLY

PaGE

CCS-A00X-01 Rev. A

" The Object Module

As part of the Pass Two processing, the assemblér produces
an object module. The object module is a machine readable
computer output in the form of punched cards, paper tape, etc.
The output module contains specifications for loading the memory
of the target microprocessor and provide tbe necessary linkage

to link object modules together.

The object module is normally punched out on the deVice
specified. However, through use of the LIST and NLIST directives,
all or part of the output may be deleted.

The object module is produced as a series of card images
on the output punch device. The object module 1is compatible
with Intel's relocatable format although it is produced in a

readable as opposed to a binary format.

The object module may be loaded into Microtec's Linking
Loader which will then convert it to an absolute program in
Intel's standard hexadecimal format. This may then be loaded

into a development system or used to program a PROM.

A sample object module is shown on the following page.
This is the object module of the sample program shown on the

preceding pages.

CCS-A00X~-01 Rev. A

22Ewiv0SAMPLE L c13c00d302710003030LVudIinvetiullnT
albbdéééx"“uuaOLZ"“JOAJ
612vvUl1DULULMAIN®* LO7 i
612u. L 200ulubSTOKI®VLFL .
.63A;:Lu»6utuuuuduwuuozc.zCOukdbuOUOCZLDuaLoubuddLuuDDBGUSEDBABF
162Euvd019LLuvivlvuvbuevivui éiuboede

161Lubd2teul 5438305270

1610vu02b0veblLe17 3030
163dun010ULu787butv2LeBEC2ULULCEGU31uCLUCO3LLLCIDBLISHY
'268UvuILFULCe) :

'4GA0 U 3IL3LCHLCT

'06Cuv03ubuibu7ucCa

16120001146v327 300t 5E Sou

'4CAQuUO2v 3150V

160C0vC119uLCebESE

'eUAVV02L12A0uBS
I63C0$0118&00€C00&31«L01061606FFC8~7DDJGZA~106161bFFCBh700367Fh170
'e0ALGG202iCwuB2

J61A000135LL22220UCI10VC3EFFCBSF

22084ucL 339uCYA

J&GAGO0101100403

" JEG2uLFD

7-8 CCS-A00X-01 Rev. A

// e

xww/

‘:3 Cross Reference Format

\

The cross reference option is normally turned off. To turn
it on use "LIST X", to turmn it off again use "NLIST X" (see
LIST and NLIST directives). The assembler will produce either
a cross reference table or a symbol table. The cross reference
table will be produced if "LIST X" has been specified. References
may only be accumulated during particular portions of the program
by turning the cross reference option on and off. However, to get
the listing of cross references, the option must be turned on
before the END statement. Typically the "LIST X" directive will

be one of the first statements in the source and never turned off.

An example of the cross reference output is as follows:

LABEL VALUE REFERENCE
ABC F45A -4 15 35 =77
i MAIN C 0000 -1 104
(:> MEMORY M 0000 0
- PRINT E 0003 -5 23

LABEL and VALUE are self explanatory. Any flags on thé left of
the value are the relocation types of the symbols as explained
under the Assembler Listing section. Under REFERENCE, a value
preceded by a minus sign indicates that the symbol was defined
on that line. A vélue of 0 as the only entry on the line
indicates this is an intermnal system symbol (e.g. MEMORY, STACK) .
Line numbers not preceded by a minus sign indicate a reference
to the svmbol on that line. For DEFL symbols, more than one
definition may appear for a given symbol as in ABC above.
Internal assembler keywords, e.g. A,HL, etc. are not shown on

the cross reference listing.

C

CCS-A00X-01 Rev. A

P
Y
.

APPENDIX A

ASSEMBLER ERROR CODES

"If errors in the source code are detected during the

assembly process, an indicétion‘of the type of error is printed

on the listing on the same line as the statement in error.

error.

The following list should serve as a guide to diagnose the

The listing always displays a total error count.

Argument error. The argument is missing or contains
an illegal character. Argument for CSEG or DSEG

directive must match previous use of argument.

Branch error. A relative branch instruction is
attempting to branch to a location which is out of

range for the relative address.

Macro substitution error. When substituting actual
macro parameters for formal parameters, the 80 column

limit was exceeded.

Duplicate Label error. The label in the statement has
previously appeared in the label field. A label on a
DEFL directive previously appeared in a statement
other than a DEFL or a label on a statement other than
a DEFL statement now appears on a DEFL statement. A
label appears more than once in an EXTRN or PUBLIC
directive or a symbol defined in an EXTRN directive

appears in the label field of some statement.

- CCS-A00X-01 Rev. A

Relocation error. The {nstruction contains an operand
that violates a rule of relocation. An operand that
should be absolute is relocatable or an EQU or DEFL

di:ective‘make reference to an external (EXTRN) symbol.

Format error. The instruction has been written in a
format which is not permitted. This error usually
indicates a trailing comma and the instruction is

assembled properly.

Keyword error. A keyword has been found which does not
have the proper syntax or should have parenthesis but

does not or vice versa. E.g. LD (A),B

Label error. A label contains an invalid character of

starts with a numeric character.
Missing Label. This statement requires a label.

Macro Nesting error. When nesting macros the tables

used to hold the nesting information has become full.

Opcode error. The 0pcodé mnemonic has not been recognized
as a valid mnemonic, directive, or a maéro call. Also

a macro defined within another macro or conditional
statements nested too deeply. ELSE, ENDIF, ENDC, ENDM,

or EXITM used without preceding IF or MACRO statement.
LOCAL directive used outside or MACRO body or more

than one NAME directive in a program.

Questionable operands. The combination of operands is
not valid for the opcode. E.g. LD (HL), (HL).

A-2 CCS-A00X-01 Rev. A

O

C

S

Syntax error. A rule of syntax has been violated in
the statement. Parenthesis are not nested properly or

possibly two operators appear in sequence.

Table overflow. Symbol table is full - assembly continues.
An attempt was made to define too many macros, Or too
many parameters in nested macro calls. Also too many

formal paraméters for a given macro definition.

Undefined symbol. There is a symbolic name in the
operand field which has never been in the label field.
The symbol should have been previously defined for
certain directives and was not but may have been defined
after the directive. Possibly the user is attempting

to use an external symbol that was not defined in an

EXTRN directive.

Value error. An evaluated expression or constant is
out of range for the field of the actual machine ins-
truction in which it is to be contained. A one byte
value is relocatable but was not preceded by a .LOW.

or .HIGH; operator. In this case it is forced to .LOW.

CROSS REFERENCE OVERFLOW AT . The cross reference file

has been filled. Assembly continues and references are
not accumulated past this line. This message appears
in the cross reference table listing. Enlarge cross
reference file space or turn reference off for sections

of the program.

CCS-A00X-01 Rev. A

VAN

N

(fx : APPENDIX B
e

ASCII AND EBCDIC CODES

The Assembler will recognize only the following characters.

The equivalent codes are expressed in hexadecimal notation.

CHARACTER ASCII ERCDIC CHARACTER ASCII EBCDIC
[39 FQ W 57 E6
1 31 F1l X 58 E7
2 32 F2 Y 59 ES8
3 33 F3 z SA E9
4 34 F4
5 35 F5 blank 20 40
6 36 F6 ! 21 5A
7 37 F7 " 22 7F
8 38 F8 i * 23 7B
9 39 F9 $ 24 5B

% 25 6C
A 41 c1 & 26 50
B 42 c2 ' 27 7D

(:} c 43 c3 (28 4D
D 44 C4) 29 5D
E 45 c5 * 2A 5C
F 46 cé + 2B 4LF
G 47 c7 y , 2¢C 6B
H 48 cs8 - 2D 69
1 49 €9 . 2E 4B
J 4A Dl / 2F 61
K 4B D2
L 4C D3 : 3A 7A
M 4D D4 : 3B 5E
N LE D5 < 3C 4¢C
0 4F D6 & 3D 7E
P 50 D7 > 3E 6E
Q 51 D8 ? 3F 6F
R 52 D9 d 49 7C
S 53 E2
T 54 E3 \ 5C EP
U 55 E4 | 5E 4LF
v

56 E5 ~5F 6D

CCS-A00X-01 Rev., A

APPENDIX C

HEXADECIMAL NOTATION

Hexadecimal notation is a convenient way to express binary
information. Each hexadecimal digit may be ‘thought of as

representing the information in four binary bits.

The assembled code is expressed in hexadecimal notation on
the output listing. Hexadecimal is the name of the base 16

number system.

DECIMAL HEXADECIMAL BINARY

pepgo
popo1
p010
¢p11
9100
9191
¢11¢
111
1099
1991
1019
1911
1199
1101
1119
T 1111

O 0 ~N o0 U~ LW N H+H S

R
2w N .
M M U O W P> WV @ NV S WN S

-
w

CCS-A00X-01 Rev. A

C-1

Appendix D

(:ﬁ HEXADECIMAL-DECIMAL CONVERSION TABLE

This table allows conversions to be made betwveen hexa-
decimal and decimal numbers. The table has a decimal range

of 0 to 4095. To convert larger numbers add the following

values to the table values.

Hexadecimal Decimal

1000 4096

2000 8192

3000 12228

4000 16384

5000 20480

6000 24576

7000 28672

8000 32768

9000 36864

(W; A000 40960

.

B0OOO 45056

c000 49152

D000 53248

EOOO 57344

F0O0O 61440

0 1 2 3 4 5 6 7 8 9 A B c (0] E F

000 | 0000 0001 ©0C2 0003 0004 0005 0006 0007 ©008 0009 0010 0011 0012 0013 0014 0015
010 | 0016 0017 0018 0019 0020 0021 0022 0023 0024 . 0025 0026 0027 0028 0029 0030 0031
020 |0032 0033 0034 0035 0036 0037 0038 0033 0040 0041 0042 0043 0044 0045 0046 0047
030 |0048 0049 00SO 0051 0052 0053 0054 .0055 0056 0057 0058 0059 00S0 006! 0062 0063
040 | 0064 0065 0056 0067 O0OSB DOE2 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 | 0oB0 0081 0082 0083 0084 00B5 0086 OO87 0088 0089 0090 0091 0092 0083 0094 0095
060 |009s 0097 00S8 0098 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 [o112 0113 0114 0115 0116 0117 0118 0118 0120 0121 0122 0123 0124 0125 0126 0127,
o080 |o128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
000 | 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
oa0 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
o080 |0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
oco |0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
@ ooo |0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 022} 0222 0223
00 | 0224 0225 0226 0227 0228 0229 0230 ©231 0232 0233 0234 0235 0236 0237 0238 0239
OF0 | 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

CCS-A00X-01 Rev. A

HEXADECIMAL-DEClMAL INTEGER CONVERSION (Cont'd)

2

CCS-A00X-01 Rev.

0 1 3 4 5 6 7 -8 9 A 8 C 0D E F
400 | 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 02N
110 | 0272 0273 0274 0275 0276 0277 0278 0279 ‘0280 0281 0282 0283 0284 0285 0286 0287
120 | 0288 0289 0290 0291 0292 0283 0294 0295 - 0296 0297 0298 0299 = 0300 0301 0302 0303
130 | 0304 0305 0306 0307 0308 0308 0310 0311 . 0312 0313 0314 0315 0316 0317 0318 0319
140 | 0320 0327 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335
950 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 | 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
1470 | o368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
180 | 0384 0385 0386 0387 0388 0383 0390 0391 0392 0393 0394 0395 0396 0397 0388 0399
190 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A0 | 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 04
180 | 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1c0 | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
100 | 0464 0465 0466 0467 0468 0469 - 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
160 | 0480 0481 0482 0483 0484 0485 0486 0487 0488 0485 0450 04N 0492 0493 0494 0495
170 | 0496 0437 0498 0499 0500 0501 0502 0503 ©0S04 0505 0506 0507 0508 0503 0S10 0OS11
200 | 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 | 0528 0528 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 | 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 | 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
240 | 0576 0577 0578 0579 0SB0 OSB1 0582 0583 0584 0585 0586 0587 0588 0589 0580 0591
250 | 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0807
260 | 0608 0509 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 | 0624 0625 0626 0627 0628 0629 0630 0631 0832 0633 0634 0635 0636 0637 0638 0639
280 | 0B4D 0641 0642 0643 0644 0645 0646 0647 06‘.38 0649 0650 0651 0652 0653 0654 0655
] 290 | 0656 0657 0658 0658 0660 0661 0662 0663 0664 0665 0666 0667 (0668 0669 0670 0671
2A0 | 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
280 | 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0693 0700 0701 0702 0703
2c0 | 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 ©O71§ 0716 0717 0718 O7M19
200 { 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
260 | 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F0 | 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
300 | 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 | 0784 0785 0786 0787 0788 07'89 0790 0791 0792 0793 0794 0795 0796 0787 0798 0798
320 | 0800 0301 0802 0803 0804 0805 0806 0807 0808 ©0BOS 081 0 0811 0812 0B13 0814 0815
330 | o816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
340 | 0832 0833 0834 0835 0836 0837 0B38 0839 0B40 0BA1 0B42 0B43 0844 0DBAS 0846 0847
350 | 0848 0849 0850 0851 0852 0BS3 0854 0855 0B56 0857 0858 0BS9 ©0BS0 0BB! 0862 0863
360 | 0B64 0B6S 0866 0867 0868 0BES 0870 0871 0872 0873 0874 0875 0876. 0877 0878 0879
370 | 0880 ©0BS1 0882 0883 0884 0BBS 0886 0887 0888 0BBY 0890 0891 0892 0883 0894 0835
380 | 0896 0897 0898 0899 .0900 0901 0902 0903 0904 0905 0906 0807 0308 0909 0910 0811
390 | 0212 0913 0914 0915 0916 0917 0918 0819 0320 0921 0922 0823 0924 0925 0S26 0927
3A0 | 0928 0929 0930 0931 0932 0933 0934 0935 0836 0837 0938 0839 0940 0941 0942 0943
380 | 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0857 0858 0959
aco | 0960 0061 0962 0963 0964 0965 0966 0857 0968 0969 0970 0971 0972 0973 0974 0975
300 | 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0S88 0989 0990 0991
3E0 | 0992 0993 0994 0995 0996 0937 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F0 | 1008 1003 1010 ON 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
D-2

A

U

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 S 6 7 8 9 A 8 c 0 E F
400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 {1040 1041 1042 1043 1044 1045 1046 1047 1048 1043 1050 1051 1052 1053 1054 1055
420 |1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 ' 1070 1071
430 [1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 3086 1087
440 1088 1083 1090 1091 1092 1093 1094 1095 1096 1097 1088 1099 1100 1101 1102 1103
450 | 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 [1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 [1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
480 |1152 1153 1154 1155 1156 1157 13158 1159 1160 1161 1162 1163 1164 1165 1166 1167
450 [1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A0 11184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 11200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C0 [1216 1217 1218 1219 1220 1221 1222 1223 - 1224 1225 1226 1227 1228 1229 1230 1231
4D0 [1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 12487
4E0 11248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F0 | 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
500 | 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1204 1295
510 | 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
$20 {11312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
6§30 11328 1328 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
540 | 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
650 | 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1380 1391
570 | 1392 1393 1384 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
£80 | 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 | 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 - 1436 1437 1438 1439
SAD | 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B0 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
SCO | 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 14B6 1487
SD0 | 14B8 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
SEO | 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
SF0 | 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 11530 1531 1532 1533 1534 1535
600 | 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1548 1550 1551
610 | 1552 1553 1554 1655 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 | 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
€30 | 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1584 1595 1596 1597 1598 1599
€640 | 1600 1601 1602 1603 1604 1605 1606 1607 1608 1603 1610 1611 1612 1613 1614 1615
€50 | 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 181
660 | 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 | 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
€80 | 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 | 1680 16B1 16B2 16B3 16B4 1685 1686 1687 1688 1689 1590 1691 1692 1693 1694 1695
6A0 | 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 | 1712 1713 1714 IS 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
€CO | 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D0 | 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EOQ | 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 17724 1775
6F0 | 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
CCS-A00X-01 Rev. A D-3

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

C

CCS-AD0X-01 Rev. A

o1'234557asaa D E F
700 | 1792 1793 1794 1785 1796 3797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 | 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 | 1824 1825 1826 1827 1828 1820 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 | 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
740 | 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1B66 1867 1868 1869 1870 1871
950 | 1872 1873 1874 1875 1876 1877 1878 1870 1880 1881 1882 1883 1884 1885 1885 1887
760 | 1888 1889 1800 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
270 | 1904 1905 1906 1907 1908 1808 1910 1911 1912 1813 1914 1915 1916 1917 1918 1919
780 | 1920 1921 1922 1923 1824 1925 1926 1927 1928 1929 1930 1931 1832 1933 1934 1935
790 | 1936 1937 1938 1939 1940 1841 1942 1943 1944 1945 1046 1947 1948 1949 1950 1951
780 | 1952 1953 1954 1955 1956 1957 1058 1953 1060 1961 1962 1963 1964 1965 1966 1967
780 | 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1881 1982 1983
gc0 | 1084 1985 1986 1987 1988 1988 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
00 | 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
se0 | 2018 2017 2018 2018 2020 202} 2022 2023 2024 2025 2026 2027 2028 2029 2030 203
gF0 | 2032 2033 2038 2035 2036 2037 2038 2039 2040 2041 2042 2043 2084 2045 2046 2047
800 | 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 | 2064 2065 2066 2067 2068 2060 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 | 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2080 2091 2002 2083 2084 2095
830 | 2096 2097 2088 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2108 2110 2111
840 | 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
gso | 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
850 | 2144 2145 2146 2147 2148 2143 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
g70 | 2160 2161 2162 2163 2184 2165 2166 2167 2168 . 2169 2170 2171 2172 2173 174 2175
gso | 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
go0 | 2192 2193 2194 2195 2196 2197 2198 2189 2200 2201 2202 2203 2204 2205 2208 2207
a0 | 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
geo | 2226 2225 2226 2227 2228 2226 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8co | 2240 2241 2242 2243 2244 9245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 | 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 227
geo | 2272 2273 22714 2215 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
gFo | 2288 2289 2200 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
000 | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
o0 | 2320 2371 2322 2323 2324 2325 2326 2327 2328 2320 2330 2331 2332 2333 233 2335
020 | 2336 2337 2318 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
@30 | 2352 2353 2354 2385 23%6 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

| oa0 | 2388 2389 2370 23711 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 | 2384 2385 2386 2387 2388 2389 2390 2391 2332 2393 2394 2395 2396 2397 2398 2399
960 | 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
70 | 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 243
980 | 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2646 2447
900 | 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AD | 2464 2465 2466 2467 2468 2460 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
o80 | 2480 2481 2482 2483 2484 2485 2485 2487 2488 2480 2490 2491 2492 2493 2494 2495
oco | 2496 2497 2498 q499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 251)
op0 | 2812 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
oc0 | 2528 2529 2530 2531 2532 2533 2534 2535 2535 2537 2538 2539 2540 2541 2542 2543
| oro | 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

D-4

.

J

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

D

CCS-A00X-01 Rev. A

0 1 2 3 4 5 6 7 8 9 A B C E F
ADO | 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2873 2574 2575
A10 | 2576 2577 2578 2579 2580 2581 2582 2563 2584 2585 2586 2587 2588 2589 2590 2591
A20 | 2502 2593 2594 2505 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 | 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A0 | 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
ASO | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 | 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 267
A70 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A0 | 2688 2689 2690 2691 2602 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A% | 2704 2705 2706 2707 2708 2709 2710 2711 2712 2M3 2714 215 2716 2717 2718 2719
AAO | 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACO | 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADO | 2768 2769. 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO | 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
800 | 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 | 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
820 | 2848 2849 2850 3851 2852 2853 2854 2BS5 2856 2857 2858 2859 2860 2861 2862 2863
830 | 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B40 | 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2830 2891 2892 2893 2894 2895
850 | 2806 2007 2898 2895 2900 2901 2802 2903 2904 2905 2906 2907 2908 2909 291 0 29m
B60 | 2012 2913 2914 2815 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
870 | 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2838 2939 2840 2941 2942 2943
BSO | 2944 2045 20946 2947 2948 2949 2950 2951 2952 2953 2854 2955 2956 2957 2958 2959
goo | 2060 2061 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO | 2076 2977 2078 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 299
880 | 2092 2093 2994 2995 20996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
gco | 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
800 | 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO | 3040 3041 3042 3043 3044 23045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF0 | 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
co0 | 3072 3073 3074 3075 3076 3077 3078 3078 3080 3081 3082 3083 3084 3085 3086 3087
c10 | 3088 3089 3090 3091 3092 3083 3094 3085 3095 3097 3088 3089 3100 3101 3102 - 3103
c20 | 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 314 3115 3116 3117 3118 3¢
30 | 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
ca0 | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151%
¢s0 | 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
60 | 3'68 3169 3170 3171 3172 3173 3174 175 N7 3177 3178 317¢ 3180 3181 3182 3183
c70 | 3184 3185 3186 3187 3188 3189 3190 3191 3182 3193 3194 3195 3196 3197 3198 3199
ceo | 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
co0 | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
cao | 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
B0 | 3248 3249 3250 3251 3252 3253 1 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
cco | 3264 3265 3266 3267 3268 3269 3270 32717 3272 3273 3274 3275 3276 3277 3278 3279
coo | 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3201 3202 3293 3294 3295
CE0 | 3206 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311,
cro | 3312 3313 3314 3315 3316 3317 3318 3IN9 3320 3N 3322 3323 3324 3325 3326 3327
D-5

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

CCS-A00X-01 Rev. A

0 1 2 3 4 5 6 " 7 8 9 A 8 [D 13 F
poo | 3328 3329 3330 333 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
p1o | 3344 3345 3346 3347 3348 3349 3350 3351 . 3352 3353 3354 3355 3356 3357 3358 3359
p20 | 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
030 | 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3380 33N
D40 | 3392 3393 3394 3385 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
pso | 3408 3409 3410 3411 3412 3413 3414 3415 - 3416 3417 3418 3419 3420 34 3422 3423
D60 | 3424 3425 3426 3427 3428 3429 3430 3431 - 3432 3433 3431 3435 3436 3437 3438 3439
D70 | 3440 3441 3442 3443 3444 3345 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
peo | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 34N
poo | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 34B4 3485 3486 3487
DAO | 3488 3489 3490 3491 3492 3403 3404 3495 3496 3497 3498 3499 3500 3501 3502 3503
pBo | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 = 3516 3517 3518 3519
OCo | 3520 3521 3522 3523 3524 1525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
cco | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3548 3547 3548 3549 3550 3551
DEO | 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
pro | 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
g00 | 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3584 3505 3506 3597 3598 3599
g10 | 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
£20 | 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 36N
£30 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
ga0 | 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
£50 | 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
{ g60 | 3680 3681 3682 3683 3684 3685 23686 3687 3688 3689 3690 3691 3692 3693 3694 3695
£70 | 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
leeo 372 a3 3n4 35 3716 3717 3718 3718 3720 3721 3722 3723 3724 3125 3726 3727
g0 | 3728 3729 3730 37N 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
ga0 | 3748 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
£BO | 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
gco | 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
€00 | 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
geo | 3808 3809 3810 3811 3812 1g13 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO | 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
FOO | 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 381 3852 3853 3854 3855
F10 | 3856 3857 3858 3859 3860 3861 3862 3863 3864 3B65 3866 3867 3868 3869 3870 3871
F20 | 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
£30 | 3888 3889 3850 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
‘P40 | 3004 3005 3906 3907 3908 3909 3910 3911 3912 3913 3814 395 3516 3917 3918 3919
Fso | 3020 3921 3%22 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 | 3936 3937 3938 3939 3840 3941 3042 3943 3944 3945 3846 3947 3948 3949 3950 395!
#70 | 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
#80 | 3968 3969 3970 3N 3972 3973 3974 3975 3976 3977 3978 23979 3980 3981 23982 3983
¢o0 | 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3895 3906 3997 3998 3999
£A0 | 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 40N 4012 4013 4014 4015
FB0 | 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
gco | 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4034 4045 4046 4047
FDO | 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4050 4060 4061 4062 40€3
FEO | 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO | 4080 4081 4082 4083 4084 40B5 4086 4087 AOBB 4089 4090 4031 4092 4093 4094 4085
D-6

J

-

rd

CORPORATE HEADQUARTERS, P.0, BOX 0, MINNEAPOLIS, MN 55440
SALES OFFICE AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G2

CONTROL DATA CORPORATION

