CCSYSTM-024-LL

@D cORPORATION

Z-80 LINKING LOADER
REFERENCE MANUAL

R s s)

CONTROL DATA®

MP-32
COMPUTER SYSTEMS

I80LDR Control Card Format

The 780 Cross Loader (280OLDR) is envoked by the following
Controtl Cara:

¥280LDR{I=10,4L=204H=22)
The table below describes the defaults and ranges of the various

parameterse. Parameters may be omittedy, may stand alones or may
be equated to a numeric value in the range shown.

ABSENT ALONE =XX
I 63 56 1-63 INPUT
L 62 62 1-62 LISTING |
H 8 8 1-60 ABSOLUTE HEX QUTPUT

All values above are logical unit numberse. The Absolute Hex
Qutput is in INTEL format.

ABNOMALITIES®

1. Z80LDR produces 2 extra lines of output before starting the
Absolute Hex output. The lines consist of 2 dollar signs
followad by 2 bltanks. Most processors of INTEL hex format
asholute loads will ignore tines that do not start with
colon () and so the extra output is not serious.

CCS-A00X-02

PROFESS!ONAL SERVICES DlVlSlON

@ @ aconsuiting service of
- CONTROL DATA CO&PORATION

IViicrOIEC

7-80 LINKING LOADER MANUAL

FLEET NUMERICAL WEATHER CENTRAL
CONSOLIDATED COMMUNICATIONS SYSTEM

Py

REVISION RECORD

REVISION

DESCRIPTION

m—

A

Manual released,

€10-01-79)

,,,,,,

Publication No.

CCS-A00X-02

REVISION LETTERS |,

© 1979

O, Q AND X ARE NOT USED

Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Professional Services Division

205 Montecito Avenue
Monterey, Ca. 93940

1IST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the

margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed. 7 T

Page Revision Page [Revision Page Revision
Cover ‘ | -
Title Page -
ii thru v A
1-1 | A
2-1 thru 2-4 A
3-1 thru 3-19 A
4-1 thru 4-18 A
A-1 thru A-3 A
B-1 thru B-2 A

C

‘CCS - AOOX - 02 Rev A

N

TABLE OF CONTENTS
1.0 INTRODUCTION

2.0 LOADER OPERATION
Relocation Types

3.0 LOADER COMMANDS

CODE
DATA
STACK
MEMORY
CPAGE
DPAGE
ORDER
START
STKLN
NAME
LOAD
PUBLIC
LIST
NLIST
EXIT
END
Comments

4.0 HOW TO USE THE LOADER

The Loader
Loader Execution
Loader Listing
Loader Example

APPENDIX A - Loader Messages
APPENDIX B - Object Module Formats

CCS-AO0X-02 Rev. A v

w w
1
[
~

wWWw W
R
[

'
H WO NOU W

[

o

WWLWWWWWWW
b

-

w N

Y
N_#

®

INTRODUCTION

This manual describes Microtec's Z80 Linking Loader
that accompanies the 280 Relocatable Assembler. The Linking
Loader can be used to combine several independently assembled
relocatable object modules into a single absolute object
module. External references betﬁeen modules are resolved with
the final absolute symbol value being substituted for each

reference.

The Loader not only provides for the iinking of several
modules and adjusting of the relocatable addresses into
absolute addresses, but allows the program segment addresses
to be specified, PUBLIC symbols to be defined, final load
address to be specified and the order of loading of the program

segments.

CCS-A00X-02 Rev. A

LOADER OPERATION

Many programs are too long to assemble as a single module.
These programs can be subdivided into smaller modules and
assembled separately to avoid long assembly time or to reduce
the required symbol table size. After the separate program
modules aie linked and loaded by this program, the output

module functions as if it had beem generated by a single assembly.

The primary functions of the Linking Loader are as follows:
1. Resolve external references between modules and
check for undefined references (linking)
2. Adjust all relocatable addresses to the proper
absolute addresses (loading)

3. Output final absolute object module

To understand the loading process and to enable the user
to use the Assembler and Linking Loader (hereafter called
Loader) effectively, the user should understand the various
program segments and segment load addresses. Although described
in the Assembler Manual, the various segments are summarized

below.

Absolute Segment - this is that part of the assembly

program that contains no relocatable information but

{s to be loaded at fixed locations in the users memory.
Absolute code is placed into the object module exactly
as it is read in the input modules.

Code Segment - the code segment contains that part of

the program which comprises actual machine instructions
and which typically can be placed into ROM. Instructions

in the code segment can make reference to any other segment.

CCS-A00X-02 Rev. A 2-1

P R 80 ki e et e b

Data Segment - the data segmen

t contains specifications

for that part of a users program that typically contains .
run time data and which usually resides in RAM. Of course

this segment could contain actual machine instructions.

Stack Ségment - the stack segment 1is used as the 2801

‘run time stack during program execution.

Memory Segment - the’memory segment is usually the

high address portion of memory which is not allocated

to any of the other segments. Data tables may expand

jnto the memory segment but the assembler has mno facility
to cause instructions to be loaded into the Memory Segment.

The start of the Memory segment is determined at Load time.

The Loader allows the user to load the program segments
into a contiguous program module or to specify the starting
address of any or all of the segments. The user may also
specify the order in memory in which the segments will be
placed. The default memory organization used by the Loader is

shown below.

High addresses

MEMORY
BASE
BASE
STACK
DATA
BASE
CODE
BASE

CCS-A00X-02 Rev. A

o

This is the typical memory organization used in most
programs. Many users will want to place the STACK segment
after the CODE segment 80 that the DATA segment can expand
{into the MEMORY segment during program execution.

The BASE address for all segments except the STACK segment'
i{s the low address of the segment. When a user specifies the
starting address of a segment via a Loader command, it is the
BASE address that is being specified. The BASE address for
the STACK segment is the high address of the segment. This is
done because during program execution‘the stack pointer typically

moves toward lower addresses.

Relocation Types

The relocation type of any program segment is determined
in the assembler by the CSEG and DSEG directives. The effect

of the three relocation types in the Loader are explained below.

Byte Relocation - this implies that mno operand was
specified onkthe CSEG or DSEG directive. 1In this case

the segment from the object module will be placed
immediately after the same segmént from the preceding

object module and there will be no wasted memory.

Page Relocation =~ this relocation type is specified by
the PAGE operand on the CSEG or DSEG directive in the

Assembler. It implies that the program segment must
besin on a page boundary (i.e. 0,100H,200H, o)

This code is placed by the Loader at the next available
page boundary after the same segment type from the

preceding object module.

CCS-A00X-02 Rev. A

Inpage Relocation -‘this is specified by the INPAGE operand | @M}
on the CSEG or DSEG di:eé:ive. It 1mp11es‘that the program i
segment must not cross a page boundary. 1If the loader

determines that a program segment cannot fit within the

current page, it bégins the segment on the next pagé

boundary as though it was PAGE relocatable.

In the typical 1load sequenEE}\the Loader placeé all CODE
segments contiguously in memory followed iﬁ;ediately by all
DATA ségments with no extra bytes between segments. However,
if any of the DATA segments specify PAGE or INPAGE relocation
then the Loader must start the DATA segment at a page boundary
so that relocation will be preserved. To avoid any wasted
memory the user can always specify starting addresses. In the
above case the same problem exists if the DATA segment is
followed by the CODE segment and the CODE segment has specified
any PAGE or INPAGE relocation.

When initially developing and debugging a program it is
helpful to specify each segment in each assembly as PAGE
relocatable. This will then force that starting address of
each module to end in OOH and will make it easier for the
user to follow the flow of the program. In this case the
assembler output listing contains the correct memory addresses
except for an offset that must be added to the high order
address byte. This may also be accomplished in the Loader
by the CPAGE and DPAGE commands.

CCS-A00X-02 Rev. A

LOADER COMMANDS

The Loader reads a sequence of commands from the Command
input device. The commands may be read in an interactive or
batch mode (see Loader Imnstallation Notes). The last command

must be an EXIT or and‘END command.

The object modules are read from the object module input
device or files specified on,the'LOAD command. The object

modules may be read from the same input device as the commands.

The output of the Loader consists of an absolute load
module suitable for loading into an actual microcomputer.
The output module is written to the object module output

device and is described in the Loader Installation Notes.

All commands begin in column 1. Command arguments may
begin in any column and must be separated from the command
by at least one blank. Comments may be placed in the command

stream and are indicated by an asterisk in column 1.

The following pages describe the Loader commands. In the
command descriptions, brackets { }, are used to indicate

optional arguments. A summary of the commands is given below.

CODE Set Code Segment Base Address

DATA Set Data Segment Base Address

STACK Set Stack Segment Base Address

MEMORY Set Memor~ Segment Base Address

CPAGE Set Paging for Code Segment

DPAGE Set Paging for Data Segment

ORDER Specify Segment OrderA

START Specify Starting Output Module Address

CCS~A00X~02 Rev. A - 3-1

e e b o o 198 i AP S o SO s e B et

STKLN Specify Stack Length

NAME Specify Output Module Name
LOAD Load specified Object Modules
PUBLIC Specify PUBLIC symbols '
- LIST List specified elements
NLIST Do not list specified elements
EXIT Exit Loader o
END End command Etream and finisﬁ_final load
* Comment | ‘

Command arguments that are numeric may be either decimal
or hexadecimal. Hexadecimal constants are terminated by a
H, e.g. 1FH, and need not have a leading zero if it starts
with A-F. |

Commands may be'read in any order and the same command
may be used more than once. The last use of a command determines
the command parameters. Commands may be placed before or after
the LOAD command except for the CODE,DATA,STACK, and MEMORY
commands, which if specified must precede the first LOAD command.

3-2
CCS-A00X~02 Rev. A

CODE — Set Code Segment Base Address

The CODE command is used to specify the starting address
of the Code Relocatable Segments. 1f not specified, the
starting address is zero or begins after the preceding éegment
4f this is not the first segment in memory. k
Example:
CODE 400H

rf' CODE value

where:

value - specifies the starting address of the CODE segﬁent

CCS-A00X-02 Rev. A

DATA — Set Data Segment Base Address

.

, AT
The DATA command is used to specify the starting address %{Mﬁ

of the Data Relocation Segments. If not specified, the starting

address follows the CODE segment or is zero if the DATA segment

is the first segment in memory.

Example:
DATA 1000H

I’ DATA value

where:

value - specifies the starting address of the DATA segment.

CCS-A00X-02 Rev. A

This command 1is
of the STACK‘segment.
spécifed by the STKLN
Module. 1If the Stack
immediately following

~begin at zero if this

"STACK — Set Stack Segment starting Address

used to specify the starting address
The length of the STACK segment 1is
command or is contained in the Load
address is not specified, it will start
thé preceding segment in memory‘or

is the first segment.

Note that the BASE address specified by this command

is the high address of the Stack Segment.

Example:

'STACK 3FFH

r’ STACK value

where:

value - specifies the starting address of the STACK segment.

CCS-A00X-02 Rev. A

MEMORY — Set Memory Segment Base Address

; The MEMORY command is used to specify the starting address o @w}
of the MEMORY segment. The length of the MEMORY segmnent will AP
be specified as zero on the 1oad map ‘but it is actually the

length of available memory remaining in a users system after

the other segments have been loaded. If not specified, the

starting address will start immediately following the preceding

segment in memory oOr begin at zero if this is the first segment.

Example: _ t
MEMORY 8000H

(MEMORY value

where:
value - specifies the starting address of the MEMORY segment.

3-6
CCS-A00X-02 Rev. A

CPAGE — Set Paging for Code Segment

This command may be used to modify the relocation type
of code segments in the input object modules. As explained under B
Relocation Types (page 2-3), the assembler indicates to the Loader
the relocation tYpe as byte, page, or inpage for each segment in
each object module. This command allows the user to override

that relocation type specified by the assembler.

The typical use of this command is to allow the user to
begin each module on a page boundary for ease of debugging and
then to specify the final program as byte relocation to avoid
any wasted memory space. This command allows the user to avoid

reassembling each module and changing only the relocation type.

This command allows the user to sﬁecify the code segment
of each module to be byte or page relocatable regardless of the
type of relocation specified by the assembler. Inpage relocation
is not affected. Note that the command also allows the relocation
type specified by the assembler to be used by the loader. This
command may be changed for each module read by the Loader. The
last CPAGE command will be used.

Example:

CPAGE ON
r CPAGE {blank, ON,OFF)
wvhere:

blank - specifies that the relocation type will be that
specified in the Assembler. This is the Loader
default.

ON - specifies that the code segment of successive modules
will be placed on a page boundary.

OFF - specifies that the code segment of successive modules

will be adjﬁsted to byte relocation.

CCS-A00X-02 Rev. A
3-7

DPAGE — Set Paging for Data Ségment

' This command may be used to modify the relocation type

J

of data segmehts in the input object modules. This command

is used in the same way as the CPAGE command and allows the

user to'épecify the data‘ségment,of each module to be byte

or page relocatable regardless of the type of relocation specified

by the aséémbler." Inpage‘relocation is not gffected.

This command may be changed for each modules read by the
Loader. The last DPAGE command will be used.

Example:

DPAGE OFF

r, DPAGE

where:
blank -

ON -

OFF -

{blank,ON,OFF}

specifies that the relocation type will be that . N
specified in the Assembler. This is the Loader

default.

specifies that the data segment of successive modules
will be placed on a page boundary.

specifies that the data segment of suc;essive modules

will be adjusted to byte relocation.

CCS-A00X-02 Rev. A

»)

ORDER =— Sepcify Segment Order

As described under Loader Operation, the normal order of
the segments in memory is: CODE,DATA,STACK,MEMORY. The ORDER

command is provided for users who do not need to specify

starting addresses for each segment but would like the segments

to be placed in memory in a different order. If the user

specifies starting addresses for the segments,'the order of

the segments if of no particular importance. If the user

specifies starting addresses for only some of the segments, the

remaining segments will be placed in the order specified by

this command.

Example:

ORDER c,s,b,M would place segments
in the order CODE,STACK
DATA and MEMORY

{ ORDER

wvhere:

seg -

seg,seg,seg,seg

specifies one of the four segment types as follows:
C - CODE

D - DATA

S - STACK

M - MEMORY

all four segment types must be included in the command.

CCS-A00X-02 Rev. A

3-9

START =— Specify Starting Output Module Address

This command is used to specify the starting address to
be placed in the terminator record of the object module. If not
specified the starting address 1s obtained from the END record
of the main'program of the input object modules. If no main

' program has been read, the starting address‘will be zero.

Example: ;
START 8

r START value

where:
value - specifies the starting address to be used in

the object module.

CCS-A00X-02 Rev. A

STKLN — Specify Stack Length

The STKLN command is used to specify the length of the
STACK segment to the Loader. If not specified, the stack length
is determined by the sum of the stack segment lengths specified

in the load modules.

Example:
STKLN 20H

1 STKLN value

where:
value - specifies the length of the STACK segment.

CCS-A00X-02 Rev. A 3-11

NAME ~— Sepcify Output Module Name

The NAME command is used to specify the name of the
final output object module. Currently this command performs
no function for the output module as the module is in Intel's
hexadecimal format and contains no name. It will be used
when the output object module is in relocatable format. The
user specified name may be any standard symbol and up td 6
characters. If the user does not specify a name, the name

‘of the output module will be taken from the first input module.

Example: -
NAME READER
rrﬁ NAME name
where:
name - is a symbol that specifies the object module name
3-12

CCS-A00X-02 Rev. A

P

\“‘\” S

&

e

LOAD — Load specified Object Modules

The LOAD command is used to specify one or more input
object modules to be loaded. If the command operand is a |
number, it is assumed that the input module is to be read from
that logical I/0 device. ~If,the command operand is not a number,
it is assumed that the name of a disk file is being specifiéd and
the object module»will be read from the file. If any operand is
preceded by a minus sign, it indicates that the object modules
should be read from the specified device or file until an end-of-
file condition (EOF) is detected (see Installatioh Notes concerning
modofications for EOF). In this case the user need not specify

an operand for each object module.

Object modules may be read from a combination of files
and peripheral devices and may or may not be read until the EOF.
The object modules are loaded in the order specified with each
module being loaded into memory at a higher address then the

preceding module. A user may use as many LOAD commands as needed.

Example:

LOAD 7,-FILE1l,7 Four modules are to be
loaded. The first from
unit 7, the next two
from FILEl until an EOF,
and finally the last
from unit 7.

rﬁ LOAD modulel{,modulez, oo modulei}
where:

modulei - specifies the number of a logical input device
or the name of a disk file on which the object
module resides. Any module specification preceded
by a minus sign will read object modules until
an EOF is detected on the device or file. Operands

CCS-AO0X-02 Rev. A 8re separated by commas.

2.172

PUBLIC — Specify PUBLIC Symbols

- This commandyis used to define and/or change the salue of
a PUBLIC symbol., If the symbol specified by this command is
already a PUBLIC symbol (from an object module), the value of
the symbol is changed to that specified by the user. 1If the
symbol specified by this command is not already defined, it will
be entered in the Loader Public symbol table along with the
specified value and will then be availaBle to satisfy external

references from object modules.

This command is useful in that it allows the user to
specify the value of some external symbols at Load time and
possibly avoid any reassembly. To change the value of a symbol
that is PUBLIC in an object module, this command must be
specified after the object module has been loaded via the LOAD

command.
Example:

PUBLIC INPUT=2FH,OUTPUT=200H
r, PUBLIC sym1=vali{,sym2=va12, ...,symi=vali}
where:

sym; - is user defined PUBLIC symbol which may already
be defined by some object module.

vali - 4is the value given to the symbol.

CCS-A00X-02 Rev. A

C

LIST — List Specified Elements

The LIST command may be used to generate listings of the
elements'specifiéd. The defaults are: no symbol tables are
listed, an object module is produced, no symbols are placed
in the output object module, and local symbols are not purged
from the input modules. The user should note that placing
both PUBLIC and local symbolé into the output object module
symbol table could cause duplicate symbols to exist imn the
module. Typically only the local symbols placed into the
object modules by the assembler or PUBLIC symbols will be placed
into the output object module. This is the case since using the
B option in the assembler forms a symbol table which includes
PUBLIC symbols. '

Example:
LIST T,X 1ist both local and
PUBLIC symbol tables

r LIST D,0,P,S,T,X

vhere:

D - specifies that PUBLIC symbols will be placed into
the output object module.

0 - specifies that an object module is to be produced.
(default)

P - specifies that any symbols present in the input
modules be placed into the Loader symbol table. (default)

S - specifies that the local symbol table be written to
the object module and thus may be used for debugging.

T - specifies that the local symbol table be listed on
the 1list output device.

X - specifies that the PUBLIC symbol table be listed on
the list output device.

CCS-A00X-02 Rev. A

2.1¢K

NLIST — Suppress Listing of the Elements Specified

The NLIST command is the opposite of the LIST command
and is used to suppress the listing of the elements specified.

The elements may be'turned back on with the LIST command.

Example: ’ ’ o ’
NLIST O don't produce an
' k object module
r NLIST D,0,P,S,T,X
where:

D - specifies that PUBLIC symbols will not be placed iﬁto
the output object module. (default)

0 - specifies that no output module is to be produced.
This is useful to check for errors.

VP - specifies that any lécal symbol tables present in the
input modules not be placed in the Loader symbol table.
This is useful if many modules are being loaded and
the symbol table may become full. Of course these
local symbols may then not be listed in a symbol table

S - specifies that the local symbol table not be written
to the object module. (default) |

T - specifies ‘that the local symbol table not be listed
on the list output device. (default)

X - specifies that the PUBLIC symbol table not be listed
on the list output device. (default)

CCS-A00X-02 Rev. A

A~
{

=

N/

€:;

EXIT ~— Exit Loader

The EXIT command is used in the interactive mode to
exit the Loader. This command is useful when the user finds
an error that will require the exiting of the Loader to fix.
It acts like an END command except the final load does not take
place and an output object module is not produced. This commmand
may also be used in the batch mode by making it the last command
in the command stream. In this case the final load will not
take place but the object modules and commands will be read

and checked for errors.

rr EXIT

CCS~-A00X-02 Rev. A 3-17

END -— End command stream and finish final load

The END command should be the last command 1n every
Command stream except if the EXIT conmmand 1is used. It initiates
the final steps in 1inking and loading the input modules. An

exit is than made from the program.

r END ~ '. ' ' -

3-18
CCS-A00X-02 Rev. A

=
=
Y
o

S

C*

O

Comment — Specify Loader Comment

An asterisk may be used to specify a comment in the command

input stream. The asterisk should be in column one.

Example:
* SAMPLE LOADER PROGRAM

CCS-A00X-02 Rev. A
3-19

®
R /

G e+ S R o ol

HOW TO USE THE LOADER

The Loader

The loader program is usually supplied as an unlabeled

 unblocked magnetic tape with 80 character card image records.

Other media may be requested.

The Loader is written entirely in Fortran and 1is cbmprised
of a main program and several subroutines. The main program
appears first on the tape the the last subroutine is followed
by a tape mark. The Loader is located after the assembler and

assembler test program oOmn the tape.

The Loader Installation Notes describe program installation
and any modifications that may have to take place for a particular
computer. It is extremely helpful to read these notes before

installing the program.

Loader Execution

This is a two pass Loader in which the commands and object
modules are checked for errors during the first pass and a symbol
table of PUBLIC symbols is formed. Errors detected during this
phase of the program will be displayed on the listing. If the
user is in batch mode, any errors found during this pass will
cause the loader to terminate with the message "LOAD NOT COMPLETED".

If the user is in interactive mode, only those errors found in

the object modules will cause termination of the loader.

During pass two of the Loader the final object module is
produced and any undefined externals are printed on the list
device along with their address in the‘object module. A symbol
table may also be listed. .

CCS-A00X-02 Rev. A

When executing the Loader, the user should place the
Loader Commands on the command input device expected by the
program. Of particularkimpo:tance is that the user specify
the correct number of modules to be loaded and whete théy are
loaded from on the LOAD command. It is extremely useful to
use the read until EOF option on thé LOAD command if the end-

~of-file can be detected on the particular computer.

Loader Listing

The following pages show a sample listing from the Loader
which is used to describe both the output 1isting and the Loading

process. This example is also used as the Loader Test Program.

The first page of the output listing lists all commands
entered by the user élong with any command errors that occur.
Following this would be any load module errors that occurred in
the modules loaded via the LOAD command. If no fatal errors
occur up to this point, then a load map is displayed which lists
the names of all input modules followed by the starting addresses
of the CODE and DATA segments for that module. The ending
address+l for each segment is displayed at the end of all modules
and is indicated By //. TFollowing this, the starting and ending
addresses of the STACK and MEMORY segments are displayed. The
ending addresses plus one are once again shown by the double
slashes. When the starting and final addresses are the same, it
implies that the length of the segment is zero. Following this
{s a 1list of all absolute segments in the object module along
with the starting and ending addresses. It is possible that
all absolute segments will not be shown if certain Loader tables

become full.

Following the Load Map is a list of all PUBLIC symbols as
well as local symbols if the user specified the appropriate

4-2 |
CCS-A00X-02 Rev. A

/

»

C

LIST command. PUBLIC symbols are those declared public in the

assembler by the PUBLIC directive. Local symbols are those that
were output by the assembler if the user had specified the "LIST B"
directive in the assembler. These may be used for debugging but

serve no function to the Loader.

As shown on the example listing, the only other information
that will be displayed on the listing after this point are any
undefined externals found during final load. This is indicated
by the name of the module that contains the undefined external,
the address of the undefined external in the input object module,

the segment type and name of the external.

The end of the Load program is indicated by the "LOAD
COMPLETED" or "LOAD NOT COMPLETED" message.

<. LINKING LOAUER VER 240

#% OADLR COMMANUS

TEST PROGKAM FOR Z#. LOADER

NOTE THE 03JECT MOODULES ARE READ IN FROM THE SAME

DEVICE AS TH: COMMAND STREAM. 10 READ THE OBJECT MODULE
FROM A DIFFERENT DcVICE THE LOAD COMMANDS MUST BE
CHANGEU TO THE NiMW DeVICE NUMBER. ALSO IF THE USERS
COMMAND DEVICE IS NOT 5, THE LOAD COMMANDS MUST ALSO BE

.- " " e S e @S

CHANGED.
JIST TeSeX
JATA 40L7H
JODE 6054
JROER CoSeDoM
STACK AOLMH
STKLN 12
sOlD 5'5
.OAD S
IND

83, 0AD MAP®*®

MODULE CODE DATA

MAIN 6605 Lwo7
READ 063F (4658
HODULE 9693 6500
/77 96A4 0SOF
STACK 09F &
7/ vAuo
MEMORY 05ufF
44 L50F

ABSOLUTE SEGMENTS

Yous GuuF

CCS-AOOX-02 Rev. A 4-3

$spyURLIC SYMBU .

CRLF (636
READ o63F

LCHO
_TIN

ss OCAL SYMBOLS

ASCR 40600
READIC - 66k
READS0 w673
TAB L0Gh

*#MODULE MAIN

BLNK
READ2U
RehADoU

UNDEFINED EXTERNALS

¢C11 C ~ SCAN

s OAD COMPLETED

t 39
ASCR vwll.ood
READ1(L wublwH
READSL wibel3H
TAB O Ul BH
3

210U6s50L316UcACUOF 6210
0160t15b~CDL¢0023C3;5.bDEOLEcuZCAIGubDUGLOU
‘1&00250&tb?Fn?CvUUuuioalCAZi&b7BDSOLCQObYR
'lb&6350&dDCDZ&LSubuACJZQﬂbCiZlJ70~l£usCDCu
i100t~50»1CC6Ftle¢SZ~éCUSQJéCSJFObFEUDCZ??
UIOOcBSJ;5FL67BB7C£~~¢63600C9FE7FCZ?3L67050
l1&06b50~ﬂ7ClbnbebLDu606002?06036006F£0019
l10&:750»CATOhuFLZuDAuuﬁ677201C78F£57CA69FU

Jus?

 061C

602y
¥65¢
J670

1BUFEN
Tout

BSPA
READ 3
READZ7V

LOADER EXAMPLE

vhs?

w629

b8
LEEF

s68u -

GLu.8H READ
ReADGys JULHETH
READ6Y wubotH

LN wdd Lt N3PA

ReAlew o0652H RcADI. LuboFH

KeAUbe oub70H PEAD7C GLbblH
TueTeFr2u23CiuEIBEF

tBELb§§0£0c3A57th7CA~~u500290603“630F8
1080LLuBuLES5C52A0BL5C3LLulaE

a1ca6930;u0210440JA.BJbBVCZAouonu2F210£056h

$03u6A3J. TBES

$16F05000LC3A0db0LCBUSBLAYL

S0LUGLSULFA

603Lv0506ALuLI6

INBUF bel?7

"READ C63F

READwy 0609
READBO GCE86

Vub3FH

LOADER EXAMPLE OUTPUT OBJECT MODULE

CCS-A00X-02 Rev. A

£
-

A~
.

Loader Example

The following pages show three assembly listings of programs
that will be combined by the Loader. The actual Load is shown
on the precéding pages. The main program contains references
to a subroutine READ and SCAN which are not in the program but
are declated external and will be found i{n another object module.
The second assembly listing shows the READ routine which is
required by the Main program and also shows that the READ routine
requires I/0 drivers TIN and TOUT which are declared external and
will be found in the Main prbgram. The third program contains no
l1inks to the other programs but does contain some absolute code

which will be used for a RST instruction during execution.

The Command stream on the preceding pages shows that the
user has specified the starting addresses of both the CODE and
DATA segments in addition to changing the order of the segments
to CODE,STACK,DATA, and MEMORY. The LIST command is then used

"to obtain a symbol table listing of both local and PUBLIC symbols

as well as placing the local symbols into the output object module.
Finally the LOAD command is used to read the three modules from

the device shown.

The Load Map shows the starting and ending addresses of the
three modules in the order loaded. Note that the third module
had specified a "DSEG PAGE" directive in the assembly and the
load map shows that the data segment for this module indeed

starts on the next page boundary.

An undefined external is 1isted for the Main module and
{ts address, relocation type and name is specified. It can be
seen that SCAN is not in any module. The user could have
specified the address of the routine with a PUBLIC command.

CCS-AO0OX-02 Rev. A 4-5

Finally the symbol table of all PUBLIC and local symbols
used in the program along with their absolute addresses is‘
listed. The user can determine from the addresses as well as
the final object module displayed on 8 subsequent page that the
modules have indeed been ‘linked together to form a final absolute
module with all addresses adjusted to the correct value and any

1inks between modules resolved.

Following the above example, a Loader run is displayed
that contains a few errors. Most of the load errors shown
will not occur except under unusual conditions and they have

been shown for informative purposes only.

The final absolute object module from the example is
shown along with the local symbols that were placed into the

module.

4-6 CCS-A00X-02 Rev. A

1 HTIOVNUND ¥V LNANO 0) 07SNA ST INTLNOX STHI

¢1n0 = JHUM

17

vea a1

1168 ALIdvd 3437308) 227 anNv
. vivo Ov3rt (NILvaN) ¢y Ny
13A AJV2H JONS fNT*2Z ar
AQV3¥ J1 NOZHOL AONHN amMy
SNLVLS 4NvN Ov3al (1viSn) ‘v N1

gty

03N SHISIIIY
v SY 3IWVS - a
WILIVAYHD INANT - v

S¥IL3INVYEYD LIX3

INON
SHILIAVAVD ABLNT

WNIHN3L 3H] WOX34 ¥3I1DVHVHI ¥ INANI 17IM 3INTLNOE SIHL

-
o]
z
™ °0 oo oo oo

e 00 00 ST 00 °F ©6 06 56 06 OF O O5 5 08 o0

RNT = 3JHYN

NIV dr

M INT

NWA 3298 NV3S IvI

INTVH*ZN daf

M INT

NNV NON 204 XD3HIL N0 dd
) (IH) ‘v ny sCINIvVH

334408 40 1eviSe JNANT ¢ N (1]

INTTY IX3EN Cvul avd hh Ak
HAINTIOd NIVIS §3Se NIviStdS a7 INTUN
H

“ININDIS 2009 43S 9352

*SHINTAN O/1 THL SIVINDIN 4713511
HOIKN OGNV 3003 40 NI v SOVIN HOIHWM 3INTLN0A v 0L GIANL Y
ST SIHL °Td3AIFG O/1 ONY WY NO0¥d NIVW FHI < n0130

SNNTT 3IH) HWNOJH3d DI

03SN 33V STYN»3LX~ OhY SOHITANG - *WYHOONd TUNT I 3HI Wd03 01}
H3KH13901 O0IXNIT “av SIMNAOH 34HL *HITANICST HI 33 SNLvI4
3IEVIVIONIA MY 40 LSOW SMOWS JVHI HWYAI0¥d AdWvS v ST SIHY

NVIStavTH N§LX3
OHIINIATH INCL NI ANTISNRT A INENT a1760d
NIvA AW
¥ s
A9vd P'OT 4IA BIERISEY MR

o

e 08 00 00 oo 05 00 °6 oF ov o0

2

[-~}

69

n

42 Ql

an 4o

*2 21 v)
FLREY

nn g0

an aq g9
£2

re A0 g
8% 67 21
£2

~2 34

N

en AN 12
an an Q9
an oar Tg
» §F 7P OTF

c2n
2290
1200
Tan
AYNN
(B

27

atn
£TY
"119
(RLL
Y LA
vonn
hons
aqna
[l b

kLl I

LTU

T IAN™ P
K BN VLI VTRV A A

O~ T
334

Y 4 PN
SN II ST TS

'3

-y DN D™
L N Nt R N R

-ty M PN D

3N 433

O

CCS-A00X-02 Rev. A

. a = Sr0WAZ WIIHWISSY

NIVK an3 1671 €6

110 nn3 1IN0} 9 ®201 66

ANl nons NIZ 9D 171 U6

H2 nn3l NNIE 121" ©6

nt no3 R yaney s6

: £3 nol ¥oSVv arap %6

AQVIY ¥3I0v3INS 2 nn3 AOHY 200 £6

AQYIY L IWSMYBLS 1 nn3 AQ¥L 169 26

INaNT 1¥vsns a no3 NTgVCN apv 16

INdANO JavsSne 9 n63 Lnoivan nnaY 0h

snives 1avsnd L] no3 tvisn anq0 €9

9y 14 OHI™? ¢ s330 10HI3 2519 98

¥333n8 30 (N3 $ONIINAY]

C 94343400 1NGNIE ng $470 14nANT annn 93

ININ93S vivo 173st 9350 69

s g

13 69 6£21 €8

8100 Lk} 2 am 2 03 9gn 29

41svee a1 v® ap wgd” 18

81Nn0 Mvo 2 an w2 03 IfI0 09

LA ol 130 a~ ar J2'n €l

H Y

0334 TNIT ONv ¢ Iy

: NEN13y 9VIMNYI ¥V S1NdiNO aN1inon SIHL ¢ LY

: : s al

i) . _ 3740 = JAUN ¢ LY}

i , s £

i A 1 693 220~ 2¢

! © 'yiv0 1ndino? ve(inoivon) 1no an g0 3271 T2

m gy (iR gl w211 M2

; AJ373u . ION¢ PLNO*? dar a ne w2 y3 827 69

; AQU3N 41 NI AUl anv va 33 az2°n @9

i snivis ovaal (1v1Sn) 'y Nl teino an g 2™ 29

i : s a9

i s 59

i ndy H -a

v g3cn S¥TLSIoIN ¢ f4

: $ 23
i , AINON s M

: , , GN3)I4YHVd JIXF 38 LR

. H t3

10310 01 WTLOUNYHD - g s R

G a4V ANINT 13

s 93

TENTRNIL THL S 4%

4 39vd i 20 B d3UKWISSY 07 wno€R 24 TF M00Y RO RKLE

CCS-A00X-02 Rev. A

3

39vd

69- 19 o

fhe L Y]
The T
26~ 09
86~ £
l6- £
?
52 bl
f6- Sh
6T &

06 29 19 69 49~
0

"2 12~

66 2 -
aQe 02 £
ih 9 “he

if- £

8- £

6L~ £

96 22

Sbe 18

LI 0 ~e
JON2UIIMN

IINTVIAWY SK0XD

¥3IA ¥IWWISSY 87

P

(T L L)
LY LR
neon
1p01r
w291
FALL
rANN
1909
rLLY
noan
“20%
apan
6991
n91
grnn
2190
rgan
LY R
J2n"
f2M
vanr
a=ny

INTIVA

WO

VDD VOLRIOLVW

LvisnH
noivan
NIivaon

AGYY
inoi
NIL
NIVLS
NY3S
AQYY
av3y
eno
AYONWIN
JINIVH
NIVNW
INANI
N1
N3in81
0HJ3
4143
WNTE
ERMY
¥ISY

134v

CCS-A00X-02 Rev. A

O

A1NAON LOAFE0 NIVH

£4092930
£ 40007T1T900Y 190

GERNLERN2E0N675£0000T22
ouyuaa:~ou¢oogsa:~=uo=@=oueanoo~.asuqu.gou,.mcouuau=-d,aeeno=
389771997 3£ 0900302

Q3N IE 2P0V N2

JANAITAAGTININENNNNT22
«uusow,,¢=a=-<u~,au=om:aa,,nuq~==s,oo=,o;~on~g~uuu~,.a.«~a,oaa,aoa:oa
(9r*acArpIsAGNI002

QAT IE O F LGLE L X

_ 130A80EDINANTEALANTNA0HTI0
ouagzuuamuog,agmqs.uaaz~o,,a,,,a..ozuuo,a,,a~a=,u~o«
mng:.._zopo,a,:mu«..uaauoa,auua,...zn_oaaasuda;auwo«
GEMNeeNYDSIN"eeQVIXGINNITET

oc»g,9,::,q,aaaan,naa,“m~qn°=,¢q<a. & NIVHANANZ220

4-10

CCS-A00X-02 Rev. A

32vdSAOVa indinos 1n01 M1MvI
3IPvdSHIVAO ¥ 139¢ vdse‘qa a1
INNOD INFH3IN3308 2 230
M 230 1220V
134 S3I¥LINI ON¢ 1qyINt? 4r
v %0
INNOD 1298 ERd | (]
313730 ON¢ AGOVIY*ZN df
313730 %04 NI IHIE 27 49 s0cavy
13y
3INIT 40 ON3 1V ¥D 1Ind¢ ISV (H) (1]
gNIQY 3¥ d=28 nTayINeZ 4
INdNI ANV 31 b el H v N0
INNOD 139¢ 3y a3
ON¢ AEOV3IYEIN 4r
YD 31 NIPHOYS : ¥yISY 43 s020v3y
NIVIV 1uViSe av3d df
’ ERlk IvI
X T0¥LINOID 1ON? 020V3IN*IN S dr
X T0¥INDD ¥Od4 NI3IKIL w2 dd
VILIVUVHI LX3N ovaat NIS vy s0T0V3Y
INNOD ¥ILIDVHVHD 12S¢ 03 al
$S3300V ¥3334N6 LNINIE NEANT ¢ al a3y
.
1Kt 3aY

03Sn SYIUSIINY

INIT ANANT SNIVINO - ANANI
S33L2NVUVD L IXT

OHOI ON = 0 *9vV74 OHII - O0HI3
SUILINVEVC AUINI

*33ydSHOVE ¥ AR 03IVIIONI 38 1IN 434408 INANT 3HL N1 QIN0TIY
ST N3IH1 SuILIVHVHD I AOW INANT 01 1dWILLV NV *Q3VONIIT
34V S43ILTVNVHI NIHLI0 1V cavl IHL SV 113 SY INTINOA

-SIHL AP 02IN90I2¥ 3FHV SUILIVAVHI TWID3IS IACAY IHL
ONV Z ONV XNV18 N3IIN138 SNILOVHYHI INAVAYILSIA 1Y

¥3ILIVHYHI 1SYD 312730 - 130
INIT ANIJEND L3VI0 - X TFONLNOD
INIT INENAND 40 ONT - ¥)

*gHILIYNYHI WIIIAS
34y ONINOTTI0S TH1 °¥33d4N8 L1NGNT 3HL ONI 11 S3Jvid
ONY TUNTIWR3ZL W1 HO¥3 3INIT Y N1 SOv3y 3NILNON STHI

0v3Id - 3IWVN

azuu:=~.u:azu.o:uu.h:ab.zn».uaxu NaLX3
av =y 2178nd
8 1s11
X 1819
IN3KW93IS 3000 $3s¢ 9359
(1] 2o] INYN
A9vd I & ¥IA ¥31BWISSY 197

°® 00 00 95 *F OF o S5 05 OF o 00 00 6 06 0O OO 05 05 OO 45 05 O¢ & &

- QWO (4]

‘g

2% a0 Q9
an ajg

uv

02

an gn Y9
T

02

80 af 29
42 33

63

ge of

an G0 ¥)
28

8l

an a2 29
o® 34

an 94 £9
gr 00 09
on FY 29
8T 33

or 19 093
1 T

e o T2
~g g8 20 7

21
a2n°
aznn
vzae
2270
929*®
5290
220
nzan

FiLl

(Rl
vi9n
6110
190
S110
£110
9190
aogo
ynan
9009
s0an
grng
anan

~Naav

-y gNONT T

NIV 4y

S

4-11

CCS-A0O0X-02 Rev. A

o

INNTLINODS
¥319V8V KD OHIIL
¥ILIVHVHI OHI3 1 NOOL

9y14 OHI? 1598

QN2 JAVML

424408 30 ON3I A04 XI3hIM
. INNOD 1298

INAOD INTHTAINIY

¥343n8 OINT ¥I10VATHD 1NdS

AVl Vv N0d4 %OTHO!

4 39vd

HOO
HO2
[
£7

*I10vy
inoli
MovIAeZ
v

(0HD3) vy
mavIAn2
ON34081°K0T°
EA

3

H

v (IH)

f 0Vt
ANTB
faQy3Iyel
avi
~0y3

Y 434 ¥3ITOWISSY 297

avi
XNIQ
vdSh
¥ISV

:
13edv2y

1920v3N

1997v3IN

1050V

[S e R o]

VR & Y

D

D

9

L3
an
nn

*g £

sn
an

5

an

v2
ra

)
ne
g
fn
T

SAONY? AFIENISSY

%610
8191
8290
9009
gnle

1601
ELLE]
LA]
yean
ALY
991
2909
Th"0
annn
FIRA
agnn
aena
hEND
qfnt
wgon
13 Bl

It

92
se
L7
L
24
\7}
0L

AINIT NN

CCS-A00X-02 Rev. A

4-12

f

39vd

69 4 9
L 11 9
- 95
"
99~
£9- 6¢ ss
00~ s
96~ Al
59 16~
Qhe re
6L 9f
2 fa 0s hEe
ef 2F = S
L]
2f a
"9 9
99 9
48 Q
£~ £s
he- L}
2L- "o 6f
ERUELEF R

TONINIZI SS0XD

M YA YIWWISEY "7

O

2nn
TIna
2090
annn
FCLL]
T899
3
LI]
v21n
9270
£190
$*h0
UL
fpea9
«naqn
[ALL
gran
anaa
LA R
noea
ar™y

NvA

o

IWETEWENE FIRCRE R FERINCNT Y Ry

ino}
NIL
avi
NJVLS
oscv3iy
020v3Y
190v3Y
060vIY
~hUv3N
reov3y
a20v3IN
rIav3Y
Qv3y
A¥OWINW
INANI
N34N81
0HI3I
378
vdse
N8
3ISY

hEL A

4-13

CCS-A00X-02 Rev. A

41NA0KX 103140 avay

04102939

TARQAANTICOTIVOND

02N0 3939200090 3E 1F A00NT 02

IFar2gangag0nnda2e

a£2150£00PNN0INNGRYILENORPVENIL9TICNZZIN

GRIGENALPSNTIINDI0L

£TrAIGeNAJLINIEFNANAT22

*EANY2YICNIJBLITH2L 00THYON2240R3EVIINGETINGY2O0
Agan29n21£4003302

42002£070200€2VARTLII0NT22
£290349016£090290060390T829°67V32882009620 323460070 CSWDIVIVITAININ9Y
LYOCITNPDAINANAITAGITANIGEOAADTAL2

. 6ANOITANTTINUIFALANT22
2T20820002200923700 03000200996 T2I8TIICINCOI N AIATINAAT2A09ITAINIEID
ANANAQYIHANNNL TG 2T2T

38900 20V3INGNOATSANAAYILIICNIEANICGUINGCAOSE A SAYIF92 Ty 2TNNADE2T
GUNQNEGYINGANNNZ2APEZ20YINGTI0IETAMITATIFGONLS NI e 2 QUINALANAITIFEIE2T
TS LI R ILT LI L PSE IS CRE LTI LT T POS TR R L LY ALEE FINITLLLTREL It At
09V %eoUVANGMIINATIFA2T NI

950ANIINBIIN0 NANTIN0P e aOHIIIIN PR lNILCNPAL e eNT 120N ad T8N0 DT
JTEONOAANICAQANPERAENOTAA20ENINNGT I ° “Y3NGIRATZ2D

4-14

CCS-AO0X-02 Rev. A

[E PRSI

]

39vd

A is¥t

e

TOYI°M0T**9¢s
viva*mo*
T8V

a‘v
viva*on
18y
39vd

CeVIVOS TIH

TeVI42N
v
(viva) ‘v
n oM

HO"Y
(viva) *IH
ag

M

)

X
¥3A NITLHNISSY Pe7

O

ON3
dON

8430
M430
ni20

1viva

oo

o>

170V

20

1

nn
na

an

LR

an

*N fe

nn
an

an
an

N
(1)
an

LE)

"
an

2p

SEO¥¥I YINEHESSY

20
ao
99
Gn

an

9%
Tn
€3

A
Te
32
an
23
28
ve
ve
an

]
ve
<2

97

4791
3091
onan
el
goaan
67"
L4009

94119
goar
Lk |

ay~a
gaan
aenn
Qaap
prans
200"
1Y)
Ta4°
'YXR}

annne
phan
HhINN
RANY

A0av

g
62
02
42
92
62
w2
£2
22
12
0?
et
or
1
9%
st
LY
£l
21
17
ot

et NI PN DO

FNTT ¥Nd

4-15

CCS-A00X-02 Rev. A

CCS-A00X-02 Rev. A

0 1097 S NIVLS

0 *ANC W AYONINW

Q2 "2 a2 9. £ ofg 9 Tav?d

Q- 652 LE4 9t 134 9 et o viva
IONYIAMN 3INTVA 138V

TIN3YII SSOND

2 3I9vd W T NIA ¥IBHISSY a2

4-16

JINA0X 103180 31000

04092030

T40MATA0IN0VIN0

£IPPONTATACAYAN2

2371601004 4922

[T:LLLRTRIALE LRI AL LA £]

20702°00T9£ 71113992

339%nnganng22

SINPOANANAGATANGADEDNINAZNTOYTID

QRANINAAGAL 27NN 2

vaIrRENT09922
403497302420 P0G 204RPANYF IVIAT20099I0 7T I20y290
227PANER2I00Y N2

JETANAECANANAWICNCIAYIPINITNAT IO
ETENIPNINICANANALPIALAYP2IEOAPTTTSY " TIN0OKNSICNI22]

4-17

CCS-A00X-02 Rev. A

03131dW0D 10N 0VO0TVee

anN3

FTANACINAGAY25IC2NNQAOPRNQTIN - 7 ax00
J0W¥I 00IIN NZOVIH

37N00Ke o

5 avol

HIrTOEAENNAYNS? = 6 033y
3ONINDIS 40 N0 QX0DY

NIVW 3MNA0He o

3¢9 0vO0D

2T NS

HA0Y 2JV1S
KeQ*S*3 ¥3NYO
HE¢09 3009
HLYY vivO
x*s*1 1SIY

SQIINVHY

g 0SIV ISNH SONYHAID OvOY 3HL *S 10N ST F3IA30 ONVWHOD
SHISN 3IHL 3T 0SIV *¥3IBWNN IITAIN KIN 3IHL 0L 039NVHI

3@ {SNH SINVHHOD OVO™ 2Hi FOTAI0 INI¥ISIIC ¥ [L-F)

2IN00W 123080 2HL OVI¥ 01 *4v3HLS INUKUWOD KL Sv 20IA30
AINYS IHE 40A4 NI QV3Y v STINA0N 4770 3HL ZION

FICVOT “R7 NOF WV4U0Hd 1S3

SUNVRHOD d70U0Tee

a0 NIA NIDYNT ONINNTY OF

* % & & & 8 % 00

CCS-A00X-02 Rev. A

4-18

APPENDIX A

LOADER MESSAGES

Messages from the Loader may be classified into Command
Error Messages and Load Messages. Command errors are due to
invalid commands or command parameters and always cause termination
of the Loading process in batch mode. Command messages are lisﬁed
beneath the actual command on the output listing. Load messages
occur during the loading of the object modules initiated by the
10AD command. These messages may be fatal or informative. For
most load messages, the message is listed followed by the record
number in the input module and the actual record in error. The
module name is also listed at the start of the messages for a

particular module.

Most load errors should not occur and if they do, the user

is advised to first reassemble the program and attempt to reload.

Command.Messages

Invalid Command - a command specified by the user is not.a

legal Loader command.

Invalid Operand - an operand specified for a command contains

invalid characters, does not exist, or is too large.

Command Not Allowed - this command is not allowed at this point

in the program. Due to specifying a load address after a

LOAD command has been specified.

Symbol table Full - user specified a PUBLIC command and no more

room exists in the symbol table.

Module Greater than 64K - at final load time the lengths of all

program segments is greater than the 64K memory size.

CCS-A00X-02 Rev. A . Al

File Not Found - a file specified in the LOAD command does not

exist or possible an invalid LOAD command operand.

Invalid Symbol - a PUBLIC command is specifiéd»that contains an
invalid symbol.' ' : ‘ |

Load Messages

Invalid Hex Character - a character in thevrecord shown contains

an invalid hexadecimal character. Some records contain
symbols as well as hexadecimal‘numbe:s. This message does

not apply to those symbols in the record.

Invalid Checksum - the record has a checksum error and probably

contains some changed characters.

Header Record Error - a header record was not the first record

in the object module or a header record was found after

the first record.

Record too lafgg - a record specifies a record length that is

greater than 72 characters.

Invalid Record Type - a record specifies a record type that does

not exist in the Loader.

Invalid ID or type - some internal parameters on this record are
invalid.

Address out of range - & relocation record specifies relocation

at an address outside the range of relocation specified

on the header record.

‘External Index out of Range - an External Reference is made to

an external symbol that does not exist.

External Table Full - Current object module specifies more

externai symbols then may be contained in external table.

Increase size of table.

A-2 CCS-AO0X-02 Rev. A

AN
kﬁ@ i

f\

Record out of sequence =~ &an object module record was read that

is out of sequence in the module or the user may have
inadvertently mixed the records if they exist on cards.

Symbol Table full - a PUBLIC object module record is being

processed and the symbol table is full.

Undefined External - a reference is made to an external symbol

that has not been defined in another module or by the user.
The name, relocation type, and address of the symbol in
the original module is listed.

Duplicate PUBLIC Name - a PUBLIC symbol is defined that has already

been defined in another module. Loading will continue
and the PUBLIC name will be listed.

Module Greater than 64K - during initial loading, the sum of

all segment lengths exceeds the 64K memory size.

Segment Overlap - due to user specified addresses, one or more

of the segments overlap. This is an informative message
and loading continues. An absolute segment could also

overlap a relocatable segment.

Unexpected end of Module - the user has used the EOF option omn

the LOAD command and an end-of-file condition has occurred
before the current module end record. Possibly some of
the information in the load module is out of order or
not in the load module. User should reassemble the module
and check that deviée or file contains proper load modules.

Program termination occurs for this error.

CCS-A00X-02 Rev. A

C
oy

APPENDIX B

OBJECT MODULE FORMATS

As part of the output processing, the Loader produces an
absolute object module. Ihis object module is a machine readable
computer output in the form of punched cards, paper tape, etc.
The output module contains specifications for loading the memory

of the target microprocessor.

The object module produced by the Loader uses the standard
intel hexadecimal format. This was done for a number of reasomns.
The object module in this format contains its own load address.
The user may easily create their own object records for patches.
This is the format used by some 780 manufacturers such as MOSTEK
Finally the object module does not contain any special characters

such as those used by the Zilog development system.

The object module 1is normally punched out on the device
specified. However, through use of the NLIST and LIST directive
the output module may be deleted.

The object module 1is produced as a series of card images
on the output punch device. Each object record contains the load
address and data specifications for up to 16 bytes of data. Symbol
table information may also be included. The format of an object

module is shown below.

$$

symbol records
$$
data records
A sample symbol record is shown below:

APPLE 00000H LABEL1 ODOC3H MEM OFFFFH

As many symbols records as needed may be contained in the object

CCS-A00X-02 Rev. A

module. At most 4 symbols per line are used but each line need
not contain 4 symbols even if it is not the last line. A module
may contain no éymboiyfecords,in which case the "$$" records will
still be contained in the module. | |

The‘format for a data record is shown beldw.

r" 1 2 3 4 5 6 7 8 9 10 11 ... 40 41 42 43

: byte load type data ' data checksum
count address o

Column 1 contains the code for a coion. This marks the

beginning of an object data record.

Column 2 and 3 contain the count of the number of data bytes
on the record. If this field contains an "00" it signifies
the end of the object module.

Columns 4 through 7 contain the load address expressed as
hexadecimal digits. The first data byte is to be loaded into
this address, subsequent data bytes into the next sequential
addresses. Columns 4 and 5 contain the most significant byte

of the address.

Columns 8 and 9 contain the record type. Presently two types
are defined. "00" indicates a data record. *01" indicates a

terminator record. In this case the byte count will also be

‘zero and the load addresses will actually be the starting address.

Columns 10 to 41 (or less if less data) contain the hexadecimal
specifications for up to 16 bytes of data.

The last two columns in the record contain a checksum. The

checksum is the negative of the sum of all bytes on the record

(except column 1(evaluated modulo 256.

B-2 CCS—-A00X-02 Rev. A

-

FICE AND SERVICE CENTERD 1i:#

HEADQUARTERS, P,0, BOX 0, MIMNEs

-

