
CONTROL DATA
CORPORATION

CONTROL DATA®
STAR COMPUTER SYSTEM

ST AR ASSEMBLER REFERENCE MANUAL

TITLE: ST AR ASSEMBLER Reference Manual

PUBLICATION NO. 19980200

REVISION B

DATE: November 20, 1974

REASON FOR CHANGE:

Revised to clarify and expand the explanation of certain topics. Corrections and comments noted by readers have been
incorporated. Examples in Appendix I have been replaced by those reflecting use of Assembler Version 2.2.

INSTRUCTIONS:

TI1is revision constitutes a complete reprint and obsoletes previous printings.

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD
REVISION DESCRIPTION

01 Ori&nal release

J}-27-73)

A Revised to inc~orate an apPendix _E_ertainil!B.. to STAR OS and to update infonnation contained in

(4-26-74} this document.

B Revised to clarify and expand the explanation of certain t~ics. Corrections and comments noted by

{12-1-74) readers have been incorporated. Examples in appendix I have been replaced by those reflecting use of

Assembler Version 2.2.

Publication No.

19980200

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

© 1973, 1974

Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Software Documentation
215 MOFFETT PARK DRIVE

SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet L'1 the
back of this manual

PREFACE

This reference document discusses the principles, features, methods, rules and techniques of producing a CONTROL
DATA® STAR Assembler Language program.

The reader is encouraged to study the subject matter in the order presented:

Section i

Section 2

Section 3

Section 4

Section 5

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

19980200 A

Introduction - introduces features of the STAR Assembler considered most
important.

Program Structure - Discusses the structure of a typical assembler program and
introduces the assembler coding conventions.

Statement Structure - Describes all assembler statement organization and rules.

Directives - Details all available assembler directives and the organization of
assembler procedures and functions. A directive summary is also provided.

Assembler Provided Functions and Procedures - Details all functions and procedures
provided as part of the ST AR Assembler.

Elementary Items - Describes the data types permitted for use with the assembly
language.

Expression - Describes the types of expressions permitted for use with the assembly
language.

ST AR Machine Instructions - Provides a more than cursory discussion of the
machine instruction types and includes a summary list of all machine instructions
with format and function descriptions.

JOB Processing Deck Structure

Assembly Listing Format - Describes and illustrates the format of an assembly

listing.

Error Messages - Lists all error messages produced by the assembler.

Predefined Symbols - Lists all predefined assembler symbols, their values, and use.

iii

Appendix H Assembly Limitations - Lists assembler limitations.

Appendix I Examples - Sample program descriptions.

Information supporting this document is given in the following publications:

iv

STAR-100

STAR-65

Hardware Reference Manual Pub. No. 60256000

Hardware Reference Manual Pub. No. 19980000

STAR Computer System Operating System Reference Manual Pub. No. 60384400

This product is intended for use only as described in
this document. Control Data cannot be responsible for
the proper functioning of undescribed features or
undefined parameters.

19980200 A

CONTENTS

INTRODUCTION 1-1 RPT 4-8
Features 1-1 GOTO 4-10

Procedures 1-2 RPT and GOTO Processing 4-12
Functions 1-2 Subprogram linking 4-13
Sets/Symbols 1-2 ENTRY 4-13
Attributes 1-3 Externals (EXTD, EXTC) 4-14 I
Basic Program Structure 1-3 Symbol and Set Definition,
Assembly Process 1-4 and Referencing 4-16
Operating System 1-4 SET 4-16
Assembler Error Detection 1-5 Referencing Sets 4-19

Element and Sub-Element Referencing 4-19
2 PROGRAM STRUCTURE 2-1 Assignment 4-20

Assembler Code Conventions 2-2 RDEF 4-20
Program Universal Area 2-2 EQU 4-21
Subprogram Area 2-3 Data Generation 4-23

Code Section 2-3 FORM 4-23
Data Section 2-3 Form Referencing 4-24
Common Section 2-3 GEN 4-25

Levels of Symbol Definition 2-4 Address and Location Control 4-27
Levels of Symbol Reference 2-4 Default MSEC 4-28

MSEC 4-29
3 STATEMENT STRUCTURE 3-1 RES 4-31

ORG 4-31
4 DIRECTIVES 4-1 EORG 4-32

General 4-1 Attribute Control 4-33
Input/Output Control 4-1 RATT 4-33

Input 4-2 Referencing Attributes 4-34
Output 4-2

Listing 4-3
LIBP 4-3
Listing Control 4-4 Procedures 4-34

SPACING 4-4 Writing a Procedure 4-34
EJECT 4-4 PROC 4-36
TITLE 4-5 NAME (Procedure) 4-36
MESSAGE 4-5 ENDP (Procedure) 4-37
NO LIST 4-5 Procedure Reference 4-38
LIST 4-5 Procedure Reference Termination,
DETAIL 4-6 EXITP 4-38
BRIEF 4-6 Procedure Reference Function Flow 4-39

Assembly Control 4-7 Functions 4-44
ID ENT 4-7 Function Definition 4-44
END 4-7 FUNC 4-45
FINIS 4-7 NAME (Function) 4-45

Conditional Assembly 4-7 Fundfoli Refer~ef1Ces 4-46

19980200 B v

ENDP (Function) 4-46 Symbol Creation Function 5-3
EXITP (Function) 4-46 Attribute Function 54

Summary of Directives 4-50 Intrinsic Attributes 54
ATT 5-5

5 ASSEMBLER PROVIDED FUNCTIONS
AND PROCEDURES 5-1
Conversion Functions 5-1 GLOSSARY Glossary-1

APPENDIXES

A ELEMENTARY ITEMS A-1 F ERROR MESSAGES F-1

B EXPRESSIONS B-1 G ASSEMBLER PREDEFINED
COMMAND-SYMBOLS G-1

c STAR MACHINE INSTRUCTIONS C-1

H ASSEMBLER LIMIT A TIO NS H-1
D JOB PROCESSING AND DECK

STRUCTURE D-1 EXAMPLES I-1

E ASSEMBLY LISTING FORMAT E-1

FIGURES

2-1 Program Structure 2-1 4-2 Association of Function Definition
4-1 .A.ssociation of Procedure Definition and Reference Elements 4-49

and Reference Elements 4-43 B-1 Expression Hierarchial Evaluation B-9

TABLES

2-1 Symbol Levels 24 B-6 Add and Subtract Operations(+·-) B-6
3-1 Statement Format 3-2 B-7 Relational Operations (EQ, NE, GT,
4-1 Summary of Directives 4-51 GE, LT, LE) B-7
4-2 STAR Assembler Directive Parameters 4-55 B-8 Logical Operations (AND, OR) B-8
5-1 Conversion Functions 5-2 C-1 Qualifiers C-2
A-1 ST AR Character Set A-2 C-2 Instruction Designators C-6
A-2 Delimiter Characters A-3 C-3 Vector Instruction Sub-function Bits C-11
A-3 Special Characters A-4 C-4 Vector Instruction Sign Control Sub-
A4 Summary of Rules for Constants A-14 function Bits C-12
A-5 Symbol Summary A-17 C-5 String Instruction G Designators C-16
B-1 Operators B-2 C-6 Instructions with Sign Control C-18
B-2 Comparison Methods B-3 C-7 Index Instructions C-19
B-3 Unary + - Operations B-4 C-8 Register Instructions C-20
B-4 Binary Scale Operations (.BS.) B-5 C-9 Branch Instructions C-23
B-5 Multi ply and Divide Operations (* /) B-5 C-10 Vector Instructions C-25

vi 19980200 A

C-11 Sparse Vector Instructions C-27 C-15 Non-Typical Instructions C-32
C-12 Vector Macro Instructions C-28 C-16 Monitor Instructions C-35
C-13 String Instructions C-29 C-17 Register Designators C-36
C-14 Logical String Instructions C-31 G-1 Predefined Symbols G-1

19980200 A vii

INTRODUCTION

The CONTROL DATA STAR Assembler is a versatile, self-extending source language and language processor
which runs under the control of the CONTROL DATA STAR® Operating System (OS). From the source
language subprograms, the STAR assembler generates binary output (relocatable) acceptable for loading and
execution by the central processor under ST AR OS control.

The source language consists of mnemonic machine instructions, procedures, functions, and miscellaneous
assembler directives. With the symbolic machine instructions, all hardware functions of the STAR computer
system may be expressed symbolically.

Directives allow programmer control of the assembly process.

FEATURES

This assembly language makes efficient use of all computer resources and provides flexibility in program con­
struction.

Features include:

Simple and consistent notation.

Procedure and function capability (provides many-for-one object code generation).

Conditional assembly capabilities for selective assembly

Set capability to define, reference, and extend lists of expressions

Attribute assignment for symbols and set elements

Mnemonic machine instructions define instructions to be generated.
instructions.)

(Appendix C describes machine

All existing assembler routines are re-entrant to permit simultaneous use by many users and location­
independent for fast loading.

ASCII Code set compatibility

Assignment of relocatable and absolute location counters for use in address assignment.

Comprehensive listing of maps, diagnostics, etc.

1

19980200 A 1-1

PROCEDURES

Procedures are assembly time subroutines that provide extensive parameterization of source statements through
conditional assembly and many-for-one object customized generation.

Procedures may be used for:

Assembler instruction expansion

Parameter checking, set generation, symbol redefinition

Building a new language

Saving parameters at assembly time

Ornnging instructions dynamically

Defining tables external to each routine

A source statement, consisting of a procedure name and parameters, calls a procedure. The assembler interprets
the procedure and generates the equivalent STAR relocatable binary object code. Often used or standard pro­
cedure definitions may be placed in the user defined library.

Procedure and function definitions are groups of source statements interpreted by the assembler each time a
procedure or function is referenced. A reference to a procedure definition appears in the command field of a
statement; it may be likened to a macro call. A procedure is similar to a macro.

FUNCTIONS

Functions are assembly time subroutines used where common routines (which return a value) are desired.
Functions and procedures are defined in a similar manner; a function reference is similar to that of a FORTRAN
function reference. Unlike a PROC a function does not generate code but returns a value. A reference to a
function can appear in the label, command, or operand field of an assembler statement. In general, a function
cannot appear in the label field of a statement. Only the SYM function can be used in this manner.

SETS/SYMBOLS

The programmer can define and assign symbols to an address, single value, or set (list) of data. An entire set
can be referenced by a symbol; each element of a set can be referenced by adding one or more subscripts to
the symbol.

The assembler recognizes as operands simple and complete expressions containing any of a set of 21 operators.
Elements of expressions can be symbols, constants expressed as integers, or real (floating point) values, accord­
ing to convenience.

A unique method of symbol definition allows the value of an expression to be used as a symbol. An operand
of a source statement also can be an attribute 0f an expression, such as type, size, etc.

1-2 19980200 B

ATTRIBUTES

An attribute is a property of an elementary item or expression. The assembler assigns attribute values (1-7) to
all symbols and set elements. These intrinsic attributes are used by the assembler during syntax checks and
expression evaluation. Through attribute referencing, the programmer can obtain information pertaining to set
elements or expressions, such as:

Symbol as a character string

Mode

Memory section location

Definition level

Symbolic type

Size

Number of elements

The programmer also can assign extrinsic attributes that are not used by the assembler but can be referenced
later or changed by the programmer.

The range of the extrinsic attributes is 8-127; i.e., the programmer may assign 120 extrinsic attributes. A list of I
intrinsic attributes, including possible values assigned by the assembler, appears in section 5. Methods of refer­
encing intrinsic and extrinsic values and of assigning extrinsic values are given in section 5 (ATT directive) and
section 4 (RATT function).

BASIC PROGRAM STRUCTURE

Source statements for an assembler program can be in one of two program areas: universal or subprogram.
Non-executable code and statements that do not generate data can be entered in the universal area; however,
all code can be written in the subprogram area with the exception of 1/0 directives and assembly control
directives described in section 4. The Universal and Subprogram areas are described in section 2.

LOCATION CONTROL

STAR Assembler directives permit program code and data to be assigned to a maximum of 255
subprogram control sections. Each control section has a location counter to ease the programming task of seg­
mentation. All code and data locations are relative to the peginning of the control section and the counters
can be incremented by words, bytes, or bits.

19980200 B 1-3

ASSEMBLY PROCESS

The STAR Assembler is essentially a two-pass assembler; however, the number of passes depends on the exist­
ence of the subprogram area. If the assembler is called and only a universal area exists in the source program,
only one pass is made. If a subprogram area exists, the following occurs:

First Pass

Second Pass

OPERATING SYSTEM

All statements are interpreted, values are assigned to symbols, and locations are
assigned to each statement.

Externals and forward references are satisfied, data generation is accomplished,
binary output and assembly listing are produced. Statements are interpreted during
this pass and, if required, error and warning messages are assigned.

The STAR Assembler executes under control of the ST AR Operating System, as described in appendix D.

CONFIGURATION

The requirements for executing the ST AR Assembler on the ST AR Computer System are the minimum required
for the STAR Operating System.

EXECUTION

I The assembler is called from the system library by an assembler job control command (MET A); see appendix D.
Parameters in the command define files to be used during the assembler run, such as source statement files,
listable output files and object code files.

STANDARD INPUT

The assembler source deck can be input from a standard card reader or a file, such as mass storage file, speci­
fied by the programmer. For a card file, input staging transfers the deck from the standard input card reader
onto a mass storage file. The assembler interprets one source deck statement at a time.

14 19980200 B

PRINTER OUTPUT

The assembler produces printer output containing a listing of each source statement. Control directives provide
options for obtaining a detailed listing. Errors detected by the assembier are noted on the iisting. The output
listing may include:

Source Program

Memory Map (Address Counter)

Generated Object Code

Diagnostics

Cross-Reference Listing

Assembler diagnostics, are listed in appendix F; the assembler listing format is described in appendix E.

EXECUTABLE OUTPUT

Upon programmer request, the assembler opens the user specified file to receive relocatable binary output
acceptable to the ST AR relocatable loader. When the assembler has completely processed the source deck, the
programmer can call for loading and execution of the object program from that file. -The loader links the
newly assembled programs referred to by a new program.

ASSEMBLER ERROR DETECTION

Errors detected by the assembler are indicated on the listing by an error message preceded by a field of
asterisks; each message occupies a full listing line.

SOURCE STATEMENT ERRORS

Source statement errors are listed after the statement containing an error. The count of the number of errors,
and a list of the line and page number of statements with errors are included in the listing after every sub­
program. Pass one errors are listed after the IDENT statement for the subprogram.

STATEMENT TERMINATING

A statement terminating error is indicated by any error message NOT preceded by WARNING or SYSTEM
ERROR. On detecting such an error condition, the assembler discontinues processing the current statement
and continues with the next sequential statement.

19980200 B 1-5

I

WARNING MESSAGE

Messages beginning with the word WARNING indicate a default was assumed for this error condition and
statement processing continued. (The LISTING directive may be used to eliminate warning messages from the
listing.)

HARDWARE OR ASSEMBLER ERRORS

All hardware or assembler error messages start with SYSTEM ERROR. They indicate a failure within the assem­
bler; the assembly is aborted.

1-6 19980200 A

PROGRAM STRUCTURE

Assembler programs are written in modular form; they can consist of one or more subprograms (figure 2-1)
which are linked and loaded together, and executed as a task. The source code for each program is assigned
to assembler-defined program areas - universal and subprogram. These areas can contain procedures and
functions which, for discussion purposes, can be considered subroutines. Each subprogram area can contain
one or more code, data, and common sections. Each subprogram area produces a separate object module in
the object file.

Subprogram
Areal

Common Section 1

1~~~-U_m_·_ve_r_s_a_l_A~re_a_2~~--t~
Subprogram Area

2

same as Subprogram Area
1

I
Universal Area

n
I
T

Source Statements

SOURCE DECK

NON EXECU.TABLE CODE

ID ENT

SUBPROGRAM I
END

NON EXECUTABLE CODE
(if required)

ID ENT

SUBPROGRAM II

END
'FlNIS

Figure 2-1 . Program Structure

2

19980200 B 2-1

I

ASSEMBLER CODE CONVENTIONS

All code (except data and common section code) must be location-independent. Such code consists of a sequ­
ence of statements without virtual address references (relative references are permitted). This code is written to
execute correctly from any location in virtual memory and combines the benefits of absolute code (fast load­
ing) with that of relocatable code (can be loaded at any location).

Assembler code also must be re-entrant; it must never modify itself. Re-entrance permits the simultaneous use
of the same code by more than one task in the user program. Re-entrant code is obtained by separating the
code from data modified by the code.

Examples of location-independent and re-entrant code and the solution to some programming problems which
result from these conventions are provided in appendix I.

PROGRAM UNIVERSAL AREA

The universal area is located before the first IDENT statement of the subprogram area (when a program con­
sists of one subprogram) between the END statement of a subprogram area and the IDENT statement of the
following subprogram area (when a program consists of more than one subprogram). Statements in the universal
area specify input/output parameters and define symbols, procedures, functions, and sets to be referenced by
statements following the subprogram areas which follow.

Procedures (section 4) are assembly-time (only) subroutines that generate customized code or data. Only one
copy of a procedure is required regardless of how many times it is to be called within a program. Functions
(section 4) are also assembly-time (only) subroutines normally used when common subroutines are required.
Functions, unlike procedures, return a value, and cannot generate code.

The STAR assembler is essentially a two-pass assembler; however, in the universal area only one complete pass
is made per assembly. Code or data cannot be generated in the universal area. Forward references (section 4)
or statements which affect location counters (FORM references, MSEC) are not permitted. A reference to a
symbol (appendix A) or set of elements (set name and a list of expressions) before it is defined is termed a
forward reference. A reference to a numeric label is not considered a forward reference.

Definition level l is assigned to the universal area. All symbols defined in this area are assigned a definition
level attribute of 1. All identifiers and names defined in a procedure or function and located in the universal
area are assigned a definition level of 3 or greater depending on the nested call level. Each nest of a procedure
or function call increases the definition level by l. Symbol level definition and referencing is described at the
end of this section.

2-2 19980200 A

SUBPROGRAM AREA

The subprogram area consists of statements between the IDENT and END directives. The sub_program area can
consist of one or more user-specified memory control sections which can contain: code (code section) and
associated data, data (data section) to be shared by more than one subprogram, and common data shared be­
tween two or more separately assembled programs. These memory control sections are assigned through the
MSEC directive or by default as described in section 4.

In the assembler object file output, locations of code and data sections of a user program are non-contiguous.
However at load time, these areas are linked through the register file; the STAR loader allocates contiguous
locations for all common sections.

All assembler directives can be used in the subprogram area except the INPUT, OUTPUT, LISTING, IDENT,
and FINIS directives. Forward references to non-redefinable symbols are pennitted; however, forward refer-
ences to function names, procedure names, fonn names and redefinable symbols are not permitted. I

The subprogram area is assigned definition level 2; therefore, symbols not defined in a procedure or function
are assigned a definition level attribute of 2 unless they are declared external. Symbols defined in a subprogram
area procedure or function are assigned a definition level of 3 or greater depending on the nested call level of
the procedure or function. Each nest of a procedure or function call increases the definition level by 1.

The subprogram area is two pass, therefore it does not permit nested forward references because an additional
pass is required for the resolution of each nested reference.

CODE SECTION

The code section consists of the executable portion of the subprogram. Code section statements must be re­
entrant and location-independent and can contain read-only constants and instructions; external references and
relocation references are not permitted. Read-only data is better placed in the data section, although it can be
placed in the code section. When data is contained in the code section, it is not necessary to specify the start
of the data section by MSEC directive.

DATA SECTION

The data section contains information unique to the user's program. The beginning of a data section is specified
through the MSEC directive or through default. Relocatable and external references can be used in this area.

COMMON SECTION

This section consists of data which can be shared between programs assembled separately, but loaded together.
This section is specified by the MSEC directive and contains a return address identifier. Variables, relocatable
references, and external references are permitted here; however, symbols must not be declared as entry points.

19980200 B 2-3

I

LEVELS OF SYMBOL DEFINITION

The assembler recognizes 128 levels of symbol definition: external, universal, subprogram and 125 procedure/
function call levels (table 2-1).

Symbols defined at a given level always are available at that level and all higher levels, but they cannot be
referenced from a lower level unless they are made external. Symbols outside the assembly can be declared
external through the EXTC or EXTD directives.

Within procedures, functions, or subprograms a dollar sign ($) appended to the symbol, when it is defined,
changes the definition level of the symbol. At the subprogram level, the $ lowers the definition level to 1.
When the $ is used within a procedure or function (or nested procedure/function), the definition level is
lowered to 1 if the original procedure/function is called from the universal area; or it is lowered to 2 if called
from subprogram area.

Table 2-1 . Symbol Levels

Level Value Meaning

1 Symbol is in universal area and available to all subsequent subprograms,
functions, and procedures.

2 Symbol is in subprogram area and available to all procedures and functions
called by the subprogram.

~3 Symbol is in a function or procedure and available to all procedures
and functions called by the procedure or function.

LEVELS OF SYMBOL REFERENCE

When a symbol is referenced, the assembler always searches for the symbol at the current level. If it is not
found there, the assembler sequentially searches each lower level.

A symbol defined at both the originating call level and the current level, must have a $ appended to it when
it is referenced to return the original call level value (either the universal area or subprogram area level value).

Symbols are defined through the SET, RDEF, or EQU directives. The RDEF directive in the following example
illustrates the appended $. In this example, the symbol A is defined at the universal level, redefined at the
subprogram level, and referenced at the subprogram level.

2-4 19980200 A

Example

Universal r
area ~A
(level 1) L

RDEF 3 !:A=3

Subprogram I I DENT I
area 1
Qevel 2) ~ RDEF l!:;+l

::A=2
RDEF ~:B= 3--REFERENCES LEVEL 2
RDEF A$+1 :: C = 4 - - RE F E R E NC ES LEVEL 1

For a second example illustrating the use of the $, see appendix I, ASSEMBLY TIME SQUARE PROCEDURE.

19980200 A 2-5

STATEMENT STRUCTURE

The STAR assembler language source program consists of a sequence of symbolic machine instructions,
directives, and comment lines. Input may consist of a sequence of statements punched on 80 column cards
or entered into a source file via a tenninal display console or can be resident on mass storage in binary or
source format.

The programmer can specify the begin, continuation, and end boundaries of each program statement through
an assembler supplied INPUT directive or through default values. If the starting character position is not
specified, a default value of 1 is assumed by the assembler. The assembler scans each statement as specified
by the preceding INPUT directive or by default value.

Similarly, the programmer specifies the last character position (end-of-column) of each statement. The maxi­
mum value is 256; default value is 72. If a continuation for a field is specified before the end-of-column,
the assembler scans the next line starting with default column 25 or a column specified by the INPUT
directive. Continuation is specified by use of an ampersand (&).

Assembler statements can contain up to four fields; the fields must be separated by one or more blanks:

Label

Command

Operand

Comment

Each field can be as long as required. Should the length of a single field or combination thereof exceed
247

-
1

, field continuation must be designated by inserting an ampersand (&) in the field to be continued.

3

Characters outside the statement boundaries are ignored, but the entire line image is listed by the assembler. I
Table 3-1 describes statement fonnat, including field restrictions.

19980200 B 3-1

Table 3-1. Statement Format

Format: Label, list command, list list *comments

Label Field

Starts at: Begin column

Command Field

Starts at: First non-blank
character after Label field.

Operand Field

Starts at: First non-blank
character after Command
field.

Comment Field

Starts at: First non-blank
character after Operand
field starting with asterisk
or any field starting with
asterisk.

If the first character of any
field is an asterisk, characters
following are considered
comments.

1-----------~----------t----------+----------

Terminated by:
Blank

:f End-of-Record
End Column

Terminated by:
Blank

:f End-of-Record
End Column

Terminated by:
Blank

* End-of-Record
End Column

Terminated by:
* End-of-Record

End Column

1-----------1-----------+----------+--------· --

Format Description:
numeric label, list

Numeric label is optional.

Optional list of elements
separated by commas.

Symbols (63 characters
max).

First character must
be alphabetic

Remaining characters
must be A-Z, 0-9,
or underscore.

Set element references.

Symbol creation
function.

Command field deter­
mines legal elements
in list.

Format Description:
command,list

Command can be:
Directive

Machine instruction
mnemonic

Form name

Procedure name

Symbol creation
function

Optional list of elementary
items or expressions separ­
ated by commas.

List elements vary with
the command.

Format Description:
list

Optional list is composed
of elementary items or
expressions separated by
commas.

List elements vary with
command:

For a directive, this
field provides infor­
mation required to
perform a designated
operation.

For mnemonic machine
instructions and pro­
cedures, list represents
addresses, constant
values, and expressions
to be evaluated.

Format Description:
Any ASCII character other
than & is legal as a comment.

& indicates continuation.

:f Unique end-of-record/line character (#1 F) at the end of each source statement. This character is inserted
by the editor or card reader.

3-2 19980200 A

Examples

The following illustrates the use of all four fields and continuation:

111,IAI IGIEINl,16141,1211~~1GIEINIEl&I

IRfAlrfElsl fAI
I'

Column 25
(Columns 1-3 contain numeric and symbolic labels.)

The following statement includes a blank label field:

(There is no comment field in this statement.)

The following includes a command and comment:

The following illustrates only a comment:

As described in table 3-1, a label may consist of an optional numeric and symbolic list. If the numeric label
is not used, the symbolic list starts in the start column specified by the INPUT statement or in default
column 1.

19980200 B 3-3

I

DIRECTIVES 4

GENERAL

A programmer using the CONTROL DATA STAR Assembler directs the assembly of object code by using a
set of commands called directives. Directives control the operation of the assembler in much the same way as
machine language instructions direct the computer. Through the use of directives, a programmer can:

Define a symbol and assign a value or set of values to it for subsequent reference by the symbol.

Specify that a symbol referenced by the program being assembled is defined externally (perhaps by a
program previously assembled) or that it can be referred to by some other program.

Conditionally repeat or skip source statements.

Assign up to 255 relocatable location control counters for use by the assembler in address assignment.

Generate code to be loaded and executed on the object computer. This process includes subdivision of
each word to be generated into fields, and the assignment of values to the fields.

Identify a group of statements as a function, assign one or more names to it, and use the assigned name
as a value in an expression such that the value varies according to parameters of the function reference.

Control the format and content of the assembly listing.

Terminate assembly of subprogram or group of subprograms.

Table 4-1 (at end of section 4) summarizes assembler directives. Examples illustrating the use of th.ese directives
are provided in appendix I.

INPUT/OUTPUT CONTROL

The following directives specify the format of assembler input and the type and format of assembler output.

19980200 A 4-1

I

INPUT

The INPUT directive specifies source input fonnat to the assembler:

numeric-label INPUT plO,pl l,pl2 *comments

Usage

Numeric-label is optional

p 10 Specifies starting column of input record. Default is 1; p 10 must be greater than zero.

pll Specifies last column to be processed. Default is 72; pl 1 must be greater than plO plus p12.

p 12 Specifies starting column of continuation records. Default is 25; p 12 must be greater than zero.

More than one INPUT directive is allowed per assembly. This directive is pennitted in the Universal area only.
Any syntax error in this statement tenninates assembly.

Example

l t J P U T , 8 0 , 2 5 :: 5 C M·l 5 PE C 5

Start scanning at column 1, default.

Scan the entire field length of 80 columns.

Start scanning continuation records at column 25.

OUTPUT

The OUTPUT directive requests an object deck output:

numeric-label OUTPUT p30 *comment

p30 Request for a debug symbol table in the object file. If p30 has a value of 1, the debug
symbol table is included in the object deck produced by the assembler. For any other value,
the debug symbol table is not produced.

The OUTPUT directive can be used only in the universal area, and only one directive per assembly is per­
mitted. A syntax error in this statement tenninates object deck creation.

Example

OUTPUT

An object deck is to be created and no Debug Symbol Table Dump is requested.

4-2 19980200 B

LISTING

The LISTING directive is used to request assembly listing options.

numeric-label LISTING pl4,p15 *comments

p14 Value of 1 requests a cross reference list, including all address and EQU definitions and all
references that occur after the definition line, for example:

B

A

c

EQU

EQU

EQU

A

4

A

line 1

line 2

line 3

The cross reference listing will indicate that A is defined on line 2 and referenced on lines 1
and 3. Default of p 14 * 1 indicates no cross reference.

p15 Value of 1 specifies that warning messages are to be omitted from the listing.

Syntax errors result in selection of default values. This directive is permitted only in the universal area. Only
one LISTING directive is allowed per assembly.

Example

LIS TI t~G 1, 1

A cross reference list is requested and warning messages are suppressed.

LIBP

The library file can include PROC and Function source statements and comments. Any other statements are
syntactically checked but not processed. A LIBP file must be a physical, mass storage file. Tape libraries are
not permitted.

The LIBP directive specifies library procedures and functions. A syntax error terminates this directive:

numeric-label LIBP,p13 list 15 * comments

pl 3 Optional; 8-character symbol specifying the source file name.

listl 5 List of procedures or function names separated by commas. If list 15 is not used, all proce­
dures and functions on the file will be available; otherwise, only those specified will be
available. The list of procedure/function names must appear in the order in which they occur
in the LIBP file.

Up to ten library files may be specified, one per LIBP directive.

The UBP directive is not allowed with.in 4 procedure or function definition, and must appear in the universal
area.

19980200 B 4-3

The following is an example of defining system parameters in a library:

LIBP File xx

GLOBALS
SYSTEM$
TAPES$

Main Program

PROC

NAME
EQU
EQU

Ef\IDP

"STAR OS"
5

LI BP., XX GLOBALS
GLOBALS ~:DEFINES SYMBOLS AT UNIVERSAL LEVEL

LISTING CONTROL

The following directives specify the format of the assembler listing.

SPACING

Selects the number of blank lines between listing lines:

numeric-label SPACING p28 *comments

p28 Integer constant value of 0, 1, 2, or 3 indicates the number of blank lines to follow each
listing line. Default is zero.

Example

SPAC HJG 2 ::sE LECTS T\tJO BLANK LINES

When a syn tax error occurs the SPACING directive is ignored. A SP ACING directive overrides any previous
SPACING directives at this level.

EJECT

Specifies listing is to resume at the top of the next page. EJECT can be used at all levels.

numeric-label EJECT * comments

44 19980200 B

TITLE

Places a title of up to 64 characters at the top of all succeeding pages; it also causes a listing eject.

numeric-label TITLE p29 * comments

p29 "character string of no more than 64 characters"

Example

TITLE "ASSEt18LER LISTING" ~~NO COMMENTS

MESSAGE

Forces a character string or string expressions (maximum 128 characters) to an output listing; it overrides any
active list control directives.

numeric-label MESSAGE p16 *comments

p 16 "character string or string expression" to be entered on the listing; if greater than 128
characters, the string will be right truncated.

Example

MESSAGE ''ADD_PHAS E_COMP LE TED''

NOLIST

Suppresses a listing until a list directive is encountered.

numeric-label NOLIST *comments

LIST

Restarts output listing previously suppressed by a NOLIST directive. The normal mode of assembly is LIST.
This directive does not alter the DETAIL mode. When DETAIL mode is off, statements processed as part of
procedures and functions are not listed.

numeric- label LIST *comments

19980200 B 4-5

DETAIL

DETAIL is used only at expansion time not at definition time. At call time, this directive causes a listing
of all statements processed as part of procedures or functions. A DETAIL directive processed at any level
initiates the listing for the current level and all lower levels, until a BRIEF directive is encountered. DETAIL
does not initiate the LIST mode.

numeric-label DETAIL *comments

If a LIBP directive is encountered while in DETAIL mode, the Procedure or Function definitions contained
in the specified file are not listed.

If at level 4 DETAIL is encountered and at level 5 BRIEF is encountered, only level 4 code will be expanded.
If again at level 6 DETAIL is encountered, then level 6 code is expanded.

Example

01 oaoooooooooo F

01 oaoooooooo4o F

00 000000000032

00 000000000019

00 000000000271
00000000 00000271

00 000000000032

00 0000000009Ct+
00000000 000009Ct+

INPUT 1,80

B
OUTPUT

ROEF
I DENT
DETAIL

50

FUNC NUMBER
SQUARE NAHE
AGAIN NAME
RESULT RDEF NUMBER(i}•NUMBER{1}

ENDP RESULT
B ROEF 25
'.) GEN SQUARE (8)

RESULT
ENOP

c ROEF
GEN

RESULT
ENDP
ENO

RDEF NUMBER{1}•NUMBER{1}
RESULT
BS

AGAIN(CJ
RDEF NUMBER{1}•NUHBER{1}

RESULT

See Example 5, Appendix I for an assembly of the above example without the DETAIL directive.

BRIEF

Prevents the listing of statements processed as part of procedures or functions (turns off DETAIL mode). The
BRIEF directive does not initiate the LIST mode. The default listing mode is BRIEF.

numeric-label BRIEF *comments

4-6 19980200 B

ASSEMBLY CONTROL

Tne foilowing directives define program boundaries to the assembier:

ID ENT

END

FINIS

(used at level 1 only)

(used at level 2 only)

(used at level 1 only)

IDENT and END directives specify the beginning and end of a subprogram; FINIS specifies the end of source
statements.

!DENT

END

numeric-label,symbol IDENT *comments

symbol Optional name of object deck. This symbol is truncated to the first eight characters when
the object deck is produced. The symbol is not defined (as a label) as a result of this state­
ment.

numeric-label END p 1 *comments

p 1 Optional address identifier indicating a transfer address for object deck execution. This
identifier must have appeared previously as an entry point name in an ENTRY directive.
(See SUBPROGRAM LINKING.) For an example of the use of this symbol, see Appendix I,
example 8.

This statement can be followed by another Universal Area and Subprogram area. This provides the user with
two separate assemblies with one deck setup. However, the user must ensure that only one Universal Area
includes an OUTPUT directive and that the last SUBPROGRAM area ends with a FINIS directive.

FINIS

numeric-label FINIS *comments

FINIS terminates an assembly and must appear in the Universal level. If FINIS is encountered in a subprogram
area, the assembly aborts in pass 1.

CONDITIONAL ASSEMBLY

The user can specify the conditions which must be satisfied before a source statement or group of source
statements can be assembled and the number of times these statements are to be processed.

19980200 B 4-7

I

I

RPT

Specifies the number of times a statement or delimited group of source statements, following the directive,
are to be processed;

numeric-label,symbol RPT,p26 p27 *comments

symbol

p26

Optional variable identifier, or expression evaluating to a variable identifier containing cur­
rent repetition count. This identifier can be referenced and altered by the user. The initial
value is always 1 ; it is incremented by 1 with each repetition of the succeeding source state­
ments. Symbols can be re-used as shown in example 5.

Number of times succeeding statements are to be processed; pl must be an integer constant
or a variable or expression which evaluates to an integer constant. If the value of p26 is zero
or a negative, the RPT statement skips to the statement following the numeric label p27;
p26 cannot be a forward reference (a symbol or set element referenced before it is defined).
The value assigned to p26 upon encountering the RPT loop cannot be changed. See example
2 below.

p27 Forward numeric label of the last statement in the RPT loop; p27 must be an integer
constant or a varaible or expression which evaluates to an integer constant, and not a forward
reference. If p27 is negative or zero, an error message is given and the directive is ignored ..
Loop can be nested and have common termination statements (see example 3).

Example

Some directives contained in the following examples are described later in this section.

1. A RPT,8 1
A RDEF A+l
1 GEN A

The above repeat is equivalent to:

A RDEF 2
GEN 2

A RDEF 4
GEN 4

A RDEF 6
GEt~ 6

A RDEF 8
GEN 8

4-8 19980200 B

2.

Jl uJuuOOl
i) 1 uoauoo1
01 JuuJuJl
01 JiluOOu:l
ul JuGuOJ~
u1 uuuouul
Ji ououuJl
iH uiJOJuJJ
u1 OuOJOOl
Jl UJuulJ.d

3. Nested RPT's.

19980200 A

JG JOOJ~GJJOOLA

r ;iPU T
JJTPUT
IJENI
RO~F 10

u~C lti RPT, A 1

u u u o a
u u 0 40
aoosu
JuOCO
Hi1uu
Ju 1'+0
u018u
JJl~u

i:.u2uJ
o 1.12 ... u

Di
ll1
01
01
01

- 11
U1
D1
11
u
11
11
Di
01
01
G1
11
iH
DI
u
Ill
u
11
81
ill
01
u
01
01
Q1

01
D1
u
Q1

Q1

f
F
F
F
F

ull uuuiJuuuuuUGj
JuJujuCu uuuuuuu1
uOOLUJvu uuuuuuu~
ouJuJGuu oouoouu3
uOJOUuuJ uOuua~u~

uuuuuuuu ouuouuu5
F
F
F
F
F

OuJLUOOO u0uUUJ06
uuuouuuo oouuuuu7
GGJuJuuu OO~Ju~u8
uOuGJ~uu OuJJJuug
OOJuOJuu OGO~~uu~

DE; b
oe.;; 11

ilOODOuJOuDDD F Jilb~OJDO OOOOOOul
0 0 0 0 0 0 l 0 0 OltO F OOOOOOuO 111111 uoou1
liOOOOill 00080 F OOolOOliOO 00000001
uOO.iOollaOOCO F llOOliOOOll uOOi101lli2
uiHOOOJJ0100 F 0000.illDO ooui1o1uri1
OOOOOlllOOhli F liOOOOOOO 001Hi001i3
llllOUUOJ 0Qi8G F OIJOU00111i DOuuOGOi
OOOOuOl Q01CO F JJuuOilOO 00.iJOOOit
ilOOOOQJ 00200 F 0 0000000 llOuOOllDl
000ilOOJaJ21tO F oouOJOuu Oiluil01lQ5
OOOGilOJ 00280 F ooooaooo 001li10il01
iiODilOill J02CO F OOOOOiluu OOililOOO&
OOOllOllJUD30D F OODUDOliO uilOODOG1
000000) 0031+0 F ilDODOOOO 00ui10UQ7
110001)01 JJ380 F OOOOlOilO OOJJ.iliH
llOOOOOJJOlCO F OOOOJuilO uuiloooos
OOOOf.loll OliitOO F OOOuOOOu OOol001H11
OuOOillll J Di+itO F iluOOOilOD i10uOOliL9
uuUliUul Dur+8U F aaooaoau u11aaooo1
uilOOOOI JOltCO F OOOOOilOO OOiillOlluA
OOOOOJJOii500 F 00(100000 aooOil.i01
000 OOilJ D 051tO F ooooar.Jo OliOOtlOOS
OOOuOJJD058D F 001100000 Du000002
llOIJOOOJ ~D5CO F OOOliOlluO 1H11i~001i1

OOOOGOJ.D&Ob F DOOCiDOuO OuOOuUu2
000000) D001tD F ilOOOJOilO 110011uou2
UODOOill 011&80 F OOOOOiiOO 000110002
uaooouJ oar.co F 11oiluililuo oooouou3
uOOOilOH070il F ooooaouu u110J0002
Oll0000l0071t0 F OOilDOllllO oouuiluult
ODUOUilJDD78D F UOJODIJIJD OOUOUOG2
uUiluOill JH:;O F liOJiiaDUU OOJOOuil5
lillu..tollll~li800 F OOOGililOO 000000112
OOlillOillOG81tO F OOOuOilOO QOOlillDO&
ooo-oooJ aouo F Ohw~lliiQ liiiJilOOu2

--!! ~~OQOlll iiulCO F DDODOlliil UODllOOu7

Ul UUiluO.il H~ITT--TITIUull OQQOOullt>
J 1 ilOliGOOI DlEi+D F 0 OOllOllllO U..0001H11)
01 OllOllOill il1E80 F uQOOQOliu ilOOJJOO&
01 uilOOOul ii1E:;~ F ii OOliOuJil OuiiQ1H07
01 liOliQliiljOlFliil F ooi.1&110110 OllUJOOL&
il1 uOOOlllll D1F1tO F OOOliOOOO uuoi1ui1u s
Di IJOuUOJI HF80 F JOIJGJOOO GG11;-u-iJuf1-
01 llilOOilUJ01FCu F ol OilO 011.; 0 oooooou9
at uOiJillllil 021100 F ouuouuiou OililOilOOo
u1 oooullulil20'tO F uOolGOOO~ OOOOOJll~
li1 OilOOOOl 021180 F OOllOuiJilil OuuiliJ011&
-~~"Ull~~~ .a-ua~--~il

-------A-_ -- ---- --u ~ F----- --;---
1 GEN 1

J:lf? Jr 1,llli
JJPUT
IJC:NT

,zyr • r. 1
d ~r,11 1
1 ii.::N A,B

-------·--

- ---------·-·-·--- -----· -

-----·--·--- ------- ·-·

E-l'IJ

4-9

I

4.

5.

A
B

5
c

EQU
EqU
RPT,A.GT.B

RES,G4
GEtJ

4
5
5

The above repeat acts as a skip-to statement:

c GEN 7,7

Jt.C
u1 uuuJJJl Juuuu F u J u G u u u u
u1 uuuuujj ~ou,.u F u uuCGuuO
u1 uOu uuuJ uu08C F uJiJ(,u~uJ

01 JOuJuJl uuucc F u JJu~uJu
u 1 uJuuu-Jl ,j J 10 u F uJJGui.iJu
I) 1 uJuouul uu14G F uuuliu uuu
~1 "u~Ouuj Jultsu F UUYU~iJUU
01 uuullOul G J lvG F liOui..UUuU
Ji uououul Gu200 F " OJCJuGG
J1 u i) u u u iJ j J 02*u F U U J U J U U LI

ui:.C
u1 uuuuuJl uu~~u F u u GG iJ uuu
" 1 uJu\JlHJl Ju2:u F U~uu.;Juu

() 1 uuuuOJl ..iu3~u F u\jJLuuuG
u1 uuuuuJJ J u3:+Li F uJu~JliJu

"' 1 JOuuuJl ju 3du F uJULJJuviJ

01 uiJOJOJl Ju 3CO f auJuJ4'uu

because A is not greater than B.

1L
uuiJuu\a~l
u1.1uuD.J~2

u u i.i u 0 L L .3
vUuuJUuo+
JlJuuJuu5
JuuJUu\ao
iJlJ,HJ0uv7
.:HJuuuuuo
Uyuu0UL9
uuuJuJL;A

5
U\.iUUUl.n.;1

ucuouuu'*
OuJJOi.J1..g
Ou~ujulu

i:.uuJut.19
Ouuuuuu:;

I ,~t>U T 1 , d J

A
1

OJf PLJT
I DC:: NI

;(? r , 1 J
_; ~ ;~ l4

l

A [pf,~ 1
1 GE~ A+i4

.;e, :--4 A

C:NJ

GOTO

The GOTO directive requests a conditional skip of source statements:

4-10

numeric-label GOTO,p9 list 14 *comments

p9 Must be symbol, set reference or expression with no foiward references and must evaluate
to an integer constant. p9 can specify the list elements to be selected; or it can be in the
form of logical expressions, the validity of which determines whether a skip is executed. If
true, p9 = 1 the first element is selected. If false p9 = 0 the GOTO is ignored. If p9 is
omitted, list element 1 is selected; if p9 is a negative value or if the comma is used but p9
is blank, the GOTO is ignored. If the value of p9 exceeds the number of list elements, the
last list element is selected.

19980200 B

list! 4 One or more elements indicating a forward numeric label to wliJch the GOTO could sk.ip. Each
list element must evaluate to an integer constant value with no forward references.

Examples

The followin$... examples contain directives described later in this section

1. A
B

2

EQU
EQU
GOTO,B.GT.A+A
GEN

GEN

1
2
2
A

B

In this example pl is an expression the result of which is false; therefore, the next statement assembled
after the GOTO is:

GEtJ A

2. In the following example the source for (a) and (b) was identical. However in (b) the statement "A
RDEF 1" was not assembled.

a) L1iPJT 1,ao
OJT?UT
IJ~Nf

i) 0 OuUllOOOll0009 A RiJ::F 3
GI) TJ' 19

00 ih1iJuuuuuO.Jtj1 A Rut:F 1
u1 OOOOOOluOOOO F 4l4F+Ji+u 4121llt9~3 19 GE 'I ··coHHA IS JPT lDNAl.,.
01 OOO"OJl llDilltO F 20'tF~u!:>'+ i+9i+F'+E41
01 OOOJ01llll0080 F ltC

E. ,'4i)

b) L~PJT 1,80
JJPJT
IJC:NT

Ou 0" u_O 0 u u u u 0 u 3 A .~O::F 9
GOTO 1;,

ij1 OuOoOulOuOJO F lt3'+FitiJ'+O 1+121)'t95J 19 i;;:" .. GOHHA rs J PT I:l NAL. •
U1 oOOuOulOD040 F 204F50Si+ '+9'+F4E't1
111 OOOQ0illall08il F ltC

Er4il

19980200 B 4-11

I

3.

7, A
5, A

GOTO

RDEf
RDEF

5

3+A
A+4

p9 is missing; therefore, the first list element is selected. The next statement assembled after the GOTO
directive is:

5 ,A RDEF A+4

4. The same muneric labels can be re-used provided they are not within the range of a single GOTO
operation.

c
D
B
A

1
2

1
2

results in:

EQU 2
EQU 1
EQU 2
EQU 6
GOTO,A. GT.B+D 2
GEN 1
GEN 2
GOTO,C. GT.D 2
GEN
GEN

1
2

UL! lnJuJuuuuJtJl2
uu UuiJUUUJJJuul

·---u iJ u SJ~ O& u -y-~ G U-2
IJG uuuJUuuJuiJ1.;o
~~; l

01 OJuQujjuQuO~ F u J J Li J u u (I
Q E.:;

jJ(n,,J.;UiJ

u"uuuJli~
1

JOui.JuUi.I~

J
8
A
11.1
2

.JA?JT
JJPul
i.J~~j

:: J.J
~~J -- --- ·-· --- -

2
l -2 ·--- -

0

jCJfo,~.~r.::J+u
_;c;: \j 2

~u ~JrJ,C.GT.~ 2
2 ;ii::~ ...

2

----------- -----··-·---· -----·~·:~-j-- --- ------ ----------------------·-·--

RPT AND GOTO PROCESSING

In functions and procedures, RPT and GOTO directives are processed at call time rather than at definition
time.

RPT and GOTO ranges must be in the same level as the RPT and GOTO directives.

If a RPT directive is within the range of another RPT directive, the range of the inner RPT must be totally
within the rnnge of the outer RPI.

4-12 19980200 B

If GOTO directives are within the range of RPT, the GOTO can branch outside the range of the RPT. In this
case, the RPT is terminated, but the repeat symbol maintains its current value for later use.

An RPT directive must not be the last statement of an RPT range.

SUBPROGRAM LINKING

Subprograms are linked through the directive entry {ENTRY) and external data and code (EXTD and EXTC).
The user can reference, with a program, an address identifier defined in another program.

Since the programs might be assembled at different times, the address values of these symbols cannot be
known at assembly time; therefore, certain symbols are declared as entry or external at assembly time. This
declaration is noted by the assembler and placed in the object code. At load time, the loader must interpret
entries and externals.

ENTRY

An entry is a symbol (address identifier) defined in the program which declares the symbol to be an entry
point. It also can be referenced as an external from another program. An address identifier or variable
identifier assigned a value with the EQU directive is defined as an entry through the ENTRY directive. This
symbol is truncated to 8 characters.

numeric-label ENTRY list4 *comments

list4 One or more address identifiers or variable identifiers (defined by EQU directives) that are
made available outside the subprogram and defined at the program level. This list can contain
forward references.

This directive cannot be used in the universal area (level 1).

Example

QST

SQRT

I DEtlT
OJTRY

EX

Et JD
FINIS

SQRT ~:DECLARED AS ENTR '(

4 p: 6 4 1 2 :: TH I S I S ENT RY P 0 I NT F 0 R SQ RT

When a symbol is declared to be an entry, the symbol must appear in the label field of some statement
within the program. The EX instruction in this example is a machine instruction, described in appendix C.

19980200 B 4-13

I

I

I

I

I

EXTERNALS

An external is a symbol (address identifier) referenced in a program which declares the symbol external, but
which is defined (given an address via ENTRY directive) in a separate program. The loader links all externals
and entries; after all routines are loaded, the loader places the virtual address of the symbol declared as an
entry into every occurrence of that symbol provided in other subprograms declaring it as an external. The
assembler provides two external directives:

EXTD

EXTC

Declares data address identifiers not defined within the subprogram in which they are
referenced, but defined in a data memory section of some other subprogram.

Performs the same function as the EXTD directive except the external reference must be
defined in the code memory section of some other subprogram.

The fonnat descriptions for the EXTD and EXTC directives are similar; the general fonnat for both is shown
below, and exceptions are noted. The braces { } specify that either of the enclosed can be selected.

numeric-label,list6 J EXTD) l EXTC ,pJ2 list25 *comments

list6

p32
(EXTD)

p32
(EXTC)

list25

Optional list consisting of one or more symbols separated by commas. Each symbol becomes
an address identifier for the first full word generated by the directive. If data generation is
not indicated, the assembler ignores these symbols and warning messages appear on the listing.

Optional integer constant, or an expression or variable which evaluates to an integer constant.
If pl evaluates to integer constant zero or blank (null), a full word (aligned to a full word
boundary) is generated for each symbol in list25. After loading, this word contains the address
of a designated data entry point. If p32 evaluates to any other value, no data is generated,
and any symbols in list6 are ignored. The length field is not altered by the loader and may
be preset during assembly (see FORM).

Example

DESC

B

FORM
EXTD, 1

DESC

16,48
A

12,A

::NO WORD GENERATED

Integer constant or expression or variable that evaluates to integer constant zero or blank (null),
two full words (aligned to full word boundaries) are generated for each symbol in list25, after
loading, these words will contain addresses of the designated code entry point (first word) and
its associated data area (second word). If other than zero or blank (null) no data is generated
and symbols are ignored.

One or more symbols external to the program, separated by commas, and which are truncated
to 8 characters.

EXTD and EXTC directives must not appear in a code memory section. For referencing external code or data
address identifiers, only two operators are permitted + and -.

4-14 19980200 B

Example

EXTD:

EXTC:

,,,,,,,--- no data generation

EXTD, 1<

GEN (A+ 6 4 ~~ 5)

~legal reference since operation is addition

i. The EXTC and ENTRY directives pennit reference of an address identifier defined in another sub­
program. (Machine instructions used in this example, EX and BSA VE, are described in appendix C.)

~:SUBPROGRAM 1
R_63 RDEF #63::54

#1N:54
lE::54

RTN RDEF
DATA RDEF

I DENT
A EXTC SQRT

MSEC 2
LOD DATA,R_63
BSAVE RTN,R_63
END

:: SUBPROGRAM 2
ABC IDENT

::s/R ADDRESS LOADED
::RETURN REGISTER
::DATA BASE (SUPPLIED BY LOADER)

::DECLARES SQRT EXTERNAL
::cooE MSEC ADDRESS OF SQRT

ENTRY
MSEC

SQRT ::DECLARES SQRT AN ENTRY

SQRT EX

BSAVE
END

FINIS

2. A EXTC .B,C,D,~

2

, RETURN ::RETURN TO CALLER

Designates symbols B, C, D and E as external code address identifiers. Two full words are generated for
each external symbol. A is defined as an address identifier pointing to the first full word generated.

19980200 A 4-15

I

SYMBOL AND SET DEFINITION, AND REFERENCING

Sets are normally defined through the use of the SET directive; however, they can be defined by the follow­
ing statements and directives:

SET

ENDP
EXITP

NAME

Procedure Call

Functioa Call

Return a subset for a function call value

Can define up to 4 sets

Can define up to 2 sets

The SET directive assigns the label field symbol as the set name for a list of expressions, set names, set ele­
ment references, or subsets. (Set element references and subsets are discussed later in this section.)

numeric-label ,list23 SET list24 *comment

list23 One or more variable identifiers expressions, set element references or set names separated by
commas. The elements of this list are the set names for list24. If the list23 set name was defined
previously by a SET or RDEF directive, the name is redefined as a new set list.

list24 Set elements separated by commas. It can include expressions, set names symbols, set element
references, or subsets. Elements of list24 can include repetition and positional operators. Repe­
tition operators can be nested; positional operators cannot. A positional operator can appear
within a repetition if its value is 1. List24 elements assume the value defined during SET direc­
tive processing. To change the value of an element, the user must redefine the set list element.
Also, the number of list24 elements can be extended by redefining the entire set list with a
SET directive.

An empty list24 element is specified by two adjacent commas. Zero is the implied value and
the mode of the element is null.

Symbols in list24 become copies of the original symbols. If a symbol name in list24 is redefined or changed
in a statement following the set statement, the set list element is not changed.

Ul uOUuuJlJUOOL F
ul uuuuuJ)JJu~u F
u1 uutiu~ul0u08u F

4-16

u~ uuuUOU~JuuuA

uu uuuulh1uu\Ju\J5

uu uuuJuu\JUJUlit
OuOOjJuO uuJuJJUA
uuOGJJu~ uUyJJuu~

JuuyjuuU OuYUUUl~

A
d

I 1-4? J T 1 , 6 O
J JT;, J T
IJ.:.H
.{Jt:.= 10
~J:: = 5
..)~f

:(Jc:=
01~.~

G£i
~C:T
Gii.i~

~tM(AfTCG[1},1>>
l, (l' (2' {3}} J ·:. t~T ---- --- - ----

19980200 B

Examples

The following examples illustrate the rules for positional operators and null elements in set definition.

POSITIONAL OPERATOR

When a positional operator (:) is used, the value to the left of the operator specifies the set position assigned
to the value to the right of the operator. All previous set positions between that occupied by the previously
specified set element and the value to the left of the positional operator are null positions.

~list-1 ~mnemonic ~list-2

A SET 5, 4:2, 3

defines a set:
1st element I ' ~indicates the 4th element is the value 2

5, [null] , [null] ,2,3

This is equivalent to:

5,,,2,3

where A [2] and A [3] are nulls.

A SET

A SET

defines a set:

1, [null] , [4, [null] ,5] ,2

.where: A [1]

A [2] null

A [3]
{

A [3,1]

A [3,2]

A [3,3]

A [4] = 2

1,3: [4,3:5],2

Positional operators must appear in ascending order, left to right.

A SET 3:2,1=6 is illegal, and illegal positional operator is ignored by the
assembler.

19980200 B 4-17

NULL ELEMENTS

A null element can be specified by use of a positional operator or by double commas:

1. (specifies null)z

A SET , 2,, 3

same as: A SET 2:2,4:3

A [1] , A [3] and A [5] are nulls and return a value of zero. The integers in [] specify the positional
location of the elements referenced. Referencing elements A [2] and A [4] returns the values 2 and 3,
respectively. Since A [5] is outside of the set a null is returned.

2.

.£~JT 1,U
JiJT?IJT
IJ.;:~r

01 OOOOOillll11000 F OOlhiiiullO oouooo1.11
S ~~T 1,2,J,1+,~

Gi::N sp]_, B[?_~ _ _!_d[J_]_,_~J_ .. L s[S], &[&)' B[tu]
01 OOOOOIJJilOD4D F uOOOiJuilu OOull\lil~- .
il1 OOOOOOlJD080 F OOODOOuO o*'ooouul
ill OOllOOlllJDilCO F 000000110 OOuOOOlli+
01 Oll0iJOtllu0100 F OOilOOutJO 11ooouuus
01 uoaooo1ao11to F 00000000 uOOOO"GO}
01 001l00ill ll0180 F OOOOOOuu OOlluilOGO

B[6] and B[lO] are null values
-Eri.J __ _

REPETITION

To specify value, set name, etc., in succeeding positions within a set list, the user can specify a repetition
factor for that element. Repetition is requested by an integer or an expression or variable which evaluates to
an integer constant (specifying the number of times the element must be repeated) followed by the elements
in parentheses. ·

A SET \, 3 (2)' 2

is equivalent to:

A SET

Repetition can also be specified for subelements of an element in a set list.

A SET 5,2(3,4),2

is equivalent to:

A SET 5,3,4,3,4,2

SET ?(fl ?1 ?;)
,1-,L•J'-..!J.;.,,,

4-18 19980200 B

is equivalent to:

A SET

[1,2] are subelements of set A.

REFERENCING SETS

A set reference can appear in label, command, or operand field lists and must not be a forward reference.

A set reference consists of a set name and the position of the desired set element enclosed in brackets [] .
Should the user specify

D SET A,B,C

and desire the value "B", he would reference the set as follows:

GEN D[2]

because B is the second element of set D.

Should the user desire the entire set then the set reference would be written as:

GEN • El..lv1. D which returns

A reference such as:

GEN D

results in an error message

A
B
c

XX ILLEGAL DATA IN FORM/GEN IN OPERAND FIELD

ELEMENT AND SUB-ELEMENT REFERENCING

A set element and sub-element is referenced by writing the set name with following expressions that specify
the ordinal location of the element or sub-element. A set element reference can be written in the field list
portion of the label, command, or operand of any statement.

The elements of a set can consist of ma..riy sub-elements; which are specified as an element by enclosing
them in brackets [] . e.g.

B SET 5, [6, 7]

19980200 A 4-19

I

The name of the particular set followed by expressions locate the desired elements or sub-elements.

set-name [expressions]

Sub-elements [6,7] comprise the second element of set B. These sub-elements can be referenced as follows:

GEN .ELM. B [2]

GEN

GEN

B [2, 1]

B [2,2]

returns 6,7 - to obtain 6 and 7 .ELM. must preceed the element reference

returns 6 - set B, element 2, sub-element 1

returns 7 - set B, element 2, sub-element 2

The following would generate an error message, "ILLEGAL USE OF .ELM. OPERATOR IN OPERAND FIELD

GEN .ELM. B

ASSIGNMENT

Values are assigned to a symbol by the Redefine (RDEF) and Equivalent (EQU) directives.

RDEF

Assigns the value and attributes of an operand field expression to the symbols specified in the label field. A
symbol initially defined by this directive may be redefined using the same directive. Symbols· defined by RDEF
may not be forward referenced.

4-20

numeric-label,list5 RDEF p3 *comments

lists One or more variable identifiers, set element references, or set names separated by commas,
that assume the value and attributes of p3.

p3 Any expression; p3 cannot be a set name. p3 cannot contain a forward reference to a statement
that contains a forward reference. p3 cannot be a forward reference to a redefinable quantity
(another RDEF or SET element).

A RDEF B

B RDEF c Not Permitted

c RDEF

If p3 contains a forward reference, the list symbol cannot be used in a statement that could
affect the location counter. p3 cannot reference symbols declared external in EXTC or EXTD
directives. e.g.:

A
B

RDEF
RDEF
RES

B
1

#N:54~~64 ~:RES IS DESCRIBED UNDER

~:LOCATION CONTROL

19980200 B

Examples

A RDEF 15 A has integer constant value of 15.

B RDEF @ B has address identifier value equal to the current
location counter.

c RDEF A+3 C has integer constant value 18.

c RDEF C+2 C has integer constant value 20.

i= SET 3,5 '-

E [2) RDEF 6 Redefines element 2 with a value of 6.

E RDEF 2 Redefines set E to a variable identifier.

EQU

EQlT assigns the value and attributes of an operand field constants, expression or variable to the symbols
specified in the label field. A symbol defined by EQU cannot be redefined. Symbols defined by EQU may not
be forward referenced.

numeric-label,listS EQU p3 *comments

lists One or more variable identifiers or single set element references separated by commas that
take on the value and attributes of p3. List elements can be defined as entry points; how­
ever, in this directive, they must be defined as hexadecimal constants. If not a hexidecimal
constant a mode error occurs.

list elements cannot be redefined.

p3 Any expression; p3 cannot be a set name or a redefinable quantity that is not yet defined
and cannot contain a forward reference to a statement that contains a forward reference.

19980200 B 4-21

I

I

Examples

1.

c
D
A
B
E

2.

A
A

3.

A
A

4.

A

A

4-22

A EQU B

l Not Permitted B EQU c

c EQU

} A EQU B
Permitted (except in universal area)

B EQU

If p3 contains a forward reference, the list symbol cannot be used in a statement that affects
location counting.

p3 can contain references to symbols declared external with the EXTC or EXTD directives.

EQU 1
EQU 2
EQU D.LT.(C + 2)
EQU A+E ~~ E Q U I VA LEN T TO B EQU 4
EQU 3

EQU 10
Error: A-DOUBLY DEFINED

RDEF 12

SET 2,5 Error: ILLEGAL OPERAND OR PARAMETER
EOU 10

'

SET 2, 5
GEN .ELJv\.A ~~GENERATES 2 AND 5

RDEF 10
GEN A ~~GENERATES 10

19980200 B

DATA GENERATION

Data generating direciives define data format and generate information to be placed in the object deck.

FORM

Defines a data generating format that specifies alignment and field size in bits.

numeric-label,list7 FORM,p4 list8 *comments

list7 One or more symbols separated by commas. Each symbol becomes a name used to reference
the form.

p4 Variable or expression resulting in an integer constant representing the bit alignment for the
current location counter when the form is referenced. Forward references are not permitted.
If p4 is not included, a value of 1 is assumed. Any value is acceptable; however, 1, 8, 16,
32, 64, 128, and 256, and 512 are recommended.

list8 List of expressions, variables or integer constants, separated by commas. The value specifies
the field size of the form in bits. The value must evaluate to or be an integer constant with
no forward references. The fields specified in list8 can be repeated by using the repetition
operator; repetition can be nested. Null elements are not permitted. These values specify field
size in bits and can be any value.

Defining a symbol to be a form name does not restrict the use of that symbol as an address or variable
identifier.

Example

WORD FORM 24 field, 24 bits long, aligned to a bit boundary

WORD2 FORM 1 64 48

2,CHARS FORM,8 8,8,8,8

SET 8,8,48

AA, INST FORM, 6 4 , ELM. I

A FORM, 3 2 4(8,16)

is equivalent to:

A FORM,32

B f 0 RM / 6 4 ~: 5 1 2 1 , 1 5 , 4 8
~

(virtual page size)

DESCRIPTOR FORM,64 16,48

19980200 B

field 48 bits aligned to a full word boundary

4 fields, each 8 bits aligned to a byte boundary

Defines I as a set consisting of [8,8,48].

3 fields, aligned to a 64-bit boundary. The form
has two names.

8 fields, aligned to a ~-word boundary

3 fields, aligned to a 512-word page boundary

length (0-15) and address (1648) of vector
descriptor

4-23

I

FORM REFERENCING

A form reference generates <lat<1 starting at the first hit after alignment is performed. The cfat<1 is stored in the
memory section containing the reference. Form references must not appear in a function or a procedure called
via a function call.

numeric-label ,list9 form-name listlO *comments

list9 Address identifiers, separated by commas; they assume the value of the current location
counter after alignment is performed.

form-name Name of the form to be referenced.

list 10 List of expressions, separated by commas. The value of cacn· expression is placed into the
field of the form. The position of the expression in list 10 specifies the field destination for
the value. The positional operator and repetition operator can be used with the expressions
in list 10. If list I 0 is longer than the number of fields in the form, the form fields are
repeated, but alignment is not repeated.

Examples

4-24

WORD
A

rWord Boundary

FORM,54 16,48~

GE~J 241, I
v/ORD 1, A~}--'

_Call

Generates a full word aligned to a word boundary with the value I, right justified and zero-filJed, in bits
0 through I 5: and the adJress of A right justified an<l zero-filled, in bits 16 through 63.

LABEL vJO R.D "AB",@

Generates a full word with characters "AB" in bits 0 through 1 5 and the value of the current location
counter (requested by use of (a) after alignment. The value (a is right justified, zero-filled in bits 16
through 63.

EXTD,l

D \!/ORD

A :~DEF I NE A AS EXTERNAL v/I THO UT
GE~JERATING DATA

3,A :~SET BITS 0-15 WITH 3 AND LOADER
WILL SUPPLY EXTERNAL DATA ADDRESS
OF A HJ BITS 15 TO 63.

19980200 B

GEN

CHAR
Bl

FORM,8
RDEF
CHAR

/Byte Boundary

g ...
"B rt

2 c .. ·A II' l l)' 6 : 1} J

Generates a byte string aligned to a byte boundary. The first byte contains "A", the second, "B", the
third "A", and the fourth "B". Contents of the fifth byte is zero, and the sixth contains the value 1
right justified, zero-filled.

CHAR
I

FOR~1,8

SET
CHAR

8
2("A",Bl), 6: 1
~ E lM. I

This example is equivalent to the immediately preceding example.

Generates data starting at the next aligned bit; data is stored in the memory section containing the directive.
The GEN directive must not appear in a function or a procedure called by a function call or in the universal
area of a program.

numeric-label,list 12 GEN,p4,p8 list13 *comments

list I 2

p4

p8

list 13

Address identifiers, separated by commas. They assume value of the current location counter
after alignment is performed.

Must be an integer constant or a variable or expression which evaluates to an integer constant
with no forward references; specifies alignment in the current location counter. Alignment is
performed prior to data generation and applies only to the first expression in listl 3, p4 must
be greater than zero and without forward reference. The default value is 1.

Integer constant or a variable or expression which evaluates to an integer constant specifying
the number of bits to be reserved for each expression in list I 3. It must be greater than zero
and without forward reference. If p8 is not included, the mode and value size of each expres­
sion listl 3 specifies the number of bits to be reserved.

List of expressions, separated by commas. The value of each expression is the data generated.
The repetition operator can be used with expression in list I 3.

The rules for data generation specified i.n appendi.X A (see CONSTANTS) are applicable to the GEN directive.

19980200 B 4-25

Examples

4-26

A GEtJ,64 -5

Generates a full word aligned to a full word boundary. Bits 0 through 63 contain the value -5 with sign
extended.

B GEN,,48 A

Generates 48 bits with bit alignment (specified by ,,). Bits 0 through 4 7 contain the address of A.

c RDEF
GDJ,32

"ABCDE"
5,C,P"32"

Generates a full word aligned to a half-word boundary with the value 5 in bits 0 through 63; also gen­
erates a 5-character byte string containing "ABCDE" and a 2-character byte string containing the signed
packed constant P"3 2".

GEN D

Generates a full word with bit alignment (default size specification). Bits 0 through 15 contain zero; bits
16 through 63 contain the address of D.

2,D GEtJ B"lOOlO"

Generates (5 bits) 10010 aligned to a bit boundary.

GEN , 3 2 , 6 4 ~q 0 I"-2"

Generates 10 full words aligned to a half-word boundary; they contain -2 in binary integer form with sign
extension.

G E ~J , 6 4 , 1 2 8 10(8"10")

Generates ten 128-bit fields with the first field aligned to a fuil word boundary. Bit 126 of each field
will be set.

19980200 A

ADDRESS AND LOCATION CONTROL

The code and data sections of an assembler subprogram are assigned to specific virtual memory areas. Code or data
can occur in any memory section; however, externals are not allowed in MSEC code and entry points are illegal in a
common MSEC. Code and data are assigned explicitly through the MSEC directive. Absence of an MSEC directive
implicitly assigns code and data to the default data memory section IMEM. (IMEM is a reserved symbol assigned to
a default MSEC.)

Each memory section has a unique relocatable location counter. The loader (not the programmer) determines
the memory section where code or data is to be stored. Each location has the same relocation as the memory
control that defined the location counter. Location counters are bit incremented; all memory addresses, therefore,
are bit addresses.

An ordinal number is reserved for each location counter (each MSEC) sequentially in the order of memory
control section definition. The STAR assembler permits up to 255 control sections (ordinals) in
any combination. Ordinal 1 is reserved for the default IMEM, created when _an IDENT statement is encountered.
Any subprogram can use one or more memory sections; however, only one location counter can be active at
any one time. The current location counter is designated by the last MSEC, ORG, EORG directive, or the
default MSEC.

All address identifiers derive their value from the currently active counter and take on the same relocation as
the current counter. The value of the current location counter can be altered by the following statements which
can also define address identifiers:

GEN directive reference

RES directive reference

ORG directive reference

Procedure reference

Form directive reference

Machine Instructions

All data generated is stored in the currently active memory section. The following statements cause data
generation:

GEN directive reference

FORM directive reference

Procedure reference (unless called from a function)

Machine instructions

The assembler interprets a reference to a memory control section name as a reference to the current value of
its location counter. Use of @ (commercial "at") returns the value of the currently active location counter.
The following example illustrates explicit specification of a memory section on a typical assembler printout.

19980200 A 4-27

I

J2 oou[1QjJ1_ ooo:i

)[J ~ L"' J L!iJh_Q
vC JJJ~C CGH 40 a
~ - j., C ;j G ~ J 1C 60 c
:[jCL Ju :) ::J Jc 14 N
tH 0~:Ju JOJ740 PSP
[j();,. ju 0 iJJ54Q VITAL
vC GuOOG JJ Hi8 0 R.TR.N

J2 DOO~aoaoooo~ F BE4GuJCG JO~u)L01 COMM~~CE
J2 JJGJuJOuu04C F 764[0)41
J2 uOOOJ0~0006r H 2A42QJ14
OZ~DDJD000,\80 F~CDJ40 00410(42

Specifies location Specifies boundary,
MSEC counter (Full, Half, Character,
with an (address Bit)
ordinal counter)
of 2

DEFAULT MSEC

ID ENT
MSEC 2
ENT~Y STA~T

EQU #l+c•&t+ • THES~ REGISTE~S CONTAIN
EQU 141•54 • SOUR.C: ELEMENTS
EQU 142•64 • CONTAINS RESULT VECTOR DESCRIPTOR
EQU 2~ • LENGTi OF RESULT VECTOR "C"
EQU IHO•o4
EQU 115•54 ••• ~~TRY SEQ SEE APPENDIX K
EQU 11A•&4

EX A,1 • VALU£ 1 SOURCE
~TO~ A,8 • TRAN~1ITS VALUE 1 TO B SOURCE
ELEN C,N • VALUE 2u ENTE~ED INTO LENGTH PORTION OF C OESC.
INTERVAL A,9,C •CRE\TES VECTOR C

The default MSEC is aligned to a double-word boundary and identified as IMEM. IMEM is classed as a data
MSEC with an ordinal of 01 and cannot include monitor mode instructions.

Note: MSECs following the first MSEC 1 will not align to a boundary larger than double word even when
specifically requested.

Example

4-28

INPUT
OUTPUT
ID ENT
MSEC

MSEC
GEN,64*512 10

t
The last instruction tries to align
to a page boundary, but it doesn't work

19980200 B

MSEC

This memory section directive defines a control section and makes it current. The MSEC directive can be used
only in subprogram areas and in procedures not called by functions.

numeric-label,listl 7 MSEC p18,p19 *comments

list I 7 Optional address identifier used to reference the memory section. The current value of the
memory counter is returned upon reference. The address identifier on a MSEC 3 will become
the name of the common block.

p18 Optional integer constant or variable or expression which evaluates to integer constant 1, 2,
or 3 specifying the kind of control section.

Data MSEC

2 Code MSEC

3 Common data MSEC

De fault is 1.

p 19 Optional integer constant or variable or expression which evaluates to an integer constant
indicating whether monitor instructions are permitted in the memory section.

Monitor instructions permitted

4:1 Monitor instructions not permitted

Default is monitor instructions not permitted.

Multiple code memory sections within the same program area are concatenated by ascending ordinal number
to form one memory section. Each memory section is aligned on a word boundary after concatention. The
same is true for multiple data memory sections.

The use of multiple common memory sections within one subprogram area requires a unique address identifier
listl 7 for each common MSEC. I

Examples

1. A MSEC

Defines A as the name of a data memory section (default for p 18 is data). Monitor instructions are not
permitted (default for p19) .

2. A MSEC 1
..

DATA MSEC ..
B MSEC 2' 1

..
CODE MSEC WITH MmJITOR I NS T.RUC TI ONS

c MSEC 3
..

COt1MON MS EC
D MSEC 4

..
WARtH NG MESSAGE THERE IS NO 4 OPTION TO P18--& .. -
DATA MSEC IS DEFINED VIA DEFAULT

19980200 B 4-29

I

I

3. The following example demonstrates a means of communicating with MSEC COMMON.

INPUT 1, 80
OUTPUT

DATA BASE EQU # 1E::6 4
R_C_BASE EQU #20~~64

Cl EQU #2P:54
Tl EQU #22~:54

T2 EQU #23~:54

IDENT

MSEC 1 ::DATA MSEC
C BASE EXTD C01'1MON ~~LOADER WILL FILL WITH

ADDRESS OF C()Mfv10N BLK
MSEC 2 ~~CODE MSEC
ENTRY START

START LOO DATA_BASE,R_C_ BASE
LOO R_C_BASE,Tl ~:n=FIRST WORD OF COMMON
ES Cl, 1
LOO [R_C_BASE, Cl] I T2 ~:T2=SECOND
ADDX Tl, T2, Tl
STO R_C_BASE, Tl
END

(OTHER SUBPROGRJ.\tv1S)

IDENT
Ca1'10N MSEC 3

GEN 1
GEN 2
END
FINIS

Loader places address of program START's data base in Reg #IE; i.e., points to C_BASE. Loader places in
memory location C_BASE the address of the common block COMMON.

4-30 19980200 B

RES

Aligns the current location counter and adds to it the value of the expression (bit value) in the operand field.
This directive can be used in the subprogram area and in procedures not called by functions.

numeric-label,list 17 RES,p4 p25 *comments

listl 7 Optional list of address identifiers (separated by commas) their values are the values of the
current location counter after alignment.

p4 Optional integer constant or variable or expression which evaluates to an integer constant
specifying alignment in bits. Default is 1 (bit boundary). Any value may be selected; however,
1, 8, 16, 32, 64, 128, 512 are recommended.

p25 Optional expression with an integer constant value specifying the bit value to be added to the
current location counter after alignment. Default is 0.

Examples

A RES,32

Reserves 51 2 half-words aligned to a half-word boundary.

L EQU 100
BY TE RE S , 8 8 :~ L

Reserve 100 bytes aligned to a byte boundary.

ORG

Sets the location counter to a specific value; the memory section associated with the location counter then
becomes active. The ORG directive can appear in a subprogram area or in procedures not called through
functions.

numeric-label)ist26 ORG p21 *comments

list26 Optional list of address identifiers, separated by a comma. Each address identifier in the list
assumes the value of the current location counter after the ORG is completely processed.

p21 Expression or variable which evaluates to an integer constant or integer constant value of an
associated memory section ordinal. The bit value, p2 l, is the value that becomes the location
counter of the memory section implied by the ordinal number. The current memory section
becomes associated with the ordinal number.

If p21 has no ordinal number, the current location counter is set to the value of p21.

19980200 B 4-31

I

I

Examples

1. A
B
c

MSEC
MSEC
ORG A+64

Sets the location counter of MSEC A to that of its current value plus one full word.

2. A
B
c

MSEC
GEN,64
MSEC
ORG

5

B+64

Sets the current location counter of memory section A to that of relocatable address B plus one full
word.

EORG

Sets the current memory section to the value of the memory section specified prior to the last MSEC or ORG
directive. This directive can be used in a subprogram area or a procedure not called through a function.

numeric-label EORG *comments

Examples

1. A MSEC
2. B MSEC
3. ORG A
4. EORG

In thi~ example, the location counter is first set to the address of data memory section "A". In (2) a second
data memory section is specified and the location counter is updated accordingly. The ORG directive sets the
current memory section to A and updates the location counter to the address of MSEC "A". In (4) the
current memory section is set to the value specified prior to the ORG directive; therefore, "B" is the current
memory section.

4.32

A MSEC
B MSEC

ORG
ORG
EORG

Sets B as the current memory section.

*specifies address of memory section A,
*specifies current address plus 1 full page

19980200 A

A MSEC
B MSEC

EORG

Sets A as the current memory section.

ATTRIBUTE CONTROL

Extrinsic attributes are assigned, referenced, and changed by the user; attribute numbers may vary from 8 to 127. I
(Intrinsic attributes and the ATT function are described in section 5.)

An extrinsic attribute is assigned and changed with the RATT directive.

RATT

numeric-label,list21 RATT list22 *comments

list2 l One or more address identifiers, variable identifiers, set element references and/ or set names
whose attributes are to be changed.

list22 A list of elements, separated by commas; each has the form p 1 :p2.

pl Is the attribute number; the value of pl must be an integer constant, an expression
or variable which evaluates to an integer constant greater than or equal to 8 and less
than 128. An identifier can have up to 120 extrinsic attributes. Within one RATT
directive, each p 1 entry must be unique. See example 3. Also, p 1 values must be in
ascending order.

p2 Is the value of the extrinsic attribute. The value of p2 must evaluate to a constant
with no forward references.

The RA TT directive cannot be used with the intrinsic attributes (1-7).

Examples

1.

A RATT 8:5,9:#10
then:

ATT(A,8) IS 5 }
ATT(A,9) IS 16

See section 5 for a description of the ATT directive.

19980200 B 4-33

I

I

I

2.

3.

GJ OJ0000000001

INPUT 1,80
OUTPUT

I OE NT
8 SET 5,••Af3C 11 ,6, 1•0EF ..
C EQU 1
0(2] RATT g:c,1o:U[l]

END

The 9th attribute of B [2] is 1; the 10th attribute of B [2] is 5.

INPUT 1,80
OUTPUT

IDE NT
f3 SET 5, .. ABC .. ,6,"QEF"

00 000000000001 C EQU 1
B[2] K.ATT g:c,9:B[l]

IMPROPE~ USE OF POSITIONAL OPERATOR., (:> IN OPE~ANO FIELD
ENO

REFERENCING ATTRIBUTES

Attributes are referenced through the ATT function described in section 5.

PROCEDURES

A procedure (PROC) is an assembly time subroutine that normally, can be used to generate code. This type of
procedure is called in-line; and when it is called, it returns generated code to the location from which it was
called. Procedures can be defined in the universal or subprogram areas. Forward references are permitted only
in those PROC's called from the subprogram area or from a lower level. When a procedure is called, all identifier
names defined in the procedure are assigned to level 3 or greater depending on the nest level of the call. At
call time, if a referenced symbol is not found in a procedure, the preceding levels are searched. Each time a
procedure is called and code is returned, the object code increases proportionally because only one copy of the
code will exist.

PROC's should be written in a generalized form which allows the internal definition to produce concise code.

WRITING A PROCEDURE

In writing a PROC, the programmer performs the following steps:

Defines what is to be accomplished.

Writes a definition such that a change to the PROC will include a change to others affecting it.

A procedure definition starts with a PROC directive and ends with an ENDP directive. The statements and
directives within these limits are referred to as the statement body. Unless explicitly stated in the description
of a directive, the directive can be used in the procedure definition in the subprogram area.

4-34 19980200 B

Example

PROC
Definition Pl PROC,P2 P3

Statement
Body

AA NAME ~~SPECIFIES AN ENTRY POINT TO THE PROC.

E~~DP

The following applies to all Procedures.

• Procedures can be defined in the universal area at level 1 or in the subprogram area at level 2. When
defined in the universal area, the PROC can be referenced from any universal or subprogram area that
follows the definition.

• Procedure definitions may not be nested.

• Procedures can be referenced from any level.

• The definition of a procedure must precede a reference to it.

• Procedures defined in the subprogram area are lost when the END directive is processed.

• Procedures called through the use of a function must not contain any statements that could affect
location counters.

• Procedures cannot be redefined.

• Symbols defined within a procedure are local to the procedure in which they are defined: the symbols
are lost upon exit from the procedure. These symbols can be made available outside the procedure by
appending a $ to them. On encountering the $, the assembler checks the call level for symbol definition,
provided the procedure was called previously.

• Depending on the area from which the original call was made, procedures can define symbols in the
universal or subprogram area when a $ is appended to the symbol.

• To reference a symbol in the universal or subprogram area that is also defined in the procedure, append
a $ to the reference.

• Procedures can reference symbols defined at all lower levels, if the symbol is not also defined at the
current level.

• Procedures can contain forward references to symbols defined within the procedure if the procedure is
called from the subprogram or lower level.

• Procedures can include more than one NAME directive (entry point).

19980200 A 4-35

• A name within a PROC can call another name in the same PROC. Also, a name can call itself.

• Procedures are recursive to 128 levels.

• If two procedures within a library file have the same name and the name used is a PROC call the
assembler will issue a diagnostic "MULTIPLE DEFINED SYMBOL".

PROC

Declares the start of a procedure definition:

numeric-label,p22 PROC,p23 p5,p6 *comments

p22 Optional symbol that becomes the set name for the list of numeric labels and symbols that
appear in the label field of the procedure reference statement. This set name is made available
to this procedure when the procedure is called.

p23 Optional symbol that becomes the set name for the list of expressions, set element references,
and symbols that appear in the command field after the procedure name in a procedure
reference statement. This set name is made available to this procedure when it is called.

pS Optional symbol that becomes the set name for the list of expressions, set element references,
and symbols that appear in the operand field of the procedure reference statement. This set
name is made available to this procedure when it is called.

p6 Optional symbol that becomes the set name for the set list that appears in the operand field
of the NAME directive. This set name is made available to this procedure when it is called.

Example

L_SET
SUM

PROC,C_SET
t'-W"1E
GEN
ENDP

This PROC uses all four sets.

NAME (PROCEDURE)

O_SET,N_SET
1, 2, 3
L_SET [1] +C_SET (2] +N_SET [3] +O_SET [l]

Defines a procedure name and the entry point of the procedure. This directive is processed when it is defined;
statements following the NAME directive are processed when the procedure is called. Any number of NA.M:E
directives can be used in a procedure definition.

4-36 19980200 B

This directive, with some variation, is used in a function definition and described in that context under NAME
(FUNCTION).

numeric-label,p7 NAME,p33,p20 list16 *comments

p7 A symbol that becomes the procedure name. This symbol is entered in the command field
of a procedure reference (call).

p33 Optional integer constant, its bit value is the boundary for alignment of the current location
counter when the procedure is called. If p33 is missing, no alignment is performed.

i

p20 Optional integer constant. If the value of p20 is 1, the symbols in the label field list of the
procedure reference (call) remain undefined. If p20 is zero, > 1, or blank all symbols in the I
label field list of the call are defined as address identifiers. The value of each address identi-

listl6

Example

ABLE

fier equals the value of the current location counter after alignment.

An optional list of set elements which must be completely definable when the procedure is
defined. Forward references are not permitted, and any symbols in this set list must be de­
fined in the universal or subprogram area. The set name for this set list is the p6 symbol
defined in the PROC directive.

PROC B, A'

~JAME, 64 5,"ABCD",P"-25"

ENDP

ABLE is the entry point to the procedure. When the procedure is called, the current location counter
is aligned to a 64-bit boundary. When the procedure is called, the set A consists of the 3 elements:
5, "ABCD" and P"-25".

ENDP (PROCEDURE)

Terminates a procedure at definition and call time. With some variation, it is used to terminate a function
definition and is described in this context under ENDP (FUNCTION).

numeric-label ENDP *comments

19980200 B 4-37

I

I

PROCEDURE REFERENCE

A procedure can be called (referenced) at any level through a procedure reference statement containing the
procedure entry point name in the command field. During a call, parameters specified in the label, command,
and operand fields can be passed to the procedure. A PROC must be defined before it can be called, and
nesting can occur to a depth of 12510 . A procedure referenced through a function cannot contain a statement
that affects a location counter. A summary of the relationship of the PROC directive, NAME directive, and
procedure reference is illustrated in figure 4-1.

n umeric~lab tl)ist 18 p7 ,list19 list20 *comments

listl 8 Optional symbols, separated by commas and passed as parameters to the PROC definition
directive. These symbols are defined as address identifiers, unless the p20 parameter in the
called name (NAME directive) prohibits definition.

p7

listl 9

list20

Procedure entry point name that appeared in the label field of a NAME directive in a pro­
cedure definition.

Optional list of set elements passed as parameters to the procedure.

Optional list of set elements passed as parameters to the procedure.

List 19 and list20 may consist of set names, set elements, subsets, symbols, and expressions. The repetition
operator and positional operator also can be used in list 19 and list20.

A user can insert a STAR instruction mnemonic or a directive name in a PROC call. The assembler checks
the user-defined table before checking the internal definition table, thereby permitting redefinition of an
instruction or directive. Once the user redefines an instruction or directive, however, the internal definition in
the area redefined (universal or subprogram area) cannot be accessed.

PROCEDURE REFERENCE TERMINATION, EXITP

This directive terminates a procedure reference before the ENDP directive is encountered. More than one
EXITP directive is permitted in a procedure or function. With some variation this directive is used to terminate
a function reference and is described in this context under EXITP (FUNCTION).

numeric-label EXITP *comments

4-38 19980200 B

PROCEDURE REFERENCE FUNCTION FLOW

The following example illustrates how the assembler handles a procedure reference:

Procedure Definition
in Universal Area

Procedure Call
in Subprogram Area

{
LF
CALL

R_l, R_2

PROC,CF
NAME,A,LFSU
ENDP
I DENT

OF,AF
ARGU

CALL, S_l, S_2, S_3 T_4,T_3,T_2,T_l

END

Although the PROC call is defined in the universal area, it is called in the subprogram area and assigned a
level of 3.

When the PROC statement is encountered, the assembler scans for a name line and ENDP directives. All other
statements are checked for syntax errors.

When a procedure is called, a copy of the label, command, and operand sets in the procedure reference state­
ment are passed to the PROC definition.

If the call is made in the universal area, all parameters and procedures must be defined before the call is made;
since the assembler makes only one pass through the universal area. For a procedure call is in the subprogram
area, it is not necessary to define all parameters prior to the call because two assembler passes are made
through this area.

The sets passed are copies of the originals; therefore, the only method of changing elements in the original set
is by appending a $ to the label in the label field of the PROC. When the sets are passed, as specified in the
previous example the following argument results.

PROC Definition Symbols

LF

CF

OF

A~ociated Call Parameters

R_I,R_2

S 1,S 2,S 3

T_ 4,T_3,T_2,T_l

In addition to the three sets that can be passed at call time, the argument set exists as part of the operand
field on the NAME line. Since a PROC definition can have more than one NAME line an argument set can
exist for each. At any one time, the only applicable argument set is that associated with the called NAME
directive.

19980200 B 4-39

I

I

Examples

When the PROC is entered it is possible to generate code/data. For additional examples see appendix I.

The following examples illustrate a PROC used to redefine a symbol in the command field.

4-40

PROC,CF OF
PROC l NO GEN NAME
DEF HH TI OtJ SYMCATT(CF[l],1),1) RDEF OF [1]
1 ENDP

A_X RDEF #9B
CALL NO_GEN,A_X "ONE"

At call time the value #9B is passed to CF and "ONE" is passed to OF. Since CF and OF represent a
set, any reference to the set, even though each contains only one element, must be written [1]. The
brackets specify set reference, and I specifies the first element.

PROC
DEF IN I TI m~
2

CALL

PROC,CF OF
tW GE tJ tJAME
A SET$ SET 25:0
I - RP T, AT T (CF [l] , 7) 100
100,A_SET [I] RDEF OF [I]

ENDP

f B_SET
le SET

SET
SET

6, II BI T II, # 9, X" 4 II, 2 0 : 0
1, 2, 3

tJO_GEN, C_SET B SET

19980200 B

Of the three possible sets that can be passed to the PROC definition, two are passed.

The command and operand fields have only one set element. The defined C_SET has three elements and
t.11e B_SET has 20. Each C_SET element is a 40-bit integer constant. The defined B_SET is comprised of:

Element

6

"BIT"

#9

X"4"

15 null elements

Attribute

48-bit integer ·constant

Character string

48-bit hexadecimal constant

Hexadecimal string constant

The 20th element is a 48-bit integer constant of 0.

The A SET is defined to have 25 elements: the first 24 are null elements; the 25th element is a
48-bit integer constant of 0.

This set name is also available at the call level after the PROC has been exited.

Since the NAME line has no parameters, no alignment is required and label field symbols are defined.

The repeat directive is set initially to 3. The seventh attribute of CF [1] returns the number of elements
passed to the command field set. This value specifies the number of iterations of the repeat loop. The
last statement in the repeat loop is at label 100.

The first occurrence through the loop redefines the value of the first element of the A_SET to be equal to
the first element of the B _SET.

The second and third elements of the A_SET are redefined during the second and third iterations of the
RPT loop.

19980200 A 4-41

The following are examples of procedures used for data generation:

A PROC,Bll'D

;JAt·1 E / 6 411 / JOE

GEN I A[l]
GEN B(l]
GEN C[2]+D[l],C[l]

I DENT

AAl JOE,3 _JL"AAl_l",s

This procedure call to JOE is the same as writing:

AAl

4-42

RES,64
GEN
GE~~

GEt4

0
@

3
10 "AAl 1" ' -

19980200 A

'° '° 00
0
N
0
0

>

GENERAL FORMAT: I Numeric __ Label, Label Field Set Name

Definition

Numeric Label, Procedure Name

Numeric Label

Call [Numeric _Label, Label_Field_Set

PROC. Command Field Set Name

NAME. Alignment, Label_ Field __ Symbols_ Undefined

ENDP

Procedure _Name, Command __ F'ield Set

Figure 4-1. Association of Procedure Definition and Reference Elements

Argument

-~

Operand_Field _Set

FUNCTIONS

Functions are assembly time subroutines normally used where common routines are desired. Unlike procedures,
which are used for code/data generation or symbol redefinition, functions return a value to their place of
reference.

FUNCTION DEFINITION

A function definition starts with a FUNC directive and ends with an ENDP directive.

Statement
Body

FUNC
NAME

ENDP

Entry point used in a function reference

TI1e statement body can consists of assembler statements other than the following:

OUTPUT

LIBP

END

FINIS

GEN

FUNC

PROC

ENDP

RES

When the assembler interprets a FUNC directive, it scans the succeeding lines of source code until a NAME
directive is encountered. The scan lines are evaluated then but not processed; diagnostics are produced if a
syntax error is encountered. Comments, are permitted between the FUNC and NAME directives. Lines between
the FUNC and NAME directives are not processed at call time. Also:

• Functions defined in the universal area are at level 1. They are available to all subprograms.

• Functions defined in the subprogram area are at level 2 and are not available after the END directive
is processed.

• Definition nesting is not permitted.

• Definitions must precede any reference to a function and cannot be redefined.

• Forward references are not permitted.

• More than one entry point (NAME directive) is allowed.

• Symbols defined within a function are not available outside the definition area unless a $ is appended to
them.

• A symbol defined at or below the function call level can be referenced within the function, provided a
$ is appended to the symbol at the definition level. When function calls are nested, the $ returns the
search to the original call level (level of the first function call within the nest group). If the symbol is
not defined at that level, the assembler drops back one level at a time until the definition is found. The
same method is used by the assembler when a symbol referenced in an unnested function call is defined
at a level J.mver than that of the caJJ.

4-44 19980200 B

• A name in a Function can call another function. Also a name can call itself.

• Functions are recursive to 128 levels.

• If two functions in the library have identical names and if either is called an error message is generated. I
"MULTIPLY DEFINED SYMBOV'.

FUNC

Declares the beginning of a function definition.

numeric-label FUNC p5,p6 *comments

pS Optional symbol that becomes the set name for the list of expressions, set element references,
and symbols that appear as the parameters in the function reference. This set name is made
available when the function is called.

p6 Optional symbol that becomes the set name for the operand field set of the NAME directive.
This set is made available when the function is called.

Examples

FUNC A,B

ENDP

The parameter set name is A, and the set name for the set list on the NAME directive is B.

NAME (FUNCTION)

The NAME directive defines a function name and specifies the entry point of the function when it is called.
This directive is processed only when it is defined and can be used only within a function or procedure
definition.

numeric-label,p7 NAME listl6 *comments

p7

list 16

19980200 B

Symbol that becomes a function name; it is used to call the function.

Optional list of set elements: all set elements must be completely definable when the function
is defined. Forward references are not permitted. Any symbols in this set list must be defined
in the universal or subprogram area. The set name for this set list is the p6 symbol that
appears in the FUNC directive.

4-45

I

Example

FUNC

ABLE NAME

ENDP

B,A "' .

-------------..
5, "ABCD", P"-25"

ABLE is an entry point name for the function. When the function is called, the set A consists of the
three elements 5, "ABCD" and P"-25".

FUNCTION REFERENCES

A function is referenced by a function name. The function reference includes the function name assigned in
the label field of the referenced function definition and associated parameters (see figure 4-2). A function
reference can be made from any command or operand field. The parameter set in a function can contain a
subset.

p7 listl 1

p7 Function entry point name that appeared in the label field of a NAME directive in a function
definition.

list 11 Optional list of set elements passed as parameters to the function.

ENDP (FUNCTION)

This directive terminates a function.

numeric-label ENDP p2 *comments

p2 Optional expression or subset; p2 applies only to function definitions and is ignored if used
in procedures. The value of p2 is returned as the value of the function call.

If p2 is not specified a null value is returned.

EXITP (FUNCTION)

This directive terminates a function reference before the ENDP directive is encountered. More than one
EXITP is permitted in a function.

numeric-label EXITP p2 *comments

The rules for EXITP are the same as for ENDP. The value returned from the function can be any expression
or subset. The function need not return a value.

4-46 19980200 B

Examples

For additional examples see appendix I.

• 1. FUNC

:J ADDER NAME
Definition

EXITP (A [1] +A [2]) ~: B [1] I

ENDP
!DENT

B EQU 6

Call GEN ADDER(B, 2)----'

19980200 B 4-47

This GEN with a function call is equivalent to:

GEN 40

2. FUtJC pp

A tJAME

B SET 5, 2

ENDP ['PP[l]]

IDnJT

c SET A(3),4

TI1is function call is the same as:

c SET [[S,2],3],4

If the statement:

D SET • ELM. A (1)

were entered in this example, the result statement would be:

D SET [S,2],l

3.
FUNC A,,D

CHAR NAME "REG " -

EtWP D [l]. CAT .A [l]
I DENT

B RDEF CHAR ("FULL"}

This RDEF with a function call is equivalent to:

B RDEF "REG FULL" -

4-48 19980200 A

\0
\D
00
0
t-J
0
0

>

GENERAL FORMAT:

I Numeric_Label

Definition

Numeric Label, Function Name

Numeric Label

FUNC

NAME

ENDP

Call I Function Name{Call Set)

Call_ Set_N ame, Argument_ Field_ Set_Name
,,..::, Comments

Argument Comments

Evaluated Or Subset Returned As Value

Comments

Figure 4-2. Association of Function Definition and Reference Elements

SUMMARY OF DIRECTIVES

The following tables provide the format of each assembler directive, its purpose, and the level at which each
can be used. Symbols used to specify parameters, P, and lists items, L, are described in the table 4-2.

4-50 19980200 A

Table 4-1. Summary of Directives

General Format: numeric-labelJist-1 name,list-2 list-3 * comments

Type Name/Level Format Purpose
F=-· -· --·-

1/0 INPUT/ 1,2 ,n numeric-label INPUT p 10,p11 ,p 12 *comments Specific source input format.

OUTPUT/I numeric-label OUTPUT p30 *comments Specifies object deck output format reqt tired.

I
ii

LISTING/I numeric-label LISTING pl4,p15 *comments Specifies assembly listing options.

LIBRARY/I numeric-label LIBP p 13, list-15 *comments Specifies use of library procedures and f unctions.

-··-----t---

Listirtg NOLIST/1,2,n numeric-label NOLIST *comments Suppresses listing until assembler encoun ters
Conttol LIST directive.

LIST/1,2,n numeric-label LIST *comments Resumes listing suppressed by NOLIST.

BRIEF/ 1,2 ,n numeric-label BRIEF *comments Suppress listing of statements part of pr1 Jcedures
or functions.

DETAIL/1,2,n numeric-label DETAIL *comments Lists all procedure and function stateme nts.

SPACING/1,2,n numeric-label SP ACING p28 *comments Selects single, double, or triple spacing.

EJECT I 1 ,2 ,n numeric-label EJECT *comments Resumes listing from top of page.

TITLE/ 1 ,2 ,n numeric-label TITLE p29 *comments Causes a listing eject and places specifiec
character string at beginning of all succe eding
pages.

MESSAGE/1,2,n numeric-label MESSAGE pl6 *comments Places a character string on the output Iii sting.

\0
\0
00
0
t-...>
0
0

>

Table 4-1. Summary of Directives (Cont'd)

G;;---··---..---N-a_m_e_/_L_e_ve-1----.------F-or_m._a_t --________ _ .. ____ .., _____ _. ___ _ .. __ , ____ ~·-···-Pu-r-po-s~--·-·---- ---------......... _

t=:.. -
Assembly
Collltrol

IDENT/1

END/2

FINIS/I

-
numeric-label, symbol IDENT *comments

numeric-label END pl *comments

numeric-label FINIS *comments

Specifies beginning of subprogram area.

Specifies end of subprogram area.

Specifies end of all source statements;
terminates assembly .

....... , ,_,,_,,_ ,.,_,,, _________ ---·-·-------.. ·-----·--- ·--···----··-·-----.. -·····----·"'"'""--·--------·-·--------~----~---------------·-

Conditional
Assembly
Control

Repeat/1,2,n

GOT0/1,2,n

numeric-label,symbol RPT,p26 p27 *comments

numeric-label GOTO,p9 list 14 *comments

Specifies number of times source statements
are to be processed.

Specifies conditional skip of source statements.
1----·------~---------------~----------------------------t~---~------·--------~--~·

Subprogram
Lil1lking

Symbol
and Set
Definition

ENTRY/2,n

EXTD/2,n

EXTC/2,n

SET/1,2,n

numeric-label ENTRY list-4 *comments

numeric-label,list-6 EXTD,p32 list-25 *comments

numeric-label,list-6 EXTC,p32 list-25 *comments

numeric-labelJist-23 SET list-24 *comments

Specifies address ID's and variable ID's defined
by EQU directives, which can be referenced
by other subprograms.

Lists data address identifiers defined with
ENTRY directive in data MSEC of another
subprogram.

Performs above functions for code address
identifiers.

Assigns label field symbol as a set name for
list 24 contents.

'° '° 00
0
t-->
0
0

>
Type

Assignment

Data
Generation

Location
Control

Name/Level

Redefine/ I ,2 ,n

Equivalence/1,2,n

FORM/1,2,n

Form Refercnce/2,n

Generate/2 ,n

Reserve/2,n

Memory Section/2,n

Origin/2,n

End Origin/2,n

Table 4-1. Summary of Directives (Cont'd)

Format

numeric-label ,Iist-5 RDEF p3 *comments

numeric-label,Iist-5 EQU p3 *comments

numeric-label,list-7 FORM ,p4 Iist-8 *comments

numeric-label,list-9 form name list-10 *comments

numeric-label,Iist-12 GEN ,p4,p8 list-13 *comments

numeric-label,Iist-17 RES,p4 p25 *comments

numeric-label,list-17 MSEC p 18,p 19 *comments

numeric-label,list-26 ORG p2 I *comments

numeric-label EORG *comments

Purpose

Assigns or reassigns value and attributes iln
operand field to symbols in label fields.

Assigns value and attributes in operand field to
symbols in label field. After a value is assigned,
symbol cannot be redefined.

Specifies form name and defines data generating
format by specifying alignment and field sizes
in bits.

Specifies generation of data from expressions
in list I 0 into field of form specified by
form name referenced. (Form name is specified
by FORM directive.)

Specifies generation of data starting at next
aligned bit.

Aligns current location counter and adds
value in operand field to counter.

Defines control section and specifies it a
current.

Sets implied location counter to specified value.
Activates memory section containing statement.

Sets current memory section to preceding
memory section specified prior to the las
MSEC or ORG directive.

~::,.

Vi
,f.,,

.......

'° '° 00
0
N
0
0

>

Table 4-1. Summary of Directives (Cont'd)

l Typ1e___ Name/Level Format Purpose
~::-::::=.::::·=:::::::=:=::::=1::::=:==--:==:==---====-=:-...::::f::=::::· .. =-===·===================···:t=·I::::-======:=============::.::
Attribute
Control

Reference
Attribute/1,2,n

numeric-label,list-21 RATT list-22 *comments Adds or changes extrinsic attributes of
identifiers.

---··-·--" _,,_,_ '-·--- ------.. --·-------·----·--·--·-- ---- ... -----··-·--·-·-·--·-·""--·--·-·-.... ·------·---·--.. ---.. ------·-------·-------·--------·---·-------
Proc:edures
and
Functions

Procedure/ 1,2

procedure
reference/ 1,2,n

Function/ 1,2

function
reference/ 1,2,n

NAME/1,2

tENDP/1,2,n

tEXITP/ 1,2,n

tp2 applies to functions only .

numeric-label,p22 PROC,p23 p5,p6 *comments Declares start of procedure definition.

numeric-label,list-18 p7,list-19 list-20 *comments Calls procedure and passed parameters to it.

numeric-label FUNC p5,p6 *comments Declares start of function definition.

p7(list-11) Calls function and passes parameters to it.

numeric-label,p7 NAME,p33,p20 list-16 *comments Defines function/procedure names and entry
points.

NOTE: p33 and p20 apply only to PROC's

numeric-label ENDP p2 *comments

numeric-label EXITP p2 *comments

Terminates procedure or function;
parameter p2 is used only with functions.

Terminates a procedure or function before END
definition. (More than one EXITP allowed in
procedure or function.) Parameter p2 is used
only with functions.

I Designator

pl

p2

p3

p4

p5

p6

p7

p8

p9

plO

pll

pl2

pl3

p14

p15

p16

pl7

19980200 A

Table 4-2. STAR Assembler Directive Parameters

Description

Address identifier used to indicate a transfer address for object deck execution. Must have
appeared as an entry point name on ENTRY directive.

Optional expression or subset for function definitions; it is ignored in procedures.

Any expression; it may not be a set name.

Bit value for alignment of current location counter.

Optional symbol that becomes the set name for the list of expressions, set element
references, and symbols appearing in the operand field of the reference statement.

Optional symbol that becomes the set name for the set list appearing in the operand field
of the NAME directive that is the entry point.

Symbol that becomes a function/procedure name, it can be in the command or operand
field list of directives or instructions.

Value indicating number of bits to be reserved for each expression in list 13.

Indicates what list 14 element is to be selected.

Beginning column of source code.

Last column of source code.

Continuation column of source code.

Character symbol specifying the name of the source file for procedures or function
definitions.

Default: no cross reference.

Cross reference listing is desired.

1= 1 No cross reference list.

Warning messages are to be omitted from the listing.

Character string of 128 characters or less to appear on output listing, overriding any
active listing control directives.

Optional symbol that becomes the memory section name.

4-55

Designator

!

I p18

I
I

p19

p20

p22

p26

4-56

j

Table 4-2. STAR Assembler Directive Parameters (Cont'd)

Description

Optional integer that indicates usage restrictions.

Default is 1

Data MSEC

2 Code MSEC

3 Common MSEC

Optional integer constant permitting monitor instructions in this memory section.

Default or value > 1 or < 1; no monitor instructions allowed.

1 Monitor instructions are allowed.

Optional value of integer constant.

Default or value > 1 or < 1 - all symbols in label field list of call will be defined as
address identifiers.

1 Symbols appearing in label field list of procedure call will remain undefined.

Any expression that has an integer constant value or a value that has a single memory
section ordinal number associated with it. The bit value becomes the location counter of
the memory section implied by the ordinal number. The current memory section is
associated with the ordinal number.

Optional symbol that becomes the set name for the list of symbols appearing in the label
field of the procedure reference statement.

Optional symbol that becomes the set name for the list of expressions, set element
references, and symbols appearing in the command field after the procedure name of the
procedure reference statement.

Optional integer constant; must be a positive bit value, that is added to the current
location counter after alignment.

Indicates number of times succeeding statements are to be processed (if the symbol value
is not altered within the repeat loop).

Identifies a forward numeric label on the statement that is to be the last line repeated.

Indicates number of lines to skip after each line listed (0,1,2, or 3).

19980200 B

Designator

p29

p30

p31

p32

p33

list 1

list2

list3

list4

lists

list6

list7

list8

I list9

I
I list!O

I list! I

I
I ustl 2

19980200 B

Table 4-2. STAR Assembler Directive Parameters (Cont'd)

Description

Character string of 64 characters or less to be printed at the top of succeeding pages.

If set to 1, requests debug symbol table dump.

Two-digit hexadecimal number specifying the ID of the source file for a procedure or
function definition.

Integer constant; if it evaiuates to 0 or null, a full word (EXTD) is generated for each
symbol in operand list. After loading, it will contain address of designated data entry
point. For EXTC, two full words are generated; contains address of entry points and
data area.

An optional integer constant; the bit value is the alignment for the current location
counter when the procedure is called. Default is alignment on bit boundary.

Usually, address identifiers and set element references or variable identifiers and set
element references.

<;onsists of elementary items and expressions.

A list of elements separated by commas; made up of elementary items and expressions.

Address identifiers 01 variable identifiers defined by EQU directives that are made available
outside the subprogram and defined at the program level.

One or more variable identifiers, set element references, or set names separated by commas,
that assume the value and attributes of p3.

Address identifiers that are external to the subprogram.

One or more symbols, separated by commas; each symbol becomes the form name used to
reference the form.

Expressions, separated by commas, whose values specify the field sizes of the form in bits.
Must be integer constants.

Address identifiers, separated by commas; the address identifiers assume the value of the
current location counter after alignment.

A list of expressions, separated by commas. The value of each expression is the data that
goes into the form field.

Optional list of set elements are passed as parameters to the function. Parentheses are not
optional.

Address identifiers separated by commas.

4-57

Designator

r list 13

I list 14

list I 5

list I 6

I listl 7

I list 18

listl 9

list20

I I list21

list22

I
hst23

I

i list24
i
I

i list2 5

I
I list26

L

Table 4-2. STAR Assembler Directives List (Cont'd)

Description

Expressions, separated by commas; the value of each expression is the data to be generated.

Elements for which the values indicate forward numeric labels the GOTO can skip.

Procedures or function names separated by commas.

Optional list of set elements. All set elements must be completely definable when the
procedure or function is defined.

Optional list of address identifiers, separated by commas, which assume the value of the
current location counter after alignment.

Optional symbols defined as address identifiers, provided the parameter on the called
NAME line does not indicate they must not be undefined.

Set names, set elements, subsets, symbols, or expressions passed as parameters to the
procedure.

Set names, set elements, subsets, symbols, or expressions passed as parameters to the
procedure.

One or more address identifiers, variable identifiers, set element references, and set
names for which attributes are to be changed.

Elements, separated by commas, of the form Nl :N2.

NI Attribute number

N2 Value of extrinsic attribute.

One or more variable identifiers, set element references, or set names, separated by commas,
to become set names for the set list24.

Set elements (expression, set name, set element reference, or subset) separated by commas.

One or more symbols, separated by commas, external to the subprogram.

Optional list of address identifiers that assume the value of the current location counter
after ORG is processed.

19980200 B

ASSEMBLER PROVIDED FUNCTIONS AND PROCEDURES 5

The functions and procedures described in this section are provided as part of the assembler for use during
program assembly. Functions and procedures described are:

Conversion functions

Symbol Creation functions

Attribute functions

NOPH procedure

SHOR TBR procedure

NOTE

Any symbol defined which is the same as a function name or assembler-provided function
name, may override the function when a call to it is made; therefore results are unpredictable.

CONVERSION FUNCTIONS

Conversion functions provide the programmer with a means of changing a value from one constant form to
another.

Function Call:

function-name (expression)

Table 5-1 lists the current assembler functions.

19980200 B 5-1

I

r
! Function Name

ITOC

HTOC

PTOI

ZTOP

DTOP

XTOD

ITOF

BTOD

F32F

FF32

ZTOC

PTOZ

I ASSM(pl)

I

5-2

Table 5-1. Conversion Functions

Function Performed

Convert an integer or hex constant to an integer value represented as
character string constant. Leading zeros are suppressed.

Convert an integer or hex constant to a character string constant
represented as a hexadecimal value.

Convert a packed constant to an integer constant.

Convert a zoned constant to a packed constant.

Convert an integer string constant to a packed constant.

Convert a hex string constant to an integer string constant.

Convert an integer or hex constant to 64-bit floating point.

Convert a bit string constant to an integer string constant.

Convert a 32-bit floating point value to 64-bit floating point value.

Convert a 64-bit floating point value to a 32-bit floating point value.

Convert a zoned constant to a character string constant.

Convert a packed constant to a zoned constant.

Return an integer constant depending on the value of pl.

Pl = 1 Current value of error count.

Pl = 2 Current value of warning count.

NOTE

For an example of the ITOC and HTOC function, see appendix I.

19980200 B

SYMBOL CREATION FUNCTION

The symbol creation function removes the quotes enclosing the first argument. It is used to convert character
strings to symbols and to generate symbols. Symbols created by the SYM function will be entered into the
symbol table.

SYM (pl,p2,p3)

pl An expression that evaluates to a character string, ABC etc. Forward references are not
permitted. No restriction on the characters in pl. i.e. # , - , +, ...

p2 Optional. When equal to 1 specifies the inclusion of a $ appended to the symboi, ie., symboi
is at call level.

p3 Optional level number for explicit symbolic control.

Example

The following example illustrates symbol creation for use in the label field of a PROC statement. (A second
example using the function appears in appendix I.)

p
CALL-BY-NAME
SYM(ATT(P [l], 1), 1)

PROC
NAME,,l
RDEF 10

A
ENDP
CALL-BY-NAME

This call statement results in the equivalent of the following statement;

A$ RDEF 10

In the SYM (ATT(P[l] ,1),1) statement:

(P[l] ,I)

,1)

Requests the first sub-element of set A which is A; the result is as specified by
attribute 1 which specifies the expression for use as a symbol.

Specifies a dollar sign be appended to the symbol.

The following example illustrates the use of p3:

1 ID ENT

SYM("A")
SYM(" A", I, 1)

GEN
GEN
END

19980200 B

EQU I
EQU 2

A
SYM("A", 1, 1)

*SYMBOL A AT LEVEL 2
*SYMBOL A AT LEVEL I
*GENERATES
*GENERATES 2

5-3

1

ATTRIBUTE FUNCTION

Attributes may be intrinsic or extrinsic. The use of extrinsic attributes and the RA TT directive are described
in section 4.

INTRINSIC ATTRIBUTES

The attribute fnnction followed by the attribute number is used to return the value of the specified attribute.
The value returned provides information about the symbol referenced in that function. Intrinsic attributes, are
listed below with the significance of values that can be returned when the attribute is used in an ATT reference.

ATTRIBUTE 1

ATTRIBUTE 2

ATTRIBUTE 3

5-4

Symbol as a character string - returned value equals the symbol or set element
as a character string in quotes. A null character string is returned if there is no
symbol, e.g.; if:
a) A GEN 5

then
ATT(A,1) returns "A"

b) B SET A
then
ATT(B[l] ,1) returns "A"

Mode - returns the mode of the expression as an integer constant.

Mode

No va]ue

Absolute address

Relocatable address

External address

Integer or hexadecimal constant

Hexadecimal string constant

Bit string constant

Ornracter string constant

Real· constant

Packed decimal constant

Zoned decimal constant

Integer string constant

Null element; element of a set list is not defined

Value

0

2

3

4

5

6

7

8

9

10

11

12

Memory Section Ordinal Number - returns the ordinal number (integer constant)
of the memory control section under which the address identifier is defined. A

zero is returned if there is no ordinal.

19980200 B

ATTRIBUTE 4

ATTRIBUTE 5

ATTRIBUTE 6

Definition Level - returns the definition level as an integer constant.

Definition Level

Universai

Subprogram

Procedure /Function

Symbolic Type - returns the symbolic type as an integer constant.

Symbolic Type

Undefined

Redefinable identifier

Identifier not redefinable

Set name

Not an identifier (it is an expression or literal)

Value

2

~3

Value

0

2

3

4

Value Size - returns an integer constant indicating the number of bits needed
to contain the value of the item.

ATTRIBUTE 7 Number of Elements - returns the number of elements in the named set as an
integer constant. If not a set, the value zero is returned.

B SET 2,3,6,7 ,4
GEN ATT(B,7) Returns a value of 5.

ATT

The iinplicit attribute of a symbol or a set element is its value. The value attribute of a symbol is synonymous
with the symbol; no further notation is needed to obtain that information.

Example

A RDEF 10

GEN A

The use of the A in the GEN statement returns the value attribute which is 10.

The attribute function is used to obtain attributes other than the value attribute.

The ATT function returns the value of the indicated attribute. (intrinsic or extrinsic).

ATT(pl,p2)

pl The symbol, symbol creation function, or the set element reference of which the attribute is
to be retrieved.

p2 An expression with an integer constant value specifying the attribute to be returned.

Unpredictable results may occur if extrinsic attributes are referenced before they are defined.

19980200 B 5-5

Examples

1. A GEN 5

The address identified A has the following attributes:

ATT (A,l) is A

ATT (A,2) is 2 (assume default MSEC)

ATT (A,3) is I (assume default MSEC)

ATT (A,4) is 2 (assume statement was in subprogram area)

2.

ATT (A,5) is 2

ATT (A,6) is 48

ATT (A,7) is 0

D GEN 5
A GEN D

ATT(A,6) = 48
A RDEF "0"

ATT(A,6) = 8
A RDEF I"25"

ATT(A,6) = 8
A EQU 25

ATT(A,6) = 48
A SET 5,Z"+12" 12

ATTCA(2],6) = 16

01 000000000000 F
01 000000000040 F

00000000 00000002
00000000 00000000

Referencing a set element returns a null.

5-6

A

END

SET 1,2
GEN ATT(A,7)
GEN ATT(A[l],7)

19980200 A

ASSEMBLER PROVIDED PROCEDURES

The following comma.'1.ds are provided for user convenience. They are alternatives to existing commands with
preset values, qualifiers, or default values.

NOPH Used for alignment; no code generated. Half-word NO-OP can be used when aligning EXTD
or EXTC generation in a data MSEC.

SHORTBR ADDRESS is equivalent to:

{
BRF}

BAB,BR BRB ,address

For a description of the BAB mnemonic instruction see STAR HARDWARE Reference Manual.

19980200 A 5-7

GLOSSARY

Absolute Address

1. An address permanently assigned by the machine hardware to a particular storage location.

2. A pattern of characters that identifies a unique storage location without further modification.
Synonymous with Machine Address. (See Virtual Addressing for Absolute Address).

Address

All addresses are 48-bit quantities containing enough information to reference a specific bit.

Address Identifier

A designator given to an execution time entity, such as a program point.

Assemble

To prepare an object language program from a symbolic language program by substituting machine opera­
tion codes for symbolic operation codes and virtual addresses for symbolic addresses.

Assembler Defined Program Areas

Source code for each assembler program is assigned to one of two assembler defined program areas:

Universal Area is used for 1/0 specification; symbol, procedure, function, and set definition.

Subprogram Area contains executable program statements.

Assembler Directives

The symbolic assembler directives control or direct the assembly processor in the same manner that
machine instructions direct the central computer. Directives ·are represented by mnemonics.

Assembler Language Processor

A language processor that accepts words, statements, and phrases to produce machine instructions.

Assembly listing

A printed list presenting the logical instruction sequence. Included is symbolic source notation and actual
object notation in hexadecimal form established by the assembly process. Relative virtual addresses of
the assembler generated code are provided also.

Attribute

01aracteristics of a symbol such as word size, mode of representation (hexadecimal, octal, etc.) The two
attribute types are: intrinsic (1-7) - predefined. Extrinsic (8-120) - user defined.

19980200 A Glossary-I

Base Address

Byte

Address defining the origin or reference point of operands or results. It may be modified by offset or
index to determine the desired address.

An 8-bit quantity, the address of the left most bit is always a multiple of 8.

Broadcast Constants

A 3 2- or 64-bit * 1 vector element used in some vector instructions to transmit the same vector element
repeatedly. Broadcast or normal element is selected by machine instruction qualifiers.

Conditional Assembly

A feature of the STAR assembler that allows the user to dictate whether statements' should be assembled
or not. The user can achieve conditional assembly with the GOTO and RPT directives.

Control Vector (CV)

Base address of control vector is contained in Z field of vector and vector. macro instructions. Control
vector determines how many C elements are stored during execution of vector machine instructions and
determines which pairs of A and B elements are compared during execution of Vector Macro instructions.
Use is specified in an instruction by Z designator 'f 0, in which case, Z designator becomes the CV base
address.

Elementary Item

Entry

A self defining component of an expression.

Symbol (address identifier), defined in the program that declares the symbol as an entry and can be
referenced from another program.

Entry Point

Label of a source statement where execution or processing can begin.

Expression

Series of values, symbols, and functions connected by mnemonic or symbolic operators as required to
cause computation.

External Symbol

A symbol (address identifier) referenced in the program that declares the symbol external but defined
(given an address value) in another program.

Form Identifier

Designator identifying a form definition.

Glossary-2 19980200 A

Forward Reference

A label referenced in the operand field that has not been previously defined.

Function

Assembly time subroutine normally used where common routines are desired. Functions return a 'value
to the point of reference.

Function/Procedure Identifier

Label

Designator for entry points defined within a .function or procedure.

A 3 2-bit quantity, the address of the leftmost bit always is a multiple of 32 (decimal).

Labels may be numeric or alphanumeric. Alphanumeric labels comprise the label list of the statement
format; they must start with a letter (maximum size 64 characters).

Location Counter

Counter assigned to each memory control section. They are incremented in bits and specify the bit
location of code and data sections of a user program.

Location Independent Code

A sequence of statements containing no addresses. Such code is written to execute correctly from any
virtual address without modification.

Memory Control Section

A specific area is user's virtual memory to which code and data can be assigned. Each MSEC is assigned
an ordinal number. A maximum of 255 MSEC's can be specified in a user program.

Code MSEC can contain code and data. Data in this area is assigned to a specific user subprogram.

Data MSEC can contain information unique to a user's program.

Common MSEC can contain data that may be shared between programs assembled separately but
loaded together.

Mnemonic Instruction

Use of symbolic notation in place of actual machine code. A mnemonic instruction must be translated to
actual operation codes by assembler procedure references.

Normalizing a Number

The coefficient is shifted left until the sign bit does not equal the bit immediately to its right. The
exponent is reduced by one for each left shift.

19980200 A Glossary-3

Offset

Number used to modify the base address of operands in vector and some non-typical instructions. May
be half-words or words (determined by number of bits in operand up to ± 215 -1).

Order Vector (OV)

Denotes non-significant elements in vector field. Generated by COMPARE instructions and used by
COMPRESS instructions to generate sparse vector. Number of ones in order vector determines field length
of sparse vector operands. A filled result order vector terminates sparse vector instructions.

Packed BCD F01;nat

This format is used for decimal arithmetic. Two BCD digits are contained in each byte and the sign is
right justified.

0000 0001 1000 1001 0011 1010

0 8 9 3 +

PACKED BCD FORMAT

Pre-defined Symbols

Symbols with special meaning to the assembler when used in the command field of an assembler statement.

Procedure

A subset of source statements meeting a specific purpose that can be repeatedly referenced to generate
parameterized code.

Qualifiers

Symbols to indicate sub-operation of the function code specified by an instruction mnemonic.

Re-entrant Code

Code that never modifies itself. This type of code was used in writing this assembler to allow several
users to employ the same assembler programs simultaneously.

Glossary-4 19980200 A

Register File

Set

256 registers of 64 bits each used for instruction and operand addressing, indexing, field length counts;
source or destination of operands for register instructions. Addressed by 8-bit instruction designator .

A collection of related elements having a common name. An element may be a set (a subset of a set).
A reference to an element consists of the set name followed by one or more integers enclosed in brackets
[] indicating the location of the element.

Source Program

A program written in assembly language that must be translated into machine language before it can be
executed.

Sparse Vector (SV)

Vector field contracted by removing the non-significant elements to conserve storage space and calculating
time. Positional significance of the elements is retained by an order vector for each sparse vector.

Statement

An instruction to be interpreted by an assembler.

Subscript

One or more integers enclosed by brackets [] used to specify a particular element in a set.

Subprogram

A part of a program determined by the IDENT directive (sta.rt) and terminated by an END directive.

Unary Opera tor

An operator such as the sign of a value (+ or -) that applies to one operand only, rather than causing
addition or subtraction.

Vector (VT)

As used in the matrix algebra, a 32 or 64 x n array of elements. Maximum size is 64 bits x 65,536
words. Operates on ordered scalar contained in operand fields, rather than single operands.

Virtual Memory

A conceptual extension of main storage achieved by hardware technique which permits storage address
references beyond the physical limitation of main storage. Virtual addresses are equated to real addresses
during program execution.

19980200 A Glossary-5

Variable Identifier

Designation of a single translation time value.

Word

A 64-bit quantity. The address of the leftmost bit is always a multiple of 64 (decimal).

Zoned BCD Format

Input/output operations use zoned format; one BCD digit is contained in each byte. Sign is leftmost 4
bits of rightmost byte. Leftmost 4 bits of all other bytes is called the zone. Instructions are provided
for packing and unpacking decimal numbers so they may be changed from zoned to packed format and
vice versa.

BYTE BYTE

ZONE DIGIT ZONE DIGIT SIGN DIGIT

ZONED BCD FORMAT

Glossary-6 19980200 A

ELEMENT ARY ITEMS A

The basic representation of data for the assembler is an elementary item; it may be a delimiter character,
symbol, variable identifier, constant, operator, etc. This appendix describes all elementary item types that can
be used with the ST AR assembler and provides examples of each type.

Table A-1 contains a complete list of the ST AR character seL Subsequent paragraphs describe the type and
use of these characters. A list of the operator characters and a description of their use in formulating ex­
pressions is provided in Appendix B. Delimiters are listed in table A-2, and Special Characters that have an
implied meaning to the assembler are listed in table A-3.

19980200- A A-1

A-2

Hex

20
21
22
23
24

25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A

3B

3C
3D
3E

3F
40

T Character

b space
!
11

quote

$
%
& ampersand
' apostrophe
(
)

*
+
, comma

I
0
1
2
3
4
5
6
7
8
9

<

>
?
@ commercial at

Table A-1. STAR Character Set

Punch

no punch
12-8-7
8-7
8-3
11-8-3
0-8-4
12
8-S
12-8-S
11-8-S
11-8-4
12-8-6
0-8-3
11
12-8-3
0-1
0

1
2
3
4
s
6
7
8
9
8-2
11-8-6
12-8-4
8-6
0-8-6
0-8-7
8-4

Hex Character

41 A
42 B
43 c
44 D
4S E
46 F
47 G

48 H
49 I
4A J
4B K
4C L
4D M
4E N
4F 0
so p
Sl Q
S2 R
S3 s
S4 T
SS u
S6 v
S7 w
S8 x
S9 y
SA Z
SB [opening bracket
SC \ reverse slash
SD] closing bracket
SE - circumflex
SF underline

7B { treated as [

70 { treated as]

Punch

12-1
12-2
12-3
12-4
12-S
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-S
11-6
11-7
11-8
11-9
0-2
0-3
0-4
0-S
0-6
0-7
0-8
0-9
12-8-2
0-8-2
11-8-2
11-8-7
0-8-S

19980200 A

Delimiter

, (comma)

() parentheses

[] brackets

b blank

11
quotes

colon

pound sign

,,,..._ circumflex

19980200 A

Table A-2. Delimiter Characters

Function

Delimits elements in a statement field.

Delimits elements in a list and arguments in a procedure
or function call.

Delimits subscripts of a set element reference.

Enclose arguments of a function call.

Used for grouping in an arithmetic expression or for
repetition.

Enclose subscripts for referencing a subset of a set;
enclose subsets of sets.

NOTE

The examples in appendix L show the { }
characters which are equivalent to [] ; the
programmer must punch [] .

I\
12-8-2 11-8-2
punch punch

Terminates a statement field except in a character
string constant or comment.

Encloses character string for a string constant.

Indicates ordinal of an element within a set.
Indicates ordinal of a symbol attribute.

Indicates start of hexadecimal constant.

Used as escape character in a character string constant;
indicates the next 2 hex digits form a special ASCII
character.

Section Reference

Section 3
(Statement Structure)

Section 4
(Procedures/ functions)

Section 4
(Referencing Sets)

Section 4
(Functions)

Appendix B
(Expressions)

Section 4
(Referencing Sets)

Section 3
(Statement Structure)

Appendix A
(Constants)

Section 4
(Defining Sets)

Section 4
(RATT)

Appendix A
(Constants)

A-3

I

Table A-3. Special Characters

Special Character Function Section Reference

$ Specifies a drop to a lower level of reference; cannot Section 2
be used at level 1. (Levels of Symbol

Reference)

@ Indicates current value of active location counter. The Section 4
@ has the same relocation as the active location counter. (Address and Location

Control)

* At beginning of a statement field, indicates the following Section 3
characters comprise a comment. (Statement Structure)

& Indicates statement continues at next continuation Section 2
begin column. (Statement Structure)

CONSTANTS

A constant is a numeric value which cannot be changed by a program. Nine types of constants can be specified
in a Control Data STAR assembler program:

Integer
Integer String
Hexadecimal
Hexadecimal String
Bit String

Character String
Packed Decimal
Zone Decimal
Real

The following paragraphs describe the format which is used when writing each constant type in a program. The
rules described here are summarized in table A-4 following the discussion of Real Constants.

A-4 19980200 A

INTEGER CONSTANT

An integer constant is a signed string of numeric characters (digits) 0-9. The constant is converted to its signed,
48-bit binary equivalent.

±digit-,. string

In data generation, the generated length of an integer constant is 64 bits, sign extended to 48 bits.

During data generation, if the integer is truncated, the most significant bits are lost.

GEN #123456789123456789
~~mm~m~rn~~ WARNING - CONSTANT TRUNCATED IN OPERAND FIELD
1 000000000240 F 00007891 23456789

The maximum significance of the integer is 47 bits excluding sign.

Integer constants are always right justified, sign-extended in data generation.

Maximum integer constant is +140,737,488,355,327; the minimum is -140,737,488,355,328.

Examples:

Integer Constant

0
1
lG
25G
409G
65535
-0
-1
-17
-320
-55823
-~07J7

19980200 A

Assembler Generated Data

When 64 Bits Requested

0000000000000000
0000000000000001
0000000000000010
0000000000000100
0000000000001000
oooooooooooorFFr
0000000000000000
ITFFFFFr F.FFrFFFr
FFFFFFPFFrFrFrEr
rFFFrFFFFPFPFEBG
PFFFrFFFFFFF25Fl
FFFFFFPFPFFF60DP

Default Length Requested

0000000000000000
0000000000000001
0000000000000010
0000000000000100
0000000000001000
OOOOOOOOOOOOFFFF
0000000000000000
OOOOFFFFFrFFFFFF
OOOOFFFFFFFFFFEF
oooorFPPFFFFFEB8
OOOOFFFFFPFF25Fl
OOOOFFFFPFFF60DF

A-5

INTEGER STRING CONSTANTS

An integer string constant is written as the letter I followed by a signed string of numeric characters enclosed
in quotes. The constant is converted to a signed binary string equivalent.

1
11

±digit-string"

The integer string constant cannot be used in arithmetic expressions.

In data generation, the default length of an integer string constant is the minimum number of bytes
needed to represent the signed binary string.

During data generation, if an integer string is truncated, the most significant bits are lost. When truncation
occurs a warning message is generated. "WARNING - CONSTANT TRUNCATED IN OPERAND FIELD."

Integer string constants are right justified, sign-extended in data generation.

Maximum number of digits is 2 12
.

Examples:

A-6

Integer String
Constant

I"O"
I "1"
I"+lG"
I II 256 II
I"409G 11

1"+65535"
I"-0"
I"-1"
1 11 -17 11

I"-328"
I"-55823"
I"-40737"

Assembler Generated Data

When 64 Bits Requested Default Length Required

0000000000000000
0000000000000001
0000000000000010
bOOOOOOOOOOOOlOO
0000000000001000
OOOOOOOOOOOOPFFF
0000000000000000
OOOOOOOOOOOOOOFF
OOOOOOOOOOOOOOEP
OOOOOOOOOOOOFEB8
OOOOOOOOOOFF25Pl
OOOOOOOOOOFF60DP

00
01
10
0100
1000
oorrrF
00
rr
:er
F:CDG
FP25Fl
FF60DF

19980200 A

'HEXADECIMAL CONSTANT

A hexadecimal constant is written as a # (pound sign) followed by a string of hexadecimal characters from
the set 0-9 and A-F. The constant is converted to a 48-bit binary equivalent.

±#hexadecimal-character-string

The default length of a hex constant, in data generation, is 64 bits sign extended to 48 bits.

When a hex constant is truncated during data generation, the most significant bits are lost.

GEN #FFFFFFFFFFFFFFFFFF

~m~~~~~m~~~~~~~~ WARNil\G - CONSTANT TRUNCATED IN OPERAND FIELD

Hexadecimal constants are right justified, sign-extended in data generation.

The maximum hex constant is: ±#FFFF FFFF FFFF

Examples:

Hexadecimal
Constant

#9
#F
#FE
#OF
+#FF
#8000
#08000

- #9
- #F
- #FE
- #OF
- #PF
- #8000
- #08000

19980200 B

Assembler Generated Data

When 64 Bits Requested

0000000000000009
OOOOOOOOOOOOOOOF
OOOOOOOOOOOOOOFL
OOOOOOOOOOOOOOOF
oooooooooooooorr
0000000000008000
0000000000008000
FFFFFFFFFFFFFFF7
FFFFFFFFFFFFFFFl
FFFFFFFPFFFFFF02
FFFFFF~FFFFFFFFl

FFFFFFFFFFFFFFOl
FFFFFFFFFFFF8000
FFFFFFFFFFFF8000

Default Length Requested

0000000000000009
OOOOOOOOOOOOOOOF
OOOOOOOOOOOOOOFE
OOOOOOOOOOOOOOOF
OOOOOOOOOOOOOOFF
0000000000008000
0000000000008000
OOOOFFFFFFFFFFF7
OOOOFFFFFFFFFFFl
OOOOFFPFFFFFFF02
OOOOFFFFFFFFFFFl
OOOOFPFFFFFFFFOl
OOOOFFFFFFFF8000
OOOOFFFFFFFF8000

A-7

I

HEXADECIMAL STRING CONSTANT

A hexadecimal string constant is written as a letter X followed by a string of hexadecimal characters (from the
set 0-9 and A-F) enclosed in quotes. Each character in the string is converted to a 4-bit hexadecimal equivalent.

x' 'hexadecimal-character-String I I

The hexadecimal string constant cannot be used in arithmetic expressions.

The default length of a hex string constant, in data generation, is the number of half-bytes (4 bits)
required to represent the constant.

Hex string constants are always right justified, zero filled in data generation.

Maximum number of hex digits is 212.

Examples:

A-8

Hexadecimal
String Constant

X"9"
X"F"
X"FE"
X"OF"
X"FF"
X"8000"
X'! o so'oo"

Assembler Generated Data

When 64 bits Requested Default Length Requested

0000000000000009
OOOOOOOOOOOOOOOF
OOOOOOOOOOOOOOFE
OOOOOOOOOOOOOOOF
OOOOOOOOOOOOOOFF
0000000000008000
0000000000008000

9
F
FE
OF
FF
8000
08000

19980200 A

BIT STRING CONSTANT

A bit string constant is written as a letter B followed by a string of binary digits from the set 0 and 1 enclosed
in quotes. Each character in the string is converted to a 1-bit binary equivalent.

B11binary-digit-string
11

The bit-string constant cannot be used in arithmetic expressions.

The default length of a bit string constant, in data gene.ration, is the number of bits required to represent
the bit string.

Bit string constants are right justified and zero-filled when used in data generation.

Maximum number of bits is 21 2
.

Examples:

Bit String
Constant

B"l"
B"lllO"
B"OllOOO"
B"OlOl.010101"
B"l010101010"

19980200 B

Assembler Generated Data

When 64 Bits Requested

0000000000000001
OOOOOOOOOOOOOOOE
0000000000000018
0000000000000155
OOOOQOOOQ00002AA

A-9

I

I

I
CHARACTER STRING CONSTANT

A character string constant is written as a string of ASCII characters enclosed in quotes. Each character is
converted to an 8-bit byte equivalent representation.

"character-string'
1

The character string constant cannot be used in arithmetic expressions.

The default length of a character string constant, in data generation, is the number of bytes required to
represent the character string.

A circumflex in the character string indicates the next 2 hexadecimal characters are to be combined to
form a special ASCII code.

The following characters must be inserted by using the circumflex:
11

(quote), &(aIJlpersand), and

......... (circumflex), e.g., "...-....41" = "A"

Character string constants are always left justified and blank-filled in data generation. The data generation
field must be a multiple of bytes.

The current control section counter must be byte aligned for data generation of character strings. Auto­
matic alignment occurs if improper alignment is detected. When automatic alignment occurs the message:
AUTOMATIC ALIGNMENT PERFORMED FOR DATA TYPE INDICATED LABELS MAY NOT
CORRESPOND TO ST ART OF DATA" is issued.

Maximum number of characters is 212
.

Examples:

A-10

Character
String Constant

II ASSEI1BLER"

"USES FOR
AllPERSAND"

Assembler Generated Data

When 192 Bits Requested

415353454D424C45
5220202020202020
2020202020202020

555345532020464F
5220414D50455253
414F442020202020

Default Length Requested

415353454D424C45
52

555345532020464F
5220414D50455253
414F44

19980200 B

PACKED DECIMAL CONSTANT

A packed decimal constant is written as the letter P followed by a signed string of numeric characters enclosed
in quotes. The constant is converted to its signed BCD equivalent: the rightmost 4 bits contain the size.

Pi i ±digit-string;'

Packed decimal constants cannot be used in arithmetic expressions.

The default length of a packed decimal constant, in data generation, is the number of bytes required to
represent the signed packed decimal constant.

The most significant bits are lost when truncation is performed.

Packed decimal constants are always right justified zero-filled in data generation.

Maximum number of digits 212.

Examples:

Packed Decimal
Constants

Assembler Generated Data

P"l2345"
P"+543"
P"-6789"
P"-9876"

When 64 Bits Requested

000000000012345A
000000000000543A
000000000006789B
00000000000987GB

ZONED DECIMAL CONSTANT

Default Length Requested

12345A
543A
06789B
09876B

A zoned decimal constant is written as the letter Z followed by a signed string of numeric characters enclosed
in quotes. The constant is converted to its signed ASCII-zoned format with the rightmost byte (an overpunched
digit) containing the sign and the least significant decimal digit.

z'' ±digit-string''

Zoned decimal constants cannot be used in arithmetic expressions.

The default length of a zoned decimal constant, in data generation, is the number of bytes required to
represent the signed zoned decimal constant.

The most significant bits are lost when truncation is performed.

The current control section counter must be byte aligned for data generation of zoned constants. Auto­
matic alignment occurs when improper alignment is detected.

Maximum number of digits is 212.

19980200 A A-I I

Examples:

Zoned Decimal
Constants

Assembler Generated Data

Z"l2345"
Z"+543"
Z"-6789"
Z"-9876

REAL CONSTANT

When 64 Bits Requested

3030303132333445
3030303030353443
3030303036373852
303030303938374F

The formats for signed real constants are:

for half word

for full word

Default Length Requested

3132333445
353443
36373852
3938374F

The real constant is converted to its internal normalized floating-point equivalent.

n1 is an optional string of numeric characters.

n2 is a non-empty string of numeriC characters.

n3 is an optional string of numeric characters.

The period is not optional but the E or D and the signs are optional. If neither E nor D is given, the default
is E.

When real constants are used in arithmetic expressions, normalized arithmetic is used for add and subtract
operations; significant arithmetic is used for multiply and divide operations; and the result is always
normalized.

The default length of a real constant, in data generation, is an 8-bit exponent, 24-bit coefficient for E
(32-bit value); or a 16-bit 'exponent, 48-bit coefficient for D (64-bit value).

When a real constant is converted to its internal form, the least significant digits are truncated.

When a real constant is used in data generation, the rightmost bits of the constant are truncated.

Real constants are always right justified, zero-filled in data generation.

For .0, maximum number of digits for n1 and n2 combined is 14.

For E, maximum number of digits for n 1 and n2 combined is 7.

For D~ maximum number of digits for n3 is 4.

For E, maximum number of digits for n3 is 2.

If half~ and full-word real constants are mixed in arithmetic expressions, the result is a full word.

19980200 A

Examples:

19980200 A

Real Constants

+123.45E+4
-123.45E+4
+123.45E-4
-123.45E-4
123.45D+4

+123.45D-4
-123a45D-4

Assembler Generated Data

When 64 Bits Requested

FE4B5910
FEB4A6FO
E3652157
E39ADEA9
FFE64B59 10000000
FFCB6521 57689CAO
FFCB9ADE A8976360

A-13

......
\0
\0
00
0
N
0
0

>

r:::.:ONSTANT
TYPE/FORMAT

1'aule A-4. Summary of Rules for Constants

MAX SIZE/
VALUE

+140,737,
488,355,
327

MIN SIZE/
VALUE

-140,737,
488,355'
328

1---·--·----·--·t-----··--·· _____ __,_ ____________ r-·---·------t------+--------------------i-------------i

HEXADECIMAL
(± # hex-char­
string")
!--·------·-
HEXADECIMAL
STRING
(X"hex-char-
l>tring")

NO

YES

NO

most signi- 212 digits
ficant bits

most signi­
ficant bits

most signi­
ficant bits

#FFFF
FFFF
FFFF

2 12

hex digits

t--··-----------·--···-t--------·---r--------+-------+-------+---------+--------r-----------.,
JUT STRING NO
(B"binary­
i:tigit-string'')

t-·--------1------------
CHARA CTE R
STRING
("char-string")

J>ACKED­
DECIMAL
P"±digit­

string") ·

NO

NO

most signi­
ficant bits

most signi­
ficant bits

most signi­
ficant bits

212 bits

212

characters

212 digits

......
\Cl
\Cl
00
0
N
0
0

>

CONSTANT
TYPE/FORMAT

ZONED-
DECIMAL
(Z"±digit-
string")

REAL
(j:nl .n2E±n3
half word)
(j:nl .n2D±n3
full word)

USED IN
ARITHMETIC
EXPRESSION

NO

YES -
normalized
add, subtract
and normal-
ized signi-
fican t arith-
metic for
multiply and
divide

Table A-4. Summary of Rules for Constants (Cont'd)

TRUNCATION MAX SIZE/ MIN SIZE/ DEFAULT JUSTIFICATION MISCELLANEOUS
VALUE VALUE LENGTH DURING DATA

AT DATA GENERATION
GENERATION

most signi- 212 digits number of bytes _right justified Current control counter
ficant bits required to repre- /zero filled; must be byte aligned

sent the Zoned field must be a for data generation.
Decimal Constant multiple of bytes au tom a tic ally

accomplished if pro-
grammer fails to assure
proper alignment.

I) Internal form 1) D max# 32 bit-half word right justified When half and full word
least significant of digits: 64 bit full word /zero filled real constants are mixed
bits nl and n2 in arithmetic operations
2) Data Gen- {14 digits) then result is a fullword
eration most n3 (4 digits) value.
significant bits. 2) E max#

of digits:
nl and n2
(7 digits)
n3 (2 digits)

SYMBOLS

Symbols are formed by combining 1-63 alphabetic characters or numbers; they provide a convenient means of
referring to program elements. Symbols can be used as:

Address identifiers
Variable identifiers
Function names
Directive names

Form names
Procedure names
Set names

For identifying program elements, all the above symbol types, except directive names and instruction mnemonics,
are entered in the label field. The latter two types are entered as described in table A-5. The first character of a
symbol must be alpha. The remaining symbols may be numeric or an underscore.

Examples of legal symbols:

A R 35 X

BAKER R 1 5

CHARLIE z 246 8 10

SYMBOL RELATED DIAGNOSTICS

Diagnostics related to the improper construction of a symbol in a label field are listed below.

********* MISSING OPERATOR IN LABEL FIELD

Occurs when a $ or @ is embedded in the symbol, or when a symbol starting with a digit is followed by
a letter without an intervening comma.

Exam pies:

K@ LM

D3$45

lABCD

A-16

Embedded@

Embedded $

Written as 1, A, B, C, D, this would constitute a label list of 5 labels, the first
being numeric.

19980200 A

********* UNMATCHED PAREN IN LABEL FIELD

I(123

********* ILLEGAL STRING CONSTANT IN LABEL FIELD

J
11
BA

********* ILLEGAL SYMBOL IN LABEL FIELD

Occurs when a label field begins with an underscore:

A123

Table A-5. Symbol Summary

Symbol Type Location As Identifier Location As Reference Comments

Address Label field of directives: Value of identifier used in
Identifier

form call MSEC
label field is value of P

I I counter afier alignment. Re-
RES EXT
GEN ORG

location attribute is same as
that of P counter.

I I
Label field of program Command field list/ I Returns value of address I

statement. operand field list of identifier when used in
directives or program command/ operand list.
statement.

Variable Label field of directives
Identifier

RDEF EQU
RPT

Command field list/ Returns value of identifier
operand field list. when used in command/

operand list.

Function Label field list of NAME

1

Name directive in a function
definition.

I Any command/operand A function reference calls a

I field list. routine to process function
definition statements. When

Function reference format: this call is ten:ninated by

Function Name (list of
an EXITP or ENDP directive,

I
the value of the directives

operands)
operand field list is returned.

19980200 A A-17

I Symbol Type

Form Name

Procedure
Name

Set Name

A-18

Table A-5. Symbol Summary (continued)

Location As Identifier

Label field of FORM
directive.

Label field of NAME
directive in procedure
definition.

Label field of SET
directive.

Example:

BETA SET 3, 6, 9

label

Location As Reference

Command field followed
by operands in command
list and operand list fields.

Command field followed
by operands in operand
list.

Command field followed
by command list and
operand list.

Command list or operand
list fields.

Example:

GEN .ELM.BET A
~

operand

Comments

This symbol is recognized
by assembler. A reference
to a directive name is a
call to a processor that
performs the function of
the directive.

A form reference is a call
to a processor that generates
data defined by a form
definition and the operands
in the form reference.

A procedure reference is a
call to a processor that
executes statements in the
procedure definition until
an EXITP or ENDP directive
occurs. No value is returned.

Returns a value of complete
set list, contained in brackets.

19980200 A

Table A-5. Symbol Summary (continued)

Symbol Type Location As Identifier Location As Reference Comments

Instruction --
Mnemonic

Command field followed Calls processor that
by command and operand generates the machine
lists. Symbol recognized instruction as data.
by the Control Data
ST AR system as a machine

I
instruction mnemonic.

Numeric 1 to 14 numeric
Label characters (leading

zeros preceding the
label field list are
ignored.

Operand field of RPT a Example:
and GOTO directives.

reference
'-'v--"

GOTO 5

5_J
~ I identifier in
label field

19980200 A A-19

EXPRESSIONS B

The Control Data ST AR assembler permits the use of simple expressions, consisting of one symbol, and com­
plex expressions, consisting of two or more symbols connected by an operator. For expressions with more
than one operation, the order in which each operation is evaluated is determined by the hierarchial level
assigned to the operators.

Expressions may be arithmetic, relational, logical, or special. Table B-1 lists the operators for each expression
type, and includes interpretation of each operator, as well as the hierarchial value assigned to it. After reading
this appendix, refer to figure B-1 which illustrates the evaluation of a logical expression.

Set or function names cannot be used as an operand in an expression; however, function call with parameter
lists can.

Unary operators must preceed an operand

A unary operator can follow a binary operator without parentheses .

. BS+4 (valid). Binary operator

.NOT.-A (invalid unary followed by another unary operator). Must be .NOT.(-A)

19980200 A B-1

Table B-1. Operators

1
Type Operator Interpretation Heirarchy

Arithmetic + Unary plus 1
+ Addition 4

- Unary minus 1

- Subtraction 4

.BS. Shift operands to the left of the operator at 2
(binary scale) assembly time (+ or missing shift left; - shift

right) by the number of bit positions specified
by the value to the right of the operator. e.g.,
A.BS.+4

* Multiplication 3

I Division 3
.GE. Condition true if greater than or equal to 5

Comparison .EQ. Condition true if equal 5

.NE. Condition true if not equal 5

.GT. Condition true if greater than 5

I
.LT. Condition true if less than 5
.LE. Condition true if less than or equal to 5

Logical .NOT. Logical one's complement (unary) 1

.AND. Logical product 7

.OR. Logical or (inclusive or) 8

Special .CAT. Concatenate character string on the left to that 1
on the right of this operator. Operands can be:
expressions, character string, function designator,
variable identifier, or set designator. All types

I
must evaluate to a character string prior to

I
concatenation. Result must be a character string.
e.g., "STAR" .CAT. " ASSEMBLER" results in
ST AR ASSEMBLER.

I
.ELM. Expand a set to a list of elements. 1

! .NR. Convert the address (external or relocatable) to

I
(ignore relocation) a 48 bit integer constant by removing the re-

I
location ordinal. This occurs at assembly time.

Give operand to the right the list position 1
(positional opera tor) specified by the operand to the left.

N() Repetition operator for a list of (elements) 1
where N is an expression representing a repeti-
tion count. N must evaluate to an integer and
the elements to be repeated can be of any
operand type permitted in as assembler

l expression including a null.

B-2 19980200 B

EXPRESSION EVALUATION

Expressions are evaiuated ieft to right, the operations wiih lower numbered hierarchies are perfonned first.
Parenthesized sub-expressions are expanded from the inside and are performed first. Operators of equal
hierarchy are evaluated left to right.

Operations involving the use of relocatable address cannot be performed in the code section of the subprogram;
i.e., must be performed in the data section. If an operation involving the use of a relocatable address is
attempted in a code section the following message is generated.

********** RELOCATION NOT PERMITTED IN CODE MSEC

ARITHMETIC OPERATIONS

Arithmetic operators can generate either an integer constant (which could have been associated with a memory
section ordinal) or a real constant. Integer constants and real constants cannot be mixed in an operation.
Tables B-3 through B-6 list legal combinations of operand types used in arithmetic operations.

RELATIONAL OPERATIONS

The result of a relational operation is an integer constant zero if the operation proves false, or an integer
constant one if the operation proves true. The comparison method for all relational operations is specified in
table B-2; a description of allowable combinations of operand types in relational expressions appear in table
B-7.

Table B-2. Comparison Methods

Operand Types Method

Character, bit, and hexadecimal Bit comparison. When lengths differ, they
string constant comparison are considered not equal.

Real constant comparison Floating-point compare

Packed and zoned decimal constant Decimal compare
comparisons

Integer and hex constant Signed integer compare
comparison

Integer-string constant comparison Binary compare

19980200 A B-3

EXPRESSION MODE AND EVALUATION

As performed by the assembler, expression evaluation determines the data types of the operands and the speci­
fication of a result and data type based on predefined rules. A mode value, assigned by the assembler, describes
each data type (operand) used in an expression:

Mode Value

0

2

3

4

5

6

7

8

9

10

11

12

Meaning

Not a value; for example, set-of-function name

Absolute address

Relocatable address

External address

Integer or hexadecimal constant

Hexadecimal string constant

Bit string constant

Character string constant

Real constant

Packed decimal constant

Zoned decimal constant

Integer string constant

Null element; element of set list is not defined. Element value is zero.

The following tables {B-3 through B-6) provide the allowable combinations of operand types (modes) for a
given operation and the data type (mode) of the result of the operation. The mode result of each operation
is con:ained within the appropriate blocks. An asterisk result indicates that the combination of operands is
not permitted.

UNARY+ -
Relocatable

Address

Relocatable

Address

B-4

Table B-3. Unary + - Operations

Right Operand

Integer Hex Real
Constant Constant Constant

Integer Hex Real

Constant Constant Constant

Absolute
Address

Absolute

Address

19980200 B

Left

Operand

For example:

Integer

Hex

Constant

Real

Constant

01 000000000040 E
01 000000000080 F

Table B4. Binary Scale Operations (.BS.)

Right Operand

Integer

Constant

Integer

Constant

Hex

Constant

Real

Constant

00 000000000003
00000000 00000006
00000000 00000001

00 0000000000006
00 0000000000006
00 0000000000082

c

AA

Hex
Constant

Integer

Constant

Hex

Constant

Real

Constant

EQU
GEN

GEN

EQU
BB--. EQU
cc EQU

3

Reai
Constant

*

*

*

C.BS.+1
C.BS.-1

#3.BS.+#1
#3.BS.+1
89.BS.+#1

Table B-5. Multiply and Divide Operations (* /)

Right Operand

Left
Operand

19980200 B

Integer
Constant

Hex
Constant

Real
Constant

Integer
Constant

Integer
Constant

Hex

Constant

*

Hex
Constant

Integer

Constant

Hex
Constant

*

Real
Constant

*

*

Real
Constant

I

B-5

Left
Operand

B-6

External
Address

Relocatable
Address

Integer
Constant

Hex
Constant

Real
Constant

Table B-6. Add and Subtract Operations (+ -)

External
Address

External
Address

*

*

External

Address

*

Relocata~le

Address

*

Relocatable
Address

Relocatable

Address

Relocatable
Address

*

Right Operand

Integer
Constant

External

Address

Relocatable

Address

Integer
Constant

Hex

Constant

*

Hex
Constant

External

Address

Relocatable

Address

Integer

Constant

Hex
Constant

*

Real
Constant

*

*

*

*

Real
Constant

19980200 B

'° '° 00
0
N
0
0

>

Left
Operand

o:;
~

Relocatable
Address

Integer(INT)
Constant

Hex
Constant

Hex .. String
(STR)
Constant

Bit-String
Constant

Char-String
Constant

Real
Constant

Packed-
Decimal
Cortstant

Zoned-
Decimal
Constant

Integer(INT)
Stdng(STR)
Constant

Table B-7. Relational Operations (EQ, NE, GT, GE, LT, LE)

·Relocatable Integer Hex
Address Constant Constant

INT * *
Constant

* INT INT
Constant Constant

* INT INT
Constant Constant

* * *

* * *

* * *

* * *

* * *

* * *

* * *

Hex­
String
Constant

*

*

*

INT
Constant

*

*

*

*

*

*

Right Operand

Bit­
String
Constant

*

*

*

*

INT
Constant

*

*

*

*

*

Char-
String Real
Constant Constant

* *

* *

* *

* *

* *

INT *
Constant

* INT
Constant

* *

* *

* *

Packed- Zoned-
Decimal Decimal
Constant Constant

* *

* *

* *

* *

* *

* *

* *

INT *
Constant

* INT
Constant

* *

Integer­
String
Constant

*

*

*

*

*

*

*

*

*

INT
Constant

I LOGICAL OPERATIONS

Logical operations are perfonned left to right and bit by bit. If operands are unequal in length, the shorter is

left justified and right extended with zeros until both are t'.qual in length. Allowable combinations of operands
in logical operations appear in table B-8.

Table B-8. Logical Operations (AND, OR)

For a unary .NOT. operation, the result length is that of the operand being evaluated.

Right Operand

Integer- Bit- Char- Packed- Zoned-
Integer Hex String String String Real Decimal Decimal
Constant Constant Constant Constant Constant Constant Constant Constant

I I I

Relocatable Mode and length of left operand
Address

I I I
Integer Mode and length of left operand
Constant

I I I
Integer- Mode and length of left operand
String
Constant

Hex Mode and length of left operand
Constant I I I

Left Bit-String Mode and length of left operand
Operand Constant

I I I
Char-String Mode and length of left operand
Constant

I I I
Real Mode and length of left operand
Constant

Packed- I
I I I

Mode and length of left operand
Decimal I

Constant

Zoned- Mode and length of left operand
Decimal
Constant l l I

B-8 19980200 B

.'

...._.

'° '° 00
0
N
0
0

>

EXPRESSION

.NOT. (O.EQ .. NOT. (-1).EQ.I)
,#/ .. "' ,·· ./·,,,..·

~;~~~ ;~;~~~ o)

b)

HEX
~XfL.aH!Tgf REPRESENTATION

PARENS EVALUATED FIRST

0 NOT HAS HIGHEST HIERARCHY

o) PARENS EVALUATED

I) - IS A UNARY 0PERATCA ANO INDICATES
2's COMPLEMENT

2) I IS A 48-BIT INTEGER CONSTANT 0000 0000 0001

3) THE COMBINATION OF THE TWO FFFF FFFF FFFF

b) NOT PERFORMS A l·s COMPLEMENT 0000 0000 0000

2) SINCE THERE ARE 2 EQ's, EVALUATION CONTINUES
FROM LEFT TO RIGHT.

o) 0 IS A 48-BIT INTEGER CONSTANT 0000 0000 0000

~ WHEN RELATIONAL OPERAToRs ARE EVALUATED THEY
RETURN A 48-BIT INTEGER CoNsTANT OF ~E FCA
TRUE OR ZERO FOR FALSE.

c) THE EXPRESSION EVALUATES TO BE TRUE 0000 0000 0001
3) COMPLETE EVALUATION OF PARENS

a) I IS A 48-BIT INTEGER CONSTANT 0000 0000 0001

b) THE EXPRESSION EVALUAlES TO BE TRUE 0000 0000 000 I

THE COMPLETE EXPRESSION IS NOW NQTTED
[rs cptv1PLEMENT] FFFF FFFF E'FFF.

Figure B-1. Expression Hierarchial Evaluation

~ OPERATOR HIERARaiY

NOT
" EQ s:· ... >

INTEGER CoNsTANT

INTEGER CcH5TANT
INTEGER Cct.!sTANT

EQ s:· ... >

INTEGER CONSTANT

INTEGER CONSTAN·1
EQ s:·

INTEGER CoNsTANT

INTEGER CONSTANT

INTEGER CONSTANT

STAR MACHINE INSTRUCTIONS c

STAR instructions may be classified into ten categories: Register, Index, Branch, Vector, Sparse Vector, Vector I
Macro, String, Logical String, Non-Typical, and Monitor. Instruction size is either 32 bits or 64 bits and formats
vary within an instruction group.

GENERAL FORMAT

The general format for a symbolic machine instruction is identical to that of a procedure reference:

Numeric Label, List Mnemonic, Qualifiers Operands

LABEL FIELD

The label field consists of an optional numeric label followed by an optional list of symbols separated by
commas. The symbols are defined to be address identifiers and are given the value of the current location
counter after alignment. They are used to define locations at assembly time and do not become part of the
32-bit or 64-bit instructions.

COMMAND FIELD

The command field consists of mnemonics and associated qualifiers. Mnemonics specify the machine instruction
to be generated. (They are mapped into the 8-bit function field.) Every instruction function code has a dif­
ferent mnemonic. The mnemonic symbol can be used as an address identifier, variable identifier, set name,
and function name without redefining the mnemonic as a machine instruction. Defining a mnemonic symbol to
be a procedure name or form name results in instruction redefinition; theiefore, use of that machine instruction
is lost.

Command field qualifiers are lists of symbols that indicate a sub-operation of the function code specified by the
instruction mnemonic. Qualifiers are not reserved symbols and definition of a qualifier symbol by a user does
not alter its value as qualifier to an instruction. The user can define his own qualifiers, provided the symbols
differ from those qualifiers supplied by the assembler. The assembler checks user defined qualifiers to ensure
that the sub-operation specified can be performed. Assembler supplied qualifiers are listed in table C-1.

19980200 B C-1

Table C-1 Qualifiers

Hex 1
Qualifier Meaning Value Default (value is 00)

A Broadcast A operand 10 No broadcast of A

B Broadcast B operand 08 No broadcast of B

BR Branch unconditionally 40 Do not branch

BRB Branch backward 06 Branch to (Y) + (B)

BRF Branch forward 04 Branch to (Y) + (B)

BRO Branch on one 80 Do not branch

BRZ Branch on zero co Do not branch

c Complement A operand 02 Normal A operand

CH Destination C is half word 08 Destination C is full word

D Character delimiter for A and B 80 Count delimited for A and B operands

DC Character delimiter for destination C 20 Count delimited for destination C

DD Double character delimiter for A co Count delimited for A and B operands
and B operands

DDC Double character delimiter for 30 Count delimited for destination C
destination C

DM Character mask delimiter for A 40 Count delimited for A and B
and B operands operands

H Half word operand 80 Full word operands

LH Start at last hit 20 Starts over

MA Magnitude of A operand 04 Normal A operand

MB Magnitude of B operand 01 Normal B operand

N Negative A operand 06 Normal A operand

NCC No conflict checking 01 Conflict checking

NIX Do not increment X 04 Increment

NIY Do not increment Y 02 Increment

NIZ Do not increment Z 01 Increment

NS Packed to zoned no sign co Normal zone sign

0 Offset destination and control vector 20 No offset

so Set bit to one 20 Do not alter bit

SS Zoned 8 bit sign to packed or packed 80 Normal zone sign
to zoned 8 bit sign

I I sz Set bit to zero 30 Do not alter bit

j T Toggle bit

I

10

I

Do not alter bit

z Control vector on zeroes 40 Control vector on ones

C-2 19980200 A

OPERAND FIELD

The instruction operand field lists all operands to be used with the instruction. Combination of operand types
that can be used with an instruction depends on the format type for the instruction. Twelve format types
(categories) are available. A particular form type is usually, but not necessarily, common to a group or groups
of instructions.

Operand Form Meaning

[OPI,OP2] Operand offset or indexed by operand 2 (see table C-10 vector instructfons)

[OPI] Operand off set or indexed by zero

[,OP2] Zero offset or indexed by operand 2

Each format type includes a corresponding instruction designator portion. Most formats are divided into lengths
of 8-bit characters. The following drawings illustrate available instruction formats and specify the contents of
each format division. Cross-hatching denotes undefined areas which must be zero filled. The assembler automati­
cally generates zero fill for these areas. A description of the designators used in the format layouts appears
in table C-2.

7 8 15 16 39 40 47 48 55 56

I

F
(ITNCTIO:\)

G
(Snl-Fl;:.\"C'Tl<l"\')

:\
(OFFSET FOR A)

A
(LENGTH ANll

BASE ADDRESS)

y
(OFFSET FOH Rl

B
ILENGTH AND

13'\SE ADDRESS)

z
(CONTROL VECTOR

BASE ADDRESS)

c
(LE:\"GTH A)iD

BASE ADDRESS)

63

I (Oc;,;S~T I
I FOH C & Z) :

FOR\IAT 1 - l"SED FOR \TCTOR, \TCTOH '.lAC'HO, A::'\D SO\lE '\0::'\-TYPICAL l:\"STRl-CTIO'\'S L-------

F
l·TNCTIO'.\

F
(Fl'I\CTION)

7 8

7 8

G
(SFB - Fl'"C TIO!')

1516 2'.l:H

>:
(OIWEH VECTOH
LE>iGTI! & BASE)

A
(HASE ADDHESS)

:rn 40 47 48 5556

y
(ORDER \"ECTOR B

LENGTH AND (BASE ADDHESS)

z
(ORDEH VECTOR

LENGTH A:\"D
BASE ADDRESS) BASE J\DUHESS)

FOR\IAT 2 - CSED FOH SPARSE \'ECTOH A::'\D SO\JE :\"0'\'-TYPICAL l:\"STRl'CTIO::'\S

1516 :2'.124 :nn :J') 40 47 48 55 56

G
(Sl'B-IT:\"CTIO::'\)

:\
(l'.'IDJ:>: FOH .-l.)

A
(] .E'\GTI! ,\?\D

BASE ADDHESS)

y
(!'\DE>: FOR Bl

B
ILE'.\GTI! A::'\D

HASE .-l.DDH.ESS)

FO!nl.-l.T 3 - CSED FOR LOGIC AL STHI::'\G A::'\D STHl:\"G l::'\STIHTTIO:\"S

z
(!:\DEX FOH Cl

7 8 l 5 1 6 2 :3 2 -i :n

F R S T
(Fl-NCTIO:\') (sor· HCF. 1) (S(ffRCJ-: 2) ([)J-:STI:\' ATIO::'\)

FOJnIAT -l - CSED FOR S()'.JF. HEGISTF.R, ALL '.10::'\ITOR, TJIF. :m .-l.::'\D 04 :\"O:\'-TYPICAL I:\"STR1:CTIO~S

19980200 B

c
RESVLT

LENGTH A'.'iD
BASE ADDRESS

c
(LENGTH ANU

BASE ADDRESS)

C-3

63

63

7 8 15 16

F R
(FUNCTION) <DESTINATION) I (48 BITS)

FORMAT 5 - USED FOR THE BE, BF, CD AND CE INDEX INSTRl'CTIONS AND FOR THE B6 BRANCH INSTRUCTION

7 8 15 16 31

F R I
(Fl;NCTION) (DESTINATION) (16 BITS)

FOI!MAT 6 - USED FOR THE 3E, 3F, 4D AND 4E INDEX INSTRUCTIONS AND THE 2A REGISTER INSTRUCTION

7 8 15 16 23 24 31

F
(FUNCTION)

R s I (BASE Ai.DRESS]

FORMAT 7 - USED FOR SOME BRANCH AND NON-TYPICAL INSTRl'CT!ONS

7 8 15 16 23 24

F R s T
(FUNCTION) (REGISTER) (REGISTER) (BASE ADDRESS)

FORMAT 8 - USED FOR SOME BRANCH INSTRUCTIONS

7 8 15 16 23 24

F G s T
(Fl'NCTION) DESIGNATOR (BIT TEST

ADDRESS)

FORMAT 9 - CSED FOR THE 32 BRANCH INSTRl"CTION

F
(Fl"NCTION)

7 8

R
(OLD STATE)

15 16 23 24

____,v_____I

UNDEFI"1ED
(l\lT.:ST BE "O'S")

T
(NEW STATE)

31

31

:31

FORl\J,\T A - l"SED FOR SO'.\IE INDEX, BRA:'\CH, A'.'\D REGISTER INSTRlTTI0"1S

C-4 19980200 A

7 8

F G

UNDEFINED
(MUST BE "O'S")

/\
15161718

n~ I

23 24 31

T
(FUNCTION) DESIGNATOR ~~ (6) (BASE ADDRESS)

V".VJ

FORMAT B - USED FOR THE 33 BRANCH INSTRl-CTION

F
(FUNCTION)

G-DESIGNATOR

7~16
x

(REGISTER)

23 24

CNDEFINED
('.\!CST BE ''o•s")

BRANCH CONTROL BITS

A
REGISTER

FORJ.\IAT C - USED FOR THE BO-B5 BRANCH INSTRUCTIONS

19980200 A

31 32

y
(INDEX)

39 40 47 48

B
(BASE ADDRESS)

z
(REGISTER)

55 56 63

c
(REGISTER)

C-5

Table C-2. Instruction Designators

I Designator Format Type Definition

A I & 3 Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

2 Specifies a register that contains the base address for a source sparse vector
field.

c Specifies a register that contains a two's complement integer in the right-
most 48 bits.

B I & 3 Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

2 Specifies a register that contains the base address for a source sparse
vector field.

c Specifies a register that contains the branch base address in the rightmost
48 bits.

c I, 2, & 3 Specifies a register that contains the field length and base address for
storing the result vector, sparse vector, or string field.

c Specifies the register that will contain the two's complement sum of (A)
+ (X) in the rightmost 48 bits. The leftmost 16 bits are cleared.

c + 1 1 Specifies a register containing the offset for C and Z vector fields.

d 9 & B 2-bit designator specifying branch conditions.

e 9&B 2-bit designator specifying object bit altering conditions for the corres-
ponding branch instructions.

F
I

1 - c 8-bit designator used in all instruction format types to specify instruction
function code. It is always contained in the leftmost 8 bits of the
instruction and is expressed in hexadecimal for all instruction descriptions.
Thus, the function code range is 00-FF 16; however, not all possible
function codes are used.

G I, 2, 3, 9, 8-bit designator specifies certain sub-function conditions. Sub-functions
B, & C include length of operands (32- or 64-bit), normal or broadcast source

I
vectors, etc. The number of bits used in the G designator varies with
instructions.

C-6 19980200 A

Table C-2. Instruction Designators (Cont'd)

Designator Format Type Definition

I 5 48-bit index used to form the branch address in a B6 branch instruction.
In BE and BF index instructions, I is a 48-bit operand.

6 In 3E and 3F index instructions, I is a 16-bit operand.

B In the 33 branch instruction, the 6-bit I is the number of the DFB object
bits used in the branching operation.

R 4 In the register and 3D instructions, R is the register containing an operand
to be used in an arithmetic operation.

5 & 6 In the 3E, 3F, BE, and BF index instructions, R is a destination register
for the transfer of an operand or operand sum. In the B6 branch
instruction, this register contains an item count used to form the branch
address.

7, 8, & A R specifies registers and branching conditions given in the individual
instruction descriptions

s 4 In the register and 3D instructions, S is a register containing an operand to
be used in an arithmetic operation.

7, 8, & 9 S specifies registers and branching conditions given in the individual
instruction descriptions

T 4 T specifies a destination register for the transfer of the arithmetic results.

7,8,9,&B T specifies a register that contains the base address and, in some cases, the
field length of the corresponding result field or branch address.

A T specifies a register containing the old state of a register, DFB register,
etc; in an index, branch, or inter-register transfer operation.

x 1 & 3 Specifies a register that contains the offset or index for vector or string
source field A.

2 Specifies a register that contains length and base address for order vector
corresponding to source sparse vector field A.

c In the BO-BS Branch instructions; this register contains a signed, two's-
complement integer in the rightmost 48 bits used as an operand in the
branching operation

19980200 A C-7

Table C-2. Instruction Designators (Cont'd)

Designator Format Type Definition

y 1 & 3 Specifies a register that contains the offset or index for vector or string
field B.

2 Specifies a register that contains the length and base address for the
order vector corresponding to source sparse vector field B.

c In the BO-BS Branch instructions, Y specifies a register that contains an
index used to form the branch address.

z 1 Z specifies a register that contains the base address for the order vector
used to control the result vector in field C.

2 Z specifies a register that contains the length and base address for the
order vector corresponding to result sparse vector field C.

3 Z specifies a register that contains the index for result field C.

c In the BO-BS Branch instructions, Z specifies a register that contains a -
signed, two's-complement integer in the rightmost 48-bits. It is used as
the comparison operand in determining whether the branch condition is
met.

INSTRUCTION TYPES

Each STAR instruction type is discussed in the following paragraphs. Tables C-6 through C-lS list the
instructions including: OP code, format (F) instruction mnemonic, applicable operand types, qualifiers, and
concise description.

The following categories are described:

Register Vector Macro

Index String

Branch Logical String

Vector Non-Typical

Sparse Vector Monitor

For a complete description of each instruction included in the STAR set. see Engineering Specification
1184S800 (STAR INSTRUCTION DESCRIPTIONS).

C-8 19980200 A

REGISTER !NSTRUCT!ONS

The ST AR register file consists of 32- and 64-bit registers. To accommodate the use of both register types,
the STAR instruction set includes instructions which access the register file as half words (32 bits) or full
words (64 bits).

F R s T

In the register instructions, all source and result destinations are registers; R, S, T, each designate the contents
of one of 256 registers. Unless specified, in register-to-register operations the source registers are unchanged and
the destination registers are cleared before the result is entered.

Any register except 0016 can contain one or both source operands or a result. For a description of the proper
use of register 0016• see the Chapter 3, Register File description (paragraph 3.1.7), in Engineering Specification
11845800 (ST AR INSTRUCTION DESCRIPTIONS).

INDEX INSTRUCTIONS

Index instructions are used primarily for numerical calculations on field lengths and addresses. The index instruc­
tions manipulate either the low order 24 bits of a half word or the low order 48 bits of a full word in designated I
operational registers. Some index instructions are used for manipulating the high order 8 bits of a half word
or the high order 16 bits of a full word in the designated operational registers.

BRANCH INSTRUCTIONS

The branch instructions can be used to compare or examine single bits, 48-bit indexes, 32-bit floating-point
operands, or 64-bit operands. Results of comparison determine whether the program continues with the next
sequential instruction (branch condition not met) or branches to a different instruction sequence (branch
condition met). The instruction sequence can consist of one or more instructions beginning at the branch
address specified in the branch instruction format. For instructions which require index operations, all item
counts are in half-word increments.

The following comparison rules apply to branch instructions.

If the signs of the coefficients of two operands are unlike, the operands are unequal.

If one operand is indefinite, the compare condition is not met since indefinite is not > < or =
to any other operand. If both operands are indefinite the = and ~ conditions can be met since indefinite
equals indefinite.

If neither operand is indefinite but both operands are machine zero:

A non-indefinite, machine-zero operand with a positive, non-zero coefficient is greater than machine
zero.

A non-indefinite, non-machine zero operand with a negative coefficient is less than machine zero.

19980200 B C-9

Machine zero is considered equal only to itself and to any number having a finite exponent and a
zero coefficient.

Machine zero is represented as:

8X xxxxxx (32 bits)

8XXX xxxxxx xxxxxx (64 bits)

where: X equals any hexadecimal digit.

An indefinite number is represented as:

7X xxxxxx (32 bits)

or

7XXX xxxxxx (64 bits)

where: X equals any hexadecimal digit.

VECTOR INSTRUCTIONS

The vector instructions perform operations on ordered elements (scalars). These instructions read the scalars,
in 32-bit or 64-bit floating-point operand form, from consecutive storage locations over a specified address
range (field). Vector instructions perform a designated operation on each set of operands and store the results
in consecutive addresses of a result field, beginning with a specified address. A vector can contain as many as
65, 536 items.

The following terms are critical to the understanding of the vector instructions, these terms are fully described
in Engineering Specification 11845800.

Order Vector (OV) - A bit string denoting non-significant elements in a vector field. An order vector can be
generated by compare instructions and used by compress instructions to generate a sparse vector. The number
of ones in the order vector determines field length of sparse vector operands. A filled result (order vector)
terminates sparse vector instructions.

Sparse Vector (SV) - Vector field contracted by removing the non-significant elements to conserve storage
space and calculation time. Positional significance of the elements is retained by an order vector for each
sparse vector.

Control Vector (CV) - Base address of control vector is contained in Z field of vector instructions and vector
macro instructions. A control vector determines how many results (C elements) are stored during execution of
vector instructions and determines which pairs of A and B elements are compared during Vector Macro
operations. Use is specified in an instruction by Z-designator 'f 0; the Z designator becomes the CV base address.

Broadcast - Repeated transmission of the same vector element from the register file. Selection of a broadcast
or normal element is specified by the state of the G designator of the applicable vector instruction. (See
Qualifiers)

C-10 19980200 A

Offset - Number used to modify the base address of operands in vector and some non-typical instructions.
An offset can be in half words or words (determined by number of bits in operand up to ± 215.J).

Significance - Bit count for a floating point number which is equal to the number of bit positions in the
coefficient (excluding the sign bit) minus the left shift count required to normalize the number.

Control vector, offset, as well as, operand sign content and size are selected through sub-function bits in the
vector instruction. These sub-functions are listed in table (C-3).

If the Z designator in format 1 instruction is zero, a control vector is not used; therefore bit 9 becomes
undefined. If bits 11 and/or 12 of G = 1, the A and/or B designators denote a constant used as each element
of the respective vector field. The instruction ignores associated offsets in this case. The registers specified by
A and/or B contain these constants.

Table C-3. Vector Instruction Sub-function Bits

Bit State Sub-function

8 0 64-bit operands (words)

1 32-bit operands (1/2 words)

9 0 Control vector operates on l's

1 Control vector operates on O's

10 0 No offset for result field and control vector

1 Offset for result field and control vector

11 1 Normal source vectors - A

1 Broadcast repeated (A)

12 0 Normal source vectors - B

1 Broadcast repeated' (B)

13 x Sign controlt (These bits must be 0 for all instructions other than 80, 81, 82,
14 x 84, 85, 86, 88, 89, 93tt, 8B, 8C, 8F, CF, D8tt, and D9tt instructions. See
15 x table C4.

t If both vectors A and B are broadcast constants, instructions that do not terminate by filling the result
field (e.g., Select instructions -CO -C3) produce undefined results.

ttin these instructions, only bits 13 and 14 are used. Bit 15 must be 0.

19980200 B C-11

Table C4. Vector Instruction Sign Control Sub-function Bits

Bit 13 Bit 14 Bit 15 Control Operation

0 0 0 or 1 Operands from the A stream are used in normal manner.

0 1 0 or 1 Coefficients of operands from the A stream are 2's comple-
mented before they are used. Any required significance cal-
culation is performed before complementing.

1 0 0 or 1 Magnitude of operands from the A stream is used.

1 1 0 or 1 Coefficients of all positive operands from the A stream
are made negative before they are used. Negative aper-
ands are not altered.

0 or 1 0 or 1 0 Operands from the B stream are used in normal
manner.

0 or 1 0 or 1 1 Magnitude of coefficients of operands from the B stream
is used.

Field lengths, Base Address, and Offsets

The operation of subtracting the- offset from the field length must result in a positive vector length less than
216 in magnitude. If the resulting vector does not meet these requirements, it is treated as a zero vector length.
The beginning address is obtained by adding the offset (including sign extension) to the base address.

C-12

Field
Length

r
I

I
i

I
l
l
I

~ Base

Positive
Offset

Beginning Address
(Base & Offset)

Vector Field
(used portico)

19980200 A

CONTROL VECTOR

When the format 1 instruction specifies a control vector (Z designator = 0), a single bit from the vector
controls how each element is stored in the result field. When a bit from the control vector prohibits the
storing of a result element, the instruction does not alter the previous contents of the corresponding storage
address. Therefore, the nth bit read from the control vector prohibits or permits the storing of the nth result
in the result vector field.

As specified in Table C-3, bit 9 of the G designator selects whether a 0 or 1 control vector bit permits the
result to be stored. If bit 9 of the G designator is a 0 or a 1, the instruction stores the nth result provided
the nth bit of the control vector is identical to that specified in the G designator.

The rightmost 48 bits of the register designated by Z contain the base address of the control vector. The con­
trol vector field length is the same as the field length for result vector C.

The addition of the offset and base address provides the starting address of the control vector. Since offsets
are item counts, the result vector and control vector use the same offset; however, the control vector off set
represents a bit offset.

VECTOR INSTRUCTION TERMINATION

Vector instructions terminate when the result vector field is filled. In format 1, when the C designator is zero or
the modified field length is zero or negative, the instruction becomes a no-operation (no-op) instruction. The modi­
fied C vector length equals the C vector length minus the offset. If the instruction uses no C vector offset,
the modified field length equals the C vector field length. The instruction extends short or zero length source
vector fields, as required, with machine zeros in additive operations or normalized source vector fields in
multiply or divide operations.

VECTOR MACRO INSTRUCTIONS

Vector macro instructions perform operations similar to vector instructions; however, some vector macro
instructions do not form result vector fields. For these instructions, the control vector contains neither length
nor offset; rather it controls the use of source vector elements.

Bit 10 of the G designator for this instruction must be set to 0. Designators C and C + 1 denote 32 bits when
bit 8 of the G designator specifies 32 bit operands.

The control vector for macro instructions which produce result vector fields, performs the same function as in
a vector instruction. Vector macro instructions with result field(s), extend short source fields with zeros; they
become no-operations, and terminate in an identical manner as a vector instruction. Vector macros with result
field(s) terminate when either source vector is exhausted; they do not zero extend short source fields.

Broadcasting both source fields for vector instructions with a result field, produces an undefined condition.

19980200 B C-13

SPARSE VECTOR INSTRUCTIONS

Arithmetic operations can reduce the number elements of a vector field to zero or near-zero value; therefore,
except for positional significance, they need not be carried along as floating-point numbers. To conserve both
storage and calculation time, a group of sparse vector instructions which permit the expansion and compression
of vectors can be used. Similarly, the programmer may wish to eliminate out-of-range data.

The user can form a sparse vector by generating an order vector through the compare instructions. A vector
containing non-significant elements can be reduced then to a sparse vector through the (BC) compress instruc­
tion which uses the generated order vector to remove the non-significant elements. The operation codes for
the compare and compress instructions are C 1-C7. The sparse vector can be restored back to the original vector
size through MASKV instruction ~peration code BB). The format of the sparse vector cannot be distinguished
from that of any other vector; however, the associated order vector determines the positional significance of
each vector element. Bits, 5, 6, and 7 of the G field must be set to 0, for all sparse vector instructions except
those with operation codes: AO-A2, A4-A6, A8, A9, AB, AC, and AF. The paragraph on sign control at the
end of this appendix explains bits 5, 6, and 7. When these bits are set to a value, all the G field bits must
be zero.

Neither indexing nor offsetting is performed by the sparse vector instructions. The field lengths associated with
source sparse vectors A and B are not used (format 2). These lengths are determined by the number of ones
in the associated order vector. The field lengths of source order vectors X and Y and the result order vector
Z (format 2) are item counts in bits.

SPARSE VECTOR ADD

This example (12) illustrates a method of producing sparse vectors and the use of the add sparse vector instruc­
tion. In a sparse vector, extraneous information has been removed; but, the position of its elements remain the
same through use of an order vector. This example illustrates:

How to reduce a MATRIX to a sparse vector

How to create an order vector

How to write a sparse vector instruction.

This example also makes use of a broadcast constant.

CREATING THE MATRIX

Matrices are created in this example through GEN directives. Since the MATRIX is a group of vectors, it must
have a descriptor specifying its length and base address; and since the instructions using these descriptors require
them to be in a register, each descriptor must be equated to a register. Matrices for this example follows:

C-J4

Row I
2
3

Matrix A

9
17

2 3 4 5 6 7 8
IO 11 12 13 14 15 16
18 19 20 21 22 23 24

Matrix B

25 11 25
19 18 17
13 14 15

10 23 22 21 20
12 15 14 13 12
16 17 18 19 20

19980200 B

Matrix C contains only one element, which is broadcast to create the order vector. The order vectors are created by
the CMPGE instructions. These instructions compare the broadcast constant against each item in .matrix A and B ..
Since the value C is in hexadecimal and the values generated for the matrix were decimal for all integers
greater than or equal to 12, a 1 will be placed in aii corresponding order vector iocation. For values less than
12, a zero will be entered in the order vector ..

Order Vector for Matrix A

0 24 64

lo o o o o o o o o o o 1 1 1 1 1 1 1 1 1 1 1 1

Order Vector for Matrix B

0 24 64

11 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The matrix contains full-word values; the order vector contains bit values.

Now that an order vector is established, the compress (CPSV) vector instruction can be used to create the
sparse vector.

Compressed Matrix A Comp~d Matrix B

13 14 15 16 17 18 19 20 25 25 23 22 21 20 19 18
21 22 23 24 17 12 15 14 13 12 13 14

15 16 17 18 19 20 ..
These matrices, in abbreviated form, are summed and the inclusive OR results of their order vectors are placed
in a register. The inclusive OR forms the order vector for the resultant sparse vector. The following figure
provides a functional view of the ADDNS instruction.

19980200 B C-15 •

Result of ADDNS is:

SPARSE

VECTOR A

t r--
12

13

14

15

16

17

18

19

20

21

22

23

24
'---

ORDER V ECTOR A

00000000 000111111111111~

ETC.

111111111111111 lJ

ETC.

SPARSE RESULT

VECTOR B VECTOR

t------,
25

25

23

22

21

20

19

18

17

12

15

14

13
ETC. 12

13

14

15

16

17

ORDER 18
VECTOR 19

B

INCLUSIVE 20
'---

) OR l RESULT OF
ORDER VECT. C

ADDED TO MACHINE ZERO
----I 25

25

23

22

21

I
20

19

18
~ 17

12+12

15+13

14+14

13+17
ETC. 12+16

13+17

14+18

15+19

16+20

17+21

18+22

19+23

20+24

tThese values are normalized before the addition occurs and results are in normalized form.

• C-16 19980200 B

"' JOLL.~wf.i-1011

il\i Ow~1hili284.i
1iJ .iu1.11C11288u
ll.; ilJ~uut28C.:i
Ui! 1Hiii.ol.ii29ilu
Q.I .1.1.;.iuii291til
1111 i,,;,.;,,;1o&.298G
!ii; !l.it .. Ji..29C!l
Ji.I o:: .. ., .. c.zAJil
1.1 .. li-011.iJOZAltJ
11G aa ~281h1

1.1.; U.;:..lh~~54.i
J;; ~Jt .. ~:ii;&aJ

"" iJ J .. .11.C .. &Ci.
.; J u.i .. J;..: .. 7~J
Li~ w i. ,,,J wi.I;; 74 ..
11 .. ou.:Ji:i..L78u
J.i Q.;~ C&:.7CJ

,,z ,,
""'"""""" F

J~ J l Ii ;J w .i Ji.C. F 3UCtC15
.iZ :l I.'; .. , .. rt 9d.; .. .; .. 15 11u ~.:J&.1C
JZ i. c ;;.,i.ij& .. H 7HC:!;i.1u
liZ .;, .. (...... i:. .. ~:. F 7.:H0;..;1C
UC ,,i; .. &.O .. Cli,;A.;. H 3F U!l. .. f.iw

.;2 .itL.: .. 1;ui.C .. F 7d1C:(..;AJ

J" 1..;~ I. i; .. ~ .. rt 24~ .. J .. 119
.. z C i.1." wl..li 1J,. F aEu~:;,,;., uJ0iu2a1to
JZ .11o l O:. ;,,..: 11tw F 2M.U.ii.J9
wZ ;; .. 1. &. 1&w rt ~d "" ;,i.A1; OJ::JCLA1

"" .. 111.. i. .. 1.1o1A;. Ii CoJdi.t.Al llOA.iAlt"li
.. z .;.il'-w .. l.i1H r1 C&Jdl..!.AZ liii.1AJA51.1w

.. z i.wl ~ C. .. L2Zl H BCJ .. OwAl .;.J J11AltAo

.iC: .,j(.... 1.1.2&1. H dC:i i.AZ i.:. A5A7
we Oi\J1.C.o. .. 1i2Ai. H AZ~jAltA& A5A7A9A8
llZ wul L .. .iuZC;. rf JcHCt&.15

"'' .;t.l~~~--"J F 9oJJlH!10 wil11 .. 1Hi15
,;~ o. i,..,.,.;.si.L F JJ .. ,,;.;.u.
iil u .. 1.1.v.:.i..; .. c.

,jJ ... wt. I.""." w I..: .i F JJ1e
.iJ ,, ~ 1 .. .; u.1 ~ .. w1.1u .. J24.i u.3>
.. J " &+L. F iJJ 18
.. J 11 .. 1. .. """"'5" ..:: 11~Jjo11iw,,,lid8.lC,,,3>

19980200 B

REG_1
R~G_Z
REG_J
REG_lt
REG_5
R~G_6

~EG-7
1U:G_8
~EG_9
i)61(

•
VITAL
RTN
OSP
CSP
PSP
CLd
UNIT
STANT

•
•

CCHPA
CCHPB
•
•
RESUL 11
Rt.StJLTZ
ACOITlON

Pl<ES~ T
HATRIXA

TITLE •sPARSE ~ECTCR aoo•

IN FUT 1,aa t21.
CUlPLT
IO ENT
f'SEC 2
EN TR'f START
•••REGISTER_CEFihilICNS

DUEi 17SEP74

EQL fA1•&4 • J~IGINAL HATRIX A DESCRIPTO~
EQL fAc•61t • ONIGINAL MATRIX B DESCRIPTO~
EQL IAJ•o1t • a~OAOCASTHATRIX c DESCRIPTO~
EQL tA1t•&1t • OROt.R VECTOR HATRIXA REG
EQL tA5•61t • OKO~R VECTOR HATRIX8 REG
EQL fAc•o4 • COHPR£SS~O HATRIX A D£SCRI?TOR
EQL ~~7•&~ • CCHP~~iSEO HA!KIX S DESCRIPlOR
EQv •Ae•blt • MATRIX~ OESCRIPTO~ REG CR~SULT)
EQL •A~•< • ~ESuLT IHCLuSIVE o~ OROE~ ~~CTOR
EQI. IA~•olt •CATA aASE REG

EQ1. us•&i.
EQL U/1•&1t
EQL UP61t
EQt. uc•&1t
l:.Qv uc.•&1t
EQL UE•olt
EQL UF•<

LT CL CSP, V IT ;L
\IT.CV llITAL,CSP
HCR CSP,PSP
liTCW OSP,CSP
IS OSP,O

NTCR cce,OE!R

•••~ENEKATE CESCRIFTORS IN ~EGISTERS

PAGE

ELEN OER,q •ENTER LENGTH INTO DATA BASE ~EGISTER
EX REG_1,REG_1 •SET POI~TER FO~ "REG_1
ELl:.N REG_1,9 •SET POINTER LENGTH
VTCV DER,R£G_1 •vECT TO VECT T~AS HATRIX LOC TO REGS
C.HFGE,E ~EC_1,IOEG_J,~EG_lt •CREATE ORDER VECTCR
CHfGE,E REG_c,~EG_J,M~G_5 •CREATE OR~ER vECT

••co~Pl'ESS TC SPARSE VECTORS••

CPSV REG_1,REG_6,REG_lt
CPSV REG_2,REG_7,REG_5
liDl:NS CREG_& ,REG_lt lt CRE~_7 tREG_5 J, IREG_8,REG._9J '
LTCL PSP,VIUL
\ITCV PSP,VIT JL
EACF ,BIO tRTN
t'StC
••••tESCRIPTCR SETLP
FOF<H,olt 1&,1te
FRESET FLO_LT,ST~~l_A •DESCRIPTOR OR HTRIXA

1

UOllC1
116~02
1ioou
1/00lllt
1/0005
1/0006
110007
110008
1/GO 09
1/0010
110.J11
110012
110013·
11 Oil lit
110015
1/ 0016
110017
110018
1/0iJ19
1/CliJZO
1/ liQ z 1
l/illJ22
1/0l23
1/00 Zit
1/ OQ 25
110026
110.)27
1/0U 28
11 CiO zg
1/0GJO
11Oil31
11°:1:132
1/QO 33
11 Jl lit
110035
11-\103&
1/0037
110.J 38
110.J39
1/00ltO
110:>41
1/GQltZ
1/0tllt;J
110044
11031t5
11001e&
1/03 47
1/001t8
1100lt9
1/0iJSO
11:1051
110052
1101153
1/0051t
1/il355
11005&
110057

~ATRI)8 PRESET FLD_Ll,START_e •DESCRIPTOR FOR HATRIXB 1/0058

C-17 •

,_.
\D
\D
00
0
N
0
0

to

113
11J
.. J
JJ
J3
.il
.: J
i.J
.. J
.,J
.:.J
.iJ
.,J

11J
J3
.. J
Ml
JJ
.. J
.. J
.. J
wJ
JJ
wJ
.. 3
wJ
,,3
.. 3
JJ
,:J
;.J
.. 3
,,J
.. J
.I J
GJ
J3
J,3

wJ
.;J
w l
.,J
.;.)

JJ
llJ
JJ
Jl
JJ
.,J
.JJ
.. J
iiJ
.J
JJ

i;cc STAR ASSt:HaLiR Vt:R z.z.z
.:,.;, t. I. .. L .iii 8i1 F 'JJliuCi.i~ ww .. .JCC C.C
w~1.1.;.1.0wCi. F i>Wld
.i.:L t.1o111l .. Uu c JlJwC:IOJLf81iCC3>
l. iJL.:, .. l.U 1 .. t. F liJ 18
.. i:.1. .. wwu11L. c JJ.1 .. C11ilJ17EJCU3)
11 w ~ (Ull 01 'tL F ilJ.iG
.. 1. L"' .. .,i; 1511 c OJ.:. .. i.i.11JZAt;w (OJJ
.. i: l I.J 1 s .. F il J Ji;
Ii .. Lt. .. L w 1'3t. c ilJ J,.~L!JJJ1tl+J ((13)
.; .. Ct. .. ;.~ 1Gw F .iJ .;c
.. ~Lt 101. ~ OJJwu~UJJDC .. CuJ)
w.:.L W ju.:i.Z.:.u F !lJ18
Ji.L L .. 11112111 ~ ll.i .. L.ii:i.i.iZ14u (LJ)

"" 1H:..u11L0018

ol ~ l L:...; .J .?l+u F JjJ .. u .. 11J u..lJu ... ":.i1
...... i. l...:tiu F ..;.lJ~:.iL.iu ~i.I.. .ill.i i.2
"""'"..: .;., 2Ci. F JJJlUL:JJ Ji; :lw I.IL" 3
.,.:; .. 1. l.o. .. Ji.L F JJ .. .:;O .. J"' J~;;Jo..c.i.
L .. l 11 I. .. " J'ti.; F ~J.JwLw1.U• J;" .. u L. ..
.,,; l L Ci..; Ja.;, F 11.,H11i.iuJ Ju.1.i.;c1.s
J.., L" .. ., .. 3Cw F ti J IJ J L .. .i J a .. ,; .i ci. co
" .. L &;. ;. .:; C l+C.:; F JJJ:..tL.ii.o o ... ""'""" 7
•L 1. L., .. " 'tl+U F .JJ .. ,,.,,Jij,; Ju .. .; .. I.. .. ti
v .. L .. .;.,,. ... 011 F "'J ... "' .. J .i ~.; u"" I< L 'l
..; "'1." ltCi. F J .i .J .. u., Ju Ji..~ .. ~t.LA
.... lL~ • .,s F .i.i J .nJvJ~ J J .. utO
"'"''I. J 51+1. F J"' J J J J w..i J..,.C
.:.1.1..:.;sd~ F :J" .. ~Li.. Ju u:u UC. .. o
.... 1.1. """ 5(.;1. F 0 J J .. (" "' .. C .. J .. ~i..LE
'"""lL .. wWb1od11 F ., ..; J - J ~ ;,j J ii L ,.:, ..i C, 1oF
""'" [. bl+11 F O .. L.i. .. wJ JlJll 1"
.... 1." &Ii .. F "J "' .. 11 .. 0 J uww.i.L11
wuLt..:.1..16Cu F ri J J. i..:. .. "' !.1. .; ... 1..c.12
................. "'7 ..;.,; F J J 1.. .. J .J u111o1Jt.:13
,; .. l 1.. '- L .J 7 lti. F uJ tO:JiJ ii!. .. .J [j(, 14
.ivi.111ol.il 7 d.i F ,).J;C1.1..J., u .i; 15
i. .ii. L 1.. .. 111..;.;. F w J " .. "' .. ,,J..CiwL16
w.il.: i.; 8 ~ i. F .: J ·"''ii!. .. ~ LI i. .. i.IL Li 17
;, .il L wi. 11 d .. ., F JJ)uLL:w Lo.~..il<t..18

.:iuLt.1.o .. Jaou F II J .i" I.IL .l ~ JO;u19
wJ l w """ d(.., F 1L1 J.;l...iJ..; .i11uJC1.CO
... L .. C..li':lt.v F iJ" J (. L".;,.; J Jlli:19
.; • L 11"' ,.(,~'-ii F OlJ.1.!.;J J.,J:JuLuA
J""" ""Jg !jL F .. J ,j w J .. J i..:J.; 17
., .. ;.11 i. .. 119(..L F I.I J J" "" J oJ ,. uCli .. 1.11&
.... 1.1.1. .. :i ~ F ;.,,J.JwJJ JJwJ"L.15

""''""' "'"'\; A'tl. F .i J J.; ".; J" 1111.:iai::c1i.
.. Jt. C ;:.i..LIAd;.. F JJJ~::.iJJil Li.i;.U~L.13
.;..; 'L:. L ... ~LI. F QJ,, .. 111.Ju .i0-.Ji.d2
•"''-"' ;..;:Jdw'" F .i JU .i I. L J.i iJ., .i.Ji.IC 11
..10." i. .. _.; .ltS'tl. F ~ .i J .1.1.1.1;) J .i:: c .i.; .c
.... ~l.:JCudw F "J J .. i: .. ",J :.; .. 11 u u"' CF
i.wl6.. ~ci~\. F .:;J~J"::J:.i J .. :.. .. i...:. .. t.
.41 (., ... ~ F .:JL~~ .. J CiJi.JiJLdi
.. "'" 1.. w .. I.: Ci.~ f ii J J;. i..i.; Oi..i w11111111C

SPAR5E

HATRDC
O_VEC T

02_\l~CT

SPA l<S A

SPA RH

SPA R.:iC

03_Vt:CT

FLO_Ll

START_A

START_8

II EC TOli ADD OATEI 17SEP7 .. PAGE 3

PRESET Q,STAH_C •Ot:SCRIPTOR FR HTRIXC 1/0Q5CJ
FR ES ET FLD_LT,CRCEli_vECT •ORDER VECTOR FJ' HATRIXA 1100£:0

FRESET FLD_LT,CRCEfi_VECTZ •ORDER VECTOR HA JRIXB 1/00 61

FIHSET FLD_L 11 ~I l<E hi L TA •DESCRIPTOR FOR iPARSEA 1/0062

FRESET FLD_L 1/c1 liE SU LT 8 •DESCRIPTOR FOR iPARSEB 110063

PRESt.T FLO_L l/c1fiESULTC •OESC1HPTOR FOR iPARSt:C 1/00Elt

PR ESH fLD_Ll1CRCE~_vECTJ •OROER ECT RElULT 1/0065

fQl. , .. •FIELD_LENGTH 0 ALL 11AB1.CIES 1/0::166
HGU·EliATE IHlHCIESH• 110067
C:E" 1,c,J,4,~.~.E,1,e •ROW1-11ATRIXA 1/IU68

CEt. ~.10,11,12,13,1~115,16 •ROWZ-HATRIIC~ 1/CD69

'lN 1711811~12u12112212J,Z~ •ROW3=HATiUXA 1/H 71

•••••••••••••••••••••••••••••• 11'00 71
GH 2s,11,,s,1,,2J,zc,z1,z~ 4 ROW1-HATRIXE 1/0072

GH 1g,1a,17,1i115,1~113112 •ROW2-HATRIXE 1./0CI r;s

........

'° '° 00
0
N
0
0

°'

•

CCC STAR ASsc;11aL~N VE~

,.J lliJL I. .;,;,ilC81. F O.l Joni:. Jv
t..J 1.11.l ii1. .ilCCl.I F OJJ:CLCil
QJ .. ~LC .O:UD\ou F J J ,.i. .ii. wil
.. J .1111. i. uw111J1tu F ilJ""'"'" "" C.J ,.,. LL 1. .ii.u6.; F JJil:.O~.tJ
OJ ~iiL\.1 .. ,i.OCu F ll l .i ~lit. JI)
,,J ui.L .. i. .. C. Eu.;. F OlJ~GuJJ
1.13 u;;E1tli F JJJl.OwJ.,j

JI)

.. J ""LI. "1.11i:d\o
JJ .. i.1. .. 1.1 .. 17EI.
aJ ww l 1. c11ti.
.,3 wCil L .. i.ZACG
.iJ .. wl. i. ~" Jiltltw
,,3 .; 1oL I. : .. Ji.JC;;

2.z.z
UQ;,,;Jl:t.UO
uO.;i;lllHiE
Owt..111.tliCIF
1)1; I. " 1C1
J.i.i.il.lli11
.i.IC•:0."01Z
uJ.;Jl.it.1J
i; u 1,,,;.;.(11+

J,.C.illC..wOC

SPARSE VEClO~ •co

S TAfH _C EQl.. tC
O"D~R_VECT ~ES l<•~lt
O"O~R_VECTZ RES f61t•21t
O"Jc~_VECTJ RES fb4!Z~
ReSULTA ~ES,tlt f&1t•z~
RESvLTB "ES,Elt f61t•2~
KESULT~ ~Es,~~ l~1t•21t

ENL ST•RT

SPA~SE VECTO" •oo

NLHdf~ OF WARNING HtSSA~ES = 0
N~H3~~ OF ER~O~ HfSSAGES il

AS~£HBLY FINISHED

lu115 A.H. TU£50AY 17TH. StPTE~SER, 1974.

~UHd~R OF STATEMENTS PROCESSED eJ

NUHdf~ OF hARNING 11~SSAGES ~O~E

NU118E~ OF ERROR HESSAGES ~ONE

•ttOHJ-HATRIX9

•RESERVE FOR HAT~IX_A O_VECfOR
•RESERVE FOR HTRIX_B O_VECTOR

DATE I 17SEP71t

DATE I 17SEP71t

DATE I 17SEP71t

PAGE

PAGE

PAGE

1/Dli 71t

1100 75
110076
1/00 77
1/0078
1/00 79
1100 ao
1/0081
110082

5

6

1/0IU

I

CIJC SU~ &SSE"'IJln VER 1.7

lZ OOllililDOiJ(IOQ~

OZ CClOilOOCQDOC F
12 JOOoOOJOQGOO F
JZ .;oo:;H~:oo20 H
J2 Oil:ii.'.lOJCiGDE>O
J2 J00~1;;aocoeo

a2 ~ooco oar.ocao H

J2 OOOG~~JO"OEe
32 JCO":iCuS(luO
02 Cil0u1JJ:C11tl
J2 JOO~J~,:011!10

02 ·l~JCHJ< ~1AC
az JOOCO;J~ClEC M

·~ 2 ~OQH~J~:i220 M

n 000~1~ilCOZ60
1Z JOJCJ3~~Q2AC
a2 ilOu":iOJtOZEO
JZ OOOOOD'.!OJ300
az ~O~~OO~DQ31t0

~! ~aooon' cooo

OQOfjQ~OOOOOO F
aoooooooacH c
OCICG lOCC~O~O F
OOiluCC000050 c
OODOJ1JCO~!l0 F

C-20

or O~COJCCQZ8i,Q

~ [ilJ~O~J":iZ86u
ll c.ccc~lir,uzeco

tH o:o.;~o.:;2c;(·il

~r J~.JOlilGZ91t~
i,(lu~ooo"nc;eo
~(%('~uO:u29CO

JC C.ii~JQOJ~ZALC
~ (JGGuG00"2AltO
~(:.u~u~OC OZ8l 0

oc C.OOOOO'Ju051t0
J (·)Ci .:.t GOO J J680
~ ~ :..co.;,;. ;cilE>CO

n :;~CIOJQ.:007~0

at DCOOOuuOD7'oO
uC il~OutDOu0760
Jc JuO ii J OOil 07CO

3HC0015
c;sJrcas acoooc1c
1HCO.i10
7'1B001C
3F1BO.JOD

2AA(Qi1~9

BEAl~Hr- J.~JZ81,t

2AA1ilO~IJ

9,: C 0 .iAu OQ~~J(A1

Co;) elOA1 aAJH, l
Cl!i:JMilAZ OOA3A5' 0

9C~l OJA1 ~C~QAl,A(>

9!:HOuAZ JOJ.;A5A7
l?~CHA(> A5A7A9A9
~'100)15
1BJCuJ1D ~OlOOC15
Jlc,C OHi

OHB
COJCOOi.C:021tO !~JI
ooa
OJ~t~o.i.:.oeei 10~1
cino.iuu HOJOHC

OATEI 1UPUJ PAW

TITLE -SPARSE VECJOlt & >0"

SPUSE VECfO' &OD

~EG_1
REG_?
'!EG_ 1
REG_+
REG_;
REG_;.
REG_7
REG_~

REG_~

OBR .
VITAL
'!TN
OSP

CSP
PSP
COB
UNIT
STAU

INPUJ ltllitlj
OUTPUT

IOENT
14SEC 2

ENTRY sra~T
• • • i!E Go IST f R_OEFI NIT IO··;
ECU fA1"!>" • Oi!IGI llL !!ATRIJC A OESCUPTOlt
€ .. U u2•&.. • J~IGl UL 11AT~IlC e OESCUPTOR
ECU fA]•t.4 • 'l~OAO.:lST'IAT~IlC C DESCUPTOR
EQ\J 14""6" • O'!DE"' IECTO~ "4TRIXA REIO
Eau us•f>c, • O~OE~ Jt:::Toot '1ATll.IXB GtEIO
Et.lU Ul!.•61, • C0'1i>~;;: iSEO '1AT~IX A OlSCllIPfOI!
EC::.J IA 1•t.1t • :::o .. P<:E iSEO 'IAT ~Ix B lESCGtlPTOI!
EQU ue•&i, • '1AH1(; DES:llIPTO~ ~E(; IRESUlTI
EOU u1J•o1t • ~ESUlT INCLUSIVE OG! OG!JEI! VECTOI!

FQU 1AI•61t • lATA BASE REIO

Eau us•&i.
EQU 11A•&4

EQU •1B•&i.

Eau uc•&i.
EQU 110•&1t

::::iu nE•&i.
EQU 11F•&i.

L TOL CSP, VITAL
VTOV VITAl,CSP
llTOG! CSP,PSP

'tTOGt OSP ,CSP
IS OSP,~

!!TOR COB,il~ll

•••GENERATE JEsc;:inro~; IN REGISTEl!S
ELEt• CB~,c; •t: HE'l LENGTH INTO)ATA BASE iUGISTEI!
!:X 11EG_1, ~EG_1 "SET POINTE~ FOii REG_l
ELEN PEG_~,q •SET POINTEP LNGTH
VTOV Oil~,Gt::G_l •v£CT TO vE:T T'!~S 11AT~llC LOC TO REGS

C0!'1P~ C!'1PC.t.,3 ~!:G_l,llEG_l,llEC._1, •c~EHE O~()l~ VECTOI!
C0!'1PJ C11PGE,J ~=::;_z,~E.:;_J,REG_!i •C'!EATE OROE~ VECT

··co11PotES:i TO SPA ~SE VECTORS••

RESULT1 CPSV "EG_l,'tf".;.6,REG.t
~ESULT~ CPSV ~EG_2,.<E'.'._7,PEIO_;
ADDIT!JN AuO'lS (REC._E>,~Er._ .. }, C~EG_7,~EG_S>,Ci:tEIO_&,REG_n

LTOL PSP,VIUL
vrov PSP,llITAl
BAOF,Bi:t ,~T ..

"SEC
.... OESC~IPTOR SETUP

P~ESE T FO'!'I, &It 1 E>, ""
11AT~IU PPESET FLO_LT,STAPT .• •QESCRIPTOR FOii 111 Jltlll

'1AT~[C3 PRO: SET FLO_LT,STUT .3 •OESC~IPTOI'! FOii 11AT1t118

!!ATi:tl(C Pl>ESET ;;,STAIH.C •OESCiUPTOP FO~ MA TRillC

11aoo1
1/oiO 02
llw003
11r.1101t

l/CODS
1/uil.i6
1/C1la7
1/C.3DI
11•D119
11~0111

1/CD11
11:012
11;:'01]
1/ilDllo
in us
11u!l16
11~017
1no11
11i.D19
1/~1)2i.
1/CD21
11Ci122
11~.iZJ
11c-£21t

11.025
1/ ~026
11wC27
11~;;21
1/(li29
11(03~

11U31
11.032
1li.ii33
1/C Olio
1/(~ 35
11~.il&
11~037
1/C031
11.0]9

1/L,ltll
11.lilt1
11:01oz
1/COi.3
11;.illolt
11.oi.s
1/CClt&
11.lilt7
1/~u"8
1/tuc,~
11 •. Su
11•~51
11~~52
11.093

11.osi.
11.uss
1/Cu5b
11.~57

1/Ci. 51

19980200 B

CDC srn &SSE'l=JLE::t VER l. 7 :)llA::tS:: VECT H aoo O&TEI ua111;:13 PAGE

l3 JO'J~.H::cot~ F en! o_vE-.:r P~lSET F~O_L r,i:n~o_v:: :r •Qlf.JER vECTil~ Felt '!ITRlXA 1/CL6l
L' ..tOC~~;J~lidJ')I" c c J,(JJJ .. .)ll!J l~.li

O! ~O'JO,Ja~l~t F J~ 18 oz.v::::r PltE.iET FL).L r ,o;oJE~.VECTZ •orco::~ vEcro~ 'IATOIXB 11(.i61
13 o~~roJ~;~11u c ~l~CJhH7E1o1031

O! 'JOOO~~l< n .. o F' JLC SPUil PO£ SET FLO.LT /2 ,lfE :OU~ Tl •OESC::tIPTOlf FO~ SPARSE& 11C.il6Z
l ! 'uJOJ0~~~15~ c) ~ ; t ; j .; ~ 2 AC " I) ! I
IJ! uOO~ Jt;,r".'lllC F • J JC SPA~; I P'1£SET HD.LT I z. ~fSiJL ra •Ot iCRIPfOI< FiH SPA::tSE'I 11ti163
n 1HIOOOUH'!l'JC c oa·r Jatzn11:1?1
D! o'loMen .:;ice F n :CJ~.~ ~5JOHGQ SFU~~ PPESE T F'LO.L T IZ, ltESu..rc •OESC:itPTOR F'O::t SPAltSEC 110061t

H G4lilC.1Jl~02'lC F OH!' Q3.v::~r P~[SET FLO.Lr ,OROE ::t.v::CT3 •QRQ:;ct VEC T l!E SULT 11~'J65

33 JlO~OGo,n10 c OllLO:~~Zh~ lillJ
~ (o;::;--.c.t"uatu HD.LT EQ:J Zle •F 1£LO.LENGT'1 FOil ALL "ITRICIES 11Lu66

••:>Er1::1tA TF "IAT::t ICIEs••• 1h0ft7
03 JOO;;.JJJOQ2 .. C F 0 :l "t.; J.: ~C~ilOC.:.1 STl~T .a GEN 1,z,3, .. , ... s,&,1,1 •1tow1- .. a r111xa 11(068
~3 HOCO~JCoJ2!C F o;.uo~~ c~~ooc.;.z

03 O!IJ01noc2co F ul:tJJ~o ~;~~:;c~ J
II? OD.:1000,00300 F Gl~C:J~~c OC.~CO~tlt

~! oaocoonH1t~ u·i: cu.:. ~o JiiOlilHit
03 OOOillOlCOJ!C WJ~~oa:i:; OC~JOw~S

03 uQOC.~Ol:J3CG C~JCOC~J .:.cent: &
iJ! ~000.lil~OOleOO ~:) :c JJ j~ JC·J.lOOt 1
1 ... OOOHO~uJ!olo~ F O~:UlJ.,;~ JV; J JC C 5
03 ~oa:oo;:ci.!o F OJ;CJJ:.; &r.not~'i GEi!! g,1 .. ,11,1z, 13,11e, 1s,16 •ROtlZ•"IATl!IXA 11 .. 0&9
') 3 Juoo~;:;~oci.co F QQ~C)j;Q OG:JluCA
O! oooooo~~osoo F 01~0l)(CC.lOC~~

03 OGOOilOO~'l51oQ F OQJCJO;C zo;:;o~cLc

33 OOiilOOlC~5!0 F OO:~JJ;C i.CwOOC:CO
l? 00000 JC 0 05CC F' OOlLJE~ OCJiiOC.~E

03 JDlJ.lJilOiJC&GC F ~JJCOJJC oa.;~J:i:F

~3 OOOOOl!~::iO:E>ler. F (W:C JJ~C ilUOOClO
!13 u000jOJ01651 F a J: c JI! ~c- .;~:::ooc11 G£N 11,1a,1q,:>o,z1,2z,z3,z1o •ctOWl•>tATIUX& 11Cu1~

J3 OuOOOO~ j.J6C~ F QJ;CJ~,C &O.ialC!Z
03 lOGCn00070'l F n.c-:ia;~ JCJOOCll
.13 G30003~0'l7 .. r F one Jo"~ C03JOCH
Q3 GOOCO~J007SO F r..J~c~.;,c~ ut~lOC15

'l! 000 COOJ J tl1CO F 0-LCn:~ OtCJi.ltl&
'J3 i130~00Jl0800 F G l~ C !I J":; J&JOOil17
ii! oJoooo~oosi.o F 0%CJG .. ~ JOJ~OG1! 11)071
']3 OOODlOJOOeeo F' 01-JcOJ.:i~ CCJOOtl'J STll!T .J GEN Z5o11125 110 ,Z!,u,z1,zo •rtow1- .. , TRIX~ 11~Ii1Z

Q3 !JOOOJJGOOl!CO F OJ~(J~ .. c JC~J.lC.9

l3 ODOOJ<ll00900 F Ol:OCJJ.1& \l1Viu\1Cl'J

33 000000~009ioG F OOCCGG:C OG~GilCG&

O! COOD000009aO F oonoJJ·' CQ~.;JC17

03 OO!I0000009CO F' OOOC;JJ.O ;Q~GJC16

03 OOOOOOJOOA'lO F O~OCJa .. il OG~OQC15

!13 0000000004"0 F DO JCOOOC OCOOOOllt
03 ;JOOO:JOOCOA90 F O~JCilJ:O OJGO~Cl 3 GEN 19tl&,17o12115,1'to1311Z •ROW2•ptl TRIXi3 11(t 13
03 oooaooooGaco F OuilCilJCO QQJQ~ClZ

il3 OOtlOOOOOOBOC F OQJCOilOG i.COJOC11
03 OOOOOOJOOBioO F oo:cu1Jo QCOClCCC
03 OOOOO~DOG880 F oonoJ.:.u OOOuOOOF
03 OQQQOO~OOBCO F OJOCOJ~C Ju~OOOCE

03 oooooon~coo l" OC:CilJJt. ~OCJOJC~
il3 OOOOOOOGOCltO F O~ClJJu~ .JO~JQilCC

03 QOOOOOCCOC!O F Jo:c ,o,;o oo:incco GEN 1311'-o1So1&, 171 B ,1q, 2J •rtOW3-"ATltIX~ 1/t il 71e

03 OOOilJOOOOCCO F OlOCOOOC OGJOQflC E

COC STA~ ASSE"aLElt VElt 1. 7 SP USE VECTH ADO OATEI 1UPR73 PAGE ..
IJ::S 00003000C000 OJ~COJ c JO~JOttF
O! .10ocqoHOOl+O JJ J t 01 GOJailt10
03 ilOO~JOJOOOl!O Q j: (JJ ~o;;JJt11

O:! !JOOOlQjilOOCJ OE1.;:,J 0 GCJJJClZ
4)3 OOOOOCO~OEOO ,jJJ~ H J.;.;ot11
u O!JOiluO•DGEioil a o o (l J r Q"" ~: 1.: 1:.

u (~ ~OOOGO~CCC ST<T .: EQu fC 11,;1!75

13 OD~illOJOCE~~ OROE~-~::cr ~ES •& .. •z .. •RESEl!VE FOR >tATIUX.A O_VECTOR 1'~ & 1&

n OOQC J01017EO O~i>E ~.vECT Z ct ES •&i.•z .. ·~ESC:RVE FOR 'iATl!I x.e o_vECTOR 11d77

l3 aoocnol~z11+~ O~DE~_vECT 3 cte:s •& .. •zi. 11•·071!
;J3 iiO~ooaJ02ACO ltESULTl ctEs,& .. •& .. •1.? 110079

ZFSO RESUt.T:i l!ES161t •& .. •11 11t 0 I~
1/Clll1

ENO Sf HT 1/tC.&Z

19980200 B C-21

I

SPARSE VECTOll ADO

NU11g£R OF WARNING MESUGES •
NUllBER OF ERROR lfESSAGES

COC SUI! ASSElf8LER VER 1.7

ISSEllBLY FINISHED

311oD A.If, WEDNESDAY 18TH. APltil, 1973.

NJ118Elt OF ST ATE 11ENTS PROCESSED UI

N"11BER OF WARNING 11ESSAGES NONE

!W19ER OF HltOlt llESSAGES NONE

FINIS

SUit LOAOER vt.1 llloZ a,lt. WEONESHY 1STH. APRIL, 1913.

STAltT

::ooE
OITA
ENUY

TOTAL ELAPSED TI!tE FOR TrtIS LOAD WAS It SECOllDS.

1 PAGE(S) OF DATA WEltE ALLOCATED.

1 1100ULES OEF I MING 1 SY .. BOLS WERE LOAOEO.

... OUMP OF VIIHUAL MEMORY FRO" ADDRESS 3300050COD J > TO

PLl 1
C.OOOHO~DOilO
O~CC.Ol:J[11310
0Hr.i01C~ODC.O

300'.!DSDZD:IA"

OUTPUT

~O\lOOS0,0000 FF0&&1tor O>;COOOJO FF0&6itJO oo~~DOlJ FF'0&5CO:i uOQO" ODO
J\l0005000t00 FFOEiSitllt OJOOODlO FF0&5JJD G~O~O~ll FFO<CO~ CuJC:OOJ
000005000200 FFO&<t1tn auCO!lC~J FFD5&JJO c ~ Q i.ilil J) Fl'D&&COC uaJo:ooo
O~OOOSCOO!OO FFOo&COCi 06L.uGCiCO noc.&:oo H CGOOl > HD671tOJ "OJO"OOil
JOilJD50001tOO FF071t2Jl OuCOOCOil FFD7.,6JO 0:;:; L 0 0) l FF;)7'+ACiii t~JC:O:JO
00\1005000500 FF075ZOC DLl~DQt~u FF0756J 0 JCiDCDOll J~aj:;o.i uOO;J'000
00JOu5000!>00 ilOuJOOQt JOCOODOD ~aonc. JJO OOOOOOJl Ci cu 0) ~il' GO~OJDOO ... P.Pf • ...
QCil00500!001! OOOJC.O~D i10C01F1C l uOJu lOO JOCCOQJ l iiOJO:iCO~ ouo· ooo
aonosoouoo aooooacc aoooooJo tOOJOJuO ~~DCOOJ J J~~O~OOil 00il~~03G ... RPT • ...
000005010000 0000000(; 00601F1C ~0000000 OOOCOOll 00000000 cc30:000
000005010100 oooaooor 00000000 tOOuliOOO DOOOOOlJ OCJDuOOD liOOO~OOO ... ~PT • ...
000005018000 OOOOOOJC OOOD1F1C ~OOOiJJOO 000000)) 00000000 cooo.;ooo
00000501!100 oooooooc 000000~0 tOOOuJJO lOOUDOll OtOOO'O~ uOilO;;OOO ... RPT• ...
oo~oosozoooo OOOOOOOG Ou001F1C GOOOOJDO OCOLOOll ~OOOOJOO DOuil'.000 ... END ~F VIRTUAL 11£ .. 0RY DU"P

C-22

DlTEI UlPR13 PAGE

DUE I 18APR13 PAGE

OJ11to 1D1t.Z9S 111/h/73
ODli JIO
ilOl1t1tD

FFJ&5100 ooooooao \
FF l&1oena O:JOODu:J:J •• r ••••••• P•••••••L•••••••"•••••
H l&e.COO 6~000COQ •• o •••••••••••••••••••••••••••••
FF 1&7CCD OJDDliCJO
FF l71tEOO ~~oocoao •.a ••••• • .F • •• • •. • J •• •• • • .N., •• •
JlJOiiOGO C.JDDuOH •• R: ••••••• v •••••••••••••••••••••
0 l IOLOCO ~:i6COrilO
J3 IU006Q GllDilCiOJG
JJ JOOGH1 liilOOOOOO ································
OJ >:JuOOO liOOOOCOO
0 l IOliOCli C.ilOuOC~O
JO IOuliCO iiOODO~ilO
J J Ill CC. DO r.aooonoo
0 l JOuO tO OiiOOOuOO

I

•

19980200 B

STRING INSTRUCTIONS

String instructions perform arithmetic and logical operations on strings of data in the form of 8-bit bytes.
The byte size allows for handling large alphabets (256 characters) and is compatible with ASCII extended
binary code. The field length of a data string can be extended beyond one 64-bit word or can be less than
one data word. Bytes in the field of a data string are in opposite order of the byte address; the most signifi­
cant byte. is the leftmost byte, but, the address of the leftmost byte is 0.

Unless specified by the instruction, strings are processed from right to left until the last byte in the field is
processed. Normally, string instructions terminate when the result field is filled.

String instructions perform operations on data strings in packed binary-coded decimal (BCD) form, zoned
BCD, and binary formats. The zoned-decimal format is used for 1/0 operations. Each byte, with exception
of the rightmost byte, contains a BCD digit with a zone designator (3) located in the leftmost 4 bits of each
byte. The rightmost byte contains the sign in the leftmost 4 bits. (A for +, B for -.)

ZONE DIGIT ZONE DIGIT SIGN DIGIT

I
Byte 0

!
Byte 2

!
Byte 1

ZONED BCD

The packed decimal form normally is used for arithmetic operations. The rightmost 4 bits of the rightmost
byte contain the sign, the remaining bytes consist of two 4-bit digits.

t t t
Byte 0 Byte 1 Byte 2

PACKED BCD

Binary numbers are represented in strings of 8-bit bytes. The leftmost bit of the leftmost byte contains a sign
(0 for +) (1 for -). All binary numbers are sign extended through the sign bit. All negative numbers are two's
complement.

String instructions make use of string indexes, which are item counts in bytes, for all instructions with the
exception of D6 and FF. A string index can have a value of up to 245-1 • The leftmost 3 bits of a string index
are not used, the sign of a negative index is extended through bit 16, and overflow is not detected when an
index is added to a base address.

19980200 B C-23

I

I

DELIMITERS

There are six string instructions which permit delimiter termination: these are F8, F9, FD, EE, EF, and D7.
All other string instructions have length limited fields. Delimiters are contained in bits 0 through 15 of a
designated register. When a character in the data field location matches the delimiter value, the instruction
terminates. Field length or delimiter character is selected by G designator bits.

Bits

d (8 and 9)

e (10 and 11)

(12 and 14)

(13 and 15)

Designator

d and/or e

d and/or e

d and/or e

d

Designator for A and B

Designator for C

Undefined O's

Increment A field and C field index respectively

Table C-5. String Instruction G Designators

d/e Bit
Value Function

00 The 16-bit length specification in A, B, and/or C represents an item
count of the number of bytes or bits in th~ field (field length).

10 The rightmost 8 bits of the length specification in A, B, and/or C are
used as a delimiter character.

11 The entire 16 bits of the length specification in A, B, and/or C are
used as a delimiter character.

01 The rightmost 8 bits of the length specification function as a delimiter
character. The leftmost 8 bits serve as a mask on the comparison.
Bits in the delimiter character and the operand byte are compared
only where 1 's exist in the mask. This specification applies only to
source fields. Any instruction becomes undefined if this specification
is used for a result field.

INCREMENTS

Nine instructions use index incrementing: F8, F9, FD, FE, D6, D7, EE, EF, and FF. At the termination of these
instructions, the index register fields are left in one of the following states:

C-24

No Increment - The index register remains at its original value. An example is the index register associated
with a translate table. Characters to be translated are added to the indexed address of the table to obtain
the translated character. The index associated with the table does not change during the instruction
execution.

19980200 B

Partial Increment - The index register is incremented to specify a particular character or word in its
associated field. An example is the FD instruction which searches two byte strings for inequality. When
an inequality is found, the search terminates and a count equal to the number of no-hit comparison is I
added to each index. The end may not have reached field lengths, but the location of the unequal char­
acters can be formed by manipulating the incremented index and the base address.

Full Increment - The index register is increme~ted by the full length of its associated field. For example,
when the translate instruction is terminated, the index associated with source field A is incremented by
the length of field A to specify the starting bit of the next contiguous field. If field length is specified by
a delimiter character, the field is searched for that character. The index of the associated field is
incremented then so the starting point is one character beyond the delimiter characters.

LOGICAL STRING INSTRUCTIONS

These instructions function in the same general manner as corresponding string instructions. They operate with
index and data fields the same as for string instructions except item counts are expressed in bits instead of
bytes; therefore, these instructions perform bit operations on bit boundaries.

MONITOR INSTRUCTIONS

The monitor instructions function only during monitor mode. When a machine is in job mode, any attempt
to execute a monitor instruction is detected by the hardware as an attempt to perform an undefined function
code.

NON-TYPICAL INSTRUCTIONS

These instructions perform operations such as register to storage transfers; formation of repeated mask lists;
and maximum/minimum determinations that do not belong in any of the preceding instruction types discussed.

SIGN CONTROL

Certain vector, sparse vector, and non-typical instructions provide an operation called sign control on the· input
operands. (Table C-6.) For these instructions, bits 5, 6, and 7 of the G field have the following significance.

Bit 5 Bit 6

0

0

Bit 7

0

0

Use the operands from the A stream in the normal manner.

Complement the coefficients of the operands from the A stream before using them.

Use the magnitude of the coefficients of the operands from the A stream.

Make all positive coefficients of the operands from the A stream negative before
using them. Negative operands will not be altered.

O Use the operands from the B stream in the normal manner.

1 Use the magnitude of the coefficients of the operands from the B stream.

19980200 B C-25

Any complementing necessary to achieve the required operand state is a 48-bit two's complement operation
performed before operands are used in the specified arithmetic operation. If the complement of the coefficient
2000 0000 0000 is required, the operand will be used as 7000 0000 0000 with one added to its exponent,
which could cause exponent overflow.

Any significance calculation necessary in performing an instruction is made before complementing occurs.

Table C-6. Instructions with Sign Control

A Operands B Operands
Instruction Bit 5 and Bit 6 (Bit 7)

80, 81, 82 Vector Add x x x
84, 85, 86 Vector Subtract x x x
88, 89, 8B Vector Multiply x x x
8C, BF Vector Divide x x x
93 Vector Square Root x x 0

AO, Al, A2 Sparse Vector Add x x x
A4, AS, A6 Sparse Vector Subtract x x x
A8,A9,AB Sparse Vector Multiply x x x
AC,AF Sparse Vector Divide x x x
CF Arithmetic Compress x x x
D8 Maximum of A to C x 0 0

D9 Minimum of A to C x 0 0

x 0 or I bit is legal
0 This bit must always be set to zero

MACHINE INSTRUCTIONS

Tables C-7 through C-17 list all of the machine instructions available with the Control Data STAR computer
system. They include:

Instruction OP Code

Format (F)

Instruction Mnemonic

Applicable Operands

Applicable Qualifiers

Register designators contained in the operand portion of the table are defined in table C-17.

I C-26 19980200 B

Table C-7. Index Instructions

Op F Mnemonic Qualifiers Operands Description

3E 6 ES none Rf,116 Enter short, full word: 116-+ Rt6-63' R.J., SE; 0-+ Ro-IS

4D 6 ESH Rh,116 Enter short, half-word: 116-+ Rg.31, R.J., SE; 0-+ Ro-7

, BE 5 EX Rf,148 Enter index, full word: 148-+ R 16-63, 0 -~Ro-IS

CD 5 EXH Rh,124 Enter index, half-word: 124-+R8-31•0-+ Ro-7

3F 6 IS Rf,116 Increase short, full word: R16-63+116-+ Rt6-63' Ro-IS unchanged

4E 6 ISH Rh,116 Increase short, half-word: 116 + R8-31-+ R8-31 • Ro-7 unchanged

I BF 5 IX Rf,148 Increase index, full word: 148 + R -+ R

CE s IXH Rh,124 Increase index, half-word: 124 + R-+ R

38 A LTOL none RL,TL Transmit length Ro-1 s to length TO·· 1 s, T 16-63 unchanged

n
t0
00

.......
\0
\0
00
0
N
0
0

txl

Op

79

59

61

2B

41

62

42

60

40

63

75

SS

74

54

11

72

52

76

F Mnemonic

A ABS

A ABSH

4 ADDL

4 ADD LEN

4 ADDLH

4 ADDN

4 ADD NH

4 ADDU

4 AD DUH

4 ADDX

4 ADJE

4 ADJEH

4 ADJS

4 ADJ SH

A BTOD

A CLG

A CLGH

A CON

Table C-8. Register Instructions

Qualifiers Operands Description

none Rf,Tf Absolute, full word F P: ABS(Rf) ~ T f

Rh,Th Absolute, half-word F P: ABS(Rh) ~Th

Rf,Sf,Tf Add lower, full word F P: (Rf) + (Sf))L ~ T f

RL,Sf,TL Add to length: Ro-IS+ S40-63 ~To-IS• R16-63 ~ T16-63

Rh,Sh,Th Add lower.half-word F P: ((Rh)+ (Sh)k ~Th

Rf,Sf,Tf Add normalized, full word F P: ((Rf)+ (Sf))n ~Tr

Rh,Sh,Th Add normalized, half-word F P: ((Rh)+ (Sh))n ~Th

Rf,Sf,Tf Add upper, full word F P: ((Rr) + (Sr))u ~Tr

Rh,Sh,Th Add upper, half-word F P: ((Rh)+ (Sh))u ~ Th

Rf,Sf,Tf Add index (address), full word: R16-63 + S16-63 ~ T16-63,R0-1S ~ To-15

Rf,Sf,Tf Adjust exponent, full word F P: (Rf) per S ~ T f

Rh,Sh,Th Adjust exponent, half-word F P: (Rh) per S ~Th

Rf,Sf,Tf Adjust significance (shift), full word F P: (Rf) per S ~Tr

Rh,Sh,Th Adjust significance (shift), half-word F P: (Rh) per S ~Th

Rf,Tf Convert binary R to packed BCD T, fixed length

Rf,Tf Ceiling, full word F P: nearest integer .GE. (Rf)~ Tf

Rh,Th Ceiling, half-word F P: nearest integer .GE. (Rh)~ Th

none Rf.Th Contract, full word F P: R64 ~ T 32

-\0
\0
00
0
N

8
b:1

-

Op

6F

4F

6C

4C

10

2A

7A

SA

6E

SC

SD

1i

Sl

6D

7C

69

49

6B

4B

68

F Mnemonic

4 DIVS

4 DIV SH

4 DIVU

4 DIVUH

A DTOB

6 ELEN

A EXP

A EXPH

4 EXTB

A EXTH

A EXTXH

A FLR

A FLRH

4 INSB

A LTOR

4 MPYL

4 MPYLH

4 MPYS

4 MPYSH

4 MPYU

Table C-8. Register Instructions (Cont'd)

Qualifiers Operands Description

none Rf,Sf,Tf Divide significant, full word F P: ((Rr)/(Sf))s -+ Tf

Rh,Sh,Th Divide significant, half-word F P: ((Rh)/(Sh))s -+ Th

Rf,Sf,Tf Divide upper, full word F P: ((Rr)/(Sf))u -+ Tb

Rh,Sh,Th Divide upper, half-word F P: ((Rh)/(Sh))u --+ Th

Rf,Tf Convert packed BCD to binary T fixed length

RL,Ii6 Enter length: 116 -+ Ro.is, Ri 6-63 unchanged

RL,Tf Exponent, full word: Ro.is -+ Ti6-63' S E, 0-+ To.is

RLh,Th Exponent, half-word: Ro. 7 -+ T 8-31' S E, 0 -+ T 0-7

Rf,Sd,Tf Extract bits from Rf to Tr per Sd

Rh,Tf Extend half-word F P: R32 -+ T64

Rh,Tf Extend index, half-word F P: R8-3i-+ Ti6-63,S E, Ro_7-+ To-1~ ;,SE

Rf,Tf Floor, full word F P: nearest integer .LE. (Rf) -+ T f

Rh,Th Floor, half-word F P: nearest integer .LE. (Rh) -+ Th

Rf,Sd,Tf Insert bits from Rf to T f per Sd

RL,Tf Length to register, full word F P: Ro.is -+ T48-63, o -+ To_ 47

Rf,Sf,Tf Multiply lower, full word F P: ((Rr)*(Sf))L -+ Tr

Rh,Sh,Th Multiply lower, half-word F P: ((Rh)*(Sh))L -+ Th

Rf,Sf,Tf Multiply significant, full word F P: ((Rf)*(Sr))s -+ Tr

Rh,Sh,Th Multip1y significant, half-word F P: ((Rh)*(Sh))s -+ Th

none Rf,Sf,Tf Multiply upper, full word F P: ((Rr)*(Sr))u -+ T f

\0
\0
00
0
N
0
0

to

Op

48

7B

SB

2D

77

2E

78

S8

2C

34

30

73

S3

6S

4S

66

46

64

44

67

7D

70

so

F

4

4

4

4

A

A

A

4

4

7

A

A

4

4

4

4

4

4

4

A

A

Mnemonic

MP YUH

PACK

PACKH

RAND

RCON

RIOR

RTOR

RTORH

RXOR

SHIFT

SHIFTI

SQRT

SQRTH

SUBL

SUBLH

SUBN

SUB NH

SUBU

SUB UH

SUBX

SWAP

TRU

TRUH

Table C-8. Register Instructions (Cont'd)
... ---.

Qualifiers Operands Description

none Rh,Sh,Th Multiply upper, half-word F P: ((Rh)*(Sh))u -+ Th

Rr,sr.Tr Pack, full word F P: R48-63 & S16-63 -+ Tr R: exponent

Rh,Sh;rh Pack, half-word F P: R24-31 & Sg.31 -+ Th S: coefficient

Rf,sf,Tf Logical AND R, S, to T

Rf, Th Rounded contract, full word F P: R64 -+ T32

Rf,Sf,Tf Logical inclusive OR R, S, to T

Rf, Tr Register to register full word transmit: (Rf) -+ Tr

Rh,Th Register to register half-word transmit: (Rh) -+ Th

Rf,sr.Tf Logical exclusive OR R, S, to T

Shift Rr by (Sr) to T f

Rf,lg,Tf Shift Rf by lg to T f

Rf,Tr Significant square root, full word F P: SQRT(Rf)s -+ T f

Rh,Th Significant square root, half-word, F P: SQRT(Rh)s -+ Th

Rf,Sf,Tf Subtract lower, full word F P: ((Rf) - (Sr))L -+ T f

Rh,Sh,Th Subtract lower, half-word F P: ((Rh) - (Sh))L -+ T f

Rf,Sf,Tf Subtract normalized, full word F P: ((Rf) -- (Sr))n -+ Tr

Rh,Sh,Th Subtract normalized, half-word F P: ((Rh) - (Sh))n -+ T f

Rf,Sf,Tf Subtract upper, full word F P: ((Rf) - (Sf))u -+ T f

Rh,Sh,Th Subtract upper, half-word F P: ((Rh) - (Sh))u -+ Th

Rr,sr,Tr Subtract index (address): R 16-63- S16-63-+ T 16-63,R0-15-+ To-15

~.Sf,Td Swap registers start with Sr; storing at T d and loading from Rd

~ Rr,Tr Truncate, full word F P: nearest integer .LE. (Rr) -+ T f

none Rh,Th Truncate, half-word F P: nearest integer .LE. (Rh) -+ Th

Op F Mnemonic

32 9 BAB

33 B BADF

2F 9 BARB

.
24 8 BEQ

26 8 BGE

20 8 BHEQ

. 22 8 BHGE

23 8! BHLT

21 8. BHNE

B6 5 BIM

27 8, BLT

25 8 BNE

Qualifiers

BR,BRO,BRZ,
T,SO,SZ,
BRB,BRF

BR,BRO,BRZ,
SO,SZ,T,
BRB, BRF

BR,BRO,BRZ
T,SO,SZ

none

J

)

(

l

<1

none

Table C-9. Branch Instructions

Operands Description

Sa,Ta Branch and alter bit: (Sa) is bit to be altered, (Ta) is branch addre
qualifiers BRB & BRF branch address is relative ± I half-word

16,Ta Data flag register bit branch and alter: 16 is bit altered (Ta) is brar

T,S Branch to [S] on condition of bit 63 of·register T

Rf,Sf,Ta Branch to (Ta) if (Rf) .EQ. (Sf), full word F P compare

Rf,Sf,Ta Branch .to (Ta) if (Rf) .GE. (Sf), full word F P compare

Branch to (Ta) if (Rh) .EQ. (SJi). half-word F P

Branch to (Ta) if (Rh) .GE. (Sh), half-word F P compare
Rh,sh,Ta

Branch to (Ta) if (Rh) .LT. (Sh), half-word F P compare

Branch to (Ta) if (Rh) .NE. (Sh), half-word F P compare

Ri,148 Branch immediate to (Ri) + 148

Rf,Sf,Ta Branch to (Ta) if (Rf) .LT. (Sf), full word F P compare

Rf,Sf,Ta Branch to (Ta) if (Rf) .NE. (Sf), full word F P compare

SS with
s

1ch address

\0
'-0
00
0
N
0
0

t::C

Op

36

35

09

31

BO

· B2

BS

B4

B3
I
i

Bl

3B
I

F Mnemonic
f-; ·====::::::,

7 BSAVE

7 DBNZ

4 EXIT

7 IBNZ

c IBXEQ

c IBXGE

c IBXGT

c IBXLE

c IBXLT

c IBXNE

A LSD FR

Table C-9. Branch Instructions (Cont'd)

Qualifiers Operands Description
... ,::_ ,.: .. :.-1=::·

none Rf,[T a,Si] Branch & save: set (Rf) to next instruction address, branch to [Ta+ Si]

Rf,[T a,SiJ Decrement & branch non-zero: (Rr)-1 ~(Rf) if (Rf)*O
branch to [Ta + Sd

none Exit force, job to monitor

Sa,Ta Exit force, monitor to job, (Sa) register file, (Ta) invisible pkg

Rf,[Ta,Sd Increment & branch non-zero: (Rf) + 1 ~(Rf), if (Rr)=f: 0 branch to
~ [Ta,Sd

BAB,BRF

I Xf,Af,[Ba,Yi]' Increment & branch index: A16-63 + X16-63 ~cl6-63' Ao-1s~co.1s

I
Zf,Cf

if A 16-63 + X 16-63 .OP. Z 16-63 branch to (Ba) + (Y j),

or relative from the current location± 116

I Xr,Ar,116,Zf,Cf

t

none Rf,Tf Load & store data flag register: (DFR) ~ Tf, (Rf)~ DFR

......
\0
\0
00
0
N
0
0

t:x:i

n
w
VJ

-

Op

99

81

82

80

83

94

9S

92

96

BC

8F

9A

9C

p· Mnemonic

1 ABSV

1 ADDLV

1 ADD NV

I ADD UV

I ADD XV

I ADJSV

I ADJEV

I CLGV

I CONY

I DIVUV

1 DIVSV

1 EXPV

1 EXTV

Table C-10. Vector Instructions

Qualifiers Operands Description

A,H,O,Z [A,X] ,C,Z Absolute vector: ABS(A) "-* C

A,B,C,H,MA, [A,X] ,[B,Y] ,C,Z Add lower vector: (A+ B)L-* C
MB,N,O,Z

A,B,C,H,MA, [A,X] ,[B,Y] ,C,Z Add normalized vector: (A+ B)n "-* C
MB,N,O,Z

A,B,C,H,MA, [A,X] ,[B,Y] ,C,Z Add upper vector: (A+ B)u "-* C
MB,N,O,Z

A,B,O,Z [A,X], [B,Y] ,C,Z Add index vector: A I 6-63 + BI 6-63 "-* CI 6-63, Ao- IS "-* Co-1 S

A,B,H,O,Z [A,X] ,[B,Y] ,C,Z Adjust significance vector: A per B --'~ C

A,B,H,O,Z [A,X] ,[B,Y] ,C,Z Adjust exponent vector: A per B "-* C

A,H,O,Z [A,X] ,C,Z Ceiling vector: nearest integer .GE. A"-* C

A,O,Z [A,X] ,C,Z Contract vector: A64 "-* C32

A,B,C,H,MA, [A,X] ,[B,YJ ,C,Z Divide upper vector: (A/B)u "-* C
MB,N,O,Z

A,B,C,H,MA, [A,X] .[B,Y] ,C,Z Divide significant vector: (A/B)s "-* C
MB,N,O,Z

A,H,O,Z [A,X] ,C,Z Exponent vector: Ao-IS-* C48-63• SE, 0-* Co-IS

A,O,Z [A,X] ,C,Z Extend vector: A32 "-* C64

\0
\0
00
0
N
0
0

tAj

- '"

Op

91

89

8B

88

9B

97

93

85

86

84

87

90

98

F
F'

1

1

1

1

1

1

1

1

1

1

I

I

I

Mnemonic Qualifiers
··-1------== !=======..:..--:;;:;:.=~·:;.

FLRV A,H,O,Z

MPYLV A,B,MA,MB,
N,O,Z

MPYSV A,B,MA,MB,
N,O,Z

MPYUV A,B,MA,MB,
N,O,Z

PACKV A,B,H,O,Z

RCONV A,O,Z

SQRTV A,C,H,MA,O,Z

SUBLV A,B,MA,MB,
N,O,Z

SUB NV A,B,MA,MB,
N,O,Z

SUB UV A,B,MA,MB,
N,O,Z

SUB XV A,B,O,Z

TRUV A,H,O,Z

VTOV A,H,O,Z

Table C-10. Vector Instructions (Cont'd)

Operands Description
·-·

[A,X] ,C,Z Floor vector: nearest integer .LE. A~ C

[AX] ,[B,Y] ,c;z Multiply lower vector: (A *B)L ~ C

[AX] ,[B,Y] ,C,Z Multiply significant vector: (A *B)s ~ C

[A,X] ,[B,Y] ,C,Z Multiply upper vector: (A *B)u -~ C

[A,X], [B,Y] ,C,Z Pack vector: A48-63 & B16-63 ~ C A:exponent, B:coefficienf

[A,X] ,C,Z Rounded contract vector: A64 rounded~ C32

[A,X] ,C,Z Significant square root vector: SQRT(A)s ~ C

[A,X], [B,Y] ,C,Z Subtract lower vector: (A - B)L ~ C

[AX] ,[B,Y] ,C,Z Subtract normalized vector: (A - B)n ~ C

[A,X] ,[B,Y] ,C,Z Subtract upper vector: (A - B)u ~ C

[A,X] ,[B,Y] ,c;z Subtract index vector: At6-63 - B16-63 ~ C16-63•
Ao-15 ~ Co-15

[AX] ,c;z Truncate vector: nearest integer .LE. (A) ~ C

[A,X] ,c;z Vector to vector transmit: A~ C

\0

'° 00
0
t0
0
0

l:t:I

n w
Vl

Op F
..----~ r----

Al 2

A2 2

AO 2

AF 2

AC 2

A9 2

AB 2

A8 2

AS 2

A6 2

A4 2

Table C-11. Sparse Vector Instructions

Mnemonic Qualifiers Operands Description

ADD LS Add lower sparse vector : (A + B)L ~ C

ADD NS Add normalized sparse vector: (A+ B)n ~ C

ADD US Add upper sparse vector: (A+ B)u ~ C

DIV SS Divide significant sparse vector: (A/B)s ~ C

DIVUS Divide upper sparse vector: (A/B)u ~ C
C,H,MA,

MPYLS [Aa,X0] ,[Ba,Y0], [Ca,Z0] Multiply lower sparse vector: (A *B)L ~ C
MB,N

MPYSS Multiply significant sparse vector: (A *B)s ~ C

MPYUS Multiply upper sparse vector: (A *B)u ~ C

SUB LS Subtract lower sparse vector: (A- B)L ~ C

SUB NS Subtract normalized sparse vector: (A - B)n ~ C

SUB US Subtract upper sparse vector: (A - B)u ~ C
-

.......
\D
\D
00
0
N
0
0

t:;C

I""'"

Op
1=:-- ==·

DI

DO

D4

DS

DC

DF

DE

DB

co

C2

C3

CI

DA

BS

B7

BA

F Mnemonic

I ADJMEAN

I AVG

I AVGD

I DELTA

I DOTV

I INTERVAL

I POLYEVAL

I PRODUCT

I SELEQ

I SELGE J

I SELLT)
1 SELNE I .

I SUM

I VREVV

I VTOVX

I VXTOV

Table C-12. Vector Macro Instructions

Qualifiers Operands Description

H,O,Z [A,X] ,C,Z Adjacent mean: (An+ I + An)/2-+ Cn

A,B,H,O,Z [A,X] , [B,Y] ,C,Z Vector average: (An+ Bn)/2-+ Cn

A,B,H,O,Z [A,X] ,[B,Y] ,C,Z Vector average difference: (An - Bn)/2-+ Cn

H,O,Z [A,X] ,C,Z Vector delta: (An+ I -An)-+ Cn

A,B,H,Z [A,X] ,[B,Y] ,Cf-h,Z Dot product vector: A· B-+ C, C+I

H,O,Z Af-h ,Bf-h ,C ,Z Interval vector: A+ (n-l)*B-+ C

A,H,O,Z [A,X], [B,Y] ,C,Z Polynomial evaluation: An per B-+ Cn

H,Z [A,X] ,Cf-h,Z Vector product: rr A -+ C

I

j Vector select: if An .OP. Bn

A,B,H,Z
I

[A,X] ,[B,Y] ,Cf,Z)

I
) Count up to the condition met -+ C

H,Z [A,X] ,Cf-h,Z Vector sum:~ A-+ C, C+l

H,O,Z [A,X] ,C,Z Transmit vector reversed to vector: Arev-+ C

B,H [A,X] ,[B,Y] ,Ca Transmit vector to vector, destination indexed: B -+ C
indexed by A

A,H,O,Z [A,X] ,Ba,C,Z Transmit vector, source indexed to vector:
B indexed by A -+ C

n
i:..i
<I

-

.---·---.-----, --·-
Op F Mnemonic

EO 3 ADDB

E4 3 ADDD

EC 3 ADDMOD

E8 3 CMPB

E9 3 CMPD

E3 3 DIVB

E7 3 DIVD

FC 3 DTOZ

EB 3 EMARK

FD 3 MCMPC

EA 3 MMRGC

F8 3 MOVL

F9 3 MOVLC

·-

Qualifiers

none

l l
none

NS,SS

none

D,DD,DM,
NIX, NIY

none

D,DC,DD,DDC,
DM,NIX,NIZ

D,DC,DD,DDC,
DM,NIX,NIZ

Table C-13. String Instructions

Operands

[AX] ,[B,Y] ,[C,Z]

[A,X] , [B,Y], [C,Z]

[AX] ,[C,Y] ,[C,Z] ,18

[A,X] ,[B,Y]

[A,X] ,[B,Y] ,[C,Z]

[AX] ,[B,Y] ,[C,Z]

[A,X] ,[C,Z]

[AX] ,[B,Y] ,[C,Z] ,G

[A,X], [B,Y] ,[Ca,Z]

[A,X] ,[B,Y] ,[C,Z] ,18

[A,X] ,[C,Z] ,18

[AX] ,[C,Z] ,I8

Description
-

Add binary: A+ B-+ C

Add decimal: A + B -+ C

Add modulo bytes: (An + Bn) mod(I8)-+ Cn

DFB53 0

Compare binary (decimal) set data flags: DFB 54 1
DFB 55 1

Divide binary: A/B ~· C

Divide decimal: A/B-+ C

Unpack BCD to zoned: A-)- C

Edit and mark: a per pattern B-+ · C, G = first signi
result address

Compare bytes (character) per mask: find An= Bn

perands equal
st operand high
st operand low

ficant

per mask
C, A & B index incremented by number of byte: s compared
before inequality found

Merge bits per byte (character) mask: A or B per 18 =Oorl-+C

Move bytes left: A-+ C (left to right); if A short, 18 -+ C for
remaining bytes

,ht); Move bytes left ones complement: A-+ C (left to rig
if A short, 18 -+ C for remaining bytes

-
(')

w
00

......
\0
\0
00
0
N
0
0

t::o

Op

FA

E2

E6

D6

FE

FF

El

ES

ED

EE

D7

EF

FB

F Mnemonic

3 MOVS

3 MPYB

3 MPYD

3 SRCHKEYB

3 SRCHKEYC

3 SRCHKEYW

3 SUBB

3 SUBD

3 SUBMOD

3 TL

3 TLMARK

3 TL TEST

3 ZTOD

Table C-13. String Instructions {Cont'd)

Qualifiers Operands Description

none (A,X] ,(C,Z] ,Bf Move and scale: ·A ~ C, scale (B) decimal places

[A,X] ,[B,Y] ,[C,Z] Multiply binary: A *B ~ C

[A,X] ,[B,Y] ,[C,Z] Multiply decimal: A *B ~ C

[A,X] ,[B,Y] ,(C,Z] ,Gf Search for masked key bits: search A for B per C,
Aindex = # no match

[A,X] ,[B,Y] ,[C,Z] ,Gf Search for masked key chars: search A for B per C,
Aindex = # no match

(A,X] ,[B,Y] ,[C,Z] ,Gf Search for masked key words: search A for B per C,
Aindex = # no match

(A,X] ,[B,Y] ,(C,Z] Subtract binary: A - B ~ C

[A,X] ,[B,Y] ,[C,Z] Subtract decimal: A - B ~ C

none [A,X) ,[B,Y] ,[C,Z] ,18 Modulo subtract bytes: {An - Bn) mod{l8) ~ Cn

D,DC,DD,DDC, [A,X] ,[B,Y] ,[C,Z] Translate bytes: Bn ~ Cn
DM,NIX,NIZ

CH,D,DD,DM [A,X] ,[Ba,Yl ,[C,Z] Translate and mark: A per B ~ vector C, translate
Byte ~ Cexponent, partial A field index ~ Ccoefficient

D,DD,DM,NIX (A,X] ,[B,Y] ,Zf,Cf Translate and test: Bn ~ C, An ~ Z if Bn .NE. 0

NS,SS [A,X], (C,Z] Pack zoned to BCD: A ~ C

\D
\D
00
0
N
0
0

t:1:'

-

Op

Fl

F6

F2

F3

F4

FS

FO

F7

F Mnemonic

3 AND

3 ANON

3 IOR

3 NANO

3 NOR

I
3 ORN

3 XOR

3 XORN

Table C-14. Logical String Instructions

Qualifiers Operands Description

Logical AND: A· B -~ C

Logical AND not: A· B ~ C

Logical inclusive OR: A + B ~ C

I --
Logical NANO: A· B ~ C

none [A,X) ,[B,Y) ,[C,Z]

I Logical NOR: A + B ~ C

'
-

Logical OR not: A + B· ~ C

Logical exclusive OR: A - B ~ C

-
Logical equivalence (exclusive OR not): A - B ~ C

-

.......
\0
\0
00
0
N
0
0

00

Op

CF

04

39

C4

C6

C7

cs

IE

lF

14

BC

DD

06

lA

1B

F Mnemonic

1 ARITHCPS

1 BKPT

A CLOCK

I

1 CMPEQ
)

1 CMPGE

\
1 CMPLT (

1 CMPNE
,

7 CNTEQ

7 CNTO

7 CPSB

2 CPSV

2 DOTS

7 FAULT

7 FILLC

7 FILLR

Table C-15. Non-Typical Instructions

Qualifiers Operands Description

B,H [A,X] ,[B,Y] ,Ca,Zo Arithmetic compress: ABS(A) .GE. Bn ~ Cn,
set Zn, O V length ~ Zo.1s

none Ra Breakpoint: R 16-63 ~ breakpoint register

none Tf Transmit (real time clock) ~ Ti6-63• 0 ~ To.is

)
(Vector compare, form order vector:

A,B,H } [A,X] ,[B,Y] ,Z0 if (An) .OP. (Bn), set bit Zn in order vector I

)
none [Rd,SiJ ,Tf Count leading equals: # leading bits equal to bit at

[R+S] ~ T48-63

none [Rd,Si] ,Tf Count ones in field R: # ones in field [R+S] ~ T48-63

none Rd,SL,Td Compress bit string: every Rn substring from Rn+Sn
pattern~ T

H,Z Aa,Ca,Zo Compress vector: vector A ~ sparse C, controlled by 0. V. Z

A,B,H [Aa,X0] ,[Ba,Y0] ,Cf-h Sparse vector dot product: A·B ~ C, C+l

none 15 Simulate fault

none 18,[Td,SiJ Fill field T with byte (character) R: repeat 18 for field [T+S]

none Rf,[Td,Si] Fill field T with byte (R): repeat (Rs6-63) for field [T+S]

-\0
\0
00
0
N
0
0

t:x:i *

I

Op

03

7E

12

SE

16

lD

BB

IC

D8

D9

18

3D

3C

F Mnemonic

6 KYPT

7 LOD

7 LODC

7 LODH

7 MAS KB

7 MASKO

2 MAS KV

7 MASKZ

I MAX

I MIN

7 MOVR

4 MPYX

4 MPYXH

*Not valid on ST AR-100

Table C-15. Non-Typical Instructions (Cont'd)

Qualifiers Operands Description

none Ra Keypoint

[Ra.Si] ,Tf Load full word: load [Ra+Si] ~ Tf

[Ra,SiJ ,Tf Load byte (character): [Ra+Sd -~ Ts6-63· 0 ~ To-55

[Ra,Si] ,Th Load halfword: load [Ra+Sj] ~ Th

Rd,Sd,Td Mask bit strings: alternate (Rd) string and (Sd) strin g ~ Tstring

none RL,SL,Td Form bit mask leading ones: repeat (Rd) ones and (
zeros ~ T string

A,B,H Aa,Ba,Ca,Zo Mask vector: if Zn=l, An ~ Cn; if Zn=O, Bn ~ Cn;
result length~ Co-15

none RL,SL,Td Form mask leading zeros: repeat (Rd) zeros and (Sd
ones ~ T string

H,Z [A,X] ,Bf,Cf-h,Z Vector maximum: Amax~ C, item count~ B

H,Z [A,X] ,Bf,Cf-h,Z Vector minimum: Amin~ C, item count ~ B

none Ri,Si,Td Move bytes right: (T d) + (Ri) ~ (T d) + (Ri) + (Si),
bytes moved right ~ left

none Rf,Sf,Tf Multiply index, full word: Ri 6-63 * S16-63 ~ T 16-

none Rh,Sh,Th Multiply index, half-word: Rg_31 * Sg_31 ~ Tg_31, 0 ~ To-7

-

,._.
\0
\0
00
0
N
0
0

to

!::

Op

lS

17

BD

37

28

29

19

CB

CA

CB

C9

7F

13

SF

89

3A

F Mnemonic

7 MRGB

7 MRGC

2 MRGV

A RJTIME

7 SCANLEQ)
7 SCANLNE)

7 SCANRNE)

\

1 SRCHEQ I
1 SRCHGE ~
1 SRCHLT (

1 SRCHNE)
I

7 STO

7 STOC

7 STOH

1 TPMOV

A WJTIME

Table C-1 S. Non-Typical Instructions (Cont'd)

Qualifiers Operands Description

none ~.Sd,Td Merge bit strings: interleave {Rd) string with (Sd) string --,)-
Td string

none Ra.sa.Ta Merge byte (character) strings: {Ra):{Sd), lesser --,)- Ta

A,B,H Aa,Ba,Ca.Zo Merge vector: if Zn=l, An --,)- Cn; if Zn=O, Bn --,)- Cn;
result length --,)- Co.1 s

none Tf Read job interval timer to {T)

) Scan left to right from [Ta,Si] for byte equal to 18, index Si

(
18,[Ta,Si] Scan left to right from [Ta,Si] for byte not equal to 18, index Si none)

I

) Scan right to left from
decrement Si

[Ta Si]
'

for byte not equal to 18,

I
I

H,LH,Z (A,B,Ca.Z Vector search form indexed list: each {An) .OP. {Bn), count--,)- Cn ,
I

none [Ra.Sil ,Tf Store, full word: store (Tf)--,)- address [Ra+Si]

none [Ra,Si] ,Tf Store byte (character): Ts 6-63 --,)- address [Ra+Si]

none [Ra,SiJ ,Th Store, half-wor"d: (Th) --,)- address [Ra+Si]

H,O [A,X] ,Bf-h•y f-h•Ca Transpose and move 8 by 8 matrix

none Rf Transmit (Rf) --,)- job interval timer

,__
\0
\0
00 ..-----.~-
0
N Op F 0
0 ~-

ttl
00 4

OD 4

OF 4

OA 4

08 4

oc 4

OE 4

-

Mnemonic Qualifiers

IDLE none

LO DAR

LODKEY

MTIME

SETCF

STOAR

TLXI

Table C-16. Monitor Instructions

Operands

none

none

Rf,Sa,Ta

Rf

Rf

none

[Ra,SiJ ,Tf

Description

Idle: enable external interrupts and idle

Load associative registers: full words beginning at 400XXg -+ AR

Load keys from (Rf), translate virtual (Sa) to absolute Ta

Transmit (Rf) -+ monitor interval timer

Input/output: set channel (Rf) channel flag

Store associative registers: AR -+ 400YY 8 and higher addresses

Translate external interrupt: (Tr) == highest priority channel with
interrupt, branch to Ra [Si]

I C44

Designator

a

f

h

d

e

0

Table C-17. Register Designators

Description

a full word register containing an address; length field is ignored

full word register containing an operand

half word register containing an operand

full word register containing an index

full word register containing a descriptor

full word register whose length field contains an operand

full word register containing descriptor of order vector

The 64 bit instructions are assumed:

A,B,C

X, y

z

R, S, T

R.J.

S.E.

F.P.

N/A

none

O.V.

.OP.

Descriptors of operands

Index

Alone - control vector address in a register pair - index

word in register file

right justified

sign extended

floating point

not available

qualifier not specified

order vector

arithmetic operator (GE ... LT ... LE ... etc.)

19980200 B

JOB PROCESSING D

This appendix contains a description of the assembler call statement, and the options associated with that
statement. Also provided are examples of interactive and batch processing deck set-ups and terminal commands.

ASSEMBLE statement

FORMAT:

META !=SOURCE L=PRINT B=B I NARY I 500 I

:ffields can be separated by any characters other than 1-9 ,A-Z or underscore.· Blanks can be used as
separators

Parameters I, L and B may appear in any order

where

I = source file name - the user must have previously created the source file assigned the name
specified. In batch mode the source cards following the control card stream
are assumed the input file. The input file may be compressed on expanded.

L = print file name - the print file name is optional and if not specified, listable output will be
automatically placed on file "PUST" by the assembler. When PUST is
used, only the letter L is required, approximately 300 blocks are reserved
for PUST. To print an output listing the user must always specify the
following statement: GIVE (output listing file, U = 999999)

B = binary file - this parameter can be omitted if only a syntax check is desired.

EXAMPLE INTERACTIVE ASSEMBLE, LOAD, EXECUTE

1. The assembler deck as shown below was input via the card reader.

LOGON 999997 400SDS TESTDECK R S

[META SOURCE CARDS

67
89

19980200 B

1

D-1

I

I

I

I

0.2

2. After the assembler deck was read in, at the terminal the following was entered:

LOGON 999997 A 400SDS if*

CREATE(OBJECT02,0l,T=P) if

CREATE(PRINT002,20,T=P) if
META(I=TESTl)ECK, L=PRINT002,B=O BJ EC T 2) / 500 I U

GIVE(PRINT002,U=999999) if

LOAD I 1000 I U

INPUT?

OBJECT02

ORIGIN?

#28000 H

ENTRY?

ANY OTHER OPTIONS?

CONTINUE

CN = TONY,OU-PRINTMAP if

CONTINUE

GIVE(PRINTM.AP,U=999999)

TONY I 500 I

$

dispose assembler listing to printer

Request loader program

Request from loader

User supplied private file names

Request from loader

First Module loading bit address

Request from loader

User indicates no options

Request from loader

User indicates LIBRARY option

Answer from loader

User indicates controllee and loadmap option

Answer from loader

Terminates options and starts load operations

Dispose loader map to printer

Execute the loaded program

NOTE: the file PRINTMAP is automatically created

* U = line feed

19980200 B

EXAMPLE BATCH ASSEMBLE, LOAD, EXECUTE

(1)
(2) 12: 0 0: 59
(3) 12:00:59
(4) 12:00:59
(5) 12: 0 0 : 59
(6) 12:01:59
(7) 12 : 01 : 59
(8) 12:02:59
(9) 12:02:59

(10) 12:02:59

LOGON 999997 400SDS ZBATCH R S B U
TEST8, TlOOO.
CREATE(BINARY,02, T=P)
CREATE(PLIST,10,T=P)
META(I=INPUT, B=B I NARY, L=P Lr ST)
GIVE(PLIST,U=999999)
LOAD(BINARY,CN=TONY,OU=PMAP)
GIVE(PMAP,U=999999)
TONY.
$$COMPLETE$$

78
9

META DECK

::cARD READER ID

::FI LE CREA TI ON
::FI LE CREA TI ON
::ASSEMBLE META I
::TRANSFER FILE
::LOAD ASSEMBLER OUTPUT
::TRANSFER FI LE
:: EXECUTE CONTROLEE TONY
::MESSAGE FROV\ SYSTEM

(1) The card reader ID card is not field free and variable length names are not allowed.

Columns Content Parameter

1-5 LOGON Card reader ID

7-12 999997 User number

14-19 400SDS Account number

21-28 ZBATCH File name

30 R Record structural file

32 s Physical file

34 B Batch processor to be used

36 u Unrestricted access

(2) Job ID card must contain the job name

TEST 8 Job name

TlOOO Time in seconds

19980200 B D-3

(3) Treats a physical file named BINARY

BINARY File name

10 Length of file in 512 word blocks

T=P File type in physical data file

(4) The P in PUST will signal USERl that file is a print file

PUST File name

10 Length of file in 512 word blocks

T=P File type is physical data file

(5) Assemble META from the card reader and produce binary output on file BINARY and a listing on file
PUST

!=INPUT Data from unnamed records may be accessed by referencing a file named INPUT
in this INPUT in the card reader

B=BINARY Object code to BINARY

L=PUST Assembly listing to PUST

(6) Transfer the file PUST to USERl routine

PUST

U=999999

Source file

USERI routine will see that first character of transfer file is P thus a print file

(7) Load the assembler object code into controlee file TONY and place load maps and error messages on
PMAP

BINARY Source file - file to be loaded

CN=TONY Controlee file is TONY

OU=PMAP Load maps and error messages on PMAP

(8) Transfer load maps and error messages to USERl

(9)

PMAP

U=999999

TONY

Source file

USERI routine will see that first character of transfer file is P thus a print file

Find this controllee file and execute it

For a more complete description of the control card used in these set-up examples, see the STAR Operating
System Reference Manual, Publication No. 60384400.

D-4 19980200 B

ASSEMBLY LISTING FORMAT E

HEADER STAR

FORMAT: ASSEMBLER VER. X.X title PAGE nnnn

The title is blank unless a title is indicated on a TITLE directive.
The nnnn is the page number of the listing.

II ADDRESS (P) COUNTER

FORMAT: RR. WVVVVVVVVVV B

RR Hex v31.ue of the currently active memory control section ordinal (begins at 01, with a
range of 01 to FF)

V's

B

19980200 A

Hex value of the current location counter

Boundary indicator for current location counter
F Bit address at FULL word boundary
H Bit address at HALF word boundary
C Bit address at BYTE (character) boundary
B Bit address at BIT boundary

No effect on location counter

E-1

Ill OBJECT CODE

This field contains the object code in hex.
A maximum of 64 bits of object code appear per line, new lines will be generated for any bits over 64.
Any object code that has relocation will be followed by the ordinal number.
Each field of the object code that has relocation will be on a separate line.

EXAMPLE:
B645 BIM R_ 45, label
XXXXXXXXXXXX (n)

B6 Function code for BIM
45 Index register 45
X's Relocatable address
n Ordinal number

IV SOURCE CODE

This field contains a copy of the source lines processed.

V PAGE/LINE NO.

This field indicates the page and line number of each source line.

E-2 19980200 A

ERROR MESSAGES

STATEMENT TERMINATING ERROR MESSAGES

UNDEFINED SYMBOL

MULTIPLY DEFINED SYMBOL

ILLEGAL ALIGNMENT VALUE

ILLEGAL OR MISSING LABELS

ILLEGAL OPERAND/PARAMETER

OPERAND NOT A LEGAL SET ELEMENT

MORE THAN 255 EXTERNALS

EXTERNALIZATION NOT ALLOWED AT UNIVERSAL LEVEL

IMPROPER USE OF EXTERNAL OPERAND IN EXPRESSION

FUNCTION NAME USED AS OPERAND

SET NAME USED AS OPERAND IN EXPRESSION

ASSEMBLER'S CAP A CITY FOR RELOCATION EXCEEDED

RELOCATABLE TERM ILLEGAL IN EXPRESSION CONTAINING EXTERNAL SYMBOL

IMPROPER USE OF RELOCATABLE TERMS IN EXPRESSION

MULTIPLE RELOCATION ON RESULT OF EXPRESSION

OPERANDS FOR RELATIONAL EXPRESSION HA VE UNLIKE RELOCATION

SUBSCRIBED REFERENCE TO A VARIABLE THAT IS NOT A SET

IMPROPER MODE IN SUBSCRIPT

REPEAT COUNT MISSING/NOT AN INTEGER

IMPROPER NESTING OF REPEATS

IMPROPER MODE ON REPEAT VARIABLE

19980200 B

F

I

F-1

PROCEDURE LIBRARY I/O ERROR. SEARCH ABORTED.

SYNTAX ERROR IN PROCEDURE/FUNCTION SOURCE STATEMENT, LIBP ABORTED

PROCEDURE/FUNCTION NOT FOUND IN LIBRARY

FILE NAME NOT A 6 CHARACTER SYMBOL

ILLEGAL USE OF .ELM. OPERATOR

IMPROPER USE OF POSITION OPERATOR,(:)

DATA GENERATION ILLEGAL AT UNIVERSAL LEVEL

COMMAND FIELD SYMBOL UNDEFINED AT THIS LEVEL

FORM REFERENCE ILLEGAL AT THIS LEVEL

FUNCTION MAY NOT ALTER P _COUNTER

COMMAND IS NOT A SYMBOL

ILLEGAL NAME FOR PARAMETER SET IN FUNC/PROC STATEMENT

ILLEGAL PASS VALUE

ILLEGAL DATA IN FORM/GEN

MISSING OPERATOR

MODE ERROR IN EXPRESSION

MISSING OPERAND

ILLEGAL SYMBOL

ILLEGAL HEX CONST ANT

ILLEGAL OPERATOR

ILLEGAL STRING CONSTANT

UNMATCHED PAREN

UNMATCHED BRACKET

SYNTAX IS ILLEGAL

OPERAND NOT A CHARACTER STRING CONST ANT

ATTRIBUTE NUMBER OUT OF RANGE

JOB ABORTED, ILLEGAL PARAMETER IN INPUT STATEMENT

F-2 19980200 A

EXTRINSIC ATTRIBUTE NOT AN INTEGER VALUE

ILLEGAL TRANSFER ADDRESS IN END STATEMENT

MSEC DOES NOT CORRESPOND, PASS 2 PER PASS 1

DATA DOES NOT CORRESPONQ,PASS 2 PER PASS 1

MORE THAN ONE OUTPUT/LISTING STATEMENT IN ASSEMBLY

ILLEGAL PARAMETER IN FUNCTION CALL

REFERENCE TO UNDEFINED ENTRY POINT

SYMBOL NOT A LEGAL OPERAND

TRUNCATED REGISTER VALUE

ILLEGAL VALUE FOR A REGISTER

RELATIVE JUMP OUT OF RANGE

RELATIVE BRANCH TO ADDRESS EXTERNAL TO MSEC

RELOCATABLE OR EXTERNAL DATA DOES NOT END ON WORD BOUNDARY

DATA GENERATED FOR AN EXTERNAL OR RELOCATABLE VALUE LESS THAN 48 BITS

IMPROPER USE OF REAL IN EXPRESSION

ILLEGAL SET STRUCTURE

RELOCATION NOT ALLOWED IN CODE MSEC

OPERATING ON EXTERNALS NOT SUPPORTED BY LOADER

REPEAT SYMBOL REDEFINED IMPROPERLY SYMBOL DROPPED

FORWARD REFERENCE TO REDEFINABLE QUANTITY IS ILLEGAL

ILLEGAL TO REDEFINE DIRECTIVE

WARNING MESSAGES

WARNING - DIVISION BY ZERO INTEGER YIELDS ZERO RESULT, REAL YIELDS INDEFINITE

WARNING - BINARY SCALE FACTOR GREATER THAN 47 APPLIED

WARNING - SUBSCRIPT OUT OF RANGE, NULL ELEMENT USED

WARNING - IDENT/FINIS/ENDP/PROC/FUNC/LIBP CANNOT APPEAR IN REPEAT RANGE

19980200 B F-3

WARt~ING - TOO MANY ELEMENTS IN LIST, RIGHTMOST ELEMENTS ARE IGNORED

WARNING - LABELS ARE NOT ALLOWED, ANY APPEARING ARE IGNORED

WARNING - GOTO BRANCH NOT PERFORMED, JUMP VALUE NOT AN INTEGER EXPRESSION

WARNING - NO MODIFIERS REQUIRED BY THIS STATEMENT, ANY APPEARING ARE IGNORED

WARNING - ENTRY /EXTERNAL/ID ENT CONTAINS MORE THAN 8 CHARACTERS - ONLY FIRST
EIGHT RETAINED

WARNING - DEFAULT ASSUMED FOR ILLEGAL MSEC PARAMETER

WARNING - CONST ANT TRUNCATED

WARNING - DATA TRUNCATED

WARNING - REAL EXPONENT OVERFLOW

WARNING - REAL EXPONENT UNDERFLOW

WARNING - POSSIBLE GARBAGE IN FILE

WARNING - TOO MANY PARAMETERS IN FUNCTION CALL, RIGHTMOST PARAMETER IGNORED

WARNING - DATA IMPROPERLY ALIGNED FOR MODE OF OPERAND

WARNING - EXTRA SET ELEMENTS ARE IGNORED

WARNING - MONITOR INSTRUCTION IN JOB MODE MSEC

WARNING - ILLEGAL QUALIFIERS IGNORED

WARNING - DISALLOWED BITS SET ING FIELD

WARNING - OFFSET/RESULT REGISTER NOT EVEN

WARNING - OVERLAPPING QUALIFIER DEFINITIONS

WARNING - RELATIVE JUMP NOT IN DIRECTION INDICATED

WARNING - FIRST ENTRY IN LABEL FIELD IS AN EXPRESSION

WARNING - BINARY SCALE ON RELOCATABLE ADDRESS

WARNING - POSSIBLE MISSING OPERAND IN INSTRUCTION

WARNING - MISSING QUALIFIER

WARNING - REGISTER VALUE NOT ALIGNED TO APPROPRIATE BOUNDARY

F-4 19980200 A

WARNING - AUTOMATIC ALIGNMENT PERFORMED FOR DATA TYPE INDICATED, LABELS MAY NOT
CORRESPOND TO START OF DATA

WARNING - LOADER RESTRICTION TRUNCATED TO FIRST EIGHT CHARACTERS

WARNING - DOUBLY DEFINED ENTRY POINT

WARNING - VALUE FROM ANOTHER LEVEL USED FOR

ASSEMBLER FAILURE MESSAGES

SYSTEM ERROR - S 1 - ILLEGAL USE LEVEL IN SYMBOL TABLE

SYSTEM ERROR - S2 - ILLEGAL MODE IN SYMBOL TABLE

SYSTEM ERROR - S3 - ILLEGAL ITEM IN SYMBOL TABLE - DRIVER

SYSTEM ERROR - S4 - LOCATION COUNTER VALUES DO NOT AGREE PASS 2 PER PASS 1

SYSTEM ERROR - SS - ILLEGAL CHARACTER TRANSLATION VALUE DETECTED - TOKEN

SYSTEM ERROR - S6 - ILLEGAL TOKEN TYPE DETECTED - RPOL

SYSTEM ERROR - S7 - ILLEGAL VALUE FROM COMBINED TOKEN TABLE - TOKEN

SYSTEM ERROR - S8 - MISSING END OR FINIS - - - JOB ABORTED

SYSTEM ERROR - S9 - ILLEGAL TOKEN TYPE DETECTED IN EVAL

SYSTEM ERROR - S 10 - ILLEGAL TOKEN NUMBER DETECTED IN EV AL

SYSTEM ERROR - S 11 - ILLEGAL SYMBOL TABLE MODE - EV AL

SYSTEM ERROR - S 12 - ILLEGAL SYMBOL TABLE ITEM TYPE - EV AL

SYSTEM ERROR - Sl3 - ZERO LENGTH TOKEN - EV AL

SYSTEM ERROR - S14 - ILLEGAL OPERATOR DETECTED IN RPOL - COMMA

SYSTEM ERROR - SIS - BAD Q ORDINAL ENTRY IN COMMAND TABLE - INST_P

SYSTEM ERROR - Sl6 - BAD TEMPLATE FOR INSTRUCTION - INST_P

SYSTEM ERROR - S 17 - LIMIT FOR EV AL ADDRESS ST ACK REACHED

SYSTEM ERROR - SIS - LIMIT FOR RPOL OPERAND STACK REACHED

SYSTEM ERROR - Sl9 - NO SIGN ON ZONED CONSTANT - CONVERSION FUNC

19980200 A F-S

ASSEMBLER PREDEFINED COMMAND-SYMBOLS G

Symbols in the following table have a special meaning to the assembler command field.

Table G-1. Predefined Symbols

Function Code
;

Symbol or Value (hex) Use

A 10 Mnemonic qualifier

ABS 79 Instruction mnemonic

ABSH 59

ABSV 99

ADDB EO

ADDD E4

ADDL 61

ADD LEN 2B

ADDLH 41

I
ADD LS Al

ADDLV 81

ADDMOD EC

ADDN 62

ADD NH 42

ADD NS A2

ADD NV 82

ADDU 60

ADD UH 40

AD DUS AO

ADD UV 80 I
ADDX 63

ADD XV 83

ADJE 75 ~
ADJEH 55 Instruction mnemonic

19980200 A G-1

G-2

Symbol

ADJEV

ADJMEAN

ADJS

ADJ SH

ADJSV

ALG

AND

ANDN

ARITHCPS

ATT

AVG

AVGD

B

BAB

BADF

BARB

BEQ

BGE

BHEQ

BHGE

BHLT

BHNE

BIM

BKPT

BLT

BNE

BR

BRB

BRF

BRIEF

BRO

Table G-1. Predefined Symbols (continued)

Function Code
or Value (hex)

95

Dl

74

54

94

05

Fl

F6

CF

DO

D4

08

32

33

2F

24

26

20

22

23

21

B6

04

27

25

40

06

04

80

Use

Instruction mnemonic

Instruction mnemonic

Function name

Instruction mnemonic

Instruction mnemonic

Mnemonic qualifier

Instruction mnemonic

Instruction mnemonic

Mnemonic qualifier

Mnemonic qualifier

Mnemonic qualifier

Directive

Mnemonic qualifier

19980200 A

Table G-1. Predefined Symbols (continued)

Function Code I
Symbol or Value (hex) -~--1 Use

BRZ co Mnemonic qualifier

BSAVE 36 Instruction mnemonic

BTOD 11 Instruction mnemonic/
function name

c 02 Mnemonic qualifier

CH 04 Mnemonic qualifier

CLG 72 Instruction mnemonic

CLGH 52

CLGV 92

CLOCK 39

CMPB E8

CMPD E9

CMPEQ C4

CMPGE C6

CMPLT C7

CMPNE cs
CNTEQ JE

CNTO IF

CON 76

CONY 96

CPSB 14

CPSV BC Instruction mnemonic

D 80 Mnemonic qualifier

DBNZ 35 Instruction mnemonic

DC 20 Mnemonic qualifier

DD co Mnemonic qualifier

DDC 30 Mnemonic qualifier

DELTA DS Instruction mnemonic

DETAIL Directive

DIVB E3 Instruction mnemonic

19980200 A G-3

Table G-1. Predefined Symbols (continued)

T Function Code
Symbol or Value (hex) Use

DIVD E7 Instruction mnemonic

DIVS 6F

DIVSH 4F

DIVSS AF

DIVSV 8F

DIVU 6C

DIVUH 4C

DIVUS AC

DIVUV 8C Instruction mnemonic

DM 30 Mnemonic qualifier

DOTS DD Instruction mnemonic

DOTV DC Instruction mnemonic

DTOB 10 Instruction mnemonic

DTOP Function name

DTOZ FC Instruction mnemonic

EJECT Directive

ELEN 2A Instruction mnemonic

EMARK EB Instruction mnemonic

END Directive

ENDP

j ENTRY

EORG

EQU Directive

ES 3E Instruction mnemonic

ESH 4D

j EX BE

EXH CD

EXTB 6E Instruction mnemonic

EXTC Directive

EXTD Directive

EXIT 09 Instruction mnemonic

G-4 19980200 A

I

19980200 A

Symbol

EXITP

EXP

EXPH

EXPV

EXTH

EXTV

EXTXH

FAULT

FIL LC

FILLR

FINIS

FLR

FLRH

FLRV

FORM

FUNC

FF32

F32F

GEN

GOTO

H

HTOC

IBNZ

IBXEQ

IBXGE

IBXGT

IBXLE

IBXLT

IBXNE

ID ENT

IDLE

IMEM

Table G-1. Predefined Symbols (continued)

Function Code
or Value (hex)

7A

SA

9A

SC

9C

SD

06

IA

lB

71

Sl

91

80

31

BO

B2

BS

B4

B3

Bl

00

l Use

Directive

Instruction mnemonic

J

Instruction mnemonic

Directive

Instruction mnemonic

Instruction mnemonic

Instruction mnemonic

Directive

Directive

Function name

Function name

Directive

Directive

Mnemonic qualifier

Function name

Instruction mnemonic

I

Instruction mnemonic

Directive

Instruction mnemonic

Default MSEC name

G-S

Table G-1. Predefined Symbols (continued)

Function Code
Symbol or Value (hex) Use

INPUT 6D Instruction mnemonic

INSB -

INTERVAL DF

IOR F2

IS 3F
1

ISH 4E Instruction mnemonic

ITOC - Function name

ITOF - Function name

IX BF Instruction mnemonic

IXH CE Instruction mnemonic

*KYPT 03 Instruction mnemonic

LIBP \ - Directive

LIST - Directive

LISTING - Directive

LH 20 Mnemonic qualifier

LOD 7E Instruction mnemonic

LO DAR OD

LODC 12

LODH SE

LODKEY OF

I..SDFR 3B •
LTOL 38

LTOR 7C Instruction mnemonic

MA 04 Mnemonic qualifier

MASKB 16 Instruction mnemonic

MASKO lD ! MASKV BB

MASKZ lC

MAX D8 Instruction mnemonic

MB 01 Mnemonic qualifier

MCMPC FD Instruction mnemonic
I

MESSAGE Directive

*Not valid on STAR-100

G-6 19980200 A

Table G-1. Predefined Symbols (continued)

Function Code
Symbol or Value (hex) Use

..
MIN D9 Instruction mnemonic

MMRGC EA

MOVL FS

MOVLC F9

MOVR lS

MOVS FA

MPYB E2

MPYD E6

MPYL 69

MPYLH 49

MPYLS A9

MPYLV S9

MPYS 6B

MPYSH 4B

MPYSS AB

MPYSV SB

MPYU 6S

MPYUH 48

MPYUS AS

MPYUV 8S

MPYX 3D

MPYXH 3C

MRGB 15

MRGC 17

MRGV BD Instruction mnemonic

MSEC Directive

MTIME OA Instruction mnemonic

N 06 Mnemonic qualifier

NAME Directive

NAND F3 Instruction mnemonic

19980200 A G-7

Table G-1. Predefined Symbols (continued)

Function Code
Symbol or Value (hex) Use

NCC 01 Mnemonic qualifier

NIX 04

l NIY 01

NIZ 01 Mnemonic qualifier

NO LIST - Directive

NOR F4 Instruction mnemonic

NS co Mnemonic qualifier

0 20 Mnemonic qualifier

ORG - Directive

ORN FS Instruction mnemonic

OUTPUT - Directive

PACK 7B Instruction mnemonic

PACKH SB

l PACKV 9B

POLYEVAL DE Instruction mnemonic

PROC - Directive

PRODUCT DB Instruction mnemonic

PTOI - Function name

PTOZ - Function name

RAND 2D Instruction mnemonic

RATT - Directive

RCON 77 Instruction mnemonic

RCONV 97 Instruction mnemonic

'RDEF - Directive

RES - Directive

RIOR 2E Instruction mnemonic

RJTIME 37 Instruction mnemonic

RPT - Directive

RTOR 78 Instruction mnemonic

RTORH 58 Instruction mnemonic

RXOR 2C Instruction mnemonic

G-8 19980200 A

Tabie G-1. Predefined Symbols (continued)

Function Code
Symbol or Value (hex) Use

SCANLEQ 28 Instruction mnemonic

SCANLNE 29 Instruction mnemonic

SCANRNE 19 Instruction mnemonic

SET - Directive

SETCF 08 Instruction mnemonic

SELEQ co
SELGE C2

SELLT C3

SELNE CI

SHIFT 34 i
SHIFTI 30 Instruction mnemonic

SPACING -- Directive

SQRT 73 Instruction mnemonic

SQRTH S3

SQRTV 93

SRCHEQ C8

SRCHGE CA

SRCHKEYB D6

SRCHKEYC FE

SRCHKEYW FF

SRCHLT CB ...
SRCHNE C9 Instruction mnemonic

SS 80 Mnemonic qualifier

STO 7F Instruction mnemonic

STOAR oc
STOC 13

STOH SF

SUBB El

SUBD ES

SUBL 6S
~

SUBHL 45 Instruction mnemonic

I

19980200 A G-9

Tabie G-11 Predefined Symbois (continued)

Function Code
Symbol or Value (hex) Use

SUB LS AS Instruction mnemonic

SUBLV 85

SUBMOD ED

SUBN 66

SUB NH 46

SUB NS A6

SUB NV 86

SUBU 64

SUB UH 44

SUB US A4

SUB UV 84

SUBX 67

SUB XV 87

SUM DA •
SWAP 7D Instruction mnemonic

SYM - Function name

sz 30 Mnemonic qualifier

T 10 Mnemonic qualifier

TITLE - Directive

TL EE Instruction mnemonic

TLMARK D7

TL TEST EF

TLXI OE

TPMOV B9

TRU 70

TRUH 50

TRUV 90 ...
VREW B8

VTOV 98

VTOVX B7 Instruction mnemonic

G-10 19980200 B

Table G-1. Predefined Symbols (continued)

Function Code
Symboi or Value (hex) Use

VXTOV BA Instruction mnemonic

WJTIME 3A ! XOR FO

XORN F7 Instruction mnemonic

I XTOD - Function name

I z 40 Mnemonic qualifier

ZTOC - Function name

ZTOD FB Instruction mnemonic

ZTOP - Function name

19980200 A G-11

ASSEMBLER LIMITATIONS

The following limits must be observed:

Maximum symbol length is 63 characters.

Maximum number of memory sections per subprogram is 255.

Maximum number of nested procedures or function calls is 128.

Maximum number of nested subsets is 32.

Maximum number of nested repeat operators is 3 2.

Maximum number of extrinsic attributes is 120.

Maximum number of nested parentheses in an expression is 60.

19980200 B

H

. I

H-1

EXAMPLES

The following examples illustrate a number of the available assembler directives and various machine instruction
types. These examples were run on the STAR 65 computer system. A statement of the problem to be solved
and a description of the assembler code are provided.

For a description of the register conventions illustrated in the executable examples (vector examples), see I
appendix E of the STAR Operating System Reference Manual, Publication No. 6038400.

DATA GENERATION

The following examples illustrate three methods of generating data. These examples illustrate the basic use of
the following assembler ditectives.

INPUT

ID ENT

OUTPUT

RPT

GEN

END

Example 3 also illustrates the use of functions and sets and is described in detail.

Example 1 - generates integers 1 to 10 at assembly time using the GEN directive.

CDC STAR ASS~HBL~R VER 2.z.2

IN FUT 1,ao
IO ENT

1.11 .. 1lLliJuDJ1.1:i F ullJ;,i(ilii.Hl ""11 .. 0(101 VALU~ GE h, &It 1,2,3,,.,s,&,1,a,g,10
.;1 .,;1," """ •'+'- F uJ J;,.u111JJ JiiJiiuuu2
oil "'"""""""du F o1J J J"" Ji. .;., J ... ~3
wl J1o1i.1.10uli1.1C1,; F JJJ.i'-"".; ".;"'""'"" .. 111 1HlC,lu .. "1 .. ti F llJ1hil.lll;JJ uJo11luliii5
J1 """""1.ll14u F Jilii.i(iu JJ li1hio.iliuC&
ul .,~1.o1.i .. t.u1a1.1 F uUJJ&u:Ju .,i;ii;uii&07
rill 1o1.il."ii•ui1Ci. F ""' J:.l.luU.i ulio1C.llc.1.1a
u1 u~l:.ilv1tl.i2u" F J.iJiJOC.~O li111o1.i1u1U9
J1 lluLl.11111.1~ F w.1J.i"l:IJU illli.au&JaA

ENC

DATE a 12SEP71t PAGE • 1

1/0iJ01
1/G.0112
1/GOOJ

1/GIOAt

Example 2 - generates integers 1 to 10 at assembly time using the GEN and RPT directives.

coc STAR AS5£HdL~R VER

rJt:C
111 1. i. JllJ;. .. ., F .iJ ,, uu J

Jl ""I." .;JO.; It&. F JJJw.i11J.1
.11 .:iOt.l.il'-w ~811 F a.a J "'"' .;i.
ii! ilwL"'°'"''"''C11 F lol:J Jl.O&.Jt1
J1 """L .. i.wli.il F "" JuCr. Ju
J1 .. uL i; .. &.OJ.It&. F ,,.,, ..
Jl """"ili.li18w F OJJ .. llJ.Jil

"1 """""""1Ci. F J.1.111ut.Ji1
.a .1111.L Lilo.Jl.ili F iJJ JJlolU J"U
U1 .. 111.i.11uil21tu F .,JJuh"u

19980200 B

z.2.z
IN FUT
CU TP\. T
IO ENT

1J A RP T, 1IJ
llllJ.;J(; .i1 l GEh
Jll11iJ .. 1i;i2
r,11uJOi111J
u111.1ilOi.lilt
u0.;llllli05
lillil'JliliU6
U11uuulili7
.,01o1o1u11~&

u;oui.9
JU11ilClfillA

EMC

1,ao

2
A

OATEi 12SEP7' PAGE 1

1/CllU
11 CIJGZ
11111103
1/CllQ ..
1/0ll05

t/Ht6

1-1

Example 3 - generates a set of integers 1 to 10 by use of a function.

CDC STAR ASSEHdlER VER z.2.2

COC STAR ASS~HBL~R VlR z.2.2

1.1 j.;.L L. ol i.IOU ;;,~ F 11.lJHlJ" ll~110l11J01

Ill ".;LL. 1111.; .i'+u F JJ Ji.1'-u"ll u.i .. t,ju.i2
111 JwL I..,.,.;., tS11 F ""ii J(i110 J uli111111C\JJ
J l .. 11" 1..1. F 11 .. .1 ,,(Ii. J II JUu110wLlt
o;l .iwl.1. wl.1111.U F JJ.1 .. t.liu:.i Oll;uuUl.115
.. 1 """" .. i.o 11tu F i1JJ111i1i.:iC1 110J1H1i.lij6
.u 11uLl.1iw016J F &J.1.1:-i1.i.o1J llllul1L1u07
"1 uul.t. """ 1CL. F J11o1Jllu11.; lluuJuuu8
111 11 .. ,,.,.,l .. 11 F JJ.1Jl1lluJ ulluuJCll9
01 u11 .. c.1111iiC::1tu F uJll.1ti.1Jil J111111;H10A

INPUT 1tll0 ,1
CU TPlT
TITLE "'ENER•TE S~l VALUES"

GENE~ATE SET VALUES

ru .. c z
INT NAHE
Rt:SUL T St: T 1
IJ fop T , l (1 J • 1 1
1,RESLLT SET eELH.RESULT1Bt1

ENCP RESULT
lDENT
GEN .ELH.INTl101

ENt .

OATEi 12SEP7~ PAGE

OATEf 12SEP7' PAGE

1

1/110 flt
1/llliOZ
1/0tJllJ

2

1111.Hllt
11011 i.iS
1/UJ IJ&
111:.uJl
110J aa
l/1.t1109
1/~JlQ

1/0IJU

1/liiU2

In this example, two assembler features are used - functions and sets. The name of the defined function is
INT. The function is called in the GEN statement. The call requests the generation of all set elements and
passes a value of 10 decimal to list Z in the FUNC statement. Initially, RESULT is set to a value of 1 and
then in the RPT statement sets the value of B which is later added to the value 1 in the statement labeled
1, RESULT.

In the RPT statement command list, Z [1]-1 calls for the first element of set Z, which is the value of Z (10]
minus 1. This sets the iteration count for the RPT directive. Even though set Z consists of one element, if it
were referenced as Z only, a diagnostic would be issued. The final statement in the function definition is the
ENDP directive; it specifies that the value assigned to RESULT be returned to the function call statement.

ATTRIBUTE REFERENCING

The A TT directive is illustrated in example 4. The purpose of this example is to determine whether a group
of characters constitute a character string. A function is used for character string determination, and the ATT
and GOTO statements are illustrated.

1-2 19980200 B

1 Cut ~r~~ A~~LHb~LH VLR ~.z.2
ii

1 cot STAR A5~EHaLER VER 2.2.2
u

~1 Gttu~wwJGa F aaocaoao uu~ooa~9

NOT A CHARACTt:R STRING
~1 ~lLGLOw~4w F J~ou~CJD uooaoo~o

MORE THAN 1 ELEHEMT PASSED
J1 ~''~~aJ~eu F ~~Ju~uJo ou~uu~~a

HORE THAN 1 ELEHt:.H PASSED
Jl ~'~LLJ~;C~ F J~~~uu~w wJ~~uu~O

1 CDC STA?. ASSEH3LER VER z.z.2
~~UH3lR OF ~ARNIN~ ~f.SSAGES =

NUMBER OF ERRJR HESSAGES :
1 cot STAR ASSEHdLER VER z.z.2
J
ii

" J ASSEHaLY FINISHED

HPLT ,l&ti,iO
TITLE "CH AR lC TE Ii_ ST A I hS_SIZE_FUNCTlON•

CHAl'ACT £~_STRING_ SI 2E_F I.NC. T ION
Fl.hC A

CHAR_cout.T NAHE
GCTC, ATT C AC 1J ,2 J. E~ .7 1
HESSAGE •NOT A CHA~A~TER STRINca•
GCTC z

1 GOTO,ATT(A,71 .Er;.1 J
HESSAGE "~O~E T~A~ 1 ELEHENT PASSED•

2 EHTP iJ
J E~DF ATTCAC1J,6)eES.·J

I tENT
GEN CHAR_ccu~rc•cHARACTER•)
GEN CHAR_CCU~TC1Z345)

GEN CHAR_ccu~rc•sra~·.·AsSEHBLER•J

GEN tHAR_ccu~rc·~~•r•,,,•FoR·•

Et.O
CHA~ACTER_STRI~G_SIZE_FLNCTION

FINIS

u J11& P.H. THUkSOAf 12TH. SEPTEHBERt 1971te
J NUMBER OF STATEMENTS PROCESSEC ~J
u NUH6ER OF WARNIN~ HESSAGES NONE
~ NUH~~R OF ENROR HESSAGES NON~
1

Example 4. ATT Directive

DULi 12Sl:P71t PAGE

DATEI 12SEP71t PAGE

DATEI 12SEP71t PAGE

OATEI l?SEP71t PAGE

In the first GOTO statement, (A[1] ,2) specifies a mode check on the first element of set A. If this element
is a character string, the value 7 is returned. (See Intrinsic Attributes in section 5.) If the first element of
set A returns a mode value of 7, statement 1 is processed next. Statement 1 also contains an attribute refer­
ence ATT (A,7). This reference specifies the 7th attribute of the value assigned to A is to be determined. The
7th attribute requests the number of elements. If> 1, a message is given; if = l, statement 3 (ENDP) is
processed. This statement requests the number of bits assigned to the first element of A shifted right, .BS.-3,
3 places and returned to the call statement (the hexadecimal value 48 assigned to the first element of A
(CHARACTER) shifted right results in the value 00000009 across from the GEN statement.

19980200 B 1-3

1
1/0001
1111002
2
1/JODJ
!/!J!,)Q~
1/l.JI005
1/0006
1/QQ07
1/il"Cia
11JuD9
1/0010
1/0011
1/0012
1/0013
1/i1011t

111015

1/GG16

1/J017
3

..
1/0018

REFERENCING SYMBOLS

Example 5 illustrates the assembly time problem solving capability and the means of referencing a symbol
defined with two different values.

1 cot ~TAP A~~[HQ~l~ V(R z.z.z
Q

wli O.ill000&.032

00 UlilliiCOOiJ1CJ
Ll ~tll~~~wuLiJ F ~JL~~~J~ o~~~L271

ilJ 1iL~llU0iJG32
111 6tt11LOJO#~ F au~'uJuL 000Uu9C4

1 co~ ~TAR lSSEHdLER VER 2.2.z
UNut1BlR OF MARNIN~ M~SSAGES = 0

hUHBER OF ERRJR H~SSAGES : U
1 cot STA~ ASSEHeL~~ VER 2.2.2
ii
ii
il
~ ASSEMBLY FINISHED

e

SQUASCE
AGAih
liESULT

II
c
c

I NPt..T 1, 80
OlTFUT
RtEF 50
ItEf\T
Ft.NC NUMBER
NAHE
NAHE
RtEF NUt1BERl1J•hUM9ERl1J
HOF RESULT
RCEF 25
GEN SQUU£ CB)
RCEF BS
GEN AGAU.CU
ENO

FINIS

~ JIJo P.H. THURSOAt 12TH. SEPTEMBER, 1974.
a NUt1B~R JF STATEHENJS PROCESSE& 19
~ NUMBER OF WARNING HESSAGES NCNE
a NUHBER OF ERROR MESSAGES NONE
1

Example 5. Referencing Symbols

OlTEI t2SCP7~ P•GE

DlTEI 12SEP74 PAGE

OATEI 1ZSEP7' PAGE

t
1/.Ji.01
1/0CiU2
1/13'.0J
1/1101}4

.1/yu.JS
11.Jou&
1/Hlil1
111JiHi8
1/0li09
1100111
1/111111
11~012
111)013
1/DGlft
2

The label symbol B is defined with hexadecimal values 32 and 19, and these values are separately passed to
function definition (SQUARE). During the first call to SQUARE, the value of B (19) is passed to the function
definition set list (NUMBER). The result of the function is returned to the function call level.

Even though there is only one list element in the NUMBER set list, the element must be referenced in the
RDEF directive by specifying the element location in [I] brackets. Prior to the second call, the value B is
redefined with the value 32. To redefine B, with this value, a $ is appended. The $ instructs the assembler
to look for the new value at the Universal level.

CONVERSION FUNCTIONS

ITOC and HTOC conversion function, programmed as part of the assembler, are used in example 6. The ITOC
call (line 12) converts an integer string constant (line 7) to a character string constant. The HTOC call (line 15)
converts a hexadecimal constant (line 8) to a character string constant. Notice the manner in which the calls
are written:

-------------specifies the set element
ITOC (I [K]) to be converted

t....._ ________ specifies the set

The HTOC call is written in the same manner.

1-4 19980200 B

1 cot STA~ ASSEH8L~R VER 2.2.2

• It.PLT 1,ao,1
Ol.TFUT
'TITLE - ASSE~Bl£R CONVERSION FUNCTIONS

OATCI 12SEP71t PAGE

I SET 24073748!3~5JZ71-1401J7488J55J271•256,256,1,-1,o,-u,4og&,-409&
H SET fFFFFFFFFfrFF1•fFFFFFFFFFFFF,-fF1fF1tU,•la1tl1•fl1f0123456789,l
•fL123,567!9,tlBCDEF 1-fl8CCEF

ItENT
CEC 10 K RFT,11 100

Ql JLv~UUYwijQ F 313~3037 33373~31
Dl uLuuuDu~40 F 383335353JJZJ7

J1 uL£~:~~~78 C l0313430 3733373~
J1 ~L~C~O~~B8 C 38383335 35333237

-----------~------------i1 ~L0wwUU116 C JZJ53&

~1 O~Cu~Ou15~ C Jl

~1 Olt~Luu158 C 3~30393&

¥1 vttt~uu176 c 20J43039J6

100

DEC 1l h
u1 GLLO~u~1~u H 4&46464& ~64646~6
~1 ULL~w0J1Eij H 4646464&

........................
Jl 0L'~~uu2Uu F JJJ,JOJJ JUJOJaJa
~1 uLu~Jww24~ F 3l3CJG31•......••.........
Jl wtlO~u~2&J H 46464b4& 46464646
wl ~L~~t~~lAu H 46464631 •.......................
~1 ~LLJw~~2Cu F JJ~OJUJC JOJUJQJO
u1 0Lw~~uu3J0 F 3~lu3,4&•
• 1 ~L~u~~~32u H 3)3,JOJO 303~3~30
~l· CL~uw~~l&~ H 3J3G3uJD
~1 Ol'Q~GuJ8u F JJ3w3JJO 3u303030
~1 ·~t~~uuJJtu F JJJLJu30
••••••••••••••••••••••••
01 ut~u~wJJEu H lJJGJGJO JOJD3030
wl wLL~~wu420 H JJJOJOJ1
Jl wt~wu0u44u F ~o4&464b 46464646
~1 utv~uv~48y F 4o4&464&

1 CDC STAR AiSEHBLER VER 2.2.2
0Y1 0Lt~wi~4AJ H 3JJOJuJ1 32333435
~1 ~~oo~~G4Eu H J&l73&J9

····················~··· 01 Gt~~JU~54w F 33J83737

••••••••••••••••••••••••
u1 u~uww~~S&y H JJJLJuJO 3JJ04142
ul UL~Ou~~5AO H 4344454&
••••••••••••••••••••••••
G1 Ot,uUuJ5CY F 464&4646 4&4&3534
01 UL~w~uuouu F JJJZJ1J1
••••••••••••••••••••••••

1 cot STAR ASSEM8LER VER 2.2.2
~hU"8ER OF WAR~IN~ "lSSAG~S s

NU"BlR OF ERR~R MESSAGES
1 'DC STAR AS~EHBL~R ~ER 2.2.2
u
ii

ASSEMBLY FINISHED

101

0
ii

GEN ITOCCJCKJ)

HESSl&E •-·-·••••••••••••···--···•

RFT 112 1Q1
GEN HTOC(~lhJt

HESSAGE ••••••••••••••••••••••••••

Et.D

F lNJS

0
a
I 31Z~ P.H. THURSDAY lZTH. SEPTEHBERt 1971t .••
u
il

• l

NUHUER OF STATEHENTS PROCESSED 5~
N~R OF MARNlNG HESSAGES NONE
NUHS~R OF ERROR HESSAGES NONE

19980200 B

Example 6. ITOC Function

DlTEI 12SEP71t PAGE

DATEI 12SEP71t PAGE

OATEI 12SEP1ft PAGE

I-5 •

1
1/0001
110002
1/0003
1/QUil't
1/QQ05
110 006
l/81l07
1/lJQU
1/80119

111110

110011
1/UU

1/llOU

2

1/llUft
3

..
1/1115

SYMBOL CREATION

In example 7, a symbol is generated in the fourth line of the PROC definition. The result generated is R
(without quotes) concatenated to the value of N. The 1 following ITOC(N) specifies a $ be appended to the
symbol.

The result of the procedure call generates the following:

Rl GEN 1

R20 GEN 20

1 CDC STAR ASSEHBLER VER 2.2.2 DATEI 12SEP7 .. PAGE 1

" Ol.TFUT 1/D 0 D1
TITLE .. SY MB CL CliOTION" 1/U002

1 CDC STAR ASSEHBLER VER 2.2.2 SYHEOL CRE.ATICN DATE& 12"SEP7 .. PAGE 2 • HEH 1/QOU
Pl'OC p 1/DilD ..

GENROEF NAHE 1/0005
N RPT,PUJ 1G 1/00D6
10 , S YM CP C1 J. CAT• IT CC IN t, U GEN N 11or.111

ENOF 1/HU
u1 OCL11.,o011JO F ilJl.t1LJJO OJiiJu001 CALL GENliDEF ~·,co 118119
;,1 uL11i.lu1o."11tJ F !llo11iu J.:.J 1.1u1.11.1i.IOLZ
u1 11L Lii.1oDliC.6u F D.lUOu Oi1.li UwwJl.UllJ
u1 QC. (luC01iJC11 F ilJliOu~Oil UuiluliO:llt
tH OCLCC.OJ1.iil F iJJ., Oii .i Ji;. ldiCuOi.05
H liLlhd,CJ11ti. F JJuil.iJJC Ouii~u110&
111 ll(. Lo.ii.OU 16J F J11.;0C.H1U Ju.;.liu~o7
1.11 LL liJ""" 1G.i F uJ.i011"Ju J11uuu1.11i6
.u iii. 11.i11Jli211.1 F JG .. iiliui.O wu\llJl.liU-3
"1 ilLli .. uCnJ241i F Uuuu:iJJO w011IH1C(iA
&11 DC. tJLilJ261i F ., .iui:.o o.iu J.iJ .. 111.ilB
U1 i.L I. ;;..,11.:i 2C.i F JJullw ~;ii: o.;uoi:. .. uc
ill 1.1Lliui.L.;3JO F JLIO!.Ollu!i .1ilLJuo1.1uo
111 """'""""3411 F .l luCi11 ;i.,o u'-J.,1;uUE
01 1.1LC.Oi.i11J3611 F JJ.,i;~;,c.1.1 Uli;j1JC100F
~1 uLClw"O"JCC. F tJ :lil I.IC :J ;J;,i :lull001i1U
wt OIL~11uCJ4Qli F JJ.:.c.1.i ooc. Q;J;)00011
1)1 :;,1. Cut.iii144(1 F O.HiwtOJC CiuO(;lio.i12
u1 1.1L.C. .. 1;11.;ct8i. F J Ji. Cl."""" o::i .. o~uu
ii1 wLC.li.,u111tci. F J~Jl.i1100C. u1111 .. oc.11t

HO 111110
1 COL STAR ASSE~BLER VER 2.2.2 SYH80l CREAT.IO!f DATEI 12SEP71t PAGE J
OhU"BER OF WARNING "ESSAGES = 0

HU"BlR OF ERROR MESSAGES a
1 cot STAR ASSEHBl~R VER 2.z.2 OATEI 12SEP7 .. PAGE ...
&i FINIS 111111
II

" ii ASSEMBLY FINISHED
il 312& P.H. THURSDAY 12TH. SEPTEHllERt 197't.

• NUHat:R OF STATEMENTS PROCESSEO n • NUHeER OF WARNING HESSAGES NONE
u NUHBER OF ERROR MESSAGES NONE
1

Example 7. Symbol Creation

~6 19980200 B

I EXECUTABLE EXAMPLES

The followjng examples include the use of machine instructions, specifically, in the area of vector programming.
They are provided to aid in understanding the types of machine instructions available with the ST AR computer
system. For a description of the register conventions illustrated in these examples, see appendix E of the STAR
OS Reference Manual, Publication No. 6038400.

USING VECTORS

Vector can be created through the GEN directive or by the INTERVAL machine instruction. To create a
vector, the programmer must set up a descriptor specifying the length of the vector and the base address
(points to the first element of that vector). This descriptor is created in a register the programmer selects in
the following order:

base address

length

Example:

A

AV ECTOR

19980200 A

An EX instruction for 64-bit register clears 64 bits and enters the base address of
the vector specified.

An ELEN instruction for 64-bit register enters the length in bits 0-15 of the register.

INPUT
OUTPUT
I DENT
MSEC
EQU
EX
ELEN

MSEC

GEN

END
FINIS

2
lA~~ 64
A,AVECTOR
A,9

1,2,3,4,5,6,7,8,9

I-7

Register #Al

0 15

0009 Address Points to AVECTOR

length base address (element 1)

In specifying a register, the user must include the register number times 64 or 32 to specify its size. As
described in the ST AR Hardware Reference Manual (see Preface), the first half of the register file can be
referenced as 128 full-word registers or 256 half-word registers; therefore, full-word register 1E and half-word
register 1E are different.

VECTOR ADDITION

The examples which follow illustrate tl:uee methods of vector addition:

add index vector

add sparse vector

In each example, the vectors are either created differently or the vector descriptors are created with different
statement types. The ST AR machine is primarily a vector oriented machine, therefore, the use of vectors
whenever possible results in savings to the user.

INTERVAL

The INTERVAL statement is a vector macro which executes as follows: The first element created is the value
designated in the A source element in the operand field. This value is placed in the C element.

INTERVAL qualifiers

(see machine
instructions
appendix C)

A, B,C, Z

A constant in source operand B is added then to the value of A to fonn the second element of C. The third
to N elements of C are formed by adding the constant in B to preceding element C. The length of the result
vector is specified in the descriptor of the result vector.

A c

A to C

A+ B to C

B + C to C

B + C to C

t:Lj"

I-8 19980200 A

The qualifiers and Z field, which specifies the constant vector, are not used in the following example and are
not discussed here. Control vectors and qualifiers are are illustrated in example 8 which follows.

1

•
1 CDC STAR·ASSEHBLER VtR 2.2.2
D

1.12 0£0iH10DilOO

00 uo .. oau1.:Jil a
uo Oli111J1H11111tol
Ou 1.1i;;uoouoao
'10 UC..Juilfi0;)11e
llli OliilGOv071t0
QC Qijyl)i.ll05t+O
.10 001100ii0&80

.:.z "(diliwllw1.ll.di F BE42G01o1U OSOGOOOO
J2 11~(iil1.J011:lltD F ~E4[1C.L .. iii UUUOOC01
uz Ol.,u .. IHl"6J F 1si.ulii.1t1

ii' ul.i.(l.iOvi:A..i H ZA420Clllt
oz H.i.u11u.1"1.COI F DF!.AUi.U40 0.11tUUilt2
il2 uL'-.ii.liJ11iO F 7J1015QO
02 DH<iCOll1Ztl H J6;.1Hii.llA

1 cot STAR ASSEHB~ER VER 2.2.2
QhU"BER Of WARNING "ESSAGES = G

0 ~U"BER OF ERROR MESSAGES
1 CDC STAR ASiE~BLER VER z.z.2

• G
ii
D A5SEHaLY FINISHED

CREATE

A
e
c
N
PSP
VITAL
RTRN
START

CRE!\TE

1 ~p Lf 1, 8 c' 1
OLTFUT
Tille "CREA1E VEClO"S VIA INTERVAL"

VECTCRS VIA lNTERV•L
ItEt.T
HSEC Z
HUY START
ECU 14C•E4 • THESE REGISTERS CONTAIN
ECU f1t1•E1t • so~~CE ELEMENTS

DATE& 12SEP7ft

ECU tlt2•E4 • CONTAINS RESULT VECTOR DESCRIPTOR
ECU ZO • LEhGTH OF RESULT VECTOR •c•
ECU U0•61t •
ECU f15•E4 ••• ENTRY SEQ
ECU UA•Elt •
EX C, fSllOl.O 110
Ell A, 1
RTO" A,B • T~AhS~ITS VALUE 1 TO 8 SOURCE

PAGE

PAGE

ELE~ c,N • v•L~E zo ENTERED INTO LENGTH PORTION OF c DESC.
I~TERVAL A,e,c •CREATE VECTO~ c
ShAF PSP,VITAL
BSA VE , RTION
HO START
VECTO~S VIA INTERVAL DATE• 12SEPtft ' PAGE

DATEI 12SEP7ft PAGE
FINIS

" 0
3125 P.~. THURSDAY 1ZTH. SEPTEMBER, 191fte

G
8
i

NUHBER OF STATEH£NTS PROCESSED 22
NUMBER OF WARNING MESSAGES NCNE
NUHBER OF ERROR MESSAGES · NONE

19980200 B 1-9

1/0 001
1/DD02
1/JQQJ
z
11a uri1t
110005
1/DQO&
1.f[J 0 0 7
110 wlls
110009
110010
1/0011
110 OlZ
1/Q 013
1/Q Ollt
1/0015
i/0016
1/0017
110018
1111019
110028
11GllZ1
J

..
1/0U2

ADD INTERNAL VECTORS

Example 9 illustrates the use of the INTERNAL macro in generating vectors, the ADDXV instruction, and the
use of dynamic space. Also illustrated is the standard entry sequence that should be followed in user programs.
Since this subprogram is not called by other routines and does not call any other routine, the entry sequence
illustrated is not required. The assignment of the DSP _R register is required, as the results will be entered into
the dynamic stack area. Before reading this example, read the Register Conventions in appendix E of STAR OS
Reference Manual which provide a description of the register file and the use of the pointers specified in the
entry sequence.

In this example, the initial source values are specified by the EX instructions which enter a value of 1 into bits
16-63 of register A and a value of 3 into bits 16-63 of register Bl.

Descriptors for the resultant vectors Cl, C2, and C3 are then created; length specified is 100 decimal full-words;
base address is set at some virtual location in the user available dynamic stack (the locations for vectors C 1, C2
and C3 are sequential and 100 full-words apart). Vectors are created by the INTERVAL macro's and then
summed by the ADDXZ instruction. For a description of the working of the INTERVAL instruction, see
example 8 in this appendix.

1 CDC STAR ASSEHBLER ~ER 2.z.2
Ii I t.P I. T 1t8t, 1

01.TFUT

DATEI 1ZSEP7' PAGE 1
1/0001
1/11002
1/J !ill 3
2
1/0uO&t
1/0C05
11000&
1/0007
l/0008
110009
110010
110011
1/0012
1/.JU1J
1/il 01lt
110015
110016
1/0017
1/QOU
1/.l'1CJ
1/l OZll
110 liZ1
1/0llZZ
1/0fiZJ
110.i21t
110025
1/il 026
1/00Z7
11a2a
1/0.129
1/0liJO
1/0031
1/0UJ2
1/tlQJJ
1/ilQJlt
1/0035
110036
111JQ37
1/1 QJ8
110039
110 OltO
1100'1
J

TITLE "INTE~VAL/ AOtXV WITH REGISTER FILE USAGE SEQUENCE"
1 CDC STAR ASSEMBLER VER 2.z.2
G

INTERVAL/ AlOXV HIT~ ~EGISTER.FILE USAGE SEQUENCE OATEI 12SEP7' PAGE
ICEt.T

02 UlliUOHO HSEC 2
Et.UY START .·

Ou
00
ilO
iill
JO
J6
1111
wo1
110
li(i

Gii

li2 ~(.Qli{.OUO'O F
il2 L'-"-'.il.l.i11D11 F JC:15tiiJ1A
¥2 iLl.i>LG,,\iZJ H 7JJi.151C
u2 ""' -:; ... "" \;ltij

F 1a1c;,,ao
oz Ol.li11'-0"!16i.1 H 7i31&GJ1C
~z iJ"L 1i&.lli.ii811 F BF10\;QJQ
oz utli .. C.CiJi.c.u F dE4JODIJG
az lh.C.i;i.OLl1uu F 7 '34311 Ot+lt
:IZ lit.O '11.ill.,; lZO H lFltlt19.Jli
;iz ~Li: I. • .ii Ii lltw F 7 llltitC. 01t5
.J2 v.: l.i;1oii .. 16ii H 3F .. 519o1u
.1Z 11l.i.,,01i;.i18.i F B~ltl.Cll;,ij

~2 Jli;C.uO~lC11 F aElt2D:>Oll

"~ \Otfi,11002.Jil F Z.\ltJJDolt
112 Ol. I. Ju:J.l c:C!u H 21'4'+'+111161t
w2 1oL (i u.1ll.;21tli F Zft.lt5u064
~2 1:a:.,,<iDll260 H 7tt4uO ;.i.1
02 uLO.iL.ii .. Z61i F OF"01oultU
il2 uH.luOG2Cii F OFui;iH14tD
u2 lil Ii """"JC.ii F U~.:.Uli4J
.,2 11LLQCwJJi.J F 701015110
~2 lilli0.11lluJ6Ci H l6iiuLu1A

Oilu00010..10
O:IOiJOHJltlJ
11aot":Jc111oau
1.111.J1.ut11uca
Ollw111ill11JO
Q;,000411140
uiiaOu" 1154 G
011U;,uQ(i681J
OUJli111iU6CO
"0110(iUU7ih
OwOOOUD7ltl

A ECU l1t0•&1t
81 EC~ 1'+1'61t
62 E CU 14tl •tilt
C1 EQU t1tJ•&•
CZ ECU l'+lt'61t
CJ ECU f4t5•&1t
VITAL_R ECU 115•&1t • POINTS TO ENVIRONHENT REGISTERS
RT_N ECU 11A'<
tSP_Fi ECU f1B'61t • OYNA~IC SPACE POINTER -POINTS TJ NEXT AVAILABLE FREE
CSP_Fi ECU f1C•< • Cl.RRENT STACK POINTER -POINTS TC REG FILE STORAGE
PSP_A ECU 110•&1t • PliEVIOUS STACK POINTER
•••~ENTRY SEQLENCE ••••
START

ES . '4ITAL_li,. tU
S~AP ,VITAL_R,CSP_R
KlOR CSP_R,P~P_R •CUR~ENT STACK POINTER EQUALS PREVIOUS
RTO~ CSP_Fi1CSF_R •CURRENT STACK POINTER EQUALS DYNAMIC

0uY04BOO IX lSP_R.~00•61t •SAVE STACK FRAHE SIZE IS JJu WORDS
05000000 EX Cl,150COGOO

RTOFi c1,cz
IS c2,100·&~ •SET CZ 1GO FULL WORDS AFTE~ Ci
Rtoi; cz,cJ
IS CJ 1 1~U'6- •SET CJ 1,0 FULL NOROS· AFTE~ C2

GUOO~ij01 EX A,1
OODOili.103 EX ez ,3 ' •SET 83 TO l

ELEt; C1,1CO
ELH CZ11CIJ
E LEt. CJ, HD
RTOfi AtB1 •PLACE VALUE 1 IN B1

llO&t1~04J I~TERVAL A1E1,C1
OJ1t20044 I~TERVAL A,EZ1C2
Oll44G045 AtOJV C1,Ci,C3

S hAF FSF_fi, Vl UL_R
BS AVE ,RT_ fro

HO START
1 cot STAR ASiE"BLER VER 2.2.2 INTERVAL/ ACOJV NIT~ fiEGISTEA FILE USAGE SEQUENCE DATE• 12SEP7~ PAGE
QNU"BER OF NARNIN~ MESSAGES a 0
~U"BlR OF ERROR "ESSAGES 0

1 CDC STAR ASSEMBLER VER 2.2.~ OATEI 12SEP7.. PAGE
G F IHJS
ii
a
ii ASSEHSLY FINISHED
G Jl31t P.H. THURSDAY 12TH. SEPTEMBER, 197 ...

NUHBER OF ST!T~H£H!S PROCESSED ~2
NUMBER OF WARNING MESSAGES NCNE
NUMBER OF ERROR MESSAGES NONE

..
1/llU

I-10 19980200 B

10020000 00000000 00000001 00000000 00000002 00000000 00000003 00000000 DODOO() 04
0020100 00000000 00000005 00000000 00000006 00000000 00000007 OOOOODDO 0000Dl08
0020200 00000000 00000009 00000000 OOOOOOOA 00000000 ooooaooe 00000000 OODODlOC
0021J300 00000000 0000000) llQUOOOO OOOOOOOE OODDOOOO OOOOODOF 00000000 00000~10
002Ji+DO 00000000 ODOOOilii 00000000 00000012 OOOilOOOO 00000Di3 00000000 OODODl ii+
0020500 00000000 00000015 00000000 00000016 OODDODOO 00000017 00000000 00000318
0020600 00000000 00000019 OOOODODO DD00001A 00000000 00000018 OOOOODOO OOOOOJ 1C
0020700 00000001) 0000001) 00000000 0000001E 00000000 00000()1F 00000000 00000120
OOZ0600 OOOOOOOJ 00000021 00000000 00000022 00000000 DOOOOJ23 00000000 00000) 2t+
0020900 ODOODOOJ 00000025 00000000 00000026 00000000 00000027 000001)00 OOOODJ 28
OOZIJAOO 00000000 00000029 00000000 0000002A 00000000 00000026 00000000 OOOOOJ2C
002!JBOO 00000000 0000il02!) 0000()000 DOOOD02E ODJOOOOO 0000002F 00000000 0 0 0 0 0) 30
0020000 OOOOOOOiJ 00000031 00000000 00000032 000()0000 ilOOOJ033 00000000 00000331+
002JJOO 00000000 00000035 00000000 00000036 00000000 00000037 00000000 00000) ~8
0020EOO 00000000 00000039 aooooooo 0000003A 00000000 00000038 00000000 iJOOOJl 3C
OOZQFOO 00000000 0000003) OOOOOOilD 0000003E 00()00000 0 0 00 0 0 3f 00000000 00000)40
002100[! 00000000 00000041 OOOIJOOOO 00il000t+2 00000000 00000043 OOOOOilOO 00000044
0021100 OiJOOOOOD 00000045 00000000 00000046 00000000 000000'+7 00000000 00000)48
0021200 00000000 00000049 00000000 0000004A oooaoooo 0000004B 00000000 0000Jl4C.
0021300 00000000 0000001+) OOOiJDOOO JOil0004E 00000000 0000004F 00000000 00000050
0021400 00000000 00000051 00000000 00000052 00000000 00000053 OOOOOJOO DOOuOJ 5t+
0021500 00000000 00000055 00000000 J0000056 oooooaoo 00000057 00000000 00000) 58
0021600 OODOOO!ll 000000;~ 00000000 0000005A OOJlOOOO 00000053 OJOODOJJ 000u0J5C
0021700 000000!10 OOOOOOiJ 00000000 0000005:: 00000000 00000)5~ OJ000()()0 00000) oO
0021800 00000000 ODOIJ00o1 JODJilOOO 00000062 ;)0000000 00000063 00000000 00000)64
0021900 OOOOOOOIJ 00000001 OOOJOOOO 00000004 00000000 00000007 00000000 OOOOOJOA
00210.00 OOOOOOOJ 0000000) 00000000 00000010 DOilOOOOO 00000013 OOOJOOOO 00000) 16
0021'.330 00000000 OOOOODB ilOOJOOOO J000001C 00000000 OOOOOUF OJOOOJDJ O 0 0 u·O l 22
0021:;00 000000 OD 00000025 00000000 00000028 OOOOOJuO 00000020 00000000 OllOOOl ZE
0021000 00000000 00000031 00000000 00000034 00000000 00000037 00000000 OOOOOJ 3A
0021EOO 00000000 00000030 00000000 30000040 00000000 00000043 00000000 000003 46
0021FOO 00000000 OllOOOOftq 00000000 llOOOOOt+C 00000000 0000004F 00000000 OOOOOJ52
0022000 0000000() 00000055 00000000 000il0051' OOJOOllOO 00000059 00000000 00000l 5E
0022100 00000000 OOOOD0".>1 00000000 0000006t+ ODHOOOO 00000067 00000000 00000l6A
002~200 00000000 0000005) JOOJO[J[JQ 30000070 00000000 00000073 00000000 0 OOOOJ 76
0022300 OIJOOOO!lD 00000079 OOOOOOOil il000007C 00000000 0000007F 00000000 00000) 82
002~400 oaoooooo 00000085 OOOOuOOO 00000088 00000000 ooooooaa 00000000 0 00 0 J l 8E
0022i;oo 00000000 OOOOOO'H OD03000l 00000094 00000000 00000l97 00000000 OOOOOJ9A
0022500 00000000 oooooocn OOOOOOJO OOOOOOAO JOOJOOOO OOOOOOA3 00000000 000001 Ao
0022700 00000001 0000000 00000000 lO!lOOOAC JOJJOOOO OOOOOOA= OOOJOl3l H l () J l 32
0022800 00000001) OOiJ00035 00000000 00000088 OOJOOJOO 00000009 OilO:lOOOO OOOOOlBE
0022900 00000000 000000~1 00000000 OOOOOOCt+ 00000000 OOOOOOC7 00000000 000001 CA
0022ADD 00000000 000000::> 00000000 00000000 00000000 00000003 00000000 00000) 06
0022900 00000000 OOOOOOH 00000000 oooooooc 00000000 OOOOOOOF 00000000 OOOOOlE2
0022COO 00000000 000000::5 tlOOJOOOO 000000::8 00000000 OllOOOOE3 00000000 OOOOOJ EE
0022000 00000010 000000=1 00000000 OODOOOFt+ OOiJOOOOO DOOOOOF7 00000000 000003FA
0022::00 000000011 ooooooc-a aooooooo 00000100 oooaoooo 00000103 00000000 00000106
0022FOO OOODOOOiJ 00000109 ilOOOOOOl lllOOUC llllJO[JO 0000010=- 00000000 OOOOill 12
0023000 OOOOOOJO 00000115 OOOOOilO:l 00000118 00000000 00000113 ODOOOilOO 0000011E
0023100 00000000 00000121 00000000 OO:J0012t+ OOJOOOOO 00000127 00000000 OOOOOL 2A
0023200 '0-0 0 0 0 0 0 0 00000002 JOOJOO'B J:l000005 00000000 000()0)04 OOOOOOOJ 000001 OE
0023300 0~000000 00000012 00000000 001.100016 ucoooooo OOU0001A 000il000() OOOOOltE
0023ft00 00000000 00000022 00000000 OJ00002o 00000000 0000002A 00000000 OOOOOJ 2E
0023500 00000000 000!10032 iJOOOOOOO 00000036 OJJJOOOll 00000031\ OOOilOOOJ O 00 0 Ol 3E
0023&00 00000000 000000!+2 00000000 !JOOOOOl+o 0()0()0000 00000041\ OOOOOil~J OO!JOOJ !+E
0023700 00000000 00000052 00000000 00000050 00000000 00000054 O!JOOOOOJ OOOOOJ5E
0023800 00000000 000000:,2 00000000 00000066 00000000 OOOOOJoA 0000000) 00000l6E
0023900 OOOOOOJO oooooon 0110~0000 0000007& OOOOJOOO OOOOOJ74 00000000 0000~1 7E
0023A()0 00000000 000000~2 OOOJOOOO JOOOD08o 00000000 00u0008A OODOOOJJ lOJOJJ8E
00231300 OOOQ003J 00000092 00000000 00000096 OOlJOOOO 00000091\ OOOOOilOO 0 Oil 0 J l 9E
0023COO 00000000 000000~2 J00300iltl 100000Ao 00000000 OOOOOOAA 00000000 OJOOJl AE

19980200 A 1-11

0023000 00000000 OOD00092 00000000 00000006 00000000 DOOOOOBA oooooaoa OOOOOJ BE
002EOO 00000000 OOOOOOC2 iJOOOOOOO OOOOOOC6 000110000 OOOOOOCA O!JODOJJJ !JODOlll CE
0023FOO OOOOOODiJ 00000~02 0000000() QODDOOD6 OOJOQOOO QOOOODOA oo,~900 oo OOOOOOOE
UZl+DOO OODOOOD!J 000000~2 00000000 OOOOOOE6 lDOJO:JOO iiUOOOEA 00'0000 0 D OOODOJEE
002!t1DO 00000000 000000:-~ iJOODIJOOO 000000::-6 OOJJOOOO 0:~·0003FA 00000000 000001 ;:-E
0021t200 00000003 0000010? &0000000 00000106 iJOODOOOO Ofr00010A 00000000 OOOOOLDE
OO~!t300 0000000() 00000112 Jooaaooo 00000116 DOllDOOOO D00001U 00000000 0000011E
0024400 00000000 00000122 OOOQOOOD 00000126 . 00000000 0000012A 00000000 00000l2E
IJ021J500 00 0 0-0 0 00 0000013~ iJOOODOOO 00000136 00000000 0000013A 0 000000 0 O 00001 JE
0024600 00000000 0000011+2 iJOOOOOOO 110000146 00000000 0000014A 00000000 OOOOOll+E
0021+700 0000000() 00000152 000000110 00000156 000110000 0000015A 00000000 OOOODL 5E
0021+800 00000000 00000152 00000000 001100106 00000000 D000016A 000000110 000 0016E
0021+900 0000000] OiJJ0017~ liJOJOOOO JOJ00175 00000000 0000017A OIJOOOOOO 0000017E
0024UD OiJOQQOJJ ODliJOB~ 00000000 00000186 GOiliJOOOO 0000016~ oooooooa aOOOill 8E

1-12 19980200 A

INDEX

Address control 4-27 EJECT directive 4-4, 4-51
Address identifier A-16 Element and sub-element referencing 4-19
Arithmetic Operations B-3 ENDP directive 4-16, 4-37,
ASSEMBLE statement D-1 4-46, 4-54, 1-2
Assembler failure message F-5 END directive 4-7, 4-52, .1-1,
Assembler limits H-1 ENTRY directive 4-13, 4-52

Assembly Control 4-7, 4-27 EORG directive 4-32, 4-53

Assembly Listing Format E-1 EQU directive 4-21, 4-47,

Assignments (value) 4-20 4-53

ATT directive 4-33, 5-3 Error Messages F-1

5-5, 1-2 Evaluation of expressions B-3

Attribute functions 5-1 Examples 1-1

Attributes 1-3, 4-33, Executive Output 1-5

5-4, 1-2. EXITP directive 4-16, 4-44,
4-46, 4-54

Batch processing D-3 Expressions B-1
Binary number representation C-23 Expression and Mode Evaluation B-4
Bit string constant A-9 Externals (EXTC, EXTD) 4-14, 4-24, 4-52
Branch instructions C-9, C-31 Extrinsic Attributes (RATT) 4-33
BRIEF directive 4-6, 4-51
Broadcast element C-10, C-13 FINIS directive 2-1, 4-7, 4-52

FORM directive 2-2, 4-23, 4-53
Character set A-2, A-3 FORM names A-16, A-18
Character string constnat A-10 Form Referencing 4-24, 4-53
Code section 2-1, 2-3 Function names A-16, A-17
Coding conventions 2-2 Function references 4-46, 4-54
Command field 3-1, C-1 Functions 1-2, 4-44
Comment field 3-1 Function definition (conventions) 4-44
Commercial at @ 4-24, 4-27 FUNC directive 4-5, 4-47,
Common section (subprogram) 2-1, 2-3 4-54, 1-2
Conditional assembly 1-1, 4-7
Constants A-4, A-14 GEN directive 4-25, 4-47,
Continuation (statement) 3-1 4-53, 1-1
Control vectors C-10, C-13, GOTO directive 4-10, 4-52

1-9
Conversion functions 5-1, 1-4 Hardware or Assembler errors 1-6, F-5

Hexadecimal constant A-7
Data generation 4-23, 4-42, Hexadecimal string constnat A-8

1-1 Hierarchical expression evaluation B-9
Data Section (subprograms) 2-1, 2-3
Default MSEC (IMEM) 4-29 IDENT directive 2-1; 4-6,

DETAIL directive 4-6, 4-51 4-4 7' 4-52, 1-1
Delimiter characters A-3, C-24 Index incrementing C-24

Directive names A-16, A-18 Index instructions C-9, C-27

19980200 B Index-I •

In-line PROC 4-34 Packed decimal constant A-10
INPUT directive 3-1, 4-2, Packed decimal data strings C-23

4-51, 1-1 Positional operator 4-17
Instruction designator C-6 Predefined command symbols G-1
Instruction mnemonic A-19 Printer Output 1-5
Integer constant A-5 PROC directive 4-36, 4-54
Integer string constant A-6 Procedure 2-2, 4-34
Interactive processing D-1 Procedure definition 4-36
Interval instruction 1-9 Proce·dure name 4-35, A-16,
Interval vector statement 1-8, 1-9 A-18
Intrinsic attributes (ATT) 5-4, 1-3 Procedure reference 4-27, 4-38,

4-43, 4-54
label field 3-1,C-1 Procedure reference termination 4-38
Level 2-4, 2-5 Program conventions 2-2
LIBP directive 4-3, 4-51
Limitations (assembler) H-1 Qualifiers C-1
Listing control 4-4
LIST directive 4-5, 4-51 RA TT directive 4-33, 4-54
LISTING directive 4-3, 4-51 RDEF directive 2-4, 4-20,
Location control 1-3, 4-27 4-25, 4-48,
Location-independent code 2-2 4-53, 5-3
Logical operations B-8 Real constant A-12
Logic string instructions C-25, C-39 Redefining a symbol 1-4

Re-entrant code 2-2
Machine instructions 4-27, C-1, Referencing attributes 4-34

1-7 Referencing sets 4-19
Machine instruction designators C-6 thru C-8 Referencing elements and sub elements 4-19
Machine instruction formats C-1 thru C-5 Referencing Forms 4-24
Machine instruction types C-8 Register Designators C-44
MESSAGE directive 4-5, 4-51 Register instructions C-9, C-28
MSEC Default 4-28 Relational operations B-3, B-7
MSEC directive 2-2, 4-29, Repetition factor 4-18

4-53 RES directive 4-31, 4-53
Monitor instructions C-25, C-43 RPT directive 4-8, 4-12,

4-52, 1-1
NAME directive 4-36, 4-45
Nested procedures 4-29 SET directive 4-16, 4-25,
NOLIST directive 4-5, 4-51 4-48, 4-52
Non-typical instructions C-17, C-40 Sets 1-2
NOPH procedure 5-1, 5-7 Set name A-16, A-18
Null elements 4-18 SHORTBRprocedure 5~1, 5-7
Numeric label A-19 Sign control C-11, C-25

Significance count C-11
Offset number C-11 thru Source statement errors 1-5

C-13 SP ACING directive 4-4, 4-51
Operand field 3-1, C-3 Sparse vector C-10, C-14,
Operators B-2 C-17 thru C-22
Order vector C-10 C-35
ORG directive 4-31, 4-53 Special characters A-4
OUTPUT directive 4-2,4-51,1-1 Standard input 1-4

• lndex-2 19980200 B

STAR machine instructions C-26 thru
C43

Statement boundaries 3-1
Statement format 3-2
Statement terminating errors 1-5, F-1
String instructions C-24, C-37

C-38
String instruction delimiters C-24
Sub-element reference 4-19
Subprogram linking 4-13
Subprogram area 2-1, 2-3,

4-29
SYM function 5-3
Symbols 1-3, A-16
Symbol creation function 5-1, 1-6
Symbol definition 24, 4-44,

I-4, 1-6
Symbol redefinition 14
Symbol reference 4-35, 444,

14
Symbol reference levels 24, 4-44

TITLE directive 4-5, 4-51

Universal area 2-1, 4-35

Value assignment 4-20 tluu
4-22

Variable identifier A-16
Vector addition C-14, C-17,

C-22, 1-9
Vector creation 1-9
Vector generation 1-7
Vector instructions C-10, C-15,

C-33
Vector macros C-13
Vector macro instructions C-36
Vector matrix C-14
Vector offsets C-12

Warning messages 1-6, F-3

Zoned decimal constants A-11
Zoned decimal data strings C-23

19980200 B Index-3 •

i
I
I
I
I
I
I
I
I

~I
~I
1-

6 I
I­
:> u

COMMENT SHEET
CONTROL DATA
COHPORATION

TITLE: STAR Computer System, STAR Assembler Reference Manual

PUBLICATION NO. 19980200 REVISION B

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: ___________ _ POSITION:----------------

.COMPANY

NAME=---

ADDRESS=-------------------------------~

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

STAPLE

FOLD

FOLD

STAPLE

STAPLE

-- -- -- -- -- -- -- - -- -. _ F~ ~

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID QY

CONTROL DATA CORPORATION
Documentation Department
21 S Moffett Park Drive
Sunnyvale, California 94016

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS; MINN.

I

I

lw

I~
I~
la

I

I
__ · __________ J

STAPLE

FOLD I

I

I

I

I

I
I
I

l t
i

~ T I I I
t/2" 3/4" 1" 1-1/.'"

t

*
I

1
* ~--:.- CUT OUT FOR USE AS LOOSE- LEAF BINDER TITLE TAB

CONTROL DATA CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS. MINN. 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

PRINTED IN U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	6-Glossary-01
	6-Glossary-02
	6-Glossary-03
	6-Glossary-04
	6-Glossary-05
	6-Glossary-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	H-01
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	Index-01
	Index-02
	Index-03
	replyA
	replyB
	xBack

