CONTROL DATA
[corroration]

CORPORATION

CONTROL DATA®
STAR COMPUTER SYSTEM

STAR ASSEMBLER REFERENCE MANUAL

TITLE: STAR ASSEMBLER Reference Manual CONTROL DATA

PUBLICATION NO. 19980200 CORPORATI ON
REVISION B

DATE: November 20, 1974

REASON FOR CHANGE:

Revised to clarify and expand the explanation of certain topics. Corrections and comments noted by readers have been
incorporated. Examples in Appendix I have been replaced by those reflecting use of Assembler Version 2.2.

INSTRUCTIONS:

This revision constitutes a complete reprint and obsoletes previous printings.

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD

REVISION DESCRIPTION
| e
01 Original release
(7-27-73)
A Revised to incorporate an appendix pertaining to STAR OS and to update information contained in
(4-26-74) this document.
B Revised to clarify and expand the explanation of certain topics. Corrections and comments noted by
(12-1-74) readers have been incorporated. Examples in appendix I have been replaced by those reflecting use of

Assembler Version 2.2.

Publication No.

19980200
Additional copies of this manual may be Address comments concerning
obtained from the nearest Control Data this manual to:

Corporation sales office.
: CONTROL DATA CORPORATION

Software Documentation
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086
© 1973, 1974

Control Data Corporation or use Comment Sheet in the
Printed in the United States of America back of this manual

PREFACE

This reference document discusses the principles, features, methods, rules and techniques of producing a CONTROL
DATA® STAR Assembler Language program.

The reader is encouraged to study the subject matter in the order presented:

Section 1

Section 2

Section 3

Section 4

Section 5

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

19980200 A

Introduction — Introduces features of the STAR Assembler considered most
important.

Program Structure — Discusses the structure of a typical assembler program and
introduces the assembler coding conventions.

Statement Structure — Describes all assembler statement organization and rules.

Directives — Details all available assembler directives and the organization of
assembler procedures and functions. A directive summary is also provided.

Assembler Provided Functions and Procedures — Details all functions and procedures
provided as part of the STAR Assembler.

Elementary Items — Describes the data types permitted for use with the assembly
language.

Expression — Describes the types of expressions permitted for use with the assembly
language.

STAR Machine Instructions — Provides a more than cursory discussion of the
machine instruction types and includes a summary list of all machine instructions
with format and function descriptions.

JOB Processing Deck Structure

Assembly Listing Format — Describes and illustrates the format of an assembly
listing.

Error Messages — Lists all error messages produced by the assembler.

Predefined Symbols — Lists all predefined assembler symbols, their values, and use.

iii

iv

Appendix H Assembly Limitations — Lists assembler limitations.

Appendix I Examples — Sample program descriptions.

Information supporting this document is given in the following publications:

STAR-100 Hardware Reference Manual Pub. No. 60256000
STAR-65 Hardware Reference Manual Pub. No. 19980000

STAR Computer System Operating System Reference Manual Pub. No. 60384400

This product is intended for use only as described in
this document. Control Data cannot be responsible for

the proper functioning of undescribed features or
undefined parameters.

19980200 A

CONTENTS

INTRODUCTION
Features
Procedures
Functions
ts/Symbols
Attributes
Basic Program Structure
Assembly Process
Operating System
Assembler Error Detection

2 PROGRAM STRUCTURE

Assembler Code Conventions
Program Universal Area
Subprogram Area

Code Section

Data Section

Common Section
Levels of Symbol Definition
Levels of Symbol Reference

STATEMENT STRUCTURE

DIRECTIVES
General
Input/Output Control
Input
Qutput
Listing
LIBP
Listing Control
SPACING
EJECT
TITLE
MESSAGE
NOLIST
LIST
DETAIL
BRIEF
Assembly Control
IDENT
END
FINIS .
Conditional Assembly

19980200 B

1-1
1-2
1-2
1-2
13
13
14
14
1-5

2-1
2-2
2-2
2-3
2-3
2-3
2-3
24
24

3-1

41
4-1

42
42
4-3
4-3
44
44
44
45
45
45
45
46
46
47
47
47
47
4.7

RPT
GOTO
RPT and GOTO Processing
Subprogram Linking
ENTRY
Externals (EXTD, EXTC)
Symbol and Set Definition,
and Referencing
SET
Referencing Sets
Element and Sub-Element Referencing
Assignment
RDEF
EQU
Data Generation
FORM
Form Referencing
GEN
Address and Location Control
Default MSEC
MSEC
RES
ORG
EORG
Attribute Control
RATT
Referencing Attributes

Procedures

Writing a Procedure

PROC

NAME (Procedure)

ENDP (Procedure)

Procedure Reference

Procedure Reference Termination,

EXITP

Procedure Reference Function Flow
Functions

Function Definition

FUNC

NAME (Function)

Function References

4.8
410
412
413
413
414

4-16
4-16
419
419
420
4-20
421
423
423
4-24
425
427
4-28
4-29
431
4-31
4-32
433
433
4-34

4-34
4-34
436
4-36
4-37
438

438
439
444

4-45
4-46

ENDP (Function)
EXITP (Function)

Summary of Directives

5 ASSEMBLER PROVIDED FUNCTIONS
AND PROCEDURES
Conversion Functions

2-1
41

2-1
3-1
4-1
4-2
5-1
A-1
A2
A3
A4
A-5
B-1
B-2
B-3
B-4
B-5

Vi

ELEMENTARY ITEMS
EXPRESSIONS
STAR MACHINE INSTRUCTIONS

JOB PROCESSING AND DECK
STRUCTURE

ASSEMBLY LISTING FORMAT

Program Structure
Association of Procedure Definition
and Reference Elements

Symbol Levels

Statement Format

Summary of Directives

STAR Assembler Directive Parameters
Conversion Functions

STAR Character Set

Delimiter Characters

Special Characters

Summary of Rules for Constants
Symbol Summary

Operators

Comparison Methods

Unary + — Operations

Binary Scale Operations (.BS.)
Muitiply and Divide Operations (* /)

4-46 Symbol Creation Function 5-3
4-46 Attribute Function 54
450 Intrinsic Attributes 54
ATT 5-5
5-1
5-1 GLOSSARY Glossary-1
APPENDIXES
A-1 F ERROR MESSAGES F-1
B-1 G ASSEMBLER PREDEFINED
COMMAND-SYMBOLS G-1
C-1
H ASSEMBLER LIMITATIONS H-1
D-1 I EXAMPLES I-1
E-1
FIGURES
2-1 4-2 Association of Function Definition
and Reference Elements 4-49
4-43 B-1 Expression Hierarchial Evaluation B-9
TABLES
2-4 B-6 Add and Subtract Operations (+—) B-6
3-2 B-7 Relational Operations (EQ, NE, GT,
451 GE, LT, LE) B-7
4-55 B-8 Logical Operations (AND, OR) B-8
5-2 C-1 Qualifiers C2
A-2 C-2 Instruction Designators C6
A3 C-3 Vector Instruction Sub-function Bits C-11
A4 C-4 Vector Instruction Sign Control Sub-
A-14 function Bits C12
A-17 C-5 String Instruction G Designators C-16
B-2 C-6 Instructions with Sign Control C-18
B-3 C-7 Index Instructions C-19
B4 C-8 Register Instructions C-20
B-5 C-9 Branch Instructions C23
B-5 C-10 Vector Instructions

C-25

19980200 A

C-11 Sparse Vector Instructions
C-12 Vector Macro Instructions
C-13 String Instructions

C-14 Logical String Instructions

19980200 A

C-27
C-28
C-29
C31

* C-15 Non-Typical Instructions

C-16 Monitor Instructions
C-17 Register Designators
G-1 Predefined Symbols

C-32
G35
C36

G-1

vii

INTRODUCTION 1

The CONTROL DATA STAR Assembler is a versatile, self-extending source language and language processor
which runs under the control of the CONTROL DATA STAR® Operating System (OS). From the source
language subprograms, the STAR assembler generates binary output (relocatable) acceptable for loading and
execution by the central processor under STAR OS control.

The source language consists of mnemonic machine instructions, procedures, functions, and miscellaneous
assembler directives. With the symbolic machine instructions, all hardware functions of the STAR computer
system may be expressed symbolically.

Directives allow programmer control of the assembly process.

FEATURES

This assembly language makes efficient use of all computer resources and provides flexibility in program con-
struction.

Features include:
Simple and consistent notation.
Procedure and function capability (provides many-for-one object code generation).
Conditional assembly capabilities for selective assembly
Set capability to define, reference, and extend lists of expressions
Attribute assignment for symbols and set elements

Mnemonic machine instructions define instructions to be generated. (Appendix C describes machine
instructions.)

All existing assembler routines are re-entrant to permit simultaneous use by many users and location-
independent for fast loading. '

ASCII Code set compatibility
Assignment of relocatable and absolute location counters for use in address assignment.

Comprehensive listing of maps, diagnostics, etc.

19980200 A 1-1

PROCEDURES

Procedures are assembly time subroutines that provide extensive parameterization of source statements through
conditional assembly and many-for-one object customized generation.

Procedures may be used for:

Assembler instruction expansion

Parameter checking, set generation, symbol redefinition

Building a new language

Saving parameters at assembly time

Changing instructions dynamically

Defining tables external to each routine
A source statement, consisting of a procedure name and parameters, calls a procedure. The assembler interprets
the procedure and generates the equivalent STAR relocatable binary object code. Often used or standard pro-
cedure definitions may be placed in the user defined library.
Procedure and function definitions are groups of source statements interpreted by the assembler each time a

procedure or function is referenced. A reference to a procedure definition appears in the command field of a
statement; it may be likened to a macro call. A procedure is similar to a macro.

FUNCTIONS

Functions are assembly time subroutines used where common routines (which return a value) are desired.
Functions and procedures are defined in a similar manner; a function reference is similar to that of a FORTRAN
function reference. Unlike a PROC a function does not generate code but returns a value. A reference to a
function can appear in the label, command, or operand field of an assembler statement. In general, a function
cannot appear in the label field of a statement. Only the SYM function can be used in this manner.

SETS/SYMBOLS

The programmer can define and assign symbols to an address, single value, or set (list) of data. An entire set
can be referenced by a symbol; each element of a set can be referenced by adding one or more subscripts to
the symbol.

The assembler recognizes as operands simple and complete expressions containing any of a set of 21 operators.
Elements of expressions can be symbols, constants expressed as integers, or real (floating point) values, accord-
ing to convenience.

A unique method of symbol definition allows the value of an expression to be used as a symbol. An operand
of a source statement also can be an attribute of an expression, such as type, size, etc.

(g™}

19980200 B

ATTRIBUTES
An attribute is a property of an elementary item or expression. The assembler assigns attribute values (1-7) to
all symbols and set elements. These intrinsic attributes are used by the assembler during syntax checks and
expression evaluation. Through attribute referencing, the programmer can obtain information pertaining to set
elements or expressions, such as:

Symbol as a character string

Mode

Memory section location

Definition level

Symbolic type

Size

Number of elements

The programmer also can assign extrinsic attributes that are not used by the assembler but can be referenced
later or changed by the programmer.

The range of the extrinsic attributes is 8-127; i.e., the programmer may assign 120 extrinsic attributes. A list of l
intrinsic attributes, including possible values assigned by the assembler, appears in section 5. Methods of refer-
encing intrinsic and extrinsic values and of assigning extrinsic values are given in section 5 (ATT directive)and
section 4 (RATT function).

BASIC PROGRAM STRUCTURE

Source statements for an assembler program can be in one of two program areas: universal or subprogram.
Non-executable code and statements that do not generate data can be entered in the universal area; however,
all code can be written in the subprogram area with the exception of /O directives and assembly control -
directives described in section 4. The Universal and Subprogram areas are described in section 2.

LOCATION CONTROL
STAR Assembler directives permit program code and data to be assigned to a maximum of 255
subprogram control sections. Each control section has a location counter to ease the programming task of seg-

mentation. All code and data locations are relative to the beginning of the control section and the counters
can be incremented by words, bytes, or bits.

19980200 B 13

ASSEMBLY PROCESS
The STAR Assembler is essentially a two-pass assembler; however, the number of passes depends on the exist-
ence of the subprogram area. If the assembler is called and only a universal area exists in the source program,

only one pass is made. If a subprogram area exists, the following occurs:

First Pass All statements are interpreted, values are assigned to symbols, and locations are
assigned to each statement.

Second Pass Externals and forward references are satisfied, data generation is accomplished,

binary output and assembly listing are produced. Statements are interpreted during
this pass and, if required, error and warning messages are assigned.

OPERATING SYSTEM

The STAR Assembler executes under control of the STAR Operating System, as described in appendix D.

CONFIGURATION

The requirements for executing the STAR Assembler on the STAR Computer System are the minimum required
for the STAR Operating System.

EXECUTION

The assembler is called from the system library by an assembler job control command (META); see appendix D.
Parameters in the command define files to be used during the assembler run, such as source statement files,
listable output files and object code files.

STANDARD INPUT

The assembler source deck can be input from a standard card reader or a file, such as mass storage file, speci-

fied by the programmer. For a card file, input staging transfers the deck from the standard input card reader
onto a mass storage file. The assembler interprets one source deck statement at a time.

14 19980200 B

PRINTER OUTPUT
The assembler produces printer output containing a listing of each source statement. Control directives provide
options for obtaining a detailed listing. Errors detected by the assemblier are noted on the listing. The output
listing may include:

Source Program

Memory Map (Address Counter)

Generated Object Code

Diagnostics

Cross-Reference Listing

Assembler diagnostics, are listed in appendix F; the assembler listing format is described in appendix E.

EXECUTABLE OQUTPUT
Upon programmer request, the assembler opens the user specified file to receive relocatable binary output

acceptable to the STAR relocatable loader. When the assembler has completely processed the source deck, the

programmer can call for loading and execution of the object program from that file. The loader links the
newly assembled programs referred to by a new program.

ASSEMBLER ERROR DETECTION

Errors detected by the assembler are indicated on the listing by an error message preceded by a field of
asterisks; each message occupies a full listing line.

SOURCE STATEMENT ERRORS

Source statement errors are listed after the statement containing an error. The count of the number of errors,
and a list of the line and page number of statements with errors are included in the listing after every sub-
program. Pass one errors are listed after the IDENT statement for the subprogram.

STATEMENT TERMINATING

A statement terminating error is indicated by any error message NOT preceded by WARNING or SYSTEM

ERROR. On detecting such an error condition, the assembler discontinues processing the current statement
and continues with the next sequential statement.

19980200 B 1-5

WARNING MESSAGE

Messages beginning with the word WARNING indicate a default was assumed for this error condition and
statement processing continued. (The LISTING directive may be used to eliminate warning messages from the
listing.)

HARDWARE OR ASSEMBLER ERRORS

All hardware or assembler error messages start with SYSTEM ERROR. They indicate a failure within the assem-
bler; the assembly is aborted. ’

1-6 19980200 A

PROGRAM STRUCTURE 2

-+ Universal Area, T

Code Section

Subprogram < T LT T T T
Area; '

= e e e . o — o — - — —y

Common Section

‘[Universal Area2
L
T

Subprogram Area2

| same as Subprogram Area;

_‘l:: -
T

Universal AreaLn

QH— 1 e

Assembler programs are written in modular form; they can consist of one or more subprograms (figure 2-1)
which are linked and loaded together, and executed as a task. The source code for each program is assigned
to assembler-defined program areas — universal and subprogram. These areas can contain procedures and
functions which, for discussion purposes, can be considered subroutines. Each subprogram area can contain
one or more code, data, and common sections. Each subprogram area produces a separate object module in
the object file.

1/O Parameters; and Symbol,
Form, and Procedure Defini-
tions for all subprograms,

Source Statements

SOURCE DECK -
NON EXECUTABLE CODE

IDENT

.

SUBPROGRAM 1
END)

NON EXECUTABLE CODE
(if required)

IDENT

SUBPROGRAM II

END
FINIS

Figure 2-1. Program Structure

19980200 B

S 21

ASSEMBLER CODE CONVENTIONS

All code (except data and common section code) must be location-independent. Such code consists of a sequ-
ence of statements without virtual address references (relative references are permitted). This code is written to
execute correctly from any location in virtual memory and combines the benefits of absolute code (fast load-
ing) with that of relocatable code (can be loaded at any location).

Assembler code also must be re-entrant; it must never modify itself. Re-entrance permits the simultaneous use
of the same code by more than one task in the user program. Re-entrant code is obtained by separating the
code from data modified by the code.

Examples of location-independent and re-entrant code and the solution to some programming problems which
result from these conventions are provided in appendix L

PROGRAM UNIVERSAL AREA

The universal area is located before the first IDENT statement of the subprogram area (when a program con-
sists of one subprogram) between the END statement of a subprogram area and the IDENT statement of the
following subprogram area (when a program consists of more than one subprogram). Statements in the universal
area specify input/output parameters and define symbols, procedures, functions, and sets to be referenced by
statements following the subprogram areas which follow.

Procedures (section 4) are assembly-time (only) subroutines that generate customized code or data. Only one
copy of a procedure is required regardless of how many times it is to be called within a program. Functions
(section 4) are also assembly-time (only) subroutines normally used when common subroutines are required.

Functions, unlike procedures, return a value, and cannot generate code.

The STAR assembler is essentially a two-pass assembler; however, in the universal area only one complete pass
is made per assembly. Code or data cannot be generated in the universal area. Forward references (section 4)
or statements which affect location counters (FORM references, MSEC) are not permitted. A reference to a
symbol (appendix A) or set of elements (set name and a list of expressions) before it is defined is termed a
forward reference. A reference to a numeric label is not considered a forward reference.

Definition level 1 is assigned to the universal area. All symbols defined in this area are assigned a definition
level attribute of 1. All identifiers and names defined in a procedure or function and located in the universal
area are assigned a definition level of 3 or greater depending on the nested call level. Each nest of a procedure
or function call increases the definition level by 1. Symbol level definition and referencing is described at the
end of this section.

2-2 19980200 A

SUBPROGRAM AREA

The subprogram area consists of statements between the IDENT and END directives. The subprogram area can
consist of one or more user-specified memory control sections which can contain: code (code section) and
associated data, data (data section) to be shared by more than one subprogram, and common data shared be-
tween two or more separately assembled programs. These memory control sections are assigned through the
MSEC directive or by default as described in section 4.

In the assembler object file output, locations of code and data sections of a user program are non-contiguous.
However at load time, these areas are linked through the register file; the STAR loader allocates contiguous
locations for all common sections.

All assembler directives can be used in the subprogram area except the INPUT, OUTPUT, LISTING, IDENT,
and FINIS directives. Forward references to non-redefinable symbols are permitted; however, forward refer-
ences to function names, procedure names, form names and redefinable symbols are not permitted.

The subprogram area is assigned definition level 2; therefore, symbols not defined in a procedure or function
are assigned a definition level attribute of 2 unless they are declared external. Symbols defined in a subprogram
area procedure or function are assigned a definition level of 3 or greater depending on the nested call level of
the procedure or function. Each nest of a procedure or function call increases the definition ievel by 1.

The subprogram area is two pass, therefore it does not permit nested forward references because an additional
pass is required for the resolution of each nested reference.

CODE SECTION

The code section consists of the executable portion of the subprogram. Code section statements must be re-
entrant and location-independent and can contain read-only constants and instructions; external references and
relocation references are not permitted. Read-only data is better placed in the data section, although it can be
placed in the code section. When data is contained in the code section, it is not necessary to specify the start
of the data section by MSEC directive.

DATA SECTION

The data section contains information unique to the user’s program. The beginning of a data section is specified
through the MSEC directive or through default. Relocatable and external references can be used in this area.

COMMON SECTION

This section consists of data which can be shared between programs assembled separately, but loaded together.
This section is specified by the MSEC directive and contains a return address identifier. Variables, relocatable
references, and external references are permitted here; however, symbols must not be declared as entry points.

19980200 B 23

LEVELS OF SYMBOL DEFINITION

The assembler recognizes 128 levels of symbol definition: external, universal, subprogram and 125 procedure/
function call levels (table 2-1).

Symbols defined at a given level always are available at that level and all higher levels, but they cannot be
referenced from a lower level unless they are made external. Symbols outside the assembly can be declared
external through the EXTC or EXTD directives.

Within procedures, functions, or subprograms a dollar sign ($) appended to the symbol, when it is defined,
changes the definition level of the symbol. At the subprogram level, the $ lowers the definition level to 1.
When the § is used within a procedure or function (or nested procedure/function), the definition level is
lowered to 1 if the original procedure/function is called from the universal area; or it is lowered to 2 if called
from subprogram area.

Table 2-1. Symbol Levels

Level Value Meaning

1 Symbol is in universal area and available to all subsequent subprograms,
functions, and procedures.

2 Symbol is in subprogram area and available to all procedures and functions
called by the subprogram.

\Y
w

Symbol is in a function or procedure and available to all procedures
and functions called by the procedure or function.

LEVELS OF SYMBOL REFERENCE

When a symbol is referenced, the assembler always searches for the symbol at the current level. If it is not
found there, the assembler sequentially searches each lower level.

A symbol defined at both the originating call level and the current level, must have a $ appended to it when
it is referenced to return the original call level value (either the universal area or subprogram area level value).

Symbols are defined through the SET, RDEF, or EQU directives. The RDEF directive in the following example

illustrates the appended $. In this example, the symbol A is defined at the universal level, redefined at the
subprogram level, and referenced at the subprogram level.

24 19980200 A

Example

Universal [

area A RDEF — 3 ®A=3

(level 1)

Subprogram |— IDENT

area

(level 2) A RDEF 2 XA=2
B RDEF A+l #B=3--REFERENCES LEVEL 2
C RDEF = AS+1 ®C=L4--REFERENCES LEVEL 1

For a second example illustrating the use of the §, see appendix I, ASSEMBLY TIME SQUARE PROCEDURE.

19980200 A 2-5

STATEMENT STRUCTURE 3

The STAR assembler language source program consists of a sequence of symbolic machine instructions,
directives, and comment lines. Input may consist of a sequence of statements punched on 80 column cards
or entered into a source file via a terminal display console or can be resident on mass storage in binary or
source format.
The programmer can specify the begin, continuation, and end boundaries of each program statement through
an assembler supplied INPUT directive or through default values. If the starting character position is not
specified, a default value of 1 is assumed by the assembler. The assembler scans each statement as specified
by the preceding INPUT directive or by default value.
Similarly, the programmer specifies the last character position (end-of-column) of each statement. The maxi-
mum value is 256; default value is 72. If a continuation for a field is specified before the end-of-column,
the assembler scans the next line starting with default column 25 or a column specified by the INPUT
directive. Continuation is specified by use of an ampersand (&).
Assembler statements can contain up to four fields; the fields must be separated by one or more blanks:

Label

Command

Operand

Comment

Each field can be as long as required. Should the length of a single field or combination thereof exceed
2*71 field continuation must be designated by inserting an ampersand (&) in the field to be continued.

Characters outside the statement boundaries are ignored, but the entire line image is listed by the assembler.

Table 3-1 describes statement format, including field restrictions.

19980200 B 31

Format: Label, list

command, list

Table 3-1. Statement Format

list *comments

Label Field

Command Field

Operand Field

Comment Field

Starts at: Begin column

o i s s s . e e e ered

Terminated by:
Blank
End-of-Record
End Column
Format Description:
numeric label, list

Numeric label is optional.

Optional list of elements
separated by commas.

Symbols (63 characters
max).
First character must
be alphabetic

Remaining characters
must be A-Z, 09,
or underscore.

Set element references.

Symbol creation
function.

Command field deter-
mines legal elements
in list.

Starts at: First non-blank
character after Label field.

Terminated by:
Blank
+ End-of-Record

End Column

Format Description:
command,list

Command can be:
Directive

Machine instruction
mnemonic

Form name
Procedure name

Symbol creation
function

Optional list of elementary
items or expressions separ-
ated by commas.

List elements vary with
the command.

Starts at: First non-blank

character after Command
field.

Terminated by:
Blank
+ End-of-Record
End Column
Format Description:
list

Optional list is composed
of elementary items or
expressions separated by
commas.

List elements vary with
command:

For a directive, this
field provides infor-
mation required to
perform a designated
operation.

For mnemonic machine
instructions and pro-
cedures, list represents
addresses, constant
values, and expressions
to be evaluated.

Starts at: First non-blank
character after Operand
field starting with asterisk
or any field starting with
asterisk.

If the first character of any
field is an asterisk, characters
following are considered
comments.
Terminated by:
End-of-Record
End Column

Format Description:
Any ASCII character other
than & is legal as a comment.

& indicates continuation.

Unique end-of-record/line character (#1F) at the end of each source statement. This character is inserted
by the editor or card reader.

32

19980200 A

Examples
The following illustrates the use of all four fields and continuation:
L]al Leleln].]6]4]. 2] [*]s[e[n]e]e]

[=|al|e]s] [a

f
Column 25
(Columns 1-3 contain numeric and symbolic labels.)

The following statement includes a blank label field:

L |lolo| |olelclxl,]T]1]

(There is no comment field in this statement.)

The following includes a command and comment:

L Leinfo] [#]clofm[m|e[n|7]

The following illustrates only a comment:

Ll c]sl {11s] |al [clofmim|e|n]T]

As described in table 3-1, a label may consist of an optional numeric and symbolic list. If the numeric label
is not used, the symbolic list starts in the start column specified by the INPUT statement or in default
column 1.

19980200 B 33

DIRECTIVES 4

GENERAL

A programmer using the CONTROL DATA STAR Assembler directs the assembly of object code by using a
set of commands called directives. Directives control the operation of the assembler in much the same way as
machine language instructions direct the computer. Through the use of directives, a programmer can:

Define a symbol and assign a value or set of values to it for subsequent reference by the symbol.

Specify that a symbol referenced by the program being assembled is defined externally (perhaps by a
program previously assembled) or that it can be referred to by some other program.

Conditionally repeat or skip source statements.
Assign up to 255 relocatable location control counters for use by the assembler in address assignment.

Generate code to be loaded and executed on the object computer. This process includes subdivision of
each word to be generated into fields, and the assignment of values to the fields.

Identify a group of statements as a function, assign one or more names to it, and use the assigned name
as a value in an expression such that the value varies according to parameters of the function reference.

Contro! the format and content of the assembly listing.
" Terminate assembly of subprogram or group of subprograms.

Table 4-1 (at end of section 4) summarizes assembler directives. Examples illustrating the use of these directives
are provided in appendix 1.

INPUT/OUTPUT CONTROL

The following directives specify the format of assembler input and the type and format of assembler output.

19980200 A 4-1

INPUT
The INPUT directive specifies source input format to the assembler:

numeric-label INPUT pl10,p11,p12 * comments

Usage

Numeric-label is optional

pl0 Specifies starting column of input record. Default is 1; p10 must be greater than zero.
pll Specifies last column to be processed. Default is 72; p11 must be greater than pl0 plus pl2.
pl2 Specifies starting column of continuation records. Default is 25; p12 must be greater than zero.

More than one INPUT directive is allowed per assembly. This directive is permitted in the Universal area only.
Any syntax error in this statement terminates assembly.

Example

[NPUT ,30,25 *SCAMN SPECS

Start scanning at column 1, default.
Scan the entire field length of 80 columns.

Start scanning continuation records at column 25.

OUTPUT
The OUTPUT directive requests an object deck output:
numeric-label OUTPUT p30 * comment
p30 Request for a debug symbol table in the object file. If p30 has a value of 1, the debug
symbol table is included in the object deck produced by the assembler. For any other value,

the debug symbol table is not produced.

The OUTPUT directive can be used only in the universal area, and only one directive per assembly is per-
mitted. A syntax error in this statement terminates object deck creation.

Example

OUTPUT

An object deck is to be created and no Debug Symbol Table Dump is requested.

42 19980200 B

The LISTING direciive is used to request assembly listing options.
numeric-label LISTING pl4,pl5 * comments

pl4 Value of 1 requests a cross reference list, including ail address and EQU definitions and all
references that occur after the definition line, for example:

B EQU A line 1
A EQU 4 line 2
C EQU A line 3

The cross reference listing will indicate that A is defined on line 2 and referenced on lines 1
and 3. Default of pl4 # 1 indicates no cross reference.

pl5 Value of 1 specifies that warning messages are to be omitted from the listing.

Syntax errors result in selection of default values. This directive is permitted only in the universal area. Only
one LISTING directive is allowed per assembly.

Example

LISTING 1,1

A cross reference list is requested and warning messages are suppressed.

LIBP
The library file can include PROC and Function source statements and comments. Any other statements are
syntactically checked but not processed. A LIBP file must be a physical, mass storage file. Tape libraries are
not permitted.
The LIBP directive specifies library procedures and functions. A syntax error terminates this directive:
numeric-label LIBP,p13 list15 * comments
pl3 Optional; 8-character symbol specifying the source file name.
list15 List of procedures or function names separated by commas. If list15 is not used, all proce-
dures and functions on the file will be available; otherwise, only those specified will be
available. The list of procedure/function names must appear in the order in which they occur
in the LIBP file.
Up to ten library files may be specified, one per LIBP directive.

The LIBP directive is not allowed within a procedure or function definition, and must appear in the universal
area.

19980200 B 43

The following is an example of defining system parameters in a library:

LIBP File xx
PROC
GLOBALS NAME
SYSTEMS EQU "'STAR OS"
TAPESS EQU 5
ENDP

Main Program

LIBP, XX GLOBALS
GLOBALS “DEFINES SYMBOLS AT UNIVERSAL LEVEL

LISTING CONTROL

The following directives specify the format of the assembler listing.

SPACING

Selects the number of blank lines between listing lines:
numeric-label SPACING p28 * comments

l p28 Integer constant value of 0, 1, 2, or 3 indicates the number of blank lines to follow each
listing line. Default is zero.

Example
SPACING 2 #SELECTS TWO BLANK LINES

When a syntax error occurs the SPACING directive is ignored. A SPACING directive overrides any previous
SPACING directives at this level.

EJECT
| Specifies listing is to resume at the top of the next page. EJECT can be used at all levels.

numeric-label EJECT * comments

4 | 19980200 B

TITLE

Places a title of up to 64 characters at the top of all succeeding pages; it also causes a listing eject. I

numeric-label TITLE p29 *comments

p29 “character string of no more than 64 characters”

TITLE "ASSEMBLER LISTINGM %NO COMMENTS

MESSAGE

Forces a character string or string expressions (maximum 128 characters) to an output listing; it overrides any
active list control directives. |

numeric-label MESSAGE pl6 *comments

pl6 “character string or string expression” to be entered on the listing; if greater than 128
characters, the string will be right truncated.

Example

MESSAGE "ADD_PHASE_COMPLETED"

NOLIST
Suppresses a listing until a list directive is encountered.

numeric-label NOLIST *comments

LIST
Restarts output listing previously suppressed by a NOLIST directive. The normal mode of assembly is LIST.
This directive does not alter the DETAIL mode. When DETAIL mode is off, statements processed as part of

procedures and functions are not listed.

numeric-label LIST *comments

19980200 B 45

DETAIL

DETAIL is used only at expansion time not at definition time. At call time, this directive causes a listing
of all statements processed as part of procedures or functions. A DETAIL directive processed at any level
initiates the listing for the current level and all lower levels, until a BRIEF directive is encountered. DETAIL
does not initiate the LIST mode.

numeric-label DETAIL *comments

If a LIBP directive is encountered while in DETAIL mode, the Procedure or Function definitions contained
in the specified file are not listed.

If at level 4 DETAIL is encountered and at level 5 BRIEF is encountered, only level 4 code will be expanded.
If again at level 6 DETAIL is encountered, then level 6 code is expanded.

Example
INPUT 1,80
OUuTPUT
00 000000000032 B RDEF 50
IDENT
DETAIL
FUNC NUMBER
SQUARE NAME
AGAIN NAME
RESULT RDEF NUMBER{1}*NUMBER{1}
ENDP RESULT
00 000000000019 B RDEF - 25
] GEN SQUARE (B)
00 000000000271 RESULT RDEF NUMBER{1}*NUMBER{1}
01 000000000000 F 00000000 00000271 ENDP RESULT
00 000000000032 c ROEF 8%
GEN AGAINI(C)
00 0000000009C4 RESULT RDEF NUMBER{1}*NUMBER{1}
04 000000000040 F 00000000 000009Ck ENDP RESULT
END

See Example 5, Appendix I for an assembly of the above example without the DETAIL directive.

BRIEF

Prevents the listing of statements processed as part of procedures or functions (turns off DETAIL mode). The
| BRIEF directive does not initiate the LIST mode. The default listing mode is BRIEF.

numeric-label BRIEF *comments

46 ' 19980200 B

ASSEMBLY CONTROL

v o

The following directives define program boundaries to the assembier:

IDENT (used at level 1 only)
END (used at level 2 only)
FINIS (used at level 1 only)

IDENT and END directives specify the beginning and end of a subprogram; FINIS specifies the end of source
statements.

IDENT
numeric-label,symbol IDENT *comments
symbol Optional name of object deck. This symbol is truncated to the first eight characters when

the object deck is produced. The symbol is not defined (as a label) as a result of this state-
ment.

END
numeric-label END pl *comments
pl Optional address identifier indicating a transfer address for object deck execution. This
identifier must have appeared previously as an entry point name in an ENTRY directive.
{See SUBPROGRAM LINKING.) For an example of the use of this symbol, see Appendix I,
example 8.
This statement can be followed by another Universal Area and Subprogram area. This provides the user with

twe separate assemblies with one deck setup. However, the user must ensure that only one Universal Area
includes an OUTPUT directive and that the last SUBPROGRAM area ends with a FINIS directive.

FINIS
numeric-label FINIS *comments

FINIS terminates an assembly and must appear in the Universal level. If FINIS is encountered in a subprogram I
area, the assembly aborts in pass 1.

CONDITIONAL ASSEMBLY

The user can specify the conditions which must be satisfied before a source statement or group of source
statements can be assembled and the number of times these statements are to be processed.

19980200 B 47

RPT

Specifies the number of times a statement or delimited group of source statements, following the directive,
are to be processed:

numeric-label,symbol RPT,p26 p27 *comments

symbol

p26

p27

Example

Optional variable identifier, or expression evaluating to a variable identifier containing cur-
rent repetition count. This identifier can be referenced and altered by the user. The initial
value is always 1; it is incremented by 1 with each repetition of the succeeding source state-
ments. Symbols can be re-used as shown in example 5.

Number of times succeeding statements are to be processed; pl must be an integer constant
or a variable or expression which evaluates to an integer constant. If the value of p26 is zero
or a negative, the RPT statement skips to the statement following the numeric label p27;
p26 cannot be a forward reference (a symbol or set element referenced before it is defined).
The value assigned to p26 upon encountering the RPT loop cannot be changed. See example
2 below.

Forward numeric label of the last statement in the RPT loop; p27 must be an integer
constant or a varaible or expression which evaluates to an integer constant, and not a forward
reference. If p27 is negative or zero, an error message is given and the directive is ignored.
Loop can be nested and have common termination statements (see example 3).

Some directives contained in the following examples are described later in this section.

RPT, 8 1
RDEF A+l
GEN A

The above repeat is equivalent to:

1. A
A
1
A
A
A
A

4-8

RDEF
GEN
RDEF
GEN
RDEF
GEN
RDEF
GEN

OO0 OO - NN

19980200 B

ob Julbu

oel

Gudotia
1y

INPYT

JITPUT

IJENT
ROEF
RPT,A

1,80

19

1

Jl
i
J1
g1
ul

vduuldluuadli
0000601560040
SudduglIOU0BE
Jou0duiduadcd
sU0G0Ua00100

db uulduvvduuilbo

Juduoulu
JuUuGouuu
0000G0Guy
TR IVRIRIRVETRY
(FRVRTRER VRTRH

ububobut
bududuud
GiulddcCu3
U0uulduusg
Gudodius

e

RILF
GEN

U1
Ji
T
gl
Jl

you0U0Uldbig0
Jd00uulaulsu
RIRVETIT D N T BT
§00300)a0204
Ugubiioidu2au

MMM ATm T

Jualluiu
TRVATRTRIRTRVRY!
FRTRIRURTRVRVEY
VRV R TR RVRTRY)
gdaoubduu

vBuldadisp
gbidoduuy
JUudulug
Guoddulbs
bi0adouUun

3.

Nested RPT’s.

19980200 A

U1 00000u)00000 F JU0L0J00 00000061 "

91 000000000040 F
01 600003)00080 F
01 o00s043000C0 F
01 vdG000)J0100 F

- 91 000000)00146 F

81 00004DI0CICE F
81 900000J00200 F
91 0000001232240 F
61 000630)00280 F
81 500000330250 F

01 000000)00340 F
8% u00040)0380 F
04 0000003303C0 F
01 006000J0G400 F
94 06000030440 F
(]
01 4u0000)304C0 F
31 000003304500 F
01 600000300540 F
81 000083)00580 F
91 V000003430500 F
J0el
04 0000033100640 F
41 U0000DU)DJGBE F
01 000000J006C0 F
01 u0000B1)00705 F
81 GUODODOIQO740 F
8
01 000u0dIIB73D F
01 0dvuddlausto F
01 000000)0G840 F
91 000u00)00880 F
(39 gguunulaauco F

/1] 6
DES 11

000000v0 8000L00GL
204900000 00008001
0006080V v00d0G02
00004000 00GOUGOL
60000000 60000003
] i

30000000 00420004
00000000 GOGDO00L
009000ud 0000005
00003000 00DG300DY
00000duu 00003006

[1
00000000 00630607
30003000 000Ju00L
0000Juds 0udG0008
00600006 00000001
26062000 00000009

00003000 00wWO0UGA
600000600 0G00D0RJOL
000000690 06DDO00B
60ubo0o0D 00OOD00R
0000608060 00006001
v v
800060000 uOOUVOu2
00000400 GoouoOO2
00J0Gd300 UC00UOG3
000030uG Gud3BOG2
000008L0 DOBudLUY

60J0300U 00000005
000Goy0D 00000002
000GDJ00 00GUO00GE
004GJuss GuUd00L2
00000008 bOOOOGLT7

Yl UUUU0SIOLETT F T UUTDIGG 00000006

31 00uG9J)I0LELD F
01 0U0U0JIULESD F
01 GO00AWIGLESH F
91 G0G0GdIDLIFID F
U1 GO00UJIIGLFWD F
- 111 80 F
01 030000)01FCL F
01 u0BUGGI02000 F
U1 000003302040 F
61 000000J02080 F
. 04-000003)02850- F

00000000 0u00000D
600600GG 000JJ00E
00003030 00330007
00ubudLD QULJOOLE
00000000 Gadduddg

[ICLIT

300GJUs0 00000069
0UUGouuG DJAVDATCE
GDJG0O0Gu 0000UUUA
00000000 00udddup
20003040 -08300008

NIt
aUT2uT
LIZNT
A RPI,6 1
5 RPT,11 1

1,80

1 GeN AsB

2

i

49

w >

5
C

EQU
EOU

RPT,A.GT.B

RES, 64
GEN

v

6L4*12

7,1

The above repeat acts as a skip-to statement:

C

gl
ul
g1
U1

Ji
wl
i1
J1
gl

g1
gl
01
gl
vl
dl

GOTO

GEN

vdudiudlibiuu
PR RVRVEVIND VR (R VRS
vOlucouduuidsdl
VJuulbdlasulii
udi00d)udlad
Uuduuuldulse
vuoduuloualel
sduduuliuadd
vidduuuliidlaeu

JUUuvwdJluudsi
wdouuuliuaziu
Yluuddluuldui
Jubuudidudygu
JOuuwudliiu3su
yuldaoudlau3cu

MMM

MMM ™

7,7

Jii
Jdulbuuuw
Juoubibuul
vouluduy
Juddluaduudu
vudluvuwdu
0Oduuuuuu
VUGLUUUU
Gluibuuu
o0dLJuoLg

ut?l
TR EVIVRTRVEVIY,
VGuuuduu
Uddtbuuud
Uduidliu
vduLvduud
dddudaud

because A is not greater than B.

146
Vuuduuwil
buesviud
vuouuidui 3
vivuuduus
JUuuduib
Juudlduub
wludlduu?
Juuuidula
Guuuluug
UuuudiUdUULA

Ui

Juduuuul
Guuluubag
CubuduLg
UGuuuillye
vuuudlly
buuuuius

The GOTO directive requests a conditional skip of source statements:

410

numeric-label

p9

GOTO,p9

list14

*comments

Ll =

INPUT

QJTPUT
IDENT
RPT,13 1

.
oo

a

R:’T,': 1

GEN

oL N
ENJ

A¥ i

A

Must be symbol, set reference or expression with no forward references and must evaluate
to an integer constant. p9 can specify the list elements to be selected; or it can be in the
form of logical expressions, the validity of which determines whether a skip is executed. If
true, p9 = 1 the first element is selected. If false p9 = 0 the GOTO is ignored. If p9 is
omitted, list element 1 is selected; if p9 is a negative value or if the comma is used but p9
is blank, the GOTO is ignored. If the value of p9 exceeds the number of list elements, the
last list element is selected.

19980200 B

list14 One or more elements indicating a forward numeric label to which the GOTO could skip. Each
list element must evaluate to an integer constant value with no forward references.

Examples

The following examples contain directives described later in this section

LA EQU

B EQU
GOTO,B.GT.A+A

GEN

2 GEN

NN

B

In this example pl is an expression the result of which is false; therefore, the next statement assembled

after the GOTO is:

GEN A

2. In the following example the source for (a) and (b) was identical. However in (b) the statement “A

RDEF 1” was not assembled.

a)

00 duudGGoOQUOY
: 00 O04UbovoDduLl
d1 000080)00000 F 434F2duD 41204953

01 000G0VYI0OD4D F 204F5u54 49uF4ELL
G1 600J0ul00080 F 4C

b)

00 UuU000GuOU00Y
01 0004000J0G000 F w34FeD4D 41204953

G1 Q00000Ul00040 F 204F5054 «94F4ELL
d1 000GO0Q)30080 F 4

19980200 B

INPJT 1,80

QUTAUT
IOcNT

A ROZF 3
50T, 19

A ROEF 1
13 Gz “COMMA IS JPTIDNAL™

END

INPJT 1,890

IIT20T
IOeNT
A ROZF 9
GOTO 13
13 Gz “COMHMA IS JPTIDNAL"™
END

411

3. GOTO 5

.

.

7,A RDEF 3+A
5,A RDEF Atl

p9 is missing; therefore, the first list element is selected. The next statement assembled after the GOTO
directive is:)

5,A RDEF A+h
4. The same muneric labels can be re-used provided they are not within the range of a single GOTO
operation.
c EQU 2
D EQU 1
B EQU 2
A EQU 6
GOTO,A. GT.B+D 2
1 GEN 1
2 GEN 2
GOTO,C. GT.D 2
1 GEN 1
2 GEN 2
results in: |
IAPJT 1,30
JJTRUT
LJINI
du udududuvuule 9 ZdJ 2
Jl uvuvusulbiddduul J -dJ i o
- ol UJualblaovitue B L 2
GG wouvuluudiuvo A 2dJ 6
Je o 1 iv oUTOyAebl o3¢0 2
01 0duludionldbu F UOdGLduulb vuwuuddud P4 ac N 2
JeS 1 U 0Ji0yCeGTWau 2
Ul vdduvuloviwd F Jdvuiduuu vlbuduluy 1 .
eNJ

RPT AND GOTO PROCESSING

In functions and procedures, RPT and GOTO directives are processed at call time rather than at definition
time.

RPT and GOTO ranges must be in the same level as the RPT and GOTO directives.

If a RPT directive is within the range of another RPT directive, the range of the inner RPT must be totally
within the range of the outer RPT. :

412 : 19980200 B

If GOTO directives are within the range of RPT, the GOTO can branch outside the range of the RPT. In this
case, the RPT is terminated, but the repeat symbol maintains its current value for later use.

An RPT directive must not be the last statement of an RPT range.

SUBPROGRAM LINKING

Subprograms are linked through the directive entry (ENTRY) and external data and code (EXTD and EXTC).
The user can reference, with a program, an address identifier defined in another program.

Since the programs might be assembled at different times, the address values of these symbols cannot be
known at assembly time; therefore, certain symbols are declared as entry or external at assembly time. This
declaration is noted by the assembler and placed in the object code. At load time, the loader must interpret
entries and externals.

ENTRY

An entry is a symbol (address identifier) defined in the program which declares the symbol to be an entry
point. It also can be referenced as an external from another program. An address identifier or variable

identifier assigned a value with the EQU directive is defined as an entry through the ENTRY directive. This |
symbol is truncated to 8 characters.

numeric-label ENTRY list4 *comments
list4 One or more address identifiers or variable identifiers (defined by EQU directives) that are
made available outside the subprogram and defined at the program level. This list can contain

forward references.

This directive cannot be used in the universal area (level 1).

Exarhple
QST IDENT
EMTRY SQRT ¥DECLARED AS ENTRY
SQRT EX $41%64,2 ¥THIS 1S ENTRY POINT FOR SQRT
EMD
FINIS

When a symbol is declared to be an entry, the symbol must appear in the label field of some statement
within the program. The EX instruction in this example is a machine instruction, described in appendix C.

19980200 B 413

EXTERNALS

An external is a symbol (address identifier) referenced in a program which declares the symbol external, but
which is defined (given an address via ENTRY directive) in a separate program. The loader links all externals
and entries; after all routines are loaded, the loader places the virtual address of the symbol declared as an
entry into every occurrence of that symbol provided in other subprograms declaring it as an external. The
assembler provides two external directives:

EXTD

EXTC

Declares data address identifiers not defined within the subprogram in which they are
referenced, but defined in a data memory section of some other subprogram.

Performs the same function as the EXTD directive except the external reference must be
defined in the code memory section of some other subprogram.

The format descriptions for the EXTD and EXTC directives are similar; the general format for both is shown
below, and exceptions are noted. The braces { } specify that either of the enclosed can be selected.

numeric-label list6 ‘

list6

p32
(EXTD)

p32
(EXTC)

list25

EXTD . *

EXTC },p32 list25 comments

Optional list consisting of one or more symbols separated by commas. Each symbol becomes
an address identifier for the first full word generated by the directive. If data generation is
not indicated, the assembler ignores these symbols and warning messages appear on the listing.

Optional integer constant, or an expression or variable which evaluates to an integer constant.
If pl evaluates to integer constant zero or blank (null), a full word (aligned to a full word
boundary) is generated for each symbol in list25. After loading, this word contains the address
of a designated data entry point. If p32 evaluates to any other value, no data is generated,
and any symbols in list6 are ignored. The length field is not altered by the loader and may
be preset during assembly (see FORM).

Example
DESC FORM 16,48
EXTD, 1 A “NO WORD GENERATED
B DESC 12,A

Integer constant or expression or variable that evaluates to integer constant zero or blank (null),
two full words (aligned to full word boundaries) are generated for each symbol in list25, after
loading, these words will contain addresses of the designated code entry point (first word) and
its associated data area (second word). If other than zero or blank (null) no data is generated
and symbols are ignored.

One or more symbols external to the program, separated by commas, and which are truncated
to 8 characters.

EXTD and EXTC directives must not appear in a code memory section. For referencing external code or data
address identifiers, only two operators are permitted + and -.

4-14

19980200 B

Example

EXTD: _———no data generation

“~

EXTD, 1

GEN CA+6Z”5)
legal reference since operation is addition

EXTC:

i. The EXTC and ENTRY directives permit reference of an address identifier defined in another sub-
program. (Machine instructions used in this example, EX and BSAVE, are described in appendix C.)

“*SUBPROGRAM 1

R _63 RDEF #63%64 ®S/R ADDRESS LOADED
RTN RDEF #1A%6hL “RETURN REGISTER
DATA RDEF #1E*64 “DATA BASE (SUPPLIED BY LOADER)
IDENT
A EXTC SQRT “DECLARES SQRT EXTERNAL
MSEC 2 X®CODE MSEC ADDRESS OF SQRT

LOD DATA,R 63
BSAVE RTN,R_63
END
XSUBPROGRAM 2
ABC IDENT
ENTRY SQRT XDECLARES SQRT AN ENTRY
MSEC 2
SQRT EX

BSAVE ,RETURN #RETURN TO CALLER
END

FINIS
2. A EXTC B,C,D,E

Designates symbols B, C, D and E as external code address identifiers. Two full words are generated for
each external symbol. A is defined as an address identifier pointing to the first full word generated.

19980200 A 415

SYMBOL AND SET DEFINITION, AND REFERENCING

Sets are normally defined through the use of the SET directive; however, they can be defined by the follow-
ing statements and directives:

ENDP
EXITP

NAME
Procedure Call

Function Call

SET

Return a subset for a function call value

Can define up to 4 sets

Can define up to 2 sets

The SET directive assigns the label field symbol as the set name for a list of expressions, set names, set ele-
ment references, or subsets. (Set element references and subsets are discussed later in this section.)

numeric-label list23

SET list24 *comment

list23 One or more variable identifiers expressions, set element references or set names separated by
commas. The elements of this list are the set names for list24. If the list23 set name was defined
previously by a SET or RDEF directive, the name is redefined as a new set list.

list24 Set elements separated by commas. It can include expressions, set names symbols, set element
references, or subsets. Elements of list24 can include repetition and positional operators. Repe-
tition operators can be nested; positional operators cannot. A positional operator can appear
within a repetition if its value is 1. List24 elements assume the value defined during SET direc-
tive processing. To change the value of an element, the user must redefine the set list element.
Also, the number of list24 elements can be extended by redefining the entire set list with a
SET directive.

An empty list24 element is specified by two adjacent commas. Zero is the implied value and
the mode of the element is null.

I Symbols in list24 become copies of the original symbols. If a symbol name in list24 is redefined or changed
in a statement following the set statement, the set list element is not

VEVRRVEVEVEI RVRVEVEVIVRVECY |
UU vuuulbuduuius

vl Uuldbuuduvlley

gl vUuUuwddlduoos fF UullJddul UuuudUuAa
Jyl vuuiguludiuwy F UuOGIJUG vlbuouwuls
vl uuuuvugldilulsi F Juuilduul Ducudula
31 GUudugleuloi F JuulUduuu Uvvuluwo
4-1

r OO =

| AR

changed.
INPJT 1,80
JIT2JT
LJaaNT
8 L 1
RJz* 5 o
adl’ Q’ﬂ
RJIZ*T 2l
van ecbhiMes
Ge SYM(ATTI(GULZ,1))
>eT 1,01, 02,03232
G 28y}

19980200 B

Examples

The following examples illustrate the rules for positional operators and null elements in set definition.

POSITIONAL OPERATOR

When a positional operator () is used, the value to the left of the operator specifies the set position assigned
to the value to the right of the operator. All previous set positions between that occupied by the previously
specified set element and the value to the left of the positional operator are null positions.

/— list-1 /— mnemonic //— list-2

A SET 5 , hi2 , 3
defines a set: 1st element/ indicates the 4th element is the value 2
S, [null] , [null} ,2,3

This is equivalent to:

A SET 210023

where A [2] and A [3] are nulls.

A SET 1,3:[4,3:51,2

defines a set:

1, [null] , [4, [null] ,5] ,2

where: A1l =1
A [2] = null
A[3,1] = 4
A3] =1 A[3,2] = nul
A[33] = 5
A4 = 2

Positional operators must appear in ascending order, left to right.

A SET 3:2,1=6 is illegal, and illegal positional operator is ignored by the
assembler.

19980200 B 4-17

NULL ELEMENTS

A null element can be specified by use of a positional operator or by double commas:

1. (specifies null)7
A SET ,2,03
same as: A SET 2:2,4:3

A [1], A [3] and A [5] are nulls and return a value of zero. The integers in [] specify the positional
location of the elements referenced. Referencing elements A [2] and A [4] returns the values 2 and 3,
respectively. Since A [5] is outside of the set a null is returned.

INPJT 1,80
QUTPUT
LOSNT

8 scT i

92335445
01 000003)0ud00 000500600 0000J0uL GZIN 8[11,8{2],3031,3{41,8[51,8l6l,8[1a]

G00T0Judo U0LadUL2
00000000 0GGOOWG3
600000GuUG 0000000
00G0DGu0 wuDBOLDS

000000006 GOOUOWGO
00003005 uw”ﬁw} B;[.6] z.md'B[IO] are null values
END

U1 UUUUU00IU0UGD
01 000000300080
g1 00G0O0UIDJ00CDH
01 0d0000la0400
01 GO00O000JDJ014l
01 000003)au18d

Bt B i B it) |

REPETITION

To specify value, set name, etc., in succeeding positions within a set list, the user can specify a repetition
factor for that element. Repetition is requested by an integer or an expression or variable which evaluates to
an intcger constant (specifying the number of times the element must be repeated) followed by the elements
in parentheses. '

A SET 5,3(2),2
is equivalent to:
A SET 5,2,2,2,2
Repetition can also be specified for subelements of an element in a set list.

A SET 5,2(3,4),2

is equivalent to:

A SET 5,3,4,3,4,2
A SET 2(11,21,3)
~ - ’ Ly) < 4

418 19980200 B

[1,2] are subelements of set A.

REFERENCING SETS
A set reference can appear in label, command, or operand field lists and must not be a forward reference.

A set reference consists of a set name and the position of the desired set element enclosed in brackets [].
Should the user specify

D SET A,B,C
and desire the value “B”, he would reference the set as follows:
GEN D[2]
because B is the second element of set D.
Should the user desire the entire set then the set reference would be written as:
GEN .EWM.D which returns A
B
C
A reference such as:
GEN D

results in an error message

XX ILLEGAL DATA IN FORM/GEN IN OPERAND FIELD

ELEMENT AND SUB-ELEMENT REFERENCING
A set element and sub-element is referenced by writing the set name with following expressions that specify
the ordinal location of the element or sub-element. A set element reference can be written in the field list

portion of the label, command, or operand of any statement.

The elements of a set can consist of many sub-elements; which are specified as an element by enclosing
them in brackets []. e.g.

B SET 5, 16,7]

19980200 A 419

The name of the particular set followed by expressions locate the desired elements or sub-elements.
set-name [expressions]
Sub-elements [6,7] comprise the second element of set B. These sub-elements can be referenced as follows:

GEN .ELM. B [2] returns 6,7 - to obtain 6 and 7 .ELM. must preceed the element reference
GEN B [2,1] returns 6 - set B, element 2, sub-element 1
GEN B [2,2] returns 7 - set B, element 2, sub-element 2

The following would generate an error message, “ILLEGAL USE OF .ELM. OPERATOR IN OPERAND FIELD

GEN EIM. B

ASSIGNMENT

Values are assigned to a symbol by the Redefine (RDEF) and Equivalent (EQU) directives.

RDEF

Assigns the value and attributes of an operand field expression to the symbols specified in the label field. A
symbol initially defined by this directive may be redefined using the same directive. Symbols defined by RDEF
may not be forward referenced.

numeric-label list5 RDEF p3 *comments

list5 One or more variable identifiers, set element references, or set names separated by commas,
that assume the value and attributes of p3.

p3 Any expression; p3 cannot be a set name. p3 cannot contain a forward reference to a statement
that contains a forward reference. p3 cannot be a forward reference to a redefinable quantity
(another RDEF or SET element).

A RDEF B
J
I
B RDEF C Not Permitted
|
I
C RDEF 1

If p3 contains a forward reference, the list symbol cannot be used in a statement that could
affect the location counter. p3 cannot reference symbols declared external in EXTC or EXTD
directives. e.g.:

A RDEF B
B RDEF 1
RES #ASOL76h ‘RES IS DESCRIBED UNDER

as wr

*LOCATION CONTROL

4-20 19980200 B

Examples
A

B

m

E[2]

EQU

RDEF

RDEF

RDEF

RDEF

wn
m
—

RDEF

RDEF

A+3

C+2

A has integer constant value of 15.

B has address identifier value equal to the current
location counter.

C has integer constant value 18.

C has integer constant value 20.

Redefines element 2 with a value of 6.

Redefines set E to a variable identifier.

EQU assigns the value and attributes of an operand field constants, expression or variable to the symbols
specified in the label field. A symbol defined by EQU cannot be redefined. Symbols defined by EQU may not
be forward referenced.

numeric-label,list5

list5

19980200 B

EQU p3

*comments

One or more variable identifiers or single set element references separated by commas that
take on the value and attributes of p3. List elements can be defined as entry points; how-
ever, in this directive, they must be defined as hexadecimal constants. If not a hexidecimal

constant a mode error occurs.

List elements cannot be redefined.

Any expression; p3 cannot be a set name or a redefinable quantity that is not yet defined
and cannot contain a forward reference to a statement that contains a forward reference.

421

A EQU B
-]
B EQU C
I J
C EQU 1
A EQU B
B EQU 1

Not Permitted

} Permitted (except in universal area)

If p3 contains a forward reference, the list symbol cannot be used in a statement that affects

location counting.

p3 can contain references to symbols declared external with the EXTC or EXTD directives.

Examples

1.

mw >0 0O

>

422

EQU
EQU
EQU
EQU
EQU

EQU
RDEF

SET
EQU

SET
GEN

RDEF
GEN

1
2

D.LT.CC + 2O

A+E
3

10
12

Error:

“EQUIVALENT TO B EQU &

A-DOUBLY DEFINED

ILLEGAL OPERAND OR PARAMETER

XGENERATES 2 AND 5

“GENERATES 10

19980200 B

DATA GENERATION

Data generating directives define data format and generate information to be placed in the object deck.

FORM

Defines a data generating format that specifies alignment and field size in bits.

numeric-label list7 FORM,p4 list8 *comments

list7

p4

list8

One or more symbols separated by commas. Each symbol becomes a name used to reference
the form.

Variable or expression resulting in an integer constant representing the bit alignment for the
current location counter when the form is referenced. Forward references are not permitted.
If p4 is not included, a value of 1 is assumed. Any value is acceptable; however, 1, 8, 16,
32, 64, 128, and 256, and 512 are recommended.

List of expressions, variables or integer constants, separated by commas. The value specifies
the field size of the form in bits. The value must evaluate to or be an integer constant with
no forward references. The fields specified in list8 can be repeated by using the repetition
operator; repetition can be nested. Null elements are not permitted. These values specify field
size in bits and can be any value.

Defining a symbol to be a form name does not restrict the use of that symbol as an address or variable

identifier.

Example
WORD FORM 24 1 field, 24 bits long, aligned to a bit boundary
WORD?2 FORM, 64 L8 1 field 48 bits aligned to a full word boundary
2,CHARS FORM, 8 8,8,8, 8 4 fields, each 8 bits aligned to a byte boundary
I SET 8,8,u48 Defines 1 as a set consisting of [8,8,48].
AA, INST FORM, bk LJELM, I 3 fields, aligned to a 64-bit boundary. The form

has two names.

A FORM, 32 4(8,16) 8 fields, aligned to a %-word boundary

is equivalent to:

A FORM,32 8,16,8,16,8,16,8,16
B FORM,64%*512 1,15,48 3 fields, aligned to a 512-word page boundary
N —
(virtual page size)
DESCRIPTOR FORM, 64 16,48 length (0-15) and address (1648) of vector

descriptor

19980200 B 4-23

FORM REFERENCING

A form reference gencrates data starting at the first bit after alignment is performed. The data is stored in the
memory section containing the reference. Form references must not appear in a function or a procedure called
via a function call.

numeric-label list9 form-name list10 *comments

list9 Address identifiers, separated by commas; they assume the value of the current location
counter after alignment is performed.

form-name Name of the form to be referenced.

list10 List of expressions, separated by commas. The value of each expression is placed into the
field of the form. The position of the expression in list10 specifies the field destination for
the value. The positional operator and repetition operator can be used with the expressions
in list10. If list10 is longer than the number of fields in the form, the form fields are
repeated, but alignment is not repeated.

Examples
’/——Word Boundary
WORD FORM, b4 16,48
A GEN 24 <_’
W ORD 1,A=- y—
Call

Generates a full word aligned to a word boundary with the value 1, right justified and zero-filled, in bits
0 through 15; and the address of A right justified and zero-filled, in bits 16 through 63.

LABEL WORD "AB", @

Generates a full word with characters “AB” in bits 0 through 15 and the value of the current location
counter (requested by use of @) after alignment. The value @ is right justified, zero-filled in bits 16
through 63.

EXTD, 1 A “DEFINE A AS EXTERNAL WITHOUT
GENERATING DATA

D WORD 3,A ®SET BITS 0-15 WITH 3 AND LOADER

WILL SUPPLY EXTERNAL DATA ADDRESS
OF A IMN BITS 16 TO 63,

424 19980200 B

Byte Boundary

CHAR FORM, 8 g
Bl RDEF "Bty J
CHAR 2("A",B1),6:1}

Generates a byte string aligned to a byte boundary. The first byte contains “A”, the second, “B”, the
third “A”, and the fourth “B”. Contents of the fifth byte is zero, and the sixth contains the value 1
right justified, zero-filled.

CHAR FORM, 8 8
I SET 2("A",B1),6:1
CHAR VELM. 1 '

This example is equivalent to the immediately preceding example.

GEN

Generates data starting at the next aligned bit; data is stored in the memory section containing the directive.
The GEN directive must not appear in a function or a procedure called by a function call or in the universal
area of a program.

numeric-label list12 GEN,p4,p8 listl3 *comments

list12 Address identifiers, separated by commas. They assume value of the current location counter
after alignment is performed.

p4 Must be an integer constant or a variable or expression which evaluates to an integer constant
with no forward references; specifies alignment in the current location counter. Alignment is
performed prior to data generation and applies only to the first expression in list13, p4 must
be greater than zero and without forward reference. The default value is 1.

p8 Integer constant or a variable or expression which evaluates to an integer constant specifying
the number of bits to be reserved for each expression in list13. It must be greater than zero
and without forward reference. If p8 is not included, the mode and value size of each expres-
sion list13 specifies the number of bits to be reserved.

list13 List of expressions, separated by commas. The value of each expression is the data generated.
The repetition operator can be used with expression in list]3.

The rules for data generation specified in appendix A (see CONSTANTS) are applicable to the GEN directive.

19980200 B 4-25

Examples

4.26

A GEN, 6L -5

Generates a full word aligned to a full word boundary. Bits O through 63 contain the value -5 with sign
extended.

B GEN, , 48 A
Generates 48 bits with bit alignment (specified by ,,). Bits O through 47 contain the address of A.

C RDEF "ABCDE"
GEN, 32 5,C,P"32"

Generates a full word aligned to a half-word boundary with the value 5 in bits 0 through 63; also gen-
erates a S-character byte string containing “ABCDE” and a 2-character byte string containing the signed
packed constant P“32”.

GEN D

Generates a full word with bit alignment (default size specification). Bits O through 15 contain zero; bits
16 through 63 contain the address of D.

2,D GEN B"10010"

Generates (5 bits) 10010 aligned to a bit boundary.

GEN,32,64%10 [r-gn

Generates 10 full words aligned to a half-word boundary; they contain -2 in binary integer form with sign
extension.

GEM, 64,128 10(B"10"™)

Generates ten 128-bit fields with the first field aligned to a full word boundary. Bit 126 of each field
will be set.

19980200 A

ADDRESS AND LOCATION CONTROL

The code and data sections of an assembler subprogram are assigned to specific virtual memory areas. Code or data
can occur in any memory section; however, externals are not allowed in MSEC code and entry points are illegal in a
common MSEC. Code and data are assigned explicitly through the MSEC directive. Absence of an MSEC directive
implicitly assigns code and data to the default data memory section IMEM. (IMEM is a reserved symbol assigned to
a default MSEC.)

Each memory section has a unique relocatable location counter. The loader (not the programmer) determines

the memory section where code or data is to be stored. Each location has the same relocation as the memory
control that defined the location counter. Location counters are bit incremented; all memory addresses, therefore,
are bit addresses.

An ordinal number is reserved for each location counter (each MSEC) sequentially in the order of memory
control section definition. The STAR assembler permits up to 255 control sections (ordinals) in

any combination. Ordinal 1 is reserved for the default IMEM, created when an IDENT statement is encountered.
Any subprogram can use one or more memory sections; however, only one location counter can be active at

any one time. The current location counter is designated by the last MSEC, ORG, EORG directive, or the
default MSEC.

All address identifiers derive their value from the currently active counter and take on the same relocation as
the current counter. The value of the current location counter can be altered by the following statements which
can also define address identifiers:

GEN directive reference

RES directive reference

ORG directive reference

Procedure reference

Form directive reference

Machine Instructions
All data generated is stored in the currently active memory section. The following statements cause data
generation:

GEN directive reference

FORM directive reference

Procedure reference (unless called from a function)

Machine instructions
The assembler interprets a reference to a memory control section name as a reference to the current value of

its location counter. Use of @ (commercial “at”) returns the value of the currently active location counter.
The following example illustrates explicit specification of a memory section on a typical assembler printout.

19980200 A 4-27

J2 0%ungiagRod

I JsLudeidii o0 A
uT WdUCCiCE1040 B
3U034000.01088 ¢
DU OG0C900032C14 N
0C §.0405e03743 PSP
60 3.9590333560 VITAL
o0 §.806030680 RTRN
32 000600500007 F BEWCSGICH 30533JG31 COMMENGE
32 33525000006 F 78400361
32 400030066067 H 28420014
02 400400000080 F_ DFGC0J45 G0uldCu2
Specifies location Specifies boundary,

MSEC counter (Full, Half, Character,
with an (address Bit)

ordinal counter)
of 2

DEFAULT MSEC

IDENT

MSEC 2
ENTRY START
EQU #4T %64
EQU #41%66
EQU #42%64
QU 2:

EQU #10%64
EQU #15%64
EQU #1A*64
X A,1
RTOR 4,8
ELEN C,N

« ®n %

»
.
-

THESZ REGISTERS CONTAIN

SOURC:I ELEMENTS

CONTAINS RESULT VECTOR DESCRIPTOR
LENGT{ OF RESULT VECTOR *“C"

*

*%% CNTRY SEQ SEE APPENDIX K
-
VALUZ 1 SOURCE

TRANSAITS VALUE 1 TO B SOURCE
VALUE 20 ENTERED INTO LENGTH PORTION OF C DESC.

INTERVAL 4,3,C *CRZIATES VECTOR C

The default MSEC is aligned to a double-word boundary and identified as IMEM. IMEM is classed as a data
MSEC with an ordinal of 01 and cannot include monitor mode instructions.

Note: MSECs following the first MSEC 1 will not align to a boundary larger than double word even when

specifically requested.

Example INPUT

OUTPUT
IDENT
MSEC 1
MSEC 1

GEN.64*512 10

T

The last instruction tries to align
to a page boundary, but it doesn’t work

4-28

19980200 B

MSEC

This memory section directive defines a control section and makes it current. The MSEC directive can be used
only in subprogram areas and in procedures not called by functions.

numeric-label list17 MSEC pl8,p19 *comments

list17 Optional address identifier used to reference the memory section. The current value of the
memory counter is returned upon reference. The address identifier on a MSEC 3 will become
the name of the common block.

pl8 Optional integer constant or variable or expression which evaluates to integer constant 1, 2,
or 3 specifying the kind of control section.
1 Data MSEC
2 Code MSEC
3 Common data MSEC

Default is 1.

pl9 Optional integer constant or variable or expression which evaluates to an integer constant
indicating whether monitor instructions are permitted in the memory section.

1 Monitor instructions permitted

#1 Monitor instructions not permitted

Default is monitor instructions not permitted.

2

Multiple code memory sections within the same program area are concatenated by ascending ordinal number
to form one memory section. Each memory section is aligned on a word boundary after concatention. The
same is true for multiple data memory sections.

The use of multiple common memory sections within one subprogram area requires a unique address identifier
list17 for each common MSEC. |

Examples

L. A MSEC

Defines A as the name of a data memory section (default for p18 is data). Monitor instructions are not
permitted (default for p19).

2. A MSEC 1 * DATA MSEC
B MSEC 2,1 * CODE MSEC WITH MOMITOR INSTRUCTIONS
C MSEC 3 * COMMON MSEC
D MSEC & * WARNING MESSAGE - THERE IS NO 4 OPTION TO P18--¢

DATA MSEC IS DEFINED VIA DEFAULT

19980200 B 4-29

3. The following example demonstrates a means of communicating with MSEC COMMON.

INPUT 1,80
OUTPUT
| DATA BASE EQU #1E¥6L

R_C_BASE EQU #20%64

c1 EQU #21%64

T1 EQU #22%64

T2 EQU #23%64
IDENT
MSEC 1 ¥DATA MSEC

C_BASE EXTD COMMON ¥LOADER WILL FILL WITH

B ADDRESS OF COMMON BLK
MSEC 2 *CODE MSEC
ENTRY START

| START LOD DATA_BASE,R_C_BASE

LOD R_C_BASE, Tl ®T1=FIRST WORD OF COMMON
ES cL,1
LOD [R_C_BASE,C1], T2 *T2=SECOND
ADDX T1,72,T1
STO R_C_BASE, T1
END

(OTHER SUBPROGRAMS)

IDENT

COMMON MSEC 3
GEN
GEN 2
END
FINIS

—

i Loader places address of program START’s data base in Reg #1E; i.e., points to C_BASE. Loader places in
memory location C_BASE the address of the common block COMMON.

430 19980200 B

RES

Aligns the current location counter and adds to it the value of the expression (bit value) in the operand field.
This directive can be used in the subprogram area and in procedures not called by functions.

numeric-labellist17 RES,p4 p25 *comments

list17 Optional list of address identifiers (separated by commas) their values are the values of the
current location counter after alignment.

p4 Optional integer constant or variable or expression which evaluates to an integer constant

1

specifying alignment in bits. Default is 1 (bit boundary). Any value may be selected; however,
1, 8, 16, 32, 64, 128, 512 are recommended.

p25 Optional expression with an integer constant value specifying the bit value to be added to the
current location counter after alignment. Default is 0.

Examples

A RES, 32 32%512

Reserves 512 half-words aligned to a half-word boundary.

L EQU 100
BYTE RES,8 8

.
P2y

L

Reserve 100 bytes aligned to a byte boundary.

ORG

Sets the location counter to a specific value; the memory section associated with the location counter then
becomes active. The ORG directive can appear in a subprogram area or in procedures not called through
functions.

numeric-label list26 ~ ORG p21 *comments

list26 Optional list of address identifiers, separated by a comma. Each address identifier in the list
assumes the value of the current location counter after the ORG is completely processed.

p21 Expression or variable which evaluates to an integer constant or integer constant value of an
associated memory section ordinal. The bit value, p21, is the value that becomes the location
counter of the memory section implied by the ordinal number. The current memory section

becomes associated with the ordinal number.

If p21 has no ordinal number, the current location counter is set to the value of p21.

19980200 B ' 431

Examples

1. A MSEC
B MSEC
C ORG A+bL

Sets the location counter of MSEC A to that of its current value plus one full word.

2. A MSEC

B GEN, 64 5
C MSEC
ORG B+b4
Sets the current location counter of memory section A to that of relocatable address B plus one full
word.
EORG

Sets the current memory section to the value of the memory section specified prior to the last MSEC or ORG
directive. This directive can be used in a subprogram area or a procedure not called through a function.

numeric-label EORG *comments

Examples

L. A MSEC

2. B MSEC

3. ORG A
4. EORG

In this example, the location counter is first set to the address of data memory section “A”. In (2) a second
data memory section is specified and the location counter is updated accordingly. The ORG directive sets the
current memory section to A and updates the location counter to the address of MSEC “A”. In (4) the
current memory section is set to the value specified prior to the ORG directive; therefore, “B” is the current
memory section.

A MSEC

B MSEC
ORG A *specifies address of memory section A,
ORG (@+512%6h4L *specifies current address plus 1 full page
EORG

Sets B as the current memory section.

4-32 19980200 A

A MSEC
B MSEC

EORG

Sets A as the current memory section.

ATTRIBUTE CONTROL

Extrinsic attributes are assigned, referenced, and changed by the user; attribute numbers may vary from 8 to 127. I
(Intrinsic attributes and the ATT function are described in section 5.)

An extrinsic attribute is assigned and changed with the RATT directive.

RATT
numeric-label,list21 RATT list22 *comments |
list21 One or more address identifiers, variable identifiers, set element references and/or set names
whose attributes are to be changed.
list22 A list of elements, separated by commas; each has the form pl:p2. |

pl Is the attribute number; the value of pl must be an integer constant, an expression
or variable which evaluates to an integer constant greater than or equal to 8 and less
than 128. An identifier can have up to 120 extrinsic attributes. Within one RATT
directive, each pl entry must be unique. See example 3. Also, pl values must be in
ascending order.

p2 Is the value of the extrinsic attribute. The value of p2 must evaluate to a constant
with no forward references.

The RATT directive cannot be used with the intrinsic attributes (1-7).
Examples
L.

A RATT 8:5,9:4#10

then:
ATTCA,8) IS 5 }

ATT(A,9) 1S 16

See section 5 for a description of the ATT directive.

19980200 B 4-33

2. INPUT 1,80

QUTPUT
IDENT
3 SET 5,"ABC",6,"DEF"
6C 030003000001 c EQU 1
8[2] RATTY 9:C,10:8[1]
END

The 9th attribute of B[2] is 1; the 10th attribute of B[2] is 5.

3, INPUT 1,80
‘ OUTPUT
IDENT
3 SET 5, ABC" 46, DEF"
0C 000008000001 c EQU 1
B[2] RATT 9:C,9:B[1]
¥x¥x [MPROPER USE OF POSITIONAL OPERATOR, (:) IN OPERAND FIELD
END

REFERENCING ATTRIBUTES

Attributes are referenced through the ATT function described in section 5.

PROCEDURES

A procedure (PROC) is an assembly time subroutine that normally, can be used to generate code. This type of
procedure is called inline; and when it is called, it returns generated code to the location from which it was
called. Procedures can be defined in the universal or subprogram areas. Forward references are permitted only
in those PROC’s called from the subprogram area or from a lower level. When a procedure is called, all identifier
names defined in the procedure are assigned to level 3 or greater depending on the nest level of the call. At
call time, if a referenced symbol is not found in a procedure, the preceding levels are searched. Each time a
procedure is called and code is returned, the object code increases proportionally because only one copy of the
code will exist.

PROC’s should be written in a generalized form which allows the internal definition to produce concise code.

WRITING A PROCEDURE
In writing a PROC, the programmer performs the following steps:
Defines what is to be accomplished.
Writes a definition such that a change to the PROC will include a change to othe;rs affecting it.
A procedure definition starts with a PROC directive and ends with an ENDP directive. The statements and

directives within these limits are referred to as the statement body. Unless explicitly stated in the description
of a directive, the directive can be used in the procedure definition in the subprogram area.

4-34 19980200 B

Example

PROC

Definition P1 PROC,P2 P3

Statement AA NAME XSPECIFIES AN ENTRY POINT TO THE PROC.
Body .

ENDP

The following applies to all Procedures.

Procedures can be defined in the universal area at level 1 or in the subprogram area at level 2. When
defined in the universal area, the PROC can be referenced from any universal or subprogram area that
follows the definition.

Procedure definitions may not be nested.

Procedures can be referenced from any level.

The definition of a procedure must precede a reference to it.

Procedures defined in the subprogram area are lost when the END directive is processed.

Procedures called through the use of a function must not contain any statements that could affect
location counters.

Procedures cannot be redefined.

Symbols defined within a procedure are local to the procedure in which they are defined: the symbols
are lost upon exit from the procedure. These symbols can be made available outside the procedure by
appending a § to them. On encountering the $, the assembler checks the call level for symbol definition,

provided the procedure was called previously.

Depending on the area from which the original call was made, procedures can define symbols in the
universal or subprogram area when a $ is appended to the symbol.

To reference a symbol in the universal or subprogram area that is also defined in the procedure, append
a § to the reference.

Procedures can reference symbols defined at all lower levels, if the symbol is not also defined at the
current level.

Procedures can contain forward references to symbols defined within the procedure if the procedure is
called from the subprogram or lower level.

Procedures can include more than one N'AMErdirecrtive (entry point).

19980200 A 435

® A name within a PROC can call another name in the same PROC. Also, a name can call itself.
® Procedures are recursive to 128 levels.
® If two procedures within a library file have the same name and the name used is a PROC call the
assembler will issue a diagnostic “MULTIPLE DEFINED SYMBOL”.
PROC
Declares the start of a procedure definition:
numeric-label,p22 PROC,p23 pS,p6 *comments
p22 Optional symbol that becomes the set name for the list of numeric labels and symbols that
’ appear in the label field of the procedure reference statement. This set name is made available
to this procedure when the procedure is called.
p23 Optional symbol that becomes the set name for the list of expressions, set element references,
and symbols that appear in the command field after the procedure name in a procedure
reference statement. This set name is made available to this procedure when it is called.
p5 Optional symbol that becomes the set name for the list of expressions, set element references,
and symbols that appear in the operand field of the procedure reference statement. This set

name is made available to this procedure when it is called.

pé Optional symbol that becomes the set name for the set list that appears in the operand field
of the NAME directive. This set name is made available to this procedure when it is called.

Example
L SET PROC, C_SET O_SET,N_SET
SUM NAME 1,2,3
GEN L_SET[1]+C_SET[2] +N_SET [3] +0_SET [1]
ENDP

This PROC uses all four sets.

NAME (PROCEDURE)

Defines a procedure name and the entry point of the procedure. This directive is processed when it is defined;
statements following the NAME directive are processed when the procedure is called. Any number of NAME
directives can be used in a procedure definition.

436 19980200 B

This directive, with some variation, is used in a function definition and described in that context under NAME

(FUNCTION).

numeric-label,p7 NAME,p33,p20 listl6 *comments

p7

p33

p20

list16

Example

ABLE

A symbol that becomes the procedure name. This symbol is entered in the command field
of a procedure reference (call).

Optional integer constant, its bit value is the boundary for alignment of the current location
counter when the procedure is called. If p33 is missing, no alignment is performed.

Optional integer constant. If the value of p20 is 1, the symbols in the label field list of the
procedure reference (call) remain undefined. If p20 is zero, > 1, or blank all symbols in the
label field list of the call are defined as address identifiers. The value of each address identi-
fier equals the value of the current location counter after alignment.

An optional list of set elements which must be completely definable when the procedure is
defined. Forward references are not permitted, and any symbols in this set list must be de-
fined in the universal or subprogram area. The set name for this set list is the p6 symbol
defined in the PROC directive.

PROC B,A
NAME, 64 5,"ABCD",pP'"-25"

ENDP

ABLE is the entry point to the procedure. When the procedure is called, the current location counter
is aligned to a 64-bit boundary. When the procedure is called, the set A consists of the 3 elements:
5, “ABCD” and P“-25".

ENDP (PROCEDURE)

Terminates a procedure at definition and call time. With some variation, it is used to terminate a function
definition and is described in this context under ENDP (FUNCTION).

numeric-label ENDP *comments

19980200 B

4-37

PROCEDURE REFERENCE

A procedure can be called (referenced) at any level through a procedure reference statement containing the
procedure entry point name in the command field. During a call, parameters specified in the label, command,
and operand fields can be passed to the procedure. A PROC must be defined before it can be called, and
nesting can occur to a depth of 125,5. A procedure referenced through a function cannot contain a statement
that affects a location counter. A summary of the relationship of the PROC directive, NAME directive, and
procedure reference is illustrated in figure 4-1.

numeric-label list 18 p7 list19 list20 *comments
list18 Optional symbols, separated by commas and passed as parameters to the PROC definition
directive. These symbols are defined as address identifiers, unless the p20 parameter in the

called name (NAME directive) prohibits definition.

p7 Procedure entry point name that appeared in the label field of a NAME directive in a pro-
cedure definition.

list19 Optional list of set elements passed as parameters to the procedure.
list20 Optional list of set elements passed as parameters to the procedure.

List19 and list20 may consist of set names, set elements, subsets, symbols, and expressions. The repetition
operator and positional operator also can be used in list19 and list20.

A user can insert a STAR instruction mnemonic or a directive name in a PROC call. The assembler checks
the user-defined table before checking the internal definition table, thereby permitting redefinition of an

instruction or directive. Once the user redefines an instruction or directive, however, the internal definition in
the area redefined (universal or subprogram area) cannot be accessed.

PROCEDURE REFERENCE TERMINATION, EXITP

This directive terminates a procedure reference before the ENDP directive is encountered. More than one
EXITP directive is permitted in a procedure or function. With some variation this directive is used to terminate
a function reference and is described in this context under EXITP (FUNCTION).

numeric-label EXITP *comments

4-38 19980200 B

PROCEDURE REFERENCE FUNCTION FLOW

The following example illustrates how the assembler handles a procedure reference:

Procedure Definition { LF PROC,CF OF , AF
in Universal Area CALL NAME , A, LFSU ARGU
ENDP
IDENT

Procedure Call
in Subprogram Area % R_1,R_2 CALL,S_1,S_ 2,53 T..L*) T 3,7_2,T_1

END

Although the PROC call is defined in the universal area, it is called in the subprogram area and assigned a
level of 3.

When the PROC statement is encountered, the assembler scans for a name line and ENDP directives. All other
statements are checked for syntax errors.

When a procedure is called, a copy of the label, command, and operand sets in the procedure reference state-
ment are passed to the PROC definition.

If the call is-made in the universal area, all parameters and procedures must be defined before the call is made;
since the assembler makes only one pass through the universal area. For a procedure call is in the subprogram
area, it is not necessary to define all parameters prior to the call because two assembler passes are made
through this area.

The sets passed are copies of the originals; therefore, the only method of changing elements in the original set
is by appending a $ to the label in the label field of the PROC. When the sets are passed, as specified in the
previous example the following argument results.

PROC Definition Symbols Associated Call Parameters
LF R 1R 2
CF S 1,8 283
OF T 4T 3T 27T 1

In addition to the three sets that can be passed at call time, the argument set exists as part of the operand
field on the NAME line. Since a PROC definition can have more than one NAME line an argument set can
exist for each. At any one time, the only applicable argument set is that associated with the called NAME
directive. ' ' ' ' B B ' ' ’

19980200 B 4-39

Examples
When the PROC is entered it is possible to generate code/data. For additional examples see appendix I

The following examples illustrate a PROC used to redefine a symbol in the command field.

‘ PROC, CF OF
PROC NO_GEN NAME
DEFINITION SYMCATT(CF[1],1),1) RDEF OF [1]
1 ENDP
A_X RDEF #98
CALL { NO_GEN, A_X MONE™

At call time the value #9B is passed to CF and “ONE” is passed to OF. Since CF and OF represent a
set, any reference to the set, even though each contains only one element, must be written [1]. The
brackets specify set reference, and 1 specifies the first element.

PROC, CF OF
PROC NO_GEN NAME
DEFINITION A_SETS SET 25:0
2 I RPT,ATT(CF [1],7) 100
100,A_SET[I] RDEF OF [1]
ENDP
CALL B_SET SET 6,"BIT",#9,X"4", 20:0
C_SET SET 1,2,3
{ NO_GEN,C_SET B_SET

4-40 19980200 B

Of the three possible sets that can be passed to the PROC definition, two are passed.

The command and operand fields have only one set element. The defined C_SET has three elements and
the B_SET has 20. Each C_SET element is a 40-bit integer constant. The defined B_SET is comprised of:

Element Attribute

6 48-bit integer constant
“BIT” Character string

#9 48-bit hexadecimal constant
X“4> Hexadecimal string constant

15 null elements
The 20th element is a 48-bit integer constant of 0.

The A SET is defined to have 25 elements: the first 24 are null elements; the 25th element is a
48-bit integer constant of 0.

This set name is also available at the call level after the PROC has been exited.

Since the NAME line has no parameters, no alignment is required and label field symbols are defined.
The repeat directive is set initially to 3. The seventh attribute of CF [1] returns the number of elements
passed to the command field set. This value specifies the number of iterations of the repeat loop. The

last statement in the repeat loop is at label 100.

The first occurrence through the loop redefines the value of the first element of the A_SET to be equal to
the first element of the B_SET.

The second and third elements of the A _SET are redefined during the second and third iterations of the
RPT loop.

19980200 A 441

The following are examples of procedures used for data generation: .

A

JOE

AAl

PROC, B=qC,D

/

NAME, 64 || 5

GEN Al1]

GEN B[1] ,
GEN cl21+D[1]1,c[1]
IDENT

JOE,3 —L_"aA1_1",5

This procedure call to JOE is the same as writing:

442

AA1l

RES, 64 0
GEN @
GEN 3

1

GEN 0,"AAI_1"

19980200 A

V 00708661

e

'GENERAL FORMAT:

f Numeric_lLabel, Label Field Set Name

Definition L____ —

. Numeric Label, Procedure Name

. Numeric_Label

Call { Numeric_Label, Label_FieldﬂSet

Figure 4-1.

PROC, Command Field Set Name Operand Field Set Name, Argument Field Set Name,

[

NAME, Alignment, Lals el__F ield_Symbols_U ndefined

ENDP

Argument

Procedure Name,Command Field Set

Association of Procedure Definition and Reference Elements

Operand_Field Set

Forward References

FUNCTIONS

Functions are assembly time subroutines normally used where common routines are desired. Unlike procedures,
which are used for code/data generation or symbol redefinition, functions retuin a value to their place of

reference.

FUNCTION DEFINITION

A function definition starts with a FUNC directive and ends with an ENDP directive.

FUNC
Statement A 2 NAME Entry point used in a function reference
Body

ENDP

The statement body can consists of assembler statements other than the following:

OUTPUT FINIS PROC
LIBP GEN ENDP
END FUNC RES

When the assembler interprets a FUNC directive, it scans the succeeding lines of source code until a NAME
directive is encountered. The scan lines are evaluated then but not processed; diagnostics are produced if a
syntax error is encountered. Comments, are permitted between the FUNC and NAME directives. Lines between
the FUNC and NAME directives are not processed at call time. Also:

444

Functions defined in the universal area are at level 1. They are available to all subprograms.

Functions defined in the subprogram area are at level 2 and are not available after the END directive
is processed.

Definition nesting is not permitted.

Definitions must precede any reference to a function and cannot be redefined.
Forward references are not permitted.

More than one entry point (NAME directive) is allowed.

Symbols defined within a function are not available outside the definition area unless a § is appended to
them.

A symbol defined at or below the function call level can be referenced within the function, provided a
$ is appended to the symbol at the definition level. When function calls are nested, the $ returns the
search to the original call level (level of the first function call within the nest group). If the symbol is
not defined at that level, the assembler drops back one level at a time until the definition is found. The
same method is used by the assembler when a symbol referenced in an unnested function call is defined
at a level lower than that of the call.

19980200 B

® A name in a Function can call another function. Also a name can call itself.
® Functions are recursive to 128 levels.
® If two functions in the library have identical names and if either is called an error message is generated. |
“MULTIPLY DEFINED SYMBOL”.
FUNC
Declares the beginning of a function definition.
numeric-label FUNC p5,p6 *comments
p5 Optional symbol that becomes the set name for the list of expressions, set element references,
and symbols that appear as the parameters in the function reference. This set name is made

available when the function is called.

pb Optional symbol that becomes the set name for the operand field set of the NAME directive.
This set is made available when the function is called.

Examples
FUNC A,B
ENDP Al1]l%B[1]

The parameter set name is A, and the set name for the set list on the NAME directive is B.

NAME (FUNCTION)

The NAME directive defines a function name and specifies the entry point of the function when it is called.
This directive is processed only when it is defined and can be used only within a function or procedure
definition.

numeric-label,p7 NAME listl6 *comments i
p7 Symbol that becomes a function name; it is used to call the function.
list16 Optional list of set elements: all set elements must be completely definable when the function I

is defined. Forward references are not permitted. Any symbols in this set list must be defined
in the universal or subprogram area. The set name for this set list is the p6 symbol that
appears in the FUNC directive.

19980200 B 445

Example

FUNC B, A
. /f\\,/_,/—‘\
ABLE NAME 5,"ABCD" ,P"-25"

ENDP

ABLE is an entry point name for the function. When the function is called, the set A consists of the
three elements 5, “ABCD” and P*“-25”.

FUNCTION REFERENCES

A function is referenced by a function name. The function reference includes the function name assigned in
the label field of the referenced function definition and associated parameters (see figure 4-2). A function
reference can be made from any command or operand field. The parameter set in a function can contain a

subset.

p7 listll

p7 Function entry point name that appeared in the label field of a NAME directive in a function
definition.

list11 Optional list of set elements passed as parameters to the function.

ENDP (FUNCTION)
This directive terminates a function.
numeric-label ENDP p2 *comments

p2 Optional expression or subset; p2 applies only to function definitions and is ignored if used
in procedures. The value of p2 is returned as the value of the function call.

If p2 is not specified a null value is returned.

EXITP (FUNCTION)

This directive terminates a function reference before the ENDP directive is encountered. More than one
EXITP is permitted in a function.

numeric-label EXITP p2 *comments

The rules for EXITP are the same as for ENDP. The value returned from the function can be any expression
or subset. The function need not return a value.

4-46 19980200 B

Examples

For additional examples see appendix 1.
1. FUNC
ADDER NAME
Definition
EXITP (A[11+A[2])%B [1]
k ENDP
IDENT
B EQU 6
Call { GEN ADDER (B, 2) ——d

19980200 B 4-47

This GEN with a function call is equivalent to:

C

This function call is the same as:

C SET

If the statement:

D SET

GEN

FUNC

NAME

SET
ENDP

IDENT

SET

Lo

Il
A(3), b

[[5,21,3],4

.ELM.A(1)

were entered in this example, the result statement would be:

D SET
3 FUNC
CHAR P.JAME
éNDP
IDENT
B f.%DEF

This RDEF with a function call is equivalent to:

B RDEF

4.48

A,D

[5,2],1

HREG 1"

D [1] .CAT.A[1]

CHAR ("FuLL")

"REG_FULL"

19980200 A

YV 00708661

6+

GENERAL FORMAT:

~ Numeric_Label
Definition

<‘ Numeric_Label, Function Name

“ Numeric Label

Call Function Name(Call Set)-

FUNC

ENDP

Call Set Name, Argument Field Set Name
-7 Comments

Argument Comments

Evaluated_Or_Sub set__Returned_As__Value
Comments

Figure 4-2. Association of Function Definition and Reference Elements

SUMMARY OF DIRECTIVES

The following tables provide the format of each assembler directive, its purpose, and the level at which each
can be used. Symbols used to specify parameters, P, and lists items, L, are described in the table 4-2.

4-50 19980200 A

g 00708661

IS+

Table 4-1. Summary of Directives

General Format: numeric-label list-1 name,list-2 list-3 * comments

Type Name/Level Format Purpose
1/0 INPUT/1.2,n numeric-label INPUT pl10,p11,p12 *comments Specific source input format.
OUTPUT/1 numeric-label OUTPUT p30 *comments Specifies object deck output format required.
LISTING/1 numeric-label LISTING pl4,p15 *comments Specifies assembly listing options.
LIBRARY/1 numeric-label LIBP p13, list-15 *comments Specifies use of library procedures and functions.
1§sting NOLIST/1,2,n numeric-label NOLIST *comments Suppresses listing until assembler encounters
Control LIST directive.
LIST/1,2,n numeric-label LIST *comments Resumes listing suppressed by NOLIST.
BRIEF/1,2n numeric-label BRIEF *comments Suppress listing of statements part of procedures

DETAIL/1,2,n
SPACING/1,.2,n
EJECT/1,2,n

TITLE/1,2,n

MESSAGE/1,2,n

numeric-label DETAIL *comments
numeric-label SPACING p28 *comments
numeric-label EJECT *comments

numeric-label TITLE p29 *comments

numeric-label MESSAGE pl6 *comments

or functions.

Lists all procedure and function statements.
Selects single, double, or triple spacing.
Resumes listing from top of page.

Causes a listing eject and places specified
character string at beginning of all succeeding
pages.

Places a character string on the output listing.

CSP

(@

Table 4-1. Summary of Directives (Cont’d)

Type Name/Level Format Purpose
Assembly IDENT/1 numeric-label, symbol IDENT *comments Specifies beginning of subprogram area.
Control
END/2 numeric-label END pl *comments Specifies end of subprogram area.
FINIS/1 numeric-label FINIS *comments Specifies end of all source statements;
terminates assembly.
Conditional Repeat/1,2,n numeric-label,symbol RPT,p26 p27 *comments Specifies number of times source statements
Assembly are to be processed.
Control
GOTO/1,2n numeric-label GOTO,p9 list 14 *comments Specifies conditional skip of source statements.
Subprogram ENTRY/2,n numeric-label ENTRY list-4 *comments Specifies address ID’s and variable ID’s defined
Linking by EQU directives, which can be referenced
by other subprograms.
EXTD/2,n numeric-label list-6 EXTD,p32 list-25 *comments Lists data address identifiers defined with
ENTRY directive in data MSEC of another
subprogram.
EXTC/2,n numeric-label list-6 EXTC,p32 list-25 *comments Performs above functions for code address
identifiers.
Symbol SET/12n numeric-label list~23 SET list-24 *comments Assigns label field symbol as a set name for
and Set list 24 contents.
Definition

V 00208661

V 00208661

1 3% %

Table 4-1. Summary of Directives (Cont’d)

Type

Name/Level

Format

Purpose

Assignment

Redefine/1,2,n

Equivalence/1,2,n

numeric-label list-5 RDEF p3 *comments

numeric-label list-5 EQU p3 *comments

Assigns or reassigns value and attributes in
operand field to symbols in label fields.

Assigns value and attributes in operand field to
symbols in label field. After a value is assigned,
symbol cannot be redefined.

Data
Generation

FORM/12,n

Form Reference/2,n

Generate/2,n

numeric-label list=7 FORM p4 list-8 *comments

numeric-label list-9 form name list-10 *comments

numeric-label list-12 GEN p4,p8 list-13 *comments

Specifies form name and defines data generating
format by specifying alignment and field sizes
in bits.

Specifies generation of data from expressions
in list 10 into field of form specified by

form name referenced. (Form name is specified
by FORM directive.)

Specifies generation of data starting at next
aligned bit.

Location
Control

Reserve/2,n

Memory Section/2,n

Origin/2,n

End Origin/2,n

numeric-label,list-17 RES,p4 p25 *comments

numeric-label list-17 MSEC p18,p19 *comments

numeric-label list-26 ORG p21 *comments

numeric-label EORG *comments

Aligns current location counter and adds
value in operand field to counter.

Defines control section and specifies it as
current.

Sets implied location counter to specified value.
Activates memory section containing statement.

Sets current memory section to preceding
memory section specified prior to the last
MSEC or ORG directive.

55

V 00708661

Table 4-1. Summary of Directives (Cont’d)

Type Name/Level Format Purpose

Attribute Reference numeric-label list-21 RATT list-22 *comments Adds or changes extrinsic attributes of
Control Attribute/1,2.,n identifiers.

Procedures Procedure/1,2 numeric-label,p22 PROC,p23 p5,p6 *comments Declares start of procedure definition.
and

Functions

procedure
reference/1,2,n

Function/1,2

function
reference/1,2,n

NAME/1,2

tENDP/1,2,n

+EXITP/1,2,n

numeric-label,list-18 p7,list-19 list-20 *comments

numeric-label FUNC p5,p6 *comments

p7(list-11)

numeric-label,p7 NAME,p33,p20 list-16 *comments

NOTE: p33 and p20 apply only to PROC’s

numeric-label ENDP p2 *comments

numeric-label EXITP p2 *comments

Calls procedure and passed parameters to it.

Declares start of function definition.

Calls function and passes parameters to it.

Defines function/procedure names and entry
points.

Terminates procedure or function;
parameter p2 is used only with functions.

Terminates a procedure or function before END
definition. (More than one EXITP allowed in
procedure or function.) Parameter p2 is used
only with functions.

Tp2 applies to functions only.

Table 4-2. STAR Assembler Directive Parameters

Designator Description

pl Address identifier used to indicate a transfer address for object deck execution. Must have
appeared as an entry point name on ENTRY directive.

p2 Optional expression or subset for function definitions; it is ignored in procedures.

p3 Any expression; it may not be a set name.

p4 Bit value for alignment of current location counter.

p5 Optional symbol that becomes the set name for the list of expressions, set element
references, and symbols appearing in the operand field of the reference statement.

pb Optional symbol that becomes the set name for the set list appearing in the operand field
of the NAME directive that is the entry point.

p7 Symbol that becomes a function/procedure name, it can be in the command or operand
field list of directives or instructions.

p8 Value indicating number of bits to be reserved for each expression in list 13.

p9 Indicates what list 14 element is to be selected.

pl0 Beginning column of source code.

pll Last column of source code.

pl2 Continuation column of source code.

pl3 Character symbol specifying the name of the source file for procedures or function
definitions.

pl4 Default: no cross reference.

1 Cross reference listing is desired.
#1 No cross reference list.

pl5 Warning messages are to be omitted from the listing.

plé Character string of 128 characters or less to appear on output listing, overriding any
active listing control directives.

pl7 Optional symbol that becomes the memory section name.

19980200 A

455

Table 4-2. STAR Assembler Directive Parameters (Cont’d)

Designator Description
pl8 Optional integer that indicates usage restrictions.
Default is 1
1 Data MSEC
2 Code MSEC
3 Common MSEC
pl9 Optional integer constant permitting monitor instructions in this memory section.
Default or value > 1 or < 1; no monitor instructions allowed.
1 Monitor instructions are allowed.
p20 Optional value of integer constant.
Default or value > 1 or < 1 — all symbols in label field list of call will be defined as
address identifiers. :
1 Symbols appearing in label field list of procedure call will remain undefined.
p21 Any expression that has an integer constant value or a value that has a single memory
section ordinal number associated with it. The bit value becomes the location counter of
the memory section implied by the ordinal number. The current memory section is
associated with the ordinal number.
p22 Optional symbol that becomes the set name for the list of symbols appearing in the label
field of the procedure reference statement.
p23 Optional symbol that becomes the set name for the list of expressions, set element
references, and symbols appearing in the command field after the procedure name of the
procedure reference statement.
p25 Optional integer constant; must be a positive bit value, that is added to the current
location counter after alignment.
p26 Indicates number of times succeeding statements are to be processed (if the symbol value
is not altered within the repeat loop).
p27 Identifies a forward numeric label on the statement that is to be the last line repeated.
p28 Indicates number of lines to skip after each line listed (0,1,2, or 3).

19980200 B

Table 4-2. STAR Assembler Directive Parameters (Cont’d)

Designator Description

p29 Character string of 64 characters or less to be printed at the top of succeeding pages.

p30 If set to 1, requests debug symbol table dump.

p31 Two-digit hexadecimal number specifying the ID of the source file for a procedure or
function definition.

p32 Integer constant; if it evaluates to O or null, a full word (EXTD) is generated for each
symbol in operand list. After loading, it will contain address of designated data entry
point. For EXTC, two full words are generated; contains address of entry points and
data area.

p33 An optional integer constant; the bit value is the alignment for the current location
counter when the procedure is called. Default is alignment on bit boundary.

list1 Usually, address identifiers and set element references or variable identifiers and set
element references.

list2 Consists of elementary items and expressions.

list3 A list of elements separated by commas; made up of elementary items and expressions.

list4 Address identifiers or variable identifiers defined by EQU directives that are made available
outside the subprogram and defined at the program level.

list5 One or more variable identifiers, set element references, or set names separated by commas,
that assume the value and attributes of p3.

list6 Address identifiers that are external to the subprogram.

list7 One or more symbbls, separated by commas; each symbol becomes the form name used to
reference the form.

list8 Expressions, separated by commas, whose values specify the field sizes of the form in bits.
Must be integer constants.

list9 Address identifiers, separated by commas; the address identifiers assume the value of the
current location counter after alignment.

list10 A list of expressions, separated by commas. The value of each expression is the data that
goes into the form field.

list11 Optional list of set elements are passed as parameters to the function. Parentheses are not
optional.

list12 Address identifiers separated by commas.

19980200 B

457

Table 4-2. STAR Assembler Directives List (Cont’d)

Designator Description
" list13 Expressions, separated by commas; the value of each expression is the data to be generated.
list14 Flements for which the values indicate forward numeric labels the GOTO can skip.
list15 Procedures or function names separated by commas.
list16 Optional list of set elements. All set elements must be completely definable when the
procedure or function is defined.
list17 Optional list of address identifiers, separated by commas, which assume the value of the
current location counter after alignment.
list18 Optional symbols defined as address identifiers, provided the parameter on the called
NAME line does not indicate they must not be undefined.
list19 Set names, set elements, subsets, symbols, or expressions passed as parameters to the
procedure.
1ist20 Set names, set elements, subsets, symbols, or expressions passed as parameters to the
procedure.
list21 One or more address identifiers, variable identifiers, set element references, and set
names for which attributes are to be changed.
list22 Elements, separated by commas, of the form NI1:N2.
N1 Attribute number
N2 Value of extrinsic attribute.
list23 One or more variable identifiers, set element references, or set names, separated by commas,
to become set names for the set list24.
. list24 Set elements (expression, set name, set element reference, or subset) separated by commas.
|
Clist25 One or more symbols, separated by commas, external to the subprogram.
list26 Optional list of address identifiers that assume the value of the current location counter

after ORG is processed.

4-58

19980200 B

ASSEMBLER PROVIDED FUNCTIONS AND PROCEDURES 5

The functions and procedures described in this section are provided as part of the assembler for use during
program assembly. Functions and procedures described are:

Conversion functions
Symbol Creation functions
Attribute functions

NOPH procedure
SHORTBR procedure

NOTE

Any symbol defined which is the same as a function name or assembler-provided function
name, may override the function when a call to it is made; therefore results are unpredictable.

CONVERSION FUNCTIONS

Conversion functions provide the programmer with a means of changing a value from one constant form to
another.

Function Call:
function-name (expression)

Table 5-1 lists the current assembler functions.

19980200 B 5-1

Table 5-1. Conversion Functions

Function Name Function Performed
=
ITOC Convert an integer or hex constant to an integer value represented as
character string constant. Leading zeros are suppressed.
HTOC Convert an integer or hex constant to a character string constant
represented as a hexadecimal value.
PTOI Convert a packed constant to an integer constant.
ZTOP Convert a zoned constant to a packed constant.
DTOP Convert an integer string constant to a packed constant.
XTOD Convert a hex string constant to an integer string constant.
ITOF Convert an integer or hex constant to 64-bit floating point.
BTOD Convert a bit string constant to an integer string constant.
F32F Convert a 32-bit floating point value to 64-bit floating point value.
FF32 Convert a 64-bit floating point value to a 32-bit floating point value.
ZTOC Convert a zoned constant to a character string constant.
PTOZ Convert a packed constant to a zoned constant.
ASSM(p1) Return an integer constant depending on the value of pl.
P1 = 1 Current value of error count.
P1 = 2 Current value of warning count.

NOTE

For an example of the ITOC and HTOC function, see appendix I.

19980200 B

SYMBOL CREATION FUNCTION
The symbol creation function removes the quotes enclosing the first argument. It is used to convert character
strings to symbols and to generate symbols. Symbols created by the SYM function will be entered into the
symbol table.

SYM (p1,p2,p3)

pl An expression that evaluates to a character string, ABC etc. Forward references are not
permitted. No restriction on the characters in pl. ie. #,~,+, ...

p2 Optional. When equal to 1 specifies the inciusion of a $ appended to the symbol, ie., symbol
is at call level.

p3 Optional level number for explicit symbolic control.
Example

The following example illustrates symbol creation for use in the label field of a PROC statement. (A second
example using the function appears in appendix 1.)

P PROC

CALL-BY-NAME NAME, , 1

SYMCATT(CP{1],1),1) RDEF 10
ENDP

A CALL-BY-NAME

This call statement results in the equivalent of the following statement:

AS$ RDEF 10

In the SYM (ATT(P[1],1),1) statement:

®[1.,n Requests the first sub-element of set A which is A; the result is as specified by
attribute 1 which specifies the expression for use as a symbol.

,1) Specifies a dollar sign be appended to the symbol.

The following example illustrates the use of p3:

1 IDENT
SYM(*A”) EQU 1 *SYMBOL A AT LEVEL 2
SYM(“A”,1,1) EQU 2 *SYMBOL A AT LEVEL 1
GEN A *GENERATES 1
GEN SYM(“A”,1,1) *GENERATES 2

19980200 B 5.3

S

ATTRIBUTE FUNCTION

Attributes may be intrinsic or extrinsic. The use of extrinsic attributes and the RATT directive are described
in section 4.

INTRINSIC ATTRIBUTES

The attribute function followed by the attribute number is used to return the value of the specified attribute.
The value returned provides information about the symbol referenced in that function. Intrinsic attributes, are
listed below with the significance of values that can be returned when the attribute is used in an ATT reference.

ATTRIBUTE 1 Symbol as a character string — returned value equals the symbol or set element
as a character string in quotes. A null character string is returned if there is no
symbol, e.g.; if:

a)A GEN 5
then

ATT(A,1) returns “A”
b)B SET A

then

ATT(B[1],1) returns “A”

ATTRIBUTE 2 Mode — returns the mode of the expression as an integer constant.
Mode Value
No value 0
Absolute address 1
Relocatable address 2
External address 3
Integer or hexadecimal constant 4
Hexadecimal string constant 5
Bit string constant 6
Character string constant 7
Real" constant 8
Packed decimal constant 9
Zoned decimal constant 10
Integer string constant 11
Null element; element of a set list is not defined 12

ATTRIBUTE 3 Memory Section Ordinal Number — returns the ordinal number (integer constant)

of the memory control section under which the address identifier is defined. A
zero is returned if there is no ordinal.

5-4 19980200 B

ATTRIBUTE 4 Definition Level — returns the definition level as an integer constant.

Definition Level , Value
Universai 1
Subprogram 2
Procedure /Function =3
ATTRIBUTE 5 Symbolic Type — returns the symbolic type as an integer constant.
Symbolic Type Value
Undefined 0
Redefinable identifier 1
Identifier not redefinable 2
Set name 3
Not an identifier (it is an expression or literal) 4
ATTRIBUTE 6 Value Size — returns an integer constant indicating the number of bits needed
to contain the value of the item.
ATTRIBUTE 7 Number of Elements — returns the number of elements in the named set as an
integer constant. If not a set, the value zero is returned.
B SET 2,3,6,7,4

GEN ATT(B,7) Returns a value of 5.

ATT

The implicit attribute of a symbol or a set element is its value. The value attribute of a symbol is synonymous
with the symbol; no further notation is needed to obtain that information.

Example

A RDEF 10
GEN A
The use of the A in the GEN statement retumns the value attribute which is 10.
The attribute function is used to obtain attributes other than the value attribute.
The ATT function returns the value of the indicated attribute. (intrinsic or extrinsic).
ATT(p1,p2)

rl The symbol, symbol creation function, or the set element reference of which the attribute is
to be retrieved.

p2 An expression with an integer constant value specifying the attribute to be returned.

Unpredictable results may occur if extrinsic attributes are referenced before they are defined.

19980200 B 5-5

Examples

1. A GEN 5

The address identified A has the following attributes:
ATT (A1) is A
ATT (A,2) is 2 (assume default MSEC)
ATT (A3) is 1 ({(assume default MSEC)
ATT (A4) is 2 (assume statement was in subprogram area)
ATT (A)5) is 2
ATT (A6) is 48

ATT (A7) is O

D GEN 5
A GEN D
ATT(CA,6) = 438
A RDEF ""o"
ATTCA,6) = 8
A RDEF Irnasn
ATTCA,6) = 8
A EQU 25
ATTCA,B) = 48
A SET 5,zZ"+12" 12
ATT(A[2],6) = 16
2.
A SET 1,2
01 000000000000 F 00000000 00000002 GEN ATTCA,7D
01 000000000040 F 00000000 00000000 GEN ATTCA[1],7D
END

Referencing a set element returns a null.

56 19980200 A

ASSEMBLER PROVIDED PROCEDURES

The following commands are provided for user convenience. They are alternatives to existing commands with
Y)
preset values, qualiﬁers, or default values.

NOPH Used for alignment; no code generated. Half-word NO-OP can be used when aligning EXTD
or EXTC generation in a data MSEC.
SHORTBR ADDRESS is equivalent to:
{ BRF }
BAB,BR BRB ,address

For a description of the BAB mnemonic instruction see STAR HARDWARE Reference Manual.

19980200 A 57

GLOSSARY .

Absolute Address
1. An address permanently assigned by the machine hardware to a particular storage location.

2. A pattern of characters that identifies a unique storage location without further modification.
Synonymous with Machine Address. (See Virtual Addressing for Absolute Address).

Address

All addresses are 48-bit quantities containing enough information to reference a specific bit.

Address Identifier

A designator given to an execution time entity, such as a program point.

Assemble
To prepare an object language program from a symbolic language program by substituting machine opera-
tion codes for symbolic operation codes and virtual addresses for symbolic addresses.
Assembler Defined Program Areas
Source code for each assembler program is assigned to one of two assembler defined program areas:
Universal Area is used for 1/O specification; symbol, procedure, function, and set definition.

Subprogram Area contains executable program statements.

Assembler Directives
The symbolic assembler directives control or direct the assembly processor in the same manner that
machine instructions direct the central computer. Directives are represented by mnemonics.
Assembler Language Processor

A language processor that accepts words, statements, and phrases to produce machine instructions.

Assembly listing

A printed list presenting the logical instruction sequence. Included is symbolic source notation and actual
object notation in hexadecimal form established by the assembly process. Relative virtual addresses of
the assembler generated code are provided also.

L]

Attribute

Characteristics of a symbol such as word size, mode of representation (hexadecimal, octal, etc.) The two
attribute types are: intrinsic (1-7) - predefined. Extrinsic (8-120) - user defined.

19980200 A Glossary-1

Base Address
Address defining the origin or reference point of operands or results. It may be modified by offset or
index to determine the desired address.

Byte
An 8-bit quantity, the address of the left most bit is always a multiple of 8.

Broadcast Constants
A 32- or 64-bit * 1 vector element used in some vector instructions to transmit the same vector element
repeatedly. Broadcast or normal element is selected by machine instruction qualifiers.

Conditional Assembly
A feature of the STAR assembler that allows the user to dictate whether statements should be assembled
or not. The user can achieve conditional assembly with the GOTO and RPT directives.

Control Vector (CV)

Base address of control vector is contained in Z field of vector and vector macro instructions. Control
vector determines how many C elements are stored during execution of vector machine instructions and
determines which pairs of A and B elements are compared during execution of Vector Macro instructions.
Use is specified in an instruction by Z designator ¥ 0, in which case, Z designator becomes the CV base
address.

Elementary Item

A self defining component of an expression.

Entry
Symbol (address identifier), defined in the program that declares the symbol as an entry and can be
referenced from another program.

Entry Point

Label of a source statement where execution or processing can begin.

Expression
Series of values, symbols, and functions connected by mnemonic or symbolic operators as required to
cause computation.

External Symbol
A symbol (address identifier) referenced in the program that declares the symbol external but defined
(given an address value) in another program.

Form Identifier

Designator identifying a form definition.

Glossary-2 19980200 A

Forward Reference

A labe] referenced in the operand field that has not been previously defined.

Function
Assembly time subroutine normally used where common routines are desired. Functions return a value
to the point of reference.

Function/Procedure Identifier

Designator for entry points defined within a function or procedure.

Half-word

A 32-bit quantity, the address of the leftmost bit always is a multiple of 32 (decimal).

Label

Labels may be numeric or alphanumeric. Alphanumeric labels comprise the label list of the statement
format; they must start with a letter (maximum size 64 characters).

Location Counter

Counter assigned to each memory control section. They are incremented in bits and specify the bit
location of code and data sections of a user program.

Location Independent Code

A sequence of statements containing no addresses. Such code is written to execute correctly from any
virtual address without modification.

Memory Control Section

A specific area is user’s virtual memory to which code and data can be assigned. Each MSEC is assigned
an ordinal number. A maximum of 255 MSEC’ can be specified in a user program.

Code MSEC can contain code and data. Data in this area is assigned to a specific user subprogram.
Data MSEC can contain information unique to a user’s program.
Common MSEC can contain data that may be shared between programs assembled separately but
loaded together.
Mnemonic Instruction
Use of symbolic notation in place of actual machine code. A mnemonic instruction must be translated to
actual operation codes by assembler procedure references.
Normalizing a Number

The coefficient is shifted left until the sign bit does not equal the bit immediately to its right. The
exponent is reduced by one for each left shift.

19980200 A Glossary-3

Offset

Number used to modify the base address of operands in vector and some non-typical instructions. May
be half-words or words (determined by number of bits in operand up to + 2151),

Order Vector (OV)

Denotes non-significant elements in vector field. Generated by COMPARE instructions and used by
COMPRESS instructions to generate sparse vector. Number of ones in order vector determines field length
of sparse vector operands. A filled result order vector terminates sparse vector instructions.

Packed BCD Foimat

This format is used for decimal arithmetic. Two BCD digits are contained in each byte and the sign is
right justified.

BCD DIGIT BYTE
[I I
0000 0001 1000 1001 0011 1010
I | |
0 1 8 9 3 +

PACKED BCD FORMAT

Pre-defined Symbols

Symbols with special meaning to the assembler when used in the command field of an assembler statement.

Procedure
A subset of source statements meeting a specific purpose that can be repeatedly referenced to generate
parameterized code.

Qualifiers

Symbols to indicate sub-operation of the function code specified by an instruction mnemonic.

Re-entrant Code

Code that never modifies itself. This type of code was used in writing this assembler to allow several
users to employ the same assembler programs simultaneously.

Glossary-4 19980200 A

Register File

256 registers of 64 bits each used for instruction and operand addressing, indexing, field length counts;
source or destination of operands for register instructions. Addressed by 8-bit instruction designator .

Set

A collection of related elements having a common name. An element may be a set (a subset of a set).

A reference to an element consists of the set name followed by one or more integers enclosed in brackets

[] indicating the location of the element. '
Source Program

A program written in assembly language that must be translated into machine language before it can be
executed.

Sparse Vector (SV)
Vector field contracted by removing the non-significant elements to conserve storage space and calculating
time. Positional significance of the elements is retained by an order vector for each sparse vector.
Statement

An instruction to be interpreted by an assembler.

Subscript .

One or more integers enclosed by brackets [] used to specify a particular element in a set.

Subprogram
A part of a program determined by the IDENT directive (start) and terminated by an END directive.

Unary Operator

An operator such as the sign of a value (+ or -) that applies to one operand only, rather than causing
addition or subtraction.

Vector (VT)
As used in the matrix algebra, a 32 or 64 x n array of elements. Maximum size is 64 bits x 65,536
words. Operates on ordered scalar contained in operand fields, rather than single operands.

Virtual Memory

A conceptual extension of main storage achieved by hardware technique which permits storage address
references beyond the physical limitation of main storage. Virtual addresses are equated to real addresses
during program execution.

19980200 A ' Glossary-5

Variable Identifier

Designation of a single translation time value.

Word
A 64-bit quantity. The address of the leftmost bit is always a multiple of 64 (decimal).

Zoned BCD Format
Input/output operations use zoned format; one BCD digit is contained in each byte. Sign is leftmost 4
bits of rightmost byte. Leftmost 4 bits of all other bytes is called the zone. Instructions are provided
for packing and unpacking decimal numbers so they may be changed from zoned to packed format and

vice versa.
BYTE BYTE

DIGIT

DIGIT ZONE DIGIT SIGN
] 1 | |

ZONE

ZONED BCD FORMAT

Glossary-6 19980200 A

ELEMENTARY ITEMS A

The basic representation of data for the assembler is an elementary item; it may be a delimiter character,
symbol, variable identifier, constant, operator, etc. This appendix describes all elementary item types that can
be used with the STAR assembler and provides examples of each type.

Table A-1 contains a complete list of the STAR character set. Subsequent paragraphs describe the type and
use of these characters. A list of the operator characters and a description of their use in formulating ex-
pressions is provided in Appendix B. Delimiters are listed in table A-2, and Special Characters that have an
implied meaning to the assembler are listed in table A-3.

19980200 A A-1

Table A-1. STAR Character Set

Hex Character Punch Hex Character Punch
20 b space no punch 41 A 12-1
21 ! 12-8-7 42 B 1222
22 " quote 8-7 43 C 12-3
23 # 83 44 D 12-4
24 $ 11-8-3 45 E 12-5
25 % 0-84 46 F 12-6
26 & ampersand 12 47 G 12-7
27 > apostrophe 8-5 48 H 12-8
28 (12-8-5 49 I 12-9
29) 11-8-5 4A J 11-1
2A * 11-84 4B K 11-2
2B + 12-8-6 4C L 11-3
2C , comma 0-8-3 4D M 114
2D - 11 4E N 11-5
2E . 12-8-3 4F 0] 11-6
2F / 0-1 50 P 11-7
30 0 0 51 Q 11-8
31 1 1 52 R 11-9
32 2 2 53 S 0-2
33 3 3 54 T 0-3
34 4 4 55 U 04
35 5 5 56 A% 0-5
36 6 6 57 w 0-6
37 7 7 58 X 0-7
38 8 8 59 Y 0-8
39 9 9 5A Z 09
3A : 8-2 5B [opening bracket 12-8-2
3B ; 11-8-6 5C \ reverse slash 0-8-2
3C < 12-84 5D] closing bracket 11-8-2
3D = 8-6 SE ~ circumflex 11-8-7
3E > 0-8-6 SF _ underline 0-8-5
3F ? 0-8-7
40 @ commercial at 84 7B {treated as |
7D { treated as]
A2 19980200 A

Table A-2. Delimiter Characters

Delimiter

Function

Section Reference

, (comma)

{) parentheses

[] brackets

b blank

" quotes

: colon

pound sign

~ circumflex

Delimits elements in a statement field.

Delimits elements in a list and arguments in a procedure

or function call.

Delimits subscripts of a set element reference.
Enclose arguments of a function call.

Used for grouping in an arithmetic expression or for
repetition.

Enclose subscripts for referencing a subset of a set;
enclose subsets of sets.

NOTE

The examples in appendix L show the{ }
characters which are equivalent to []; the
programmer must punch [].

12-8-2 11-8-2
punch punch

Terminates a statement field except in a character
string constant or comment.

Encloses character string for a string constant.
Indicates ordinal of an element within a set.

Indicates ordinal of a symbol attribute.

Indicates start of hexadecimal constant.

Used as escape character in a character string constant;

indicates the next 2 hex digits form a special ASCII
character.

Section 3
(Statement Structure)

Section 4
(Procedures/functions)

Section 4
{Referencing Sets)

Section 4
(Functions)

Appendix B
(Expressions)

Section 4
(Referencing Sets)

Section 3
(Statement Structure)

Appendix A
(Constants)

Section 4
(Defining Sets)

Section 4
(RATT)

Appendix A
(Constants)

19980200 A

Table A-3. Special Characters

Special Character Function Section Reference
$ Specifies a drop to a lower level of reference; cannot Section 2
be used at level 1. (Levels of Symbol
Reference)
@ Indicates current value of active location counter. The Section 4
@ has the same relocation as the active location counter. (Address and Location
Control)
* At beginning of a statement field, indicates the following Section 3
characters comprise a comment. (Statement Structure)
& Indicates statement continues at next continuation Section 2
begin column. (Statement Structure)
CONSTANTS

A constant is a numeric value which cannot be changed by a program. Nine types of constants can be specified
in a Control Data STAR assembler program:

Integer Character String
Integer String Packed Decimal
Hexadecimal Zone Decimal
Hexadecimal String Real

Bit String

The following paragraphs describe the format which is used when writing each constant type in a program. The
rules described here are summarized in table A4 following the discussion of Real Constants.

Al 19980200 A

INTEGER CONSTANT

An integer constant is a signed string of numeric characters (digits) 0-9. The constant is converted to its signed,

48-bit binary equivalent.

In data generation, the generated length of an integer constant is 64 bits, sign extended to 48 bits.

During data generation, if the integer is truncated, the most significant bits are lost.

GEN

RRRRXXUXKE WARNING ~ CONSTANT TRUNCATED IN OPERAND FIELD

1 000000000240 F

00007891 23456789

The maximum significance of the integer is 47 bits excluding sign.

Integer constants are always right justified, sign-extended in data generation.

Maximum integer constant is +140,737,488,355,327; the minimum is -140,737,488,355,328.

Examples:

Integer Constant

19980200 A

Assembler Generated Data

When 64 Bits Requested

0000000000000000
0000000000000001
0000000000000010
0000000000000100
0000000000001000
000000000000FFFF
0000000000000000
FrFFFIFIEFFPEFEFD
FFFFFFFTFPPEFITEEL
FFFFTFFFFFPFFTEBRS
FFFFPFFFFFEF25F1
FFFFFFFFEFFET60DE

Default Length Requested

0000000000000000
0000000000000001
0000000000000010
0000000000000100
0000000000001000
00000000000O0FFFF
0000000000000000
0O00FFTFFITFFFEF
OOOOFFFFFFFFFFEF
OO0OOFFFT'FFFFFLBS
000OFFFFFFFF25F1
0000FFFFFFFF60DF

#123456789123456789

INTEGER STRING CONSTANTS

An integer string constant is written as the letter I followed by a signed string of numeric characters enclosed

in quotes. The constant is converted to a signed binary string equivalent.

1" +digit-string"'

The integer string constant cannot be used in arithmetic expressions.

In data generation, the default length of an integer string constant is the minimum number of bytes
needed to represent the signed binary string.

During data generation, if an integer string is truncated, the most significant bits are lost. When truncation

occurs a warning message is generated.

Integer string constants are right justified, sign-extended in data generation.

Maximum number of digits is 2'%.

Examples:

Integer String
Constant

"o"

Im"
I"+16"
I"256"
I"4096"
I"+65535"
"=-0"
"-1"
"-17"
I"-328"
I"-55823"
I"-40737"

A-6

Assembler Generated Data

When 64 Bits Requested

0000000000000000
0000000000000001
0000000000000010
0000000000000100
0000000000001000
000000000000FFFF
000000000C6000000
00000000000000FF
00000000000000EF
000000000000FEBS
0000000000FF25T1
0000000000FF60DT

“WARNING — CONSTANT TRUNCATED IN OPERAND FIELD.”

Default Length Required

00

01

10
0100
1000
00FTFF
00

FF

ET
FEBS
FF25F1
FF60DF

19980200 A

'HEXADECIMAL CONSTANT

A hexadecimal constant is written as a # (pound sign) followed by a string of hexadecimal characters from
the set 0-9 and A-F. The constant is converted to a 48-bit binary equivalent.

+#hexadecimal-character-string

The default length of a hex constant, in data generation, is 64 bits sign extended to 48 bits.

When a hex constant is truncated during data generation, the most significant bits are lost.

GEN #FFFFFFFFFFFFFFFFFF

Hexadecimal constants are right justified, sign-extended in data generation.

The maximum hex constant is:

Examples:

Hexadecimal

Constant

#9
#F
#FE
tor
+#FF
#8000
#08000
-#9
-4F
- #FE
- #0F
- #FF
- #8000
- #08000

19980200 B

+#FFFF FFFF FFFF

Assembler Generated Data

When 64 Bits Requested

0000000000000009
000000000000000F
00000000000000FC
000000000000000F
000000000000COOLE
0000000000008000
0000000000008000
FFFFFFFFFFFEFFFF7
FFFFFFFFFFFPFFF1
FFFFFFIFFFFFFF02
FFFFFFEFFIFFFFFL
FFFFFFFFIFFFFFO1
FFFFFFFFFFFF3000
FFFFFFFFFFFF8000

Default Length Requested

0000000000000009
000000000000000F
00000000000000FE
000000000000000F
00000000000000FF
0000000000008000
0000000000008000
000OFFFFFFFFFFF7
0000FFFFFFFFFFF1
0000FFFFFFFFFF02
0000FFFFFFFFFFF1
0000FT'FFFFFFFFO1
0000FFFFFFFIF8000
000OFFFFFFFF8000

HEXADECIMAL STRING CONSTANT

A hexadecimal string constant is written as a letter X followed by a string of hexadecimal characters (from the
set 09 and A-F) enclosed in quotes. Each character in the string is converted to a 4-bit hexadecimal equivalent.

X"'hexadecimal-character-string"'
The hexadecimal string constant cannot be used in arithmetic expressions.

The default length of a hex string constant, in data generation, is the number of half-bytes (4 bits)
required to represent the constant.

Hex string constants are always right justified, zero filled in data generation.

Maximum number of hex digits is 212,

Examples:
Hexadecimal Assembler Generated Data
String Constant When 64 bits Requested Default Length Requested
x"on 0000000000000009 9
X"F" 000000000000000F F
X"FE" 00000000000000FE FE
X"or" 00000000D000000F OF
X"FF" 00000000000000FF FF
X"8000" 0000000000008000 8000
X"08000" 0000000000008000 08000

A-8 19980200 A

BIT STRING CONSTANT

A bit string constant is written as a letter B followed by a string of binary digits from the set 0 and 1 enclosed

in quotes. Each character in the string is converted to a 1-bit binary equivalent.

B"'binary-digit-string"'

The bit-string constant cannot be used in arithmetic expressions.

The default length of a bit string constant, in data generation, is the number of bits required to represent

the bit string.

Bit string constants are right justified and zero-filled when used in data generation.

Maximum number of bits is 2'2.

Examples:

Bit String
Constant

Blll"

B"1110"
B"011000"
B"010l1010101"
B"1010101010"

19980200 B

Assembler Generated Data

When 64 Bits Requested

0000000000000001
000000000000000E
0000000000000018
0000000000000155
000000006800002AA

A9

CHARACTER STRING CONSTANT

A character string constant is written as a string of ASCII characters enclosed in quotes. Each character is
converted to an 8-bit byte equivalent representation.

"character-string"'
The character string constant cannot be used in arithmetic expressions.

The default length of a character string constant, in data generation, is the number of bytes required to
represent the character string.

A circumflex in the character string indicates the next 2 hexadecimal characters are to be combined to
form a special ASCII code.

The following characters must be inserted by using the circumflex: "(quote), &(ampersand), and
~ (circumflex), e.g., “~41” = “A”

Character string constants are always left justified and blank-filled in data generation. The data generation
field must be a multiple of bytes.

The current control section counter must be byte aligned for data generation of character strings. Auto-
matic alignment occurs if improper alignment is detected. When automatic alignment occurs the message:
AUTOMATIC ALIGNMENT PERFORMED FOR DATA TYPE INDICATED LABELS MAY NOT
CORRESPOND TO START OF DATA” is issued.

Maximum number of characters is 2*2.

Examples:

Character Assembler Generated Data

String Constant When 192 Bits Requested Default Length Requested

"ASSEMBLER" 415353454D424C45 415353454D424C45
5220202020202020 52
2020202020202020

"USES FOR 555345532020464F 5553455320204 64F

AMPERSAND" 5220414D50455253 5220414D50455253
41417442020202020 414744

A-10 19980200 B

PACKED DECIMAL CONSTANT

A packed decimal constant is written as the letter P followed by a signed string of numeric characters enclosed
in quotes. The constant is converted to its signed BCD equivalent: the rightmost 4 bits contain the size.

P"+digit-string”
Packed decimal constants cannot be used in arithmetic expressions.

The default length of a packed decimal constant, in data generation, is the number of bytes required to
represent the signed packed decimal constant.

The most significant bits are lost when truncation is performed.
Packed decimal constants are always right justified zero-filled in data generation.
Maximum number of digits 212,

Examples:

Packed Decimal Assembler Generated Data

Constants When 64 Bits Requested Default Length Requested
p"12345" 000000000012345A 12345A
P"+543" 000000000000543A 543A
p"-6789" 000000000006789B 06789B
p"-9876" 000000000009876B 09876B

ZONED DECIMAL CONSTANT

A zoned decimal constant is written as the letter Z followed by a signed string of numeric characters enclosed
in quotes. The constant is converted to its signed ASCII-zoned format with the rightmost byte (an overpunched
digit) containing the sign and the least significant decimal digit.

7"+ digit-string"

Zoned decimal constants cannot be used in arithmetic expressions.

The default length of a zoned decimal constant, in data generation, is the number of bytes required to
represent the signed zoned decimal constant.

The most significant bits are lost when truncation is performed.

The current control section counter must be byte aligned for data generation of zoned constants. Auto-
matic alignment occurs when improper alignment is detected.

Maximum number of digits is 212,

19980200 A A-11

Examples:

Zoned Decimal Assembler Generated Data

Constants When 64 Bits Requested Default Length Requested
Z2"12345" 3030303132333445 3132333445
Z"+543" 3030303030353443 353443
Z"-6789" 3030303036373852 36373852
Z"-9876 303030303938374F 3938374F

REAL CONSTANT
The formats for signed real constants are:
*n,.n,Efng for half word
tn4.n,Dtny for full word
The real constant is converted to its internal normalized floating-point equivalent.
nyis an optional string of numeric characters.
nyis a non-empty string of numeric characters.
nzis an optional string of numeric characters.

The period is not optional but the E or D and the signs are optional. If neither E nor D is given, the default
is E. '

When real constants are used in arithmetic expressions, normalized arithmetic is used for add and subtract
operations; significant arithmetic is used for multiply and divide operations; and the result is always

normalized.

The default length of a real constant, in data generation, is an 8-bit exponent, 24-bit coefficient for E
(32-bit value); or a 16-bit exponent, 48-bit coefficient for D (64-bit value).

When a real constant is converted to its internal form, the least significant digits are truncated.
When a real constant is used in data generation, the rightmost bits of the constant are truncated.
Real constants are always right justified, zero-filled in data generation.

For D, maximum number of digits for n; and n, combined is 14.

For E, maximum number of digits for ny and n, combined is 7.

For D, maximum number of digits for ny is 4.

For E, maximum number of digits for ny is 2.

if half- and full-word real constants are mixed in arithmetic expressions, the result is a full word.

A-12 19980200 A

Exampiles:

19980200 A

Real Constants

-123.45E+4
+123.45E-4
-123.45E-4

123.45D+4
+123.45D-4
-123.45D-4

Assembler Generated Data

When 64 Bits Requested
FE4B5910
FEB4AGFO
E3652157
E39ADEA9
FFE64B59 10000000
FFCB6521 57689CAO0
FFCB9ADE A8976360

A3

V 00208661

Tavle A-4. Summary of Rules for Constants

CONSTANT USED iN TRUNCATION | MAX SIZE/ MIN SIZE/ DEFAULT JUSTIFICATION MISCELLANEOUS
TYPE/FORMAT ARITHMETIC VALUE VALUE LENGTH DURING DATA
EXPRESSION AT DATA GENERATION
GENERATION

INTEGER YES most signi- +140,737, -140,737, 48 bits sign right justified

(+digit ficant bits 488 355, 488,355, extended to [sign extended

string) 327 328 64 bits

INTEGER NO most signi- 212 gigits min # of bits right justified

STRING ficant bits required to [sign extended

I“tdigit- represent the #.

string”™)

HEXADECIMAL YES most signi- #FFFF 48 bits sign right justified

(+ # hex-char- ficant bits FFFF extended to [sign extended

string”™”) FFFF 64 bits

HEXADECIMAL NO most signi- 212 min # of half right justified

STRING ficant bits hex digits -bytes required zero-filled

{X“hex-char- to represent

Btring”) the #.

BIT STRING NO most signi- 212 pits # of bits right justified

(B*“binary- ficant bits required to re- zero-filled

Higit-string™) present the string

CHARACTER NO most signi- 212 # of bytes left justified Current control section

STRING ficant bits characters required to re- /blank filled counter must be byte

(“char-string”) present the Char- (field genera- aligned for data gener-

acter String ted must be a ation of character string.
byte multiple) This is accomplished atuo-

matically if programmer
fails to ensure byte
alignment

PACKED- NO most signi- 212 digits # of bytes right justified

DECIMAL ficant bits required to re- /zero-filled

Petdigit~ present the signed

string™) ' packed Decimal

: Constant

V 00208661

SI-v

Table A-4. Summary of Rules for Constants (Cont’d)
CONSTANT USED IN TRUNCATION MAX SIZE/ MIN SIZE/ DEFAULT JUSTIFICATION MISCELLANEOUS
TYPE/FORMAT ARITHMETIC VALUE VALUE LENGTH DURING DATA
EXPRESSION AT DATA GENERATION
GENERATION .
ZONED- NO most signi- 212 digits number of bytes right justified Current control counter
DECIMAL ficant bits required to repre- [zero filled; must be byte aligned
(Z*xdigit- sent the Zoned field must be a for data generation.
string’”) Decimal Constant multiple of bytes automatically
accomplished if pro-
grammer fails to assure
proper alignment.
REAL YES - 1) Internal form| 1) D max # 32 bit-half word right justified When half and full word
(¢nl.n2Exn3 normalized least significant of digits : 64 bit full word [zero filled real constants are mixed
half word) add, subtract bits nl and n2 in arithmetic operations
(+n1.n2D4n3 and normal- 2) Data Gen- (14 digits) then result is a fullword
full word) ized signi- eration most n3 (4 digits) value.
ficant arith- significant bits. 2) E max #
metic for of digits:
multiply and nl and n2
divide (7 digits)

n3 (2 digits)

SYMBOLS

S)}mbols are formed by combining 1-63 alphabetic characters or numbers; they provide a convenient means of
referring to program elements. Symbols can be used as:

Address identifiers Form names
Variable identifiers Procedure names
Function names Set names

Directive names

For identifying program elements, all the above symbol types, except directive names and instruction mnemonics,
are entered in the label field. The latter two types are entered as described in table A-5. The first character of a
symbol must be alpha. The remaining symbols may be numeric or an underscore.

Examples of legal symbols:

A R 35 X
BAKER R 15

CHARLIE_1 Z 246 8 10

SYMBOL RELATED DIAGNOSTICS

Diagnostics related to the improper construction of a symbol in a label field are listed below.

*xdkkkdkk MISSING OPERATOR IN LABEL FIELD

Occurs when a $ or @ is embedded in the symbol, or when a symbol starting with a digit is followed by
a letter without an intervening comma.

Exampies:
K @LM Embedded @
D3%45 Embedded §
1ABCD ‘ Written as 1, A, B, C, D, this would constitute a label list of 5 labels, the first

being numeric.

A-16 . 19980200 A

¥&dkxx%k UNMATCHED PAREN IN LABEL FIELD

1(123

wxsxxksrs [LLEGAL STRING CONSTANT IN LABEL FIELD

J"BA

sxksxxxxx [LLEGAL SYMBOL IN LABEL FIELD

Occurs when a label field begins with an underscore:

_AI23

Table A-5. Symbol Summary

Symbol Type

Location As Identifier

Location As Reference

Comments

Address
Identifier

Variable
Identifier

Function
Name

Label field of directives:

form call MSEC
RES EXT
GEN ORG

Label field of program
statement.

Label field of directives

RDEF EQU
RPT ‘

Label field list of NAME
directive in a function
definition.

Command field list/

operand field list of
directives or program
statement.

Command field list/
operand field list.

Any command/operand
field list.
Function reference format:

Function Name (list of
operands)

Value of identifier used in
label field is value of P
counter after alignment. Re-
location attribute is same as
that of P counter.

Returns value of address
identifier when used in
command/operand list.

Returns value of identifier
when used in command/
operand list.

A function reference calls a
routine to process function
definition statements. When
this call is terminated by

an EXITP or ENDP directive,
the value of the directives
operand field list is returned.

19980200 A

A-17

Table A-5. Symbol Summary (continued)

Symbol Type

Location As Identifier

Location As Reference

Comments

Directive Command field followed This symbol is recognized
Name by operands in command by assembler. A reference
list and operand list fields. to a directive name is a
call to a processor that
performs the function of
the directive.
Form Name Label field of FORM
directive.
Command field followed A form reference is a call
by operands in operand to a processor that generates
list. data defined by a form
definition and the operands
in the form reference.
Procedure Label field of NAME
Name directive in procedure
definition.
Command field followed A procedure reference is a
by command list and call to a processor that
operand list. executes statements in the
procedure definition until
an EXITP or ENDP directive
occurs. No value is returned.
Set Name Label field of SET
directive.
Example:
BETA SET 3, 6, 9
label
Command list or operand Returns a value of complete
list fields. set list, contained in brackets.
Example:
GEN .ELM.BETA
—— N
operand
A-18

19980200 A

Table A-5. Symbol Summary (continued)

rSymbol Type
b

Location As Identifier

Location As Reference

Comments

Instruction
Mnemonic

Numeric
Label

a:

1 to 14 numeric
characters (leading
zeros preceding the
label field list are
ignored.

Command field followed
by command and operand
lists. Symbol recognized
by the Control Data
STAR system as a machine
instruction mnemonic.

Operand field of RPT a
and GOTO directives.

Calls processor that
generates the machine
instruction as data.

Example:

reference
N —~
GOTO 5

5.
P Ny
identifier in

label field

19980200 A

A19

EXPRESSIONS B

The Control Data STAR assembler permits the use of simple expressions, consisting of one symbol, and com-
plex expressions, consisting of two or more symbols connected by an operator. For expressions with more
than one operation, the order in which each operation is evaluated is determined by the hierarchial level
assigned to the operators.

Expressions may be arithmetic, relational, logical, or special. Table B-1 lists the operators for each expression
type, and includes interpretation of each operator, as well as the hierarchial value assigned to it. After reading
this appendix, refer to figure B-1 which illustrates the evaluation of a logical expression.

Set or function names cannot be used as an operand in an expression; however, function call with parameter
lists can.

Unary operators must preceed an operand
A unary operator can follow a binary operator without parentheses.
.BS+4 (valid). Binary operator

NOT.-A (invalid unary followed by another unary operator). Must be .NOT.(-A)

19980200 A B-1

Table B-1. Operators

Type Operator Interpretation Heirarchy
Arithmetic + Unary plus 1
Addition 4
- Unary minus 1
- Subtraction 4
.BS. Shift operands to the left of the operator at 2
(binary scale) assembly time (+ or missing shift left; - shift
right) by the number of bit positions specified
by the value to the right of the operator. e.g.,
ABS.+4
* Multiplication 3
/ Division 3
.GE. Condition true if greater than or equal to 5
Comparison .EQ. Condition true if equal 5
.NE. Condition true if not equal S
.GT. Condition true if greater than 5
LT. Condition true if less than S
.LE. Condition true if less than or equal to 5
Logical .NOT. Logical one’s complement (unary) 1
.AND. Logical product 7
.OR. Logical or (inclusive or) 8
Special .CAT. Concatenate character string on the left to that 1
on the right of this operator. Operands can be:
expressions, character string, function designator,
variable identifier, or set designator. All types
must evaluate to a character string prior to
concatenation. Result must be a character string.
eg., “STAR” .CAT. “ ASSEMBLER” results in
STAR ASSEMBLER.
.ELM. Expand a set to a list of elements. 1
NR. Convert the address (external or relocatable) to
(ignore relocation) a 48 bit integer constant by removing the re-
location ordinal. This occurs at assembly time.
: Give operand to the right the list position 1
(positional operator)| specified by the operand to the left.
N() Repetition operator for a list of (elements) 1
where N is an expression representing a repeti-
tion count. N must evaluate to an integer and
the elements to be repeated can be of any
operand type permitted in as assembler
expression including a null.
B2 19980200 B

EXPRESSION EVALUATION

Expressions are evaluated left to right, the operations with iower numbered hierarchies are performed first.
Parenthesized sub-expressions are expanded from the inside and are performed first. Operators of equal
hierarchy are evaluated left to right.

Operations involving the use of relocatable address cannot be performed in the code section of the subprogram;
ie., must be performed in the data section. If an operation involving the use of a relocatable address is
attempted in a code section the following message is generated.

sskst4s4k+ RELOCATION NOT PERMITTED IN CODE MSEC

ARITHMETIC OPERATIONS

Arithmetic operators can generate either an integer constant (which could have been associated with a memory
section ordinal) or a real constant. Integer constants and real constants cannot be mixed in an operation.
Tables B-3 through B-6 list legal combinations of operand types used in arithmetic operations.

RELATIONAL OPERATIONS

The result of a relational operation is an integer constant zero if the operation proves false, or an integer
constant oné if the operation proves true. The comparison method for all relational operations is specified in
table B-2; a description of allowable combinations of operand types in relational expressions appear in table
B-7.

Table B-2. Comparison Methods

Operand Types Method

Character, bit, and hexadecimal Bit comparison. When lengths differ, they
string constant comparison are considered not equal.

Real constant comparison Floating-point compare

Packed and zoned decimal constant Decimal compare

comparisons

Integer and hex constant Signed integer compare

comparison

Integer-string constant comparison Binary compare

19980200 A B-3

EXPRESSION MODE AND EVALUATION

As performed by the assembler, expression evaluation determines the data types of the operands and the speci-
fication of a result and data type based on predefined rules. A mode value, assigned by the assembler, describes
each data type (operand) used in an expression:

Mode Value Meaning

0 Not a value; for example,set-of-function name
1 Absolute address

2 Relocatable address

3 External address

4 Integer or hexadecimal constant

5 Hexadecimal string constant

6 Bit string constant

7 Character string constant

8 Real constant

9 Packed decimal constant
10 Zoned decimal constant
11 Integer string constant
12 Null element; element of set list is not defined. Element value is zero.

The following tables (B-3 through B-6) provide the allowable combinations of operand types (modes) for a
given operation and the data type (mode) of the result of the operation. The mode result of each operation
is contained within the appropriate blocks. An asterisk result indicates that the combination of operands is
not permitted.

Table B-3. Unary + - Operations

Right Operand
UNARY + -
Relocatable Integer Hex Real Absolute
Address Constant Constant Constant Address
Relocatable Integer Hex Real Absolute
Address Constant Constant Constant Address

B4 19980200 B

Left
Operand

For example:

Left
Operand

Integer
Constant

Hex
Constant

Real

Table B-4. Binary Scale Operations (.BS.)

Right Operand
teger Hex Real
Constant Constant Constant
Integer Integer Integer *
Constant Constant
Hex Hex Hex *
Constant Constant Constant
Real Real Real ®
Constant Constant Constant
00 000000000003 C EQU 3
01 000000000040 E 00000000 00000006 GEN C.BS.+1
01 000000000080 F 00000000 00000001 GEN C.BS.-1
00 0000000000006 AA EQU #3.BS.+#1
00 0000000000006 BB" EQ #3.BS.+1
00 00000000000B2 CcC EQU 89.BS.+#1
Table B-5. Multiply and Divide Operations (* /)
Right Operand
Integer Hex Real
Constant Constant Constant
Integer Integer *
Constant Constant
Hex Hex *
Constant Constant
* * Real
Constant

19980200 B

Constant

Left
Operand

B-6

External
Address

Relocatable
Address

Integer
Constant

Hex
Constant

Real
Constant

Table B-6. Add and Subtract Operations (+ -)

Right Operand
External Relocatable Integer Hex Real
Address Address Constant Constant Constant
External * External External *
Address Address Address
* Relocatable Relocatable Relocatable *
Address Address Address
* Relocatable Integer Integer *
Address Constant Constant
External Relocatable Hex Hex *
Address Address Constant Constant
* * * * Real
Constant

19980200 B

V 00708661

Left
Operand

L4

Relocatable
Address

Integer(INT)
Constant

Hex
Constant

Hex-String
(STR)
Constant

Bit-String
Constant

Char-String
Constant

Real
Constant

Packed-
Decimal
Constant

Zoned-
Decimal
Constant

Integer(INT)
String(STR)
Constant

Table B-7. Relational Operations (EQ, NE, GT, GE, LT, LE)

Right Operand

Hex- Bit- Char- Packed- Zoned- Integer-
‘Relocatable Integer Hex String String String Real Decimal Decimal String
Address Constant Constant Constant Constant Constant Constant Constant Constant Constant
Constant
* INT INT * * * ® * * ®
Constant Constant
* INT INT * * * * * * *
Constant { Constant
* % * * * * * % *
INT
Constant
* * *® * INT * *® * * *
Constant
Constant
* & * % *® £ 3 INT *® £ *
Constant
* * * % * & * INT * *
Constant
* * * * L d #* * £ INT *
Constant
* * * * * * * * *
INT
Constant

| LOGICAL OPERATIONS

Logical operations are performed left to right and bit by bit. If operands are unequal in length, the shorter is
left justified and right extended with zeros until both are equal in length. Allowable combinations of operands
in logical operations appear in table B-8.

Left
Operand

B-8

Table B-8. Logical Operations (AND, OR)

For a unary .NOT. operation, the result length is that of the operand being evaluated.

Relocatable
Address

Integer
Constant

Integer-
String
Constant

Hex
Constant

Bit-String
Constant

Char-String
Constant

Real
Constant

Packed-
Decimal
Constant

Zoned-
Decimal
Constant

Integer
Constant

Hex
Constant

Integer-
String
Constant

Right Operand

Bit-
String
Constant

Char-
String Real
Constant Constant

Packed- Zoned-
Decimal Decimal
Constant Constant

T T T
Mode and length of left operand

Mode and length of left operand

Mode

Mode

and length

and length

of left operand

of left operand

Mode and length of left operand

Mode

and length

of left operand

Mode and length of left operand

Mode

and length

of left operand

Mode and length of left operand

19980200 B

V 00208661

EXPRESSION

NOT.

0.EQ..NOT. (-)).EQ.!)
Lo ol 2

<

\
A\

ExpLANATION

a) PARENS EVALUATED FIRST

0 NOT HAS HIGHEST HIERARCHY
a) PARENS EVALUATED

D — is A UNARY QPERATOR AND INDICATES
2's COMPLEMENT

2) | 15 A48-8IT INTEGER CONSTANT
3) THE COMBINATION OF THE TWO
b} NOT PerFORMS A I's COMPLEMENT

2) SINCE THERE ARE 2 EQ'S, EVALUATION CONTINUES
FROM LEFT TO RIGHT.

o Ois A 48-8iT INTEGER CONSTANT

b WHEN RELATIONAL OPERATORS ARE EVALUATED THEY
RETURN A 48-BIT INTEGER CONSTANT OF ONE FOR
TRUE OR ZERO FOR FALSE.
¢) THE EXPRESSION EVALUATES TO BE TRUE
3) COMPLETE EVALUATION OF PARENS

o 115 A48-8iT INTEGER CONSTANT
b) THE EXPRESSION EVALUATES TO BE TRUE

b THE COMPLETE EXPRESSION 1S Now NOT1eD

[Fs cOMPLEMENT]

Hex
REPRESENTATION Mooe:

0000 00000001 [INTEGER CONSTANT|

FFFF FFFF FFFF |INTEGER CONSTANT
0000 0000 0000 hNTEGER ConsTAaNT

0000 0000 0000 |INTEGER CONSTANT

0000 0000 000! {INTEGER CONSTANT

0000 0000 000! [INTEGER CONSTANT
000000000001 |INTEGER CONSTANT

FFEF FFFF EFFE [INTEGER CONSTANT

Figure B-1. Expression Hierarchial Evaluation

OPERATOR

NOT
EQ

EQ

EQ

HIERARCHY

STAR MACHINE INSTRUCTIONS C

STAR instructions may be classified into ten categories: Register, Index, Branch, Vector, Sparse Vector, Vector
Macro, String, Logical String, Non-Typical, and Monitor. Instruction size is either 32 bits or 64 bits and formats
vary within an instruction group.

GENERAL FORMAT

The general format for a symbolic machine instruction is identical to that of a procedure reference:

Numeric Label, List Mnemonic, Qualifiers Operands

LABEL FIELD

The label field consists of an optional numeric label followed by an optional list of symbols separated by
commas. The symbols are defined to be address identifiers and are given the value of the current location
counter after alignment. They are used to define locations at assembly time and do not become part of the
32-bit or 64-bit instructions.

COMMAND FIELD

The command field consists of mnemonics and associated qualifiers. Mnemonics specify the machine instruction
to be generated. (They are mapped into the 8-bit function field.) Every instruction function code has a dif-
ferent mnemonic. The mnemonic symbol can be used as an address identifier, variable identifier, set name,

and function name without redefining the mnemonic as a machine instruction. Defining a mnemonic symbol to
be a procedure name or form name results in instruction redefinition; therefore, use of that machine instruction
is lost.

Command field qualifiers are lists of symbols that indicate a sub-operation of the function code specified by the
instruction mnemonic. Qualifiers are not reserved symbols and definition of a qualifier symbol by a user does
not alter its value as qualifier to an instruction. The user can define his own qualifiers, provided the symbols
differ from those qualifiers supplied by the assembler. The assembler checks user defined qualifiers to ensure
that the sub-operation specified can be performed. Assembler supplied qualifiers are listed in table C-1.

19980200 B C-1

Table C-1 Qualifiers

Qualifier Meaning 3:lxue Default (value is 00)
A Broadcast A operand 10 No broadcast of A
B Broadcast B operand 08 No broadcast of B
BR Branch unconditionally 40 Do not branch
BRB Branch backward 06 Branch to (Y) + (B)
BRF Branch forward 04 Branch to (Y) + (B)
BRO- Branch on one 80 Do not branch
BRZ Branch on zero Co Do not branch
C Complement A operand 02 Normal A operand
CH Destination C is half word 08 Destination C is full word
D Character delimiter for A and B 80 Count delimited for A and B operands
DC Character delimiter for destination C 20 Count delimited for destination C
DD Double character delimiter for A Cco Count delimited for A and B operands
and B operands
DDC Double character delimiter for 30 Count delimited for destination C
destination C
DM Character mask delimiter for A 40 Count delimited for A and B
and B operands operands
H Half word operand 80 Full word operands
LH Start at last hit 20 Starts over
MA Magnitude of A operand 04 Normal A operand
MB Magnitude of B operand 01 Normal B operand
N Negative A operand 06 Normal A operand
NCC No conflict checking 01 Conflict checking
NIX Do not increment X 04 Increment
NIY Do not increment Y 02 Increment
NIZ Do not increment Z 01 Increment
NS Packed to zoned no sign Co Normal zone sign
0 Offset destination and control vector 20 No offset
SO Set bit to one 20 Do not alter bit
SS Zoned 8 bit sign to packed or packed 80 Normal zone sign
to zoned 8 bit sign
SZ Set bit to zero 30 Do not alter bit
Toggle bit 10 Do not alter bit
Control vector on zeroes 40 Control vector on ones
C-2 19980200 A

OPERAND FIELD

The instruction operand field lists all operands to be used with the instruction. Combination of operand types
that can be used with an instruction depends on the format type for the instruction. format types
(categories) are available. A particular form type is usually, but not necessarily, common to a group or groups
of instructions.

Twelve

L 4%

Operand Form Meaning

[OP1,0P2] Operand 1 offset or indexed by operand 2 (see table C-10 vector instructions)
[OP1] Operand 1 offset or indexed by zero
[,OP2] Zero offset or indexed by operand 2 |

Each format type includes a corresponding instruction designator portion. Most formats are divided into lengths
of 8-bit characters. The following drawings illustrate available instruction formats and specify the contents of
each format division. Cross-hatching denotes undefined areas which must be zero filled. The assembler automati-
cally generates zero fill for these areas. A description of the designators used in the format layouts appears

in table C-2.

0 78

1516

23 24

31 32

3940

4748

5556

63

F
(FUNCTION)

G
(SUB-FUNCTION)

AN
(OFFSET FOR A)

A
(LENGTH AND
BASE ADDRESS)

¥
(OFFSET FOR B)

B
(LLENGTH AND
BASE ADDRESS)

Z
(CONTROL VECTOR]
BASE ADDRESS)

C
(LENGTH AND
BASE ADDRESS)

i S i

. (OFFSET |

FORC&2) |

FORMAT 1 - USED FOR VECTOR, VECTOR MACRO, AND SOME NON-TYPIC AL INSTRUCTIONS —

0 78 1516 2324 3132 3940 4748 5556 63

< 5 z c
r G (ORDER YECTOR A (ORDER VECTOR B (ORDER VECTOR RESULT
FUNCTION suB-FeNcTion) | {GRDER VECTOR 1 (ase appress) | LENcT axn | (sask aDLRESS) | LENGTH AXD LENGTH AND
NG ASF) < | BASE ADDRESS) BASE ADDRESS) | BASE ADDRESS
FORMAT 2 - USED FOR SPARSE VECTOR AXD SOME NON-TYPICAL INSTRUCTIONS

0 78 1516 2324 3132 39 40 1748 5556 83
r G X (1 ENGTIH AND ¥ (1ENGTII XD z (LENGTH AND
(FUNCTION) (suB-FrNeTioN) | axpEx ror a1 | SENCEIEARE | avpexror | GENTTRARS | ONPEXTFORC) | (LENGTH AND

=)

78

FORMAT 3 - USED FOR LOGICAL STRING AND STRING INSTRUCTIONS

1516

P
(FUNCTION)

R
{SOURCE 1)

S
(SOURCE 2}

(DESTINATION)

19980200 B

FORMAT 4 - USED FOR SOME REGISTER, ALIL MONITOR, THE 31 AXD 04 NOXN-TYPICAL INSTRUCTIONS

C3

15 16

83

F R
(FUNCTION) (DESTINATION) I (48 BITS)
FORMAT 5 - USED FOR THE BE, BF, CD AND CE INDEX INSTRUCTIONS AND FOR THE B6 BRANCH INSTRUCTION
78 1516 31
F "R I
(FUNCTION) (DESTINATION) (186 BITS)
FORMAT 6 - USED FOR THE 3E, 3F, 4D AND 4E INDEX INSTRUCTIONS AND THE 2A REGISTER INSTRUCTION
78 1516 23 24 31

F
{FUNCTION)

T
(BASE ADDRESS)

FORMAT 7 - USED FOR SOME BRANCH AND NON-TYPICAL INSTRUCTIONS

78

1516

23 24

F
(FUNCTION)

R
(REGISTER)

S
(REGISTER)

T
(BASE ADDRESS)

FORMAT 8 - USED FOR SOME BRANCH INSTRUCTIONS

78

15 16

23 24

31

F
(FUNCTION)

G
DESIGNATOR

S
(BIT TEST
ADDRESS)

FORMAT 9 - USED FOR THE 32 BRANCH INSTRUCTION

78

15 16

23 24

F
(FUNC TION)

T
(NEW STATE)

UNDEFINED

(MUST BE "0'S")

FORMAT A - USED FOR SOME INDEX, BRANCH, AND REGISTER INSTRUCTIONS

19980200 A

UNDEFINED
(MUST BE "0's")

N

0 78 15 16 17 18 23 24 31
[
F G 11 1 T
(FUNCTION) DESIGNATOR ;p (8) (BASE ADDRESS)
0%

FORMAT B - USED FOR THE 33 BRANCH INSTRUCTION

G-DESIGNATOR

0 78 1213141516 23 24 31 32 39 40 47 48 55 56 63
F X A Y B z c
(FUNC TION) / (REGISTER) REGISTER (INDEX) (BASE ADDRESS) (REGISTER) (REGISTER)
UNDEFINED

] BRANCH CONTROL BITS
(AMIUST BE "'O's")

FORMAT C - USED FOR THE B0-B5 BRANCH INSTRUCTIONS

19980200 A

C-5

Table C-2. Instruction Designators

Designator Format Type Definition

A 1&3 Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

2 Specifies a register that contains the base address for a source sparse vector
field.

C Specifies a register that contains a two’s complement integer in the right-
most 48 bits.

B 1&3 Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

2 Specifies a register that contains the base address for a source sparse
vector field.

C Specifies a register that contains the branch base address in the rightmost
48 bits.

C 1,2, &3 Specifies a register that contains the field length and base address for
storing the result vector, sparse vector, or string field.

C Specifies the register that will contain the two’s complement sum of (A)
+ (X) in the rightmost 48 bits. The leftmost 16 bits are cleared.

C+1 1 Specifies a register containing the offset for C and Z vector fields.

d 9 & B 2-bit designator specifying branch conditions.

e 9&B 2-bit designator specifying object bit altering conditions for the corres-
ponding branch instructions.

F 1-C 8-bit designator used in all instruction format types to specify instruction
function code. It is always contained in the leftmost 8 bits of the
instruction and is expressed in hexadecimal for all instruction descriptions.
Thus, the function code range is 00-FF 4; however, not all possible
function codes are used.

G 1,2, 3,9, 8-bit designator specifies certain sub-function conditions. Sub-functions

,&C include length of operands (32- or 64-bit), normal or broadcast source

vectors, etc. The number of bits used in the G designator varies with
instructions.

C-6

19980200 A

Table C-2. Instruction Designators (Cont’d)

Designator Format Type Definition
I 5 48-bit index used to form the branch address in a B6 branch instruction.
In BE and BF index instructions, I is a 48-bit operand.

6 In 3E and 3F index instructions, I is a 16-bit operand.

B In the 33 branch instruction, the 6-bit I is the number of the DFB object
bits used in the branching operation.

R 4 In the register and 3D instructions, R is the register containing an operand
to be used in an arithmetic operation.

5&6 " In the 3E, 3F, BE, and BF index instructions, R is a destination register
for the transfer of an operand or operand sum. In the B6 branch
instruction, this register contains an item count used to form the branch
address.

7,8 & A R specifies registers and branching conditions given in the individual
instruction descriptions

S 4 In the register and 3D instructions, S is a register containing an operand to
be used in an arithmetic operation.

7,8,&9 S specifies registers and branching conditions given in the individual
instruction descriptions

T 4 T specifies a destination register for the transfer of the arithmetic results.
7,8,9,&B T specifies a register that contains the base address and, in some cases, the
field length of the corresponding result field or branch address.

A T specifies a register containing the old state of a register, DFB register,
etc; in an index, branch, or inter-register transfer operation.

X 1&3 Specifies a register that contains the offset or index for vector or string
source field A.

2 Specifies a register that contains length and base address for order vector
corresponding to source sparse vector field A.

C In the BO-BS Branch instructions; this register contains a signed, two’s-

complement integer in the rightmost 48 bits used as an operand in the
branching operation

19980200 A

C.7

Table C-2. Instruction Designators (Cont’d)

Designator Format Type Definition
Y 1&3 Specifies a register that contains the offset or index for vector or string
field B.
2 Specifies a register that contains the length and base address for the

order vector corresponding to source sparse vector field B.

C In the BO-B5 Branch instructions, Y specifies a register that contains an
index used to form the branch address.

Z 1 Z specifies a register that contains the base address for the order vector
used to control the result vector in field C.

2 Z specifies a register that contains the length and base address for the
order vector corresponding to result sparse vector field C.

3 Z specifies a register that contains the index for result field C.

C In the BO-BS Branch instructions, Z specifies a register that contains a’
signed, two’s-complement integer in the rightmost 48-bits. It is used as
the comparison operand in determining whether the branch condition is
met.

INSTRUCTION TYPES
Each STAR instruction type is discussed in the following paragraphs. Tables C-6 through C-15 list the
instructions including: OP code, format (F) instruction mnemonic, applicable operand types, qualifiers, and

concise description.

The following categories are described:

Register Vector Macro
Index String

Branch Logical String
Vector Non-Typical
Sparse Vector Monitor

For a complete description of each instruction included in the STAR set, see Engineering Specification
11845800 (STAR INSTRUCTION DESCRIPTIONS).

c8 19980200 A

REGISTER INSTRUCT!ONS

The STAR register file consists of 32- and 64-bit registers. To accommodate the use of both register types,
the STAR instruction set includes instructions which access the register file as half words (32 bits) or full
words (64 bits).

In “the register instructions, all source and result destinations are registers; R, S, T, each designate the contents
of one of 256 registers. Unless specified, in register-to-register operations the source registers are unchanged and
the destination registers are cleared before the result is entered.

Any register except 0074 can contain one or both source operands or a result. For a description of the proper
use of register 0014, see the Chapter 3, Register File description (paragraph 3.1.7), in Engineering Specification
11845800 (STAR INSTRUCTION DESCRIPTIONS).

INDEX INSTRUCTIONS
Index instructions are used primarily for numerical calculations on field lengths and addresses. The index instruc-
tions manipulate either the low order 24 bits of a half word or the low order 48 bits of a full word in designated
operational registers. Some index instructions are used for manipulating the high order 8 bits of a half word
or the high order 16 bits of a full word in the designated operational registers.
BRANCH INSTRUCTIONS
The branch instructions can be used to compare or examine single bits, 48-bit indexes, 32-bit floating-point
operands, or 64-bit operands. Results of comparison determine whether the program continues with the next
sequential instruction (branch condition not met) or branches to a different instruction sequence (branch
condition met). The instruction sequence can consist of one or more instructions beginning at the branch
address specified in the branch instruction format. For instructions which require index operations, all item
counts are in half-word increments.
The following comparison rules apply to branch instructions.

If the signs of the coefficients of two operands are unlike, the operands are unequal.

If one operand is indefinite, the compare condition is not met since indefinite is not > < or =

to any other operand. If both operands are indefinite the = and > conditions can be met since indefinite

equals indefinite.

If neither operand is indefinite but both operands are machine zero:

A non-indefinite, machine-zero operand with a positive, non-zero coefficient is greater than machine
zero. .

A non-indefinite, non-machine zero operand with a negative coefficient is less than machine zero.

19980200 B C9

Machine zero is considered equal only to itself and to any number having a finite exponent and a
zero coefficient.

Machine zero is represented as:
8X XXXXXX (32 bits)
8XXX XXXXXX XXXXXX (64 bits)
where: X equals any hexadecimal digit.
An indefinite number is represented as:
7X XXXXXX (32 bits)
or
TXXX XXXXXX (64 bits)

where: X equals any hexadecimal digit.

VECTOR INSTRUCTIONS

The vector instructions perform operations on ordered elements (scalars). These instructions read the scalars,
in 32-bit or 64-bit floating-point operand form, from consecutive storage locations over a specified address
range (field). Vector instructions perform a designated operation on each set of operands and store the results
in consecutive addresses of a result field, beginning with a specified address. A vector can contain as many as
65, 536 items.

The following terms are critical to the understanding of the vector instructions, these terms are fully described
in Engineering Specification 11845800.

Order Vector (OV) — A bit string denoting non-significant elements in a vector field. An order vector can be
generated by compare instructions and used by compress instructions to generate a sparse vector. The number
of ones in the order vector determines field length of sparse vector operands. A filled result (order vector)
terminates sparse vector instructions.

Sparse Vector (SV) — Vector field contracted by removing the non-significant elements to conserve storage
space and calculation time. Positional significance of the elements is retained by an order vector for each
sparse vector.

Control Vector (CV) — Base address of control vector is contained in Z field of vector instructions and vector
macro instructions. A control vector determines how many results (C elements) are stored during execution of
vector instructions and determines which pairs of A and B elements are compared during Vector Macro

operations. Use is specified in an instruction by Z-designator # 0; the Z designator becomes the CV base address.

Broadcast — Repeated transmission of the same vector element from the register file. Selection of a broadcast

or normal element is specified by the state of the G designator of the applicable vector instruction. (See
Qualifiers)

C-10 19980200 A

Offset — Number used to modify the base address of operands in vector and some non-typical instructions.
An offset can be in half words or words (determined by number of bits in operand up to + 215.1).

Significance — Bit count for a floating point number which is equal to the number of bit positions in the

coefficient (excluding the sign bit) minus the left shift count required to normalize the number.

Control vector, offset, as well as, operand sign content and size are selected through sub-function bits in the
vector instruction. These sub-functions are listed in table (C-3).

If the Z designator in format 1 instruction is zero, a control vector is not used; therefore bit 9 becomes

undefined. If bits 11 and/or 12 of G = 1, the A and/or B designators denote a constant used as each element
of the respective vector field. The instruction ignores associated offsets in this case. The registers specified by
A and/or B contain these constants.

Table C-3. Vector Instruction Sub-function Bits

Bit State Sub-function
8 0 64-bit operands (words)
1 32-bit operands (1/2 words)
9 0 Control vector operates on 1’s
1 Control vector operates on 0’s
10 0 No offset for result field and control vector
1 Offset for result field and control vector
11 1 Normal source vectors — A
1 Broadcast repeated (A)
12 0 Normal source vectors — B
1 Broadcast repeated’ (B)
13 X Sign controlf (These bits must be O for all instructions other than 80, 81, 82,
14 X 84, 85, 86, 88, 89, 9311, 8B, 8C, 8F, CF, D8tt, and D917 instructions. See
15 X table C4.

+If both vectors A and B are broadcast constants, instructions that do not terminate by filling the result

field (e.g., Select instructions -CO -C3) produce undefined results.
+1In these instructions, only bits 13 and 14 are used. Bit 15 must be 0.

19980200 B

C-11

Table C4. Vector Instruction Sign Control Sub-function Bits

Bit 13 Bit 14 Bit 15 Control Operation

0 0 Oorl Operands from the A stream are used in normal manner.

0 1 Oor1l Coefficients of operands from the A stream are 2’s comple-
mented before they are used. Any required significance cal-
culation is performed before complementing.

1 0 Oor1l Magnitude of operands from the A stream is used.

1 1 Oorl Coefficients of all positive operands from the A stream
are made negative before they are used. Negative oper-
ands are not altered.

Oori Oorl 0 Operands from the B stream are used in normal
manner.

Oorl Oor1l 1 Magnitude of coefficients of operands from the B stream
is used.

Field lengths, Base Address, and Offsets

The operation of subtracting the-offset from the field length must result in a positive vector length less than
216 in magnitude. If the resulting vector does not meet these requirements, it is treated as a zero vector length.
The beginning address is obtained by adding the offset (including sign extension) to the base address.

C-12

Field
Length

Base

Positive

Offset

Beginning Address

< (Base & Offset)

Vector Field

(used porticn)

19980200 A

CONTROL VECTOR

When the format 1 instruction specifies a control vector (Z designator = 0), a single bit from the vector
controls how each element is stored in the result field. When a bit from the control vector prohibits the
storing of a result element, the instruction does not alter the previous contents of the corresponding storage
address. Therefore, the nth bit read from the control vector prohibits or permits the storing of the nth result
in the result vector field.

As specified in Table C-3, bit 9 of the G designator selects whether a O or 1 control vector bit permits the
result to be stored. If bit 9 of the G designator is a 0 or a 1, the instruction stores the nth result provided
the nth bit of the control vector is identical to that specified in the G designator.

The rightmost 48 bits of the register designated by Z contain the base address of the control vector. The con-
trol vector field length is the same as the field length for resuit vector C.

The addition of the offset and base address provides the starting address of the control vector. Since offsets
are item counts, the result vector and control vector use the same offset; however, the control vector offset
represents a bit offset.

VECTOR INSTRUCTION TERMINATION

Vector instructions terminate when the result vector field is filled. In format 1, when the C designator is zero or
the modified field length is zero or negative, the instruction becomes a no-operation (no-op) instruction. The modi-
fied C vector length equals the C vector length minus the offset. If the instruction uses no C vector offset,

the modified field length equals the C vector field length. The instruction extends short or zero length source
vector fields, as required, with machine zeros in additive operations or normalized source vector fields in
multiply or divide operations.

- VECTOR MACRO INSTRUCTIONS

Vector macro instructions perform operations similar to vector instructions; however, some vector macro
instructions do not form result vector fields. For these instructions, the control vector contains neither length
nor offset; rather it controls the use of source vector elements. ‘

Bit 10 of the G designator for this instruction must be set to 0. Designators C and C + 1 denote 32 bits when
bit 8 of the G designator specifies 32 bit operands.

The control vector for macro instructions which produce result vector fields, performs the same function as in
a vector instruction. Vector macro instructions wiih result field(s), extend short source fields with zeros; they

become no-operations, and terminate in an identical manner as a vector instruction. Vector macros with result
field(s) terminate when either source vector is exhausted; they do not zero extend short source fields.

Broadcasting both source fields for vector instructions with a result field, produces an undefined condition.

19980200 B C-13

SPARSE VECTOR INSTRUCTIONS

Arithmetic operations can reduce the number elements of a vector field to zero or near-zero value; therefore,
except for positional significance, they need not be carried along as floating-point numbers. To conserve both
storage and calculation time, a group of sparse vector instructions which permit the expansion and compression
of vectors can be used. Similarly, the programmer may wish to eliminate out-of-range data.

The user can form a sparse vector by generating an order vector through the compare instructions. A vector
containing non-significant elements can be reduced then to a sparse vector through the (BC) compress instruc-
tion which uses the generated order vector to remove the non-significant elements. The operation codes for

the compare and compress instructions are C1-C7. The sparse vector can be restored back to the original vector
size through MASKYV instruction @peration code BB). The format of the sparse vector cannot be distinguished
from that of any other vector; however, the associated order vector determines the positional significance of
each vector element. Bits, 5, 6, and 7 of the G field must be set to O, for all sparse vector instructions except
those with operation codes: AQ-A2, A4-A6, A8, A9, AB, AC, and AF. The paragraph on sign control at the
end of this appendix explains bits 5, 6, and 7. When these bits are set to a value, all the G field bits must

be zero.

Neither indexing nor offsetting is performed by the sparse vector instructions. The field lengths associated with
source sparse vectors A and B are not used (format 2). These lengths are determined by the number of ones
in the associated order vector. The field lengths of source order vectors X and Y and the result order vector
Z (format 2) are item counts in bits.
SPARSE VECTOR ADD
This example (12) illustrates a method of producing sparse vectors and the use of the add sparse vector instruc-
tion. In a sparse vector, extraneous information has been removed; but, the position of its elements remain the
same through use of an order vector. This example illustrates:

How to reduce a MATRIX to a sparse vector

How to create an order vector

How to write a sparse vector instruction.

This example also makes use of a broadcast constant.

CREATING THE MATRIX

Matrices are created in this example through GEN directives. Since the MATRIX is a group of vectors, it must
have a descriptor specifying its length and base address; and since the instructions using these descriptors require
them to be in a register, each descriptor must be equated to a register. Matrices for this example follows:

Matrix A Matrix B
Row 1 1 2 3 4 5 6 7 8 25 11 25 10 23 22 21 20
2 9 10 11 12 13 14 15 16 19 18 17 12 15 14 13 12
3 17 18 19 20 21 22 23 24 13 14 15 16 17 18 19 20

C-14 19980200 B

Matrix C contains only one element, which is broadcast to create the order vector. The order vectors are created by
the CMPGE instructions. These instructions compare the broadcast constant against each item in matrix A and B..
Since the value C is in hexadecimal and the values generated for the matrix were decimal for all integers
greater than or equal to 12, a 1 will be placed in all corresponding order vector location. For values less than
12, a zero will be entered in the order vector..

Order Vector for Matrix A

0 24 64

0000000000011 1111111111

Order Vector for Matrix B

0 24 64

lo101111111111111111111 |

The matrix contains full-word values; the order vector contains bit values.

Now that an order vector is established, the compress (CPSV) vector instruction can be used to create the
sparse vector.

Compressed Matrix A Compressed Matrix B
13 14 15 16 17 18 19 20 25 25 23 22 21 20 19 18
21 22 23 24 —> 17 12 15 14 13 12 13 14

15 16 17 18 19 20—
These matrices, in abbreviated form, are summed and the inclusive OR results of their order vectors are placed

in a register. The inclusive OR forms the order vector for the resultant sparse vector. The following figure
provides a functional view of the ADDNS instruction.

19980200 B Cl15 e

Resuit of ADDNS is:

SPARSE SPARSE RESULT
VECTOR A VECTOR B VECTOR
; . ADDED TO MACHINE ZERO
12 25 25
13 25 , 25
14 23 23
15 22 22
16 21 21
17 20 20
18 19 19
19 18 18
20 17 17
21 12 12+12
22 15 15+13
23 14 14+14
24 13 13417
ETC. 12 ETC. . 12+16
13 13417
ORDER VECTOR A 14 14418
000000000001111111111111] 15 15+19
16 16+20
ETC. 17 17421
ORDER 18 18+22
[101011111111111111111111] VECBTOR Lo L0423
ETC. INCLUSIVE 20 20424
[101011111111111111111111] § OR
RESULT OF

ORDER VECT, C

TThese values are normalized before the addition occurs and results are in normalized form.

® (C-16 19980200 B

CCC STAR ASSEMBLER VER 24242

Y3

T

Y4
42
'Y
e

de
vl
32
w2
wd
vl

vl
vé
wé
wl
we
F Y3
w3

'
“3
w3
«3

Jalecuuutu

Jetiwuulbou
dotludvedil
detloedwdn
seiiiubibe
welivebiune
TN

CLiwuunlCe

Leiluvibate
Corvulilae
FTY SRS T
cebtluwelbs
wulbubullA,
vullbuuUlEL

vebtlut 22t
vdluvvtn 260
viLleaG2AL
vulioudete
duleculdee
eebbuee 340
debbuebive

wuliveboly
vebtbevuale
vebtvvuue bl
Gebueubudy

19980200 B

¢CoMmec.m

du
'}
gy
T
')
['T]
Gy
Jd
Uu
vl

[
Js
de
«J
R
.
£

33105215
93du.ulb
73100010
73108L41C
JFLElebi

781E0.Ad

24203049
8EAL1JGd
2Ad14043
EEFFRTY
CoiduiAl
Celduia2

BCJuOuAlL
8Civeudl
A2.iALAG
3310Cu15
984JCL10

3343001A

Jite

Gulduli28u
Jululu2ssg
dJdouui28Cy
GGdulbu29d
Jdsuduadwy
buvubb2980
duledi29C0
03ivutl2add
Guuvddi2A43
00vwui28u

Uabbuei54y
PREGR Y. ¥
ddearloble
dovdiie?2y
vbuduulThy
Doldeet78g
GuduuCi7Cy

wioedbic

Gduu28sd

QJlaCLAL
J3AdA4u0
VUA3ASLE

viluALAG
Wi ASAT
ASA7A9A8

vduuG015

duisbuund2eilid)

8J18

ViJiuivalidBi(ud)

REG_1
REG_2
REG_3
REG_&
REG_5
REG_6
REG_7
REG_S
REG_9
JER

VITAL
RTN
osp
csp
psp
cLa
UKIT
START

CCHPA
CCMPB
»

*
RESULTL
ReSULT2
ACOITION

PRESET
MATRIXA

MATRIXB

DATES A7SEP7& PAGE 1

i/60661

176302

TITLE “SPARSE VECTCR ADD™ 170003
170064

INFUT 1,80,20 1/0005
CUTPLT 170006
IDENT 170007
#SEC 2 . 170008
ENTRY START 176009
$PEREGISTER_CEFINITICNS 170010
EQL #A1%64 * JRIGINAL HATRIX A DESCRIPTOR 176011
EQL #AZ*64 * ORIGINAL MATRIX B DESCRIPTOR 1/0012
EQL 2A3%66 * BROAQCASTMATRIX C DESCRIPTIA 1/0013°
EQL 2A4%64 * QRO:tR VECTOR MATRIXA REG 170314
EQL #AS%64 * ORUER VECTOR MATRIXB REG 170015
EQL dAE* b4 * COMPRESSEC MATRIX A DESCRIPTOR 170016
EQL #A7%64 * COMPRRESSED MATRIX 3 CESCRIPIOR 170517
EQL dAB*b4 + MATRIXC DESCRIPTOR REG (RESULT) 170018
EQL #AS*64 * RESULT INCLUSIVE OR ORDER VZCTOR 170319
EQL 24G*64 SCATA BASE REG 1/0320
176021

EQL #1S5%64 173022
EQL #1h%*64 170323
EQL #1E%64 1/0024
EQL #1C*64% 170025
EQL #1C*64 170226
EQL $1E%64 1/0327
EQL #1F*64 1/0028
. \ 175029

LTCL CSPLWVITAL 170630
VI.Cv VITAL,CSP 170831
RTCR CSP,PSP 173232
RTCR DSP,CSP 173033
IS DSPy0 173334
170035

RTCR CCE4DER 1/2036
1/0037

PLESENERATE CESCRIFTORS IN REGISTERS 1/0338
ELEN DER,9 $ENTER LENGTH INTO DATA BASE REGISTER 178239
EX REG_1,REG_1 *SET POINTER FOR REG_1 170040
ELEN REG_1,9 #SET POINTER LENGTH 170041
VICV DER,REG_1 SVECT TO VECT TRAS MATRIX LOC TO REGS 1/6042
CHFGE(E REC_14REG_24REG_& *CREATE ORDER VECTCR 1/0043
CMFGEYE REG_cyREC_2yREGLS ®CREATE ORDER VECT 170044
170345

¥* COMPRESS TC SPARSE VECTORS*+ 1/0046
170047

CPSV REG_1,REG_6,REG_4 1/0048
CPSV REG_2,REG_74REG_S 1/0049
RDENS [REG_6REG_4 14 (REG_74REG_S5),EREG_8,REG.9] * 1/0350
LTCL PSPWWITAL 173051
WTCVY PSP,LVITAL 1/0052
EALCF yBR 4RIN 1/0053
¥SeC | : 1/0054
¢S ESLESCRIPTCR SETLP 170355
FORM,04 16,448 1/0056
FRESET FLO_LT,START_A #DESCRIPTOR OR MTRIXA 1/0057
PRESET FLO_L1,START_E $DESCRIPTOR FOR MATRIXB 1/0058

C-17 e

810 e

g 00208661

CCC STAR ASSEMALER VER 2.2.2

woblutatBy
diLeilouCe

sultuwudoin,

Ldedublbtot
shlevudlln
vullunldieg
vwblevuildey
dltilevdlse
vablaluldg,
delbuud LCw
welluwulOy
wetbduo2it
dutlevu2iy

dulivusaiuu
wurtboollle
auliudvaCi
FITE RE TN
Lelwbeuwdng
walllLudsg
Juleveue3Cu
wellioltls
shblboeuubiy
velouvuwidy
VbtuuewdCu
wutliwuBuu
vuiluelSau
tetboueode
webbuwb5CL
cellbauubun
vuilarubly
velvorublu
wulloLu€ECy
vebtvunulou
ewlbibo?uy
swluvutlo?dy
[V SO SV
vuliool8ay
“eliviudue

sltibuedbsy
vwituveudlu
welwllGY0u
selluel9si
Jueennd B
vebbluboLe
vetbioddoe
sdbevuokAuL
wdellvuAge
eviveoddue
detbondbtiaL
vetlodludy
cutibouldsc
saetevalauc
watbuLECHS

GmomomoMmMomoT

MOUAMAATNMAMVAMNATNMNANN MMM AN AT M AN AN AT AN AMN YT AN

GJIGOGJy wueutliC
418
4330030JLEBGICD)
['ERY]
JIILiuIILTEL (03)
uduC
0Jieuuud2ALa U3)
3dIC
0J1,00003463003)
wduC
044u00U330CLET3)
9318
Bdobdbiuu2ibu(Ld)

vu JCLuetl QD18

Jideidoedd Jdidivuul
vJdvibiu JueuLbiu2
JIJLdLdd JLuvdeed
ddasludu 333300l
wddobuuuw Judueith
Jollubuld JUJuaellLs
sdudtedd JudilLle
Jdusiliv Juwvwun?
Jivvwdie duuiulub
wdesuedd SduueiLy
didobudu JuvululA
Juduvuds JeuwdeuiB
Julideud vevudeoC
Juodlbou dueiulvo
0iJeleav CuduLiE
WidJdCud BLsueleF
Guoldibudd Juwdduty
Lduvbalu vuvuelll
GdJeitduu Liownla2
Jdactledd duuanild
Gdoolodu Ubwullln
JdoiLedu diwuiuils
Uddibevd wdeGulll
Sdeuilve JueuiLl?
dIJulidv Luosluls

Ulauutly J0.evGi9
dudibody JLLIGLLB
Bedliluiuy Juuduite
0)J.Llld Jeddetun
wdduvbudy Jduwwidiul?
Udseundd sullcile
sededudd JJuduils
dddivide wuulobin
J1)2L6d0 Wuuliitl
QJacuLdd udeyige2
FETE T VI S B §
Sddobild dalcun.C
dddubewd JuvuunlF
GJidnldy Joulbiut
Clloaibud GALdULLO
dideiewid Odvwuuul

SPARSE

MATRIXC
Q_VECT

02_vecCT
SPARSA
SPARSE
SPAKSC
03_VECT
FLO_LT

START_A

VECTOR ADD

PRESET
FRESET

FRESET
FRESET
FRESET
PRESET
PRESET

EQL ¢4

0,START_C
FLO_L T, CRCER_VECT

FLO_LT,CRCER_VECT2
FLD_L1/&,RESULTA
FLD_L1/&yRESULTB
FLO_L1/Z4yRESULTC

FLO_LT,CRCER_VECT3

DATER: 17SEP74 PAGE

*CESCRIPTOR FR MTRIXC
*ORDER VECTOR FJi MATRIXA

*ORDER VECTOR MATRIXB

*DESCRIPTOR FOR 3PARSEA
*DESCRIPTOR FOR 3PARSEB
*OESCRIPTOR FOR 3PARSEC

*O0RDER ECT RESULT

*FIELD_LENGTH O ALL MATRICIES

®YGENERATE METRICIES*es
CEN 19ce3obobhy50Es748

CEN S910,11512913,14915,16

GEN 1791841S920021922423424

(AR RIS RIS R R RN RS Y Y Y]

START_B GEMN 25411,25910923422921420

GEN 19,18,17412915,14913,12

*ROW1-MATRIXA

*ROW2-MATRIXA

*ROW3I=MATRIXA

*ROWL-MATRIXE

*ROWZ2-MATRIXE

3

170359
1700€0

170061
170062
170063
1700 €4
170065
170366

170067
170068

170069

/0370

170071
1/0072

170073

4 00708661

® 61D

CCC STAR ASSEMBLER VER 2.2.2 SPARSE VECTOR ACD DATES 17SEP74 PAGE L

w3 UULLOLOCAL F 0JI3CLLuv 00wuLLYD GEN 1341491591€,17,18,19,20 *ROW3I-MATRIXS 170674
LY Wwllou.UCCu F GJ330L0) w0 uuuLiE N .
03 witlooiDub F JJubdlud QuuunGUF

wd JuebLuudbe F Jddueblvy ULreunll

Cd wutloouwidy F JIDLGIAY Juidvily

03 CoLuvivbDCu F glucude vuliuuldile

@3 uviluLoCEdY F QJulGuldy uwdodlLll

U3 UullvolBal F JU3L0bUy COvuulin :

i duleiCeulc START_C EQL #C 170075

vwd wulluiuide ORDER_VEGCT RES #64*24 SRESCRVE FOR MATRIX_A O_VECIOR 1/0476
43 wLewull7EL ORDER_VECT2 RES #64%24 . *RESERVE FOR MTRIX_B O_VECTOR ear7
33 duliwcélue OROER_VECT3 RES #bbr24 170078
vd wllLav2aCo RESULTA RES.€4 #64°%24 170079
vd wubiicdbby RESULTB RES.EL #64%24 . : 170080
ed eullliviocs RESULTG RES,€Ew #04°24 170081
ENL START 170082
CuC STAR ASSEMBLER VER 24242 SPARSE VECTOR AOD DATES 1TSEPT4 PAGE 5
NUMYEF. OF WARNING MESSAGES = 0
NUM3CFR OF ERROIY MESSAGES =)

CCC STAR ASSEMALER VER 2.2.2 DATES A7SEPT4 PAGE 6
FINIS . 170083

ASSEHBLY FINISHED
LutlS A.H. TUESDAY LTTH. ScEPTEMBER,y 1974,
NUMGER OF STATEMENTS PROCESSED e3
NUM3ER OF WARNING McSSAGES ANOME

NUMBER OF ERROR MESSAGES NONE

COC STAR ASSEMBLER VER 1.7

CnC STAR ASSEMALER

12

92
32
32
32
3
22

92

a2
72
12
92
2
2

00c330049000"

030a90C0000
9005303000690
304319039020
0030L301GC06G
30Q0C3339C080
500500900080

Qduls3iudocoCe

900592300080
460u300LC130
(00033330469
J00CI°2C0160
A33L3LITCLA0
230C023%C1ED

2067093235220
0002793C0260
90J3C3205024a0
90023590C02€EC
030000253300
403000300340

900002230000

960603000000
J0000000004°0
0GeTIgeCc060
000060300050
0a00I7300080

- Trmixmm

MmMmIaixx rixmmx

noOmowm

VER 1.7

Gf 02£0)e02026840
L0 03529dei28ed
A0 orcecono2sco
vl 010300.52900
S0 L3000 29u0
vl 333000.32980
LU 9505002 029C0
30 ©o5a003C2AL0
S0 J050C0252AL0
a0 J3can0co2800

0C ©0000C500540
36 965060072680
O JuC0udiCDeco

0 300036200700
G0 0C0G0udGO07eD
e d000L0000780
JC J00033%d07CO

331C0015
98,€CU15 J000001C
781C0510
7318301C
3F180400

781EJuAL

248(994%9
BEA13ILE 3.0G12286C
22419039
9900040 02LLICAL
C5381041 30a3a42
Cei8U04Z DOAR3ASTO

8CcL0JAL CCI0ALAG
8CI000A2 J03yASA?
220CAWRE ASATASAS
18100315
9%JC0J1D G0J00Q1S5
33600314

0318
CI30000C0263C)
sosie
0250350000883 ¢0)
CIILOJGL CCGYACLC

DATES L8aPR?3

TIVLE “SPARSE VECTOR 40"

VECTO? ADD

INPUT 1,80,27
ouTPUT

IDEN
MSEC

T
2
ENTRY

DATER $8APRT3

STaRY

®®SIEGISTER_DEFINITIONS

REG_1 ECU #R1°6L * ORIGIIL MATRIX A DESCRIPTOR
REG_2 £aU #42%6% ® QAGIAL MATRIX B DESCRIPTOR
BEG_3 ECU €83%64 = 902D5iSTYATRIX C DESCRIPTOR
REG_+ EQU #AL*64 * 0VE2 JECTOR “ATRIXA REG
REG.5> EQU #AS5%64 * OWER JECTOR “aTRIXB REG
REG_5> EQU #36%6k ® COMPRI3SED 4aTIIX A DESCRIPTOR
REG_? EGU #A7%64 * COMPRISSED 4ATRIX B IESCRIPTIR
REG_S EQU #A8°64 * MATRIX DESCRIPTOR REG (RESULT)
REG_I EGU ¢AF%6k * RESULT INZLUSIVE OR ORJER VECTOR
0B8R EQU #AC*SL *)aTa BASE REG
.
VITAL EQU #15%64
AN EQU 21A%64
0SP EQU ¢13%64
CSP EQU #1C*64
PSP EQU #10%6&
CO8 IQU e1E*6e
UNIT EQU #1F%64
STaRT
LTOL CSP,VITAL
vTov VITAL,CSP
RTOR CSP,PSP
ITOR DSP,CSP

IS DSP,E
.

RTOR CO0B,d3R
-

#SeGENERATE JESCRIFTORS IN REGISTERS

ELEN £BR,9 *E4TER LENSTH INTO DATA BASE REGISTER

£x REG_1,RE6. 1 *SET POINTER FOR REG_1

ELEN PEG_1,9 SSET POINTER LNGTH

VIOV 98R,R:G._1 “VECT TO VECT TRaS MATRIX LOC TO REGS
conPa CHMPGry3 REG_1,REG_3,REG_& *CEATE ORCER VECTOR
conP3 CHPGE, 3 RIG_2,€4.3,REG.S *CREATE ORDER VECT

**COMPIESS O SPAISE VECTORS®*

RESULTL CPSV PEG_14RE5_S5,REG_+
RESULT2 CPSV REG_24<ES_74PEG_S

ADOITION ADDNS (REG_6yREG_}y (REG_7,REG_S5), (REG_8,REGC.I)

PRESET
MATRIXA PPESET FLO_LT,S5TART A

MATRIZ3 PRISET FLO_LT,SYART 3

MATRIXC PPESET J,START_C

LTOL PSP,VITAL
VIOV PSP,vINAL
BA0F,BR HRIN

MSEC
**eSDESCIIPTOR SETUP
FORM, 64 16yuh

*DESCRIPTOR FOR MATRIXS&
®*OESCRIPTOR FOR MATRIXE

SNESCRIPTOR FOR MATRIXC

PAGE i

173001
170002
- 1/v003
176006

PAGE 2

17{00%
1/7vdie
170037
176208
1/:0u9
17010
170011
17012
177013
170016
17.015
170916
1/7v017
173018
17019
37002
171021
1rce22
1/7i623
170626

1/7.025
17.026
17.c27
175528
170629
w03
17633
17.032
1/7:033
17C03¢
171535
172036
171037
170038
1/7.039
170240
17,061
172062
1700463
17.006
17,045
170066
17,607
1/7{ve8
170943
1/..5u
178051
17,352
17,353

17.056
174055
1700656
17057
1/70u58

17.459

19980200 B

COC STAR ASSE#3LER

COC STAR ASSEMBLER

93
a’
33
2
03
23

33
3
3
3

309630.2c0bks
402533320000
9090733CC13¢C
094709252114
200090370140

T (33320521582

098c1°270180
99000027 219C
090€323C51CC
633673228290
3306606023210

308G3)2026C
9305033C028¢C
0930393002C0
009590200300
680C0035 2360
00802303C038¢C
6006903223CC
900033360600
080320053668
000360550680
J2062590C6C0
000030359500
0609999C95%0
006303357580
9000023cc9IsCC
3002333306GC
00003075660
300013707689
8600303306CC
396092006709
GJ009329976r
GOocosd0780
0000033237¢CC
930C90330800
030099700840

600033290880
0000336008C0
090039760900

000000200946
£00000500980
0092003003C0
8000503060470
300000000440
doeooacoccease
90000000GACH
g0v00000080C
000000300840
000000006880
0000003008CH
000003258C030
0000003C0CH0
600000000CS0
800030000CCY

000030000000

3 000CN03G0042

30033030008¢C
09000293200C)
30000CON0EDD
0900J30C0CEWD

909399J0CEN?
40303020170
300230332160
$030003024C0

2F80

19980200 B

OmMMOoOmoOmMonam

AR ERRREERERRERERELRELEREEERY

mhmm

MMM AMMMAMAMAA Y

F
F
F
F
F
F

VER 1.7

€118
Glalddenid
an1e
LM B IS5)
p P S O]
%J1C
ggc3sul2
[I ok VR
gase
033005542

H)

0330343
03,0208
01203353
GliC33.C
33303050
37008855
6o3C4Cal
$3i0215t
923(32.2
03ILd3l3
0e.c3il2
692€332¢C
8910263 C
03:633.¢C
0Q3cJ3c?
93309833¢
6n:C33:C
033090,
0330340
230034350
9373043
936090835
03.033z°C
GJ5€032S
8920368

03132350
32038C
2330224¢

00C(GGIC
0089€81332
000C322.3
093CA3u4d
golcogse
093C3230
033Ca3¢03
0433C0006
033C03s¢8
0C3C03434
03300358
202C233L
094w
2330990
gl3c0aac

9320020¢
333(0956
33203348
03312258
63304958
3200933¢
al J440

€83(93)
TEL IO
aC.(22)

F81112)
45103(G8

163033
6C.0JC18

R
34933023
6LVl
3G030CCe
JC3TuLS
s8CJ3C16
de3500L7
36222408
GLISICLI
A622)el A
2r.300L3
S03095Le
wte@ocCo
€LIu0Geg
Ju3adci

324300010
sa3golis
6dsdacaz
J0200C13
C0230C1%
0C230C015
9cClvCle
3L300%017
30230018

€CJG9C19
3C536é.8
20203C19

367GJCCA
catgacy?
3628316
4G.33C15
0C33001&
03603613
36009C12
9C000C1y
acgeLIclc
0203000F
JoU36OCE
oCL307CT
g05a3ace
86339CCD
0G300AGCE

VER 1.7

d0630GCF
G3J33C10
30033018
66333012
2e. 303013
o021

gosoucce

SPAR5: VECT)IT ADD

Q_VETT PASET FLD_LT,INEP i3

DATES 18APR?3

*ORJIER VECTOR FCR vATRIxXA

92_.vI3F PRESST FLI_LT,0%DER_VECT2 *0kDZR VECTOR +¥ATRIXB
SPAR3Y POESET FLO_LT/2,RE5ULTA ®QESCRAPTOR FOR SPARSEA
SPAQ3) PRESET FLO_LT/2,RESuULId *DESCRIPTOR FOR SPARSE]
SFARSS PPESET FLD_LT/2,RESULTIC SDESCRIPTOR FOR SPARSEC
Q3 _visr PAESET FLD_LF,ORJER_VICT3 SORDIR VECT ReSuLT
FLO_LT EQUY 2% SFIELD_LENGTH FOR ALL MATRICIES
SSSENSRATE MATRICIES®*®
START & GEN 152+35696959657¢4 SROW1=4ATRIXA
GEN 3,2u538922,13414,15,16 SROAN2-4ATRIXA
GEN 17918519920, 21422+23924 SROW3I-MATRIXA
esssssssessesscsssssoscsrsrss
START_3 GEN 25411,25110,2%,22,21,22 SROM1-MATRIX3
GEN 19,18,17,12,15514413,12 *ROW2-MATRIX3
GEN 13,14,25516917,13,29,2) SROWI~-MATRIXI

SPARSE VECTIR ADO

START S gau C

ORDEI_VECT RES #64%26
O%JEI_VECT2 RES e6uL*2t
OPDEI_VECTI RES s66%20
RESULTA RES,6¢ #66°12
RESULT3 RES,64 #64°12

END START

DATES 18APR?3

®RESERVE FOR MATRIX_A O_VECTOR
*RESZRVE FOR MATRIX_B O_VECTOR

PAGE

PAGE

3

1700663
170261
176362
171363

170064
1/.965

176066
17067
170068

17,0669

17077

1713671
1r.672

17673

170370

/4075
17,0676
17i3r?
17:078
170079
170080
170381
170682

C-21

CDC STAR ASSEMBLER VER 1.7

NUMBER OF WARNING MESSAGES =

NUMBER OF ERROR

MESSAGES

COC STAR ASSEMBLER VER 1.7

ASSEMBLY FINISHED

SPARSE VECTOR ADD

3840 A.M, WEDNESDAY 18TH, APRIL, 1973.

NJMBER OF STATEMENTS PROCESSED

NUMBER OF WARNING MESSAGES NONE

NJNBER OF EXIROR MESSAGES NONE

STAR LOADER Vi.1

START

3142 R.M. WEDNESIAY 18TH. APRIL, 1973,

158

SO0DE
DATA
ENTRY

TOTAL ELAPSED TIME FOR THIS LOAD WAS & SECONDS.

1 PAGE(S) OF DATA WERE ALLOCATED.

1 MOODULES OEFINING 1 SYMBOLS WERE LOADED.

FINIS

PLA 1

Go003I1050000
03001073380
DILV03CI 0060

¢** DyUnP OF VIRTUAL MEMORY FROM ADDRESS 2203050C00)) TO d0020502033"
ouTPUT

J09905090000
333005000100
990005000200
070005000240
100205000400
003305000500
003005090500
sas ppy, eve
96005008900
103905608100

sss QPT, ses

000005010000
000005010200
sae RPT, wee
000005018000
000005018100
sss RPT. vo®

060005020000

FFO664IC
FFOBSWOL
FFDBu&IL
FFD56C00
FFD74210
FFO?7520¢
0063039¢C

00036326
90d293ccC
oooogooc
0000090C

oogoggac
0000000C

00030006

0LC000G
03000000
J5C05CLD
B0LUGLLD
QuC0030d
GEGO0C2G
ascoogoon

00C01F1C
30000030
00601FIC
06000000C

00021F1C
06000030

0G00LFIC

®e® END OF VIRTUAL MNEMORY DUMP

| C-22

FFD66420
FFDE5330
FFD56100
FFD56C0
FFD76530
FFD755630
€309401330

1003000
€0030230
60000000
Toouasoo

¢oooauaoo
0005330

600002300

002609)
G20C031)
CotLondd
3eC00))
3351002
300C00))
00000012

Joceoad)
320c00))
000€00))
00000021

0930001)
300800)

800008))

FFDH5C03
FEOBLC0S
FFDE6COC
FFD67403
FFOTLAGT
35305320
GCu02922

0003600
JG402000
00300000
gcyoacon

00000000
9C300C03

90000200

49000000
0162003
udin-edo
w0337000
5362030
u0927000
00202000

0000-000
20035000
c030C000
40002000

¢0305000
604303000

00002090

DATES 1B8APR7Y PAGE s

DATES 18APR7?73 PAGE &
170083

03160804.295 18/0w/73
006380
103460

FF65800
FFl6682d
FFI66CA0
FFISTCCO
FFITLEQO
9103060
01)0C0C0

r BRI IT]
33100600
03336000
0J)100G0C0

J013606C0
J3lacoog

613000C0

00030030
030000630
60000GOC
6200GL30
£3006200
3006299
3600230

GubdLDIG
40000000
Gooo0Ca0
Goowocad

40000000
Loo00ea0

03600600

sesssscesesscsnsseNessscroXesonn

P R P P Y Y Y

sessncsssesssssvrsastesneteoesnnl

19980200 B

STRING INSTRUCTIONS

String instructions perform arithmetic and logical operations on strings of data in the form of 8-bit bytes.
The byte size allows for handling large alphabets (256 characters) and is compatible with ASCII extended
binary code. The field length of a data string can be extended beyond one 64-bit word or can be less than
one data word. Bytes in the field of a data string are in opposite order of the byte address; the most signifi-
cant byte is the leftmost byte, but, the address of the leftmost byte is O.

Unless specified by the instruction, strings are processed from right to left until the last byte in the field is
processed. Normally, string instructions terminate when the result field is filled.

String instructions perform operations on data strings in packed binary-coded decimal (BCD) form, zoned
BCD, and binary formats. The zoned-decimal format is used for I/O operations. Each byte, with exception
of the rightmost byte, contains a BCD digit with a zone designator (3) located in the leftmost 4 bits of each
byte. The rightmost byte contains the sign in the leftmost 4 bits. (A for +, B for -.)

4 4
bits bits
fww W
ZONE DIGIT | ZONE DIGIT| SIGN DIGIT
| %
Byte 0 Byte 1 Byte 2
ZONED BCD

The packed decimal form normally is used for arithmetic operations. The rightmost 4 bits of the rightmost
byte contain the sign, the remaining bytes consist of two 4-bit digits.

| T 1
D4 ! D3 DZ I Dl DO l SIGN
Byte 0 Byte 1 Byte 2
PACKED BCD

Binary numbers are represented in strings of 8-bit bytes. The leftmost bit of the leftmost byte contains a sign
(0 for +) (1 for -). All binary numbers are sign extended through the sign bit. All negative numbers are two’s

complement.

String instructions make use of string indexes, which are item counts in bytes, for all instructions with the
exception of D6 and FF. A string index can have a value of up to 245-1. The leftmost 3 bits of a string index
are not used, the sign of a negative index is extended through bit 16, and overflow is not detected when an
index is added to a base address.

19980200 B

C-23

DELIMITERS

There are six string instructions which permit delimiter termination: these are F8, F9, FD, EE, EF, and D7.
All other string instructions have length limited fields. Delimiters are contained in bits 0 through 15 of a
designated register. When a character in the data field location matches the delimiter value, the instruction
terminates. Field length or delimiter character is selected by G designator bits.

Bits

d (8 and 9) Designator for A and B

e (10 and 11) Designator for C

(12 and 14) Undefined O’s

(13'and 15) Increment A field and C field index respectively

Table C-5. String Instruction G Designators
d/e Bit

Designator Value Function

d and/or e 00 The 16-bit length specification in A, B, and/or C represents an item
count of the number of bytes or bits in the field (field length).

d and/or e 10 The rightmost 8 bits of the length specification in A, B, and/or C are
used as a delimiter character.

d and/or e 11 The entire 16 bits of the length specification in A, B, and/or C are
used as a delimiter character.

d 01 The rightmost 8 bits of the length specification function as a delimiter
character. The leftmost 8 bits serve as a mask on the comparison.
Bits in the delimiter character and the operand byte are compared
only where 1’s exist in the mask. This specification applies only to
source fields. Any instruction becomes undefined if this specification
is used for a result field.

INCREMENTS

Nine instructions use index incrementing: F8, F9, FD, FE, D6, D7, EE, EF, and FF. At the termination of these
instructions, the index register fields are left in one of the following states:

No Increment — The index register remains at its original value. An example is the index register associated
with a translate table. Characters to be translated are added to the indexed address of the table to obtain
the translated character. The index associated with the table does not change during the instruction
execution.

| cas | 19980200 B

Partial Increment — The index register is incremented to specify a particular character or word in its
associated field. An example is the FD instruction which searches two byte strings for inequality. When
an inequality is found, the search terminates and a count equal to the number of no-hit comparison is
added to each index. The end may not have reached field lengths, but the location of the unequal char-
acters can be formed by manipulating the incremented index and the base address.

Full Increment — The index register is incremented by the full length of its associated field. For example,
when the translate instruction is terminated, the index associated with source field A is incremented by
the length of field A to specify the starting bit of the next contiguous field. If field length is specified by
a delimiter character, the field is searched for that character. The index of the associated field is
incremented then so the starting point is one character beyond the delimiter characters.

LOGICAL STRING INSTRUCTIONS
These instructions function in the same general manner as corresponding string instructions. They operate with

index and data fields the same as for string instructions except item counts are expressed in bits instead of
bytes; therefore, these instructions perform bit operations on bit boundaries.

MONITOR INSTRUCTIONS
The monitor instructions function only during monitor mode. When a machine is in job mode, any attempt

to execute a monitor instruction is detected by the hardware as an attempt to perform an undefined function
code.

NON-TYPICAL INSTRUCTIONS

These instructions perform operations such as register to storage transfers; formation of repeated mask lists;
and maximum/minimum determinations that do not belong in any of the preceding instruction types discussed.

SIGN CONTROL

Certain vector, sparse vector, and non-typical instructions provide an operation called sign control on the-input
operands. (Table C-6.) For these instructions, bits 5, 6, and 7 of the G field have the following significance.

Bit 5 Bit 6

0 0 Use the operands from the A stream in the normal manner.

0 1 Complement the coefficients of the operands from the A stream before using them.

1 0 Use the magnitude of the coefficients of the operands from the A stream.

1 1 Make all positive coefficients of the operands from the A stream negative before
using them. Negative operands will not be altered.

Bit 7

0 Use the operands from the B stream in the normal manner.

1 Use the magnitude of the coefficients of the operands from the B stream.

19980200 B C-25

Any complementing necessary to achieve the required operand state is a 48-bit two’s complement operation
performed before operands are used in the specified arithmetic operation. If the complement of the coefficient
2000 0000 0000 is required, the operand will be used as 7000 0000 0000 with one added to its exponent,
which could cause exponent overflow.

Any significance calculation necessary in performing an instruction is made before complementing occurs.

Table C-6. Instructions with Sign Control

A Operands B Operands
Instruction Bit 5 and Bit 6 (Bit 7)
80, 81, 82 Vector Add X X X
84, 85, 86 Vector Subtract X X X
88, 89, 8B Vector Multiply X X X
8C, 8F Vector Divide X X X
93 Vector Square Root X X 0
A0, A1, A2 Sparse Vector Add X X X
A4, AS, A6 Sparse Vector Subtract X X X
A8, A9, AB Sparse Vector Multiply X X X
AC, AF Sparse Vector Divide X X X
CF Arithmetic Compress X X X
D8 Maximum of A to C X 0 0
D9 Minimum of A to C X 0 0
X 0 or 1 bit is legal
0 This bit must always be set to zero

MACHINE INSTRUCTIONS

Tables C-7 through C-17 list all of the machine instructions available with the Control Data STAR computer
system. They include:

Instruction OP Code
Format (F)
Instruction Mnemonic
Applicable Operands
Applicable Qualifiers

Register designators contained in the operand portion of the table are defined in table C-17.

| ca

19980200 B

g 00208661

LT

Table C-7. Index Instructions

Op F | Mnemonic Qualifiers Operands Description

3E 6 ES none Re 116 Enter short, full word: I16 > Ry¢.63,RJ,SE;0>Rg.15
14D 6 | ESH Ry 116 Enter short, half-word: 116 > Rg 31, RJ.,SE; 0> Rg.7
| BE 5 | EX Rg,148 Enter index, full word: 148 -~ R14.63, 0~ Rq.15

CD, S EXH R}, 124 Enter index, half-word: 124 >Rg 31,0~ Rg_7

3F 6 | IS Re,I16 Increase short, full word: R{g.63 + 116 > R16.63, Ro.1 5 unchanged

4E 6 | ISH Ry.116 Increase short, half-word: 116 + Rg_37 > Rg.37, Rg.7 unchanged

BF | 5 | IX Rp,148 Increase index, full word: 148 + R > R

CE 5 IXH Ry,.124 Increase index, half-word: 124 + R> R

38 A | LTOL none Ry, Ty, Transmit length Rq._1 5 to length T(.15, T16.43 unchanged

szo |

g 00208661

Table C-8. Register Instructions

Op F Mnemonic Qualifiers Operands Description

79 A | ABS none ReTe Absolute, full word F P: ABS(Rp) > T¢

59 A | ABSH Ry, Th Absolute, half-word F P: ABS(Ry,) » Ty,

61 4 ADDL Re,S¢, Ty Add lower, full word F P: (Rg) + (Sp),—> Tf

2B 4 | ADDLEN Rp,S¢TL Add to length: Rg.15 + S40.63 = To-15- R16-63 > T16-63
41 4 | ADDLH Ry.Sh.Th Add lower, half-word F P: (Ry) + (Sp)1. > Th

62 4 | ADDN Re,Sq, Ty Add normalized, fullword F P: ((R) + (S¢))p > Ty

4?2 4 ADDNH Ry.Sh:Th Add normalized, half-word F P: ((Ry) + (Sp)n ~ T

60 4 ADDU ReSe,Tr Add uppér, full word F P: (Rp) + (Sp)y > T¢

40 4 | ADDUH Ry.Sh,Th Add upper, half-word F P: (Ry) + (Sp))y > Th

63 4 ADDX Re,Se, Ty Add index (address), full word: Ryg.63 + S16-63 T16.63-R0-15 Tp.15
75 4 | ADJE R,Se, Ty Adjust exponent, full word F P: (Ry) per S = Ty

55 4 ADJEH Ry.Sp.Th Adjust exponent, half-word F P: (Rp,) per S > Ty,

74 4 | ADIJS R¢,S¢. Ty Adjust significance (shift), full word F P: (R¢) per S > T¢
54 4 ADJSH Ry.Sh.Th Adjust significance (shift), half-word F P: (Ry)) per S— Ty
11 A BTOD Rg,Tf Convert binary R to packed BCD T, fixed length
72 A | CLG Ry Ty Ceiling, full word F P: nearest integer .GE. (Rp) > T¢
52 A | CLGH Ry, Th Ceiling, half-word F P: nearest integer .GE. (Ry,) > T},

76 A | CON none R¢,Th Contract, full word F P: Rgq > T3y

g 00208661

| szo

Table C-8. Register Instructions (Cont’d)

Op F Mnemonic Qualifiers Operands Description
6F 4 | DIVS none Re,SeTe Divide significant, full word F P: ((Rg)/(Sg))s = T¢
4F 4 | DIVSH Rp.Sh.Th Divide significant, half-word F P: (Rp)/(Sp))s = Th
6C 4 DIVU ReSe Ty Divide upper, full word F P: ((Rp)/(Sf))y = Ty,
4C 4 | DIVUH Rp,Sh,Th Divide upper, half-word F P: ((Ry)/(Sp))y = Tp
10 A | DTOB ReTs Convert packed BCD to binary T fixed length
2A 6 | ELEN Ry, 116 Enter length: 116 > Rq_15, Ryg.63 unchanged
TA A | EXP R, Tr Exponent, full word: Rq.15 = T16.63, S E, 0 = Tg.15
5A A EXPH Rin.Th Exponent, half-word: Rg.7 > Tg.31, S E, 0 = Tg.7
6E 4 | EXTB RSy, Tr Extract bits from Ry to Ty per Sy

. 5C A | EXTH Ry, T¢ Extend half-word F P: R3y = Tggq
5D A | EXTXH Ry, Te Extend index, half-word F P: Rg 31 > T16.63,S E, Rg.7 > Tg.15.SE
71 A FLR R Ty Floor, full word F P: nearest integer .LE. (Rf) > T¢
51 A FLRH Ry, Th Floor, half-word F P: nearest integer .LE. (Rp) > T,
6D 4 INSB RSy, Ty Insert bits from R¢ to T per Sy
7C A LTOR Ry, Tr Length to register, full word F P: R.15 = T48.63, 0 ~> Tg.47
69 4 MPYL RpSeTe Multiply lower, full word F P: (Rp*(Sp), > Tr
49 4 | MPYLH Ry,.84.Th Multiply lower, half-word F P: ((Rp)*(Sp))L > Th
6B 4 MPYS Re,SeTe Multiply significant, full word F P: ((Rp)*(Sp)s > Tt
4B 4 MPYSH Rp,Sh,Th Multiply significant, half-word F P: ((Rp)*(Sp))s > Th
68 4 | MPYU none ReSe, Ty Multiply upper, full word F P: (Rp*(Sp), > T¢

0gd

4 00708661

Table C-8. Register Instructions (Cont’d)

Op F Mnemonic Qualifiers Operands Description

48 4 MPYUH none RS, Th Multiply upper, half-word F P: ((Rp)*(Sp))y > Ty

7B 4 | PACK RpSq Ty Pack, full word F P: R4qg.63 & S16.63 = Tf R: exponent
SB | 4 | PACKH Rp,.ShTh Pack, half-word F P: Rog31 & Sg.31 = Tj, 8: coefficient
2D | 4 | RAND Re.SeTe Logical AND R,S, to T

77 A RCON ReTh Rounded contract, full word F P: Rgq = T32

2E RIOR ReSe Ty Logical inclusive OR R, S, to T

78 A | RTOR Ry Ty Register to register full word transmit: (Rg) - Ty

58 A | RTORH Ry, Th Register to register half-word transmit: (Ry,) = Tj,

2C 4 | RXOR ReSe Ty Logical exclusive OR R, S, to T

34 4 | SHIFT Shift R¢ by (Sg) to Ty

30 7 | SHIFTI Rplg. Ty Shift R¢ by Ig to Tf

73 A SQRT Ry Ty Significant square root, full word F P: SQRT(R¢)g > T¢

53 A | SQRTH Ry, Ty Significant square root, half-word, F P: SQRT(Ry,)s ~> Ty

65 4 SUBL ReSeTe Subtract lower, full word F P: ((Rg) — (Sp), ~ Tr

45 4 SUBLH Rp.S1,Th Subtract lower, half-word F P: ((Ry) — (Sp))L = T¢

66 4 SUBN RySe Ty Subtract normalized, full word F P: ((R) — (S¢))y > T¢

46 4 SUBNH Ry,Sh.Th Subtract normalized, half-word F P: ((Ry) — (Sp)y > T¢

64 4 SUBU Re,Se Ty Subtract upper, full word F P: (Rp) — (Sp)y, —~ Tt

44 4 SUBUH Rpy,Sh.Th Subtract upper, half-word F P: ((Ry) — (Sp))y = Th

67 4 | SUBX ReSe Ty Subtract index (address): R1g6.63— S16.63 > T16-63-R0-15 > To-15
7D SWAP R4.8£Tg Swap registers start with S¢; storing at Ty and loading from Ry
70 A | TRU 1 R Ty Truncate, full word F P: nearest integer .LE. (Rp) - Tg

50 A | TRUH none Ry, Ty, Truncate, half-word F P: nearest integer .LE. (Ry) = Ty,

g 00708661

1€-0

Table C-9. Branch Instructions

Op F Mnemonic Qualifiers Operands Description
32 9 BAB BR,BRO,BRZ, Sa.Ty Branch and alter bit: (S,) is bit to be altered, (T,) is branch address with
T,S0,SZ, qualifiers BRB & BRF branch address is relative + I half-words
BRB,BRF
33 B BADF BR,BRO,BRZ, 16,T, Data flag register bit branch and alter: I6 is bit altered (T,) is branch address
SO,SZ,T,
BRB, BRF
2F 9 BARB BR,BRO,BRZ T,S Branch to [S] on condition of bit 63 of-register T
T,S0,SZ
24 8 BEQ ‘ none RSt T, Branch to (T,) if (Ry) .EQ. (S¢), full word F P compare
26 8 | BGE ReSeT, Branch fo (T,) if (Rp) .GE. (Syp), full word F P compare
- 20 8 BHEQ Branch to (Ty) if (Ry,) .EQ. (Sp), half-word F P
22 8 BHGE Branch to (T,) if (Ry,) .GE. (Sy), half-word F P compare
Rp-Sh.Ta
| 23 8! | BHLT Branch to (T,) if (Rp) .LT. (Sy), half-word F P compare
21 8 | BHNE Branch to (T,) if (Rp,) NE. (Sp,), half-word F P compare
B6 | 5 BIM R;,148 Branch immediate to (R;) + 148
27 8, BLT . R¢,S4,T, Branch to (T,) if (R¢) .LT. (Sg), full word F P compare
25 8 BNE none RfSe,T, Branch to (T,) if (Rg) .NE. (S¢), full word Fp compare

W
o]

4 00208661

Table C-9. Branch Instructions (Cont’d)

Op Mnemonic Qualifiers Operands Description
36 BSAVE none R, [T,,Si] Branch & save: set (Rg) to next instruction address, branch to [T, + S;]
35 DBNZ Ry,[T,,S4] Decrement & branch non-zero: (Rg)-1 > (Rg) if (Rp)#0
branch to [T, + ;]
09 EXIT none Exit force, job to monitor
Sa,T;n Exit force, monitor to job, (S,) register file, (T,) invisible pkg
31 IBNZ Rf,[T,:Si] Increment & branch non-zero: (Rg) +1 = (Ry), if (Rg)# 0 branch to
f [T,.Sil
| BO IBXEQ BAB,BRF
| B2 IBXGE X5 Af[B, Y], Increment & branch index: Aj¢6.63 *+ X16-63 >C16-63> A0-152C0-15
BS IBXGT e if A16.63 *+ X16.63 OP. Z] 6.63 branch to (By) + (Yy),
B4 IBXLE or relative from the current location * 16
B3 IBXLT X, Apl16,2¢,C
| Bl IBXNE '
3B LSDFR non‘e R, Ty Load & store data flag register: (DFR) = Ty, (Rf) > DFR

4 00208661

| ceo

Table C-10. Vector Instructions

Op Mnemonic Qualifiers Operands Description
99 ABSV AH,0,Z [AX],CZ Absolute vector: ABS(A)~> C
81 ADDLV AB,CHMA, [AX],[B,Y],CZ Add lower vector: (A + By ~>C
MBN,0,Z
82 ADDNV AB,CHMA, [AX],[B,Y],C,Z Add normalized vector: (A +B), > C
MB,N,0,Z
80 ADDUV A,B,CCHMA, [AX],[B,Y],CZ Add upper vector: (A + B),, ~>C
MB,N,0,Z
83 ADDXV AB,0,Z [AX],[B,Y].C,Z Add index vector: A16.63 + B16.63 > C16-63- A0-15 > Co-15
94 ADISV ABHO,Z [AX],[B,)Y],C,Z Adjust significance vector: A per B—> C
95 ADJEV ABHOZ [AX],[B,Y],C,Z Adjust exponent vector: A per B~ C
92 CLGV AH,0,Z [AX],CZ Ceiling vector: nearest integer .GE. A~ C
96 CONV AO0,Z [AX].CZ Contract vector: Agq > C39
8C DIVUV AB,CHMA, [AX],[B,Y],C,Z Divide upper vector: (A/B), > C
MB,N,0,Z .
8F DIVSV A,B,C.HMA, [AX].[B,Y],C,Z Divide significant vector: (A/B)g > C
MB,N,0,Z
9A EXPV AHO,Z [AX],CZ Exponent vector: Ag.15 > C48.63, S E, 0> Co.15
9C EXTV AO0Z [AX],C,Z Extend vector: A3y = Cggq

ped |

4 00208661

Table C-10. Vector Instructions (Cont’d)

Op Mnemonic Qualifiers Operands Description
91 FLRV AHO0,Z [AX].C,Z Floor vector: nearest integer .LE. A~ C
89 MPYLV A BMA MB, [AX],[B,Y].C,Z Multiply lower vector: (A*B), > C
N,0,Z
8B MPYSV A,BMA MB, [AX],[B,Y],C,Z Multiply significant vector: (A*B); ~ C
N,0,Z
88 MPYUV A ,B.MA MB, [AX],[B,Y],C,Z Multiply upper vector: (A*B), > C
N,0,Z
9B PACKV ABH,0,Z [AX],[B,Y],C.Z Pack vector: Ayg.63 & B1g.63 > C A:exponent, B:coefficient’
97 RCONV A0OZ [AX].CzZ Rounded contract vector: Agq rounded = €32
93 SQRTV ACHMAO,Z [AX].CZ Significant square root vector: SQRT(A); > C
85 SUBLV A,B,MA MB, [AX]1,[B,Y].C,Z Subtract lower vector: (A - B)p =~ C
N,0,Z
86 SUBNV A,B,MA MB, [AX],[B,Y].C,Z Subtract normalized vector: (A - B), ~ C
N,0,Z
84 SUBUV A,BMA MB, [AX],[B,Y],C,Z Subtract upper vector: (A - B),, > C
N,0,Z
87 SUBXV ABOZ [AX],[B,Y],C,Z Subtract index vector: A16.63 - B16.63 > C16-63>
Ap-15 > Co-15
90 TRUV AHO,Z [AX],CZ Truncate vector: nearest integer .LE. (A) > C
98 VTOV AH,0,Z [AX],C,Z Vector to vector transmit: A - C

4q 00208661

§eD

Table C-11. Sparse Vector Instructions

Op F | Mnemonic Qualifiers Operands Description
Al 2 ADDLS Add lower sparse vector : (A + B)p > C
A2 2 ADDNS Add normalized sparse vector: (A + B), = C
A0 2 ADDUS Add upper sparse vector: (A +B), > C
AF 2 DIVSS Divide significant sparse vector: (A/B); > C
AC 2 DIVUS Divide upper sparse vector: (A/B), > C
CHMA,
A9 2 MPYLS [A3.X6]1,[B2,Y1,[Ca.Z0] Multiply lower sparse vector: (A*B); -~ C
AB 2 MPYSS MR Multiply significant sparse vector: (A*B);— C
A8 2 MPYUS Multiply upper sparse vector: (A*B),, > C
- AS 2 SUBLS Subtract lower sparse vector: (A -B); > C
| A6 2 SUBNS Subtract normalized sparse vector: (A-B)—~C
A4 2 SUBUS Subtract upper sparse vector: (A - B), > C

90 |

€ 00208661

Table C-12. Vector Macro Instructions

Op Mnemonic Qualifiers Operands Description
D1 ADJMEAN H,0,Z [AX],C,Z Adjacent mean: (Ap4q + Ap)/2>Cy
DO AVG ABHO,Z [AX],[B,Y],C,Z Vector average: (A, + B)/2 >C,
D4 AVGD A,BH0.Z [AX],[B,Y].C,Z Vector average difference: (A, - B,)/2 > Cy
D5 DELTA H,0,Z [AX].C,Z Vector delta: (Ap4+1 - Ap) > Cp
DC DOTV ABH,Z [AX],[B,Y],CipZ Dot product vector: A-B—C,C+1
DF INTERVAL H,0,Z Af 4 Bep,CZ Interval vector: A + (n-1)*B—>C
DE POLYEVAL AHOZ [AX],[B,Y],C,Z Polynomial evaluation: A, per B—>Cp
DB PRODUCT H,Z [AX].Csph.Z Vector product: m A->C
co SELEQ
C2 SELGE Vector select: if A, .OP. By
ABHZ [AX],[B.Y] CsZ
C3 SELLT Count up to the condition met - C
Cl1 SELNE
DA SUM H,Z [AX].Csp.Z Vector sum: Z A~ C,C+1
B8 VREVV H,0,Z [AX],CZ Transmit vector reversed to vector: Apey > C
B7 VTOVX B,H [AX],[B,Y],Cy Transmit vector to vector, destination indexed: B~ C
indexed by A
BA VXTOV AHOZ [AX].B,.C.Z Transmit vector, source indexed to vector:

B indexed by A—> C

Table C-13. String Instructions

g 00208661

Op Mnemonic Qualifiers Operands Description
EO ADDB none [AX],[B,Y],[C.Z] Add binary: A+ B—~>C
E4 ADDD [AX],[B,)Y],[C,Z] Add decimal: A+ B—>C
EC ADDMOD [AX],[C.Y],[C.Z] .18 Add modulo bytes: (A, + By) mod(I8) > C,
ES8 CMPB DFB 53 operands equal
[AX],[B,Y] Compare binary (decimal) set data flags: DFB 54 1st operand high
E9 CMPD DFB 55 1st operand low
E3 DIVB [AX],[B,Y],[C,Z] Divide binary: A/B~C
E7 DIVD none [AX],[B,Y],[C,Z] Divide decimal: A/B—~ C
FC DTOZ NS,SS [AX],[C,Z] Unpack BCD to zoned: A~ C
EB EMARK none [AX],[B,Y],[C.Z} G Edit and mark: a per pattern B>~ C, G = first significant
result address .

FD MCMPC D,DD,DM, [AX], [BY],[C,,Z] Compare bytes (character) per mask: find Aj, = B, per mask

NIX, NIY C, A & Bindex incremented by number of bytes compared

before inequality found

EA MMRGC none [AX],[B.,Y],[C,Z] I8 Merge bits per byte (character) mask: AorBperI8=00r1—+C
F8 MOVL D,DC,DD,DDC, [AX],[C,Z].I8 Move bytes left: A = C (left to right); if A short, I8 - C for

DM ,NIX NIZ remaining bytes
F9 MOVLC D,DC,DD,DDC, [AX],[C,Z] .18 Move bytes left ones complement: A - C (left to right);

DM NIX,NIZ if A short, I8 - C for remaining bytes

'8¢-D l

4 00208661

Table C-13. String Instructions (Cont’d)

Op F Mnemonic Qualifiers Operands Description

FA 3 MOVS none [AX],[C.,Z] Bf Move and scale: ‘A - C, scale (B) decimal places

E2 3 MPYB [AX],[B,Y],[C.,Z] Multiply binary: A*B - C

E6 3 MPYD [AX],[B,Y],[C,Z] Multiply decimal: A*B - C

D6 3 SRCHKEYB [AX],[B,Y],[C,Z] G Search for masked key bits: search A for B per C,
Ajndex = # no match

FE 3 SRCHKEYC [AX],[B,Y],[C,Z] G¢ Search for masked key chars: search A for B per C,
Ajndex = # no match

FF 3 SRCHKEYW [AX],[B,Y].[C,Z] Gf Search for masked key words: search A for B per C,
Aindex = # no match

El 3 SUBB [AX],[B,Y],[C,Z] Subtract binary: A - B> C

E5 3 SUBD [AX],[B,Y],[C,Z] Subtract decimal: A - B > C

ED 3 SUBMOD none [AX],[B,Y],[C,Z] I8 Modulo subtract bytes: (A, - By) mod(IS) - Cp

EE | 3 | TL D,DC,DDDDC, | [AX],[B)Y],[CZ] Translate bytes: B, > Cp

DM NIX,NIZ

D7 3 TLMARK CH,D,.DD,.DM [A X],[B,,Y],[C,Z] Translate and mark: A per B = vector C, translate
Byte > Cexponent- Partial A field index > Ceoefficient

EF 3 | TLTEST D,DD,DM NIX [AX],[B,Y],Z¢Ce Translate and test: By, - C, Ay > Z if B, .NE. 0

FB | 3 | zTOD NS,SS [AX],[C.Z] Pack zoned to BCD: A > C

4 00708661

| sc0

Table C-14. Logical String Instructions

Op Mnemonic Qualifiers Operands Description
F1 AND Logical AND: A-B > C
F6 ANDN Logical AND not: A-F ->C
F2 IOR Logical inclusive OR: A+ B > C
F3 NAND Logical NAND: A-B > C
none [AX],[B,Y],[CZ] R
F4 NOR Logical NOR: A + B~ C
F5 ORN Logical OR not: A + B> C
FO XOR Logical exclusive OR: A - B - C
F7 XORN Logical equivalence (exclusive OR not): A - B »> C

o0 |

g 00208661

Table C-15. Non-Typical Instructions

Op Mnemonic Qualifiers Operands Description
CF ARITHCPS BH [AX],[B,Y],C,.Z, Arithmetic compress: ABS(A) .GE. B, ~ C,,,
set Zy,, O V length = Zg.15
04 BKPT none R, Breakpoint: Rjg.g3 = breakpoint register
39 CLOCK none Ty Transmit (real time clock) - T14.63, 0 = Tp.15
C4 CMPEQ
Cé6 CMPGE
C7 CMPLT ABH (AX].[B.Y].Zo i\tfeg/:(:) CST;P ?gr;)fosl:? l;)ifcdezrnviilc‘[grrc'ier vector
C5 CMPNE
1E CNTEQ none [Rg.Sil . T¢ Count leading equals: # leading bits equal to bit at
[R+S] - T48.63
1F CNTO none [Rg,Si].T¢ Count ones in field R: # ones in field [R+S] - T48.63 '
14 CPSB none Ry,51,.Tq Compress bit string: every Ry substring from R +S,
pattern > T
BC CPSV H,Z A, CZ, Compress vector: vector A — sparse C, controlled by O.V. Z
DD DOTS A,BH [A3.X61,[B3,Y,] Crpy Sparse vector dot product: A*B - C, C+1
06 FAULT none I5 Simulate fault
1A FILLC none 18,[T4.S;] Fill field T with byte (character) R: repeat I8 for field [T+S]
1B FILLR none R, [T4.S;] Fill field T with byte (R): repeat (R5¢4.43) for field [T+S]

g 00208661

0

Table C-15. Non-Typical Instructions (Cont’d)

Op F | Mnemonic Qualifiers Operands Description

03 6.| KYPT none R, Keypoint

7E 7 LOD [Rg.Sil.T¢ Load full word: load [R,+S;] - Ty

12 7 | LODC [Ry,5i].T¢ Load byte (character): [Ry+S;] > T56.63, 0 > Tq.55

SE 7 LODH [R,.S;1.Th Load halfword: load [Ry+S;] = Ty

16 7 | MASKB Rg.S4.Td Mask bit strings: alternate (Rq) string and (Sg) string > Tgyring

1D 7 MASKO none Ry.S1.T4 Form bit mask leading ones: repeat (Ry) ones and (S4q)-(Rq)
zeros = Ttring

BB 2 MASKV A,BH A,.B,,ClZ, Mask vector: if Z,=1, A, - Cy; if Z,=0, B, = Cp;
result length - Cg_15

1C 7 MASKZ none R1,.S1., T4 Form mask leading zeros: repeat (Ry) zeros and (Sg)-(Ry)
ones —> Tstring

D8 1 MAX H,Z [A.X] B£,CspnZ Vector maximum: Ap,y —> C, item count -~ B

D9 1 | MIN HZ [AX],Bs,Csp,Z Vector minimum: Ap,i, = C, item count > B

18 7 MOVR none R;,Si.Tq Move bytes right: (Tq) + (Rj) > (Tg) + (R) + (57,
bytes moved right — left

3D 4 MPYX none RpSe, Ty Multiply index, full word: Ryg.63 * S16.63 = T16-63: 0 > Tp.15

3C 4 MPYXH none Ry,,8h.Th Multiply index, half-word: Rg.3; * Sg.31 = Tg.31, 0 > Tg.7

*Not valid on STAR-100

(42 I

g 00708661

Table C-15. Non-Typical Instructions (Cont’d)

Op Mnemonic Qualifiers Operands Description
15 MRGB none Ry.S4.Tq Merge bit strings: interleave (Ry) string with (Sy) string =
Ty string
17 MRGC none Ry4.54.T4 Merge byte (character) strings: (Rq):(Sq), lesser - Ty
BD MRGV ABH Aa,Ba,Ca,Z0 Merge vector: if Z,=1, A, = Cy; if Zy=0, By = Cy;
result length - Cq_15
37 RITIME none T¢ Read job interval timer to (T)
28 SCANLEQ Scan left to right from [T4,S;] for byte equal to I8, index S;
29 SCANLNE none 18,[Tq,Si] Scan left to right from [Td,Si] for byte not equal to I8, index §;
19 SCANRNE Scan right to left from [Td,si] for byte not equal to I8,
decrement S;
C8 SRCHEQ
cA SRCHGE
_ H,LH,Z ABC,.Z Vector search form indexed list: each (A;) .OP. (B,), count > C,
CB SRCHLT
c9 SRCHNE
7F STO none [R,.S] ,’ff Store, full word: store (Tg) = address [R,+S;]
13 STOC none [R,.S:].T¢ Store byte (character): T5g.63 > address [Ry+S5;]
5F STOH none [Ra:S4].Th Store, half-word: (Tp,) - address [R,+S;]
B9 TPMOV HO [AX] Bfh,YehCa Transpose and move 8 by 8 matrix
3A WITIME none R¢ Transmit (Rg) — job interval timer

g 00208661

€0

Table C-16.

Monitor Instructions

Op Mnemonic Qualifiers Operands Description

00 IDLE none none Idle: enable e;(ternal interrupts and idle

ob LODAR none Load associative registers: full words beginning at 400XXg - AR
OF LODKEY Rg,S,,Ty Load keys from (Rg), translate virtual (S;) to absolute T,

0A MTIME Rf Transmit (Rg) - monitor interval timer

08 SETCF R¢ Input/output: set channel (Rf) channel flag

0C STOAR none Store associative registers: AR = 400YYg and higher addresses
OE TLXI Y [R,.Si].Tf Translate external interrupt: (T¢) = highest priority channel with

interrupt, branch to R, [S;]

Designator

Table C-17. Register Designators

Description

a full word register containing an address; length field is ignored

full word register containing an operand
half word register containing an operand
full word register containing an index

full word register containing a descriptor

full word register whose length field contains an operand

full word register containing descriptor of order vector

The 64 bit instructions are assumed:

A, B, C Descriptors of operands

X, Y Index

Z Alone — control vector address in a register pair — index
R,S, T word in register file

RJ. right justified

S.E. sign extended

FP. floating point

N/A not available

none qualifier not specified

oV. order vector

.OP. arithmetic operator (GE ... LT ... LE ... etc)

| c44

19980200 B

JOB PROCESSING D

This appendix contains a description of the assembler call statement, and the options associated with that
statement. Also provided are examples of interactive and batch processing deck set-ups and terminal commands.

ASSEMBLE statement

FORMAT:
META I=SOURCE L=PRINT B=BINARY / 500 I

#fields can be separated by any characters other than 1-9,A-Z or underscore. Blanks can be used as
separators

Parameters I, L and B may appear in any order

where

I = source file name — the user must have previously created the source file assigned the name
specified. In batch mode the source cards following the control card stream

are assumed the input file. The input file may be compressed on expanded.

L = print file name — the print file name is optional and if not specified, listable output will be
automatically placed on file “PLIST” by the assembler. When PLIST is
used, only the letter L is required, approximately 300 blocks are reserved
for PLIST. To print an output listing the user must always specify the
following statement: GIVE (output listing file, U = 999999)

B= binary file — this parameter can be omitted if only a syntax check is desired.

EXAMPLE INTERACTIVE ASSEMBLE, LOAD, EXECUTE

1. The assembler deck as shown below was input via the card reader.

LOGON 999997 400SDS TESTDECK R S 1

META SOURCE CARDS

6

7
8

19980200 B D-1

D-2

After the assembler deck was read in, at the terminal the following was entered:

LOGON 999997 A 40OSDS Lf*

CREATE(OBJECT02,01,T=P) &f

CREATE(PRINTOOQ 20,T=P) &f
META(I TESTDECK,L=PRINT002,B= OBdECTZ)/ 500 I Rf

GIVECPRINT002,U=999999) &f

LOAD / 1000 1 Rf

dispose assembler listing to printer

Request loader program

INPUT? Request from loader
OBJECT02 User supplied private file names
ORIGIN? Request from loader

#28000 &f First Module loading bit address
ENTRY? Request from loader

Lf User indicates no options

ANY OTHER OPTIONS?

£

CONTINUE

CN = TONY,OU-PRINTMAP 2f

CONT INUE

Lf

GIVECPRINTMAP,U=999999)

TONY / 500 I
$

Request from loader
User indicates LIBRARY option

Answer from loader

User indicates controllee and loadmap option

Answer from loader

Terminates options and starts load operations

Dispose loader map to printer

Execute the loaded program

NOTE: the file PRINTMAP is automatically created

* Of = line feed

19980200 B

EXAMPLE BATCH ASSEMBLE, LOAD, EXECUTE

6)) LOGON 999997 L400SDS ZBATCH R S B U XCARD READER ID
(2) 12:00:59 TESTS,T1000. XJOB ID
(3) 12:00:59 CREATE(BINARY, 02, T=P) XFILE CREATION
(4) 12:00:59 CREATECPLIST, 10, T=P) XFILE CREATION
(5) 12:00:59 METACI=INPUT,B=BINARY, L=PLIST) XASSEMBLE META
(6) 12:01:59 GIVE(PLIST,U=999999) XTRANSFER FILE
(7) 12:01:59 LOAD(BINARY , CN=TONY , OU=PMAP) XLOAD ASSEMBLER OUTPUT
(8) 12:02:59 GIVE(PMAP,U=999999) XTRANSFER FILE
(9) 12:02:59 TONY. ®EXECUTE CONTROLEE TONY
(10) 12:02:59 $SCOMPLETESS *MESSAGE FROM SYSTEM

7

89

META DECK

FINIS

678

9

(1) The card reader ID card is not field free and variable length names are not allowed.

Columns Content Parameter

1-5 LOGON Card reader ID

7-12 999997 User number

14-19 400SDS Account number

21-28 ZBATCH File name

30 R Record structural file

32 S Physical file

34 B Batch processor to be used
36 U Unrestricted access

(2) Job ID card must contain the job name
TEST 8 Job name
T1000 Time in seconds

19980200 B D-3

(3) Treats a physical file named BINARY
BINARY File name
10 Length of file in 512 word blocks
=P File type in physical data file

(4) The P in PLIST will signal USERI that file is a print file

PLIST File name
10 Length of file in 512 word blocks
T=P File type is physical data file

(5) Assemble META from the card reader and produce binary output on file BINARY and a listing on file
PLIST

[=INPUT Data from unnamed records may be accessed by referencing a file named INPUT
in this INPUT in the card reader

B=BINARY Object code to BINARY
L=PLIST Assembly listing to PLIST

(6) Transfer the file PLIST to USERI routine
PLIST Source file
U=999999 USERI routine will see that first character of transfer file is P thus a print file

(7) Load the assembler object code into controlee file TONY and place load maps and error messages on
PMAP

BINARY Source file — file to be loaded
CN=TONY Controlee file is TONY
OU=PMAP Load maps and error messages on PMAP

(8) Transfer load maps and error messages to USER1
PMAP Source file
U=999999 USERI routine will see that first character of transfer file is P thus a print file

)] TONY Find this controllee file and execute it

For a more complete description of the control card used in these set-up examples, see the STAR Operating
System Reference Manual, Publication No. 60384400.

D4 ' 19980200 B

ASSEMBLY LISTING FORMAT E

\:HEADER

v
SOURCE CODE

© 0000000000 O0O0O0O00
PAGE/LINE NO
000000000000 O0O0O0o0

| HEADER STAR
FORMAT: ASSEMBLER VER. X.X title PAGE nnnn

The title is blank unless a title is indicated on a TITLE directive.
The nnnn is the page number of the listing.

I ADDRESS (P) COUNTER
FORMAT: RR. VVVVVVVVVVVV B

RR Hex value of the currently active memory control section ordinal (begins at 01, with a
range of 01 to FF)

V’s Hex value of the current location counter

B Boundary indicator for current location counter
Bit address at FULL word boundary

Bit address at HALF word boundary

Bit address at BYTE (character) boundary
Bit address at BIT boundary

No effect on location counter

oo™

19980200 A E-l

E-2

OBJECT CODE

This field contains the object code in hex.

A maximum of 64 bits of object code appear per line, new lines will be generated for any bits over 64.

Any object code that has relocation will be followed by the ordinal number.
Each field of the object code that has relocation will be on a separate line.

EXAMPLE:
B645 BIM R_45, label
XXXXXXXXXXXX (n)
B6 Function code for BIM
45 Index register 45
X’s Relocatable address
n Ordinal number

SOURCE CODE

This field contains a copy of the source lines processed.

PAGE/LINE NO.

This field indicates the page and line number of each source line.

19980200 A

ERROR MESSAGES

STATEMENT TERMINATING ERROR MESSAGES
UNDEFINED SYMBOL

MULTIPLY DEFINED SYMBOL

ILLEGAL ALIGNMENT VALUE

ILLEGAL OR MISSING LABELS

ILLEGAL OPERAND/PARAMETER

OPERAND NOT A LEGAL SET ELEMENT

MORE THAN 255 EXTERNALS

EXTERNALIZATION NOT ALLOWED AT UNIVERSAL LEVEL
IMPROPER USE OF EXTERNAL OPERAND IN EXPRESSION
FUNCTION NAME USED AS OPERAND

SET NAME USED AS OPERAND IN EXPRESSION

ASSEMBLER’S CAPACITY FOR RELOCATION EXCEEDED
RELOCATABLE TERM ILLEGAL IN EXPRESSION CONTAINING EXTERNAL SYMBOL
IMPROPER USE OF RELOCATABLE TERMS IN EXPRESSION
MULTIPLE RELOCATION ON RESULT OF EXPRESSION
OPERANDS FOR RELATIONAL EXPRESSION HAVE UNLIKE RELOCATION
SUBSCRIBED REFERENCE TO A VARIABLE THAT IS NOT A SET
IMPROPER MODE IN SUBSCRIPT

REPEAT COUNT MISSING/NOT AN INTEGER

IMPROPER NESTING OF REPEATS

IMPROPER MODE ON REPEAT VARIABLE

19980200 B

PROCEDURE LIBRARY I/O ERROR. SEARCH ABORTED.

SYNTAX ERROR IN PROCEDURE/FUNCTION SOURCE STATEMENT, LIRP ABORTED

PROCEDURE/FUNCTION NOT FOUND IN LIBRARY

FILE NAME NOT A 6 CHARACTER SYMBOL

ILLEGAL USE OF .ELM. OPERATOR

IMPROPER USE OF POSITION OPERATOR, (:)

DATA GENERATION ILLEGAL AT UNIVERSAL LEVEL
COMMAND FIELD SYMBOL UNDEFINED AT THIS LEVEL
FORM REFERENCE ILLEGAL AT THIS LEVEL
FUNCTION MAY NOT ALTER P_COUNTER

COMMAND IS NOT A SYMBOL

ILLEGAL NAME FOR PARAMETER SET IN FUNC/PROC STATEMENT

ILLEGAL PASS VALUE

ILLEGAL DATA IN FORM/GEN
MISSING OPERATOR

MODE ERROR IN EXPRESSION
MISSING OPERAND

ILLEGAL SYMBOL

ILLEGAL HEX CONSTANT

ILLEGAL OPERATOR

ILLEGAL STRING CONSTANT
UNMATCHED PAREN

UNMATCHED BRACKET

SYNTAX IS ILLEGAL

OPERAND NOT A CHARACTER STRING CONSTANT
ATTRIBUTE NUMBER OUT OF RANGE

JOB ABORTED, ILLEGAL PARAMETER IN INPUT STATEMENT

F-2

19980200 A

EXTRINSIC ATTRIBUTE NOT AN INTEGER VALUE

ILLEGAL TRANSFER ADDRESS IN END STATEMENT

MSEC DOES NOT CORRESPOND, PASS 2 PER PASS 1

DATA DOES NOT CORRESPOND,PASS 2 PER PASS 1

MORE THAN ONE OUTPUT/LISTING STATEMENT IN ASSEMBLY

ILLEGAL PARAMETER IN FUNCTION CALL

REFERENCE TO UNDEFINED ENTRY POINT

SYMBOL NOT A LEGAL OPERAND

TRUNCATED REGISTER VALUE

ILLEGAL VALUE FOR A REGISTER

RELATIVE JUMP OUT OF RANGE

RELATIVE BRANCH TO ADDRESS EXTERNAL TO MSEC

RELOCATABLE OR EXTERNAL DATA DOES NOT END ON WORD BOUNDARY
DATA GENERATED FOR AN EXTERNAL OR RELOCATABLE VALUE LESS THAN 48 BITS
IMPROPER USE OF REAL IN EXPRESSION

ILLEGAL SET STRUCTURE

RELOCATION NOT ALLOWED IN CODE MSEC

OPERATING ON EXTERNALS NOT SUPPORTED BY LOADER

REPEAT SYMBOL REDEFINED IMPROPERLY SYMBOL DROPPED

FORWARD REFERENCE TO REDEFINABLE QUANTITY IS ILLECAL

ILLEGAL TO REDEFINE DIRECTIVE

WARNING MESSAGES

WARNING — DIVISION BY ZERO INTEGER YIELDS ZERO RESULT, REAL YIELDS INDEFINITE
WARNING — BINARY SCALE FACTOR GREATER THAN 47 APPLIED

WARNING — SUBSCRIPT OUT OF RANGE, NULL ELEMENT USED

WARNING — IDENT/FINIS/ENDP/PROC/FUNC/LIBP CANNOT APPEAR IN REPEAT RANGE

19980200 B E-3

WARNING — TOO MANY ELEMENTS IN LIST, RIGHTMOST ELEMENTS ARE IGNORED

WARNING — LABELS ARE NOT ALLOWED, ANY APPEARING ARE IGNORED

WARNING — GOTO BRANCH NOT PERFORMED, JUMP VALUE NOT AN INTEGER EXPRESSION
WARNING — NO MODIFIERS REQUIRED BY THIS STATEMENT, ANY APPEARING ARE IGNORED

WARNING — ENTRY/EXTERNAL/IDENT CONTAINS MORE THAN 8 CHARACTERS — ONLY FIRST
EIGHT RETAINED

WARNING — DEFAULT ASSUMED FOR ILLEGAL MSEC PARAMETER
WARNING —~ CONSTANT TRUNCATED

WARNING — DATA TRUNCATED

WARNING — REAL EXPONENT OVERFLOW

WARNING — REAL EXPONENT UNDERFLOW

WARNING — POSSIBLE GARBAGE IN FILE

WARNING — TOO MANY PARAMETERS IN FUNCTION CALL, RIGHTMOST PARAMETER IGNORED
WARNING — DATA IMPROPERLY ALIGNED FOR MODE OF OPERAND
WARNING — EXTRA SET ELEMENTS ARE IGNORED

WARNING — MONITOR INSTRUCTION IN JOB MODE MSEC

WARNING — ILLEGAL QUALIFIERS IGNORED

WARNING — DISALLOWED BITS SET IN G FIELD

WARNING - OFFSET/RESULT REGISTER NOT EVEN

WARNING — OVERLAPPING QUALIFIER DEFINITIONS

WARNING — RELATIVE JUMP NOT IN DIRECTION INDICATED
WARNING — FIRST ENTRY IN LABEL FIELD IS AN EXPRESSION
WARNING — BINARY SCALE ON RELOCATABLE ADDRESS
WARNING — POSSIBLE MISSING OPERAND IN INSTRUCTION
WARNING — MISSING QUALIFIER

WARNING — REGISTER VALUE NOT ALIGNED TO APPROPRIATE BOUNDARY

F.4 19980200 A

WARNING — AUTOMATIC ALIGNMENT PERFORMED FOR DATA TYPE INDICATED, LABELS MAY NOT
CORRESPOND TO START OF DATA

WARNING — LOADER RESTRICTION TRUNCATED TO FIRST EIGHT CHARACTERS
WARNING — DOUBLY DEFINED ENTRY POINT

WARNING — VALUE FROM ANOTHER LEVEL USED FOR

ASSEMBLER FAILURE MESSAGES

SYSTEM ERROR — S1 — ILLEGAL USE LEVEL IN SYMBOL TABLE

SYSTEM ERROR — S2 — ILLEGAL MODE IN SYMBOL TABLE

SYSTEM ERROR — S3 — ILLEGAL ITEM IN SYMBOL TABLE — DRIVER

SYSTEM ERROR — S4 — LOCATION COUNTER VALUES DO NOT AGREE PASS 2 PER PASS 1
SYSTEM ERROR — S5 — ILLEGAL CHARACTER TRANSLATION VALUE DETECTED — TOKEN
SYSTEM ERROR — S6 — ILLEGAL TOKEN TYPE DETECTED — RPOL

SYSTEM ERROR — S7 — ILLEGAL VALUE FROM COMBINED TOKEN TABLE — TOKEN
SYSTEM ERROR — S8 — MISSING END OR FINIS - - - JOB ABORTED

SYSTEM ERROR — S9 — ILLEGAL TOKEN TYPE DETECTED IN EVAL

SYSTEM ERROR — S10 — ILLEGAL TOKEN NUMBER DETECTED IN EVAL

SYSTEM ERROR — S11 — ILLEGAL SYMBOL TABLE MODE — EVAL

SYSTEM ERROR — S12 — ILLEGAL SYMBOL TABLE ITEM TYPE — EVAL

SYSTEM ERROR — S13 — ZERO LENGTH TOKEN - EVAL

SYSTEM ERROR — S14 — ILLEGAL OPERATOR DETECTED IN RPOL — COMMA

SYSTEM ERROR — S15 — BAD Q ORDINAL ENTRY IN COMMAND TABLE — INST_P

SYSTEM ERROR — S16 — BAD TEMPLATE FOR INSTRUCTION — INST_P

SYSTEM ERROR - S17 — LIMIT FOR EVAL ADDRESS STACK REACHED

SYSTEM ERROR — S18 — LIMIT FOR RPOL OPERAND STACK REACHED

SYSTEM ERROR — S19 — NO SIGN ON ZONED CONSTANT — CONVERSION FUNC

19980200 A F-§

ASSEMBLER PREDEFINED COMMAND-SYMBOLS

Symbols in the following table have a special meaning to the assembler command field.

Table G-1. Predefined Symbols

Function Code
Symbol or Value (hex) Use
A 10 Mnemonic qualifier
ABS 79 Instruction mnemonic
ABSH 59
ABSV 99
ADDB EO
ADDD E4
ADDL 61
ADDLEN 2B
ADDLH 41
ADDLS Al
ADDLV 81
ADDMOD EC
ADDN 62
ADDNH 42
ADDNS A2
ADDNV 82
ADDU 60
ADDUH 40
ADDUS A0
ADDUV 80
ADDX 63
ADDXV 83
ADIJE 75 f
ADJEH 55 Instruction mnemonic

19980200 A

Table G-1. Predefined Symbols (continued)

Function Code
Symbol or Value (hex) Use
ADIJEV 95 Instruction mnemonic
ADIMEAN D1
ADIJS 74
ADJSH 54
ADJSV 94
ALG 05
AND F1
ANDN F6 Y
ARITHCPS CF Instruction mnemonic
ATT - Function name
AVG DO Instruction mnemonic
AVGD D4 Instruction mnemonic
B 08 Mnemonic qualifier
BAB 32 Instruction mnemonic
BADF 33
BARB 2F
BEQ 24
BGE 26
BHEQ 20
BHGE 22
BHLT 23
BHNE 21
BIM B6
BKPT 04
BLT 27 '
BNE 25 Instruction mnemonic
BR 40 Mnemonic qualifier
BRB 06 Mnemonic qualifier
BRF 04 Mnemonic qualifier
BRIEF — Directive
BRO 80 Mnemonic qualifier

19980200 A

19980200 A

Table G-1. Predefined Symbols (continued)

Function Code

Symboi or Value (hex) Use

BRZ Co Mnemonic qualifier

BSAVE 36 Instruction mnemonic

BTOD 1 Instruction mnemonic/
function name

C 02 Mnemonic qualifier

CH 04 Mnemonic qualifier

CLG 72 Instruction mnemonic

CLGH 52

CLGV 92

CLOCK 39

CMPB E8

CMPD E9

CMPEQ C4

CMPGE Cé

CMPLT c7

CMPNE Cs

CNTEQ 1E

CNTO IF

CON 76

CONV 96

CPSB 14 Y

CPSV BC Instruction mnemonic

D 80 Mnemonic qualifier

DBNZ 35 Instruction mnemonic

DC 20 Mnemonic qualifier

DD Co Mnemonic qualifier

DDC 30 Mnemonic qualifier

DELTA DS Instruction mnemonic

DETAIL - Directive

DIVB E3 Instruction mnemonic

G-3

G4

Table G-1. Predefined Symbols (continued)

Function Code

Symbol or Value (hex) Use

DIVD E7 Instruction mnemonic
DIVS 6F

DIVSH 4F

DIVSS AF

DIVSV 8F

DIVU 6C

DIVUH 4C

DIVUS AC ‘

DIVUV 8C Instruction mnemonic
DM 30 Mnemonic qualifier
DOTS DD Instruction mnemonic
DOTV DC Instruction mnemonic
DTOB 10 Instruction mnemonic
DTOP — Function name
DTOZ FC Instruction mnemonic
EJECT — Directive

ELEN 2A Instruction mnemonic
EMARK EB Instruction mnemonic
END e Directive

ENDP —

ENTRY —

EORG —

EQU — Directive

ES 3E Instruction mnemonic
ESH 4D

EX BE

EXH CDh

EXTB 6E Instruction mnemonic
EXTC — Directive

EXTD — Directive

EXIT 09 Instruction mnemonic

19980200 A

19980200 A

Table G-1. Predefined Symbols (continued)

Function Code
Symbol or Value (hex) Use
EXITP — Directive
EXP TA Instruction mnemonic
EXPH SA
EXPV 9A
EXTH 5C
EXTV 9C
EXTXH 5D
FAULT 06
FILLC 1A Y
FILLR 1B Instruction mnemonic
FINIS — Directive
FLR 71 Instruction mnemonic
FLRH 51 Instruction mnemonic
FLRV 91 Instruction mnemonic
FORM — Directive
FUNC — Directive
FF32 — Function name
F32F — Function name
GEN — Directive
GOTO — Directive
H 80 Mnemonic qualifier
HTOC — Function name
IBNZ 31 Instruction mnemonic
IBXEQ BO
' IBXGE B2
IBXGT BS
IBXLE B4
IBXLT B3 ‘}
IBXNE B1 Instruction mnemonic
IDENT — Directive
IDLE 00 Instruction mnemonic
IMEM — Default MSEC name

G-5

G-6

Table G-1. Predefined Symbols (continued)

Function Code

Symbol or Value (hex) Use

INPUT 6D Instruction mnemonic
INSB —_

INTERVAL DF

IOR F2

IS 3F 1

ISH 4E Instruction mnemonic
ITOC — Function name

ITOF — Function name

IX BF Instruction mnemonic
IXH CE Instruction mnemonic
*KYPT 03 Instruction mnemonic
LIBP ' — Directive

LIST — Directive

LISTING — Directive

LH 20 Mnemonic qualifier
LOD 7E Instruction mnemonic
LODAR oD

LODC 12

LODH 5E

LODKEY OF

LSDFR 3B Y

LTOL 38

LTOR 7C Instruction mnemonic
MA o4 Mnemonic qualifier
MASKB 16 Instruction mnemonic
MASKO 1D

MASKV BB

MASKZ 1C

MAX D8 Instruction mnemonic
MB 01 Mnemonic qualifier
MCMPC FD Instruction mnemonic
MESSAGE — Directive

*Not valid on STAR-100

19980200 A

19980200 A

Table G-1. Predefined Symbols (continued)

Function Code

Symbol or Value (hex) Use

MIN D9 Instruction mnemonic
MMRGC EA

MOVL F8

MOVLC F9

MOVR 18

MOVS FA

MPYB E2

MPYD E6

MPYL 69

MPYLH 49

MPYLS A9

MPYLV 89

MPYS 6B

MPYSH 4B

MPYSS AB

MPYSV 8B

MPYU 68

MPYUH 48

MPYUS A8

MPYUV 88

MPYX 3D

MPYXH 3C

MRGB 15

MRGC 17 v

MRGV BD Instruction mnemonic
MSEC — Directive

MTIME 0A Instruction mnemonic
N 06 Mnemonic qualifier
NAME — Directive

NAND F3 Instruction mnemonic

G-8

Table G-1. Predefined Symbols (continued)

Function Code
Symbol or Value (hex) Use
NCC 01 Mnemonic qualifier
NIX 04
NIY 01
NIZ 01 Mnemonic qualifier
NOLIST — Directive
NOR F4 Instruction mnemonic
NS Co Mnemonic qualifier
0] 20 Mnemonic qualifier
ORG — Directive
ORN FS Instruction mnemonic
OUTPUT — Directive
PACK 7B Instruction mnemonic
PACKH 5B
PACKV 9B
POLYEVAL DE Instruction mnemonic
PROC — Directive
PRODUCT DB Instruction mnemonic
PTOI — Function name
PTOZ — Function name
RAND 2D Instruction mnemonic
RATT — Directive
RCON 77 Instruction mnemonic
RCONV 97 Instruction mnemonic
RDEF — Directive
RES — Directive
RIOR 2E Instruction mnemonic
RITIME 37 Instruction mnemonic
RPT — Directive
RTOR 78 Instruction mnemonic
RTORH 58 Instruction mnemonic
RXOR 2C Instruction mnemonic

19980200 A

19980200 A

Tabie G-i1. Predefined Symbols (continued)

Function Code

Symbol or Value (hex) Use

SCANLEQ 28 Instruction mnemonic
SCANLNE 29 Instruction mnemonic
SCANRNE 19 Instruction mnemonic
SET — Directive

SETCF 08 Instruction mnemonic
SELEQ Co

SELGE C2

SELLT C3

SELNE Cl

SHIFT 34 ‘}

SHIFTI 30 Instruction mnemonic
SPACING — Directive

SQRT 73 Instruction mnemonic
SQRTH 53

SQRTV 93

SRCHEQ C8

SRCHGE CA

SRCHKEYB Dé6

SRCHKEYC FE

SRCHKEYW FF

SRCHLT CB ‘}
SRCHNE C9 Instruction mnemonic
SS 80 Mnemonic qualifier
STO 7F Instruction mnemonic
STOAR e

STOC 13

STOH SF

SUBB El

SUBD E5

SUBL 65 !

SUBHL 45 Instruction mnemonic

G-10

Table G-11 Predefined Symbols (continued)

Function Code

Symbol or Value (hex) Use

SUBLS A5 Instruction mnemonic
SUBLV 85

SUBMOD ED

SUBN 66

SUBNH 46

SUBNS A6

SUBNV 86

SUBU 64

SUBUH 44

SUBUS A4

SUBUV 84

SUBX 67

SUBXV 87

SUM DA Y

SWAP 7D Instruction mnemonic
SYM — Function name

SZ 30 Mnemonic qualifier
T 10 Mnemonic qualifier
TITLE — Directive

TL EE Instruction mnemonic
TLMARK D7

TLTEST EF

TLXI OE

TPMOV B9

TRU 70

TRUH 50

TRW 90

VREVV B8

VTOV 98 {
VTOVX B7 Instruction mnemonic

19980200 B

Table G-1. Predefined Symbols (continued)

Function Code
Symboi or Value (hex) Use
VXTOV BA Instruction mnemonic
WITIME 3A
XOR FO
XORN F7 Instruction mnemonic
XTOD — Function name
4 40 Mnemonic qualifier
Z10C — Function name
ZTOD FB Instruction mnemonic
ZTOoP — Function name

19980200 A

G-11

ASSEMBLER LIMITATIONS

The following limits must be observed:

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

19980200 B

symbol length is 63 characters.

number of memory sections per subprogram is 255.
number of nested procedures or function calls is 128.
number of nested subsets is 32.

number of nested repeat operators is 32.

number of extrinsic attributes is 120.

number of nested parentheses inan expression is 60.

H-1

EXAMPLES i

The following examples illustrate a number of the available assembler directives and various machine instruction
types. These examples were run on the STAR 65 computer system. A statement of the problem to be solved
and a description of the assembler code are provided.

For a description of the register conventions illustrated in the executable examples (vector examples), see
appendix E of the STAR Operating System Reference Manual, Publication No. 6038400.

DATA GENERATION

The following examples illustrate three methods of generating data. These examples illustrate the basic use of
the following assembler directives.

INPUT RPT
IDENT GEN .
OUTPUT END

Example 3 also illustrates the use of functions and sets and is described in detail.

Example 1 — generates integers 1 to 10 at assembly time using the GEN directive.

COC STAR ASSEMBLIR VER 24242 DATE: 12SEP?4 PAGE - 1
. INFUT 1,80 170301
IDENT ' 1760062

wl JOLGILO0LUS
vl Vilbuouo bl
il vetbuwusdd

F 33340600 duvL0001 VALUE GENy6U 1929394959657 +8,9,180 176003
F GJduiwdd 0400u02 !

F wddiuvdi duvuduiad

01l GubbuulbuCL F wddulbuy vouulibit

Ul YOhlusulud F 0340b0dd ¥IV0EGES5

J1 uvuvuuLdlby F Jdvuluviv vdidlute

vl wobboubt18L F GUJICUYG wiulUGO?

U1 wolbuuwdlCL F vdJLluly GuebuoGuS

vl uelbuviuv F Jad30LU0 dvedveid9

J1 dultuuuler F usdutfdY JULJUUOA

ENC 170004

Example 2 — generates integers 1 to 10 at assembly time using the GEN and RPT directives.

COC STAP ASSEM3LER VER 2.2.2 DATE® 12SEP7& PAGE 1
INFUT 1,80 . 170901

. CUTPLT 176902

: IDENT 170903

oEC 1 A RPT410 2 176004

Ll vl dudiae
d1 vuleodluby

F dduveius LLIWIGGL 2 GEMN A 170003

F 343ududy Juuwdeba2
41 J0LLuleuiBr F 03Juubil Guudluud
91 GotevwuuCu F U2JdLOLIv DuvdDLGH
d1 uvtlobului F Guoluledy UBuwLulGilS
J1 wulialOley F ududubuy GLEIGUUE
Ji vulidub18y F 03JubdIU Juuuunl?
vl wbteuvlCy F Jdovuvbide vlveuuis
ol JUcbuLidub F JIIVuudu vuaaluu9
U1 vubvuuibl4e F wJdulibuv JuwolboA
- - - ENC 170306

19980200 B I-1

Example 3 — generates a set of integers 1 to 10 by use of a function.

COC STAR ASSZMALER VER 2.2.2 ' OATE® 12SEPT& PAGE 1
INPUT 1,80,1 170061
. uTPLT 170402
TITLE “GENERATE SET VALUES® 170043
COC STAR ASSEMBLER VER 2.2.2 GENERATE SET VALUES DATES 12SEP7T64 PAGE 2
fFunc 2 170904
INT NA ME 1/0ui$
RESULT ST 170006
s RPTs2010-1 1 1/6ud?
L,RESLLT SET +ELM.RESULT,B41 170408
ENCP RESULT . 176409
IDENT 175310

bl Jetbuiiuid
U1 velivueane

F vdJilldv duullLuUbL GEN JELM.INT(10) 170011
F ddluvevd wuulidu2
¥l JullovvbuBu F wudululd vbubutbLd
U1 wliivoauull F 0auvbidu JUuulule
ol Juliubuise F JJuobudy JGuuuLLS
vl vwebob31bu F UJJuLLal w0duviie
d1 ewtLuull8U F 0JJ30LLWI vUulLLO?
J1 UullevbllL F duddlbiue Uuuduuud
ol vobesviuluv F JJsJU0LE wuuuICLY
UL vbebuvidsu F 030J400dd JuvualLlA

ENC 176912

In this example, two assembler features are used — functions and sets. The name of the defined function is
INT. The function is called in the GEN statement. The call requests the generation of all set elements and

passes a value of 10 decimal to list Z in the FUNC statement. Initially, RESULT is set to a value of 1 and
then in the RPT statement sets the value of B which is later added to the value 1 in the statement labeled
1, RESULT.

In the RPT statement command list, Z [1]-1 calls for the first element of set Z, which is the value of Z [10]
minus 1. This sets the iteration count for the RPT directive. Even though set Z consists of one element, if it

were referenced as Z only, a diagnostic would be issued. The final statement in the function definition is the

ENDP directive; it specifies that the value assigned to RESULT be returned to the function cail statement.

ATTRIBUTE REFERENCING

The ATT directive is illustrated in example 4. The purpose of this example is to determine whether a group
of characters constitute a character string. A function is used for character string determination, and the ATT
and GOTO statements are illustrated.

12 | 19980200 B

CLUL STAn ALSEHBLLR VLR o262

© -

CDC STAR ASSEMBLER VER 2.2.2

©

CHARACTER_STRING_SIZE_FULNCTION

DATLS 12SEP74 PAGE
IMPLT 4160,20

TITLE ”CHAR#CIEﬁ-STRING_SIZE‘FUNGTLOM“A

DATES 12SEPT7& PAGE
FUNC A

CHAR_COUANT NAME

“n

d1 GLCEAVwwdGd F JI0C00U00 UULBODLY

NOT A& CHARACTER STRING
91 LCLGL0uLGY F JuTULCI0 wO0U00UD

MORE THAN 1 ELEMENT PASSED
41 Ll6uuCuuBU F $uilLaJ0 DUdLULLY

MORE THAN 1 ELEMEWT PASSED

J1 GLLLLILICU F Juilbuuuw vuuuvdil
4 CDC STAR ASSEMBLER VER 2.2.2
UNUMBER OF WARNING MESSAGES =

NUMBER OF ERRJOR MESSAGES =
CDC STAR ASSEMBLER VER 2.2.2

ASSEMBLY FINISHED
HUMBER OF STATEMENTS PROCESSEL

HUMBER OF EKROR MESSAGES NONE

e L LT C L

END
CHARACTER_STRING_SIZE_FULNCTION

NUMBER OF WARNING MESSAGES NONE

GCTCyATTI(AL1)42).EQ.7 1

MESSAGE “NOT B CHARACTER STRING"™
GCTC 2

GOTOyATT(A,7) ECe1 3

HESSAGE *"MORE THAN 1 ELEMENT PASSED™
EXITP 3

ENDF ATT(AC1)46)¢ESe~3

ICENT

GEN CHAR_CCUMT (“CHARACTER"™)

GEN CHAR_CCUNT (12345)

GEN CHAR_CCUNMNT (*STAR™,“ASSEMBLER™)

GEN CHAR_CCUNT{®hHAT ™394 "FOR™)) v

* DATES 12SEP74& PAGE

FINIS

3816 PoM, THURSODAY 12TH., SEPTEMBER, 1974,

Example 4. ATT Directive

In the first GOTO statement, (A[1],2) specifies a mode check on the first element of set A. If this element
is a character string, the value 7 is returned. (See Intrinsic Attributes in section 5.) If the first element of
set A returns a mode value of 7, statement 1 is processed next. Statement 1 also contains an attribute refer-

ence ATT (A,7). This reference specifies the 7th attribute of the value assigned to A is to be determined. The

7th attribute requests the number of elements. If > 1, a message is given; if = 1, statement 3 (ENDP) is
processed. This statement requests the number of bits assigned to the first element of A shifted right, .BS.-3,
3 places and returned to the call statement (the hexadecimal value 48 assigned to the first element of A
(CHARACTER) shifted right results in the value 00000009 across from the GEN statement.

19980200 B

I-3

DATES 12SEP7&4 PAGE

1 .
17000
170902
2
173003
1/000%
173005
1/0006
i1/70007
173068
173909
170010
170011
170012
170013
173014

1708015
170016

173017
3

L
170018

REFERENCING SYMBOLS

Example 5 illustrates the assembly time problem solving capability and the means of referencing a symbol
defined with two different values.

3 COC GTAP ASSEMBLLR VER 2.2.2 OATES 12SCP76 PAGE 1
' INPLT 1,80 173401
OLTFUT ’ 170002
wo 0u0000L032 8 RCEF S0 : 173003
ICENT 173004
FUNC NUMBER . 176035
SQUARE NAME . 173006
AGAIN NAME 173037
RESULT RCEF NUMBERIL)®NUMBER(1) 179068
ENDF RESULT 176409
00 0GouC0Od19 B RCEF 25 170010
L WlUubuduGd F YILLGsdy 00udb271 1 GEN SQUARE (B) 173011
03 wL50u00B32 € RCEF 8BS 173012
vl GLLWLOUOML F J00GUJI0UG 00TGGICH GEN AGAIMC) 170913
END 170014
1 COCL STAR ASSEMOLER VER 24242 DAVES 12SEP7& PAGE 2
UNUMBER OF MWARNING MtSSAGES = 0 i
 NUMBER OF ERRIR MESSAGES = v
1 COC STAR ASSEMBLER VER 24242 DATES 12SEP7¢ PAGE 3
9 FINIS 173015
)
! .
v ASSEM3LY FINISHED .
v 3135 P.M. THURSODAY 12TH, SEPTEMBER, 1374,
3 NUMBER OF STATEMENTS PROCESSEC 19
'] NUMBZR OF WARNING MESSAGCS NONE
3 NUMBER OF ERROR MESSAGES NONE
1

Example 5. Referencing Symbols

The label symbol B is defined with hexadecimal values 32 and 19, and these values are separately passed to
function definition (SQUARE). During the first call to SQUARE, the value of B (19) is passed to the function
definition set list (NUMBER). The result of the function is returned to the function call level.

Even though there is only one list element in the NUMBER set list, the element must be referenced in the
RDEF directive by specifying the element location in [1] brackets. Prior to the second call, the value B is
redefined with the value 32. To redefine B, with this value, a § is appended. The § instructs the assembler
to look for the new value at the Universal level.

CONVERSION FUNCTIONS

ITOC and HTOC conversion function, programmed as part of the assembler, are used in example 6. The ITOC
call (line 12) converts an integer string constant (line 7) to a character string constant. The HTOC call (line 15)
converts a hexadecimal constant (line 8) to a character string constant. Notice the manner in which the calls
are written:

¥ specifies the set element
ITOC (I[K]) to be converted

specifies the set

The HTOC call is written in the same manner.

14 ' 19980200 B

4 CDC STAR ASSEMBLER VER 2.2.2 : OATESR 12SEPTs PAGE
L] INPLT 148041

.

OLTFUT
*TITLE - ASSEFMBLER CONVERSION FUNCTIONS
1 SET J40737488355327,-14073760883553274~2564256019=1102=Uys4096,-4096
H SET OFFFFFEFFFFFFy=#FFFFFFFFFFFF o= 0F o #F 9 000=00,81,~91,#0123456789,L
~#L1234SE7 9,8 ABCDEF o~ SABCCEF
I1CENT
CEC 10 X RFT,40 100
01 JLLUUDLULO F 31363037 33373438 GEN IT0CLI(K)) .
61 GLUuuOULGD F 38333535333237
100 HESSAGE “eeccncccccccscccecvocncaa®
31 uLiuSouL78 C 20313430 3733373
J1 GLLOLGL.BB C 38383335 35333237
01 uLuh&duuFa C 20323536
(%8 &Lﬂu»ubllﬂ C 323536
84 vilouiuvide ¢ 3: .
Ll R R R R R T R R A PR * \
Ul LLLOLLU138 C 2034 . . s
61 uLOuuuuikB c 33
FEY aucu&ouxsu c 3)
¥i 0CLLLE158 C 34303936
3 ucccnuux7e C 2034303936
DEC ’ 12 M RFT,12 101
61 GLLOLGOLAU H 45UB4B4E 4BLELO4E GEN HTIOCLFIND)
31 ULLGWOJLEY H LEuELBLE :
i 101 NESS‘GE LI XTI R R PINTIY IR PSR Y 2 1]

SUBIISVIIIFILISS83 500

J1 0L060uUJ200 F 323(303J 30303330
01 dl0ouuud4e F 33303031
BPHIICSSIISTRBIRIC NIRRT Y

J1 o(COLiUU20J H 46LELLUE H4ELOLELE
Wl GLLNvE0L2A0 H 46464631
SPVISISITISIIBEIBINIVIISEIVE

el GLLJW032CH F 31203030 303U3330
vl Jtuivuu3u0 F 34303046

ST IFIFLENREFBITINE LR

wl Wlbueuu3Zd H 33303030 303030390
ol Glbuubudbu H 34363030

(2 A2 R RS RS S SRS 2RSS X Y]

91 00CGLGL386 F 313L3330 34363030
Ul -eluvvuudly F 34313030
'O“.Ol‘."l"’.'.'ll'l.

01 SLGuLGJ3E0 H 33303630 30303030
wl wibiivu20 H 33303031
GISIIFTIBIINSIFISBINIINLE

31 vluuolUtld F 454b40LD 4OLOLELE
1 ulGuobouBy F LoybLbHLE

(22X TSRS 2 2 X 3 :
1 CDC STAR ASSEMBLER VER 2.2.2 DATES 12SEP7& PAGE
Q01 OLCULIUWAY H 32303031 32333435
bl ULOGCOUCUEY H 35373839

SISV LISBENISINISISS

01 CLLJJUIB6(F 33383737

SEIIIIIITIINNISBESIRIIEES '
¥l JiuuuGo56u H 30303u30 3Ju30eiel

U1 ULLSUUUSAU H 43444540

B Y P Y Y VR YR YT PN

61 OL0uULu3IBCU F 4646UEUE 4H64HISIe

01 GLlLuLiublOl F 33323131

PIEISIIIIIISIISIIIRIIRIES) . .
END
1 COC STAR ASSEMBLER VER 2.2.2 . . DATES 12SEP7& PAGE
UNUMBER OF WARNING MESSAGES = 4
NUMBER OF ERRIR MESSAGES =]
1 COC STAR ASSEMBLER VER 2.2.2 . : DATEE 12SEP74 PAGE

FINIS *

ASSEMBLY FINISHED
3124 P.M, THURSOAY 12TH, SEPTEMBER, 197&s°
NUMBER OF STATEMENTS PROCESSEC 56
NUMBER OF WARNING MESSAGES NGONE
NUMBER OF ERROR MESSAGES NONE

mMBbEcoDOoGR
ol

Example 6. ITOC Function

19980200 B 15 e

1

T, 470001

170002
170003
173048
179005
170006
170007
173008
179009

178010

170014
173012

173013

170016
3

. -
176015

SYMBOL CREATION

In example 7, a symbol is generated in the fourth line of the PROC definition. The result generated is R
(without quotes) concatenated to the value of N. The 1 following ITOC(N) specifies a $ be appended to the
symbol.

The result of the procedure call generates the following:

L. LN

'3 8
ol
vl
vl
o1
3t
('3
vl
31
91
61
vl
a1
vl
o1
el
vl
B8
'3}
0l

R1

R20

GEN 1

GEN 20

CDC STAR ASSEMBLER VER

COC STAR ASSEMBLER VER

clLuu0guao
Gluidvuitd
bhGuubul8s
GLouCOLJCy
BCLCLGIL
bLCULCa16l
GlLuedUisl
Lleauuuille
Viuundbeuy
9L6.00J2u0
IR WIRTNFL. 1]
[7] % eIV ot}
wllGie, 300
wllivuu3ul
wll0uvuu3sy
0t 0uwada3Ce
WleuuCindg
WlCuilbubug
vblubuoudy
wblGulbusCo

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

giutedun
9Jubidad
JIubuauh
33606300

20.003J6.

JdUiudde
JusbiJul
@dulvildi
Joseboug
dJuubiouo
wali0LuG
Jdulbiuue
JUlLouul
Jiubuduo
JdulGlaly
PEBITREE
Jdeliuac
04GLLGJC
JJullouue
J3dLu0006

1 CODC STAR ASSEMBLER VER
OMNUMBER OF WARNING MESSAGES =
NUMBER OF ERROR MESSAGES
1 C€DC STAR ASSEMBLER VER 2.2.2

motatooCco e

I-6

2+202

2.202

oJGustot
ybuvuoL2
Vubdulu3
Bud0G09s
LGCUGLOS
0utiuulb
JueLieo?
Juulbuis
wbulbLLU3
LOuGUCGA
JuidauiceB
0edliwuC
Jid0ouo0
LiduLulE
WLUYOGOOF
J0000u10
94300011
buucuut2
0%u0C01L3
Judwille

2.2.2

ASSEMBLY FINISHED

3826 P.M.

- o

THURSDAY 12TH.

DATES 12SEP74
QLTFUT
TITLE *SYMBCL CREATION"

SYMEOL CREATICN DATE: 12SEPT4

ICEMT
PROC P
GENRDEF NAME
N RPT,PL2) 10
10SYM(PI11.CAT.ITOG(N)41) GEN N
ENOP
CALL GENRDEF *"R"™,c0
EMD

SYMEOL CREATION - DATES 12SEPT7a

OATESs 12SEPT4
FINIS

SEPTEMBER,y 1974,

NUHBER OF STATEMENTS PROCESSED 33
NUMBER OF WARNING MESSAGES . NONE
NUMBER OF ERROR MESSAGES NONE

Example 7. Symbol Creation

PAGE

PAGE

PAGE

PAGE

1
1/0001
179002
2

170003
170004
170005
170006
170607

170008
170809

179010
3

4
170011

19980200 B

' EXECUTABLE EXAMPLES

The followjng examples include the use of machine instructions, specifically, in the area of vector programming,
They are provided to aid in understanding the types of machine instructions available with the STAR computer
system. For a description of the register conventions illustrated in these examples, see appendix E of the STAR
OS Reference Manual, Publication No. 6038400.

USING VECTORS

Vector can be created through the GEN directive or by the INTERVAL machine instruction. To create a
vector, the programmer must set up a descriptor specifying the length of the vector and the base address
(points to the first element of that vector). This descriptor is created in a register the programmer selects in
the following order:

base address An EX instruction for 64-bit register clears 64 bits and enters the base address of
the vector specified.

length An ELEN instruction for 64-bit register enters the length in bits 0-15 of the register.
Example:
INPUT
OUTPUT
IDENT
MSEC 2
A EQU $#1A¥6L
EX A,AVECTOR
ELEN A,9
MSEC
AVECTOR GEN 1,2,3,4,5,6,7,8,9
END
FINIS

19980200 A I-7

Register #Al

0 15 64

0009 Address Points to AVECTOR

l— length Lbase address {element 1)

In specifying a register, the user must include the register number times 64 or 32 to specify its size. As
described in the STAR Hardware Reference Manual (see Preface), the first half of the register file can be
referenced as 128 full-word registers or 256 half-word registers; therefore, full-word register 1E and half-word
register 1E are different.

VECTOR ADDITION
The examples which follow illustrate three methods of vector addition:
add index vector
add sparse vector
In each example, the vectors are either created differently or the vector descriptors are created with different

statement types. The STAR machine is primarily a vector oriented machine, therefore, the use of vectors
whenever possible results in savings to the user.

INTERVAL

The INTERVAL statement is a vector macro which executes as follows: The first element created is the value
designated in the A source element in the operand field. This value is placed in the C element.

INTERVAL qualifiers A B C,Z

(see machine
instructions
appendix C)

A constant in source operand B is added then to the value of A to form the second element of C. The third
to N elements of C are formed by adding the constant in B to preceding element C. The length of the result
vector is specified in the descriptor of the result vector.

A c
1 ' 1 AtoC
—\ B

r//_ : = 2 A+BtoC
% Z\s B+CtoC
? % : 4 B+CtoC
‘// A =y

A A

I-8 19980200 A

The qualifiers and Z field, which specifies the constant vector, are not used in the following example and are
not discussed here. Control vectors and qualifiers are are illustrated in example 8 which follows.

4 CDC STAR ASSEMBLER VER 2.2.2 X DATE: 12SEP7& PAGE
[INPLT 1,48Cy1
OLTFUT .
TITLE “CREATE VECTORS VIA INTERVAL™
: CDC STAR ASSEMBLER VER 2.2.2 CREATE VECTCRS VIA INTERVAL ODATES 12SEP7& PAGE
LCENT
Y2 00040600300 MSEC 2

ENTRY START

00 6G0.00u1308 A ECU #4C%€E4 * THESE REGISTERS CONTAIN
G0 OLUUbULdWY e ¢ ECQU #41%€4 ¥ SOULRCE ELEMENTS R .
66 Juu0Go1080 C ECU #42%€6 * CONTAINS RESULT VECTOR DESCRIPTOR
00 ULdyuilata N ECU 20 ¥ LENGTH OF RESULT VECTOR "C*
0U 903G040740 PSP ECU #10%64 ¢
30 JuoULUCS540 vITAL ECU #15% €4 *** ENTRY SEQ
é0 0040000680 RTRN ECU #LA%EL ¢
ue LLGLLGuYLU F BZ420040 050GO000 START EX C,#5000000
92 ubLOu0ulud F BE4OLLUVL vUUOGCOL EX A1
82 0L00u00480 F 7840GLGL RTOR Ay8 *® TRAMSPITS VALUE 4 TO 8 SOURCE
U LloluQuCAy H 24420014 ELEM CyN * VALLE 20 ENTERED INTO LENGTH PORTION OF C DESC.
02 UleuwideCa F DFulLUel JJ410042 INTERVAL AyEyC *CREATE VECTOR C
92 ULLJLddtld F 73101500 ShAF PSP, VITAL
02 006uG00120 H 36L0C01A BSAVE s RTRN .
END START : _
1 COC STAR ASSEMBLER VER 2.2.2 CREATE VECTGRS VIA INTERVAL : DATES $2SEPY& ' PAGE
GMUMBER OF WARNING MESSAGES = 6
NUMBER OF ERROR MESSAGES =]
3 COC STAR ASSEMBLER VER 2.2.2 DATES 12SEP7& PAGE

FINIS

ASSEMBLY FINISHEO .

3128 P.M. THURSDAY 12TH. SEPTENBERy 1974,
NUMBER OF STATEMENTS PROCESSED 22
NUMBER OF WARNING MESSAGES NCNE
NUMBER OF ERROR MESSAGES .- NONE

[T X -X-N-¥ XN _¥ 3

19980200 B 19

1
170001
170002
1730403
2
1/730Ga
179005
1703008
170007
170908
170009
170010
170011
170012
1/0013
170014
170015
i70016
170017
170018
170019
170028
170021
3

&
170022

ADD INTERNAL VECTORS

Example 9 illustrates the use of the INTERNAL macro in generating vectors, the ADDXV instruction, and the
use of dynamic space. Also illustrated is the standard entry sequence that should be followed in user programs.
Since this subprogram is not called by other routines and does not call any other routine, the entry sequence
illustrated is not required. The assignment of the DSP_R register is required, as the results will be entered into
the dynamic stack area. Before reading this example, read the Register Conventions in appendix E of STAR OS
Reference Manual which provide a description of the register file and the use of the pointers specified in the
entry sequence.

In this example, the initial source values are specified by the EX instructions which enter a value of 1 into bits
16-63 of register A and a value of 3 into bits 16-63 of register B1.

Descriptors for the resultant vectors C1, C2, and C3 are then created; length specified is 100 decimal full-words;
base address is set at some virtual location in the user available dynamic stack (the locations for vectors C1, C2
and C3 are sequential and 100 full-words apart). Vectors are created by the INTERVAL macro’s and then
summed by the ADDXZ instruction. For a description of the working of the INTERVAL instruction, see
example 8 in this appendix.

1 GOC STAR ASSEMBLER VER 2.2.2 DATES 12SEP?4 PAGE 1
M INPLT 1,8C,1 1/0001
OLTFUT 173002
_ TITLE “INTERVAL/ ADCXY WITH REGISTER FILE USAGE SEQUENCE" 170633

1 COC STAR ASSEMBLER VER 2.2.2 INTERVAL/ ALOXV WITH REGISTER FILE USAGE SEQUENCE DATE! 12SEP7H PAGE 2
0 ICENT 170604
02 9406600000 HSEC 2 ‘ 170¢05
ENTRY START 173006
00 00uC001040 A ECU #40%4 . 170007
00 0J00001Jed 81 ECU #4176y : : 170008
30 000dCu 1084 B2 EQU #42%4 170009
GV ULILOULUCE €1 . EGU e43%6« 178010
J0 0duutulld0 €2 ECU Pub?64 ' . 170011
36 0.600U114G C3 ECU #45%64 170012
o) uUJ0ULU546 VITAL_R ECGU #15%64 * PGINTS TO ENVIRONMENT REGISTERS 173013
ve 0uidY00G68D RT_N ECU $14°%64 /0016

1
w0 0aduvG06GO GSP_R ECU #18%64 * DYNAMIC SPACE POINTER -POINTS T3 NEXT AVAILABLE FREE 13,0915
60 90eUGOU7dL CSP_R EGU #1C*64 * GLRRENT STACK POINTER -POINTS TG REG FILE STORAGE 170016

GO 0u00000740 PSP_R EGU #10%*64 * PREVIOUS STACK POINTER 170617
P3% ENTRY SEQLENCE ¥w#se 170018
62 JL06L0UG30 F START 173019
32 UbvousbusOu F 32150014 ES . VITAL_FK,e14 . 173020
w2 wllol5.,020 H 704L151C ShAP HVITAL_R,CSP_R 170021
v@ ullivuuwing F 781Cuao10 RTOR CSP_RWPEP_R ®CURRENT STACK POINTER EQUALS PREVIOUS 170022
02 QLGui0uuby H 73166J1C RTOR CSP_R.(SF_R #CURRENT STACK POINTER EQUALS DYNAMIC 170623
£2 duvluLieiBy F 3F1BLO30 0vdUHBOD I CSP_Ry200* 64 *SAVE STACK FRAME SIZE IS 3Ju WORDS 170424
02 GLLLLGILCY F JE43029G 05000000 EX Ci,#50C0600 173025
32 J¢(Gu001dy F 73439046 RTORK Ci1,C2 170026
S2 ULGUL0e120 H 3F4L1930 Is C2,100%64 *SET C2 160 FULL WORDS AFTER Ci 170027
02 CLlliLuGulay F T78L4(045 RTOR C2,C3 173028
J2 vibtLduibld M 3F45194u Is CI,1uu*s & #SET C3 140 FULL WORDS AFTER C2 170329
J2 vlibosObulBy F Bocablldud GUOOLUOL EX [T} . ' 170630
32 ILeLulL1ICy F BEL2000V 0000TLO3 [E2,3 " *SET 83 T0 3 T 170031
vl vLGlu0C29y F 22433004 ELEN C1,1C0 ' 170032
v2 GLLJudiciy H 2aLuyubl ELEN C2y200 . 173033
v2 vlGuJle240 F 24450064 ’ ELEN C3,1C0 173034
v2 CCLLL0U260 H 784G0uUE RTOR A,B1 *PLACE VALUE & IN B1 170035
02 vl6JLUu28G F DFUOWGLU U0L1UO0LS INTERVAL A,E1,C1H 170036
92 CLUL002CE F DFLLUUYD 0U620044 INTERVAL A,E2,C2 170037
02 GLosLuu3lu F 33000043 004LLOLS ACOXvV C1,C2,C3 170038
$2 wlLbilya30y F 70101500 ShAF PSF_RyVITAL_R 170039
32 wlbowdud6l H 36L0LU1A atave WRT_ l 170040
Er STAR . 170061
1 COC STAR ASSEMBLER VER 2.2.2 INTERVAL/ ACDIV WITH ﬁEGISTER FILE USAGE SEQUENCE DATES 12SEPTS PAGE 3
UNUMBER OF WARNING MESSAGES = 9
NUMBER OF ERRGCR MNMESSAGES = '] .
CDC STAR ASSEMBLER VER 2.2.2 . " DATES 12SEPTS PAGE L]

PRI RDOOLE e

FINIS . 170042

ASSEMBLY FINISHED

3334 PeMs THURSDAY 312TH. SEPTENBER. 1976,
MUMBER OF STATEMEMTS DPROCESSED

.......... ReV S S

NUMBER OF WARNING MESSAGES NCNE
NUMBER OF ERROR MESSAGES NONE

10 ' 19980200 B

+0020000
0020100
0020200
0020300
0020400
0020500
0020600
0020700
0020800
0020900
0020A00
0020800
g60z20c00
0023200
Gd20E00
0020F00
0021000
0021100
0021200
0021300
0021400
0021500
0021600
0021700
0021800
8021900
0021400
0021330
00213500
0021000
0021€00
0021F00
0022000
0022100
0022200
0022300
0022400
0022500
0022500
0022700
0022800
0022300
0022A00
00223800
0022C00
0022000
0022:=00
0022F00
0023000
0023100
0023200
0023300
0023400
0023500
0023500
0023700
0023300
0023900
0023A30
0023300
0023C00

19980200 A

00000000
00000000
00000000
00000000
00000000
0o0co0000
00000000
00000000
00000003
00000002
00000000
00000000
00000003
oooaoooo
00000036
000000090
googo000
§3000000
00000000
00000000
00000000

" 00000000

00000002
00000020
00000000
00000000
000000030
gd000000
gegoooos
00000000
00000000
00000000
00000000
00000000
goooooo0o
00000000
02000000
00000000
00000000
00000001
00000000
00000000
00000000
060000000
00000000
00000030
000000040
00000002
00000032
00000000

‘00000000

00000000
00000090
00000000
00000000
00000000
00000000
80000030
00000000
000900930
00000000

00000001
00000005
00000009
00000009
00000011
00000015
00000019
$000001D
00000021
00000325
00000029
60000020
00000031
00000035
800086033
00000032
60000041
00000045
00000049
00000042
00000051
00000055
00000053
0000005)
00000061
00000001
00000002
00000013
00000025
00000031
0000003D
00000049
00000055
00000051
00000053
00000079
gooo00085
00000031
0000009
00000023
002008035
00000031
00000030
00000039
0000005
00000071
0000000
00000109
00000115
00000121
00000002
0go000012
00000022
00090032
00000042
00000052
00000052
00000072
00000032
00000032
00000042

gco00000
00000000
00000000
googcooao00
40000000
oooo0o000
00000000
00000000
00000000
gooodgoao
00000000
20009000
000600000
00000000
60GGGG00
00000030
00000009
00000000
00000000
30030000
nDooggoo000
00000000
00000000
00000000
00020000
00030000
00000000
00630000
30000000
gooooo000
00000008
00000000
gogooo000
gooc00000
30030000
00000009
00000000
20000003
0ooo00030
00000000
06000009
00000000
00000000
gooog000
200Ju000
gogo00000
00000000
30000003
00000009
00000000
300300320
00000000
000000023
a0co00000
00000000
30000090
00000000
00020029
00029000
00000000
J00J0039

00000002
00000006
0000000A
0000000E
goodooiz
00000016
0ooo0001A
0000001E
00300022
00000026
0000002A

0000002%

0038490032
00000036
00G00G3A
0000003€
00000042
00000046
000G004A
J000004E
00000052
20000056
0000005A
9000005<
g0000062
00000004
00000010
Jadoo01cC
00000028
60000034
20000040
0000004C
30030058
00000064
Jodoo0070
0600007C
60000088
00000034
J00000A0
909003AC
00003088
000000C4
00000000
000000DC
go0000Q0:=8
000000F4
oocaoio00
J3jioo01acC
00000118
00300124
30000005
00uoo0016
23000026
00900036
30000046
00000056
00000066
000000756
00000085
00000096
30000046

000008000
aggooooo00
00000000
00000000
Googogoo
000200080
00000000
00000000
0o0d00000
0ooooaoo
gooooo00
goaodoos
60000000
goooogoo
00060000
0o0aoo0000
00000000
00000000
00030000
00000300
60000000
00000300
00230000
60000000
30000000
60000000
00000000
0g000000
00030000
00000030
00000000
0od0g000
go3goaoo
go330d000
goagoQoo0
00000000
00000000
00000000
40030000
J0lJiooao
00300400
g0d09000
00000000
0J0%0000
ggooo0000
g60d00000
ooggoooo
J3lllodo
00000000
00J00300
gooooggo0
udgooooo
00000000
063320000
0adao0000
00000000
oooaooao
00003000
00000000
00330000
00000000

00000003
goco00007
00003008
0000000F
00000013
00000017
00000018
0000091F
00000023
00600027
goooo0028
0000302F
00039033
00000037
00862038
0000003F
00000043
00000047
00000048
0000004F
00000053
60000057
00000053
00000)5°
00000063
poo040007
00000013
00000031F
goo000028
00000037
000000063
000000&F
00000058
00000067
00000073
0000007F
gooo0o008s
00000397
000000A3
000000A-
gogogoess
g6og000C?7
000000D3
0000000F
000000€ES3
000000F7
00000103
00000107
00000113
00000127
godooloA
00ud001A
03000024
00000034
00000044
00000054
00000264
0000G27A
0000008A
00000094
000300AA

cogoo0000
Q0000000
00000000
00000000
00000000
goo00000
00000000
00000d00
00000000
00000000
00000000
00000000
000060630
googoodoo
83000000
00000000
goodoaoo
00000000
g0000000
00000000
00000300
00000000
03030012
DJoocddo
00000000
pooooaoo
00030000
030002303
060000000
00000000
00000000
00000300
go0o00c000
00000000
o0pooo0000
00000000
0dog0go00
00000000
00000000
4003031)
00000000
00000000
6o000000
00000000
00000003
03000000
000906000
00000000
000009000
00000000
00000002
00000000
0dg0do0000
g00Jg0009d
060000033
60000303
00000002
00000000
00000032
00000000
00000000

00000004
00000208
oooo0l0C
00000310
gdddaIis
00000J)18
g000031C
06000320
00000) 24
800000228
000903 2C
00000) 30

000003 34
00000) 38
0002) 3C
00000J) 40
00000044
00000)48
00003J4C.
000000540

00030154
00003)58
0004a035C
00000350
00000) 64
0000230A
00000) 16
00030322
09000)2E
000003 3A
00000) 46
80000352
0000021 S5€
00000)6A
00000376
00000)82
00002) 8E
0000033A
000043) Ab
33392132
00002)BE
00000)Ca
00000) 06
0000dJ)E2
00000 EE
00000)FA
60000106
goooot12
000001 1E
00000L2A
00000J)0E
00000) LE
00000) 2E
00000) 3€
00000J4E
00000J5E
00000J)6E
000031 7€
10300)8E
09000) 9E
0J00JJ AE

k11

6023000
0023z00
0023F00
9024000
002%100
0024200
0024300
0024400
0024500
0024600
0024700
0024800
0024900
0024400

I-12

00000000
00000000
gooooo0gn
goooo0002
00000000
00000003
goooo0000
000000400
00000000
00000000
goe0o00000
00000000
00000092
000000133

000000832
000030C2
00000902
00000052
000000°2
00000102
00000112
00000122
00000132
00000142
00000152
00000152
03300172
00300132

00000000
90000000
00000009
00000000
20000000
90000000
20000000
00000000
00000009
20000000
000000030
00000000
30030000
20000000

00000086
000000CH
00000006
000000Es6
00000076
000330106
00000116

00030126

00000136
00000146
800300156
000001566
30300175
00000136

00000000
goo0aognao
00300000
Jo0d0300
00330000
40200000
00000000
90000000
0o0gooo00
poaoooao
oopoocoooo
gogogaooo
gogoooo0¢
0o0daoo000

000000BA
000000CA
0000000A
090000EA
300000FA
00000104
00000118
00000124
00000134
0000014A
00000154
00000164
0000017A
00000184

00000000
00000332
00:800000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000009

30000)BE
00000)CE
00000)0E
00000)EE
000001 FE
000001 0E
00000L1E
00000t 2E
000001 3E
00000L &4E
000001 5E
00000L 6E
000001 7E
300041 8E

19980200 A

INDEX

Address control

Address identifier
Arithmetic Operations
ASSEMBLE statement
Assembler failure message
Assembler Limits
Assembly Control
Assembly Listing Format
Assignments (value)

ATT directive

Attribute functions
Attributes

Batch processing

Binary number representation
Bit string constant

Branch instructions

BRIEF directive

Broadcast element

Character set

Character string constnat
Code section

Coding conventions
Command field
Comment field
Commercial at @
Common section (subprogram)
Conditional assembly
Constants

Continuation (statement)
Control vectors

Conversion functions

Data generation

Data Section (subprograms)
Default MSEC (IMEM)
DETAIL directive

Delimiter characters
Directive names

19980200 B

427
A-16

B3

D-1

F-5

H1

4.7, 427
E-1

420

4-33, 53
5.5, 1-2
5-1

1-3, 4-33,
54,12
D3

C23

A9

C9, C-31
4-6, 4-51
C-10, C-13
A2, A3
A-10

21, 23
22

3-1, C-1
3.1

424, 427
21, 23
1-1, 47
A4, A-14
3.1

C-10, C-13,
19

5-1, 14
4-23, 442,
Il

21, 2-3
4.29

4-6, 4-51
A3, C-24
A-16, A-18

EJECT directive

Element and sub-element referencing

ENDP directive

END directive
ENTRY directive
EORG directive
EQU directive

Error Messages
Evaluation of expressions
Examples

Executive Output
EXITP directive

Expressions

Expression and Mode Evaluation
Externals (EXTC, EXTD)
Extrinsic Attributes (RATT)

FINIS directive

FORM directive

FORM names

Form Referencing

Function names

Function references

Functions

Function definition (conventions)
FUNC directive

GEN directive

GOTO directive

Hardware or Assembler errors
Hexadecimal constant
Hexadecimal string constnat
Hierarchical expression evaluation

IDENT directive

Index incrementing
Index instructions

44, 4.51
4-19

4-16, 4-37,
4-46, 4-54,12
4-7, 452, 1,
4-13, 4-52
4-32, 453
421, 447,
453

F-1

B3

I

15

4-16, 4-44,
446, 4-54

B-1

B4
4-14,424,4-52
4-33

2-1, 4-7, 4-52
22, 4-23,4-53
A-16, A-18
424, 4-53
A-16, A-17
446, 4-54
12, 444
444

4.5, 447,
4-54, 12

425, 447,
4-53, I-1
4-10, 4-52

1-6, F-5 .
A7
A-8
B9

21, 4-6,

447, 4-52, 11
C24

c9, C27

Index-1

In-line PROC
INPUT directive

Instruction designator
Instruction mnemonic
Integer constant

Integer string constant
Interactive processing
Interval instruction
Interval vector statement
Intrinsic attributes (ATT)

Label field

Level

LIBP directive
Limitations (assembler)
Listing control

LIST directive
LISTING directive
Location control
Location-independent code
Logical operations
Logic string instructions

Machine instructions

Machine instruction designators
Machine instruction formats
Machine instruction types
MESSAGE directive

MSEC Default

MSEC directive

Monitor instructions

NAME directive

Nested procedures
NOLIST directive
Non-typical instructions
NOPH procedure

Null elements

Numeric label

Offset number

Operand field
Operators

Order vector
ORG directive
OUTPUT directive

® Index-2

4-34

3-1, 4-2,
4-51, 11
C-6

A-19

A-5

A6

D-1

19

I-8, I9
54, 1-3
3-1, C-1
24, 2-5
4-3, 4-51
H-1

44

4-5, 4-51
4-3, 4-51
1-3, 427
2-2

B-8

C-25, C-39
4-27, C-1,
1-7

C-6 thru C-8
C-1 thru C-5
C-8

4-5, 4-51
4-28

2-2, 429,
4-53

C-25, C43
4-36, 4-45
4-29

4.5, 4-51
C-17,C40
5-1, 5-7
4-18

A-19

C-11 thru
C-13
3-1,C3
B-2

C-10
4-31,4-53
4-2,4-51,1-1

Packed decimal constant
Packed decimal data strings
Positional operator
Predefined command symbols
Printer Output

PROC directive

Procedure

Procedure definition
Procedure name

Procedure reference

Procedure reference termination
Program conventions

Qualifiers

RATT directive
RDEF directive

Real constant
Redefining a symbol
Re-entrant code
Referencing attributes
Referencing sets
Referencing elements andsubelements
Referencing Forms
Register Designators
Register instructions
Relational operations
Repetition factor
RES directive

RPT directive

SET directive

Sets

Set name

SHORTBR procedure
Sign control
Significance count
Source statement errors
SPACING directive
Sparse vector

Special characters
Standard input

A-10

c23

4-17

G-1

1-5

4-36, 4-54
2:2,4-34
4-36

4-35, A-16,
A-18
4-27,4-38,
443,4-54
4.38

22

C-1

4-33,4-54
24,4-20,
4-25,4-48,
4-53,5-3
A-12

14

2-2

4-34

4-19

4-19

4-24

C44
C9,C-28
B-3, B-7
4-18
4-31,4-53
4-8,4-12,
4-52,1-1

4-16,4-25,
448, 4-52
12

A-16, A-18
5.1,57
C-11,C25
C-11

1-5

44, 4-51
C-10, C-14,
C-17 thru C-22
C-35

A4

14

19980200 B

STAR machine instructions

. .
Statement boundaries

Statement format

Statement terminating errors

String instructions

String instruction delimiters
Sub-element reference
Subprogram linking
Subprogram area

SYM function

Symbols

Symbol creation function
Symbol definition

Symbol redefinition
Symbol reference

Symbol reference levels
TITLE directive
Universal area

Value assignment

Variable identifier
Vector addition

Vector creation
Vector genération
Vector instructions

Vector macros
Vector macro instructions
Vector matrix
Vector offsets

Warning messages

Zoned decimal constants
Zoned decimal data strings

19980200 B

C-26 thru
C-43

3.1

32

1-5, F-1
C-24, C-37
C-38
C-24
4-19

4-13

2-1, 2-3,
4-29

53

1-3, A-16
5-1, I-6
2-4, 4-44,
14, 1.6
14

4-35, 4-44,
I4

24, 4-44

4.5, 4-51
21, 4-35

4-20 thru
422

A-16

C-14, C-17,
C-22, 19
19

I-7

C-10, C-15,
C-33

C-13

C-36

C-14

C-12

1-6, F-3

A-11
C-23

Index-3

CUT ON THIS LINE

COMMENT SHEET CONTROL DATA

CORPORATION

TITLE: STAR Computer System, STAR Assembler Reference Manual

PUBLICATION NO. 19980200 REVISION B

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

. COMPANY
NAME:

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

—— e e e ————— . At m—a e

STAPLE STAPLE

FOLD FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS; MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Documentation Department

215 Moffett Park Drive

Sunnyvale, California 94086

STAPLE STAPLE

CUT ON THIS LINE

!
CONTROL DATA : / 1—1/4"

—>»-3 CUT OUT FOR USE AS LOOSE— LEAF BINDER TITLE TAB

CONTROL DA A CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440

| _ CORPORATION. SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

PRINTED IN US.A.

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	6-Glossary-01
	6-Glossary-02
	6-Glossary-03
	6-Glossary-04
	6-Glossary-05
	6-Glossary-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	H-01
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	Index-01
	Index-02
	Index-03
	replyA
	replyB
	xBack

