
----- - - -

CONTROL DATA
CORPORATION

CONTROL DATA®
STAR COMPUTER SYSTEM

APL* STAR REFERENCE MANUAL

REVISION
A Original I- rinting.

(3-74)

B

(9-74) Reflects Version 1. 1.

Publication No.

19980800

© 1974

by Control Data Corporation

Printed in the United States of America

REVISION RECORD
DESCRIPTION

Address comments concerning this
manual to:
Control Data Corporation
Documentation Department
215 Moffett Park Drive
Sunnyvale, California 94086

or use Comment Sheet in the back of
this manual.

PREFACE

This is the reference manual for APL)~ST AR, Version 1. 1. APL*ST AR runs on all models I
of CONTROL DATA®STAR Series computers.

19980800 A

CAUTION

This product is intended for use only as described iri.

this document. Control Data cannot be responsible for

the improper functioning of undescribed features or un­

identified parameters.

iii

CONTENTS

1 INTRODUCTION 1-1 Numeric Element Formatting 4-2

APL - The Language 1-1 Numeric. Data Object

The APL*ST AR System 1-2 Formatting 4-4

Speciai Notation 1-3 Displaying Numeric Data 4-4
Objects

Note on Examples 1-3 Composite Data Object Displays 4-7

2 DATA 2-1 5 PRIMITIVE FUNCTIONS 5-1
Arrays 2-1

Notation 5-1
Coordinate 2-1

Syntax 5-2
Rank 2-1

Domain and Range 5-2
Length 2-1

Ordinals 5-3
Order Positions 2-1

Boolean Numbers 5-4
Canonical Ravel 2-1

Shape 2-1
Conformabili ty 5-4

Empty 2-2
Overriding Conformability
Rules 5-5

Data Ty·pes 2-2 Origin 5-5
Characteristic Data Type 2-2 Subarray Operations - Indexed

Value of an Array 2-2 Functions 5-7

Rank Terminology 2-2 Reverse Indexing 5-8

Rank Limitation 2-2 RELATIVE FUZZ: Use in
Relationals 5-9

Limitation on Number of Elements 2-2
ABSOLUTE FUZZ 5-11

3 ARRAY CREATION AND VARIABLES 3-1 Floor 5-11

Literal Expressions 3-1 Ceiling 5-11

Literal Character Expressions 3-1 Integer Domain 5-11

Literal Numeric Exprssions 3-2 General Notes 5-11

Variable Definition: Specification 3-3 SEED 5-13

Rules for Forming Identifiers 3-3
6 SELECTION PRIMITIVE FUNCTIONS 6-1

Referencing Variables 3-3
Dyadic Rho: Reshape 6-2

Respecification 3-4
Monadic Rho: Shape 6-3

4 DISPLAYING DATA 4-1 Monadic Comma: Ravel 6-4

Syntax 4-1 Indexing 6-5

Data Object Displays. 4-=l- Inde~_ed _Spe_cification 6-8

19980800 A v

Dyadic Comma: Catenate 6-11 Dyadic Circle 7-14

Dyadic Comma: Laminate 6-13 Equal, Not Equal 7-15

Take 6-14 Other Relationals 7-16

Drop 6-16 Boolean Functions 7-17

Compress 6-18 Combination 7-18

Expand 6-20
8 COMPOSITE FUNCTIONS 8-1

Monadic Rotate: Reversal 6-22
Outer Product 8-2

Dyadic Rotate 6-23
Reduction 8-4

Monadic Transpose, Dyadic
Identity Elements 8-5

Transpose 6-25 Inner Product 8-8

7 SCALAR PRIMITIVE FUNCTIONS 7-1 9 MISCELLANEOUS PRIMITIVE

General 7-1 FUNCTIONS 9-1

Monadic Definition 7-1 Monadic Iota: Interval 9-1

Dyadic Definition 7-1 Dyadic Iota: Index Of 9-2

Scalar Monadic Functions 7-2 Dyadic Epsilon: Membership 9-4

Monadic Plus: Identity 7-2 Dyadic Query: Deal 9-5

Monadic Minus: Negation 7-2 Grade Up 9-6

Monadic Multiply: Signum 7-2 Grade Down 9-7

Monadic Divide: Reciprocal 7-3 Representation 9-8

Monadic. Power: Exponential 7-3 Base Value 9-10

Monadic Logarithm: Natural Evaluate 9-12
Log 7-4 IMBED 9-15

Monadic Minimum: Floor 7-4 Format 9-16
Monadic Maximum: Ceiling 7-5 Null 9-18
Monadic Modulus: Absolute Monadic I-Beam 9-19

Value 7-5

Monadic Circle: PI Times 7-5
Dyadic I-Beam 9-20

Factorial 7-6
6 I-Beam 9-20

Monadic Query: Roll 7-6
8 I-Beam 9-21

Monadic Tilde: Not 7-7 MATRIX DIVISION 9-22

Scalar Dyadic Functions 7-8 Matrix Inverse 9-23

Dyadic Plus: Addition 7-8 Linear Equations 9-24

Dyadic Minus: Sub tr action 7-8 Solving Linear Equations 9-25

Dyadic Multiply 7-9 Linear Parametric Equations 9-27
nn.-.rH,.. ni"ri rlo 7-9 T """"' 0+ Q,.....1,f""l......-.r.C'! Vi+ 9-28 .J..JJ. lA,."'4.6.'- ~- v ..i..\,..o.-__.""", u '-f i..-4.. ... io..,.o...; ~

Dyadic Modulus: Residue 7-10 Special Cases 9-30

Dyadic Power 7-11

Dyadic Logarithm 7-12

Dyadic Minimum 7-13

Dyadic Maximum 7-13

vi 19980800 B

10 APL EXPRESSIONS 10-1 13 FUNCTION EDITOR 13-1
Input Representation Format 10-1 Purpose 13-1

Use of Spaces 10-1 Invoking the Editor 13-1
Use of Parentheses 10-1 Supplying Body Lines 13-2

Conversion of Input Represen-
tation 10-1

Replacement of a Line 13-3

Evaluation of Expressions 10-2
Display Directives 13-3

Order of Evaluation 10-2
Contiguous Lines 13-3

Error Detection Sequence 10-2
Containing a Specified String 13-4

Additional Errors 10-4
Editing Directives 13-5

Error Recovery 10-5
Editing Active Functions 13-5

Creating Separate Versions of
Displaying Expressions 10-6· a Function 13-5

Canonical Form 10-6 Terminating the Function Editor 13-6

Function Editor One-Liners 13-6
11 APL SYSTEM/USER INTERACTION 11-1 Summary 13-7

Immediate Execution 11-1

Aborting Execution or Output 11-1
14 SYSTEM COMMA.NDS 14-1

QUAD Input 11-2 Introduction 14-1

QUAD-PRIME Input 11-5 Syntax 14-1

QUAD-PRIME Prompt 11-7 Domain 14-1

Visual Fidelity 11-8 Input Requirements 14-1

Aborting an Input Line Prior Categories of System Commands 14-2

to Submission 11-8 Active Workspace 14-2
Correcting an Input Line Prior 11-8
to Submission

CLEAR Command 14-3

Input Submission Procedure 11-9
Active Workspace Inventory 14-4

Continuation Character 11-0
VARS Command 14-4

Comments 11-10
FNS Command 14-5

OBS Command 14-5

12 USER-DEFINED FUNCTIONS 12-1 LVARS Command 14-5

Function Definition 12-1 GRPS Command 14-5

Function Header 12-1 GROUPS 14-5

Function Body Line 12-1 GROUP Command 14-6

Function Call 12-2 Referencing GROUPS 14-6

Function Execution 12-2 Altering a Group Definition 14-6

Branch 12-3 Displaying a Group Defn. 14-7

Labels 12-4 GRP Command 14-7

Environment of an Active
Notes on Referencing Groups 14-7

Function 12-5 Environmental Parameters 14-8

Nested Function Calls 12-6 ORIGIN Command 14-8
,.

A Note on Recur"sive Caiis. T2-=-·r· DIGITS Command 14-8

19980800 B vii

SEED Command 14-9

FUZZ Command 14-10

Altering Workspace Size 14-10

SIZE Command 14-10

Erasing Global Objects 14-11

ERASE Command 14-11

Defining and Listing Functions 14-12

DEFINE Command 14-12

DISPLAY Command 14-13

Debugging Aids 14-15

SI Command 14-15

SIV Command 14-17

STOP Command 14-18

SAVED Workspace 14-20

Workspace Identification 14-20

SAVE Command 14-22

LOAD Command 14-24

COPY Command 14-26

PCOPY Command 14-28

DROP Command 14-29

WSID Command 14-30

Display Device Parameters 14-31

WIDTH Command 14-31

LINES Command 14-31

External File Interface 14-33

INPUT Command 14-33

OUTPUT Command 14-33

Terminating an APL Session 14-34

SYSTEM Command 14-34

APPENDIXES

A ACCESS TO APL*ST AR ON A-1
STAR OS

B COMMUNICATING APL B-1
CHARACTERS

c NUMERIC REPRESENTATION ON C-1
STAR COMPUTERS

D TERMINAL CAPABILITIES OF D-1
APL~:cSTAR

viii 19980800 B

INTRODUCTION 1

APL - THE LANGUAGE

The Language APL and its acronym are derived from the mathematical language propound­

ed by K. E. Iverson in a book entitled "A Programming Language" (John Wiley and Sons,

Inc. 19 62).

The Language is essentially a large set of primitive, i.e., predefined, functions for man­

ipulating and performing computations on data. The notation used is very compact. A

single APL character conveys the primitive function desired, and function expressions

consist of an infix notation associating the arguments with the function being called. Prim­

itive functions have one or two arguments. One argument appears to the right of the APL

character conveying the desired function. If a second argument is required it appears to

the left of this character. Arguments can themselves be function expressions. Evaluation

of the expression proceeds from right to left.

Unlike functions in other programming languages, most primitive functions in APL are

defined for general arguments. 'Nhile single valued arguments are possible as a special

case, in general the arguments are array data structures and the functions operate in a

predefined manner on these structures as a whole.

19980800 A 1-1

THE APL*STAR SYSTEM

The implementation of APL on ST AR computers is known as the APL~:<ST AR system.

The principal component of the system is a conversationally interactive interpreter design­

ed for time sharing terminal operation. Upon gaining access to the system .. APL expres­

sions keyed on a terminal are evaluated and results .. if requested .. are displayed immediately.

In addition to operating the system as a sophisticated desk calculator .. the following features

endow it with the capabilities of a complete programming system.

• A procedure exists for a user to define his own APL functions in terms of APL

expressions using previously defined or existing functions.

• Extensive diagnostics. debugging aids and editing facilities exist to make the APL

programmer extremely productive.

• Methods exist whereby a variety of terminal types can gain access to the

APU!'ST AR system and exchange data and programs.

19980800 A

SPECIAL NOTATION

The following notation is not part of the APL language but rather is used in describing that

language.

f} indicates the contents are optionally included.

{ j se lcct one .

• •• repeat as required.

< >indicates a descriptive term rather than a literal APL construct.

+-+- indicates identity, i.e. , that the expression on the left has the same

value as the expression on the right. If used in the context of a constraint,

the expressions must have the same value for the constraint to be satis­

fied.

,.._, approximately equal

NOTE ON EXAMPLES

Where examples are shown in this manual, a clear workspace (see ')CLEAR') is understo.©d

to exist prior to input of the first line, unless otherwise stated or implied by the example

itself.

19980800 A 1-3

DATA 2

ARRAYS

All data in APL is handled in the form of arrays. An array is a finite set of data elements

which in general are multiply-orctered in a coordinated \xray.

COORDINATE

Each coordinated ordering is termed a coordinate and is designated by a canonical ordinal

for reference purposes.

RANK

The number of coordinates is called the rank of the array.

LENGTH

Each coordinate has an associated non negative integer called its length which is the number

of different order positions used in that ordering.

ORDER POSITIONS

Order positions for a given coordinate are those constituting the set of the first L ordinals.

(see ORDINALS), where L is the length of that coordinate.

Each order position for each coordinate is assigned to an equal number of distinct elements,

such that all elements have one such assignment.

The assignment of order positions to elements by all coordinates is such that the canoni­

cally ordered set of order positions for each element is unique.

CANONICAL RAVEL

The canonical ravel of an array is the single-ordered set of original array elements in

canonical coordinate precedence sequence.

SHAPE

The shape of an ar ra;Y -is the single--OPae-Pee -set ef coer-dinate-lengths in canonical order.

19980800 A 2-1

EMPTY

An array is said to be empty if it has no elements. At least one of its coordinates has a

length of zero.

DATA TYPES

Three data types are defined in APL:::~sT AR: numeric, character and list. The value of a

numeric data element is a single real number. The value of a character data element is a

single character. The value of a list data element is the value of the array imbedded in

the element (see IMBED).

CHARACTERISTIC DATA TYPE

All elements of an array in APL must be of the same data type, called the characteristic

data type of the array. Even empty arrays have a characteristic data type.

VALUE OF AN ARRAY ·

The value of an array is the totality of its intrinsic attributes as characterized by its shape,

canonical ravel and characteristic data type.

RANK TERMINOLOGY

An array of rank 0 is called a scalar. It has no coordinates and exactly one data element.

An array of rank 1 is called a vector. It has one coordinate and zero or more data elements.

An array of rank 2 is called a matrix. It has 2 coordinates and zero or more data elements.

An array of rank 3 or greater has no special name. It has as many coordinates as its rank

and zero or more aata elements.

RANK LIMITATION

The APL language does not define any limit to the rank of an array. However, the

APL*ST AR implementation will not allow the user to create arrays of rank greater than 127.

Any attempt to exceed this limit will result in an error message (usually RANK ERROR).

iiMiTATiON ON NUMBER OF ELEMENTS

The APL language does not define any limit to the number of elements in an array.

However, the APL*STAR implementation currently will not allow the user to create arrays

having more than 65, 535 elements. An attempt to exceed this limit results in the error

message NONCE ERROR.

2-2 19980800 A

ARRAY CREATION AND VARIABLES 3

Arrays are created by the APL interpreter by evaluating APL expressions. An APL

expression is a syntactic construct of APL language elements which together totally detail

the construction of an array.

Evaluation of an APL expression involves one of three processes within the interpreter,

singly 0r in combination depending on the complexity of the APL expression.

1. APL language elements exist from which literal expressions may be formed.

These are interpreted directly and result in arrays having the value as stated

in the expression.

2. An e~pression may state a function to be called with designated arguments. The

interpreter executes the function which in turn produces an array as its result.

3. An expression may reference a currently defined variable. Such reference results

in the interpreter making available an array having the value of the one being

referenced.

Literal expressions allow explicitly valued scalars and vectors to be directly expressed.

LITERAL CHARACTER EXPRESSIONS

A character scalar is expressed by placing the desired character in quote marks, thus:

'A'

A character vector is expressed by placing zero, two, or more characters within quote

marks.

'AB'

'ABCDE'

''

a 2-element character vector

a 5-element character vector

a 0-element character vector

To indicate that a character appearing within quote marks is the quote character itself, two

consecutive quote marks are used to represent the single character.

'DON' '~11

' ' ' .
19980800 A

a 5-element character vector DON'T

a cliaractef scalar·y

3-1

LITERAL NUMERIC EXPRESSIONS

A numeric scalar is expressed by formulating a numeral from the 13 APL characters
0123456789. -E

• Unsigned integer and decimal numerals are formed in the usual manner.

• A negative value is indicated with the negative symbol character "-" (read as

'negative' or 'neg').

• The character E is used to convey base 10 exponentiation and can be read

'times 10 to the'.

• The character e may be used in place of the character E.

6

3.14159625

4. 325El 7

2. 59376E-3
lOE--5

. 475

473

I
~

exponent must be an integer

Note: embedded spaces
are not allowed.

Numerals having any number of digits may be formed, but will only express the value

represented by the 14 (in some cases 15) most significant digits. Proper scaling will

always take place.

Numerals expressing a value beyond the number representation capability of ST AR com­

puters will result in the error message SYNTAX ERROR. (See appendix C.)

A numeric vector is expressed by juxtaposing two or more numerals each separated by

one or more space characters.

2.37 5493 2.86E47

1-element vectors, 0-element numeric vectors and arrays of rank 2 or greater cannot be

conveyed in a literal expression. Such structures can only be expressed by a call of a

suitable function with appropriate arguments, or by referencing an existing variable having

such a shape.

3-2 19980800 B

I

VARIABLE DEFINITION: SPECIFICATION

The process of variable definition is called specification. The APL language syntax is:

<identifier> ~<APL expression>

In this process, a variable is created whose name is the identifier given, and whose value

is the value cf the QrraJT created by the .l\.PL expression.

Examples:

COUNT+1

The variable COUNT now has the value of the numeric scalar 1.

TEXT+'TEIB IS IMPORTANT'

The variable TEXT now has the value of the character vector: 'THIS I8 IMPORTANT'

RULES FOR FORMING IDENTIFIERS

•
•
•

Names may be from one to 4095 characters in length •

The first character must be an alphabetic character (A to Z, a to z, 6,, lJ) •

The remaining characters (if any) may be any alphabetic character or digit,

or the underscore character ().

REFERENCING VARIABLES

Whenever the identifier of a variable appears in an APL expression, it refers to that

variable. On detecting the presence of a variable identifier, the APL interpreter makes

available an array having the value of the variable being referenced.

If the variable has not been defined, a reference to it results in a VALUE ERROR.

A~2. 3 -57 o 3 4E3

X617a~A

In the first line above, A is specified as the variable identifier for the vector 2. 3 -57. 3

4E3o The appearance of A in the second line refers to the variable stated aoove. The

reference makes available a vector 2o 3 -57. 3 4E3 which is then associated with a data

. identifier X617a. Two variables now exist having the same value, one identified by A, the

other by X617a. Subsequent occurrences of A or XLl 7a in APL expressions refer to the

corresponding variables.

19980800 A 3-3

RESPECIFICATION

If a new value is given to the variable A by means of a subsequent specification, for example:

A-'NEW A'

the previous value of A is no longer referenceable, and hence no longer exists. Note that

there are no restrictions on the type or shape of the value newly specified to A. It need bear

no relation as to type or shape of the previous value of A. A new specification for A in no

way alters the specification for X61 7a. It still is associated with vector 2. 3 -57. 3 4E3.

3-4 19980800 A

DISPLAYING DATA

SYNTAX

The APL language provides a facility for displaying data. The language syntax for con­

veying this process is:

D~<APL EXPRESSION>

4

The character Dis called QUAD. If the left-most operation indicated in an APL source

line is other than a specification, display of the evaluated APL expression is implicit, and

the construct D- need not be present in this case.

0+2+2 2+2

4 4

DATA OBJECT DISPLAYS

All data displays consist of a tabular arrangement of character representations of the

elements of the array. For character data, each data element, being a character, is dis­

played as that character (or by the mnemonic for that character where it cannot be formed

on the terminal being used; see appendix B).

Note that character arrays are displayed without enclosing quote marks:

'A'
A

'ABC'

ABC

Note that single quote marks are displayed as such:

''''

'DON' 'T'

DON'T

For numeric data, each data element is represented by a suitable format of characters

which together convey the value of the numeric element.

List arrays may not be displayed. An attempt to display a list array will result in a

NONCE ERROR.

19980800 A 4-1

All displays begin at the left margin and element representations are displayed left to right

in element order. Scalars are displayed int.he same manner as a one-element vector.

Each rank 1 subarray display occupies at least one display line. If the number of charac -

ters required to display a complete rank 1 subarray exceeds WIDTH (see SYSTEM

COMMANDS), its display will continue on subsequent lines with an appropriate indication of

conb nuation (usually an indentation of 6 character positions). Each data element represent­

ation will be complete on one line.

Rank n-1 subarrays of rank n arrays are displayed in structure order.

Between subarrays of rank 2 and higher a blank line is displayed.

NUMERIC ELEMENT FORMATTING

The amount of significance used in formatting numeric arrays is controlled by an environ­

mental parameter known as DIGITS. The normal setting for this parameter in APL*STAR

is 8. Numeric elements are formatted into one of two possible forms, decimal or

exponential, depending on the value to be represented and on the setting of DIGITS. A

rounded :representation of the element value in the form of DIGITS digits is obtained, the

left-most being non-zero unless the value is zero. Any value whose magnitude when round­

ed as above is less than 10 and not less than O. 001 will always be expressed in decimal

form regardless of the setting of DIGITS.

Numeric Format Rules

• No more than DIGITS digits may be printed, unless they are leading zeros.

• No more than three leading zeros may be printed.

Decimal Form

[-] <integral part> [.<fraction part>]

• Magnitude scaling is indicated by insertion of a decimal point after the appropriate

digit position.

• If the magnitude of the element value is less than 1. the integral oart is reoresented

by a single zero.

• Trailing zeros in the fraction part are suppressed.

• If the fraction part is entirely zero, the decimal point is suppressed.

• Negative values are indicated with a leading negative symbol character-.

4-2 19980800 A

Examples:

)DIGITS 4 7.0004

8 7

1.2348 .0012365

1. 235 0.001237

42.927 .0012365

42.93 0. 001'.l:-37

.123 .00099997

0.123 0.001

Exponential Form

In all cases where decimal form is unsuitable,, exponential form is used.

<coefficient> E <exponent>

• The coefficient is formed from the DIGITS digits stated above for decimal form.

• A decimal point is inserted to the right of the left-most digit. Coefficients thus

always have a magnitude less than 10 and greater than or equal to one.

• Suppression of trailing zeros and the decimal point,, and use of the negative symbol

are the same as for decimal form.

• The exponent is an integer with appropriate value to indicate proper scaling of the

coefficent as formatted,, with a leading negative sign if the exponent is negative.

Examples:

)DIGITS 4 9999. 5

8 1L'4

12348

1.23~E4

429273.8

4.293E5

19980800 A 4-3

NUMERIC DATA OBJECT FORMATTING

All numeric data objects are formatted as if they were matrices. A vector is formatted as

a matrix with one rank 1 subarray. A scalar is formatted identically to a one- element

vector. An array B of rank greater than two is treated as a restructured matrix Bl formed

as follows:

Elements within each column of the above matrix are formatted uniformly as follows:

• The same element representation form (decimal or exponential) is used. Unless

one or more elements must be formatted in exponential form. either by the criteria

stated in numeric element formatting or as a consequence of the following format­

ting rules, decimal form will be used.

• Decimal points are aligned (i.e •• occur in the same character position) for all

element representations. This may entail appending one or more spaces to the left

and one or more zeros (and decimal point) to the right of the fraction part as

appropriate. If this causes a violation of the Numeric Format Rules stated above,

exponential format is used for the column.

DISPLAYING NUMERIC ·DATA OBJECTS

Recall that all data objects consist of line displays of the rank 1 subsets in subset order,

with element representations appearing left to right in element order beginning at the left

margin.

Since all elements within each column of the numeric matrix are uniformly formatted and

aligned, all such element representations will appear in vertically aligned and uniformly

formatted columns, appearing left to right in matrix column order. with two blanks between

adjacent columns.

Where displays are continued on indented lines. these should be visualized as additional

columns that conceptually belong increasingly to the right of the display. See example on

opposite page.

4-4 19980800 A

example:

19980800 A

B

63

)DIGITS 5

)WIDTH 60

X+.275396 14.3E3 692738 12345 678

x

0.275396 14300 692738 12345 678

)WIDTH 30

60

x

0.275396 14300 692738 12345

67 a (display continuation indented)

5

Y+3 2p42 1.7E9 173.52 6.8345E-10 .9 0

y

42.00 1.7000E009

173.52 6.8345E-10

0.90 O.OOOOEOOO

)DIGITS 4

y

4.200E01 1.700E009

1.735EQ2 6.835E-10

9.000E-1 O.OOOEOOO

4-5

COMPOSITE DATA OBJECT DISPLAYS

Several evaluated expressions can be displayed in sequence in one composite display by

arranging the expressions in desired display sequence and separating them with semicolons:

<expression>; <expression>; ••• ; <expression>

Each APL expression is evaluated starting with the right-most and proceeding to the left­

most.

If the display syntax o~ occurs within the expression, the expression evaluated at that

point is displayed immediately.

After the left-most expression is evaluated, a composite display is output for all those

expressions set up for display in reverse order to that in which evaluated; i.e., in the

left to right order in which the expressions appear on the line.

For consecutive displays of scalars or vectors, output is displayed contiguously on the

same output line. Displays of expressions of higher rank are displayed in a vertical

format. Continuation lines are indicated in the same manner as for a single display.

Both numeric and character expressions may be formatted in the same composite display.

This feature provides the main use of composite displays. With this feature, result dis­

plays can be annotated with character descriptions in the style of an edited report.

Examples:

QUANTITY+3

Ul1IT_PRICE+1. 50

'COST OF ';QUANTITY;' UNITS IS ';OUANTITVxUNIT_PRICP

COST OF 3 UNITS IS 4.5

5+0+13;'ZXC';B+2 1 9;0+'XYZ';2 3p 16

XYZ (fir st QUAD)

1 2 3 / oonnn~ IHT /\ n\
\UVVVJ..L\,...O. """(:.'4i....i..O...L..i...J/

6 7 8ZXC2 1 9XYZ]
1 2 3 (composite display)

4 5 6

4-6 19980800 A

PRIMITIVE FUNCTIONS S

The basis of the APL language is a large set of predefined functions. Because their
• • I (t. Jl ,_"_ ----- -- J..1---• --- +--""""'""'-~ _.,..;...,_..,,..;+..;,..,._ ~., .. ._.....,.+..;,,......_ designators are part 01 Lue ii::1.ugui::1.g1::, 1.u1::,y a..L c 1.c.1. .Lucu. _p.1. .1..L.L.L.1.1..1.v,.;;;; .i.u..i.i....__,.L.Lo.

NOTATION

The notation used in describing the syntax of APL constructs is as follows:

•

•

•

•

•

The right argument of a function is indicated by the meta-identifier "B". It is

understood that any valid APL expression may be used in place of this meta-identi­

fier.

The left argument of a function (if one exists) is indicated by the meta-identifier "A'',

as for "B" above.

If the function produces a result, that fact is indicated by the meta-construct "Z?+ ''

It is understood that no actual specification of the result need take place.

The function itself and any associated APL characters required are indicated by the

symbols in question. These symbols must be used as shown.

Function Indices (see INDEXED FUNCTIONS) are indicated by the meta-identifier

"K" enclosed in square brackets following the function to be indexed. Any valid APL

expression may be substituted for "K". If "K" is elided, the square brackets must

also be elided. "J" is used as a reverse index and follows the same rules.

• If a syntax involves a general primitive function, this function is represented by the

meta-symbol "f". Any valid APL primitive function may be substituted for "f",

subject to the restrictions specified in the case in question.

• If a second general primitive function is used in the syntax, it is represented by the

meta-symbol "g", as for "f".

• Other syntactic constructs are indicated by a description of the construct enclosed

in angular brackets (e.g., <index list>). It is understood that any syntactic con­

struct following the rules specified in the case in question may be substituted for the

meta-construct above.

Exceptions to this notation are indicated where they occur.

19980800 A
5-1

Example:

·R+A<j>[K]B

In this example, the function "q>", modified by the function index "[K]", with right argument

"B" and left argument "A", produces a result "R ". Following this form, here is a possible

usage of the above function:

3<H1J1 2 3 4

4 1 2 3

Since the result was not specified after completion, it was displayed.

SYNTAX

Primitive functions are of two types: monadic (i.e., having one argument). and dyadic

(i.e., having two arguments). The syntax for calling each type is:

monadic:

<special APL character><P.rgument expression>

dyadic:

<argument expression><special APL character><argument expression>

Most of the special APL characters used in designating monadic APL primitive functions

are also used in designating some dyadic APL primitive function. In most cases, but not

all, there is some similarity between the function procedure invoked in each case. Thte

actual function called in each instance is, however, quite distinct.

DOMAIN AND RANGE

The class of arguments and the class of results of a given function are called its domain

and range, respectively.

The domain for character arguments and the range for a character result is the APL charac­

ter set.

The largest numeric class currently defined for APL*ST AR is the set of real numbers

for which an exact or approximate representation exists on STAR computers. Complex

ap.d other non-real number classes are not currently defined for any APL primitive

functions.

5-2 19980800 A

Certain numeric arguments and results of function are confined to a subclass of the defined

real numbers, namely the integers. Ordinals (see below) are members of this class.

Other numeric arguments and results of functions are confined to a subclass of the integers

consisting of the integers 0 and 1. This subclass is known as the logical or Boolean class.

(See Boolean numbers.)

Each cf the foregcir!g class~s is clearly 8. suh<'l;:ciss of c->::H~h class preceding it: and any

function defined on a class clearly applies to any of its subclasses.

Any argument supplied to a function which is not in its domain of definition or for which the

result is not in the defined range of definition results in a DOMAIN ERROR message.

ORDINALS

Ordinal numbers a re the numbers used to state position or ranking in an ordered set. The

names of these positions are first, second, third, etc.

It is customary to assign values to represent these positions identical to those used to

represent the positive integers:

First 1

Second 2

Third 3

It is sometimes more convenient to assign the values as follows:

First 0

Second 1

Third 2

Once the value for first has been decided upon, second is assigned the next higher integer

value, and so on.

The two schemes indicated are classified according to the value assigned for first, and are

known respectively as ORIGIN 1 and ORIGIN 0.

The scheme to be followed can be designated by using the system command)ORIGIN

(see ORIGIN command).

Various APL functions are defined which use ordinal arguments. Some others produce

ordinal results.

The domain of definition of such functions for such arguments is the positiv~ integers for

ORIGIN 1 and the positive integers and zero for ORIGIN 0.

19980800 A 5-3

BOOLEAN NUMBERS

Boolean numbers are truth values and are usually defined for logical systems of two values

as true and false. It is customary by convention, to represent the Boolean 'number 1

(i.e., truth value) true by the number 1 and false by O.

This convention has been followed in the implementation of APL. The domain of definition

of functions defined for such arguments and the range of those functions yielding such re­

sults are the numbers 1 and O.

Such functions must be given arguments whose elements consist of the appropriate number

of ones and zeros.

It should be understood that _the meaning of a 1 or 0 is that of the truth value - true or false -

when it is the argument of a Boolean function, regardless of the fact that it may be the re­

sult of some prior numeric computation.

CONFORMABILITY

As stated in the introduction, a key feature of APL is the fact that the primitive functions

are defined for general arguments; i.e., the arguments are arrays, usually of more than

one element, and the functions operate in a predefined manner on the array structure as a

whole.

For most primitive functions there is some constraint placed on the generality of the argu­

ment(s). Any rule which limits the generality of shape of an acceptable argument of a

function is called a conformability rule. Conformability rules are classified as either sin­

gular or dual.

• Singular Conformability: A conformability rule for a monadic function or one which

pertains to a specific argument of a dyadic function independent of any shape for the

other argument is said to be singular.

• Dual Conformability: A conformability rule for a dyadic function which states a

relationship between the shapes of the two arguments is said to be dual. Certain

dual conformability rules also implicity convey a singular conformability require­

ment for one of the arguments.

Conformability rules are stated as part of the description of each primitive function where

one or more apply.

5-4 19980800 A

Violation of a conformability rule results in a RANK ERROR or LENGTH ERROR as approp­

riate unless overriding rules are applicable.

OVERRIDING CONFORMABILITY RULES

Conformability rules are subject to the following overriding rules, whereby a conforma­

bility rule may be relaxed or somewhat altered.

1

The following rules have precedence in the order listed.

1. A scalar is treated as a one-element vector where singular conformability

requires a vector argument. This process is known as scalar extension.

Exceptions:

• A scalar cannot be indexed.

• The left argument of DYADIC IOTA must be a vector.

• The argument of GRADE UP and GRADE DOWN must be a vector.

2. A one-element vector is treated as a scalar where singular conformability

requires a scalar argument.

3. Where a dual conformability rule exists, a scalar or one-element vector argument

is treated for function execution as a restructured array having the minimum rank

and number of elements required to meet all conformability requirements. This

is another form of scalar extension. The restructured shape will not result in an

empty data object unless that is specifically required.

Exceptions:

e The left argument of TAKE, DROP, and EXP AND

e Both arguments of TRANSPOSE

e Both arguments of MATRIX DIVIDE

This rule, when applied to INDEXED SPECIFICATION (q. v.), relates to the implied

shape of the index list taken as a whole, and not to individual elements which make

up the list. Note that this may result in an indexed expression with bad form if

multiple specification to the same indexed element is implied.

19980800 B 5-5

I

ORIGIN

In an ordered set. specific members are designated by an integer called an ordinal spec­

ifying the order position in the set. The ordinal of each member is one greater than the

ordinal of its predecessor. The ORIGIN parameter is the value designated to the ordinal

of the first member of the set. APL*ST AR allows the ORIGIN to be set to either 0 or 1.

The normal setting for ORIGIN in APU:<STAR is 1. To change the setting of ORIGIN, see

the system command)ORIGIN.

The first element of the result returned by monadic IOTA (q. v.) is ORIGIN. Thus the

setting of ORIG IN may be found from t 1 :

11
1

)O.UGIU O

l 1

Since the ORIGIN designates the value of the ordinal of the first member of any set, any

function that uses ordinals as an argument or returns ordinals as a result is said to be

origin dependent.

Currently there are six primitive functions defined in APL that return ordinals as a result.

These are:

1. monadic iota lD

2. dyadic iota A1F

3. monadic query ?B

4. dyadic query A ?B

5. grade up !B

6. grade down VB

The primitive function dyadic transpose requires the left argument to be a vector of ordinals.

dyadic transpose Al'Q.2

All forms of indexing employ ordinals as indices.

1. expression indexing A[B]

2. indexed specification A[B] ~

3. indexed primitive functions f [K] B and Af [K]B

5-6 19980800 A

SUBARRAY OPERATIONS - INDEXED FUNCTIONS

Nearly all primitive functions in APL are defined for array arguments. In most cases,

the basic operation is defined in terms of arrays of a specific structure, and extended to

arrays of other structure by performing the operation in parallel on all basic subarrays of

the array given.

All scalar functions are defined in terms .jf scalars. For higher rank arrays, the opera­

tion is carried out using corresponding scalar subarrays of the argument(s) (see SCALAR

FUNCTIONS).

Many non-scalar functions are defined in terms of vectors (catenation, reduction, compres­

sion, etc.). If the array given is of lower rank, it is extended, if possible, in a manner

appropriate to the function in questiono If the array is of higher rank, the operation is

carried out using vector subarrays of the argument(s).

In this case, however, the choice of the elements which constitute each subarray is non~

trivial. For a rank N array, there are N possible coordinate axes along which the vector

can be chosen.

In order to resolve this question, a Function Index is used. This takes the form of an index

expression, enclosed in square brackets. following the function in question:

R- f[K]B

or R~Af[K]B

The index expression must evaluate to a one-element vector ordinal, designating the

coordinate axis along which the vector subarrays are to be chosen. From this it is

apparent that for an index K, and an array of rank N, the domain of K is:

If an index is not specified for the function, it defaults to the ordinal of the last coordinate

namely:

1+tN

The functions which may be so indexed are:

19980800 A

I

\
f /

<P
dyadic ,

Compress

Expand

Reduction

Reverse, Rotate

Catenate, Laminate

5-7

REVERSE INDEXING

All indexable functions as described above have an alternate designator which specifies

reverse indexing. The corresponding alternate designators are:

I -+ r

fl -+ .ff

i'

If an index J is specified with a reverse index designator, the result obtained is equivalent

to that obtained using the regular designator with an index (chN)[J]

If no in..dex is specified in this case, J defaults to

coordinate is

i.e., the first coordinate.

5-8

1t 1N as did K so that the designated

19980800 A

RELATIVE FUZZ: USE IN RELA T.IONALS

In the comparison of any two numeric data elements the following three relational cases

are always mutually exclusive:

A>B

A=B
A<B

A and B scalars

To consider A to be equal to B only when the internal representations of the argument are

identical would be undesirable for the following reasons:

•

•

•

•

Numbers in ST AR series computers can only be represented with 14 significant
digits of accuracy (15 digits for integers with a magnitude less than 2*47).

The deviation between the represented value and the exact value is proportional to
the magnitude of the represented value.

If successive operations arc applied to such data elements, the inherent error in
such represented values will propagate to the result such that the relative deviation
from the theoretical result could be several times the initial relative deviation.

Alternatively, the data initially supplied may be significant to much less than 14
digits even though internally represented as such.

For these reasons, it is usually desirable for numeric relational operations to be treated

as follows:

•
•

Consider A equal to B if A lies anywhere in the inclusive range B ± IB x factor .

If A is smaller than the lower limit of this range, consider A to be less than B .
Otherwi r:;e consider A to be greater than B.

This is exactly how numeric relational operations are performed in APL. The factor used

is called FUZZ. The range B x FUZZ is termed the relative FUZZ. Note that the range of

the relative FUZZ is proportional to the magnitude of B. Thus, the relative FUZZ for a B

of zero is zero.

The following primitive functions also perform comparisons between data elements in the

same manner as the relationals:

with numeric arguments

However. ti and V do Rot use FUZZ.

The normal setting for FUZZ in APL*ST AR is

19980800 A 5-9

5-10

USE OF FUZZ IN RELATIONALS

A>B

(A-B+IIJxFU?.Z)>O

RELATIVE FUZZ
BxFUZZ

B+IBxFUZZ

A=B

((A-B+IBxFUZZ)~O)A(A-B-IBxFUZZ)~O
___.~----+- B

A IS IN THE .INCLUSIVE RANGE B±IBxFUZZ

RELATIVE FUZZ

------(l-~----------...._-----t- B-1 Bx PUZ Z

A<B

(A-B-IBxFUZZ)<O

I
I
I

""
A ~B+-+(A> B) v A =B

A~B+-+(A <B) VA =B

19980800 A

ABSOLUTE FUZZ

The following primitive functions use FUZZ itself (ABSOLUTE FUZZ) in determining their

results.

FLOOR

Conceptually, FLOOR is a monadic function which returns the largest integer less than or

equal to its argument.

In fact, FLOOR adds the value of FUZZ to the argument and then takes the conceptual

FLOOR of that.

The conceptual FLOOR is the behaviour of FLOOR with FUZZ set to zero. Let l represent

the conceptual FLOOR. Then:

r l B) +-+ L B + ,~ U 7. Z

CEILING

In a similar manner. ceiling operates as follows:

<rB)+-+LB-FUZZ

INTEGER DOMAIN

Many APL primitive functions require integer arguments (Boolean and ordinal domains are

subsets of the integer domain).

The test for acceptability as integer is:

((rB)-LB)=O

If the above relationship is true. B is accepted as the integer LB. If the accepted integer is

a member of the required domain no domain error report is issued.

Regardless of the setting of FUZZ all result values defined to be in integer domain will be

represented exactly if their magnitude is less than 2*47.

GENERAL NOTES

Note that for functions employing ABSOLUTE FUZZ, the fuzzing is of uniform width for all

argument values and is based solely on the setting of FUZZ.

Also note that for such functtons no acceptable setting of FUZZ has any effect on arguments

greater than or equal to 2*47.

19980800 A 5-11

5-12

USE OF ABSOLUTE FUZZ

FOR THIS DESCRIPTIUN FUZZ~0.125

FLOOR CEILING

~~-+-~----~~~~~3.125
FUZZ

---3
FUZZ

R+1

R+O

R+-1

1

0

1

t
B

R+2

R+1

0.125

---0.125
R+O

INTEGER

IHTFC.-r;;R DOMAI!1+-+((rB)-LB)=O

R+(110)[B]

FUZZ

FUZZ
3

DOMAIN ERROR

DOMAIN ERROR I

1

0

1

t
B

R+1

19980800 A

SEED

The functions ROLL and DEAL (q. v.) generate pseudo-random integers. Each element so

produced is generated from an environmental parameter known as SEED. The algorithm

used is such that a given combination of SEED and range (supplied by the argument(s)) pro­

duces a unique. predictable result element. However. the process of producing the element

aiters the value of SEED, so that the distribution of many elements produced sequentially

is pseudo-random and flat.

Likewise, successive uses of these functions produce results which. while in fact com­

pletely determined. appear random and independent. Thus, "random" test sets may be

reproduced by setting SEED to the same value prior to each test. To set this parameter.

see ")SEED".

19980800 A 5-13

SELECTION PRIMITIVE FUNCTIONS

A SELECTION FUNCTION is one in which the result consists solely of elements supplied

from the argument(s), and fill elements.

For certain selection operations, specifically TAKE and EXPAND, Fill elements are re­

quired to create an array of the required shape from the argument given. For numeric

arrays the fill element is zero, and for character arrays the fill element is the space

(blank) character. For list arrays, the fill element is a zero length list vector.

6

All selection functions are capable of operating on arrays of any data type, and produce a

result of the same data typeo

For dyadic selection functions other than CATENATE (q. v.), one argument (usually the

right) is used to supply the array from which elements are to be selected, and the other to

control the particular selection being performed. Unless otherwise specified, the domain

of these control arguments is integer.

In general, restrictions on data type mentioned above or in the definition of the individual

selection functions do not apply if the argument in question is empty.

1.9980800 A 6-1

DYADIC RHO: RESHAPE

syntax:

domain:

conformability:

result shape:

definition:

identity:

examples:

2 3 8

2 3 8
... ,, ., ... '-t '

2
3
8

1
4
7

2

6-2

R+ApB

A~O and integer; A may be type character if empty.

(p pA) = 1

(pA)~127 (APL*ST AR limitation)

Q=x/A if o=x/pB

(pR)+-+A

If B is a vector, and the number of elements in the array indicated

by dimensions A is exactly the number of elements of B, then the

result is an array of shape A such that:

(,R)+-+B

If the result requires N elements, and there are more than N

elements in B, only the first N are used.

If there are insufficient elements in B to fill the array indicated by

A, the elements are chosen cyclically from B until the array R is

filled. This process is known as Cyclic Replication.

If B is not a vector, then:

R+-+Ap,B

(,B)+-+(x/pB)pB

Note: If A is empty and B is a list array, the result

is not defined.

X+2 3 8 1 4 7 7pX
6pX
1 4 7
2 3pX

2 3 1pX

1pX

2 3 8 1 4 7
2 4pX

2 3 8 1
4 7 2 3

" - 'V l.ijJ.ll

(blank)
(tO)pX

2
2pt0

DOMAIN ERROR
$: 2p10

2

(result is empty)

(result is a scalar)

(A must be empty if
Bis empty)

19980800 A

MONADIC RHO: SHAPE .

syntax:

result shape:

definition:

note 1:

note 2:

examples:

19980800 A

R+-pB

The result is a vector with N elements, where N is the number of

dimensions in the array B.

The jth element of R is the length of the jth coordinate of H (see

ARRAYS).

Although Shape is not a selection function, it is included here

because it is integral to the discussion of selection functions.

The rank of an array is found by applying the Shape function twice.

RANKB+ppB

pS
(blank)

p 'A I

(blank)

p3 7.9 3. 2
3

p'ABX13Y'
6

p 10
0

p ' '
0

pp 7
0

PP 'A'
0

pp4 7. 2 5 3 8

1
pp 'ABCD'

1

p2 3p1 7 9 2 3 6
2 3

p2 7 9p 1 XYZ'
2 7 9

(a scalar has an empty shape)

(the shape of a vector is
the number of elements)

(an empty vector has a
shape of zero)

(the rank of a scalar is zero)

(the rank of a vector is one)

(shape of higher rank arrays
(see RESHAPE))

6-3

MONADIC COMMA: RAVEL

syntax:

result shape:

definition:

examples:
5

5

1

1

1
7

1

1
7

2
9

1

6-4

R+,B

The result is a vector of N elements. where N is the number of

elements in B.

The result consists of the elements of B. selected from it in row

major order. For further discussion. see ARRAYS.

x

,X

y
4 7

,Y
4 7

z
3 2
8 4

.z
3 2 7 8 4

w
3
8

5
4

,F
3 7 8 2 5 9 4

19980800 A

INDEXING

syntax:

domain:

R+B [< index list> J

The form of the index list for a B of rank N is

where each I Jis an expression of any rank, or may be elided.

N-1 semicolons must appear.

ordinal

conformability: (p pB) =N (number of indices)

result shape:

definition:

19980800 A

(ppB)~1 (may not be circumvented by scalar extension of B)

Let RT+(nT L(nT) nT
·- . 'I"" -1' • ',... - 2' • • • • - N

Then (pR) =RI unless RI is empty and B is a list array (see below).

The result is formed from elements selected from B as designated

by the index list. The index list also governs the shape of the result

and the position each selected element will occupy in the result.

Each expression in the index list evaluates to an array of ordinals

called the index for the corresponding coordinate. Each ordinal

specifies a position of that coordinate. If no such position exists, an

INDEX ERROR results.

Index expressions may be elided. In this case the index expression

defaults to

that is, a vector of all position ordinals of coordinate Jin position

order.

An element is selected for every combination of coordinate ordinals.

The position of each selected element in the result is determined as

follows.

The first element of the canonical ravel of the result is that element

of B having coordinate positions as indicated by the first ordinal

in every canonically raveled index. This is followed by those

6-5

identity:

6-6

elements of B in which only the last coordinate position is changed

to that of successive ordinals of the ravel of the last index. This

is followed in like manner by those elements of B having coordinate

positions corresponding to index ordinal combinations obtained by

using succeeding elements from each index in turn until all

combinations are exhausted.

The shapes of the indices do not affect element selection but

compositely dictate the shape of the result.

Note that since the index elements are ordinals, the selection

process and hence the result is ORIGIN dependent. (See ORIGIN).

If B is a list array, and RI is empty (i.e., a scalar is indexed from

B), then R is the value of the array which was imbedded in the

selected element of B. This is the inverse operation to that of the

IMBED function (q. v.).

B++(cB)[?1]

X+4 3 7 5 8
X[3]

7
X[S 2]

8 3
X[2 3p 1 3 2 4

4 7 3
5 3 8

X[6]
INDEX ERROR

$: X[6]
X[tO]

(blank)

2 5]

X+2 3p4 3 7 5 8 1
x

4 3 7
5 8 1

X[1]
RANK ERROR

4

5 8

1 8 1
7 3 7

$': X[1]
X[i;i]

X[2;1 2]

X[2 1;3 2
5
4

3 1]

19980800 A

3 8

3
8

1

8

4

5 6

5 6 7

9

ABC

AC

1

0

19980800 A

X[;2]

X[; , 2 J

)ORIGIN 0

X[1;1]

X[O;OJ

B+2 3 4p 124
B[1;2;1 2]

B[1;;][2;]
8
B[,1;;][1;2 3;1][2]

L+c 'ABC 1

L[1]

L[1][1 3]

pp(1tOpL)[?1]

PP (it Op 'A 1)[?1]

(indexing twice)

(indexing 3 times)

(create list - see IMBED)
(Scalar indexing reveals

imbedded element)

(test for L type list)

1 if list
0 if not list

6-7

INDEXED SPECIFICATION

6-8

syntax: R+X[<index list>]+B

The underlined portion of the syntax represents the indexed

specification proper, while the remainder of the syntax is required

for consistency with the definition of other primitive functions.

X is the name of a variable.

The form of the index list for an X of rank N is

where each I. is an expression of any rank, or may be elided. N-1
J

semicolons must appear. B is the result of the most recent

expression evaluation on the same line and must exist.

conformability: (ppX)=N (number of indices)

domain:

definition:

(ppX)~1 (may not be circumvented by scalar extension)

Let RI+ (p I 1) , (p I 2) , • • • , P IN

Then ((1~pB)/pB)++(1~RI)/RI

Unless RI is empty and X is a list array (see below).

B must be a of the same type as X unless RI is empty and X is a

list array (see below).

IJ ordinal

Indexed specification like ordinary specification is not a primitive

function but a directive. The operation requires and uses the

result value of the most recent expression evaluation on the same

line but leaves that result undisturbed and available as the right

argument to some subsequent function whose designator appears

further to the left in the source line. Such a result may also be

used by successively left occurring directives, all of which leave

the result undisturbed.

Indexed specification assigns the value of each element of B to an

element of the variable X as designated by the index list. Any

element of X not so designated retains its current value.

19980800 A

examples:

19980800 .A

Rules· pertaining to the index list are the same as for INDEXING.
In addition the fallowing rules apply:

1. The additional conformability rule stated above.

2. The index list has bad form and the operation is not defined if

multiple elements of B are specified to the same position in X

i. e. required is A I 1 =+I (, I J) o • = , I J

3. X must be an existing defined variable.

If X is a list array and RI is empty, (i.e., a scalar element of X

is indexed), B is imbedded in the selected element of X.

As with indexing the operation is ORIGIN dependent.

1 5 3

5 4 3

x~1 2 3
X[2]+5
x

X[1 2]+5 4
x

X[1 2]+1
x

1 1 3

1

1 2
4 5

1 9
4 8

RANK

3
6

3
6

Y+X[1 2]+1
y

X-+-2 3p 1 2
x

X[;2]+9 8
x

X[2]+9 8
ERROR
$: X[2]+9 8

X[;4]+9 8
INDEX ERROR

.$': X[; 4]+9
)ORIGIN O

1
x

1 9 3
4 8 6

X[;2]+4 5
1 x
1 9 4
4 a 5

(scalar extension of B occurs)

(result is B, not X)

3 4 5 6

8

6-9

0 00

0 0

9 10

ABC

1 2
5 6
9 10

4 5

1 5 9

6-10

M+-3 1 4pt12
M[12;1;13]+1 2
M
0 4

0 8

11 12
X+-4 Spc'ABC'
X[2;3]+3 4pt12
X[1;4]

X[2;3]
3 4
7 B

11 12
pX

X[2;3][1;]

3 1p0

(create list variable - see IMBED)
(imbed :lnto X [1 ;3])
(reveal X [1 ;4])

(reveal X [2;3 J)

19980800 A

DYADIC COMMA: CATENATE

syntax:

domain:

Three cases exist:

conformability:

result shape:

definition:

19980800 A

R+-A II [K]B

R+-A, [J]B (reverse indexed)

A and B must be of the same data type. K follows the rules for

Functio!"! Indices (see INDEXED FUNCTIONS). K is integer.

e (ppA)=ppB

e (ppA)=ltppB

In this case, B is treated as B 1 obtained from:

B1+-(((K~1ppA)\pB)+K=1ppA)pB

• (l+ppA)=ppB

This case is the mirror image of the above case. A is treated as

A 1 obtained from:

A1+-(((K~1ppB)\pA)+K=1ppB)pA

In the discussion below, the first case only is considered.

Behavior of the other two extend from the first via the above rules.

((K~1ppA)/pA)+-~(K~1ppB)/pB

(ppA);?;l

(p.pB) ;?;1

(pR)+-~(pB)+(K=1ppB)\(pA)[K]

If A and B are vectors of length M and N respectively, then the

result R contains M +N elements, the first M of which are the

elements of A, and last N are the elements of B.

If A and B are arrays of rank 2, vector subarrays are selected

along the Kth coordinate axis, and catenated as above to form vec­

tors along the Kth coordinate of the result.

Since K is an index, the result, if K is not elided, is ORIGIN

dependent.

If , is used, Reverse Indexing applies.

6-11

6-12

examples:

2 3,4 5
2 3 4 5

X+2 3p 1 2
Y+2 3p7 8
x

1 2 3
4 5 6

y
7 8 9

10 11 12
X,Y

1 2 3 7 8 9
4 5 6 10 11 12

x' [1] Y[1; J
1 2 3
4 5 6
7 8 9

X,[1JY
1 2 3
4 5 6
7 8 9

10 11 12
X;Y

1 2 3
4 5 6
7 8 9

10 11 12

X,[O]Y
INDEX ERROR

1

1 2
4 5
7 8

10 11

1 2
4 5
7 8

10 11

1 2 3
4 5 6

1 2 3
4 5 6

$: X,[O]Y
)ORIGIN 0

X,[O]Y
3
6
9

12
X;Y

3
6
9

12
X,[l]Y

7 8 9
10 11 12
X,Y

7 8 9
10 11 12

3 4 5 6
9 10 11 12

(first coordinate used)

)ORIGIN 1
0

X,12 13
1 2 3 12
4 5 6 13

X,[1]12 13
LENGTH ERROR

$: X,[1]12 13
X,[1]12 13 14

1 2 3
4 5 6

12 13 14
x' 5

1 2 3 5
4 5 6 5

Z+2 2 2p1 2 3 4 5 6 7 8
ppZ

3
Z,1 2

RANK ERROR
$: Z,1 2

19980800 A

DYADIC COMMA: LAMINA TE

syntax:

domain:

R+A i [KJE

R+A;[J]B (reverse indexed)

A and B must be of the same data type. K follows the rules for

Function Indices (see INDEXED FUNCTIONS).

K is not integer J+(¢11+ppBHrxJ-111x

conformability: (pA)+-+pB

result shape: ll++ / K> t pp B

definition:

19980800 B

1 2 3
4 5 6

1 4
2 5
3 6

(pR)++(NtpB),2,N+pB

A result is created with a dimension of 2 inserted after the Nth

dimension of B. A is placed in the first position on this new

coordinate axis, and B is placed in the second position:

R1+(NtpB),1,N+pB

R+(R1pA),[rKJR1pB

Since K is an index, the result, if K is not elided, is ORIGIN

dependent.

If , is used, Reverse Indexing applies.

1 2 3,[.5]4 5 6 (2 3p6+1C)
7 8 9
4 5 (6

1 2 3,[1.5)4 5 6
10 11 · 12

4 5 6
)ORIGIN 0

1 2 3,[2.5]4 5 6 1
INDEX ERROR 1 2 3,[-.2]4 5

$: 1 2 3,[2.5]4 5 6 1 2 3
(2 3p6+16),[.5]2 3p16 4 5 6

7 8 9 1 ? 3,[-.4]4 5
10 11 12 1 4

2 5
1 2 3 3 6
4 5 6

6-13

6

6

I

TAKE

syntax:

conform ability:

result shape:

definition:

6-14

R+A+B

(pA)+-+-p pB This may not be circumvented by

scalar extension of A unless (pp B) = 1

(pR)+IA (see ABSOLUTE VALUE)

Two cases exist:

• (IA[I])~(pB)[IJ

• (IA[I])>(pB)[I]

"ORDINARY" TAKE

("ordinary" take)

("too much" take)

If B is a vector, and A~ 0 the result is the first A elements of B.

If A< 0 , the result is the last I A elements of B.

If B is a scalar, A must be empty, and the result is B

If Bis an array of rank ~2. and A[I]~O, the result is formed by

selecting the fir st .4.[I J positions along coordinate axis I. If

A[I]<O, the last IA[I] positions are selected.

"TOO MUCH" TAKE

If A[IhO, the elements of B occupy the first A[I]positions along

coordinate I of the result. If A[I]<O, the last IA[I] positions

are used.

When the selection is complete, fill elements are placed in any

unoccupied positons of the result.

Take is not ORIGIN dependent.

(See examples on next page.)

19980800 A

examples:

3+1 2 3 4 5
1 2 3

= 3+1 2 3 4 5
3 4 5

X+3 4p \ 12
x

1 2 3 4
5 6 7 8
9 10 11 12

1 2 3
5 6 7

6 7
10 11

2 3 4
6 7 8

1 2 3

D ABC

0 1 2
0 5 6
0 9 10
0 ·O

5 0 0
0 0 0

7

0

19980800 A

0

2 3tX

2 3tX
8

12
2 -3+X

5+1 2 3
0 0
'D' I

-4t'ABC'

4 StX
3 4
7 8

11 12
0 0

2 3t5

S+0+(10)t7

ppS

(scalar extension)

6-15

DROP

syntax:

conformability:

result shape:

definition:

6-16

R+A+B

(pA)=ppB

(pR)+-+(pB)-IA

Two cases exist:

This may not be circumvented by

scalar extension of A unless (p pB) = 1

• (IA[I])~(pB)[I]

(IA[IJ)>(pB)[IJ •
In this case, A is treated as if it were AI obtained from:

A1+(xA)x(pB)L IA (see signum, minimum)

If B is a vector, and A~O, the result is all but the first A elements

of B. If A< O , the result is all but the last I A elements.

If B is a scalar, A must be empty, and the result is B

If Bis an array of rank t?2. and A[IJ~o. the result is formed by

selecting all but the first A [I] positions along coordinate axis I of B.

If A[I]<O, all but the last IA[I] positions are selected.

Drop is not ORIGIN dependent.

(See examples on next page.)

19980800 A

examples:

2U 2 3 4
3 4 5

2-H 2 3
1 2 3

X+3 4pt12
x

1 2 3
5 6 ...

I

9 10 11 -
1 2 3 4
5 6 7 8

4
....
0

12
1 o~x

SH 2 3
(blank)

s~x

LENGTH ERROR
$: SH

Y+S HX
y

(blanld
pY

0 3

4

Y+O+(to) Vi
7

ppY

19980800 A

5

5

(result is empty)

(Y is empty)

6-17

COMPRESS

syntax:

domain:

conformability:

result shape:

definition:

6-18

R+A/ [K]B

R+Af[J]B

A must be Boolean.

(ppA)=1

(ppB)~1

(pA)+--+-(pB)[K]

(pR)[I]= (pB)[I] for I~K

+IA for I=K

If B is a vector, the result is formed by selecting B[I] if A[I]=1,

or ignoring it if A[I] =O.

If B is an array of rank ~2, the result is formed by using vector

subarrays of B along the Kth coordinate axis.

Since K is an index, the result, if K is specified, is ORIGIN depend­

ent. If f is used. Reverse Indexing applies.

(See examples on next page.)

19980800 A

examples:

1 3

AC

1 2 3

(blank)

1 2 3

(blank)

1 0 1/1 2 3

1 O 1/'ABC'

1 1 1/1 2 3

0 0 0/1 2 3

1/1 2 3

0/1 2 3

X+3 4p \ 12
x

1 2 3 4
8

12
5 6 7
9 10 11

1 0 1 O/X
1 3
5 7
9 11

1 0 1/[1]X
1 2 3 4
9 10 11 12

1 0 1f X
1 2 3 4
9 10 11 12

)ORIGIN O
1

1 O 1fX
1 2 3 4
9 10 11 12

1 O 1/[1]X
LENGTH ERROR

AAA

$: 1 0 1/[1]X
1 1 1/'A'

1 0 1f[1]X
1 2 3 4
9 10 11 12

19980800 A

(result is empty)

(scalar extension of A)

(scalar extension of A)

((p X)[1] is now 4.. not 3)

(scalar extension of B)

6-19

EXPAND

syntax:

domain:

conformability:

result shape:

definition:

6-20

R+A\[K]B

R+A~[J']B

A must be Boolean.

(p pA) = 1

(ppB)~1

(pB)[K]=+/A

(pR)[I]= J(pB)[I] for I~K

l pA for I=K

The result is formed rom B by extending the length of coordinate

K to pA and inserting subarrays of fill elements into the

positions along ·coordin~te K corresponding to the positions of

zeros in A.

In. addition, if (p8)[K]=1 and A contains more than one 1 ~

replication of the existing subarray will occur in all succeeding

positions along coordinate K corresponding to the positions of ones

in A.

Since K is an index. the result, if K is specified. is ORIGIN

dependent.

If \ [J] is used, Reverse Indexing applies,

19980800 A

examples:

1 0 1\1 2
1 0 2

1 0 1 1\'ABC'
A BC

1 1\1 2
1 2

1 0 0\1 2
LENGTH ERROR

$: 1 0 0\1 2 (B should have only 1 element)

i 0 1\2
2 0 2 (scalar extension of B)

X+2 3p \ 6
x

1 2 3
4 5 6

1 0 1 1\X
1 0 2 3
4 0 5 6

1 0 1\[1]X
1 2 3
0 0 0
4 5 6

1 0 1\X
1 2 3
0 0 0
4 5 6

)ORIGIN 0
1

1 0 1\K
1 2 3
0 0 0
4 5 6

1 O 1\[1]X
LENGTH ERROR

$' : 1 0 1\[1]X ((pX)[1] is now 3, not 2)

1 0 1 1\3 1p4 9 7
4 0 4 4
9 0 9 9
7 0 7 7

1 1\[2]2 1 3p16
1 2 3
1 2 3

4 5 6
4 5 6

19980800 A 6-21

MONADIC ROTATE: REVERSAL

syntax:

conformability:

result shape:

definition:

identity:

examples:

6-22

R+<HKJB

R+e[J]B

(ppB)~1

(pR)++pB

If B is a vector, the result is formed by selecting the elements of

B in reverse order.

If B is an array of rank> 2, the result is formed by reversing

vectors selected along the Kth coordinate axis of B.

Since K is an index. the result if the index iR Rnedfied is ORIGIN

dependent. If e[J] is used. Reverse Indexing is implied.

($[K]~[K]B)++B

~1 2 3
3 2 1

X+2 3p16
$X

3 2 1
6 5 4

<H1JX
4 5 6
1 2 3

ex
4 5 6
1 2 3

)ORIGIN 0
1

ex
4 5 6
1 2 3

<1>[1]X
3 2 1
6 5 4

e[O]X
3 2 1
6 5 4

19980800 A

DYADIC ROTATE

syntax:

conformability:

result shape:

definition:

identity:

19980800 A

R+A<HK]B

R+Ae[J]B

(ppB)~1

(pR)+ .. pB

If B is a vector, and A~o. the result is formed by cyclically rota­

ting the elements of B, A positions to the left:

N+(pB)IA

R+(N+B) ,NtB

If A<O, the elements are cyclically rotated to the right:

N+- (pB) I I A

R+(NtB) ,N+B

If B is an array of rank ~2. the vectors to be rotated are selected

along the Kth coordinate axis of B.

Each element of A specifies the rotation to be applied to the cor­

responding selected vector subarray of B.

Since K is an index, the result if the index is specified is ORIGIN

dependent. If e is used, Reverse Indexing applies.

6-23

examples:

2<1>1 2 3 4 5
3 4 5 1 2

-2<1>1 2 3 4 5
4 5 1 2 3

5$1 2 3 4 5
1 2 3 4 5

-1~ 'AND I

DAN

X+3 4p112
x

1 2 3 4
5 6 7 8
9 10 11 12

0 1 2~X
1 2 3 4
6 7 8 5

11 12 9 10
l<l>X

2 3 4 1
6 7 8 5 (scalar extension of A)

10 11 12 9
1<1>[1]X

5 6 7 8
9 10 11 12
1 2 3 4

1ex
5 6 7 8
9 10 11 12
1 2 3 4

)ORIGIN 0
1

1ex
5 6 7 8
9 10 11 12
1 2 3 4

)ORIGIN 1
0

1<H 1]X
5 6 7 8
9 10 11 12 P+2 3p-2 1 0 1 2 3
1 2 3 4 p

2 1 0
X+2 3 4p124 1 2 3
x P~X

1 2 3 4 3 4 1 2
5 6 7 8 8 5 6 7
9 10 11 12 9 10 11 12

13 14 15 16 14 15 16 13
17 18 19 20 19 20 17 18
21 22 23 24 24 21 22 23

6-24 19980800 A

MONADIC TRANSPOSE, DYADIC TRANSPOSE

dyadic syntax: R+A~B

monadic syntax:

(in this case, the left argument defaults to A+¢1ppB)

domain: Ae1ppB

conformability: (oA)=ppB

(this may not be overridden by scalar extension of A or B.)

Case 1: A has no repeated elements.

result shape:

19980800 A

(pR)~(pB)[UJ

The transpose operation simply reorders the coordinate axis of

the argument as indicated by the left argument.

A useful rule-of-thumb for doing transpose operations is as follows:

Write down the elements of pB; below it write the elements of A;

on a third line, place the elernents of p B in the position indicated

by A. This line is then pR.

Example: For the operation

3 1 2~4 5 6p1120

we write:

pB: 4 5 6

3Y1 /2 rr:: A:

pR:

The shape of the result is 5 6 4.

The effect of reordering the coordinates may be seen as follows:

1 2 3
4 5 6

B+2 3p16
B

R+~B

The elided left argument defaults to 2 1, so the shape of the result

is 3 2.

6-25

The first coordinate has become the last, and the last has become

the first. Thus, in the display the "rows" appear to have become

"columns", and vice-versa.

1 4
2 5
3 6

R

Case 2: A has repeated elements,

domain:

result shape:

6-26

AeAiA (see DYADIC IOTA)

(pR)[I]=l/(A=I)/pB for all IeippR

(p pR) =O 1[1] +r /A (see REDUCTION)

In the previous case, the transpose reordered the argument coor­

dinate axes. Now, they are not only reordered but some of them

are combined into a smaller set of new coordinate axes (as indicated

by the rule-of-thumb given for Case 1).

The Ith coordinate axis of the result is formed from the coordinate

axis(A=I)/ipAof the argument array B. The resulting axis is the

major diagonal of the axis from which it was formed. Only the

elements along this axis are chosen for the result. The number of

element positions along this axis is necessarily equal to the length

of the shortest of the axes from which it was formed, i. e. ,

L/(pB)[(A=I)/ipA]

Since the left argument consists of coordinate axis indices, the re­

sult, if A is specified, is ORIGIN dependent.

For example, consider the operation

R+2 1 1~4 5 6pi120

Using the rule-of-thumb:

choose
smallest

The shape of the result is 5 4.

19980800 A

identities:

examples:

19980800 A

The effect of combining coordinates may be seen as follows.

Consider:

B+3 3pt9
R+1 1~B

The result is selected from the diagonal:

1 5 9

1 2 3
4 5 6
7 8 9

R

B

For case 1 -

{ { M)~A~B)++B

If B is of rank ~ 1:

(A~B)++B where A in this case must be l.PPB

~1 2 3
1 2 3 (A defaults to 1)

X+2 2p'ABCD'
x

AB
CD

~x
AC
BD

X+2 3 4p 124
x

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

1 3 2~X

1 5 9
2 6 10
3 7 11
4 a 1.2

13 17 21
14 18 22
15 19 23
16 20 24

6-27

6-28

~x
1 13
5 17
9 21

2 14
6 18

10 22

3 15
7 19

11 23

4 16
8 20

12 24

1 2 2~X
1 6 11

13 18 23
2 3 3~X

DOMAIN ERROR
$': 2 3 3~X

)ORIGIN O
1

1 2 2~X
DOMAIN ERROR

$: 1 2 2~X
0 1 1~X

1 6 11
13 18 23

~x
1 5 9
2 6 10
3 7 11
4 8 12

13 17 21
14 18 22
15 19 23
16 20 24

(\ 0)~7
7

(A defaults to 3 2 1)

(.Ai.A is 1 2 3)

(A iA is 0 1 1)

19980800 A

SCALAR PRIMITIVE FUNCTIONS

GENERAL

The class of functions whose primary definition is in terms of operation on one or two

scalars is called the SC ALAR FUNCTIONS.

SCALAR MONADIC functions are defined in terms of a single scalar,, while SCALAR

DYADIC functions are defined in terms of a pair of scalars.

For all scalar functions,, the following rules hold:

monadic syntax:

dyadic syntax:

domain:

range:

conformability:

result shape:

MONADIC DEFINITION

R+fB

R+AfB

A and B must be numeric (unless otherwise specified).

R is numeric (unless otherwise specified).

If R is outside the range of real numbers representable on the

machine, a DOMAIN ERROR results. For APL*ST AR, this

range is -9. 54E8644 to 9. 54E8644 (approximately).

(pA)+-+(pB)

(pR)+-+pB

(p R) +-+ p B if (p p B) ~ p p A
p A if (p p B) < p p A }

for scalar dyadics

for scalar monadics.

for scalar dyadics

7

The result is formed by applying the function to each element of B, and placing the result­

ing element in the corresponding position in R.

DYADIC DEFINITION

The result is formed by applying the function to each element of B and the element in the

corresponding position in A,, and placing the resulting element in the corresponding

position in R.

19980800 A 7-1

SCALAR MONADIC FUNCTIONS

MONADIC PLUS: IDENTITY

syntax:

definition:

examples:

R++B

The result is the value of the argument.

+23

23

+ - .1. 5 2. 7 1. 7 E-3

1.5 2.7 0.0017

MONADIC MINUS: NEGATION

syntax: R+-B

definition: The result is the negated value of the argument.

examples: -23

23

MONADIC MULTIPLY: SIGNUM

syntax: R+xB

definition: The result is -1. 0 or 1 depending on whether the argument is

negative, zero or positive.

examples: x23

1

-x 1. 5 2. 7 1E-3 0

1 1 1 8

7-2 19980800 A

MONADIC DIVIDE: RECIPROCAL

syntax: R+-tB

domain: B~O

definition: The result is the reciprocal of the argument.

examples: 7-5

0.2

-0.1 0.002

7-0

DOMAIN ERROR

$: +O

MONADIC POWER: EXPONENTIAL

syntax:

definition:

examples:

19980800 A

The result is the exponential of (e to the power of) thP argument.

e is approximated by 2. 718281828459045.

2.718281828

*1. 5 0

4.48168907 1

*1E8

DOMAIN ERROR

.$': *1E8 (result outside machine range)

7-3

MONADIC LOGARITHM: NATURAL LOG

syntax:

domain:

examples:

R+•B

B>O

The natural logarithm function is the inverse of the exponential

function.

1

0

DOMAIN ERROR

$: .-1

MONADIC MINIMUM: FLOOR

syntax:

definition:

examples:

7-4

R+LB

The result is the greatest integer less than or equal to the argument.

The result of this function is dependent on the setting of FUZZ.

L 1. s

1

23 5 5 555

0 1 (second element within FUZZ of 1)

19980800 A

MONADIC MAXIMUM: CEILING

syntax:

definition:

examples:

R+fB

The result is the smallest integer greater than or equal to the

argument. The result of this function is dependent on the setting

of FUZZ.

r i. s

2

5 3 5 4 4 6 6

MONADIC MODULUS: ABSOLUTE VALUE

syntax: R+!B

defintion: The result is the absolute value of the argument.

examples:

1. 5

3 0 15

MONADIC CIRCLE: Pl TIMES

syntax:

definition:

examples:

19980800 A

R+OB

The result is 'll'times the value of the argument. "Tl"' is represented

as approximately 3. 14159265358979.

01

3.141592654

075.3f180

1.314232927 (number of radians in 75. 3 degrees)

7-5

FACTORIAL

syntax:

domain:

definition:

MONADIC QUERY: ROLL

syntax:

domain:

definition:

examples:

7-6

R+!B

If B < 0,, B must not be integer.

The result is obtained from applying the Gamma function to the

elements of B as follows:

R+GAMMA B+1
Note that if B is a non-negative integer,, the result is that of the

classical factorial function.

! 3

6

!O 1 2 3 4

1 1 2 6 24

1.772453851 15.4314116 3628800

R+?B

B must be a positive integer.

The result is an integer pseudo-randomly selected from integers

iB. The roll function result is dependent on the settings of SEED

and ORIGIN.

?5

2

?5 5 5 5 5 5 5

3 1 4 2 1 5 4

?1

1 (the setting of ORIGIN)

)ORIGIN O

1

?1

0

19980800 A

MONADIC TILDE: NOT

syntax:

domain:

range:

definition:

examples:

19980800 A

B must be Boolean.

R is Boolean.

The result is a 1 if the argument is zero. otherwise the result is

zero.

-o

1

-1 1 0 1 0

0 0 1 0 1

-o. 5

DOMAIN ERROR

$: -o. 5 (argument not Boolean)

7-7

SCALAR DYADIC FUNCTIONS

DYADIC PLUS: ADDITION

syntax:

definition:

examples:

R+A+B

The result is A plus B.

2+3

5

0 7

2+6 7 4.5

4 5 2.5

DYADIC MINUS: SUBTRACTION

7-8

syntax:

definition:

examples:

R+A-B

The result is A minus B.

2-3

1

1 15 12-10

9 5 2

(scalar extension of A)

(scalar extension of B)

19980800 A

DYADIC MULTIPLY

syntax:

definition:

examples:

DYADIC DIVIDE

syntax:

domain:

definition:

examples:

19980800 A

R+AxB

The result is A times B.

6

1 10 1oox1 2 3

1 20 300

, 1E6000x1E6000

DOMAIN ERROR

R+A+B

B;ieo

$: 1E6000x1E6000

The result is A divided by B.

2+3

0.666666667

2 3 4+4 3 2

o.s 1 2

O+O

DOMAIN ERROR

$: 07-0

(result outside machine range)

(B must be non-zero)

7-9

DYADIC MODULUS: RESIDUE

syntax:

definition:

examples:

R+A IB

R+B-AxLB+A+A=O

Note that this function does not use FUZZ. The FLOOR and

EQUALS operations in the definition are performed with

FUZZ=O. (See ABSOLUTE FUZZ).

10115.3

5. 3

1112.34 10 1. 5

0.34 0 o.s

3J-4 - 3 2 1 0 1 2 3 4

2 0 1 2 0 1 2 0 1

OJ-4 - 3 -2 1 0 1 2 3 4

4 3 2 1 0 1 2 3 4

1 0 2 1 0 2 1 0 2

14.3 2.7 5.4 3.21-6.1 47 3.8 11.6

6.1 1.6 1.6 2

7-10 19980800 A

DYADIC POWER

synta.~:

domain:

definition:

examples:

19980800 B

R+A*B

In APL'!'STAR, if A is negative, B must be integer.

If A=O then B>O

If A <O then B is integer.

The result is A raised to the power B. Note that if A is negative

and B is not an integer, the result is not real, and a DOMAIN

ERROR results.

a

10* 1 0 1 2

0.1 1 10 100

0.1 1.4142136 2 3

0.001 1 8 27H3

0.1 1 2 ~3

DOMAIN ERROR

DOMAIN ERROR

$: O*O

(square root of A)

(cube root of A)

(if A is negative, B must be integer)

7-11

I

DYADIC LOGARITHM

syntax:

domain:

definition:

identity:

examples:

7-12

R+A•B

A>O,Aot1

B>O

The result is the logarithm of B in base A.

B+A*A$B

2•3

1. 584962501

10•0.1 1 10 1E2

1 0 1 2

10•*1

0.4342944819 (common log of e)

O•O

DOMAIN ERROR

$: 080

HU

DOMAIN ERROR

$: Ht1

(A and B must be positive)

(A must not be 1)

19980800 A

DYADIC MINIMUM

syntax:

definition:

examples:

DYADIC MAXIMUM

syntax:

definition:

examples:

19980800 A

R+ALB

The result is the smaller of A and B.

2L3

2

1 3 SL-2 7 4

2 3 ~

OL -1 o '1 2

1 0 0 0

The result is the larger of A and B.

3

1 7 5

or-3.5 o 1 s.2

0 0 1 5.2

7-13

DYADIC CIRCLE

syntax:

domain:

definition:

A

0

1

2

3

4

5

6

7

Note:

examples:

7-14

R+AoB

A must be integer. AS7 ,A~ -7

The result is the trigonometric function of B indicated by A. The

"n0rmal" trigonometric functions are assigned to positive values

of A, while their "inverse" is designated by the corresponding

negative value of A.

The domain of the "inverse" functions is usually the range of the

"normal" function. The possible values of A and their correspond­

ing functions are listed below, along with their range and domain.

Function Domain Range A Function Domain Range

(1-B*2)*0. 5 -1 thru 1 0 thru 1

sin B -1 thru 1 -1 arc sin B -1 thru 1
-1'1 1"f

2 thru a

cos B .. 1 thru 1 -2 arc cos B -1 thru 1 0 thru ff
-11' ,,.

tan B (oO.S)='(Ol)IB -3 arc tan B 2 thru Z:

(l+B*2)*0. 5 1 thruoo -4 (-l+B*2)*0. sf7 ::~ :l 0 thru oo

sinh B -5 arc sinh B

cash B 1 thru • -6 arc cash B 1 thruo0 0 thru ..

tanh B -1 thru 1 -7 arc tanh B -1 thru 1

The domain of sin, cos and tan and the range of

arcsin arcos and arctan are expressed in radian measure.

203

-0.9899924966 (cosine of 3 radians)

1 2 300 0.25 0.5 0.75

0.7071067812 0 1 (sin~ , cos ~ , tan3~)

502.3

1.570278543 (inverse hyperbolic sine of B)

3000.5

DOMAIN ERROR

$: 3000. 5 · (tan ¥ is infinite)

19980800 A

EQUAL, NOT EQUAL

syntax:

domain:

range:

definition:

examples:

0

1 1 0

0

0 1 1

1

1

0 0 1

19980800 A

R+A=B (equal)

R+A~B (not equal)

No restriction.

R is Boolean.

Equal the result is one if A is equal to B, otherwise the result

is zero. If A and B are numeric, the result is FUZZ dependent.

Not equal R+""A =B

2=3

1

'A+1' = 'A+4' 'A+1'~'A++'

0 0 1

2= 'A' 2.e 'A'

1

3.5 0 1=1 0 1

1 0 0-

1=1+1E-15

(A is within relative FUZZ of B)

-0~1E 15

(relative FUZZ of zero is zero)

0 1 0 1~0 1 1 0

1 (exclusive OR of A and B)

7-15

OTHER RELATIONALS

syntax:

range:

definition:

examples:

7-16

R+A<B

R+A~B

R+A?:.B

R+A>B

R is Boolean.

(less than)

(less than or equal)

(greater than or equal)

(greater than)

Less than - the result is 1 if A is less than B,, otherwise it is O.

Greater than - the result is 1 if A is greater than B,, otherwise it

is O.

Greater than or equal - R+-A <B

Less than or equal - R+-A>B

The results of these functions are FUZZ dependent.

2<3 2

1 0

2>3 2

0 0

2<'A'

DOMAIN ERROR

$: 2< 'A' (A and B must be numeric)

2~3 2

0 1

2~3 2

1 1

19980800 A

BOOLEAN FUNCTIONS

syntax:

<lurna.iu:

range:

definition:

examples:

19980800 A

R+AAB

R+AVB

R+A'lfB

R+A¥B

A and n must be Boolean.

R is Boolean.

(and)

(or)

(Nand)

(Nor)

And - the result is 1 if both A and B are 1,, otherwise it is O.

Or - the result is 1 if either A or B is 1,, otherwise it is o.

Nand -R+-AAB

Nor - R+-AvB

1A0 1

0 1

lVO 1

1 1

1'1f0 1

1 0

1¥0 1

0 0

7-17

COMBINATION

syntax:

domain:

definition:

examples:

7-18

R+A!B

If B is a negative integer, then A must be an integer.

The result is obtained by applying the factorial function to the

arguments as follows:

R+(!B)t(!A)x!B-A

For . A2:.0 and B~A , the result may be expressed in terms of the

Beta function:

R+(B-A)x(A+1) BETA B-A

If A and B are integers, the result is the number of combinations

which can be made from B things taken A at a time. In this case,

if A> B , the result can be seen to be zero.

.. , '~
..:, • v

10
1!5

5
0? 5
5' c • ..J

1
7 ! 5

0
7!0

0

2.5!7.3
32.617667

-2.5!5
0.0036180411

2!5
0

4.5!6.5
0.00017356873

6
4.4!-6.5

,;:Q "l:"'COO
v-•..,.rvi....;U"-.i

7.5!-5
DOMAIN ERROR

$: 7.5!-5

(A rn ust be integer

if B negative integer)

0

15

1

2.5
-3.S!-5

DOUAIIJ ERROR
$: -3.5!-5

(A must be integer

if B negative integer)

A+4 7.5 4 4.5 O
B+5 5 2.5 2.5 5
A!B

5 -4.1785964E-5 0 4.375 1

19980800 B

COMPOSITE FUNCTIONS

In addition to element-by-element application, three additional general procedures are

defined for applying scalar dyadic functions to general array arguments.

They are: OUTER PRODUCT, REDUCTION and INNER PRODUCT.

A syntactic form exists which designates the desired procedure and the specific scalar

dyadic function(s) to be employed in the procedure.

Each procedure can be considered a composite function in which the domain and (with

some exceptions as noted) the range is that implied by the scalar dyadic functions

designated.

19980800 A 8-1

8

OUTER PRODUCT

syntax:

con formability:

result shape:

definition:

examples:

8-2

R+A 0 • f B

where f is a scalar dyadic primitive function.

((ppAJ+ppB)~127 (APL*STAR restriction)

(pR)+(pA),pB

If A is a scalar, the result is:

R+A f B

For A of rank ~1, the result is formed by performing the above op­

eration for each element (i. e. , scalar subarray) in A, and placing

the resulting array in the subarray position of R corresponding to the

position of the element in A.

2o.+1 2 3

3 4 5

1 20.+1 2 3

2 3 4

3 4 5

2 100.* 1 0 1 2 3

C.5 1 2 4 8

0.1 1 10 100 1000

X+2 3 p100x16

x

100 200 300

400 500 600

Y+2 3p 'l 6

y

1 2 3

4 5 6

19980800 A

Z+Xo. +Y
pZ

2 3 2 3
z

101 102 103
104 105 10 6

201 202 203
204 205 206

301 302 303
304 305 306

401 402 403
404 405 406

501 502 503
504 505 506

601 602 603
604 605 606

19980800 A 8-3

REDUCTION

syntax:

conformability:

result shape:

definition:

8-4

R+~/[K]B

R+f f[J]B

where f is a scalar dyadic primitive function.

The index [K] fol lows the rules for Indexed Functions.

(ppB)~1

(pR)+~(-(tppB)EK)/pB

If B is a vector, the result R is a scalar formed from the

distributed operation of the function f on the elements of B as

follows:

R+B [1] f B [2] f ••• f B [pB]

If B is a one element vector the result is:

R+B[1] (a scalar)

If B is an empty vector and the function f has an identity element I,

then

R+I (a scalar)

If B is an empty vector and the function f has no identity element,

then a DOMAIN ERROR results.

For B of rank greater than l, the operation is performed on vector

s'ub arrays of B as indicated by the index K. Since K is an index,

the result, if an index is specified, is ORIGIN dependent. If f.f is

used, reverse indexing applies.

19980800 A

IDENTITY ELEMENTS

19980800 A

For non-commutative functions, an identity element, if it exists,

may be only a left or right identity. The scalar functions and their

respective identity elements are given in the table below:

Comments

right identity

right identity

smallest representable number

largest representable number

left identity

right identity

no identity

no identity

left identity

Boolean only

Boolean only

Boolean right identity

Boolean left identity

Boolean right identity

Boolean left identity

no identity

no identity

8-5

examples:

8-6

8

0

1 3 4
6 2 5

8 13

7 5 9

1

8 13

7 5 9

0 0 0

2 3

6

+/1 4 3

-/1 4 3

X+2 3p1 3 4 6 2 5
x

+IX

+/[1]X

)ORIGIN 0

+/[1]X

+fX

+/3 Op1

pX

x/pX

1/X
SYNTAX ERROR

$: 1/ x

LI 'A I

DOMAIN ERROR
$: L/ 'A I

9f[2]4 7 0 3p9
DOMAIN ERROR

s: •rC2J4 1 o ap9

(addition identity elements)

(• has no identity element)

19980800 A

+ .·n
I•

19980800 A

'- I
', I

'....._ I
'..J. , ,

I '-...
I ..._

I

+/[l]B

B+-2 3 4r124

8-7

INNER PRODUCT

syntax:

conformability:

result shape:

definition:

8-8

R+A f • g B

where f and g are scalar dyadic primitive functions.

(ppA)~1

(ppB)~1

((ppA)+ppB)~129

(-1tpA) =1 tpB

(APL*ST AR restriction)

,via extension if or

If A and B are vectors, the result is obtained from:

R+f IA g B

1=1tpB

If either A or B is of rank~ 2, the operation is carried out using

vector subarrays of the argument in question. Subarrays from A

are selected along the last coordinate axis, and subarrays of B are

selected along the first coordinate axis.

Furthermore, for each vector subarray in A, the operation is car­

ried out for all subarrays in B, in a fashion similar to Outer Prod­

uct (q. V.).

If the length of the last coordinate of A or the first coordinate of B

is one, scalar extension along that coordinate shall occur such as

to make the two coordinate lengths the same.

Recall REDUCTION: Note that if A and/or B are empty

but and Q;tx/HpB the result will

be non empty, consisting of function f identity elements as

required for the resulting shape. If function f has no identity

element a DOMAIN ERROR results.

19980800 A

examples:

19980800 A

12.3

1 2 3

4 5 6

10.0

1. 0

0.1

12.3

45.6

9

4

5

6

1 2 3+.x1Q 1 0.1

X+2 3p16

Y+3 2p10 4 1 5 0.1 G

x

y

X+.xY

32

77

PX+3 7 1

XQ+4 2 7

Pxr. +X(

X+o 0.25

N+10

(X*M)-.f !M+2x-1+1N

0.7071067812

(1 1 1p1)+.x2 3p16

5 7 9

(extended conformability)

(result shape 1 1 3)

8-9

8-10

(3 1pt3)+.x3 1p10 15 20

45

90

135

60 90

0 0 0

0 0 0

1 1 1

1 1 1

(1 3pt3)+.x1 3p10

120

(2 OptO)+.xo 3pt0

(2 Opt0)=.>1 3p5

(4 1p10)•.*0 2 3p7

DOMAIN ERROR

15

$: (4 1p10)•.*0 2 3p7

20

I

(• has no identity element)

19980800 B

MISCELLANEOUS PRIMITIVE FUNCTIONS

MONADIC IOTA: INTERVAL

syntax:

domain:

conformability:

result shape:

definition:

examples:

19980800 A

B must be integer,

B?:O

{ppB)=O

(pR)+-+,B

The result is a vector of the first B ordinals.

1 5
1 2 3 4 5

11
1

p10
0

)ORIGIN 0
1

15
0 1 2 3 4

11
0

10

0
11 2

LENGTH ERROR
$: 11 2

(the setting of ORIGIN)

(the result is empty)

(B must be a scalar)

9

9-1

DYADIC IOTA: INDEX OF

syntax:

domain:

range:

conformability:

result shape:

definition:

9-2

A and B may be independently numeric or character.

Ordinal.

(p pA)+-+1

(Note: this requirement cannot be overridden by scalar extension.)

(pR)+-+pB

The result has the shape of B. For each element of B, the corres­

ponding result is the lowest index of A which selects a match for

that clement in A, if one exists. If no matching A element exists,

the result element is assigned the value ~ p A)+ 11 (i. e. , one greater

than the highest valid index for A).

• Since the elements of the result are indices, the result is ORIGIN

dependent (see ORIGIN).

• If no element of A matches any element of B, for A not empty:

R+-+(pB)p(0A)+11

• IfAisempty, f:+(pB)r:;11

• For A and B both numeric, element comparisons are subject to

the setting of FUZZ (see FUZZ).

• If A/, BEA then B+-+A [i-: J

(See examples on next page.)

19980800 A

examples:) CRIGill

~

2 1 5 ?t5

3

'ABCD't'B'

2

2 1 5 7t6

5

'ABCD'1 'F'

5

4 7 912 7 4 3

4 2 1 4

'VIXYZ' 11 2 3

5 5 5

7 1 3

RANK ERROR
-

. $: 713 (left argument must be a vector)

(,7)13

2

(10)13 5 1

1 1 1

1 3 5 7 313 3pt9

1 6 2

6 3 G

p2 1 9110

0 (recall (p J?) +->-p B)

19980800 A 9-3

DYADIC EPSILON: MEMBERSHIP

9-4

syntax: R+A EB

domain: A and B may be independently numeric or char~cter.-

range: Boolean.

conformability: None.

result shape: (pR)+-+-pA

definition:

note:

examples:

1

0

1 0 0

0 0 1

0 0

2€1. 7

£El. 7

A+2

B+6

AEB

0 1

BEA

1

The result has the shape of A. For each element of A. the corre­

sponding result element is a one if that element of A exists in B;

otherwise it is a zero.

R+-+-V I t1 0 • = , B

For A and B both numeric. element comparisons are subject to the

setting of FUZZ (see FUZZ).

1 2 3E 'AXVR2 1

0 0 0

p(l.0)€1 :? 7

0

9 7 3 4 'XAY(]3B7 1 E 1 AEC3'

1 2 4 0 1 0 0 1 1 0

'ABC3 'e: 'YAY0.3B7 1

1 1 0 1

(2 3p16)€2 6 9

0 1 0

2 3€1. 0 0 0 1

19980800 A

DYADIC QUERY: DEAL

syntax:

domain:

range:

conformability:

result shape:

definition:

note:

examples:

19980800 A

R+A?B

A and B both integer: A~O B~A

Ordinal.

(O=ppA)AO=ppB

(pR)+-+,A

The result R is a vector of A elements of 1. B selected pseudo­

randomly without replacement, thus preventing duplicates.

• Since the elements of the result are selected from 1.B, the

result is ORIGIN dependent (see ORIGIN).

• This function uses and modifies the SEED parameter (see SEED).

• If A=O, or both A=O and B=O, an empty vector results.

• Repeated calls with the same arguments produce different

results (see examples).

4?7

1 3 7 2

4?7

6 7 5 4

4?7

7 4 6 3

9-;J

GRADE UP

syntax:

domain:

range:

conformability:

result shape:

definition:

note:

examples:

9-6

B must be numeric.

Ordinal.

(ppB)=1

(pfl)+~pB

The result R is a vector of the indices of B suitably arranged such

that B [Ji J is the ascending sorted arrangement of the elements of B

in which the relative order of equal elements of B is undisturbed.

• All element comparisons are exact; this function does not use

FUZZ.

• Since the elements of the result are indices. the result is

ORIGIN dependent (see ORIGIN).

3 4 1 5 2 G

C+R+iB+2 7.S 2 918.3 7.5

1 3 ..: 5 4

B[P.]

., • 5 7 • 5 918.3

19980800 A

GRADE DOWN

syntax:

domain:

range:

conformability:

result shape:

definition:

note:

examples:

19980800 A

B must be numeric

Ordinal.

(ppB)=l

(pR)+-+pB

The result R is a vector of the indices of B suitably arranged such

that B[R] is the descending sorted arrangement of the elements of

B in which the relative order of equal elements of B is undisturbed.

• All element comparisons are exact; this function does not use

FUZZ.

• Since the elements of the result are indices, the result is

ORIGIN dependent (see ORIGIN).

'f 4 7 ') .• v 3. 7 1 5.:: 7 8. 1i.'7

6 2 ? 1 :.+ 3

O+R+TB+2 7. s 2 918.3 7. 5

4 2 5 1 3

B[/2]

918.3 7. 5 7. 5 2 ~~

9-7

REPRESENTATION

syntax:

domain:

result shape:

definition:

examples:

1

0

1

2

9-8

R~ATB

A and B must both be numeric.

(pR)+-+(pA) ,pB

If A has zero or one element the result is A 0 • I B •

If A is a multi-element vector and B is a scalar, the result is a

vector, the elements of which form the representation of B in a

scheme with radices specified by A.

if: S+ -1+A

then: (ATE)++(CHA)T(O:tS)x(B-SIB)+S+S=O) ,SIB

Note that if the above A has zero-value elements, all elements of

the result whose ordinal is less than the highest zero-value element

ordinal of A are zero.

With general arguments, the result is obtained by using each

vector subarray of A along the first coordinate as a radix scheme

in forming the representation of each element of B as a corres­

ponding vector along thtl first coordinate of the result. The cor­

respondence is as per OUTER PRODUCT.

10

2 3

2 2

1 1

2 2

0 1

10

.:S

10 10T123

2T3

-2T 3

10T123

(decimal representation of
1 2 3)

(binary representation of 3)

(twq_'s complement representation
of 3)

19980800 A

12

1

9

12

3

3

0

0

1

1

6
4
7
3

8
0

2
0

3
0

19980800 A

0

3

10

9 3 7

0

0

5

0

0.34

0

2 3.25

0

0. :!. 1

2 0

7 1

2 0

6 1

10T123

10 10 10T

- 10T -123

12T113

1Ti2.34

3 12T13~.25

0. 3 2T3

-2T - 13

- 2T - 13

-123

(auotient and remainder of
·113~12)

. (integral <;tnd fractional part of
12. 34)

(yrds., feet, inches in 135. 25
inches)

(results with fractional
radices)

p0+(,0)T1 2 3

2 3

3

10 10 10 10T6473 2196 857 42
2 0 0
1 8 0
9 5 4
6 7 2

(3 2p10 1)T823 457 91 147
4 0 1
0 0 0

5 9 4
0 0 0

7 1 7
0 0 0

9-9

BASE VALUE

syntax:

domain:

conformability:

result shape:

definition~

9-10

F.+A .iB

A and B must both be numeric

(ppB)~1

(-1tpA) =1tpB /via extension if 1=-1tp.~ or 1=1tpB

If A and B are both multi-element vecto:rs, the result is a scalar

whose value is that represented by B in a radix scheme A.

With general arguments, each vector subarray of A along the last

coq;rdinate is used as a radix scheme to evaluate each number

whose representation is a vector along the first coordinate of B,

the value being placed in th_e corresponding position of the result.

The correspondence is as per INNER PRO DU CT.

Recalling INNER PRODUCT, note that if A and/or B are empty

and o~x/HpB the result will be non

empty,, consisting of addition identity elements (zeros) as required

for the resulting shape.

If the length of the last coordinate of A or the first coordinate of

B is one, scalar extension along that coordinate shall occur such

as to make the two coordinate lengths the same.

If the length of both of the above coordinates is one, the result can

be expressed as R+((pA) p 1) +. xB

19980800 A

10 10 o4 f\ I -4 2 3 .I. v .l...L

123

2 2 2.L1 0 i
5

2.L1 0 1
5

2 2 2.L1
7

2 2J.1 0 1
LENGTH ERROR

$: 2 2.t1 0 1
0 3 12.l3 2 3,25

135.25
(3 1p2)J.17

17 17 17
2 2 2.l1 3p17

119 119 119
(1 3p2)J.3 1p17

119
p{1 3p2).L3 1p17

1 1
A+(O 3p2).L3 1p17
pA

0 1
A+(1 3p2)J.3 Op 17
pA

1 0
A+(O 3p2)J.3 Op17
pA

0 0
A+(3 Op2).LO 2p17
pA

3 2
A

0 0
0 0
0 0

(1 2p2)J.1 3p17
51 51 51

(2 1p2).L3 2pi7
119 119
119 119

19980800 A

(scalar extension of A)

(scalar extension of H)

(argument length8 diff­
erent)

(inches in 3 vards. 2 feet.
. 3 1I4 inche~) - ,

(1tpB extended to 2)

(-:l:t oA extended to 3)

9-11

EVALUATE

syntax:

domain:

conformability:

definition:

note:

application:

9-12

H+- !.B

Character.

(pB}::; 65535 (APL*STAR restrictio_n)'

The character vector B is assumed to represent an evaluable APL

expression.

EVALUATE interpretively evaluates this APL expression and, upon

successful completion, returns the value of that expression (if any)

as its result.

Error detection and reporting are similar to that which would result

if the expression represented by B ~ere input for immediate exe­

cution.

Using EVALUATE, APL programs can be constructed which modify

APL source expressions prior to their evaluation.

(See examples on next page.)

19980800 A

examples: !. 1 A+5 1

A

s

2x!.'A+S'

10

.4

5

SPA+' A+S'

B+2x.1SPA

B

10

I7Al1E+' B'

1+t.NM1E, '+3'

4

B

3

.1 1 2f0'

DOMAIN ERROR

$: 2+0

$: !. 1 2+0 1

.t '+5'

SYNTAX ERROR

$: .t t +5 '

.t')DIGITS 5'

VALUE ERROR

)$: DIGITS 5

$: t.')DIGITS

19980800 A

5'

(errbr detection as in
immediate execution)

(not evaluable)

9-13

9-14

1

0

1

0

numeric test

NUM+'O=O\Op'

B+l.S

t.N UN, 'B'

C+'ABC'

t.llUI!, 'C'

t.ll UN, ' 1. 0 '

t.N U/1, ' ' ' ' ' '

nested execution

X+'(OpA+1+A),(OpB+(B-R)fR),'

.!'.-(-' (R+ (ll+ -1 +A) I B) ' '

A6.REPAB+'~Y.(((-1+~,A)xpX,Y)pX,Y),''10''

A+10G 100

B+-357.91

t.A AREPAB

3 57.91

In the above example, the character vector AAREP6.B contains an

evaluate function designator as its first character. Evaluating

A6.REPAB involves first evaluating 1+ AnREPuB and then evaluating

the result of that. t.1 +AAREPflB results in a character vector which

is a tailored APL expression dependent on the shape of A.

i.2+A6REP6.B

(R+(N+-1+A)IB),(OpA+1+A),(OpB+(B-R)fN),R~(N+-1+A)IB),10

This expression is then evaluated, yielding the final result.

19980800 A

IMBED

syntax:

domain:

conf ormability:

range:

result shape:

definition:

examples:

19980800 B

No restriction

None

List

(pR)+-+-,1

The result is a one-element vector list whose element is the

imbedded array B

L+c'ABC'
L

NONCE ERROR (list cannot be displayed)
pL

1
T. r -1 1
UL .Lo. .J

ABC (imbedded list element revealed)

0

1

ABCD

1 2 3
4 5 6

ABC

1 2 3
4 5 6

ABCD

ABC

E+O+L
pE

F+1tE
pF

L3+(c'ABCD'),(c2
L3[1]

L3[2]

L3[3][1]

L22+L3, cL3
L22[4][2]

L22[4][1]

L22[4][3][1]

(E is an empty list vector)

(F is list fill element)

3p16),cL

9-15

I

FORMAT

syntax:

domain:

conformability:

If B is numeric -

result shape:

definition:

note:

application:

If B is character -

definition: P+-P

9-16

Numeric or character

(ppB)~1

(opR)=;JpB
(- '.L ·} ~ R) +-~ - 1 + p B
(-1 t p il) = 0 if O = -1 + p B

1+i·IW+1 otherwise

where T.'[I] is the width required to format the Ith column of B.

If (pp!-J)~>.2, Bis treated as a restructured array Bl as described

under DISPLAYING DATA. The columns of Bl are then formatted

according to the rules given in that same section. This results in

(-1tpE) character arrays FB. of column width W., and shape:
J J

The result is then formed by catenating the formatted columns, with

a blank separator column between each:

R+F31,' ' ;::i:;. 1 '
, .!.. L-" ,,: , ' • • • t

' 'F--- ~·-

where: ~··:::rB

Since the formatting is done according to the rules given under DIS­

PLAYING DATA, the result is dependent on the setting of DIGITS.

However, since the result is not actually displayed,, it is not sensi­

tive to the setting of WIDTH, which is a terminal display parameter.

The purpose of FORMAT is to convert numeric data to character

data which can then be suitably edited, combined with other char­

acter data and, finally, displayed in any desired form. FORMAT

gives the user much more flexibility in formatting output than com­

posite data object displays allow.

19980800 A

examples: x+ .. 10+1s

x

11
12
13
14
15

pX

5 2

3 1 +x

1
1
1

ct>X

11
21
31
41
51

X+l 2 3 4 5

NAME+' X'

INDEX+3

~NAME,'f',(YINDEX),']+7'

x

1 2 7 4 5

~2 3p 'ABCDEF'
ABC
DEF

19980800 A
9-17

NULL

syntax:

domain:

conf ormabili ty:

definition:

examples:

9-18

R+AoB

No restriction

None

R+A

In addition, if B is a non-result-returning function, no error

occurs, as the result of B is never referenced.

This function is p"rimarily used for placing on one line expres­

sions which logically (but not syntactically) constitute a single

task.

5o3
5

X+5oY+3
X;Y

53
Z+1tYo2
z

3

F 9

(note only 5 displayed)

(F need not be result returning)
Right argument of TAKE is
effectively just Y.

19980800 A

MONADIC I-BEAM

syntax:

domain:

conformability:

result shape:

definition:

examples:

19980800 A

R+IB

B must be integer (see tabie beiow) or character.

(ppB)=1

(ppB)=O (pB)~65535

(ppH)=O (see below)

The I-beam function provides a mechanism for the user to inquire

about certain items of system information not part of the APL

language. The particular piece of information desired is indicated

by the value of B,

1. The integer values of B accepted by APL*ST AR and the infor­

mation returned are indicated in the following table.

B Information

19 Total time APL has been awaiting input from this user

{since sign-on).

20 Time of day f sec. since midnight) .

21 Total CPU used since sign-on (sec.).

22 Current amount of workspace unused (bytes).

24 Sign-on time (seconds since midnight).

25 Today's date (YYMMDD10).

26 Value of current function line number.

27 Vector of line numbers from State Indicator.

2. If B is character. the action taken is to perform the System

Command indicated by B. The System Command SAVE and DROP

may not be used. The result returned is the same as that which

would have been reported by the command in question. If an error

occurs in executing the command. this error is reflected to the

I-beam function.

24 60 60TI20
13 23 47

I 1)DIGITS'
(Time is now 1: 23:47 p. m.)

8
ORG+:r')ORIG1N 0'
)ORIGIN

0
ORG

1

9-19

DYADIC I-BEAM

syntax:

domain:

conf ormability:

definition:

6 I-BEAM

domain:

conf ormabili ty:

range:

result shape:

definition:

9-20

R+Ar.B

A must be integer (see table below)

(p pA) =O

The dyadic I-beams are not normally used by a non-system user.

They perform the system functions indicated below:

A Meaning

6 Workspace/ session parameter interface

8 Special character interface

B mu st be numeric

B[i] must be integer

(ppB)=1 (pB)E1 2

R is numeric

{ppR)=O

B[1]indicates the workspace or session parameter being accessed.

The result is the current value of the pa,rameter in question. If

(pB)=2 , the parameter is subsequently set to the value of B[2]

B[l] Parameter Domain of B[2]

0 Index O_rigin Boolean

1 Random Number Seed Integer 1~B[2]<2*47

2 Digits Integer 1::;B[2]::>13

3 Print Width Int~ger 1::>B[2]:'.5:65535

4 Comparison Fuzz Real o::;B[2]::;1

19980800 A

8 I-BEAM

domain:

cor..formability:

range:

result shape:

definition:

examples:

19980800 A

B must be integer

(n,..P\-n
I-' j-'4J I - ..,

Result is character

• (•"l p R) = 0 .

The result is the special character indicated by B according to the

table below:

B

0

ABCD
WXYZ

9

Character

New Line

V+'ABCD',(8IO),'WXYZ'
v

pV
(Note V is a vector of 9 characters)

9-21

MATRIX INVERSE, MATRIX DIVISION

dyadic syntax:

monadic syntax:

domain:

conformability:

result shape:

definition:

9-22

R+[i]B (here the left argument defaults to an

identity matrix with shape 2 p 1 t p L')

A and B are numeric.

B must be non-singular (see Solving Linear Equations)

2~ppA

2~ppB

(1t p A)+-+ 1t pH (after scalar extension if A and/ or B scalar)

if 2 =pp B then (p E) [1] ~ (p E) [2]

(necessary but not sufficient to ensure the non-singularity of B)

if 1 =pp B then O ;t; p B

(pR)+-+(1+pB),(1+p!)

The result R is such that each element (if any) of +f(A-H+.xi:)*:;::

is minimized.

19980800 B

MATRIX INVERSE R+iijB

The monadic process ±H results in a matrix \Vhich is the left inverse of the matrix B.

The result R has a shape and value such that the matrix product with B is an identity

matrix I:

I+R+. XB

Note that this requires the shape ot tt to be identicai to the transpose of B:

(pR)++p~B

An identity matrix is one which when multiplied by any other conformable matrix results

in that matrix:

C+I+. xC

C+C+.xI

(pC)[1]~(pC)[2]

(pC)[1h(pC)[2]

An identity matrix is a square matrix with ones along its diagonal, and all other elements

zero. It is its own inverse.

l\latrix inverse is best thought of as a process identical to the dyadic case of matrix

division in which the left argument is an identity matrix of conformable shape.

The resulting product of a matrix inverse lijB and a matrix A is identical to the ~atrix

division A~B when B is non-singular:

example:

19980800 B

(A[ijB)++(OOB)+. xA

O+R+OOB+3 3p1 o 3 O 1 3 3 O 1
0.125 0 0.375
1.125 1 0.375
0.375 0 0.125

1 0 0
0 1 0
0 0 1

0.12

0.5

0 5

R+. xB

~3 4
0.16
~2

p~5 Op tO

9-23

LINEAR EQUATIONS

A linear equation is one in which variable terms occur only to the first power; i.e., having

the form:

If only tvvo variables are present, the equation becomes:

and represents a straight line. That is why equations of this form are called linear

equations.

It is customary to regard the last stated variable as the dependent variable and the rest

as independent variables. The dependent variable can then be regarded as the value of a

function of the independent variables such that the linear relationship expressed by the

equation holds:

f(x
1

)

-al
is the slope of the line.

a2

is the intercept on the x
2

(function) axis.

A linear equation with three variables:

is the general equation of a plane. It expresses the linear relationship of a function of two

independent variables:

__ -al -a2 c
f(x

1
, x

2
) x -- x 2 + -a

3
1 a

3
a 3

In general, a linear equation involving N variables is the general equation of a hyperplane

of N-1 dirnensions. It expresses the linear relationship of a function of N-1 independent

variables.

•

9-24 19980800 B

A set of linear equations is thus a set of lines, planes or hyperplanes depending on the

number of variables present. All equations can be raised to the same dimension by

supplying coefficients of zero as required.

The solution of a set of linear equations is the location of a point common to all given lines,

planes, etc. To determine a solution, there must be as many equations in the set as there

are variables: the common point of two lines is their point of intersection, the common

point of three planes is their mutual point of intersection.

Even when a sufficient number of equations are present, a solution may not be possible.

No common point exists for instance for two lines that are parallel. Likewise, no common

point exists for three planes, each pair of which intersects along lines that are mutually

parallel.

In such cases, it is possible to show that one or more of the equations can be derived

(with a possible difference in the constant term) from some algebraic combination of one or

more of the remaining equations. Such an equation is said to exhibit a linear dependence

with respect to the remaining equations. For a solution to exist in the case where the

number of equations is equal to the number of variables present, all such equations must

be mutually, linearly independent.

SOLVING LINEAR EQUATIONS

11atrix division provides a systematic way of solving a set of linear equations. Each row

of the matrix B constitutes the coefficients of the variables for an equation. To solve a

single set of equations, A is a vector constituting the set of corresponding constant terms

for the set of equations, and the result R is a solution vector for the variables in the

equation set.

To determine a solution for a set of linear equations, there mu:St be as many equations as

variables. Further, each equation must express a relationship independent of (i.e., not

capable of being derived from, yet consistent with) any or all other equations in the set.

This criterion is determined solely by the shape and value of B. If the criterion is not met,

B is said to be singular and a LENGTH ERROR or DOMAIN ERROR results.

19980800 B 9-25

Solve:

3 5 2

2x + 3y + z = 23

27 x + 4y + 2z

3x + y - 2z 10

23 27 10ffi3 3p2 2 1 1 4 2 3 1 -2

(The solution is x = 3, y = 5, z = 2)

(The solutior

Solve: 5x + 2y + 3z 23

x + y + 2z 5

4x + y + z 18

23 s 1sm3 3ps 2 3 1 1 2 4 1 1
DOMAIN ERROR

$: 23 5 18003 3p5 2 3 1 1 2 4 1 1

(The third equation can be derived from the first two by subtraction and is thus not

independent. Note further that if the constant term of the third equation were other

than 18 a contradiction would result, thus illustrating that the non-singularity of B is

the only criterion required to ensure a solution exists.)

Multiple sets of linear· equations in which only the constant terms diffeP in each set can be

simultaneously solved in one matrix division operation. Each row of the matrix B

constitutes the coefficients of the variables for an equation as before. A is now a matrix,

each column of which is a set of constant terms for one equation set. The result is a

matrix, each column of which is a solution vector for the variables for the equation set

whose constant terms appear in the corresponding column of A.

Solve:

3 2
t:;. IJ.

2 7

2x + 3y + z = 23

x + 4y + 2z 27

3x + y - 2z 10

(=23)

(=32)

(=-4)

B+3 3p2 3 1 1 4 2 3 1 2
A+3 2p23 23 27 32 10 4
Aii3B

(The solution for the first set is x = 3, y = 5, z = 2

The solution for the second set is x = 2, y = 4, z = 7)

9-26 19980800 B

LINEAR PARAMETRIC EQUATIONS

Any equation that is linear \vith respect to its parameters, or which can be made so by a

suitable transformation, can be used to form a linear parametric equation by substituting

the coordinates of a point known to satisfy the equation. If as many independent points are

known as there are parameters, then a set of parametric equations, each linear with

respect to the parameters, can be solved to yield a set of parameter values which, when

substituted into the original equation, results in an equation satisfying all the given points.

The general parametric equation for a line is:

y = ax + b

The parametric equation of a line passing through the point (2, 5) is thus:

5 = 2a + b

Soh-ing a set of h\'O such equations determines the parameters (slope and intercept) of a

line passing through both given points.

Find the line passing through (2, 13) and (4, 19):

3 7

13 = 2a + b

19 = 4a + b

13 19~~ 2p2 1 4 1

The required line is y 3x + 7

Find the parabola symetrical about the positive x axis which passes through (2, 2) and (12, 7):

The general parametric equation is
2 y =ax +b

4 2a + b

49 12a+b

4 43~2 2p2 1 12 1
4.5 5

The required parabola is
2

y = 4. 5x-5

19980800 B 9-27

Find the plane passing through (2, 3, 23), (. 5, 2, 16), and (1. 5, . 5, 2)

(2 3 2 3) , (. 5 2 16), and (-1. 5 - . 5 2)

parametic equation for a plane: z = ax + by + c

23 2a + 3b + c

16 . 5a + 2b + c

2 1. 5a +-. 5b + c

23 16 2~3 3p2 3 1 .sz2 1 1.5 .5 1
2 4 7

The required plane is z = 2x + 4y + 7

Note that 2 points are required to determine a line, 3 points to determine a plane, etc.

Supplying the required number of points does not guarantee a solution since, for example,

two coincident points do not determine a line nor do 3 colinear points determine a plane.

Also, if the required line, plane, etc. is parallel to the independent variable axis, the

parameters are indeterminant. Such cases can be shown to be the result of nonmutual

independence of all the linear equations in the set.

LEAST SQUARES FIT

If more points are supplied than required, then the corresponding set of parametric

linear equations is said to be overdetermined and the solution obtained by matrix division

is called a least squares fit of the given points. That is, the solution is a set of parameters

for a parametric equation such that the sum of the squares of all projections of the points

along the independent variable axis to the curve, surface, etc. is a minim urn.

Obtain the equation of the straight line which is the least squares fit to the following points.

(1,2), (2,2.4), (4,5.1), (5,7.3), (6,9.4), (8,18.3).

parametric equation: y = ax+ b

9-28

X+1 2 4 5 6 8
.Y+2 2.l..!. 5.1 '7.3 9.1.1 19.2
Y[jj (6 1p X), 1

2.21 2.16

The required line is y 2.21x-2.16

19980800 B

Obtain the equation of an exponential curve which is the least squares fit to the same points

exponential curve equation
x

y =ab

take logari thrns to obtain a linear parametric equation

ln y = ln a + x ln b

*($Y)001,6 1pX
i.370744829 i.383563134

The required exponential curve is approximately

y = (1. 37)(1. 38)
x

By taking the sum of the squares of the projections of the points to the curve for each case,

for the straight line:

+/(Y--2.16+2.21xX)*2
19.465

for the exponential curve:

+/(Y-1.37x1.38*X)*2
0.3517337408

The exponential curve can be seen to provide a better fit to the given points.

19980800 B 9-29

SPECIAL CASES

When B is a vector, scalar or empty matrix and a conformable A argument is supplied, a

result is obtained as follows:

examples: 1 2 3 4 5~1 1 1 1 1
3 (mean of elements of vector left argument)

1~5
0.2 (as per division)

p3&11 1p6
1 (one element vector result)

p1 2 3 4 5fi!5 OptO
0 (empty vector result)

p(tO)lt!O OptO
0 (empty vector result)

p(O 2ptO)fi!O OptO
0 2 (empty matrix result)

9-30 19980800 B

APL EXPRESSIONS 10

INPUT REPRESENTATION FORMAT

A PL expressions input from the terminal are formed according to the following rules:

USE OF SPACES

• Spaces must not be used in forming identifiers •

• Elements of numeric literal vectors must be separated by at least one space .

• At least one space must be placed between adjacent identifiers and between identi­

fiers and numeric literal expressions.

• Spaces are explicitly interpreted as such where they occur in character literal

expressions.

• ~r. .. ny other occurrence of spaces is optional, and is ignored.

USE OF PARENTHESES

•

•

Parentheses are required to delimit the extent of an expression for the left argu­

ment of a function where that expression is other than a_literal expression, a data

identifier, a niladic function call, a QUAD or a QUAD-PRIME.

Parenthesizing of any other expression (including one already parenthesized) is

superfluous but allowed, unless the expression is the left argument of a specifi­

cation.

CONVERSION OF INPUT REPRESENTATION

Input expressions are converted to a standardized internal format upon input. Superfluous

space characters are ignored in this conversion. Arrays are created for literal expressions.

If any element value of a numeric literal expression exceeds the range of the machine (see

Appendix C), a DOMAIN ERROR occurs at this point in the line when the line is executed.

All identifiers and function designators are also converted to an internal format. It is this

internal format that is used by the interpreter in evaluating expressions.

19980800 A 10-1

EVALUATION OF EXPRESSIONS

ORDER OF EVALUATION

Any expression takes the overall form of a literal, a data identifier. or a function call. In

the first two cases, evaluation is a one-step process. If the expression is a function call,

evaluation proceeds as follows:

The right argument (if there is one) is evaluated first.

The function itself is then examined to determine if it is dyadic. For primitive functions

which utilize the same designator character for both a monadic and a dyadic function, the

function is interpreted as dyadic if the item to its immediate left is the rightmost item of

an expression, namely: a literal expression, a data identifier, a ni ladic function call, a

right parenthesis, a right bracket, a QUAD or a QUAD-PRIME. If no such item exists,

the function is interpreted monadically.

If the function is determined to be dyadic, the left argument of the function is evaluated.

If it consists of more than one syntactic element the desired left argument must be enclosed

in parentheses. The interpreter utilizes the occurrences of the parentheses to determine

the extent of the expression for the left argument.

With the argument(s) evaluated, the function call is then made and any returned result is

the evaluated result for the expression.

The arguments, if present, are expressions in their own right and are evaluated in the

identical manner as stated above.

ERROR DETECTION SEQUENCE

Error

• SYNTAX ERROR

• VALUE ERROR

• RANK ERROR

• LENGTH ERROR

• DOMAIN ERROR

• INDEX ERROR

10-2

Typical Causes

improper number of arguments supplied •

variable not established (could be misspelled).

argument rank conformability requirement not met •

other conformability requirement not met •

supplied argument not in the domain of definition,,

function.

index out of range; applies to indexing and index

notated primitive function calls.

19980800 A

Ex,amples:

The following set of statements indicates the order in which execution is performed and

errors are detected.

19980800 A

Y+1 5 4 2 7 9

Y[O. s+o 1xx++YJ

SYNTAX ERROR

Y[o.s+o 1xx+$: tYJ

Y[O. 5+0 1xX+1tYJ

VALUE ERROR

Y[0.5+0 1x$: X+ltY]

X+2 3p1 2 3 4 3 2

Y[0. 5•0 1xX+1tY]

RANK ERROR

Y[0.5+$: 0 1xXT1tY]

Y[0.5+(3 2p0 1)xX+1tY]

LENGTH ERROR

Y[0.5+$: (3 2p0 1)xX+1tY]

Y[0.5+(2 3p0 1)xX+1tY]

DOMAIN ERROR

$: Y[0.5+(2 ~pO t)xX+1tY]

Y[L0.5+(2 3p0 1)xX+1+Y]

INDEX ERROR

1

1 ? 1

9 1 2

$: Y[O.S+(2 3p0 1)xX+1tY]

)ORIGIN O

Y[L0.5+(: 3pJ 1)xX+1tYJ

(Contini_1ed on next page.)

10-3

The following example indicates how a specific action within an expression is handled:

A+-2

(A+5)+A

7

A+2

A+A+5

10

ADDITl.ONAL ERRORS

•
•

•

•

•

Message

NONCE ERROR

WS FULL

DEPTH ERROR

SYMBOL TABLE FULL

REF ERROR

Cause

operation not yet implemented.

workspace storage capacity exceeded

(see SIZE command).

a function is pendent or suspended more than

16, 383 times.

more than 65, 535 symbols have been used in this

workspace.

an object or list array element has more than

16, 383 active references.

NOTE: The maximum array size currently permitted is 65, 535 elements. A NONCE

ERROR is issued if an attempt is made to create an array larger than this size.

10-4 19980800 A

ERROR RECOVERY

Whenever an error is detected,, the system attempts to recover to the state it was in

before the line which caused the error was executed. The foilowing rules are used in re­

covering from errors:

•

•

An error in a line submitted for immediate execution causes execution of the line

to be aborted, and a message indicating the error type to be issued,, along with the

offending line and an error marker at the point at which execution in the line was

aborted. The user is then requested to submit another line for immediate execu-

tion.

An error in a line submitted in response to a QUAD prompt (see QUAD INPUT)

behaves as above,, and the QUAD prompt is re-issued.

• An error in a line of a user-defined function behaves as above,, except that in ad­

dition to aborting execution of the line,, the function is suspended on the line in

question, and the function name and line number is issued preceding the display

of the line.

• An error in a line executed via the EVALUATE function behaves as above,, except

that the EV ALU ATE function is not suspended. Control is returned to the line

which contained the call to EV ALU ATE, the line is displayed with an error marker

at the offending evaluate, and suspension and display is attempted according to the

above rules.

• An error in a line of a locked user defined function causes execution of the line to

be aborted, and control is returned to the line which contained the call to the

locked function. If this line is not itself part of a locked function, the message

<function name> ERROR is issued,, along with the line and an error marker at

offending locked function call, and suspension is attempted according to the above

rules. If the calling line is part of a locked function, control is restored to the

first line which is not part of a locked function,, and suspension is attempted as

above.

• An error in a System Command executed via I-beam behaves as an error in an

EVALUATE line.

19980800 A 10-5

DI SP LA YING EXPRESSIONS

When an expression is displayed, such as in an error report or in a requested display of a

user-defined function line, an inverse conversion transforms the internal format to a dis­

play format. The display formatting follows the rules of canonical form.

CANONICAL FORM

• All displayed expressions, (omitting the error marker), must be in a form that is

acceptable as input.

• Literal numeric expressions have the same form as employed in numeric data

formatting. (See DISPLAYING DATA).

• Comments are displayed as they were entered.

• Except as required in the above points, spaces are not inserted in displayed ex­

pressions.

10-6 19980800 A

APL SYSTEM/USER INTERACTION 11

IMMEDIATE EXECUTION

When no other activity is taking place, the system awaits input for immediate execution.

This is indicated by a 'prompt' from the system in the form of an indentation 6 spaces from

the left margin. In this state, the user may enter:

• an expression to be evaluated.

• a system command.

V/hen all processing resulting from the line input has been completed .. the system again

awaits input for immediate execution.

ABORTING EXECUTION OR OUTPUT

Whenever an expression evaluation, function execution. or output is taking place, process­

ing may be interrupted. (This is accomplished on a terminal by signalling ATTENTION.)

Any ongoing output is aborted. Expression evaluation is terminated at the end of the cur.­

rently executing line. If a function is executing, it is suspended immediately before execu­

tion of the next line.

If the currently executing line was entered in response to a QUAD input request (see below),

the request is not satisfied, and the QUAD prompt is reissued.

Example:

19980800 A

X+']+3 4-p 112

2 3 4

5 6 A--------- (output aborted at this point)

pX

3 u (note specification to X was done, since
evaluation continues until the end of the
line is reached)

11-1

QUAD INPUT

syntax: H+-J

If the symbol 0 (QUAD) appears anywhere except in the construct O+- , it signifies that an

expression is to be evaluated at that point, the source for which is to be supplied from input.

At the point where a QUAD in the above stated context is reached in the execution of an APL

source line, further execution is pendant on an evaluated result for QUAD.

A 'prompt' to the user terminal is sent in the form:

0:

at the left of a line. This is followed on the next line by indentation 6 spaces from the left

margin. At this point the system awaits input to be submitted.

Input must be in the form of an APL expression. Upon entering the line the APL expres­

sion is evaluated as for immediate execution.

Simply entering an empty line causes the 0: to reappear.

If no errors are detected on evaluating the submitted APL expression, the result obtained

is returned as the result for the QUAD function and evaluation of the original source line

continues.

If evaluation of the expression input after the prompt is not possible due to some error in

the submitted line, the appropriate error report is issued_ followed by another prompt,

with the system again awaiting input.

The user may now resubmit the expression, correcting the error.

The symbol 0 used in this manner can be likened to an implicit result-returning niladic

user-defined one-line function in which the user supplies the line each time the function is

called.

•

•

11-2

As such it has two properties in common with regular user-defined functions.

Recursive calls can be made with QUAD by submitting as part of the input

expression another QUAD.

Exit from all further evaluation of expressions at all levels is possible by

inputting after the prompt line a niladic branch:

This provides an exit mechanism from an infinite loop requesting and evalu­

ating input.

19980800 A

Instead of entering an APL expression, it is acceptable to enter a system command. All

valid system commands will be carried out. If the system command replaces the existing

active workspace with some other workspace, such as by)LOAD or)CLEAR, request' for

input is terminated.

If the existing active workspace is saved while awaiting input, such as by)SAVE, the

workspace is saved with the input request status intact. In this case, when the saved work-
• , J "1 "1 , , I , J ,......, • , "1 , . • .J. 1 L ~ J _ ~ _ _ J... •

space is suosequenuy .tuaueu, c;ne prornpL .. u: W.L.L.L appear anu again Lne :::iy:::iL8II1 aw a.LL:::; .tnpLu. 1

Examples:

2+0 (immediate execution input)

(response to QUAD)

17 (result)

Another way in which QUAD appears like a user-defined function can be seen by issuing

)SI or)SIV in response to a request for input.

1,2+0+0.5xrJ-1 (immediate execution input)

(QTJ AD prompt issued)

(QUAD pendant)

(prompt reissued)

(response to QUAD)

(prompt reissued)

(prompt from second QUAD)

(two QUAD' s pendant)

(P.!'Ompt reissued)

19980800 B 11-3

11-4

(response to last-QUAD)

(display from :J+

(result)

(immediate execution input)

(prompt issued)

(exit from last execution)

(nothing pendant or suspended)

(system again awaits input for immediate
execution)

19980800 A

QUAD-PRIME INPUT

syntax:

If the character ~ (QU AD-PRIVIE) appears anywhere except in the construct "ll+ it sig­

nifies that character data is to be obtained from input.

At the point where a QU AU-P.HllVl.J:S rn the context stated above is reached in the execution

of an APT. source line, further execution is pendant on a result obtained for QUAD- PRIME.

No prompt occurs with QUAD-PRIME other than a bell signal or keyboard unlock. The

system simply awaits input at the left margin.

Input consists of a line of zero or more characters. Unlike normal input of explicit

character literals, a quote character to mark the beginning and end of the literal is not

used. Further, the quote character is represented by itself and not b,v two consec·1tive

quote characters.

The explicit character literal, as input (subject to conversion of illegal characters to the

canonical bad character), is returned as the result for QUAD-PRIME, and evaluation of

the original source line continues until completed.

Input of a single character results in a character scalar. Input of no characters or more

than one character results in a character vector.

Since all character inputs are taken literally and are not interpreted, this function cannot

be used recursively. Likewise, system commands will not be interpreted as such.

A single exception to the above is a spedal character provided solely for the purpose of

providing an escape mechanism identical to that provided by~for the QUAD function.

This special character is the composite formed by overstriking the letters '0', 'U ', 'T '.

(For te .. rminals without overstrike capability, the mnemonic sequence is '$G. ')

(See examples on next page.)

19980800 A 11-5

Examples:

11-6

ABC

ABC

:111ia1:11:

)8I

DOll'::'

fl

fj+[l

'X' ,'!!, '?'

(immediate execution input)

(response to request for literal input)

(result)

(immediate execution input)

(QUAD prompt is sued)

(response to QUAD)

(response to QUAD-PRIME)

(display from D+)

(result)

(immediate execution input)

(response)

(three characters recieved)

(immediate execution input)

(response to QUAD-PRIME)

(result)

(immediate execution input)

(exit from last execution)

(system again awaits input for immediate
execution)

19980800 A

QUAD -PRIME PROMPT

Normally, no prompt other than a bell or keyboard unlock occurs when the system requests

input from the user. However, the user program may specify a prompt to be issued

with the input request. This is done by specifying the desired prompt to [!] as follows:

syntax:

domain:

conformability:

definition:

examples:

19980800 A

R+[!]+B

The underlined portion of the above line is the specification

proper.

B must be character.

(ppB)=1

As for specification, the result is B. The character vector B

is issued as a prompt at the next request for ['] input.

NOTE that visual fidelity requires that if the user's input is

entered immediately following the prompt, on the same line,,

the prompt becomes an integral part of the returned input.

~+'ANSWER YES OR NO:'

ANS+~ _..YES
---YES

R+[!]

(JJ

(type YES)

(note no prompt)

11-7

VISUAL FIDELITY

The underlying concept in entering a line of input is visual fidelity; i.e. , that the appear­

ance of the line upon submission is what is conveyed, rather than the sequence used to

form the line. The implications of this concept are as follows:

• The position of the terminal carriage, type ball or cursor is immaterial upon

hitting the return key.

• The order in which characters are keyed is immaterial.

• On terminals with a destructive overstrike (CRTs) any character may be replaced

by any other, including blank, prior to hitting return; only the final appearance

will be conveyed.

ABORTING AN INPUT LINE PRIOR TO SUBMISSION

• Position to the right of the right-most input character.

e Signal ATTENTION.

The system returns to the same input mode as existed prior to entering the line.

CORRECTING AN INPUT LINE PRIOR TO SUBMISSION

1. Position via any combination using the backspace key and I or space bar to the left­

most character to be erased.

2. Signal ATTENTION.

3. Key in appended text (if any).

4. Submit the corrected line for execution.

11-8 19980800 A

INPUT SUBMISSION PROCEDURE

All input is submitted in the form of a line. Normally the line consists of the line entered

at a terminal or the card image presented to the card reader. Submission is achieved by

keying RETURN (usually) at a terminal, or on acceptance of a card by the card reader.

CONTINUATION CHARACTER

It is possible to submit a line in parts, each part consisting cf ::i line entered arrd submitted

as above. All line parts, except the last, must contain the continuation character $CO as

the right-most non-space character. The continuation character in this position serves to

indicate that the line as submitted is incomplete and is to be continued on the next submit­

ted line part. The last part of a submitted line must not contain a terminating continuation

character since its absence conveys that submission of the entire line is complete.

The APL system constructs a contiguous input line by catenating left to right all consecu­

tively submitted line partso The continuation characters, when placed as indicated above,

are not included in the constructed input line. Any other placement of the continuation

character will cause the character to be subsequently transformed to the canonical bad

character and not cause action as stated above.

When a line submitted from a terminal contains a terminating continuation character, a

prompt for a continuation line is issued in the form: $CO at the left o'f a line. This is

followed on the next line by indentation six spaces from the left margin. At this point, the

system awaits input of a continuation line to be submitted.

examples: 3 t 'ABCDEF$CO

$CO

GHIJK'

!-.BC

+'ABCDEF$CO

$CO

GHIJK'

DOMAIN ERROR

$: +'ABCDEFGHIJK'

3+$CO'ABCDEFG'

SYNTAX ERROR

19980800 A

(fir st part)

(continue line prompt)

(last part)

(result)

(first part)

(continue line prompt)

(last part)

(note catenation of input)

($CO transformed to $BC if not
Yight;...most ·rro1"l-space character?

11-9

COMMENTS

Any executable line of APL may be appended on the right with a comment. The special

symbol A (verbalized 'lamp') delimits the executable portion from the comment.

An executable line is any of the following:

(1) a line submitted for immediate execution

(2) a user-defined function body line (See User-Defined Functions)

(3) a Q DAD input line

(4) an EVALUATE argument

examples: M+(,A)~(p,A)p1 R MEAN VALUE OF A'S ELEMENTS

[3] NEXT:~OxiO=pA+1+,A R EXIT IF A EMPTY

D:
0.5 A SQUARE ROOT

5 6 7

A THIS ENTIRE LINE IS A COMMENT

~B/'J+ppK A IF B TRUEt

11-10 19980800 B

USER-DEFINED FUNCTIONS 12

FUNCTION DEFINITION

To provide an opcn-cndcdu.ess to APL, a ·user n-1ay supplen1ent the p1~in-1itive functiunti wilh

those he defines himself.

The syntax of a user-defined function definition consists of a function header followed by a

function body. The function header declares the name of the function and its syntactic form.

The function body ·consists of zero or more lines of APL, each of which may be preceded by

or consist solely of a label (see LABELS).

FUNCTION HEADER

In addition to the monadic and dyadic syntax of primitive functions, user-defined functions

may be defined having no arguments (niladic syntax).

User-defined functlions may be result-returning, as are primitive functions, or non result­

returning.

The above criteria and the function name are established by the function header. The form

of a function header is as follows:

{ <result>~} l<l. arg.> <function name> <r.

<function name> <r.

< function name>

arg.>l
arg.> [; <explicit local list> J

where: <result> is the local result name

< 1. arg.>is the local left argument name

< r. arg.>is the local right argument name

<explicit local list> is a list of identifiers separated by semicolons.

Identifiers in the function header other than the function name (i.e., arguments, result,

and explicit local list) declare variables local to the function environment. (See ENVIRON­

MENT OF AN ACTIVE FUNCTION.)

FUNCTION BODY LINE

The form of a function body line is as follows: At least one non-blank character must be I
-p-resent.

{<label>: }[<executable portion>J{A <comment>}

19980800 B 12-1

FUNCTION CALL

A dyadic function name FLIP having numeric arguments could be invoked by:

2 3 7 FLIP 8 1

If the function header for FLIP is

R~A FLIP B; X; Y

then at the time FLIP is invoked, A has the value 2 3 7 and B has the value 8 1 •

The process of assigning values to A and B at the time of function call is similar to spec­

ification.

FUNCTION EXECUTION

Upon function call values are supplied to the function arguments (if any), and the body of

the function is executed.

Each line is interpretively executed in the normal right-to-left manner starting with the

first line.

Lines are executed in sequence in order of occurrence unless otherwise directed by a

branch (see BRANCH). When the last line of the function is executed, if no branch is taken,

the function exits.

Upon completion of function execution, the value returned is the value of the local result

at that time. If no specification has been made to the local result, no result is returned.

12-2 19980800 A

BRANCH

Syntax: -+B

Domain: non-negative integer

Conformability: (p pB)::;1

A branch must be the left-most operation on the line in which it appears. The domain of

the argument B is integer. No result is returned from the operation. Those cases exist:

1. If B is empty, the branch is ignored. If B is not empty, all but the first element

are ignored. Let I+1 +B .. I must be integer.

2. If IE. o 1[1] + iN , where N is the number of lines in the body of the function, the

next line to be executed will be line I .

3. Otherwise, execution of the function is terminated and the function exits.

4. B must be within FUZZ of a positive integer. Otherwise, a OOMAIN ERROR will

result.

Note that numbering of function lines is not dependent on the index origin. Thus I (if it

exists) is always the first line of the function, and -+O always causes an exit.

Niladic Branch

A second form of the branch directive exists which consists sol~ly of the branch directive

on a line by itself:

Execution of a niladic branch causes an exit, not only from the current function being ex­

ecuted but from the entire set of functions in the calling sequence initiated by the outer­

most function call, including- the immediate line in which the outermost call was made.

The exit mechanism utilised when niladic branch is invoked bypasses all result-returning

procedures for all currently invoked functions in the calling chain.

The purpose of the niladic branch is twofold:

1. To provide a termination path which stops all function execution.

2. To reinstate the workspace environment to as near as can be obtained to what

it was prior to calling the initial function in the calling sequence.

19980800 A 12-3

LABELS

In forming expressions which evaluate to the number of some desired function line, it may

prove difficult to predict what that number will be. Furthermore, the number will be

subject to change if, subsequently, additional lines are inserted in the function or some

lines are deleted.

The above difficulty is eliminated by the ability to reference function line numbers symbol­

ically. This is accomplished by the use of labels.

An identifier followed by a colon may be placed to the left of the executable portion of any

line to be referenced. Only one label may be placed on a line.

This identifier is the name of the label for the line. This label is local to the function

(see ENVIRONMENT OF AN ACTIVE FUNCTION). When the function is called, it is given

the value of the number of that line, in much the same way as the arguments are assigned

values. The value of a label is always an integer scalar.

Labels have a property which distinguishes them from all other variables. During their

existence they cannot be respecified (i.e., their value cannot be changed). Labels are

thus the only named constants in APL. In all other respects, they are normal variables.

12-4

NOTE

As will be seen in the following section, label values are

available to functions called by the function containing them.

As labels are indistinguishable from any other variable,

branching to such a label in a function called by that function

will not cause a branch back to the labelled line in the calling

function, but rather a branch to the line in the called function

havjng the same line number. If no such line exists, an exit

from the called function will occur.

19980800 A

ENVIRONMENT OF AN ACTIVE FUNCTION

\\'hen a function is called, values are assigned to its arguments and labels. All of its other

local variables (the result and explicit locals) become undefined (i.e., have no value).

This constitutes an initial local environment at function call.

A function possesses a local environment from the time it is invoked until exit from the

function occurs. During this time the function is said to be active.

The fact that the local environment disappears upon function exit is a useful mechanism

for minimizing workspace requirements and for keeping the workspace from being clutter­

ed with data objects which are no longer required.

Since explicit locals and the result have no value until first specified, while the function is

active, prior reference to such variables inside the function results in a VALUE ERROR.

Also, since the local environment disappears on exit from the function, values specified

to locals on one function call are not available to the function on subsequent calls.

In addition to the local environment, the total function environment initially consists of the

entire workspace environment prior to function invocation, except for those objects whose

names are identical to identifiers appearing in the formal parameters or local list of the

function header, or label identifiers.

These latter objects are said to be masked while the function is active. Note that all mask­

ing occurs at the time of function invocation, and not when subsequent specification for

some local is first made.

Objects in the function environment which are not part of the local environment are termed

the global environment.

The global environment includes, in addition to those workspace objects not masked on

function invocation, the workspace environmental parameters Origin, Digits, Fuzz and

Seed.

Functions can thus make reference to objects and respecify variables which are part of

their global environment. New global variables can also be created by specifying to a name

not appearing in the local list. This ability provides the function with a communication

facility separate from that provided by the argument and result parameters, and is the

only method available to niladic non result-returning functions.

19980800 A 12-5

NESTED FUNCTION CALLS

At any point during execution, it is possible for a function to invoke any other function

defined in its environment.

When a function calls a function, the calling function still remains active (since an exit

from it has not yet occurred); however, it is no longer executing, but rather waiting for

the called function to complete its execution. During this time the calling function is said

to be pendant. When the called function has completed its execution, it exits back to the

calling function, returning a result if any.

Execution of the calling function then recommences at the point where it left off, and the

calling function is now no longer pendant.

Calls to non result-returning functions from a function must be placed alone on a separate

line within the body of the calling function, or be the right argument of NULL, otherwise

a VALUE ERROR will result when the line attempts to reference the non-existent result

of the function. Result-returning functions, on the other hand, can appear as arguments

in more complex expressions to be evaluated, including additional function calls.

The environment of a function while pendant is kept intact, while the called function creates

its own local environment. The total environment of the calling function becomes the

potential global environment of the called function from which certain objects may be ex­

cluded due to masking. Objects which were masked by the calling function remain masked

to the called function.

The origin of objects in the called function's global environment is indistinguishable to it.

It may indiscriminately reference, change and create global objects which are either local

or global in the calling function.

The state of the workspace environment upon the completion of all function execution (known

as the absolute global environment) will be affected, however, if the inner function re­

specifies one of these objects or creates new ones. If, on the other hand, only objects

which were part of the local environment of one of the functions in the calling sequence

were effected, no change to the absolute global environment would occur.

Note that a called function's local environment is invisible to the calling function, whereas

both its own local environment and global environment can be affected while pendant.

The process of having a function call a function can be continued by having that function call

another function, etc. This gives rise to a calling chain of function calls. The calls are

said to be nested from the outermost call to the innermost one. All called functions except

12-6 19980800 A

the innermost are pendant. Local environments exist in the workspace for all the function

calls in the sequence. lVIasking can occur at each call level.

The number of calls in the call sequence is termed the depth of nest of the innermost

function call. Nesting can occur to any level for which sufficient available space in the

workspace exists to create a local environment for the function called at that level. An

attempt to nest deeper than this results in the error message WS FULL and the function

attempting to make a call is suspended on the line in which the call occurs.

A NOTE ON RECURSIVE CALLS

Recall that a function may issue a function call to any function in its global environment.

As long as the called function is not masked on calling the function, it will exist in the

function's global environment and can just as validly be called as any other function in its

environment.

Any call sequence in which a function calls itself or any function in the current calling

sequence that is pendant, is said to be a recursive call. Recursive calls give rise to the

situation where one call of a function is currently executing while one or more other calls

of the same function are pendant in the same calling sequence.

The fad that multiple pendant calls and a currently executing call, all to the same function

can co-exist, in no way causes problems. This is due to the fact that each call of the

function creates a separate local environment to be used by that function call as long as

that call is activeo In this way each function call keeps track of its mxrn environment and

is oblivious to all other local environments.

Each recursive call nests deeper in the calling sequence. Since successive recursive calls

usually emanate from the same line in the calling function, that line when executed on

successive calls causes further recursion to occur. If care is not taken, the nesting depth

will become excessive, filling up the workspace with local environments of pendant calls to

the point where a WS FULL message occurs.

A function employing a recursive call must therefore provide an alternative path to be

taken when some limiting condition occurs which bypasses the line invoking a further

recursive call. The limiting condition must be met by some innermost recursive call

within an allowable nesting depth. This call must then be allowed to complete without in­

voking further recursive calls and exit to its caller. In like manner, each called function

in turn uses any returned result in completing its execution and exits in turn to its caller,

p.r.o.gressively reducing the nesting level until the outermost call is completed, whereupon

all function execution terminates.

19980800 A 12-7

FUNCTION EDITOR 13

PURPOSE

The APL-:cSTAR ::sy::slern cunLains a uLiliLy calleu Lhe funcLiun euilur which accepL::s ::suilaule

input in the form of a function definition, and upon completion stores in the active work-

space a defined function suitable for subsequent execution.

The utility can also be used to display all or part of a function definition or to modify an

existing defined function as desired.

INVOKING THE EDITOR

Whenever the system is awaiting input for immediate execution, the function editor can be

entered by placing the APL character 7 ('del ') as the left-most non-space character of an

input line. This must be followed on the same input line with the name of an existing defin­

ed function i.n the workspace~ which the user wishes to modify or display, or the function

header of a new function which the user wishes to define.

If the syntax of the function header is invalid, or contains the name of a currently existing

global object, the error report DEFN ERROR results, and the function editor exits.

Notation: In the examples in this section, shaded text indicates APL system response;

unshaded text is entered by the user.

\JR+A NET-! B

NEW is a new function
being created., The
editor prompts for an
entry for line 1.

)FNS

\/OLD

OLD has 3 body lines.
the editor prompts for
an entry for line 4.

FUN+S

\JR+FUN B

FUN is a currently
existing global object,
and thus cannot be
used as a function name.

NOTE: The function editor can be entered while a defined function is suspended. The local

environments may cause masking of the function being modified or created. Masking does

not effect the ability of the function editor to access or create defined functions. Masking

FUl...J1.qw~ye.r preyE:?nt.£..aU.tng_Jlt~f?-~_f1JngJ.i_qn.iiJ,InJH.JJ1~_lQG :31 .~.rwtr-9JJ.XIL~nt_$ __ 9[JJ:ie ac tiye

functions are removed. (See SI , NILADIC BRANCH)

19980800 B 13-1

SUPPLYING FUNCTION DEFINITION BODY LINES

Upon sucess_fully entering the function editor with an input line in the form as stated above,

subsequent lines of input are implicitly considered to be consecutive lines of the body of

the function definition, unless their form indicates otherwise. The editor 'prompts' the

user for each such line by displaying a line number in brackets at the left of the line to be

entered. For a function being newly created, the first prompt is [1]. For a previously

defined function, the first prompt is [<L+l>J, where L is the number of body lines in the

previous definition of the function.

R+(-1tpC)f1tpA [iJ#,jj'fi@):j C + (p A) , p B

:·1::¥!:;:,

The prompt number always indicates the relative position an input body line will have in the

completed function, unless that input is suitably annotated to override this placement.

Overriding is accomplished by entering a line number in brackets, optionally followed by

the body line entry all on the same input line. If only the line number in brackets is enter.:.

ed, the editor responds with a prompt as entered.

:::~jl§!J'-:jj [7] A+((3~ppA) ,pA)pA

:::~::?::~:::: [6 J

i·~:J§:!J!::: +Of d p pA) ;tp p B

:1:::7.:1::.:

When overriding the prompt line number, a non-integer decimal numeral with a fraction

part af up to 4 decimal digits can be supplied. (Using more than this results in the error

report EDIT ERROR.) By this means, a line position in the function body between two

previously entered lines can be indicated.

:::t::a:j::: [2. 3 J +o, po+· voMAIN ERROR,

:p:::g::;::1::U:: [2 • 1 J

:l.:!gj,j~::;~,,~:: -+ L 1 x t (O t , A) = 0 t , B

-~:iilif,:::1::i,:::

After entering a body line of the function deiinition, the eciitor again returns a prompt.

The line number of this prompt is obtained by incrementing the number of the previously

entered line by • l':~n where D is the number of fraction digits last used in overriding a

prompted line number. (D is set to zero initially.)

13-2 19980800 B

REPLACEMENT OF AN EXISTING LINE

In the same manner that new lines are placed in a function definition. a previously existing

line can be replaced with a new entry. The prompted line number is overridden by the

line number of the existing line, and the new body entry is supplied which then replaces the

old entry.

NOTE: The function header can be changed in this manner by designating the line to be

changed as zero. If the entered header results in a DEFN ERROR, a prompt for line zero

is issued and the previous function header is maintained.

m:~iil!i [0] R+A OLD B; C

~1@~:11:1::

DISPLAY DIRECTIVES

A display directive may be entered after any prompt in lieu of a body entry or override

directive, or as the last part of the function editor invoking line.

(A) Displaying Contiguous Lines of a Function Definition

directive:

action:

example:

directive:

action:

example:

19980800 B

[NOMJ

All existing lines from N through M are displayed followed by a

prompt for line 1+LL, where Lis the last line. If M <N the error

report EDIT ERROR is issued followed by reissuing of the previous

prompt.

[205]

Display lines 2 through 5.

[OMJ

All existing lines from M to Lare displayed followed by a prompt

for line 1+LL.

If M > L no lines are displayed.

[~J-

Display all lines from 4 to last.

13-3

directive:

action:

example:

directive:

action:

example:

[OJ

The entire function definition is displayed, followed by a prompt

for line 1+LL.

[DJ•

[NDJ

Line N is displayed if it exists, 'followed by a prompt for line N.

[OD]

Display the header line and issue a prompt for line 0.

(B) Displaying Lines Containing a Specified String

Each of the directives discussed in (A) above can be qualified by suffixing a text string •

enclosed by a delimiter character. Any character not appearing in the text string other

than v and v may be used as the delimiter character.

Lines displayed are restricted to the range defined for each case in (A), but within this

range only those lines containing the specified string are displayed.

For the purpose of search, all lines are regarded as ending in ten spacys. This

facilitates locating lines with a specific last character.

The ensuing prompt is as per the corresponding directive in (A) above.

examples:

13-4

[307]/B+/

Display all lines from 3 through 7 in which the text string B f--'occurs.

[03] /B I

Display all lines from 3 to the last in which the last text character

is B, or which contain the enclosed string as part of a character

literal or comment.

[DJ/A/

Display ali lines of the function ciefinition which have a comment.

[70]/;/

Display line 7 if it exists and contains the character:

19980800 B

EDITING DIRECTIVES

For each of the display directives (B) above there exists a corresponding edit directive

formed by suffixing a second text string using the same delimiter character.

[NDMJ I< stringl > / < string2 > /

For the range of function lines implied by the expression in brackets, all occurrences of

string 1 in all s u.ch lines are replaced by string 2. The tvvo strings rno..y be of independent

length including zero.

If string 1 is empty, an entire line is matched.

[307]/A[1]/A[1;1]/

Replace all occurrences of A[1] with A[1;1] from line 3 to 7 inclusively.

[O]/AX/AY/

Replace all occurrences of AX with AY in the entire function definition.

[30]//R+tO/

Replace line 3 with R (- 20

[06]///

Delete all lines from 6 to last inclusively.

EDITING ACTIVE FUNCTIONS

Any editing of a pendant or suspended function which would change the number or position

of parameters, locals or labels results in either a DEFN ERROR with the change igr:ored,

or SI DAMAGE when the function is closed.

CREATING SEPARATE VERSIONS OF A FUNCTION

If while editing a non-active function, the name of the function is changed by editing the

function header, then upon exit from the editor, all such changes will be reflected in a

user defined function having the new name supplied. The old version of the function will

still exist under the old name. Both function definitions will be available for subsequent

editing.

19980800 B 13-5

TERMINATING THE FUNCTION EDITOR

When the user is satisfied with the function definition he has supplied to the editor, or with

any changes or displays he may have requested, he may indicate termination from the

editor by placing a 'iJ ('del') as the last non-blank character on any input line. Upon success­

ful completion of any request of the input line, exit from the editor occurs and the system

awaits input for immediate execution.

Example:

(system awaiting input for immediate execution)
VD ATE

(system awaiting input for immediate execution)

If, however, the request cannot be accomplished, the appropriate error is issued and exit

from the editor does not occur. Instead an appropriate prompt is issued.

As part of the function exit procedure, the lines of the function definition body are assigned

contiguous integer values starting with one, independent of the ORIGIN setting.

FUNCTION EDITOR ONE-LINERS

For an existing function, the line invoking the editor can specify a one-line addition or

replacement or a display directive, followed by a closing iJ • Thus a single input line can

invoke the editor, direct one task to be done, and cause exit from the editor, with the

system then awaiting input for immediate execution.

Example:

\7 8QUISJ![O] v

(system awaits input for immediate execution)

13-6 19980800 B

SUMMARY

A complete summary of possible input combinations for invoking and using the function

editor are listed below. Note that the character # may be used in place of D in function

editor directives.

To invoke the editor (new function): v < function header> { v }

To invoke the editor (existing function): '\/ <function name> (<line entry> /

<<display directive>~
l <edit directive>)

To enter (or replace) a line: { [<line number> J }<line text>

To display line N: [ND J [v }

To display all lines from N to last: [0 N] { v }

To display the entire function definition: [D] { v }

To display all lines from N to l\11
containing string: [N D M J I <string > I

To edit a line: [NO J I < stringl >I <string2 > i { v}

To edit all lines from N to ::\1: [N 0 M ~ / <stringl > ! <string2 > / ~ v 1

To delete a line: [ND J I I I E v-}

To delete all lines from N to M: [N 0 M] I I I { v }

To exit from the function editor: '\/

19980800 B 13-7

SYSTEM COMMANDS 14

INTRODUCTION

In addition to the APL language, the APL system provides for an additionai method of com­

munication in the form of system commands. System commands complement the facilities

provided in the APL language and allow the user to monitor, vary and protect his process-

ing environment.

SYNTAX

) <command name>- f<parametcl" list>f

The above is the most general syntax of a system command. The valid syntactic form for

a specific command will be stated under the description of that command. Items in the

parameter list are delimited from each other and from the command name by one or more

spaces. Any error in the syntax of the command results in the error report INCORRECT

COMMAND.

DOMAIN

Certain system commands can have numeric parameters. The domain of these parameters

is stated for each such command. Any value not in the required domain results in the error

report INCORRECT COMMAND.

INPUT REQUIREMENTS

System commands will be interpreted as such in any of the following input situations:.

• the system is awaiting input for immediate execution.

• the system is awaiting quad input (quad prompt at left).

In each of these cases, an input line in which the left-most non-space character is a right

parenthesis will be interpreted as a system command.

Although upper case letters are used to form the names of the commands, lower case

letters are accepted as equivalent to upper case in the command name.

19980800 B 14-1

I

Only one system command may be entered on any one input line.

Nothing else in addition to a system command may be entered in an input line.

If the first N letters of the command name are required to uniquely distinguish the command,

the first N or more letters of the name may be used in lieu of the complete name.

CATEGORIES OF SYSTEM COMMANDS

• Listing the active workspace objects.

• Defining and listing functions.

• Erasing global objects.

• Debugging aids.

• Determining and altering workspace environment parameters.

• Altering workspace size.

• Saved workspace facilities.

• Termination of APL session.

• Examining and altering display device parameters.

ACTIVE WORKSPACE

Each currently active user is provided with an environment in which to process his data.

This environment is called the active workspace.

The active workspace is a directly accessible storage allocation sufficient in size to contain

the workspace objects currently defined, the function environments of currently ac~ive

functions, the state indicator, stop lists, and the four environmental parameters: ORIGIN,

DIGITS, FUZZ and SEED.

For APL*ST AR., the size of a workspace is us
0

er specifiable. For APL*ST AR, the maxi­

mum size of an active workspace is installation dependent., but is in the order of 256 pages.

Any attempt to exceed the current capacity of the workspace results in the error report

vVS FULL.

The active workspace has provision for an identification (ID) in the same format as

saved workspaces. (See WORKSPACE IDENTIFICATION.)

14-2 19980800 B

CLEAR COMMAND

syntax:

action:

example:

19980800 B

)CLEAR

• provides an active workspace with the follo-wing:

1. workspace ID empty

2. no objects

3. empty state indicator

4. ORIGIN 1

5. FUZZ lE 10

6. DIGITS 8

7. SEED 48131768981101

8. input mode: awaiting input for immediate execution

9. SIZE 52, 736 (bytes).

• successful completion of the command is indicated by the report

CLEAR WS.

)CLEAR

CLEAR ~IS

14-3

ACTIVE WORKSPACE INVENTORY

A system command listing global object names exists for each kind of workspace object.

VARS COMMAND

syntax:

action:

note:

note:

examples:

14-4

)VARS [<NAME l> [<:NAME 2>}}

lists the names of global variables currently defined in the active

workspace in alphabetic order; in the range NAME 1 to NAME 2

inclusive. If NAME 2 is omitted, all variables following NAME 1

(inclusive) are listed. If no parameters are given, all variables

are listed.

Alphabetic sequence is as follows:

0-9

A-Z

a-z

NAME 1 and/ or NAME 2 need not be defined, referenceable, or of

the same object type as those names being listed.

Tl1b+T_b+b+Ac+rt>+A3+-[2+AJ+-b.5+-8

)VARS
A3 AJ Ac T_b Tllb b rl t.5

H'ARS Tt. b
Tt>b b rl !15 J2

)r'ARS Ab r
Ac T _ b T bib b r l

19980800 B

FNS COMMAND

syntax:

action:

OBS COMMAND

syntax:

action:

LVARS COMMAND

syntax:

action:

GRPS COMMAND

syntax:

action:

GROUPS·

)FNS f <NAME 1 t <NAME 2 > J}

lists the names of user-defined functions currently existing in the

active workspace in. alph~betic order (see)VARSL

)OBS {<NAME 1 >{<NAME 2 ~}}

Lists the names of all types of globa1 objects currently defined

in the active workspace in alphabetic o:r;der, (see)V ARS).

)LV ARS {<NAME 1 >{<NAME 2 >} 3

Lists the names of active workspace variables currently having

a value, in alphabetic order (see)V ARS).

)GRPS { <NAMEl > { <NAME2 > j j

lists the names of group definitions in the active workspace in

alphabetic order (see)VARS).

A group is a named set of potentially existing global workspace objects. It is useful to be

able to reference a package set of defined functions and their global variables as a group

when using)COPY ,)PCOPY and)ERASE (q. v.). A group is defined by a group de­

finition which, when supplied, is itself a workspace object.

A group definition is a named set of identifiers. The name of the set is the name of the

group. The identifiers are names of potentially existing global workspace objects. If and

when a global workspace object exists having a name identical to an identifier in the group

definition, it is a member of the defined group. A group definition is supplied using the

)GROUP command.

19980800 B 14-5

GROUP: COMMAND

syntax:)GROUP <group name> <identifier list>

action: creates a group definition.

error report: NOT GROUPED - NAME IN USE.

The group name is the same as the name of an existing function or global variable.

REFERENCING GROUPS

When a reference is made to a group via the)COPY ,)PCOPY or)ERASE commands,

reference is made initially to the group definition in the indicated workspace, and addition­

ally to all existing global objects in that workspace referenced by identifiers in the identi­

fier list. Such objects are said to referents of the corresponding identifiers.

example: X+Y+Z+T+'DATA'

)GROUP G1 x y G2

)GROUP G2 z T

)SAVE WS

74/09/03 13:47:06

)CLEAR

CLEAR ws

)COPY ws G1

SAVED 74/09/03 13:47:06

ALTERING A GROUP DEFINITION

(a) Any general change in a group definition.

)GRPS

G1 G2

)VARS

x y

)GRP G2

Z T

(note group definition G 2
is copied as it is a
referent of Gl, but
Z, T, the referents of G2
are not copied)

Merely issue a new)GROUP command using the same group name with an

appropriate identifier list reflecting the new grouping desired.

14-6

)GROUP X A B C

)GROUP X P Q

)GRP X

p Q

19980800 B

(b) Dispersing a group.

)GROUP < group name>

If a group command consists solely of a group name, it implies an empty identifier

list, and thus a group with no defined members. This causes any previous group

definition by that name to be destroyed, and no new one to be formed.

DISPLAYING A GROUP DEFINITION

A group definition can be displayed via the)GRP command.

GRP Command

syntax:

action:

error report:

example:

)GRP <group name> { < NAl\!1El > { <NAME2 >] }

the identifier list of the group definition is displayed in alphabetic

order (see)VARS).

OBJECT NOT FOUND

<identifier list >

indicates a group definition could not be found in the active work­

space with a name identical to the identifier listed.

)GROUP X A C F B Z

)GRP X

A B

)GRP X B M

B c

c

F

F z

GENERAL NOTES ON REFERENCING GROUPS

1.)COPY and)PCOPY references to groups refer to the group definition and group

members existing in the workspace being copied.

2. If)PCOPY is used to copy a group and a global object in the active workspace has

the same name as the referenced group in the workspace being copied, no copying

using that group name can occur.

3.)ERASE reference to a gro.up refers to the group definition and existing group

members in the active workspace.

4. · Creation, -iriodifiC'aTion;-·arnpTa)n:ina-dY-speFSing-of·groups- carr occur-only· in the

active workspace and only reference the group definitionJ not its members.

19980800 B 14-7

ENVIRONMENTAL PARAMETERS

In all environmental parameter commands, if no parameter value is supplied, the para­

meter is left unchanged. The previous value is always reported.

ORIGIN COMMAND

syntax:

action:

note:

example:
1

1

0

DIGITS COMMAND

syntax:

action:

consequence:

note:

example:

14-8

)ORIGIN -f ~ t
• ORIGIN is set to the value s11pplied.

• The previous value of ORIGIN is reported.

) CLEAR sets ORIGIN to 1.

)ORIGII.T

)ORIGil! 0

)ORIGI!.1

)DIGITS {<integer>] 1 ~Integer~ 13

• DIGITS is set to the value specified.

• The previous value of DIGITS is reported.

DIGITS is used in numeric element formatting in formatting output

displays and by the format primitive function (see Displaying Data.)

DIGITS is the maximum number of significant digits that can

appear in a numeric element representation display.

)CLEAR sets DIGITS to 8.

)DIGITS
8

)DIGITS 12
8

)DIGI::'S
12

19980800 B

SEED COMMAND

syntax:)SEED f <integer>} 1 < integer< 2*47

action: • SEED is set to the integer specified

• The previous value of SEED is reported.

PY::amnlP~· --------L- - - - ...)SEED

4.8131769E13

)SEED 129653

4.8131769E13

)SEED

129653

note:)CLEAR sets SEED to 48131768981101

Valid Settings for SEED

The randomness of generated numbers is very dependent on the setting of SEED. Good

randomness is achieved by numbers whose binary representation contains a fairly even

distribution of ones and zeros.

Zero, powers of 2 and small numbers should not be used.

When to set SEED

While debugging an APL program that uses the primitive functions Roll or Deal it is highly

desirable that the same sequence of random numbers be generated on- each test, so that

successive sets of results may be readily compared. This can be accomplished by reset­

ting the SEED to the same value prior to each test.

An alternative procedure would be to)SAVE the workspace prior to each test; then

)LOAD the saved workspace after execution and evaluation of each test, but prior to

modifying any functions or test data.

19980800 B 14-9

FUZZ COMMAND

syntax:)FUZZ £ N } 0 s N < 1

action: FUZZ is set to the value supplied.

The previous value .of FUZZ is reported.

note:)CLEAR sets FUZZ to lE-10

ALTERING WORKSPACE SIZE

Although the workspace at all times has a fixed capacity for storage, the user is able to

alter this size at any time that he feels the current size is inappropriate. He may reduce

it to exactly match the amount he has in use, or expand it to the maximum size for which

he is authorized.

SIZE COMMAND

syntax:

action:

error reports:

14-10

)SIZE {NJ

where N is the number of bytes of capacity desired

The workspace size is set to 16xrNf16 bytes.

The previous size is reported.

WS FULL - N is less than the amount of storage currently in useo

DOMAIN ERROR

N is greater than the maximum amount for which this user is

authorized.

19980800 B

ERASING GLOBAL OBJECTS

ERASE COMMAND

syntax:

action:

error report:

example:

19980800 B

)ERASE <Object name list>

Global objects having names corresponding to those in the object

name list are erased from the active workspace.

If a name in the object list is a group name for which there is

a group defin~tion in the active workspace, then in addition to

erasing the group definition, all referents in the group definition

are erased. If one of the referents is another group definition,

it is dispersed.

If a referenced object cannot be found no message is reported,

since this is the desired result upon completing the command.

SI DAMAGE

Active user-defined function was erased.

)VARS

V1 V2 V3

)FNS

F1 F2 F3

)ERASE V1 F2

)VARS

V2

)FNS

F1

14-11

DEFINING AND LISTING FUNCTIONS

In addition to using the function editor, functions can be created using the DEFINE

command and can subsequently be displayed via the DISPLAY command.

DEFINE COMMAND

syntax:

domain:

conformability:

definition:

14-12

)DEFINE <VARIABLE NAME.>

Let the variable name be B. Then the following constraints must

be satisfied:

B must be list.

All elements of B must be imbedded character vectors.

(ppB)=:!.

(pB)=N+1 (

N?.O, JIJ:S65534 ~
l

(ppB[I])=1 t
(pB[I]):S65535 J

where N is the number of body lines
in the function represented

for all

The first element of B must represent a legal function header,

starting with a 'v· 1
o Subsequent elements of B must represent.

legal function body lines.

If B represents a legal function, the function is defined as a

global object, replacing any existing function of the same name.

If the function is suspended or pendant, definition proceeds only

if the local environments of all suspended and pendant calls are

still valid under the new definition. An exception to this rule

concerns label values. If an existing labeled line occupies a

different position in the new definition, definition still proceeds

even though the value of the label is not.updated- in the local en­

vironments of suspended or pendant calls.

19980800 B

error reports:

DISPLAY COMMAND

syntax:

range:

result shape:

definition:

error reports:

19980800 B

DEFN ERROR

a) The named variable did not represent a legal function.

b) The function represented by the named variable has a

different local environment from that of a suspended or

pendant function of the same name.

B is not the name of a defined variable.

)DISPLAY <FUNCTION NAME> {<VARIABLE NAME> J

Let the name of the variable specified be R. Then the following

rules apply to the result R.

R is a list

All elements of R are imbedded character vectors.

(ppR)=1

(pR) :::!'J+ ~ where N is the number of body lines
in the function represented

for all IE 1 p F

The first element of R is a character representation of the

function header in canonical form,, starting with a 'V_'•
Subsequent elements of R are a character representation of the

body lines of the function in canonical form •. Lines with labels

are preceded by one blank. Lines without labels are preceded

by two blanks. Comments are preceded by four blanks.

If no variable name is given,, the displ_ay of the function is

reported.

DEFN ERROR

The function name is not an unlocked function

INCORRECT COMMAND

The variable name is neither undefined nor the name of a

currently defined variable.

14-13

example:

14-14

LIST1+(c'VR+A PUN3 B'),(c 1 R+A+2xB'),c'F:+RrB*2'

)DEFINE :018::11

)DISPLAY FU;.";-3

R+-4 +2 xi3

R+PrB*2

)Vil.PS

LIST1

)F.VS

PUN3

19980800 B

DEBUGGING AIDS

Si COMMAND

syntax:

action:

note:

19980800 B

)SI

The)SI command produces a display of the State Indicator. a list

of all the function calls that are currently active, displayeu in

reverse order to the sequence of the calls~ i.e., the most deeply

nested call in the current sequence is at the top of the list.

The line on which the function is pendant or suspended is placed in

brackets after the function name. Function calls that are suspended

are flagged with an asterisk (':').

Although not generally advisable, it is possible to initiate an

additional calling sequence after a current sequence is suspended.

If this is done,. the state indicator will reflect the complete status

of all such stacked suspended calling sequences, the most current

listed first.

Each issuing of a niladic branch will remove the local environments

of the most current calling sequence, and remove the correspond­

ing entries in the state indicator up to the next suspended function.

Thus in order to completely clear the state indicator, it is neces­

sary to is sue as many niladic branches as there are asterisks

(suspensions) in the state indicator.

(See examples on next page.)

14-15

examples:

14-16

LIST1+(c'VR+A FUN1 B,Z'),c 1 R+A+FUN2 P~

)DEFINE LIST1

)DISPLAY FUN1

VR+A FUN1 B; Z

R+A+FUN2 B

LIST2+(c 1 VR+FUN2 C 1) , c 1 + P.THIS LINE IS ilRONG'

)DEFINE LIST2

)DISPLAY FUN2

'i/R+FUH2 C

+ATHIS LINE IS ~!RONG

2 FUN1 3

SYNTAX ERROR

FU!l2[1] $: + A~T'dIS LINE IS ~!RONG

)SI

FUN2[1] *

FUN1[1]

4 FUN1

SYNTAX ERROR

FUN2[1] $: +

)SI

FUN2[1] *

FUN1[1]

FUN2[1] *

FUN1[1]

~

)SI

FUN2[1] *

FUN1[1]

~

)SI

(blank)

5

Indicates FUN2 is suspended on line 1.

Indicates FUNl is pendant on line 1.

r>.THIS LINE IS ~!RONG

}
}

J

Second suspended calling sequence.

First suspended calling sequence.

First suspended calling sequence (environment
of second sequence is removed from the work­
space).

State indicator is empty.

19980800 B

SIV COMMAND

syntax:

action:

ex~mple:

19980800 B

)SIV

The action of SIV is similar to SI, but in addition to providing the

function call names and line numbers, the local variables (including

labels, arguments, and result) for each function call are listed.

using tbe same functions as the example in)SI :

2 PUN1 3

FUN2[1] f: + ATHIS LINE IS }mane

)SIV

PUN2[1] *

c Note: not the same variable

PUN1[1]

A

)VARS

Note: no global variables

A

2

3

R No value has been assigned to the
result variable for FUN2

VALUE ERROR

$: R

14-17

STOP COMMAND

The STOP command provides a useful debugging tool for allowing examination of the function

environment at strategic points in the function.

syntax:

action:

consequence:

notes:

)STOP <function name> {<function line numbers (stop list)>}

• The line numbers in the stop list are added to previously set line stops

(if any).

• The function is modified so that it will be suspended prior to starting

execution of the lines specified.

If during subsequent execution of the named function a stop-designat­

ed line is encountered for execution, suspension of the function

occurs on that line prior to its execution.

The function name followed by the line number in brackets is output,

followed by a request for input for immediate execution.

• The line numbers need not be in order in the stop list.

• If line 1 appears in the stop list, suspension occurs initially

before any lines of the function are executed. In this case, all

local variables are undefined except for the arguments. However,

any masking of the global environment will have taken place.

• If line 0 appears in the stop list. suspension occurs

immediately prior to exit of the function. The environ­

ment of the function is still in effect at this point. Exe­

cution is resumed by +O.

• Issuing a new STOP command for the same_function causes

the new stop list to supersede the old one.

• Complete removal of stop control for a function is provided by

issuing a STOP command for the function with an empty stop list:

)STOP <function name>

error reports: INCORRECT COMMAND

Named object is not an unlocked function.

14-18 19980800 B

examples:

19980800 B

LIST1+(c'VR+A FUN3 B'),(c'R+A+2xB'),c'R+RrB*2'

)DEFINE LIST1

)DISPLAY FUN3

'i!R+A FUN3 B

R+A+2xB

R+RrB*2

)STOP FUN3

5 FUN3 3

FUN3[2]

)SI

FUN3[2] *

A

5

B

3

R

11

-+-2

11

)SI

)STOP FUN3

5 E'UN3 3

11

2

14-19

SAVED WORKSPACES

Each APL user is provided with facilities for preserving his user environment (the active

workspace) at any point in a session as a saved workspace. This allows him to subsequent­

ly reinstate that workspace as the active one, thus reestablishing the environment exactly

as it was when saved.

A user may maintain as many saved workspaces as he wishes. Each stored workspace has

a workspace identification (ID) by which it can be referenced. Facilities exist for updating

or deleting individual workspaces and for incorporating specified objects or groups from

saved workspaces into the currently active one.

In addition, the user is provided with a security of access to, and erasure or modification

of, his saved workspaces by a password and user key facility.

WORKSPACE IDENTIFICATION

<workspace ID> : = <workspace name> {:<password>]

Every workspace has an identification (ID) consisting of:

• a workspace name.

• an optional password.

The workspace name is formed according to the same rules as apply to an identifier, but in

addition is restricted to the character set and number of characters allowed by the host

operating system.

In this system, the name can be up to 7 characters long and cannot include the characters l.

and ~ • The password is formed according to the same rules as apply to an identifier.

Defaults

If the workspace ID is omitted in a command which references a workspace, the workspace

ID defaults to that of the currently active workspace.

If the password is omitted, it defaults to no pas sword.

No default is allowed for COPY, PCOPY or DROP.

14-20 19980800 B

Reports

Several commands report workspace ID' s. In such cases, the following rules are used:

• The password (if any) is never reported.

• If there is no workspace ID, it is reported as CLEAR WS.

• The timestamp (if any) is reported as:

lPl/,YY /MM/DD\6HH:MM:SSlt>

, If the workspace has no timestamp, a blank timestamp field is reported.

If a workspace ID was not supplied with the command, the active workspace ID

is reported following the timestamp.

19980800 B 14-21

SAVE COMMAND

syntax:

action:

error reports:

consequences:

14-""22

)SAVE {<workspace>}

• A saved workspace identical to the currently active workspace

is created.

• The active and saved workspaces are designated with the work­

space ID supplied and with a current timestamp.

• A defaulted password causes the password on the active work­

space to be used.

• Any previous saved workspace bearing the ID of the newly

saved one is dropped, if this is allowed.

• Upon succesful completion of the command; the following is

reported:

•

< TIMESTAMP> {<WSID>}

WS LOAD ONLY

An attempt was made to save this workspace in another user's

library.

e NOT SAVED - THIS WS IS <active workspace ID>

•

An attempt was made to SAVE a workspace under an ID or a

currently existing library workspace while the active work­

space ID was different. (This protects one from inadvertently

overwriting a saved workspaceo o o. If such action is intended,

precede the SAVE command with a)WSID command (qo v.)

supplying the ID desired.)

NOT SAVED - THIS WS IS CLEAR WS

)SAVE with no parameters was issued with an active workspace

having no workspace ID.

• If a SAVED workspace ID includes a password, subsequent

referencing of the workspace must include the password.

19980800 B

examples:

X+3

)SAVE XIS3

74/03/09 15:37:04 XIS3

)SAVE}

- •• ,_._ ,,.. " .Ar' - "'"" - "',....

l'+/V;:)/U':::J .i.;:,;01;4;:;

)SAY?. XIS3: Y

74/03/09 15:37:42

)CLE.4R

CLEAR v!S

Y+1+X+3

)S.4 VE

NOT SAVED - THIS Y!S

)EAVE XIS3

NOT SAVED - THIS f<fS

HlSID XIS3

CLEAR ~lS

)SAVE

74/03/09 15:38:23

19980800 B

IS CLEAR

IS CLEAR

'YlS

T.7 C' rri..;

(save as workspace named_XIS3
and set WSID to same)

(resave under same name)

(resave with password)

(cannot save as CLEAR WS)

(XIS3 already exists)

(declare WS 'XIS3')

14-23

LOAD COMMAND

syntax:

action:

error reports:

)LOAD f <workspace ID>}

• A search is made for a workspace with workspace name as

indicated.

• If the workspace is found and includes a password in its ID,

a check is made for a match with the password suppliedo

• The indicated workspace is loaded as the active workspace,

replacing the previous environment of the active workspace.

• The active workspace ID becomes the ID of the loaded work­

space.

• Upon successful completion of the command, the following

is reported:

SAVED < TIMEST AMP> { WSID > J

e WS NOT FOUND { < WSID > J

no workspace by that name.

e WS LOCKED

password does not match.

e WS NOT LOCKED

password given for unlocked workspa.ce.

STATE OF SAVED WORKSPACES

A workspace is always saved in the state which exists at the time of the save. When the

workspace is subsequently loaded, it is loaded in that state.

14-24 19980800 B

examples:

X+3

)SAVE XIS3

74/03/09 15:44:59

)CLEAR

CLEA.R YS

)VARS

)LOAD XIS3

SAVED 74/03/09 15:44:59

)VARS

x

x

3

X+2

)LOAD

SAVED 74/03/09 15:44:59 XIS3

x

3

)LOAD XIS3 :PQR

'f.!S NOT LOCKED

)SAVE XIS3 :ABC

74/03/09 15:47:04

)LOAD XIS4

ws NOT POUND

)LOAD XIS3

ws LOCKED

)LOAD XIS3 :PQR

ws LO~KED

19980800 B 14-25

COPY COMMAND

syntax:

action:

note:

error reports:

14-26

)COPY <workspace ID> { < object list> }

A search is made for the workspace indicated as for)LOAD.

If found, the specified objects are searched for in the workspace

global environment and, if found, copied into the active work­

space, replacing any existing global object in the active work­

space having the same name.

If a specified object is found to be a group definition in the refer­

enced workspace, then in addition to copying the group definition,

all referents in the group definition are copied.

If no object list is provided, all global objects in the referenced

workspace are copied.

Successful completion of the command results in the report:

SAVED < TIMESTAMP > {< WSID>}

Only global objects are copied. The function local environments,

state indicator, stop lists and environmental parameters cannot be

copied, and those in the active workspace are undisturbed.

WS NOT FOUND

as for LOAD

WS LOCKED, WS NOT LOCKED

OBJECT? NOT FOUND

< identifier list >

the objects reported in< identifier list> could not be· found

in the referenced workspace.

SI DAMAGE

an active user-defined function was erased.

19980800 B

examples:

19980800 B

X+3
Y+7
)SAVE XIS3

74/09/03 15:43:27
X+2
Y+S
)COPY XIS3

SAVED 74/09/03 15:43:27
X,Y

3 7

X+2
Y+S
)COPY XIS3 Y

SAVED 74/09/03 15:43:27
X,Y

(copy all global objects)

(X, Y restored)

(copy Y only)

2 7 (Y only restored)

)GROUP GRP1 X Y A
)SAVE

74/09/03 15:44:03 XIS3
)CLEAR

CLEAR WS
) COPY XIS3 GRP1

SA VE D 7 4 I O 9 / O 3 15 : 4 4 : 0 3
)VARS
x y
)GBPS
GRP1
)GRP GRP1
A X Y

)COPY XIS3 A
OBJECT NOT FOUND
A
SAVED 74/09/03 15:44:03

(create group GRPl)

(copy· GRPl)

(copied as existing referent of GRPl)·

(A is a referent but does not exist)

14-27

PCOPY COMMAND

syntax:

action:

error reports:

examples:

14-28

)PCOPY < workspace ID> { < object list> j

Action is identical to COPY except that objects whose names are

identical to the names of objects in the active global workspace

are not copied, thus protecting the objects already there.

WS NOT FOUND - as for LOAD

OBJECTS NOT FOUND - as for COPY

< identifier list >

note that objects which would have been prevented from

being copied if found, are nonetheless reported if not found.

OBJECTS NOT COPIED

< identifier list >

the objects in< identifier list> had the same names as

existing global objects in the active workspace.

X+3

Y+4

)SAVE XIS3

74/09/03 15:51:17

X+2

)ERASE y

)PCOPY XIS3 x y z

OBJECTS NOT FOUND

z

OBJECTS NOT COPIED

x

SAVED 74/09/03 15:51:17

)VARS

x y

X,Y

2 4

(protect copy all global

objects in XIS3)

(Z not in saved XIS3)

(X is not copied since

it exists in active WS)

(Y is copied,

X is preserved)

19980800 B

DROP COMMAND

syntax:

action:

)DROP <workspace ID>

• A search is made for a workspace with the specified name,

as for)LOAD.

• If found, the workspace is removed, if this is allowed.

• The date and time when dropped are displayed to indicate

successful execution of this command.

error reports: as for)LOAD

e WS LOAD ONLY

An attempt was made to drop this workspace.

)SAVE XIS3

74/03/09 16:01:14

)WAD

(create it)

(time stamp)

(load it)

SAVED 74/03/09 16:01:14 XIS3 (time saved)

)DP.OP XT83:PQR

v!S NOT LOCKED

)DROP XI83

73/03/09 16:01:37

)LOAD XIS3

'flS NOT FOUND

)SA VE XIS3 :ABC

74/03/09 1~:01:58

)DROP XIS3

WS LOCKED

19980800 B

)DROP XIS3 :ABC

74/03/09 16:02:11

(drop it)

(time dropped)

(XIS3 no longer exists)

14-29

WSID COMMAND

syntax:

action:

note:

example:

14-30

)WSID {<workspace ID>}

(a) No parameters provided. The active workspace timestamp

and ID are reported.

an empty ID is reported as CLEAR WS; this does not necessarily

mean a CLEAR workspace.

(b) If a workspace ID is provided,, it becomes the ID of the active

workspaceo The active workspace timestamp and previous ID

are reported.

)~/SID

X+3

)SA VE XIS3

74/03/09 16:12:42

)T!SID

CLEAR WS

CLEAR ~1S

74/G3/09 16:12:42 XIS3

X+4

H!SID XIS4

74/03/Qg 16:12:42 XIS3

)SAVE XIS3

NOT SAVED - THIS FS IS X.UJl+

)WSID XIS3

74/03/09 16:12:42 XIS4

H/SID

·1 4 / O 3 / O 9 16 : 12 : 4 2 XIS 3

)SAVE

74/03/09 16:13:2~ XIS3

)WSID

74/03/09 16:13:23 XIS3

(note no timestamp)

(but not CLEAR !)

(XIS3 saved)

(protects previous XIS3)

(now XIS3 can be updated)

(update XIS3)

(new timestamp)

19980800 B

DiSPLA Y DEVICE PARAMETERS

The tvm display device parameters maintain their settings, unless specifically altered,

for the entire APL session. They are WIDTH and LINESo Default settings are assigned

at the start of a session based on the declared terminal type (including batch). These

parameters do not reside in the active workspace, and thus are not contained in saved

workspaces.

WIDTH COMMAND

action:

consequence:

default '.'alue:

LINES COMMAND

action:

19980800 B

)WIDTH [<integer>] 30 <integer ~ 65535

• WIDTH is set to the value supplied.

• The previous value of WIDTH is reported.

Until again changed later in the session, all displayed output will

be formatted in lines not exceeding WIDTH characters in width.

Data which otherwise would appear on the same line will be con­

tinued on the following line or lines. The line continuation format

for the declared display device will be used.

See appendix D for default values for specific terminals.

)LINES {<integer>}

• LINES is set to the value supplied.

• The previous value of LINES_ is reported.

14-31_

consequence:

note:

default value:

14-32

If the setting of LINES is non-zero, output is displayed on the

output device in "pages" LINES lines long. At the end of each

"page ", the display will halt and request go-ahead according to

the device type. This consists of a request for input with a

'MORE??' at the left margin. Any input other than '$A. 1 will

then cause the display to continue. The last such "page" does

not request go-ahead, as the display is complete. Neither does

"fill" to the end of the page occur. If the setting of LINES is

zero, no paging occurs.

The remainder of the display is aborted by signalling ATTENTION.

The default setting of lines will be equal to the line capacity of the

display less 2 (to allow for the prompt line and input line).

The most usual non-default setting of LINES is zero which causes

continuous scrolling of output without halts for the entire display.

Zero is the default setting for all hard copy terminals.

See appendix D for default values.

19980800 B

EXTERNAL FILE INTERFACE

At the moment, only two commands are available to interface to files external to APL.

One command performs input, and the other performs outputo

INPUT COMMAND

syntax:

action:

OUTPUT COMMAND

syntax:

action:

19980800 B

)INPUT < FILENAME>

All input is subsequently taken from the named file. The file is

assumed to be a standard ASCII fileo When the end of the file is

reached, input is again accepted from the terminal.

)OUTPUT <FILENAME>

A log of the entire session is placed on the named file in standard

ASCII format, in a form suitable for printing.

Each OUTPUT command purges the previous contents of the named

file.

The log will be formatted according to the WIDTH and LINES

values for the output device and cannot be altered. Responses

to)WIDTH and)LINES in the log will however be those values in

force at the time issued.

14-33

TERMINATING AN APL SESSION

SYSTEM COMMAND

syntax:

action:

14-34

)SYSTEM

The session is terminated,, the active workspace is destroyed,,

and the user is returned to the system from which APL was

called.

19980800 B

ACCESS TO APL*STAR ON STAR OS

1. Establish user identity by a LOGON line.

2. Initiate execution of APL'1~ST AR by entering the name of the file containing

the APL interpretera The system responds wiLh:

APL~:~sTAR Vl.1

At this point the user is in direct communication with the APL* ST AR system.

19980800 B

A

I

A-1

COMMUNICATING APL CHARACTERS

METHODS

The APL characters are summarized in Table B-1. Communicating these characters

between a terminal (or batch input and output device) and the APL*STAR System is

achieved in one or more of the following ways:

1. Terminal keys corresponding to APL characters communicate those characters

when struck.

2. Specific terminals may have a certain key defined as a substitute for a certain

APL character and convey that character when depressed. Such particulars are

listed under the appropriate section of supported terminals.

3. On non-destructive display terminals (i.e., hard copy or storage tube) which are

equipped with a backspace key, certain APL characters may be communicated by

overstriking (explained below).

4. A scheme of three character mnemonics exists for conveying any desired APL

character and can be used on any terminal or batch I/O device.

Output displays will, for each required character, utilize one of the above methods,

according to device capabilities, in the preferred order as listed.

OVERSTRIKES

B

On terminals with a non-destructive overstrike, such as hard copy or storage tube terminals,

repositioning to the line position of a previously keyed character and keying a second non­

blank key (called overstriking) creates a compositely formed display graphic. If this

graphic is a reasonable facsimile o:Z the symbol for an APL character, that character is

conveyed; otherwise the character is illegal, and 1s converted to the canonical 'bad'

character, Note that underscored alphabetics and u.nderscored D. (delta) are equivalent

symbols for lower case alphabetics and S respectively and may be formed by overstriking.

On terminals with a standard APL keyboard, all but a very few special characters can be

conveyed by direct keying or overstriking.

19980800 A B-1

Note that as a consequence of the Visual Fidelity criterion, the keying sequence used in

forming overstrikes is immaterial. Also, repeated overstriking the same key in the same

line positon still conveys the same character. Overstriking with the space bar does not

change the character conveyed.

MNEMONICS

On terminals not equipped with a standard APL keyboard, and as an alternative for any

type of terminal, desired APL characters can be conveyed by means of mnemonics.

Mnemonics exist for the entire APL character set except for the following 46 characters

which are standard on any terminal!

A ••• Z O ••• 9 + * I and space

Further, there are no mnemonics for backspace, return, or any other non-graphic

characters.

All mnemonics are formed by a three-character combination consisting of a dollar sign

($) followed by two upper case alphabetic characters. The $ character acts as a flag

character and conveys that it along with the following two characters are to be treated as

a group which compositely represents a single APL character. The $ character is

standard on all terminals except some of those with APL keyboards. An overstrike com­

bination exists to convey the $ character in this case. If the $ character itself is desired

as a literal character, the mnemonic for dollar sign can be used.

Also, a dollar sign is considered literal if it is not followed by an upper case alphabetic

(e.g., '$1. 50').

The two upper case alphabetic characters following the $ character have been chosen by

the following scheme to aid in remembering them:

B-2

• Lower case Roman alphabetic characters are conveyed by the double appearance of

the corresponding upper case character.

• If the APL character is used only as a character and not as a primitive function

designator the two characters are an abbrevi~tion for the n~mc of the symbol.

• If the APL character is used as a primitive function designator, but is a character

which has a generally known name, the two characters are an abbreviation for the

name of the symbol.

19980800 A

•

•

If the APL character is used as a primitive function designator and is a character

for which no name exists, or which is not vvidely knovrn, the hvo characters are an

abbreviation for the name of the primitive function. If the function is known by

more than one name, an abbreviation of the most frequently used name is choseno

For those APL primitives for which an alternate APL character exists, implicitly

indicating 'first' for the indicated ordinal processing of the right argument, the two

characters used are obtained from the two characters used in the mnemonic for the

APL character which represents the standard form of the function call, replacing

the second character by the next higher in the alphabet.

For the convenience of users on terminals in which lower case is the normal alphabetic

mode, lower case letters are accepted as equivalent to upper case in the mnemonic letter

pairo

The complete set of APL character mnemonics is listed in Table B-1.

COMPATIBILITY

It should be noted that, no matter how APL characters are communicated from whatever

type of terminal, the APL system converts each APL character representation to a

standard internal representation for processing. SAVE'd workspaces are also stored in

this format.

This means that workspaces created while on one type of terminal may subsequently be

loaded while on a different terminal type. Compatibility of workspace contents is thus

ensured for users of all terminal types.

19980800 A B-3

TABLE B-1. APL CHARACTER SET

Graphic Mnemonic Meaning Graphic Mnemonic Meaning

? $QU QUery A (upper case
thru alphabetics)

w $OM OMega z

E $EP EPsilon (\ (d) $AA (lower case
thru thru alphabetics)

p $RO RhO z rn) $ZZ

$TL TiLde 0 (numerics)
thru

t $TA TAke 9

"' $DR DR op (space)

$IO I Ota

0 $CI Circle " (..) $DQ Double Quote

q, $RT RoTate - (..... ') $NG NeG

e $RU (reverse indexed < $LT Less Than
rotate)

~ $TP TransPose ~ $LE Less than or
Equal

* asterisk = EQual

e $LG LoG ;::: $GE Greater than or
Equal

-+ $GO GO to > $GT Greater Than

+ $IS IS ~ $NE Not Equal

v $OR OR

a $AL ALpha ¥ $NR NoR

r $MX MaX " $AN ANd

L $MN MiN "" $ND NanD

$UL Under Line minus

'i/ $DL DeL + plus
,.,

$LD Locked Del .. $DV DiVide

v $1JG lJownGrade Lil $XD matriX Divide

/j, $DT Del Ta x $ML MuLtiply

S(Q) $DU Delia Underscored
(lower case delta)

~ $UG UpGrade

B-4 19980800 A

TABLE B-1. APL CHA.RACTER SET (Cont'd)

Graphic :'.\1nemonic Meaning Graphic l'v1nernonic :\leaning

0 $NL NuLl i $NM :NuMber sign

$QT QuoTe :? ($) $00 OOllar sign

$EX EXclamation mark I" $PC Pere ent sign ,J

D $QD QuaD & $AM Ampersand

[!] SQP Quad-Prime u $AT AT sign

paren (left parenthesis) { $LB Left Brace

close (right parenthesis) } $RB Right Brace

[$OB Open Bracket (sub) ¢ $CT CenT sign

J $CB Close Bracket (bus) 0 $DM DiaMond

-i $RK Right tacK

c $ID ImbeD r $LK Left tacK

:::> $IN INclusion ' $GV Gra Ve accent

n $IX lnterseXion !. $EV EValuate

A $LP LamB • $FM For Mat

u $UN UN ion 'i $CN (reverse indexed
comma)

.l $BV Base Value

T $RP RePresentation

I $IB I-Beam Special Characters:

I < l) $MD MoDulus (D) $G. (quad-prime
escape)

$SC SemiColon

$CL CoLon $BC (canonical
bad character)

\ $BS BackSlash
$: (error marker)

' $BT (reverse indexed
backslash)

$A. (output escape) comma

dot $CO (continuation I character)
I slash

f $SM ... -<x.exer .s_e_ .. in..ciex~_q
slash)

19980800 B B-5

NUMERIC REPRESENTATION ON STAR COMPUTERS C

• An exact representation for zero exists.

• The sum of any selection from any 47 consecutive terms of the power series of 2

2*C28672 ••• -1 o 1 ••• 28717)

in which at least one term is greater than or equal to 2*-28626 can be re­

presented exactly.

• The negation of any such number except 2;'< -28626 can be represented exactly.

In addition the negation of 2*28718 can be represented exactly.

• Any number outside this range cannot be represented and is not in the domain of

definition or result range of any numeric APL function.

• Any number within the range

(-((2*-28626)+2*-28672)), (2*-28626)

is approximated by the representation for zero by all numeric APL functions.

• All other real numbers will be represented by the exact representation of the

approximation to the desired value obtained by summing the 47 most significant

terms of the value expressed as a power series of 2.

19980800 A C-1

TERMINAL CAPABILITIES OF APL *STAR

DISPLAY-EDIT STATION

• WIDTH 63

• LINES 15

0 Local line editing facilities:

backspace

forward space

clear line

destructive overstrike

deletion of everything above and to right of cursor.

• Quad prime input does not cause input to be formed by the catenation of the

previous quad prime output and the input typed by the user. (Device does

not support output followed by input on the same line.)

e Signalling ATTENTION

19980800 A

input - not needed (see local line editing facilities).

output/execution - send© 0 5 I

Note: The actual control character used is installation

dependent.

in response to MORE? ? message - send $A.

D

D-1

CARD READER FILE (accessed through INPUT command)

• Quad prime input does not cause input to be formed by the catenation of the pI e­

vious quad prime output and the input typed by the user. (Device is not output

device.)

• Local line editing facilities:

APL does not support use of ESC control character to replace three

or more contiguous blank characters.

• No overstrike capability.

e Signalling ATTENTION not possible.

PRINTER FILE (accessed through OUTPUT command)

• WIDTH 135

• LINES 0

• No overstrike capability •

D-2 19980800 A

Aborting execution and output 11-8

Absolute FUZZ 5-11

ABSOLTTTE VALUE 7-5

Active function 12-5

Active workspace 14-2

ADDITION 7-8

AND 7-17

APL - the language 1-1

APL*ST AR system 1-2

Arccos 7-14

Arccosh 7-14

Arcsinh 7-14

Arctan 7-14

Arctanh 7-14

Arguments 1-1

Arrays 2-1

BASE VALVE 9-10

Body of function definition 12-1

BOOLEAN FUNCTIONS 7-17

Boolean numbers 5-4

BRANCH

monadic 12-3

niladic 12-3

Canonical Ravel 2-1

Canonical form for expressions 10-6

Canonical bad character B-1

CATENATE 6-11

CEILING 7-5

Character set B-4

Characteristic Data Type 2-2

CIRCLE

dyadic 7-14

monadic: PI TIMES 7-5

··~AR eomman&· · 18-3

19980800 B

INDEX

CLEAR WS 13-19

COLON (use with labels) 12-4
Combination 7-8

Comments 11-10

Composite data displays 4-6

Composite functions 8-1

COMPRESS 6-18

Conformability

singular 5-4

dual 5-4

overriding rules 5-5

Coordinates 2-1

COPY Command 14-26

Cosh 7-14

Cosine 7-14

Data 2-1

Data types 2-2

DEAL: dyadic QUERY 9-5

DEPTH ERROR 10-4

Decimal form 4- 2

DEFINE command 13-10

Defined (by user) functions 12-1

DEFN ERROR 13-11

Diagonal 6-26

DIGITS 4-2

Displaying

composite data 4-7

data 4-1

expressions 10-6

numeric data 4-4

DISPLAY command 13-11

DIVIDE 7-3, 7-9

Domain (def'n) 5-2

DOMAIN EftRffit··~···i6'""2

Index 1

DROP 6-16

DROP command 13-24

Dyadic (def'n) 5-2

Element of an array 2-1

Empty (def'n) 2-2

Entering input 11-9

Environment of an active function

global 12-5

local 12-5

EPSILON (dyadic): MEMBERSHIP 9-4

EQUAL 7-15

ERASE command 13-9

Error detection sequence 10-2

Error Recovery 10-5

EXPAND 6-20

EXPONENTIAL 7-3

Exponential form 4-3

EXPONENTIATION (dyadic POWER) 7-11

Expressions

conversion to internal form 10-1

di splaying 10 - 6

error detection sequence 10-2

input format 10 -1

literal 3-1

order of evaluation of 10-2

use of parentheses in 10 -1

use of spaces in 10-1

EVALUATE

F,ACTORIAL

Fill element

FLOOR 7-4

9-12

7-6

6-1

FNS command 13-5

FORMAT 9-18

numeric elements 4-2

numeric data 4-4

Index 2

Function

body 12-1

call 12-2

definition 12-1

execution 12-2

header 12-1

nested calls 12-6

primitive 5-1

user-defined 12-1

Function Editor 13-1

Display Directives 13 -3

Editing Directives 13-5

Invoking the 13 -1

Summary 13-7

Terminating the 13-6

FUZZ

relative, with relationals 5-9

absolute 5-11

FUZZ command 13-8

Gamma function 7-6

Global environment 12-6

Global object 12-6

Global variable 12-6

GRADE DOWN 9-7
GRADE UP 9-6

GREATER THAN 7-16

GREATER THAN OR EQUAL 7-16

Groups

14-6

14-6

GROUP Command

Group Definition

Altering 14-6

Displaying 14-7

GRP Command 14-6

Referenr'ing Groups 14-6

GRPS Command 14- 5

19980800 B

I-BEAM (Dyadic) 9-20

I-BEAM (MONADIC) 9-19

Identifiers, rules for forming 3-3

IDENTITY 7=2

Identity element 8-5

IMBED 9-15

Immediate execution 11-1

INCORRECT command 13-1

INDEX ERROR 10 - 2

INDEX OF: dyadic IOTA

Index list 6- 5

n n
;:J-,c.

Indexed functions 5-7

INDEXED SPECIFICATION 6-8

INDEXING 6-5

INNER PRODUCT 8-8

INPUT command 13-28

INPUT submission procedure 11-9

Integer domain 5-11

INTERVAL: monadic IOTA 9-1

~IOTA (dyadic): INDEX OF 9-2

IOTA (monadic): INTERVAL 9-1

Labels 12-4

Laminate 6-13

Least Squares Fit 9-28

Length 2-1

LENGTH ERROR 10-2

LESS THAN 7-16

LESS THAN OR EQUAL 7-16

Linear Equations 9-24

Linear Parametric Equations 9-27

LINES command 13- 26

LIST data 2-2, 6-6, 9-15

LOAD command 13-22

LOGARITHM

dyadic 7-12

natural (monadic) 7-4

Masking 12-5

-Matrix 2-2

19980800 B

MATRIX DIVISION

MATRIX INVERSE

MAXIMUM 7-13

9-22

9-23

MEMBERSHIP: dyadic EPSILON 9-4

MINIMUM 7-13

Monadic (def' n) 5 -2

Mnemonics for APL characters B-2, 4, 5

MULTIPLY 7-9

NAND 7-17

Natural LOGARITHM 7-4

NEGATION 702

NEGATIVE SYMBOL 3-2

Nested function calls 12-6

Niladic BRANCH 12-3

Niladic functions 12-1

NONCE ERROR i0-4

NOR 7-17

NOT (monadic TILDE) 7-7

NOT EQUAL 7-16

NOT SAVED - THIS WS IS • • • 13-20

NOTATION

APL syntax 5-1

special 1-3

Numeric

data 2-1

data formatting 4-4

element formatting 4-2

representation on STAR computers C-1

OR 7-17

Ordinals 5-3

ORIGIN command 13-16

Origin 5-7

Origin dependence 5 -7

OUTER PRODUCT 8-2

Output - see Displaying Data

OUTPUT command 13-28

Overstrikes B-1

Index 3

Parentheses in expressions 10-1

Pendant function 12-6

PI TIMES (monadic CIRCLE) 7-5

POWER (dyadic): EXPONENTIATION 7-11

PCOPY Co_mmand 14-28

QUAD

in expressions 4-1

input 11-2

QUAD-PRIME

escape 11-5

input 11-5

QUAD-PRIME PROMPT 11-7

QUERY

(dyadic): DEAL 9-5

(monadic): ROLL 7-6

Range (def 1 n) 5 - 2

Rank

def'n 2-1

termiology 2- 2

RANK ERROR 10-2

RAVEL 2-1; 6-4

RECIPROCAL 7 - 3

Recursive function calls 12-7

REDUCTION 8-4

REF ERROR 10-4

REPRESENTATION 9-8

RELATIONAL functions 7-15. 16

RESHAPE: dyadic RHO 6-2

RESIDUE 7-10

Result variable 12-1

REVERSAL 6- 2 2

Reverse Indexing 5-8

ROLL: monadic QUERY 7-6

ROTATE 6-23

SA VE command 13- 20

Saved workspaces 13-18

Index 4

Scalar

def'n 2-2

extension 5-5

functions 7-1

SEED command 13-7

Seed 5-13

Selection function (def'n) 6-1

SEMICOLON

in composite displays 4-6

in index lists 6-5

in explicit local lists 12-1

Sequence of execution 10 - 2

SHAPE: monadic RHO 2-1; 6-3

Significant digits 4-2

SIGNUM 7-2

Sine 7-14

Sinh 7-14

SI 13-13

SI DAMAGE 13-9

SIV 13-15

SIZE command 13-8

Spaces in expressions 10-1

Special notation 1-3

SPECIFICATION

def'n 3-3

INDEXED 6-8

State Indicator 13-13

STOP command 13-16

Stop list 13-16

SUBTRACTION 7-8

Suspended function 12-7

SYMBOL TABLE FULL 10-4

Syntax

primitive function 5-2

system command 13-1

SYNTAX ERROR 10 - 2

SYSTEM command 13-29

19980800 B

System Commands

general 13-1

)CLEAR 13-3

)DEFINE 13-10

)DIGITS 13-6

)DISPLAY 13-11

)DROP 13-24

)ERASE 13-9

)FUZZ 13-8

)FNS 13-5

)INPUT 13-28

)LINES 13-26

)LOAD 13-22

)VARS 13-5

)OBS 13-5

)ORIGIN 13-6

)OUTPUT 13-28

)SAVE 13-20

)SEED 13-7

)SI 13-13

)SIV 13-15

)SIZE 13-8

)STOP 13-16

)SYSTEM 13-29

)VARS 13-4

)WIDTH 13-26

)WSID 13-25

System (APL*STAR) 1-2

System information: I-BEAM 9-19, 20

19980800 B

TAKE 6-14

Tangent 7-14

Tar1h 7-14

Terminal access to APL*ST AR system
on ST AR OS A-1

Terminating an APL session 13-29

TILDE (monadic): NOT 7-7

TRANSPOSE

dyadic 6-25

monadic 6-25

Value 2-2

VALUE ERROR 10-2

Variable

assigning new value to 3-4

defining 3- 3

referencing 3-3

VARS command 13-4

Vector 2-2

Visual fidelity 11-8

WIDTH command 13-26

Workspace

active 13-2

identification 13-18

WS FULL 10-4.

WSID command 13- 25

WS LOAD only 13-20

WS LOCKED 13-22

WS NOT LOCKED 13-22

WS NOT FOUND 13-22

Index 5

COMMENT SHEET

MANUAL TITLE _C_O_N_ ... _T_R_O_L_D_A_T_A_®_A_P_L_*_S_T_A_R_R_e_f e_r_e_n_c_e_M_a_nu_al ____ _

PUBLICATION NO. _1_99_8_0_8_0_0 ____ _ REVISION __ B __ ~---

FROM:
BUSINESS
ADDRESS:~--------------------------

COMMENTS:
This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A.

STAPLE STAPLE

FOLD FOLD
---~

=oLO

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Documentation Department
215 Moffett Park Drive
Sunnyvale, California 94086

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

FOLD

I

w
z
::::;
C)
z
0 _,
<(

.....
::::>
u

~ ..-cur OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB

Pub. No. 19980800

CONTROL DATA
CORPORAT.O!\o

CORPORATE HEADQUARTERS, 8100 34th AVE. SO .. MINNEAPOLIS. MINN. 55440

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	01-01
	01-02
	01-03
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	D-01
	D-02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	replyA
	replyB
	xBack

