
CONTROL DAT A®
Advanced Design Laboratory

STAR
SOFTWARE SYSTEM

CONTROL DATA
CORPORATION REFERENCE MANUAL

CONTROL DAT A®
Advanced Design Laboratory

STAR
SOFTWARE SYSTEM

CONTROL DATA
1 CORPORATION REFERENCE MANUAL

RECORD OF REVISIONS

Revision

A Released Januar_y_ 18 1971

B Released March 24, 1972.

STAR Software System Reference Manual
Publication Number 59156400
Copyright s Control Data Corp., 1972
Printed in the United States of America

ii

Notes

Com...E_lete revision. Chan_g_e Order No. 19

Address comments concerning
this manual to:

Control Data Corporation
Advanced Systems Laboratory
Documentation Group
4201 North Lexington Avenue
St. Paul, Minnesota 55112

59156400 Rev. B

PREFACE

The STAR computer system was developed at the Advanced Design Laboratory of

Control Data Corporation. The system design, an evolution from the CONTROL

DA TA® 6000 and 7600 computer systems, is intended to provide solutions for the

diverse computing and data processing requirements of the next decade.

The STAR central computer is a high performance general purpose processor that

includes the well established features of conventional computers. It also has many

original features which make new computional methods available. The most im­

portant of these is vector processing where the machine operates on pairs of con­

secutive elements from specified lists. When used in this way, for example, the

most powerful STAR central processor (STAR-100) can produce floating-point mul­

tiply results at the rate of one hundred million per second.

Input and output of data in the STAR system is managed by completely separate

specialized processors. Peripheral devices, grouped by type, are associated with

controlling processors and data buffering storage to form stations. These self­

operating stations allow extremely flexible configurations of peripherals in the

STAR computer system.

The development of software to fully use STAR has led to some new concepts of

data processing. This manual attempts to communicate these concepts by describ­

ing the software currently implemented or under development at the Advanced

Design Laboratory.

The following Control Data documents contain further information about the STAR

computing system:

Title

STAR-100 Hardware
Reference Manual

STAR-lB Hardware
Reference Manual

STAR Peripheral Stations
Preliminary Reference Manual

PL/STAR Compiler/Assembler
Preliminary Reference Manual
(Published as Appendix Jto this manual)

59156400 Rev. B

Publication
Number

60256000

60326501

59156100

60324800

iii

iv

'And having thus endeavoured to discharge our
duties in this weighty affair ... and to approve our
sincerity therein (so far as lay in us) to the con­
sciences of all men; although we know it im­
possible (in such variety of apprehensions,
humours and interests, as are in the world) to
please all; nor can expect that men of factious,
peevish, and perverse spirits should be
satisfied with anything that can be done in this
kind by any other than themselves: Yet we have
good hope, that what is here presented, and hath
been ... with great diligence examined and approved,
will be also well accepted and approved by all
sober, peaceable and truly conscientious ... sons. '

Book of Common Prayer

1662 Preface

59156400 Rev. B

Section

1 ..

CONTENTS

Title

INTRODUCTION•

Distributed System

Virtual Memory ••

String-Array Processing

2 CENTRAL OPERATING SYSTEM

System Structure

Virtual Memory Layout

Job Sequencing

Job Activation

System Tasks .

External Channel Control

Dynamic Storage Allocation .••

System Call Processing ..•.

Error Detection and Processing

Summary of Central Monitor ...

3 •.... PERIPHERAL OPERATING SYSTEM

STAR Stations and System Functions

Messages

System Structure

Procedures ..

System Loaders

Buffer Controller Memory Layout.

Software Development

Maintenance Information System - MIS

Customer Engineering Manipulative Language - AID

4 FILE SYSTEM.

Descriptor .

5 9156400 Rev. B

Layout of Descriptor File on the 841 Exchangeable
Disk Pack

Header•.......................•.

Page

1-1

1-1

1-4

1-4

2-1

2-1

2-5

2-7

2-14

2-15

2-17

2-19

2-23

2-27

2-31

3-1

3-2

3-3

3-4

3-5

3-12

3-14

3-15

3-15

3-15

4-1

4-1

4-3

4-4

v

Section Title

vi

Characteristics .

Name

Storage Map

Access List

Messages

Future Features

5 · · ... USER RECORD MANAGEMENT

Accessing Files by Mapping

Record Access .

Record Map File

File Record Management Table

Organization of a User's File Tables

Input/Output Flow ...

Input/Output Functions

6 · · · · . LANGUAGE SYSTEM ..

PL/'~'

FORTRAN

Current Development

ADL FOR TRAN Syntax Language

The Language

Precedence Numbers

Type Definition

Operand Type Definitions

Code Skeletons ...

FORTRAN Extensions

Multiple Valued (Subscripted) Variables

Conditionally Selected Subarray References

New Operators•........

Parameter Statement

Use of Subarray References in Data Statements.

Procedure Identification .

Intrinsic Statement

Dynamic Space Management

Page

4-4

4-7

4-7

4-9

4-10

4-12

5-1

5-1

5-1

5-2

5-3

5-7

5-9

5-10

6-1

6-2

6-4

6-19

6-20

6-21

6-21

6-21

6-22

6-22

6-24

6-24

6-26

6-30

6-30

6-31

6-32

6-34

6-35

59156400 Rev. B

Section

7

A

B

c
D

E

F

G

H

I

J

Title

·STRUCTURE OF PROGRAMS .••.

Structure ..•

Regblocks •.

Static Storage

Dynamic Storage .••

Pointers••

Register File Conventions .

Machine Registers

Temporary Registers •••..•

Mixed-Use Registers ..••.

Environment Registers •••.

Working Registers ...

Parameter Registers .

Relocation

Module Tables •••..

Module Header Table ••••

Code Block Table ...•.

External/ Entry Table

Code Relocation Table

Interpretive Data Initialization Table ...

Executable Data Initialization Table

External Data Initialization Table

Interpretive Relocation Table ..

Executable Relocation Table ••..

External Relocation Table •..

Job Control . • . . . •

LIBRARY PROGRAMS •

CARD FORMATS ..•.

SYSTEM COMMUNICATION MECHANISM

SYSTEM MESSAGES •....••.••....

STATION OVERLAY STRUCTURE •....

STATION MAINTENANCE INFORMATION
SYSTEM AND AID ...•.••...••

JOB CONTROL LANGUAGE - JCLl

EDIT ..•.

BUFFALO

PL/':'

59156400 Rev. B

Page

7-1

7-1

7-3

7-4

7-4

7-6

7-9

7-9

7-9

7-9

7-10

7-12

7-13

7-13

7-14

7-16

7-20

7-20

7-23

7-24

7-29

7-29

7-30

7-32

7-33

7-33

A-1

B-1

C-1

D-1

E-1

F-1

G-1

H-1

I-1

J-1

vii

Figure

1-1

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10 .

2-11 .

2-12 .

3-1

3-2

3-3

3-4

4-1

4-2

4-3

4-4

4-5

FIGURES

Title

STAR System Showing Component Connections .

Peripheral Station Network .

Allocation of Virtual Memory

Control Point Layout

Periodic Table Entry.

Format of an Entry in the User Directory.

System Table Directory

Message Boat Format ..

Access Interrupt Processing

Key Allocation

System Library Table and Active File Table Entries

File Input/Output Message Formats

Overview of Monitor

Example of a Station Subroutine Specification

Layout of a Typical Control Package

Flow Diagram for Read Page Task Program
(function code 200)

Typical Layout of Buffer Controller Core Storage.

Component Parts of a File Descriptor

Format of Descriptor Header in 16-bit Words

Format of Characteristics Section of Descriptor

Format of Name Field of File Descriptor in 8-bit Bytes

Format of Storage Map Section of the File Descriptor
in 16-bit Words

Page

1-3

2-3

2-6

2-9

2-13

2-15

2-17

2-18

2-20

2-21

2-22

2-26

2-32

3-10

3-11

3-13

3-14

4-2

4-4

4-4

4-7

4-8

4-6 Layout of Access List Section of File Descriptor

4-7

4-8

5-1

5-2

6-1

6-2

viii

in 8-bit Bytes

Format of the Active File Table

Format of Activity Record Section of the File
Descriptor, in 32-bit Words

Layout of the File Record Management Table

Pointers and Tables for Locating File Record
Mangement Tables

Card Layouts

Calculating EOL Positions

4-9

4-11

4-14

5-4

5-8

6-5

6-6

59156400 Rev. B

Figure

6-3

6-4

6-5

6-6

6-7

6-8

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

D-1

Table

2-1

2-2

2-3

2-4

2-5

2-6

Title Page

Establishing Comment and Continuation Lines 6-7

Expansion of Control Vectors for Comment and
Continuation Lines 6 - 8

Removal of Comments, Editing of Continuation Lines, and
Extraction of Alphanumeric Data

Extraction of Operators and Punctuation Symbols

Syntactical and Semantic Analysis

Example of Operator Precedence Modification

Layout of a Library Program

Program Linkages and Data Access Paths in a Shared
Library Environment

Outline Structure of User's Virtual Space

Static Space Pointers

Register File Assignments

PL/':' Object Module Format

Program Assembled Under PL(:

Job Control Flow Diagram

System Messages

Control Point Fields

System Tasks

TABLES

Title

Acceptable System Call ·Messages

Call Message Formats

File Input/Output System Messages

System Error Codes

6-10

6-11

6-14

6-17

7-2

7-3

7-6

7-7

7-8

7-18

7-19

7-34

D-1

Page

2-10

2-16

2-24

2-25

2-27

2-28

59156400 Rev. B ix

INTRODUCTION

The STAR System contains a number of significantly new concepts in its architec­

ture. The most important of these are the logical and physical distribution of

operating system functions, the virtual storage system, and the string-array pro­

cessing capability. Other important features include the large register file, the

powerful instruction repertoire, the bit addressing structure, the large storage

bandwidth, and the high input/ output channel capacity.

All of these features affect the software of the system, but the first three men­

tioned are of fundamental importance. The operating system, languages, and ap­

plication packages, and even user programs are, or should be, regarded in a dif­

ferent light because of the architecture of the system.

DISTRIBUTED SYSTEM

The ST AR information processing system is a distributed system in that many of

the different functions of data processing have been separated from one another.

Each is then treated in its own right in what seems to be an optimal way.

l

The STAR computer itself is a central processor which knows nothing about the

outside world other than that it has [nput/output channels to [t. The file system con­

sists of one or more input/output units called stations having channel connections

to the STAR central processor. Similarly, slow input/output, interactive termi­

nals, magnetic tape, and so on are organized into stations. A station consists pri­

marily of a small processor specially designed for data handling capability rather

than for data processing capability. Each has its own storage system and channels

and, of course, the particular set of peripherals which give it its name. One im­

portant station, called a service station, consists essentially ,if a large storage buffer

unit with its controlling processor. The buffer unit has channels to other stations,

to peripherals and to the STAR central machine. The service station provides the

necessary fan-out from the STAR processor to a host of peripheral devices.

59156400 Rev. B 1-1

The operating system is distributed in a manner which closely follows the distribu­

tion of the hardware. Thus, there are operating functions in each station as well as

within the central processor. The connecting links between the distributed compo­

nents of the operating system are controlled by a set of system messages, so mes­

sage handling becomes of great importance in a distributed system.

The choice of where each operating function should be located is often self-evident,

although a few functions are assumed to be movable from one element to another.

Any final decision regarding function locations may depend on experience with par­

ticular work loads. In general, each operating function is located closest to the re­

source being used, providing modularity of both hardware and software and such

advantages as:

• independence from other units, particularly in the areas of nonpropagation

of errors throughout the system and more immediate action on fault condi­

tions

• capability to be independently maintained

• easier replacement of future new hardware or software parts

• easier addition of new types of stations

Figure 1-1 illustrates the layout of a large STAR system, showing the connections

between the various functional units.

A STAR central processor with its immediate storage is simply another station

within the system - a data processing station - and in no way does it have any ex­

tra authority. It does, however, have two stations fairly intimately connected,

the paging station and the maintenance /monitoring station. The paging station,

under control of the hardware virtual page mechanism and the operating system,

provides temporary storage for programs exceeding the available core space. The

maintenance station, besides its functions of off-line and on-line fault diagnosis/

repair and preventive checking, has the capacity to collect detailed information

about ST AR' s performance.

1-2 59156400 Rev. B

Maintenance
Monitoring
Station

Disk
Station

Magnetic
Tape
Station

Disk
Station

Maintenance
Monitoring
Station

Paging

Station

STAR

CPU

STAR
CPU

Paging
Station

Service

Station

Unit
Record
Station

Graphics
Station

Service t-------------i Communications
Station Network

Service
Station

Display­
Edit
erminal
tation

Unit

Record
Sta ti on

Figure 1-1. STAR System Showing Component Connections

59156400 Rev. R 1-3

VIRTUAL MEMORY

A very important hardware function in the STAR CPU is the virtual memory mech­

anism which provides a way of handling a potentially unlimited number of levels of

storage media as if they were all one level. The mechanism, handling information

in units of 32K-bit pages, ensures that the most frequently accessed pages exist in

core storage. Unused pages drift out to slower backing media as necessary.

Each user can address his virtual space with bit addresses in the range 0 to 248 -1;

of these bits, 33 are for the virtual page address. This uncommonly large amount

of virtual space available to each user may significantly affect his style of program­

ming. Because unused virtual space imposes no burden on the system, he may or­

ganize his program addresses in almost any manner which suits his convenience.

The virtual address mechanism maps the user's virtual address into an absolute

physical address for central core storage in a hardware translator called a page

table. Each entry in the page table contains the virtual page address and the car -

responding absolute storage location together with an access mode lock and other

control information. A successful association between a virtual address and an

entry in the page table causes that entry to go to the head of the table, those in be­

tween being all moved down by one place. In ST AR -100 the first sixteen entries in

the table are kept in high-speed registers; these are examined in parallel with a si­

multaneous associative compare. If this compare is unsuccessful, a sequential search

is made through the remainder of the table which is held in core storage. Hence, the

addresses of infrequently used pages automatically float to the end of the table.

If an address has no entry in the page table, various hardware sequences are

initiated, and the program requesting this address is interrupted. Monitor then

normally provides the space which was addressed by transferring the desired block

to central core storage from a special back-up storage station called the paging

station. The program may then be restarted to continue processing from the point

at which it was interrupted.

STRING-ARRAY PROCESSING

The STAR central processor includes several classes of instructions which can be

used for either conventional computing or STring-ARray processing. Conventional

scientific and business data processing is performed by major high-performance

facilities. These facilities operate upon floating point operands, which may be 64

1-4 59156400 Rev. B

or 32 bits in size, and upon single bytes and bits. Some of the floating point instruc­

tions are of the register-to-register type, while the operations on single bits or bytes

are of the storage-to-storage type.

STAR is also a vector processor. A vector in ST AR is defined as a contiguous set

of bits, bytes, half words, or full words in virtual memory. The definition depends

upon how the contents of the virtual space may be treated by the vector processing

instructions; not upon the nature of the content of this virtual space.

Pipeline units are provided which operate on such strings of operands; that is, on

64 or 32-bit arrays, byte strings, and bit strings. Information to specify the ad­

dresses of source and destination streams is usually held in the register file. The

core storage system is designed in such a manner that two source operand streams

and one destination stream can be simultaneously handled at logic speeds.

Many user functions are provided by the string and array mechanism to perform

mo re complex operations on streamed data. Such functions amount to hardware

macros and include, for example, polynomial evaluation, byte editing, scalar pro­

duct of two vectors, sorting by merging byte string records, and vector arithmetic

on sparse vectors.

The string instructions can operate on up to 65, 53 6 operands in one pass. Although

the function is executed serially in a pipeline, it is conceptually useful to think of it

as being carried out in parallel on the data set. Thus, one can imagine that the user

has between one and 65,536 parallel processors at his disposal, depending upon how

he elects to achieve the processing through his selection of code. The processing

facilities provided allow for efficient computing in the conventional sense and also

make available a fundamentally different approach to programming via the string

and array processing. To exploit efficiently the hardware provided means to "think

parallel". Although conventional languages will be much used at first, it is inevit­

able that languages which allow the expression of parallelism and operations on

structured data - without specifying in detai: how the operations are to be done

will supersede the present ones.

Here, then, is a description of the software system which has evolved (or is evolv­

ing) from experimenting with the novel hardware features designed into the Control

Data STAR processor.

59156400 Rev. B 1-5

CENTRAL OPERATING SYSTEM 2

The operating system is divided into a central part and a peripheral part. The cen­

tral part controls the immediate operation of the STAR central processor. It resides

in the central memory and executes in the central processor. The peripheral opera­

ting system resides in the peripheral stations. Each station has a common basic

nucleus with the local task programs needed to perform its particular functions. All

of these functions are concerned with input I output and the control of peripheral de­

vices. The objective of the total operating system is to make the computing resources

available to user programs in a controlled, convenient, optimal manner.

In the network of connected computers that make up a STAR system, information is

exchanged by means of messages and files. Messages are used to communicate sys­

tem requests and to acknowledge the receipt, progress, and completion of requests.

Data in the system is always held in the form of files; that is, as collections of in­

formation with certain described properties such as names, access modes, physical

layouts, and types. Data flow within the network consists of messages, files, and

pages of files, where a page is 4096 bytes of information.

The central part of the operating system is called the monitor. It occupies about

2048 words of code and up to 4K words of tables, the latter depending on the number

of jobs in the central machine.

SYSTEM STRUCTURE

There are three levels of programs in the STAR central machine:

•
•
•

executive monitor

system tasks

user programs

The central operating system consists of programs written in the first two levels.

The executive monitor is distinct from the other levels in that it operates in a

privileged mode called monitor mode. When the processor is in monitor mode,

interrupts are inhibited, a few extra instructions are enabled, and core storage

addresses do not go through the virtual page mechanism, but are instead absolute

addresses.

59156400 Rev. B 2-1

System tasks and user programs run in job mode. System tasks have some privileges

denied to user programs. In particular, they can communicate with the monitor using

some reserved messages, and they have access to some of the central operating sys­

tem tables.

For illustration purposes, Figure 2 -1 shows a network of peripheral stations con­

nected to a STAR. This CPU model shows the functions performed by the central

monitor.

The monitor provides:

• job sequencing and control

• channel control

• central memory allocation

• message handling

• central machine error handling

Control is returned to the operating system when an interrupt occurs causing moni­

tor mode to be entered. Interrupts are not the normal manner in which peripheral

stations communicate with monitor. The streaming nature of STAR suggests that

polling techniques be used for peripheral stations.

There are four classes of interrupts from job mode:

• program illegal instruction

• program request to monitor

• external channel

• storage access

The first two of these are entries to the monitor from the currently running program.

The only external channel interrupt used is the monitor interval timer. This timer

allows for the monitor to be re-entered after a user program time slice.

The storage access interrupt occurs when a program attempts to reference a page

that is not in central storage, or when an access is attempted with illegal mode.

2-2 59156400 Rev. B

(Jl

CD
>-"'
(Jl

O'l

*"' 0
0

::0
(1)

<

to

N
I

w

r-----
/

(

..,..
JOB A

JOB B

JOB C

JOB D

-Ji

TASK I It
TASK 2

TASK 3 IE---1

TASK '

STAR CPU ---1
____ " ou~}I CHAN 1

' ~I -I I

PROGRAM

STATUS

INFORMATION

T,'\BLE

EXECUTING
JOB/TASK

INTERRUPT
AND MEMORY
ALLOCATION

CONTROL

INPUT

DRUM

I I
INPUT I

SBU scu

INPUT

SERVICE STATION

• I ",

~UT
REQUEST -------- /

I
I
I U/R D/E OTHER

NETWORKS

L -Q~E - ____ J
Figure 2-1. Peripheral Station Network

Some interrupts are serviced completely in monitor mode, but most result in the

calling of system tasks. System tasks make the majority of operating system de­

cisions, and these programs range from small slave programs of the monitor to

much larger suboperating systems. About 2048 words of system task programs

are resident in core storage. Those that can be shared by a number of users are

placed in the user library.

The sequencing of jobs and system tasks is controlled by a basic table called the

program status table. Entries in this table are called control points, and each

entry corresponds to a program at some stage of execution. New entries are

created by the monitor as jobs are entered into the machine and as system tasks

are initiated to process required system functions. The table is scanned by the

monitor, in a central scan loop, and the control point with highest priority is

selected for execution.

Each channel has input and output communication areas to hold messages and re­

sponses and a ready /resume flag mechanism.

The ready /resume flags are inspected in the monitor scan loop. New incoming

messages result in the appropriate system tasks being initiated. Responses from

stations are also placed in the input communication areas and result in changes to

the status information of control points. Although, there is a hardware interrupt

associated with each channel, they are not used, hut are reserved for real-time

application suboperating systems.

Memory allocation is performed when the monitor is entered as the result of a

storage access interrupt. This is caused by a program referencing a page of in­

formation that is not in core storage. Such an entry to the monitor provides implicit

input in that the user program is not aware of the distribution of his program and data

between the core storage and any other backing storage device. Programs can also

explicitly pass messages to the monitor regarding storage allocation. Some of these

are commands, and others are advisory in nature. Most memory allocation process­

ing involves the monitor in sending messages to the drum station or file stations. The

control point responsible for the monitor entry is set to a waiting status while such

messages are being sent and while the information they require is being transferred into

core storage. During this time the monitor selects another control point and allocates

the central processor to it.

2-4 59156400 Rev. B

Requests to monitor from executing programs are processed similarly to the paging

and timer interrupts. A processing subroutine is activated depending on the mes­

sage's function code. Some requests are processed by using system tasks.

VIRTUAL MEMORY LAYOUT
48

Addresses in the central machine are bit addresses in the range 0 to 2 -1; that is,
47

Oto 1 000 000 000 000 16 -1. Virtual space is divided into two parts, 0 to 2 -1 for

free use and 247 to 2 48 -1 for restricted use.

Users can freely use any addresses in the range 0 to 247 -1, though for efficient

use of the storage system it should be remembered that storage is allocated in units

of 512 -word pages. Random access over address fields larger than the physical

amount of core storage can cause low utilization of the central processor. Note

that the concept of paging makes overlays unnecessary and the large address field

makes variable size segments possible. Each program always has a page zero, the

first 2 56 words of which are in a register file while the program is active and stored

in core storage when it is not.

The access mode within the user's region is normally read/write/execute, but a

request message to monitor can allow write lockout to be applied over any specified

range. There can be more than one such range, they need not be contiguous, and

they need not all be requested at the same time. There are also messages that

allow specified ranges to be removed from write lockout.

Figure 2 -2 shows the layout of the virtual memory.

The user library uses virtual addresses greater than 800 000 000 000 16 .

Another division of virtual storage is made at the address FF8 000 000 000 16 .

Provision is made for local installation system programs to use the address space

less than this address. The virtual space at addresses greater than FF8 000 000

000 16 is concerned with the sharing of data between users. The space is divided

into 100010 16K-page segments. The first of these is for public sharing, and all

users have read/write/execute access to this virtual area.

Private sharing is arranged by the monitor allocating one or more of these segments

on request, with a specially assigned access key. Other legal users of the shared

data base, who have the access key, can then find out from the monitor into which

virtual address it is mapped, and hence, share access to it. Note that this is

sharing the same copy and is different from sharing files on the disk station. The

last of these virtual segments is reserved for system tasks.

59156400 Rev. B 2-5

2-6

Allocation

Register File

User Space

User Library

Local System

Public Shared Se ment

Private

Shared

Segments

System Task Segment

Bit address (hexadecimal)

0

800 000 000 000

FF8 000 000 000

FF8 020 000 000

1 000 000 000 000

Figure 2-2. Allocation of Virtual Memory

59156400 Rev. B

JOB SEQUENCING

The monitor allocates the central processor to jobs in a sequence determined by a

system task program called the scheduler.

Each active program has associated with it a control point (CP) and an invisible

package (IP). The control point is maintained by the scheduler and contains infor­

mation needed by the system about the program. The invisible package contains

information needed to restart a program from where it was last halted. The IP

area is initially set up by the scheduler; thereafter the hardware uses the

area for storing and loading the invisible registers whenever the program is inter­

rupted and restarted.

Job sequencing is controlled by means of a table of pointers to these control points.

This table is called the alternator. An entry in the alternator stack is a 64-bit

word. The format is shown below:

STATUS BITS (40)
CP

INDEX (8) IP INDEX (16)

The CP and IP indices are 8 and 16 bits, respectively; they are pointers used for

locating the program control point and invisible package.

The status bits are used by the monitor and systems tasks to show the control point

status.

The following list gives the bit number, the name of the bit and its function. Bits

are numbered with the most significant as bit 0.

Bit Number Bit Name

0 On

1 MTR

2

3 Pause

4 Wait

59156400 Rev. B

Used For

This alternator word is active.

When the wait condition (bit 4) is removed, execute
a monitor subroutine that has its entry address set
in the control point at MTRTN.

Not used.

Suspend execution of the CP when all of its input I
output messages are processed.

CP is waiting for drum or disk input/output.

2-7

Bit Number Bit Name

5 Block

6 Recall

7 Slice

8 Rent

9

10

11

12

13

14

15

16

17

18

19

20
21

22
23

Protection

Advise

Interactive

VPZ

Task

Batch

Display

Off

Buffin
Buff out

Buffin-busy
Buff out-busy

Used For

CP is waiting for keyboard input or remote card/
printer input I output.

CP is in recall mode, that is, suspended for a
fixed time.

This CP was stopped at the end of its time slive. It
was executing when the monitor interval timer in­
terrupted.

Flag for memory allocation routine.

Not used.

CP is using write lockout on some pages.

CP is performing disk or drum transfers and is not
in wait state.

CP is connected to an interactive terminal.

CP page 0 is locked down in core storage.

CP is running a system task.

CP is a batch program.

The station controlling the interactive terminal has
requested an output line for display.

Not used.

Not used.

Nonrecoverable program error condition exists
this flag causes the CP to be deleted and all its
core storage and drum space freed.

These flags inform the memory allocation routines
of the C P address to use on completion of their task.

Data pages are moving in/out of a CP virtual mem­
ory and the program is not in the wait state.

Figure 2 -3 shows the layout of a program control point. A control point occupies

sixteen 64-bit words. The various fields show the names of the entries and the

number of bits in the fields. These names are listed below with descriptions of

the information contained in the fields.

2-8 59156400 Rev. B

0 ID MTRTN VPZ
(3 2) (16) (16)

UT SFX ALT STAT TYPE CNTLE CNTLR
(16) (8) (8) (8) (8) (8) (8) 1

TICKS SLOT QUANTA PRIORITY
(16) (16) (16) (16)

2

LOG-ON TIME CPU TIME
(32) (3 2)

3

RECALL TIME TIME LIMIT
(3 2) (3 2) 4

SHARED KEYS
KSO KSl KS2 KS3

5

FAULTS CM FL DK
(16) (16) (16) (16) 6

~ BLK !lJSE KEY VIRTUAL NUMBER

~ (11) (3) (12) (3 3)
7

R/W KEY TEST KEY RENTRTN ACCRTN
(16) (16) (16) (16) 8

FNT FNT ~ CHAN PT
(16) CONT (32)

9

MESBK MES PT
(16) (48) A

OBJBK OBJPT
(16) (48) B

c BUFFIN WORD

D BI KEY BI RENT BIR TN MBIRTN - -

E BUFFOUT WORD

F BO KEY BO RENT BORTN MBORTN - -

Figure 2-3. Control Point Layout

59156400 Rev. B 2-9

Table 2-1 below provides the contents of the various fields of the control point area

shown in Figure 2 -3.

TABLE 2-1. CONTROL POINT FIELDS

Field Content

ID

MTR TN

VPZ

UT

SFX

ALT

STAT

CNTLE

CNTLR

QUANTA

TICKS

SLOT

2-10

user identification number

a pointer showing the monitor activity when the CP was
last active

identifies the absolute location of the user page zero

location of user terminal

suffix of this control point. It is possible for a user at a ter­
minal to maintain up to four independent processes and thus
up to four control points at one time. These are designated
suffixes A, B, C, and D if they exist.

this control point's alternator slot.

state of the control point. The control point can be active,
blocked, or have entered an error state (see listing).

control point of controllee (see CNTLR).

control point of controller. It is possible for a control point to
initiate another program to take some action on its behalf. When
this happens, the original controlling control point is called a
controller and its slave control point a controllee. This con­
trollee can in turn initiate another control point and be a con­
troller of this control point. Forward and backward links be -
tween controllers and controllees are maintained using CNTLE
and CNTLR. In such a chain of control points, only one at any
time is actively linked into the alternator stack; that is, only
one of the set runs at a time.

is the number of time units or ticks the user is allocated for his
time slice. A tick is an installation parameter, the basic allo­
catable unit of central processor time to a user (1-250 milli­
seconds).

is the count of time units remammg in the users time slice.
When the count is reduced to zero it is reset to the value of
QUANTA for the next time slice, and the next ready job is run.

total number of ticks since the last input/output request made
by this user. This count is used by the scheduler to adjust
priority.

59156400 Rev. B

TABLE 2-1. (Cont'd)

Field Content

PRIORITY privilege level of this control point - dictated by the scheduler

LOG-ON TIME control point start (time of day)

CPU TIME actual central processor time used

RECALL TIME time spent in suspension

TIME LIMIT maximum central processor time allowed

SHARED KEYS four keys are for shared areas in addition to the four keys for
private areas that are in the user invisible package. Provision
is made for more keys to be stored in an expanded control point
space.

FAULTS number of storage access interrupts

CM number of core blocks

FL maximum number of pages

DK number of pages currently active on drum

ELK, USE, KEY, access interrupt word used in the control point
VIRTUAL NUM-
BER

R/W KEY user's read/write key

TEST KEY key used for access interrupt processing

RENTRTN space allocator state

ACCRTN fault processor state. These status fields are concerned with
the servicing of an access interrupt that involves the bringing
in of a page from the paging station and finding space for it.
The latter can involve writing out a page to the paging station.

FNT pointer to user's file chain.

FNT CONT count of file chain entries

CHANPT pointer to input channel message area

MESBK block number of active message page

MESPT absolute address of active message page

OBJBK block number of active data page

59156400 Rev. B 2-11

TABLE 2-1. (Cont'd)

Field Content

OBJPT absolute address of active data page

BUFFIN WORD used for memory allocation for advise input operations

BI KEY key used for buffered input page

BI RENT return addresses for memory allocation for buffered input
BIRTN
MBIRTN

BUFFOUT WORD used for memory allocation for advise output operations

BO KEY key used for buffered output page

BO RENT return addresses for memory allocation for buffered output
BORTN
MBORTN

Two pointers are used to process the alternator stack. The major pointer identi­

fies the program currently in execution. When this program is halted, awaiting

input/output for example, the minor pointer moves down the stack and activates

the next available program. When the program identified by the major pointer

comes out of wait status, the minor pointer is reset to it and the program continues

to the end of its time quanta. The major pointer then proceeds on to the next avail­

able program in the stack.

When a control point is selected for execution, the program page zero is brought

into core storage if not already there. This page resides in core storage, and is

said to be locked down while the program is allocated the central processor. Before

switching to job mode, the monitor sets the monitor interval timer equal to the

time slice quanta that the control point will be allowed to execute.

In addition to processing the alternator stack and the input I output control section,

the basic monitor loop processes a list called the periodic table.

Monitor tasks that run with a regular period are activated using the periodic table.

Such tasks include the accounting summary, preservation of system tables for

back-up recovery on error conditions, updating of the dayfile to the file station

and activation of the scheduler. Batch jobs are requested from the service station

2-12 59156400 Rev. B

on a periodic basis, the period being an installation parameter. The periodic table

can be accessed by system tasks that can alter the period dynamically, and also

allow for their own reactivation.

An entry in the periodic table consists of two 64-bit words. The first of these

words has four fields, namely the state, the last run, control and period.

The state field contains status information about the program. The last run field

contains the system clock time in milliseconds when the program was last executed.

The control field defines the conditions under which the program is run. For ex­

ample this field determines which system tables the program is allowed to access

and whether the program has an exchange package. The period field contains the

number of milliseconds between successive runs of the program.

The second word is either a file name or a virtual address. In the latter case, a

1-bit flag indicates that the program is to execute in job or monitor mode.

Figure 2 -4 shows the format of periodic table entries and the number of bits in

each field.

State I Last Run J]co7~folI Period
(8) (24) (2 4)

File Name (64)

or

State l Last Run 1JContro1 Period
(8) (24) 0 (7) (2 4)

111 Virtual Address (4 7)

L_Monitor/Job Mode

Figure 2 -4. Periodic Table Entry

Programs running on STAR are either under the control of a user at a terminal or

consist of files of program and data with at least one file of operating system com­

mands. These two types of programs are termed interactive and batch respectively.

In the first case each step in the execution of a job is requested by typed in commands.

59156400 Rev. B 2-13

For batch jobs, a file of these commands is made. The job control commands

available to interactive programs are all available to batch programs.

JOB ACTIVATION

A new program is recognized by the central operating system on receipt of a log­

on message from a communication station for an interactive job or a service sta­

tion for a batch job. A batch job is treated exactly like an interactive job except

that it does not have a terminal and is usually of lower priority. On receipt of a

log-on message from a communication station, the monitor allocates and initializes

some tables, allocates memory space for the program page zero and sets the pro­

gram entry point to the start address of the suboperating system that will process

the job control statements.

The tables that are allocated are the control point and exchange package. An entry

is made in the alternator table and in the terminal connect table. The terminal

connect table establishes a correspondence between an interactive user and a con­

trol point. A user can have up to four independent control points controlled from a

terminal, termed A, B, C, and D. The format of an entry is as shown below:

Not Used (24) I s (8) I A (8) I B (8) I c (8) I D (8)

Sis the active suffix and is an 8-bit pointer to A, B, C, or D. These are also

8-bit pointers, and point to entries in the alternator stack.

The entry point for the program, set in the exchange package, is normally for Job

Control. Job control is a system task in the user library that provides program

command processing and the linkage management for using library utilities.

There is a user directory kept in the permanent file system for every legal user.

When a user logs on and off, the appropriate entry from this directory is updated.

The entries contain the user password, identification number and real name along

with a department name and account number. A user can take special action on the

detection of certain errors. A control status and error address entry in the table

allow the user to specify which errors and an address to transfer to if any of them

occur. Once these provisions are made, they can remain in operation for all future

2-14 59156400 Rev. B

runs. The other entries in the table record the history of input/output, central

processor activity and terminal time statistics. Periodically the entire directory

is processed by an accounting program. Figure 2-5 shows the format of an entry

in the user directory.

Password (64)

Not Used ID number (32)

Control Status l Error Entry Address (48) (16)

Department (32) Account (32)

Input I output l CPU Activity Input I output CPU Batch
activity (16) (16) batch (16) (16)

Total Terminal Time (32) CPU History Terminal
(16) History (16)

User Name (64)

Spare (64)

Figure 2-5. Format of an Entry in the User Directory

SYSTEM TASKS

System tasks arising from user monitor calls, the periodic table, or from input

channel queues are controlled by the task dispatchers.

There are three types of system tasks:

1. Those sharing the user page zero and normally requested by him.

2. Those having their own page zero and running either for the system itself,

such as the job mode scheduler, or for a user request that is processed in

job mode.

3. Queued work waiting for an available alternator slot.

For a user's task processed in job mode, the user can be active or inactive while

the task is executing, the activity of the user being a function of the requested task.

Tasks of type 3 can include background batch jobs if there are not enough entries in

the alternator stack. In this group, tasks are not always connected to control points,

and can involve reactivating suspended alternator slots or reinstating drop files. A

59156400 Rev. B 2-15

drop file is a job's virtual storage with control information taken by the system and

stored in the file store temporarily. It can result from a user request for a re­

start point, or from the scheduler deciding to suspend a job for a significant enough

period of time to make it worthwhile to remove it from central storage. This pro­

cess is also called "Roll Out."

The task dispatcher mechanism consists of three queues, one for each type of sys­

tem task with the necessary control tables. The number of such tasks processed,

however, is under the control of the alternator mechanism. The task dispatcher

inserts entries into the alternator stack when there are free slots. This whole

queuing system can be supervised dynamically by a high-priority job mode system

task. The task dispatchers are basically tables of one word for each entry. Each

entry contains the identity of the calling program, a bit that indicates whether the

requested function executes in job or monitor mode, and an entry point for the re­

quested function. The first word is an in/out pointer that allows the queue to oper­

ate circularly. The length of the queue is fixed at system autoload time.

Parameters are passed to system tasks in the first sixteen registers, that is in the

first 16 words of page zero. If the task is sharing the user's page zero, the call­

ing program has these 16 registers saved in a monitor buffer and restored at the

completion of the task.

Some tasks access and modify a set of system tables. These tasks are provided

by the monitor with the access key to the system task private segment and have

register 15 set to the start of the system table directory. This table gives the base

addresses of all tables maintained by the monitor, as shown in Figure 2-6.

Table 2-2 shows examples of system tasks.

TABLE 2-2. SYSTEM TASKS

Page Caller System
Description Zero State Table Access

System Autoload Yes - Yes

System Status Display No Blocked Yes

Job Mode Message Processor No Blocked No

Termination Accounting Yes Blocked Yes

Periodic Accounting Update Yes Periodic Yes

Password Validation Yes Blocked Yes

2-16 59156400 Rev. B

Terminal Table

System Library Table

Active File Table

Not Used

Control Point Table

Drum Page Count Table

Job Task Table

Periodic Table

All entries are 48-bit addresses.

Figure 2-6. System Table Directory

EXTERNAL CHANNEL CONTROL

The channel control routines maintain communication between the CPu and periph­

eral stations. Message boats move messages and responses across the input/

output channels. A boat may consist of a single message or a group of messages.

The boat core storage locations are listed in the system boat directory which lists

the base address and length of each input/ output channel boat area. The first boat

after autoload is read from the base address in the directory and the length is 16-

64-bit words. Each boat contains a "next boat pointer" and a "boat response

pointer." The message transmitter (CP-C or station) allocates the boat and gener­

ates the "next boat pointer" so the receiver will know where the next message can

be found. The message receiver, after processing the message, returns the re­

sponse code along with the message at the "response pointer" core address. This

response can overlay the original message or, if the sender wishes, in a separate

area. Thus the message boat position can be reused even though the actual message

is still waiting for completion.

A message count field shows how many messages are in the boat, The length of the

next boat in 64-bit words is next to the message count field as shown in Figure 2-7.

Note that the boat length field is for the next boat so the receiver can read the next

boat in one transfer from the "next boat pointer" base address.

59156400 Rev. B 2-17

The ready/resume flag mechanism consists of two 16-bit checksum fields at the

end of the boat. Both fields are initially zero. When the message boat is ready,

the message flag is set to the boat checksum. This action flags the receiver

signifying that the boat is ready for processing. After processing by the receiver,

the response flag is made non-zero by entering the response flag checksum. This

action flags the sender indicating that the boat has been processed. When the sender

is the CPU, the response flag is detected by the monitor in its basic scan loop.

The checksum flags are the sums of 8-bit bytes in the boat (modulo 215) and do not

include the checksum fields. The formats of peripheral station messages are in the

appendix. The first word has the standard form shown in Figure 2- 7. The mes­

sage length is the number of 64-bit words in the message, each message having a

separate length field. The left-most bit of the response code is set when the re -

sponse is returned. The next bit of the response code is set if parameters are

being returned in addition to the response code.

Response Message 1 Function
Code Length Code

Message 1 c:
parameters

Response Message 1 Function
Code Length Code

Boat
c:

parameters Message 2 Length

I

I
I
I
I
I
I

Next Boat Pointer Boat Response Pointer

Next Boat 1Message Response 1 Message
Length Count Flag Flag

Figure 2-7. Message Boat Format

2-18 59156400 Rev. B

DYNAMIC STORAGE ALLOCATION
Central memory is occupied at any given instant by the monitor, the resident sys -

tern tasks, the buffer areas involved with input/output channel transfers, and user

jobs.

The monitor maintains a page table that identifies each page of core storage in use,

giving the mapping between the virtual address and the physical location, the mode

of access permitted, and information about usage. (For a full description of the

page table and paging mechanism, see the STAR hardware manual.) The table is

ordered in such a manner that the most recently accessed pages are at the top of

the table and the least frequently accessed are at the bottom. This ordering is

automatically updated by the hardware. At every core storage access, the entry

for the page containing the required address moves to the top of the table.

Each user assumes that all of his program is in core storage. It is the responsi­

bility of the monitor to arrange for as much of each user's virtual space to be in

core storage as is necessary to ensure system efficiency. Stated another way,

when several programs are competing for the available core storage, the monitor

decides how much each one shall be allocated.

Storage management is primarily under the control of the access interrupt proces­

sor routines. These routines are entered when an access interrupt occurs. Such

an interrupt is caused by a user trying to access a page not currently in core stor­

age or by attempting to access a page in the wrong mode; for example, trying to

write to a page that is marked as read-only. If the interrupt is caused by a user

accessing a page not currently in core storage, the access interrupt processor

first marks the requesting job's alternator slot as blocked so that the alternator

can allocate the central processor to another job, and then arranges to obtain the

requested page. This process consists of passing messages to those stations that

might be able to provide the page \'ia the channel input I output control routines.

Usually it is to the paging drum station that acts as a large extension to the core

storage. When an external station provides the data, it flags the monitor with a

message. The page table is then updated to include the new entry, and the job al­

ternator slot is marked as ready. In most cases, the alternator immediately re­

starts this job that now gets the storage access requested.

59156400 Rev. B 2-19

The peripheral operating system rents space in central storage for data input and

response buffers. Hardware and software lockouts prevent such areas of storage

from interfering with each other.

Figure 2 -8 shows the general flow diagram for the processing of an access interrupt.

The 12 -bit lock field in the page table prevents translations of virtual address which

are not associated with the running program. A 12-bit key in the exchange package

must also match a page table lock in order for access permission to be granted.

Private Space

Generate Key

Test Cause Bits

Test Address Range

Public Space

Test Key

Allocate Space

I
I

Illegal Response

User Space

Test Key

I - - - - - - --J._ __ R_e_a_d_P_a_g;~e_R_e_q_u_e_s_t -~~ - - - - - - 1
I I I

I

Test Response

Not Found

Test Response

Found

Make PT Entry
and Return

Create PT
Entry

Test Response

Test Files

n.f. Found

Read Record Request

Test Response

Figure 2-8. Access Interrupt Processing

2-20 59156400 Rev. B

Each user has a Read /Write and a Read Only key in addition to the public-shared

library key. A user may also have one or more private shared segments (see

Memory Layout). The shared segment keys are normally held in the control point

and moved into the exchange package upon first translation request. There they

remain until exchanged by a request des iring some key not in the exchange package.

Note that if a user is not using shared segments other than the library, all his keys

are loaded into the exchange package at activation time.

When space allocation is being performed and a central memory block is transfer­

red to the paging station, the page table entry is marked with a "hold" key. The

hold key allows the INSERT ENTRY routine to locate the block in which the data

has been moved.

In the case of shared segments or shared public library,
the HOLD key provides a means of testing on subsequent
page faults if the transfer is in progress.

If the advise -type functions are being used to move data in/
out of virtual memory, the hold key provides a means to
check on succeeding faults wanting the same data which is
already in progress.

Figure 2 -9 shows the allocation scheme for the keys and locks.

00 01 10 11
Library S\·stem Libran· -

3FF 7FF BFF Task FFF Null

3FE 7FE BFE FFE

3FD 7FD BFD FFD
"O

[/]
Q.J .., ~~

Q.J .r:: i::: [/]

:::i
(fJ Q.J

CJ a
N ...-- tJ:
N ctl Q)
0 .::: en
.--< ..,

"

2 402 802 C02

1 401 801 COl

0 400 800 Public coo = Free

Read/Write Read Only
Sharing ;pace
(Read \Vrite Hol

Key Key Execute) Key
Figure 2 -9. Key Allocation

59156400 Rev. B 2 -21

The infrequently used library routines are kept on the disk, but they have a logical

correspondence with a virtual memory region. This correspondence is accomp­

lished with the System Library Table, an entry of which is shown in Figure 2-10.

Each entry consists of two words. The first word contains the file identifier,

and the second word contains the library virtual page and the length of the file in

blocks. When searching for a library page which cannot be found either in core or

on the paging drum, the System Library Table is searched. If the required address

is within the table, a Read Record request is sent to the disk station.

Executing programs can also establish a logical correspondence between a file and

virtual address range as long as the file is within the user space. This is the MAP­

IN function described under CALL MESSAGES. This function builds a threaded list

of active files and links them to a specific control point. Figure 2-10 shows the

format for an Active File Table entry.

file identifier

length (16) (15) I library virtual page (3 3)

System Library Table

file identifier

length (16) l next (14) l user virtual page (33)

Active File Table

Figure 2-10. System Library Table and Active File Table Entries

In addition to the use information in the page table, four bit strings are maintained

by the access interrupt routine to show the condition of active blocks in central

memory.

1. Memory Reservation String - shows which blocks in core are locked

down and are not candidates for swap-out.

2. Input /output Lock String - shows which pages in core are in input/ output

wait state.

3. Drum Duplication String - shows which blocks in core are not on the drum.

4. Modification string - shows which pages in core have been modified at

some point in the swapping process, even if not since the last swap-in.

In all four strings, the block number in the page table is an index into the string.

2-22 59156400 Rev. B

SYSTEM CALL PROCESSING

Job mode programs issue requests to the operating system by a mechanism of call

messages. These requests are received by monitor through an exit force instruc­

tion. Requests are analyzed by monitor for function and location validity. That

is, is there a function processor capable of handling the message, and is the entire

message contained within a page boundary? The reason for the latter is efficiency

of processing. Monitor does not use the virtual translating mechanism.

There are two types of Request/Call formats. First, a request (EXIT FORCE)

followed by a direct pointer address to the message; and, second, a request fol­

lowed by an indirect pointer to the message.

Type 1

EXIT FORCE

Direct flag

09000000

OOFFXXXX

Virtual address XXXXXXXX

Type 2

EXIT FORCE

Ind ire ct flag

09000000

OOEEOORR

(RR is register containing mes­
sage virtual address)

Once the pointer has been found, it is translated via the page table to obtain the

core address. If a fault occurs, monitor will try to find the page and move it into

central memory. When the message is in central, the block is normally put in in­

put/output lock state and processing begins.

Processing of call messages is generally accomplished by one of three mechanisms:

1. A request processor in monitor

2. Monitor calling and rerouting the request to a system task

3 Monitor queuing the request to a station for processing

Processing of 2 and 3 requires monitor, in most instances, to block the task from

execution and be the interface between the task's request and a system task or station

servicing the request.

The acceptable system call messages are shown in Table 2 -3. Corresponding for­

mats are shown in Table 2-4. Table 2-5 shows the file input/output messages.

The File Input /Output System Messages associated with monitor allow users to ob­

tain disk space as files, attach files to programs, read and write files implicitly or

explicitly, save files, and delete files. (A description of these messages is found in

Appendix D.)

59156400 Rev. B 2-23

TABLE 2-3. ACCEPTABLE SYSTEM CALL MESSAGES

FC Function Name Parameters Format

#000 Terminate_ Request FC I

#003 Validate Password FC, User ID password de- III - scriptor

#030 Drum _Page_ Count FC I

#031 Drop_Batch FC I

#03B Status Task FC I -
#03C Task_ Response FC I

#050 Buffer _Input FC, VA II

#060 Private Share FC, Name II -
#061 Private Access FC, Name II -
#15A Re call Request FC, usec II

#220 Execute FC, File Name II

#222 Print File FC, File Name II -
#22A Read Disk Record FC, Drive (16), Record (16) IV - -
#22C Introduce Disk Pack FC, Drive II - -
#400 Type_In FC I

#401 Remote Print FC I -
#402 Remote Card Read FC I - -
#403 Display_ Data FC I

#430 Lock Block FC, VA II -

2-24 59156400 Rev. B

TABLE 2-4. CALL MESSAGE FORMATS

FORMAT I

FORMAT II

FORMAT III

FORMAT IV

FC = Function Code

RC = Response Code

RC

RC

RC

RC

PARAMETER 1

PARAMETER 1

PARAMETER 2

I DRIVE

V. ADDRESS

FILE IDENTIFIER

FC

FC

l FC

FC

RECORD

Note: These formats are in the process of being changed to agree with those used

for file input /output (Figure 2 -11).

59156400 Rev. B 2-25

Header

Characteristic t

Name (N)

Header

Name (N)

Header

Name (N)

l
.

<

{

l
{
{

R

F M

RN

T

File Name

R

F

File Name

R

BK

F

File Name

FORMAT A

L c l
Error Exit

M0]Mp]

RB

FL/RL

Structure PTR

Free

(owner ID)

FORMAT B

L 1 c l
Error Exit

Virtual Address

(owner ID)

FORMAT C

L l c]
Error Exit

Virtual Address

T s

(owner ID)

t See Appendix D for specific message fields.

FC function code

R response code

L message length

C sub control code

F active file index number

M mode

FC

lE

FC

1E

FC

lE

M (1)

M (2)

M (3)

M (4)

M (5)

M (6)

M (7)

M (8)

M (9)

M (1)

M (2)

M (3)

M (4)

M (5)

M (1)

M (2)

M (3)

M (4)

M (5)

Figure 2-11. File Input/Output Message Formats

2-26 59156400 Rev. B

TABLE 2-5. FILE INPUT/OUTPUT SYSTEM MESSAGES

FC Function Name Parameters Format

150 Buffer Input (VA) B

154 Buffer Output (VA) B

302 Set File Disposition (D, NC, T) D

616 Map-In (C, F, VA, N) B

640 Create and Open (Char, N, M) A

641 Open (N, M) A

642 Close (F, N) B

644 Close and Delete (F, N) B

645 Keep File (F, N) B

646 Set Characteristics (Char, F, M, N) A

648 Is File Open (N) A

64A Read File Pages (F, VA, S, N) c
64B Write File Pages (F, BK, VA, S, N) c
684 Release (C, BK, VA) B

ERROR DETECTION AND PROCESSING

Monitor tests for two types of errors:

• those affecting a specific user, and

• those affecting the total system

Errors which stop a user activate the system Job Control routine which then in­

forms the interactive user of the problem. Batch jobs are terminated or suspended,

and messages are sent to the operator and I or system dayfile. The type of error is

passed to Job Control in the exponent of register 1. Following is a list of such error

messages:

O. ILLEGAL INSTRUCTION

1. PAUSE

2. ILLEGAL REFERENCE MODE

3. MESSAGE FORMAT ERROR - OBSOLETE

4. STORAGE DRIVE FAULT

5. TIME LIMIT

6. STORAGE LIMIT

59156400 Rev. B 2-27

7. MAPPED FILE NOT FOUND

8. REFERENCE TO NON-EXISTENT LIBRARY PAGE

9 SHARED SEGMENT NOT ACTIVE

10. MESSAGE FORMAT ERROR - POINTER CROSSES PAGE

11. MESSAGE FORMAT ERROR - NO POINTER

12. MESSAGE FORMAT ERROR - MESSAGE CROSSES PAGE

13. DRUM FULL WARNING

14. PAGING STATION INACTIVE

15. MAP-IN TABLE FULL

16. ILLEGAL DISK NUMBER

17. TOO MANY MAP TABLE ENTRIES

Errors which stop the system are hardware failures which have been detected by

monitor. These errors, shown in Table 2-6, are sent to the operator display sta­

tion and the maintenance station.

Error Code

01

02

03

04

05

06

2-28

TABLE 2-6. SYSTEM ERROR CODES

Explanation

access interrupt with no cause bits set. Hardware error:
An access interrupt occurred but none of the cause bits
(bits 12-15) of word E of the Invisible Package for this job
are set.

page table search for allocate space is in associative
registers. The access interrupt processing code is un­
able to find a page table entry to swap to the drum to free
up some space; all pages are locked down or are large
pages.

access interrupt null market not found. Hardware error:
OF instruction failed.

private sharing segment is negative. Hardware error: 26
instruction or the 2 7 instruction failed giving conflicting
results.

Free Space Block not found in page table. Hardware error:
OF instruction failed.

response pointer outside terminal buffer area. In a queue
entry received from the Display /Edit station, it was found
that the pointer to the response points to an area of central
memory that the Display /Edit station was not to use.

59156400 Rev. B

TABLE 2-6. (Cont'd)

Error Code Explanation

07

08

09

10

11

12

13

14

15

16

17

18

59156400 Rev. B

response pointer outside drum buffer area. Same dis­
cussion as for 06 but concerninir paging message response
pointer received from the service station.

response pointer outside disk buffer area. Same discus­
sion as for 06 but concerning a file message response
pointer received from the service station.

monitor mode illegal instruction. An illegal instruction
interrupt occurred in Monitor Mode.

Get Message page not found in page table. Hardware error:
OF instruction failed.

input from nonexistent terminal. In a message or response
received from the Display /Edit station, the rightmost eight
bits of the FROM zip code was greater than 7; this is the
terminal number and must be in the range 1-7.

output to nonexistent terminal or no control point for ter­
minal. Either someone is attempting to use the multi­
control-points-per-terminal capability which has not yet
been implemented or a message or response is being sent
to a terminal that is not logged on.

task queue overflow. The task queue appears to be in
error as indicated by the IN /OUT pointers being equal
when they should not be.

communication output queue overflow. The CPU to Display/
Edit queue appears to be in error by the IN /OUT pointers
being equal when they should not be.

communication input queue overflow. Obsolete error
code - should never occur.

drum output queue overflow. The CPU to service station
queue for paging messages appears to be in error by the
IN /OUT pointers being equal when they should not be.

disk output queue overflow. The CPU to service station
queue for file messages appears to be in error by the IN I
OUT pointers being equal when they should not be.

virtual page zero found while allocating new control point.
While initializing for a new job, a search of the page table
produced a find when it should not have; a virtual page zero
would not yet have been assigned for this job so that there
should not be such an entry in the page table.

2-29

TABLE 2-6. (Cont'd)

Error Code Explanation

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

2-30

interface DR UM/ DISK device error. Obsolete error code
should never occur.

stack word or control point space unavailable. Either an
available word was not found in the alternator stack or an
available 16-word control point area was not found when
trying to initialize for a new job.

virtual page zero not found after log-on rent space. Hard­
ware error: OF instruction failed.

key out of range for drum count update. The key appeared
to be incorrect; the user key and control point number are
identical and neither can exceed 12 10.

virtual page zero not found after "ROLL IN" connect.
Hardware error: OF instruction failed. -

request pointer outside terminal buffer area. A queue
entry in the Display /Edit to CPU queue was found to be in
error in that it points to a message situated outside of the
area legitimately available for such messages.

read record page not found in page table. Hardware
error: OF instruction failed.

an invalid response code was received from the service
station when the CPU sent an OPEN FILE message.

delete R/W block error (MAP IN). An invalid response
code was received from the service station when the CPU
sent a paging message.

delete read only block error (MAP IN). An invalid re­
sponse code was received from the-service station when
the CPU sent a read only message.

read disk record page not found in page table. Hardware:
OF instruction failed.

virtual page zero not found after batch activate. Hard­
ware error: OF instruction failed.

S/S message pointer outside buffer. Obsolete error code
should never occur.

S/S output queue overflow. Obsolete error code should
never occur.

system task virtual page zero not found. Hardware error:
OF instruction failed.

59156400 Rev. B

TABLE 2-6. (Cont'd)

Error Code Explanation

34

35

36

37

38

39

40

41

42

response from nonexistent message. A response was re­
ceived from the Display /Edit station to a message that the
CPU did not originate.

undefined drum cell response. This error code should
never occur - it is intended for future implementation of
the MAP OUT/BUFFER OUT philosophy of data move­
ment. Such does not exist in its entirety in the current
version of Monitor.

undefined disk cell response. Same as error code 35.

Data Ready Message but control point not blocked. A
TYPE-IN READY message was received from the Display I
Edit station but the CPU is not ready for it; specifically,
the control point is not blocked, i.e., awaiting input.

drum table full. A "device full" response code was re­
ceived from the service station when the CPU sent a
WRITE PAGE message to the service station. This con­
dition should never legitimately occur if proper correc­
tive action is taken by one or more users (like log-off)
when the DRUM FULL WARNING message is issued by
Monitor to all terminals.

drum write error. An invalid response code was received
from the service station when the CPU sent a WRITE PAGE
or a REWRITE PAGE message.

drum read error. Same as error code 3 9 but message was
READ PAGE.

disk read error. An invalid response code was received
from the service station when the CPU sent a READ FILE
PAGE message.

illegal message sent by Display I Edit station to CPU. A
message other than one that the CPU expects to receive
was sent by the Display /Edit station to the CPU.

SUMMARY OF CENTRAL MONITOR
Figure 2-12 gives a diagram of the main components of the central operating sys­

tem.

59156400 Rev. B 2-31

C..:l
I

VJ
C..:l

CJ1
CD
CJ1
0)

""" 0
0

!:)j
CD
<:

b:J

Basic

Monitor
Control
~Loop

Alternator -.
CP I Control Point ,,,..__ _ _, •41--------
I P I Invisible Package

Stack I

-1.

Periodic

Table

I
I

-----,
+ £l I

Input
Queue

I
I

r--T---,
I I I

l!ser

.Job

I User I
I Library I

I I I L_I_L I _ _J

r- - -1
I Interrupt Processors I

I ~ ~ I
I Call Processors I

I~I--- D~ L/_I_l_J
Channel

I /O
--~

Output
Queue

0¢:1 ~

I
I
I

,- - -,
I Memory

I Allocation

I I
I I

Page

Table

I
I
I
I

Task

I Dispatchers

I
I
I
I
I
I
I

i

User
4 Tasks

LI
J:

4 system

Tasks

1

i

I
I
I
I
I

_Jinput r ~Batch
I -I Control Tasks

I
I
L_ __ _

1

Figure 2-12. Overview of Monitor

The basic interrupt processors pass control to the Call Processors which do the call

processing, input message processing, system service processing, etc. A request

table contains the function codes and entry points of valid routines. The system task

dispatcher, as explained earlier, controls queues of tasks for insertion into the al­

ternator mechanism.

NOTE

The next level of documentation of the central monitor is the
program listing itself. This is written in PL(:' with copious
explanations and details of all tables used.

59156400 Rev. B 2-33

PERIPHERAL OPERATING SYSTEM 3

The peripherals involved in the STAR computer system are organized into stations

that provide one or more utilities or services of some nature. A station consists

of a data handling computer with appropriate backing storage, extra data buffering

storage, and channels both for the management of the resources that it controls and

for connections to other stations. The basic building blocks of the STAR stations

are the station control unit (SCU) and the station buffer unit (SBU).

The SCU consists of a buffer controller computer having either SI...:. or 16K bytes of

core storage, a microdrum of approximately SOK bytes capacity, and a character

display terminal with a keyboard.

The buffer controller computer is a processor specifically designed for data con­

trol functions. Jt is a 16-bit word processor that provides bit, byte and word man­

ipulation, and controls one high-speed parallel block transfer channel and a number

of individually driven channels for slower devices.

The SBU consists of 64K bytes of core storage, arranged in eight separately phased

banks with storage control logic providing for 12 independent channel access. The

SBU is always associated with a controlling SCU. Its function is to provide inter­

mediate buffering of data and the logical control at a network nodal point of one

STAR channe 1 with many other station channels.

The stations of the STAR peripheral system do not execute user code. They per­

form assigned system tasks associated with input/output and peripheral activit:v-.

The station software is a distributed part of the total operating system.

The communication of required tasks to and from the stations is achieved by mes­

sages between stations. Each station knows the messages with which it can deal

and the responses it can make.

Any computer system that is suitably hardware and software interfaced can be

connected into a ST AR system in a straightforward way.

59156400 Rev. B 3-1

STAR STATIONS AND SYSTEM FUNCTIONS

Every station manages its own resources and controls its own devices. Within the

framework of an operating system, a station multiplexes and drives devices, buf­

fers data involved in transfers, maintains communication paths to other stations,

initiates messages, processes and responds to messages, handles error conditions,

provides maintenance access, collects performance statistics, and interacts with

machine operators. A station is named and defined by the specific functions it per­

forms rather than by the equipment to which it is connected. There are presently

eight different, functionally-oriented stations.

The maintenance station consists of an SCU with a card reader, a line printer,

and a magnetic tape drive. These peripheral units are controlled directly from

their associated I /0 channels without any intermediate hardware controllers. The

maintenance station also has some additional channels connecting it directly to the

STAR central processor hardware. The station provides a diagnostic and mainte­

nance service and a measurement and monitoring function for the STAR central

processor. It can also function as a small unit record station.

The paging station provides virtual memory extension for the ST AR memory sys­

tem. It consists of drum storage units, one or two SBUs, and one controlling

SCU. Each SBU contains a hardware search mechanism to assist in virtual address

mapping. The station provides such functions as maintaining a virtual map of the

drum system, searching this map, driving the drum units, processing queues of

drum transfer requests and buffering blocks associated with these, detecting drum

error conditions, and performing access checks.

The disk storage station provides file storage and file management. It consists of

a large disk file transferring blocks of data in and out of an SBU under control of an

SCU. The system functions performed by the station include driving the disk unit,

maintaining the file directories, allocating disk space, providing file access pro­

tection, keeping file recovery data, executing the standard file functions such as

read, write, create, and map, and providing rerouting for back-up systems.

The service station provides a focal point for the input/output system. It consists

of an SCU and an SBU with one drum unit. Of the 12 SBU channels, one is connected

to the SCU, one to the drum, eight to other stations, and two to the STAR central

processor. The station maintains message and data paths for the network , provides

3-2 59156400 Rev. B

temporary storage for files, validates users, controls communication between

STAR or other processors and the input/output network, manages the accounting

for users, and maintains the print, punch, and batch queues.

The disk pack station and magnetic tape station both consist of an SCU and an SRU,

with the SBU channels connecting to removable disk pack devices or magnetic tape

drives. The stations provide the functions listed under the disk storage station and

also control device mounting and checking and data translations. The media station

is a combination disk pack and magnetic tape station.

The unit record sto.tion provides an interface between unit record devices and the

system. It consists of an SCU and the peripheral devices that may or may not he

connected via hardware controllers. Normally, this station is 3ttached to a ser­

vice station. The station drives the devices, compresses and expands data, and

does a small amount of processing - for example, of job contr()l cards.

The display station consists of a modified SBU called a station display unit (SDl'),

a controlling SCU, and up to 28 local display terminals. The svstem Lmctions

performed in it include driving the displays and keyboards and providing character

editing systems.

The communication station drives remote terminals such as displays, teletvpe­

writers, and card readers, 'J.suaUv using the telephone network. Tvpicallv there

are 64 terminals per station.

A service station with display stations and unit record stati()ns :it1achccl to it for·ms

a file/edit subsystem. This provides input/output, storo.gc, ancl editing of data in­

dependent of any STAR central processor activity. Figure 1-1, in Section 1, shows

typical connections of these stations with STJ\H processocs.

MESSAGES

Messages are sent between stations to communicate contr·ol informo.tion. Each

message contains a header and a message hC>dy. The h•~adcr c<intains the destina­

tion and the address of the sender, specifies the function lwing sent, and contoins

some checking information. The messo.ge body contains the parameters associated

with the particular function. Because different functions require different numbers

and types of parameters, there are a number of different mcsso.ge formats. These

formats are kept to a minimum to make the message processing programs small

and efficient.

59156400 Rev. R

Each station has a table of messages that it is capable of sending and servicing,

Responses to messages are also messages, and these are always sent on the com­

pletion of requested tasks.

The addresses of stations and units in the system can be likened to postal zip codes

and are often referred to by that name. The message directories and associated

tables reflect the system components and configurations. For example, a task

might be allocatable to more than one station, or alternative routes to a station

might well be possible. In such cases, a station originating a message might have

to decide which destination to choose or which rerouting to use if the normal routing

is currently unserviceable.

In Appendix C, the message directories, buffers and formats are described. Ap­

pendix D gives the list of messages, showing which stations can process which mes­

sages. Appendix D also traces the steps involved in card reader input, showing the

interaction between the unit record station and the service station.

SYSTEM STRUCTURE
Each type of station has a different set of tasks to perform. The hardware and soft­

ware associated with each type of station is that which will enable the station to per­

form its tasks.

The software for any station is a portion of a complete set of station software files.

A simple resident operating system is common to all stations, and many overlays

are used by several types of stations. A single, complete set of station software

that the stations can share is a structure that is economical to produce, maintain,

and improve.

The set of software for any type of station is divided into as many as five different

systems which are appropriate to different types of operation. These systems are:

1. microdrum loader system

2. run system

3. diagnostic system

4. off - line utility system

5, checkout system

The run system is the system used in normal system operation.

3-4 59156400 Rev. B

A primary and backup set of all the software associated with a station is kept on

the microdrum. At autoload time, any one of the systems can be loaded. After

loading the basic operating system, pointers to the remainder of the operating

system are established and conditions under which these overlays will be called

are defined.

PROCEDURES

Station software consists of a set of procedures which are identified by residency

and type. Procedures are the bounded contiguous code sets seen by the system

loader, the microdrum loader, and the overlay driver. Procedures are variable

length, single or multiple functional code sets, or data sets.

Associated with each procedure is a header that contains an identifying name,

procedure definition, and system assignments. The system assignments refer to

the specific systems in which the procedure is used. The layout of this header

information is given in Appendix F. The seven procedure types defined are:

• Declaratives

• System Autoloader

• Direct Core Overlays

• High Core Overlays

• Permanent Overlays

• Temporary Overlays

• Data Buffers

DECLARA TIYES

Declaratives are pseudo instructions used for procedural definitions.

SYSTEM AUTOLOADER

The System Autoloader is a switch selectable procedure read in at autoload time

under hardware control. A system autoloader is limited to one track (1152 words).

In addition to the system autoload program, this procedure contains the initial

direct and high core code sets for the nucleus.

59156400 Rev. B 3-5

DIRECT CORE OVERLAYS

Direct Core Overlays are loaded by the system autoloader into the 256 directly

addressable buffer controller memory words. A maximum of four direct core

overlays will be sequentially loaded (following the nucleus direct core) as required

by the system assignments. Assembly time locations and run time locations are

identical for direct core overlays.

HIGH CORE OVERLAYS

High Core Overlays are loaded by the system autoloader following the initial

nucleus high core. A maximum of four high core overlays may be assigned to a

system. Assembly time locations and run time locations are identical for high

core overlays.

PERMANENT OVERLAYS

Permanent Overlays are loaded by the system autoloader following the last high

core overlay. In addition, each permanent overlay is mapped into the Virtual

Residency Table. Although these procedures remain permanently in core (thereby

allowing local dynamic modifications), location independence is assumed by the

system loader.

TEMPORARY OVERLAYS

Temporary Overlays are procedures loaded by the overlay driver. These overlays

are one pass, re-entrant, and location independent. In addition, they are assigned

a release priority (0 or 1). As with permanent overlays, they are mapped into the

Virtual Residency Table upon arrival in core. Temporary overlays remain in core

until their space is required for another temporary overlay.

DAT A BUFFERS

Data Buffers are procedures which generally do not contain execution code. They

are called directly (via the microdrum driver) by tasks. Some examples of data

buffers are code conversion tables, directive statements or format tables, and

canned displays and printouts.

The nucleus, which includes the system autoloader, one high core, several per­

manent, and many temporary overlays, can be considered the station equivalent of

3-6 59156400 Rev. B

the STAR central monitor. The nucleus allocates and manages station resources

(space manager, overlay driver, scanner), drives the local SCU devices (microdrum,

keyboard/display, couplers), and schedules the system functions (message switch).

As part of the autoload procedure, memory is partitioned into permanent space,

temporary space, and buffer space. Permanent space includes all of direct core

and the necessary high core required by high core and permanent overlays. The

remainder of core is divided into temporary space and buffer space. Temporan

space is an area set aside for exclusive use b>· temporary overl<ns while buffer

space is used exclusively for buffers.

Station execution code consists of virtually and physicallv addressable routines.

Virtual routines include all permanent overlays, all temporary over la vs, and

certain routines found in the system autoloader and high core overlay proceduces.

Physically addressable routines are code sets or subcode sets found in the s>·stem

autoloader and in high core overlavs. Physicalh addressable routines cannot he

temporary overlays.

The \'irtual Hesidency Table defines the residency of all virtual routines. The

length of the VHT, which varies from station to station, is set by the number of

virtual routines required. Each entry consists of three words; one word for memory

physical address, the base address of the routine, and two words for the micro­

clrum (or SBl) address of the routine.

Virtual routines are identified by their inclex value (called the Program :\'umber)

in the virtual residency table. A virtual routine is present in core when its base

address is nonzero, absent when its base address is zero.

Virtual routines are called by program number and relative addcess. Their resi­

dency is at all times invisible to the caller. \'irtual routines alwa.\s return to the

caller via a virtual return address.

Virtual routines can be initiated b\· three differPnt mechanisms; the scanner, the

virtual queue, and directly by another routine.

Physically addressable routines are permanently resident in cure. These routines

return to the caller via a physical or virtual return address, dependent on the s.vn­

chronous /asynchronous nature of the called routine (the microdrum driver is asyn­

chronous, the active overla>· routine is synchronous).

59156400 Rev. B

The scanner is the idle loop of the nucleus. The primary purpose of the scanner

is to map normal channel data signals to the Virtual Residency Table based on

priority and logical selection, thereby providing a low overhead mechanism for

handling asynchronous external events. The external events (such as channel

flags, microdrum busy, or input ready signals) are presented to the scanner

program via one or more normal channels. Associated with each channel are two

logical selection words, the ENABLE mask, and the STATE mask. The channel

data is exclusive or'ed with the state mask in order to select the appropriate signal

polarities, and then matched against the enable mask. Any bits that are now set

represent selected channel events in the desired state. These bits are scanned

from left to right and the first bit found set is used to index the Virtual Residency

Table. If all bits are zero, the scanner moves on to the next channel and repeats

the procedure. One or more memory words are used to initiate internal events via

the scanner. In this case, the memory words rather than the channels represent the

raw input to the scanner. In a typical station, the scanner cycles through two

normal channels and two memory words.

Some stations have a critical time within which the scanner must be re -entered so

that time-critical dependent devices can be correctly handled. This time is at

least a few hundred microseconds; however, tasks have to be written with this in

mind and subdivided accordingly so that returns to the scanner can be made.

The Virtual Queue is a mechanism for calling virtual routines on a first come first

served basis. Each one word entry in this circular queue points to a control

package or a parameter package, or is null. In each pass of the virtual queue

program, one entry is scanned; an N entry virtual queue requires, therefore, N

passes to scan all entries. The virtual queue program is called by the scanner,

generally as the lowest priority "bit" of the scan.

The nucleus idle loop then is: scan the channel bits, scan a virtual queue entry,

repeat.

Virtual routines can also be called directly by other routines. All such calls,

whether directly, by the scanner, or by the virtual queue, are directed to the

Virtual Connector, the function of which is to pass parameters to a logically

addressed program.

3-8 59156400 Rev. B

The virtual connector is entered with a flag which identifies whether the request is

via a control package or a parameter package. The program number found in this

package indexes the virtual residency table, and if the routine is in core, the

virtual connector exits to it with index registers Bl and B2 pointing to the caller's

control package and/ or parameter package. If the requested routine is absent from

core, the virtual connector saves the package pointers and calls the overlay driver

subroutine.

After the routine has been read into core, the overlay driver inserts the startin[.f

address of the routine into the virtual residency table, picks up the package

pointers, and exits to the routine.

The only virtual routines which can be absent from core are temporary overlays,

and these overlays all share the same space. The overlay driver, which manages

this space, always finds room for an overlay. This section of core, set aside for

the exclusive use of temporary overlays, is dynamically inhabited by free space.

priority - 0 overla:is and priority - 1 overlays. Overlays remain core resident as

long as the overlay driver can find sufficient contiguous free space for new O\'e1·­

lays. Free space is created by first deleting all priority - 0 temporary over iLl ,,;

from the virtual residency table. Jf the resulting free space is still insufficient,

all priority - 1 overlays are deleted; that is, all space is then free space.

Although station software will :·un in 4K memor.v, an additional 4E increases pec­

formance by allowing more of lile working set (temporary overlays) to remain co cc

resident, thereby reducing ove da:-' thrashing.

Station tasks are initiated by:

• receipt of system or operator messages

• initiation of a user device input

• internal maintenance or error recovery procedures

Associated with each task that a station can perform is a task overla:>. This O\'e1·­

lay executes the task by calling the appropriate subroutines. The tasks that a

station performs are defined by the messages it processes. For each message

there is a message overlay to control the execution of the requested tasks. A

message overlay is one form of a task overlay.

59156400 Rev. B 3-9

Programs that are used in more than one station,...,. for example, a disk pack driver -

are written as subroutines obeying certain coding conventions. These subroutines

are documented separately in a manual entitled Peripheral System Subroutines. A

typical example of a subroutine specification is shown in Figure 3-1. A subroutine

is normally entered using an indirect jump. The subroutine specifies which regis­

ter contains the pointer to the parameter area. A driver can consist of all or part

of a residency overlay or can be a nonresident overlay.

NAME: RENT CORE

AUTHOR /PHONE: C. Berkey/3774

DATE: 12 Feb. 72

LENGTH:

DESCRIPTION: Rent message area or buffer space in SCU

USE: Enter by indirect jump to RENT CORE with B2 = parameter
address. -

Parameters:

1 control package (CP) address

2 return address

3 length in 16-bit words

4 response places SCU address here

COMMENTS: Parameter word 4 is zero on return if not enough space
available.

MODIFICATION RECORD:

Figure 3-1. Example of a Station Subroutine Specification

Associated with each task execution is a task overlay that contains all the code

necessary to control the task to its completion with the help of station subroutines.

Two similar tasks frequently have completely separate task overlays that call many

common subroutines. These subroutines are the major way of minimizing the total

amount of software needed. There are presently more than 100 subroutines con­

tained in the STAR station subroutine file, including device and channel drivers,

resource allocation routines, error handling routines, functional subroutines, mes­

sage queue handling, and message decoding routines.

3-10 59156400 Rev. B

The task overlays are re-entrant programs, and a single overlay handles several

simultaneous tasks by the use of short tables called control packages. The control

package contains the parameters for each task and shows its status. Figure :3-2

shows a typical control package format. Parameters are passed from one routine

to another using either the control paGkage or words in low core.

Suhroutines Status
retry address

Message buffer Master control
address package address

Subroutine Subroutine
return address function code

SCU address SBU address

Storage access control

Disk or drum address

l\ot used

Not used Message addn'ss

Entries are 16-bit words, except for the :32-bit storage access contr-ol and disk ad­
dresses.

Figure 3-2. Layout of a Typical Control l'ack::ig(~

59156400 Hev. B 3-11

A typical flow diagram for a task program is shown in Figure 3-3. The message

handling subroutine, responsible for reading messages from the STAR central pro­

cessor, initiates this overlay on receipt of the read page message. The tasks to

be done are shown in the center and the subroutines called to do them on the right.

These subroutines are entered from the scanner, as requested by the calling rou­

tine placing entries in the appropriate queues. A subroutine can sometimes be

blocked, for example, because a queue is full. In this case it exits to the scanner

after making arrangements to be recalled later. On such periodic re-entries, the

routine checks to see if it can continue. This process is shown on the left of the

diagram. The task ends with the release of the control package, and the buffer

spaces used in the SEU for data transfers and messages. The final exit is back to

the scanner.

SYSTEM LOADERS

There are five loaders used in the peripheral operating system: The autoloader,

the system autoloader, the overlay driver, and the microdrum physical and logical

loaders.

The autoloader is a hardware sequence that loads a preselected track of 2304 bytes

from the microdrum into core storage, starting at address zero. After the load,

control is transferred to address one. The autoload procedure is initiated locally

from a button on the SCU control panel or remotely from the maintenance station.

The system autoloader is loaded with the nucleus at autoload time. It executes a

set of short diagnostic programs, then transfers control to a routine that loads the

run system only when the key actuated lock is on or else awaits selection of a par­

ticular system by the operator. The various system types are displayed and are

initiated from the console function keys. The system autoloader sets up the scan­

ner and overlay tables for the selection system, loads the resident portions into

core, and transfers control to it. External autoload, which can be initiated from

the maintenance station, causes automatic autoload of the run system if the key­

actuated lock is on. All stations may be started up by this one external autoload.

The overlay driver is contained in the nucleus. The driver transfers nonresident

overlay routines from the microdrum or SEU into core when called during station

operation. Because these overlays are address relocatable, the driver simply

transfers the microdrum or SEU binary code image into core without any process -

ing.

3-12 59156400 Rev. B

Recall mechanism
(from Scanner)

Comparator
queue full ___,

]\To free
SBU block

1' rum queue

]\' 0

Fnt ry from Scanne~·

Rent and set up
Control Package

Search Drum
Page Table

Rent SBU block

fu 11 --- Read pagf' f1·om cl i·u

SAC queue
fu 11

T 1·ansff>r page
to STAR

Set response
for STAR

Set
Scanner

Bit HPceivP
Message

Sub routines

SETUPCP

Comparator
Driver

RFNTA BT OC1\

SA CDRl\'FR

End sequence
Send response
Release CP B.
SBl' block

Exit to scanner'

Figure 3-3. Flow Diagram for Read Page
Task Program (function code 200)

59156400 Rev. B 3-13

The microdrum logical loader is a software system that accepts binary output from

the assembler. It processes the header data associated with every assembled rou­

tine and then forms the scanner and overlay tables for each system and loads these

and the overlays onto the microdrum. The binary data can be from any media. It

is possible to add overlays to existing systems and to load complete new sets of

software. Appendix F gives details of the layout of the microdrum and of the micro­

drum loader. The microdrum physical loader simply copies an image of the micro­

drum from SEU to central memory.

BUFFER CONTROLLER MEMORY LAYOUT
Figure 3-4 shows how the buffer core storage is organized in a typical station.

The first 2048 words, approximately, are taken up by the basic common software

that includes the nucleus. The remainder of the storage is divided between high­

core overlays, permanent overlays, and space for temporary overlays and buffers.

Word
Address

0
255

256

1024

2048

3072

4096

Contents

Low core overlays

Scanner program, drum
driver, and overlay driver

Scan and overlay tables

Basic subroutines, control
packages, buffers, and

queues

Message switch program rentablock
program (high core overlay 1)

High core overlays 2 - 4 (if selected)

Permanent overlays, including key-
board driver, real time strobe, and
storage access control driver

Space for temporary overlays

Data buffers and work space

l
basic

software
package
common

to all
stations

J

Figure 3-4. Typical Layout of Buffer Controller Core Storage

3-14 59156400 Rev. B

SOFTWARE DEVELOPMENT

The peripheral system software is written in the Buffalo assembly language.

Appendix I describes Buffalo and includes a program example.

In adding a new task to a station, the task overlay and message overlay are designed

and coded with any new subroutines or overlays needed. This software is then en­

tered into STAR and assembled. The output is loaded onto the required system at

the station and initially developed off-line using the operator's console. The key­

board/display system provides various software development aids and can be used

to simulate sending the message for initiating the task.

One permanent symbolic file is used to hold the basic software systems for all sta -

tions; that is, the nucleus plus the variations in nucleus code required for different

stations. The conditional assembly features in Buffalo allow the required variations

for a particular station to be extracted. As well as the core nucleus file common to

all stations, each station has another file which contains the special-purpose soft­

ware necessary to the operational functions of that station.

MAINTENANCE INFORMATION SYSTEM - MIS

MIS is a standard method of error processing and maintenance access included in

the peripheral operating system. It provides for:

• saving of station and device status on occurrence of errors

• automatic retry

• error and retry logging

• on- line isolation of faults

• an access mechanism to perform diagnostics on a unit while the

remainder of the station is operating under system control

• background diagnostics

• visibility to customer engineer of maintenance operations

See Appendix F for a complete discussion.

CUSTOMER ENGINEERING MANIPULATIVE LANGUAGE - AID

AID is a manipulative language for use by the customer engineers. Its purpose is

to provide the customer engineers with the capability of generating short test

programs used to debug Input/Output hardware failures.

59156400 Rev. B 3-15

Programs are written using the SCU display and keyboard and stored on the SCU

microdrum until execution. When requested, the generated program on the micro­

drum is read into SCU memory and executed. During execution, program control

is not returned to the nucleus thereby permitting tight test loops for scoping pur­

poses. Before execution, the generated AID program can be referenced on the

microdrum. After execution, the program can be referenced both on the micro­

drum and in SCU memory. In both cases, the generated code is contiguous.

AID is part of the Diagnostic system and uses the resources of the nucleus;

however, it does not use the system drivers. (See Appendix F for a complete

description.)

3-16 59156400 Rev. B

FILE SYSTEM 4

A file is a collection of data items, together with a catalog entry called a descriptor

that describes the collection to the system. A file is the basic unit in which infor­

mation is handled within the computer, and can be manipulated by a set of file func­

tions provided by the operating system.

This section describes the creation, maintenance, recovery, access, security, and

storage layout of files. These capabilities, called the storage management of the

file system, exist completely in the storage stations. The storage stations are in­

dependent of any other stations including central processor stations and system net­

work connections.

The subject of record management, how the user accesses his files in the central

machine, is described in Section 5.

DESCRIPTOR

Each file has a descriptor, or catalog entry that describes the file. The descriptor

consists of eight sections as shown in Figure 4-1. The first six of these sections

are the header, characteristics, name, storage map, access list, and activity rec­

ord. The last two sections are free for future developments of the file system.

Any given storage unit contains a number of files with their descriptors. The

set of all descriptors in a storage unit is itself a file which can be processed like

any other file. It is called the descriptor file, or catalog, for the storage unit and

has the name DIRECTORY _FILE_ xxx (where xxx is the pack label for an exchange­

able disk pack, for example). The catalog is not necessarily kept on the same stor­

age device as the files it describes. Removable units contain their own catalog files,

but these can be copied elsewhere on mounting.

The size of a descriptor is variable, but, for reasons of efficiency in the station

control unit, it is always a multiple of 256 8-bit bytes. The basic descriptor is

limited to 4096 contiguous bytes. Sections that must be variable in size contain

overflow pointers to further areas; these overflow areas are not limited in size.

59156400 Rev. B 4-1

The space needed for the catalog is also variable, but a fixed area, 64 blocks of

4096 characters per block, is currently used to provide as many as 1024 files per

storage unit.

Header

Characteristics

Name

Storage Map

Access List

Activity Record

Free

Free

Figure 4-1. Component Parts of a File Descriptor

When a file is created, a 256-byte descriptor space is allocated in the catalog

area; the location of this space is a function of the file name. An address in the

catalog area is formed by extracting part of the string of characters in the file

name and altering its value with some logical operations. This transformation,

commonly called a hash of the name, usually results in the address of an empty

space in the catalog. However, it is possible for two or more names to hash to

the same address. In such cases, the closest empty space is found and the de­

scriptor placed there.

When a file is opened, the location of the descriptor associated with it is found in

an identical manner. The same hash of the file name is made, and the resulting

number used as an address of the descriptor. If the file name read from this de­

scriptor does not correspond with the correct file name, then a search is made of

the surrounding descriptors to find the wanted one. The descriptor is only refer­

enced when a file is opened and closed.

4-2 59156400 Rev. B

LAYOUT OF DESCRIPTOR FILE ON THE
841 EXCHANGEABLE DISK PACK

The first two cylinders of the disk pack consists of 40 tracks of two blocks each,

where a block is 4096 bytes. These blocks are used to hold the pack label, a map

of free storage, and the descriptors.

Blocks

0-1

2-3

4-67

68-79

Use

pack label

free storage map

descriptors

spare space

The basic descriptor size is 256 bytes so there can be 1024 descriptors on the pack

and, therefore, 1024 files. The capacity of the pack is 7200 blocks.

The format of the free storage map is as follows, in 16-bit words:

Word

0-7

8

9

10

11

12

13

14

15

16-2047

Use

not used

storage map type

pointer to start of map

total number of blocks on unit

number of faulty blocks

number of used blocks

number of free blocks

number of entries in map table

number of active entries in map table

storage map of free space

In the free space map, each entry consists of two 16-bit words. The first of these

is the storage address and the second gives the number of contiguous blocks avail­

able, starting from that address.

The storage map is normally kept on the storage device, although the operating sys­

tem can also process it from a station buffer if necessary.

The following sections discuss the component parts of a descriptor.

59156400 Rev. B 4-3

HEADER

The header portion of the descriptor consists of nine 16-bit words. It gives the

byte length of the entire descriptor and the relative starting address of the other

seven sections of the descriptor. The layout is shown in Figure 4-2.

Word Contents

0 Descriptor byte length

1 Not used

Relative address of
characteristics section 2

Relative address of
name section 3

Relative address of
stora_g_e ma_12_ section 4

Relative address of
access list section 5

Relative address of
activi!Y_ record section 6

Relative address of
first free section 7

Relative address of
second free section 8

Figure 4-2. Format of Descriptor Header in 16-bit Words

CHARACTERISTICS

The characteristics section of the descriptor occupies four 64-bit words. The first

three of these give information about the type of file, its size, and its structure.

The last word is currently not used. Figure 4-3 shows the layout of the character­

istics section.

Number of records l Number of blocks
(32) reserved for file (32)

Type (16) File length in bits (48)t

Reserved for Pointer to further structure
future types information in file (48)

Not currently used

Figure 4-3. Format of Characteristics Section of Descriptor

t If the file type is binary fixed length, then this field contains the record length in
bits and not the file length.

4-4 59156400 Rev. B

The 64-bit words are divided into 16-, 32-, and 48-bit fields as shown.

There are 16 bits in the type field, of which 15 are currently used; a further 16 are

kept for the addition of new file types. The types of files are listed below with the

corresponding bit address in the type field.

Bit Position in
Type Field Type of File

0 undefined

coded de limited

2 coded fixed

3 binary STAR

4 binary fixed

5 foreign delimited

6 foreign fixed

7 virtual memory

8 drop

9 labeled

10 multiple volume

11 incomplete

12 permanent

13 input

14 output

An undefined file is one with a name, but of unknown contents. It provides a con­

venient way for the system to apply file functions to data collections which are not

in the form of user files.

Coded delimited, coded fixed, binary STAR, binary fixed, foreign de limited and

foreign fixed are all files associated with an input device, usually the card reader.

In such files, there is an internal structure. The files are divided into records.

For coded delimited files from the card reader, a record consists of an ASCII card­

image terminated with a record separator character. In such a record, multiple

blanks are compressed. In coded fixed files, the records consist of ASCII card

images with no record separators and no compression of blanks. For the other

four types, the records are of variable lengths. In binary STAR, record separators

determine the length of records. In binary fixed, each card is a fixed-length binary

record. Foreign de limited and foreign fixed files allow for punched cards from any

59156400 Rev. B 4-5

different computer systems to be processed. (These six types of card files are de­

scribed in detail in Appendix B, Card Formats.) On creation of a file with variable

length records; that is, for all except coded delimited and coded fixed, a file is also

created that records the type and length of each record. This is called the map file

and it is of type binary fixed, with a record length of 64-bits.

It is possible for a file to consist of any mixture of these six types. Such a file has

all the relevant bits set in its type field. The map file associated with it identifies

which type any particular record within the file is.

Virtual memory files and drop files contain structural information within them, so

they use the structure pointer defined in the file characteristic. A virtual memory

file consists of units of STAR pages which are multiples of 512 64-bit words. With

each unit is associated a page address. When the file is read into STAR storage,

the page addresses are set from these addresses. The file is thus an image of a

virtual memory region. A drop file is created by the central operating system

from a job in the machine. It consists of the program virtual memory pages with

all of the current program status information. It is used by the operating system

for suspending programs and moving them completely out of the central machine,

either at the user's request or for system reasons. A drop file can be loaded and

continue execution from where it was suspended.

A labeled file is one that has a USASI label at the start. }\ny file can be labeled, so

the type bit 9 can occur with any others.

A multiple volume file is a file that is spread over a number of storage units. The

system controls the mounting of successive volumes.

An incomplete file is a file that can he processed in parts. Such a file might he too

large to be mapped into the central machine all at one time.

Files can be temporary or permanent. Temporary files are automatically deleted

after output and after batch execution and are intended for use on a short-time bas is.

Temporary files can be converted into permanent files if the user is entitled to the

amount of storage space involved.

Input and output files are types internal to the system. \Vhen a file is being created

from an input device and when a file is being sent to an output device, these type bits

are set to allow interaction with the unit record station rnvolved.

4-6 59156400 Rev. B

NAME

The name of a file, which uniquely identifies it, consists of two parts. Both are

variable length strings of ASCII characters. The first is the name by which the file

will be known and the second is the identification name of the owner. The strings

are separated by the space character. The file name is not allowed to contain the

characters for asterisk, slash, period, ampersand, vertical bar, or question mark

(':'/. & J ?) because these are reserved for special use. For example, the map file

associated with files containing variable length records has the same name as the

data file, except that it is followed by a reverse slash character. The period char­

acter is used to indicate a hierarchical structure within the name.

The name of the file is used to locate the file descriptor when the file is opened.

The file has to be opened before it can be processed.

Figure 4-4 shows the layout of the name section of the descriptor.

Ll L2 I ••• I Sp I • ••
~ Ll ~ k L2

Ll number of bytes in file name

L2 number of bytes in user identification name

Sp ASCII space character, used as separator

Figure 4-4. Format of Name Field of File Descriptor in 8-hit Bytes

Example of file name with user identification:

MATRIX J249

In hexadecimal, the lengths and ASCII characters appear as:

Jo6Jo4J4o 41 54 52 49 58 20 4A 32 34 3~J

STORAGE MAP

The storage layout of a file varies with the particular storage device and is intended

to optimize the performance of the devices. The current technique is to allocate the

desired number of blocks in a contiguous fashion, or, when this is not possible, to

allocate the total space in as few large sections as possible.

59156400 Rev. B 4-7

The unit of transfer is a block of 40D6 bytes, and the current storage stations use

either the 841 exchangeable pack disk dri\·e or the large 817 disk drive. The lay­

out of tracks on the 841 is a straightforward two blocks per track. The access

time for an 817 disk file laid out in random blocks can take l 00 times as long as

for the same file laid out in contiguous blocks.

New storage devices requiring different layout techniques can later he introduced

into the filing system. Because of this, the routine which allocates file space,

known as RENT STORE, is modularly replaceable and can he easily modified.

The storage map section of the file descriptor is a table kept to a fixed length. lt

is arranged as a number of 16-bit words, the last of which is used as a pointer to

an overflow area if one is needed. Within the table, entries are grouped according

to storage devices. Each group consists of a heading that gi\·es the device identifi­

cation and the number of sections of the file on the device. A section consists of

one or more contiguous blocks. After the heading, there is o list of entries to give

the starting block address and the number of contiguous blocks from that address

for each section. The layout of the storage map is shu\\'n in Figure 4-5.

N =

repeated for
each volume

number

Volume Number

Start (i) ~

Blocks (i)

N
I-- I

St3rt (1)
Blocks (1)

Stort (2)
Blocks (2)

•
•
•

Start (n)
Blocks (n)

PTR

Volume
0:umber

number of sections of file on this de\·ice (8-hits)

used with a table in the storage device label to identify
the device holding these segments of the file.

starting address of next section (16-hits)

number of contiguous blocks (16-hits)

PTR = pointer to overflow area for map, if required

Figure 4-5. Format of Storage Map Section of the File Descriptor in 16-bit \Yords

4-8 59156400 Rev. B

ACCESS LIST

The rights of a user to access a file are checked when the user initially opens the

file. The open file function, like all file functions, involves sending a message to

the storage station. The open file function passes the file name, the owner identi­

fication, the user identification, and the access mode required for this run as pa­

rameters. These are passed as ASCII character strings that are separated by a

space character and terminated by the record separator character. If the owner

is the user, the user identification field can be omitted. On receipt of this open

file message, the user's access rights are checked against the access list in the

file descriptor. If access is not permitted, an invalid access response is sent. If

it is permitted, the run mode of access is recorded in a table called the active file

table and the file is given an index number for use in future messages. Thereafter,

for other file functions, the validity of the required operation is checked against the

mode stored with the file entry in the active file table.

The layout of the access list is shown in Figure 4-6. It is a byte-organized table of

fixed length, with the last two bytes used to give a 16-bit pointer to an overflow area,

if an overflow area is required.

:.V10

MP

N =

Ml, M2 ... =

Ll, L2 ... =

PTR =

Ll

L2

•
•
•

PTR

Ml

M2

•
•
•

userl identifier

user2 identifier

•
•
•

mode of access of owner

mode of access of pub lie

number of entries in the table

mode of access for userl, 2, ... , n

number of bytes in identifier for user 1, 2, ... , n

pointer to additional access list (final 16 bits in table)

Figure 4-6. Layout of Access List Section of File Descriptor in 8-bit Bytes

59156400 Rev. B 4-9

The first four bytes contain the owner access mode, the general public access mode,

and the number of entries in the table. Each entry is in three parts, and contains a

user identifier, the number of bytes in the identifier, and the access mode allowed

for that user.

The access modes are:

• read only

• write only

• allowed to delete file

• allowed to alter access modes

These modes are set or modified by the access mode messages. The default option

on creation of a file is that the owner has open access and the public has no access.

It is possible for a file to be open to more than one user at a time if all but one of

these opens are in read only access mode.

MESSAGES

The file functions recognized by the storage station are as follows:

• create and open file

• open file

• close file

• close and delete temporary or permanent file

• close and delete temporary file

• keep file

• set file characteristics

• set file length t

• determine if file is open

• read file pages

• write file pages

• read file descriptor

• write access list entryt

• delete access list entryt

• modify owner and public access

• mountt

• dismount t

t Not yet implemented.

4-10 59156400 Rev. B

These file functions are all system functions issued by the monitor. When the user

in the central machine makes a file request to the central monitor, a monitor task

formats the message or messages for the storage stations. These messages each

consist of a function code and a list of parameters passed in several different for­

mats, and each causes a file function to be executed in the storage station. (Full

details of the messages can be found in Appendix B.)

No file function is legal until the file has been opened. In the open file function, after

the file has been identified and the user access validated, the file is given an active

file index number. This number is used to identify the file in all further messages

and is used by the storage station to index the active file table. The active file table

is kept in the station buffer unit. In this table, each entry contains a pointer to the

file descriptor, an access mode indicator, an identification of the file device, the

starting address of the file, and the number of file blocks contiguous from this start­

ing address. Each entry is 64 bits long, and the format is shown in Figure 4- 7. The

last file function is a close operation.

Number of bits: 1 15 8 8 16 16

Contents
IEI F M u s N

E free entry /active entry in table

F pointer to descriptor

M run access mode

U volume number

S starting address of file

N number of blocks contiguous to S

Figure 4-'7. Format of the Active File Tahlc

Using the active file index avoids sending \'ariablc length names in messages and

the active file table allows rapid checking and execution of file functions.

Bach message has a separate overlay program to process it. These are condition­

ally core resident in the station control unit, so, if any particular message is used

frequently, it will remain in core storage. Otherwise, the overlays are loaded

from the station microdrum as required.

59156400 Rev. B 4-11

FUTURE FEATURES
The following features are not yet implemented but they are listed here to show the

way that the file system is developing. All the features here are planned for in the

system design.

4-12

•

•

•

Automatic mounting

Multivolume files

Archival file directory

The allocation of drives, mounting and unload­

ing of removable units such as disk packs and

magnetic tapes, and the checking of labels are

performed at the storage station. The standard

label is the USASI standard.

Multivolume files that occupy more than one

storage unit are provided for by keeping the

volume number in the file descriptor and by

using the automatic mount/dismount facility.

The present base supports one central file di­

rectory for all files, on-line and off-line,

associated with a particular storage system.

This directory can be kept on the storage sta­

tion, processor station, or service station.

The archival file directory is listed by owner

identifier and provides a backup if the working

directory is destroyed.

• Structured file name and The ASCII period character is reserved to indi-

owner /user identifiers cate subsidiary files in a hierarchical file sys­

tem, but the routines will continue to ignore

this feature until the exact meanings and uses

of the various parts are more clearly defined.

One aspect of structured names and identifiers

is the linking of files of a given class into a tree

structure. An even more complex aspect is an

access mechanism that involves grouping users

into different access classes.

59156400 Rev. B

•

•

•

Shared-access security

File editions

Error recovery and

backup

59156400 Rev. B

The access mode conditions (no read, no write,

no delete, no modifying access mode) are ade­

quate at present. Shared access is only allowed

on read-only files. When the record management

subsystems define their shared access protec­

tion schemes, this system can be extended. One

mechanism for allowing shared reading and writ­

ing of the same file is for updates to go to new

file versions.

Different file editions involve mechanisms that

allow the user to specify edition numbers or de­

fault to the latest edition, allow for these edition

numbers in the message formats, and provide

the ability to link the different editions in the

storage station. Rather than have separate

fields in the message formats for edition numbers

or even new messages, a possible scheme is to

append to the local name a slash character fol­

lowed by a 2-digit edition number, thereby

allowing 100 editions. Three slashes might in­

dicate the latest edition, and, in this case, the

edition number used could be returned with the

response.

The present basic system a I lows mo re sophis­

ticated schemes to be superimposed on the

present recovery and backup system. Error

fi Jes are kept in the storage station itself, and

the station software decides what to do on an

error. Only when different recovery strategies

might he invoked is the associated processor

station asked for advice. When a sufficiently

large backup store is available, the storage

station will periodically dump archive files to

it as backup.

4-13

•

•

4-14

Accounting and per­

formance statistics

File activity record

The exact nature of extra accounting and per­

formance data to be acquired has yet to be de­

termined. The storage station only gathers and

records the standard station accounting and

usage statistics at present.

The activity record section of the file des­

criptor records the creation and expiry dates

for the file and some information about its

usage. The section occupies six 32-bit words,

the last two of which are currently not used.

The layout is shown in Figure 4-8. It is ex­

pected that different installations will require

different information recorded about file usage.

The activity recording routines have, there­

fore, been kept simple and modular.

Creation date /time

Expiry date /time

Last update date /time

N I Not used
N = number of opens

Not used

Not used

Figure 4-8. Format of Activity Record Section of
the File Descriptor, in 32-bit Words

59156400 Rev. B

USER RECORD MANAGEMENT 5

In the STAR system, the file system consists of two separate parts; one that is in­

ternal to the central machine and one that is external. The external, or storage

management part, is described in Section 4. It includes the control and organiza­

tion of peripheral storage devices and the functions of file cataloging, reliability,

recoverability, and protection. The internal, or file management part, is described

in this section. It is concerned with how the user accesses his fi Jes within the cen­

tra 1 ma chine.

ACCESSING FILES BY MAPPING

One method of access has been described earlier, and that is the operation of map­

ping. A file can be mapped into the central machine storage by a system call that

informs the monitor of the file name and a starting virtual address. The monitor

sends messages to the storage station holding this file and, knowing the file size

from the responses, associates a range of virtual addresses with the file from the

given starting address. Future accesses to new blocks of memor.v in this range of

virtual addresses cause new blocks of the file to he read into central storage by the

normal demand paging mechanism coupled with the mapping function. This way of

accessing files is sufficient for many cases. It has the advantages of simplicity

and economy, both in time because there are no extra software overheads involved

in obtaining new blocks from the external file, and in space because only file blocks

referenced are brought into the central machine.

The operating system functions for renaming page addresses, deleting and writing

pages out to external files, and the advice functions such as for the prereading of

blocks, can all be used to support this type of file access. Inasmuch as the access

is completely data independent, the user can employ any arbitrary data structures.

RECORD ACCESS

As well as the mapping form of file access, the operating system has to manage the

usual file support and facilities required by high level languages. Conventionally,

such input and output files consist of basic subdivisions called records interspersed

59156400 Rev. B 5-1

with record separator characters and, possibly, other control information. The

name of unit record management is given to the software structure which controls

these files and provides such functions as read, write, backspace, skip, and re­

wind.

Consider the FORTRAN statement

READ TAPE3 A, B, C

where A, B, and C are real scalars.

The statement implies that there is a file known to the program as TAPE3, probably

with a different external name, that contains at least one more record with a mini­

mum of three elements in it. To satisfy the read, three consecutive words are ex­

tracted from the file and moved to become the values of A, B, and C. If there is

any element left in the record, it is skipped over so the next read function is posi­

tioned to start at the next record. In some computer systems, such a statement

causes the access of one record from whatever external media is being used to hold

the file; for example, from magnetic tape, possibly with some buffering of transfers

ahead of the current requests. The retrieval is assisted by some file structure in­

formation, such as end-of-file marks on magnetic tape.

In the STAR system, every file in use resides in virtual memory. For all but the

simplest type of file, fixed-length binary-coded-decimal records, some means of

representing the structure of the file data has to be provided. For fixed-length rec­

ords, the record length can be passed to the input/output routines, and such functions

as reading are implemented by moving data from one area of virtual memory to

others, with advancement of the file index by one record and a check to see if the

file is at its end.

RECORD MAP FILE
The problem of identifying record and subfile boundaries becomes more complex

when files are allowed to contain variable length binary data or mixtures of differ­

ent types of records. One header word is needed for each record to give its type

and length. In some systems these headers precede each record in the file. This

is not the case in STAR, for two reasons. First, such headers create data dis­

continuities that might prevent the efficient use of string or vector streaming in­

structions.

5-2 59156400 Rev. B

Second, backtracking over records on initial input to insert the lengths in the

headers is unsatisfactory and, for long records, unnecessarily complex. The

method adopted provides a separate file of header words, called a record map file.

This file consists of 64-bit entries, one for each record in the associated data file.

Each entry gives the type of record and its bit address relative to the first word of

the file in virtual memory. The number of entries in the list is found in the appro­

priate entry of the file descriptor, as described in Section 4. The record map file

has the same name as its associated data file except that it also has a reverse

slash at the end. It appears the same as any other file to the file system and can

be processed independently of its data file if necessary.

The map is generated or updated by the programs which act on the file. For ex­

ample, in the unit record station, when a file is being created from a set of inter­

mixed binary coded decimal and binary cards, the map file is created in parallel.

The map is also used by the peripheral system on output to direct changes of mode

and to place control characters on the output medium. Mode changes might in­

clude the change of binary-coded-decimal to ASCII-to-binary, and control charac­

ters include end-of-group and end-of-record marks or cards.

Note again that within the central machine, the map is only required when the file

is complex. In the simple cases, such as fixed-length input from punched cards,

the file descriptor provides all of the information needed to process the file.

Appendix B gives details of the different types of records that the system uses,

shows the layout of map entries, and gives examples of card deck files.

FILE RECORD MANAGEMENT TABLE

A file record management table is kept for each active file used by a program. The

table, referred to as an FRMT, contains all the information needed to control the

file. It holds details about the file and record location, the file status, the last

operation on the file, and actions to be taken on special conditions. Figure 5-1

shows the layout of the file record management table, which occupies 19 full ·words;

the entries are described below.

59156400 Rev. B 5-3

word

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0 15 16 31 32 63

Record address

Record index

Status Number of records
Active file Record length index
File access Input /output index

mode
File type File address

Last o~e ration File lel'!Kth
Active map Map index

file index
Map file Map file address

access mode

Initial number of records rnitial number of record
blocks

Initial type Initial file length!record length

Internal name

External file name descriptor

External map file name descriptor

Structure descriptor

Label descriptor

On condition descriptor

Forward descriptor

Backward descriptor

Figure 5-1. Layout of the File Record Management Table

The record address is the address in virtual memory of the next record to be pro­

cessed. The record index is the number of the next record to be processed.

The status of the file is given by the lower seven bits of the status field as follows:

Bit Position

5-4

15

14

13

12

11

10

9

Value = 1

file is open

file exists

end of file on last operation

file is mapped in

file is mapped out

file is released

file is stored

Value = 0

file is closed

file does not exist

no end of file encountered

file not mapped in

file not mapped out

file not released

file not stored

59156400 Rev. B

If the file is mapped out, then it will be written back to the permanent file on com­

pletion of the program.

The number of records gives the total number of records in the file.

The active file index is an internal index to the file, given to it by the file system

when the file is opened. It is used instead of the file name for all requests to the

storage station.

The record length is the bit length of records if the file consists of fixed length

records; it is zero if the records are not of fixed length.

The file access mode controls the protection given to the file. The modes are read

only, write only, or read and write.

The input/ output index is an internal index, based on the file type, that is used to

select the appropriate routines to process file requests.

The file type gives the type, as specified in the characteristics section of the file

descriptor.

The file address is the virtual memory starting address of the file.

The last operation field gives details about the last operation performed on the file.

Rit 15 is set after successful completion, so the 16-bit field is even if the last oper­

ation is still in progress and odd if the file is ready to accept a new command.

Value Last Operation

0 Open

2 Exit

4 Read

6 Write

8 Rewind

10 Skip

12 Backspace

14 Copy

16 Re lease

18 Close

59156400 Rev. B 5-5

The file length is the bit length of the entire file.

The active map file index is the internal index given to the map file by the file sys­

tem when the file is opened.

The map index is the index within the map file of the next record to process.

The map file access mode controls the protection given to the map file; read only,

write only, or read and write.

The map file address is the starting virtual address of the map file.

The initial number of records, record blocks, the initial file type, length and rec­

ord length, are obtained from the file characteristics when the file is first opened.

If the file did not previously exist, these entries are set to zeros.

The internal name is the name that is used by FORTRAN programs.

The external file name and external map file name descriptors point to the file

names in the file name string table described below.

The structure descriptor gives the start and length of a table that defines the struc­

ture of subfiles.

The label descriptor gives the start and length of a field defining the file label.

The on condition descriptor gives the start and length of an address vector. En­

tries in this vector are for routines to be entered on special end case conditions.

The forward descriptor gives the FRMT of the next file, or zero if there are no

more files. It is used for abnormal termination conditions to recover information

in files.

The backward descriptor gives the FRMT for the previous file in the active list,

and is used for the same purposes as the forward descriptor.

5-6 59156400 Rev. B

ORGANIZATION OF A USER'S FILE TABLES

The data space for a user consists of the virtual memory allocations he wishes to

make and two other areas called static and dynamic space. Static space is used

for the fixed-size data requirements of programs. The FORTRAN common space,

for example, and for tables such as the file record management tables. A system

of pointers at the beginning of static space points to such essential tables.

All FRlVITs for a program are grouped together in static space. Three of the pointers

at the start of the static space are used to keep track of the file information. The

address fields of these pointers give the starting addresses of three tables, called

the file pointer table (FPT), the file name table (FNT), and the file name string

table (FNS). The length fields of the pointers give the number of files active, the

maximum number of files that any single user can maintain, and the length of the file

name string table. The maximum number of files is an installation parameter. The

three tables are used in conjunction to establish the location of the file record man­

agement table for any particular active file.

The file name string tab le contains character strings giving the external name of

every active file. Each string is preceded by an index number, contained within one

byte, and terminated by the record separator byte. Scanning this list will result in

finding the index to any active file. This active file index is then applied to the file

pointer table. The file pointer table contains one full word entry for each active file.

Each word is a descriptor giving the starting address and length of the file record

management table for that file.

The file name table is used only for FORTRAN files. Each entry is one full word

and consists of the internal file name. This is a character string of up to eight

bytes, left-justified and blank filled. The list is scanned word by word, and the

index derived from a successful search is again used as an increment to the file

pointer table base address.

Figure 5-2 shows the layout of the three static space pointers and the three tables.

The address of the pointers is determined from the main static space pointer. (Sec­

tion 7 describes this process.)

59156400 Rev. B 5-7

CJl
I

00

CJl
CD
CJl
O'l
~
0
0

!;!:l
Cl)

<i

t:Jj

Length of
FNS table

Maximum
number of

files
Number of

active
files

Start of static space

Address of FNS table

Address of FNT

Address of FPT

RS I':'o':' ~External name of

file 1-+ RS ~(1 ~(+External name

of file 2 -+ RS ':<2* l• External

name of file 3

(RS = record separator. Indices
are shown as ':'i':<)

•I Internal name of file 1 I
Internal name of file 2

Internal name of file 3

Descriptor of FRMT for file 1

Descriptor of FRMT for file 2

Descriptor of FRMT for file 3

Figure 5-2. Pointers and Tables for Locating File Record Management Tables

File name
string table

(FNS)

File name
table
(FNT)

File pointer
table

(FPT)

INPUT/OUTPUT FLOW

At the beginning of a FORTRAN program execution, an input/output routine named

Q8ENTRY is called to initialize the FRMT tables. Its first action is to resolve the

correspondence between external and internal file names.

A typical program might have its first card:

PROGRAM TEST (INPUT, OUTPUT, TAPE3)

In which case the job control call might appear as:

TEST (FILEA, FILEB, FILEC)

Q8ENTRY builds in static space an FRMT table for each file. It then allocates

twice the reserved file length in static space. If the file does not exist yet, a de­

fault length is allocated for it.

If a map file exists, determined by the file type shown in the characteristics, the

corresponding map is attached and mapped into an allocated region of static space.

The proper input/output jump address is inserted in the input/output index word.

This process is repeated for all files required.

The same functions are performed at every appearance of an OPEN statement in a

COBOL program.

At object time, the occurrence of a READ statement

READ TAPE3 A, R, C

causes entry to the module called READ with TA PE3 passed as the first parameter.

READ searches the file tables for the corresponding internal file name. After some

preliminary setup, J'{EAD then jumps to the address found in the input/ output index

word of the FRMT.

After moving the data as required by the read statement, a fina I routine updates

the virtual memory index and checks for end-of-file conditions.

WRITE, SKIP, and BACKSPACE are implemented in a similar manner.

Random and random-sequential files are handled by maintaining a relationship be -

tween keys and the virtual addresses of the records. The structura 1 information

59156400 Rev. B 5-9

defining this relationship is in the data file. The key generation and searching al­

gorithms are executed in auxiliary modules to give compatibility with existing access

methods.

At the end of the job, the files are all closed, and the data in them is stored on a

mass storage device. The FRMT entries remain to allow further manipulation of

the data.

INPUT /OUTPUT FUNCTIONS

This section gives a short description of the input/output programs in the library.

Function

Q8ENTRY

OPEN

STORE

CLOSE

READ

WRITE

REWIND

SKIP

BACKSPACE

FIL STAT

FILESTAT

BAIL-OUT

5-10

Purpose

initializes the FRMT tables for all requested FORTRAN files. It
maps the files into either static space (default) or into a user re­
quested area.

sets the FRMT table to allow the user to manipulate the data to
or from the file.

moves the data from virtual memory to a mass storage device
for files with proper access mode.

sets the FRMT status so that no manipulation of the data is allowed.

moves data from the file in virtual memory to areas specified by
the user.

moves data from user designated areas to the file in virtual mem -
ory.

resets the FRMT entry for the file to beginning of information.

skips requested number of records in the file or to end of infor­
mation, whichever occurs first.

backspaces the requested number of records or to beginning of
information, whichever occurs first.

displays FRMT entry for the file.

returns the base address of the FRMT entry of the request file.

closes the FRMT entry for all the files used by the iob. It also
calls STORE to save all the data generated by the job.

59156400 Rev. B

LANGUAGE SYSTEM

A large number of languages and compilers for ST AR are under investigation.

These include APL, PL-1, ALGOL-60, ALGOL-68, FORTRAN and COBOL, as

well as some special-purpose languages.

6

A major part of this investigation has been into compilation techniques and pro­

gramming concepts. This section provides a brief introduction to assembly

languages for STAR and the buffer controller computer and describes some of the

experimental work on FORTRAN.

One direction taken by the language investigation is toward having a single language

processor capable of compiling a set of languages. The PL/':' assembly language

has been implemented within this framework, such that PL/'~ statements can be in­

termingled with higher level language statements. Part of the rationalization for

such a language processor is that it is possible to reduce production time and main­

tenance needed, as well as the total amount of code, by taking advantage of com­

monality among different compilers.

Another direction of investigation has been into parallel techniques in compilation.

It is possible to develop a FORTRAN compiler which uses vector instructions to

linearly process the input stream. That is, it transforms the input stream, in

parallel, into successive data sets until it finishes with optimized machine code.

A further topic is the subject of Decompiling. In many cases, an entire FORTRAN

DO loop can be replaced by a single STAR instruction or by a simple, in-line series

of instructions. The ST AR instruction repertoire includes instructions which are at

a higher level than any current language. The problem of recognizing such higher

level language sequences and replacing them with simpler, in-line code is complex

but must be approached as one way that STAR can be better exploited by existing

FORTRAN programs.

Finally, BUFFALO, the algebraic assembler for the buffer controller, is described.

There is more than one assembler for the buffer controller. BUFF ALO is an attempt

to provide a free-format, extendable system which can evolve as required. Appen­

dix I gives a complete definition of the language.

59156400 Rev. B 6-1

PL/*
PL/':' is a free-format, algebraic assembly language for the STAR central proces­

sor. PL/':' is intended to form a language processing system which can process

many languages and also allow the intermingling of assembly language statements

with compiler language statements. There will be many individual language com­

pilers in addition to the PL/i.' assembler. Within the framework of such a language

system, PL-1 has been chosen as the primary language for the following reasons:

• PL-1 compilation includes solutions to most compiling problems of

FORTRAN, COBOL, ALGOL-60, and other commonly used languages.

Thus, dealing with PL-1 first essentially resolves the compiling diffi­

culties of most other languages with the exception of ALGOL-68.

• Many of the data types and structures such as strings and arrays

applicable to ST AR can be easily handled by PL-1.

• In terms of standardization and coding investment, PL-1 is still flexible

enough to allow further development of the language. In particular, APLl

notation additions would allow experimentation in new coding techniques.

The following general points are highlighted as an introduction to the PL(:' Assembly

Language, described in detail in Appendix J.

• Wherever possible, the rules for PL-1 construction are followed. In

particular, this holds for declarative statements and for reference to

attributes, constants, and abbreviations.

• PL(:' instructions can be intermingled in higher level languages. A dollar

sign ($) preceding a PL(:' statement flags it to be an explicit machine code

instruction for direct assembly and not for compilation.

• Symbol name lengths are unrestricted, and there are no reserved words.

• There are, however, special or unusual symbols limited to use in special

or unusual operations.

• The extensive use of the full set of ASCII delimiters is intended to reduce

the number of symbols to be coded, stored, and printed.

11verson, Kenneth E. A Programming Language
John Wiley & Sons New York 1962

6-2 59156400 Rev. B

• Some delimiters are restricted in their use, so their function is always

apparent. For example:

represents catenation

represents a pairing of registers to describe a field

[] represents "address of"

• The conventions adopted for default cases are again intended to reduce

the amount of coding. For example, a single name is used to represent

both the storage address of a character string and the register holding

the descriptor.

• The majority of the instructions are recognized by the natural placing of

the operators. For example:

$A =U B + C; is ADD UPPER.

The type of addition is then implied by the data types which have been

previously declared.

• Register file management can be explicitly directed or left to the compi­

ler. Several directives arc provided to assist in register handling. These

include ORGR, ORGW, FREE, FREEZE, REGBLOCK, and ENDBLOCK.

• Table construction is aided by the TARL8 and STABLE directives.

• Compile time variables allow the programmer to manipulate and test

origin counters and symbol type flags. Such statements are preceded by

the percent sign(%) as in PL-1.

• There are several built-in macros, provided to mechanize the conventions

of CALL, ENTRY, LOAD, FORMAT, etc.

• PL(:' has macro processing capability based on the macro language lVIL-1.

A full description of PL/'' is given in Appendix H.

59156400 Rev. B 6-3

FORTRAN

A major concern of the STAR development project has been the utilization of STAR's

unique architecture in the execution of conventional FORTRAN object code. The

large register file and wide variety of register instructions make a conventional im­

plementation of FORTRAN on STAR quite simple. However, the major power of

ST AR is not realized until vector and other streaming operations are employed.

Two alternative methods of FORTRAN development have been investigated. The

first, mentioned briefly under the discussion of PL(:', is the development of a full

FORTRAN language facility within the PL(:' system. Of necessity, such a compi­

ler can do little optimization because the programmer is allowed complete freedom

to manipulate compiler counters and to insert machine code whereever he likes.

Thus, object code is limited to register-to-register operations, providing a system

programming aid, but with string and vector instructions effected only through ex­

plicit coding of machine instructions. However, in such a FORTRAN environment,

it is possible to locally optimize areas of code.

The other method of FORTRAN development under investigation is radically differ­

ent and might be termed the parallel approach to compiling. It is based on the con­

cepts and techniques described by Information Algebra and by APL.

This section discusses how such concepts are being applied to the compiling of

FORTRAN for STAR. Although FORTRAN is used for the example, the techniques

are applicable to any compiler.

The ST AR FORTRAN compiler will implement a language as identical as possible

to 6000 RUN FORTRAN. Additional language features will be implemented to make

STAR more accessible to the programmer. The compiler is written in PL(:' and

generates relocatable STAR binary code, compatible with STAR-100 operating sys­

tem.

FORTRAN source code is reduced by a series of vector operations to a stream of

operators which is viewed as a numeric vector. A syntactical analysis is then per­

formed using the numeric operator vector, to produce output code. The sequence

number of the operator triggering object code is attached such that code may be

merged in its proper sequence. The sequence number also plays an important part

in code optimizing routines.

6-4 59156400 Rev. B

The front end of the compiler readies source code for syntactical analysis by pro­

ducing an operator vector. Several of the key operations performed in producing

this vector are: remove blanks, comments, continuation flags and card sequence

numbers; interpret nonexecutable statements; resolve labels; identify keywords;

convert constants; identify symbol types; assign array space; form symbols vector

containing unique names; identify function calls; assign constants and variables with

initial REGBLOCK location, etc.

The tail end of the compiler consists of syntax tables, code optimizing routines,

and routines to build object modules and tables consistent with STAR-100 operating

system. Code is produced by using the operator vector to search through syntax

tables containing operator precedence numbers and instruction skeletons. Code is

emitted in parallel in order of precedence and merged with the code stream. Code

optimizing routines may be invoked during or at the end of the merging process.

To illustrate the use of vector instructions in the FORTRAN compiler, four card

images will be followed from the middle of a FORTRAN program through several

phases in detail.

A= B + c:'D

C COMMENT

D = E':":'F

1 + E':'C

ASCII conventions are used for format characters and the abbreviation EOL is used

for end-of-line. We assume that the start of the first card is character position 325,

and the card layouts appear as below (where the numbers give the character posi­

tions) in Figure 6-1.

325 406 487 5G8

l 332 405 l 486

l
494 567 l 573 648

i i i l t t ~
A=B+C':'D EOL C Comment EOL D=E':":'F EOT. l+E':'c EOL

Figure 6-1. Card Layouts

59156400 Rev. B 6-5

The first step is to translate the original source text into a revised format with the

following objectives in mind:

1. To remove all blanks and unnecessary format information (such as form
feed characters).

2. Rearrange the collating sequence so that alphabetic and numeric characters
are contiguous and include the period.

3. Attach to each converted character its original character position in the
source stream. Any sequence numbering system is acceptable; however,
attaching the character string position makes error processing and
recovery easier.

Converted
Source

A 332
= 333
B 334
+ 335
c 336
,;, 337
D 338

EOL 405
c 406
c 410
0 411
M 412
M 413
E 414
N 415
T 416

EOL 486
D 494
= 495
E 496
,;, 497
,:, 498
F 499

EOL 567
1 573

+ 575
E 576
,•, 577
c 578

EOL 648

EOLs
Selection Bi ts

EOLs 8 Adjacent
Select Bits

0 0
0 0
0 0
0 0
0 0
0 0

EOLs
Position and
Adjacent Bi ts

0 ° ----405 1-===--------- 1----
----- - - - - --406 0 -----1--

0 /486
0 / ,494

0 ° // / 567
0 ° /// /573
0 ° / / / / 648
0 O // I;
o 0 / / /I 1000
0 O /// // I
1-=---==----- - - - ---- 1/ // I; I
o --------1/ 1; I
o o 11 I
~ ~ ;11 I
o o I I I
o o I I I
1==--::::....---------1/1 I
o ---------1/ I
o o ;
o o I
o o I
0 01
1------------ 1

Figure 6-2. Calculating EOL Positions

Once the string is converted and compacted, all comments must be removed so

that no extraneous operators or symbols appear in the remaining intermediate

6-6 59156400 Rev. B

streams. This is accomplished with the function called "selection" wherein a bit

vector is created containing a zero bit wherever a given comparison criteria is

met. In this first case, the string of converted bytes is searched for a translated

EOL character. The resulting selection vector appears in the second column with

a one bit for each EOL found. See Figure 6-2

Next is performed the bit-by-bit logical OR of the selection vector with itself,

offset by one bit position. The resulting string (in column 3) now contains two bits

for each EOL representing the position of each EOL in the converted byte string

and the next adjacent, significant (non blank, non format) byte. The desired data

from the converted byte stream is compressed by use of the selection vector in

column 3. Compression creates a stream containing only elements of the original

stream corresponding to 1 bits in the selection vector. In this case, the bit string

in column three is used to remove each EOT, and adjacent byte (along with the

character position sequence number) from the converted byte stream to form the

more compact data stream in column 4.

The compressed strearn is then arithmetically subtracted from itself offset by one

place to produce a stream showing the relative displacements of the EOT ,s and

adjacent bytes. See Figure 6-3.

Comments Continuation
From column 4 (Offset by Relative Selection Selection
of Figure 6-2 one byte) + Displacement ~Vector \'ector

405 40fi l 1 0
406 48G 80 0 0
486 4~}4 8 0 0
494 567 73 0 0
S67 573 (j 0 1
5 73 648 75 0 0
648 000 -(148 0 0
000

Figure 6-::l. Establishing Comment and Continuation I ,ines

To simplify what follows, assume that any non-blank data appearing in column one

signifies the beginning of a comment and that any non-blank data ::ippearing in

column 6 signifies a continuation carcl. i\gain utilizing the selection function, the

relative displacement stream is searched and a one bit is set in the selection

vector wherever a one appears in the scanned stream. Likewise, the relative dis­

placements arc searched for all displacements of 6 (signifying a continuation card).

59156400 Rev. R 6-7

The result of these operations produces the selection vectors appearing in columns

4 and 5 in Figure 6-3.

Although the comment and continuation cards have been identified, the information

(in selection vector form) is relative to the compressed displacement vector (column

3 of Figure 6-3). In order to proceed further, the function of expansion must be

brought to bear. This operation is literally the reverse of compression. The result

stream contains an element from the input stream for each 1 in the selection vector.

Wherever a zero appears in the selection vector, a zero, or null, element is merged

into the result stream. Because information relative to the displacement stream is

to be expanded, the selection vector which created the displacement stream will be

used.

From Column 3 Comment Selector Result of
Figure 6-2 Vector Expansion

0 0
0 0
0 /l, 0
0 / ' // 0
0 / o.......... 0

/ -- ' 0 // - - "'- 0
o ,,, - 'o" - "'- o
1/:....-- // " -- ',1
1........ / 0 " , 0
0 / /,, ' " 0
0 / / 0 "- " 0
0 / / '\ "'"""' " 0
o // /o" ""' o
0 / / / / " "' """'"'" 0
0 /// / / / 0 "' "\ """' 0
0 // //I\"\"\ "-"-
1// //I \ "\"- "'-" 0

1/ //I \ "-"\ "~
o / / I \ "\ "\ o
o / / I \ "- '-..'\. o
o // / \ <' o
o / / I \ "-" o
o / / I \ "'-" o
1 / I \ ,o
6 I \ ~
o I \ o
o I \ o
01 \o
1 0

Expansion of
Continuation Card

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

Figure 6-4. Expansion of Control Vectors for Comment and Continuation Lines

6-8 59156400 Rev. B

As can be seen from Column 3 of Figure 6-4, the comment bit appears now to cor­

respond in relative position to the EOL in the converted source stream immediately

preceding the comment card. The expansion of the continuation stream produces a

similar result.

Removed next from the converted source are all bytes contained within the comment

card, the EOL preceding a continuation card, and the byte in column 6 of that card.

To remove all bytes in comments, a bit string is built to be used as a selection

vector for compression between the EOL preceding the comment and the EOL ter­

minating that card. To accomplish this, the expanded comment bit string and EOL

bit string are viewed as arithmetic entities with the first of the string appearing to

the far right.

EOL Bits 100 000 100 000 010 000 000 010 000 000

Comment Bits 000 000 000 000 000 000 000 010 000 000

Then is performed a "NAND" or inhibit operation -

RESULT = EOL bits AND NOT comment bits where AND and NOT are ----
BOOLEAN operations.

RESULT 1: 100 000 100 000 010 000 000 000 000 000

and subtracting
the comment
bits -000 000 000 000 000 000 000 010 000 000

RESULT 2: 100 000 100 000 001 111 111 110 000 000

then perform a
NAND of RESULT 2 with RESULT 1 to eliminate extraneous EOT, bits

RESULT 3 - RESULT 2 AND NOT RESULT 1 ----
RESlILT 3: 000 000 000 000 001 111 111 110 000 000

A mask has been formed for the removal of the EOL and every significant byte on

the comment card. To remove the EOL preceding the continuation card and the

adjacent column 6 data, all that need be done is to perform the logical OR of the

expanded continuation card selection vector with RESULT 3 and the OR of the

continuation card stream offset by one bit:

59156400 Rev. B 6-9

RESULT 3: 000 000 000 000 001 111 111 110 000 000
OR expanded
continua ti on 000 000 100 000 000 000 000 000 000 000
OR expanded
continuation
offset by one 000 000 010 000 000 000 000 000 000 000
bit

RESULT 4: 000 000 110 000 001 111 111 110 000 000

The converted source stream is compressed using the NOT of bit string RESULT

4 taken from right to left as shown in Figure 6-5.

Converted NOT Compressed Alphanumeric Alphanumeric
Source RESULT 4 Source Selection Stream

A 332 1 A 332 1 A 332
= 333 1 = 333 0 B 334
B 334 1 B 334 1 c 336
+ 335 1 + 335 0 D 338
c 336 1 c 336 1 D 494
,:, 337 1 ,:, 337 0 E 496
D 338 1 D 338 1 F 499

EOL 405 0 EOL 486 0 E 576
c 406 0 D 494 1 c 578
c 410 0 = 495 0
0 411 0 E 496 1
M 412 0 ':' 497 0
M 413 0 ,:, 498 0
E 414 0 F 499 1
N 415 0 + 575 0
T 416 0 E 576 1

EOL 486 1 ':' 577 0
D 494 1 c 578 1
= 495 1 EOL 648 0
E 496 1
':' 497 1
'~ 498 1
F 499 1

EOL 567 0
1 573 0
+ 575 1
E 576 1
':' 577 1
c 578 1

EOL 648 1

Figure 6-5. Removal of Comments, Editing of Continuation Lines,

and Extraction of Alphanumeric Data

6-10 59156400 Rev. B

At the outset, it was indicated that the original input stream was converted so that

the collating sequence was reorganized. A possible scheme using the 8-bit byte

(which can carry a binary value of from 0 to 256) could be:

A---+Z 200~226 10 ::' 8010

o~9 other
operators

A selection vector can be constructed for alphanumeric data (including the period)

by scanning the compressed source for all values greater than 100 10 . This bit

vector appears in column 4 of Figure 6-5. With this vector, all alphanumeric

bytes and their corresponding sequence numbers can be extracted from the com­

pressed source stream. If this selection vector is inverted by a BOOLEAN NOT

operation, it can be used to extract all of the other information (operator and

punctuation symbols) from the converted source stream. At this point, the con­

verted source string may be abandoned.

In the operator vector, each element represents a unique operation or punctuation

symbol except in the case of the double asterisk which represents exponentiation.

0 ~0 0 ~0
...,,0 ...,,o / 0 0

o.'?r '?r
$' Vi x..;

:« ,",, .o 00· "''?r

~' ~v "-' ~ 0
0 :« o'<

= 332 0 0 332 = 332
+ 335 0 0 + 335 + 335
::< 337 1 337 160 0 0 ::< 337 .,- 337

EOL 405 0 497 1 1 0 EOL 405 EOL 405
= 495 0 498 79 0 0 495 495
::< 497 1 577 -577 0 1 f 407 f 497
::< 498 1 0 ::< 498 EOL 567

EOL 567 0 0 EOL 567 + 575
+ 575 0 0 + 575 ::: 577
::< 577 1 0 ::< 577 EOL 648

648 0 0 EOL 648

Figure 6 -6. Extraction of Operators and Punctuation Symbols

59156400 Rev. B 6-11

Figure 6-6 demonstrates the manner in which the operator vector could be updated

with single element EXPONENT operators. The method is similar to that pre­

viously discussed -

1. Selection of asterisk values from the operator vector creating the bit
stream m column 2.

2. Compression of those asterisk elements (particularly the sequence
numbers) from the operator vector yielding column 3.

3. Mapping (subtraction of adjacent elements of column 3) to determine the
relative displacements of the asterisks.

4. Selection of all displacements equal to one (signifying catenated asterisks).

5. Expansion of the selection vector in column 5 (exponentiation operators
found) by the selection vector in column 2.

6. Merging of a constant (t) for all ones in the expanded selection vector
into the operator vector.

7. Compression of the resulting operator vector by the selection vector in
column 6 - offset by one bit.

There are a number of operations necessary to perform on the Alphanumeric

Stream, which was created in Figure 6-6. before the symbol table can be con­

structed.

1. Isolation of all logical and selectional operators (EQ., NE., NOT., etc.)
removed from the alphabetic string and merged into the operator vector.

2. Isolation of all constants.

3. Detection of all KEYWORDS such as DO, IF, and ASSIGN.

To facilitate this activity, it is desirable to identify the beginning of each symbol

string. If the BOOLEAN NAND, or inhibit, function is applied to the alphanumeric

selection vector from Figure 6-5:

RESULT 6 =ALPHANUMERICS AND NOT ALPHANUMERICS (+1)

The second operand is the first operand full offset by one bit. From left to right

there obtains:

RESULT 6:

1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0

This result vector can be used to select from the alphanumeric stream all first

symbols (of each string) for the determination of whether a numeric string or

alphabetic string is present. Operations to isolate the logicals and relationals

would use the previously described technique beginning with the selection of all

periods in the alphanumeric stream.

6-12 59156400 Rev.· B

The result of the initial steps outlined above is to produce four parallel vectors:

1. The OPS vector consists of a string of numeric values representing the

presence and type of operator or operand in the executable portion of the

source program.

2. The ATTRIBUTE vector contains the register assigned to a particular

operand, a function code for built-in functions and special code bits for

equivalent variables.

3. The INDEXES vector contains the sequence number of each element in the

original source stream. Operator sequence numbers are the character

position of the operator in the original source stream. Operand sequence

numbers are the character position of the first letter of the operand name

in the source stream.

4. The STATEMENT INDEXES vector contains the sequence number of the

EOL (End of Line) that begins each statement. The expression:

EO
L

31 32 33 34 35 36

would cause the generation of

OPS ATTRIBUTE

60 EOL 0
2A Real Scalar 20

2 0
2A Real Scalar 21

3 + 0
2A Real Scalar 22
60 EOL 0

A

37 38

B

39

Register A

Register B

Register C

+

40

c
41

INDEXES

31
37
38
39
40
41
42

STATEMENT
INDEXES

31
31
31
31
31
31
31

Object code generation proceeds from these four vectors. Syntactical and semantic

analysis is performed by using a variation of the "Current-OP'', "Next-OP" (CO-NO)

technique employed in some compilers. The current OPS value and four succeeding

OPS values are packed into a single word contained in a new vector RESULTl, and

then compared to known quintuplets stored in a 32-bit vector, by using the SEARCH

instruction. Another vector, RESULT2, is created by performing a TRANSMIT

INDEX LIST using the vector of indices obtained from the VECTOR SEARCH. The

right-hand number in RESULT2 is used to index a table of instruction skeletons and

59156400 Rev. B 6-13

pointers. The left-hand precedence number triggers code generation. Not all quin­

tuplets formed from the OPS vector are found in the syntax tables. Only those quin­

tuplets causing code generation or error checking are used. Figure 6-7 shows the

process.

OPS

EOL

A

1. 5

EOL

A

B

+

c
+
D

+

E

F

RESULTl RESULT2

EOL A = 1. 5 EOL PN20 N20

A = 1. 5 EOL A 0 0

= 1. 5 EOL A = 0 0

1. 5 EOL A = B 0 0

EOL A = B + 0 0

A = B + c 0 0

= B + c + PNlO NlO

B + c + D 0 0

+ c + D + PN7 N7

c + D + E 0 0

+ D + E >:' PN7 N7

D + E >:~ F 0 0

+ E >:~ F - PN7 N7

E -·- F - -'•' 0 0
,

F - - -,,, PN5 N5

F - - - - 0 0

Figure 6-7. Syntactical and Semantic Analysis

We could, of course, have packed fewer than five OPS values into RESULTl. How­

ever, to utilize the streaming properties of ST AR to their maximum, we chose to

extend the CO-NO technique to four levels. The following benefits are gained when

going to four levels:

6-14

• Syntactical integrity is almost completely checked for all FORTRAN and

ENRICHED FOR TRAN statements.

• A large number of statements are uniquely identified by one number at the

fourth level. For example:

EOL GOTO 10 EOL

results in a simple number which triggers generation of a jump instruction.

59156400 Rev. B

Precedence numbers are arranged into three groups:

PN = 1 -+ 199

PN 200 - 399

PN 400-599

PN 600 _..

Generate code directly with no further analysis.

Example:

jEOL A 1. 5 EOL I
Evaluate arithmetic expressions

EOL IF I (A':'B':'C) I Nl, N2, N3 EOL

Perform additional code generation using results

of arithmetic expression evaluation.

EOL IF (A':'B':'c) I Nl,N2,N3 j. EOL

Error condition in syntax.

The CODE GENERATOR receives the vectors OPS, ATTRIBUTES, INDEXES,

INDEXESl, and RESULT2 and proceeds to trigger code generation based on quin­

tuplet precedence.

The GENERATOR first processes numbers 1 through 199 removing· all correspond­

ing elements from the input vector. Arithmetic expressions are then processed by

removing precedence numbers 2 00 through 3 99. Finally, statements dependent on

expression evaluation are processed.

Evaluation of expressions is from left to right with the precedence of operators and

parentheses controlling the sequence of code emission. Operator precedence for

arithmetic expression evaluation is shown below:

Functions

Subscripted Arrays

Exponentation

Division

Multiplication

Subtraction

Addition

Relationals

Logicals

Assignment

PNl > PN2 > PN3

59156400 Rev. B

PNl

PN2

PN3

PN4

PN5

PN6

PN7

PN8

PN9

PNlO

- > PN9 > PNlO

6-15

In general each operator results in one precedence number and one code descrip­

tor. Parentheses are not an operator and do not produce precedence numbers in

RESULT2.

The problem of parenthetical expressions is resolved before code generation be­

gins. Operator precedence is modified such that operators inside of parenthetical

expressions have precedence over external operators. The following example

illustrated in Figure 6-8 shows how STAR VECTOR instructions are used to attack

this problem. The methods can be extended to error checking and processing of

improper parenthetical expressions.

1. Build INTERVAL VECTOR with length of OPS vector (VECTOR INTERVAL

instruction).

2. Form three bit strings marking right parenthesis, left parenthesis and

precedence numbers greater than zero (VECTOR COMPARE).

3. Remove position numbers from INTERVAL VECTOR for right parenthesis,

left parenthesis and precedence numbers greater than zero (VECTOR

COMPRESS).

4. Reverse right parenthesis vector (TRANSMIT REVERSE).

5. Form indices vector by searching VECTOR3 until entries greater than or

equal to VECTORl are found (VECTOR SEARCH).

6. Form indices vector by searching VECTOR2 until entries less than

VECTORl are found (VECTOR SEARCH).

7. Add indices vectors found in steps 5 and 6 (VECTOR ADD).

8. Find min. entry in RESULT vector and use to obtain vector indicating

parenthetical nesting (VECTOR MINIMUM, VECTOR SUBTRACT).

9. Adjust precedence (VECTOR MULTIPLY).

6-16 59156400 Rev. B

1 3 2
EOL A = ((B+C) + D)

OPS

EOL

A

B

+

c
)

+

D

RESULT2

0 0

0 0

PNlO NlO

0 0

0 0

0 0

PN7 N7

0 0

0 0

PN7 N7

0 0

0 0

OPERATOR
(VECTORl)

LFT-PAREN
(VECTOR2)

~ OJ
0

VECTORl
GE VECTOR3

DJ

PNIO
PN7
PN7

ITJ

··­-,.

+

[I]

INTERVAL

0

1

2

3

4

5

6

7

8

9

A

B

RGT
PAR EN

rn
VECTOR I

LT VECTOR2

rn

RGT
PAR EN

LFT
FAREN PN>O

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

REVERSE RGT FAREN
(VECTOR3)

rn
NORMALIZED 1

RESULT RESULT rn -(2-1) 0 rn
ADJUSTED PRECEDENCE

PNlO
3':'PN7
2':'PN7

Figure 6-8. Example of Operator Precedence Modification

59156400 Rev. B 6-17

The modified precedence number vector is now used to trigger code emission.

Operator precedence for all expressions is compared in parallel with operator

precedence to the right and left. All operators having precedence greater than

neighboring operators are emitted. In addition, operators having equal prece­

dence (A+B+C+D) are emitted alternately from left to right. (Of course, a string

of exponentation operators are emitted from left to right, one at a time.) Since

subtraction and division are neither commutative or associative, they require

special treatment. Subtraction may be handled by converting - to +. For example,

A=B-C-D-E becomes A=B-(C+D+E). Similarly, division can be handled by trans­

forming/ to':'. For example, a':'b/c/d becomes (a':'b) I (c':'d).

Consider the expression:

EO L A = ((B + C + D + E) + F':' G + p:' G)

The GENERATOR determines by the use of some boolean operations that two multi­

plies can be emitted simultaneously since multiply precedence is greater than

neighboring add precedence. Also emitted are two adds of equal precedence. Thus,

two multiplies and two adds are issued to the pipeline at the first code emission level.

Level 3
Level 2
Level 1

A = ((B+C + D+E) + p:'G + p:' G

PNlO 3':'PN7 3':'PN7 3':'PN7 PN7 PN5 PN7 PN5

At the second level, two adds are emitted, and, at the third level, an add is emitted

and the result assigned to A. In essence, the parallel construction of a tree struc­

ture for each arithmetic expression contained in the program has occurred. The

building of a tree structure and emission of code at each level has a number of ad­

vantages over conventional Polish string analysis.

6-18

• The emission of as many independent instructions as possible to the STAR

pipeline reduces register and pipeline conflicts and maximizes issue rates.

• At each level of emission redundant instructions are removed within ex­

pressions. For example, one multiply is issued in the above example.

59156400 Rev. B

• Tree height reduction algorithms can be used to increase code emission

at each level and improve optimization.

• Tree structures contained within nested 00 loops can be analyzed, to

either reduce register instructions or generate vector instructions.

Generated object code is emitted in packets of 96 bits for every half word of actual

code. The first 32 bits contain the sequence number assigned to the object code.

The second 32 bits contain the actual code, and the third 32 bits contain OOPE in­

formation used to compute relative addresses and to plug data into ENTER IMME­

DIATE instructions. The code is merged with other code using the CHARACTER

STRING MERGE instruction and the sequence numbers as keys.

Working registers are not allocated cyclically; rather, they are allocated on the

basis of operations being performed. Thus, if the computation A+B is performed

five times in a program, the result will always appear in the same working regis­

ter, provided it is issued at the first level. This makes the elimination of "common

subexpressions" much easier.

CURRENT DEVELOPMENT

The actual development of object code is proceeding along in three different phases

in order of priority.

1. Generation of register to register code utilizing the register file and

virtual space. Concepts being tested are:

a. Assignment of constants, scalars, and memory addresses to the
register file.

b. Retention in register file of intermediate computations for large
spans of code to aid in common subexpression analysis.

c. Retention of call linkages in register file.

d. Parameter passing by address and value through the register file.

2. Optimization of register instructions is occurring in conjunction with the

generation of these instructions and will include the following:

a. Common subexpression analysis.

b. Subscript loop analysis.

c. Removal of invariant expressions from loops.

59156400 Rev. B 6-19

3. Analysis of source code programs for the purpose of generating vector

and string instruction code to improve object module performance. The

problem of recognizing such high level language sequences and replacing

them with simpler in-line code is complex but must be approached. The

analysis should consist of:

a. Local, Global Analysis - collection of arithmetic processing within
a statement or group of statements on the basis of common operators.
For example, gather local scalars such that (A+B) --- (C+D) --- (E+F)
could be evaluated with a single vector instruction.

b. .DO Loop Analysis - single .DO loop analysis consisting of
NO branch statements
Monotonic variation of DO variables
.DO variables appearing only as left-most subscript in statements
with arithmetic operators
Destination data not overlapped into source data. Example,
A(I) = A(I-1)

c. Complex DO Loops - reduce complex .DO loops by bringing generated
code into analysis. Branch points within DOs would be permitted as
long as there is no premature exit from inner loops.

AOL FORTRAN SYNTAX LANGUAGE
The ADL FORTRAN compiler is intended as a test bed for:

• Compiling techniques

• Register-register object code optimization

• Vectorization of standard FORTRAN statements

• FORTRAN extensions

To provide some flexibility for this test bed it was decided that the syntactical and

semantical analysis as well as the actual object code generation should be "table

driven." Hence, a special processor (ELD _SYNT) and a syntax defining language

were created to allow reasonably arbitrary changes and/ or additions to be made

both to the actual language syntax as well as the object code stream for a given

input statement. The language (which we will call ADLSYNT) is processed and

formatted into a set of tables which become an integral part of the FORTRAN com­

piler. These tables are structured as sets of parallel vectors to permit streaming

access by STAR instructions.

6-20 59156400 Rev. B

THE LANGUAGE

The language consists of four major parts of which the first two are the minimum

required to form a statement.

SYNTAX DEFINITION = PRECEDENCE NUMBER j :TYPE DEFINITION/

CODE SKELETONS/ f;

The syntax definition consists of a string of 2 to 5 fields (representing 2 to 5 levels

of syntax processing), each field containing one or more symbolic name which

stands for a FORTRAN operator or operand. For example, PLUS would represent

the "+" sign, MULT the 11
':' '' symbol.

For convenience in writing, a number of additional symbols were defined to re pre -

sent composites or groups of operator/operand types. For example, ARITH would

stand for the composite group containing MINUS, PLUS, MULT, DVD, and E.\:PO:\'.

A single field may contain any combination of single operator I operand and I or com­

posite names. For example, the SYNTAX DEFINITION:

EOL, RGT FAREN /GOTO/lS/EOL = N96;

means that any structure beginning with either an end of line or right parenthesis

followed by a GOTO which is followed by an integer scalar followed by an end of

line is a legal syntax and is assigned the precedence number N96.

PRECEDENCE NUMBERS

The precedence number is required m all statements (other than COMMENTS) and

is a symbolic name defining a hex number which determines in some cases the

exact code sequence to he generated, in other cases the specific "special compiler

action" to be taken and in all cases the orde.r of processing.

TYPE DEFINITION

This field has several options:

OPTIONAL LABEL FIELD

Precedence Number: label. followed by a comma. To reduce the table size it is

possible for any syntax statement to refer to a particular type definition and object

code string by use of the "label." For example,

EOL,RGT PAREN/GOTO/IS/EOL = N96:JUMPS:INT.JNT=1NT/33400000/;

59156400 Rev. B 6-21

defines the following type definitions and code string as JUMPS. A subsequent defi­

nition could then refer back to it as follows:

EOL,RGT FAREN /GOTO/LFT FAREN /IS/RGT_PAREN = N96:JUMPS;

Thus, the compiler would end up with the same code string for two different legal

syntax structures.

OPTIONAL OPERA TOR FIELD

label: operator - operand type . operand type = operand type/. For example:

ESIGN/S/ARITH/S/EOL = N44:ARITHS:PLUS ':'REAL.REAL= REAL/

means that an equal sign (ESIGN) followed by a scalar followed by any arithmetic

operator followed by a scalar, followed by an end of line is a legal syntax with

precedence N44, which generates a code string labelled ARITHS. The first oper­

ational code string will be for the operator PLlJ_S involving operand types REAL +

REAL with a REAL result. A special case made for Built In Functions (BIFs)

would appear as:

Precedence number:ARITHS:BIFS'~SQRT. REAL. REAL=REAL/

where the BIF name (in this case for square root) immediately follows the word

BIFS (with an intervening period).

OPERAND TYPE DEFINITIONS

All structures are assured to have two source operands "REAL. REAL" and one

destination operand "=REAL". Where a structure such as "X=Y" has only one

source the left hand operand can be written as NULL or the same type as the des­

tination operand.

CODE SKELETONS

Code skeletons are written as a string of 32-bit packets and "OOPE" information is

separated by slashes.

/62000000, IA+l, IA+2, IA+3/6BOOOOOO, IAI3, IA+2, IA+3 /

The first field is the actual code skeletons; the three fields following correspond

to the R, S, and T register fields in the instruction. If a fourth field, correspond­

ing to F is required it would appear last. The information in the three OOPE fields

6-22 59156400 Rev. B

is a combination of symbolic and numeric data related to the source and destination

register pointer vectors available in the compilers generators.

IA stands for Indirect from Assigned lacs

IC stands for Indirect from Constants

DW stands for Direct from the Working vector

The numbers +1, +2, +3 correspond to the left, right and destination vectors re­

spectively. Thus IA+ 1 in the above example would direct that the R field of the 62

instruction is to be filled in with the register appearing in the assigned lacs

vector at the position specified by the pointer in the left-hand register vector (LFTR)

at compile time.

The code skeleton may be followed by a reverse slash and a code having special sig­

nificance to the particular generator. For example:

/98000000\1, 0, IA+l/O, IA+2, 0, IA+3/

The\ 1 indicates to the arithmetic generator that there is one 32-bit packet follow­

ing which is inseparable from the 98000000 for the purposes of work register assign­

ment and code optimization.

A \ 100 indicates that the instruction is not to be moved or removed from its place

in the code stream by the code optimizers.

A\ 1000->- \7000 reflects vector code skeletons being generated in place of register

to register instructions.

A full scale example:

ARITH /SC/ AR ITH /SC /ALL=N44:

SMATH:PLlJS':' REAL. REAL=REAL/62000000, IA+l,JA+2, JA+3/

INT. INT=INT /62000000, IA+l, IA+2, IA+3 /

REAL. INT=REAL/62000000, IA+2, 0, IA+3 /

I 62 000000, IA+ 1, IA+3, IA+3 I
MINUSxREAL, REAL=REAL/66000000, IA+l, IA+2, IA+3 /

INT. INT=INT /64000000, IA+ 1, IA+2, IA+3 /

REAL. INT= REAL/ 62 000000, IA +2, 0, IA +3 /

/66000000, IA+l, IA+3, IA+3 /;

Comment lines are preceded by an asterisk in the first character of an input line.

59156400 Rev. B 6-23

FORTRAN EXTENSIONS
Extensions are added to FORTRAN to ensure more effective utilization of the com­

puter. Effective STAR utilization includes: vector data bases; control vectors;

single bit, eight-bit character, 32-bit halfword, and 64-bit full word data elements;

large instruction set usage; and core and register management.

The generalization of the FORTRAN subscript to allow the selection of multiple

array elements on any array reference, the ability of functions to return multiple

result values, and the development of multi-value expressions and replacements

provide a complete vector data base capability. Control vectors are added to the

language through the new subscription forms to permit multiple array element se -

lections.

The data types of FORTRAN are generalized to include type character. Logical

data is assigned one bit per element; character data, multiples of eight bits of

memory per element; integer data, real data, and each half of complex data,

thirty-two or sixty-four bits per element; each half of a double precision datum,

sixty-four or one hundred twenty-eight bits per element. The type character ex­

tensions to be used by will be those defined by the Canadian Development Division

or the ANSI FORTRAN standard.

MULTIPLE VALUED (SUBSCRIPTED) VARIABLES

A multiple valued (subarray) reference identifies one or more array elements si­

multaneously. A subarray reference is an array function reference, an array

name qualified by one of the multi-element subscript forms defined below, or an

unqualified array name reference.

The array function reference and the array name reference can be subarrays of

more than one dimension; the qualified array name is restricted to one multi­

element subscript expression per reference (the other dimensions must be speci-

fied by scalar subscript expressions) - a qualified array name yields a one-dimen­

sional subarray. Subarray references provide the means of extracting (compressing)

elements of arrays or expanding small arrays to fill parts of larger arrays. The

subscript expressions qualifying an array name are separated by commas.

6-24 59156400 Rev. B

The simplest form of subarray reference is the unqualified array name. This

reference identifies all elements of the array. The dimensionality of an array

name reference is the same as defined on the DIMENSION statement. As an ex­

ample, if A is DIMENSIONED as A(5), then A= 1. 0 initializes array A to 1. 0.

A regular sequence of scalar subscript values may be specified through the im­

plied-DO subscript form. This form is patterned after the DO statement and

input/ output list implied-DO constructions. The additional capability of automati -

cally providing the "maximum-end-value" is possible because this DO-construction

can apply to only one identifier. The basic forms of the implied-DO multi-element

subscript form are as follows:

1. ml m2 : m3

2. ml : m2

3. ::::::::

4. ml : ··- m3 -··

5. ml : :::::~

6. ··-., . : m3

.!!!;_ are indexing parameters; _m1 is the initial value; m 2 is the final value; m 3 is

the step value. If m.1 or m 3 is not specified, a value of 1 is assumed. "':'" may be

used in place of-1.!.!.:2 to specify the maximum scalar subscript value m 2 can correctly

assume. The length of the subarray dimension is defined as the number of index

values the implied-DO defines; this length is always less than or equal to the length

of the particular dimension of the array.

Examples:

DIMENSION X(lO), Y(lO, 3)

X(2:9:3)

X(':' :3)

Y(7, 2:':')

represents the array elements
X(2), X(5) and X(8)

represents the array elements
Y (8, 1), Y (8, 2) and Y (8, 3)

represents X(l), X(4), X(7) and X(lO)

represents Y(7, 2) and Y(7, 3)

59156400 Rev. B 6-2 5

A list of 11 random 1' scalar subscript values can be specified with a multi-value inte­

ger expression. The referenced subarray is constructed by ordering the elements

of the original array in the order specified by the index list. The length of the sub­

array is the length of the indexing array; the subarray length can exceed the length

of the original array.

Examples:

DIMENSION I(6), A(4), B(2, 3)

DAT A I I 1 J 3 J 1 J 3 J 2 J 3 I
11 A(I)" represents A(l), A(3), A(l), A(3), A(2) and A(3) - in that order

"A(I(5:6)) 11 represents A(2) and A(3)

"B(2, I(1:2))" represents B(2, 1) and B(2, 3)

CONDITIONALLY SELECTED SUBARRAY REFERENCES

Array elements which are to be manipulated only when a test condition has been

satisfied are conveniently manipulated with logical array or multi-element logical

expression subscripts. The subarray is composed of original array elements for

which the corresponding logical array element has a "TRUE" value. The length of

the subarray is less than or equal to the length of the logical and the original arrays,

being defined as the count of "TRUE" values in the logical array. (It is not permis­

sible to use a logical array subscript that is longer than the dimension of the origi­

nal array.)

Examples:

LOGICAL L(6)

REAL X(6), Y(lO, 10)

DATAL/.T., .F., .F., .T., .F., .T./

"X(L) 11 represents X(l), X(4), and X(6).

"Y(7, L)" represents Y(7, 1), Y(7, 4), and Y(7, 6).

SCALAR EXPRESSIONS

A scalar expression produces one result and is a scalar reference, scalar expres­

sion and/or array expressions reduced to a scalar by one of the operators . ALL.,

.ANY., or .NONE ..

6-26 59156400 Rev. B

Examples:

REAL X, Y, Z, A(lOO), B(lOO)

LOGICAL LS, LA(l 00)

"X"

"X+Y"

"SUM(A(1 :~' :4))"

is a scalar expression.

is a scalar expression.

is a scalar expression which computes

25
I: A(4':<i).
i=l

is a scalar expression which computes

100
7f

i=l
B.

l

"LS. AND .• ALL. LA(':' :3)" which computes the logical product of every

third element of LA and the scalar, LS.

SU BARRA Y EXPRESSIONS

A subarray expression produces one or more results and is one or more unreduced

multi-element expressions and may also contain scalar expressions. An array ex­

pression must have conformable subarray references (same number of dimension

per array reference, same lengths per dimension). An array expression is evalu­

ated by performing the stated operation on corresponding elements of the subarrays

referenced. Scalar references are considered to be arrays of the proper dimen­

sionality with all elements containing the scalar value.

Examples:

REAL X, A(lOO), B(lOO, 4)

1. A
This array expression has a 1 by 100 dimensional result

2. B

This array expression is a two-dimensional array with lengths 100 and 4

per dimension.

3. A+B(':',4)

This array expression yields a one dimensional array of length 100. The

100 results are produced by adding pairs of values as follows:

59156400 Rev. B 6-2 7

A(l) + B(l, 4)-+ result 1

A(2) + B(2, 4)-+ result 2

A(3) + B(3, 4)-+ result 3

This array expression yields a two-dimensional array with length of 100

and 4 per dimension. The 400 results are produced by multiplying pairs

of operands as follows:

B(l, 1) ':' B(l, 1) -+ result 1

B(2, 1) >:< B(2, 1)-+ result 2

B(lOO, l)'!<B(lOO, 1)-+ result 100

B(lOO, 4)*B(100, 4)-+ result 400

SCALAR ASSIGNMENT STATEMENTS

A scalar assignment statement assigns the value of a scalar expression to a scalar

variable or scalar array reference.

Examples:

REAL X, Y, Z, A(lOO), B(2, 2)

LOGICAL LS, LA(l 00)

Z =X regular FORTRAN assignment statement

Y =SUM(A(2 :>:' :4) computes the sum,

A(2) + A(6) + A(lO) + ...

Y =Y*Z'~ PROD(B) computes the product,

Y':'Z>:'B(l, 1)':'B(2, l)':'B(l, 2)'!<B(2, 2)

LS= . ALL. LA(':' :3) computes the logical product,

LA(l). AND. LA(4). AND. LA(7). AND.

6-28 59156400 Rev. B

ARRAY ASSIGNMENT ST A TEMENTS

An array assignment statement assigns the result of a scalar expression to every

element of the subarray or transfers elements of an array expression result to

corresponding elements of a subarray. The assignee and the array expression

must be conformable.

Examples:

REAL A(4), B(4, 2), C(4, 2)

DATA A(':')/1., 2., 3., 4. /

DAT A B (':' , ':') I . 11, . 2 1, . 3 1, . 41, . 12, . 2 2 ' . 3 2, . 4 2 I
DATA C(':', ':') /8':' 0. Of

1. C (':', 1) = A + B (':', 1)

Replaces elements of C as follows:

C(l, 1) = A(l) + B(l, 1) (C(l, 1) 1. 11)

C(2, 1) = A(2) + B(2, 1) (C(2, 1) = 2 21)

C(3, 1) = A(3) + B(3, 1) (C(3, 1) = 3. 31)

C(4, 1) = A(4) + B(4, 1) (C(4, 1) = 4. 41)

Elements C(':', 2) remain unchanged.

2. C=C+B

(Assume original data values.) Each element of C is added to the cor­

responding element of Band replaces the C element as follows:

.11=C(l,1) = C(l, 1) + B(l, 1)

. 21 = C(2, 1) = C(2, 1) + B(2, 1)

. 31 = C(3, 1) = C(3, 1) + B(3, 1)

. 42 = C(4, 2) = C(4, 2) + B(4, 2)

3. A=A+.375

The constant . 3 75 is added to each element of A to produce the new A

values:

A(l) = 1. 375

A(2) = 2. 375

A(3) = 3. 375

A(4) = 4. 375

59156400 Rev. B 6-2 9

NEW OPERATORS

New Operators have been added to allow for the transition between scalar and array

(vector) data. The new operators are:

Operator

.ALL.

.ANY.

.NONE.

.CAT.

.XOR.

Example

.ALL. LA(*:3)

. ANY. LA(':' :3)

. NONE. LA(':' :3)

A.CAT. B

LSA. XOR. LSB
SA. XOR. SB

Explanation

The result of this expression is true
if all designated values of LA are true.

The result of this expression is true if
at least one designated value of LA is
true.

The result of this expression is true if
all designated values of LA are false.

The result of this expression is the
value(s) of A followed by the value(s) of
B.

The result of this expression is the ex­
clusive OR of the operands.

PARAMETER STATEMENT

The PARAMETER statement provides a method of identifying constants by symbolic

names. Symbolically identified constants (parameters) can occur anywhere a con­

stant can be used. Their use in DIMENSION statements, 00-loop index parameter

positions, etc., provide a level of coordination between various uses of the same

value within a program unit (e.g., ensuring conformable arrays).

The PARAMETER statement follows the form of the DATA statement as follows:

where i

d

is a list of symbolic names separated by commas.

is a list of constants as defined for the DAT A statement or is a com bi -
nation of constants and previously defined parameters separated by+,
- * I ' ' .

The parameter name must be unique.

6-30 59156400 Rev. B

Examples:

1. PARAMETER PI, E/3.1417, 2. 71/

Y = X + PI + Z ':' E

The symbolic name PI is equated to the value 3. 1417 and E to the value

2. 71. The second line is equivalent to the following:

Y =X+3.1417+z':' 2.71

2. PARAMETER NBODY /20/, NBODY7, NBODY9/NBODY':'7, NBODY':'9/

DIMENSION A(NBODY), B(NBODY), C(NBODY7, NBODY)

DO 1 I = 1, NBODY

The second and third lines are equivalent to:

DIMENSION A(20), R(20), C(140, 20)

DO 1 I = 1,20

USE OF SUBARRAY REFERENCES IN DATA STATEMENTS

The DATA (data initialization) statement is used to define initial values of variable

or array elements not located in blank COMMON. The statement form is:

where i is a list containing names of variables and/ or array elements and I or
subarray references, but not containing dummy argument names.

d is a list of constants, optionally signed, which designate the values to be
assigned to the list elements. Parts of the list may be grouped by
parentheses, optionally preceded by a repetition factor "Y".

Examples:

DIMENSION A.l\IASS (10, 10, 10), A(lO), B(5)

DATA AMASS (6, ':', 3)/4':'(-2., 5. 139), 6. 9, 10. /

DATA A(5:7)/2':'(4. 1), 5. 0/

DATA B/5':'0. 0/

ARRAY - AMASS: ARRAY - A:

AMASS(6, 1, 3) -2.

AMASS(6, 2, 3) = 5. 139

AMASS(6, 3, 3) -2.

AMASS(6, 4, 3) 5. 139

59156400 Rev. B

A(5) = 4. 1

A(6) = 4. 1

A(7) = 5. 0

6-31

AMASS(6, 5, 3) -2. ARRAY - B:

AMASS(6, 6, 3) 5. 13 9 B(l) 0.0

AMASS(6, 7, 3) -2. B(2) o. 0

AMASS(6, 8, 3) 5. 139 B(3) o. 0

AMASS(6, 9, 3) 6.9 B(4) 0.0

AMASS(6, 10, 3)= 10. B(5) 0. 0

The array, AMASS, could also have been initialized as follows:

DATA AMASS(6, 1:7:2, 3), AMASS(6, 2:8:2, 3), AMASS(6, 9, 3), AMASS(6, 10, 3)

+ I 4':' (-2 . > , 4':' (5. 13 9 >, 6. 9, 1 o. I

PROCEDURE IDENTIFICATION

SUBROUTINE and FUNCTION identification is normally done by implications, a

name that occurs in a CALL statement must be a SUBROUTINE name, and a sym­

bolic name followed by a left parenthesis is either an array reference (and occurs

in a DIMENSION statement or its equivalent) or it is a function name. Procedure

name usage may require their explicit definition under two circumstances: the

procedure name is used only as an argument in a procedure call or a function may

return a multi-element result and, therefore, requires dimensioning. In addition,

the user can force a restricted set of procedure names to produce external pro­

cedure linkages or inline code.

EXTERNAL STATEMENT

The EXTERNAL statement defines variable names to be external procedure names.

This feature permits external procedure names to be passed as arguments to

another external procedure; the names must be defined in an EXTERNAL statement

in the program unit in which it is used.

EXTERNAL v 1, v 2 , ... , vn

v. are declared to be external procedure names.
1

Example:

6-32

EXTERNAL NAMEl, NAME2, NAME3

CALL SUB(A, B, NAME2)

SUBROUTINE SUB(X, Y, IFUNC)

59156400 Rev. B

The user is also allowed to define an Intrinsic function name in an EXTERNAL dec­

laration. This redefinition of an intrinsic function name causes the processor to

consider any subsequent reference as an external function reference; the user must

supply the procedure.

An EXTERNAL statement can be used in combination with or in place of a DIMEN­

SION statement to identify multi-element valued functions. Any of the following

statement groups would define a real, multi-element valued function, RF.

1. DIMENSION RF (100)

REAL RF

EXTERNAL RF

2. REAL RF (100)

EXTERNAL RF

3. REAL RF

EXTERNAL RF (100)

An array valued function is required to have a well-defined result dimensionality.

The dimensioning information may appear in two forms, an explicit size specifica­

tion in the same form used on type and DIMENSION statements or an implied size

based on the dimensionality of the first argument. The second form of procedure

dimensioning is identified by an "':'" for the dimension constant list.

Example:

Given: EXTERNAL FUNCl(lO, 10), FUNC2(47)

EXTERNAL FUN CA(':')

DIMENSION A(lO, 10), B(50)

Then: 1. A= FUNCl(expressions)

This function call produces a 10 x 10 array result.

2. B(l :47) = FUNC2(expressions)

The 47 element result from function FUNC2 is stored into the first

47 elements of B.

3. A (5: 1 0, 2) = FUN CA (B (1 : 6))

Six result values are provided by FUNCA and stored into array A.

59156400 Rev. B 6-33

4. A = A+ FUNCA(A)

FUNCA returns a 10 x 10 result array which is added to the original

A and the result of the expression defines new A values.

INTRINSIC STATEMENT

The INTRINSIC statement permits the programmer to force additional procedure

references to produce inline code (i.e., the procedure's code is built into the state­

ments code sequence).

Example:

A system subroutine, DISPLAY, which places a Hollerith coded message in the

operator display window might appear as follows:

SUBROUTINE XY Z

INTRINSIC DISPLAY

CALL DISPLAY ('SAMPLE MESSAGE')

END

PROCEDURE CLASSIFICATIONS

FORTRAN subprograms are placed in four categories: intrinsic, basic external,

library external and user external. An intrinsic procedure (or subprogram) refer­

ence results in code being placed in the referencing subprogram at the required

point. A library external procedure reference results in a jump to a separate (ex­

ternal) code module. A basic external procedure is normally treated like a library

external procedure but, if named in an INTRINSIC statement, may be treated as an

intrinsic procedure. A user external procedure is defined by a FORTRAN source

deck supplied by the user. An EXTERNAL statement changes an intrinsic proced­

ure to a basic external procedure or user procedure. (A recent ANSI change allows

an EXTERNAL statement to differentiate between a change of classification and a

declaration of information. This latter change allows an intrinsic/basic - external

procedure name to be treated intrinsically in the referencing procedure and passed

as a procedure name to another referenced procedure.)

6-34 59156400 Rev. B

Examples:

SUBROUTINE XYZ(X)

REAL X(lOO),

X = ABS(X) + ALOG(X) + SIN(Y)

RETURN

END

The subroutine XY Z is a user procedure.

The function ABS is an intrinsic function.

The function ALOG is a library function. t
The function SIN is a basic external function. t
Two external calls are required to execute XYZ as above.

In the following version, only one external call is required.

SUBROUTINE XYZ(X)

REAL X(lOO)

INTRINSIC SIN

X = ABS(X) + ALOG(X) + SIN(Y)

RETURN

END

DYNAMIC SPACE MANAGEMENT

FORTRAN intermediate array storage will be taken from the dynamic space area.

One of the following extensions allows the user to assign the dynamice space base

address. Two additional statements allow the user to request storage from dynamic

space.

DYNAMIC SPACE BASE ADDRESS ASSIGNMENT

The addition of a COMMON block name to the PROGRAM, SUBROUTINE and

FUNCTION statements is taken as the signal to change the dynamic space pointer.

The change is instituted as follows:

1. Save the current DSP (Dynamic Space Pointer).

2. Enter the base address of the COMMON block.

3. Before exiting the procedure, restore the saved DSP.

t This is for illustration only, no classification of FORTRAN procedures is intended
as part of this proposal.

59156400 Rev. B 6-35

All external procedures called will allocate their storage from the newly established

DSP. This feature is useful for programs which have two or more independent paths

which are initiated from time-to-time from interrupts. Some applications require

this feature because the independent paths may occasionally be restarted and not re­

entered in the normal CALL-RETURN manner.

Examples:

BLOCK DATA

COMMON /PATHO/ .. .

COMMON /PATHl/ .. .

COMMON /PATH2/ .. .

END

PROGRAM MAIN/PATHO/

END

SUBROUTINE SUB1/PATH1/(a1, a 2 , ... , an)

END

The statement "PROGRAM MAIN/PATHO/" changes the FORTRAN DSP from the

system DSP to the COMMON block PATHO. Before returning to the system, the

value of DSP before entry must be re-established (if the system environment regis­

ter was changed). The statement "SUBROUTINE SUB1/PATH1/(a1, ... , an)" changes

the FORTRAN DSP from PATHO to PATHl.

TEMPORARY STATEMENT

The TEMPORARY statement provides the means of dynamically defining the base

addresses of data areas. The basic form of the statement follows the COMMON

statement and appears as:

J_is a list of variable names and array declarators . .1_may be either blanks (or

omitted) or a symbolic name. The value ofJ:_determines the exact processing of

the statement.

6-36 59156400 Rev. B

IfJ:....is blank, the "TEMPORARY block" is allocated immediately upon entry to the

procedure. If..!_ is a unique name, the storage is not allocated until the occurrence

of an ALLOCATE statement (next section). The final possibility is thatJ_is the

same as one of the arguments to the procedure; in this case, the base addresses of

the list items are determined relative to the address of the named argument.

Examples:

1. PROGRAM MAIN/PATHO/

TEMPORARY/ /X(lOO), COEFF(lO, 10)

CALL XYZ(COEFF, LTH)

END

This program establishes the DSP as the COMMON block "PATHO". Be­

fore executing XYZ, a two hundred word block of "PATHO" is allocated

and the descriptors for X and COEFF are constructed.

2. SUBROUTIN XYZ(AREA, LTH)

TEMPORARY/ AREA/ A(LTH), B(LTH)

A = A + B ':' FUNC(A)

RETURN

END

The argument, AREA, is used as a data base which is divided in pieces.

In this example, the pieces are defined as variably dimensioned arrays A

and B. Before executing the replacement statement, the descriptors for

A and B are prepared.

ALLOCATE ST A TEMENT

The ALLOCATE statement is used to cause the allocation of dynamic space and the

building of variable descriptors. The form of the statement is:

ALLOCATE t 1, t 2 , ...

where t. is the name of a TEMPORARY block (i ~ 1).
-i.

Example:

FUNCTION FUNC(ARG)

TEMPORARY/Tl/ ... /T2/ ... /T3/ ...

59156400 Rev. B 6-37

ALLOCATE Tl

ALLOCATE T2, T3

RETURN

END

Except for the ALLOCATE statements, execution of FUNC follows a normal

FOR TRAN course. At each AL LO CA TE statement, a block of dynamic space is

taken and the appropriate descriptors are computed.

HEXADECIMAL VALUES

A hexadecimal constant of the form:

hl h2 ... hn

where h. is a hexadecimal digit and 1 :<;; n :<;; 8 or 1 :<;; n :<;; 16 for 32- or 64-bit data,
-1

respectively.

Input/ output of hexadecimal constants use the format declarator:

r#w

where r is the repetition and

w is the field width

TYPE SPECIFICATIONS

The type specifications include the FORTRAN standard specifications, the word

TYPE before any of the FORTRAN type specifications, the IMPLICIT statement

and the 11 ':' s" byte designation in any of the above (except LOGICAL array specifi­

cations which always are allocated to bits; in this case, the "':' s" indicates boun­

dary alignment requirements).

Examples:

INTEGER I, X

TYPE INTEGER J, Y

IMPLICIT INTEGER (I, J, X,)

INTEGER':'4 K, W

TYPE INTEGER:' 8 L, Z

IMPLICIT':'4 INTEGER(A, M), INTEGER':'4(K, W), INTEGER'!'8(L, Z)

6-38 59156400 Rev. B

STRUCTURE OF PROGRAMS 7

This section deals with the rather complex problems of the linkages between and

among programs, procedures, blocks, and subprograms. It illustrates the develop­

ment approach to be taken for all compiling systems. Standards imposed upon the

object modules produced by compilers and assemblers ensure that routines and pro­

grams can be freely interchanged regardless of the original source language.

Most of the discussion in this section uses PLSTAR, PL-1, and FORTRAN language

features for illustration, often in an interchangeable way, because the implementa­

tion of PL-1 linkages satisfies the requirements of FORTRAN.

STRUCTURE

The basic system philosophy involves, insofar as the implementation of linkage ob­

ject code for compilers or assemblers is concerned:

1. Implicit I /O

2. Resource management distributed among stations

3. A global, re-entrant, absolute, shared library

4. Special sharing of regions of virtual space

5. Optimizing CPU utilization by maximizing the streaming functions and

minimizing random fetches and jumps in code.

6. Making the memory and time penalties involved in the access of routines

proportional to the complexity and frequency of access of the routine.

Items 3, 4, 5, and 6 impose some constraints on object code structures if the as­

sumption is made that all programs are treated uniformly by the compiler including

those in the library or shared virtual memory. Be cause executable code in shared

space must be re-entrant and is most likely protected by write lockout, all potentially

modifiable data or code must be given space in each user's virtual memory. The

classes of data that must be treated in this manner are:

59156400 Rev. B 7-1

1. External label references (that are not linked until execution of the

object code).

2. Local scalars and arrays (in PL-1 this would include "automatic" vari­

ables).

3. Pointers to blank-common and labeled common blocks (in PL-1 pointers

to STATIC variables or storage and/or based variable pointers).

The object code structures need to be discussed in the light of the foregoing classes.

Figure 7 -1 shows the layout of a library program or module. The module header

table includes pointers to relocation data, entry and external lists, and object code.

This is followed by a prologue, optionally, and then the body of the program, which

may have multiple entry points. The last two areas are register-file load blocks,

called Regblocks, and the linkage data. A more complete description of the tables

comprising a module is given in a following subsection entitled Module Tables.

MODULE HEADER TABLE -First executable instruc­
tion in prologue (optional)

PROLOGUE

>------------------1- First entry point

PROGRAM ---- Other entry points .---

REG BLOCKS Register load blocks

LINKAGE DATA

Figure 7-1. Layout of a Library Program

Execution of such a module usually requires the use of work space for calculation

and input I output. Such workspace is normally used for both the reading and writing

of data by the user program. In the general case, executable code is write protected;

therefore, the work area must be separated in virtual memory from the accessing

program.

7-2 59156400 Rev. B

Figure 7-2 shows a typical structure during the execution of user and library pro­

grams. The pointers denote possible program linkages or data access paths.

User

User
Program

B

Local

Scalars

Local
Arrays

Dynamic Storage

Reg­
blocks

Library
--~~~~---.1-0rogra~r~--..

x

i.-~~~~~ 1~rogram~~--

y

Static Storage Library

Figure 7-2. Program Linkages and Data Access Paths in
a Shared Library Environment

REG BLOCKS

x
Regblocks

y
Regblocks

When a program begins execution, the contents of its register file are normally un­

defined. This is true for all programs except those that have been compiled with

their data in place; that is, in the first half of their page zero.

Because nearly all instructions involve the use of the register file, a newly started

program must get its data into the registers. This can be done not only by direct,

in-line loading which sets the registers one by one, but usually much more conveniently

by block loading an area of the register file with a vector instruction.

59156400 Rev. B 7-3

Thus, associated with each program there should be a block of data intended to be

loaded into the register file. As long as none of the data in these blocks requires

modification during execution nor needs to be carried over between executions of

the subprograms, these blocks, called Regblocks, can be retained in the read-only

area along with the code. Regblocks normally contain addresses or data pointers

for local arrays, as well as for externals and common blocks. One or more such

addresses appearing in a Regblock is called an address vector.

STATIC STORAGE

In many instances, a subprogram will reference COMMON blocks or an external

which was not defined at either compile or load time and which will be linked at the

beginning of execution. Such cases require that the contents of a given regblock

be modified before execution of a subprogram (all external and common references

must be register variables). These situations require that one or more regblocks

be located in modifiable virtual space each time the program is called from there.

Since these regblocks have been set up by updating the contained address vector at

execution time for a particular job and remain constant throughout the job, they

need to be allocated to a region of Static Storage in virtual memory.

Blank Common and Labeled Common blocks are allocated on the first occurrence of

a reference to them. Once allocated, these common areas may remain fixed in ad­

dress and length for the duration of execution and hence may reside in static storage.

Note that allocation of various elements of static storage can occur at any time dur­

ing execution (although they are retained for its duration). This implies that static

storage is allocated and grows dynamically in its general case and is not de-allocated

until the user logs off.

DYNAMIC STORAGE

From the point of view of virtual memory utilization and possible impacts on paging,

static storage might be considered wasteful of resources although it is essential to

support compiler languages. There are other kinds of data, however, that can be

assigned to virtual memory areas which can be overlaid by other data, thereby re­

using the same virtual region and reducing paging. The most prominent example of

these are local scalars and arrays or "automatic variables." These include all data

declared by a given subprogram which does not appear in COMMON (as either STATIC

or BASED variables). Some language specifications demand that, for each entry into

7-4 59156400 Rev. B

a subprogram, the value of such data is either undefined or in a canonically initialized

state. The normal mechanism for initialization in such cases is the DATA or INIT

statement in FORTRAN or PL-1. Because local scalars and arrays are normally

modified by the declaring procedures, they must exist in the user's virtual memory.

The present compiler approach is to as sign all "simple" scalars to the register

file, along with scalar constants and array pointers. Simple scalars are those that

do not appear in COMMON or EQUIVALENCE statements (in PL-1 they do not appear

in STRUCTURES). Therefore, at each entry to a given subprogram, a region of vir­

tual memory must be assigned to the subprogram's local complex scalars and arrays,

and those quantities which are initialized must be loaded, either by enter immediate

instructions or by a vector load of a data block.

The inherent overhead of such an initialization operation permits a given region of

virtual memory to be collapsed and expanded with little additional time penalty as

program execution progresses. Another major use for the Dynamic Storage region

is for stacking data and pointers in recursive systems such as ALGOL or PL-1 and

for stacking portions of the register file as job execution descends and ascends

through levels of subprograms.

Further extensions of dynamic storage allow it to contain executable code which

may be loaded during a particular job sequence and, in fact, to encompass all ob­

ject code extant in the user's unique virtual space; that is, all that is other than

shareable or library space.

Figure 7-3 shows the structure of a user's virtual space that has evolved from the

above arguments. Two pointers, the Static Space Pointer (SSP) and the Dynamic

Space Pointer (DSP) are introduced in the figure. These are discussed in the next

section.

59156400 Rev. B 7-5

+---o
Registers

Non-structured
Working Area

~100000000

Stacked Registers and Data

-DSP

Free Space

-ssP

Regblocks, Catalogs,
Common, Programs,

Files, etc.

Static Space Pointers

System Work Area
~800000000000

Library

~ FF8000000000

Shared Spaces

Figure 7-3. Outline Structure of User's Virtual Space

POINTERS

A group of eleven pointers describing static space is located at the address known

as "ADDR SSP." They are shown in Figure 7-4.

7-6 59156400 Rev. B

~ADDR SSP
Static Space Pointer (SSP)

Previous
Current Track Pointer Track Ordinal

Module Catalog Pointer

Link Catalog Pointer

FRMT Pointer

Internal File Name Pointer

File Name String Pointer

User ID Descriptor

Sense Switches JCL Pointer

Highest DSP

Number of
Track Chain Pointer Tracks

Figure 7-4. Static Space Pointers

Dynamic space begins at the location indicated by DSP, v,:hich is also known at the

Next Stack Pointer. During the course of execution of a subprogram, DSP is con­

tinuously updated to always give the next available location in dynamic space.

Another pointer, the Current Stack Pointer, gives the most recent DSP setting.

lf a subprogram must stack the register file or allocate local data space in dynamic

storage, the Current Stack Pointer can be used to backtrack program linkage in

case of error.

To support the structure just outlined, it is necessary to allocate some fixed region

of the name space for the basic pointers indicating where the dynamic and static

spaces are. There are also several other items which are required for program

execution, such as return addresses and parameter lists. \\ hile it would be pos -

sible to allocate these items to some arbitrary region of virtual memory, the high

frequency of use of these items dictates that they be placed in the register file.

Thus, the basic scheme of register file division and usage shown in Figure 7-5 was

derived.

59156400 Rev. B 7-7

0

1

2

12

13

14

15

16

17

18

19

lA

lB

lC

lD

lE

lF

FC

FD

FE

FF

,u

"'

~

Machine Zero

Data Flag Return >- Machine Registers

>- Temporary Registers

Vital Pointer

Constant One ONE

Parameter Descriptor PD > Mixed-use Registers

Function Value FVl

FV2

Return RETURN

Dynamic Space Pointer DSP

Current Stack Pointer STACK
>

Previous Stack Pointer OLD STACK
Environment Registers

Callee Data Base LINK

On Unit Stack Pointer ON

,.
-(} Working Registers

2nd Parameter Pair

1st Parameter Pair
Parameter Registers

Figure 7-5. Register File Assignments

7-8 59156400 Rev. B

REGISTER FILE CONVENTIONS

For the purpose of supporting the requirements of dynamic linking and loading of

modules, the Register File has been somewhat arbitrarily divided into six definable

regions:

• Machine Registers

• Temporary Registers

• Mixed-use Hegisters

• Environment Hegisters

• \Vorking Registers

• Parameter Hegisters

MACHINE REGISTERS

These registers include only registers 0 and 1. Register 0, by convention, contains

the machine representation of the number zero. Register 1 is used as the Data Flag

Branch return.

TEMPORARY REGISTERS

Registers 2 through 11 are temporary registers, the contents of which are not

saved across calls. This space is chosen large enough to permit execution of many

lowest level subroutines, such as SIN, COS, etc., using registers only within the

temporary space, obviating the need for saving and restoring any of the caller's

permanent registers. The choice of low-numbered registers permits their use for

both full- and half-word temporaries.

MIXED-USE REGISTERS

Registers 15 through 19 are used for various miscellaneous uses.

Register 15, called the\ ital Pointer contains the bit address of the first register

of the Environment Hegister group (Hegister #lA).

Register 16 (ONE) contains a one in its coefficient portion and a zero in its exponent.

This register may, therefore, be accessed to obtain the fixed or floating-point

(unnormalized) representation of the number one.

Register 17 (PD) contains the Parameter Descriptor. It contains the number of the

parameters being passed during a call in the length portion of the register. The

address portion contains zero if the parameters are in the register file, and the

address of the parameter-list if the parameters are in virtual memory.

59156400 Rev. B 7-9

Registers 18 (FV 1) and 19 (FV2) are used for storing function results obtained

from some called subroutine. For example, the result of a trigonometric or

exponential function would be placed in register 18. Register 19 is used when a

result has two components; for example, the imaginary part of a complex number

whose real part is returned to register 18.

ENVIRONMENT REGISTERS

These registers, six in number, are used to save and restore the status of the

register file when executing separate callable routines.

Register - lA - Return - holds the bit address of the caller to which the callee

normally returns.

Register lB - Dynamic Space Pointer - contains the bit base address of the next

assignable lo ca ti on of dynamic space.

Register lC - Current Stack Pointer - contains the bit base address of the region

in the dynamic stack for storing the register file. The minimum length of that

region is the maximum number of registers the caller needs to save. During a

call sequence, the caller sets the length portion of the Current Stack Pointer to

the number of registers to be saved by the callee. Although the Current Stack

Pointer is set up by the caller, the vector transmission to save the caller's

register file is done by the callee. The minimum number of registers that can

be saved is the number of Environment Registers, six.

Register lD - Previous Stack Pointer - contains the number of registers and the

bit base address where the caller's registers have been saved. The callee's

Previous Stack Pointer is an exact copy of the caller's Current Stack Pointer.

Register lE - Callee Data Base - contains the bit base address of the static space

which was allocated to the module by the loader. The caller passes the callee the

address of the callee's static space in the Callee Data Base register. If, at the

time of the call, the caller has not been linked to the callee by the loader, the value

of the Callee Data Base will be the data base address of the loader. The exponent

portion of the Callee Data Base register will contain an ordinal used by the loader

to determine which module is making the call.

7-10 59156400 Rev. B

Register lF - On Unit - contains the bit base address of a stack of data in dynamic

space which defines the action to be taken by interrupt and error handling routines

for a given set of pre-defined conditions for the active modules. This register

must be in a fixed location and be stored at each call in order to support the ex­

ecution requirements of condition handling in block structured languages such as

PL/1, ALGOL, implementation languages, etc. If this register were not a

canonical register, it would be very difficult to have one language communicate

with another.

The Environment Registers are used in two areas of a Code Block Module called

the prologue and epilogue. The instructions in the prologue and epilogue are in­

serted into the executable code by the assembler or compiler to ensure saving of

the caller's register file when calling an external routine.

A program in process calls an external program. When this happens, the prologue

of the called program executes code which saves the caller's register file in dyna­

mic space and then transmits the Current Stack Pointer to the Previous Stack

Pointer and the Dynamic Space Pointer to the Current Stack Pointer. Finally, the

prologue loads the called program's register file from static space.

By this means, programs may call other programs to any desired depth. As one

program calls another, dynamic space is built up with a stack of Regblocks, each

containing the status of the register file when another program was invoked to­

gether with the linking information required for returning to the program. l n the

normal sequence, dynamic space increases until the lowest level called program

has been executed; then the space contracts as the returns are encountered in the

reverse order to the call.

Some programs are able to perform their tasks entirely within the temporary reg­

isters and do not invoke any other programs. Such routines need not contain a

prologue and may be assembled or compiled to omit it.

Note that the registers are saved in a region of the user's Dynamic Space. Each

user has his own Static and Dynamic Space. The organization of a region of dynam­

ic space after several calls have been stacked appears as follows:

59156400 Rev. B 7-11

Previous
Stack
Pointer

Current
Stack
Pointer

Dynamic
Space
Pointer

Return
Dynamic Space Ptr
Current Stack Ptr
Previous Stack Ptr
Callee Data Base
On Unit Stack Ptr

Working
Registers

And Local Data

0

t

The epilogue or return from a called program is a macro compiled by the assem­

bler or compiler. It normally performs two functions:

1. Restores the status of the Register File.

2. Transfers control to the RETURN location.

WORKING REGISTERS

These registers begin with register 20 (hex) and are available for general use by

the programmer. Compilers and assemblers assign these registers in ascending

order or, alternatively, keep track of register assignments made by the program­

mer. The working registers together with the environment registers constitute a

contiguous register block which must be saved when a call is made to another

program. In order to conserve time while saving the registers and restoring them

later, only those registers which actually need to be saved are vector transmitted

to dynamic space.

7-12 59156400 Rev. B

PARAMETER REGISTERS

The parameter registers are assigned by pairs beginning at register FF and work­

ing toward register 0. The even register of a pair contains the parameter descrip­

tor of a parameter dossier which is intended to describe structured data such as

arrays of arbitrary dimension or sparse arrays. Whether the parameter register

contains a descriptor or a value is an option decided by convention between the

caller and the callee.

Because the lower limit of the parameter registers is not defined, the programmer

must take responsibility for preventing unwanted conflicts of register assignments.

If the parameter list is long, an escape is provided; the Parameter Descriptor

(PD) register may contain a descriptor to an extension of the parameter list. The

parameter registers are not automatically saved between calls; hence, they may

be used as temporary working registers. If a program contains calls to another

program, the parameters in the calling program must, in general, be saved before

the call is executed.

RELOCATION

All programs, whether compiled or assembled, are carried in the system in a

self-relocating form. This means that a program ready for execution stored in

virtual memory may be moved to any other portion of virtual memory for execution

through a mechanism of pointers contained within the program itself. Such a

structure permits a single image of any given program in the system which is at the

same time relocatable and absolute. For object programs to retain the location and

linking tables with each executing module might seem at first sight an unnecessary

burden, but closer examination of system-wide storage requirements show this

concept to be more efficient than any of the alternative approaches. For example,

relocatable versions of programs appearing in the absolute libraries in large-scale

environments must be available so that users may have private copies and so that

the library may be repacked or restructured without recompiling.

It should be pointed out that it is possible and practical to write programs that are

absolute. To do so merely requires that the addresses all be relative rather than

absolute. Hence, absolute jumps typified by the B6 instruction and enter immedi­

ate instructions (specifying a label) such as the BE instruction would not be used.

59156400 Rev. B 7-13

MODULE TABLES
Previous paragraphs in this section have described the Register File conventions

and the way in which programs may call other programs. In support of this

facility, a number of tables are defined which enable the linker to load and link

programs which may have been written by different persons using different com­

pilers or assemblers. The actual linking of the programs is performed dynam­

ically at execute time rather than during compile or assemble time.

The PL/':' assembler and the compilers written for the STAR system produce

groups of tables which collectively are called an "object module" or simply a

"module." A module may simply be some elementary subroutine such as a con­

version of a binary number to an ASCII string or it might be a complete assembler

such as PLSTAR or BUFFALO containing calls to other modules. (Appendix A

includes the names of all the modules current in the library; additional modules

will be added as new facilities are developed.) The principal table in the module

is called the code block table which contains, unsurprisingly, the object code; the

remaining tables are used to facilitate relocation, linking, and loading.

Each table contains a standard two-word header of the following format:

NAME

L

PTR

7-14

NAME

L PTR

The literal name of the table in ASCII code.

The length of the table in 64-bit words including the
two words in the header.

A 48-bit pointer which when added to the address of
NAME gives the address of the Module Header Table.

59156400 Rev. B

The object module consists of several tables from the following list:

Module Jleader Table

Code Block Table

External/Entry Table

Code Relocation Table

lnterpretive Data Initialization Table

Executable Data Initialization Table

External Data Initialization Table

Interpretive Relocation Table

Executable Relocation Table

External Relocation Table

59156400 Rev. B

Header Name

MODULE

CODE

EXT ENTR

REL CODE

INT DATA

EXE DATA

EXN DATA

INT RELO

EXE HELO

EXN RELO

7-15

MODULE HEADER TABLE

The module header table provides information about the module such as its name,

time of creation, the length of the code, the lengths of tables, and pointers to other

tables associated with the module.

7-16

MODULE

HL

PTR

MODULE

HL l PTR } Standard two-word
header

MODULE I\ AME

DATE AND TIME CREATED

T

c

TYPE

TYPE

TYPE

PROCESSOR

DATA BASE LEN

POINTER

POINTER

POINTER

Literal ASCII name "MODULE".

Length of Module Header Table
including the Standard Two-word
Header.

0 for this table only.

MODULE NAME ASCII name of the module.

DATE AND TIME CREATED

T

PROCESSOR

The date and time of the assembly I
compilation expressed as a 16-digit
BCD number in the following order:
year, year, month, month, day, day,
hour, hour, minute, minute, second,
second, millisecond, millisecond,
millisecond, positive sign.

The length in 64-bit words of all
tables in the module excluding the
code-block table but including the
module header table.

The STAR processing program used
to generate the module; i.e., PLSTAR,
FORTRAN, COBOL, etc.

59156400 Rev. B

c

DATA BASE LEN

TYPE

POINTER

Hex
Type ---
0000

0001

0002

0003

0101

0102

0103

0201

0202

0203

Literal ASCII
Name

MODULE

CODE

EXT ENTR

REL CODE

INT DATA

EXE DATA

EXN DATA

INT RELO

E{IB RELO

EXN RELO

The length in 64-bit words of the code­
block table including its standard two­
word header and local data.

The bit length of static space used by
the module.

A 16-bit designator defining the type
of table pointed to by POINTER. The
table types are listed below:

Description

Module I!eader Table

Code-Block Table

External Entry Table

Code Relocation Table

Interpretive Data Initialization

Executable Data Initialization

External Data Initialization

Interpretive Relocation Table

Executable Relocation Table

External Relocation Table

A 48-bit quantity which when added to
the base address of the Module lleader
Table, points to the header of one of
the above tables.

Before describing other tables associated with a module, the actual structure of a

typical module should be examined. Figure 7-6 shows the structure of a typical

program (module) assembled under PLSTAR. Six tables are used. Figure 7-7

shows an actual program assembled under PLST AR. The same six tables are

indicated.

59156400 Rev. B 7-17

1 FWA

HL=ll

::!CO

CL

LOCl

RL

LOC2

EL

v
WC3

EDL=S

~
ERL=8

l

MODULE

HL 0

Proc Name

Date, Time, Group

TL Assembler Version

CL Data Base Length

1 Code Block

2 External/Entry

3 Code Relocation

102 Exec. Data !nit.

201 Interpretive Reloc.

CODE

CL Back Pointer

Code

Data

Regblocks

R E L c 0 D E

RL Back Pointer

FWA

Descriptor of Indicies

Packed Indicies

E x T E NT R

EL Back Pointer

M N

1 J Code Offset (Relative to 2CO)

14 0

E XE DATA

EDL Back Pointer

R~gblock Initialization Code

I NT R E LO

ERL Back Pointer

Relocation Items

= Length of regblock(s)

= 2CO

r = WC2-FWA

= LOCl-FWA Table P ointers

= LOC3-FWA l = LOC4-FWA

= -2CO

= -(LOCl-FWA)

= -(LOC2-FWA)

i'.
M entry t
Points N names

1'

M f
Descriptors

_L N Descri

j
= -(LOC3-FWA)

= -(LOC4-FWA)

(N-M
External
Procedures)

ptors

Figure 7-6. PL(:' Object Module Format

7-18 59156400 Rev. B

TABLE
TY PE

MODULE
HEADER
TABLE

CODE
BLOCK
TABLE

CODE
RELO
TABLE

LOCATION

8000
8040
8080
80CO
8100
8140
8180
81CO
8200
8240
8280
82CO
8300
8340

CONTENTS

204D4F44554C4520
DDDBDDDODODODDDD
4D4F444D41502020
710831132027750A
002C504C53545258
0066000000000880
00010000000002co
0002000000001DCD
0003000000001C40
0102000000002080
0201000000002280
2020434F44452020
0066FFFFFFFFFD40
3EFE0680381CDOFE

COMMENTS

"M 0 D U L E" {Note 1}
Length = B {Note 2}
"MODMAP"
Date and time {Note 3}
Tab I es 2C words, "PLST AR"
Code= 66 words, static space
{Types and
pointers to
other tables
in the module.
See note 4}
11 CODE II

Code = 66 words.pointer{Note 5}
First two instructions in the

code block.
Last word in code block
"REL CODE"
Length and pointer
Program base address
8 bits/index. 9 indices{Note 6}
values of the indices
for code relocation
"EXT ENTR"
Length and pointer
1 entry point. 4 names
"MODMAP"

EXTERNAL
ENTRY
TABLE

9COO
9C40
9C80
9CCO
9DDD
9D40
9D80
9DCO
9EDD
9E40
9E80
9ECO
9FOO
9F40
9F80

OODDDODODDDDDDDD
52454C20434F4445
0006FFFFFFFFE3CO
0000000000008000
0008000000000009
A2A6AAB2B6B8BABC
BEOOOOOODOOOOOOO
45585420454E5452
OOOBFFFFFFFFE240
0001000000000004
4D4F444D41502020
414444525F535350
43565F4454472020
4356482020202020
0001000000000080

"ADDR SSP"
11 CV PTG !I

l!cvH IT

EXE
DAT A
INIT
TABLE

INT
RELO
TABLE

59156400 Rev. B

"\ote 1

"\ntf'

9FCO
ADDO
A040
A080
ADCO
A100
A140
A180
A1CO
A200
A240
A280
A2CO
A300
A340
A380
A3CO
A400
A440

0014000000000000
0014000000000000
0014000000000000
4558452044415441
0008FFFFFFFFDF80

3F0300803E040001}
7E05040703070507
BF07000000001440
2A07002038070003
9800000700000003
3340006000000000
494 E 54 20524 54 C4 F
0008FFFFFFFFDD80
0001000201010004}
0000000000000002
0001000401010006}
0000000000000004
0001000601010000}
0000000000000006

Type 1.Relative Address
{Note 7}

Type 14
Type 14
Type 14
EXE DATA
Length and pointer

Reg b I ock in it i a I i za­
t ion code

INT RELO
Length and pointer

1st ·reloc. item

2nd reloc. item

3rd re I oc. i tern

qu(,te n:ark.c; riPnotf' A:--l ·11 litl'r·~d.

.. \\1 n 1.1r~1her 1-epn'.sr'ntat1ons arf' lw'\:;JdPc11n:-1l.

Th-' pt!lnter·s ;ire 1nrl1(·p~ l'('Ltt1ve tr1 h:1si' ;iddress \lf t!w n111il111<- (111
tins c~-isP 8000).

;\l\ t:ihk l,1·:!(!1,r· p1Hnk1·s :11T tT!atl\'f' to Ow t;iliil' n.1nw
[Jrt'('(·d111...:. tl.1· prJ1ntt>r·. Tlw ptllllkt' ;1ddt'd It> tlw ;.ild1·1's~ ill tllt'

t!1l-' po1nt1·r :il\\:t\S 1-'1\1·s tlw l1,is1·

:11!d l'I ~~ (If t!i('

) 1, :-.,;1\•· ~p;u·1', thP 11vl1. ··~ 1lt. \oc:it1ons 1.\l1JL !1 n1ust h1• llHH!1t1(•d 11:1011

i·drlC~•t1t1n at·1· p~1ckt>d. J'!w l!i-b1t ex1H111ent of tl\1.c; llw~llJ;)rl
c.,pec1fu·s th· lt:netl' 1il tLt· inril'\. in bib drnl 1111,\.t'l' 48-hit;., nl tLc
l11(·,1tH1n ;-;pt·v1!\ tlw nuc.lwt' uf 1nilH t·:-o in tl11· !1:-,t, In tl11s

11:1' 1nd11 e:c ;1!'(' :l lnts tn li-n<:U1 ;ind tlll'rt· an '1 \'.1wils tf• ll1

L:H il ind1:x is a k1lf-\\r1rd indP:-; n·JatJ\.(' t(J tht' liq..'ltllllll<; ;1ddn•ss tlf

tl1L· m1>dule (.;;l\OOUJ.

"'\ot<' J'lns Int address 1s t'Pbtn·p tu tht' \i;-1_J-Jf• <icldr·es.-; 1)f tlw crJrlt· lilot·k
t~liile. lt ;Hlints tn tlH" !irst execut:tble rnstructwn in the code llli,.·k.

Figure 7-7. Program Assembled Under PL(:'

7-19

The foregoing example shows the tables to be tightly packed around the code block

table. However, the table structure with its pointers allows the tables to exist

anywhere in virtual space. The example uses only six of the possible table types.

At this point, only the Module Header Table has been fully described; descriptions

of the remaining tables may now be undertaken.

CODE BLOCK TABLE

The code block table contains the executable code for the module and its local data

such as translate tables, constants, etc. Modules are normally assembled or com­

piled with the module header at address 8000 (hex). The Code Relocation Table, to

be described shortly, allows the absolute addresses to be modified (relocated) in

the code block when the module is entered in the library.

CODE

CL PTR

ACTUAL

CODE

AND

ITS

DATA BLOCK

CODE - Literal word CODE in ASCII

CL, PTR - See explanation of standard two-word header

EXTERNAL/ENTRY TABLE

The external/entry table contains the names of all entry points in the module, the

names of external symbols, and common blocks. Associated with each name is

an entry descriptor or external descriptor providing linking information for the

linker /loader.

7-20 59156400 Rev. B

The following types of entry points and external symbols are defined:

• ENTRY POINTS

An entry point is a named value defined in the procedure and is

intended to be referenced as an external by an external procedure.

An entry pointer can have one of three types of values - an address

in the code block, an address in the data section, or a constant value.

• COMMON BLOCKS

A common block is a named alterable space referenced by one or more

procedures. A common block can be initialized with relocatable data.

Blank common is a common block with a name of eight spaces.

• EXTERNAL DATA

An external data is an external that is referenced by a method other

than a procedure call.

• EXTERNAL PROCEDURE

A name defined as an external procedure should not be used as an

external data. The standard method of using an external procedure

reference is in the procedure call.

Ilaving a symbol multiply defined (that is, as a common block, external procedure

and as an external data) is specifically allowed.

59156400 Rev. B 7-21

7-22

M

N

EXT
t-------.--------------; standard two-word header ENTR }

L

M

Entry Name 1

Entry Name 2

PTR

N

Entry Name M

External Name 1

External Name 2

External Name (N-M)

Entry Descriptor 1

Entry Descriptor 2

Entry Descriptor M

External Descriptor 1

External Descriptor 2

External Descriptor (N -M)

< ASCII LITERAL

ASCII LITERAL I

16 48

< TYPE VALUE

Number of entry points in the module

Total number of entry points plus external
names

ENTRY NAME A valid entry point name in the module

EXTERNAL NAME

ENTRY DESCRIPTOR
OR

EXTERNAL DESCRIPTOR

The name of an entry point external to
the module being run

The descriptors each contain a 16-bit type
designator in the exponent portion of the
word and a 48-bit value in the coefficient.
The type field defines the type of the value
field. The value field contains information
about the symbol name. The descriptors
are paired one-for-one with the Entry
Names and External Names.

59156400 Rev. B

Type 1

Type 2

Type 3

Type 14

Type 15

Type 16

Entry point in code. VALUE is a bit address relative to
the Code Block header. It points to the first executable
instruction in the code block.

Entry point in data. VALUE is relative to data base bit
address.

Constant entry point. VALUE is a constant.

External procedure. VALUE = 0.

External data. VALUE = 0.

Common block. VALUE is the bit length of the common
block.

CODE RELOCATION TABLE

The code relocation table contains indices pointing to locations in the code block

which are relocatable. If the code is location-independent, this table will not

exist.

MODULE BASE

NBI

NI

Il, 12, ... In

REL CODE

L I PTR
} standard two-word

header

MODULE BASE

NBI l NI

I 1, 12' I3 ... In

Base address of the module

Number of bits per index of the bit string
starting in word 5.

Number of indices in the string.

Full-word indices each NBI long. Each index
references a full word in the code relative to
the base address of the module.

As the result of processing this table, the bit base address of the module will be

added to the 48-bit address fields of words pointed to by the indices in the index

list.

59156400 Rev. B 7-23

INTERPRETIVE DATA INITIALIZATION TABLE

This table contains information which, when processed by the loader, results in

the initialization of areas of static space with constant and relocatable data with

the exception of procedure externals.

7-24

INT DATA

L I
DATA ITEM DESC

DATA ITEM

. . .
DATA ITEM DESC

DATA ITEM

. . .
DATA ITEM DESC

DATA ITEM

. .
0

PTR
}

standard two -
word header

DATA ITEM DESC A one-word descriptor of the data item:

0

ORDl

ORDl

ORD2

15 16 31 32 39 40 47 48 63

ORD2 TYPE I MODE CHAIN I

pseudo-address vector ordinal of the static space to be
initialized

pseudo-address vector ordinal relative to which relocation
is to be done (relocation base)

TYPE - data item type

MODE - 00 values destination

01 values + relocation base---destination

02 relocation base + destination---destination

59156400 Rev. B

When MODE =00, the values in the item are stored directly into the destination

fields and ORD2 is ignored.

When MODE =O 1, the relocation base is added to the values before they are stored

into the destination fields.

When MODE=02, the relocation base is added to the destination fields. Note that

for l\IODE=2, the values are unnecessary and are, therefore, not present.

The pseudo-address vector is a table of addresses maintained by the linker for

each user. The contents of the table are ordered such that ordinals OHDl and

ORD2 are full-word indices to this table. The organization of the pseudo-address

vector is as shown below:

Pseudo-Address Vector

Word

0

1

2

3

4

5

6

7

Con tents

Code table base address

Data base address

First external entry point

Data base of first external

Second external entry point

Data base of second external

Third external entry point

Data base of third external,

etc.

The types of data to be initialized are listed below:

Type

1
2
3
4
5
6
7
8
9
A
B
c

59156400 Rev. B

Description

Full-word broadcast
Ilalf-word broadcast
Full-word vector transmit
Ilalf-word vector transmit
Full-word sparse vector
Half-word sparse vector
Full-word index list
Half-word index list
Byte string
Bit string
Sparse structure
Character broadcast

Data ltem Format

1
1
1
1
2
2
3
3
1
1
4
1

7-25

The four data item formats are shown below:

L

INDEX

VALUE

7-26

L l INDEX

VALUE

VALUE

•
•
•

VALUE

Length in terms of the data type (full-word, half-word,
byte or bit).

Index relative to the address specified by ORDl. The
index is dependent upon the data type. For example, it
is expressed in bytes for byte strings and in full-words
for full-word broadcast or vectors.

Data dependent on type as below:

Type 1

Type 2

Type 3

Type 4

Type 9

Type A

Type C

A full word to be broadcast in consecutive
full-word locations starting at REL ADDR.

A left adjusted half-word to be broadcast in
consecutive half-word addresses starting at
REL ADDR.

A vector of full-words to be stored at con­
secutive addresses starting at REL ADDR.

A vector of half-words to be stored at con­
secutive half-word addresses starting at
REL ADDR.

A left-adjusted byte string.

A left-adjusted bit string.

Left-most byte of value is broadcast.

59156400 Rev. B

DATA ITEM FORMAT 2

L

INDEX

VALUE

L2

L l INDEX

VALUE . . .
VALUE

L2 l BIT STRING

BIT STRING .
0 .

Number of values

Index relative to the address specified by OHDl. It is
descriptive of the data type employed; that is, for format 2,
half-word or full-word index.

The full- or half-word sparse vector.

Length of control vector in bits.

BIT STRING The values of the control vector associated with the sparse
vector.

DATA ITEM FORMAT 3

L l INDEX

VALUE
0

0

0

\"ALU~

:'\CJ l NI

STHING
. . .

~THING

59156400 Rev. B 7-2 7

L

INDEX

VALUE

NBI

NI

STRING

Number of full or half-word values.

Index address relative to the address specified by ORDl.
It is descriptive of the data type employed; that is, for
format 3, full- or half -word index.

Full- or half-word value.

Number of bits per index.

Number of indices (=L).

Indices (connected end-to-end) associated with VALUES.

DATA ITEM FORMAT 4

7-28

L

INDEX

TYPE

ND

DES Cl
DESC N

VALUES

L l INDEX

TYPE ND

DESC 1 l DESC 2

. . . .
DESC N

VALUE

VALUE

. . .
VALUE

L

Number of items in value field.

Index address relative to the address specified by ORDl.
It is descriptive of the data type; that is, bit byte, half­
or full-word.

Type of value (word, half-word, byte string, bit string).

Number of descriptors.

Half-word descriptors of data.

Data.

59156400 Rev. B

EXE CUT AB LE DAT A INITIALIZATION TABLE

The executable data initialization table allows a language processor to produce

code that will be executed only at load time for the purpose of initialization of

static space with data (excluding procedure externals). Thus, complex operations

and non-standard initialization can be accomplished. The executable data table

is processed after the interpretive data table.

EXE DATA

L l PTR
} standard two-word header

Note:

CODE

code to be executed only
at load time

The code expects the following parameters in registers 3

through 6:

Register 3 Data base address of the module

Register 4 Address of pseudo-address vector

Register 5 Address of executable data table

Hegister 6 Heturn address

If the code requires more registers than are available in the temporary area of the

register file, then the register file must be saved and restored according to stan­

dard conventions.

EXTERNAL DATA INITIALIZATION TABLE

This table is similar to the EXE DATA table in that the code defined bv the table is

executed at load time. Instead of the code being a part of the module, however, it

is contained in an external procedure.

59156400 Rev. B 7-29

EXN DATA

L I PTR
} standard two-word header

EXT PROC NAME

DATA TO ROUTINE

•
•
•
•
•
•

EXT PROC NAME The literal ASCII-coded name of the
external procedure to be executed at
load time.

DATA TO ROUTINE Data or parameters as required by
the named external procedure.

l\ ote: Registers 3 through 6 are defined and used in the same

way as for EXE DATA.

INTERPRETIVE RELOCATION TAB LE

This table contains information which, when processed by the loader, results in

the initialization of areas of static space with procedure externals. This table is

processed when the module of which it is a part is linked and also when other

modules are linked as a result of a call within this module.

INT RELO

L l PTR
} standard two-word header

RELOCATION ITEM 1

Typical Relocation Item

RELOCATION ITEM 2 ORDl ORD21 Tl Ml CHAIN

LENGTH INDEX
RELOCATION ITEM N

7-30 59156400 Rev. B

ORDl

ORD2

TYPE

MODE

pseudo-address vector ordinal destination

pseudo-address vector ordinal of relocation.

data item type. Only types 1, 3, 5, 7 are defined.

00
01

64-hit field
128-bit field

Item formats are similar to initialization table formats but do not contain VALLES.

TY PE =01. Full word broadcast

mode=O.

mode=l.

A single word from the pseudo-address vector is placed

into one or more contiguous words in memory.

If the length is one, two contiguous words from the pseudo­

address vector are placed into two contiguous words in

memory. If the length is greater than one, the results

are undefined.

TY PE =03. Full word vector transmit

mode=O.

mode=l.

Contiguous words from the pseudo-address vector are

stored into memory.

Two words from the pseudo-address vector are stored into

memory. The results arc undefined if the length is greater

than one.

TY PE =05. Full word sparse vector

mode=O.

mode =1.

A single word from the pseudo-address vector is stored

in memory.

A word pair from the pseudo-address vector is stored

into word pairs in memory.

TY PE =O 7. Full word index list

mode=O. Sec TYPE=05 mode=l.

mode=l. See TYPE=05 mode=2.

59156400 Rev. B 7-31

EXECUTABLE RELOCATION TABLE

This table is similar in format and function to the executable data initialization

table. Its purpose is to provide non-standard procedure externals in the code block

by executing the code contained within this table. The code is executed at load

time.

L

Note:

7-32

EXE RELO

I PTR
} standard two-word header

CODE AND ITS
ASSOCIATED DATA

0 . .
0

The code expects the following parameters in registers 3

through 7:

Register 3

Register 4

Register 5

Register 6

Register 7

Data base address of the module

Address of pseudo-address vector

Address of the executable relocation
table

Return address

Pseudo-address vector ordinal or the
symbol that has been linked.

59156400 Rev. B

EXTERNAL RELOCATION TABLE

This table is similar in format and function to the external data initialization table.

The purpose of this table is to provide for non-standard procedure externals in the

code block by executing an external procedure whose name(s) is/are contained in

the table.

EXN RELO

L l PTR
} standard two-word header

EXT PROC NAME

DATA

EXT PROC NAME The literal ASCII-coded name of the external
procedure.

DATA

Note:

JOB CONTROL

Contains data to be used by the external procedure.

Registers 3 through 7 are used in the same way as for the

executable relocation table - EXE RE LO.

Job Control consists of a collection of modules which initi3lize a user's virtual

memory (as described in the preceding paragraphs) and control the sequencing nf

the user's job.

The ,Job Control program has the ability to interpret ''primitive" command state -

ments. It also handles exceptional conditions such as breakpoint, illegal instruc­

tion, pause, etc. A flow diagram of Job Control is shown in Figure 7-8.

59156400 Rev. B 7-:~3

7-34

SET BATCH
FLAG

INITIALIZE
JOB SPACE

"LOGON"

OPEN
BATCH
FILE

RESTORE NO

PUT DRUM FULL
MESSAGE IN

WINDOW

CURRENT TRACK----<

SET
DBF
FLAG

YES

SET
ABORT

FLAG

SAVE CURRENT
TRACK AND

SET TEMPORARY
TRACK

"ASGNTRAC"

"MO NM SQ"

COMMAND
INTERPRETER

"CALLPROC"

Figure 7-8. Job Control Flow Diagram

59156400 Rev. B

LIBRARY PROGRAMS A

The system library consists of a number of callable subroutines. These sub­

routines are called modules and are assembled in relocatable form for eventual

inclusion in the library. t '.\lodules in library are write protected and shared by

all users.

A module may contain multiple, and usually related, functions which are differen­

tiated by separate entry points. A typical example is the module named

COMPRESS that has an entry point named EXPAND to perform the inverse process.

The following pages in this section list the entry points for all modules which were

cataloged at time of publication. It should be noted that some entry point names

are identical to certain commands in JC Ll or EDIT. Such duplication of names

is permissible where a ''mode" is entered in which the commands are interpreted

within the module.

t The large, and growing number of modules in the library necessitates the pub­
lication of a separate document containing their descriptions. This publication
is entitled: ST AR-100 LIBRARY SUBROUTINES.

59156400 Rev. B A-1

PROC NAME
OR

ENTRY POINT PROGRAMMER

ABANDON Hawley
ACCOUNT Hawley

ACOS Hartnett

ACOSF Hartnett
ADDMOD Hawley

ADDTOCAT Hawley

ALLOC SS Hawley
ALOG Hartnett

ALOGlO Hartnett

ALOGlOF Hartnett
ALOGF Hartnett
ASGNTRAC Hawley

ASIN Hartnett

AS INF Hartnett
ATAN Hartnett

ATAN2 Hartnett

ATAN2F Hartnett
ATANF l !artnett
B l!awley
BACKSPCE Untulis
BACK TRAC Hawley

BAIL OUT Untulis
BATCH Untulis
BK Hawley
BUFFALO Toth
BUFFSYM Van Hatten
c Hawley

CALC Hawley

CALLPROC Hawley
CATALOG I!awley

CLEAR FM Untulis
CLOSE Untulis
COMPARE Hawley

tFRMT =File Record Management Table

A-2

PURPOSE OF PROGRAM

Abandons designated track
Formats accounting summary from

accounting file
Evaluates the arccosine of a real

number
Same as ACOS
Adds and/or replaces module in a

structured file
Inserts a name and corresponding

value in user catalog
Allocates static space
Evaluates the natural logarithm of a

real number
Evaluates the base 10 logarithm of a

real number
Same as ALOG 10
Same as ALOG
Assigns a new track (a job control

used module)
Evaluates the arcsine function of a

real number
Same as ASIN
Evaluates the arctan function of a

real number
Evaluates the tangent function of a

ratio of real numbers
Same as ATAN2
Same as ATAN
Sets breakpoint in current track
Backspaces records of a file
Returns to JC Ll in track one -

abandon all other tracks
Stores and closes all active files
Runs a file as a batch job
Sets breakpoint in designated track
Assembler for Buffer Controller
Entry point in BUFF ALO
Continues the execution of a broken

track
Provides calculator capability from

CRT terminal
Processes primitive call statements
Puts entry point names in user

catalog
Clears FRMT t pointers
Closes a file to I /0
Compares two byte strings for

equality

59156400 Rev. B

PROC NAME
OR

ENTRY POINT

COMPAREC

COMPRESS

cos

COSF
COSH

COS HF
csc

CSCF
CTN

CTNF
CUBE ROO
CUBRT

CVI!

CV DTG

D

DA CT FL
DATE TIME
DAYFILE
DELETE

DFILE
DFRl\IP

DFRMT
DFSTRUCT

DISDAYFL

DISPLA

DM

DMPDAYFL
DMPFT

DNMSTR
DNMTBL

PROGRAMMER

Hawley

Toth

Hartnett

Ilartnett
I !artnett

Bartnett
Hartnett

Hartnett
1 !artnett

llartnett
Hartnett
l lartnett

I!awley

I lawley

lntulis
Hawley
Hartnett
Untulis

l'ntulis
l ntulis

l'ntulis
lntulis

I lartnett

l!artnett

Ilawley

I lartnett
lntulis

Untulis
lntulis

tFRMT File Record l\lanagement Table

59156400 Rev. B

PURPOSE OF PROGRAM

Continues comparison of two byte
strings

Conserves file space by compressing
multiple spaces

Evaluates the cosine function of a
real number

Same as COS
Evaluates the hyperbolic cosine func­

tion of a real number
Same as COSl I
Evaluates the cosecant function of a

real number
Same as CSC
Evaluates the cotangent function of a

real number
Same as CTN
Same as CUBRT
Evaluates the cube root of a real

number
Converts a bit string to ASCII hex

characters
Converts date-time group from

packed to printable format
Displays a region of virtual memor:.

in hexadecimal
Displays names of active files
Furnishes current date and time
Places text in user dayfile
Deletes file from FRMT T and mass

storage
Displays file
Displays F1L\IT t descriptors for

active files
Displays FHMT t entry for file
Displays structure information for

file
Displays the last ten user dayfile

messages
Displays in user dayfile a variable

name and its value
Displays a designated portion of a

named module
Dumps the user dayfile
Dumps all FRi\ITt information for

all files
Displays active file name string
Displays active file internal names

A-3

PROC NAME
OR

ENTRY POINT

DP ADD
DP-DEL
DP-DIR
DP-llASH
DP-STAT
DP-TMPD
DR

DREC
DRP

DSENSE

DT
DUMP

DUMPT
DYNALINK

D BIN

D llEX

D STRUCT
E

EDIT

EDIT C

EN DT TM

ER
ERROR

ET
EXP

EXPAND

EXPF

EA

FADDMOD

FILER

PROGRAMMER

Hawley
Hawley
Hawley
Hawley
Hawley
Hawley
Hawley

Untulis
Hawley

Hartnett

Hawley
Hawley

Hawley
Hartnett

Hawley

Hawley

Untulis
Hawley

Hawley

Hawley

Hawley

Hawley
Untulis

Hawley
Hartnett

Toth

Hartnett

Hawley

Untulis

Hawley

FI LEST AT Untulis

tFRMT = File Record Management Table

A-4

PURPOSE OF PROGRAM

EM-1 Prototype disc system index
manipulation

Displays registers from designated
track

Displays specified record of file
Displays returned parameters from

previous call
Displays status of sense lights and

sense switches
Displays portion of designated track
Provides listable dump of virtual

memory
Dumps portion of designated track
Module name for dynamic linking

routines
Generates binary card format from

virtual memory
Produces hex card images (ZAP

format) of virtual memory
Displays structure descriptor for file
Enters data in virtual memory and

displays the new data
Provides a line edit facility for

source files
Re-enters EDIT with indices as they

were before leaving EDIT
Initializes date and time for system

use
Enters register in designated track
Displays error message and abort

program
Enters data in designated track
Evaluates the exponential function of

a real number
Expands compressed spaces in source

file
Evaluates the exponential function of

a real number
Enters data in virtual memory with

modified display
Adds a module to or changes a

structured file
Creates and maintains files of sym­

bolic files
Finds FRMT t descriptor for file

59156400 Rev. B

PROC NAME
OR

ENTRY POINT

FIL STAT

FINDTRAC

FORMAT C
FORTRAN
GETPAR

G STRUCT
IID~B
IIYPER

1MPL IO
INPUT

1NPUTC

INV

JCLl
JCLlEXIT
JOB CON
LlNENUM

LlNKER
LJNKMAP

LLGO

LOCMOD
LOG ON
LOGRTHM

L BIN

L IIEX

MCAT

MLl
MOD MAP

MON MSG

MOVE

MOVED
MP I PE

MRGPASS

PROGRAMMER

Untulis

l lawley

Bolduc
I ,incoln
llawley

l ·ntulis
l loleman
1 !artnett

lintulis
llawley

Bolduc

l!oleman

Lincoln
Lincoln
l!awley
Jlawley

l lartnett
Hartnett

Hawley

llawley
Hawley
llartnett

l lawley

llawley

Ilawley
llawley

Jlawley

llawley

! !awley
Curtis

llawley

fFRMT - File Record Management Table

59156400 Rev. B

PURPOSE OF PROGRAM

Displays status of FRMT t entry for
file

Locates base address of stored track
information

Cracks FORTRAN format statements
General FORTRAN Compiler
Subprogram of CALLPH.OC for

processing parameters
Gets structure descriptor for file
Generates an nxn Hilbert matrix
Module name for hyperbolic function

evaluation
FORTRAN l /0 processor
Obtains next line of input from termi­

nal or batch file
Converts ASCil string to internal

values
Computes the inverse of an nxn

matrix
Job control language
Exit from JC Ll
Job mode monitor program
Puts page and line numbers on a text

file
Provides a d~;namic linking capabilit\·
Provides a printable map of the link

catalog
Loads register file from virtual

memory and starts execution
r ~ocates the base address of a module
Processes 1 J) and password for log-on
:\Iodule name for processing logarith-

mic functions
Loads virtual memory from bina r.\

card formats
Loads hex card images (ZAP format)

into virtual mernorv
Adds and/or updates e'ntry in rnastet'

catalog
1\1 Ll macro processor
Provides a printable map of user

catalog and library catalog
Displays translated err·or code from

monitor
J\Ioves datu from one ai·ea of \'irtual

memory to another
Sarne as !\JOVE but character delimited
STAH multipurpose unit logic sim­

ulator
Subprogram of SOHT-merges two sets

of strings

A.-5

PROC NAME
OR

ENTRY POINT PROGRAMMER

MULT Holeman
OFF Hawley
OFF PACK Hawley
OFF-SW Hartnett
OLDTu1AP Hawley

OLDS TORE Ilawley

ON PACK Hawley
ON-SW Hartnett
OPEN Untulis
OUT Untulis

OUTE Untulis

OUTI Untulis

OUTP Untulis

OUT RE Untulis

OUTPUTC Bolduc
PLSTAR Lincoln
PLSTARX Lincoln
PRINT Untulis
PRSTRUCT Untulis

PUNCH Untulis
PURGE Hawley

P STRUCT Untulis

Q8NTRY Untulis

RANF Hartnett

RBAIEX Hartnett

RBAREX Hartnett

READ Untulis
READPACK Ilawley

RELOC Hawley

tFRMT - File Record Management Table

A-6

PURPOSE OF PROGRAM

Multiplies two nxn matrices
Terminates job and disconnects
Logically turns off a disc drive
Turns off a sense switch
Maps in file using EM -1 prototype

message format
Stores file using E M-1 prototype

message format
Logically turns on a disc drive
Turns on a sense switch
Prepares a file for I /0
Moves data between data areas

established by OUTI
Stores data assembled in the destin­

ation area by OUTI
Initializes and moves data from

source to destination
Inserts page code in destination

string
Remote prints data assembled by

OUTI
Generates ASCII string for printer
STAR assembly language
STAR assembly language
Prints a file
Prints structure information for a

module
Card punches a file
Deletes pages of a user's virtual

memory /library from drum and
core

Stores structure descriptor for file
in FRMT t

Opens requested number of files for
I/O

Repeated use generates a pseudo­
random sequence of numbers

Raises a real number by an integer
exponent

Raises a real number by a real
exponent

Moves data from file area to user area
Reads physical block(s) from disc pack

into virtual memory
Moves and modifies program to exe­

cute at new virtual memory

59156400 Rev. B

PROC NAME
OR

ENTRY POINT

REMARK
HEMCARD

HEMPRF
REMPRINT

REWIND
s
S2ED
SEC

SECF
SECOND
SIN

SIN COS

SJNF
SINH

SJNJlF
SKJP
SLITE
SLJTET
SOLO

SORT

SORTKEYS
SQRT

SQRTF
SQUEEZE

SSWTCH
STATLINK

STATUS
STAT LIN
STG2-
STORE
S ADDMOD
S-CAT
S-MCAT

TACT
TAN

TANF

59156400 Rev. B

PROGHAMMER

Hawley
llawley

Untulis
llawley

L"ntulis
llawley
llawley
Ilartnett

Hartnett
Holeman
!Iartnett

llartnett

Hartnett
Hartnett

Hartnett
Untulis
I lartnett
Hartnett
llawley

Hawley

Hawley
I lartnett

11 artnett
Toth

llartnett
Hartnett

Curtis
Ilartnett
Hawley
entulis
Hawley
Hawley
llawley

Bolton
Hartnett

Hartnett

PL"RPOSE OF PROGRAM

Synonym for DAYFILE
Heads cards from 200-user terminal

to virtual memory
Remote prints a file
Prints on 200-user terminal printer

from virtual memory
Rewinds file
Steps the execution of a broken track
ST AGE2 editor
Evaluates the secant function of a

real number
Same as SEC
Heturns value of real-time clock
Evaluates the sine function of a real

number
Evaluates the sine I cosine function of

a real number
Same as SJJ\"
Evaluates the hyperbolic sine function

of a real number
Same as SINII
Skips records on file
Turns on/ off sense lights
Tests sense lights and turns them off
EM-1 prototype on-line SOLO periph-

eral driver
Sorts a file of variable length de Ii mi­

ted records
Subprogram of SOH T
Evaluates the square root of a real

number
Same as SQHT
Compresses file by common digram

substitution
Tests sense switches
Processes module entry points prior

to static linking
Displa~-s control point status
Provides for static linking of modules
STAGE2 macro processor
Stores file on mass storage medium
Combines structured files
Catalogs modules in a structured file
Adds and/or updates entries in master

catalog
File editor retaining history
Evaluates the tangent function of a

real number
Same as TAN

A-7

PROC NAME
OR

ENTRY POINT PROGRAMMER

TANH Tlartnett

TANHF Hartnett
TIME Hartnett
TRACE Untulis
TRACETRK Hawley

TRACK Hawley
UNIT Untulis
UNSQUEEZ Toth
VEXP Hartnett

VEXPF Hartnett
VLDEC Hawley

VLDECADD Hawley

VLDECDIV Hawley
VLDECFMT Hawley
VLDECMUL Hawley
VLDECSCL Ilawley
VLDECSUB Hawley
VLOG Hartnett

VLOGlO I lartnett

VLOGlOF Hartnett
VLOGF Ilartnett
VLOGRTHM Hartnett

WEOF Untulis

WRITE Untulis

x Hawley

XCUR Hawley
XREF Bolton

tFRMT - File Record Management Table

A-8

PURPOSE OF PROGRAM

Evaluates the hyperbolic tangent
function of a real number

Same as TANH
Places a message in dayfile
Traces previous calling history
Displays previous calling history

for designated track
Displays name of current track
Returns status of file
Expands a squeezed file
Evaluates the exponential of a vector

of real numbers
Same as VEXP
Variable length decimal arithmetic

interpreter program
Variable length decimal arithmetic

and formatting subroutines

Evaluates the natural logarithm of
vector of real numbers

Evaluates the baselO logarithm of a
vector of real numbers

Same as VLOGlO
Same as VLOG
Module name for vector logarithm

evaluation
Sends end-of-file bit in FRMT t

status entry for file
Writes data from users area to file

area
Restarts execution of a broken track

at a new address
Executes address in current track
Provides cross-reference listing of

a PLST AR program

59156400 Rev. B

CARD FORMATS B

CONTROL CARDS

There are essentially three separate types of control cards that can occur in a card

deck. These are first card, last card, and record/ group cards.

FIRST CARD

All card files must be preceded by this card that is processed by the input/output

station but is not passed on as part of the file. The format is:

column 1
column 2
next columns
next columns
next columns
next columns
next columns

ASCII file separator 11-4-8-9 punch
action (ends with space)
local file name (ends with space)
user identifier (ends with space)
user password (ends with space) - optional
file length - two hex. digits (ends with space) - optional
zip code - four hex. digits - optional

Actions presently include STORE, PUNCH, PRINT, EXECUTE, STORE EXECUTE.

LAST CARD

All card decks must end with this card that is transmitted with the file into the store.

The format is:

column 1 ASCII file separator 11-1-8-9 punch

RECORD/GROUP CARD

This card divides the card deck into logical units, that is, records or groups. For

coded files, the card is transmitted as part of the file. With binary or foreign file

types, the card is processed and used to build the record map; then it is removed

from the file. A record card must precede all records except the first record of a

coded delimited file which is the default case. The card format is:

column 1 ASCII record separator

or ASCII group separator

11- 6- 8- ~l punch

11 - 5 - 8 - 9 punch

or any other specified delimiter character in foreign files

59156400Rev. R B-1

columns 2-3

column 4

column 4-on

column 4

column 5-on

record type

next record delimiter (FD only)

number of cards in next record (FF only)

code type E =EBCDIC, B = BCDIC, A or
blank= ASCII (coded files only)

number of characters in unit record (CF only)

RECORD TYPES

CD coded delimited

CF coded fixed

BS binary STAR

FD foreign delimited

FF foreign fixed

With FD records the next record delimiter punching must be specified, and with FF

records the number of cards in the next record must be specified.

RECORD MAP

The record map for each binary /foreign record has a 64-bit entry of the following

format:

TYPE relative bit address of next record

16 bits 48 bits

The last entry of the map is zero. The record map is itself a file that bears the

local name of the file to which a reverse slash is appended.

EM-1/STAR BINARY CARD FORMATt

column 1 rows 12 through 5

column 1 row 6

column 1 rows 7 through 9

column 2

columns 3, 4

columns 5 through 80

t Binary common record type.

B-2

count of characters on card

a 6 punch means ignore checksum

7-9 punch

card sequence number (in ascending order
with none missing)

checksum of characters on card

data characters, three 8-bit characters in two
columns. (if data does not fill card, extra
characters are ignored)

59156400 Rev. B

EXAMPLES OF CARD DECK FILES

Note that all control characters occur in column 1.

CODED DELIMITED

First card STORE MATRIX J249 PQR

Last card ------@
Characteristics:

• Unit separator inserted in file after each card

• Compressed blanks if ASCII code, ASCII ESC (lB) followed by count
of blanks +30 hexadecimal

• No map

• Record I group control cards allowed and transmitted
(compressed with unit separator)

CODED FIXED

First card

Record card --~ STORE MATRIX J249 PQR

CFE80

Record card ------@ CFE80 EBCDIC coded 80 col.
cards

Last card

Characteristics:

• No unit separator inserted between cards

• No compression of blanks

• No map

• Record/group control cards allowed and transmitted (80 characters
with no unit separator)

59156400 Rev. B B-3

BINARY STAR

First card

Record card

Record card

STORE MA TRIX J2 49 PQR

BS

BS

--------:i EM-1/STAR binary cards

Record card ------@ BS

Last card ------@
Characteristics:

• No unit separators

• Card processed to pure binary; checksum and sequence number checked
and if illegal, reader stopped and operator informed

• Map created (type and record length entry for each record)

• All control cards except last card processed and removed

FOREIGN DELIMITED

First card

Record card

STORE MA TRIX J249 PQR

FDP

Record card -----® FDP

Record card FDP

FD ~~~~~~~~~~
® is column punching of next delimiter

Record card

Last card

Characteristics:

• No unit separators

•
•

Transmit whole card image, that is, 960 bits

Map created, one entry for each record

• No control cards transmitted except last card

B-4

Foreign cards, for
example, CDC 6000
or IBM 360

59156400 Rev. B

FOREIGN FIXED

First card

Record card

Record card

Record card

Last card

Characteristics:

~ s

@

@

@

STORE MA TRIX J2 49 PQR

FF97

9 7 foreign cards

FF53

53 foreign cards

FF20

2 0 foreign cards

• Same as for previous case; if count wrong, then reader stops with
message for operator

MIXED DECK

Consists of any combination of any of the previous record types.

First card

Record card

Record card

~ s

@

STORE MATRIX J249 FQR

CFA80

ASCII cards (coded
fixed)

BS

EM-1 /STAR binary

@
cards

FF27 Record card

2 7 foreign cards

Record card @ CD

ASCII cards (coded

@
delimited)

Last card

Characteristics:

Characteristics of the individual sections apply, with the exception that the
first control card of each section, whether coded, binary, or foreign, is
transmitted with the file to delimit the new section.

59156400 Rev. B B-5

SYSTEM COMMUNICATION MECHANISM c

Stations communicate with the central operating system, and with each other via

messages. Messages define certain tasks to be performed such as open or print

a file. Each station has a list of messages that it will perform. Message queues

are organized into message boats. A message boat may consist of several mes­

sages. Each message has a message header and a message body.

The format of the boat is:

1st },fossage

•
•
•

Nth message

Next Message Boat Addresst Next Response Boat Addresst

1 :\!es sage Hesponse 1 :\less age
Free Count '.\ Checksum Checksum

16 bits 16 bits 16 bits 16 bits

t Bit address if boat originates in ST AR, 16-bit word address if boat originates
in station.

59156400 Rev. B c -1

The format of each message is:

16 bits 4 4 8 16 bits 16 bits

Response Code SB I HL-2I L Used by Sender Used by Sender

Used by Sender To Zipcode From Zipcode Function Code

Message Parameters

SB = Special bits

IIL = Header length in 64-bit words

L = Total message length in 64-bit words

Interstation communication is managed by a message control routine which has

four sections: receive message, send response, send message, receive response.

Receive message on being flagged or at given time intervals reads the next boat

from the "next message boat address II into sec memory. The length of the boat

is a preassigned station parameter. A test is then made of the message checksum

to assure that it is nonzero and correct for the boat, then proceeds to activate the

appropriate overlays, one for each function code, to process the messages. Each

station may have up to N messages active concurrently, N being a station param­

eter. On completion of a message, the response is embedded back in the message

area in the boat. When all messages are processed, the response checksum is set

and the message checksum is cleared. The boat is then sent to the "next response

boat address" to complete the cycle. A natural extension of this simple boat

scheme is to provide for multiple active boats with responses returning in the

first available boat. Note that there is an independent set of boats and docks for

each channel.

Send message is a subroutine which has the following parameters:

16 bits 4 4 8 16 bits 16 bits

Immediate SB HL-2 L
Control Package Return After

Return Address Response

Message To Zipcode From Zipcode Function Code
Address

Message Parameters

C-2 59156400 Rev. B

The message plus header is moved into a boat and when the boat is full or at

regular intervals the boat is sent to its destination. In "receive message", the

response is moved to the original message area and the "return after response"

address is entered.

Sample Configuration:

DISK :#12

DRUM

'/fO~#ll

~
#13

#16 #14 #IS
MEDIA SERVICE

UNIT RECORD DISPLAY COMMUNICATION

.:#21 #22

59156400 Rev. B C-3

Sample Message Boat:

0000 0003 OA60 1E07

OB38 1301 0100 0200

0070 0008 0005 8000

} Read Page Message

0000 0003 OB20 1000

0750 1301 0100 0202

0037 0120 0090 8000

} Rewrite Page Message

0 0 0 0

0 0 0 0

0 0 0 0

0003 1400 0003 1800

0000 0002 0000 0754
} Rudder

Steps in Processing Message Boat:

C-4

1. The above message boat has been generated by the ST AR monitor and

resides at the "next message boat address" in STAR memory.

2. The message control routine in the paging station has been reading

this boat area to the SCU memory; on finding that the message

checksum is nonzero and correct, it proceeds to activate overlays

to process the messages in the boat.

3. On finishing processing of a message, the overlay enters the "send

response 11 subroutine which tells message control that this message

is finished.

4. On finding that all messages in the boat have been responded to,

message control sends the boat back to STAR at the "next response

boat address, 11 after setting the response checksum and clearing

the message checksum.

5. On finding the response checksum nonzero, the STAR monitor

proceeds to take action on the responded messages.

59156400 Rev. B

SYSTEM MESSAGES D

System messages can be grouped into the two major categories of station messages

and user messages. Station messages are messages sent either between one station

and another or between a station and the central processor. User messages are

internal to the central processor and cause monitor interaction with user programs

and system task programs. Figure D-1 shows the two distinct types of messages.

The formats used for station messages and user messages differ only enough to

accommodate the variations in information requirements. Each message consists

of a 16-byte header followed by the message content.

In the descriptions that follow, a page is defined as a logical unit of data, and a block

is a physical unit of storage. Pages, blocks, and records are of equal length; 512

64-bit words, 4096 8-bit characters, or 32, 768 bits.

Central Processor Peripheral Stations

Job Mode

User
Program

System
Tasks

l\Jonitor Mode

:VIonitor
MTR

\
Station
Messages

I

Station

User Station
Messages

Figure D-1. System Messages

59156400 Rev. B D-1

STATION MESSAGES

Station messages may be classified into the following general classes:

Paging Messages

Storage Messages

File Messages

Service Station Messages

Communication Messages

All messages consist of a header followed by a message body. See Appendix C

for message header format.

PAGING MESSAGES

Function
Code Function l'\ ame Parametersj Format

200 Read page B, K, _g, p 2A

201 Write page B, K, U, p 2A

202 Rewrite page B, K
'

U, p 2A

203 Delete N pages N, K
'

p 2A

204 Delete key (N = no. of pages deleted)]\. K 2A

205 Read most-active block with given
key, then delete. (Page name and
usage bits returned) B, K, U, p 2A -

206 Read least-active block with given
key, then delete. (Page name and
usage bits returned.) B, K, t_;

'
p 2A -

207 Read and delete page B, K, U, p 2A

208 Read drum page table B, N,~_!;_ 2F

t Parameters underlined are returned with the response.

D-2 59156400 Rev. B

STORAGE MESSAGES

Function
Code

220

221

Function Name

Read N blocks from storage unit

Write N blocks to storage unit

UN = Unit Number

SEN = Starting block number

FILE MESSAGES

Function
Code

240

241

242

243

244

245

246

248

24A

24E

250

253

Function Name

Create and open file

Open file

Close file

Close and delete file
(temporary and permanent)

Close and delete temporary file

Keep file

Set file characteristics

Is file open

Read file pages

Write file pages

Read file descriptor

Modify owner and public access

59156400 Rev. E

Parameters

E, N, UN, SEN

E, N, UN, SEN

Parameters

L M, Mo, Mp,
characteristics,
name and user
ID

L M, charac­
teristics, name
and user ID

F, character­
istics

F

F

F

F, character­
istics

F, character­
istics, name
and user ID

F, N, B, S

F, N, E, S

F, B

F, Mo, Mp

Format

2E

2E

Format

2B

2B

2R

2C

2C

2C

2B

2B

2C

2C

2C

2D

D-3

SERVICE STATION MESSAGES

In addition to processing the messages below, the Service Station acts as a message

switching center for passing on other messages, some directly, others by inter­

ception, in order to handle the buffering and transmission of data. Also, all

Storage Station messages are processed by the Service Station.

Function
Code Function Name Parameters Format

300 Rent SBU core N, Ji.. 3A

301 Release SBU core N, B 3A

302 Set file disposition D, N, PR, T, 3B
name

303 Request next file of given disposition D, name 3B

COMMUNICATION MESSAGES

The communication messages define the linkages between STAR interactive pro­

grams and their users.

Central processor to station function codes.

Function
Code Function l'\ ame Parameters Format

400 Request type -in None None

406 Display Data L, CA, PA 4C

410 Log-off None None

420 Central processor unavailable None None

421 Central processor available None None

D-4 59156400 Rev. B

Station to central processor function codes:

Function
Code Function Name

100 Log-on

101 Type-in datat /Buffer input

102 Break

103 Read virtual datat

104 Release virtual segmentf

106 Send data to display station

t Typein limited to 80 character buffer (plus #lF)
f Not implemented initially.

Parameters Format

None None

None/ L, CA, 4A/4C
PA§

None ::\'one

VI, Sl\, RC, 4D
TL, SL, PA

Vl, SN 4E

None :\one

§Used when typein is greater than 80 characters (up to full screen, 1152 characters).

59156400 Rev. B D-5

MESSAGE FORMATS

The following are the various system message formats.

FORMAT 2A,

FORMAT 2B

file
char­

acteristics

,..-'

<

._I

B/N

16 bits

B/N

u

u (bit 1)

K

p

16 bits

F

T

K p

1 2 12 33 bits

Block address or number of pages

usage bits: These are stored in the drum page table
on write and rewrite and returned in this position on read.

0/1, unmodified/modified since initial access.

Key

Virtual page address

8 8 8 8 16

M l M M l l 0 p

RN RB

FL/RL

PTR

Free

Name and User ID ~

D-6

F

M

64 bits

active file index (given by storage station)

access mode for this run 1bit 0 set cannot delete
bit 1 set cannot alter access

modes
bit 2 set cannot write
bit 3 set cannot read

59156400 Rev. B

FORMAT 2C

M,M
0 p

RN

RB

T

FL/RL

PTR

Name and
User ID

F

N

B

s

1 fj

F

B

59156400 Rev. B

access modes of owner and public respectively (used on
creation)

number of records in file

number of reserved blocks for file

file type
undefined bit 0 set

bit 1 set
bit 2 set
bit 3 set
bit 4 set
bit 5 set
bit 6 set
bit 7 set
bit 8 set
bit 9 set
bit A set
bit B set
bit C set
bit D set
bit E set
bit F set

coded delimited
coded fixed
binary STAR
binary fixed

Initially only coded
delimited, coded fixed,
and binary ST AR file
types are supported by
the unit record station. foreign delimited

foreign fixed
virtual memory file
drop file
labeled file
multiple volume
incomplete
permanent
input
output
full

file length in bits/record length in bits, if fixed

pointer to structure definition within file (bit address)

The file name has two fields - local name and owner
identifier, separated by the space character (hexa­
decimal 20). Catenated to this by another space char­
acter is the user identifier which ends with the ASCII
record separator character (hexadecimal lE). Jf the
owner and the user are the same person, then the user
field can be omitted. (See file name section for
definition of local name and owner identifier.)

16 1 fj

s

active file index

number of pages to be transfe!'red

core block number; if bit 0 set, B=SBL address

starting file page number (starts with zero)

16

N

D-7

FORMAT 2D

16 bits 8 8 8 8 16 bits

FORMAT 2E

FORMAT 2F

F

M

M,M
0 p

User ID

B

N

u
s

16

B

F M

active file index

access mode

M
0

owner and public access modes

M p

user access identifier, variable length string of
characters which ends with the record separator
character

16 16

N u

core block number

number of blocks to be transferred

unit number

starting block number

16

s

16 bits 16 16 16

D-8

B

N

s
E

B

Bl

B5

N s E

B2 B3 B4

B6

starting block of contiguous set

If B=O blocks not contiguous, then use B 1 through B 6

number of blocks to be read

word index (64 bit word) to first active entry

index (64 bit word) to last +1 active entry

59156400 Rev. B

FORMAT 3A

FORMAT 38

FORMAT 3C

FORMAT 4A

1 15 16 16 16

11 N E

Top bit set means quarter page

N

E

16

I File Name

D

N

PR
T

number of blocks (N=l for the SEU case)

block address. In the SEU this is the core address; in
central this is the block number.

8 8 8 8 16

D N PR T

disposition code (01 =print, 02=card punch, 03 =batch job)

number of copies

priority

card type (O=coded; 1 =binary ST AR)

User Identification-I

User identification consists of a variable length string of characters in
two parts - user number and user password - separated by a record
separator character and ending with a file separator character.

up to 12 central words (including header)

Up to 80 characters of data and #lF.

59156400 Rev. E D-9

FORMAT 4C

L

CA

PA

FORMAT 40

VI
SN

RC

TL

SL
PA

16

L

16

VI

SL

16

CA

length (in 64-bit words)

cursor address

32 bits

PA

relative offset in 16-bit words from beginning of
message boat. If FC = 101, then PA is the bit
address of data in central memory

16 16 16

SN RC TL

PA

virtual identifier

segment number

rate I class

total length

segment length

physical address

TL and SL are in full word units

FORMAT 4E

16 16 32 bits

VI SN

VI, SN as defined for format 4D.

D-10 59156400 Rev. B

NOTES

1. The listed paging messages apply to normal pages (512 64-bit words).

A similar set, the 120X {X=O-F) functions, apply to large pages (128

times small block size). As indicated, the function codes are the

same as above but they apply to large pages; for example, FC -1200

means Read Large Page. The message formats are the same, but the

lower 7 bits of both the block address and page name must be zero.

Large page messages will appl:v initially only to the disk stations.

2. Not all parameters or their fields need exist when a message uses a

standard format. For example, with the close file command, only F

need exist, and only the first 64 bits of the message need be sent.

The message must consist of an integral number of 64-bit words.

3. Initially on CREATE, if the file name already exists, and not opened

for use, the existing file is deleted if it is temporary and the new

file created; otherwise, the response indicates that a permanent

file already exists by that name, or the file is in use, and no create

occurs. At a later stage it may be appropriate to allow different

editions/generations/versions of the same file.

4. On read file or read file page, the existing file or page is read to

core and the copy left on the storage device. On write file or write

file page, the existing file or page is simply overwritten in the

initial implementation.

5. There are two types of close - short and long. Jn the short form

the only parameter is F, and the entry is simply removed from the

active file table. In the long form, the message includes the file

characteristics which may have been changed since open to be

written back to the descriptor; and if the file length was shortened,

the excess space is released and the descriptor updated.

6. The zipcode destination of a message is also the destination of

the data associated with the message.

7. Initially the same file can be opened by more than one user, provided

the access modes are for read only.

59156400 Rev. B D-11

SAMPLE MESSAGES

Read Page 4 7, key 8 into block 90

FC = 200, message = I 0090 0010 0000 004 7

Read file page number 1015 to core block 57 from file 123

FC = 24A, message =

EXAMPLE OF MESSAGE USE

0123 0000 0000 0001
0057 0000 0000 1015

The steps in card reader input messages from an input/output station to a service

station are:

1. After reading first card, open and create input file (FC=240); this

checks for duplicate file name.

2. Read SEU block (function code FC=300)

3. On filling SEU block, write file page (FC = 24E)

4. On last card close file (FC =242) which releases unused file space.

5. Release SEU block (FC=301)

Step 3 is repeated as many times as necessary. During step 4 the service station

transfers the file to its ultimate destination. If the file is very long, the service

station spools the file to its ultimate destination in smaller subfiles.

The steps in file output are:

1. Request next output file (FC=303)

2. Open file (FC=241)

3. Rent SEU block (FC =300)

4. Read file page (FC=24A)

5. Delete and close temporary file (FC=244)

6. Release SEU block (FC =301)

D-12 59156400 Rev. B

Step 4 is repeated as many times as necessary. During step 1 the service station

transfers the file from where it is stored to the service station; if it is a long file,

it will be spooled over in smaller subfiles. On close output file the file is deleted

from the service station and also from its storage station if it is only a temporary

file.

The following messages clarify the log-on and type-in procedure:

Step

1

2

3

4

5

6

7

8

Message to STAR-lB

response

100 log-on

106 ready for display

response

Message from STAR-lB

421 central processor available

response

response

406 here is display

Type-In Request

9 400 type-in

10 response

11 101 send data

12 response

Cycle to Step 5.

59156400 Rev. B D-13

USER MESSAGES

The File input/output system messages associated with Monitor VI allow users to

obtain disk space as files, attach files to programs, read and write files implicitly

or explicitly, save files, and delete files.

All functions performing an OPEN file require a NAME in ASCII, left justified

with owner ID if needed. The initial File ID format is: file name followed by a

space, owner ID followed by a space, and the ASCII lE terminator. The size limit

for this combination is 24 characters. It should also be noted that no user ID

processing is available for the initial File ID format. With the response code, an

active file index (F) is returned and any further reference to that file while open

requires both the activity file index and the file name. The system records this

index and performs implicit input/output using this identifier for the file name.

MESSAGE HEADER

All user messages are preceded by a two word header with the following format:

R

L

c
FC

R

Error Exit

L c FC

Error Exit

Response Code (see paragraph entitled Response Codes).
The error exit will be taken if Rf 1 and the ERROR EXIT
field ;#O.

Length of message in 64-bit words (exclusive of header)

Control code, unused except where noted.

Function code

Exit address in event of an error response

59156400 Rev. B

File Input/Output System Messages

FC Function Name Parameters Format

150 Buffer lnput VA B

154 Buffer Output VA B

302 Set File Disposition D, NC, T D

616 Map-In C, F, VA, N B

617 l\lap-Out C, F, VA, N B

640 Create & Open File Char, N, M A

641 Open File N, M A

642 Close File F, N B

644 Close & Delete File F, N B

645 Keep File F, N B

646 Set File Characteristics Char, F, 1\1. N A

648 Is File Open "'.' A

64A Read File Pages F, \·A, S, :'-J c
64B Write File Pages F, BK, VA c

S, N
684 Release C, BK, VA B

CHARACTERISTICS AND F, M, M0 , Mp

lmbedded in each Format A message is a 4-word list of parameters called the

characteristics. The fields of the characteristics are defined as follows:

Character­
istics

lfi Bits

F

T

l

16 Bits

Ml

RN

F active file index

M access mode

16 Hits

Mo1 Mp I
RB

RL/RL

PTR

FREE

Mo access mode of owner (used on creation)

59156400 Rev. B

lfi Bits

D-15

Mp access mode of public (used on creation)

bit 0 cannot delete
bit 1 = cannot alter access mode
bit 2 = cannot write
bit 3 = cannot read

RN number of records in file

RB number of reserved blocks for file

T

FL/RL

u

PTR

file type

bit 0 = undefined
bit 1 = coded delimited
bit 2 = coded fixed
bit 3 = binary ST AR

file /record length in bits

model 841 unit number 1-4 (zero means create on any unit).
This field is used only for CREATE and OPEN file

pointer to structure definition within file

MESSAGE DESCRIPTIONS

System Call 150 - BUFFER INPUT - Format B

System Call 154 - BUFFER OUTPUT - Format B (not available initially)

These messages cause the indicated page to be moved to/from central

memory while the calling program remains active. This is an ADVISE

function for files which have been mapped in/out.

Notes: 1. BUFFERING a page already in core is a null request.

2. BUFFERING a page not defined by a previous MAP or
reference will cause the page to be created.

3. BUFFERING pages is done one at a time, if a buffering
request is in progress, further requests are not saved.
(Response indication busy.)

System Call 302 - SET FILE DISPOSITION - Format D

This message is passed on to the storage station and causes the indicated

file to be entered into the appropriate queue.

System Call 616 - MAP-IN - Format B

D-16

The MAP-IN message establishes a correspondence between a virtual

address region and a disk file which is already opened. The caller

59156400 Rev. B

must supply both file index (F) and name used when the file was opened.

No data is moved; pages will be read in when referenced, thus providing

implicit input READ.

NOTE: C = control code in header - 0 Map-in starting address

- 1 Map-in ending address

System Call 61 7 - MAP-OCT - Format B (not available initially)

The MAP-OUT message provides implicit output by establishing a

correspondence of virtual address region and a file which is already

opened. The caller must supply both file index (F) and name used

when the file was opened. l\ o data is moved; when virtual space is

RELEASED, the system stores pages into the file, thus providing

implicit output WRITE. See System Call RE LEASE.

NOTE: C = control code in header - 0 Map-out starting address

- 1 Map-out ending address

System Call 640 - CREATE and OPEN File - Format A

The CREATE and OPEN message reserves disk space under a symbolic

name, sets the characteristics, and opens that file by making an entry

in the Active File Table at the disk station. The file index (F) is returned

with response.

System Call 641 - OPEN FILE - Format A

The OPEN FILE message makes an entry in the disk station Active File

Table and returns the characteristics and the active file index (F), if the

file already exists and access is valid.

System Call 642 - CLOSE FILE - Format B

The CLOSE FI LE message removes an entry from the Active File

Table for an open disk file and removes the correspondence with virtual

memory by removing its MAP-IN and MAP-OUT entries from the system.

59156400 Rev. B D-17

System Call 644 - CLOSE and DELETE FILE - Format B

The CLOSE and DELETE FILE message removes an active index and re­

leases the disk space for re-assignment. Correspondence with virtual

memory is removed by deleting MAP-IN and MAP-OUT entries from the

system.

NOTES: 1. The file index (F) and the file name (N) used at OPEN

must both be supplied by the calling program.

2. This call will cause a 243 message to be sent to the

Service Station which will delete the file whether tem­

porary or permanent.

System Call 645 - KEEP FILE - Format B

This message is passed on to the storage station and causes the indicated

file to be kept (i.e. made permanent).

System Call 646 - SET FILE CHARACTERISTICS - Format A

The SET FILE CHARACTERISTICS message provides a means for a pro­

gram to change the description of a file which exists and is open.

System Call 648 - IS FILE OPEN - Format A

This message verifies the indicated file name is open and returns the F

number aid characteristics if it is open.

System Call 64A - READ FILE PAGES - Format C

System Call 64B - WRITE FILE PAGES - Format C

D-18

These messages move a page from/to a disk file which is already open.

The caller must supply both file index (F) and name used when the file

was opened. They provide explicit record movement.

59156400 Rev. B

System Call 684 - RE LEASE - Format B (not available initially)

The HE LEASE message allows a program to output data to a disk file and I or

delete a portion of virtual memory. Output files must be open and mapped

out.

NOTES: 1. Pages are stored only in files MAPPED OUT.

2. If virtual memory is removed, the MAP-IN table is

not changed so succeeding references to mapped-in files

will bring that page to core from the disk.

3. C = control code in header = XY

X 0 Virtual memory remains.
1 Yirtual memory is deleted.

Y 0 no - pages stored in files
1 modified - pages stored in files
2 all - pages stored in files

59156400 Rev. B D-19

FORMAT A

Header
{

1-----1 R -+-L ----'--C--'-----iFC

ERROR EXIT

Characteristics

Name (N)

R, L, C, FC and
ERROR EXIT

F

M

Mo, Mp

,..

~

;I

~

.....

RN. RB, T. FL/RL,
U, PTR

FILE ID

D-20

F MI

RN

T

G

Mo] Mp]

RB

FL/RL

PTR

FREE

FILE ID

M (1)

M (2)

M (3)

M (4)

M (5)

M (6)

M (7)

M (8)

M (9)

As previously defined under message header

Active file index

Access mode

Access modes of owner and public, respectively

As previously defined under characteristics

File name followed by a space. owner ID followed
by a space followed by the ASCII record separator,
#lE.

59156400 Rev. B

FORMAT B

{I rt L c FC
Header

ERROR EXIT

I

N VA VIRTUAL ADDRESS M (1)

F M (2)

FILE ID M (3)

Name (N) M (4)

M (5)

R, L, B, FC and
ERROR EXIT As previously defined under Message !leader

N Number of blocks

VA Virtual address

F Active file index

FILE ID File name followed by a space, owner ID followed by a
space followed by the ASCII record separator, #lE.

59156400 Rev. B D-21

FORMAT C

{I R
Header

L c FC

ERROR EXIT

I

Bk

F

VA VIRTUAL ADDRESS

s

FILE ID

Name (N)

R, L, C, FC
and ERROR EXIT As previously defined under Message Header

Bk Number of pages to be moved (must be 1 initially
for WRITE FILE PAGES)

VA Virtual address

F Active file index

S File page number (starts with zero)

M (1)

M (2)

M (3)

M (4)

M (5)

FILE ID File name followed by a space, owner JD followed by
a space followed by the ASCII record separator, #lE.

D-22 59156400 Rev. B

FORMAT D

Header {
R L l c l FC

ERROR EXIT

D l NC l PR l Tl
FILE ID

Name (N)

R, L, C, FC and
ERROH EXIT As previously defined under Message Header

D Disposition code - 01 = print

NC Number of copies

02 = card punch
03 = batch job

PR Priority (not implemented initially)

T Card type - 0 = coded
1 = binary ST AR

M (1)

M (2)

M (3)

M (4)

FILE ID File name followed by a space, owner ID followed by a
space followed by the ASCII record separator, #lE.

59156400 Rev. B D-23

RESPONSE CODES

The following are the response codes issued by the system.

8001

8002

8003

B004

B005

B006

B007

BOOB

B009

BOOA

BOOB

BOOC

BOOD

BOOE

BOOF

BOlO

message completed successfully

illegal message (function code or parameter invalid)

file /virtual page not found

error on device

device full

message checksum error

illegal access to file

no shared access

station saturated, try again

end of file

user identification invalid

invalid password

file already exists

requested already

file page out of range

file not open

If bit 1 in the response code is set, it means there are parameters to be returned

and the whole message area is returned.

D-24 59156400 Rev. B

STATION OVERLAY STRUCTURE

MICRODRUM

The microdrum provides memory extension for the buffer controller. Its char­

acteristics are:

• One head per track

• 3600 rpm (16. 7 milliseconds/revolution)

• 36 data tracks plus four control tracks (addresses 0-B, 10-lB, and
20-2B)

• Capacity

Data Mode

Display Mode

18, 432 bits per track, alterable in sectors of 64
16-bit words, 18 sectors per track

9, 216 bits per track, alterable in multiples of
16-bit words up to 32 words (1 sector).

E

The microdrum is used in the stations for storage of performance statistics, pro­

gram overlays, and display images; it also provides an autoload medium.

A specific overlay called the microdrum loader processes the binary program

code and headers produced by the assembler, and stores them on the microdrum.

All overlays start at a quarter-sector boundary and do not cross track boundaries.

GENERAL LAYOUT

The drum layout is as follows:

Track

00

01

02

03-0B

10,Sector 0

10,Sectors 1-810

10,Sectors 9-1610

11

59156400 Rev. B

nucleus 0

nucleus 1 (backup)

overlay tables for nucleus 0

overlays for nucleus 0

microdrum map

nucleus 0 system parameters

nucleus 1 system parameters

reserved

E-1

Track Use

12 overlay tables for nucleus 1

13-lB overlays for nucleus 1

2ot physical microdrum loader

21t free for temporary workspace

22-25t diagnostics

26-27t message tracks

23t function track and AID

29t error log

2At status display

2Bt memory display

OVERLAY TABLES

There is an overlay table associated with each word of the 8 scanner level words.

An entry in the overlay table consists of two 16-bit words. Each entry in the table

corresponds to the entry in the same position on the scanner jump table.

The format of an overlay table entry is:

Word 1

Word 2

microdrum address of overlay (bits 0-7 = head address,
bits 8-F = quarter sector address)

bits 0-A =length in 16-bit words; bits B-F =residence
condition (see overlay header section)

For example, suppose 0304 1401 is the second entry in the third level of the over­

lay table. This means that program number 32 resides on head 3 sector 1 of the

microdrum, its length is AO words and it has residence condition 1.

The layout of the overlay tables for nucleus 0 (8 scanner levels) is:

head and sector 0200 overlay tables 0- 7 for system 1

head and sector 0204 --------------------------- 2

head and sector 0208 --------------------------- 3
head and sector 020C --------------------------- 4

SYSTEM PARAMETERS

The system parameters are summarized in the following list.

t Unprotected tracks

E-2 59156400 Rev. B

Tlead Sector Word Address Description

10 01 00, 02, 04, 06 microdrum address of low core overlays

01, 03, 05, 07 length of low core overlays (bits 0-A)

08, OA, OC, OE microdrum address of high core overlays

09, OB, OD, OF length of high core overlays (bits 0-A)

10-lF list of scan bit assignments of perma-
nent overlays (eight bits per overlay)

20-3F data block map (head/quarter sector
address)

10 02 00-3F system 2

10 03 00-3F system 3

10 04 00-3F system 4

MICRODRUM MAP

The microdrum map describes the use of each microdrum track. It is normally

present on track 1016 , sector 0. Each word in the sector defines the status (type

of information on the track), the nucleus to which it belongs, and the next available

empty sector on the track. Each word in the map is associated with a correspond­

ing drum track or a null track. The 36 tracks are structured in three groups of

12, and numbered 00-0B, 10-lB and 20-2B. The null tracks (OC-OF, lC-lF,

2C-2F, 30-3F) are represented in the map by a null code, OFFF. These codes in

the map represent track addresses having no corresponding physical tracks.

The bit contents of each map entry consists of:

0-3 nucleus to which overlay belongs

4-7 track status

8-F next available quarter sector number

The track status bits 4 through 7 are defined as:

0 unused

1 nucleus

2 overlay

3 display file message track

59156400 Hev. B E-3

4 overlay tables

5-D unassigned

E microdrum map - system parameters

F unavailable

When tracks 03-0B become full, nucleus 0 overlays overflow to the reserved track

and to any free tracks within the nucleus 1 overlay area. If necessary, either

nucleus can overflow to any of the unprotected tracks (20-2B) by setting the map

entry to zero. Normally it is DOO.

OVERLAY HEADERS

Each overlay is preceded by a header containing the following information:

word 0 FFFF

1 OOLL

2 RRSB

3 = ssss
4 through N -1

N xx xx
N+l zzzz

header identifiert

header length t (length must not exceed 256 decimal)

RR = residence assignmentt
SB = scanner bit assignment

system(s) assignment(s)

assembled program origin address§

program length
ZZZZ = number of program words to the

next PROC statement

The program header details can be summarized as:

word 0 is tested by the microdrum loader to identify a start of header.

word 1 defines the length of header as word N minus word 2.

t The header identifier and the header length (words 0 and 1) are automatically
generated using the Buffalo PROC statement.

t Multiple assignments can be made when necessary. This is achieved by means
of a flag in the residence assignment and a repeat of words 2 and 3 with the
additional assignments (see header details).

§Word N and N+l are automatically generated using the Buffalo ORG statement.

E-4 59156400 Rev. B

word 2

word 3

the leftmost byte of this word is used for the residence assign­
ment of an overlay. The assignments are as follows:

RR 00 priority 0, temporary overlay

01 priority 1, temporary overlay

02 permanent overlay

04 priority 0, temporary overlay - source
is SBU

05 priority 1, temporary overlay - source
is SBU

08-0F fixed-area overlay

40-43 direct core overlays

44-47 high core overlays

6X data block overlay

The foregoing RR codes, modified by setting the highest order bit,

are also valid. When this bit is set, the microdrum loader looks

for additional scanner assignments in words 4 and beyond.

The rightmost byte of word 2 defines the scanner level (priority)

assigned to the overlay.

SB scan level bit assignment for the routine.

defines the system or systems to which the overlay is assigned.
The systems are defined by bit number in the word as follows:

ssss 0000

8000

4000

2000

1000

oxoo

FFFF

NlJCLEliS

(bit 0 set) LOADER system

(bit 1 set) R CI\ system

(bit 2 set) DIAGNOSTIC system

(bit 3 set) OFF- Line system

(bits 4-7) experimental
bits 8-F unavailable

display messages. Start on head HI I,
sector SS as defined in word 2.

word 4 second residence and scan level assignment, if multiple scanner
bit assignments.

word 5 second system assignment(s), if multiple scanner bit assignments.

word 6 other uses as needed up to 256 decimal words.
through N

59156400 Rev. B E-5

word N origin address of assembly

word N+l program length - this word not only gives the length of the over­
lay, but length +l defines the location of the next header identi­
fication tag.

LOADING THE MICRODRUM

STATION NUCLEUS 0

1. Address #FE = Data input medium code

Input Code 0 = Paper Tape Input

1 = SEU Memory Input

2 = CPU Memory Input

2. Address #FC = Load function

Function 0 = Initialize micro drum

1 = Add new nucleus

2 = Add overlays to nucleus

3. Address #FD = Nucleus number (0 or 1)

NOTE: This number designates the nucleus for add
overlays or the new nucleus to be created,

4. Address #FE Number of overlay table levels required by the nucleus.

5. Address #FA= SBC or central starting address for loader input data.

The following call function has been added to the nucleus and is used by the micro

drum loader as follows:

CALL PN /RA, Pl, P2, P3, P4, P5

PN Program number for the Micro Drum Loader

RA Relative address - #00 for the loader

Pl Data input medium

P2 Load function

P3 Nucleus number

P4 Number of overlay levels

P5 SEU or CPU address (32-bit word address)

NOTE: If the values of Pl through P5 are correct in
core, only PN /RA need to be entered in the
CALL command. Write lockout must be turned
off before executing the CALL command.

E-6 59156400 Rev. B

STATION DEAD START LOADER

1. Address #E = Load function

2. Address #F = Nucleus number

3. Address #10 = Number of overlay levels

NOTE: Turn write lockout off after setting the above parameters.
Depress function key F2 to start execution of the loader.
Be sure the stop switch on the Maintenance Panel is on.
A stop at an address other than address #900 is an error.
See listing of Dead Start Loader for type of error.

If loading from paper tape, the following steps must be performed from the CE

maintenance console:

1. Note starting address and place paper tape in reader. The selective

stop switch should be on.

2. Press tape AUTOLOAD. Reader should begin reading and then stop

at starting address plus 400. If the reader fails to stop, an error

occurred either on tape or in the reader.

3. Press READER IIALT, MASTER CLEAR, CLR-CI-IL and GO. After

writing each routine to the microdrum, the Buffer Controller halts

at the starting address.

4. Repeat steps 2 and 3 until the whole tape is read in after which the

buffer controller goes into its idle loop.

In the event both Nucleus 0 and l\ ucleus 1 are destroyed, a bootstrap routine must

be loaded from paper tape as follows:

1. Place Bootstrap Load paper tape in reader.

2. Push Autoload switch on C.E. maintenance console.

3. After paper tape has been read, master clear.

4. Set selective stop switch on C. E. maintenance panel.

5. Depress GO switch.

6. Turn off write lockout switch on SCU control panel.

7. Depress F2 key. This initializes map and parameter tables on track 10
and stops at address 900.

59156400 Rev. B E-7

8.

9.

10.

11.

12.

E-8

Put NUCLEUS tape in paper tape reader.

Depress Autoload switch. Stops at DOO.

Master clear and GO. Stops at 900 (if no error).

Repeat Steps 9-11 until all tape has been read.

Turn on write lockout switch on SCU control panel.

59156400 Rev. B

STATION MAINTENANCE INFORMATION SYSTEM
AND AID F

STATION MAINTENANCE INFORMATION SYSTEM

The Maintenance Information System (MIS) provides the Customer Engineers with

a standard interface to the STAR 100 station device drivers. MIS features include:

1. Information displays of device, driver and user status.

2. Error logging.

3. Device driver breakpoint.

4. Error recovery control.

These features are facilitated through the interface described in this document.

DEVICE STATUS TABLE

DEVICE MNEMONIC
CONTROL PARAMETER
CONTROL RETURN
MESSAGE CODE
FLAGS/SENSE SW
MTR REQ/MTR RESP DEVIC
PARAMETERS AND STATUS

4 ... INTERFACE
SYSTEM WORK •4--• CALLS

DEVICE
DRIVER

DEVICE
ERROR

DIRECT CORE POINTER DEVICE

ERROR FILE

MICRO
DRUM i.-----~ ~-MO-NITOR ---.1

STATUS DISPLAY OPERATOR CONTROL ON-LINE TESTS MAINTENANCE

59156400 Rev. B

COMMANDS DISPLAYS

PAUSE
ONSWITCH
OFFSWITCH
CONTINUE
ABORT

RETRY
LOOP
LOG
ON
OFF

ON-LINE TEST COMMANDS

DEVICE TEST DST STATUS
HOW STATUS
PARAMETERS
ERROR STATUS
TEST STATUS

F-1

DEVICE STATUS TABLE (OST)

Each system device has a DST. The DST contains pertinent information related

to the specific device. Each DST has a standard 6-word header with a cell in

dire ct core pointing to the header.

DST POINTER

There are 2 labels defined in the nucleus between which all DST pointers must be

located. These labels are:

NUC DST DIRECTORY

NUC DST DIRECTORY LIMJT

The address of the DST would normally be plugged into the pointer via an initializa­

tion package.

DST FORMAT

~~~~} 
CCDD 
FFFF 
GGHH 

< I I J J 
KKKK 

KKKK 

DST Header 

Suggested Initial Header Setup 

F-2 

Device Mnemonic 
Pointer to DST 
Error Processor PN /RA 
# 80 
# cooo 
0 

59156400 Rev. B 



Symbol Contains 

AAAA Device Mnemonic 

BEEB Control Parameter 

cc Program Number 

DD Relative Address 

FFFF Message Code 

GG Flags 

Bit Flag Name 

0 Device On 

1 Log Errors 

2 Loop 

3 Diagnostic Mode 

4 Step Mode Pause 

59156400 Rev. B 

Description 

2 ASCII characters (upper bit is DST 
break point flag). 

The contents of this call is loaded in 
Bl on return from the device monitor. 
Normally the DST address is placed 
here. 

This is the program number which is 
called on return from the device 
monitor. Normally the error proces­
sor program number. 

This is the relative address in pro­
gram number CC to be recalled by 
device monitor. 

This code is set by the device error 
processor and defines the address of 
a 32-character message or is an 
index code to a message in the mes -
sage file. 

Communication flags. 

If reset, no more system requests 
are to be made to this device. 

If reset, the error log is turned off 
for this device. 

This flag must be monitored by the 
device error processor on return 
from a MTR request. If the flag is 
set, the last 1 /0 request should be 
retried until the step mode pause 
flag sets. Error recovery algorithms 
should be suppressed, 

This flags the device driver that it 
has been called by a diagnostic. It 
may or may not have special meaning 
to the device driver. 

If set, the device driver should pause 
via device monitor after executing 
the current I /0 request. This is the 
fundamental device driver break­
point. The flag must be monitored by 
the device driver to be effective. 

F-3 



Symbol 

GG 

HH 

II 

JJ 

KKKK 

Contains 

Flags (cont'd) 

Bit Flag Name 

5 

6 

7 

Pause on Error 

Pause on Error 
Recovered 

Pause on Fatal 
Error 

Sense Switches 

Monitor Request Code 

Monitor Response Code 

Optional Device Parameters 
and Status 

DEVICE MONITOR 

Description 

This flags the device monitor to 
breakpoint the device driver on all 
errors. 

This flags the device monitor to 
breakpoint the device driver after 
recovery from errors. 

This flags the device monitor to 
breakpoint the device driver before 
aborting on fatal error. 

Sense Switches 1-8 to facilitate inter­
active control by the operator. Def­
inition is optional. 

This byte is set by the device error 
processor to the appropriate code. 
Codes are defined in Request Codes 
on the following page. 

This byte is set by the device monitor 
in response to monitor request byte 
II. Codes are defined in Response 
Codes on the following page. 

When a monitor request is made, action is taken according to the monitor request 

code and a response code returned to the requesting device error processor. The 

device error processor requests the device monitor whenever: 

1. An operator action is required; for example, printer out of paper. 

2. The device "step mode pause" flag is detected in the DST. 

3. An error has occurred. 

4. An error recovery has occurred. 

Normally, the device monitor logs the error and returns control to the error 

processor with a response code of 0. If, however, an operator action is required 

F-4 59156400 Rev. B 



or an operator breakpoint has been set, the alert light and buzzer are activated, 

an operator message is displayed, and the response is suspended until action is 

taken by the operator. 

DEVICE MONITOR REQUEST 

The following steps are necessary to request the device monitor: 

1. Set control parameter in word 2 of DST. 

2. Set program number and relative address in word 3 of DST. 

3. Set monitor request code in left byte of word 6 of DST. 

4. Call device monitor by setting Bl = DST address and jump 
indirect to DEVICE MONITOR CALL. 

REQUEST CODES 

1 - Pause for operator action 

2 - Pause because "step mode pause" flag set in DST 

3 - Pause after error recovery 

4 - Pause before error recovery 

5 - Pause before abort on fatal error 

NOTE: If the upper bit in the MTR request code is set, an entry will be 
made in the error log. 

DEVICE MONITOR RESPONSE 

The device monitor sets the response code and returns control to the error 

processor per word 3 of the DST. On entry to the error processor, 131 will be set 

to the contents of DST word 2 and the response code will be in the right byte of 

word 6 of the DST. 

RESPONSE CODES 

0 - Continue error processing algorithm normally 

1 - Retry the current I /0 request 

2 - Abort current I /0 request and send fatal error response to caller 
(Bit 0 set in CP status word.) 

59156400 Rev. B F-5 



DEVICE PAUSE MNEMONICS 

Mnemonic 

0 

s 
E 

R 

F 

Meaning 

Paused for operator action 

Step mode pause 

Paused on device error 

Paused on error recovered 

Paused on fatal error 

DST STATUS DISPLAY 

The DST Status Display is selected by keyboard command STATUS. Each DST is 

represented by a 1 line display. The status line shows the DST index number, 

the device mnemonic, 5 words of the DST beginning with the flags word in the 

DST header, and the last message. 

MIS KEYBOARD COMMANDS 

All commands are preceded by an n. where n is the DST pointer ordinal for the 

specified device. The ordinal is shown on the ST A TUS dis play. 

Command 

ON 

OFF 

LOG 1/0 

PAUSE 

PAUSE X 

F-6 

Description 

Sets "device on 11 flag in DST. 

Resets "device on" flag in DST. 

Sets/resets "log Errors" flag in DST. 

Toggles "step mode pause 11 flag. 

Where X may be S, E, R, F, or CS, CE, CR, CF 
or any combination of the above. 

s 
cs 

E 
CE 

R 
CR 

F 
CF 

= Set "step mode pause 11 flag 
Cl II 11 

= ear step mode pause flag 

= Set "pause on error 11 flag 
= Clear "pause on error 11 flag 

S llp II = et ause on error recovered flag 
Cl llp II = ear ause on error recovered flag 

S II 11 et pause on fatal error flag 
Cl II f 11 ear pause on atal error flag 

59156400 Rev. B 



Command 

ONSWITCII f 

OFFSWITCB f 

CONTINUEt 

RETRYt 

ABORTt 

LOOP 

LOOP I/0 

ERROR LOGGING 

Description 

Sets "Sense Switch t='' in DST 

Resets "Sense Switch f in DST 

Sets response code 0 in byte JJ of DST, recalls 
device error processor per CC/DD in DST word 2 
and clears DST message. 

Sets response code 1 in byte JJ of DST, recalls 
device error processor per CC /DD in DST word 2 
and clears DST message. 

Sets response code 2 in byte JJ of DST, recalls device 
error processor per CC /DD in DST word 2 and clears 
DST message. 

Toggle "loop" flag - if result is true, send retry 
response to device driver. 

Set/reset "loop" flag - if set,send retry response to 
device driver. 

An error log entry is made on Device Monitor calls when the upper bit in the re­

quest code is set and the "log errors" flag in the DST is set. Each error log 

entry contains the time of the entry and the first 15 words of the DST. A one 

sector buffer is kept in SCU core to log the errors on head 29 of the local 

microdrum. In the future, the local error logs will be passed up to a central 

file where a statistical analysis can be made. At present, the error log will be 

end-around and will contain the 71 most current entries. 

t These commands are legal only after the device has paused. If the "loop 11 

flag is set, the response code is forced to 1 (retry). 

59156400 Rev. B F-7 



MESSAGE FILE 

Microdrum heads 26 and 27 contain the message file. There may be up to 71 32-

character messages per head, four messages per sector. Message codes 0-71 

flag the appropriate message as shown below: 

Sector 0 
1 
2 

17 

Head 26 

/////////// 
4 

68 

Message 1 
5 

69 

Message 2 Message 3 
6 7 

70 71 

NOTE: Message code #80 will clear any previous message in the DST status 

display. To prevent an initial garbage message, this code should be 

assembled in DST. 

AID 

PURPOSE 

The purpose of AID is to provide customer engineers with the capability of gen­

erating short test programs to be used in debugging hardware failures. In addition, 

some cases permit the generation of simple tests to be used as diagnostics. 

OPERATION 

In order to activate the AID program two commands must be typed in at the console. 

Typing ONAID (off line system, function key 4) will turn on the AID commands. 

Typing RESTART will cause the initial AID display to be displayed and initialize 

the AID program. The basic memory commands for the nucleus will remain; 

however, others will not. To return to the original conditions, type in OFF AID. 

Once the AID display is up, it is possible to alternate between buffer controller 

and SBU displays as usual. To return to the AID display, type in AID. Briefly 

stated: 

F-8 

ON AID 

RESTART 

AID 

OFF AID 

Initialize AID commands 

Initialize AID display and program 

Return to the AID display 

Return the normal systems commands 

59156400 Rev. B 



The AID dis play cons is ts of 16 lines labeled A, B, C, ... , P. The ':' sign in di ca te s 

where the next AID entry will be entered on the display. If at any time an illegal 

entry is made, an error message will appear on the screen indicating the error. 

While the generated AID program is executing, the cursor will indicate which state­

ment is being executed. 

NOTE: After typing in ONAID,an attempt is made to RECOVER any 

previous AID program that may have been generated by the 

customer engineer. It is possible that the following conditions 

may exist: 

1. The AID display has been destroyed; however, the generated 

program is still intact. 

2. The AID display is present; however, part of the generated 

program has been destroyed. 

3. Both the AID display and generated program are intact. 

In any case, if AID cannot attempt to recover, RESTART will be activated auto­

matically. 

ORGANIZATION 

The generated program is written on the drum beginning at track 28, sector B so 

that at any time the code may be examined by the following method: 

Type-in: READ 280B FOO F40 

The above will display at FOO the first 40 hex words of the generated program. 

Once the generated program is initiated (by typing START), the program on the drum 

(track 28, sector B) is read into SCU memory and executed. The first word ad­

dress (FWA) of each subroutine located in core is then displayed opposite the state­

ment on that line. 

If the program hangs after execution begins, MASTER CLEAR and GO will return 

to the original condition before execution began. 

59156400 Rev. B F-9 



The last FWA displayed is the FWA of the write buffer. The read buffer immedi­

ately follows the write buffer (the longest length specified in any statement deter­

mines the length of the write buffer). 

All the code for the generated program is contiguous in memory and can be examined 

after execution has terminated. Execution may be terminated by depressing the 

alert key. 

NOTE: 

NOTE: 

NOTE: 

Only the first four characters of each statement need be typed. 

Example: CONNECT 5000 = CONJ\ 5000 

The first word address (FWA) displayed after typing ST ART includes 

the jump back to the AID monitor. To breakpoint at the actual sub­

routine code, set the breakpoint to the FW A + 2. 

Certain statements will cause status to be dynamically displayed on 

the console. Since this requires a call to the microdrum, the pro­

gram may be slowed considerably. To eliminate the dynamic 

display, depress MODE key 4. 

The following definitions apply in the descriptions of the AID statements: 

L word length 

J jump line number 
n 

n normal channel number 

a address 
n 

x 16-bit data word n 

N line numbers 

A Input or output operation 

BASIC AID ST A TEMENTS 

JUMP J X 

STOP 

F-10 

J=A,B,C, ... ,P. 
X = Optional loop count 
Jump causes program execution to begin 
at line number J. 

Stop causes program execution to terminate 
and returns control to the system. 

59156400 Rev. B 



OUTPUT n x 

59156400 Rev. B 

Output causes value x to be output on normal 
channel n. 

Input causes the value on normal channel n to 
be input into LAST STATUS and displayed. 

Mask value = x 1 . (LAST STATUS) -
LAST STATUS 

Compare value - value of LAST STATUS 
is compared with x2 . 

J 1 Compare good jump 

J 2 Compare bad jump 

X 1 , X 2 , J 1 and J 2 a re optional parameters. 

If x 2 is present,J1 and J 2 are required. 

x Compare value 

J 1 Compare good jump 

J 2 Compare bad jump 

The compare value X is compared with the con­
tents of LAST STATUS. 

Example 1: A INPUT 6 
B MASK 0200 C A 

,:,c 

Normal channel 6 is input to LAST ST ATLS 
and compared with 0200. 

Example 2: A INPCT 6 FFOO 
B MASK 0200 CA 

,:,c 

Normal channel 6 is input, and with FFOO, 
and compared with 0200. 

Example 3: A INPCT 6 FFOO 0200 BA 
':'B 

Normal channel 6 is input, and with FFOO, and 
compared with 0200. 

F-11 



INCREMENT x 

BASIC AID COMMANDS 

START J 

F-12 

L 1, 2, ... , n 

J 1 compare good jump line number 

J 2 == compare bad jump line number 

L words of the SCU write buffer will be com­
pared with L words of the SCU read buffer. 

If a compare error is detected, the word num­
ber (relative to the write buffer FWA) is dis­
played. Word numbers 0, 1, 2, ... , n. 

The parameters x 1, x 2 , ... x 6 are used to fill 
the write buffer with a data pattern. Any num­
ber of parameters can be entered with a max­
imum of six. The write buffer is set to zeros 
if no Data Statement appears. 

Example: Data 5555 6666 write buffer: 5555 
6666 
5555 
6666 

Data 5555 6666 7777 write buffer: 5555 
6666 
7777 
5555 
6666 
7777 

Increment causes each word of the write buffer 
to be increased by the value x. 

x 1 , x 2 , ... x 6 are machine language instructions. 
Any number of parameters can be entered with 
a maximum of six. Pass instructions are 
entered if trailing parameters are omitted. 

Code with no parameters acts as a NO-OP 
(Pass) instruction. 

Start causes execution of the generated program. 
Execution will continue until the alert key is 
depressed or until the program hangs. If the 
program hangs, Master Clear and GO will re­
turn the buffer controller to the condition prior 
to executing ST ART. 

J = First statement to be executed. 

59156400 Rev. B 



RESTART 

NORMAL n 

DELETE N 

IKSERT N 

BKPT a 

MONITOR 

PASS 

WAIT X 

59156400 Rev. B 

Restart will return AID to the initial conditions. 

Normal will assign normal channel n for those 
subroutines which require a normal channel to 
be specified such as the SEU read and write 
subroutines. 

Delete will remove the statement at line N and 
move the remaining statements up. 

Insert will take the last statement entered and 
insert it in line N. The remaining statements 
will be moved down. 

Breakpoint will cause a jump to the line specified 
by the ST ART J statement. The jump will be 
inserted in the generated code at address a. 
Address a is an absolute memory address. 

Example: Typing ST ART will cause a jump 
to line A. 
Typing ST ART C will cause a jump 
to line C,etc. 

Typing monitor will toggle the monitor bit in 
the FLAG WORD. With the monitor bit set, the 
first two words of the generated code for each 
statement will consist of the following code: 

1B02 
BClO 

A = F. #2; 
/U(l\lONlTOR); 

The purpose of these two instructions is to re­
turn to the AID monitor to check if the alert key 
has been depressed and to advance to cursor on 
the display. 

Pass will cause a pass count to be displayed 
each time the PASS statement is executed. 

x = 16 bit hex word. 
Wait will cause a delay of approximately 
X • 2 X 10-6 sec. 

F-13 



SBU AID ST A TEMENTS 

SBU A a L n I 

CONNECT X 

F-14 

SBU causes a transfer between SBU and SCU 
Memory. 

A = 0 or I for Output or Input 
a = SBU address 
L = transfer length 
n block count if l is absent 

address increment if I is present 
(n is optional) 
address increment flag (optional) 

Example: SBU 0 a Lwill cause L words to 
be written to address a. 

SBU 0 a Ln will cause Lxn words 
to be written to address a. 

SBU 0 a L n I will cause L words to 
be written to a on the first pass, L 
words to be written to a +n on the 
second pass, etc. 

compare length 
1st SBLJ address 
2nd S BL address 
compare good .iump line number 
con1pare bad JUn1p line numbc c 

SBG CCn1PAHE compares L wonls beginning at 
a 1 with Lwords beginning at address a 2 . 

If a compare error is detected, the word number 
(relative to either a, or a?) is displa!·ecl. \\ ord 
number = 0, 1, ... , n. -

X = normal channel six connect code for 
SAC 1, SAC 2, 7000, etc. 

X in this case is an 8-bit code in order to select 
the SCAJ\'.\EH or wrap-around hardware. 

Example: COI\'.'\ECT 0011 will select the 
SCAI\?\ER and SAC 1 in most 
cases. 

59156400 Rev. B 



SAC AID ST A TEMENTS 

SAC A a L 

7000 AID STATEMENTS 

865 DRUM ST A TEMENTS 

59156400 Rev. B 

A = 0 or I for Output or Input 
a = SAC channel address 
L = transfer length 

SAC causes a transfer of L words between the 
SCU memory and the SAC channel using single 
word transfers. 

0 or I for Output of Input 
SAC channel address 
SBU memory address 
transfer length 
block count (optional) 

SACX causes a block transfer from SBU mem­
ory to the SAC channel of length L. If n is 
present, nx L words will be transferred in L 
word blocks. 

SBU starting address 

SBU terminating address 

ADDRESS causes from 1-6 addresses to be output 
to the 7000 channel. 

NOTE: The 7000 channel requires that bit 
zero of the first address be set 
and that bit zero of the last address 
be set. 

FUNCTION causes from 1-4 functions to be 
output to the 7000 channel. 

A 

xl 

x2 
X3 

= 0 or I 
= 0 = full page mode 
= 1 = 1I4 page mode 
= head increment value 
= sector increment value 

DRUM and FUNCTION provide the same basic 
capabilities except that DRUM allows the head 
and sectors to be incremented after each pass 
through the subroutine. 

F-15 



817 DISK ST A TEMENTS 

3000 AID COMMANDS 

URSFUNCTION X 

URSOUTPUT L 

URSINPUT L 

F-16 

Example: DR UM 0 0 1 1 will cause the sector 
to be incremented until track zero 
has been written; then the head will 
be incremented etc. 

A 0 or I 

DRUM 0 0 0 1 will cause only the 
sector to be incremented until 
track zero is written. 

DRUM 0 0 1 0 will cause only 
sector zero to be written on every 
track. 

xl head number= 0 or 1 
x 2 position increment value, 0-lFF 
x 3 sector increment value, 0-26. 

DISK and FUNCTION provide the same basic 
capabilities except the DISK allows the position 
and sector to be incremented after each pass 
through the subroutines. 

DISK and DRUM provide for the same basic 
operations. 

function code for a 3000 normal channel 
and must include the function, connect 
data and parity bits where required. 

Example: URSFUNCTION 5000 

Connect bit 1 
Parity bit 1 
Connect code 000 

L= transfer length 

URSOUTPUT outputs L words from the write 
buffer on the 3000 normal channel. 

L= transfer length. 

URSINPUT inputs Lwords from the 3000 normal 
channel to the read buffer. 

59156400 Rev. B 



EXAMPLES: 

1. Master Clear the Station Interface. 

A OUTPUT 6 1012 
B OUTPUT 7 OOE 0 
C OUTPUT 6 0012 
D OUTPUT 7 0000 
E STOP 

'~F 

(Select M. C., SCANNER, CONNECT) 
(Select M. C. INTERFACE) 
(CLR, M. C.) 
(CLR M. C. INTERFACE) 

2. Write an Address Pattern through the SBU and Check Results 

A DATA 0 1 2 3 
B SBU 0 0 4 4 I 
C SBU I 0 4 4 I 
D COMPARE4 E G 
EINCR 4 
F JUMP B 
G STOP 

':'H 

3. Input Status from a 3000 Device 

A URSFUNCTION 5000 
B OUTPUT 7 8000 
C INPUT 5 
DSTOP 

':'E 

4. 865 Drum Operation 

Step 1: Set up SBU core 

A DATA OFFF FFOO OOOF 
B SBU 0 0 3 4 
C DATA FFFF 
D SBU 0 B 1 
E DATA 0000 
F SBU 0 C 4 

':'G 
H 
I 

• 

59156400 Rev. B 

(set sync pattern) 

(set header pattern) 

F-17 



Step 2: Write Head 4 Sector 6 

A COMM 0012 
B ADDRESS 8000 OOOB OOOC OOOF 0010 820F 
C FUNCTION 0404 4206 
D INPUT 6 
E MASK 0200 AD 

':'F 

Step 2: Read Head 4 Sector 6 

A CONN 0012 
B ADDR 880C 80F 810 8AOF 
C FUNCTION 0404 4006 
D INPUT 6 
E MASK 0200 AD 

':'F 

Step 2: Drum Test Increment Sectors and Heads 

A SBU 0 10 20 10 
B CONN 0012 
C ADDR 8000 BC F 10 820F 
D DRUM 0 0 1 1 
E INPUT 6 
F MASK 0200 G E 
G ADDR 880C 80F 810 8AOF 
H DRUM I 0 1 1 
I INPUT 5 
J MASK 0008 KI 
K SBUC 200 10 810 L N 
L INCR 1111 
M JUMP B 
N STOP 
0 
p 

NOTE: Only the first four characters of each statement need be typed. 

NOTE: 

F-18 

Example: CONI\ECT 5000 = CONN 5000 

The first word address (FWA) displayed after typing START includes 

the jump back to the AID monitor. To breakpoint at the actual sub­

routine code, set the breakpoint to the FWA +2. 

59156400 Rev. B 



JOB CONTROL LANGUAGE - JCLl G 

JCLl is a job control language which may be called as a primitive following system 

log-on. It allows, for example, the system user to display (directly or indirectly) 

his virtual space, to enter data in his virtual space, to breakpoint the execution of 

a program, to call and execute other routines such as EDIT, BUFFALO, PLSTAH 

and any of a large number of library routines. 

59156400 Rev. B G-1 



NAME 

PROGRAMMER 

PURPOSE 

JCLl MODULE 

N. R. Lincoln 

To provide shorthand forms of frequently used 
system commands for interactive users. 

JCLl 

OTHER ENTRY POINTS 

PARAMETERS 

FUNCTION VALUE 

DESCRIPTION 

None 

None 

None 

JCLl provides shorthand forms of frequently used system commands for 
interactive users. Because JC Ll provides essentially a different mode of 
operation, its commands differ in format from the usual CALLPROC for­
mat: 

XXX (param, param, ..... ) 

XXX param, param, ..... EOL 

CALLPROC format 

JCLl format 

Parameters in JCLl may be numbers (without the #sign) which are inter­
preted as hex, or any unquoted symbol string which stands for a file name 
in STORE and MAP calls. Any address parameter (addr) may have an at 
(@) sign catenated at the end followed by a space, comma, or a single 
digit 0-9 signifying the corresponding offset to be used (see OFFSET in 
commands listed below) as part of the address. JCLl commands and 
parameters may be separated by any non-blank, non-aphanumeric 
character(s). A line ends with an EOL (end of line). 

OTHER SUBROUTINES CALLED 

G-2 59156400 Rev. B 



D 

D addr 

D addr, x 

D addr, x, c 

D addr, X, B 

D addr, X, I! 

D addr, x, R 

D addr, x, CR 

D addr, x, BR 

D addr, x, HR 

DI 

DIR 

DIR, x 

DIR, X, Pl 

DR 

DR R 

DR R, X, Pl 

DC 

59156400 Rev. B 

Display last address displayed by a D 
command 

Display memory beginning at addr 

Display memory beginning X 64-bit words 
from addr 

Display memory beginning X characters 
from addr 

Display memory beginning X bits from 
addr 

Display memory beginning X half-words 
from addr 

Display memory beginning at addr offset 
by the number of 64-bit words contained 
in register X 

Display memory beginning at addr offset 
by the number of characters in register X 

Display memory beginning at addr offset 
by the number of bits in register X 

Display memory beginning at addr offset 
by the number of half-words in register X 

Display last addresses displayed by DJ 
command 

Display contents of register R and twelve 
words of data at address pointed to b:v H 

Display contents of register R and twelve 
words of data at address pointed to by H 
offset by X 64-bit words 

Display contents of register R and twelve 
words of data at address pointed to by H 
offset by X items where 

Pl defines the item types as in the f) 

command 

Pl may be C, B, II, H, CR, BR, IIH 

Display last registers displayed by a rm 
command 

Display twelve registers in last track 
beginning at full-word register R 

Display register H offset by X items 
according to the value Pl as in the [) 
command 

Display last addresses displayed by DC 
command 

G-3 



DC addr 1, addr2 

DC addrl, addr2, X 

DC addrl, addr2, Xl, X2 

DC addrl, addr2, Xl, X2, Pl 

DC addrl, addr2, Xl, X2, Pl, P2 

DCI 

DCI Rl, R2 

B addr 

B addr, Pl 

B addr, Pl, P2 

s 
S Pl 

X addr 

c 
C addr, Pl, P2 

E addr, num, num, ... 

G-4 

Display side-by-side two vectors of twelve 
64-bit words; the left-hand vector begins 
at addrl 

Display side-by-side vectors offset by X 
64-bit words from addr 

Display side-by-side vectors each offset 
from their corresponding addrs by Xl 
and X2 

Display side-by-side vectors offset by Xl 
and X2 from addrl and addr2, respectively, 
by characters, half-words and bits accord­
ing to the value of Pl as in the D command 

Display side-by-side vectors offset by Xl 
and X2, respectively, from addrl and 
addr2, the nature of the offsets are de­
termined by the values of Pl and P2. Note 
that if one vector is full-word and the other 
is half-word, the half-word vector will be 
displayed one half-word per line to ensure 
positional correspondence with the full­
word vector - full-word number five will 
be on the same line as half-word number 
five 

Display memory last displayed by DCI 
command 

Functions similar to DC in displaying side­
by-side vectors, however, Rl and R2 are 
register numbers containing pointers to 
the displayed regions 

Breakpoint at address addr for READ, 
vYRITE and EXECUTE 

Breakpoint at addr for cases specified by 
any combination of the catenated symbols 
R (for read), W (for write) and E (for 
execute) 

Breakpoint at addr according to the mode 
specified by Pl and continue to breakpoint 
P2 times before stopping. Note that, at 
arriving at a breakpoint, the last display 
format will be used to display memory. 

Step program one instruction 

Step program Pl instructions 

Execute program beginning at addr 

Continue breakpointed program 

Set breakpoint according to Pl and P2 and 
continue execution 

Enter hexadecimal data num, ... beginning 
at addr up to ten half-words of data 

59156400 Rev. B 



ERR num, ... 

EHR R num, ... 

E TX addr, string 

R 

H Pl 

BACK 

BACK Pl 

CAT addr 

T 

T addr, X, Pl 

TI R, X, Pl 

OFFSET addr 

OFFSET addr, n 

59156400 Rev. B 

Enter hexadecimal data num, ... beginning 
at 64-bit register H up to ten half-words 

Enter hexadecimal data num, ... beginning 
at 32-bit register H up to ten half-words 

Enter ASCII data string beginning at addr 
and ending with EOL 

Roll current display forward one increment -
an increment is determined b)' the displav 
mode 

Roll current display forward Pl increments 

Roll current display backwards one incre­
ment 

Roll current display backwards Pl incre­
ments 

Catalog module at addr 

Display last area displayed by T display 

Display ASCII text beginning at addr and 
offset according to the value of Pl as in 
the D command 

Displav ASCII text beginning at location 
pointed to by register H and offset accord­
ing to the value Pl as in the D command 

Set offset register 0 to addr. (see note 
below) 

Set offset register n to addr. (see note 
below) 

:\OTE 

The OFFSET facility is used in the JCLl 
commands which specify an address pa­
rameter. The specified address from the 
JCLl command is added to the indicated 
offset register to give the true virtual 
address. For example, if offset register 0 
is set to FF7F FFDF8000 and offset reg-
ister 3 is set to 10000000, then -

[) 8340 Cg 

will cause display of address 
FF7F FFEO 0340, and 

D 500@ 3 

will cause display of address 
10000500 

G-5 



STORE name, addr (, n) Store the named file beginning at addr. 
See notes below 

OPEN name (, addr)(, m)(, p) OPEN the named file and map it into 
memory beginning at addr (if specified). 
See notes below 

CLOSE name Close the named file 

NOTES: 

1. 

2. 

3. 

4. 

File names must always be followed by a comma or end of line. 
File names may be 1-7 characters (for the EM-1 prototype file 
system). When using the STAR/EM-lB file system, file names 
may be in the form fname owner-ID, the total characters therein 
not to exceed 16. If "owner-ID is absent (i.e., form "fname, 11 ) 

. II II "O II JCLl will append the logged on USER-ID as the WNER-ID . 

(, n) is an optional parameter specifying the actual number of blocks 
to be stored. The default is the number of reserved blocks allocated 
for that file. (n) must be less than or equal to the number of re­
served blocks. 

(, m) specifies the creation of a file "m" reserved blocks long. 

(, p) is used only with the STAR/EM-lB (and EM-1 prototype with 
STAR stations attached) to specify a specific unit on which a file 
is to be created. A 11 0 11 unit number or absent parameter indicates 
that the system is to assign the file as it sees fit. 

COPY namel, name2 

Copy file "name 1" to file "name 2". 1f the files are of unequal length, the 
shortest length will be used for the copy. 

COPY name 1, name2, unitl, unit2 

Same as above except that the user may specify a particular unit number 
as source and destination. This permits copying the same named file from 
one unit to another. If the unit number is 10016 or greater, the unit is 
assumed to reference one of the 4 disk packs on the EM-1 prototype system. 
If the unit number is 0, the first occurrence of the file in either the proto­
type or STAR/EM-lB system is used. The order of file search for the 
prototype is : 

1. Prototype (854) disks - 0, 1, 2, 3 
2. EM-lB/STAR disks 

For prototype system only: 

Unit Number 
100 
101 
102 
103 

Drive Number 
0 
1 
2 
3 

(Normally ADL RED PACK) 
(Normally ADL TEMPl PACK) 
(Normally ADL TEMP2 PACK) 
(Normally Archive Pack) 

If name2 is omitted, it is assumed to be the same as namel. 

G-6 59156400 Rev. B 



EDIT 

EDIT allows a system user to line edit his source files from a display terminal. 

It is not intended as a generalized text editor but instead finds its greatest use in 

preparing source files for assembly or compilation. Complete lines, of any 

length up to 80 characters, may be inserted or replaced; individual words or 

characters cannot, in general, be inserted or replaced. 

The following pages describe the EDIT facility in detail. 

H 

59156400 Rev. B 11-1 



NAME 

PROGRAMMER 

PURPOSE 

OTHER ENTRY POINTS 

PARAMETERS 

1.) Description 
Type 
Default 

2.) Description 
Type 
Default 

3.) Description 
Type 
Default 

4.) Description 
Type 
Default 

FUNCTION VALUE 

DESCRIPTION 

EDIT 

C. L. Hawley 

Line edit facility for source files. 

EDIT C 

Base address of file A 
Value 
#10000000 

Base address of file B 
Value 
#18000000 

Base address of file C 
Value 
#20000000 

Base address of file D 
Value 
#28000000 

None 

EDIT operates on four virtual memory "files". 

Old Files (Input) 

A Default Base Address #10000000 
B Default Base Address #18000000 

New Files (Output) 

C Default Base Address #20000000 
D Default Base Address #28000000 

At entry files A and C are selected. 

MODULE 

EDIT-C allows the user to exit from EDIT and, upon return, find all 

files in the state at which they existed at exiting. 

Available Commands 

In the following commands, PG is a decimal page number 
LN is a decimal line number 
NUM is a decimal count 

EDIT 

H-2 59156400 Rev. B 



File Selection Commands 

@or 
@1 

@2 

@3 

Toggle the selection of "old file". 
(If file A is selected, change to B; if file B, change to A). 

Toggle the selection of "new file". 

Toggle the selections of both "old file" and "new file". 

Copy Commands 

+ 

+PG,LN 

C NUM 

Copy from the current location of "old file" to "new file" until 
an ASCII FILE SEPARATOR is encountered. 

Copy from "old file" to "new file" up to but not including the 
designated page and line. 

Coprl the designated number of lines from "old file" to "new 
file . 

Skip (Delete) Commands 

Skip the current line of "old file". 
-PG,LN 

Skip up to the designated page and line of "old file 11 • 

Insert Commands 

I NUM 
Insert the designated number of lines into "new file". A line 
beginning with an ASCII "group separator 11 will terminate the 
insert even though the count is not exhausted. If the last 
character of a line is an ASCII "NULL" (hex 00), then more 
characters may be input to the same line. 

Insert a line consisting of an ASCII "form feed" (hex OC). 
(This causes a new page to be started). 

Replace Commands 

x 
Replace current line with replacement line. This command 
has the effect of executing a delete (-) followed by an Insert (I). 

X PG, LN 
Copy up to specified page and line and ready terminal to accept 
insert. The new line replaces the current line. 

59156400 Rev. B H-3 



Reset (Rewind) Commands 

Rl 

R2 

Sl 

Move contents of "new file" to "old file" and reset "old index". 

Reset "old index". 

Reset "new index". 

Exit Command 

E 
Exit from EDIT program. 

OTHER SUBROUTINES CALLED INPUT 

H-4 59156400 Rev. B 



BUFFALO 

INTRODUCTION 

Buffalo is an algebraic field-free assembly language for the buffer controller com­

puter, similar in form to the PL/':' assembly language for the STAR central proces-

sor. 

The Buffalo assembler is a STAR program that assembles overlay programs for the 

buffer controller. It is a two-pass assembler. The current version, Buffalo II, is 

upward compatible with the original Buffalo. 

A program written in Buffalo consists of two types of statements, directives and 

instructions, that can be intermixed. It can also have an identifying program name 

preceding the initial PROC statement, written as a label and not used elsewhere. 

DIRECTIVES 

Directives are used to make data assignments or to direct the assembler in some 

way. Except for the ORG directive, they are reserved words and cannot be used as 

symbols in the program. The directives used are listed below and described in the 

following sections. 

PROC CON OFF ENDIF MACRO IFEQ 

PROCO FF EQU TITLE EJECT ENDM IFNE 

ORG BITSET IF DEF SPACE IFT IFGE 

END LIST IFNDEF XREF IFF IFLT 

IFLE 

IFGT 

PROC 

Keyword PROC is the first keyword used in a program and follows the optional pro­

gram name. 

The occurrence of keyword PROC signifies the beginning of a new program. A 2-

word program start header is produced in the object code listing. The first word 

of this header is always #FFFF. (The hash symbol # is used here for hexadecimal 

59156400 Rev. B I-1 



constants.) The second word is filled with the number of words to the next ORG, 

PROC, or PROCOFF statement. Special program identification or parameters can 

thus be placed in the object code listing merely by following the PROC statement 

with appropriate constants. 

PROCOFF 

This directive causes inhibition of further object code generation until a PROC state -

ment is encountered. The print listing is not affected by the directive. 

ORG 

Keyword ORG defines the starting location of the program. An ORG statement must 

terminate with a semicolon. ORG can appear anyplace within a program. If not at 

the beginning, its effect is to stop allocating program space from a previously de­

fined ORG to a new space starting with the newly defined ORG. 

Examples: ORG 

ORG 

ORG 

#2AO; 

JOHN+ 20; 

ORG + #2F; 

Note that the address can be symbolic, decimal, or a hexadecimal constant. If 

symbolic, the symbol(s) used must have been previously defined. Note also that 

the current value of ORG can be used in an expression. 

Because the assembler is designed to assemble overlay programs, the occurrence 

of an ORG within the program causes a special message of two 16-bit words to be 

placed in the object code file. The message consists of a starting address in the 

first word followed by a length in the second word. Every span of program or data 

has such a message header. Whenever an ORG is encountered, the length of the 

previous program is determined and inserted in its message header. Then a new 

message header is begun by inserting the starting address of the new origin, and 

assembly continues. Every program should contain an ORG definition before any 

program statements are written. If omitted, the default ORG is address 0000. Be­

cause all program start headers begin with #FFFF, no program should use address 

#FFFF as an origin. 

I-2 59156400 Rev. B 



END 
Keyword END directs BUFFALO to terminate assembly, and a terminating two­

word trailer consisting of #FFFFOOOO is put in the object file. The keyword END 

must be followed by a semicolon. 

The error file is appended to the listing after the END statement is processed. 

CON 

Keyword CON establishes a relationship between a symbolic address preceding key­

word CON and an expression following the keyword CON. The format of the state -

ment is as follows: 

name CON (expression 1) expression 2; 

The optional constant (expression 1) is a length specification defining the number of 

ASCII characters or buffer controller words in the constant. The length specifica­

tion is an expression following the general rules for expressions as given below. 

Any symbolic constants used in length expressions must be defined before use. 

Expressions can be decimal constants, hexadecimal constants, symbolic constants, 

or ASCII constants or strings. Any combination of the first three types can be con­

nected by addition, subtraction, multiplication, or division operators (+- I). Ex­

pressions are evaluated from left to right. Expression 1 is limited in size to 

four hexadecimal digits. If the arithmetic result produced is larger than can be 

represented by four hexadecimal digits (2 16 -1), an error message is formatted. 

Expression 2 is limited in size by the value of expression 1. 

Hexadecimal numbers are prefixed by the symbol#. Decimal numbers have no 

prefix or suffix. ASCII constants are delimited by pairs of double quotation marks; 

for example, "ASCII CONSTANT." Embedded quotes are not permitted between 

pairs of quotes. 

A pure hexadecimal string or a pure ASCII string can be of any length, and each is 

limited only by the allowable length of a unit record (80 characters). ASCII con­

stants are left-justified to a word boundary and filled to the specified length with 

the ASCII space symbol (#20). Hexadecimal constants and all other evaluations are 

right-justified. 

If a string is more than one buffer controller word in length, the symbolic address 

points to the first word. 

59156400 Rev. A I- 3 



The length specification, n, and the expression are both optional for strings. If 

no length is specified, one word is assigned or the number of characters or digits 

in the string is counted by the assembler and the number of buffer controller words 

required to hold the string is calculated. If a length is specified but no literal con­

stant follows, the length is interpreted as the number of buffer controller words 

that are initialized to zeros. If neither the length nor the expression is defined, 

one word of all zeros is allocated. If the defined length is zero, no space is 

allocated. 

Examples: ERROR MESSAGE CON (14) "INVALID SYMBOL"; 

ERROR MESSAGE-ONE CON (#lA); 

ZERO CON; 

BUFFER ADDRESS CON BLUE+l6-#3F; 

LONG_ASCII_CONST CON "ABCDEFGHI"; 

LONG HEX CONST CON #1234567ABC; 
CON (2) #123; 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
In case (a1 the ASCII constant is 14 characters (seven words) long. In case (b), 

hexadecimal lA words (26 decimal words) are allocated for the constant. The area 

is cleared to zeros. In case (c), one word is allocated and cleared. In case (d), 

the symbolic address BLUE is obtained and added to hexadecimal 10 (decimal 16) 

and, from this result, hexadecimal 3F is subtracted. The result is a one word 

constant. The symbolic address BLUE must have been previously defined. Cases 

(e) and (f) illustrate the definition of long strings the lengths of which are not speci­

fied. Five words are allocated and filled for case (e), and three words are allocated 

and used for case (f). Two words are allocated in case (g) and the contents are 

#00000123. 

EQU 

EQU equates a symbol to an expression. Its general format is: 

name EQU expression; 

Any symbols used in the expression must be previously defined. The result is al­

ways interpreted as a 16-bit quantity. If the arithmetic result is larger than 

(2 16 - 1), an error message is formatted. 

EQU differs from CON in that no memory locations are required. EQU is, there­

fore, merely a directive to the assembler that equates a symbolic name to a con­

stant or to an expression that evaluates to a constant. 

I-4 59156400Rev. B 



Examples: MERCURY 

SATURN 

EQU 

EQU 

#3B; 

MERCURY + 30; 

(a) 

(b) 

In example (a), MERCURY is equated to the hexadecimal constant 3B. In example 

(b), SATURN is equated to MERCURY (=#3B) + 30. Hence, the value of SATURN is 

#59. 

BITS ET 

This directive is followed by expressions each of which is interpreted as a bit num­

ber in a 16-bit mask, with bits set corresponding to values of the expressions. One 

word of storage is allocated to the mask. 

Examples: STROBE EQU 1 · ' 
READY EQU 8; 

WAIT EQU 12; 

MASK BITSET STROBE, READY, WAIT, 15; 

0 15 

I 0 I 1 I 0 I 0 I 0 I 0 I 0 I 0 I 1 Io! o! 0 ! 1 I 0 0 I 1 I 
LIST 

The LIST directive initiates printed output at this point in the program. LIST is 

assumed until an OFF is encountered. If LIST is followed by an expression with 

a value of one, then all statements within conditional assemblies will be printed. 

If assembly is off, ASSEMBLY OFF will be printed in the error message field. 

OFF 

The OFF directive suppresses all printed output except for statements containing 

errors until a LIST is encountered. 

TITLE 

This directive causes the characters following TITLE up to the end of the line to 

be stored for possible listing at the top of the next and succeeding pages. The cur­

rent title is used until superseded by a new TITLE directive. The title is listed 

only if a TITLE directive was recognized and LIST is invoked. If the title contains 

any of the following characters which can be recognized by the assembler as an 

operator, the character string must be preceded by double quote marks. 

= I, J [ . ) ? <> 

59156400 Rev. B I-5 



IFDEF 

IFDEF enables assembly if the name following the directive has been defined pre­

viously. 

IFNDEF 

IFNDEF enables assembly if the name following the directive has not been previously 

defined. 

ENDIF 

ENDIF, followed by a name, determines the span of the preceding IFDEF or 

IFNDEF statement having the same name. 

If statement is correct, the notation ASSEMBLY ON /OFF in the error field defines 

previous assembly conditions. 

These three directives may be nested in a manner analogous to nested DO loops in 

FORTRAN. The first IF DEF or IFNDEF statement which inhibits assembly causes 

all following IFDEF or IFNDEF to be inactive. Assembly is resumed upon recog­

nizing an ENDIF statement having a name corresponding to one which inhibited 

assembly in an earlier IF DEF or IFNDEF statement. In default of any of these 

three directives, normal assembly is performed. Nesting is permitted to a level 

of eight. 

Example: 

NAME: PROC; 

I-6 

CON; 
CON; 
ORG #1000; 
IFDEF NAME; 

IFNDEF NAMEl; 

IF DEF NAME2; 

ENDIF NAME2; 

COMMENTS 

Assemble 

Name is defined so 
Assemble 

Namel is undefined so 
Assemble 

Name2 is undefined 
No assembly 

End of span for Name2 
Assemble 

59156400 Rev. B 



ENDIF NAMEl 

ENDIF NAME 

EJECT 

End of span for Namel 
Assemble 

End of span for Name 
Assemble 

To End 

The EJECT directive places a page eject control character in the output listing and 

puts a title (if one has been defined) at the top of the page. 

SPACE 

The SPACE directive is followed by an expression that must evaluate to a constant 

n (0 ~ n < 64). It causes n blank lines of print output to be generated. 

Example: SPACE 1 O; causes 10 blank lines to be printed. 

XREF 

The XREF directive causes a cross-reference listing to be generated and formatted 

for printing. In default of the directive, no cross-reference listing is obtained. 

MACRO 

The MACRO directive flags the source of a set of statements which will be in­

serted into the program when called by a statement with the same label as the 

one on this statement. This label may have as many as eight characters. 

The macro source is moved to the symbol table file to be used in macro expansions. 

The source is thus saved for reuse the same as symbols - see BUFFSYM. 

ENDM 

The ENDM directive signals the end of the macro source statements. 

IFT 

This directive is followed by three expressions. If the first two are identical 

(true), then assembly continues normally. If they are not, the third is evaluated 

and that many source statements are skipped. This directive is most useful 

within macro definitions where character string substitutions are used. 

59156400 Rev. B I-7 



I FF 

The IFF directive is similar to IFT but the comparison is false instead of true. 

IFEQ IF equal 

IFNE IF not equal 

IFGE IF greater or equal 

IFL T IF less than 

I FLE IF less or equal 

IFGT IF greater than 

These directive are followed by three expressions. The first two are evaluated 

and compared. If the comparison is true, assembly continues; if false, the third 

expression is evaluated and that many source statements are skipped. 

Examples: IFLT 

IFGE 

1, 2, 3; 

1, 2, 3; 

assembly continues since first expression 
is less than second 

skip next three source statements since 
first is not greater or equal to second 

NOTE: None of the above eight "conditional assembly" directives affect nesting of 

other directives. 

STATEMENTS 
An assembly statement is intended to be translated into a single buffer controller 

instruction. Only one statement can appear on a line. A statement can optionally 

begin with a label. The label is terminated with a colon. Following the label is 

the statement proper that is terminated with a semicolon. 

LABELS 

Labels can be of any length providing the entire statement is contained on a line. 

Labels must begin with an alphabetic character but can contain underline charac­

ters or numerals. Spaces are permitted only before the first character of the la­

bel and after the last character of the label - preceding the required colon. The 

use of directive words as labels is not permitted. Also excluded as valid labels 

are A, Bl, B2, C, 0, P, U, F, B, and R because these have specific meaning in 

the instructions. In assembling overlay programs, it is sometimes desirable to 

use a given label in two or more programs. Such repetition is permitted if the lo­

cations defined by the labels are the same in each program. 

I-8 59156400 Rev. B 



EXPRESSIONS 

Expressions consist of any mix of hexadecimal constants, decimal constants, and 

symbolic constants connected by the operators +-':' /. Hexadecimal constants are 

preceded by the symbol #. ASCII constants are not permitted in an arithmetic ex­

pression. A variable number of spaces can appear in the expression on either side 

of the operators and at the beginning or end. A beginning decimal or hexadecimal 

constant in an expression is positive if no algebraic sign is given. Parenthetical 

expressions are not allowed. All expressions are evaluated left to right modulo 

the size of the field to be filled. An error is indicated whenever the expression ex­

ceeds the intended modulus. Catenation of two or more arithmetic operators is not 

allowed. 

FORMAT RULES 

Statements are free field with a variable number of spaces permitted except as 

noted above or in the following. The symbol pairs or triplets =CC, =C, and /C 

(C being the character(s) immediately following the= or/) form compound operators. 

No spaces are permitted between characters comprising the compound operator. 

OVERLAYS 

In assembling overlays, the following rules apply. 

• Each overlay must begin with a PROC statement. 

• The PROC statement can be followed by any number of CON statements. 

• Following PROC or CON must be an ORG statement giving the beginning 
address of the program. 

• ORG can be changed at will within a program. 

• Assembly continues until the END statement is reached. 

Example: 

Statements and Directives 

NAME 1: PROC; 

DUMMY CON "NAME ONE"; 

59156400 Rev. B 

Object 
Code 

FFFF} 
0004 
4E41 
4D45 
5F4F 
4E45 

Comments 

PROGRAM START 
HEADER 

I-9 



Object 
Statements and Directives Code Comments 

ORG # 100; 0100 } ORIGIN 
(LENGTH) HEADER 

PR (PROGRAM AND 

OG DA TA FOR PRO-

RA GRAM NAME 1) 
M 

ORG # 1000; 1000 } ORIGIN 
(LENGTH) HEADER 

PR (MORE PRO-

OG GRAM FOR 

RA NAME 1) 
M 

xx xx CHECKSUM OF PROGRAM 

NAME_2: PROC FFFF} PROGRAM START 
DUMMY_A # 123AB 0002 HEADER 

0001 
23AB 

ORG # 150 0150 } ORIGIN 
(LENGTH) HEADER 

PR PROGRAM FOR 

OG NAME 2 

RA 
M 

xx xx CHECKSUM OF PROGRAM 

END; FFFF} END 
0000 TRAILER 

The program start header associated with the PROC statement consists of one word 

of all ones followed by a word containing the length of the PROC message in buffer 

controller words. The words following the header are the message itself. 

In the example, the message associated with the first PROC is "NAME_ ONE". It is 

copied into words 3 through 6 inclusive of the object code appearing there as hexa­

decimal expressed constants. 

Note that object code locations are continuous and that the beginning of each program 

is preceded by a 2 word header giving the starting address and length of the program. 

I-10 59156400 Rev. B 



As shown for program NAME 1, the origm can be changed at will within a given 

overlay program. Each origin assignment causes a two-word header to be embedded 

in the object code file. 

A checksum of the last segment is added to the end of each overlay. It consists of 

the modulo 216 sum of the 16-bit words in the object code starting after the length 

specification of the last preceding ORG, PROC or PROCOFF statement. The 

length specification of the overlay includes the checksum word. 

COMMENTS 
Comments are delimited by (:' and ':'I as in PL(:'. Any representable ASCII char­

acters can appear between these pairs of delimiters except the combination ':'I which 

is always recognized as the end of the comment field. Comments can follow, but 

never precede, a statement or directive on a given line. Comments are not format­

ted, and appear in the output listing in the same relative columns as they appear in 

the input. A comment occupying a line not having a statement or directive is also 

unformatted and begins in print column 21. Comments can be continued from one 

line to the next indefinitely, subject only to the rule that the comment starts with 

the pair (:' and terminates with ':'I. 

OUTPUT LISTINGS 
The output listing containing the location, object code, the source statements, and 

the error messages is stored in virtual memory in compressed form beginning at 

a location specified by a parameter in the call to BUFFA LO. If no parameter is 

specified in the call, the listing goes to virtual address # 2 0000000. 

Object code location columns 1 - 4 

Object code contents columns 6 - 9 

Execution memory cycles columns 11 

Labeled statements columns 13 - 92 

Unlabeled statements columns 1 7 - 96 

Comments columns 1 7 - 96 

Error messages columns 98 - 121 

Page and line number columns 122 - 128 

The first page of the output listing contains a copy of all PROC statements with 

their page and line numbers. 

59156400 Rev. B I-11 



OBJECT CODE 

Object code, together with the generated headers needed for loading, appears in 

virtual memory beginning at a location specified by a parameter in the call to 

BUFFA LO. In default of the parameter being specified, the object code goes to 

virtual address # 30000000. 

ERROR FILE 

A separate error file contains only those statements that contain errors. If the 

storage address of the error file is not specified, it is stored at virtual address 

#38000000 by default. 

DISPLAY 

When Buffalo II is called from a display console, information displayed for the 

operator includes: 

• 
• 
• 
• 
• 
• 

program name 

Buffalo II version number 

current label being assembled 

current page and line number 

last encountered error - if any 

current error count 

Following assembly, the number of blocks of print output is displayed. This in­

cludes the cross reference listing, if any. 

ERROR MESSAGES 
The following is a list of the error messages printed on the line having the offend­

ing statement. The same message is displayed at the terminal from which the pro­

gram was initiated. 

MISC INVALID CHARACTER 

INVALID DECIMAL DIGIT 

INVALID HEX DIGIT 

ASCII INVALID IN EXP 

I-12 

A character has been encountered 
which is meaningless in its context. 

A decimal number has an invalid 
character embedded in it. 

A hexadecimal number has an in­
valid character embedded in it. 

An ASCII string exists as part 
of an arithmetic expression. 

5 9156400 Rev. B 



DIAGNOSTIC-LENGTH FLAG 

ASCII GT DEF 'D LENGTH 
HEX GT DEFINED LENGTH 

INVALID LENGTH SPEC 

UNDEFINED SYMBOL 

DIVISION BY ZERO 

LINE EXCEEDS 80 COLUMNS 

INVALID COMB OF CHAR 'S 

MULTIPLY DEFINED LABEL 

INVALID COMPOUND OP 

INVALID PAIR OF OPS 

NEGATIVE ADDRESS EXPR 

OPERAND SIZE EXCESSIVE 

UN DEFINED INDEX 

INVALID INSTRUCTION 

INVALID DIRECTIVE 

NONSENSE STATEMENT 

INVALID EXPRESSION 

SYMBOL UNDEF'D BY IFDEF 

IFDEF OR MACRO NEST ERR 

59156400 Rev. B 

This error should only occur if there 
is a machine malfunction. 

The CON statement contains a length 
specification the value of which is 
less than the actual string length to 
be stored. 

The CON statement contains a length 
specification which cannot be evaluated 
properly. 

A symbolic expression contains a sym­
bol which has not been defined in the 
program. 

An arithmetic expression contains a 
division having a zero divisor. 

Self-explanatory. 

An invalid catenation of characters 
in source file. 

The label associated with the state­
ment is defined in more than one 
location. 

The catenation of characters defin­
ing an instruction operator is invalid. 

The pair of operators defining an in­
struction fail to do so. 

The expression evaluates to a nega­
tive number. 

The evaluated expression is too large 
to fill the instruction field. 

The index register required to define 
the instruction is undefined. 

Self-explanatory. 

Self-explanatory. 

Insufficient meaning in the statement 
to determine the kind of error. 

Some rule in forming expressions has 
been violated. 

The symbol following the ENDIF state­
ment does not correspond to a like sym -
bol on an IFDEF or IFNDEF directive. 

The ENDIF statement is out of order. 

I-13 



LENGTH SPEC IS NEGATIVE The CON statement contains a length 
specification which is negative. 

LENGTH SPEC TOO LARGE The CON statement contains a length 
specification which is too large 

CALLING BUFFALO 

Buffalo is invoked by the following call statement: 

BUFFALO (Symbol file, Source file, Print listing, Object file, Error file) 

where Symbol file is the virtual address of the location where the 
symbol table is desired. In default, #8000000. 

Source file 

Print listing 

Object file 

Error file 

is the virtual address of the file to be assembled. 
In default, #10000000. 

is the virtual address of the location where the 
print listing is desired. In default, #20000000. 

is the virtual address of the location where the 
object file is desired. In default, #30000000. 

is the virtual address of the location where the 
error file is desired. In default, #38000000. 

All addresses must be expressed in hexadecimal and include the symbol #. 

In addition, the SYMBOL FILE may be saved for reuse with another assembly. 

To do this: 

1. Assemble first time with BUFFALO 

2. Save SYMBOL FILE in permanent file 

3. Save other output as desired 

To reuse SYMBOL FILE: 

I-14 

1. Map in symbol file 

2. Map in new source file 

3. Execute BUFFSYM. The symbol file will be reused up to but not 

including the original END; statement or END: (label) whichever 

is first. 

59156400 Rev. B 



CALLING BUFFSYM 

BUFFSYM is invoked by the following call statement: 

BUFFSYM (SYMBOL FILE, etc.) 

where SYMBOL FILE is the virtual address of the symbol file to 
be used. In default, #8000000. 

All other parameters are the same as the BUFFALO call. 

INSTRUCTION LISTING 

Instruction 

Selective Stop 
Selective Set Bit T of A 
Selective Clear Bit T of A 
Selective Toggle Bit T of A 
Count Leading Zeros in A to A 
Shift A Right T Places End-off 
Shift A Right T Places Circularly 
Shift A Left # Places Circularly 
Enter Index 1 With (A) + Y 
Enter Index 2 With (A) + Y 
Clear C 
Load C With Bit# of A 
Set C if A Overflow 
Bit # of A or Overflow 
Set C if A Odd Parity 
Bit # of A or Odd Parity 
A Overflow or A Odd Parity 
Bit # of A or Overflow or Odd Parity 
Load C With Bit T of Channel S 
Selective Set Bit T of Channel S 
Selective Clear Bit T of Channel S 
Input To A From Channel S 
Set Channel S Per Ones In A 
Set Channel S Per Zeros In A 
Clear Channel S Per Ones In A 
Clear Channel S Per Zeros In A 
Output A to Channel S 
Output Complement A to Channel S 
Add Immediate 
Subtract Immediate 
Exclusive Or Immediate 
Logical Product Immediate 
Test Index 1 Immediate 
Test Index 2 Immediate 
Enter A Complement Immediate 
Load A With (A) + Y) 

59156400 Rev. B 

Code 

0000 
OlOT 
020T 
030T 
0400 
050T 
058T 
058T 
06 y 
07 y 
0800 
081 T 
0820 
083T 
0840 
085T 
0860 
087T 
09ST 
OAST 
OBST 
ocso 
ODSO 
ODS8 
OES8 
OESO 
OFSO 
OFS8 
10 y 
11 y 
12 y 
13 y 
14 y 
15 y 
16 y 
17 y 

Assembly Form 

/; 
A =S #; 
A =R #; 
A =T #; 
A =Z; 
A =E #; 
A =c #; 
A =CL#; 
Bl = A + Y; 
B2 = A+ Y; 
C =R; 
c #; 
c 0; 
c 0, #; 
C P; 
C P,#; 
C P,0; 

# is a 4-bit con­
stant called S or T 
in the instruction. 

T=l6-#; 
Y is an 8-bit con­
stant 

T = 15 - # 

T = 15 - # 

T = 15 - # 

C P,0,#; T=l5-# 
C #, #; #T precedes #S 
#,# =S; II 

#, # =R; 
A =I#: OR A =< #: 
# =S A/O; 
# =S A/Z; 
# =R A/O; 
# =R A/Z; 
# =OA; OR# =<A; 
# =ON A ; OR # = < " A; 
A =+ Y; 
A =- Y; 
A =X Y; OR A =% Y; 
A =PY; OR A =& Y; 
C = Bl ? Y; 
C = B2 ? Y; 
A =N Y; OR A =" Y; 
A =G (A + Y) ; 

" 

I-15 



Instruction Code Assembly Form 

Enter A With Address 18Y-1FY A = M; Mis an address mode 
Enter Index 1 With Address 20Y-27Y Bl = M; designator (see below) 
Enter Index 2 With Address 28Y-2FY B2 = M; 
Test Index 1 30Y-37Y c = Bl ? M; 
Test Index 2 38Y-3FY c = B2 ? M; 
Load A 40Y-47Y A =G M; 
Load A Complement 48Y-4FY A =GN M; OR A =GA M; 
Load Left Byte Into A 50Y-57Y A =L M; 
Load Right Byte Into A 58Y-5FY A =R M; 
Add 60Y-67Y A =+ M; 
Subtract 68Y-6FY A M; 
Exclusive OR 70Y-77Y A =X M; OR A =% M; 
Logical Product 78Y-7FY A =PM; OR A =& M; 
Replace Add 80Y-87Y M =+ A; 
Replace Add One 88Y-8FY M =+ U; 
Replace Left Byte 90Y-97Y M =L; 
Replace Right Byte 98Y-9FY M =R; 
Store AOY-A7Y M =A; 
Store Zeroes A8Y-AFY M =Z; 
Load A and Clear BOY-B7Y A =D M; 
Unconditional Jump B8Y-BFY lu M; 
A Zero Jump COY-C7Y A IZ M; 
A Nonzero Jump C8Y-CFY A IN M; 
A Positive Jump DOY-D7Y A I+ M; 
A Negative Jump D8Y-DFY A I- M; 
Condition True Jump EOY-E7Y c IT M· 

' 
Condition False Jump E8Y-EFY c IF M; 
Input (A) Words FOY-F7Y M =I; OR M<; 
Output (A) Words F8Y-FFY M =O; OR M>; 

Notes: The equal sign is always immediately followed by either a symbol 
or a blank. When a blank immediately follows the equal sign, it 
is to be construed as an ASCII space character (hexadecimal 20) 

I-16 

# represents a 4-bit constant or an expression which equates to 
a 4-bit constant. 

Y represents an 8-bit constant or an expression which equates 
to an 8-bit constant. 

M is defined below. 

A is the accumulator 

B 1 is index register 1 

B2 is index register 2 

C is the condition bit 

59156400 Rev. B 



Examples: 

If M = • Y Address = Y for Y < #100; 
Otherwise, address is relative to current location if Y > #FF. 

If M . (Y) Address = (Y) 

If M Bl. Y Address = Y + (Bl) 

If M Bl. (Y) or Bl(Y) Address (Y) + (Bl) 

If M F. Y Address = (P) +Y 

If M R. Y The assembler interprets Y to be an expression of address 
dimension. The assembler computes the forward or backward 
distance from current ORG to Y and assembles the proper instruc­
tion to correspond. 

If M B2. Y Address = Y + (B2) 

IfM 

If M 

B2. (Y) or B2(Y) Address 

B. Y Address = (P) - Y 

(Y) + (B2) 

59156400 Rev. B l-1 7 





PL/* J 

This appendix consists of the Control Data PL/':' Compiler I Assembler User Guide 

Reference Manual, Preliminary Revision 04, that is reprinted here in its entirety. 

5!.H56400 Rev. B J-1 





CONTROL DATA® 

PL/STAR 
COMPILER I ASSEMBLER 

, CONTROL DATA PRELIMINARY 
( ( I ,..;_ f (I f, ,\ l I (I f\j USER GUIDE REFERENCE MANUAL 



Revision 

01 Released 8-21-70 

02 Released 10-30-70 

03 Released 3-15-71 

04 Released 3-24-72 

PL/ STAR Compiler/ Assembler 
User Guide Reference Manual 
Publication Number 60324800 

RECORD OF REVISIONS 

Notes 

(Complete Revision) 

Address comments concerning this 
manual to: 

Control Data Corporation 
Software Documentation 

Copyright © Control Data Corporation 1972 
Printed in the United States of America 

4201 North Lexington Avenue 
St. Paul, Minnesota 55112 

ii 60324800 Rev. 04 



PREFACE 

PL/* is a free-format, algebraic assembly language especially developed to 

exploit the capabilities of the STAR central processor. PL/':' was developed pri­

marily as a tool to be used in the development of other languages, utility programs, 

and a monitor. Wherever possible, PL/':' statements use PL-1 conventions. 

Most PL/':' statements are of the replacement type in which the operators define 

the instruction. For example, the instruction A =U B+C; defines a floating-point 

add (the upper significance is determined by the compound operator =U). This 

identical statement could be a register-to-register add instruction or a vector add 

of either 32-bit or 64-bit operands. How the statement is interpreted is determined 

by the declarations defining the data types for A, B, and C. Default conditions 

covering options in an instruction give the programmer great freedom of expression. 

The language is surprisingly concise and easy to use. 

6 0324800 Rev. 04 iii 





CONTENTS 

Section Title Page 

1 . SYNTAX NOTATION. 1-1 

2 . CHARACTER SET. 2-1 

3 . IDENTIFIERS 3-1 

Symbol •. 3-1 

Keywords 3-3 

4 .... CONSTANTS 4-1 

Decimal Constant . 4-1 

Floating-Point Constant. 4-1 

Hexadecimal Constant . 4-1 

Character Constant. 4-1 

Address Constant . 4-2 

5 .... EXPRESSIONS . · · · . 5-1 

Assembly Time Arithmetic 5-1 

Address Scaling . 5-1 

Qualifiers · . · · · 5-2 

6 .... STATEMENTS· · · · 6-1 

Statement Types 6-1 

Spaces . . . 6-1 

Labels ... 6-1 

Comments. 6-2 

Alignment and Boundaries 6-2 

Format .. 6-3 

7 .... DIRECTIVES 7-1 

List Control. 7-1 

Location Control 7-1 

Register Counters 7-2 

Data Generating Directives 7-5 

60324800 Rev. 04 v 



Section 

8 

9 

Title 

. PROGRAM CONSTRUCTION 

Program Structures 

Register Pairs ... 

Vector Instructions 

. COMPILE-TIME SYMBOLS AND STATEMENTS 

Compile-Time Replacement Statements 

Conditionals 

A .... INSTRUCTION SET 

vi 

Page 

. 8-1 

. 8-1 

. 8-1 

8-2 

9-1 

9-2 

9-2 

. A-1 

60324800 Rev. 04 



SYNTAX NOTATION 1 

Whenever a PL/':' statement or combination of elements is discussed, the manner 

of writing that statement or phase is illustrated using a uniform system of nota­

tion, which is as follows: (This no ta ti on is not part of the PL/':' language. ) 

1. Unless otherwise stated, language elements must appear in 

the sequence given. 

2. Any upper case letters or any delimiters other than t, f, or { } 

are part of PL/':' syntax and must appear as written. The 

underlined portions of upper-case characters signify the 

shortened versions which the machine recognizes. 

3. Lower case letters are general names for which specific in­

formation is supplied in the text. 

DCL identifier; 

DCL must appear followed by identifier (defined elsewhere) 

followed by a semicolon. 

4. Braces are used to group and illustrate alternate forms. 

Elements vertically listed in braces are mutually exclusive 

and indicate that a choice is to be made. 

SYNCH {n 
The vertical stack indicates one of the letters, P, H, F, or C, 

must appear after SYNCH. 

5. The character t inside braces indicates the group is optional 

and can be omitted. 

% ORGR = { ~t} constant; 

Either + or - can follow the equal sign, or the term might not 

appear at all. 

60324800 Rev. 04 1-1 



1-2 

6. The character J inside the braces indicates the group can be 

repeated one or more times in succession. 

DCL identifier attributes {, identifier attributes t J}; 
In this statement the , identifier attributes group can be repeated 

one or more times, or be omitted. 

60324800 Rev. 04 



CHARACTER SET 2 

PL/* uses the ASCII character set listed in Table 2-1. 

The term alphanumerics refers to the alphabetic set A through Z, the numeric 

set 0 through 9, and the underline character. The term delimiters refers to the 

set of ASCII characters other than the alphanumeric characters. The term 

syntax delimiters refers to the set of delimiters used in the infix notation 

of the assembler instructions to differentiate this set from delimiters used 

as arithmetic operators or separators (blanks). Some of the primary 

syntax delimiters used in PL/':' are: 

=A absolute assignment operator 

=C ceiling assignment operator 

=E exponent assignment operator 

=F floor assignment operator 

=G get, register load operation 

=L lower assignment operator 

=N normalize assignment operator 

=P put, register store operator 

=R round assignment operator 

=S significant assignment or square root operation 

=T truncate assignment operator 

=U upper assignment operator 

=X index assignment operator 

=+ increase operator 

branch register or address follows 

"- expansion 

compression or reduction 

merge or catenation 

register pairs 

<< move left 

>> move right 

60324800 Rev. 04 2-1 



Table 2-1. ASCII Character Set 

Hexa- Hexa-
decimal Character Punch decimal Character Punch 

20 space no punch 41 A 12-1 
21 I 12-8-7 42 B 12-2 . 
22 II 8-7 43 c 12-3 
23 # 8-3 44 D 12-4 
24 $ 11-8-3 45 E 12-5 
25 % 0-8-4 46 F 12-6 
26 & 12 47 G 12-7 
27 1 (apostrophe) 8-5 48 H 12-8 
28 ( 12-8-5 49 I 12-9 
29 ) 11-8-5 4A J 11-1 
2A ,,, 11-8-4 4B K 11-2 ,,. 

2B + 12-8-6 4C L 11-3 
2C ' 0-8-3 4D M 11-4 
2D -(minus) 11 4E N 11-5 
2E . 12-8-3 4F 0 11-6 
2F I 0-1 50 p 11-7 
30 0 0 51 Q 11-8 
31 1 1 52 R 11-9 
32 2 2 53 s 0-2 
33 3 3 54 T 0-3 
34 4 4 55 u 0-4 
35 5 5 56 v 0-5 
36 6 6 57 w 0-6 
37 7 7 58 x 0-7 
38 8 8 59 y 0-8 
39 9 g 5A z 0-9 
3A : 8-2 5B [ 12-8-2 
3B ; 11-8-6 5C \ 0-8-2 
3C < 12-8-4 5D J 11-8-2 
3D = 8-6 5E I\ 11-8-7 
3E > 0-8-6 5F - 0-8-5 
3F ? 0-8-7 (underline) 
40 @ 8-4 

2-2 60324800 Rev. 04 



IDENTIFIERS 

An identifier is a string of alphanumeric and underline characters preceded and 

followed by a delimiter. The initial character must always be alphabetic. The 

maximum length of an identifier is 64K (K = 1024) characters. 

SYMBOL 

3 

A symbol is a programmer-defined identifier. Symbols can represent registers, 

memory locations, and constants. Symbols carry properties of value, type, size, 

and length. If only one value is associated with a symbol, it is called the primary 

value. 

The properties involved in a symbol are: 

• value: the numeric value of the symbol; the bit address of an 
address symbol, the numbers associated with a set of registers. 

• type: the basic kind of data represented: 
decimal string, vector, binary string, constant, etc. 

• size: the basic unit of memory represented. 
The size of a character string is a byte. The size of a 
register can be either a full or half word. 

• length: the number of size units implied by the symbol. A 
vector of 100 full words has a length of 100. 

Symbols can represent both a memory location and a register value. These are 

called multivalued symbols. The primary value of a multivalued symbol is the 

memory value; the set of registers is the secondary value. 

REGISTER NAME 

A register name is a symbol with properties of: value - the register number; 

type - register; size - full or half word; length - 1. 

60324800 Rev. 04 3-1 



ADDRESS SYMBOL 

An address symbol contains the primary value of a memory location. The other 

properties vary with the type of the symbol. 

SYMBOLIC CONSTANT 

A symbolic constant is defined in a DCL directive using the attribute EQU. A 

symbolic constant has properties of value equals specified constant, type equals 

constant, and a length and size equal zero. 

MULTIVALUED SYMBOLS 

A multivalued symbol is defined with allocation of data fields, and has an address 

as a primary value. The other properties can vary. The secondary value is a 

full word register set of from one to three reg.ister numbers. These registers 

usually hold the base address and the index or offset of the data field defined. 

USE OF SYMBOLS 

When a multivalued symbol is used as an operand, it is usually obvious which 

value applies, but in an ambiguous case, the primary value is used. All instruc -

tions except Branch Immediate, Enter Immediate, and Increase Immediate use 

the secondary values. In the exceptions, the assembler uses the primary values. 

The secondary values can be forced with qualifiers. The REG attribute, o/oORGW 

directive, and o/oORGR directive all use the secondary value; other identifier 

occurrences use the primary value. 

Some PL/':' instructions have a unique arrangement of syntax delimiters which do 

not appear in any other instruction. These instructions use symbols as if they had 

the appropriate properties. For example, no other instruction has the same for­

mat as the Polynomial Evaluation. 

The properties of a symbol become important when the symbol is used in an in­

struction which does not have a unique set of syntax delimiters, such as in the 

arithmetic instructions. The properties determine whether a sparse vector, 

3-2 60324800 Rev. 04 



vector, or register instruction is assembled and whether the operands are full or 

half words. Qualifiers can be used to further define, modify, or override the 

interpretation of a symbol. 

KEYWORDS 

A keyword is an identifier which is part of the language. Keywords are not re­

served words and can be used as symbols. 

DIRECTIVE IDENTIFIERS 

A directive identifier is a keyword used in the beginning of a statement to define 

the function of that statement. For example: 

DCL 
REG BLOCK 
STABLE 

ATTRIBUTES 

Attributes are keywords that specify properties of data or symbols. For example: 

FLOAT(7) 
ARRAY (100) 

SPECIAL KEYWORDS 

A special keyword is a syntax delimiter. This word is preceded by an apostrophe 

(')and must be followed by a space. Special keywords are also known as quasi­

operators. Examples of these keywords are: 

'EQ 
'NE 
'GE 
'LT 
'LE 
'GT 
'GE 
'AVG 

60324800 Rev. 04 

'DEL 
'MAX 
'MIN 
'REV 
'XOR 
'OR 
'AND 
'NOT 

'ABS 

'ON 

'DFR 
'CHAN 
'IDLE 

'BKPT 
1ALGO 
'EXIT 
'MC LOCK 
'RC LOCK 
'STAR 
'LDAR 
'KEYS 

3-3 



RESERVED WORDS 

The following words are reserved when assembling relocatable code: 

Name 

ONE 

PD 

RETURN 

DSP 

STACK 

OLD-STACK 

LINK 

ON 

FVl 

FV2 

Description 

Number One 

Parameter Descriptor 

Return Register 

Dynamic Space Pointer 

Current Stack Pointer 

Previous Stack Pointer 

Callee Data Base 

On unit stack pointer 

Function value return 

Function value return 

For a further description of these registers see section entitled Program Structure. 

3-4 60324800 Rev. 04 



CONSTANTS 

The term constant refers to any one of the following definitions. 

DECIMAL CONSTANT 

A decimal constant is a string of numeric characters from the set 0 through 9, 

optionally preceded by a plus or minus sign. The number is converted to its 

binary equivalent, right-justified, and zero-filled. For example: 

123 50 -477665 

FLOATING- POI NT CONSTANT 

4 

A floating-point constant is a string of numeric characters from the set 0 through 

9, optionally preceded by a plus or minus sign, with a decimal point included. 

3. 1415926535898 666. 

HEXADECIMAL CONST ANT 

A hexadecimal constant consists of a number sign(#) followed by a string of 

characters from the set 0 through 9 and A through F. Each character is converted 

to its 4-bit hexadecimal equivalent, right-justified, and zero-filled. Optionally, 

a plus or minus sign can precede or follow the number sign. For example: 

#12A #FF #EA400000 -#CAFE 

CHARACTER CONSTANT 

A character constant is an ASCII character string surrounded by double quotes ( "). 

Double quotes cannot appear in the character string. Each character in the string 

is stored in its 8-bit ASCII code. For example: 

"ERROR" "?II "SUPPLY; THEREFORE" 

60324800 Rev. 04 4-1 



ADDRESS CONSTANT 

An address constant is an expression delimited by square brackets. For example: 

[LABEL] [JUMP-ADDRESS] 

Explanation: [ABC] 

4-2 

1. If ABC is an address symbol, the value of the constant is the 

bit address of the address symbol. 

2. If ABC is a register name, the value of the constant is the bit 

address of the register. 

3. If ABC is both an address symbol and a register name, [ABC J is the 

bit address of the address symbol. The expression [ABC(B)] yields 

the bit address of the register. 

4. If ABC is a symbolic constant, the value of the symbolic constant 

is used. 

60324800 Rev. 04 



EXPRESSIONS 

ASSEMBLY Tl ME ARITHMETIC 

The general format for an expression is: 

{
constant } [ {±t} add7ess-symbol . 
register _name 

{operator 

5 

{ 
constant } t f } 
add7ess-symbol ] 
register-name 

The operators allowed are plus, minus, divide, multiply, and exponentiation (*':'). 

The expression is evaluated from left to right. No parentheses are allowed for 

grouping, but they can be used with qualifiers. 

A register in an expression is referenced as a bit address. If AAREG is a register 

name, it is referenced as the bit address of the register. 

Given: DCL AAREG REG 1; 

The expression [ AAREG + 5] equals 45 because the bit address of AAREG is 40. 

An expression can be used wherever an address constant can be used. 

ADDRESS SCALING 

The operator circumflex (/\.) followed by a P, F, H, or C, scales (truncates) to a 

page, full word, half word, or character quantity, respectively. 

Code Letter Quantity Shift Right 
p page 8 bits 

F full word 6 bits 

H half word 5 bits 

c character 3 bits 

60324800 Rev. 04 5-1 



For example: DCL ABC ARRAY PRESET; 

[ABC /\F] yields the full word address of the variable ABC 

[ABC /\HJ yields the half word address 

[ABC /\c] yields a byte address 

[ABC(B) /\F] yields the full word address of base register ABC 

[ABC + 5] is a bit address result 

[ABC + 5/\F] is a word address of ABC 

[ABC/\F+5] is a word address five words from the start of ABC 

QUALi Fl E RS 

Qualifiers are used to force a secondary value to be used when referencing a 

multivalued symbol, to force a symbol to have a type different from its own, or 

to sample the length property. Qualifiers immediately follow the symbol they 

qualify and consist of characters surrounded by parentheses. 

FORCING THE SECONDARY VALUE 

Because symbols can be multivalued, and the primary properties are used when 

there is ambiguity, qualifiers provide a method of referencing the register values 

associated with the symbol. The following key letters are available as register 

qualifiers: 

B base address register or first register defined. 

X index register or second register defined 

For example: 

DCL VECTOR ARRAY (100) REG 10/ 11; 

VECTOR(B) full word register 10 

VECTOR(X) full word register 11 

If no such register exists, a value of 0 is returned. 

5-2 60324800 Rev. 04 



FORCING AN INSTRUCTION 

PL/"'' has many instructions with the same infix notation, and the instruction 

assembled is dependent on the properties of the operands used. Rather than re­

quire a separate declaration and numerous unique symbols, qualifiers can be 

used V\-ith a symbol to force properties other than those usually associated with 

the symbol. 

The following key characters enclosed in parentheses can be used as qualifiers 

in instructions: 

A force full word vector 

s force sparse vector 

D decimal string 

y binary string 

c character string 

< use upper half word 

> use lower half word 

B use base register 

x use index register 

One or two qualifiers, surrounded by parentheses, can follow a symbol to give 

the appropriate conditli.ons. The combination (A<) or (A>), and (S<) or (S>) force 

a half word vector and half word sparse vector, respectively. The <, > characters 

can be used interchangeably in this case (i.e., (A<) and (A>) yield the same re­

sults). 

The last four qualifiers, besides forcing a type, force the appropriate register 

number. The combination B< gives the register number of the upper half word 

register of the base register. 

DCL VECTOR ARRAY(lOO) REG 8/9; 

DCL Rl REG 10; 

DCL R2 REG 11; 

$ Rl =U Rl + R2; full word register add upper 

$ Rl(A) =U Rl(A) +R2; vector add upper, R2 broadcast 

60324800 Rev. 04 5-3 



$ Rl(<) =U Rl(<) + R2(~; half word register add upper of register 20, 23 

$ Rl(S<) =U Rl(S>) + R2(S<); half word sparse add upper 

$ VECTOR =U VECTOR + R2; vector add upper, R2 broadcast 

$ VECTOR(X) =U VECTOR(X) + R2; register add upper 

$ VECTOR(X<) =U VECTOR(X<) + R2(>); half word register add upper 
of reg 18 and 23 

$ VECTOR(S<) =U VECTOR(S<), R2; half word sparse add upper, R2 
broadcast 

QUALi FIER FOR LENGTH 

The qualifier L following a symbol gives the value of the length property. 

Given: DCL CHAR-STRING CHAR(75); 

CHAR-STRING(L) equals 75 

REFERENCING UPPER AND LOWER HALF WORD OF A FULL WORD REGISTER 

The characters > and < following a full word register symbol give, respectively, 

the lower or upper half word register value of the full word register. These 

characters in parentheses can be used with symbols in an instruction to give half 

word register instructions. 

5-4 

DCL Rl REG 10; 

DCL R2 REG 11; 

$Rl =U Rl + R2; 

$Rl(>) =U Rl(<) + R2(<); 

full word register add upper 

half word register add upper of upper 
half of R 1 and R2 

DCL R3 REG R2(>), R4 REG RI(>); 

$R3 =U R3 + R4; half word add upper of lower half 
of RI and R2 

60324800 Rev. 04 



STATEMENTS 6 

A PL/':' program is constructed from basic program elements called statements. 

A statement is defined as: 

{statement_identifier} {statement_ body} 

STATEMENT TYPES 

PL/':' currently has four unique statement types: directives, instructions, 

compile-time, and macros. For directives, the statement identifier is a directive 

identifier and the body varies with the directive. For instructions, the statement 

identifier is a dollar sign ($). For compile-time the statement identifier is a 

percent sign (o/o). AU statements end with a semicolon. 

SPACES 

Spaces are generally ignored, but they: 

1. Cannot appear in identifiers, in decimal or in hexadecimal constants. 

2, Must appear between combinations of identifiers and constants if 

no other delimiter naturally appears between them. 

3. Must follow the =Q (where Q represents an upper case letter of 

the alphabet) or the =+ operators. 

LABELS 

The general format for a label is: 

identifier: {identifier: t J } 

60324800 Rev. 04 6-1 



A label is an identifier followed by a colon which precedes a statement. The 

appearance of a label defines it as an address symbol with a value from the pro­

gram location counter. More than one label can precede a statement and the 

labels can be used interchangeably to reference the statement. 

Labels are meaningful only when they precede instructions or o/oORG and PHOC 

directives. For all other directives, labels are essentially ignored. 

COMMENTS 

The general form of a comment is: 

I ':' {character string t} ':'I 

Comments are normally used for documentation and are not involved in the exe­

cution of the program. A comment can appear externally to any statement. The 

character string in the comment must not contain the character combination':' I 
in sequence. 

/ ':' THIS IS A COMMENT -,- / 

ALIGNMENT AND BOUNDARIES 

Instructions and data are aligned to appropriate boundaries. Instructions always 

are aligned on the next sequential half word while the alignment of data is depen -

dent on its type. The general rule for alignment is to round up to the next boundary 

if not already on that boundary. 

A given boundary is any address that fulfills the definition for that boundary. A 

full word boundary is any address whose lower six bits are zero, a half word 

boundary has five lower bits of zero, a byte boundary has three lower bits of zero. 

Therefore, a full word address or boundary is also a half word or byte address 

or boundary. 

6-2 60324800 Rev. 04 



FORMAT 

Statements are free form and can start and end anywhere on a physical record. 

More than one statement can appear in each physical record, and a statement 

can be continued from one physical record to the next. 

To aid in program maintenance, the assembler assigns a sequence number to 

each physical record input. The assembler listing, however, has only one state­

ment or comment per line, and it splits and aligns records as necessary. 

60324800 Rev. 04 6-3 





DIRECTIVES 7 

Directives are used to control the listing, control location, control register assign­

ment, and to generate data. 

LIST CONTROL 

LIST; a listing is printed. LIST is implied at the beginning of an assembly 

OFF; listing is suppressed 

LOCATION CONTROL 

PL/':' provides two location counters, one for executable code instructions called 

the program location counter, and one for data called the data location counter. 

o/oORG=expression; 

ORG is a permanent, compile -time variable which controls the program location 

counter. The program originates at the bit address indicated by the expression. 

Any label on an ORG is given the value of the expression in the statement body. 

Default origin if no ORG is given is the dynamic space pointer (DSP), for example: 

o/oORG = #8100 

o/oORG = [ o/oORG + #40 ]; 

% ORGD = expression; 

ORGD controls the data location counter. Data is placed starting at the bit address 

specified by the expression. 

ORGD is a permanent, compile-time variable; consequently, expressions like 

o/oORGD = [ o/oORGD + #100]; 

are allowed. 

60324800 Rev. 04 7-1 



The default value is the bit address of the first full word following the instructions. 

%OBJECT constant; 

This directive is used to store the object code at a memory location other than 

where it is executed. The code is stored at the address specified by constant rela­

tive to the current program location counter. 

o/oORGD = #12000; 

o/oORG = #8000; 

%OBJECT = #100000; 

Executable code, which is assembled with respect to address #8000, is stored at 

# 100000. The data is also offset by the same amount so data ssembled with respect 

to address #12000 is stored at address #lOAOOO. This directive is meaningful only 

when absolute code is being generated. 

REGISTER COUNTERS 
PL(:' maintains two register counters, one for full word registers and one for half 

word registers. 

PL(:' automatically allocates registers in data generating declaratives if no register 

is specifically indicated. Two separate bit streams, one for full word registers and 

one for half word registers, provide maps of which registers are assigned and which 

are available. When a register is allocated or specifically assigned in a data state­

ment, the corresponding bits in the full word stream and half word stream (if 

applicable) are set to indicate that these registers are in use or frozen. There­

fore, if full word register 10 is allocated, bit 10 is set in the full word stream, 

and bit 20 and 21 are set in the half word stream. This prevents overlapping during 

automatic register assignment. In automatic assignment, if registers are en­

countered which are previously assigned, these registers are skipped and the next 

free register is used. 

If, in using automatic assignment, a program requests more registers than are 

available, an error message is given when all registers are used. The assembler 

7-2 60324800 Rev. 04 



starts assignment again at the value of the last applicable ORGW or ORGR, but an 

error message appears with every register assigned. 

%0RGR expression; default #40 

o/aORGW expression; default #20 

ORGR (ORGW) starts the assignment of half word (full word) registers at the value 

of the expression. For example: 

o/aORGR = #40; 

o/aORGW = [ o/aORGW + 20] ; 

o/aFULL _REG _AUGMENT = expression; 

%HALF_ REG _AUGMENT = expression; 

default -1 

default +1 

FULL REG AUGMENT (HALF_ REG _AUGMENT) specifies the value to increment 

ORGW (ORGR) during full word (half word) register allocation. 

REGBLOCK identifier {constantt}; 

This directive is used for storing preset register data in a memory block other 

than the register file. It is intended that during program execution this block is 

transmitted to the appropriate position in the register file. After a REGBLOCK 

directive, any register assigned has a word set aside for it in the block. If the 

register is PRESET or INIT, the preset value is stored in the appropriate place 

in the memory block not in the register file. The non-initialized registers are set 

to zero. The definition associated with the register symbol is unchanged. It is 

assumed a contiguous block of registers is represented. 

The block starts at the address specified by the constant term, and identifier is 

the address symbol of the first word of the block. All REGBLOCKs, for which no 

memory locations are specified, are placed after the program's data and aligned 

to the next full word boundary. 

60324800 Rev. 04 7-3 



REGBLOCK uses the current value of the full word register counter as a reference 

point for the registers stored. This counter must be in forward mode. If half 

word registers are defined in the range of a REGBLOCK, the half word counter 

must first be set to coordinate with the full word counter. 

The block is properly set up for a LOAD macro. The length is determined after 

the ENDBLOCK. 

o/oFULL_REG_AUGMENT +l; 

%ORGW = #20; 

REGBLOCK REG_BLOCK #4000; 

DCL REGl REG ? INIT O; 

DCL REG2 REG ? /? PRESET(L=#15, B= [ REGl) ); 

DCL VECTOR ARRAY (#100) PRESET; 

ENDBLOCK REG_BLOCK; 

Produces: 

#4000 4 800 

0 

15 800 

100 [VECTOR] 

EN DB LOCK {
identifier t} 
identifier FREE 

This directive terminates the effect of the preceding REGBLOCK identifier. If 

identifier FREE is used, all registers which were assigned under the REGBLOCK 

are made available for assignme::-it (are freed). If FREE is omitted, the registers 

are considered assigned. 

7-4 60324800 Rev. 04 



Immediately following the PROC directive a register block is automatically begun 

and ends with the first ENDBLOCK REGBLOCK or END directive. The register 

block is loaded by the prolog generated at a PROC or ENTRY directive. The 

first register loaded is register #20, and the length of the block is determined by 

the value of o/oORGW when the register block is terminated. This same register 

block is loaded at subsequent entry points. 

LOAD identifier; 

This macro is necessary to load a previously defined REGBLOCK, at the location 

specified by identifier, to the appropriate place in the register file. 

DATA GENERATING DIRECTIVES 

DCL identifier attributes { identifier attribute st J}; 
Identifier is the symbol being defined. Attributes are combinations of the following 

keywords • 

.f<:LOAT (7) 

FLOAT (14) 

FIXED (7) 

FIXED (14) 

INIT 

PRESET 

REG 

ARRAY 

SPARSE 

CHAR 

LABEL 

EQU 

MEM 

SYNCH 

BYN DOUBLE 

DEC TRIPLE 

BIT EXTERNAL 

Shortened forms of the attribute can replace the full word. The short form is 

underlined. 

60324800 Rev. 04 7-5 



FLOAT I ( 7) I 
(14) 

This attribute specifies that the identifier is to represent floating-point data items. 

The value in parentheses gives the effective number of decimal digits to be main­

tained in the fractional part, and therefore indicates whether a half word FLOAT(?), 

or a full word FLOAT(14) is being defined. In the absence of this attribute, 

FLOAT(14) is assumed. 

DCL DOG 

DCL CAT 

FLOAT (7) 

FLOAT (14) 

REG 10; 

SPARSE(lOO); 

FIXED ! ( 7) I 
(14) 

Same as FLOAT. 

INIT 

This attribute is used to initialize data into a memory or register defined field. 

Its use is further defined as it applies to different data types in the following 

attribute definitions. 

PRESET {
(ALL) t} 
(L=y, B=yy, X=yyy) y, yy, yyy = constant 

Preset is an attribute used to initialize full word registers and descriptors. It 

usually appears in a multivalued symbol definition to preset a length and base 

address in a register. The control vector register cannot be preset. 

The form PRESET (L=y, B=yy, X=yyy) is used to specifically indicate a: 

L length value (upper 16 bits base register) 

B base address values (lower 48 bits) 

X index value (index, or offset, or second register) 

7-6 60324800 Rev. 04 



Any or all of the values can be included within the parentheses. If a specific value 

is not mentioned, default conditions (the primary values and an index of zero) are 

used. Just PRESET or PRESET (ALL) use the default conditions. 

If registers are to be automatically assigned, PRESET implies that a base register 

is assigned. Unless an index register is specifically mentioned in a PRESET 

(L=y, B=yy, X=yyy) or in a REG, none is assigned. A PRESET (ALL) or PRESET 

with no REG attribute, or with a REG attribute with no index register assigned, 

will assign only one register, the base address register. 

DCL CHAR-STRING CHAR(IO) PRESET; 

One full word register is assigned containing a length of 10 and a base address 

of CHAR STRING. 

DCL VECTOR ARRAY (100) REG 5/11/12 PRESET (L=50); 

Register 5 contains a length of 50 and a base address of VECTOR. Register 11 is 

initialized to zero. The contents of register 12 are undefined. 

DCL C-VECTOR BIT(IOO) I 0 P (X=O); 

Two full word registers are assigned, one containing a length of 100 and a base 

address of C _VECTOR, and the other register containing zero. In addition, the 

bit string C _VECTOR is initialized to zero. 

REG { ~ 1 /n2 } n = constant or ? or register name 

nl /n2/n3 

The attribute REG is used to define a register symbol. If n is a constant, the 

register number(s) assigned is the value of that term. If n is a ? , a register is 

automatically assigned by the assembler. If n is a register name, it refers to 

its previously defined value. For example: 

DCL X REG?; DCL Y REG X; X & Y have the same register value. 

60324800 Rev. 04 7-7 



A full word register is assigned unless REG is preceded by FLOAT (7). 

n defines one register, the base address register 

defines a register pair 

n 1 the base register 

n 2 the index register, order vector register, or 

offset register 

defines three registers 

n 1 the base register 

n 2 the offset register 

n 3 the control vector register 

In automatic assignment, the registers n 1, n 2, and n 3 are not necessarily sequential. 

They are the first free registers encountered. The terms base register, index 

register, and control vector register are not necessarily indicative of the contents 

of these registers. They are just terms for referencing the first, second, and 

third registers defined. 

An INIT of the form INIT constant can appear after the REG attribute to initialize 

the register. 

Qualifiers are used to reference one specific register in the set of registers 

defined. The character< or> in parentheses give, respectively, the upper or 

lower half word of a given full word register. 

DCL REG SET ARRAY (10) REG 2/3/7; 

REG SET(B) 

REG SET(X) 

REG SET(B>) 

full word register 2 

full word register 3 

half word register 5 

Whenever a reference requiring a register is made to a symbol associated with a 

set of registers, an attempt is made to use all the registers possible. Given the 

above declaration, if REG SET is used as follows: 

7-8 60324800 Rev. 04 



$REG _SET = another array; 

the base register, index, and control vector registers are all used in the instruction. 

To override the use of any register, a zero must be specifically stated. 

$ REG SET, 0 = another array; 

In this instruction no index register is used. 

$ 0 'ON REG_SET = another array; 

This instruction has no control vector but the base address and index registers 

are used. 

If the register is not applicable to the field in which it is used, it is ignored. For 

example, if REG_ SET is used as an A field vector, the control vector is ignored 

because it does not apply to that particular field. 

A control vector operating on ones is assumed. The register must be specifically 

mentioned to have it operate on zeros. 

$ 'NOT REG SET(Z) 'ON REG SET = another array; 

{ SPARSE} 
ARRAY {(constant) t} 

This attribute is used to define and allocate memory for vector or sparse type 

symbols. The size of the symbol is full word unless ARRAY or SPARSE is 

preceded by FLOA T(7), in which case it is half word. Constant indicates the 

length of the symbol and the number of full words (half words) to be allocated, 

generally under the data location counter after alignment to a full word (half 

word) boundary. The value of the symbol is the bit address of the data location 

counter after alignment, unless another address is indicated by a MEM attribute. 

If constant is omitted or equals zero, no memory is allocated and the symbol 

length equals zero. This is usually done just to give a symbol the appropriate 

properties for an instruction. 

60324800 Rev. 04 7-9 



DCL VECTOR ARRAY(lO); 

DCL H VECTOR FLOAT(7) A(lOO); 

DCL S VECTOR FLOAT(7) SPARSE(lOO); 

DCL SPARSE2 SP(lO) PRESET(X=O); 

An INIT can appear after the ARRAY or SPARSE attribute to preset the vector. 

For example: 

DCL B ARRAY (100) INIT 3. 5; fills the entire B array with 3. 5 

DCL APPLE A(60) I (3. 4. 1. 5, 2); initializes the first four elements of the 

array 

DCL B ARRAY ( 100) INIT (3. 5); initializes only the first element of the B 

array with 3. 5 

CHAR {<constant)t} 

This attribute is used to define and allocate memory for a character string type 

symbol. The size of the symbol is a byte. Constant indicates the length of the 

symbol and the number of bytes to be aliocated, generally under the current data 

location counter after alignment to a byte boundary. Unless another address is 

stated by a MEM attribute, the value of the symbol is the bit address of the data 

location counter after alignment. 

If constant is omitted or equals zero. no memory is allocated and the length of 

the symbol equals zero. This is usually done to give a symbol appropriate 

properties for an instruction. An exception to this is when an INIT value is 

given, in which case the length is implied to be the number of characters. 

When using an INIT with a character string, the string is treated as a whole not 

as a series of bytes. If the data is shorter than the field, the data is adjusted and 

filled according to type of the constant. 

7-10 60324800 Rev. 04 



DCL TEST_FIELD CHAR(5) INIT #1253149111; 

DCL ERROR C(lO) INIT "ERROR 5" PRESET; 

DCL ERROR C INIT "ERROR 5" PRESET; a length of 7 is implied. 

DCL CAT CHAR(5) I "HOUSE"; the ASCII characters for HOUSE are stored 

in the field CAT. Initialized characters are left-justified, space filled. Note 

that in the PL/':' statement $A=X "ABC", the characters are right-justified, 

zero filled. 

DEC {constant)t} 

This attribute is used to define and allocate memory for a right-aligned, packed 

decimal string type symbol, used primarily in BCD arithmetic instructions. The 

size of the symbol is a 4-bit unit. Constant indicates the number of 4-bit units to 

be allocated, generally under the control of the data location counter after align­

ment to a byte boundary. The constant must allow for the 4-bit sign field. The 

length of the symbol in bytes is constant divided by 2. If constant is an odd 

number, the length after division is incremented by 1. If constant is omitted or 

equals zero, no memory is allocated and the length of the symbol equals zero. 

Unless another address is specified by a MEM attribute, the value of the symbol 

is the bit address of the data location counter after alignment. 

DCL DECTERM DEC(5); 

DCL DEC NUM DE(5) INIT -125; 

The length is 3 bytes for both examples. 

BYN ~constant)t} 

This attribute defines and allocates memory for a right-aligned binary string type 

symbol used primarily in byte aligned binary arithmetic instructions. The size 

60324800 Rev. 04 7-11 



of the symbol is a bit. Constant indicates the number of bits to be allocated, 

generally under the control of the data location counter after alignment to a byte 

boundary. The length of the symbol is a constant divided by 8 to give length in 

bytes. If the constant is not a multiple of 8, the length after division is incre­

mented by 1. If constant is omitted or equals zero, no memory is allocated 

and the length of the symbol equals zero. 

DCL BIN NUM BYN(lO); 

The length in the example is 2 bytes 

BIT ~constant)t} 

This attribute is used to define and allocate memory for a bit string type symbol. 

The size of the symbol is a bit. The length of the symbol and the number of bits 

allocated in memory is given by constant. Memory is generally allocated under 

the current data location counter. No alignment is necessary. Unless another 

address is stated by an MEM attribute, the value of the symbol is the bit 

address of the data location counter. 

If constant is omitted or equals zero, no memory is allocated and the length of 

the symbol equals zero. 

DCL CONTROL VECTOR BIT (100); 

LABEL 

This attribute follows a register assignment, and indicates that the register symbol 

defined will appear later as a label on an instruction. This allows the register con­

taining a branch address and the branch address to use the same symbol. The 

register assigned is preset with the bit address of the symbol as a label. LABEL 

automatically assigns a register if none is specified. 

7-12 60324800 Rev. 04 



DCL JUMP2 LABEL; 

DCL A JUMP REG #F LABEL; 

In the first example, the register is automatically assigned. The register is pre­

set with a length of zero and a base address of JUMP2 as a label. 

EQU n n = any constant or symbol 

EQU is an attribute used to equate a symbol to a constant. If the term following 

the EQU is other than a constant, the primary value of the term is handled as 

if it were a constant. No properties other than value are carried over by the 

EQU. No other attributes can appear with an EQU. 

DCL DOG EQU #15; 

DCL CAT EQU DOG; 

If DOG is full word register 5, CAT would have a value 5 but would have a type of 

constant not register. The statement DCL CAT REG DOG; would give a register 

type to CAT. 

MEM constant 

This attribute is used to assign a specific memory location value to a symbol. If 

MEM is used in conjunction with a data defining attribute, storage is also allocated 

at the address given. The MEM attribute must appear before the data defining 

attribute. If RELOC is specified, the value is relocatable only if it falls within 

the range of the initial and final values for %ORG or %ORGD. 

60324800 Rev. 04 7-13 



DCL STRING! MEM #41000 ARRAY(lOO) PRESET; 

DCL STRING2 M [VECTOR] CHAR(800) REG 5/ 11 PRESET; 

SYNCH 

p 

F 
H 
c 
s 

This attribute is used to align a data field to other than its implied boundary; for 

example, to force a vector of half words to start on a full word boundary. SYNCH 

must appear before the data defining noun and rounds up to the appropriate 

boundary. 

p align to page 

F align to full word 

H align to half word 

c align to byte 

s align to sword 

DOUBLE 

DOUBLE is an attribute used in lieu of the term REG? I? and assures automatic 

assignment of an even/odd register pair. FLOAT(7) can precede DOUBLE if a 

half word even/odd pair is desired. 

DCL FINAL AVG DIFF FLOAT(7) DOUBLE; 

DCL ARRAY RESULTS ARRAY(lOO) DOUBLE PRESET; 

TRIPLE 

TRIPLE is an attribute used in lieu of the term REG ')I? I 'J and assures automatic 

assignment of an even/odd register pair for A, C, C+l (base, offset, and control 

vector register). 

DCL RESULT VECTOR A(lOO) I 0 TRIPLE PRESET; 

DCL VECTOR A(lO) T; 

7-14 60324800 Rev. 04 



EXTERNAL 

This attribute specifies that the identifier is used here but defined in some other 

program as a label on a PROC or ENTRY. LABEL must appear as one of the 

attributes. EXTERNAL can also be a separate statement. 

DCL GRASSLAND LABEL EXTERNAL; 

DDCL attributes / , attributestJ j 

The dummy declaration is used to generate data without having to specify an 

identifier. 

DDCL C(7) INIT "ERROR 1"; 

DDCL ARRAY( 100) INIT O; 

DESCR identifier f(L=y, B=yy)} 
l symbol 

y, yy = constant 

This directive is used to initialize full words at the current ORGD aligned to a 

full word boundary. Identifier is an address symbol. 

L length (upper 16 bits of word) 

B base address (lower 48 bits of word) 

If the symbol form is used, the length and the value for the symbol is used in the 

descriptor word. 

NOTE: The qualifier L in parenthesis after a symbol gives the length of that 

symbol. 

DESCR VECTOR_DES (L=500, B= [VECTOR]); 

DESCR BIT DES CONTROL VECTOR; 

60324800 Rev. 04 7-15 



DDESCR f(L=y, B=yy)} 
l symbol 

The dummy description is used to initialize full words at the current ORGD 

aligned to a full word boundary without having to specify an identifier. 

DDESCR (L=3, B=[START] ); 

DDESCR TABLE; 

STABLE identifier { attributt:!st} {modifier st} : {/\char/\ = constantt J}; 
This directive was initially designed to create a syntax cracking table for the 

translate instructions. 

This directive allocates and initializes a 64-byte table corresponding to the 64 

characters in the ASCII subset. Identifier is the address symbol for referencing the 

table. The value of the symbol is 32 bytes less than the start of the table because 

the ASCII codes are used as byte indices to the table. Care must be used that the 

set referencing the bytes in the table lie in the range # 20 to # 5 F. 

Attributes are used as in the DCL statement. The allowed ones are REG, PRESET, 

MEM, SYNCH, EXTERNAL. 

Either FILL or BASED can be used as modifiers. 

This modifier determines the fill character to be used in every byte except those 

specifically mentioned in the latter part of the STABLE statement. If FILL is 

not specified, 0 (zero) is used as the fill value. The option which uses the 

exclamation point (!) specifies a function to be evaluated at each fill position. 

Take exclamation point to represent the current byte position in the table (e.g., 

the 32nd position is a space). Then m is a multiplicative constant for the position, 

and n is added or subtracted to form the final value. 

7-16 60324800 Rev. 04 



BASED constant 

This modifier gives a base address when STABLE is used to create a relative 

jump table. The contents of every byte in the table is interpreted as an index of 

this address. For example: 

STABLE GNU R ? FILL (-! +255) :/\# /\ = 2; 

STABLE HORSE BASED [START/32] FILL 7 :/\#3B/\ = #FF /\$ /\ = 

[ENTRI/ 8]; 

The expression to the right of the colon is used to fill specific bytes in the table. 

char some ASCII character or its numeric value specifying the byte 

to be filled 

constant - the value to be placed in the specified byte 

For example: 

/\Al\= 5 

This expression is interpreted as: 

in the character position A, #41 bytes from identifier, #21 bytes from the 

start of the table, put the constant #05. 

If the constant is an address expression, this address is subtracted from the base 

address given and the difference in bytes stored in that character position. 

Because of the characteristics of the syntax cracker in PL/':', the character ; 

(semicolon) cannot appear as a char in the byte fill field. Rather than specify 

the ASCII character, the hexadecimal constant for the ASCII code can be used. 

This alternate form is called the hex escape. In STABLE the range for the hex 

escape is #20 to #5F. For example: 

60324800 Rev. 04 7-17 



This expression uses #3B instead of a semicolon, and is interpreted as: 

in the #3B character position, 3B 16 bytes from identifier, 1B 16 bytes 

from the start of the table, put the constant 01 16 . 

STABLE TRANS_TABLE FILL #11 :/\,/\ =O /\#3B/\ =4 /\ /\ =2; 

The following table is produced: 

TRANS_ TABLE+3 2 bytes 02 11 11 11 11 11 11 11 

11 11 11 11 00 11 11 11 

11 11 11 11 11 11 11 11 

11 11 11 04 11 11 11 11 

11 11 11 11 11 11 11 11 

11 11 11 11 11 11 11 11 

11 11 11 11 11 11 11 11 

11 11 11 11 11 11 11 11 

TABLE identifier {attributes t} {modifier st} :{ /\ char/\ =constantt J} ; 
This directive is similar to STABLE. The only differences are that TABLE is 

256 bytes long and identifier is not displaced but is the bit address of the first 

byte in the table. 

7-18 60324800 Rev. 04 



PROGRAM CONSTRUCTION 8 

The following sections are miscellaneous comments on program structure and use 

of symbols. 

PROGRAM STRUCTURES 

The usual sequence for a PL/':' program is: 

1. Labeled PROC directive 

2. Counter orgs, data declarations, and symbol definitions 

3. Executable code 

4. RETURN directive returns control to system 

5. END directive 

All register names and data address symbols must be defined before use. Forward 

references to labels are allowed because PL/':' is a 1-pass assembler and forward 

references to labels are linked after assembly; the object code on the listing con­

tains zero. Instructions and directives can be mixed. 

REGISTER PAI RS 

Register pairs are two registers which are related by being a base address­

index, base address-offset, base address-order vector, or even/odd pair. 

Register pairs can be defined by REG n/n, DOUBLE, TRIPLE or PRESET 

attributes, where one symbol represents the pair. They can be represented 

in an instruction by using that symbol or by two register names separated by 

commas. The base address register or even register appears first. 

The assembler attempts to use as many registers defined with a symbol as possible. 

Therefore, if a symbol represents a register pair, both registers are used if the 

instruction where the symbol is used allows a pair. A qualifier or a specifically 

stated pair can be used to override the pair. 

60324800 Rev. 04 8-1 



DCL Rl REG 10/11; 

DCL R2 REG 13, R3 REG 14; 

$ R3 =: Rl; Rl represents both 10 and 11 

$ R3 =: Rl(B); Rl expression= register 10 

$ R3 =: Rl, O; Rl pair represents 10 with no index 

$ R3 =: Rl, R2 Rl pair uses base register 10, index register 13 

If any qualifier is used with a register pair, it must follow the first register name. 

VECTOR INSTRUCTIONS 

CONTROL VECTOR 

{ 1NOTt}register_name 'ON symbol 

A vector or vector macro instruction can have a control vector specified in the 

arrayC field. 

A control vector operating on ones uses the following format: 

BitZ 'ON arrayC 

where bitZ is the control vector register. 

A control vector operating on zeros uses the following format: 

'NOT bitZ 'ON arrayC 

If a control vector was included in a DCL defining a symbol and the symbol is used 

in an arrayC field which allows a control vector, the control vector operates 

on ones. If it is desired to have the control vector operate on zeros, it must be 

specifically mentioned. 

'NOT VECTOR 'ON VECTOR 

8-2 60324800 Rev. 04 



To get a different control vector or no control vector, the control vector can be 

overridden. 

0 'ON VECTOR 

C V 3 'ON VECTOR 

BROADCAST REGISTER 

To use a broadcast register in a vector instruction, the term to be broadcast must 

be either defined with a primary type of register or forced to be a register name 

using qualifiers. In the following examples, VECTORl and VECTOR2 are arrays 

with secondary register pairs. 

$VECTOR1 =U VECTORl +VECTOR2; 

The above is an add upper of two vectors. 

$VECTOR1 =U VECTORl(X) +VECTOR2; 

The above is a vector add upper with the index register of VECTOR 1 broadcast 

over the vector VECTOR2. 

60324800 Rev. 04 8-3 





COMPILE-TIME SYMBOLS AND STATEMENTS 

Compile-time statements produce no object code but are available to the user as 

another tool for assembly control. For reference purposes, all statements 

(symbols) which are not compile-time statements (symbols) are called assembly­

time statements (symbols). The primary difference between the two classes is 

the value of a compile-time symbol can be changed during assembly, while the 

value of an assembly-time symbol is fixed once the symbol is defined, 

Compile-time symbols can be used in either compile-time statements or 

assembly-time statements. Compile-time statements are preceded by a percent 

sign (%) and terminate with semicolon ( ;). One form of a compile-time statement 

is a simple replacement statement. 

%A =[%A+ 5 J; 

Assembly-time symbols in the form of an address expression can also appear to 

the right of the equals sign in a compile-time statement. 

%A [%A +LABEL]; 

%A = [VECTOR (L) ]; 

9 

Compile-time symbols can be used in assembly-time statements in place of an 

assembly-time symbol. Each compile-time symbol must be preceded by a%. The 

value of the compile-time symbol is used as if it were a constant, and appropriate 

attributes are assumed according to the instruction. 

The PL/':' assembler has six predefined compile-time symbols 

%FULL_REG....AUGMENT, %HALF-REG....AUGMENT, %ORG, %ORGD, %ORGR, 

and %ORGW which can be referenced and manipulated like any compile-time 

symbols. 

60324800 Rev. 04 9-1 



COMPILE-TIME REPLACEMENT STATEMENTS 

%compile_time_symbol = compile_time.-expression; 

A compile--time_expression has the form: 

[ 

+t constant constant t tr 

compile_time-symbol operator compile_time---Symbol 

ob ject--time----expres s ion objecLtime----expression 

The operators are: 

+ plus 

minus 

divide 

~::: multiply 

):::~::: exponentiation 

Parentheses cannot be used for grouping, and evaluation precedes from left 

to right. Note that a compile-time statement which starts with a compile-time 

symbol needs only one leading % sign. 

CONDITIONALS 

%IF (term 

. EQ. 

• NE • 

• GT • 

• GE . 

. LT . 

. LE. 

term) statement; 

This statement is used to conditionally alter the sequence in which statements are 

processed in the assembler. If the logical expression enclosed in parentheses is 

true, then the remainder of that conditional statement is used. If the expression 

is false, the next sequential statement is processed. 

9-2 60324800 Rev. 04 

j 

] 



Term can be either a compile_time_symbol or an assembly-time expression. 

Statement can be any statement except another %IF. 

%GO TO compile_time_label; 

This statement provides a jump to a compile-time-1abel. A compile_time-label 

can precede any statement but cannot be referenced in other than compiler-time 

statements. Both a forward or a backward jump is allowed. 

A compile_time-1abel has the form: 

% identifier: 

%TYPE identifier; 

%TYPE takes on a value indicating identifier type. The identifier type is determined 

in a declarative statement and is found in the leftmost four character positions of 

the instruction field in an assembly listing. 

':'If Arithmetic 

00 - default 

01 - normalize/ significant 

10 - upper 

11 - lower 

':'If Character String 

00 - count delim. 

01 - mask 

10 - char 

11 - double 

60324800 Rev. 04 

Flag bit 
indicator 

Flag bit 
value 

FIXED 

{~:f~}':' 
multi-dimension 

common (static) 

DEC 

SPARSE 

BIT 

undefined 

constant 

LABEL 

ARRAY 

CHAR 

REG 

half word 

(right-
most 
digit) 

8 

4 
2 

1 

8 

4 

2 

1 

8 

4 

2 

1 

8 

4 

2 

1 

9-3 



Example: 

2 

3 

4 

A 

B 

8 2 

FFF F 

Full word register name 

Half word register name 

Character string 

Full word array with length/base register 

Half word array with length/base register 

Bit string with length/base register 

Undefined (first occurrence of identifier) 

PR OC { identifier t} { (parameter { parametert J } )t} 

This directive identifies the beginning of a procedure. PROC must be preceded by 

one or more labels limited to eight characters each. The last label becomes the 

module name. All of the labels are entry point names defined as an address sym­

bol with values of the current address of the program location counter. If identi­

fier is used, it is the name of the REGBLOCK loaded by the prolog generated. 

Also generated is the code necessary to stack the caller's registers. 

Each of the parameters is assigned to an odd register beginning with register 

#FD, working toward register zero. This implies a default attribute of value. 

If it is desired that the parameter be a descriptor and therefore assigned to 

the appropriate odd register (even register minus one) the parameter must be 

given new attributes in a declaration statement. 

A:PROC(A); 

DCL A CHAR; 

If an attribute of register appears in the redefinition of a parameter, a register 

transmit is generated to move the parameter from the parameter registers to the new 

register. The opposite transmit is generated at all subsequent RETURN macros. 

If it is desired not to have the parameters returned at the time of RETURN, an 

asterisk (':') catenated to the front of the parameter in the PROC statement will 

suppress it. 

9-4 

A:PROC(A, ':'B); 

DCL A CHAR; 

DCL BA P; 

60324800 Rev. 04 



label: ENTRY {(parameter {, parameter t f } )t} ; 

This directive identifies an entry point to the module. The necessary code for 

stacking the caller's registers and loading the initial register block is generated. 

ENTRY must be preceded by one or more labels limited to eight characters each. 

These labels become entry point names with a value of the current address of the 

program location counter. 

The parameters are assigned in the same way as for PROC. If one of the param­

eters has the same name as one which appeared in the PROC, it must appear in 

the same position. For example, 

A:PROC(A,B); 

B:ENTRY(ALPHA, B); 

If the redefinition of a parameter occurs which results in the generation of one or 

more register transmits, the same register transmits will occur at subsequent 

entry points if the parameter is listed. 

T:PROC(A); 

DCL A R? 

S:ENTRY(A); 

U:ENTRY(B); 

EXTERNAL identifier {, identifiert J} 

The EXTERNAL macro identifies linkage symbols that are used by a program but 

are defined in some other program. Identifier must appear as a label on a PROC 

or in an ENTRY. This macro allocates two registers per identifier and must there­

fore appear as the first statement in the initial register block. 

60324800 Rev. 04 9-5 



CALL identifier {(parameter {· parametert J })t} 

This macro creates a standard calling sequence for library routines and sub­

programs. Identifier is the entry name of a subprogram. Entry names are 

generated in a subprogram by PROC and ENTRY. The parameters can be either 

register names, array names, or constants, and it is assumed that each param­

eter represents two registers that correspond to the parameters in the appropriate 

PROC or ENTRY. The parameters are loaded sequentially starting with register 

#FD. 

If the parameter is a descriptor it is loaded into the even register; if it is a value, 

it is loaded into the odd register, and if it is a register pair it is loaded into the 

even/odd pair respectively. If the parameter register to be loaded is the same as 

the register already containing the parameter, the load does not take place. 

Upon return from the callee, the parameters are restored to where they were 

loaded from unless suppressed by a catenated asterisk (':') as in the PROC and 

ENTRY; 

Example: 

RETURN; 

PROC (Pl, P2, P3, P4); 

DCL A REGP; 

DCL B ARRAY PRESET; 

DCL C R? /?; 

DCL D ARRAY; 

CALL SUBROUTINE (A, ':'B, C, P4, 3, D); 

This macro generates a return to the program which called the subprogram in 

which the RETURN is found. First the status of the register file is restored, 

and then control is transferred to the return location. 

If there were any parameter redefinitions resulting in the generation of register 

transmits, the parameters are restored just prior to the RETURN. For examples 

see PROC and ENTRY. 

9-6 60324800 Rev. 04 



STORE identifier; 

This macro stores the initial regblock, generated immediately following the 

PROC directive, into static space where it was loaded from by the prolog. 

Identifier is a register name containing the contents of the LINK register im­

mediately after the prolog was executed. 

A:PROC; 

DCL SIN LABEL EXT; 

DCL AR? INIT 3. 141 7; 

DCLBR?; 

$B= LINK; 

CALL SIN(A), 

SAVE B; 

If the link register is not destroyed by a CALL macro, it can appear as the 

identifier. 

70324800 Rev. 04 

B:PROC; 

DCLAAP; 

DCLBAP; 

SAVE LINK; 

9-7 



label: FORMAT (option {, optiont J} ); 

This macro is comparable to the FORTRAN FORMAT. Options implemented are 

F, I, E, A, G, R, H, X, /, ':'Hollerith value':', and# (that is, hexadecimal values). 

Parentheses can be used for rep·eat groups. The first print position is not used 

for carriage control. 

IO LIST list name identifier {, identifiert J}; 

List name is used to name the collection of identifiers which follows. Identifier 

is a symbol or array to be printed. An array must be named with subscripts and 

is therefore printed in its entirety. 

IOLIST and FORMAT are used in conjunction with a CALL to INPUTC or 

OUTPUTC. 

CALL INPUTC (format address, register_pair, list name); 

This macro is comparable to the FORTRAN READ (ENCODE) and is used to read 

coded input. The format address is the label on a FORMAT macro; register _pair 

is the name of two registers holding the base address and index of the input area. 

CALL OUTPUTC (format_ address, register _pair, list name); 

This macro is comparable to the FORTRAN WRITE (DECODE) and is used to write 

coded output. The format_ address is the label on a FORMAT macro, register _pair 

is the name of two registers holding the base address and index of the output area, 

and list_ name is the first operand of the IO LIST macro. After execution the index 

is updated and the length set to #lFlC, but the base address remains the same. 

The list_ name can be zero if the associated FORMAT has only Hollerith informa­

tion. Compressed output is generated except when the output area address is 

below #8000. Also, for output area addresses below #8000, only one line as 

terminated by / or ) is produced, and the final #IF (end-of-record) does not 

appear. 

9-8 60324800 Rev. 04 



DCL H A(3) PRESET;DCL G A(5) P; 

DCL I R ? , JR? , KR ? ; 

DCL STORE REG ? /? P (L=O, B=20000000, X=O); 

IOLIST ZARATHUSTRAG, H, I, J, K; 

FORMX: FORMAT (3F 12. 0, /, 5E20. 8, 1 lX 6HREGS 3I4); 

f':'l'\OTE THAT BOTH IOLIST AND FORMAT MUST APPEAR BEFORE 

THE CALL TO OUTPUTC (OR INPUTC)':' / 

CALL OUTPUTC (FORMX, STORE, ZARATHUSTRA); 

MESSAGE r [register-name] 1 . 
l. register-name j ' 

This macro is used to communicate with the monitor with the exit force instruction. 

If the form MESSAGE [register-name J is used, the following code is generated 

at the program location counter: 

09000000 
OOFFOOOO 
ooooxxxx 

where XXXX is the bit address of the register-name. At this bit address in the 

register file is found a message to the monitor. If the form MESSAGE register­

name is used, the following code is generated: 

09000000 
OOEEOORR 

where RR is the register number associated with register-name, the contents of 

register RR point to a message located in virtual memory. 

RELOCOFF; 

RELOCON; 

PROLOGOFF; 

PROLOGON; 

By default the code generated by PL/ST AR is relocatable. The exact format of an 

assembled module can be found in section 7. If in the calling sequence non­

relocatable code is requested, the code, data and reg blocks are positioned by the 

user with the compile time code. 

60324800 Rev. 04 9-9 



The use of RELOCOFF causes the symbols to follow which would normally be 

flagged as relocatable to be ignored in the relocation table. RE LO CON reinitiates 

the process. For example, if a program were to be assembled in relocatable 

form the following 

DCL A VECTOR ARRAY PRESET; 

RELOCOFF; 

DCL B VECTOR ARRAY PRESET; 

RELOCON; 

$A VECTOR(B)=X (B_VECTOR]; 

RELOCOFF; 

$A_ VECTOR(B)=X ( B _VECTOR]; 

RELOCON; 

would cause the contents of the register containing the present values for B _VECTOR 

not to be included in the relocation table. Likewise the second enter immediate 

instruction would not be relocatable. RE LOCON cannot be used if absolute code is 

being generated. 

The use of PROLOGOFF before a PROC or ENTRY directive inhibits the genera­

tion of the prolog necessary for stacking the register file and loading of a reg 

block. PROLOGON reinitiates the process. The use of PROLOGOFF might be 

used if a program runs strictly out of the temporary registers and does not need 

to stack the registers. 

Any code or data which does not appear within the bounds of the beginning and 

ending ORG and ORGD counter is not flagged as being relocatable. For example, 

if the beginning and ending values were #8000 and #100000, and #10000, #200000 

and the following code appeared in the source 

%SAVE ORGD=o/o ORGD; 

%ORGD=#3 7000000; 

DCL VECTOR AP; 

o/oORGD=o/o SAVE ORGD; 

the preset base address for VECTOR, #37000000, would not be relocatable. 

9-10 60324800 Rev. 04 



CALLING SEQUENCE 

PLSTAR (source code, binary_output, listing, errors, abs code, x ref); 

where source code is a virtual address or file name, 

binary_ output is a virtual address or file name, 

listing is a virtual address or file name, 

errors is a virtual address or file name, and 

abs code is nonzero or zero denoting a request for nonrelocatable or 

relocatable code respectively. 

x ref is a nonzero or zero denoting a request for a cross reference listing 

of all symbols or not 

The default conditions are: 

60324800 Rev. 04 

#10000000 

Dynamic space 

#20000000 

#8000000 

0 

0 

8-11 





INSTRUCTION SET 

GENERAL DEFINITION 

Some rules that must be considered when using this instruction set: 

1. The two columns of numbers preceding the instruction model are 

the op-code and format type, respectively. Some instructions 

have an alternate form. 

A 

2. All upper case letters and delimiters except those described in para­

graphs 3-6 following are part of the instruction and must appear as such. 

3. All lower case terms are used to define a general class and are 

defined in 6. The upper case letter(s) following indicate the field 

in the instruction format to which the term applies. 

4. The letter Q is not part of the syntax but denotes options in the 

syntax. The options are listed just before the sequence of in­

structions where the Q appears. 

5. The user of brackets { f is not part of the s:vntax but denotes an 

option in the syntax. 

6. Definition of general terms: 

• array: A symbol or combination of symbols describing 
a full or half word vector. The arrayC term can also 
include control vector notation. The qualifier (A) forces 
a full word vector. 

• bit: A symbol or register pair describing a bit string. 
The qualifier (Y) forces a bit string. 

• byn: A symbol or register pair describing a byte -aligned 
binary string. The qualifier (Y) forces a byte -aligned 
binary string. 

• char: A symbol or register pair describing a character 
string. A qualifier (C) forces a character string. 

• con: A constant or symbolic constant or expression, 
optionally preceded by a sign. 

• dee: A symbol or register pair describing a packed decimal 
string. The qualifier (D) forces a decimal string. 

60324800 Rev. 04 A-1 



• full: A full word register name 

• half: A half word register name 

• label: A full word register name which contains a jump address 

• label-pair: A full word register name or a full word register 
pair which contain a branch or base address and an index, 
respectively. 

• sparse: A symbol or register pair describing a full word or 
half word, sparse vector. The qualifier (S) forces a sparse 
array. One of the sparse operands must either be defined as 
sparse or have a (S) qualifier or the vector form of the in­
struction is assembled. 

• double: A symbol or register pair describing a full word or 
half word even-odd register pair. (Some may have a control 
vector format { 'NOTt} controLvector 'ON double.) 

INSTRUCTION FORMATS 

00 

04 

05 

08 

09 

09 

OA 

oc 
OD 

OE 

OF 

10 

11 

12 

13 

14 

15 

16 

A-2 

4 $'IDLE; 

4 $'BKPT fullR; 

4 $'ALGO; 

4 $'CHAN conR; 

4 $'EXIT; 

4 $'EXIT fullT, fullS; 

4 $'MCLOCK= fullR; 

4 $'STAR; 

4 $'LDAR; 

4 $fullT = 1CHAN:fullR; 

4 $fu11T= fullS 'KEYS=fullR; 

A $full T=B fullR; 

A $full T= D fullR; 

7 $fu11T=G charR; 

7 $charR=P fullT; 

7 $bitT= bitS! bitR; 

7 $bitT= \ bitR. bitS\; 

7 $bitT= ! bitR. bitS!; 

Idle 

Set breakpoint from R 

Execute algorithm (EM -1 only) 

Set channel flag from R 

Exit force (user mode to monitor) 

Exit force (monitor to user mode) 

Transmit R to monitor clock 

Store associative registers 

Load associative registers 

Translate external interrupt 

Load keys from R, translate S to T 

Convert BCD to binary, fixed length 

Convert binary to BCD, fixed length 

Load byte T per S, R 

Store byte T per S, R 

Bit compress 

Bit merge 

Bit mask 

60324800 Rev. 04 



17 

18 

19 

lA 

lB 

lC 

lD 

lE 

lF 

20 

21 

22 

23 

22 

23 

24 

25 

26 

27 

26 

27 

28 

29 

2A 

2B 

31 

7 

7 

7 

7 

7 

7 

7 

7 

7 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

7 

7 

6 

4 

7 

$charT= \ charR. charS\; 

$>>charT, fullR. fullS; 

$'REV charT? 'NE conR; 

$charT=!conR; 

$charT=!fullR; 

$full T=Z fullR. fullS; 

$fu11T=O fullR. fullS; 

$full T=Z bitR.; 

$fu11T=O bitR; 

$halfR'EQ halfS:fullT; 

$halfR 'NE halfS:fullT; 

$halfR 'GE halfS:fullT; 

$halfR 'LT halfS:fullT; 

$halfS 1 LE halfR :fullT; 

$halfS 'GT halfR :fullT; 

$fullR 'EQ fullS :fullT; 

$fullli 'NE fullS:fullT; 

$fullR 'GE fullS :fullT; 

$fulm 'LT fullS:fullT; 

$fullS I LE fullR :fullT; 

$fullS'GT fullR:fullT; 

$charT? 'EQ conH; 

$charT '? 'NE conR; 

$fullR =E conT; 

$fullT =E fullR +fullS; 

$fullR + 1 :label_pair; 

Character string merge 

Move bytes right (R)+(T) to (R)+(S)+(T) 

Scan right for not equal byte 

Fill field with byte R 

Fill field with byte from reg R 

Form suffix vector, leading zeros 

Form prefix vector, leading ones 

Maximum prefix function, count leading 
equals 

Bit string sum reduction, count ones 

Branch if R equals S 

Branch if R not equal S 

Branch if R greater or equal S 

Branch if R less than S 

Branch if R greater or equal S 

Branch if R less than S 

Branch if R equal S 

Branch if R not equal S 

Branch if R greater or equal to S 

Branch if R less than S 

Branch if R greater or equal to S 

Branch if R less than S 

Scan equal to byte H 

Scan unequal to byte R 

Enter length of H with I (16) 

Add to length field 

Increase R and branch if H not equal 0 

Both Bit Branch and Alter and Data Flag Branch instructions have relative branch 

capability, limited to plus or minus 2 56 half words. In place of the fullT field one 

can put an address constant or a relative count. The form for the relative count is 

n/ F for forward jump and n/B for backward jump, where n is the number of half 

words. 

3200 9 

3210 9 

3220 9 

$ { fullS IN } :{fullT /N } ; 
${fullS/T }:{fullT/N}; 

${fullS/S J:{fullT/N}; 

60324800 Rev. 04 

Bit branch and alter(no JMP, no ALT) 

Bit branch and alter(no JMP, toggle) 

Bit branch and alter(no jump, set) 

A-3 



3230 9 $ { fullS /R } : { fullT /N L Bit branch and alter(no jump, reset) 

3240 9 $ { fullS /N } : { fullT }; Bit branch and alter (jump, no alter) 

3250 9 $ { fullS /T } : { fullT }; Bit branch and alter (jump, toggle) 

3260 9 $ {fullS /S }: {fullT ); Bit branch and alter(jump, set) 

3270 9 $ { fullS /R ): ( fullT }; Bit branch and alter(jump, reset) 

3230 9 $ { fullS /N ) : { full T I 0 }; Bit branch and alter(JMP one, no alt) 

3290 9 $ { fullS /T } : { full T I 0 } ; Bit branch and alter(JMP one, toggle) 

32AO 9 $ {fullS /S }: {fullT /0 }; Bit branch and alter(JMP one, set) 

32BO 9 $ { fullS /R }:{fullT/O ); Bit branch and alter(JMP one, reset) 

32CO 9 $ { fullS /N }: { fullT /Z }; Bit branch and alter(JMP zero, no alt) 

32DO 9 $< fullS /T }:{fullT/Z }; Bit branch and alter(JMP zero, toggle) 

32EO 9 $ <fullS /S }: {fullT /Z }; Bit branch and alter(JMP zero, set) 

32FO 9 $ { fullS /R }: < full T I z } ; Bit branch and alter(JMP zero, reset) 

3300 B ${conS/N }: { fullT /N } ; DF branch and alter(no JMP, no alter) 

3310 B $ { conS /T }: { fullT /N } ; DF branch and alter(no JMP, toggle) 

3320 B $ {cons /S }: {fullT /N }; DF branch and alter(no JMP, set) 

3330 B $ { conS /R }: { fullT /N } ; DF branch and alter(no JMP, reset) 

33J,O B ${conS/N }: { fullT ) ; DF branch and alter(jump, no alter) 

3350 B ${conS/T } : {full T } ; DF branch and alter(jump, toggle) 

3360 B $ { conS /S }: {fullT }; DF branch and alter(jump, set) 

3370 B $ { conS/R }: { fullT }; DF branch and alter(jump, reset) 

33'30 B $ {cons /N }: { fullT /O } ; DF branch and alter(jump one, no ALT) 

3390 B $ { conS /T }: { fullT /O }; DF branch and alter(jump one, toggle) 

33AO B $ { conS /S ): (fullT /0 }; DF branch and alter(jump one, set) 

33BO B $ { conS /R }: { fullT /0 }; DF branch and alter(jump one, reset) 

33CO B $ {conS/N } :{ fullT /Z }; DF branch and alter(jump zero, no ALT) 

33DO B $ { conS /T }:{ fullT I z ); DF branch and alter(jump zero, toggle) 

33EO B ${conS/S ):{fullT/Z }; DF branch and alter(jump zero, set) 

33FO B $ {cons /R ) : { fullT I z ) ; DF branch and alter(jump zero, reset) 

35 7 $fullR -1: la be 1-pair; Decrease R and branch if R not equal 0 

36 7 $fullR =:la be 1-pair; Branch and set R to next instruction 

38 A $fullT =E fullR; Transmit R(0-15) to R(0-15) 

39 A $fu11T= 'RCLOCK; Transmit real-time clock to T 

3A A $I JC LOCK =fullR; Transmit R to job clock 

3B A $fullT= 'DFR = fullR; Data flag register load and store 

3C 4 $halfT=X halfR'!'halfS; Half word index multiply R'!'S to T 

A-4 60324800 Rev. 04 



3D 4 $fullT =X fullR ':'fullS; Index multiply R':'s to T 

3E 6 $fullR =X conI; Enter R with I ( 16) 

3F 6 $fullR =+ conI; Increase R by I (16) 

40 4 $halfT=U halfR+halfS; Add upper R+S to T 

41 4 $halfT=L halfR+halfS; Add lower R +S to T 

42 4 $halfT =N halfR +halfS; Add normalized R+S to T 

44 4 $halfT =U halfR- halfS; Subtract upper R- S to T 

45 4 $halfT =L halfR-halfS; Subtract lower R -S to T 

46 4 $halfT =N halfR -halfS; Subtract normalized R -S to T 

48 4 $halfT=U halfR':'halfS; Multiply upper R':'s to T 

49 4 $halfT=L halfR':'halfS; Multiply lower R':'s to T 

4B 4 $halfT =S half R':'halfS; Multiply significance R ':'s to T 

4C 4 $halfT =U halfR /halfS; Divide upper R /S to T 

4D 6 $halfR =X conI; Half word enter R with I (16) 

4E 6 $halfR =+ conI; Half word increase R with I (16) 

4F 4 $halfT=S half R/halfS; Divide significance R /S to T 

50 A $halfT =T half R; Truncate R to T 

51 A $ halfT = F halfR; Floor R to T 

52 A $halfT =C halfR; Ceiling R to T 

53 A $ halfT =S halfR; Significance square root of R to T 

54 4 $halfT=S halfS. halfR; Adjust significance of R per S to T 

55 4 $halfT=E halfS. halfR; Adjust exponent of R per S to T 

58 A $halfT =halfR; Transmit R to T 

59 A $halfT =A halfR; Absolute R to T 

5A A $halfT =U . halfR; Exponent of R to T 

5B 4 $halfT=U halfS. halfR; Pack R, S to T 

5C A $full T= > halfR; Extend R(32) to T(64) 

5D A $fu11T=X halfR; Index extend R(32) to T(64) 

5E 7 $halfT =G labeLpair; Load T per S, R 

5F 7 $label-pair =P halfT; Store T per S, R 

60 4 $fu11T=U fullR+fullS; Add upper R +S to T 

61 4 $fullT =L fullR +fullS; Add lower R +S to T 

62 4 $fullT =N fullR +fullS; Add normalized R +S to T 

63 4 $fullT =X fullR +fullS; Add address R +S to T 

60324800 Rev. 04 A-5 



64 4 $fullT=U fullR-fullS; Subtract Upper R -S to T 

65 4 $fullT=L fullR-fullS; Subtract lower R-S to T 

66 4 $full T =N fullR -fullS; Subtract normalized R -S to T 

67 4 $fullT =X fullR-fullS; Subtract address R-S to T 

68 4 $full T = U fullR ':'fullS; Multiply upper R':'s to T 

69 4 $fu11T=L fullRi.'fullS; Multiply lower R':'s to T 

6B 4 $full T =S fullR ':'f ullS; Multiply significance R ':'s to T 

6C 4 $fu11T=U fullR/fullS; Divide R /S to T 

6F 4 $full T =S fullR I fullS; Divide significance R /S to T 

70 A $fullT=T fullR; Truncate R to T 

71 A $full T = F fullR; Floor R to T 

72 A $fullT=C fullR; Ceiling R to T 

73 A $fullT=S fullR; Significance square root of R to T 

74 4 $fullT =S fullS. fullR; Adjust significance or R per S to T 

75 4 $fullT=E fullS. fullR; Adjust exponent of R per S to T 

76 A $halfT=< fullR; Contract R(64) to T(32) 

77 A $halfT =R fullR; Rounded contract R(64) to T(32) 

78 A $full T = fullR; Transmit R to T 

79 A $fullT =A fullR; Absolute R to T 

7A A $fullT=U . fullR; Exponent of R to T 

7B 4 $fu11T=U fullS. fullR; Pack R, S to T 

7C A $full T =E . fullR; Length of R to T 

7E 7 $fullT=G label-pair; Load T per S, R 

7F 7 $label-pair =P fullT; Store T per S, R 

SIGN CONTROL capability for vector instructions, 80 through 8F (except 83 and 87), 

and for all sparse vector instructions, AO through AF: 

Q 1 - 'NOT, 'ABS, -, omitted 

Q2 - 'ABS, omitted 

A-6 60324800 Rev. 04 



The above are sign control options for that vector: 

omitted 

'ABS 

'NOT 

use operands in normal manner 

use magnitude of operands 

use complement of operands 

(minus) make all operands negative before use 

so 
Sl 

S2 

S3 

S4 

S5 

S6 

S7 

SS 

S9 

SB 

SC 

SF 

90 

91 

92 

93 

94 

95 

96 

97 

9S 

99 

9A 

9B 

9C 

AO 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

$arrayC =U Q 1 arrayA + Q 2 arrayB; 

$arrayC=L Q 1 arrayA+Q 2 arrayB; 

$arrayC =N Q 1 array A+ Q 2 arrayB; 

$arrayC =X arrayA + arrayB; 

$arrayC=U Q 1 arrayA- Q 2 arrayB; 

$arrayC =L Q 1 arrayA- Q 2 arrayB; 

$arrayC =N Q 1 arrayA- Q 2 arrayB; 

$arrayC =X arrayA- arrayB; 

$arrayC =U Q 1 arrayA':' Q 2 arrayB; 

$arrayC =L Q 1 array A':' Q 2 arrayB; 

$arrayC =S Q 1 arrayA':' Q 2 arrayB; 

$arrayC =U Q 1 array A I Q 2 arrayB; 

$arrayC =S Q 1 array A I Q 2 arrayB; 

$arrayC=T arrayA; 

$arrayC =F arrayA; 

$arrayC=C arrayA; 

SarrayC =S QarrayA; 

$arrayC =S arrays. arrayR; 

$arrayC=E arrayS.arrayR; 

$half_arrayC =< full_ array A; 

$half_arrayC =R fulL.arrayA; 

$arrayC = arrayA; 

$arrayC=A arrayA; 

$arrayC =U. arrayA; 

$arrayC=U arrayB. arrayA; 

$fulL.arrayC '-)>halL.arrayA; 

$sparseC =U Q 1 sparseA-+QzsparseB; 

60324SOO Rev. 04 

Vector add upper A +B to C 

Vector add lower A +B to C 

Vector add normalized A+B to C 

Vector add address A+B to C 

Vector subtract upper A-B to C 

Vector subtract lower A-B to C 

Vector subtract normalized A-B to C 

Vector subtract address A-B to C 

Vector multiply upper A':'B to C 

Vector multiply lower A':'B to C 

Vector multiply significant A':'B to C 

Vector divide upper A /B to C 

Vector divide significant A /B to C 

Vector truncate A to C 

Vector floor A to C 

Vector ceiling A to C 

Vector significant square root of 
A to C 

Vector adjust significance of A 
per B to C 

Vector adjust exponent of A per B 
to C 

Vector contract A(64) to C(32) 

Vector rounded contract A(64) to C(32) 

Vector transmit A to C 

Vector absolute A to C 

Vector exponent of A to C 

Vector pack A, B to C 

Vector extend A(32) to C(64) 

Sparse add upper A+B to C 

A-7 



Al 2 $sparseC=L Q 1 sparseA+ Q 2 sparseB; Sparse add lower A +B to C 

A2 2 $sparseC =N Q 1 sparseA + Q2 sparseB; Sparse and normalized A+B to C 

A4 2 $sparseC=U Q 1 sparseA- Q 2 sparseB; Sparse subtract upper A-B to C 

A5 2 $sparseC=L Q 1 sparseA- Q 2 sparseB; Sparse subtract lower A-B to C 

A6 2 $sparseC=N Q 1 sparseA- Q 2 sparseB; Sparse subtract normalized A-B 
to C 

AS 2 $sparseC =U Q 1 sparseA':' Q 2 sparseB; Sparse multiply upper A'~B to C 

A9 2 $sparseC=L Q 1 sparse_\.,~ Q 2 sparseB; Sparse multiply lower A*B to C 

AB 2 $sparseC=S Q 1 sparseA':' Q 2 sparseB; Sparse multiply significant 
A'!'B to C 

AC 2 $sparseC =U Q 1 sparseA I Q 2 sparseB; Sparse divide upper A /B to C 

AF 2 $sparseC=S Q 1 sparseA/ Q 2 sparseB; Sparse divide significant A /B 
to C 

In the BO through B5 instructions branch can be one of the following: 

1, label pair: branch address is contained in register B with a halfword index in Y 

2, address constant: the B field contains a halfword index to the address given 

3. n/F or n/B where n is a constant indicating a jump n halfwords forward or 
backward, respectively 

BO c ${fu11C )=X {fullA )+(fullX } 1EQ{fullZ }:branch Index branch if 
(A)+(X) EQ (Z) 

Bl c ${fullC }=X{fullA )+{fullX }'NE{fuUZ }:branch Index branch if 
(A)+(X) NE (Z) 

B2 c ${fu11C }=X{fullA )+{fullX }'GE {fullZ }:branch Index branch if 
(A)+(X) GE (Z) 

B3 c ${fullC }=X {fullA }+(fullX }'LT {fullZ }:branch Index branch if 
(A)+(X) LT (Z) 

B4 c ${fu11C '} =X {fullA }+{fullX }'LE {fullZ }: branch Index branch if 
(A)+(X) LE (Z) 

B5 c ${fullC }=X {fullA } +{fullX } 1GT {fullZ }branch Index branch if 
(A)+(X) GT (Z) 

B6 5 $fullR +: con!; Branch to immediate 
address (R)+I(4S) 

B7 1 $arrayC [array A]= arrayB; Transmit list to 
indexed C 

BS 1 $arrayC = 'REV arrayA; Transmit reverse 
A to C 

B9 1 ~ullZ'ON }runB= arrayA. arrayC= fullY; Transpose move 

A-8 60324SOO Rev. 04 



BA 1 $arrayC = arrayB [arrayA]; Transmit indexed list to C 

BB 2 $arrayC = ! arrayA. bitZ. arrayB!; Mask A, B to C per Z 

BC 2 $arrayC = {'NOT} bi tZ ! array A; Compress A to C per Z 

BD 2 $arrayC = \ arrayA. bitZ. arrayB\; Merge A, B to C per Z 

BE 5 $fullR =X conl; Enter R with I(4S) 

BF 5 $fullR =+ conI; Increase R by I(4S) 

co 1 $ful1C = arrayA 'EQ arrayB; Select A EQ B, item count to C 

Cl 1 $ful1C = arrayA 'NE arrayB; Select A NE B, item count to C 

C2 1 $ful1C = array A 'GE arrayB; Select A GE B, item count to C 

C3 1 $ful1C = arrayA 'LT arrayB; Select A LT B, item count to C 

C2 1 $ful1C= arrayB'LE arrayA; Select B LE A, item count to C 

C3 1 $fu11C= arrayB'GT arrayA; Select B GT A, item count to C 

C4 1 $bitZ= arrayA'EQ arrayB; Compare A EQ B, order vector to C 

C5 1 $bitZ= arrayA 1NE arrayB; Compare A NE B, order vector to C 

C6 1 $bitZ = array A 'GE arrayB; Compare A GE B, order vector to C 

C7 1 $bitZ= arrayA'LT arrayB; Compare A LT B, order vector to C 

In the CS through CB instructions the optional item, /I, indicates that the start of 

the search is at the location of the last hit in arrayB (rather than the beginning) for 

each element of arrayA. 

cs 1 $arrayC = array A 'EQ arrayB(/I }; 

C9 1 $arrayC = array A 'NE arrayB{/ I ) ; 

CA 1 $arrayC = array A 'GE arrayB{/I ) ; 

CB 1 $arrayC= arrayA'LT arrayB(/I }; 

CD 5 $halfR =X conl; 

CE 5 $halfR =+ conI; 

CF 1 $sparseC= 'GE Q2arrayB! Qi array A; 

DO 1 $arrayC = 'AVG arrayA +arrayB; 

Dl 1 $arrayC= 'AVG arrayA; 

60324SOO Rev. 04 

Search EQ, index list to C 

Search NE, index list to C 

Search GE, index list to C 

Search LT, index list to C 

Halfword enter R with I(24) 

Halfword increase R with I(24) 

Compress A to C per B 

Average ((A(N) + B(N))/2 to C(N) 

Adjacent mean ((A(N +1) +A(N)) /2 
to C (N) 

A-9 



D4 1 

D5 1 

D6 3 

D7 3 

DS 1 

D9 1 

DA 1 

DB 1 

DC 1 

DD 1 

DE 1 

DF 1 

EO 3 

El 3 

E2 3 

E3 3 

E4 3 

E5 3 

E6 3 

E7 3 

ES 3 

E9 3 

EA 3 

EB 3 

EC 3 

ED 3 

$arrayC = 'AVG arrayA-arrayB; 

$arrayC = 'DEL arrayA; 

${bitC'ON } bitA?bitB.{fullG }; 

$!arrayC== charA. charB/Q; 

$fullC, fullB= 'MAX Q 1 arrayA; 

$fullC, fullB= 'MIN Q 1 arrayA; 

$doubleC = +!array A; 

$fullC = ':'!arrayA; 

$doubleC = arrayA':'+arrayB; 

$doubleC = sparseA':'+sparseB; 

$arrayC = array A +':'arrayB; 

$arrayC = fullA ++fullB; 

$bynC =B bynA +bynB; 

$ bynC = B bynA - bynB; 

$bynC=B bynA':'bynB; 

$bynC =B bynA /bynB; 

$decC = D decA +decB; 

$decC=D decA-decB; 

$decC= D dec':'decB; 

$decC = D decA I decB; 

$b,vnA 0 b:rnB; 

$decA ?decB; 

$charC =\char A. conG. charB\; 

$charC=% charB'ON decA.fullG; 

$charC=# charA+charB.conG; 

$charC=# charA-charB.conG; 

Average difference 
((A(N)-B(N)) /2 to C(N) 

Delta (A(N+l)-A(N)) to C(N) 

Search for masked key, bit; 
A, B per C 

Translate and mark A per B to C 

Maximum of A to C, item count to E 

Minimum of A to C, item count to B 

Vector sum (AO+A 1 + ... AN) to 
C and C+l 

Vector product 

Vector dot product to C and C+l 

Sparse dot product to C and C+l 

Polynomial evaluation A(N) per 
B to C(N) 

Interval A per B to C 

Binary add A +B to C 

Binary subtract A-B to C 

Binary multiply A ':'B to C 

Binary divide A/B to C 

Decimal add A +B to C 

Decimal subtract A-B to C 

Decimal multiply A':'B to C 

Decimal divide A/B to C 

Compare binary (less, equal, 
greater) 

Compare decimal (less, equal, 
greater) 

Merge per byte mask A, B 
per G to C 

Edit and mark A per B to C 

Modulo add A+B to C, modulo G 

Modulo subtract A +B to C, 
modulo G 

In the character string operations (D7, EE, EF, FS, F9, FD) several delimiting 

and length options are denoted by following the word char with a slash and a Q, 

which stands for 

A-10 60324800 Rev. 04 



/C string is count delimited, count in bytes 

I K byte delimiter, right-justified 

/D double byte (16-bit) delimiter 

/M 8-bit mark, with 8-bit delimiter 

omitted count delimited assumed unless otherwise specified in DCL 

In addition N or I can be catenated to any of the above (except D7) to indicate the 

type of index update: N for do not update index, and I (default) for update index 

based on how the instruction terminates. 

EE 3 

EF 3 

FO 3 

Fl 3 

F2 3 

F3 3 

F4 3 

F5 3 

F6 3 

F7 3 

F8 3 

F9 3 

FA 3 

$charC==charA/Q. charB; 

$fullC. fullZ ==char A /Q. charB; 

$bitC = bitA 'XOR bitB; 

$bitC = bitA 'AND bitB; 

$bitC = bitA 'OR bitB; 

$bitC = 'NOT bitA 'OR 'NOT bitB; 

$bitC = 'NOT bitA 'AND 'NOT bitB; 

$bitC = bitA 'OR 'NOT bitB; 

$bitC = bitA 'AND 'NOT bi tB; 

$bitC = bitA 'XOR 'NOT bitB; 

$charC /Q<<charA/Q{. conB); 

$charC /Q<<'NOT char A /Q (. conB } ; 

$decC<>fullB. decA; 

Translate A per B to C 

Translate and test A per B to C 

Logical EXCLUSIVE OR A, B to C 

Logical AND 

Logical INCLUSIVE OR 

Logical STROKE 

Logical PIERCE 

Logical IMPLICATION(B implies A) 

Logical INHIBIT 

Logical EQUIVALENCE 

Move bytes left A to C 

Move bytes left ones complement 
A to C 

Move and scale A to C 

In the pack, unpack instructions the three sign control options are denoted by a 

trailing slash and a Qs, which stands for 

/T trailing sign, G subfunction = # 80 

/P positive sign, G subfunction =#CO 

omitted G subfunction = #00 

60324800 Rev. 04 A-11 



FB 3 $decC< J char A /QS; Pack zoned to BCD A to C 

FC 3 $charC [ <decA /QS; Unpack BCD to zoned A to C 

FD 3 ${charC 'ON } char A /Q ?charB; Compare bytes A, B per 
maskfield C 

FE 3 ${charC'ON } char A ?charB. (fullG }; Search for masked key, byte;A, 
B per C 

FF 3 ${charC'ON }arrayA ?arrayB.{fullG ); Search for masked key, word;A 
B per C 

A-12 60324800 Rev. 04 



wl 
~I 
~I 
0 

~I 
§1 

> 
w 
~ 

I 
I 
I 

COMMENT SHEET 

MANUALTITLE~~-S_T~A_R~S_o_f_t_w_a_r_e_S~y~s_t_e_rn ________________ _ 

Reference Manual 

PUBLICATION NO. __ 5_9_l_5_6_4_0_0 ____ _ REVISION __ B ___ _ 

FROM: 

COMMENTS: 

NAME:~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

BUSINESS 
ADDRESS:~~~~~~~~~~~~~~~~~~~~~~~~~~~-

This forrn is not intPnded to be used as an onll>r blank. y,,,ir evaluation of this manual will be wPlromeci 
by Contr<>l Data Corporation. Any errors, suggested additions or ddetions, or general comments 1r,ay 
be mad.e below. Plf'ase include page number references and fill in publiration revision !Pvcl as shown bv 
the last cntrv on the Record of Revisiim page at the front of the manual. Customer engirwcrs ar<' '.trgerl 
to use the TAR. 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A. 
FOLD ON DOTTED LINES AND STAPLE 



STAPLE STAPLE 

FOLD FOLD 

·--------------------------------------------~ 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WILL BE PAID BY 

CONTROL DATA CORPORATION 

ADVANCED SYSTEMS LABORATORY 

4201 NORTH LEXINGTON AVENUE 

ST. PAUL, MINNESOTA 55112 

ATTN: DOCUMENTATION GROUP 

FOLD 

I 
FIRST CLASS I 

PERMIT NO. 8241 

MINNEAPOLIS, MINN. 

FOLD 

lw 
IS 
I l? z 
19 
1< ,__ 

10 
I 
I 
I 



CONTROL DATA 
Advanced Design Laboratory L l ~ P 1.._l G: 'T L' N 


