60256000

G coreoration

CONTROL DATA®
STAR-100
COMPUTER

HARDWARE REFERENCE MANUAL

COMPUTER INSTRUCTION INDEX

Inst Page Inst. Page Inst. Page Inst Page Inst Page
Code No. Cede Ne. Code No. Code No. Code No
00 6-235 34 6-31 67 6-35 99 6-170 DO 6-102
04 6-281 35 - 6-54 68 - 634 A 6«70 Dt - 6-100
06 6-233 36 6-54 69 6-34 9B 6-75 D4 6-102
08 6-235 37 6-188 6B 6-34 9C 6-117 D5 6-100
09 6-55 38 6-29 6C 6-34 A0 6-89 D6 6-158
0A 6-238 39 6-190 6D 6-32 tAl 6-89 fD7 6-166
0C 6-236 3A 6-190 6E 6-33 A2 6-89 D8 6-214
oD 6-236 3B g-51 6F 6-34 tA4 6-89 D9 6-214
OE 6-236 3¢ §-187 70 6-35 fA5 6-89 DA 6-97
OF 6-237 3D §-187 71 8-35 tA6 6-89 DB 6-98
10 -39 3E 6-27 72 6-35 tA8 6-91 DC 6-116
11 -39 3F 6-27 73 6-39 A9 6-91 DD 6-205
12 §-188 40 6-34 74 6-44 tAB 6-91 DE 6-105
13 §-188 41 6-34 75 6-44 tAC 6-91 DF 6-108
14 6-197 42 6-34 76 6-39 fAF 6-91 EO 6-127
15 6-199 44 6-34 77 6-39 B0 6-57 E1l 6-127
16 §-199 45 6-34 78 6-35 Bl 6-57 B2 6-127
17 6§-203 46 6-34 79 6-35 B2 6-57 E3 6-127
18 6-221 48 6-34 74 6-35 B3 6-57 E4 6-147
19 6-224 49 6-34 "B 6-38 B4 6-57 E5 6-147
1A 6-228 4B 6-34 7C 6-39 B5 ' 6-57 E6 6-143
1B 6-228 4C 6-34 7D 6-189 B6 6-59 E7 6-143
ic 6-228 4D 6-27 7E 6-188 B7 6-114 E8 6-182
1D =228 4B 6-27 "MEF 6-188 B8 6-103 E9 T 6-182
g 6-229 4F 6-34 180 5-68 B9 6-216 EA 6-153
1F 6-231 50 6-35 181 6-68 BA 6-111 EB 6-168
20 6-47 51 6-35 82 6-68 BB 6-190 EC 6-130
21 6-47 52 6-35 83 6-69 BC 6-191 ED 6-130
22 6-47 53 6-39 184 6-68 BD 6-195 HHEE 6-162
23 6-47 54 6-44 185 6-68 BE 6-28 tHEF 6-165
24 6-47 55 6-44 186 6-68 BF 6-28 FO 6-184
25 6-47 58 6-35 87 6-69 CcO0 6-94 Fl1 6-184
26 6-47 59 6-35 188 6-68 Cl 6-94 F2 6-184
27 6-47 5A 6-35 189 6-68 c2 6-94 F3 6-184
28 6-224 5B 6-38 8B 6-68 C3 6-94 F4 6-184
29 6-224 5C 6-39 8C 6-68 c4 6-208 F5 6-184
2A 6-45 5D 6-39 8F 6-68 C5 6-208 F6 6-184
2B 6-45 5E 6-188 90 6-170 Cc6 6-208 F7 6-184
2C 6-30 5F §-188 91 8-70 Cc7 6-208 HF8 8-150
2D 6-30 60 6-34 92 6-70 c8 6-211 HF9 6-150
2E 6-30 61 6-34 198 6-77 c9 6-211 FA 6-146
2F 6-48 62 6-34 94 6-81 CA 6-211 FB 6-132
30 6=-30 63 6-35 95 6-81 CB 6-211 ¥FC 6-132
31 6-54 64 6-34 96 6-77 CD 6-28 HFD 6-155
32 g-51 65 6-34 97 8-717 CE 6-28 HFE 6-158
33 6-49 66 6-34 98 6-70 fCF 6-192 HFF 6-158

place.

tThese instructions have sign control capability.

+Automatic index incrementing takes place on these instructions.
instruction descriptions.)

1tt Delimeters may be used on these instructions, automatic index incrementing also takes
(Refer to the individual instruction descriptions,)

(Refer to the individual

Fukis anbidd

TITLtE: STAR-100 Computer Hardware Reference Manual

PUBLICATION No. 60256000
REVISION 09

REASON FOR CHANGE:

This edition obsoletes all previous editions.

CONTROL-DAT/

CORPORATION

DATE:

12-15-75

REVISION RECORD

REVISION DESCRIPTION
01 Preliminary edition
(9-2-70)
02 Manual revised, pages 3-3, 3-8, 3-20, 3-21, 4-4, 4-20, 4-46, 4-59, 4-64, 4-68, 4-94, 4-95,
(10-9-70) 4-101, 4-176, A-9, B2 through 6, B-8, B-10 through 12, B-14 and B-18 revised.
03 Manual revised. Technical and editorial corrections affecting pages: Front Cover, Title Page,
(3-31-71) Revision Record, iii, v, ix, 1-1 through 1-3, 2-1 through 2-4, 3-3, 3-4, 3-8, 3-14, 3-16, 3-17,
3-19, 3-20, 3-33, 4-1, 4-2, 4-4 through 4-6, 4-9 through 4-25, 4-28, 4-30 through 4-33, 4-37
through 4-44, 4-46, 4-49 through 4-52, 4-54 through 4-57, 4-59, 4-60, 4-62 through 4-67, 4-71,
4-73, 4-75, 4-76, 4-T77, 4-79, 4-82 through 4-89, 4-91, 4-92, 4-97, 4-98, 4-100 through 4-102,
4-104, 4-106, 4-107, 4-113, 4-117, 4-119, 4-121, 4-122, 4-124 through 4-126, 4-128, 4-131
through 4-135, 4-139 through 4-141, 4-144, 4-145, 4-148, 4-150, 4-157, 4-159, 4-161, 4-163
through 4-171, 4-174, 4-177, 4~-180 through 4-182, 4-191, 4-192, 4-197, 4-199, 4-202, 4-214
through 4-216, 4-220, 4-224 through 4-227, 4-229, 4-235 through 4-238, 6-1 through 6-4, 6-6,
6-7, A-2, A-4, A-7, B-1 through B-3, B-6, B-7, B-11, B-12, B-18 and Comment Sheet.
04 Manual revised.
(8-31-71)
05 Manual revised. This edition obsoletes all previous editions.
(5-1-73)
06 Manual revised. This edition obsoletes all previous editions.
(10-30-73)
07 Manual revised, This edition obsoletes all previous editions.
(5-1-74)
08 Manual revised. This edition obsoletes all previous editions.
(12-15-74)
09 Manual revised, This edition obsoletes all previous editions.
(12-15-175)

Publication No.

60256000
Address comments concerning this
manual to:
Control Data Corporation
Publications and Graphies Division
o 1670, 1971, 1973, 1074, 1975 4201 North Lexington Avenue

St. Paul, Minnesota 55112

by Control Data Corporation

or use Comment Sheet in the back of

Printed in the United States of America this manual,

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

PAGE skcT |Rev PAGE | SFcT | REV PAGE skcT | Rev PAGE skcT | ReV
— ———

Cover - 3-9 08 4-10 08 5-17 09
Title 3-10 08 4-11 08 5-18 09
Page - 3-11 08 4-12 08 5-19 08
i 09 3-12 08 4-13 08 5-20 09
iii 09 3-13 08 4-14 08 5-21 09
iv 09 3-14 08 4-15 08 5-22 09
v 09 3-15 08 4-16 09 5-23 08
v 09 3-16 08 4-17 08 5-24 09
Vi 09 3-17 08 4-18 08 5-25 08
= 09 3-18 08 4-19 08 5-26 08
x 08 3-19 08 4-20 08 5-27 09
= 08 3-20 08 4-21 08 5-28 08
o 09 3-21 08 4-22 08 5-29 09
i 09 3-22 08 4-23 08 5-30 09
X 09 3-23 08 4-24 08 5-31 09
X 09 3-24 08 4-25 09 5-32 08
v 09 3-25 08 4-26 09 5-33 08
xvfi 09 3-26 08 4-27 09 5-34 08
xvill 09 3-27 08 4-28 09 5-35 08
xix 09 3-28 08 4-29 09 5-36 08
XX 09 3-29 08 4-30 09 5-37 08
xxi 09 3-30 08 4-31 09 5-38 08
1-1 08 3-31 08 4-32 09 5-39 09
1-2 08 3-32 09 4-33 09 5-40 09
1-3 08 3-33 08 5-1 08 5-41 09
1-4 09 3-34 08 5-2 08 5-42 09
2-1 08 3-35 08 5-3 08 5-43 09
2-2 08 3-36 08 5-4 08 5-44 09
2-3 08 3-37 09 5-5 08 6-1 08
2-4 08 3-38 08 5-6 08 6-2 09
2-5 08 3-39 08 5-17 08 6-3 08
2-6 08 4-1 08 5-8 09 6-4 08
2-7 08

4-2 09 5-9 09 6-5 09
z:; 22 4-3 08 5-10 08 6-6 09

4-4 08 5-11 08 6-17 09
3-3 08 4-5 08 5-12 09 6-8 09
3-4 09 4-6 08 5-13 08 6-9 08
3-5 08 4-7 08 5-14 08 6-10 08
3-6 08 4-8 08 5-15 09 6-11 09
3 1% 4-9 08 | | 5-16 08, 6-12 09
3-8 09 '

tSFC Software Feature Change

AA 5935

60256000 09 iii

PAGE sect |rev PAGE sFcT | Rev PAGE skct | Rev PAGE sfct | REV
6-13 09 6-53 09 6-93 09 6-133 09
6-14 09 6-54 09 6-94 09 6-134 09
6-15 09 6-55 09 6-95 09 6-135 09
6-16 09 6-56 09 6-96 09 6-136 09
6-17 09 6-57 09 6-97 09 6-137 09
6-18 09 6-58 09 6-98 09 6-138 09
6-19 09 6-59 09 6-99 09 6-139 09
6-20 09 6-60 09 6-100 09 6-140 09
6-21 09 6-61 09 6-101 09 6-141 09
6-22 09 6-62 09 6-102 09 6-142 09
6-23 09 6-63 09 6-103 09 6-143 09
6-24 09 6-64 09 6-104 09 6-144 09
6-25 09 6-65 09 6-105 09 6-145 09
6-26 08 6-66 09 6-106 09 6-146 09
8-27 08 6-67 09 6-107 09 6-147 09
6-28 08 6-68 09 6-108 09 6-148 09
6-29 08 6-69 09 6-109 09 6-149 09
6-30 08 6-70 09 6-110 09 6-150 09
6-31 08 6-71 09 6-111 09 6-151 09
6-32 08 6-72 09 6-112 09 6-152 09
6-33 08 6-73 09 6-113 09 6-153 09
6-34 09 6-74 09 6-114 09 6-154 09
6-35 08 6-75 09 8-115 09 6-155 09
6-36 08 6-176 09 6-116 09 6-156 09
6-37 08 6-77 09 6-117 09 8-157 09
6-38 08 6-78 09 6-118 09 6-158 09
6-39 08 6-79 09 6-119 09 6-159 09
6-40 08 6-80 09 6-120 09 6-160 09
6-41 08 6-81 09 6-121 09 6-161 09
6-42 08 6-82 09 6-122 09 6-162 09
6-43 08 6-83 09 6-123 09 6-163 09
6-44 08 6-84 09 6-124 09 6-164 09
6-45 08 6-85 09 6-125 09 6-165 09
6-46 08 6-86 09 6-126 09 6-166 09
6-47 09 6-87 09 6-127 09 6-167 09
6-48 09 6-88 09 6-128 09 6-168 09
6-49 09 6-89 09 6-129 09 6-169 09
6-50 09 6-90 09 6-130 09 6-170 09
6-51 09 6-91 09 6-131 09 6-171 09
6-52 09 6-92 09 6-132 09 6-172 09

SFC Software Feature Change

AA 5935

iv

60256000

PAGE srct [Rev
==
6-173 09
6-174 09
6-175 09
6-176 09
6-177 09
6-178 09
6-179 09
6-180 09
6-181 09
6-182 09
6-183 09
6-184 09
6-185 09
6-186 09
6-187 09
6-188 09
6-189 09
6-190 09
6-191 09
6-192 09
6-193 09
6-194 09
6-195 09
6-196 09
6-197 09
6-198 09
6-199 09
6-200 09
6-201 09
6-202 09
6-203 09
6-204 09
6-205 09
6-206 09
6-207 09
6-208 09
§-209 09
6-210 09
6-211 09
6-212 09

skcT

PAGE | sFcT |REV PAGE REV PAGE skcT | REV
6-213 09 A-15 08 Comment
6-214 09 A-16 08 Sheet -
6-215 09 A-17 08 g§$:§:pe)
6-216 09 A-18 08 Back
6-217 09 A-19 08 Cover -
6-218 09 B-1 08

6-219 09 B-2 08

6-220 09 B-3 08

6-221 09 B-4 08

6-222 09 B-5 08

6-223 09 B-6 09

6-224 09 B-17 09

6-225 09 B-8 09

6-226 09 B-9 09

6-227 09 B-10 09

6-228 09 B-11 09

6-229 09 B-12 09

6-230 09 B-13 09

6-231 09 B-14 09

6-232 09 B-15 09

6-233 09 B-16 09

6-234 09 B-17 09

6-235 09 B-18 09

6-236 09 B-19 09

6-237 09 B-20 09

6-238 09 B-21 09

A-1 08 B-22 09

A-2 08 B-23 09

A-3 08 B-24 09

A-4 08 c-1 09

A-5 08 c-2 09

A-6 08 c-3 09

A-T 08 c-4 09

A-8 08 C-5 08

A-9 08 C-6 09

A-10 08 c-1 09

A-11 08 D-1 08

A-12 08 D-2 08

A-13 08 D-3 08

A-14 08 D-4 08

TSFC Software Feature Change

AA 5935

60256000 09

PREFACE

e

This manual contains hardware reference information for the CONTROL DATA®
STAR-100 Computer.

All manuals applicable to the CDC STAR-100 Computer and associated equipment include
the following.

Control Data Publication Publication No.

STAR-100 Computer Hardware Maintenance Manuals

General Description, Operation, Theory of Operation

Installation and Checkout, Maintenance 60256100
Memory and Storage Access Control

Block Diagrams 60430100
Stream

Block Diagrams 60430200
Floating Point

Block Diagrams 60430300
Power Diagrams 60433200

Engineering Diagram Set

Memory
Logic Diagrams Not applicable

Logic Diagrams
Storage Access Control
LA Panel Not applicable

Logic Diagrams
Storage Access Control
LB Panel Not applicable

Logic Diagrams
Storage Access Control
NA Panel Not applicable

Logic Diagrams
Storage Access Control
NB Panel Not applicable

Logic Diagrams

Storage Access Control
KA Panel Not applicable

60256000 09 vii

e viii

Control Data Publication

Publication No.

Logic Diagrams
Storage Access Control
KB Panel

Logic Diagrams
Stream
FA Panel

Logic Diagrams
Stream
FB Panel

Logic Diagrams
Stream
GA Panel

Logic Diagrams
Stream
GB Panel

Logic Diagrams
Stream
HA Panel

Logie Diagrams
Stream
HB Panel

Logic Diagrams
Stream
JA Panel

Logic Diagrams
Stream
JB Panel

Logic Diagrams
Stream
PA Panel

Logic Diagrams
Stream
PB Panel

Logic Diagrams
Floating Point
AA Panel

Logic Diagrams
Floating Point
AB Panel

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

60256000 09

Control Data Publication

STAR-100 Refrigeration System Customer

Logic Diagrams
Floating Point
BA Panel

Logic Diagrams
Floating Point
BB Panel

Logic Diagrams
Floating Point
CA Panel

Logic Diagrams
Floating Point
CB Panel

Logic Diagrams
Floating Point
DA Panel

Logic Diagrams
Floating Point
DB Panel

Logic Diagrams
Floating Point
EA Panel

Logic Diagrams
Floating Point
EB Panel

Logic Diagrams
Floating Point
KA Panel

Publication No.

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Engineering Manual 60329800
Control Data Intebrid Circuits Manual 60201000
Control Data Motor-Generator Sets 60166800
Electric Machinery Volumes 1 and 2 and 60423100
Control Data Large and Medium Scale Computer

Systems Site Preparation Manual

Section 1 General Information 60275100
Control Data STAR-100 Computer System

Site Preparation Manual

Section 2 System Data 60381600

60256000 09

ix

Control Data Publication

STAR-100 Computer Hardware Reference Manual

STAR-100 Peripheral Stations Hardware

Reference Manual

STAR-100 Peripheral Stations Customer Engineering

Manual (Maintenance)

STAR-100 Peripheral Stations Customer Engineering

Manual (Diagrams)

Station Buffer Unit Core Conirol

Station Buffer Unit Interfaces

Station Control Unit

Station Display Unit

NOTE

and

and

Publication No

60256000

60405000

60325300

60382000
60406700

60382100
60406800

60362900
60382500

These manuals are available on a controlled distribution

basis only from:

Control Data Corporation

STAR-100 Publications Distribution

STAR-100 Development Support
4201 North Lexington Ave.
Arden Hills, Minnesota 55112

60256000 08

1.

GENERAL DESCRIPTION

General

Computer Characteristics

2.

Central Processor
Magnetic Core Storage
Input /Output

MAGNETIC CORE STORAGE

Description

Storage Word
MCS Access and Control Signals

Request

Address

Quarter Sword Address
Read Data

Read Parity

Write Data

Write Parity

Write Enable

Split Cycle/Clear Data Register
Clock

Master Clear

MCS Degradation

3.

524K System Degradation
Options

1048K System Degradation
Options

CENTRAL PROCESSOR UNIT

Description

Storage Access Control

SAC Read Opéfations
Memory Parity Fault

60256000 08

CONTENTS

2-1
2-2
2-3
2-4
2-4
2-5

2-5
2-5
2-6
2-6
2-6
2-6
2-6
2-7

Parity Fault Isolation
SAC Write Operations
Virtual Address Mechanism
MCS Page Sizes
Storage Protect Features
Searching the Page Table
Multiple-Match Fault
Absolute Bounds Address
Input/Output Channels
Assembly/Disassembly
1/0 Data
I/O Addressing
I/O Channel Priority

I/O Channel Write
Lockout

System Communication

Stream

Instruction Control

Addressing

Stream Input and Buffer Control
Register File

Operand Shift Network

Data Interchange

C-Stream Operand Shift Network

Write Bus 1 Output Buffer and
Control

Write Bus 2 and Control

X-and Y-Stream Control and
String Input Interface

String Unit
Edit Control
Logical Instruction Control
Binary Arithmetic Control

3-5
3-5
3-6
3-6
3-6
3-17
3-11
3-11
3-11
3-12
3-13
3-13
3-16

3-17
3-17

3-19
3-19
3-22
3-23
3-23
3-26
3-26
3-26

3-26
3-26

3-27
3-27
3-27
3-27
3-27

Decimal Arithmetic Control 3-29

Miscellaneous Operations 3-30
Register Logical and Shift Unit 3-31
Interrupt Counters 3-31
P Section Interchange 3-31
Load/Store Unit 3-31
Microcode 3-32

MIC Operation 3-32

MIC Interrupt 3-34

MIC Parity 3-34

Checkpoint 3-35

MIC Write Lockout 3-35

Floating Point 3-35
Pipe 1 3-36
Pipe 2 3-38

Register Divide 3-39

Multipurpose 3-39

4. MAINTENANCE CONTROL UNIT

Description 4-1
MCU Interfaces 4-3
MCU Monitoring 4-23
Display Registers 4-23
Monitoring Counters 4-25
Count Gates and CPU Lines 4-30
Carry Lines 4-31
Stop Lines 4-31
Counter Setup 4-31
Logic Fault Mon,itoring 4-32
Temperature Pressure and Dew-
point Monitoring 4-32
Power Fail Monitoring 4-33
Compressor Monitoring 4-33

5. PROGRAMMING CONSIDERATIONS

General 5-1
Monitor and Job Modes 5-1
Exchange from Monitor Mode
to Job Mode 5-2

xii

Illegal Instruction in Monitor
Mode

Exchange from Job Mode to
Monitor Mode

Interrupts
Storage Access Interrupts
External Interrupts
1/O Channel Interrupt Lines

Monitor Interval Timer Interrupt

Invisible Package
Addressing Modes
Virtual Addressing
Pages
Virtual Address Format
Associative Words
Associative Registers
Space Table
Page Table
Operation of Virtual Address
Absolute Address
Real-Time Counters
Free Running Clock Counter
Monitor Interval Timer
Job Interval Timer
Register File
Register File Restrictions

Register 0 (Trace
Register) Restrictions

Registers 1 and 2 (64-bit),

2 through 5 (32-bit)
Restrictions

Registers 0 through 7
(64-bit), 0 through F
(32~bit), Monitor Mode
Restrictions

Register 1 (32-bit) Right-
most Half of 64-Bit
Register 0

Register Restrictions for
the STAR-1B

Common Register File for
Monitor and Job Modes

Data Flag Branch Register
Data Flags

5-2

5-3
5-4
5-4
5-6
5-6
5-17
5-17
5-10
5-10
5-10
5-10
5-12
5-14
5-15
5-15
5-17
5-18
5-19
5-19
5-19
5-20
5-20
5-21

5-22

5-29

5-29

5-29

5-29

5-29
5-30
5-31

60256000 09

T 1

aalr
iviaoa

Rita
SIS

Product Bits

Dynamic Inclusive OR for
Product Bits

Data

Flag Branch Enable Bit

Free Data Flags
Monitoring Counter Enabie Flags

Pipe
Data

2 Register Instruction Flag
Flag Branch Operation

Data Flag Branch Timing
Considerations

General Definitions and Program-
ming Guides

Overlap of Operand and Result
Fields

Tllegal Instructions

Instructions Which Cause
Undefined Results or
Operations

Item Count

Field Length and Offset
Index

Data Fault

Operand Size Definitions

Restrictions on Self-Modifying

Programs
Result Vector 64--Sword
Lookahead
6. INSTRUCTIONS
General

Instruction Word Formats

Instruction Designators

Unused Bit Areas

Instruction Types

Instruction Descriptions

Index Instructions

3E Enter (R) with I (16 Bits)
3F Increase (R) by I (16 Bits)

4D Half Word Enter (R) with
I (16 Bits)

60256000 09

5-40

5-40
5-40

5-40
5-41
5-41
5-42
5-42
5-42

5-43

5-44

6-1
6-1
6-1
6-2
6-10
6-26
6-27
6-27
6-27

6-27

4E Half Word Increase (R)

fig v

by I (16 Bits)

CD Half Word Enter (R) with
I1(24 Bits)

CE Half Word Increase (R)
with I (24 Bits)

BE Enter (R) with I (48 Bits)
BF Increase (R) by I (48 Bits)

38 Transmit (R Bits 00-15) to
(T Bits 00-15)

Register Instructions

2C Logical Exclusive OR (R),
(S), to (T)

2D Logical and (R), (S), to (T)

2E Logical Inclusive OR (R),
(S), to (T)

30 Shift (R) Per S to (T)
34 shift (R) Per (S) to (T)

6D Insert Bits from (R) to
(T) Per (S)

6E Extract Bits from (R) to
(T) Per (S)

40/60 Add U; (R) + (S) to (T)
41/61 Add L; (R) + (S) to (T)
42/62 Add N; (R) + (S) to (T)
44/64 Sub U; (R) - (S) to (T)
45/65 Sub L; (R) - (S) to (T)
46/66 Sub N; (R) - (S) to (T)
48/68 Mpy U; (R) @ (S) to (T)
49/69 Mpy L; (R) e (S) to (T)
4B/6B Mpy S; (R) e (S) to (T)
4C/6C Div U; (R) / (S) to (T)
4F/6F Div S; (R) / (S) to (T)
63 Add Address (R) + (S) to (T)
67 Sub Address (R) - (S) to (T)
58/78 Transmit (R) to (T)
59/79 Absolute (R) to (T)
51/71 Floor (R) to (T)

52/72 Ceiling (R) to (T)

5A/7A FExponent of (R) to (T)
50/70 Truncate (R) to (T)
5B/7B Pack (R), (S)to (T)

6-27

6-28

6-28
6-28
6-28

6-29
6-29

6-30
6-30

6-30
6-30
6-31

6-32

6-33
6-34
6-34
6-34
6-34
6-34
6-34
6-34
6-34
6-34
6-34
6-34
6-35
6-35
6-35
6-35
6-35
6-35
6-35
6-35
6-38

xiii

5C Extend 32 Bit (R) to
64 Bit (T)

5D Index Extend 32 Bit (R) to
64 Bit (T)

76 Contract 64 Bit (R) to
32 Bit (T)

77 Rounded Contract 64 Bit (R)
to 32 Bit (T)

7C Length of (R) to (T)

53/173 Significant Square Root
of (R) to (T)

10 Convert BCD to Binary,
Fixed Length

11 Convert Binary to BCD,
Fixed Length

54 /74 Adjust Significance of
(R) Per (S) to (T)

55/75 Adjust Exponent of (R)
Per (3S) to (T)

2A Enter Length of (R) with
I (16 Bits)

2B Add to Length Field

Branch Instructions

® xiv

20/24 Branch if (R) = (S)
(32/64 Bit FP)

21/25 Branch if (R) # (S)
(32/64 Bit FP)

22/26 Branch if (R) > (S)
(32/64 Bit FP) -

23/27 Branch if (R) < (S)
(32/64 Bit FP)

2F Register Bit Branch
and Alter

33 Data Flag Register Bit
Branch and Alter

3B Data Flag Register Load/
Store

32 Bit Branch and Alter

36 Branch and Set (R) to Next
Instruction

31 Increase (R) and Branch
if (R)#0

35 Decrease (R) and Branch
if (R)Y#0

09 Exit Force

6-39

6-39

6-39

6-39
6-39

6-39

6-39

6-39

6-44

6-44

6-45
6-45
6-47

6-47

6-417

6-47

6-47

6-48

6-49

6-51
6-51

6-54

6-54

6-54
6-55

BO Index, Branch if
(A) + (X) = (Z)

B1 Index, Branch if
(A) + (X) # (2)

B2 Index, Branch if
(A) + (X) > (2)

B3 Index, Branch if
(A) + (X) < (2)
B4 Index, Branch if
(A) + (X) £ (Z)

B5 Index, Branch if
(A) + (X) > (2)

B6 Branch to Immediate
Address (R) + I (48 Bits)

Vector Instructions

Instruction Formats
Subfunction Bits

Field Lengths, Base Address,
and Offsets

Control Vector
Vector Instruction Termination

Example of Vector Instruction
Operation

80 Add U; A + B—~C
81 Add L,; A+ B—C
82 Add N; A + B—~C
84 Sub U; A - B—~C
85 Sub L; A - B—~C
86 Sub N; A - B—~C
88 Mpy U; A e B—C
89 Mpy L; A e B—C
8B Mpy S; A e B—~C
8C Div U; A/B—C
8F Div S; A/B—~C
83 Add A; A + B—~C
87 Sub A; A - B—~C
98 Transmit A—~C
99 Absolute A—C

91 Floor A—C

92 Ceiling A—~C

9A Exponent of A—~C

6-57

6-57

6-57

6-57

6-57

6-57

6-59
6-59
6-59
6-60

6-62
6-63
6-64

6-65
6-68
6-68
6-68
6-68
6-68
6-68
6-68
6-68
6-68
6-68
6-68
6-69
6-69
6-70
6-70
6-70
6-70
6-70

60256000 09

90 Truncate A—C

9B Pack A, B—C

9C Extend 32 Bit A—64 Bit C
96 Contract 64 Bit A—32 Bit C

97 Rounded Contract 64 Bit A—
32 Bit C

93 Significant Square Root of
A—C

94 Adjust Significance of

A Per B—C

95 Adjust Exponent of
A Per B—C

Sparse Vector Instructions

Sparse Vector Instruction
Format

Base Addresses and Field
Lengths

Sparse Vector Instruction
Termination

A0 Add U; A + B—~C
Al Add L; A+ B—~C
A2 Add N; A + B—~C
A4 Sub U; A - B—~C
A5 Sub L; A - B—~C
A6 Sub N; A - B—~C
A8 Mpy U; A e B—C
A9 Mpy L; Ae B—~C
AB Mpy S; Ae B—C
AC Div U; A/B—~C
AF Div S; A/B—~C

Vector Macro Instructions

CO Select EQ; A = B,
Item Count to (C)

Cl Select NE; A # B,
Item Count to (C)

C2 Select GE; A > B,
Item Count to (C)

C3 Select LLT; A < B,
Item Count to (C)

DA Sum (A0 + A1 + A2
+.,..An) to (C) and (C + 1)

60256000 09

6-70
6-75
6-77
6-71

6-77.

6-81

6-81
6-84

6-86
6-86

6-86
6-89
6-89
6-89
6-89
6-89
6-89
6-91
6-91
6-91
6-91
6-91
6-94

6-94
6-94
6-94
6-94

6-97

DB Product (A0, Al, A2,
...An)to C

D5 Delta (An+l - An) —-Cn

D1 Adj. Mean (An+l + An)
/2—~Cn

DO Average (An + Bn)/2—Cn
D4 Ave. Diff, (An - Bn)/2—~Cn
B8 Transmit Reverse A—C
DE Polynomial Evaluation

DF Interval A Per B—~C

BA Transmit Indexed List—C
B7 Transmit List—Indexed C

DC Vector Dot Product to
(C)and (C + 1)

String Instructions

String Instruction Data
Code and Formats

String Instruction Format
EO Binary Add; A + B—~C
E1 Binary Sub; A - B—C
E2 Binary Mpy; A ¢ B—~C
E3 Binary Div; A/B—C
EC Modulo Add A + B—=~C
ED Modulo Sub A - B—C

FB Pack Zoned to BCD;
A—-C

FC Unpack BCD to Zoned;
A—C

E4 Decimal Add; A + B—~C
E5 Decimal Sub; A - B—~C
E6 Decimal Mpy; A ¢ B—C
E7 Decimal Div; A/B—~C
FA Move and Scale; A—~C
F8 Move Bytes Left; A—C

F9 Move Bytes Left,
Ones Comp. A-C

EA Merge Per Byte Mask A
B Per G—C

FD Compare Bytes A,
B Per Mask Field C

6-98
6-100

6-100
6-102
6-102
6-103
6-105
6-108
6-111
6-114

6-116
6-117

6-118
6-121
6-127
6-127
6-127
6-127
6-130
6-130

6-132

6-132
6-143
6-143
6-143
6-143
6-146
6-150

6-150
6-153

6-155

FE Search for Masked
Key Byte; A, B Per C, G

FF Search for Masked Key
Word; A, B Per C, G

D6 Search for Masked Key Bit;
A, BPer C, G

EE Translate A Per B—~C

EF Translate and Test Per
B~—C

D7 Translate and Mark A Per
B—~C

EB Edit and Mark A Per B—~C
E8 Compare Binary A, B
E9 Compare Decimal A, B

Logical String Instructions

FO Logical Exclusive OR
A, B—~C

F1 Logical AND A, B—~C

¥2 Logical Inclusive OR
A, B—~C

F3 Logical Stroke, A, B—~C
F4 Logical Pierce A, B—~C

F5 Logical Implication
A, B—~C

F6 Logical Inhibit A, B—C

F7 Logical Equivalence
A, B—~C

Nontypical Instructions

xvi

3D Index Multiply (R) e (S) to (T)

3C Half Word Index Multiply
(R) @ (S) to (T)

5E/7E Load (T) Per (S), (R)
5F/7F Store (T) Per (S), (R)

12/13 Load/Store Byte (T)
Per (S), (R)

37 Transmit Job Interval
Timer to (T)

7D Swap S—T, R—S

39 Transmit Realtime
Clock to (T)

3A Transmit (R) to Job
Interval Timer

BB Mask A, B—+C Per Z

6-158

6-158

6-158
6-162

6-165

6-166
6-168
6-182
6-182
6-184

6-184
6-184

6-184
6-184
6-184

6-184
6-184

6-184
6-187
6-187

6-187
6-188
6-188

6-188

6-188
6-189

6-190

6-190
6-190

BC Compress A—~C: Per Z

CF Arith, Compress A—C
Per B

BD Merge A, B—C; Per Z
14 Bit Compress

15 Bit Merge

16 Bit Mask

17 Character String Merge

DD Sparse Dot Product to
(C)and (C + 1)

C4 Compare EQ; A = B,
Order Vector—2Z

C5 Compare NE; A # B,
Order Vector—2Z

C6 Compare GE; A > B,
Order Vector—Z ~

C7 Compare LT; A < B,
Order Vector—2

C8 Search EQ; A = B,
Index List—C

C9 Search NE; A # B,
Index List—C

CA Search GE; A >B,
Index List—C -

CB Search LLT; A < B,
Index List—C

D8 Max, of A to (C)
Item Count to (B)

D9 Min. of A to (C)
Item Count to (B)

B9 Transpose/Move

18 Move Bytes Right

19 Scan Right

28/29 Scan Equal/Unequal
1A Fill Field T with Byte R
1B Fill Field T with Byte (R)

1C Form Repeated Bit Mask
with Leading Zeros

1D Form Repeated Bit Mask
with Leading Ones

1E Count Leading Equals R

1F Count Ones in Field R,
Count to T

6-191

6-192
6-195
6-197
6-199
6-199
6-203

6-205
6-208
6-208
6-208
6-208
6-211
6-211
6-211
6-211
6-214

6-214
6-216
6-221
6-224
6-224
6-228
6-228

6-228
6-228
6-229

6-231

60256000 09

04 Breakpoint - Maintenance 6-231 0D I.oad Associative Regisiers 6-236
06 Fault Test - Maintenance 6-233 OE Translate External 036
6-23
Monitor Instructions 6-235 Interrupt R)
0F Load Keys From (R),
00 Idle 6-235 Translate Address (S) to (T) 6-2317
08 Input/Output Per R 6-235 0A Transmit (R) to Monitor
0C Store Associative Registers 6-236 Interval Timer 6-238
APPENDIXES
A, NUMBER SYSTEMS AND TABLES C. GOBlégIST‘%gIEST ERMINATIN G’
B. FLOATING POINT ARITHMETIC c
D. DATA FLAG APPLICATIONS TO
INSTRUCTIONS
FIGURES
1-1 Basic CDC STAR-100 - Virtual Address Formats 5-11
Configuration) 1-4 - Associative Word Formats 5-12
2-1 %:biortl'e?;)ght MCS Sections 2-1 5-5 Virtual Address Key
. Register Format 5-13
2-2 f;)};lerword (Sword) Configura- 5o 5-6 Page Table Format 5-16
. _ 5-7 Virtual Address to Absolute
2-3 SAC/Memory Connections 2-3 Address 5-18
- MCS Address Selection 2-4 5-8 Register File 5-91
3-1 Storage Access Control 3-2 5-9 Virtual/Absolute Address Zero 5-22
3-2 Page Table Search Examples 3-10 5-10 DFB Register Format 5-30
3- D F t 3-14
5 i ZO A:’;a orr;a S ; 5 15 6-1 Instruction Formats 6-3
3- ©- Sress ofm: s 3' 6-2 Instruction Listing Format 6-10
wo Basic Stream Block Diagram 3-20 6-3 Example of Register Content
3-6 Instruction Stack 3-21 for an Insert Bits From
3-7 Instruction Stack Use 3-21 (R) to (T) Per (8) Instruction 6-32
- ; ; - 6-4 Example of Register Content
3-8 Regfster Ffle . 3-25 for an Extract Bits From (R)
3-9 Register File Addressing 3-25 to (T) Per (S) Instruction 6-33
3-10 String Block Diagram 3-28 6-5 Example of Register Content
- _ for a Ceiling (R) to (T)
3-11 Operand Formats 3-35 Instruction 6-37
3-12 Floating Point Pipe 1 3-317 6-6 Example of Register Content
3-13 Floating Point Pipe 2 3-38 for a Truncate (R) to (T)
4-1 Maintenance Control Unit 4-2 Instruptwn 6-38
- ; 6-17 Example of Register Content
4-2 E}f‘il; Eiﬁggam of Counter 4-26 for an Extend 32 Bit (R) to
g 64 Bit (T) Instruction 6-40
- Block Diagram o,f_ C,Ount?r A 427 6-8 Example of Register Content
5-1 Invisible Package Word for a Contract 64 Bit (R) to
XX oo xxE%g Format for 32 Bit (T) Instruction 6-41
Access Interrupt - 6-9 Example of Register Content
5-2 Invisible Package Format 5-8 for a Rounded Contract 64 Bit
(R) to 32 Bit (T) Instruction 6-43

60256000 09

6-11

6-12

6-13

6-14

6-15

6-16
6-17

6-19

6-20

6-21

6-22

6-23

6-24

6-25

6-26

6-27

6-28

6-29

6-30

xviii

Example of Register Content
for a Convert BCD to Binary,

Fixed Length Instruction 6-43
Example of Register Content

for an Adjust Exponent of (R)

Per (S) to (T) 6-46
Example of Bit Branch and

Alter Instruction 6-53
Address Formats for Exit

Force Instruction

(Monitor to Job) 6-56
General Vector Instruction

Format 6-59
Operand Field Length, Base
Address, and Offset Formats 6-63

Vector Field Address Format 6-63

Control Vector Base
Address Format (Z)

Vector Instruction Example
of Register Content and
Instruction Format

Vector Address Fields for
Vector Instruction Example

Example of an Add A;
A + B — C Instruction

Example of Floor A—-C Instruc-
tion with Negative Exponent

6-64

6-66
6-67
6-69

6-71

Example of a Ceiling A - C
Instruction with Negative

Exponent 6-73

Example of Source and Result
Elements for a Truncate A — C
Instruction

Example of Pack A, B— C
Instruction

Example of Extend 32 Bit A
—64 Bit C Instruction

Example of Vector Elements
for a Rounded Contract 64 Bit
A—32 Bit C Instruction

Example of Adjust Exponent
of A Per B — C Operation

Example of Compressing
Initial Vector Field into
Sparse Vector Field

6-75
6-76

6-78

6-80

6-83

6-85
General Sparse Vector
Instruction Format

Sparse Vector Field Length
and Base Address Formats

6-87

6-88

6-31

6-32

6-33

6-34
6-35

6-36

6-37

6-38

6-39

6-40

6-41

6-42

6-43

6-44

6-45

6-46

6-47

6-49

6-50

Example of an Add U; A+ B
— C Sparse Vector Instruction

Example of a Mpy U; A ¢ B
— C Sparse Vector Instruction

Example of Select EQ; A=B
Item Count to C

Example of a Delta Instruction

Example of a Transmit
Reverse A — C Instruction

Basic Arithmetic Sequence for
Polynomial Evaluation
Instruction

Example of a Transmit
Indexed List — C Instruction

Example of General Format
of a Data String Field

Example of the Packed
Decimal Format

Example of the Zoned BCD
Format

General String Instruction
Format

String Instruction Register
Formats

Example of Index and Field
Length Applied to a Data Field

Example of Delimiter
Termination of a Data Field

Example of a Binary Add;
A + B — C Instruction

Format of a Binary Divide
Result Field

Example of Zoned to BCD
Format Conversion

(G Bit 0=0 and ASCII
Selected)

Example of Zoned to BCD
Format Conversion

(G Bit 0=0 and EBCDIC
Selected)

Example of Zoned to BCD
Format Conversion

(G Bit 0=1 and G Bit 1=0)

Example of Zoned to BCD
Format Conversion (G Bit
0=1 and G Bit 1=1)

6-90

6-93

6-96
6-101

6-104

6-107

6-114

6-117

6-119

6-120

6-121

6-121

6-122

6-123

6-128

6-129

6-132

6-135

6-136

6-137

60256000 09

6-52

6-53

6-54

6-55

6-56

6-57

6-58

6-59

6-60

6-61

6-62

6-63

6-64

6-65

6-66

6-67

(G bit 0=0 and G Bit 1=0
ASCII Mode)

Example of BCD to Zoned
Format Conversion

(G Bit 0=0 and G Bit 1=0
EBCDIC Mode)

Example of BCD to Zoned

Format Conversion
(G Bit 0=1 and G Bit 1=0)

Example of BCD to Zoned
Format Conversion
(G Bit 0=1 and G Bit 1=1)

Example of Decimal Add A + B
— C Instruction

Format of Decimal Divide
Result Field

Example of a Move and Scale;
A — C Instruction with a
Negative Scale Count

Example of Move and Scale;
A — C Instruction with
Positive Scale Count

Example of Move Bytes Left;
A—C Instruction

Example of Merge Per Byte
Mask A, B Per G— C

Basic Field Formats for
Compare Bytes A, B Per
Mask Field C Instruction

Example of Search for Masked
Key Byte; A, BPer C, G
Instruction

Example of Translate A
Per B — C Instruction

Example of Field Formats
for the Edit and Mark A Per
B —C Instruction

Example 1 of Edit and Mark
A Per B — C Instruction

(Single Source Field, Sign +)

Example 2 of Edit and Mark
A Per B — C Instruction
(Single Source Field, sign -)

Example 3 of Edit and Mark
A Per B — C Instruction
{Field Separator Specified,
No Second Field)

60256000 09

6-139

6-140
6-141

6-142
6-144

6-145
6-148

6-149
6-152

6-154
6-156

6-160

6-164
6-169
6-176

6-177

6-178

6-68

6-69

6-70

6-T1

6-72

6-173

6-T74

6-"76

6-77

6-78
6-79

6-80

6-81

6-82

6-83

6-84

6-85

6-86

Example 4 of Edit and Mark

A Per B — C Instruction
(Multiple Field Editing) 6-179

Example 5 of Edit and Mark

A Per B — C Instruction

(Result Field Shorter

than Pattern Field) 6-180

Example 6 of Edit and Mark

A Per B — C Instruction

(Decimal Data Fault -

Undefined Results) 6-181

Example of Field Formats
for the Compare Binary A,
B Instruction 6-183

Example of Field Formats for
the Compare Decimal A, B
Instruction 6-183

Example of Logical String
Instruction (Logical Exclusive
OR) 6-186

Example of Arithmetic
Compress A — C Per B
Instruction 6-194

Examples of BD Merge
Instruction 6-196

Example of Bit Compress
Instruction 6-198

Example of Bit Merge
Instruction 6-200

Example of Bit Mask Instruction 6-202

Example of the Character String
Merge Instruction 6-204

Example of Sparse Dot
Product to (C) and (C + 1)
Instruction 6-207

Example of Compare GE;
A > B; Order Vector — Z
Instruction 6-210

Example of Search EQ;
A = B, Index List - C 6-213

Example of Initial 10 x 10
Matrix 6-218

Example of Transposed 8 x 8
Segment in a 10 x 10 Matrix 6-218

Example of Transpose/

Move Instruction Codes 6-219
Example of a"Move Bytes

Right Instruction with a

Positive S Index 6-222

Xix @

6-87

6-88

6-89

4-2

4-3

4-4

4-6

4-7

4-9

4-10

4-11

4-12

4-13

4-14

Example of a Move Bytes
Right Instruction with a

Negative S Index

Example of Scan Right
Instruction with a Positive

Scan Index

Example of Scan Right
Instruction with a Negative

Scan Index

Channel Flag Assignments

Channel ATB1
(Connector ATB12)

Channel ATB2
(Connector ATB12)

Channel ATB3
(Connector ATB34)

Channel ATB4
(Connector ATB34)

Channel ATB5
(Connector ATB56)

Channel ATB6
{Connector ATB56)

Channel ATB7
{(Connector ATB78)

Channel ATBS
(Connector ATB78)

Channel BTA1
(Connector BTA12)

Channel BTA2
(Connector BTA12)

Channel Register from

Channel BTA3
(Connector BTA34)

Channel Register from

Channel BTA4
(Connector BTA34)

Channel BTA5 (Connector

BTA56)

Channel BTAS6
(Connector BTA56)

6-90
6-223

6-91
6-225

6-92
6-226 6-93
TABLES
3-18 4-15
4-4 416
4-5 417
4-6 4-18
4-7 5-1

5-2
4-8

5-3
4-9 5-4
4-10 5-5
4-11 5-g
4-12 5.7
4-14 -1

6-2
4-16

6-3
4-17 8-
4-18 4
4"19 6_7

Example of Repeated Bit
Mask Data Format (Leading
Zeros)

Example of Count Leading
Equals Data and Register
Format

Breakpoint Register Format

Register Formats for the OF
Instruction

Channel BTA7
(Connector BTA78)

Channel BTAS8
(Connector BTA78)

Display Register Select
Codes

Counter Events

External Interrupt Lines

Associative Word Usage
Codes

Lockout Codes

Page Table Restrictions
and Requirements

Results for Specified
Register Zero

Data Flag Register Bit
Assignments

Free Data Flag Bit
Assignments

Instruction Designators

Instruction List by Function
Code

Instruction List by Instruc-
tion Type

Bit Branching Conditions
Bit Altering Condtions

DFBR. Bit Branch
Conditions

DFBR Bit Altering
Conditions

6-229

6-230
6-231
6-238

4-20

4-21

4=23
4-28

5-13
5-14

5-117

5-25

5-33

5-36
6-6

6-11

6-189
6-48
6-48

6-49

6-50

60256000 09

6-9
6-10
6-11

6-12

6-13
6-14

6-15
6-16
6-17

6-18

6-19

6-20
6-21
6-22

6-23

6-24

6-25

6-26

6-27

6-28
6-29

DFBR Branch Address
Source Conditions

Bit Branching Conditions
Bit Altering Conditions

Branch Address Source
Conditions

Index Branch Instruction
Designators

Integer Ranges

Vector Instruction
Designators

Subfunction Bits
Sign Control Subfunction Bits

.Sparse Vector Instruction

Designators

DF Interval A per B~ C
Instruction

DF Interval Instruction
with Interrupt

Decimal Data Codes
Result Signs

G Designators for String
Instructions

DFB Conditions for the EC
Instruction

DFB Conditions for the ED
Instruction

Pack Zoned to BCD Digit and
Sign Codes

Pack Zoned to BCD Sign and
LSD Translation Table
(ASCII Mode)

Preferred Sign Codes
Zone Bits and Sign Codes

Unpack BCD to Zoned Sign and

LSD Translation Table
(ASCII Mode)

60256000 09

6-50
6-52
6-52

6-52

6-57
6-58

6-60
6-61
6-62

6-87

6-109

6-110

6-118
6-119

6-124

6-130

6-131

6-133

6-134

6-135
6-136

6-139

@D
]
(v
[+]

6-31

6-32

6-33

6-34

6-35

6-36

6-37
6-38

6-39

6-41

6-42

6-43

6-44

6-45

6-46

em A mee Tam munmman A
Index Increments for A and C

Fields for F8 and
Instructions

9

Index Increments for
Compare Bytes A, B, Per
Mask Field C Instructions

DFB Conditions for the FD
Instruction

Index Increments for Search
for Masked Key Byte; A,
B Per C, G Instruction

Index Increments for Trans-
late A Per B — C Instruction

Index Increments for Trans-
late and Test A Per B— C
Instruction

DFB Conditions for the EF
Instruction

Pattern Select Characters

DFB Conditions for the EB
Instruction

Operation of Edit and Mark
A Per B — C Instruction

DFB Conditions for E8 and
E9 Instructions

Truth Table for ILogical
String Instructions

DFB Conditions for F0
Through F7 Instructions

Search Iteration Starting
Designator Conditions

Transpose/Move Instruction
Designators

Example of Storage and
Register Mapping for Trans-
pose/Move Instruction

Breakpoint Conditions

6-151

6-157

6-157

6-158

6-163

6-166

6-166
6-171

6-173

6-175

6-182

6-184

6-185

6-212

6-217

6-220
6-232

@
m
p
m
0
»
r-
(w)
m
(7,]
O
20
0
|
(o)
pr4

GENERAL

The CONTROL DATA® STAR-100 (STring ARray)computer is a large scale, high-speed,
logical, and arithmetic computer. The STAR-100 computer utilizes many advanced
design features puch as stream processing, integrated circuitry, virtual addressing,
hardware macro instructions, and a high density logic (HDL) hardware register file.
The STAR-100 computer also contains stream arithmetic and functional units especially
designed for sequential and parallel operations on single bits, 8-bit bytes, and 32-bit
or 64-bit floating point operands and vectors. The virtual addressing method employs
a high-speed mapping technique to convert a logical address to an absolute storage

address.

The basic computer consists of a central processor unit (CPU), magnetic core storage
(MCS), four input/output (I/O) channels, and a maintenance control unit (MCU).
Figure 1-1 shows the basic computer configuration.

The CPU contains functions of storage access control (SAC), stream, string, and
floating point. The SAC unit controls I/O channels, data transmission to and from
memory, memory parity checking, and virtual addressing comparison and translation.
The stream unit performs all streaming and instruction control, operand alignment,
buffering, and addressing. This unit contains a 64-bit by 256-location register file
which is used for instruction and operand addressing, indexing, field length counts,
and source and destination points for register instruction operands and results. A
microcode memory in the stream unit controls setup, interrupt, and termination of
vector-like instructions. The string and floating point units perform the majority of
the computer arithmetic operations.

The MCS consists of 524,288 64-bit memory words. The memory is field expandable

by adding an optional memory of 524,288 64-bit words to make a maximum memory

size of 1,048,576 words.

60256000 08 1-1

The I/O channels consist of control units for 16-bit data communications between SAC
and the MCU and between SAC and peripheral stations. Any one of the I/O channels
connects to the MCU and the other channels connect to the peripheral stations. These
stations consist of a buffer controller and related control circuitry connected to the
corresponding peripheral equipment. The buffer controller allows flexibility in the
selection of peripheral equipment connected to it, in that the software driver programs
perform the functions previously done by separate peripheral controllers. A typical
peripheral station might be connected to a line printer, a card reader, and some
magnetic tape units. As shown in Figure 1-1, additional I/O channels may be added
to the system up to a total of 12. The additional I/O channels must be added in
groups of four.

The MCU consists of a peripheral station with special maintenance control and monitor-
ing capabilities.

Cooling for the basic computer consists of two 30-ton water-cooled condensing units.
These units cool only the CPU, MCS, and I/O sections. The MCU is air cooled.
With the optional memory, the basic computer requires an additional 30-ton condensing
unit.

Power for the basic computer consists of one 250 kva, 400 Hz motor-generator set.
The motor-generator set has the capability of providing power for the CPU, MCS, I/O,
and the MCU. The optional memory requires the use of an additional 80 kva motor-

generator set.

1-2 60256000 08

CENTRAL PROCESSOR

Three address logic

Two's complement arithmetic

Parallel/dual segmented arithmetic units

Hardware register file composed of 256 84-bit, addressable registers
Integrated circuits _

Hardware macro instructions

Sequential stream processing

Synchronous internal logic with 40-nanosecond clock period (minor cycle)

MAGNETIC CORE STORAGE

Virtual addressing
e 32 multiphased banks of 16,384 64-bit words each, giving a total storage of
524,288 64-bit words
e Optional 524,288 64-bit words
Eight 64-bit words (plus two parity bits per word) read from each
memory bank
e Two 64-bit words plus four parity bits transfer to/from the CPU on each
of four independent read/write buses every minor cycle
1, 2-microsecond cycle time
Two levels of MCS degradation for maintenance

INPUT/OUTPUT

e Four 16-bit I/O channels
e Optional I/O channels up to a total of 12
e Highly flexible peripheral stations

60256000 08

1-3

CENTRAL PROCESSOR UNIT

FLOATING POINT
FLOATING POINT
MEMORY Je—}—>| STORAGE |
PIPE |
ACCESS
STREAM
;—--—-1 CONTROL
! @D | FLOATING POINT
|OPTIONAL|k' T (sac) R PIPE 2
| MEMORY |
L——d R EIIX
by
b
b
]
|
: | STRING
| |
(I
1
|]
I
I NOTES:
» > MAINTENANCE mggns ARE SHOWN IN DASHED
I CONTROL)
|®I . @ UNIT THE MCU IS ALWAYS CONNECTED
(Mcu) TO THE HIGHEST NUMBER (LOW-

Figure 1-1.

L

OPTIONAL 1/0
CHANNELS
5-8 & 9-12

lwvy

et

I 1/0
CHANNELS 1-4

\J

<

EST PRIORITY) CHANNEL AVAIL-
ABLE (i.e, 4, 8,0r 12).

3APIA

Basic CDC STAR-100 Configuration

60256000 09

MAGNETIC CORE STORAGE 2

IIIIIlIllIllIllllIlIIllIIIlIIIIIIIIlIIlIIlllllIIllllllIIIIIIlIIIIllIIIIIlIIIIIlIllIlIIIIllllllIIIIIIIIIIIIIIIIIIIIIIIII

DESCRIPTION

Magnetic core storage (MCS) consists of 524,288 66-bit words (64 data bits and 2 parity
bits), physically arranged as 65,536 528-bit words. For convenience, the MCS is
referred to as a 525K memory (for 66-bit words) and a 65K memory (for 528-bit words).
Each 528-bit word is called a super word or sword and is contained in two 264-bit
planes. The MCS is divided into 32 banks, physically located in eight sections. Each
section contains four banks as shown in Figure 2-1. For addressing considerations,

one bank contains 2048 addresses of 528 bits each. Two planes are referenced simul-
taneously to read or write one 528-bit sword. An MCS option for another 524K memory
may be added to the computer, The MCS option requires an additional eight sections

of MCS.
REAR VIEW

2
BANK | K 2K BANK O
2K 2K @

2K 2K

BANK 3 BANK 2
2K 2K

VIEWED FROM
WIRED SIDE

NOTES!:

@ EACH BANK CONTAINS TWO 264-BIT PLANES
OF 2K EACH.

2. ONE BANK EQUALS 2048 ADDRESSES OF 528
BITS EACH OR 16,384 ADDRESSES OF 66 BITS EACH.

3AP2A

Figure 2-1. One of Eight MCS Sections (Cabinets)

60256000 08 2-1

STORAGE WORD

A storage word is one sword (Figure 2-2)., One sword contains four quarter-swords.
Each quarter-sword contains two 66-bit words, 64 data bits,and 2 parity bits per word.
One sword,therefore, contains eight 66-bit words which are addressed from left to

right within the sword.

The 528 bits of one sword transfer to/from MCS during each write/read operation,
although only part of the sword may actually be stored or used. When the storage
access control (SAC) performs a write/read operation, it addresses each of the eight
MCS sections (Figure 2-3). In addition, SAC sends a bank request signal that selects
cnly one of the 32 memory banks. A storage word transfer then takes place between °
SAC and the selected MCS memory bank. The transfer occurs in four quarter-sword
transmissions. The transmissions go through a 132-bit data trunk which goes to the
MCS section that contains the selected memory bank, The transfer requires a period
of four minor cycles, one quarter-sword per minor cycle. During a write operation,
SAC sends a write enable signal for each half-word (32-bits). Depending on how the
enables are set, any or all of the half-words within the sword may be written into
storage. The SAC unit sends the enable signals in two 8-bit groups. Similarly, SAC
may select and use any or all of the half-words of a sword that it receives in a read
operation.

Data parity checking and generating is accomplished in SAC.

All signals between SAC and MCS use transistor current switch (TCS) ac transmission
techniques (described in the Control Data Intebrid Circuits Manual, Publication Number

60201000).

1/4 SWORD 0
N
§ A Y
PARITY BIT
PO [e 3
000 031 l 032 oul [oul, ose 127
v 7
\ 32 BIT HALF woRD 7~
| PLUSIPARITY BIT V4
A\ 7 /
\ eanrr woro
\ PLUS PARITY BIT 7
\ FOR EACH HALF WORD P
7
\ v
\ pd
\ e
4
174 SWORD O 1/4 SWORD | 1/4 SWORD 2 1/4 SWORD 5

(TWO 64 BIT WORDS

PLUS 4 PARITY BITS)

o J

v

ONE SWORD = EIONT 84 BIT WORDS
PLUS 16 PARITY B1TS
(4 PARITY BITS FOR EACH
nores: 1/4 swono)
I. BITS ARE NUMBERED 000-!27 WITHIN EACH
1/4 SWORD AND PREFIXED WITH THE 1/4 SWORD 3AP3A
RUMBER (ie,0-127 19 81T 127 OF 144 SWORD 0.)

2. PARITY BITS ARE NUMBERED PO -P3 WITHIN EACH I/4 SWORD.

Figure 2-2. Superword (Sword) Configuration

2-2 60256000 08

MCS ACCESS AND CONTROL SIGNALS

Figure 2-3 is a block diagram showing the four banks of a memory section and the

connections to the SAC.

MEMORY SECTION

~ BANK O
REQUEST

WRITE
DATA

WRITE
ENABLE

ADDRESS

TO SAC
(3—>Reap aTa

>®@@

MEMORY
1/4 SWORD BANKO

ADDRESS

CLEAR DATA
REGISTER

SPLIT
CYCLE

MASTER
CLEAR

CLOCK

FROM BANK |
SAC REQUEST

OOOOOMC

MEMORY
BANK |

Y

\

BANK 2
REQUEST

©

\ A

MEMORY
BANK 2

YYYYYN

BANK 3
REQUEST

©,

MEMORY
BANK 3

Figure 2-3., SAC/Memory Connections

60256000 08

REQUEST

There is one request line for each of the 32 banks in a 524K word system (four for
each memory section). When the system is increased to 1048K words, 32 additional
request lines are added. The request is a single pulse sent when SAC requires a

memory reference from a specific bank.

ADDRESS

Eleven bits of sword address are sent simultaneously to all 32 MCS banks. Only the
bank requested during the same minor cycle will use the address. Eleven bits are
needed to select one of 2048 addresses of 528 bits each, Figure 2-4 shows the MCS

address selection.

SELECT
r 1 OF 2048———‘
SELECT
[—-1 OF 1024 I
(32 x 32)
0 1 2 3 5 6 7 8 9 10121/,/1LEAST SIGNIFICANT BIT

4
[T T LT lel
AN 7 A\
)4 16 ADDRESS BITS FOR
< READ DRIVE, WRITE GATE

N
DRIVE BoaRp O-tOWER IK ///EEAD DRIVE,

/
A
1=UPPER 1K
WRITE GATE TIMING

0=LOWER
1=UPPER

READ GATE,
WRITE DRIVE TIMING
0=LOWER /16 ADDRESS BITS FOR
1=UPPER ~_READ GATE, WRITE DRIVE

Figure 2-4. MCS Address Selection

2-4 60256000 08

QUARTER-SWORD ADDRESS

Two bits determine the order of quarter-sword transfer to/from MCS. These bits
accompany the request and address to all 32 MCS banks. Only the requested bank
uses the quarter-sword address, Each quarter-sword (numbered 0, 1, 2, or 3) consists
of 132 data bits, The quarter-sword address and transfer order of the four groups are

shown in the following listing.

Quarter-Sword Address Read Write
Bit 0 Bit 1 Sequence Sequence
0 0 0123 0123
0 1 123t undefined
1 0 23t ¢ undefined
1 1 3210 3210
READ DATA

Four banks in a section share a common read data path., One 132-bit data bus carries data
from each MCS section to SAC. This requires four quarter-sword transfers to read one
528-bit sword. The first quarter-sword leaves MCS five minor cycles after the request is

received. The remaining quarter-swords are transmitted on the next three minor cycles,

READ PARITY

There is one odd parity bit for each 32 bits of data. Therefore, four read parity-bit
lines exist between each MCS section and SAC. All parity checking takes place ex-
ternal to MCS.

WRITE DATA

Four banks in a section share a common write data bus. One 132-bit data bus carries
data from SAC to each section, Each sword transfers as four quarter-sword bytes..
The first quarter-sword arrives at MCS one minor cycle after the request. The re-

maining quarter-swords are transmitted on the next three minor cycles.

T Transfer is undefined for group four.
T Transfer is undefined for groups three and four.

60256000 08 9-5

WRITE PARITY

There is one odd parity bit for each 32 bits ofk data. Therefore, four write parity-bit
lines exist between each section and SAC. Parity generation takes place in the SAC

unit.
WRITE ENABLE

There is one write enable bit for each 32 bits of data, The presence of a write enable
bit causes the corresponding 32 bits on the write data lines, plus parity, to be written
into memory. The SAC unit sends the write enable bits for the first two quarter-
swords to memory one minor cycle after the request. SAC sends the write enable bits
for the last two quarter-swords to memory three minor cycles after the request. Thus,
16 write enable bits accompany each sword of data. If none of the 16 write enable bits
are set, the request is a read. If any or all of the 16 write enable bits are set, the

request is a write,

SPLIT CYCLE/CLEAR DATA REGISTER

The split cycle signal specifies that a pause will occur between the read and write
portions of a memory cycle. The read bus timing is normal and the write bus timing
is special. Virtual addressing circuits use the split cycle for a page table search.
This allows the computer to read data and make a decision to change it or write the
same data back into the same location. During this pause between read and write
cycles, the clear data register signal specifies the writing of new data or the restoring
of original data. The clear data register signal clears the data register in the memory
bank prior to the receipt of write data. This signal is sent simultaneously to all mem-

ory banks and only the bank in the appropriate part of its memory cycle will respond.
CLOCK
The clock signal from SAC runs continuously when the power is on.

MASTER CLEAR

SAC pulses the master clear signal continuously whenever a master clear is present in
the central processor unit (CPU).

2-6 60256000 08

MCS DEGRADATION

The MCS degradation feature allows normal operation of the system within a segregated
part of MCS and allows maintenance programs to be run in the bad portion. Many
MCS degradation options are available from the maintenance control unit (MCU)
depending on the total MCS size and the type of fault.

524K SYSTEM DEGRADATION OPTIONS

Due to the interleaving of the MCS banks, the general failure of one bank results in

one faulty sword occurring on a 32-sword period through sequential addresses. Should
this general failure of a bank occur in a 524K MCS system or in a degraded 1048K
system, the phase 16 signal line from the MCU to SAC restructures MCS in a way that
sequential addresses sweep through 16 banks rather than 32, This function segregates
MCS into lower and upper blocks, one of which is composed exclusively of good memory
locations. The swap 262K signal line from the MCU to SAC causes either block to
appear as lower 262K. The use of the phase 16 feature causes an associated time

penalty on certain instructions due to the lower order of bank interleaving.

If only a single memory location is faulty or the failure is restricted to a few pages+t,
operations may continue without using the phase 16 feature with its corresponding time
penalty. This is accomplished by avoiding the defective pages. Note that certain moni-
tor instructions and internal CPU operations produce absolute addresses. If these
addresses reference defective MCS, it may be necessary to use the swap 262K feature
to move the absolute address references out of the defective area of MCS.

1048K SYSTEM DEGRADATION OPTIONS

If there is a general failure of one bank, causing defective pages throughout upper or
lower 524K, two options are available. The first alternative is to only reference the
good 524K MCS block. This enables full CPU speed. The other alternative is to use
the phase 16 feature to segregate the defective pages into a single 262K block. This
feature provides a 786K block of good MCS to the system but also includes the asso-
ciated time penalty. In either case, the good memory can be made contiguous in lower

memory with appropriate use of the swap 524K and swap 262K lines.

If the MCS failure is restricted to a few pages, operation can continue at normal speed pro-
viding that the defective pages can be avoided.

tFor a description of pages, refer to virtual addressing in section 5.

60256000 08 2-7

CENTRAL PROCESSOR UNIT

w

*

DESCRIPTION

The central processor unit (CPU) shown in Figure 1-1 consists of the following functional
areas,

® Storage access control (SAC)
L Stream and string (physically part of the stream unit)

L Floating point pipes 1 and 2

STORAGE ACCESS CONTROL

The SAC unit controls the transmission of data to/from magnetic core storage (MCS)
and performs virtual address comparison and translation., The SAC unit also generates
parity bits for write data and checks parity for read data. Thus, SAC provides access
to MCS for stream and the input/output (I/O) channels.

The SAC unit shown in Figure 3-1 connects to memory via eight read and write data
sets, In this case a data set is defined as a physical grouping of cables and associated
circuits used to carry data. There is one data set to each memory section. If the
optional MCS is connected to the system, a total of 16 data sets is available for data
transmission to/from MCS. For each reference, the data transmissions to/from MCS
are in the form of four 132-bit portions of the 528-bit superword (sword) contained in
MCS. Each 132-bit portion is referred to as a quarter-sword and consists of 128 data
bits and four parity bits (Figure 2-2). One parity bit is associated with each half-word
of data. The SAC unit references memory on a sword basis. In a write operation,
write enables determine the number of half-words written into memory. Therefore,
less than one sword may be written into memory, even though the time allocation is

for a full sword.

60256000 08 3-1

READBUS |

READ.BUS 2 Y READ DATA
< 128 READ N
READ BUS 3 @_ DATA
- 1
f WRITE DATA
exs2
WRITEBUSI
EsaT , @_, WRITE ENABLES
MITEENAH.EJ RY A -
v ®_, WRITE LEARDATAREG
WRITE BUS2 DATA
@_, MASTER CLEAR
WRITEBUS2 | [
[wriTeENABLEY 4 , TO MEMORY
! s CLOCK
> ONE SET TO
4 SWORDADDRESS Et%'}.%‘&“‘
Al
TOSTREAM < - _@__., SECTIONS.
: :yq SWORD SEL.
@ rive L SPLIT CYCLE J
174 SWORD €
seLeor REGISTERS
(2)_,___,
ADDRESS
(3 }t
BANK REQUESTS
REQUESTS
SLOT BANK = PRIORITY
s ONE REQUEST TO
~ A\ EACH OF 32
). MEMORY BANKS
ADDR -
WRITE <
whtE INPUT/OUTPUT

P11

FOUR 16-BIT 1/0 CHANNELS
AND ASSOCIATED CONTROL

Figure 3-1. Storage Access Control

60256000 08

SAC READ OPERATIONS

The SAC unit contains three read accesses. An access is defined as a grouping of one
or more buses which share a selection network for accessing MCS. Read buses 1, 2,
and 3 provide read access for the stream unit and use read access 1, 2, and 3, re-
spectively, in SAC, These three read buses provide instructions and operands to the
stream unit. The input/output buffer also connects to read access 3 via a 128-bit read
bus. The associative registers share read access 1 with the stream unit.

On read operations, SAC performs an odd parity check on each half-word of data. If

a parity fault is detected, the parity fault condition is set. The resulting operation de-
pends on the access input that requested the data containing the parity fault as described
in a subsequent subparagraph. If no parity fault is detected, the data is transmitted to
the input that made the request. In all requests except the requests associated with
read bus 3, only the data bits are transmitted. Since instruction words are transmitted
over read bus 3, the SAC unit first checks the parity in the normal manner and then
transmits the 128 data bits with the corresponding parity bits to the stream unit for

further checking,

MEMORY PARITY FAULT

The SAC unit generates and checks parity. The existence of a memory parity fault is
sensed on bit 0 of channel ATBS8 to the maintenance control unit (MCU). The type and
address of the memory parity fault are available to the MCU via code 04 of the display
register (refer to section 4 of this manual for a description of monitoring of system
activities by the MCU). There are six classes of parity faults.

1. ACCESS INSTRUCTION

The SAC unit detects access instruction parity faults one minor cycle after
the quarter-sword containing the fault is sent to stream. The CPU stops
before executing the next instruction following detection of an access instruc-
tion parity fault., The MCU, after processing and clearing the fault, may
restart the CPU.

60256000 08 3-3

4.

STREAM INSTRUCTION

The stream unit detects stream instruction parity faults just before the in-
struction containing the parity fault is executed. The CPU stops when an
instruction parity fault is detected. The MCU, after processing and clearing
the fault, may restart the CPU. The parity fault address is not valid since
the parity fault must have occurred in stream or resulted from a previous
access instruction parity fault. The content of the current instruction counter

is more meaningful in this case,

CPU

The SAC unit detects CPU parity faults one minor cycle after the quarter-
sword containing the fault is sent to stream. The CPU stops before executing
the next instruction following detection of a CPU parity fault. The MCU after
processing and clearing the fault, may restart the CPU. CPU parity faults do
not include parity faults in swords which contain instructions.

SEARCH

The SAC unit detects search parity faults one minor cycle after the quarter-
sword containing the fault is sent to the associative registers., The CPU

stops before executing the next instruction following detection of a search parity
fault. The MCU, after processing and clearing the fault, may restart the
CPU. This fault can only occur during a space table search.

EXCHANGE

The SAC unit detects exchange parity faults one minor cycle after the quarter-
sword containing the fault is sent to the register file. The CPU stops before
executing the next instruction following the detection of the exchange parity
fault. The MCU, after processing and clearing the fault, may restart the
CPU. This fault can only occur during a register file exchange.

1/0

The SAC unit detects I/O parity faults one minor cycle after the quarter-
sword containing the fault is sent to the I/O channel buffer. The MCU
can cduse the CPU to stop on an I/O parity fault (MCU channel

BTA2 bit 3). The appropriate parity fault indicator is set and the

60256000 09

address of the I/O parity fault is transmitted to the MCU upon request, If
another parity fauit is detected before the MCU ciears the first fauli, the
appropriate parity fault indicators are set but the address of the fault is the
address of the first fault detected.

A parity fault signal is sent to the I/O station to indicate if a parity fault was
detected in data sent to it.

PARITY FAULT ISOLATION

When one parity fault occurs, SAC stores the absolute physical bit address of the data
that caused the fault and the type of fault in a register which may be read by the MCU.
The stream instruction parity faults do not store the correct absolute addresses since
they are detected just before the instruction is executed and therefore, too late to catch
the absolute address of the fault. For this case, the current instruction address regis-
ter contains the virtual address of the current instruction containing the parity fault(s).
From this, it is possible to determine the absolute address, if desired.

If two or more parity faults occur before the MCU -can analyze and clear each one
individually, SAC stores the address of only the first fault, the type of the first fault,
and the types of any other six faults. Two or more of the same kind of faults, which
occur before a clearing, cause only the first fault to be recorded.

SAC WRITE OPERATIONS

The SAC unit contains two write accesses. Write buses 1 and 2 provide two inputs
for the stream unit access to MCS. These two write buses transmit result operands
and other output data from the stream unit to SAC for storage in MCS. The SAC unit
assembles the 16-bit bytes transmitted from the I/O channels into quarter-swords and
transmits these to MCS. The I/O channels share write access 2 with the stream unit.
The stream unit uses write access 2 for exchange operations only. The stream unit
and associative registers use write access 1,

60256000 08 3-5

In write operations, the SAC unit generates the four parity bits for each quarter-sword.
The format of the write data, as transmitted to MCS, is identical to the read data.

VIRTUAL ADDRESS MECHANISM

The SAC unit contains the 16 associative registers* and corresponding control circuits.
When the CPU is in job modet, all addresses sent from the stream unit are virtual
addresses. The SAC unit compares a virtual address with the virtual address identifier
of the associative registers. If a match is found and one of four keys compares with
the lock of the associated word, the virtual address control circuits convert the virtual
address into the corresponding absolute memory address from which the reference is
made. If no match is found in the associative registers, the virtual address control
circuits read additional associative words from a restricted portion of MCS, termed the
space table. The associative registers and the space table make up a page table,

MCS PAGE SIZES

There are two MCS page sizes available for virtual address references: the 65,536
and the 512 64-bit word pages. The page sizes are selectable under program control
and are applicable only for virtual address references.

STORAGE PROTECT FEATURES

The SAC unit contains the storage protection circuits for the computer system. The
storage protection features consist mainly of a lock and key arrangement. Each
associative word in the page table contains a 12-bit lock code. The lock code is
associated with a page of MCS. Each job is assigned four 12-bit keys by the monitor
program. If a virtual address matches the corresponding portion of the associative
word, the four keys associated with the current job are compared with the lock code in
the matching associative word. One of the four keys must match the lock code before
the storage reference can be completed. Thus, the monitor program can restrict MCS
page access to only the specified jobs by assigning the lock and key codes accordingly.

tRefer to section 5 of this manual for a description of job and monitor modes and
addressing,

3-8 60256000 08

In addition to the lock/key protection feature, each of the four keys is associated with
a 4-bit usage lockout code. This code can lockout CPU write operations, CPU read
operations, and/or CPU instruction references. If a key matches the lock of an asso-
ciative word, but the requested type of reference is inhibited by the usage lockout code,
an access interrupt takes place to the monitor program. Thus, the monitor program

can restrict MCS page access for a job to a particular type of reference,

Since during monitor mode all CPU references are absolute addresses, the storage
protection features are disabled for these references. In the same manner I/O channel

references are absolute addresses and are unrestricted by the storage protection features.

Section 5 of this manual describes the operation of the lock/key and usage lockout in

more detail.

SEARCHING THE PAGE TABLE

There are 16 associative registers (AR's), labeled 00 through 15. They are loaded
from absolute addresses 400016 through 43C016 by a load AR (0D) instruction. They
can also be stored into the same absolute addresses by a store AR (0C) instruction.

The associative words in the AR's are moved dynamically using the following scheme.
Whenever a virtual address is presented for association and a hit is made, the content
of the AR containing the hit is moved to AR00. Simultaneously, the content of the
AR's from AR00 to, but not including the hit AR, are moved down one AR. (For ex-
ample, 00 to 01, 01 to 02, 02 to 03, etc.) Thus, the associative words are in des-
cending order of most recent usage in AR00 through 15, Whenever an address is pre-
sented and no hit is made, a search through the space table is begun using a ripple
method. ARO00 through 14 are moved down one AR and AR15 is placed in AR00. Then
the first associative word of the space table is read and examined; its spot in storage
is filled by the old content of AR15, If the first word read from the space table is
not a hit, the second is read and replaced in storage by the first word read and so on
until a hit is made or an end of table is reached.

60256000 09 3-1

If during the search a hit is made, the content of the hit address is placed in AROO and then
replaced in memory by the associative word which formerly preceded it in the space table.
Entries in the space table beyond the hit address are not modified.

If an end of table (END) is read before a hit is made, the entire space table is pushed down
by one word position. However, if the unsuccessful search was initiated by a memory
reference in job mode, the NULL may be pushed down through AROO before the exchange
to monitor mode is performed. This condition is sent to the CPU and an access interrupt

results.

If a NULL exists in the AR's and no hit is made in the AR's, the space table is not pushed
down. A read and compare takes place until a hit is made and the NULL replaces that word
in the space table.

If no hit is made in the AR's and a NULL is encountered in the space table, the operation
changes from a ripple to a read only (no push down) and now if no hit is found, the null re-
mains in AR00, as before. If a hit is made deeper in the space table, the NULL replaces it.
Thus, only one NULL need exist at any given time in the page table.

If the monitor sets up the page table with one NULL, and it never adds or deletes a NULL,
the END remains at a fixed address for any given number of associative words in the page table.

At the termination of an unsuccessful space table search, there will be a NULL in AROO if
the unsuccessful search was initiated by an OF (load keys, translate address) instruction.

Figure 3-2 is an example of a page table search where the content of the AR's and the con-
tiguous entries in the space table are depicted as P3, P4, etc., NULL and END, where P3
represents the associative word for page 3, NULL is a NULL associative word, and END is
an end of table entry.

The example shows seven consecutive virtual address page references and the resulting page
table transfers. Assume that there are 21 associative words in the page table (16 in the asso-
ciative registers and 5 in the space table) and that no lockout bits are set; the last entry is an
end of table.

1. The first reference is to page 3. P3 is in AR03 and is moved to AR0OO and the content
of AROO through ARO1 is moved down one word. The space table was not altered.

2. The next reference is to page 18. No hit is made in the AR's so the AR's are pushed
down one and the content of AR15 (P16) is pushed down into the space table. P17 is
read and replaced with P16, Since P17 is not a hit, it is swapped with the next entry
in the space table, P18. P18 caused a hit so it is replaced by P17 and moved to ARO0O.

3-8 60256000 09

3. The third reference is to P21 which is not in the page table. The result is that
the entire page table is examined and pushed down including the END, AR00 is set

to a NULL, and an access interrupt is generated,

4, Assume that the access interrupt is properly handled by the monitor program and
the page table is not altered. The next storage reference in job mode is to P1.
Since P1 is in ARO03 when the reference is made, it is moved to AR00, and ARO1

through AR02 moved down one word.

5. The fifth reference is to P16 which is now the second entry of the space table,
This time there is a NULL in the AR's. The NULL is moved to AR0O0 and AROO
is moved down one word. P14 is not moved into the space table and the space
table is not pushed down. A read and compare takes place until the hit is found
and then the NULL replaces the selected associative word in the space table.

6. The next reference is to P20. Since there is no hit or NULL in the AR's, the
page table is pushed down until the NULL is encountered. Push down ceases and
read and compare takes place until P20 is read, causing a hit. P20 is moved to
ARO00 and is replaced by a NULL.

7. The last reference is to P21 which is not in the page table. The page table is
pushed down until the NULL is encountered. Push down ceases and then searching

ceases when the END is read.

ARQ0 is set to a NULL and an access interrupt is generated.

60256000 08 3-9

REFERENCE

MADE TO PAGE P3 P18 P21 PI PG P20 ~ P2l
ASSOCIATIVE |INITIAL|AFTER ||AFTER 2|AFTER 3|AFTER 4|AFTER 5|AFTER 6 [AFTER 7
REGISTER 00 P P3 18 NULL Pl P16 P20 NULL
N \\ \f N \\
“ ol pzj Pl\ Ps\ PI8 NULL ‘Pl\ P16 P20
N
" 02 P3 \PZ\ et s [[eie—tbsris [[*r P16
" 03 P4—t>Pa P2 PI BE P3 PI8 PI
®
[] L J
[]
. 3 = R B R ®w & R T
N N N
" 12 PI3—>PI3 P12 Pli—b>PI | PILI PIO \PQ
" 13 P14 Pig PI3 PI2 PI2 P12 PII PIO
" 14 PIS P15 Pla P13 PI3 PI3 PI2 P11
" 15 P16 P16 PIS\ P14 PI4 P14 P|3\ PI2
ABSOLUTE N ‘\ , N
ADDRESS 4400 P17 P17 PI6 PIS PIS P15 P14 P13
(SPACE TABLE) 16 N AN
N N
; N] N
4440 P18 PI8 PI7 PI6 P16 NULL PIS PI4
" 4480 P19 PI9—t>»P 19 P17 Pi7—t»PI7 >P|7 P15
" 44co0 P20 P20 P20 P19 PI9 PI9 P19 PI7
" 4500 END END END P20 P20 on-J NULL P19
" 4540 XX XX XX END END END END END
NOTE: |. PAGE TABLE IS MADE UP OF ASSOCIATIVE REGISTERS AND THE
SPACE TABLE.
3APSA

Figure 3-2, DPage Table Search Examples

3-10 60256000 08

MULTIPLE-MATCH FAULT

One of the ground rules of the CDC STAR-100 system is that any given combination of
lock and virtual page identifier in an associated word may occur in only one associative
word in the page table. A multiple-match fault occurs whenever a violation of this
rule is detected and the CPU is stopped. If two keys are identical, their lockout bits
must be the same. Otherwise, a reference made to the differing lockout bits generates

a multiple-match fault, resulting in an undefined condition.

ABSOLUTE BOUNDS ADDRESS

The absolute bounds address mechanism notifies the MCU of a memory reference

(read or write) to a specified block of memory. The block of memory is specified by

an upper bounds sword address and a lower bounds sword address. The addresses are
absolute physical sword addresses and are transmitted from the MCU on channels BTA4
and BTA5 (refer to section 4). The bounds addresses are not included in the block of

memory.

Various classes of requests can be tested for in-bounds conditions. Any combination
of classes may be selected (channel BTAG6, bits 0 through 5).

If the CPU is stopped by a bounds hit, the hit is cleared by the clear fault signal from
the MCU before the CPU restarts. The CPU restarts by setting bit 3 of MCU output
channel BTA1l. Bit 3 of BTA1l, if set, causes the CPU to execute the next instruction

in sequence.

A bounds hit (a selected memory reference inside bounds) is sent to the MCU on bit 3
of channel ATB8. To identify a second bounds hit, the MCU must clear the first bounds
hit signal via the clear fault signal (bit 7, channel BTA1).

INPUT/OUTPUT CHANNELS

There may be up to 12 channels in the CDC STAR-100 SAC unit., Channels 1 through
4 are required in the minimum system and channels 5 through 8 and 9 through 12 may
be added as options. One channel must be reserved for the MCU. The MCU provides
the interface to the operator for maintenance, system control, and monitoring. The
MCU can disable any or all-1/O chammels from reading or writing into central memory.
The peripheral station on a disabled channel can carry on all functions with the

60256000 08 3-11

CDC STAR-100 I/O channel, except the transmission of data to/from central memory.
This feature is very useful for maintaining the I/O channels and peripheral stations.

A typical I/O channel connects to a peripheral station. The peripheral station may,
in turn, be connected to various peripheral devices or be connected to another second-
level peripheral station.

Data is transmitted to/from the I/O channel in 16-bit transmissions. In I/O write
operations, two successive 16-bit data transmissions from the peripheral station are
assembled into one 32-bit half-word. The half-words are temporarily stored in the
1/O buffer. When sufficient data has been assembled and stored in the I/O buffer, it
is transmitted one quarter-sword (128 bits) at a time through the SAC data circuits to
central storage. In I/O read operations, the SAC data circuits transmit one complete
sword from central storage, quarter-sword at a time, into the I/O buffer. The 1/0
control circuit then reads 32-bit half-words from the I/O buffer into the data registers.
The data is disassembled into 16-bit transmissions which are sent to the peripheral

station.

At the beginning of an I/O read or write} operation, a starting address is sent to the
I/O channel in the form of two successive 16-bit transmissions (only 21 of the 32 bits
are used), Of the total, 11 bits are used as the MCS sword address and 6 bits are
used as the bank address. The remaining bits define the quarter-sword and the half-
word addresses for the I/O buffer assembly/disassembly operation.

ASSEMBLY /DISASSEMBLY

Each‘ I1/O channel contains a 32-bit assembly/disassembly register and address register
circuits. In addition, a 32-word-by-128-bit high density logic (HDL) memory is shared
by the I/O channels as the 1/O buffer. The I/O buffer is used for assembly, disassem-
bly, and buffer operations. An I/O channel is allocated a quarter, half, or whole
sword in the I/O buffer. The amount of I/O buffer space that is allocated to an I1/O
channel is predetermined and may only be altered by specific contractual arrangement.

+All I/O write references to the lower eight 512-word pages of central memory are
locked out. This lockout is disabled only after a master clear until the first I/O
interrupt is received. The temporary disable allows a peripheral station to write the
basic system program into central memory on system startup.

3-12 60256000 08

The allocation for each I/O channel is:

Channels 1-5 four guarter-swords each
Channels 6-10

Channels 11 and 12

two quarter-swords each

one quarter-sword each

The data trunk between the assembly/disassembly buffer (ADB) and central memory is
128 bits wide. The data trunk between the ADB and the channel assembly/ disassembly
registers is 32 bits wide. The data trunks between the peripheral stations and the
assembly/disassembly registers are 16 bits wide.

1/O DATA

Figure 3-3 shows that in I/O write operations, each 32-bit half-word consists of two
successive 16-bit transmissions from the peripheral station. The two 16-bit portions
are assembled in the assembly/disassembly register for transmission to the I/O buffer.

/O ADDRESSING

Figure 3-4 shows that the starting address for an I/O read or write operation is sent
from the peripheral station as two 16-bit transmissions. The first 16 bits contain the
upper or lower 500K MCS selection bit and the high-order 4 bits of the sword address.
The second 16 bits contain the low-order 7 sword bits, the 5-bank selection bitst., the
quarter-sword address, and the half-word address. The 11 sword address and 6 bank
address bits are transmitted to the channel address register where they are incremented
as sword boundaries are crossed during central storage references. The quarter-sword
address bits are sent to I/O control where they determine the quarter-sword that is
loaded into or transmitted from the I/O buffer. The half-word address bits determine
the 32-bit half-word that is loaded into or transmitted from the I/O buffer.

!The 5 bank selection bits and the 500K MCS selection bit are combined to form the
6-bit bank address as shown in Figure 3-4.

60256000 08 3-13

DATA SENT FROM PERIPHERAL STATION

23456 789101112131415

L FIRST TRANSMISSION
IIIIIIIIIlIIIIIIl (UPPER 16 BITS)

|

; |

0123456789101112131415 gecoND TRANSMISS [ON

(LOWER 16 BITS)

I/0 CHANNEL
AD REGISTER

012345678 9101112131415161718192021222324

252627

28293031

RENEEEEENEEEEERERREERENR

\.\ o

[11]
L

\ UPPER 16-BITS LOWER 16-BITS /
HIGHEST ORDER BIT LOWEST ORDER BIT

Figure 3-3. I/O Data Formats

3-14

SAPTA

60256000 08

I=SELECT UPPER 500K MCS

HIGH-ORDER 4 BITS OF
NOT USED SWORD ADDRESS
A A

O|23456789I01III213 l4{5\

FIRST TRANSMISSION

J|__Y_/

1/4 SWORD ADDRESS
LOW-ORDER 7 BITS OF BANK I—
SWORD ADDRESS SELECT HALF-WORD ADDRESS
A A A A
IOI 23456\h789|0”\|2 13714 15
SECOND TRANSMISSION
(. N /
\r V-

1/0 BUFFER

ADDRESS COUNTERS

ﬁf——"—v - \

60256000 08

01 2 3 4°'5 6 7 8 9 101l 12 13 14 I5 |6

CHANNEL MCS
ADDRESS REGISTER

L\ Y N /

SWORD BANK
ADDRESS ADDRESS SAPSA

SAC CONTROL CIRCUITS

Figure 3-4. 1/O Address Formats

3-15

1/0O CHANNEL PRIORITY

The 1/O channels have the lowest priority of the memory accesses. There are two

modes of operation to determine priority, random mode and stream or slot mode.

1.

RANDOM MODE

When a channel needs a memory access, the request goes through

a channel priority. Channel 1 has the highest priority and channel 12

the lowest priority. After channel priority is granted, the request goes
through a system priority. Before the access is allowed, no read next in-
struction (RNI) request can be present., At this point, the memory busy is
checked and if not busy, the access is granted. If the memory is busy, the
requesting channel is limited to making requests on alternate I/O timing
signals, thus allowing a lower priority channel to make a request while the
higher priority channel waits for the memory to go not busy. The requesting
channel requests memory on alternate access cycles (I/O timing signals) until
the access is granted or until a higher priority channel makes an access
request,

STREAM OR SLOT MODE

In the stream or slot mode, the A operand, B operand, C operand and I/O
are each allocated a seperate memory bank such that memory conflicts are
avoided. Each allocation is for four minor cycles. After the four minor cycles
the allocation moves to the next memory bank. This continues through the
32 memory banks, then repeats. In effect, the operand and I/O allocations are
like moving slots that sweep through the memory banks defining the area of

memory to which operands and I/O references may be made.

When a channel needs a memory access, the first check is to ensure that the bank

requested is in the slot., When the selected memory bank is in the slot, the channel

makes a request., This request goes through the channel priority where channel 1 has

the highest priority and channel 12 has the lowest priority, After channel priority

grants the request, the request goes through the system priority. Before the access

is allowed, no RNI request can be present. At this point, the memory busyt is checked

and if not busy, the memory request is granted. If the memory bank is busy, the

channel waits until the next time the banks go not busy.

tMemory busy is unlikely in slot mode.

3-16

60256000 08

/O CHANNEL WRITE LOCKOUT

All 1/0O write references to the lower eight 512-word pages of central memory are
locked out. A master clear disables the lockout until the first I/O interrupt is re-
ceived. This disable allows I/O stations to write the basic system program into lower
memory on system startup and protect the system during normal operation. The con-
trol from A signals consist of a 2-bit function code and a strobe.

SYSTEM COMMUNICATIONS

The CPU (A) and first level stations (B) communicate by exchanging control and inter-
rupt information. Signals sent from the CPU are called control from A (CFA) and
signals sent to the CPU are B to A interrupts.

The control from A function codes are defined as follows:

Channel Flag A channel flag is transmitted by the execution of an
08 instruction. Twelve channel flags are available
in the computer, one for each I/O channel. The 08
instruction designates the I/O channel. Table 3-1
shows the assignment of the channel flags. A typical
use of a channel flag is to indicate the CPU has a
message concerning normal communication from sys-
tem software placed in a prearranged area of storage.

External Flag An external flag directs B to master clear and enter
an autoload sequence. The external flag is initiated
through the maintenance control unit,

Suspend A suspend code directs B to cease transmission on
the channel and go into a stand-by mode. Any mas-
ter clear involving SAC causes a suspend code.

The suspend code is transmitted to all stations simul-
taneously.

60256000 08 3-17

TABLE 3-1. CHANNEL FLAG ASSIGNMENTS

Channel Flagt Assignment

0 Not available

1 I1/O channel 1
2 1/O channel 2
3 I/O channel 3
4 I/O channel 4
5 I/O channel 5
6 1/O channel 6
7 I/O channel 7
8 1/O channel 8
9 1/O channel 9
A I/O channel 10
B I/O channel 11
C I1/O channel 12
D Not used

E Not used

F Not used

tRefer to the 08 instruction in section 6.

3-18

60256000 08

STREAM

The stream unit provides basic control for the computer. Figure 3-5 is a basic
block diagram of stream. The stream unit performs the following functions.

e Initiates all central storage reference requests for instructions and operands.

® Translates these instructions and transmits control signals to the arithmetic
units.

e Provides addressing for all source operands and arithmetic results.

e Buffers and positions all operands and arithmetic results between central
storage and the arithmetic units.

e Performs logical instructions such as exclusive OR, AND, inclusive OR, and
shift on operands from the register file,

e Performs binary and decimal arithmetic operations on byte strings. It alsc
performs other bit or byte string type operations such as edit, pack, unpack,
compare, merge, modulo arithmetic, logical, and search with or without de-

limiter.

The stream unit interfaces with the SAC, floating point pipe 1 and floating point pipe 2.
It also interfaces with the MCU for loading the microcode memory, maintenance, and

fault monitoring.

The following paragraphs describe the main functional area of the stream unit.

INSTRUCTION CONTROL

Instruction control receives all instructions from central storage via read bus 3. The
rate of instruction issue is increased through use of buffering in instruction control.
The buffer is a high density logic (HDL) storage instruction stack which holds four
swords of instructions arranged in 16 addresses of 128 bits (quarter-sword) each
(Figure 3-6). Each request to central storage transfers one sword of instructions

into the instruction stack. This sword of instructions arrives in the stack at a rate of
one quarter-sword each minor cycle. The read next sword (RNS) lookahead mechanism
makes a request for the next sword of instructions when instructions issue from the
most recently-acquired sword of -instructions {(Figure 3-7). - The program may branch
forward in the instruction stack to any location in the same sword of instructions (or

to the next sword after it is loaded into the stack). It may branch back in the stack

60256000 08 3-19

A STREAM

. A STREAM | 1o
[READ BUS | A _STREAM ——i* . —O——— | Ioume
. o, REGISTER FILE £~ LOWER REG. FILE Py @R STREA, ¢ ol
ugr':n CDN‘;IIOL. READ BUS | < NETWORK pee
;npur snorr:u UPPER REG. FILE A STREAM 19 arwe
READ BUS 2 —&———————— —&———
o B STREAM 8 streAM O pOAT
€5 -&—— |——&————> [pive 2
— T B STREAM é é
&) T0
WRITE BUS | INST REG O LoATING
WRITE BUS ! 1 | PIPE |
GUTAST BUFFER o
WRITE BUS | AND CONTROL A4 g&f‘ﬂsﬂs“n T DATA INTERCHANGE
WRITE ENABLES OPERAND RESUT g]
.0 BT FLOATING POINT
—] PIPE | RESULT
LARGE —&———
WRITE BUS 2 a o] ADDER
WRITE BUS 2 = PPN
AND CONTROL € € FLOATING POINT
READ 3 MASK PIPE 2 RESULT
—©— 16
SACQ BITS 64-127 ~ o e —&—
© (& & SuALL
&—s ADDER
” X AND Y STREAM STRING UNIT | STRING
CONTROL,
STRING INTERFACE ®
MANTENAMCE & >
DISPLAY INTERFACE,
AKPOINT AND
ot i @) REGISTER LOGICAL INTERRUPT COUNT
________ x M AND SHIFT UNIT REGISTERS
SEORE SR I coRessinG, FIELD
LENGTH CONTROL,
AND REGISTER FILE] ®
ADDRESSING - INST REG © 3
~ INSTRUCTION STACK, ®
&> INSTRUCTION CONTROL, b— 62— o N
~ 2K INST
FER (__@ -~/
L READ BUS 3 -1 _ _ _____
A2 1.___®_J
6K MULTIPLY BUFFER P_SECTION
{64 —/ INTERCHANGE
ADDRESS SETUP PATH o
<
L READ BUS |y
CONTROL
TO STREAM
MICROCODE MEMORY J€—————" LOAD/STORE UMIT
FRON ———(8)———>] ANG CONTROL
MAINTENANCE
STATION — (@ —
INCREMENT/!

3-20

Figure 3-5.

Basic Stream Block Diagram

IAPZSA

60256000 08

° 128

174 SWORD OF INSTRUCTIONS {I28 BITS}
SWORD 3 <
SWORD 2 <
—
-
SWORD 1 <
SWORD 0 <
3APSA
Figure 3-6. Instruction Stack
4-SWORD
INSTRUCTION STACK
SWORD SWORD SWORD | BRANCH
Location] 3 XXxx 3 XXXX 3 XXXX LOAD—>{3 OF 3 OF BACK
INST INST | INSTACK
SWORD SWORD SWORD
2 XXXX 2 XXXX | LOAD—2 OF ISSUE—3{2 OF ISSUE—2 oF
INST INST INST
SWORD SWORD SWORD sw:FRD
| XXXX | LOAD—>{i OF ISSUE—>{| OF | mogr et OR
INST INST
(USED) {USED)
W
. SWORD SWORD s o?:RD 5"3‘;“" svgoFRo oR
LOAD¥—3{ 0 OFT ISsUE—s{o IS;T O InsT O InsT 0 InsT
INS (USED) (USED) {USED) L
TIME —
% EACH SWORD OF INSTRUCTIONS IS LOADED INTO THE INSTRUCTION STACK 3APIOA

SWORD LOCATION SPECIFIED BY THE LOWER TWO BITS OF THE SWORD ADDRESS
INSTRUCTION STACK ADDRESSING IS WRAPARQUND

Figure 3-7. Instruction Stack Use

3-21
60256000 08

to any executed instruction remaining in the stack which was loaded after the last branch
out of the stack. The instruction stack is effectively cleared upon branching out of the
stack.,

Each sword of instructions obtained from central storage via read bus 3 is accompanied
by 16 parity bits which are stored in a group of 64 flip-flops. The hardware checks
parity on each 32 bits of instruction at the time the instruction is read out of the in-

struction stack. A parity error will stop the CPU prior to execution of that instruction.

Refer to section 5 for restrictions for self-modifying instructions and virtual memory

restrictions.
ADDRESSING

Addressing is done in stages; that is, the addressing circuits break the address down
into groups of bits and send these bits to the various areas of the CPU and memory
where they control the selection or shifting of data.

The addressing area receives the address from the register file via the data interchange,
interrupt count registers, and P-section interchange.

The following are examples of address bits sent to the various areas of the CPU and

memory. Address bits 0 through 15 are not used for addressing.

1. Bits 16 through 54 are the virtual sword address. Addressing sends these bits
to SAC for comparison with the page table.

2. Bits 55 and 56 select the quarter-sword. These bits are sent to the stream
input and buffer control area for selection of operands. They are also sent
to the instruction control area for selection of the control vector. Bits 55 and
56 also control the selection of the quarter-sword sent to memory from the
write bus 1 output buffer area.

3. Bits 57 and 58 are sent to the operand shift network where they control the
operand alignment shift from quarter-sword to word or half-words. Bits 57
and 58 also control the C stream operand shift network where they control the
half-word/word to quarter-sword shift of the result.

4, Bits 57 through 63 control the selection and shifting of the A and B stream
operands from the quarter-sword level to the byte and bit level in the X and
Y stream control and string interface,

3-22 60256000 08

5. Bits 55 through 59 select read bus 3 from the sword level to the quarter-word
level for the string output interface. This selection takes place in the instruc-
tion control area.

6. Bits 60 through 63 control the shifting in the siring output interface. If the
output goes back into the string unit (read 3 path), the shift is from quarter-
word to byte or bit., If the output is to the data interchange, the shift is from
bit or byte to quarter-word,

STREAM INPUT AND BUFFER CONTROL

This hardware consists basically of two 128-bit data paths between memory (read bus 1
and read bus 2) and the quarter-sword to item count addressing interfaces (X and Y
stream control, string interface, register file, and operand shift network). This area
handles quarter-swords and supplies them to the item count addressing interfaces at

a usable rate. There is an 8K buffer (128 bits x 64) which is used to buffer the data
to reduce the data rate of a sword from memory in some operations and fo align the
two operand vectors for streaming in other operations.

REGISTER FILE

The stream unit contains a register file composed of two 64-word by 128-bit HDL
memories (Figure 3-8). The computer uses the register file for instruction and operand
addressing, indexing, field length counts, and as a source or destination for register-
type instruction operands and results. The 8-bit designators, in the instructions,
address the register file as 256 64-bit registers or address the first (lower) half of the
registér file as 256 32-bit registers.

The register file addressing area of the stream unit uses the 8-bit instruction designator
and a forced zero bit to form a 9-bit register file address (Figure 3~9). For 32-bit
register addresses, the 8-bit instruction designator is right-justified in the 9-bit register
file address with the leftmost bit (bit 0) forced to zero. For 64-bit register addresses,
the 8-bit designator is left-justified with bit 8 forced to zero.

Bits 1 through 6 of the 9-bit register file address are used to address both of the HDL
memories for normal operation. Therefore, two 128-bit words are referenced with

60256000 08 3-23

each reference to the register file. For example, the reference is a read and the
register addressed is register 5, the register file reads registers 4, 5, 132, and 133.
The operand shift network or selection networks use register file address bits 0, 7,
and 8 to make the final selection of register 5. If the reference is a write register 5,
the write address references registers 4, 5, 132, and 133 but register 5 is the only
register with a write enable. Registers 4, 132, and 133 remain unchanged.

The swap (7D)instruction is the same as the above normal operation (that is, both HDL
memories share the same address). Register file addressing generates the 9-bit
address starting at the even numbered 64-bit register specified by the instruction and
increments it by one HDL address each minor cycle. Bits 0, 7, and 8 then select two
64-bit registers per minor cycle for transfer to/from memory.

For an exchange operation, register file addressing addresses each HDL memory
separately and transfers two 128-bit register file words to/from memory per minor

cycle.

See section 5 of this manual for more information on the register file and section 6
for more information on the swap (7D)instruction.

3-24 60256000 08

60256000 08

MEMORY
MEMORY
MEMORY

MEMORY
MEMORY

MEMORY
MEMORY
MEMORY

MEMORY
MEMORY

LOWER REGISTER FILE

€4 ADDRESSES OF

128 BITS EACH

(USED AS 128 64-BIT REGISTERS OR 256 32-BIT REGISTERS)

0 63 64 127
ADDRESS 0 REG. O REG. Ijp
ADDRESS | 2 3
ADDRESS 2 9 5

= - - -
ADDRESS 62)p (3E)g) 1240 (7Cj6) 1255 (7Dig)
ADDRESS 63 (3F|g) 1261 (TEsg) 127)p (7Fig)

ADDRESS 0
ADDRESS |
ADDRESS 2

-

ADDRESS 62)0 (3Eg)
ADDRESS 63|0 (3F)g)

NOTES:

UPPER REGISTER FILE

64 ADDRESSES OF

128 BITS EACH

(USED AS 128 64-BIT REGISTERS)

o] 63 64 127
REG. 128)g (80,g) | REG. 129 (81)g)
1305 (B2)g) Blho ©315)
1329 (84;¢) 133, (85,6)
L A A
I~ -+~ B
252)9 (FCg) 253)5 (FDyg)
25410 (FEIg) 2550 (FFig)]

TO OPERAND
SHIFT NETWORK
OR SELECT
NETWORKS

I, ALL REGISTER NUMBERS SHOWN ARE FOR 64-BIT REGISTERS.

2. IF LOWER REGISTER FILE IS

ADDRESSED AS 32-BIT REGISTERS,

LOWER REGISTER FILE MEMORY ADDRESS O WiLL CONTAIN 32-BIT

REGISTERS 0,1,2, AND 3;MEMORY ADDRESS |

4,5,6,AND 7 ETC.

WILL CONTAIN

3APIIA
Figure 3-8. Register File
8-8IT INSTRUCTION
DESIGNATOR
A
[¢] 1 2 3 4 5 6 7 A\ 8 ~FORCED TO ZERO

¥
0
64-BIT REGISTER ADDRESS FORMAT
8-BIT INSTRUCTION
DESIGNATOR
A
FORCED TO ZERO-~ O ! | 2 3 4 5 6 7 8 \
L)
0
32-BIT REGISTER ADDRESS FORMAT
o] 1 2 3 4 E] 6 7 8
/ 3API2A

SELECT UPPER- \
OR LOWER

REGISTER FILE

Figure 3-9.

\
ADDRESS TO
HOL™ MEMORY

SELECT REGISTER

Register File Addressing

3-25

OPERAND SHIFT AND SELECTION NETWORK

The operand shift network performs the final pairing of the operands before they enter
the floating point pipes. A and B stream buses (128 bits wide) enter the operand shift
network from either the register file or the stream input network. The operand shift
network is capable of any shifting on 32-bit boundaries. After pairing, the operands
are sent to the floating point pipes via two 64-bit trunks to each pipe,

This network also contains circuits which may select either the A stream, B stream,

upper register file, or lower register file for transmission to the data interchange.

DATA INTERCHANGE
The data interchange performs the following functions.

e Receives and routes all data from the floating point pipes, string unit, register
logical and shift unit, and the load store unit.

e Routes all data going out write buses 1 and 2.

e Routes all data going to and from the large and small adders.,

C-STREAM OPERAND SHIFT NETWORK

The C-stream operand shift network realigns data to its proper position for writing
into memory. The shift network is capable of any shifting on 32-bit boundaries.

WRITE BUS 1 OUTPUT BUFFER AND CONTROL

This hardware consists basically of one 128-bit data path between the item count to
quarter-sword addressing and memory. This area handles quarter-swords (or 64 or
32-bit quantities aligned to the proper quarter-sword bits) and assembles them into
swords for storage. There is an 8K buffer (128 bits x 64) which is used to buffer the
data to increase the data rate of a sword to memory in some operations and to align
the output vector for streaming in other operations.

WRITE BUS 2 AND CONTROL

Write bus 2 and control consists basically of a 128-bit wide data path into memory
(write bus 2) and a large OR gate fed by all the registers which are saved in the
invisible package.t These registers feed into their appropriate bit positions for storage

tSection 5 of this manual contains a description of the invisible package.

3-26 60256000 08

%)

in the invisible package. Alsc a full 128-bit path from
in f f

X- AND Y-STREAM CONTROL AND STRING INPUT INTERFACE

This hardware consists basically of three 128-bit wide input data paths (read 1, read 2,
and read 3) which are addressed to the quarter-swerd level, and two 16-bit wide out-
put data paths which can be addressed to the bit level. For one type of operation,

two inputs (read 1 and read 2) supply operands to the string unit via the two output
paths. For another operation, one input (read 3) supplies control vector bits via one

of the 16-bit outputs to be used as output vector write enables,

STRING UNIT

The string unit (Figure 3-10) processes strings of decimal and binary numbers. The
X-stream, Y-stream, and data interchange areas of stream perform the bit boundary

addressing required for the string instructions.

EDIT CONTROL

The edit control processes strings of numbers in packed binary coded decimal (BCD)
format according to the control characters in the pattern field, Source characters are
transferred to the result field with commas, decimal point, fill (check suppress) charac-

ters, and messages inserted as specified by the pattern field.

LOGICAL INSTRUCTION CONTROL

This control performs the exclusive OR, AND, inclusive OR, stroke, pierce, implica-

tion, inhibit, and equivalence operations on the input data fields.

BINARY ARITHMETIC CONTROL

This control performs the binary add, subtract, multiply, and divide operations on
operand strings. The add, subtract, and divide operations are executed in one 16-bit
adder. The multiply operation uses four consecutive 16-bit half adders and a 20-bit

full adder to generate partial products. The partial product from one pass is added to
the partial product of the previous pass in the 16-bit adder used for binary add, subtract,

and divide.

60256000 08 3-217

READ | DATA VIA
X-STREAM CONTROL
A FELD
FAN-INS AND @
REGISTERS
)
|FAN-IN
ot
CONTROL
-
READ 2 DATA |
g i ;
B FIELD I—T
O TRUNK
s T o N
REGISTERS ST) res
¥ ~———>" LoskcaL l BINARY ADD,SUBTRACT,MPLY AND DIVIDE
READ 3 DATA: INSTRUCTION
OR MASK CONTROL
O REG

NOTE:
I THIS DIAGRAM IS A GENERAL
REPRESENTATION OF THE
STRING UNIT AND DOES
NOT SHOW ALL DETAIL

STORE

+ RESULTS
(PARTIAL

OR FINAL)

BINARY MULTIPLY

4X16-BIT PARTIAL
PRODUCT

{ro)-
©
208

o>

PRODUCT
@)
(&)
DECIMAL ADD,SUSTRACT,MPLY AND DIVIDE
—
po-817] A FIEL
oI6IT
REG -
-~ B FELD— e |
p4 -t
o-8iT}
jcarmy)
T
"o |—@) MOS
N SIGNIFICANT
0!
~"" caray

Figure 3-10. String Block Diagram

60256000 08

BINARY ADD AND SUBTRACT

®

The two operand fields are processed through the adder in 16-bit groups from
right to left. A register overflow (carry) out of the adder from one 16-bit
group is presented as a carry into the adder for the next 16-bit group.

e BINARY DIVIDE

The hardware executes the divide instruction using an algorithm similar to the
pencil and paper method of solution. The B field operand is subtracted from
the left end of the A field operand generating one bit of quotient and a partial
remainder that is stored. The hardware subtracts the two fields in 16-bit
groups until the first pass is complete. On the second pass, the B: field
operand is subtracted from this partial remainder (shifted one bit) to generate
a new partial remainder and the second quotient bit. The process continues
until the division is complete. The hardware uses a nonrestoring type divide
operation,

e BINARY MULTIPLY

The binary multiply is accomplished in a manner similar to the pencil and
paper method of solution. The A field operand is streamed through in 16-bit
groups which are multiplied by the rightmost four bits of the B field operand.
The second pass uses the next four bits of the multiplier with the partial re-
sults of this pass being added to the partial results of the previous pass. This
process continues until the B field is exhausted.

The multiplication by the 4-bit multiplier occurs in the four half adders, one
multiplier bit per half adder. The partial sum and carry bits from the four
half adders, together with the upper four carry bits from the previous 4- by
16-bit multiply, are combined in the 20-bit full adder. The lower 16 bits of
the partial product are combined with the partial products of the previous passes
in the 16-bit binary adder used for binary add, subtract, and divide.

The binary multiply unit multiplies only positive operands. Negative operands
are complemented at the inputs to the various adders. If a negative result is
required, the final product is complemented in a separate pass.

DECIMAL ARITHMETIC CONTROL

This control performs the decimal add, subtract, multiply, and divide operations
through the use of two 16-bit decimal adders, a divide table, and a 4-digit multiply

60256000 08 3-29

table. The add and subtract operations are performed in the second adder which also

combines the partial results of the successive passes on multiply and divide operations.

e DECIMAL MULTIPLY

The A field operand is divided into 4-digit groups which are multiplied by the
rightmost digit of the multiplier on the first pass. The multiply lookup table
generates a product digit and a carry digit for each digit of the 4-digit group.
The product and carry digits, together with the most significant carry digit
from the previous 4-digit group, are combined in the first 4-digit decimal
adder and are then stored.

The other multiplier digits are processed on the second and successive passes.
The partial products of a pass are combined with the partial products of the

previous passes in the second decimal adder.

e DECIMAL DIVIDE

The hardware executes the decimal divide instruction by examining the most
significant divisor digit and the two most significant dividend digits. The
divide table generates the largest quotient digit possible for this input combina-
tion. The divisor, divided into 4-digit groups, and the trial quotient digit are
multiplied in the multiply table. This product is subtracted from the dividend
to yield a partial remainder (similar to the pencil and paper method of solu-
tion). Since only one digit of the divisor is examined in determining the
quotient, the remainder may be negative (as when 080 is divided by 19 for
which a quotient of 8 is generated by the divide table). A negative partial
remainder forces the hardware into a correction cycle which adds the divisor
to the partial remainder and decreases the value of the trial quotient digit by

one., The correction cycle is repeated until the partial remainder is positive.

The second pass generates the second quotient digit using the divisor and the
partial remainder from the first pass (plus the next dividend digit). Additional
passes occur until all digit positions of the dividend are processed.

MISCELLANEOUS OPERATIONS

The string unit also performs move, compare, merge, pack, and unpack operations
not specifically identified by controls in Figure 3-10.

3-30 60256000 08

REGISTER LOGICAL AND SHIFT UNIT

The register logical and shift unit operates on 64-bit operands from the data inter-
change. The logical operations (2C, 2D, and 2E instructions) are executed when the
unit accumulates two sequential operands, The shift operation (30 and 34 instructions)
shifts a 64-bit operand left end-around or right end-off with sign extension according to
the sign of the shift count. The shift count is supplied from the operand bus, the in-
struction bus, or from microcode. The register logical and shift unit also performs
the insert (6D), extract (6E), and register bit branch and alter (32) instructions. The
unit returns results to the data interchange via the P section interchange.

INTERRUPT COUNTERS

The interrupt counters function as follows:

e Hold addresses, delimiters, field lengths, which are necessary to restart

vector-type instructions after an interrupt.
e Acts as a buffer for load/store operands and addresses for register instructions.

e Keeps track of pass counts and termination conditions for multipass instructions.

P SECTION INTERCHANGE

The P section interchange performs the following:

e Receives data from the data interchange, register logical and shift unit, load
store unit, interrupt count registers, and microcode memory control registers.,

e Routes data to the data interchange, load/store unit, and addressing.

LOAD/STORE UNIT

The load/store unit acts as a pipe line; that is, the operands issue to the unit and the
CPU is free to do other work., The CPU places the operands in the interrupt count
registers which act as a buffer for the load/store unit. The interrupt count registers
can hold up to three sets of operands waiting execution. The load/store unit receives
the operands from the interrupt count registers via the P section interchange, performs
the specified operation, and delivers the result to the data interchange via the P section

interchange.

60256000 08 3-31

Instructions performed by the load/store unit are:

e Load/store byte 12, 13
e Load half word/word 5E, TE
e Store half word/word 5F, TF
e Bit branch and alter 32

See section 5 of this manual for restrictions on self-modifying instructions.

MICROCODE

The computer uses microcode (MIC) to start up and shut down vector type operations.
For most other operations microcode is not used. The MCU loads the microcode
memory via a second block transfer channel. This channel between the MCU and the
microcode is also used to read MIC memory, MIC status, and set conditions (switches)
in MIC.

MIC memory is used as a read-only memory. Writing into MIC memory is reserved
exclusively for loading systems or diagnostic microcode programs.

MIC memory is composed of two memories, memory 0 and memory 1, each one
operating on a cycle time of 80 nanoseconds but offset by 40 nanoseconds. Memory 0
leads memory 1 by 40 nanoseconds. Every read from memory 0 is unconditionally
followed by a read from memory 1 at the same address, even if the memory 0 word
forced a branch.

Each of these memories has 1536 words. Memory 0 has 128 bits (0-127) per word

and memory 1 has 96 bits (128-223) per word. The memory access time of each
memeory is about 65 nanoseconds.

MIC OPERATION

When the CPU initiates an instruction which requires microcode control, it sends the
F codef of the instruction and a microcode go pulse to the microcode unit. The
microcode go pulse forces the F code into bits 3 through 10 of the microcode program

fSection 6 of this manual describes the instructions.

3-32 60256000 09

address (P) register (bits 0 through 2 are forced to zero) and starts the mernory control
timing chain. The F code of the instruction thus forms the starting address of the
microcode program for that instruction. An exception to the above startup process
occurs if the interrupt flag is set when the microcode unit receives the microcode go
pulse. In this case, only the timing chain starts, and the F code does not go to the
microcode P register. The microcode P register was set previously with the P address

contained in the invisible package.

This type of operation is used when the microcode program is restarted after an

interrupt.

After the CPU starts the microcode program, the microcode unit takes control of the
startup and termination of the instruction, and in the case of an interrupt, saves all
the operands and parameters necessary to resume execution of the instruction after an
interrupt. Once initiated, the microcode program continues to execute until the KIL
bit is read in a microcode word or until the MCU stops execution.

The microcode program performs the following operations in a typical instruction start-
up.
1. Reads the addresses from the register file according to the instruction desig-

nators,
2. Makes the necessary address modifications.
3. Transfers the addresses to the appropriate interrupt count registers.

4, Sets up the usage and mode of operation of the read and write buses to/from

main memory,

After startup, the microcode program waits for the conditions that indicate the end of
the operation and terminates. The program also monitors the external or access in-
terrupt conditions, and if an interrupt occurs during instruction execution, the program
saves the information needed to restart the instruction at the point it was interrupted.

The microcode program initiates the exchange to monitor mode, sets the interrupt flag,

and terminates.

60256000 08 3-33

MIC INTERRUPT

When the microcode program senses an interrupt condition, it continues execution until
it comes to an appropriate point to stop and allows the interrupt to proceed. At that
point, the microcode sets the interrupt flag, initiates the exchange to monitor mode, and
stops. During the exchange, pertinent microcode control information is stored into word
3 of the invisible package. This information is used later to restart microcode
execution at the point it was stopped.

When the microcode program is restarted, the initial address depends on the state of
the interrupt flag as reloaded from the invisible package. If the interrupt flag from
the invisible package is set, the P address contained in the invisible package is forced
into the MIC P register. The P address from the invisible package is one plus the
address where the KIL bit terminated the microcode control to process the interrupt.
If the interrupt flag from the invisible package is clear, the F code is forced into the
MIC P register,

MIC PARITY

Each 224-bit microcode word has two parity bits forming odd parity, parity bit 0 (PBO0)
for memory 0 and parity bit 1 (PB1) for memory 1. Software generates the parity bits
before loading the word into the microcode memory.

Each microcode memory has hardware which tests the parity as it reads each micro-
code instruction for execution. A parity fault in either memory stops microcode and

CPU instruction execution. Bit 1 of MCU channel ATBS8 indicates the occurrence of
an MIC memory parity fault stop.

Each MIC memory also has a separate MIC memory parity fault status bit available
to the MCU via the display register (bits 6 and 7 of display register code 4). The

clear faults signal sent from the MCU clears all three MIC memory parity fault status
bits.

There is no MIC memory parity fault during loading or storing MIC memory from the
MCU.

3-34 60256000 08

CHECKPOINT

The checkpoint bit (CPT field in MIC memory 1) is a maintenance aid used for micro-
code program debugging and oscilloscope triggering. During execution of a microcode
word, the checkpoint flip-flop sets if the CPT microcode bit in that word is equal to 1.
The checkpoint flip-flop is sensed and cleared by the MCU. The MCU senses the
checkpoint flip-flop via bit 0 of microcode status word 1 and clears the checkpoint
flip-flop via microcode switch bit 0.

MIC WRITE LOCKOUT

A lock and key located on the same chassis as the microcode memory enables or dis-
ables the writing of data into microcode memory. If the key is in the disable position,
the block transfer channel from the MCU acts as though it made a normal micro-

code load but no data is written into memory. This protects the microcode program

from alteration once the program is loaded.

FLOATING POINT

Floating point numbers in the computer are two lengths, 32 bits and 64 bits,

The 32-bit format has an 8-bit exponent and a 24-bit coefficient (Figure 3-11), The
64-bit format has a 16-bit exponent and a 48-bit coefficient. The leftmost bit of each
exponent and coefficient is the sign bit. A detailed description of floating arithmetic is

presented in the instruction specification.

32 -BIT FORMAT

0 78 31 32 39 40 63
(8) (24) (8) (24)
\
Vv A v A v A =y J
UPPER UPPER LOWER LOWER
EXPONENT COEFFICIENT EXPONENT COEFFICIENT

64 —BIT FORMAT
o 1516 i 63

(16) (48)

vV v
EXPONENT COEFFICIENT

JAPISA

Figure 3-11. Operand Formats

60256000 08 3-35

The floating point arithmetic hardware is divided into two units or pipes. Pipe 1
(Figure 3-12) performs register add, register subtract, register multiply, and all vec-
tor arithmetic instructions except divide and square root. Pipe 2 (Figure 3-13) per-
forms register divide, register square root, and all vector instructions. This organi-
zation of hardware allows optimum performance for both register and vector divide
operations. For vector operations common to both pipe 1 and pipe 2, the data is divi-
ded in half with every second pair of 64-bit operands going to pipe 2 (that is, first
pair, third pair, etc.) and every second pair (that is, second pair, fourth pair, etc.)

to pipe 1. In 32-bit mode, each pipe divides in half to become two 32-bit pipes. There-~
fore, two pair of operands go alternately to each pipe.

PIPE 1

Floating point pipe 1 receives operands from the stream unit, performs the instructed
operation, and returns the results to the stream unit. Pipe 1 performs arithmetic
operations on operands in floating point format and address operations on nonfloating
point numbers. Arithmetic operations include such operations as add, subtract, multi-
ply, truncate, adjust exponent, contract, extend, and compare. Address type operations
are those which manipulate various parts of instructions and registers for addressing
and indexing purposes. These include operations like the 2A instruction where the
rightmost 16 bits of the instruction transfer to the leftmost 16 bits of register R.
The rightmost 48 bits of register R remain unchanged. Refer to Figure 3-12 for the
following description of some basic operations of pipe 1.

For addition and subtraction operations, the input exponents are compared in the expo-
nent compare circuit. The difference in the two exponents is used as a shift count.

This shift count determines the amount the coefficient with the smaller exponent is right
shifted in the coefficient alignment section. The coefficients are added in the add sec-
tion, If the operation being performed specifies normalization, the result of the add
operation is fed to the normalize count. This circuit produces a shift count which con-
trols the normalize shift network and modifies the result exponent. The transmit circuit

returns the shifted result to the stream unit,

If normalization is not specified, the result of the add operation is the desired result

and is transmitted to stream.

3-36 60256000 08

If the instruction is a multiply, the operands are multiplied in the high-speed multiply
unit. The result of the multiply is either returned directly to the transmit section or

to the normalize count logic for normalization.

the multiply significant instructions.

The normalize count functions only for

Any result from pipe 1 may be returned directly to either of the inputs of pipe 1 if the

result is needed as an input operand.

This process is called shortstopping and elimi-

nates the time necessary to store the result in the register file and then retrieve it.

SHORTSTOP

A OPERAND A @

B OPERAND @
INSTRUCTION
REGISTER
ZERO

{IRO) .

EXPONENT
COMPARE

COEFFICIENT
ALIGNMENT

SHIFT

COEFFIiCIENT NORMALIZE

ADD

COUNT

NORMALIZE
SHIFT

l TRANSMIT @

60256000 09

[—

HIGH SPEED MULTIPLY UNIT

MULTIPLY |

MULTIPLY 2 MERGE 64

MERGE |

MERGE 2 }

Figure 3-12.

=

Floating Point Pipe 1

3AP208

3-37

PIPE 2

Floating point pipe 2 (Figure 3-13) receives operands from the stream unit, performs
the instructed operation, and returns the results to the stream unit. Pipe 1 performs
arithmetic operations on operands in floating point format and address operations on
nonfloating point numbers, Arithmetic operations include such operations as add, sub-
tract, multiply, divide, truncate, adjust exponent, contract, extend, and compare.
Pipe 2 performs only two address type operations. These are the vector add and sub-
tract address instructions (83 and 87 instructions). Pipe 1 and pipe 2 are similar
except pipe 2 has a high-speed register divide unit and a multipurpose unit.

EXPONENT COEFFICIENT | COEFFICIENT J NORMALIZE NORMAL (ZE l TRANSMIT
A OPERAND —+——(&4) COMPARE ALIGNMENT ADD COUNT SHIFT
RESULT
BOPERAND. &) SHIFT o
i 1)
REGISTER
L__ MULTIPURPOSE UNIT DIVIDE
UNIT
24 SEGMENTS)
N (I

3APISA

Figure 3-13. Floating Point Pipe 2

3-38 60256000 08

REGISTER DIVIDE

The register divide unit performs all register divide operations and binary to binary
coded decimal (BCD) and BCD to binary conversions. This is a single segment unit

and the operands loop within the unit until the result is reached.

MULTIPURPOSE

The multipurpose unit performs the square root, vector divide, and vector multiply
instructions. The multipurpose unit contains 24 segments. FEach segment performs an
add type operation. The segments are arranged in four groups of six segments per
group. In 64-bit mode, the operands loop on each group, going through each group
twice., In 32-bit mode, the operands proceed from segment to segment going through
all of them only once. The multipurpose unit delivers its results to the normalize or

transmit portions of pipe 2.

3-39

60256000 08

MAINTENANCE CONTROL UNIT 4

DESCRIPTION

The maintenance control unit (MCU) provides system autoload and system performance
monitoring capabilities. The MCU also provides the capability to load, control, and
monitor the central processor unit (CPU) diagnostics. The MCU consists of a control
unit, line printer, disc drive, and 3000 channel interface. Connections from the MCU
to the computer are normally made through the CDC STAR-100 input/output (1/0)
channel 12 and special internally connected interfaces (Figure 4-1). The interfaces
allow the MCU to monitor CPU status and gather performance statistics.

The primary purpose of the MCU is to support the reliability, availability, and main-
tainability of the computer system. Customer Engineering has priority use of the

MCU for these purposes. The MCU provides operators with the means of autoloading
the operating system kernal, checking the CPU status, and gathering event counter data.

The MCU operates in off-line and on-line software modes.

1. In an off-line mode, the MCU loads CPU diagnostic routines from the disk drive.
The MCU then controls and monitors the diagnostic operations and furnishes the

results of the operations to a display unit or a line printer.

2. In an on-line mode, the MCU performs real-time monitoring of the CPU and
displays its status.

60256000 08 4-1

MIC
MEMORY L‘\
FLOATING —_———
POINT 524 K
PIPE | STREAM sac [MEMORY
OPTIONAL
FLOATING - — Mgz‘:)';\(
POINT
PIPE 2 /0
[) e
Y A
@ BTAI 9 MAINTENANCE | ———>] 8 STANDARD INPUT CHANNELS
_ CONTROL UNIT - TO PERIPHERAL EQUIPMENT
= oy AND 8 STANDARD OUTPUT
<BTA8 | J >! CHANNELS FROM
ATBI CHANNELS 0-7 > PERIPHERAL EQUIPMENT.
@[o
bl CHANNELS 8-F '
ATB8 le |
NOTES:

@ ANY ONE OF THE 16-BIT CDC STAR-100 1/0 CHANNELS CONNECTS TO THE MCU.

@ 16-BIT CHANNEL SIMILAR TO CDC STAR-100 CHANNEL.

@ 8 PULSED NORMAL OUTPUT CHANNELS NUMBERED BTAI-BTA8 CONNECT TO MCU
OUTPUT CHANNELS 8-F.

@ 8 PULSED NORMAL INPUT CHANNELS NUMBERED ATBI-ATB8 CONNECT TO MCU
INPUT CHANNELS 8-F.

3API4A

Figure 4-1. Maintenance Control Unit

60256000 09

The MCTU connects to the central processor unit via three separate interfaces
(Figure 4-1),

1. The MCU has a main 16-bit block transfer channel that connects to any one of
the CDC STAR-100 I/O channels and requires no extra control. This channel
is the main data communication channel between the MCU and the CPU.

2. The MCU has a second 16-bit block transfer channel which connects to the
microcode (MIC) memory. This channel loads, stores, checks status, and
sets conditions in the MIC memory. This channel is similar to a standard
CDC STAR-100 I/O channel,

3. The MCU has 8, pulsed, normal 16-bit channels in each direction which connect
to the CPU for control and monitoring purposes. The channels which carry
information from the CPU to the MCU (referred to as ATB) are numbered
ATB1 through ATB8 and connect to MCU input channels 8 through F. The
channels which carry information from the maintenance station to the CPU
(referred to as BTA) are numbered BTA1l through BTAS8 and connect to MCU
output channels 8 through F. Tables 4-1 through 4-8 show the ATB channels
and Tables 4-9 through 4-16 show the BTA channels. FEach table shows the
channel bit number, connector, and function of each bit for a channel.

Tables 4-1 to 4-8 list the ATB channel bits and their functions; tables 4-9 to
4-16 list the BTA channels., The connector for each channel is contained in
the table title.

60256000 08 4-3

TABLE 4-1.

CHANNEL ATB1 (CONNECTOR ATB12)

Bit No.

Function

W N -

Bit 16
17
18
19

- S

20
21
22
23

24
25
26
27

mEHOQ|H B o ®

28
29
30
31

Current instruction address register

4-4

60256000 08

TABLE 4-2.

Bit No.

Function

w N = O

Bit 32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
47

Current instruction address register

60256000 08

TABLE 4-3.

CHANNEL ATB3 (CONNECTOR ATB34)

Bit No.

Function

[=]

Bit 48
49
50
51

52
53
54

55

56
57
58
59

HEHODQ|W » © © | o o b&]w o =

60
61
62
63

Current instruction address register

60256000 08

TABLE 4-4.

CHANNEL ATB4 (CONNECTOR ATB34)

Bit No.

Function

o

Bit 0

G- NS TN

<]

10
11

0 H OO |Wh © oo o [wN e

12
13
14
15

Display register; displays the register selected by

bits C through F of channel BTA1 in the MCU.

60256000 08

TABLE 4-5. CHANNEL ATB5 (CONNECTOR ATB56)

Bit No. Function

0 Bit 16 Display register
17
18
19

w N =

20
21
22
23

24
25
26
27

28
29
30
31

60256000 08

TABLE 4-6.

—~—— — P e AT el s .

CHANNEL ATB6 (CONNECTOR AT

Bit No.

Function

w N =

Bit 32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
47

Display register

60256000 08

TABLE 4-7. CHANNEL ATB7 (CONNECTOR ATB78)

Bit No. Function

Bit 48 Display register
49
50
51

W N = O

52
53
54
55

FORY- SN BTN

56
57
58
59

60
61
62
63

0 EHOOQ|W P ©

4-10 60256000 08

TABLE 4-8. CHANNEL ATB8 (CONNECTOR ATB78)

Bit No. Function

0 These lines Memory parity fault

1 indicate MIC memory parity fault

2 why the Multiple match

3 CPU has Absolute sword bounds hit

4 stopped. Event stop

5 e Not used

6 ———— CPU clock; used for gating data back to the CPU,
The MCU buffer controller cannot read
this line,

7 Monitor mode

8 - —— Temperature /dewpoint alarm

9 || =——————m——e———— Not used

A Section power fail

B | == 60 Hz input power fail, mainframe-memory MG

C | =————————————— 60 Hz input power fail, optional memory MG

D Not used

E —— CPU idle

F —-—==——————————= CPU stopped

60256000 08 4-11

TABLE 4-9.

CHANNEL BTAl (CONNECTOR BTA12)

Bit No.

Function

SAC master clear; master clear to SAC and central
memory only. This includes the I/O channels. This

signal must be set a minimum of 3 microseconds.

Stop; CPU stops before next instruction issue.

2t

Step; execute one instruction. Store the register file
and the invisible package (job mode only); then stop.
Faults must be cleared before the computer can be
stepped.

3f

Run; start CPU from manual stop or fault stop.
Faults must be cleared before computer can be
started.

at

Store associative registers and register file; asso-
ciative registers are stored starting at absolute
address 400016. The register file is stored starting
at absolute address 0000
tual address 000016
destroys the contents of the associative registers.

16 in monitor mode and vir-

in job mode. This operation

Therefore, after this operation, they must be reloaded
by executing a load associative register command
(BTA1 bit 5).

of

Load associative registers and register file; asso-
ciative registers are loaded starting from absolute
address 400016’ The register file is loaded starting
at absolute address 00001 6 in monitor mode and vir-

tual address 0000, . in job mode.

16

t Computer must be stopped before exeéuting these commands.

4-12

60256000 08

HANNEL BTA1 (C

Function

Stream floating point master clear; master clear to
stream and floating point only, SAC and central
memory are not included. This signal must be set

a minimum of 1 microsecond.

Clear fault conditions; this signal clears the following
conditions and allows the computer to be restarted
with a run signal (bit 3):

Memory parity fault

MIC memory parity fault
Multiple match

Absolute sword bounds hit

Parity fault address register and bounds
register

e Reference to illegal address in microcode

Not used

MCU sync; this signal is used in the CPU to gate
the CPU data back to the MCU. When reading the
display registers, the MCU sync signal must be set
after the read signal is set.

Not used

w

Read; transfer selected register and current instruc-
tion address register into the display register.

HoEH O 0

Display register selection;

see display registers in this section.

60256000 08

4-13

TABLE 4-10.

CHANNEL BTA2 (CONNECTOR BTA12)

Bit No. Function

0+ Static Not used

1+ Static Interrupt gate; when this signal is a 1, time inter-
rupts and external interrupts will only be processed
between instructions.

2 Static Block instruction execution overlap; this signal allows
only one register instruction to be in execution at any
time.

3% Static Stop on I/O PF; enable the CPU to stop when a
central memory parity fault is found in data going to
1/0.

4 Static Not used

5% Static Not used

6% Static Select mainframe clock frequency:

(i 00 = 25 MHz

01 = Increase clock frequency
10 = Decrease clock frequency
11 = Select variable frequency
(adjust on oscillator pak)
81 Static Delay trailing edge; delay the trailing edge of all of

the clocks on the panel which are specified by bits
B through F of channel BTA2., If bits 8 and 9 are
set, only the odd or even clocks on a panel are
moved depending on bit A.

+Computer must be stopped before executing these commands.

60256000 08

TABLE 4-10.

CHANNEL BTA2 (CONNECTOR BTA12) (Contd)

Bit No. Function
9+ Static Delay leading edge; delay the leading edge of all
the clocks on the panel which are specified by bits B
through F of channel BTA2, If bits 8 and 9 are set,
only the odd or even clocks on a panel are moved
depending on bit A,
At Static 0; move even clocks (see description for bit 8 or 9).
1; move odd clocks.
B (24) Panel designator for clock margins; bit B is the left-
C (23) most bit of the designator. The designators are de-
D (22) fined as follows:
1
=e) Designator, ¢ Parel(s)
F (27) 00 All panels
01 All floating point panels
02 All SAC panels
03 All stream and string panels
04 Not used
05 Not used
06 Panel AA)
07 Panel AB
08 Panel BA
09 Panel BB
0A Panel CA Floating point
0B Panel CB
oC Panel DA
0D Panel DB
OE Panel EA
OF Panel EB
10 Panel KA
11 Panel KB
12 Panel LA
13 Panel LB | SAC
14 Panel NA
15 Panel NB
16 Panel PA
17 Panel PB
18 Panel FA
19 Panel FB
1A Panel GA
1B Panel GB Stream, string
1C Panel HA
1D Panel HB
1E Panel JA
1F Panel JB

tComputer must be stopped before executing these commands.

60256000 08

4-15

TABLE 4-11., CHANNEL REGISTER FROM CHANNEL

BTA3 (CONNECTOR BTA34)

Bit No, Function
0 Not Used
1 Send external flag on the channel specified by the channel select
code in bits 4 through 8.+ ++
2 Not Used
3 Not Used
4
5 Channel select code. A code of 116 through 016 selects a channel
(110 through 1210)for the operation specified in bits 1, 2, and
6 3.+ Bit 7 of BTA-3 is bit 20 of the select code.
7
8 Select all channels for the operation specified in bits 1, 2, and 3.+
9 Not Used
A Not Used
B Not Used
C Not Used
D Phase 16
E Swap 262K Memory Degradation
F Swap 524K Refer to Section 2
+ The channel select code in bits 4 through 8 must be set before any commands are
sent on bits 1, 2, and 3, and it must remain set until after the command has
dropped.
t 1 The external flag is transmitted to the device on the I/O channel corresponding to
the code in bits 4 through 8. External flag instructs the device to autoload. Refer
to Systems Communications, section 3 for a description of external flag.

® 4-16

60256000 09

TABLE 4-12. CHANNEL REGISTER FROM CHANNEL
BTA4 (CONNECTOR BTA34)

address (524K select bit).

Bit No. Function
0 Not Used
1 Channel 1
2 2 The channel disables are trans-
3 3 mitted to SAC. If the disable line
4 4 for a channel is set, no central
5 5 memory references are allowed
6 6 |Channel from that channel., Channel com-
7 7 PDisables munications can proceed normally
8 8 in and out of the channel buffer.
9 ’ 9 When the last word in the channel's
A 10 buffer area is reached, the opera-
B 11 tion continues end around within
C 12 the buffer.
D Not Used
E 0 Channel BTAbS contains lower bounds sword address.
1 Channel BTAS contains upper bounds sword address.
Bit E should be set to the proper bounds register before the
bounds address is transferred to channel BTA5 and to bit F of
channel BTA4,
F This is the highest order bit of the bounds limit

60256000 08

TABLE 4-13.

CHANNEL BTA5 (CONNECTOR BTA56)

Bit No.

Function

M M O Q W p» © 0 9 o0 o & w N

This is the rightmost 16 bits of the 17-bit bounds
limit address. This may be either the lower or
upper bounds limit address depending upon the
state of bit E in BTA4. The bounds limits are
absolute physical sword addresses. An address is
inbounds (bounds hit) when it is greater than the
lower limit and less than the upper limit,

4-18

60256000 08

TABLE 4-14.

CHANNEL BTA6 (CONNECTOR BTAS56)

Bit No.

Function

If bits 0
and 1 or
bits 2 and
3 are zero,
no bounds
hits can
occur.

Check bounds on memory reads
Check bounds on memory writes
Check bounds on CPU references

Check bounds on channel references

Stop CPU on bounds hit

Enable bounds check; the bounds addresses and con-
ditions must be set up before the enable is set,

Count A; monitoring counter A is enabled while this
line is a 1 and held clear when this line is a 0. The
proper counter specification and bits 8 through E of
channel BTA6 must not be changed while this line is
enabled,

Count B; monitoring counter B is enabled while this
line is a 1 and held clear when this line is a 0. The
proper counter specification and bits 8 through E of
channel BTA6 must not be changed while this line is
enabled.

Clear counter overflow bits only [see monitoring with
counters (code 8) in this sectionl]

H H O Q W p ©

Stop CPU on Counter A increment
Stop CPU on Counter B increment

Enable carry into Al See monitoring

with counters in

Enable carry into A2 this section.

Enable carry into Bl

Enable carry into B2

0; bits 0 through F of channel BTAT are the count
specification for counter A.

1; bits 0 through F of channel BTAT7 are the count
specification for counter B,

This bit should be set to the proper counter before the
count specification is set into channel BTAT,

60256000 08

4-19

TABLE 4-15, CHANNEL BTA7 (CONNECTOR BTA78)

Bit No. Function
0
1
Event select for counters Al and BI1;
2 see monitoring with counters in this section for codes.
3
4
5
6
7 Event select for counters A2 and B2;
see monitoring with counters in this section for codes.
8
9
A Not used
B Job mode gate
Event counter gates;
C Monitor mode gate see monitoring with
counters in this
D Selected job mode gate section
E Data flag 56 gate
F

Data flag 57 gate

4-20

60256000 08

TABLE 4-16. CHANNEL BTA8 (CONNECTOR BTAT8)

Bit No, Function
0
1
2
8-bit function select code. Bit 0 is the leftmost bit
3 of the code. See event number 12 in monitoring with
4 counters in this section.
5
6
7
8
9
A
B 8-bit mask. Bit 8 is the leftmost bit of the mask,
See event number 12 in monitoring with counters
C . . .
in this section.
D
E
F

60256000 08

4-21

MCU MONITORING

The MCU monitors the output of two display registers as its main monitoring of system
activity. One display register contains the output of the current instruction address
register (CIAR). The other display register contains the output of the register selected
by the MCU. A 4-bit code sent from the MCU (channel BTA1, bits C through F)
selects the appropriate display register. In addition to monitoring the display registers,
the MCU can also monitor:

° The status of memory parity, microcode memory parity, CPU idle, CPU
stopped, etc.

e Abnormal conditions of temperature, dewpoint, and power.

DISPLAY REGISTERS

The MCU sends a read signal to enable the CIAR and the selected register into the
two 64-bit display registers. The read signal is defined as bit B on channel BTAIl,
and its leading edge simultaneously transfers both registers into the display registers.
The MCU determines the register select code (Table 4-17) before transmitting the read
signal to the CPU. All unaccounted for bits coming into and going out of the display

registers are undefined.

The MCU receives the CIAR on channels ATBI1 through ATB3, and the station receives
the selected register on channels ATB4 through ATBT7,

The CIAR and the event counters may be read anytime. Other displays are examined
only when the CPU is not running.

4-99 60256000 08

Code16 Register(s) Bits
0 Current instruction register 0-63
1 Data flag register 32:‘1}3: é?:gé’
2 Invisible package address

(absolute sword address) 0-22
Page zero address 38-48
(absolute small page address)
3 External interrupt register 17-31
Channel 1 17
2 18
3 19
4 20
5 21
6 22
7 23
8 24
9 25
10 26
11 27
12 28
Not used 29
Not used 30
Monitor interval timer 31
Channel read active - write active 32-55
Channel 1 32-33
2 34-35
3 36-37
4 38-39
5 40-41
6 42-43
7 44-45
8 46-47
9 48-49
10 50-51
11 52-53
12 54-55

60256000 08 4-23

TABLE 4-17. DISPLAY REGISTER SELECT CODES (Contd)

Code16

Register(s) Bits

(=]
]
-3

Parity fault type

o

Access instruction parity fault
Stream instruction parity fault
CPU parity fault

Search parity fault

Exchange parity fault

1/O parity fault

MIC memory 0 parity fault
MIC memory 1 parity fault
Illegal MIC memory address

1 O U A W N

These signals are all reset by the clear fault condition signal from the MCU.

Parity fault address 32-63
(absolute, physical memory bit address)

The address of the first parity error is
retained in this register.

The parity fault address register is reset
by the clear fault condition signal from the
MCU.

Bounds hit address 0-31
(absolute, physical memory bit address,
right justified)

The address of the first bounds hit is
retained in this register. The bounds
hit address register is reset by the
clear fault condition signal from the
MCU. The bounds checking is performed
on sword boundaries only.

Counter Al 0-15
Counter A2 16-31

Counter B1 32-47
Counter B2 48-63

If bit 8 of channel BTA6 in the MCU is a
0, both counters are cleared after the
read signal is received and after both
counters transfer into the display register.
If bit 8 is a 1, only the upper bit of each
32- or 16-bit counter is cleared.

To ensure proper initialization of the coun-
ters, the count lines must be zero prior to
the new count selection.

4-24

60256000

08

For monitoring purposes, the CPU has four 16-bit counters (Figure 4-2). Each of

these counters can be connected to an event line selected by a command from the

MCU. Table 4-18 contains a list of events which can be counted and their correspond-
ing select codes. There are two pairs of 16-bit counters, Al, A2 and Bl, B2. The

A and B counters are completely independent and cannot be tied together. However,

they do share the same input event lines and CPU lines (Figure 4-3). The counters I
are selected for display via the MCU display register. They can also be combined

in various ways to form one or two 32-bit counters. This configuration is accomplished
via the carry lines from the MCU, The counters are enabled by hardware and soft-

ware lines selected with gates from the MCU., The MCU has the option of stopping the I
CPU on a count condition by enabling the stop lines.

60256000 09 4-95

INPUT 3
EVENTS AI/BI .
[] L]
. iz-: COUNTER BITS
O MAINTENANCE
INPUT L) e| CONTROL UNIT
EVENTS A2 /B2 .
L]
TERS Al AND A2
FRoM COUNTERS
CcPU EVENT COUNTER
ENABLE BIT FROM
INVISIBLE PACKAGE
JOB MODE
MONITOR MODE A LINES _éPsBOP
DATA FLAGBITS6
L DATA FLAGBIT 57 A GATES
5 LN] .T oo t
EVENT- STOP CPUONC TER
SELECT Al A INCREMENT OUNTE
EVENT ENABLE CARRY INTO A2
SELECT A2 ENABLE CARRY INTO A
SELECTED JOB GATE COUNT A
JOB MODE GATE DATA FLAGS7 GATE
MONITOR MODE GATE- ~DATAFLAGS6 GATE
_J
v
FROM MAINTENANCE CONTROL UNIT
Lo
L J
*
[] L]
> 32-B COUNTER BITS
®| TO MAINTENANCE
Fy CONTROL UNIT
. COUNTERS Bi AND B2
Ll B STOP
B NES cPU
B GATES
1... eee {STOP CPU ON COUNTER
EVENT B INCREMENT
SELECT BI ENABLE CARRY INTOB2
EVENT ENABLE CARRY INTO BI
SELECT B2 COUNT B
SELECTED JOB 6ATE DATA FLAG 57 GATE
JOB MODE GATE
\ MONITOR MODE GATE DATA FLAS 56 GATE /

v
FROM MAINTENANCE CONTROL UNIT

3APISA

Figure 4-2. Block Diagram of Counter Logic Lines

4-26 60256000 09

MCU
INPUTS

CPU INPUTS
1

CPU LINES
1

EVENTS

1

DATA FLAG BITS7

EVENT

EVENT

JoB
GATE

JOB
MODE
GATE

SPECIFY
COUNT |
FOR
COUNTER
A MCU
GATES 4 mopg
GATE

DATA
FLAG
56
GATE

DATA
FLAG

le37<

COUNT

ENABLE CARRY
INTO Al

ENABLE CARRY
INTO A2

STOP CPU ON

COUNTER A
INCREMENT

60256000 09

SELECT
Al
SELECT
A2

(SELECTED

MONITOR

EVENT COUNTER ENABLE BIT
FROM INVISIBLE PACKAGE

JOB MODE

MONITOR MODE

DATA FLAG BIT56

=] pb>B8 ¢>B

A INPUT EVENTS
COUNTER A2/B2

b6

?BI

INPUT EVENTS
COUNTER AI/BI

b B1
. L] L] L] L]

ddd

(1411

SELECTION
NETWORK Al

44

» SELECTION
NETWORK A2

AND
EVENT

AND

COUNT
LINE

AND

AND

AND

OR

EVENT MASK

EVENT
COUNT

LINE I

OR

—

o

AND

>—-—2>» AND

16 -BIT COUNTER
A2

>

AND

16-BIT COUNTER
Al

CARRY

Figure 4-3.

T
TO MCU

Block Diagram of Counter A

3AP2i1A

4-27

TABLE 4-18. COUNTER EVENTS

Codes16 Events
Counter Counter
A1/B1 A2/B2
01 Number of branches out of instruction stack
01 Number of branches in instruction stack
04 Time enabled from microcode; number of minor cycles

microcode MON = 1 is selected

04 Number of shortstop paths
05 Number of space table searches
05 Number of quarter-swords searched in space table searches
09 Number of normal channel memory requests
09 Number of normal channel memory requests accepted
0A Number of CPU memory requests
0A Number of CPU memory requests accepted
0B Total number of memory requests
0B Total number of memory requests accepted
11 Number of minor cycles from selected instruction issue to

next nonselected issue. The counter will begin counting when
an instruction whose function code meets the conditions de-
scribed in code 12 is loaded into IRO. It will stop counting
when the next instruction which does not meet the conditions
is loaded into IRO.

® 4-28 60256000 09

TABLE 4-i8. COUNTER EVENTS (Contd)

Codes16

Events

Counter
Al/B1

Counter
A2/B2

12

Number of times a particular function code or particular
category of function codes is executed. The count condition
is determined by an 8-bit select code and an 8-bit mask sent
to the CPU on channel BTA8, If the select code bits and
the corresponding instruction function code bits are equal
wherever there is a 1 in the mask, the counter is

incremented. If the mask contains all zeros, all instruc-

tions are counted.

12

Time - in microseconds

13

Number of times the microcode monitor field (MON) is equal
to 2

13

Number of cycles where data is not available at the output
of a functional unit (string or floating point) once data has
been requested for all input streams. This time does not
include the time required for initial setup (preceding re-
quests for memory) or shutdown (following the input of the
last operands to a functional unit) of vector or string in-
structions. This count thus permits the programmer to
analyze the amount of time required for startup memory
accesses, pipeline/functional unit length, space table
searches, and memory conflicts for a specific instruction.

60256000 09

4-29

| COUNT GATES AND CPU LINES

The event counters are incremented when the selected event occurs, the count line is

' up, and one or more of the following gate-line conditions are satisfied.

1.

The event counter enable bit is set in the invisible package of the job currently
being executed and the selected job gate from the MCU is set. This allows

counts to be made during selected jobs only.
The CPU is in job mode and the job mode gate from the MCU is set.
The CPU is in monitor mode and the monitor mode gate from the MCU is set.

Data flag bit 56 or 57 is set in the data flag register of the CPU, the data flag
56 or 57 gate from the MCU is set, and the CPU is in monitor mode.

Data flag bit 56 or 57 is set in the data flag register of the CPU, the data flag
56 or 57 gate from the MCU is set, and the event counter enable bit is set in
the invisible package of the job currently being executed.

There is one set of gate-line enable logic for counters Al and A2 and one set
for counters Bl and B2; therefore, the A counters may be enabled by different
gates than the B counters.

The CPU lines are:

Data flag bit 56

Data flag bit 57

Monitor mode

Job mode

Job enable of monitoring counters from invisible package.

The MCU gates are:

4-30

Data flag 56

Data flag 57
Monitor mode

All jobs mode
Selected jobs mode

60256000 09

CARRY LINES

There is one enable carry line associated with each 16-bit counter. Enable carry line
Al enables the carry into counter Al from counter A2, Enable carry line A2 enables
the carry into counter A2 from counter Al. There are equivalent lines for the B coun-
ter. A zero on carry lines Al and A2 allows the counters to operate as two 16-bit
counters, Only half of the total number of events are available at the selection network
for one counter Al or A2; therefore, if a 32-bit count is desired either counter may
contain the lower bits. For example, if an event is enabled to counter Al and a

32-bit count is desired, then enable carry line Al must equal 0 and enable carry line
A2 must be a 1. In this example, counter Al has the least significant bits and counter
A2 has the most significant.

STOP LINES

There is one stop line associated with each counter pair; one for the A counters and
one for B counters. When the stop line is a one, an event incrementing either 16-bit
counter stops the computer. Mode line event stop is returned'!to the MCU (bit 4,
channel ATB8) to show why the CPU has stopped. The MCU, after sending a clear
fault signal, may restart the CPU.

COUNTER SETUP
Typically, the four counters would be set up by the MCU as follows:

1. Set the following bits as required

Stop CPU on A increment (bit 9, channel BTAS6)
Stop CPU on B increment (bit A, channel BTAS6)
Enable carry into Al (bit B, channel BTASB)
Enable carry into A2 (bit C, channel BTAS)
Enable carry into Bl (bit D, channel BTAG®)
Enable carry into B2 (bit E, channel BTAS)

2. With bit F, channel BTAB, a 0, set event and mask selection for counter A
into channel BTAT.

3. Set bit F, channel BTA6 to a 1.
4, Set event and mask selection for counter B into channel BTAT,

5. If A1/B1 event code 12 for function counting has been selected, set channel
BTAS8 to the desired function and mask.

6. Set count line A or B (bit 6 or 7, channel BTAS8) as desired.
60256000 09 4-31

The counters are now counting events and will continue to count until their respective

count lines are dropped.

LOGIC FAULT MONITORING

There are three types of logic faults detected in the computer.

1. Memory parity
2. MIC memory parity

3. Multiple match

When a logic fault is detected, the computer stops between instructions. The type of
fault may be sensed on channel ATBS,

After sensing the logic fault, the MCU clears the fault via bit 7 of channel BTAl. The
MCU determines the appropriate response to the fault and has the option of restarting
the CPU by setting bit 3 of channel BTAL.

Information on memory parity faults may be found in the SAC description in section 3
of this manual,

Information on MIC memory parity faults may be found in the microcode description
in section 3 of this manual,

Information on multiple match faults may be found in the SAC description in section 3
of this manual.

TEMPERATURE PRESSURE AND DEWPOINT MONITORING

The system contains a monitoring unit which monitors heatsink temperatures and freon
pressure in each section of the machine and the room dewpoint. If the temperature,
pressure, or dewpoint exceeds the safe limits set for the system, the monitor circuit
rings an audible alarm and sends a signal to the MCU (bit 8, channel ATBS8). Upon
detecting this signal, the MCU can halt the CPU., The CPU can recover operation
when the faulty condition is corrected.

| 4-32 60256000 09

TE
R

Lo
5
(]
L]
sV]
o
=

disconnects system power and locates the source o

In addition to the monitoring unit, each machine section contains a thermostat. If the
temperature in a particular machine section exceeds the safe upper limit, the corre-

sponding thermostat disconnects power in that section immediately.

POWER FAIL MONITORING

If the input power to the motor-generator drops for more than 100 ms, the 60-Hz
power fail signal is transmitted to the MCU (bit 9, channel ATB8). Upon detecting
this signal, the MCU can bring the CPU to a recoverable halt. The system power
remains up for approximately 500 ms after the 60-Hz input power drops.

If 400-Hz power drops in any section of the computer, the section power fail signal
is sent to the MCU (bit A, channel ATB8). A short circuit in any section trips

the corresponding circuit breaker and lights an indicator, locating where the short
exists in the section. This set of indicators is contained on the annunciator panel in
each section. A test switch on each panel tests the indicators.

COMPRESSOR MONITORING

High head pressure, low oil pressure, or a compressor motor fault on either condens-
ing unit lights an indicator on the temperature monitor box, initiates an alarm, and
initiates a power-down sequence, Each fault also causes an audible alarm on the con-

densing units.,

A refrigerant liquid line temperature fault or a condenser cooling water fault lights
an indicator on the monitor box. This is a warning device and is not connected into

the alarm and power-down circuitry.

60256000 09 4-33

PROGRAMMING CONSIDERATIONS 5

“
GENERAL

This section describes various registers and operations of the CDC STAR-100 computer
which are of particular interest to the programmer. Included are descriptions of job
and monitor modes, interrupts, the invisible package, addressing modes, real time
counters, the register files, the data flag branch register, addressing modes, and gen-
eral definitions and programming guides.

MONITOR AND JOB MODES

The central processor unit (CPU) operates in one of two programming modes:
e Monitor mode

® Job mode

The CPU automatically exchanges from the job mode to the monitor mode when it re-
ceives an interrupt or when a job program executes an exit force (09) instruction. The
monitor mode disables all interrupts and virtual addressing* and permits absolute ad-
dressingt to central storage. Any interrupts that occur during the monitor mode tem-
porarily store until the monitor program executes an idle (00) or an exit force (09) in-
struction. The idle instruction causes the CPU to wait until an interrupt occurs. The
exit force (09) instruction switches the CPU to the job mode and starts executing the
selected job program. Switching to the job mode enables the interrupts and virtual

addressing.

The purpose of the exchange is to change the prime role of the CPU. In job mode,
job tasks are performed. In monitor mode, the system decisions are made and the

page table is altered.
Some instructions in progress may be interrupted prior to their completion. The flags

stored in the invisible package are used to restart the interrupted instruction exactly
where it left off.

fAbsolute and virtual addressing are described later in this section.

60256000 08 5-1

EXCHANGE FROM MONITOR MODE TO JOB MODE

This is always accomplished with an exit force (09) instruction. The monitor program
must set up the invisible packaget for the job prior to exchanging to that job via the
exit force (09) instruction. The exit force operation is as follows:

1. The register file for monitor is stored into absolute memory locations 0
through 3FC016. The register file for the job is loaded from the job's virtual
memory locations 0 through 3FC016. Any job mode reference to this area of
a job's virtual memory causes the executing instruction to be treated as an
illegal instruction. The absolute bit address of the job's virtual page zero is

in the monitor's register S specified by the exit force instruction.

2. The CPU's major control registers and flags are loaded from the invisible
package which is located starting at the absolute bit address in the monitor's
register T specified by the exit force instruction. This starting address is
saved in a register to provide for storing the current invisible package when

returning to the monitor program.

3. The CPU's mode is changed from monitor mode to job mode. This enables the
virtual address mechanism and the interrupts.

4. The contents of P (program address register) is then read up using virtual
addressing and either the initial start or the restart sequence is executed. An
initial start will be executed if the program is at the beginning of an instruc-
tion; a restart is executed if the program was in the middle of an instruction,

that is, continuing an intefrupted vector or string instruction.

ILLEGAL INSTRUCTION IN MONITOR MODE

If an attempt is made by the monitor program to perform an illegal instruction code,
an automatic branch is made to the absolute address contained in the monitor's register
4., This hardware trap is to aid in the debugging of the monitor software and to trap
some hardware failures. This trap is not to be utilized by the monitor software as a

normal branch.

tThe invisible package is described in detail later in this section.

5-2 60256000 08

EXCHANGE FROM JOB MODE TO MONITOR MODE

The exit force (09) instruction, channel interrupt, and access interrupt are the three

normal ways of getting from job mode to the monitor program in monitor mode.

Attempting to execute either a monitor-type instruction in job mode or an illegal in-

struction is the fourth way into the monitor. Except for the starting point in the moni-

tor program, the operations performed in getting to the monitor are identical for the

four.

The operation is as follows:

1.

3.

The current invisible registers and flags are stored into the invisible package
starting at the same address used to load the invisible package when the job was

entered.

The register file for the job is stored in virtual memory locations 0 through 3FC016.
Absolute memory locations 0 through 3FCO16 are read into the register file,

The CPU is changed from job to monitor mode and the virtual addressing
mechanism is disabled. Any external interrupts that occur after this point are
honored only if the CPU executes an idle instruction. Otherwise the interrupts
are saved until the CPU reverts to job mode, or until the monitor program
clears the interrupts with a translate external interrupt (OE) instruction.

The monitor program executes starting at the absolute address contained in the
rightmost 48 bits of registers 3, 5, 6, or 7 in the monitor's register file.
The method used to enter monitor mode determines the register selection.
The address in the selected register transfers to the program address register

(P register).

Method of getting Register in Monitor's Register File
to the Monitor used for Starting Address (P Address)
1. TIllegal instruction, monitor-type Register 3

instruction in job mode, or a
reference to the register file as
memory (bit address 0000 -
3FFF).

60256000 08 5-3

s

Method of getting Register in Monitor's Register File
to the Monitor used for Starting Address (P Address)

2. Illegal instruction in Register 4
monitor or reference to the
register file as memory (bit

address 0000 - 3FFF16).
3. Exit force Register 5
4. External interrupt Register 6
5. Storage access interrupt Register 7

INTERRUPTS

Interrupts consist of two main types:
e Storage access

® External

The occurrence of either type of interrupt during the job mode causes the CPU to
switch to monitor mode. The monitor program then processes the interrupt.

During the monitor mode, the interrupt system is disabled except during the idle (00)
instruction. Any external interrupts that occur are stored until the CPU switches back
to the job mode or until the monitor program clears the interrupts with the translate
external interrupt (OE) instruction.

STORAGE ACCESS INTERRUPTS

A storage access interrupt occurs when a job program attempts to reference a central
storage page that does not contain the corresponding word in the page table, A storage
access interrupt also occurs when a job program attempts a storage reference that
violates the corresponding lockout code,

5-4

60256000 08

Any CPU storage reference can cause an access interrupt even if it occurs in the middle
of a vector or string instruction. The virtual address of the reference causing the
interrupt and bits indicating the reason for the access interrupt (cause bits) are stored
in word address =xx.. .xxE16 of the invisible package for the corresponding job (Figure
5-1). Refer to the invisible package explanation in this section.

0 1112 1516 63

WILL BE SET CAUSE

T0 ZEROS BITS VIRTUAL BIT ADDRESS CAUSING INTERRUPT

Figure 5-1., Invisible Package Word XX...xxE;q Format for Access Interrupt

The condition of the cause bits indicate the type of storage reference that initiated the

access interrupt as shown below:

Cause Bits Type of Access Attempted

12 13 14 15

0 1 0 0 Write operand violation

1 0 0 0 Associative word not in the page table

1 1 0 0% Associative word not in the page table and reference

attempted was a write operation
0 0 1 0 Read operand violation
0 0 0 1 Read instruction violation

Following the access interrupt, the CPU switches to the monitor mode. The program then
branches to the absolute address contained in the rightmost 48 bits of register 7 in the
register file for the monitor program. The monitor program proceeds to allocate space

for the requested page and/or procures the requested page directly, The monitor program
can restart the job where it was interrupted by using the exit force (09) instruction If the job
is to be restarted, however, the monitor program must alter the page table and central
storage to include the new page.

t+ This is the only case where more than one cause bit is set at one time.

60256000 08 5-5

EXTERNAL INTERRUPTS

Each input/output (I/0) channel and the monitor interval timer can interrupt the CPU by
transmitting an interrupt signal on the assigned interrupt line. The interrupt signal
sets the corresponding flag bit in the external interrupt register. The external line

assignments are listed in Table 5-1.

I/O CHANNEL INTERRUPT LINES

As shown in Table 5-1, each I/O channel has an external interrupt line assignment.
The transmission of the interrupt from B (IFB) signal on the corresponding external
interrupt line sets the corresponding external interrupt register flag bit. The setting
of this bit indicates to the CPU that the I/O device (peripheral station) has stored a

message in a predetermined location in central storage.

TABLE 5-1. EXTERNAL INTERRUPT LINES

External
Interrupt Line Assignment
0 Not available
1 1/O channel 1
2 (I
3 3

W
W

41}
3]

6 6

7 7

8 8

9 9

10 10

11 11

12 1/0 chaﬁmel 12

13 Not used

14 Not used

15 Monitor interval timer

5-6 60256000 08

When the monitor interval timer (described in this section) decrements to a zero count,
an external interrupt signal is transmitted on line 15. The resultant setting of external
register flag bit 15 indicates to the CPU that the specified period initially set in the
monitor interval timer has elapsed, requiring processing by the monitor program.

INVISIBLE PACKAGE

The invisible package contains the address and control information necessary to begin a new
job or to continue a job interrupted during execution. FEach invisible package is asso-
ciated with a job. The invisible package for a particular job is stored at 16 consecu-
tive word addresses in central storage beginning at the initial address assigned

by the monitor program. The invisible package is always stored starting at an even
numbered sword address. Therefore, the rightmost 10 bits of the starting address of
the invisible package must be zeros. Refer to the exit force (09) instruction in the

instructions section of this manual.

The monitor must set up an invisible package for each job. There is no invisible

package for the monitor program itself.

When the CPU switches from monitor to job mode, the invisible package for the
corresponding job is automatically loaded from central storage beginning at the address
assigned to that job. The invisible package data is loaded into the appropriate registers
in the CPU.

When the CPU switches from job to monitor mode, as in an interrupt, the contents
of the corresponding registers are automatically stored in central storage as the in-

visible package for that job.

If a job is to be reentered, the monitor should not alter the job's invisible package
except for possibly the keys.

Figure 5-2 shows the invisible package format.

60256000 08 5-7

16 PROGRAM ADDRESS (o) s3] worD o
6 09(8) 1516 BREAKPOINT 63 !
2)[os kEY 0 is[(2) |20 kEY 1 mf(2)[se kEy 2 47 (2)fs2 KEY 3 &3 2
() 6 (3) 2r|les NFPO 39| ¢ NFJI 51| |53 NFy2 63 3
o
(s) Jie DATA FLAG BRANCH REGISTER 63 4
00 (i) PFOI 1516 PFII 63 5
® 6
00- PFO2 15]16 PFI2 63 7
(s) [(¢) |#0 yoB INTERVAL TIMER 63 8
00 PFO3 15|16 PFI3 63 9
00 CURRENT INSTRUCTION 63 A
00 PFO4 15]16 PFl14 63} 8
00 PARTIAL STRING DATA 31|32 (7) a7]48 () 63 c
00 PFO%S 1516 PFIS 63 D
00 (1) 15]16 ACCESS INTERRUPT ADDRESS 63| E
00 PFO6 15|16 PF16 63| F
3APIGA
Notes:

@ Access interrupt cause bits (Addresses X0 and XE)

Bits 0-11 Not used and are set to zeros

Bit 12 Associative word not in page table
Bit 13 Write operand violation attempted
Bit 14 Read operand violation attempted
Bit 15 Read instruction violation attempted

@ Usage lockout bits for each key

Bit 0 Not used and must be set to zero

Bit 1 If set, locks out CPU write operations

Bit 2 If set, locks out CPU read operations

Bit 3 If set, locks out CPU instruction references

Figure 5-2,

5-8

Invisible Package Format

60256000 09

©

@ 0 06O

Bit 16 Flag 0

Bit 17 Flag 1

Bit 18 Flag 2

Bit 19 Flag 3

Bit 20 Interrupt flag
Bit 21 Not used

Bit 22 Load/store 1
Bit 23 Load/store 2
Bit 24 Subfunction bit 0
Bit 25 Subfunction bit 1
Bit 26 Subfunction bit 2
Bit 27 Subfunction bit 3

Bit 13 Fault test instruction enable
Bit 14 Monitoring counters enable
Bit 15 ASCII = 0, EBCDIC = 1

Contents undefined following the storing of the invisible package in memory after
a job to monitor exchange.

String internal data and control. The data and control saved in bits 32 through

63 of invisible package word C is dependent on the instruction being interrupted.
Usage bits for breakpoint register.

The program address stored into the first location of the invisible package
when an interrupt occurs is the address of the instruction which must be
executed to restart the job at the same point at which the interruption occurred.
In the case of an illegal interrupt, this address is the address of the illegal

instruction.

For the specific use of any large or small IC for a given instruction, consult

the microcode comment listing.

Heavy lines identify areas which are used for the same purposes in other computers
of the CDC STAR line.

Figure 5-2. Invisible Package Format (Contd)

5-9

60256000 09

ADDRESSING MODES

The computer system uses two modes of addressing central storage;
e Virtual addressing

e Absolute addressing

VIRTUAL ADDRESSING

Virtual addressing provides an efficient, dynamic method of allotting portions of central
storage to each job program by the monitor program. Virtual addressing is used ex-
clusively when the CPU is in the job mode, The switching of the CPU to the monitor .
mode automatically disables virtual addressing. However, central storage recognizes
all addresses as being absolute. Thus, the virtual addressing control circuits convert

virtual addresses to the corresponding absolute addresses.

PAGES

Portions of central storage are logically partitioned into pages. A page contains 512
or 65,536 consecutive 64-bit words. If 524,288 total words of central storage are
available, there are 1024 512-word pages or eight 65K pages. Page size selections
may be intermixed in the page table (refer to page table in this section).

The monitor program allots a page or pages to each job program. All of the words
in a page are identified by a common page identifier. The common page identifier is
an absolute address which locates the page in central storage.

VIRTUAL ADDRESS FORMAT

Figure 5-3 shows the virtual address formats for the 512-word page and 65K-word
page, respectively. Note that in the 512-word page, the virtual page identifier consists
of 33 bits. In the 65K-word page, on the other hand, the virtual page identifier is
contained in 26 bits of the virtual address. This difference results from the number
of bits needed to locate the word in the page. In the 65K-word page selection, 16 bits
are needed to locate the word in the page, giving a word-address range of 000016 -
FFFFlG’ which is equivalent to 65, 53610
the 9-bit word identifier gives a word-address range of 00016 - 1FF16 {512 storage

storage locations. In the 512-word page,

locations).

5-10 60256000 08

The bit, byte, half-word, and word identi
lute. Thus, when the virtual page identifier is converted into an absolute page identi-

fier, these portions of the virtual address are substituted directly into the absolute

address.
512— WORD PAGE
6 48 49 575889 6061 63
(33) (9) (2)f (3)
\ -~ I\ v— 7\ N /
VIRTUAL PAGE WORD
IDENTIFIER IDENTIFIER
BIT
BYTE
HALF WORD
65K— WORD PAGE
1. 4 42 S7 5859 60 6! 63
(26) (16) (2)] 3)
— 7\ /
~V vV
VIRTUAL PAGE WORD
IDENTIFIER IDENTIFIER
BIT
BYTE
HALF WORD

Figure 5-3. Virtual Address Formats

60256000 08

ASSOCIATIVE WORDS

The associative words contain the information necessary to convert a virtual address
into an absolute address. The monitor program must assemble the associative words
into a page table as necessary for a given run, Figure 5-4 shows the formats of the
associative words for the 512-word page and 65K-word page, respectively,

If a page has been referenced with code bits in Table 5-2, a job program has made at
least one storage reference to the page defined by the associative word., If a page is
altered, a job program has performed a write operation on at least one bit in the page
defined by the associative word. In the monitor mode, the CPU does not use the asso-
ciative words in addressing, Thus, alteration or referencing storage by the monitor
program is not recorded in the associative words.

512 - WORD PAGE

o 453 318 1819 0 3 3

®) (3) (12) (33)

— y /

ABSOLUTE LOCK VIRTUAL PAGE
PAGE IDENTIFIER
ADDRESS USAGE CODE
(SEE TABLE 5-2)
65 K - WORD PAGE
(] 45 89 1516 sm”® 30 3t 56 57 [}

@ |) ® (3) 12) (26) ®
e '

v
LOCK VIRTUAL PAGE
IDENTIFIER

ABSOLUTE USAGE CODE
PAGE ADDRESS(1) (SEE TABLE 5-2)

(D IF 500K WORD TOTAL CENTRAL STORAGE IS USED, BIT 5 MUST BE A O .
(2 BITS MUST BE SET TO ZEROS.

Figure 5-4. Associative Word Formats

5-12 60256000 09

TABLE 5-2. ASSOCIATIVE WORD USAGE CODES

Code Bits

(16 17 18) Definition
000 End of page table
001 Null associative word
010 512-word page has not been referenced by the CPU
011 65K-word page has not been referenced by the CPU
100 512-word page has been referenced by the CPU
101 65K-word page has been referenced by the CPU
110 512-word page has been altered by the CPU
111 65K-word page has been altered by the CPU

LOCK

A lock is a 12-bit quantity contained in each associative word (Figure 5-4). The lock
associates a page of central storage with a job program or several job programs.

KEYS

The monitor assigns four 12-bit keys to each job. The keys for a particular job are
read from central storage as part of the invisible package for that job. The monitor
program transfers the keys to the virtual address key register (Figure 5-5). After the
virtual page address portion of an associative word matches with the corresponding
portion of a virtual address, one of the four keys for the job must match the lock in
the associative word before the storage reference can take place.

<] 34 i5 16 is20 31 32 3536 47 48 5i 52 63
(4) (12) (4) (12) (4) (12) (4) (12)

\ /_ Y, J\ /\ v /\ 7\ v /\ /\ v /
o® KEY O RO) KEY | 2@ KEY 2 3Q KEY 3

(D LOCKOUT CODES FOR CORRESPONDING KEY
Figure 5-5. Virtual Address Key Register Format
Figure 5-5 shows that each key is associated with a four-bit lockout code. The setting
of a particular bit in this code locks out the corresponding type of storage reference.

Table 5-3 lists each bit of the lockout code and the type of storage reference locked out
if the bit is set,

60256000 08 5-13

If a key matches the lock of an associative word for a particular storage reference,
but the operation is disabled by the lockout code for that type of reference, a storage
access interrupt takes place. A storage access interrupt causes an exchange to the

monitor mode.

TABLE 5-3. LOCKOUT CODES

Bit Position

0o[1(2](3 Type of Storage Reference Locked Out
011} X X CPU write operations

01Xl 1| X CPU read operations

0] X1 X| 1 CPU instruction references

Notes: 1 The actual bit number depends on the key field to which it
corresponds (Figure 5-5).

X denotes that the bit can be 0 or 1.
Bit position 0 is always a 0.

ASSOCIATIVE REGISTERS

The SAC unit contains 16 64-bit associative registers (AR's). Each AR contains one
associative word. The AR's contain the first 16 associative words in the page table,
For example, if the computer system consists of 1,048,576 words of central storage
and if only 65K-word pages are selected, the associative words for all 16 pages would
be contained in the AR's. In the monitor mode, the contents of the AR's can be stored
into or loaded from central storage with the store associative registers (0C) or load

associative registers (0D) instructions, respectively.

The contents of the AR's cannot be referenced directly for read or write operations

except through the 0C and 0D instructions.

5-14 60256000 08

SPACE TABLE

The space table (shown in Figure 5-6) consists of the locations in central storage that
contain the list of associative words. The space table starts at absolute bit address
440016 (word address 011016) and may continue to 3FFC016. The space table extends
into central storage until an end of page table code is found in the usage bits (Table 5-2)
of the corresponding associative word. If no end of page table entry is found before

location SFFCOIS, the search hardware will loop between addresses 20,000 and

16
3FF0016, resulting in a CPU hang. Thus, the space table serves as an extension of

the AR's to make up a complete page table,

PAGE TABLE

The page table contains the complete list of associative words and includes both the
associative registers and space table. The associative words contained in the page
table define the pages currently allotted space in central storage. Figure 5-6 shows
the format of the page table. Note that if the associative words in the associative
registers are stored in central storage with the store associative registers (0C)
instruction, they are stored in 16 consecutive 64-bit storage locations of absolute bit
addresses 400016 through 43C016'

Table 5-4 lists page table restrictions and requirements,

60256000 09 5-15

ASSOCIATIVE

REGISTER

NUMBER
AROO
AROI
ARO2

ARO3

ARI4

ARIS

ABSOLUTE
BIT
ADDRESSES
(BASE 16)

4400

4440

4480

4000+40(N-1)

4000+40N

° 63
ASSOC WORD ©)l)
ASSOC WORD | ?
ASSOC WORD 2 7
ASSOC WORD 3)l

DU N

WW’(VIZ—T

ASSOC WORD 14 l‘
ASSOC WORD I5 ? (

[&3
ASSOC WORD 16 7

ASSOC WORD 17 ?

ASSOC WORD I8

S
e ST

IR | N
e

ASSOC WORD (N-1)

| ASSOC WORD N }?

@ END OF PAGE TABLE USAGE CODE

5-16

Figure 5-6. Page Table Format

ASSOCIATIVE
REGISTERS

60256000 08

TABLE 5-4. PAGE TABLE RESTRICTIONS AND REQUIREMENTS

Number Restrictions and Requirements

1 The monitor program must supply at least one END code as the last
entry in the page table before entering the corresponding job pro-
gram. The END code may be in either the associative registers or I

the space table.

2 If multiple entries are placed in the AR's, the results are undefined
and the multiple match fault may be set. The multiple match fault

is sent to the maintenance station.

3 Before the AR's can be referenced in central storage, the contents
of the AR's must be stored in central storage using the store asso-
ciative registers instruction (0C). The page table in central storage

starts at absolute address 400016'

OPERATION OF VIRTUAL ADDRESSING

In the processing of a job program,each virtual address is transmitted from the stream
unit to the SAC unit, The SAC unit compares the virtual page identifier in the virtual
address (Figure 5-3) with the corresponding portion of each associative word (Figure
5-4) in the page table. If the virtual page identifiers match and the lock matches one
of the four keys, a match condition occurs. If a match results, the absolute page
address associated with the match-producing entry in the page table is combined with
the applicable portion of the word identifier sent from stream. The upper 17 bits of
this combined address references one sword (eight 64-bit words) from central storage.
The remaining word, half-word, byte, and bit identifiers remain in stream and select the
word, half-word, byte, and/or bit from the words transmitted from SAC. If the end of
the page table is detected with no preceding match condition, or if a match results but

the operation is disabled by the lockout code, a storage access interrupt results.

For a description of a page table search, refer to the storage access control area of the

central processor section of this manual (section 3).

60256000 09 5-17

ABSOLUTE ADDRESS

The absolute address formed by page table translation receives the page address portion
from bits 5 through 15 of the associative word (Figure 5-7). For 512 word pages, 11 bits

(5 through 15) are placed in bit locations 38 through 48 of the absolute address allowing use

of 2048 possible pages in job mode with 1048K word memory size configuration. Bits 49
through 54 of the absolute address receive the corresponding bits from the virtual address.
For 65K word pages, only four bits (5 through 8) are placed in bit locations 38 through 41

of the absolute address. Bits 42 through 48 of the absolute address receive the corresponding
bits from the virtual address; this allows 16 large pages usable with a 1048K word memory.

In a 1048K memory configuration, bit 38 of the absolute address indicates which upper or
lower half-million word portion of memory is referenced. In a 524K word memory con=
figuration, if bit 5 of the absolute page address in the associative word is set for either
page size, the absolute address formed will attempt to reference a nonexistent upper half-
million words of memory. This type of memory reference is undefined, and a parity error

is likely to occur on reads.

ASSOCIATIVE WORD

3 89 1516 1819 3031

$6 57 63
L
ABSOLUTE PAGE _fusaAG le————— VIRTUAL PAGE IDENTIFIER ¢
) gl Lock SMALL PAGE ————>)
ADDRESS — IBITS [—
A VIRTUAL PAGE IDENTIFIER LARGE PAGE —3!

1
LLARGEI | / / /
, PAGE>: i ,/<-————LARGE PAGE COMPARE —————/ ,’
le—SMALL PAGE—J /K——-——SMALL PAGE COMPARE /I v
/
ABSOLUTEIADDRESS TO MEMORY) /) /
¥ Y v !
l // / /
i , ' / /
| 1| BANK / / /
38 442 489,50 34 / / ’
.~ '™~ AR RN ,’ / /
~ ~ ~
SO N ~ _ SMALL « 7 /
~ ~ (———LARGE PAGE——» / /
~ ABSOLU > /
~<——Aooaessmc Mooz—-—a» / /
/
AN ’ RN RN N ~ / /
PNy ~ ~ ~ < / /
/ ~ ~ ~ /
/ ~ S o > ~ RN // /
/ ~ ~ ~ <N/ /
/ ~ ~ ~ N
/ ~N ~ ~N ~ /
~ N / ~ /
/ S S N h N
/I SO - / N - FARN N
VIRTUAL ADDRESS / /
7 Y N/ N
¥ ¥
| | | BANK
!
<——T—sw0Ro——:—:—>wono BYTE| BIT
1 i
16 3738 4] 42 48 4950 5453 S758 6061 63
5-18 Figure 5-7. Virtual Address to Absolute Address

60256000 09

The CPU contains three counters that can be used for real-time programming applica-

tions:
° Free running clock
® DMonitor interval timer

° Job interval timer

Each of these counters is described in the following paragraphs.

FREE RUNNING CLOCK COUNTER

This counter consists of a free running 47-bit counter that is incremented at a 1-MHz
rate, and a positive sign bit for a total of 48 bits. The free running clock counter
is never cleared. The contents of this counter can be storéd in a designated register

T with the transmit real-time clock to T (39) instruction.

MONITOR INTERVAL. TIMER

This 24-bit counter is decremented at a 1-MHz rate. The transmit (R} to monitor
interval timer (0A) instruction loads the contents of the designated register R into the
monitor interval timer counter when the computer is in the monitor mode. The timer
can be activated by loading it with any quantity other than all zeros. Once it is activated,
the timer decrements at a 1-MHz rate until it reaches an all zero count, When the
counter reaches a zero count, it causes an external interrupt on channel 15 which is
processed like any other external interrupt. At this point the timer is deactivated until
it is loaded with some value other than zero.

The monitor interval timer is deactivated by any one of the following three methods.

1, Master clear.
2. Loading it with all zeros.

3. Decrementing it to a zero count.

60256000 08 5-19

JOB INTERVAL TIMER

This 24-bit counter is decremented at a 1-MHz rate and can be loaded (job mode only)
from a designated register R using the transmit R to job interval timer (3A) instruction.
Once loaded, the job interval timer continues to decrement until either an exchange to
monitor mode occurs, the timer decrements to zero, or the timer is loaded with zeros.
If an exchange to monitor mode occurs, the job interval timer stops decrementing and
the operation stores the current contents of the timer in the invisible package for that
job. When the execution of that job resumes, the operation loads the job interval timer
from the invisible package and resumes decrementing it, When the timer is decremen-
ted to zero, the CPU sets bit 36 in the DFB register. Refer to the data flag branch

register desclription in this section.

Loading zeros deactivates the timer. This action does not set bit 36 of the data flag

branch register. Master clear also deactivates the timer.

The job interval timer is deactivated by any one of the following three methods.

® Master Clear,
® I.oading it with all zeros.

¢ Decrementing it to a zero count.
REGISTER FILE

For register operations, the 8-bit instruction designators directly address the 25610
registers of the register file, During program execution (monitor or job), these
registers reside in the CPU's register file. When an exchange operation occurs, the
registers are stored into the first 25610 memory locations of the particular job or
monitor mode program beginning at bit address zero (absolute address if in monitor
mode and virtual if in job mode). The registers may not be referenced as memory by
their associated monitor or job program. The only exceptions to this rule are the B7
and BA instructions with G-bit 7 set. (Refer to B7 and BA instructions in section

6 of this manual,)

5-20 60256000 09

igure 5-8 shows a map of the register file and the relationship between the register,
its storage address, and its 8-bit designator. The number on the right is the bit

address and the number on the left is the value of the 8-bit designator for the 64-bit
operand., The number inside the register represents the value of the 8-bit designator

for the 32-bit operand.

BIT ADDRESS
WHEN FILE IS STORED
IN CENTRAL MEMORY.

BIT VIRTUAL IN A JOB;
o 3132 63 ABSOLUTE IN A MONITOR
0 ° | 0—0000|5
| 2 3 0——0040|6
2 4 5 0_008016
A ’J/
4/ N
7F FE] FF 0—IFCOg
ao) 0--1-2000'6
L -
o T
FFig 0—3FCOjg
3APITA

Figure 5-8. Register File

REGISTER FILE RESTRICTIONS

Certain registers within the register file have programming restrictions. The restrictions
are grouped according to the instruction designator number of the register.

60256000 09 5-21

REGISTER O (TRACE REGISTER) RESTRICTIONS

Register file address zero (Figure 5-9) is used as the trace register in the 64-bit mode

only. The trace register contains the address from which the most recent branch was

taken. Register zero can be referenced by executing a 7D instruction. Refer to the

instruction section for the mode of the 7D instruction which moves register zero to

central memory.

The maintenance station reads register zero by storing the register

file and reading virtual/absolute zero in central memory. After a job to monitor ex-

change, the job's virtual address zero in memory contains the address of the last

branch taken prior to the exchange operation, After a monitor to job exchange,

monitor's address zero (absolute zero) contains the address of the last branch taken

prior to the exchange operation. The B9 and BA instructions can also read register zero

for data.

Undefined

Virtual/Absolute Trace Address

15 16

63

Figure 5-9, Virtual/Absolute Address Zero

REGISTER 0 CONTENTS RESULTING FROM AN EXCHANGE OPERATION

During a monitor to job exchange, the content of the trace register and the

appropriate memory location for register zero exchange as follows:

Content Before Content After

Exchange . _Exchange
Absolute address zero A C
Virtual address zero B B
Trace register C B

5-22

60256000 09

During a job to monitor exchange, the content of the trace register and the appropriate

memory location for register zero exchange (swap) as follows:

Content Before Content After
Exchange Exchange
Absolute address zero A A
Virtual address zero B C
Trace register C A

If monitor and job mode share a common register file (refer to common register
files for job and monitor modes in this section), the following will occur upon a
monitor to job or job to monitor exchange.

Content Before Content After
Exchange Exchange
Absolute address zero A B
Virtual address zero A B
Trace register B B

REGISTER 0 CONTENT RESULTING FROM A SWAP (7D) INSTRUCTION

During a swap (7D) instruction involving register zero as part of the register field,
note a required peculiarity. Although the current content of the trace register is
sent to the appropriate memory location for register zero, the current content of the

trace register is not altered.

Content Before Content After
7D D
Memory location for
register zero A B
Trace register B B

60256000 08 5-23

REGISTER 0 WHEN REFERENCED BY AN INSTRUCTION DESIGNATOR

When referenced by an instruction designator, register zero provides machine zero as
an operand except when used as a source register for a base address or other de-
scription for a vector or string instruction. In this case, register zero appears to
contain 64 zero bits, The use of a zero address may cause the instruction to be
treated as an illegal instruction. The use of a zero field length may cause the instruc-
tion to become undefined as when used in the A0 to AF instruction. If register zero is
specified as the destination register, the instruction typically performs normally with
data flags being set, if warranted, but no data is stored. Some instructions become

undefined if register zero is specified as a destination register.

Table 5-5 shows which operand is obtained when register zero is specified for a
source operand. To simplify the table, the specifying of register zero as a destination
register is ignored since it causes the result to be lost. A blank in the table indicates
that register zero cannot be specified or that register zero may only be specified as a
destination register. The instruction designators R, S, T, G, X, A, Y, B, Z, and C
are used for convenience, although they do not apply to all instructions. The following
list contains definitions of symbols in the table,

Symbol Result When Register Zero is used as an Operand

All zeros are provided.
No control vector is used,
M Machine zero is provided.
8000 0000 0000 0000, 64-bit mode
8000 0000, . 32-bit mode
N Instruction performs as a no-op.

A mask of all ones is provided,

Z All zeros in the used portion., In this instance,
the leftmost bit is not used; thus, machine zero

and all zeros are indistinguishable.

5-24 60256000 09

TABLE 5-5.

Op
Code

Instruction

Designators

R

S

T

00

Instruction
Designators

bos)
0]

REER| BEER

NN

P N

P | NNNN| NNNN| A

ERR |8
NERR (N NN IR BERR

N
NN
N NN

N|PEPF [NNNE

N2
N NN
NN

B | N

NNPE | NNNN | PP | NN

e e PEE> [N

60256000 08

N NN|NN =
NN

5-25

5-26

TABLE 5-5,

RESULTS FOR SPECIFIED REGISTER ZERO (Contd)

Instruction Instruction
Op Designators Op Designators
Code R S T Code R S T
40 M M 60 M M
41 M M 61 M M
42 M M 62 M M
63 M Z
44 M M 64 M M
45 M M 65 M M
46 M M 66 M M
67 M Z
48 M M 68 M M
49 M M 69 M M
4B M M 6B M M
4C M M 6C M M
4D 6D M Z
4E Z 6E M Z
4F M M 6F M M
50 M 70 M
51 M 71 M
52 M 72 M
53 M 73 M
54 M Z 74 M Z
55 M M 75 M Z
76 M
77 M
58 M 78 M
59 M 79 M
5A M 7A M
5B Z Z 7B Z zZ
5C M 7C M
5D M 7D A + A
5E Z Z 7E VA Z
5F Z Z M 7F Z z M
Refer to the swap 7D instruction in section 6 of this manual.

60256000 08

PR

TABLE 5-5. RESULTS FOR SPECIFIED REGISTER ZERO (Contd)

Instruction Instruction
Op Designators Op Designators
Code G|X|A |1Y|B Z|C Code G| X|1A,) Y| B} Z,C
80 Z | At/ Z | Af{C | A A0 Al ZT| A Ztf A | Z
81 Z | AY|zZ | Af|C | A Al A|lZt| A | 21 A | 2
82 Z | Atz | At|C | A A2 AlZy|A| Z{{ A | Z
83 Z |Af|Z | A+|C | A
84 Z | At|Z | At|C | A A4 Al Zy| A| Zt| A | Z
85 Z |At|Z | A¥|C | A A5 Al zZy|A| Z1y A | Z
86 Z |At|Z | At|C | A A6 Alzy Al zy A | Z
87 . Z | At|Z | A¥|C | A
88 Z | AY|Z | At|C | A A8 A | ZY A | Zt| A | Z
89 Z |AT|Z | Af|C | A A9 A | Ztl A} Zt| A
8B At At A AB AlZy A 21 A
8C Z |At|Z | Af|C | A AC AlZTY|A | Z1 A | Z
8F' Z |AT|Z | AT|C | A AF A |ZT|A | ZT| A | Z
80 Z | At C | A BO Z M| Z\|Z|Z
91 zZ | AY C A B1 Z |M| 2 |Z)|Z
92 Z | At Cc |A B2 Z | M|z |zZ|Zz
93 Z | At CcC A B3 Z (M| Z|Z | Z
94 Z |Af|zZ | AT|C | A B4 Z M Z | Z
95 Z |At|Z | AT|C | A B5 M|Z ! Z]| 2z
96 Z | At C A B6 z
97 Z | At C |A B7 A At| Z | A
98 Z | AY C | A B8 A C |A
99 Z | AfY C |A BOt Yt Z |z Z |z
9A Z | AY C |A BAYTT Z |zlZ|lziZ2 |A
9B Z |At|z |AT|C | A BB At At| A |2
9C Z (At C A BC Z A | Z
BD zZ Z | A
BE
BF

+If register zero is selected to broadcast a constant, machine zero is that constant,
++ The B9 and BA instructions can read register zero for data.

60256000 09

5-27

TABLE 5~5. RESULTS FOR SPECIFIED REGISTER ZERO (Contd)

Instruction Instruction

Op Designators Op Designators
Code G| XA Y| B 2 ,C Code X A, Y, Bjz;C
Co Z | At|Z | At|C EO Z|A|Z|A|Z A
C1 Z | AT|Z |} Af|C El Z|A(Z|A|Z |A
Cc2 Z | At|Z | At|C E2 Z{A|Z]|A]Z A
C3 Z | Ay|Z | At|C E3 Z|A|Z|A|Z|A
Cc4 Z | Atz | AT|A E4 Z|A|Z|A|Z|N
C5 Z | Atz | At|A E5 Z|A|Z|A|Z|N
Cé Z | Af|Z | AT|A E6 Z|A|Z|A|Z|N
(o] Z |AY|Z | AT|A E7 Z|A|Z|A|Z|N

Cs8 A A |C |Z ES Z |A|lzZ]A

C9 A A |C |z E9 Z A |Z]|A
CA A A |C |Z EA Z |A|Z|A|Z|A
CB A A |C |[Z EB Z|Alz]|A|Z|A
EC Z|A|Z}A|Z|A
CD ED Z |A|Z|A|Z|A
CE Z EE Z |AlZ\|Z|Z A
CF Z|A [z]|AY|Z | Z EF Z |A|Z|Z|Z A
DO Z |At|Z | At|C | A FO Z|AlZ|A|Z |A
D1 Z | A cC |A F1 Z|A|Z|A|Z|A
F2 Z |A|Z|A|Z|A
F3 Z |A|Z |A|Z|A
D4 Z | Ay At|{C | A F4 Z|A |Z|A|Z |A
D5 Z | A C |A F5 Z |A |Z A]|Z A
D6 Z|Z|A |Z|A |A|O F6 Z |A |Z|A]|Z A
D7 Z |A 2|z |Z |z F7 Z|A |Z]|A]|Z A
D8 Z | A C F8 Z | A Z A
D9 Z | A C F9 Z | A Z | A
DA Z [A C FA Z | A Z |Z A
DB Z | A C FB Z | A Z | A
DC Z | At{z | At|C FC Z | A Z | A
DD A | A7 |A | AT FD Z | A AlZ|O
DE Z |Aty|Zz A |C A FE Z |A |Z |[A]|Z]O
DF M M |C A FF Z | A AlZ |O
tIf register zero is used to broadcast a constant, machine zero is that constant.

5-28

60256000 08

REGISTERS 1 AND 2 (64-BIT), 2 THROUGH 5 (32-BIT) RESTRICTIONS

If data flag branches are used, 64-bit registers 1 and 2 must be reserved exclusively
for that function. Register 1 stores the data flag branch exit address and register 2
the data flag branch entry address. Refer to the data flag branch register description

in this section.

REGISTERS 0 THROUGH 7 (64-BIT), 0 THROUGH F (32-BIT) MONITOR MODE RESTRICTIONS

In 64-bit mode, registers 0, 1, and 2 (or in 32-bit mode registers 0 through 5) have the
restrictions during monitor mode as previously described. In 64-bit mode, registers 3
through 7 (or in 32-bit mode registers 6 through F) are used for the undefined instruc-
tions, exit force, external interrupt, and storage access interrupt entry points. Refer

to the exchange from job mode to monitor mode description in this section.

REGISTER 1 (32-BIT) RIGHTMOST HALF OF 64-BIT REGISTER 0

Any reference to 32-bit register one is undefined.

REGISTER RESTRICTIONS FOR THE STAR-1B

Registers 0 and 8 through F are used for temporary storage by the CDC STAR-1B
CPU, and they must not be altered by the monitor program. This restriction affects
programs which are written for the STAR-100 and verified on the STAR-1B.

COMMON REGISTER FILE FOR MONITOR AND JOB MODES

Monitor and job modes have perfectly overlapping register files if monitor executes an
exit force instruction (09) with either designator S or the contents of register S equal to
zero. In an exchange from monitor to job mode, the monitor's register file is stored
starting at absolute bit address zero, The job's register file is then loaded from the
first 256 locations of its virtual page zero. Since register S contains the absolute ad-
dress of the job's virtual page zero (refer to exit force instruction) and in this case S
is equal to zero, the register file for the job is loaded from the same memory locations
as the monitor's register file was stored. Also, since the rightmost 15 bits of register
S must contain zeros (refer to exit force instruction), only a perfect overlap occurs.
Thus, following the exchange, the job's register file is identical to the monitor's regis-

ter file.

60256000 09 5-29

When exchanging from job mode back to monitor mode, the job's register file is stored
where it came from, in this case starting at absolute bit address zero. The monitor's
register file is then loaded from the same locations causing it to be identical to the
job's register file,

DATA FLAG BRANCH REGISTER

The data flag branch (DFB) register is a 64-bit register (Figure 5-10) that provides
the programmer with an automatic branching feature to a special subroutine for certain
operands, results, conditions, etc. The DFB register eliminates the time penalty of
explicitly checking for special programming conditions. If a condition, which has been
previously selected to cause an automatic branch, occurs during the execution of an
instruction, the computer completes the instruction, stores the address of the next
instruction that would have been executed in the address portion of register 01, and

branches to the address contained in register 02.

Because many register instructions may be executed in parallel, there may be some
uncertainty as to which instruction caused the data flag condition. The data flag set
condition may have occurred during an instruction which was issued a number of
instructions before the one just completed. A flag on a pipeline 2 register instruction
(divide, square root, and convert BCD to binary) could have occurred 0 to 43 instruc-
tions earlier. A flag on the other register instructions could have occurred 0 to 5

instructions earlier.

[} 23 15 16 18 19 3 32 3435 47 48 50 53 55 59 €3

® PRODUCT BITS ® MASK BITS ® DATA FLAGS ® ®

DYNAMIC
NOTE: INCLUSIVE OR FOR
(@ THESE ARE UNDEFINED BITS. PRODUCT BITS
ANY INSTRUCTION THAT ATTEMPTS
TO SET,CLEAR, OR SAMPLE THESE gﬂé BRANCH
BITS PRODUCES UNDEFINED RESULTS. ENABLE BIY

FREE DATA FLAGS

MONITORING COUNTER
ENABLE FLAGS

PIPE 2
REGIST
INSTRUCTION
FLAG

3APISA

Figure 5-10. DFB Register Format

5-30 60256000 09

DATA FLAGS

Data flag bits are bits 35 through 47 of the DFB register. These bits indicate con-
ditions that have occurred. For example, the machine sets bit 37 at the end of a
search for masked key word (FF), byte (FE), or bit (D86) instruction if the operation
detects no match. If a subsequent search for masked key instruction detects

a match, the machine does not clear DFB bit 37. Bits 35 through 47 of the DFB
register are cleared only by the data flag register bit branch and alter (32) and the data
flag register load/store (3B) instructions.

Refer to appendix D for a complete list of data flag applications to instructions.
Data flag bit 36 is applicable only to the job interval timer rather than a specific

instruction and therefore not listed.

If a control vector (refer to Control Vector under Vector Instruction in section 8) is
being used, the current control vector bit must be permissive for the operation

to set any of the data flags. For example, if a divide fault occurs but the control
vector bit for that result element is not permissive, that result element would not
set the divide fault data flag bit.

Table 5-6 lists the data flag register bit assignments and associated mask and product I
bits described in the following paragraphs.

MASK BITS

The mask bits are bits 19 through 31 of the DFB register., They select the conditions
that cause the automatic data flag branch to occur when the selected condition takes

place.

The 33 or 3B instruction sets and clears the mask bits. A mask bit need not be set
for its corresponding data flag bit to be set when the condition occurs. The mask bits
enable the setting of a corresponding bit in the product field when the associated masked
data flag bit is set. A product bit is set regardless of the order the mask bit and its

associated data flag bit are set.

PRODUCT BITS

Products bits are bits 3 through 15 of the DFB register. Each is the dynamic logical
product of a data flag bit and associated mask bit being set. The computer executes a data
flag branch when there is at least one bit set in the product field and the data flag branch
enable bit is set,

60256000 09 5-31

DYNAMIC INCLUSIVE OR FOR PRODUCT BITS

The dynamic inclusive OR for product bits is bit 51 of the DFB register. This bit is set by
setting any one of the product bits. It cannot be cleared directly.

DATA FLAG BRANCH ENABLE BIT

The data flag branch enable bit is bit 52 of the DFB register. This bit must be set for an
automatic data flag branch to take place. When bits 51 and 52 are both set, (setting may
occur in either order) the data flag branch takes place at the end of the current instruction.
The computer automatically clears bit 52 when a data flag branch takes place. The data flag
register bit branch and alter or a data flag register load/store instruction resets the data
flag branch enable bit which reenables the data flag branch operation.

FREE DATA FLAGS

Free data flag bits are bits 53 through 55 of the DFB register. Table 5-7 lists each of the
free data flag bits and the corresponding assignments. There are no product or mask
bits associated with these bits., Each of the bits are cleared automatically, unless the
instruction is a no-operation (no-op), during the initial phase of the instruction which may
set them. If applicable, these bits must be sampled before executing another instruction
which would clear them. The setting of the bits does not cause a data flag branch operation.

MONITORING COUNTER ENABLE FLAGS

Monitoring counter enable flags are bits 56 and 57 of the DFB register, These flags enable
the monitoring counters under certain conditions. (Refer to Count Gates in section 4.)
PIPE 2 REGISTER INSTRUCTION FLAG

The pipe 2 register instruction flag is bit 58 of the DFB register. This flag indicates that

one of the other data flags has been set by a pipe 2 instruction. The flag is cleared by the

33 or 3B instructions.

9-32 60256000 08

A A

DATA FLA

Product
Bit

Data Flag
Bit

Assignment /[Description

3

35

Soft interrupt: Monitor software can set bit
35 of a job's DFB register while the register
is stored in the job's invisible package. If,
after exchanging back to job mode, bit 35 and
its corresponding mask bit are set, a normal
data flag branch occurs following completion
of the current instruction.

20

36

Job interval timer.

21

37

Selected condition not met.

Search for masked key - no match,

Count of nonzero translated bytes > 216-1.

22

38+

Decimal data fault: A sign is found in a
digit position or a digit is found in a sign
position, If data flag bit 38 is set, DFB
39 is undefined,

23

39¢

Leading nonzero digits have been truncated,
Leading nonzero bits have been truncated.

Divide by zero; E3 and E7. The binary
result exceeds the range of +247 - 1,

24

40

Bit 40 is the inclusive OR of bits 37, 38,
and 39. Bit 24 masks bit 40. Bit 8 is
the logical product of bits 24 and 40.

60256000 08

ET7), the following is true,

t For those instructions which may set with data flag bit 38 and 39 (E4, E5, E6 and

If both a data fault and nonfloating-point arithmetic over-
flow exist in the data, either one or the other or both of these flags are set, depend-
ing on the algorithm used in the particular machine.

5-33

TABLE 5-6.

DATA FLAG REGISTER BIT ASSIGNMENTS (Contd)

Product
Bit

Mask
Bit

Data Flag
Bit

Assignment [Description

9

25

41

Floating point divide fault: The divisor has
an all zero coefficient or the divisor, as
read from the register file or from central
storage, is machine zero. If the divisor
and/or dividend is indefinite, no divide fault
exists. If a divisor causes a divide fault,
the quotient is set to indefinite. The ex-
ponent overflow and result machine zero data
flags are not set by a divide operation whose
divisor caused a divide fault.

10

26

42

Exponent overflow: The exponent of the
result is larger than 6FFF (6F for 32-bit
arithmetic). Results are not checked for
exponent overflow until after the exponent
adjustment for normalization or significance
has taken place. In the adjust exponent
instructions, if a left shift exceeds the num-
ber of places required for normalization,
this data flag bit is set. Exponent overflow
causes the result to be set to indefinite;
thus, the indefinite flag is always set

on an exponent overflow., The exponent
overflow data flag bit is not set if either
source operand from central storage or the
register file is indefinite or by a divide
instruction whose division causes a divide
fault.

11

27

43

Result machine zero: The exponent of

the result returned to central storage or to
the register file is less than 9000 (90 for
32-bit arithmetic). Exponent underflow
causes the result to be set to machine zero.
Results are not checked for exponent under-
flow until after the exponent adjustment for
normalization is completed. This data flag
bit is not set by a divide whose divisor
causes a divide fault.

12

5-34

28

44

Bit 44 is the inclusive OR of bits 41, 42,
and 43, Bit 28 masks bit 44, Bit 12 is the
logical product of bits 28 and 44.

60256000 08

DATA FLAG REGISTER BIT ASSIGNMENTS (Contd)

Product
Bit

Mask
Bit

Data Flag
Bit

Assignment /Description

13

29

45

Square root result imaginary: A negative
source operand was detected in a square root
instruction. The square root of the absolute
value of the operand is formed and the two's
complement of this square root is stored as
the result.

14

30

46

Indefinite result: An indefinite result was
placed in central storage or into the register
file. Bit 46 is also set if either or both oper-
ands of a floating point compare were indefinite.

An indefinite result may be caused by one
or both operands of a floating point arith-
metic operation being indefinite or by the
occurrence of either a divide fault or an

exponent overflow.

15

31

47

Breakpoint: DFB bit 47 is set on the
breakpoint instruction if breakpoint address
and usage conditions are met. Applicable
instruction: 04

60256000 08

5-35

TABLE 5-7. FREE DATA FLAG BIT ASSIGNMENTS
Free Data Applicable
Flag Bit Assignment Instructions
53 Result field all zeros.,
Logical string
54 Result field mixed. (FO through F7)
55 Result field all ones.
53 Equal operands
String compares
54 First operand high (E8, E9, and FD)
55 First operand low
53 Last edited field is zero
Edit and mark
o4 Last edited field nonzero with negative (EB)
sign or unsigned (T flip-flop set)
55 Last edited field nonzero with positive
sign (T flip-flop clear)
53 Termination due to length or delimiter
rather than nonzero translated byte
54 Termination due to nonzero translated
byte which is not the last data byte in Translate and test
the A field (EF)
55 Termination due to nonzero translated

5-36

byte which is the last data byte in the
A field

60256000 08

TABLE 5-7, FREE DATA FLAG BIT ASSIGNMENTS (Contd)
Free Data Applicable
Flag Bit Assignment Instructions
53 Ones were counted Count leading
equals (1E)
54 Undefined
55 Undefined
53 Undefined Maximum (D8)
54 Multiple hits Minimum (D9)
55 Undefined
53 Whole field scan, no hit Scan right (19)
54 Undefined Scan equal (28)
55 Undefined Scan unequal (29)
53 All translated bytes are equal Translate and
mark (D7)
54 Undefined
55 Undefined
53 A byte plus B byte < G for all bytes Modulo add (EC)
54 A byte plus B byte > G for one or more
but not all bytes
55 A byte plus B byte > G for all bytes
53 A byte < B byte for all bytes
vt v Modulo subtract
54 A byte > B byte for one or more but not (ED)
all bytes
55 A byte > B byte for all bytes
53 No equal/unequal found Scan equal (28)
54 Undefined Scan unequal (29)
55 Undefined

60256000 08

5-37

DATA FLAG BRANCH OPERATION

If a mask field bit and the associated data flag bit are set, the corresponding product
field bit is set. Free data flag field bit 51 is also set since this bit is the dynamic
inclusive OR of all bits in the product field. Under these conditions, the setting of bit
52 (data flag branch enable bit) initiates an automatic data flag branch operation.

The data flag branch operation begins at the termination of the instruction that caused
the data flag branch condition. The execution of the data flag branch transfers the bit
address of the next instruction into the rightmost 48 bits of register 01 of the register
file., A branch takes place to the bit address in the rightmost 48 bits of register 02,
The data flag branch operation automatically clears bit 52 at this time. The data flag
branch also clears the leftmost 16 bits of register 01.

The clearing of bit 52 disables the data flag branch
operation. Caution must be used to ensure

that all data branch conditions are eliminated before
resetting bit 52 or the program may enter a tight
loop operation. The sampling of bit 51 for a zero be-
fore setting bit 52 prevents this.situation in all cases
except those involving the job interval timer.

When using the job interval timer, the setting of DFB bit 36 occurs asynchronously
with respect to instruction execution once the job interval timer is loaded. Thus, the

timer may set bit 36 after the check of bit 51 and before the branch to the content of
register 01.

This situation can be programmed by examining the content of register 01 upon entering
the routine for processing data flag branches. If register 01 indicates that the branch
occurred outside the DFB routine, the content of register 01 could be transferred to a
temporary storage location.

If register 01 indicates that the branch occurred within the DFB routine, the content of
register 01 would not be transferred to a temporary storage location. At the end of the

DFB routine, the program would branch to the content of the temporary storage loca-
tion.

A simpier method of programming the above condition is to combine the setting of bit
52 and the branch to the content of register 01 into a single 33 instruction (33603401).

5-38 60256000 08

DATA FLAG BRANCH TIMING CONSIDERATIONS

The automatic data flag branch (ADFB) can occur up to 35 instructions after the instruction
which caused it. The point at which the branch occurs can vary between executions of the
same program as a result of the asynchronous I1/O activity affecting the load/store

operations.

The following points pertain to the CDC STAR-100's use of the data flag register.

1. The contents of the DFR as stored into the register file by a 3B instruction will
reflect all previous activity on it, Also, activity prior to the 3B instruction will
not affect the new contents of the DFR.

2, ADFBs caused by a 3B instruction or any instruction.previous to it may occur

after the next one or two instructions, but no later.

3. Sampling or altering a data flag bit with a 33 instruction may occur out of sequence

with a previous pipeline instruction up to 35 instructions earlier.

4, If a 33 instruction alters a bit which causes an ADFB, the branch may occur up
to two instructions later, even though all previous pipeline instructions may have
finished, If the-ADFB is contingent on the completion of a pipeline instruction, the
ADFB may occur up to 35 instructions after the instruction which caused it.

When registers 1, 2, or 4 in the STAR-100 register file are altered by an instruction, and
this instruction is followed by an automatic data flag branch or illegal monitor mode instruc-
tion branch, the store operation may occur out of sequence with the branch operation. For
example, if a TE instruction loads register 4, and this instruction is followed by an illegal
monitor mode instruction, the automatic branch will be to the address specified by

either the old or new contents of register 4, depending on the timing of the 7TE and the

instruction stream.

60256000 09 5-39 e

GENERAL DEFINITIONS AND PROGRAMMING GUIDES

The following paragraphs provide general definitions and guides to aid in the program-
ming of the computer system.

OVERLAP OF OPERAND AND RESULT FIELDS

If (in instructions such as vector, string, etc.) the result field overlays a source field
such that elements of the result are stored in the source field before elements in this
portion of the source field are read, undefined results may occur. The source elements
may be the original elements or they may be the newly-stored elements. In the latter
case, the instruction results become undefined. Some instructions prohibit any overlap
of source and destination fields. This restriction is included in the instruction descrip-

tions.

ILLEGAL INSTRUCTIONS

Illegal instructions are those with function codes that are not part of the computer
instruction set listed in the instruction list table in section 8. An illegal instruction,
when used in job mode, causes an exchange to the monitor mode. Instruction exe-
cution then begins at the address specified by the content of the register file absolute
register 3. An illegal instruction, when used in monitor mode, causes a branch to
the register file absolute register 4. Instruction execution then begins at the address
specified by the content of the register file absolute register 4.

INSTRUCTIONS WHICH CAUSE UNDEFINED RESULTS OR OPERATIONS

Instructions which contain unused bits must have those bits set to zero or
instructions cause undefined results or operations. The unused bit areas of the
instructions are shown with cross-hatched lines in the instruction word formats in

section 6.

The job mode of operation protects memory from any undefined results or operations
with the key-lock virtual addressing mechanism. This mechanism permits memory
storage only to pages assigned to the current job for which the write lockout bits are

not set.

The monitor mode of operation does not have the protection against undefined results or
operations because it makes all memory references with absolute addresses,

§ 5-40 60256000 09

ITEM COUNT

Item count is a term used in the instruction descriptions (section 6) to highlight the

fact that certain instructions perform operations on a number of items. The term is
general and refers to items which may be in bits, bytes, half-words, or words.
Descriptions which use the term are those which specify instruction field lengths, offsets,

indexes, and/or shift counts.

The size of the items in an item count is specified for applicable instructions in the
instruction list tables (located near the front of section 6). The item size is listed
under the table heading, number of bits in the operand. In an example from the tables
(shown below), the operand size is 8 which indicates that the field lengths and indexes for

the E1 instruction are expressed in bytes.

El1 3 8 ST Binary Sub; A-B-C

In another example (shown below), the operand is E. This indicates that the instruction uses
32-bit or 64-bit items, depending on the status of G bit 8 in the instruction. An item count
for a field length of this instruction means that the field contains 100 32-bit items or 100
64-bit items, depending on G bit 8.

80 1 E VT ADDU;A+B-C

When an item count (other than a field length) is contained in a 16-bit field, at least one sign

bit must be present. Item counts in 16 bit fields are therefore limited to the range of 215-1

to -215. (Refer to the following description of field length). When an item count other than
an index consists of 48 bits, the left most 33 bits of the item count must be identical sign bits.

Sign bits must always be extended to the left to fill the 16-bit or 48-bit field that contains it.
FIELD LENGTH AND OFFSET

Vector, vector macro, sparse vector, logical string, and some nontypical instructions use

a field length. An offset is used in vector, vector macro, and some nontypical instructions.

60256000 09 5-41 l

The field length as read from the register file before possible offset modification, is

always interpreted as a positive number in the range of 0 to 216-1 (65, 535).

If a vector or other data field has no offset, the field is considered terminated before
the reading of the first operand if the specified field length is zero.

Instructions having offsets must have 32 identical sign bits. The offsets are in the

range —216 to 216-

is undefined. The resulting field length after subtracting the offset from the field

length (read from register A, B, or C) must be positive and less than 216-1 or the

1. If the offset is not in this range, the operation of the instruction

field length is treated as zero.

INDEX

String, some branch, and some nontypical instructions use an index. The sign of an
index may be either positive or negative. The maximum magnitude of an index depends
on its use as defined in the instruction descriptions. The machine left shifts the indexes
end-off zero, three, five, or six positions before the index is added to the base address.
The number of positions shifted depends on whether the unit for the index is bits, bytes,

half-words, or words, respectively.

DATA FAULT

A data fault occurs when a sign code is detected in an unexpected position of a packed binary
coded decimal (BCD) number. A sign code in the leftmost four bits of any byte always pro-
duces a data fault. When only one BCD number is expected in a field, a sign code in any
position other than the rightmost bits of the rightmost byte is a data fault. If a data fault

is detected, the instruction operation is undefined.

OPERAND SIZE DEFINITIONS

Following is a listing of operand sizes which apply throughout this manual unless other-

wise stated.

I 5-42 60256000 09

Word A 64-bit quantity having the address of the leftmost bit always
being a multiple of 64,.

Half-word. A 32-bit quantity having the address of the leftmost bit always
being a multiple of 3210.

Byte An 8-bit quantity having the address of the leftmost bit always
being a multiple of 810.

Character An 8-bit quantity, generally having some particular significance
associated with the particular bit pattern or code.

Digit A 4-bit binary coded decimal number or sign, In zoned format

there is one digit per byte and in packed BCD format there are
two digits per byte (refer to the string instructions description for
more detail),

RESTRICTION ON SELF-MODIFYING PROGRAMS

The use of self-modifying programs is strongly discouraged. The following rules
illustrate the difficulties encountered with this type of programming.

1. The twenty-four 64-bit words before (having addresses lower) and the thirty-two
64-bit words after (having addresses higher) the current instruction word shall

not be modified by the current instruction.

2. The 24 instructions before (in terms of order of execution) and the 32 instruc-
tions after (in terms of order of execution) the current instruction words are

not modified by the current instruction.

3. The store into central memory of the 13, 5F, and 7F instructions may not
take place before the execution of the next instruction in sequence. Therefore,
if these instructions are used to modify code, it is difficult to guarantee that
the store has taken place before the execution of that code. There are three
procedures to guarantee that the store has taken place prior to execution of the

intended modified code:

e The execution of any instruction which references central memory. with
the exception of the 12, 13, 32, 5E, 5F, 7E, and 7F instructions.
These instructions must be executed between the store instruction
which modifies the code and the use of that modified code.

Y The execution of the conditional branch feature of the 32 instruction
between the store instruction which modifies the code and the use of

that modified code.

60256000 09 5-43

o Execution of a load (12, 5E, or 7E) instruction followed by a transmit (78)
instruction where the source register for the 78 instruction conflicts with the
destination register for the load instruction. These instructions must be
executed between the store instruction which modifies the code and the use of
that modified code.

The instructions referenced in the previous three procedures must be executed from

addresses at least three swords before or four swords after the modified code.

RESULT VECTOR 64-SWORD LOOKAHEAD
The length of the result vector for the following instructions is input data dependent:

e Sparse vector (A0 through AF) and the compress (CF) instruction; the length of
the result vector (C) depends on the number of one bits in the output order

vector (Z).

e Compress (BC) instruction; the length of the result vector (C) depends on the

number of one bits in the order vector (Z).

® Translate (D7, EE, F8, and F9) instructions where termination is on
the input and the input is delimiter limited; the length of the result vector (C)
depends on the position of the delimiter in the input field.

As the computer proceeds through the execution of the above instructions, it checks
that an extra 64-sword page (small page) of result field is available if needed (64-sword
lookahead). Therefore, it is necessary to provide one more small page for the result
vector beyond the expected length.

For the sparse vector (A0 through AF) instructions, it is not necessary to provide an

extra small page beyond the maximum possible result field length., The maximum

possible length of result vector C is equal to the field length of output order vector Z.

b s5-44 60256000 09

5
(7,)
==
‘-
O
=
(o)
Z
7
O

GENERAL

This section describes instruction word formats, instruction types, and instruction
descriptions. The instruction word format description explains the content of 32-bit
and 64-bit instruction formats used in the computer. The instruction type description
explains the instruction groups according to the operations they perform. The instruc-

tion description gives detailed explanations and examples of individual instructions.

As an aid in finding instruction designator information and individual instruction

descriptions, refer to:

e Table 6-1 for instruction designators.
e Table 6-2 or inside front cover for locating instructions by function code.

e Table 6-3 for locating instructions by instruction type.

INSTRUCTION WORD FORMATS

The 32-bit and 64-bit instruction words have 12 types of formats (Figure 6-1). The
formats have hexadecimal numbers, 1 through C, which are used as references in
Tables 6-2 and 6-3, The bits in the instruction word formats number from left to
right, 0 through 31 or 0 through 63.

INSTRUCTION DESIGNATORS

Each instruction word format is divided into bit groups that have assigned instruction
designators shown in Figure 6-1., The designator letters (such as F, R, S, and T in
format 4) and their definitions are listed in Table 6-1. The definitions are general
and may vary between instructions. The instruction descriptions give more specific

designator information as it applies to individual instructions.
When the C + 1 designator is used, the C designator must specify an even-numbered

fegister. if thé C designator speéifiés an odd-numbered registér, the results of the

instruction become undefined.

60256000 08 6-1

Bits 0 through 7 are commonly used by each instruction word as the function code
designator (F). The computer uses function codes in the range of 00 through FF.
The function codes in the range of 00 through 7F use 32-bit instruction word formats.
The function codes in the range of 80 through FF use 64-bit instruction word formats.

UNUSED BIT AREAS
Cross~-hatched lines like those shown in formats A, B, and C of Figure 6-1 indicate

unused bit areas. These areas must be cleared to all zeros or the instructions will

cause undefined results or operations.

) 60256000 09

78

1516

23 24

31 32

39 40

55 56

63

X A Y B z
F (SUB- (OFFSET (LEg(EETH 8 [(OFFSET (IB.EggTH & (gﬁ‘vs E(D (léggcgm 8
(FUNCTION)| FUNCTION) | FOR A) | BASE o) | FORB) | ApBRess) | ADDRESS) | ADDRESS)
| C+1 |
(OFFSET |
(@ CV DENOTES CONTROL VECTOR L FORC&Z |

FORMAT |- USED FOR VECTOR, VECTOR MACRO, AND SOME NONTYPICAL INSTRUCTIONS

15

16 23

24 31

32

39 40

47 48

56 63

G X A Y B Z c
F (SUB- (gv@ LENGTH (aasE © vV (DLENGTH (gasE tov() LENGTH|(resuLT
T
FUNCTION | "FyncTION)| A0bRESS) ADDRESS) RBRess) ADDRESS) | 2g8R¥ss) | BASE AboRe
@® oV DENOTES ORDER VECTOR
FORMAT 2 - USED FOR SPARSE VECTOR AND SOME NONTYPICAL INSTRUCTIONS
78 15 16 23 24 31 32 39 40 47 48 585 56 63
F 6 X LENGAI'H & | (Y (LEN(B;TH & z (LENgTH &
FUNCTION) (suB- (INDEX (INDEX (INDEX
(FUNCTION)| FOR A) [RBASE os) | FORB) | BABE o) | FORC) | BASE o)
FORMAT 3 USED FOR LOGICAL STRING AND STRING INSTRUCTIONS
78 18 16 23 24 3i
F R] T
(FUNCTION)|(SOURCE [)|(SOURCE 2) |(DESTINATION)
FORMAT 4 USED FOR SOME REGISTER, ALL MONITOR, THE 3D AND 04 NONTYPICAL
INSTRUCTIONS
Figure 6-1, Instruction Formats
6-3

60256000 08

78 1]

€3

F
(FUNCTION)

R
IDESTINATION)

I (48 BITS)

FORMAT 5 USED FOR THE BE,BF,CD,AND CE INDEX INSTRUCTIONS AND FOR THE B6 BRANCH

INSTR

-] T8

UCTION

15 16

31

F

(FUNCTION)|(DESTINATION)

R

I

(16 BITS)

FORMAT 6 USED FOR THE 3E, 3F,4D,AND 4E INDEX INSTRUCTIONS AND

THE 2A REGISTER INSTRUCTION

o 78

23 24

F
(FUNCTION)

\

FORMAT 7 USED FOR SOME BRANCH AND NONTYPICAL INSTRUCTIONS

o T8

v
DESCRIBED WHERE USED

23 24

31

F
(FUNCTION)

R
(REGISTER)

S
(REGISTER)

T
(BASE

ADDRESS)

FORMAT 8 USED FOR SOME BRANCH INSTRUCTIONS

6-4

Figure 6-1. Instruction Formats (Contd)

60256000 08

G DESIGNATOR

o 78 9 10 i516 23 24 31
F S T
(FUNCTIONY®[®

Q.

\ _/
A4
DESCRIBED WHERE USED

FORMAT 9 USED FOR THE 32 BRANCH INSTRUCTION

o) 78 15 16 23 24 31

F R T
(FUNCTION)(OLD STATE) (NEW STATE)

FORMAT A USED FOR SOME INDEX, BRANCH, AND REGISTER INSTRUCTIONS

G DESIGNATOR

o 78910 1516 17 (8 23 24 3
7 T
F I
d
(FUNCTION)"[® @ | Caress)
A J

\'4
DESCRIBED WHERE USED

FORMAT B USED FOR THE 33 BRANCH INSTRUCTION

G DESIGNATOR

78 iz 15716 23 24 31 32 39 40 47 48 55 56 63

-
F X A Y (BASEB z c
(FUNCTION) (REGISTER) |(REGISTER)| (INDEX) ADDRESS) |(RESISTER) | (REGISTER)

GBITS 5-7:
BRANCH CONTROL BITS

GBIT4
SEE BO-B5 INSTRUCTIONS

FORMAT C USED FOR THE BO-B5 BRANCH INSTRUCTIONS

Figure 6=1, Instruction Formats (Contd)

60256000 09 6-5 ¢

TABLE 6-~1.

INSTRUCTION DESIGNATORS

Designator

Format Type

Definition

A

1 & 3

This 8-bit designator specifies a register that con-
tains a field length and base address for the corre-

sponding source vector or string field.

This 8-bit designator specifies a register that con-
tains the base address for a source sparse vector
field.

Specifies a register that contains a twa's complement

integer in the rightmost 48 bits.,

1 &3

This 8-bit designator specifies a register that contains
a field length and base address for the corresponding

source vector or string field.

This 8-bit designator specifies a register that contains

the base address for a source sparse vector field.

This 8-bit designator specifies a register that contains

the branch base address in the rightmost 48 bits.

1,2,&3

This 8-bit designator specifies a register that contains
the field length and base address for storing the re-

sult vector, sparse vector, or string field.

Specifies the register that contains the two's
complement sum of (A) + (X) in the rightmost 48 bits.

The leftmost 16 bits are cleared.

C+1

This 8-bit designator specifies a register that contains
the offset for the C and Z vector fields.,

9 & B

This 2-bit designator is contained within the G desig-
nator and specifies the branch conditions for the

corresponding branch instructions.

6-6

9 & B

This 2-bit designator is contained within the G desig-
nator and specifies the object bit altering conditions

for the corresponding branch instructions.

60256000 09

— — - — ~ 2~

TABLE 6-1. INSTRUCTION DESIGNATORS (Contd)

Designator Format Type Definition

F 1-¢C This 8-bit designator is used in all instruction
format types to specify the instruction function
code. This designator is always contained in the
leftmost eight bits of the instruction and is ex-
pressed in hexadecimal for all instruction de-
scriptions. Thus, the function code range is
00-FF,g. However, not all of the possible

function codes are used.

G 1, 2,3, This 8-bit designator specifies certain subfunction
conditions for the corresponding instruction. The
subfunctions include the length of the operands

(32- or 64-bit), normal or broadcast source vectors,
etc. The number of bits that are used in the G
designator vary with individual instructions.
(Appendix C lists the G bit usage codes according

to function code.)

The G designator bits have bit positions 8 through
15 in the word format. The manual references
these bits as G bits 0 through 7. G bit 0 corre-
sponds to bit position 8 in the word format.

Other G bits follow, in order, from left to right.

I 5 This 48-bit designator functions as an index used
to form the branch address in a B6 branch
instruction. In the CD and CE index instructions, I
operand I is contained in the rightmost 24 bits.

In the BE and BF index instructions, I is a 48-bit

operand,

6 In the 3E, 3F, 4D, and 4E index instructions, l

1 functions as a 16-bit operand.
B In the 33 branch instruction, the 6-bit I designa-
tor specifies the number of the data flag branch I

register bit used in the branching operation.

6-7
60256000 09

TABLE 6-1. INSTRUCTION DESIGNATORS (Contd)

Designator Format Type Definition

R 4 This 8-bit designator specifies a register that
contains an operand to be used in an arithmetic

operation in the register and 3D instructions.

5 &6 In the BE, BF, CD, CE, 3E, 3F, 4D, and 4E
index instructions, R functions as a destination
register for the transfer of an operand or operand
sum. In the B6 branch instruction, R specifies a
register that contains an item count which is used

to form the branch address.

7,8,& A In these format types, R specifies registers and
branching conditions that are described in the

individual instruction descriptions.

S 4 This 8-bit designator specifies a register that
contains an operand to be used in an arithmetic

operation in the register and 3D instructions.

7,8&9 In these format types, S specifies registers and
branching conditions that are described in the

individual instruction descriptions.

T 4 This 8-bit designator specifies a destination
register for the transfer of the arithmetic results.

7,8,9,& B In these formats, T specifies a register that con-
tains the base address, and in some cases, the
field length of the corresponding result field or
branch address.

A In this format, T specifies a register that
contains the old state of a register, data flag

branch register, etec.; in an index, branch or

interregister transfer operation.

60256000 09

TABLE 6-1,

INSTRUCTION DESIGNATORS (Contd)

Designator

Format Type

Definition

X

1&3

This 8-bit designator specifies a register that contains

the offset or index for vector or string source field A.

In this case, X specifies a register that contains the
length and base address for the order vector corre-

sponding to source sparse vector field A,

In the BO through B5 branch instructions, X specifies
a register that contains a signed, two's complement
integer in the rightmost 48 bits which is used as an
operand in the branching operation.,

1&3

This 8-bit designator specifies a register that contains
the offset or index for vector or string field B.

In this format, Y specifies a register that contains the
length and base address for the order vector corre-

sponding to source sparse vector field B,

In the B0 through B5 branch instructions, Y specifies
a register that contains an index that is used to form

the branch address.

This 8-bit designator specifies a register that contains
the base address for the order vector, used to control

the result vector in field C.

In this case, Z specifies a register that contains the
length and base address for the order vector corre-
sponding to source sparse vector field C,

In this format, Z specifies a register that contains the
index for result field C.

In the BO through B5 branch instructions, Z specifies
a register that contains a signed two's complement

integer in the rightmost 48 bits. This integer is used
as the comparison operand in determining whether the

branch condition is met.

60256000 08

6-9

INSTRUCTION TYPES

The following 10 types of instructions are grouped according to the operations they

perform.
e Index (IN) e Vector macro (VM)
e Register (RG) e String (ST)
e Branch (BR) e Logical string (LS)
e Vector (VT) e Nontypical (NT)
e Sparse vector (SV) e Monitor (MN)

Table 6-2 lists each instruction code in the computer instruction repertoire; the list
is in the numerical order (hexadecimal) of the function code. Table 6-3 lists the
instruction codes according to general type; the general types are in the same order
as previously listed. The unused and illegal function codes are omitted from Tables
6-2 and 6-3.

A page number is given for each instruction code in Tables 6-2 and 6-3. These page
numbers refer to the description of the corresponding instruction. Figure 6-4 provides
additional explanations for using the tables.

Instr Page Format No. of Bits Instr
Code No. Type in Operand Type Instr Title

T~

INSTRUCTION INSTRUCTION INSTRUCTION TITLE
FUNCTION WORD DESIGNATORS WITHIN
CODES FORMAT TYPES PARENTHESES ,(), INDI-
DESIGNATED DESIGNATED CATE REGISTER I.OCATIONS.
00 - FF g 1-Ce DESIGNATORS WITHOUT
PARENTHESES INDICATE
QUANTITIES.
DESIGNATORS SEPARATED
NUMBER OF BITS INSTRUCTION TYPE BY AN ARROW, -, INDICATE
IN OPERAND FIELDS. 0 a
BRACKETS, [], INDICATE
- SINGLE BIT BR - BRANCH ALGEBRAIC QUANTITIES.
- BYTES IN - INDEX
- HALF-WORDS LS - LOGICAL STRING
- FULL-WORDS NT - NONTYPICAL

EITHER 32-OR 64-BIT RG - REGISTER

- BOTH 32- AND 64-BIT ST - STRING

- NOT APPLICABLE SV - SPARSE VECTOR
VM - VECTOR MACRO
VT - VECTOR

MN - MONITOR

%wmiﬁm.—‘
1

Figure 6-2. Instruction Listing Format

6-10 60256000 08

TARLE 6-2. INSTRUCTION LIST BY FUNCTION CODE

Instr Page Format No. of Bits Instr

Code No. Tvpe in Operand Type Instr Title

00 6-235 4 NA MN IDLE

04 6-231 4 64 NT BREAK POINT-MAINTENANCE

06 6-233 7 NA NT FAULT TEST-MAINTENANCE

08 6-235 4 64 MN INPUT/OUTPUT PER R

09 6-55 4 64 BR EXIT FORCE

0A 6-238 4 64 MN TRANSMIT (R) TO MONITOR
INTERVAL TIMER

0C 6-236 4 64 MN STORE ASSOCIATIVE REGISTERS

oD 6-236 4 64 MN LOAD ASSOCIATIVE REGISTERS

OE 6-236 4 64 MN TRANSLATE EXTERNAL
INTERRUPT

OF 6-237 4 64 MN LOAD KEYS FROM (R), TRANS-
LATE ADDRESS (S) TO (T)

10 6-39 A 64 RG CONVERT BCD TO BINARY,
FIXED LENGTH

11 6-39 A 64 RG CONVERT BINARY TO BCD,
FIXED LENGTH

12 6-188 7 64 NT LOAD BYTE (T) PER (S), (R)

13 6-188 7 64 NT STORE BYTE (T) PER (S), (R)

14 6-197 7 1 NT BIT COMPRESS

15 6-199 7 1 NT BIT MERGE

16 6-199 7 1 NT BIT MASK

17 6-203 7 8 NT CHARACTER STRING MERGE

18 6-221 7 8 NT MOVE BYTES RIGHT

19 6-224 7 8 NT SCAN RIGHT

1A 6-228 7 8 NT FILL FIELD T WITH BYTE R

1B 6-228 7 8 NT FILL FIELD T WITH BYTE (R)

1C 6~228 7 1 NT FORM REPEATED BIT MASK
WITH LEADING ZEROS

1D 6-228 7 1 NT FORM REPEATED BIT MASK
WITH LEADING ONES

1E 6-229 7 1 NT COUNT LEADING EQUALS

1F 6-231 1 NT COUNT ONES IN FIELD R,
COUNT TO (T)

20 6-47 32 BR BRANCH IF (R)=(S)(32 BIT FP)

21 6-47 32 BR BRANCH IF (R)#(S)(32 BIT FP)

22 6-47 32 BR BRANCH IF (R)>(S)(32 BIT FP)

60256000 09

6-11@

TABILE 6-2,

INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr

Code No. Tvpe in Operand Type Instr. Title

23 6-47 8 32 BR BRANCH IF (R)<(S)(32 BIT FP)

24 6-17 8 64 BR BRANCH IF (R)=(S)(64 BIT FP)

25 6-17 8 64 BR BRANCH IF (R)#(S)(64 BIT FP)

26 6-47 8 64 BR BRANCH IF (R)>(S)(64 BIT FP)

27 6-17 8 64 BR BRANCH IF (R)<(S)(64 BIT FP)

28 6-224 7 NT SCAN EQUAL

20 6-224 7 NT SCAN UNEQUAL

23 6-15 6 64 RG ENTER LENGTH OF (R) WITH
I (16 BITS)

2B 6-45 64 RG ADD TO LENGTH FIELD

2C 6-30 4 64 RG LOGICAL EXCLUSIVE OR (R),
(S), TO (T)

2D 6-30 4 64 RG LOGICAL AND (R), (S) TO (T)

2E 6-30 64 RG LOGICAL INCLUSIVE OR (R),
(S), TO (T)

2F 6-48 9 1 BR REGISTER BIT BRANCH AND
ALTER

30 6-30 64 RG SHIFT (R) PER S TO (7T)

31 6-54 64 BR INCREASE (R) AND BRANCH
IF (R) # 0

32 6-51 9 1 BR BIT BRANCH AND ALTER

33 6-49 B 1 BR DATA FLAG REGISTER BIT
BRANCH AND ALTER

34 6-31 64 RG SHIFT (R) PER (S) TO (T)

35 6-54 64 BR DECREASE (R) AND BRANCH
IF (R)#0

36 6-54 7 64 BR BRANCH AND SET (R) TO NEXT
INSTRUCTION

37 6-188 A 64 NT TRANSMIT JOB INTERVAL
TIMER TO (T)

38 6-29 A 64 IN TRANSMIT (R BITS 00-15) TO
(T BITS 00-15)

39 6-190 A 64 NT TRANSMIT REAL-TIME CIL.OCK
TO (T)

3A 6-190 A 64 NT TRANSMIT (R) TO JOB INTERVAL
TIMER

3B 6-51 A 64 BR DATA FLAG REGISTER LOAD/
STORE

3C 6-187 3 32 NT HALF WORD INDEX MULTIPLY
(R)«(S) TO (T)

3D 6-187 4 64 NT INDEX MULTIPLE (R)+«(S) TO (T)

3E 6-27 64 IN ENTER (R) WITH I (16 BITS)

6-12 60256000 09

TABLE 6-2.

INSTRUCTION LIST BY FUNCTION CODE (Contd)

60256000 09

Instr Page Format No. of Bits Instr

Code No. Type in Operand Type Instr Title

3F 6-27 6 64 IN INCREASE (R) BY 1 (16 BITS)

40 6-34 4 32 RG ADD U; (R) + (S) TO (T)

41 6-34 4 32 RG ADD L; (R) + (S) TO (T)

42 6-34 4 32 RG ADD N; (R) + (S) TO (T)

44 6-34 4 32 RG SUB U; (R) - (S) TO (T)

45 6-34 4 32 RG SUB L; (R) - (S) TO (T)

46 6-34 4 32 RG SUB N; (R) - (S) TO (T)

48 6-34 4 32 RG MPY U; (R)- (S) TO (T)

49 6-34 4 32 RG MPY L; (R)«(S) TO (T)

4B 6-34 4 32 RG MPY S; (R)-(S) TO (T)

4C 6-34 4 32 RG DIV U; (R)/(S) TO (T)

4D 6-27 6 32 IN HALF WORD ENTER (R)
WITH I (16 BITS)

4E 6-27 6 32 IN HALF WORD INCREASE (R)
BY I (16 BITS)

4F 6-34 4 32 RG DIV S; (R) / (S) TO (T)

50 6-35 A 32 RG TRUNCATE (R) TO (T)

51 6-35 A 32 RG FLOOR (R) TO (T)

52 6-35 A 32 RG CEILING (R) TO (T)

53 6-39 A 32 RG SIGNIFICANT SQUARE ROOT
OF (R) TO (T)

54 6-44 4 32 RG ADJUST SIGNIFICANCE OF (R)
PER (S) TO (T)

55 6-44 4 32 RG ADJUST EXPONENT OF (R)
PER (S) TO (T)

58 6-35 A 32 RG TRANSMIT (R) TO (T)

59 6-35 A 32 RG ABSOLUTE (R) TO (T)

5A 6-35 A 32 RG EXPONENT OF (R) TO (T)

5B 6-38 4 32 RG PACK (R), (S) TO (T)

5C 6-39 A B RG EXTEND 32 BIT (R) TO 64
BIT (T)

5D 6-39 A B RG INDEX EXTEND 32 BIT (R) TO
64 BIT (T)

5E 6-188 7 32 NT LOAD (T) PER (S), (R)

5F 6-188 7 32 NT STORE (T) PER (S), (R)

60 6-34 64 RG ADD U; (R) + (S) TO (T)

61 6-34 64 RG ADD L; (R) + (S) TO (T)

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr

Code No. Type in Operand Type Insir Title

62 6-34 4 64 RG ADD N; (R) + (S) TO (T)

63 6-35 4 64 RG ADD ADDRESS (R) + (S) TO (T)

64 6-34 4 63 RG SUB U; (R) - (S) TO (T)

65 6-34 4 64 RG SUB L; (R) - (S) TO (T)

66 6-34 4 64 RG SUB N; (R) - (S) TO (T)

67 6-35 4 64 RG SUB ADDRESS (R) - (S) TO (T)

68 6-34 4 64 RG MPY U; (R)-(S) TO (T)

69 6-34 4 64 RG MPY L; (R)-(S) TO (T)

6B 6-34 4 64 RG MPY S; (R)+(S) TO (T)

6C 6-34 4 64 RG DIV U; (R) / (S) TO (T)

6D 6-32 4 64 RG INSERT BITS FROM (R) TO (T)
PER (S)

6E 6-33 4 64 RG EXTRACT BITS FROM (R) TO
(T) PER (S)

6F 6-34 4 64 RG DIV S; (R) / (S) TO (T)

70 6-35 A 64 RG TRUNCATE (R) TO (T)

71 6-35 A 64 RG FLOOR (R) TO (T)

72 6-35 A 64 RG CEILING (R) TO (T)

73 6-39 A 64 RG SIGNIFICANT SQUARE ROOT
OF (R) TO (T)

74 6-44 4 64 RG ADJUST SIGNIFICANCE OF (R)
PER (S) TO (T)

75 6-44 4 64 RG ADJUST EXPONENT OF (R)
PER (S) TO (T)

76 6-39 A B RG CONTRACT 64 BIT (R) TO 32
BIT (T)

77 6-39 A B RG ROUNDED CONTRACT 64 BIT (R)
TO 32 BIT (T)

78 6-35 A 64 RG TRANSMIT (R) TO (T)

79 6-35 A 64 RG ABSOLUTE (R) TO (T)

7A 6-35 A 64 RG EXPONENT OF (R) TO (T)

7B 6-38 4 64 RG PACK (R), (S) TO (T)

7C 6-39 A 64 RG LENGTH OF (R) TO (T)

7D 6-189 7 64 NT SWAPS—TANDR ~ S

7E 6-188 7 64 NT LOAD (T) PER (S), (R)

7F 6-188 7 64 NT STORE (T) PER (S), (R)

80t 6-68 1 E VT ADDU; A+B—~C

STT 6-68 1 E VT ADDL; A+ B~ C

TThese instructions have sign control capability,

6-14

60256000 09

TABILE 6-2,

INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr

Code No. Type in Operand Type Instr Title

82 ¢ 6-68 1 E VT ADDN; A+ B-~C

83 6-69 1 84 VT ADD A; A+B—>C

g4t 6-68 1 E VT SUBU;A-B-C

85 6-68 1 E VT SUBL; A-B-C

86 * 6-68 1 E VT SUBN; A -B~-C

87 6-69 1 64 VT SUBA;A-B~-C

88 6-68 1 E VT MPY U; A-B ~ C

891 6-68 1 E VT MPY L; A-B—~C

8Bt 6-68 1 E VT MPY S; A*B~C

8Ct 6-68 1 E VT DIV U; A/B~C

8F ¥ 6-68 1 E VT DIV S; A/B~C

20 6-70 1 E VT TRUNCATE A —~ C

91 6-70 1 E VT FLOOR A -~ C

92 6-70 1 E vT CEILING A - C

937t 6-T7 1 E VT SIGNIFICANT SQUARE ROOT
OF A~C

94 6-81 1 E vT ADJUST SIGNIFICANCE OF A
PER B~ C

95 6-81 1 E VT ADJUST EXPONENT OF A PER
B-~C

96 6-T7 1 B VT CONTRACT 64 BIT A ~ 32 BIT C

97 6-717 1 VT ROUNDED CONTRACT 64 BIT
A - 32 BIT C

98 6-70 1 E VT TRANSMIT A - C

99 6-70 1 E VT ABSOLUTE A - C

94 6-70 1 E VT EXPONENT OF A - C

9B 6-75 1 E VT PACK A, B~ C

9C 6-77 1 B VT EXTEND 32 BIT A -~ 64 BIT C

Aot 6-89 2 E SV ADD U; A + B > C

A1t 6-89 2 E SV ADD L; A + B~ C

A2 T 6-89 2 E Y% ADD N; A + B =~ C

A4t 6-89 2 E SV SUBU; A-B~->C

Ast 6-89 2 E Ssv SUB L; A-B-~C

As t 6-89 2 E SV SUBN; A-B~—~C

ast 6-91 2 E sv MPY U; A- B~ C

A9t 6-91 2 E SV MPY L; A+ B~ C

AB 6-91 2 E Sv MPY S; A . B~ C

tThese instructions have sign control capability.

60256000 09

6-15

TABILE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr

Code No. Type in Operand Type Instr Title

AC T 6-91 2 E SV DIV U; A/B-~ C

AF T 6-91 2 E SV DIV S; A/B - C

BO 6-57 C 64 BR INDEX, BRANCH IF (A) + (X) = (Z)

B1 6-57 C 64 BR INDEX, BRANCH IF (A) + (X) # (Z)

B2 6-57 C 64 BR INDEX, BRANCH IF (A) + (Z) > (2)

B3 6-57 C 64 BR INDEX, BRANCH IF (A) + (X)< (Z2)

B4 6-57 C 64 BR INDEX, BRANCH IF (A) + (X) < (2)

B5 6-57 C 64 BR INDEX, BRANCH IF (A) + (X)> (2)

B6 6-59 5 NA BR BRANCH TO IMMEDIATE
ADDRESS (R) + I (48 BITS)

B7 6-114 1 E VM TRANSMIT LIST — INDEXED C

B8 6-103 1 E VM TRANSMIT REVERSE A - C

B9 6-216 1 E NT TRANSPOSE /MOVE

BA 6-111 1 E VM TRANSMIT INDEXED LIST — C

BB 6-190 2 E NT MASK A, B~ C PER Z

BC 6-191 2 E NT COMPRESS A -~ C PER Z

BD 6-195 2 E NT MERGE A, B~ C PER Z

BE 6-28 5 64 IN ENTER (R) WITH I (48 BITS)

BF 6-28 5 64 IN INCREASE (R) BY I (48 BITS)

Cco 6-94 1 E VM SELECT EQ; A = B, ITEM
COUNT TO (C)

C1 6-94 1 E VM SELECT NE; A # B, ITEM
COUNT TO (C)

C2 6-94 1 E VM SELECT GE; A > B, ITEM
COUNT TO (C)

C3 6-94 1 B VM SELECT LT; A < B, ITEM
COUNT TO (C)

Cc4 6-208 1 1D NT COMPARE EQ; A = B, ORDER
VECTOR — Z

C5 6-208 1 E NT COMPARE NE; A # B, ORDER
VECTOR ~ Z

C6 6-208 1 E NT COMPARE GE; A > B, ORDER
VECTOR - Z

Cc7 6-208 1 E NT COMPARE LT; A< B, ORDER
VECTOR — Z

C8 6-211 1 E NT SEARCH EQ; A = B, INDEX 1.IST
- C

Cc9 6-211 1 E NT SEARCH NE; A # B, INDEX L.IST
- C

CA 6-211 1 E NT SEARCH GE; A > B, INDEX LIST
- C

1 These instructions have sign control capability,

6-16 60256000 09

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr

Code No. Tvpe in Operand Type Instr Title

CB 6-211 1 1) NT SEARCH LT; A <B, INDEX LIST
- C

CcD 6-28 5 32 IN HALF WORD ENTER (R) WITH
1 (24 BITS)

CE 6-28 5 32 IN HALF WORD INCREASE (R) BY
1 (24 BITS)

CFY 6-192 1 E NT ARITH. COMPRESS A - C PER B

DO 6-102 1 E VM AVERAGE (An+Bn)/2—>Cn

D1 6-100 1 E VM ADJ. MEAN (An+1An)/2—>Cn

D4 6-102 1 E VM AVE, DIFF, (An-Bn)/2—>Cn

D5 6-100 1 E VM DELTA (A .-A)-~C

n+tl "n n

D6 ff | 6-158 3 1 ST SEARCH FOR MASKED KEY;
BIT, A, BPERC} G

D7 | 6-166 3 8 ST TRANSLATE AND MARK A PER
B~ C

D8 6-214 1 E NT MAX. OF A TO (C), ITEM
COUNT TO (B)

D9 ¥ 6-214 1 E NT MIN. OF A TO (C), . ITEM
COUNT TO (B)

DA 6=-97 1 E VM SUM (A+A +As+. .. A) TO (C)
AND (C + 1)

DB 6-98 1 E VM PRODUCT (A, Ay,Ag, .. A)
TO (C)

DC 6-116 1 E VM VECTOR DOT PRODUCT TO (C)
AND (C + 1)

DD 6-205 2 E NT SPARSE DOT PRODUCT TO (C)
AND (C + 1)

DE 6-105 1 E VM POLYNOMIAL EVALUATION

DF 6-108 1 E VM INTERVAL A PER B -~ C

EO 6-1217 3 8 ST BINARY ADD; A + B = C

E1l 6-127 3 8 ST BINARY SUB; A - B~ C

E2 6-127 3 8 ST BINARY MPY; A B~ C

E3 6-127 3 8 ST BINARY DVD; A/B - C

E4 6-147 3 8 ST DECIMAL ADD; A+ B -~ C

ES5 6~147 3 8. ST DECIMAL SUB; A - B ~.C

+These instructions have sign control capability,

1+ Automatic index incrementing takes place on these instructions. (See the individual
instruction descriptions,)

titDelimiters m

takes place,
60256000 09

ay be used on these instructions, automatic index incrementing also
(Refer to the individual instruction descriptions.)

6-17

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr _

Code No. Type in Operand Type Instr Title

E6 6-143 3 8 ST DECIMAL MPY; A - B - C

E7 6-143 3 8 ST DECIMAL DIV; A/B -~ C

ES8 6-182 3 8 ST COMPARE BINARY A, B

E9 6-182 3 8 ST COMPARE DECIMAIL A, B

EA 6-153 3 8 ST MERGE PER BYTE MASK A,
B PER G - C

EB 6-168 3 8 ST EDIT AND MARK A PER B - C

EC 6-130 3 8 ST MODULO ADD A + B = C

ED 6-130 3 8 ST MODULO SUBA - B~ C

EE T 6-162 3 8 ST TRANSLATE A PER B -~ C

EF 6-165 3 8 ST TRANSLATE AND TEST A PER
B TO C

FO 6-184 3 1 LS LOGICAL EXCLUSIVE OR A,
B-~C

F1 6-184 3 1 LS LOGICAL AND A, B~ C

F2 6-184 3 1 LS LOGICAL INCLUSIVE OR A,
B~—-C

F3 6-184 3 1 LS LOGICAL STROKE A, B~ C

F4 6-184 3 1 LS LOGICAL PIERCE A, B> C

F5 6-184 3 1 LS LOGICAL IMPLICATION A, B~ C

F6 6-184 3 1 LS LOGICAL INHIBIT A, B—-C

F7 6-184 3 1 LS LOGICAL EQUIVALENCE A,
B, =~ C

Fe t 6-150 3 8 ST MOVE BYTES LEFT A - C

Fo ¥ 6-150 3 8 ST MOVE BYTES LEFT ONES
COMP. A =~ C

FA 6-146 3 8 ST MOVE AND SCALE; A - C

FB 6-132 3 8 ST PACK ZONED TO BCD, A ~C

FC 6~132 3 8 ST UNPACK BCD TO ZONED; A - C

FD ¢ 6~-155 3 8 ST COMPARE BYTES A, B PER
MASK FIELD C

FE 1 6-158 3 8 ST SEARCH FOR MASKED KEY
BYTE; A, BPERC, G

FF 6-158 3 64 ST SEARCH FOR MASKED KEY
WORD; A, BPERC, G

f Delimiters may be used on these instructions, automatic index incrementing also

takes place. (Refer to the individual instruction descriptions.)
it Automatic index incrementing takes place on these instructions. (See the individual
instruction descriptions,)

® 5-18

60256000 09

TABLE 6-3.

INSTRUCTION LIST BY INSTRUCTION TYPE

Instr Page Format No. of Bits
Code No. Type in Operand Instr Title
INDEX INSTRUCTIONS (IN)
3E 6-27 6 64 ENTER (R) WITH I (16 BITS)
3F 6-27 6 64 INCREASE (R) BY I (16 BITS)
4D 6-27 6 32 HALF WORD ENTER (R) WITH I (16 BITS)
4E 6-27 6 32 HALF WORD INCREASE (R) BY I (16 BITS)
CD 6-28 5 32 HALF WORD ENTER (R) WITH I (24 BITNS)
CE 6-28 5 32 HALF WORD INCREASE (R) BY I (24 BITS)
BE 6-28 5 64 ENTER (R) WITH I (48 BITS)
BF 6-28 5 64 INCREASE (R) BY I (48 BITS)
38 6-29 A 64 TRANSMIT (R BITS 00-15) TO (T BI'II‘§
REGISTER INSTRUCTIONS (RG) o0)
2C 6-30 4 64 LOGICAL EXCLUSIVE OR(R),(S), TO(T)
2D 6-30 4 64 LOGICAL AND(R),(S), TO(T)
2E 6-30 4 64 LOGICAL INCLUSIVE OR(R),(S), TO(T)
30 6-30 7 64 SHIFT(R) PER S TO(T)
34 6-31 4 64 SHIFT(R)PER (S) TO (T)
6D 6-32 4 64 INSERT BITS FROM(R) TO(T) PER(S)
6E 6-33 4 64 EXTRACT BITS FROM [R) TO(T) PER(S)
40/60 6-34 4 32/64 ADD U; (R) + (S) TO (T)
41/61 6-34 4 32/64 ADD L; (R) + (S) TO (T)
42/862 6-34 4 32/64 ADD N; (R) + (S) TO (T)
44/64| 6-34 4 32/64 SUB U; (R) - (8) TO (T)
45/65 6-34 4 32/64 SUB L; (R) - (S) TO (T)
46/66 | 6-34 4 32/64 SUB N; (R) - (S) TO (T)
48/68| 6-34 4 32/64 MPY U; (R) - (8) TO (T)
49/69 | 6-34 4 32/64 MPY L; (R) * (S) TO (T)
4B/6B| 6-34 4 32/64 MPY S; (R) * (8) TO (T)
ac/ec| 6-34 4 32/64 DIV U; (R) / (S) TO (T)
4F/6F| 6-34 4 32/64 DIV S; (R) / (S) TO (T)
63 6-35 4 64 ADD ADDRESS (R) + (S) TO (T)
67 6-35 4 64 SUB ADDRESS (R) - (S) TO (T)
58/178 6-35 A 32/64 TRANSMIT (R) TO (T)
59/79 | 6-35 A 32/64 ABSOLUTE (R) TO (T)
51/71 6-35 A 32/64 FLOOR (R) TO (T)

60256000 08

6-19

TABLE 6-3.

INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page Format No. of Bits
Code No. Type in Operand Instr Title
52/72 6-35 A 32/64 CEILING (R) TO (T)
5A/7A| 6-35 A 32/64 EXPONENT OF (R) TO (T)
50/70 6-35 A 32/64 TRUNCATE (R) TO (T)
5B/7B| 6-38 4 32/64 PACK (R), (S) TO (T)
5C 6-39 A B EXTEND .32 BIT (R) TO 64 BIT (T)
5D 6-39 A B INDEX EXTEND 32 BIT (R) TO 64 BIT (T)
76 6-39 A B CONTRACT 64 BIT (R) TO 32 BIT (T)
77 6-39 A B ROUNDED CONTRACT 64 BIT (R) TO 32
7C 6-39 A 64 BIT (T) LENGTH OF (R) TO (T)
53/73 6-39 A 32/64 ?%‘()}NIFICANT SQUARE ROOT OF (R) TO
10 6-39 A 64 CONVERT BCD TO BINARY, FIXED
LENGTH
11 6-39 A 64 CONVERT BINARY TO BCD, FIXED
: LENGTH
54/74 6-44 4 32/64 ADJUST SIGNIFICANCE OF (R) PER (S)
TO (T)
55/75 6-44 4 32/64 ADJUST EXPONENT OF (R) PER (S) TO (T)
2A 6-45 6 64 ENTER LENGTH OF (R) WITH I (16 BITS)
2B 6-45 4 64 ADD TO LENGTH FIELD
BRANCH INSTRUCTIONS (BR)
20/24 | 6-47 8 32/64 BRANCH IF(R)=(S)(32/64 BIT FP)
21/25 | 6-47 8 32/64 BRANCH IF(R)#(S)(32/64 BIT FP)
22/26 | 6-47 8 32/64 BRANCH IF(R)>(S)(32/64 BIT FP)
23/27 | 6-47 8 32/64 BRANCH IF(R) <(S)(32/64 BIT FP)
2F 6-48 9 1 REGISTER BIT BRANCH AND ALTER
33 6-49 B 1 DATA FLAG REGISTER BIT BRANCH AND
ALTER
3B 6-51 A 64 DATA FLAG REGISTER LOAD/STORE
32 6-51 9 1 BIT BRANCH AND ALTER
36 6-54 7 64 BRANCH AND SET (R) TO NEXT INSTRUC-
TION
31 6-54 7 64 INCREASE (R) AND BRANCH IF (R) # 0
35 6-54 7 64 DECREASE (R) AND BRANCH IF (R) # 0
09 6-55 4 64 EXIT FORCE
BO 6-57 C 64 INDEX, BRANCH IF (A) + (X) = (Z)
6-20

60256000 09

TABLE 6-3., INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)
Instr Page Format No. of Bits
Code No. Type in Operand Instr Title
Bl 6-57 C 64 INDEX, BRANCH IF (A) + (X) # (Z)
B2 6=57 C 64 INDEX, BRANCH IF (A) + (X) > (Z)
B3 6=57 C 64 INDEX, BRANCH IF (A) + (X) < (Z2)
B4 6~57 C 64 INDEX, BRANCH IF (A) + (X) < (Z)
B3 6-57 C 64 INDEX, BRANCH IF (A) + (X) > (Z2)
B6 6-59 5 NA BRANCH TO IMMEDIATE ADDRESS
(R) + 1 (48 BITS)
VECTOR INSTRUCTIONS (VT)
807 6~168 1 E ADD U; A+ B — C
81t 6-168 1 E ADD I; A+ B — C
82+ 6-168 1 E ADD N; A+ B — C
841 6-168 1 B SUB U; A-B —C
8571 6-168 1) SUB L; A-B—C
86t 6-168 1 E SUB N; A-B—C
88t 6-168 1 E MPY U; A+ B — C
89t | 6-168 1 E MPY L; A+ B~ C
8Bt | 6-168 1 E MPY S; A+ B=C
8Ct | 6-168 1 E DIV U; A/B~C
8Ff | 6-168 1 E DIV S; A/B~C
83 6-69 1 64 ADD A; A+B—~C
87 6-69 1 64 SUBA;A-B-~C
98 6-70 1 E TRANSMIT A - C
99 6-70 1 E ABSOLUTE A - C
91 6~-70 1 E FLOOR A - C
92 6~70 1 E CEILING A -~ C
9A 6-70 1 E EXPONENT OF A-~C
80 6-70 1 E TRUNCATE A - C
9B 6-75 1 E PACK A, B—=-C
9C 6-77 1 B EXTEND 32 BIT A - 64 BIT C
96 6-77 1 B CONTRACT 64 BIT A - 32 BIT C
97 6=-T7 1 B ROUNDED CONTRACT 64 BIT A = 32 BITC
93t 6-T7 1 E SIGNIFICANT SQUARE ROOT OF A - C
94 6-81 1 E ADJUST SIGNIFICANT OF A PER B - C
95 6-81 1 E ADJUST EXPONENT OF A PER B~ C
1 These instructions have sign control capability,

60256000 09 6-21e

® 6-22

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)
Instr Page Format No. of Bits
Code | No. Type in Operand Instr Title
SPARSE VECTOR INSTRUCTIONS (SV)
A0t 6-89 2 E ADD U; A+ B - C
AlfY 6-89 2 E ADD 1L; A+ B - C
A2 6-89 2 E ADD N; A+ B~ C
A4t 6-89 2 E SUBU; A-B-C
A5% 6-89 2 E SUBL; A-B-~-C
A6 6-89 2 E SUBN; A-B~—-C
A8t 6-91 2 E MPY U; A+ B~ C
A9t 6-91 2 E MPY I; A+ B~ C
ABt1| 6-91 2 E MPY S; A B—-C
ACt| g-91 2 E DIV U; A/ B-C
AFt| 6-91 2 E DIV S; A/ B~C
VECTOR MACRO INSTRUCTIONS (VM)
Cco 6-94 1 E SELECT EQ; A = B, ITEM COUNT TO(C)
C1 6-94 1 E SELECT NE; A # B, ITEM COUNT TO(C)
Cc2 6-94 1 E SELECT GE; A > B, ITEM COUNT TO(C)
C3 6-94 1 E SELECT LT; A < B, ITEM COUNT T C)
DA 6-97 1 E SUM Ag+A;+A,+...A) TO (C)
AND(C + 1)
DB 6-98 1 E PRODUCT (AO, A Ag,e..A) TO (C)
D5 6-100 1 E DELTA {A_,,-A_ }~C_
D1 6-100 1 E ADJ. MEAN{ A +A } /2->C
DO 6-102 1 E AVERAGE{ A_+B_} /2~C_
D4 6-102 1 E AVE. DIFF.{ Ap - B | /2~C
B8 6-103 1 E TRANSMIT REVERSE A - C
DE 6-105 1 E POLYNOMIAL EVALUATION
DF 6-108 1 E INTERVAL A PER B - C
BA 6-111 1 E TRANSMIT INDEXED LIST - C
B7 6-114 1 E TRANSMIT LIST - INDEXED C
DC 6-116 1 E VECTOR DOT PRODUCT TO(C) AND(C + 1)
tThese instructions have sign control capability.

60256000 09

TABLE 6-3.

INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page Format No. of Bits
Code |No. Type in Operand Instr Title
STRING INSTRUCTIONS (ST)
EO 6~-127 3 8 BINARY ADD; A + B - C
E1 6-127 3 8 BINARY SUB; A - B - C
E2 6-127 3 8 BINARY MPY; A - B - C
E3 6-127 3 8 BINARY DVD; A/ B~ C
EC 6-130 3 8 MODULO ADD A + B - C
ED 6-130 3 8 MODULO SUB A - B—-C
FB 6-132 3 8 PACK ZONED TO BCD; A - C
FC 6-132 3 8 UNPACK BCD TO ZONED; A - C
E4 6-143 3 8 DECIMAL ADD; A + B - C
E5 6-143 3 8 DECIMAL SUB; A - B~ C
E6 6-143 3 8 DECIMAL MPY; A B~ C
E7 6-143 3 8 DECIMAL DVD; A / B - C
FA 6-146 3 8 MOVE AND SCALE; A - C
87 6-150 3 8 MOVE BYTES LEFT; A - C
Fot 6-150 3 8 MOVE BYTES LEFT, ONES COMP, A - C
EA 6-153 3 8 MERGE PER BYTE MASK A, B PER
G -~C
FDY 6-155 3 8 SOMPARE BYTES A, B PER MASK FIELD
FEft | 6-158 3 8 SEARCH FOR MASKED KEY BYTE; A, B
PER C, G
FF{t | 6-158 3 64 SEARCH FOR MASKED KEY WORD; A, B
PER C, G
D6 1t 6-158 3 1 SEARCH FOR MASKED KEY BIT; A, B
PER C, G
EET 6-162 3 8§ TRANSLATE A PER B - C
EF{ 6-165 3 8 TRANSLATE AND TEST PER B - C
D7 6-166 3 8 TRANSLATE AND MARK A PER B - C
EB 6-168 3 8 EDIT AND MARK A PER B~ C
ES8 6-182 3 8 COMPARE BINARY A, B
E9 6-182 3 8 COMPARE DECIMAL A, B
LOGICAL STRING INSTRUCTIONS (LS)
FO 6-184 3 1 LOGICAL EXCLUSIVE OR A, B - C
F1 6-184 3 1 LLOGICAL AND A, B - C
F2 6-184 3 1 LOGICAL INCLUSIVE OR A, B = C

1Delimiters may be used on these instructions, automatic index incrementing also

takes place,

1t Automatic index incrementing takes place on these instructions, (See the individual

(Refer to the individual instruction descriptions,)

instruction descriptions,)

60256000 09

6-23 ©

TABLE 6-3. INSTRUCTION LIST

BY INSTRUCTION TYPE (Contd)

p 3D 6-187 4 64
3C 6-187 } 4 32
S5E/TE| 6-188 7 32
5F/TF| g-188 7 39
12/13| 6~188 7 64
37 6-188 A 64
7D 6-189 7 64
39 6-190 A 64
3A 6-190 A 64
BB | 6-190 2 E
BC | 6-191 2 E
CF* | 6-192 1 E
BD | 6-195 2 E
14 6-197 7 1
15 6-199 7 1
16 6-199 7 1
17 6-203 7 8
DD | 6-205 2 E
Cc4 6-208 1 E
c5 | 6-208 1 E
(of] 6-208 1 E
c7 | 6-208 1 E
cg | 6-211 1 E
C9 6-211 1 E
cA | 6-211 1 E

Instr | Page Format No. of Bits
Code | No. Type in Operand Instr Title

F3 6-184 3 1 LOGICAL STROKE A, B —+C

¥4 6-184 3 1 LOGICAL PIERCE A, B -+ C

F5 6-184 3 1 LOGICAL IMPLICATION A, B - C
Fé6 6-184 3 1 LOGICAL INHIBIT A, B~ C

7 6-184 3 1 LOGICAL EQUIVALENCE A, B - C

NONTYPICAL INSTRUCTIONS (NT)

INDEX MULTIPLY (R) * (S) TO(T)

HALF WORD INDEX MULTIPLY(R)- (S
TO(T)

LOAD(T) PER(S), (R)
STORE (T) PER (S),(R)

LOAD/STORE BYTE (T) PER (S), (R)
TRANSMIT JOB INTERVAL TIMER TO (T)
SWAP S—T AND R—S

TRANSMIT REAL-TIME CLOCK TO(T)
TRANSMIT(R) TO JOB INTERVAL TIMER
MASK A, B - C PER Z

COMPRESS A - C PER Z

ARITH. COMPRESS A - C PER B
MERGE A, B - C PER Z

BIT COMPRESS

BIT MERGE

BIT MASK

CHARACTER STRING MERGE

SPARSE DOT PRODUCT TO(C) AND(C + 1)
COMPARE EQ; A = B, ORDER VECTOR —~ Z
COMPARE NE; A # B, ORDER VECTOR — Z
COMPARE GE; A > B, ORDER VECTOR - Z
COMPARE LT; A < B, ORDER VECTOR -+ Z
SEARCH EQ; A = B, INDEX LIST - C
SEARCH NE; A # B, INDEX LIST - C
SEARCH GE; A > B, INDEX LIST ~ C

+These instructions have sign control capability,

6-24

60256000 09

E (Contd)

Instr | Page Format No. of Bits
Code | No. Type in Operand Instr. Title
CB | -211 1 E SEARCH LT; A < B, INDEX LIST -~ C
D81 | 6-214 1 E MAX. OF A TO(C) ITEM COUNT TO (B)
D9*| 6-214 1 E MIN. OF A TO(C) ITEM COUNT TO (B)
B9 6-216 1 E TRANSPOSE/MOVE
18 6-221 7 8 MOVE BYTES RIGHT
19 6-224 7 8 SCAN RIGHT
28 6-224 7 8 SCAN EQUAL
29 6-224 7 8 SCAN UNEQUAL
1A | 6-228 7 8 FILL FIELD T WITH BYTE R
1B | 6-228 7 8 FILL FIELD T WITH BYTE (R)
1C 6-228 7 1 FORM REPEATED BIT MASK WITH
LEADING ZEROS
1D | 6-228 7 1 FORM REPEATED BIT MASK WITH
LEADING ONES
1E | 6-229 7 1 COUNT LEADING EQUALS
1F | 6-231 7 1 COUNT ONES IN FIELD R, COUNT TO (D
04 6-231 4 64 BREAKPOINT - MAINTENANCE
06 6-233 7 NA FAULT TEST- MAINTENANCE
MONITOR INSTRUCTIONS (MN)
00 6-235 4 NA IDLE
08 6-235 4 64 INPUT/OUTPUT PER R
ocC 6-236 4 64 STORE ASSOCIATIVE REGISTERS
0D 6-236 4 64 LOAD ASSOCIATIVE REGISTERS
OE 6-236 4 64 TRANSLATE EXTERNAL INTERRUPT
oF 6-237 4 64 LOAD KEYS FROM (R, TRANSLATE
ADDRESS (S) TO (T)
0A | 6-238 4 64 TRANSMIT (R) TO MONITOR INTERVAL

TIMER

TThese instructions have sign control capability,

60256000 09

6-25 @

INSTRUCTION DESCRIPTIONS

The instruction descriptions are grouped in the following order.

Index Instructions
Register Instructions
Branch Instructions
Vector Instructions
Sparse Vector Instructions
Vector Macro Instructions
String Instructions
Logical String Instructions
Nontypical Instructions

® 6 o 06 & o & o o o

Monitor Instructions

The description of each of the general types of instructions contains the instruction formats,
operating parameters, and instruction termination conditions that are applicable to the
instruction. The individual instructions within a general type are grouped according to
the specific functions they perform within that group. Instructions that differ slightly in the
functions they perform have a common description. For example, the index branch instruc-
tions (BO through B5) differ only by the sign or magnitude of the branch quantity. Thus,

these instructions have a common description.

Each description begins with a listing of the function code (hexadecimal) and title of the
instruction. This listing is followed by the instruction format. The formats specifi-
cally apply to the listed instructions and show the variations from the general format

types shown in the beginning of this section.

Where applicable, the instruction descriptions include examples. These examples show
a simplified illustration of the instruction operation using arbitrarily assumed operands,
register contents, indexes, etc. The assumed operands and operating parameters are
selected mainly to illustrate the instruction operation and are not necessarily typical
operating values. The numbers used in the examples are in hexadecimal notation un-

less otherwise noted.

6-26 60256000 08

INDEX INSTRUCTIONS

The index instructions manipulate sixteen 24- or 48-bit operands in the designated
operational registers. These instructions are used primarily in performing numerical
calculations on field lengths and addresses.

3E ENTER (R) WITH 1| (16 BITS)

3F INCREASE (R) WITH 1 (16 BITS)

4D HALF WORD ENTER (R) WITH | (16 BITS)
4E HALF WORD INCREASE (R) BY | (16 BITS)

0 78 15 16 31
F R 1
(3E,3F, (16 BITS)
4D,4E)

3E_ENTER (R) WITH I (16 _BITS)

This instruction enters the 16 -bit operand I into the rightmost 48 bits of the 64-bit register
designated by R. The sign bit of the immediate 16-bit operand is extended through bit 16
of the destination register R. Register R is cleared before the transfer of L.

3F INCREASE (R) WITH I (16 BITS)

This instruction replaces the rightmost 48 bits of the 64-bit register designated by R with
the sum of these bits and the 16-bit operand I, The leftmost 16 bits of register R are
unaltered. The sign bit of the immediate 16 -bit operand is extended through bit 16 in the

addition. Arithmetic overflow is ignored if it occurs.

4D HALF WORD ENTER (R) WITH I (16 BITS)

This instruction enters the 16 -bit operand I into the rightmost 24 bits of the 32-bit register
designated by R. The sign of the immediate 16-bit operand is extended through bit 8 of the
destination register R. Register R is cleared before the transfer of I.

4E HALF WORD INCREASE (R) BY I (16 BITS)

This instruction replaces the rightmost 24 bits of the 32-bit register designated by R with
the sum of these bits and the 16-bit operand I. The leftmost 8 bits of register R are
unaltered. The sign of the operand is extended through bit 8 for the addition, Arithmetic

overflow is ignored if it occurs.

60256000 08 6-27

CD HALF WORD ENTER (R) WITH | (24 BITS)
CE HALF WORD INCREASE (R) WITH | (24 BITS)

0 78 1516 3940 63

CD HALF WORD ENTER(R)WITH I (24 BITS)

This instruction clears the 32-bit register designated by R and enters the operand I,
contained in the rightmost 24 bits of this instruction, into the rightmost 24 bits of register
R.

CE HALF WORD INCREASE (R)WITH 1 (24 BITS)

This instruction replaces the rightmost 24 bits of the 32-bit register designated by R with
the sum of these bits and operand I, contained in the rightmost 24 bits of this instruction.

The leftmost 8 bits of register R are unaltered. Arithmetic overflow is ignored if it occurs.

BE ENTER (R) WITH | (48 BITS)
BF INCREASE (R) WITH | (48 BITS)

0 78 15 16 63

F
(BE OR BF) (48 BITS)

The BE instruction enters the 48-bit operand I into the rightmost 48 bits of the R
register. Register R is cleared before the transfer of I.

The BF instruction replaces the rightmost 48 bits of the R register with the sum of

these bits and the 48-bit operand I. The leftmost 16 bits of R are unaltered. Arith-
metic overflow is ignored.

6-28 60256000 08

This instruction replaces the leftmost 16 bits of register T with the leftmost 16 bits

of register R. The remaining bits of register T are unaltered.

REGISTER INSTRUCTIONS

The source and result operands of register instructions are contained in specified
registers in the register file, The 8-bit R, S, and T designators, contained in the
instructions, denote the numbers of the registers to be used in the operation. For
example, if a 64-bit, floating, point, add upper instruction is executed (instruction code
60) with R = 02, S = 03,and T = 7TF, the content of register 02 is added to the con-
tents of register 03 (floating point format), and the upper result is stored in destination
7F.

A register may contain one or both source operands as well as the result. Register 00
provides a special case, If this register is designated as containing the source operand,
the instruction uses machine zero as the source operand (8X 000000 for 32-bit operands

and 8XXX 000000 000000 for 64-bit operands where X represents any hexadecimal digit).
If the instruction specifies 00 as the destination register, no result is stored., However,
the instruction sets the corresponding data flags if applicable.

Unless the individual instruction description states differently, register-to-register

operations do not change the content of the source registers. These operations clear

the destination register before the result is transferred into it.

60256000 08 6-29

2C LOGICAL EXCLUSIVE OR (R),(S),TO (T)
2D LOGICAL AND (R),(S), TO (T)
2E LOGICAL INCLUSIVE OR (R),(S),TO (T)

These instructions perform the following logical functions.

78 1516

2324 31

F
(2C, 2D,
OR,2E)

R
(SOURCE 1)

S
(SOURCE 2)

=
(DESTINATION)

The function occurs bit by bit

on the 64-bit operands contained in the registers designated by R and S. The result in each
case is stored in the register designated by T.

Exclusive Inclusive
OR AND OR
R _S_ R-S ReS R+S
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 0 1 1

If the R or S designators equal zero, register zero contains machine zero.

30 SHIFT (R) PER S TO (T)

78

1516

23 24

R

S

T

(30) (ORIGIN) (SHIFT) |[(DESTINAT

This instruction shifts the 64-bit operand from the register designated by R and stores
the result into the register designated by T.
amount of the shift,

The S designator specifies the type and

If the S designator is in the range from 0 through 3F16 (0 through 6310), the operand
from register R shifts left end-around the number of specified places and then stores
in register T.

6-30 60256000 08

If the S designator is in the range from FF16 through Cl16 (-1 through -6310), the
operand from register R shifts right with sign extension and then stores into register
T. For this case, bit zero of the operand from register R is considered to be the
sign bit of the shifted operand. The number of right shifts is equal to the two's

complement of the S designator.,

If, for example, S is equal to FE16’ the operand from register R shifts right two

places.

If the S designator is greater than 3F16 or less than C116’ the results of this in-

struction are undefined.

If the R designator is equal to zero, register zero provides machine zero.

This instruction does not test for machine zero, indefinite or does not set any data flags.
34 SHIFT (R) PER (S) TO (T)

0 78 1516 23 24 3!

F R s T
(34) (ORIGIN) | (SHIFT) [DESTINATION)

This instruction shifts the 64-bit operand from the register designated by R and stores
the result into the register designated by T. The register designated by S specifies
the type and amount of the shift,

If the rightmost byte of register S is in the range from 0 through 3F16 (0 through
6310), the operand from register R shifts left end-around the number of specified
places and then stores into register T.

If the rightmost byte of register S is in the range from FF16 through C116 (-1 through
—6310), the operand from register R shifts right with sign extension and then stores into
register T, For this case, bit zero of the operand from register R is considered to be

the sign bit of the shifted operand. The number of right shifts is equal to the two's com-
plement of the rightmost byte of register S.

the results

If the rightmost byte of register S is greater than 3F,,. or less than Cl1

16 6’

of this instruction are undefined,

60256000 08 6-31

The leftmost seven bytes of register S are ignored.
If the R designator is equal to zero, register zero provides machine zero.

This instruction does not cause a test for machine zero, indefinite or does not set any data
flags.

6D INSERT BITS FROM (R) TO (T) PER (S)

[*] 78 1516 2324 3

(6D)

F R

(REGISTER)

S
(REGISTER)

T
(DESTINATI

This instruction inserts a number of rightmost bits (m) from the register designated R to

the register designated T (Figure 6-3). In the register designated S, bits 10 through 15

specify the number of bits (m) to be inserted, and bits 58 through 63 specify the location (n)
in register T for the leftmost bit of the inserted bits. Bits 0 through 9 and 16 through 57
of register S are undefined and must be set to zeros.

REGISTER R o
BITS
\.__v___l
INSERT |
v
N
o m
REGISTER T 3
| BITS
__V___I \ /
UNALTERED L BIT n UNALTERED
BITS BITS
o 9 10 18 16 87 88 3
REGISTER S |0 —O m oO——0 n
Figure 6-3. Example of Register Content for an Insert,

Bits from (R) to (T) Per (S) Instruction

If the R designator is equal to zero, register zero provides machine zero. If m plus

n is greater than 6410, or if m is equal to zero, the results of this instruction are un-
defined.

6-32 60256000 08

6E EXTRACT BITS FROM (R) TO (T) PER (S)

0 78 1516 2324 31

F R S T
(6E) (REGISTER) | (REGISTER) KDESTINATION)

This instruction extracts a number of bits (m) from the register designated R and stores
them in the rightmost part of the register designated T (Figure 6-4). Register T is cleared
before receiving the extracted bits. In the register designated S, bits 10 through 15 con-
tain the number of bits (m) to be extracted and bits 58 through 63 'specify the leftmost bit
number of the extracted bits in register R. Bits 0 through 9 and 16 through 57 of register

S are undefined and must be set to zeros.

BIT n
v
REGISTER R K
| BITS
__v_l
| EXTRACT
v
/———A'—_\
m
REGISTER T | O 0
BITS
o ® 10 13 16 LY 1] 63
REGISTER S [0 — O m 0——0 n

Figure 6-4, Example of Register Contents for an Extract,
Bits from (R) to (T) Per (S) Instruction

If the R designator is equal to zero, register zero provides machine zero. If m
plus n is greater than 6410, or if m is equal to zero, the results of this instruction

are undefined.

60256000 08 6-33

40/60 ADD U; (R) + (S) TO (1)

41/61 ADD L; (R) + (S) TO (T)
42/62 ADD N; (R) + (S) TO (T)
44/64 SUB U; (R) — (S) TO (1)
45/65 SUB L; (R) — (S) TO (1)
46/66 SUB N; (R) — (S) TO (1)
48/68 MPY U; R) e (S) TO (T)
49/69 MPY L; (R) @ (S) TO (1)
4B/6B MPY S; (R) ¢ (S) TO (T)
4C/6C DIV U; R)/(S) TO (T)
4F/6F DIV S; (R)/(S) TO (T)
0 78 15 16 23 24 31
F R S T
(4X OR 6X)
DES IGNATES _DES[GNATES RESULT
SOURCE OPERAND DESTINATION REGISTER
REGISTERS

These instructions perform the indicated floating point arithmetic operation on the 32-bit
(4X function codes) or 64-bit (6X function codes) operands contained in the registers desig-
nated by R and S. Appendix B describes the floating-point operations and operand formats.
This appendix also describes how certain instructions are order-dependent and will result
in unexpected answers unless the execution order is known. An example is shown in the
appendix under Order-Dependent Result Considerations. The arithmetic operation is the
same for the 32-bit or 64-bit operands with adjustment for bit length of the result. The

instruction, in each case, stores the arithmetic result in destination register T.

Designator U signifies that the upper result is stored, L signifies that the lower result is
stored, N signifies that the normalized upper result is stored, and S signifies the significant
result is stored. Appendix B of this manual defines the U, L, N, and S results.

Data flag bits 41 (floating point divide fault), 42 (exponent overflow), 43 (result machine
zero), and 46 (indefinite result) are set by the applicable instructions if the necessary

operating and result conditions are present.

6-34 60256000 09

63 ADD ADDRESS (R} + (S) TO (T)
) TO (1)

67 SUB ADDRESS (R) — (S
0 78 15 16 23 24 3
F R S T
(SOURCE (SOURCE (RESULT

(63 OR 67) | gpERAND OPERAND | DESTINATION
REGISTER) | REGISTER) |REGISTER)

These instructions.add/subtract bits 16 through 63 in register S to/from bits 16 through 63
in register R. The instructions then store the result in corresponding bits of register T.
The instructions operate on bits 16 through 63 as 48-bit, positive, unsigned integers. Arith-
metic overflow is ignored if it occurs. The instructions transmit bits 0 through 15 of regis-

ter R to corresponding bit positions of register T without modification.

58/78 TRANSMIT (R) TO (T)
59/79 ABSOLUTE (R) TO (T)
51/71 FLOOR (R) TO (T)

52/72 CEILING (R) TO (T)
5A/7A EXPONENT OF (R) TO (T)
50/70 TRUNCATE (R) TO (T)

0 78 15 16 23 24 31

F R /////’ T
(5X OR 7X) (ORIGIN) [DESTINATION

__

58/78 TRANSMIT (R) TO (T)

This instruction transmits the 32-bit (58) or 64-bit (78) operand in the register designated
by R to the register designated by T.

59/79 ABSOLUTE (R) TO (T)

This instruction transmits the absolute value of the 32-bit (59) or 64-bit (79) floating point
operand in register R to register T. If the coefficient of the initial operand is negative, the
operand is complemented and is transmitted to register T. If the initial coefficient is posi-
tive, it is sent to register T as it is. Applicable data flag bits are 42 (exponent overflow),
43 (result machine zero), and 46 (indefinite result). ' '

60256000 08 6-35

51/71 FLOOR (R) TO (T)

This instruction transmits the closest integer less than or equal to the 32-bit (51) or 64-bit
(71) floating point operand in register R to register T. This integer (T) is expressed by

an unnormalized 32-bit or 64-bit floating point number with a positive exponent.

If the exponent of the source operand is positive (greater than or equal to zero), the operand
is transmitted directly to register T. If the exponent of the source operand is negative, the
machine right-shifts the coefficient end-off and increases the exponent by one for each shift.
Sign bits are extended on the left during the shift. When the exponent becomes zero, the
shifting stops and the machine transmits the shifted coefficient and zero exponent to register
T. If machine zero is used as the source operand, 32/64 zeros are transmitted

to register T.

The applicable data flag bit is 46 (indefinite result).

52/72 CEILING (R) TO (T)

This instruction transmits the closest integer greater than or equal to the 32-bit (64-bit for
72 function code) operand in origin register R to destination register T. This integer is
represented as an unnormalized 32-bit (64-bit) floating point number with a positive ex-

ponent.

If the source operand exponent is positive (greater than or equal to zero), the instruction
transmits the source operand directly to register T.

If the source operand exponent is negative, the machine right-shifts the two's complement of

the coefficient end-off and increases the exponent by one for each position shifted until the

exponent becomes zero. The shift operation extends the sign. The instruction then recomple-
ments the shifted coefficient and transmits it with zero exponent to register T. Figure 6-5

shows the results of a ceiling (R) to (T), 52/72, instruction with a source operand having a negative
exponent. In this example, a shift of four was necessary to reduce the exponent to zero. The

example shows the complement of the shifted coefficient with zero exponent in register T.

If machine zero is used as the source operand, the machine transmits 32/64 zeros as a

result. The applicable data flag bit is 46 (indefinite result).

6-36 60256000 08

o 34 78 nie 15 16 1920 2324 2728 3t

I
1111{1100/0l000j0000(0000(0000}1 0000|0000

I , ORIGIN OPERAND (R)
(F) | (c) [o) | (0} | (o) [(0O) [(8) | (0O)

Y g I\ v 7 (80X2-4)
EXPONENT COEFFICIENT
[+] 34 78 ni2 15 16 19 20 23 24 27 28 31
0000j|000 00:000 0000j0000j0000|0000|I0O00 RESULT OPERAND (T)
(0} (0) |(0) (0) (0) (0) (0) (8)
(8 x 29)

NUMBERS IN PARENTHESES REPRESENT HEXADECIMAL DIGITS FOR
EACH BINARY GROUP.

Figure 6-5., Example of Register Content for a Ceiling (R) to (T) Instruction

5A/7A EXPONENT OF (R) TO (T)

This instruction transmits the exponent in the leftmost 8 bits (16 bits for 64-bit
operands) of register R to the rightmost 8 bits (16 bits for 64-bit operands) of regis-
ter T. The instruction extends the sign of the exponent through bit 8 of register T.
The exponent portion (leftmost 8 or 16 bits) of register T is cleared.

50/70 TRUNCATE (R) TO (T)

This instruction transmits the closest integer the magnitude of which is less than or equal
to the 32-bit (64-bit for 70 function code) operand in origin register specified by R to desti-
nation register T. This integer is represented by an unnormalized 32-bit (64~bit) floating

point number with a positive exponent.

If the origin operand exponent is positive (greater than or equal to zero), the instruction

transmits the origin operand directly to register T.

If the origin operand exponent is negative, the machine right-shifts the magnitude of the coef-
ficient end-off and increases the exponent by one for each position shifted until the exponent
becomes zero. The operation extends zeros on the left during the shift. If the coefficient of
the origin operand was positive, the shifted coefficient with zero exponent is transmitted to
the destination register. If the coefficient of the origin operand was negative, the two's
complement of the shifted coefficient and zero exponent is transmitted to the destination
register. If machine zero is used as the origin operand, 32/64 zeros are transmitted as a

result.

60256000 08 6-37

Figure 6-6 shows the results of a truncate (R) to (T), 50/70, instruction with an origin

operand having a negative exponent and positive coefficient. A right shift of eight is required

to reduce the negative exponent to zero.,

The applicable data flag bit is 46 (indefinite result).

o 34 78 Wiz 1516 1920 2324 2728 3
il 11}1000jolooojoooolooor it tifjrtrtfitni ORIGIN OPERAND (R)

FFX
(F) [8 o |)y [t | (A |(F) | (F) (00IFFFXx2-8)

\ v _J\ v
EXPONENT COEFFICIENT

34 78 iz 15 16 19 20 23 24 27 28 31

(]
olooolooooolooo]ooooloooo]oooofooor [ii11 RESULT OPERAND (T)
| I (0000IFX20)

\ JA

v v
EXPONENT COEFFICIENT
Figure 6-6. Example of Register Content for a Truncate (R) to (T) Instruction

58/78 PACK (R), (S) TO (T)

0 78 15 16 23 24 31
F R S T
(5B OR 7B) | (ORIGIN 1) | (ORIGIN 2) |(DESTINATION)
\ /\ 7
4 v

EXPONENT COEFFICIENT

This instruction transmits a 32-bit (64-bit for the 7B function code) floating=point
number to the destination register T. The instruction transmits the exponent of the
number from the rightmost 8 bits (16 bits for 7B) of register R and the coefficient
from the rightmost 24 bits (48 bits for 7B) of register S.

6-38 60256000 08

5C EXTEND 32 BIT (R) TO 64 BIT (T)

5D INDEX EXTEND 32 BIT (R)TO 64 BIT (T)
76 CONTRACT 64 BIT (R) TO 32 BIT (T)
77 ROUNDED CONTRACT 64 BIT (R) TO 32 BIT (T)
7C LENGTH OF (R) TO (T)
53/73 SIGNIFICANT SQUARE ROOT OF (R) TO (T)
10 CONVERT BCD TO BINARY, FIXED LENGTH
n CONVERT BINARY TO BCD, FIXED LENGTH
o 78 1816 23 24 31

F %
(5C,76,53, R % T
7310 OR (1) (ORIGIN) (DESTINATION)

5C EXTEND 32 BIT (R) TO 64 BIT (T)

This instruction extends the 32-bit floating point number from register R into a 64-bit
floating point number and transmits the result to 64-bit register T (Figure 6-T7). The

value of the resulting exponent is 24, . less than the exponent of the origin operand.

10
The result coefficient results from the transmission of the origin coefficient to bits 16
through 39 of register T. The insiruction clears the rightmost 24 bits of the destina-

tion register,

If the contents of register R is indefinite, the result in register T is also indefinite
and data flag bit 46 (indefinite result) is set. If the contents of register R is machine
zero, register T contains machine zero, and data flag bit 43 (result machine zero) is

set.

5D INDEX EXTEND 32 BIT (R) TO 64 BIT (T)

This instruction extends the 32-bit floating point number from register R into a 64-bit
floating point number and transmits the result to 64-bit register T. The value of the
resulting 16-bit exponent is the same as the origin operand's exponent with the sign bit

extended through bit 0 of the result exponent.

The result coefficient results from the transmission of the rightmost 24 bits of the
origin register into bits 40 through 63 of the destination register. Bits 16 through 39
of the destination register are set to the sign of the origin coefficient.

If the contents of register R is indefinite, the result in register T is also indefinite
and data flag bit 46 (indefinite result) is set. If the contents of register R is machine
zero, register T contains machine zero and data flag bit 43 (result machine zero) is

set.

6-39
60256000 08

-] 34 70 niz 1816 19 20 2324 27 28 31

ORIGIN REGISTER (R)
6 4 0 o] 6 8 A 6

\ J\ /

vV Vv
EXPONENT COEFFICIENT

DESTINATION REGISTER (T)

o 34 T8 iz 18 16 1920 2324 2720 31 32 3536 3940 4344 4748 51862 65856 6960 63

(o] (o] 4 C o 0 6 8 A 6 o o] (o] o 0 o}

\ v d e v I\ v J
EXPONENT TRANSFERRED FROM CLEARED BY
(64,6-24 9= ORIGIN REGISTER INSTRUCTION

6416-18,5=4C
v J

COEFFICIENT

Figure 6-7, Example of Register Content for an Extend
32-Bit (R) to 64-Bit (T) Instruction

76 CONTRACT 64-BIT (R) TO-32 BIT (T)

This instruction (Figure 6-8) contracts the 64-bit floating point number from register R into
a 32-bit floating point number. The instruction then transmits the result to a 32-bit register
designated by T. The resulting 8-bit exponent represents the sum of the least-significant

eight bits of the origin exponent and 2410. If the result exponent cannot be contained in eight

bits, exponent overflow or underflow is detected.

The following input exponent conditions are listed with the corresponding results of the 76

instruction execution.

Input

Exponent Result

TFFF Result indefinite

7000 Indefinite data flag bit 46 (indefinite result) is set.

6FFF Result indefinite

0058 Data flag bits 42 (exponent overflow) and 46 (indefinite result) are set.

0057 Result exponent is 241 larger than the input exponent. The leftmost
. 24 bits of the input coefficient are transferred.

FF78

FFE77 Result is machine zero. Data flag bit 43 (result machine zero) is set.

8000

6-40 60256000 08

L

HitsS

register T as the result coefficient.

narn it
13

ey
L QAiiDilily

This operation contracts all source operands having

a negative coefficient with an absolute value of less than 224 to -1 (Figure 6-8) and positive

coefficients with an absolute value of less than 224 to zero.

ORIGIN REGISTER (R)

(-] 34 78 ni2 I1Sis 1920 2324 2T 28 3132 36838 3940 43 44 4748 81 82 55 56 59 60 3
0) 4 c F F F F F 9 7 5 A
1 /\ "
2 A 4
EXPONENT |
(4Cig+24 5= !
4Cig+18,g =64 g) I DESTINATION REGISTER (T)
|
\/
[34 T8 nie 1818 19 20 23 24 27T 28 31
6 4 F F F
\ I\ /
v v
EXPONENT COEFFICIENT

Figure 6-8. Example of Register Content for a Contract 64-Bit (R) to 32-Bit (T)

Instruction

60256000 08

77 ROUNDED CONTRACT 64 BIT (R) TO 32 BIT (T)

This instruction performs a rounded contract operation on the 64-bit, floating point operand
in origin register R and transmits the 32-bit floating point result to destination register T
(Figure 6-9)., The resulting 8-bit exponent represents the sum of the least-significant eight
bits of the origin exponent and 241g. If the result exponent cannot be contained in eight bits,
exponent overflow or underflow is detected. The instruction then adds a +1 to bit position

40 of the origin operand and coefficient. If overflow occurs, the instruction increases the
exponent by one and right-shifts the coefficient one place. The leftmost 24 bits of the

shifted result coefficient are transmitted to the corresponding bits of the destination register.
The 8-bit exponent of each nonend case result element is 241 (25, if overflow occurred)

greater than the exponent of the corresponding source element.

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46

(indefinite result).

7C LENGTH OF (R) TO (T)

This instruction transmits the leftmost 16 bits of origin register R to the rightmost 16-bit
positions of destination register T. The leftmost 48 bits of register T are cleared.

53/73 SIGNIFICANT SQUARE ROOT OF (R) TO (T)

This instruction transmits the square roott of a 32-bit (53 function code) or 64-bit (73 function
code) operand in register R to register T. The result contains the same number of significant
bits as the source operand. Applicable data flag bits are 45 (square root result imaginary),

46 (indefinite result), and 43(result machine zero).

10 CONVERT BCD TO BINARY, FIXED LENGTH
This instruction converts the packed BCD number in register R to a signed (two's complement)

binary number and transfers the result to the rightmost 48 bits of register T. Figure 6-10
shows an example of the register contents following a convert BCD to binary, fixed length
instruction. The leftmost 16 bits of register T are cleared by this instruction. The con-
version is undefined for binary results greater than +(247—1) or less than -(247-1). Thus,
the largest decimal number that this instruction can convert is + 140, 737, 488, 355, 327.
The instruction sets data flag bit 39 (refer to data flag register bit assignments in section

5) for numbers outside this range.

If the input number is not a valid BCD number, the results are undefined.

11 CONVERT BINARY TO BCD, FIXED LENGTH
This instruction converts the rightmost 48 bits (two's complement, binary number) of register

R to a packed BCD number and transfers the result to register T. The result is a number
containing 15 packed BCD digits (four bits per digit and the sign in bits 60 through 63). Figure
6-10 shows the packed BCD format; the binary range is + (247 -1).

+ Appendix B describes the floating point square root operation.

6-42 60256000 08

0 34 78 ni2

1516 19 20

ORIGIN REGISTER (R)

23 24 27 28 31 32

35 36 39 40 43 44 47 48 51 52 55 56 59 60 €3

(F) | (F) | (F)

LRt repttooft et
(c)

(F)

i
(F)

FEEEfEE Lt
(F) (F)

(NI
(F}

ARER IR
(F) (F)

tbrrrrirpreetyterr jrroo
(F) (F) (F}Y | (F) (C)

%

/\

v
EXPONENT (-4)

COEFFICIENT AFTER +1

A\
COEFFICIENT (- 4)

ADDED TO BIT 40

16 19 20 23 24 27 28 31 32 35 36 39 40 43 44 47 48 S| 82 35 86 39 60 €3
(FC|6+ 24|0= 1 00
FCig+ 1816=+146 0000[/0000(0000(00 00j0000 OOOOO:Ill Prrrfrr e eejrrerpet
\ -7 !
4
|
|
r— — X \
0 34 78 12 15 16 19 20 23 24 27 28 31
0(0|0)I (;lso)l 0000|0000(0000|0000(0000({0000 DESTINATION REGISTER (T)
A /\ —t
v Vv
EXPONENT COEFFICIENT
Figure 6-9. Example of Register Content for a Rounded

Contract 64-Bit (R) to 32-Bit (T) Instruction

ORIGIN REGISTER (R}

o 34 T HIZ 1516 1920 2324 2728 3132 3536 3940 4344 4748 SI52 5556 S$960 63
o o (o] o] 0 0 0 0 0 0 4 [¢) 5 9 9 +
PACKED BCD NUMBER
DESTINATION REGISTER (T)
° 3e Te 112 1516 1920 2324 2720 3132 3536 3940 4344 4748 5152 5556 8960 63
0000j0000|0000|0000j0000/0000{0000(000O0(|10OO0I(|tI 1Oj]1OOL|OI I 1
\ N
\ 4 v
UNCHANGED 48-BIT BINARY EQUIVALENT

Figure 6-10.

60256000 08

Example of Register Content for a Convert

BCD to Binary, Fixed-Length Instruction

6-43

54/74 ADJUST SIGNIFICANCE OF (R) PER (S) TO (T)
55/75 ADJUST EXPONENT OF (R) PER (S) TO (T)

[+] 78 1516 23 24 31

F R s T
on'ea/74 |(SOURCE 1) | (SOURCE zni(oesnmnom

\ I\ J
A4 v

SOURCE OF INTEGER
FLOATING SHIFT COUNT
POINT

OPERAND

54/74 ADJUST SIGNIFICANCE OF (R) PER (S) TO (T)

This instruction adjusts the significancet of the floating point operand in register R and
transmits the adjusted result to register T. The rightmost 24 bits (48 bits for 74 function
code) of register S contains a signed, two's complement integer. The absolute value of this
integer is a shift count.

If the shift count is positive, the machine shifts the coefficient of the operand left the number
of positions specified by the shift count or the number of positions needed to normalize+ the
coefficient, whichever is the smaller number,

In either case, the instruction reduces the exponent of the operand by one count for each
position shifted. The instruction left-shifts an all zero coefficient the number of positions
specified.

If the shift count is negative, the instruction shifts the coefficient of the operand right the
number of positions specified by the shift count and increases the exponent of the operand by
one count for each position shifted. If (R) is indefinite, the machine sets the (T) to indefi-
nite and sets data flag bit 46 (indefinite result). If (R) equals machine zero, the machine
sets (T) to machine zero but does not set data flag bit 42 (exponent overflow).

Ths instruction is undefined if the absolute value of the shift count is greater than 2310 for
the 54 or 4710 for the 74 instruction. The addition of the shift count can cause either
exponent overflow or exponent underflow.

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46
(indefinite result).

+ Appendix B describes the process of adjusting a floating point operand for significance and
of normalizing a floating point number.

6-44 60256000 08

55/75 ADJUST EXPONENT OF (R) PER (S) TO (T)

This instruction transmits the adjusted operand from register R to result register T. The
instruction sets the result exponent equal to the exponent of the operand in register S. The
machine forms the coefficient of the result by shifting the coefficient of the operand from

register R.

The shift count is the difference between the exponents in registers R and S, If the exponent
in register R is greater than the exponent in register S, the machine shifts the coefficient
left. The shift is to the right if the exponent in register R is less than the exponent in regis-
ter S. If register R contains a zero coefficient, the exponent in register S is transferred to
register T with an all zero coefficient, Figure 6-11 shows that the exponent in register S
exceeds the exponent in register R by 4 (62 - 5E = 4); thus, the machine right-shifts the

coefficient in register R four positions.,

If a left shift exceeds the number of positions required for normalization, the machine sets
the result to indefinite and sets data flag bit 42 (exponent overflow). If either or both operands
are indefinite or machine zero, the machine also sets the result to indefinite. However, in

this case, data flag bit 46 (indefinite result) is set and data flag bit 42 (exponent overflow) is
not set.

2A ENTER LENGTH OF (R) WITH | (16 BITS)

0 78 1516 31
F R 1
(2A) (16 BITS)

This instruction transfers operand I contained in the rightmost 16 bits of the instruction
word to the leftmost 16 bits of the 64-bit register specified by R. The rightmost 48 bits

of register R are left unchanged.

28 ADD TO LENGTH FIELD

0 78 1516 2324 31

F R s T
(28) (SOURCE 1) | (SOURCE 2) KDESTINATION]

This instruction adds bits 0 through 15 of the 64-bit register specified by R to bits 48 through
63 of B84-bit register S and stores the result in bits 0 through 15 of register T. Overflow is
ignored if it occurs., Bits 16 through 63 of register R are transferred to bits 16 through 63

of register T.

60256000 08 6-45

o 34 780 iz 1518 1920 2324 2720 3

1
0101 1110 [1011 [00OO (O11O [1i1O {ti1§ [I1110 ORIGIN OPERAND | (R}
(5) | (€) :(a) (o) | te) () | (FY | (E) (INITIAL VALUE)
A / /
A A 4
EXPONENT COEFFICIENT
SIGN BIT (-)
4} 34 78 ni2 i16 16 19 20 2324 27 28 31
o110 | o010 ORIGIN OPERAND 2 (S)
{6) (2)
\ AN /
-V \'"2
EXPONENT COEFFICIENT
(THESE BITS HAVE NO EFFECT ON
THE EXECUTION OF THE INSTRUCTION)
0 34 78 1112 1516 1920 23 24 27 28 31
1
0110 {0010 I;I 11 {101t [ooo0o0{otIOo |1110 |1111 RESULT OPERAND (T)
(6) | (2) | [(F) | (B) | (0O) {6) | (e} | (F) (FINAL VALUE)
A / \ /]
v \'4
EXPONENT COEFFICIENT

NOTE: NUMBERS IN PARENTHESES REPRESENT
HEXADECIMAL EQUIVALENTS OF BINARY GROUPS

Figure 6-11. Example of Register Content for an Adjust
Exponent of (R) Per (S) to (T)

6-46 60256000 08

BRANCH INSTRUCTIONS

The branch instructions compare or examine single bits, a 48-bit index, 32-bit floating
point operands, or 64-bit operands. The results of the comparison or examination de-
termine whether the program continues with the next sequential instruction (branch con-
dition not met) or branches to a different instruction sequence (branch condition met).
The different instruction sequence may consist of a single instruction or a series of

instructions beginning at the branch address specified in the branch instruction format.

A special branch instruction provides for entering or leaving the monitor program.

20/24 BRANCH IF (R) = (S) (32/64 BIT FP)
21/25 BRANCH IF (R) # (S) (32/64 BIT FP)
22/26 BRANCH IF (R)= (S) (32/64 BIT FP)
23/27 BRANCH IF (R) <(S) (32/64 BIT FP)

0 78 15 16 23 24 3
F R S T
{20 - 27) | (ORIGIN (ORIGIN (BRANCH
OPERAND 1) | OPERAND 2) | ADDRESS)

These instructions perform the indicated comparison of the 32-bit (64-bit for the 24 through
27 function codes) floating point (FF) operands in the registers designated by R and S.

If the specified comparison condition is met, the next instruction is read from the branch
address, contained in the rightmost 48 bits of 64-bit register T. Register T is a 64-bit
register for the 20 through 27 instruction codes. The byte and bit portions of the address
(bits 59 through 63) are ignored in the reading of an instruction. If the specified comparison
condition is not met, the next instruction is read from the next sequential program address.
The comparison of (R) and (S) is based on the floating point compare rules in appendix B.

An example of a 22 instruction is also in appendix B.

If either or both of the compared operands are indefinite, data flag bit 46 is set.

60256000 09 6-47

2F REGISTER BIT BRANCH AND ALTER

G- DESIGNATOR

0 78 1516 23 24 3l
dle

F
(2F)

.

WN\A
6 BITS O, I: _l
BRANCH CONDITION
6 BITS 2, 3:
BIT ALTERING

This instruction examines bit 63 of register T as specified by the G designator. A
branch is made to the address contained in the rightmost 48 bits of register S. The
branch occurs according to G bits 0 and 1 (Table 6-4).

TABLE 6-4, BIT BRANCHING CONDITIONS

G Designator Branch Conditions
Bit 0 Bit1l
0 0 No branch
0 1 Unconditional branch
1 0 Branch if object bit = 1
1 1 Branch if object bit = 0

After the branch decision has been made and regardless of the decision, the object bit
is altered according to G bits 2 and 3 (Table 6=5).

TABLE 6-5. BIT ALTERING CONDITIONS

G Designator Altering Conditions
Bit 2 Bit 3

0 0 No altering

0 1 Toggle the bit

1 0 Set the bit 1

1 1 Clear the bit 0

6-48 60256000 09

0 78 1516 1718 2324 31
F dfe ! T

(33) (BRANCH

ADDRESS)

S

v/
__— ——— NUMBER OF DFBR
G BITS O, 1: \\\‘\\\\\\\ BIT (00-3F)
BRANCH CONDITION 5 BITS 5, 6:

SOURCE OF BRANCH ADDRESS

G BITS 2, 3:
BIT ALTERING

This instruction examines the state of a specified bit in the data flag branch register (DFBR).
If the designated branch condition is met, the next instruction is read from the half-word
address as specified by G designator bits 5 and 6. If the designated branch condition is not
met, the next instruction is read from the next sequential program address. In either case,
the state of the DFBR bit is altered as specified by G bits 2 and 3,

The 6-bit designator I specifies the number of the DFBR bit. The bit numbers range from
00 through 3F (00 through 6310). The 2-bit designator denotes the branch condition

(Table 6-6).

TABLE 6-6. DFBR BIT BRANCH CONDITIONS

G Designator Branch Condition

Bit 0 Bit 1

0 0 No branch

0 1 Unconditional branch

1 0 Branch if selected DFBR bit =1
1 1 Branch if selected DFBR bit = 0

After the branch decision is made, the instruction alters the DFBR bit according to G
designator bits 10 and 11 (Table 6-7). The bit altering occurs regardless of the branch

decision.

60256000 09 6-49

TABLE 6-7.

DFBR BIT ALTERING CONDITIONS

G Designator

Bit 2 | Bit 3 Altering Conditions
0 0 No altering
0 1 Toggle the bit
1 0 Set the bit 1
1 1 Clear the bit 0

Do not attempt to alter bits in the DFBR product
field since the altering of these bits is only a
function of the corresponding data flag and flag

mask bits.

The source of the branch address is determined by the state of G designator bits 5
and 6 (Table 6-8).

TABLE 6-8.

DFBR BRANCH ADDRESS SOURCE CONDITIONS

G Designator

Bit 5

Bit 6

Branch Address Source Conditions

0
1

Oorl
0

register.

Register T contains the branch address,

Branch address is formed by addition of the T
designator, used as an item count, in half-wordé
to the content of the program address register,

Branch address is formed by the subtraction
of the T designator, used as an item count,
from the contents of the program address

6-50

60256000 09

3B DATA FLAG REGISTER LOAD/STORE

0 78 15 16 23 24 31
F R T
(38)
__V__:
NEW STATE OLD STATE
OF DFB OF DFB

This instruction transfers the content of register R to the DFB register., The 3B
instruction also transmits the previous content of the DFB to the T register. Since
the DFB is a 64-bit register, both R and T must be 64-bit registers. The R and T
designators may be equal which exchanges data flag values.

An immediate data flag branch results at the ter-
mination of this instruction if the new content of

the DFB register meets the appropriate branch con-
ditions.

32 BIT BRANCH AND ALTER

G
I_A__\

0 1 1516 2324 31
F dle S T
(32) 1| YosuecT 81T | (BRANCH
ADDRESS) | ADDRESS)

=
G BITS O, 1: T GBS 3, o
;1
T BoANGH ING BRANCH ADDRESS SOURCE DESIGNATOR BITS
G BITS 2, 3:

BIT ALTERING

This instruction reads the word from the address contained in the register designated
by S and examines the specified object bit. The remaining bits are not used in the
instruction. If the object bit meets the branch condition specified by G designator bits
0 and 1, the next instruction is read from the branch address contained in the T
register. If the branch condition is not met, the next instruction is read from the
next sequential program address. In either case, G designator bits 2 and 3 determine
the final state of the object bit. Tables 6-9 and 6-10 list the bit branching and altering con-
ditions, respectively. Table 6-11 lists branch address source conditions.,

60256000 09 6=51

TABLE 6-9. BIT BRANCHING CONDITIONS

G Designator

Bit 0 |Bit 1 Branch Conditions
0 0 No branch
0 1 Unconditional branch
1 0 Branch if object bit = 1
1 1 Branch if object bit = 0

TABLE 6-10. BIT ALTERING CONDITIONS

G Designator
Bit 2 Bit 3 Altering Conditions
0 0 No altering
0 1 Toggle the bit
1 0 Set the bit 1
1 1 Clear the bit 0

If G bits 0, 2, and 3 = 0, the word containing
the object bit is not read and the object bit
is not altered.

If G bit0 =1 and G bits 2 and 83 =0, the word
is read but the object bit is not written.

TABLE 6-11. BRANCH ADDRESS SOURCE CONDITIONS

G Designator

Bit 5 Bit 6 Branch Address Source Conditions
0 Oor1 Register T contains the branch address.
1 0 Branch address is formed by addition of the

T designator, used as an item count, to the
contents of the program address register,

1 1 Branch address is formed by the subtraction
of the T designator, used as an item count,
from the contents of the program address
register.

G=52 60256000 09

Figure 6-12 shows an exampie of the bit branch and aiter instruction with assumed i
register content and branch conditions. The object bit is located in bit 7 of byte 3 of
word 100000, Since G bit 0 equals 1 and G bit 1 equals 0 and the object bit is a 1,

a branch takes place to the assumed branch address which is contained in the T

register as specified by G designator bits 5 and 6.

32 INSTRUCTION

[+ 78 1516 23 24 31
F d e S
{(32) (2)(!) 0000 (07) (10)
BRANCH IF /
OBJECT BIT= | \\k BRAdeADDRESS s=07
TOGGLE OBJECT =
BIT BIT ADDRESS (00000000040000IF)
[+] 3 4 7 1112 15 16 19 20 23 24 2728 31 32 38 36 3940 43 44 47 48 S5l 82 5556 5960 63
0000 {0000 |0000}{0000{0000/0000|0000!/0000|0000|0!00 (0000|0000 |0C000|0C000 0001 REG 07
- I\ /7J
-V A\
BITS NOT USED HALF-WORD ADDRESS BYTE ADDRESS=3 —/ ;
IN ADDRESS BIT ADDRESS =7
(000000005000000) T=10
[+] 34 78 1nmi2 IS 16 19 20 23 24 27 28 31 32 3536 3940 43 44 47 48 5152 58 56 59 60 63

0000/0000{0000{0000{0000i0000}{0000{0000{0000{0101]0000(0000{0000]0000]0000j0000{REG |0

\ v I v SN
BITS NOT USED HALF-WORD ADDRESS BITS NOT USED
IN ADDRESS IN INSTRUCTION
WORD READ FROM BIT ADDRESS WORD ADDRESS
] 34 78 1ni2 15 16 19 20 23 24 27 28 3132 35 36 39 40 43 44 47 48 51 82 55 56 59 60 63
| ADDRESS
100000 ¢
\ T v \ v—\ v — 7\ — 7\ v]
BYTE O BYTE | BYTE 2 BYTE 3 BYTE 4 BYTE 5 - BYTES® BYTE 7
~ OBJECT BIT
3
r
ol
19

L
IJ_ OBJECT BIT
(AFTER TOGGLING)

Figure 6-12. Example of Bit Branch and Alter Instruction I

60256000 09 6=53

36 BRANCH AND SET (R) TO NEXT INSTRUCTION

31 INCREASE (R) AND BRANCH IF (R) # 0
35 DECREASE (R) AND BRANCH IF(R) # 0
0 78 15 16 23 24 31
F R S T
(36, 31 (INDEX) (BASE
OR 35) ADDRESS)

36 BRANCH AND SET (R) TO NEXT INSTRUCTION

This instruction first stores the address of the next sequential instruction into register
R. The program then branches to (S) + (T), where (S) represents an item count (index)
of half-words and (T) specifies the base address. The machine forces bits 0 through
15 of register R to zeros. Bits 59 through 63 are undefined. If the instruction desig-
nator R is equal to the designator S, the results of this instruction are undefined.

If S =0 and R = T, this instruction sets register R to the half-word address of the

next instruction. The program then continues at the next instruction. This method
provides a means of sampling the Program address register,

31 INCREASE (R) AND BRANCH IF (R) # 0

35 DECREASE (R) AND BRANCH IF (R) # 0

This instruction first increments (31 function code) or decrements (35 function code) the
rightmost 48 bits of register R by one. The leftmost 16 bits of register R are not
altered and arithmetic overflow (if it occurs) is ignored.

If the increment/decrement operation produces zeros in the rightmost 48 bits of R, the
program reads the next sequential instruction. If the rightmost 48 bits of R are not

all zeros, the program branches to (S) + (T), where (S) represents an item count in half-
words and (T) specifies the base address.

J 6-54 60256000 09

09 EXIT FORCE

This instruction provides a means of exchanging program control between a job and monitor
program. For example,if the machine is operating in the job mode, the exit force instruc-
tion causes a branch to the beginning address of a portion of the monitor program. Similarly,
in a monitor program, the exit force performs a branch to a job program. The starting
address of the invisible package and register file for the job is defined by the content of the
register designated by T and S, respectively., For either type of exchange (job to monitor

or monitor to job), the invisible package and register file for the current job are transferred
to/from central storage. (Refer to section 5 for a more comprehensive descriptiéon of

monitor and job operations.)

JOB TO MONITOR

The following exit force instruction format is an exchange from a job to a monitor program.
The R, S, and T designators are unused and must be zeros, In this case, the instruction
switches the machine to the monitor mode and unconditionally branches to the address speci-
fied by the rightmost 48 bits of register 05 in the register file, Register 05 address is an
absolute bit address since the machine was switched to the monitor mode, The monitor

program then proceeds from this beginning address.

R S T
0 7’8 15 16 23 24 37

>

F Z
{(09) /
.

MONITOR TO JOB

The following instruction format is an exchange from the monitor to a job program. The

R designator is unused and must be zeros.

R
—r
0 778 15'16 23 24
F 3 F[RSTTADRS
(09) /é?ggg :.\?Eéur INVIS IBLE
, PACKAGE)
60256000 09 B6=55

When exchanging from the monitor mode to a job, this instruction loads the registers from
the register file stored in central storage, beginning at the address contained in the register
specified by S. The instruction also loads the invisible package for the applicable job from
central storage, beginning at the address in the register specified by T. The Sand T
addresses are absolute bit addresses, Figure 6-13 shows formats of the addresses in

the S and T registers.

In the S register, bits 38 through 63 define the starting address in central storage for
loading the 25610
first address of the page and must be on a small page boundary.

words in the register file. The starting address is the same as the
In a small page starting
address, bits 49 through 63 are always zeros. This means that the absolute bit range of the
register file starting address is 000000016 through 3FF800016. Since the register file is
loaded from central storage in sequential 64-bit words, the bit, byte, and half-word bits of
the address are not advanced. Thus, from an assumed starting address of XXOOOOOIG, the
sequence of loading the register file advances the address of a value of XX3FC016. If either
the S designator or the content of register S is equal to zero, the job's register file and the

monitor's register file are identical.

In the T register, bits 38 through 63 define the starting address in central storage for loading
the invisible package into 16 sequential word locations.

Figure 6-13.

6=56

S REGISTER MUST BE 0'S
[+) 15 16 37 38 48’49 57 38596061 s;
TT 1
[N v /\ v / — l"\I I/\ /
MUST BE O0'S DEFINES FIRST WORD BIT
ADDRESS OF LOCATION BYTE
REGISTER IN PAGE | L./ F
FILE WORD
T REGISTER
MUST BE 0's
[} . 15 16 37 38 53{"4 5758596081 63\
Tr 1
//////////////////// 0< >0 (16 BITS) o<——1—1—>0
11 1
\ v /\ v ! A~ |\
MUST BE 0'S DEFINES FIRST l BIT
ADDRESS OF WORD BYTE
INVISIBLE LOCATION HALF
PACKAGE IN WORD
INVISIBLE
PACKAGE

Address Formats for Exit Force Instruction (Monitor to Job)

60256000 09

BO INDEX, BRANCH IF (A) + (X) = (2)

Bl INDEX, BRANCH IF (A) + (X)#(2)

B2 INDEX, BRANCH IF (A) + (X)=(2)

B3 INDEX, BRANCH IF (A) + {X)<(Z)

B4 INDEX, BRANCH IF (A) + (X)= (2)

B5 INDEX, BRANCH IF (A) + (X)> (2)

G
(SUBFUNCTION)
0 78 1516 23 24 31 32 39 40 47 48 55 56 63
F /// X A Y B z c
(B0 - B5) (REGISTER) | (REGISTER)| (INDEX (BASE ADRS | (REGISTER) | (REGISTER)
REGISTER) REGISTER OR
7 INDEX)

/-G BIT7

BRANCH CONTROL(GBITS 5,6)
GBIT4

In these instructions, X, A, and Z designate registers. If G bit 4 is clear (0) the rightmost
48 bits of these registers contain signed, two's complement integers. If G bit 4 is set (1),
these registers contain unsigned two's complement integers. These instructions then form
the sum of the two integers from registers X and A. Overflows are ignored if they occur.
These instructions then compare the sum to the integer in register Z according to the speci-=
fied branch condition. The original content of register Z is read before A + X is stored in
register C,

[(A) + (X) = (Z) or (A) + (X) # (Z), ete.]

If the specified branch condition is met, the program address branches to the address speci-
fied by the branch control bits in the G designator (Table 6-12), In all cases, the index

is an item count in half-words that is left-shifted five places before the addition or sub-
traction,

TABLE 6-12., INDEX BRANCH INSTRUCTION DESIGNATORS

G Designator
Bit State Branch Address

Bit5 = 0 Branch to address formed by adding the item count in register Y
to the base address in register B. The item count is shifted left
five places before the addition. Overflow, if any, is ignored. If
the B or Y designator is equal to the C designator, the instruction
is undefined.

Bit5 = 1 Branch according to the state of G designator bit 6 as follows:

60256000 09 6=57 |

TABLE 6-12. INDEX BRANCH INSTRUCTION DESIGNATORS (Contd)

G Designator
Bit State Branch Address

Bit 6 = 0 Branch to the address formed by adding the B and Y designators
(taken together as a 16-bit item count of half-words) to the

address of this instruction.

I}
it

Bit 6 Branch to the address formed by subtracting the B and Y desig-
nators (taken together as a 16-bit item count of half-words) from

the address of this instruction.

If the branch condition is not met, the program reads the next sequential instruction.
In either case, the instruction stores the sum of the two 48-bit integers, (A) + (X), in
the rightmost 48 bits of the register specified by C and the leftmost 16 bits of (A) in
the leftmost 16 bits of register C.

If the B or Y designator is equal to the C designator, this instruction is undefined.

Comparisons against 48 zeros are enabled by setting the Z designator to zero, If G

bit 7 is set, the register conflict checking hardware allows the conflict check on the

B, Y, C, and Z designators to be omitted. This shortens instruction execution times
but should be attempted only when there are no conflicts between the B, Y, C, and Z
designators and any result register designator in the previous 40 instructions.

Table 6-13 relates integer ranges to the state of G bit 4.

TABLE 6-13. INTEGER RANGES

48-bit hexadecimal quantities in descending order
from the largest to the smallest, from top to bottom.
G bit4=0 G bit4 =1
Largest TF ==-=-- FF FF ------ FF
TF -=---- FE FF ------ FE
00 ------ 01 80 ------ 01
00 ------ 00 80 ------ 00
FF------ FF TF =====- FF
Smallest 80 ------ 01 00 ------ 01
80 ------ 00 00 ------ 00

6=58 60256000 09

0 78

15 16

63

(86)

R
{ INDEX)

i
(BASE ADDRESS)

This instruction branches unconditionally to the address formed by the sum of the right-
most 48 bits of register R as the index and I as the base address.
sents an item count of half-words which is shifted left five positions before being added

to the base address.

Overflow, if any, is ignored.

The index repre-

The instruction makes a direct branch to the base address if the R designator is zero

or if the rightmost 43 bits of register R are zeros.

VECTOR INSTRUCTIONS

The vector instructions perform operations on ordered scalars.

Generally, the vector

instructions read the scalars, which are in the form of 32-bit or 64-bit floating point

operands, from consecutive storage locations over a specified address range (field).

These instructions perform the designated operation on each set of operands and store

the results in consecutive addresses of a result field, beginning at a specified starting

address.

Thus, a single vector instruction can perform operations on two source fields

of vector operands and automatically store the results in a result field of storage.

INSTRUCTION FORMATS

All vector instructions use the same general instruction format (Figure 6-14),

Table 6-14 lists each of the 8-bit designators in the vector instructions and gives a

brief description of the function.,

78 15 16 23 24 31 32 3940 4T 48 58 56 63

F 6 X & Y o z (HELDEENGTH
(8X,9X) |isusruncrion)] (OFFseT [FIELD LENGTH] (oppser |(FIELD.LENGTH) - (c v Base a

FORA) |gASE ADDRESS) FOR B] |BASE ADDRESS] ADDRESS) |BASE ADDRESS)

NOTE:CV DENOTES CONTROL VECTOR

60256000 09

Figure 6-14.

General Vector Instruction Format

C+ 1
|(OFFSET FOR
Lc8z) |

6-59

TABLE 6-14, VECTOR INSTRUCTION DESIGNATORS

Designator Function
F Function code
G Subfunction code
X, Y Specify registers that hold address offsets for corresponding

source operand fields

A, B Specify registers that hold base addresses and field lengths for
source operand fields

z Specifies register that contains the base address of the control
vector (CV)

C Specifies register that contains the base address and field length
of the result field

If C+1 is used by the instruction, C must be an even number
since the machine forms C+1 by forcing the rightmost bit of

C to a 1, If the C designator specifies an odd-numbered register,
the results of the instruction become undefined.

C+1 Specifies register that holds offset for the control vector and the
result field; C+1 always references an odd register

SUBFUNCTION BITS

Table 6-15 lists the subfunction bits and their general usage. Table 6-16 gives the

sign control subfunction bits.,

If the Z designator is zero, no control vector is used; thus, bit 9 becomes undefined.
If G bit 3 and/or G bit 4 = 1, the A and/or B designator denotes a constant which is
used as each element of the respective vector field. The instruction ignores the asso-
ciated offsets in this case., The registers specified by A and B, respectively, contain
these constants. Registers A and B are always 64-bit registers except when G bits 3 and 4
indicate a broadcast., When broadcasting, the size of registers A and B track the size speci-
fied by G bit 0 (refer to Table 6-15).

Appendix C gives a composite listing of the G designator bits usage according to function

code.

6=-60 60256000 09

If bit 3 of G, 4 of G, or both are ones, then the A, B, or both source fields are
constants used as each element of the respective vecter stream and the associated
offsets are ignored. These constants are found in the registers specified by A and B,
respectively, If bit 3, 4, or both are ones and bit 0 of G is a one, register A, B,
or both are 32-bit registers. For all other cases, registers A and B are 64-bit registers.

TABLE 6-15. SUBFUNCTION BITS

Bit
No. State Subfunction
0 0 64-bit operands (words)
1 32-bit operands (half-words)
1 0 Control vector operates on ones
1 Control vector operates on zeros
2 0 No offset for result field and control vector
1 Offset for result field and control vector
3 0 Normal source vectors A
1 Broadcast repeated (A)
4 0 Normal source vectors B
1 Broadcast repeated (B)
5 X
6 X Sign control (refer to Table 6-16)
7 X

60256000 092 6-61

TABLE 6-16. SIGN CONTROL SUBFUNCTION BITS

Bit 5 Bit 6 . | Bit 7 Control Operation

0 0 X The operands from the A stream are used in the
normal manner,

0 1 X The coefficients of the operands from the A stream
are complemented before they are used.

1 0 X The magnitude of the operands from the A stream is
used.
1 1 X The coefficients of all positive operands from the

A stream are made negative before they are used.
Negative operands are not altered.

X X 0 The operands from the B stream are used in the
normal manner,

X X 1 The magnitude of the coefficients of the operands
from the B stream is used.

1. X denotes that the bit can be either a 0 or a 1.

2. Any required complementing is two's complement.
Complementing is performed before the operand is
used in the specified arithmetic operation. If the
complement of the coefficient 8000 0000 0000 is
required, the operand is used as 4000 0000 0000
with 1 added to the exponent.

3. Any necessary significance calculation is performed before the
previous complementing is performed.

FIELD LENGTHS, BASE ADDRESS, AND OFFSETS

Figures 6-15 and 6-16 show the formats of the register contents for the field lengths,
base addresses, and offsets. The computer allows 16-bit field lengths to be specified
and assumes them to be positive. The field lengths are in the range of 0 through 216-1
before any offset adjustments. The offsets are taken from a 48-bit register and must

16 16

have at least 32 identical sign bits. The offsets are in the range of -27" to 27 -1,

The operation of subtracting the offset from the field length must result in a field length
which is positive and less than 216-1. If the resulting vector length is not positive
and less than 216-1, it is treated as a zero vector length. The instruction obtains

the beginning address by adding the offset (including sign extension) to the base address
(Figures 6-16 and 6-19), In the (offset + base address) addition, the offset is first

shifted left five (half-words) or six (words) places since the bit and byte bits are not

used in the vector operand field address,

6-62 60256000 09

A OR B

0 516 63

FIELD LENGTH BASE ADDRESS

X OR Y
° 516 47 a8 -

Figure 6-15, Operand Field Length, Base Address, and Offset Formats

The C and C+1 registers are identical in format to the A or B and X or Y content, respec-
tively. If bit 10 specifies that vector field C is to be offset, register C+1 contains the offset.

32-BIT OR 64-BIT OPERAND ‘-3[' BASE ADDRESS
POSITIVE OFFSET
FIELD N BEGINNING ADDRESS
LENGTH (BASE ADDRESS + OFFSET)

VECTOR FIELD

" (USED PORTION)

Figure 6-16.. Vector Field Address Format

CONTROL VECTOR

When the instruction specifies a control vector (Z designator # 0), a single bit from the
control vector controls the storing of each element in the result field. When a bit from the
control vector prohibits the storing of a result element, the instruction does not alter the
previous coantent of the corresponding storage address. Thus, the nth bit read from the
control vector prohibits or allows the storing of the nth result in the result vectof field.

60256000 09 6-63

Bit 1 of the G designator selects whether a 0 or a 1 control vector bit allows the
storing of the result (Table 6-11), If bit 1 of the G designator is a 0 or a 1, the in-
struction stores the nth result if the nth bit of the contrcl vector is a 1 or a 0, respec-
tively. .

The rightmost 48 bits of the register designated by Z contains the base address of the
control vector (Figure 6-17)., The control vector uses the same field length as result

vector C,

The addition of the offset and base address provides the starting bit address of the
control vector, Since offsets are item counts, the result vector and control vector use
the same offset; however, the control vector offset represents a bit offset.

o 1816 63

% % BASE ADDRESS

Figure 6-17. Control Vector Base Address Format (Z)

VECTOR INSTRUCTION TERMINATION
Vector instructions terminate when the result vector field is exhausted.

1, Exhausting a vector which has an offset,

A vector is deemed exhausted prior to the first operand fetch if the result
of subtracting the offset from the field length is zero or negative,

For cases of zero field length, the resulting vector length used is the
rightmost 16 bits of the two's complement of the offset, If this 16-bit
quantity is zero or negative, the vector is deemed exhausted prior to the
first operand fetch.

A vector is exhausted when the result of subtracting both the offset and the
number of operands encountered thus far, from the field length, is zero,

2, Exhausting a vector which has no offset and exhausting other data fields or
data strings,

The string, field, or vector is deemed exhausted prior to the first operand

fetch if its length is zero, These strings, fields, and vectors are exhausted
when the result of subtracting the number of elements encountered thus far

from the field length is zero,

tAppendix C provides a complete listing of the various vector instruction field conditions
and the resulting termination conditions,

6=-64 60256000 09

Figure 6-18 shows the register content and Figure 6-19 shows the resulting vector address
fields of an assumed add U, A+B—C (80) vector instruction. Although an 80 instruction is
used, the general sequence of operations is the same for all vector instructions.

The G designator bits used in the example specify the following conditions for the operation

of the instruction.

G-Designator Bit Condition
0= 1 32-bit, floating point operands
1= 0 Control vector operates on ones (ones in control

vector enable storage of corresponding control

vector)

2= 1 Result vector and control vector fields are
offset (C+1 designator is used)

3= 0 Normal vector source stream A

4= 0 Normal vector source streammn B

5= 0 Use the operands from the A stream in the normal

6= 0 manner

7= 0 Use the operands from the B stream in the normal
manner

The X, A, Y, B, Z,and C register designator numbers are shown in parentheses. Thus,
register 10 contains the offset for vector field A, register 11 contains the base address for

vector field A, etc.

Since the bit and byte address bits are not used in the vector field addresses, successive
half-word addresses are shown. Thus, incrementing address 100007 by a half~-word count

gives 1002045 as the next successive address,

With the A vector offset equal to +4 and the B vector offset equal to -4 (Figures 6-18 and
6-19), the first vector add U, A+B—C operation adds the A and B operands from the re-
spective addresses 100801 and 1FF80yg. The result of the first add operation does not
store, because bit 7 of the addressed control vector field is a zero. Successive add opera-
tions add successive A and B operands, storing the results only when a corresponding one

appears in the control vector,

60256000 09 6-65

INSTRUCTION FORMAT

[] T8 Bis 23 24 3132 39 40 47 40 88 56 63
F G X A Y B8 z c
{(80) [1o100600] (10) (i (12) (13) (14) (16)
A
l_mmcnmzs USE OF c+1
32-BIT OPERANDS tu7)
(X =10)
o 34 T8 niez 1516 1920 23 24 27 28 3) 32 38 38 39 40 43 44 47 48 S1 52 56 56 99‘0' 63
% }0000 000000000000)]0000|0000|/0000}0000|0000|0000|{0000|0O1 00
7.
\ I\ /
Y v
32 SIGN BITS OFFSET FOR A
(A=11)
o 34 70 nea 1516 1920 23 24 2728 3132 35386 39 40 4344 47 48 5182 85 86 5960 63
T
!f= >0 1 OOIOOOO 0000/0000[0000(0000|0000(0000|0001{0000I0000 000:00000
i .
\ Y, J\ v A U
FIELD LENGTH BASE ADDRESS BIT
ADDRESS
(Y =121 NOT USED
[34 Te iz 1516 19 20 23 24 27 28 3132 35 3¢ 39 40 4344 47 a0 S1 52 88 66 5960 63
W / Fr it b e g v v b e vl e v e e freivgerif1ioo0
% o
AN —J\. J
A4 A4
32 SIGN BITS OFFSET FOR B
(8=13)
0 34 Te ni2 1816 19 20 23 24 27 20 3132 33 36 39 40 4344 47 48 8152 88 8¢ 960 3
T
IO »0]1000[0000|/0000/0000/0000{0000|0000]0000[|0 0 000000000000:00000
i
— v _J\ v "
FIELD LENGTH BASE ADDRESS BIT
ADDRESS
(z =14) NOT USED
(-] 34 70 nia 1321 19 20 23 24 2728 3132 3536 39 40 4344 47 48 $i 52 35 56 59 60 3
% //000000000000 0000000000 00|0000[00 11I[0000|0000|000O|GI OO0
\ J
Vv

BASE ADDRESS

{C =186)
o 34 T8 1niz 1516 1920 23 24 27 28 31 32 35 36 39 40 4344 A7 48 5152 33 56 5960 3
T
(o3 >0/1 000{0000|0000|0000|0000{0000[0000]|]0000}0100j00 000000000:00000
[
\ —V s\ v J_v___l
FIELD LENGTH BASE ADDRESS BIT
ADDRESS
(C+1=17) NOT USED
0 34 78 uiz2 1516 19 20 23 24 27 28 3132 35 36 39 40 43 44 47 48 5152 5556 59 60 63
O« >0j00092|0000{0N00 {0000}0000{0000|0000(0000|{0000{0000}0000|001I 1
- I\ -
A v
32 SIGN BITS OFFSET FOR Z AND C

Figure 6-18. Vector Instruction Example of Register Content
and Instruction Format

6-66 60256000 09

60256000 09

A VECTOR

ADDRESS SOURCE FIELD
o OPERANDS 3l
10000 Ag BASE ADDRESS
10020 Ay
+4 OFFSET
10040 A,
10060 Ay
10080 Ay STARTING ADDRESS
100A0 A FIELD
5 LENGTH
100C0O Ag (NO OFFSET)
100EO Ao FIELD
LENGTH
10100 Ag (WITH OFFSET)
10120 Ag
10140 Ao
10160 A
B VECTOR
SOURCE FIELD
0 OPERANDS 31
IFF80 B_4 STARTING ADDRESS
\FFAO B_3
IFFCO B , -4 OFFSET
IFFEO B_;
20000 Bg BASE ADDRESS
20020 B, FIELD
LENGTH
20040 B, (WITH OFFSET)
20060 By FIELD
5 LENGTH
20080 4 {NO OFFSET)
200A0 Bg
200C0 Bg
200E0 B,
‘ C VECTOR
RESULT FIELD
OPERANDS BEFORE OPERANDS OPERANDS AFTER
- ¢ —_
ADD OPERATION o ,—A— ,—A_ , ADD OPERATION
40000 Co Co BASE ADDRESS
40020 C, C, +3 OFFSET
40040 Co Ca
40060 Cs Cy STARTING ADDRESS FIELD
LENGTH
40080 [N Ag+B_ g5 (NO OFFSET)
400A0 05 C5 FIELD
LENGTH
400C0 Ce A;+B_, (WITH OFFSET)
400E0 cs AgtBg

Z CONTROL VECTOR
FIELD

0123456789101l

30000 lx]xe]xll]ol|loJ|]ol|J|[§,'
BASE ADDRESS P4 BASE ADDRESS 30007
30004 —s WITH OFFSET
+3 OFFSET

Figure 6-19. Vector Address Fields for
Vector Instruction Example

6=67

80 ADD U; A + B>C
81 ADD L; A + B—=>C
82 ADD N; A + B>C
84 SUB U; A — B=>C
85 SUB L; A — B>C
86 SUB N; A — B—>C
88 MPY U; A® B>C
89 MPY L; A® B=>C
8B MPY S; Ae B->C
8C DIV U; A/B=>C
8F DIV S; A/B>C

G
M
0 78 15 16 23 24 31 32 39 40 47 48 55 56 63
F X A Y B y4 c
(80 - 8F) (OFFSET (FIELD LG (OFFSET (FIELD LG (C v BASE|(FIELD LG
FOR 'A) & BASE ADRS) FOR B) % BASE ADRS] ADRS) % BASE ADRS])
(- ‘ c+1 |
/ L l(oFFsET !
6 BIT O: G BITS 5,6,7: FOR C & 2) !
0=64 BIT OPERAND SIGN CONTROL | J
1=32 BIT OPERAND G BITS 3,4
BROADCAST
6 BIT I:]
0= CONTROL VECTOR G BIT 2:
OPERATES ON I'S 0= DO NOT OFFSET RESULT FIELD
I =CONTROL VECTOR I= OFFSET RESULT FIELD

OPERATES ON Q'S

These instructions perform the indicated floating pointT arithmetic operations on the
elements of vector fields A and B. The instructions store the result elements in
vector field C. All of the vector elements are in the form of 32-bit or 64-bit floating-
point operands. The U, L, N, and S designators specify the upper, lower, normal-
ized upper, or significant results, respectively.

Applicable data flag bits are 41 (floating point divide fault), 42 (exponent overflow), 43
(result machine zero), and 46 (indefinite result).

tAppendix B describes the floating point arithmetic operations,

I 6-65 60256000 09

83 ADD A; A + B=>C
87 SUB A; A —B=>C

G
"
0 78 1516 23 24 31 32 39 40 47 48 55 56 63
F % 7 X A Y B Z C
(83 & 87) (OFFSET |(FIELD LG | (OFFSET [(FIELD LG | (C V BASE |(FIELD LG
FOR A) BASE ADRS)| FOR B) |« BASE ADRS) ADDRESS) [BASE ADRS)
I
_ : (oFFseT !
G BITS 3,4
BROADCAST L FORC &z}
GBIT I G BIT 2
CONTROL VECTOR OFFSET

These instructions add/subtract bits 16 through 63 of the B vector elements to/from bits
16 through 63 of the A vector elements (Figure 6-2Q). The instructions store the re- I
sults in bits 16 through 63 of the C vector elements. Bits 16 through 63 of the source
vector elements are treated as 48-bit, positive integers., Arithmetic overflow is ignored

if it occurs.

The instructions transmit bits 0 through 15 of the A vector elements to corresponding
portions of the C vector elements. As shown in the previous instruction format, bit 0
of the G designator must be zero since only 64-bit operands are used.

A VECTOR ELEMENT
° 34 T8 M2 516 9 20 2324 2728 31 32 3536 39 40 4344 4T 48 51 52 5556 5960 63

0 0 (¢} c (o] 0 0 (¢} 5 C o] (¢} o 9 F 4

A /\

. 2
TRAN(S)FERREDCD:)RECTLY ADDED TO B VECTOR ELEMENT
ELEMENT (BITS 0-15) B VECTOR ELEMENT

"R 18 16 19 20 23 24 27 28 31 32 35 36 39 40 43 44 47T 48 851 32 355 56 39 €0 [2]

0 0 4 3 0 0 0o] o] 0 o 0 | o} o o]

C VECTOR RESULT ELEMENT

o 3 4 T 8 [LI [1] 19 20 23 24 27 28 3t 32 35 36 39 40 43 44 4T 40 31 32 85 38 59 &0 63
0 0 0 C 0 (o) 0o 0 5 C 0 0 | 9 F 4
Figure 6-20. Example of an Add A; A + B — C Instruction l

60256000 09 6-69

98 TRANSMIT A->C
99 ABSOLUTE A=>C
91 FLOOR A>C
92 CEILING A=>C
9A EXPONENT OF A->C
90 TRUNCATE A->C
G
0 78 15'16 23 24 31 32 39 40 47 48 55 56 63
F ' X A % z c
(gg,gz,gé % (OFFSET l‘_gﬂ%ﬁ " //// (C vV BASE |(FIELD LG
ok / FOR A) BASE ADRS) // ADRS) 5. BASE ADRS)
C+
G BIT O: ——/ \—G BIT 3. | DFFSETI :
0=64-BIT OPERAND BROADCAST | (
1=32-BIT OPERAND G BIT 2: L FORC & Z)
0 = DO NOT OFFSET RESULT FIELD
| = OFFSET RESULT FIELD

G BIT I

O= CONTROL VECTOR OPERATES ON I'S
I= CONTROL VECTOR OPERATES ON 0'S

98 TRANSMIT A — C

This instruction transmits each element of the source field A to successive elements of
result field C throughout the modified field length.

99 ABSOLUTE A - C

This instruction transmits the absolute value of each element of the source field A to

successive elements of result field C throughout the modified field length,
elements are 32- or 64-bit, floating point operands.

All vector
If the coefficient of the source

operand is positive, the element is transmitted directly to the result vector field; if

the coefficient is negative, the coefficient is complemented before transmission.

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46
(indefinite result).

91

FIOOR A - C

This instruction converts each floating point element of source field A to the nearest integer

less than or equal to it.

The resulting integers are transmitted to corresponding elements

of result field C throughout the modified field length. The resulting integer is always an un-

normalized, floating point number with a positive exponent,

If the exponent of the source element is positive (greater than or equal to zero), the instruction

transmits the element directly to the result field.

If the exponent of the source element is

negative, the instruction right-shifts the coefficient end-off and increases the exponent by one

for each position shifted until the exponent becomes zero.

during the shift.

the corresponding element of result field C,

1 670

Sign bits are extended on the left

The instruction then transmits the shifted coefficient with zero exponent to

60256000 09

The Y and B designators and G bits 4 through 7 are unused and must be zeros.
If zero is used as a source element, the instruction transmits all zeros as the

corresponding result element.

Figure 6-21 shows an example of a floor A — C (91) operation with one assumed
source vector element, Since the exponent of the source element is negative, the
instruction right-shifts the coefficient three places and increments the exponent plus
The sign bits are extended on the left, The result element becomes a minus

Thus, the floor A — C (91) instruction provides a means of converting positive

three,
one,
fractions to zero and negative fractions to a minus one,

The applicable data flag bit is 46 (indefinite result).

[+] 34 78 ni2 1S 186 19 20 23 24 27 28 31
A
ot ||0||:||||| Ciftr i riftrrifiito gfgsgiTVECTOR
! ' (FD FFFFFE)
N N ,
\'A A\
\fXPONENT COEFFICIENT -3 -2
EXPONENT
SIGN BIT
COEFFICIENT
SIGN BIT
o 3 4 78 1nie 1516 19 20 23 24 27 28 31
C RESULT VECTOR
ooooloooolt tiftr el dftiedtiniiio
| | ELEMENT
| } V
— BITS SHIFTED (83 FFFFFF)
EXPONENT 516N END OFF o -
INCREMENTED BITS
T0 0 EXTENDED
(-3+3=0) COEFFICIENT SHIFTED

RIGHT 3 POSITIONS

Figure 6-21. Example of Floor A — C Instruction with Negative Exponent

60256000 09 6-71

92 CEILING A - C

This instruction converts each floating point element of source field A to the nearest

integer greater than or equal to it. The resulting integers are transmitted to corre-
sponding elements of result field C throughout the modified field length, The resulting
integer is always an unnormalized floating point number with a positive exponent.

If the exponent of the source element is positive, the instruction transmits the element
directly to the result field. If the exponent of the source element is negative, the
instruction right-shifts the two's complement of the coefficient end-off and increases the
exponent by one for each position shifted until the exponent becomes zero. Sign bits
are extended on the left during the shift. The instruction then recomplements the
shifted coefficient and transmits it with zero exponent to the corresponding element of
the result field.

The Y and B designators and G bits 4 through 7 are undefined and must be zeros.
If machine zero is used as a source element, the instruction transmits all zeros as
the corresponding result element,

Figure 6-22 shows an example of a ceiling A - C (92) operation with one assumed
source vector element, Since the exponent of the source element is negative, the
instruction right-shifts the two's complement of the coefficient three places and in-
crements the exponent by plus three., The zero sign bits are extended on the left
The result element becomes all zeros, Thus, zero is the closest integer greater than
the A source vector element, The ceiling A — C (92) instruction provides a means
of converting negative fractions to zero and positive fractions to plus one,

The applicable data flag bit is 46 (indefinite result),

6=72 60256000 09

(] 34 78 niz2 1516 19 20 2324 27 28 31
|:I|IIIOII:IIII|IIIII|IIIIIIIIIIIO
X .
| !
i RN Y
v —V
/EXPONENT COEFFICIENT
EXPONENT COEFFICIENT
SIGN BIT SIGN BIT
0 34 78 "z 1516 1920 2324 2728 3

it1f101]ooooloooo|0000j0000(0000]0010

A SOURCE VECTOR
ELEMENT

(FD FFFFFE)
W A —

-3 -2

A SOURCE VECTOR
ELEMENT (TWO'S
COMPLEMENT OF
COEFFICIENT)

\ v AN v 7/
EXPONENT COEFFICIENT
C RESULT VECTOR
] 34 78 niz 1516 19 20 2324 27 28 3 ELEMENT (UNCOM_.
00 00[0000(0000{0000[0000 {0000 [0000|0000{010 PLEMENTED)
| i \ ~/
] 1
V..__J
SN o BITS SHIFTED
EXPONENT SIS END OFF
INCREMENTED M SnpED
T0 O COEFFICIENT SHIFTED
(-3+3=0) RIGHT 3 POSITIONS
C RESULT VECTOR
0 34 78 ni2 1516 19 20 2324 27 28 3 ELEMENT(TWO'S

p:OOO 0000 0:000 0000]0000{0000 0000|0000
|

A I\ /
v A4

EXPONENT COEFFICIENT

NOTE: 32-81T OPERANDS ARE ASSUMED.

Figure 6-~22,

60256000 09

COMPLEMENT OF
COEFFICIENT)

Example of Ceiling A - C Instruction with Negative Exponent

6=T73

9A EXPONENT OF A — C

The elements of result vector C are formed by storing the exponents from input vector
A into the rightmost position of the coefficients of vector C. The sign of the exponent
is extended left to the coefficient sign bit position. The exponent portion of each ele-

ment of vector C is cleared to zero.

The Y and B designators and bits 4 through 7 of the G designator are unused and

must be set to zeros.

90 TRUNCATE A — C

This instruction transmits to elements of vector C the nearest integer the magnitude of
which is less than or equal to the corresponding elements of source vector A. These
integers are represented by unnormalized floating point numbers having positive ex-

ponents.

If the origin-operand exponent is positive (greater than or equal to zero), the instruction
transmits the source element directly to the corresponding result elements.

If the source-element exponents are negative, the machine right-shifts the magnitude of
the corresponding coefficients end-off and increases the exponent by one for each posi-

tion shifted until the exponent becomes zero.

The operation extends zeros on the left during the shift after complementing if the coef-
ficient is negative. If the coefficient of a source element is positive, the shifted coef-
ficient with zero exponent is transmitted to the corresponding result element. If the
coefficient of a source element is negative, the two's complement of the shifted coef-
ficient and zero exponent are transmitted to the corresponding result element. If
zeros are transmitted as a source element, zero is also transmitted as the corre=-
sponding result element,

Figure 6-23 shows a typical source element and the corresponding result element for a
truncate A — C (90) instruction. A 32-bit source element with a positive coefficient and
negative exponent is assumed. A right shift of eight is required to reduce the negative
exponent to zero.

The applicable data flag bit is 46 (indefinite result).

6-74 60256000 09

] 34 T8 niz2 1518 1920 2324 27 28 31

i1 1 1|1 ooolopoojoooofoootfitrifrriifiin TYP'CA:_A)SOURCE
key | (8) [ko) | (@ | (0 | (R | (F) | (F) ELEMENT

—— - / (OOIFFF X 27 8)
EXPONENT COEFFICIENT

[} 34 13[9 112 1516 19 20 2324 27 28 31 (C)

0,000{0 0 00|0,000{0000[0000/0000{000 I{1 I 1 | RESULT ELEMENT
oy | (o) [Yo | 1o | (o) | (o) | () | (P (0000IF X 29)

\ V- J\ v J

EXPONENT COEFFICIENT

Figure 6-23. Example of Source and Result Elements for a Truncate A — C Instructionl

9B PACK AB>C

6
78 i516 23 24 31 32 3940 47 48 85 5¢ 63
F X (FIELD LENGTH Y B Z ¢
(98} (OFFSET D (OFFSET (;'E'-g LENGTH| (c v BASE (FIELD LENGTH
FOR A) ADDRESS) | FOR B) ADDRESS) | ADDRESS) | AppRrESs)

%
__6BITS 3,4: | G+l i
BROADCAST I (&FRFSCEJZ) |
G BIT O G BIT 2: [A

0= DO NOT OFFSET RESULT FIELO = —77
0=64-BIT OPERAND :
02 BT OPERAND \ |= OFFSET RESULT FIELD

G BIT I
0=CONTROL VECTOR OPERATES ON f'S
1= CONTROL VECTOR OPERATES ON O'S

This instruction moves an exponent from an element of source vector A and a coefficient

from an element of source vector B into the corresponding exponent and coefficient posi-
tions of result vector C.

This instruction forms the elements of a floating point result vector C. The elements
of result vector C consist of exponents from the rightmost 16 bits (64-bit operands) or
8 bits (32-bit operands) of source vector A elements and coefficients from the rightmost
48 bits/24 bits of the corresponding elements of source vector B.

Figure 6-24 shows an example of an assumed A source and B source vector element '
used in forming a C result vector element in a pack A, B — C instruction.

60256000 09 6=75

8=-T6

[+] 34 78 1niz 1516 19 20 23 24 27 28 31
0000 {0000 /0000 | 0000{ 0000|000 0|°'00|0000
(4) | (0)
__r._/
[+] 34 78 ni2 13 16 19 20 23 24 2r 28 31
ooto|ooto|ortor {1111 |ooor|[1100lo111]0000
(2)) (0 P (s)Y | (F)Y | (1) |[(C) | (7)] (O)
\ . ;
\'2
1 X
4 \/ g \
] 34 78 ni2 1516 19 20 2324 2r2s 31
o10o]ooooloiot [1111]oooi]itoo]ori1|oooo
4| 0] (B) | (F)Y [(1) | (€) | () { (O)
\ FAN /
\'4 \'
EXPONENT COEFFICIENT
Figure 6-24,

A SOURCE VECTOR

ELEMENT

B SOURCE VECTOR

ELEMENT

C RESULT VECTOR

ELEMENT

Example of Pack A, B — C Instruction

60256000 09

9C EXTEND 32 BIT A=44 BIT C

96 CONTRACT 64 BIT A=>32 BIT C

97 ROUNDED CONTRACT 64 BIT A>32 BIT C
93 SIGNIFICANT SQUARE ROOT OF A—=>C

G
/___JL——\
Tt
0 78 15 16 23 24 31 32 39 40 47 48 55 56 63
F G X A v z c
(9c, 96 |(sus- (OFFSET | (LENGTH & (C vV BASE |(FIELD LG
93, 97) |FUNCT FOR A) BASE ADRS) | ADRS) |& BASE ADRS)
\ | C+1 \
G BITS 5, 6: 1 (OFFSET FOR |
SIGN CONTROL 1 C & 2) |

T IN THIS GROUP OF INSTRUCTIONS, THE SIGN CONTROL
BITS ARE USED IN INSTRUCTION 93 ONLY, IN ALL
OTHER CASES, THESE BITS MUST BE ZERO,

tf6 BIT 0 MUST BE A ZERO FOR THE 9C, 96, AND 97
INSTRUCTION BUT MAY BE A ZERO OR A ONE FOR THE
93 INSTRUCTION,

9C EXTEND 32 BIT A — 64 BIT C

This instruction forms the elements of result vector C by extending the 32-bit, floating
point operands of vector field A into 64-bit, floating point operands. The instruction

reduces the exponent of the result elements by 24 The 9C instruction transmits the

10°
rightmost 24 bits of the corresponding source elements to bits 16 through 39 of the

result elements. The rightmost 24 bits of each result element are cleared.

If an element of vector A is indefinite, the instruction sets the corresponding element
of vector C to indefinite and sets data flag bit 46, If an element of vector A is machine
zero, the instruction stores machine zero as the corresponding element of vector C and

sets data flag bit 43 (result machine zero).

Since the instruction uses only one source field, the Y and B designators and bits 4

and 7 of the G designator are not used. These bits must be zeros.

Figure 6-25 shows an example of the extension of one assumed source element into the l
corresponding result element, The instruction reduces the exponent of the assumed
source element (4Fj1g) by 2419 to 3716. The sign of the result exponent is extended in
bits 0 through 7. The 9C instruction always clears bits 40 through 63 of the result-

element coefficients,

60256000 09 6-717

o 3 4 78 112 15 18 19 20 23 24 27 28 3

oloofititjoriijoroolitioloiiolioooloooo SOURCE ELEMENT

() [(F)Y | (7) | (4) | (E) | (&) | (8) | (O) VECTOR FIELD A
\ v . Y J

EXPONENT COEFFICIENT

(4Fig ~2410)= RESULT ELEMENT

(4F1g-18i6) = VECTOR FIELD C

(37¢) THESE BITS ARE CLEARED

A

] 34 78 it 12 I5,IS 19 20 23 24 27 28 3132 35 36 39‘:0 43 44 47 48 51 52 55 56 59 60 53‘

0000/0000 (0011 [O111[O111]|0100[1110]0110/1000[{0000[0000 |0000({0000(0000[0000{0000
(0) | (©) | (3) | (7) | (7) [(4) | (E) | (6) | (8) | (O) | (O) | (0) | (O) | (O) | (0) | (0)
\ I\ /

EXPONENT COEFFICIENT

Figure 6-25. Example of Extend 32 Bit A — 64 Bit C Instruction

96 CONTRACT 64 BIT A — 32 BIT C

This instruction contracts each 64-bit, floating point element of vector field A into its cor-

responding 32-bit floating point result. The result element becomes the corresponding ele-
ment of result vector field C. The instruction increases each nonend case source-element

exponent by 24, in forming the 8-bit exponent for the result element,

The following is a list of input exponents and the corresponding result of the 96 instruction
execution,

Input Exponent Result
TFFF Result indefinite
7000 Data flag bit 46 (indefinite result) is set.
6FFF
0058 Data flag bits 42 (exponent overflow) and 46
0057 (indefinite result) are set.

Result exponent is 244, larger than the input
) exponent, The leftmost 24 bits of the input
gg;? coefficient are transferred.
. Result is machine zero., Data flag bit 43
(result machine zero) is set.

8000

6-78 60256000 09

The coefficient of the result element becomes the leftmost 24 bits of the source element
coefficient. This operation contracts the coefficients of all elements with an absolute

2

value of less than 2 4 (neglecting the exponent) to minus one for negative coefficients

and zero for positive coefficients.
The Y and B designators and bits 0 and 4 through 7 of the G designator are not used

and must be zeros. Applicable data flag bits are 42 (exponent overflow), 43 (result

machine zero), and 46 (indefinite result).

97 ROUNDED CONTRACT 64 BIT A — 32 BIT C

This instruction performs a rounded contract operation on the 64-bit, floating point
elements of vector field A and transmits the 32-bit, floating point results to elements

of vector field C (Figure 6-26)., Each resulting 8-bit exponent represents the sum of l
the least significant eight bits of the source element and 2410. If the result exponent
cannot be contained in eight bits, exponent overflow or underflow is detected.

The instruction then adds a plus one to bit positions 40 of the source-element coefficients.
If overflow occurs (Figure 6-26), the instruction increases the exponent by one and I
right-shifts the coefficient one place, (Since the result coefficient in Figure 6-26

contains all zeros, the example does not show the right-shift of one place.) The leftmost

24 bits of the shifted result coefficient are transmitted to the corresponding bits of re-
sult element C., The exponent of each nonend case result element is 2419 (257 if

overflow occurred) greater than the exponent of the corresponding source element.
The Y and B designators and bits 0 and 4 through 7 of the G designator are not used

and must be zeros. Data flag bits 42 (exponent overflow), 43 (result machine zero),

and 46 (indefinite result) conditions are probed by the execution of this instruction.

60256000 09 6=79

TYPICAL SOURCE ELEMENT

[+ 3 4 T 8 n 1 15 16 19 20 23 24 2T 28 3t 32 35 36 39 40 43 44 47 48 51 32 53 56 59 60 63
pvrtpererrrtprrooftrraftrneprrearereerorprrepeerpredprerfrretfiontfrioo
(FY (R J(RY () (R L(FRY L (F) |(FY | (FYL(FY | (F) [(F) | (F)Y | (F) | (F) | (C)

AW 7\ /

\'4
EXPONEVNT (-4) COEFFICIENT (-4)
(FCig+ 2407 COEFFICIENT AFTER + | ADDED TO BIT 40

FCi a4+ 18 n=+l4,c) 6 1920 2324 2728 3132 3536 3940 4344 4748 5 52 5556 5960 63
16 16~ 1) T

0000{0000J0000|0000|0000|0000 (O}t LIk L L A{EE LI L bfE b v it
]

I

OVERFLOW /\ 7
(ADD + | TO EXPONENT)

o — — =

0 3 4 20 M 12 1816 19 20 23 24 27 26 31

00010101 |0000J0000({0000j0000[0000|0000
(1 |.(5)

RESULT ELEMENT C

\ I\]
\ 4 \ 4
EXPONENT COEFFICIENT
l Figure 6-26. Example of Vector Elements for a Rounded

Contract 64-Bit AC—»32-Bit C Instruction

93 SIGNIFICANT SQUARE ROOT OF A —-C

This instruction forms the square roott of each element of vector field A and places the
result in each corresponding element of vector field C. Each result element contains
the same number of significant bits as the corresponding source element.

Since the instruction uses only one source field, the Y and B designators and bits 4
and 7 of the G designator are not used and must be zeros, Bits 5 and 6 of the G
designator perform sign control functions as given in Table 6-16, Applicable data
flag bits are 43 (result machine zero), 45 (square root result imaginary), and 46
(indefinite result),

T Appendix B describes the floating point square root operation,

6-80 60256000 09

94 ADJUST SIGNIFICANCE

INFI N

O

FAPERBR>C

95 ADJUST EXPONENT OF A PER B=>C

G
I_—A_—‘\
0 78 1516 23 24 31 32 39 40 47 48 55 56 63
F X A Y B z c
(94 OR 95) / (OFFSET |(FIELD LG (OFFSET |(FIELD LG (c v BASE |(FIELD LG

/ FOR A) |& BASE ADRS)| FOR B) & BASE ADRS) ADRS) & BASE ADRS,

c+1 |

G BIT O: ——] X\G B ot | (oFFSET FOR!
0= 64 BIT OPERAND BROADCA G BIT 2: 't & 2) I
| = 32 BIT OPERAND 0=DO0 NOT OFFSET RESULT FIELD b

I=

OFFSET RESULT FIELD

G BIT 1.
0= CONTROL VECTOR OPERATES ON I'S
| = CONTROL VECTOR OPERATES ON 0'S

94 ADJUST SIGNIFICANCE OF A PER B — C

This instruction adjusts the significancef of floating point elements from vector field A
and transmits the adjusted elements to corresponding elements of vector field C. The
rightmost 48 (64-bit operands)/24 (32-bit operands) bits of the elements in vector field
B contain signed, two's complement integers, The absolute values of these integers

are shift counts,

If a shift count is positive, the instruction left-shifts the coefficient of the element from
vector field A the number of positions specified by the shift count or by the number of
positions necessary to normalize the coefficient, whichever is smaller. In either case,
the instruction reduces the exponent of the source element by one for each position
shifted, The instruction left-shifts an all zero coefficient by the specified number of

positions.

If a shift count is negative, the instruction right-shifts the coefficient of the source
element by the shift count. The instruction increases the exponent by one for each
position shifted, If the absolute value of the shift count is greater than 4710, the shift
operation is undefined. The addition of the shift count can cause either exponent over-

flow or underflow,

If the source element is indefinite, the instruction sets the corresponding result element
to indefinite and sets data flag bit 46 (indefinite result). If the source element is
machine zero, the instruction sets the corresponding result element to machine zero (re-
sult machine zero) and sets data flag bit 43. Data flag bit 42 (exponent overflow) is also

applicable, -

tAppendix B describes the operation of adjusting floating point operands.

60256000 09 6=-81

95 ADJUST EXPONENT OF A PER B-C

This instruction transmits adjusted source elements from vector field A to corresponding
result elements in vector field C. The instruction sets the exponent of a result element
equal to the exponent of the associated source element in vector field B. The coeffi-
cients of the result elements are formed by shifting the coefficients of the source

elements from vector field A,

The difference between the exponents of associated elements from vector fields A and
B forms the shift count. If the exponent from A is greater/less than the exponent of
the element from B, the shift is to the left/right, respectively. If A contains a zero
coefficient, the exponent of the corresponding element of B is transferred to the
corresponding element of C with an all zero coefficient. If a left shift exceeds the
number of positions required for normalization, the corresponding result element is

set to indefinite, and data flag bit 42 (exponent overflow) is set.

If either or both source elements are indefinite or machine zero, the instruction sets
the result element to indefinite. In this case, data flag bit 46 (indefinite result) is
set and data flag bit 42 (exponent overflow) is not set.

Figure 6-27 shows one adjust exponent of A per B— C operation with assumed 32-bit
source elements for vector fields A and B. The exponent of the source element in
vector field B is greater than the source element from field A by eight, As a result,
the instruction right-shifts the coefficient eight positions end-off, The vacated positions
on the left are filled with zeros,

6-82 60256000 09

] 34 T8 nie i85 16 19 20 23 24 27 28 3t
001 1|0000(00I0|I111{0101}1100|000I|I00I
(3) | (O) | (2) | (F) | (B) | (C) | (1) | (9)
\ /\ /
v \ 2
EXPONENT COEFFICIENT
[+] 34 78 nie 1516 19 20 23 24 2728 31
0011|1000
(3) | (8)
\ J\ J
A4 vV
EXPONENT COEFFICIENT
(NOT USED)
y
"

[+ 34 78 niz 1516 1920 2324 27 28 3l
0011|1000 |0000|0000 |0OIO|II I1|{OIOI|I100O
(3)] (8) [(0) | (O) | (2) | (F) | (5) | (C)

- —
0 FILL
1 Y /
COEFFICIENT SHIFTED
8 POSITIONS (30-38=-8)
NOTE : 32-BIT OPERANDS ARE ASSUMED,
Figure 6-27.

60256000 09

SOURCE ELEMENT
VECTOR FIELD A

SOURCE ELEMENT
VECTOR FIELD B

RESULT ELEMENT
VECTOR FIELD C

Example of Adjust Exponent of A Per B—C Operation

6-83

SPARSE VECTOR INSTRUCTIONS

Arithmetic operations may reduce many elements of a vector field to a zero or near-
zero value. Except for positional significance, the near zero values need not occupy
storage locations as floating point operands in the vector field. In order to conserve
storage space and calculating time, the sparse vector instructions make possible the

expansion and compression of vectors of this type into sparse vectors.

A sparse vector consists of a vector pair [one of which is a bit string, identified as an
order vector, and the other is a floating point array (32- or 64-bit) identified as the

data vector]. Sparse order vectors determine the positional significance of the segments
of the corresponding sparse data vector,

Typically, a sparse vector is formed by the following procedure.

1. The compare instructions generate an order vector.

2, The compress A — C per Z (BC) instruction reduces the corresponding
vector to a sparse vector,

3. The BC instruction uses the generated order vector as a means of discarding
all near-zero elements and still maintain their positional significance through
the order vector,

Figure 6-28 shows an example of compressing an initial vector into a sparse vector.
Initial vector elements Ao through Ag are contained in consecutive, half-word addresses,
beginning at arbitrary address m. A compare instruction first generates an order
vector from the initial vector., The compare instruction sets the bits in the order
vector corresponding to vector elements that are to be retained in the data vector,
Conversely, zeros in the order vector designate the near zero elements that are to be
discarded in the sparse vector field.

The compress A — C per Z instruction stores the vector elements in consecutive
addresses of the data vector corresponding to ones in the order vector., Thus, the
initial vector is now represented or the sparse vector consisting of the order vector
and data vector,

6-84 60256000 09

INITIAL VECTOR FIELD A

HALF-WORD
ADDRESS © 31

m Ao ELEMENTS DISCARDED

m+1 A, (NEAR ZERO) IN FORMING THE
SPARSE VECTOR FIELD

m+2 Aa .

m+3 A3

m+4 A, (NEAR ZERO)

m+5 A5

m+6 Ag (NEAR ZERO)

m +7 A7

m +8 Ag(NEAR ZERO)

GENERATED ORDER VL .OR 2
Ay
Ao_& As
0123456 789 3

[olt]1jelvje]fo |

GENERATED DATA VECTOR A

HALF-WORD
ADDRESS © 3l GENERATED
n Ag SPARSE VECTOR
n+l Az
n +2 A3
n+3 Asg
n+4 A7

NOTE: 32-8BIT OPERANDS

Figure 6-28. Example of Compressing Initial Vector Field into Sparse Vector Field

60256000 09 6-85e

SPARSE VECTOR INSTRUCTION FORMAT

All sparse vector instructions use the same general format as shown in Figure 6-29.
Table 6-17 lists each of the 8-bit designator portions of the sparse vector instruction
format and the corresponding definition.

BASE ADDRESSES AND FIELD LENGTHS

Figure 6-30 shows that the base addresses and field lengths for the sparse data vectors
are the same format as the corresponding field lengths and base addresses of the
normal vectors. However, the field lengths associated with source sparse data vectors
are not used; thus, Figure 6-30 shows bits 0 through 15 of the registers designated

by A, B, and C as not used. The field lengths for these vectors are determined by
the number of ones in the corresponding order vectors. The field lengths of the
source order vectors (X and Y) and the result order vector (Z) are item counts in

bits. The addresses to these order vectors are bit addresses.—

SPARSE VECTOR INSTRUCTION TERMINATION

Sparse vector instructions terminate when the result order vector, as defined by
corresponding field length, is filled. If the Z designator is zero or if the Z field
length is zero, the instructions set no data flag bits and become no-operation (no-op)
instructions., The sparse vector instructions terminate differently than the vector or

vector macro instructions,
Source order vectors with a zero or short field length are extended with zeros as

required. If vector Z contains a nonzero field length and the C designator is zero,
the results of the instruction are undefined.

6-86 60256000 09

G

Figure 6-29,

(SEE TABLE 6-15)

General Sparse Vector Instruction Format

(SUBFUNCTION)
0 ') 1916 2324 3132 3940 4748 55 56 63
F X A Y B z c
(FUNCTION) (D V LENGTH} (BASE ADRS)](0 V LENGTH|(BASE ADRS)|(0 V LENGTH|(LENGTH &
& BASE ADRS) & BASE ADRS) & BASE ADRS) BASE ADRS)
//// A N~——— G BITS 5-7:

G BIT 0: SIGN CONTROL (SEE TABLE 6-16)

0 = 64-BIT OPERANDS & BITS 3. 4

1 = 32-BIT OPERANDS y i NOTE: O V DESIGNATES ORDER VECTOR

TABLE 6-17. SPARSE VECTOR INSTRUCTION DESIGNATORS
8-Bit
Designator Definition
F Instruction code
G Suboperation code; the state of G bit 0 denotes the following.
State Designation
0 64-bit operands
1 32-bit operands
Bits 1 and 2 of the G designator must be zero for all sparse
vector instructions. When bit 3 is set, the function is broad-
cast A. When bit 4 is set, the function is broadcast B, G
bits 5 through 7 function as sign control bits (refer to
Table 6-16).

XY Specify the register that contains the base address and field
length of the source order vector associated with source
sparse data vectors A and B, respectively

A,B Specify the register that contains the base address of the corre-
sponding source sparse data vector

C Specifies the register that contains the base address of the
result sparse data vector
Z Specifies the register that contains the base address and the

field length of the result sparse order vector associated with
result sparse data vector C

tAppendix C provides a composite listing of the G designator bits usage according to
function code.

60256000 09

6-87 ©

1816 (A),(B) OR (C)

€3

NOT USED (D

BASE ADDRESS

15 16 (X}, (Y) OR (Z)

FIELD LENGTH

BASE ADDRESS

6-88

Figure 6-30.

@ AT THE COMPLETION OF THE SPARSE
VECTOR INSTRUCTIONS, THE LENGTH
OF THE RESULTING SPARSE VECTOR
IS TRANSFERRED TO THIS PORTION
OF REGISTER C.

Sparse Vector Field Length and Base Address Formats

60256000 09

A0 ADD U; A + B=>C
Al ADD L; A + B>C
A2 ADD N; A + B>C
A4 SUB U; A — B=>C
A5 SUB L; A — B=>C
A6 SUB N; A —B>C

G
(SUBFUNCT ION)
0 7's 1516 2324 3132 3940 47 48 55 56 63
F X A Y B z c
(A0 - A2; (0 V LENGTH[(BASE ADRS)|(0 V LENGTH[(BASE ADRS)[(0 Vv LENGTH| (LENGTH &
A4 - A6 & BASE ADRS) & BASE ADRS) & BASE ADRY| BASE ADRS)
/ TG BITS 5-7:
G BIT 0: SIGN CONTROL BITS (SEE TABLE 6-16)
0 = 64-BIT OPERANDS
1 = 32-BIT OPERANDS G BITS 3, 4:

(SEE TABLE 6-15)

These instructions perform the indicated floating point operations on elements of sparse
data vectors A and B. The instructions return the results to elements of sparse data
vector C. The instructions read an element from sparse data vector A and/or B when the
corresponding sparse order vector X and/or Y containsg a one in the associated bit position.
A zero in a source order vector causes machine zero to be used as the associated A and/or
B element, The instructions generate an element in the C field when a one is in the
corresponding bit position of order vector X and/or Y. Each bit position of order vector Z
is the bit-by-bit inclusive OR of order vectors X and Y. The instruction transfers the
resulting field length of sparse vector C to bits 0 through 15 of register C.

In the previous sparse vector instructions, U, L, and N denote that the upper, lower, and
normalized floating pointt results are generated, respectively., Applicable data flag bits
for the sparse vector instructions are 42 (exponent overflow), 43 (exponent underflow), and
46 (indefinite operand). However, the instructions set the data flag bits only when an

element is actually stored in the result vector.

Figure 6-31 shows an example of an add U; A + B - C sparse vector instruction operation
with assumed register contents and vector address fields. Although an A0 instruction is
used in the example, the general execution sequence is the same for all the previous
instructions. The dashed lines in Figufe'6-31 connect the elements of the sparse data vector

with the corresponding order vector bits,

t Appendix B describes the normalize floating point operations.

60256000 09 6-89

[+ 78 1S 16 23 24 31 32 39 40 47 48 55 36 63
F G A Y B F3 c
A0 80 03 04 05 06 07 08
\specmes 32-BIT OPERANDS ADD U, A+B—>C
INSTRUCTION

| FIELD , BASE |

BEFORE _EXECUTION ILENGTHI ADDRESS |

]

REGISTER 03= |°°°7 Ioooooooowoo:

04= 10000 1000000005000

05: 0008 |000000006000,

06= | 0000 :oooooooo-rooon

1000000008000}

DATA VECTOR

07= : 0009
08= | 0000 :oooooooos;ooo|

ORDER VECTOR

A HALF-WORD X
(4] 31 Mo 123453567 3
Ao 5060_'_[IO'OI IOIOI [1
23 < ~5036 - ! BIT ADDRESSES
___________ - -
6 < ~5045 4000-4006
DATA VECTOR ORDER VECTOR
[+] 8 3t 0l 23435678 Y 3
B - 76661, HJJHIH]
B P
B3 <‘-;0"25-—" by BIT_ADDRESSES
_________ ._l 1 -
Bq 7030 o 6000-6007
___________ J I
85 [~ 7060 P
____________ -
6 [~ 7680 :
B7 i ePaeiadi el J
70A0
DATA VECTOR ORDER VECTOR
0 ¢ 3 0123486789 z 3l
z 555 LIEL T
. +|B <~ 3050 J: i B ! BIT ADDRESSES
3tB3) — 29046 —~""" i : 8000-8008
B4 R i
)l
i L o
(Ag+Bg) € = m e — e 4!
90A0 I
87 - 5-6_ _________ .
oco FIELD BASE
AFTER EXECUTION [LENGTH, ADDRESS

REGISTERS 03,04,05,06 AND O7 ARE UNCHANGED,

Figure 6-31.

6-90

08=,0007 ;000000009000

Example of an Add U; A + B —C Sparse Vector Instruction

60256000 09

In an AO instruction operation, an actual addition of an element from data vector A to an
element from data vector B takes place only when the corresponding source order vector
bits are both ones. For example, the A3 + B3 addition takes place because bit 3 of X and Y
order vectors is a one. In cases where a source order vector bit is a one and the
corresponding bit for the other source order vector bit is a zero, machine zero is

essentially added to the sparse vector element,

At the end of the sparse vector operation, the resulting output data vector length is inserted
in the corresponding portion of the register designated by C. In the example, the instruction
transfers a 000716 to the leftmost 16 bits of register 08, The 0007 denotes the number of
elements in the result data vector C.

A8
A9
AB
AC
AF

MPY U; Ae B>C
MPY L; A ® B>C
MPY S; A ®B>C
DIV U; A/B>C
DIV S; A/B>C

G
(SUBFUNCTION)

0 78 1516 2324 3132 3940 47 48 5556 63

A Y B Z c

X
(0 V LENGTH

& BASE ADRS)

(BASE ADRS)

(0 V LENGTH

~ |& BASE ADRS)

(BASE ADRS)

(0 V LENGTH
& BASE ADRS)

(LENGTH &
BASE ADRS)

_— v

. TG BITS. 5-7:
4-BIT OPERANDS SIGN CONTROL (SEE TABLE 6-16)
2-BIT OPERANDS G BITS 3, 4:

(SEE TABLE 6-15)

wo O

These instructions perform the indicated floating pointt, multiply, and divide operations

on elements of sparse data vectors A and B. The instructions store the results in elements
of sparse data vector C. The instructions read an element from vector A and/or B if the

bit position of the corresponding order vector X and/or Y is a one., An element is generated
for sparse data vector C when both the X and Y order vectors contain a one in the corre-
sponding bit position. Result order vector is the bit-by-bit, logical AND of order vectors
X and Y,

tAppendix B describes the floating point arithmetic operations,

60256000 09 6-91 ©

In the sparse vector instructions previously listed, U, L, and S denote that the upper,
lower, and significant upper floating point results are generated, respectively. Appli-
cable data flag bits for the multiply and divide sparse vector instructions are 41
(floating point divide fault), 42 (exponent overflow), 43 (result machine zero), and 46
(indefinite result). However, the instructions set the data flag bits only when an
element is actually stored in the result vector.

Figure 6-32 shows an example of multiply U; A e B — C sparse vector instruction
operation with assumed register contents and vector address fields. Although an A8
instruction is used, the general execution sequence is the same for all instructions
of this type. Dashed lines connect the elements of the sparse data vector with the
corresponding order vector bits.

In an A8 operation, an actual product is generated as an element of data vector C only
when the corresponding order vector bits for the A and B data elements are both ones,
In cases where one or both of the source order vector bits is a zero, no multiplica-
tion takes place and the corresponding result order vector bit is cleared. In Figure
6-32, only three products are generated by the instruction (A3 e Bj), (Ag e Bg),
and (A7 e By).

At the end of the sparse vector operations, the resulting output data vector length is
inserted in the corresponding portion on the register designated by C, In the example,
the instruction transfers a 0003 to the leftmost 16 bits of register 09, The 0003 de-
notes the number of elements in the result data vector C,

B=902 60256000 09

78 15 16 23 24 31 32 39 40 47 48 55 56

63

F G X A Y B F] c
A8 80 04 05 06 07 08 09
\—SPECIFIES 32-BiT OPERANDS MPY U; AsB —C
INSTRUCTION
' FIELD ! BASE 1
BEFORE EXECUTION iENGTH' ADDRESS !

|
REGISTER 04= IOO o8 000000005000|

056= |0 000 |000000006000I
06= : 0008 l000000007000I
o7= I 0000 iOOOOOOOOSOOOI
08- , 0009 |000000009000

09= 0 000 lOOOOOOOOAOOOI

DATA VECTOR HALF-WORD ORDER VECTOR
A 3) ADDRESSES o123 45678 X 3
Ao < 5000" "ﬂOIOI |°|°| l | |
Az lem—m—mmemo o
A i "5000-8007
s © 030" """ ! °
7 e -~ —_———— - -
6060
P ORDER VECTOR
B 3 012345678 Y 3
gl < %066 1. IENOI i]r 1000 |
______ '_'_'_ _1
B3 < 5025 :::: BIT ADDRESSES
----------- ~ -7007
34 8040 N 7000-700
__________ '
5 © 8060 o
BG _____________] I
8080 '
By e - ———— — —— - —— - - J
DATA VECTOR 8040 ORDER VECTOR
C 31 0123456 78 Z 31
k5B w005 BT]
A6°BG “a020 T~ E BIT ADDRESSES
. e = — = —— —— —— ——— 9000-9008
L A040

AFTER EXECUTION
REGISTERS 04,05,06,07 AND 08 ARE UNCHANGED,

| FIELD | BASE
JLENGTH, ADDRESS

!
|
|
09:/000 3 000000004000

Figure 6-32. Example of a Mpy U; A 8 B —C Sparse Vector Instruction

60256000 09

6-93

VECTOR MACRO INSTRUCTIONS

Vector macro instructions perform operations similar to vector instructions. However,
some vector macro instructions do not form result vector fields, but store the results
in one or two registers which are specified by the instruction. In these instructions,
the control vector contains neither length nor offset, but controls the use of elements
of the source vectors. Bit 2 of the G designator is undefined and must be a zero.
Designators C and C + 1 denote 32-bit registers when bit 0 of the G designatort
specifies 32-bit operands. In the vector macro instructions that produce result vector
fields, the control vector performs the same function as in the vector instructions.

Vector macro instructions with result fields (as opposed to result registers) extend
short source fields with machine zeros or normalized ones and terminate in an identical
fashion to the vector instructions, The other vector macro instructions do not extend
short source vectors but terminate when either source vector is exhausted. For in-
structions of this type, broadcasting both source fields causes an undefined condition

to exist, Appendix C gives a complete listing of the various field conditions and the
resulting termination condition,

CO SELECT EQ; A = B, ITEM COUNT TO(C)
Cl SELECT NE; A# B, ITEM COUNT TO)
C2 SELECT GE; A= B, ITEM COUNT TO (C)
C3 SELECT LT; A<B, ITEM COUNT TO(C)

These instructions compare each element of vector field A with its corresponding ele-
ment of vector field B by subtracting vector B from vector A, The conditions for
comparing floating point operands are described in the Floating Point Compare Rules,
appendix B, The comparing operation proceeds until the compare condition is met
(for a pair of elements not inhibited by the corresponding bit of the control vector)
or the shorter of the two vector fields is exhausted., If broadcast is selected for field
A or B (but not both), the instruction will terminate when the nonbroadcast field ter-

minates,
G
(SUBFUNCTION)
/__M_—ﬂ
0 78 1516 23 24 31 32 39 40 47 A8 55 56 63

F g // X A Y B z C
(Co - ¢3) (OFFSET |(LENGTH & | (OFFSET |(LENGTH & [(C V BASE |{ITEM COUNT
FOR A) |[BASE ADRS) | FOR B) [BASE ADRS) | ADRS) REGISTER)

% Z

. GBITs34
0 = NORMAL A/B SOURCE VECTOR

1 = BROADCAST REPEATED (A)/(B)

Gom 064—BIT OPERAND!
1 32-BIT OPERANDS _GBIT |
0= CONTROL VECTOR OPERATES ON 1'S

1= CONTROL VECTOR OPERATES ON 0'S

tAppendix C provides a comprehensive listing of the G designator bits usage according
to function code.

604 60256000 09

If the compare condition is met, the item count equais the number of pairs of elements
encountered up to (but not including) the pair meeting the specified condition,including

the pairs inhibited by the control vector. If the compare condition is not met, the item
count equals the length of the shorter vector after the offset adjustment. The instruction

stores the item count into the rightmost 48 bits of a cleared register C. }

The control vector, if used, determines which pairs of elements are compared. For
example, if G designator bit equals zero, a one bit in the control vector enables the
comparison of the corresponding pair of source elements. A zero bit in a control vec-
tor disables the comparison of the corresponding pair of source elements. The item
count, as previously described, includes all pairs of elements encountered, including the
pairs for which the comparison was inhibited. If a control vector is used and either
source vector A or B is exhausted before a permissive control vector bit is encountered,
the instruction makes no comparisons. In this case, the item count represents the
length of the shorter vector field minus the offset. Applicable data flag bits are 37

(select condition not met) and 46 (indefinite result).

Figure 6-33 shows an example of a select EQ; A=B; item count — C(CO0) instruction l
with assumed instruction codes, register contents, and vector fields. The G designator
specifies 32-bit operands and broadcast source vector Ay, Since the B offset equals

3, the first comparison takes place between source element Bg and broadcast vector

Ag; this comparison is not met, Element By satisfies the comparison condition, but

the zero in bit 5 of the control vector disables the comparison, Element Bg satisfies

the comparison condition, and the control vector enables the comparison, Thus, the
item count of three is transmitted to the rightmost 48 bits of register 0A. The item
count includes the By comparison although the control vector disabled this comparison,

Tif the C designator is zero, this instruction produces undefined results.

60256000 09 6=-95

INSTRUCTION CODES

[:] T8 (L1 3 23 24 3 32 39 40 47 48 33 36 63
F G X A Y B F3 c
(co) (90) (00) (02) (04) (0s6) (o8) (oA)
BEFORE EXECUTION
REGISTER 02= BROADCAST VECTOR Ag
(Ap=32-BIT FLOATING-POINT OPERAND)
04= 0000 000000000003
\—V_I
FIELD LENGTH B OFFSET
06:=0007" 000000005000
__v__._____l
B BASE ADDRESS
08=0000 000000006000
_____V__/
CONTROL VECTOR BASE ADDRESS
0A= 0000
8 VECTOR FIELD o) 000000000000
(32-BIT FLOATING POINT OPERAND)
[« 31
Bo < 5000
B, OFFSET CONTROL VECTOR
{ADDRESS 6000)
Bz 01 234567 3
Bz £A FIELD
3770 " LENGTH Jolololi{ifoli
Bg # Ao _
Bs = A STARTING \——
5°°0 N Aooress X l
Be = Ao \(_5030) DISABLE COMPARISON
COMPARISON
DISABLED

AFTER EXECUTION

REGISTER 02,04,06,AND 08 ARE UNCHANGED
0A= 0000 000000000003
___._v_/

ITEM COUNT

Figure 6-33. Example of Select EQ; A=B, Item Count to C

6-96 60256000 09

DA SUM (Agt+ A, + Ao+ @eeeeAn) TO (C) AND (C+1)

G

0 78 15 16 23 24 31 32 39 40 47 48 55 56 63

[

X A z
(DZ) / (oFFSET | (LENGTH & . (C vV BASE | (u-sum)
FOR A) |BASE ADRS) / ADRS)
I
_/ \‘ | (L-suM) |
GBITO: BITI: I

. G .
0 = 64-BIT OPERANDS 0 CONTROL VECTOR OPERATES ON 1'S Lo - d
i = 32-BIT OPERANDS 1 CONTROL VECTOR OPERATES ON 0°'S NOTE: U DENOTES THE UPPER RESULT,

L DENOTES THE LOWER RESULT,

o=

This instruction forms the double-precision, unnormalized, floating point sum { of all
the elements of vector field A, The instruction is executed in the following manner,
Ag t Ay + Ag +t Ag+ .. . Fsum X
A1+A3+A5+A7+. e o« = Sum Y

Where Ag, Ay, Ag, . . . are elements of vector A.

If necessary, the instruction right normalizes the partial sums after each addition,
Sums X and Y (both double-precision quantities) are then added to form the final sum.,
The instruction transmits the upper result portion of the sum to the register specified
by C and the lower result to the register designated by C+1.

Registers C and C + 1 are either 32- or 64-bit registers, depending on the state of
G bit 0 in the instruction. Register C must be even; if register C is odd or zero,
the instruction results are undefined.

The Y and B designators (bits 32 through 47) and bits 2 through 7 of the G designator
are not used and must be zeros. There is no length specification for control vector Z.
The instruction terminates when the source vector field A is exhausted. If the control

vector allows no elements to be summed, the instruction sets the result to machine
zZero.

If a control vector (CV) is specified and contains no permissive elements, the result

is machine zero. The instruction does not specify control vector length or offset.

T Appendix B describes the double-precision addition of floating point operands and
order-dependent result considerations,

60256000 09 6-97

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46
(indefinite result). Data flag bits 43 and 46 are determined only by the final upper and
lower results; if the upper result is indefinite, the lower result is undefined, Data

flag bit 43 is set if the exponent of the lower result is less than 90005 for 64-bit
mode and 90y for 32-bit mode. In this case, the exponent of the upper result may

be greater than 90007 and will be stored as is and will not be forced to machine zero.
The instruction sets flag bit 42 if any of the add operations overflow.

DB PRODUCT (Ag A, Ap ® ® ®®An) TO C

G
0 778 15 16 23 24 31 32 39 40 47 48 55 56 63
F g X A z c
(0B) Z (OFFSET |(LENGTH & (C vV BASE [SIGNIFICANT
FOR A} |BASE ADRS) _ ADRS PRODUCT)
7 Z

GBITO: GBITI:

O = 64-BIT OPERANDS 0 = CONTROL VECTOR OPERATES ON 1'S

1 = 32-BIT OPERANDS 1 = CONTROL VECTOR OPERATES ON 0'S

This instruction forms the significant productt of successive, floating-point elements
in source field A, The instruction is executed in the following manner.

Ag o Ay = X3 A1 e Az = Y3
X1 0 Ay = Xy Y e A = Yo
Xy @ Ag = X3 Yo @ A7 = Y3
Xp-1) & Ay = X (Yn-1) e Ay = ¥

Where Ag, Ay, Ay, . . . are elements of source field A, and X and Y are
partial products,

Sums X and Y are then multiplied to form the final product, The instruction then
stores the final significant product in the register specified by C. Register C is either

a 32- or 64-Dbit register, depending on whether 32- or 64-bit operands are used, re-~
spectively,

tAppendix B describes the floating point multiplication operation and order-dependent
result considerations.

6-98 60256000 09

In the execution of the DB instruction, the following result differences may occur. The
STAR-100 may multiply the partial products (X and Y) by a normalized one (EA40 0000
in 32-bit mode or FFD2 4000 0000 0000 in 64-bit mode) an indeterminate number of
times, depending upon discontinuities in the input data stream. If the coefficients of
the partial products are nonzero, the partial products are unchanged by this additional
multiply., However, if the coefficient is all zeros, EA or FFD2 will be added to the
exponent, This is normal under the definition of significant multiply, If the interrup-
tions last long enough, the exponent may decrease to machine zero, setting data flag 43,

Input Stream Partial Products
00FF FFFF 1800 0000 1st
0080 0000
Interruption __ 0200 0000 2nd
occurs here (First normalized one) ECO0 0000 3rd

D600 0000 4th
Cc000 0000 5th
AA00 0000 6th
9400 0000 Tth
8EO0 0000 8th

All of the above products are equal under the floating point compare rules. The last product,
however, will set data flag 43.

These discontinuities may be caused by hardware-generated gaps in the input data or by

machine interrupts,

The Y and B designators (bits 32 through 47) and bits 2 through 7 of the G designator are
not used and must be zeros, Applicable data flag bits are 42 (exponent overflow), 43 (re-
sult machine zero), and 46 (indefinite result).

If bit 1 of the G designator is a zero, for example, a zero bit in the control vector
disables the multiplication of the corresponding source element and the partial product.
Thus, the multiplication of a source element and the partial product takes place only
when the corresponding control vector bit is enabled. This instruction contains no

length specification for the control vector. The instruction terminates when the A source
field is exhausted. If the control vector contains no enabling elements, the result is a

normalized one,

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46

(indefinite result).

60256000 09 6-99 ®

D5 DELTA (An +1- An)->Cn
D1 ADJ. MEAN (An+1+An) /2->Cn

0 = 7’8 > 16 23 24 31 32 39 40 47 48 35 56 63

X A Z 7 o
(D5 or D1) / (OFFSET |(LENGTH & /
FOR A) [BASE ADRS) (C V BASE [(LENGTH &

_ ADRS) BASE ADRS)
N C+1
Gc? T2 DO NOT OFFSET RESULT FIELD | (OFFSET :
GBITO: 1 = OFFSET RESULT FIELD , FOR € & Z)!
0 = 64-BIT OPERANDS Ty beee e J
1 =32- = CONTROL VECTOR OPERATES ON 1'S

BIT OPERANDS O &'
1 = CONTROL VECTOR OPERATES ON 0'S

D5 DELTA A -A — C
nt1l n n

This instruction forms the nth element of result vector field C by subtracting the nth
element of source field A from the n+lth element of A. Normalized, floating point
l arithmetic is used in the subtraction. Figure 6-34 shows an example of a delta instruc-

tion with assumed instruction codes, operands, and register contents.

The example shows that since there is no offset of the A vector, the first subtraction

consists of A —A0 which produces result element CO. The subtraction of the A vector

1
elements continues in this manner until element C4 is reached. The corresponding Z
control vector bit is a zero which prohibits the storing of the result element C 4 and

leaves the C4 result field location unchanged.

Since the source field is one element shorter than the result field, C5 becomes minus
A5 and C6 becomes zero. The delta (D5) instruction terminates when the result field is

exhausted.

The Y and B designators and bits 3 through 7 of the G designator are unused and must

be zeros.

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46
(indefinite result).

6=100 60256000 09

INSTRUCTION CODE

0 78 15 18 2324 3132 3940 4748 -