
OPERATING SYSTEM
REFERENCE MANUAL

CONTROL DATA®
ST AR COMPUTER SYSTEM

60384400

REVISION RECORD
REVISION DESCRIPTION

01 Preliminary printing

(1-31-73)

A Original edition

(10-1-73)

B Section 11 and appendix G are added with this revision. Other affected_Q_C!_g_es are: Front matter· 1:1

(1-31-74) 1-8; 2-3 through 2-16; 3-1; 4-1 through 4-28, 4-31 thro~ 4-34 4-37 throu_gh 4-45· 5-4 throu_gh 5-32__;_

6-1 through 6-7; 7-1 through 7-6; 8-1, 8-8 throu_gh 8-15_;_ 9-1 9-7 throu_gh. 9-20· 10-1 throu_gh 10:2-7'

C-1 through C-6; D-1 through D-3, D-9, D-13 throu__gh D-16_;_ E-2 E-5 through E-7· Index-I throl!.cll

Index-16; Comment Sheet.

c Incorporates system improvements to reflect version 1.1 of STAR-OS. Information added includes STAR

(2-10-75) Record Manager (new section 12); sequential record files added to ~endix C~ EDITT a source line

editor, added to section 9; and a new appendix H, containing system error messages and codes. The

entire manual has been reprinted.

D Incorporates enhancements to version 1.1 of ST AR-OS. Appendix I is added with this revision.

(9-1-75)

Publication No.

60384400

REVISION LETTERS I, 0, Q AND X ARE NOT USED Address comments concerning
this manual to:

©
1973, 1974, 1975

Control Data Corporation
Printed in the United States of America

ii

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and
additions to inforf11lltion in this manual are indicated
by bars in the margins or by a dot near the page
number if the entire page is affected. A bar by the
page number indicates pagi.nation rather than content

Feature Page Revision

Cover -

Title page -

ii thru ix D
1-1,1-2 D
1-3 A
1-4 D
1-5 A
1-6 D

I
1-7 B
1-8 D

I 2-1,2-2 c

I
I

I
2-3 thru 2-9 D
2-10 c

I I

I
2-11 thru 2-13 D
3-1 B
3-2 c
4-1 thru 4-3 D
4-4 B
4-5 thru 4-15 D

;
4-16 c
4-17 thru 4-19 D
4-20 c
4-21 D
4-22 c
4-23, 4-24 D
4-25 c
4-26 D
4-27,4-28 c
4-29 D
4-30, 4-31 c
4-32 D
4-33 c
4-34 thru 4-36 D
4-37 c

60384400 D

Feature Page Revision

4-38 thru 4-46 D
5-1 c
S-2, 5-3 A
5-4 c
5-5 B
5-6 A

rt

5-7 B
5-8 c
5-9 thru 5-12 D
5-13 D
5-14 D
5-15 thru 5-18 B
5-19 thru 5-21 D
5-22 thru 5-24 B
5-25 c
5-26 B
5-27 thru 5-36 D
6-1 thru 6-10 D
7-1 thru 7-6 D
8-1 D
8-2.8-3 ('

8-4 thru 8-11 D
9-1 thru 9-8 D
9-9 thru 9-14 c
9-15 D
9-16 thru 9-23 c
10-1 thru 10-6 D
10-7 c
10-8 B
10-9 c
10-10, 10-11 B
10-12, thru 10-14 c
10-15, 10-16 B
10-17 thru 10-20 D
10-21 B
10-22' 10-23 c
10-24 thru 10-27 B
11-1 D
11-2, 11-3 c
12-1 thru 12-13 D
12-14 c
12-15 thru 12-24 D

iii

Feature Page Revision Feature Page Revision

A-1 D
A-2 c
B-1 c
B-2 A
B-3 c
B-4 thru B-10 A
B-11 c
B-12 thru B-19 A
C-1 c
C-2 D
C-3 c
C-4 thru C-9 D
D-1 B
D-2 thru D-7 D
D-8 A
D-9 B
D-10 thru D-12 A
D-13 B
D-14 thru D-19 D
E-1 thru E-6 D
F-1 A
F-2 c
G-1 c
G-2, G-3 B
G-4 c
G-5 B
H-1 thru H-5 c
H-6, H-7 D
H-8 thru H-11 c
H-12 thru H-22 D
1-1 thru 1-11 D
lndex-1 thru -9 D
Cmt Sheet D
Return Env -

Back Cover -

iv 60384400 D

PREFACE

This manual presents information of interest to the user of release version 1.1 of the STAR Operating System.
n _ ___ _ J:' .o1...L_ -~-.-~.c-.. ___ .J.. _..J..J~..i...~---- .t..._ n~An r"\.ci .._,_ ______ ,_LL~- ·--1---- ____ ..t..L_ T\ _____ 1 _______ _ .l ..._,__ ...i... ___ ..._

.::>UlllC Ul lllC :s1g11Hll,;i:llll iiUUlllUll:S tu .::> 1 J-\.1'..-v.::> u11uug11 llll:S lClCii:SC iilC lllC 1'..Cl,;UlU 1Vli:1Hiigc1 iillU lllC lCAl

editor, EDITT. Although documented in preceding editions of this reference manual, the library maintenance
program UPDATE, and the checkpoint/restart feature were not usable with version 1.0 of STAR-OS.

Much of the information on which this document was originally based was derived from the University of
California document UCID 30021.

60384400 c

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of
undescribed features or parameter.

v

CONTENTS

INTRODUCTION TO ST AR-OS 1-1 File Ownership 4-2
Accounting for File Ownership 4-3

ST AR-100 Architecture 1-1 P~la. A ,..,...OC'IC'I r.-.+on-n ... ;OC'I A '1
..&. .1..LV .L-1VVVi.Ji.J '-1U.ir..v5vJ..L\.li.3 ,-_,

Virtual Memory 1-1 Activity 4-3
Distributed System 1-2 Input/Output 4-4
String Array Processing 1-2 File Management Messages 4-4

System Configuration 1-4 Simple File Control 4-4
Operating System Precepts 1-4 CREATE FILE 4-5
Operating System Utilization of ST AR OPEN FILE 4-8

Architecture 1-6 MAP 4-13
Virtual Memory Concepts 1-6 CLOSE FILE 4-16
Distributed System Concepts 1-6 EXPLICIT 1/0 and INTERRUPT 4-20
String Array Processing Concepts 1-7 EXPLICIT INPUT /OUTPUT 4-21
File Orientation 1-7 GIVE UP CPU UNTIL I/O COMPLETES 4=29
Permanent Files 1-8 PROGRAM INTERRUPT 4-31

RETURN FROM INTERRUPT 4-33
2 SYSTEM STRUCTURE 2-1 Miscellaneous File Management 4-34

REDUCE FILE LENGTH 4-35
Resident System 2-1 DESTROY FILE 4-37
Virtual System Tasks 2-2 GIVE FILE 4-39
Privileged User Tasks 2-2 ROUTE AND FILE DISPOSITION 4-41
Peripheral System 2-2 GIVE TAPE ACCESS TO CONTROLLEE 4-43
ST AR Job Management Conventions 2-3 CHANGE FILE NAME OR ACCOUNT 4-45

File Index 2-3
Minus Page 2-6

OTHER SYSTEM MESSAGES 5-1 Input/Output Connectors 2-7 5

Map Directories 2-9 SEND A MESSAGE TO CONTROLLEE 5-1
Explicit Input/Output Information 2-10 GET A MESSAGE FROM CONTROLLEE 5-3
Interrupt Address Stack 2-10 SEND A MESSAGE TO CONTROLLER 5-6
Minus Page File Maps 2-11 GET A MESSAGE FROM CONTROLLER 5-8
Bound Explicit Maps 2-11 INITIALIZE OR DISCONNECT
Bound Implicit Maps 2-12

CONTROLLEE 5-11
Drop File Map 2-13 INITIALIZE CONTROLLEE CHAIN 5-13

MESSAGE CONTROL 5-15
3 SYSTEM MESSAGES 3-1 REMOVE CONTROLLEE FROM MAIN

MEMORY 5-17
Alpha and Beta Words 3-1

TERMINATE 5-19
Controller and Controllee 3-2 SEND A MESSAGE TO THE OPERATOR 5-20

ADVISE 5-22
4 FILE SYSTEM AND INPUT /OUTPUT RECALL 5-24

MANAGEMENT 4-1 LIST CONTROLLEE CHAIN 5-25
LIST FILE INDEX OR SYSTEM TABLE 5-27

File Creation 4-1 MISCELLANEOUS 5-31
File Names 4-l POOL FILE MANAGER 5-34
Device Type Output Files 4-2

60384400 D vii •

6 JOB PROCESSING 6-1 EDIT PUB 9-14
Object Library Editor 9-15

Interactive Processing 6-1 Creating or Extending a Library File 9-16
Establishing User Identity 6-1 Omitting Modules From a Library File 9-16
Initiating Program Execution 6-2 Object Library File 9-17
Interacting with Program 6-3 Library Header Table 9-17
Terminating Connection 6-4 Library Directory 9-18

Batch Processing 6-4 Object Library File Format 9-19
Batch Processor Deck 6-5 Index Table 9-20
Job Identification Card 6-7 Module Table 9-20
Control Cards 6-7 EDITT 9-20
Control Card Processing 6-9 File Pages 9-21

Modes of Operation 9-21
7 THE LOADER 7-1

Batch Loader 7-2 10 LIBRARY PREPARATION AND

Interactive Loader 7-2 MAINTENANCE 10-1

Loader Options 7-3 Input File 10-2
Group Options 7-5 UPDATE Control Parameters 10-2

UPDATE Control Card 10-3
8 DEBUGGING 8-1 UPDATE Directives 10-8

Card Identification 10-9
Dump 8-1 Program Library Files 10-11

Error Mode 8-1 Program Library Format 10-12
Interactive Mode 8-1 Output Files 10-16
Batch Mode 8-2 Compile File 10-17
Control Statements 8-2 Source File 10-18
Directives 8-2 Library File Creation and Maintenance 10-18
Alternate Input File Format 8-4 Library File Creation 10-18

MD UMP 8-4 Library Correction Directives 10-20
DEBUG 8-5 Error Conditions 10-27

Batch Use 8-5
Interactive Use 8-5
DEBUG Commands 8-6 11 CHECKPOINT /REST ART 11-1

Display Memory Commands 8-8 Calling Sequence 11-1
Register Commands 8-9 Checkpoint Files 11-2
Alter Memory Commands 8-9 Restart 11-2
Program Control Commands 8-10 Example 11-3

9 UTILITIES 9-1 12 STAR RECORD MANAGER 12-1

CREATE 9-1 SRM Overview 12-1
DESTROY 9-3 SRM Functions 12-1
GIVE 9-4 File Information Table 12-3
FILES 9-5 SRM Function Descriptions 12-3
COPY 9-5 File Definition and Maintenance 12-6
COMPARE 9-6 FILE Macro 12-6
SWITCH 9-7 FILEX Macro 12-7
TCOPY 9-9 GENFIT Module 12-8

Batch Control Card Format 9-9 GENFITX Module 12-8
Execute Line Format 9-9 GETFIT Module 12-9
TCOPY Directives 9-9 SETFIT Module 12-10
TCOPY Results 9-11 CREATE Module 12-11
TCOPY Examples 9-13 DESTROY Module 12-11

• viii 60384400 D

REDUCE Module
CHANGE Module

File Initialization and Termination
OPEN
CLOSE

Data Transfer and Structuring
BUFOP
READ
WRITE
GET
GETM
PUT
PUTM
GETL
GETML

A Character Set
B ST AR Instruction Set (Machine

Language)
C Record and File Structures
D Loader Conventions

1-1 STAR System Showing. Component
Connections

12-11 FUTL
12-12 PUTML
12-12 GET BCD
12-12 PUTBCD
12-12 File Positioning
12-13 REWIND
12-13 SKIP
12-14 SKIPS
12-14 BKSPC
12-14 Miscellaneous System Interface
12-15 GIVE
12-15 TERM
12-16 STATUS
12-16 TPFCN
12-17

APPENDIXES

A-1

B-1
C-1
D-1

1-3

FIGURES

TABLES

E Register Conventions
F STAR-100 Invisible Package
G Program States
H Error Codes and Messages

Error Processing Information

1-2 Central ST AR - 100 Configuration
12-1 File Information Table (FIT)

12-1 ST AR Record Manager Reference Table 12-5

60384400 D

12-18
12-18
12-18
12-19
12-20
12-20
12-20
12-21
12-22
12-22
12-22
12-n
12-23
12-24

E-1
F-1
G-1
H-1
1-1

1-5
12-4

ix •

INiRODUCTiON TO STAR-OS 1

memory computer. The functions of input, compilation or assembly, loading, execution, and output of all
programs submitted to the computer, as well as allocation of main memory, are monitored and controlled by
STAR-OS. The system is file-oriented, and uses specifically allocated mass storage space as a backup for infor­
mation processing in virtual space.

STAR-100 ARCHITECTURE

The STAR-100 is a large scale, high-speed computer with a significant number of new developments. Most
important are the architectural concepts: virtual memory operation, distributive processing, and string array
processing capability. Further, the system employs many advanced design concepts, such as stream processing,
large high-speed register file, high input/output channel capacity, virtual bit addressing, large storage bandwidth,
and a powerful instruction repertoire.

VIRTUAL MEMORY

Through the virtual memory system of the STAR-100, an apparently unlimited memory structure may be viewed
as if it were entirely main memory. The STAR-100 hardware mechanisms manage system information in 65,536-
word blocks (large pages) or in 512-word blocks (small pages). System software determines the block size to use
in allocating main memory. A software mechanism ensures that the most frequently accessed pages exist in
main memory, while unused pages are sent to slower backup media as necessary.

Virtual addresses are contained in a 48-bit format. When 512-word pages are addressed, the virtual page
identifier is contained in 33 of the 48 bits; for large pages, the virtual page identifier requires only 26 of
the 48 bits. Because unused virtual space imposes no burden on the system, the user may organize program
addresses in almost any convenient manner.

Virtual addresses comprise the set assumed to exist by the programmer. Virtual addresses are translated into
physical memory addresses by system software as needed when code is brought into the central processing unit.
The system keeps track of the relationship between physical memory addresses and virtual memory addresses
through a translator, called a page table. Each entry in the page table contains the virtual page address and the
corresponding physical memory address, together with an access mode lock and other control information. A
successful association between a virtual address and an entry in the page table causes that entry to be moved
to the head of the table; all entries in between are moved down by one place. In STAR-100 the first 16
entries in the table are kept in high speed registers; the registers are examined in parallel with a simultaneous asso­
ciative compare. An unsu~_c:;e.~_sful compare re~ults in a sequentil1l search through the remainder of the table
held in main memory. Addresses of infrequently used pages automatically float to the end of the table.

60384400 D 1-1

If an address has no entry in the page tabk, various hardware sequences are initiated, and the program re­
questing the address is interrupted. Normally, the program monitor provides the space addressed by requesting
the desired block be moved to main memory either from a storage station or from the paging station. The
program is restarted, to continue processing from the point of interruption.

DISTRIBUTED SYSTEM

The computation unit of the STAR-100 is an autonomous central processor with input/output channel con­
nections. Stations, consisting of a minicomputer, display/keyboard unit, small drum and buffer memory,
handle peripheral processing functions and are linked to the ST AR central processor. Slow speed input/output
devices, terminals, magnetic tapes, etc., are grouped and connected to stations.

A station consists primarily of a small processor designed for data handling, rather than data processing; each
has its own storage system and channels for handling the particular set of devices attached to it. Figure 1-1
shows the layout of a STAR system, with the connections between the various functional units.

A STAR central processor, with its immediate storage, can be likened to a data processing station within the
system but with no particular priority over any other station. Two other stations, however, are closely
associated with the central processor. The paging station, under control of the hardware virtual page mecha­
nism and the operating system, provides temporary storage for programs exceeding available core space. The
maintenance station, in addition to its functions of off-line fault diagnosis/repair and preventive checking,
is capable of collecting detailed information about the STAR's performance.

STRING ARRAY PROCESSING

The STAR central processor includes several classes of instructions that can be used for conventional computing
or string array processing. Conventional scientific and business data processing is performed by major high per­
formance facilities that operate on floating point operands (64 or 32 bits) and on single bytes and bits. Some
floating point instructions operate register-to-register; other operations on single bits or bytes are storage-to­
storage.

STAR is also a vector processor. In STAR, a vector is defined as a contiguous set of bits, bytes, half words, or
full words in virtual memory. The definition depends on how the contents of the virtual space may be treated by
the vector processing instructions, rather than the nature of the contents.

Pipeline units operate on strings of operands, 64- or 32-bit arrays, byte strings, and bit strings. Information to
specify the addresses of source and destination streams usually is held in the register file. Core storage system
design accommodates two input operand streams and one output stream simultaneously, handled at logic speeds.

Many user functions provided by the string and array mechanism perform more complex operations on streamed
data. Such functions amount to hardware macros and include, for example, polynomial evaluation, byte editing,
scalar product of two vectors, sequencing by merging byte string records, and vector arithmetic on sparse vectors.

1-2 60384400 D

Paging
Station

Mass
Storage
Station

Magnetic
Tape

Station

Direct
Access
Devices

60384400 A

Magnetic

Core
Storage

Maintenance
Control
Station

Service
Station

Figure 1-1. STAR System Showing Component Connections

Display

Edit
Terminai
Station

Unit
Record
Station

Slow
Speed

Devices

1-3

I

The string instructions can operate on a maximum of 65,536 operands in one pass. Although the function is
executed serially in a pipeline, it may be considered as being carried out in parallel on the data. Thus, the
user has from one to 65,536 parallel processors at his disposal, depending upon how he achieves processing
through code selection. Processing facilities allow for efficient computing in the conventional sense and also
provide a fundamentally different approach to programming through string and array processing.

SYSTEM CONFIGURATION

The minimum STAR-I 00 configuration consists of a central processor interconnected to the standard magnetic
core storage (MCS) unit, and four input-output channels.

The central processor contains all streaming and instruction control, arithmetic units, storage access control,
and input-output communication control. The standard MCS contains 524,288 64-bit words of storage. The
MCS has eight sections; each connects to I32-bit read and write data buses (I28 data and 4 parity bits). Each
MCS section contains four banks, giving a total of 32 multi-phased banks. An optional MCS, identical to the
standard, provides a total system capability of I ,048,576 64-bit words.

A Maintenance Station, connected to any input-output channel, consists of a station processor having mainte­
nance control and monitoring capabilities.

Each of three additional standard input-output channels provides I6-bit data communication and control to a
station processor. Each station pro~essor has a buffer controller and control circuitry connected to the corre­
sponding peripheral equipment. Flexibility in the selection of peripheral equipment connected to the buffer
controller is possible because the operating system software is modular, and only relevant portions are loaded
into a particular station processor. (A typical station processor might be connected to a line printer, a card
reader, and some magnetic tape units.) As shown in Figure 1-2, a total of 12 input-output channels (in groups
of four) may be added to the system.

Further information about the STAR hardware may be found in the CONTROL DATA® STAR-100 Computer
System Hardware Reference Manual (publication number 60256000).

OPERATING SYSTEM PRECEPTS

ST AR-OS is basically a timesharing system. Its programs provide the fundamental eleme·nts of an operating
system, so that development of user-specific features will not impact the efficiency of the operating system.
This basic approach should encourage users to fully explore the possibilities offered by the ST AR- I 00 archi­
tecture.

Several precepts were followed in designing STAR-OS to allow a multitude of control languages, language proc­
essors, and utilities to be supported with a minimum of system overhead:

1.

2.

1-4

The operating system is file oriented. All user information in memory is allocated corresponding
storage space on a mass storage device. Tasks can be entered automatically into and removed from
main memory by the system as task management requirements dictate.

Communication between user and operating system is independent of the software conventions for
any language processor or user process.

60384400 D

Optionai
1/0 Channels

5-12 _I
~~ripheral ~ =-@-= =i
::>tat1ons r .t:;;;_ ~

\--®-- I

1/0 Channels

;~ipheral \ --i
Stations I

\ ~ ..

NOTES:

CENTRAL
PROCESSOR

Maintenance
Station

1/0 Channel

4 • Data interconnections

Write
Data

Read
Data

_ 8 Sets

Write

Magnetic
Core Storage

(524K 64-Bit
words)

~ Data r - Optional - l
'er - - ~ Magnetic I

R~d I D I Core Storage
@- - ~, (524K 64-Bit I

L words) _J ----

8 Sets

~ • Control interconnections

~ Number of bits in data transfers

All options are shown in dashed lines

1/0 channel 1 is a special channel connected to the maintenance station

Optional 1/0 channels may be added to the system in increments of four
channels. For example, 1/0 channels 5-8 would be added as a group

Figure 1-2. Central STAR - 100 Configuration

60384400 A 1-5

3. The operating system provides rudimentary, function-oriented system messages. A user process can
issue messages to produce system functions, such as input and output, file manipulation, resource
allocation, and message handling.

4. No limitations are placed on input/output device utilization. Language processors can implement their
access methods and data structures without incurring additional system overhead.

5. Basically, the operating system provides the means for a user to identify himself, cause execution
of a set of code on an existing mass storage file, and signify the end of the control sequence. A
set of executable files with global access (public files) will replace the conventional control language.

6. One program can initiate and run another program - an important adjunct to developing message
interface routines and batch processors.

OPERATING SYSTEM UTILIZATION OF STAR ARCHITECTURE

VIRTUAL MEMORY CONCEPTS

Generally, programmers must be aware of the total main memory required for holding and executing any given
program. Programs that exceed the amount of main memory must be redesigned into separate sections, and
execution planned so that individual sections can be called in as needed from auxiliary storage to overlay other
sections whose functions are complete or currently not needed.

The virtual memory and associated paging scheme of the STAR-OS frees the programmer from this concern;
the- operating system software assumes this responsibility. It manages allocation of storage between main memory
and auxiliary memory, moves information from auxiliary to main memory as needed, and translates virtual
memory addresses to physical addresses in main memory.

STAR-OS considers every program to be executable only in virtual memory. Data files may be defined either
by a set of virtual addresses or by physical mass storage addresses, and will be translated to appropriate virtual
addresses.

DISTRIBUTED SYSTEM CONCEPTS

The central operating system and the peripheral operating system each consists of a resident system and a non­
resident callable set of tasks. Various portions of the system communicate through messages. Figures 1-1 and 1-2
show the organization, distribution, and communication paths of the operating system.

The resident central operating system has two parts: the KERNEL, responsible for time slicing and message
handling and the PAGER, responsible for memory management and page swapping. The non-resident set of
central tasks comprises the virtual system; it controls user and job entries and the allocation of resources to
jobs. In addition, the virtual system contains such functions as file management, explicit input and output,
and terminal message input and output.

1-6 60384400 D

A special class of virtual system routines - privileged user tasks - include periodic system accounting and file
routing an.d disposition. Typically, the duration of these tasks is much longer than for virtual system tasks, and
they require explicit input and output.

The resident peripheral operating system is called the NUCLEUS; common to all station processors, each
NUCLEUS uses its set of non-resident tasks to control peripheral equipment. Operating system tasks for each
station processor are stored on its own microdrum.

The NUCLEUS consists of simple diagnostic routines, a system deadstart program, driver programs for the
microdrum and keyboard/display, organizational program, programs to manage the system overlay mechanism,
and the SCANNER which is the main control and organizational program.

Non-resident tasks are concentrated into larger processing routines to facilitate on-line error handling and main­
tenance procedures common to all stations. Further, station functions are grouped into different systems to
minimize system tables. Any one system col'l.tains only those routines necessary to its job.

STRING ARRAY PROCESSING CONCEPTS

The internal structure and organization of the operating system fosters efficient processing of string array and
vector instructions. For example, many tables can be searched by viewing the table as a full word array that can be
streamed through a pipeline processor. In floating point operations, vector concepts and the streaming of vector
information through STAR's two parallel pipeline processors reduces individual program computation time and
allows several programs to be in various stages of execution at the same time.

FILE ORIENTATION

STAR-OS allows two modes of input-output: explicit and implicit. Explicit input/output is accomplished with
functions such as READ and WRITE which provide a conventional manner of data transfer between user­
defined buffers and tape or mass storage.

Implicit input/output is accomplished by the operating system when the user causes an access interrupt by
referencing a page of data or code not in central memory. If the virtual page has been previously associated
with physical space, the system will transfer the data between central memory and the physical device. If a virtual-to­
physical relationship has not occurred previously, the system defines the virtual page in free space so that it
becomes an extension of program space. When doing implicit input/output, the virtual address can be con­
sidered a symbolic reference to the mass storage auxiliary memory.

ST AR-OS also recognizes two types of files; virtual, containing data or code; and physical, containing data only.
A virtual file is prefaced by a 512-word block containing control information to be used by the operating system
if the file is to be accessed in the implicit mode. This preface is known as the minus page. The bound implicit map
is part of the minus page and relates a set of virtual addresses to a set of mass storage addresses allocated for the
file. The bound implicit map has an entry for every discontinuity in virtual address space and physical space.

The system allows physical and virtual files to be opened in either the implicit or explicit mode. When opening
a virtual file in the implicit mode, the user has the option to use the mapping information from the file minus
page, or to map the file into a new set of virtual addresses. Since a minus page does not exist on a physical
file, the user must supply the- mapping infonnation when opening a physical file in the implicit mode.

60384400 B 1-7

When virtual files are opened, the user must be aware that the first block on the file is the minus page. When
either physical or virtual files are opened in the explicit mode, the system makes entries in the bound explicit
map. These entries are used by the input/output system when the user makes explicit input/output requests
for the file.

Only virtual code files that contain programs may be submitted to the system for execution, in which case the
loader is responsible for generating the minus page for a virtual code file. The user must generate the minus
page for a virtual data file.

A program can be swapped out of main memory to facilitate memory management. Corresponding mass
storage space is provided for each virtual address space. As a program is put into execution, the operating
system automatically creates a file to contain any modified pages of the program file, any free space attached,
and any read-only data space defined to have temporary write access. This file, called a drop file, has a
minus page with an area reserved for the drop file map.

PERMANENT Fl LES

Within the operating system, processing proceeds on a task basis. A task may create permanent, as well as
transitory files. Permanent files allow information to be retained from task to task. Transistory files are
retained until the task which created them is no longer active. When a task terminates without saving its drop
file, it no longer has the option of restarting the task. Refer to the TERMINATE system message described in
section 5. Tasks which are still active are exemplified by interrupted tasks and system-terminated tasks. After
one or more related tasks are terminated, files may remain which are no longer required by the user. These
files can be destroyed by using the DESTROY utility described in section 9.

1-8 60384400 D

SYSTEM STRUCTURE 2

STAR-OS is divided into four parts:

Resident System The resident system runs in a privileged mode, called monitor mode; it is always resident
in core and references memory by absolute addresses, rather than through the virtual paging mechanism. When
the processor is in monitor mode, interrupts are inhibited, and some extra instructions are enabled.

Virtual System Tasks The virtual system tasks run in user mode, and reference memory by virtual address.
They communicate with the resident system by using reserved messages, and they may modify system tables.

Privileged User Tasks These tasks have the same characteristics as virtual system tasks, but they may not
modify system tables directly. They perform tasks that require more time than virtual system tasks.

Peripheral System The peripheral operating system runs in the station processors.

RESIDENT SYSTEM

The resident portion of the operating system is comprised of the KERNEL, which handles alternator manage­
ment (time slicing) and message communication, and the PAGER, responsible for main memory allocation and
page swapping.

The time slicing portion of the KERNEL is controlled by an alternator loop that acts as a circular table with
various indicators in each table entry. Indicators include a pointer to a minus page table entry, a descriptor
block entry, and three sets of flag bits: one set is used by KERNEL, one by virtual system usage, and one set
is shared. These bits define the status of each entry in the alternator loop.

A unique entry in the alternator loop is shared by all virtual system tasks. To prevent two routines from
modifying the same system table simultaneously, only one system task is allowed to run at a time. This system
alternator slot has highest priority; it always is run unless the slot is blocked for input/output or PAGER action.
If this slot is empty, it is filled with the task at the head of the system demand task queue. When the queue
is empty, the slot is filled with the task at the head of the system task queue; and when that queue is empty
also, a user task can run.

(System demand tasks are critical to the efficient operation of the system for such operations as paging or job
disconnection; system tasks are not considered critical.)

User jobs, privileged user tasks, and virtual system tasks communicate messages to the KERNEL through the
Exit Force instruction (a machine language instruction). PAGER communicates messages by direct calls. The
peripheral system communicates with the KERNEL by setting pointers in the station queuing structure and
without external interrupts. The KERNEL communicates with the peripheral system by setting pointers and
setting station channel flags.

All communications between the various portions of the system are by messages. Messages either pass through
the KERNEL, in which case it acts as a message switcher, or are processed directly by the KERNEL.

60384400 c 2-1

All access interrupts, as well as certain messages dealing with core allocation, are passed to the PAGER by
the KERNEL. The PAGER dynamically allocates both large and small pages, and performs all required implicit
input/output necessary to free memory pages and obtain the pages causing access interrupts. PAGER operates
in a demand mode; if an overload in page swapping occurs, PAGER disconnects one or more jobs from the
alternator.

VIRTUAL SYSTEM TASKS

The virtual portion of the system controls entering users and jobs into the system, ordering jobs by priority,
and entering and removing jobs from the alternator loop. In addition, it contains routines for system file
management, explicit input/output, and terminal message handling. Virtual system demand tasks are queued
by one of two occurrences:

Bits are set in one or more alternator slots to indicate virtual system action is required.

PAGER requests the KERNEL to queue a virtual system demand task.

Virtual system tasks are queued by one of three occurrences:

Communication from the service station requires processing.

User job requests a system service not provided by the resident system.

Entry in the periodic table indicates it is time to run a virtual system task.

Within the respective queue, all virtual tasks have equal priority and are run on a first in/first out basis.

PRIVILEGED USER TASKS

Privileged user tasks run under special user identification; they can make either normal user calls or privileged
system calls, and can modify system tables only through calls.

PERIPHERAL SYSTEM

The peripheral system for all station processors has two parts:

A resident basic system, the NUCLEUS, common to all stations

A set of overlays for performing tasks related to the responsibilities of the individual stations.

The NUCLEUS is controlled by the SCANNER. This program uses scan bits and an associated table to deter­
mine which routines to call. If a particular routine is not in core, a resident overlay driver calls in the routine
from the station's microdrum.

2-2 60384400 c

STAR JOB MANAGEMENT CONVENTIONS

Tables used by STAR-OS to control job processing within the system may be affected or altered by user pro­
grams. In all cases, access to the tables must be through system messages.

FILE INDEX

The File Index is a catalog of the mass storage files for all active users in the system. The catalog for inactive users
are maintained on a mass storage unit. When a user becomes active, his catalog is brought into the active table.
Each entry in the File Index consists of a 16-word table, of the following format:

buser
64

2 name
64

3 ptrpfil pack id
16 48

unit type act siev unused iodien
8 8 8 8 16 16

5 torg tlr
32 32

acs lok

al
bva

8 48
6

7 own div fact fgive meat
32 24 4 4

f f f f
ti

ref unused 1mcat pfi ptr
16 1 2 34 12 4 28

8

9 slen saddr unused
16 18 30

t, 7

12 slen saddr unused
16 18 30

13 slen saddr unused pri uni
16 18 6 12 12

14 slen saddr un2
16 18 30

5 slen saddr * * fife fiic fiec fide
16 18 1 1 12 4 4 8

16 slen saddr sid tid
16 18 16 12

* I ficre I fidef I
I 1 I 1 I

60384400 D 2-3

I
I

• 2-4

buser

name

ptrpfil

packid

unit

type

act

slev

lodlen

Binary user number or pool name. The entire word containing this field is replaced with the
pool name when file is given to a pool.

File name in ASCII. File names must be of format described under File Names in section 4.

Pointer to pack file index

Six-character identifier of pack on which file resides

Logical unit number

File type:

0 = Physical data file

1 = Virtual data file

2 = Virtual code file

Note: File type does not imply file access mode. See mode field of CREATE and OPEN calls.

Number of active input/output connectors for this file

Security level of this file (0-255)

Length of drop file in number of pages, if different from file length, except for files given
to USERl. For these files, this field contains the binary user number of the original owner
of the file

torg Time in 16-second units at which file originated

tlr Time in 16-second units at which file was last referenced by opening it

acs File access permission:

1 = Write access }

2 = Read access

lok File lockout protection:

May be used in logical combinations

0 = No access locked out l
1 = Write access locked out

2 = Read access locked out
May be used in logical combinations

4. = Execute access locked out

bva Base virtual address of file's first word

own div ASCII code identifying file owner (from user directory)

fact ASCII account designator for charge liability

fgive File acquisition method:

0 = User created this file

1 = User was given this file

60384400 D

meat File management category:

ref

fl

f 2

f 3

f 4

filmcat

pfiptr

slen

saddr

pri

unl
un2

fie re

fidef

fiic

flee

60384400 D

0 = Permanent file

1 = Scratch file

2 = Output file

3 = Write temporary file

5 = User-generated drop file

6 = System-generated drop file

7 = Batch file

Count of number of references to this file made by opening it

File index modified bit (imod)

File index destroy bit (ides)

Name changed or file given bit (nefg)

Pack file index delete bit (idel)

File management category associated with first OPEN command for this file

Block number relative to the first block of the permanent file index

Length of physical segment in smail pages

First page address of physical segment

Priority level for a file to be output as its originating terminal or front end processor

A seven character user number from the front-end processor. The two high order 6-bit
characters are stored in unl; the five low order 6-bit characters are stored in un2.

Reserved for future system usage.

A bit indicating that the file is to be routed when it is released.

A numeric value in the file index, indicating the internal format of the file. The numeric
values and their corresponding mnemonic representations are as follows:

Value

0

1

2

Mnemonic

AS

BI

PA

Format

8-bit ASCII

binary

8-bit ASCII with ASCII control characters

A numeric value in the file index, indicating the external print or punch representation of the
file. The numeric values and their corresponding mnemonic representations are as follows:

Value Mnemonic Format

0 29 029 Keypunch format

l 26 026 Keypunch format

2 80 80-column binary format

3 *B ST AR binary format

2-5 •

fide A numeric value in the file index indicating how the file is to be disposed. The numeric
values and their corresponding mnemonic representations are:

Value Mnemonic Disposition

0 No disposition

1 PR Print on any available printer

7 PU Punch

D IN Input for Batch processing

E SC Scratch; destroyed at end of task

sid A three-character (6 bit) site identifier for the front-end processor

tid A two-character (6 bit) identifier for a terminal

MINUS PAGE

All virtual files in the system must have a minus page preface; it consists of 512-word segment (small page)
containing information to control program execution and data access. (Physical files do not have a minus page.)

The operating system uses a minus page during program execution to store such information as the execute and
interrupt invisible packages, time-slicing data, input/output connection blocks to high-speed storage devices,
maps of defined virtual space, time sharing data, page fault statistics, etc.

For a virtual code file, the loader creates and fills the minus page. For a virtual data file, the minus page and
associated maps must be created and filled by the user. Since the minus page is part of a physical file
structure, it may be created or altered with explicit input/output messages.

MINUS PAGE LAYOUT

Words Name

0-24 pip

25-27 ros

28-29 slot

30-31 ros

32-56 iip

57-63 ros

64-127 uioc

128-131 sioc

132-135 dioc

136-138 ma pp

139 err

140-150 time

2-6

Explanation

Executing program invisible package

Program restart temporary buffers

Time information required by operating system for alternator and message
management

As above

Interrupt program Invisible package

As above

Input/output connectors for user disk or tape files

Input/output connector for source file

Input/output connector for drop file

One-word directories (each) for bound explicit map, bound implicit map,
and drop file map

Error number of fatal error condition, and address where it occurred

Time usage and accounting entries

60384400 D

Words

151

152-159

160-175

176-255

256-511

Name

eio

iadd

bpfm

bvfm

dfm

Explanation

Explicit input/output information

Interrupt address stack for input/output and terminai interrupts

Bound explicit maps (of files opened for explicit input/ output)

Bound implicit maps (of files opened for implicit input/output)

Drop file map

INPUT/OUTPUT CONNECTORS

An input/output connector is a four-word block used to establish a link between the program and an input/
output device. The operating system uses an input/output connector to keep track of the activity of a
specific file and a program's use of that file. Each time a program issues a create or open file request, an
input/output connector is created.

Each program may have up to 16 connectors, numbered 0 to 15. The program source file is numbered 16
and the program drop file is 17.

Formats of the input/output connectors are shown below:

Input/output connector for a mass storage file opened for explicit input/output:

name
64

m m I
u

c n
0

0 length u
a d pmp nmp unit acs s own
t3 e2 k3 16 8 16 8 4 a2 2

bad1 bl1 unused
32 16 16

bad2 bl2 unused
.32 16 16

Input/output connector for a mass storage file opened for implicit input/output

name

64
m m u

I n
c 0 unused unit acs u own

d 0 s a
k] 4 a 2 t 3 e2 40 8 2

unused
64

pma ten ioen unit con Ima
18 16 5 6 3 16

60384400 D 2-7

For a drop file, word four of the input/output connector serves the same purpose as the second word of a
bound implicit map entry for a user or a source file. Word four of a user or source file IOC is zero.

Input/output connector for magnetic tape:

name unused
40 24

m m I c 0
a d 0 unused unit unused
t 3 e2 k3 40 8 8

bad 1 bl1 unused
32 16 16

bad2 bl2 unused
32 16 16

Fields in input/output connectors:

• 2-8

name Name of the file in ASCII. File names must be in the proper format as described under
File Names in section 4.

meat File management category:

0 = Permanent file

1 = Scratch file

2 = Output file

3 = Write temporary file

4 = Magnetic tape file

mode Mode of input/output

0 = Open for explicit input/output

1 = Open for implicit input/output

lok File lockout protection:

pmp

nmp

length

unit

acs

0 = No access locked out l
= Write access locked out

2 = Read access locked out

4 = Execute access locked out

May be used in logical combinations

Pointer to bound explicit map for this file

Number of bound explicit map entries for this file

Length of file segment in small page blocks

Logical unit number

File permission granted:

1 = Write access }

2 = Read access
May be used in logical combinations

60384400 D

own File ownership: (See section 4)

0 = Private

l = Public

2 = Pool

badl Virtual page address of first input/output buffer

bll Length in pages of first input/output buffer

bad2 Virtual page address of second input/output buffer

bl2 Length in pages of second input/output buffer

pma Physical mass storage sector address of this file's first page

len Length of file in small page blocks

iocn Input/output connector (IOC) number

con Control field of the following format:

I Cl I C2 I C3 I

Cl = 1

C2 = 1

C3 = 0

C3 = 1

Write access permitted

Read access permitted

File is contained on small pages

File is contained on large pages

Ima Logical mass storage sector address of this file's first page

MAP DI RECTORIES

Each map directory contains information relating to the location and length of its file map. Each directory
occupies the second half-word of its location in the minus page. The bound explicit map directory is at
word 136; the bound implicit map directory is at word 137; the drop file map directory is at word 138.
Each is formatted as follows:

Unused
Count of Pointer to first entry

32 entries 8 of this type of map 24

60384400 D 2-9

EXPLICIT INPUT/OUTPUT INFORMATION

Word 151 of the minus page contains information required by the operating system for processing explicit
input/output messages. It is formatted as follows:

101 102 103 104 105 106 lgpg smpg
e 8 8 8 8 8 8 8

IOn Six explicit input/output requests may be outstanding at any time, one request for each IOn
field. An explicit I/O message may have up to eight Betat requests; an outstanding Beta
input/output request is indicated by an IOn bit being on.

lgpg Number of large pages with input/output outstanding

smpg Number of small pages with input/output outstanding

INTERRUPT ADDRESS STACK

Words 152 - 159 are used by the operating system for processing interrupts from terminals and input/output
requests. Words 152 - 157 are related to the six 8-bit IOn fields in word 151. Each of the six words contains
control fields and a pointer to the Alphat word for the I/O request. The stack is formatted as follows:

Words

152-157 I Or ist ctl al fwd
8 8 6

158 I Or ist a cerp
8 8 1 4

159 I Or ist a ceep
8 8 1 4

No. of Bits 4 43

IOr Last 1/0 Beta request processed or in process

ist One bit for each of the eight potentially outstanding Beta requests, or one bit for the
controller or controllee of this program. A set bit indicates an interrupt is stacked.

ctl Control bits of the following format:

co

co
Cl

C1 C2 C3 C4 C5

GIVE UP CPU message issued for this request by the main level.

Unused.

42

43

43·

t Alpha and Beta words are conventions through which programs communicate under STAR-OS. Their general for­
mats are described in section 3. Since the use of certain fields within Alpha and Beta words varies between messages,
each field is described under the appropriate system message, in sections 4 and 5.

2-10 60384400 c

C2 = 1 GIVE UP CPU message issued for this request by the interrupt level

C3 = I Unused

C4 = 1 Program currently in interrupt level for this request

cs Unused

alfwd Alpha word pointer input/output request; if there is an interrupt address, it is in the first
Beta word.

a If this bit is set, only messages preceded by the characters (~c)I will interrupt.

cerp Controller interrupt program address counter (half-word virtual address).

ceep Controllee interrupt program address counter (half-word virtual address).

MINUS PAGE Fl LE MAPS

The file maps in the minus page relate files to physical mass storage areas, and for files opened for implicit
input/output, they relate physical mass storage areas to virtual address areas.

BOUND EXPLICIT MAPS

The bound explicit maps are related to files opened for explicit input/output, mode = 0. Each explicit file
input/output connector bas a map entry; positions are related through the connector number. Format of the
bound explicit map entry is:

pma length Ima

pma Physical mass storage sector address of this file's first page

length Length of file in small page blocks

iocn Input/output connector (IOC) number

unit Logical unit number

con Control field of the following format:

C1 C2 C3

60384400 D 2-11

Cl = 1

C2 = 1

C3 = 0
= 1

Write access permitted

Read access is permitted

File is contained on small pages
File is contained on large pages

Ima Logical mass storage sector address of this file's first page

BOUND IMPLICIT MAPS

A bound implicit map is related to files opened for implicit input/output (mode=l), which may consist of dis­
continuous virtual address ranges. Up to 40 virtual address space segments may be mapped simultaneously. All
the segments may be associated with one input/output connector, or each segment may be so associated. In
any case, each segment points to the input/output connector with which it is currently associated. The format
for a bound implicit map entry is:

unused vpa unused
17 32 15

pma length iocn unit con Ima
18 16 5 6 3 16

vpa Virtual page address of this segment

pma Physical mass storage sector address of first page of this segment

length Length of this segment in small page blocks

iocn Input/output connector (IOC) number associated with this segment

unit Logical unit number

con Control field (see con under Bound Explicit Maps)

C 3 0 Indicates small page segment
Indicates large page segment

Ima Logical mass storage sector address of first page of this segment

In bound implicit map entries, all first words are in the first half of the map space, and all second words are
in the second half. Entries are sorted by ascending virtual address; blank entries are squeezed out.

2-12 60384400 D

DROP Fl LE MAP

The drop file map is related to free space attached by the program, modified source pages, modified write
temporary pages, the program minus page, and the program virtual page zero. It always is associated with
input/output connector number 17. Each drop file map entry consists of one full word and one half word.
Up to 170 entries may be made in the drop file map, and each entry may have up to 31 associated pages.
The 170 full word entries occur first in the map space. The format of these entries is:

pma iength vpa

pgsz

pma Physical mass storage sector address of first page of this space

length

pgsz

Length of this space in small page blocks

Size of pages in this space

0 = small

1 = large

vpa Virtual page address of first page in this space

•

The 170 half-word entries that follow the full-word entries correspond as follows:

0 32

1 2
u
n

3
u

4 s
e
d

5 6

-i'

u
167 n 168

u
s
e

169 d 170

63

u
n
u

s
e
d

u
n
u.
s
e
d

Each half-word entry consists of a bit corresponding to a page in the entry. If the bit is zero, the page is
either undefined or exists in main memory or on the paging device; if the bit is one, the page has been written
to mass storage on the drop file. Bits 0 and 32 represent page 1 of a segment; bits 30 and 62 represent page
31 of a segment.

60384400 D 2-13

SYSTEM MESSAGES 3

ALPHA AND BETA WORDS

User programs may issue messages which result in the performance of system functions. To issue a message,
the user. presets a 2- or more word block according to the Alpha and Beta conventions, and performs an
Exit Force instructiont that transfers control to the KERNEL, and forces the operating system to change to
monitor mode.

Immediately following the Exit Force instruction in the instruction stream is either a 32-bit indirect or a
64-bit direct message pointer. Hexadecimal format of indirect message pointer:

OOEEOOrr

rr is the register (see appendix E) containing the virtual address of the message.

The hexadecimal format of direct message pointer:

OOFF aaaaaaaaaaaa

a's are the virtual address of the first full word of the message.

The message has a two-part standard format. The Alpha (first portion, specifies the function to be performed,
length of parameter list, and where to proceed for error processing. The Alpha portion has the same general
format for all messages.

The Beta (second) portion, contains the parameters. The format of the Beta portion depends on the function,
as described later for each function code. Alpha and Beta words must start on full word boundaries and may
not exist in the user's page zero. Rather, they must exist in virtual space which has read/write or write tem­
porary access. They may not cross large page boundaries.

When a message is processed without error, the operating system returns control to the next half or full word
immediately following the message pointer. Thus, calls can be chained by placing one message pointer directly
behind another.

tSTAR standard instruction. A complete list of instructions is included in appendix B. Exit Force can be used
to switch between monitor and job mode.

60384400 B 3-1

Alpha format:

0 16 32 48 63

Alpha (1) r len c f

Alpha (2) n eea

Alpha (3)
(optional) Bl Ba

L _ _ _ _L_ - --- ____ _J

Hexadecimal response code returned by the operating system when message has been processed.
If no error occurred, the response code is zero (exceptions: f=0013, f=0016 and f=0017).
The significance of a non-zero response code varies as described for each function code.

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion. Other­
wise, Beta is assumed to begin at Alpha (3) and len is the length of the Beta portion.

c This field varies with the message; usually, it specifies function options or controls.

f Specifies function to be performed (hexadecimal message code).

n May specify option or control, may contain a parameter for the message, or may be a parameter
returned during message processing.

eea Virtual bit address that receives control if error occurs. This address must lie within the program issu­
ing the message. If eea = 0, the error is considered fatal to the further execution of this user process.

Bl If the Beta and Alpha portions are not contiguous (len = FFFF), this parameter indicates Beta
length in full words.

Ba If Beta and Alpha portions are not contiguous (len = FFFF), this parameter indicates virtual
address of Beta portion's first full word.

CONTROLLER AND CONTROLLEE

The terms "controller" and "controllee" have specific meaning relative to STAR-OS. For example, a batch
processor also controls actions of a user program; the former becomes the controller and the latter, controllee.
This relationship between programs can exist in other ways as well: one program can initialize and/or direct
the actions of another.

3-2 60384400 c

FILE SYSTEM AND INPUT /OUTPUT MANAGEMENT 4

Since STAR-OS is a file-oriented system, file management is an important aspect of the operating system. Although
ST AR-OS takes little direct responsibility for action on a given file, a set of user messages allows a fair degree of
latitude in directing ST AR-OS processing for a given file. These messages are detailed later in this chapter.

FILE CREATION

The five management categories are: permanent, scratch, write temporary, drop, and output.

Permanent file creation and disposition is controlled by the originating user. The operating system protects these
files from access or destruction by any other user; however, the operating system may replace a file at the request
of a privileged user task.

Scratch file may be created only by a user program. They exist during the originating program's activity. When a
program terminates normally, all scratch files are destroyed unless they are open to other programs of that user.
When the operating system terminates the program or the program terminates and saves its drop file, scratch files
are saved. A message to close a scratch file destroys it. All scratch files have read/write access.

Write temporary files have read-only access when in mass storage. When brougi1i.t into main memory, such a file
may be modified; the modified image becomes a part of the drop file. Subsequent references to that page address
will access the modified page. The original source image may be referenced again only by removing the modified
image from the drop file.

The drop file is that mass storage space set aside for writing the altered pages of an executing program. When a
new program is started, the operating system automatically creates a drop file. If no pages have been written to
the drop file, a program may create its own drop file (any pre-existing drop file will be destroyed). The drop
file is preserved upon abnormal termination and may be preserved or destroyed at the option of the program
upon normal termination.

Output files contain information suitable for processing to some special output device, such as a printer, card
punch, or microfilm device. These files may be created only by a user program. Upon normal program termination,
the operating system gives all properly named output files to system privileged user tasks for processing to output
devices. After the files have been processed, they are destroyed. If the file name is not proper for an output
device, it will remain as a private file. A message to close a properly named output file will cause the operating
system to give the file to a system privileged user task for output processing.

Fl LE NAMES

File names may be up to 8 letters and/or numbers long and must start with a letter. They must be left-justified
and blank filled. Currently, the length of tape file names is restricted to not more than five letters and/or
numbers.

The drop file name will be taken from the source file name. To become the drop file name, it is shifted right two
characters, and the new first (leftmost) character created is a number based on the suffix of the logged on user.
(If suffix is A, number will be l, if suffix is B, number will be 2, etc.) The second character created is the con­
trollee level number of the program as follows:

60384400 D 4-1

Job control processor
2 Program initiated by terminal or job control processor
3 Program initiated by Level 2 program
4 Program initiated by Level 3 program
5 Program initiated by Level 4 program

DEVICE TYPE OUTPUT FILES

Output files are further categorized by output device. Each device type output file has its own system privileged user
job to handle writing tasks. Output files must be created by the user or given to user number 999999 through a GIVE
FILE or ROUTE message. Constraints on file names for each device type are as follows:

Name Length
Device (maximum characters) First Letters

Line Printer 8 p

ST AR Binary Punch 8 B

ASCII Punch 8 A

026 Punch 8 AS

029 Punch 8 AN

Unformatted Punch 8 u

For the line printer and punch, output files can be saved in families for consecutive processing. Family names must
have the same first-letter conventions shown above. For punch files, the second and third characters must be either
decimal numbers 0 to 9 or the character X. Punch family files are held in an unprocessed state until a file name with
X in both the second and third character is encountered; then, the family is processed as a unit. For print files, the
family name can be a single or double digit name. A single digit family name is PDFAMNAM where P=P, D=either
decimal numbers 0 to 9 or the character X, and F AMNAM=farnily name, the first character of which must be any
letter except X. A double digit family is PDDF AMNM where P=P, D=either decimal numbers 0 to 9 or the character
X and F AMNM=the family name. PRINTOUT family files are held in an unprocessed state until a file name with X
in the second and third character (second character only for a single digit family) is encountered; then, the family is
processed as a unit. File names beginning with AN or AS may not be grouped in families.

FILE OWNERSHIP

File ownership may be public, private, or shared private.

Public files are accessil- · the entire body of users. Public files are intended to be the assemblers, compilers,
and other general purpL Altines that generally augment the operating system for a particular installation.
The names of public files constitute a kind of job control language for the operating system.

4-2 60384400 D

Private files are accessible only to the originating user. Only he may manipulate the contents of the file, the
file access privileges, the security level, the lifetime of the file, etc. The operating system maintains the right
to control utilization of file resources; for instance, it retains the right to delete files based on lack of activity.

Shared private files are accessible only to a specific subset of users as governed by the subset member who
controls file integrity and disposition for this group. Such a group of files is called a pool; the controlling
user is known as a pool boss.

ACCOUNTING FOR Fl LE OWNERSHIP

Each private disk file cataloged in the system is recognized as belonging to a particular user number and
account identifier. Liability for file ownership depends on its account identifier. When a file is given by one
user to another with the GIVE FILE message, the user number associated with that file is changed immedi­
ately. Liability for the file, however, remains with the giver until the recipient references the file. At the
first reference to the given file, the account identifier is changed to that of the file recipient; and the system
accounting tables will indicate the total time file ownership was held by the originating account identifier.

FILE ACCESS CATEGORIES

File access parameters define what may be done with a given file. The access categories under STAR-OS are
read, write, and execute.

A mass storage file having read only access may not be written upon. Any explicit attempt to do so will
produce an error, as will any attempt to modify a page from a read only virtual file. Writing on the pages of
read only files in memory can occur if the user opens a file having a write-temporary management category.
Such modified pages will be written to the drop file.

A write access on a file allows the user to modify the file at will. Essentially, no restrictions are imposed on
file modification under this type of access.

An execute only access parameter means that the file can be accessed only for execution. Users may not
read or write an execute only file. Combinations of read, write, and execute file access parameters are per­
mitted. Generally, public files are read/ execute files. Only an opera ting system task or a privileged user task
can alter a public file.

ACTIVITY

Each file has an activity counter, which is set to zero initially. A file is considered active if a program, active
in the system, has the file open. A program may open the same mass storage file in more th.an one input/out­
put connector (IOC). Each open call increments the file activity counter. The activity counter is decremented
for each CLOSE call and at program termination for each IOC pointing to the file.

A file may be given to another user only if the file activity counter is zero. The file may be destroyed if the
activity counter is zero, or if the counter is one and the file is open to the user attempting to destroy the file.

60384400 D 4-3

INPUT/OUTPUT

Input and output on mass storage may be implicit or explicit. Implicit input/output is the normal mode of
STAR-OS; it uses the file map to associate virtual address space with mass storage space. Obtaining data from
a virtual address is an implicit read from a mass storage file; storing data into a virtual address is an implicit
write to a mass storage file. (The operating system handles the explicit transfer between main memory and
mass storage.)

Explicit input/output requires specific user action; one or more buffers in the program's virtual space are de­
fined and associated with a region of mass storage. After making the association, the program may write the
virtual space to mass storage or read the mass storage into virtual space. To access another part of the file,
the mass storage region is redefined, leaving the virtual space buff er fixed.

FILE MANAGEMENT MESSAGES

SIMPLE Fl LE CONTROL

The most commonly used system messages deal with file creation, opening and closing, and the map function.

The CREATE FILE message reserves space on mass storage, names the space, and defines parameters for it. For
a physical file, the user program's minus page has enough information to initiate explicit input/output functions;
if so specified, a virtual base address can be associated with this file for implicit input/output functions. If a
virtual base address is specified, the file may later be used in implicit mode. For a virtual file, sufficient infor­
mation is stored in the user program's minus page to associate a virtual base address with the first mass storage
address. Continuous virtual address space is assumed.

The OPEN FILE message connects the user to a pre-existing mass storage file for explicit or implicit input/
output functions. In opening a file, the user may accept the parameters given to the file when it was created;
or he may alter them if he has permission. Both physical and virtual files may be opened for either kind of
input/output. Once opened for explicit input/output, however, a file cannot be accessed implicitly, and vice
versa; however, a file may be open in several input/output connectors at the same time - some for explicit
input/output, and others for implicit input/output.

The MAP message makes virtual address space accessible to a program. This space may be associated with an
open mass storage file, or it may be free space. Implicit access is established by a map-in function, which puts
into the program minus page a map relating virtual address space and the mass storage space of some open file.
For free space, the relationship is established through the program drop file.

Virtual address space is released with the map-out function. Before the associated virtual space is mapped out
for a mass storage file with write access, all modified pages of that space are rewritten on the original mass
storage file. If the file did not have write access, the modified pages are lost. Virtual address space that has
been mapped out is no longer accessible by the program. The mass storage file, itself, is not closed, but the
mass storage space corresponding to the mapped out virtual space becomes available for redefinition. The MAP
message applies only to files opened in the implicit mode; it has no significance for files opened in the explicit mode.

At the conclusion of processing on a mass storage file, the connection between program and file is severed by
a CLOSE FILE message. When a file is opened for implicit input/output and write access is closed, any modi­
fied pages of the file are rewritten on mass storage. If the file did not have write access, modified pages are
lost. When the file is closed, the program no longer has access to the file through the severed connection,
although other unsevered input/output connections may remain. Virtual address space associated with a file is
no longer defined when the file is closed.

4-4 60384400 B

CREATE FILE {f = 0001)

With the CREATE FILE message, a program reserves space on or access to an input/output device and defines
the connection to that device. Unless otherwise noted, all values in the following description are hexadecimal.

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

Beta (1)

Beta (2)

Beta (3)

Beta (4)

len
161

unused
161

0001
161

n eea ~1
Ba Bl

L - 1_tl_ -- -- -- -----~

name

64

IOC meat type lok acs mode slev unit

8 8 8 8 8 8 8 8

I

pack id I

481
frag SS

8 8

length

161
bva

48

Response code returned by the operating system when this message has been, processed. If no error
occurs, the response code is zero; otherwise:

Error code was returned in an ss field of Beta

211 Number of creates in this message is illegal (n = 0 or n > 16)

214 Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buff er is too small for the number
of requests and length specified.

Ien If len = FFFF, Alpha (3) exists and contains the length and virtual bit address of the Beta portion
of the message. Otherwise, Beta is assumed to begin at Alpha (3) and len is the length of the Beta
portion of the message

n Number of creates in this message; maximum = 16

eea Virtual bit address to receive control if error occurs while this message is processed (r -:::/= 0). If
eea = zero when an error occurs, the error is considered fatal

60384400 D 4-5

Bl
Ba

name

IOC

meat·

If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
parameters indicate the length and virtual bit address of the first full word of the Beta portion.

File name in ASCII. File names must be of the proper format. See section 4.

Input/output connector (IOC) number (0-15 or 17)

File management category:

0 = Permanent file

1 = Scratch file

2 = Output file

3 = Write temporary

4 = Magnetic tape file

5 = User-generated drop file. Return the drop file name in Beta (1).

7 = Batch file

For meat = 0 through 4, standard file name conventions apply; for meat = 5, drop file name
returned begins with a number.

type Type of device or file:

0 = Physical file

1 = Virtual data file

2 = Virtual code file

7 = Seven track tape

9 = Nine track tape

lok File lockout protection:

0 = No access locked out

1 = Write access locked out

2 = Read access locked out

4 = Execute access locked out

acs File access permission:

• 4-6

1 = Write access permission }

2 = Read access permission

May be used in logical combinations

May be used in logical combinations

60384400 D

mode Input/output mode:

0 = Open for explicit input/output

i = Open for implicit input/output

slev Security level (I to 255) to be given to the file if non-zero. If zero, use security level belonging

unit

packid

frag

SS

length

to caller of t11.is message.

Logical unit number

Six-character identifier of pack on which the file is to be created. When the call is made and this field
is binary zeros, the system creates the file on a system pack where space is available. The packid
of the pack will be returned to this field.

Reserved for future system usage.

Error response field:

01 = File already exists

02 = No available mass storage space for this file

03 = meat is illegal

04 = Parameter or format error occurred

05 = Operator-initiated tape error occurred

06 = Input/output connector is already in use

07 = File index is full

08 = Standby job may not create a tape

09 = Invalid file name

OA = ss was preset

OB = Existing drop file cannot be destroyed; dmap full or file open to another PP

OC = Illegal type field

OD= For meat = 05, pages have been written already to the existing drop file; no new file
was created

OE = For meat = 05, drop file length is not adequate to hold space already in the drop file
map

OF = Unable to find requested packid

15 = Bound implicit map area in minus page is full

16 = Virtual address overlap

Length of file in small page blocks

bva Base virtual bit address; correspond to first word of this file

60384400 D 4-7

I

I

I

Notes:

1.

2.

3.

4.

The name parameter in Beta is not required for meat = 05.

The IOC, type, acs, mode, and slev parameters in Beta are set by the operating system when meat= 05.

Bet~ (4) is not needed for a tape create request; however, all requests must provide four Beta words.

If a tape requested is not currently known to the operating system, a message to the operator
requests the tape. The program issuing the tape request is set at the point of re-issuing the call
and is removed from main memory. When the operator makes the tape known to the operating
system, the program is reactivated.

OPEN Fl LE (f = 0003)

The OPEN FILE message is issued by a program to connect itself to a pre-existing mass storage file. If a file
is opened in the explicit mode, the specified IOC in the program minus page is filled in as required, and an
entry is made in the explicit file map area of the minus page. This allows initiation of explicit input/output.
Before actual input/output operations can begin, however, the EXPLICIT I/O message must be used to access
the file physically.

When a physical file is opened in implicit mode, the specified IOC in the program minus page is completed,
and an entry is made in the implicit map area of the program minus page. No entry is made in the bound
explicit map. Explicit input/output cannot be accomplished on a physical file that is opened in implicit mode.
A physical file opened in implicit mode is considered to begin at the virtual address given in the working
virtual address field of the system call. The virtual address space represented by the file is considered contig­
uous over the entire length of the file beginning at file word zero. When the open is complete, the user may
map out the space just defined and map in the file in any manner. All implicit input/output attributes
normally pertaining to virtual files are applied to physical files in implicit mode.

When a virtual file is opened in implicit mode, the IOC in the program minus page is filled in; and, optionally,
implicit map entries are completed. If the file maps are to be used as recorded with the file on disk, the
entries are simply copied to the bound implicit maps. If the file maps are to be copied into the program's
call buffer, only the IOC is filled in, no implicit map entries are made, and the program cannot access the file
implicitly. This kind of open call should be succeeded by a map-in call that tells the system how to relate
virtual space to the physical disk file. A user also may map. a file into contiguous space (beginning at word
zero of the minus page) according to parameters supplied with the call.

When a virtual file is opened in explicit mode, all input/output must be done explicitly through the program's
buffers. The IOC specified in the program minus page is filled in, and one entry is made in the explicit map.
The file is mapped, beginning with word zero of the file minus page. With this call, sufficient information is
recorded to allow the program to initiate explicit input/output. No implicit access is possible to any of the
virtual space usually represented by the file when it is opened in explicit mode.

4-8 60384400 D

Message format:

Alpha (1)

I\. __ ._ - ,,.,\
Mlf.Jlld \~/

Alpha (3)

Beta (1)

Beta (2)

Beta (3)

Beta (4)

Beta (5)

len

161
unused

161
0003

161
cc;a

481
Ba

L
8! _1L .LIQ I

------~

name
64

c m c t
1 c 2 y

lok mode slev unit IOC map a D
acs

8 8 1 t 3 1 e3 8 8 8 8 8

0

pack id w st w SS
n

481 2 4 2 8

T
length wva

481
blength bva

Response code returned by the operating system when this message has been processed. If no error
occurs, the response code is zero; otherwise:

Error code was returned in an ss field of Beta (3)

211 Number of opens in this message is illegal (n = 0 or n > 16)

214 Beta buffer length error. Either the first word address of Beta plus length is greater than
the maximum user virtual address, or the Beta buff er is too small for the number of
requests and length specified.

len If len=FFFF ,Alpha (3) exists and contains the length and virtual bit address of the Beta portion of
the message. Otherwise, Beta is assumed to be located beginning at Alpha (3) and len is the length
of the Beta portion of the message

n Number of files to be opened in this call; maximum = 16. At times, it may be more efficient to
open more than one file at a time. When this is to be done, the Alpha portion for the OPEN
message is used once, with n = the number of files to be opened; this is followed by groups of
Beta words, one set per file.

603 84400 D 4-9

I

eea

Bl
Ba

name

IOC

map

4-10

Virtual bit address to receive control if error occurs while this message is processed (r i= 0); if
eea = 0 when an error occurs, the error is considered fatal.

If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
parameters indicate the length and virtual bit address of the first full word of the Beta portion.

File name in ASCII. File names must be of the proper format as described in section 4. If
format is not proper, error response 21 is returned in SS field.

Input/output connector (IOC) number (0-15)

Determines the disposition of maps residing in minus page of virtual file being opened for implicit
input/output.

0 = Read minus page from the file and obtain mapping information to be inserted into bound
implicit map area of the program minus page.

= Read mapping information from minus page of file and return maps to the address speci­
fied in Beta (5). The IOC is filled; no entries are made into bound implicit map area uf
the program's minus page. File is not mapped in.

2 = Do not read minus page from file; obtain mapping information according to W option of
this message.

A program requesting delivery of the implicit maps must supply a buffer to hold the entire map;
Although the operating system will not store entries beyond the end of the buffer supplied, neither
will it squeeze out empty map entries. The map format in the program's buffer is two words per
map entry as follows:

unused vpa unused
·17 32 15

pma length iocn unit con Ima
18 16 5 6 3 16

vpa Virtual page address

pma Physical mass storage sector address

length Length of this segment in small page blocks

iocn Input/output connector (IOC) number

unit Unit
See Bound Implicit Maps, pg. 2-12

con Control

Ima Logical mass storage sector address

60384400 D

The C 1 and C2 options in word Beta (2) of the OPEN message enable the user to modify fields in the file
index. Permission to modify these fields is granted by the system if the file
the user is the pool boss; or if the file is public and the user is priviledged.

Cl = 0

Cl = 1

meat

C2 = 0

C2 = 1

type

Open file as specified in mode field, but do not change the file index type

Open file as specified in mode field and change the file index type to that in the type
field.

File management category to be associated with the file

0 ::::: Permanent file

1 = Scratch file

2 = Output file

3 = Write temporary file J
Copies meat field into the meat
field of the input/output connector

Open file as specified in mode field but do not change the file index access

Open file as specified in mode field and change file index access to that specified by acs
and lok fields

File type; if Cl = 0, the operating system will return the file type to this field; if
C 1 = 1, change file index type to:

0 = Physical data

1 = Virtual data

2 = Virtual code

lok File lockout protection field to be set into the file index if C2 is 1. If C2 is zero or if a
public file is opened, this field is set from the lok field in the file index. Whatever value
is set in this field is also set into the IOC.

60384400 D

0 = No access locked out

= Write access locked out J
2 = Read access locked out

4 = Execute access locked out

May be used in logical combinations

4-11

acs File access permission granted. A logical AND is performed using the complement of the lok field
in the file index and this field as operands; the result returned to this field and to the IOC deter­
mines the access granted for this OPEN call. If C2 is 1, the result is also stored in the acs field
of the file index.

1 = Write access permission }

2 = Read access permission
May be used in logical combinations

mode Input/output mode:

slev

unit

packid

own

0 = Open for explicit input/output

1 = Open for implicit input/output

Security level of this file (0-255); set by the operating system

Logical unit number; set by the operating system

Six-character identifier of pack on which file exists; set by the operating system

File ownership; set by the operating system

0 = Private

1 = Public

2 = Pool

st Management category of the file; set by the operating system

0 = Permanent file

1 = Scratch file

2 = Output file

3 = Write temporary file

5 = Drop file created by the user

6 = Drop file created by the system

7 = Batch file

w Location of working virtual address to be used by the system when a physical type file is opened
for implicit input/output. If map=2, this field is also used when opening a virtual type file for
implicit input/output.

w=O

w=fO

4-12

Working virtual address is specified in field wva of this message. Use the length
specified in this message if the size is non-zero and less than the length value given
in the file index; otherwise, use the length specified in the file index.

Working virtual address and length to be used by the system are in the file index.
They are returned to the wva and length fields of this message by the system.

60384400 D

ss Error response field:

length

wva

blength
bva

0 = Normal completion

21 = Either no name was given, or the name was not in the file index

23 = Virtual address overlap

24 = Input/output connector is already in use or not 0 through 15

25 = Lockout protection, access code, or file type is illegal

26 = Mass storage error occurred while reading the minus page

27 = Bound implicit map area in minus page is full

28 = File requested has a security classification higher than that of caller

29 = bva + blength is greater than maximum user virtual address

36 = More than one virtual address overlap. Usually indicates an uninitialized minus page.

length of this file is small page blocks; set by operating system or as indicated under the w
option of this message when w=O.

Working virtual bit address corresponding to virtual start address of the file

If the user requests file maps to be delivered to his program space (map = 1), t.11.ese fields specify
the length and virtual address where the operating system will store the maps; if blength = 0, the
maps will not be transferred to the user's program space.

MAP (f = 0004)

The MAP message gives a program access to virtual space by connecting it with mass storage space. The mass
storage space may be in a file already opened or it may be free space not associated with a file. This message
may also be used to release virtual space which may be redefined later.

In order to implicitly access virtual space, the definition of that space must be in the implicit map area of the
program minus page. This can be done by using MAP with the map.in option. Up to 40 discontinuous address
regions may be cataloged with MAP. The user relates some virtual starting address and length with some disk
address of an open file and indicates the access rights pertaining to that virtual region. The system makes the
necessary entries in the implicit space map of the program. Overlaps of space are signaled as an error. If all
40 entries of the map are full, an error is signaled and no further map-in calls are permitted until some space
is released with a map-out. There is sufficient data available as a result of this call to allow the system to
process page exceptions for the defined space. In the case of a free space attachment, the defined virtual space
is given a part of the program drop file on which it may reside if a core-to-disk swap becomes necessary. Free
space attachments, therefore, are not given an entry in the bound implicit map, but are cataloged in the pro·
gram drop file map. This map can hold up to 170 entries of up to 31 pages each. This allows for as many as
1 70 non-contiguous address spaces to be part of the drop file.

60384400 D 4-13

The map-out option allows for release of virtual address space. This may be a release of space associated with
an open disk file or a release of free space. Virtual address space which has been mapped out is no longer
accessible to the program. The corresponding disk region may be redefined in other virtual space, but the disk
file itself is not closed; i.e., the IOC is left intact. Mapping out free space causes the corresponding drop file
map entries to be deleted and frees the disk space for reassignment. If the disk file region represented by a
virtual space has write access and is mapped out, all modified pages of that space will be written on that disk
file before the map-out process is complete. If the disk file itself did not have write access, all modified write
temporary data is lost through the map-out process.

The MAP call is illegal when dealing with files opened for explicit input/output.

All values given below are hexadecimal unless otherwise specified.

Message format:

Alpha (1) r len c 0004
16 16 16 16

Alpha (2) unused eea
16 48

Ba

---~
Alpha (3)

L

Beta (1) vpa Ima
32 32

Beta (2) length unused IOC con SS

16 24 8 8 8

Response code returned by the operating system when this message has been processed. If no
error occurred, the response code will be zero; otherwise:

Error (See ss field)

214 Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buffer is too small.

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message; otherwise, Beta is assumed to begin at Alpha (3) and len is the length of the Beta portion.

c Option field:

0 Map-in file specified in the IOC field

Complete map-out of file specified in the IOC field

2 Map-out drop file only

4-14 60384400 D

eea Virtual bit address where control transfers if an error occurs during message processing (r =I=- 0). When

Bi
Ba

vpa

eea is zero, an error is considered fatal.

If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
parameters indicate the length and virtual bit address of the Beta portion's first full word.

First virtual small page address for space defined

I
Ima Logical mass storage sector address in file associated with virtual page address I

Ima = FFFF Free space will be appended as defined by virtual page address and length fields .

length

IOC

length of virtual range in small page blocks. If this call is not for free space, the space on the
mass storage file must be contiguous .

Input/output connector (IOC) number for mass storage file being mapped

0-15 Pointer to mass storage file being mapped

16 Must be specified for source file map-out

1 7 Must be specified for free space map-in or map-out

con A set of eight bits providing control information for pages formatted as follows:

cl,c2,c4,c5 Not used

S/L 0 Small page

Large page

The following two fields are examined by the system when mapping-in files associated with
IOC 0 through IOC 15:

wa 0 Get access rights determined when the file was opened from input/ output connector

Get access rights from the ac field if the lok field from the IOC permits

ac

60384400 D

0

2

3

No read or write access

Read access

Write access

Read/write access

4-15

ss Error response field:

0 Normal completion

Virtual address overlap in bound implicit map

3 Length field in a map-out message is zero or greater than the length in map

4 Sector count in large page request is not modulo 128

5 IOC does not exist or mode of IOC is not implicit

6 Virtual address is the same as that of an existing ADVISE call

7 Bound implicit map was full at map-in

8 Logical mass storage address plus length exceeds file length

9 Page requested for map-out is locked down

A Space is undefined at map-out

B Map entry is a large page but virtual address is not

C Bound implicit map is full at map-out

D Input/output connector is not proper for a free space request

E Free space map is full at map-out

F -Drop file is too small for free space map-in; not enough room in drop file for free space

10 = Mass storage file index cannot be found

11 = Virtual address overlap exists in free space map

12 = For map-in, no read or write access requested; map-in not done

CLOSE FI LE (f = 0005)

A program issues the CLOSE message to sever its connection to a mass storage file. Existence of the mass
storage file is not affected, but some file attributes in the file index may be modified.

When a file is closed, the file is given to the output processor if the activity count is zero and the manage­
ment category is output. The first character of the file name indicates the particular output processor,
described under DEVICE TYPE OUTPUT FILES, at the beginning of this section.

Message format:

Alpha (1) r len unused 0005
16 16 16 16

Alpha (2) n eea

16 48

Bl Ba Alpha (3)
16 r

------~ ------ ------ --
.ai:d

---- -- -- -----=..J

4-16 60384400 c

Beta (1)

Beta (2)

lOC meat l~l~l~f ~!type I iok acs fiag unused SS

8 8 1 1 1 1 4 p 8 8 8 8

length bva
481

Response code returned by the operating system when this message has been processed. If no error
occurs, response code will be zero. Other values are as follows:

Error response has been returned to ss field of Beta

211 Number of files specified in this call is illegal (n = 0 or n > 16)

214 Beta buffer length error. Either the first word address of Beta plus length is greater than
the maximum user virtual address, or the Beta buff er is too small for the number of
requests and length specified

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3); and len is the length of the B~ta portion

n Number of files closed by this message. Maximum = 16

eea Virtual bit address where control transfers if an error occurs during message processing (r 'f 0).
Wben eea is zero, the error is considered fatal

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters will indicate the Beta portion's length and virtual bit address .

IOC Input/output connector (IOC) number of file being closed

The following flags can cause changes to be made in the file index if the file ownership is private; or pool and
the user is the pool boss; or, if the file ownership is public and the user is priviledged.

meat File management category of the file being closed; stored in the file index if flag = 2

60384400 D

0 = Permanent file

1 = Scratch file

2 = Output file

3 = Write temporary file

5 = User created drop file

7 = Batch file

4-17

I

0

cl= 0

c2 = 0

c3 = 0

c4= 0

type= 0

8

type

Close file, but do not change file type in file index

Close file and change file type in file index to type

Close file with no change to file index, file access, and/or lockout.

Close file and change file index, file access, and lockout to that given in acs
and lok field of this request.

Close file; do not change drop file size

Close file and change file index; drop file size to that given in length field of this
request

Close file; do not remove drop file length from file index

Close file and remove drop file length from file index

Physical data file

Virtual data file

2 Virtual code file

lok File lockout protection; stored in file index if c2 =

0 = No access locked out l
1 = Write access locked out

May be used in logical combinations
2 = Read access locked out

4 = Execute access locked out

acs File access permission stored in the file index if c2 = 1:

1 = Write access }

2 = Read access
May be used in logical combinations

flag Flag for special action:

1 4-18

0 = Ignore contents of second Beta word of this entry and the meat field.

1 = Change file index base virtual address to that given in bva field of this request.

2 = Change file index file management category to that given in meat field for this request.

3 = Do both flag = I and flag = 2.

60384400 D

SS

length

bva

Error response code:

1 = Input/output connector was not for a mass storage file.

2 = Input/output connector number was out of range.

3 = Attempt to alter a public file index entry. Input/output connector is cleared, but no
information is altered in file index (file closed).

4 = File type, access rig.1-]_t, or lockout specified by this request is illegal (file closed).

5 = File whose close was requested, but a file page is still locked down.

6 = A scratch or output file is open to another program of this user (file closed to this PP

but not destroyed or given).

7 = Invalid name for a file with a management category of output (file closed).

8 = Specified IOC was not open

9 = Drop file map full

Length of drop file in small page blocks; set into the file index if c3

Base virtual bit address corresponding to first word of mass storage file; set into the file index
when flag = 1 or 3.

Notes:

1. This call cannot be used to close drop files or source files (IOC = 16 and 17).

2. When the file being closed has write access, modified pages are rewritten in mass storage before
the close function is completed. When the file is write protected, modified pages are deleted
before the close function is completed.

3. All outstanding input/output requests are completed before any file index changes are made. The
file index entry will exist in its new state only at the completion of the CLOSE function.

60384400 D 4-19

EXPLICIT 1/0 AND INTERRUPT

The operating system supports one level of software interrupt for the program. The user can issue explicit
input/output requests for mass storage or magnetic tape, continue processing, and be notified when the input/
output operation has been completed. The program can be interrupted by messages from its controller or job
control processor; but interrupts must be enabled before the operating system will take action on the specified
conditions. Two system messages, EXPLICIT INPUT/OUTPUT (f = 0050), and PROGRAM INTERRUPT
(f = OOIC), accomplish the enabling function.

The program may specify interrupt on either successful or unsuccessful completion of an input/output request.
The user may issue from one to eight input/output requests with each message. Up to six requests may be
outstanding for a program at any one time. Within a message, requests may be contingent on other requests;
and since requests are issued sequentially, the contingency must be upon previously issued requests. Interrupt
upon completion of a request, therefore, may be contingent upon the completion of other requests. The op­
erating system is responsible for checking all possibilities in determining whether the interrupt condition has
been met.

Interrupt processing involves the program's minus page. The minus page has space for two invisible packages:
one for current execution (level zero), and the other for the interrupt routine (level one). When the program
is interrupted, control is passed to the virtual address specified by the user when he enabled the interrupt. The
level one invisible package becomes the current invisible package; the level zero invisible package is saved in
the minus page. The operating system saves the register file image for level zero and places, in register three,
a pointer to the Alpha portion of the message and an index to the Beta portion causing the interrupt. The
interrupt routine may use this information as necessary. The operating system puts into register IE the length
and address of the data base to be established, provided that information was supplied in the request for inter­
rupt. Initializing the other registers is the responsibility of the interrupt routine. (A detailed discussion of the
register file appears in appendix E.)

Since the interrupt routine (level one) cannot be interrupted by any other software interrupts, it will run until
it issues a RETURN FROM INTERRUPT message (f = 0051). The current interrupt is then released and its
invisible package is lost. The level zero invisible package becomes current, and its register file image is restored
by the operating system. All information from the level one register file is lost.

When interrupts occur and the interrupt routine is already in control, the operating system stacks the interrupt
information in an area of the program's minus page. When the interrupt routine issues a RETURN FROM
INTERRUPT message, level zero is not restarted. Instead, the next interrupt on the stack is taken. This process
is repeated until the stack is empty.

An option in the RETURN FROM INTERRUPT message allows level one to become the new level zero after
all additional interrupts stacked for this and any other level one routines have been processed. In this case, the
register file image for level zero will be lost. The new level zero may have its own level one interrupt routines.

Additionally, so that processing of other programs will not be delayed while a given program is awaiting
completion of an I/O operation, another message is available: GIVE UP CPU UNTIL I/O COMPLETES. It
suspends a user program until an I/O operation has signalled completion.

4-20 60384400 c

EXPLICIT INPUT/OUTPUT (f = 0050)

Input/output for magnetic tapes cannot be done implicitly. The EXPLICIT INPUT/OUTPUT message provides
an explicit capability of transferring specific biocks of data. The parameter (Beta) portion of the message may
contain a combination of buffer definitions, data transfer requests, and an interrupt request. If an interrupt
request exists, it .must be in the first two Beta words. Double buffering within a file is easily accommodated
and encouraged as a practice.

Message format:

Alpha (1)
!

a r len

161
unused 0050

15 16 16

Alpha (2) j b eea
8 8 48

Alpha (3) Bl Ba
161

--- .J__ -- -- ---
481

-- --- --- __j

Interrupt Request

Only one interrupt request per Alpha message is allowed; it must be the first Beta word-pair associated with
the Alpha message. The request defines the interrupt and data base addresses to be used when the INT field
of a data transfer request is either 1, 2 or 3.

Beta (1) op=5 unused ia
8 8 48

Beta (2) dbl dba

16 48

Data Transfer or Function Request

_[
busy

r
Beta(1) op=1, 2, or 3 sop unused IOC cerr serr

8 8 1 7 8 8 24

Beta(2) con tpm unused ret bits fadd

6 2 8 1 7 8 3 4 1 24

L-mt Li SU unused _J L tape

60384400 D 4-21

Buffer Definition Request

b _e_ usy

T
Beta (1) op=4 sop unused IOC cerr unused

8 8 1 7 8 8

Beta (2) blen unused badd
8 16

a This bit is cleared by the operating system to indicate to the caller when the Alpha and Beta
words are no longer required. The caller should set this bit if this feature is to be utilized.

24

40

r Response code returned by the operating system when this message has been processed. If no error
occurs, a response code value of zero is returned; otherwise:

Illegal interrupt address

2 More than eight requests

4 Error occurred in one or more requests

214 Beta buffer length error. Either the first word address of Beta plus length is greater than
the maximum user virtual address, or the Beta buff er is too small for the number of
requests and length specified

len If the value of len is FFFF, Alpha (3) contains the length and virtual bit address of the Beta
portion of the message. Otherwise, Beta is assumed to begin at Alpha (3) and len is the length of
the Beta portion

Index indicating which Beta entry was last processed or is currently in process. This field is stored
by the operating system

b Index indicating which Beta entry caused the interrupt; this field is stored by the operating system

eea Virtual bit address where control transfers if an error occurs during message processing (r =f= 0).
When eea is zero, the error is considered fatal

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length and virtual bit address of the Beta portion's first full word

4-22 60384400 c

op Operation to be performed:

Read

2 Write

3 Function

4 Buffer operation

5 "P-n+o..- 1 +,.,. --t-
..LJ.11.L.VJ. J..11.L.\.l'J..lU.J:JL

ia Virtual bit address where control transfers upon interrupt (such as end of tape operation)

dbl Length of data base to be established if an interrupt occurs

dba Address of data base to be established if an interrupt occurs

sop Sub-operation to be performed:

op = 1,2

Buffer

2 Buffer 2

op= 3

3 Rewind

4 Unload

5 Write end-of-file

6 Space forward records (count is in fadd)

7 Read to end-of-file

8 Backspace records (count is in fadd)

9 Backspace ftle

A = Set density

fadd

B Seek

0
1
2
3

200 bpi
556 bpi
800 bpi
1600 bpi

C Erase (fadd contains number of erasures to be performed)

F Read status (fadd will contain status upon return)

op = 4

60384400 D

2

3

4

Open buffer

Close buff er

Open buffer 2

Close buffer 2

I

4-23

busy If the caller has set this bit, it is cleared when request is completed.

IOC Input/output connector (IOC) number

cerr Errors detected by central system before request is sent to peripheral system:

1 = Non-existent input/output connector

2 = Buffer size is greater than 24 small pages or is zero pages for a small page buffer definition
request

3 = This file is not on physical mass storage

4 = Illegal tape density requested

5 = Illegal operation or sub-operation

6 = Illegal tpm or mode field

7 = No buff er assigned

8 = File address out of bounds

9 = Illegal attempt to access a read only or write only file

A = Interrupt requested, but no interrupt address specified

B = Request for greater than 128 small pages (for a large page buffer definition request)

C = Buffer crosses a large page boundary (for a large buffer)

D = Read or write access denied for this buffer

E = Attempt was made to open a buffer that was already open

F = Buffer already in use. Previous input/output, which uses the same buffer, not complete.

10 = Attempt to reuse alpha before the previous call, which uses the same alpha address; is
complete.

serr Error response returned by the peripheral station. Multiple errors are OR'ed together; values are
hexadecimal.

4-24

XXXXX:l

XXXXX2

XXXXX8

XXXXlX

XXXX2X

XXXX4X

XXXX8X

XXXlXX

XXX2XX

Device not ready

Tape, SBU, or transmission parity error

End of tape

End of file

Attempt to write on file protected tape

Channel failure (disk only)

Lost data on tape record

Attempted backspace at load point

Error in positioning mass storage device (disk only)

60384400 D

int Interrupt conditions. This field has meaning only if the interrupt and data base addresses are
defined with opcode 5 in the first Beta word pair of the Alpha/Beta word package:

con

1 = Interrupt on good completion of the request

2 = Interrupt if error on this request

3 = Interrupt on either condition

r'1..-..-..L.: ______ • £'!_1_J (i ____ !.£"! __ 1----- .L.- l ____ ..ll_ --------L- !-- .L.1-- .i.1 __ 1__/T_,t.._ . ___ 1 ___ _
\,;UUUUt,vHl,,Y llvlU. ..::>pc1,,111c:s HUW tu lli:lllUlC 1cy_ut:M:S 111 Ult: 1-UpUi:l/ DCti:l pa~Ki:lgt:.

0 = No contingency. Proceed immediately to the next request.

3 = Contingency. Wait for completion of this request before processing the next.

The caller becomes a candidate for CPU use once the system encounters a data transfer or
function request having the con field set to 3 or when no more Beta word pairs exist. Users of
the 50 message (explicit input/output) are responsible for detecting data transfer completion by
selecting an interrupt condition, checking when the busy bit in the Beta word pair is clear, or is­
suing a 52 system message to ~ve up the CPU until input/output is complete.

tpm Tape mode:

0 BCD (7-track tape)

Binary (7- or 9-track tape)

2 Binary ASCII (7-track tape)

issu Bit set by operating system when central system finds no error, and request is sent to peripheral
system

ret Retry field:

0 Use standard error recovery

No retry on error

2 Use standard error recovery and system noise records (tapes)

3 No retry on error and system noise records (tapes)

tape Transmission directions:

0 Truncate record to 64-bit word bound

Transmit entire record

bits When reading tapes not generated on STAR systems, this field indicates the number of bits read
from tape (less than 16), in addition to the byte count returned in fadd. When reading STAR­
generated tapes, if this field is non-zero, the byte count in fadd must be decremented by one to
indicate the amount of valid data read from tape.

fadd For mass storage, logical page (block) address where data transmission is to begin; for magnetic
tape, the number of 16-bit bytes to be transmitted (if zero, transmit entire buffer). When op=3
and sop=A, fadd is used for densrty selection (see sop=A). When op=3 and sop=6 or 8, fadd must
contain the count of records to skip.

60384400 c 4-25

blen Length of virtual range, in small pages, to be associated with this buff er (see note 8).

badd Starting virtual page address of buffer where data transfer requests will deposit or obtain
information.

Notes:

1. For tape read or write operations; when the file address field (fadd) is zero, the entire image will
be transferred to or from tape; otherwise, fadd specifies the number of 16-bit bytes to be transmitted.

2. Following a tape read operation, fadd will contain the number of 16-bit bytes in the physical record.
If the record is larger than the buffer, only as much data as fits will be translated.

3. For the backspace and space forward operations, fadd will contain the number of records to be
spaced over. When an end of file is encountered, the operation stops and the actual number of records
spaced over is returned in fadd.

4. After the read status operation, fadd will contain the unit status. The unit status bits are:

OOOXXl Ready
OOOXX2 Busy
OOOXX4 Write enable
OOOXX8 End of file
OOOXlX Load point
OOOX2X End of tape
oooxox ~.oo bpi density
OOOX4X 556 bpi density
OOOX8X 800 bpi density
oooxcx 1600 bpi density

OOOlXX Lost data
0002XX End of operation
0004XX Parity error
0008XX Reserved

5. For erase mass storage functions, the right half of the second Beta word is treated as two 16-bit
fields. The leftmost 16 bits contain a sector count; the rightmost 16 bits specify a pattern to be
written. If the sector count is zero, the entire file is to be erased.

6. For the erase tape function, fadd contains the number of erasures to be performed. Six inches of
tape are blanked for each erasure.

7. Interrupt routines may not be interrupted; they are stacked and processed one at a time.

8. Unless the buffer is in a large page, the maximum buffer size is 24 small pages. The maximum
large page buffer size is 128 small pages. No large page buffer may cross a large page boundary
(for example, each large page buffer must fit within one large page, or 65,536 words).

9. Following a tape read operation, if the record length is not equal to the buffer length, the remainder
of the buffer is undefined.

4-26 60384400 D

10. When the central system detects an error before a request is sent to the peripheral system, control
passes to the error exit address and message processing terminates. For data transfer requests, an
error detected by the peripheral system does not cause control to pass to the error exit address.
Further action depends on the value in the contingency field (con):

con = O Following Beta requests are processed normally; however, the response code field r
is set to 4 and the serr field is filled appropriately.

con -= 3
the serr field is filled appropriately.

ii. The interrupt request (op = 5) must be used if an interrupt condition is seiected. rne interrupt
request must be in the first two Beta words. If Beta (2) is non-zero, Beta (2) will be placed..in
register 1 E when control passes to the interrupt address, ia.

12. Only six explicit input/output requests can be processed at one time. If six requests are outstand­
ing when a seventh request is issued, the issuing program is put in a wait state (using the
DISCONNECT message) until at least one request is completed.

13. For th.e density function, the fadd settings are 0, 1, 2, or 3 for 200 bpi, 556 bpi, 800 bpi, and
1600 bpi, respectively.

14. A buffer may be closed as soon as the data transfer request is issued; input/output need not be
completed.

15. The Beta index and the Alpha bit address causing the interrupt are stored in register 3 by the
operating system when the interrupt occurs. The zero level program counter is stored in
register 4.

16. The Alpha and Beta words should not be modified until all input/output described by the call is
complete.

17. Following a mass storage read or write operation, the fadd field will contain the actual number of
small pages transmitted.

18. The end-of-file bit in the serr field will be set if, for a mass storage read or write operation, the
buffer extends past the last word in the file.

19. If the serr field is set to non-zero for any of the conditions described, it will cause an interrupt if
the interrupt-on-error bit in the mode field has been set.

20. When a file is closed, all buffers defined for that IOC are closed.

60384400 c 4-27

I 21.

4-28

Error codes appropriate for certain operations are shown below:

Mass Storage 1/0

cerr
I 2 3 4 5 6 7 8 9 A B C D E

l
xx xxxxxxxxx

op 2 xx xxxxxxxxx
3 x xx xx
4 x x x x

The serr bits for parity error, end of file, channel failure, and positioning mass storage are appro­
priate for mass storage 1/0.

Magnetic Tape 1/0

cerr
I 2 3 4 5 6 7 8 9 ABC DE

u xx xxx xx xx
op xx xxx xx xx

x xxx x
x x x

For all tape operations except status, the serr bits for tape not ready and parity error are appro­
priate. For read/write tape, data exceeds buff er, end of tape, end of file (read only), and file
protected (write only) serr bits may be set. For write end of file and erase, the end of tape and
file protected, serr bits may be set. For forward space record and forward space file, the end of
tape and end of file serr bits may be set. For backspace record and backspace file, the end of
file and load point serr bits may be set.

60384400 c

r

GIVE UP CPU UNTIL 1/0 COMPLETES (f = 0052)

This message allows the program to give up the central processor unit until all or part of its input/output is
complete. It is used in conjunction ·with the EXPLICIT I/O message (f = 0050).

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

Beta (1)

r len
161

unused
161 0052

161
eea ~1
Ba

n

Bl

L_ __ ,L ------ ---- -----~

I -,
L _____ _ vadd

-~
Response code returned by the operating system when this message has been processed. If no
error occurs, a response code value of zero is returned; otherwise:

vadd does not contain the address of an EXPLICIT 1/0 message (f = 0050).

214 Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buffer is too small for the number
of requests and length specified.

215 = No error exit address when error occurred.

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta
portion.

n Options for this message:

0 = Give up the central processor until all 1/0 is complete. No Beta words are required
for this option.

Give up the central processor until 1/0 calls specified by the Beta portion of the mes­
sage are complete.

eea Error address.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length and virtual bit address of the Beta portion's first full word.

vadd If the central processor has been. given up until part of the 1/0 is complete (n = 1), the Beta
portion of the message contains the virtual bit addresses of t'1e EXPLICIT I/O messages comprisLr1g
that part of the input/output (the address of Alpha (1) for those messages).

60384400 D 4-29

Notes:

1.

2.

3.

4-30

The operating system keeps a record only of outstanding I/O messages. If the address in Beta does
not match an outstanding I/O message, the message is presumed to be completed.

If an interrupt routine gives up the central processor until all I/0 completes (n = 0), the routine
will be restarted when all I/O has completed; interrupts are stacked and processed after the routine
issues a RETURN FROM INTERRUPT message (f = 0051). If a program at level zero issues the
same call, it will be restarted when all I/O is complete, and all interrupts have been processed.

If an interrupt routine gives up the central processor until all specified I/O completes (n = I), the
routine will be restarted when all specified I/O completes; interrupts are stacked and processed
after the routine issues a RETURN FROM INTERRUPT message (f = oo's1). If a program at level
zero issues the same call, it will be restarted when all specified I/O completes and all interrupts
have been processed.

60384400 c

PROGRAM INTERRUPT (f = 001C)

With this message, a program informs the operating system that it should, or should not, be interrupted by a
message.

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

Beta (1)

Beta (2)

161
len

161
unused

161
001C

161

81 b

81
eea ~1

Bl Ba
L_ 1L -- ~~ ~- -- -- --·----~

unused ia
16 48

dbl dba
16 48

Response code returned by the operating system when this message has been processed. If no error
occurs, the response code is zero. Otherwise:

Value or program interrupt address is greater than virtual address range

2 Program selected an illegal interrupt option

214 Beta buffer length error. Either the first word address of Beta plus length is greater than
the maximum user virtual address, or the Beta buff er is too small for the number of
requests and length specified

ien If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta portion.

Type of interrupt option:

00 = b field refers to messages from a controller

60384400 c 4-31

b Interrupt option:

00 Any message will interrupt this program.

01 Any message from a terminal preceded by a left justified (sc)I will interrupt this program.

02 Inhibits interrupts from messages.

eea Virtual bit address to receive control if an error occurs during message processing (r =I= 0). If
eea = 0, the error will be considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length and virtual bit address of the Beta portion's first full word.

ia Virtual bit address to where control transfers upon occurrence of selected interrupt

dbl Length of the data base to be established if a selected interrupt occurs

dba Address of the data base to be established if a selected interrupt occurs

Notes:

1. When this message is issued for options b = 00 or b = 01, this program will be interrupted by all
subsequent messages and interrupts arising from a terminal until this program either terminates or
issues this message with b = 02.

2 Whenever control passes to the program interrupt address, a message is always waiting.

3. To release the program interrupt, it is necessary to issue a RETURN FROM INTERRUPT message
(f = 0051).

4. For b = 01, the (sc)I preceding the message will be stripped; and the message will be repositioned
at the beginning of the word.

5. The (sc)I interrupt causes any output messages to be released.

6. (sc)I preceding a message will interrupt the highest level controller issuing this message with b = 01.

4~2 60384400 D

RETURN FROM INTERRUPT (f = 0051)

This message is issued by a program at the conclusion of an interrupt routine for either an input/output or
program message interrupt.

Message format:

Alpha (1)

Alpha (2)

n

J unused J unused ,J 0051 J
~:1

IV I ,...., I

~I n eea

Response code returned by the operating system when this message has been processed. If no error
occurs, the response code is zero. If r = 1, this message was issued by other than an interrupt
routine.

Options for this function:

0 = The current interrupt is released and the next interrupt is taken. If no further interrupts
exist, controi returns to the interrupted program at the point of interruption.

The current interrupt is released and control returns to the point following this message
if no error occurred. If no other interrupts are stacked, control returns immediately. If
interrupts are stacked, control returns after the RETURN FROM INTERRUPT has been
issued for the last interrupt in the list.

2 Release the current interrupt and take the next interrupt on the list, if one exists. If no
other interrupts exist, return to the originally interrupted program at the address in register
4. The registers of the originally interrupted program are preserved.

eea Virtual bit address to receive control if an error occurs during message processing (r =I= 0). If eea is
zero, the error is considered fatal.

60384400 c 4-33

I

MISCELLANEOUS FILE MANAGEMENT

An additional six messages are concerned with file control: REDUCE FILE LENGTH, DESTROY FILE,
GIVE FILE, ROUTE FILE, GIVE TAPE ACCESS TO CONTROLLEE, and CHANGE FILE NAME OR
ACCOUNT.

When a mass storage file is inactive (no input/output connectors exist between this file and any program), the
user may issue a REDUCE FILE LENGTH message to reduce the length of a mass storage file. The released
space is then available for reassignment. (This message modifies the LENGTH parameter specified when the
file was created.)

DESTROY FILE indicates to a program that previously used mass storage space is currently available for
reassignment, or that a particular tape drive is available for reassignment. At the conclusion of DESTROY
FILE message processing, any mass storage file referenced by the message has ceased to exist, as have any
modified pages of the file. Virtual address definitions pertaining to this file are no longer defined, and the
input/output connection and map entries are erased. A file need not be closed before the DESTROY FILE
message is issued.

A user may deposit a file with another user by issuing a GIVE FILE message. The recipient user is allowed
to perform actions on the file so named. A common use of this message is to hand over files to an output
processor for later release to an appropriate device.

ROUTE FILE allows the user to specify the destination of a file and the manner in which it is disposed. The
message frees the user from the burden of using naming conventions to accomplish routing and disposition of
a file.

GIVE TAPE ACCESS TO CONTROLLEE allows one program to enable another program to access certain tape
drives through the first program's input/output connectors. The controllee establishes its own input/output
connector for the action but is limited by the controllee in how it may affect information on the tape.

CHANGE FILE NAME OR ACCOUNT allows a user to change the name or account number of a given file.

4-34 60384400 D

REDUCE Fl LE LENGTH (f = OOOA)

A program issues this message to reduce the length of an existing private mass storage file. Reduction occurs
at the largest absolute address end of the file.

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

Beta (1)

Beta (2)

r

161
len

161
unused

161
OOOA

161

unused

161
eea

WI
Bl Ba

l_ __ ,L -- ---- ---- ------~

name ~I
I I

321
SS

al
length

241
unused

Response code returned by the operating system when this message has been processed. If no error
occurs, the response code will be zero. If r = 1, an error response code was returned in an ss field
of Beta. Otherwise,

214 = Beta buffer length error. Either the first word address of Beta plus length is greater than
the maximum user virtual address, or the Beta buffer is too small for the number of
requests and length specified .

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta
portion of the message.

eea Virtual bit address to receive control if an error occurs during message processing (r -=!- 0). If
eea = 0, the error is considered fatal.

Bl If the Beta portion of the message is not contiguous ta the tJpha pmtion (len = FFFF), these
Ba parameters indicate the length and virtual bit address of the Beta portion's first full word.

name Name of file in ASCII; file names must be of proper format as described in section 4.

60384400 D 4-35

ss Error response field:

I length

Note:

4-36

New length specified for file is greater than existing length.

2 File name cannot be found in file index.

3 File is still open to an active program.

New file length in small page blocks

Before a file can be reduced in length, it must not be active for this or any other program in the
system.

60384400 D

DESTROY FI LE (f = 0002)

This message is issued by a program to sever its connection with a tape drive and release the drive for re-assign­
ment, or to sever its connection with a mass storage file and release the mass storage space.

Message format:

Alpha (1)

161
len

161
unused

161
0002

161

Alpha (2) n

161
eea ~1

Alpha (3) Bl Ba

L __ 1L ______ ---- ------~

Beta (1)

Beta (2)

name

IOC al
dev

al
saddr

241
unit

al
own

al SS

Response code returned by the operating system when this message has been processed. If no
error occurs, the response code will be zero; otherwise:

Error code was returned in an ss field of Beta.

211 Number of destroys in this message is illegal (n = 0 or n > 16)

_ I
":I

214 Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buff er is too small for the number
of requests and length specified

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta
portion.

n Number of requests in this message (maximum = 16)

eea Virtual bit address to receive control if an error occurs during message processing (r -::/= 0). If
eea is zero, the error is consi-Geroo ·fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (Jen = FFFF), these
Ba parameters indicate the length and virtual bit address of the Beta portion's first full word.

60384400 c 4-37

I name

IOC

dev

Name of file in ASCII; file names must be in proper format as described in section 4.

For a tape destroy function, the program must specify the input/output connector (IOC) number.
If a mass storage file is being destroyed, the operating system will return, in this field, the inclusive
OR of all input/output connector numbers connected to this file.

Device:

0 Mass storage file

4 Tape drive

Fields saddr, unit, and own are inspected by the system only when the call is made by a privileged user.

saddr Beginning sector address of the file to be destroyed. This field is checked when unit is non-zero.

unit Logical unit number of file to be destroyed.

own Ownership of file to be destroyed.

0 Destroy file of private ownership.

Destroy file of public ownership; valid only for privileged users.

2 Destroy file of pool ownership; valid only for pool boss.

ss Error response field:

0 Normal completion.

File name does not exist.

2 File name given is in conflict with that in the input/output connector.

3 Another active program has the file open.

4 Parameter or format error.

5 Non-privileged task tried to destroy a public file.

6 User other than pool boss tried to destroy a pool file.

7 Illegal IOC number specified.

8 Drop file map full.

Note: If a mass storage file is at a sufficiently high security level, it will be overwritten with a pattern
when it is destroyed. Some installations can choose to overwrite all files when they are destroyed.

4-38 60384400 D

GIVE FI LE (f = 0008)

This message is issued when a program gives one or more of its private, inactive files to another user.

Message format:

Alpha (1)

161
len

161
c

161
0008

161
Alpha (2) n

161
eea

~1
Alpha (3) Bl Ba

L_ ,L -- -- -- -- ---- ------~

Beta (1)

Beta (2i

Beta (3)

name

SS auser

response code returned by the operating system when this message has been processed. If no
error occurs, the response code will be zero; otherwise:

Refer to Beta field ss for the specific error

211 Number of files given was zero or greater than 16

64

214 = Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buff er is too small for the number
of requests and length specified

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta
portion.

c Use;

0 Files are to be given to the private user number shown in Beta (2).

Files are to be given to a pool named in Beta (3).

n Number of files to be given (maximum of 16)

60384400 D 4-39

I

I

eea Virtual bit address to receive control if an error occurs during message processing (r =I= 0). If
eea is zero, the error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length and virtual bit address of the Beta portion's first full word.

name Name of file in ASCII; file names must be in proper format as described in section 4.

ss Error response code

0 No error; normal completion

File of this same name already exists at destination of this file.

2 File has the same name as a public file.

3 No such file exists.

4 No such user number exists.

5 Output file is improperly named.

6 File to be given is still active.

7 User number specified is that of the public list.

8 File to be given is a source or drop file.

9 Recipient of the file has a security classification less than that of the file.

A Pool name specified does not exist, or giver is not a member of this pool.

auser ASCII user number to receive file; not used when c = 1.

pool name Name of pool, left justified and blank filled; used only when c = 1.

Notes:

4-40

1. No file may be given to the public list. No file having the same name as a public file may be
given.

2.

3.

Files given to user 999999 for output processing must be properly named. Output processing
routines are run only on a demand basis. Running a system output processor is the responsibility
of the routine that processes this message. Processing for family files will be deferred until the
end name is recognized; other files will be processed at once.

The user number of the donor will be preserved in the file index table only for files given to user
999999 for output processing.

60384400 D

ROUTE AND Fl LE DISPOSITION (f = 0000)

This message is issued by a program to set the routine destination and type disposition of an existing file.

Message format:

Alpha (1) len I unused I 0000 I
Alpha (2)

Alpha (3)

I n ::I 161 ~ 161 :I
~---~--J-----------~-----------~

Beta (1)

Beta (2)

Beta (3)

Beta (4)

Beta (5)

Beta (6)

r

name
64

flags 401 def el al SS
8 8

fc ec 1sl ic de
16 16 16

tid sid 24] pri
16 8 16

fid
64

unused al un
56

Response code returned by the operating system when this message has been processed. If no error
occurs, the response code is zero; otherwise:

Error code was returned in ss field of Beta

211 Number of files routed by this message was illegal (n = 0 or n greater than 16)

214 Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Be'ta buffer is too small for the number
of requests and length specified.

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the mes­
sage. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta portion.

n Number of files to be routed by this call (maximum is 16).

eea Virtual bit address to receive control if an error occurs during message processing (r =/=- 0). If eea is
zero, the error is considered fatal.

I

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these param-
Ba eters indicate the length and virtual bit address of the first full word of Beta.

60384400 D 4-41 •

name File name in ASCII. File names must be of the proper format as described in section 4.

flags Flag bits. Bit = 1 indicates the specified parameter is to be processed. Bit = 0 indicates the specified
parameters is to be ignored.

Beta (2) bits from left to right starting from 0:

BIT 0 fc BIT 5 sid

BIT 1 ec BIT 6 pri

BIT 2 ic BIT 7 fid

BIT 3 de BIT 8 un

BIT 4 tid

def Indicates file disposition is to be deferred. The system stores the information about the file and dis­
poses it as requested when the file is released. Files are released at a GIVE FILE to user 1, CLOSE
file, end-of-task, or by a ROUTE that specifies immediate release (def= 0). Routing of files to the
input queue cannot be deferred. With deferred routing, the user can redefine the same file with sub­
sequent ROUTE calls.

el Beta entry length; must be at least 2 and less than 7.

ss Error response field:

01 Immediate release (def= 0) of an active file

02 Immediate release (def = 0) of a non-allocated file

03 Beta entry (el) length error

04 File must exist before route (temporary)

05 Immediate release (def= 0) with no disposition set

06 Could not write PFI

07 Illegal disposition code

08 Deferred routing (def= 0) specified for an input file

09 Ille gal file name

fc Forms code; a two character mnemonic. This parameter indicates special card or paper forms are to
be used for output. This field is defined but not currently supported.

ec External characteristic. A two-character mnemonic giving the print or punch representation of the
file.

26 Punch in 026 keypunch format

29 Punch in 029 keypunch format

*B STAR binary format

80 Punch 80 column binary format

• 4-42 60384400 D

ic Internal characteristic. A two-character mnemonic indicating the format of the file.

AS Format is 8-bit ASCII. If the file has dc=PR, the file has ANSI carriage control
characters.

BI Format is binary

PA Format is 8-bit ASCII with ASCII control characters.

de Disposition code. A two-character mnemonic indicating how the file is to be. disposed.

SC Scratch; destroyed at end of task

PR Print on any available printer

PU Punch

IN Input for Batch processing

sid Site identifier. A three-character identifier for the front-end processor. This field is defined, but not
currently supported.

tid Terminal identifier. A two-character mnemonic identifying a terminal. This field is defined, but not
currently supported.

pri Priority level for a file to be output at its originating terminal or front-end processor. This field is
defined, but not currently supported.

fid File name in ASCII, to be used in the output queue. This is ignored if deferred routing is specified.
If fid = 0, the file name, while the file is in the output queue, is the same as the job name (default).

GIVE TAPE ACCESS TO CONTROLLEE (f = OOOC)

With this message, a program gives its controllee access to one or more magnetic tapes currently existing
through the controller's input/output connector area.

Message format:

Alpha (1) r len c oooc
16 16 16

Alpha (2) n eea
16

Alpha (3) Bl Ba

16

48

L_ ------~

60384400 D 4-43

Beta (1)

r

SS IOC unused I
8

tname

Response code returned by the operating system when this message has been processed. If no
error occurs, the response code will be zero; otherwise:

Error code was returned in ss field of Beta

211 = Number of tapes given by this message was illegal (n = 0 or n > 16)
•

214 Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buff er is too small for the number
of requests and length specified

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta portion.

c Controls tape access:

0 Give tape access

Recall tape access

n Number of tapes to be given by this call (maximum is 16).

eea Virtual bit address to receive control if an error occurs during message processing (r =fa 0). If
eea is zero, the error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length and virtual bit address of the Beta portion's first full word.

ss Error response field:

00 Normal completion

01 No tape name specified

02 Wrong input/output connector indicated or IOC is not in range 0-15.

03 Controllee already owns a private tape with specified input/output connector number.

04 No con trollee exists.

06 Controller does not own a tape by specified name.

07 Controllee input/output connector is already in use.

4-44 60384400 D

IOC

tname

Note:

•
Input/output connector number for this tape.

ASCII name of this tape; maximum is five characters, left justified and blank filled.

The controllee gains access to the tape through the same input/output connector number as the con­
troller uses. The controllee's input/output connector does not, however, have the tape name. This
prevents the controllee from destroying the tape.

CHANGE Fl LE NAME OR ACCOUNT (f = 0008)

This message allows a program to change the name or account number of an existing private file.

Message format:

Alpha (1) J len ml c ml 0008 J
161

I I

~I Alpha (2) unused eea

8! Ba Alpha (3)

I_ ~-1~ ~- -~ ~- ---- ------~

Beta (1)

Beta (2)

cfile

new

Response code returned by the operating system when this message has been processed. If no
error occurs, the response code will be zero; otherwise:

Current file name is still active

2 Current file name does not exist

3 New file already exists

4 New account number is not valid

5 New file name is invalid

214 Beta buffer length error. Either the first word address of Beta plus
length is greater than the maximum user virtual address, or the Beta
buffer is too small.

60384400 D

64

64

4-4s I

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the mes­
sage. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta portion.

c Type of change:

00 Change file name

01 Change account number

eea Virtual bit address to receive control if an error occurs during message processing (r =F 0). If eea is
zero, the error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length and virtual bit address of the Beta portion's first full word.

cfile Current file name in ASCII, left-justified and blank filled.

new Contains the new file name in ASCII, left-justified and blank filled. For an account number, new
contains the new account number in ASCII.

4-46 60384400 D

OTHER SYSTEM MESSAGES 5

When programs operating in controller-controllee mode need to communicate with each other, standard messages
are used to transmit certain information between programs.

SEND A MESSAGE TO CONTROLLEE (f = 0015)

A program may start its controllee with or without a message, but the controllee must have been previously
initialized.

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

Beta (1)

r len m c 0015
16 16 8 8 16

unused b
eea

8 8 48
I
I

L
Bl _1L _____ _ Ba

-~

message

message maximum length is 4096 characters.

Response code returned by the operating system when this message has been processed. If no error
occurs, the response code is zero; otherwise:

Length of Beta in character bytes is either zero or greater than 4096.

2 Illegal option selected for this message.

3 No controllee matches the value of b (for b -f 0).

4 For b = 0, no controllee exists.

7 Error exit has been taken, since controllee already has a text string from controller.

60384400 c 5-1

214 = Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buffer is too small for the number
of requests and length specified.

len If len = FFFF, Alpha (3) contains the length in character bytes and virtual address of the Beta
portion of the message. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of
the Beta portion.

m Options for sending message:

c

00 = Start controllee program with the message. If controllee already has a message from
controller, replace it with message in Beta.

01 Start controllee program with the message. If controllee already has a message from
controller, return control to the error exit address.

02 Start controllee without a message (Beta portion of message is not required for this
option.)

Control field:

00 Stop running this program and start the controllee program immediately.

01 Remove this program from main memory before starting the controllee program.

b Descriptor number of controllee; if zero, the message will be sent to the next lower controllee.

eea Virtual bit address to receive control if an error occurs during message processing (r 'f 0). If eea
is zero, the error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length and virtual bit address of the Beta portion's first full word.

message Maximum message length 4096 characters.

Notes:

1.

2.

3.

5-2

Receiving a message causes the operating system to copy the message from Beta into a system
buffer and to start the controllee.

If a controllee is running, a message from a terminal to its controller will stop the controllee and
start the controller.

If any controllee other than the immediate controllee of a job control processor issues GET
MESSAGE FROM CONTROLLER (f = 0016) and no controller message is waiting, the controllee
will stop running, and will be put in a state of waiting for a controller message. The next higher
level controller will be started.

60384400 A

GET A MESSAGE FROM CONTROLLEE (f = 0017)

This message may be used to obtain a message from a controllee program. Depending on the option selected,
the message may be simply a copy of the message sent or the message sent may be processed into a set of
symbols.

Message format:

Alpha (1) J len
161

m _I c _I 0017 I

sl ,:1
i::s1 i::s1

:1
Alpha (2) b eea

Alpha (3) L_ Bl Ba

-- --- --~
(Beta formats are discussed under the m format option.)

r Response code returned by the operating system when this message has been processed. If no error
occurs, control proceeds normally and this field contains the number of character bytes (if a
message was obtained) or words (if symbols were obtained) returned in Beta. If control returns to
the error exit address, nothing is returned in Beta and the significance of r is as follows:

Count of items to be returned was either zero or greater than 4096.

2 Illegal option was specified for this message.

3 No message from controllee was waiting.

4 Message from controller was waiting.

6 This program started because the controllee whose level and descriptor number is stored
in j and b is waiting for a message from controller.

7 More than 200 delimiters defined by this program.

214 Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buffer is too small for the number
of requests and length specified.

len If len = FFFF, Alpha (3) contains the length in words (if symbols are to be obtained) or character
bytes (if a message is to be obtained) and virtual address of the Beta portion of the message.
Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta portion in
words (if symbols are to be obtained) or character bytes (if a message is to be obtained).

60384400 A 5-3

m Message format options:

Beta (1)

Beta (2)

5-4

For all m options , except m=OO, fill and justification may be specified by setting bits as follows:

XXXXIXXX
xxxxoxxx
XXIXXXXX
xxoxxxxx

00

Beta (1)

01
(XXXOXOOI)

nd

02
(XXXOXOIO)

Beta (1)

03
(XXXOXOI l)

Beta (1)

null fill
blank fill
right justified
left justified

Message is copied from system buffer to Beta. No end-of-message character byte
is added to the text. If character bytes in the message exceed the number requested,
only the number of character bytes requested will be copied to Beta. If they are
less than the number requested, the entire message will be copied to Beta and the
remainder of Beta will be cleared.

message

Maximum message length is 4096 characters.

Message is processed into symbols; delimiters are defined by the program and their
number must not exceed 200. Symbols are stored in Beta, one symbol per word.

vadb

16 48

symbol

nd Number of delimiters

vadb Virtual bit address of delimiter buffer. Delimiters are stored left to right,
character byte by character byte in the buffer.

The message is processed into symbols; delimiters are period, comma, slash, equal,
plus, minus, and left and right parentheses. Symbols are stored in Beta, one per
word.

symbol I

Message is processed into symbols. Delimiters are defined as installation parameter
options.

symbol I

60384400 c

c Control field indicating whether the message space in the system buffer is released:

00 = Process and return the message to Beta; release the system buffer space currently occu­
pied by the message.

02 Process and return the message to Beta, but do not release the system buffer space
currently occupied by the message.

Operating system supplies the level of controllee that sent message.

b Operating system supplies descriptor number of controllee that sent message.

eea Virtual bit address to receive control if an error occurs during message processing. If eea = 0, the
error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length in words (if symbols are to be obtained) or character bytes (if a

message is to be obtained) and virtual bit address of the Beta portion's first full word.

Notes:

1. Multi-word symbols are permitted and processed without any special treatment.

2. If the number of symbols exceeds the number requested, only the number of symbols requested
are stored in Beta. If they are less than the number requested, all symbols are stored in Beta; the
operating system does not add an end-of-message character.

3. Delimiters are always returned right justified with null fill. Blanks are never treated as a special case
(i.e., if a space is a delimiter, all occurrences of blank will result in a delimiter being returned. If
space is not a delimiter, then spaces are processed the same as any other character).

4. The level and descriptor number supplied by the operating system have no meaning if the controllee
that sent the message has been disconnected.

60384400 B 5-5

SEND A MESSAGE TO CONTROLLER (f = 0014)

This message may be used by a program to send a message to a program controller or the job control
processor.

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

Beta { 1)

5-6

r !en m c 0014
16 16 8 8 16

unused b eea
8 8 48

Bl Ba

---~

message

Response code returned by operating system when this message has been processed. If no error
occurs, the response code will be zero. Other values are as follows:

2

3

4

5

6

214

Length of Beta in character bytes is either zero or greater than 4096.

Illegal option selected for this message.

No controller matches the value of b ::/=- 0, or this task is already at level I; therefore,
sending a message would be pointless.

If the notify option was selected (m = 0 I), the controller designated was a job control
processor for a logged out terminal.

If the notify option was selected, the controller designated was a job control processor
for a terminal that has been logged in under a different suffix.

If the notify option was selected, the system output buffer is full.

Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buffer is too small for the number
of requests and length specified.

60384400 A

len If len = FFFF, Alpha (3) contains the length in character bytes and the virtual bit address of the
Beta portion of the message. Otherwise, Beta is assumed to begin at Alpha (3), and Jen is the
length in character bytes of the Beta portion.

m Options available if messages cannot be sent to controller.

c

00 = If message was for a logged out terminal, replace any existing message. If the job control
processor buffer is full, stop running this program until buffer is free.

01 If message cannot be sent to controller, return control to error exit address.

02 If message cannot be sent to controller, stop running this program until message can be
sent.

Control field:

00 = Send message to controller. For a program controller, start running the program controller
and stop running this program. For a terminal controller, continue to run this program.

01 Send message to controller. For a program controller, remove this program from main mem­
ory before starting controller. For a terminal controller, continue to run this program.

02 = Send message to job control processor; for a terminal controller, continue to run this pro-
gram; for a batch processor controller, stop this program.

b Descriptor number of the controller. If the message is to be sent directly to the job control pro­
cessor (c = 02), or if this program's controller is a job control processor, this field is ignored. If
this field is zero, the message is sent to the next higher controller.

eea Virtual bit address to receive control if an error occurs during message processing (r -=/= 0). If eea is
zero, the error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length in character bytes and virtual bit address of Beta portion'-: first

full word.

Notes:

1. When a message is received, the operating system copies it from Beta into a system buffer.

2. When output messages go to a job control processor for a logged in terminal and the wait or
replace option is used, the system buffer will hold up to five messages or 4096 character bytes,
whichever occurs first. For a logged out terminal, only one message can be held in the buffer.

3. Output messages for a job control processor initiated for a terminal are grouped in blocks of 151
character bytes and sent one block at a time to the terminal. If the last block is less than 151
character bytes, an end-of~message-ctrnracter is added after the last message character byte. The
originator is responsible for any formatting of multi-line messages by inserting the line feed and
carriage return characters.

60384400 B 5-7

GET A MESSAGE FROM CONTROLLER (f = 0016)

This message is used to obtain a message from a controller program. Depending on the option selected, may be
simply a copy of the message sent or it may be processed into a set of symbols.

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

r len m c 0016
16 16 8 8 16

j b eea
8 8 48

Bl Ba
48 I

-- -- -- ----=.J

(Beta formats are discussed under the m format option.)

Response code returned by operating system when this message has been processed. If no error
occurs, control proceeds normally; and this field contains the number of character bytes (if a
message is obtained) or words (if symbols are obtained) returned in Beta. If control returns to the
error exit address, nothing was returned in Beta; and the significance of r is as follows:

Count of items to be returned was either zero or greater than 4096.

2 Illegal option specified for this message.

3 Error exit has been taken, since no controller message existed.

7 More than 200 delimiters defined by this program exceeded.

9 Get message issued from a level 1 task.

214 Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buffer is too small for the number
of requests and length specified.

len If len = FFFF, Alpha (3) contains the length in words (if symbols are to be obtained) or character
bytes (if a message is to be obtained) and the virtual bit address of the Beta portion of the mes­
sage. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta portion
in words (if symbols are to be obtained) or character bytes (if a message string is to be obtained).

5-8 60384400 c

m Message format option:

For all m options, except m=OO, fill and justification may be specified by setting bits as follows:

XXXXIXXX
xxxxoxxx
XXIXXXXX
xxoxxxxx

00

Beta (1)

Beta (1)

Beta (2)

01
(XXXOX:OO I)

02
(XXXOXOIO)

Beta (1)

03
(XXXOXOI 1)

Beta (H

60384400 D

null fill
blank fill
right justified
left justified

Message is copied from the system buffer to Beta; no end-of-message character
byte is added to the text. If the number of character bytes in the message exceeds
the number requested, only the number of character bytes requested \Vill be copied
to Beta. If they are less than the number requested, the en tire message is copied to
Beta; and the remaining portion of Beta is cleared.

message

Maximum message length is 4096 characters.

Message is processed into symbols; delimiters are defined by the program, and their
number must not exceed 200. Symbols are stored in Beta, one symbol per word.

nd

nd

vadb

vadb

symbol

Number of delimiters

Virtual bit address of delimiter buffer. Delimiters are stored left to right,
character byte by character byte in the buff er.

Message is processed into symbols; delimiters are period, comma, slash, equal, plus,
minus, and left and right parentheses. Symbols are stored in Beta, one symbol per
word.

symbol I

Message is processed into symbols. Delimiters are defined as installation parameter
options.

symbol I

5-9

c Control field:

00 = If no controller message is present, stop running this program until a message arrives.
If a controller message is present, it resides in a system buffer. Process and return the
message to Beta, and release the system buffer space occupied by the message.

01 If no controller message is present, return control to the error exit address. If a message
is present, it resides in a system buffer. Process and return the message to Beta and
release the system buffer space occupied by the message.

02 If no controller message is present, stop running this program until a message arrives.
If a controller message is present, it resides in a system buffer. Process and return the
message to Beta, but do not release the system buffer space occupied by the message.

03 If no controller message is present, return control to the error exit address. If a controller
message is present, it resides in a system buffer. Process and return the message to Beta,
but do not release the system buffer space occupied by the message.

Operating system supplies the level of the controller that sent the message.

b Operating system supplies the descriptor number of the controller that sent the message.

eea Virtual bit address to receive control if an error occurs during the message of processing. If the
value of eea is zero, the error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), this
Ba parameter indicates the length in words {if symbols are to be obtained) or character bytes (if a

message is to be obtained) and virtual bit address of the Beta portion's first full word.

Notes:

1.

2.

3.

4.

5.

5-10

Multi-word symbols are permitted and processed without any special treatment.

If the number of symbols exceeds the number requested, only the number of symbols requested
will be stored in Beta. If they are less than the amount requested, all symbols are stored in Beta;
the operating system will not add an end-of-message character.

Delimiters are always returned right justified with null fill. Blanks are never treated as a special case
(i.e., if a space is a delimiter, all occurrences of blank will result in a delimiter being returned. If
space is not a delimiter, then spaces are processed the same as any other character).

If the message arises from a job control processor, the operating system will set j = 1, and, if the
job processor is a terminal, b = FF.

If no message is present, fields j and b will contain the level and descriptor number of the immediate
controller.

60384400 D

INITIALIZE OR DISCONNECT CONTROLLEE (f = 0018)

This message is used by a program to initialize another program as a controllee. It also may be used to dis­
connect a previously initialized controllee. Up to five levels of program controllees are permitted.

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

Beta (1)

Beta (2)

161 len 161 unused 161 001B 161

n

161
eea ~1

Bl Ba

L __ 1L -- -- -- ---- -- -- --~

I -- -- -- -- -- -- -- -- -- -- -- I
filename

~ ~ -- --r--- -- -- -- ---~
I I I I

b unused ti
_ I - __& s_I _ ---- -- ---- -- -- --~

Response code returned by operating system when this message has been processed. If no error
occurs, the response code is zero. Other response codes for initializing a controllee program (n f 10)
are as follows:

2

3

4

5

6

7

8

9

10

11

12

13

Controllee program is already present

Illegal option

Controllee program file was not found

Insufficient time to run the controllee program

Illegal priority

Error in creating system drop file

Controllee program file is not executable

Mass storage device error

Full system tables inhibit initialization of controllee program at this time.

Drop file cannot be verified

Disk READ MESSAGE full

BAD minus page in con trollee file

Undefined error in drop file verification

60384400 D 5-11

I

A Abnormality in the controllee program file or drop file 1/0 connector entry.

B Five levels of controllee program are present already.

c No controllee present (for disconnect only). If a controllee program is being disconnected
(m=O), this response code indicates no controllee program is present.

D Controllee program drop ·file is too small.

E Unable to destroy existing drop file.

F Unable to restart controllee because interrupt register table is full.

214 = Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buff er is too small for the number
of requests and length specified.

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3) and len is the length of the Beta portion
of the message.

n Options for this message:

0 Initialize controllee program and restart this program.

Initialize controllee program and immediately begin executing. Stop executing this program.

10 Disconnect controllee program and restart this program. (Beta portion of message is not
required for this option.)

eea Virtual bit address to receive control if error occurs during message processing (r 'f 0). If eea is
zero, the error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length in full words and virtual bit address of the Beta portion's first

full word.

filename Name of controllee program (must be an executable file), left justified and blank filled.

b When the message is issued, the operating system returns the controllee program's descriptor number.
If the controllee program is disconnected and re-initialized, this number may change.

tl Time limit for the controllee program, in microseconds. When this time limit is zero, the controller's
time limit is used.

5-12 60384400 D

INITIALIZE CONTROLLEE CHAIN (f = 001 D)

This message is used by a program to initialize a chain of controllees. Up to five levels of controllee programs
are permitted. Control is returned to the program after the call.

Message format:

Alpha(1) 1-1--------1-6-+1----le_n ____ 16__._ ____ un_u_se_d ___ 1_6_1L.,__ ___ 00_1_0 ___ 1_6_.I

Alpha(2) n eea

Alpha(3) Bl Ba

----~--------------------

Beta(1)

Beta(2)

Beta(3)

Beta(4)

c unused SS m d
8 8 8 8

sj
unused

1

sj
ti k

source

drop

Response code returned by the operating system when this message has been processed. If no
errors occur, the response code is zero. Other values are as follows:

Controllee program already present

2 Full system tables inhibit initialization of controllee program at this time

3 Controllee levels exceeded five

4 Error in attempt to initialize controllee; see ss field

60384400 D

8

48

64

64

5-13

len If len = FFFF, Alpha(3) contains the length and virtual bit address of the Beta portion of the mes­
sage. Otherwise, Beta is assumed to begin at Alpha(3), and len is the length of the Beta portion of
the message.

n Number of parameter sets less than or equal to 4.

eea Virtual bit address to receive control if an error occurs during message processing (r:fO). If eea=O,
the error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length in full words and virtual bit address of the Beta portions first full

word.

s Absolute level value (2-5) of the program named in the third Beta word of the entry is returned
to this field by the system. Beta words appear in the order in which the controllees are to be
initialized.

Descriptor number of program named in the third Beta word of this entry is placed in this field.

c Descriptor number of this program's controller is placed here.

ss File initialization error

m

d

k

source

drop

tl

3 Controllee program file was not found

4 Insufficient time to run the controllee program

6 Error in creating drop file

7 Controllee program file is not executable

8 ~ass storage error

9 Abnormality in the controllee program file or dropfile I/O connector entry

Task level, relative to controllee specified in Beta(5), to receive messages from above.

Task level, relative to controllee specified in Beta(3) to receive message from below.

Descriptor number of this programs controllee is in this field. This number may be zero.

ASCII name, left justified and blank filled, of the executable source file to be initialized if drop­
file name field is zero. Returned by system if dropfile name field is other than zero.

ASCII name, left justified and blank filled, of the dropfile. If specified, the task is started from
this dropfile.

Time limit in microseconds, for the controllee program. When controllee's time is exhausted, tl
is zero.

Note: Any error in the request causes the entire chain to be ignored, and none of the controllees will be
initialized.

5-14 60384400 D

MESSAGE CONTROL (f = 0018)

This message informs the operating system that messages directed to this program should be sent to another
controllee or controller in the chain.

Alpha (1) J unused _I m _I c _I 0018 _I
H>I rn I l'.51 ts I

'°I J J Alpha (2) b eea
48

A response code returned by the operating system when this message has been processed. If no
error occurs, the response code is zero. If r = 1, no controller or controllee has that descriptor
number.

m Options for bypassing input and output messages:

01 Manipulate input bypass according to control switch c.

02 Manipulate the output bypass according to control switch c.

03 Manipulate both input and output bypass according to control switch c.

04 Determine message destination from controllee descriptor number in j.

05 Determine message destination from controller descriptor number in b.

06 = Examine both b and j to determine message destination.

c Bypass control switch:

00 Turn off bypass

01 = Turn on bypass

Descriptor number of destination controllee.

b Descriptor number of destination con troll er.

eea Virtual bit address to receive control if an error occurs during message processing (r f 0). If eea
is zero, the error is considered fatal.

60384400 B 5-15

Notes:

1.

2.

3.

4.

5-16

The controllee may direct messages to a job control processor by setting b = FF.

Messages sent to this program specifically by descriptor number are not redirected.

If the input bypass is set, controller messages not specifically directed to this program are sent
to this program's controllee.

If the output bypass is set, controllee messages not specifically directed to this program are sent
to this program's con troll er.

60384400 B

REMOVE CONTROLLEE FROM MAIN MEMORY (f = 0019)

This message may be used to swap a con trollee program or the user program from main memory to mass
storage.

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

Beta (1)

r

161
len

161
unused 0019

161

n

161
eea ~1

81 Ba

L_ -- 1.&__ -- -- -- ---- ------~

r--i--------- -------i

L__b__tl_~- -- ~- -- -- -- -- ~
Response code returned by operating system when this message has been processed. If no error
occurs, the response code is zero.

No controllee exists of this descriptor number

214 Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or len is zero.

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta portion.

n Specifies the controllee to be removed

60384400 B

00 = Remove the next lower controllee program to mass storage. No Beta portion is required
for this option.

01 Remove the controllee specified in Beta (1) to mass storage.

02 Remove this program to mass storage.

5-17

eea

Bl

Ba

b

Note:

5-18

Virtual bit address to receive control if an error occurs during message processing (r :f 0). If eea
is zero, the error is considered fatal.

If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
parameters indicate the length in full words and virtual bit address of the Beta portion's first
full word.

Descriptor number of controllee to be removed to mass storage.

The controller program stops running and is put in a write controllee state until all controllee
pages are written to mass storage.

60384400 B

TE RM I NATE (f = 0006)

A program issues a TERMINATE message to signal the operating system that it has completed execution. All
lower level controllees are also terminated. The message consists of an Alpha portion only.

Message format:

Alpha (1)

I
c

1

0006 I
1-----r--1----______._1~ _ __.__1~ _---'"116 I

resume I I
L----L-----ll.-------48

0000

Alpha (2)

c Indicates disposition of drop file when program is removed from main memory:

0 = Drop file, scratch files and output-type files are preserved so the program can be restarted.
All modified pages belonging to write access files overwrite their current disk images and
all other modified pages are written to the drop file. The resume address is stored in the
drop file minus page.

Drop file and scratch files are destroyed. Give output-type files to the output processor.

2 Same as option 0 except the terminate state is set to report an abort (3D)

re Return code. Can be any 8-bit value; the values are system standard values for product set
numbers.

0 Successful completion

4 Non-fatal errors

8 Fatal errors

resume Virtual bit address at which program is to be resumed when it is restarted.

60384400 D 5-19

SEND A MESSAGE TO THE OPERATOR (f = 001A)

A program may communicate with the operator through this message.

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

Beta (1)

r

r len unused 001A
16 16 16 16

n eea
16 48

Bl Ba

L ---~ --- --- --- ---~

message

Maximum message length is 80 characters.

Response code returned by operating system when this message is processed. If no error occurs,
the response code is zero; otherwise:

1 = Specified length of Beta portion in character bytes was out of range (either zero or
greater than 80).

2 Message could not be sent to the operator because no system buffer was available or operator
was not logged on; error processing is indicated by the value of n.

214 Beta buffer length error. Either the first word address of Beta plus length is greater than
the maximum user virtual address, or len is zero.

len If len = FFFF, Alpha (3) contains the length in character bytes and the virtual bit address of the
Beta portion of the message .. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length
in character bytes of the Beta portion (0 < len ~ 80).

n Indicates action to be taken if message cannot be sent;

0 Program will stop running until the message can be sent.

Control will pass to error exit address in eea.

5-20 60384400D

eea Virtual bit address to receive control if an error occurs during message processing (r t= 0). If eea
is zero, the error is considered fatal.

Bl
Ba

Note:

If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
parameters indicate the length in full words and virtual bit address of the Beta portion's first full
word.

The only reasons a message cannot be sent to the operator are that the system message buffer is
full or the operator is not iogged on.

60384400 D 5-21

ADVISE (f = 0007)

A program issues the ADVISE message to inform the operating system of an anticipated need for virtual space
in an attempt to avoid page faulting for the space, or to advise the system of pages no longer be used by this
program.

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

Beta (1)

r len unused 0007
16 16 1q 16

unused eea
16 48

L
Bl Ba

----~ __ 1~ -- -- --

SS pgct I
8

vba

481

Response code returned by operating system when this message has been processed. If no error
occurs, the response code is zero.

The ss field of Beta contains the error response

214 Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buffer is too small for the number
of requests and length specified

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta
portion.

eea Virtual bit address to receive control if an error occurs during message processing (r 1- 0). If eea = 0,
the error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these param-
Ba eters indicate the length in full words and virtual bit address of the Beta portion's first full word.

5-22 60384400 B

ss Error response field:

0 Normai compietion

System boundary violated

2 Page count too large, or zero

3 = Page locked down and cannot be removed

pgct Page control fields further divided as follows:

pio
pio

psz
psz

pio ,I
0

0

psz , I
Attach or load pages
Remove pages

Small pages
Large page

pn

pn Page count with a maximum value of eight ror small pages and one for large pages.

vba Virtual bit address referred to by the ADVISE action.

Notes:

1. When the virtual bit address is not defined in any virtual map, it is considered to be a definition
of new free space. An appropriate entry will be made in the drop file map, and core space will
be allocated.

2. If the virtual bit address is defined, a message sent to the page fault processor gives the address
and length of the space indicated by ADVISE~ treated as a page fault.

3. If more than one small page is indicated, they should be contiguous in mass storage, so as to
generate only one read request.

4. When space is no longer needed, the operating system rewrites all modified pages in that space to
mass storage. Unmodified pages are deleted from the paging system, thereby increasing the space
available for paging.

60384400 B 5-23

RECALL (f = 0025)

The RECALL message allows a program to suspend its own execution for not less than 30 seconds nor more
than 30 minutes. At the end of suspension, the program is recalled to an active status. No program that has
initialized another program (is a controller) or has been initialized by another program (is a controllee) may
issue this message. No user program that owns tapes may issue this message (this restriction does not apply to
system privileged user programs).

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

Beta (1)

r len unused 0025
16 16 16 16

unused eea
16 48

L
Bl Ba

------~ -- 1&_ -- -- --

unused time

Response code returned by operating system when this message has been processed. If no error
occurs, a response code value of zero is returned.

This message is not allowed for this program.

214 Beta buff er length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buff er is too small for the number
of requests and length specified

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta portion.

eea Virtual bit address to receive control if an error occurs during message processing (r 'f 0). If eea=O,
the error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length in full words and virtual bit address of the Beta portion's first full

word

time Period of suspension, specified as an integer in (hexadecimal) micro-seconds. The value of time must
be no less than 30 seconds nor more than 30 minutes. Values outside this range will be set to the
nearest interval limit.

5-24 60384400 B

LIST CONTROLLEE CHAIN (f = 0013)

A program can obtain a list of the controllee chain including the program level and descriptor number, the
executable source file name, drop file name, and so forth.

Alpha (1)

Alpha (2)

Alpha (3)

Beta (1)

Beta (2)

Beta (3)

Beta (4)

I 161
len

161
m

sl
unused

sl
0013

161

I al
b

8
1

eea]
I I I
L

Bl Ba

--~ -- -- -- ---- ------~

s t c unused n d

8 8 8 24 8 8

k ti
8 56

source

drop

Response code returned by the operating system when this message has been processed. If no
error occurs, control proceeds normally; and this field contains the number of words returned in
Beta. If control returns to the error exit address, the following values of r are significant:

The length specified for Beta is zero.

2 An illegal option was selected.

I

214 Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buffer is too small for the number
of requests and length specified.

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3), and !en is the length of the Beta

portion of the message.

60384400 c 5-25

m Options for this message:

0 = List all controllees in the chain. The operating system returns four Beta words per entry
list. Controllees are listed in ascending order, starting with the job control processor.

01 List only this program. The operating system returns four Beta words.

02 List only this program's controller. The operating systen returns four Beta words.

03 List only this program's controllee. The operating system returns four Beta words.

In this field, the operating system places this program's level in the controllee chain.

b In this field, the operating system places this program's descriptor number.

eea Virtual bit address to receive control if an error occurs during message processing (r 'f 0). If
eea = 0, the error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length in full words and virtual bit address of the Beta portion's first full

word.

s The level of the program whose name is in the third Beta word of this entry will be placed in
this field. (Level numbers range from two to five.)

Descriptor number of the program whose name is in the third Beta word of this entry will be
placed in this field.

c Descriptor number of this program's controller will be placed here.

n Beta (3) contains the name of a program that has informed the operating system to direct messages
from the controller to n if they are not specifically directed to the controllee. The operating
system places the descriptor number of n, a program in the chain, in this field. The number may
be zero.

d Beta (3) contains the name of a program that has informed the operating system to direct messages
from the controllee to d if they are not specifically directed to the controller. The operating system
places the descriptor number of n, a program in the chain, in this field. The number may be zero.

k Descriptor number of this program's controllee will be placed in this field. This number may be zero.

tl Time limit of program whose name is in the third Beta word of this entry.

5-26 60384400 B

source ASCII name of the executable source file

drop ASCII name of the drop file

Notes:

1. The issuing program can determine its own position in the chain by comparing fields j and b with
fields s and t.

2. Five program controllee levels is the maximum. Level 1 is a job control processor or terminal.

3. The descriptor number is unique and is associated with the program until it is disconnected.

LIST Fl LE INDEX OR SYSTEM TABLE (f = 0009)

With this message, a program can get a copy of its private file index, the public file index, or other specified
system tables.

Message format:

Alpha (1) len I
16

c

I
0009

16

I Alpha (2) n eea

481
Alpha (3) Bl Ba

__ 1~

Beta (1) name
64

Beta (2) meat saddr unit dup wlen
8 24 8 8 16

Beta (3) user/ref idehr type slev aes
32 8 8 8 8

Beta (4) torg tlr
32 32

Beta (5) de ie ee pri

16 16 n 16 16

Beta (6) tid sid unused fe
16 24 8 16

Beta (7) unused un
8 56

-·- -·····---····

Beta (8) unused
64

60384400 D 5-27

For options c = 0, 1, and 8, only the first four Beta words are returned. For option c = C, all eight Beta
words are returned. Unused fields are reserved for future system usage.

r Response code returned by the operating system when this message has been processed. If no
error occurs, a response code value of zero is returned. Otherwise,

211 = Number of files was 0.

214 = Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buffer is too small for the number
of requests and length specified.

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta por­
tion; for c = 2 through c = 5, len specifies available program buffer size for the requested system
table.

c Option specifying the file index or system table to be listed.

0 = Public file index

1 = Private file index

2 = Timecard buffer

3 = Statistics buff er

4 = Bank update table

5 = Miscellaneous table

6 = Batch input files

7 = Specified part of private file index

8 = Specified filenames in file index

9 = Disk status table

A= Private files beginning with string specified in name

B = Public files beginning with string specified in name

C = The portion of the private file index whose disposition code is the same as the de field
specified in Beta (5).

n For c = 0, 1, 8, and C, n is the number of file index entries to be listed. The Beta area should
be at least 8n words long for c = C and at least 4n words long for c = 0, 1, or 8. For the other
options, n is the size of the table to be listed and the Beta area should be at least n words long.
The program will move words from the table into the Beta area until either the table or the Beta
area is exhausted. The value of n must always be greater than 0.

eea Virtual bit address to receive control if an error occurs during message processing (r f- 0). If
eea = 0, the error is considered fatal.

5-28 60384400 D

BI If the Beta portion of the message is not contiguous to the Alpha portion (len = FFFF), these
Ba parameters indicate the length in full words and virtual bit address of the Beta portion's first full

word.

name Operating system places here the ASCII file name froi:n the table requested. If option c = 7 has
been chosen, the listing begins at the file entry following name given, or first entry if name = 0.
If option c = 8 has been chosen, the user places here the filename for which information is to be
returned. Operating system places 0 here if name given is not found when c = 7 or c = 8. For
c = A or B, name contains a string of characters which are left-justified and zero filled.

meat Operating system places here the management category for this file (all will be mass storage files):

saddr

unit

wlen

dup

user/ref

idchr

type

0 = Permanent file

1 = Scratch file

2 = Output file

3 = Write temporary file

5 = User-created drop file

6 = System-created drop file

7 = Batch file

First page address of physical segment is placed here by operating system.

Logical unit number on which file was found.

File length (in small pages); placed here by operating system.

Reserved for future system usage.

Operating system returns user number of original owner if file was given to USER 1 and option
c = 7; otherwise, the operating system returns the ref field from the file index table.

If non-zero when c = 7, only files whose first non-blank non-null character matches idchr are
listed. If no such files are found, the operating system returns 0 to the name file. Not used
otherwise.

File type; placed here by the operating system:

0 = Physical data

1 = Virtual data

2 = Virtual code

slev Security level of this file (O to 25 5).

acs File access permi~sion tak~:n frQm ftle index:

60384400 D

1 = Write access }

2 = Read access
May be used in logical combinations

5-29

I

torg Time in 16-second units at which the file originated.

tlr Time in 16-second units at which the file was last referenced by opening.

de Disposition code. A two-character mnemonic indicating how the file is to be disposed.

SC = Scratch; destroyed at end of task

PR= Print on any available printer

PU= Punch

IN = Input for Batch processing

For c = C, this field specifies that portion of the private file index which is to be returned.

ic Internal characteristics. A two-character mnemonic indicating the format of the file.

AS = Format is 8-bit ASCII. If the file has a disposition code of PR, the file has ANSI
carriage control characters.

BI = Format is binary.

PA = Format is 8-bit ASCII with ASCII control characters.

ec External characteristics. A two-character mnemonic giving the print or punch representation of
the file.

pri

sid

tid

fc

un

NOTE:

• 5-30

26 = Punch in 026 keypunch format

29 = Punch in 029 keypunch format

*B = STAR binary format

80 = Punch 80 column binary format

Priority level for a file to be output at its originating terminal or front-end processor. This field is
defined, but not currently supported.

Site identifier. A three-character identifier for the front-end processor. This field is defined, but
not currently supported.

Terminal identifier. A two-character mnemonic identifying a terminal. This field is defined, but
not currently supported.

Form code. This field is defined but not currently supported.

User number. A seven-character user number from the front-end processor. This field is defined
but not currently supported.

Because entries in FILEI may be moved about during the execution of a job or task, the user of
contiguous LIST FILE INDEX requests, option c = 7, cannot be sure of results. Since the first
request, when scanning is stopped, will give the filename, the user cannot rely on the first request
to indicate where scanning is to begin for a subsequent request.

60384400 D

MISCELLANEOUS (f = 0024)

This message allows a program to manipulate its time limit and to determine a variety of information con­
cerning itself, its controller, and its controllees.

Message format:

Alpha (1)

Alpha (2)

Alpha (3)

r

,J len ,J c ,J 0024 J
161

I I

~1 unused eea

Bl Ba
L_ ~-1tl__ ~- --- ~- -------~
Beta is described with the information options.

Response code returned by operating system when this message has been processed. If no error
occurs, the response code will be zero. If r = 1, an error has occurred.

214 = Beta buffer length error. Either the first word address of Beta plus length is greater
than the maximum user virtual address, or the Beta buffer is too small for the number
of requests and length specified

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3), and len is the length of the Beta
portion.

c Information option:

60384400 D

00 = Modify time limit as follows:

Beta (1)
Beta (2)

New time limit in microseconds
Existing time limit; returned by operating system

01 Get user ID number and bank account as follows:

ASCII user ID number Beta (1)
Beta (2) Amount of time in the user's bank account (integer in microseconds);

returned by operating system

02 Reserved for future use

03 Get time limit and priority; both returned by operating system:

Beta (1)
Beta (2)

E~dsting · time limit in microseconds
Existing priority

5-31

I

Beta (1)

5-32

04 Reserved for future use

05 Get controllee's termination state

Beta (1) See diagram below:

unused ~I
re Return code

0 Successful

4 Non-fatal error

8 Fatal error

cts Controllee's termination state

0 Still active

User terminal break to exit card

2 Operator break to exit card

3 Operator job drop break to 6/7 /8/9 card

4 Operator user drop entire batch deck

3D Abort

3E Normal termination

39 Normal termination

06 Get controllee name and place; both returned by operating system:

Beta (I)
Beta (2)

Source file name for controllee
Drop file name for con trollee

07 Get controllee name and place; both returned by operating system:

Beta (1)
Beta (2)

Source file name for controller
Drop file name for controller

08 Get this program's name and place; all are returned by operating system:

Beta (1)
Beta (2)
Beta (3)

Source file name for this program
Drop file name for this program
Suffix, level in controllee chain, and ASCII ID number

cts I
8

60384400 D

Beta (1)

Beta (2)

Beta (3)

Beta (4)

Beta (1)

Beta (2)

60384400 D

09 Get elapsed time and page fault count; all are returned by operating system:

pgflt

161

cpuchg

drflt memchg

16

exio J remio

imio] syschg

pgflt Count of total page faults

cpuchg Central processor charge

drflt Count of page faults found on drum

memchg Memory charge

exio Explicit input/output charge

remio Remote input/output charge

imio Implicit input/output charge

syschg System call charge

OA Get clocks; all are returned by operating system:

Master clock value Beta (1)
Beta (2)
Beta (3)
Beta (4)
Beta (5)

ASCII clock value, expressed as HH:MM:SS (hours:minutes:seconds)
Calendar value, expressed as MM/DD/YY (month/day/year)
Value of millisecond station clock
Value of millisecond central processor clock

OB Not used; reserved for future use

OC Grab time from repository

re unused

16

gtime

:I
J
321

48

64

5-33 •

re Return code

0 Successful

No repository access

2 Not enough time available

gtime Time value, in floating point form, representing number of minutes for
which grab is to be made. For re = 2, maximum time available for grab
is returned by the system.

eea Virtual bit address to receive control if an error occurs during message processing (r =!= 0). If
eea = 0, the error is considered fatal.

Bl If the Beta portion of the message is not contiguous to the Alpha portion {len = FFFF), these
Ba parameters indicate the length in full words and virtual bit address of the Beta portion's first full

word.

POOL FILE MANAGER (f = 0026)

This message includes a variety of options related to pool files.

Message format:

Alpha(l)

Alpha(2)

Alpha(3)

r

5-34

r len c 0026
16 16 16 J..6

unused
16 eea

'W

I I I
I Bl

16
1 Ba 481 L--------L _________________________ J

Beta is described with the message options.

Response code returned by the operating system after message is processed. If no error occurs the
response code is zero. A non-zero response code does not necessarily mean an error has occurred,
but the error exit is taken.

0

11

12

13

14

15

16

Successful

,Pool name already attached by this user

Pool name undefined

Already in four pools

Pool not attached

May not attach to pool; user has no access to pool

Undefined user number

60384400 D

I7 Duplicate pool name

I8 Unable to destroy pool

I9 Pool access directory full

IA Pool list full

IB Invalid pool

IC Invalid pool name

1D Not pool boss

2I4 Beta buff er length error

len If len = FFFF, Alpha (3) contains the length and virtual bit address of the Beta portion of the
message. Otherwise, Beta is assumed to begin at Alpha (3) and len is the length of the Beta
portion.

c Message options:

In each of the following options, Pool name occupies the entire Beta (1) word. Pool name contains
up to 8 alphanumeric characters and must start with a letter; it is left-justified and blank filled.
User numbers each occupy an entire word and are right-justified and zero filled. User numbers can
range from 1 to 999999.

I = Create pool. Adds the pool name to the pool list and clears (zeros) the pool access
directory from that pool. The creator becomes the pool boss.

Beta (1) Pool name

2 Destroy pool. If no users are attached and no files are in the pool, the pool name is
deleted from the pool list.

Beta (I) Pool name

3 Grant access to pool. Places the specified user numbers into the pool access directory.
If either len or Bl is I, all users may access the pool.

Beta (I) Pool name
Beta (2-i) User numbers to be granted access

4 Attach to pool. Attaches requestor to the named file pool.

Beta (1) Pool name

5 Detach requestor from pool.

Beta (1) Pool name

6 Remove access privilege. Specified user numbers are removed from the pool access
directory.

Beta (I) Pool name
Beta (2-i) User numbers to be removed

60384400 D 5-35

Beta (1)

Beta (2)

7 Ust users having access to the pool.

Beta (1)
Beta (2-i)

Pool name
list of user numbers having access to the pool; as permitted by the r
specification.

8 list pools and pool boss. All non-zero entries in the pool list file are copied from
Beta (1) to Beta (i). The number of words copied is indicated in r.

Each pool list entry returned has the following format:

pcount pp tr pfree pboss

16 16 12

pool nm

. pcount Count of users attached to this pool

20

64

pp tr Pointer into PAD that contains a list of user numbers which can attach to
this pool

pfree

pboss

poolnm

Currently unused

User number of the boss of this pool

Name of this pool in ASCII

eea Virtual bit address to receive control if an error occurs during message processing (r = 0).
If eea = 0, error is considered fatal.

Bl If the Beta and the Alpha portions are not contiguous (len = FFFF), these parameters indicate the
Ba length (Bl) in full words and virtual bit address (Ba) of the Beta portion's first full word.

Error codes related to this message are described in appendix H.

5-36 60384400 D

JOB PROCESSING 6

Under STAR-OS, jobs may be processed by either the batch processor or the interactive processor. Under the
batch processor, all communication concerning job processing is carried on with the system through control
card information submitted as part of the job. Under the interactive processor, the user may communicate
directly with the system from an interactive terminal. The user can call on the system to store programs and
data on mass storage units; once filed, the information may be accessed through either the batch or interac­
tive processors.

Both processors recognize three general classes of control commands from the user: identification, execution,
and termination. The identification command identifies the user and makes his files available to him - in
batch mode, through the STORE card; in interactive mode, through the LOGON line.

The execution command requests specific system action by submitting, on a batch mode control card or on an
interactive control line, the name of an existing file, such as the name of the file containing the FORTRAN
compiler, or the name of a file containing a user procedure.

Job termination depends upon the user mode. Under the batch processor, a job terminates when all control
cards have been processed, or an EXIT card is encountered and no error has been detected. If the batch
processor is activated from an interactive terminal, the job may terminate normally when an end-of-job char­
acter is detected at the end of the file. The interactive user may terminate his job with a BREAK character,
or he may disconnect the terminal from the system with the disconnect request.

INTERACTIVE PROCESSING

The interactive processor allows the user to request information about his job and communicate with a
program regarding functions in addition to the initiate, execute, and terminate control lines.

ESTABLISHING USER IDENTITY

At an interactive terminal, a user establishes identity with the LOGON line in the following format:

LOGON user-number suffix account-id level password

Blanks separate fields in the line. The new line key terminates the line. The parameters are:

user-number A six-digit number, such as 999997, which uniquely identifies the terminal user.

suffix Letters A, B, C, or D under which the user can operate. Since each user may have
up to four programs active in the system at one time, each program must be identi­
fied uniquely by the suffix.

account-id An identifier of 1 to 6 characters used for accounting purposes.

60384400 D 6-1

level

password

Single character defining a user's security access level; required if a password is given
but is otherwise optional. The following is a list of characters and their correspond­
ing numeric security level.

Character

Undefined

P or omitted

A

s

K

Level

0

2

3

s

7

The file management functions and utilities permit a range of security levels. The user
cannot, however, read or execute a file whose security level is greater than the one at
which the user logged on. If the user creates files without specifying a security level,
the security level at which he is logged on will be used.

A predetermined string of characters used to determine legality of access to information
having security classification. This is an optional parameter which is defined but not
currently implemented.

Example of LOGON line:

LOGON 999997 A 400SDS

When the identification line is entered, the interactive processor verifies the items in the line; and, if no entry
for the user exists, it assigns and fills a user table entry. Appropriate entries are made in the active file index
in central memory for the user's private files.

INITIATING PROGRAM EXECUTION

After the user has entered identification and the interactive processor has ascertained that no other program is
active under the suffix entered, a program may be initiated by an execute line. In the form shown below,
6. indicates a required space.

6-2

task-nameb./6.t { ~} c6./6.message

task-name The task-name is required; the remainder of the line is optional. Task-name is the
name of a virtual code file to be placed in execution; the first 6 characters must be
unique.

This character delimits the start time and job class information; when present, it is
preceded by a blank.

Decimal number giving time limit, in seconds, to be allocated for this task; it is

preceded by a blank. Default time is 10 seconds.

60384400 D

{~}

c

message

A separator is required between time and job class information; it may be a space

or comma.

Characteristic of the task which influences the way in which the system allocates
resources to the task. The four characteristics available are:

P A priority task requiring rapid response. The use of this characteristic is con­
trolled administratively.

An interactive task typically involves a large amount of communication between
the user and his program. This is the default characteristic for interactive proc­
essing.

B A batch task typically involves little or no communication between the user and
his program. This is the default characteristic for batch processing.

S A standby task typically involves no communication between the user and his
program. Such a task is run only when P, I, or B characteristic jobs are not uti­
lizing all of the available resources.

This character delimits end of time and job class information; it is preceded by a

blank.

The message format varies according to the program; it may be used to pass parameters
to the program. It must be preceded by a blank. By convention, addresses on control
cards or execute lines are assumed to be hexadecimal and all other values are assumed
to be decimal. A hexadecimal value may be used in place of a decimal value by preced­
ing it with the # sign. If an address is preceded by #, the sign is ignored.

All characters present in the execution line after the second slash are passed to the task-name program as a

message. If the optional time/job class sequence is omitted, the message, through the end of the line, is
passed to the task-name program; and default values are assigned for time limit and job class.

INTERACTING WITH PROGRAM

When a program is active under one of the user's suffixes, the user may send a message to that program from
a terminal. A user cannot send a message to a program active under a suffix of another user. The message
may have any format, but it must not cause the operating system to take action other than sending the mes­
sage to the active program. If a second message is sent before the first message has been accepted by the
program, the second message will replace the first, and the first message will be lost.

MAKING REQUESTS OF OPERATING SYSTEM

The user makes requests of the operating system, using a request line. Each request line contains a message
which must be prefaced by a special character that distinguishes it from other classes of messages and direc­
tives. The special character (sc) is defined by the installation. To make a system request from a terminal,
the user need not have a program active under his suffix ent~red in the LOGON line, The system requests
are as follows:

60384400 D 6-3

(sc)T

(sc)S

(sc)BB

(sc)?

(sc)SU

(sc)BP

(sc)Gxx

(sc)U

(sc)PR

(sc)I

(sc)OP message

Get current time and date.

Get current state of program active under user's suffix; possible responses appear in
Appendix G.

List current accounting information for program active under user's suffix.

Get current time, date, program state, and accounting information for program active
under user's suffix.

List current activity of programs active under all user's suffixes, A, B, C and D.

List time remaining in repository to which the user belongs. Time remaining
reflects balance after initial time increment is granted at log on, and additional time
is drawn from the repository.

Draw xx minutes from the repository.

List current time consumed by user this session, including any time drawn from the
repository during this session.

List number of job tasks in interactive (I) class waiting to be connected to an alter­
nator slot.

Send program to current interrupt routine, if program is so enabled.

Send message to operator's terminal.

TERMINATING CONNECTION

The user at the terminal ends communication with the operating system by using the system request (sc)BYE.
Also, the user may break the connection with the logged on suffix and remain active on the terminal under a
new suffix by using the system request (sc) suffix. The suffix given in the message is the new one under
which the user will become active. Any programs active when either form of the disconnect message is given
will remain active, although the results may be affected by the fact they are no longer connected to an inter­
active terminal.

An installation may define a special BREAK character, which also is used to terminate the task currently run­
ning at the active suffix. Task execution will be aborted and control transferred to the next level controller.
If the aborted task has no controller, it can be restarted by executing its drop file.

BATCH PROCESSING

All jobs are presented to the batch processor in the form of physical files. These files must be record
structured type; such files are described in Appendix C. The first record is assumed to contain job control
information. The physical files may be submitted to the batch processor through a card reader, or they may
be directed to the batch processor by an execute line entered at an interactive terminal.

6-4 60384400 D

BATCH PROCESSOR DECK

For batch processing through the card reader, a deck must be prefaced by a card reader identification card
and contain at least one job. The file must end with an end-of-file card. Each job in the deck must have
its own job identification card and terminate with an end-of-job card. Each job must contain at least one
record. The control card record containing the job identification and related control cards must be the first
record. Each record is terminated by an end-of-record card. The end-of-file card may be preceded by end­
of-record and end-of-job cards, or it may be used alon ... , representing all three functions.

BATCH PROCESSOR DECK

f 6 End-of-File
7
8
9 r

L
L

L bi- Data Record

7 End-of-Record 1
8 (9 Data Record

7 End-of-Record I-
I-

8 _L_

9
..L

F
I

~ L Control Cards

L Job ID Card

6 End-of-Job 1
7
9 7 End-of-Record

8 r
_L

9 1

(Data Record

7 End-of-Record
~ 8 1

9
r

I
~

! Control Cards

Job ID Card l
Card Reader ID Card___.

I-

~
. - --··--

60384400 D 6-5

CARD READER IDENTIFICATION CARD

This card identifies the user and presents required information to the processor. The format is:

Parameter

Card reader identification

User number

Account identifier

File name

File type

File organization

Processing mode

Security level

File size

6-6

Card
Columns

1-5

6

7-12

13

14-19

20

21-28

29

30

31

32

33

34

35

37-45

46-47

48

Contents

STORE

Blank

Expressed as a set of 1 to 6 digits

Blank

1 to 6 characters, used for accounting purposes

Blank

File name to be assigned to entire deck following
card reader identification card; 1 to 8 characters.
If the batch processor is scheduled, this file will
be destroyed by the batch processor when the
last job in the deck has been processed.

Blank

A
R

Blank

File named is an absolute binary file
Record-structured file; default

Blank. Initially, all files will be set up as
physical files.

Blank

B File to be scheduled for processing by
batch processor

Blank File not to be scheduled for batch
processing; default

Blank

Reserved for future system use. Currently, all
files are stored at security level 0. If the batch
processor is scheduled for this file, it will run at
security level 2.

Blank

In hexadecimal number of blocks; default value
is 8 blocks. Maximum size is 70 blocks to con­
tain the entire card deck submitted.

Blank

60384400 D

Parameter

Directory size

Conversion type

Card
Colunms

49-50

51-60

61-76

77-78

79-80

Contents

Number of blocks to be added to end of fiie to
hold file directory.

Blank

Identification information for record-structured
files. 1 to 16 characters are appended to end of
file directory.

Blank

Blank; 29 for 029 punch; 26 for 026 punch.
Blank implies no keypunch code conversion is to
take place.

Batch jobs containing mixed mode (both ASCII and STAR binary) cards should contain an R in column 30 to
produce a record-structured file.

JOB IDENTIFICATION CARD

The job card must contain the job name, and can contain a time limit and a termination value (TV) for the job.
The job name can be 1-8 letters or numbers, and must start with a letter. The time limit is currently the max­
imum task time (cpu, IO, etc.) and is specified by a T followed by the (decimal) number of seconds. If a time
limit is specified, it is separated from the job name by a comma. The terminate value is used to establish initial
criteria for normal and abnormal job termination. The last parameter on the job card must be followed by a
period or right parenthesis.

CONTROL CARDS

All cards in the control card record of a job have the same general format. The first element must be a task
name of 1 to 8 characters. Parameters may follow on the control card; their formats are determined by the
task name. Separator characters (between parameters, or between the task name aad parameters) may be any
of the following:

(, I = + -

Blanks can precede task names. Blanks to the right of the last character will be ignored.

The control card information is always terminated with a period or right parenthesis. If no terminator appears
on the first control card, the system assumes that control information is being continued on the next card,
starting in column one.

60384400 D 6-7

Examples of Control Cards:

General format: task name,message

f IMPL(l=COMPI LE,B=LGO)

L UPDATE(l=INPF ,P=PL,N,L=O,D)

GEORGE.

The batch processor explicitly searches for the following four task names. All others are assumed to be execu­
table private or public files.

TV,value.

EXIT.

READCC)fn.

COMMENT.

The TV control card gives the user considerable latitude in controlling the execution of his job. All job steps,
when they terminate, return a code which can be used to alter the execution sequence within a job. By conven­
tion, the following codes have special meaning:

0 = Successful completion
4 = Non-fatal errors
8 = Fatal errors

The terminate value, 0 to 255 (decimal), is set initially by the TV parameter on the job card or, if omitted, to
the installation-defined default value. The terminate value can be changed during the execution of a job via a
TV control card. At the end of each job step, the terminate value is compared against the code returned. If the
code returned is greater than the terminate value, abnormal job termination processing will occur; otherwise,
processing will continue normally. In addition, the value of the highest code returned is maintained by the sys­
tem and can be tested via the TV control card. If the value of the highest code returned is greater than the
value on the control card, abnormal job termination processing will occur; otherwise, processing will continue
normally. The value of the highest return code is initially set to zero.

To set the terminate value, the card format is:

TV,value:I-.

For example, to set the terminate value to 7:

TV,7+.

6-8 60384400 D

To test the terminate value against the highest code returned, the card format is:

TV,value.

This card format is also used to set the terminate value.

For example, to test whether fatal or non-fatal errors had occurred in previous job steps, one might write

TV,1.

When abnormal job. termination results from a test of either the return code or the highest code returned, the
terminate value is set to 255, the maximum value.

The EXIT control card is used to establish a control path to be followed when abnormal job termination results
from a test of the return code or of the highest code returned. When abnormal job termination occurs, the batch
processor does not process the next control card in the sequence. Instead, it searches for an EXIT control card.
If an EXIT card is found, the terminate value is set to 255 and normal job processing resumes with the first con­
trol card which follows the EXIT card. When an EXIT card is encountered during normal job processing, the job
is assumed to have reached its end and is terminated normally.

The READCC control card causes the batch processor to read control cards from the file name specified as
the first parameter of the control card. The file is assumed to be in ASCII format. When an EOF control char­
acter is detected, the batch processor resumes reading control cards from the normal control card stream. The
file specified in a READCC control card may contain any legal control card, including READCC, so that several
levels of control and files can be used. Currently, 8 levels are permitted.

The COMMENT control is used to insert messages into the job dayfile. The message must be placed after the
terminator which follows the word COMMENT and before the end of the control card. If the message is too
long for one COMMENT card, it may be continued on as many COMMENT cards as necessary.

FILE, JOB, AND RECORD SEPARATORS

Each deck is terminated with an end-of-file card or a card having a 6/7 /8/9 multiple punch in column one.
All jobs between the card reader ID card and the end-of-file card will be run under the same user number.

Jobs within a deck are separated by an end-of-job card or group separator (6/7/9 multiple punch in column one).

Jobs are divided into records, separated by end-of-record cards (7 /8/9 multiple punch in column one). Any
record separator may also contain an ASCII name of one to eight characters, beginning anywhere after column
one and starting with a letter. This name will be associated with the data record following it. An end-of­
record card may be followed by an end-of-job card.

CONTROL CARD PROCESSING

The batch processor attempts to process control cards in the order that they appear in the control card record.
The task names that the batch processor explicitly searches for will initiate special processing. For other task
names, the batch processor searches for a ftle of that name, and first searches the list of private files for the
user. If an executable private file is n_ot found with the same name as the task name, then the batch processor
searches the names of the public files in the system for an executable file with that name. If no such file is
found, the batch processor aborts the job.

60384400 D 6-9

When an executable private or public file is found with the task name, the batch processor initiates execution
of that file as a con trollee of the batch processor, and it passes a message to the con trollee that contains the
information on the control card. The batch processor stops running until it is reinitiated by a message from
the controllee. When a message indicates the controllee has successfully completed processing, the batch proc­

essor continues with the next control card.

Standard routines, such as the FORTRAN compiler and utilities, exist as public files. A user may have and
execute his own compiler or utility with a private executable file having a syntactically correct name, since
private files are scanned first

OUTPUT FI LES

Before it processes each control card, the batch processor checks for special file names. If a private file
named OUTPUT is classified as an output type file, the batch processor changes the name of the file to
Phjobnam, where h is a sequence number and jobnam is the leftmost 6 characters of the job name. When
the job terminates, all output files will be printed as if they were one family of files. To print or punch a
file directly, the file naming conventions described under DEVICE TYPE OUTPUT FILES in section 4 should
be followed.

DAYFILE

Before it starts to process a job, the batch processor creates a file named PXDAYFLE in which it writes a
record of the job's execution, including an image of each control card as it is processed and any message sent
to it. Errors detected by the batch processor are indicated in the dayfile, as are error messages sent to the
batch processor by any controllee it initiates. The dayfile also includes the time at which each control card
or message was processed.

When the job terminates, the dayfile is printed as the last file in the family of output files.

DATA RECORDS IN A JOB (INPUT FILE)

All records following the first record of a job are considered to be data records. These data records can be named
or unnamed and can contain ASCII data, STAR binary data, or a mixture of both.

Named data records are identified by a file name punched on the record separator card at the start of the data
record. When a batch job is initiated, this file name is used by the batch processor to create a permanent file
which contains the data record information. Data record information can be accessed during job execution by
referencing the file, using the name given on the record separator. Private files of this nature are destroyed by
the batch processor at job termination.

Unnamed data records are identified by the absence of a file name on the record separator card. When a batch
job is initiated, the contents of the first unnamed data record are transferred to a permanent file named INPUT.
Subsequent unnamed data records are transferred to file INPUT whenever the batch processor detects that file
INPUT has been referenced by a job step (task). Access to unnamed data records is provided by referencing the
INPUT file. At job termination, the INPUT file, if created, will be destroyed by the batch processor.

6-10 60384400 D

THE LOADER 7

The loader may be called by the batch processor via a control card or from a terminal as an interactive task.
The loading process involves loading object modules from the user's file, followed by the loading of the user
library, if one is specified, after which the remaining unsatisfied external references are fetched from SYSLIB,
the system library.

Object modules may exist in either of two formats: library format which must be generated by the Object
Library Editor OLE; and compiler or assembler-generated format.

The loader transforms one or more physical files into a virtual code controllee file. The physical files must
contain object modules conforming to the conventions set forth in appendix D. The first module on each
physical file must be a Module Header Table. The controllee file produced will be of the following form.

Virtual
Bit Addres s

(Addresses are hexadecimal) Mass Storage
O Word Address

Minus Page

0 200

Virtual Page Zero

8000 400
Program Name

Length I Header Address

Relocated Code

Program Name

Length T Header Address

Relocated Code

h ~"'
Data Bases

Labeled Common

Error Processing Information

Information required by error processing routines and debugging routines is stored at the end of the virtual file.
(See appendix I.)

60384400 D 7-1

In many cases, only one bound virtual map entry will be created for the controllee file. If discontinuous address
spaces or large pages are defined, additional map entries will be made. Labeled common is preset to all zeros
(64-bit words) and data is loaded as specified. Numbered and blank common areas are mapped into the drop
file map. Common blocks that are multiples of 512 will be forced to small page boundaries. On the first
access to this common area, the user will get a page created by the operating system and initialized to:

OOOClFl C16 OOOCl Fl C16

Any modified pages of the controllee file will be mapped into the drop file by the operating system.

The files required by the loader are:

Default Names User-specified Options

Controllee file GO CNTROLEE=lfn 1

Output file OUTPUT OUTPUT=lfn2

Input file BINARY

The number of optional loader files may not exceed 13, except for user files which may not exceed 10:

SYS LIB System library

l LIBRARY Files specified in library format Optional

USER FILES lfn1,lfn2,lfn3, ...

BATCH LOADER

The format of the batch loader control statement is:

The names of the primary files containing the object modules to be loaded is given for Ifni. The files must
be type physical, contain no minus page, and not in library format.

The loader options available to the user must be in the format keyword=plist and terminated by a right
parenthesis or period.

INTERACTIVE LOADER

The control line is written as shown below. It activitates the loader in interactive mode. Blanks must
separate all elements of the control line. The loader response requests user private file names.

LOAD In I /

7-2 60384400 D

LOADER OPTIONS

These options can be used with either the batch or interactive loader. The underlined portion of the option
keyword indicates the minimum characters that must be specified.

0 RIG IN= bit-address

If this option is not specified, the first module encountered is loaded starting at the hexadecimal address
8000. If the origin option is specified, the first module encountered is loaded at location bit-address. If
the bit-address is not at a page boundary, it will be adjusted downward until it is on a page boundary.

AGA=b

This option provides automatic group allocation based on subroutine-to-subroutine call structures, as can
be determined best by the loader. The allocation option allows the loader to attempt to allocate routines
that call each other in groups. This option increases the amount of loading time, but it may reduce pro­
gram execution time by reducing the frequency of page faulting. If the allocation option is not selected,
routines will be allocated in the order encountered on the input file.

ENTRY=routine

The symbolic entry point name of a routine is given. The loader searches all input and private libraries
for the entry routine, then uses the routine entry point as the transfer address. If no entry name is
specified, MAIN.bbb is used. (b is a blank; the value 2016 is used for b.)

CNTRO LEE=lfn ,len

The controllee file name is given for 1 fn and the file length in pages is given for len. If the user wishes to
specify the name and/ or length of his loaded file, this option should be used. If file name lfn already exists
under this user number, an error is returned. The default file name is GO and default length is 25 hexadec­
imal pages.

LIBRARY=lfn 1,lfn2, ... , lfnn

The user may specify one or more private and/or public libraries. Only modules referenced are loaded
from the libraries; in satisfying externals, the libraries are searched in the order given. If no libraries are
specified, only the public library is used to satisfy externals. (See Object Library Editor.)

60384400 D 7-3

EQUATE=nam I ,sub 1, ... ,namn,subn

This option allows the external names (nami) generated by object modules to be replaced by externals
having the subi names. The user can replace an external name with another name. Names are scanned
in pairs; the first is the name to be sought, the second the name to replace it. In replacing external
names, program names are searched before common names. Common names must be preceded by an
asterisk, as for example, *COMNAME. An asterisk by itself indicates blank common.

CDF=len

The controllee drop file length option is used when executing the controllee file, if the drop file is to
be made a specific length. Normally, the size of the drop file is equivalent to the length of the controllee
file plus the length of both blank and numbered common plus two sectors. The resultant length is nor­
mally the amount of free space used by an executing task. If the task requires more free space than
provided by default, then this option should be used.

OU1PUT=lfn

Load maps and error messages produced during load operations are sent to the lfn specified. A file
name of 1 to 8 characters is given if maps are to be sent to the printer. The default file name is
OU1PUT when the option is omitted in batch mode; when omitted in interactive mode, the load maps
error messages are sent to the user's terminal.

This option designates user private input files are to be merged and then loaded.

Ifni Names of private user files, listed in the order in which they are to be merged. The files
must be type physical (no minus page) and must exist in either the user's private file
chain or, if the POOLNAME was attached, in the pool file list.

If unsatisfied externals remain after a complete scan through these files, the library file is searched.

DEBUG=mod1,mod2, ... ,modn

The user can specify one or more debug routines. The loader links to the debug versions; a call to
NAME links to NAMEQ. This option applies only to library routines, and the routine and its debug
version must exist on the same library file. When the debug routine NAMEQ calls NAME, NAMEQ
links to NAME and not to NAMEQ.

VR=versname

7-4

This option aids the user in managing the development and usage of a program by providing an identification
which is recognizable in a dump. The user provides a version name containing 1 to 8 characters which is
stored, left-justified and blank filled, in register #A of page zero. In addition, the date and time are stored
in registers #Band #C, respectively. If this option is not exercised, register #A will be blank filled.

60384400 D

The format of registers ±tB and ~ is:

#B I mm/dd/vv I
#C I hh:~m·::: I

GROUP OPTIONS

The user may specify certain routines and common blocks to be loaded as groups. This may be accomplished

by the following options:

GRSP=entry 1,entry2, ... ,entry n {,bit-address}

GRSP=com 1,com2, ... ,comn { , bit-address}

Group on small page.

GRLP=entry1,entry2, ... ,entryn {,bit-address}

GRLP=com1,com2, ... ,comn {,bit-address}

Group on large page.

These options take routines or common areas specified by entryi and group them starting on a small or
large page boundary, as designated by the option. A bit address may be specified by the #bit-address
parameter; such an address must be on a page boundary, and for large page options, the address must be
on a large page boundary. Common names must be preceded by an asterisk, as in *COMNAME. By
itself, an asterisk indicates blank common.

GRLPALL=b

Group everything for large pages.

This option groups code, data base, and labeled common on large pages and maps them into the bound
implicit map. Numbered and/or blank common is grouped in large pages and mapped into the drop file
map. The user can specify his code origin, which must be on a large page boundary and cannot be zero.
The default code origin is #400000, with numbered and/or blank common being origined at the next large
page boundary following the allocation of code, data base, and labeled common.

Group and relocate only on small page.

Group and relocate only on large page.

60384400 D 7-5

Common areas are to be relocated only without generating a map entry, allowing the user to do his own mapping
at execute time. A bit address may be specified by the bit-address parameter; such an address must be on a
page boundary, and for large page options, the address must be on a large page boundary.

BATCH LOADER EXAMPLE

The following is an example of a batch loader control statement:

LOAD(SYSF 1,SYSF2,SYSF3 ,ENTRY=KERNEL,ORIGIN=40000, CNTROLEE=SYSTEM)

This statement directs the loader to use files SYSFI, SYSF2, and SYSF3 as object module files and to begin
loading with the first module in SYSFI. The main entry point is KERNEL and the code is loaded beginning
at 40000. The name of the controllee file produced by the loader will be SYSTEM.

INTERACTIVE LOADER EXAMPLE

In the following example, uppercase letters indicate communication from the interactive loader; lowercase
represents the user's reply, which is terminated by a line feed (If).

INPUT ? Request from loader

User supplied private file names

ORIGIN ? Request from loader

28000 (lf) First module loading bit address

ENTRY? Request from loader

(If) User indicates no option

ANY OTHER OPTIONS ? Request from loader

CN=TONY User indicates controllee option

CONTINUE Answer from loader

OU=PRINTMAP User indicates loadmap option

CONTINUE Answer from loader

(If) Terminates options and starts load operations

7-6 60384400 D

DEBUGGING 8

DUMP

Two dump routines are available to the user:

DUMP

MD UMP

The interactive or batch user can record characteristics of an executed job. For normal
termination, a DUMP control statement with explicit DUMP directives is required to indi­
cate known ranges and symbols. A dump is provided automatically upon abnormal
termination; default ranges are used.

The user can dump specified areas of mapped virtual memory. MD UMP is a binary object
module callable by programs written in FORTRAN.

The user may initiate dumps in error, interactive or batch modes.

ERROR MODE

Error dumps are initiated by the batch processor when a fatal user error occurs. Standard information includes:

Program address (from invisible packages, see page F-2).

Contents of memory from 50 words preceding program address to 50 words following program address.

Subroutine traceback.

Alpha and Beta words if the word preceding program address contains an exit force instruction, implying
that one of the system messages was used just prior to program termination.

INTERACTIVE MODE

DUMP may be called from an interactive terminal after job termination. A control statement requests a dump
of specified areas of a user's virtual memory; this utility also may be used to dump an absolute binary file in
loader created formats. If DUMP is called as a controllee, certain areas will not contain current values; the
bound virtual map and drop file map are used; and files in open status at job termination, but subsequently
closed by the system, are re-opened.

60384400 D 8-1

BATCH MODE

A control card is used with the batch processor to dump areas designated by address range or by name.
DUMP is initiated as a controllee for the batch processor each time the DUMP control card is encountered in
the control card stream.

Both the drop file and the source file may be dumped; the file name must be specified.

CONTROL STATEMENTS

Formats for entering a DUMP request from an interactive terminal:

DUMP I t c I
or

len

Name of source file or drop file.

Optional, output file name.

Length of output file pages.

Input file name if directives are on a separate file; file must be physical (no minus
page) in ASCII format with 1 F line terminators.

Format for DUMP control cards for use with a batch processor:

DUMP(lfn,I=lfn3)

lfn Name of source file or drop file.

Input file name.

DIRECTIVES

More than one set of directives may be entered interactively or through the input file. Sets are separated by
a slash. Each set must have the following formats:

8-2

#fwaJength

Dumps in hexadecimal from the bit address specified for the length specified.

fwa

length

First virtual bit address of area to be dumped in hexadecimal. First character of
address must be # to distinguish it from other directives.

Number of words (hexadecimal) in area starting at fwa. If not specified, dump will
extend from virtual address 0 to fwa.

60384400 c

In the following directives, the underlined letters may be used as an abbreviated directive. Brackets indicate
optional elements of a directive set; unless oLlierwise stated, one set of the elements in parentheses must be

specified.

f ILE

Returns status of opened files and the virtual address ranges of mapped in files.

MP AGE

Dumps a file minus page.

!NTEGER((fwaJength)]

Dumps an integer array in hexadecimal.

fwa First virtual bit address of area to be dumped.
Dump will be in hexadecimal and integer format (Il 0).

length Number of words (hexadecimal) in area starting at fwa.

FLOAT

Dumps a floating point array. Parameters are same as for iNTEGER. Dump wiii be in hexadecimal

and exponential (E16.10) format.

TRACE

Gives a subroutine traceback from the last executed address.

DISPLAY

For use with interactive processing only; allows user to display a specified set of information prior to
dumping. All previously defined directives may be displayed by prefixing the directive with the letter D.

DREGISTER or DRE
DINTEGER or DI
DFLOAT or DFL

ROLL

DTRACE or DIR
DFILE or DFI

Displays the four lines which immediately follow the last display location.

BACK

Displays the four lines which precede the last display location.

END

Used to terminate DUMP.

60384400 c 8-3

ALTERNATE INPUT FILE FORMAT

If directives are not to come from the normal input stream, the file named(under I=lfn3) must have the following
characteristics:

1. No minus page.

2. File type may be physical or virtual.

3. File must have READ access.

4. Data must be in ASCII.

The directives must be structured thus:

directive set1 [~] directive set2 [~] ... directive seti [~] [:J
Is a unit separator (1 F).

Is a record separator or end of data (1 C).

Detection of the directive END on the alternate input file will also. terminate DUMP's activities with this file.

MDU MP

MDUMP is a library object module callable by programs written in FORTRAN or META subroutines of a
FORTRAN program. The module may be called as often as necessary, and will perform dumps of a specified
mapped in area of virtual memory.

The dump is written to a file or files defined on the PROGRAM statement or in the execute line of a FORTRAN
program. For example, if a call to MDUMP is made, indicating the dump is to be written to logical unit 3, then
the PROGRAM statement or execute line must contain UNIT3=filename.

MDUMP may be called from META subroutines of a FORTRAN program if the call is written in the FORTRAN
call format. The logical unit referenced in the call must be defined on the PROGRAM statement or execute line.

8-4 60384400 D

To use MDUMP, the user must include calls in his code. The module is linked to the user at load time.

The call format is:

CALL MDUMP(fwa, ien ,opt,lun)

fwa

len

opt

Starting bit address of area to be dumped.

Length in 64-bit words of area to be dumped.

Optional:

0 or unspecified

Ew.d
Fw.d

Hexadecimal dump

Integer dump

Floating point dump, where w is the field width
and d is the fractional decimal digit count

lun Logical unit number of file to which dump is to be written. If lun=O, the dump will be
written to the user's standard output file.

There are three output formats available through the opt parameter: hexadecimal, integer, and floating point.

DEBUG

TI1e DEBUG program may be executed in either batch or interactive mode.

BATCH USE

The batch user must provide an input file (described in section 6) containing the DEBUG commands in
ASCII. The user also must supply an output file where the DEBUG program will place .the display informa­
tion requested. The input and output files are specified on the DEBUG control card required by the Batch
Processor. If the output file specified is named OUTPUT, the Batch Processor will print the file automatically;
otherwise, the user must print the output file.

INTERACTIVE USE

Through the DEBUG commands, the user may: set or remove multiple breakpoints, display and modify user
registers and virtual memory, dump registers and virtual memory to an output file, request execution to
continue or stop, and reference user virtual memory by hexadecimal addresses.

The DEBUG program executes entirely within the user's virtual memory space. Since DEBUG uses virtual
memory starting at hexadecimal virtual bit address 7FFFOOOOOOOO and extending upwards, the user program
being debugged must not use or reference this area. Also, the user program being debugged must adhere to
the register conventions assumed by STAR-OS software. (See appendix E)

The terminal user calls DEBUG into execution with the following request:

DEBUG(parameters)

60384400 D 8-5

After it is brought into execution, DEBUG will request file information from the user if it is not already
provided on the EXECUTE line. When it is awaiting a command, DEBUG signals with a question mark. The
DEBUG program remains in execution until an EXECUTE, STEP, or CONTINUE command causes DEBUG to
relinquish control to the user program.

Control does not return to DEBUG until a user specified breakpoint occurs. If a breakpoint is not reached
before the user program terminates, the DEBUG program is terminated also. To re-enter DEBUG, another
STAR-OS EXECUTE line must be typed on the terminal.

The following parameters may appear in the DEBUG request:

(filename,IOC-number ,optional-parameters)

filename

IOC-number

optional­
parameters

Name of file containing the executable user program to be debugged. The file is
assumed to contain virtual code with first two pages containing the program's minus
page and virtual page zero.

Available IOC number in hexadecimal which DEBUG can use to open the user program
filename. The IOC cannot duplicate one used by the user program.

I=ifn,IOC-number:

This parameter is for NON-TERMINAL USERS ONLY. ifn names the input file
containing the user specified DEBUG commands. The filename must be followed by
a comma and the IOC number in hexadecimal. For example: I=IN,3.

O=ofn,IOC-number: -

ofn names the output file to be used for the SNAP command or BATCH output. The
file name must be followed by a comma and the available IOC number in hexadecimal.
The output file size must not exceed 14 (hexadecimal) blocks. For example:
O=OUTPUT,5.

DEBUG COMMANDS

The general format of each DEBUG command is as follows; where the symbol b appears, either a blank or a
comma must appear.

command b parameter set

The following conventions apply to the DEBUG command descriptions:

8-6

A command may not exceed one line on a terminal.

Any elements surrounded by brackets are optional.

Commas must delimit a skipped parameter if another parameter follows.

Defaults are assumed for optional or missing parameters on most commands. See each command
definition.

60384400 D

All hexadecimal addresses are assumed to be absolute virtual addresses unless a routine name is specified; in that
case; the hexadecimal address is relative to the load map address for that routine.

All location references can be followed immediately by a plus (+) or minus (-) word displacement hexadecimai
number.

DEBUG commands are listed below. Underlines indicate the minimum characters that may be specified to call
the command. Following this list, the commands are described in a logical grouping rather than in alphabetical
order.

ASCII

BACK

BKPT or BKPTR

CONTINUE

DDECIMAL

DECIMAL

DFLOAT

DISPLAY

DREG

END

EREG

EXECUTE

FLOAT

HEX

!DISPLAY

ID REG

ROLL

SNAP

STAT

STEP

60384400 D

Enter data in ASCII form.

Display the data preceding the last display location.

Set or remove breakpoints.

Continue execution from the last user breakpoint.

Display data in hexadecimal and decimal.

Enter data in decimal form.

Display data in hexadecimal and floating point.

Display data in hexadecimal and ASCII.

Display register contents in hexadecimal.

Terminate execution of both DEBUG and user program.

Enter hexadecimal data into a register.

Begin execution of user program at a specified location.

Enter data in floating point.

Enter data in hexadecimal.

Display the data contained at the address found at the specified location.

Display the data found at the address specified in the given register.

Display the data following the last display location.

Dump to an output file.

Provide status information such as breakpoints set, last routine referenced, last
command issued, etc.

Step through execution of user code one instruction at a time.

8-7

DISPLAY MEMORY COMMANDS

DISPLA Yb [name=] location [btype] [bnwords] Provides hexadecimal and ASCII display.

DDECIMALb [name=] location [btype] [bnwords] Provides hexadecimal and decimal display.

DFLO A Tb [name=] lo ca ti on [btype] [bnwords] Provides hexadecimal and floating point display.

IDISPLA Yb [name=] location [btype] [bnwords] Displays the data at the address given in the specified
location. (Indirect display address.)

name=

location

type

nwords

Name of a module within the file to which the location parameter refers. An equals
sign must immediately follow the name and precede the location, in the form
name=location.

Hexadecimal address or plus or minus word displacement indicating location at which
display is to originate.

Single character defining type of address designated:

x Hexadecimal bit address (default) XH} For DFLOAT and DDECIMAL
w Hexadecimal word address WH only. Indicates that data to be

displayed is halfword data.
p Hexadecimal page address PH

Hexadecimal value designating the number of words to be displayed. Default value is 4;
maximum allowed value is 10.

The following commands display virtual memory forward or backward from the last display command location:

ROLL[bnwords]

BACK [bnwords]

nwords

8-8

Display area following last location

Display area preceding last location

Hexadecimal value designating the number of words to be displayed starting from last
location displayed. Default value is 4; maximum allowed value is 10.

60384400 D

REGISTER COMMANDS

The user can display and alter the contents of the user program registers:

DREGb hex reg [bnregisters] Provides a display of a register.

EREGb hex reg b hex data Allows user to enter hexadecimal data into a register.

ID REGb hex reg [bnwords] Displays data found at address given in specified register.

hex reg

nregisters

hex data

nwords

Full word hexadecimal register number which contains data to be displayed or into
which data is to be entered.

Specifies hexadecimal number of registers to be displayed, starting with hex reg. Default
value is 4; maximum value allowed is 10.

Hexadecimal half-word data to be entered into n consecutive registers starting with
hex reg. Values are right justified with zero fill.

Hexadecimal value designating the number of words to be displayed. Default value is 4;
maximum value allowed is 10.

ALTER MEMORY COMMANDS

The user can alter virtual memory by entering:

HE:XO [name=] location [btype]bhalfhex Enter hexadecimal data.

ASCIIb [name=] location [btype] b"ASCIIdata" Enter an ASCII character string.

DECIMALb [name=] location [btype] b±decidata Enter decimal data.

FLOATb [name=] location [btype] ±fl pt Enter floating point data.

Parameter definitions:

name= Name of a module within the file to which the location parameter refers. An equals
sign must immediately follow name and precede the location, in the form

location

60384400 D

name=loca ti on.

Hexadecimal starting address or plus or minus word displacement indicating where data
is to be entered.

8-9

type

halfuex

"ASCIIdata"

±decidata

±fltpt

Single character defining type of address designated by location parameter:

X Hexadecimal bit address (default)

W Hexadecimal word address

P Hexadecimal page address

XH}
Indicates half.word

WH data to be entered
(DECIMAL and

PH FLOAT only)

Half-word hexadecimal data values to be entered into consecutive half-word memory
locations starting at location specified. Values are right justified with zero fill.

String of ASCII data to be entered into consecutive character locations starting at the
position given by location parameter. The ASCII data string must be enclosed in
quotation marks.

Full- or half-word decimal data to be entered into consecutive full- or half-word
memory locations beginning at the location specified.

Floating point data to be entered into consecutive half- or full-word memory locations,
depending on data type parameter, starting at location specified. E or F format may
be used.

PROGRAM CONTROL COMMANDS

The user can set and remove breakpoints to start and stop program execution, to dump portions of virtual
memory to an output file, and to find the status of DEBUG commands issued earlier.

8-10

BKPTh [name=] locationb [type]

BKPTRb [[name=] locationb [type] J

EXECUTEb ~name=] lo ca tionb [type] J
CONTINUE

STEPb [n instructions]

END

Sets a breakpoint; user program execution stops after the
instruction at the breakpoint location is executed.

Removes breakpoints. If no parameters are given on the
BKPTR command, all breakpoints set in the program are
removed.

Terminates both the user program and the DEBUG program.

SN Pb{ [name=] location[btype] [bnwords] } Dumps contents of core.
A hexregbR [bnwords] Dumps contents of register.

STAT

60384400 D

EXECUTE causes the DEBUG program to start executing the user program at the location specified. If no
location is given, DEBUG starts at the transfer address.

CONTINUE causes user program execution to be continued from the last breakpoint encountered. If CONTINUE
is given before EXECUTE, DEBUG starts at the transfer address.

STEP causes user program execution to be stepped through n number of instructions from the last breakpoint
encountered. If no parameter is given, the default value is 1 instruction with a maximum of 10 hexadecimal in­
structions.

SNAP causes either a specified number of words starting from location in virtual memory or the contents of a
specified number of registers to be dumped to an output file. If the word or register count is not specified, only
four words or registers are dumped. Output data is in hexadecimal and ASCII.

STAT produces a list of the breakpoints set, the last DEBUG and BKPT command issued, the last routine name
or common block re.ferenced, and the next execution address in the user program.

name=

location

type

hexreg

n instructions

nwords

Examples

DI 1 P 16

Name of a module to which the location parameter refers. An equals sign must immedi­
ately follow the name and precede the location, in the form name=location.

Hexadecimal address, used as a displacement at which DEBUG is to set or remove break­
points, to start user program execution, or to start a SNAP dump of memory. A plus or
minus word displacement may be given in this parameter.

Single character defining the type of address designated by the start location.

X Hexadecimal bit address (default)

W Hexadecimal word address

P Hexadecimal page address

Register number in hexadecimal of the first register to be dumped. Number must be in
the range of 0 to FF.

Hexadecimal number of instructions to be executed for the STEP command. Default
value is 1; the maximum value allowed is 10.

Hexadecimal number of words or registers to be dumped. Default value is 4.

Display 16 words at page address 1 (hexadecimal bit address 8000).

DI SUBR= 10000 W

Display 4 words (default taken) at hexadecimal word address 10000 in the module whose name is SUBR.

BKPT MAIN.=500+7

Set a breakpoint in module MAIN. seven words beyond bit address 500 (hexadecimal address 6CO).

H 54DEO 12345678 9ABCDEFO

Enter given hexadecimal data at hexadecimal bit address 54DEO.

60384400 D 8-11

UTILITIES 9

Several utility programs are provided with STAR-OS. They are public files that can be called by control cards
(in batch processing mode), by various terminal entries, or by being utilized as a controllee by the user
program.

The following utilities are available for use with STAR-OS;

CREATE Create a disk file.

DESTROY Destroy all or a subset of user private files.

GIVE Give files to another user.

FILES List a user's files, their lengths and access parameters.

COPY Copy all or part of one disk file to another.

SWITCH Change file names and/ or access parameters.

COMPARE Compare all or part of one disk file with another.

TCOPY Copy files or records between tapes and disks.

EDITPUB List and edit the public file chain.

OLE Object library editor.

EDI TT Source file line editor.

CREATE

The user can create a disk file with control statements, rather than by structuring a system message. The
general format is:

CREATE(filename ,length ,op ti on al parameters)

filename File name must be first parameter; it consists of 1 to 8 letters and numbers.

length Length of file must be second parameter specified; stated as a number of 512-word blocks
(small pages) needed to hold file.

Remaining parameters are -optional, and may be specified in any order, separated by commas.

60384400 D 9-1

R
w
x

A= RW
RX
wx

Access parameter:

R Read access
W Write access
X Execute access

RWX Any combination of no more than 6 characters may follow A=. Access is given for any

R
w
x

L= RW
RX
wx
RWX

B=address

S=number

U=packid

R, W, or X character appearing at least once in the string. Default is RWX.

File type:

V Virtual data file (default)
C Virtual coded file
P Physical data file

A string of no more than 6 characters may follow T=. The first V, C, or P character
in the string indicates the file type.

Lockout parameter. Indicates accesses for which the file may not be opened.

R Read access
W Write access
X Execute access

Any combination of no more than 6 characters may follow the L=. Access is withheld
for any R, W, or X character appearing at least once in the string. Default is no
lockouts.

Base virtual bit address to be associated with this file, expressed as 1 to 12 hexadecimal
digits. It is adjusted to a page boundary. If this option is omitted, the file is assigned
virtual bit address 10000000.

Security level number 1-255 decimal. If this option is omitted, the file has the security
level number found in the user's directory.

Up to 6 ASCII characters (alphanumeric) indicate the pack to which the file is to be
assigned. If the option is omitted, the file is assigned to first available system pack.

For terminal requests, the utility will write any error information or other output to the terminal. For batch
requests, the utility will send all output to the dayfile.

9-2 60384400 D

The following output and error information will be returned to the user. Under normal conditions, the system
will return the logical unit number on which the created file resides. If an error occurs, the system will return
(depending on the circumstances):

1. The file name already exists.

2. No available mass storage space for this file.

3. A parameter or format error was found.

4. The file index is full.

DESTROY

DESTROY deletes one or more files from the user's private file index and releases the mass storage space. Three
formats are available:

DESTROY(=ALL)

DESTROY(file list)

DESTROY(=LIST)

=ALL Destroy all of the user's private files.

file list User supplies list of one to sixteen file names of files to be destroyed, e.g. (lfn 1,lfn2,lfn3).

=LIST For terminal entries only. The utility will present the file names one at a time. If the file
named is to be destroyed, the terminal user replies with a D. If the file is not to be de.:.
strayed, he hits the NEW-LINE key. When the user types in STOP, the routine will stop
deleting files and terminate normally.

For terminal requests, the routine will write any output or error information to the terminal. For batch requests,
the utility will send all output to the day file.

Under normal circumstances, the following output information will be displayed to the user:

1. The names of files not found if the user utilizes the "file list" parameter format.

2. A list of the files destroyed. If a parameter or format error was found, a message will be displayed indi­
cating that no files were destroyed.

3. The names of files not destroyed.

60384400 D 9-3

GIVE

This utility allows a user to give one or more of his private and inactive files to another user or to a pool. The
general format is:

GIVE (=ALL, {~::eber})

GIVE (me list, { ~=::eber})
=ALL Give all of a user's private and inactive files to another user/pool.

U=user number User number to receive files.

P=pool name Pool to receive files.

file list List of one to sixteen file names, separated by commas, to be given.

For terminal requests, the utility will write any output or error information to the terminal. For batch requests,
the utility will send all output to the dayfile.

Normal output will be the name of files given. If there were files which could not be given, their names will
be displayed, grouped as indicated below:

1. The names of the files for which the same name already exists in the receiver's file index.

2. The file names which are the same as a public file name.

3. The names of files which do not exist to give to another user.

4. A list of files for which no such user number or pool name exists.

5. A list of output files which are improperly named. (Only meaningful if receiver user number = 999999.
Files can be given to user 999999 for output processing, but must be properly named.)

6. The names of files which are still active, thus not given.

7. The user numbers which belong to a public file list.

8. Illegal pool names.

9. The names of files that the receiver could not access, thus not given.

If a parameter or format error was found, the error message will be displayed as appropriate.

9-4 60384400 D

FILES

FILES lists all or a subset of a user's private or public disk file names, the length of each file in small pages,
and the access parameters of each. Additional output information can be requested by options. Three formats

are available:

FILES(=PRI)

GIT GC'f-DTTD\
J. J.LL'-'\ -_._ \..JLJ)

FILES(file list,=O)

=PRI

=PUB

file list

=O

=OP

All the user's private files are listed with the lengths and access parameters.

All the public files are listed with length and access parameters.

User supplies a list of file names, separated by commas. Length and access parameters
and indication as to whether the file is private or public are returned as output. Other
information may be obtained with the output option.

Output option for private files. If option is specified with =PRI, this request will be
ignored. If option is specified with a file list, the utility lists each file's management
category (private, scratch, output, or write temporary), the logical unit number on which
the file resides, its file type (physical data, virtual data, or virtual code), and the file's
sector address.

Output option for public files.

For terminal requests, the utility will write any output or error information to the terminal. For batch requests,
the utility will send all output to the dayfile.

COPY

The COPY utility reproduces all or part of one disk file onto another. The format is:

COPY (infile,ou tfile,L=length,I =inadr ,O=ou tadr)

infile

outfile

L=length

I=inadr

60384400 D

The name of the input file which is to be copied.

Name of the output file which will contain a copy of all or part of the input file. The
utility will create this file, if it does not exist, as a private file with the same type and
access parameters as the infile and with length equal to L, if specified, or the length of
in file.

Number of words to be copied. If this parameter is omitted, the entire input file will be
copied, starting at inadr, if specified, or the beginning of infile.

The first input word address which is to be copied. The address specified must be relative
to the beginnfrig of the . .file, whei-e the beginning address oTthe .. file is zero. If this param­

eter is omitted, the copy will be from the beginning of the input file.

9-5

Note:

O=outadr The beginning output word address where the copied file is to begin. The address specified
must be relative to the beginning of the outfile, where the beginning word address of the
file is zero. If this parameter is omitted, infile will be copied starting at the first word of
out file.

If the files to be compared are virtual files, the first 512 words of each file will be its minus page; if the
files are virtual code files, the second 512 words will be virtual page zero for the file. Unless these are to
be copied, I and 0 should be specified to reflect their omission; e.g., 1=400, 0=400.

For terminal requests, the utility will write any output or error information to the terminal. For batch requests,
the utility will send all output to the dayfile.

The following error messages will be returned, as appropriate:

1. A parameter or format error was found.

2. The infile does not exist or cannot be opened.

3. Outfile does not have write access.

COMPARE

The COMPARE utility compares all or part of one disk file with another, word by word, to determine if they
are identical. The user may specify that a certain number of non-matching words, and their relative location in
the files, be displayed. The format is:

Note:

9-6

COMPARE(file l ,file2,L=number,A=adrl ,B=adr2,N=number)

file l ,file2

L=number

A=adrl

B=adr2

Names of files to be compared.

Number of words to be co~pared. If omitted, the length of file 1 will be used.

Relative word address in file 1 from which to start the compare. The address must
be relative to the beginning of file 1. If omitted, the first word of file 1 will be used.

Relative word address in file2 from which to start the compare. The address must
be relative to the beginning of file2. If omitted, the first word of file2 will be used.

If the files to be compared are virtual files, the first 512 words of each file will be its minus page; if the
files are virtual code files, the second 512 words will be virtual page zero for the file. Unless these are to
be compared, A and B should be specified to reflect their omission; e.g., A=400, B=400.

60384400 D

N=number Number of non-matching words (decimal) which will be displayed, along with their
relative locations. Comparison of files will cease once the N= limit has been met.
If omitted, the default value for N is 1.

For terminal requests, the utility will write output or error information to the terminal. For batch requests,
the utility will send all output to the dayfile.

The following error informaiion wiH be reiurneci, as appropriaie:

1. File 1 does not exist or cannot be opened or accessed.

2. File2 does not exist or cannot be opened or accessed.

3. Parameter or format error was found.

4. The non-matching words and their locations in the file that did not match.

SWITCH

SWITCH can be used to change a private file's name, type, and/or access parameters. SWITCH can also be
used to change the length of the drop file created when the file is executed. The format is:

SWITCH(oldname ,newname, T=type ,A=access,L=lockou t ,D=dropfile length)

oldname File name as fi!e is currently known.

newname Optional; new file name. Maximum of eight letters and numbers. This parameter may be
omitted if only the oldname file's access and/or type parameters are to be changed. When
newname parameter is omitted, the comma following newname parameter need not appear.

T

60384400 D

Optional,new file type:
virtual data file
virtual code file
physical file

9-7

Optional; new access parameter:
R read access
w write access
x Execute access

A = RW read/write access
RJ<: read/execute access
wx write/execute access
RWX read/write/execute access

Optional; lockout parameter:
R read lockout protection
w write lockout protection
x execute lockout protection

L = RW read/write lockout protection
RX read/execute lockout protection
wx write/execute lockout protection
RWX read/write/execute lockout protection

D=value Optional; drop file length parameter.
Value is a decimal number.

ICT, A, L, or D are omitted, the file will maintain its current, drop file, and access parameters.

If T- is specified when L= is not, the FILE! table is changed to reflect no-lockout protection. If L= is
specified when T= is not, the FILE! table is changed to reflect no-access permission. When both A= and L=
are specified, access for R, W, and/or X is set in the FILE! table only if it is specified on the A= parameter
and not on the L= parameter.

A string of 1 to 6 characters may follow A= and L= parameters. R, W, and/ or X are considered to have been
specified if they appear at least once in the string; other characters in the string are ignored.

Also, a string of 1 to 6 characters may follow the T= parameter. The file type is determined by the last V,
C, or P character in the string; other characters are ignored.

When the D option is specified, the new drop file length is transmitted to the FILE! table and a message is
issued to indicate that the change was made. When the file is subsequently executed, the operating system
will create a dropfile of the length specified, or of the length of the source file, whichever is greater.

If the new file name has the proper format but there are errors in the other parameters, only the file name is
changed. A message is issued to indicate the change made.

For terminal requests, the utility will write output or error information to the terminal. For batch requests,
the utility will send all output to the dayfile.

The following error messages are returned as appropriate:

1. A parameter or format error occurred.

2. A parameter or format error occurred but the name was changed.

3. The oldname file does not exist.

4. The newname file already exists.

9-8 60384400 D

TCOPY

The TCOPY program copies files or records from tape to tape, tape to disk, disk to tape, and disk to disk.
Binary, BCD, or ASCII tapes may be copied; multi-file tapes may be created. TCOPY also provides the capa­
bility to position tapes before and after a copy. TCOPY may be called to execution from an interactive
terminal or from the batch processor.

BATCH CONTROL CARD FORMAT

The control card for calling TCOPY in the batch system is written:

TCOPY(lfn).

lfn The name of a disk file containing the directives for TCOPY.

EXECUTE LINE FORMAT

TCOPY is called into execution from an interactive terminal by an execute line having the format:

TCOPY I t I I

Blanks must appear between each part of th_e execute line.

Execution time in number of seconds.

Flag indicating call is from interactive terminal

TCOPY DIRECTIVES

TCOPY directives are listed below; each directive must be completely spelled out:

BKSPF COPYF

BKSPR COPYR

CLOSE END

OPEN lfn,type,parameters

lfn

type

60384400 c

Logical file name

Storage device to be used.

DISC
TAPE

disk file (default)
tape file

OPEN

REWIND

SKIPF

SKIPR

WEOF

9-9

A maximum of 16 files may be open at one time, when TCOPY is run interactively. Only 14 files may be
open if TCOPY is run as a batch job. The remaining parameters for OPEN pertain to disk or tape as follows:

OPEN lfn ,DI SC ,length ,packid

Open the named disk file; if it does not exist, it is created.

length

packid

Hexadecimal length of disk file in number of small pages; default is 200. This. field
should be omitted if file already exists.

Identifier of disk pack where file is to be created. If omitted, the system selects an
available unit.

OPEN lfn, T APE,tracks,mode,density ,blocksize,vrn

Open the named tape file. The actual file supplied is dependent upon the operator mounting the correct tape.
All tape files are assumed to be unlabeled. File names for tape are limited to 5 characters.

tracks

mode

density

blocksize

vrn

Indicates 7- or 9-track tape units.

7 7-track
9 9-track (default)

Defines tape recording mode.

ASCII 7- or 9-track tape
BCD 7-track tape only
BIN Binary 7- or 9-track tape (default)

Recording density

2 200 bpi (7-track)
5 556 bpi (7-track)
8 800 bpi (7- or 9-track)

16 1600 bpi (9-track)

Default is no density change from current setting.

Number of hexadecimal characters per physical tape record. Maximum (and default)
is 7FFO. V may be specified for variable length ASCII or BCD records.

Optional visual reel number.

Once a file has been opened, the following directives may be issued for the file. In all cases, lfn is the logical
file name of the file opened by the OPEN directive. The comma following the command is not required.

REWINDJfn

SKIPRJfn,n

9-10

Rewinds a tape file to its load point; sets disk file copy pointer to block 1.

Skips forward n physical records on that tape file; sets copy pointer forward n unit
separators; default n = 200.

60384400 c

SKIPF,lfn,n

BKSPR,lfn,n

BKSPF,lfn,n

WEOF,lfn

CLOSE,lfn,RUN

Skips forward over n end-of-file marks, leaving the tape positioned after end-of-file
mark n; positions copy pointer forward n file separators. End position is after the nth
file separator. Default n = 200.

Backspaces a tape file over n physical records; positions copy pointer back n unit
separators. Default n = 200.

Backspaces a tape over n end-of-file marks, leaving the tape positioned immediately
before the last end-of-file mark on tape; positions copy pointer back n file separators.
Default n = 200. End position is before nth file separator.

Writes an end-of-file mark on tape; places file separator on disk file.

Closes a file. The input/output connector is released. If RUN is specified, unit is
rewound and unloaded. Tape mark or file separator is written for output file.

To perform the copy operation, either of the following directives may be used:

COPYR,from lfn, to lfn,n

Copies n records from lfn to lfn; a tape record is considered to be a physical record. File separators
may terminate the copy but will not be written (see TCOPY results).

COPYF ,from lfn, to lfn

Copies data from lfn to lfn; a tape file is considered to be all data between two end-of-file marks.
Either or both lfn's may be tape or disk. A disk file is all data between two file separators.

A group of directives is terminated by the following:

END Terminates TCOPY. If tape files have been written, and the last tape operation was a
write, an end-of-file mark is written.

TCOPY RESULTS

When records and files are copied from tape to tape, tape to disk, or disk to tape, TCOPY restructures or
converts their format according to the source or destination codes and recording device. The following notes
are appropriate to the various formats copied. Implied in these notes is the code conversion that occurs when
copying is done between ASCII and BCD tapes.

DISK TO BINARY TAPE

The disk file is formatted to the tape block size and written to tape. The disk data is not scanned; space
allocated to disk file is assumed to define the file size.

No file separators are written on the output tape file. The last tape record is padded with a half-word bit
pattern corresponding to hexadecimal OOOCI FI C out to the block size.

60384400 c 9-11

Both COPYR and COPYF terminate when a file separator is detected.

COPYR creates n tape records.

COPYR and COPYF return an error if the tape file was opened with a variable block size.

DISK TO BCD OR ASCII TAPE

The disk file is scanned for unit separators that define the size of the variable-length tape record to be written.
The fixed block size with which the tape file is opened defines the upper limit of the record sizes. Records
smaller than four bytes, or larger than the tape block size, terminate the copy operation with an error.

Unit separators on the disk file are not copied to the tape file.

A file separator on the disk (input) file terminates a COPYR and causes an end-of-file mark to be written on
the tape file.

The character pair consisting of ESC plus a numeral (lBn) is expanded to place (n-hexadecimal 30) blank
characters in the output record.

BINARY TAPE TO DISK

Tape blocks are concatenated into the disk file. When the end of the space allocated to the disk file is
encountered, the copy operation is terminat~d.

COPYR is terminated when n tape records are copied or when a tape end-of-file mark is sensed; the tape
mark is not copied to the disk file. The remainder of the disk block is padded with the half-word hexadeci­
mal pattern OOOC 1F1 C when the copy is terminated; however, the pattern is overlaid if more data is copied
to the file.

End-of-file marks are not transferred to the disk file by COPYF. The last disk block used in a COPYF is
padded with the half-word hexadecimal pattern OOOClFlC, which is overlaid if more data is copied into the
file.

BCD OR ASCII TAPE TO DISK

Each tape record copied to the disk file is appended with a unit separator. Tape records are concatenated to
the disk file. When two or more blanks are encountered on the tape file, they are compressed to the form
represented by the ESC character plus a numeric value (lBn) where n represents the number of blanks com­
pressed plus hexadecimal 30. The detection of an end-of-file mark on tape terminates COPYR or COPYF.
The last disk record into which data is copied is padded as described in Binary Tape to Disk.

9-12 60384400 c

BINARY TAPE TO BINARY, BCD, OR ASCII TAPE

In principle, this action is the same as described for Disk to Binary Tape and Disk to BCD or ASCII tape;
also, an end-of-file mark on the input tape will terminate the copy.

BCD OR ASCII TAPE TO BINARY TAPE

Each input tape record is appended with an end-of-line (unit) separator (IF) and written to the output file.
Records are concatenated to the output file; variable block size is not allowed cm binary output tapes.
Detection of an end-of-file mark places a file separator on the binary output file. Two or more blanks are
compressed to the format 1 Bn where n is the number of blanks compressed plus hexadecimal 30. Detection
of an end-of-file mark on the input tape or an end-of-tape mark on either the input or output tape will
terminate the copy operation. The last output record is padded as in Binary Tape to Disk.

ASCII TO ASCII/BCD TO BCD TAPE

A tape copy is performed without translation or conversion.

TCOPY EXAMPLES

These examples merely show the appropriate directives that may be used in copying files; information related
to placing the directives into either an interactive or batch job are found at the beginning of this description
of TCOPY.

1. Copy from a 7-track ASCII tape to a 9-track binary tape. Input records are 80 characters long; output
records are 4096 characters long.

OPEN
OPEN
COPYF
CLOSE
CLOSE
END

FILEA,TAPE,7 ,ASCII,8,50
FILEB, TAPE, , , , 1000
FILEA,FILEB
FILEA,RUN
FILEB,RUN

2. Merge two existing disk files to form a single binary tape file.

OPEN DISK I
OPEN DISK2
OPEN TFILE,TAPE
COPYF DISK I, TFILE
COPYF DISK2, TFILE
CLOSE TFILE
CLOSE DIS Kl
CLOSE DISK2
END

60384400 c 9-13

3. Create a multi-file tape containing two files copied from disk.

OPEN
OPEN
OPEN
COPYF
WEOF
COPYF
CLOSE
END

DISKl
DISK2
TFILE,TAPE,9,BIN,16,1000
DISKl ,TFILE
TFILE
DISK2,TFILE
TFILE,RUN

4. Copy the second file from a binary tape to a new disk file that is 30 hexadecimal pages long.

OPEN
OPEN
SKIPF
COPYF
CLOSE
CLOSE
END

EDITPUB

TFILE,TAPE
DISKF ,DISK,30
TFILE,l
TFILE,DISKF
DI SKF
TFILE

Authorized users can list existing public file names and add or delete file names from the public file list.

EDITPUB(L,D=file-list, N=file-list)

L

D

N

file-list

List public files option

Delete public files option

New public files option

User supplied list of file names, separated by commas; used as parameter list for D and N
options. When files are added, the new files must exist as private files that are to be
changed to public status.

For terminal requests, the utility writes all EDITPUB output and/or error information to the terminal. Under
the L option, the utility presents the public file names one at a time. If the file name is to be destroyed,
the terminal user replies with a D. If the file is not to be destroyed, the NEW-LINE key is the proper
response. When the user types END, the routine stops deleting files and terminates normally.

For batch requests, the utility creates a file named OUTPUT on which all EDITPUB output and/or error
information is written. Upon termination of the utility, the batch processor closes the EDITPUB generated
output and gives it to USERI for subsequent printing. Normal EDITPUB output information includes public
file names, length of files in number of small pages, and file access parameters.

9-14 60384400 c

OBJECT LIBRARY EDITOR (OLE)

The STAR loader uses library files as a source of modules to complete unsatisfied externals. OLE is used to
create and modify such libraries. OLE can only be used to create private library files ..

There are two basic functions performed by OLE: one is to create or expand a library file; the other is to
delete modules from an existing library file.

The general format of the control statement for the Object Library Editor is:

OLE(libnarne,len,options)

The maximum length of an OLE control statement is 4096 characters. The required parameters are:

lib name Name of the library file being created or modified

len Length of the library file specified by user; if omitted, OLE will set the length.

The optional parameters are:

UPI=lfni

LIBRARY=liblfni

OMIT=lfn,modi

LIST= DIR

LIST=lfn

Names of non-library formatted (User Private or pool Input) files to be used in
library file creation or extension. These are object modules that are output by
FORTRAN or META.

Names of library formatted files to be used in creating a new library or extending
an old one.

The object modules specified for modi are not copied from file lfn and therefore
are omitted from the library file being created or modified. The file name lfn
may be any of the files specified by the LIBRARY= or UPI= parameters.

List library header table, all object module names with their length, and all entry
points in the file directory.

List all object module names and their length, along with all entry point names
associated with the logical file name given.

For terminal requests, OLE writes all output and error information to the terminal. For batch requests, OLE
creates for the user a file named OUTPUT which has the file type output. All output and error information
is written into it. If the user has already created a file named OUTPUT, it will be destroyed.

60384400 D 9-15

Acceptable optional parameter abbreviations are:

UPI= OMIT=

LIBRARY= O=

LIB= LIST=

CREATING OR EXTENDING A LIBRARY FILE

SYSTEM 1 is the name of a file containing object modules output by any of the language processors. 1Jie
statement:

OLE(SYSLIB,UPI=SYSTEM I)

creates a library file, SYSLIB, using the file SYSTEM! as input.

SYSTEM2 is the name of a file containing object modules from any of the language processors. Then the
statement:

OLE(SYSLIB,UPI=SYSTEM2,LIBRARY=SYSLIB)

adds to an existing library file SYSLIB the modules from the file SYSTEM2.

Note:

If duplicate module names are found during input, the following rules are used to resolve which module will
be placed on the new library file:

1. If duplicate modules are found on any of the files associated with the UPI parameter, the first
one encountered is used.

2. If duplicate modules are found on any of the library files, the first one encountered is used.

3. If duplicate module names are found on a library file and a file associated with the UPI parameter,
the module from the Users Private or pool Input file is used.

OMITTING MODULES FROM A LIBRARY Fl LE

A user's private input file ABC is added to an existing library file LIBA. The module named MODI, which
resides on file ABC, is not added to the new library file LIBA. The following control statement performs
this operation:

OLE(LIBA,UPI= ABC,LIBRARY=LIBA,OMIT=ABC ,MODI)

9-16 60384400 c

The default method of omitting object modules is the duplicate module name heirarchy described under
CREATING OR EXTENDING A LIBRARY FILE.

A library file named SYS LIB is created from input library files LIB l and LIB2. Modules named SYS3 and
SYS4 which exist on library file LIB2 are omitted from the new library file. This is performed by the
following statement:

OLE(SYSLIB,LIBRARY=LIBl ,LIB2,0MIT=LIB2,SYS3,SYS4)

OBJECT LIBRARY Fl LE

LIBRARY HEADER TABLE

The header table is a fixed length table consisting of six 64-bit words in the following format:

0 31 63

LIBRARY

libname

""'' UIV I' v II.A'""

calendar value

dir !en lib len

mod# entry#

60384400 c 9-17

lib name

ASCII clock value

calendar value

dir len

lib len

mod#

entry#

Name given to a new or newly modified library; name must be different from
any of the file names associated with the user's private or pool input file param­
eter. Name must be 1-8 alphanumeric characters, left justified with blank fill.

Hours, minutes and seconds expressed as hh:rnm:ss

Month, day, and year expressed as mm/dd/yy

Word length in hexadecimal of directory table

Total word length, in hexadecimal, of library

Hexadecimal number of modules in library

Hexadecimal number of entry points in directory

LIBRARY DIRECTORY

The directory is a variable length table consisting of 64-bit words in the following format:

0 63

module name

entry name 1

entry name 2

entry name 3

module name ASCII name of module in 1-8 alphanumeric characters, left justified with blank fill

entry name External entry names associated with module name

9-18 60384400 c

OBJECT LIBRARY Fl LE FORMAT
0 15 19 31 631

LI B R A R Y

libname

I
ASCII clock value

calendar value

I dir len lib len
i

#mods] # entries

module name n

entry point name

entry point name

entry point name

entry point name

.... --~ ~~~ l -

F mod len flaq pointer
I - I

mod len flag pointer

mod len flag pointer

mod len flag pointer

mod len flag pointer

--::

~ ~
/ /_ ::;...--- ~

MODULE

len 0 0

module name

date & time created

T len processor

C len data base len

Type pointer

Tables

60384400 c 9-19

INDEX TABLE

The index table is variable in length and contains 64-bit word pointers to the location of modules in the library~
The word format is:

0

mod len

flag

pointer

15 l6 19 20 63

mod len I flag I pointer

Hexadecimal word length of object module

If flag is zero, directory ·entry corresponds to an object module name; if one,
director entry corresponds to an entry point name in the module.

The pointer contains the word address, relative to the first word of the library
header table, of the the object module.

MODULE TABLE

The module table contains the object modules referenced in the directory. The module table contains the
module header table and all other tables associated with the module named in the directory.

EDITT

The user can edit source files interactively from a display terminal. The editing program is called into execu­
tion from a terminal with the command:

EDITT(olda,oldb ,newa,newb)

olda

oldb

newa

newb

Required input file name, 1 to 8 characters, denotes source file to be edited.

Optional input file name. If only one input file name is given in command, a
comma must appear in lieu of this file name parameter.

Required output file name, 1 to 8 characters.

Optional output file name.

The following forms of the EDITT command may be used:

EDITI(olda, , newa) One input and one output file

EDITT(olda,oldb ,newa) Two input and one output files

9-20 60384400 c

EDITT(olda, , newa,newb) One input and two output files

EDITT(olda,oldb ,newa,newb) Two input and two output files

All files names in the EDITT command must have been created or established by the user before EDITT is
called. Each designated output file must be large enough to hold the edited version of the file. A maximum
of two input and two output files provides the capability to combine two input files into one output file,
expand one input file into two output files, rearrange sections of data, exchanging them with selected sections
on a companion inpui file, or e<lil iwu files al um;t:, making inst:rliuns an<l <ldt:liuns in lht: prrn;t:ss.

FiLE PAGES

The user can divide each file into entities called pages. This term is not to be confused with the term page
which has a definite meaning in both the ST AR hardware as well as the operating system and other software.
When a file is divided into pages, it is easier for the user to position a file to a particular location through
skip or copy operations. A command provided in EDITT allows the user to insert the ASCII form feed
character in the output file, thus denoting the end of a page. The number of pages in a file is not limited,
provided the file is large enough. A file is considered to be contained in one page if no page-end marks are
inserted. Also, no maximum is set on the number of lines that may be contained in a page.

EDITT keeps track of its position in any file by counting pages and lines. The line count can start at the
beginning of the file or at the beginning of a page. EDITT assigns chronological page and line numbers to the
input file; when the form feed character is encountered EDITT advances the page index and re-establishes the
line count. The current position of the input file is displayed on the screen as: page-number/line-number.

MODES OF OPERATION

EDITT operates in two modes: insert and command. Insert mode allows lines of character information to be
inserted at designated locations in the files. Command mode deals with the selection of files, positioning files,
and other operations such as copying and preserving the contents of files.

INSERT MODE

EDITT is an interactive editor; any line entered interactively from the user terminal that does not begin with
the @ character (at-the-rate-of) is interpreted as an insertion line and placed into the currently active new
file. The manner in which a file is made currently active is discussed under COMMAND MODE, which fol­
lows. If a line to be inserted begins with the @ character, it must be preceded by an additional @ character.
For example, @@ will insert @, @@@ will insert @@, and so forth. Although @ precedes all EDITT com­
mands, the editor interprets the appearance of two or more @@ characters in succession to be an insertion
line from which it strips off the first @ and inserts the remainder into the new file.

Up to 63 characters may be inserted or replaced at any one time. When an insertion line contains more than
63 characters, the ASCII null character, hexadecimal 00, must be the 63rd character in the line. Such a line,
then, is considered to be part of a character string that is continued on the next insertion line. The next
line entered is concatenated to the preceding line, and the null character is deleted in the process. In this
manner, long lines of infuirntion-maybe-inserted into. .the new. file.

60384400 c 9-21

COMMAND MODE

Commands entered by the user from the interactive terminal have the following form:

@command value 1 value2

command

value I
value2

A single character identifying the command.

Use of these decimal values is determined by the individual commands. A comma
or blank separates value 1 from value2; however, only a blank may be used to
separate value 1 from the command.

FILE SELECTION COMMANDS

When EDITT is entered, files designated for olda and newa are selected for processing. When the first file
selection (toggle) command is given, the alternate file, oldb or newb, is activated. The next toggle command
will reactivate olda or newa, as determined by the specific command.

@Tl Toggle the selection of old file.

@TI Toggle the selection of new file.

@T3 Toggle the selections of both old and new files.

REPOSITION COMMANDS

These commands affect the line count.

@RI

@R2

@SI

BACKUP COMMANDS

Move contents of new file to old file and reset old file line count to point to the
first line in old file.

Reset old file line count to point to the first line in old file.

Reset new file line count to first line in new file.

The line count is backed up the number of lines specified in the commands.

@< Back up old file line count by one line. (Default value)

@<1 n Back up old file by n lines.

@<2n Back up new file by n lines.

@<3 n Back up both old and new file line count by n lines.

9-22 60384400 c

BEGIN NEW PAGE COMMAND

@\

DELETE COMMANDS

Insert a line containing the ASCII form feed character into the currently active
new file. Th.is hexadecimal character OC denotes the end of a page and causes
the new file line count to be set to the first line of the next page. The printer
recognizes the form feed character as a page eject command.

These commands cause the deletion of one or more lines from the new file. They cause the old file line
count to be iepositioned, effectively skipping ovei the lines and thereby omitting them from the new file.

@- n
@D n

@- pn)n

COPY COMMANDS

Omit n lines of the old file from the new file. If n is not present in the
command, only one line is skipped in the old file and thereby omitted from the
new file.

Skip all lines from the current position in the old file up to the designated page
number, pn, and line number, In, thereby omitting these lines from the new file.

These commands always copy from the old file to the new file.

@+

@+ pnJn

@C n

PRESERVE COMMAND

Copy from current location of old file to new file. until an ASCII file separator,
hexadecimal IC, is encountered.

Copy from old file to new file up to (but not including) the designated page and
line number. If In is omitted, copy up to (but not including) line 1 of the
designated page.

Copy n lines from old file to new file. If n is omitted, copy one line only.

With this command, the user can save periodically the corrections made during a long edit session. These
corrections are contained in the currently active new file being manipulated in core, and the current new
file in core is written out to the disk to which the file is assigned.

@P

EXIT COMMAND

@E

60384400 c

Write the currently active new file to disk.

Exit from EDITT program. At this time, the new files are written from core to
the assigned file device.

9-23

LIBRARY PREPARATION AND MAINTENANCE 10

lJPDATE is a system utility program for creating, maintaining, and manipulating a user's library of program and
data files. It also is used to maintain a program library containing source decks for the operating system. The
STAR-100 UPDATE is a subset of the UPDATE used on the CDC 6000 and 7000 computer systems.

In using UPDATE, the user initially transfers a collection of source decks to a file known as a program library.
Each card of each deck is assigned a unique identifier when it is placed on the library, so the card can be
referenced during an UPDATE correction run. During correction runs, cards are inserted into or deleted from
the program library according to sequence identification. The card image, even though deleted, is maintained
permanently on the program library with its current status (active or inactive) and a chronological history of
modifications to the status. A card listed as currently inactive has been deleted and is, in effect, removed from
the deck. A card with active status is in the deck; either it has never been deleted or it has been restored after
a deletion. During a single UPDATE correction run, a card may undergo one or more modifications, or no
modification.

Up to six types of physical files are processed in an UPDATE run.

Input file containing UPDATE directives and corrective text (INPUT)

Old program library to be updated (OLDPL)

New program library to be created by this UPDATE (NEWPL)

Listable output files (OUTPUT)

Output file created for a compiler or assembler (COMPILE)

Output file containing all active cards on the program library (SOURCE)

UPDATE requires that all files exist on disk and, if specified by the user, creates files NEWPL, OUTPUT,
COMPILE and SOURCE. For users requesting tape maintenance, UPDATE requires the user to perform utili­
ties involving tape to disk and disk to tape operations. For example, the INPUT and OLDPL files must have
been transferred to disk with a tape to disk utility prior to the execution of UPDATE. Subsequently, when
UPDATE completes its function, the user must transfer the UPDATE output files NEWPL, OUTPUT,
COMPILE, and SOURCE, if specified, from disk to tape.

The compile file is the primary output of an UPDATE run and contains only the active cards requested by
the user. In a typical application, a user calls UPDATE to modify a FORTRAN source language deck main­
tained on an UPDATE program library, requests that the modified decks be written in source language format
to the compile file, and then calls the FORTRAN compiler to read source input from the compile file.

60384400 D 10-1

I

A second type of output is a new program library. It contains updated decks requested by the user in
program library format for use as an old program library in subsequent UPDATE runs. Normally, a new
program library is output during an UPDATE creation run. It may become an old program library on sub­
sequent correction runs. OLDPL is the logical file name used most often to refer to a standing program
library. Whenever a NEWPL is required, UPDATE creates file TEMNEWPL, to be used for intermediate
processing. If TEMNEWPL exists, UPDATE will utilize the existing file; otherwise, UPDATE will create
TEMNEWPL with a length of 100 (hexadecimal) pages.

INPUT FILE

The input file is required and contains UPDATE directives, source decks, and/or corrective text (INPUT).
UPDATE assumes that the input file contains 80-column card images in either compressed or uncompressed
format. UPDATE determines the specific operations it is to perform from two sources: parameters on the
UPDATE control card, and directives in the input file. In a directive card image, column 1 contains the
special character specified as the master control character for this UPDATE run; the default character * is
used most frequently. The control character is followed by a string of characters terminated by a blank or
comma. This character string must be recognized by UPDATE as a valid directive.

As each card image is read from an UPDATE input stream, it is assigned a unique card identifier consisting of
two parts. The first is an ident, established for the correction set with an *IDENT directive. (Under certain
conditions, it may be established by a *DECK or *COMDECK directive.) The second part is a sequence num­
ber within that ident. The card identifier, then, is composed of ident.seqnum. An established identifier is
retained along with the card image on the old program library (OLDPL). UPDATE directives may reference the
card image by its identifier; also by referencing one ident, all sequence numbers under that ident may be
referenced.

Some UPDATE directives exist only in the input stream; other directives are assigned identifiers and are placed
on the OLDPL. Since these directives possess identifiers, they may be referenced thereafter in the same manner
as text card images. Card images exist on the OLDPL in an active or inactive state. For text card images, the
state is important only for COMPILE file output. Only currently active card images are written to the COMPILE
file. For UPDATE directives on the library, the state has more meaning. Normally, these directives are processed
when the COMPILE file is generated; they are not written to it, but specify certain operations that determine
file contents. Inactive directives are ignored.

UPDATE CONTROL PARAMETERS

With UPDATE control parameters, the user specifies the correction mode of UPDATE, the format of the
UPDATE directives, the existence and names of files involved, the types and formats of output from the
UPDATE process.

Three UPDATE correction modes may be applied to a program library:

In FULL mode, all decks on the program library are processed.

In SELECTIVE mode, only decks specified or modified are processed.

In QUICK mode, only specified decks are processed.

10-2 60384400 D

The user can specify the character that begins an UPDATE directive card and the character that begins a
comment.

The user may specify the names of each of the six types of flies and whether the NE\VPL, COMPILE, or
SOURCE files are to be created.

For the OUTPUT file, the user may suppress default output. On the COMPILE file, he may select 80 columns
of data to be preserved instead of 72, and he may select an 80-column format instead of 90.

UPDATE CONTROL CARD

This control card causes the UPDATE program to be loaded from the system library and executed. Parameters
on the card specify modes and files for the run. The format is:

UPDATE(pl,p2, ... ,pn)

A right parenthesis or a period terminates the control card. The parameters are optional and can be in any
order. Generally, a parameter can be in one of the following forms or it can be omitted.

option

option=filename

option=filename,xxx (valid for C, N, 0, S, T options, xxx= length of file in number of small pages.
Default is 256)

option=O (valid for modes C and L only)

The functions of the UPDATE control card parameters are outlined below.

UPDATE
Parameter

c

D

Function

Compile file in deck list order

80 columns of data on compile
file for compiler processing

F Full UPDATE mode

UPDATE
Parameter

p

Q

s

Function

Old program library

Quick UPDATE mode

Source file

T Source file without common decks
Input file

L Type of listing to be output

N New program library

0 Output file

60384400 D

8

*

80-column card images on
compile file

Master control character

Comment character

10-3

Parameter Description

C Compile file output

omitted or C

C=filename

C=PUNCH

C=O

Compile file output decks are written on file named COMPILE; contents are deter­
mined by the kind of update (F, Q, or normal).

UPDATE writes compile file output decks on named file; contents are determined by
kind of update (F, Q, or normal).

Compile file output decks are written on file named PUNCH; contents are determined
by the kind of update (F, Q, or normal). This option also causes the D and 8 param­
eters to be selected.

No compile file output

D Data width on compile file

omitted

D

F Full update

omitted

F

Input

omitted or I

!=filename

10-4

Compile file output format is 72 columns of data for compiler processing

Compile file output format is 80 columns of data for compiler processing

If the Q parameter is not specified, ·the omission of F designates the normal (selective)
operation mode of UPDATE. All regular decks and common decks are processed. The
new program library, if specified, contains all regular and common decks, after any
corrections have been made in the sequence in which they occur on the old program
library. The source file, if specified, contains all active cards with decks in deck list
sequence. The compile file contains all decks corrected during this UPDATE run and
all decks specified on COMPILE directives. Any deck that calls a corrected common
deck is also considered to be corrected unless the common deck is a NOPROP deck
(see COMDECK directive).

Source and compile files, if specified, contain all active decks in old program library
sequence. The contents of the new program library are the same as if F were not
specified.

Input is on job INPUT file

Input comprises next record on named file

60384400 D

L list options

omitted List options A, 1, and 2 are automatically selected on a creation run. Options A, 1, 2,
3, and 4 are automatically selected on a correction run.

L=c1 ,c2, .. ,cn Each character in the string selects an option. The digit 0 in the string negates any
other selections. For example, L=Al 2340 is equivalent to L=O. The options are as
follow!';:

60384400 D

A Listing of error decks, correction set idnames, common decks, decks written
on the compile file.

F All selections other than 0.

0 No listing.

Errors are listed if 1 is selected by default. If L= 1 is specified, the deck
name list, identifier list, and continuous commentary are suppressed.

2 Directives

Each TDENT directive produces a page eject. Each card recognized by
UPDATE as a valid control card is marked by five asterisks to the left
of the card.

3 Commentary on changes to cards processed, consisting of: name of deck,
card image, card identifier with sequence number, and a key and action are
shown below:

Key Action

Card introduced during run

A Inactive card reactivated

D Active card deactivated

P Card was purged during run

When currently active cards are purged, the word ACTIVE occurs in addition
to the P action.

4 Input stream

9

Cards in error are marked by *ERROR* to the left and to the right. Cards
resulting from a READ directive are marked to the right with the name of
the file from which they were read.

Decks inserted by ADDFILE are not listed if list option 4 is selected by
default; they are listed if option 4 is explicitly selected.

Listing of all active and inactive cards. List option 3 takes precedence over
List option 9. Active (A) or Inactive (I) status is indicated to the right of
each card image on the listing.

10-5

N New program library output

N New program library to be written on file NEWPL

N=filename New program library to be written on named file.

omitted UPDATE does not generate a new program library

0 List output file

omitted or 0 List output is written on a file named OUTPUT.

O=filename List output is written on named file.

P Old program library; ignored on creation run.

omitted or P Old program library on file OLDPL

P=filename Old program library on named file

Q Quick update (takes precedence over F)

omitted

Q

10-6

If F is not specified, this is the normal (selective) mode. See F omitted.

Only those decks specified on COMPILE directives are processed. Corrections other
than ADDFILE, that reference cards in decks not specified on COMPILE cards, are
not processed. The compile file contains decks specified on COMPILE directives and
any common decks called from decks. The new program library contains all decks
mentioned on COMPILE directives as well as all common decks they call and com­
mon decks encountered on the old program library prior to processing of all of the
specified decks. The source file contains the same active cards that are written on
the new program library if a new program library is selected.

60384400 D

S Source output; the contents of the source file are determined by the mode in which UPDATE is
operating a.fld the decks nan1ed on the COMPILE directives.

If Q is not selected, regardless of F, the source file contains all cards required to recreate the library.
Tiris recreated library is resequenced because sequencing information is not included on the source file.
Tiris file contains all currently active DECK, COMDECK, and CALL directives in addition to all active
text information. Decks are not necessarily in a sequence accepted by UPDATE for creating a new
program library.

If Q is selected, decks written on the source file are those named on C0MPILE directives and common
decks they call. All common decks encountered on the old program library before all explicitly
specified decks are included on the source file.

omitted UPDATE does not generate a source output file unless the source output is specified
by the T option.

s Source output written on file SOURCE.

S=filename Source output written on named file.

T Source output excluding common decks (takes precedence over S)

omitted No source output unless source output specified by S.

T Source output excluding common decks on file SOURCE.

T=filename Source output excluding common decks is on named file.

8 80-column output on compile file

omitted Compile file output is composed of 90-column card images.

8 Compile file output is composed of 80-column card images.

* Master control character

omitted

*=character

60384400 c

The master control character is *

The master control character, which is the first character of each directive, for this
UPDATE run is the character following the equals sign. The character may be
A through Z 0 through 9 + - * / $ or =

10-7

On a correction run, if the master control character is not the same as the character used when the
old program library was created, UPDATE uses the character indicated on the old program library.

Comment control character

omitted

/=character

The comment control character is / (slash)

The comment control character for this UPDATE run is the character following the
equals sign. The character may be either: A through Z 0 through 9 or + - * / $
or =

UPDATE DIRECTIVES

UPDATE directives are cards in the input stream containing a master control character in column I, a valid
UPDATE directive beginning in column 2, and a blank or comma immediately following the directive. The
default master control character * is used in subsequent examples; however, the master control character may
be redefined through an UPDATE control parameter. The master control character is stored in the key word
that prefixes the library file created; therefore some consistency should apply to redefining this parameter,
especially with regard to directives that UPDATE places into the library file. When placed on the library, direc­
tives CALL, DECK, COMDECK, Y ANKDECK, and YANK carry with them the master control character with
which they were introduced. UPDATE can recognize them on subsequent runs only when the same master
control character is given. If file modification is attempted with a master control character other than that
specified on OLDPL, a non-fatal error will occur.

UPDATE directives are written in the form:

*control word

or

*control word parameter list

* represents the master control character, and the control word follows without intervening spaces. The control
word is terminated by a comma or blanks; any number of blanks may appear between the control word and
the parameter list. Parameters are separated from each other by commas; embedded blanks are not permitted.
Control words may be written in an abbreviated form, as shown in the following table. All numeric values
are to contain decimal digits, except where noted.

10-8 60384400 B

Abbreviation

*AF

*C

*CA

*CD

*D

*DK

*I

*ID

*P

*PD

*RD

*Y

*YD

UPDATE Directive Format

*ADD FILE fname,ident.seqnum

*COMPILE dnamel ,dname2, ... dnamen
*COMPILE dname 1.dname2

*CALL dname

*COMDECK dname,pi

*DELETE identl .seqnum,ident2.seqnum
*DELETE ident .seq num

*DECK dname

*INSERT ident.seqnum

*IDENT idname,pl ,p2, ... ,pn

*PURGE idnamel,idname2, ... ,idnamen
*PURGE idname l .idname2
PURGE idnarne,

*PURDECK dnamel,dname2, ... dnamen
*PURDECK dnamel .dname2

*READ fname

*YANK idname 1,idname2, . . . ,idnamen
*YANK idnamel.idname2

*Y ANKDECK dnamel ,dname2, ... dnamen

CARD IDENTIFICATION

UPDATE recognizes one full form and two short forms of card identifiers. The full form card identifier is:

ident.seqnum

ident.

seqnum

60384400 c

1 to 8 character name of a correction set or deck. A period terminates the ident
name.

Decimal ordinal (1 to 65535) representing the sequence number of the card within
the correction set or deck. Any character other than 0 to 9 terminates the sequence
number.

10-9

The two short forms of card identifiers can be used on INSERT or DELETE directives. The short forms are
expanded as follows:

seqnum

. seqnum

Expands to idname.seqnum where idname is a correction set identifier, whether or not
it is also a deck name.

Expands to dname.seqnum where dname is a deckname .

In the short form, idname is assumed to be the_ last explicitly named ident given on an INSERT or DELETE
directive, whether or not it is a deck name. The dname is assumed to be the last explicitly named ident given
on an INSERT or DELETE directive that is known to be a deck name. Both of these default idents are
originally set to YANK$$$ so the first directive using a card identifier must use the full form to reset the
default.

All deck names are also idents. Thus, if EXAMPLE is the deck name last used, and there is no subsequent
explicit reference to a correction set identifier, then both .281 and 281 expand to EXAMPLE.281 as the
identifier. If there is an explicit reference to a correction set identifier after the explicit reference to the deck
name, then 281 would expand to the correction set ident while .281 would expand to EXAMPLE.281 as the
identifier.

For example; A is a deck name and B is a correction set on an UPDATE old program library.

*ID C
*INSERT A.2
<data card>
*INSERT B.1
<data card>
*D 2, 3
*D 4, .5
*D .7, 5
*D .9, .10

whereas:

10-10

*ID D
*INSERT B.1
<data card>
*INSERT A.2
<data card>
*D 2, 3
*D 4, .5
*D .7, 5
*D .9, .10

expands to *DELETE B.2, B.3
expands to *DELETE B.4 A.5
expands to *DELETE A. 7, B.5
expands to *DELETE A.9, A.10

expands to *DELETE A.2, A.3
expands to *DELETE A.4, A.5
expands to *DELETE A.7, A.5
expands to *DELETE A.9, A.10

60384400 B

PROGRAM LIBRARY FILES

Any OLDPL will have first been a NEWPL; it can become an old program library only after its creation run.
UPDATE creates new library files in sequential format. The first word in the file is a key word; the second
contains two counters, one the number of deck names in the deck list, and the other a count of the card
image identifiers in the directory.

The deck list starts in word three of the library record; it is a table containing one entry for each program
deck in the file. Each entry is a word containing a coded deck name. The deck names are listed in the same
sequential order as they appear in the library file.

The directory follows the _deck list and contains the library identifier for every program deck that has ever
appeared in the file. Each entry contains the deck identifier name, left justified with blank fill. Program iden­
tifiers differ from deck names in that the deck name is taken from the *DECK or *COMDECK directive which
precedes the source deck in the input stream. Program identifiers are taken from the *IDENT directive which
precedes correction sets in the input stream. Identifiers are listed in the directory in the order in which they
were introduced into the library.

The remainder of the sequential format library file contains the compressed symbolic card images and their
correction history bytes.

Card images may be deleted from an old program library in one of two ways. UPDATE's purge features allow
card images to be removed permanently and irrevocably. Once a purge has been performed on a program
library, it cannot be restored to an earlier level. However, since each set of corrections is associated with a
unique identifier, any cards affected by the correction set can be referenced relative to the correction set.
Thus, in a correction run, all or part of a correction set can be removed (yanked), and the effect of such an
operation can be reversed, if necessary.

Each card image on the OLDPL also belongs to a deck. A deck is defined as an active *DECK or *COMDECK
directive along with all card images that follow on the OLDPL (active or inactive) up to the next active
*DECK or *COMDECK directive. The deck to which a card image belongs is determined by the card's position
and by the status (active or inactive) or the *DECK or *COMDECK directives. Since the *DECK and
*COMDECK directives can be deactivated (by *DELETE and *YANK), directives belonging to one deck at the
beginning of an UPDATE run may belong to a different deck at the end of the run. When a *DECK directive
is deactivated, all card images in that deck become members of the preceding deck on the OLDPL; thereafter,
they are controlled by directives that affect the previous deck as a unit, such as *PURDECK.

A source deck can be assigned common status when it is first incorporated into a program library file. Common
decks can be called from within other decks, as they are being written on the compile file. On the compile file,
when UPDATE encounters a card calling a common deck, the text of that deck is used to replace the card
issuing the call.

60384400 B 1 0-11

PROGRAM LIBRARY FORMAT

UPDATE creates new library files in sequential format. The first word in the file is an ASCII keyword;
the second is a counter word containing the number of deck names in the deck list and a count of correction
set identifiers in the directory.

The library format is:

10-12

Word 1

Word 2

First card of a user
deck is a deck or
COMDECK directive

0 31 47 55

UPDATE uu

ident count dname count

DECK LIST

DIRE;CTORY

TEXT STREAM

63

c

} YANK$$$ Deck

} User Deck1

} User Deck2

[----------]}
User Deckn

60384400 c

Word one:

Bits Field

0-47 UPDATE

48-55 uu

56-63 c

Word two:

0 47 55 63

UPDATE

Description

Identifies the field as being an UPDATE program library file. Field contains the
word UPDATE in ASCII code.

Modulo #100 count representing number of times this program library has been
accessed.

Indicates master control character used when this library file was created.

* First character of directives is an asterisk, the conventional master
control character.

other First character of directives is the character indicated. On a correction
run, if the master control character specified on the UPDATE control
card does not match this character, lJPDATE changes the character
to match the one in this field.

0 31 63

ident count dRarne count I

The second word of the program library file is composed of two binary count fields:

ident count Count of all identifiers in the directory

dname count Count of all deck names in the deck list

Deck list Format:

The deck list contains a two-word entry for each deck on the library. The first entry points to the YANK.$$$
deck.

60384400 c 10-13

Each entry has the following fonnat:

0

Word Bits Field

0 0-63 dname

0-15 lnth

16-63 add

Directory Format:

0 15 63

dname

I nth add

Description

1 to 8 alphanumeric characters representing deck name obtained from DECK
or COMDECK directive when deck was placed on library. The first dname
is YANK$$$.

Length of deck in number of small pages.

Address of first character for the deck in the old program library.

The directory is a table that contains one entry for each DECK, COMDECK, and IDENT that has ever been
used for this library. Each directory entry consists of two words containing the 8-character identifier in
ASCII, left justified. Correction set identifiers and deck names are listed chronologically as they are
introduced into the library. An identifier that has been purged is not printed on the listable output file
although table space is allocated to it.

0

0

Word Bits Field

0 0-63 ident

0-15 f

56-63

10-14

15 55 63

ident

f t

Description

1 to 8 alphanumeric characters representing the name of a correction set or
deck

Flags for this ident

Type (O=deck; I =comdeck; 7=ident)

60384400 c

YANK$$$ Deck:

The YANK$$$ deck is automatically created on a creation run as the first deck on the program library. On
correciion runs, lJPDATE inserts into the YANK$$$ deck any YANK or YANKDECK directives that it
encounters during the read directive phase. These directives acquire identification and sequence information
from the correction set from which they originate.

Although the YANK$$$ deck, as a whole, cannot be yanked or purged, cards in the deck can be deleted,
yanked or purged from it. This deck does not have a DECK card as its first card image.

User Deck:

Each deck contains an indefinite number of words that maintain a correction history and the compressed
image of each card in the deck. Its format is:

0 15 31 47 63

#CHB #Bytes

CHB.., -- .£ - -

CHBn CT1 CT2 CT3
.
.. .. r'T #CHS #Bytes Seq '-I In

#2 CHB1 CHB2 ... CH

Bx CH

Bn CT1 CT2

USER DECKn

]

#CHB #Bytes

Seq#n CHB1 CHB2 ...
. . . CHBn CT1 CT2

..

.. CTn

60384400 B 10-15

#CHB

#Bytes

Seq#

CHB

CT

Number of correction history bytes (CHB) for this card

Number of bytes of compressed text

Sequence number of the card in this deck

Correction history byte

0 15

l+I IDENT NUMBER

A - Activity bit - 0 Correction set deactivated card

Correction set activated card

Y - Yank bit 0 Card not yanked

Card has been yanked

IDENT NUMBER - Index to Directory entry that contains the name of the deck or
correction set that introduced the card or changed the card status.

Compressed text in ASCII characters

OUTPUT FILES

The listing of the output file is optional; its contents vary, depending on the nature of the run. For creation
runs, UPDATE produces a list of known DECK and IDENT names, COMDECKs processed, DECKs written to
the COMPILE file, all error messages, and all active control cards. For correction runs, the preceding are aug­
mented to include all cards for which status changed during this UPDATE, and all cards encountered in the
input stream.

10-16 60384400 B

COMPILE FILE

The compile file is a primary form of output from UPDATE. It contains updated source card images to be
assembled or compiled. The default name of the compile file is COMPILE, but the name of the file can be
changed through the C option on the UPDATE control card.

During a full update run or during a creation run, the co~pile file contains all decks that are on the new
progrmr.. library. In normal mode (f and Q not selected), the co1nplie me l,;UI!Laiu~ uuly uecks upuaku uuring
the current UPDATE run or decks specified on COMPILE directives. The sequence of the decks on the
compile file is determined by their order in the deck list.

Through control card options, a user can specify whether the text on the file is to be compressed or expanded.
The expanded compile file format for each card consists of 72 or 80 columns of data followed by 0 to 18
columns of sequence information. The maximum size of a card image is 90 columns. The expanded card
image is:

72 or 80 columns of data
0 to 18 columns of

sequencing information

..._--------------~----------------------i-d_•~~no_. ______ ~
UPDATE attempts to place sequence information in the columns remaining in the card image after the data
columns have been allocated. When the data field is 72 columns and the card image is 90 columns, column 73
is left blank making 17 columns available for sequence information. In this case, the 1 to 8 character ident is
left adjusted in column 74 and the sequence number is right adjusted in column 86.

When the data field is 72 columns and the card image is 80 columns, 8 columns are available for sequencing
information. If the data field is 80 columns and the card image is 90, then 10 columns are available for
sequencing information. In either of these cases, if the ident and sequence number exceed the field, UPDATE
truncates the least significant characters of the ident, leaving the sequence number intact.

If the data field and card image are both 80 columns, the compile file output cannot have sequence infor­
mation appended.

In the following example, ident is SEVENCH and the sequence number is 1144:

Column __.. 73 74 80 86 90

~ s E v E N c H 1 1 4 4

I ~ Wi~h 8 :pti:

s E v E N c 1 1 4 4

E 1 1 4 4

With 0 option
.....___ Normal compile output

60384400 D 10-17

SOURCE FILE

The source file contains a copy of all active DECK and COMDECK directives and all active cards within each
deck. The source file is optional output from UPDATE through the use of the S and T options on the
UPDATE control card; once created, the file can be used as source input on subsequent UPDATE runs. The
source file is a coded file that contains 80-column images.

When Q is not selected on the UPDATE control card, the source file generated contains all cards needed to
create a program library. The source file can be used as a back-up copy of the library or, providing that
common decks occur first, can be used as input for an UPDATE run that produces a resequenced program
library with all the inactive cards purged.

When Q is selected on the UPDATE control card, the source file contains all decks requested on the COMPILE
directives, all common decks that they call, and any common decks encountered prior to processing all of the
specified decks. The only directives that can legally appear in the source file are DECK, COMDECK, and com­
pile file directives.

LIBRARY FILE CREATION AND MAINTENANCE

LIBRARY FILE CREATION

UPDATE operates in creation or correction mode. UPDATE considers any run to be a creation run if the
first directive it encounters in the input file (except for *Comment or *READ) is a *DECK or *COMDECK
directive. Even if an old program library file is assigned to the job, UPDATE will ignore its existence and
process the run in creation mode. Similarly, if UPDATE encounters a *DECK or *COMDECK directive
while inserting text during a correction run, it will add the deck to the old program library following the
card specified by *INSERT.

In a creation run, each *DECK or *COMDECK in the input stream defines a deck to be incorporated into the
library file. The directives also cause entries to be made in the directory and deck list. UPDATE identifies
and sequentially numbers each card image written to the library file. Identifiers take the form, dname.seqnum;
dname is the name associated with the deck, and seqnum is the sequence number. Numbers are assigned,
starting with 1 for the *DECK or *COMDECK card, and including all text cards and those introduced by a
*READ directive.

Acceptable formats:

('DECK dname
*DK

10-18

dname 1-8 character deck name for this deck that is different
from any other deck name in the deck list; legal char-
acters are: A through Z 0 through 9
+-*/()$=_

60384400 D

/*COM DECK dname,NOPROP

I *CD
dname 1-8 character name of deck being introduced; this name

must differ from any names already in the deck list.
Legal characters are: A to Z 0 to 9 + - * / ()

$ = -

NOPROP Inclusion of this parameter specifies that if this deck is
modified, decks calling this common deck are not to be
considered as modified. The effects of the changes are
not propagated during UPDATE mode (F option not
specified).

The primary difference between *DECK and *COMDECK is that the latter introduces a deck that may be
called from other decks as they are being written on the compile file; however, common decks must precede

other decks that may call it during a creation run.

When text and directives are to be read from files other than the input stream, file manipulation directives
are used. The directives may appear anywhere in the input stream; they may appear only on the main input
file and may not reference files specified for in tern al use by UPDATE, such as those identified by file param­
eters. To read from a file other than the input stream, the user program should include the control statement:

('READ fname
*RD

fname Name of file containing insertion text and/or directives;
READ and ADDFILE are illegal on the file.

The READ directive causes UPDATE to temporarily stop reading the input file and begin reading directives
and insertion text from the named file at its current position. UPDATE reads from this alternate directives
file until it encounters an end-of-file mark and then resumes reading the next card from the primary input file.

Example:

L*DE LETE DD.80

{*READ TP1

*I DD1.10
INSERTION TEXT IS NEXT RECORD ON TP1

60384400 D 10-19

LIBRARY CORRECTION DIRECTIVES

The library correction process is the most common use of UPDATE. UPDATE directives and data card images
comprise the correction set. The directives provide UPDATE with instructions concerning the modification of
the program library text stream. The old library is not destroyed; the corrections are permanent only in the
new program library being created.

A correction run consists of a read input stream phase and a correction phase. During the first phase, UPDATE
reads directives and text, adds new decks, and constructs a dictionary of requested correction operations. During
the second phase, UPDATE performs the requested modifications on a deck-by-deck basis.

Correction directives cause card images to be inserted or deleted from program library decks according to
card sequence number. A card can be identified by deck name and sequence number. Each new card is
assigned a correction set identifier specified by the user. UPDATE sequences the new cards. All cards having
the same correction identifier comprise a correction set. UPDATE permits a user to remove (yank) the effects
of a correction set (or deck) and later restore the set (or deck). This feature is convenient for testing new
code. Requests for yanking are maintained in the YANK$$$ deck. Before obeying a correction, UPDATE
checks the correction identifier against the YANK$$$ deck to see if the correction has been yanked.

UPDATE also allows a complete and irreversible purging of correction sets (through the PURGE directive).

The following directives are used for correcting and updating a program library.

ID ENT

(
~IDENT idname,p1 ,p2, ... ,pn
*ID

idname

10-20

1-8 character identifier to be assigned to this correction set. Legal characters are:

A-Z 0-9 + - * I () $ =

This name causes a new entry in the directory. Each card inserted by the correction set
and each card for which the status is changed receives a correction history byte that
indexes this idname. Sequencing of new cards begins with one for this idname

Omitting idname causes a format error. If idname duplicates a name previously used,
UPDATE issues an error message. Both errors are non-fatal.

This idname remains in effect until UPDATE encounters another IDENT directive or
encounters PURGE, PURDECK, or ADDFILE directive.

60384400 D

pi

Example:

Any number or one of the following parameters:

B=num Bias of num is to be added to sequence numbers. If more than one B param­
eter is specified, UPDATE uses the last one encountered.

K=ident The specified ident must be already in the directory in order for this correction
set to be incorporated. If ident is unknown, UPDATE skips the correction set
and resumes processing with the next IDENT, PURGE, PURDECK, or ADDFILE
directive. If more than one K parameter is specified, all the idents must be
known or the correction set is skipped.

U=ident The specified ident must not be known for this correction set to be processed.
If ident is known, UPDATE skips the correction set and resumes processing
with the next ID ENT, PURGE, PURDECK, or ADD FILE directive. If more
than one U parameter is specified, all the idents must be unknown or the cor­
rection set is skipped.

(*I DENT ZAP ,B= 100 ,K =AC E,U=NON ,U=A RF

The decimal bias of 100 is added to all ZAP correction set card sequence numbers. That is, the first card in
correction set ZAP becomes 101 instead of 1. UPDATE skips the correction set if ACE is unknown or either
NON or ARF is known.

INSERT

*INSERT ident.seqnum
*I

ident identifier name

seqnum decimal sequence number

Cards may be inserted in a deck with the *INSERT directive. ident.seqnum specifies the card after which the
insertion is to be made.

60384400 B 10-21

ADD FILE

Directive format:

* ADDFI LE fname,ident.seqnum
*AF

fname

ident.seqnum

Name of file from which information is to be read. This text cannot contain cor­
rection directives. If file is omitted, it is assumed to be the UPDATE input file
named INPUT or its equivalent, as specified by the I parameter.

Identifier and sequence number of card after which decks are to be placed on pro­
gram library.

When *ADD FILE is encountered, UPDATE reads creation directives and text data from the named file (fname)
and inserts this information after the card (ident.seqnum) on the new program library. The first card of
fname must be *DECK or *COMDECK. UPDATE reads from this file until an end-of-file, which returns
UPDATE to the main file. If the fnam~ on * ADDFILE is the main input file, cards are added until an end­
of-file or the next UPDATE directive, whichever occurs first. UPDATE directives placed on the library
(*DECK, *COMDECK, *CALL) do not terminate the * ADDFILE function. * ADDFILE is illegal on an alter­
nate input file. A READ directive is illegal during processing of the added file, unless the added file is the
main input file.

Either or both fname and ident.seqnum may be omitted from * ADDFILE. If ident.seqnum is absent, the
*ADD FILE function occurs at the end of the library. If both parameters are missing, the *ADD FILE func­
tion occurs at the end of the library, and it is taken from the main input file (INPUT by default or as
specified by the I parameter). If only one parameter is present, it is assumed to be a file name.

YANK

*YANK idname1 ,idname2, ... , idnamen
*Y

*YANK idname1 .idname2

idnamei Name of correction set previously applied to the program library. If UPDATE fails to find
idnamei, it issues an error message.

10-22 60384400 c

The correction set idname 1 and all sets, up to and including idname2 on the directory are yanked. If idname 1
and idname2 cannot be located or are in reverse order, UPDATE issues a..11 error message.

UPDATE places the Y A.i~K directive in the YA~1K$$$ deck. During the modification phase, UPDATE checks
each correction to see if it has been yanked. All yanked corrections are ignored. If the card was deactivated
by the yanked correction set, UPDATE reactivates it. If the card was activated by the yanked correction set,
UPDATE deactivates it. Thus, UPDATE changes the correction history byte for every card that has changed
status.

A YANK must be part of a correction set.

A YANK directive does not terminate insertion.

Example:

(*YANK OLDMOD

This directive causes all effects of the correction set OLDMOD on the entire library to be nullified. Cards
introduced by OLDMOD are deactivated; cards deactivated by OLDMOD are reactivated.

YANK.DECK

The Y ANKDECK directive deactivates all cards within the decks specified. The directive format is:

*YAN KOECK dname1 ,dname2, ... ,dnamen
*YD

Name of deck to be deactivated. All cards in the deck are deactivated regardless of the
correction set to which they belong. If UPDATE is unable to find dnamei, it issues an
error message.

The YANK$$$ deck cannot be deactivated by the yank operation.

The Y ANKDECK directive must be part of a correction set.

Y ANKDECK does not terminate insertion.

Example:

(*YANKDECK OLDDECK

This directive affects all cards in OLDDECK, regardless of the correction set to which they belong.

60384400 c 10-23

PURGE

The PURGE directive causes the permanent and non-reversible removal of a correction set or group of cor­
rection sets. A PURGE directive can appear anywhere in directive input. Because it terminates a previous
correction set, an INSERT or DELETE cannot follow a PURGE directive; they must follow an IDENT direc­
tive. The YANK$$$ deck cannot be purged. Purging cannot be rescinded.

The PURGE directive has the following three basic formats:

*PURGE idname1 ,idname2, ... , idnamen
*p

idnamei Identifiers for correction sets to be purged.

*PURGE idname1 .idname2
*p

Correction set idname 1 and all sets, up to and including idname2 on the directory, are purged. If idname 1 and
idname2 camrnt be located or are in reverse order, UPDATE issues an error message.

PURGE idname,
*p

Correction set idname and all correction sets, that have been introduced after idname, are purged. This returns
the library to an earlier level only if no PURGE or PURDECK directive has been issued previously.

If UPDATE cannot locate a specified correction set, it issues an error message. Purged idnames can be reused
on subsequent correction sets providing they do not appear in the YANK$$$ deck.

PURDECK

A PURDECK directive causes the permanent and non-reversible removal of a deck or group of decks from the
program library. Every card in a deck is purged, regardless of the ident to which it belongs. PURDECK does
not purge idnames. Thus, a deck name purged as a result of PURDECK can be reused as a dname. It can be
used as a new idname only if it is not already in the directory list.

A PURDECK directive can be any place in the directives input. It terminates any previous correction set.
Therefore, INSERT or DELETE cannot follow a PURDECK directive but must come after an IDENT directive.
The YANK$$$ deck cannot be purged. Purging cannot be rescinded.

10-24 60384400 B

The PURDECK directive has two basic fonnats:

*PURDECK dname1,dname2, ... ,dnamen
*PD

*PURDECK dname1.dname2
*PD

The deck named dname1 and all decks, up to and including dname2 listed in the deck list, are purged. If
dname1 and dname2 cannot be located or are in reverse order, UPDATE issues an error message.

DELETE

The DELETE directive has two formats:

*DELETE ident.seqnum
*D

*DELETE ident1 .seqnum,ident2.seqnum
*D

ident.seqnum

ident 1.seqnum,
ident2.seqnum

Card identifier for single card to be deleted.

Card identifiers of first and last cards in sequence of cards to be deleted.
ident1 .seqnum must occur before ident2.seqnum on the library. The range can
include cards already deleted which are affected by the DELETE.

With the DELETE or D directive, the user deactivates a card or block of cards and optionally replaces it with
insertion cards which follow the DELETE directive.

A deactivated card remains on the library and retains its sequencing. It can be referred to in the same way as
an active card. A deactivated card is not included in compile decks or source decks.

60384400 B 10-25

COMMENT

(* I comment

Comments to be listed with a correction set may be included with a comment directive. It has a master control
character * in column 1, a comment control character I in column 2, and a comma or blank in column 3. This
card is ignored by UPDATE except that it is copied onto the listable output file. A comment may appear at
any place in the input stream.

CALL

*CALL dname
*CA

dname Name of common deck to be written on compile file.

UPDATE writes the text of a previously encountered common deck, dname, onto the compile file. Common
code, such as system symbol definitions, must be declared in the common deck and used in subsequent decks
or assemblies· without repeating the data cards.

The CALL card does not appear on the compile file. The contents of the common deck, excluding the
COMDECK card, follow immediately. Common decks can call other common decks. However, to avoid cir­
cularity of calls, a common deck must not call itself or call decks that contain calls to the common deck.
A CALL directive is effective only when it is within a deck.

COMPILE

The COMPILE directive has two formats:

/ *coMPILE d d d name1, name2, ... , namen

I *C

*COMPILE dname1.dname2
*C

Name of deck to be written on the compile file, new program library, and source file.

The first form of the directive requests one or more decks that may be in any sequence on the library. The
second form requests all decks in the deck list starting with dname 1 through dname2. If UPDATE fails to
find the named deck or if the deck names are reversed, it issues a diagnostic message.

COMPILE directives can be anywhere in the input stream. Calling a common deck from within a deck being
updated results in the common deck being 'tpdated.

I 0-26 60384400 B

NORMAL SELECTIVE MODE

During a normal update run (F and Q are not selected on the UPDATE control card), UPDATE writes on
the compile file all decks specified on COMPILE directives as well as all decks corrected during the run.
COMPILE causes a deck to be written on the compile file in the sequence encountered on the old program
library.

FULL lJPDATE MODE

During a full update run (F selected on UPDATE control card), UPDATE ignores COMPILE directives. It
updates all decks in the sequence encountered on the library.

QUICK MODE

During a quick update run (Q selected), only decks specified on COMPILE directives and called common decks
are written on the compile file. These decks are written in the sequence encountered on the program library.

ERROR CONDITIONS

UPDATE can detect four overlapping correction situations:

Type 1 Two or more modifications are made to one card by a single correction set.

Type 2 A modification attempts to activate an already active card.

Type 3 A modification attempts to deactivate an already inactive card.

Type 4 A card is inserted after a card which was inactive on the OLDPL.

When any of these types is detected, UPDATE prints the offending line with the words TP.n OVLP appended
on the far right. Detection of an overlap does not necessarily indicate a user error. Overlap messages are advisory,
and point to conditions in which the probability of error is greater than normal.

Type TP.2 and TP.3 are detected by comparing existing correction history bytes with those to be added. Com­
plex operations involving YANK and PURGE may generate these overlap messages even though no overlap occurs.

Modifications for each correction set are performed by UPDATE in the order in which sets are introduced. The
order is irrelevant if no correction is dependent on another. If a dependent relationship exists, however, order is
of paramount importance.

60384400 B 10-27

CHECKPOINT /RESTART 11

A task may be ended as the result of machine malfunction, or program error. Abnormal termination may
occur at any time during task execution. The checkpoint/restart facility is available to avoid loss of machine
time when an abnormal end occurs during a long task. A user can capture the status of his executing task
and its controllees at specified points so the task and controllee chain may be restarted later. The checkpoint/
restart package is called as a subroutine; it is loaded into the user's virtual space and creates and checkpoints
the tasks to disk files.

Checkpoint/restart cannot handle tapes. It restores message control only for the checkpointing program and
programs at lower levels; however, if a checkpoint occurs while a system message is outstanding, the message
is not preserved for the restart procedure. The user is responsible for ensuring that the checkpoint occurs at
a logical breaking point during task execution. Any restarted task with a tape attached is responsible for re­
establishing connection with the tape as well as repositioning, if desired .. _For a controllee with a message by­
pass pointing to a controller of higher level than the checkpointing task, the bypass is set by restart to point
to the checkpointing task.

Checkpoint/restart verifies that private, public, and scratch files open at checkpoint time still exist and occupy
the same file space.

CALLING SEQUENCE

CALL CHKPNT(filename,n,m,restart-flag,error-flag,ername)

filename

n, m

restart-flag

error-flag

ername

Name used for restart files. The filename must be left justified with blank fill. The
task level will be added as the last character to the filename (replacing the eighth
character if it is specified).

Available IOC numbers

Returned to user:

0 return was from checkpoint

-=/= 0 return was from restart

Returned to user:

0 no error

-=f- 0 error response

Filename returned by checkpoint/restart when an error occurs specific to a file; error
flag field indicates errors that cause ername to be set.

Subroutine CHKPNT uses the labeled common block CKPT for an input/output buffer.

60384400 D 11-1

Checkpoint error responses:

Unable to create checkpoint file because of duplicate name (see ername)

2 Input/output connector is already in use or IOC is invalid

3 System table space is not adequate for file creation or no mass storage is available for a file

4 Invalid filename (see ername)

5 System error; checkpoint failed

Restart error responses:

10 Full system tables inhibit initialization of controllee program

11 Five levels of controllee exceeded

13 Controllee program file was not found (see ername)

14 Insufficient time to run con trollee program (see ername)

15 System error; restart failed

17 Controllee program file is not executable (see ername)

18 Mass storage error (see ername)

19 Abnormality in controllee program file or drop file 1/0 connector entry (see ername)

CHECKPOINT FILES

Checkpoint files are copies of the drop files for the checkpointed task and its controllees. Each controllee
drop file is copied to a separate file, and the filename for the checkpointing controllee is the name provided
in the checkpoint call. The last character of the filename for the lower level controllees designates the task's
level relative to the checkpointing controllee. The checkpointing task file contains a list of controllees to be
restarted.

RESTART

The checkpointing task restart file is executed when an execute line is issued for the restart filename. When
the controllee or controllee chain (if lower level controllees exist for the checkpointing task) has been re­
initialized, the restart flag is set non-zero and control returns to the program that called checkpoint. A drop
file with no lower level controllees also may be restarted by issuing an execute line for the drop filename.
To restart either a checkpoint file or a drop file, the respective files for the task and its controllees must
have been preserved. Like drop files, checkpoint files (which have been restarted) are preserved upon abnor­
mal termination and may be preserved or destroyed at the option of the program upon normal termination.

11-2 60384400 c

EXAMPLE

Terminal

Task 1

1
Task 2

Task 3

Task 2 issues:

CALL CHKPNT (8HRESTART, 2, 3, IRSFL, IERR, IERN)

Two files would be generated:

RESTART, RESTARTl

Input/output connectors 2 and 3 would be used, then released by checkpoint

IRSFL 0 if return from checkpoint

1 if the file RESTART had been executed

60384400 c 11-3

STAR RECORD MANAGER 12

SRM OVERVIEW

The STAR Record Manager is designed to handle the logical input/output interface between the STAR Oper­
ating System and the language processor users.

STAR Record Manager (SRM) is a collection of modules implemented in META language. All of the modules
are callable as macros. Parameters for SRM macros designate a 64-bit register which contains the value to be

used in the macro expansion. SRM routine parameters contain actual values rather than value addresses. All
the SRM modules are part of the STAR system library; they are automatically loaded and linked to the user
program at the point of reference.

SRM FUNCTIONS

The five functional tasks performed by SRM are listed below together with the related SRM modules.

FILE DEFINITION AND MAINTENANCE FUNCTIONS

FILE,GENFIT

FILEX, GENFITX

GETFIT

SETFIT

CREATE

DESTROY

REDUCE

60384400 D

Generates file information table (FIT) for implicit input/output. FILE generates the
FIT at the place of macro reference; GENFIT generates the FIT at a specified
location.

Generates file information table (FIT) for explicit input/output. FILEX generates the
FIT at the place of macro reference; GENFITX generates the FIT at a specified
location.

Retrieves values of specified fields in the FIT.

Sets values in specified fields of the FIT.

Makes the file known to the system and connects it to the user program. Issues
CREA TE system message.

Issues system DESTROY FILE message to sever connection between the user program
and a tape drive or a mass storage file and releases the tape drive or mass storage
space for re-assignment.

Issues the system REDUCE FILE LENGTH message to reduce the length of an
existing private mass storage file. (This feature is not currently implemented.)

12-1

CHANGE Issues the system CHANGE FILE NAME OR ACCOUNT message to change the
name or account number of an existing private file.

FILE INITIALIZATION AND TERMINATION FUNCTIONS

OPEN

CLOSE

Connects the file to the user program; generates the OPEN FILE system message.

Disconnects the file from the user program; generates the CLOSE FILE system
message.

DATA TRANSFER AND STRUCTURING FUNCTIONS

BUFOP

READ

WRITE

GET

GETM

PUT

PUTM

GETL

GETML

PUTL

PUTML

GETBCD

PUTBCD

12-2

Defines or releases a buffer for explicit input/output.

Transfers data to buffer 1 or 2 from the file using explicit input/output. Issues the
system message EXPLICIT l/O.

Transfers data from buffer 1 or 2 to the file using explicit input/output. Issues the
system message EXPLICIT I/O.

Transfers data from next record to a specified user space.

Transfers more data from the same record to a specified user space.

Transfers data from a specified user space to the file as the next record or part of it.

Transfers more data from a specified user space to the file as part of the current
record.

Distributes data to areas specified in the parameter list from the next record of the
file.

Distributes data to areas specified in the parameter list from remainder of the current
record of the file.

Gathers data from areas specified in the parameter list to form the next record of
the file.

Gathers data from areas specified in the parameter list to extend the current record
of the file.

Transfers next record (must be ASCII) from the file to a specified user space.

Transfers a specified number of ASCII characters from user space to the file.

60384400 D

WEOR Writes end-of-record mark.

WEOS Writes end-of-section mark.

WEOI Writes end-of-information mark.

FILE POSITIONING FUNCTIONS

REWIND Positions the file to beginning-of-information.

SKIP Skips forward or backward specified number of records.

SKIPS Skips forward or backward specified number of sections.

BKSPC Backspaces one coded record.

MISCELLANEOUS SYSTEM INTERFACE FUNCTIONS

GIVE

TERM

STATUS

TPFCN

FILE INFORMATION TABLE

Gives the file to a specified user. Generates the system message GIVE
FILES.

Terminates program execution. Generates tlte system message TERMINATE.

Interrogates input/output completion status, gives up central processor if
su specified, and returns the system error response code. Generates 1he
system message GIVE UP CPU UNTIL I/O COMPLETES.

Performs miscellaneous tape functions.

To facilitate input/output processing, STAR Record Manager maintains certain information for each file in a file
information table (FIT), as shown in figure 12-1. A file is identified to SRM by the location of its FIT. Each
FIT requires 20 words and resides in the user's virtual space. The user is responsible for reserving virtual space
for the table. In FORTRAN, the DIMENSION or similar statement can be used; in META, the FIT can be
assembled in the data section established by the MSEC 1 statement.

SRM FUNCTION DESCRIPTIONS

In the descriptions which follow, SRM functions are described by a generic function name followed by a set of
parameters. For example:

CREATE fit,packid

where CREATE is the function name and fit and packid are parameters.

Paramete~ are described in terms of valttes. In a maem call, a parameter designates the register containing the
value; in a call to a routine, a parameter contains the actual value. Table 12-1 indicates the names by which
SRM functions can be called in various languages, the form of which differs from language to language.

60384400 D 12-3

12-4

Word O

0

2

3

4

5

6

7

8

9

10

11

12

13

19

8 16 24 32 40 48 56

LFN(Logical Filename in ASCII, Left Justified, Blank Filled)

FA (File Attributes)

IOC MCAT TYPE I LOK 1 ACS 1 MODE I CLAS I UNIT

BVA

FLEN (File Base Virtual Bit Address)

(File Length) FP

(File Position, Logical Mass Storage File Address)

FS (File Status)

FO LOP BORY I ocs I Unused I PTL
(Partial Transfer Length)

0 TPM
EEA

(Error Ex it Address)

Unused
EDX

(End-Of-Data Exit Address)

BUF1 (Buffer 1 Descriptor)

BLEN Unused BADO (Buffer Bit Address)

BUF2 (Buffer 2 Descriptor)

Cl (Current Index)

IL (Index Limit)

R L (Record Length)

SBC (Segment Byte Count)

EDP (End-Of-Data Pointer)
PRP (Preceding Record Pointer)

RTt opct ORB (Directory Buffer Address)

Reserved

System Message Area
(Alpha 1 to Beta 5)

tRT (Record Type) and DPC (Directory Page Count) are used internally by SRM only.

Figure 12-1. File Information Table (FIT)

63

60384400 D

TABLE 12-1. STAR RECORD MANAGER MODULE REFERENCE TABLE

Module Class
Generic name used Called from Called from Macro name

System message issued
in this document FORTRAN as META as in META

File definition FILE FILE
and maintenance FT LEX FIL EX

GEN FIT Q7GENFIT GENFIT- GENFIT
GENFITX Q7GNFITX GENFITX- GENFITX
GET FIT Q7GETF!T GETFIT- GETFIT
SETFIT Q7SETFIT SETFIT- SET FIT
CREATE Q7CREATE CREATE- CREATE CREATE FILE
DESTROY Q7DESTR DESTROY- DESTROY DESTROY FILE
REDUCE Q7REDUCE REDUCE- REDUCE REDUCE FILE

LENGTH
CHANGE Q7CHANGE CHANGE- CHANGE CHANGE FILE NAME

OR ACCOUNT

File initialization OPEN Q70PEN OPEN- OPEN OPEN FILE
and termination CLOSE Q7CLOSE CLOSE- CLOSE CLOSE FILE

Data transfer BUFOP I Q7BUFOP BUFOP- BUFOP

I
and structuring

I
READ i Q7READ READ-

I
READ

I
EXPLICIT I/O

WRITE I Q7WRITE WRITE- WRITE EXPLICIT I/0
I I GET I Q7GET GET- I GET I

GETM Q7GETM GETM- GETM
PUT Q7PUT PUT- PUT
PUTM Q7PUTM PUTM- PUTM
GETL Q7GETL GETL- GETL
GETML Q7GETML GETML~ GETML
PUTL Q7PUTL PUTL- PUTL
PUTML Q7PUTML PUTML- PUTML
GETBCD Q7GETBCD GETBCD- GETBCD
PUT BCD Q7PUTBCD PUTBCD- PUT BCD
WEOR Q7WEOR WEOR- WEOR
WEOS Q7WEOS WEOS- WEOS
WEOI Q7WEOI WEOI- WEOI

File Positioning REWIND Q7REWIND REWIND- REWIND
SKIP Q7SKIP SKIP- SKIP
SKIPS Q7SKIPS SKIPS- SKIPS
BKSPC Q7BKSPC BKSPC- BKSPC

Miscellaneous GIVE Q7GIVE GIVE- GIVE GIVE FILES
TERM Q7TERM TERM- TERM TERMINATE
STATUS Q7STATUS STATUS- STATUS GIVE UP CPU

UNTIL I/O
COMPLETES

TPFCN Q7TPFCN TPFCN- TPFCN

60384400 D 12-5 •

To call the CREATE function in FORTRAN:

CALL Q7CREATE(FIT ,P ACKID)

The same function call, restated in MET A, would be:

CREATE FIT,PACKID *MACRO FORM

Programmers who wish to use META but not the SRM macros can follow the convention with regard to registers
and parameters:

Register FF First parameter

Register FE Second parameter

etc. Nth parameter

Therefore, the META user might have written:

RTOR FIT ,REG FF

RTOR PACKID,REGFE

RTOR CREATE_DB,REGIE

BSA VE CREATE ,REG 1 A

*PARAMETER 1

*PARAMETER 2

*ESTABLISH DAT A BASE

*CALL SUBROUTINE CREATE

Fl LE DEFINITION AND MAINTENANCE

FILE and FILEX are available only as macros and are used for assembling· the FIT in a MET A data section at
the place of macro reference. GENFIT and GENFITX are used to generate the FIT at some specified location.
GETFIT and SETFIT are used for retrieving and setting values of specified FIT fields.

FILE MACRO

The FILE macro is referenced in a META data section where the FIT is to be assembled; it is initialized
according to specified parameters and is to be used for implicit input/output processing. None of the FILE
parameters are register designators.

Macro Format:

12-6

FILE lfn,len,bva,fa,eea,fo

lfn Logical file name, up to eight characters, starting with a letter

fa File attributes, a set name for eight elements specifying the value for fields in the BETA(2)
word of the CREATE FILE message. The fields are: IOC, MCAT, TYPE, LOK, ACS, MODE,
CLAS, and UNIT. In this optional parameter, the user may specify all or only some of the
fields by using null elements in the SET definition to indicate default values as follows:

IOC=n Number of FIT generation macro references preceding this one in the
same routine. An assembly error is forced if n is 16 or greater.

60384400 D

MCAT=O Mass storage private file

TYPE=O Physical data file.

LOK=O No lockout protection

ACS=3 Read/write access

MODE=l Open for implicit inputioutput

CLAS=O Use security access code of this message caller

UNIT=O

eea Optional address expression representing error exit virtual address. Default value is 0 and a fatal error.

len Optional parameter representing length of file in small pages. Default value is 40.

bva Base virtual address for mapping in the file. The parameter is optional and the default hex­
adecimal address is #iOOOOOOOO+n*(#lOOOOOOO) where n is the number of FIT generation
macro references preceding this one in the same routine.

fo File organization.

FILEX MACRO

0 SRM-structured sequential (SS)

ASCII only

This parameter is optional; default value is 0. These two types of file organization are
described in Appendix C of this manual.

This macro is referenced in a META data section where the FIT is to be assembed; it is initialized according
to the specified parameters and is to be used for explicit input/output processing. None of the FILEX param­
eters are register designators.

Except for those described below, parameters are the same as those for FILE macro.

FILEX lfn,len,bfl,bfa,fa,eea,fo,drb,tpm

bfl

bfa

drb

60384400 D

Optional parameter designating buffer length in number of small pages. Default value is 1.

Optional, indicates starting buffer virtual page address. The default hexadecimal address is
#1 OOOOOOOO+n *(#10000000) where n is the number of FIT generation macro (GENFITX)
references preceding this one in the same routine.

Optional parameter designating virtual bit address for directory buffer. The buffer size is
preset to one page. The default bit address is determined to be the next page following the
data buffer for the file.

12-7

I

I

tpm Optional parameter designating tape mode:

0 BCD (7-track tape)

Binary (7- or 9-track tape)

2 Binary ASCII (7-track tape)

4 Mass storage file

GENFIT MODULE

GENFIT initializes the FIT for implicit input/output.

GENFIT fitJen,bva,fa,eea,fo

The fit parameter is required; all others are optional.

fit Virtual address of the FIT for the file. The first word of the FIT contains the file name, left­
justified with blank fill.

The optional parameters len, bva, fa, eea and fo are the values described under the FILE macro. However,
partial default of the file attributes (fa) parameter is not possible in this case.

GENFITX MODULE

GENFITX initializes the FIT for explicit input/output.

GENFITX fitJen,bufd,fa,eea,fo,drb,tpm

The parameter fit is required; all others are optional.

fit Virtual address of the FIT for the file

bufd Buffer descriptor word in the following format:

0 8 16 63

blen al (unused) al badd
481

blen Length of virtual range, in small pages, of this buffer

badd Starting virtual address of buff er where data transfer requests will
deposit or obtain information

12-8 60384400 D

drb Virtual address for directory buffer. Buffer size is fixed at one page. Default address
is determined as the next page following the data buffer for the file.

tpm Optional parameter designating tape mode:

0 BCD (7-track tape)

Binary (7- or 9-track tape)

2 Binary ASCII (7-track tape)

4 Mass storage file

GETFIT MODULE

GETFIT is used to access the FIT and retrieve specified fields. Refer to the diagram of the FIT. The keywords
available for use by both GETFIT and SETFIT are listed below. These keywords are used in the parameter
list to designate the FIT fields to be accessed; GETFIT retrieves a designated field; SETFIT sets a value in the
designated field.

Keyword Description

LFN Logical file name is ASCH

FA File attributes (refers to entire word 1 containing the 8 keyword fields following)

IOC Input/output connector number 0 to 15

MCAT Management category for this file

TYPE Type of. device or file

LOK Lockout protection

ACS File access

MODE Mode in which file is to be used

CLAS Security access code

UNIT Logical unit on which this file resides

FO File organization

LOP Last operation

BDRY Boundary condition

ocs Open/close

PTL Partial transfer length (for GETFIT only)

60384400 D 12-9

TPM

EEA

EDP

EDX

BUFI

BUF2

DRB

Macro Format:

Tape mode

Error exit address

End-of-data pointer (for GETFIT only)

End-of-data exit address

Buffer I descriptor word (refers to en tire word 6 containing the 2 keyword fields
following)

Buffer 2 descriptor word

Directory buffer address

GETFIT fit,keyword,reg

fit

keyword

reg

Routine Format:

Register containing the virtual address of the FIT for the file

The keyword which specifies the FIT field to be retrieved (refer to FIT keyword
list)

Specifies the register to receive the FIT field value. The value will be deposited in the
register right justified with zero fill.

GETFIT fit,keyword,loc

fit Virtual address of the FIT for the file

keyword Keyword (see list) in ASCII, left justified with blank fill

loc Virtual address to receive FIT field, right justified with zero fill

SETFIT MODULE

SETFIT sets the specified FIT to the value given· in the keyword parameter.

Macro Format:

SETFIT fit,keyword,reg

fit Register containing virtual address of FIT for the file

keyword Keyword (see list) specifying the FIT field to receive the value

12-10 60384400 D

reg

Routine Format:

Register containing keyword value right justified. Value is set in FIT field designated by
keyword parameter.

SETFIT fit,keyword,loc

fit

keyword

loc

CREATE MODULE

Virtual address of FIT for the file

Keyword (see list) in ASCII, left justified with blank fill

Virtual address of the new value for the specified FIT field. Value is right justified in
the virtual space with zero fill.

This module issues the CREATE FILE message to the STAR operating system. CREATE may be called as a
routine.

CREATE fit,packid

fit

packid

DESTROY MODULE

In the macro call, this parameter designates the register containing the virtual address of
the FIT; in the routine call, the parameter contains the actual FIT virtual address. Only
fit is required; packid is optional.

In the macro, register designation containg six-character pack identifier where the file is
to be created. In the routine, this parameter contains the actual value. The default value
is zero, in which case, the system creates the file on a system pack having space available.

This module issues the system message DESTROY FILE to sever the connection between a user's program and
a tape drive or mass storage device. The action releases the tape unit or mass storage space for reassignment.

DESTROY fit

fit Virtual address of FIT for the file

REDUCE MODULE

This module issues the system message REDUCE FILE LENGTH to reduce the length of an existing private mass
storage file. A file can be reduced in length only if it is not active (open) for any program in the system. Re­
duction occurs at the largest absolute end of the file.

REDUCE fitJength

fit Virtual address of FIT for the file

60384400 D 12-11

I

length

CHANGE MODULE

New file length in number of words. STAR OS rounds length upward to the nearest
200 words.

This module issues the system message CHANGE FILENAME OR ACCOUNT to change the name or account
number of an existing private file.

CHANGE fit,new ,c

fit

new

c

Virtual address of the FIT for the file

For the macro call, parameter designates register which contains the new file name in
ASCII, left-justified with blank fill. For the account number, it contains the new
account number in ASCII, right-justified. In the routine call, the parameter contains
the actual value.

Register contents or actual value must be zero to change the file name or 1 to change
the account number. The parameter is optional and the default value is zero.

FILE INITIALIZATION AND TERMINATION

This category contains only the OPEN and CLOSE modules.

OPEN

OPEN issues the system message OPEN FILE, which connects the user to a pre-existing mass storage file for
either explicit or implicit input/output functions.

OPEN fit,change

fit

change

CLOSE

Virtual address of FIT for the file

Optional parameter. If the value is zero or the parameter is omitted, the file is to
be opened as specified in the MODE field in word 1 of the FIT and the system file
index type remains unchanged. If the value is non-zero, the file is to be opened as
specified in the MODE field of the FIT and the system file index type is to be
changed as that specified in the TYPE field of word 1 of the FIT.

CLOSE issues the system message CLOSE FILE which severs the connection between the user program and
the file. Virtual space associated with a file is no longer defined when the file is closed.

12-12 60384400 D

CLOSE fit,change

fit Virtual address of FIT for the file

change Optional parameter. If the value is zero or the parameter is omitted, no change is made
in the system file index table. If the parameter value is non-zero, changes are made using
the contents of the FIT. The parameter is used to signal that changes are (:i= 0) or are
not (0) to be made to the file attributes (keyword FA) :rnrl b~se virtual address (key­
word BV A) in the FIT when the file is closed.

DATA TRANSFER AND STRUCTURING

Five specific type of functions are provided by SRM through this group of modules.

Explicit input and output processing and user buffer definitions are accomplished by BUFOP, READ and WRITE.

Whole or partial sequential binary records can be read or written by specifying one user data area with GET,
GETM, PUT, and PUTM. In initial implementation version of SRM, GET and PUT use implicit I/O.

Scatter/gather reading and writing of whole or partial binary records, by specifying a list of data block descrip­
tors, is done by GETL, GETML, PUTL and PUTML.

ASCII records are transferred between the user's buffer and file by GETBCD and PUTBCD.

File demarcations are written by WEOR, WEOS, and WEOI.

BU FOP

BUFOP is used to open or close a buff er for a specified file.

BUFOP fit,bufopcode

fit

bufopcode

60384400 D

Virtual address of FIT for the file for which a buffer is to be opened or closed

Specifies one of the values:

2

3

4

Open buffer 1

Close buffer 1

Open buffer 2

Close buffer 2

12-13

I

READ

READ issues the system message EXPLICIT I/O and transfers data from file to user buffer.

Call Format:

READ fit,bufno,cpu

fit

bufno

cpu

WRITE

Virtual address of FIT for the file to be read

Number of buffer. to be opened, 1 or 2

Optional

0 Do not give up central processor; return control immediately, this is the
default value.

Give up central processor until this request is complete.

WRITE issues the system message EXPLICIT I/O and transfers data from the user buffer to the file. The
designated buffer must be open before WRITE may be used.

Call Format:

WRITE fit,bufno,cpu

fit

bufno

cpu

GET

Virtual address of FIT for file to be written

Number of buffer to be opened, 1 or 2

Optional

0 Do not give up central processor return control immediately. This is the
default value.

Give up central processor until this request is complete.

This module transfers all or part of the following record from the file to the user's virtual space. If the file
is positioned in the middle of a record, SRM skips forward to the next record boundary before the data
transfer.

12-14 60384400 c

GET fit,bc,da,edx

fit

be

da

edx

Virtual address of the FIT for the file to be processed

Byte count of data to be transferred

Data area; first virtual bit address of user area to receive data

Exit virtual address to receive control when end-of-data condition occurs before the
requested number of characters have been transferred. The condition may be end of
record, end of section, or end of information.

Upon return from the GET routine, the file position is advanced by be characters or to a file boundary, which­
ever occurs first. If the file is positioned in the middle of a record after a GET call, one or more GETM calls
may be used to read more data from the same record; SKIP may be called to skip to a record boundary.

GETM

One or more GETM calls may be used to read data from the same record partially read by a GET or GETL
call.

GETM fit,bc,da

The parameters have the same meanings as for the GET routine. If an end-of-data condition occurs before com­
pletion of the data transfer, control is returned to edx address specified in the previous GET or GETL call.

PUT

PUT writes all or part of the next record on the file from a specified user data area.

PUT fit,bc,da,rl

fit

be

da

rl

60384400 D

Virtual address of FIT for the file to be processed

Byte count of the amount of data to be transferred

Data area designated as the first virtual bit address of the user area holding the data
to be transferred.

Total number of bytes which are to form the next record. The value must be zero or
it must be greater than or equal to the value given for be.

12-15

If rl is zero, SRM automatically computes the record length when the WEOR routine is called. If rl is equal
to the value for be, the current call to PUT results in a complete record; subsequent calls to PUTM would not
be permitted to write more data to the same record. A WEOR call, however, is always needed to terminate a
record. If rl exceeds be, the current call to PUT writes only part of a record; and the remainder of the record
should be completed by subsequent PUTM calls. The value for rl then, sould reflect the total number of bytes
written by PUT and subsequent PUTM calls that form the entire record.

PUTM

One or more calls to PUTM are used to complete the writing of a record partially written by a PUT or PUTL
call.

PUTM fit,bc,da

The parameters have the same meaning as for the PUT call. If rl is non-zero in the preceding PUT or PUTL
call, the number of bytes to be written by this PUTM call may not exceed the record size as defined by that
rl value.

GETL

This module transfers all or part of the next succeeding record in the file to the user's virtual space. If the
file is positioned in the middle of a record when GETL is called, SRM skips forward to the next record
boundary before beginning the data transfer.

GETL fit,pl,edx

fit

pl

edx

Virtual address of the FIT for the file to be processed

Virtual address of the parameter list descriptor word

Exit address to receive control when an end-of-data condition occurs before the requested
number of data blocks has been transferred.

This routine differs from GET in that a parameter list descriptor word is passed to the routine. The descriptor
word points to the actual list of data descriptors and indicates the size of the list, permitting multiple data
blocks to be transferred into separate and scattered areas of the user's virtual space.

The parameter list descriptor word at address pl has the format:

0 16 63

pie pip

12-16 60384400 D

pk Number of data descriptors in the parameter list

plp Address of first word in parameter list

Each data descriptor defines the location and size of the data area. Thus GETL will input a stream of data
from the file and scatter or distrubute the data to separate data areas in the user's virtual space. The format
of each data descriptor word is:

0 16 63

be da

be Number of sequential bytes to be transferred from the file to the designated data area

da Virtual address of the data area to receive the data

The function of the parameter list descriptor word and the data descriptor list is illustrated in the following
diagram:

pl -+1 pie pip

1

GETML

n be

be

more data

deseri ptors

da

da

One or more calls to GETML are used to read more data from a record partially read by a GET or GETL
call.

GETML fit,pl

pie

words

60384400 D 12-17

fit

pl

Virtual address of FIT for file to be processed

Virtual address of parameter list descriptor word. The format of pl and the parameter
list is the same as for GETL.

If an end-of-data condition occurs before all requested data blocks have been transferred, control returns to
the end-of-data exit virtual address specified for the edx parameter in the preceding GET or GETL call.

PUTL

PUTL is called to write all or part of a next record from the specified user data areas. PUT can write only
from one data area; PUTL, however, can gather data from a number of separate data areas to write the record.

PUTL fit,pl,rl

fit

pl

rl

PUTML

Virtual address of the FIT for the file to be processed

Virtual address of the parameter list descriptor word. The format of pl and the
parameter list is the same as for G ETL.

Record length expressed as number of bytes. The value is the sum of all be fields in
the list of data descriptors referred to by the pl parameter list pointer.

One or more calls to PUTML are used to write more data to a record partially written by a PUT or PUTL
call.

PUTML fit,pl

fit

pl

Virtual address of the FIT for the -file to be written

Virtual address of the parameter list descriptor word. The format of pl and the
data descriptors forming the parameter list are the same as for GETL.

If a non-zero record length specified rl in a preceding PUT or PUTL call, the total number of bytes to be
written on the record may not exceed rl.

GETBCD

The records processed by GETBCD and PUTBCD must be in ASCII code. GETBCD transfers the next ASCII
record from the file to the user buffer.

12-18 60384400 D

GETBCD fit,da,cc

fit

da

cc

Virtual address of the FIT for the file to be processed

Virtual address of user buffer to receive record

Maximum number of characters to be transferred. This parameter is optional and has a
default value of 151.

Operating within the limit set by cc, SRM transfers characters from the current file position up to and includ­
ing the end-of-record marker (US, unit separator). SRM transfers control to the user's end-of-data exit address
(edx) if the first character to be transferred is one of the following: FS (#IC); GS (#ID); RS (#IE).

PUT BCD

This module transfers ASCII characters.

PUTBCD fit,da,cc

fit

da

cc

Virtual address of the FIT for the file to be processed

Virtual address of user buff er area holding ASCII character string to be transferred

Number of characters to be transferred. SRM does not append ASCII control characters
to the character string.

The following functions operate on the files whose addresses are specified by the fit parameter:

WEOR fit

WEOS fit

WEOI fit

Writes an end-of-record control word. It also computes and records the record length
for the file if it was not previously specified.

Writes an end-of-section control word.

Writes an end-of-information control word.

The WEOR, WEOS, and WEOI routines are not applicable to ASCII files.

60384400 D 12-19

FILE POSITIONING

ST AR Record Manager allows file positioning without doing any data transfer. Using REWIND, SKIP and
SKIPS, the user can position a file to the beginning-of-information or skip forward or backward a specified
number or records or sections.

REWIND

REWIND positions a tape file at the beginning of the current volume, or it positions a mass storage file at
the beginning of information. If the last operation on the file is a write other than WEOI, an end of information
is automatically recorded on the file before the rewind operation takes place.

REWIND fit

fit Virtual address of FIT for the file to be processed

SKIP

SKIP positions a file to a record boundary by skipping forward or backward a specified number of full records.

Call Format:

SKIP fit,rc

fit

re

Virtual address of FIT for file to be processed

Record count indicating the number of full records to be skipped. Value may be
positive, negative, or zero.

When re is zero, the file is skipped to the next end-of-record control word if the file is positioned in the
middle of a record when the call is made. No action is taken if the file is already positioned at a record
boundary.

When re is a positive non-zero value, the file is skipped forward re full records. If the file is positioned at
some point within a record when the call is made, the file is moved to the next end-of-record control word
and then skipped forward re records.

When re is a negative value, the file is skipped backward. If the file is positioned within a record when the
call is made, the file is moved backward until an end-of-control word is encountered, counting 1 for this
action. If the file is at a record boundary, the file is skipped backward the number of full records .specified
by the negative re.

The following examples illustrate skipping action for three values of re when a file is positioned within a
record. @ is current postion; ® is final position.

12-20 60384400 D

File is positioned within record 3 and SKIP call specifies rc=O:

SKIP call specifies RC=l:

. ~forward-

BAec#1 EHec#2 E~ec #3 EAec#4 EAec#5 E
0 0 0 0 0 0
I R R@R R I

®
SKIP call specifies RC= -1:

SKIPS

SKIPS positions a file to a section boundary by skipping forward or backward a specified number of full
sections.

SKIP fit,sc

fit

SC

Virtual address of FIT for file to processed

Section count indicating number of sections to be skipped. Value may be positive,
negative or zero.

When sc is zero, the file is skipped to the next end-of-section control word when the current position of the
file is not at end of section. No action is taken if the file is already positioned at a section boundary.

When sc is a positive non-zero value, the file is skipped forward sc full sections. If the file is positioned at
some point within a record when the call is made, the file is moved forward to the next end-of-section control
word and then skipped forward sc sections.

60384400 D 12-21

I

When sc is a negative value, the file is skipped backward. If the file is positioned somewhere within the record
when the call is made, the file is moved backward to the first end-of-section control word encountered, count­
ing 1 for this action. If the file is at a section boundary, the file is skipped backward the number of full
sections specified by the negative sc.

When the file is positioned within a record, SKIPS action is the same as illustrated under the SKIP call.

BKSPC

BKSPC backspaces one logical record of an ASCII file.

BKSPC fit

fit Virtual address of the FIT for the file to be processed

If the file is positioned at beginning of information or at beginning of tape volume, SRM takes the end-of­
data exit (edx) as specified in the FIT. If the file is positioned at the first character of a logical record, the
file is skipped backward and positioned at the first character of the preceding logical record.

If the file is positioned somewhere other than the first character of a logical record, it is skipped backward to
the first character of the same logical record where the file was initially positioned.

Each of the following ASCII characters is considered as a logical record in itself: FS (#1 C);
RS (#1 E)

MISCELLANEOUS SYSTEM INTERFACE

GIVE

GS (#JD);

GIVE presents a file to another user. The system message GIVE FILES is issued when the macro expansion
code is executed.

GIVE fit,un

fit

un

TERM

Virtual address of the FIT for the file

ASCII number of user to receive the file. This parameter is optional with a default
value of 999999.

TERM terminates program execution. The STAR system message TERMINATE is issued when the module is
executed.

12-22 60384400 D

TERM msg,rest,c,rc

msg

rest

c

re

Virtual address of a two-word space reserved for storing the Alpha words of the
TERMINATE message. This parameter is required.

Virtual address at which the program is to be resumed when it is restarted

Drop file disposition codes to be used when the program is removed from main
memory. Drop file codes appear in section 5.

Return code. Required parameter containing an integer value less than 256 to be
passed back to the program controller.

The rest and c parameters are optional and needed only if the program is to be restarted. If rest is specified
without the c parameter, the default value for c is zero, meaning that the drop file will be reserved so that
the program may be restarted.

STATUS

STATUS is called to perform several functions as specified by the parameters in the call as follows:

Retrieves the system error response code for the last system message issued.

Issues the system message GIVE UP CPU UNTIL I/O COMPLETES.

Checks the system busy bit and returns the status after waiting for 1/0 completion.

STATUS fit,loc,cpu

fit

loc

I

[

cpu

60384400 D

Virtual address of FIT for the file. If only the fit parameter is given in the call, SRM
issues the system message GIVE UP CPU UNTIL I/O COMPLETES.

Virtual address of word to which the system busy bit and error code is to be returned.
This word has the format:

cen tra I sys. peripheral response
unused sys. error code error code

8 code

i busy b t

15 24 16

Optional parameter may have the following values:

0 Give up central processor until all input/output is completed. This is the
default value.

2

Give up the central processor until the input/output specified in FIT is
complete. If input/output is in progress, issue A GIVE UP call.

Don't give up CPU but return controi immediately .

12-23

I

TPFCN

TPFCN performs explicit tape functions provided by the file system.

12-24

TPFCN fit,op,fadd

fit

op

fadd

Virtual address of the FIT table for the file.

Keyword in ASCII, left justified with blank fill, indicating tape function to be performed.
Keywords for this parameter are listed below.

Optional parameter, meaningful only for certain keywords given for the OP parameter.
The values related to the keywords and the default values as shown below.

OP Keywords Value Meaning for F ADD Default Value for FADD

REWIND (N/A)

UNLOAD (N/A)

WEOF (N/A)

SKIPR Number of records to skip 1

REOF (N/A)

BKSPR Number of records to backspace 1

BK SPF Number of files to backspace 1

DENSITY 0 = 200BPI
1 = 556BPI
2 = 800BPI
3 = 1600BPI

SEEK (N/A)

ERASE Number of erasures

STATUS To receive status upon return

60384400 D

0\
0 w
00
..j:::..
..j:::..
0
0

0

AMERICAN NATIONAL STANDARD CODE FOR INFORMATION INTERCHANGE (ASCII) WITH PUNCHED CARD CODES AND EBCDIC TRANSLATION

0 0 0 I)

0 0 () 1

Q rJ 1 II

0 0 1

0 1 0 ,,

0 1 0 1

Q 1 1 I)

() 1 1 I

1 () 0 11

1 0 ()

1 () 1 II

1 0 1

1 1 0 ll

1 1 0 I

1 1 1 I)

1 1 1

LEGEND

bs
b1
b5
b5

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1

0

1

1
0

0

0
1

0
1

I
0

0
1

1
0

1

1

0

0
1

1

1
1

0
0

-Col 0 >11-' >--+---_, 0 0 0
10
IAI

11
IBI

12
ICI ROIJ!

1q
l/\J

11
IBI

1J.
ICI

1:.l
IDI

14
1U

1'3
lfJ

NUL DLE SP O p p
12-0 9 8--1
NUI 00

12--11 ~9 -8 -1 no-punch Q 11 - I 8 1 12 11 - 7 11 --0 -9 -8 - 1 12-11-0-9--8-1i12-0-9-1 : 12-11
DLE 10 SP 40 0 P DI 79 p 91 DS 20 30 l- _____ 41+ -

SOH DCl 1
12-9 1 11 9 1 12-8-7 1

E~~, :~11;~, :: :, :: ;, ::
ETX DC3

~:~; 3
031' ~;;9 - 3 13 B-

3
7B / FJ

EOT DC4 S 4

~a7r ~ntt_ JC ~ l - 8 -~B / F4

3D

ENO I NAK
0 -9 -8 s 9-8--5

:~~ 21? I~:~
0 9 -8 Ii : 9-2

!>
4 5

6C ~

(;

6

A
12-1
A Cl

13
12 -2
B C2

c
12 3
C CJ

[)

12 -4
D C4

12-6
ACK 2E . SYN

&
12

32 & 50 G F6 F CG

0 q
11-8 12-0 I 12-11-8
0 D8 a Bl q 98

R iJ
11 -9 12 -0--2
R D9 b 82

s
0-2
S E2

12 -0-3
83

12

' 11-0-2
A2

T cl I
0-3
T E3

u
0-4

12-0-4 11-0-3
d 81 + t A3

U E4 "

v
0-5
V E5

0--9-1
sos· 21

9-1 31 112-0--9-~2 ! 11 8-1
1:)9

12- 11-0--9 -7
77

11--9 Cl-2 11-0-9--2 12 11-0-9-8
22 CC lA 62 18 +-----------+---

0-9-3 9-3 11 -0 -9--3 12~0-8-1

23 33 , ____________ _, G3 80-+--------1----------------+--------

0--9- 4 9 -4
BYP 24 PN

9-5
15 HS

9-6
06 UC

12-0--9-5 I 11 0-9 4 12--0·8-2
34 45 G4 8A

1 2-0 -9 -G 11 -0 -9--5 12--0--B--3
35 46 G5 88

12--0-8-4
SC

BEL -:-ETB-
0-9 -8 - 7 : 0 -9 6 8-5

I
I

7D I

(j

12 -7 ~-G f 2-0- 7 I 12-9 l
W E6 g 87 lw 17 <iE

12-0 --8-5
BEL 2--"._ j~1:..1:l____ 2_6
BS ' CAN I
11-9-fj 11-9-8 12 -8-5
BS 16,CAN 18 I 4D

8
8

Fl G C7

H
12 8

F8 H CS

~-7 ~ 2-0-~-l --0--7--+-0--9---8--+9---8-

x E 7 h _ B_8 ~ x A 7 28

HT
\ 1 8--5 C) 9

1
12 9 ~ -8 '12 -0--9 ! j 1--0-8 0--9-8-1 9 -8- J

08

38

12-9-0
HT

EM
11--9-8-1

05 EM

19 :1 8 :D : 2 F9 ;le: i9E8 :12-11~:1· ~1-0-:8
29 39

Lt I SUB
0-9 -~
LI-

' 9-8- 7
25 I ::iUB 3F 5C IA J Ill Z E9 J 91 / A9

VT · ESC

1:' -9 8 J - !' 0--9- I 12 -8-6 11
K I k .I

11-2 12 8-'.' 12 11-2 ;12--0
VT OB ESC 27 1 4E

FF ! FS
12-9--8-4 i 11-9-8 -4 0-8 3

GB
12-8 4
<. 4C

K D2 it 41\ k 92 1

l -,

11 -3
L D3 FF OC I IFS lC

CR GS

h1-9 -8-50D :ds9 8-5 1 D 11
bO

M
8 -G 11-4

7E MD4
\ 1 8-2 12-11--4 '.11 0
I 5A 11\ 94 I DO

SO RS
1 :?-~J-8- (j [11-9-8 .(j 12-8-3

4B
0 -8-G
> GE

~1-51 ~1·8·7
1

~2--11--5
SI US I
SO OE I IRS 1 E ~ D5 I, 5F ~ 95

~f 9
s

1
oF 1

1Gs9
-s 1 F ? 1 0--8-7

iil ' GF
11 -G 0-8--5 12-11--G
OD6 GD 96

ASCII Character

Cilrd Code

"--.._ ___ ...,v /

l±i
!~

64-Character
ASCII Subset

96-Character
ASCII Subset

11-0--1
Al

DEL
12-9-7
DEL 07

0--9-8-2 9-8-:
SM 2A

0--9-8-3
CU2 2B

12-9 4
2C PF

12-9-8-1 11-9 4
HLF 09 RES

12-9--8-7 9-8-~
SMM QA

1 "1--9-8-3 11-0 9 1
CU1 1B

12--11 -9-2
~A 52

I 12--11-9-3
3B 53

12-11 9-4
Oil 5'1

14

:JE

12- 11-9-7
El 57

12 -11-0
10

12-11--0-9 -1
71

12 11 -0--9--2
72

-0--9 -3
73

80

12--0-8--6
BE

12--0-8-7
BF

12-11-8-1 I 12-11
90 I

t --

12-11--8-2 I 12-11 0--3 -------~!\+ ___ B3_+--------------t------- -----j

I

12-11--8-39B i 12 11 0--4B4

---~-----------+---------t--------+--·--------

12-11

El)CDIC

Cherac"'r

EBCDIC

Cud<'

(Hexadecimal)

("\
~
)>

'°)>
("\
--t
m

'°
~
m
--t

HEXADECIMAL-OCTAL CONVERSION TABLE

~
First Hexadecimal Digit (Leftmost of a 2-digit number)

0 1 2 3 4 5 6 7 8 9 A B c D E F

Second 0 000 020 040 060 100 120 140 160 200 220 240 260 300 320 340 360
Hexadecimal

Digit
(Right- 1 001 021 041 061 101 121 141 161 201 221 241 261 301 321 341 361
most
of a

2-digit 2 002 022 042 062 102 122 142 162 202 222 242 262 302 322 342 362

number)

3 003 023 043 063 103 123 143 163 203 223 243 263 303 323 343 363

4 004 024 044 064 104 124 144 164 204 224 244 264 304 324 344 364

5 005 025 045 065 105 125 145 165 205 225 245 265 305 325 345 365

6 006 026 046 066 106 126 146 166 206 226 246 266 306 326 346 366

7 007 027 047 067 107 127 147 167 207 227 247 267 307 327 347 367

8 010 030 050 070 110 130 150 170 210 230 250 270 310 330 350 370

9 011 031 051 071 111 131 151 171 211 231 251 271 311 331 351 371

A 012 032 052 072 112 132 152 172 212 232 252 272 312 332 352 372

B 013 033 053 073 113 133 153 173 213 233 253 273 313 333 353 373

c 014 034 054 074 114 134 154 174 214 234 254 274 314 334 354 374

D 015 035 055 075 115 135 155 175 215 235 255 275 315 335 355 375

E 016 036 056 076 116 136 156 176 216 236 256 276 316 336 356 376

F 017 037 057 077 117 137 157 177 217 237 257 277 317 337 357 377

Octal 000 - 040 - 100 - 140 - 200 - 240 - 300- 340 -

037 077 137 177 237 277 337 377

A-2 60384400 c

ST AR INSTRUCTION SET (MACHINE LANGUAGE)

The computer system uses two basic sizes of instruction words and operands: 32-bit and 64-bit words. In
instruction words, the type of instruction specifies the length of the word. For most instructions that use
operands, the programmer may select either 32-bit or 64-bit operands by setting or clearing a control bit in
the corresponding instruction word. In either case, the bits in the operands or instruction words are num­
bered 0-31/63 from left to right as shown in the following diagrams.

B

Operands contain the least significant bits in the higher order bit positions. For example, a two's complement,
3 2-bit operand would contain the least significant bit in bit 31 in the figure.

0 1 31

111 11

0 1 63

I ! ! 11

Basic Instruction Word and Operand Bit Numbering

When designated portions of instruction words are undefined, the bits must be cleared (0) or the instruction
will produce unpredictable results. Portions of instruction words or register contents not used are so indicated;
they need not be cleared.

In the instruction descriptions, all references to a register refer to one of the 256 registers in the register file.
These registers can contain operands, address modifiers, short program loops, etc. as described in appendix E,
Register Conventions.

60384400 c B-1

0 8

F R

INSTRUCTION WORD FORMATS

16 24

S unde:ine;1 T

(must ~e 0 s)

31

Instruction formats are divided into 12 categories. A particular format type is usually common to a group (or
groups) of instructions.

FORMAT TYPES

Each format type is divided into the corresponding instruction designator portions. Most instruction formats
are divided into 8-bit, designator portions which correspond to the 8-bit, character length of the computer.
The format types shown below are numbered in hexadecimal.

INSTRUCTION DESIGNATORS

Following the illustrations of format types, a table lists the designators in alphabetic order. General definitions
are given for the designator; definitions of corresponding designators may vary slightly with individual instruc­
tions. If the C + 1 designator is used in an instruction, the C-designator must specify an even numbered
register. If the C-designator specifies an odd-numbered register, the results of the instruction become undefined.

Format 6 Used for 3E, 3F, 40, and 4E index instructions and 2A register instruction.

0 8 16 31

F R I

(function) (destination) (16 bits)

B-2 60384400 A

Format 1 Used for vector, vector macro, and some non-typical instructions.

0 8 16 24 32 40 48 56 63

F G x A y B z c

(function)
(sub- (offset (length & (offset (length & (Control' (length &

function) for A) base address) for B) base address) Vector base address)

base address) 1 C + 1
I (offset for

Format 2 Used for sparse vector and some non-typical instructions.

0 8 16 24 32 40 48 56 63

F G x A y B z c

Hunction)
(sub- (Order (base (Order (base (Order (result.

functionl Vector address) Vector address) Vector length &

length & length & base address)

base address)

length &
base address) base address)

Format 3 Used for logical string and string instructions.

0 8 16 24 32 40 48 56 63
F

I
G x A y l (len!th & I z c

(functioni
(sub- (index (length & (index (index (length &

function) for A) base address) for B) I base address) J for C) base address)

Format 4 Used for some register, all monitor, 3D, and 04 non-typical instructions.

0 8 16 24 31

F R s T

(function) (source 1) (source 2) (destination)

Format 5 Used for BE, BF, CD,and CE index instructions and for the B6 branch instruction.

0 8 16 63

F R I

(function) (destination) (48 bits)

Format 6 Used for 3E, 3F, 40, and 4E index instructions and 2A register instruction.

0 8 16 31

F R I

(function) (destination) (16 bits)

60384400 c B-3

Format 7 Used for some branch and non-typical instructions.

0 8 16 24 31

F R s T •
(function)

[described where used]

Format 8 Used for some branch instructions.

0 8 16 24 31

F R s T

(function) (register) (register) (base address)

Format 9 Used for 32-branch instruction.

0 8 16 24 31

F G s T

(function) designator
(bit test

address)

B-4 60384400 A

Format A Used for some index, branch, and register instructions.

0 8 16 24 31

F R undefined T

(function) (old state)
(must be (new state)

0
1
s)

Format B Used for 33-branch instruction.

undefined (must be 0
1
s)

0 8 16 18 24 31

F G I T

(function) designator
(base

addressl

Format C Used for BO through BS-branch instructions.

0

F

(function)

60384400 A

G designator
~
8 12 14 16

'--v-"'-v-'
I I

24

x A

(register) (register)

L L branch control bits

undefined

(must be 0
1
s)

32 40 48 56 63

y B z c
(index) (base address) (register) (register)

B-5

Desig-
nator

A

B

c

c + l

d

e

F

G

B-6

Format
Type

1 & 3

2

c

1 & 3

2

c

1, 2, & 3

c

9&B

9&B

1 - c

1, 2, 3, 9
B&C

Table B-1. Instruction Designators

Definition

Specifies a register that contains:

Field length and base address for corresponding source vector or string
field

Base address for a source sparse vector field

Two's complement integer in rightmost 48 bits

Specifies a register that contains:

Field length and base address for corresponding source vector or string
field

Base address for a source sparse vector field

Branch base address in rightmost 48 bits

Specifies a register that contains:

Field length and base address for storing result vector, sparse vector, or
string field

Two's complement sum of (A) + (X) in rightmost 48 bits. Leftmost 16
bi ts are cleared

Specifies a register that contains the offset for C and Z vector fields

2-bit designator specifies branch conditions for corresponding branch
instructions

2-bit designator specifies object bit altering conditions for corresponding
branch instructions

8-bit designator used in all instruction format types to specify instruction
function code. This designator is always contained in the leftmost 8-bits
and is expressed in hexadecimal for all instruction descriptions. The
function code range is 00-FF; however, not all possible function codes
are used

8-bit designator specifies certain sub-function conditions for the corres­
ponding instruction, including length of operands (32- or 64-bit), normal
or broadcast source vectors, etc. The number of bits used in G designator
varies with instructions (Tables B-3 through B-8 list bit usages within
G designator field)

60384400 A

Desig­
nator

R

s

T

x

60384400 A

Format
Type

5

6

B

4

5 & 6

7, 8, & A

4

7' 8, & l)

4

7, 8, 9, & B

A

1 & 3

2

c

Table B-1. Instruction Designators (continued)

Definition

48-bit I field functions as an index used in forming_ the branch address
in a B6 branch instruction. In the BE and BF index instructions, I is
<> Ll.5Lhit f'lt'H>r<>nr1 - ·- -·· -!:'-·-··~

In the 3E and 3F index instructions, I is a 16-bit operand

In the 33 branch instruction, the 6-bit I-designator specifies the number
of the DFB object bit used in the branching operation

In the register and 3D instructions, R specifies the register containing
an operand used in an arithmetic operation

In the 3E, 3F, BE, and BF index instructions, R functions as a destination
register for the transfer of an operand or operand sum. In the B6 branch
instruction, R specifies a register containing an item count used in
forming the branch address

R specifies registers and branching conditions described with individual
instructions

In the register and 3D instructions, S specifies a register containing an
operand used in an arithmetic operation

S specifies registers and branching conditions described with individual
instructions

T specifies:

A destination register for transfer of arithmetic results

A register containing base address and, in some cases, field length of
corresponding result field or branch address

A register containing old state of a register, DFB register, etc., in index,
branch, or inter-register transfer operation

Specifies a register containing offset or index for vector or string source
field A

X specifies a register containing length and base address for order vector
corresponding to source sparse vector field A

In the BO-BS branch instructions, X specifies a register containing a
signed, two's-complement integer in rightmost 48 bits used as operand
in branching operation

B-7

Desig- Format
nator Type

y 1 & 3

2

c

z

2

3

c

B-8

Table B-1. Instruction Designators (continued)

Definition

Specifies a register containing offset or index for vector or string field B

Y specifies a register containing length and base address for order vector
corresponding to source sparse vector field B

In the BO-BS branch instructions, Y specifies a register containing index
used to form branch address

Specifies a register containing base address for order vector, used to
control result vector in field C

Z specifies a register containing length and base address for order vector
corresponding to result sparse vector field C

Z specifies a register containing index for result field C

In the BO-BS branch instructions, Z specifies a register containing a
signed, two's-complement integer in rightmost 48 bits. This integer is
used as comparison operand in determining whether branch condition
is met

60384400 A

INSTRUCTION TYPES

The instructions in this table are grouped according to ten general types:

Index (IN) Sparse Vector (SV) Logical String (LS)

Register (RG) Vector Macro (VM) Non-Typical (NT)

Branch (BR) String (ST) Momtor (MN)

Vector (VT)

Unused function codes are omitted from the list. An attempt to execute an unused function code is treated as
an undefined operation. More detailed information about the instructions are included in the ST AR Hardware
Reference Manual, No. 60256000-04.

The lists are set up in the following format:

Inst.
Code

(Function Code:
00 - FF 16)

Inst. Format
Code Type

3E 6
3F 6
4D 6
4E 6
CD 5
CE 5
BE 5
BF 5
38 A

60384400 A

Format
Type

(1-C)

No. of Bits
in Operand

1 Single bit
8 Bytes
32 Half words
64 Full words
E Either 32-

or 64-bit
B Both 32-

and 64-bit
NA Not applicable

Instruction Titie

For RG, VT, and SV instructions, U/L
apply to double precision operands: U (upper
or leftmost) L (lower or rightmost) 64 bits;
N indicates normalized, S un-normalized.

Table B-2. Instructions Listed by Instruction Type

Index Instructions (IN)

No. of Bits
in Operand Instruction Title

64 Enter (R) with I (16)
64 Increase (R) by I (16)
32 Half-word Enter (R) with I (16)
32 Half-word Increase (R) by I (16)
32 Half-word Enter (R) with I (24)
32 Half-word Increase (R) by I (24)
64 Enter (R) with I (48)
64 Increase (R) by I (48)
64 Transmit R (00-15) to T (00-15)

B-9

Table B-2. Instructions Listed by Instruction Type (continued)

Register Instructions (RG)

Inst. Format No. of Bits
Code Type in Operand Instruction Title

2C 4 64 Logical Exclusive or R, S, to T
2D 4 64 Logical and R, S, to T
2E 4 64 Logical Inclusive or R, S, to T
30 7 64 Shift R per S to T
34 4 64 Shift R per (S) to T
6D 4 64 Insert Bits from R to T per S
6E 4 64 Extract Bits from R to T per S

40/60 4 32/64 Add U; (R) + (S) to (T)
41/61 4 32/64 Add L; (R) + (S) to (T)
42/62 4 32/64 Add N; (R) + (S) to (T)
44/64 4 32/64 Subtract U; (R) - (S) to (T)
45/65 4 32/64 Subtract L; (R) - (S) to (T)
46/66 4 32/64 Subtract N; (R) - (S) to (T)
48/68 4 32/64 Multiply U; (R) * (S) to (T)
49/69 4 32/64 Multiply L; (R) * (S) to (T)
4B/6B 4 32/64 Multiply S; (R) * (S) to (T)
4C/6C 4 32/64 Divide U; (R) I (S) to (T)
4F/6F 4 32/64 Divide S; (R) I (S) to (T)

63 4 64 Add Address R + S to T
67 4 64 Subtract Address R - S to T

58/78 A 32/64 Transmit (R) to (T)
59/79 A 32/64 Absolute (R) to (T)
51/71 A 32/64 Floor (R) to (T)
52/72 A 32/64 Ceiling (R) to (T)
5A/7A A 32/64 Exponent of (R) to (T)
S0/70 A 32/64 Truncate (R) to (T)
SB/7B 4 32/64 Pack R, S to T

SC A B Extend R (32) to T (64)
SD A B Index Extend R (32) to T (64)
76 A B Contract R (64) to T (32)
77 A B Rounded Contract R (64) to T (32)
7C A 64 Length of R to T

53/73 A 32/64 Significant Square Root of (R) to (T)
10 A 64 Convert BCD to Binary, fixed length
11 A 64 Convert Binary to BCD, fixed length

S4/74 4 32/64 Adjust Significance of (R) per (S) to (T)
S5/7S 4 32/64 Adjust Exponent of (R) per (S) to (T)

2A 6 64 Enter Length of (R) with I (16)
2B 4 64 Add to Length Field

B-10 60384400 A

Table B-2. Instructions Li&ted by Instruction TyRe (continued)

Branch Instructions (BR)

Inst. Format No. of Bits
Code Type in Operand Instruction Title

20/24 8 32/64 Rnmrh TP R = ~ {?,?/h4 hit fln~tincr nnint \ - - ------ -- - - - ,- -, - · --- --------o r -----/
21/25 8 32/64 Branch IF R * S (32/64 bit floating point)
22/26 8 32/64 Branch IF R ~ S (32/64 bit floating point)
')~/T7 8 32/64 Branch IF R < S (32/64 bit floating point) k-'f ,(,,,,,, I

33 B Data Flag Register Bit Branch and Alter
3B A 64 Data Flag Register Load/Store
32 9 1 Bit Branch and Alter
36 7 64 Branch and Set (R) to Next Instruction
31 7 64 Increase (R) and Branch IF (R) * 0
35 7 64 Decrease (R) and Branch IF (R) * 0
09 4 64 Exit Force
BO c 64 Index, Branch IF (A) + (X) = (Z)
Bl c 64 Index, Branch IF (A) + (X) * (Z)
B2 c 64 Index, Branch IF (A) + (X) ~ (Z)
B3 c 64 Index, Branch IF (A) + (X) < (Z)
B4 c 64 Index, Branch IF (A) + (X) ~ (Z)
BS c 64 Index, Branch IF (A) + (X) > (Z)
B6 5 NA Branch to Immediate Address [(R) + I (48)]
2F 9 NA Branch to f S] on condition of bit 63 in register T

60384400 c B-11

Table B-2. Instructions Listed by Instruction Type (continued)

Vector Instructions (VT)

Inst. Format No. of Bits
Code Type in Operand Instruction Title

sot E Add U; A+ B ~ C

Sit E Add L; A+ B ~ C

S2t E Add N; A+ B ~ C

S4t E Subtract U; A - B ~ C

SSt E Subtract L; A - B ~ C

S6t E Subtract N; A - B ~ C

SSt E Multiply U; A * B ~ C

S9t E Multiply L; A * B ~ C

SBt E Multiply S; A * B ~ C

SCt E Divide U; A / B ~ C

SFt E Divide S; A / B ~ C
S3 64 Add A; A+ B ~ C

S7 64 Subtract A; A - B ~ C
98 E Transmit A ~ C

99 E Absolute A ~ C

91 E Floor A~ C

92 E Ceiling A~ C

9A E Exp on en t of A ~ C

90 E Truncate A ~ C

9B E Pack A, B ~ C

9C B Extend A (32) ~ C (64)

96 B Contract A (64) ~ C (32)

97 B Rounded Contract A (64) ~ C (32)

93t E Significant Square Root of A ~ C

94 E Adjust Significant of A per B ~ C
95 E Adjust Exponent of A per B ~ C

tThese instructions have sign control capability.

B-12 603S4400 A

Table B-2. Instructions Listed by Instruction Type (continued)

Sparse Vector Instructions (SV)t

Inst. Format No. of Bits
Code Type in Operand Instruction Title

AO 2 E Add U; A + B -+ C
Al 2 E Add L; A + B -+ C
A2 2 E Add N; A + B -+ C
A4 2 E Subtract U; A - B -+ C
AS 2 E Subtract L; A - B -+ C
A6 2 E Subtract N; A - B -+ C
A8 2 E Multiply U; A * B -+ C
A9 2 E Multiply L; A * B -+ C
AB 2 E Multiply S; A * B -+ C
AC 2 E Divide U; A / B -+ C
AF 2 E Divide S; A / B -+ C

tThese instructions have sign control capability.

Vector Macro Instructions (VM)

Inst. Format No. of Bits
Code Type in Operand Instruction Title

co E Select EQ; A = B, item count to C
Cl E Select NE; A =I= B, item count to C
C2 E Select GE; A ;;;;:,: B, item count to C
C3 E Select LT; A < B, item count to C
DA E Sum (AO + Al + A2 + ... An) to C and C +
DB E Product (AO, Al, A2, ... An) to C
DS E Delta { A(N+ 1) - A(N) } -+ C(N) X
DI E Adjust Mean { A(N+ 1) + A(N)} /2 -+ C(N)
DO E Average { A(N) + B(N) } /2 -+ C(N)
D4 E Average Difference { A(N) - B(N)} /2 -+ C(N)
B8 E Transmit Reverse A -+ C
DE E Poly Evaluation { A(N) } per B ~ C(N)
DF E Interval A per B -+ C
BA E Transmit Indexed List -+ C
B7 E Transmit List -+ Indexed C
DC E Vector Dot Product to C and C +

60384400 A B-13

Table B-2. Instructions Listed by Instruction Type (continued)

String Instructions (ST)

Inst. Format No. of Bits
Code Code in Operand Instruction Title

EO 3 8 Binary Add; A + B ~ C
El 3 8 Binary Subtract; A - B ~ C
E2 3 8 Binary Multiply; A * B ~ C
E3 3 8 Binary Divide; A / B ~ C
EC 3 8 Modulo Add A + B ~ C
ED 3 8 Modulo Subtract A - B ~ C
FB 3 8 Pack Zoned to BCD; A ~ C
FC 3 8 Unpack BCD to Zoned; A~ C
E4 3 8 Decimal Add; A + B ~ C
ES

,..,
8 Decimal Subtract; A - B ~ C .)

E6 3 8 Decimal Multiply; A * B ~ C
E7 3 8 Decimal Divide; A I B ~ C
FA 3 8 Move and Scale; A ~ C

F8t 3 8 Move Bytes Left; A ~ C

F9t 3 8 Move Bytes Left, Ones Complement
EA 3 8 Merge per Byte Mask A, B per G ~ C

FDt 3 8 Compare Bytes A, B per Mask Field C

FEtt 3 8 Search for Masked Key Byte; A, B per C, G

FFt+ 3 64 Search for Masked Key Word; A, B per C, G
D6 3 I Search for Masked Key Bit; A, B per C, G

EEt 3 8 Translate A per B ~ C

EFt 3 8 Translate and Test per B ~ C

D7t 3 8 Translate and Mark A per B ~ C
EB 3 8 Edit/Mark A per B ~ C
E8 3 8 Compare Binary A, B
E9 3 8 Compare Decimal A, B

tDelimiters may be used with this instruction. Automatic index incrementing also takes place (see individual
instruction description).

tt Automatic index incrementing takes place (see individual instruction description).

Inst.
Code

FO
Fl
F2
F3
F4
FS
F6
F7

B-14

Format
Code

3
3
3
3
3
3
3
3

Logical String Instructions (LS)

No. of Bits
in Operand Instruction Title

Logical Exclusive OR A, B ~ C
Logical AND A, B ~ C
Logical Inclusive OR A, B ~ C
Logical Stroke, A, B ~ C
Logical Pierce A, B ~ C
Logical Implication A, B ~ C
Logical Inhibit A, B ~ C
Logical Equivalence A, B ~ C

60384400 A

Table B-2. Instructions Listed by Instruction Type (continued)

Non-Typical Instructions (NT)

Inst. Format No. of Bits
Code Type in Operand Instruction Title

3D 4 64 Index Multiply R * S to T
3C 4 32 Half Word Index Multiply R * S to T
SE 7 32 Load T per S, R
SF 7 32 Store T per S; R
7E 7 64 Load T per S, R
7F _ 7 64 Store T per S, R
12 7 64 Load Byte T per S, R
13 7 64 Store Byte T per S, R
37 A 64 Transmit Job Interval Timer to T
39 A 64 Transmit Real-time Clock to T
3A A 64 Transmit R to Job Interval Timer
BB 2 E Mask A, B --* C per Z
BC 2 E Compress A --* C; per Z

CFt E Arithmetic Compress A --* C per B
BD 2 E Merge A, B--* C; per Z
I4 7 Bit Compress
15 7 i Bit Merge
I6 7 I Bit Mask
17 7 8 Character String Merge
DD 2 E Sparse Dot Product to C and C +
C4 E Compare EQ; A = B, Order Vector --* Z
cs E Compare NE; A * B, Order Vector --* Z
C6 E Compare GE; A ~ B, Order Vector --* Z
C7 E Compare LT; A < B, Order Vector --* Z
C8 E Search EQ; A = B, Index List --* C
C9 E Search NE; A* B, Index List --* C
CA E Search GE; A ~ B, Index List --* C
CB E Search LT; A < B, Index List --* C

D8t E Maximum of A to C; Item Count --* B

D9t E Minimum of A to C; Item Count --* B
B9 E Transpose/Move
18 7 8 Move Bytes Right (R) + (T) --* (R) + (S) + (T)
19 7 8 Scan Right
28 7 8 Scan Equal
29 7 8 Scan Unequal
IA 7 8 Fill Field T with Byte R
1B 7 8 Fill Field T with Byte (R)
IC 7 Form Repeated Bit Mask with Leading Zeros
1D 7 Form Repeated Bit Mask with Leading Ones
1E 7 Count Leading Equals R
lF 7 1 Count Ones in Field R, Count to T
04 4 64 Breakpoint (maintenance)
06 7 NA Fault Test (maintenance)

tThese instructions have sign control capability.

60384400 A B-1 S

Table B-2. Instructions Listed by Instruction Type (continued)

Monitor Instructions (MN)

Inst. Format No. of Bits
Code Type in Operand Instruction Title

00 4 NA Idle
08 4 64 Input/Output per R
oc 4 64 Store Associative Registers
OD 4 64 Load Associative Registers
OE 4 64 Translate External Interrupt
OF 4 64 Load KEYS from R, Translate Address S to T
OA 4 64 Transmit (R) to Monitor Interval Timer

G DESIGNATOR BIT USAGES

The following tables show the instruction G designator bit usages in a condensed form; they provide quick
look-up charts for determining the G-bit control configuration for a particular instruction. G-bit usage tables
are arranged according to instruction type [vector (VT), sparse vector (SV), etc.] and according to function
code within that instruction type.

Keys to abbreviations designating G-bit usage conditions are given below:

B-16

Bit

8
9
10
11, 12
13, 14, 15
13, 14, 15
8, 9, 10, 11
Any

Abbreviation

E
c
0
B
s
I
D
x

Meaning

Either 32- or 64-bit operands
Control vector
Offset
Broadcast
Sign control
Optional index increment
Delimiter control
Defined in individual instruction description

60384400 A

Table B-3. G-Bit Usage for Vector (VT) Instructions

Blank spaces in the tables indicate the corresponding G-bits do not apply for the particular instructions and
must be 0.

G-Bit Usage G-Bit Usage
Function Function

Code 8 9 10 11 12 13 14 15 Code 8 9 10 11 12 13 14 15

80

81

82

83

84

85

86

87

88

89

8B

8C

8F

Function

E C 0

E C 0

E C 0

c 0

B B S

B B S

B B S

B B

E C 0 B B S

E C 0 B B S

E C 0 B B S

C 0 B B

E C 0 B B S

E C 0 B B S

E C 0 B B S

E C 0 B B S

E C 0 B B S

s
s
s

s
s
s

s
s
s
s
s

s
s
s

s
s
s

s
s
s
s
s

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

E C 0 B

E C 0 B

E C 0 B

E C 0 B

E C 0 B B

E C 0 B B

c 0 B

C 0 B

E C 0 B

E C 0 B

E C 0 B

E C 0

c 0

B B

B

Table B-4. G-Bit Usage for Sparse Vector (SV) Instructions

G-Bit Usage G-Bit Usage
Function

s s

Code 8 9 10 11 12 13 14 15 Code 8 9 10 11 12 13 14 15

AO

Al

A2

A4

AS

A6

E

E

E

E

E

E

60384400 A

s
s
s
s
s
s

s
s
s
s
s
s

s
s
s
s
s
s

A8

A9

AB

AC

Al<

E

E

E

E

E

s
s
s
s
s

s
s
s
s
s

s
s
s
s
s

B-17

Table B-5. G-Bit Usage for Branch (BR) Instructions

G-Bit Usage
Function

Code 8 9 10 11 12 13 14 15

BO x
Bl x
B2 x
B3 x
B4 x
BS x

Table B-6. G-Bit Usage for Vector Macro (VM) Instructions

G-Bit Usage G-Bit Usage
Function Function

Code 8 9 10 11 12 13 14 15 Code 8 9 10 11 12 13 14 15

B7 E B DI E c 0

B8 E c 0 D4 E c 0 B B

BA E c 0 DS E c 0

co E c B B DA E c
Cl E c B B DB E c
C2 E c B B DC E c
C3 E c B B DE E c 0 B

DO E c 0 B B DF E c 0

B-18 60384400 A

Table B-7. G-Bit Usage for Non-Typical (NT) Instructions

G-Bit Usage G-Bit Usage
Function Function

Code 8 9 10 11 12 13 14 15 Code 8 9 10 11 12 13 14 15

B9 E x x x C8 E c x
nn r. n D f"'() "C ,..., v
uu L LJ LJ v.7 L '-' .E~

BC E c CA E c x
BD E B B CB E c x
C4 E B B CF E B s s s
cs E B B D8 E c s s
C6 E B B D9 E c s s
C7 E B B DD E B B

Table B-8. G-Bit Usage for String (ST) Instructions

G-Bit Usage II G-Bit Usage
Function Function

Code 8 9 10 11 12 13 14 15 Code 8 9 10 11 12 13 14 15

D6 =4 DESIGNATOR .. F8 D D D D

D7 D D x F9 D D D D

EA MASK FB x x
EB =4 DESIGNATOR .. FC x x
EC =4 MODULOS .. FD D D D D

ED =4 MODULOS .. FE =4 DESIGNATOR ..
EE D D D D FF ~ DESIGNATOR ..
EF D D

60384400 A B-19

CARD FILES

RE '""R" AN" "''L"' STRI ,,,.Tl 1nr-.­\..V U Al U r"I C I U\.. I UKC~ c

Whenever a deck of cards is read into the card reader, the STAR Operating System transfers information from
the deck to a disk file, and creates a file index entry that contains the file name, user number, and location
of the file on disk.

The first card of each deck must be a card reader ID card. One parameter on the Card Reader ID card specifies
whether the card deck is to be treated as absolute binary data or as mixed mode data. This card tells the system
how to process the data and contains the information used to create the file index entry. The data of each card
file starts with the card immediately following the Card Reader ID card.

ABSOLUTE BINARY DATA CARDS

The first card of an absolute deck contains the ASCII character string UNFORMAT in columns 1 to 8. Each
card in the remainder of the deck is treated as a string of 960 bits of data (fifteen 64-bit words). The bits

are ordered as follows:

12

11

0

2

3

4

5

6

7

8

9

2

3

4

5

6

7

8

9

10

11

12

2

13

14

15

16

17

18

19

20

21

22

23

24

3

25

26

27

28

29

30

31

32

33

34

35

36

79

937

938

939

940

941

942

943

944

945

946

947

948

80

949

950

951

952

953

954

955

956

957

958

959

960

All 80 columns in an absolute binary card are treated as data. The 960 bits of data from each card are
copied directly to the disk file. The end of a deck of absolute binary cards is detected when the card reader
reads a second UNFORMAT card.

60384400 c C.l

MIXED MODE CARD DECKS

A card deck processed as a mixed mode deck may contain data cards and separator cards. Separator cards are
identified by combination punches in column one, as follows:

7/8/9 punch Record separator

6/7/9 punch Group separator

6/7 /8/9 punch File separator

Data cards in a mixed mode deck must either be in the format of ST AR binary data cards or must contain

valid ASCII data.

The format of a STAR binary data card is as follows:

12

11

0

2

3

4

5

6

7

8

9

C-2

N
Q)

> co
....
c
::i
0 e u
Q) co
> Q)

co ..0

E E ::i
z ~
Q) ~
(.) (.)

c Q)

Q) ..c:
::i u
0-
Q)

Cl) ("')

Q)

0 > co

N
Q)

0 > co

1 2 3 4 5 6

Byte Count

Sequence Number

Checksum

Byte 1, byte 2,

Number of 8-bit bytes on this card, starting with bytes in column 5. Only
the number of data bytes specified by this count are actually written as

data to a disk file.

Sequence number of this card

24-bit arithmetic sum of 8-bit data bytes on this card

8-bit data bytes

60384400 D

80

Columns 5 through 80 of a STAR binary data card may contain data. A STAR binary card contains up to
912 bits (76 columns) of data; an absolute binary card always contains 960 bits (80 columns) of data.

Every STAR binary data card has a 7 /9 punch in coiumn one to identify it and to distinguish it from ASCH
data cards or separator cards in a mixed mode deck.

A deck of mixed mode cards is ended by a file separator card, or when the card reader hopper becomes empty.

RECORD STRUCTURED FILES

When a data deck is read through the card reader and processed as a mixed mode deck, the data undergoes
some processing before being written to a disk file. This processing generates a record structured file on disk.

This file is processed as follows:

I. Blank fields containing two or more characters in ASCII data cards are compressed by replacing
them with the ASCII control character, ESC, followed by a count of the number of blanks. The
ASCII character, 0, (hexadecimal 30) is added to the count of the number of blanks to ensure
that the result is beyond the range of ASCII control characters.

2. The control character, US, (unit separator) is inserted following the last character of ASCII data
on each ASCII data card.

3. The control characters, GS and RS, are inserted where group separators or record separators occur.
These control characters must appear in the first byte of a machine word and are followed by any
ASCII data on the separator card.

4. An FS character is inserted as the last data character of the file.

5. A directory is inserted in the file after the last data word. The directory contains pointers to the
start of each section of data specifying whether the data is in ASCII mode or binary mode. One
entry is made in the directory for each record or group separator.

The format of each directory entry is as follows:

nextp
161

unused
161

mode

81
address

60384400 c C-3

nextp

mode

Ordinal of next directory entry. This number, added to the base address of the

directory, points to the next directory entry.

Indicates the mode of the specified block.

01 Record separator
02 Group separator
03 Compressed ASCII line data
04 STAR binary byte string data
05 Unformatted data
FF Last pointer entry

address Address of specified block or separator.

6. The last six words of the file contain a trailer. The first word of this trailer is a pointer to the
directory. The last five words contain file identification information, which includes:

where

END-4
END-3
END-2
END-1
END-0

TYPE (8), LEVEL (8), USERNO (48)
File name
Unused (16), Account Number (48)
ID word 1
ID word 2.

TYPE is as follows:
0 Record format sequential

Record format virtual
2
4
5

LEVEL
ID word
ID word 2

Absolute virtual code
Record format sequential, batch
Record format virtual, batch
Security level
User identification data (from cols. 61- 68 of card reader identification card)
User identification data (from cols. 69-76 of card reader identification card)

Page C-6 contains an example of the creation of a file from the mixed mode card deck shown on the next
page.

C-4 60384400 D

/AB C

AB

A

60384400 D

(~
ABCD

G ALPHA
s

~---End of File

(6/7 /8/9 punch)

--1----t----t---- Group Se pa rat or

(6/7/9 punch)

-+--+--+--+--STAR Binary Card

(86 data bytes)

~STAR Binary Card

f ~ (114 data bytes)

--+---+~,____-Record Separator

(7/8/9 punch)

Mixed Mode Card Deck

C-5

Word

0 A ESC 7F

70 us FS

2 RS ESC 7F

3 A 6. B

4 us FS FS

byte byte byte
1 2 3 5

~

13 byte byte byte
113 114 1

J....,

10
1E GS A L

1F us FS FS

20 A 6. B

21 79 us FS

22 FS NUL NUL

~

1000 0001

1001 0002

1002 0003

1003 0004

1004 0005

1005 0006

1006 0000

.,
11 FA

11 FB

~
11 FF

• C-6

us A 6.

FS FS FS

us FS FS

ESC 33 c

FS FS FS

...

byte
2

... ...

.
p H A

FS FS FS

6. c 6.

FS FS FS

NUL NUL NUL

03

01

03

04

02

03

FF

40-Character ASCII ID Field

B

FS

FS

ESC

FS

. ..

. ..

byte
85

ESC

FS

D

FS

NUL

000000

000002

000003

000005

00001E

000020

000022

001000

ESC

FS

FS

79

FS

. ..

...

byte
86

7A

FS

ESC

FS

NUL

L,

'7

'7

~

'-

Compressed
ASCII

Record
Separator

Compressed
ASCII

STAR
Binary
Data

Group
Separator

Compressed
ASCII

File Separator
(End of Media)

Pointers

Pointer Field
Location

ID

60384400 D

PRINT FILES

When a file is given to the PRINTOUT routine, the data undergoes some processing before being printed. This
processing generates a compressed ASCII file with ANSI carriage control characters. This fiie is processed as
follows:

1. Two or more blanks (hexadecimal 20) are compressed by replacing them with the ASCII escape control
character, ESC (hexadecimal 1 B), followed by a count of the number of blanks. The ASCII character
O (hexadecimal 30) is added to the count of blanks to ensure that the result is beyond the range of I
ASCII control characters.

2. If the internal characteristic, from a list file index, of the file is ASCII with ANSI carriage control, then
the carriage control characters are assumed to be correct and are not looked at by PRINTOUT.

3. If the internal characteristic of the file is ASCII with ASCII carriage control, then the carriage control
characters are changed to ANSI by PRINTOUT. The ASCII form feed control character, FF (hexa­
decimal OC), as the first character of the file and after a unit separator, US (hexadecimal 1 F), is replaced
with the ANSI page eject control character 1 (hexadecimal 31). The ASCII single space, which is a line
without the FF after the US, is changed by inserting the ANSI space one line control character, blank
(hexadecimal 20), after the US.

4. The maximum length that will be printed at one time is #1000 blocks. Any file that goes over this limit
will be printed in parts. If a family of files goes over this limit, the family will be divided at the end of
a family member. If one file goes over the limit, it will be divided at a unit separator (end of a line)
that is in the last 25 words of the #1000 blocks. If a file does not have a US in the last 25 words, the
file will be divided at a random point.

5. Family files will be concatenated into one file. The file separator, FS (hexadecimal 1 C), at the end of
all but the last file will be replaced with a blank (hexadecimal 20). The start of all but the first file
will be changed to a unit separator followed by a page eject (hexadecimal 1F31).

SEQUENTIAL RECORD FILES

STAR Record Manager (SRM) supports three sequential file organizations. The FO (file organization) field in
the FIT is used to specify the type of file organization.

FO=O SRM-structured file

FO= 1 Pure ASCII file

A pure ASCII file is a string of ASCII characters terminated by an FS character (#1 C). Its structure is com­
pletely specified by the appearance of the ASCII control characters US, RS, GS, and FS within the file.

SRM SEQUENTIAL STRUCTURE

SRM supports a sequential record file structure that is consistent with the concept of the ANSI FORTRAN
files. Logically, a sequential record file consists of one or more sections terminated by an end-of-information
mark; a section consists of none or a nwnber of records terminated by an end-of-section mark; a record con­
sists of none or a number of segments terminated by an end-of-record mark; a segment consists of a header
followed by one or more data words.

60384400 D C-7

The SRM representation of a sequential record file actually consists of data segments along with control words
that provide structural information. A control word may signify the beginning-of-information, segment header,
end-of-record, end-of-section, or end-of-information. An end-of-record control word may serve also as the
segment-head for the first data segment of the next record.

Each control word starts on a 64-bit word boundary. The format of a control word is:

0

BDRY

BORY

8 32

LINK

Boundary condition:

0 Intra-record, segment-header only

End-of-record (EOR)

3 End-of-section (EOS)

7 End-of-information (EOI)

#FF Beginning-of-information (BOI)

LINK Pointer to preceding BOI, EOR, or EOS control word.

SBC

63

SBC Segment byte count indicating number of data bytes following this control word.

The LINK field of a BOI control word is set to #FFFFFF to facilitate the detection of BOI during a back­

space operation.

The following diagram illustrates the SRM sequential file structure:

C-8 60384400 D

\"ilord
Address 0 8 32 63

l~FF ~, -FFFFF-F ----.----[-SBC1-1 0

I

Liam Segment
SBC1 Bytes

uu l 0 l SBC2

BO/

Data Segment
SBC2 Bytes

More Segments

xx 01 l 0 l SBC12

I

Data Segment
SBC12 Bytes

yy 01 xx

VY+1 rn vv cor

l l
~-~iii

Data Segment

SBC1 11 Bytes

01 l YY+l l SBC121

Data Segment

SBC121 Bytes

I More Segments, Records

03 I zz l SBC112

i More Sections

l
07 I LINK l 0 EOI

60384400 D C-9

LOADER CONVENTIONS D

GENERAL TABLE STRUCTURE

The loader works with files that are composed of one or more object modules. Each object module consists
of a number of standard tables; each table begins with a standard hvo-v,rord header:

2

Word 1

Word 2

60384400 B

ASCII Table Name

Length Address

16

Name of the table in ASCII

Length Length of the table in full words

Address Bit difference between first word of the respective table and word 1 of
module header table: i.e.:

64

48

Back pointer (bits) + address of first word of respective table (bits) =
address of word 1 of header table (bits)

D-1

MODULE HEADER TABLE

The module header table contains general information concerning the object module and provides a linkage to
all the other tables in the module.

Word

6 MODULEL\
64

2 Length 0

16 48

3 Module Name
64

4 Date + Time Created
64

5 T Length Processor
16 48

6 C Length Data Base Length
16 48

7 Type Pointer
16 48

8 Type Pointer
16 48

~ - -~

D-2

Word 3

Word 4

Word 5

Word 6

Word 7

& on

Name of module in ASCII, expressed as 8 characters, left justified and blank filled

Date and time module was created, in packed decimal with a positive sign. Date and time
format is: year, year, month, month, day, day, hour, hour, minute, minute, second, second,
millisecond, millisecond, millisecond

Word length of tables, excluding code, followed by ASCII name of processor that created
module

Word length of code, followed by bit length of data base area. The maximum size of the
data base is one large page.

Each word contains a table type and an address pointer to a table of that type. The pointer
contains a bit address relative to the first word address of the header. By convention, the
first table described is the code, and the second is the external/entry table. If HEX type is
0004, the pointer contains the bit address of the next module header table. Each table type
is described in detail in this appendix

60384400 D

HEX Type ASCII Name Description

0001 CODE Code Block Table

0002 EXT ENTR External/Entry Table

0003 REL CODE Code Relocation Table

0005 XFER SYM Transfer Symbol Table

0006 SYMB TAB Debug Symbol Table

0101 INT DATA Interpretive Data/Initialization Table

0201 INT RELO Interpretive Relocation/Initialization Table

CODE BLOCK TABLE

The code block table contains the executable code in the following format:

Word

2

3

Word 3
& on

60384400 D

Length Back Pointer

Code

Exe cu table code

48

D-3

CODE RELOCATION TABLE

This table describes relocation in the code itself.

Word

2

3

4

5

Word 3

Word 4

Word 5

REL6 CODE

Length
16

Back Pointer

nbi ni

16

Current Base

11, 12, 13, .. . In

nbi is number of bits per index in the bit string starting in word 5
ni is number of indexes in the string

Current base: current bit address to which this module is relocated

64

48

48

64

Bit string of indexes, each nbi bits long. Each index references a half word of code to be
relocated relative to the base address of the code

When this table is processed, the bit base address of the code is added to the 48-bi t fields pointed to by the
indexes in the bit string.

D-4 60384400 D

EXTERNAL/ENTRY TABLE

The external/entry table contains definitions for all entry points, external symbols, and common blocks.

Word

EXTL'i ENTR

Length Back Pointer
16 48

2

3 m n
16 48

Entry Name 1
64

4

Entry Name 2
64

5

Entry Name m J
External Name 1

64

External Name 2
64

~ ~ r
External Name (n-m)

64

Entry Descriptor 1
64

Entry Descriptor 2
64

~;;" e:; ~

Entry Descriptor n
64

External Descriptor 1
64

External Descriptor 2
64

~~ c::,,

External Descriptor (n-m)
64

60384400 D D-5

Word 3

Word 4 through 3+m

Word 4+m through 3+n

Word 4+n through 3+m+n

Word 4+m+n through 3+n+n

m is number of entry point names in table
n is number of names in table

List of en try point names

List of external names

List of entry point descriptors

List of external descriptors

Each descriptor is of the following form:

Type Value

Type Field Symbol Type Value Field

Entry point in code Relative bit address in the code

2 Entry point in data Relative bit address in the data section

3 Constant entry point 48-bit constant

14 External procedure 0

15 External datum 0

16 Common block Bit length of the common block

ENTRY POINTS

An entry point is a named value defined in the procedure; it is to be referenced as an external by an external
procedure. It may be an address in the code block, an address in the data base, or a constant value.

COMMON BLOCKS

A common block is a named alterable space referenced by one or more procedures. A common block can be
initialized with relocatable data. Blank common is a common block with name of eight blanks.

EXTERNAL PROCEDURE

An external procedure reference is used in a call. Having a symbol doubly defined as a common block and
external procedure is specifically allowed. All names are eight characters, left justified and blank filled.

D-6 60384400 D

EXTERNAL DATA

An external datum is an external that is referenced by a method other than a procedure call.

INTERPRETIVE DATA INITIALIZATION TABLE

When the loader processes information in this table, areas of static space are initialized.

Word

2

3

n

?

Word 3
& on

INT Li DATA

Length Back Pointer
16

Data Item Descriptor
Data Item

Data Item Descriptor
Data Item

Data Item Descriptor
Data item

Data item descriptor and item pairs, formatted as follows:

ordl ord2 Type I
8

Mode I
8

ordl Pseudo address vector ordinal of static space to be initialized

Chain

64

48

64

64

~

64

ord2 Pseudo address vector ordinal relative to which relocation is to be done (relocation base)

Type Type of data item that follows

60384400 D D-7

Mode

Chain

00 Values to destination
01 Values plus relocation base to destination
02 Destination plus relocation base to destination

When mode = 00, the values in the item are stored directly into the destination fields, and
ord2 is ignored. When mode = 01, the relocation base is added to the values before they are
stored in the destination fields. Halfword values are not defined for this case. When mode = 02,
the relocation base is added to the destination fields. The value fields are absent in the various
items in this case.

Relative full-word count to next data item descriptor in table

Data items may be stored in one of the following formats, depending on the type:

Data Items

Item Format 1

Length Relative Address
16 48

Value
64

Item Format 2

Length Relative Address
48 16

Value
64

Length2
16

Bit String
48

Item Format 3

Length Relative Address
16 48

Value
64

nbi
16

ni
48

Bit String
64

D-8 60384400 A

INITIALIZATION TYPES

Type Description Data Item Format

Full-Word Broadcast

2 Half-Word Broadcast

3 Full-Word Vector Transmit

4 Half-Word Vector Transmit

5 Full-Word Sparse Vector 2

6 Half-Word Sparse Vector 2

7 Full-Word Index List 3

8 Half-Word Index List 3

9 Byte String

A Bit String

D Nested List Any

60384400 B D-9

For each data item type, the appropriate format is applied as follows:

FULL WORD BROADCAST

Data I tern Type

Item Format

Length

Value

Full word vector length

A full word to be stored in consecutive full words starting at the relative address
in the section of static space

HALF WORD BROADCAST

Data Item Type 2

Item Format

Length

Value

Half-word vector length

A left justified half-word to be stored in consecutive half-word locations starting
at the relative bit address

FULL WORD VECTOR TRANSMIT

Data Item Type 3

Item Format

Length Full-word vector length

Value Full-word vector to be transmitted to the relative address in control section

HALF WORD VECTOR TRANSMIT

Data Item Type 4

Item Format

Length Half-word vector length

Value Half-word vector to be transmitted to the relative address in control section

D-10 60384400 A

FULL WORD SPARSE VECTOR

Data Item Type 5

Item Format 2

Length Number of values in item

Vaiue Fuil-word values

Length2 Length of control vector

Bit String Control vector of length length2

HALF WORD SPARSE VECTOR

Data Item Type

item Format

Length

Value

Length2

Bit String

FULL WORD INDEX LIST

Data Item Type

Item Format

Length

Value

nbi

ni

Bit String

60384400 A

6

2

Number of values in item

Left justified half word vector

Length of control vector

Left justified control vector

7

3

Number of values in item

Full word values

Number of bits per index

Number of indexes

A bit string of ni indexes; each index is nbi bits long and contains a full-word
count

D-11

HALF WORD INDEX LIST

Data I tern Type

Item Format

Length

Value

nbi

ni

8

3

Number of values in item

A left justified half-word vector

Number of bits per index

Number of indexes

Bit String A bit string of indexes; each index is nbi bits long and contains a half-word count

BYTE STRING

Data Item Type 9

Item Format

Length

Value

BIT STRING

Number of bytes in value field

A left justified byte string

Data Item Type A

D-12

Item Format

Length

Value

Number of bits in value field

A left justified bit string

60384400 A

NESTED LIST

ORD1 ORD2 TYPE1 MODE CHAIN1
16 16 8 8 16

LENGTH1 RBA
16 48

Nl2 NITER
48

1

N11 161 TYPE2 CHAIN2
16 8 24

LENGTH2

Nl3

ORDl

ORD2

TYPE I

MODE

LENGTHl

RBA

Nil

Nl2

NI3

NITER

TYPE2

60384400 B

16 48

VALUE
64

CHAIN3

Pseudo address vector ordinal relative to the data area to be initialized

Pseudo address vector ordinal relative to which relocation is to be done (relocation base)

D-nested list

00 Value to destination
01 Value plus relocation base to destination
02 Destination plus relocation base to destination

Number of nested item types that follow

Relative bit address

Nested data item

Nested iteration start item

Nested iteration end item

Number of times data item/items associated with this iteration start item are to be
repeated

Any initialization type. If more than one data item in an iteration, types may not
be mixed

D-13

CHAIN I

CHAIN2

CI-lAIN3

LENGTH2

VALUE

Relative full word count to next data item in nested list

Length of data item in number of words

0 No nested item types follow
More nested item types follow

Half word vector length

A left justified half word to be stored in consecutive half word locations starting at
the relative bit address RBA

INTERPRETIVE RELOCATION INITIALIZATION TABLE

Word

D-14

2

3

~

Word 3
& on

~

INT6RELO

64

Length Back Pointer

16 48

Relocation Item 1

64

Relocation Item 2
64

- - - - - - - ~ ?I

Relocation Item n

64

Relocation items; item formats are similar to data initialization table formats but do not
contain values

60384400 D

TRANSFER SYMBOL TABLE

Word

2

3

Word 3

XFER6SYM
64

Length Back Pointer
16 48

Transfer Symbol

The symbol name of the entry point to which control is to be transferred at the
start of execution. The name is left justified with blank fill.

DEBUG SYMBOL TABLE

The debug symbol table contains the ASCII representation of symbols which appear in a program. It can
be useful in a debugging package to allow a symbol to be referenced by name rather than by address. These
tables will appear in the Error Processing Information if the compiler/assembler used is capable of generating
ti1tese tables and the appropriate option is selected and used during compilation/assembly.

Word

2

3

4

Word 2

Word 3

60384400 D

SYMB6TAB

Length. Back Pointer

16

Number of Symbols 0

16

Symbol 1

Symbol 2

. . .
Symbol N

Length: length of table including the symbol definition table
Back Pointer: bit difference between word l of this table and word
of the module header table

Number of symbois in this tabie

64

48

48

64

64

64

D-15

Word 4
& on

Symbols can be any of the following:

Variable or array names in ASCII; must be left-justified and blank-filled.

Statement line numbers in ASCII; must be hexadecimal values, right-justified
and ASCII zero-filled.

Statement labels in ASCII. Labels which are symbolic names are stored left­
justified and blank-filled; labels which are statement numbers are stored right­
justified and ASCII zero-filled.

SYMBOL DEFINITION TABLE

The symbol definition table is a sub-table to the debug symbol table. It provides further definition to the
debug symbols, including the type of symbol, address, and mode.

Word

SYMB6DEF
64

2 Length 0
16 48

Type Location
16 48

Mode 0 Ordinal

16 32 16

3

4 l Symbol 1
Definition

Type Location
16 48

Mode 0 Ordinal
16 32 16 l Symbol 2

Definition

7

Type Location

16 48

Mode 0 Ordinal

16 32 16 l Symbol N
Definition

• D-16 60384400 D

Word 3

Word 4

60384400 D

Symbol type:

0 Unknown

Half-word register variable name

2 Full-word register variable name

3 Variable or array name

4 Line number

5 Label

Location:

For symbol type Location field

Half-word address within register file. Since half-word values can
be stored in full-word registers, location value can range to
hexadecimal 1 FF.

2 Full-word register number

3 Bit address relative to the start of the data base.

4 Bit address relative to the start of the code base.

5 Bit address relative to the start of the code base.

Mode: Symbol mode, which consists of three parts: precision; description; and data type. In the
case of a descriptor, P and Dtype describe the contents of the referenced vector.

Desc I
3

Dtype

p = 0 Precision base is 32 bit; or, irrelevant

= 1 Precision base is 64 bit

Desc =O Not a descriptor

= 1 Vector descriptor

=2 Vector descriptor array

=4 S_p_arse vector descriptor

= 5 Sparse vector descriptor array

D-17 e

Dtype =O Unknown

= l Logical

=2 Integer

= 3 Real

=4 Complex

= 5 Double Precision

=6 Character

=7 Bit

Ordinal: The pseudo address vector ordinal of the data base or common block

PSEUDO ADDRESS VECTOR
(Ordinal Description)

1t/ord

0

2i3

4/5

617

8/9

2n+1,

2n+2

D-18

Code Address

Data Base Address

External Address 1

External Address 2

External Address 3

External Address n

64

64

64

64

64

64

64

60384400 D

For Common:

0 Address

16 48

0 Bit Length

16 48

For External Symbols:

0 Entry Address
16 48

Data Base Length Data Base
16 48

60384400 D D-19

REGISTER CONVENTIONS

Like the minus page and other software conventions discussed earlier in this book, STAR-OS assumes some
conventions regarding the handling of the register file, the area a user program assumes to be accessible to
him between machine registers 00 to FF. This area is divided into 256 registers, some of which are available
to the user as buffers, and some of which have other specific purposes, by convention.

The register file is subdivided into six major areas:

Machine registers

Temporary registers

Global registers

Environment registers
} Register save area

Temporary and working registers

Unused registers

MACHINE REGISTERS

These registers include only registers 0, 1, and 2. Register 0, by convention, contains the number 0. Register
1 contains the data flag branch exit address, and register 2 contains the data flag branch entry address.

TEMPORARY REGISTERS

A user program may utilize two areas for temporary storage, addresses, or data. The two areas are from
registers 3 to 1316• and from 20 to the end of the register save area.

E

The lower area is large enough for execution of short subroutines (such as SIN, COS, etc.) completely within
the temporary space, obviating the need for saving and restoring any of the caller's permanent registers when
short modules are needed by a program. However, some assemblers and compilers use this area; user caution
is advised. The upper area, which is large enough to hold a variety of user procedures, is never saved by the

callee. The user should not expect data in these registers to be preserved across external subroutine calls.

60384400 D E-1

GLOBAL REGISTERS

The contents of the global registers are universal to all programs within a specific execution/language system. The
contents can be assumed by all modules within a given system and are not usually loaded, saved, or restored
by called modules. The values in these registers are unique to a given operating environment; thus, if a module
from a different environment is to be called, it is the caller's responsibility to establish the correct values for
the callee in the proper registers.

Register 14 contains the constant 20 in the lower portion of the register.

Register 15 contains the constant 1 A in the lower portion of the register.

Register 16 contains the constant 1.

Register 17 contains the parameter descriptor. The number of parameters being passed during a call is
contained in the first 16 bits; the address of the parameter list is stored in the remaining 48 bits. If the
address portion contains a zero, the parameters, if any, are passed through the register file.

Registers 18 and 19 contain function results obtained from a called subroutine. For example, the result of a
trigonometric or exponential function would be placed in register 18. Register 19 could be used when a result
has two components: for example, the imaginary part of a complex number whose real part is returned to
register 18.

ENVIRONMENT REGISTERS

The environment registers consist of the minimum set needed to support the sharing of code in a virtual system
and the general requirements of recursive, re-entrant execution with dynamic linking. The environment registers
include:

IA

1B

IC

ID

E-2

Return Register. Contains the bit address of the location in the caller to which the callee
normally returns.

Dynamic Stack Pointer. Contains the bit base address of the next available free location in
the dynamic stack. The dynamic stack pointer is always advanced prior to storing data into
that region or before addresses pointing to that region are calculated.

Current Stack Pointer. Contains the length and bit base address of the region in the dynamic
stack for storing the register file. The minimum length of that region will be the number of
environment registers plus the number of registers needed for dynamic working storage for the
program. During call sequences, the caller will set the length portion of the current stack pointer
to the number of registers to be saved by the callee. The current stack pointer is set up by the
caller, but the callee uses a swap to save the registers. A minimum of six registers can be saved
(the number of environment registers).

Previous Stack Pointer. Contains the number of registers and bit base address where the caller's
registers have been saved. The callee's previous stack pointer is an exact copy of the caller's
current stack pointer.

60384400 D

1 E Link Register. Contains the length and bit base address of the static space allocated to the module
by the loader. The caller passes the callee the address of the callee's static space in the link
register.

1 F This register is reserved for future system use.

The environment registers are used in two areas of a code block module, called prologue and epilogue.
Instructions in prologue and epilogue are inserted into the executable code by the assembler or compiler to
ensure the caller's register file is saved when an external routine is called. They are discussed later in more

detail.

REGISTER SAVE AREA

These registers include the environment registers and the working registers. This space is saved and restored
by called procedures; therefore it is the space where permanent variables and addresses should be stored.
The length of this area depends on how much space has been allocated by the caller as working
registers, which will contain other information the user deems necessary to save. Allocation of environment
registers at the beginning of the space ensures that they will appear at the beginning of every stack, facilitating
unstacking or stack searching procedures needed for block structured languages, as well as non-standard
FORTRAN call/return usage. The working registers follow the environment registers.

The information in the register save area is used in the following manner: When a program in process calls
an external program, the prologue of the called program executes code to save the callers's register file in
dynamic space. It then places the current stack pointer in the previous stack pointer, and also places the
dynamic stack pointer in the current stack pointer, and sets the dynamic stack pointer to the next free location.
Finally, the prologue loads the called program's register file from static space.

When one program calls another, it uses some dynamic space to contain the status of the register file at the
time the next program was called, together with linking information required to return to the calling program.
In the normal sequence, dynamic space use increases until the lowest level called program has been executed;
then, as the returns are encountered, the space is made available in reverse order to the calls.

Some programs can perform their tasks entirely within the temporary registers, and do not call other programs.
Such routines need not contain a prologue and may be assembled or compiled to omit it.

60384400 D E-3

REGISTER NUMBER
(IN HEX)

Register Save Area
(= Environment Regs.
+ Working Reg.)

E-4

FF

FE

,,,.d>

20

1F

1E

1D

1C

1B

1A

9

8

7

6

5

14

2

1

0

Reserved for Future System Use

Ordinal : Address
Link Register 16J

Length : Address
16 j Previous Stack Pointer

Length I Address
16 J Current Stack Pointer

U nde- : Address .
fined 16 j Dynamic Stack Pointer

Return

Function Return

Register Pair

Number: Address

161 Parameter Descriptor

1
r

1A

20

...:?

Data Flag Branch Entry Address

Data Flag Branch Exit Address

Machine Zero

-~}
\

64

48

48
I

48 ~
48

64 I

~

48

64 I
64

64

~~ }

Temporary and
Working Registers

Environment
Registers

Global
Registers

Temporary
Registers

Machine
Registers

60384400 D

SUBROUTINE LINKAGE CONVENTIONS

CALL SEQUENCE

The standard sequence of an external procedure call is as follows:

78xx001E

78yy0017

361AOOzz

Load the link register with the address of the callee data base. (xx = ep+ 1)

Load parameter descriptor register.

Branch to the entry point of the called procedure and set a return location (contained in
the return register).

(In the above instructions, 17, 1 E, and 1 A are the register numbers of the parameter descriptor register, the
link register, and the return register, respectively; xx contains the callee data base address, yy contains a
descriptor of the parameter list, and zz contains the procedure entry point address.)

SAMPLE PROLOGUE SEQUENCE

The prologue of the called procedure includes the following functions:

7D00151C

781C001D

781BOOIC

2A1Cxxxx

3F1Byyyy

2A1Ezzzz

7DlE1400

60384400 D

Starting with the register number specified by register 15 (IA), save the registers
specified in the stack of the caller.

Save the current stack pointer in the previous stack pointer.

Save the dynamic stack pointer in the current stack pointer.

Set the number of registers to be saved by a called program (xxxx = number of
working registers of callee plus six environment registers).

Increment the dynamic stack pointer by the number of callee registers to be
saved (yyyy = xxxx*64).

Enter for zzzz- number of registers to be loaded for callee execution.

Load the register file with data from the callee data area, starting with the
register number specified by register 14 (20).

E-5

EPILOGUE SEQUENCE

The epilogue of the called procedure should be as follows:

7DIDI500

334000IA

Using the length and address of the previous stack pointer, restore the register
file from the callee's current stack, starting with register I A (the environment
registers).

Jump to the return address specified in register IA.

A non-normal return is carried out in similar fashion, except the values of the old stack pointer and the
return register (ID and IA respectively) will be obtained from known variables.

NOTES

1. Addresses established at execute time are stored in free space and the procedure, itself, is not modified;
therefore, the procedure may be maintained in write protected storage.

2. The register file is stored and saved in a conventional chained stack, allowing creation of dynamic storage
for block structured languages such as PL/ I and ALGOL. Environment registers are saved beginning at
the top of a stack frame (prologue of caller); thus a stack frame appears as follows:

Old Stack ! Previous Stack Frame

Stack Environment Registers

Dynamic Work Space Current Stack Frame

Temporary Work Space)
DSP ! Next Stack Frame

The initial size of a frame does not include temporary work space. Any time temporary work space is
needed, the program can increment the DSP and obtain space. An entire frame disappears when a return
is made to a calling program.

3. The number of registers to be saved is set by the caller. The save is performed in the prologue of the
callee. If the caller can do all its work within temporary registers, the registers need not be saved. This
is true only for modules that never call external modules.

4. The address contained in the DSP register (lB) must be an even 64-bit word address whenever a swap
(7 D) ins true ti on is executed.

E-6 60384400 D

ST AR-100 INVISIBLE PACKAGE F

sponding job. Thus, each job is associated with an invisible package. When the CPU switches from monitor
mode to job mode, the invisible package for the corresponding job is automatically loaded from main memory,
beginning at the address assigned by the monitor. The invisible package data is loaded into the appropriate
registers in the CPU. Thus, the appropriate invisible package provides the necessary control and address infor­
mation to either begin a new job or continue a job that was interrupted during execution.

When the CPU switches from the job mode to the monitor mode, as in the case of an interrupt, the contents
of the corresponding registers are automatically stored in main memory as the invisible package for that job.

X denotes variable address bit. Because the fixed portion of the absolute word address is divided within the
hexadecimal character, bits 52-55 are shown as their binary equivalents.

60384400 A F-1

INVISIBLE PACKAGE CONTENTS

Word
0 16

0 Access Interrupt Cause Program Address

0 9

I not used I Breakpoint Address

0 4 16 20 32 36 48 52

I~ keyO l0B~·I key 1
l
0R+I key 2 m+I key 3

locko"' Codo. ood Koy•
0 16 27 29 39 If J1

51 53

I not used I Flag Bits I~ , I~ J2

oo< ""d oo< ""d oo< ""d

0 16

4 I not used I Data Flag Branch Register

0 16

ICS1
ICL 1 (A Field Address)

(A Field Length)

0

6 not used

0 16

ICS2
ICL2 (B Field Address)

(8 Field Length)

0 12 40

not used not used Job Interval Timer

ASCll=O EBCDIC=1
Monitoring Counters Enable

0 Fault Test Instruction Enable

9
ICS3

ICL3 (C Field Address)
C Field Len th

0

A I Current Instruction

0 16

B
ICS4

(X Field Length)
ICL4 (X Field Address)

0 32

c Partial String Data String Internal Data and Control

0 16

D
ICS5

{Y Field Length)
ICL5 (Y Field Address)

16

E Access Interrupt Cause Access Interrupt Address

16

ICS6
ICL6 (Z Field Address)

(Z Field Length)

F-2

63

63

I
63

I
63

I

!;l3

I
63

63

63

63

63

63

I
63

63

63

63

63

Word 2 Lockout Codes and Keys
0 = Must be zero
W = Lockout CPU write operations
R = Lockout CPU read operations
I = Lockout CPU instruction references

Word 3 Flag Bits
16 Flag 0
17 Flag 1
18 Flag 2
19 Flag 3
20 Interrupt flag
21 Not used
22 Load/store 1
23 Load/store 2
24 Subfunction bit 0
25 Subfunction bit 1
26 Subfunction bit 2
27 Subfunction bit 3

Word E lnterruptCause
0-11 Zeros
12 Word not in page table
13 Write operand violation
14 Read operand violation
15 Read instruction violation

60384400 c

PROGRAM STATES G

Program states carried in a field in the descriptor block usually indicate the current disposition of the program.

Mnemonic

RUNNING

WAIT ALT

WAIT TPE

WRT CNTR

WRT CNTE

RCV CNTR

RCV CNTE

RCV PDP

SND CNTR

SND CNTE

SND PDP

SND QPR

SND TTY

DUMPING

FINISH

SUSPEND

WAIT MP

60384400 c

Program Is:

In the alternator loop.

Waiting for an alternator slot.

Waiting on tape assignment.

Waiting for controller to get on disk.

Waiting for controllee to get on disk.

Waiting for message from controller.

Waiiing for message from controilee.

Waiting for message from the PDP-10

Waiting to send message to controller.

Waiting to send message to controllee.

Waiting to send message to the PDP-10

Waiting to send message to the operator.

Waiting to send message to the teletype.

1/0 being dumped to disk.

Finished; clean-up is in progress.

Suspended.

Waiting for minus page to be assigned.

G-1

Range of Codes

00-09

OA-OF

10-lF

20-2F

30-3F

40-4F

Code

00

01

02

03

04

05

06

07

08

09

OA

OB

oc

OD

OE

OF

G-2

Program is in alternator loop

Program is not in alternator, but is partially in core/drum

Miscellaneous program wait states

Message program wait states

System action for program in progress

Other

Meaning

DB free

PP put in alternator slot from DBLOD queue

PP alternator unblocked after direct page fault

PP alternator unblocked after non-terminal dump

PP alternator unblocked after new slot time

60384400 B

Code Meaning

IO

11

I2

13

I4

I5

I6

I7

I8

I9

IA

1B

IC

ID

IE

IF

20

2I

22

23

24

Waiting for alternator slot

Waiting for 1/0 device assignment

Waiting for controllee A to get on disk

Waiting for controllee B to get on disk

Waiting for controllee C to get on disk

Waiting for controllee D to get on disk

Waiting for message from controller

Waiting for message from controllee A

25 Waiting for message from the PDP-6

26 Waiting to send a message to controller

60384400 B G-3

Code Meaning

27 Waiting to send a message to controllee

28 Waiting to send a message to PDP-6

29 Waiting to send a message to the operator

2A Waiting to send a message to the teletype

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

XEQ line in, DB and keys assigned; message sent to load file management. (WAIT MP)

Drop file created, source and drop IOC's loaded, minus page in; message to scheduler

39 Terminate and kill all pages

3A Break while loading

3B PP dump, accounting finished, clean up done and #80 accounting done, dump I/O

3C Dump finished, clean up to go

3D Terminal dump error

G-4 60384400 C

Code Meaning

3E Terminal dump scheduled, no error

3F Non-terminal dump scheduled

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

60384400 B G-5

ERROR CODES AND MESSAGES H

ERROR MESSAGES

BATCH PROCESSOR ERROR MESSAGES

CONTROL CARD ERROR (AJOB)

Batch detected a control card syntax error.

JOB FILE STRUCTURE BAD (GJOB)

Record structure directory of batch input (card reader) file does not contain an ASCII mode first entry
or a separator mode (RS, GS, or FS) second entry for a job.

JOB FILE VACUOUS (JOBC)

Job control card record contains no ASCII information.

JOB CARD ERROR (JOBC)

Job card syntax error detected.

SYSTEM MESSAGE ERROR

A(1) = xxxxxxxxxxxxxxxx

B(l) =

B(3) =

A(2) = xxxxxxxx xxxxxxxx

B(2) =

B(4) =

A system message request error was detected within BATCHPRO.

ILLEGAL FIRST CARD

File size on the LOGON/STORE card exceeds 70 blocks. Enter n.ABORT, correct the card, then re­
read the deck.

LOADER ERROR MESSAGES

ILLEGAL CHAR NUMBER - BCDHEX

Illegal character number in BCD to HEX, control card has an illegal hex value. Fatal error.

60384400 c H-1

CR STR TOO BIG - CRACK

Character string is bigger than space allotted - cannot CRACK all, too many characters in input symbol.
Fatal error.

UNDEFINED NAME OR ALREADY IN GROUP #

Grouping not done because of an undefined name or the element to be grouped is already in another
group. Fatal error.

BAD ORIGIN ADDRESS FOR GROUP

When an origin address is specified, it must be on a small or large page boundary. Fatal error.

BAD FILE

The name LIBRARY is not the first word of library file. Fatal error.

ER OPENING FILE

An error was encountered in trying to open specified library input file. Fatal error.

NO ENTRY

No entry point found. Fatal error.

ER OPENING FILE

The word MODULE was not the first word of input file. Fatal error.

COMMON LENGTHS DON'T MATCH

Two common blocks of same name are not of same length. Non-fatal error.

FILE ERROR - LODER

Error. in opening input files. Fatal error.

FILE ERROR - LODTTY

Error in creating output or load map output file. Fatal error.

ILLEGAL COMMAND - LODTTY

Illegal input command to loader (illegal loader option). Fatal error.

CONTROLLEE FORMAT ERROR

Error in format of controllee option format. Fatal error.

H-2 60384400 c

FILE ERROR - P ASS2

Error in closing controllee file. Fatal error.

INT DATA ** MODE = 1 TYPE ILLEGAL

Mode 1 of an interpretive data type is illegal - probably most common with type 9 mode 1.
Non-fatal error.

INT DATA ** MODE = 2 TYPE DOES NOT EXIST

Mode 2 of an interpretive data type does not exist. Non-fatal error.

MESSAGE ERROR - PUTMES

Error in message transmitted. Control card or interactive input not properly formed. Fatal error.

DEBUG ERROR MESSAGES

filename DOES NOT EXIST

Attempt to OPEN a user specified filename, produced error code indicating filename did not exist.

OVERLAP IN BV MAP FOR filename

An attempt to OPEN a user specified filename, produced a bound virtual overlap error code.

IOC FOR filename ALREADY IN USE

Self-explanatory.

filename CANNOT BE OPENED

User specified filename could not be opened for reasons other than the foregoing.

FORMAT ERROR

User input command and/or parameters are not correct.

DEBUG ERROR. TRY AGAIN. or FATAL PROBLEM. or TRY AGAIN.

These messages come up if an error occurs (through no fault of the user) when DEBUG issues one of
the following system messages:

Send message to controller. (fct #14)
List con trollee chain. (fct #13)
GET message from controller. (fct #16)

or if DEBUG gets lost while processing a command.

60384400 c H-3

UNABLE TO MAP-IN USER MINUS PAGE or
UNABLE TO MAP-IN USER FILE

Attempt to map-in the user's minus page or bound virtual map entries, produced an error.

UNABLE TO ENLARGE DROP FILE

An error occurred during attempt to CREATE a larger drop file.

BAD COMMAND

User specified an invalid command.

EDITT ERROR MESSAGES

NO INPUT WAS SPECIFIED

Call EDITT again, specifying at least one input file name as olda parameter.

NO OUTPUT WAS SPECIFIED

Call EDITT again, specifying at least one output file name for newa parameter.

ILLEGAL FILE NAME OR COMMA OMITTED

Call EDITT again, using correct format for parameter string (olda,oldb,newa,newb).

IMPROPER FORMAT

Call EDI TT again; include parameter string in proper format (olda,oldb ,newa,newb).

OPEN ERROR

Files specified in parameter string do not exist. Create files first then call EDITT again.

CLOSE ERROR

System error.

SEND ERROR

System error.

GET ERROR

System error.

H-4 60384400 c

OLE ERROR MESSAGES

NO MODULE HEADER FOUND filename. OLE TERMINATED.

filename HEADER LENGTH CAUSES A ZERO LIBRARY

OLE TERMINATED

UNABLE TO OMIT modulename FROM LIBRARY

UNABLE TO FIND modulename's EXTERNAL ENTRY TABLE

SPECIFIED LIBRARY LENGTH TOO SMALL. OLE WILL SET LENGTH.

PARAMETER OR FORMAT ERROR FOUND

SYSTEM DETECTED ERROR

RSP CODE ___ _

SS CODE ___ _

60384400 c H-5

OPERATOR COMMUNICATION ERROR MESSAGES

Message

ABOVE USER ACTIVE, DID NOT DELETE DIVISION

ACCOUNT NUMBER MISSING

ACCOUNT OR USER NUMBER DOES NOT EXIST

ACCOUNT TABLE FULL OR USER DOES NOT EXIST

BAD TERMINATOR

CANT DROP OPERATOR

CANT SUSPEND OPERATOR TASKS

DB ALREADY SUSPENDED

DB NOT ASSIGNED

DB NUMBER INV AUD

DB WAS NOT IN A SUSPENDED STATE

DIVISION DOES NOT EXIST

DIVISION NUMBER MISSING

DIVISION NUMBER TOO BIG

ERROR IN ADDRESS FIELD

ERROR IN DAT A

ERROR IN USER NUMBER

ERROR IN TASK ID

FORMAT TYPE MISSING

ILLEGAL FUNCTION

H-6

Response From Command

DELETE

DELETE

DELETE

CREATE

DISPLAY MEMORY

DROP

SUSPEND/RESUME

SUSPEND/RESUME

SUSPEND/RESUME

SUSPEND/RESUME

SUSPEND/RESUME

DELETE

DISPLAY REPOSITORY
and DELETE

DISPLAY REPOSITORY
and DELETE

ENTER MEMORY

ENTER MEMORY
and CREATE

DISPLAY ACCOUNTS
DISPLAY TASK
DISPLAY FILES
TELL

DISPLAY TASK

FORMAT

DELETE

DELETE
CREATE
CHANGE

60384400 D

Message

ILLEGAL RESPONSE

ILLEGAL USER- -ABORT- -

INV AUD CHARACTERS

INV AUD DEVICE NAME

INV AUD FORMAT TYPE

INV AUD LEVEL

INV AUD OPTION

INV AUD PROGRAM ID

INV AUD SUB-COMMAND

INV AUD SUFFIX

INV AUD TERMINATOR

INV AUD UNIT NUMBER

INV AUD USER NUMBER

INV AUD USER/TTY NUMBER

MEMORY PROTECT ON

MISSING ADDRESS

NEW ACCOUNT NUMBER MISSI:\'G

NO ADDRESS

NO FILES FOR USER

NO MORE

60384400 D

Response From Command

CREATE

(Illegal user of operator commands)

DA TE and TIME

DATE
TIME

ASSIGN

FORMAT

BREAK and SET

PROTECT

ASSIGN

DISPLAY MEMORY
DISPLAY SYSTEM
ENTER MEMORY
TELL
CREATE
BREAK
SET

BREAK and SET

ENTER MEMORY

ON and OFF

BREAK
SET
REPLACE

ASSIGN
DATE
TIME
DELETE
CHANGE
REPLACE

DROP
ASSIGN

DISPLAY USER and DISPLAY TTY

ENTER MEMORY

DISPLAY MEMORY

REPLACE

ENTER MEMORY

DISPLAY FILES

MORE

H-7

Message

NON-DECIMAL VALUE

NO SUFFIX

NO TIME POOL FOUND

NO USER FOUND

OLD ACCOUNT NUMBER MISSING

OPTION MISSING

PARAMETERS MISSING

SUB-COMMAND MISSING

TASK NOT FOUND

UNIT ALREADY OFF

UNIT ALREADY ON

UNIT IN USE

UNIT NUMBER MISSING

UNIT UNAVAILABLE

USER ACTIVE, DID NOT DELETE

USER ALREADY EXISTS

USER HAS NO ACCOUNTS YET

USER NOT FOUND

USER NUMBER MISSING

USER/TTY NOT FOUND

VALUE MISSING

H-8

Response From Command

SET, CHANGE, and SUSPEND/RESUME

DISPLAY TASK

DISPLAY REPOSITORY

DROP

REPLACE

PROTECT

CREATE

TELL, DELETE, and REPLACE

DI SPLAY TASK, BREAK, and SET

OFF

ON

ON and OFF

ON and OFF

ASSIGN

DELETE

CREATE

DISPLAY ACCOUNTS

DISPLAY ACCOUNTS, DISPLAY FILES,
and CHANGE

DISPLAY ACCOUNTS
DI SPLAY TASK
DISPLAY FILES
TELL

DELETE
CREATE
CHANGE
REPLACE

DISPLAY USER, DISPLAY TTY,
and TELL

SET and CHANGE

60384400 c

Message

VALUE OUT-OF-RANGE

VALUES TOO LARGE

WRONG FORMAT, LENGTH WRONG

WRONG PROGRAM ID

VIRTUAL SYSTEM ERROR MESSAGES

BAD CLASS

Class specified in execute line was not I, B, P or S.

BATCH PROCESSOR RUNNING ON THAT SUFFIX

Response From Command

SET

CREATE and CHANGE

DATE and TIME

ASSIGN

User tried to LOGON with a batch suffix or BYE to a batch suffix.

CANT DESTROY EXISTING DROP FILE

Self-explanatory.

DROP FILE IOC DOESN'T VERIFY

Either the drop file does not exist or the IOC does not match the file index.

DROP FILE TOO SMALL

New drop file will not hold existing drop file page.

INVALID USER NUMBER

User tried to use a reserved number.

NO FILE

Either the file name does not exist, or the number of characters in filename was zero or more than 8.

NON-EXECUTABLE FILE

File requested is not a virtual code file (file type other than 2).

NOT ENOUGH TIME FOR THIS JOB

Time limit specified in execute line exceeds time remaining in repository bank.

60384400 c H-9

NO TL

Zero time limit (TL) specified in execute line.

NO TIME IN BANK .

Time in repository bank is reduced to zero.

OVERDRAWN

Insufficient time remains in repository bank; results from %G status request.

SAY AGAIN

Special character (sc) is not followed by system inquiry characters S, T, ?, G, I, U, OP, SU, BB, BP,
or PR.

SBU MEMORY PARITY ERROR

Parity error occurred on read or write.

SEND AGAIN

The PP state at this DB entry is zero; or job class is priority and privileged job permission flag is zero;
or job is currently in interrupt mode, explicit I/O interrupt has occurred.

SOURCE OR DROP FILE ANOMALY

IOC in bound implicit map is not 16 (source); or bound implicit map entry is outside of file bounds;
or drop file (free space) map address overlap occurred.

SYSTEM DROP FILE CREATE ERROR

Either the disk or file index is full.

SYSTEM TABLES FULL, TRY AGAIN

The XEQ buffer table is full as more than 8 execute lines have been entered; or no DB entry can be
obtained; or no user table entries are available.

TRANSMISSION PARITY ERROR

Parity error occurred on read or write.

ERROR CODES

The error codes which follow will terminate the task. Error codes are placed in word 139 (decimal) in the
minus page.

H-10 60384400 c

RESIDENT SYSTEM ERROR CODES

5 Illegal instruction

6 No message pointer follows exit force

7 Illegal request

INPUT/OUTPUT ERROR CODES

209 No source file

210 No drop file

212 No Alpha pointer

213 Alpha out of bounds

215 No error exit address

POOL FILE MANAGER ERROR CODES

11 Pool name already attached

12 Pool name undefined

13 Already in four pools

14 Pool not attached

15 May not attach to pool; user has no access to pool

16 Undefined user number

17 Duplicate pool name

18 Unable to destroy pool

19 Pool access directory full

1 A Pool list full

1B Invalid option

1 C Invalid pool name

ID Not pool boss

214 Beta buffer length error

MISCELLANEOUS ERROR CODES

33 No time left

60384400 c H-11

PAGER ERROR CODES

21 No available large page while processing a system large page fault.

22 No available large page for assignment while processing a user large page fault.

25 During ADVISE call, page size for requested virtual address did not match size of page found. Size
of the page found is located in the core page table entry, the drop file map entry, or the bound
virtual map entry for that virtual address.

27 A write violation, such as attempting to write into a read-only page, occurred for a user page while
processing a system page fault.

28 A write violation occurred while processing a user page fault.

29 A user fault for a page in the virtual system address range; out of bounds memory reference.

2A During attempt to make a drop file map entry, one of the following conditions prevails: no drop
file exists; not enough room in the drop file map for an entry; not enough physical disk space for
the entry.

2B A large page request was made when the user's job did not allow large pages, or a large page request
caused the count of large pages owned by the user to exceed the class limit or machine limit.

2C User attempted to access a non-existing library page.

USER-1 ERROR CODES

1-00 Unable to lock down core to allow I/O file transfer.

2-00 Unable to unlock core previously locked down for 1/0 file transfer.

3-00 Unable to read output file, either print or punch, from mass storage.

4-00 Unable to create output file, either print or punch, on service station drum.

5-00 Unable to open file located on service station drum area.

6-50 Error in trying to read an output file that was just written to the service station (Function C300).

7-xx Errors in closing card input file, specifically defined by xx:

H-12

01

02

03

04

05

1/0 connector was not for mass storage.

1/0 connector was out of range.

Attempt to alter public file index entry.

File type, access right, or lockout specified is illegal.

A file page is still locked down for this close.

60384400 D

8-00

10-xx

11-00

12-00

13-00

14-xx

15-00

16-xx

06 Scratch or output file is open to another program of this user.

07 Invalid name for a file with management category of output.

08 Specified I/O connector was not open.

Unable to close service station input or output file.

Error in creating card input file, specifically defined by xx:

01 File already exists.

02 No available mass storage space for this file.

03 Management category is illegal.

04 Parameter or format error occurred.

05 Operator initiated tape error occurred.

06 I/O connector is already in use.

07 File index full.

08 Standby job may not create I-tape.

09 Invalid file name.

10 Response code was preset.

11 Existing drop file cannot be destroyed.

12 Illegal type field.

15 Unable to find requested packid.

21 Bound implicit map area in minus page is full.

22 Virtual address overlap.

Error occurred in trying to read input file from service station drum area.

Error in trying to de-queue input files from service station.

Error in trying to destroy input file located in service station.

Error occurred in trying to destroy a file that could not be given to a user; specifically defined by xx:

01 File name does not exist.

02 File name conflict with 1/0 connector.

03 File still open to another active program.

04 Parameter or format error.

05 Destruction of source or drop file was attempted.

06 Illegal device number ~pecified.

Error in a list file index call.

Error in trying to destroy an output file after it was processed. xx is the same as for 14-xx.

60384400 D H-13

17-xx

18-00

19-00

20-xx

21-xx

22-00

23-00

24-xx

H-14

Unable to start batch processing task; specific reasons are defined by xx:

01 Suffix is busy or no free suffix is available.

02 User directory not on drum.

03 File not found.

04 Non-executable file.

05 Bad class.

06 Invalid user number.

07 Not authorized to run at priority level.

Unable to queue service station for processing output files.

Error in trying to transfer card input file to mass storage.

Error in trying to give an input file to its owner; specific cause defined by xx:

01 File name already exists for this user.

02 File has same name as a public file.

03 No such file exists.

04 No such user number exists.

05 Output file is improperly named.

06 File to be given is still active.

07 User number specified is that of the public list.

08 File to be given is a source or drop file.

09 Receiver of the file has a security classification less than that of the file.

10 Pool name specified does not exist.

30 Bad userid or account number.

Warning messages, specifically defined by xx:

2 unable to reduce a service station file, the full length of the file was used (Function C312).

3 unable to queue service station file, will try again later (Function C311).

55 PRINTOUT has been given files over #1000 blocks long; these files will be printed in parts.

Unable to find zip codes during output processing (Function 9, Option 9).

Output file internal characteristic is not ANSI or ASCII (Function 9, Option C).

Unable to requeue (GIVE) output file. For xx see error response code, SS, of GIVE file (Function 8).

60384400 D

SYSTEM DEAD CODES

A dead code is the product of an error detected in a part of the operating system and renders the system
inoperative (dead). The codes are grouped according to the part of the system affected.

RESIN IT

Checksum error occurred in station log-on.

2 First message received from station was not log-on.

3 Checksum error occurred on station initialization response.

5 Bad response from station.

6 Page frame in system area bad.

KERNEL

11 Job illegal; p-counter address not in core.

12 Illegal instruction in virtual system.

13 Illegal instruction in resident system.

14 Invalid message indicator from virtual system.

15 Illegal virtual system call from PAGER.

16 lllegal function code from virtual system.

17 Message has invalid station number.

18 Virtual system page zero missing.

19 User's page zero missing before run.

IA KERNEL cannot find page zero for user at initialization.

I B Checksum error on station request.

IC Attempt to release page not reserved by station.

1 D Currently unused.

IE Checksum error on station response.

IF Message page is not in core.

20 No virtual process matches the resume address.

21 Too many parameters in KERNEL call.

22 Illegal call for a KERNEL function.

23 Duplicate page table entry.

24 Attempt to delete a locked page.

25 List buff er overlaps a page boundary.

26 Missing page table entry.

27 Task queue overflowed.

60384400 D H-15

'

28 Invalid service station request received.

29 Missing page table entry.

2A Overflow of message table MESI AB.

2B Currently unused.

2C User's virtual zero page not found.

SUPPORT

31 System task queue overflow.

32 Invalid message in call to FA UL RET.

33 Missing page table entry.

34 Assigned free page not in core.

35 Duplicate page table entry detected for a free page.

36 New page entry missing from page table.

37 Invalid page table entry for a delete request.

38 Missing page table entry for requested delete.

39 Missing page table entry for requested key change.

3A Call spanned more than two pages.

3B Free page list overflow.

3C Free page stack overflow.

3D Free page list overwrite.

4D Free boat not available.

VIRTUAL SYSTEM

101

102

103

104

105

106

107

108

109

H-16

Currently unused.

Cannot recognize USER- I name.

Error from GET INPUT BUFFER call (FOOD).

UT entry not found upon completion of writing UDs to drum.

Error return on C307 call.

File management returned error on execute line.

UDSP exceeds 8 (UDSTM pointer).

MESP and PROG are non-zero in BYE path.

TTY is logged in; error and last bit set.

60384400 D

lOA State of PP in DBMIDL queue is less than IE (hexadecimal).

lOB UT in output chain, not a break with DB number zero.

lOC File name error: zero or not user 999999, 1 or 2.

lOD No PP controller when not attached to TTY.

1 OE Job task table full.

lOF DBit~ 01 DBOUT do not J?Oi11t tu a valiU DB; ur a n1essage fruu1 a cuulrullee is alreatly lhere.

110 Error received from file management.

iii IjO caii buffers fuli.

112 No REGTBL entry found.

113 At least one STCK interrupt should be set.

114 User not in UT.

115 MFPP full (HANDLE).

116 Error on first read of UDs.

117 Error on first write of UDs.

118 Error on second read of UDs.

119 Error on verifying lJDs.

1 lA Division is incorrect.

11 B TIY buffer page is not in page table.

11 C Page not in page table.

11 D No file index hole.

11 E Already in file index.

11 F Error on writing a public file to disk.

120 Error in creating system drum file.

121 Error in writing system pages to drum.

122 Security level incorrect or unrecognized error number from disk station.

123 Cannot find page in list range.

124 Not enough room in core to hold read buffer and drum overflow is not running.

125 Bad function code encountered upon completion of sequential 1/0 (greater than 4).

126 No Alpha pointer in register parameter.

127 Page not in core after fault.

128 No external in data base.

60384400 D H-17

PAGER

201

202

203

204

205

206

207

208

209

20A

20B

I 20C

20D

20E

20F

210

211

212

213

214

215

216

217

218

219

222

H-18

Access interrupt; all cause bits are off.

Write/read/execute violation in system range.

Control returned after terminate message.

Input queue full; will lose KERNEL request.

User minus page not in core.

IDOVER array full; an impossible condition.

Upon initializing a created page, either starting address was zero or ending address is out of core.

Cannot find enough unlocked small pages.

Unlocked system page in free range is about to be written to drum.

Unused.

During attempt to charge for I/O, all slot numbers in user's DB block were found to be zero.

Cannot find a free entry in user's drop file map although pointers in BSMC indicate entries are
available.

No room for a special small page to contain user's zero or minus page.

FWQ indicates sufficient free words, but they could not be found in I/O write queue.

Bad ADVISE message; number of pages or DB number is zero.

Cannot find a large page in order to reserve it; however, machine has one available and user limits
have not been reached.

KERNEL req~est message is bad; number of pages requested is zero.

Access interrupt message is bad; DB number is zero.

Absolute address for user minus page in the alternator slot is zero.

Virtual system faulting for address in user range without user key.

No drop file entry available for modified small page (occurs only with NOD RUM option).

Virtual system FPGE alternator bit set.

Virtual system NFPGE alternator bit set.

Cannot find large page in class.

Unused.

Incomplete multiple write.

60384400 D

VIRTUAL SYSTEM

301 XEQBUF is empty; or error response on disk read; or NEXB is greater than FMCE.

302 Unused.

303 Unused.

304 Unused.

305 Error on write disk pattern.

306 Error on delete range from core (DESTROY).

307 Unused.

308 Unused.

309 Error on disk read.

30A Error response on translation of virtual address (F007 of OPEN).

30B MP3BUF page not found.

30C Error on deletion of MP3BUF from page table.

30D Error on deletion of range from page table (MAP).

30E Error in F007.

30F Error on deletion of virtual range from page table (MAP).

310 Error on writing page to disk (MAP).

311 Error on reading page from drum (MAP).

312 Error on deletion of virtual range from drum (MAP).

313 Anomaly detected in virtual map.

314 Unused.

315 Error on deletion of range from core (CLOSE).

316 Error on translation of virtual address (CLOSE).

317 Error on deletion of range from page table.

318 Error on reading page from drum (CLOSE).

319 Error on deletion of virtual range from drum (CLOSE).

31 A Error on writing page to disk (CLOSE).

31B Unused.

31C Unused.

31D Unused.

31E Unused.

31F Unused.

320 Error on ADVISE message for page.

321 Error on translation of virtual address (ADVISE).

60384400 D H-19

322 Error on list drum table entry.

323 Error on reading page from drum (ADVISE).

324 Error on deletion of page from drum (ADVISE).

325 Error on deletion of range from page table (ADVISE).

326 Error occurred on writing page to disk (ADVISE).

327 Unused.

328 Unused.

329 Unused.

32A Error on writing UD to drum (GIVEF).

32B Unused.

340 A free alternator is indicated, but none is found to exist.

341 Job class of the task in the alternator cannot be identified.

342 Alternator empty but waiting tasks are not being loaded.

343 Unused.

350 Interrupt with no REGTBL pointer.

351

352

Bad previous state.

Unused.

36D Error from zero time for all division code.

36E Error on creating new UD entry (UDMOD).

36F User number check failed.

370 Unused.

400 Error on service station read.

401 Illegal program state found by loader.

402 Error in station request.

PERMANENT Fl LES DEAD CODES

•

500 Error in C500 during read of first page of PFI. (PACKSUP)

501 Error in F007. (PACKSUP)

502 Error in C500 during read of one page at a time of PFI. (PACKSUP)

503 Error in F007. (MODPFI)

H-20 60384400 D

504 Error in C500. (MODPFI)

505 Failed to find a page for disk read. (GETFI)

506 Failed to read a page of PFI. (GETFI)

507 Failed to release page of disk read. (GETFI)

508 Failure in C501 write. (MODPFI)

509 Errur in F002. (MODPFi)

50A Unused.

530 Failure in C500 read. (PACKSUP)

5 31 Error return from ENTR. (P ACKSUP)

532 Failure in C501 write. (PACKSUP)

533 Error returned from ENTR. (NEWAF)

534 Failure of F007. (WRTACC)

535 Failure of C501 write. (WRTACC)

536 Failure of F007. (WRTACC)

537 Failure of C501 write. (WRTACC)

538 Failure of C501 write. (WRTACC)

539 Failure of F002 delete page. (WRTACC)

540 Failure of F002 delete page. (PACKSUP)

5 80 Error in F007. (BAD SEC)

581 Error in C500. (BADSEC)

4201 Unrecognizable pack type indicated in pack label; 841, etc. (PACKS UP)

4202 Disk not up logically; usually a virtual system problem. (MODPFI)

4203 Unused.

4221 Error in setting up DMAP indicated overlapping files on pack. Hand eliminate one file.
(PACKSUP)

4223 File index is full. (GETFI)

4224 Unused.

4225 Duplicate pack labels detected. Re-label one pack and try again. (PACKSUP)

4226 Unused.

4231 PFI entry in PFI is not properly labeled; hand-change the label. (PACKSUP)

4232 Too many file fragments for dimensions of sorting array in P ACKSUP. Increase dimensioned size
of array and try again. (PACKSUP)

60384400 D H-21

4233 Unused.

4244 Duplicate filenames have been entered into file for user. One file on PFI must be hand zeroed
with 00001F1 C groups. (TTYMES)

4245 Unused.

9996 Zeros in DISKREAD buffer on PFI read.

9997 Zeros in DISKREAD buffer after PFI write.

9998 Zeros in DISK READ buffer before PFI write.

9999 Zeros in DISKREAD buffer on PFI read.

POOL FILE MANAGER DEAD CODES

600 Could not find I/O in page table. (FINDPL)

601 Could not open PUST or PAD files in SS drum (FINDPL); or could not close PUST or
PAD. (CLPLFI)

602 Could not read PUST file. (FINDPL)

603 Could not delete I/O pages from page table. (CLPLFI)

604 Could not write PUST. (WRITPL)

605 Could not read PAD. (READPD)

606 Could not write PAD. (WRITPD)

H-22 60384400 D

ERROR PROCESSING INFORMATION

ThP. P.rrnr nr<WP.""irn::r infnrm::ition r.onfainec1 in the r.ontrnllee file i" ll"ec1 hv errnr nrnr.e"sing :mc1 deh11SISiinSI ---- ----- !." ___ -----u --· ------------ -·· ---- .. - . -- . J .l u uu u

routines. The information is provided for every object module loaded to produce the controllee file, including
object modules on user-specified files and required object modules for library files. The format of the error
processing information area for each module resembles the format of the binary object module. (See section 7 .)
Information from the object module that would be useful for debugging or error processing is retained in this
appendix; only the loader directive tables have been deleted. The deleted tables are included in appendix D,
Loader Conventions.

Figure I-1 is a dump of a typical controllee file, illustrating the error processing information area at the end
of the dumped file.

ERROR PROCESSING INFORMATION TABLES

This appendix contains the following tables and their descriptions:

Module Header Table

Code Block Table

External/Entry Table

Debug Symbol Table

Symbol Definition Table

Pseudo Address Vector Table

Each table begins with a standard two-word header. In word 1, the name of the table in ASCII code appears;
in word 2, the length of the table is indicated in the left-most 16 bits while the remainder of the word con­
tains a back pointer, set either to zero, or as indicated in the table description.

MODULE HEADER TABLE

The module header table, as it appears in the error processing information area, contains general information
concerning the object module. It provides linkage to all the other tables in the module.

60384400 D !-1 •

Word

2

3

4

5

6

7

8

Word 3

Word 4

Word 5

Word 6

Word 7
& on

6MODULE6

64

Length 0

16 48

Module Name
64

Date + Time Created
64

T Length Processor
16 48

C Length Data Base Length
16 48

Ttype Taddr
16 48

Ttype Taddr
16 48

-- -- - ----
Name of module in ASCII expressed as 8 characters, left justified and blank filled.

Date and time module was created, in packed decimal with a positive sign. Date and time
format is: year, year, month, month, day, day, hour, hour, minute, minute, second, second,
millisecond, millisecond, millisecond.

Word length of tables, excluding code, followed by ASCII name of processor that created
module.

Word length of code, followed bY. bit length of data base area.

Each word contains a table type and an address pointer to a table of that type. The pointer is
the virtual bit address of the table. By convention, the first table described is the code, and thE
second is the external/entry table.

The following types may appear:

HEX Type ASCII Name Description

0001 CODE Code Block Table

0002 EXT ENTR External/Entry Table

0006 SYMB TAB Debug Symbol Table

0301 PAV Pseudo Address Vector Table

• l-2 60384400 D

CODE BLOCK TABLE

The code block table has a pointer in the error processing information area. The table contains relocated
program code and has the following format:

Word

2

3

Word 1

Word 2

Word 3
& on

60384400 D

Program Name

Length Pointer

Relocated Code

Program name in ASCII.

A pointer to the beginning of the error processing information area for that program.

The relocated code.

I-3 •

EXTERNAL/ENTRY TABLE

The external/entry table, as it appears in the error processing information area, has the following format. It
contains definitions for all entry points, external symbols, and common blocks.

Word

EXT6ENTR

64

2 Length Back Pointer
16 48

3 m n

16 48

4 Entry Name 1
64

5 Entry Name 2
64

'7 '7

Entry Name m
64

External Name 1
64

External Name 2
64

7 7

External Name (n-m)

64

Entry Descriptor 1
64

Entry Descriptor 2

64
•

7 7

Entry Descriptor n

64

External Descriptor 1
64

External Descriptor 2
64

7 7

External Descriptor (n-m)

64

e I-4 60384400 D

Word 3

Word 4
through
3+m

Word 4+m
through 3+n

Word 4+n
through 3+m+n

Word 4+m+n
through 3+n+n

m is number of entry point names in table.
n is number of names in table~

List of entry point names.

List of external names.

List of entry point descriptors.

List of external descriptors.

Each descriptor is of the following form:

Type Value

Type Field Symbol Type Value Field

Entry point in code Relative bit address in the code

2 Entry point in data Relative bit address in the data section

3 Constant entry point 48-bit constant

14 External procedure 0

15 External datum 0

16 Common block Bit length of the common block

ENTRY POINTS

481

An entry point is a name value defined in the procedure; it is to be referenced as an external by an external
procedure. It may be an address in the code block, an address in the data base, or a constant value.

COMMON BLOCKS

A common block is a name alterable space referenced by one or more procedures. A labelled common block
can be initialized with relocatable data. Blank common is a common block with name of eight blanks.

60384400 D 1-5 •

EXTERNAL PROCEDURE

An external procedure reference is used in a call. Having a symbol doubly defined as a common block and
external procedure is specifically allowed. All names are eight characters, left justified and blank filled.

EXTERNAL DATA

An external datum is an external that is referenced by a method other than a procedure call.

DEBUG SYMBOL TABLE

The debug symbol table, as it appears in the error processing information area, has the following format. It
contains the ASCII representation of symbols which appear in a program. The table is useful in a debugging
package as it allows a symbol to be referenced by name rather than by address. This table appears in the
error processing information area if the compiler/assembler used is capable of generating the table and the
appropriate option is selected and used during compilation/assembly.

Word

2

3

4

7

Word 2

Word 3

e I-6

SYMB6TAB

64

Length Back Pointer

16 48

Number of Symbols 0
16 48

Symbol 1

64

Symbol 2
64

. . .
Symbol N

64

Length of table including the symbol definition table. Back Pointer is the bit difference between
word 1 of this table and word 1 of the module header table.

Number of symbols in this table.

60384400 D

•

Word 4
& on

Symbols, which can be any of the following:

Variable or array names in ASCII; must be left-justified and blank-filled.

Statement line numbers in ASCII; must be hexadecimal values, right-justified
and ASCII zero-filled.

Statement labels in ASCII. Labels which are symbolic names are stored left­
justified and blank-filled; labels which are statement numbers are stored right­
justified and ASCII zero-filled.

SYMBOL DEFINITION TABLE

The symbol definition table, as it appears in the error processing information area, has the following format,
and is an extension to the debug symbol table. It provides further definition to the debug symbols including
the type of symbol, address, and mode.

Word

SYMB6DEF

2 Length
16

3 Type
16

4 Mode 0
16

Type

16

Mode 0
16

Type
16

Mode 0
16

Word 3 Symbol type:

0 Unknown

Half-word register variable name

2 Full-word register variable name

3 Variable or array name

60384400 D

0

Location

Ordinal

32

Location

Ordinal
32

Location

Ordinal
32

64

48

48

16

48

16

48

16

7

t Symboi 1

} Deflnifon

t Symbol 2 j Deflnifon

i Symbol N j Definition

I-7 e

Word 4

• 1-8

4 Line number

5 Label

Location field for symbol type:

Half-word address within register file. Since half-word values may be stored in
full-word registers, location can range up to hexadecimal 1 FF.

2 Full-word register number

3 Bit address relative to the start of the data base

4 Bit address relative to the start of the code base

5 Bit address relative to the start of the code base

Mode: Symbol mode, consisting of three parts: precision, description, and data type.
In the case of a descriptor, P and Dtype describe the contents of the referenced vector.

Otype Desc I
3

p = 0 Precision base is 32 bit, or irrelevant

= 1 Precision base is 64 bit

Desc = 0 Not a descriptor

= 1 Vector descriptor

= 2 Vector descriptor array

= 4 Sparse vector descriptor

= 5 Sparse vector descriptor array

Dtype = 0 Unknown

= 1 Logical

= 2 Integer

= 3 Real

=4 Complex

= 5 Double Precision

= 6 Character

= 7 Bit

Ordinal: The pseudo address vector ordinal of the data base or common block

60384400 D

PSEUDO ADDRESS VECTOR TABLE
(Ordinal Description)

The table, as it appears in the error processing information area, has the following format:

Word

0

2/3

4/5

6/7

8/9

2n+1
2n+2

For common:

0

0

Code Address

Data Base Address

External Address 1

External Address 2

External Address 3

External Address n

Address

16

Bit Length
16

For external symbol, referencing entry point in code:

0 Entry Address in code
16

Data Base Length Data Base
16

For external symbol, referencing entry point in data:

0 Entry in Data Base
16

Data Base Length Data Base
16

60384400 D

64

64

64

64

64

64

48

48

48

48

48

48

I-9

For external symbol, referencing constant entry point:

0 Constant Entry Value
16 48

Data Base Length Data Base
16 48

I-10 60384400 D

°' 0
w
00
+:>­
+:>-
0
0

t:I
January 1, 1qo1 1t10t09

1CGUCOCO 0000 GO~~ 4000 0080

1C002?00 000~ 0000 0000 OOAO
.... 7F. ,';?{)

1CC02CCO O~~~ OUGJ COCO GODO
••• ZE?C ""'"

jQ(OJ&CO ocoo ac00 ~0~2 0001
""" Zf: Rr. • • ·,

1(COASOO cooo 0000 onoo OAOO
1dDCA~OC OCOO OCOO 0000 OCOD
1d008700 0006 coco 4004 0000

1G01COOO
11JCH!OO
1ac10200
1r:io1o:rno
1Di0 10'•0 0
10101oc;ou

10C::'P,QOO
1Ct2R!OO
1CCi2e-200
1Cli283Cil
1C028400

1or;?9r:;oo
HP ?>16'.lO
Ht 21' '.' 0 G
lft'211'3CO
1Cl:?8'30G
lGPP.~00
1Cl'?AE00
1Ct?i3COO
Ht2.<1DOC
1Ct?.t.;•·oo
1Ct2eFOO
1Cl:290CO
irr2°1co

••• ~!:OQ •••
I; D 4 1 4 9 4 E 2 C: 2 0
"'610 CC11 ~E23
3E21 0040 7r:2tJ.
730u 2E2F ~E30
I 3 il 0 2 F.:3 '· 3 13 31
OOH OOFE 1'E~l\

?02C
ocoa
cc ?.3
0014
00::4
0 c p. 0

~020 ?O?.O 2~20 20?3
0000 0J00 OGOC jQ48
aca~ coon 0000 ~oco

5220 4F5?. ?ri4G 4Ft:;2
~q20 5445 524D 4q4E

5445 Z05S 544q 4C40
000~ 0000 0~00 0000
2020 20?8 4~4q 4C45
44S2 32?C 4E3~ 45S?
4E47 2C4q ~1?0 4C4~

4~41 544~ 4420 544F
4520 4~4F 554r. 44<.0
2020 2G?O %020 ?020
5445 52~0 4q4[41c4
2J?O 4~~F 5~4C 4420
1+S?J S'+4S ~~40 41:11,£
2020 2C?~ ?C20 20?.0
545q 2C44 4F4F 45?f

• • ..,. ZC::;;>Q • .. -#

1Ct488CC 2040 4f44 554C 4520
1[c4nqno 101~ 2020 ?04C 4C4~
1C~4rAOO 3301 0000 4003 RC80
1UtO~'f:eoc 404! 4S4E 2C::20 2C?O
1 C(C' 4 :3 C 0 0 0 0 ! 4 0 Q C il 0 0 0 ~ 0 () 0 0
!C[c 4 e cc a a o 6 s o o o o 4 o a 1 a o o o
1d04!EOO 0000 OCOO 0002 3800

DUMP OR A CONTROL.LEE FILE

0000 ooco ocoo cooo

0000 coco 0200 coeo

oaoo ~one 4COC aooo

0000 oac2 2002 0002

OO'JO ODDO oc;oc 05~0

oco•" oaca ::ir.c[) ccoo
(ICOC coco ocoo C'JOO

c:iAc race 4C'O~

7r::z4 0023 7F25
3E21:1 0001 7F2E
7F20 ~O?F 8f31
7 F2 0 32 34 3 E3 'i
fi'.!?.O ~'}~II ~E3o

PP. 0 0
cc 2 3
0 c 2 ii
QC 04
0001
C002

2C20 2Q20 ?.C2C 202q
JO'JO COCO OCCG QDCO
ocoo 0000 ocoo coco
4C41 5t+20 4552 1)?4F
41'54 454!+ ~EOO 0000

5 4'5 <! ?!.=: z 0 s 45 ? :::: 0? 0
5~'i0 4~43 4S46 5q20
31?C 4;4g 4C45 ~22C

~?~C 4q~() 4cr,4 2900
4E41 4c:;c:;2 2CS4 4841
2C30 30?0 3C3C :!O:!O
4F4F "'4<'0 4?45 2C4"'
2r.?o 2020 ?rzu 20;:0
:. S '+ 4 ?EC 0 0 0 0 0 Cu C 0
4f41' c:;420 ~?45 2040
415i, 4•:;4c, 2EOO OOCC
2043 4F40 5C1+1 s2~5

or.oo coco coco ocr.o

ocac UOCD CJOO 0000

ocoo onoo oaro 01c~

OCQO roco oaoo OJ~o

ococ coaG nocc oooa

cc~c rnnc 1000 ooc1
ocna OOLC 0030 QQOO
CCfi'i COCO 4001 UOOO

7P1E t<'.ltD ii1H~ O'.JtC
7F?E OJ21 7F27 0~21
9~2~ FrFF C?O? 0014
01GO C013 7F2D 00~1

7F~E 0035 7°00 2037
12~e Jq1~ 1c1~ nor:F

2C?O 20~0 20?0 202C
ococ ccc~ co~o 0000
OCJO OOCO OOJ8 0001
S22C 4c4F 5S4E 442E
5~4E 4142 4C4S 2054

4147 414q 4E2E 0000
5C41 52~1 4D4~ 5445
4C3C 4C~~ 41~c 41<Q
5~5! 45~2 20S] S045
4f2C 46•,q «C4c; 204C
~coc ooua oaao 0040
5C45 4E45 44~0 2~00
2C2C 2020 ?Q20 ?320
4~4~ 4C45 4E41 4~~5

415C 50~5 44?0 4~4~
2~?G 2Q~C 2020 2020
44?C 45~1 5541 4C4C
ocoo caco aooo 0000

ocoo 0000 ceca 1oon

0000 ~000 0000 1000

0000 ocno oo~o Jaco

oilco 0000 o~oo aooo

0000 oorcc ooo~ aooo
0006 00~0 4~04 ~ODO
0000 OOCO 4030 1UP.0

BE 11
1t?l'i
3t2C
3E32
., P.3 7

3f1tP

c 0 \) 0
Q 01. P.

0013
0001
o on:
IJ c I) 1

c, 0 0 0
7r:2<:1
7 F2(l

7f20
ogoo
1' Q 0 I+

7:6LtC
ccz~

~C21

~233

JO 00
H'H

2R29 2COO 0000 1000
0000 0000 coco 3000
t:;J41 5?41 4045 ~445

2C?O c;554 4q4~ ~q54
4F20 41~F 4050 ~C45

CC01 0000 0000 1COO
525~ 'COC OC~Q QQOO
41\4 5?~1 ?~4? 1041
4349 4n49 45~4 ~04C

4E47 2E?O S452 ~54E

5448 4q53 204s ~g4c

20?0 20?0 2020 2020
434; 4D50 4152 4~20

~G20 2020 2G?O ~020
2E?O 4~4F ~sso ~152

2020 2041 4E44 JOOJ
592f 2055 s44q ~C49

OOCO OQOO 0000 ~000

ERROR PROCESSING INFOFIMATION AREA

OOOCJ CHO OCOO COOO
OlAC COCO OCOO 1940
45Sll 54?0 4t:4E 5432
202~ 20?0 2020 ?u20
001F OJGO OC02 3BCO
COOC FFFF FFFF FFFF
OOOC 1F1C OOOC 1FiC

4[41 49~~ 'F20 2020
~co1 coao ~o~~ 0000
oco~ FF;;. F;FF 0440
?44C 414S 4f2f 2020
2C?O ~041 5620 2020
ococ coco 4001 0000
ococ 1F1c oooc 1F1c

5~4D 4448 4oc;~ ~020

Ou02 0000 4CQ~ ~A40

oco1 0000 0000 aco3
C001 0000 CCCO JC~O

0004 OOOu 4000 1CCO
0000 0000 4001 ~ooc

OOOC 1F1C OOOC 1F1C

@

ii
ii

MAIN. @ ii ~
6 .. , $ j 4 I l.' • #>(H) (
>I @ • #>(+ (I >, -,I

• />O -0/ 1 - 1:>2 -23
.483 4 -2~>5 6 5 -7 7

>6 !\qt>" :>; . ().

H
PARl'HETE

R nP FOPMAT EQRrR FOUND. UTILiT
Y TERMINATED. UNASLE TO ~OHPLE

T~ UTILTTY. TRY AGA!~.
SPEC!fY Pd~AM~TER~-

CFILE1,FIL E2,L=LNG,A=AOR1, 8=A
OR2,~~EPRLI~IT> USEP SPECIFIED L
NG IS LON~ER THAN FILE LNG. JOUN
CATEU TO 0000000 ~THIS FIL
E COULD NOT BE OPENED -

C.0"1PAPE
TERMINATED. FILENAME

COULD NOT BE ~APPfO-IN. COMPAR
E TEPMIN•TFD. AN~

COMPARED EQUALLY. UTILI
TY DONE.

HOOUtE MAIN. Y~DH~5
LLL ~ ~ @ ~

@ EXT ENTR a
MAIN. $MAIN.

8 PAV G:I
@ GI @

6

Absolute File Structure
Binary Card Decks C-1

Access
File Access Categories 4-3
First Access to Common Block,

Initialization - Loader 7-2
GIVE TAPE ACCESS TO CONTROLLEE

Format 4-43
Function 4-34

ACCOUNT
CHANGE FILE NAME OR ACCOUNT

Format 4-45
Function 4-34

Accounting for File Ownership 4-3
Activity

File Activity Counter 4-3
Address

Interrupt Address Stack 2-10, 2-11
Pseudo Address Vector (Loader - Object

Module) D-15
ADVISE Format 5-22
Allocation

Automatic Group Allocation (AGA) Loader
Option 7-3

Alpha and Beta Words 3-1
Format 3-2

ASCII
Mixture of ASCII and Binary Data in Card

Deck C-2
ASCII Command - Debug 8-7, 8-9

BACK Command - Debug 8-7, 8-8
BACK Directive -Dump 8-3
Batch Job

Control Card 6-7, 6-8
Dayfile 6-10
Dump Request 8-2
Input File Data Records 6-10
Output Files 6-10
Separators, File, Job, Record 6-9

Batch Loader 7-2
Example 7-6

Balch Output
Compare Utility 9-7

60384400 D

iNDEX

Copy Utility 9-6
EDITPUB Utility 9-14
Switch Utility 9-8
TCOPY Control Card Format 9-9

Batch Processing Cards
Card Reader ID 6-6
COMMENT 6-8
EXIT 6-8
Job ID 6-7
READEC 6-8

Batch Processing Sample Decks 6-5
Batch Processor Error Messages H-1
Beta

Alpha and Beta Words 3-1
Format 3-2

Binary
Mixture of ASCII and Binary Data in Card Deck

File C-2
BKPI Command - Debug 8-7, 8-10
BKPTRCommand - Debug 8-7, 8-10
BKSPC Module - SR.\1 12-3, 12-22
Bound Explicit Map 2-11
Bound Implicit Map 2-12
Buffer

EXPLICIT INPUT /OUTPUT Buffer Definition
Request 4-23

BUFOP Module - SRM 12-2, 12-13

Card
Batch Job Control Card Format 6-7
Batch Job Control Card Processing 6-8
Card Reader ID Card - Batch Processing 6-6
COMMENT Card - Batch Processing 6-8
EXIT Card - Batch Processing 6-8
Job ID Card for Batch Processing 6~ 7
READCC Card - Batch Processing 6-8

CHANGE FILE NAME OR ACCOUNT
Format 4-45
Function 4-34

CHANGE Module - SRM 12-2, 12-12
Character Set A-1
Checkpoint/Restart 11-1

Call Format 11-1
Error Codes 11-2

Index-I •

Example 11-3
Files Used 11-2
Restarting 11-2
Setting Checkpoint 11-1

CLOSE FILE
Format 4-16, 4-17
Function 4-4

CLOSE Module - SRM 12-2, 12-12, 12-13
Code Block Table

Error Processing Information 1-3
Loader - Object Module D-3

Code Relocation Table (Loader - Object Module) D-4
Codes

Checkpoint Restart 11-2
System Error Codes 2-11

COMMENT
COMMENT Card - Batch Processing 6-8

Common
Loading Common Blocks under Group Option 7-5

COMP ARE Utility
Batch Output 9-7
Card Format 9-6
Error Messages 9-7
Terminal Output 9-7

Compiler File Sequence Fields - UPDATE 10-17
Compiler Use of Temporary Registers E-1
CONTINUE Command - Debug 8-7, 8-10, 8-11
Control

Batch Job Control Card Format 6-7
Batch Job Control Card Processing 6-8
DEBUG Program Control Commands 8-10
DUMP Control Statement Formats 8-2
Loader Control Statement Formats 7-2

CONTROLLEE,CONTROLLER
Controllee Drop File Length (CDF) Loader

Option 7-4
Controllee File Format - Loader 7-1
GET A MESSAGE FROM CONTROLLEE

Format 5-3
GET A MESSAGE FROM CONTROLLER

Format 5-8
GIVE TAPE ACCESS TO CONTROLLEE

Format 4-41
GIVE TAPE ACCESS TO CONTROLLEE

Function 4-34
INITIALIZE CONTROLLEE CHAIN Format 5-13
INITIALIZE OR DISCONNECT CONTROLLEE

Format 5-11
LIST CONTROLLEE CHAIN Format 5-25
REMOVE CONTROLLEE FROM MAIN MEMORY

Format 5-17
SEND A MESSAGE TO CONTROLLEE Format 5-1
SEND A MESSAGE TO CONTROLLER Format 5-6

• lndex-2

COPY Utility
Batch Output 9-6
Card Format 9-5
Error Messages 9-6
Terminal Output 9-6

Correction History Bytes in UPDATE User Deck
10-15, 10-16

CREATE FILE, Format 4-5
CREATE FILE, Function 4-4
CREATE Module - SRM 12-1, 12-11
CREATE Utility Card Format 9-1
CREATE Utility Parameters 9-1, 9-2
Current

Current Stack Pointer (1 C) E-3

Data
EXPLICIT INPUT /OUTPUT Data Transfer 4-22
Batch Job Input File Data Records 6-10

Dayftle
Batch Job Dayfile 6-9

DDECIMAL Command - Debug 8-7, 8-8
Debug Batch Use 8-5
Debug Commands

Alter Memory 8-9
Display Memory 8-8
Examples 8-12
Format 8-6
Functions 8-8
List of 8-10
Request 8-6, 8-9

Debug Error Messages H-3
Debug Interactive Program Use 8-5
Debug Program Control 8-10
Debug Request Parameter Format 8-6
Debug Symbol Table

Error Processing Information 1-6
Loader-Object Module D-15

DECIMAL Command - Debug 8-7, 8-9
Deck

Batch Job Processing - Sample Deck 6-4
Mixture of ASCII and Binary Data in Card Deck

File C-2
DFLOAT Command - Debug 8-7, 8-8
DESTROY FILE Format 4-37
DESTROY FILE Function 4-34
DESTROY Module - SRM 12-1, 12-11
DESTROY Utility Card Formats 9-3
DESTROY Utility Output 9-3
Directives

Dump Directives 8-3
Library File Creation under UPDATE 10-18, 10-19
TCOPY 9-9

60384400 D

Directories
File Map Directories 2-9
Object Library Directory 9-18

DISCONNECT
INITIALIZE OR DISCONNECT CONTROLLEE

Format 5-11
Disk-to-Tape

Disk-to-Tape TCOPY Results 9-11, 9-12
DISPLAY Command - Debug 8-7, 8-8
DREG Command - Debug 8-7, 8-9
Drop

Drop File Map 2-13
File Creation Drop Files 4-1

Dump
Alternative Directive Input File 8-4
Batch Use of Dump 8-2
Control Statement Formats 8-2
Debugging Routines 8-1
Directives 8-3
Error Dump Causes 8-1
Initiation Modes 8-1

Dynamic Stack Pointer (lB) E-2

EBCDIC Characters A-1
EDITPUB Utility 9-14
EDITT Commands 9-22, 9-23

Command Formats 9-20, 9-21
Error Messages H-4

END Command - Debug 8-7, 8-.10
Environment Registers E-2, E-3
Epilogue Sequence Linkage E-6

Use of Environment Registers E-3
EREG Command - Debug 8-7, 8-9
Error Codes

Checkpoint/Restart 11-2
System Errors 8-1

Error Conditions under UPDATE 10-27
Error Dump Causes 8-1
Error Messages, Utilities

COPY 9-5
COMPARE 9-6
SWITCH 9-8

Error Processing Information Tables 1-1
EXECUTE Command - Debug 8-7, 8-10, 8-11
EXIT Card, Batch Processing 6-8
EXPLICIT INPUT/OUTPUT 2-12

Buffer Definition Request 4-22
Data Transfer 4-21
Format 4-21
Function 4-20
Function Request 4-21
Interrupt Request 4-21

60384400 D

Explicit File 4-4
Explicit Map, Bound 2-11
External/Entry Table - Error Processing

Information I-4

File
Access Categories 4-3
Activity Counter 4-3
Accounting for Ownership 4-3
Batch File Separator 6-9
Drop File Map 2-13
Index Entry C-1
Index Table 2-3 thru 2-6
Map Directories 2-9
Minus Page Map 2-13
Object Library 9-17, 9-19
Ownership 4-2

File Creation
Drop Files 4-1
Output Files 4-1
Private Files 4-1
Scratch Files 4-1
Write Temporary Files 4-1

File Information Table 12-3
FILE MACRO - SRM 12-1, 12-6
FILEX MACRO - SR.\1 12-1, 12-7
File Structure

Absolute Binary C-1
Mixed-Mode Records C-2
Record Structured C-3, C-7

Files
Required by Loader 7-2
Utility Card Formats 9-5
Utility Output 9-4

FLOAT Command - Debug 8-7, 8-9
FORTRAN

MDUMP - Called by IMPL or FORTRAN
Programs 8-4

Full
UPDATE Full Mode 10-2, 10-4, 10-27

Function
EXPLICIT INPUT /OUTPUT Function Request 4-22

GENFIT Module - SRM 12-1, 12-8
GENFITX Module - SRM 12-1, 12-8, 12-9
GET

GET A MESSAGE FROM CONTROLLEE
Format 5-3

GET A MESSAGE FROM CONTROLLER
Format 5-8

GET Module - SRM 12-2, 12-13 thru 12-18

Index-3 •

GETBCD Module - SRM 12-2, 12-13, 12-18, 12-19
GETFIT Module - SRM 12-1, 12-9, 12-10
GETL Module - SRM 12-2, 12-13, 12-15 thru 12-18
GETM Module - SRM 12-2, 12-13, 12-15
GETML Module - SRM 12-2, 12-13, 12-17, 12-18
GIVE

GIVE FILE Format 4-39
GIVE FILE Function 4-34
GIVE FILE Use with Output Files 4-3
GIVE Module - SRM 12-4, 12-22
GIVE TAPE ACCESS TO CONTROLLEE

Format 4-43
GIVE TAPE ACCESS TO CONTROLLEE

Function 4-34
GIVE UP CPU UNTIL I/O COMPLETES

Format 4-29
GIVE UP CPU UNTIL I/O COMPLETES

Function 4-20
GIVE Utility Card Format 9-4
GIVE Utility Output 9-4

Global Registers E-2
Group

Loader Group Options 7-5
Loading Common Blocks under Group Option 7-5
Loading Special Routines under Group Option 7-5

Header
Object Library Header Table 9-17
Object Module Header Table 7-1
Object Module Header Table (Loader) D-1, D-2

HEX Command - Debug 8-7, 8-9
Hexadecimal - Octal Conversion Table A-2

Identifiers
UPDATE Card Identifiers 10-9, 10-10

IDISPLA Y Command - Debug 8-7, 8-8
ID REG Command - Debug 8-7, 8-9
IMPL

MDUMP - Called by IMPL or FORTRAN
Programs 8-4

Implicit
Bound Implicit Map 2-12
Implicit File Input/Output 4-4

Index
File Index Entry C-1
File Index Table 2-3 thru 2-6
LIST FILE INDEX OR SYSTEM TABLE

Format 5-27
Object Library Index Table 9-20

• Index-4

Initialization
First Access to Common Block - Loader 7-2
INITIALIZE CONTROLLEE CHAIN Format 5-13
INITIALIZE OR DISCONNECT CONTROLLEE

Format 5-11
Initiating Interactive Job Execution 6-2
Input

Alternate Directive Input File - Dump 8-4
Batch Job Input File Data Records 6-10
Input Files under UPDATE 10-1, 10-2, 10-4
Merged Private Input Files Option under

Loader 7-4
Input/Output

Explicit Input/Output 2-12
Input/Output Connectors for Magnetic Tape 2-8,

2-9
Input/Output Connectors for Mass Storage 2-7

thru 2-9
Explicit File Input/Output 4-4
EXPLICIT INPUT /OUTPUT Buffer Definition

Request 4-23
EXPLICIT INPUT /OUTPUT Data Transfer 4-22
EXPLICIT INPUT /OUTPUT Format 4-22
EXPLICIT INPUT/OUTPUT Function 4-21
EXPLICIT INPUT /OUTPUT Function

Request 4-22
EXPLICIT INPUT /OUTPUT Interrupt Request 4-22
Implicit File Input/Output 4-4

Instructions
Basic Instruction Word Format B-1, B-2
Branch Instructions B-11
Designators B-2, B-6 thru B-8
Formats B-3 thru B-5
Function Codes B-9
G-Bit Usages (Machine Instructions) B-16 thru

B-19
Logical String B-14
Machine Language Instructions B-1 thru B-16
Monitor B-16
Non-Typical B-15
Register B-10
Sparse Vector B-13
String B-14
Types B-9
Vector B-12
Vector Macro B-13

Interaction/Interactive
DEBUG Interactive Program Use 8-5
DUMP Request - Interactive Job 8-2
Identifying Interactive Processor User 6-1
Interaction Between User and Program 6-3

60384400 D

Interactive Loader 7-2
Interactive Loader Exampie 1-b

Interactive Use of DUMP 8-1
Initiating Interactive Job Execution 6-2
System Requests under Interactive Processing 6-2
Termination of Interactive Jobs 6-3
TCOPY Interactive Control Line Format 9-9

Interpretive
Data Initialization Table (Loader - Object

Module) D-7
RPl"f'-::iti"n Tnitfoli7-::iti"n 1'-::ihlP {T "-::irlPr - ()hiPf't ----------·· ---·-·-·---·-·· ---·- ,-----· ~-J---

Module) D-14
Interrupt

Interrupt Address Stack ., 1() ., 11
£.-iv, ,._-i J.

EXPLICIT INPUT /OUTPUT Interrupt Request 4-22
PROGRAM INTERRUPT Format . 4-31
PROGRAM INTERRUPT Function 4-20
RETURN FROM INTERRUPT Format 4-33
RETURN FROM INTERRUPT Function 4-20

Invisible
Invisible Package Diagram F-2
Operation of Invisible Package F-1

1/0
GNE UP CPU UNTIL 1/0 COMPLETES

Format 4-29
GIVE UP CPU UNTIL 1/0 COMPLETES

Function 4-20

Job
Batch Job Control Cards 6-7, 6-8
Batch Job Processing - Sample Deck 6-5
Batch Job Separator 6-9
Identifying User under Interactive Job

Processing 6-1
Initiating Interactive Job Execution 6-2
Job ID Card for Batch Processing 6-7
Termination of Interactive Jobs 6-3

KERNEL
ST AR Resident System - KERNEL 2-1, 2-2

Language
Machine Language Instruction B-1 thru B-16

Library
Creating a Library File Using OLE 9-16
Extending a Library File with OLE 9-16
Library File Correction Directives - UPDATE

10-20

60384400 D

Library File Creation Directives under UPDATE
10-18, 10-19

Object Library File Format (see under 0)
Old Program Library Files under UPDATE (OLDPL)

10-1 thru 10-3, 10-6, 10-8, 10-10,
10-11

Omitting Modules from Library Files Using OLE
9-16

New Program Library File Format (NEWPL) 10-12
thru 10-14

N"'"' Pr,...crro::irn T 1"hro::iru P11"'" 11nrl"'r TTPT'\ATP ··- .. -·-o•-•u,,_,_,J i iivu ~.,~..,. ~·~•••....,

(NEWPL) 10-1 thru 10-3, 10-6, 10-11
Linkage

Epilogue Sequence E-7
Prologue Sequence E-6
Subroutine Linkage Conventions E-6

Link Register (IE) E-3
LIST

LIST CONTROLLEE CHAIN Format 5-25
LIST FILE INDEX OR SYSTEM TABLE

Format 5-27
Loader

Batch Loader 7-2, 7-6
Controllee File Format - Loader 7-1
Error Messages H-1
Files Required by Loader 7-2
First Access to Common Block, Initialization 7-2
Interactive Loader 7-2, 7-6
Loader Control Statement Formats 7-2

Loader Options
AGA 7-3
Automatic Group Allocation 7-3
CDF 7-4
CONTROLLEE 7-3
Controllee Drop File Length 7-4
DEBUG 7-4
Debug Routine 7-4
ENTRY 7-3
EQUATE 7-4
LIBRARY 7-3
Listable Output Loader Option 7-4
Loader Group Options 7-5
Merged Private Input Files Option under

Loader 7-4
ORIGIN 7-3
OUTPUT 7-4
Private File List Loader Option 7-4

Loading
Common Blocks under Group Option 7-5
Special Routines under Group Option 7-5

Logical String Instructions B-14

Index-5 •

Machine Language Instructions B-1 thru B-16
Machine Registers E-1
Magnetic Tape

Input/Output Connectors 2-8, 2-9
Map

Bound Explicit Map 2-11
Bound Implicit Map 2-12
Drop File Map 2-13
File Map Directories 2-9
MAP Format 4-13, 4-14
MAP Function 4-4
Minus Page File Map 2-13

Mass Storage
Input/Output Connectors 2-7 thru 2-9

MD UMP
Call Format 8-5
Called by IMPL or FORTRAN Programs 8-4
Output Formats 8-5
Use 8-5

Message Formats
GET A MESSAGE FROM CONTROLLEE 5-3
GET A MESSAGE FROM CONTROLLER 5-8
MESSAGE CONTROL 5-15
SEND A MESSAGE TO CONTROLLEE 5-1
SEND A MESSAGE TO CONTROLLER 5-6
SEND A MESSAGE TO OPERATOR 5-20
System Message Pointer 3-1

Minus Page
File Map 2-13
Layout 2-6, 2-7

MISCELLANEOUS
Format 5-31

Mixed Mode Recorq File C-2
Module

Header Table - Error Processing 1-1, 1-2
Object Library Module Table 9-20
Object Module Header Table 7-1
Object Module Header Table (Loader) D-1, D-2
Object Modules, Types of Formats 7-1

Monitor Instructions B-16

NAME
CHANGE FILE NAME OR ACCOUNT

Format 4-45
!'unction 4-34

New Program Library Files under UPDATE (NEWPL)
10-1 thru 10-3, 10-6, 10-11

New Program Library File Format (NEWPL)
10-12 thru 10-14

NUCLEUS
STAR Peripheral System - NUCLEUS 2-1, 2-2

• Index-6

Numbering
Operand Bit Numbering B-1

Object Library
Directory 9-18
Editor (see OLE) 9-15
File 9-17
File Format 9-19
Header Table 9-17
Index Table 9-20

Object Module
Header Table 7-1
Loader Tables

Code Block D-3
Code Relocation D-4
Debug Symbol D-15
Header D~l

Interpretive Data Initialization D-7
Interpretive Relocation Initialization D-14
Pseudo Address Vector D-15

Types of Format 7-1
Octal-Hexadecimal Conversion Table A-2
Old Program Library Files under UPDATE (OLDPL)

10-1 thru 10-3, 10-6, 10-8, 10-10
10-11

OLE
Creating a Library File Using OLE 9-16
Error Messages H-5
Extending a Library File with OLE 9-16
Omitting Modules from Library Files Using

OLE 9-16
Optional Parameters 9-15, 9-16
Parameters 9-15
Statement Format 9-15

On Unit (lF) E-3
OPEN FILE

Function 4-4
Format 4-8, 4-9

OPEN Module - SRM 12-2, 12-12
Operand Bit Numbering B-1

OPERATOR
Communication Error Messages H-6
SEND A MESSAGE TO OPERATOR

Format 5-20
Output

Batch Job Files 6-10
DESTROY Utility 9-3
GIVE Utility 9-3, 9-4
File Creation 4-1
FILES Utility 9-4
Listable Output File under UPDATE 10-1, 10-3,

10-6, 10-16

60384400 D

Listable Output Loader Option 7-4
MDUMP Output Formats 8-5
Print File C-7

Ownership
Accounting for File Ownership 4-3
File Ownership 4-2

Page
Minus Page File Map 2-13
Minus Page Layout 2-5, 2-6

PAGER
Error Codes H-12
STAR Resident System - PAGER 2-1, 2-2

Parameter
CREATE Utility Parameters 9-1, 9-2

Peripheral
STAR Peripheral System - NUCLEUS 2-1, 2-2

Permanent Files 1-8, 4-1
POOL FILE MANAGER

Dead Codes H-22
Message Format 5-34

Previous Stack Pointer (ID) E-3
Print File Output C-7
Privileged User Tasks 2-1, 2-2
PROGRAM INTERRUPT

Format 4-31
Function 4-20

Program State Codes G-2 thru G-5
Program State Mnemonics List G-1
Prologue

Prologue Sequence Linkage E-5
Use of Environment Registers E-3

Pseudo Address Vector Table
Error Processing Information I-9
Loader-Object Module D-18

PUT Module - SRM 12-2, 12-13, 12-15, 12-16,
12-18

PUTBCD Module - SRM 12-2, 12-13, 12-18,
12-19

PUTL Module - SRM 12-2, 12-13, 12-16, 12-18
PUTM Module - SRM 12-2, 12-13, 12-16
PUTML Module - SRM 12-2, 12-13, 12-18

Quick
UPDATE Quick Mode 10-2, 10-6, 10-27

READ Module - SRM 12-2, 12-13, 12-14
READCC Card - Batch Processing 6-8
RECALL Format 5-24

60384400 D

Record
Batch Record Separator 6-9
Mixed Mode Record File C-2
Record Structured File C-3, C-7

REDUCE FILE LENGTH
Format 4-35
Function 4-34

REDUCE Module - SRM 12-1, 12-11
Register

Instructions B-10
Layout E-5
Link (lE) E-3
Parameter Pairs E-4
Return (IA) E-2
Save Area E-3, E-4

Registers
Compiler Use of Temporary Registers E-1
Environment Registers E-2, E-3
Global Registers E-2
Machine Registers E-1
Use of Environment Registers in Prologue and

Epilogue E-3
Relocation

Code Relocation Table (Loader - Object Module)
D-4

Interpretive Relocation Initialization Table
(Loader - Object Module) D-14

REMOVE CONTROLLEE FROM MAIN MEMORY
Format 5-17

Requests, System under Interactive Processing 6-2
Resident

STAR Resident System - KERNEL 2-1, 2-2
ST AR Resident System 2-1
ST AR Resident System - PAGER 2-1, 2-2

Restarting at the Checkpoint 11-2
RETURN FROM INTERRUPT

Format 4-33
Function 4-20

Return Register (IA) E-2
REWIND Module - SRM 12-3, 12-20
ROLL Command - Debug 8-7, 8-8
ROLL Directive - Dump 8-3
ROUTE and FILE Disposition

Format 4-41
Function 4-34

Scratch
File Creation 4-1

Selective
UPDATE Selective Mode 10-2, 10-17, 10-27

SEND A MESSAGE TO CONTROLLEE Format 5-1

Index-7 •

SEND A MESSAGE TO CONTROLLER Format 5-6
SEND A MESSAGE TO OPERATOR Format 5-20
Separator

Batch File 6-9
Batch Job 6-9
Batch Record 6-9

Sequence
Compiler File Sequence Fields - UPDATE 10-17

SETFIT Module - SRM 12-1, 12-10, 12-11
SKIP Module - SRM 12-3, 12-20, 12-21
SKIPS Module - SRM 12-3, 12-20, 12-21, 12-22
SNAP Command - Debug 8-7, 8-10, 8-11
Source

Compiler Source Files under UPDATE 10-1 thru
10-4, 10-7' 10-16, 10-17

Source Files Output under UPDATE 10-1, 10-2,
10-7, 10-18

Special System Status Inquiries 6-3
SRM

SRM Data Transfers and Structuring 12-3, 12-4,
12-13

SRM File Definition and Maintenance 12-1, 12-4
SRM File Initiation and Termination 12-2, 12-12
SRM File Positioning 12-4, 12-20
ST AR Record Manager (SRM) Module Reference

Table 12-2
Other SRM/System Interfaces 12-4, 12-22

Stack
Current Stack Pointer (IC) E-3
Dynamic Stack Pointer (1 B) E-2
Interrupt Address 2-10 thru 2-12
Previous Stack Pointer (ID) E-3

STAT Command - Debug 8-7, 8-10, 8-11
State

Program State Codes G-2 thru G-5
Program State Mnemonics List G-1

STATUS Module - SRM 12-4, 12-23
STEP Command - Debug 8-7, 8-10, 8-11
String Instructions B-14
Subroutine Linkage Conventions E-5
SWITCH Utility

Batch Output 9-8
Card Format 9-7, 9-8
Error Messages 9-8
Terminal Output 9-8

Symbol Definition Table
Error Processing Information I-7
Loader-Object Module D-16

System
Dead Codes H-14
Error Codes 2-11
LIST FILE INDEX OR SYSTEM TABLE

Format 5-27

• Index-8

Message Pointer Formats 3-1
ST AR Peripheral System - NUCLEUS 2-1, 2-2
ST AR Resident System 2-1
System Requests under Interactive Processing 6-2

Table
File Index Table 2-3 thru 2-6

TAPE
GIVE TAPE ACCESS TO CONTROLLEE

Format 4-43
Function 4-3 5

Tape-to-Disk TCOPY Results 9-12
Tape-to-Tape TCOPY Results 9-13
Tasks

Privileged User Tasks 2-1, 2-2
Virtual System Tasks 2-1, 2-2

TCOPY
Batch Control Card 9-9
Directive List 9-9
Directives 9-10, 9-11
Examples 9-13
Interactive Control Line Format 9-9
Results

Disk-to-Tape 9-12
Tape-to-Disk 9-12
Tape-to-Tape 9-13

Temporary
Compiler Use of Temporary Registers E-1

TERM Module - SRM 12-4, 12-22, 12-23
Terminal Output

COMPARE Utility 9-7
COPY Utility 9-6
EDITPUB Utility 9-14
SWITCH Utility 9-8

TERMINATE Format 5-19
Termination

Termination of Interactive Jobs 6-4
TPFCN Module - SRM 12-4, 12-24

TV Card - Batch Processing 6-8

UNFORMAT Cards C-1
UPDATE

Card Identifiers 10-9, 10-10
Compiler File Sequence Fields 10-1 7
Compiler Source Files 10-1 thru 10-4, 10-7, 10-16,

10-17
Control Card Format 10-3
Correction History Bytes in User Deck 10-15
Correction Modes 10-2, 10-27
Deck Formats

Deck List 10-13

60384400 D

User Deck 10-15
YANK Deck 10-15

Directive Format 10-8
Directives

*ADD FILE, *AF 10-22
*CALL, *CA 10-26
*COMDECK, *CD 10-29
*/COMMENT 10-26
*COMPILE, *C 10-26
*DECK, *DK 10-18
*DELETE, *D 10-25
*ID ENT, *ID 10-20
*INSERT, *I 10-21
*PURDECK, *PD 10-24
*PURGE, *P 10-24
*YANK, *Y 10-22
*YANKDECK, *YD 10-23
*READ, *RD 10-19

Directory Entry Format 10-14
Error Conditions 10-27
Input Files 10-1 thru 10-14
Library File Correction 1 o..:.::w
Library File Creation 10-18, 10-19
Modes

Full 10-2, 10-4, 10-27

60384400 D

Quick 10-2, 10-6, 10-27
Selective 10-2, 10-17, 10-27

New Prognun Library Files (NEWPL) 10-1 thru
10-3' 10-6' 10-11

Old Program Library Files (OLDPL) 10-1 thru
10-3, 10-6, 10-10

Parameters 10-3 thru 10-8
Source Files Output 10-1, 10-7, 10-18

USER-I Error Codes H-12

Vector
Pseudo Address Vector (Loader - Object Module)

D-16
Sparse Vector Instructions B-13
Vector Instructions B-12
Vector Macro Instructions B-13

Virtual System Tasks 2-1, 2-2

WEOI Module - SRM 12-3, 12-13, 12-19, 12-20
WEOR Module - SRM 12-3, 12-13, 12-19
WEOS Module - SRM 12-3, 12-13, 12-19
WRITE Module - SRM 12-2, 12-13, 12-14
Write Temporary Files 4-1

Index-9 •

4J z
:::::i
en
::i::
1-
z
0
I­
::>
u

COMMENT SHEET

T!TLE: STAR Operating System Reference ~1anual

PUBLICATION NO. 60384400 REVISION D

l":;J c:\ CONTl\.OL DATA
\.i:I r:!I COR{'OR(\TION

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

nn \/f'\11 finrl it ::irli:.n11::1ti:> fnr \/('\I Ir n11rnn<::f:> 7 -- 1-- ····- ·~ ---'"'1--"- ·-· 1--· r--··---·

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: ___________ _ POSITION:---------------

COMPANY
NAME:--------------------------------~

ADDRESS=-------------------------~------

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

FOLD

FOLD

STAPLE

BUSINESS REPLY MA IL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Publications and Graphics Division
21 S Moffett Park Drive
Sunnyvale, California 94086

::>IAPU::

FOLD I ------1

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

I

I

lw

I~
I~
I a

I

I
_____________ J

STAPLE

FOLD I

I

I

I

I

I
I
I

CONTi\OL DATA &J ~
CO~ORf\TION \!:I r::J

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINNESOTA 55440
SALES OFFICES AND SERVICE CENTERS !N MAJOR C!T!ES THROUGHOUT THE WORLD

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	03-01
	03-02
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	11-01
	11-02
	11-03
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	F-01
	F-02
	G-01
	G-02
	G-03
	G-04
	G-05
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	replyA
	replyB
	xBack

