
AN INTRODUCTION TO

DIGITAl . .
COMPIITERS
Volume I

CONTROL DATA INSTITUTE ~
An Educational Service of

An Introduction
to
DIGITAL COMPUTERS

volume 1

FOR TRAINING PURPOSES ONLY

This manual was compiled and
written by members of the
instructional staff of

CONTROL DATA INSTITUTE
CONTROL DATA CORPORATION

CDI 60241600 (Formerly 08l866A)
January 1967

Copyright 1967, Control Data Corporation
Printed in the United States of America

Forevvord

An Introduction to Digital Computers is published in three volumes as a
primary text for anyone becomming acquainted with digital computers, or
desiring a review of basic concepts. Volume I considers fundamental computer
principles and basics of programming. Volume II acquaints the reader with
the basic types of logic circuits interconnected to perform logical functions.
Volume III contains information regarding the progress of a typical computer
from start to delivery, a Glossary of computer-related terms and Appendixes
to aid the student.

Throughout this manual, questions are interspersed with text material.
Answers to questions appear at the end of each chapter. For the student,
this provides a convenient way of checking progress through the text material.

A solid grasp of the subject matter contained within this manual will enable
the reader to continue into more advanced areas of digital computers.

iii

General Table of Contents

Volume I INTRODUCTION AND PROGRAMMING

Chapter I

Chapter II

Chapter III

Chapter IV

Introduction

History and Applications

Computer Mathematics

Programming

Volume II COMPUTER HARDWARE

Chapter V Boolean Algebra

Chapter VI Introduction to Logic Circuitry

Chapter VII Arithmetic Section

Chapter VIII Computer Storage

Chapter IX Control Section

Chapter X Input/Output Section

Volume III SUPPLEMENTAL AND REFERENCE MATERIAL

Chapter XI

Glossary

Appendix A

Appendix B

A Digital Computer, From Concept to Customer

Variations in Random Access Storage Devices

Tables

iv

Contents

CHAPTER I COMPUTER FUNDAMENTALS

Types of Computers • • • • •

Advantages of a Digital Computer •

Classes of Computers • •

Sunnnary

CHAPTER II HISTORY AND APPLICATIONS

Introduction • • •

The Evolution of Computing Machines

CHAPTER III COMPUTER MATHEMATICS

Introduction • •

Origin of Number Systems •

Positional and Non-Positional Number Systems

Radix of a Number System •

Modulus of a Device

Selection of a Suitable Number System

Conversion Procedures

Arithmetic Operations

Complement Arithmetic

Summary

CHAPTER IV PROGRAMMING

1-7

• • 1-9

• 1-9

• • 1-12

• 2-1

• 2-1

• 3-1

• • 3-2

• 3-5

3-6

• 3-9

• 3-13

• 3-17

· 3-32

• • • 3-50

• 3-73

Introduction • 4-1

v

Part I: Machine Language Programming

Part II: Assembler Language Programming

Part III: Compiler Programming

Part IV: Debugging Technique

vi

•• 4-10

• 4-69

• 4-89

4-109

Introduction

The first observation of a computer system leaves the average person
filled with mixed emotions about some of the strange events that transpire.
Imagine yourself, on your first visit, alone in a room with a huge,
complicated-looking computer. The indicator lights on the operator!s
console greet you with ominous winks and you subtly search for the door.
The line printer blocks your escape route and seems to be rapidly predicting
your fate. Punched cards are being consumed by the card reader at a rate
comparable to the thoughts racing through your mind. A quartet of magnetic
tape units with whirling reels is singing a dirge for your inevitable
demise. Suddenly, everything stops and the typewriter deals the crushing
b low as it rapidly types !!THE END!!.

Concerned? Hardly the proper word to express your anxiety. However,
your anxiety is due to lack of knowledge. Once properly introduced to
each element of this mad machine, you discover that each has a congenial
personality and will incessantly perform its assigned duties.

The objective of this manual is to introduce you to the concept of
digital computers. Many of the mysteries will be solved as you develop
an understanding of a digital computer system.

OrL your second visit to the computer room, the console lights wink
a greeting, the line printer is publishing love songs, the card reader is
!!curled up before the fireplace!! reading a good novel, and the tape unit
quartet is singing !!Home Sweet Home.!!

What a difference, as mysteries are replaced by knowledge.

vii

chapter I

Computer Fundamentals

CHAPTER I

COMPUTER FUNDAMENTALS

Portions of the following were taken from H. D. Leeds' Computer
Programming Fundamentals, Chapters 1 and 2, and from the Handbook of
Automation and Control by M. E. Grabbe.

Mr. I. M. Cold, who was born before the advent of automation,
solved his heating problem this way:

Capture
Cave Man

Train
Cave Man

Cave Man
throw log
on fire

Automation means automatic action. Therefore, an automated
device is one which performs its functions automatically.
Automatic devices may be divided into two main categories,
computing and controlling devices.

1. A computing device provides an automatic action
after it performs a-comparison or computation.

2. A controlling device is one which provides an action
without a comparison or computation.

Which of the following are computing devices? Justify your answers.

1. power-steering
2. thermostat
3. cash register
4. electric typewriter

Remember; a computing device provides an automatic action after it performs
a comparison or computation. A controlling device provides an action with­
out a comparison or computation. Power-steering is not a computing device
because it does not calculate. A thermostat is a computing device because
it compares the present position, or temperature, with a preset position to
control the furnace. A cash register is a computer because it finds a sum
or difference (computes), displays a n~ber, and makes a record. An electric
typewriter does not compare or compute.

1-1

All computing devices can be divided into four basic sections of parts:

a) Input/Output - this section provides the communication with
external devices. (Frequently referred to as simply 111/011.)

b) Memory (or Storage) - this section may permanently store commands
or directions or temporarily store a partial sum.

c) Arithmetic - tnis section performs the comparisons or computations.
d) Control - this section coordinates and/or sequences all of the

operations.

The following diagrams illustrate the function of a thermostat.

MERCURY 7 CURRENT SOURCE

Temperature drops to 72° - coiled spring retracts - opens gas valve -
furnace comes on - temperature rises.

1-2

Now you manually readjust thermostat to 50° - switch opens - valve closes -

furnace goes off.

CURRENT SOURCE

Temperature again drops to 72° - spring retracts but not enough to close

switch.

CURRENT SOURCE

1-3

Temperature must now drop to 50° before switch closes.

CURRENT SOURCE

Remember the four basic sections of a computer? List them!

1.

2.

3.

4.

Which of those basic sections could be subdivided into two major parts?

Right again - the I/O section.

Now list the five sections into which you have divided the computer.

1.

2.

3.

4.

5.

1-4

The terms associated with the thermostat are:

1. Room temperature
2. Coiled spring
3. Mercury switch
4. Manual setting of thermostst
5. Signal to control gas valve

We have already agreed that a thermostat is a type of computer. Our thermo­
stat computer has five sections the same as our theoretical computer. Now
list the five major sections of any computer and beside them list the
thermostat associated term that represents a computer section.

1.

2.

3.

4.

5.

Now turn to the next page to see if we agree on our answers.

1-5

1. Input - Room temperature
2. Arithmetic - Coiled spring
3. Memory - Manual setting
4. Control - Mercury switch
5. Output - Signal to control gas valve

Good! We did agree. You now understand how any computing device can be
analyzed and compared to a basic computer with four sections (five if you
consider I/O as two sections).

List five other computing devices and associate them with a basic computer.
Why not start with one of the earliest computing devices - the abacus.

l. Abacus

a. Input

b. Arithmetic

c. Memory Tough, huh? There is a
drawing of an abacus at the

d. Control beginning of Chapter II,
if you wish to look ahead.

e. Output One quick look and then back
here.

2. A voltmeter

a. Input

b. Arithmetic

c. Memory

d. Control

e. Output

3.

a. Input

b. Arithmetic

c. Memory

d. Control

e. Output

1-6

4. Gasoline Pump

a. Input

b. Arithmetic

c. Memory Would you consider the final
price or gasoline to be

d. Control the output?

e. Output

5.

a. Input

b. Arithmetic

c. Memory

d. Control

e. Output

Did you finish all five projects? Are you reasonably sure that you are
correct? If the answer to both questions is yes, continue:

TYPES OF COMPUTERS

A thermostat is a simple ANALOG computer. Let us look at a DIGITAL computer
(a cash register) and compare the two.

A cash register is fundamentally an adding machine. Each bit of data
(the price) is entered when the operator presses the keys. Another key
is pressed which causes the price to be added to a previous total. How
does this adding take place? How is the total represented inside the machine?
Actually, the operator does not have to know the internal operations in
order to use the machine. The operator does not need to know the internal
operations of a complex computer either, but it aids his understanding if
he has a basic knowledge of its function and operation.

A computer is classified as analog or digital on the basis of how the input
is transformed to the output. In the cash register, the transformation is
accomplished through gears which can take only discrete and separate positions;
it is therefore called digital. In the thermostat, the transformation is
accomplished through the coiled spring which takes continuous (not separate)
positions or states; it is therefore called analog.

1-7

Match the following areas of the cash register by drawing lines:

(A) Input - ---------- (l) Operator
(B) Output ' ~--"o_ (2) Internal gearing
(C) Arithmetic (3) Keys
(D) Memory -"'~ (4) Window or tape
(E) Control-- (5) Gears

The temperature of the air is the input to the thermostat. The coiled
spring is continually comparing the air temperature to the thermostat
setting. The mercury switch tests the results of the comparison to control
the whole operation. The thermostat remembers the specified setting and
signals the results of the comparison to the furnace, the output.

Let's ctcck your performance where you associated a cash register with the
sections of a computer. The input to the cash register is entered by pressing
the keys; the internal gearing performs the arithmetic. The positions of
the gears provide a temporary memory, and the window functions as the output.
All operations are under control of the operator. The tape output is the
permanent record.

Which of the computing devices that you have listed are digital and which
are analog?

1. Abacus
2. Voltmeter
3.
4. Gas Pump
5.

To summarize at this point, consider the following chart.

Automatic

~ Devices 1
Control Computer

~
Analog Digital

Because the object of this manual is to explain computing devices, the
expansion on the left side of the chart is not shown.

Complete the following:

1. Define a computing device.
2. Define an analog computer.
3. Define a digital computer.
4. Explain why a cash register is a digital computer.
5. Explain why a thermostat is an analog computer.

1-8

ADVANTAGES OF A DIGITAL COMPUTER

Three main advantages of a digital computer are (1) speed, (2) accuracy
and (3) cost. Let's examine each of these areas closely, using a cash
register as an example.

1. Speed - The input keys and arithmetic portion of the cash register
eliminate the need for the operator to write down a column of
numbers and then add them. Few people with pencil and paper can
keep up with an average checker at a cash register.

2. Accuracy - To analyze accuracy, consider the possible errors
that could occur. The operator may enter a number incorrectly.
The operator may incorrectly read the total. However, both of
these errors could also occur during the pencil and paper
computation; one cannot say that a cash register decreases
errors in these areas. The arithmetic performed by the machine,
however, is correct (unless machine failure occurs) far more
often than pencil and paper addition and it is in this area that
the accuracy is improved.

3. Cost - Imagine the amount of time saved by cash registers in a
large supermarket. Multiply the time saved by the employee's
hourly wage and it becomes evident that the cash register
(assuming the volume of business justifies its purchase) more
than pays for itself in a short time.

CLASSES OF COMPUTERS

Both analog and digital computers may be divided into two classes, automatic
and semi-automatic. The cash register is an example of a semi-automatic
digital computer because it needs the operator between steps. The thermostat
is an automatic computer because each succeeding step (compare the
temperature and the setting) is entered without an operator. If the full
powers of machines, which are faster and more accurate than humans, are to
be utilized, the control of these machines, as well as their calculating
ability, must be made independent of the speed and accuracy of humans.
When this occurs, the machines are called Tlautomatic Tl computers. This
type of computer usually has an operator who feeds the input to the machine,
starts the computer, and watches for obvious malfunctioning. The computer
control is built into the machine. The operator furnishes a set of
instructions (the program), which the machine automatically executes.

1-9

Complete the following:

Control

Automatic
Devices

Analog

Computer

Semi­
automatic

Digital

Using a diagram, let us look at a computer again.

By the previous definitions, it should be apparent that all four sections
are necessary to an automatic computer. The dotted lines around the four
sections are the outer dimensions of an automatic computer.

If a computer is automatic, the control is part of the machine. If the
computer is semi-automatic, its operations have an external control.

1-10

In review, complete the following diagram.

Control

Automatic
Devices

Computer

A computer frequently checks the status of itself or associated equipment.
You can also make a status check of your knowledge by completing the
following.

1. Define automation.

2. List two categories that classify automatic devices.

a. b. -----------------------
3. Explain the difference between a computing device and a

controlling device.

4. List the four major sections of a computer and explain the
function of each.

5. List the two types of computing devices and why each is unique.

6. List the three main advantages of computers.

a. b. _________________ c.

1-11

7. Each type of computing device that you listed in question 5 can
be divided into two classes. List the two classes.

a. b.

8. Explain the difference between an automatic computer and a
semi-automatic computer.

If you have any blanks, either in the preceeding questions or in your own
mind, get them filled now. Incidentally, the human brain is comparable to
a computer section - MEMORY. Most of us have several million memory cells,
or locations, that are unused. The answers to the preceding questions
could be stored in some of these previously un-used locations for future
reference. You may possibly need the information later on as you progress.

Did this chapter fulfill its objectives for you?

1. Do you know the definition of a computer?
2. Can you think of two types of computers?
3. How does a digital computer differ from an analog computer?
4. Is automation a synonym for computer technology?

If not, it's better to retreat to the beginning of the book and review
until those objectives have been satisfied.

SUMMARY

This introduction has familiarized the reader with the different types of
computers and with the items which are necessary to create a computing
device. The purpose of this book is to show how each section of a typical
computer operates and how each section must, to some extent, rely on each
of the other sections.

The following chapters discuss those sections of a typical computer to
further familiarize you with the programming and the internal workings of
the machine.

Before you study the sections of a computer, it is necessary to be-come
familiar with some fundamental concepts - number systems, programming,
boolean algebra, and logic circuits. Chapters II through VI should provide
you with those needed fundamentals.

1-12

chapter II

History and Applications

CHAPTER II

HISTORY AND APPLICATIONS

INTRODUCTION

Now that you are somewhat familiar with those devices that can be
classified as computers, let's examine the evolution of the computing
device from its origin to today's super computers.

There were fewer than 100 computers installed in the United States in 1951,
after a development period of over 300 years. Fifteen years later, at the
beginning of the year 1966, there were 30,000 computers in operation through­
out the United States. These figures alone should give you some insight
into the potential of the computer industry and your potential, should you
decide to become proficient in the computer field.

This chapter should provide you with a background knowledge of computer
development and a few of the thousands of applications for modern-day
computers in a modern world. With that in mind, shall we proceed?

THE EVOLUTION OF COMPUTING MACHINESI

Some computation aids, like the abacus, are quite ancient (see figure 2-1).

0123456789000

Figure 2-1. Abacus, and ancient counting device. The numbers
show the count the beads represent in that position.

1. Abstracted from proceedings of the IRE, May 1962

2-1

The invention of the first mechanical device capable of addition and
subtraction in a digital manner has been generally credited to Pascal,
who built his first machine in 1642. Pascal, at the age of 19, wearied
of adding long columns of figures in his father's tax office in Rouen,
France. He made a number of calculators, some of which are still preserved
in museums. One of his machines (figure 2-2) had number wheels with parallel,
horizontal axes. The positions of these wheels could be observed and the
digits read through windows in the cover. Numbers were entered by means
of horizontal wheels which were coupled to the number wheels by pin gearing.
Most of the number wheels were geared for decimal reckoning but the two
wheels on the extreme right, had twenty and twelve divisions for compat­
ability with two French coins, the sou and the denier. A carry ratchet
coupled each wheel to the next higher place. Stylus-operated pocket
adding machines now widely used, are descendants of Pascal's machine.

Figure 2-2. Pascal's Adding Machine

In 1671, Leibniz proposed a machine which could multiply by rapid, repeated
addition. One was built in 1694, but was not reliable. The first machine
to perform all four basic arithmetic operations well enough for commercial
manufacture was the Arithmometer of C. S. Thomas, built in 1820. However,
only a small number of Thomas's machines were constructed. Commercial
exploitation of mechanical calculators did not take place until the last
two decades of the nineteenth century.

Two further inventions deserve mention as forerunners of automatic
calculators. The first is the Jacquard loom punched-card system devised
to control the automatic weaving of complex patterns. Jacquard's loom,
which came into wide use during the decade following 1804, was the first
successful application of the principles of punched tape and card control
demonstrated originally between 1725 and 1745 by Bouchon, Falcon, and
Jacques.

2-2

The second major invention was the difference engine, a device for auto­
matically calculating mathematical tables of functions whose higher-order
differences are constant. Such a machine required a register for each
order of difference and a means of successfully adding the contents of
each register to those of the next lower-order register. The difference
engine was constructed by Charles Babbage, who, between 1812 and 1822
designed and built a small working model with three registers of six
digits each (figure 2-3), The final machine was to have had seven 20-
digit registers and printed output. With the backing of the Royal Society,
he obtained government support and began work in 1813.

However, the engineering of the time was not up to such a machine and
Babbage had to invent techniques for engineering drawing and for precision
construction. The machine was only partially completed in 1822, when
government support ended and work stopped. A five-register sixteen-digit
machine was later built in Sweden by Scheutz and demonstrated in England
in 1854.

Figure 2-3. Babbage's Analytical Engine

In 1833, Babbage conceived his analytical engine, the first design for a
universal automatic calculator. He worked on it with his own money until
his death in 1871. Babbage's design had all the elements of a modern
general-purpose,digital computer; it had units of memory, control, arith­
metic, and input/output. The memory was to hold 1000 words of 50 digits
each, all in counting wheels. Sequences of Jacquard punched cards were
to serve as control. The very important ability to modify the course of
a calculation according to the intermediate results obtained, now called
conditional branching, was to be incorporated in the form of a procedure
for skipping forward to backward a specified number of cards. As in modern,
computer practice, the branch was determined by the algebraic sign of a
designated number. The arithmetic unit, Babbage supposed, would perform
addition or subtraction in one second while a 50 x 50 multiplication
would take about one minute.

2-3

Babbage spent many years developing a mechanical method of achieving
simultaneous propagation of carries during addition to elDninate the need
for fifty successive carry cycles. Input to the machine was to be by
individual punched cards and manual setting of the memory counters;
output was to be punched cards, printed copy, or stereotype molds. When
random access to tables of functions was required, the machine would ring
a bell and display the identity of the card needed. Although Babbage
prepared thousands of detailed drawings for his machine, only a few parts
were ever completed.

The description of Babbage's ideas would not be adequate without a mention
of Lady Ada Augusta, Countess of Lovelace, who was acquainted with Babbage
and his work. Her writings have helped us understand his work and they
contain the first descriptions of programming techniques.

Less than twenty years after Babbage's death, H. Hollerith conceived and
developed the idea of machine-readable, unit-record documents. He
introduced electro-mechanical sensing means and apparati for entering,
classifying, distributing and recording data on punched cards. Hollerith's
machines were used during the compilation of the 1890 census reports. The
development of many types of electro-mechanical accounting machines and
early computers was based on Hollerith's inventions.

The development by J. W. Bruce and his associates of devices and circuitry,
which would transfer data between registers, or from registers to recording
devices, was an important step in the evolution of electro-mechanical
computers. One result was a machine developed by the International Business
Machines Corporation for Columbia University during 1929, which solved
mechanical problems that had thwarted Babbage.

Another significant series of developments were the Bell Telephone
Laboratories relay computers, which were based initially on the work of
G. Stibitz in 1938. These biquinary (using both the base 2 and the base
5, as does the abacus) and binary-coded-decimal machines included paper
tape input, program control, branching, self checking and many other
features later incorporated in electronic computers.,

Within the past two decades, digital computers have progressed from the
use of relays and rotating switches as computing elements, to vacuum tubes,
and to semiconductor logic circuits; from electromechanical, delay line
and cathode ray tube storage to magnetic drum, magnetic tape and magnetic
core storage. They have progressed from input/output speeds of one or
two dozen characters per second to tens of thousands of characters per
second, and fram computation speeds of a few operations per second to
millions of operations per second. Through the use of self-checking codes
and by other means, they reached high levels of reliability.

2-4

The progress of the electronic computer art could not be so rapid if it
did not concern more than machines. By programming its operation in same
new way, almost every digital computer built has been found capable of
doing more than it was originally designed to do. This has often led to
significant improvements of the computing machinery. The process was then
repeated. Early digital computers were built to solve a few important,
but relatively small, scientific problems. Electronic digital computing
machines and systems now at work:

1. perform calculations for millions of pay checks, bank accounts,
and insurance policies every day.

2. prepare weather forecasts.

3. solve scientific and engineering problems requ~r~ng from a few
hundred to billions of arithmetic operations.

4. perform calculations for the design of almost every product of
advanced .technology.

5. translate English into Braille or other languages.

6. process data for the production, inventory control, and transportation
of millions of products.

7. perform the calculations needed in many diverse fields for the
effective defense of the nation.

8. advance medical research by finding new patterns of diagnosis and
by bringing new understanding of medical problems.

9. make commerical airline passenger reservation.

10. perform calculations for satellite launching orbiting and tra~king,
and constantly accomplish untold new tasks and demonstrate
abundantly their usefulness to mankind.

The next portion of this chapter shows some acutal applications of present­
day digital computers.

2-5

THE DEVELOPMENT

1600 1700

1642 1671 1694
~

PASCAL LEIBNIZ

Adder: Multiplier:

Counting Repeated

Wheels Additions

III could not have seen
so far if I had not stood
on the shoulders of such
giants ll •

Albert Einstein

2-6

1725 1745
'---y---'

BOUCHON

FALCON

JACQUES

Cards:

Control Loom

1

1800

1786

MULLER

Adder:

Registers

OF THE COMPUTER

1800

1804
-~

JACQUARD CARD

CONTROL

~
~

1812-1822

BABBAGE

I 1900 I • 1966 2000
I I I ~~fll

I

1833 1871 1929 957 I L-y---' mlllli
BABBAGE IBM CDC I

MEMORY 1000 50-digit Developed

numbers in counting wheels their first I
CONTROL sequences of Jacquard's computer WHAT

punched cards with skip forward TOMORROW
1938

or backward on a test of results
STIBLITZ ?

added.
Bell Telephone

ARITHMETIC 50 digit add or subtract I
developed their

in one second 50 x 50 digit multiply I

in one minute.

I
Machine not completed when Babbage

died.

1888

first computer

JSl
First industrial

compu,er application

AND THE RACE

Difference Machine:
HOLLERITH WAS ON

Three registers,
Developed punched

six bits each. card format still

in use today.

2-7

1\ 11 ex c e r p J: ~ r. t: p l.. J.lL L. I::: U J... ... v... ~~:"....:::":'':';:'::'

Week by special permission.
Copyrighted 1965 and 1966 by
~cG:r a~<J-3.i ll, Inc.

At Missouri's Medical Center, lab
results are sent to the computer.

Behind computer console are the
magnetic tapes that serve as memory.

Rx for hospitals-computers
In Massachusetts and Missouri, they are taking over routine

housekeeping chores, speeding communications,

and making a wealth of data swiftly available for research

2-8

PRODUCTION

Finding new ways to make autos
Computers, numerically controlled toois, and other advanced

techniques are clipping months off lead times to

make cars. Besides economies, they will be a marketing boom

All excerpts reprinted from
Business Week by special
permission. Copyrighted
1965 and 1966 by McGraw­
Hill, Inc.

Dozens of grades and species of logs flow into lumber mill, where a computer
takes over "direction" of the uses to which they will be put.

PRODUCTION

Computers point way
to profits in lumber
Some of the largest forest products companies brought in

computers to look over their operations. The results:

In one instance, an additional $l-million in annual earnings

The tales told by American lumber­
jacks have always been as tall as
the trees they cut-such as, for ex­
ample, the logger who was so tough
that when he needed a shave he'd

2-9

knotty forest products business.
Complexity. Behind the interest

in operations research is the grow­
ing complexity involved in alloca­
tion of the industry's raw material,

Can computers call the signals?
Worsening traffic problems worry local officials all over

the nation. Working with manufacturers, they are

conducting a number of tests and hope to find new answers

TRANSPORTATION

Doubling the freight car's workday
That's what computers may be able to do, by rationalizing

the movement of freight, and thus vastly increasing

raHroad profits. They might even handle some operations

All excerpts reprinted from
Business Week by special
permission. Copyrighted
1965 and 1966 by McGraw.
Hill, Inc.

Dataplotter in Chicago receives information via telephone circuits from coml
in Minneapolis. It can print lines at more than 200 in. a minute.

Draftsman
with speed
to spare

2-10

PRODUCTION

All excerpts reprinted from
Business Week by special permission.
Copyrighted 1965 and 1966 by
McGraw-Hill, Inc.

Keeping ahead on 'real time'
System provides up-to-the-minute production data, permits

executives to act more quickly on problems. Companies

hope to improve over-all efficiency, as well as on-time delivery

SPECIAL REPORT

Computers begin to solve
the marketing puzzle

2-11

\11 excerpts reprinted from
Business Week by special
permission. Copyrighted
1965 and 1966 by McGraw­
tli11, Inc.

In 15 years, big-city commuters may own electric-powered Urbmobiles

TRANSPORTATION

Electronic roads for
tomorrow's traffic

. Cornell Lab study says mass transit isn't the solution for

travel needs in Northeast. It proposes small electric

autos, plus automation of Innl'l-h", •• 1 A __ - "".

The mindless computer, with nothing but the past to go on, runs a poor second to the economist in forecasting

ECONOMICS

How to rate the forecasters
2-12

Computers whiz through masses of data, release attorneys for more time with clients 2nd in court

PRODUCTION

When computers do the digging
Lawyers are shifting much of their research burden to

commercial computer services that speed

up the hunt for statutes, key decisions, or previous rulings

Case research, the dusty and time- in full-time businpcc ; ... 1\.;

consuming chore necessarv in ~- ..

All excerpts reprinted from
Business Week by special
permission. Copyrighted
1965 and 1966 by McGraw­
Hill, Inc.

PRODUCTION

Cement strives to pour
the proper profit mix
The drive to increase production and keep costs down has

resulted in use of some startling new machinery.

But it also has given industry an overcapacity headache

144 PRODUCTION

2-13

PRODUCTION

A lot of little users
share a big computer
If you get enough small customers, you can keep even

a giant computer busy through time sharing, selling service

the way a utility sells power. Therein lies a new industry

BUSINESS WEEK August 7,1965

All excerpts reprinted from Business Week
by special permission. Copyrighted 1965
and 1966 by McGraw-Hill, Inc.

2-14

Pillsbury Co.'s information systeD'
headed by James Rude, simulate
markets, aids in scheduling crops
and processing.

128 SPECIAL REPORT

PRODUCTION

IBM buys its own sales pitch
It has fitted out one of the world's most highly automated

design and production lines to make huge quantities

of semiconductors for its System 360 computers in six plants

J
h job specifications becoming more and more precise, recruiters turn to computers to put a man in the management seat

JANAGEMENT

Picking top men-by electronics
Electronic data processing equipment is being used more

and more in executive recruitment. New systems .

can keep up-to-date records on both jobs and applicants

2-15

All excerpts reprinted from
Business Week by special
permission. Copyrighted
1965 and 1966 by McGraw-Hill,
Inc.

IBM location
needs a scientist
or professional

Job requirements
listed on
requisition sheet

Clock reads 1:50 as a wrist electrode is
attached for the electrocardiogram and
telephone relay to Washington ...

Computers move up
in personnel ranks
IBM's new Recruitment Information System-Iris-is most

sophisticated electronic machine yet for matching

men and jobs. The key is its 12-page Data-Pak application form

Diagnosis by computer
speeds heart checkup
A new electronics system for analyzing electrocardiograms

in minutes uses a central information bank that will

some day help doctors anywhere to spot heart attacks in time

Doctors have one dl'vice that's a
two-edged s\\"ord in the fight
against heart i.lttacks. The electro­
cardiogram helps them (1) spot and

L - -- __ .1:.:""" ~1", .. "r" 1;1-(,1" tn

ically in New York. The computer
also sent back the average number
of heart be~ts per min., and gave a
brief written analysis of the data.

Lowerina costs. The applications

Optical readers turn a fresh page
All excerpts reprinted from

Electronic processing of vast quantities of records is Business Week by special
permission. Copyrighted

passing from first to second generation machines that can read 1965 and 1966 by McGraw-Hill ~

1,200 characters a sec.; recognize more than 100 type faces Inc.

2-16

chapter III

Computer Mathematics

CHAPTER III

COMPUTER MATHEMATICS

INTRODUCTION

Before we begin our study of the digital computer, there are several other
subjects that are worthy of note and, quite frankly, necessary in our
understanding of a computer.

One of these subjects is the communications medium between the user and
the device. Even if the computer could react to voice commands, the language
that it uses must be understood by the programmer, the operator, and the
engineer responsible for its maintenance.

The language of the computer consists entirely of numbers or numerical
symbols. Because the operation of one computer may be based on one number
system and a different computer on a different number system, it is necessary
for us to be familiar with number systems in general.

The objectives of this chapter are to teach you:

1) the origin of number systems.
2) the difference between positional and non-positional number systems.
3) what is meant by the radix of a number system.
4) what is meant.py the modulus of a device.
5) positional values of numbers with different radices.
6) conversion procedures between two numbers of different radices.
7) arithmetic operations upon numbers of a given radix.
8) what is meant by complement and how to find the complement of

any number.
9) what happens when the results of arithmetic operations exceed

the modulus of the device.

Well, it looks as though we have a job on our hands. You will be informed
as you progress through the chapter when each of these objectives should have
been satisfied. If you do not fully understand that topic, retreat and
try again.

3-1

ORIGIN OF NUMBER SYSTEMS

It is difficult to date the origin of a given number system, but let's go back in time.

and back

~rth of Christ

500

1600

further still

~
IOOOBC

IOORC

3-2

and further still

times

Early Egyptians

to Charlie the Caveman.

Charlie's life was simple -- and so were his m~thematical problams. Howev~r,

he was a good hunter and was able to provide his family with an ample supply
of dinosaur steaks and filet of mastodon. He kept track of his prowess as a
hunter on his fingers, or digits.

One day, while Charlie was swinging his stone axe in close battle with an
overly-ferocious dinosaur, a neighbor from several caves down the gully
yelled a query as to how many dinosaurs that would make for the season.
Charlie held up seven fingers, lost his grip on his axe, and nearly became
hors d'oeuvres for a dinosaur dinner.

----.... "

One close call taught Charlie a lesson -- there must be a better way. H~
tried keeping count Qy using a white rock for each dinosaur and a black
rock for each mastodon that he killed. That system worked better but
every passing beast kicked his rock pile and made Charlie lose count. In
anger, Charlie threw his stone axe at the side of his cave. Much to his surprise,
it left a permanent mark on the wall of his dwelling. Charlie had a system.

3-3

When Charlie passed on to that happy hunting ground, the inside of his cave
looked like the fossilized rib cage of a boa constrictor.

Figure 3-2. This may have been the first event of recording numbers

Let's advance with time to 3000BC and the early Egyptians. They had a
number system (figure 3-3) which allowed them to express their large quanti­
ties of soldiers or cattle without recording a mark for each item. About
the same time (give or take a thousand years), the Chinese were developing
their own number system, also quite unique.

When Christ was born, the Roman Empire was gaining strength and the Romans
devised their own number system, that of the familiar Roman numerals. This
system is still in use today, but is limited in application.

The Mayan Indians of the Americas were discovered around l500AD. They were
highly civilized when discovered and had their own number system.

An example of numerical symbols for several civilizations is shown below.
Each civilization apparently developed its own system, either due to lack
of communication or beeause a different system failed to satisfy their need.

Figure 3-3. Number Systems

3-4

It's difficult to pinpoint the or~g~n of our decimal number system, but
several authorities claim that it is traceable to Sanskrit, an ancient Indic
language used by the Hindus. It consisted of nine basic characters which
expanded to the present ten when the Arabic civilization added their own
character for zero. This modified system was generally accepted throughout
Europe in the seventh century and was fully developed by the time civilization
expanded to the new world.

This development of a number system indicates the probable origin of our
present-day decimal number system.

POSITIONAL AND NON-POSITIONAL NUMBER SYSTEMS

We have already discussed several types of number systems including the
early Egyptian and the Roman numeral system. The Roman numeral is an
example of a non-positional number system because the value of a symbol
is always the same, independent of where it falls in the number. For
example:

I always means one
V always means five
X always means ten

Therefore, XVI means 10 + 5 + 1 or 16. Combinations of symbols have separate
meanings: IV means 4, while VI means 6. Construction dates of various
historical buildings across the country are still recorded in Roman numerals.
One of the main disadvantages of non-positional numbers is that they do not
lend themselves to easy arithmetic operations.

For example:

Add MXCVII
MM

Of course the answer is MMMXCVII but how did you get it? You probably
converted MXCVII to 1097 and MM to 2cro, then came up with 3097 which,
reconverted to Roman numerals, becomes MMMXCVII.

We stated that the Roman numeral character I always has a value of one,
regardless where it appears in the number. This means that III equals
1 + 1 + 1, and VI equals 5+1.

With that in mind, try another example:

Record the value of 29 in Roman numerals
Subtract 1 (I in Roman Numerals)

Leaves

XXIX
I

XXX - which is equal
to 30 in decimal.

If you subtract 1 from 29 in decimal, you don't get 30r
Possibly the operations were slightly "slight of hand'! but at least,
you got the idea.

We're not interested in dating buildings, nor in non-positional number
systems for that matter. However, we do know what a non-positional number
system is, and also know its drawbacks.

3-5

Let's now look at the other side of the picture -- the positional number
system. With this system, the position in which a digit of a number falls
determines the value of the number. Each succeeding position to the left of a
given digit is same multiple of the lower digit. In our familiar decimal
number system, this multiple would be 10. The first column to the left of the
(decimal) point is the ones column, the next is the tens column, etc.
For example:

m2!
x Ten Thousand 10000
x One Thousand 2000
x One Hundred 300
x Ten 40
x One 5

12345 1 2 3 4 5 12345

Moving the (decimal) point to the right one position would increase the
value of the number by a factor of 10 and to the left would decrease the
value of that number by a factor of 10.

123450. and 1234.5 respectively.

This type of number system does lend itself to easy arithmetic operations
and will simplify our job of trying to make a number system compatible
with a digital computer.

Now that we know the difference between a positional and a non-positional
system, we can proceed to bigger and better things. Incidentally, was the
Chinese number system positional or non-positional? No wonder they came up
with the abacus.

RADIX OF A NUMBER SYSTEM

Any positional number system has a radix (or base) associated with it.
By definition, radix means a number that is arbitrarily made the funda­
mental number of a number system. A more suitable explanation may be:
The number of distinct values that may be expressed in any given position,
starting with O.

For example: In the ones column of a decimal number, we could express
any value 0-9. These are the 10 decimal digits so the radix of a decimal
number is 10. If this is true, what is the largest number that could be
expressed in the ones position if the number had a radix of 5? Starting
with 0 we would also include 1, 2, 3, and 4; five distinct values according
to our definition. The radix of a number system is usually indicated by
a subscript following the number. Example: 1234510' where the subscript
10 indicates the radix of the number 12345. The decimal system is so
commonplace we do not usually bother to indicate the subscript 10; however,
from this point on, the radix should not be assumed and, therefore, should
be indicated.

3-6

Another interesting fact is that the tens column of a radix 10 number
suddenly becomes the fives column of a radix 5 number and the twos
column of a radix 2 number. The symbol 10 (one-zero, not ten) always
represents the radix of its own system. This is true because the radix
is one unit larger than the largest character. For example:

r-I _________ ~;~ ~ l~
1010 is equal to

whereas

__ - --------~: 0
1

Xx I.
105 is equal to

and

r'1-----------~:~ ~
102

5
1

10
o

1010

5
o
510

2 = 2
1 = 0

210

Now, let's try the same thing with another number.

I r-I _____________ :~~ ~ 1~
2210 is equal to

3-7

20
2

2210

Radix 10

Radix 5

Radix 2

whereas

1"'1 ----------.. : ~ : i
225 is equal to

10
2

1210

and

1..--, -----~:
222 is equal to

7 •
Now we have a problem and also an impossibility. We are trying to express
the decimal equivalent of a number with a radix of 2. According to our
definition of radix, we could only express the digits 0 and I in the
radix 2 number system. The number 22 would require a radix of at least 1.
The number 222' therefore, is an impossibility.

How many of the following numbers are also impossibilities?

l. 11011012

2. 12345677

3. 989

4. 1000
10

5. 778

6. 707077

7. 1234
9

8. 432107

9. 000108

10. 100002

Review the definition of radix and re-check your answers. Only examples
2, 3, and 6, are impossible numbers. If you do not agree, you have mis­
interpreted the definition of radix. If so, turn back a few pages to the
beginning of this section and start over. If we agree, you now understand
the definition of radix and you deserve a 50 nanosecond rest (radix 10).

3-8

Know how long that is? Your rest period is 50 one-billionths of a
second. We'll soon discover that to be a substantial period of time,
when talking about some computer operations.

Rest period is over so let's continue.

MODULUS OF A DEVICE

The modulus of a device can be defined as the number of unique quantities
the device can express. The modulus is expressed as the radix of a
number system raised to some exponent.

The odometer (mileage indicator) of an automobile looks something like this:

The following odometer reading could be expressed in radix 10 as

9 x 104

+
8 x 103

+
7 x 10 2

+
6 x 10 1

+
5 x 100

191817J6151 (disregar d tenths)

The largest number that could be expressed would then be

99999
10

•

3-9

If we include the value 00000, we would have 100,00010 distinct values
that could be expressed by the odometer. The number 100,00010 could be
expressed

as 1 x 105

+
104

° x
+

a x 103

+
102

° x
+

° x 101

+
a x 10°
1 x 105

100, 000.

or more simply as 105 , the modulus of the odometer. Notice that the exponent
5 is also the number of discrete positions available in our odometer.
How would you express the modulus of the following odometers?

1. I I I I radix 3

2. 1 I I radix 9

3. radix 2

4. radix 10

5. I I I I I I I I I I I I II I I J radix 5

Back to the definition of modulus and how the modulus of a device is expressed:
The radix of a number system raised to some exponent.

In example 1, the radix is 3 raised to the exponent 6. The modulus, there­
fore, can be defined as 36 .

Example 2 has a radix of 9 with the possibility of expressing 94 different
quantities. Hence, the modulus 94 •

3-10

Example 3 modulus 23

Example 4 modulus 102

Example 5 modulus 516

With all this in mind, how would you express the modulus of the following?

I) I I I Radix 2

If you answered this one as modulus 224, you are correct. Keep this example
in mind for later use. It will become very important in further study of
number systems associated with a digital computer.

Now that we completely understand modulus and radix, let's look at some other
examples.

In another device, assume that

each position can express distinct values of 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,
and F. What is the radix of our new number system? Well, how many distinct
values can be expressed in a given position? The correct answer is 16, making
the radix of our device, by definition, also 16. The modulus of the device
having five positions is expressed as 165 •

Certain equalities exist between radix 16 and radix 10. Let's compare them.

3-11

Now, letts examine our radix 16 device with the following contents. What
would be the decimal equivalent?

..------------15 x 65,536 = 983,040
r--------_15 x 4,096 61,440

...------15 x 256 3,840
~----15 x 16 240

.-----15 x 1 15
L, 048,575 10

Remember, the radix of the device was 16, so the value of each positional
character is 16 times the value of the character immediately to its right.

Just for practice j letts do a few more.

--- x 10
x 10
x 10
x
x 10

10

B12 11 10
?

Radix 12

x

?

10

A 9 0 3 10
Radix 11

Your solution to the radix 12 problem should look something like this:

124 20,736 so 11 x 20,736 = 228,096
123 1,728 11 x 1,728 = 19,008
122 144 11 x 144 = 1,584
121 12 11 x 12 132
120 1 11 x 1 = 11

Therefore BBBBB12 = 248,831 10

3-12

And your solution to the radix 11 problem should look something like

All 1°10 and 113 1,331 Thus A x 1,331 13,310

911 910 and 112 121 9 x 121 1,089

III
SO

°Il 0 10 and 11 ° x 11 °

3 11 310 and 11° 1 3 x 1 3

Therefore A903 1l 14,40210

If our answers agree and you completely understand what you have done, we
have satisfied the objectives through number 5. With your solid under­
standing of modulus, radix, and positional values of numbers, you are now
ready to proceed. If your understanding is not solid, review this section.

SELECTION OF A SUITABLE NUMBER SYSTEH

If you were to design a modern digital computer, you would first
decide upon a number system, or radix, on which to base your design
criterion. Assume that you decided to use the familiar decimal number
system and you are now ready to begin. Remember that the decimal system
has a radix of 10 which means that 10 distinct values could be expressed
in each position. We have already talked about a similar device, the
odometer which looked something like this:

The number 9 in the units position means that we must also be able to
express all values below it including 0. A total of ten different digits
could appear in that position. Each of these positions will be represented
by an electronic circuit in the actual computer. If a transistorized
circuit is used to represent that position, the circuit must be capable of
conducting at ten different levels, each level representing a decimal
digit. As a transistor started to weaken, a voltage level originally
intended to represent a 910 could then be misinterpreted to represent
81Q or 710 or some other value, depending upon how much it weakened.
Th1s would result in gross calculation errors and transform the computer
into a useless heap of electronic components.

One of the more common applications of a transistor is that of a switch,
fuot the willow type you recall from childhood, but the electrical type,
similar to the wall switch). We realize that that type of switch has two
positions, or states, either "off" or lion." A switching transistor also
has two states -- off or on, conducting or non-conducting, saturation or
cutoff, high level or low level, yes or no. What number system has only
two discrete values comparable to the off or on of a transistor? ______ _
The radix 10 system has 10 values, the radix 5 system has 5 values, so it
must hold true that a radix 2 system would have two values. Remember the

3-13

definition of radix? What would those two values be? Don't forget that
we always start with O. You're right! The two values would be 0 and 1.
Henceforth, we will refer to the radix 2 system as the binary (bi meaning
two) number system.

The majority of digital computer systems are designed around the binary
mnnber system. This means that if we wish to add

10,00010

and 5,00010

We come up with

Which is equal to 15,00010

010 011 100 010 0002

001 001 110 001 0002

011 101 010 011 0002

That looks like a lot of ones and zeros with not much real meaning, doesn't
it? You're right, but consider for a moment a long-hand multiplication
problem:

x
1 234 567
7 654 321

1 234 567
24 691 34

370 370 1
4 938 268

61 728 35
470 740 2

8 641 969

9 449 772 114 007
What were we really interested in as we worked the problem? Right! The
solution. We were interested in the intermediate steps only because they
were necessary to achieve a result. Likewise, our primary interest in the
computer is that it will provide us with a result, an answer, or a solution
to a problem. From a mathematician's point of view, he couldn't care less
what happens within the computer. Operations will be taking place in
billionths of a second, at a speed almost beyond comprehension. When the
computer stops, we will be interested in the result.

That result was formed by combinations of ones and zeros. If we could find
a simpler method of displaying the results of calculations other than with
only ones and zeros, it would simplify the interpretation of results
achieved by the computer.

This is exactly what is done and is also why we label a computer as an "octal ll

or a "hexadecimal" machine. Octal is derived from the Greek prefix, okt -­
meaning eight; hexadecimal is derived from two Greek prefixes, hex--
meaning six and dek -- meaning ten (16). The label "octal" or "hexadecimal ll

indicates that the computer's results are displayed in octal or hexadecimal
although internal operations are in binary.

Octal and hexadecimal displays, readouts, or printouts are quite useful
and quite easily adapted to a binary system because both eight and sixteen

3-14

are int~gral powers of two. One octal (radix 8) digit may be expressed by
t~ree b1ts (8 = 2x2x2) and one hexadecimal digit may be expressed by four
b1ts (16 = 2x2x2x2). The term BIT is derived from BInary digiT. In a radix
2 number system, each succeeding position to the left is equal to twice
that of its predecessor. For example:

E :::: r-;20:1 11~ --
I 1 12 7

A 1 in the 22 position would have a decimal equivalent of 22 or 4,
whereas a 1 in the 21 position would have half that value (2 1 or 2).

A 0 in any position gives that position a value of O. This means that the
22 position could indicate a value of 4 or a value of 0, but nothing else.
The 21 position would have a value of either 2 or 0 and the 20 position
would indicate a value of either 1 or O.

Let's adopt a set of rules for counting that will remain valid for any
radix number system using positional notation.

1. Starting with zero, add one to the least significant digit until all
basic characters have been used.

Radix 2 Radix 8 Radix 10 Radix 16

0 0 0 0
1 1 1 1

2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7

8 8
9 9

A
B
C
D
E

F

2. Since we have already expressed the largest value for that position, a
larger number would require two digits. Always start the series of two
digit numbers with 10 (one, zero).

Radix 2 Radix 8 Radix 10 Radix 16

10 10 10 10

3-15

3. Whenever any digit reaches its maximum value, replace it with zero and
add one to its next more significant digit.

Radix 2 Radix 8 Radix 10 Radix 16

0 0 0 0
1 1 1 1

~10 2 2 2

3 3 3
4 4 4
5 5 5
6 6 6
7 7 7

~10 8 8

9 9
~10 A

B

C
D

E

F
~10

4. When two or more consecutive digits reach their maximum value, replace
them both with zeros and add one to the next more significant digit.

Radix 2

10
11

~100

110

111
~1000

Radix 8

76
77

~100

276
277

~300

To re-state a previous point:

Radix 10

98
99

~100

398

399
~400

Radix 16

FE
FF

~100

CFE
CFF

~DOO

The symbol 10 (one, zero) always represents the radix of its own system.
This is true because the radix is one unit larger than the systemls largest

3-16

(

character, and according to rule

r- 21 2
Binary 10

-r-81 8
Octal 10

Let's try counting

in binary, in octal,

0 0
1 1

10 2
11 3

100 4
101 5
110 6
111 7

1000 10
1001 11
1010 12
1011 13
1100 14
1101 15
1110 16
1111 17

10000 20
10001 21
10010 22
10011 23
10100 24

')
.;).

in

.,---101 = 10
Decimal 10

Hexadecimal
16

decimal, and in hexadecimal

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 A
11 B
12 C
13 D
14 E
15 F
16 10
17 11
18 12
19 13
20 14)

It looks as though 101002, 248 , 20 10 , and 1416' should all equal the same
quantity~ Let's try to prove it.

CONVERSION PROCEDURES

Three new number systems have been introduced; binary, octal, and hexadecimal.
Many others exist and are sometimes used in computing devices. Each number
system is unique and has distinct advantages not common to other systems.
The objective of this section is to teach you how to determine equalities
between numbers of different radices. You should then be able to associate
any given number system with any other number system.

One procedure, polynomial expansion, can be used for all conversions. In
some cases, a simpler method will be illustrated. If you forget that simpler
method, you can always revert back to polynomial expansion.

3-17

An example of the polynomial expansion of a decimal number is shown below.

~------1 x

ir===2X
II r~==~ ~

1 2 3 4 510

4 10 = 1 x

103 = 2 x
102 = 3 x
10 1 = 4 x
10° = 5 x

10,000 = 10,000
1,000 = 2,000

100 = 300
10 = 40

1 = __ ~5
12,34510

This time, use the same characters but a different radix. Find the decimal
equivalent of 12345 octal. An exponential powers table is located at the
end of this chapter.

~------1 x 8
4 = 1 x

83 = 2 x
82 = 3 x
81 = 4 x
80 = 5 x

4,096 = 4,096
512 = 1,024
64 = 192

8 = 32
1 = 5

5,349 10

Now try the same example in hexadecimal (radix 16)

,--------1 x

~n
1 2 3 4 5

16

and again using radix 6

~------1 x

4 16 = 1 x
163 = 2 x
16 2 = 3 x
161 = 4 x
16° = 5 x

4
6 = 1 x
63 = 2 x
62 = 3 x
61 = 4 x
6° = 5 x

65,536 = 65,536
4,096 = 8,192

256 = 768
16 = 64

1 5
74,565 10

1,296 = 1,296
216 = 432
36 = 108

6 = 24
1 = 5 ---1,86510

Find the decimal equivalent of 1234514 and 12345 12 to complete the table.

12345 16
12345 14
1234512
1234510
123458
123456

74,565
10

---10
---10
12,345 10
5,349 10
1,865 10

3-18

Could you find the decimal equivalent of 123454 and 123452? Explain your
answer.

The same procedure remains valid for fractions. The only difference is
that we are now working with negative exponents.

Example 1 0.1234516 -----10

.--______ 1 x 16- 1 = 1 x

16- 2 = 2 x

16-3 = 3 x

16- 4 = 4 x
16-5 = 5 x

1/16
1/256
1/4096
1/65,536
1/1,048,576

The least common denominator is 1,048,576 which renders this equality

1 x 65,536/1,048,576 = 65,536/1,048,576
2 x 4,096/1,048,576 8 , 192/ 1 , 048 , 576
3 x 256/1,048,576 768/1,048,576
4 x 16/1,048,576 64/1,048,576
5 x 1/ 1 , 048 , 576 5/1,048.576

74,565/1,048,576

and by long division = 0.07206 10

Example 2

which is equal to

1 x
2 x
3 x
4 x
5 x

0.123458 -----10

,...--------1 x 8- 1 = 1 x

8- 2 = 2 x
8-3 = 3 x
8- 4 = 4 x

8- 5 = 5 x

,--______ 2 x

4,096/32,768 4,096/32,768
512/32,768 1,024/32,768

64/32,768 192/32,768
8/32,768 32/32,768
1/32,768 5/32,768

5,349/32,768

3-19

1/8
1/64
1/512
1/4096
1/32,768

0.1632310

Example 3 o . 123456

_------1 x

ir===2X
,IF::

0.12345

-1
6 1 x
6- 2 = 2 x
6-3 = 3 x
6- 4 = 4 x

6- 5 = 5 x

------10

1/6
1/36
1/216
1/1296

1/7776

1,296/7,776
432/7,776
108/7,776

24/7,776

5/7,776
1,865/7,776 = .2398410

Find the decimal equivalents of 0.1234514 and 0.1234512 to complete the
following chart.

0.1234516 = 0.0711110
0.1234514 = 0. __ 10
0.123 4512 = 0· ___ 10
0.12345 10 = 0.12345 10
0.123458 = 0.16323 10
0.123456 = 0.2398410

Again, let's examine the answers.
(non-linear) already established?

Do your solutions agree with the progression
They should!

Remember the counting table back on page 3-17? The bottom line of that table
indicated that 101002 , 248 , 20 10 , and 1416 were all equalities. We should
now be able to prove those equalities with the expansion process.

Problem 1. 1010°2 = _____ _
10

1 x 24 = 16
1 x 22 = 4

20 10

Problem 2 248 10

2 x 81 = 16
4 x 80 = 4

20 10

Problem 3 1416 =-----10

1 x 16 1 = I6
4 x 160 = 4 11r---------

1416 20 10

3-20

Well, thatTs a relief. They are all equalities. Compare them to

1 $2.80
English Pound American Money

1000
Japanese Yen

112 1750
Taiwan Yuan Italian Lira
(N.T.Dollars)

(legal exchange rate as of late 1965)

Each is a different amount in a given (monetary) system yet each would
purchase approximately the same amount of goods in this country. Therefore,
they are considered to be equalities.

Before going on to other methods, letTs check our progress to this point
by working a few practice problems. You may check your answers with those
listed on page 3-76 at the end of this chapter. A table of exponential
powers is also listed at the end of this chapter on page 3-75.

Practice Problems (Polynomial expansion method)

1. 101010102 = ______ 10
2. 70348 10
3. ABCBA16 10
4. III 000 1112 10
5. 67898 10
6. F4240l6 10
7. 0.1100112 10
8 • O. 12348 10
9. 0. ABAB16 10

10. 0.000012 10
11. 0.40008 10
12. 0.FEED16 10

If your answers check with those at the back of the chapter, congratulations!

If they donTt, back you go.

3-21

Perhaps you have already noticed that all of the conversions to this point
have been to radix 10. Also, all of the mathematical operations have been
performed in decimal -- the base to which we were going. A logical
assumption would be that conversions to radix 8 would require octal
arithmetic; conversions to radix 2 would require binary arithmetic; to
radix 16, hexadecimal arithmetic; etc. Well, the assumption is valid and
the procedure would work. However, we do not presently know how to perform
arithmetic operations using binary, octal, and hexadecimal arithmetic. The
next section of this chapter will deal with these operations.

It was previously stated that the binary, octal, and hexadecimal number
systems are quite compatab1e because they are all integral powers of two
(21, 23 , 24). It's readily apparent that 21 = 2, 23 = 8, and 24 = 16 (the
radices of the binary, octal, and hexadecimal number systems). Conversions
between these bases should be quite simple.

Problem 1 Convert ABCD. 16 to ------------~8

Step 1 Record the binary equivalent of each of the hexadecimal
characters.

ABC D

1010 1011 1100 1101.

Step 2. Re-group the binary digits in groups of three, starting
at the binary point. Complete the high-order group
with zeros.

001 010 101 111 001

Step 3. Convert each group of three digits to its octal equivalent

001
1

010
2

101
5

ABCD 16 = 125715
8

111
7

001
1

101
5

Problem 2 Convert 707078 to ------------16

Step 1 Record the binary equivalent of each octal character

7
111

Q
000

7
111

o
000

Step 2 Re-group the binary digits in groups of four, starting
at the binary point. Complete the high-order group with
zeros.

0111 0001 1100 0111

3-22

Step 3 Convert each group of four binary digits to its
hexadecimal equivalent.

0111 0001 1100 0111
7 1 C 716

70707
8

= 71G7
16

Using the procedures explained in problem 1 and 2, you should be able to
convert any number from radix 2, 8, or 16 to the other two radices. Let's
try a few more practice problems. You'll find the answers on page 3-76, at
the end of the chapter.

Practice Problems

13. 101012 =
8

14. 101012 =
16

15. 1110002=
8

16. 111000
2
=

16

17. 70368 2

18. 70368 16

19. 52528 2

20. 52528 16

21. BEAD16 = 2

22. BEAD 16 = 8

23. DEED16 = 2

24. DEED 16 = 8

25. 0. 10102 = 8

26. 0. 10102 = 16

27. 0.000 000 000 1002 = 8

28. 0.000 000 000 1002 = 16

29. 0.001238 2

30. 0.001238 16

3-23

31. 0. 76548 2

32. 0. 76548 16

33. 0.l23ABC16 2

34. 0.123ABC16 8

35. O.FFF16 2

36. 0.FFF l 6 8

The only conversions yet to be performed are those from radix 10 to other
radices. As previously stated, the polynomial expansion process is still
valid if the mathematical operations are in the radix to which you are
gOing.--Let1s learn other methods that will allow us to still use decimal
arithmetic. When you have learned how to perform mathematical operations
in binary, octal, and hexadecimal, you may then choose the method easiest
for you.

DIVISION (WHOLE NUMBERS)

Example 1: Decimal to Octal

3562
10--------------8

/3562

Step 1.

r-----9
8/3562

32
36

32
42

40

Record the number to be converted and
divide by the base desired (could be
8, 5, 7, 3, 2, etc.)

2 ~Undivided remainder is least significant digit
of the answer. (80)

Step 2.

Step 3.

Step 4.

\@
~

8/445
40

45 Record the first quotient and divide by the base
40 desired to obtain the second digit of the answer.

0~undivided remainder is next to least significant
digit of the answer. (8 1)

Record the second quotient and divide by base

(j)~ for third digit. Undivi~ remain~er is third
highest digit of the answer. (8)

8/--6- When division is no longer possible, the
(Z\ undivided digit is

3
the most significant digit

~ ~ of the answer. (8)

Then by recording the undivided remainders it can be seen that:

4th
3rd
2nd
1st

Example 2

Step 1.

356210 = 6 7 5 2

I
I

remainder
remainder
remainder
remainder

Decimal to binary

12345
10

6172

----------------2

2/ 12345
12
-3

2
14
14
-5

4

8

l' ~ Remainder becomBs least significant digit (bit) of
the answer. (2)

3-25

Step 2. 3086
6172
6

17
16
12

12
Becomes 21 bit of answer. 0 (

1543
Step 3. 3086

2
10
10
-8

8
6

6 2 0 ~ Becomes 2 bit of answer.

771
Step 4. 1543

14
14

14
3

2 3 -I- E Becomes 2 bit of answer.

385
Step 5. 771

6
17
16

11
10 4

1 (Becomes 2 bit of answer.

192
Step 6. 385

2
18
18
5

4 5
1 < 2 bit

96
Step 7. 192

18
12

12
26 bit a (

3-26

Step 8.

~------_ 27 bit

Step 9.

~ _______________ 28 bit

Step 10.

29 bit

Step 11.

10
2 bit

Step 12.

211 bit

Step 13.

212 bit

Step 14.
213 bit

Therefore 1234510 = 11 000 000 111 001 2

Now that that is over, let's try the same thing an easier way.

Convert 1234510 to radix 8 (30071), then, by inspection, convert 300718
to 011 000 000 111 0012-

EXAMPLE 3. Decimal to Hexadecimal

Convert 12345 10 to -------------16

3-27

Step 1.
771

16 / 12345
112
114

112
-25

16
910 = 916 becomes 16° digit of answer.

Step 2.

Step 3.

48
16 !-m

64
131
128
-3

1

3
16 l--;;S

48

becomes 16
1

digit of answer.

°10 = °16 becomes 162 digit of answer.

° Step 4. 16 I-3-

° ~O = 316 becomes 163 digit of answer.

Therefore, 12345 10 = 3039
16

MULTIPLICATION (FRACTIONAL)

Example 1 Decimal to Octal
0.635

10
= . ______ 8

Step 1. Multiply the original number by the base desired, preserving
the decimal point. Any digit to the left of the decimal
point is part of the answer •

• 640 .120

8

;S.'¢!:3; .___0.960

50~
---8

3-28

Step 2. Record the answers from the octal point to the right.

NOTE: Carry the answer out to one more place than in the original number
(Le. 4 places).

Example 2 Decimal to Binary (Fractional)

Convert 0.735 10 to 2

Step l. Convert from decimal to octal as in the example above.

.735
8

5.880 .880
8

7.040 .040
8

0.320 .320
8

0.57028 2.560

Step 2. Convert from octal to binary by inspection.

0.101 111 000 010

Therefore, 0.73510 = 0.101 111 000 0102

The foregoing conversion could have been made directly by multiplying by the new
radix (2). However, this method becomes lengthy and it's difficult to determine
where the significance of the new number ends.

Example 3 Decimal to Hexadecimal (Fractional)

Convert 0.9876 10 to -----------------16

Step 1. Multiply the origianl number by the base desired and mark off the
decimal point. Digits to the left of the decimal point become
part of the answer.

3-29

.9876
16

59256
9876

115~.~8mO;-;16~--;~~ .8016
16

48096
8016

12.8256------J...... .8256
16

49536
8256

13.2096---: .. ~ .2096
16

12576
2096

3.3536"---l~~ .3536
16

21216
3536

5.6576

Step 2. Record the results of each operation and convert results to
hexadecimal equivalent. The first character obtained becomes the
most significant of final answer.

0.9876 O. F C D 3 5 10
t

J
1

16

1510 F16

1210 C16

1310 D16

310 31

5
10 5

16

Well, you should now be able to convert any number from any given radix to
any other given radix with little or no difficulty. Before going on to non­
decimal arithmetic, complete the following practice problems using the
conversion method suggested. Again, the answers are at the end of the
chapter.

3-30

PRACTICE PROBLEMS

37. 7C2E16

38. 0.CAB16

39. 76548

40.0.0158

41. 10111002

42. 0.010101012

43. 999 10

44. 100110

45. 4096010

46. O. 8080 10

47. 0.00009 10

48. 0.0000110

49. 1110111 2

50. 100110011 2

51. 0.0000001 2

52. 0.10101010 2

53. 76543218

54. 0.66558

55. 98B16

56. 0.000F16

______ 10

______ 10

------10

------10

------10

------10

------2

------8

------16

------2

------8

------16

------8

16

8

16

------2

~-----2

------2

~-----2

3-31

Polynomial expansion method

page 3-22

} Division method.

page~

} Multiplication Method

page 3-33

Direct inspection

page 3- 27

57. 707078 16

58. 0.0030038 16

59. FEE9 16
Convert to binary, then to

8 desired base by re-grouping.

60. 0.lA2B3C 16 8 page 3-27

Well, that should satisfy another of our objectives. You now know how to
convert a number from one base to another. Once you have the numbers, or
operands, expressed in the desired base, you should know how to perform
arithmetic operations on those numbers.

ARITHMETIC OPERATIONS

BINARY ARITHMETIC

A digital computer operates internally with binary operands. Arithmetic
operations may be performed with quantities in any number system. Binary
numhers may be manipulated according to the following rules:

Addition

0 1 0 1
+1 +0 +0 +1

-1- -1- 0 V Carry the 1 to next higher
bit position

Subtraction

0 1 1 ~ -0 -0 -1 -1
0 1 0 1 borrow a 1 from next higher

bit position (even though not
present)

Addition

The following examples illustrate the principles of binary addition.

Example 1

Binary Decimal

1 1 1+- carries
010 1 5 Addend
001 1 +3 Augend

1 000 8 Sum

3-32

1st column: 1 plus 1 0, with a carry of 1
2nd column: 1 plus 0 1, plus the carry of 1 0 with carry of 1
3rd column: 1 plus 0 1, plus the carry of 1 0 with carry of 1
4th column: 0 plus 0 0, plus the carry of 1 1

Example 2

Binary Decimal

1 l+-carries
o 0 1 1 3 Addend
o 0 1 1 +3 Augend

o 1 1 0 6 Sum

1st column: 1 plus 1 o with carry of 1
2nd column: 1 plus 1 0 with carry of 1 plus carry from 1st column
3rd column: 0 plus 0 0 plus carry of 1 = 1
4th column: 0 plus 0 =0

Subtraction

Binary subtraction is performed as illustrated in the following examples.

Example 1

1st column:
2nd column:
3rd column:
4th column:

Example 2

1st column:

2nd column:
3rd column:
4th column:

Binary

o 1 1 1
- 0 1 0 0

o 0 1 1

1 minus 0 = 1
1 minus 0 1
1 minus 1 0
o minus 0 = 0

Binary

010 0
- 0 0 1 1

000 1

Decimal

7
+4

+3

Decimal

+4
- +3

+1

Minuend
Subtrahend

Difference

Minuend
Subtrahend

Difference

o minus 1, must borrow. Borrowing the 1 from the 3rd
place makes that bit a 0 and puts two lIs in the 2nd
column; borrowing one of those leaves a 1 in the 2nd
column and puts two lIs in the 1st column. The sub­
traction then becomes 1 from two lIs which leaves 1.
1 minus 1 0
o minus 0 0
o minus 0 0

3-33

1

Multiplication

In any number system, multiplication is done using the same three basic steps:

Step 1. Form the partial product of the mUltiplicand and the least
significant digit of the multiplier.

Step 2. Form the partial product of the multiplicand and next
significant digit of multiplier, with this product shifted
left one place. Repeat Step 2 for each digit of multiplier.

Step 3. Add the partial products to give the final product.

A decimal example is:

part ia 1
products

259
139

/

2331
777

259

36001

Multiplicand
multiplier
product of 1st multiplier digit
product of 2nd digit, shifted left
product of 3rd digit, shifted left

sum is final product

Binary multiplication is identical, except no multiplication table need be
learned. If the multiplier digit is a 1, add the multiplicand.

1010 1010
0101 510

1m 1010
1st bit 1, bring down multiplicand

partial 0000 2nd bit 0, shift and add zeros
products 1010 3rd bit 1, shift and add multiplicand

0000 4th bit 0, shift and add zeros

0110010 50 10 add partial products

Division

Binary division is carried out in the same manner as decimal division.

101.
10101 / 01110101.

10101
0100001

10101
1100

(1) 11101 is greater than 10101; enter a 1 in
quotient and subtract. Bring down next bit.

(2) 10000 is less than 10101; enter a zero in
quotient, bring down next bit of dividend.

(3) 100001 is greater than 10101; enter a 1 in
quotient and subtract.

(4) 1100 is less than 10101; no more bits in
dividend, 1100 is remainder unless the
division is continued to the right of the
binary point.

3-34

(5) Check, using decimal equivalents
5

21 /117
105
-U remainder

Check your proficiency with binary arithmetic by working out the following
practice problems. The answers are at the end of the chapter.

PRACTICE PROBLEMS (binary)

61.

65.

0101
0101

0101
1001

Addition

62.

Multiplication

66.

OCTAL ARITHMETIC *

0101
0001

1010
1011

Subtraction

63. 0101
0010

Division

67. 1010/110010.

64. 1000
0101

68. 110/1000000.

It has previously been stated that all arithmetic operations within a
computer are performed in binary. It has also been stated that octal and
hexadecimal radices are used only to ease programming tasks. Fewer steps
are invol'led and the operands become less cumbersome with a higher base
system.

Perhaps you remember way back when you were required to learn the decimal
multiplication tables. Multiplication and addition tables (matrices)
have been inserted in this section for both radix 8 and radix 16 operations.
However, you should know how the matrices were generated before you use them.

Addition

Octal addition may be performed by counting in units and remembering
that there are no eights or nines. Example 7 + 5 = 7, 10, 11, 12, 13, 14.
The sum of 78 + 58 = 148• That method worked fine for those operands. Try
another one. 2478 + 2638 = 8. The counting method still works
if carries are considered.

Until you learn the octal addition table, you may use the matrix on page 3-41.
For addition, locate one number on the left side, the other at the top,
and read the sum from the coincident square.

* All values expressed in this section are radix 8 unless otherwise specified.

3-35

For Example:
8

,

° 1 2 3 4 5

1

2

3 ~~ SUM

Now let's again try to find the sum of 2478 and 2638•

l+-- carry
247
263
-2

According to the matrix, 7 + 3 = 12. Record the 2 in the 80 column and
the 1 at the top of the 81 column. Now find the sum of 1 + 4 + 6 (the 1 was
the carry from the 8° column) by using the matrix. 1 + 4 + 6 = 138• Record
the 3 and carry the 1 to the top of the 82 column.

1 l~carries
247
263

3 2

Now add 2 + 2 + 1. The matrix indicates that the sum would be 5 with no
carry. Therefore, the sum of 2478 and 263 8 would be 5328 (not five hundred
and thirty-two, but five-three-two octal).

Subtraction

Octal subtraction is performed by removing one unit at a time until you
have removed the proper number of units. For example: 208 - 28 = ?
20 minus 1 equals 178 ; minus 1 more equals 168. This method would be
quite unsatisfactory using larger operands. Again, either you must learn
how to subtract octally or use the matrix. Use the matrix for present needs,
and you can learn how to subtract without the matrix as you become more
familiar with the number system. Subtraction, using the matrix, is as follows:
Locate the subtrahend digit on the left side of the matrix and follow that
row across until you find the minuend digit within the matrix: The column
number at the top of the matrix is the difference.

3-36

For example:

0 1 2

1

2

3
iI""'""""'I

subtrahend ~ 4 5 6

5

13
- 4

minuend
subtrahend

7 difference

3 4 5 6
v

7
r.....J

7 ilo
V""""'I

11 12 13

difference

minuend

How would you use the table to subtract 6 from 537 Subtract 6 from 13 by
borrowing one from the 5. Bring down the remaining 4.

Multiplication

Octal multiplication is the same as a series of additions. For instance,
6 x 7 = ~ could be resolved by adding 6 + 6 + 6 + 6 + 6 + 6 + 6, using the
addition matrix. Again, this process could become quite lengthy. A multi­
plication matrix (page 3-44) has been constructed for your use. To multiply,
find one operand on the left side, the other at the top and read the product
from the coincident square.

For example:
7 x 5 7

--
-0 1 2 3 4 5 6 7

1

2
-

3

I~ 4

~ t-
y~

~

J I J \.4) Product

3-37

Division

Octal division could be accomplished by subtracting the divisor from the
dividend and recording the number of times it was possible to subtract.
Residue left over from the last operation would be the remainder. Again, the
operation is quite simple if the matrix is used. To divide using the matrix,
locate the divisor on the left side of the matrix and follow that row across
to the operand closest to (without exceeding) the dividend. The quotient
will be at the top of that column. The difference between the operand in
the coincident square and the original dividend, is the remainder.

For Example: 7[47

Quotient /'
0 I 2 3 4 ':5"""

,..I
6 7

I ~,

2

3

4

5

6

Divisor~ D 7 16 25 34 ~~ 52 61
1\.:1

Dividend

Larger numbers could be divided using the same procedure in multiple steps
similar to decimal division. For example:

114
7 / 1024

7
12

7
34
34
o

3-38

If the divisor contains multiple digits ~s in 3743 + 247, the arithmetic
becomes more difficult. Inspect the operands and record the first apparell~
digit of the quotient. Multiply that apparent digit by the divisor and
subtract the product from the dividend.

1
247 / 3743

247
125

Bring down the next digit of the dividend, inspect again, and record the
second digit of the quotient.

14
247 / 3743

247
1253
1234

17

When division is no longer possible, the residue of the last operation becomes
the remainder. Therefore, 3743 + 247 = 14, remainder 17.

Work the following practice problems to verify your ability to perform octal
arithmetic. The answers are at the end of the chapter.

Addition

69. 5
5

Multiplication

73. 5
11

70. 5
1

74. 12
13

Subtraction

71.

Division

5
2

75. 12/f;2

72. 10
5

76. 6/ 100

You may have noticed that these operands are equalities to those used in the
binary problems. The answers should then also be equalities.

3-39

Work a few more of the octal arithmetic problems that require more f1exa-
bility from you. If they give you any trouble, a little more practice will
be in order. If not, continue on to hexadecimal arithmetic.

Addition Subtraction

77. 7654 80. 635
233 277

78. 12345 81. 500
71625 250

79. 351 82. 1000
153 400

Multiplication Division

83. 35 86. 35 / 350
15

8400- 67 87. 77 I 10000
~

85. 400 88. 40 / 100
200

3-40

OCTAL ARITHMETIC MATRICES

ADDITION

2 3 4 5 6 7

3 4 5 6 7 10 11

4 5 6 7 10 11 12

5 6 7 10 11 12 13

6 7 10 11 12 13 14

7 10 11 12 13 14 15

11 12 13 14 15 16

MUL TIPLICA TION

2 3 4 5 6 7

2 4 6 10 12 14 16

3 6 11 14 17 22 25

4 10 14 20 24 30 34

5 12 17 24 31 36 43

6 14 22 30 36 44 52

7 16 25 34 43 52 61

3-41

HEXADECIMAL ARITHMETIC*

Hexadecimal arithmetic is understandably more difficult than either binary
or octal because, with 16 discrete values, alpha characters are used as well
as numbers. The letter A represents the value of 10 decimal and is used
instead of 10 because it must be expressed with one character. This is
necessary with positional number systems if arithmetic operations are to be
performed.

Perhaps you recall the counting table back on page 3-17 which illustrated
how to count hexadecima11y. Addition could be performed by counting,
subtraction by counting in reverse, multiplication by repeatedly counting,
and division by repeatedly counting in reverse. For example: F + B = ? •
F is equal to the decimal quantity 15, B is equal to 11 decimal, and the-­
sum would be equal to 26 decimal. This could be expressed in hexadecimal
as lA. Remember, the combination 10 always represents the radix of its own
system. Therefore, 1016 represents a value of 16 10' the hexadecimal radix.
The value lA16 represents the value 1016 plus A16 or, in decimal equivalents,
16 10 + 10 10 = 26 10.

It is apparent that arithmetic operations in hexadecimal using large oper­
ands would become quite involved. Again, matrices have been prepared for
your use and are on pages 3-47 and 3-48. Perform the four basic arithmetic
operations with the aid of these matrices.

Addition

Add F16 and B16 using the hexadecimal addition matrix. Locate F on the
left margin of the matrix, B at the top, and read the sum from the coincident
square as illustrated.

0 1 2 3 4 5 6 7 8 9 A (B) C D E F

~~~--- ~V v 
~ .--'''-J 

----~~ """'t'" -"V'- .... - _ ~ ---" ",,-..I" r-... .A .... - -- -E - --
9 "-.::../ 1A 

Addition of larger numbers would require the same procedure for each column 
with the carry from the preceding column added. Adding a list of operands 
would be performed with successive adds. For example: 

1 l~Carries 
A B 
1 C 
D 4 

1 9 B 

*All values expressed in this section arc of radix 16 unless otheDvise 
indicated. 

3-42 



B + G = 17 (7 with a carry of 1). 7 + 4 = B with no carry. The least 
significant digit of the answer is B. In the next column we now must add 
A = 1 + D + the carry (1). A + 1 = B; B + D = 18 (8 with carry of 1); 
and 8 plus the carry = 9. Therefore, the sum of the three listed operands 
is 19B. 

Add the following list of operands 

AAA 

BBB 
GGG 
DDD 

Double check your answer by converting the operands to decimal, adding them, 
and reconverting your answer to hexadecimal. Both answers should agree if 
your procedures are correct. Incidentally, the answer should have been 
3l0E16 or 12558

10
• 

Subtraction 

Subtraction can be performed by using the hexadecimal matrix exactly the 
same as octal subtraction was performed using the octal addition matrix. 
Locate the subtrahend digit on the left side of the matrix and follow that 
row across to the minuend. The number at the top of the matrix in that 
column is the difference. In some instances, a borrow from the next position 
to the left may be required before subtraction can be performed. For example: 

A6 
- 17 

Seven cannot be subtracted from six without borrowing one (1 x 16 1) from 
the A. After the borrow, subtraction can be performed, but the value of A 
has been reduced by one to 9. The subtraction problem effectively becomes 
this: 

9/) 
,.. 16 
1 7 

8 F 

The difference between A6 and 17 should be 8F. Add the difference and the 
subtrahend. The sum should be the same as the original minuend. 

1"""- Garry 
17 

+ 8F 

A6 

3-43 



Multiplication 

As you already realize, multiplication is a series of additions. A x 3 
could be expressed as A + A + A and F x A could be expressed as F + F + 
F + F + F + F + F + F + F + F. Again, you can see that multiplication 
by this method could be cumbersome, especially with large operands. A 
hexadecimal multiplication matrix has been included on page 3-48 of this 
section for your use. Multiplication with two hexadecimal characters will 
produce a two-character product similar to decimal multiplication (1 x 2 
02, 9 x 9 = 81, 7 x 3 = 21, etc.). You will notice that the product is 
within the matrix and that the multiplicand and multiplier are along the 
left side and top. Multiplication with the aid of the table is performed 
by locating the two operands and reading the product from the coincident 
square. For example: 3 x B ? 

0 1 2 3 4 5 6 7 8 9 A 0 C D E F 

1 

2 

0 1 
@~ 

I I I I I I I 
Product 

Multiplication of larger numbers can be performed by listing partial 
products and then addin~ hexadecimally. For example: 

ABC 
123 

24 

1 21 3 x ABC 2034 
IE I 

18 
J 

f 16 20 x ABC 15780 
14 j 

OC } OB 100 x ABC ABCOO 
OA 

C33B4 C33B4 

Division 

Hexadecimal division can also be performed by using the multiplication 
matrix on page 3-41 exactly the same as the octal matrix was used to perform 
octal division. Locate the divisor on the left side of the matrix, follow 
that row across to the operand closest to (without exceeding) the dividend. 
The quotient will be at the top of that column. The difference between the 
original dividend and the value in the coincident square is the remainder. 

3-44 



For example 

o 1 2 3 4 

Divisor-

2 / 15 

5 6 

A 

2 / 15 
14 

1 

7 

-Quotient 

8 B C D E F 

16 18 1A 1C IE 

dividend (15) 

Therefore: 15 + 2 = A + 1 remainder 

Doubtful answers can be easily double-checked by converting each hexadecimal 
character to binary, performing the operation in binary and re-converting 
the binary answer and remainder back to hexadecimal. Prove the foregoing 
division problem in binary. 

1010. 
2 / 15 in radix 16 0/0 / 00010101. in radix 2 

010 
0010 

010 
0001 

10102 = A16 and 01 2 116 

Just as a review, for old time's sake, work that last hexadecimal multi-
plication problem in binary. 

1010 1011 1100 ABC 
x 123 radix 16 + 0001 0010 0011 radix 2 

1010 1011 1100 
1 0101 0111 100 

1 0101 0111 100 
1010 1011 1100 

1100 0011 0011 1011 0100 2 
C 3 3 B 4 16 

Try a few hexadecimal arithmetic problems to verify your ability. The 
answers are at the end of this chapter. 

Addition 

89. CAB 
BED 

90. 

3-45 

BAD 
DEED 

91 DOG 
FOOD 



Subtraction 

92. AB999 
9FFFF 

Multiplication 

95. 

96. 

97. 

9876 
1234 

777 
AAA 

5252 
2525 

93. FEDCBA 
EDCBA9 

Division 

98. AB/~ 

99. 999 / FFFF 

100. F / 100000 

94. ABCDE 
12345 

Another way to double-check your arithmetic would be by converting each 
hexadecimal value to its decimal equivalent (by using the conversion table 
on page 3-49), performing the arithmetic operation in decimal, and then 
reconverting the answer back to its hexadecimal equivalent. 

Well, another of the objectives of this chapter should now have been met. 
You should be able to perform arithmetic operations upon radix 2, 8, 10, 
and 16 operands. For operands of other bases, convert to the radix 10 
equivalence, perform the arithmetic, and reconvert the answer back to the 
original base. 

3-46 



HEXADECIMAL ADDITION MATRIX 

~~"~ ~t· •••••••. ~ .•. · ....... .i .... i • 
III!! ;.i:"!" ••... ........ . •••.•.. ;<"C .................. < •... t(.~........... . ........ 

«M 2 3 4 5 6 7 8 9 A B C D E F 

/; ;i 1 2 3 4 5 6 7 8 9 A B C D E F 10 1 0001 

2. 2 3 4 5 6 7 8 9 A B C D E F 10 11 2 0010 

.... ~ ......... 3 4 5 6 7 8 9 A B C D E F 10 11 12 3 0011 

...•. ~ •..... 4 5 6 7 8 9 A B C D E F 10 11 12 13 4 0100 

··5 5 6 7 8 9 A B C D E F 10 11 12 13 14 5 0101 

is 6 7 8 9 A B C D E F 10 11 12 13 14 15 6 0110 

.. 7·.· .• · 7 8 9 A B C D E F 10 11 12 13 14 15 16 0111 

...... 8 9 A B C D E F 10 11 12 13 14 15 16 17 8 1000 

9·· •• 9 A B C D E F 10 11 12 13 14 15 16 17 18 9 1001 

liA A B C D E F 10 11 12 13 14 15 16 17 18 19 A 1010 

Iff B C D E F 10 11 12 13 14 15 16 17 18 19 1A B 1011 

IS. C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B C 1100 , D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C D 1101 

irE E F 10 11 12 13 14 15 16 17 18 19 1A 1 1C 1D E 1110 

[F F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D lE F 1111 



HEXADECIMAL MULTIPLICATION MATRIX 

0 1 2 3 4 5 6 7 8 9 A B C.·.· D E F [$~ SINAj,' 
0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0000 

,1 00 01 02 03 04 05 06 07 08 09 OA DB DC OD DE OF 1 0001 

2 00 02 04 06 08 OA OC OE 10 12 14 16 18 lA 1C IE 2 0010 

3 00 03 06 09 DC OF 12 15 18 IB IE 21 24 27 2A 2D 3 0011 

4 00 04 08 DC 10 14 18 1C 20 24 28 2C 30 34 38 3C 4 0100 

5 00 05 OA OF 14 19 IE 23 28 2D 32 37 3C 41 46 4B 5 0101 

6 00 06 DC 12 18 IE 24 2A 30 36 3C 42 48 4E 54 5A 6 0110 

7 00 07 DE 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69 7 0111 

8 00 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78 8 1000 

9 00 09 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87 9 1001 

A 00 OA 14 IE 28 32 3C 46 50 5A 64 6E 78 82 8C 96 A 1010 

B 00 DB 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5 B 1011 

C 00 DC 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 C 1100 
D 00 OD 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 D 1101 

E 00 DE 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2 E 1110 
F 00 OF IE 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F 1111 



CONVERSION TABLE 

HEX. DEC. HEX. DEC. HEX. DEC. HEX. DEC. HEX. DEC. 

1 1 10 16 100 256 1000 4096 10000 65536 
2 2 20 32 200 512 2000 8192 20000 131072 
3 3 30 48 300 768 3000 12288 30000 196608 
4 4 40 64 400 1024 4000 16384 40000 262144 
5 5 50 80 500 1280 5000 20480 50000 327680 
6 6 60 96 600 1536 6000 24576 60000 393216 
7 7 70 112 700 1792 7000 28672 70000 458752 
8 8 80 128 800 2048 8000 32768 80000 524288 
9 9 90 144 900 2304 9000 36864 90000 589824 
A 10 AO 160 AOO 2560 AOOO 40960 AOOOO 655360 
B 11 BO 176 BOO 2816 BOOO 45056 BOOOO 720896 
C 12 CO 192 COO 3072 COOO 49152 COOOO 786432 
D 13 DO 208 DOO 3328 DOOO 53248 DOOOO 851968 
E 14 EO 224 EOO 3584 EOOO 57344 EOOOO 917504 
r 15 FO 240 FOO 3840 FOOO 61440 FOOOO 983040 

HEX. DEC. HEX. DEC. HEX. DEC. 

100000 1048576 1000000 16777216 10000000 268435456 
200000 2097152 2000000 33554432 20000000 536870912 
300000 3145728 3000000 50331648 30000000 805306368 
400000 4194304 4000000 67108864 40000000 1073741824 
500000 5242880 5000000 83886080 50000000 1342177280 
600000 6291456 6000000 100663296 60000000 1610612736 
700000 7340032 7000000 117440512 70000000 1879048192 
800000 8388608 8000000 134217728 80000000 2147483648 
900000 9437184 9000000 150994944 90000000 2415919104 
AOOOOO 10485760 AOOOOOO 167772160 AOOOOOOO 2684354560 
BOOOOO 11534336 BOOOOOO 184549376 BOOOOOOO 2952790016 
COOOOO 12582912 COOOOOO 201326592 COOOOOOO 3221225472 
DOOOOO 13631488 DOOOOOO 218103808 DOOOOOOO 3489660928 
EOOOOO 14680064 EOOOOOO 234881024 EOOOOOOO 3758096384 
FOOOOO 15728640 FOOOOOO 251658240 FOOOOOOO 4026531840 

3-49 



COMPLEMENT ARITHMETIC 

The era of the computer has called for the introduction of a new line of 
reasoning to solve basic arithmetic problems. While in everyday life such 
signs as + (plus) and - (minus) are used to denote the difference between 
positive and negative numbers, these signs cannot be recognized or stored 
by a computer. Also, in everyday life, the combination of a group of numbers 
with mixed signs can be readily handled by adding the positive values, then 
adding the negative values, then determining the difference between the two, 
and affixing the sign of the larger number to the answer. The computer does 
not perform operations with signed numbers in this manner; instead, the 
computer uses complement arithmetic. Complement arithmetic is not a specially 
designed form of mathematics to be used only by computing devices. It could 
be used in everyday life in most of the situations that are normally 
encountered. 

The dictionary defines complement as (a) something that fills up, completes, 
or makes perfect (b) the quantity or number required to make a thing complete 
(c) that which is required to supply a deficiency; one of two mutually 
complementing parts. 

Perhaps you remember our discussion of the modulus of a device. We defined 
modulus as "the number of unique quantities that a particular device could 
express" and an odometer was used as an illustration. 

A friend has a car that registers 67,232 miles on the odometer. First, what 
is the modulus of the device (disregard tenths) and next, what is the 
complement of that quantity? 

You probably said that the modulus of the device was 100,000 and, if so, you 
were correct again. To find the complement, subtract from the modulus of 
the system (100,000 in this case). The answer is the "tens complement fl of 
the original operand. If the device is radix 8 instead of radix 10, the 
foregoing procedure of subtracting, in octal, from the modulus would render 
the fleights" complement. A binary device and like procedure, with binary 
arithmetic, would result in the "twos" complement. 

Complement, then, really means; of the total combinations in a given system, 
how many are left before repeating? 

3-50 



Consider these examples: 

Decimal 

Subtract, in decimal, 

from 1,000,00C1.0(modulus) 

1,000,000 
101 010 

898,99°10 

The "tens" complement 

of 101,010 decimal is 

898,990. 

Octal Binary 

Subtract, in octal Subtract, in binary 

from 1,000,00~(modulus~from 1,000,0002(modulus 

1,000,000 
101 010 

676,77°8 

The "eights" Comple-

ment of 101,010 octal 

is 676,770. 

1,000,000 
101 010 

010,11°2 

The IItwos" complement 

of 101010 binary is 

010,110. 

Consider another situation. Instead of subtracting from the modulus, subtract 
from the IImodulus minus oneil. For example: 

Decimal Octal 

I 91919191919 I I 71717171717 
(modulus - 1) (modulus - 1) 

Again, using the same values as before, subtract 

999,999 
101 010 

898,989 10 

777,777 
101 010 

676,7678 

I I 
Binary 

1[111111111 I 
(modulus - 1) 

111,111 
101 010 

010,1012 

1) In the decimal example, we subtracted from all 9 1s and the result was the 
lfnines ll complement. 

2) In the octal example, we subtracted from all 7 1 s and the result was the 
lfsevensll complement. --

3) In the binary example, we subtracted from all lIs and the result was the 
II~I! complement. 

3-51 



Compare the results of the two decimal, the two octal, and the two binary 
problems. 

10' s complement 898,990 } Difference of 1 
9's complement 898,989 

8's complement 676,770 } Difference of 1 
7's complement 676,767 

2's complement 010,110 } Difference of 1 
l's complement 010,101 

Now that you know what a complement is and how it is derived, let's see how 
it fits into the computer picture. A computer operates strictly in binary. 
The complements associated with binary arithmetic are !lones" and "twos" 
complement. Find the "ones" complement of the following numbers: 1100112' 
100010002 , 111000 2• 

Examine the numbers and their "ones" complement carefully. Notice that this 
complement could have been formed simply by changing each 1 to a 0 and each 
o to a 1, an operation very easily performed by the computer. 

The advantage of complements lies in the fact that addition and subtraction 
can be accomplished with the same device, obviating the necessity of separate 
additive and subtractive devices in the computer. This means that by using 
complements of numbers, both additive and subtractive operations can be 
performed with one device ~hich might be additive or subtractive in nature). 
Choice of the type of device lies completely with the design engineer. 

At this point, it is important to realize that a computer or any arithmetic 
device is physically restricted to a definite modulus, similar to the 
odometer previously discussed. Remember that each bit position of a binary 
number will be represented by an electronic switch in the computer. 

The quantity of these electronic devices dictates the number of bit positions 
which, in turn, determines the modulus of that particular machine. 

Consider a machine with only two of these electronic devices. 

3-52 

001 
01 4 discrete values 
10 I 
11 ) 



What is the modulus of the machin2? It could be expressed in binary as 
100, in decimal as 4, or simply 2. A twelve-bit machine would have a modulus 
of 212 , a sixteen-bit machine would have a modulus of 216 , and a twenty-four 
bit machine would have a modulus of 224. Even the so-called "super computers" 
have a definite modulus that restricts the magnitude of operands that can be 
used at one time. The important thing to realize is that a computer is not 
an open-ended device, such as a sheet of papeb][rn 

< 
Open-ended device Device with a modulus 

Perhaps you have noticed that throughout the chapter we have been dealing 
only with positive numbers. How would a negative number be expressed in 
the computer? There are only two possible signs by which we express a number 
and because a bit can express two values, we can reserve one bit position 
of our device to determine the sign of the operand. The sign of an operand 
usually precedes it, so we can use the left-most (high-order or most 
significant) bit to express the sign. This type of device will hereafter 
be referred to as a signed device. 

Does this now affect the modulus of the device? Let's see if it does. A 
six-bit machine,could express values from 000 0002 to 111 1112 (008 to 77S) 
if no bit position is used for the sign. A total of 100S positive values 
could be expressed. 

6 bits of magnitude 

Now, if one bit position is reserved for the Sign, the six-bit machine can 
only express values from 00 0002 to 11 1112 (008 to 37S) or 40S values. 

5 bits of magnitude 

However, it is now possible to express 40S positive values and 408 negative 
values, a total of S values. (If your answer is SO, pile all of your 
books in the center of the floor and have a wiener roast). 

Apparent ly, using one bit to express the s'ign does not affect the modulus 
of the device but does affect its range of numbers.----

3-53 



NO SIGN BIT SIGN BIT 

___ 778 

1008 all 
positive (or 
all negative) 
values 

-----°°8 

+ 4°8 
Positive 
Values 

4°8 
Negative 
Values 

We can now express both positive and negative quantities with the same 
device without (appreciably) affecting the modulus. Maybe the parenthetical 
word "appreciably" deserves qualification. 

Assume that a sign bit of "0" indicates that the quantity is positive and 
a sign bit of "1" indicates a negative quantity. It would then be possible 
to express a positive 6 and a negative 6, a positive 4 and a negative 4, a 
positive 2 and a negative 2, etc. 

Wouldn't it also be possible to express a positive ° 
In arithmetic, zero is defined as the number between 
numbers and a set of all negative ~bers. Positive 
define the same arithmetic quantity. By counting in 
comparison between normal counting and counting with 

5 5 
4 4 
3 3 
2 2 
1 1 
o 0 

-1 0 
-2 1 
-3 2 
-4 3 
-5 4 

5 

Normal counting Signed device 

3-54 

and a negative O? 
a set of all positive 
o and negative 0 should 
reverse, we see the 
a signed device. 

Positive 
numbers 

Negative 
numbers 



Two of the possible discrete combinations of the signed device are actually 
being used to express the same value. 

+1 ZERO 

I -I ZERO 

Therefore, the actual modulus of the device should be decreased by 1. Con­
sidering the 6-bit device used previously, the following discrete values 
could be expressed: 

+ 37 

I 
+1 

+o} 
- 0 

- 1 

I 
- 37 

378 discrete values 

18 discrete value 

378 discrete values 

37 
37 

+ 1 
778 values 

A 6-bit unsigned device could express 1008 discrete values whereas a 
6-bit signed device should express 1 less or 778 discrete values. Therefore, 
the modulus of a 6-bit unsigned device would be expressed as 26 but the 
modulus of a 6-bit signed device would be expressed as 26 - 1 (26 = 1008, 
26 - 1 = 778). A 24-bit signed device would have a modulus of 224 - 1 and 
a 24-bit unsigned device would have a modulus of 224. 

There are two ways to express a given negative number in a signed device. 
The first is to express the desired magnitude of the operand and indicate 
that the operand is negative by the sign bit. 

For example, -00 101 2 could be expressed in a signed device as: 

11!0101110111 f ~ y I 

Sign bit ~remaining bits 
indicates indicate magnitude 
negative of operand. 
operand 

3-55 



This approach is used in some computer systems but requires special 
consideration before numbers of unlike signs can be added or subtracted. 

The second approach is to express all negative numbers as the complement of 
their positive equivalents. The complement of a signed number depends upon 
the modulus of the device. 

For example, express -108 in complemented form. 

Modulus 8
2 

- 1 -108 would be expressed as [ili] 
Modulus 8

3 
- 1 -108 would be expressed as 1716bl 

Modulus 8
4 

- 1 -108 would be expressed as 171716171 

Modulus 88 _ 1 -108 would be expressed as 17171717171716171 

If each number was expressed in binary instead of octal, you would notice 
that the sign bit of each device is a one. That indicates that the number is 
actually the complemented form of its positive equivalence. 

3-56 



The following practice problems are to check your aO~l~ty to recognize 
the sign and magnitude of an operand by inspection. If the number is 
negative (in complemented form), recomp1ement to find the true magnitude 
and attach a minus sign. Express your answer in octal. 

101. 011 1112 = 8 106. 000 000
2 8 

102. 100 000 2 = 107. 101 0102 8 8 

103. 111 1112 8 108. 111 000 2 = 8 

104. 100 001 2 8 109. 000 1112 8 

105. 010 1012 110. 011 1002 8 8 

Indicate how the following numbers would appear in a signed device of modulus 
84 - 1. 

111. +308 8 116. +37
8 8 

112. -30a 8 117. +100a 8 

113. +008 8 118. -100a 8 

114. -OOa 8 119. +377a 8 

115. -37a 8 120. -3778 --------------------8 

A modulus of 8
4 

- 1 is equal to a binary device with a modulus of 212 - 1. 
The largest positive number that could be expressed in the device would be 
011 111 111 1112 (37778 ) because of the sign bit. 

It was previously stated that both addition and subtraction can be performed 
with either an additive device or a subtractive device if complement 
arithmetic is used. Let's first use an additive device to see if both 

,operations can be performed and then a subtractive device for the same two 
operations. The results should be the same with either device. 

3-57 



ADDITIVE DEVICE 

An additive device is similar to a counter capable of counting only in a 
forward direction. A subtractive device is also a counter but capable of 
counting only in reverse. 

Additive Device 
(Forward Counter) 

Subtractive Device 
(Reverse Counter) 

Compare an additive counter to a roulette wheel that could only turn in 
one direction. Suppose that the pointer was on 3 and you wished to move it 
to 2. 

6 5 4 
~--~ 

9 

o 
10 

19 

The number 2 is only one unit from the present position but in a reverse 
direction. Remember that the additive device cannot move in that direction. 
Instead, it must move 19 units in the forward direction instead of 1 unit in 
the reverse direction (-1). 

What is the modulus of the device? 20 
How much did we desire to move the wheel? -1 
What is the complement of -1 ? 19 
~ove the wheel forward 19 units 
Now, where did the wheel stop? 2 

3-58 



Mathematically, the problem would have looked like this: 

+3 
+ -1 

+2 

Although the numbers indicate that we are adding one, the sign of the 
number to be added indicates that we should have moved in the reverse 
direction. This was impossible with our one-way device. We had to move 
a complementary number of units in the forward direction (19 units). 

Now let's use the same two operands but add +3 to -1. Mathematically, the 
problem would look like this: 

-1 
+3 

The sign of the number to be added indicates that we should move forward 
and the number indicates that the move should be 3 units. However, the 
starting point is now -1 which should be one place in the reverse direction 
from zero. -1 is therefore the position indicated by the number 19 on the 
roulette wheel. 

6 5 4 

1 o 

-1 
+3 

When the device is moved forward 3 positions, as indicated by the number 
to be added, we find that the arrow now points to the 2 -- again the correct 
answer. In the first example, we effectively subtracted 1 by adding its 
comp lement (19); in the second examp 1 e, we added 3 to -1 (19). 

3-59 



Now that we understand the principle of the ~orward counter, let's make a 
sDni1ar one that counts octa11y (modulus = 8 - 1). 

+ 
Numbers 

37 +37 00 = +0 
~4~0-r~-~37~---------------------+7~7~= -0 

Numbers 

56 60 

The roulette wheel had twenty positions which represented twenty discrete 
values, and had only one position that indicated a value of zero. Our 
octal counter of signed numbers has two positions that indicate a value of 
zero (008 and 778 ). To eliminate the negative zero we must decrease the 
modulus of the device from 1008 discrete values to 778 discrete values. 
This means that all complements should be formed by subtracting from the 
new modulus of 778 ( the sevens complement). The same situation in binary 
resulted in the use of ones complement notation. Keep in mind that a 
computer is performing its addition in binary while we represent the same 
ope~ation in octal. 

ADD +4 
-7 expressed in sevens complement notation ~ 

The problem indicates that, starting at a value of +4, we should add a 
quantity of 7 units, but in a reverse direction. Again, this is impossible 
with our onw-way device. Instead of moving 7 unit-positions in reverse, 
we move forward a complementary number of positions (708). 

3-60 



The pOlnLer now indicates an answer of 748. Any time the upper OCLal 
digit is four or greater, the signed binary equivalent would indicate a 
negative operand. Recomp1ement to find the true value and attach the 
negative sign. 

The correct answer. 

Let's try another condition. 

ADD 000 100 
111 101 

+4 
-2 
~ expressed in complement notation ;1 000 001 

-carry 

Our additive device had a modulus of 82 - 1 and the results of the addition 
produced a carry from the sign bit position. What happens to the carry 
leaving the upper end of the device? Continue, but concentrate. 

The illustration of the additive counter indicates that we moved 75 unit 
positions and passed through two positions that both represent a value 
of zero. 

01 
~ } two positions zero 

The extra position with a discrete value of zero caused us to count zero 
twice, which caused the answer to be one less than it should have been. 

ADD (modulus 84 - 1) 

+508 00508 + 350°8 350°8 

-27 -8 
+ + 7750

8 - 30°°8 47778 

+218 l~ 
1~ + 5°°8 

3-61 



Both foregoing examples have a carry trying to leave the confines of the 
device when added in complementary form. Both answers are also incorrect; 
but, if the carry is added to the answer contained in the device, the 
answer would then be correct. 

1 0020 
'-...-. 1 

0021
8 

1 0477 
\......+ 1 

05008 

Let's call this procedure END AROUND CARRY (EAC) for an additive device. 
When EAC occurs, it always indicates that we have counted through zero 
and are compensating for that extra zero position. It is the end around 
carry which produces a modulus -1 by reducing the two zero positions effec­
tively to one position. 

Let's use the same operands again but rearrange them so that now +50a 
is being added to -27a and +3500a is- being added to -3000a" 

ADD modulus a4 -1 

- 27a 7750 

+50 +0050 

+21a 1 0020 
+ "---' 1 

00218 

3777 
4000 

_ 0021 
- 0000 

7777 
7750 

-3000a 

+3500a 

4777 

+ 3500 
1 0477 
+'-..... 1 

0500a 

0000 = +0 
7777 = -0 

The foregoing examples expressed 
sign bit position of the answer. 

in binary also show the carry leaving the 

7750
a 

111111111101100012 

00508 + 100010001101100012 

carry 1 100010001010100012 
1 

10001000r010100112 

carry 

3-62 

11001111111111111 

= 1011110110001000 1 
+ 
110001100111111111 

1 

100011011000100012 



OVERFLOW 

At this time, it is important to realize that, in some instances, a carry 
may be generated by some of the magnitude bits and propagated upward to the 
sign bit position. This condition could cause the sign bit to change and 
cause the computer to produce a wrong answer. The computer checks each 
arithmetic operation and indicates that a fault (OVERFLOW) has occurred 
when the answer is incorrect. When overflow occurs, it means that two 
operands have been added or subtracted and the result has exceeded the 
modulus of the device. 

For example: 

ADD (modulus 26 -1) 

+37 
+ 1 

40 

sign bit ~ 
t ~ ~magnitude bits 

I 0 I 11 lId 
+( 0 I 00 _ 0011 

1 ........ 1 .... 1_0_0.--0_00..,1
2 

The result indicates the correct answer to be 408• However, 408 expressed 
in a 6-bit signed device indicates an actual value of -378 whicli is, of course, 
incorrect. The modulus of this device is 778 and the range of operands is 
from -37 to +37. 

If the same operands were used in a modulus 2
9 

-1 device, the sign bit 
would not be affected and the result would be correct. 

ADD (modulus 29 -1) 

+378 0378 

+ 18 + 0018 

Sign 

+ 

bit 

0 

0 

0 

37 00 = +0 
....::4:..:.0--f..----f:---~=------+=7~7 - = -0 

3-63 

Magnitude bits 
00 011 III 

00 000 001 

00 100 000 2 0408 



ADD (modulus 26 -1) 

-30 100 111 47 8 

-20 + 101 111 + 57
8 

-50 11010 110 I 1 ~ 
1 1 

1010 11112 278 ~ 

-r.::-t------.07 __ -+-_--+-.=..00.=.. = +0 
77 = -7 

In the first example, we added two positive numbers and the result was 
negative. In the second, we added two negative numbers and the indicated 
result was positive. The indicated answer was incorrect because the sum 
of the numbers in both examples exceeded the modulus of the device and changed 
the sign bit. 

1. If two numbers of like signs are added and the result has the 
opposite sign, the answer is always incorrect because the result 
has OVERFLOWED the modulus of the device. 

2. If two operands of unlike signs are subtracted and the result 
has the same sign as the subtrahend, the answer is always incorrect 
and OVERFLOW has occurred. This will be illustrated in the following 
section covering subtractive devices. 

NOTE: It is important to realize that overflow and end around carry are 
completely unrelated. End around carry indicates that we counted 
through zero; overflow indicates that a result has exceeded the 
modulus of the device. In the last example, where we added -30 and 
-20, the result was incorrect because of overflow even though end 
around carry was also accomplished. 

+37 +0 
-37 -0 

3-64 



If subtraction is required and the device is additive, the subtrahend is 
always complemented and addition is performed. 

For exampLe: 

SUBTRACT BY COMPLEMENTING AND ADDING (modulus 82 -lor 26 -1) 

SUBTRACT -

+158 15 

+ 58 complemented 72 

108 
1IQZl 
\...;1 

[@] 

BY ADDING (modulus 2
6 2 

-lor 8 -0 

15 +15 
- 7 _____ 7_0_ complemented 

15 
+ 07 

001 

III 

11000 
\... 

1001 

1012 

010 2 

1111 
~ 1 

OooL 

001 101 
+ 000 111 

The following problems are to be solved by addition. If subtraction is 
indicated, complement the subtrahend and add. The modulus of each device 
is 84 -1. Write yes or no beside your answer to indicate whether or not 
overflow has occurred. If yes, record the computers answer and the correct 
answer. If you wish, convert each problem to binary and use~modu1us of 
212 -1. 

Practice Problems (Solve by addition) 

121. 235 125. 3777 
G) 173 G) -0001 

122. -400 126. 3777 
@ -200 Q 0001 

123. 3400 127. 2000 
Q 500 @ 2000 

124. -3700 128. 3700 
Q -0300 Q -200 

3-65 



additive and subtractive operations have both been performed by using 
only an additive device and complement notation. Likewise, a subtractive 
device should also be capable of both operations. 

SUBTRACTIVE DEVICE 

The additive device previously discussed could only count in one direction-­
forward. The subtractive device can only count in the reverse direction. 

ADDITIVE DEVICE SUBTRACTIVE DEVICE 

Let's examine the operation of a counter. 

SUBTRACT 15 
Q 10 

05 
37 00 
40 77 

When we passed through zero with an additive device, we always had an EAC; 
therefore, it seems probable that we should witness some strange phenomena 
when passing through zero in the reverse direction. 

What would happen if a larger number is subtracted from a smaller one, such 
as: 

20 
Q~ 

-10 

20 

3-66 



The answer should be -lOa (67 in complement notation), but counting 
through zero would again cause the answer to be incorrect by a value of 
one. 

Let's examine what happens when we subtract the same numbers octally in 
a modulus a 2 - 1 device. 

20a [1QJ 

30a =800 
0 170 ~ 

We find that we are required to borrow before subtraction can be performed. 
It's impossible to borrow from outside the device so, go end around and 
borrow one from within the device. The procedure will hereafter be referred 
to as "End Around Borrow" or EAB. The end-around operation effectively 
reduces the modulus by one by making the two zero positions occupy the same 
position. 

20 
30 

Borrow 1 70 
L---+ 1 

67 

With the additive device, we added one to the lower digit if the upper digit 
generated a carry and we called this procedure END AROUND CARRY. Likewise, 
with a subtractive device, we performed an END AROUND BORROW if the upper 
digit generated a borrow. 

It can be seen from the reverse-counter illustration that subtracting a 
large absolute (positive) value from a smaller one will always cause the 
counter to pass through zero. Subtracting mathematically, the same procedure 
would always require a borrow. Whenever end around borrow is required of a 
subtractive counter, it is indicative that the counter has passed through 
zero and 1 more must be subtracted from the answer to compensate for that 
extra zero position. 

For example: 

5 
G 10 

-3 a 

05 
10 

175 
1 

--y;;-= -3 
a 

3-67 

} both equal to zero 

EAB causes counter to 
move one more position 
to compensate for the 
extra zero 



SUBTRACTIVE OVERFLOW 

Perhaps you remember the conditions that would produce an incorrect answer 
with an additive device. We called this condition overflow because the sum 
of two operands was greater than the modulus of the device. Let's examine 
the subtractive counter to prove the rule about subtractive overflow (#2, 
page 3-64). 

Subtract -30 
Q +15 

/G 
Correct 
answer 

37 
40 

complemented 

00 
77 

47 
G 15 

~ Positive answer 
produced by 
counter 

The counter has produced an incorrect result because, again, the modulus of 
the device has been exceeded. If the same two operands are used but the 
modulus of the device is expanded to 83 -1, the answer will now be correct. 

For example: 

-30 747 

Q +15 015 

-458 
7328 -458 000 

777 

747 

Comparison of the two foregoing examples clearly illustrates what causes 
overflow. In the first example, the difference between the two operands was 
-45. The modulus of the device only permits expression of operands between 
-37 and +37. The second example used the Sallle operands but the modulus of 
the device permits expression of values between -377 and +377 .• 

3-68 



+37 

~ 

(77) -0 

(40) -37 

-45 

~ +377 

+0 
-0 (777) 

-377 (400) 

I -45 (732) 

~modU1US of the 
device not 
exceded. 

Remember the rule for overflow? If two numbers of unlike signs are sub­
tracted and the result has the same sign as the subtrahend, the modulus 
of the device has been exceeded and OVERFLOW has occurred. 

Well, all of the desired objectives of this chapter have been satisfied. 
Turn back to the beginning of the chapter and review them once more. Lf 
you are confident that they have been achieved, complete the remainder of 
the practice problems and continue. If not, review the chapter again. A 
thorough understanding of number systems and complement notation is a 
necessity before you attempt to learn how to program a computer. 

3-69 



Conversions: 

129. 111 000 1112 = 

130. 111 000 111 = 2 

131. 111 000 1112 = 

132. 735 = 8 

133. FADE16 = 

134. 7778 = 

135. FEED16 = 

136. 34568 = 

137. DEED16 = 

138. 10010 = 

139. 20010 = 

140. 30010 = 

Arithmetic: 

ADD (modulus 212 -1) 

141. 101 111 111 
000 000 000 

142. all 111 111 
100 000 000 

16 

10 

10 

2 

2 

8 

8 

2 

16 

111 
001 

III 
000 

3-70 

16 

10 

8 

143. 000 III 000 111 
000 III 000 111 

144. 000 000 000 000 
111 111 111 111 



SUBTRACT 

145. 

146. 

12 (modulus 2 -1) 

III III 111 111 
000 000 000 000 

III 000 III 000 
000 111 000 III 

147. 

148. 

001 010 all 100 
100 all 010 001 

111 110 101 100 
110 101 100 all 

149. Which of the preceding 8 practice problems caused an overflow condition? 

150. Which of the preceding 8 practice problems had operands whose signs were 

such that overflow could have occurred1 

MULTIPLY 

151. 

152. 

6 (modulus 2 -1) 

all III 
all III 

100 000 
all III 

153. 

154. 

111 111 
000 010 

all 100 
010 001 

155. Which of the four multiplication problems have incorrect answers? Why? 

156. How do you think the computer performs mUltiplication and reaches the 

correct answer? 

157. How do you think a computer that can only add or only subtract performs 

multiplication? 

158. What would the computer do if two negative operands were multiplied 

together? 

3-71 



DIVIDE 

159. 

160. 

6 
(modulus 2 -1) 

010 001 I 011 101 

III 101 - I 001 110 

161. 000 100 I 001 000 2 

162. 000 III / 110 0012 

163. Which of the 4 divide problems gave the wrong answer? Why? 

164. How do you think the computer performs division and produces the correct 

answer? 

165. How can a computer add and subtract if the device is only additive? 

166. Why is only an additive device or a subtractive device used in a computer? 

167. What is significant about end around borrow and end around carry? 

168. What does end around borrow accomplish? 

169. What is the difference between overflow and end around carry? Are they 

related? 

170. What causes overflow? 

3-72 



Su~~RY 

This chapter has been concerned with computer mathematics including 
number systems, conversions, mathematical operations, complements, and 
overflow. You have learned that digital computers function by using binary 
arithmetic. The reason for binary arithmetic (radix 2) is that transistor­
ized switches are used to represent digits of the operands and a switch 
has only two discrete prositions. We also discussed octal and hexadecimal 
number systems because each represents a multiple number of binary digits. 
Computers display results in either of the two bases because that result 
is more easily recognized than the same result in binary. For that reason, 
you learned how to perform conversions between these bases and our familiar 
decimal base. You also learned how to perform arithmetic operations with 
each of these number systems. 

Next you discovered what is meant by a compl~ent (it doesn!t mean you are 
saying something nice toSQmeone when spelled with an'e) and why negative 
numbers can be expressed in complemented form. Additive and subtractive 
operations could be performed directly when using complements and the 
operands did not have to be examined to determine their sign. Ones complement 
arithmetic is always used with a signed binary device to compensate for two 
values of zero that are inherently present. An unsigned device, such as a 
counter, would use twos complement arithmetic because the combinations 
00--02 and 11--12 each represent a different discrete value and the modulus 
would be ~ more than a similar signed device. 

You learned that a computer could perform all four basic mathematical 
operations through the use of only one device -'- either additive or subtrac­
tive. The advantage of one over the other is that the subtractive device 
will rarely produce an answer of negative zero. An answer of zero magnitude 
will always be indicated in the positive format of 0--0. A computer performs 
multiplication and division by complementing negative operands to their 
magnitude format and performing the operation by a series of multiple adds 
or multiple subtracts. The results of these operations are complemented 
again if the final answer and/or remainder should be negative. 

You have seen that an additive device is nothing more than a one-way counter, 
and a subtractive device is also a counter but the reverse of the additive 
type. It should be mentioned that although a modern computer employs the 
use of either an additive or a subtractive counter, the device operates in 
parallel mode by simultaneously determining partial adds and carries or 
partial differences and borrows. This method, when employed with fast-
switching transistors, enables the arithmetic operation to be performed in 
millionths of seconds (microseconds). This provides extremely fast computational 
speed. Remember the advantages of a computer? Speed, accuracy, and cost 
per computation. Doubling the speed of a device effectively decreases the 
cost per computation by one half, assuming no increase in cost for the faster 
machine. 

3-73 



You also learned that a signed summing device (adder~ such as a computer would 
employ, sometimes produces the incorrect answer although the computer is 
still functioning perfectly. This undesirable situation occurs when the 
result of a given mathematical operation exceeds the modulus of the device. 
A device with a modulus of 83 -1 could only express operands with a magnitude 
up to and including t 3778• Trying to express ±4008 in that device would 
exceed the modulus and result in an incorrect answer and a condition called 
OVERFLOW. This condition would be detected by the computer and a fault would 
be indicated. 

Collectively, this chapter should have prepared you with the necessary 
background in number systems and computer mathematics and should have stimu­
lated your interest so that you wish to explore further the mysteries sur­
rounding a digital computer. If this is the case, congratulations! Let's 
continue on to explore and conquer these mysteries. 



EXPONENTIAL POWERS OF COMMON NUMBER SYSTEMS 

Binary Octal Decimal Hexadecimal 
1 

2° = 1 8° = 1 10° = 1 16° = 1 

21 = 2 81 = 8 10
1 = 10 161 = 16 

22 = 4 82 = 64 102 = 100 16
2 = 256 

23 = 8 8
3 = 512 103 = 1,000 16

3 = 4,096 

24 = 16 8
4 = 4,096 10

4 = 10,000 164 = 65,536 

2
5 = 32 85 = 32,768 10 

5 
165 = 100,000 = 1,048,576 

26 = 64 86 262,144 6 
166 = 10 = 1,000,000 = 16,777,216 

27 = 128 87 = 2,097,152 107 = 10,000,000 16
7 

= 268,435,456 

2
8 = 256 88 = 16,777,216 108 = 100,000,000 16

8 
= 4,294,967,296 

9 
2 = 512 89 = 134,217,728 109 = 1,000,000,000 16

9 = 68,719,476,736 

2
1°= 1024 8

10 
= 1,073,741,824 10

1°= 10,000,000,000 16
10 = 1,099,511,627,776 

... - .. - .--

3-75 



ANSWERS TO PRACTICE PROBLEMS 

1. 17010 26. .A16 
2. 361210 27. .00048 

3. 703,67410 28. .00416 
4. 45510 29. .000 000 001 010 011 2 

5. If you solved this one, 
read Page 8 again. 

30. .00A616 

6. 1,000,000
10 

7. •79710 

31. .111 110 101 1002 

32. .FAC
16 

8. • 1630810 
33 • .000 100 100 011 101 010 111 100

2 

9. • 6705810 
34 • .04435274

8 

10. • 0312510 
35 • .111 111 111 1112 

11 .. • 510 
36 • .77778 

12. • 9958010 
37 • 3179010 

13. 258 
38. .791710 

14. 1516 
39. 401210 

15. 708 
40. .0253910 

16. 38
16 

17. 111 000 011 110 2 

41. 9210 

42. .3320310 

18. EIE16 

19. 101 010 101 010 2 

43. 001 111 100 1112 

44. 1751
8 

20. AAA16 
45. AOOO

16 

21. 1 011 111 010 101 101 2 

46. 110 011 101 101 1002 

22. 1372558 

23. 1 101 111 011 101 101 2 

47. .000278 

48. .0000A
16 

49. 1678 
24. 157355 

25. • 58 
50 • 13316 

3-76 



Answers to PractioeProblems (Contd.) 

1:1 
JL. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

• 0048 

.AA16 

111 110 101 100 011 010 0012 

.110 110 101 1012 

100 110 001 0112 

.000 000 000 000 III 12 

71C716 

• 0180C16 

1773518 

.064254748 

10102 

01102 

0011 2 

00112 

101 101 2 

1 101 1102 

101 2, no remainder 

10102, 100 remainder 

128 

68 

38 

38 

55
8 

1568 

58 

76 • 

77. 

78. 

79. 

80. 

81. 

82. 

83 • 

84. 

85. 

86. 

128 , 4 remainder 

101078 

1041728 

5248 

3368 

2308 

4008 

5718 

37638 

100,000 
8 

108, no remainder 

87. 1018, 1 remainder 

88. 28 , no remainder 

89. 189816 

90.EA9A16 

91. If you knew it was impossible, why 
are you checking the answer? 

92. B99A
16 

93. 111 11116 

94. 99 99916 

95. AD743F8 16 

96. 4F9B0616 

97. 

98. 

99. 

100. 

3-77 

BFIBFDA16 

1 ,3 rema inder 
16 

lA
16

,675 remainder 

11 11116 , 1 remainder 



Answers 

101. 

102. 

103. 

104. 

105. 

111. 

112. 

113. 

114. 

115. 

121. 

122. 

123. 

124. 

129. 

130. 

131. 

132. 

133. 

134. 

141. 

142. 

to Practice Problems (Contd.) 

+378 

- 378 

-°8 

-368 

+258 

0030
8 

77478 

000°8 

77778 

774°8 

0430, no 

7177 = -600, no 

2700, no 

4377 = -3400, no 

1C716 

45510 

7078 

1DD16 

64,22210 

51110 

110 000 000 000 2 

111 111 111 1112 

3-78 

106. 

107. 

108. 

109. 

110. 

116. 

117. 

118. 

119. 

12O. 

125. 

126. 

127. 

128. 

135. 

136. 

137. 

138. 

139. 

140. 

143. 

144. 

+08 

-258 

-78 

+78 

+348 

00378 

01°°8 

76778 

0377
8 

74°°8 

3776, no 

3776, no 

4000 = -3777, yes 

4100 = -3677, yes 

1 111 111 011 101 

011 100 101 1102 

1573558 

1448 

011 001 000 2 

12C16 

001 110 001 110 

111 111 111 1112 

101 2 



Answers to Practice Problems (Cont'd.) 

145. 

146. 

111 111 111 1112 

110 001 110 001 2 

149. Only problem number 147. 

150. Prob 1 ems 143, 145, 146, 147. 

151. 

152. 

001 111 000 001 2 

001 111 100 000 2 

147. 

148. 

153. 

154. 

100 111 00 1 a 10 2 

001 001 001 001 2 

000 001 111 1102 

000 111 all 1002 

155. Problems 152, 153. It's impossible to multiply numbers in their 
negative (complemented) form. Multiplication is the product of 
absolute values. 

156. Operands are examined for complements. Negative operands are comple­
mented to magnitude representation and multiplication is then 
performed. If original signs were unlike, answer is complemented 
(multiplication with unlike signs result in a negative answer). 

157. Multiplication is nothing more than multiple additive steps with 
several partial products similar to pencil and pape~ multiplication. 
The computer adds the multiplier to the partial product e~ch time a 
1 appears in the multiplicand. After a multiplicand bit has been 
examined, it is discarded and the next bit is examined until the 
process is complete. 

158. The computer would complement both operands to their magnitude format 
and then multiply. The answer would be left positive because the 
product of two numbers with like signs is positive. 

159. 000 0012, 001 100
2 

Remainder 

160. Impossible to perform. 

161. 000 010 2, 000 000 remainder. 

162. 000 111 2, 000 0002 remainder. 

163. Problems 160 and 162. Divisions cannot be performed upon numbers 
in complemented (negative) form. 

164. The computer always divides a positive into a positive by complementing 
where necessary. The original operands are examined for negative 
quantities and the final answer and/or remainder is complemented where 
necessary. For example, the remainder sign is alwyas the same as the 
original sign of the dividend. If original dividend and divisor signs 
were alike, the answer is positive; if unlike, the answer is negative. 
The computer performs division in essentially the reverse process of 
multiplication; this is, by a series of subtract operations. 

3-79 



Answers to Practice Problems (Contld.) 

165. Subtraction can be performed in an additive device by complementing 
the subtrahend and adding. 

166. All four basic arithmetic operations can be performed with the use of 
only one type of device. If the device is subtractive, 

1. Subtract two operands directly. 
2. Add by complementing the addend and subtracting. 
3. Multiply by a series of multiple adds. Addition 

is performed by complementing and subtracting. 
4. Divide by a series of subtract operations. 

167. End around carry occurs in an additive device if the counting operation 
passes through zero. End around borrow occurs in a subtractive device 
if the counting operation passes through zero. 

168. It compensates for two positions of the counter that both represent 
the same arithmetic value - zero. 

169. Overflow and end around carry are completely unrelated. Compare 
answers to problems 168 and 170 for difference. 

170. Any time the modulus of a device is exceeded, (whether additive or 
subtractive), overflow occurs. 

3-80 



chapter IV 

Programming 



CHAPTER IV 

PROGRAMMING 

INTRODUCTION 

It w~uld be difficult for you to communicate with a p~rson from another country 
unless you both understood a common language. Likewise, communications between 
you and a digital computer would be difficult without a common language. 

Computers have not yet been designed that converse in English. A person 
associated with them must, therefore, converse in the computer's language--the 
language of numbers. You learned the binary number system in the preceding 
chapter and now should be able to communicate with a digital computer in its 
language. 

The objective of this chapter is to familiarize you with the methods used to 
instruct, or program, a digital computer. Any discrete defined problem can be 
solved by a digital computer. You will be taught how to define the problem, 
diagram a solution, and then record that problem in a language meaningful to 
the computer. 

A comparison can be made between a man sitting at a desk and a digital computer. 
Any computer consists of four main sections (input and output are both considered 
as part of the I/O section). 

Figure 4-1. A Ifman-sized lf computer 

4-1 



The Input/Output section is comparable to the in/out basket; the storage, or 
memory section, to the pencil and paper; the arithmetic section to the adding 
machine; and the control section to the man at the desk. 

Man can accomplish tasks and make decisions because he can reason. The digital 
computer does not possess the ability to reason and thus must be "instructed" by 
someone who can. 

If you asked six people to draw a picture of a boat, the pictures could look like 
these--

~"----"""'1Z 

but, if you told the same six people to draw a picture of a rowboat, the 
pictures would more closely resemble each other. By defining what you specifi­
cally wanted, acceptable results were obtained. Now assume that those same six 
people have never seen a boat of any kind and that they will draw only as you 
"instruct" them. Would the pictures all appear the same? Would they all 
resemble a rowboat? 

The pictures would be identical if each person responded exactly as the next and 
precisely followed your instructions. The pictures would all resemble a rowboat 
if your list of instructions, or program, was correct and complete. 

A computer executes a list of instructions, or program, exactly as instructed. 
Whether right or wrong, it continues until commanded to stop. Instructing the 
computer how to solve your problems is an exact science known as programming. 

WRITING A PROGRAM 

The digital computer can only perform certain simple operations. The program­
mer's job is to simplify complicated mathematical equations and reduce them to 
basic step-by-step operations that a high-speed machine (the computer) can 
perform. The programmer can use the computer to solve almost any problem if he 
prepares his instructions properly and if they are entered into the computer in 
correct order. In writing a program, the programmer predetermines all operations 
the computer must perform to carry out or run the program and solve the problem. 
The complete programming operation may be divided into five steps. 

1) Determine and precisely state the complete problem. 

2) Analyze the problem, determining exactly what must be done. 

3) Plan the problem by breaking it down into a sequence of logical steps 
or operations. The first breakdown should be very gp,neral, then it 
should be expanded by adding detailed steps. In the final breakdown, 

4-2 



care must be taken to keep the logical steps compatible with the machine. 

4) Code the logical steps into an acceptable language. 

5) Run and debug the program, making any necessary corrections. 

If you were to drive across the United States, you would probably use a graphic 
diagram called a road map. The map indicates the intermediate points between 
the starting point and your destination. A computer program can also be 
graphically expressed using a diagram called a FLOW CHART. 

FLOW CHART 

A flow chart provides a means of visualizing the over-all problem and the manner 
in which it is to be processed. Symbols are used to denote general operations 
or functio'ns. Refer to Figure 4-2 for a definition of these symbols. It is 
customary to first make a general, simple flow chart to get a broad view of 
the problem. Afterward, a more detailed chart is drawn. Then, using the de­
tailed chart, the programmer takes several examples of the problem and applies 
them to see if anything should be deleted or added. When writing the program, 
it is wise to keep the flow chart handy for later use in debugging the program, 
if necessary. 

A = B + C 

( START 

PROCESS 
INPUT 

) 

PROCESSING 

Represents this processing function i.e., the process of 
executing an operation or group of operations. 

TERMINAL 

Represents a point at which information can enter or leave. 

DECISION 

Represents points in a program where several paths may be 
possible, based on variable conditions. 

CONNECTOR 

Represents a junction in the line of flow. 

PUNCHED CARD 

All varieties of punched cards including mark sense, stub 
cards, etc. 

MAGNETIC TAPE 

Represents the function in which the input or output is 
magnetic tape. 

Figure 4-2. Flow Chart Symbols 

The following example (figure 4-3) may help clarify the use and construction of 
a flow chart. 

4-3 



( ST'RT >--.! GET UP H GET READY HL. __ G_O 
__ .... 

Simple Flow Chart 

More Detailed Flow Chart 

Figure 4-3. Flow Chart Examples 

4-4 



A flow chart is a diagram of the step-by-step solution of a problem. The flow 
chart must describe all of the operations and decisions that are required to 
find the solution, including the possibility of an error. 

The following problem and suggested flow chart serve as an example. 

In a salesman1s commission calculation, there are five different commission 
formulas, depending on the product classification code. They are as follows: 

Product Code Commission Formula 

1 15% x sale price 

2 40% x (sale price - base price) 

3 10% x base price 

4 $10.00 + (5% x base price) 

5 $15.00 

Flow chart the total commission calculation for ten sales. See figure 4-4 for 
this illustration. 

4-5 



Set count 

Set total 0 

Read a sale 
report 

o 

Commission = 
Ct----''"-=''--__ . 15 x Sale Price 1-....... _______ __. 

Commission = 
r-.......,'""'-~ . 40 (Sale Price­

Base) 

Commission = 
>--....::....:=-=--- . 1 0 Bas e 

Yes Commission = 
>-..±-:=:..::.....--10. 00 + .05 Base 

Commission = 
r-"";"::=--aI 15. 00 

Total = Total + Comm. 

(new) (previous) 

Yes 

Figure 4-4. Commission Calculation Flow Chart 



Draw your version of a flow chart that would solve this problem: 

1) A snail climbing out of a well advances three feet each day but slips 
back two feet each night. How many days does it take the snail to 
cl~b out if it starts 30 feet below the top of the well? 

Wasn't that fun? Try another one. 

4-7 



2) Using the following information, compute the tax for 100 employees and 
print the amount that each is required to pay. Net earnings are total 
income less $600 for each dependent. 

Annual Net Earnings 

Less than $2000 No tax 

$2000--$4999.99 2% of amount over $2000 

$5000 or over $60 plus 5% of amount over $5000 

And one more. 

4-8 



3) An item being sold has 3 quoted prices. The unit price is $1.50 for 
less than 20 items, $1.35 for 20-to-99 items, and $1.25 for quantities 
of 100 or more. Draw a flow chart to read 100 different sales reports 
and print the total cost of each sale. 

NOTE: 

Remember that a computer can make only one yes 
or no decision at any given time. 

One solution to each flow chart problem is located at the end of the chapter. 
They may be quite different from your versions because a given problem may be 
solved by several varied methods. 

You learned earlier that the complete programming operation was a sequence of 
five steps, and 

1) the problems were determined and precisely stated. 

2) each problem was analyzed. 

3) each problem was divided into a series of logical steps with the aid of 
the flow chart. 

4) the problems were coded--oh, oh, we haven't done that yet! 

Well, you had better take a short break because this one is going to take a 
while. 

4-9 



A computer program may be coded by three different methods: 

1) by writing the instructions in the computer's language (machine language), 

2) by utilizing a programming aid known as an assembler and writing the 
program in a mnemonic language (assembler language), or 

3) by using a sophisticated programming aid known as a compiler (compiler 
language). 

Each of the three different methods will be discussed and comparisons made to 
determine the advantages of each. 

PART I 

MACHINE LANGUAGE PROGRAJ.I1MING 

Machine language, also called absolute coding, is a series of numerical instruc­
tion codes that "tell" the computer what to do. Although the codes are actually 
in binary, they are normally represented and the programs are written in octal 
notation. A code of 30 instructs the computer to add; a 50 would designate 
multiplication; and division is indicated by a code of 51. 

The add instruction (30) forms the sum of only two operands. The following 
problem would require the computer to add five different times. 

X=A+B+C+D+E+F 

A A+B A+B+C 
1st add B 2nd add C 3rd add D 

A+B A+B+C A+B+C+D 

A+B+C+D A+B+C+D+E 
4th add E 5th add F 

A+B+C+D+E A+B+C+D+E+F 

The computer executes these instructions very rapidly. It can do all four basic 
arithmetic operations (+,-,x,+), search, locate, shift, store, interchange, and 
a variety of others, all in a few millionths of a second. 

The instruction set, or repertoire, for a given computer may consist of only a 
few general instructions; whereas another computer may have an instruction 
repertoire of more than one hundred. 

The numerical codes are fed into the computer via a variety of input media. 
Examples are magnetic tape, paper tape and punched cards. Each numerical code 
is followed by additional numbers specifying the operands, or the location of 
the operands, which are to be used in che operation. 

4- 10 



INTERPRETATION OF NUMBERS 

Each ~ of computer has its own instruction set which could vary greatly from 
that of another machine. Although an add instruction has been defined as a 30, 
another type of computer could have a different number to designate an add. We 
will adopt a portion of a typical instruction repertoire for our study of machine 
language. 

The numbers in a computer are called "words" of its language. A computer word 
may be either an instruction or an operand, depending upon its use. The computer 
reads instructions which determines how the operands are to be affected. 

Some basic terms must be defined before a study of the instructions can be 
undertaken. Some of the terms are: registers, switches, displays, and indicators. 

TERMINOLOGY 

Registers 

A register is a device or circuit which temporarily stores numbers, consisting 
of bits or digits (usually a series of flip-flops). This definition is accurate 
and adequate if a person knows what circuits and flip-flops are. Consider the 
following,even though circuits and flip-flops are not employed. 

The checkout girl at the grocery store temporarily stores the cost of each 
commodity in the keys of the cash register before she presses the add key to 
commit the new value to the memory of the cash register. The keyboard actually 
satisfies the definition of a register because it temporarily holds information. 

In computers, much the same thing happens except keys are not used to hold the 
information; instead, an electrical circuit performs this function. The circuit 
is usually called a flip-flop circuit. Basically, registers hold information for 
short durations and the speed of entering the information or removing it depends 
upon the electrical circuit. All registers considered in this book are much 
faster than memory devices; the. checkout clerk is, perhaps, fast at setting the 
keys but the motor-driven cash register is faster at putting information into 
memory. 

Consider another comparison to further describe a register. The man at the desk 
stores information in his mind (temporary storage) before he puts the numbers on 
paper (permanent storage). 

There are many registers in computers, each having a different function. They 
are considerably faster than the computer's memory and many times easier to change 
or correct. 

Switches 

Radios and lights in a house are turned on by using switches. There are many 
kinds of switches; e.g., flip-switches and pushbutton, to name but two. Switches 
in a computer allow an operator to turn it on, shut it off, put the numbers he 
desires into the registers and start the machine. 

4-11 



Displays 

A register may display the numbers it contains by a series of lights; the 
computer displays its versatility by doing several things at once. Computer 
displays are of the visible type and use lights or a device similar to a 
television screen. 

Indicators 

If the computer detects some kind of error or malfunction, it may indicate that 
condition by lighting a red light. Overflow always produces a wrong answer and 
the computer would indicate the abnormal condition by lighting a red light. The 
computer may indicate that it is trying to communicate with some I/O equipment 
by lighting a green or yellow light. 

Computer Console 

All main computer controls and indicators are on the console (figure 4-5). 
Indicators are lamp modules, each of which displays an octal digit. The lamps, 
in response to signals from the computer, display the contents of the operational 
registers in octal form only when the computer is stopped; the display is blank 
when the computer is running. 

Figure 4-5. Typical 

4-12 



The registers in the computer are identified by letters. The operational 
registers usually hold the end result of an operation or an instruction, an 
operand, or an address. Their contents are displayed on the console and may be 
manually changed by the operator. The transient registers used in formulating 
the result are secondary registers. They are usually not displayed and normally 
cannot be manually changed. See tables 4-1 and 4-2 for a description of the 
registers. 

TABLE 4-1. OPERATIONAL REGISTERS OF THE COMPUTER 

Register Function 

* A Arithmetic 

* Q Auxiliary Arithmetic 

Bl_B3 Index Registers 

P Program Address 

F [nstruction Register 

* The arrow displayed between the two arithmetic registers indicates that the 
A register is on the left and the Q register is on the right (Figure 4-5). 

TABLE 4-2. ARITHMETIC PROPERTIES OF REGISTERS 

Register Number of bits Modulus Complement Arithmetic 
or stages Notation 

Al and A2 24 224_1 ones signed 

Ql and Q2 24 224_1 ones signed 

Bl-3 15 215 twos unsigned 

p 15 215 twos * unsigned 

F 24 224 twos unsigned 

S 15 215 

224 
Secondary registers 

Z 24 
with no arithmetic 

X 24 224 
propertie9. 

*Although the P register is a twos complement device with a 215 modulus, 
a special circuit forces it to skip 77777 (modulus 215_1) when being 
incremented by one. It can be forced to 77777, however, which explains 
the modulus (215 ). 

4-13 



KEYBOARD 

The entry keyboard on the console is the only means provided to manually enter 
data into the computer. Figure 4-6 shows the keyboard portion of the console. 
Refer to figure 4-5 for physical location of the keyboard on the console. 

Figure 4-6. Keyboard 

Table 4-3 lists the keyboard switches and gives their description. 

4-14 



Switch Name 

Keyboard Off 

Keyboard Clear 
(momentary) 

GO 
(momentary) 

Stop 
(momentary) 

Transfer 
(momentary) 

MC 
(momentary) 

BI - B3 

P 

A 

Q 

Enter (EN) 

Sweep (SW) 

0-7 

IlIum. 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

TABLE 4-3 

Description 

Deactivates all keyboard controls 

Clears the communication register 
(Instruction Register) and Keyboard 

Starts the computer at the address to 
which P has been set 

Brings the computer to a halt at the 
end of the current instruction 

Enables the transfer of data between the 
communication register and a selected 
register or storage location 

Performs both an internal and external 
master clear. Disabled when computer is 
in Go mode 

Enables the manual entry of data from the 
keyboard into index registers BI - B3 

Enables the manual entry of an a.ddress 
from the keyboard into the P register 

Causes both A and Q to be displayed, but 
enables entry only into A 

Causes both A and Q to be displayed, but 
enables entry only into Q 

Enables the manual entry of information 
into storage while computer is stopped 

Provides capability of examining contents 
of memory. 

These switches allow entry of octal numbers 
directly into a register or memory 

(determined by top two rows of switches, 
figure 4 .. 6) 

NOTE: 

The keyboard switches shown in figure 4-6 but not listed in table 
4-3 permit speCial operations not discussed at the introductory 
level. 

4 ... 15 



LOGICAL DESCRIPTION 

The computer performs calculations and processes data in a parallel, binary 
mode through the step-by-step execution of individual instructions that are 
stored internally along with the data. 

Functionally, computer operations may be divided into four major sections. 
Input/output provides communications between the computer and the external 
equipment; arithmetic performs the arithmetic and logical operations required 
for executing instructions; control coordinates and sequences all operations for 
executing an instruction by obtaining the instruction from storage and trans­
lating it into commands for the other sections. The basic computer is illustrated 
in figure 4-7. As with any computer, it includes the four previously-mentioned 
sections. 

T T 
~ I Bl I B2 ~ Al 
~ t i t .. ~ 

~~ 

I 

I 

~ Q2 ... 
~ 

i ~ " , IF i f ~ .. ,p .. fib:m,y,k .... 
X -4 A2 i.L 

Ql .. ..... F .. 
,h I ~~ 

OUTPUT 't, 
L.. ... ..... 

Z ~ .. 
.~ -po' 

INPUT .4,. 

restoration I 
Network 

... 
Magnetic 

~ 

Core 
Storage I .... ... S ~ ..... 

1 ..... 

Figure 4-7. Basic Computer Block Diagram 

Bl - 3: Pl, P2 and S are 1S-bit registers used for addresses or address 
modification. 

I 
B3 

i 

-Pl 

P2 

Al, A2, F, Ql, Q2, X, and Z, are 24-bit registers used for full word operands 
or instructions. 

4-16 

I 



INSTRUCTION FORMAT 

The computer program consists of a series of instructions read from storage and 
executed one at a time. Each instruction is a 24-bit computer trword rr which is 
routed from storage to the F register. The F register translates the instruction 
to determine what action should be taken. When the computer has executed that 
instruction, another is read from storage and the process is repeated. 

The path the instruction follows as it is read from memory and placed in the F 
register is illustrated by figure 4-8. 

. I 
f;b:m,y,k 

I IF 

~ .. 

Z .. A~ I Restoration I 
Network 

I Magnetic ~ ... 
Core 

Sto!:"age 

Figure 4-8. Instruction Flow Path 

Figure 4-8 is a portion of the basic block diagram (figure 4-7). The instruction 
is read from storage into the Z register and then into the F (function) register. 
The Z register also allows the instruction to be restored back into storage 
after being destroyed by the reading process. The diagram indicates that the F 
register has several parts, each to accommodate a different portion of the 
instruction. 

A variety of computers would have a variety of instructional formats, determined 
by the design and function of each machine. Figure 4-9 illustrates several 
different instructional formats, with the format for the basic computer outlined 
in the center. 

4-17 



1/ 

" 

(' 6 "(ijj" 
f a b 

d j 

15 

v 
m 
k 

Figure 4-9. Instructional Formats 

4-18 

00 

I,T OPERAND D£ST1 ... TIOti 



The F portion of the instruction determines its function and consists of six 
bits (two octal digits). A function code of 30 indicates that an add operation 
is to be performed. The two octal digits could be any combination from 00 
through 77, equivalent to 64 different decimal combinations. Each combination 
designates a different instruction, but the basic computer will use only 25 
combinations (25 instructions). 

The next portion of the instruction format is a single bit referred to as the 
"al! or "d" designator (figure 4-10). The function of the special designator 
bit is determined by each instruction and will be discussed as individual in­
structions require it. 

f a b ,j 
d 

6 bits 1 

function 
Code 

special 
designator 

m,y,k 

15 bits 

index register 
designator for 
address modification 

five octal digits 
could be: 
1. memory address (m) 
2. operand (y) 
3. shift count (k) 

Figure 4-10. Basic Instruction Format 

The index register designator consists of two bits and usually indicates that 
the contents of one of the three index registers (Bl, B2, B3) will be used to 
modify the remaining 15 bits of the instruction. The index register designator 
can also be used in conjunction with the "aU designator for some instructions. 

The remaining 15 bits of the instruction may be used as (1) the address of a 
storage location, (2) an operand, or (3) a shift count. It may be unmodified 
or, if desired by the programmer, modified by the contents of the indicated 
index register. Lower case letters (m, y, k) indicate that the address field 
is unmodified; capitalized letters indicate a modified address field. 

The following examples indicate the relationship between the modified and un­
modified address field: 

4-19 



1) The modified operand address M is represented by: 

M = m + (Bb) where: M = modified address of operand 

m = unmodified address of operand (execution 
address) 

(Bb) = contents of Index register b 

If the Index designator = 0, then M = m. 

2) The modified operand Y is represented by: 

Y = Y + (Bb) where: Y = modified operand 

y = unmodified operand (execution address) 

(Bb) = contents of Index register b 

If the Index designator = 0, then Y = y. 

3) The modified shift count K is represented by: 

K = k + (Bb) where: K = modified shift count 

k = unmodified shift count (execution address) 

(Bb) = contents of Index register b 

If Index designator = 0, then K = k. 

Notice that 1) is the only case in which the address field actually contains an 
address. The interpretation of the address field is determined by the type of 
instruction being executed. 

STI1BOL DEFINITIONS 

The following deSignators will be used throughout the list of instructions. 

a = addressing mode designator (a=O, direct addressing; a=l, indirect 
addressing) 

b index deSignator (unless otherwise stated) 

d shift designator - bit 217 of instruction. If a 0, shift (A) register; 
if a 1, shift (Q) register. 

f function code (6 bits, octal 00 through 77). 

4-20 



j jump, stop, or skip condition designator (see individual instructions) 

k = shift count (unmodified) 

m = word execution address (unmodified) 

y = l5-bit operand 

o = lithe contents of ". For example, (AI) indicates lithe contents of ll the 
Al register. 

ADDRESSING MODES 

Three modes of addressing are used in the computer: No Address, Direct Address, 
and Indirect Address. 

No Address 

No address means that the address field of the instruction is not the address of 
a storage location. The address field would contain either an operand (y) or a 
shift count (k). 

Direct Address 

Direct address means that the address field does contain the base address of a 
storage location. If the two index designator bits are equal to zero, the address 
is not modified. The storage reference is made at the address indicated in the 
address field. If the two index designator bits are 01, 10, or 11, the address 
must be modified by adding the contents of the designated index register to the 
base address. The storage reference is then made at the address formed by 
m + (Bb). 

Indirect Address 

If the address field of an instruction contains an address (m), indirect address­
ing is indicated by making the special designator bit (a) equal to a 1. With 
this mode, a memory reference is made at the storage location indicated by the 
address field (m). From that storage location, the lower 18 bits are read and 
replace the lower 18 bits of the instruction. The function code of the instruc­
tion remains the same. If the new "a" designator is a one, indirect addressing 
is again accomplished and the lower 18 bits of the instruction are again replaced 
by these from storage. The use of indirect addressing will become obvious as 
you gain proficiency as a programmer. The flow chart (figure 4-11) illustrates 
how the computer obtains the execution address (M). 

4-21 



Read 
instruc-

storage 
into F 
register 

Go to address 
r-----------IM and acqu i re ...... --. 

No 

new terms 

Yes 

dd the (Bb) t 
to form M 

No 

Figure 4-11. Formation of execution address (M) 

Execute 
instruc- Read 
tion next 
using instruc-

ddress tion 
M 

The following examples illustrate how to derive the execution address (M) for 
the "Add to (A) register" instruction (function code 30). The same procedure 
would apply to any instruction that has "a" and "b" designators. 

m 

a addressing mode designator (direct or indirect) 

b = index register designator 

Instruction Description: Add the 24-bit operand from storage location M to the 

contents of the A2 register and form the sum in the Al register 

Example 1 Direct addressing (a and b = 0) 

1011 000 10100 1001 010 111 100 101 F register 

30 12345 

a and b designators = 0 indicate that 
M = m (no modification required) 

4-22 



Example 2 

Example 3 

STORAGE 

ADDRESS CONTENTS 

12345 --+ OPERAND 

Direct addressing (a = 0, b 1) 

(all OOoJ a 1011 001010 all 100 10 1 F register 

~~~'~' v 

30 t 12345
b designator indicates that address modification
is required. M obtained by adding. m and the
contents of B1 (M=(B1) + m)

If B1 contains 00050, M = 12345 + 00050, which, in

octal addition, is equal to storage address 12415.

STORAGE

ADDRESS

12413
12414

12415 ~
12416
12417

CONTENTS

Indirect addressing (a = 1, b = 0)

1011 00011100{001 010 011100 lad F register
~-V~--JI~~~--------~V--------~

30 12345

designator indicates indirect addressing

4_ 23

Storage

ADDRESS CONTENTS

30
~
30 0 20000

Extract lower 18 bits from location
12345 and replace original a, b,
and m designators of instruction

M is now 20000, the execution address of the operand.

Example 4

--.... ~. OPERAND

Modified indirect addressing (a = 1, b = 3)

I 011 ~ Ilnl 001 010 011 100 10q
'-·. __ y~~I~I~------__ y~ ________ J

30 7 L 12345
octal 7 indicates indexing (b = 3) and
also indirect addressing (a = 1).

The indexing is performed first (figure 4-11). If (B3) is equal to 77767,
m + (B3) = 12335:(12345 + 77767 = 12335).

The instruction now says to indirect address from storage address 12335.

STORAGE

ADDRESS CONTENTS

~~~~t---~~Extract lower 18 bits and form new a, b, and 
m designators of original instruction 

~ 
30 2 34567 4~~--------------------------------------· 

4-24 



Instruction now indicates that indexing is again required. 
equal to 66666, M + (B3) = 23456:(34567 + 66666 = 23456). 
the address of the operand. 

--_.OPERAND 

If (B2) is 
M is now 23456, 

At this point, it is important to realize that the program is being read from 
storage and each instruction also has a storage address. The program is normally 
located in a series of sequential storage locations followed by the required data 
(operands). Figure 4-12 illustrates this concept. 

STORAGE 
ADDRESS CONTENTS 

00000 

ootoo 

+ 
00211 
00212 

+ 00254 

ooto 

OOt3 
00564 

t 
00630 

77777 

Program 
IH 

t- - - -

Data for 
Program III 

Program 
112 

use 

Figure 4-12. Programs and associated data in storage 

4-25 



Complete the following practice problems to ensure that you understand how to 
obtain the execution address if the instruction has "a" and "b" designators. 

The answers are at the end of the chapter. 

The Add instruction is at storage location 00010 for each problem and will be 
read from storage and placed in the F register. What would be the execution 
address (M) of the operand in each example? 

4) 

5) 

6) 

7) 

8) 

00010 

00010 

00010 

t 
00077 

00010 
I 

00123 

12!70 

00010 
I 

12345 

77T72 

30 0 22222 

30 1 22222 (Bl) 12345 

30 4 00077 

50 0 00100 

30 5 00123 (Bl) = 12345 

77 7 54321 (B2) = 33210 

01 2 34567 (B3) = 43217 

30 4 12345 (Bl) = 00000 

77 7 77770 (B2) = 00001 

01 2 34567 (B3) = 00002 

BASIC COMPUTER 

Before analyzing the 25 instructions to determine their functions, it is 
necessary to analyze the basic computer block diagram. The basic computer can 
be divided into the four sections that are required of any computer system. 
Figure 4-13 illustrates the sections of the basic computer. 

4-26 



ARITHMETIC I I I 
r----

I I B3 I ~ AI B, B2 
~ t t t J\, t J~ 

I 

I 

~ Q2 ~ 

"' 

i L v 'If 1 i 'if ,If 
f : b I m,y,k ~ 

QI "" X ~ A2 --' I IF 
-~ "' , 

I' 1 J~ 

OUTPUT 'If 
~ ~ 
"' PI Z ~ .. , 

~ P2 INPUT I' I {RESTORATION 
NElWORK CONTROL 

MAGNETIC ~ 

"" 
CORE 

STORAGE I '" ~ S I: INPUT- i' I " 

OUTPUT STORAGE 

Figure 4-13. Basic Computer Sections 

CONTROL SECTION 

The control section directs the operations required to execute instructions and 
to exchange data with external equipment. It also establishes the timing 
relationships needed to perform the operations in the proper sequence. 

The control section acquires an instruction from storage, interprets it, and 
sends the necessary commands to other sections to allow it to be executed. When 
that instruction has been executed, the control section acquires the next 

4-27 



instruction from storage and the execution process is repeated. Figure 4-14 
illustrates the control section of the computer. 

P Register 

The P register is used to determine which instruction will be read from computer 
storage. Each storage location has a specific address which must be referenced 
before the contents of that memory location may be obtained. A programmer knows 
where his program is located in computer storage, usually a series of consecu­
tive storage locations. The Pl and P2 registers together form a twos-complement 
counter that provides program continuity by generating, in sequence, the storage 
addresses which contain the individual instructions. Usually at the completion 
of each instruction, the count in P is advanced by one to specify the address 
of the next instruction. 

k, 

Pl 

P2 

Figure 4-14. Control Section 

F Register 

The Function register (F), holds an instruction while it is executed. After 
executing an instruction, the computer performs an exit, jump exit, or skip exit. 
An exit advances the count in P by one and causes the computer to execute the 
instruction found at the storage location specified by the contents of P. A 
jump exit causes the computer to execute the instruction at the storage location 
specified by the execution address of the jump instruction. The execution 
address is, in this case, entered into P and specifies the starting location of 
a new sequence of instructions. A skip exit advances the count in P by two, 

4-28 



bypassing the next sequential instruction and executing the following one. 

B Register 

The index registers (BI-B3) are normally used to hold quantities to modify 
addresses. However, they may contain operands to be compared with other 
operands. All of the functions of the index registers will become evident 
as the instructions are discussed. 

ARITHMETIC SECTION 

The arithmetic section of the computer consists of two operational registers 
(AI and Ql), and several secondary registers, as shown in figure 4-15. 

A1 

Q2 

Ql 

Figure 4-15. Arithmetic Section 

Al Register 

The A1 register (accumulator) is the principal arithmetic register. Some 
of its more important functions are listed below: 

1) All arithmetic operations use the Al register in formulating a 
result. It is the only register with provisions for adding its 
contents and the contents of a storage location or another 
register. 

4-29 



2) The contents of the A registers may be shifted to the right or 
left. Right shifting is open-ended; the lowest bits are discarded 
and sign extended. Left shifting is circular; the highest-order 
bit appears in the lowest-order stage after each shift; all other 
bits move one place to the left. Al and A2 are both required for 
shifting operations. 

3) As a control for conditional instructions, "Air could hold the word 
which determines whether or not jump conditions are satisfied. 

Q Register 

The Q registers are auxiliary arithmetic registers and are generally used 
in coniunction with the A registers. The principal function of Q is to 
extend the A register.during a multiply and a divide, thus providing a 48-bit 
register. Ql contains the remainder after a divide and holds the most 
significant product digits after a multiply. 

X Register 

The X register is an exchange register used for a variety of functions, 
depending on the instruction being executed. For example, it contains the 
addend during an add operation, the subtrahend during a subtract, the 
multiplicand during a multiply, and the divisor during a divide. It also 
becomes part of the data flow path for several instructions,. 

Adder 

The adder is used to form the sum, difference, quotient, and product 
during the execution of the arithmetic instructions. Address modification 
is also performed in the adder. 

STORAGE~SECTION 

The magnetic core storage section of the computer (Figure 4-16) provides 
high-speed, random-access storage for 8192 words. It consists of two 
independent storage units, each with a capacity of 4096 words. They are 
called field 0 and field 1. These units operate together during the 
execution of a stored program and are considered one 8192 word storage 
system. The system can be expanded to a total of 32.768 (decimal) 
storage locations. The IS-bit address of an instruction would then 
indicate one of the 32,768 storage locations (modulus 215 = 32,76810). 
Figure 4-16 shows the Contents of the Storage Section. 

4-30 



Magnetic 

Core 

Storage 

Figure 4-16. Storage Section 

A word is 24 bits in length and is used as a 24-bit instruction or a 24-bit 
operand (data word). The location of each word in storage is identified by an 
assigned number or address. When a word is taken from (read) or entered into 
(written) storage, a reference is made to the storage address which holds the 
word. 

The cycle time, or time for a complete storage reference, is 1.25 microseconds 
(usec). 

S Register 

The S register contains the address of the storage location currently being 
referenced~ It may have received its address from the P register (instruction 
address) or from the address field of the F register (operand address). 

Z Register 

The proper storage location is then referenced and the 24-bit word is transferred 
to the Z register. Reading from memory destroys the contents of that storage 
location. However, the word is immediately rewritten by the restoration network 
into its original storage location. The Z register also sends the word to: 

1) F if an instruction is being read. 

2) X if an operand is being read. 

3) The output circuits if an I/O operation is being performed. 

INPUT-OUTPUT SECTION 

The input-output section of the computer handles the flow of information to and 
from the computer. Prior to program execution, the data and instructions which 
comprise the program (input) are loaded into computer storage. After computation 
is complete the results (output) are transmitted from storage to an external 



equipment. 

~. 
Output -- ~ 

I/O Computer 
Equipments Storage 

~ .. - -Input 

Figure 4-17. Input-Output Section 

The computer communicates with external equipments through eight independent 
buffer channels which provide the normal exchange of data. 

The input and output buffer channels are paired: channels 0 and 1, channels 2 
and 3, channels 4 and 5, and channels 6 and 7. Each external equipment is 
connected to one of these pairs. It is possible to connect as many as eight 
different equipments to any given channel. All eight buffer channels may con­
currently transmit information. Only one equipment, however, can use anyone 
buffer channel at any given instant. 

In the computer, input-output operations are independent of the main computer 
program. When data is transmitted, the main computer program initiates an auto­
matic cycle which buffers data to and from computer storage. The main computer 
program then continues while the actual buffering of data is carried out inde­
pendently and automatically. 

The process of asynchronous input-output operations is termed a buffer. Buffer 
transmissions employ independent access to computer storage so that computation 
continues while the external equipment is loading information into, or extracting 
information from, computer storage. The rate of exchange is, in most cases, 
dictated by the external equipment. 

The function of each section of the basic computer and the components that form 
each section have been briefly explained. You have learned that instructions 
are read in sequence from storage into the F register where each is translated. 
You also learned the basic instruction format and the instruction designators. 
With that knowledge, you can now proceed and examine the function of each of the 
24 instructions. Some new designators will be used to explain the function of 
each instruction. The following is a complete list of the designators, including 
those previously discussed. 

a 

Al 

Addressing mode designator (bit 217 of indirect addressable 
instructions) 

Al register (accumulator) 

The binary digit in position n of the Al register 

4-32 



-+ Transmit to 

b Index designator 

Bb Designated index register 

d Shift designator bit (2 17 of shift instructions) 

Exit Proceed to next instruction 

f 6-bit function code (bits 218_223 of instruction) 

j Condition designator for jump and stop instructions 

Jump Exit For next instruction, jump to address M 

k Unmodified shift count (bits 2°° ____ 214 of shift instructions) 

K Modified shift count 

m Unmodified operand address (bits 0° ____ 214 of storage reference 
instructions) 

M Modified operand address (M = (Bb) + m) 

() Indicates "The contents of" a register or a storage location 

Ql Auxiliary arithmetic register 

RNI Read next instruction 

Skip Exit Skip one instruction and read the second one next 

y Unmodified operand (bits 200 ____ 214, if instruction contains 
operand) 

Y Modified operand 

1111111 Fill with octal zeros 

INSTRUCTION ANALYSIS 

The instructions to be analyzed are included in the following Table 4-4. The 
mnemonic codes will become useful during the study of assembler language 
programming in Section II of this chapter. Try to associate the mnemonic code, 
function code, and instruction name as you study each instruction. The table 
also contains the page number where the explanation of each instruction may be 
found. 

4-33 



Mnemonic code 

ADA 

AZJ 

DVA 

ENA 

ENA,S 

ENI 

ENQ 

ENQ,S 

HLT 

INI 

ISD 

lSI 

LDA 

LDQ 

MUA 

RTJ 

SEA 

SHA 

SHAQ 

SHQ 

SJI-SJ6 

Table 4-4. INSTRUCTION LIST 

Function code 

30. 

03. (0-3) 

51. 

14.6 

14.4 

14.(1-3) 

14.7 

14.5 

00.0 

15.(1-3) 

10.(5-7) 

10.(1-3) 

20. 

21. 

50. 

00.7 

31. 

12.(0-3) 

13.(0-3) 

12.(4-7) 

OO.j 

Instruction name 

Add to A 

Compare (A) with zero 

Divide AQ by (M) 

Enter A with y 

Enter A with y (sign extended) 

Enter index 

Enter Q with y 

Enter Q with y (sign extended) 

Unconditional stop; RNI from m 
upon restart 

Increase index 

Index skip (decremental) 

Index skip (incremental) 

Load A 

Load Q 

Multiply (M) by (A), product 
in QA 

Return Jump 

Subtract (M) from (A) 

Shift (A) right or left 

Shift (AQ) right or left 

Shift (Q) right or left 

Selective jump 

4-34 

Page. 

4-42 

4-49 

4-45 

4-35 

4-35 

4-37 

4-36 

4-36 

4-57 

4-54 

4-56 

4-54 

4-37 

4-39 

4-43 

4-51 

4-43 

4-39 

4-41 

~-40 

14-50 



Mnemonic code Function code Instruction name Page 

SLS 77.70 Selective stop; RNI at P + 1 4-57 
upon restart 

STA 40. Store A 4-47 

STQ 4l. Store Q 4-48 

UJP Ole Unconditional Jump 4-50 

INSTRUCTION FUNCTIONAL ANALYSIS 

Interregister Transfer Instructions 

14 6 Y 

Clear the A register and enter the l5-bit operand from the address field of the 
F register. The largest operand possible with this instruction is 000777778 
(215 ). The A register cannot be entered with a negative operand with the ENA 
instruction. 

14 14 I Y 

This instruction is similar to the ENA instruction except that the sign bit of 
the l5--bit operand is extended throughout the upper 9 bits of the A register. 
The largest operand (signed) that can be entered into the A register using this 
instruction is +377778• However, both positive and negative operands may be used 
(modulus 2l5_l)~ 

NOTE: 

The Al and A2 registers are normally equalized by frequent transfer 
pulses. Both registers are entered with the operand during the 
execution of the ENA and ENA,S instructions. 

4-35 



Example 111 

ENA ENA,S 

4 0 2 6 Al Register 

A2 Register 

4 0 2 6 1 F Register 

Example 112 

ENA ENA,S 

Al Register 

A2 Register 

F Register 

ENQ I 14 7 y 

Clear the Q register and enter with the l5-bit operand y. Similar to ENA except 
that the Q register is involved. 

E~Q~S ~~t~~9.~~t?,Y 
~$.~~ll..~~t~Ilde;~' 

Similar to ENA,S except that the Q 

14 5 y 

register is involved. 

4-36 



ENQ 

Q1 Register 

X Register 

F Register 

Replaces (Bb) with operand y (a = 0, b 
becomes a "do nothing". 

Example fFl 

ENQ,S 

14 b y 

1-3). If b = 0, the instruction 

Example fF2 

Register 

Load Instructions 

I 20 la, b I m 

a = addressing mode designator 

! : ~~~;:g:e!~~~:~s~e~i!n:t~r(Bb) 
The contents of the A1 and A2 registers are replaced by the 24-bit operand 
from the storage location specified by M. The contents of the storage 
location remain unchanged. 

Address modification to obtain M is accomplished in the adder. The contents 
of the specified index register are transferred to the X register and m to the 
A2 register; the sum is formed in the adder and transferred back to the F 
register as M. 

M is then transferred from the F register to the S register and storage 
reference is made to obtain the operand. Figure 4-18 illustrates the flow 
paths in sequence for a 20 3 12345 instruction. 

4-37 



- B3 

Al 0 
G) 

M ____ 

G) 

"'" 
(0 

x 
~ .... M 

M 

@ , 
I 

Z 

0 
G) 

MAGNETIC 
CORE ---M0 

STORAGE 

Figure 4-18. Load A Instruction 

1) (B3)-+X, m-+A2 

2) M~F address field (M=(Bb ) + m) 

3) M-+S -+Magnetic Core Storage 

4) Operand-+Z-.X -.A2-+A1 

4-38 



If indirect addressing had been specified (a = 1), step #4 of Figure 4-18 
would transfer 18 bits from storage~ Z ~F. The instruction would again 
be translated with its new a, b, and m designators to determine whether or not 
index modification and/or indirect addressing is required. When M is finally 
determined, storage would be referenced at location M and the operand from this 
location transferred to the A registers. 

21 a,b m 

The load Q instruction is similar to the Load A instruction except that the 
operand is transferred from X----. Ql instead of from X ~ A2 ~ Al. Q2 is not 
affected by the LDQ instruction (this register is used mainly by any instruction 
that requires shifting in Q--SHQ, SHAQ, MUA, DVA). 

Shift Instructions 

The format for the shift instructions is quite unique and different than those 
discussed previously. Figure 4-19 illustrates the format used by all shift 
instructions. 

f k 

Figure 4-19. Shift Instruction Format 

The "d ll designator (bit 217) indicates which register is to be shifted. If 
d = 0, shift (A) register; if d = 1, shift (Q) register. 

The "b" designator represents one of the index registers. The shift count, k, 
may be modified to yield K (K = (Bb) + k). 

The "k" in the address field represents the shift count. A positive shift count 
indicates a left shift whereas a negative shift count indicates a right shift. 
All left shifts are end around (bit 223~ bit 200 ) and all right shifts are 
end-off with sign bit extension. 

12 k 

d = 0 

The Shift A instruction shifts the (A) register right or left, depending on the 
sign bit of the modified shift count, K. The d designator bit must be a "0" for 
the SHA instruction. Shifting is accomplished in parallel between the Al and A2 
registers. Figure 4-20 illustrates how the (A) register is left-shifted one 
place by a 12 0 00001 instruction. 

4-39 



A2 Register 

A1 Register 

Figure 4-20. Shift A Left 

If the instruction had a negative shift count, the shift would be to the right. 
Figure 4-21 illustrates the result of a 12 0 77776 instruction. 

Sign 
Extension 

Sign 
bit---... ·~ 

A2 Register 

~=-~~~~-=--~---v 

Figure 4-21. Shift A Right 

1) Shift right A2~A1--A1 contains (A2) right shifted one position. 

2) Equalize registers A1~A2 (A2 = A1)--extends sign by A1 23 transfer. 

3) If the shift count had been 77775 instead of 77776, steps 1 and 2 would 
be repeated. 

d = 1 

The Shift Q instruction is essentailly the same as the shift A except that the 
(Q) register contents are shifted instead of (A). The instruction format is the 



same except that the d Designator is a !l1!1 for the Shift Q. The largest practi­
cal shift count would be 000278 for left shifts, and 777518 for right shifts. 

t 
d = Q, b = 1-3 

The Shift AQ instruction shifts both the A and Q registers as one 48-bit register. 
A shift count (k) of 000308 would interchange the contents of the two registers 
(left shift). A shift count of 777478 would shift (A) into Q. The A register 
would contain a 24-bit extension of the sign bit; the original (Q) would be lost. 
Figure 4-22 illustrates the AQ left shift and the AQ right shift procedures. 

A Q A Q 
__ -----A~----~~----JA------__ 

SHIFT AQ LEFT SHIFT AQ RIGHT 

Figure 4-22. AQ Shifting 

Shift Ag left 

1) bit 223 of Q2 is shifted into bit 200 of A1 

2) bit 223 of A2 is shifted end around into bit 200 of Q1 

Shift Ag right 

1) bit 200 of A2 is shifted into bit 223 of Q1 

2) bit 200 of Q2 is shifted off and lost 

3) sign bit is extended in A 

4-41 



What would each of the following instructions accomplish? For all examples, 
assume that: 

(BI) = 00007 

(B2) = 00014 

(B3) = 77770 

9) 12 a 00015 K= ? 

10) 12 3 00004 K= ? --
II) 12 6 77766 K= ? 

12) 12 7 00001 K= ? 

13) 13 a 00014 K= 'l --
14) 13 3 00003 K= 'l 

(A) 

(A) 

(A) 

(A) 

(A) 

(A) 

(A) = 00 00 5000 

(Q) = 40 00 0000 

final = 2000 0001 'l 

final = 0000 0500 'l 

final = 0000 5000 'l (Q) 

final = 0000 5000 'l (Q) 

final = 5000 4000 'l (Q) 

final = 0000 0240 'l (Q) 

final = 0000 0004 

final = 7740 0000 

final = 0000 0000 

final = 0200 0000 

Check your solutions with those at the end of the chapter. 

Arithmetic Instructions 

1. All four arithmetic instructions use full-word (24-bit) operands. 

2. All modes of address modification (a and/or b) apply to these 
instructions. 

? 

? 

'l 

? 

3. One storage reference is made for each instruction unless indirect 
addressing is designated (a = 111 11 ).- if designated, at least two storage 
references are required (one to obtain new a, b, m designators, another 
to obtain operand). Contents of storage location (M) are unchanged. 

4. If the modulus (224_1) of the A register is exceeded during the execu­
tion of the ADA of the SBA instructions, an arithmetic overflow fault 
is produced (reference overflow section of Chapter III). If the modulus 
of A is exceeded during the execution of the DVA instruction, a divide 
fault is produced. 

30 a,b m 

The ADA instruction obtains an operand from storage location M and adds it to the 
(A) register. The sum is formed by the adder and transferred to both Al and A2. 
Direct and/or indirect addressing may be used with the ADA instruction. The 
original operand in the A registers is replaced by the sum of A and (M); the 
contents of storage location M are not changed. 

4-42 



ADDEND 

x 

z 

ADDEND 

MAGNETIC 
CORE 

STORAGE 

Al 

Figure 4-23. 

A2 
AUGEND 

Sum 

~--ADDEND RESTORED AT (M) 

M 

ADA Instruction data flow paths 

31 m 

This instruction obtains the subtrahend from storage at address M and subtracts 
from the minuend contained in the A registers. The difference is formed in the 
adder and transferred into the Al and A2 registers. The flow paths are exactly 
the same as for the ADA instruction; however, the ones complement of the subtra­
hend is sent to the adder by the X register and addition is performed (subtraction 
can be accomplished by complementing the subtrahend and adding). 

50 m 

4_43 



The MUA instruction forms the 48-bit product of the multiplicand from storage 
location M and the multiplier contained in the A register (both 24-bit operands). 
The 48-bit product is contained in the QA registers with the most significant 
bit in Q23 and the least significant bit in AOO. The actual multiplication is 
performed via a series of add and shift operations initiated by the MUA instruc­
tion. For example, assume (A) = 000 00003 and storage location 00100 contains 
00 0 00007. The instruction 50 0 00100 would obtain the multiplicand (000 00007) 
from storage location 00100 (M) and multiply by (A). The final product would 
be equal to 258 and would appear in the QA registers as: 

Q23 is product 
sign 

Q 

0-----0 

A 

O-----~ 

If the two operands (multiplicand and multiplier) have unlike signs, the product 
will be negative and will appear in complemented format. For example, multiply 
6 by -4 with the instruction 50 0 00100 

Bit Q23 is 
product sign 

(00100) 
(A) 

000 00006 = 6 
777 77773 =-4 

-308 

the final product would appear in QA as: 

Q A 

7-----7 7-----747 -30 

Assume that the multiplicand and multiplier are in storage at addresses 00500 
and 00501. A simple program to form the product could be written as follows. 

00100 20 0 00500 Load A with multiplier fram location 00500 

00101 50 0 00501 Multiply (00501) by (A) 

00102 HALT , 
00500 Multiplier 

00501 Multiplicand 

The program and data are in storage. Master Clear the computer (M/C), set the 
P register = 00100 (address of first instruction) and press the GO button on the 
console. The first instruction loads the multiplier into the A register, the 
second instruction performs the multiplication, and the third instruction 
stops the computer. 

4-44 



This instruction divides the 48-bit dividend contained in AQ by the 24-bit 
divisor from storage location M. The quotient is found in A and the remainder 
is in Q. The uppermost bit of A (A23) determines the sign of the entire divi­
dend. If the dividend and divisor signs are unlike, the quotient in A will be 
negative. The remainder always has the same sign as the dividend. For example: 

+ Ans 
+'+ 
/ + Rem 

- Ans 

+1-- Rem 
-~ 
/ + Rem -c 

A divide fault will occur if the quotient exceeds the modulus of the A register. 
For example, the division of a positive dividend by a positive divisor should 
yield a positive answer. If the 4S-bit dividend 0000 0002 0000 OOOOS is divided 
by the 24-bit divisor 0000 00004S ' the quotient in the A register would be 
4000 OOOOS. In complement notation, that quotient would represent the negative 
quantity 3777 7777S• The divide fault was a result of using a dividend too 
large with respect to the divisor. If the dividend is reduced by one to 
0000 0001 7777 7777S and divided by the same divisor (0000 0004S), the answer 
would be correctly expressed as 3777 7777S ' the largest positive operand that 
could appear in the 24-bit A register. 

NOTE: 

If a divide instruction follows a multiply, the contents of the 
A and Q registers must be interchanged. A multiply forms the 
product in ~ whereas a divide instruction assumes the dividend 
to be in AQ. Therefore, (A) and (Q) must be interchanged. This 
can be accomplished by the Shift AQ instruction (SHAQ). 

The following program employs some of the instructions explained to this point. 
Work the program and list the effect of each instruction. Remember, the computer 
reads the instructions, one at a time in sequence, unless !Iinstructed!l to do 
otherwise. 

15) Master Clear, Set P = 00100, and press Go. Beside each instruction, 
list its function and its effect in the program. 

00100 14 4 00050 

00101 14 7 77777 

00102 14 3 12345 

00103 14 2 11225 

4.45 



00104 14 1 34567 

00105 30 2 66666 

00106 50 4 00120 

00107 13 1 43240 

00110 51 0 00116 

00111 12 4 00025 

00112 31 4 00121 

00113 HALT (to be explained) 

00114 00 0 00045 

00115 77 7 77774 

00116 77 7 77771 

00117 77 7 77677 

00120 00 0 00115 

00121 00 0 00117 

The computer is stopped by the HALT instruction at address 00113. The 
register contents are displayed on the console. What should be displayed 
by each of the following registers when the computer stops? 

p = 

F = 

Bl = 

B2 = 

B3 == 

A= 

Q= 

If you do not agree with the answers at the end of the chapter, review addressing 
modes and any troublesome instructions. 

Store Instructions 

A store instruction is used to write (record) an operand in storage at address M. 
Indirect addressing and address modification may be used. 

4-46 



40 I a,b I m 

This instruction copies the (A) register into storage location M. Original 
contents of storage location M are destroyed. The contents of A are now held in 
storage and also retained in A. Figure 4-24 illustrates the data flow paths for 
the Store A instruction. 

~ Al 

, , 
I 
I 

X .---
• 

, , 
I • 

Z ------
~ 

IRestollatdonJ 
Network 

-- J 
Magnetic -

Core 
Storage 

I S 

Figure 4-24. Store A 

4-47 



41 m 

The Store Q instruction copies the contents of the Q register into storage at 
location M. A copy of the operand is now contained in storage and still retained 
in the Q register. 

What would the following program accomplish? 

16) M/C, set P = 00100, Go 

00100 20 0 00112 

00101 30 0 00113 

00102 30 0 00114 

00103 30 0 00115 

00104 14 5 00000 

00105 13 0 00030 

00106 51 0 00116 

00107 40 0 00117 

00110 41 0 00120 

00111 HALT 

00112 0000 0020 

00113 7777 7677 

00114 0000 0037 

00115 0000 0031 

00116 0000 0004 

17) If storage location 00113 contains 77777577, the preceding program 
would not produce the correct result. Why? Work the program to see 
if you can decide why the answer and remainder would be wrong before 
you check the solution. 

18) How could you modify the program to always achieve the correct results, 
regardless of which operands are used? 

4-48 



I 

19) What would be required to prepare the Q register for division if the 
Divide instruction follows a mUltiply7 

Jump Instructions 

A jump instruction allows the current program sequences to terminate and initiates 
a new sequence at the jump address. The programmer may transfer control to any 
point in his program by jumping directly to the desired instruction. 

The jump may be automatic or may be conditioned by the contents of a register or 
switches on the console. If the jump conditions are not satisfied, the next 
sequential instruction is executed. 

03 10 j I m 

d 0 

j designates a condition 

m = 1:4 = jump address 

The AZJ Instruction compares the contents of the A register with zero for 
greater than, equal to, or less than conditions. The j designator determines 
which comparison is being made. If the tested condition is met, a jump is made 
to M. 

Condition Jump 
Mnemonic designator j Test Condition 

AZJ,EQ 0 (A) = 0 (~ual to zero) 

AZJ,NE 1 (A) r 0 (!:rot ~qual to zero) 

AZJ,GE 2 (A) 0 (Qreater than or ~qual to zero) 

AZJ,LT 3 (A) 0 (.1ess Than zero) 

Positive zero (00000000) and negative zero (77777777) are considered equal to 
zero for the AZJ,EQ and the AZJ,NE instructions. The AZJ,GE and AZJ,LT instruc­
tions examine only the sign of the A register; therefore, negative zero is 
considered to be less than positive zero. 

Indirect addressing and address modification are not possible with the AZJ 
instruction. 

Determine if a jump will be made under each of the following conditions. 

4-49 



20) sign of A negative, AZJ,EQ instruction 

21) (A) = 77777776, AZJ,NE instruction 

22) (A) = 40000000, AZJ, GE instruction 

23) (A) = 77777777, AZJ,LT instruction 

00 j m 

j 1-6 

The SJl-6 Instruction causes a jump to m if the console jump key (specified by 
j) is set. For example, the instruction 00 5 12345 would cause a jump to the 
instruction at storage address 12345 only if jump key 5 is set. The condition 
of the other jump keys is insignificant for the SJ5 instruction. 

UJP I a,b I m 

a = addressing mode designator 

b = index register designator 

m = unmodified jump address (M=(Bb)+m) 

When the UJP Instruction is executed, a jump is always made to M. Indirect 
addressing and address modification may both be used. 

In the following program, what would be the jump address (M) of the instruction 
at storage location 00102? M/C, set P = 00100, Go 

24) 00100 14 3 33000 

00101 14 2 77776 

00102 01 6 00105 

00103 12 3 45670 

00104 56 7 45102 

00105 77 7 45670 

The normal program sequences permit execution of a consecutive list of instructions 
previously stored in computer storage. The P register always contains the 
address of the current instruction and is merely updated by one to read the next 
consecutive instruction. If a jump instruction causes a program jump, the jump 
address is forced into the P register and then to the ~ register. Figure 4-25 

4-50 



illustrates how the jump address conditions the P and S registers to obtain the 
instruction from the jump address. 

I I 
f IbJIl, y, k 

I 
F 

4 ~ 

C0 
Q .. 

PI Z ~ 

t P2 
~ . ~ Restorat io1 

Network 
I 

0 Magnetic 

Core G) - I I 

Storage L'; 
"' I 

s 
--

Figure 4-25. Jumping to a New Instruction 

1) Determine jump address and force P register to new address 

2) Transfer jump address to S register 

3) Initiate storage at jump address 

4) Read instruction from jump address and Transfer to F register 

5) Execute new instruction 

NOTE: 

The direct line from F to S is to reference storage for 
operands. Program continuity would be lost if P was forced 
to the operand address. 

00 7 m 

The Return Jump Instruction provides the means of jumping out of the main program 
to a subprogram and returning back to the next sequential instruction in the 

4-51 



main program. Frequently-used routines, such as trigonometric functions, are 
not rewritten for every new program. Instead, the standard routines are retained 
and, if a program requires them, entered into computer storage as a subprogram. 

Assume that a program in storage calls for a cosine function. Instead of using 
the cosine function as a part of the main program, the program return jumps to 
the cosine subprogram and records the return address of the main program (P)+l. 
The subprogram derives the desired cosine function and then jumps back to the 
first instruction of the subprogram where the return address to the main program 
is recorded. That instruction provides the address of the next main program 
instruction. 

Figure 4-26 illustrates the function of the Return Jump instruction. 

Main Program 

RTJ To 05000 

00100 
00101 
00102 
00103 
00104 
00105 

~---~r--------------------~5 ~---------~--~ 

+ 00623 
00624 

Cosine SUbProgram

J UJP To ____ _ 05000 

RTJ To 05000 

05001 1st instruction 

00750 l 
05073 

Figure 4-26. Return Jump 

1) Jump to address 05000 (subprogram) and write (p) + 1 (00104) in address 
field. 

2) First instruction to be executed is at address 05001. 

3) Last instruction of subprogram (address 05073) is a jump back to start 
of subprogram. 

4) First instruction of subprogram (address 05000) provides for automatic 
return to proper step of main program. 

5) Main program continues at address 00104. 

4.52 



Storage location 00623 also contains a Return Jump to the cosine subprogram. 
What address would be written in the lower 15 bits of location 05000 this time? 

The first and last instructions of the subprogram must contain unconditional 
jumps. The address field of the first instruction is automatically conditioned 
by the return jump instruction (records (p) + 1) but the programmer must 
place the proper jump address in the last instruction. 

The following program is an exercise using the four jump instructions. Work the 
program and answer the questions that follow. MIC, set P = 01000, set Jump 
Key 1, Go. 

01000 14 6 77777 

01001 03 3 01010 

01002 00 1 01004 

01003 01 o 01010 

01004 30 0 01011 

01005 00 7 01012 

01006 03 2 01005 

01007 01 o 01003 

01010 HALT 

01011 37 7 00001 

01012 01 0 77777 

01013 01 0 01012 

25) Draw lines on the preceding program to indicate the sequence in 
which the instructions were executed. 

26) Did you find ~ subprogram? How many instructions did it contain? 

27) How many instructions were executed by the program? Count each 
instruction each time it is usedF ~ere any instructions executed 
more than once? 

28) Which storage locations contained operands? 

If you correctly answered the questions about the jump program, you can JUMP 
with joy to the next group. If not, JUMP back and review the jump instructions 
again. 

4-53 



Increment, Decrement, Increase Index Registers 

The index registers normally contain address modifiers or operands to establish 
parametric limits. This group of instructions permits arithmetic operations on 
the modifier and operands. 

15 y 

d = 0 

b = 1-3 

If b = 0, the INI instruction becomes a "pass" or "do-nothing" instruction. The 
signs of the 15-bit operands (y and (Bb» are extended and the (Bb) is increased 
by y in the adder. The lower 15 bits of the 24-bit sum is transferred to the 
designated index register. Figure 4-27 illustrates the function of the Increase 
Index instruction. 

----- B3 

A2 
... ___ ..... f:b in,y,k 

I F 

Figure 4-27. Increase Index 

4-54 

10 y 

d = 0 

b = index register 
under comparison 

y = comparison operand 



The lSI instruction compares the (Bb) with the operand y. If equal, Bb is cleared 
(all zeros) and program control skips one instruction to P + 2. If unequal, 
(Bb) is incremented by one in the adder and the instruction at P + 1 is executed. 

The lSI instruction is frequently used as a counter to control the number of 
passes made through a program. The flow chart of the commission problem (Figure 
4-4) contained several decisions, one of which asked: Is count = 10? That 
decision would undoubtedly be made by the lSI instruction. 

The following program illustrates how a similar problem could appear in machine 
language. The program is designed to find the sum of six operands contained in 
storage at locations 00200 through 00205. 

MIC, set 

00100 

00101 

00102 

00103 

00104 

P = 00100, Go 

20 0 00200 

30 1 00201~ 
10 1 00004.--- Pass counter 

01 0 00101 

HALT 

1st pass 

1) Load A with first operand (00200) and add second operand 
from 00201 to it (M = 00201 becauseBl was cleared by 
M/C). 

2) Compare (Bl) with y. Not equal so increment (Bl) to 00001 
and exit to P + 1. 

3) Jump back to Add instruction. 

2nd pass 

1) Add (00202) to (A). The A register now contains the sum 
of the first three operands. 

2) Compare, increment (Bl) to 00002, and exit to P + 1 
(jump back to add). 

3rd pass 

1) Add (00203) to (A). Sum of first four operands now in A. 

2) Compare Bl (now 00002) with y (00004). Not equalities so 
increment (Bl) to 00003 and exit to P + 1 (jumps back to 
add). 

4-55 



4th pass 

1) Add (00204) to (A). Sum of first five operands now in A. 

2) Compare B1 (now 00003) with y (00004). Still not equali­
ties so increment (Bl) to 00004 and exit to P + 1 (jumps 
back to add). 

5th pass 

1) Add last operand (00205) to subtotal in A register. 

2) Compare Bl (~ 00004) with y (00004). They are equal. 
Clear Bl to all zeros and skip exit to P + 2, passing 
over the jump instruction that caused the loop. 

3) Instruction at P + 2 (00104) halts the program and leaves 
sum of operands in A register. 

The preceding program could be used to add any number of operands. How would 
you modify the program to add a list of 1008 operands? 

y 

f 
d = 1 

b index register 
under comparison 

y = comparison operand 

The ISD instruction is a variation of the lSI instruction and would have similar 
applications in a program. his instruction decrements the contents of the index 
register designated by b of the instruction. The reverse counter could be used 
to add the same six operands discussed with the lSI instruction. 

For example: 

00100 14 1 00004 

00101 20 o 00205 

00102 30 1 00200 

00103 10 5 00000 

00104 01 0 00102 

00105 HALT 

4-56 



This program starts with the last operand in the list and adds the list in 
reverse. One more instruction is required than in the previous program because 
the index register must be initially conditioned. 

Problem 1J29 

Rewrite the preceding problem and eliminate the ENI instruction. Modify 
the remaining instructions as necessary to provide the correct number of. 

passes to add six operands using theISD instruction. Check your solution. 

Program Termination Instructions 

A digital computer executes instructions in sequence and accomplishes only what 
that instruction specifies. The computer does not tire, does not require coffee 
breaks, and doesn't even stop for lunch--unless instructed to do so. 

Indirect addressing and address modification may not be used with these 
instructions. 

77 I 7 I all/ / / / / / / / I 
lower 12 address bits are 
not used but are normally 
all zeros. 

The selective Stop instruction is conditioned upon the setting of the console 
Stop switch (Figure 4-6). Program executions terminate when the SLS instruction 
is executed if the stop switch is set. If not set, the instruction becomes a 
pass or do-nothing. 

If the program is terminated by the SLS instruction, pressing the GO switch on 
the console re-initiates the program at P + 1. 

m 

This instruction unconditionally halts the program. The address m designates 
the next instruction to be executed if the computer is restarted. For example: 

00100 

! 
00353 000 00100 

4-57 

Restart causes jump back to 
1st instruction and program 
is re-executed. 



Compare the SLS and HLT instructions 

SLS 

stops only if switch is set~ 
reads next instruction (RNI) 
from P + 1 

HLT 

stops unconditionally 
RNI at m 

The HLT instruction is normally the last instruction of a program and is also 
the one that terminates this section. With the machine language instructions 
discussed, you should be able to write some useful programs. 

Answer the following review questions before continuing on to Assembler Language 
Programming. The answers are at the end of the chapter. 

30) What is an instruction? 

31) How many instructions are in a 24-bit word? 

32) The operation code (f) is held in the upper 6 bits of what register? 

33) What is the chief difference between an ENA (14.6) and a LDA (20)? 

34) What happens to the original contents of the register used on a Load 
instruction 

35) What is the chief difference between a Load instruction and a Store 
instruction? 

36) A(i) = 00002170, (Bl) 
wliat will (Af) equal? 

00007. After executing a 12 1 77760 instruction, 

37) (A) = 77777113. What will (A) equal after a 14 6 00003 instruction? A 
14 4 00003 instruction? 

38) Computer words are 24 bits in length. These words can be either of two 
things: 

1) ____________________________ = telling the computer what to do. 

2) ____________________________ = what the computer uses to solve problems. 

39) In the rectangle provided below, fill in the different portions of the 
computer instruction and the number of bits in each area. 

4-58 



40) Which instructions are graphically represented by the following diagrams? 

a) b) c) 

I A reg I c[Aregj) 1- A reg ~ 

==v=~ F reg . 

d) e) f) 

I B reg I 1 Q reg 1 I A reg 1 

; Me!ory I 
:::x: ~ 

b I Memory I 

41) Draw the graphical representation of the following instructions. 

a) 01 b) 51 

c) 30 d) 31 

42) M/C, set P = 02000, GO. What is (A) final? 

02000 14 4 00360 

02001 00 0 02000 

43) M/C, set P = 03010, GO. What is (A) final? 

03010 14 6 77760 

03011 00 0 03010 

4-59 



44) M/C, Set P = 02500, GO. What is (A) final? 

02500 14 4 02502 

02501 00 0 02500 

02502 01 2 34567 

45) M/C, set P = 13000, GO. What is (A) final and (Q) final? 

13000 14 4 13003 

13001 21 0 13003 

13002 00 0 13000 

13003 00 0 00002 

46) M/C, set P = 66000, GO. What is (A) final and (Q) final? 

66000 21 0 66003 

66001 14 4 66004 

66002 00 0 66000 

66003 76 5 43210 

66004 00 1 23456 

47) M/C, set P = 14000, GO. What is (A) final and (Q) final? 

14000 14 4 00002 

14001 21 0 14004 

14002 30 0 14004 

14003 00 0 14000 

14004 00 0 00004 

48) M/C, set P = 01000, GO. What is (A) final? 

01000 14 4 06030 

01001 12 0 77766 

01002 00 0 01000 

49) M/C, set P = 03000, GO. What is the final contents of the A, Q, and P 
Registers? 

4-60 



50) MjC, 

51) MjC, 

03000 20 0 03006 

03001 21 0 03007 

03002 12 0 00003 

03003 13 0 77767 

03004 40 0 03005 

03005 10 0 00000 

03006 30 0 37001 

03007 00 0 77776 

set p = 15000, GO. What is (A) final? 

15000 14 4 00007 

15001 30 0 15004 

15002 31 0 15005 

15003 00 0 15000 

15004 00 0 00011 

15005 00 0 00014 

set P = 11110, GO. What is (A) and (Q) final? 

11110 14 4 77774 

11111 50 0 11120 

11112 13 0 00030 

11113 51 0 11117 

11114 00 0 11110 

11115 

11116 

11117 77 7 77775 

11120 77 7 77664 

a) When multiplying, use the standard arithmetic rules. Fill in 
the blanks. 

4-61 



1) A + times a + give a answer 

2) A + times a - gives a answer 

3) A - times a + gives a answer 

4) A - times a - gives a answer 

b) Similar rules exist for division. Complete the samples. 

1) A + into a + gives a answer and a remainder 

2) A + into a - gives a answer and a remainder 

3) A - into a - gives a answer and a remainder 

4) A - into a + gives a answer and a remainder 

c) Do your arithmetic in OCTAL. 

52) MIC, set P = 11000, GO. What is (A) final and (P) final? 

11000 14 4 77777 

11001 03 0 11003 

11002 00 0 11000 

11003 30 0 11012 

11004 03 1 11006 

11005 00 0 11000 

11006 31 0 11013 

11007 03 2 11011 

11010 00 0 11000 

11011 00 0 11000 

11012 00 0 00001 

11013 00 0 00002 

53) MIC, set P = 06000, GO. What are the final contents of the A, P, and B1 
registers? 

06000 14 4 01010 

06001 30 1 07000 

4-62 



06002 10 1 00003 

06003 01 0 06001 

06004 00 0 06000 

07000 00 0 00670 

07001 77 7 77517 

07002 00 0 06673 

07003 00 0 07213 

07004 77 7 77657 

54) MIG, set P = 07000, GO. List the final contents of 

A 
07000 10 1 00006 

Q 
07001 20 1 07012 

F 
07002 30 0 07013 

P 
07003 40 1 07012 

B1 
07004 21 1 07015 

07005 13 0 00030 

07006 51 0 07015 

07007 03 3 07012 

07010 01 0 07000 

07011 00 0 07000 

07012 00 0 07000 

07013 00 0 00004 

07014 76 0 10103 

07015 77 7 77774 

07016 00 0 00000 

55) MIG, set P = 08006, GO. What is (A) final and (P) final? 

08006 14 4 40000 

4-63 



08007 03 2 08009 

08008 00 0 08006 

08009 00 0 08006 

56) Mle, set P = 10000, GO. List the contents of all operational registers 
when the computer stops. 

10000 14 6 00201 

10001 12 0 00017 

10002 12 0 77767 

10003 40 0 10013 

10004 14 6 00000 

10005 30 1 11000 

10006 10 1 00003 

10007 03 2 10014 

10010 50 0 11003 

10011 13 0 00030 

10012 51 0 11004 

10013 00 0 00000 

10014 01 0 10005 

11000 00 0 00567 

11001 00 0 01346 

11002 77 7 76541 

11003 00 0 00012 

11004 77 7 77774 

57) Mle, set P = 12000, GO. List the final contents of the A, Q, P, and F 
registers. 

12000 14 4 77777 

12001 03 3 12007 

12002 00 0 12000 

4-64 



12003 01 0 12000 

12004 20 0 12003 

12005 21 0 12001 

12006 01 0 12002 

12007 00 7 12003 

58) MjC, set P = 12000, GO. What is (A) final? 

12000 20 4 12002 

12001 00 0 12000 

12002 00 0 60732 

59) MjC, set P = 07000, GO. What is (A) final? 

07000 20 4 07000 

07001 00 0 07000 

60) MjC, set P = 13000, GO. Where does the computer stop? 

13000 00 7 13013 13010 14 0 13017 

13001 01 0 13017 13011 00 7 13003 

13002 00 0 21000 13012 00 7 13004 

13003 01 0 13013 13013 01 0 13004 

13004 01 0 13003 13014 01 0 13007 

13005 00 0 14000 13015 14 9 13002 

13006 00 0 15000 13016 01 0 13011 

13007 01 0 13003 13017 01 0 13015 

13020 00 0 13000 

What are the final contents of storage locations 13004, 13011, and 130137 

4-65 



Now that you have had the opportunity to work a few practice problems, try to 
write a machine language program to solve the following problem. 

PROBLEM 

A drove of turkeys and sheep have 99 heads and feet, there are twice as many 
turkeys as there are sheep. When the computer stops, the number of sheep should 
appear in the Q register (in octal, of course), and the number of turkeys should 
be stored at location 00200. 

Remember the steps to consider when writing a program. 

1. Determine and state the complete program. 

2. Analyze the problem, determine what must be done. 

3. Sequence the problem with a flow chart. 

4. Code the steps into machine language. 

Rule 1. Determine and state 

The problem is to determine the number of each animal. The number of turkeys is 
a key figure because there are twice as many turkeys as sheep. The problem is 
stated using decimal operands. Convert the operands to octal to be compatable 
with the computer1s language. 

99 10 heads and feet 1438 heads and feet. 

Rule 2 Analyze 

Derive a formula that could be used to algebra\cally solve the problem. 

a. Twice as many turkeys as sheep 

b. Two turkeys would have two heads and four feet (6X) 

c. Each sheep has one head and four feet (5X) 

d. Each possibility would have 11 heads and feet 

turkeys = 2 x sheep (T = 2S) 

T x 3 + S x 5 = 1438 

4-66 



Rule 3 Plan the problem 

A man would work the problem algebraically; the computer can rapidly furnish the 
random number of turkeys by using sequential numbers beginning with the number 1. 
Let's hope none of the sheep have only three legs and that there are no two­
headed turkeys. Construct a flow chart before attempting to code the problem. 

4-67 



Rule 4 Code the problem in an acceptable language (machine language). 

Write your program in machine language on the following form. It is referred 
to as an "Absolute Coding Form" and is typical of the many forms suitable for 
machine language programming. The form was specifically chosen to be compatable 
with the adopted instruction format. 

STORAGE I INSTRUCTION 
LOCATION f :a, b: m, y, k COMMENTS 

I 

0 

1 

2 

3 

4 

5 

6 

7 

0 

1 

2 

3 

4 

5 

6 

7 

0 

1 

2 

3 

4 

5 

6 

7 

0 

1 

2 

3 
4 

I - -t-- I--

4-68 



The flow chart and the coding of the problem have been left as a challenge to 
you. The program, including data, can be written in less than 30 program steps. 
When you have completed your flow chart and program, you may check your solutions 
with those at the end of the chapter (4;61,62). The program solution has been! 
included only as a guide and is not necessarily the most efficient way to achieve 
the desired result. Make sure that your program allows for the possibility of 
not finding a solution and will stop after a given number of passes. 

The program you have just written must now be entered into the computer. This 
must be accomplished manually from the console (enter mode) for a program 
written in machine language. 

PART II 

ASSEMBLER LANGUAGE PROGRAMMING 

Now that you have learned machine language programming, you can appreciate the 
difficulties presented with that type. 

There must be an easier way and, by ADA, there is (ADA could be a girl1s name 
or, it could be the mnemonic code for an IIAdd to All instruction). 

To begin with, an Assembler is not a black box; it is a program consisting of a 
series of translatory routines. The purpose of the routines is to make computer 
programming easier by using symbols for operations and names of locations. 
Numbers are used if necessary for constants but no reference is given to 
numbered memory locations. 

This method of programming is so named because the computer is expected to do 
some lIassembline ll (the changing of the written language into machine code before 
the program can be executed). The following is a comparison of machine and 
assembly languages. 

Machine Code 

20 0 XXXXX 

20 is the code for loading 
the A register with the 
contents of the memory 
location specified by the 
address xxxxx. 

Assembly Code 

LDA COSINE 

LDA is the assembly language 
(mnemonic) code which means 
load the A register with the 
contents of the memory location 
identified by the name Cosine. 

NOTE: Attach a location name 
that is meaningful and 
one that defines the 
operation. 

The assembly language has several advantages over machine coding. The mnemonic 
letters and tags indicate which action is to take place, whereas the machine 
code is only a list of octal digits with little or no meaning outside the mind 

4-69 



of the programmer. There is also another adval1~age of the assembly code; the 
programmer need not be concerned with addresses of the instructions themselves. 
The assembler (the program in t~e computer which changes the assembly code to 
machine code) has the responsibility of assigning addresses. 

The following diagram shows the order of operations of a program written in 
assembly language. 

I MAGNETIC 
. TAPE 

o~ 
Special assembler 
program is read 
into the computer. 

2. PUNCHED CARDS )t ,..------,/ 
/ 

SHEEP 

Source program 
(in assembler 
language) is 
"read" into computer. 

Figure 4-28. 

COMPUTER 

\ 

4. LINE PRINTER 

THERE ARE 9 SHEEP 
AND 18 TURKEYS WITH 1 __ 9_9_H_EA~DS AND FEET. 

Object program is 
executed using translated 
machine codes and the 
results are sent out 
(dectmal operands and 
alpha characters). 

3. 

Assembler program 
in the computer 
translates the assembly 
language "source program" 
into a machine language 
"obj ect program". 

Order of Operations 

The program is generated by following the same steps used for machine language 
programw.:tng. 

1) Determine and precisely state the problem. 

2) Analyze the problem. 

3) List the solution to the problem in a series of logical steps (flow 
chart). 

4) Code the logical steps into an acceptable language. 

One type of computer language highly acceptable and in extensive use is the 
assembler language. Each type of computer system has its own instruction format 

4 .. 70 



and repertoire. Therefore, each type of system must have its own assembler to 
translate the mnemonic codes into its language. The assembler may be identified 
as 

CODAP 

CAP 

COMPASS 

ASCENT 

ASPER 

(COntrol ~ata ~ssembly ~rogram), 

(fomputer ~ssembly ~rogram), 

(COMputer ASsembly ~ystem), 

(~ssembly ~ystem for CENTral processor), 

(~ssembly ~ystem for PERipheral processor) or by some 
other appropriate name. 

The COMPASS assembler is compatable with the instruction format and repertoire 
discussed in the machine language section of this chapter. Therefore, the 
following discussion will be directed toward the COMPASS assembler and programs 
will be known as COMPASS programs. Although coding methods for other assemblers 
may vary slightly, the procedures are essentially the same. 

The assembly program is written using the mnemonic codes to identify the desired 
operation. The following table is an extract from Table 4-4 and designates the 
mnemonic code for each instruction. 

TABLE 4-5. MNEMONIC INSTRUCTION CODES 

Mnemonic Machine Instruction Name Mnemonic Machine Instruction 
code code code code Name 

ADA 30. Add LDQ 21. Load Q 

AZJ 03. (0-3) A zero jump MUA 50. Multiply 

DVA 51. Divide RTJ 00.7 Return Jump 

ENA 14.6 Enter A SBA 31. Subtract 

ENA,A 14.4 Enter A SHA 12.(0-3) Shift A 

ENI 14.3 Enter index SHAQ 13. (0-3) Shift AQ 

ENQ 14.7 Enter Q I 
SHQ 12. (4-7) Shift Q 

ENQ,S 14.5 Enter Q (extended) SJI-6 OO.j Selective Jump 

HLT 00.0 Halt SLA 77.7 Selective Stop 

INI 15.(1-3) Increase index STA 40. Store A 

ISD 10.(5-7) Index skip I 
4l. STQ Store Q 

(decremental) 

lSI 10.0-3 ) Index skip UJP Ol. Unconditional 
(incremental) Jump 

LDA 20 Load A 

4-71 



CODING FORM 

The appropr.iate program steps are recorded sequentially on a coding form. 
Figure 4-29 illustrates the coding form used to record COMPASS assembler programs. 

PROGRAM 
COMPASS SYSTEM CODING FORM CONTROL DATA NAME 

PAGE 
ROUTINE DATE 
LOCI! OPERATlOII,MODIFlERS AD.RESS FIELD CUMMEIITS IDEIIT 

I I 
r 2: , .. , 6 7 • , ,0 1112., r. l'!!o Ie 17 " " 20 2122 25242'262' 21"' !IO:JI 32" '4 SSMST '" ' •• 041 .. 2 .. ' ..... ' .. "., ..... '50" '2" ~ ",. '1'"." lOll' 62 ., .... S."., .. ",1'1)-1' 1'Z', ,." 1"I,r 187'10 

I I 
I 21 , .. , I 1 • !II ,0 II 12 " ,. ,,, •• " " ,. 20211'2 Z, t. ItS '16 J'7 ZI 2' 30 " 5t' 3'35455 .. 51" !I.I 40 .. , 42 -11, ..... ' ••• 1 ••• ., 5(115' '2" ,,.,, 51 ,., "1";10,.,111',13 •• 8'1'" I?I", ""'017' 112 "31"1'. ""1'1'15171"." .0 

Figure 4-29. COMPASS Coding Form 

Location Field- ... Columns 1-8 

LOCH OPER' 

8 i , 1'0 ' 

4-72 



The location field is used to assign an alphanumeric location symbol to an 
instruction or constant (operand), permitting execution addresses to be repre­
sented symbolically. The first character must be alphabetic but subsequent 
characters may be alphabetic, numeric, or a period. Other punctuation marks 
and special symbols may not be used in the location field. 

The location symbol must not contain more than eight characters (length of the 
field). Examples of acceptable characters are SIDEA, SIDEB, XSQUARE, DIVISOR, 
TURKEYS, SHEEP. The symbols 5TURKEYS and ?SHEEP would be illegal and would 
constitute errors. An asterisk in column 1 would identify the entire line 
(columns 2 through 72) as a comment and the information on that line would not 
be assembled. 

NOTE: 

The LOCN column may be left blank unless that address is 
referenced out of sequence (to obtain an operand or as a 
jump address). 

Column 119 

Column 9 is a demarcation line between the location field and the operation 
field and is always left blank. 

Operation Field~-columns 10-19 

i iOPERATlON,MODIFlERS lOOP 
I I 

! I I I I I iSIHIAIQ, ! I 

I 

I ! !! IHILITI I 

The operation field contains a mnemonic instruction code with related modifiers, 
a pseudo-mnemonic instruction (to be explained), or the octal values 00-77 to 
indicate the machine code for an instruction. The field begins in column 10 
and is terminated by the first blank. If the address field is blank, the assem­
bler translates it as a 00 machine code. 

Related modifiers may be used in conjunct.ion with the mnemonic code. If used, 
they must follow the mnemonic code, separated by a comma. The AZJ mnemonic 
code must be followed by a modifier to designate which type of comparison is to 
be made of the A register. The modifiers are: 

4-73 



I denotes indirect addressing (LDA,I) 

S denotes sign extension (ENA,S) 

EQ equal (AZJ,EQ) 

NE not equal (AZJ,NE) 

GE greater than or equal (AZJ,GE) 

LT less than (AZJ, LT) 

Address Field--Columns 20-40 (with exceptions) 

ADDRESS fiELD COMMENTS 

12012. 12212112412512612712812g 130P' 1121 H I H 135136137 jl813gI4014. 1421 HI"14S!' 

I 
ISIIIDIEIAI.I.31 1 I 

I 
I SIHIElf IPI-131 

I 
1 I I I I I 1 I 

The address field may contain a mnemonic code, numerics, or an alphanumeric 
combination to represent a storage location (m), an operand (y), a shift count 
(k), or data. 

The mnemonic code may designate a storage location or a reference point to 
designate some other storage location. For example, if the code SHEEP represents 
storage location 12345, SHEEP + 3 and SHEEP -4 would represent storage locations 
12350 and 12341 respectively. Index register designators follow the mnemonic 
code, separated by commas. For example, the mnemonic code: 

LOCH OPERATlON,MODIFIERS ADDRESS fiELD 

would be assembled as 20 2 XXXXX in machine language (XXXXX is the address 
equated with ANSWER). 

4-74 



If the address field contains an operand or shift count, it may be expressed in 
either octal or decimal. The number 7095 is decimal (radix 10) whereas the 
number 123B is octal (the B specifies octal)~ The assembler converts decimal 
operands to their octal equivalents (actually binary in the computer), obviating 
the necessity of conversion by the programmer. A minus sign (-) may be used 
to indicate negative numbers instead of the machine language type complement 
notation. For example, the assembler language instructions 

LOCN I IOPERATlON,MODIFIERS ADDRESS FIELD 
, ! 

, 5 , 6 1 ' ' B ' 9 iO , '2 , '3 1'4 1'5 1'6 I" I '8 1,9 120 12' 122123124125126121128129130 13' I 

I 
TI¢ITIA,/...' I I ; £Jv,Aj 1511 I I I 1-15 15, I I I I I I I I I I 

I 
1 I 1 I , 1 i SIHIA I I I I I I 1-,71 8 , 131 , I I 1 I I , I 

would be assembled in machine language as: 

14 4 77710 (55 decimal = 67 octal) 

12 3 77770 (shift count K = (B3) + k) 

Data to be used by the program is normally stored immediately following the 
program in memory. Several operands may be expressed on the s&ne line if 
separated by commas (each comma designates a new subfield). Although several 
subfields appear on the same line, the assembler would place each one in a 
separate storage location. Operands expressed on the same line must be all 
octal or all decimal, indicated by OCT or DEC in the operation field. For 
example, the assembly language expressions: 

LOCN 'IOPERATION,MODIFIERS ADDRESS F!ELD 

2 , '3 1 '4, 5"6:,,:,.,, 9 I 20 I 2' I 22 I 231241 25126121 12"1 291 30 I " 1321"1341 35 1 361" 13"1 391 
, 

¢,CT, I I I I i 1-13 IO I0 121 6 13Ial-,5! I I I I I I I I I I 

I I 

JJ£,C" '" I 1- 13,.9llfISI. AI9, 1-1710191Si I I I I I I I 

I 
1 I' I I ' I I I I I I I I I I [ j I , I I I I I , I I I I I I I I ' 

could appear in storage as : 

12346 77777747 12353 77762110 

12347 00000263 

12350 77777772 

12351 77770226 

12352 00000131 

4-75 



The octal operands could be obtained from storage by making reference to DIVISOR, 
DIVISOR + 1, and DIVISOR + 2. Likewise, the decimal operand -7095 could be 
obtained by referencing storage location AUGEND + 2. 

The address field begins with the first non-blank characters following the 
operation field and is terminated by a blank column. The field must begin be­
fore column 41 and is always terminated by column 73. All location symbols 
expressed in the address field must be defi~ed by a similar symbol in the loca­
tion field. 

Comments 

The comments area is provided for program remarks. This area is solely for the 
benefit of the programmer and has no effect on the program. 

PSEUDO INSTRUCTIONS 

One other area that must be discussed concerns pseudo instructions. A pseudo 
instruction provides information to the assembler that accomplishes some 
operation that the computer cann.::.;t accomplish with its own instructions. The 
OCT and DEC terms used to define data are examples of pseudo instructions. 
Another example of a pseudo instruction is the program identification symbol. 
Like other pseudo instructions, it is contained in the operation field. 

LOCN OPERATION,MODIFIERS ADDRESS FIELD 

The operation term is IDENT and identifies the program name as TURKEYS and 
SHEEP. The program name is located in the address field of the format. Only 
the first eight columns of the address field are actually used by COMPASS as 
the program identifier (TURKEYS). 

Another pseudo instruction is the ENTRY statement which defines the entry point 
into the program. The entry point must be defined to allow proper assembly of 
the program. 

With these few basic facts concerning the COMPASS assembler, you should be able 
to write a program coded in assembly language. The turkeys and sheep program 
discussed earlier is illustrated on the following page. Is should serve as a 
comparison between machine and assembler language programming. By comparing the 
two programs, it is evident that--although assembler language programming has 
numerous advantages over machine language--one assembly language statement is 
still required for each comparable machine language instruction. 

4-76 



After the assembly language program is recorded on a coding form, the form 
provides the necessary information to punch the source program (Figure 4-28). 
Each line on the coding form represents one card in the source deck. The deck 
would be loaded in the card reader and, in turn, into the computer for assembly. 
Figure 4-31 illustrates how the Source deck for the turkeys and sheep problem 
would appear. 

Figure 4-31. Source Deck 

The turkeys and sheep problem was executed by a CDC 3200 computer in COMPASS. 
After execution, storage location TURKEYS contained the binary equivalent of 
000000228 (18 decimal) and storage location SHEEP contained the binary equiva­
lent of the number 0000 00118 (9 decimal). 

MONITOR SYSTEM 

The following listing is a printout of the object program for the turkeys and 
sheep problem. The assembler is under control of another software program called 
a monitor or operating system. The monitor for the 3200 computer is SCOPE 
(Supervisory Control Of Program Execution). All programs, whether written in a 
c;mpiler or assembler-la~guage, are compiled (or assembled) and executed under 
control of SCOPE. Although a program is assembled by COMPASS, the assembler is 
actually a subprogram of SCOPE. After assembly, control is returned to SCOPE 

4-77 



and the program may be executed. 

A program is assembled starting at relative address 00000 and written on magnetic 
tape. At the end of the assembly run, the machine language program is on magne­
tic tape. 

Program execution is accomplished under control of SCOPE by reading two cards, 
Load and Run (see Figures 4-31 and 4-32). The program is then read into computer 
storage starting at an address determined by SCOPE and printed on the listing 
following the Run statement (address 17712). All addresses and instruction m 
fields must be modified as the program is loaded into computer storage. The 
first instruction will be placed in magnetic core storage at address 17712. If 
the instruction contains an address in its m field, indicated with a P in the 
listing, the assembled address will also have 17712 added to it. 

For example, the AZJ,EQ instruction would be in storage location 17717 
(17712 + 00005) and would appear as 03 a 17725. 

Locations SHEEP and TURKEYS would be assigned addresses of 17731 and 17732 
respectively. 

After SCOPE has relocated the program in magnetic core storage, a return jump 
is made to the entry point of the program (START) and a return address to SCOPE 
is written where the ** appears on the listing. The first instructions to be 
executed is at P + 1 (review the RTJ instruction). After the entire program 
has been executed, including all desired I/O operations such as Print-outs, a 
jump is made back to Start which returns control back to SCOPE. SCOPE will then 
immediately assemble, compile, or execute the next job, as indicated by the 
control cards it reads. 

The function of the SCOPE control cards shown in the source deck (Figure 4-31) 
is listed below. Each control card is identified by SCOPE by a ~ multipunch 
in column 1. 

~ SEQUENCE 

This indicates the start of a new job to SCOPE and provides the computer opera­
tor with a job sequence number between 1 and 999. 

7 JOB 
9 

This provides information to SCOPE for automatic accounting. The first field 
following job is reserved for an 0-8 character charge number, the second for an 
0-4 character programmer identification, and the third for a time limit. If 
the job is not completed within the prescribed time, control is returned to 
SCOPE and the next job is processed. Even if left blank, the fields must be 
delineated with commas. 

The last field may contain one of several information messages to SCOPE. In 
this case, the ND indicateS that no memory dump is desired if the program 

4-78 



terminates abnormally. 

~ EQUIP 

This card allows the programmer to assign certain operations to a definite 
piece of I/O equipment. For example, logical unit 56 is assigned as a Load and 
Go unit but no specific type of equipment is permanently assigned. The 1156 = MT" 
indicates that the assembled program will be written on magnetic tape. Some 
units are permanently assigned for a given system and need not be equipped. By 
uSing the EQUIP statement, the programmer is allowed more latitude in the choice 
of I/O equipments. 

~ COMPASS 

This card informs SCOPE that the tab to follow is written in assembler language 
and that COMPASS is required to assemble it into machine language. Upon reading 
COMPASS, the assembler is read into memory from magnetic tape. The parameters 
on the COMPASS card are then read by COMPASS. 

L indicates that a listing of the program is desired on the line printer. 

X indicates that the program is to be executed and places the assembled 
program on logical unit 56 (previously equipped, as magnetic tape). 

P would indicate that the assembled program will also be punched on 
cards. 

Following assembly, the Finis card returns control to SCOPE, which then reads 
the Load card. 

7 LOAD 9 

The load card causes the monitor to load the program from logical unit 56. At 
load time, the program is relocated in memory and all addresses are modified to 
reflect the relocation. After the program is loaded in memory, the next card is 
read. 

The run card informs SCOPE that the loaded program should now be executed. 
SCOPE does a RTJ to the Entry point and stores a return address. Upon completion 
of execution, control is returned to SCOPE which then reads the next card. 

The double ~ indicates an End of File to SCOPE and that the job is completed. 
At this time another job may be processed under control of SCOPE. Any programs 



residing in magnetic core storage--except SCOPE itself--may be destroyed as the 
new program is assembled and executed. 

The listing for the TURKEYS and SHEEP program is illustrated in Figure 4-32. 
Notice that the program was not assigned a relocation address until after the 
Run card had been read. The same program may be assigned a different relocation 
address if loaded again. The relocation address is assigned by SCOPE at LOAD 
time. 

COMPASS .. 32 (2.U TURKEYS 

ENTRY-POINT SYMBOLS 
START 00000 

LENGTH Of SUBPROGRAM 00025 
LENGTH Of COMMON 00000 
LENGTH Of DATA 00000 

COMPASS .. 32 (2.1) TURKEYS 
ENTRY START 

00000 01077777 01 0 77777 0 START UJP •• 
00001 14600001 14 1 00001 2 ENA 1 
00002 40000017 40 0 POOO17 0 STA SHEEP 
00003 50000023 SO 0 POOO23 0 MUA OATA+2 
00004 31000024 31 0 POO024 0 SBA DATA"3 
00005 03000013 03 0 PODOll 0 AZJ.EQ ANSWER 
00006 20000017 20 0 POOO17 0 LOA SHEEP 
00007 30000021 30 '0 pooo2i 0 ADA DATA 
00010 10100144 10 0 00144 1 lSI 100.1 
00011 01000002 01 0 POOO02 0 UJp START+2 
00012 00077777 00 0 77777 0 HLT 777778 
00013 20000017 20 0 POOO 17 0 ANSWE::R LOA SHEEP 
00014 50000022 50 0 POO022 0 MUA DATA.l 
00015 40000020 40 0 poo020 0 STA TURKEYS 
00016 01000000 01 0 1'00000 0 UJp START 
00017 SHEEP BSs 1 
00020 TURKEYS BSs 1 
00021 00000001 O/oTA DEC 1.2.11.99 
00022 00000002 
00023 00000013 
00024 00000143 

END START 

NUMRER OF LINES wITH DIAGNOSTICS 0 

LOAO,56 
RUN 

SUtlP 
17712 TURKEYS 

ENTR 
17712 START 
02201 AET 
02453 START2 Figure 4-32. 

l~-80 



Other programs of a more practical nature than the Turkeys and Sheep problem 
can also be written in COMPASS. For example, suppose you wish to solve the 
equation X4 - 46X3 + l64X2 + 68l4X - 20757 and derive the four roots of X. It 
could be solved algebraically,but consider how it could be solved by a computer. 

Remember the steps to consider when writing a program? 

1. Define the problem---X4 - 46X3 + l64X2 + 68l4X - 20757. 

2. Draw a flow chart---Figure 4-33. 

3. Code the problem into a computer language---Figures 4-34 and 4-35. 

4. Delay the program---Correct any diagnostics indicated on the assembly 
listing before execution. 

In order to solve the equation, some arbitrary valve would be assigned to X and 
inserted into the equation. If the result of the equation equals zero, a root 
has been found. Increment the value of X by one and check that value. Store 
the roots as they are found before looking for the next root. Limits must be 
established to allow the program to stop if four roots are not found. Provisions 
should also be made to stop immediately after the fourth root has been found 
even though the upper limit has not been reached. Examine the flow chart (Figure 
4-33) • 

SET X 
EQUAL TO 

LOWER LIMIT 

NO 

INCREASE 
X BY I 

YES 

NO 

YES 

RECORD 
ROOT 
OF X 

Figure 4-33. Polynomial Expression Flow Chart 

4-81 



After the flow chart is completed, code the probelm in assembly language. One 
solution to the problem is illustrated by Figures 4-34 and 4-35. Notice that 
the tags assigned as addresses allude to the meaning of the operation being 
performed. 

Decimal values between -50 and +50 will be checked for possible roots of X, 
starting at -50. 

The first page of the program solves the equation with -50 as the value for X. 
If -50 was a root, the results of the subtract (last line, Figure 4-34) would 
be zero. The next instruction jumps to a store the root routine if the root was 
found. If not, the limits of the program are checked and another decision is 
made. If the upper limit has been reached, return to SCOPE. If still within 
limits, increase value of X by one and go through program again. 

If the four roots of X are found before the upper limit is reached, the lSI 
instruction in the store the root routine causes a skip to address ST~P and the 
UJP instruction causes a jump back to Start, which returns control to SCOPE. 

Program results are usually printed out before control is returned to SCOPE. 
Otherwise, another job could be immediately processed and the contents of R~~TS 
through R~~TS + 3 could be destroyed. However, the routine to convert the octal 
answers to BCD (binary coded decimal) and then accomplish the printing becomes 
quite involved and lies beyond the SCOPE of this course. 

4-82 



COMPASS SYSTEM CODING FORM NAME JOHN })OE CONTROL DATA 
PROGRAM FIND THE ROOTS of: X"'-/.{6XJ+16J.1X2.+6814X-207S7 PAGE 
ROUTINE CORPORATION DATE NOV. J 

LOCN OPERATION, MODIFIERS ADDRESS FIELD COMMENTS IOENT 



NAME :JOHN ]JOE COMPASS SYSTEM CODING FORM CONTROL DATA 
PROGRAM FIND THE RooTS PAGE 2 

ROUTINE 
CORPORATION DATE NOv: 

LOCN OPERA TlON, MODIFIERS ADDRESS FIELD COMMENTS !DENT 

1 
~~'-'--"--l---'-_-'--+-l=.L::c...J..=-,--,---.L...LL.J...-lJil--L-L-.-LL....LLL . .L-L...J.--L--'--"--l---'--'---'----L...J.--L--'-.L-.J---'--'---'----L.....L-L-'-.L....J--L.-'---'----L.....L-L-'-.L....J--L.-'-~L.....L-L-'-.L....J---L--+-~L.....L---L 

I 
P-J~.!J.-"'-LL"--'-l~'-I--+=L.:::L~-L-LLJ~LJMJ..4>J"J-IL( .lli6ul::Lt{.J:>I,.,~1~6wI80!'..1.!.1--LL'-:P~~-":!.JLLL-'---'----L.....L-L-'-.L....JL..L-'--L-L.....L-L-'-.L....J---L-'--L-L.1-L-'-.L....IL..L-'--L-L.1-L-'-.L....IW-'--L-L.1-L-'-~ 

1 
1121 1 II II 1 I 

1 

I'-'-"=::.J..L.=J'--'--'--+-~=::...L.--'--.J'--'--'-...L...-l _tt.LLL-.L_..LLLL.-'--'--'--'--'--'--'--'--'---'--'--'---'-''-'-'---'-'-'-=-=...:..=...L:..'--'-'--'-':...L!..->-"--l..:..:.J.!::...u:.'''O'':''''=.J.--U::.L!...-"--lL:.L-'---'--l--I.--L--'--"--l---'--t---'----L...J.--'-_.-'--'--'--I 



The listing for the X R~~TS program is illustrated in Figure 4-36. 

The four roots were stored at addresses R~~TS, R~~TS + 1, R~~TS + 2, and R~~TS + 3 
by the program. During loading,SCOPE relocated the entire program by a factor 
of 17654. 

SUBP 
17654 XROOTS 

ENTR 
17654 START 

Location Start was relocated from relative address 00000 to address 17654 and 
the remainder of the program followed in sequential locations. Therefore, the 
four roots derived by the program were placed in storage locations 17727, 17730, 
17731, and 17732 during execution (17654 + 00053 = 17727). 

After execution, those addresses were examined and were found to contain 
77777764, 00000003, 00000021, and 00000045 respectively. The decimal equivalents 
of the octal answers (-13, +3, +21, and +45) would be -11, +3, +17, and +37. If 
each of those values is substituted into the equation for X, the result is zero 
which indicates that each is actually a root. 

4-85 



CUMfJASS-j2 (2.1) )l1·WOTS fJAGE 2 
t.1\I THY STMH U~FINES ENTRy pnlNT FO~ SCOPE 

00000 01077777 01 0 77777 0 STA~T Ujp iIoa. SCOPE HECORDS ~ETUHN AUDRESS 
OUOOI 200000,,"2 20 0 POO042 0 LUA LOWER MAKE X EQUAL TO LOwEH LIMIT 
00002 40000057 40 0 POU057 0 40 )(, STORE CURRENT VALU~ OF X 
00003 50000057 50 0 POO057 0 MUA X. FOR,"1 X2 
OU004 40000060 40 0 POOO60 0 Sf A .Il+ 1 STURE CURRENT VALUE OF X2 
00005 50000051 50 0 POOOS7 0 I'1UA X FO~M )(3 

OU006 40000061 40 0 POQ061 0 Sf A X+2 STURE CURRENT VALUE OF X3 
00001 50000057 50 0 POO057 0 MUA .( FURM XA 
00010 40000062 40 0 POO062 0 STA X+3 STORE CURR£NT VALUE OF X4 
00011 20000045 20 \) POO045 0 LOA CONSTAI\IT LUAD A WITH 46 (56 OCTAL) 
00012 50000061 50 0 POOO61 0 Iv1UA X+? FU~M 46 X3 
00013 40000051 40 0 fJOO051 0 SlA Tt.MP TEMPORARILY STORE 1+6.11.3 
OU014 2000001+6 20 0 POO046 0 LUA CONSTANT+l LOAD A wITH 164 (21+4 OCTAL) 
00015 50000060 50 0 POO060 0 MUA X+1 FORM 1b4X2 
00016 40000052 40 0 POOO52 0 SrA Tt.MP+1 TEMPORARILY STORE 164X2 
00017 20000047 20 0 POO047 0 LUA CONSTAIIJT+2 L.OAO A wITH 6814 (15236 OCTAL) 
00020 50000057 50 u POOO57 0 l'1uA X FURM btH4X 
00021 310000!:)0 31 0 POOOSO 0 SHA CONSTANT+3 SU~TRACT 20151 FROM 6B14X 
00022 30000052 30 0 POO052 0 AUA TEMP+1 AUD 164X2 TO (6814>1.-20757) 
00023 30000062 30 0 10'00062 0 AUA 1.+3 AUO X4 TO (164X?+6Hll+>I.-20757) 
00024 31000051 31 0 10'00051 0 SdA Tt.MP SU8TRACT 46X3 F~OM (X4l64X2+ 

""1 61:H4X-20757) .... 
00025 03000035 03 0 POOO35 0 ALj,E<aI RECO~D JUMP IF (A)=ZERQ (~OOT FOUND) ()Q 

c 0001!!6 200000,,"2 20 0 POO042 0 CrlECK LUA LOWE~ NOT A ROOT,LQAU A wITH X ,p-Ii 
I It> 

00021 31000043 31 0 POOO43 0 SetA UPfJEH SUBTRACT UPPER LIMIT (Xl 

a-.,p-
00030 03000041 03 0 POO04l 0 Al.j.Ey STOP JUMP IF UPPER L tMIT IS REACHED I 

lU 
00031 20000042 20 0 POOO42 0 LUA LowE~ U~PE~ LIMIT NOT REACrlEU - LOAD A ?' 
00032 30000044 30 0 POOO44 0 ADA ONE wITH VALUE OF X ANi) AUD 1 
00033 40000042 40 0 POO042 0 SrA LOWER STORE NEW VALUE OF X 
00034 01000001 01 0 POOOOl 0 Ujp START+1 T~Y AGAIN WITH NEW VALUE OF X 
00035 20000042 20 0 POO042 0 RECORU LUA LOWER LUAD A wITH ROOT OF X 
00036 40200053 40 0 POO05] 2 STA ROUTS,2 STORE ROOT 
00037 10200003 10 0 00003 2 151 3,2 HAVE FOUR ROOTS BEEN FOUND IF 

NOT,AUD 1 Tn (R2) ANO GO TO P+1 
IF YES,CLEAR ~2 AND SKIP To P+2 

00040 01000026 01 0 POO026 0 Ujp CHECK RETURN TO UPPER LUMIT CHECK 
00041 01000000 01 o fJOOOOO 0 STOP Ujp START RETU~N TO SCOPE UPUN CUMPLETION 
00042 77777715 LOwER DEC -so 
00043 00000062 UPPER Ul:.e 50 
00044 00000001 ONE DEC 1 
00045 00000056 CONSTANT UEc 46,104.6814.20757 
00046 00000244 
00047 00015236 
00050 00050425 
00051 TEMP BS5 2 STORAGE FOR 46X3 ANU 104X2 
00053 ROOTS !:iSS 4 STUHAGE FOR ROUTS UF X 
00057 X t:;!lS 4 ~TORAGE FOR X,X?.X3,ANU X4 

END START INUICATES END OF P~OG~AM 

NUM~~~ OF LINES wITH Dl~(jNOSTlCS 0 



The same program was again assembled but three cards in the source deck were 
replaced with cards that contained errors. Figure 4-37 illustrates the resulting 
listing from the erroneous source program. 

One indication that something is wrong with the program is the statement 
LOADING DELETED. Serious errors prevent proper execution and, therefore, the 
loading of the assembled program from tape into storage would only waste time. 

Another indication of trouble is the statement NUMBER OF LINES WITH DIAGNOSTICS 
3. Upon examination of the listing, three alpha characters are noted at the 
left margin of the page. The first is the letter 0 opposite relative address 
00015. The 0 indicates that there is an error in the operation field. Exami­
nation of the field shows the erroneous mnemonic code MUL instead of MUA. 

The next error is indicated by the letter U opposite relative address 00032. 
The U indicates an undefined address. The address field should contain ONE but 
contains only ON. Address ON does not appear in the location field and is 
therefore undefined. 

The third error is indicated by the A opposite relative address 00037. The A 
indicates that an error exists in the address field. The interpretation of the 
address field of the lSI instruction would be "skip if B5 is equal to 3". The 
3200 computer has only three index registers (Bl, B2, B3) and, therefore, 
examination of B5 is an impossibility. SCOPE detected the error because it 
"knew" that the computer did not have a B5. 

SUMMARY 

You should now be able to write a program in assembly language that will run on 
a CDC 3200 computer. Procedures for output operations are explained in detail 
in the 3200 SCOPE/COMPASS reference manual, if printed results are desired. 
However, the important point is that you are now able to write a program. Actual 
program results are of secondary importance at the introductory level. 

4-87 



CUMPASS-32 (2.1> XROOTS PAGE 2 
ENTRY START DEFINES ENTRV POINT FOR SCOPE 

00000 01077777 01 0 77777 0 START UJP •• SCOPE RECORDS RF.TURN ADDRESS 
00001 20000042 20 0 POOO42 0 LOA LOWER MAKE X EQUAL TO LOWER LIMIT 
00002 40000057 40 0 POO057 0 40 X STORE CURRENT VALUE OF X 
00003 50000057 50 0 POO057 0 MUA X FORM X2 
00004 40000060 40 0 POO060 0 STA X·l STORE CURRENT VALUE OF X2 
COO05 50000057 50 0 POOO57 0 MUA X FORM X3 
00006 40000061 40 0 POO061 0 STA X·2 STORE CURRENT VALUE OF X3 
00007 50000057 50 0 POO057 0 MUA X FORM X4 
00010 40000062 40 0 POOO62 0 STA X.3 STORE CURRENT VALUE OF X4 
00011 20000045 20 0 POOO45 0 LOA CONSTANT LOAD A WITH 46 (56 OCTAL) 
00012 50000061 50 0 POOO61 0 MUA X·2 FORM 46 X3 
ClOO13 40000051 40 0 POO051 0 STA tEMP TEMPORARILY STORE 46Xl 
00014 20000046 20 0 POO046 0 LOA CONSTANT·l LOAn A WITH 164 (244 OCTAL) 

0 00015 00000000 00 0 00000 0 MUL X.l FORM 164X2 
00016 40000052 40 0 Po0052 0 STA TEMP.l TEMPORARILY STORE 164X2 
00017 20000047 20 0 POO047 0 LOA CONSTANT+2 LOAD A WITH 6814 (15236 OCTAL) 
00020 50000057 50 0 PoOO57 0 MUA X FORM 6814X 
00021 31000050 31 0 POO050 0 S8A CONSTANT.3 SU8TRACT 20757 FROM 6814X 
00022 30000052 30 0 POO052 0 ADA TEMP.1 ADD 164X2 TO (6A14X-20757) 
00023 30000062 30 0 Poo062 0 ADA X·3 ADO X4 TO (164X?68 14X-20157) 

'Tl 00024 31000051 31 0 POOOSl 0 S8A tEMP SUBTRACT 46X3 FROM (X4164X2. 1-'-
(JQ 6814X-20751) .p- c 
11 00025 03000035 03 0 POOO35 0 AZJ,EQ RECORD JUMP IF (A).ZERO (ROOT FOUND) I /1) 

()O 

00026 20000042 20 0 POOO42 0 CHECK LOA LOWER NOT A ROOT,LOAD A WITH X ()O 

f 
VJ 00027 31000043 31 0 POO043 0 S8A UPPER SUBTRACT UPPER LIMIT 
~ 00030 03000041 03 0 POO041 0 AZJ,EQ STOP JUMP IF UPPER ~IMIT IS REACHED 

00031 20000042 20 0 POO042 0 LOA LOWER UPPER LIMIT NOT REACHED - LOAD A 
U 00032 30000000 30 0 00000 0 ADA ON WITH VALUE of x AND ADD 1 

00033 40000042 40 0 POO042 0 STA LOWER STORE NEW VALUE OF X 
1)0034 01000001 01 0 POOO01 0 UJp START·l TRY AGAIN WITH NEW VALUE OF X 
1)0035 20000042 20 0 POO042 0 RECORD LOA LOWER LOAD A WITH ROOT OF X 
00036 40200053 40 0 POOOS3 2 STA ROOTS.2 STORE ROOT 

A 00031 10100003 10 0 00003 1 lSI 3.5 HAVE FOUR ROoTS BEEN FOUND IF 
NOT.ADO 1 To (92) AND GO To P.l 
IF YES,CLEAR 8~ AND SKIP TO P.2 

30040 01000026 01 o POOO26 0 UJp CHECK RETURN TO UPPER LUMIT CHECK 
{lO041 01000000 01 0 POOOOO 0 STOP UJp START RETURN TO SCoPE UPON COMP~ETION 
J0042 11117715 LOWER DEc -So 
{)0043 00000062 UPPER DEc so 
{)0044 00000001 ONE DEc 1 
00045 00000056 CONSTANT DEc 46.164,6814,20757 
00046 00000244 
00041 00015236 
00050 00050425 
00051 TEMP BSS 2 STOQAGE FOR 46X3 AND 164X2 
00053 ROOTS ass 4 STORAGE FOR ROOTS OF X 
00057 X ass 4 STORAGE FOR X,X?,X3,AND X4 

ENn START INDICATES ENO OF PROGRAM 

NUMRER OF LINES WITH DIAGNOSTICS 3 

LOAD.56 
LOADING OELETED 



PART III 

COMPILER PROGRAMMING 

More sophisticated programs, known as compilers, enable programmers to be more 
concerned with what has to be done, rather than how the computer does it. 
Assembly languages involve a mnemonic or relative technique of coding each 
computer instruction, whereas the compiler enables programmers to write one 
statement for many computer instructions. This ultimate degree of programming 
is r-eferred to as Compiler Language programming. 

When writing programs in a compiler language there is no need to be concerned 
with the octal numbers or the actual instructions of the machine. 

It is important to realize that a compiler is not a black box or part of the 
computer hardware. It is a stored computer program that translates a programmer's 
written language (source language) into machine code (object language). The 
differences in the languages are apparent. Compare the three solutions to the 
following problem. 

Problem: Add the contents of registers 40 and 50 and store the sum in register 
51. 

Machine Coding Assembler Coding Compiler Coding 

20 0 00040 (LOA) LOA X Result = X + Y 

30 0 00050 (ADA) ADAY 

40 0 00051 (STA) STA Result 

DIFFERENT COMPILERS 

There are many compiler languages written for different applications. ALGOL 
(an algebraic compiler), COBOL (used in business applications), and FORTRAN, 
(an algebraic compiler used in scientific work), are three of the most common. 
These compilers have to be written for the specific machine with which they are 
going to be used. However, there are only slight differences in the FORTRAN 
language for different computers. A general discussion of FORTRAN*, a contrac­
tion of FORmula TRANslation, illustrates one kind of a compiler language. 

Figure 4-38 shows the order of compililing and executing a program written in a 
compiler language. 

* Computer Programming Concepts 

* FORTRAN Auto Tester 

4-89 



Special Fortran 
program is read 
into computer 
storage. 

Fortran source program is 
read into computer storage 
(Special FORTRAN program 
considers source program 
as data). 

COMPUTER 

Source program is 
converted by special 
Fortran program to mach­
ine language and is temp­
orarily stored on some 
output device. 

Figure 4-38. Compiler Language Programming 

Program results 
are sent to some 
type of output 
device. 

When compilation is 
complete, object 
program is read back 
into computer 
storage for 
execution. 

Any number that appears in a FORTRAN program as an operand is a constant, where­
as any quantity expressed by a name is a variable. In the arithmetic statement 
X = 2Y + 3Z, 2 and 3 are constants but X, Y, and Z are variables. 

CONSTANTS 

Two kinds of constants exist in FORTRAN. Whole numbers, or integers, are expressed 
in fixed point. Extremely large numbers or fractions may be equated to a 
coefficient raised to some power and are expressed in floating point. 

The desired method of expression is indicated by the programmer as the program 
is written. If floating point is indicated, decimal points are automatically 
"floated" into place as needed to perform the arithmetic operations. Hence, the 
term "floating point. 11 

FORTRAN distinguishes between floating and fixed point constants by the presence 
or absence of decimal point, respectively. Thus 3 is a fixed point constant, 

4-90 



but 3.0 (3., 3.000, etc.) is a floating point constant. 

If a constant is positive, the plus (+) sign may be omitted. If it is negative, 
it must be preceded by a minus sign. 

Examples of acceptable fixed point constants are: 

o 

6 

+400 

-1234 

32767 

Examples of unacceptable fixed point constants are: 

12.78 (decimal points not allowed) 

l604A (letters not allowed) 

Examples of acceptable floating point constants are: 

0.0 

6.0 

-20000. 

-.0002784 

+15.016 

VARIABLES AND THE NAMES OF VARIABLES 

The term variable is used in FORTRAN to denote any quantity that is referred to 
by name rather than by explicit appearance; the variav1e is able to assume any 
number of values. 

Variables may be either fixed point or floating point quantities. A fixed point 
variable is one that takes on any of the values permitted of a fixed point 
constant. The name of a fixed point variable is given in a combination of one 
to eight alphanumeric characters. The first letter must be an I, J, K, L, M, 
or N. Examples of fixed point variables are: 

I 

KLM 

MATRIX 

4-91 



L123 

Examples of unacceptable names of fixed point variables are: 

J12345670 too many characters 

ABC does not begin with the correct letter 

5M does not begin with a letter 

$J78 contains a character other than a digit or letter 

J34.5 contains a character other than a digit or letter 

A floating point variable is one represented inside the machine in the same form 
as a floating point constant. Data is usually set up as a floating point 
variable because of the convenience provided by the automatic handling of all 
decimal points. The name of a floating point variable is given in combinations 
of one to eight alphanumeric characters of which the first is a letter other 
than I, J, K, L, M, or N. 

Examples of acceptable names of floating point variables are: 

AVAR 

FRONT 

G 

F00009 

Examples of unacceptable names of floating point variables are: 

Al2345670 too many characters 

8BOX does not begin with a letter 

KJLI does not begin with the correct letter 

*BCD contains a character other than a digit or a letter 

A+B contains a character other than a digit or a letter 

B9.35 contains a character other than a digit or a letter 

The compiler places no significance in names; it merely inspects the first letter 
to determine whether the variable is fixed or floating point. A name such as B7 
does not specifically mean B times 7, B to the seventh power, or B7' The 
programmer should assign names to variables that allude to their meaning, but no 
meaning as such is attached to the symbols by the compiler. 

Every combination of letters and digits constitutes a separate name. Thus the 
name ABC is not the same as the name BAC, and the names A, AB, and AB7 are all 

4-92 



different in FORTRAN. 

OPERATIONS 

FORTRAN provides for five basic arithmetic operations: addition, subtraction, 
multiplication, division, and exponentiation. Each of these operations is 
represented by a symbol: 

Addition + 

Subtraction 

Multiplication * 

Division / 

Exponentiation ** 

Note that the c2mbination ** is considered one symbol; there is no confusion 
between ** and A since it is never permissible to write two operation symbols 
side by side. 

EXPRESSIONS OR STATEMENTS 

A FORTRAN expression contains constants, variables, functions, or any combination 
of these, separated by operation symbols, commas, and parentheses. Jf forms a 
meaningful mathematical statement. Some examples of expressions follow in table 
4-6. 

EXPRESSION 

K 

3.14159 

A+2.l828 

ZETA-SIGMA 

X*y 

OMEGA/16.2832 

C**2 

TABLE 4-6. EXAMPLES OF FORTRAN EXPRESSION 

MEANING 

The value of the fixed point variable K. 

The value of the floating point constant 3.14159 

The sum of the value of A and 2.1828. 

The difference between the values of ZETA and SIGMA 

The product of the values of X and Y. 

The quotient formed when the value of OMEGA is divided 
by 16.2832. 

The value of C raised to the second power 

4-93 



EXPRESSION MEANING 

(A+F)/(X+2.) The sum of the values of A and F divided by the sum of the 
value of X and 2. 

1./(X**2+Y**3) The reciprocal of (X2+y3). 

In writing expressions the programmer must observe certain rules in order to 
correctly convey his intentions. 

1) Two operation symbols must not appear next to each other. Thus A*-B 
is not a valid expression, but A*(-B) is. 

2) Parentheses must be used to indicate grouping just as in ordinary 
mathematical notation. Thus (X+y)3 must be written (X+y)**3 to convey 
the correct meaning. 

3) When the hierarchy of operations in an expression is not completely 
specified by the use of parentheses, the standard FORTRAN sequence is 
as follows: All exponentiations are done first, then all multiplica­
tions and divisions, and finally all additions and subtractions. 

4) Within a sequence of consecutive mUltiplications and/or divisions, or 
additions and/or subtractions, in which the order of the operations to 
be performed is not completely specified by the use of parentheses, 
the operations are performed from left to right. 

5) An exponent may itself be an expression. Thus the expression X**(I+2) 
is perfectly acceptable. 

6) Parentheses indicate grouping. Specifically, they never imply multipli­
cation. Thus* the expression(A+B) (C+D) is incorrect; it should be 
written (A+B) (C+D). 

ARITHMETIC STATEMENTS 

The most common statement is the arithmetic statement, which is an order to 
FORTRAN to perform a computation. Its general format is A = B, in which A is a 
variable name, written without a sign, and B is any expression defined above. 
The = sign in an arithmetic statement is not used in the same way as it is in 
ordinary mathematical notation. In FORTRAN, the = sign means is replaced by. 
Statements such as Z-RHO = ALPHA + BETA, in which Z is unknown and the others 
are known, are not permitted. The only legitimate form of arithmetic statement 
is one in which the left side of the statement is the name of a single variable. 
The meaning of the = sign in this case is to replace the value of the variable 
named on the left with the value of the expression on the right. Thus the state­
ment A = B + C is an order to form the sum of the values of the variables Band 
C and to replace the value of the variable A with that sum. 

4-94 



Another example of arithmetic statement brings out the special meaning of the = 

sign. A statement such as N = N + 1 means: replace the value of the variable 
N with its old value plus 1. This kind of statement, which is clearly not an 
equation, finds frequent use. 

The following examples (Table 4-7) show acceptable arithmetic statements with 
their equivalent normal mathematical forms when such equivalents exist. Variable 
names have been chosen arbitrarily. It is assumed that previous statements have 
established values of the variables on the right side. 

TABLE 4-7. EQUIVALENT FORTRAN/MATHEMATICS STATEMENT 

Arithmetic Statement 

A = (S+X)/ (R~T) 

GAMMA = _1./(2.*X)+A**2/(4.*X**2) 

H = 1.112*D*(Rl*R2/(Rl-R2») 

PI = 3.1415927 

Z = X*(X**2-Y**2)/(X**2+Y**2) 

WRITING FORTRAN PROGRAMS 

Original formula 

A = S+X 
R-T 

GAMMA = - 1 + A 2 

H 

2X 4X2 

Rl R2 
1.112D -­

Rl-R2 

11= 3.1415927 

Z x2 _y2 
X,,-__ 

X2 +y2 

FORTRAN programs are also written on a coding form. Because assemblers and 
compilers represent different degrees of programming, the coding format for 
FORTRAN programs is quite different from the assembler format discussed earlier. 
Figure 4-39 illustrates the FORTRAN coding form. 

4-95 



T 
y 
P 
E 

FORTRAN COOING FORM 

I PAGE OF 

T SH,TE. Ct--__________ -.eF-""'OR"-"TR""'ANC..2.STC"-AT'-'!EM"-"EN'-'.T _____________ -----i 
SERIAL 
NUMBER ~ M~~.T &' 

, 1 1 • , • 1 •• '0 " II ., •• " ,. Ir It " tel 2' U I!I ... II H Z1 n :nn'o II Sf U iI<l "M U I. _I_ ott .I.~'''.II'''''' ... "I~ II' II III .... as M ''I' __ to ~ 11., ..... " .... 10 1', 1'1 " !II 1t ,. n 

Figure 4-39. FORTRAN Coding Form 

FORTRAN STATEMENT 
STA TE- e 
MENT 0 0= ZERO '=ONE 

NO. N 
0= ALPHA 0 T. I=ALPHAI 

I 21 3 14156 7 I 8 I 9110 11112113114115116117118119120 21122123124125126 127 128129130 31132J33134135136137138139140 41142143 

11110 I,F, eX - $101 • I) I "121 • I ct Cf 1 ! ,9, 'II I I I I I I I I 1 I I I , I I I I ., 

~ ~l I I ' I I I I I I I , I I I I I I I I I I I I I I I I I I I I I I I 

Column 1, Type 

The letter C in column 1 identifies the entire statement as a comment. The comment 
is not processed by FORTRAN but does appear on the printed listing of the program. 

Columns 2 to 5, Statement Number 

The statement number is normally right justified in column 2-5. However, if 
the programmer desires, column 1 may also be used, allowing expression of state­
ment numbers up to 32767 10 . 

4-96 



Column 6, Continuation 

Any FORTRAN character with the exception of a blank or a zero in column 6 
indicates that the statement is a continuation of the preceding line. Up to 
10 lines can be used for one FORTRAN statement (FORTRAN statement located in 
columns 7-72). 

Columns 7 to 72, FORTRAN Statement 

All statements must start in column 7 or a following column. Each column may 
contain only 1 character. In the foregoing example, the statement contains 18 
characters. Any statement containing more than 66 characters must be continued 
on the next line. 

Columns 73 to 80, Serialization 

These columns are used to serialize the lower deck that will be punched from 
the information on the coding form. Serial numbers are not processed by FORTRAN 
but do appear on the program listing. 

DATA LIST STATEMENTS 

If a problem is to be executed only once, the data can be entered with the pro­
gram in the form of constants in statements. Examples'of this are: 

Programs are usually 
program is executed. 
in proper sequence. 
many sets of data as 

Read Statement 

x 42.5 

ALPHA 237.062 

set up to read in data from punched cards at the time the 
The data cards normally follow this program and must be 

The same FORTRAN statements can then be used to process as 
desired, by changing only the data cards. 

Data is entered into the computer from cards by the use of a Read statement. The 
Read statement contains a list of the variable names to be read from a card. The 
variables are read off the card from left to right. One Read statement reads at 
least one card. Several variables may appear in one card but they cannot be read 
with separate Read statements. The Read statement is called a data list state­
ment because it contains a list of the variables to be read into the computer 
from the card. 

Punch Statement 

Output data may be punched into a card from the computer. A Punch statement is 
used for this purpose. The values appear on the card in the same order as the 
list of variables appear in the Punch statement. Examples of READ and PUNCH 
statements are: 

4-97 



READ la, x, Y, Z 

PUNCH 25, ALPHA, K, JET 

Note the numbers which separate the name of the statement and the list of vari­
ables. Each number specifies a Format statement (discussed next). The Punch 
statement is also called a data list statement. Other examples of data list 
statements are Print, Write Output Tape, and Read Input Tape. They are used 
to print the value of variables on the printer and write on or read from magnetic 
tape. 

FORMAT STATEMENTS 

The data list statement tells the computer which variables are to be read into 
or out of the computer. It contains no information about the variable itself, 
other than its floating or fixed point classification. It does not tell how 
many columns are allocated to each variable, or where the decimal point is in a 
floating point number. 

This type of information is contained in a Format statement. Suppose one desires 
to read the values for three variables, ALPHA, XRAY, and IDA from a punched 
card. One must know how these values are punched in a card and prepare a Format 
statement to guide the Read statement in reading the information properly. The 
following example illustrates the Read and Format statements for the three 
variables; ALPHA, XRAY, and IDA (ALPHA and XRAY are floating point, IDA is 
fixed point). 

FORTRAN STA TEMENT 
T STATE- c 
y MENT 0 
~ NO. ~ 

0= ZERO 

0= ALPHA 0 

l=ONE 

1= ALPHA 1 

The Read statement specifies the reading of the first data card following the 
source program. Its interpretation is IIRead, as to the format of statement 10, 
the values for ALPHA, XRAY, and IDA.II The format specifies that data is located 
in three subfields (Figure 4-40). Information may be contained in all 80 
columns but only the data in the subfields specified by the FORMAT statement 
will be used. 

4-98 



321.6 72.4121764 
1123156 1811D"UUK~~n.$Mnnn~~~Vn~~nRn~~~n.~~~~U~e"Q.~~~~~~~~~~~m~~~~~~~U~MnnnM~~nn~ij 

II Z i 4 5 , 1 I 9 KI II 12 \3 14 15 Iii 11 • " 20 21 2'2 l3 2'4 25 25 21 ZIi 2! 30 31 32 B 34 35 36 31 JI 3!1 to 41 4Z 43 44 4!i 45 4T ... , sa 51 5l ~!. 54 S5. 5i. 51 58 591 &IIi 

J. .;; 

12345' '.9mn~DM~5n.am~nn~~3na~.~~DM~.~ •• M~~O~6~Qq.~~~D~~~~g~.~~aM~~~AaMnnn~~5n~~W 

'I 
:1:; '?I,.21.2;?;:~~2_:2:'·:. ,,2.;, 'if :.2,:';::.1 ,)22/::' ";"C 

Ii ;1,':: :I"'!: 3]:;;:: 2 ~ j: 2. ;,~:; '; 0:::.: ,::::, J' ~ ~::;: _" 2::: J ~ ~ 2,2:i? 3)" i ~:; i 333 J 

J :~ 4 4 ,~ 4 ! .; ·1 11 : J I ~ i ~: 'i ~ /< -"!,~:; ~ "l 4 ,~ ~ .;.~ ::. .~.~,o. ; 1 ~ : 1 .. , '. ~ .~ !: ~ ~ ~ ;.;. i ~ - ~, :),. 
12S4SI1.t."~QM •• n.ftan~~Nza~3a.~~~~~s~.~.aca.e.G ••• ~~9Kssg ••• acaMB.U ••• n~Du~.n.n. 
t ~ ,: :: j ~ ~ ,J .. ~ ~ s:; ::: ~ :; : : : ') ~ .; ;i f ~ ~ :: ~ i .; :.t j : S :.. , ~: :; ~ ~ S ~ ;, ~ ~ ", ~ : y " .~ ~" • ~ ',' ~:; 5: ; '~ ~ ~ J 

j 7 7 7 ; ~ I ;' ~ ? 7 J 71"; ? i ; "< ] i' ; j ~ ; 7 7 7 'J 7~; -:; 7 t 1 7 7 -; i 7 ] "i ~ 7 7 j i ? ; -: 7 ; i 1 7 J { i 7 j ; ; : '} 11 7 ] 7 7 ; J ; 7 ] 7 : j 

,£~EI~~~211~;; E j ~2E 3%~? S~ gS 3(:;:~,,~S ~23S 51 ;: BE8S3~j~ gE~3gBa~~::,~S~8 
1!34517'1."UUM"." •• a~~Dxzanaa.~~D~~sn.~.~ca~~.G •• ~~~D~g.~ ••• acaM •• G ••• nnDM~3nn~. 

__ _ , " 1 ,: : -: : ~) < < - : ) :: ? ':; S ::. s :-.1' v _ "'" '~.: J 4, "", ~ " ,,,,,..,., 3 2 ~ ~ , ~ - ~ 

Figure 4-40. FORTRAN Data Card 

The first field specification (F5) tells how many columns are associated with 
the first variable ALPHA, and the relative position of the decimal point on the 
data card determines the magnitude of the operand. The field includes the first 
five columns on the card with one digit to the right of the decimal point. The 
decimal point occupies one column. The letter F is used to indicate floating 
point constants in the data list. 

The field specification for the variable XRAY is F6. F is for floating point 
and the 6 for six columns that XRAY occupies. The next variable is IDA, which is 
a fixed point variable and occupies five columns. The letter I is one of those 
used to indicate fixed point variables. The field specification is, therefore, 
I. 

Although they are part of the same deck containing the source program, the data 
cards are not read into the computer until after the source program has been 
compiled and the object program is being executed. 

One data card is read for each READ statement in the program. If the program 
loops back on the same READ statement, a new data card will be read during each 
pass. 

The PUNCH statement requires a similar Format statement to indicate the field 
length. The field F6.2 indicates that two places of significance will follow 
the decimal point and three significant digits will proceed the point. 

4-99 



FORTRAN STATEMENT 
T STATE· c 
y MENT 0 
~ NO. ~ 

0= ZERO 

0= ALPHA 0 

l=ONE 

,= ALPHA I 

Assume that a program has just solved a problem and derived the values for A, B, 
C, and J, as +31.68, -208.662, +00024, and -6011 (expressed in decimal). The 
preceding PUNCH and FORMAT statements would punch those values into a card, as 
illustrated by Figure 4-41. 

6 8 7 5 
~r. --"--"",~ 

31.GB-2~S.662 .0002A-60tt 
II z I 4 ~ , , It'" "I "17j 7."-:1S;-=-.-:17, -::-1I-:":-:::ZO-::tI:-=21-:2j72::-4-::Z5~It=-='2'~I::-' -=lS~.IO::-:':jl:-"'j::-2 7.j;:-"'j::"4 7.1~-:li::-:;l'-:51::-;-':11-:4-::-D -::-41-::41:--:741-::44:-4:;-~7.4I:-4::-' 7.4I-:4::-'-:-:SO-:SI;-:-;:~2-;5;-l T.\4-;\S77."1C-:\7, ;';"1C-;:\,:-,::::1ol 

I I 
8 0 D • DOD D I 0 0 GOO D 0 III 0 0 0 0 I 0 0 0 U 0 0 0 11 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DOg 0 
'73455 'l'm"UnK~K"q"2t~nn~Z5~n2tZ5.1OUUDMn~V~B.~41U~~~Uq~~~~~~\S$~~9~~~UMm~gA~N"nn~~~"na~ 

1 'I' " '11111111' 11111 , 11111 , 111111111111111111111111111111111 l111111111111 111111 

2222222122222122222122222222222222222222222222222222 2 2 2 2 2 2 2 2 2 2222222222222222222 
, 7 3 4 5 5 1 1 , 10" 12 11 14 II 1& II II IS 21 ~ 27 21 24 Z5 Ii 21 It 7111 31 U 13 J4 n :IE 1I JIB 40 41 4H1 ~ 45 ~ 41 41 41 5fo 51 52 ~ ~ 55 $ 51 51 \I 50 ~ ~ " M m 5i11 A lot III " n II 14 ~ ~ JJ 11 l! ~ 

31313333331333313333333333333333333333333333333333333333333333333333333333333333 

4444444444444444444414444444444444444444444444444444 4 4 4 4 4 4 4 44444444444444444 H 4 4 
123451 lIIW"UnK~I&"n"21~27n24Z5~n2l~.IOlIunJ4n:IElIlIB40~41U~41~Uq~5I~52~M~li~5I5IiO~~~Mm.g.~III"nn~~~JJnl!~ 

555555555555555555555555555555555555555555555555555555555555555555555555555555~5 

& & G & I' & & 6 & 611 & 6 6 6 6 6 & & 61 & 6 6 6 6 6 6 6 6666 6 6 6 6 6 6 6 66& 6 6 6 6 6 6 6 6 6 & 6 6 6 6 6 6 666 6 6 6 6 6 6 6 6 6 6 6 6 6 & 6 6 
1 234551I'W"UnK~K"1S"21~27~24Z5lin2ta.lOlIUDJ4nllllllB40~uu~e40U40.51M52~M5551~5I5I.~~OMe.~A.III"nn~~~JJIIIl!~ 

111111 111 1111111 111 11111 1111111111111111111111111111111111 1 11 1111111111 1 1111 111 1 

18818188 BII8 8 B 818 8 8 8 8 8 8 8 8 8 8 8 88888888888 B 8 B 8 8 8 88888888888888888888888888888888888 
1 2145111.a~unu~~nn~~~unN~lin~~.IOlIUDM~.1I ••• ~uu~e.g40.MM52~M~~~5IM.~~OMm.~u.m"nnu~n"n~~ 

99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 !9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
L-__ ~~~~ __ " _______________________________________________________________________________ P_R_'N_TE_D_I_~~~ 

Figure 4-41. Results of Punch Statement 

Consider an example using the Print statement. 
L = +4, the statements 

4-100 

If J = -307767, K +32, and 



T STATE- c 
y MENT 0 

~ NO. ~ 
0= ZERO 

0=ALPHA 0 

would cause the line printer to print: 

FORTRAN STATEMENT 

1 =ONE 

1= ALPHA I 

(A indicates space) 

Two other field specifications give added flixibility in reading or printing 
data. The l1Xl1, or skip character specification, is used to skip characters 
during input, or to enter blanks during output. During input, nX indicates that 
the next "nll characters coming in by some input equipment are to be ignored. 
During output, nX indicates that Ilnl1 blanks are to be inserted in the output 
record before the next variable is moved from memory. If X = 107.3 and J = 42, 
the FORTRAN statements: 

T STATE- c 
~ MENT ~ 
E NO. T. 

0= ZERO 

0= ALPHA 0 

should result in the following printout. 

FORTRAN STATEMENT 

I=ONE 

I=ALPHA I 

The / or slash specification, is used to a skip line, a card or a magnetic tape 
records. During input, the slash indicates that the rest of the record or card 
is to be skipped and that input is to proceed with the next record or card. 
During output, the slash begins a new line, record, or card, depending upon the 
output equipment being used. 

As an example, the following statements would read two cards: a 4-digit integer 
from the first card and 8 floating point numbers from the second card. 

4-101 



T STATE· c 
y MENT 0 

~ NO. ~ 

CONTROL STATEMENTS 

The Go To Statement 

FORTRAN STATEMENT 

0= ZERO l=ONE 

0= ALPHA 0 1= ALPHA 1 

The GO TO statement provides a means of transferring control to some statement 
other than the next one in sequence. The statement takes the form of GO TO N 
in which N is the number of another statement anywhere in the program. When 
this statement is encountered in a program, the next statement executed is the 
one specified by the statement number. In the following example, 

GO TO 76 

33 B = 3.**2/7.61 

76 A = 4.2*4.**6 

statement 33 is skipped and statement number 76 is executed following the GO TO 
statement. The GO TO statement provides a way of altering the program uncondi­
tionally by being compiled as an Unconditional Jump in machine language. 

The IF Statement 

The IF statement provides for a conditional transfer of control based on data or 
computed results. The general form of the IF statement is: IF (e) N1, N2, N3, 
where e represents an expression and N1, N2, N3, are statement numbers. If the 
value of e is negative, control is transferred to N1; if the value of e is zero, 
control is transferred to N2; and if the value of e is positive, control is 
transferred to statement N3. The IF statement is compiled as a machine language 
AZJ instruction. The following example illustrates the usefulness of the IF 
statement. 

Assume an order to print 10 values of Z as X varies from .1 to 1. in the following 
equation. 

Z = X2+2X+6 

The FORTRAN program could be written as follows: 

4-102 



FORTRAN STATEMENT 
T STATE- c 
y MENT 0 
~ NO. ~ 

0= ZERO 

0= ALPHA 0 

l=ONE 

1= ALPHA 1 

The STOP Statement 

The Stop statement causes a stop in the execution of the object program. This 
statement takes effect only when executing the object program,- and does not 
cause the termination of compilation. After a Stop statement the computer can­
not continue with the same program. This statement can be of the form STOP or 
STOP N where N is the octal number displayed in the accumulator after the state­
ment is executed. 

The PAUSE Statement 

The Pause statement causes a temporary stop during program execution. This is 
useful, for it enables the operator to see how long it takes to get to this point 
in the program. In order to restart the program execution, it is necessary to 
press the Run switch and program execution continues with the statement following 
PAUSE. This statement can be of the form PAUSE or PAUSE N where N is an octal 
number displayed in the accumulator after execution of the Pause statement. 

The END Statement 

The End statement is used as a signal to the compiler that the end of the program 
has been reached. The last statement of every program must be an END, otherwise 

4-103 



the program is not compiled. The End statement marks the end of the source pro­
gram and tells the compiler to complete the production of the object program. 

The CONTINUE Statement 

The Continue statement is a do-nothing instruction. 
sequential program statement. 

Control passes to the next 

After the FORTRAN program is written on the FORTRAN coding form, it is key­
punched and becomes the source deck. Figure 4-42 illustrates the same turkeys 
ana sheep problem discussed in the assembly language section, coded on the 
FORTRAN coding form. Figure 4-43 illustrates the source deck for the same 
problem. Compilation is much faster in integer mode arithmetic than in floating 
point and, whenever possible, integer mode arithmetic should be indicated. 
Sheep and turkeys are normally expressed in multiples of whole units. The J 
preceding each variable specifies integer mode arithmetic. 

TURKEYS AND SHEEP 

T ~T"'TE· c~----------·---
'f MENT 0 
: NO. ;. ! 

SERIAL I HUMBfR 

12'" I"'" t 10" ~1.'f"''I102'.z1~HHnlto..J!!1:~1~~.J.!!l''I",,!~P'!l.P~:!'.::r''''''''d''''T.''''''5(I""'I"L"'I"I~I"I~I"I~"'I"'lu( ... te-'t-I.lJ.I"P'II"PliflIT"I~I"In!''',"'I''' 

:T.lJR.K.E ~~~LLL LLLLL_LLLLLLLL.L 11' 111 I 1 I I tll 1 I 1 I 1 I I " I I I 11 

lJSHEiEP~ J.LLf-LLLLLLLL-LLLLLLLLI I I III I I 1 I 1 I I I 1 I II I I I I I I I I I 

!-+--'--'--'-'+-fJ<.L:T:..J:r~"YtK.e,-,,"~~S}If£Pl·~1 _1.11 LI "I I I I I III " L1I LLLL 1 J I 1 I I I 1 1 1 I 1 1 I I 11 I I 111 I I I I 

!-+--'--'--,-++I..,F,-,-,,(J"f~i·~~~~Y'~·~I--" )JILIL'-"lq>l-~~l LLLJ 1 l L1. , 111 I I I I I I I 1 I I I I I I I I' " II " I 

11 JSl-LEEJ~~~l.1...J.--LJ.lill.l 11111111L--1-1..1lllL.1..1 JI1111111 !Ilil III I 1IIlIIL 

100 Ilea 1 .Ll Ll-1...L _L.l . .L.l.ll..ll.l r'L'J 1 .. .l .. l.l.Ll_l ill 1 J.l.L.l1 III I I I I I I I I I I I I I I I I I! I I I I 1.1 Ii 

If:. 1M! '" TJ ~,T~ ~.~R}il;.EJPI L 1 I , I 1 I I 1 L.1.11 i L LLI _1 L I 1 1 1 I 1 I I I 1 I I I I I I I I I 1 I 1 I 1 

.2 F~AT~_.1JgtLL .... L .... L.L . .L_L-L.ll I 111 I I 1 III l l .. t j I 1 l....Ll .1 jIll I I J I I ILL I 11 I ~ tIl I III I 

I '~',:",,' ~!~ 1 "Li".' I L1"Ll 'LLL1"'" 1 I I , I , '"' " '" I , I",", 1" I I I I I I I I I I I I , I , , I I I 

f-t-""""~="4-l"';:"1'-.r~ IUr."t-J1.~ 1 L.L.L.l._ 1 .L..1 .. -I._Ll.1. I. j 1 1 1 J I I I I I I l.!. 1 I .l LL.l I. I 1. 1-1 I I I I I! 1 I I I I I I I 

i--'-t--'- ~L .I..1...L1....J 1.1...1 L 1.1..l..1.11 1 1.1 I I I I I I I I 1 

~ .1 .LLL I L.l.LL j 1 1 j 1 I 1 1 I 1 , I I J 1.1_1 I I I LLL 111 I I I I I 1 I I I I I I I J I I 

-'--'-- "' L . ..L..L.l..L.J .. L_L 1-1 .. 1.1 . .1.....1 I 1 , I I I I 1J 1 J IJ 11.ll.! I J II 1111 1 II I 11 1 III I I I III I j I 
-'-- , 1 .. L.1- 1 ..L..l ... _LL. 1 1 '"' 1..LLLl 1 1.1 1 I 1 I I I LJ ..l.Ll.L..LJ.J I I I 111 J I I I I I 1 I 1 I I I I 

~ 11....l.Ll .. LL.L . .L 1. .. 1 .l_LL.L l 1.L LI I 1 I.ll I.e 

"LL 1 L..l..LJ 1.L.L_L 11.---1-_L1...11 L1 L.Ll 1.1.I..L1....1.. 

--1-'-'--_ I 1-..1..1. 1.1.1 LL I Ll j I J 1 1 1 1 I 1 1 , I I 1 I 

t-t--LL-,-++'-~-+ I .L.l_L.LJ....l...L.Lp .... L..LL ... 1.....LJ._J.L _Ll_L 1.1 L...L...L...L .l ...... L..l ...... L ... L..L_LJ ... L 1..1 I L I 1 I I I 1 I I I ! I I I I 1 I I I I I I .l 

f-t-LL4-t-'-",--"_+-1 LJ......L.L_L....L.LL~_LL-L.L1.....L....L...L.f-L.L..Ll. L . .l.....L_L-L-~.L.Ll_J .1 L...L.L.. _I I I I I I 1 I I I I. I I J I I I I I 

......L...1-L- . .1._.L..L._I Ll....l._.LLL.l .. L~.Ll.....LL...1....L. L.L.L!..JJ......L-LL~-.-i....L..l.1 ~.L.Ll 1 I I I I t I I I t L! II I I I I I J I I I LII. 

f-t-LLLft-'--LJ. 1 L_L...L.l.....L.L...1.._L J. 1 . .L....l.....l .. .L . .t...J.......L -Ll...Ll _L.L LJ ... L -1_.L..L.l.J l...l_LI I 1 1 .. 1 1.1 I. J 1 L 1 .. 1 I 1 .I 1 I L I 1 I 1 I ! L. I. 

r'igure 4-42. Turkeys and Sheep Program 

4-104 



RTRAN STATEMENT 

Figure 4-43. FORTRAN Source Deck 

One program previously coded into assembly language was the one to find the 
four roots of X in the equation X4-46X3+164X2+6814X-20757 = O. Figure 4-44 
illustrates how that problem could be expressed in FORTRAN. Although the 
problem could be more efficiently expressed, the following format more closely 
resembles the one used in coding the problem in assembly language. 

4-105 



I NAME 

I PAGE OF 

FORTRAN STATEMENT 

P,R0.GRAM .R0.0T,& \0.F, ,x. 
IA=O. 
IX=-,5b. 

11 PoRI Jltr, ZO . .,X 
.2.C iF0mliAT (F1.Q.Z.> 

iA=A-t1. 
I F('Jl 4. > 1.0 . .9.9 \9.9 

1 r:. IF (,) -5.0. > 12.9£ 99, 

.99 is:rOJ.F 
lEND. 

Mill". '" ..0'" <I,.'." 4~ ... ., .. ".:10'51 '2 II! &4 __ "'OIl 1& • Ill."'" __ 11 __ 10 TI TZ l' M 7\1" n "*", ... 

Figure 4-44. Roots of X Program 

A very practical computer application is demonstrated by the following listing. 
The FORTRAN program calculates income tax deductions for varied salary levels 
and exemptions. 

The first section of the listing is a reproduction of the source deck statements. 
The machine language program generated by the compiler is illustrated next and, 
finally, the actual printed tax table generated by the program is shown. Notice 
that the tax table has a format error--the exemptions are not centered over the 
columns. How would you modify the program to correct the error? 

4-106 



PROGRAM RLJ 
DIMF:NSION TAX(6) 
PRINT 9"-

92 F"ORMAT(l~O) 
PRINT 103 

INCOME TAX PROGRAM 

j03 FORMAT(55X. 10HE~EMPT!ONS) 
PRINT 79 

79 FORMAT(37X.1~1.1ryX,1~2,10X.1H3.10X'1~4.10Xll~5,10X,lH6 1/) 
A=50no. 

76 1=1 
E=1. 

13 TAXCI)=.22*(A.600.*E) 
1=1+1 
IF( 1-6)3,3.7 

3 F.=E+1. 
GO TO 13 

7 PRINT 1. A, TAX 
1 F"ORMAT (21X,7F10.2) 

IFCA-10000) ~3,11,17 
33 A=A+ 250 

GO TO 76 
17 STOP 

END 

ACTUAL RESULTS OF PROGRAM 

EXEMPTIONS 
1 2 3 4 

5 n 0 0 • f) i) 968.00 836.00 704.00 572.00 440.00 
5250.\.Ifl 1023.00 A9t.oo 759.00 6'7.00 495.00 
,)r;nO.On 1078.00 946.0(1 814.00 68'.00 55n.oo 
57~O.Oq 113.3.00 1001.00 869.00 737.00 6n5.00 
"nOO.on l1A8.00 1056.0n 924.00 79?00 66n.oO 
6?50.f)q 1243.00 1111.0£1 979.00 847.00 715.00 
6 5 or:t.On 129A.OO 11"6.00 t034.00 902.00 77n.oo 
f.7~a.Of1 1353.00 12(>1.00 1089.00 957.00 A=,5.00 
7f100.0n 1408.00 1276.00 1144.00 1012.00 8AO.OO 
72~O.f)n 1463.00 1331.00 1199.00 1061.00 935.00 
7?OO.Or. 1518.00 1386.00 1254.00 112?OO 990.00 
77')0.Op 1573.00 1 441.00 1309.00 1177.00 1045,00 
~ nil 0.0 [) 16:>8.00 1496.on 1364.00 123?.00 1100.00 
R2C;O.On 1683.00 1551.00 1419.00 1287.00 1155.00 
~?OO.On 1738.00 16n6.00 1474.0['1 13~2.00 1210.00 
~7c:;n. 0 [I 1793.00 1661.00 1529.00 1397.00 1265.00 
9 rJ OO.Ofl 1848.00 1116.00 1584.00 1452.00 1320.00 
92150. Q:i 1903.00 1771.00 1639.00 1507.00 13,5.00 
95no.nn 1958.00 1826.00 1694.00 1562.00 1430.00 
97')O.Of) 201.3.00 l8Rl.OO 1749.00 1617,00 1485,00 

10rnO.On 2068.00 1936.00 1804.00 16??00 1540.00 

4-107 

5 

308.00 
363.00 
418.00 
413.00 
5'8.00 
5A3.00 
638.00 
693.00 
748.00 
803.00 
81:)8.00 
913.00 
9~8.00 

10~3.00 
1078.00 
11~3.00 
1188.00 
1243.00 
1298.00 
1353.00 
1408.00 

6 



Remember the five steps required to write a computer program? You were warned 
that step number 4 would be a "giant step." The discussion, from that warning 
to this point, has been entirely devoted to the Hcoding" process. 

You learned how to code in machine language, assembler language (COMPASS), and 
a compiler language (FORTRAN). The turkeys and sheep problem was illustrated 
in all three languages. From that one problem alone, the advantages of each 
programming language should be quite evident. 

Machine language is fine for short programs that will be used only once and for 
special maintenance purposes. However, entering a long program in machine 
language would waste computer time and become quite laborious. 

An assembler language has advantages over machine language programming. Instruc­
tions are associated with named locations and the mnemonic instruction code is 
used instead of the numerical code. However, one assembler language statement 
is still required to generate one machine language instruction. 

The compiler offers the most effecient method of programming. With this 
language, the programmer is not concerned about storage locations. In fact, 
the programmer isn't even concerned about which machine language instructions 
are generated by the compiler. A compiler language saves valuable programming 
time by accepting problems written in standard scientific notation. 

The final step is accomplished after the program has been written and run on the 
computer. Debugging is done to your program, not to the computer. Any computer 
will operate reliably for long periods of time--if it is properly instructed. 
If not, it becomes confused and bewildered, and supplies vast amounts of incorrect 
information. The following procedures are to provide an insight that would 
enable you to debug your programs (if required). 

4-108 



PART IV 

DE-BUGGING TECHNIQUES 

INTRODUCTION 

Murphy's rule: If it is at all possible for something to go wrong, it will! 
Nowhere is this rule more applicable than in programming. 

Several years ago it was common practice to de-bug programs, no matter how long 
or how complex, by simply presenting the previous deck of newly punched cards to 
the computer operator, crossing the fingers, closing the eyes, and glowing 
inwardly in hopeful anticipation of the great event which was about to rock 
the programming world. The perfect program! On rare occasions when a program 
actually would run perfectly on the first try, the lucky programmer was 
presented with the "award of the silver wire" for distinguished achievement. 
Although computers and de-bugging techniques have changed, the old habits of 
the silver wire era are unfortunately still with us. 

The intention of this section is to outline a practical approach to program 
de-bugging, an approach based on improved techniques and experience rather than 
being entirely scientific or entirely artistic. 

GENERAL THOUGHTS AND OBSERVATIONS 

Program errors may be classified in two areas--those that are a result of 
improper coding formats and those that are caused by an improper sequence of 
commands. 

Improper sequence errors are more difficult to detect and may occur in any level 
of programming. Errors caused by improper coding format occur only when a 
programming aid such as an assembler or a compiler is being utilized. 

FORMAT ERRORS 

Assemblers and compilers are designed to allow the programmer to concentrate 
more on the problem and less on computer-orientated operations. The software 
translates mnemonic coded instructions (assembler) or formulas (compilers) into 
machine language instructions. As a program is assembled or compiled, the 
software is looking for pre-established commands to determine what operations 
are to be accomplished. If the programmer does not follow the pre-established 

4-109 



formats, the software cannot interpret the commands and format errors result. 
These errors are detected by the software and printed out as the source program 
is processed. A few years ago, software systems were designed to stop when 
an error was detected. That method was abandoned because each stop tied up the 
computer and wasted expensive time. As programs became more sophisticated, 
de-bugging routines became more comprehensive. The present philosophy is to 
process the entire source program and detect all errors on the same run. All 
diagnostics are then printed on the assembly listing (Figure 4-37). The 
source program can then be de-bugged to correct all errors. The second run 
should then be format error free. 

SEQUENCE ERRORS 

Sequence errors occur because the programmer failed to maintain program continu­
ity or because some of the idiosyncratic traits of a particular computer were 
overlooked. For example, the product is formed in the QA registers after a 
multiply whereas the dividend must be in the AQ registers before a divide. 
Some computers assume the operand to be in the QA registers for both the multiply 
and the divide instructions. 

Assemblers and compilers are now written to include various de-bugging aids, 
conversion routines, and certain corrective features. As you become more 
familiar with software, many of these features may be employed to facilitate 
program de-bugging. 

INFLUENCE OF PROGRAM STRUCTURE 

A particular program can normally be written several different ways and still 
accomplish the same task. If the programmer does have such latitude, he should 
strive to write the program to facilitate the de-bugging that follows as 
inevitably as "death and taxes". If the program is of the straight-line type, 
it should be divided into distinct segments that can be de-bugged individually. 
An error in one segment may then be detected before it is propagated throughout 
the program. If the program contains iterative loops or sub-routines, pseudo 
instructions may be inserted to provide program continuity and the sub-routines 
extracted for individual de-bugging. 

A program containing fault detection branches may be validated by purposely 
inserting "bad" data. Otherwise, the program may appear faultless even though 
some branches contain errors. 

The popular programming trend is to attain a high degree of sophistication. 
However, such programs are more difficult to de-bug which often requires 
excessive amounts of time. A good rule is to sophisticate a program only to the 
extent that time and available memory dictate. Trick programming may be of 
academic interest but is a form of "teasing a barking dogn. 

All programs should be fully documented to explain the intent and function. 

4-110 



Each operation should be explained to provide a chronological picture of what 
is being attempted. Software systems are now so extensive that they are 
written in segments by a team. Frequently, members of the team are physically 
separated and not in close communication. By fully documenting the program, 
other team members can more easily determine what the program is supposed to 
accomplish. Many hours are wasted simply because a departed programmer did not 
document his "wild!! program. 

De-bugging is the final stop in the writing of a program. If the preceding 
steps have been effectively accomplished, the de-bugging process will be mini­
mized. Although the perfect program is the programmer!s dream, he should take 
the "easy to de-bug!! approach !!just in case!! perfection is not attained. 

SUMMARY 

You should now know how to program a digital computer and what steps are 
required to define the problem, chart the solution, code the instructions, and 
run the program. If by some remote quirk of fate your program does not run, 
you should also be familiar with some of the avenues of escape. Familiarity 
with proper de-bugging techniques will prevent those avenues from becoming 
dead-end streets. 

Volume II explains the function of computer hardware. The text explains what 
causes a computer to compute, a printer to print, a reader to read, •••• 

Each section of the computer and the common I/O equipments will be examined. 
Many more of those mysterious doors will be opened and their innermost secrets 
revealed. 

4-111 



1. 

SET COUNT 

= 30 

SET DAY 

= 1 

COUNT -] 

Count +2 

Day +1 

FLOW CHART SOLUTIONS 

Print numbers 
~~~~ ~--~~ 

of days Stop

4-112

2. (START

SET EMPLOYEE

COUNT = 100

READ ONE
EMPLOYEES

EARNINGS

'\
)

DEDUCTIONS =

$600 X NUMBER
OF DEPENDENTS

NET = TOTAL
MINUS

DEDUCTIONS

TAX = ZERO

TAX = NET-

$2000 X .02

TAX = $60 +
(NET - $5000

X .05)

4-113

PRINT
EMPLOYEES

TAX STATEMENT

REDUCE
EMPLOYEE

COUNT BY 1

STOP

3. START

SET COUNT
= 100

READ SALES
ORDER

No

PRICE = $1. 20
>-----~ X QUANTITY

PRICE = $1. 35
~-~ X QUANTITY

PRICE = $1. 50
X QUANTITY

4-114

PRINT
BILLING
INVOICE

REDUCE
COUNT
BY 1

STOP

Answers to Practice Problems

4) M = 22222

5) M = 34567

6) M = --1--

7) M = 67777

8) M = 34570 (not 3456~)

9) K = 00015, (A)f = 2000 0001 (shift A left end-around)

10) K = 00004 + (B3) = 77774, (A)f = 0000 0500 (shift A right end-off)

11) K = 77766 + (B2) = 00003, (A)f = not affected, (Q)f = 0000 0004 (Q left)

12) K = 00001 + (B3) = 77771, (A)f = not affected, (Q)f = 7740 0000 (Q right)

13) K = 00014, (A)f = 5000 4000, (Q)f = 0000 0000 (AQ left)

14) K = 00003 + (B3) = 77773, (A)f = 0000 0240, (Q)f = 0200 0000 (AQ right)

15) Program results

00100 ENA,S

00101 ENQ

00102 ENI

00103 ENI

00104 ENI

00105 ADA

00106 MUA

00107 SHAQ

00110 DVA

00111 SHQ

00112 SBA

Enters A register with 00 0 00050

Enters Q register with 00 a 77777

Enters B3 with 12345 (15 bit register)

Enters B2 with 11225

Enters B1 with 34567

Adds (00114) to (A) and leaves sum (00 a 00115) in A

Multiplies (M) by (A), product of (+115)x(-3) to QA
(Q = 777 77777, A = 777 77430)

K = 00030, shifts AQ left and exchanges register
contents

Divides -347 by -6 (contents of location 00116)
(A = 000 00046, Q = 777 77774)

Shifts (Q) left 2110 places. Q = 477 77777

Indirectly addresses location 00117 for subtrahend.
After subtraction, (A) = 000 00146

4-115

00113

00114

00115

00116

00117

00120

00121

HALT Stops program execution

Contains addend for instruction at address 00105

Contains multiplicand for instruction at address 00106

Contains divisor for instruction at address 00110

Contains subtrahend for instruction at address 00112

Contains new lower 18 bits (0 00 115) for instruction at address
00106

Contains new lower 18 bits (00117) for subtract instruction at
address 00112

P = 00113 address of last instruction

F = Halt instruction (not yet explained)

B1 34567

B2 11225

B3 12345

A = 00 00 01 46

Q = 47 77 77 77

16) form the sum of four operands in the A register, enter zeros into Q,
interchange contents of A and Q, divide by 4, and store answer and
remainder in consecutive storage locations.

17) The sum of the four memory locations would now be 7777 7707 (-70) yet the
Enter Q instruction enters Q with all zeros. When (A) and (Q) are inter­
changed, the register contents would be OOOOAOOOO 7777Q7707. Because
the A register determines the sign of the dividend, the divide instruction
would assume that the divident (AQ) was equal to positive 7777 7707 instead
of -70. To achieve the correct results, the Q register should have been
entered with 77777777. The dividend would then have been interpreted as
-70 and the correct answer would have been derived.

18) If the sign of the A register could have been examined to detect negative
operands, Q could be correctly entered with either zeros or ones.

NOTE:

The register sensing instructions needed for the preceding program
will be explained in the next group of instructions.

4-116

19) A Shift AQ instruction (left 308 places) between the multiply and divide
instructions would be the only requirement. A multiply forms the product
in QA and would condition the (Q) register.

20) Not enough information. AZJ,EQ examines entire contents of A

21) Yes. (A) = -1 which is t zero

22) No. (A) actually represents the quantity -37777777, less than zero.

23) Yes. Negative zero is less than positive zero only because the sign bit
alone is being examined.

24)

25)

a. Enter B3 with 33000, B2 with 77776

b. Obtain indirect address (M = (B2) + 00105 = 00104)

c. Indirect address storage location 00104 and transfer lower 18 bits to
F register. Instruction now becomes 01 7 45102.

d. Obtain new indirect address (M = (B3) + 45102 = 00103)

e. Indirect address from storage location 00103. Lower 18 bits to F
register. Instruction now becomes 01 3 45670

f. Perform address modification to obtain jump address 00671

01000 14 6 77777 (A) = 00077777

01001 03 3 01010 no jump

01002 00 1 01004 jump

01003 01 0 01010

01004 30 (A) 4000 0000

01005

01006 no jump, (A) -3777 7777

01007

01010 Halt

01011 377 00001

01012 010 77777~ (P) + 1 written in address field
(01006)

01013 01 0 01012

* This instruction is not executed on the first pass

4-117

26) A two instruction subprogram exists at addresses 01012 and 01013.

27) The program executed 11 instructions. The instruction at address 01012
was not executed on the jump from 01005 (return address (P) + 1 written
in) but was executed on the jump from 01013.

28) Only address 01011. The operand at 01000 was actually part of the instruc­
tion.

29) 00100 20 0 00205

00101 30 1 00204

00102 10 5 77773

00103 01 0 00101

00104 HALT

On the first pass, (B1) = 00000 (cleared by M/C) and (00204) are added to
(00205) contained in A. The ISD compares (B1) 00000 with y (77773) and, because
they are not equalities, decrements (B1) to 77776. The instruction at P + 1
causes the jump back for the second pass.

The ADA instruction has an address of 00203 (M = 00204 + 77776) and the
third operand is added.
Finally, on the fifth pass, the last operand, from address 00200, is added
(M = 00204 + 77773 = 00200). The ISD instructions finds equalities between
(Bl) and y, clears B1 and skip exits to the HALT instruction at P + 2.

30) A statement that specifies an operation and the values or locations of the
operands.

31) One

32) F register

33) The ENA is an interregister transfer into A whereas the LDA obtains the
operand from storage.

34) Original contents are destroyed

35) LOAD indicate transfer of from storage to a register; STORE is a transfer
of data from a register to storage.

36) (A) final would equal 0000 0004

37) 0000 0003, 00000003

38) Instructions. Data (operands)

39)

4-118

40) A. Shift A left

B. Shift A right

c. Enter A (extended)

D. Load Q

E. Store A

F. Enter Index

41) a. b.
F Register I A Register

~ (M)~I ___ A_R_e_g_i_s_t_er ____ ~~_Q ___ R_eg_1_.s_t_e_r ____ ~

Q Register

A1 Register
c. d.

Register

42) (A) = 000 00360

43) (A) = 000 77760

44) (A) = 000 02502 (Enter A, not Load A)

45) (A) = 000 13003 (Q) = 000 00002

46) (A) = 777 66004 (Q) = 76543210

47) (A) = 0000 0006 (Q) = 0000 0004

48) (A) = 0000 0006

4-119

49) (A) = 00000760

(Q) = 02600177

(P) = 03005

50) (A) = 00000004

51) (A) = 77777617

52)

53)

54}

a. The

b. The

c. The
the

(A) = 7777 7776

(P) = 11010

(A) = 00017526

(P) = 06004

(B1) = 00000

(A) = 7777 7775

(Q) = 0000 0002

(F) = 000 07000

(P) = 07012

(B1) = 00001

Note: The Store A instruction placed 00000760 in
storage location 03005. The 000 XXXXX is a
halt instruction.

Did you get Octaphobia? Try octal arithmetic.

(A) = 00000001

product is +341 (00000000 00000341) is QA

shift interchanges (A) and (Q) prior to the divide

divisor is +341, dividend is -2, answer is -160, and
remainder is +1 (Answer in A, remainder in Q).

clear when (Bb) = Y

Don1t forget address modification.

(B1) = 00001 after the first instruction.

55) How do you express eights and nines in a radix 8 number system?

56) (A) = 7777 5014

(Q) = 0000 0001

(P) = 10013

(F) = 000 40200

(B1) = 00000

(B2) = 00000

(:83) :c-:: 00000

4-120

57) (A) = 01 0 12010

(Q) = 03 3 12007

(P) = 12002

(F) = 000 12000

58) The A register would contain the contents of storage location 60732.

59) The instruction at 07000 is indirect by addressing itself; therefore,
indirect addressing will be indicated each time the new 18 bits are read
up.

60) (P) final = 13005

(13004) = 010 13013

(13011) = 007 13013

(13013) = 010 13001

4-121

61.

TRY FOR
SOLUTION
CONSIDERING
ONE SHEEP

FIND NUMBER
OF HEADS AND
FEET (SHEEP)

RECORD NUMBER
OF HEADS AND
FEET (SHEEP)

DRIVE NUMBER
OF HEADS AND
FEET (TURKEY)
(5 X NUMBER

SHEEP)

FIND TOTAL
NUMBER OF
HEADS AND FEE

SUBTRACT 99
FROM TOTAL
HEADS AND
FEET

NO

ADD ONE TO
NUMBER OF
SHEEP

ERROR HALT
(NO SOLUTION)

4-122

STORE NUMBERS
OF TURKEYS

OF SHEEP

62.

STORAGE INSTRUCTION
LOCATION f

I
b: m,y,k COMMENTS

o 0 1 0 0 1 4 6 0 0 o 0 1 Start with one shee]2

0 0 1 0 1 4 0 0 o 0 1 2 3 Store number of sheep

0 0 1 0 2 5 0 0 o 0 1 2 7 Find number of heads and feet (sheep)
o 0 1 0 3 4 0 0 o 0 1 2 4 Store number of heads and feet (sheep)

o 0 1. 0 4 2 0 0 0 0 1 2 3 Load A with number of she~

0 0 1 0 5 5 0 0 0 0 1 3 0 Find number of heads and feet (turkeys)
0 0 1 0 6 3 0 0 o 0 1 2 4 Add for total heads and feet

o 0 1 0 7 3 1 0 o 0 1 3 1 Subtract given number of heads and feet

o 0 1 1 0 '0 3 0 o 0 1 1 6 If difference is O. solution has been found

o 0 1 1 1 2 0 0 o 0 1 2 3 Load A with number of sheep

0 0 1 1 2 3 0 0 o 0 1 2 5 Increase number of sheejJ by 1

o 0 1 1 3 1 0 1 o 0 1 4 4 Provide for no solution

o 0 1 1 4 0 1 0 o 0 1 0 1 Return to try new values

o 0 1 1 5 0 0 0 7 7 7 7 7 Error halt (wrong given number of H+F)

o 0 1 1 6 2 0 0 0 0 1 2 3 Load A with number of sheep

0 0 1 1 7 5 0 0 o 0 1 2 6 Find number of turkeys

0 0 1 2 0 4 0 0 o 0 2 0 0 Store number of turkeys (ANS)

o 0 1 2 1 2 0 0 o 0 1 2 3 Load A with number of sheep (ANS)

o 0 1 2 2 0 0 0 o 0 1 0 0 HALT

o 0 1 2 3 Reserved for current number of sheep

o 0 1 2 4 Reserved for heads and feet (sheep)

0 0 1 2 5 0 0 0 o 0 o 0 1

o 0 1 2 6 0 0 0 o 0 0 0 2

o 0 1 2 7 0 0 0 0 0 o 0 5 CONSTANTS

o 0 1 3 0 0 0 0 0 0 0 0 6

o 0 1 3 1 0 0 0 0 0 1 4 3

2

3

4

5

6

7

4-123

CONTROL DATA
CORPORATION

	000
	001
	002
	003
	004
	005
	006
	007
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	4-000
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	4-122
	4-123
	xBack

