
C PROGRAMMER'S 
MANUAL 

CGC 7900 SERIES 
COLOR GRAPHICS COMPUTERS 



Whitesmiths, Ltd. 

C PROGRAMMERS' MANUAL 

Release: 2.1 

Date: Ma rch 1982 



The C language was developed at Bell Laboratories by Dennis Ritchie; 
Whitesmiths, Ltd. has endeavored to remain as faithful as possible 
to his language specification. The external specifications of the 
Idris operating system, and of most of its utilities, are based 
heavily on those of UNIX, which was also developed at Bell Labora­
tories by Dennis Ritchie" and Ken Thompson. Whi tesmi ths, Ltd. grate­
fully acknowledges the parentage of many of the concepts we have 
commercialized, and we thank Western Electric Co. for waiving patent 
licensing fees for use of the UNIX protection mechanism. 

The successful implementation of Whi tesmi ths r compilers, operating 
systems, and utilities, however, is entirely the work of our pro­
gramming staff and allied consultants. 

For the record, UNIX is a trademark of Bell Laboratories; lAS, 
PDP-11, RSTS/E, RSX-11M, RT-11, VAX, VMS, and nearly every other 
term with an 11 in it all are trademarks of Digital Equipment Cor­
poration; CP/M is a trademark of Digital Research Co.; MC68000 and 
VERSAdos are trademarks of Motorola Inc.; ISIS is a trademark of In­
tel Corporation; A-Natural and Idris are trademarks of Whitesmiths, 
Ltd. C is not. 

Copyright (c) 1978, 1979, 1980, 1981 by Whitesmiths, Ltd. 



C PROGRAMMERS' MANUAL 

SECTIONS 

I. The C Languag-e 

II. Portable C Runtime Library 

III. C System Interface Library 

IV. C Machine Interface Library 

SCOPE 

This manual describes the C programming language, as implemented by 
Whitesmiths, Ltd., and the various library routines that make up the 
machine independent C environment. Section I introduces the C 
language, and Section II details the numerous functions callable 
from C to extend the power of the language. Section III lists the 
functions that interface to a given operating system, while Section 
IV describes the functions that interface to a given machine archi­
tecture. The distinction between Sections II, _III, and IV, while of 
considerable importance to implementors, is probably academic to 
most programmers -- all functions in all of these sections are 
present as described on all systems supported by Whitesmiths, Ltd. 

For documentation of the programming utilities, or information on 
each implementation of system or machine dependent features of the C 
support software, see the C Interface Manual for the appropriate 
maC?hine. 



Introduction 
Syntax 
Identifiers 
Declarations 
Initializers 
Statements 
Expressions 
Constants 
Preprocessor 
Style 
Portability 
Differences 
Diagnostics 

I. The C Language 

TABLE OF CONTENTS 

the C compiler 
syntax rules for C 
naming things in C 
declaring names in C 
giving values to data 
the executable code 
computing values in C 
compile time arithmetic 
lines that begin with' 
rules for writing good C code 
writing portable code 
comparative anatomy 
compiler complaints 

I - i 



Introduction I. The C Language Introduction 

NAME 
Introduction - the C compiler 

FUNCTION 
The C compiler is a set of three programs that take as input" to the first 
of the programs, one or more files of C source code, and produce as out­
put, from the last of the programs, assembler code that will perform the 
semantic intent 0 f. the source code. Out put from the file·s may be 
separately compiled, then combined at load time to form an executable pro­
gram; or C subroutines can be compiled for later inclusion with other pro­
grams. One can also look on the compiler as a vehicle for implementing an 
instance of an abstract C machine, i.e., a machine that executes state­
ments in the language defined by some standard. That standard is general­
ly accepted to be Appendix A of Kernighan and Ri tchie, "The C Programming 
Language". Prentice-Hall 1978. 

This section describes the current implementation, as succinctly, and, it 
is to be hoped, as precisely as it is defined in the language standard. 
It is organized into loosely coupled subsections, each covering a dif­
ferent aspect of the language. No serious attempt is made to be tutorial; 
the interested stUdent is referred to Kernighan and Ritchie, then back to 
this section for a review of the differences. 

The recommended order of reading is: 

Introduction - this is it. 

Syntax - how to- spell the words and punctuate the statements. 

Identifiers - the naming of things, the scope of names and their important 
attributes. 

Declarations - how to introduce identifiers and associate attributes with 
them. 

Initializers - how to specify the initial values of all sorts of data 
types. 

Statements - how to specify the executable code that goes with a function 
name. 

Expressions - the binding of operators, order of evaluation, and coercion 
of types. 

Constants - the kinds of expressions that can be evaluated at compile 
time. 

Preprocessor - Udefine and Uinclude expansion. 

Style - recommendations for what parts of the language to use, and what to 
avoid; how to format code. 

Portability - techniques for writing C that is maximally portable. 

I - 1 



I 

Introduction - 2 - Introduction 

Differences - comparative anatomy of this implementation, the language 
standard, and other implementations. 

Diagnostics - things the compiler complains about. 

SEE ALSO 
Documentation for compiler operation proper is found in the various C In­
terface manuals, which also contain the descriptions of subroutines used 
to communicate with various operating systems. The standard library of C 
callable functions is documented in the remaining sections of this manual. 

I - 2 



Syntax I. The C Language Syntax 

NAME 
Syntax - syntax rules for C 

FUNCTION 
At the lowest level, a C program is represented as a text file, conSisting 
of lines each terminated by a newline character. Any characters between 
1* and *1 inclusive, including newlines, are comments and are replaced by 
a single blank character. A newline preceded by '\' is discarded, so that 
lines may be continued. The-compiler cannot deal with a text line larger 
than 512 characters, either before or after the processing of comments and 
continuations. 

Text lines are broken into tokens, strings of characters possibly separat­
ed by whitespace. Whitespace consists of one or more non-printing charac­
ters, such as space, tab, or newline; its sole effect is to delimit tokens 
that might oth'erwise be merged. Tokens take several forms: 

An identifier - consists of a letter or underscore, followed by zero or 
more letters, underscores, or digits. Uppercase letters are distinct 
from lowercase letters; no more than eight characters are significant 
in comparing identifiers. More severe restrictions may be placed on 
external identifiers by the world outside the compiler (see Differ­
ences) • There are also a number of identifiers reserved for use as 
keywords: 

auto extern short 
break float sizeof 
case for static 
char goto struct 
continue if switch 
defaul t int typedef 
do long union 
double register unsigned 
else return while 

A numeric constant - consists of a decimal digit, followed by zero or more 
letters and digits. If the leading characters are "Ox" or "OX", the 
constant is a hexadeci~al literal and may contain the letters 'a' 
through 'f', in either case, to represent the digit values 10 through 
15, respectively. Otherwise a leading '0' implies an octal literal, 
which nevertheless may contain the digits '8' and '9'. A non-zero 
leading digit implies a decimal literal. Any of these forms may end 
in '1' or 'L' to specify a long constant. The constant is also made 
long if a) a decimal literal cannot be properly represented as a 
Signed integer, or b) any other literal constant cannot be properly 
represented as an unsigned integer. Overflow is not diagnosed. 

A floating literal - consists of a decimal integer part, a decimal pOint 
,.,.oa decimal fraction part, and an exponent, where an exponent con­
sists of an 'e' or 'E' and an optionally signed ('.' or '-') decimal 
power of ten by which the integer part plus fraction part must be 
multiplied. Either the decimal point or the exponent may be omitted, 
but not both; either the integer part or the fraction part may be om­
itted, but not both. Any numeric constant that is not one of these 

I - 3 



Syntax - 2 - Syntax 

literal forms is illegal, e.g., "Sax3". A floating literal is of 
type double. Overflow is not diagnosed. 

A character constant - consists of a single quote, followed by zero or 
more character literals, followed by a second single quote. A char­
acter literal consists of a) any character except '\', newline, or 

.single quote, the value being the ASCII representation of ~hat char­
acter; b) a \ followed by any character except newline, the value be­
ing the.· ASCII representation of that character, except that charac­
ters in the sequence <'b', 't', 'v', 'f', 'n', 'r', '(', '!', ')', 
,A,> have the ASCII values for the corresponding members of the se­
quence <backspace, horizontal tab, vertical tab, form feed, newline, 
carriage return, '{', 'l', '}', '-'>; or c) a '\' followed by one to 
three decimal digits, the value being the octal number represented by 
those digits. A newline i-s never permitted inside quotes, except 
when escaped with a '\' for line continuation. The value of the con­
stant- is an integer base 256, whose digits are the character literal 
values. The constant is long if it cannot be properly represented as 
an unsigned integer. Overflow is not diagnosed. 

A string constant - is just like a character constant, except that double 
quotes 'ft' are used to delimit the string. The value is the (secret} 
name of a NUL terminated array of characters, the elements initial­
ized to the character literals in the string. 

Punctuation - consists of predefined strings of one to three characters. 
The complete set of punctuation for Cis: 

* =+ - » \) 

!= + =- >= \A 

S ++ < =1 » A 

& « =« ? { 

<= ( , -- I && 
( = =» ] D 

=s 
A \! ' , = II « -> 

( l =& -' -I \!! } 
) / =* > \( 

Punctuation in the sequence <, «, ," '(: t, '»', '\!', '\!! t, '\( r, 

'\)', ,\A" 'I)'> is entirely equivalent to the corresponding member 
of the sequence <, { '. '(', '}', 'I '. 'I;'. '{'. '}'. '-', ']' > • 

The longest possible punctuation string is matched, so that "==+", 
for example, is recognized as "==". "+", and never as "=", "=+". 

Other characters - such as '@' or '\' alone are illegal outside of charac­
ter or string constants, and are diagnosed. 

NOTATION 

Grammar, the rules by which the syntactic elements above are p~t together, 
permeat~s the remaining discussions. To avoid long-winded descriptions, 
some simple shorthand is used throughout this section to describe grammat­
ical constructs. 

I - 4 



Syntax - 3 - Syntax 

A name enclosed in angle brackets, such as <statement>, is a "metanotion", 
i.e., some grammatical element defined elsewhere. Presumably any sequence 
of tokens that meets the grammatical rules for that metanotion can be used 
in its place, subject to any semantic limitations explicitly stated. Just 
about any other symbol stands for itself, i.e., it must appear literally, 
like the semicolon in 

<expression> ; 

Exceptions are the punctuation "[", "]", "]*", "{", It}", and ":~'; these 
have special meanings unless made literal by being enclosed in single 
quotes. 

Brackets surround an element that may occur zero or one time. The option­
al occurrence of a label, for instance, is specified by: 

[ <identifier> : ] <~tatement> 

This means that the metanotion <identifier> may but need not appear before 
<statement>, and if it does must be followed by a literal colon. To 
specify the optional, arbitrary repetition of an element, the notation 
"[)*" is used. A comma separated list of <id> metanotions, for example 
(i.e., one i~stance of <id> followed by zero or more repetitions), would 
be represented by: 

<id> [, <id> J* 

Vertical bars are used to separate the elements in a list of alternatives, 
exactly one of which must be selected. The line: 

char : short : long 

requires the specification of anyone of the three keywords listed. Such 
a list of alternatives is enclosed in braces in order to precisely delimit 
its scope. For instance: 

<decl> [ = ) <expr> : 
<decl> [ = J <elist> } 

emphasizes that a data lnitializer has the format given by the entirety of 
one of the two lines spec.ified • 

. EXAMPLE 
Various ways of writing a ten: 

integer 
long 
double 

1 0 , 012 t OXa t • \n • 
l0L 
10.0, 1 e 1, 1. Oe+O 1 

I - 5 



Identifiers I. The C Language Identifiers 

NAME 
Identifiers - naming things in C 

FUNCTION 
Identifiers are used to give names to the objects created in a C program. 
Syntactically, an identifier is a sequence of letters, underscores, and 
digits, starting with a non-digit. For the sake of comparisons, only the 
first eight characters are significant, so "summation" and "summations" 
.are the same identifier. Externally published identifiers are typically 
even more restricted (see Differences). 

There are several name spaces in a C program, so that the same identifier 
may have different meanings in the same extent of program text, depending 
on usage. Things such as struct or union tags, members of struct or un­
ion, and labels will be considered separately later on. The bulk of this 
discussion concerns the name space inhabited by the names of objects that 
occupy storage at execution time. 

Each such identifier acquires, from its usage in a C program, a precisely 
defined lexical scope, storage class, and type. The scope is the extent 
of program text over which the compiler knows that a given meaning holds 
for an identifier. The storage class determines both the lifetime of 
values assigned to an object and the extent of program text over which a 
given meaning holds for its identifier, whether the compiler knows it or 
not~ The type determines what operations can be performed on an object 
and how its values are encoded. Needless to say, these important attri­
butes often interact. 

SCOPE 

There are two basic contexts in a C program -- inside a program block and 
outside it. The program block can be the entire body of a defined func­
tion, including its argument declarations, or any contained region en­
closed in braces "{In. In either case, the scope of an identifier depends 
strongly on what context it is first mentioned in. 

If an identifier first appears outside a program block, its scope is from 
its first appearance to the end of the file, less any contained program 
blocks in which that identifier is explicitly declared to have a storage 
class other than extern, i.e., a local redeclaration. To legally appear 
outside a program block, an identifier must be a) explicitly declared to 
be extern or static, or b) used in an initializer for an object of type 
pointer. In the latter case, the identifier is implicitly declared to be 
extern, with type (tentatively) int. 

~f an identifier appears inside a program block and is explicitly declared 
to have a storage class other than extern, its scope is from that appear­
ance to the end of that program block, less any local redeclarations. 

The only other place an identifier may legally first appear is inside a 
program block, within an expression, where the name of a function is re­
quired. In this case the identifier is implicitly declared to be extern, 
with type function returning (tentatively) int. 

I - 6 



Identifiers - 2 - Identifiers 

In short, locals remain local while externals are made known as globally 
as possible, without requiring the compiler to back up over the text. 

STORAGE CLASSES 

Storage classes come in a variety of flavors, some with different season­
ing depending on context. 

extern - outside a program block, means that the name should be published 
for common use among any of the files composing the program that· also 
publish the same name. The published name may be shortened to as few 
as six significant characters, and/or compressed to one case, depend­
ing on the target operating system; so while the compiler distin­
guishes "Counted" and "counter", subsequent processing of the com­
piled text may not. Inside a program block, extern merely emphasizes 
that an earlier definition iri a containing ~lock holds, if any. If 
none, then the name is published as above. The lifetime of extern 
objects is the duration of program execution. 

static - outside a program block, means that the name should not be pub­
lished outside the file. Inside a program block, static means that 
the identifier names an object known only within the program block, 
less any local redeclarations. The lifetime of static objects is the 
duration of program execution, so the value of a local static is re­
tained between invocations of the program block that knows abou~ it. 

auto - can only be declared inside a program block and means that the 
identifier names an object known only within the program block, less 
any local redeclarations. The lifetime of auto objects is the time 
between each entry and exit of the program block, so the value of an 
auto is lost between invocations of the program block that knows 

-about it. Multiple instances of the same auto may exist simultane­
ously, one instance for each dynamic activation of its program block. 

register - can only be declared inside a program block, and means much the 
same as auto, except that a) efficient storage, such as the machine's 
fast registers, should be favored to hold the object, and b) the ad­
dress of the object cannot be taken. It is not considered an error 
to declare more objects of class register than can be accommodated; 
excess ones are simply taken as auto. The lifetime of register ob­
jects is the same as auto objects. An argument declared to be of 
class register is copied into a fast register on entry to the func­
tion. Currently t all implementations support at least three simul­
taneous register declarations, none of which hold an object larger 
than int. 

typedef - means that the name should be recognized as a type specifier, 
not associated with any object. Lifetime is hence irrelevant. Rede­
claring a .typedef in a contained program block is permi$sible but 
mildly perilous. 

I - 7 



Identifiers - 3 - Identifiers 

TYPE 

All types in C must be built from a fixed set of basic types: the integer 
forms char. unsigned char. short, unsigned short. long. and unsigned long; 
and the floating types noat and double. The type int is a synonym either 
for short or long integer, depending on the size of pointers on the target 
machine; char, short, int, and long are signed unless explicitly declared 
to be unsigned. From these are derived the composite forms struct, union. 
bitfield, pointer to, array of, and function returning. Recursive appli­
cation of the rules for deriving composite types leads to a large, if not 
truly infinite, aS30rtment ·of types. 

[ unsigned J char - is a byte integer, something just big enough to hold 
all of the characters in the machine's character set. It is promised 
that printable characters and common whitespace codes are small posi­
tive integers or zero. 

[ tmsigned ] short - is tyPically a two-byte integer, something just big 
enough to hold reasonable counts. 

[ unsigned lint - 1s either a short or a long, depending on the machine. 
It is promisee to be big enough to count all the bytes 1n the 
machine's address space. 

( unsigned 1 long - is typically a four-byte integer, something comfort­
ably large. 

float - is a floating number of short precision, typically four bytes. 

double - is a floating number of longer precision than float, if possible, 
typically eight bytes. Also known as "long float". 

struct - is a sequence of one or more member declarations, with holes as 
needed to keep everything on proper storage boundaries for the 
machine. There are contexts in which a struct may have unknown con­
tent. Members may be any types but function returning, array of unk­
nown size. and struct of unknown content. 

union - is an alternation of one or more members, the union being big 
enough and aligned well enough to accept any of its member types. 
Members may be any types but function returning, array of unknown 
size, and struct of unknown content. A union of unknown oontent is 
treated just like a struct of unknown content. 

bitfield - is a contiguous subfield of an unsigned int, always declared as 
a member of struct. It participates in expression~ much like an un­
signed int, except that its address may not be taken. 

po inter to - is an unsigned' int that is used to hold the address 0 f some 
object./ It is promised that no C object will ever have an address of 
zero. 

array of - is a repetition of some type. whose size is either ~a compile­
time constant or unknown. Any type but function returning, array of 
unknown size, and struct of unknown content may be used in an array.-

I - 8 



Identifiers - 4 - Identifiers 

function returning - is a body of executable text whose invocation returns 
the value of some type. Only the basic types or pointer to may be 
returned by a function. 

OTHER NAME SPACES 

struct or union tags have a scope that extends from first appearance 
through the end of the program file; they may not be redefined •. struct 
tags are a separate name space, and union tags are a separate name space. 

Labels in a function body have a scope that extends from first appearance, 
in a goto or as a statement label, through the end of the function body; 
they may not be redefined within that scope. L~bels are a separate name 
space. 

Members of a struct or union have a scope that extends from first appear­
ance, in the content definition of the struct or union, through the end of 
the program file. They may not be redefined within any struct or union, 
unless the new definition calls for the same type and offset. [N.B. As a 
compile time option, each struct or union may be given its own name 
space.] 

I - 9 



Declarations I. The C Language Declarations 

NAME 
Declarations - declaring names in C 

FUNCTION 
Declarations form the backbone of a C program. They are used to associate 
a scope, storage class, and type with most identifiers, to specify the in­
itial values of objects named by identifiers, and to introduce the body of 
executable text associated with each function name. There are four types 
of declarations, external, structure, argument, and. local. The cast 
operator uses an abbreviated form of declaration to specify type. 

EXTERNAL DECLARATIONS 

each having one of the forms: 

( <sc> 1 ( <ty> ] <decl> <fn-body> 
,( <sc> 1 ( <ty> ] ( <decl> ( <dini t> 1 (, <decl> ( <dini t> 1 J * ] ; 

i.e., a storage class and type specifier, optio~ally followed by·either a 
function body or a comma separated list of declarators <decl>, each op­
tionally initialized, the list. ending in a semicolon. 

The storage class <sc> may be extern, static, or typedef; default is ex­
tern·. The type <ty> may be a) a basic type, b) astruct or union declara­
tion, described below, or 0) an identifier earlier declared to be a 
typedef; default is int. The basic types may be written as: 

{ ( unsigned 1 ( char ; short ; long 1 ( int 1 I 
( long 1 noat 
double} 

where long float is the same as double. 

A <decl> is recursively defined as, in order of decreasing binding: 

ident - ident is of type <ty>. 

<decl> ( ( <id> [, <id> l* 1 ) - <decl> is of type function returning 
<ty>. The comma separated list of identifiers is used only if the 
declaration is associated with a function body. 

<decl> '(' <const> 'l' - where '(I and 'l' signify actual brackets. 
<decl> is of type array of <ty>. <const> is the unsigned repetition 
oount. 

<decl> '(' 'l' - where '(' and 'l' signify actual brackets. <decl> is of 
type array of <ty>, of unknown size. 

·<decl> - <decl> is of type pointer to <ty>. 

( <decl> ) - <ty> 1s redefined, inside the parentheses, as that type ob­
tained for X if the entire declaration were rewritten with «decl» 
replaced by X. 

I - 10 



Declarations - 2 - Declarations 

The last rule has profound implications. It is intended, along with the 
rest of the <decl> notation, to per~it declarators to be written much as 
they appear when used in expressions. Thus, "*,, for "pointer to" 
corresponds to ,*, for "ind irect on", "C)" for" function returning" 
corresponds to "C)" for "called with", and "[]" for "array of" corresponds 
to "[]" for "subscripted with". Declarators must thus be read inside out, 
in the order in which the operators would be applied. 

The two critical examples are: 

int *fpiC); 1* function returning pointer to int *1 
int C *pfi) ( ) ; 1* po inter to function returning int *1 

Accepting these Truths is the first step on the path to Enlightenment. 

Initializers come in two basic flavors, for objects of type function re­
turning, and for everything else. The former is usually referred to as 
the definition of a function, i.e., the body of executable text associated 
with the function name. A typedef may not be initialized; a static must 
be initialized exactly once in the program file; an extern must be ini­
tialized exactly once among the entire set of files making up a C program. 

Function bodies <fn-body> are described in Statements; data initializers 
<dinit> are described in Initializers. For now it will merely be observed 
that each function body begins with an argument declaration list, and each 
program block within the function body begins with a local declaration 
list. Functions may only be declared to return a basic type or a pointer 
to some other type. 

STRUCTURE DECLARATIONS 

If the type specifier in a declaration begins with struct or union, it 
must be followed by one of the forms: 

<tag> '{' <dlist> f}f 
<tag> : 
f{f <dlist> '}' } 

where '{' and f}' signify actual braces. The first form defines the con­
tent of the structure as <dlist> and associates the definition with the 
identifier < tag>. The second form can be used to refer ei ther ~o a struc­
ture of unknown content or as an abbreviation for an earlier instance of 
the first form. The last form is used to define content without defining 
a tag. 

dlist is a sequence of one or more member declarations of the form: 

[ <ty> ) <sudecl> [, <sudecl> ]* 

where <sudecl> is one of the forms: 

<decl> [ : <width> ] ; 
: <width> } 

I - 11 



Declarations - 3 - Declarations 

<ty> and <decl> are the same as for external declarations, except that the 
types function returning, array of unknown size, and struot of unknown 
content may not be declared. 

If the type is int or unsigned int, a bitfield speoifier may follow 
<decl>, or stand alone. It oonsists of a oolon ':' followed by a 
compile-time constant giving its width in bits. Adjacent <sudecl> de­
clarators with bitfield specifiers are packed, as tightly as possible, 
into adjacent bitfields in an unsigned int; bitfield specifiers that stand 
alone oall for unnamed padding. A new unsigned int is begun a) for the 
first field specifier in a declaration, b) for the first bitfield specif­
ier following a non-bitfield specifier, 0) for a bitfield specifier that 
will not fit in the remaining space in the current unsigned int, or d) for 
a stand alone field specifier whose width is zero, e.g., ": 0". Bitfields 
are packed right to left, i.e., the least signifioant bit is used first. 

ARGUMENT DECLARATIONS 

A function initializer begins with an argument declaration list, whioh is 
a sequence of zero or more declarations of the form: 

. ( register] [ <ty> ] <decl> [, <decl> 1* 
-

<ty> and <decl> are the same as for external declarations, exoept that the 
types char (and possibly short), function returning, array of, struct, and 
union are misleading if used. On a-function oall, any integer type short­
er than int is widened to int; function returning and array of become 
pointers; and struct or union oannot be sent, so any such declaration is a 
(possibly dangerous) reinterpretation of the actual arguments sent. 

The only storage olass that may be declared is register; default is normal 
argument. The default type for undeclared arguments is int. 

LOCAL DECLARATIONS 

Eaoh program blook begins with a looal declaration list, whioh is a se­
quence of zero or more decl~rations having one of the forms: 

{ <lsc> [ <ty> ] [ <decls> 1 ; : 
[ <lso> ] <ty> [ <decls> 1 ; } 

where <decls> is 

<decl> [ <linit> ] [, <decl> [ <linit> J J* 

In other words, either the storage olass <lsc> or type <ty> must be 
present. 

The storage olass <lsc> may be auto, register, extern, statio, or typedef: 
default is auto. <ty> and <decl> are the same as for external declara­
tions. 

I - 12 



Declarations - 4 - Declarations 

A static may be followed by a data initializer <linit>, just like the 
<dinit> of external declarations, described in Initializers. An auto or" 
register may be followed by an linit of the form: optional ':', followed 
by any expression that may appear as the right operand of ':' in an ex­
pression in the same context. Such initializers for auto and register be­
come code which is executed on each entry to the program block. 

A register may hold only an object of size int (which includes unsigned 
and pointer). Anything larger than an unsigned int declared to be in a 
registe~" is quietly made an auto; anything declared smaller than int is 
taken as register int. 

CASTS 

A cast is an operator that coerces a value to a specified type. It takes 
the form 

[ <ty> ] <a-decl> ) 

<ty> is the same as for external declarations, except that, in conjuncion 
with <a-decl>, only the basic types and pointer to may be specified. <a­
decl> is an abstract declarator, much like the <decl> used for external 
declarations, but with the identifier omitted. Thus 

(int *) 1* coerces to po inter to int *1 
(struct x *(*)(» 1* coerces to pointer to 

function returning pOinter to 
struct x (!) *1 

To eliminate a lurking ambiguity before it bites, "()" is always taken as 
function returning, and never as (unnecessary) parentheses around the om­
itted identifier. 

EXAMPLE 
Some simple declarations: 

char c; 
tnt i, j; 
long 10 {37}; 
double df(); 

More elaborate: 

int *fpi(); 1* 
typedef struct 

double re, 
} COMPLEX; 

static COMPLEX 

fpi is a function returning pOinter to int *1 
{ 
im; 

1* COMPLEX is a synonym for the structure *1 
*pc; 1* pc is a static pointer to COMPLEX *1 

I - 13 



Initializers I. The C Language Initial izers 

NAME 
Initializers - giving values to data 

FUNCTION 
As part of the declaration prooess, a data object oan be given an initial 
value. This value is established at load time, for obj~cts with storage 
olass extern or statio, or on eaoh entry to a program bloek, for objeots 
with storage olass auto or register. If no initializer is speoified in a 
declaration then: an extern must be initialized in another declaration 
(not necessarily in the same file), a static outside a program blook must 
be initialized in another declaration in the same file, a static inside a 
program blook is set to all zeros, while an auto or register contains gar­
bage. 

The two basic formats for initializers are: 

{ <decl> r = J <expr> I 
<decl> r = l <el ist> } 

where <elist> is 

'{' ( <expr> : <elist> l E, ( <expr> : <elist> l l* [, J 'l' 

i.e., a oomma-separated list of expressions and lists, each list enolosed 
in braces. Note that a trailing oomma is explicitly permissible in an el­
ist. 

auto and register declarations with lnitializers behave much like assign­
ment statements. Only scalar variables may be initialized, but the initi­
alizer may be any expression that oan appear to the right of an assignment 
operator with that variable on the left. An <elist> is never acceptable 
in an auto or register initializer. 

The remaining discussion ooncerns initializers for objects with storage 
class extern or static. 

A scalar object is initialized with one <expr>. If it is an integer type 
(char, short, int, long, or bitfield), <expr> must bean expression redu­
cible at compile time to an integer literal, i.e., a oonstant expression 
as described in Constants. If the object is a floating type (float or 
double), <expr> must be a floating literal or a constant expression; a 
constant expression is converted to a floating literal by the compiler. 
The oompiler will not perform even obvious arithmetic involving floating 
literals, other than to apply unary '+' or '-' operators. 

A pointer is initialized with a oonstant expression or with the address of 
an external objeot, plus or minus a oonstant expression. Any oonstant 
other than zero is extremely mac.hine dependent, henoe this freedom should 
be exploited only by hardware interfaoe oode. If the address of an object 
appears in a pointer initializer, and the object has not yet been 'de­
olared, it is implioitly declared to be (tentatively) an external int. 

A union is initialized with one expression; the first member of the union 
is taken ·as the object to be initialized. 

I - 1~ 



Initializers - 2 - Initializers 

A struct is initialized with either an expression or' a list. If an ex­
pression is used, the first member of the struct is taken as the object to 
be initialized. If a list is used, the elements of the list are used to 
initialize corresponding members of the struct. If there are more members 
than initializers, excess members are initialized with zeros. It is an 
error for there to be more initializers in a list than members in the 
struct. 

An array of known size is initialized much like a struct: an expression 
initializes the first element only, while a list initializes elements 
starting with the first. If there are more elements than initializers, 
excess elements are initialized with zeros. It 1s an error for there to 
be more initializers in the list than there are elements in the array. 

An array of unknown size, however, cannot have an excess of initializers, 
as its multiplicity is determined by the number of initializers provided. 
After initialization, therefore, an array always has a known size. 

By~special dispensation, an array of characters may be initialized by a 
string literal. Thus 

char a[] {lthelp"}; 1* is the same as *1 
char a [ 5] {' h', 'e', t 1', 'p', '\O'}; 

E~aborate composite types, such as arrays of structs, are naturally lnl­
tialized with lists of sublists, whose structure reflects the structure of 
the creature being initial ized. It is 0 ften permissible, however', to 
write an initializer by eliding braces around one or more sublists. In 
this case, a struct or array (sub)element uses only as many elements as it 

.needs, leaving the rest.for subsequent subelements. 

In general, it is recommended that complex initializers either have a 
structure that exactly matches the object to be initialized, or have no 
internal structure at all. It is hard enough to get either of these ex­
tremes correct; intermediate forms frequently defy analysis. 

EXAMPLE 
char *p = "help"; 1* p points at the string *1 
char a[] {"help"}; 1* a contains five chars *1 
struct complex { 

float real, imag; 
} xx[3][2J 
{ { {O, OJ, {O, l}, {O, 2} }, 

{ {1, O}, {1, 1}, {1, 2} }, 
{ {2, O}, {2, l}, {2, 2} } }; 

I - 15 



Statements I. The C Language Statements 

NAME 
Statements - the executable code 

FUNCTION 
A C function definition consists of the function declaration proper, fol­
lowed by any argument declarations, followed by a <program-block> which 
describes the action to be performed when the function is called. A 
<program-block> begins with a '{', optionally followed by a sequence of 
local.declarations, optionally followed by a sequence of statements, and 
ends with a '} t. In addition to the <program-block> just described, which 
may be used recursively whenever a <statement> is permitted, the following 
are the legal <statement>s of a C program: 

<expression>; - An <expression> terminated by a semicolon is a statement 
that causes the <expression> to be evaluated and the result discard­
ed. Assignments and function oalls are simply special oases of the 
expression statement. It is oonsidered an error if the <expression> 
produces no useful side effect, i.e., "a = b;" is useful but "a + b;" 
is not. 

; - A semicolon standing alone is a null statement. It does nothing. 

if ( <expression> ) <statement> ( else <statement> J - If <expression> 
evaluates to a non-zero of any type, the <statement> following it is 
evaluated and the else part, if present, is skipped; otherwis~ the 
<statement> following <expression> is skipped and the else part, if 
present, has its <statement> evaluated. As in all languages, each 
else part in a nested' if <statement> is associated with the innermost 
"un-else'd" if. 

switch ( <expression> ) <statement> - If <expression>, converted to an 
int,' matches the value associated with any of the oase labels in the 
statement following, execution resumes immediately following the 
matohing label. Otherwise if the label "default" is present in the 
statement following, execution resumes immediately following it. 
Otherwise execution resumes with the statement following the switch 
statement. The statement controlled by a switch is typically a 
<program-block>, but doesn't have to be. 

oase <value>: <statement> - The case <statement> may only occur within a 
switch <statement>, as described above. The value must be an int 
oomputable at oompile time and must not match any other case <value>s 
in the same switoh. 

default: <statement> - The default <statement> may only occur within a 
switon <statement>, as described above. It may occur at most once in 
any switoh. 

While ( <expression> ) <statement> - So long as <expression> evaluates to 
a nc~-zero of any type, <statement> is executed. <expression> is 
evaluated prior to each execution of the <statement>, plus one more 
time if it ever evaluates to zero. The <statement> may thus be exe­
cuted zero or more times. 

I - 16 



Statements - 2 - Statements 

do <statement> while ( <expression> ); - The <statement> is executed and, 
so long as <expression> evaluates to non-zero of any type, the 
<statement> is repeated. The <statement) may be executed one cr mere 
times; <expression> is evaluated following each execution of the 
<statement>. 

for ( <ex'>; <ex2>; <ex3> ) <statement> - <ex'>, <ex2>, and <ex3> are all 
<expression>s. <ex'> is evaluated exactly once, then so long as 
<ex2> evaluates to non-zero the <statement> is executed and <ex3> is 
evaluated. Thus the for behaves much like the sequence 
{<ex1>; while «ex2» {<statement> <ex3>; }} 

break; - A break <statement> causes immediate exit from the innermost con­
taining switch, while, do, or for <statement>, i.e., execution 
resumes with the <statement> following. A break <statement> may only 
occur inside a switch, while, do, or for. 

continue; - A continue <statement> causes immediate exit from the 
<statement> part of the innermost containing while, do or for <state­
ment>, i.e., execution resumes with the test part of a while or do, 
or with the <ex3> part of a for. A continue <statement> may only oc­
cur inside a while, do, or for. 

goto <identifier>; - A goto <statement> causes execution to resume immedi­
ately following the <statement> labelled with the matching identifier 
contained within a common ·<program-block>. Such a labelled <~tate­
ment> must be present. 

<identifier>:· <statement> - A label <statement> serves as a potential tar­
get for a goto, as described above. All labels within a given 
<program-block> must have unique <identifier)s. 

return [ <expression) 1; - If the <expression> is present, it is evaluated 
and coerced to the type returned by the function, then the function 
returns with that value. If the <expression> is absent, the function 
returns with an undefined value. There is an implicit return state­
ment (with no defined value) at the end of each <program-block> at 
the outermost level of a function definition. 

I - '7 



Expressions I. The C Language Expressions 

NAME 
Expressions - computing values in C 

FUNCTION 
C offers a rich collection of operators to specify actions on integers, 
floats, pOinters and, occasionally, composite types. Operators can be 
classified as addressing, unary, or binary. Addressing operators bind 
most tightly, left to right from the basic term outward; then all unary 
operators are applied right to left, beginning with (at most one) postfix 
"++" or "-";. finally all binary operators are applied, binding either 
left to right or right to left and on a multi-level scale of precedence. 

Parentheses may be used to override the default order of binding, without 
fear' that redundant parentheses will alter the meaning of an expression, 
i.e., f(p) is the same as f«p» or (f(p». The language makes few prom­
ises about the order of evaluation, however, or even whether certain 
redundant computations occur at all. Expressions with multiple side ef­
fects can thus be fragile, e.g., *p++ = *++p can legitimately be evaluated 
in a number of incompatible ways. 

Some operands must be in the class of "lvalues", i.e., things that make 
sense on the left side of an assignment operator. An identifier is the 
Simplest lvalue, but any exp~ession that evaluates to a recipe for locat­
ing declared objects can also be an lvalue. All scalar expressions also 
have an "rvalue", 1.e., a thing that makes sense on the right side of an 
assignment operator. All lvalues are also rvalues. 

Nearly all C operators deal only with scalar types, i.e., the basic types, 
bitfield, or pointer to. Where a scalar type is required and a composite 
type is present, the following implicit coercions are applied: array of 
••• is changed to pointer to ••• with the same address value; function re­
turning ••• is changed to pointer to function returning ••• with the same 
address value; structure.or union is illegal. 

ADDRESSING OPERATORS 

func( ( expr (, expr J* ]) - func must evaluate to type "function return­
ing ••• n and is the function to be called to obtain the rvalue of the 
expression, which is of type ••• Any arguments are evaluated, in un­
specified order, and fresh copies of their values are made for each 
function call (thus the function may freely alter its arguments with 
limited repercussions). char or short expressions are widened to int 
and float to double; all arguments must be scalar. No checking is 
made for mismatched arguments or an incorrect number of arguments, 
but no harm is done providing the highest numbered argument actually 
used and all its predecessors do correspond properly. Note that a 
function declared as returning anything smaller than an int actually 
returns int, while a function returning float actually returns dou­
ble. 

a(iJ - is entirely equivalent to "*(a + i)", so the unary f*' and binary 
'+' should be examined for subtle implications. If a is of type ar­
ray of ••• and i is of integer type, however. the net effect is to 

I - 18 



Expressions - 2 -

deliver the ith element of a, having type ••• 

x.m - x must be an lvalue, which should be of type struct or 
taining a member named m (m can never be an expression). 
is that of the m member of x, with type specified by m. 

Expressions 

union con­
The val ue 

p->m - p must be 
struct or 
pression). 
pointed at 

coercible to a pointer, which should be a pOinter 
union containing a member named m (m can never be 
The value is that of the m member of the struct or 

to a 
an ex­

union 
by p, with type specified by m. 

UNARY OPERATORS 

Ip _ p must be of type pointer to The value is the value of the ob-
ject currently pOinted at by p, with type ••• 

&x - x must be an lvalue. The result is a pointer that points at x; the 
type is pointer to ••• for x of type 

+x - x must be of type i~teger or float. The result is an rvalue of the 
same value and type as x. 

-x - x must be of type integer or float. The result is an rvalue which is 
the negative of x and the same type as x. 

++x - x must be a scalar lvalue. x is incremented in place by one,' fol­
lowing the rules of addition explained below. The result is an 
rvalue having the new value and the· s.ame type as x. 

--x - x must be a scalar lvalue. x is decremented in place by one. fol­
lowing the rules of addition explained below. The result is an 
rvalue having the new value and the same type as x. 

x++ - x must be a scalar lvalue other than floating. x is incremented in 
place by one, following the rules of addition explained below. The 
result is an rvalue having the old value and the same type as x. 

x-- - x must be a scalar lvalue other than floating. x is decremented in 
place by one, following the rules of addition explained below. The 
result is an rvalue having the old value and the same type as x. 

-x - x must be an integer. The result is the ones complement of x, having 
the same type as x. 

!x - x must be scalar. The result is an integer 1 if x is zero; otherwise 
it is an integer O. 

«a-type» x - <a-type> is any scalar type declaration with the identifier 
omitted, e.g., (char I). The result is an rvalue obtained by coerc­
ing x to <a-type>. This operator is called a "cast" (see Declara­
tions). Note that a cast to any type smaller than int is taken as 
(int), while (float) is taken as (double). 

I - 19 



Expressions - 3 - Expressions 

sizeof x, sizeof ( <a-type> ) - The result is an integer rvalue equal to 
the size in bytes of x or the size in bytes of an object of type <a­
type>. 

BINARY OPERATORS 

There is an implicit "widening" order among the arithmetic types, to wit: 
char, unsigned char, short, bitfield (if int is equivalent to short), un­
signed short, long, bitfield (if int is equivalent to long), unsigned 
long, float, and double; double is the widest type. In general, the type 
of a binary operator is the wider of the types of its two operands, the 
narrower 0 operand being implicitly coerced to match the wider. If arith­
metic is not done in place, as in i =+ j, then integer arithmetic is al­
ways performed on operands coerced by widening to at least int, and float­
ing arithmetic is always performed on operands widened to double. 

Coercions are made up from a series of transformations: A char or short 
becomes an int of the same value. Sign extension occurs for all int types 
not declared as unsigned; the latter are widened by zero fill on the left. 
An int is Simply redefined as an unsigned, on twos complement machines at 
least, with no change in representation. Bitfields are unpacked into un-

o signed integers. An integer is converted to a double of the same numeri­
cal value, while a float is reformatted as a double of the same value, of­
ten simply b~ right fill with zeros. 

AsSignment may call for a narrowing coercion, which is performed by the 
following operations: A double is rounded to its nearest arithmetic 
equivalent in float format; conversion to integer involves discarding any 
fractional 0 part, then truncating as need be on the left without regard to 
overflow. Similarly. integers are converted to narrower types by left 
truncation. 

The binary operators are listed in descending order of binding, those with 
highest precedence first: 

x*y - Both operands must be arithmetic (integer or float). The result is 
the product of x and y, with the type of the wider. 

x/y - Both operan~s must be arithmetic. The result is the quotient .of x 
divided by y, with the type of the wider. Precedence is the same as 
for *. 

x~y - Both operands must be integer. The result is the remainder obtained 
by dividing x by y, with the type of the wider. Precedence is the 
same as for I. 

x+y - If either operand is of type pointer to ••• , the other operand must 
be of type integer, which is first multiplied by the size in bytes of 
the type ••• then added to the pOinter to produce a result of type 
pOinter. Otherwise both operands must be arithmetic; the result is 
the sum of x and y, with the type of the wider. 

x-y - If x is of type PQinter to ••• and y is of type integer, y is first 
multiplied by the size in bytes of the type ••• then subtracted frem 

I - 20 



Expressions - 4 - Expressions 

the pointer to produce a result of type pointer. Otherwise if x is 
of type pointer to ••. and y is of type pointer to •.• and both point 
to types of the same size in bytes, then x is subtracted from y and 
the result divided by the size in bytes of ••. to produce an integer 
result. Otherwise both x and y must be arithmetic; the result is y 
subtracted from x, with the type of the wider. Precedence is the 
same as for +. 

x«y - Both operands must be integer. The resul t is x left shifted y 
places, with the type of x. No promises are made if y is large (com­
pared to the number of bits in x) or negative. 

x»y -Both opera·nds must be integer. The result is x right shifted y 
places, with the type of x. If the result type is unsigned, no sign 
extension occurs on the shift; if it is Signed, sign extension does 
occur. No promises are made if y is large or negative. Precedence 
is the same as for «~I 

x<y, x<=y, x>y, x>=y - If either operand is of type pointer to ••• and the 
other is of type integer, the integer is scaled as for addition be­
fore the comparison is made. Otherwise if both operands are o~ type 
pointer to ••• the pointers are compared as unsigned integers. Oth­
erwise both x and y must be arithmetic, and the narrower is widened 
to match the type of the wider before the comparison is made. The 
result is an integer 1 if the relation obtains; otherwise it is an 
integer O. 

x==y, x!=y - The operands are coerced as for <, then compared for e.quality 
(==) or inequality (!=). The result is an integer 1 if the relation 
obtains; otherwise it is an integer O. 

x&y - Both operands must be integer. The result is the bitwise and of x 
and y, with the type of the wider. 

xAy - Both operands must be integer. The result is the bitwise exclusive 
or of x and y, with the type of the wider. 

xly - Both operands must be integer. The result is the bitwise inclusive 
or of x and y, with the type of the wider. 

x&&y - Both operands must be scalar. If x is zero, the result is taken as 
integer 0 without evaluating y. Otherwise the result is integer 1 
only if both x and yare nonzero. 

xl :y - Both operands must be scalar. If x is non-zero, the result is tak­
en as integer 1 without evaluating y. Otherwise the result is in­
teger 1 if either x or y is nonzero. 

t?x:y - If t, which must be scalar, is nonzero the result is x coerced to 
the final type; otherwise the result is y coerced to the final type; 
exactly one of the two operands x and y is evaluated. The final type 
is pointer to ••• if either operand is pointer to and the other 
is integer (the intege~ is not scaled). Otherwise if both operands 
are of type pointer to ••• the final type is the same as x. Other­
wise both operands must be arithmetic and the final type is the wider 

I - 21 



Expressions - 5 - Expressions 

of the two types. 

x=y - Both operands must be scalar, and x must be an lvalue. y is coerced 
to the type of x and assigned to x. If x is a pOinter to ••• , y may 
be a pointer to ••• or an integer (the integer is not scaled). Oth­
erwise both operands must be of arithmetic type. The result is an 
rvalue equal to the value just assigned, having the type of x. 

x*=y, x/=y, xS=y, x+=y, x-=y, x«=y, x»=y, x&=y, xA=y, x:=y - Each of the 
operations "x op= y" is equivalent to "x = x op y", except that x is 
evaluated only once and the type of "x op y" must be that of x, e.g., 
"x -= y" cannot be used if x and y are both pointers. The operators 
may also be written =op, for historical reasons, but in this form no 
whitespace may occur after the -. Precedence is the same as for -. 

x,y - Both operands must be scalar. x is evaluated first, then y. The 
result is the value and type of y. Note that commas in an argument 
list to a function call are taken as argument separators, not comma 
operators. Thus f(a,b,c) represents three arguments, while 
f(a,(b,c» represents two, the second one being c (after b has been 
evaluated) • 

I - 22 



Constants I. The C Language Constants 

NAME 
Constants - compile time arithmetic 

FUNCTION 
There are four contexts in a C program where expressions must be evaluat­
able at compile time: the expression part of a Hif preprocessor control 
line, the size of an array in a declaration, the width of a bitfield in a 
struct declaration, and the label of a case statemen~. In many other con­
texts the compiler endeavors to reduce expressions,.but this is not manda­
tory except in the interest of efficiency. 

The Hif statement evaluates expressions using long integer arithmetic. No 
assigment operators, casts, or sizeof operators may be used. The result 
is compared against zero. There is no guarantee that large numbers will 
be treated the same across systems, due to the variation in operand size, 
but this variation is expected to be minimal among longs. 

Bitfield widths, array sizes and case labels are also computed using long 
integer arithmetic, but only the integer part (if smaller than long) is 
retained. Moreover, the sizeof operator is permitted in such expressions. 

In all other expressions, the compiler applies a number of reduction rules 
to simplify expressions at compile time. These include the following (as­
sumed) identities: 

x • -- x 
x I 1 -- x 
x + 0 -- x 
x - 0 -- x 
x + y -- y + x 
(x + y) + z -- x + (y + 
x && true -- x 
x :: fal se = = x 
false && x == (nothing> 
true :: x == (nothing> 

z) 

(x + y) • z == x • z + y • z 

plus a number of others. In other words, certain subexpressions may gen­
erate no code at all, if the operation is patently redundant. This is 
worth keeping in mind when writing IIO drivers and other machine dependent 
routines that are expected to produce useful side effects not obvious to 
the compiler. 

The compiler does not perform common subexpression elimination, however, 
nor rearrange the order of computation between statements, so that a 
minimal determinism is assured. 

To ensure that compile time reductions occur, on the other hand, it is 
best to group constant terms within an expression so the compiler does not 
have to guess the proper rearrangement to bring constants together. 

I - 23 



Preprocessor I. The C Language Pr eprocesso r 

NAME 
Preprocessor - lines that begin with a 

FUNCTION 
A preprocessor is used by the C compiler to perform adefine, lIinclude, and 
other functions signalled by a control character, typically II, before ac­
tual compilation begins. A number of options can be specified at prepro­
cess time by the use of flags whose effects are sometimes mentioned below, 
but which are more fully explained on the manual page for the pp command, 
described elsewhere in this manual. 

Unless -0 is specified, 1* comments *1 are replaced by a Single space and 
any line that ends with a '\' is merged with its successor. If the first 
non-whitespace character on the resultant line matches either the prepro­
cessor control character Or the secondary preprocessor control character, 
the line is taken as a command to the preprocessor; all other lines are 
either skipped or expanded as described below. 

The following command lines are recognized by the preprocessor: 

"define <ident> <defn> - defines the identifier <ident> to be the defini­
tion string <defn> that occupies the remainder of the line. Identif­
iers consist of one or more letters, digits·, and underscores '_', 
where the first character is a non-digit; only the first eight.char­
acters are used for comparing identifiers. A sequence of zero or 
more formal parameters, separated by commas and enclosed in 
parentheses, may be specified, provided that no whitespace occurs 
between the identifier and the opening parenthesis. The definition 
string begins with the first non-whitespace character following the 
identifier or its parameter list, and ends with the last non­
whitespace character on the line. It may be empty. If an identifier 
is redefined t the new definition is pushed down on top of the older 
ones. 

Ilundef < ident> - po ps one level of definition for < ident> t if any. It" is 
not considered an error to under an undefined' identifier. 

'include <fname> - causes .the contents of the file specified by <fname> to 
be lexically included in place of the command line. A filename can 
be a simple identifier, or an arbitrary string inside (literal) 
quotes "ft, or an arbitrary string inside (literal) angle brackets <>. 
In the last case, a series of standard prefixes is prepended to the 
filename, normally just"" unless otherwise specified at invocation 
time, to locate the file in one of several places. Included files 
may contain further includes. 

lifdef <ident> - commences skipping lines if the identifier <ident> is not 
defined, ~lse processing proceeds normally for the range of control 
of the 'ifdef. The range of control is up to and including a balanc­
ing 'endif command. An 'else oommand encountered in the range of 
control of the /lifdef causes skipping to cease if it was in effect, 
or normal processing to change to skipping if skipping was not in ef­
fect. It is permissible to nest lIifdef and other nif groups; entire 
groups will be skipped if skipping is in effect at the start. 

I - 24 



Preprocessor - 2 - Preprocessor 

BUGS 

Preprocessor commands such as Udefine and Dinclude are not performed 
while skipping. 

Difndef <ident) - is the same as Uifdef, except that nifndef commences 
skipping if the identifier is defined. 

nif <expression) - is the same as nifdef, except that the rest of the line 
is first expanded, then evaluated as a constant expression; if the 
expression is zero then skipping commences. An expression may con­
tain parentheses, the unary operators +, -. !, and -, the binary 
ope r a to r s +, - , • t / t ~ , &. I tAt < < t », <, = =, ). < = , = > , ! = , & & 
and : I. and the ternary operator ? :. The definitions and bind ings 
of the operators match those for the C language, subject to the con­
straint that only integer constants may be used as operands. 

nline <num) <fname) - causes the line number used for diagnostic printouts 
to be set to num and the corresponding filename to be set to fname, 
if present. If no filename is specified, the filename used for diag­
nostic printouts is left unchanged. num must be a decimal integer. 

n - is taken as an innocuous line, if empty. Anything else not recogniz­
ably a command causes a diagnostic. 

Expansion of non-command lines causes each defined identifier to be re­
placed by its definition string, then rescanned for further expansion. If 
the definition has formal parameters, and the next token on the line is a 
left parenthesis, then a group of actual parameters, inside balanced 
parentheses, must occur on the 1 ine; formal par ameter-s with no correspond­
ing actual parameters are replaced by null .strings. 

Note that no attempt is made to add whitespace, before or after replace­
ment text, to avoid blurring of token boundaries, just as no parentheses 
are added to avoid bizarre arithmetic binding in expressions. No expan­
sion occurs within "" or tt strings. 

Circular definitions such as 

11define x x 

cause the preprocessor to blow up. 

I - 2S 



I 

Style I. The C Language Style 

NAME 
Style - rules for writing geod C code 

FUNCTION 
C is too expressive a language to be used without discipline; it can rival 
APL in opacity or PL/I in variety. The following practices and restraints 
are recommended for writing good C code: 

ORGANIZATION 

If a C program totals more than about five hundred lines of code, it 
should be split into files each no bigger than that. As much as possible, 
related declarations should be packaged together, with as many of these 
declared static (LOCAL) as possible. Common definitions and type declara­
tions should be grouped into one or more header files to be 'included as 
need be with each file. 

If any use is made of the standard library, its definitions should be in­
cluded as well, as in: 

/* GENERAL HEADER FOR FILE 
* copyright (c) 1981 by Whitesmlths, Ltd • . / 

'include <std.h> 
linclude "defs.h" 

'define MAIN 100 /* definitions local to this file ./ 

For the contents of <std.h>, including the definitions of LOCAL, etc., see 
std.h in Section II of this manual. 

Header files should be used to contain 'defines, typedefs, and declara­
tions that must be known to all source files making up a program. They 
should not include any initializers, as these would be repeated by multi­
ple inclusion. A good convention is to use all caps for I1define'd iden­
tifiers, as a warning to the reader that the language is being extended. 

It is also good practice to explicitly import all external references 
needed in each function body by the use of extern (IMPORT) declarations. 
This not only documents any pathological connections, but also permits 
functions to be moved freely among files without creating problems. 

Within a file, a good discipline is to put all data declarations first, 
then all function bodies in alphabetical order by function name. Data de­
clarations are typically clumped into logical groups, e.g., all flags, all 
file control, etc.; an explanat9ry comment should precede each group of 
data and each function body, with a single blank line preceding the com­
ment. If the body of a function is sufficiently complex, a good explana­
tory comment is the half dozen or so lines of pseudocode that best summar­
ize the algorithm. There is seldom a need for additional comments, but if 
they are used they are best placed to the right of the line being ex­
plained, separated by one tab stop from the end of the statement. 

I - 26 



Style - 2 - Style 

If the types provided in std.h are not sufficient to describe all the ob­
jects used in a program, then all other types needed should be provided by 
#defines or typedefs. All declarations should be typed, preferably with 
these defined types, to improve readability. 

RESTRICTIONS 

The goto statement should neverbe . .used. The only case that can be made 
for it is to implement a multi-level break, which is not provided in C; 
but this seldom proves to be a prudent thing to do in the long run. If a 
function has no goto statements, it has no need for labels. 

Other constructs to avoid are the do-while statement, which inevitably 
evolves into a safer while or for statement, and the continue statement, 
which is typically just a shoddy way of avoiding the proper use of else 
clauses inside loops. 

More than five levels of indenting (see FORMATTING ~elow) is a sure sign 
that a subfuction should be split out, as is the case with a function body 
that goes much over a page of listing or requires more than half a dozen 
local variables. Naturally there are exceptions to all these guidelines, 
but they are just that -- exceptions. 

The use of the quasi-Boolean operators &&, I I, !. etc. to produce integer 
ones and zeros should not be indulged to perform cute arithmetic, as in 

sum(i) = a(i] + b(i] + (10 <= sum(i - 1]); 

Such practices, if used, should be commented, as should most tricky bit 
manipulations using &, : and A. 

Elaborate expressions involving? and :, particula~ly multiple instances 
thereof, are often hard to read. ParentheSizing helps, but excessive use 
of parentheses is just as bad. 

If the relational operators> and >= are avoided, then compound tests can 
be made to read like intervals along the number axis, as in 

if ('0' <= c && c <= '9') 

which is demonstrably true when c is a digit. 

FORMATTING 

While it may seem a trivial matter .• the formatting of a C program can make 
all the. difference between correct comprehension and repeated error. To 
get maximum benefit from support tools such as editors and cross referenc­
ers, one should apply formatting rules rigorously. The following high­
handed dicta have proved their worth many times over: 

Each external declaration sho·uld begin (with optional storage class and 
mandatory type) at the beginning of a line, immediately following its ex-

I - 27 



Style - 3 - Style 

planatory comment. All defining material, data initializers or function 
"definitions, should be indented at least one tab stop, plus additional tab 
stops to reflect substructure. Tabs should be set uniformly every four to 
eight columns. 

A function body, for instance, always looks like: 

TYPE name( arg1, arg2, arg3) 
TYPE 1 arg1; 
TYPE2 arg2, arg3; 
{ 
<local declarations> 

<statements> 
} 

This example assumes that arg2 and arg3 have the same type. If no <local 
declarations> are present, there is no empty line before <statements>. 

<local declarations> consists of first extern (IMPORT), then register 
(FAST), then auto (no storage class specifier), then static (INTERN) de­
clarations; these are sorted alphabetically by type within storage class 
and alphabetically by name within type. Comma separated lists may be 
used, so long as there are no initializers; an initialized variable should 
stand alone with itsinitializer. FAST and auto storage should be ini­
tialized at declaration time only if the value is not to change. 

<statements> are formatted to emphasi~e control structure, according to 
the following basic patterns: 

I - 28 

if (test) 
<statement> 

if (test) 
{ 
<statement> 
<statement> 

} 
else 

<statement> 
if o( test 1) 

<statement> 
else if (test2) 

<statement> 
else if (test3) 

else 
<default statement> 

switch (value) 
{ 

case A: 
case B: 

<statement> 

break; 



Style 

case C: 
<statement> 

break; 
defaul t: 

<statement> 

} 
while (test) 

<statement> 
for (init; test; incr) 

<statement> 
for (; test; incr) 

<statement> 
for (init; ; ) 

<statement> 
FOREVER 

<statement> 
return (ex pr ) ; 

- 4 - Style 

Note that, with the explicit exception of the else-if chain, each subordi­
nate <statement> is indented one tab stop further to the right than its 
controlling statement. Without this rule, an else-if chain would be writ­
ten: 

if (test 1) 
<statement> 

else 
if (test 2) 

<statement> 
else 

if (test 3) 
<statement> 

else 
<default statement> 

Within statements, there should be no empty lines, nor any tabs or multi­
ple spaces imbedded in a line. Each keyword should be followed by a sin­
gle space, and each binary operator should have a single space on each 
side. No spaces should separate unary or addressing operators from their 
operands. A possible exception to the operator rule is a composite con­
stant, such as (GREENIBLUE). 

Parentheses should be used whenever there is a hint of ambiguity. Note in 
particular that & and I mix poorly with the relational operators, that the 
assigning operators are weaker than && and ::, and that « and »are im­
possible to guess right. The worst offender is 

if «a & 030) != 030) 

which does entirely the wrong thing if the parentheses are omitted. 

I - 29 



Style - 5 - Style 

If an expression is too long to fit on a line (of no more than 80 charac­
ters) it should be continued on the next line, indented one tab stop 
further than its start •. A good rule is to continue only inside 
parentheses, or with a trailing operator on the preceding line, so that 
displaced fragments are more certain to cause diagnostics. 

EXAMPLE 
A typical library function looks like this: 

I - 30 

ninclude <std.h> 

/* CONVERT LONG TO BUFFER 
* copyright (c) 1978 by Whitesmiths, Ltd • . / 

BYTES ltob(is, ln, base) 
FAST TEXT *is; 
LONG In; 
BYTES base; 
{ 
FAST TEXT ·s; 
ULONG lb; 

s = 1,,; 
if (In < a && base -- 0) 

{ 

In = -In; 
*S++ = '-'; 
} 

if (base == 0) 
base = 10; 

else if (base < 0) 
base = -oase; 

. 1b = base; 
if (In < a :: lb <= In) 

s =+ 1tob(s, In / lb, base); 
*s = 1n S 10 + '0'; 
if ('9' < ·s) 

*s =+ ('a' - ('9' + 1»; 
return (s - is + 1); 
} 



Portability I. The C Language Portability 

NAME 
Portability - writing portable code 

FUNCTION 
Writing highly portable C code is remarkably easy, most of the time. When 
machine dependencies creep in, however, they can be extremely difficult to 
dig out; and trying to keep them out of new code can often lead the pro­
grammer to paranoid extremes. Herewith a set of rules to follow that el­
iminate nearly all the ghastlies before they bite. 

First and foremost, use the portable library. Pretend the C Interface 
Manuals don't exist, and fallout of love with the endearing peculiarities 
of your current host system: It will change. 

If your program processes text files, assume that carriage returns, NULs, 
and other funny characters that don't print may disappear if written out 
and read back later. Assume that lseek will fail, even when it obviously 
should work on your system. Text lines may be as long as 512 characters, 
counting the terminating newline; but then they should never be longer 
than that. It is usually best not to depend on the presence of that 
trailing newline, if at all poSSible, in case the program is fed an unusu­
ally long line or a truncated last line. 

If your program tries to process STDIN, STDOUT, or STDERR as a binary 
file_, assume that the data will be corrupted; binary files must be opened 
by name on most systems. The third argument to open and create should al-

- ways be present and for binary files should always be non-zero. A third 
argument of 1 is always acceptable, and will not lead to storage ineffi­
ciencies in the target file. Sadly, the set of functions fopen, fcreate, 
getfiles, etc. were frozen before the text/binary dichotomy became ap­
parent, so they work smoothly only on text files; getbfiles is a later ad­
dition. Performing a binary open, followed by a finit with third argument 
READ or BWRITE, does make the buffered I/O mechanism safely available for 
sequential binary I/O, however. 

Many operating systems will pad a binary file- with NULs, which are hard to 
detect in the interface code. Consequently, any program that does binary 
reads must be prepared to deal with trailing NULs. Treating NUL as end of 
file is best, whenever possible. Another aspect of this problem is that 
the length of a binary file is poorly determined on many systems; conse­
quently the ability to lseek relative to the end of a file is no longer 
supported in the portable specification. 

The order in which bytes are stored for encoded arithmetic types varies 
allover the map. A long integer, '3210' for instance, can read out as 
'3210', '0123', or '2301' on three popular computers, where '0' is the 
least significant byte. The best rule is never to write a multi-byte ~a­
tum, unless it is an array of chars or unless it is clearly understood 
that the resultant file will always be read into an identically declared 
datum on the same machine. Look for sizeof operators not connected with 
alloc calls; they are a sign of potential trouble. !he library functions 
Istoi and itols are provided to ease transmission of tWO-byte integers 
among various implementations, while lstol and ltols provide a similar 
mechanism for four-byte quantities. 

I - 31 



Portability - 2 - Portability 

The portable speci'fication says filenames should be no more elaborate than 
"xxxxxx.yy". Believe it. Better yet, use uname to bui~d temp file names 
and avoid wiring any other file names into code. That's what the command 
line is for, and what getfiles is designed to help with. In the same 
vein, external identifiers should be chosen for the worst case, i.e., a 
system where only six characters in one case are retained. It is possible 
to have the compiler check the identifiers for con,formance to this or 
similar constraints. 

Declarations are designed to ease portability' among machines with dif­
ferent data formats, but they must be used, properly to do so. C is very 
tolerant of silly declarations for such things as: arguments to a func­
tion, values returned by a function, data held in registers, and casts. 
Since all of these items are essentially rvalues, they are never smaller 
than an int, or a double if floating pOint, no matter how they are de­
clared. The difference matters only when some Ivalueness creeps in, as 
when assigning to a register or argument, or taking the address of an ar­
gument. 

Never assume that assigning to one of these creatures, or applying a cast 
such as (char), will perform any sort of truncation; it won't, at least 
not below integer. And while it is nice to be able to declare an argument 
to be char for the sake of documenting its likely range, it is easy 'to 
forget when taking its address that what you want is a pointer to int, not 
a pointer to char. Storing a char in part of an int may work a little bit 
right on some computers, but it will surely cause trouble sooner or later. 
Look for address of (unary &) operators applied to arguments, and expect 
problems. 

The standard header provides a constellation of defined types to stylize 
proper usage. If yeu know how big you want a datum, regardless of what 
machine the program is run on, use the aliases for {char, short, long}: 
i.e., {TINY, COUNT, LONG} or the unsigned versions {UTINY, UCOUNT, ULONG}. 
If something must hold a pointer, declare it as such by all means; if it 
must' span most or all of the address space of the target machine, as a 
sUQscript for example, declare it as unsigned int, or BYTES. Remember 
that case switch values are ints; hence, only short values are portable 
for case labels. 

There are two other important malleable types besides BYTES. ARGINT is 
used when talking about an argument that is known to have been widened to 
an integer; it should serve as a red flag that something special is hap­
pening. TEXT, on the other hand, is used heavily to ensure efficient 
code; it is declared in the header as either char or unsigned char, 
depending on which is more easily handled by the target machine. When us­
ing TEXT variables, the programmer must be careful to mask possible sign 
extenSions, using BYTMASK, should other than ASCII characters or small po­
sitive integers be stored in them. This usage parallels the standard un­
certainty of char variables in other lmplementa~ions of C. 

To ensure maximum portability between 16 and 32-bit pOinter machines, the 
best mind set is that an int is not equal to a short and it is not equal 
to a long, but it can and will be equal to either some time or other. 
Avoid writing constants of fixed size, such as 0177777; instead write 
stretchable forms such as -0 for the above. If you know a constant must 

I - 32 



Portability - 3 - Portability 

be long on any machine, be sure to force it long; -0 can be different from 
-OLe 

To end on a positive note, there are some things you can depend on across 
implementations. There will always be at least three registers available, 
for instance. These can hold anything up to an unsigned int and almost 
invariably offer substantial code space and execution time benefits if 
used for the most important variables. Pointers benefit particularly from 
being placed in registers. And the assigning operators, such as =+ or +=, 
frequently lead to better code production. This is particularly true for 
the sma~ler data types such as char, since C is obliged to compute (c1 + 
c2) to int preCision, but may do (c1 =+ c2) as a char operation. And it 
is possible tc parameterize code efficiently by writing expressions like: 

if (sizeof (int) -- sizeof (short) && <short test> :: 
sizeof (int) -- sizeof (long) && <long test». 

Only <short test> or <long test> will actually be generated as runtime 
code; the rest is optimized out by the compiler. 

I - 33 



Differences I. The C Language Differences 

NAME 
Differences - comparative anatomy 

FUNCTION 
The definitive standard for C is Appendix A of Kernighan & Ritchie, as ex­
plained in the Introduction to this section. This implementation hews 
closely to that standard, save for minor changes in emphasis. There are 
also several available implementations of C that differ in more important 
respeots. Herewith a summary of the things to look out for. 

THE STANDARD 

o The major deviation is that this compiler requires each external de­
claration to be explicitly initialized exactly once among all the 
files that comprise a C program; the standard permits external de­
clarations to remain uninitialized. 

o This implementation includes the types unsigned (char short long], 
which are not yet in the standard. 

o Backslash is used to continue s~rings in the standard; its use is 
generalized here. 

o Character constants with more .than one character are defined· here, 
but not in the standard. 

o All struct and union tags share the name space of all members of 
struct and union, in the standard; each kind of tag has its own name 
space here. 

o This implementation permits, as an option, separate name spaces for 
each struct or union and much more rigorous checking of • and -> 
operators. 

o A union may be initialized in this implementation. 

o A preprocessor macro invocation, e.g., swap(a, b), must be written 
all on one line in this implementation. 

o The sizeof operator is explicitly disallowed in lif expressions, in 
this implementation. 

UN IX/V 6 

o Not implemented in the UNIX/V6 compiler are: bitrields, short in­
tegers, unsigned integers, long integers, cast~, unions, Dir, 'line, 
operators of the form op=. static external declaractions (local to a 
file), or register arguments. 

o UNIX/V6 initializes a structure as if it were an array of integerse 

I - 34 



Differences - 2 - Differences 

UNIX/V7 

o Bitfields may not be initialized, in at least one of the UNIX/V7 com­
pilers. 

o Casts of the form (char) or (short) may actually truncate a value; 
they have no effect on ints in this implementation. 

~ The address of an array cannot be taken. 

o Enumerated types, structure assignment, and functions returning 
structs have been added in UNIX/V7 C. 

SYSTEM DEPENDENCIES 

Since this fmplementation produces assembler code for the target system, 
there is some variation in naming caused by assembler limitations. There 
may be as few as six, but never more than eight significant characters in 
external identifiers; often only one case of letters is significant. For 
specific differences, see the C Interface Manual for the relevant target 
machine. 

I - 35 



Diagnostics I. The C Language Diagnostics 

NAME 
Diagnostics - compiler complaints 

FUNCTION 
The first two passes of the compiler produce all user diagnostics, the in­
itial (preprocessor) pass dealing with I control lines and lexical 
analysis, the next with everything else. If a pass produces diagnostics, 
later passes should not be run. Any compiler message containing an excla­
mation mark '!' or the wordWpanic" indicates problems with the compiler 
per se (they should "never happen") and hence should be reported to the 
maintainers. Here is a summary of the diagnostics that can be produced by 
erroneous C programs: 

PREPROCESSOR DIAGNOSTICS: 

bad #define - illegal define. 
bad #define arguments - cannot parse 'define line. 
bad #include - illegal include. 
bad .line - illegal 'line. 
bad 'undef - illegal undef. 
bad 'xxx - unrecognizable' control line. 
bad flag - see manual page for pp. 
bad macro arguments - cannot parse macro definitions. 
bad ·output (ile - cannot create output fl1e. 

·can't 'include xxx - cannot open file specified in 'include. 
can't open xxx - cannot open file specified as pp argument. 
illegal·'if expression 
illegal lif syntax 
illegal ? : in lif 
illegal character: x - not a recognizable token in C. 
illegal constant xxx - not a recognizable numeric form. 
illegal float constant 
illegal number in' if 
illegal operator in lif 
illegal unary op in lif 
misplaced 'xxx - preprocessor control line out of place. 
missing ) in 'if .. 
missing 'endif - unbalanced lif, #ifdef, or 'ifndef. 
missing */ - unbalanced /* comment. 
string too long - more than 128 characters. 
too many -d arguments - more than 10 (see manual page for pp). 
truncated line - more than 512 characters. 
unbalanced x - x is a delimiter: " ft, (, <, or {. 

PASS 1 DIAGNOSTICS: 

arithmetic type required - integer or floating. 
array size unknown 
bad (declaration) - stuff inside () unrecognizable. 
bad field width - negative or larger than word size. 
bad flag - see manual page for p1. 
bad output file - cannot create output file. 

I - 36 



Diagnostics 

cannot initialize 
constant required 

- 2 -

declaration too complex - more than 5 modifiers. 
external name conflict - when truncated for output 
function required - arguments declared, but no function body. 
function size undefined 
illegal & 
illegal =+ 
illegal assignment 
illegal bitfield 
illegal break 
illegal case 
illegal cast 
illegal comparison 
illegal continue 
illegal defaul t 
illegal double initializer 
illegal field 
illegal field initializer 
illegal indirection - unary "*" operator. 
illegal integer initializer 
illegal member 
illegal operand type 
illegal pointer initializer 
illegal return type 
illegal selection 
illegal storage class 
illegal structure reference 
illegal type "modifier 
illegal unsigned compare 
incomplete declaration 
integer type required 
lvalue required - see Expressions. 
missing argument 
missing expression 
missing goto label 
missing member name - identifier must follow • or ->. 
no structure definition 
string initializer too long 
structure size unknown 
unexpec ted EOF 
union size unknown 
useless expression - result unused, no side effect. 

Diagnostics 

I - 37 



Conventions 
std.h 
Cio 
FlO 
abs 
alloc 
amatch 
arctan 
bldks 
btod 
btoi 
btol 
btos 
buybuf 
cmpbuf 
cmpstr 
cos 
cpybuf 
cpystr 
decode 
decrypt 
doesc 
dtento 
dtoe 
dtof 
encode· 
encrypt 
enter 
errfmt 
error 
exp 
fclose 
fcreate 
fill 
finit 
fopen 
fread 
free 
frelst 
getbfiles 
getc 
getch 
getf 
getfiles 
getflags 
getfmt 
getl 
getlin 

II. Portable C Runtime Library 

TABLE OF CONTENTS 

using C with the standard libraries 
standard header file 
C input/output subroutines 
the file input/output structure 
find absolute value 
allocate space on the heap 
look for anchored match of regular expression 
arctangent 
build key schedule from key 
convert buffer to double 
convert buffer to integer 
convert buffer to long 
convert buffer to short integer 
allocate a cell and copy in text buffer 
compare two buffers for equality 
compare two strings for equality 
cosine in radians 
copy one buffer to another 
copy multiple strings 
convert arguments to text under format control 
decode encrypted block of text 
process character escape sequences 
multiply double by a power of ten 
convert double to buffer in exponential format 
convert double to buffer in fixed-point format 
convert text to arguments under format control 
encode block of text 
enter a control region 
format output to error file 
print error message and exit 
exponential 
close a file .controlled by FlO buffer 
create a file and initialize a control buffer 
propagate fill character throughout buffer 
initialize an FlO control buffer 
open a file and initialize a control buffer 
read until full count 
free space on the heap 
free a list of allocated cells 
collect files from command line 
get a character from input buffer 
get a character from input buffer stdin 
read formatted input 
collect text files from command line 
collect flags from command line 
format input from stdin 
get a text line into the input buffer 
get a text line from stdin 

II - i 



inbuf 
instr 
isalpha 
isdigit 
islower 
isupper 
iswhite 
itob 
itols 
leave 
lenstr 
ln 
lower 
lstoi 
lstol 
ltob 
ltols 
mapchar 
matoh 
max 
min 
mkord 
nalloc 
notbuf 
notstr 
ordbuf 
pathnm 
pattern 
prefix 
puto 
putoh 
putf 
putfmt 
putl 
putlin 
putstr 
remark 
sonbuf 
sonstr 
sin 
sort 
sqrt 
squeeze 
stdin 
stdout 
stob 
subbuf 
substr 
to lower 
toupper 
usage 

II - ii 

find first oocurrenoe in buffer of character in set 
find first occurrence in string of character 1n set 
test for alphabetic character 
test for digit 
test for lowercase oharacter 
test for uppercase character 
test for whitespaoe oharacter 
convert integer to text in buffer 

• convert integer to leading low-byte string 
leave a control region 
find length of a string 
natural logarithm 
convert characters in buffer to lowercase 
convert leading low-byte string to integer 
convert filesystem" date to long 
convert long to text in buffer 
convert long to filesystem date 
map single character to printable representation 
match a regular expression 
test for maximum 
test for minimum 
make an ordering function 
allocate space on the heap 
find first occurrence 1n buffer of character not 1n set 
find first occurrence 1n string of character not in set 
compare two NUL padded buffers for lexical order 
complete a pathname 
build a regular expresaion pattern 
test if one string 1s a prefix of the other 
put a qharacter to output buffer 
put a character to stdout buffer 
output arguments formatted 
format arguments to stdout 
put a text line from buffer 
put a text line to stdout 
copy multiple strings to file 
print non-fatal error message 
scan buffer for character 
soan strin~ for character 
sine in radians 
sort itema in memory 
real square root 
delete specified character from buffer 
the standard input control buffer 
the" standard output control buffer 
convert short to text in buffer 
find occurrence of substring in buffer 
find occurrence of substring 
convert character to lowercase if necessary 
convert character to uppercase if necessary 
output standard usage information 



Conventions II. Portable C Runtime Library Conventions 

NAME 
Conventions - using C with the standard libraries 

FUNCTION 
The current section, and the two that follow, document C callable func­
tions provided on all systems supported by Whitesmiths, Ltd. All library 
functions follow a set of uniform coding conventions, which form an impor­
tant part of the Whitesmiths C environment. These conventions should be 
mastered, the better to understand the descriptions following, to inter­
face properly to the library functions, and, more generally, to write C in 
a portable manner. 

Most standard conventions are supported at compile time by the inclusion 
of a standard header file, std.h, which is separately documented in this 
section. The remainder are mainly described in the subsections on Style 
arid Portability in Section I of this manual. Here, however, are a few 
general caveats: Every C program must contain a function named main, which 
is called at the outset and whose return signals the end of program execu­
tion; many library routines presume a conventional coding of main, docu­
mented in Section III of this manual. Several of the "functions" 
described in this section are actually macros defined in the standard 
header. They appear on ordinary manual pages because, aside from certain 
side effects for which warning is served, they look to the programmer much 
like subprograms. On the other hand, there' are a few secret library 
routines that are not documented anywhere in this manual; their names in­
variably begin with an underscore, to minimize accidental collisions with 
user-defined names. 

The rest of this document provides a blow-by-blow summary of the sections 
in a typical library function description. For clarity, it is presented 
as a psuedo-manual page, with the remarks on each section of a real page 
appearing under the n~rmal heading for that section. This page also 
points out where the conventions just mentioned are likely to rear their 
heads. The sections follow: 

NAME 
title - a ·name and concise description for the function 
(The function is called from C by the name given.) 

SYNOPSIS 
Here the returned type and argument list of the function are given 
precisely as they would appear in a C program defining the function. 
Almost always, the types of arguments and function come from the set 
of psuedo-types defined by the standard header. These psuedo-types 
are for the most part simple equivalents to types pre-defined by C, 
renamed to increase their mnemonic value, to isolate machine depen­
dencies, to promote disciplined coding practices, or (usually) to 
achieve some combination of all three. 

FUNCTION 
Generally, this section contains three parts, which mayor may not be 
easily distinguishable. An opening sentence or two states the utili­
ty of the function: usually what it does, not how it does it. Next 
comes a summary of each argument to the function, including its gen-

II - 1 



Conventions - 2 - Conventions 

eral effect on the operation of the function. Each argument is 
called by the same name as was given in the function synopsis. These 
names are usually mnemonic, to make citations distinct but still 
self-defining. Finally, an additional paragraph (or more) may pro­
vide more details of how the routine works, or how specific argument 
values affect it. This last oomponent, for better or worse, has 
traditionally been kept to a remarkable minimum. 

Note that heavy use is made of the ccnventional symbol NULL to refer 
to a zero-valued pointer, and of NUL to refer to the ASCII code zero, 
or "\0"; other symbols defined in the standard header may also crop 
up from time to time. Be prepared for them. 

Ranges of numbers are often represented as in mathematics: "(Ot~)" is 
the open interval "1,2,3", whereas "(O,~l" is the closed interval 
"0,1,2,3,4". Thus, "[0,4)" is not a typo, but shorthand for the 
half-open interval "0,1,2,3". 

RETURNS 
. This section describes the range of possible return values for the 

function, and under what ciroumstances one value will be returned 
rather than another. Any location in the calling program altere4 via 
pointer access from the function is also documented here, though usu­
ally it has already been mentioned in the preceding section. 

EXAMPLE 
Here are shown one or more typioal oalls to the documented funotion, 
and (sometimes) their results. The exampl·es are designed to be brief 
and evocative, or even useful as code fragments directly interpolated 
into user programs. Often, related functions have been given similar 
examples, either to emphasize the differences in usage between 
routines that perform similar tasks, or to show conventional patterns 
of use that apply across a family of routines. 

SEE ALSO 

BUGS 

, SEE ALSO 

This section lists related functions that could be profitably e"xam­
ined in conjunction with the current one. Functions documented in 
the same manual section are simply listed by name; functions docu­
mented elsewhere in the same manual are listed followed by the number 
of the section containing them. 

If a description seems a bit impenetrable after a first reading, by 
all means look at the other ones mentioned here. Likewise if the 
current function doesn't do exactly what is wanted; a different one 
may come closer. 

Known inconsistencies or shortcomings in the documented routine are 
mentioned here. Most often, these relate to insufficient checking of 
value sensitive user-supplied parameters; the deviance of a calling 
sequence from the ideal is also sometimes mentioned. Finally, notice 
is always given here if a "function" is in reality a macro. 

Portabili~y(I), Style(I), main(III), std.h 

II - 2 



std.h II. Portable C Runtime Library std.h 

NAME 
std.h - standard header file 

SYNOPSIS 
#include <std.h> 

FUNCTION 
All standard library functions callable from C follow a set of uniform 
conventions, many of which are supported at compile time by including a 
standard header file, <std.h>, at the top of each program. The file de­
fines a number of quasi-types and storage classes (in terms of the stan­
dard C types), various system parameters, the control structure used for 
buffered input/output and some useful macros. The macros in <std.h> are 
each described in separate manual pages since, aside from certain curious 
side effects for which warning is served, macros look to theC programmer 
much like subroutines. 

It is important to know these types and parameters, in order to understand 
manual pages for subroutines, to interface to the C library in a portable 
manner, and to code in good style. Herewith the principal definitions: 

Quasi-!1.E!! 
BITS - unsigned short, used as a set of 16 bits 
BOOL - int, tested only for non-zero, assigned· YES or NO 
BYTES - unsigned int, for address arithmetic, indexing 
COUNT - short, for counting [-32,768, 32,768) 
DOUBLE - double precision floating point 
FILE - short, used for file descriptors 
LONG - long integer 
METACH - short, EOF or (0, 256) 
TEOOL - char, or unsigned char, used like BOOL 
TEXT - char, or unsigned char, containing printable text 
TINY - char, for counting (-128, 128) 
UCOUNT - unsigned short, for counting [0, 65,536) 
ULONG - unsigned long 
UTINY - unsigned char, for counting [0, 256) 
VOID - int, for functions returning nothing 

Quasi storage classes 
FAST - register 
GLOBAL - synonym for extern, used outside functions 
IMPORT - synonym for extern, used inside functions 
INTERN - synonym for static, used inside fuctions 
LOCAL - synonym for static, used outside fuctions 

System Parameters 
BUFSIZE 512, the standard input/output buffer size 
BWRITE - mode -1, opening for buffered writes 
BYTMASK - 0377, mask for low byte of integer 
EOF - -'t end of file metacharacter 
FOREVER - for (; ; ) 
NO - BOOL ° 
NULL - pointer 0 
READ -·mode 0, opening for read access 

II - 3 



std.h - 2 -

STDERR - FILE 2. the standard error output 
STDIN - FILE 0, the standard input 
STDOUT - FILE 1, the standard output 
UPDATE - mode 2, opening for reading and writing 
WRITE - mode " opening for writing 
YES - BaaL 1 

Control Structure ~ Input/Output 
FlO - struct fio, for buffered input/output calls 

Macros 
(documented in manual pages) 

abs 

EXAMPLE 

BUGS. 

isalpha 
isdigit 
islower 
isupper 
iswhite 
max 
min 
to lower 
toupper 

/* THE MINIMUM PROGRAM 
-* copyright (0) 1981 by vatitesmiths, Ltd. 
*/ 

'include <std.h> 

/* put string to STDOUT 
"/ 

BOOL main() 
{ 
write(STDOUT,: "hello world\n", 12); 
return (YES); 
} 

std.h 

It is easy to forget about the macros, which cause bizarre diagnostics 
when "redeolared". 

II - 4 



Cio II. Portable C Runtime Library Cio 

NAME 
Cio - C input/output subroutines 

FUNCTION 
There are dozens of subroutines for performing input/output at various 
levels of sophistication. Herewith a brief guide to which groups best 
work together: 

The simplest approach to input/output is to use putfmt for writing format­
ted _ output to the standard output; the odd error message can be sent via 
errflnt. It is easy to obtain simple input from the arguments passed to 
main by using getflags; and success or failure can be reported on program 
termination by exit, or the return value from main. If input must be 
read, getfmt makes it easy to read and encode items from the standard in­
put under control of a format much like that use by the output routines. 

Character at a time, or line at a time, input/output is obtained by calls 
on getch, putch, getlin, and putlin. So long as output is text lines, 
i.e., strings of characters terminated by newlines, buffering is automat­
ic. These routines can be called interchangeably with getfmt and putfmt 
as well. 

BUGS 

The standard header file <std.h> includes a declaration for the standard 
input/output control buffer, type FlO; all of the above routines quietly 
make use of the control buffers input and output. obtained as needed" from 
the library. It is also possible to open and close files by name, and as­
sociate them with an FlO buffer. by calls to fopen, fcreate, and fclose. 
Once established, an FlO buffer can be used for formatted output by calls 
on getf and putf. Character or line input/output under control of arbi­
trary FlO buffers can be obtained by calling getc, putc, getl, and putl. 

At a lower level, there are creatures called "file descriptors", magiC 
numbers of type FILE (defined in the standard header) that are handed out 
by certain routines and used by others. Three file descriptors are prede­
fined: STDIN, STDOUT, and STDERR, which are typically terminal input, ter­
minal output and error output. Others can be obtained by opening fil~name 
arguments passed to main, using getfiles, then associating them with FlO 
buffers, using finite Or, file descriptors can be used directly with the 
lowest level input/output routines, described below. 

The routines open and create generate new file descriptors when they open 
files; close discredits a file descriptor by ending its associ'ation with a 
file. A family of temporary files can be constructed from the root name 
returned by uname. Files can be removed from the filesystem by calling 
remove. 

File descriptors are used by the lowest level routines read and write to 
move sequences of bytes between memory and files. Direct access is ob­
tained by using Iseek to read or write at random places in a file. Final­
ly, the function putstr can be used to concatenate a sequence of strings 
to a specified file, which is handy for putting simple error messages. 

A tutorial is sorely needed •. 

II - 5 



FlO II. Portable C Runtime Library FlO 

NAME 
FlO - the file input/output structure 

SYNOPSIS 
FlO stdin, stdout; 

FUNCTION 
FlO is the type defined in <std .h> for the control buffers used by many~f 
the C library input/output routines. Its elements are: 

FILE _fd - holds the file descriptor for the file with which input/output 
is performed. 

COUNT nleft - on input. tel13 how many characters are left undelivered in 
the buffer; on output •. tells how many characters have been placed in 
the buffer for output. Setting nleft to zero is sufficient to ini­
tialize an FlO buffer. Input routines set nleft to -1 on end of 
file, as an indication that no further reads should be attempted. 

COUNT mode - is set to SWRITE, READ. or WRITE to indicate the mode of 
operation. 

TEXT *_pnext - on input, points to the next character to be delivered; on 
output, used to chain FIO buffers for draining on exit. If (_nleft 
== 0) on input, -pnext is undefined. 

TEXT _buf(SUFSIZEJ - is the character buffer, where SUFSIZE is 512. 

SWRITE is a mode not recognized by the low level interface routines. It 
is used to indicate buffered writing, i.e., output only on buffer full or 
program exit. Normal output mode calls for draining the buffer whenever 
-an output sequence ends with a newline. 

All actua~ input using FIO control buffers is via getc or getl. All actu­
al output is via putc or putl. 

II - 6 



;' 

abs II. Portable C Runtime Library abs 

NAME 
abs - find absolute value 

SYNOPSIS 
abs(a) 

FUNCTION 
abs obtains the absolute value of its argument. Since abs is implemented 
as a C preprocessor macro, its argument can be any numerical type. 

RETURNS 
abs is a numerical rvalue of the form «a < 0) ? -a 
thesized. 

a), suitably paren-

EXAMPLE 

BUGS 

putfmt( "balance ~i~p\nlt, abs(bal), (bal < 0) ? nCR" nit); 

Because it is a macro, abs cannot be called from non-C programs, nor can 
its address be taken. An argument with side effects may be evaluated oth­
er than just once. 

II - 7 



alloe II. Portable C Runtime Library_ alloe 

N~E 

alloe - allocate space on the heap 

SYNOPSIS 
TEXT *alloc(nbytes, link) 

BYTES nbytes, link 

FUNCTION 
alloc allocates space on the heap for an item of size nbytes, then writes 
link in the zeroth integer location. The space allocated is guaranteed to 
be at least nbytes long, starting from the pointer returned, which pOinter 
is guaranteed to be on a proper storage boundary for anything. The heap 
is grown as necessary; if space is exhausted "out of heap space" is writ­
ten to STDERR and an error exit is taken. 

RETURNS 
If alloc returns, the pointer is guaranteed not to be NULL. 

EXAMPLE 
To build a stack: 

struct cell { 
struct cell *prev; 
••• rest of cell ••• 
1 *tcp; 

top = alloc(sizeof (*top), top); /* pushes a cell */ 

SEE ALSO 

BUGS 

buybuf, free, frelst, nalloc, sbreak(III) 

The size of the allocated cell is stored in the 
fore the usable part of ~he cell; hence it 
number is related to the actual cell size in 
fashion and should not be trusted. 

integer location right be- : 
is easily clobbered. This 
a most system dependent 

Attempting to allocate more ~han half of the address space at a time is 
flaky. 

II - 8 



amatch II. Portable C Runtime Library amatch 

NAME 
amatch - look for anchored match of regular expression 

SYNOPSIS 
BYTES amatch(buf, n, idx, pat, psubs) 

TEXT *buf; 
BYTES n, idx; 
TEXT *pat; 
struct { 

FUNCTION 

TEXT *mtext; 
BYTES mlen; 
} *psubs; 

amatch tests the n character buffer starting at buf(idx] for a match with 
the encoded pattern starting at pat; the match is constrained to match 
characters starting at buf(idx]. It is assumed that the pattern was built 
by the function pattern, whose manual page describes the notation for reg­
ular expressions accepted by these routines. 

If (psubs is not NULL) then every balanced pair \( ••• \) within the pattern 
will have the substring it matches recorded at psubs(i], where i counts up 

___ from one for the leftmost "\ (" in the pattern. psubs( i] .mtext points at 
the first character of the matching substring, and psubs(i] .mlen is its 
length. psubs(O] always records the full match. 

The pattern codes are a sequence of bytes with the values: 

value ---
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
19 

20 

name 

CCHAR 
ANY 
SBOL 
SEOL 
CLOSE 
CCL 
NCCL 
RANGE 
CCLEND 
PEND 
RPAR 

LEFT 

meaning 

literal character follows 
match anything but \n 
match beginning of line (0 width) 
match end of line, or just before ending \n 
match following pattern zero or more times 
character class follows (CCHARs or RANGEs) 
negated character class follows 
lower and uppper bound characters follow 
character class ends 
pattern end 
right p~renthesis "\)", 
followed by a one-byte order number 
left parenthesis "\(", 
followed by a one-byte order number 

These codes need be known -only if patterns are to be built by hand. 

RETURNS 
amatch returns the index of the rightmost character of the match, if suc­
cessful, else -1. The array at psubs. is also filled in, if present. 

EXAMPLE 
To match a variable pattern: 

II - 9 



amatch 
;' 

- 2 -

if (pattern(pbuf, av[1](0], &av[1](1]» 
while (n = getlin(buf, MAXBUF) 

if ((n = amatch(buf, n, 0, pbuf, NULL» != -1) 
putlin(buf, m); 

SEE ALSO 
match, pattern 

II - 10 

amatch 



arctan II. Portable C Runtime Library arctan 

NAME 
arctan - arctangent 

SYNOPSIS 
DOUBLE arctan(x) 

DOUBLE x; 

FUNCTION 
arctan computes the angle in radians whose tangent is x, to full double 
precision. It works by folding x into the interval (0, 1], then interpo­
lating from an eight entry table, using the sum of tangents formula and a 
fifth order telescoped Taylor series approximation. 

RETURNS 
arctan returns the nearest internal representation to arctan x, expressed 
as a double floating value in the interval (-pi/2, pi/2). 

EXAMPLE 
To find the phase angle of a vector: 

theta = arctan(y I x) * 180.0 I pi; 

II - 11 



bldks II. Portable C Runtime Library. 

NAME 
bldks - build key schedule from key 

SYNOPSIS 
TINY *bldks(ks, key) 

TINY ks[ 16 J (S J; 
TEXT keyCS]; 

FUNCTION 

bldks 

bldks builds the key schedule used by the Data Encryption Standard algo­
rithm for encrypting or decrypting data. All eight characters of key are 
used to form the key schedule, but the most significant bit of each byte 
is ignored. 

RETURNS 
bldks returns the address of ks, which contains the key schedule. 

EXAMPLE 
To decrypt a file given a key already .stored in passwd: 

bldksCks, passwd); 
while Cread(STDIN, buf, S) == S) 

write (STDOUT, decryptCbuf, ks), S); 

SEE ALSO 
decrypt, encrypt 

II - 12 



btod II. Portable C Runtime Library btod 

NAME 
btod - convert buffer to double 

SYNOPSIS 
BYTES btod(s, n, pdnum) 

TEXT *s; 
BYTES n; 
DOUBLE *pdnum; 

FUNCTION 
btod converts the n character string starting at s into a double, and 
stores it at pdnum. The string is taken as the text representation of a 
decimal number, with an optional fraction and exponent. Leading whi­
tespace "is skipped and an optional sign is permitted; conversion stops at 
the end of the buffer or on the first unrecognizable character. Accept­
able inputs match the pattern 

where d is any decimal digit and e is 'e' or 'E'. 

No checks are made against overflow, underflow, or completely silly char­
acter strings. 

RETURNS" 
btod returns the number of characters actually consumed. which is typical­
ly greater than zero but never larger than n. The converted number is 
stored at pdnum. 

EXAMPLE 
To convert a program's first command line argument into a double at dbl: 

if (2 < ac) 
btod(av(1], lenstr(av(1]), &dbl); 

else 
dbl = 0.0; 

SEE ALSO 

BUGS 

dtento, dtoe, dtof 

Nothing simple can be said about the properties of a number that has over­
flowed. 

II - 13 



btoi II. Portable C Runtime Library btoi 

NAME 
btoi - convert buffer to integer 

SYNOPSIS 
BYTES btoi(s, n, pinum, base) 

TEXT ·s; 
BYTES n, ·pinum: 
COUN:r base; 

FUNCTION 
btoi converts the n oharacter string starting at s into an integer, and 
stores it at pinum. The string is taken as the text representation of a 
number in the base specified. Leading whitespace is skipped and an op­
tional sign is permitted; if (base -- 16) a leading "Ox" or "OX" is 
skipped; oonversion stops at the end of the buffer or on the first un­
recognizable oharaoter. If the stop oharacter is '1' or 'L', it is 
skipped over. 

,Acoeptable oharacters are the decimal digits and letters, either upper or 
lower oase, where the letter 'a' (or 'A') has the value 10, as in the usu~ 
al representation for hexadecimal. .Letters with values greater than or 
equal to base are not aoceptable digits. Thus values of base from 1 to 36 
are meaningful. 

No ohecks are made· against overflow, unreasonable values of base, or. oom­
pletely silly oharacter strings. 

RETURNS 
btoi returns the number of oharacters actually oonsumed, which is typical­
ly greater than zero but never larger than n. The converted number is 
stored at pinlJlD. 

EXAMPLE 
BYTES num; 

if (btoi(buf, size, &num, 10) != size) 
putstr(STDERR, "not a decimal number\n", NULL); 

SEE ALSO 

BUGS 

btol, btcs, itob, ltob, stob 

Nothing simple can be said about the properties of a number that has over­
flowed. 

II - 14 



btol II. Portable C Runtime Library btol 

NAME 
btol - convert buffer to long 

SYNOPSIS 
BYTES btol(s, n, plnum, base) 

TEXT *s; 
BYTES n; 
LONG *plnum; 
COUNT base; 

FUNCTION 
btol converts the n character string starting at s into a long integer, 
and stores it at plnum. The string is taken as the text representation of 
a number in the base specified. Leading whitespace is skipped and an op­
tional sign is permitted; if (base -- 16) a leading "Ox" or "OX" is 
skipped; conversion stops at the end of the buffer or on the first un­
recognizable character. If the stop character is '1' or 'L' it is 
skipped. 

Acceptable characters are the decimal digits and letters, either upper or 
lowercase, where the letter 'a' (or 'A') has the value 10, as in the usual 
representation for hexadecimal. If a letter has a value greater than or 
equal. to base, it is not an acceptable digit. Thus values of base from 1 
to 36 are meaningful. 

No .checks are made against overflow, unreasonable values of base, or com­
pletely silly character strings. 

RETURNS 
btol returns the number of characters actually consumed, which is typical­
ly greater than zero but never larger than n. The converted number is 
stored at plnum. 

EXAMPLE 
LONG lnum; 

if (btol(buf, size, &lnum, 16) != size) 
putstr(STDERR, "not a hexadecimal number\n", NULL); 

SEE ALSO 

BUGS 

btoi, btos, itob, ltob, stob 

Nothing simple can be said about the properties of a number that has over­
flowed. 

II - 15 



btos II. Portable C Runtime Library btos 

NAME 
btos ~ convert buffer to short integer 

SYNOPSIS 
BYTES btos(s, n, pinum, base) 

TEXT ·s; 
BYTES n; 
COUNT ·pinum, base; 

FUNCTION 
btos converts the n character string starting at s into a short integer, 
and stores it at pinum. The string is taken as the text representation of 
a number to the base specified. Leading whitespace is skipped and an op­
tional sign is permitted; if (base == 16) a leading "Ox" or "OX" is 
skipped; conversion stops at the end of the buffer or on the first un­
recognizable character. If the stop character is '1' or 'L', it is 
skipped over. 

Acceptable characters are the decimal digits and letters., either upper or 
lower case, where the letter 'a' (or 'A') has the value 10, as in the usu­
al representation for hexadecimal. Letters with values greater than or 
equal to base are not acceptable digit~. Thus values of base from 1 to 36 
are meaningful. 

No checks are made against overflow, unreasonable values of base, or com­
pletely silly character strings. 

RETURNS 
btos returns the number of characters actually consumed, which is typical­
ly greater than zero but never larger than n. The converted number is 
stored at pinlJlll. 

EXAMPLE 
COUNT snum; 

if (btos(buf,. size, &snum, 8) != size) 
putstr(STDERR, "not an octal number\n", NULL); 

SEE. ALSO 

BUGS 

btoi, btol, i tob, 1 tab 

Nothing simple can be said about the properties of a number that has over­
flowed. 

II - 16 



buybuf II. Portable C Runtime Library 

NAME 
buybuf - allocate a cell and copy in text buffer 

SYNOPSIS 
TEXT *buybufCs, n) 

TEXT *s; 
BYTES n; 

FUNCTION 

buybuf 

buybuf allocates a cell of size n on the heap by calling alloc, then 
copies the n characters starting at s into it. If the heap is full, bu­
ybuf is terminated by alloe. 

RETURNS 
The value returned is the pointer to the allocated cell. 

EXAMPLE 
To read a text file into memory: 

struet { 
TEXT ·text; 
BYTES size; 
} lines[]; 

for Cp = lines; 0 < Cn = getlin(buf, BUFSIZE); ++p) 
{ 

p->text = buybufCbuf, n); 
p->size = n; 
} 

SEE ALSO 
alloe, free, nalloc 

BUGS 
There should be a way of dealing with heap overflow in buybuf. 

II - 17 



cmpbuf II. Portable C Runtime Library 

NAME 
cmpbuf - compare two buffers for equality 

SYNOPSIS 
BOOL cmpbufCs1, s2, n) 

TEXT ·s1, ·s2; 
BYTES n; 

FUNCTION 

cmpbuf 

cmpbuf compares two text buffers, character by character, for equality. 
The first buffer starts at s1, the second at s2; both are n characters 
long. s1 and s2 are said to be equal if the n characters in s1 and s2 are 
identical. 

RETURNS 
The value returned is YES if the buffers are equal, else NO. 

EXAMPLE I 

if C cmpbufC name , "include", 7» 
doinclude() ; 

SEE ALSO 
cmpstr, prefix 

II - 18 



cmpstr II. Portable C Runtime Library 

NAME 
cmpstr - compare two strings for equality 

SYNOPSIS 
BOOL cmpstr(s1, s2) 

TEXT *s1, *s2; 

FUNCTION 

cmpstr 

cmpstr compares two strings, character by character, for equality. The 
first string starts at s1 and is terminated by "a NUL '\0'; the second is 
likewise described by s2. The strings must match through and including 
their terminating NUL characters. 

RETURNS 
The value returned is YES if the strings are equal, else NO. 

EXAMPLE 
if (cmpstr(name, "include"» 

doinclude() ; 

SEE ALSO 
cmpbuf, prefix 

II - 19 



cos II. Portable C Runtime Library cos 

NAME 
cos - cosine in radians 

SYNOPSIS 
DOUBLE cos( x) 

DOUBLE x; 

FUNCTION 
cos computes the cosine of x, expressed in radians, to full double preci­
sion. It works by scaling x in quadrants, then computing the appropriate 
sin or cos of an angle in the first half quadrant, using a sixth order 
telescoped Taylor series approximation. If the magnitude of x is too 
large to contain a fractional quadrant part, the value of cos is 1. 

RETURNS 
cos returns the nearest internal representation to cos x, expressed as a 
double floating value. 

EXAMPLE 
To rotate a vector through the angle theta: 

xnew = xold • cos(theta) - yold • sin(theta); 
ynew: xold • sin(theta) + yold • cos(theta); 

SEE ALSO 
sin 

II - 20 



/ 

cpybuf II. Portable C Runtime Library 

NAME 
cpybuf - copy one buffer to another 

SYNOPSIS 
BYTES cpybuf(s1, s2, n) 

TEXT * s 1, * s2 ; 
BYTES n; 

FUNCTION 

cpybuf 

cpybuf copies the first n characters starting at location s2 into the 
buffer beginning at s1. 

RETURNS 
The value returned is n, the number of characters copied. 

EXAMPLE 
To place "first string, second string" in buf[]: 

n = cpybufCbuf, "first string", 12); 
cpybufCbuf + n, ", second string", 15); 

SEE ALSO 
cpystr 

II - 21 



cpystr II. Portable C Runtime Library cpystr 

N~E 

cpystr - copy multiple strings 

SYNOPSIS 
TEXT *cpystr(ds. arg1. arg2, arg3, arg4, 

TEXT *ds, *arg1, *arg2, *arg3, *arg4. 

FUNCTION 

.. · , . ... , NULL) 

cpystr concatenates a series of strings into the destination string ds. 
Each string begins at argx and is terminated by a NUL '\0'. The first 
character of arg2 is placed just after the last character (before the NUL) 
copied from arg1, etc. The series of string arguments is terminated by a 
NUL pOinter argument. A NUL is appended to the final destination string 
to terminate it properly. 

RETURNS 
The value returned is a pointer to the terminating NUL in the destination 
string. 

EXAMPLE 

BUGS 

To concatenate string ss1 with" middle ". ss2, and" end." into but: 

cpystr(but, ss1, " middle ", ss2, " end.", NULL); 

There is no way to specify the size of the destination area, to prevent 
storage overwrites. Forgetting the terminating NULL pOinter is usually 
disastrous. 

II - 22 



decode II. Portable C Runtime Library decode 

NAME 
decode - convert arguments to text under format control 

SYNOPSIS 
BYTES decode( s tn, fmt, arg1, arg2, ••• ) 

TEXT *s; 
BYTES n; 
TEXT *fmt; 

FUNCTION 
decode writes characters to the n character buffer starting at s exactly 
as if the contents were written to a file by putf, using the format string 
flnt and the zero or more arguments arg1, arg2, It is not considered 
an error to generate more characters than will actually fit in the buffer; 
excess characters are simplr discarded. 

RETURNS 
decode returns the number of characters actually written in the buffer, a 
number between 0 and n, inclusive. 

EXAMPLE 
To convert the integer symno to a symbolic name: 

decode(&name, 6, "L~+05i", symno); 

SEE ALSO 
dtoe, dtof, encode, putf, putfmt 

II - 23 



decrypt II~ Portable C Runtime Library decrypt 

NAME 
decrypt - decode encrypted block of text 

SYNOPSIS 
TEXT *decrypt(data, ks) 

TEXT data[8]; 
TINY ks [ 1 6 ] (81 ; 

FUNCTION 
decrypt converts the eight oharacters in the buffer data- to decrypted form 
in place, using the key schedule constructed in ks by the function bldks. 
The Data Encryption Standard algorithm is used, taking bit 1 as the least 
significant bit of data[O] and bit 64 as the most significant ,bit of da­
ta(7] • 

RETURNS 
decrypt returns a pointer to the start of data, which contains the de­
orypted text. 

EXAMPLE 
To decrypt a file given a key already stored in passwd: 

bldks(ks, passwd); 
while (read(STDIN, buf, 8) :: 8) 

write(STDOUT, decrypt(buf, k~), 8); 

SEE ALSO 
bldks, encrypt 

II - 2~ 



doesc II. Portable C Runtime Library doesc 

NAME 
doesc - process character escape sequences 

SYNOPSIS 
COUNT doesc(pp, magic) 

TEXT **pp, *magic; 

FUNCTION 
doesc encodes the sequence of characters beginning at *pp, on the assump­
tion that (*pp)[O] is an escape character, following the same escape con­
ventions as the C compiler. It also updates the pOinter' at pp to point 
past the (variable length) escape sequence. 

If «*pp)[1] is NUL) the code value is (*pp)[OJ, i.e., the escape charac­
ter proper; this is the only escape sequence of length one. If «*pp)[1] 
is a digit) then up to three digits are taken as the octal value of the 
code. If «*pp)[1] is in the sequence "bfnrtv", in either case) the code 
is the corresponding member of the sequence (backspace, formfeed, newline, 
carriage return, horizontal tab, vertical tab). If (magic is not NULL) 
and (*pp)[1] is the ith character of the NUL terminated string at magic, 
the code is (-1 - i). Otherwise the code is (*pp)(1]. 

In all cases, *pp is updated to point at the last character consumed. 

RETURNS 
doesc returns the code obtained,' and updates the pOinter *pp as necessary 
to point past the escape sequence. 

EXAMPLE 
for (s = buf; *s; ++s) 

SEE ALSO 
mapchar 

*t++ = (*s == '\\') ? doesc(&s, NULL) *s++; 

II - 25 



dtento " II. Portable C Runtime Library 

NAME 
dt"ento - mul tiply double by a power of ten 

SYNOPSIS 
DOUBLE dtento(d, exp) 

DOUBLE d; 
COUNT exp; 

FUNCTION 

dtento 

dtento multiplies the double d by 10**exp. No aheck 1s made for overflow 
or underfiow. 

RETURNS 
dtento returns d * 10**exp as a double. 

EXAMPLE 
To combine a fraction string and an exponent string: 

btoi(fr, nrr, &1ntpart, 10}; 
btoi(sexp, nsexp, &exp, 10); 
dbl = dtento«DOUBLE)intpart, exp - nrr); 

SEE ALSO 

BUGS 

btod, dtoe, dtof 

If the exponent is large 1n magnitude, dtento can loop for quite a long 
time. No special aonsideration is given (d == 0.0). 

II - 26 



dtoe II. Portable C Runtime Library dtoe 

NAME 
dtoe convert double to buffer in exponential format 

SYNOPSIS 
BYTES dtoe(s, dbl, p, q) 

TEXT *s; 
DOUBLE dbl; 
BYTES p, q; 

FUNCTION 
dtoe converts the double number dbl to a text representation in the buffer 
starting at s, having the format: 

[-]d*.d*e{+l-}d* 

where d is a decimal digit. p specifies the number of digits to the left 
of the decimal point, and q the number to the right. There are either two 
or three digits in the exponent, depending upon the target machine. 

RETURNS 
The value returned is the number of characters used to represent the dou­
ble number. 

EXAMPLE 
-putfmt("area = ~b\n", buf, dtoe(buf, area, 1,5»; 

SEE ALSO 
dtof 

II - 27 



dtof II. Portable C Runtime Library 

NAME 
dtof - convert double to buffer in fixed-point format 

SYNOPSIS 
BYTES dtof(s, dbl,_p, q) 

TEXT *s; 
DOUBLE dbl; 
BYTES p, q; 

FUNCTION 

dtof 

dtof converts the double number dbl to a text representation in the buffer 
starting at 5, having the format: 

C-ld*.d* 

where d is a decimal digit. p specifies the maximum number of" digits to 
the left of the decimal point, and q the actual number to the right. 

RETURNS 
The value returned is the number of" characters used to represent the dou­
ble number. 

EXAMPLE 
put~t(Warea = Sb\nW, but, dtof"Cbuf, area, 10, 5); 

SEE ALSO 
dtoe 

II - 28 

,/ 



encode II. Portable C Runtime Library encode 

NAME 
encode.- convert text to arguments under format control 

SYNOPSIS 
COUNT encode(s, n, fmt, parg1, parg2, ••• ) 

TEXT *s; 
BYTES n; 
TEXT *fmt; 

FUNCTION 
encode converts the contents of the n character buffer starting at s; us­
ing the format string at fmt and the argument pOinters pargx, exactly as 
if the contents were read from a file by getf. It is particularly useful 
when multiple attempts must be made to read an input line. 

RETURNS 
encode returns the number of ar~uments successfully converted, or EOF (-1) 
if end of buffer is encountered before any are converted. 

EXAMPLE 
while (0 < (n = getlin(buf, BUFSIZE») 

SEE ALSO 

if (encode(buf, n, "x = %i", &x) <= 0 && 
encode(buf, n, "y = %i", &y) <= 0) 
err~t("unknown parameter %b\n", buf, n); 

btod, decode, getf, getfmt 

II - 29 



encrypt II. Portable C Runtime Library 

NAME 
encrypt - encode block of text 

SYNOPSIS 
TEXT *encrypt(data, ks) 

TEXT data(S]; 
TINY ks [ 16] (8]: 

FUNCTION 

encrypt 

encrypt converts the eight characters in the buffer data from encrypted 
form in place, using the key schedule constructed in ks by the function 
bldks. The Data Encryption Standard algorithm is used, taking bit as 
the least significant bit of data(O] and bit 64 as the most significant 
bit of data(7 J. ' 

RETURNS 
encrypt returns a pointer to the start of data, which contains the en­
crypted text. 

EXAMPLE 
To encrypt a file given a key already stored in passwd: 

bldks( ks, passwd); __ _ 
while (0 < (n = read(STDIN, buf, 8») 

{ 

SEE ALSO 

while (n < 8) 
buf(n++l = '\0'; 

write(STDOUT, encrypt(buf, ks), 8); 
} 

bldks, decrypt 

II - 30 



enter II. Portable C Runtime Library enter 

NAME 
enter - enter a control region 

SYNOPSIS 
BYTES enter(pfn, arg) 

BYTES (*pfn)(); 
BYTES arg; 

FUNCTION 
enter establishes a new "control region". i.e., a function invocation that 
can be terminated early by a leave call, then performs the sequence 

leave«*pfn)(arg»; 

i.e., the function pointed at by pfn is called with the specified arg; its 
return value is used as the argument of a call to leave. The control re­
gion may be terminated before (*pfn) returns by a call to leave in (*pfn) 
or in any of its dynamic descendants. In any case, the first leave c2ll 
encountered disestablishes the new control region and causes enter to re­
turn with the value specified by the argument to that call to leave. 

Control regions may be nested to any depth. 

RETURNS 
enter returns the value of the argument to the first leave call encoun­
tered, or the value of the function at pfn if no leave was executed. 

EXAMPLE 
To restart a function after each error message: 

while (s = enter(&func, file» 
putstr(STDERR, s, "\n", NULL); 

so tHat one can write in, say, one of func's dynamic descendants: 

if (counterr) 
leave("missing parameter"); 

SEE ALSO 
_raise(IV), _when(IV), leave 

There is no way to pass to the function (*pfn) more than one argument. 

II - 31 



errfmt II. Portable C Runtime Library 

NAME 
errfmt - format output to error file 

SYNOPSIS 
VOID errfmt(fmt, arg', arg2, ••• ) 

TEXT *fmt; 

FUNCTION 

errfrnt 

errfmt performs formatted ··output to STDERR. in muoh the same way as putf. 
Output is performed by multiple calls directly to write, which may be 
inefficient for large volumes of output but is least likely to lose diag­
nostics when a program malfunctions. 

RETURNS 
Nothing. An error exit occurs it any writes fail. 

EXAMPLE 
errfmt( "can.' t open file Sp\n". fname); 

SEE ALSO 
putt. putrmt 

II - 32 



error II. Portable C Runtime Library 

NAME 
error - print error message and exit 

SYNOPSIS 
VOID error (s1, s2) 

TEXT *s 1, s2; 

FUNCTION 

error 

error prints an error message to STDERR, consisting of the program name 
pname. a colon and space, the strings at s1 and s2, and a newline. It 

then takes an error exit. Either s1 or s2 may be NULL. 

RETURNS 
error never returns to its caller. 

EXAMPLE 
if «fd = open(file, READ, 0)) < 0) 

error("can't open ". file); 

SEE ALSO 
_pname(III). exit(III) 

II - 33 



I 

exp II. Portable C Runtime Library exp 

NAME 
exp - exponential 

SYNOPSIS 
DOUBLE exp( x) 

DOUBLE x; 

FUNCTION 
exp computes the exponential of x to full double precision. It works by 
expressing x/ln 2 as an integer plus a fraction in the interval (-1/2, 
1/2]. The exponential of the fraction is approximated by a ratio of two 
seventh order polynomials. 

RETURNS 
exp returns the nearest internal representation to exp x, expressed as a 
double floating value. If the result is too large to be properly 
represented, a range error condition is raised; if that is inhibited, the 
largest representable value is returned. 

EXAMPLE 
sinh(x) = (exp(x) - exp(-x» 1 2.0; 

SEE ALSO 
_range{IV), ln 

II - 3" 



fclose II. Portable C Runtime Library fclose 

NAME 
fclose - close a file controlled by FlO buffer 

SYNOPSIS 
FIO *fclose(pfio) 

FlO *pfio; 

FUNCTION 
fclose closes the file under control of the FlO buffer at pfio. If the 
control buffer was initialized with a mode of WRITE or BWRITE, any remain­
ing output is drained before closing, and the control buffer is removed 
from the list of buffers to be drained on program exit. 

RETURNS 
fclose returns pfio if the file was successfully closed, else NULL. An 
error exit is taken if (pfio == NULL). 

SEE ALSO 
fcreate, finit, fopen 

II - 35 



fcreate II. Portable C Runtime Library 

NAME 
(create - create a file and initialize a control buffer 

SYNOPSIS 
FlO *fcreate(pfio. fname, mode) 

FlO *·rcreate; 
TEX'! ·~fname ; 
COUNT mode; 

FUNCTION 

fcreate 

fcreate creates a file with name fname and specified mode, and if success­
ful initializes the control buffer at pfio for proper operation with the 
f11e. mcde shculd have one of the values BWRIT!. READ. or WRnE. 

RETURNS -
foreate returns piio. if successful, else NULL. An error exit is taken if 
(piio == NULI.). 

EXAMPLE 
1f (!fcreate(&fl0, "rile", READ)} 

errfmt("oan't oreate fl1e\n"); 

SEE ALSO 
create{III}, fclose, f1nit, fopen 

II - 36 



fill II. Portable C Runtime Library 

NAME 
fill - propagate fill character throughout buffer 

SYNOPSIS 
BYTES fill(s, n, c) 

TEXT *s, c; 
BYTES n; 

FUNCTION 

fill 

fill floods the n-character buffer starting at s with fill character c. 

RETURNS 
fill returns n. 

EXAMPLE 
To write a 512-byte buffer of NULs: 

write(fd, buf, fill(buf, BUFSIZE, '\0'»; 

SEE ALSO 
squeeze 

II - 37 



finit II. Portable C Runtime Library finit 

NAME 
finit - initialize an FIO control buffer 

SYNOPSIS 
FIO *finit(pfio, fd, mode) 

FIO *pfio; 
FILE fd; 
COUNT mode; 

FUNCTION 
finit initializes the FIO oontrol buffer at pfio for proper operation with 
the file speoified by fd, in the mode specified by mode. If (mode == 
aWRITE) the oontrol buffer is set up for buffered writes, to be drained 
only when the buffer is full or the program exits. If (mode == READ) the 
oontrol buffer is set up for reading. Otherwise (mode == WRITE) of neces­
sity and the control buffer is set up for writing; writes will be buffered 
as for aWRITE only if lseek oalls are acceptable with the specified fd, an 
indioation that the output is a file and not an interactive devioe or a 
pipeline. Unbuffered output is drained whenever a segment of output ends 
with a newline character, or on program termination. 

RETURNS 
finit returns pfio. An error exit occurs if (pfio == NULL). 

EXAMPLE -
To adapt stdout for most effective butfering strategy: 

finit(&stdout, STDOUT, WRITE); 

SEE ALSO 
folose, fcreate, fopen 

BUGS 
No check is made for (mode -- UPDATE), whioh mayor may not work satisfac-
torily. 

II - 38 

;' 



fopen II. Portable C Runtime Library 

NAME 
fopen - open a file and initialize a control buffer 

SYNOPSIS 
FIO *fopen(pfio, fname, mode) 

FIO *fopen; 
TEXT *fname; 
COUNT mode; 

FUNCTION 

fopen 

fopen opens a file with nam~ fname and specified mode, and if successful 
initializes the control buffer at pfio for proper operation with the file. 
mode should, have one of the values BWRITE, READ, or WRITE. 

RETURNS 
fopen returns pfio, if successful, else NULL. An error exit is taken if 
(pfio == NULL). 

EXAMPLE 
if (!fopen(&fio, file, READ» 

errfmt("can't open Sp\n" , file); 

SEE ALSO 
fclose, fcreate, finit, open(III) 

II - 39 



fread II. Portable C Runtime Library 

NAME 
fread - read until full count 

SYNOPSIS 
COUNT fread(fd, buf, size) 

FILE fd; 
TEXT *buf; 
BYTES size; 

FUNCTION 

fread 

fread reads up to size characters from the file specified by fd into the 
buffer starting at buf. It does so" by making repeated calls to read until 
an end of file is encountered or until size oharacters have been read. 
Thus, fread should be used whenever an entire record must be read at once, 
since read reserves the right to return a short count at all times. 

RETURNS 
Unless end of file is encountered, fr,ead always returns size; otherwise 
the value returned is between 0 and size, inclusive. 

EXAMPLE 
To oopy a file in integral records: 

while (fread(STDIN, buf, RECSIZE) -- RECSIZE) 
write(STDOUT, buff RECSIZE); 

SEE ALSO 
read(III) 

II - 40 



free II. Portable C Runtime Library free 

NAME 
free - free space on the heap 

SYNOPSIS 
TEXT *free(pcell, link) 

TEXT *peell; 
TEXT *link; 

FUNCTION 
free returns an allocated cell to the heap for subsequent reuse, then re­
turns link to the caller. The cell pointer pcell must have been obtained 
by an earlier alloc call; otherwise the heap wi~l become corrupted. free 
tries to defend itself as best as it can against subversive calls and will 
take an error exit if it does not like the looks of what it is given. The 
message "bad free call" is written to STDERR if free is given the address 
of a peell that has never been allocated or if for some reason the size 
field has been corrupted. "freeing a free cell" is d ispl ayed. when free is 
called with an address within the free chain. A NULL pcell is explicitly 
allowed, however, and is ignored. 

RETURNS 
If free returns, its value is guaranteed to be link, which is otherwise 
unused by free. 

EXAMPLE -
To pop a stack item: 

struct cell { 
struct cell ·prev; 
••• rest of cell ••• 
} *top; 

top = free(top, top->prev); /* pops a cell *1 

SEE ALSO 

BUGS 

alloc, frelst, nalloc, sbreak(III) 

The size of the allocated cell is stored in the integer location right be­
fore the usable part of the eell; hence it is easily clobbered. No effort 
is made to lower the system break when storage is freed, so it is quite 
possible that earlier activity on the heap may cause later activity on the 
stack to come to grief, at least on some systems. 

II - 41 



frelst II. Portable C Runtime Library frelst 

NAME 
frelst - free a list of allocated cells 

SYNOPSIS 
struct list *frelst(plist, pstop) 

struct list {struct list *next; ••• l *plist, *pstop; 

FUNCTION 
frelst walks a linked list that has been built with calls to alloc, free­
ing each cellon the list. Any types of cells can occur on the list, in 
any combination, so long as the first entry in each structure is a pointer 
used to link to the next cell. A NULL next pointer or one equal to pstop 
terminates the list. 

RETURNS 
frelst returns the pointer· that terminates the list, e.ither NULL or pstop. 

EXAMPLE 
struct list { 

struct list *next; 
... l ·list; 

list = frelst(list, NULL); 

SEE ALSO· 
alloc, free 

BUGS 
If a list is freed that was not made from calls on alloe, all hell can 
break loose. 

II - 42 



getbfiles II. Portable C Runtime Library getbfiles 

NAME 
getbfiles - collect files from command line 

SYNOPSIS 
FILE getbfiles(pac, pay, dfd, efd, rsize) 

BYTES *pac, rsize; 
TEXT ***pav; 
FILE dfd, efd; 

FUNCTION 
getbfiles examines the file arguments passed to a command and opens files 
as needed for reading. The arguments to examine are specified by the 
count pointed at by pac and by the array of text pointers pointed at by 
pay; it is assumed that the command name and any flags have been skipped, 
for instance by calling getflags. If there are no arguments left on the 
first call to getbfiles (*pac == 0), the default file descriptor dfd is 
returned and all subsequent calls will fail. Otherwise each call to 
getbfiles will inspect the next argument in sequence. 

If a filename matches the string "-", dfd is returned. Otherwise an at­
tempt is made to open the file for reading with the record size specified 
by rsize. If the (ile is to contain arbitrary binary data, as opposed to 
printable ASCII text, rsize should be non-zero. On success the file 
descriptor of the opened file is returned. If the open fails, efd is re­
turned instead. After the last filename is processed, all calls to 
getbfiles will fail. It is up to the calling program to close any files· 
opened by getbfiles. 

RETURNS 
getbfiles returns either a file descriptor obtained as described above, or 
the failure code -1; the first call to getbfiles will never return 
failure. *pac and *pav are updated on each call to reflect the number of 
arguments left to encode. To signal end of arguments, *pac is set to -1. 
If the returned file descriptor is not dfd, the name of the file under 
consideration (successfully opened or not) is at (*pav)(-1]. 

EXAMPLE 
To walk a list of binary files: 

BYTES ac; 
TEXT **av; 

while (0 <= (fd = getbfiles(&ac, &av, STDIN, STDEHR, 1») 
if (fd == STDERR) 

SEE ALSO 

errfmt("can't read ~p\n". av(-1]); 
else 

{ 
process ( fd) ; 
close(fd) ; 
} , 

getflles, getflags, open(III) 

II - 43 



getc II. Portable C Runtime Library getc 

NAME 
getc get a character from input buffer 

SYNOPSIS 
METACH getc(pfio) 

FIO *pfio; 

FUNCTION 
getc obtains the next input character, if any, from the file controlled by 
the FIO buffer at pfio; if end of file has been encountered a code is re­
turned that is distinguishable from any character. 

RETURNS 
getc returns the character as zero (for '\0') or a small positive integer; 
end of file is signalled by the code EOF (-1). An error exit occurs if 
any reads fail, or if (pfio == NULL). 

EXAMPLE 
To copy a file, character by character: 

while (putc(&stdout, getc(&stdin» 1= EOF) 

SEE ALSO 
getch, putc, putch 

II - 44 



getch II. Portable C Runtime Library getch 

NAME 
getch - get a character from input buffer stdin 

SYNOPSIS 
METACH getch() 

FUNCTION 
getch obtains the next input character, if any, from the file controlled 
by the FlO buffer stdin; if end of file has been encountered a code'is re­
turned that is distinguishable from any character. 

RETURNS 
getch returns the character as zero (for NUL) or a small positive integer; 
end of file is signalled by the code EOF (-1). An error exit occurs if 
any reads fail. 

EXAMPLE 
To copy a file, character by character: 

while (putch(getch(» != EOF) 

SEE ALSO 
getc, putc. puteh 

II - 45 



I 

getf II. Portable C Run~ime Library getf 

NAME 
getf - read formatted input 

SYNOPSIS 
COUNT getf(pfio, fmt, arg1, arg2, ••• ) 

FlO *pfio; 
TEXT *fmt; 

FUNCTION 
getf reads input text from the file controlled by the buffer at pfio, and 
parses it according to the control format string starting at fmt, in order 
to assign converted values to a series of variables, each pointed at by 
one of the arguments arg1, The format string consists of newlines and 
literal text to be matched, interspersed with, <field-specifier>s that 
determine how the input text is to be read and-how it is to be converted 
before assignment. Input is consumed on a line-by-line basis. The number 
of lines consumed in anyone call is typically equal to the number of new­
lines encountered in the format string, plus one if any character follows 
the last newline encountered in the format. An exception to this may oc­
cur if "~ n appears in the format string; this sequence matches arbitrary 
whitespace, even extending across multiple lines •. 

For example: 

getfC&stdin, "~i\nSi\nSi", &arg1', &arg2, &arg3); 

obtains values for the three integers arg1, arg2, and arg3 from three suc­
cessive lines of stdin, while: 

getf(&stdin, "~iSiSi", &arg1, &arg2, &arg3); 

obtains values for the three integers arg1',arg2, and' arg3 from three whi­
tespace separated fields on a single line of stdin. 

Matching of literal text occurs on a character by character basis. If the 
charater in the format string does not match the next character to be con­
sumed on the input line, the scan is terminated. A newline character in 
the format string matches any characters remaining in the current input 
line, up to and including the terminating newline, if any. Since a new­
line is consumed only by a literal-match, by "~ ", or (implicitly) by the 
end of the format string, an embedded '\n' is the most controlled way of 
reading multiple lines with one call to getf. 

A <field-specifier) takes the form: 

S(+zl-z] (I]<field-code> 

That is, a <field-specifier) consists of a literal'S', followed by an op­
tional "+z" or "-z". where z can be any character, followed by an optional 
field width I. and is terminated by a <field-code>. A "+z", if present, 
calls for the stripping' of any left fill with the fill character z, while 
"-zit calls for the stripping of any right fill with z. A I, if present, 
specifies the total width in characters of the field to be input. and is 

II - 46 



getf - 2 - getf 

either a decimal integer, or the letter 'n'. If an 'n' is given, then the 
value of the next argument from the argument list is taken to specify the 
field wid th. 

To read a nine-character field left-filled with '*', and interpret it as a 
floating point number: 

getf( &std in, "1+*9 f n , &argl); 

or: 

getf(&stdin, "1+*nf", 9, &arg1); 

The number of characters to consume during a field conversion is given by 
the width specifier, if present. If there are fewer than that many char­
acters before the next newline, the rest of the line is consumed. If no 
width is specified, leading whitespace is skipped and the following group 
of non-white characters is taken to be the field; at least one non-white 
character must be present. The characters actually converted are the con­
tents of the field less any fill characters. If no fill character is 
given, getf presumes ~he field is left-filled with spaces. 

Text input of 

$ 100.53 

can be read as two integers with: 

getf(&stdin, "$16i.12i", &dollars, &cents); 

or as a single double with either: 

getf(&stdin, "1+$10d", &cash); 

or: 

getf(&stdin, "$1d", &cash); 

A <field-code> is composed .. of a <modifier>, a <specifier> or both. The 
<specifier> defines how the" input field is to be converted, and is one of 
the followi.ng: 

c = char integer 
s = short integer 
i = integer 
1 = long integer 
p = NUL-terminated string 
b = buffer of specified length 
d = double 
f = noat 
x = padding only (no conversion) 

A <modifier> causes the input to an integer variable to be interpreted as: 

II - 47 



getf 

a = 
h = 
0 = 
u = 

- 3 -

ASCII bytes, in decreasing order of numerical significance 
hexadecimal (with or without a leading "Ox") 
octal (with or without a leading '0') 
unsigned decimal 

getf 

If no <specifier> is given, it is presumed to be 'i', and a <modifier> 
given from ~he above series will be taken to apply to the implied integer 
field. If a <specifier> of 'c', 's', '1' or '1' is g1ven with no <modif­
ier>. the input is interpreted as signed decimal. 

In addition, an optional precision modifier, ".1", limits the number of 
characters that may be input with a <specifier> of 'p' or fb', and is per­
mitted but ignored with 'd' and 'f'. for compatibility with putf. Like 
the field width specifier, the precision modifier # may be either an ex­
plicit integer, or an 'n', to make use of the next argument value in se­
quence. 

Hence a <field-code> usually consists of one of the following combinations 
of <specifier> and <modifier>: 

Calhlolul{clslill} 
( • # J {b I pI d I f} 
{alhlolu} 
{ x} 

1* integer input *1 
1* precision ignored for t and d *1 
1* default specifier is i *1· 
1* just skip tield *1 

Any other character in the place of a <t1eld-code> 1s taken as a single 
literal character to be matched in the input line. Thus a'S' may be 
scanned with the specif1er "SSW and a '\n' may be scanned, without skip­
ping characters in the input line. by using the specifier "S\n". Hence, 
while "S " and "\n" have special meaning, "S\n" and"" each match only 
one character. 

Each <field-specifier> given in the format stri.ng requires the argument 
list following to contain in identical sequence a pointer to a datum of 
the appropriate type; the pointer argument is used to assign a correctly 
converted field. 

The following would read an int in hex, a char-sized value as ASCII, and a 
short as signed deCimal, all of them optionally separated by whitespace: 

getf(&stdin, "S8hSacSs", &addr, &code, &offset); 

Any integer field may contain leading whitespace, even after the stripping 
of fill characters, as well as an optional (+1-] sign, and an optional 
trailing [l~Ll (which is C notation tor a long constant). No unexpected 
conversion character may occur or the scan is terminated before the 
corresponding argument 1s assigned. 

The 'a' modifier treats the input as a sequence of characters and converts 
it to a base 256 number whose digits are the characters; the argument gets 
assigned the value represented by the low-order bytes of that number. 

Entire text strings may be assigned to arguments under the 'p' or 'b' 
field code. In the first case, the argument is a pOinter to the start of 
a string, and input characters are copied into that string with a ter-

II - 48 



getf - 4 - getf 

minating NUL; in the second case, the argument is also a pointer to text 
but characters are copied in without the terminating NUL, and the number 
of characters copied is assigned using the argument following the pointer 
as a pointer to integer. In either case, the number of characters actual­
ly copied will be no more than the precision modifier, if it is present 
and nonzero. 

For example, exactly 1 character of an 80-character input line could be 
assigned to str with: 

getf(&stdin, "%80.np", 1, str); 

Floating point numbers may be read in using 'd' for double variables and 
'f' for float. In either case, the input may be in either fixed pOint or 
scientific notation (see btod). Leading whitespace will be skipped, even 
after the stripping of fill characters. The precision modifier is ig­
nored. 

The 'x' field code consumes no arguments; it is a convenient way to skip 
over text. 

RETURNS 
getf returns the number of arguments successfully assigned, or EOF if end 
of file is encountered on input before any argument has been converted. 
An error exit occurs if (pfio == NULL). 

EXAMPLE 
Given the code: 

FlO input; 
TEXT buf1[BUFSIZE], buf2(10J; 
BYTES nargs, x, y, z; 

nargs = getf(&input, n%b~-*i%.6p%4i", &buf1, &x, &y, &buf2, &z); 
if (nargs != 5) 

putstr(STDERR, "bad input format\n", NULL); 

The input ~ine: 

LINE 17** IDENTIFIER 263 

would assign: 

"LINE" to bufl, with no trailing NUL 
4 to x 
17 to y 
"IDENTI" to buf2, with trailing NUL 
263 to z 

SEE ALSO 
btod, encode, getfmt 

II - 49 



getfiles II. Portable C Runtime Library get files 

NAME 
getfiles - collect text files from command line 

SYNOPSIS 
FILE getfiles(pac, pay, dfd, efd) 

BYTES *pao; 
TEXT ***pav; 
FILE dfd, efd; 

FUNCTION 
getfiles examines the file arguments passed to a command and opens text 
files as needed for reading •. The arguments-to examine are specified by 
the count pointed at by pao and by the array of text pointers pointed at 
by pay; it is assumed that the command name and any flags have been 
skipped, for instance by calling getflags. It there are no arguments left 
on the first call to getfiles (*pao == 0), the default file descriptor dfd 
is returned and all subsequent calls will fail. Otherwise each call to 
getfiles will inspect the next argument in sequence. 

It a filename matohes the string "-", dfd is returned. Otherwise an at­
tempt is made to open the tile for reading as a text file; on success the 
file desoriptor of the opened file is returned. It the open fails, efd is 
returned instead. Atter the last filename is processed, all oalls to get­
files will fa11. It 1s up to the oal11ng program to close any files 
opened by getf11e&. 

RETURNS 
getfiles returns either a file descriptor obtained as desoribed above, or 
the failure code -1; the first oall to getfiles w111 never return fa11ure. 
*pac and *pav are updated on eaoh call to reflect the number of arguments 
left to enoode. To signal end of arguments, *pao is set to -1. If the 
returned file desoriptor is not did, the name of the file under considera­
tion (suocessfully opened or not) is at (*pav)(-1]. 

EXAMPLE 
To walk" a list of files: 

BYTES ao; 
TEXT **av; 

while (0 <= (fd = getfiles(&ac, &av, STDIN, STDERR») 
it (fd == STDERR) 

else 
errfmt("can't read Sp\n", av(-1]); 

{ 
process(fd); 
olose(fd); 
}' 

SEE ALSO 
getbfiles, getflags, open(III) 

II - 50 



getflags II. Portable C Runtime Library getflags 

NAME 
getflags - collect flags from command line 

SYNOPSIS 
TEXT *getflags(pac, pav, fmt, arg1, arg2, ••• ) 

BYTES ·pac; 
TEXT *··pav; 
TEXT *flnt; 

FUNCTION 
getflags encodes the flag arguments passed . to a command and sets the 
flags, counts, character variables and string names specified by a format 
string. The arguments to encode are specified by the count pointed at by 
pac and by the array of text pointers pointed at by pav; it is assumed 
that the first argument is a command name, to be skipped. Each succeeding 
argument is taken as a set of one or more flags if a) it begins with '_t 
or t+, and b) it is not the string "-" or fI __ ". A leading '-' is other­
wise skipped over on each command argument. 

fmt is a concatenation of descriptors that determine how each of the 
su~ceeding arguments arg1, ••• 1s to be interpreted. A descriptor is a 
sequence of match characters, terminated by a ',', a '>', or by the '\0' 
or ':' that terminates the format string. Format characters have the fol­
lowing effect: 

t., - always matches the rest of the current argument, if any left, or all 
of the succeeding argument, if present, or a null string otherwise. 
The value of the match is a (non-NULL) pointer to the start of the 
matched string. 

'?' - always matches the next argument character, if apy, or a NUL charac­
ter. The value of the match is the matched character, taken as an 
integer constant. 

'H' - tries to parse as an integer the remainder of the current argument, 
if any left, or all of the succeeding argument. The value of the 
match is the decimal value of the string, if it doesn't begin with a 
'0', or its hexadecimal value if it begins with 'Ox' or 'OX', or its 
octal value otherwise. An error occurs if no argument is found, or 
if it cannot be completely scanned as an integer with the selected 
base. 

'Hn' - same as single # except that target is assumed to be a long instead 
of an int. 

, , 
• - delivers a successful match value to the corresponding argument (in 

sequence) pointed at byarg1. If no match, the command argu­
ments are rescanned, from the last successful match, using the 
descriptor following. 

,>, - behaves just like',', except the corresponding argument pointer is 
taken as a pointer to a structure of the form 

II - 51 



getflags 

struct { 
STIES n to p ; 
TEXT ·val(MAX]; 
} args {MAX}; 

- 2 - getflags 

If (0 < ntop) ntop is decremented and the value is delivered to 
val(ntop]; otherwise an error occurs. 

'\0' - behaves just like t.', except that if there is no successful match 
an error occurs. 

':'.- if a colon is encountered in the format string before a flag is suc­
cessfully matched, then the NUL-terminated string following the colon 
is written to STDERR, preceded by "usage: <pname> " and followed by a 
newline, where <pname> is the name by which the current program was 
invoked. getflags then terminates, reporting failure. Any oc­
currence of an 'F' in the diagnostic string is replaced with a 
slightly expanded representation of the flag format string preceding 
the colon. For example. the format string "a*>+b,c?,z:F <files>" 
would produce the error message: 

usage: pname _(a*A +b c1 zl <files) 

Any other character causes a successful match only if the next command 
line character is identical to it. The value of the match is a boolean 
YES~ 

The rules by which getflags parses flag arguments impose two significant 
constraints on how flags are ordered within the format string. Any flag 
whose name isa prefix of the name of another flag must appear in the for­
mat string after the longer flag. This also implies that unnamed flags, 
such as "-I" or "-41" or "-*", must be given last. 

RETURNS 
getflags returns a pointer to the remaining command argument string, if an 
error occurs and no colon is found in the format string; otherwise an" er­
ror causes diagnostic output and an error exit from the program. If all 
flag arguments are successfully scanned, getflags returns NULL. The 
values pointed at by pac and pav are updated to reflect the number of ar­
guments· consumed; "-" is consumed as a flags terminator, while ,,_It is 
taken as a potential special file name and is not cQnsumed. One or more 
values should be delivered to locations pointed at by the arg1, ••• 

Note that all locations pointed at are assumed to be ints or pointers, ex­
cept that a ",#" descriptor expects a long, and a ,>, expects a structure 
as described above. 

EXAMPLE 
To accept the line: 

cmd +3 -3 -f filename -mx -bOx10000 <files) 

one might write: 

SOOL mxflag {NO}; 

II - 52 



getflags - 3 -

BYTES mcnt {OJ; 
BYTES from {OJ; 
BYTES to {OJ; 
LONG bias {OJ; 
TEXT *fname "defaul t"; 

COUNT main(ac, av) 
BYTES ac; 
TEXT **av; 
{ 
getflags(&ac, &av, "bnU,f*,mx,ml,+I,#:F <files>", 

&bias, &fname, &mxflag, &mcnt, &from, &to» 

SEE ALSO 
getfiles, usage 

BUGS 
A "II" descriptor cannot be used with the stacking operation '>'. 

getflags 

II - 53 



getfmt II. Portable C Runtime Library getfmt 
/ 

NAME 
getfmt - format input from stdin 

SYNOPSIS 
COUNT getfmtCfmt, arg1, arg2, ... ) 

TEXT *fmt; 

FUNCTION 
getfmt reads formatted input from the file controlled by the FlO buffer 
stdin, in exactly the same way as getf. 

RETURNS 
getfmt returns the number of arguments successfully converted, or EOF C-1) 
if end of file is encountered before any are converted. An error exit oc­
curs if any reads fail. 

EXAMPLE 
for (lsum = 0; 0 < getrmt("~l", &lnum); ) 

lsUID :+ Inum; 

SEE ALSO 
encode, getf, stdin 

II - 54 



getl II. Portable C Runtime Library getl 

NAME 
getl - get a text line into the input buffer 

SYNOPSIS 
BYTES getl(pfio, s, n) 

FlO *pfio; 
TEXT *s; 
BYTES n; 

FUNCTION 
getl copies characters, from the file controlled by the FlO buffer at 
pfio, to the n character buffer starting at s. Characters are copied un­
til a) a newline is copied, b) end of file is reached, or c) n characters 
have been copied. 

RETURNS 
getl returns a count of the number of characters copied, which will be 
between 1 and n unless end of file has been encountered, from which time 
on all getl calls will return zero. An error exit occurs if any reads 
fail, or if (pfio == NULL). 

EXAMPLE 
To copy a file, line by line: 

while (putl(&stdout, buf, getl(&stdin, buf, BUFSIZE») 

SEE ALSO 
getlin, putl, putlin 

II - 55 



getlin II. Portable C Runtime Library getlin 

N~E 

getlin - get a text line from stdin 

SYNOPSIS 
BYTES getlin(s, n) 

TEXT ·s; 
BYTES n; 

FUNCTION 
getlin copies characters, from the file controlled by the FlO buffer 
stdin, to the n oharacter bufrer starting at s. Characters are copied un­
til a) a newline is oopied, b) end of file is reached, or c) n oharacters 
have been copied. 

RETURNS 
getlin returns a count of the number of characters copied, which will be 
between 1 and n unless end of file has been encountered, from which time 
on all getlin calls will return zero. An error exit occurs if any read 
fails. 

EXAMPLE 
To copy a rile, "line by line: 

while (putlin(buf, getlin(buf, BUFSIZE») 

SEE ALSO 
getl, putl, putlin, stdin 

II - 56 



inbuf II. Portable C Runtime Library 

NAME 
inbuf - find first occurrence in buffer of character in set 

SYNOPSIS 
BYTES inbuf(p, n, s) 

TEXT *p, *s; 
BYTES n; 

FUNCTION 

inbuf 

inbuf scans the n-character buffer starting at p for the first instance of 
a character in the NUL terminated set s. If the NUL.character is to be 
part of the set, it must be the first character in the set. 

RETURNS 
inbuf returns the index of the first character in p that is also in the 
set s, or n if no character in the buffer is in the set. 

EXAMPLE 
To blank out imbedded NUL characters: 

while «i = inbuf(buf, n, n\on» < n) 

buf[ i] = ' '; 

SEE ALSO 
instr, notbuf, notstr, scnbuf, scnstr, subbuf, substr 

II - 57 



I 

instr II. Portable C Runtime Library 

NAME 
instr - find first occurrence in string of character in set 

SYNOPSIS 
BYTES instr(p, s) 

TEX'! .p, ·s; 

FUNCTION 

instr 

instr scans the NUL terminated string starting at p for the first oc­
ourrence of a character in the NUL terminated set s. 

RETURNS 
instr returns the index of the first oharacter in p that is also oontained 
in the set s, or the index of the terminating NUL if none. 

EXAMPLE 
To replace unprintable oharacters (as for a 64-character terminal): 

while (string(i = instr(string, n'{I}-n)l) 
string( i1 = '@'; 

SEE ALSO 
inbuf. notbuf, notstr, scnbuf, scnstr, subbuf, substr 

II - S8 



isalpha II. Portable C Runtime Library i.salpha 

NAME 
isalpha - test for alphabetic character 

SYNOPSIS 
BOOL isalpha(c) 

FUNCTION 
isalpha tests whether its argUment is an alphabetic character, either 
lower or upper case. Since isalpha is implemented as a C preprocessor 
macro, its argument can be any numerical type. 

RETURNS 
isalpha is a boolean rvalue. 

EXAMPLE 
To find the end points of an alpha string: 

if (isalpha(*first» 
for (last = first; isalpha(*last); ++last) 

SEE ALSO 

BUGS 

isdigit, islower, isupper, iswhite, tolower, toupper 

Because it is a macro, isalpha cannot· be called from non-C programs, nor 
can its address be taken. Arguments with side effects may be evaluated 
other than once. 

II - 59 



isd igi t II. Portable C Runtime Library lsdigit 

NAME 
isdigit - test for digit 

SYNOPSIS 
BOOL isdigit(c) 

FUNCTION 
isdigit tests whether its argument is a deoimal digit, i.e., between '0' 
and '9' inclusive. Since isdigit is implemented as a C preprocessor mac­
ro, its argument can be any numerical type. 

RETURNS 
isdigit is a boolean rvalue. 

EXAMPLE 
To convert a digit string to a number: 

for (sum = 0; isdigit(·s); ++s) 
sum = sum • 10 + ·s - '0'; 

SEE ALSO 

BUGS 

isalpha. islower, isupper, iswhite, tolower, toupper 

Beoause it is a macro, isdigit cannot be called from non-C programs, nor 
can its address be taken. Arguments with side effects may be evaluated 
other than once. 

II - 60 



islower II. Portable C Runtime Library islower 

NAME 
islower - test for lowercase character 

SYNOPSIS 
BOOL islower(c) 

FUNCTION 
islower tests whether its argument is a lowercase character. Since 
islower is implemented as a C preprocessor macro, its argument can be any 
numerical type. 

RETURNS 
islower is a boolean rvalue. 

EXAMPLE 
To convert to uppercase: 

if (islower(c» 
c =+ 'A' - 'a'; /* but see toupper () */ 

SEE ALSO 

BUGS 

~salpha, isdigit, isupper, iswhite, tolower, toupper 

Because it is a macro, islower cannot be called from non-C programs,. nor 
can its address be taken. Arguments with- side effects may be evaluated 
other than once. 

II - 61 



isupper II. Portable C Runtime Library isupper 

NAME 
isupper - test for uppercase character 

SYNOPSIS 
BOOL isupper(c) 

FUNCTION 
isupper tests whether its argument is an uppercase character. Since 
isupper is implemented as a C ·preprocessor macro, its argument can be any 
numerical type. 

RETURNS 
isupper is a boolean rvalue. 

EXAMPLE 
To convert to lowercase: 

if -( isupper(c» 
c =+ 'a' - 'A'; /* but see tolower() */ 

SEE ALSO 
- isalpha, isdlglt, islower, iswhite, toiower, toupper 

BUGS· 
Because it is a macro, lsupper cannot be called from non-C programs·, nor 
can its address be taken. Arguments with side effects may be evaluated 
other than once. 

II - 62 



iswhite II. Portable C Runtime Library iswhite 

NAME 
iswhite - test for whitespace character 

SYNOPSIS 
BOOL iswhite(c) 

FUNCTION 
iswhite tests whether its argument is a non-printing character code, i.e., 
whether its ASCII value is at or below that of ' t (040) or at or above 
that of DEL (0177). Note that both NUL '\0' and newline '\n' qualify as 
whitespace. Since iswhite is implemented as a C preprocessor macro, its 
argument can be any numerical type. 

RETURNS 
iswhite is a boolean rvalue. 

EXAMPLE 
To skip whitespace: 

while (iswhite(*s» 
++s; 

SEE ALSO 
. isalpha. isdigit. islower, isupper, tolower. toupper 

BUGS 
Because it is a macro, iswhite cannot be called from nO.n-C programs, nor 
can its address be taken. Arguments with side effects may be evaluated 
other than once. 

II - 63 



itob II. Portable C Runtime Library itob 

N~E 

itob - convert integer to text in buffer 

SYNOPSIS 
BYTES itob(s, i, base) 

TEXT *s; 
AHGINT i; 
COUNT base; 

FUNCTION 
itob converts the integer i to a text representation in the buffer start­
ing at s. The number is represented in the base specified, using lower­
ease letters beginning with 'a r to specify digits from 10 on. If (0 < 
base) the number i is taken as unsigned; otherwise if (base < 0) negative 
numbers have a leading minus sign and are eonverted to -base; if (base --
0) it is taken as -10. Only magnitudes of base between 2 and 36 are gen­
erally meaningful, but no eheck is made for reasonableness. 

RETURNS 
The value returned is the number of characters used to represent the in­
teger, which in hexadecimal ean vary from four tc eight digits, plus sign, 
depending upon the target machine. 

EXAMPLE 
To output i in decimal: 

write(STDOUT, buf t itob(buf, i, 10»; 

SEE ALSO 

BUGS 

btoi, btcl, ltob, stcb 

The length of the buffer is not specifiable. If (Ibase: == 1) the program 
ean bomb; if (36 < lbasel) funny eharacters ean be inserted in the buffer. 

II - 64 



itols II. Portable C Runtime Library itols 

NAME 
itols - convert integer to leading low-byte string 

SYNOPSIS 
TEXT *itols(s. val) 

TEXT *s; 
COUNT val; 

FUNCTION 
itols writes the integer val into the two-byte string at s. with the least 
significant byte at s[O] and the next least at s[1]. No stronger storage 
boundary than that required for char is demanded of s. 

A number of de facto standard file formats have arisen on machines that 
represent integers internally in this fashion; itols provides a machine­
independent way of writing such files. 

RETURNS 
itols writes the two bytes at s and returns s as the value of the func­
tion. 

EXAMPLE 
To write a library header: 

struct { 
TEXT name( 14 J; 
COUNT size; 
} *p; 

write(STDOUT. p-)name, 14); 
write (STDOUT, itols(buf, p-)size), 2); 

SEE ALSO 
lstoi, lstol, ltols 

II - 65 



leave II. Portable C Runtime Library leave 

NAME 
leave - leave a control regi~n 

SYNOPSIS 
VOID leave(val) 

BYTES val; 

FUNCTION 
leave causes an exit from the control region established by the most re­
cent enter call. Execution resumes as if enter had just performed a re­
turn with value val. Any number of fun'ctions may be terminated early by a 
leave call, so long as all are dynamic descendants of at least one enter 
call. The control region is disestablished by the call to leave. 

RETURNS 
leave will never return to its caller; instead val is used as the return 
value of the most recent call to enter. If no instance of enter is 
currently active, leave writes an error message to STDERR and takes an er­
ror exit. 

EXAMPLE 
To restart a function after each erro'r message: 

while (s = enter(&func, f11e» 
putstr(STDERR, s, "\n", NULL); 

so that one can write in, say, one of func's dynamic descendants: 

if (counterr) 
leave("miss1ng parameter"); 

-SEE ALSO 
_raise(IV), _when(IV), enter 

II - 66 



lenstr II. Portable C Runtime Library 

NAME 
lenstr - find length of a string 

SYNOPSIS 
BYTES lenstr(s) 

. TEXT *s; 

FUNCTION 

.lenstr 

lenstr scans the text string starting at s to determine the number of 
characters before the terminating NUL. 

RETURNS 
The value returned is the number of characters in the string. 

EXAMPLE 
To output a string: 

write(STDOUT, s, lenstr(s»); 

II - 67 



In II. Portable C Runtime Library In 

NAME 
In - natural logarithm 

SYNOPSIS 
DOUBLE In( x) 

DOUBLE x; 

FUNCTION 
ln oomputes the natural 'log of x to full double precision. It works by 
expressing x as a fraction in the interval (1/2, 1), times an integer 
power of two. The logarithm of the fraction is approximated by a sixth 
order telescoped series approximation. 

RETURNS 
ln returns the nearest internal representation to ln x, expressed as a 
double floating value. If x is negative or zero, a domain error oondition 
is raised. 

EXAMPLE 
arcsinh = In{x + sqrt(x * x + 1»; 

SEE ALSO 
_domain(IV), exp , 

II - 68 



lower II. Portable C Runtime Library 

NAME 
lower - convert characters in buffer to lowercase 

SYNOPSIS 
BYTES lower(s, n) 

TEXT *s; 
BYTES n; 

FUNCTION 

lower 

lower converts the n characters in buffer starting at s to their lowercase 
equivalent if possible. 

RETURNS 
lower returns n. 

EXAMPLE 
buf[lower(buf, size)] = '\0'; 

SEE ALSO 
tolower 

II - 69 



I 

lstoi II. Portable C Runtime Library 

NAME 
lstoi - convert leading low-byte string to integer 

SYNOPSIS 
COUNT lstoi( s) 

TEXT *s; 

FUNCTION 

lstoi 

lstoi converts the two-byte string at s into an integer, on the assumption 
that the leading byte is the less significant part of the integer. No 

r stronger storage boundary than that required for char is demanded of s. 

A number of de facto standard file formats have arisen on machines that 
represent integers internally in this fashion; lstoi provides a machine­
independent way of reading such files. 

RETURNS 
lstoi returns the integer representation of the tWO-byte integer at s. 

EXAMPLE 
To read a library header: 

struct { 
TEXT name(14]; 
COUNT size; 
} .p; 

read (STDIN , p, 16); 
p->size = lstoi(&p->size); 

SEE ALSO 
itols, lstolt ltols 

II - 70 



lstol II. Portable C Runtime Library 

NAME 
lstol - convert filesystem date to long 

SYNOPSIS 
LONG lstol(s) 

TEXT *s; 

FUNCTION 

lstol 

lstol converts the fo.ur-byte string at s into a long t on the assumption 
that the bytes are ordered 2, 3, 0, 1, where 0 is the least significant 
byte. This bizarre order is used to represent dates in Idris filesystems, 
thanks to their PDP-11 origins. No stronger storage boundary than that 
required for char is demanded of s. 

RETURNS 
lstol returns the long representation of the four-byte integer at s. 

EXAMPLE 
time = lstol(&pi->n_actime); 

SEE ALSO 
itols, lstoi, ltols 

II - 71 



ltob II. Portable C Runtime Library ltob 

NAME 
ltob - convert long to text in buffer 

SYNOPSIS 
BYTES ltob(s, 1, base) 

TEXT *s; 
LONG 1; 

. COUNT base; 

FUNCTION 
ltob converta the long 1 to a text representation in the buffer starting 
at s. The number is represented in the base specified, using lower case 
letters beginning with 'a' to specify digits from 10 on. If (0 < base) 
the number 1 is taken ·as unsigned; otherwise if (base < 0 ) negative 
numbers have a leading minus sign and are converted to -base; if (base --
0) it is taken as -10. Only values of base between 2 and 36 in magnitude 
are generally meaningful, but no check is made for reasonableness. 

RETURNS 
The value returned ia the number of characters u~ed to represent the long~ 
which in hexadecimal can be up to eight digits plus sign. 

EXAMPLE 
To output 1 as an unsigned decimal number: 

write(STDOUT t buf t 1 tob( buf, 1 t ·'0»; 

SEE ALSO 

BUGS 

btoi, btol, itob, stob 

The length of the buf·fer is not specifiable. If (: base: == 1) the program 
can bomb; if (36 < : base:) funny characters can be inserted in the buffer. 

II - 72 



ltols II. Portable C Runtime Library 

NAME 
Itols - convert long to filesystem date 

SYNOPSIS 
TEXT *lto1s(p10ng, 10) 

TEXT *p10ng; 
LONG 10; 

FUNCTION 

Itols 

1 tols writes the four bytes of the long 10 into the buffer, starting at 
p10ng, -in the order 2, 3, 0, " where 0 is the least significant byte. 
This bizarre order is used to represent dates in Idris fi1esystems, thanks 
to their PDP-11 origins. 

RETURNS 
1to1s writes the four bytes at p10ng and returns plong as its value. 

EXAMPLE 
1tols(&pi->n_actime, time); 

SEE ALSO 
ito1s, 1stoi, 1sto1 

II - 73 



mapchar II. Portable C Runtime Library 

NAME 
mapchar - map single character to printable representation 

SYNOPSIS 
VOID mapchar(c, ptr) 

TEXT C t *ptr; 

FUNCTION 

mapchar 

mapchar writes a visible representation of the character c into a two-byte 
buffer pointed at by ptr. A printable character (including space through 
'-') is written as a space followed by the character. Other codes appear 
as: 

RETURNS 

CHARACTER 

(0, 07] 
backspace 
tab 
newline 
vertical tab 
formfeed 
carriage return 
all oth~r values 

BECOHES 

\0 - \7 
\b 
\t 
\n 
\v 
\f 
\r 
\? 

Nothing. mapchar writes two characters at ptr(O J and ptr( 1 J. 

EXAMPLE 
To output a vi~ible representation of an arbitrary character, one might 
write: 

TEXT c, str (2 J ; 

mapchar (c t str) ; 
putfmt(n~4b\nnt str. 2); 

SEE ALSO 
doesc 

II - 7~ 



match II. Portable C Runtime Library 

NAME 
match - match a regular expression 

SYNOPSIS 
BOOL matchCbuf, n, pat) 

TEXT Ibuf; 
BYTES n; 
TEXT Ipat; 

FUNCTION 

match 

match tests the n character·buffer starting at buf for a match with the 
encoded pattern starting "at pat. It is assumed that the pattern was buil t 
by the function pattern, whose manual page describes the notation for reg­
ular expressions accepted by these routines. 

RETURNS 
match returns YES if the pattern matches. 

EXAMPLE 
To test a line for the presence of three colons: 

if CmatchCline, n, pattern(pbuf, '\0', ":*:1:"») 
return (YES); 

SEE ALSQ 
amatch, pattern 

II - 75 



max II. Portable C Runtime Library max 

NAME 
max test for maximum 

SYNOPSIS 
max( a , b) 

FUNCTION 
max obtains the maximum of its two arguments a and b. Since max is imple­
mented as a C preprocessor macro, its arguments can be any numerical type, 
and type coercion occurs automatically. 

RETURNS 
max is a numerical rvalue of the form «a < b) ? b 
thesized. 

EXAMPLE 
hiwater = max(hiwater, level); 

SEE ALSO 
min 

BUGS 

a), suitably paren-

Because it is a macro, max cannot be called from non-C programs, nor can 
its address be taken. Arguments with side effects may be evaluated other 
than just once. 

II - 76 



min II. Portable C Runtime Library 

NAME 
min - test for minimum 

SYNOPSIS 
min(a, b) 

FUNCTION 

min 

min obtains the mlnlmum of its two arguments a and b. Since min is imple­
mented as a C preprocessor macro, its arguments can be any numerical type, 
and type coercion occurs automatically. 

RETURNS 
min is a numerical rvalue of the form «a < b) ? a 
thesized. 

EXAMPLE 
nmove = min(space, size); 

SEE ALSO 
max 

BUGS 

b), suitably paren-

Because it 1s a macro, min cannot be called from non-C programs, nor can 
its address be taken. Arguments with side effects may be evaluated other 
than just once. 

II - 77 



mkcrd II. Portable C Runtime Library Clkor~ 

NAME 
mkerc - make an ordering function 

S~OPSIS 

COUNT (4mkord(keyarray, lnordrule))() 
TEXT I*keyarray, 41nordrule; 

FUNCTION 
mkord uses the encoded text strings pointed at by inordrule and· the ele­
ments of keyarray to produce a function, suitable for use with sort, that 
compares two text buffers for lexical order. The function produced can be 
declared (symbolically. at lea~t) as: 

COUNT ordfun(i, j, ppa) 
STIES i, j; 
struct ( 

UCOUN! len; 
!!:rr buf(len); 
} *··ppa; 

!hat i~, ppa i~ a pointer to an array of pointers to structures, each of 
which consist~ of a twe-oyte buffer length l.en, followed by the text 
buffer proper. The function i~ expected to c~mpare the text in the struc­
ture pointed at by (*ppa) (iJ with that in the structure pointed at by 
(*ppa)(j), returning a negative number it the first is less than the 
second, zero if the twe compare equal. and positive other~se. 

keyarray is a NULL terminated list of "keysft, or ordering rules to be used 
by ordfun, listed in reverse order of application, i.e., keyarray(O] 
specifies a rule that is applied only it keyarraye1J is NULL or if it (and 
all higher rules) says that the two text buffers compar~ equal,. on a given 
call to ord fun. 

Each of the keys, as well as lnordrule, is a NUL terminated string that 
specifies a rule (as shown below) for ordering two text buffers. lner­
drule is the key tried last by ordfun; it also spec i!ies· the defaul t 
method of compar1.3ori for any key~ in keyarray that don't explicitly state 
a method. Thus; it keyarray(O] 1.3 nuLL, lnordrule alone specifies the 
ordering. 

String3 in lnordrule and keyarray take the form: 

(adln]Cb](r)Ct?](I.I-4.I] 

where 

a - ccmpares character by character in ASCII cellating sequence. A miss­
ing character compares lower than any ASC!I code. 

b - skips leading whitespace. 

d - compares character by character in dictionary collating sequ~nce, 
i.e., characters other than letters, digits, or spaces are emitted, 
and case distinctions among letters are ignored. 

II - 78 



mkord - 2 - mkord 

"1 - compares character by character in ASCII collating sequence, except 
that case distinctions among letters are ignored. 

n - compares by arithmetic value, treating each buffer as a numeric 
string consisting of optional whitespace, optional minus sign, and 
digits with an optional decimal point. 

r - reverses the sense of comparisons. 

t? - uses? ·as the tab character for determining offsets (described 
below). 

11. II-fl. II - describes offsets from the start of each text buffer for the be­
ginning (first character used) and, after the minus '-', for the end 
(first character not used) of the text to be considered by the rule. 
The number before each dot '.' is the number of tab characters to 
skip, and the number after each dot is the number of characters to 
skip thereafter. Thus, in the string "abcd=efgh", with '=' as the 
tab character, the offset "1.2" would point to 'g', and "0.0 would 
point to 'a'. A missing number II is taken as zero; a missing final 
pair "-1.1/" points just past the last of the text in each of the 
buffers to be compared. If the first offset is past the second 
offset, the buffer is considered empty. 

If no tab character is specified, for each tab to be skipped a string of 
spaces, followed by non-spaces other than newlines, is skipped instead. 
Thus, in the string" ABC DEF GHI", the offset "3" would point to the 
space just after 'I'. 

Only one of 'a', 'd', '1', or 'n' may be present in a rule, and no more 
than ten ordering rules can be specified by keyarray. 

RETURNS 
If all keys make sense, mkord returns a pointer to an internal ordering 
function as described above; otherwise it returns NULL. Various internal 
tables are rewritten. on each call to mkord, so only one ordering function 
may be defined at a time. 

EXAMPLE 
'define MAXKEY 10 
INTERN struct { 
BYTES n; 
TEXT *key(MAXKEY.1]; 
} kstack {MAXKEY}; 1* kstack.key[MAXKEYl is always NULL *1 

getfiags( &ac, &av, "+*>: .[11.11-1.11 a b d 1 n r t? J It. &kstack); 
order = mkord(&kstack.key(kstack.n], "a"); 

sort(nlines, order, &swapfn. linptrs); 

SEE ALSO 
sor~ 

BUGS 
It's useful, but complicated. 

II - 79 



nalloc II. Portable C Runtime Library nalloc 

NAME 
nalloc - allocate space on the heap 

SYNOPSIS 
TEXT *nalloc(nbytes, link) 

BYTES nbytes; 
TEXT *link; 

FUNCTION 
nalloc allocates space on the heap for an item of size nbytes, then writes 
link in the zeroeth integer location. The space allocated is guaranteed 
to be at least nbytes long, starting from the pointer returned, which 
pointer is guaranteed to be on a proper storage boundary for anything. 
The heap is grown as necessary. 

RETURNS 
nalloc returns a pointer to the allocated cell if successful; otherwise, 
it returns a NULL pointer. 

EXAMPLE 
To build a stack: 

struct cell { 
struct cell .prev; 
•.•• rest of cell 
} ·top; 

top = nalloc(sizeof (·top) , top): /* pushes a cell ./ 

SEE ALSO 

BUGS 

alloc, free, sbreak(III) 

The size of the allocated cell is stored in the 
fore the usable part of the cell; hence it 
number is related to the actual cell size in 
fashion and should not be trusted. 

II - 80 

integer location right be­
is easily clobbered. This 
a most system dependent 



notbuf II. Portable C Runtime Library 

NAME 
notbuf - find first occurrence in buffer of character not in set 

SYNOPSIS 
BYTES notbuf(p, n, s) 

TEXT *p, IS; 
BYTES n; 

FUNCTION 

notbuf 

notbuf scans the n-character buffer starting at p for the first instance 
of a character not in the NUL terminated set starting at s. If the NUL· 
character is to be part of the set, it must be the first character in the 
set. 

RETURNS 
notbuf returns the index of the first character in p not contained in the 
set s, or the value n if all buffer characters are in the set. 

EXAMPLE 
To check that an input string contains only digits: 

if (notbuf(buf, n, "0123456789") < n) 
errfmt("illegal number\n"); 

SEE ALSO 
inbuf, instr, lenstr, notstr, scnbuf, scnstr, subbuf, substr 

II - 81 



I 

notstr II. Portable C Runtime Library 

NAME 
notstr - find first occurrence in string of character not in set 

SYNOPSIS 
BYTES notstr(p, s) 

TEXT *p, *s; 

FUNCTION 

notstr 

notstr scans the NUL terminated string starting at p for the first oc­
currence of a character not in the NUL terminated set starting at s. 

RETURNS 
notstr returns the index of the first character in p not contained in the 
set s, or the index of the terminating NUL if all are in s. 

EXAMPLE 
. To check a string for non-numeric characters: 

if (str(notstr(str, "0123456789")]) 
errfmt("illegal number\n"); 

SEE ALSO 
inbuf, instr. notbuf, scnbuf, scnstr, sub~~f, substr 

II - 82 



ordbuf II. Portable C Runtime Library 

NAME 
ordbuf - compare two NUL padded buffers for ~exical order 

SYNOPSIS 
COUNT ordbuf(s1, s2, n) 

TEXT *s1, *s2; 
COUNT n; 

FUNCTION 

ordbuf 

ordbuf compares two text buffers, character by character, for lexical ord­
er in the character collating sequence. The first buffer starts at s1, 
the second at s2. Both buffers are n characters long. 

Note that encoded numbers, such as int or double, seldom sort, properly 
when treated as text strings. 

RETURNS 
The value returned is -1 when s1 is lower, 0 when s1 equals s2, and +1 
when s2 is lower. 

EXAMPLE 
sort(nthings, &ordbuf, &swap, &data); 

SEE ALSO 
sort 

II -83 



pathnm II. Portable C Runtime Library pathnm 

NAME 
pathnm - complete a pathname 

SYNOPSIS 
TEXT *pathnm(buf, n1, n2) 

TEXT *buf, *n1, *n2; 

FUNCTION 
pathnm builds a pathname in but that is derived from the pair of NUL ter­
minated names pointed at by n1 and n2. 

If the name pointed at by n2 
pended the longest suffix 
contain at:', '1', or t I' • 
in t : f or t 1 " then a 'I' 
n2 string in but. 

ends in ':' or fl't then to it in buf is ap­
of the string pointed at by n1 that does not 

If the string pointed at by n2 does not end 
followed by the same suffix is appended to the 

Thus the following results are obtained: 

n1 ~ ~ -
x y y/x 
x a: a:x 
x· (2.31 C2.31x 
z/x y y/x 
a:x b: b:x 
:f1:x :f2: :t2:x 

This scheme is designed to be max~ally convenient on 
systems, provided that truly esoteric filenames, 
avoided. 

numerous operating 
such as "a/3:", are 

RETURNS 

BUGS 

pathnm returns the concatenation of n2, possibly a 'I't and the suffix of 
n1, NUL terminated in the area pointed at by buf. The value of the func­
tion is always buf. 

There is no way to specify the size of buf, which must be at least 
lenstr(n1) + lenstr(n2) + 2 characters. 

II - 84 



pattern Ir. Portable C Runtime Library pattern 

NAME 
pattern - build a regular expression pattern 

SYNOPSIS 
TEXT *pattern(pat, delim. p) 

TEXT ·pat, delim, .p; 

FUNCTION 
pattern builds an encoded pattern in the string buffer starting at pat, 
suitable for use with amatch or match in matching regular expressions. 
The pattern is encoded from the string p, which should be terminated by an 
~nescaped instance of delim, but which must be NUL terminated to prevent 
an i~l-formed pattern from confounding the code. It is assumed that p 
points just past the left delimiter. 

Code values for the encoded pattern are listed in the manual page for 
amatch; simple usage, however, requires no knowledge of these inner work­
ings. It is sufficient to know that the encoded string at pat will never 
occupy more than twice as many bytes as the string p, counting delimiters 
at both ends. 

A regular expression is a shorthand notation for a sequence of target 
characters contained in a temporary file line. These characters are said 
to "match" the regular expression. The following regular expressions are 
allowed: 

An ordinary character is considered a regular expression which 
matches that character. 

The character sequences "\b", "\f", "\n". "\r". "\ t", "\ v", in upper 
or lower case, are regular expressions each representing the single 
character cursor movements of <backspace>, <formfeed>, <neWline>. 
<return>, <tab>, <vertical tab>, respectively. Additionally. any 
single characte~ in the character set may be represented by the form 
"\ddd" where ddd is the one to three digit octal representatioh of 
the character; this is the safest way to match most non-printing 
characters, and the only way to match ASCII NUL (\0). 

A '?' matches any single character except a <newline>. 

A ,A, as the leftmost character of a series of regular expressions 
constrains the match to begin at the beginning of the line. 

A ,A, following a character matches zero or more occurrences of that 
character. This pattern may thus match a null string which occurs at 
the beginning of a line. between pairs of characters, or at the end 
of the line. A ,A, enclosed in "\(" and "\).". or following either a 
'\' or an initial ,A" is taken as a literal ,A,. however. 

A ,A, in any position other than the ones mentioned above is taken as 
a literal ,A,. 

A '.' matches zero or more characters, not including <newline>. It 
is conceptually identical to the sequence "?An 

II - 85 



pattern - 2 - pattern 

A character string enclosed in square brackets "(]" matches a single 
character which may be!nl of the characters in the bracketed list 
but no other. However, if the first character of the string is a 
'!'. this expression matches any character except <newline> and the 
ones in the bracketed list. A range of characters in the character 
collating sequence may be indicated by the seque,nce of <lowest char­
acter>, '-', <highest character>. ([z-a] won't work; it is ignored.) 
Thus, (ej-maEJ is a regular expression which will match one character 
that may be E, a, e, j, k, 1 or m. When matching a literal "-", the 
"-" must be the first or last character in the " bracketed list; other­
wise it is taken to specify a range of characters. 

A regular expression enclosed between the· sequences "\(" and "\)" 
tags this expression in a way useful for substitutions. but otherwise 
has no effect on the characters the expression matches. (See s com­
mand for further explanation.) 

A concatenation of regular expressions matches the concatenation of 
strings matched by individual regular expressions. In other· words, a 
regular expression composed of several "sub-expressions" will match a 
concatenation of the strings implied by each of the individual "sub­
expressions". 

A '$' as the rightmost character after a series of regular expres­
sions constrains the match, if any, to end at the end of the line 
prior to the ~newline>. 

A null regular expression standing alone stands for the last regular 
expression enoountered. 

Note that arbitrary grouping and alternation are not fully supported by 
this notation, as the text patterns utilized are not the full class of 
regular expressions beloved by mathematicians. 

RETURNS 
pattern returns pat, if no syntax errors are found in P. else NULL. 

EXAMPLE 
pattern(pbuf, rO', "~??????T "); 
while (match(buf. n = getlin(buf, MAXBUF) , pbuf» 

putlin(buf, n); 

SEE ALSO 
amatch, match 

II - 86 



prefix II. Portable C Runtime Library 

NAME 
prefix - test if one string is a prefix of the other 

SYNOPSIS 
BaaL prefix(s1, s2) 

TEXT * s 1, * s2 ; 

FUNCTION 

prefix 

prefix compares two strings, character by character, for equality. The 
first string starts at s1 and is terminated by a NUL '\0'; the second is 
likewise described by s2. The strings must match up to but not including 
the NUL terminating the second string, i.e. ,. s2 must be a prefix of s 1. 

RETURNS 
The value returned is YES if s2 is a prefix of s1, else NO. 

EXAMPLE 
if (prefix(line, tttJinclude ") 

doinclude( ) ; 

SEE ALSO 
cmpbuf, cmpstr 

II - 87 



putc II. Portable C Runtime Library putc 

N~E 

putc - put a character to output buffer 

SYNOPSIS 
COUNT putc(pfio, c) 

FlO ·pfio; 
COUNT c; 

FUNCTION 
If c is not negative, it is treated as a character to be copied to the 
file controlled by the FlO buffer at pfio; otherwise putc simply ensures 
that all characters in the buffer are written out. It may be necessary to 
explicitly drain the output buffer in this fashion if putc is used to 
buffer output, unless pfio has been initialized by finit which then will 
take care to drain the output buffer on exit from'the user program. If the 
pfio buffer has been opened for WRITE, the output buffer is drained when­
ever a newline is encountered. 

RETURNS 
putc returns c. 
NULL). 

An error exit occurs if any writes fa11, or if 

EXAMPLE 
To copy a file, character by character: 

while (putc(&stdout, getc(&std1n) 1= EOF) 

SEE ALSO 
finit, getc, getch, putch 

BUGS 

(pfio 

Arbitrary characters, as opposed to ASCII text, are often sign extended to 
make negative integers; these quietly disappear on putc calls. 

II - 88 



putch II. Portable C Runtime Library putch 

NAME 
putch - put a character to stdout buffer 

SYNOPSIS 
COUNT putch(c) 

COUNT c; 

FUNCTION 
If c is not negative, it is treated as a character to be copied to the 
file controlled by the FlO buffer stdout; otherwise putch simply ensures 
that all characters in the buffer are written out. It should not be 
necessary· to explicitly drain the stdout buff~r in this fashion if putch 
is used to buffer text output. 

RETURNS 
putch returns c. An error exit occurs if any writes fail. 

EXAMPLE 
To copy a file, character by character: 

while (putch(getch(» != EOF) 

SEE ALSO 

BUGS 

finit, getc, getch~ putc, stdout 

The stdout buffer is drained only when the character written is a newline. 
If stdout has not been explicitly initialized before use by the call 

finit(&stdout, STDOUT, WRITE); 

a partial line may not be drained on program termination. 
output is to be written to stdout, the call 

finit(&stdout, STDOUT, BWRITE); 

If non-text 

should be made before stdout is used. Arbitrary characters, as opposed to 
ASCII text, are often sign extended to make negative integers; these 
quietly disappear on putch calls unless masked properly. 

, II - 89 



putf II. Portable C Runtime Library putf 

NAME 
putf - output arguments formatted 

SYNOPSIS 
VOID putf(pfio, fmt, arg1, arg2, ••• ) 

FlO *pfio; 
TEXT *fmt; 

FUNCTION 
putf converts a series of arguments arg1, ••• to text, which is output to 
the file controlled by the FlO buffer at pfio, under control of a format 
string at fmt. The format string consists of literal text to be output, 
interspersed with <field-specifier>s that determine how the arguments are 
to be interpreted and how they are to be converted for output. 

A <field-specifier> takes the form: 

~(+z:-zJ(#J<field-code> 

That i~, a <field-specifier> consists of a literal '~', followed by an op­
tional "+z" or "-z", where z can be any character, followed by an optional 
field width I, and is terminated by a <field-code>. A "+z", if present, 
calls for the field to be left-filled with the character z, while "-z" 
calls for the output of right fill with z. A I, if present, specifies the 
total width in characters of the field to be output, and is either a de-" 
cimal integer, or the letter tnt. If an 'n' 1s given, then the value of 
the next argument from the argument list is taken to specify the field 
width. 

For example, if arg1 is a double with the value 100.53, then: 

putf(&stdout, "~+*9.2f", arg1); 
putf( &stdout, ""~+*n.nf". 9, 2, arg1); 

both will output: 

"***100.53 

If the number of characters needed to represent the output item is less 
than the field width, fill characters are used to left or right pad the 
item up to the field width. By default, left fill with spaces is used. 
The default field width is" zero. 

A <field-code> is composed of a <modifier>, a <specifier> or both. The 
<specifier> defines how an output field is to be represented, and is one 
of the following: 

c = char integer 
s = short integer 
i = integer 
1 = long "integer 
p = NUL-terminated string 
b = buffer of specified length 

II - 90 



putf 

A 

- 2 -

d = double output in scientific notation (e.g., 1.00e+00) 
f = double output in fixed point notation (e.g., 1.00) 
x = fill characters (usually spaces) only 

<modifier> causes an integer value to be output as: 

a = ASCII characters 
h = hexadecimal (no leading "Ox") 
0 = octal (no leading '0') 
u = unsigned decimal 

putf 

If no <specifier> is given, it is presumed to be 'i', and a <modifier> 
given from the above series will be taken to apply to the implied integer 
field. If a <specifier> of 'c', 's', 'i' or '1' is given with no <modif­
ier>, the associated value is output in signed decimal. 

In addition, an optional precision modifier, ".R", limits the' number of 
characters actually output with a <specifier> of 'p' or 'b', and specifies 
the number of fractional digits output with a <specifier> of 'd' or 'f'. 
Like the field width specifier, the precision modifier U may be either an 
explicit integer, or an 'n', to make use of the next argument value in se­
quence. 

Hence.a <field-code> usually consists of one of the following combinations 
of <specifier> and <modifier>: 

[alhloluJ{clslill} 
[.#J{blpldlf} 
{alhlolu} 
{x} 

1* integer output */ 
/* string or floating output */ 
1* default specifier is i */ 
/* just output fill characters */ 

Any other character in the place of a <field-code> is taken as a single 
literal character to be output, permitting a ,~, to be output with a "S$" 
specification. 

The 'a' modifier treats the integer as a sequence of characters of the ap­
propriate length, and outputs the characters in descending order of their 
significance within the number.' This permits multi-byte binary data to be 
written to a file in a host independent manner. 

A string of characters may be output under the "p' field code, if it is 
NUL-terminated, or under 'b' if its length is known. 

If arg2 is a vector containing the 11-character NUL-terminated string 
"hello world", either of these calls would output the string: 

putf(&stdout, "Sp\n", arg2); 
putf(&stdout, "Sb\n", arg2, 11); 

In the first case, the argument is a pointer to the beginning of the 
string; in the second case two arguments are used, one a pointer to the 
start of the string and the second an integer specifying its length. In 
either case, the number of characters actually output will be no more than 
the precision modifier, if it is present and non-zero. 

II - 91 



putf - 3 - putf 

A double (or float) number may be output with' 'd' or 'f', the precision 
modifier specifying the number of characters to the right of the decimal 
point. For the 'd' field code, the number is written in the scientific 
notation form 

(-In.n*e{+l-}n* 

There is always one digit to the left of the decimal point; there are ei­
ther two or three digits in the exponent, depending on the target machine. 
The 'f' field code prints the number in fixed point format, i.e., without 
exponent. In either case, no more than 24 characters will be output. 

For example, if arg1 is a double with the value 100.53. then: 

putf(&stdout, "i1.4d\n", arg1); 

would output it as: . 

1.0053e+02 

while: 

putf(&stdout, "$S6.nf", 2, arg1); 

would output it in fixed point notation as: 

$100.53 

The 'xt field code consumes no arguments; it is a convenient way to output 
pure filler. 

RETURNS 
Nothing. An error exit occurs if any writes fail, or ~f (pfio -- NULL). 

EXAMPLE 
putf(&stdout, "~i errors in file Sp\n", nerrors, fname); 

SEE ALSO 

BUGS 

decode, dtoe. dtof, errfmt •. putfmt 

A call with more <field-specif1er>s than argument variables will produce 
unpedictable results. 

II - 92 



putfmt II. Portable C Runtime Library 

NAME 
putfmt - format arguments to stdout 

SYNOPSIS 
VOID putfmt(fmt, arg1, arg2, ••• ) 

TEXT *fmt; 

FUNCTION 

putfmt 

putfmt writes formatted output to the file oontrolled by the FlO buffer 
stdout, using the format string at fmt and the arguments argx, in exaotly 
the same way as putf. 

RETURNS 
Nothing. An error exit occurs if any writes fail. 

EXAMPLE 
putfmt("%i:%p\n", lineno, line); 

SEE ALSO 
decode, errfmt, finit, putf, stdout 

BUGS 
The stdout buffer is drained only when the last oharaoter written is a 
newline. If stdout has not been explioitly initialized before use by the 
call 

finit(&stdout, STDOUT, WRITE); 

a partial line may not be drained on program termination. 
output is to be written to stdout, the call 

finit(&stdout, STDOUT, BWRITE); 

should be made before stdout is used. 

If non-text 

II - 9~ 



I putl II. Portable C Runtime Library 

NAME 
putl - put a text line from buffer 

SYNOPSIS 
BYTES putl(pfio, s, n) 

FlO *pfio; 
TEXT *s; 
BTIES n; 

FUNCTION 

putl 

putl oopies oharacters from the n oharacter buffer starting at s to the 
file oontrolled by the FIO buffer at pfio. 

RETURNS 
putl returns n. An error exit ooours if any writes fail, or if (pfio == 
NULL) • 

EXAMPLE 
To oopy a text file, line by line: 

while (putl(&staout, buf, getl(&stain, but, BUFSIZ!») 

SEE ALSO 
getl, getlin, putlin 

II - 94 



putlin II. Portable C Runtime Library 

NAME 
putlin - put a text line to stdout 

SYNOPSIS 
BYTES putlin(s, n) 

TEXT *s; 
BYTES n; 

FUNCTION 

putlin 

putlin copies characters from the n character buffer starting at s to the 
file controlled by the FlO buffer stdout. 

RETURNS 
putlin returns n. An error exit occurs if any writes fail. 

EXAMPLE 
To copy a text file, line by line: 

while (putlin(buf, getlin(buf. BUFSIZE») 

SEE ALSO 
finit, getl, getlin, putl. stdout 

BUGS 
The stdout buffer is drained only when the last character written is a 
newline. If stdout has not been explicitly initialized before use by the 
call 

finit(&stdout, SiDOUT. WRITE); 

a par-tial line may not be drained on program termination. 
output is to be written to stdout, the call 

finit(&stdout. STDOUT, BWRITE); 

should be made before stdout is used. 

If non-text 

II - 95 



, putstr . II. Portable C Runtime Library 

NAME 
putstr - copy multiple strings to file 

SYNOPSIS 
VOID putstr(fd, arg1, arg2, 

FILE fd; 
TEXT *arg 1, *arg2. • •• ; 

FUNCTION 

• • • t NULL) 

putstr 

putstr writes a series of strings out to a file with descriptor fda Each 
string begins at arg1, ••• and is te~inated by a NUL '\0'. The series of 
string arguments is terminated by a NULL pointer argument. For each 
string, putstr invokes lenstr to discover its size and issues a call 
directly to write; therefore, putstr sh~uld only be used for low volume 
output. 

RETURNS 
Nothing. 

EXAMPLE 
putstr(STDERR, fname, ": bad fo~at\n"t NULL); 

SEE ALSO 
lenstr, write(III) 

BUGS 
Forgetting the terminating NULL pointer is usually disastrous. 

II - 96 



remark II. Portable C Runtime Library 

NAME 
remark - print non-fatal error message 

SYNOPSIS 
VOID remark(s1, s2); 

TEXT *s 1, *s2; 

FUNCTION 

remark 

remark prints an error message to STDERR, consisting of the concatenation 
of strings s1 and s2, followed by a newline. It then returns to the call­
er for further processing. 

RETURNS 
Nothing. 

EXAMPLE 
if «fd = open(name. READ. 0)) < 0) 

remark( "can't open: ", name); 

SEE ALSO 
errfmt. error. putstr 

II - 97 



s~nbuf II •. " Portable C Runtime Library 

NAME 
scnbuf - scan buffer for character 

SYNOPSIS 
BYTES scnbufCs, n, c) 

TEXT *s; 
BYTES n; 
TEXT c; 

FUNCTION 

scnbuf 

scnbuf looks for the first occurrence of a specific character c in an n 
character buffer starting at s. 

RETURNS 
scnbuf returns the index of the first character that matches c, or n if 
none. 

EXAMPLE 
To map keybuft] characters into subst(] characters: 

if «n : scnbuf(keybuf, KEYSIZ, .s» !: KEYSIZ) 
*s : subst(n]; 

SEE ALSO 
inbuf, instr, notbuf, notstr. scnstr, subbuf, substr 

II - 98 



scnstr II. Portable C Runtime Library 

NAME 
scnstr - scan string for character 

SYNOPSIS 
BYTES scnstr(s, c) 

TEXT *s, c; 

FUNCTION 

scnstr 

scnstr looks for the first occurrence of a specific character c in a NUL 
terminated target string s. 

RETURNS 
scnstr returns the index of the first character that matches c, or the in­
dex of the terminating NUL if none does. 

EXAMPLE 
To map keystr[] characters into subst[] characters: 

if (s(n = scnstr(keystr, *s)]) 
*s = subst[ n]; 

SEE ALSO 
inbuf, instr, notbuf, notstr, scnbuf, subbuf, substr 

II - 99 



sin II. Portable C Run time Library' sin 

NAME 
sin - sine in radians 

SYNOPSIS 
DOUBLE sine x) 

DOUBLE x; 

, FUNCTION 
s1n computes the s1ne of x, expressed in radians, to full double preci­
sion. It works by scaling x in quadrants, then computing the appropriate 
sin or oos of an angle in the first half quadrant, using a sixth order 
telescoped Taylor series approximation. If the magnitude of x is too 
large to oontain a fract10nal quadrant part, the value of sin is O. 

RETURNS 
sin returns the nearest internal representation to s1n x, expressed as a 
double floating value. 

EXAMPLE 
To rotate a vector through the angle theta: 

xnew = xold * oos(theta) - yold * s1n(theta); 
ynew = xold * s1n(theta) + yold • oos(theta); 

SEE ALSO 
cos 

II - 100 



sort II. Portable C Runtime Library sort 

NAME 
sort - sort items in memory 

SYNOPSIS 
VOID sort(n, ordf, excf, base) 

ARGINT n; 
COUNT (*ordf)(); 
VOID (*excf)(); 
TEXT *base; 

FUNCTION 
sort orders n items in memory using the quicksort algorithm. 
whether items i and j are in order by performing the call 

(*ordf)(i, j, &base); 

It decides 

where i and j are both guaranteed to be in the range [0, n). If (item i 
is to sort less than item j) then the value returned must be less than 
zero; otherwise if (item i is to sort equal to item j) then the value re­
turned must be zero; the value is otherwise unconstrained. 

To exchange two items, sort makes the call 

'(*excf)(i, j, &base); 

and henceforth presumes that the items are interchanged. 

Note that 'it is the address of base that is passed to both functions. 
This permits multiple, parameters to .follow base in the original argument 
list, which can be accessed as members of a structure pointed to by &base, 
providing the structure is declared with careful knowledge of how C passes 
arguments. For_ordering and exchange functions in the know, base can also' 
simply be ignored. 

RETURNS 
Nothing. The items are sorted in place. 

EXAMPLE 
To sort an array of short, integers in ascending order: 

COUNT iord(i, j, pal 
COUNT it j, **pa; 
{ 
return «*pa)Ei] - (*pa)[j]); 
} 

VOID iswap(i, j, pal 
COUNT i, j, **pa; 
{ 
COUNT t; 

t = (*pa)Ei], (*pa)[i] = (*pa)[j], (*pa)[j] = t; 
} 

II - 101 



sort 

BUGS 

VOID isortCa, n) 
COUNT a(], n; 
{ 

- 2 -

sortCn, &iord, &iswap, a); 
} 

sort 

It can't sort more than half of memory, i.e •• n is taken as signed and 
must be positive. 

II - 102 



sqrt II. Portable C Runtime Library sqrt 

NAME 
sqrt - real square root 

SYNOPSIS' 
DOUBLE sqrt( x) 

DOUBLE x; 

FUNCTION 
sqrt computes the square root of x to full double preclslon. It works by 
expressing x as a fraction in the interval-[1/2, 1), times an integer 
power of two.' The square root of the fraction is obtained by three itera­
tions of Newton's method, using a quadratic approximation as a starting 
value. 

RETURNS 
sqrt returns the nearest internal representation to sqrt x, expressed as a 
double floating value. If x is negative, a domain error condition is 
raised. 

EXAMPLE 
To find the magnitude.of a vector: 

mag = sqrt(x * x + y * y); 

SEE ALSO· 
_domain(IV), exp 

II - 103 



squeeze II. Portable C Runtime Library 

NAME 
squeeze - delete specified character from buffer 

SYNOPSIS 
BYTES squeeze(s,.n, c) 

TEXT c, *s; 
BYTES n; 

FUNCTION 

squeeze 

squeeze deletes oharacter c from the n-character buffer starting at s, and 
compresses it in place. 

RETURNS 
squeeze returns the number of chararcters remaining ,in s, whioh 1s in the 
interval to, n]. 

EXAMPLE 
To write out a buffer after stripping off NULs and carriage returns: 

write (STDOUT, buf, squeeze(buf, squeeze (buf, BUFSIZE, '\0'), '\r'»; 

SEE ALSO 
fill 

II - 10~ 



stdin II. Portable C Runtime Library 

NAME 
stdin - the standard input control buffer 

SYNOPSIS 
FIO stdin; 

FUNCTION 
stdin is an FlO control buffer initialized for input from STDIN. 

EXAMPLE 
To count lines: 

for (nl = 0; getl(&stdin, buf, BUFSIZE); ++nl) 

SEE ALSO 
stdout 

stdin 

II - 105 



I 

stdout II. Portable C Runtime Library stdout 

NAME 
stdout - the standard output control buffer 

SYNOPSIS 
FIO stdout; 

FUNCTION 
stdout is an FIO control buffer initialized for output to STDOUT. 

EXAMPLE 
putl(&stdout, outbuf, outsiz); 

SEE ALSO 
finlt, stdin 

BUGS 
stdout should not be used for non-text output unless initialized before 
use by 

finit(&stdout, STDOUT, BWRIT!); 

II - 106 



stob II. Portable C Runtime Library stob 

NAME 
stob - convert short to text in buffer 

SYNOPSIS 
BYTES stob(s, i, base) 

TEXT *s; 
COUNT i; 
COUNT base; 

FUNCTION 
stob converts the short i to a text representation in the buffer starting 
at s. The number is represented in the base specified, using lower case 
letters beginning with 'a' to specify digits from 10 on. If (0 < base) 
the number i is taken as unsigned; otherwise if (base < 0) negative 
numbers have a leading minus sign and are converted to -base; if (base --
0) it is taken as -10. Only magnitudes of base between 2 and 36 are gen­
erally meaningful, but no check is made for reasonableness. 

RETURNS 
The value returned is the number of characters used to represent the 
short, which in hexadecimal can be up to four digits plus sign. 

EXAMPLE 
To output i in decimal: 

write(STDOUT, buf, stob(buf, i, 10»; 

SEE ALSO 

BUGS 

btoi, btol, btos, itob, Itob 

The length of the buffer is not specifiable. If (lbase: == 1) the program 
can bomb; if (36 < lbase:> funny characters can be inserted in the buffer. 

II - 107 



~uobuf II. Portable C Runtime Library 

NAME 
subbuf - find occurrence of substring in buffer 

SYNOPSIS 
BYTES·subbuf(s, ns, p, np) 

T.EXT *s, *p; 
BYTES ns, np: 

FUNCTION 

subbuf 

subbuf scans the buffer starting at s of size ns, and looks for the first 
occurrence of the substring at p of size np. 

RETURNS 
The value returned is the· index in s of the leftmost character in the sub­
string if subbuf is successful; otherwise, ns is returned. 

EXAMPLE 
for(p = buf, i = size; (j = subbufCp, i, "\r\n", 2» < i; 

p =+ j + 2, i =- j + 2) 

SEE ALSO· 

{ 
write(fd, p, j); 
write(fd, "\a" , 1); 
} 

amatch, inbuf, instr, match, notbuf,. notstr, scnbuf, scnstr, substr 

II - 108 



substr II. Portable C Runtime Library 

NAME 
substr - find occurrence of substring 

SYNOPSIS 
BYTES substr(s, p) 

TEXT *s" *p; 

FUNCTION 

substr 

substr scans the string starting at s, and looks for the first occurrence 
of the substring at p. 

RETURNS 
The value returned is the index in s of the leftmost character in the sub­
string if substr is successful; otherwise, the index of the terminating 
NUL is returned. 

EXAMPLE 
if (line[substr(line, nPagen)]) 

putrmt(n~s: ~\nn, Ino / 66 + 1, line); 

SEE ALSO 
amatch, inbuf, instr, match, notbuf, notstr, scnbuf, scnstr, subbuf 

II - 109 



tolower II. Portable C Runtime Library 

N~E 
tolower - convert character to lowercase if necessary 

SYNOPSIS 
tolower(c) 

FUNCTION 

tolower 

tolower converts an uppercase letter to its lowercase equivalent, leaving 
all other characters unscathed. 

RETURNS 
tolower is a numerical rvalue guaranteed not t~ be an uppercase character. 

EXAMPLE 
To accumulate a hexadecimal digit: 

if ('a' <= c && c <= 'f' II 'A' <= c && c <= 'Ff) 
sum = sum • 10 + tolower(c) + (10 - fa'); 

SEE ALSO 

BUGS 

isalpha, isdigit, islower, isupper. iswhite, toupper 

Because it is a macro, tolower cannot be called from non-C programs, nor 
can its address ·be taken. Arguments with side effects may be evaluated 
other than just once. 

II - 110 



toupper II. Portable C Runtime Library 

NAME 
toupper - convert character to uppercase if necessary 

SYNOPSIS 
toupper(c) 

FUNCTION 

toupper 

toupper converts a lowercase letter to its uppercase equivalent, leaving 
all other characters unscathed. 

RETURNS 
toupper is a numerical rvalue guaranteed not to be a lowercase character. 

EXAMPLE 
To convert a character string to upppercase letters: 

for (i = 0; i < size; ++i) 
buf[i] = toupper(buf[i]); 

SEE ALSO 

BUGS 

isalpha, isdigit, islower, isupper, iswhite, tolower 

Because it is a macro, toupper cannot be called from non-C programs, nor 
can- its address be taken. Arguments with side effects may be eval-uated 
other than just once. 

II - ,,-, 



usage II. Portable C Runtime Library 

NAME. 
usage - output standard usage information 

SYNOPSIS 
COUNT usage(msg) 

TEXT *msg; 

FUNCTION 

usage 

usage outputs to STDERR the string "usage: <pname)", followed by the 
string pointed to by msg, where <pname) is the name by which the current 
program was invoked. If msg is terminated with a newline, usage immedi­
ately takes an error exit. 

RETURNS 
If usage returns to the caller, its value is the number of characters out­
put to STDERR. 

EXAMPLE 
if (1 < aflag + bflag + nflag) 
usage("-(a b n] <f1les)\n"); 

SEE ALSO 
-pname(III), getflags 

II .. '12 



Cint 
main 
_pname 
close 
create 
exit 
lseek 
mkexec 
onexit 
onintr 
open 
read 
remove 
sbreak 
uname 
write 

III. C System Interface Library 

TABLE OF CONTENTS 

C interface to operating system 
enter a C program 
program name 
close a file 
open an empty instance of a file 
terminate program execution 
set file read/write pointer 
make file executable 
call function on program exit 
capture interrupts 
open a file 
read characters from a file 
remove a file 
set system break 
create a unique file name 
write characters to a file 

III - i 



Cint III. C System Interface Library Cint 

NAME 
Cint - C interface to operating system 

FUNCTION 
C programs operating in user mode under any operating system may assume 
the existence of several functions which implement program entry/exit and 
low-level I/O. This section documents these functions, plus several crit­
ical presumptions that can be made about the environment supplied, in the 
most portable of terms. Details of actual implementations may be found in 
the variousC Interface Manuals; but these are best ignored if portability 
is considered a virtue. 

Each C program must provide a function maine), detailed on a separate 
manual page, that has access to the command line used to invoke the pro­
gram. Returning from main, or calling exit(), terminates program execu­
tion and reports at most one bit of status, success or failure, to the in­
voker. 

C programs may assume the existence of three open text files: STDIN (file 
descriptor 0 )., STDOUT (file descriptor 1), and STDERR (file descriptor 2). 
The first may be used with read() and close(); the latter two may be used 
with write() and close(). 

The."standard input" STDIN and "standard output" STDOUT may be redirected 
on the command line (transparently to the program); the "standard error" 
file STDERR is a reliable destination for error messages. The following 
conventions apply to I/O: 

A filename - is a string, hence a NUL terminated array of characters, 
hence a pointer to char when used as an argument. For maximum porta­
bility, a filename should consist of letters, of one case only, and 
digits. The first character should be a letter and there should be 
no more than six characters, optionally followed by a '.' and no more 
than two more letters. 

A file descriptor - is a short integer (type FILE in the standard header 
std.h) that is guaranteed to be non-negative. Its value should be 
otherwise assumed to be magic. 

A mode - is a short integer that specifies reading (mode -- 0), writing 
(mode == 1), or updating (mode == 2). No other values are defined. 

A binary file - looks to a C program like a sequence of characters, 
period. There is no record structure and all character codes are al­
lowed. Trailing NULs may be provided, free of charge, by some 
operating systems. 

A text file - is much like a binary file, except it is assumed to contain 
printable text that may be mapped between internal and external 
forms. Most programs deal with such files of printable text, where a 
line structure is imposed (internally) by the presence of a newline 
(ASCII linefeed) character at the end of each line. Lines can be as­
SlJIlleti never to be longer than 512 characters, counting the terminat­
ing ne.wl ine, nor should a text file ever be produced whose last 1 ine 

III - 1 



Cint - 2 - 'Cint 

has no newline at the end. 

Space is reserved for each program to grow a stack, or LIFO list of func­
tion call argument lists and automatic storage frames, and a heap, or un­
structured data area. Heap is purchased in (not necessarily contiguous) 
chunks by calls on sbreak(), and is never given back during program execu­
tion. Stack and heap often must contend for the same (limited) space, so 
an otherwise correct C program may terminate early, or (sadly) misbehave, 
because insufficient space was allotted. 

Note that all objects in C are presumed to have non-NULL addresses; the 
system is obliged never to bind an external identifier to the value zero. 
The system interface ensures that address zero never occurs on the stack 
or heap, as well. In fact, the addresses -, and +' are also discouraged, 
since some functions treat these values as codes for discred i ted pointers, 
much like NULL (0). 

III - 2 



main III. C System Interface Library main 

NAME 
main - enter a C program 

SYNOPSIS 
BOOL main(ac, av) 

BYTES ac; 
TEXT **av; 

FUNCTION 
main is the function called to initiate a C program; hence every user pro­
gram must contain a function called main. Its arguments are a sequence of 
NUL terminated strings, pointed at by the first ac elements of the array 
av, obtained from the command line used to invoke the programs. By con­
vention, ac is always at least one, av[O] is the name by which the program 
has been invoked, and av(1], if present, is the first argument string, 
etc. Program execution is terminated by returning from main, or by an ex­
plicit call to exit. In either case, one bit of status is returned to the 
invoker_ to signify whether the program ran successfully. 

RETURNS 
main returns YES (or non-zero) if successful, otherwise NO (zero). 

EXAMPLE 
1* ECHO ARGUMENTS TO STDOUT 

* copyright (c) 1980 by Whitesmiths, Ltd. 
*/ 

'include <std.h> 

BOOL main(ac, av) 
BYTES ac; 
TEXT **av; 
{ 
if (1 < ac) 

{ 
putstr(STDOUT, *++av, NULL); 
for (--ac, ++av; --ac; ++av) 

putstr(STDOUT, " ", *av, NULL); 
write(STDOUT. "\n" , 1); 
} 

return (YES); 
} 

III - 3 



III. C System Interface Library oname -' 

NA"~E 
pname - program name 

SYNOPSIS 
rEX! _pname; 

FUNCTION 
pname is the (NUL terminated) name by which the program was invoked, if 

that can be determined from the command line'~ or the name provided by the 
C programmer. if present, or the name "error", delivered up by a waiting 
library module. The library definition i~ used only if no definition of 

pname is provided by the C program and/or the compile time name i~ not 
overridden at runtime. 

It is used primarily for labelling diagnostic printouts. 

SEE: ALSO 
error(II) 

III - 4 



close III. C System Interface Library 

NAME 
close - close a file 

SYNOPSIS 
FILE close (fd) 

FILE fd; 

FUNCTION 

close 

close closes the file associated with the file descriptor fd, making the 
fd available for future open or create calls. 

RETURNS 
close returns the now useless file descriptor, if successful, or a nega­
tive number. 

EXAMPLE 
To copy an arbitrary number of files: 

while (fd = getfiles(&ac, &av, STDIN, -1» 
{ 

SEE ALSO 

while (0 < (n = read(fd, buf, BUFSIZE»} 
write(STDOUT, buf, n); 

close( fd); 
} 

create, open, remove, uname 

III - 5 



create III. C System Interface Library create 

N~E 
create - open an empty instance of a file 

SYNOPSIS 
FILE create(fname, mode, rsize) 

TEXT ·fname; 
COUNT mode; 
BYTES rsize; 

FUNCTION 
create makes a new file fname, if it did not previously exist, or trun­
cates the existing file to zero length. If (mode == 0) the file is opened. 
for reading, else if (mode == 1) it is opened for writing, else (mode --
2) of necessity and the file is opened for updating (reading and writing). 

If the file is to contain arbitrary binary data, as opposed to printable 
ASCII text, the record size rsize should be non-zero. Not all systems 
behave well if a textfile is created for updating. 

RETURNS 
create returns a file descriptor for the created file or a negative 
number. 

EXAMPLE 
if «fd = create("xeq", WRITE, 1» < 0) 

write (STDERR, "~an't create xeq\n", 17); 

SEE ALSO 
close, open, remove, uname 

III - 6 



exit III. C System Interface Library 

NAME 
exit - terminate program execution 

SYNOPSIS 
VOID exit(success) 

BOOL success; 

FUNCTION 

exit 

exit calls all functions registered with onexit, closes all files, and 
terminates program execution. exit is called with a non-zero (YES) to in­
dicate success, or a zero (NO) to indicate unsuccessful termination; not 
all systems provide a recipient for this information. 

RETURNS 
exit will never return to its caller. 

EXAMPLE 
if «fd = open("file", READ, 0» < 0) 

{ 

SEE ALSO 
onexit 

write (STDERR, "can't open file\n", 16); 
exitCNO); 
} 

III - 7 



lseek III. C System Interface Library lseek 

NAME 
lseek - set fiie read/write pointer 

SYNOPSIS 
COUNT lseek(fd, offset, sense) 

FILE fd; 
LONG offset; 
COUNT sense; 

FUNCTION 
lseek uses the long offset provided to modify the read/write pointer for 
the binary file fd, under control of sense •. If (sense == 0) the pointer. 
is set to the byte offset, which should be positive. If (sense == 1) the 
byte offset is algebraically added to the current pointer. Other values 
of sense are extremely system dependent. 

The call lseek(fd, OL, 1) is guaranteed to leave the file pointer unmodi­
fied and, more important, to succeed only if lseek calls are both accept­
able and meaningful for the fd specified. Other lseek calls may appear to 
succeed, but without effect, as when rewinding a terminal. 

RETURNS 
lseek returns the file descriptor if successful, or a negative number. 

EXAMPLE' 
To read a 512-byte block: 

III - 8 

BOOt getblock(buf, blkno) 
TEXT ·buf; 
BYTES blkno; 
{ 

lseek(STDIN, (LONG)blkno « 9, 0); 
return (read(STDIN, buf, BUFSIZE) 1= BUFSIZE); 
} 



mkexec III. C System Interface Library mkexec 

NAME 
mkexec - make file executable 

SYNOPSIS 
BOOL mkexec(fname) 

TEXT ffname; 

FUNCTION 
mkexec converts the file fname to executable form. This may entail renam­
ing the file by adding or replacing a system dependent suffix (or "ex­
tent") to fname; or it may simply involve altering access attributes. It 
is used by program constructors (loaders, linkers, task builders) to bless 
a successful product. 

RETURNS 
mkexec returns true if successful, otherwise false. 

EXAMPLE 
if (load'() && load2(» 

return (mkexec(xfile»; 

III - 9 



onexit III. C System Interface Library 

NAME 
onexlt - call function on program exit 

SYNOPSIS 
VOID (*onexitC»(pfn) 

VOID (*(*pfn)(»(); 

FUNCTION 

onexit 

onexit registers the function pointed at by pfn, to be called on program 
exit. The function at pfn i~ obliged to return the pointer returned by 
the onexit call, so that any previously registered functions can also be 
called • 

RETURNS 
onexit returns a pointer to another function; it is guaranteed to be non­
NULL. 

EXAMPLE 
To register the function thi~guy: 

GLOBAL VOID (*(*nextguy)(»(), (*thi~guy(»(); 

if (!nextguy) 

SEE ALSO 
exit 

BUGS 

nextguy = onexit(&thisguy); 

The type declarations defy description, and are still wrong. 

III - 10 



onintr III. C System Interface Library onintr 

NAME 
onintr - capture interrupts 

SYNOPSIS 
VOID onintr (pfn) 

VOID (*pfn) (); 

FUNCTION 
onintr ensures that the function at pfn is called on the occurrence of an 
interrupt generated from the keyboard of a controlling terminal. (Typing 
a delete DEL, or sometimes a ctl-C ETX, performs this service on many sys­
tems.) Any earlier call to onintr is overriden~ 

The function is called with one integer argument, whose value is always 
zero, and must not return; if it does, a message is output to STDERR and 
an immediate error exit is taken. 

If (pfn is NULL) then the interrupt is disabled (turned off), assuming 
that the system supports such an operation. A disabled interrupt is not, 
however, turned on by a subsequent call with pfn not NULL~ Systems that 
support nothing resembling a keyboard interrupt behave as if the interrupt 
were disabled at program startup, i.e., the function at pfn 1s never 
called. 

RETURNS 
Nothing. 

EXAMPLE 
A common use of onintr is to ensure a graceful exit on early termination: 

VOID rmtemp() 
{ 

remove( uname(» ; 
} 

onexit(&rmtemp) ; 
onintr(&exit)~ 

Still another use is to provide a way of terminating long printouts, 
as with an interactive editor: 

while (!enter(docmd, NULL» 
putstr(STDOUT, "7\n", NULL); 

VOID docmd() 
{ 
onintr(&leave); 

SEE ALSO 
enter(II), leave(II), onexit 

III - 11 



open III. C System Interface Library open 

NAME 
open - open a file 

SYNOPSIS 
FILE open(fname, mode, rsize) 

TEXT *fname; 
COUNT mode; 
BYTES rsize; 

FUNCTION 
open opens a file·fname and assigns a file descriptor to it. If (mode --
0) the file is opened for reading. else if (mode -- 1) it is opened for 
writing, else (mode == 2) of necessity and the file is opened for updating 
(reading and writing). 

If the file is to contain arbitrary binary data, as opposed to printable 
ASCII text, the record size rsize should be non-zero. Not all systems 
behave well if a text file is opened for updating. 

RETURNS 
open returns a file descriptor for the opened file, or a negative number, 
if unsuccessful. 

EXAMPLE 
--1-f'--+<f'd-- = -open-(--"-xeq"-,---WRIT-E,- -- -l-l-) --{ 0> 

write(STDERR, "can't open xeq\n", 16); 

SEE ALSO 
close, create 

III - 12 



read' III. C System Interface Library 

NAME 
read - read characters from a file 

SYNOPSIS 
COUNT read(fd, buf, size) 

FILE fd; 
TEXT *buf; 
BYTES size; 

FUNCTION 

read 

read reads up to size characters from the file specified by fd into the 
buffer starting at buf. 

RETURNS 
If an error occurs, read returns a negative number; if end of file is en­
countered, read returns zero; otherwise the value returned is between 1 
and size, inclusive, which is the number of characters actually read into 
buf. . 

EXAMPLE 
To copy a file: . 

while (0 < (n = read(STDIN, buf, BUFSIZE») 
write (STDOUT, buf, n); 

SEE ALSO 
write 

/ 
III - 13 



remove III. C System Interface Library 

NAME 
remove - remove a file 

SYNOPSIS 
FILE remove(fname) 

TEXT -fname; 

FUNCTION 

remove 

remove removes the file fname; on most systems, this is an irreversible 
act. 

RETURNS 
remove returns zero, if successful, or a negative number. 

EXAMPLE 
if (remove(uname()) < 0) 

putstr(STDERR, "can't remove temp file\n", NULL); 

III - 14 



sbreak . III. C System Interface Library sbreak 

NAME 
sbreak - set system break 

SYNOPSIS 
TEXT *sbreak(size) 

ARGINT size; 

FUNCTION 
sbreak moves the system break, at the top of the data area, algebraically 
up by size bytes, rounded up as necessary to placate memory management 
hardware. There is no guarantee that successive calls to sbreak will 
deliver contiguous areas of memory, nor can all systems safely accept a 
call with negative size. 

RETURNS 
If successful, sbreak returns a pointer to the start of the added data 
area; otherwise the value returned is NULL. 

EXAMPLE 
if (!(p = sbreak(nsyms * sizeof (symbol»» 

{ . 

putstr(STDERR, "not enough room!\n", NULL); 
exit(NO); 
} 

III - 15 



uname III. C System Interface Library uname 

NAME 
uname - create a unique file name 

SYNOPSIS 
TEXT *uname() 

FUNCTION 
uname returns a pointer to the start of a NUL terminated name which is 
likely not to conflict with normal user filenames. The name may be modi­
fied by a letter suffix (but not in place!), so that a family of process­
unique files may be dealt with. The name may be used as the first argu­
ment to a create, or subsequent open, call, so long as any such files 
created are removed before program termination. It is considered bad 
manners to leave scratch files lying about. 

RETURNS 
uname returns the same pointer on every call during a given program invo­
cation. The pointer will never be NULL. 

EXAMPLE 
.if·{(fd = create(uname(), WRITE, 1» < 0) 

putstr(STDERR, "can't create sort temp\n", NULL); 

SEE ALSO 
close, create, open, remove 

III - 16 



write III. C System Interface Library 

NAME 
write - write characters to a file 

SYNOPSIS 
COUNT write(fd, buf, size) 

FILE fd; . 
TEXT -buf; 
COUNT size; 

FUNCTION 

write 

write writes size characters starting at buf to the file specified by fd. 

RETURNS 
If an error occurs, writes either returns a negative number or a number 
other than size; otherwise size is returned. 

EXAMPLE 
To copy a file: 

while (0 < (n = read(STDIN, buf, BUFSIZE») 

SEE ALSO 
read 

if (write (STDOUT, buf, n) != n) 
{ 
putstr(STDERR, "write error\n", NULL); 
exit(NO) ; 
} 

III - 17 



Conventions 
addexp 

-domain 
domerr 
dtens 

::dzero 
fcan 

-frac 
:huge 
_norm 

ntens 
:poly 

raise 
ranerr - . 

_range 
round 

:tiny 
_unpack 

when 

IV. C System Interface Library 

TABLE OF CONTENTS 

of the C machine interface library 
scale double exponent 
report domain error 
domain error condition 
powers of ten 
double zero 
canonicalize floating point datum 
extract integer from fraction part 
largest double number 
convert double to normalized text string 
number of powers of ten 
compute polynomial 
raise an exception 
range error condition 
report range error 
round off a fraction string 
smallest double number 
extract fraction from exponent part 
handle exceptions 

IV - i 



Conventions IV. C System Interface Library Conventions 

NAME 
Conventions - of the C machine interface library 

FUNCTION 
The functions and variables documented in this section are usable just 
like any of those in Section II or Section III, but need not be known to 
the typical C programmer. Rather, they are called upon by higher .level 
functions to perform machine dependent operations, to provide machine 
dependent information, or merely to provide an important service with ef­
ficiency and/or extra precision. 

They are isolated in a separate section a) to avoid cluttering an already 
extensive collection of useful functions with arcana, and b) to show pros­
pective implementors what is required in the way of low level support for 
a new machine. Note that Section III serves much the same purpose for im­
plementors of new operating system interfaces. 

IV - 1 



_addexp IV. C System Interface Library 

NAME 
_addexp - scale double exponent 

SYNOPSIS 
DOUBLE _addexp(d, n, msg) 

DOUBLE d; 
COUNT n; 
TEXT *tasg; 

FUNCTION 

_addexp 

addexp effectively multiplies the double d by two raised to the power n, 
although it endeavors to do so by some speedy ruse. If the double result 
is too large in magnitude to be represented by the machine, _range is 
called with msg. 

RETURNS 
_addexp returns the double result d • (1 « n), or any value returned by 
_range. 

EXAMPLE 
DOUBLE sqrt ( x) 

DOUBLE x; 
{ 
COUNT n; 

n = _unpack(&x); 
x = newton ( x) ; 
if (n & 1) 

x =* SQRT2; 
return (_addexp(x, n » 't "can't happen"»; 
} 

SEE ALSO 
_frac, _range, _unpack 

IV - 2 



_domain IV. C System Interface Library domain 

NAME 
domain - report domain error 

SYNOPSIS 
VOID domain(msg) 

TEXT -msg; 

FUNCTION 
domain is called by math functions to report a domain error, i.e., the 

fact that an input value lies outside the set of values over which the 
function is defined. It copies msg to domerr, then calls raise for the 
condition _domerr. This exception, -if not caught, results in an error 
exit that prints the NUL terminated string at msg to STDERR, followed by a 
newline. 

There is no way of inhibiting domain errors, though any code using when 
to handle them may choose to ignore their occurrence. 

RETURNS 
domain never returns to its caller. It may return from an instance of 

-when that is willing to handle a domain error; otherwise the program ex­
its, reporting failure. 

EXAMPLE 
DOUBLE sqrt(x) 

DOUBLE x; 
{ 
if (x < 0) 

_domain("negative argument to sqrt"); 

SEE ALSO 
_domerr, _raise, _range, when 

IV - 3 



IV. C System Interface Library domerr 

NAME 
domerr - domain error condition 

SYNOPSIS 
TEX'! *_domerr 

FUNCTION 
domerr is the condition raised when a domain error occurs, i.e., when a 

math function discovers that an input value lies outside the set of values 
over which the function is defined. 

SEE ALSO 
_domain, _raise, _ranerr 

IV - 1$ 



dtens IV. C System Interface Library 

NAME 
dtens - powers of ten 

SYNOPSIS 
DOUBLE· _dtens(]; 

FUNCTION 
dtens is an array of doubles with values 1, 10, 100, 10**4, 

up to the largest such number the machine can represent. 
entries in _dtens is recorded in the variable _ntens. 

SEE ALSO 
_ntens 

dtens 

10**8, etc. 
The number of 

IV - 5 



dzero IV. C System Interface Library 

NAME 
_dzero - double zero 

SYNOPSIS 
DOUBLE _dzero; 

FUNCTION 
_dzero is a double zero, provided for convenience more than necessity. 

SEE ALSO 
_huge, _tiny 

IV - 6 



fcan IV. C System Interface Library fcan 

NAME 
fcan - canonicalize floating point datum 

SYNOPSIS 
COUNT fc an ( pd ) 

TEXT fpd; 

FUNCTION 
fcan is a machine dependent routine required by the C code generators to 

translate native double floating data to a canonical format. Each code 
generator can then translate from canonical to target machine format, ir­
respective of the host environment. 

The canonical form is an array of eight characters stored in place of the 
double number at pd. pd[O] is zero if the number is positive. else 0200; 
pd[1] is the most significant byte of the fraction. with an assumed binary 
point to the left of its most significant bit; the remaining fraction 
bytes are stored in descending order of significance at pd[2] through 
pd[7J. If the number is nonzero, the most significant (0200) bit of pd[1] 
is set, so that the fraction is in the half-open interval [1/2. 1). 

It is assumed that the number at pd is normalized on entry to _fcan. 

RETURNS 
fcan returns the power of two by which the fraction must be multiplied to 

give the proper value. The sign and fraction bytes are written in place 
of the double number. 

IV - 7 



I 

_frac IV. C System Interface Library frac 

NAME 
_ftac - extract integer from fraction part 

SYNOPSIS 
COUNT frac(pd, mul) 

DOUBLE *pd, mul; 

FUNCTION 
frac forms the double produot of *pd and mul, then partitions it into an 

integer plus a double fraotion in the interval (-1/2, 1/2], delivers the 
fractional part to *pd and the low bits of the integer part as the value 
of the funotion. If the integer part cannot be properly represented as a 
COUNT, it is trunoated on the left without remark. 

RETURNS 
frao returns the low bits of the integer part of the produot C*pd * mul) 

as the value of the funotion and writes the fraotional part of the produot 
at *pd. 

EXAMPLE 
DOUBLE s 1nd ( x) 

DOUBLE x; 
{ 
COUNT n; 

n = _frac(&x, 1.0/90.0); ... 
SEE ALSO 

_addexp t _unpaok 

IV - 8 



IV. C System Interface Library 

NAME 
_huge - largest double number 

SYNOPSIS 
DOUBLE _huge 

FUNCTION 
_huge is the largest representable double number. 

SEE ALSO 
_dzero, _tiny 

IV - 9 



norm IV. C System Inter~ace Library 

NAME 
_norm - convert double to normalized text string 

SYNOPSIS 
COUNT norm(s, d, prec) 

TEXT *s; 
DOUBLE d; 
BYTES prec; 

FUNCTION 

norm 

_norm factors the double d into a) a double in the interval (0.1, 1) or 
zero, and b) an integral power of ten. The first prec digits of the frac­
tion are written as text characters in the buffer starting at s. If the 
number is negative on "entry, it is forced positive. 

RETURNS 
The value of the function on return is the power of ten to which the frac­
tion string in s must be raised to give the value of d. If d is zero, all 
characters in s are 'a's and the value returned is zero. 

SEE ALSO 
round 

IV - 10 



ntens IV. C System Interface Library ntens 

NAME 
ntens - number of powers of ten 

SYNOPSIS 
COUNT _ntens; 

FUNCTION 
ntens is the number of elements in the array _dtens, which holds various 

powers of ten as double numbers. 

SEE ALSO 
dtens 

IV - 11 



IV. C System Interface Library 

N~E 

_poly - compute polynomial 

SYNOPSIS 
DOUBLE _poly(d, tab, n) 

DOUBLE d, *tab; 
COUNT n; 

FUNCTION 
_poly computes the polyn~mial of order n in the independent variable d. 
using the coefficients in the table pointed to by tab. Horner's method is 
used, taking tab(O] as the coefficient of the highest power of d, so the 
value computed is: 

tab(n] + d * (tab(n-1J + d * ( ... + d * tab(O)) 

No precautions are taken against overflow or underflow. 

RETURNS 
_poly returns the double value of the polynomial of order n in d. 

EXAMPLE 
return (x * _poly(x • x. coeffs, 6»; 

IV - 12 



raise IV. C System Interface Library 

NAME 
raise - raise an exception 

SYNOPSIS 
VOID raise(ptr, cx) 

TEXT **-ptr, **cx; 

FUNCTION 

raise 

_raise signals the presence of a condition that must be handled by an ear­
lier call to when. The when/ raise mechanism is used to perform a broad 
spectrum of stack manipulations normally beyond the scope of the C 
language, including: Ada exception handling, Pascal nonlocal goto's, Idris 
process switching, editor interrupt fielding, and math error reporting. 

The ha~dler to be first considered is specified by ptr. If ptr is -1 or 
NULL, the latest when call is used as the start of a search for a willing 
handler; otherwise ptr must have been set by an earlier when call to 
specify that call as the st'arting point of the search. 

If cx is NULL or -1, then the first handler encountered returns to its 
caller with the value zero; qtherwise cx must match a condition argument 
of one of the registered handlers to be conSidered, or at some level it 
must be handled by a NULL terminating a list of condition arguments. 

The ·return from _when caused by a _raise call cleans up the stack if ei­
ther ptr or cx is NULL. Otherwise, the handler for that when call 
remains on the stack and is made the latest of the chain of handlers. 

RETURNS 
raise never returns to its caller. It returns from the latest willing 
when call with registers, stack, and handler chain restored to that lev­

el; the value returned by._when is nonnegative. The handler chain is ini­
tialized to a single catchall handler which calls error to print an error 
message, and takes an error exit. If the condition can be interpreted as 
the address of a pointer to a NUL terminated string, then that strlng, 
followed by a newline, is used as the error message; otherwise the message 
is "unchecked condition". 

EXAMPLE 
To exit on end of file: 

TEXT *endfile {"unchecked end of file"}; 

VOID readrec(buf) 
TEXT *buf; 
{ 

if (freadCSTDIN, 
_raise(NULL, 

} 

buf, 80) !: 80) 
&endfile) ; 

switch( when(NULL, &endfile, NULL» 
{ -

case 1: 
oneof() ; 

IV - 13 



2 -

} 

SEE ALSO 
_when, error(II), enter(II), leave(II) 

BUGS 
You are not expected to understand this. 

IV - 14 



ranerr IV. C System Interface Library ranerr 

NAME 
ranerr - range error condition 

SYNOPSIS 
TEXT * ranerr 

FUNCTION 
ranerr is the condition raised when a range error occurs, i.e., when a 

math routine discovers that a return value is too large to represent. Un­
like most conditions, the range condition may be inhibited from time to 
time by writing a nonzero value in ranerr. 

SEE ALSO 
_ domerr t _range 

IV - 15 



IV. C System Interface Library 

NAME 
_range - report range error 

SYNOPSIS 
DOUBLE range(msg) 

TEXT-*msg; 

FUNCTION 
_range is ,called by math functions to report a range error, i.e., the pro­
duction of an output value that cannot be represented properly by the 
machine. If ranerr is NULL; range copies msg to ranerr, then calls 
_raise for the condition _ranerr. This exception, if not caught, results 
in an error exit that prints the NUL terminated string atmsg to STDERR, 
followed by a newline. 

If _ranerr is not NULL, the condition is not raised, and _range returns to 
its caller. 

RETURNS 
If range returns to its caller, the value returned is the largest double 
that can be represented by the machine; otherwise the ranerr condition is 
raised and range does not return to its caller. It may return from an 
instance of _when that is willing to handle a range error; other~se the 
program eXlts, repor~lng t"alJ.ure. 

EXAMPLE' 
if ( lnhuge < x) 

:range("exp overfiow"); 

SEE ALSO 
_domain, _ranerr, _raise, _when 

IV - 16 

L 



round IV. C System Interface Library 

NAME 
round - round off a fraction string 

SYNOPSIS 
COUNT round(s, n, prec) 

TEXT *s; 
BYTES n, prec; 

FUNCTION 

round 

round rewrites the n character buffer starting at s as a properly rounded 
string of prec digits. 
'5'), no action is taken. 
incremented and carries 
'1000 ••• ' to prec digits. 

RETURNS 

If prec is outside the buffer, or if (s(prec] < 
Otherwise, the next character to the left is 
are propagated. All '9's is rewritten as 

round returns 1 if all '9's rounded up, otherwise zero. 

SEE ALSO 
norm 

BUGS 
No check is made for non-digits in the buffer. 

IV - 17 



IV. C System Interface Library 

NAME 
_tiny - smallest double number 

SYNOPSIS 
DOUBLE _tiny 

FUNCTION 
_tiny is the smallest positive representable double number larger than 
zero. 

SEE ALSO 
_dzero, _huge 

IV - 18 



_unpack IV. C System Interface Library 

NAME 
_unpack - extract fraction from exponent part 

SYNOPSIS 
COUNT unpack(pd) 

DOUBLE *pd; 

FUNCTION 

_unpack 

unpack partitions the double at .pd, which should be nonzero, into a 
fraction in the interval (1/2, 1) times two raised to an integer power, 
deliver·s the fraction to *pd and returns the integer power as the value of 
the function. 

RETURNS 
_unpack returns the power of two exponent of the double at pd as the value 
of the function and writes the fraction at *pd. The exponent is generally 
meaningless if d is zero. 

EXAMPLE 
DOUBLE sqrt(x) 

DOUBLE x; 
{ 
COUNT n; 

n = unpack( &x) ; 
x = newton ( x); 
if (n & 1) 

x =* SQRT2; 
return ( addexp(x, n » 1»; 
} -

SEE ALSO 
_addexp, frac 

IV - 19 



I 

IV. C System Interface Library 

NAME 
when - handle exceptions 

SYNOPSIS 
COUNT when(ptr, c1, c2, ••• , cend) 

TEXT **ptr, **c1, **02, ••• , **cend; 

FUNCTION 
_when registers a willingness to handle certain exceptions that may be 
raised by calls to raise. The whenl raise mechanism is used to perform 
a broad spectrum of stack manipulations-normally beyond the soope of the C 
language, including: Ada exception handling, Pascal nonlocal goto's, Idris 
process switching, editor interrupt fielding, and math error reporting. 

The call to _when causes its argument list and certain non-volatile regis­
ters to be left on the stack, where they are made the latest part of a 
chain of condition handlers. Should a subsequent call to raise report a 
condition that is to be handled by this part of the chaTn, control flow 
resumes with a return from when, indicating which condition has been 
raised. Upon every return, all register variables are restored to their 
values at the time of the initial call to when. 'nle raise call may 
cause the stack to be cleaned up as part of-the return from when; this is 
~ m~nd~~~v n~elud@ to returnin2 from any function that call~ when. 

If-ptr is not NULL, it is used as the address of a pointer that should be 
set to point' at the latest part ·of the handler chain; this value may be 
used by subsequent raise calls to specify this particular call to when 
instead of the normal top of the handler chain. ptr is also used when the 
stack is cleaned up on return, as the address at which to write the condi­
tion being handled. 

The conditions c1, c2, etc. each may assume any value except NULL or -1, 
although there is a strong presumption that the value is a valid data 
space address of a pointer to a NUL terminated string of characters. A-1 
is taken as a cend that indicates no further conditions, while a NULL is 
taken as a cend that will handle any condition. The leftmost condition 
argument that will handle a given condition, in the latest part of the 
handler chain, is chosen to handle the condition. 

Since _when plays fast and loose with the stack, it should never be used 
except as the lone operand in a switch statment, and all when calls must 
be carefully coordinated with appropriate _raise calls to ~tay sane. 

RETURNS 
_when returns -1 upon return from its initial setup. It returns zero on a 
cleanup return that reports no condition. Otherwise it returns the ordi­
nal position, within the argument list, of the condition it is handling; a 
one indicates el, two means c2, etc. If cend is NULL, its ordinal posi­
tion will be returned for any condition not otherwise handled. 

The stack is cleared, and a non-NULL ptr is used to return the second ar­
gument to raise. if a) either argument to _raise was NULL or b) if a NULL 
eend is handling the condition. 

IV - 20 



- 2 -

EXAMPLE: 
To field interrupts interactively: 

VOID endup() 
{ 
putstr(srDQur. "?\n". NULL); 
rai~e(NULL, NULL); 

T 

FOREVER 
{ 

SEE ALSO 

onintr ( &endup) ; 
when (HUll, HULL); 

if (edit() == EOF) 
exit(YES) ; 

_rai~et enter(I!), leave(II) 

BUes 
You are not expeeted to under~tand thi~. 

when 

IV - 21 


	001
	002
	003
	004
	1-001
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	2-0001
	2-0002
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	3-001
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	4-001
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21

