
DISK SOFTWARE

REFERENCE MANUAL

CG SERIES

COLOR GRAPHICS COMPUTERS

Models

1398 1598 1998
1399 1599 1999

T~BLE OF CO~TENTS

l. INTRODUCTION

1.1 Scope of the Manual 1-1

1.2 Terminology and Conventions 1-1

1.3 The Chromatics Disk System 1-2

2. DISK OPERATING SYSTEM (Option 41)

2.1 Entry into DOS 2-1

2.2 File Names 2-1

2.3.1 ABS 2-2

2.3.2 nAS 2-2

2.3.3 BUF 2-2

2.3.4 DAT 2-3

2.3.5 KIL 2-3

2.3.6 OBJ 2-3

2.3.7 PIC 2-3

2.3.R SRC 2-3

2.3.9 SYS 2-3

2.4 Patterns 2-4

2.5 Disk Commands 2-5

2.5.1 DIR 2-6

2.5.2 KILL 2-7

2.5.3 RENAME 2-7

2.5.4 COMPRESS 2-8

2.5.5 COpy 2-8

2.5.6 FOlU1AT 2-9

2.5.7 BUFF 2-10

2.5.8 DRAW 2-10

2.5.9 APPEND 2-10

2.5.10 PICTURE 2-10

2.5.11 REFRESH 2-10

2.5.12 STORE 2-11

TABLE OF CONTENTS -continued

2.5.13 FETCH

2.5.14 KEYS

2.5.15 DUPE

2.6 Initializing a New System Disk

2.6.1 Multiple drive systems

2.6.2 Single drive systems

2.7 Error Messages

2.7.1 ERROR II 10 - CRC ERROR CODE

2.7.2 ERROR If 11 - SEEK ERROR CODE

2.7.3 ERROR II 12 - RECORD NOT FOUND

2.7.4 ERROR II 13 - LOST DATA

2.7.5 ERROR # 14 - NOT READY

2.7.6 ERROR If 15 - WRITE PROTECT

2.7.7 ERROR II 20 - FILE NOT FOUND

2.7.8 ERROR # 21 - EMPTY SLOT FOUND

2.7.9 ERROR II 22 - NO HEX EOF

2.7.10 ERROR II 30 - CREATE BUFFER OVERFLOW

2.7.11 ERROR If 31 - COMMAND ERROR

2.7.12 ERROR II 32 - NO RUN ADDRESS

2.7.13 ERROR il 33 - ILLEG.\L CHARACTERS

2.7.14 ERROR fI 34 - NO ARGUMENTS

2.7.15 ERROR II 40 - ILLEGAL FILE NAME

2.7.16 ERROR II 41 - BAD DISK DRIVE NUMBER

2.7.17 ERROR II 42 - FATAL DISK ERROR

2.7.18 ERROR If 43 - DUPLICATE FILE NAME

2.7.19 ERROR II 44 - DATA ERROR

2.7.20 ERROR It 45 - DISK OR DIRECTORY

3. TEXT EDITOR

3.1 Entering the Text Editor

3.2 Edit Commands

3.3 Current Line Controls

3.3.1 Delete current line

3.3.2 Delete to end of line

OVERFLOW

(Option 62)

2-11

2-12

2-12A

2-l3

2-13

2-13

2-15

2-15

2-15

2-15

2-15

2-15

2-16

2-16

2-16

2-16

2-16

2-16

2-16

2-17

2-17

2-17

2-17

2-17

2-17

2-17

2-17

3-1

3-2

3-2

3-3

3-3

TABLE OF CONTENTS - continued

3.3.3 Recall last line

3.3.4 Delete current character

3.3.5 Insert space

3.4 Files

3.4.1 Input file

3.4.2 Working file

3.4.3 Output file

3.5 File Handling

3.5.1 Opening an input file

3.5.2 Getting lines from the input file

3.5.3 Assigning the output drive

3.5.4 Sending lines to the output file

3.5.5 Closing an output file

3.5.6 Returning to DOS

3.5.7 Examining the state of the workspace

3.6 Displaying Text

3.6.1 Listing with line numbers

3.6.2 Printing without line numbers

3.6.3 Changing page size

3.7 Line Editting

3.7.1 Inserting new lines of text

3.7.2 Deleting lines from the text

3.7.3 Finding lines in the text

3.7.4 Changing lines in the text

3.8 Screen Editting

3.9 Summary of Editting Commands

4. Z-80 ASSEMBLER

4.1 Entering the Assembler

4.2 Assembler CommAnns

4.2.1 Set output mode to absolute

4.2.2 Set output mode to binary

4.2.3 Inhibit assembly listing

(Option 63)

3-3

3-3

3-3

3-4

3-4

3-4

3-4

3-4

3-5

3-5

3-7

3-7

3-8

3-8

3-8

3-8

3-9

3-9

3-9

3-10

3-10

3-11

3-11

3-11

3-12

3-13

4-1

4-1

4-2

4-2

4-2

4.2.4

4.2.5

4.2.6

4.2.7

4.2.8

4.2.9

4.2.10

TABLE OF CONTENTS - continued

Turn on assembly listing

Set pause control

List symbol table

Direct output to alternate device

Direct output to standard device

Execute assembly

Close output file

4.2.11 Leaving the assembler

4.3 Syntax of Assembly Language Statements

4.4 Chromatics Pseudo-instructions

4.5

4.6

4.4.1 Origin

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

Equate

Define storage

Define bytes

Define Word

End

Standard Z-80 Instructions

Assembler Error Messages

4.6.1 A Argument error

4.6.2 D Duplicate label

4.6.3

4.6.4

4.6.5

4.6.6

4.6.7

4.6.8

L

M

o

P

S

u

Label error

Missing label

Opcode error

Paging error

Syntax error

Undefined symbol

4.6.9 V Value error

4.7 Using CRTOS I/O with Assembly Language

4.7.1 Input

4.7.2011 tput

5. PROH PROGR&'1MER (Option 52)

5.1 Entering the PROM Programmer

4-2

4-2

4-3

4-3

4-3

4-3

4-4

4-4

4-4

4-5

4-6

4-6

4-6

4-6

4-7

4-7

4-7

4-9

4-9

4-9

4-9

4-10

4-10

4-10

4-10

4-10

4-10

4-10

4-11

4-11

5-1

TABLE OF CONTENTS - continued

APPENDICES

A. KEYBOARD LAYOUT

B. ASCII CODE ASSIGNMENT

C. ERROR CODES

C.l Disk Error Codes

C.2 Assembly Error Codes

D. Z-80 OPCODES

E. DISK WRITE PROTECT

I. INDEX

C-l

C-2

1. INTRODUCTION

This manual provides a detailed description of the disk resident

software which is optionally available from Chromatics, Incorporated

when any of the floppy disk peripherals are added to one of the CG

series terminals. This manual is intended as a supplement to the

Operator's Manual, which should be studied before beginning the

present document.

1.1 Scope of the Manual

Chapter 2 covers the Disk Operating System, under which all the other

software executes. This chapter must be understood before reading

the remaining chapters. The third chapter explains the use of the

Text Editor, which is used to create and modify files stored on the

disk system. Chapter 4 describes the use of the Z-80 Disk Assembler,

which can be used to create executable code for use on the Chromatics

CG series terminals. The final chapter covers the PROM Programmer,

which may be used to write EPROM integrated circuits such as found

in Chromatics terminals. Note that the BASIC Language Interpreter

is described in a separate manual since it is a ROM resident rather

that disk resident system.

1.2 Terminology and Conventions

Conventions similar to those used in the Operator's Xanual, (see

especially chapter 1 and section 1.4), will be used here. However,

since the non-primary keys will be used only rarely, they will be

1-2

indicated by underlining, (for example, BOOT). Non-underlined capitals

may then be reserved to mean keys struck in sequence without inter-

vening blanks. To indicate clearly and precisely how to enter the

commands used by the software, the following conventions will be

followed.

1) Each keystroke will be identified by the name given on the
key. Keys with multiple character names will be underlined.
Blank character input will always be given explicitly, (in
the formal command definition), by "SPACE".

2) The key modifiers, CTRL and SHIFT, will immediately precede
the single key which they are to modify.

3) Keys are to be struck in order from left to right. All
returns and line feeds will be explicitly indicated by
RETURN and LF, respectively.

4) All zeroes will be slashed (0), and all alphabetic a's will
be unslashed.

5) Underlined, lower case words will be used to name one of
a set of keys or key sequences. For example, de1im is
defined to be a sequence of one or more spaces and commas
by

delim "= SPACE I , I delim SPACE I delim ,

which is read as "delim is defined to be a SPACE or a comma
or a delim followed by a space or a delim followed by a comma."
The vertical bars are used to separate the alternatives.

1.3 The Chromatics Disk System

Up to six drives, numbered 1 through 6, may be attached to any Chrom-

atics CG series terminal when Option 41, (Disk Controller with DOS

software), is p;;;::chased. The drives are identified by the single

digit drive number assigned when they are attached. A drive number

of 0 is used to specify all the drives together, usually implying a

search over all drives in ascending drive number order.

1-3

Information is stored on disks in concentric rings called tracks.

Standard disks have 77 tracks, {numbered 0 through 76), and Minifloppy R

disks have 35 tracks, (numbered 0 through 34). The highest and lowest

numbered tracks are reserved for system use. Each track is divided into

consecutive records called sectors. Standard disks have 26 sectors

per track, and Minifloppy R disks have 18 sectors per track. The

sectors are numbered from 1 through the highest sector number. Each

sector, (for both types of disks), contains 128 bytes of data. This

gives 256,256 bytes of storage per standard disk and 80,640 bytes per

Minifloppy R disk. For more information on disk formatting, see

subsection 2.5.6.

2. DISK OPERATING SYSTEM (DOS) (Option 41)

The Disk Operating System is provided with the purchase of Option 41,

the Floppy Disk Controller. DOS establishes the environment necessary

to execute all disk commands available from Chromatics and those created

by the user. This chapter will describe all presently implemented

Chromatics commands except for EDIT, ASMB and PROM, which are covered

in the remaining chapters of this volume.

2.1 Entry into DOS

The Disk Operating System is entered by either of the following key

sequences:

DISK OS ESC D

DOS expects its commands from logical device AI and displays its output

on logical device AO. (See the Operator's Manual, section 3.3.7 for

information on logical device assignments.) Note that the output window

assigned to AO should usually be in alphabetic, roll mode with a back­

ground color of black for maximum readability of DOS responses.

The system notifies the user that he is in DOS by displaying a green

asterisk (*) as a prompt character. The asterisk indicates that DOS

is ready to accept a disk command.

2.2 File Names

DOS is a file oriented system. Disk commands are the names of files

residing on the disk system which may be loaded and executed. The

user may thus easily add new disk commands by creating machine language

2-2

code with the aid of the Text Editor and the Z-80 Assembler, and storing it on

the disk. The names of disk files must satisfy the following syntax:

filename .• =

where
name : : = a1nm a1nm a1nm

alum alnm alnm a1nm alum alnm alum alum -- ---- ---- ------
~ •• = alnm a1nm alnm alnm a1nm ------
alnm : := letter di~it

letter : : = A B C D Y Z

digit : : = (J 1 2 3 4 5 6 7 I 8 I 9

That is, a filename is a one to eight character alphanumeric string, followed

by a period, followed by a one to three character alphanumeric string. Al-

though the user is free to assign any file type that he desires, the system

commands recognize only those described in the next section.

2.3 File Types

N in e file types, each consisting of three letters, are used by the various

DOS commands. A brief description of each is given here.

2.3.1 ABS

ABS files are absolute, unformatted memory image binary files.

2.3.2 BAS

BAS files are program source files used by the Chromatics BASIC Language

Interpreter. For further information, see the BASIC Language Manual.

2.3.3 BUF

BUF files are used to save and restore the contents of the create buffer.

See disk commands APPEND, BUFF and DRAW.

2-3

2.3.4 DAT

DAT files are used for data storage by the Chromatics BASIC Language

Interpreter. For further information, see tha BASIC Language Manual.

2.3.5 KIL

The KIL type designation is used to indicate a file which has been

killed and is to be physically deleted by the next COMPRESS command.

2.3.6 OBJ

OBJ files are object code files consisting of records with load ad­

dress, data bytes, checksums and an optional executiun address. CBJ

files are produced as output by the Z-80 Assembler. They may be made

executable under DOS with the RENAME command by changing the type field

to SYS.

2.3.7 PIC

PIC files consist of a direct memory dump of the refresh memory. This

allows the screen contents to be saved and restored using the FRAME and

REFRESH commands.

2.3.8 SRC

SRC files consist of source lines in ASCII produced by the Text Editor.

These files are used to prepare assembly language source code for the

Z-80 Assembler.

2.3.9 SYS

SYS files are object code files which may be executed under DOS. SYS files

cannot be deleted by the KILL command. They are not listed in the disk

directory unless specifically requested.

2-4

2.4 Patterns

When referencing disk files, it is frequently convenient to be able to

specify a set of files, rather than only one. Patterns are used to

select a set of files on a given drive, (or over all drives), which

match a template. Disk commands using patterns generally act either on

the first matching file found, or else act on all matching files. The

syntax for a pattern is given by

pattern : : = ~/drive /drive

where

~ : : = namepat .• typepat nameEat .tYEeEat

drive : : = 0 I 1 I 2 I 3 I 4 I 5 I 6

nameEat : : = char I char char ----
charcharcharcharcharcharchar~ar

tYEeEat ::= char char char char char char

char .• = * letter digit

It can be seen that patterns are similar to filenames except that

asterisks may be used in addition to alphanumerics, the drive field

may be optionally added and other fields may be omitted. When both

the nameEat and tYEeEat are given without asterisks, the pattern is

called "fully specified". A fully specified pattern will always

match only the first file found which is identical to the pattern.

When asterisks are present, they indicate "don 't care" positions

in matching with file names. An asterisk in the last position of

a field will match any string of zero or more characters. When

the nameEat or typeEat is omitted, it is taken to be a single

asterisk, which will match any string. For example, the pattern

2-5

"A*" is equivalent to the pattern "A*.*", both of which will match any

file name beginning with the letter "A", regardless of type. Also, note

that the pattern "*.*" will match all file names.

When the drive field is present, it indicates which disk is to be

searched to find matches for the pattern. The special value of

drive = ~ is used to indicate that all drives are to be searched

in order from I to 6. (A value of 0 is not allowed in cases where

this would not make sense.) If the drive field is omitted, the

last referenced drive is implied.

2.5 Disk Commands

A disk command consists of a reference, (pattern), to a file name

followed by zero or more arguments. Multiple disk commands may be

entered together as long as they will fit on one line of the screen.

The format for a list of commands is

comlist ::= command RETURN command comlist

where

command ::= pattern pattern delim arglist

arglist ::= arg arglist delim arg

The length of the argument list and the types of the arguments depend

on the indivual command. The argument lists for each command are

discuss~d in the subsections below.

The command to be executed is determined by finding the first file

matching the given pattern, as discussed in section 2.4. However, for

a disk command to be valid, the file type must be either BAS or SYS.

2-6

For this reason, if the given type is not BAS or SYS, a type field of

SYS is substituted. BAS commands are executed by loading the file and

calling the BASIC Language interpreter. SYS commands are executed

directly under DOS.

When a list of commands, (separated by colons), is given, they are

executed one at a time from left to right. Note that some commands

may require significant processing and interaction from the user,

(e.g., the EDIT command). When a normal return to DOS is made by

one command. the next waiting command in the list is executed until

the list is exhausted. If an unrecoverable syntax error is found

in one of the commands, (such as a MODE code), the commands following

the error are ignored.

The disk commands which are presently implemented are listed in the

following subsections. These commands are supplied with the system

on a master disk. Note that although the command descriptions all

use complete file names without drive indication, in all cases a

pattern could be used.

2.5.1 DIR

DIR RETURN DIR delim pattern RETURN

The DIR command lists a directory of all the files matching the given

pattern. The omission of the pattern is equivalent to a pattern with

both the name and type field omitted. When the name field is omitted

from the pattern, a heading is displayed for the directory. The first

line of the heading gives the name of the disk followed by three hexa­

decimal values: NXTK = next free track, NXSC = next free sect~r and

AVSEC = number of available sectors. The second line of the heading

gives titles to the columns of the directory: file name, beginning

2-7

track, beginning sector and length in sectors.

The nmls~lon of the type field in the pattern also has a sp~cial

me.ll\ing: SYS and KIL files are not listed. The various combinations

of tlH'se conventions an~ illustratpJ below.

D II{]<..ETURN U./5>t aU bu;t SYS and KIL w>{ til irl!adif1g -------

DIR -k kETURN U>5t aU bLd SYS and KIL, cnnit he.l1d{HD , -------

OIR * RETUEN f..UJl ate Mtc6 ~jJi.th he a d...i.ng , ----.-...

DIR '")~ RETURN U6t aU ~Ltc.6 , omLt h~acUng , --.--

When all files are listed, as in the last two examples, SYS file,;

are listt'd i.n yellow, KIL files in red and all others in green.

if the !lli'~URN is replaced by %RETUR.."i, then only the first 25

ril,s will be listed before a pause will occur. Striking any key

exc "P t BREAK will continue the 1 is t. The BREAK will tennina te the

command and return the prompt *

2. ').2 KILL

KILL delim pattern RETURN

The KILL commands kills, (i.e., changes the file type to KIL), all

files matching ttl(.' pattern, except that SYS are specially protected

in that they cannot be killed by this command. This is to inhibit

accidental destruction of the disk commands. SYS files can be

killed, however, using the RENAi1E command, (this should be done only

with great care).

2.5.3 RENAME

RENA.ME delim old delim new RETURN --------

where

01d . -=

new .. :::: pattern

2-8

The RENAME command changes the name of each file matching the old

pattern to a new name based on the new pattern. (The ~ pattern

may not contain a drive field.) The new name will contain each non­

asterisk character given in the new pattern. The positions in the

~ pattern which contain asterisks will be replaced by the charac­

ters in the old pattern. For example, suppose a disk has files

named ABC.SRC, AEFG.SYS and AA.SYS. After executing the command:

RENAME, A* , X*Y*.KIL RETURN

the files will be named XBY.KIL, XEYG.KIL and XAY.KIL, respectively.

Note that using the RENAME command may result in two or more commands

with identical names. These can be recovered as individual files

bv using the RENAME command with a fullv specified old pattern.

This allows the files to be given unique names one at a time, begin­

ning with the first file in the directory.

2.5.4 COMPRESS

COMPRESS RETURN COMPRESS / drive RETURN

The COMPRESS command compacts the disk on the indicated drive,

(or the last drive referenced if the first format is used), by de­

leting all files with type KIL.

2.5.5 COpy

COpy pattern delim /drive RETURN

The COPY command is used to copy files from one disk to another. The

drive argument must be distinct from the drive implied by the pattern.

All files matching the pattern are copied one at a time to the specified

drive. If a file with the same name already exists on the target drive,

2-9

the original file on the target disk is killed before the copy is made.

A special case is made when both the name and type fields are omitted

from the pattern field. In this case, the entire disk is copied

directly so that the target disk becomes a duplicate of the first disk.

Note that this implies that any information previously on the target

disk will be overwritten.

2.5.6 FORHAT

FORl'1AT diskname/drive RETURN

where

diskname ::= alnrn alnm alnm

alnrn alnm alnm alnrn alnm alnm alnm alnm

Before a brand new disk can be used, it must be sectored and initialized,

(formatted). This is done interactively with the user by the FORMAT

command. The command first requests the number of tracks, (beginning

with track 0). to interweave with the message "INTERWEAVE TO TRACK NO.".

The user responds with a one or two digit hexadecimal number followed

by a RE~RN. Interweaving is used to allow maximum speed in reading

SYS files from the disk. Normally, it is sufficient to interweave

through track no. 7. The command then displays the message: "LOAD

DRIVE fix AND STRIKE 'F' ". (The "x" represents the drive number

where the disk to be formatted should be loaded.) The user responds

F to begin formatting. The FORl'1AT command sends a two digit

hexadecimal code indicating the status of each track formatted. Values

of "00" indicate success. If any of the values returned differ from

"00", the disk should be reformatted.

2-10

2.5.7 BUFF

BUFF delim name RETURN

The BUFF command causes the contents of the create buffer to be

saved on disk with a filename of name.BUF.

2.5.8 DRAW

DRAW delim namepat RETURN

The DRAW command causes the first BUF file matching the given namepat

to be loaded into the create buffer, overlaying the previous contents.

2.5.9 APPEND

APPEND delim namepat RETURN

The APPEND command causes the first BUF file matching the given namepat

to be loaded into the create buffer immediately after the file currently

in the buffer. This effectively appends the named disk file to the

current contents of the create buffer.

2.5.10 PICTURE

PICTURE name RETURN

The PICTURE command causes the entire contents of the refresh memory,

(i.e., the screen image), to be stored onto disk with a filename of

name. PIC.

2 .5.11 REFRESH

REFRESh pattern RETURN

The REFRESH command causes the first file matching the pattern, (which

must be of type PIC), to be loaded into the refresh memory. REFRESH

restores the image as saved by a PICTURE command.

2-11

2.5.12 STORE

where

STORE filename delim addresslist RETURN

STORE filename delim addresslist@address RETURN

address1ist ::= addresspair addresspair delim address1ist

addresspair ::= address delim address

address delim address+disp1acement

address de1im address-displacement

address : : = hex I address hex

hex : : = " I I 2 3 4 5 6 7

8 9 I A B C D E F

displacement ::= hex displacement hex

The STORE command creates a disk file with the given filename; the

contents of the file are taken from the concatenated memory segments

specified by the address pairs. (Note: if an address is given with

more than four digits, only the four least significant digits are used.)

The address pairs give the first and last byte of each segment. For

OBJ and SYS files only, displacements and a start address (@address) may

be used. Displacements allow memory segments to be reloaded at locations

offset from where they were created. The start address indicates the

beginning point of execution for OBJ and SYS files.

2.5.13 FETCH

FETCH pattern delim address RETURN FETCH pattern RETURN

FETCH pattern delim +displacement RETURN

FETCH pattern delim -displacement RETURN

2-12

The FETCH command causes the first file matching the given pattern to

be loaded into memory, regardless of file type. The first format, with

the address field, must be used for file types other than OBJ and SYS.

In this case, the file is loaded sequentially into memory at the indi­

cated address for as many bytes as the file is long. Care must be taken

that RAM locations used by the system (hex addresses 3800 through 3FFF)

are not accidentally overwritten, as could happen with a large file

which loaded beyond the top of memory and wrapped around back past zero.

OBJ and SYS files have load addresses for each memory segment, so any

of the last three command formats may be used. If a displacement is

given, all memory segments are offset by the indicated amount.

2.5.14 KEYS

KEYS RETURN

The KEYS command defines the user function keys (FI through F8) in a

special and very useful way. After the KEYS command has been executed,

each of the keys F2 through Fa can be defined by the user to be any

sequence of up to 64 codes. (Note that some keystrokes result in more

than one 8 bit code. See the Operator's Manual for the code definition

of the various keys.) Since one of the keys may use any of the others

in its definition, quite long sequences may be defined. To define a

key, Fl is struck, followed by the key to be defined, followed by the

key sequence to bp stored, and finally followed by the key being de­

fined. For" example:

BOOT DISK OS KEYS RETURN

FI F2 ABC F2

F1 F3 F2 X F2 F3

Now the F3 key will send the sequence: ABCXABC.

2-12A

2.5.15

DUPE Pattern delim/drive RETURN
DLTE /drive delim/drive RETU&~
DUPE RETUR...~

The drive command is used to copy files from one disk to another

on the same drive (i.e. copy for single drive systems). The drive

argument mayor may not be distinct from the drive implied by the

j)Clttern. All files matching the pattern are copied one at a time to

the specified drive. If a file with the same name already exists

on the target disk, the original file on the target disk is killed

before the copy is made. A special case is made when both the name

and type fields are omitted from the I?attern field. In this case,

the entire disk is copied directly so that the target disk becomes

a duplicate of the first disk. NOTE that this implies that any

information previously on the target disk will be overwritten.

The DUPE command will pause with one of the two following messages

during its operations:

MOUNT SOURCE DISK Strike any key!

MOL~T TARGET DISK Strike any key!

At this point, the correct diskett should be inserted, door closed

securely on the drive and any key (other than RESET) struck. NOTE

that when individual files are being copied,the same message may

occur twice in a row. This 'is normal, simply strike the key a second

time and proceed to the next message. WARNING: Do not try to copy

a file from one diskett to the same diskett. This will work but

the program will not end until the file has been copied enough

times to completely fill the entire empty space on the diskett.

2-13

2.6 Initializing a New System Disk

One of the common tasks in using the disk system is initializing new

disks. It is usually advisable to copy some or all of the command files

onto a new disk to facilitate future processing. This section will

illustrate how to do this with multiple and single drive systems. The

sample interactive sessions will be given with the user responses in

sans seri f typeface. Comments will a.ppear to the right in script.

2.6.1 Multiple drive systems

The initialization and copying task is quite simple with a multiple

disk drive system. Assume that an existing system disk is mounted on

drive I and a new disk is mounted on drive 2. The interactive task

might then appear as follows:

BOOT DISK OS

*FORMAT/l , DISKNAME/2 RETURN
INTERWEAVE TO TRACK NO. 7 RETURN
LOAD DRIVE #2 AND STRIKE 'F' F

00000000 .•• 00
*COPY/l , *.SYS , /2 RETURN
DIR/2 , . RETURN

2.6.2 Single drive systems

new cU...6 k. named ' VISKNAME '

hLteJtWea.ve :thJr..ough tJutc.k. 7

exec.ute

no eJtJtOM

c.opy all SYS 6ileA

c.hec.k. new cLi..6 k.

The above task is much more difficult on a single disk system since the

source files cannot be mounted at the same time as the object disk. The

COpy command thus cannot be used. Instead, the CPU operating system may

be used. (See Chapter 5 of the Operator's Manual.) Let the drive number

of the single drive be 1. Assume that all SYS files reside in the first

80 (hex) sectors of the original disk and that there is sufficient ~1 to

2-14

load all 80 sectors at once. Then the initialization and copying might

be done as follows.

BOOT DISK OS

*FORMAT , DISKNAME RETURN
INTERWEAVE TO TRACK NO. 7 RETURN
LOAD DRIVE #1 AND STRIKE 'F' F

00000000 00
*CPU as
#Rl ~ 1 8~ 4"~"

#Wl ,,1 80 40~~
#DISK as
*DIR , . * RETURN

now Ilep£.a.c.e cU.J., k.

exec.u.te

lle1..oad otUg-bio.! cU.J., k.

Ilead 8, .6 ectoJt.6 .into .:I ~ q ~
Ileload new cU.J., k.

W1l.i..te ba.c.k. 8, .6 e.cto V->

Ile:twr.n to VOS
c.hec.k. new cU.J., k.

Note that, since the directory is copied directly to the new disk, the

diskname given by the FORMAT command will be overwritten, (i.e., the

new disk will have the same name as the original). Also, if more in-

formation was on the original disk beyond the first 60 tracks, the direc-

tory will be in error. This can be corrected by KILLing the extra files

and compressing the disk. Assume that all the additional files are

non-SYS files. Then this could be accomplished as follows, (continuing

the previous example):

*KILL , *.* RETURN
*COMPRESS RETURN
*DIR, * RETURN

KLli non-SYS 6~e.6
delete them

chec.k.

If more than 60 sectors must be copied, several reads and write could

be done using CPUOS and following the above example. If less RAM is

available, shorter segments must be copied.

2-15

2.7 Error Messages

Many errors may occur while using the disk operating system. The

system notifies the user of the error by the message "ERROR If-" in

yellow, followed by a two digit error code in red. An explanation of

these codes is given in this section.

2.7.1 ERROR II 10 eRC ERROR CODE

This error indicates that a cyclic redundancy check has failed,

implying that there may be an error in the file last read. The system

retries several times on a error of this type, so there is probably bad

data on the disk. Try the disk on a alternate drive to check for an

error in the drive hardware.

2.7.2 ERROR # 11 SEEK ERROR CODE

The track sought cannot be found. This error may be caused by an un­

formatted disk, bad seek logic or a disk with bad data. Try the disk

on an alternate drive.

2.7.3 ERROR # 12 RECORD NOT FOUND

The sector sought cannot be found on the designated track. The causes

of this error are similar to those for ERROR II 11.

2.7.4 ERROR If 13 LOST DATA

The occurrence of this error indicates a hardware related problem.

2.7.5 ERROR # 14 NOT READY

The addressed disk drive is not ready. Make sure that the drive is on

and that the disk is properly loaded.

2-16

2.7.6 ERROR U 15 WRITE PROTECT

An attempt has been made to write on a disk with the file protection

slot open. First verify that the disk should he written. if so,

close the write protect slot with opaque tape and repeat the operation.

2.7.7 ERROR # 20 FILE NOT FOUND

The named file could not be found in the directory of the indicated

disk.

2.7.8 ERROR II 21 El'fPTY SLOT FOUND

This is an internal system message indicating that space exists for a

new file. If it occurs in normal operations of DOS, then it carries

the same meaning as ERROR II 20.

2.7.9 ERROR II 22 NO HEX EOF

The referenced command file is in error in that no end of file can be

found.

2.7.10 ERROR II 30 CREATE BUFFER OVERFLOW

The end of the create buffer has been exceeded when loading a file

with the DRAW or APPEND command.

2.7.11 ERROR n 31 CO!-frlAND ERROR

The last disk command given did not properly reference a system fHe.

This error frequently occurs when a RETURN is given in response to the

disk system prompt,

2.7.12 ERROR # 32 NO RUN ADDRESS

The system file referenced as a command does not have a start address

stored and thus cannot be executed.

2-17

2.7.13 ERROR # 33 ILLEGAL CHARACTERS

Illegal characters detected in a command. This error of tern occurs

when control codes are inadvertant1y placed in a command, (e.g., using

the color keys within a command).

2.7.14 ERROR # 34 NO ARGUMENTS

One or more of the arguments required by the command are not present.

2.7.15 ERROR # 40 ILLEGAL FILE NAME

The referenced file name is not legal in the context given. For

example, this message will result from a KILL *.SYS command.

2.7.16 ERROR U 41 BAD DISK DRIVE NUMBER

The given drive number is illegal in the context given. The message

may be given by an attempt to copy a file back onto the sending drive.

2.7.17 ERROR U 42 FATAL DISK ERROR

An unrecoverable error has been detected on the disk.

2.7.18 ERROR # 43 DUPLICATE FILE NAME

This error will occur if the BUFF command is used to try to store a

file with the name of an existing file.

2.7.19 ERROR # 44 DATA ERROR

A data error check has occurred on the disk.

2.7.20 ERROR # 45 DISK OR DIRECTORY OVERFLOW

Insufficient space has been found to store a file, either because the disk

file storage area or the directory has become full.

3. TEXT EDITOR (Option 62)

The Chromatics Text Editor facilitates the creation and modification

of ASCII source files, which are primarily used as input to the Z-80

Assembler. Both line editting and screen editting capabilities are

available. This chapter is organized by logical groupings of features

of the editor. The final section provides a brief, alphabetical

list of all commands.

The Text Editor accepts commands on logical device AI and displays

information to the user on logical device AO. (Logical device BO is

also used by one command, see subsection 3.6.2.) For convenience,

the display is automatically placed in roll mode upon entering the

Editor. The background is set by the user, usually to black.

3.1 Entering the Text Editor

The Text Editor operates under the disk operating system. It may be

entered either by using the special key provided or from DOS.

TEXT EDIT DISK OS EDIT RETURN

DISK OS EDIT delim pattern RETURN

Using the special key is equivalent to using the second form shown above.

The third form shown enters the editor and opens the file specified by

pattern for input.

3-2

The Text Editor may also be re-entered, (once it is resident in memory),

by the following key sequence:

RESET ESC E

This re-entry technique is sometimes useful in terminating a "run-avlay"

command, (e.g., listing a very long file). This command does not affect

the file in the workspace.

3.2 Edit Commands

When the Text Editor is entered, the following display is made

CHROMATICS DISK TEXT EDITOR VER 2.0

COMMAND:

The "COMMAND:" message appears as a prompt whenever the Editor expects

another command. Every command begins with an alphabetic command name,

followed by zero or more arguments and terminated by a RETURN. All

command names may be abbreviated to two characters.

3.3 Current Line Controls

Each command line prepared for the Text Editor is built up in a 75

character line buffer. Until the RETURN key is struck, causing the

command to be executed, the command may be modified as necessary.

The skip and backspace keys, (+ and +-), may be used to move the cursor

to the point at which a modification is to be made. (Note: the t and ~

keys have no affect.) Five additional special control codes are also

recognized. These are explained below.

3-3

3.3.1 Delete current line

CTRL X

This causes the entire line to be deleted, (replaced by blanks), and

moves the cursor to the leftmost position of the line.

3.3.2 Delete to end of line

CTRL Z

This causes the character under the cursor and those to its right to

be replaced by blanks. The cursor is not moved.

3.3.3 Recall last line

CTRL R

This causes the current line to be replaced by the contents of the

previously executed line. This feature is often useful when a command

must be repeated several times, perhaps with small alterations. (Note:

the two most recent lines are saved in a stack for retrieval.)

3.3.4 Delete current character

CTRL F

The character under the cursor is deleted and all characters to the

right of the cursor are shifted left one character postion.

3.3.5 Insert space

CTRL W

Each character of the line beginning with the character under the

cursor and to its right is shifted one character to the right. A

space is inserted at the cursor position. The cursor is not moved.

3-4

3.4 Files

The Text Editor makes use of three files: an input file, a working file

and an output file. These files are described in this section. The

following section describes the file handling capabilities of the Editor.

3.4.1 Input file

The input file serves as the source of prp.viously stored text lines to be

editted. Lines are brought in from the input file using the GET command.

Several input files may be used in an edit, but only one may be open at a time.

3.4.2 Working file

The working file resides in memory. All editting changes are made to the

working file. No line numbers are stored, but the lines of the working file

are implicitly numbered beginning with ~~00. Note that deleting and insert­

ing lines immediately changes the implicit numbering for all successive lines.

The area of memory used by the working file is called the "workspace".

3.4.3 Output file

The editted text produced in the working file is eventually sent to the

output file, (if it is to be saved). A new output file is automatically

created when the first lines are sent. (an existing file may not be over­

written). The output file is not entered into the directory until a

CLOSE command is given. Unclosed output files are implicitly deleted.

3.5 File Handling

The Text Editor works with the input, output and working files. Since the

workspace is limited in size, provision is made to edit files by segments.

Groups of lines may be brought in from the input file, edit ted in the work-

3-5

ing file and sent to the output file. By progressing sequentially,

a file of any size may be editted. The commands necessary to control

the handling of files are explained in this section. An illustration

of the use of these commands is given in Figure 3-1.

3.5.1 Opening an input file

OPEN delim ~ttern RETURN

The first file matching the pattern is opened for input. The file

pointer for this file, (which must be of type SRC) , is set to the

beginning of the file. Re-opening an already open input file is

equivalent to rewinding it.

3.5.2 Getting lines from the input file

GET delim lines RETURN ----
where

lines : : = number ---
number : : = E..~Qt;. number digit ---

Beginning after the last line in the working file, the number of lines

specified by lines are read from the input file. The file pointer for

the input file is moved to a point following the last line read. If

there are fewer than ~ines lines remaining in the input file, the input

file is closed, and a message is sent to the operator. If there is

insufficient space in the workspace for all of the lines requested,

only as many lines as will fit are read, and a "WORKSPACE FULL" message

is sent to the operator.

3-6

AN EXAMPLE

Let A be a file of 20~0 lines on drive 1. The following key sequence

is one way to create three new files: Band C on drive 1, and D on

drive 2. File B is a copy of the first 500 lines of file A. File

C is a copy of the next 1000 lines. File D is a copy of the last

5~0 lines of file A. It is assumed that the workspace is large

enough to hold at least 1000 lines of text.

TEXT EDIT

OP A/1RETURN

GET l00i~ RETUR...~

PUT 0+500 RETURN ---
CL B RETURN ---
GET 500 RETURN --.
PUT 0,900 RETUR...~ ----
CLOSE C RETURN -----
DR 2 RETURN

GET 500 RETURN

PUT 0,9999 RETURN

CL D RETUR...~

Figure 3-1

3-7

3.5.3 Assigning the output drive

DRIVE de1im drive RETURN

The drive number specified by drive is assigned for the use of the output

file. Before the first DRIVE command is given, the drive of the last

referenced file is used as an implicit drive number. The output drive

number may be reassigned any number of times during a run. WARNING: if

the DRIVE command is given while an output is unclosed, the file will be lost.

3.5.4 Sending lines to the output file

PUT de1im range RETURN

where

range : : = first de1im last first+1ines -----
first : : = number

last : : = number ---

The PUT command appends the specified lines to the output file. If no

output file is currently open, then a new one iR opened on the drive set

by the last DRIVE command.

The range field in the PUT command indicates a range of lines to be

output. The first form of range specifies the first and last line number

of the lines to be sent. The second form specifi~s the first line and

the number of lines to be sent. All lines of the working file can always

be sent by the command: PUT 0,9999 RETURN. In normal operation, the

first field will be 0, since this is the first line of the working file.

However, it is possible to select subsequences of lines for output; this

technique can be used to effectively move blocks of source lines. After

the lines are sent to the output file, they are deleted from the working

file.

3.5.5 Closing an output file

CLOSE delim name RETURN CLOSE RETURN

The current output file is closed and entered into the disk directory

with the name name.SRC. When the second form is used, the name of the

last opened input file is used for name, (if no input file has been

opened, a blank name results). If a file with the same name as the

closed file already exists in the directory, the older file is killed.

This allows a file to be updated easily without changing names.

Note that once a file has been closed, it can be immediately re-opened

for input.

3.5.6 Returning to DOS

EXIT RETURN

The EXIT command causes a direct return to the disk operating system.

WARNING: an unclosed output file will be lost as a result of the EXIT

command.

3.5.7 Examining the state of the workspace

BYTES RETURN

The BYTES command displays the decimal number of bytes in use and still

available in the workspace.

3.6 Displaying Text

The text in the workspace can be displayed either with or without line

numbers. Both commands are explained in this section.

3-9

3.6.1 Listing with line numbers

LIST delim range RETURN LIST RETURN

The lines in the indicated range are displayed on the screen, (logical

device AO), prefixed by the line numbers in green. If the range field

is omitted, it is taken to be 0,9999. Note: each line number displayed

is begun with a set foreground to green'mode code. This may have an

effect on the appearance of the listing if color changes are used.

The facilitate reading of the listing, a pause is inserted after each

page is listed. (The number of lines in a page can be changed by the

PAGE command, see subsection 3.6.3.) To continue the listing after the

pause, type RETURN. To terminate the listing early, type RESET ESC E,

which will cause a return to the command mode.

3.6.2 Printing without line numbers

PRINT deJim !2nge RETURN PRINT RETURN

The PRINT c(lmma.nd is similar to LIST except that no line numbers are

inserted. Omission of the range causes the entire file to be printed.

The PRINT command has the special feature that the output goes to both

logical devices AO and BO. BO is normally assigned to 510 #0. Presum­

ably, 510 #0 will be attached to a hardcopy device so that a permanent

printed listing can be made.

3.6.3 Changing page size

PAGE delim lines RETUR...,{

The PAGE command resets the length of the page as used by the LIST

command. The default page length is 40 lines.

3-10

3.7 Line Editting

The Chromatics Text Editor provides features for adding deleting, modifying

and searching for lines of text. All of these features make use of the

implicit line numbers of the working file. The current line numbering can

be determined with the aid of the LIST command, (see subsection 3.6.1).

3.7.1 Inserting new lines of text

INSERT delim linenum RETURN INSERT RETURN

T.-1here

linenum ::= number

The INSERT command puts the Editor into insert mode. All successive lines

are inserted sequentially into the working file ~~ceding the indicated

line number. If the linenum field is omitted, it is taken to be 0, causing

the new lines to be inserted at the beginning of the working file. If

linenum is larger than the hi~hest line number in the file, the new lines

are appended to the end of the file. The Editor remains in the insert

mode until an ERASE PAGE or a BREAK is given, either of which causes a

return to the command mode ..

All of the line editting features described in section 3.3 apply to lines

created in insert mode. Three control codes, (TAB, MODE and RETURN), may

be used in text. TAB is displayed on the input line as ":", and :--10DE is

displayed as 1f n ,.., . ~.Jhen RETURN is struck, (regardless of the loca tion of

the cur~or), the following things happen: a RETURN character is appended

to the input line, the line is inserted in the working file and the line

is displayed with its assigned line number. 'Wnen text lines are displayed,

the TAB's and MODE's are executed according to their definitions, and a

3-11

line feed (LF) is inserted after each RETURN. The compressed form for

text, (with TAB's and MODE's shown as printing characters), is used only

on input and in modify mode, (see section 3.8).

3.7.2 Deleting lines from the text

DELETE delim range RETURN

The DELETE command deletes the lines in the indicated range and compacts

the workspace. The range field is required.

3.7.3 Finding lines in the text

FIND delim range \ string \ RETURN

wherer

string ::= txtchar txtchar string

tx tc ha r : : = any c.haJc.a.c;te!t that may le.g a.U.y a.ppeaJt -in te.xt

The FIND command lists all lines in the given range, (with line numbers),

which contain a substring matching string.

3.7.4 Changing lines of the text

SUBSTITUTE delim range \ oldstring \ newstring \ global

where

oldstring ::= string

newstring ::= string

global ::= G RETURN RETURN

If global = G RETUkN, then every occurrence of oldstring in the lines in

the given range is replaced by newstring. If global = RETURN, only the

first occurence on each line is replaced.

3-12

3.8 Screen Editting

MODIFY delim linenum RETU~~ MODIFY RETURN

The MODIFY command places the Editor in modify mode. The indicated line

is displayed in the center of the screen in compressed form, (see sub-

section 3.7.1). (Note: if the screen center is not within the output

window, the line will be displayed at the top or the bottom of the window.)

The line to be modified is loaded into the current line buffer and may

be modified in place exactly as if it were a newly input line, using

all the facilities described in section 3.3. Once the line has been

corrected to satisfaction, a RETURN must be given to cause the modified

line to replace the original line in the text.

Additional lines may be modified while in modify mode by scanning up

and down throught the text using the cursor controls, (t and ~).

As the cursor moves through the text lines, the line ready for modifi-

cation appears in magenta. The remaining lines which have been scanned

are listed in green.

To return to the command mode, either an ERASE PAGE or a BREAK may be

given. Also, if the cursor is on the last line of text in the working

file, a RETURN causes the Editor to go into insert mode, to allow addi-

tional lines to be added.

3-13

3.9 Summary of Editting Commands

The following alphabetical list may serve as a convenient reminder of

the available editting commands. Remember that all commands may be

abbreviated to two characters.

BYTES RETURN

CLOSE delim name RETURN

DELETE delim range RETURN

DRIVE delim drive RETURN

EXIT RETURN

FIND delim range \ string \ RETURN

GET Jelirn lines RETURN

INSERT delim linenum RETURN INSERT RETURN

LIST delim range:. RETURN LIST RETURN

MODIFY delim linenum RETURN MODIFY RETURN

OPEN delirn pattern RETURN

~AGE delirn lines RETURN

PRINT delim E:E~ RETURN PRINT RETURN

PUT delim range RETURN

SUBSTITUTE delirn range \ oldstring \ newstring \ RETUR..~

4. 2-80 ASSEMBLER (Option 63)

The Chromatics 2-80 Assembler is a two pass assembler for translating

Z-80 assembly language disk source files into machine executable object

code. There are no explicit program size restrictions, but the internal

symbol table is limited to 500 or 2500 six character symbols, depending

on the size of available RAM.

4.1 Entering the Assembler

The 2-80 Assembler operates under the disk operating system. It may be

entered either by using the special key provided or from DOS.

ASMB DISK OS ASMB RETlmN

DISK OS ASMB delim patternlist RETURN

where

pattern1ist ::= pattern patternlist delim ~attern

The first two forms shown are equivalent. The third form enters the

assembler and begins execution of an assembly with the files specified

by the pattern list, (see subsection 4.2.9).

4.2 Assembler Commands

Assembler commands control the various options of the Assembler and

direct the file handling. The command formats follow those of the

Text Editor~ a command name, (which may be abbreviated to two charac­

ters), followed by an argument list depending on the command and

terminated by a RETURN. All assembler commands are listed in this section.

4-2

4.2.1 Set output mode to absolute

ABSOLUTE RETURN

The ABSOLUTE command directs the Assembler to produce output in

AbsoluteBinary form. The resulting file is made up of contiguous

bytes of code and cannot be loaded into separate areas of memory.

This type of object file is the most efficient in disk space and

load time. Absolute output should only be used on programs with

a single origin. The output file produced is type ABS.

4.2.2 Set output mode to binary

BINARY RETURN

The BINARY command directs the Assembler to produce output in

Load Nodule Binary form. This type of file is designed to be executed

within the Chromatics CG series. Any number of origin statements

are allowed. The output file is of type OBJ.

4.2.3 Inhibit assembly listing

NOLIST RETURN

The NOLlST command turns off the list switch. No text listing will

be produced by the Assembler.

4.2.4 Turn on assembly listing

LIST RETURN

The LIST command turns on the list switch, which causes a listing of

the text to be produced during assembly. The pause switch is set off.

4.2.5 Set pause control

PAUSE RETURN

The PAUSE command sets the pause switch on. This causes a pause after

every 45 lines of listed text during assembly. A RETURN restarts the listing.

4.2.6 List symbol table

SYMBOL RETURN

4-3

The symbol command causes the symbol table to be listed immediately.

This command is only effective after an assembly has been executed.

4.2.7 Direct output to alternate device

TTY RETURN

The TTY command causes subsequent output from the Assembler to go to

output device BO. Normally, BO is assigned to S10 #0, which is pre­

sumably attached to a hardcopy printing device, such as a teletype.

4.2.8 Direct output to standard device

CRT RETURN

The CRT command reverses the effect of the TTY command and causes

subsequent Assembler outputs to go to logical device AO, presumably

attached to a window.

4.2.9 Execute assembly

ASSEMBLE delim pat~ernlist RETURN

The ASSEMBLE command causes the assembly of the files specified by

the pattern list. Each pattern in the list specifies one file. The

files are concatenated in the order given and assembled as a single

program, (all labels are global). All of the input files must be of

type SRC. The assembly creates an object code file on the same drive

as the last file specified by the pattern list.

4-4

4.2.10 Close output file

CLOSE de1im name RETURN

The CLOSE command closes the last output file created by the Assembler

and enters it in the directory with the file name name.OBJ or name.ABS.

The output need not be closed if errors occurred during assembly; in this

case, the file will effectively deleted.

4.2.11 Leaving the assembler

EXIT RETURN

The EXIT command causes a return to the disk operating system.

WARNING: any unclosed output file will be lost if it is not closed

before executing this command.

4.3 Syntax of Assembly Language Statements

The Chromatics Z-BO Assembler allows free format input of assembly

language statements. The syntax of a statement is given by

statement : : = stat RETURN stat commen t RETURN

; comment RETURN

where

comment ::= any chanact~ ~equence excluding RETURN'~

stat ::= label ~ instruction ~ instruction

label : := letter letter alph letter alph alph

letter alph a1ph a1ph alph alph

: : = SPACE TAB SPACE ~ TAB ~

instruction ::= stdinstr pseudoinstr

4-5

More informally, a statement consists of an optional label, followed

by an instruction, followed by an optional comment. It is also allowable

to have a comment only line. Labels may be from one to six alphanumeric

characters in length, beginning with a letter. Two types of intructions

are available - standard instructions, which are standard 2-80 mnemonics,

and pseudo-instructions, which are defined by Chromatics. These two

instructions types are described in the next two sections.

4.4 Chromatics Pseudo-instructions

Chromatics has defined six pseudo-instructions for controlling assembly,

reserving space and initializing constants. The syntax for each and its

meaning are described in the following subsections. Most of the opera-

tions require operands, which may be expressions of the form:

::= constant constant + ~:J:'.E.. constant - exp

where

constant ::= $ I number I hexnum I label I literal

hexnum ::= hex H hex hexnum

literal : : = "sxro-bol "

: : = a.n.y C.hMa.c:teJr.. exc.e.pt "

The "$" is evaluated as the current value of the location counter.

Number and hexnum are evaluated as their obvious numerical value.

Literals are evaluated as the numeric value of the ASCII code of the

symbol. Labels arc evaluated as the address associated with the label.

For all pseudo-instructions, forward referencing of labels is not allowed.

4-6

4.4.1 Origin

ORG .§.£. exp

The internal assembly program counter is set to the value of the

expression, exp, which is evaluated as a 16 bit quantity. Subsequent

instructions will be assembled to load from the point specified as

the origin. Multiple origins are allowed for assemblies done in

BINARY mode.

4.4.2 Equate

EQU .§.£. exp

The equate instruction is used to define symbolic names as labels or

constants. Note that this instruction must have a label to be meaningful.

Previously defined labels are allowed in the expression.

4.4.3 Define storage

DFS 3: exp

The define storage instruction reserves the number of bytes specified

by exp, which must evaluate to less than or equal to 65535. A label

used with this instruction will be equated to the first byte reserved.

4.4.4 Define bytes

DFB .§.£. explist

where

explist ::= exp explist

The define bytes instruction reserves one byte for each element in the

expression list. The byte is initialized to the value of the associated

expression, evaluated as an eight bit quantity. If the statement is

labeled, the label is equated to the first byte reserved. NOTE: strings

of symbols are allowed as well as single symbols in literals for this

4-7

instruction. In this case, a string is treated as a list of single

symbol literals. For example, the following two instructions are

equivalent:

DFB "ABC"

DFB "A" ,"B" ,"C"

4.4.5 Define word

DFW ~ exp

The define word instruction is used to reserve two bytes of storage,

which are set to the value of exp, evaluated as a 16 bit quantity.

Be~ause of the method of using word quantities in the Z-80, the low

order byte of the quantity is stored in the first byte reserved, and

the high order byte in the second byte. For example, the statements:

ORC 0 RETUR..~

DFW 0l02H RETURN

would store the value 02 in byte 0000 and the value 01 in byte 0001.

4.4.6 End

END END del~m ex.£.

The END instruction is used to tell the assembler to terminate the pass.

If the second form of the END statement is used, the value of the ex.£. is

used as the start address for the object element produced. The END instruc-

tion is optional unless several source files are to be assembled together.

4.5 Standard Z-80 Instructions

No attempt will be made to describe the Z-80 standard instructions in

this manual, although a brief summary is given in Appendix D. For a

more detailed explanation, see the Z-80 CPU manual published by Zilog

or Mostek. This section will explain the syntax expected by the Chromatics

Assembler.

4-8

The Z-80 has 18 eight bit and 4 sixteen bit registers. Those which are

explictly addressable have reserved names recognized by the Chromatics

Assembler.

Eight Bit Registers

A

F

B,C,D,E,H,L

I

R

Sixteen Bit Registers

IX, IY

SP

PC

BC,DE,HL

AF

Single Bit Flags (in F)

accumulator

flags

general purpose

interrupt vector

memory refresh

index registers

stack pointer

program counter

general purpose

A concatenated with F

C

NC

Z

NZ

P

carry

no carry

zero

not zero

sign positive

M sign negative

PO

PE

parity odd

parity even

The 16 bit register BC, DE and HL reference pairs of 8 bits registers.

For further information on the meaning and use of these registers, see

the Z-80 CPU manual.

The syntax of the standard Z-80 instructions is given below. The number

and types of the operands depends on the ~cod~.

stdinstr ::= opcode opcode ~ operand

opcode sp operand , operand

where

operand : : = regS regl6 const indirect index flag

reg8 : : = AI F B I C I D I E I H L I I I R

reg16 : : = IX I IY I PC I BC I DE I HL I AF I SP

indirect . -= (reg16) (const) (C)

index : : = (IX + canst) (IY + canst)

flag : : = C I NC I Z I NZ I P I M I PO I PE

const : : = exp

4-9

Not all types of operands are accepted by all opcodes, but they generally

have a consistent meaning. The register operands obviously correspond to

the appropriate registers. Constant operands, which may be expressions

with forward references, are used to provide immediate data, such as an

offset for a jump relative instruction. Indirect operands reference

memory locations indirectly; the value stored in the indicated register

or the value of the constant is used to point to an address. The special

operand (C) is used only in 1/0 instructions. Index operands also

reference memory indirectly with the value of an index register offset

by a displacement.

4.6 Assembler Error Messages

The Chromatics Z-80 Assembler makes two passes through the source file

to create object code. The first pass makes address assignments and

builds the symbol table, while the second pass produces the actual code.

Each pass may detect errors during assembly. Errors are indicated as

single character codes which appear to the right of the machine code in

the assembly listing. The meaning of these codes is given below.

4.6.1 A Argument error

An illegal type of form of argument or a missing argument has been

detected. This error can occur only in pass 2.

4.6.2 D Duplicate label

A label has been found which already appears in the symbol table. This

is a pass 1 error.

4.6.3 L Label error

A syntactically incorrect label has been detected in pass 1. The label

may begin with a digit, contain an illegal character or be too long.

4-10

4.6.4 Missing lnbel

A label has not been found where expected. This error usually occurs

when a forward reference is made by an EQU.

4.6.5 o Opcode error

The operation code given is unknown. This is a pass 2 error.

4.6.6 P Pag ing error

An attempt has been made to reference an address outside of the range

of +129 to -126 in a jump relative instruction. This is a pass 2 error.

4.6.7 S Syntax error

The statement is syntactically incorrect. This is a pass 2 error.

4.6,8 U Undefined symbol

The referenced symbol is not in the symbol table and is therefore undefined.

This error may occur on either pass.

4.6.9 v Value error

The evaluation of the constant expression has led to a value which is

outside the range that can be stored. This error may occur on either pass.

4.7 Using CRTOS I/O with Assembly Language

The CRT Operating System provides convenient and flexible input and

output to all devices, including the pseudo-devices called windows,

(see the Operator's Manual). The user is advised to make use of these

fac ilities by using the standard system I/O routim~s.

4-l.l

4.7.1 Input

There are five logical devices available on the system. The standard

addresses for the routines to reference these devices can be defined

for ease of use as follows:

AI EQU l7DFH RETUIU'I

BI EQU l7E2H RETUR..~

CI EQU l7ESH RETURN

DI EQU l7E8H RETURN

EI EQU 17EBH RETURN

Input characters are received one character at a time in the accumu-

lator J (register A) • If the eight bit input character is not ready,

the input routine returns immediately with the Z flag set to 1. The

normal input technique, illustrated below, is therefore to loop until

the character has been received.

INPUT CALL AI ; GET CHAR FROM DEVICE AI RETURN

JR Z,INPUT-$ RETURN

4.7.2 Output

There are ~lsc five logical output devices.

AO EQU l7EEH RETURN

BO EQU l7F1H RETURN

CO EQU l7F4H RETURN

00 EQU l7F7H RETURN

EO EQU l7FAH RETUR.~

No looping is required on output since the output routine will not

return until the operation is complete. The character to be sent must

be loaded into the accumulator before the routine is called. The

example sends a "z" to device AO.

LD A,"Z"

CALL AO

RETUR.~

RETURN

5. PROM PROGRM1MER (Option 52)

The Chromatics PROM Programmer provides the capability to produce

customized ROM's by writing into Erasable PROM IC's. Option 52

provides the hard\.]are programmer, the interface and the software

required. This chapter describes the software.

5.1 Entering the PROM Programmer

The PROM Programmer may be entered either by using the special key

provided or from the disk operating system.

PROM PGMR DISK as PROM RETURN

Note: the PROH Programmer software is currently undergoing development,

and the user interface has not been finalized.

A P PEN DIe E S

RESET BOOT TEST TEXT
ASMB EDIT

CPU DISK ClH CREATE • ZOOM OS OS OS

.~OlL BLlNt< • BACt<
• GROUND

FILL. BLACK

I " $.,.. a I • MODE
I 2 3 4 5 6 7

ESC
Q W E R T Y

CTIIl
BELL

A S D F G H

SHIFT
Z x c V B

I

NOTE: • INDICATES ILLUMINATED KEY.

KEYBOARD LAYOUT

PROM
BASIC FI F2 F3 F4 PGMR COPV

CURSOR PLOT. REDRAW I(MIT WINDOW X·V
DOT X BAR

BLUE GREEN CYAN REO MAGENTA VELlOW WHITE

() * = • '" • ERASE

e 9 0 : - A \ PAGE

At \ t TAB

@) IF RETURN
U I 0 P

+ ()
BREAK ~ HOME

J K L i C J

A7 < > ?

+ SHIFT
N M • I

I

F!I 1'6 "..,

V BAR VECTOR RECT

--- "
E *
7 8

---- 4 5

I 2

0
-- ---------

(

/

9

6

:3

.

F'

CIRCLE

)

" E
T
U

" N

•

-
+

~
'1:l
(%l

Z
t::I
H
X

:t=-
o

£;'j
>-<:
td
o
§
t"'

~
o
~

HE~ 0 I 2

AT 0 0 0

"6 0 0 0

A:\ 0 0 I

A4 0 I 0

HEX A5 A2 ~~TROL CONTROL SOiIFT AI "0 T') 0 P TO _ o TO I

0 0 0 0 0 NULL 0 >< SPACE 32

I 0 0 0 I lit If >< ,
I 33

2 0 0 I 0 X >< "
14

3 0 0 I I ~ >< • 35

4 0 I 0 0 >< >< • 36

5 0 I 0 I ONE DOT IIODE
I "4 31 UP CANCEL c ~

6 0 I I 0 OnErE 6 ONE DOT
CH'RACTE~ OOWNu. a 5&

7 0 I I I IHURT:!'
I I[LL 1 HARACTfR 39

8 I 0 0 0 as 8>< (
40

9 I 0 0 I ONE DOT
TAli 9 LEfT 25 I 41

A I 0 I 0 LF .?C>< • 42

B I 0 I I VT ESC 27 • 45

C I I 0 0 ElIAS[
PAGE ,2 HOME 28 4.

0 I I 0 I CII
CUIISOR -13 RIGHT 29 45

E I I I 0 A1
OH EOF '0

"
4"

F I I I I A7 ONE DOT
Off .5 RIGHT 31 I 47

UNUSED ANSI ASCII CODES.

H..::>\."II \".,VUL... H~vIVI~IVIL..I~ I

3 4 5 6 7 0 I 2 3

0 0 0 0 0 0 0 0 0

0 I I I I 0 0 0 0

I 0 0 I I 0 0 I I

I 0 I 0 I 0 I 0 I

SHIFT SOiIFT SHIFT .:. :;!"'. ,''),..'''JL
• TO \ ~TOO P TO - (:) -:-:' J P "C: _

• (i) 6. P "'~ P r";;-A'2f r 4. 48 SIt) ,,2 3l

I
49

A
65 0

81 • 9
q

' ,3 fill -.J.
2

!lO
• 66

R
92

,
9"

,
4 J \- I~

3
51

C
61

S 83 • H • '5 l 305 L ,.
• 0 T - t ~ r

'2 68 8_ ;:J ,0; 36 ~2

--"'-7n , E u • " -,
53 69 8~ "-

,,' 53

• F v I
54 '0 8£. ~ L • .- j :8 38 54

t ...J
7 G • • • '5 71 87 :-3 119 39 M

8 H ~ 88 ~
• .20 '4- 40 J ~ 56 n I :~

••
, 57 I

13
Y

89
i ,0

,
.2

....
41 I

: J Z I 10. • 12_
I __ J

5& 74 90 42 5&

-- L_
; ~ C 91 I 107 (

59 59 75 ;.; 43

< 60 L 76
,

92
I

88
:

124 I 4. r-S?
l l · ... J .. '09 } ,25 61 61 77 93

>
62

N
78

A
94 • '" .e- ' 2(46 lu

L6I 1 0 0
• 121 J .1 --41 63 19 - 95 "

, I •
I

SAME AS 0 hfRJ 31

4 5

0 0

I I

0 0

0 I

+ .. ~ Ih.

.....L
, 81 6'

Til ill II;'

-1 •
81 I:

~ • I .. 8_
--j 6' .. ~

f--
8

T 1 81

1. 71 4 88

-7 t- 89

I I '. ~
90

I '5
.j

9i

H 'I, l U

D77 J "
4 '8 1 '4
.. 79 f "

6

0

I

I

0

'j te

)97
(II
~n

-II- 10C

):;
-1'" .01

-\'\;:12

~IO~
J IO~
) 11'

r ,,)6

I

',j !: 7

'\
'08

~'09
--l 110

+'"

1

0

I

I

I

I
..... 'It

T III

--1"4

~,,~

+Ie
_±u
i III

--!: - 119

{
120

)- 12'

)lll

-j 123

>0
.2.

-C
'2

'>-- .
'26

V!l

?d
'"d
tT1
Z o
H
~

b:I

~
()
H
H

()
o
~
:J>
Ul
Ul
H

~
~
;:~

Appendix C. ERROR CODES

This appendix lists the error codes which may occur when using the

disk operating system or the assembler.

C.l Disk Error Codes

See section 2.7 for more information.

ERROR If 10 CRC ERROR CODE

ERROR it 11 SEEK ERROR CODE

ERROR it 12 - RECORD NOT FOUND

ERROR II 13 - LOST DATA

ERROR fj 14 - NOT READY

ERROR II 15 - WRITE PROTECT

ERROR if 20 - FILE NOT FOUND

ERROR fI 21 EMPTY SLOT FOUND

ERROR II 22 - NO HEX EOF

ERROR fI 30 - CREATE BIWFER OVERFLOW

ERROR II 31 COMMAND ERROR

ERROR II 32 NO RUN ADDRESS

ERROR II 33 ILLEGAL CHARACTERS

ERROR II 34 - NO ARGUMENTS

ERROR II 40 ILLEGAL FILE NAME

ERROR II 41 - BAD DISK DRIVE NUMBER

ERROR II 42 - FATAL DISK ERROR

ERROR II 43 DUPLICATE FILE NAME

ERROR If 44 - DATA ERROR

ERROR If 45 - DISK OR DIRECTORY OVERFLOW

C-2

C.2 Assembly Error Codes

See section 4.6 for more information.

Error Pass Meaning

A 2 Argument error

D 1 Duplicate label

L 1 Label error

M 1,2 Missing label

0 2 Opcode error

P 2 Pag ing ~ error

S 2 Syntax error

U 1,2 Undefined label

V 1,2 Value error

Appendix D. Z-80 OPCODES

The following isa list of the standard mnemonics for the Z-80 opcodes.

For information on their use, see a Z-80 CPU manual.

ADC

ADD

AND

BIT

CALL

CCF

CP

CPD

CPDR

CPI

CPIR

CPL

DAA

DEC

DI

DJNZ

EI

EX

EXX

HALT

IH

IN

INC

IND

INDR

INI

INIR

add with carry

add

logical and

test bit

subroutine call

complement carry flag

compare

compare, decrement

compare, decrement, repeat

compare, increment

compare, increment, repeat

compare logical

decimal adjust accumulator

decrement

disable interrupt

decrement B, jump if non zero

enable interrupt

exchange

exchange gpu

halt

set internal mode

input

increment

input, decrement

input, decrement, repeat

input, increment

input, increment, repeat

JP

JR

LO

LOO

LODR

L01

LDIR

NEG

NOP

OR

OTDR

OT1R

OUT

OUTO

OUTI

POP

PUSH

RES

RET

RETI

RETN

RL

RLA

RLC

RLCA

RLD

RR

RRA

RRC

RRCA

RRD

RST

SBC

SCF

jump

jump relative

load

load, decrement

D-2

load, decrement, repeat

load, increment

load, increment, repeat

negate accumulator

no operation

logical or

output, decrement, repeat

output, increment, repeat

output

output, decrement

output, increment

pop stack

push stack

reset bit

return

return from interrupt

return form nonmaskable interrupt

rotate left

rotate left accumuJ.ator

rotate left circular

rotate left circular accumulator

rotate digit left

rotate right

rotate right accumulator

rotate right circular

rotate right circular accumulator

rotate digit right

restart

subtract with carry

set carry flag

D-3

SET set bit

SLA shift left arithmetic

SRA shift right arithmetic

SRL shift right logical

SUB subtract

XOR exclusive or

Appendix E. DISK WRITE PROTECT

Bo th standard and Minfloppy R disks have ,.;rite pro tec t ion slots which

prevent writing 'on the disk when open. The Minifloppy R disks come with

a prepunched rectangular slot, but the user must punch the hole in

standard disks. The figure below indicates the position that the hole

must be in. In order to write on slotted disks, the hole can be covered

with an opaque, peelable label.

\.

, :

'j' ,: :! ,'"

Iii ,L __ '

-"'--,
! I
: ,
.~

,
... Diskette Write Protected

II'H:f '(

-,eel ';:; HOI.E
\

200, .010 -~ ~-
I 8

: Ii' 1,1 : I 0 , In I _

I "
.07SR :Oos __ !J~

~f-
-.1 1

.. J, I

II'LOO'
~------------------~

i j I

i;

v'lRITl
pRoner -_. -i 12;" - 01(1
HOLE ----0 T .' 150" D rry C,----,) i '0 62;'0" . 0'0"

._.,

,
~ ______________ ~-L-

Write Protect Hold Specifications INrite Inhibit Notch (Optional)

I. INDEX

Both section number and page number are given for each item in this

index. When an item is referenced over several pages, only the first

page number is given.

ABS 2.3.1 2-2 DAT 2.3.4 2-3
ABSOLUTE 4.2.1 4-2 define bytes 4.4.4 4-6
address1ist 2.5.12 2-11 define storage 4.4.3 4-6
addresspair 2.5.12 2-11 define 'Word 4.4.5 4-7
address 2.5.12 2-11 DELETE 3.7.2 3-11
a1nm 2.2 2-2 delete character 3.3.4 3-3
APPEND 2.5.9 2-10 delete line 3.3.1 3-3
arglist 2.5 2-5 delete to end
ASCII B.1 B-1 of line 3.3.2 3-3
ASHB 4.1 4-1 de1im 1.2 1-2
ASSEMBLE 4.2.9 4-3 DFB 4.4.4 4-6
assembler commands 4.2 4-1 DFS 4.4.3 4-6
assembler errors 4.6 4-9 DFW 4.4.5 4-7

C.2 C-2 DIR 2.5.1 2-6
AVSEC 2.5.1 2-7 disk commands 2.5 2-5

disk errors 2.7.2 2-15
BAS 2.3.2 2-2 C.1 C-1

2.5 2-5 disk format 1.3 1-3
BINARY 4.2.2 4-2 diskname 2.5.6 2-9
BREAK 3.7 3-10 disk storage 1.3 1-3

3.8 3-12 DISK OS 2.1 2-1
BUF 2.3.3 2-2 di~~acement 2.5.12 2-11
BUFF 2.5.7 2-10 drive 2.4 2-4
BYTES 3.5.7 3-8 DRIVE 3.5.3 3-7

drive number 1.3 1-2
char 2.4 2-4 DUPE 2.5.15 2-12A
CLOSE 3.5.5 3-8 edit commands 3.2 3-2

4.2.10 4-4 3.9 3-13
com1ist 2.5 2-5 END 4.4.6 4-7 ---command 2.5 2-5 EQU 4.4.2 4-6 ---comment 4.3 4-4 ERASE PAGE 3.7 3-10
COMPRESS 2.5.4 2-8 3.8 3-12
const 4.5 4-8 error messages 2.7 2-15
constant 4.4 4-5 4.6 4-9
conventions 1.2 1-1 C. C-1
COpy 2.5.5 2-8 EXIT 3.5.6 3-8
eTRL 1.2 1-2 4.2.11 4-6

3.3 3-3 exp 4.4 4-5
current line exp1ist 4.4.4 4-6

controls 3.3 3-2

1-2

FETCH 2.5.13 2-11 name 2.2 2-2
files 3.4 3-3 nameEat 2.4 2-4
file handling 3.5 3-4 new 2.5.3 2-7 -filename 2.2 2-2 newstring 3.7.4 3-11
file types 2.3 2-2 NOLIST 4.2.3 4-2
FIND 3.7.3 3-11 number 3.5.2 3-5
first 3.5.4 3-7 NXSC 2.5.1 2-6
flat; 4.5 4-6 NXTK 2.5.1 2-6
FORt-JAT 2.5.6 2-9
fully specified OBJ 2.3.6 2-3

pattern 2.4 2-4 old 2.5.3 2-7
oldstrins 3.7.4 3-11

GET 3.5.2 3-5 opcodes D. D-l
global 3.7.4 3-11 OPEN 3.5.1 3-5

oEerand 4.5 4-8
hex 2.5.12 2-11 ORG 4.4.1 4-6
hexnum 4.4 4-5 output file 3.4.3 3-4

index 4.5 4-8 PAGE 3.6.3 3-9 ---
4.5 4-8 2.4 2-4 indirect ~

in it iaTiz e disk 2.6 2-13 Eattern 2.4 2-4
input file 3.4.1 3-4 Eattern1ist 4.1 4-1
INSERT 3.7.1 3-10 PAUSE 4.2.5 4-2
insert space 3.3.5 3-3 PIC 2.3.7 2-3
instruction 4.3 4-4 PICTURE 2.5.10 2-10
interweave 2.5.6 2-9 PRINT 3.6.2 3-9
I/O with assembly PROM PGMR 3.6.2 3-9

language 4.7 4-10 prompt character 2.1 2-1
3.2 3-2

keyboard layout A. A-I pseudo-instructions 4.4.4 4-5
KEYS 2.5.14 2-12 PUT 3.5.4 3-7
KIL 2.3.5 2-3
KILL 2.3.9 2-3 range 3.5.4 3-7

2.5.2 2-7 recall last line 3.3.3 3-3
REFRESH 2.5.11 2-10

label 4.3 4-4 reg~ 4.5 4-8 ----
last 3.5.4 3-7 reg16 4.5 4-8
letter 2.2 2-2 registers 4.5 4-8
LF 1.2 1-2 RENAME 2.3.6 2-3
line editting 3.7.1 3-10 2.5.3 2-7
1inenum 3.7.1 3-10 RETURN 1.2 1-2
lines 3.5.2 3-5 return to editor 3.1 3-2
LIST 3.6.1 3-9 run address 2.5.12 2-11

4.2.4 4-2
literal 4.4 4-5 SAVE 2.5.12 2-11
logical device 2.1 2-1 screen editting 3.8 3-12

sector 1.3 1-3
MODIFY 3.8 3-12 SHIFT 1.2 1-2
multiple disk 2.E. 4.3 4-4

commands 2.5 2-6 start address 2.5.12 2-11

1-3

stat 4.3 4-4
statement 4.3 4-4 ------
stdinstr 4.5 4-8
SRC 2.3.8 2-3

:.string 3.7.3 3-11
SUBSTITUTE 3.7.4 3-11
symbol 4.4 4-5
SYMBOL 4.2.6 4-3
SYS 2.3.9 2-3

2.5 2-5

TEXT EDIT 3.1 3-1
track 1.3 1-3
TTY 4.2.7 4-3
txtchar 3.7.3 3-11 ---type 2.3 2-3
type 2.2 2-2
typep~~ 2.4 2-4

wann start 3.1 3-2
\.Jorking file 3.4.2 3-4
workspace 3.4.2 3-4
write protect E. E-l

2-80 instructions 4.5 4-7
D. D-l

ADDENDUM TO DISK SOFTWARE REFERENCE MANUAL

The Chromatics Z-80 Disk Assembler Version 3.~ has been enhanced over

Version 2. '/J covered in the Disk Software Reference Manual. One new opera tor

command, seven new pseudo operations (including conditional assembly), and

four new arithmetic and logical operators have been added. The following

sheets will describe these new functions and provide the proper syntax for

implementation.

New Commands

4.2.12 Select Output Drive

DRIVE ~ delim ~ drive

The DRIVE command directs the assembler to select the specified drive

as the current object output device. Source input drives may be specified

using the DOS/drive syntax with the source filenames to be assembled by

the ASSEMBLE command (see Section 2.60). By default, if the DRIVE command

is not used, the object will go to the drive that contained the assembler.

New Pseudo Operations

4.4.7 Let

La bel ~ LET ~ exp

The Label is assigned the value of the expression. Unlike an EQUATE

statement, the LET statement may redefine the same label as many times

as necessary. The expression may not use forward referencing. but may

contain the same label as the one it is defining if it has previously

been assigned a value.

Example:

Q Let 6+3-5 Q=4
Q Let Q+l Q=5
Q Let Q*Q Q=25

If a Let statement defines a label, the label cannot be originally

defined by an EQU statement or different values of the label will be

assigned on pass two by the LET statements.

4.4.8 End If

ElF

Conditional assembly is accomplished by using IF statements to select

or deselect sections of assembly language code. They may be nested up

to 8 levels deep. The End If pseudo operation delimits the last encountered

If statement.

4.4.9 If True

1FT ~ expression

If the expressinn evaluates to be non zero, then the instructions

from the If True statement to the next End If statement will be included

in the assembly, otherwise they will be ignored.

Example: - Program -

Dor; EQU 2
CAT EQU DOG-l
RAT EQU CAT-l

1FT CAT
IFT DOG
LD A,B
EIF
IFT RAT
LD A,e
EIF
ElF

-Code Assembled -

LD A,B

4.4.10 If False

IFF ~ expression

If the expression evaluates to be zero, then the instructions from

the If False statement will be included in the assembly, otherwise, they

will be ignored.

Example

- Program -

DOG LET 01
1FT DOG
LD A,B
ElF
IFF DOG
LD A,e
ElF

DOG LET DOG-l
1FT DOG
LD A,D
ElF
IFF DOG
LD A,E
ElF

4.4.11 List On

LON

- Assembled Code -

LD
LD

A,B
A,E

The list switch may be toggled by the List On pseudo-op to turn

on the listing from inside the assembly language program. The Listl

No List operator commands have a higher priority; therefore, the

listing may be suppressed by the operator regardless of the LON pseudo-op.

4.4.12 List Off

LOF

The List Off pseudo-op turns off the listing from inside the assembly

language code.

4.4.13 Eject

EJT

The Eject pseudo-op performs a form feed to an external list device

(eg. line printer) or executes an ERASE PAGE to the CRT when encountered

during assembly.

New Arithmetic Operators

In version 2.f) of the Chromatics Disk Assembler, expressions could

only contain the arithmetic operators + and - for addition and subtraction.

The following operators have been added to this set.

* multiplication (16 bit integer)

I division (16 bit integer)

logical OR (16 bits)

& logical AND (16 bits)

The operators evaluate from left to right only with no priority over

type.

New Assembler Errors

With the addition of the Arithmetic Operator / (integer division)

a new assembler error X has been added to indicate division by 0.

Example:

DOG EQU 5
CAT EQU 6325

LD A.DOG
LD HL.CAT

RAT LET DOG-5
X LD DE ,CAT/RAT

LD BC.RAT

New Assembler Constant Base

The version 2.0 Chromatics Disk Assembler allowed both decimal and

hexidecimal arithmetic. The version 3.0 assembler adds the octal base

as well. Oc tal numbers may be indicated by placing the letter "a" or

"Q" immediately after the digits. The range of octal digits are from

o to 7; therefore, valid octal constants would be:

DOG
CAT

Illegal octal constants would be:

DOG
CAT

EQU
EQU

EQU
EQU

230
63500

930
3A00

Pf{(X'El)U?E fOR. OOPLlCATINr; SYSTEM REFERENCE DTSK ~lITII l\. SINGLE DRIVIi: CONFTqiRl\'l'lON

1. Insert S,:/stem Reference Disk.

7.. Press" DISK OS" key.

3. TVDC "FO~v\T/1" (Return).

4. InsE'xt neVI disk (do not format System Reference Disk) .

5. TYPE~ "1" (space) as answer to first question.

f). Type "F" to start fonnatting process.

7. If any number other than "~W' was printed by fonnatting routine; go back to
#1 and start o~~r.

8. Insert System Disk.

f). Press "CPUOS" key.

10. Type "Rl,~,1,40,4000,".

11. CPlJOS should add a "~~" to end of above line; if not, go back to step 9.

12. Insert newly formatted disk.

11. Type 11v.;1,~,1,40,4000,".

14. CPUOS should add a "~~" to end of above line; if not, go back to step 13.

15. Insert System Disk

16. Type "Rl,2,C,4C,4000,"

17 . CPUOS should add a "~~If to end of above line; if not, go back to step 15.

l'J. Insert newly formatted disk.

19. 'i";pe "';,!l, 2,C, 40,4000, "

~O. cruos should add a "~~" to end of above line; if not, go back to step 18.

21. :~aw the newly formatted disk will be identical to System Reference Disk and
may be used in it's place.

