
I
f
[;

~

£:

r "

[' ,I
(1

[

(~

[I

[:

I~
('

[

(

l:
I
[I

-~-

I PRELIMINARY COpy I
CIP/2200
COMPUTER REFERENCE
MANUAL
7 000 0076MA

December, 1972

The information contained in this
manual is the property of Cincinnati
Milacron and is furnished for customer
use only. It is not an authorization
to furnish this information to others.

.. ,
\

1

"-.'

[

ir
[

I
I
[,

[
ifi
J~,

I
~
[

I
I
(

I
(i

ri
IJ'

Page 16

Page 39

Page 44

Page 75

Page 76

Page 112

I
\...

CIP/2200 Computer Reference Manual

Publication 7 000 0076MA

Errata Sheet

Direct relative

The mode designator, bit 8, should be a '1' instead
of a '0'.

Line 4. After "--- 2's complement" add the word
'signed' .

Indirect relative

Line 3. Insert the word 'signed' between "comple­
ment" and "dis-placement".

Line 3. "LDX/" should read "LDX=".

In "LRA - Logical Right A" the shifting diagram
should show register A and not B.

"MVL - Move character string left" should have an
op-code of SC and not SA.

"MVR - Move character string right" should have
an op-code of sD and not sB.

Add the words "and clear high" to the comments of
the two l3XX instructions.

Table of Contents

1.0 INTRODUCTION

2.0 GENERAL CHARACTERISTICS

2.1 Basic Machine Architecture

2.2 Information Formats

2.3 Memory Addressing

2.4 Interrupt Structure

2.5 Input/Output Facilities

2.6 Control Stack Facility

3.0 MACHINE INSTRUCTIONS

3.1 Binary Arithmetic and Logical Instructions

3.2 Shift Instructions

3.3 Variable Word Length Instructions

3.4 Memory Immediate Instructions

3.5 Memory to Memory Instructions

3.6 Transfer of Control Instructions

3.7 Control Instructions

3.8 Input/Output Instructions

4.0 COMPUTER OPERATION

4.1 Front Panel

4.2 Basic Panel Operation

4.3 System Panel Operation

4.4 Bootstrap Loader

4.5 Disk IPL Option

4

6

6

9

15

19

21

24

27

27

41

47

56

60

81

90

95

104

104

105

109

114

115

[

[

[

[

['

[

[

(~

[

[

[

l:
I:
r
[

[

I
[

[

A.

B.

C.

D.

E.

F.

G.

H.

1.

-3-

APPENDIXES

Instructions Listed Numerically by Opcode

Instructions Listed Alphabetically

Instruction Execution Times

Power Fail/Auto Restart Programming

DMA Channel Programming

Firmware Extension Procedures

Instruction Flowcharts

Dedicated Memory Locations

Internal Codes

117

122

127

133

135

138

142

147

149

1.0

-4-

INTRODUCTION

The CIP/2200 is a general purpose byte oriented mlnl­
computer designed primarily for dedicated system applica­
tions. The CIP/2200 has an extensive instruction set
including binary and decimal arithmetic capability,
character string and bit manipulation instructions.

The CIP/2200 has an 8 bit hardware data path and memory.
The CPU registers, however are 16 bits in length. The
instruction set includes a complete set of 16 bit register
to memory and register to register binary arithmetic
instructions. In addition to the 16 bit word instructions,
the CIP/2200 includes a variable length binary arithmetic
capability, allowing binary arithmetic to be performed on
8, 16, 24, or 32 bit data without resorting to multiple
precision software routines. A third group of instructions
provides memory to memory decimal arithmetic on ANSCII
format character strings up to 16 digits in length. Other
memory to memory operations include character string move
and compare, code conversion, and decimal editing.

Main memory consists of 8 bit/byte or 9 bit/byte core
memory with a 1.1 microsecond full cycle time, Memory
is expandable in 8k byte modules from a minimum of 8k
bytes to a maximum memory size of 32k bytes. Memory
parity protection is available as an option on systems
with 9 bit/byte memory.

The CIP/2200 I/O structure consists of a microprogrammed
serial I/O interface, a byte I/O facility, firmware
supported Direct Memory Channel concurrent transfers,
and the capability of attaching up to two independent
Direct Memory Access (DMA) processors. The serial I/O
interface is a microprogram for controlling serial
data transfers,normally used to control a teletype
or other similar terminal device. The byte I/O
facility is us~d for transmission of 8 bit data between
anyone of up to 32 peripheral devices and either an
accumulator register or main memory under program control.
Associated with the byte I/O facility is the external
priority interrupt system. The CIP/2200 has a capacity
for up to 64 external priority interrupts. Byte I/O
interfaces normally contain the logic for data transfer
related interrupts. Non device-related interrupts may
be added in groups of 8 for a total of 64 interrupts.

111. t!j

~, : ,
, :

~

[

[:

[

[

[

[

[

r
I'
[

I

[

[

I
I

-5-

The Direct Memory Channel feature (DMC) allows micro­
program controlled, high speed data transfer to occur
concurrently with program execution. The maximum DMC
transfer rate is 86,000 bytes per second for asynchronous
devices and 25,000 bytes per second for synchronous
devices. Requirements for faster operation (up to
910,000 bytes per second) may be filled with a hardware
Direct Memory Access processor. The Direct Memory
Access unit is an independent hardware controller which
competes with the CPU for use of main memory time.

The CIP/2200 is a microprogrammed general purpose mini­
computer based on the CIP/2000 Computer. The use of
microprogramming has allowed instructions of considerable
power and flexibility to be implemented at modest cost.
Microprogramming offers the user the added power of
features such as a bootstrap loader, an integral serial
I/O facility, a high speed Direct Memory Channel, and
complex ins tructions such as "Edi t and Mark" and
"Translate and Test under Mask" in a low cost system.
The CIP/2200 provides special instructions to allow
transfer of control to special user written application
microprograms for greater flexibility in meeting specific
system requirements.

.0

.1

-6-

GENERAL CHARACTERISTICS

Basic Machine Architecture

Registers

The CIP/2200 has three programmable registers, the
accumulator (A), the accumulator extension (B), and
the index register (X). Two other registers, the pro­
gram counter (P) and the status register (S) are also
of importance to the programmer.

The A register is the 16 bit main accumulator register.
It is an operand source for all binary arithmetic and
logical instructions, and receives the result of all
binary operations except store. Serial and byte mode
I/O operations may transfer data to or from the low 8
bits of the A register.

The B register is also 16 bits in length and serves as
an accumulator extension for variable length binary
arithmetic and logical operations. Byte mode I/O opera­
tions may transfer data to or from the low 8 bits of
the B regis ter.

The index register (X) is a 16 bit register used for
address modification and base relative addressing.
Several specialized instructions are provided for
index value modification.

The P register (program counter) contains the address
of the next machine instruction to be executed. The
P register contents are stored by the subroutine transfer
instruction (RTJ) and are altered by transfer of control
instructions (jump, skips, etc.). When an instruction
modifies the P register contents, the address of the
next machine instruction to be executed is determined
by the contents of the P register after it has been
modified.

The status register (S) is an 8 bit register containing the
CIP/2200 internal status indicators. The indicators are
stored as shown in the illustration below. The meaning
of each indicator is described in Figure 2-1.

__________________ .~_~.u __ ~· ~ .. ___ _

rI'1
~

\fl.
iJ

[

I

r:

I)

11

I~

[

[

[

I
I

7

PF

MNEMONIC

PF
E/ Z
L/'/J
H/M
INT
'/JV
WL

6 5

E/Z L/ '/J

Figure 2-1.

Power Failure (PF)

-7-

4 3 2 1 a

H/M INT '/JV WL

NAME

Power Failure Indicator
Equal/Zeros Result Indicator
Low/Ones Result Indicator
High/Mixed Result Indicator
Interrupt System Disabled Indicator
Overflow Indicator
Word Length Indicator

CIP/2200 Status Register

The power failure indicator reports the status of the
computer's electrical power supply. The power fai1/
automatic restart option monitors the power supply and
generates an internal interrupt whenever the input power
line voltage becomes insufficient for reliable operation.
The firmware detects the interrupt, sets the power failure
indicator, and causes the CIP/2200 program to transfer to
a user programmed power failure interrupt service routine.
When normal power supply voltage is restored, the power
fail/automatic restart option causes another internal
interrupt. The firmware, in response to the power restart
indication, resets the power failure indicator and trans­
fers to the user written power restart routine. If the
power fail/automatic restart option is not installed,
the power failure indicator is set to zero by a RESET
and is not changed by the hardware.

Arithmetic and Logical Indicators (E/Z, L/'/J, H/M)

The indicators represented by bits 4-6 of the status
register are collectively called the arithmetic and
logical indicators (ALI). These three bits are used
to save information about the results of the memory to
memory and memory immediate arithmetic and logical instruc­
tions. Only one indicator will be set at any given time.

-8-

The "E/Z" (Equal/Zeros result) indicator is set when
the operands of a compare are equal or when the result of
an arithmetic or logical operation is zero. The "L/¢"
(Low/Ones result) indicator is set when the source of a
compare is lower (more negative) than the target, when
the result of an arithmetic operation is negative, or when
the result of a logical operation contains all ones. The
"H/M" (High/Mixed result) indicator is set when the source
of a compare is higher (more positive) than the target,
when the result of an arithmetic operation is positive, or
when the result of a logical operation contains mixed ones
and zeros.

The meaning of the individual indicators depends upon the
type of operation which caused ~hem to be set. For example,
an arithmetic operation which produces a negative (low)re­
suIt will cause bit 5, the Low/Ones indicator, to be set.
Similarly, a logical operation which causes all bits of the
result to be ones will also set the Low/Ones indicator.
Note that the arithmetic and logical indicators are set
only by the memory to memory and memory immediate instructions
and are not altered by binary arithmetic and logical in­
structions. The indicators may be tested with a conditional
branch instruction; testing does not cause the indicators to
be reset.

Interrupt System Disabled Indicator (INT)

The INT indicator reports the external interrupt system
status. The INT indicator is zero when external interrupts
are enabled and one when they are disabled or masked. The
INT indicator is meaningless in systems which do not have
the interrupt enable/disable option installed.

Overflow Indicator (¢V)

The overflow indicator is set when an arithmetic overflow
is detected during a binary or decimal arithmetic operation.
The overflow indicator may be tested and reset by conditional
skip instructions or tested without resetting by a condi­
tional branch instruction. Instructions are also provided
to set and reset the overflow indicator without testing.

The overflow indicator is not reset by binary arithmetic
operations. Thus, an overflow test over multiple binary
operations may be achieved by resetting the indicator before

[

[

[

I
[

[

[

[

[

I
[

[

(;

[

[

r
[

[

I
[

[

(

[

I
I
[

2.2

-9-

the sequence of instructions to be tested and testing
after the last operation. If one or more of the in­
structions caused an overflow, the indicator will be
set.

An arithmetic overflow occurs when the result of an
operation is too large to be contained in the receiving
field or register. For decimal operations this occurs
whenever the target field is shorter than the source
field, or when a carry occurs when operating on the left­
most target digit. For example, when 10 is added to 995
in a three digit field, an overflow occurs. A binary over­
flow occurs whenever the result of the operation is too
large to be contained by the receiving register. This
condition is detected by comparing the carry into and out
of the sign bit (left-most bit) of the register; if these
carries are not the same an overflow has occurred.

Word Length Indicator (WL)

The word length indicator defines the word length currently
in effect for variable length binary operations. Variable
length data may be from 1-4 bytes long. Values of 002 to
112 in the two bit word length indicator correspond to
variable data sizes of 1 to 4 bytes, respectively. The
word length value is set programmatically with control
instructions. A system reset causes the word length to
be set to 1 byte (WL = 002) •

System Save Area

The system save area is a 16 byte area of memory reserved
for use by the CIP/2200 firmware. The system save area
is located immediately after the external interrupt loca~
tions, from IB016 to IBF16.

Information Formats

The B bit byte is the basic data element from which all
data, addresses, and instructions are formed. The bits
within the byte are numbered from -7 to 0 from left to
right.

An optional 9th bit may be added to each byte in memory
to provide a memory parity check. This 9th bit is used
only to detect memory malfunctions and is set, reset,
and checked in hardware by the memory parity check option.
The CPU cannot alter or sense the parity bit.

-10-

Three basic types of information are used by the CIP/2200:
data, addresses, and instructions. Data are items of
information acted upon by the computer as directed by the
program, and may have several forms. Addresses are informa­
tion items containing the location of other items in memory.
An address may be either part of an instruction or a
separate item. In the latter case, the address is often
referred to as a "pointer" since the address "points
to" the location of some other item. Instructions are the
information items which control the action of the computer.

Data Formats

Data may be stored and processed in several forms by the
CIP/2200. The form chosen depends upon the nature of the
data and the operations to be performed. Numerical data
may be represented in either 2's complement notation
binary (base 2) or sign and magnitude notation decimal
(base 10) form. Logical data are represented as unsigned
binary items. Alphanumeric data (text) are represented
as strings of bytes, each byte being the ANSCII code for
a single character.

7 0

Halfword Is I I
15 8 7 0

Ful1word or Word Is I I I
23 16 15 8 7 0

Extended Word Is I I I I
31 24 23 16 15 8 7 0

Double Word 6 I I I I I
Assembler

Data Format Coding Size Range

Ha1fword H'n' 1 byte -128 n $.. 127
Fu1lword F'n' 2 bytes -3276t $.. n $.. 32767
or Word
Extended Word E'n' 3 bytes -8,388,608 <n

..$. 8,388,607-
Double word DIn' 4 bytes -2,147,483,648 < n

< 2,147,483,647-

Figure 2-2 Binary Data

.--_ .. ---~------

I

I
if!
Ij

If
~

[

I

("

, ,
J

[
,[

, [

[

[

[

I [

I
[

-11-

Binary data may be stored and processed in either 2 byte
(16 bit) words or in variable length byte strings up to
4 bytes (32 bits) in length. The address of a data item
is the address of the leftmost (most significant) byte.
The lower order bytes occupy higher addressed bytes in
memory. The various binary data formats, the range of
values representable in each format, and the assembly
language specification for each are shown in Figure 2-2.

Decimal numbers are represented within the CIP/2200 as
strings of ANSCII decimal digit characters in memory.
Decimal numbers may vary in length from 1 to 16 digits.
Each digit is represented in memory as one byte contain­
ing an ANSCII zoned decimal digit. The low four bits
(bits 3-0) of the byte contain the binary equivalent of
the decimal digit. The high four bits (bits 7-4, the
zone bits) of a decimal operand digit contain the ANSCII
decimal digit zone, 10112, with the exception of the low
order digit (highest addressed byte) of a decimal number.
The zone bits of the low order digit of a number contain
the sign of the decimal number. A minus sign is represented
by zeros in the zone of the low order bits; a plus sign by
a zone of 1011 2 (B16)'

The illustration in Figure 2-3 shows typical decimal
numbers as they appear in memory. The leftmost byte
is the addressed byte; the remainder of the number
occupies successively higher locations in memory.

Assembler Coding Machine Representation (hex)

Z'123456'

Z' -0123456' B 0 B 2 B 4 B 5
Sign

Figure 2-3 Decimal Data

=12=

Logical data is represented as either 2 byte words or
variable length byte strings of from 1 to 4 bytes. The
representation is similar to binary data, except that
logical data is unsigned.

Alphanumeric data (text) and other character string data
are represented in the CIP/2200 as variable length byte
strings in memory. The individual bytes are treated as
unsigned 8 bit logical items. Byte strings of from one
to 256 bytes may be operated upon by memory to memory
instructions. The standard internal code used by the
CIP/2200 is ANSCII with bit 7 set to a 1 (See Appendix I),
but other codes (e.g., EBCDIC) may be used as desired by
the programmer. The CIP/2200 CPU is insensitive to the
choice of code except for decimal number representation
and certain characters used for editing. I/O devices
and system software, however, are code sensitive and
usually require ANSCII code.

Addresses are represented in several forms within the
various instructions. Addresses not part of an instruc­
tion (pointers) are always represented in memory as 2
byte words as shown below. The memory address appears as

15 8 7 o
a 15 bit positive integer in bits
14-0 of the address word;an address
word can therefore address 32,768
different bytes. Since negative
addresses are not used, the sign

bit (bit 15) of an address is always zero and is not
needed. The sign bit of an address word is therefore avail­
able to specify indexing. A 1 in bit 15 of an address
word in memory is used to indicate that the effective
address is the sum of the index register contents and
the address contained in bits 14-0 of the address word.
If bit 15 is a 0, the effective address is s imply the
value stored in bits 14-0 of the address word.

Instructions

CIP/2200 instructions vary in length from one to eight
bytes depending upon the number of memory addresses
required, the addressing modes specified, and the other
information contained in the instruction. Variable
instruction length permits efficient utilization of
memory while permitting a wide range of instruction types.

--------------" "------------- ------

[

[

[
[

(
[
[
[
[

[

[
[
[
[
[
[

I
[

-13-

In all cases the first byte of the instruction contains a
code indicating the operation to be performed. The second
byte of less frequently used instructions contains an
extended operation code. The basic instruction formats
are shown in Figure 2-4.

The control and register operate instructions do not refer
to memory and consist of a one or two byte operation code
only. Conditional skip instructions allow the program to
test various machine conditions and alter the execution
path of the program depending upon the result. Conditional
skips have a one byte displacement address allowing control
to be transferred to instructions within + 128 bytes of the
conditional skip. Shift instructions also use the two
byte format; the first byte contains the operation and the
second byte contains the count of bit positions to be
shifted. Input and output (I/O) instructions require
either two bytes (for transfers to or from a register)
or four bytes (for transfers to or from memory). Memory
immediate instructions occupy four bytes and provide
various operations between a data byte in the instruction
itself and a byte in memory. The memory to memory format
is used for decimal arithmetic and byte string operations.

The memory reference, extended memory reference, and
literal formats are used by most binary arithmetic,
logical, and transfer of control instructions. Eight
addressing modes allow considerable flexibility and
power while conserving memory.

The CIP/2200 provides a control stack mechanism to aid
the programmer in saving the machine state when entering
subroutines or interrupt service routines. The machine
state saved on the stack by the save instruction con­
sists of the contents of the program counter (P), the
machine status register (S), and the B, A, and X registers
as shown below.

P S B A X

The status register contains the most recent arithmetic
or logical indicator setting, the overflow indicator, the
external interrupt enable state, the word length currently
in effect, and the state of the power fail detector. The
full machine state may be saved on the stack or returned
to the active registers by the save and return instructions.

-----------~~ -- -.. ~~---- -.---~-- --- .. ----- ~---

Control and Register
operate instructions

Conditional skip

Shift

I/a (register)

I/a (memory)

Memory immediate

Memory to memory

Memory to memory
extended

Memory reference

Memory reference
(extended)

Literal

-14-

I apcaDE I

I apcaDE I DISPL

I apcaDE I caUNT

I apcaDE b~1 DEV\

I apcaDE ~~ DEV\xl ADDR I

I apcaDE I DATA I xl ADDR I

I apcaDE I LENGTH\X: ADDRT\X; ADDRS

I apcaDE I DATA ILEN Ix: AlJDRTI xl ADDRS

~ apcaDE I ADDR

I apcaDE I xl ADDR

I apcaDE 1-4 data bytes

Figure 2-4 CIP/2200 Instruction Formats

~

~
[

~

~

~
[

I
I
~

~

~

I
I
I
I
I
I
I

I [

[

[

[

I

[

[

[

[

[

I
I
[

2.3

-15-

Memory Addressing

The CIP/2200 has the capability of addressing up to 32,768
bytes of memory. The basic addressing mode, extended
addressing, utilizes a 16 bit address word. The low 15
bits contain the binary value of the address. Bit 15 is
used to request indexing. Indexing may be specified for
any memory reference using extended addressing. A single

15 8 7 o
level of indirect addressing is
provided for certain memory ref­
erencing instructions. When in-
direct addressing is used, the
address word specified by the

instruction may be indexed.

In addition to extended addressing, many memory reference
type instructions have seven other addressing modes, for a
total of eight modes. These additional addressing modes
include various short (1 byte) address types, literal address
ing, and indirect addressing. The low three bits of the
operation code byte of these instructions contain a three
bit addressing mode, m, as shown below. The remainder of

7 320

I OPCODEt m I
the instruction consists of from zero to
four bytes depending on the addressing
mode selected. The operation specified
in bits 3-7 of the instruction is perform­
ed on the data located at the effective

address (EA) , the memory location specified by the result
of the indicated address computation.

The individual addressing modes are discussed in the follow­
ing paragraphs. Modes 2 and 3, (and mode 7 for JMP and RTJ)
specify indirect addressing. In all three cases the effec­
tive address is the location specified by an address word.
The effective address is the contents of bits 14-0 of the
address word if bit 15 is O. A one in bit 15 causes the

15 8 7 o
address specified by bits 14-0 of
the address pointer to be modified
by addition of the contents of the
index register.

Direct page 0 (m=O) EA = ADDR

15 11 10 8 7

I OPCODE I 0 0 0 I ADDR

o The effective address is
given by the second byte
of the instruction. This
mode allows a short, fast

means for accessing data in the first 256 locations in
memory. Direct page zero addressing is commonly used for
sharing data between programs. Considerable savings in
program size can result from placing commonly used data
(such as system parameters) on page zero.

-16-

Direct relative (m=l) EA = (P) + DISPL

15 11 10 8 7 6

I OPCODE I 0 0 0 I S I DISPL

o The effective address
is given by the sum of
the program counter CP)
and the 2's complement

eight bit displacement contained in the second byte of
the instruction. The program counter contains the address
of the first byte of the next instruction when the address
computation is performed. A displacement of zero, therefore,
addresses the next instruction. This mode provides a sav­
ings in memory required when addressing the 256 byte area
of memory around the current instruction, from 127 bytes
ahead to 128 bytes behind the first byte of the next instruc­
tion. Since programs tend to refer most frequently to near­
by locations, this mode allows considerable economy of
storage. Note that this mode is identical to the addressing
mode of the conditional skip instructions.

Indirect page 0 Cm=2) EA = CADDR)

15 11 10 8 7 o

I OPCODE I 0 1 0 I ADDR

The second byte of mode 2
instructions contains an
8 bit absolute address
specifying a location in

page zero. The two byte address word at the specified
location is used to obtain the effective address as explain­
ed above for indirect addressing. Indexing may be specified
by the indirect address word. This mode provides a con­
venient means of using shared address pointers,

Programming Note: A series of page zero pointers (a
transfer vector) may be used to provide dynamically
al terab Ie linkage between subroutines.

Indirect relative (m=3) EA = (CP) + DISPL)

15 11 10 8 7 6

DISPL

o The sum of the contents of
the program counter and the
8 bit 2's complement dis­
placement gives the address

of an address word. The address word is evaluated to form
the effective address. This mode provides a means of shar­
ing address words located within a section of a program.
Indirect relative addressing also provides a means of re­
turning from a subroutine by an indirect jump.

lr:. " i;

~I

I

[

~
Ii
Ii

I
[

I
I

[

[

[

[

[

[

[

[

[

[

-17-

Programming Note: Indirect relative addressing can be
used to save memory by sharing address words when multiple
instructions located close together refer to a distant
location. One reference is made to the desired datum using
extended addressing (mode 6). All other references within
relative range can be made indirect relative using the ex­
tended address word portion of the mode 6 instruction as a
pointer.

Base addressing (m=4) EA = (X)

732

I OPCODE\l 0 01

o This mode provides a fast, one byte
instruction format. The effective
address is the contents of the index
register (X). Mode 4 addressing is

particularly useful for string processing or table pro­
cassing where the index register is used to point to the
byte in the string or entry in the table currently being
processed.

Base plus displacement addressing (m=5) EA = (X) + DISPL

15 11 10 8 7

I OPCODE 11 0 11 DISPL

o The effective address is
given by the sum of the
contents of the index
register and the 8 bit

unsigned displacement contained in the second byte of the
instruction. This mode may be regarded as an indexed page
zero address (for page zero data tables) or as a base plus
displacement mode where the index register contains the
address of the datum.

Extended addressing (m=6) EA = ADDR or ADDR + eX)

23 19 18 16 15

I OPCODEll 10lxI ADDR

o This mode is
the basic
addressing
mode discussed

in the beginning of this section. If indexing is not spec­
ified, the effective address is contained in the low 15 bits
of the second and third bytes of the instruction. If index­
ing is specified, the effective address is the sum of the
contents of the ADDR field and the index register. This
mode allows addressing of all of a fully expanded 32,768
byte memory.

-18-

Literal addressing (m=7) EA = 2nd byte of instruction

OPCODE 1 1 11 DATA (1-4 bytes)

Literal
addressing
provides a
means of cod­

ing data in the instruction itself, thus saving the memory
otherwise required to specify the address of the data.
The length of the data may vary from one to four bytes de­
pending upon the requirements of the opcode.

Extended indirect addressing (m=7, jump and return jump only)
EA = (ADDR or ADDR + (X))

I OPCODE 1 1 1 Ixi ADDR

The address
word located
in the second
and third

bytes of the instruction is evaluated as described for mode
6. The result specifies the location of an address word,
which is evaluated to form the effective address of the
instruction. This mode is provided in lieu of literal
addressing for the jump and return jump (subroutine trans­
fer) instructions. Extended indirect addressing provides
a means of utilizing transfer vectors (jump tables) outside
of page zero.

The assembly language coding of the various addressing
modes is shown below.

OPC ADDR modes 0,1 (direct page zero and direct
relative)

OPC* ADDR modes 2,3 (indirect page zero and in-
direct relative)

OPC- mode 4 (base addressing)
OPC+ N mode 5 (base plus displacement)
OPC/ ADDR(X) mode 6 (extended addressing)
OPC= DATA mode 7 (literal addressing)
OPC= ADDR(X) mode 7 (extended indirect addressing

for JMP and RTJ only)

Figure 2-5 Address Mode Assembly Language Coding

I

I

----------------------- ----------------------------------

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

I
[

2.4

-19-

Interrupt Structure

Basic Interrupt Action

The CIP/2200 interrupt system is responsive to two types
of interrupts. Internal interrupts are generated by the
computer on the occurrence of an operational fault, a
console interrupt, or by the interval timer. External
interrutts are generated by an I/O device or another
externa ly supplied signal. Each interrupt is assigned
an address word in main memory called an interrupt trans­
fer location. These assignments are shown in Fig. 2-6.

The interrupt transfer location specifies the address of
a software routine which will be executed whenever the
associated interrupt is recognized. When an interrupt
occurs, the computer responds by executing a subroutine
transfer of control to the address specified by the
interrupt transfer location. This mechanism for interrupt­
ing the execution of one program and starting execution
of another program allows the computer to respond to
external events and execute the appropriate portions of
the program on a priority basis.

Location

080-081
082-083
086-087
08A-08B
08C-08D
08E-08F
090-091
100-101
102-103

l7E-l7F

Figure 2-6

Assignment

Console Interrupt
DMA Channel Interrupt
Interval Timer Interrupt
Memory Parity Error Interrupt
Control Stack Under/Overflow Interrup'
Power Fail Interrupt
Power Restart Interrupt
External Interrupt 0
External Interrupt 1

External Interrupt 63

Interrupt Transfer Locations

-20-

Internal Interrupts

The internal interrupts are used to report computer opera­
tion faults or the occurrence of events with a high pri­
ority. Internal interrupts are generated by the console
interrupt switch or a trap instruction, the DMA channel,
the interval timer, the memory parity option hardware, a
control stack under/overflow, and the power fail/restart
option hardware.

The console interrupt is generated by depressing the con­
sole interrupt switch on the computer front panel or by
executing a trap instruction.

The DMA channel interrupt is genera ted by the DMA pro­
cessor at the end of a DMA transfer. If a system has more
than one DMA processor, both interrupts will occur through
the same interrupt transfer location. A status check on
one of the DMA processors must be used to determine which
one interrupted. For details of operation of the DMA
channel, refer to the DMA processor manual and Appendix E.

The interval timer interrupt occurs when the interval
timer counter value reaches zero. The interval timer
counter in memory locations 84 - 8516 is incremented
by the interval timer (real time clock) option on the
processor option board. The rate at which the timer is
incremented is selected by jumpers on the processor
option board. The board is supplied with the jumpers
set for a I millisecond interval, but other intervals
may be obtained by spap.ging the jumpers as described in
thef:roces:so:r OptioJ!/B:o~rd Manual (publication #7 000 0052MA).
TheEI't'an~DIT' .iilstl:'tictions are used to start and stop
tlH~t;p:'t:.e. I:val timeT.. . '.' .'

~.'

. th~':ni~mory parity failtite interrupt occurs when a pari ty
'. failure (an odd number of bits in a byte) is detected
.. by the memory pari ty check option hardware. The memory

parity check option cC)J)sists of a 9 bit memory and the
parity check optionori:,:the processor option board.
If the memory parityqheck option is not supplied, the
interrupt will notbe:\'generated.

The control stacklln,~er/overflow interrupt is caused when
the control stack .¢~n.not hold or supply sufficient data.
This interrupt can only occur as a result of execution
of a save or return instruction (SAV, RET, or RTN; see
Section 2.6).

[

[

Ifr
IJ

I_ i
, i

i

I
[

I
I
[

I

[

[

[

[

[

[

I
(

I
[

[

[

I
I

2.5

-21-

The power failure interrupt occurs when the primary power
supply voltage becomes insufficient for reliable computer
operation. The power restart interrupt occurs when the
power supply is restored to the computer after a power
failure. Certain requirements must be met by the power
failure interrupt service routine if the contents of
memory and the machine state are to be preserved. Refer
to Appendix A for notes on the design of this program.
The power fail and automatic restart interrupts are set
by the power fail/automatic restart option on the processor
option board, and will not occur unless that option is
installed.

External Interrupts

External interrupts may be generated by I/O device con~
trollers or other external hardware devices. The CIP/2200
has provision for a total of 64 external interrupts. The
external interrupt system may be disabled (masked) to
defer recognition of interrupt requests if the interrupt
enable/disable option is installed.

Input/Output Facilities

The CIP/2200 provides four basic types of I/O transfers
ranging from bit serial transfers at 10 characters per
second to Direct Memory Access (DMA) byte transfers at
910,000 bytes per second. The serial I/O facility is a
low speed interface suitable for operating a low speed
terminal device. Byte I/O provides either program loop
or interrupt I/O capabilities for medium speed devices.
The Direct Memory Channel (concurrent I/O) facility pro­
vides a firmware managed high speed data transfer at a
rate of up to 86,000 bytes per second concurrent with
and transparent to normal program execution. Direct Memory
Access I/O utilizes a separate hardware channel into memory
to provide extremely fast I/O at the maximum memory rate of
910,000 bytes per second.

Serial I/O

The serial I/O interface provides a simple, inexpensive
means for communicating with a teletype or other similar
terminal device. The serial I/O interface is a micro­
program which controls the transfer of bit serial data
between the computer and a serial I/O device. Serial
mode transfers always use the low 8 bits of the A register
as the output source or input target. The data transfer
rate is 110 bits per second. Program execution and detec­
tion of all interrupts is suspended during a serial I/O
transfer.

-22-

Byte I/O

The CIP/2200 byte I/O facility provides for program con­
trolled data transfers over the byte I/O bus. Each byte
of data transferred to or from an I/O device controller
requires the execution of an I/O instruction. The byte
I/O bus is also used to transfer status information from
devices to the computer and to transmit function bytes
containing control information to the devices. The byte
I/O facility is related to the external interrupt facility
in that device controllers are able to cause an interrupt
when ready for a data transfer or when an error is detected.
The interrupt service routine then uses the byte I/O instruc­
tions to test the device status and to take appropriate
action. This allows I/O transfers to be overlapped with
background (non-interrupt) program execution.

The byte I/O facility may also be used without interrupts
by testing the device status continually until the device
is found to be ready to accept or send data. The upper
limit of the byte I/O transfer rate is approximately 10,000
bytes per second.

The byte I/O facility offers considerable flexibility
to the programmer. Data and status or control informa­
tion can be transferred between external devices and the
A or B register or memory. Up to 32 device controllers
may be connected to the byte I/O bus.

Direct Memory Channel (DMC)

The Direct Memory Channel (concurrent I/O) facility
allows automatic block data transfers between devices
attached to the byte I/O bus and memory. DMC transfers
are firmware controlled and occur concurrently with
normal program execution.

Concurrent operation of I/O and program execution is
accomplished by assigning higher priority to DMC data
transfers than to instruction execution. Before each
instruction is executed, a firmware check is made for
pending DMC transfers. All such data transfers for DMC
operations are finished before an instruction is executed.
A DMC transfer may also force short breaks in the execu­
tion of long instructions.

11.'.
~

[

11.' Ij

[

[

I

[

I

[

[

[

[

I
[

[

[

[
i [

[

[

-23-

The maximum rate at which DMC transfers can occur is deter­
mined by the time between the arrival of a data transfer
request and the servicing of that request by the micro­
program. The microprogram tests for pending DMC requests
at discrete intervals. The longest interval possible
between the occurrence of a DMC transfer request by the
highest priority DMC controller and the answering data
transfer is 40 microseconds. The CIP/2200 can therefore
support a 25,000 byte/second transfer rate for a single
synchronous device. (A synchronous device is a device
which requires data transfers at a fixed rate determined
by the device itself, for example, a magnetic tape drive.)
When multiple devices are simultaneously transferring
data, the maximum time between a request and the transfer
is 40 microseconds for the highest priority device, 52
microseconds for the second highest priority device 64
microseconds for the third highest priority device, and
so on. The maximum aggregate data transfer rate for the
DMC channel is approximately 86,000 bytes/second. This
rate can be maintained only if requests arrive at less
than 12 microsecond intervals. Since service for these
requests can only be guaranteed at a rate of 25,000
bytes/second, rates of more than 25,000 bytes/second can
only be supported on asynchronous devices (devices with
variable transfer rate, i.e., devices which can operate
at rates slower than the maximum such as a tape perforator).

The location and amount of data transferred during a DMC
block transfer operation is determined by a four byte DMC
descriptor. A two word (4 byte) dedicated page zero loca­
tion is reserved for the DMC descriptor for each I/O
device. The address of this descriptor is calculated
by multiplying the device number by 4. The descriptor
contains two address words, a current address and an
ending address. The current address word contains the
address of the next byte to be transferred by the I/O
operation. The ending address word contains the address
of the last byte to be transferred. The current address
is incremented after each byte transfer. When the current
address becomes greater than the ending address, the DMC
operation is terminated.

DMC operations are started by initializing the descriptor
and executing the appropriate byte I/O instruction. After
a DMC I/O operation is initiated by a processor instruction,
byte transfers proceed automatically until the last byte of
the block is transferred. An interrupt may be triggered at
the end of a DMC transfer if the programmer so requests.
If termination with interrupt is used, the interrupt occurs
through the interrupt transfer location assigned to that
I/O device. The address of the device interrupt location

• 6

-24-

is twice the device address plus 10016' If termination
without an interrupt is desired, the program must check
the device status word to determine the state of the DMC
transfer.

DMA Operations

The DMA processor may be used for high speed data transfer
directly to memory at a maximum rate of 910,000 bytes per
second. The DMA processor is an independent hardware
device which is attached directly to the main memory
address, data, and control busses. Data transfers per­
formed by the DMA processor are completely independent
from operation of the main computer except that both
devices use the same memory. The DMA processor takes
precedence over the CIP/2200 CPU for memory operations.
Programming for DMA transfers is described in Appendix E .

Control Stack Facility

The CIP/2200 control stack facility provides a method
for saving and restoring the computer state information.
The implementation of state switching using a control stack
greatly increases programming ease and flexibility, partic­
ularly in an interrupt environment.

Computer State Information

The computer state information uniquely defines the internal
state of the computer at a given point in a program. The
CIP/2200 state information consists of the contents of the
A, B, and X registers, the location of the next instruction
to be executed (P), and all status indicators (S). This
information is reloaded into the computer registers when
the machine state is restored. The machine state must be
saved by a subroutine or an interrupt service routine to
allow the programmer to use registers, change word length,
or alter other status indicators freely in the subroutine
or interrupt service routine without affecting the values
stored in the computer registers during the execution of
other programs. State saving is essential for interrupt
service routines since the interrupted program must be
able to continue as before when the interrupt service
routine returns.

~-~-~------------ --------

lli
(Ij

~
[

[

[

[

[

:1
[

I

[

(

[

[

[

[

[

(

[

I
[

[

I
[

-25-

Stack Operations

A stack is a data storage element containing a varying
number of entries. Data is entered and removed from the
stack in a Last In-First Out ("LIF0") manner. LIFflJ
operation means that when data is removed from the stack,
the information removed first is that which was entered
into the stack most recently. Entry of data into a stack
is called "push ing" and data removal is known as "popping".

Control Stack Use

The control stack is used to save the computer state.
Each entry in the CIP/2200 control stack consists of
a complete set of state information. The most recently
saved machine state is on the "top" of the stack, the
oldest machine state on the "bottom". In normal use
each subroutine saves the machine state immediately after
being called. The subroutine returns the state information
by using the RET or RTN instruction to "pop" the old machine
state from the stack. When multi-level subroutine calls
are used, the control stack will contain more than one
entry during execution of the lower level subroutines.
As each subroutine terminates, one more entry is removed
from the stack. When control returns to the original
calling routine, the control stack will be empty. Uniform
use of a save and restore convention greatly enhances the
reliability of programs, especially in an interrupt
environment.

Control stack operations are performed by the SAY, RET,
and RTN instructions. The location of the control stack
is defined by the control stack pointer which occupies
a dedicated page zero location - 92 - 9316. The control
stack pointer always contains the address of the first
(lowest addressed) byte of the most recently stacked
machine state information. The control stack occupies
the 256 byte memory page indicated by the control stack
pointer. The control stack pointer cannot be made to
cross a page boundary without generating a control stack
under/overflow interrupt.

-26-

The length of the control stack area used by a program
is determined by the number of levels of subroutines
and interrupts allowed. For example, a program having
a four level subroutine structure (where at most four sub­
routines are simultaneously in use - A calls B which
calls C which calls D) requires 36 bytes for its con-
trol stack (9 bytes per SAY) regardless of the total
number of subroutines in the program. Additional con­
trol stack space must be reserved for interrupt pro­
cessing because interrupts can, in general, occur at
any time. Each interrupt requires a minimum of 9
additional bytes of reserved control stack space.
Interrupt service routines may also require further
control stack space for subroutines.

I
[

• IJ

[

I
I
I
Ii

[
[
[
[

[

[

[
[
[

[

I
[

I ,

3.0

3.1

-27-

MACHINE INSTRUCTIONS

This section describes the operation of the CIP/2200
machine instructions. The instructions are grouped by
logical type into several subsections. Details of
memory addressing are given in section 2.3 and are not
repeated for each instruction. The instruction descrip­
tions include the format of the instruction as it appears
in memory and the CIP/2200 assembly language coding.
An asterisk to the right of the machine instruction for­
mat diagram indicates that the eight addressing modes
discussed in section 2.3 apply. The assembly language
coding for those cases assumes extended addressing (mode 6).

The abbreviations used in this chapter are shown below.

ALI Arithmetic and logical indicators
E/Z Equal/zero indicator
L/0 Low/ones indicator
H/M High/mixed indicator
INT Interrupt system disabled indicator
0V Arithmetic overflow indicator
WL Word length indicator
PF Power fail indicator
A A register (accumulator)
B B register (extended accumulator)
X Index register
P Program counter

Binary Arithmetic and Logical Instructions

The instructions in the binary arithmetic and logical
instruction group perform binary arithmetic operations on
fixed length 16 bit 2's complement numbers or perform logical
operations on 16 bit unsigned binary data. In general, one
operand resides in a register, usually the A register, and the
other is in memory. Instructions are provided for moving
data between registers; transferring data between registers
and memory; and for adding, subtracting, counting, masking,
and inverting 16 bit data. Special instructions are pro­
vided to assist in implementing binary multiplication and
division.

-28-

Binary arithmetic is provided both for general computation
and for address and index computation. Since the binary
arithmetic operand length is consistent with the CIP/2200
address word size, the full arithmetic and logical capabil­
ities of the instruction set may be used for address
computation.

The two fixed length binary data formats are shown below.
Some of the instructions in this group also use 8 bit
immediate data. When a shorter field is added to a 16
bit integer the sign of the short field is extended to
provide 16 data bits. Note that when zero is complemented
in 2's complement notation no change occurs.

15 0

I s I INTEGER I arithmetic data

15 0

I DATA I logical data

The results of all arithmetic instructions are tested
for an overflow (result greater than 215 _1 or less
than -215). The overflow indicator is set if an over­
flow occurs but it remains unchanged if no overflow
occurs.

Instructions in the variable length arithmetic group
(Section 3.3) and in the shift group (Section 3.2)
supplement the fixed length arithmetic and logical
capabilities of the CIP/2200. When mixing fixed and
variable length instructions, care must be taken to
ensure that the registers are used consistently.

The binary arithmetic and logical instruction group is
shown in Figure 3-1. The table lists the name, the
assembler mnemonic, the operands in assembler notation,
the indicators affected, and the machine operation code
in hexadecimal notation. Those instructions allowing
eight addressing modes are indicated by an asterisk
following the operation code.

I
[

I
I
I
[

[
-29-

I
[

I
NAME MNEMONIC OPERANDS INDICATORS OPCODE

Load A LDA ADDR(X) EO-E7*

[Load B LDB ADDR(X) CO-C7*

Load X LDX ADDR(X) 80 - 8 7*

[Store A STA ADDR(X) FO-F7*

[
Store B STB ADDR(X) C8-CF*

Store X STX ADDR(X) 88-8F*

[Transfer A
to B TAB 2B

I Transfer B
to A TBA 2F

I
Transfer A
to X TAX 4C

Transfer X

I to A TXA 4E

Transfer B

[to X TBX 4D

Transfer X

I
to B TXB 4F

In t e rch an ge
A and B lAB 03

[Interchange
A and X lAX 35

[Interchange
B and X IBX 36

I Add to A ADA ADDR(X) ~V AO-A7*

Subtract
OV [from A SBA ADDR(X) BO-B7*

A INA rfJv 48 Increment

I Increment B INB f/Jv 49

I

-30- II
[

I
NAME MNEMONIC OPERANDS INDICATORS OPCODE [
Increment X INX 'IN 44

Decrement A DCA '/JV 23 I
Decrement B DCB '/JV 27

Decrement X DCX '/JV 45 I
Add to Index [Immediate AXI I C/JV 5F02

Ones Comp1e-
[ment A '/JCA 4A

Ones Comple-
ment B '/JCB 4B

~ , \

Multiply Step MST ADDReX) 90-97*

Divide Step DST ADDReX) 98-9F* ~
Increment Word
in Memory IWM ADDReX) C/JV,ALI 70-77* ~
Decrement Word
in Memory DWM ADDReX) C/JV,ALI 78-7F* I
Add to Word
Immediate AWl I,ADDReX) '/JV,ALI 50

I And Memory
with A ANA ADDReX) DO-D7*

I OR B to A C/JRA 40

OR A to B C/JRB 42 [
Exclusive OR
B to A XRA 41

I Exc1usi ve OR
A to B XRB 43

f
Figure 3-1. Binary Arithmetic and Logical Instructions

'I
I

[

[

I
I
[

[

[

[

I
I
I
I
[

[

[

'[

I [

I
(

-31-

LDA - Load A

23 16 15 o *
IEO-E7!X! ADDR
-....----r-----rl
LDB - Load B

23 16 15 o *
Ico-c7\xl ADDR
.--r--r--------rl
LDX - Load X

23 16 15 o

I 80 - S 7 Ix I ADDR

Indicators Affected: none.
Assembly Lanugage Coding:

STA - Store A

23 16 15 o *
I FO-F7 Ix i ADDR
...-----r--r------tl
STB - Store B

23 16 15

I C8-CF Ix f ADDR

o * r------r--r---;I
STX - Store X

23 16 15

ISS-SF Ix 1 ADDR

Indicators Affected: none.
Assembly Language Cod~ng:

The two byte operand located
at the effective address re­
places the contents of the
register specified by the
operation code. The operand
in memory is not changed.

LDA/ ADDR(X)

The operand contained in the
register specified by the
operation code replaces the
contents of the 16 bit word
located at the effective
address. The operand in the
register is not changed.

STA/ ADDR(X)

-32-

TAB - Transfer A to B

7 0

GJ
TBA - Transfer B to A

7 o

2F

TAX - Transfer A to X

7 o

4C

TXA - Transfer X to A

7 o

4E

TBX - Transfer B to X

7 o

4D

TXB - Transfer X to B

7 0

GU
Indicators Affected: none
Assembly Language Coding:

The contents of the source
register (specified by the
second character of the
mnemonic operation code)
replace the contents of the
target register (specified
by the last character). The
source register contents are
not changed.

TXA

[

[

I
[

I
1
if
iii

11
,tt

~'

t
[

[

[

[

[

t
[

[

(

[

[

t: I)

[

t
(

[

I
I
I
[

-33-

lAB - Interchange A and B

7 0

~
lAX - Interchange A and X

7 0

~
IBX - Interchange B and X

7 0

~
Indicators Affected: none.
Assembly Language Coding:

ADA - Add to A

23 16 15 0 *
~r-A-O--A--7~i-x~l ---A-D-D-R-----,I

lAB

The contents of the registers
specified by the opcode are
interchanged.

The 16 bit operand at the
effective address is added
to the contents of the A
register; the sum replaces

the contents
contained in
is set. The

of the A register. If the result cannot be
16 bits the arithmetic overflow indicator
operand in memory is not changed.

Indicators Affected: 0V
Assembly Language Coding:

ADA/ ADDR(X)

-34-

SBA - Subtract from A

23 16 15 0 * The 16 bit operand at the
effective address is sub
tracted from the contents
of the A register; the

r-I B-O--B-7---'Ir-x-'-i -A-n-nR------r1

difference is placed in the A register. The operand in
memory is unchanged. The overflow indicator is set if
the result cannot be represented in 16 bits.

Indicators Affected: ~V
Assembly Language Coding:

INA - Increment

7 0

Q
INB - Increment

7 0

GJ
INX - Increment

7 0

GJ

A

B

X

SBA/ ADDR(X)

The operand in the register specified
by the operation code is incremented
by one; the incremented operand is
placed in the register. An arith­
metic overflow results if the register
contains 215-1 (7FFF16) before the
increment instruction is executed.

Indicators Affected: 0V
Assembly Language Coding:

DCA - Decrement A

7 0

Q
DCB - Decrement B

7 0

~

INA

The operand in the register specified
by the operation code is decremented
by one; the decremented operand is
placed in the register. An arithmetic
overflow results if the register con­
tains -215 (800016) before the decre­
ment instruction is executed.

I
I
II

I

[

I
[

I
I ,
(

[

I
I
[

I
[

[

I
I
[

-35-

DCX - Decrement X

7 0

W
Indicators Affected: ~V
Assembly Language Coding:

DCX

AXI - Add to Index Immediate

23 16 15

SF 02

8 7 o The contents of the immediate
data byte located in bits 7-0
of the instruction are added
to the contents of the index

register; the sum is placed in the index register. The
imemdiate data is treated as a signed 8 bit number. If
the sum cannot be contained in the 16 bit index register
the overflow indicator is set.

Indicators Affected: ~V
Assembly Language Coding:

0CA - Ones Complement A

7 0

W
~CB - Ones Complement B

7 0

GJ

AXI I

The operand located in the
specified register is inverted.
The operation is performed on
a bit by bit basis. Each 0
bit in the register is replaced
by a 1, each 1 by a O.

Indicators Affected: none.
Assembly Language Coding:

~CA

-36-

Programming Note:

The 2's complement of a number held in either the A or B
register may be obtained by taking the l's complement and
incrementing the result. For example, the sequence:

{ljCA
INA

will give the negative of the contents of the A register
in 2's complement notation.

MST - Multiply Step

23 16 15 0 *
1~90---9-7~I-x~l---A-D-D-R----~i

The multiply step instruction
is designed to assist in the
multiplication of 2's comple­
ment binary integers. Each

execution of the multiply step instruction uses a single
multiplier bit and generates a new partial product; the
multiply step instruction must be executed once for each
bit in the multiplier to perform a complete multiplication.
Multiplication uses both the A and B registers. A multiply
operation is performed by setting the A register to zero,
loading the B register with the multiplier, and executing
the Multiply Step instruction once for each bit of the
multiplier.

The multiply step instruction tests the low order bit
of the B register (multiplier). If the tested bit is a
1, the addressed operand (multiplicand) is added to the
partial product (A); if the bit is a zero, no add is per­
formed. The A and B registers are then shifted one
place to the right, thus discarding the multiplier bit
just used and pos i tioning the partial product one place
to the right.

When all of the multiplier bits have been processed the
product is in the A register and the high order bits of
B. Note that the number of bits in the product is equal
to the number of bits in the multiplicand plus the number
of bits in the multiplier.

The method of multiplication supported by this instruc­
tion requires that the multiplier be a positive number.

.,
1'"1:" '

~

[

[

(

I
17
it

[

~

I
ry>
Ii

f
r
[

I
I
I
I
tr
~

I
I
[,
[

[

[

[

[

[

t
I

[

I

-37-

The multiplier must therefore be complemented if negative,
and the sign of the product must be adjusted after the
multiplication process.

The example below illustrates binary mUltiplication using
the multiply step instruction. For brevity, all operands
as well as the A and B registers are assumed to be 4 bits
long instead of their actual length of 16 bits.

Multiplier:
Multiplicand:

Step

1

2

3

4
ANSWER

A

0000
+0010

0010
0001

0001
0000

0000
+0010

0010
0001

0001
0000

510 = 0101 2
210 = 0010 2

B

0101

0101
0010

0010
1001

1001

1001
0100

0100
1010

Indicators Affected: none
Assembly Language Coding:

Programming Note:

(after shift)

(after shift)

(after shift)

(after shift)

MST/ ADDR(X)

The following code will multiply two positive 16 bit
numbers.

LDA= F' 0'
LDB/ MPLIER
LDX= F'16'
MST/ MCAND
DCX DECREMENT BIT COUNT
NXZ *-4 SKIP BACK IF COUNT t- o

-38-

DST - Divide Step

23 16 15 0 *
I~ -98---9-F--lx~1----AD-0-R--~1

The divide step instruction
is designed to aid in imple­
menting a fixed point binary
divide routine. To perform

a complete division the divide step instruction is executed
once for each quotient bit desired. Before the division is
started the dividend is loaded into the A and B registers;
the divisor is located at the effective address in memory.
Both the divisor and the dividend are positive binary
numbers. The sign of the quotient must be determined us­
ing the rules of algebra, and the quotient complemented
if necessary after division. The dividend may have a
maximum length of 30 magnitude bits, and is right justified
in the A-B register pair with a double sign bit in bits
15 and 14 of the A register. The quotient bits are shifted
into the low order position (bit 0) of the B register as
they are formed. When the divide is complete the B register
contains the quotient right justified, and the A register
contains the remainder.

The divide step instruction performs the following opera­
tions.

1. The A-B register is shifted left one position.
A zero is shifted into the low bit of the B
register.

2. The divisor is subtracted from the contents of the
A register. A zero or positive result causes the
low bit of the B register to be set to 1. If the
result was negative, the divisor is added to the
A register and the low bit of the B register is
left zero.

Indicators Affected: none.
Assembly Language Coding:

Programming Note:

OST/ AODR(X)

The divide step instruction may be used to implement a
full division as shown. The example assumes a 30 bit
positive dividend and a 16 bit positive divisor.

r
L

[

t ,
IJ

11
~.

[

I
~.

[

[

I
I
r
[

I
I
I
I

[

I
[

I
[

[
[
[

[
[

[

I
[

[

f
I
I
I

-39-

R04
LDV/
LDX/
DST/
DCX
NXZ

DIVDND
F'16'
DIVISR

LOAD QUOTIENT BIT COUNT

DECRE~ffiNT BIT COUNT
*-4

IWM - Increment Word in Memory

23 16 15 0 *
~17-0--77~I-x~:--AD-DR--~1

The two byte operand located
at the effective address is
incremented by one. If the
operand contains 215 _1

(7FFF16) before the execution of the IWM instruction an
arithmetic overflow will result and the overflow indicator
will be set. The arithmetic and logical indicators are
set by this instruction.

Indicators Affected: 0V, ALI
Assembly Language Coding:

IWM/ ADDR(X)

D~1 - Decrement Word in Memory

23 16 15 0 *
r[-78---7-F~!x~1---A-DD-R----~1

The two byte operand located
at the effective address is
decremented by one. If the
operand contains _215 (800016)

before the execution of the DWM instruction an arithmetic
overflow will result and the overflow indicator will be set.
The arithmetic and logical indicators are set according to
the sign and value of the result.

Indicators Affected: ~V, ALI
Assembly Language Coding:

DWM/ ADDR(X)

AWl - Add to Word Immediate

31 24 23 16 15 0 * The immediate data in
the second byte of the
instruction is added

~I ~5-0~I~s~:--I~I-x~I---AD--DR--~1
as a signed 8-bit number

to the contents of the two byte operand at the effective
address; the result replaces the operand in memory. If

-40-

the result is greater than 215 _1 or less than _2 15 , an
arithmetic overflow will occur and the overflow indicator
will be set. The arithmetic and logical indicators are
set according to the result.

Indicators Affected: ¢V, ALI
Assembly Language Coding:

AWI/ I,ADDR(X)

ANA - AND Memory with A

23 16 15 0 * The two byte operand indicated
by the effective address is
ANDed with the contents of the
A register. The result re­

II--D-o--D--7~I-x~:---A-D-D-R----'1

places the contents of the A register. The operation is
performed on a bit by bit basis. The resulting bit is a
one if both bi ts are one, zero otherwise ..

Indicators Affected: none.
Assembly Language Coding:

¢RA - ¢R B to A

7 0

W
¢RB - 0R A to B

7 0

GJ

ANA/ ADDR(X)

The contents of the source register
(the register not named in the mnemonic
operation code) is 0Red with the target
register (specified in the mnemonic
operation code); the result is placed
in the target register. For example,
0RA replaces A with the result of
the operation (A) ¢R (B). The source
register (B in the example is not
changed. The operation is performed on
a bit by bit basis. If both bits are

. zeros, the resulting bit is a zero;
otherwise the result is a one,

Indicators Affected: none.
Assembly Language Coding:

[

I'!.' JJ

[

I
I

[

[

I ,
r. '1\

[

[

[

[

I
[

3.2

XRA

7

I 41

XRB

7

I 43

- Exclusive

a

r

- Exclusive

a

I

-41-

!llR B to A

~R A to B

The contents of the register
not indicated in the mnemonic
opcode are Exclusive ~Red with
the contents of the register
indicated by the last char­
acter of the mnemonic. The
result is placed into the
named target register. For
example, XRA replaces the A
register contents with the
result of the exclusive ~R
operation. The source register
(B in the example) is not
changed. The operation is per­
formed on a bit by bit basis.
If both bits are alike (both
zeros or both ones), the result­
ing bit is a zero; otherwise the
resulting bit is a one.

Indicators Affected: none.
Assembly Language Coding:

Shift Instructions

15 8 7 0

IOPCODEI COUNT I

XRA

The shift group includes arithmetic
and logical shifts and a rotate for the
A register, the B register, and the
linked A-B register pair. The shift

instructions are two bytes long. The operation code deter­
mines the type of shift operation. The second byte con­
tains an 8 bit 2's complement count which specifies the
number of bit positions to be shifted. If the shift count
is negative, no operation is performed. Figure 3-2 is a
summary of the shift instructions. The !llong" shifts
operate on the linked A-B register pair. Bits shifted
out of bit a of the A register by a long right shift are
shifted into bit 15 of the B register. Similarly, bits
shifted out of bit 15 of the B register by a long left
shift are shifted into bit a of the A register. The
assembly language operand "N" in Figure 3-2 specifies the
shift count in all cases.

-42-

INSTRUCTION MNEMONIC OPERAND INDICATORS OPCODE

Rotate Left RLA N 20
A

Rotate Left RLB N 21
B

Rotate Left RLL N 22
Long

Logical LRA N 24
Right A

Logical LRB N 25
Right B

Logical Right LRL N 26
Long

Arithmetic ALA N 28
Left A

Arithmetic ALB N 29
Left B

Arithmetic ALL N 2A
Left Long

Arithmetic ARA N 2C
Right A

Arithmetic ARB N 2D
Right B

Arithmetic ARL N 2E
Right Long

Figure 3-2 Shift Instructions

[

(

[

[

(

[

I
I
[

(

[

I:
[

I
[

(

[

I
I

-43-

RLA - Rotate Left A

15 870

20 I COUNT I
The contents of the selected register
are rotated left by the number of bit
positions specified in COUNT. Bits
shifted out of the most significant
position are shifted into the least
significant position. [r---l 5-1 4-0-""(l

[H-A-j-J

RLB - Rotate Left B

15 870

21 I COUNT I

LfHr-1 _4 -B--O ~

RLL - Rotate Left Long

15 870

22 I COUNT I

~14 0 15 14 0:1
~-A-~'=-:--B---:"~

Indicators Affected: none.
Assembler Language Coding:

RLA N

Programming Note: The rotate instruction is useful
for moving data within a register without destroying
any information.

-44-

LRA - Logical Right A

15 870

24 I COUNT I

15 14 a

"0" -..[J ~'---~~I 1
LRB - Logical Right B

I 25

15 870

I COUNT I
15 14 a

"0" --{]--1-B ----"1 1
LRL - Logical Right Long

15 870

26 ! COUNT I

The contents of the selected
register are shifted right
by the number of bit positions
specified in COUNT. Zeros are
shifted into the most signif­
icant position. Bits shifted
out of the least significant
position are lost.

15 14 a 15 14 a
"0 ,,~'---. A-~ 1"---: ---;B r 1

Indicators Affected: none.
Assembler Language Coding:

LRA N

I
IT
tl

[

[

[

I

[
Ii
11

[

[

I
I

-45-

ALA - Arithmetic Left A

15 8 7 a

28 I COUNT

15 14 a

rD-1 r---A---t~ "0"

ALB - Arithmetic Left B

15 870

29 I COUNT !
15 14 a r% Ir--~~r- "0"

ALL - Arithmetic Left Long

15 870

30 I COUNT I

The contents of the selected
register are shifted left by
the number of bit positions
specified in COUNT. Zeros
are shifted into the least
significant position and bits
shifted out of the sign posi­
tion are los t.

15 14 a 15 14 a
f-D-1.....---A----.r-{}--1-B---""T~ "0"

Indicators Affected: none.
Assembler Language Coding:

ALA N

Programming Note: The arithmetic left shift can be used
for multiplication by a power of two. An arithmetic
left shift of n positions is equivalent to multiplication
by 2n.

-46

ARA - Arithmetic Right A

15 870

I 2C I COUNT

15 14

A

ARB - Arithmetic

15 8 7 0

I 2D I COUNT I

~5 14

B

ARL - Arithmetic

15 870

! 2E ! COUNT I

0

Right B

0

Right Long

The contents of the selected
register are shifted right
by the number of bit positions
specified in COUNT. The sign
bit of the register is pro­
pagated during shifting. Bits
sh-ifted out of the least signif­
icant position are lost.

[~ ~~14 A O~..-------.14 B o~
Indicators Affected: none.
Assembler Language Coding:.

Programming Note:
used for division
right shift for n
by 2n

ARA N

The arithmetic right shift can be
by a power of two. An arithmetic
positions is equivalent to division

[

[

[

[

[

[

[

[

I
[

[

[

[
[,

[

I
[

3.3

-47-

Variable Word Length Instructions

The length of binary data which must be processed varies
from one application to another and from one instance to
another within a given application. Variable word length
instructions perform binary arithmetic and logical opera­
tions on one, two, three or four bytes of data. This is
especially useful for character operations, single byte
arithmetic, and extended precision arithmetic on 24 or
32-bit quantities.

The length of the binary data operated upon is specified
by the word length indicator in the machine status register.
Instructions described later in this section allow the pro­
grammer to specify the length of variable length data.

Variable word length instructions use two operands, one of
which is in the A orA-B register, the other in memory.
Except for the store instruction, the result of an opera­
tion replaces the contents of A or A-B. For one and two
byte operations, only the A register participates, while
for three and four byte operations, both the A and B registers
are used. Figure 3-3 gives the exact operation for
various word length values.

Word
Length
Value

1

1

2

Operands
Location of
Result

low byte of A register
and 1 byte
memory operand

low byte of A
and 1 byte
memory operand

A and two byte
memory operand

memory
(s tore
instruction)

regis ter

Operation

The result replaces the
contents of the low byt~
of A. Bit seven of A is
propagated thru the high
8 bi ts of A.

The contents of the low
byte of A replace the
contents of the speci­
fied byte in memory.
A is unchanged.

The result replaces the
contents of the A register.

Word
Length
Value

2

3

3

4

4

-48-

Operands

A and two byte
memory operand

low byte of A
and both bytes
of B, and three
byte memory
operand

low byte of A
and both bytes
of B, and three
byte memory
operand

A-B register
pair and four
byte memory
operand

A-B register
pair and four
byte memory
operand

Location of
Result

memory
(store
instruction)

regis ter

memory
(s tore
instruction)

register

memory
(store
instruction)

Operation

The contents of A replace
the contents of the speci­
fied two byte operand in
memory. A is unchanged.

The result replaces the
contents of the B regis­
ter and the low byte of
the A register. Bit seven
of the A register is pro­
pagated thru the high 8
bits of the A register.

The contents of the low
byte of the A register
replaces the contents of
the first (lowest addressed)
byte of the three byte
memory operand and the con­
tents of the B register
replace the remaining two
bytes. A and B are un­
changed.

The result replaces the
contents of the A and B
regis ters .

The contents of the A
and B registers replace
the contents of the four
byte memory operand.
The high byte of A in
the first (lowest address­
ed) byte, the low byte of
A in the second byte, the
high byte of B in the
third byte, and the low
byte of B in the fourth
(highest addressed) byte.
A and B are unchanged.

t
I
I i

it
~i

I !

[fI
11 '.

II[

I'
I,
I
I
I
I
[
~
~

[

[

[

[

[

[

[

[

I
I
[

[

[

t
[

[

[

t

WL

1

2

3

4

High
Byte

Low
Memory
Address

A

-49-

Low
Byte

B

High
Byte

Low
Byte

High
Memory
Address

A-B register
pair

Memory
Operands

Figure 3-3 Variable Length Binary Data Formats

The variable length and associated instructions are shown
in Figure 3-4. The mnemonic, operand coding, indicators
affected, and machine language opcode are shown for each
instruction. Those instructions allowing the eight memory
addressing modes are indicated by an asterisk following
the opcode.

t
I

-50-

I
I

INSTRUCTION MNEMONIC OPERANDS INDICATORS OPCODE
.~

Load Variable LDV ADDR(X) E8-EF*

Store Variable STV ADDR(X) FS-FF* II ..
Add Variable ADV ADDR(X) f/JV A8-AF*

I Sub tract Var- SBV ADDR(X) (/JV BS-BF*
iable

AND Variable ANV ADDR(X) D8-DF* ~.
Reset f/JV, Rf/Jl 0V,WL 08

~ Set WL=l

Reset 0V, R02 (/JV,WL 09
Set WL=2 ~.

Reset 0V, R03 0V,WL OA
Set WL=3 I Reset 0V, Rf/J4 (/JV,WL OB
Set WL=4

I ; I

Set (/JV, S0l 0V,WL OC
Set WL=l

Set 0V, Sf/J2 0V,WL OD I
Set WL=2

Set C/)V, SC/)3 C/)V,WL OE I ·1

Set WL=3

Set 0V, S(/J4 C/)V,WL OF I Set WL=4

Add Word AWX 0V 46 I Length to X

Subtract Word SWX (/JV 47 t Length From X

Figure 3-4 Variab Ie Word Length Instructions I
I

[

[
:i [.

[

I
I
[

(

I
I
[

[

[

I
[

[
[

I
I

-51-

Instruction Operation

LDV - Load Variable

23 16 15 0 *
1~-E-8--E-F~I-x~!---A-D-D-R--~1

Indicators Affected: none.
Assembly Language Coding:

STY - Store Variable

23 16 15 0 *
~IF-8--FF~lx~i--~-D-R~(

The one to four byte operand
at the effective address is
placed in the A or A-B
register. The memory operand
is unchanged.

LDV! ADDR(X)

the effective address. A and

The contents of the appro­
priate bytes of the A or A-B
register are placed in the
one to four byte operand at
B remain unchanged.

Indicators Affected: none.
Assembly Language Coding:

ADV - Add Variable

23 16 15 0 *

STV! ADDR(X)

The one to four byte operand
at the effective address is
added to the appropriate

~IA-8---AF~!-X~:---A-D-D-R--~f
bytes of the A or A-B register

and the sum is placed in the A or A-B register. If the mag­
nitude of the sum is greater than can be contained in A or
A-B with the current word length, the overflow indicator is
set. The memory operand remains unchanged.

Indicators Affected: 0V
Assembly Language Coding:

ADV/ ADDR(X)

------------ - _._--

-52-

SBV - Subtract Variable

23 16 15 0 *
I B S - SF 1 X r--AD-DR----rl

The one to four byte operand
at the effective address is
subtracted from the appro­
priate bytes of the A or A-B

register and the difference is placed in the A or A-B register.
If the magnitude of the difference is greater than can be con­
tained in A or A-B with the current word length, the overflow
indicator is set. The memory operand remains unchanged.

Indicators Affected: ~V
Assembly Language Coding:

SBV/ ADDR (X)

ANV ~ AND Variable

23 16 15 0 *
r-! D-S--D~F~I--x -r-i -A-D-DR--'f

The one to four byte operand
at the effective address is
ANDed with the appropriate
bytes of the A or A-B register

and the result is placed in the A or A-B register. The
memory operand remains unchanged. The operation is per­
formed on a bit by bit basis. If both bits are ones, the
resulting bit is a one, otherwise the resulting bit is a
zero.

Indicators Affected: none.
Assembly Language Coding:

Programming Notes:

ANV/ ADDR (X)

The sign bit is propagated for a word length value of one
when the result is placed in the A register. Small constants
may therefore be loaded with an LDV (word length = 1) and
then operated upon by instructions which use all of A as an
operand.

The use of variable word length instructions with a word
length value of two is logically equivalent to the use of
corresponding instructions which operate on all of A (LDA,
STA, ADA, SBA, ANA).

I
II
Ii
I'
,II

II
I'

I
I
I
I
I
[

I
, 11

I
[

[

I
[

I
[

I I

I

-53-

Operations with word length values of one and two affect
only A while operations with word length values of three
and four affect both A and B. The A register shift opera­
tions (RLA, LRA, ALA, and ARA) should be used for shifting
one and two byte data; long shift operations (RLL, LRL,
ALL, and ARL) should be used for three and four byte data.

Great care should be employed when using variable word
length instructions with the literal addressing mode. If
the word length value at execution time does not agree
with the number of bytes of immediate data following
the operation code byte, instruction execution will not
continue at the proper location following the variable word
length instruction.

The method for taking the negative of
register has already been described.
of a number in the A-B register pair,
can be used:

a number in the A
To take the negative
the following code

0CA
0CB
INB
NBZ
INA

*+3

l'S COMPLEMENT A
l' s COMPLEMENT B
INCREMENT B
INCREMENT A FOR
A CARRY OUT OF B

A short zero test when using word length values of 3
and 4 may be performed by 0Ring the B register contents
into the A register and testing A. This method destroys
the contents of A if B is nonzero and can therefore be
used only for zero tests if the contents of A and Bare
not required after the test. A typical test might be:

R04
LDV DATA
SBV/ TEST
~RA
SAZ EQUAL

Associated Instructions

IS DATA
= TEST?

YES - SKIP

Associated with variable word length instructions are
instructions which allow the setting, testing, and us­
ing of the word length value contained in bits 0 and 1
of the machine status register. All of the instruc­
tions described here are one byte in length.

-54-

Instruction Operation

S0n, R0n - Set or Reset Overflow and Set Word Length

R~l - Reset ~V, Set WL=l

7 0

W
R~2 - Reset ~V, Set WL=2

7 0

[;J
R03 - Reset ~V, Set WL=3

7 0

W
R04 - Reset 0V, Set WL=4

7 0

GJ
S01 - Set 0V, Set WL=l

7 0

W
S02 - Set 0V, Set WL=2

7 0

W
S03 ~ Set 0V, Set WL=3

7 0

W
S~4 - Set 0V, Set WL=4

7 0

W

The overflow indicator is set
or reset and the word length
indicator is set as specified
in Figure 3-5.

[,
I
[

:[

I
~

~ I ,. '

[

:[~I, '
\'

[

[

[I

I
I
r!
1.1. ., ,

[

I
I
I
I
I
I
I
[

I
[

I
[

[

I
I
I
I
I
I

--- -- "---"-_.

-55-

INSTRUCTION OPERATION WORD LENGTH RESULTING WORD
MNEMONIC CODE INDICATOR LENGTH VALUE

R0l 08 OOZ 1

R~Z 09 01Z Z

R03 OA 10 Z 3

R04 OB lIZ 4

S01 OC OOZ 1

S~Z OD OlZ Z

S~3 OE 10 Z 3

S~4 OF lIZ 4

Figure 3-5 Word Length and Overflow Operations

Indicators Affected: ~V, WL
Assembly Language Coding:

R0l

AWX - Add Word Length to X

7 0

W
is set.

The word length value (1, Z, 3, or 4) is
added to the contents of the X register
and the sum is plrSed in X. If the sum
is greater than Z -1 the overflow indicator

Indicators Affected: 0V
Assembly Language Coding:

AWX

SWX - Subtract Word Length from X

7 0

~
the overflow

The word length value (1, Z, 3, or 4) is
subtracted from the contents of the X
register and the difference is placed ~n
X. If the difference is less than -Zl
indicator is set.

Indicators Affected: 0V
Assembly Language Coding:

SWX

3.4

-56-

Programming Notes:

The AWX and SWX instructions are normally used for stepping
X through tables one, two, three or four bytes in width.
AWX may also be used to determine the current word length
value by clearing X and then adding the word length with
the AWX instruction. S0V and N~V conditional skip instruc­
tions can be used to test and reset the overflow indicator.
The word length and overflow indicators can also be tested
without being reset using the B0C instruction with the
appropriate mask.

For a given program, it is desirable to establish a
convention for the word length value. Any routine which
uses a different word length value must restore WL to the
standard value after finishing its operations at the non­
standard word length.

In a subroutine, the SAY instruction can be used to save
the machine state, including the WL indicator in the
machine status register. The word length value is then
restored when the RET or RTN instruction is used to re­
turn from the subroutine.

Depressing the reset switch on the control panel causes
the machine status register, including the overflow and
word length indicators, to be cleared. This results
in a word length value of one. If the power fail/auto­
matic restart option is implemented the word length is
set to 1 and the overflow indicator is reset when a
power restart interrupt occurs.

Memory Immediate Instructions

Memory immediate instructions provide character and bit
operations on any byte of memory without requiring the use
of registers. All memory immediate instructions are
four bytes in length. The first byte contains the opera­
tion code, the second byte contains the immediate logical
data, and the third and fourth bytes contain an indexable
address word. Most memory immediate instructions set the
arithmetic and logical indicators which may then be tested
with the B0C instruction.

The memory immediate instructions are listed in Figure 3-6.

_~ - _c _~~_~ __ ------- - ~ ----~--- --~ ~---.--. ~--

[

11., .. 11

I
I
I
I

[

[

[

[

I
I
[

[

I
[
r
I,

(

[

(

[

[

(

I
I

-57-

NAME MNEMONIC OPERANDS INDICATORS OPCODE

Move Immediate MVI N,ADDR(X) 52

Compare Logical CLI N,ADDR(X) ALI 53
Immediate

Test Under Mask TMI N,ADDR(X) ALI 54
Immediate

Set Bits Under SMI N,ADDR(X) ALI 55
Mask Immediate

Clear Bits Under CMI N,ADDR(X) ALI 56
Mask Immediate

Invert Bits Un- IMI N,ADDR(X) ALI 57
der Mask Imme-
diate

Figure 3-6 Memory Immediate Instructions

Instruction Operation

~WI - Move Immediate

31 24 23

52 N

16 15

ADDR

o The byte of immediate data,
N, replaces the byte at the
effective address.

Indicators Affected: none.
Assembly Language Coding:

MVI N,ADDR(X)

CLI - Compare Logical Immediate

31 24 23 16 15 o

53 N ADDR

The byte of immediate data,
N, is compared to the byte
at the effective memory
location. Both operands

are treated as unsigned 8-bit binary numbers. The arith­
metic and logical indicators are set according to the results
as follows:

N < addressed data - L/~ indicator set (low)
N = addressed data E/Z indicator set (equal)
N > addressed data - HIM indicator set (high)

Only one ALI is set and the others are reset.

-58-

Indicators Affected: ALI
Assembly Language Coding:

CLI N,ADDR(X)

TMI - Test Under Mask Immediate

31 24 23 16 15

54 N

o

ADDR

The byte of immediate data,
N, is used to select bits
of the byte at the effective
address. A one bit in N

selects the corresponding bit in the addressed data. Select­
ed bits are tested and the arithmetic and logical indicators
are set as follows:

all selected bits
all selected bits
mixed l's and O's

= 1 L/~ indicator set (ones)
= 0 - EIZ indicator set (zeros)

- HIM indicator set (mixed)

Only one ALI is set and all others are reset. The byte at
the effective address remains unchanged.

Indicators Affected: ALI
Assembly Language Coding:

TMI N,ADDR(X)

SMI - Set Bits Under Mask Immediate

31 24 23

55 N

16 15
I !
fX f
I :

o

ADDR

The byte of immediate data,
N, is used to select bits
of the byte at the effective
address. A one bit in N

selects the corresponding bit in the addressed data. Selected
bits are set to one; the remaining bits are not changed.
The resulting data byte is tested and the arithmetic and
logical indicators are set as follows:

all data bits = 1 L/~ indicator set (ones)
all data bits = 0 - EIZ indicator set (zeros)
mixed l's and a's - HIM indicator set (mixed)

Only one indicator is set; all others are reset.

Indicators Affected: ALI
Assembly Language Coding:

SMI N,ADDR(X)

I

'. IJ

I
I
I
I'i , :
, :

~

~" ',' . . ,

I

I
[

(

[

[

I
[

[

[

I
I
[,

[

(

[

[

(

I
I

-59-

CMI - Clear Bits Under Mask Immediate

31 24 23 16 15

56 N

o

ADDR

The byte of immediate data,
N, is used to select bits
of the byte at the effective
address. A one bit in N

selects the corresponding bit in the addressed data. Select­
ed bits are set to zero; the remaining bits are unchanged.
The resulting data byte is tested and the arithmetic and
logical indicators are set as in the SMI instruction.

Indicators Affected: ALI
Assembly Language Coding:

CMI N,ADDR(X)

IMI - Invert Bits Under Mask Immediate

31 24 23 16 15

57 N

o

ADDR

The byte of immediate data,
N, is used to select bits
of the byte at the effective
address. A one bit in N

selects the corresponding bit in the addressed data. A
selected one is set to zero; a selected zero is set to one.
The unselected bits remain unchanged. The resulting data
byte is tested and the arithmetic and logical indicators
are set as in the SMI instruction.

Indicators Affected: ALI
Assembly Language Coding:

IMI N ,ADDR(X)

3.5

-60-

Memory to Memory Instructions

The memory to memory instruction group includes both decimal
arithmetic and byte string instructions. Instructions are
provided for decimal arithmetic on numbers of up to 16
digits and for byte string moves, compares, edits, and
tests on strings up to 256 bytes in length. The instruc­
tions in this group operate on two operands in memory and
generally do not change the register contents. The
two operands are addressed by 16 bit indexable address
words, the first containing the address of the target
(receiving) field and the second containing the address
of the source field. The arithmetic and logical indicators
are set by those memory to memory instructions performing
arithmetic operations or logical tests. All instructions
in this group have a length byte specifying the number of
bytes of data opera ted upon. The length byte 0 f the decimal
instructions contains separate 4 bit length fields for the
target (LT) and source (LS) fields. All other memory
to memory instructions contain a single 8 qit length
specification (L).

Figure 3-7 lists the memory to memory instructions des­
cribed in this section.

NAME MNEMONIC OPERANDS INDICATORS OPCODE

Add Decimal ADD ADDRT(LT'X)
ADDRS(LS'X)

Subtract SBD ADDRT(LT,X)
Decimal ADDRS(LS'X)

Multiply Step MSD ADDRT(LT,X)
Decimal ADDRS(LS'X)

Divide Step DSD ADDRTCLT,X)
Decimal ADDRS(LS'X)

Edit and Mark EDT ADDRTCL,X)
ADDRSCX)

Move Character
String Left

Move Character
String Right

MVL

MVR

Compare Logical CLC
Character

Translate TRM
Under Mask

Translate and TTM
Test Under Mask

ADDRT(L, X)
ADDRS(X)

ADDRTCL ,X)
ADDRS(X)

ADDRT(L,X)
ADDRS(X)

N ,ADDRT (L, X)
ADDRS(X)

N,ADDRT(L,X)
ADDRS (X)

Figure 3-7 Memory to Memory Instructions

~----~-~ .. -- -~----- ------

ALI,0V 58

ALI,~V 59

SA

'/JV 5B

ALI 5F04

5C

5D

ALI 5FOS

5F06

ALI 5F07

I
[

I
I
I
I
-I
I
I

I
[

[

[

('

I,
[

I:

[

-61-

Decimal Arithmetic

The ClP/2200 decimal arithmetic instructions operate
on zoned decimal data (see section 2.2.). The choice
between zoned decimal and binary data representation
for a given application should be made after consider­
ing the calculations to be performed. Zoned decimal
arithmetic offers the two advantages of operating
directly on ANSCll input and output format data and
operating directly in decimal. For applications requir­
ing relatively simple computation, the less efficient
storage utilization and slower execution time of decimal
instructions are more than offset by the time and space
saved by eliminating code conversion and decimal to
binary and binary to decimal steps. The use of decimal
arithmetic can also result in simpler program logic
by eliminating subroutine calls for number base conversion,
simplifying problems of handling decimal fraction quantities,
(especially in print fields) and by freeing the accumulator
registers for program loop control, counting, etc.

Programs requiring extensive tables of data, complex
calculation sequences, or those programs operating on
data obtained directly in binary form should use binary
arithmetic (see section 3.1 and 3.2). The extra steps
involved in converting input data to binary and output
data to decimal (if necessary) are offset by the greater
storage efficiency and basic instruction speed of the
binary arithmetic and variable length arithmetic instruc­
tions.

The decimal instructions operate on byte strings containing
from 1 to 16 zoned decimal digits. Each instruction is
six bytes in length and operates on two operands in memory.
The mUltiply step decimal and divide step decimal instruc­
tions use the A register in addition to the operands in
memory. The third and fourth bytes of decimal instructions
contain the address of the target (receiving) string. The
target field length is in the high four bits of the second
byte, with values of 0 to 15 for strings of 1 to 16 bytes,
respectively. The fifth and sixth bytes contain the
source field address word; the source field length is con­
tained in the low four bits of the second byte.

- -- - - -._---- .. _- -- .-.-.----------------~~~

-62-

The Edit and Mark instruction is used for formatting
decimal strings for output. The Edit and Mark opcode
occupies the first two bytes of the instruction, the
third byte gives the length of the target field (allow­
ing target strings of up to 256 bytes), and the fourth
through the seventh bytes contain the pattern and source
field addresses.

In processing decimal strings, no check is made for the
validity of the digits. Non-decimal digit characters
in decimal operands cause erroneous results and should
be removed from the data fields before computation. The
"translate and test under mask" instruction can be used
to test for valid decimal operands.

ADD - Add Decimal

47 40 39 ~2 31 16 15 0 ! ;-.,-: -=--r-(---~--r-I· -·-----;1

I 58 ILT :Lsi X ; ADDRy l X 1 ADDRS !

The decimal number
located at the source
address is added
to the decimal number

at the target address; the sum is stored at the target
address. The source field is unchanged. if the source
field length is less than the target field length, high
order source zeros are supplied. The overflow indicator
is set if the target field is shorter than the source
field or if the addition causes a carry out of the leftmost
target digit. The arithmetic and logical indicators are set
according to the value of the result placed in the target
field.

Indicators affected: ~V, ALI
Ass emb ly Language Coding:

ADD ADDRT(LT,X),ADDRS(LS,X)
l.:.LT ,LS':'16

SBD - Subtract Decimal

47 40 39 32 31 16 15
! ! I !: II ;

i 58 ! LTlLs\X : ADDRT IX: ADDRS

o The decimal number
located at the source
address is subtracted
from the decimal number

at the
target

target addresses. The difference is stored at the
address and the source field is unchanged.

fTl
II

I

I
I
I

--'-'

[

[

(

[

[

(,

[

[

[

[

[

[

[

[

[

[

[

I
I

-63-

The length of the source field must be less than or
equal to the length of the target. If the source field
is shorter than the target field, high order source zeros
are supplied. The overflow indicator is set if the source
field is longer than the target field or if the difference
is too large to be contained in the target field. The
arithmetic and logical indicators are set according to
the value of the result placed in the target field.

Indicators Affected: ~V,ALI
Assembly Language Coding:

MSD - Multiply Step Decimal

49 40 39 32 31 16 15

ADDRT

a The multiply step
decimal instruction
is designed to Ix : ADDRS
assist in implementa­

tion of a decimal multiplication routine. The decimal
multiplicand located at the source address is multiplied
by the digit contained in the low four bits of the A
register. The resulting decimal product is added to the
partial product at the target address. This sum replaces
the partial product. The length of the partial product
generated is always one greater than the length of the
multiplicand. If the new partial product is longer than
the specified partial product field, the overflow indicator
is set. A complete decimal multiply may be performed by
executing the MSD instruction once for each digit in the
multiplier. This results in a product whose length is
equal to the sum of the lengths of the multiplier and
multiplicand fields.

Each execution of the multiply step decimal instruction
processes one multiplier digit. The multiplication pro­
gram must decrement the target address by one after each
multiply step, thus shifting each partial product left
one place from the previous partial product. This relative
shift effectively multiplies the multiplier digit by the
appropriate power of 10. The accompanying example il­
lustrates the various steps in a decimal multiplication.

-64-

Assume that a 4 digit number at location 1000 16 is to be
multiplied by a 3 digit number located at 110016 and the 7
digit product is to be generated at location 120016' The
multiplication program must ensure that the partial product
area (120016 to 120616) is zero before the multiplication
begins. The multipller, multiplicand, and product area
before multiplication are shown below.

MULTIPLICAND (Location 100016) B81 B9! BO I B2 (+890210)

MULTIPLIER (Location 110016) B91 B1 B1 (+91110)

PRODUCT (Location 120016) I BO BO 1 BO I BO I BO I BO I BO

The multiplication program processes the multiplier digits
from right to left. The first (rightmost) digit of the
multiplier is placed in the A register, and the first
multiply step is executed. The instructions required and
the resulting partial product are shown below.

LDV/

MSD

X'1102'

X'1202' (5) ,X'1000"(4)

PARTIAL PRODUCT (Location 120016)

LOAD 1ST MULTIPLIER DIGIT

FORM 1ST PARTIAL PROD.

Note that the partial product field length was specified as
5, one digit longer than the multiplicand field. The second
and third multiplier digits are processed in a similar fashion:

LDV/ X'1101' LOAD 2ND MULTIPLIER DIGIT

MSD X'1201'(5),X'1000'(4) FORM 2ND PARTIAL PROD.

PARTIAL PRODUCT (Location 1200 16) BO IBO I B9 'B7 I B9\ B21 B2

[

[

I

[

I
!11
~

[

[

[
ir. ~

I
[

I
I
I
I

I
[

[

[

(:

()

I
(',

[

I
[

I
[

[

(

[

[

[

[

-65-

X'llOO' LOAD 3RD MULTIPLIER DIGIT LDV/

MSD X'1200' (S) ,X'lOOO' (4) FORM FINAL PRODUCT

PRODUCT (Location 1200 16) Bsl Bl I BO I B9 I B 71 B21 B2

Note that the third partial product was S significant
digits long (9 X S902 = SOlIS).

The sign of the partial products produced is always
positive. The using program can determine the proper
product sign by examining the signs of the multiplier
and multiplicand. If both signs are alike, the pro-
duct sign is correct (+); if the multiplier and multipli­
cand signs differ, the product sign must be set negative.

Indicators Affected: ~V
Assembly Language Coding:

Programming Note:

The following code zeros the product field (PPRODUCT).
The fifteen digit multiplicand (MLTPLCND) is then multi­
plied by the sixteen digit multiplier (MLTPLIER). The
product is accumulated in PPRODUCT.

LOOP

ENDMLT
PPRODUCT

MVI
MVL
R9'l
LDX=
LDV/
MSD
DCX
NXN
LDV/
TAB
LDV/
XRA
ANV=
SAZ
CMI
N0P
DS

C' 0' ,PPRODUCT
PPRODUCT+l(30),PPRODUCT ZERO PRODUCT FIELD

F'lS' LENGTH-l OF MULTIPLIER
MLTPLIER(X) LOAD MULTIPLIER DIGIT
PPRODUCT(16,X),MLTPLCND(lS)

DECREMENT COUNT
LOOP NOT DONE
MLTPLCND+14 MULTIPLICAND SIGN - (B)

MLTPLIER+lS

X'FO'
*+6
X' FO ' ,PPROD+30

31

MULTIPLIER SIGN - (A)
COMPARE THE SIGNS

KEEP ONLY THE ZONE BITS
SKIP IF SIGNS ARE SAME

SET PRODUCT NEGATIVE
END OF MULTIPLICATION

-66-

DSD - Divide Step Decimal

47 40 39 32 31 16 15 o This instruction is
designed to assist in
the implementation
of a decimal division

routine. The partial dividend located at the target address
is divided by the decimal divisor located at the source
address. The single decimal quotient digit developed is
placed in the low 4 bits of A and the rest of A is set to
zero. The decimal remainder resulting from the divison
replaces the partial dividend. The number of resulting
remainder digits is equal to the number of divisor digits.
A complete decimal division may be performed by executing
the DSD instruction once for each desired quotient digit.
The length of the resulting remainder is equal to the
number of digits in the dividend minus the number of quot­
ient digits generated.

In order to perform a valid division the first partial
dividend and the divisor must be adjusted so that the
execution of the first DSD gives a quotient digit in the
range of 0-9 and a remainder less than the divisor. The
execution of DSD with invalid scaling or division by
zero causes the overflow indicator to be set.

Indicators Affected: 0V
Assembly Language Coding:

DSD

Programming Notes:

To insure that a valid divide can be performed, it is
sufficient to insure that (1) there are more significant
dividend digits than significant divisor digits and, (2)
if "n" is the number of significant divisor digits the
first n+l significant digits of the dividend are less
than ten times the divisor. If these rules are followed
in setting up for the first DSD instruction in performing
a complete divison, scaling for all subsequent steps will
be valid.

In the following example, proper scaling of the operands
is assumed. A four digit number is divided into an eight
digit number. The result is a four digit quotient in the
left four digits of the dividend field and a four digit
remainder in the right four digits of the dividend field.

I
[

if lIJ

I
I
I
I
I
I

-----------~-~---------

I
[

[

[

[

[

II. I I

I

('

[

[

'I
[

I

LOOP

R~l
LDB=
LDX
DSD
tJRA
STV/
INX
TXA
SBV=
NAZ

-67-

ClOt ANSCII ZERO
F'O'
DIVIDEND(5,X),DIVISOR(4)

SET ZONE IN QUOTIENT DIGIT
DIVIDEND(X)

H'4' FOUR QUOTIENT DIGITS YET?
L~~P NOT DONE

EDT - Edit and Mark

56 48 47 40 39 32 31
Ii, 1

5F : 04 : L \ X : ADDRT

16 15 0
I I I
I X I ADDRS I l i .

The Edit and
Mark instruc­
tion is used
for formatting

decimal strings for output. Typical uses of this instruc­
tion include the removal of leading zeros placement of
punctuation and special symbols such as "$", "*", ",", or
"." in a decimal field; and the combination of numeric
information with text. Editing is done by moving digits
from the de cimal source string into an output or "pattern"
string, replacing the pattern string with an edited result.
Since the pattern is always altered by the edit process,
normal practice is to copy the pattern string to a work
area and perform the edit there.

The fourth and fifth bytes of the Edit and Mark instruc­
tion contain the pattern field address. The third byte
of the instruction contains the pattern string length
with values of 0-255 for pattern strings of 1-256 bytes.

The address of the zoned decimal digit string to be
edited is contained in the sixth and seventh bytes of
the instruction. The decimal source string is pro­
cessed from left to right (low to high address) until
the pattern string has been exhausted, as described below.

The format of the decimal numbers from the source string
after editing is specified by control characters contained
in the pattern string before the editing operation begins.
The edit instruction scans both the pattern string and the
decimal string from left to right, replacing certain pattern
string characters with either digits from the decimal string
or with a fill character. The character which appears at
each location in the resulting edited string is determined
by three things: the pattern character before editing, the
next available decimal digit, and the state of an internal
indicator called the significance switch.

-68-

Leading zeros and text characters in the pattern string
are replaced by the fill character if the significance
switch is off.

Pattern Characters

The pattern string consists of the fill character follow­
ed by control characters and textual data arranged to
specify the format of the edited output string. Control
characters are replaced with either a digit from the
decimal string or the fill character; text characters
are either left unchanged in the output string or re­
placed with the fill character. Three control characters
are recognized: the digit select character, the signif­
icance start character, and the field separator character.

The digit select character (2016) indicates that the loca­
tion it occupies in the pattern string may be filled with
the next decimal digit from the source string. The digit
select character is replaced with either the selected
decimal digit or the fill character. If the significance
switch is off and the selected digit is non-zero, the
decimal digit replaces the digit select character, and
the significance switch is turned on to indicate that
significant digits have been encountered. If the source
digit is zero and the significance switch is off, the
significance switch remains off and the digit select
control character is replaced by the fill character.

The significance start character (2116) is used to indicate
that the next decimal digit processed is to be the first
significant digit even if it is zero. The significance
start character is equivalent to a digit select character
except that it always turns the significance switch on. The
choice of the character which replaces the significance
start character is based on the state of the significance
switch before the significance start character is processed,
and the choice is made exactly as with the digit select
character.

[

[

I
I
~' :

i , I

I
[

I

I
I
I
I
I

r

[

[

[

[

[

[

[

[

[

(

(

[

[

I

I

-69-

The table shown in Figure 3-8 describes the effect
of the digit select and the significance start control
characters.

Significance switch

Source digit

Pattern character
replaced by

Resulting signifi­
cance switch if
pattern character
is a digit select

Resulting signifi­
cance switch if
pattern character
is a significance
start

OFF

=0

fill
char

Off

On

OFF ON

10 =0

decimal decimal
digit digit

On On

On On

Figure 3-8 Edit and Mark Significance Switch Meaning

The function of the field start character (2216) is to
create a new field within the edited string by turning
the significance switch off. The field start character
is always replaced with the fill character.

Text Data

All characters other than control characters appearing
in the pattern string will be left in the string if the
significance switch is on. If the significance switch is
not on, the text characters will be replaced with the fill
character.

Fill Character

The first character in the pattern string is used as
the fill character. The fill character replaces all
pattern characters encountered before the significance
switch is turned on. The fill character is not altered
during the edit operation and will always be present in
the edited string.

ON

10

decimal
digit

On

On

-70-

Significance Switch

The state of the significance switch determines whether
or not zeros from the source string will be treated as
significant. When the significance switch is on, digit
select and significance start characters in the pattern
are always replaced by digits from the source string
and text characters in the pattern string are not changed.
The significance switch is internal to the Edit and Mark
instruction and is always off at the start of the editing
operation. During editing, the state of the significance
switch is altered by control characters in the pattern
string; the "significance start" character turns the
significance switch on and the "field start lT character
turns it off. The significance switch is always turned
on by the processing of a non-zero decimal digit in the
source string.

Marking

The edit instruction "marks" the character position in
the last edited field which ~recedes the first signifi­
cant digit in the output (edlted) string. Marking con­
sists of loading the index register with the address of
the character before the first significant digit. This
feature may be used to insert the currency symbol or a
minus sign to the left of a decimal string.

Indicators

The edit instruction sets the arithmetic indicators
according to the sign of the last field edited. Only
the HIP (positive) and LIN (negative) indicators may
be set; the E/Z (zero) indicator is always reset. The
HIP indicator is set if the last edited field is zero
or positive and the LIN indicator is set if the last
edited field is negative.

Examples

The following examples show some typical uses of the edit
and mark instruction. Control characters in the pattern
string are represented by the symbols shown below:

digit select (2016) = ds
significance start (2116) = ss
field start (22 16) = fs

---- -- ~- ~~~-- ~~~- ~

[

I

I
I
I
I

[

[

[

I
[

[

[

(

[

(

[

[

[

[

[

(

[

I
[

-71-

Text characters are written in quotation marks for these
examples. Text characters are stored in memory in ANSell
repres entat ion.

The first example illustrates the use of the edit instruc­
tion to suppress leading zeros. The fill character
specified in the pattern string is a blank, "W'. The
significance switch is off at the start of the edit. The
first pattern character past the fill character is a digit
select character. Since the first decimal digit is a zero
and the significance switch is off, the digit select
character is replaced with the fill character, a blank.
Processing of the pattern string continues, with the
fill character replacing the pattern characters until the
6 is found in the decimal string. When the 6 is encount­
ered, it is recognized as a non-zero decimal digit and
replaces the fourth digit select character in the pattern
string. The significance switch is turned on to indicate
that a non-zero digit has been processed. The next pattern
character is also a digit select and the next decimal digit
is a zero. Since the significance switch is now on, the
o is stored in the pattern string, replacing the digit
select character. Finally, the last pattern character
is replaced with a 2. The net result is that only signifi­
cant digits have been retained and leading zeros have been
replaced with blanks. The HIP indicator will be set since
the decimal number edited was positive.

Example 1

Decimal String

10 0 I 0 I 6 0 2

Pattern String

I "ts" I ds I ds I ds ds ds ds

Edited Result

[IIts,,1 !Its" lilts" I "~ II I 6 0 2

-72-

Example 2 demonstrates the use of the significance start
character and illustrates the insertion of a text char­
acter into the edited string. The first two pattern
characters are replaced with the fill character as in
example 1. When the significance start character is de­
tected, the corresponding decimal digit is found to be a
and the fill character is again used. After the fill
character is inserted in place of the significance start
character, the significance switch is turned on. A digit
select character is encountered next and the corresponding
decimal digit is a O. Because the significance switch is
on, the a rather than the fill character will be placed
in the pattern string.

The next pattern character found is a text character.
The significance switch is on, so the text character re­
mains in the pattern string. Note that the processing
of text characters does not affect scanning within the
decimal string. The last two digit select characters
are replaced with the last two decimal digits, 2 and 7.

Example 2

Decimal String

I : a a I a I 0 2 7 I
Pattern String

I "~" I ds I ds I ss ds " " ds ds .
Edi ted Result

I "~" I "~ II I "~ II / •.. "~ II I 0 "." I 2 7

The third example shows how the state of the significance
switch affects the appearance of text data in the final
string. In case A, the significance switch is turned on
by the digit 1 and the comma remains in the edited result.
In case B, the singificance switch is off when the comma
is processed and the comma is replaced with the fill
character. Thus, the punctuation is inserted only when
it is needed.

... ---"-----­-------~-- --- .-~--~--~---~-.--- ----_.---

[
t

"

j

I

I
I
I
I
I

"-"-~------... - .. _--

I
I
[

I
I
[

[

(

I I
I
I
[

(

[

I
[

I
, I
, I ,

-73-

Example 3

Decimal Strings

Pattern String

ds

Edi ted Results

(A) ")$ " I I " "I 6 4 7 " " 2
i ' I

.
(B) "~ " 1 ")$ " ")$ "I 5 2 4 " " 7 .

Example 4 illustrates the effect of a pattern string con­
taining the field start character. The field start char­
acter is replaced with the fill character. The signifi­
cance switch is turned off by the field start character,
causing the D's to be replaced by blanks in the second
field.

Example 4

Decimal String

r 0 I I f 2 I 3 .l_~" .. LJ
Pattern String

Edited Result

Indicators Affected: ALI
Assembly Language Coding:

EDT ADDRT(L,X),ADDRS(X)
I <L <2 56

7

3

-74-

Programming Note

The indicator setting and marking features of the Edit
and Mark instruction can be used to place a minus sign
before a negative number. The code sequence shown will
remove the leading zeros from the 5 digit decimal number
at "NUMBER" and place a "-" to the left of the most
significant digit if the number is negative.

MVL
EDT
B~C
MVI

NUMBER DS
WORK DS
PATTRN DC

DC
DC

NOT LOW EQU

WORK, PATTERN
WORK ,NUMBER
N0TL0W, *+8
C' - , ,0 eX)

5
6
C' ,
X'202020'
X'2120'
X' 50 '

MOVE PATTERN TO WORK AREA
DO THE EDIT
SKIP UNLESS RESULT NEGATIVE
NEGATIVE RESULT - INSERT" -"

FILL CHARACTER
3 DIGIT SELECT CHARACTERS
SIGNIFICANT START, DIGIT SELECT

Character String Move and Compare Instructions

The string move and compare instructions provide basic
operations on strings from 1 to 256 bytes in length.
The strings may overlap in any way. The move instruc-
tions are six bytes in length and have one opcode byte.
The compare instruction is seven bytes in length with a
two-byte opcode. The first byte after the opcode gives
the length of the strings to be operated upon. The number
in the length byte can range from 0 to 255 in value, corres­
ponding to string length of 1 to 256 bytes. The next two
bytes contain the address of the target string, which is
the receiving string for move instructions. The last two
bytes contain the address of the source string. The
operation of these instructions is illustrated by flow­
charts in Appendix G.

In addition to the primary uses of the move instructions
for transferring data from one location to another, moves
are also useful for shifting decimal strings left or right
and for propagating characters through fields.

[

[

[

[
11
~

~'

I
I
I

- ... ~.---~

I
[

[

[

[

[

[

I
[

I
[

[

[

[

[

[

I
I
[

-75-

Instruction Operation

MVL - Move Character String Left

47 40 39 32 31 16 15

SA I ADDRT

o

AD DRS

The character
string start­
at the source
address is

moved to successive memory locations at the target address.
Characters are moved one at a time, beginning with the
leftmost byte (the byte at the lowest address) and con­
tinuing through successively higher locations until the
number of bytes specified by the length byte of the instruc­
tion have been moved.

The source and target strings may overlap in any way. If
the target address is lower than the source address (that
is, the target is to the left of the source) and the strings
overlap, the MVL instruction shifts the source string left
to the target string. If the target address is higher than
the source address (that is, the target is to the right of
the source) and the strings overlap, the MVL instruction re­
places the target string with repeated copies of that por­
tion of the source string not overlapped by the target
string.

Indicators Affected: none
Assembly Language Coding:

Programming Note:

MVL ADDRT(L,X),ADDRS(X)
1 <L<2 56

The MVL instruction can be used to perform a decimal shift
left (thus multiplying a decimal value by powers of 10)
by using overlapping source and target fields with the
target to the left of the source. The sign is also shift­
ed left and must be restored to the least significant digit
after shifting. The move instruction does not fill the
vacated digit positions with zeros. Zero fill may be
achieved by having a zero placed to the right of the field
to be shifted as illustrated. The instruction shown be­
low will multiply the contents of DEC by 10.

MVL DEC(10),DEC+1

DEC DS
DC

10
Z '0'

DECIMAL FIELD TO BE SHIFTED
ZERO FOR FILLING VACATED PLACED

-76-

MVL can also be used to propagate a .character through a
field from left to right. The instructions

MVI
MVL

C' ',X'150'
X'15l'(79),X'150'

will blank the 80 byte area beginning at location 15016'

MVR - Move Character String Right

47 40 39 32 31

5B L

16 15

ADDRT ADDRS

o The character
string start­
ing at the
source address

is moved to success i ve memory locat ions at the target address.
Characters are moved one at a time, beginning with the right­
most byte (the byte at the highest address) and continuing
through successively lower locations until the number of
bytes specified by the second byte of the instruction has
been moved.

The source and target strings may overlap in any way.
If the target address is higher than the source address
(that is, the target is to the right of the source) and
the strings overlap, the MVR instruction shifts the source
string right to the target string. If the target address
is lower than the source address (that is, if the target
is to the left of the source) and the strings overlap,
the MVR instruction replaces the target string with re­
peated copies of that portion of the source string not
overlapped by the target string.

Indicators Affected: none
Ass embly Lan,guage Coding:

Programming Note:

MVR ADDRT(L,X),ADDRS(X)
1~L<256

The MVR instruction can be used to perform a decimal
shift right (thus dividing a decimal value by powers
of 10) by using overlapping source and target fields
with the target to the right of the source. The sign
is also shifted right and must be restored to the least
significant digit after shifting. Zero fill of high
order digits may be insured by providing a leading zero
character. The instruction below will divide the con­
tents of DEC by 10.

I
I
I
I
I
I

[

[

(

[

[

I
[

[

I
[

[

(

[

[

[

[

I
I
I

MVR

DC
DEC DS

-77-

DEC(lO) ,DEC-l

Z'O'
10

MVR can also be used to propagate a character through
a field from right to left. The instructions

MVI C'. ',TABLELINE+39
MVR TABLELINE(39),TABLELINE+1

will propagate dots through the 40-byte string TABLELINE
from right to left.

If the source and target field do not overlap, MVR and
MVL are identical in effect. In the non-overlap case,
the choice between MVL and MVR should be made on the
basis of speed of execution. MVL is faster for for
strings of 40 or fewer characters; MVR is faster for
strings of 42 or more characters.

CLC - Compare Logical Character String

55 48 47 40 39 32 31 16 15 o

SF OS L ADDRT ADDRS

The character string at the source address is compared
to the character string at the target address. The
strings are compared one byte at a time from left to
right. The comparison treats the data bytes as unsigned
binary numbers. The compare operation continues until
the end of the target string is reached or the strings
are determined to be not equal. The arithmetic and log­
ical indicators are set as shown:

source > target - HIP indicator
source = target E/Z indicator
source < target - L/~ indicator

Only one ALI is set; the others are reset.

Indicators Affected: ALI
Assembly Language Coding:

CLC ADDRT(L,X),ADDRS(X)
1<L<2s6

-78-

Translate Instructions

The translate instructions provide a means for convert­
ing one character encoding scheme to another and for
testing for certain values within a character string~
The two instructions in this class are 8 bytes in length.
The first two bytes contain the operation code. The
third byte contains a mask which is used to limit the
required size of the translation table. The fourth byte
contains a value of 0 to 255 giving the length of the
string to be translated, corresponding to string lengths
of 1 to 256 bytes. The next two bytes contain the address
of the target, the string to be translated. The last two
bytes contain the address of the source table to be used
in the translation process. The operation of these instruc­
tions is illustrated by flowcharts in Appendix G.

TRM - Translate Under Mask

63 56 55 48 47 40 39 32 31 16 15 o

5F 06 I L ! X I ADDRr ADDRS

The translate instruction replaces characters in the target
string with characters from a table located at the source
address. The primary use of Translate under Mask is
code conversion between arbitrary 8 bit or less codes.
Characters from the target string are fetched, one at
a time. The mask byte of the instruction is used to select
significant bits from the target bytes. The target byte
bits corresponding to "I" bits in the mask are retained
whi Ie thos e target byte bits corresponding to "0 It bits
in the mask are discarded. The selected bits are grouped,
right justified, to form a displacement which is added
to the source address. The character located at the
resulting address replaces the original character from
the ~arget string. This operation continues until all
characters in the target string have been translated.

The purpose of the mask byte is to reduce the size of the
translate table required. As an example, translation of
BCD data to ANSCII decimal representation requires only
a 10 digit table, regardless of the position of the BCD
digit within the byte. A mask byte of F016 and a target
byte of 3F16 would result in the target byte being re­
placed by the source table entry located at (source address
+ 3) . .

I
I
I
I
I
I

I
[

[

[

[

[

[

I
[

(

[

[

[

[

I
[

[

I

-79-

Indicators Affected: none
Assembly Language Coding:

TRM I,ADDRT(L,X),ADDRS(X)
1 <L<2 56

Programming Note:

The TRM instruction can be used to translate a string of
EBCDIC characters to internal ANSCII representation, or
a string of ANSCII characters in internal representation
to even parity representation.

TTM - Translate and Test Under Mask

63 56 55 48 47 40 39 32 31 16 15 a
5F 07 I L I x ; ADDRT I x 1 ADDRS

The Translate and Test Under Mask instruction provides
a fast means of scanning a target string for the first
occurrence of one or more characters as specified
by the source table. Characters from the target string
are fetched, one at a time. The mask byte of the instruc­
tion is used to select significant bits from the target
bytes. The target byte bits corresponding to "1" bits
in the mask are retained while the target byte bits
corresponding to "0" mask bits are discarded. The select­
ed target byte bits are grouped and right justified to form
a displacement which is added to the source address. If
the character located at the resulting address is zero,
no action is taken; the next character from the target
string is fetched and the operation continues. If the
byte at the resulting source table address is non-zero,
it is placed in the low byte of the A register with bit
7 propagated through the high 8 bits of A. The X register
is loaded with the address of the target string character
being tested, and the translation is terminated. At the
conclusion of the execution of the TTM instruction the
arithmetic and logical indicators are set as follows:

1. If the entire target string was translated and
no non-zero entries were found in the translation
table, the E/Z indicator is set.

2. If the entire target string was translated and
the last character in the target string character
selected a non-zero entry from the source transla­
tion table, the HIM indicator is set.

-80-

3. If a non-zero entry from the source translation
table is selected by some character other than
the last character in the target string, the
L/~ indicator is set.

Only one ALI is set and the others are reset.

Indicators Affected: ALI
Assembly Language Coding:

Programming Note:

TTM I ,ADDRTCL ,X) ,ADDRS eX)
I L 256

The TTM instruction can be used to test the validity of
a string of decimal digits. The following instruction
and table could be used to test the validity of the low
4 bits of a decimal number located at tlDECIMAL".

TTM X'DF' ,DECIMAL ,TEST

TEST DC H'D' D
DC H'D' 1
DC H'D' 2
DC H'D' 3
DC H'D' 4
DC H'D' 5
DC H'D' 6
DC H'D' 7
DC H'D' 8
DC H'D I 9
DC H'lD' lD
DC H'll' 11
DC H'12' 12
DC H'13' 13
DC H'14 I 14
DC H'15' 15

I
I
I
I
I

I

[

I
I
[

I
[

[

I
[

(:

[

[

[

[

[

I
I

3.6

-81-

Transfer of Control Instructions

Transfer of control instructions change the sequence
of instruction execution. There are both conditional
and unconditional methods for transfer of control pro­
vided by the CIP/2200. The conditional transfer of con­
trol instructions provide a means of altering the order
of instruction execution depending on register conditions
or the status indicators. Unconditional transfer of
control instructions always cause the specified transfer.

The CIP/2200 transfer of control instructions are shown
in Figure 3-8. Those instructions which allow the eight
addressing modes are indicated by an asterisk following
the operation code.

INSTRUCTION

Jump
Return Jump
Skip if Over­
flow Set
Skip if A=O
Skip if B=O
Skip if x=o
Skip if A
Negative
Skip if X
Negative
Skip if A=B
Skip if A=X
Skip if Over­
flow Not Set
Skip if A/O
Skip if BfO
Skip if XfO
Skip if A
Not Negative
Skip if X
Not Negative
Skip if AfB
Skip if AfX
Branch On
Condition
Save Machine
State
Return
Return Dis­
placed

MNEMONIC

JMP
RTJ
S0V

SAZ
SBZ
SXZ
SAN

SXN

SAB
SAX
NtlV

NAZ
NBZ
NXZ
NAN

NXN

NAB
NAX
B0C

SAV

RET
RTN

OPERANDS

ADDR(X)
ADDR(X)
ADDR

ADDR
ADDR
ADDR
ADDR

ADDR

ADDR
ADDR
ADDR

ADDR
ADDR
ADDR
ADDR

ADDR

ADDR
ADDR
N,ADDR(X)

I

INDICATORS

0V

0V

all
all

Figure 3-8 Transfer of Control Instructions

OPCODE

60-67*
68- 6F*
10

11
12
13
14

15

16
17
18

19
lA
lB
lC

lD

IE
IF
51

sFOO

sFOl
sF03

-82-

JMP - Jump

23 16 15 a *
1~-6o---6~7~I~x~:----A-D-D-R--~1

The jump instruction causes
an unconditional transfer of
control to the effective
address. The effective address

is loaded into
instruction to
recognition of
instruction.

the P register, thereby causing the next
be fetched from the effective address. The
interrupts is deferred until after the next

Indicators Affected: none.
Assembly Language Coding:

RTJ - Return Jump

23 16 15 a *
Ir-6-8--6-F-4I-x~l---A-D-D-R----~1

JMP/ ADDR(X)

The return jump instruction
is used for unconditional
transfer of control to sub­
routines. The address of the

instruction following the RTJ (that is, the return address)
is stored at the effective address of the RTJ. The effec­
tive address +2 is then loaded into the P register. The
first instruction of the subroutine is therefore located
2 bytes past the effective address of the RTJ. The recogni­
tion of interrupts is deferred until after the execution
of the next instruction.

Indicators Affected: none.
Assembly Language Coding:

RTJ/ ADDR(X)

Programming Note:

RTJ and JMP instructions are used for transfer of con­
trol to and from subroutines. RTJ is used to transfer
to a subroutine. It stores the return address in the
first two bytes of the subroutine and transfers con­
trol to the instruction beginning in the third byte of
the subroutine. A subroutine return may be accomplished
by doing an indirect jump through the first word of the
subroutine. The subroutine structure is as follows;

SUB NAME
*

DC

¥'PC¥'D

. .
¥'PC¥'D
JMP*

**

¥,Pl
SUB NAME

RESERVED FOR RETURN ADDRESS
STORED BY "RTJ"
FIRST SUBROUTINE INSTRUCTION

LAST SUBROUTINE INSTRUCTION
SUBROUTINE RETURN

-----~~----------- -~----.------~~-----------~-~~~~~-

I
tf '
~

I
[

I
I

I

(

I
(

[

[

[

[

I
[

[

[

(

(

[

[

[

I
[

Conditional Skips

15 8 7 o

I OPCODE I DISPL

-83-

The conditional skip instructions
test register conditions or the
overflow indicator and transfer
control if the specified condition

is met. The transfer of control may be to any location
between 128 bytes behind and 127 bytes ahead of the byte
following the skip instruction. If the tested condition
is not met, instruction execution continues at the byte
following the skip instruction. The following table lists
the conditional skip instruction mnemonics and opcodes.

INSTRUCTION MNEMONIC OPCODE

SKIP IF OVERFLOW SET S0V 10
SKIP IF A=O SAZ 11
SKIP IF B=O SBZ 12
SKIP IF X=O SXZ 13
SKIP IF A NEGATIVE SAN 14
SKIP IF X NEGATIVE SXN 15
SKIP IF A=B SAB 16
SKIP IF A=X SAX 17
SKIP IF OVERFLOW NOT SET N0V 18
SKIP IF A.,O NAZ 19
SKIP IF BrO NBZ lA
SKIP IF XrO NXZ lB
SKIP IF A NOT NEGATIVE NAN lC
SKIP IF X NOT NEGATIVE NXN lD
SKIP IF ArB NAB IE
SKIP IF ArX NAX IF

Indicators Affected: ~V is reset by S(lJV and N0V
Assembly Language Coding:

S(lJV ADDR

Programming Note:

The S(lJV and N~V instructions test and reset the over­
flow indicator. The arithmetic instructions set the
overflow indicator when an overflow occurs but do not
reset overflow if the operation does not result in an
overflow, thus providing the ability to test the result
of a series of arithmetic steps. S0V and N0V may be
used to reset the overflow indicator without altering
the word length by coding

S(lJV *+2
or

N~V *+2

-84-

B¢C - Branch on Condition

31 24 23 16 15 o
51 N ADDR

This instruction is used
to test the word length,
overflow, interrupt system
disabled, arithmetic and

logical, or power failure indicators. The indicators to be
tested are selected by a mask contained in the immediate data
byte, "N". Each bit of the mask which is a 1 causes the
corresponding indicator to be tested. If any of the select­
ed indicators is a one the branch will occur. If none of the
selected indicators are ones, the next sequential instruction
is executed. The following table shows bit assignments for
the mask.

CIP/2200 Indicator Selection

Mask Bit

0-1

2
3
4
5
6
7

Hex Mask
Byte Value

00 to 03

04
08
10
20
40
80

Indicators Affected: none.
Assembly Language Coding:

Programming Note:

Indicator Selected

Word Length. Values of 00 2
to 112 correspond to word
lengtfi 1 to 4, respectively.
Overflow
Interrupt System Disabled.
High/Mixed Result
Low/Ones Results
Equal/Zero Result
Power Failure

N,ADDR(X)

The Branch on Condition instruction differs from the
conditional skip instruction in several ways. The B¢C
uses a full 2 byte address word, allowing a transfer to
any part of memory. The conditional skips allow only
relative addressing, with a restricted range. Con~
ditional skips are, however, shorter (only 2 bytes long)
and are faster in execution. The conditional skips test
the current register contents while B¢C tests the results
of the last memory to memory or memory immediate opera­
tion. B¢C also provides a means of testing the over­
flow indicator without altering its state.

if.·
1L

I

I

(

(

(

I
[

[

[

[

[

[

[

I:

[

[

[

I
I
[

SAV
15

I SF

- Save
8 7

I 00

x _

x

A

A

B7-0

B

STATUS

p

p

Machine
o

-85-

State
The save instruction is used to save
the machine state on the control stack.
The machine state saved consists of
nine bytes, arranged in the stack
as shown in Figure 3-9.

high address

low address

(stack pointer + 8)

(stack pointer + 1)

(stack pointer)

Figure 3-9 Control Stack Data Format

The address of the lowest addressed byte of the most
recently saved machine state is contained in the stack
pointer (locations 9216 and 9316). The execution of
the SAV instruction causes the stack pointer to be decre­
mented by 9. If the stacking of the current machine state
would cause the stack pointer to cross a page boundary
(low 8 bits change from 0016 to FF16) the machine state is
not stacked and a control stack under/overflow interrupt
is generated.

The SAV instruction stacks the current values of the A,
B, X, and status registers. The P register value stacked
is obtained from the 2 byte memory location immediately
preceding the save instruction. This allows stacking the

-86-

BEFORE EXECUTION OF SAVE AFTER EXECUTION OF SAVE

p
I
I 0 1 2 J P I 0 1 2 51

X I 0 o F J X I 0 o F d

A IF F B 21 A I F F B 21

B I 0 0 3 J B [0 o 3 d

S G] S GJ
0121 0 B 0 4

SAVE INST. 0123 5 F 0 0

STACK STACK
POINTER PoINTER
MEMORY ADDR STACK: EMPTY MEMORY ADDR STACK: SAVED
LOC. LOC. MACHINE
92-9316 92- 9316 STATE

I OF F B OFFF 0 0 OFFF 0 0
OFFE 0 0 OFFE F F - X
OFFD 0 0 OFFD 0 0
OFFC 0 0 OFFC B 2 - A
OFFB 0 0 OFFB F F
OFFA 0 0 OFFA 3 D - B OFF9 0 0 OFF9 0 0
OFF8 0 0 OFF8 4 0 - S OFF7 0 0 OFF7 0 4 - P OFF6 0 0 I 0 £ F 61 OFF6 0 B
OFFS 0 0 OFFS 0 0
OFF4 0 0 OFF4 0 0
OFF3 0 0 OFF3 0 0
OFF2 0 0 OFF2 0 0
OFF1 0 0 OFFl 0 0
OFFO 0 0 OFFO 0 0
OFEF 0 0 OFEF 0 0

Figure 3-10 SAV Instruction Control/Stack

~~.~~--.-- .~.- .. - ~~~
~~~--~~ -.-.~.----.~~--~~~--~~~~~ 

I 
[ 

I 
I 
I 
~ 

I 
I 
~ 

l 
I 
rt.· ill 

[ 

I 
I 
I 
I 
I 
I 



I 

[ 

I 
I 
[ 

( 

( 

[ 

[ 

[ 

( 

[ 

[ 

[ 

I 
I 
( 

-87-

return address in a subroutine called by 
SAV follows the subroutine entry point. 
the machine registers are not altered by 
tion. 

an RTJ if the 
The contents of 
the save instruc-

Recognition of interrupts is deferred until after execu­
tion of the instruction following the SAVe 

Figure 3-10 shows the effect of the save instruction on 
the control stack, the stack pointer, and the machine 
registers. 

Indicators Affected: none. 
Assembly Language Coding: 

SAV 

RET - Return from Subroutine 

IS 8 7 

SF 

o 

01 

The machine state most recently saved 
on the control s tack is "popped" from 
the control stack and loaded into the 
P, A, B, X, and status registers. 

The control stack pointer is incremented to point to the 
previously saved machine state. Since the program counter 
is loaded with the value retrieved from the stack, con­
trol is transferred to the location specified by the 
stacked program counter value, normally the return address 
for the subroutine. 

Recognition of interrupts is deferred until after execu­
tion of the next instruction. Execution of the RET instruc­
tion causes the stack pointer in locations 92'n and 93 16 
to be incremented by 9 to point to the previons machine 
state on the stack. If the addition of 9 to the stack 
pointer will cause the stack pointer value to cross a 
memory page boundary (the low 8 bits change from FF to 
0016) the RET instruction is not executed and a cont~ol 
stack under/overflow internal interrupt is generated. 



-88-

BEFORE EXECUTION OF RET AFTER EXECUTION OF RET 

P I 0 1 3 d P I 0 B 0 41 

X I 0 1 0 01 X I 0 o F ~ 

A I 0 o 0 01 A IF F B 21 

B IF F F J B I 0 o 3 J 
n W S r 4 0' S I , 

STACK STACK 
POINTER POINTER 
MEMORY ADDR STACK: SAVED MEMORY ADDR STACK: EMPTY 
LOC. MACHINE LOC. 
92- 9316 STATE 92- 9316 

OFFF 0 0 ! 0 F F !J OFFF 0 0 
OFFE F F OFFE F F 
OFFD 0 0 OFFD 0 0 
OFFC B 2 OFFC B 2 
OFFB F F OFFB F F 
OFFA 3 D OFFA 3 D 
OFF9 0 0 OFF9 0 0 
OFF8 4 0 OFF8 4 0 
OFF7 0 4 OFF7 0 4 

I 0 F F 61 OFF6 0 B OFF6 0 B 
OFFS 0 0 OFFS 0 0 
OFF4 0 0 OFF4 0 0 
OFF3 0 0 OFF3 0 0 

Figure 3-11 RET Instruction/Control Stack 

-- ~----- -- -------------~- - --



I 
[ 

[ 

[ 

( 

[ 

[ 

I 
[ 

[ 

[ 

[ 

[ 

I 
[ 

[ 

[ 

I 
[ 

-89-

Indicators Affected: all 
Assembly Language Coding: 

RET 

RTN - Return Displaced from Subroutine 

23 16 IS 8 7 

SF 03 

o 

I 

This instruction is identical 
in operation to the Return from 
Subroutine (RET) instruction 
except that the P register value 

retrieved from the stack is modified by the addition of the 
signed, 2's complement 8 bit displacement contained in the 
third byte of the RTN instruction. 

Figure 3-11 shows the effect of the return instruction 
(RET) on the stack, stack pointer, and machine registers. 
The effect of the RTN instruction is identical except for 
the modification of the stacked P register value. 

Indicators Affected: all 
Assembly Language Coding: 

RTN I 

Programming Note: 

The SAV and RET (or RTN) instructions may be used in 
conjunction with the RTJ or JMP instructions to save 
the machine state prior to execution of a subroutine and 
to restore it when execution is complete. The sub­
routine may be called using an RTJ instruction as de­
scribed previously. The subroutine, if written in the 
form shown below, will save the machine state at the 
entry point. 

Call: 

RTJ/ SUBR 

Subroutine: 

SUBR DC 
SAV 

RET 

** 

If desired, the calling program can cause saving of the 
machine state, relieving the subroutine of the responsi­
bility. An additional benefit of having the calling pro 



3.7 

-90-

gram save the machine state is that subroutines with 
multiple entry points need not skip around unused entry 
point locations. 

Call: Subroutine: 

JMP *+4 SUBR OPC OPND 
DC AI *+7 RETURN ADDRESS 
SAY 

RET 
JMP/ SUBR 

Control Instructions 

Control Instructions have one or two byte opcodes and do 
not refer to memoTy. They perform miscellaneous control 
functions on the computer. The table below lists the 
instructions in this section. Instructions marked ! 
activate hardware options which may not be implemented on 
all CIP/2200 systems. 

INSTRUCTION 

Halt 
Trap 
Enter Sense 
Swi tches 
Disable In­
terrupt System 
Enable In­
terrupt System 
Disable In­
terval Timer 
Enable In­
terval Timer 
No Operation 
ROM Exit 
Secondary ROM 
Exit 

MNEMONIC 

HLT 
TRP 
ESW 

DIN! 

EIN! 

DIT! 

EIT! 

NOP 
XIT! 
XT2! 

OPERANDS INDICATORS 

INT 

INT 

N 

Figure 3-12 Control Instructions 

OPCODE 

00 
01 
02 

04 

05 

06 

07 

34 
SE 
SF08~SFFF 

I, , : 
I 

I 
I 
I 
I 
I 
I 



I 
( 

I 
I 
[ .(~ 

[ 

[ 

[ 

I 
[ 

[ 

[ 

[ 

[ 

[ 

f 
[ 

I 
[ 

HLT - Halt 

7 0 

W 

-91-

The processor and DMC I/O operations are halted. 
Interrupts are not recognized by the CPU when 
in the halt state. The P register contains the 
address of the HLT instruction after the computer 

halts. Depressing either the console run or step switches 
will cause the next instruction to be executed. Depressing 
the console interrupt switch will cause the computer to 
enter the run state and execute the interrupt. 

Indicators Affected: none. 
Assembly Language Coding: 

TRP - Trap 

7 0 

GJ 

HLT 

The TRP instruction causes an internal interrupt 
through the console interrupt location (80-8116), 
The contents of the P register (the address of 
the TRP) are stored at the two byte memory loca­

tion specified by the two byte address word at location 80 16 , 
Then the contents of the two byte address word (at 80 16 ) plus 
two replace the contents of the P register. Interrupts are 
not recognized before the execution of the next instruction. 
Depressing the console interrupt switch has the same effect 
a~ executing the TRP instruction. 

Indicators Affected: none. 
Assembly Language Coding: 

TRP 

ESW - Enter Sense Switches 

7 0 

W 
and the 

The status of the four console sense switches 
replace bits 15-12 of the A register; switch 
4 in bit 15, 3 in 14, 2 in 13, and 1 in 12. 
Bits 11-8 of the A-register are set to ones 

remainder of the register is unchanged. 

Indicators Affected: none. 
Assembly Language Coding: 

ESW 



-92-

Programming Note: 

After the sense switch status has been entered into the 
A register using the ESW instruction, the state of a 
particular sense switch may be tested by shifting the A 
register to bring the sense switch bit into bit 15 of 
the A register (the sign bit) and then testing the A 
register for a negative or non-negative condition using 
the SAN and NAN conditional skip instructions. For 
example, to test for sense switch 2 being set, the follow­
ing instruction sequence may be used. 

ESW 
ALA 
SAN 

2 
SSW20N SKIP IF SS#2 ON 

DIN - Disable Interrupt System 

7 0 

GJ 
External interrupts are masked, causing the 
recognition of external interrupt requests 
to be deferred. The interrupt system dis­
abled indicator in the machine status register 

is set to a one. While the interrupt system is disabled 
external interrupt requests are saved by the byte I/O 
system. 

Indicators Affected: INT 
Assembly Language Coding: 

DIN 

EIN - Enable Interrupt System 

7 0 

W 
External interrupts are unmasked, allowing the 
processor to recognize saved and subsequent 
requests for interrupts. Interrupt requests 
are not recognized until after the execution 

of the instruction following the EIN instruction. The 
interrupt system disabled indicator is reset to a zero. 

Indicators Affected: INT 
Assembly Language Coding: 

EIN 

~----~--- ---~. --~.---~~~-.--~ --- ---~------

II 
1Il 

I 
I 

I 
I 
I 
I 
I 



I 
[ 

( 

[ 

[ 

( 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

I 

-93-

Programming Note: 

DIN and EIN are used to mask and unmask external interrupts. 
The SAY instruction saves the contents of the machine 
status register, including the interrupt system disabled 
indicator. When control is transferred using the RET or 
RTN instructions the state of the interrupt system is re­
stored to the state indicated by the saved interrupt system 
disabled indicator if the interrupt enable/disable hardware 
option is installed. A subroutine or interrupt service 
routine which must disable interrupts should use SAY and 
RET or RTN to restore the interrupt system to the original 
state, as illustrated below. 

SUBR DC 
SAY 

RET 

** 

DIT - Disable Interval Timer 

7 0 

GJ 
Updating of the two-byte interval timer at 
location 84-8516 and generation of interval 
timer interrupts are inhibited. Interrupt 
requests are not recognized until after execu­
tion of the next instruction. 

Indicators Affected: none. 
Assembly Language Coding: 

DIT 

EIT - Enable Interval Timer 

Updating of the two-byte interval timer at 
location 84-85 16 and the generation of interval 
timer interrupts are allowed. The counter is 
updated by adding one at each basic timer 

interval, normally one millisecond. The rate of updating 
the interval timer depends upon the strapping of the real 
time clock option on the CPU option board. An interval 
timer interrupt is generated when incrementing the counter 
in location 84-85 16 causes the counter value to become 
zero. 

7 0 

[;] 

Indicators Affected: none. 
Assembly Language Coding: 

EIT 



-94-

Programming Note: 

To obtain an interval timer interrupt after a given 
number of basic clock intervals, the timer counter is 
set to the negative of the number of timer periods desired 
and the interval timer interrupt location (86-8716) is 
initialized with the address of the interval timer 
interrupt service routine. The following code will set 
up the timer to interrupt after one second, assuming 
standard strapping of the interval timer. 

START LDA= 
STA 
LDA= 
STA 
EIT 

TIMER DC 
SAV 
LDA= 
STA 

RET 

F'-IOOO' 
X'84' 
A 'TIMER' 
X'86' 

** 
F' -1000 ' 
X'84' 

SET INTERVAL COUNTER 
FOR I SEC 
SET UP INTERRUPT 

ADDRESS 
START THE TIMER 

TIMER ISR 

RESET THE COUNTER 

BODY OF TIMER ISR 

RETURN TO BACKGROUND 

N¢P - No Operation 

7 0 

GJ 
This instruction performs no operation. Pro 
gram execution continues at the next byte. 
The machine state is not altered by the N~P 
instruction. 

Indicators Affected: none. 
Assembly Language Coding: 

NOP 

XIT - CIP/2200 ROM Exit 

7 0 

W 
This instruction provides for the addition of 
a special instruction to the standard CIP/2200 
instruction set. Execution of this instruction 
causes a microprogram transfer of control to the 

first word of the first unused ROM page. If no special ROM 
is present, execution of an XIT causes the CPU to enter a 
non-interruptable microprogram loop. Normal execution may 
be resumed from this state by pushing Clock-Reset-Run or 
Clock-Reset-Interrupt. Appendix F contains a description . 
of the procedure for adding custom microcode to the standard 
CIP/2200. 

------.---~~---~~~. 

I 
I 
I 
I 
I 
I 



--~---

[ 

[ 

r 
[ 

[, 

r 
[ 

[ 

I 
I~: 

(; 

(, 

(' 
j 

I~ 

I" j 
[ 

[ 

I 
I I:' . 

-95-

Indicators Affected: none. 
Assembly Language Coding: 

XIT 

XT2 - Secondary CIP/2200 ROM Exit 

15 

SF 

8 7 0 

108 -FF I 
This instruction provides for the 
addition of special instructions to 
the standard CIP/2200 instruction set. 
Execution of an XT2 causes a micro­

program transfer of control to the second word of the 
first unused ROM page. At the time control is transferred, 
the CIP/2000 file register 1 contains the second byte of 
operation code. Decoding of this byte by the user micro­
program provides up to 248 additional instructions. Execu­
tion of an XT2 without special ROM causes the CPU to enter 
an endless microprogram loop which is not interruptable. 
This condition may be cleared by pushing Clock-Reset-
Run or Clock-Reset-Interrupt. Appendix F contains a 
description of the procedure for adding custom micro­
programmed extensions to the standard CIP/2200 firmware. 

Indicators Affected: none. 
Assembly Language Coding: 

3.8 Input/Output Instructions 

XT2 N (0 < N < 247) 

The input/output instructions consist of either two or 
four bytes; an opcode, a byte for control information, 
and an address word when necessary. 

31 24 23 21 20 16 15 o 

OPCODE I D0 DEV Ix i ADDR 

The opcode byte specifies the type of I/O instruction 
to be performed. Byte mode instructions use the second 
instruction byte for control information. The device 
order, D0, contains a 3 bit code for the operation to 
be performed. The device number, DEV, is a 5 b it number 
which specifies the I/O device to be used. Byte mode 
instructions which transfer data to or from memory have 
an additional two byte address word following the control 
byte. Serial I/O instructions do not use the control byte 
but its presence is required. All I/O instructions have 
a one instruction interrupt umbrella, i.e., interrupts 
are not recognized following an I/O instruction. The 
CIP/2200 I/O instructions are listed in Figure 3-13. 



-96-

INSTRUCTION MNEMONIC OPERANDS INDICATORS OPCODE 

Input Byte IBS 30 
Serially 
Input Byte IBA D~,DEV 31 
to A 
Input Byte IBB D~,DEV 32 
to B 
Input Byte IBM D~,DEV, 33 
to Memory ADDR(X) 
Output Byte ~BS 38 
Serially 
Output Byte fl}BA Dfl},DEV 39 
From A 
Output Byte ~BB D~,DEV 3A 
From B 
Output Byte ~BM D9},DEV, 3B 
From Memory ADDR(X) 

Figure 3-13 I/O Instructions 

Serial I/O Instructions 

The serial I/O instructions are used for communicating 
with a low speed terminal device such as the teletype. 
When a serial I/O instruction is executed, the computer 
suspends all processing until the complete data byte has 
been transferred. 

IBS - Input Byte Serially 

15 870 

30 I UNUSEd 

A byte is input to the low byte of 
A from the serial I/O device. The 
eight high order bits of A are unchanged. 
Execution of this instruction terminates 

when a complete byte has been received. If no device is 
connected to the serial I/O interface, the IBS instruction 
performs no operation. 

Indicators Affected: none. 
Assembly Language Coding: 

IBS 

~! 

I 
[ 

[ 

I 



[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

I 
[ 

[ 

I 
[ 

-97-

0BS - Output Byte Serially 

15 8 7 0 

38 I UNUSEd 

A byte is output from the low byte of 
A to the serial I/O device. The 
eight low order bits of A are set 
to l's; the eight high order bits 

are unchanged. Execution of this instruction terminates 
when the complete byte has been output. If no device is 
connected to the serial I/O interface, the only effect 
of the 0BS is to set the low byte of A to l's and to 
cause a lOOms pause in computer and I/O operations. 

Indicators Affected: none. 
Assembly Language Coding: 

Byte I/O Instructions 

0BS 

The byte I/O instructions are used for all byte mode 
operations and for controlling DMC and DMA transfers. 

Each I/O device controller has a unique 5-bit device 
number assigned to it for identification purposes. The 
device number is used in all byte I/O instructions to 
specify which device controller is to perform the opera­
tion. The device number also defines a unique interrupt 
transfer location for the associated external interrupt. 
Device numbers range from 0 to 3110; the external interrupt 
location is twice the device number plus 10016' 

The device order field of a byte I/O instruction specifies 
the operation to be performed. The standard device orders 
are shown in Figure 3-14. In general, all CIP/2200 I/O 
devices use these device order definitions, but these 
meanings may be altered for a particular device. The 
product performance specification for each device gives 
the exact interpretation of the various device orders 
and should always be consulted when writing I/O programs. 
The following paragraphs describe the standard device 
order interpretations. 

The data order (000 2) is used to perform byte transfers 
between the addressed device controller and the A register, 
the B register, or memory. The direction of transfer 
(input or output) is determined by the opcode field of 
the instruction. 

The status/function order (001 2) is used to input device 
status to, or output a control byte from, the A register, 
the B register, or memory. The opcode field of the instruc-



Device 
Order 

o 

1 

2 

3 

4 

5 

6 

7 

-98-

Operation 

Data 

Status/ 
function 

Arm 

Disarm 

Disconnect 

Block Input 

Block Output 

Description 

The data order causes a data 
byte to be transferred between 
the processor and the addressed 
device. The direction of trans­
fer depends on the type of in­
struction (input or output). 

The status/function order causes 
a status byte to be transferred 
from the addressed device to the 
processor, or a function byte to 
be transferred from the processor 
to the device depending on the 
type of instruction (input or 
output). 

The arm device order notifies 
the device to set its external 
interrupt sequencer into an 
armed state so that it can 
generate a request for service 
to the processor. 

The disarm device order notifies 
the device to set its external 
interrupt sequencer into a 
disarmed state. 

The disconnect order causes the 
block input or output operation 
in progress to be stopped. An 
external interrupt is generated 
if an interrupt would normally 
have been generated at the end 
of the block transfer. 

The block input order notifies 
the device to start a DMC block 
input into memory. 

The block output order notifies 
the device to start a block out­
put from memory (DMC). 

Device Depend- This order may be assigned 
ent Order definitions unique to partic­

ular I/O controllers. 

Figure 3-14 Standard I/O Device Orders 

[ 

1 
[ 

[ 

[ 

[ 

I 

[ 

[ 

[ 



[ 

[ 

[ 

[ 

r 
[ 

[ 

(~ 

[ 

[ 

[ 

[ 

[ 

[ 

-99-

tion determines whether a status or a function byte is 
transferred. Output instructions cause a function byte 
to be placed on the byte I/O bus. Input instructions 
cause the status byte of the addressed device to be read. 
The status byte contains information about the state of 
the I/O device, the device controller, and the last data 
transfer. The standard meanings for bits 0-3 of the 
status byte are shown in Figure 3-15. Device dependent 
bit assignments may be found in the product performance 
specification for a particular I/O device. The function 
byte consists of device dependent control information 
which is detailed in the product performance specification 
for the various controllers. 

Bit 
Number 

o 

1 

2 

3 

4-7 

Condition 

Ready 

Input Flag 

Output Flag 

Error 

Device Depend­
ent 

Description 

This bit is set to 1 when the 
I/O device is in a ready state. 

This bit is set to 1 when the 
I/O device has a byte ready 
for input to the processor. 

This bit is set to 1 when the 
I/O device is ready to receive 
a byte from the processor. 

This bit is set to 1 when an 
error has occurred during a 
transfer operation. The error 
may be the result of timing, 
parity, or a device malfunction. 

Thes e four b its are unique for 
each I/O device. 

Figure 3-15 Standard Status Bit Assignments 

The arm (0102) and disarm (0112) orders affect the device 
controller interrupt sequencer. Each device controller 
has a four state interrupt sequencer. A controller in 
the armed state may generate an external interrupt 
request to the computer in response to some stimulus (data 
ready, error, etc.). When an interrupt request is generated 
the device controller enters the wait state. On recogni­
tion of an interrupt request by the CPU, the computer 



-100-

executes an RTJ through the interrupt transfer location 
assigned to the requesting device. Acceptance of the 
request by the CPU places the controller in the active 
state. The active state is maintained until either an 
arm or disarm order is issued. When the controller is 
in the disarmed state it cannot generate an interrupt 
request. 

The disconnect order (100 2) stops the I/O operation current­
ly in progress. If the device controller is armed, the 
disconnect order will also cause an external interrupt 
request to be generated. 

The block input (101 2) and block output (1102) orders are 
used to start DMC operations. Before issuing a block in­
put or block output order the programmer must initialize 
the DMC descriptor, check the device status byte for the 
device ready state, and arm the device controller if an 
interrupt is to be generated at the end of the DMC opera­
tion. The DMC descriptor for each device is a four byte 
area located on page zero at the I/O device address times 
4 (e.g., the descriptor for device 2 occupies memory loca­
tions 08-0B16)' The first two bytes contain the address 
of the next byte to be transferred; the last two bytes 
contain the address of the last byte to be transferred. 
After the DMC transfer is started, it continues automatically 
until the current address in the DMC descriptor is one 
greater than the ending address. The last byte is transferred 
to or from the location specified by the ending address. The 
transfer is then terminated and an interrupt request is 
generated if the controller is in the armed state. 

A DMC operation always results in the transfer of at 
least one data byte regardless of the current and ending 
addresses. This allows an interrupt to be generated for 
each character transferred in the DMC mode if the current 
address is equal to or greater than the ending address 
before the DMC transfer starts. 

The device dependent order code (1112) specifies non­
standard I/O operations unqiue to a particular device. 
Refer to the individual device controller product perfor­
mance specifications for the specific action taken. 

DMA I/O transfers require special programming as des­
cribed in Appendix E and in the DMA controller Manual. 

--- -_. -. --_._"._ .. 

[ 

[ 

[ 

[ 
( ' 

I , 

~ 
[ 

I 



[ 

[, 

[ 

[, 

[ 

[ 

[ 

[ 

[ 

[ 

( 

I 
[ 

-101-

IBA - Input Byte to A 

15 8 7 5 4 0 

I 31 I D0 ; DEV I 
IBB - Input Byte to B 

15 8 7 5 4 0 

32 i DEV I 
Indicators Affected: none. 
Assembly Language Coding: 

IBM - Input Byte to Memory 

31 24 23 21 20 16 15 

I OPCODE I Dtl DEV I x : 

The device order, D0, is sent 
to the device designated by DEV. 
The byte of data on the I/O bus 
is then placed in the low 8 bits 
of the designated register. The 
eight high order bits of the 
register are unchanged. 

IBA D0,DEV 
0~D0~7, O<DEV<31 

ADDR 

a 

The device order, D0, is sent to the device designated by 
DEV. The byte of data on the input bus is then input to 
the memory location specified by the address word in the 
third and fourth bytes of the instruction. 

Indicators Affected: none. 
Assembly Language Coding: 

tlBA - Output Byte From A 

15 8 7 540 

39 I Dtl i DEV , 

OBB - Output Byte From B 

15 8 7 540 

3A I Dtl ! DEV I 
Indicators Affected: none. 
Assembly Language Coding: 

IBM D0,DEV,ADDR(X) 
O~D0~7, O<DEV<31 

The device order, D0, is sent 
to the device designated by DEV. 
The data byte contained in the 
low byte of the designated 
register is then placed on the 
I/O bus. The data in the register 
is not altered. 

OBA D0,DEV 
0~D0~7, 0<DEV<31 



-102-

OBM - Output Byte from Memory 

31 24 23 21 20 16 15 o 

3B I D~ 1 DEV I X : ADDR 

The device order, D~, is sent to the device designated by 
DEV. A byte of data is then output from the memory loca­
tion indicated by the address word in the third and fourth 
bytes of the instruction. 

Indicators Affected: none. 
Assembly Language Coding: 

Programming Note: 

OBM D~,DEV,ADDR(X) 
0~D~~7, 0<DEV<31 

When an interrupt request is recognized by the CPU, an RTJ 
to the interrupt service routine (ISR) entry point is forced 
by the computer. The entry point of the ISR is specified 
by the interrupt location for the requesting device. The 
address of the interrupt location for a device is twice 
the device address plus 10016. Device 3, for example, 
interrupts through locations 106 - 10717 . The RTJ 
causes the current value of the program counter (P register) 
to be saved in the ISR entry point and control to be trans­
ferred to the entry point + 2. To save registers and mach­
ine status the instruction at "entry point +2" should be 
SAY. Following the SAY instruction is the body of the 
ISR. When the function of the ISR has been completed, 
the interrupting device interrupt sequencer must be removed 
from the active state by arming or disarming the device. 
The I/O instruction used to perform the arm OT disarm opera­
tion should be executed immediately before the execution of 
the return instruction to prevent recursive calls on the 
ISR. If the machine state was saved using the SAY instruc­
tion, the RET instruction should be used to return con-
trol to the interrupted program. If for some reason 
the SAY instruction was not used (as, for example, in 
the control stack overflow/underflow ISR), a JMP indirect 
through the ISR entry point should be used. 

~-------.- - .. -.---~~ .. --------

[ 

I 
[ 

~ 
if: 
~ 

rr 
li 

[ 

I 
I 
I 



[ 

[ 

[ 

(I 

[ 

[ 

[ 

[ 

I 
:[ 
I 

[ 

[ 

[ 

[ 
i [ 

[ 

I 
I 

II 

-103-

The structure of an ISR is shown below. 

INTSUB DC ** INTERRUPT SERVICE ROUTINE 
* RETURN ADDRESS. 

SAV SAVE MACHINE STATE 

BODY OF ISR 
. 

0BA ARM,DEV ARM DEVICE CONTROLLER 
* FOR NEXT INTERRUPT. 

RET RETURN TO INTERRUPTED 
* PROGRAM. 
* ARM EQU 2 ARM DEVICE ORDER 

The first word of the interrupt service routine must be 
reserved for the return address. 



4. 

-104-

COMPUTER OPERATION 

This chapter describes the CIP/2200 operating procedures. 
The operation of the various front panels is described 
first, followed by a description of the firmware boot­
strap loader and the disk IPL option. 

4.1 Front Panel 

There are three front panel configurations available for 
the CIP/2200: 

1. Blank Panel 

This panel is intended for dedicated system applica­
tions where no operator control is required. There 
are no external switches or indicators on the console. 
The power fail/automatic restart option must be 
installed in systems having a blank front panel to 
allow handling of power on and off conditions. 

2. Basic Panel 

This panel provides the basic control capabilities 
required for program development and general program 
execution, including power on/off, the switches and 
indicators associated with starting, stopping, and 
interrupting execution, and four sense switches. 

3. System Panel 

The system panel provides the highest level of con­
trol and display facilities. The fundamental control 
capabilities of the basic panel are supplemented with 
16 command switches and a bank of indicator lights 
which display the contents of important internal 
machine registers. 

Figure 4 -1 shows the system panel. The functions of 
the various switches and indicators are described in the 
following section. Indicator lights are illuminated when 
the bit represented is a one. Depressing the top of a 
switch places it in the "on" or 1 condition. 

[ 

[ 

[ 

I 
[ 

I 
I 



[ 

[ 

[ 

,[., , 

, j 

[ 

[ 

(' 

[ 

[ 

[ 

[ 

I 

-105-

..J 

A 
I 

1---------------------17.75--------------11 
---I~OO -----------------j 

Figure 4-1 System Panel 

Basic Panel Operation 

The control switches described in this section are 
present on both the basic panel and the system panel. 
These controls allow the operator to load a program; 
start, stop, or interrupt a program; and to exert 
limited control on program execution (via sense switches). 

POWER OFF/ENABLE/DISABLE 

This is a three position key switch which controls the 
main power and front panel access. In the OFF posi­
tion, power is removed from the computer. In the ENABLE 
position power is on and the front panel switches are 
enabled. In the DISABLE position power is on but all 
front panel switches are disabled, preventing inter­
ference with a running program through inadvertent 
switch operation. 

RUN Light 

This light is illuminated when the computer is operat-
ing, or in the "RUN" state. 

HALT Light 

This light is illuminated when the computer is halted. 



-106- I 
BOOTSTRAP LOADER FUQWCHART 

FIG. 4-2 [ 

I 
1 
I 
[ 

I 
[ 

L 
[ 

N 

I; [ 
BL 
III [ II 
I 

(' 

I 
I 

I1II "ili ~ II·; II I il a.l. HI' I"· 'h :.11 

[ 

I 
.. 

" hl""1 I 
; 08 I 
~ , :u 

~-I '" 
-,j I i ~ t 
~h_e; g I ~"I\ o II " I I ~ I 
cnf---,I ~ • ~~l,i - :r 

! 

I 
[ 

I 
- ---------------------- ----_._----------



[ 

[ 

[ 

[ 

[ 

[ 

[ 

I 
I [ 

il 

I 
! 11. 

I) 

-107-

CLOCK 

The CLOCK switch is a momentary contact switch which 
causes the computer to halt at the end of the current 
microinstruction. Depressing CLOCK when the computer 
is halted causes one microinstruction to be executed. 
Execution may be resumed by pushing RUN. 

RESET 

This momentary contact switch halts the computer and 
clears the P register and the machine status byte. 
When the computer resumes execution, the first instruc­
tion processed will start at memory location O. RESET 
also halts any I/O transfer in progress and resets all 
I/O interface logic and interrupt sequencers. 

NOTE: The RESET switch should not be used to halt the 
computer if the program currently executing is to be 
saved. RESET prevents the current instruction from 
being completed normally, and may cause a byte of 
memory to be altered because a memory cycle may be 
interrupted. To prevent this possible loss of data, 
the computer should be halted by pushing the STEP switch 
(s ee below). 

RUN 

The momentary contact RUN switch starts computer opera­
tion when the computer is in the HALT state. The 
sequence STEP-RESET-RUN causes the computer to halt; 
resets all hardware indicators and initializes the I/O; 
sets the status register and the program counter (P 
register) to zero; and starts execution with the instruc­
tion located at memory address zero. Normal software 
convention is to place a JMP instruction to the actual 
start of the program at location zero, thus allowing a 
program to be started or restarted by pushing STEP-
RESET-RUN. . 

NOTE: If sense switch 4 is on, RESET-RUN causes 
execution of the bootstrap loader (see Section 4.3). 

STEP 

This momentary contact switch is used to halt the computer 
at the end of the next interruptable instruction. Each 
time STEP is pushed while the computer is halted the com­
puter executes the next instruction and halts if the 



-108-

instruction is interruptable. If the instruction executed 
by a STEP is not interruptable, execution continues until 
an interruptable instruction is encountered. If a loop 
composed entirely of non-interruptable instructions is 
entered, STEP has no effect and CLOCK must be used to 
halt the computer. If the STEP switch is released 
before the completion of an instruction or sequence 
of non-interruptable instructions, the computer will 
not halt. In practice, this occurs only in the case 
of IBS and OBS instructions. 

INTERRUPT 

The momentary contact INTERRUPT switch generates a 
console interrupt. If the computer is in the HALT 
state, the INTERRUPT switch first places the computer 
into the RUN state, then causes a console interrupt. 
Normally the INTERRUPT switch alone should be depressed 
to cause a console interrupt. If, however, the computer 
is in a non-interruptable loop, a console interrupt may be 
forced by pushing CLOCK-RESET-INTERRUPT. The latter 
method, of course, results in a zero return address being 
stored by the interrupt. 

SAVE 

This switch performs the same function as the RESET 
switch except that it maintains the "reset" condition. 
If the system does not have the power fail/automatic 
restart option, the SAVE switch must be on to protect 
main memory contents when power is turned on or off. 
The computer should first be halted by pressing STEP; 
i.e., the proper power off sequence is STEP-SAVE-POWER 
OFF. 

SENSE SWITCHES: SWI, SW2, SW3, SW4 

These switches allow a running program to respond to 
operator inputs. The state of the sense switches may 
be input to the A register with an ESW instruction 
and tested by the program to allow the operator limited 
control of the program without requiring an I/O device. 

The sense switches are also used by the CIP/2200 to 
allow the operator to initiate the firmware ~nitial 
program load process. When execution is started after 
a RESET, the CPU examines the sense switch settings, and 
if SW4 is on, performs a bootstrap load or "IPL" (Initial 
Program Load) as described in Sections 4.4 and 4.5. 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

I 
[ 



[ 
r 
~IJ 

[ 
[ 
( 
[ 
[ 
[ 

I 
[ 

I 
[ 
[ 

I 
[ 
[ 

I 
I 
I 

4.3 

-109-

System Panel Operation 

The system panel contains all of the controls described 
previously for the basic panel, and in addition provides 
facilities for displaying the contents of various internal 
registers via four sets of indicator lights. The 16 command 
switches may be used to enter microinstructions to examine 
or alter the contents of memory and the CIP/2200 registers. 

ROM/PANEL Select 

This switch controls the source of microinstructions 
executed by the computer. The normal position is ROM, 
which causes the computer to fetch microinstructions 
from the internal read only memory. When the ROM/PANEL 
switch is placed in the PANEL position, the 16 command 
switches are the source of microinstructions. The CPU 
executes the microinstruction defined by the command 
switches when CLOCK is depressed. 

COMMAND Switches 

These 16 switches are substituted for the internal 
read only memory when the ROM/PANEL select switch is 
in the PANEL position. The state of the command 
switches determines a 16 bit microinstruction which 
can be executed once by pushing CLOCK or repeatedly 
by pushing RUN. 

MEMORY ADDRESS Display 

This display shows the current contents of the CIP/2200 
memory address register. When the CIP/2200 halts 
normally (by executing a HLT) the memory address display 
gives the address of the HLT instruction. 

ROM INSTRUCTION Display 

These indicators display the next microinstruction to 
be executed. 

ROM ADDRESS Display 

These indicators display the address of the next micro­
instruction to be executed. 

DATA Display 

This display gives the current contents of the internal 
data bus, the A bus. 



-110-

System Panel Procedures 

The system panel may be used to display and modify 
the contents of the CIP/2200 registers or main 
memory without software support. The program counter 
(P register) may also be modified via the system panel 
to start program execution at a given memory location. 
These operations are performed by executing micro­
instructions entered through the command switches. 
This is done by placing the ROM/PANEL switch in the 
PANEL position, setting the 16 command switches to 
the bit pattern representing the desired microcommand, 
and executing the microinstruction by pushing CLOCK. 
The DATA lights are used to display the contents of the 
selected byte. 

Register Display 

The current contents of the A, B, X, S or P register 
can be displayed on the DATA indicators. The micro­
instruction used to display registers is: 

CfOO 

The second hexadecimal digit of the command ("f"), 
specifies the register to be displayed on the DATA 
lights. Since the DATA display is 8 bits long, each 
16 bit register is displayed in two parts. The follow­
ing table contains the hexadecimal digit corresponding 
to each CIP/2200 register. The subscript L denotes the 
low 8 bits of the register; U refers to the high 8 bits. 

REGISTER f 

XL 2 
Xu 3 
AL 4 
AU 5 
BL 6 
BU 7 
S 8 
PL C 
Pu D 

For example, to display the A register contents, the 
computer is halted by pushing STEP, the ROM/PANEL switch 
is set to PANEL, the command switches are set to C400, 
and CLOCK is depressed. This displays the low byte of 
A. The high byte may be displayed by setting the 
command switches to CSOO and pushing CLOCK. 

[ 

[ 

[ 

[ 
\1 
LL 

[ 

I 
1 
[ 

I 
[ 

[ 

[ 

[ 

I 



II 
[ 

[ 

I 
[ 

[ 

[ 

II 
[ 

I 
[ 

[ 

[ 

[ 

[ 

I 
I 
I 
[ 

_ ... _--_._-_.-

-111-

Register Modification 

The CIP/2200 register contents may be modified by the 
microcommand 

2fXX 

The register to be changed is given by "f" as in the 
display operation. The value to be placed into the 
register is given by "XX", the low byte of the command. 

For example, to load the A register with 26010 (010416) 
the following sequence of steps is executed. 

1. Halt the computer by pushing STEP and set the 
ROM/PANEL switch to PANEL. 

2. Set the command switches to 240416; push CLOCK. 
3. Set the command switches to 250116; push CLOCK. 

Starting Execution 

Execution may be started at a specific location by load­
ing the P register with the desired address and starting 
the CIP/2200 microprogrammed instruction fetch routine. 
The following steps are used. 

1. Load the P register with the address at which 
execution is to start, as described in the pre­
vious section. 

2. Execute a microinstruction jump to the start of 
the firmware instruction fetch routine. This 
microinstruction is 1409 for the CIP/2200. 

3. Set the ROM/PANEL switch to ROM and push RUN. 

For example, to start execution at location 200 16 , 
the following microinstructions are entered and executed 
via the command switches: 

2COO load PL with 0016 
2D02 load Pu with 0216 
1409 jump to 2200 instruction fetch 

Th~ROM/PANEL switch is then placed in the ROM position 
and RUN is pushed to start program execution. 



-112-

Memory Display and Modification 

CIP/2200 main memory locations can be displayed on the 
front panel DATA indicators with the microcommand 
sequence shown: 

l3XX 
l2XX 
AOOO 
B020 

load low byte of memory address 
load high byte of memory address 
read memory 
display memory data 

To read the contents of memory location 200 16 the 
instructions 1300 and 1202 are used to load the memory 
address register. The instructions AOOO and B020 are 
executed to place the memory data in the DATA display. 

To change a memory location the sequence shown below 
is used: 

l3XX 
l2XX 
llXX 
AOIO 

load low byte of memory address 
load high byte of memory address 
load memory data 
write data 

For example, to load location 200 16 with B3l6 the 
following instructions are executed: 

1300 
1202 
llB3 
AOIO 

load memory 
address register 
load memory data 
write 

The procedures described above are applicable for read-
ing or changing a small number of memory locations. The 
CIP/2200 also has a microprogrammed memory access routine 
that is more convenient for the display or modification 
of a larger number of contiguous memory locations using 
the system panel. The system panel memory access program 
displays successive memory locations in the DATA indicators 
and allows the operator to insert changes where necessary. 
The computer halts after each data byte is displayed. 
The data can be changed by depressing sense switch 4 
and entering the new data in the low order 8 COMMAND 
switches. When RUN is pushed the new data is read 
from the low 8 COMMAND switches and written at the 
current location (displayed in the MEMORY ADDRESS 
indicator). The memory address is then incremented 

[ 

[ 

1 
[ 

[ 

( 

I 

[ 

I 



I 
I 
[ 

I 
[ 

[ 

( 

I, 
I 
I 
I 
[ 

[ 

I 
I 
[ 

-113-

and the next data byte is read and displayed with the 
computer in the HALT state. If sense switch 4 is off, 
a write does not occur and the next data byte is displayed. 

To execute the system panel memory access program the 
following setup steps are necessary. 

1. Halt the computer using STEP and place the 
ROM/PANEL switch to PANEL. 

2. Load file registers A and B with the low and 
high bytes respectively of the address of the 
location which precedes the first location to 
be displayed. 

3. Perform a microprogram jump to the front panel 
routine. This microinstruction is lDFE. 

4. Set the ROM/PANEL switch to ROM and push RUN. 
5. Display and change memory as desired, pushing 

RUN to step to the next location and setting 
sense switch 4 as shown below. 

OPERATION SSW 4 

0FF 
¢)N 

COMMAND SWITCHES 0-7 

Read 
Write 

0000 0000 
DATA DATA 

To display and modify a block of locations beginning 
at location 510 16 the following microinstructions would 
be executed. 

2AOF 
2B05 
lDFE 

load low byte of (address -1) 
load high byte of (address-I) 
jump to front panel routine 

Set the ROM/PANEL switch to ROM and push RUN to execute 
the memory modification routine. When the desired 
memory examination or modification has been completed, 
RESET-RUN or RESET-INTERRUPT will return the computer 
to normal operation. 



4.4 

-114-

Bootstrap Loader 

The bootstrap loader provides an initial program load 
(IPL) facility for the CIP/2200. The loader is a firm-
ware routine which reads 256 bytes of data from a tele­
type or other byte oriented input device and stores it 
in memory locations 0 - FF16. After loading 256 bytes 
of data, the bootstrap loader transfers control to 
location o. 
Description of Operation 

The bootstrap loader is executed by turning sense switch 
4 on and sens e switches 2 and 3 off; pushing the "RESET-­
RUN" switches, and starting the IPL device. Sense switch 
1 specifies the input device. The IPL microprogram 
reads from the serial teletype interface if sense switch 
one is off, and reads from byte I/~ device zero if sense 
switch 1 is on. The status byte and device orders for 
device zero must conform to the standard I/~ status byte 
and device order definition if the IPL is to work properly. 

Figure 4-2 shows the functional flowchart for the boot­
strap loader. The loader reads data from either the 
serial teletype or device zero, according to the state 
of sense switch 1. The data is stored in the first 256 
bytes of memory starting with location FF16 and con­
tinuing through successively lower addresses until 
256 bytes have been loaded. When loading is complete, 
control is transferred to location 0, causing the initial 
program to start execution. 

Initial Program Requirements 

The program loaded by the IPL process will generally be 
a loader for reading the system software into memory. 
A program to be loaded by IPL must be prepared in the 
special IPL format. Because the bootstrap loader loads 
from location FF16 to location 0, the initial program 
must be in reverse order in the input medium, formatted 
so that the first byte loaded corresponds to the data 
for location FF16. The IPL device must be positioned 
so that the first byte of data read will be the first 
byte of the initial program, as the IPL microprogram 
simply reads the first 256 bytes of data present. The 
IPL microprogram performs no device control functions, 
so a means must be provided for the operator to start 
the IPL device manually (e.g., the teletype tape reader 

--"-------~~ - ---- ~---~~~-

[ 

[ 

[ 

[ 

[, 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

I 
[ 

[ 

I 



[ 

I 
[ 

I 
[ 

I: 
( 

I 
I 
[ 

[ 

[ 

( 

[ 

I 
[ 

[ 

I 

4.5 

-115-

has a switch which starts the reader). Paper tapes to 
be loaded via the IPL facility are usually prepared with 
a rubout (all channels punched) punched as the first byte 
of the 256 byte IPL record to enable the operator to 
position the tape properly in the reader. 

Bootstrap Loading from the Serial TTY 

The following procedure is used for performing an initial 
program load from the serial teletype. 

1. 

2. 

3. 

4. 

5. 

Turn sense switch 4 on, turn sense switches 1, 
2, and 3 off. 
Place the basic loader tape in the serial teletype 
reader, positioning the first rubout over the 
read station. 
Press the RESET and RUN switches on the front 
panel. This starts the IPL microprogram which 
will wait for the teletype reader to be started. 
Start the teletype reader. The bootstrap loader 
operation can be verified on the system front 
panel by watching the memory address decrement 
from FF16 to o. 
Stop the teletype reader manually at the end of 
the bootstrap operation. 

Disk IPL Option (CIP/22l0) 

The disk IPL option provides an initial program load 
facility for the CIP/2200 from a disk memory attached 
to the DMA channel. The IPL program moves up to 32k bytes 
of core image data from the disk to main memory and transfers 
control to a user specified memory location. This option 
requires a disk drive, a disk controller, and a DMA 
channel. 

Core Load Requirements for Disk IPL 

The IPL core image data must start at the beginning of 
the disk and occupy contiguous disk locations. The 
maximum core load size is 32,768 bytes, the minimum is 
the amount of data stored in two disk sectors. Loading 
begins at memory location zero and continues until all 
data has been entered. 



-116-

The IPL process begins by reading the first two sectors 
from cylinder 0, track 0 into memory beginning at loca­
tion 0 and continuing through successively higher loca­
tions. After the contents of the first two sectors 
have been moved into memory, the IPL microprogram 
examines the 8 byte area at memory location 180 - l87,n. 
The four words in this area specify the parameters for­
the remainder of the loading process. 

These parameters are as follows: 

Location 

180- 18116 

182-18316 

184-18516 

186-18716 

IPL Operation 

Description 

Address of last byte of data to be 
loaded. This parameter specifies 
tthe core load size. 

Number of data bytes contained in 
one disk sector. 

Number of data bytes contained in 
one disk cylinder. 

Execution address. Control will be 
transferred to this location at the 
end of the IPL. 

The IPL program is activated by turning sense switches 
three and four on, sense switches one and two off and 
pushing RESET-RUN. After loading the core image data 
the IPL program transfers control to the memory loca­
tion specified in the core load. Errors detected 
by the disk controller will cause the computer to halt 
with the disk controller status bytes in file registers 
4 and 5. The IPL may be retried at any time. 

[ 

[ 

[ 

[ 

[' 

[ 

[ 

[ 

[ 

[ 



( -117-

APPENDIX A 

INSTRUCTION SET LISTED NUMERICALLY BY OPCODE 

The following terms are used in Appendixes A and B to describe 
valid assembly language operands for the various instructions. 

ADDR Operand expression used to calculate an address 
I An absolute expression used to specify data which may be 

negative. 
N An absolute expression used to specify data which may not 

be negative, such as counts, masks, etc. 
L An absolute expression used to specify an explicit length 

value. 
Instructions marked * have all addressing modes. 
Instructions marked t have interrupt umbrella. 

OPCODE INSTRUCTION MNEMONIC OPERANDS 

OOt Halt HLT 
Olt Trap TRP 
02 Enter Sense ESW 

Swi tches 
03 Interchange A & B lAB 
04t ~Disable Interrupt DIN 

System 
OSt Enable Interrupt EIN 

System 
06t Disable Interval DIT 

Timer 
07t Enable Interval EIT 

Timer 
08 Res et 1JV, Set R1Jl 

WL=l 
09 Reset 1JV, Set R02 

WL=2 
OA Reset 1JV, Set R03 

WL=3 
OB Reset fjV, Set R1J4 

WL=4 
OC Set fjV, Set S0l 

WL=l 

INDICATORS 

INT 

INT 

1JV,WL 

1JV,WL 

0V,WL 

0V,WL 

0V,WL 



-118- [ 

[ 

[ 
OPCODE INSTRUCTION MNEMONIC OPERANDS INDICATORS 

OD Set rj)V, Set S02 rj)V,WL [ 
WL=2 

OE Set 0V, Set S03 rj)V,WL 

fl WL=3 
OF Set rj)V, Set S¢4 fJV,WL 

WL=4 
10 Skip if Overflow S0V ADDR fJV [ Set 
11 Skip if A=O SAZ ADDR 
12 Skip if B=O SBZ ADDR 

I 13 Skip if X=O SXZ ADDR 
14 Skip if A SAN ADDR 

Negative 

[ 15 Skip if X SXN ADDR 
Negative 

16 Skip if A=B SAB ADDR 
17 Skip if A=X SAX ADDR [ 18 Skip if Overflow N0V ADDR rj)V 

Not Set 
19 Skip if A::jO NAZ ADDR 

I lA Skip if B#D NBZ ADDR 
lB Skip if X#O NXZ ADDR 
lC Skip if A Not NAN ADDR 

Negative [ lD Skip if X Not NXN ADDR 
Negative 

IE Skip if A#B NAB ADDR ( IF Skip if A#X NAX ADDR 
20 Rotate Left A RLA N 
21 Rotate Left B RLB N 

[ 22 Rotate Left Long RLL N 
23 Decrement A DCA rj)V 
24 Logical Right A LRA N 
25 Logical Right B LRB N [ 26 Logical Right LRL N 

Long 
rj)V 27 Decrement B DCB [ 28 Arithmetic Left A ALA N 

29 Arithmetic Left B ALB N 
2A Arithmetic Left ALL N 

Long I 2B Transfer A to B TAB 
2C Arithmetic ARA N 

Right A I 2D Arithmetic ARB N 
Right B 

2E Arithmetic Right ARL N 

I Long 

f 
-"------"- .. ~-.. --- .. _---- ._~ __ ~_ -_._._-_. _____ 0 __ ._-



I -119-

I' 
I 

OPCODE INSTRUCTION MNEMONIC OPERANDS INDICATORS 

I 2F Transfer B to A TBA 
30t Input Byte IBS 

[ Serially 
31t Input Byte to A IBA D0,DEV 
32 t Input Byte to B IBB D0,DEY 

[ 
33t Input Byte to IBM D0,DEV 

Memory ADDR(X) 
34 No Operation N0P 
3S Interchange A & X lAX 

I~ 
36 Interchange B & X IBX 
38t Output Byte 0BS 

Serially 

[ 
39t Output Byte 0BA D0,DEV 

From A 
3At Output Byte 0BB D0 ,DEV 

From B 

[ 3Bt Output Byte 0BM D0,DEV 
From Memory ADDR(X) 

40 0R B to A 0RA 

I 41 Exclusive 0R XRA 
B to A 

42 0R A to B 0RB 

I 
43 Exclusive 0R XRB 

A to B 
44 Increment X INX 0V 
4S Decrement X DCX 0V 

[ 46 Add Word Length AWX '/JV 
to X 

47 Subtract Word SWX '/JV 

I Length from X 
48 Increment A INA 0V 
49 Increment B INB 0V 

[ 
4A Ones Complement '/JCA 

A 
4B Ones Complement '/JCB 

B 

[ 4C Trans fer A to X TAX 
4D Transfer B to X TBX 
4E Trans fer X to A TXA 

I 
4F Transfer X to B TXB 
50 Add to Word AWl I,ADDR(X) 0V,ALI 

Immediate 

I 
Sl Branch On B0C N,ADDR(X) 

Condition 
S2 Move Immediate MVI N,ADDR(X) 

I 
I 



-120- [ 

[ 

I 
OPCODE INSTRUCTION MNEMONIC OPERANDS INDICATORS 

53 Compare Logical CLI N,ADDR(X) ALI I 
Immediate 

54 Test Under Mask TMI N,ADDR(X) ALI I: Immediate 
55 Set Bits Under CMT 

Ul·~.l. 

",T ""I""\'T"'\'n. ,. ... r'-
l'l,.L-\.JJJJKlA) ALI 

Mask Immediate 
[ 56 Clear Bits Under CMI N,ADDR(X) ALI 

Mask Immediate 
57 Invert Bits Under IMI N,ADDR(X) ALI 

Mask Immediate (' 58 Add Decimal ADD ADDR~(Ll'X), '/JV,ALI 

Subtract 
ADD S( S,X) 

t>V,ALI 59 Decimal SBD ADDRT(LT,X), [ 
SA 

ADDRS (LS ,X) 
'/JV Multiply Step MSD ADDRT(LT,X) 

Decimal ADDRS (LS ,X) 

~ 5B Divide Step DSD ADDRT(Ll,X) , '/JV I \ 

Decimal ADDR~ ( ~,X) 
SC Move Character MVL ADDRT L, ), 

String Left ADDR (X) ~ 5D Move Character MVR ADDRTtL,X) , 
String Right ADDRS (X) 

SE Rt>M Exit XIT I 5FOOt Save Machine SAV 
State -;". 

SFOlt Return RET all 

I SF02 Add to X AXI I '/JV 
Immediate 

SF03t Return Displaced RTN I all 
SF04 Edi t and Mark EDT ADDRT(L,X), ALI [ ADDRS (X) 
SFOS Compare Logical CLC ADDR~(L,X), ALI 

Character ADD S (X) [ 5F06 Translate Under TRM N,ADDR'f(L,X) 
Mask ADDR X) 

SF07 Translate and Test TTM N,ADD~'f(L,X), ALI 

I Under Mask ADDRS X) 
SF08- Se condary ROM XT2 N 
SFFF Exit 
60-67*t Jump JMP ADDR(X) [ 68-6F*t Return Jump RTJ ADDR(X) 
70-77* Increment Word IWM ADDR(X) '/JV,ALI 

In Memory 

I 80-87* Load X LDX ADDR(X) 
88-8F* Store X STX ADDR(X) 
90-97* Multiply Step MST ADDR(X) 
98-9F* Divide Step DST ADDR(X) [ AO -A7* Add to A ADA ADDR(X) '/JV 

E 
---.---~ ---- -- - -----.--.---.~--



I, 
I 
(, 

I 
[ 

[ 

[ 

[ 

I 
I 
I 
[ 

I 
I 
t 
I 
[ 

I 
[. 

OPCODE 

AS-AF* 
BO-B7* 
BS-BF* 
CO-C7* 
CS-CF* 
DO-D7* 

DS-DF* 
EO-E7* 
ES-EF* 
FO-F7* 
FS-FF* 

-121-

INSTRUCTION MNEMONIC OPERANDS INDICATORS 

Add Variable ADV ADDR(X) '/JV 
Subtract From A SBA ADDR(X) '/JV 
Subtract Variable SBV ADDR(X) '/JV 
Load B LDB ADDR(X) 
Store B STB ADDR(X) 
AND Memory To ANA ADDR(X) 

A 
AND Variable ANV ADDR(X) 
Load A LDA ADDR(X) 
Load Variable LDV ADDR(X) 
Store A STA ADDR(X) 
Store Variable STY ADDR(X) 



---------------------- ------------

-122-

APPENDIX B 

INSTRUCTION SET LISTED 

ALPHABETICALLY BY INSTRUCTION 

The following terms are used in Appendixes A and B to describe 
valid assembly language operands for the various instructions. 

ADDR Operand expression used to calculate an address 
I An absolute expression used to specify data which may 

be negative. 
N An absolute expression used to specify data which may 

not be negative, such as counts, masks, etc. 
L An absolute expression used to specify explicit length 

value. 

Instructions marked * have all addressing modes. 
Instructions marked t have interrupt umbrella. 

INSTRUCTION MNEMONIC OPERANDS 

Add Decimal ADD ADDRT(Ll,X) , 

Add to A ADA 
ADDRX ( S ,X) 

ADDR( ) 
Add to X AXI I 

Immediate 
Add to Word AWl I,ADDR(X) 

Immediate 
Add Variable ADV ADDR(X) 
Add Word Length AWX 
to X 

AND Memory To ANA ADDR(X) 
A 

AND Variable ANV ADDR(X) 
Arithmetic Left A ALA N 
Arithmetic Left B ALB N 
Arithmetic Left ALL N 

Long 
Arithmetic ARA N 

Right A 
Arithmetic ARB N 

Right B 
Arithmetic Right ARL N 

Long 

INDICATORS 

'/JV,ALI 

'/JV 
'/JV 

'/JV,ALI 

f/JV 
'/JV 

OPCODE 

58 

AO-A7* 
5F02 

SO 

A8-AF* 
46 

DO-D7* 

D8-DF* 
28 
29 
2A 

2C 

2D 

2E 

( 

I 
I 
I 
[ 

I 
[ 

[ 

[ 

[ 

I 
[ 

[ 

[ 

[ 

I: 
[ 

Ii 



I -123-

I 
[ 

I INSTRUCTION MNEMONIC OPERANDS INDICATORS OPCODE 

Branch On B~C N,ADDR(X) 51 

I Condition 
Clear Bits Under CMI N,ADDR(X) ALI 56 
Mask Immediate 

I Compare Logical CLC ADDRT(L,X) , ALI 5F05 
Character ADDR (X) 

Compare Logical CLI N,ADD~(X) ALI 53 

[ 
Immediate 

Decrement A DCA ~V 23 
Decrement B DCB ~V 27 
Decrement X DCX f/JV 45 

(, Decrement Word DWM ADDR(X) f/JV,ALI 78-7F* 
in Memory 

Disable Interrupt DIN INT 04t 

I 
System 

Disable Interval DIT 06t 
Timer 

Divide Step DSD ADDR~(Ll'X), ~V 5B 

I Decimal ADD S ( S ,X) 
Divide Step DST ADDR(X) 98-9F* 
Edi t and Mark EDT ADDR~(L,X), ALI 5F04 

I ADD SeX) 
Enable Interrupt EIN INT 05t 

System 

[ 
Enable Interval EIT 07t 

Timer 
Enter Sense ESW 02 

Swi tches 

[ Exc1usi ve t>R XRB 43 
A to B 

Exclusi ve ~R XRA 41 

I B to A 
Halt HLT OOt 
Increment A INA t>V 48 

I 
Increment B INB f/JV 49 
Increment X INX t>V 44 
Increment Word IWM ADDR(X) f/JV,ALI 70 -77* 

I 
In Memory 

Input Byte to A IBA Df/J,DEV 31t 
Input Byte to B IBB D~,DEV 32t 
Input Byte To IBM D~,DEV, 33t 

I Memory ADDR(X) 
Input Byte IBS 30t 
Serially 

I 
I 



INSTRUCTION 

Interchange A & B 
Interchange A & X 
Interchange B & X 
Invert Bits Under 
Mask Immediate 

Jump 
Load A 
Load B 
Load Variable 
Load X 
Logical Right A 
Logical Right B 
Logical Right 

Long 
Move Character 

String Left 
Move Character 

String Right 
Move Immediate 
Multiply Step 
Multiply Step 

Decimal 
No Operation 
l's Complement 

A 
l's Complement 

B 
0R B to A 
0R A to B 
Output Byte 

From A 
Output Byte 

From B 
Output Byte 

From Memory 
Output Byte 
Serially 

Reset '/JV, Set 
WL=l 

Reset '/JV, Set 
WL=2 

Reset '/JV, Set 
WL=3 

Reset '/JV, Set 
WL=4 

Return 
Return Jump 
Return Displaced 
ROM Exit 
Rotate Left A 

--~--~--------~~~~~ 

- ':'124-

MNEMONIC 

lAB 
lAX 
IBX 
IMI 

JMP 
LDA 
LDB 
LDV 
LDX 
LRA 
LRB 
LRL 

MVL 

MVR 

MVI 
MST 
MSD 

N'/JP 
'/JCA 

'/JCB 

'/JRA 
0RB 
'/JBA 

'/JBB 

'/JBM 

'/JBS 

R0l 

R'/J2 

R03 

R'/J4 

RET 
RTJ 
RTN 
XIT 
RLA 

OPERANDS 

N,ADDR(X) 

ADDR(X) 
ADDR(X) 
ADDR(X) 
ADDR(X) 
ADDR(X) 
N 
N 
N 

ADDRT(L,X) , 
ADDR (X) 
ADDR~~L,X) , 
N~~~D~~i~ 
ADDR(X) 
ADDRT(LT,X) , 

ADDRS(LS,X) 

D'/J, DEV 

D'/J,DEV 

D'/J,DEV, 
ADDR(X) 

ADDR(X) 
I 

N 

INDICATORS 

ALI 

'/JV,WL 

'/JV,WL 

'/JV,WL 

'/JV,WL 

all 

all 

OPCODE 

03 
35 
36 
57 

60-67*t 
EO-E7* 
CO-C7* 
ES-EF* 
SO-S7* 
24 
25 
26 

5C 

5D 

52 
90-97* 
SA 

34 
4A 

4B 

40 
42 
39t 

3At 

3Bt 

3St 

OS 

09 

OA 

OB 

5FOlt 
6S-6F*t 
5F03t 
5E 
20 

II , 
Ii I 

[ 

( 

[ 

[ 

~­
~-

I 
[ 

[ 

I 
I 
I 
II 
fl 

i 



~-~-~~ 

[ -125-

I 
[ 

INSTRUCTION MNEMONIC OPERANDS INDICATORS OPCODE 

I, Rotate Left B RLB N 21 
Rotate Left Long RLL N 22 

[ 
Save Machine SAV 5FOOt 
State 

Secondary ROM XT2 N 5FOS-
Exit 5FFF 

I Set Bits Under SMI N,ADDR(X) ALI 55 
Mask Immediate 

Set rj)V, Set Srj)l rj)V,WL OC 

[ WL=l 
Set rj)V, Set S02 rj)V,WL OD 

WL=2 

[ 
Set rj)V, Set S03 '/JV,WL OE 

WL=3 
Set 0V, Set S04 rj)V,WL OF 

WL=4 

I Skip if A=B SAB ADDR 16 
Skip if A';B NAB ADDR IE 
Skip if A SAN ADDR 14 

[ Negative 
Skip if A Not NAN ADDR 1C 
Negative 

I 
Skip if A=O SAZ ADDR 11 
Skip if A';O NAZ ADDR 19 
Skip if A=X SAX ADDR 17 
Skip if A';X NAX ADDR IF 

[ Skip if B=O SBZ ADDR 12 
Skip if B';O NBZ ADDR 1A 
Skip if Overflow Srj)V ADDR rj)V 10 

( Set 
Skip if Overflow Nrj)V ADDR rj)V IS 

Not Set 

[ 
Skip if X=O SXZ ADDR 13 
Skip if X.;O NXZ ADDR 1B 
Skip if X SXN ADDR 15 
Negative 

r Skip if X not NXN ADDR 1D 
Negative 

Store A STA ADDR(X) FO-F7* 

[ 
Store B STB ADDR(X) CS-CF* 
Store Variable STV ADDR(X) FS-FF* 
Store X STX AD DR (X) SS-SF* 
Subtract Decimal SBD ADDRK(Ll,X) , rj)V,ALI 59 

[ ADD S( S,X) 
rj)V BO-B7* Subtract from A SBA ADDR(X) 

Subtract Variable SBV ADDR(X) rj)V BS-BF* 

I Subtract Word SWX rj)V 47 
Length From X 

Test Under Mask TMI N,ADDR(X) ALI 54 

I 
Immediate 



-126-
[ 

I 
I 

INSTRUCTION MNEMONIC OPERANDS INDICATORS 

Transfer A to B TAB 

OPCODE 

I I ' 

2B 
< 

Transfer A to X TAX 4C 
Transfer B to A TBA 
Trans fer B to X TBX 

2F [ 4D 
Transfer X to A TXA 4E 
Trans fer X to B TXB 
Translate Under TRM N,ADDR't(L,X), 
Mask ADDR X) 

Translate and TTM N,ADD~t(L,X), ALI 
Test Under Mask ADDRS X) 

Trap TRP 

4F [ SF06 

SF07 
[ Olt 

[ 

W 

I 
[ 

I. 
[ 

[ 

[ 

I 
I 
I 
II 



( 

[ 

[ 

E 
[ 

[ 

[ 

[ 

I 
I 
I 
[ 

[ 

[ 

[ 

[ 

t 
I 
I 

-127-

APPENDIX C 

CIP/2200 Instruction Execution Times 

INSTRUCTION 

Add Decimal 
Add to A 
Add to X 

Immediate 
Add to Word 

Immediate 
Add Variable 
Add Word Length 

to X 
AND Memory 
to A 

AND Variable 
Arithmetic Left A 

Arithmetic Left B 

Arithmetic Left 
Long 

Arithmetic 
Right A 

Arithmetic 
Right B 

Arithmetic Right 
Long 

Branch On 
Condition 

Clear Bits Under 
Mask Immediate 

Compare Logical 
Character 

Compare Logical 
Immediate 

Decrement A 
Decrement B 
Decrement X 
Decrement Word 

In Memory 
Disable Interrupt 

System 
Disable Interval 

Timer 

MNEMONIC 

ADD 
ADA 
AXI 

AWI 

ADV 
AWX 

ANA 

ANV 
ALA 

ALB 

ALL 

ARA 

ARB 

ARL 

B¢C 

CMI 

CLC 

CLI 

DCA 
DCB 
DCX 
DWM 

DIN 

DIT 

EXECUTION TIME 
(MICROSECONDS) 

84.5+7.5 Per Digit 
11. 7 
35.2 

17.8 

13.4 
7.0 

12.1 

13.9 
5.9+3.5 Per Bit Posi­
tion Shifted 

5.9+3.5 Per Bit Posi­
tion Shifted 

5.9+3.7 Per Bit Posi­
tion Shi fted 

5.9+3.3 Per Bit Posi­
tion Shifted 

5.9+3.3 Per Bit Posi­
tion Shifted 

5.9+4.0 Per Bit Posi­
tion Shifted 

11.4 No Jump 
12.8 Jump 

15.8 

55.4+8.6 For Each 
Character Compared 

15.0 

6.2 
6.2 
7.0 
12.5 

5.9 

4.8 

NOTES 

1,2,4 
2 

2 

1,2,3,4 
2 

1,4 

1,3,4 

4 

4 

4,5 

2,4 

2 
2 
2 
1,2,4 



INSTRUCTION MNEMONIC 

Divide Step DSD 
Decimal 

Divide Step DST 
Edit and Mark EDT 

Enable Interrupt EIN 
System 

Enable Interval EIT 
Timer 

Enter Sense ESW 
Swi tches 

Exclusive Or XRB 
A to B 

Exclusive Or XRA 
B to A 

Halt HLT 
Increment A INA 
Increment B INB 
Increment X INX 
Increment Word IWM 

In Memory 
Input Byte to A IBA 
Input Byte to B IBB 
Input Byte to IBM 
Memory 

Input Byte Serially IBS 
Interchange A & BlAB 
Interchange A & X lAX 
Interchange B & X IBX 
Invert Bits Under IMI 
Mask Immediate 

Jump JMP 
Load A LDA 
Load B LDB 
Load Variable LDV 
Load X LDX 
Logical Right A LRA 

Logical Right B LRB 

Logical Right Long LRL 

-128-

EXECUT ION TIME 
(MICROSECONDS) 

102.5+80 Per Divident 
Digit-Average 

102.5+126 Per Dividend 
Digi t-Maximum 

14.5 
77.9+11.9 For Each D.S. 
or S.S. Character 

5.9 

4.4 

4.8 

6.6 

6.4 

5.7 
7.0 
7.0 
7.0 
12.5 

8.4 
8.8 
14.3 

11.6 
11.0 
11. 0 
15.6 

10.1 
12.1 
14.4 
13.9 
12.5 

+5.3 For Each Text 
Character 
+5.7 For Each F.S. 
Character 

5.9+3.3 Per BIt Posi­
tion Shifted 

5.9+3.3 Per Bit Posi­
tion 

5.9+4.0 Per Bit Posi­
tion Shifted 

NOTES 

4,6 

2 
2 
2 
1,2,4 

4 

8 

1,4 
1,4 
1,4 
1,3,4 
1,4 

[ 

I 
I' 
I 
I 
I 
I 
[ 

I 
I 
I 
I 
r 
(I; 

I 
I 
I 
I 
I 
II 



I 
[ 

[ 

I 
[ 

,I 
[ 

[ 

I 
I 
[ 

[ 

I 
11 
[ 

[ 

I 
I 
I 

INSTRUCTION MNEMONIC 

Move Character MVL 
String Left 

Move Character MVR 
String Right 

Move Immediate MVI 
Multiply Step MST 
Multiply Step MSD 

Decimal 

No Operation N0P 
l's Complement A 0CA 
l's Complement B 0CB 
Or B to A 0RA 
Or A to B 0RB 
Output Byte 0BA 

From A 
Output Byte 0BB 

From B 
Output Byte 0BM 

From Memory 
Output Byte 0BS 
Serially 

Reset 0V, R0l 
Set WL=l 

Reset 0V, R02 
Set WL=2 

Reset 0V, R03 
Set WL=3 

Reset 0V, R04 
Set WL=4 

Return RET 
Return Jump RTJ 
Return Displaced RTN 
ROM Exit XIT 
Rotate Left A RLA 

Rotate Left B RLB 

Rotate Left Long RLL 

Save Machine SAY 
State 

Secondary ROM XT2 
Exit 

Set Bits Under SMI 
Mask Immediate 

-129-

EXECUTION TIME 
(MICROSECONDS) 

67.7+5.5 Per Character 
Moved 

75.9+5.3 Per Character 
Moved 

13.0 
20.5 
62.5+14.7 Per Digit -

Average 
+22.0 Per Digit -

Maximum 
4.4 
6.6 
6.6 
6.4 
6.4 
8.4 

9.2 

14.5 

100.0 Milliseconds 

5.3 

5.3 

5.3 

5.3 

69.0 
13.0 
69.3 
4.8 
5.9+3.5 Per Bit Posi­
tion Shifted 

5.9+3.5 Per Bit Posi­
tion Shifted 

5.9+3.7 Per Bit Posi­
tion Shifted 

70.0 

31.5 

15.6 

NOTES 

1,4 

9 

9 



[ 
-130-

[ I 

INSTRUCTION MNEMONIC EXECUTION TIME NOTES 

I (MICROSECONDS) 

Set ~, Set S¢l 5.3 
WL=l I Set ¢V, Set S¢2 5.3 
WL=2 

Set ¢V, Set S¢3 5.3 1 WL=3 
~o+- au c"" .... rorlll 5.3 --- 1"'v, ............ .J')O~ 

WL=4 
[ Skip if A=B SAB 8.4 7 

Skip if A~B NAB 8.4 7 
Skip if A SAN 7.5 7 
Negative [ Skip if A Not NAN 7.5 7 
Negative 

Skip if A=O SAZ 7.7 7 I' Skip if A~O NAZ 7.7 7 
Skip if A=X SAX 8.1 7 
Skip if A~X NAX 8.1 7 
Skip if B=O SBZ 7.5 7 I Skip if B~O 7.5 7 

' , 

NBZ 
Skip if Overflow S¢V 6.8 7 
Set I Skip if Overflow N¢V 7.7 7 
Not Set 

Skip if X=O SXZ 7.3 7 ( Skip if X~O NXZ 7.3 7 
Skip if X SXN 7.3 7 
Negative 

I Skip if X Not NXN 7.3 7 
Negative 

Store A STA 11.2 1,4 
Store B STB 13.0 1,4 [ Store Variable STV 10.3 1,3,4 
Store X STX 12.5 1,4 
Subtract Decimal SBD 84.5+7.5 Per Digit I Subtract From A SBA 12.1 1,2,4 
Subtract Variable SBV 13.9 1,2,3,4 
Subtract Word SWX 7.0 2 

I Length From X 
Test Under Mask TMI 16.5 

Immediate 
Transfer A to B TAB 5.7 I Transfer A to X TAX 7.0 
Transfer B to A TBA 5.9 
Transfer B to X TBX 7.0 

I Transfer X to A TXA 7.3 
Transfer X to B TXB 7.3 
Trans late Under TRM 72.8+20.0 Per Character 

Mask I Translate and TTM 79.1+21.1 Per Character 
Test Under Mask Translated 

Trap TRP 15.8 
11 

-----~----

-~----.---



I 
[ 

[ 

[ 

(, 

I 
[ 

[ 

[ 

[ 

[ 

I 
I 
[ 

t 
I 

1. 

-131-

NOTES 

The time shown is for the extended addressing mode (mode 6). 
For other modes, the execution time is obtained by adding the 
adjustment factor from the table below. 

MODE 

o 
1 

2 
3 

4 
5 
6 
7 

NAME 

Direct Page 0 
Direct Relative 

Indirect Page 0 
Indirect Relative 

Base Addressing 
Base + Displacement 
Extended 
Li teral 
a) Fixed Length 
b) Variable Length 
c) With A Register 
d) JMP & RTJ 

ADJUSTMENT 
(MICROSECONDS) 

-1.1 
0.0 

+0.7 
+2.2 
+3.3 
+4.0 
-1.6 
-0.6 
0.0 

+1. 3 
+1. 3 
+1. 8 
+4.2 

Pos. Displacement 
Neg. Displacement 

Pos. Displacement 
Neg. Displacement 

2. If overflow occurs, add .7. 

3. Time shown for variable word length instructions is for 
word length=l. For other word length values add the 
adjustment factor from the following table. 

WORD LENGTH CORRECTION 

2 SBV +1.3 
2 all others -0.4 

3 SBV +5.1 
3 all others +2.6 

4 SBV +6.4 
4 all others +2.2 

4. Instructions having indexed address words require an 
additional 1.3 microseconds. 

5. The CLC instruction compares corresponding source and 
target characters until a difference is detected. The 
ALI are then set and the instruction terminates. 



6. 

7 • 

8. 

9. 

-132-

Execution time for the DSD instruction is a function of 
the number of dividend digits and the quotient value pro­
duced. The exact relation is: 

DSD execution time = 45.3+11.44 [Q+Nd(Q+2)] 

,,!here () = nllni";.,.ni" r1;CT;i" """'0 ""< '1-- .... ..&,.~ ...... "" ..... ..Lo ......... V\A..L\.A ...... 

Nd = number of dividend digits 

The times given for conditional skip instructions are for 
execution without skipping. If the skip is taken, add the 
time shown in the following table. 

INSTRUCTION 

S~V 
N0V 

All Others 

ADJUSTMENT FOR SKIP 
P0S. NEG. 

1.8 
o 

.9 

2.0 
.2 

1.1 

Execution of the IBS instruction terminates when a byte is 
transferred from the serial I/O device. The minimum time 
is 86 milliseconds. 

Time given for the ROM exit instructions is the time required 
to transfer control to the first unused ROM page. 

------------------------------------

II 
I 
[ 

.~ 

I, ; I , 

I 
I i 

I 
[ 

[ 
[ I 



I 
I 
( 

[ 

[ 

I 
I 

-133-

APPENDIX D 

PROGRAMMING FOR POWER FAIL/AUTOMATIC RESTART OPTION 

The power fail/automatic restart option monitors the computer's 
external power source and interrupts processing whenever a signif­
icant change is detected. There are two system interrupts reserved 
for the power fail/automatic restart facility. When the external 
power supply voltage falls below the minimum level required for 
dependable operation, a "power fail" interrupt occurs. When 
power is restored, the "power restart" interrupt is generated. The 
corresponding interrupt service routines are used for programmed 
control of power on and power off procedures. 

The primary purpose of the power fail automatic restart option is 
to protect the contents of main memory from being destroyed by 
the loss of power. This function is automatically performed 
by the hardware and is transparent to the programmer. In 
general, the computer operation in progress at the time of a 
power failure cannot be continued after power is restored be­
cause I/O transfers are abnormally terminated by the loss of 
power. The power failure ISR is responsible for bringing the 
computer system to a safe halt. The power restart ISR is 
responsible for reinitializing the system and achieving the 
normal operating state once again. In some cases it may be 
possible to program the power fail/restart ISR's so that the 
loss of power becomes transparent to the computer user. 

Power Failure ISR 

The power fail interrupt occurs upon detection of the loss 
of primary power. A period of 2 milliseconds of reliable com­
puter operation remains after the interrupt occurs. The 
power fail ISR must therefore perform all operations necessary 
to bring the system to an orderly halt within a short period of 
time. Once the ISR is activated, no more interrupts are recog­
nized. DMC transfers will continue. If it is desirable to 
save the contents of the machine registers, they must be stored 
in memory. The power fail ISR should end with a HLT instruc­
tion to prevent loss of memory contents. 



-134-

Power Restart ISR 

The power restart interrupt occurs immediately after power is 
restored to the system. The purpose of the power restart ISR 
is to re-initialize the computer so that normal operation can 
be resumed. If necessary, the operator should be notified 
that a power failure occurred so that he can take the appro­
priate action. 

Systems having the blank front panel must have the power fail/ 
automatic restart option installed. Without this facility there 
is no method for initializing the system on start-up, or protect­
ing it during shut-down. Serial I/O should not be used in 
systems which require immediate action in response to the 
power fail interrupt, because interrupts are not recognized dur­
ing serial transfers which take a minimum of 100 milliseconds. 

[ 

I 
I 
I 
[ 

I 
[ 

~ 
Ii , 



" ---

I 
[ 

1 
E 
[ 

[ 

[ 

II 
I 
I 
I' 
[ 

[ 

I , 
[ 

I I, 

I 
II 
I 

----

-135-

APPENDIX E 

DMA CHANNEL PROGRAMMING 

Introduction 

The CIP/2200 Computer optionally may have one or two DMA channels. 
A CIP/2200 program can start or stop the DMA channel, read status 
information, or be interrupted by the channel. Once started by 
the CPU, the DMA controller transfers data to or from memory 
independently of the central processing unit, competing with the 
CPU on a priority basis for access to main memory. 

The DMA channel can be programmed to transfer data to or from 
one to four data buffers. There are two basic modes of opera­
tion: cyclic mode or single block mode of transfer. Cyclic 
mode transfer is a continuous data transfer operation which is 
terminated by program command. Single block mode transfer is 
a non-continuous data transfer operation which is terminated 
normally by the DMA channel, itself. 

Buffer Control Words 

The buffer control words define the location and amount of data 
to be transferred during a DMA operation. There are four buffer 
control word pairs for each channel stored in dedicated page 0 
locations as shown in Figure 1. 

The DMA channel maintains a four position counter to indicate 
which buffer is currently being processed. The buffer counter 
may be reset and mal also be incremented automatically after a 
buffer is processed. 

Each buffer control word pair consists of a starting address 
and an ending address. The starting address word specifies the 
location of the first byte in the data buffer; the ending address 
word specifies the location of the last data byte. Address values, 
which may be between 0 and 32767, are stored in the low 15 bits of 
each word. The most significant bit of each buffer control word 
contains a flag which further controls DMA channel action. 

Bit 15 of the starting address word of each buffer control word 
pair is a link flag used for addressing up to four buffers. 
The link flag is tested when processing of the data buffer is 
finished. If the link flag is set, then the buffer counter is 
incremented by one to address the next set of buffer control words. 
If the link flag is ~eset, then the buffer counter is reset to 
address the first set of buffer control words. Automatic wrap­
around from buffer 4 to buffer 1 is provided if the link flag is 
set on the fourth group of buffer control words. 



-136-

The INPUT STATUS command performs two functions. The first is 
to reset the DMA controller interrupt request. The DMA interrupt 
service routine must input status before executing any instruction 
which does not have an interrupt umbrella. Failure to do so may 
result in either an endless loop or a control stack overflow 
interrupt if a SAY instruction follows the ISR entry point. 

The input status command also transfers eight bits of status 
information from the DMA controller to a dedicated page zero 
memory location. The DMA status byte format is shown in Figure 
3. Bit 0, the channel busy bit, may be tested to determine if 
a DMA transfer is in process. Bits 1 thru 6 contain device de­
pendent status information. Definition of these bits may be 
found in individual device controller product performance spec­
ifications. The zero state for bit 7 indicates that an end of 
buffer interrupt has been generated. 

I I I I I I I I I 
7 6 5 4 3 2 ld'0 { 

"- y L 1 - channel busy l ° - channel not busy 

device dependent status bits 

~--------_{12 - end of buffer interrupt not generated 

- end of buffer reached and interrupt generated 

Figure 3. DMA Status Byte 

The DMA interrupt service routine for systems with two DMA 
controllers must check bit 7 of both status bytes to determine 
which channel interrupted. 

START CHANNEL - CYCLIC MODE, device order 1, starts the channel 
operation. Before this command is issued, the program must 
initialize the buffer control words. The start channel command 
causes the DMA channel to read the current buffer address control 
words and start operation. When transferring in the cyclic mode, 
the channel may move more than one data buffer as determined by the 
link flags in the starting address control words. This command 
must be preceeded with a RESET command if the last operation 
occurred in the single buffer mode or was terminated by a STOP 
CHANNEL AT BUFFER END command. 

if: • 
Z 
r 
I 
I 
I 



I 
I 
t 
[ 

-137-

STOP CHANNEL AT BUFFER END causes the channel to stop at the 
end of the current data buffer regardless of the condition of 
the link flags. 

START CHANNEL - SINGLE BUFFER MODE performs the same function 
as device order 1 but only current buffer is transferred. 
However, if the link flag was set, then the next time this 
command is given the DMA channel will fetch the next set of 
buffer control words, unless the buffer counter has been re­
set with the RESET CHANNEL command. 

RESET CHANNEL forces an immediate halt to the DMA operation in 
progress. The buffer counter is reset. 



-138-

APPENDIX F 

CIP/2200 FIRMWARE EXTENSIONS 

The CIP/2200 has been designed to allow the addition of custom 
microprogramming to the basic computer. Custom firmware may 
be useful for extending the standard instruction set to include 
application dependent software instructions or I/O operations. 
Special microcode can also be added to perform processing func­
tions in response to front panel commands. 

TRANSFER OF CONTROL TO CUSTOM FIRMWARE 

There are two methods available for transferring control from 
the standard microprogram to custom firmware. The first is 
programmed; the second is ini tia ted from the front panel. 
Programmed transfer of control provides the means for imple­
menting instruction set extensions. When a ROM exit opcode is 
detected by the standard firmware, the CIP/2200 executes a micro­
program jump to a dedicated location in ROM page 6. 

The primary exit instruction, "XIT", is a one byte instruction 
which transfers control to the first word location in ROM page 
6, 60016. The secondary exit instruction, "XT2", is a two byte 
instruction which transfers control to the second word location 
on ROM page 6, 60116. The second byte of the XT2 instruction 
contains a value between 816 and FF16 which can be interpreted 
to provide up to 248 secondary opcodes. When the custom micro­
program receives control, file registers C16 and D16 contain 
the low and high bytes, respectively, of the address of the 
last byte of the ROM exit instruction. If the secondary ROM 
exit instruction is used, file register 1 will contain the value 
of the second byte of the instruction. File registers 2 to 7 
and C16 and Dl6 are stored in the system save area as shown 
in the followlng table. 

-_ .. _----



I 
I 
[ 

[ 

[ 

[, 

[ 

[ 

[ 

[ 

[ 

I 
r 

-139-

Location16 File Register16 

180 D - P15-8 

181 C - P7- 0 

182 7 - B15 - 8 

183 6 - B7-0 

184 5 - A15 - 8 

185 4 - A7- 0 

186 3 - X15-8 

187 2 - X7- 0 

The elapsed time between the start of the exit instruction 
and the transfer of control to custom ROM is 4.8 microseconds 
for XIT and 32.3 microseconds for XT2. 

Operator initiated transfer of control is performed by turning 
sense switches three and four on, followed by a "reset-run" 
sequence. The operator controlled transfer causes a micro­
program jump to the third word on page 6, 60216. This transfer 
method is useful for initiating special functIons on command 
from the front panel, e.g. a special initial program load 
microprogram. 

Writing Custom Firmware 

Custom extensions to the CIP/2200 are placed on ROM pages 6 
and 7, allowing a maximum of 512 words of custom code. When 
the appropriate method for transfer of control has been selected, 
the corresponding dedicated page 6 location (600 16 , 601 1 or 
60216 ) must be initialized with a jump to the custom mic~oprogram. 
All microprogramming is done in the standard fashion as documented 
in the CIP/2000 literature. 

Custom firmware extensions may terminate by returning to the 
CIP/2200 microprogram for continuation of normal software instruc­
tion processing. When control is returned to the standard firm­
ware, file registers C16 and D16 must contain the low and high 



-140-

bytes, respectively, of the address of the last byte of the 
special instruction. The added instruction has the option 
of checking for interrupts before fetching the next software 
instruction. If interrupts are to be recognized, the custom 
firmware should return to the CIP/2200 by a jump to location 
00E16' An interrupt umbrella is obtained by jumping to loca­
tion 00916- In the latter case, the address in file registers 
C16 and D16 must be the address of the first byte of the next 
CIP/2200 instruction. 

CIP/2000 control storage is partitioned into 102410 word 
segments referred to as memory banks. The normal jump micro­
instruction may be used to jump anywhere within a single memory 
bank. Jumps between memory banks require a two instruction 
sequence consisting of a jump instruction followed by a bank 
switching command. The jump instruction is written in the 
normal fashion, causing the target address to be evaluated 
modulo 102410' The bank switching command is a literal class 
instruction whose opcode mnemonic is "LZ". The literal field 
specifies the memory bank to which control will be transferred. 
The literal values are assigned as shown. 

Memory Bank 

a 

1 

Addresses 

000-3FF16 

400- 7FF 16 

Literal 

Custom firmware may also be added to the CIP/22l0 by using the 
procedures described in this appendix with the following changes. 
The CIP/22l0 leaves 256 words of ROM available for special micro­
programming. The XIT and XT2 instructions transfer control to 
locations 700 16 and 70116' respectively. Operator initiated 
transfer of control is reserved for the disk IPL functio 

.~ 

I 
[ 

I 
I 
I 
II 
I 



I 
,I 
I 

~ I 
I 
[ 

[ 

[ 

I 
[, 

( 

[ 

[ 

I 
[ 

I 
[ 

I 
[ 

-141-

APPENDIX G 

Instruction Flowcharts 



IIUIIW ~ Ili~lilll 
!:I!IJlh II In,;:,11 

jF:,:, ID I - in 
r· I 

"0 I ,.,ii: 
,,~: -0 ~ ~ - ~ 

-.j I ! 18 g 
§ II :0 ~ f.--, '", 

!j'" r-

I 
n 

0 I, ~ I I ~ II '" - C11 

~ 
I! .... 

z 
• .." " ~ - II :0 

-142-

COMPARE LOGICAL CHARACTER INSTRUCTION FLOWCHART 

NO 

',r a! 

I 

I 

I 



I 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

( 

[ 

[ 

[ 

[ 

[ 

I 

-143-

MOVE LEFT &. MOVE RIGHT INSTRUCTION FLOWCHART 

SOURCE ADRS.­
SOURCE ADR5. ... 
STRING LENGTH 

TARGET AORS.­
TARGET ADRS." 
STRING LENGTH 



-144-

I: · " I 

DMC TRANSFER FUQWCHART 

,1·('" 
i ! 

.," .. " " 

'I.,', ',' 

• I 

l' -/ 

'l·······.····'. 

i, : 

,. 

if' ... ".'.'. ~ 

·,1" ! I C I H++-l-+-- I'·' .• :. '. I 



I 
[ 

[ 

[ 

[ 

[ 

I 
[ 

f 
I 
I 
I 
[ 

YES 

[ 

I l'IIIIiI' ~ 
111111111 

[ ·:Iil.d, ;; hhl:.u 

I 
~ 

~ '" < nO 

" ; ~ I\> . '" 

I 
-.,j I !: 

~ 
§ II l> " .m 

M 

I ~F' ~ § If 

II n 

I 
(1) . I! .... 
"T1 <5 

~II z 

-145-

EDIT AND MARK INSTRUCTION FlDWCHART 

0. S. - DIGIT SELECT CHARACTER 
S.S. - SIGNIFICANCE START CHARACTER 
F. S. = FIELD START CHARACTER 
SSW = SIGNIFICANCE SWITCH 
O-OFF 
I-ON 

YES 



-146-

TRANSLATE & TRANSLATE AND TEST UNDER MASK INSTRUCTION FLOWCHART 

NO 

FORM TRANSLATE 
TABLE DISPLACEM 

FROM TARGET 
CHARACTER 

YES 

NO 

L 
~~ 

~II 
~II 

ilL 
!~ 
II 
I 

I 
I 
I ' ' 

I 
I 
I 
I 
I ' : , 

I " , 

I 
I 
I 
I 
I 
I 
I 
I 
,I ' : 

I 



I 
[ 

[ 

( 

I 
[ 

[ 

[ 

I 
I 
[ 

[ 

[ 

[ 

[ 

[ 

I 
I 
I 

-147-

.,t 

APPENDIX H 

DEDICATED MEMORY LOCATIONS 

DMC ADDRESS ASSIGNMENTS: 

000-001 
002-003 
004-005 
006-007 

o 7C-0 7D 
07E-07F 

Device 0 Current Address 
Device 0 Ending Address 
Device 1 Current Address 
Device 1 Ending Address 

Device 31 Current Address 
Device 31 Ending Address 

DMA ADDRESS ASSIGNMENTS: 

58 DMAI Status 
5C DMA2 Status 

60-61 DMAI Buffer 1 Start Address 
62-63 DMAI Buffer 1 End Address 
64-65 DMAI Buffer 2 Start Address 

6E-6F DMAI Buffer 4 End Address 
70-71 DMA2 Buffer 1 Start Address 

7E-7F DMA2 Buffer 4 End Address 

INTERRUPT TRANSFER LOCATIONS & RESERVED SYSTEM AREAS: 

080-081 
082-083 
084-085 
086-087 
088-089 
08A-08B 
08C-08D 
08E-08F 
090-091 
092-093 
094-0FF 

Console Interrupt 
DMA Interrupt 
Interval Timer Counter 
Interval Timer Interrupt 
Reserved for Future Use 
Memory Parity Interrupt 
Stack OverflOW/Underflow Interrupt 
Power Fail Interrupt 
Power Restart Interrupt 
Control Stack Pointer 
Free 



-148-

EXTERNAL INTERRUPTS: 

100-101 
102-103 

l7E-17F 

External Interrupt 0 
External Interrupt 1 

External Interrupt 63 

SYSTEM SAVE AREA: 

l80-l8F Reserved for CIP/2200 Firmware. 
Not available for programming. 

---~----~-----------

I 
I 
I 
I 
I 
I 
I 
I 
I 
I I .! 

I 
I " i 

I 
I 
I 
I 
I 
I 
I 

.--.------~ 



I -149-

I 
I 
[ 

APPENDIX I 

INTERNAL CODES 

[ STANDARD CHARACTER CODES 

EBCDIC EBCDIC 

[ SYMBOL ANSCII EBCDIC (CARD SYMBOL ANSCII EBCDIC (CARD 
CODE) CODE) 

[ 
blank AO 40 blank @ CO 7C 8-4 

Al SA 11-8-2 A C1 C1 12-1 
" A2 7F 8-7 B C2 C2 12-2 
# A3 7B 8-3 C C3 C3 12-3 

[ $ A4 5B 11-8-3 D C4 C4 12-4 
9.e AS 6C 0-8-4 E C5 C5 12-5 0 

& A6 50 12 F C6 C6 12-6 

[ 
I A7 7D 8-5 G C7 C7 12-7 
( A8 4D 12-8-5 H C8 C8 12-8 
) A9 5D 11-8-5 I C9 C9 12-9 
* AA 5C 11- 8 - 4 J CA D1 11-1 

I + AB 4E 12-8-6 K CB D2 12-2 
AC 6B 0-8-3 L CC D3 11- 3 
AD 60 11 M CD D4 11-4 

[ . AE 4B 12-8-3 N CE D5 11- 5 
/ AF 61 0-1 0 CF D6 11-6 
0 BO FO 0 P DO D7 11-7 

I. 
1 B1 F1 1 Q D1 D8 11-8 
2 B2 F2 2 R D2 D9 11-9 
3 B3 F3 3 S D3 E2 0-2 
4 B4 F4 4 T D4 E3 0-3 

I 5 B5 F5 5 U D5 E4 0-4 
6 B6 F6 6 V D6 E5 0-5 
7 B7 F7 7 W D7 E6 0-6 

[ 8 B8 F8 8 X D8 E7 0-7 
9 B9 F9 9 Y D9 E8 0-8 

BA 7A 8-2 Z DA E9 0-9 . BB 5E 11-8-6 [ DB 4F 12-8-7 
[ 

, 
< BC 4C 12-8-4 DC 4A 12-8-2 
= BD 7E 8-6 ] DD SF 11-8-7 
> BE 6E 0-8-6 t DE 6D 0-8-5 

[ ? BF 6F 0-8-7 -+ DF 6A 0-8-2 

I 
I 
I 



-150- I 
I 
I 

ANSCII CONTROL AND TRANSMISSION CODES I 
FUNCTION ANSCII FUNCTION ANSCII I 

NULL 80 DCI (Reader on) 91 
S~H 81 DC2 (Punch on) 92 
STX 82 DC3 (Reader off) 93 
ETX 83 DC4 (Punch off) 94 I 
E0T 84 NAK 95 
EN0 85 SYNC 96 
ACK 86 ETB 97 I 
BELL 87 CAN 98 
BS 88 EM 99 
H TAB 89 SUB 9A [ 
LINE FEED 8A ESC 9B 
V TAB 8B FS 9C 
F0RM 8C . GS 9D 
CARRIAGE RETURN 8D RS 9E I ' i 

S0 8E US 9F 
SI 8F DEL (Rubout) FF 
DLE 90 I 

I 
I 
I 
I 
I 
I 
I 
I 

). ,--
/026&6S1 J I 

~--~---.-
-.--.~-.-~----.. - -~---- .~~--~~-


