Umnix Emacs

James Gosling @ CMU
December, 1981

Copyright (c) 1980,1981 James Gosling

-t

. Introduction

. The Screen

. Input Conventions

. Invoking EMACS

. Basic Commands

. Unbound Commands

. Getting Help

0O N O O b W N

. Buffers and Windows

©

. Compiling programs

10. Dealing with collections of files, tX?E revisited
11. Abbrev mode

12. Extensibility

12.1. Macros

12.2. MLisp -- Mock Lisp
12.2.1. The syntax of MLisp cxpressions
12.2.2. The cvaluation of MLisp cxpressions
12.2.3. MLisp functions
12.2.4. Dcbugging

12.3. A Sample MLisp Program

12.4. More on Invoking EMACS

13. Searching

13.1. Simple searches
13.2. Regular Expression searches

LT~ TR N A I A

Swwow ® N N O O O G

Pt ot ek i
BN e

-
E-N

—
H

14. Keymaps

15. Region Restrictions

16. Mode Lines

17. Multiple Processes under EMACS

17.1. Blocking
17.2. Buffer Truncation
17.3. Problems

18. The EMACS database facility
19. Packages

19.1. buff -- onc-line buffer list
19.2. c-mode -- simple assist for C programs
19.3. dired -- directory cditor
19.4. goto -- go to position in buffer
19.5. info -- documentation reader
19.6. occur -- find occurances of a string
19.7. process -- high level process manipulation
19.8. pwd -- print and change the working directory
19.9. rmail -- a mail management system
19.9.1. Sending Mail
19.9.2. Rcading Mail ,
19.10. scribe -- weak assistance for dealing with Scribe documents
19.11. spell -- a simple spelling corrector
19.12. tags -- a function tagger and finder
19.13. text-mode -- assist for simplc text entry
19.14. time -- a modec line clock
19.15. transp -- transpose words or lines
19.16. writcregion -- write region to file

20. Command Description
21. Options
22. Command summary

Index

16
18
18
19

22
22
22

22
23

23
23
24
24
25
25
25
26
26
26
27
29
30
30
31
31
31
32

32
64
69
71

1. Introduction

“What is EMACS? It is a tree falling in the
forest with no one to hear it. It is a beautiful
flower that smells awful.”

This manual attempts to describe the Unix implementation of EMACS, an extensible display editor. Itis an
editor in that it is primarily used for typing in and modifying documents, programs, or anything clse that is
represented as text. It uses a display to interact with the user, always keeping an accurate representation of
what is happening visible on the screen that changes in step with the changes made to the document. The
featurc that distinguishes EMACS from most other editors is its extensibility, that is, a user of EMACS can
dynamically change EMACS to suit his own tastes and needs. -

Calling this editor EMACS is rather presumptuous and even dangerous. There are two major editors called
EMACs. The first was written at MIT for their ITS systcms as an extension to TECO. This editor is the
spiritual father of all the EMACS-like editors; it’s principal author was Richard Stallman. The other was also
written at MIT, but it was written in MacLisp for Multics by Bernie Greenberg. This cditor picks up where
I'TS EMACS Icaves off in terms of its cxtension facilitics. Unix EMACS was called EMACS in the hope that the
cries of outrage would be enough to goad the author and others to bring it up to the standards of what has
come before.

This manual is organized in a rather haphazard manner. The first several sections were written. hastily in an
attempt to provide a general introduction to the commands in EMACS and to try to show the method in the
madness that is the EMACS command structure. Section 20 (page 32) contains a complete but concise
description of all the commands and is in alphabctical order based on the name of the comniand. Preceding
scctions gencrally do not give a complete description of each command. rather they give either the name of
the command or the key to which the command is conventionally bound. Section 22 (page 69) lists for cach
key the command to which it is conventionally bound. The options which may be sct with the ser command

ibed in secti gc 64 ’

ortinn 91 foasa £4)
SCClion <1, \page 64).

2. The Screen

EMACs divides a screen into several areas called windows, at the bottom of the screen there is a onc line area
that is used for messages and questions from EMACS. Most people will only be using one window, at least
until they become more familiar with EMACS. A window is displayed as a set of lines, at the bottom of each
window is its mode line (For morc information on mode lines see scction 16, page 18). The lincs above the
modc line contain an image of the text you are cditing in the region around dot (or poinf). Dot is the
reference around which editing takes place. Dot is a pointer which points at a position between two
characters. On the screen, the cursor will be positioned on the character that immediatly follows dot. When
characters arc inserted, they arc inserted at the position where dot points; commands exist that delete
characters both to the left and to the right of dot. The text on the screen always reflects they way that the text
looks now.

3. Input Conventions

Throughout this manual, characters which are used as commands are printed in bold face: X. They will
sometimes have a control prefix which is printed as an uparrow character: tX is control-X and is typed by
holding down the control (often labeled ctr/ on the top of the key) and simultancously striking X. Some will
have an escape (sometimes called meta) prefix which is usually printed thus: ESC-X and typed by striking the
escape key (often labeled esc) then X. And some will have a +X prefix which is printed +XX which is typed by
holding down the control key, striking X, relcasing the control key then striking X again.

For example, ESC-tJ is typed by striking ESC then holding down the control key and striking J.

4. Invoking Emacs
EMACS is invoked as a Unix command by typing
emacs files ’
to the Shell (the Unix command interpreter). EMACS will start up, editing the namcd files. You will probably
only want to name one file. If you don't specify any names, EMACS will usc the same namcs that it was given

the last time that it was invoked. Gory details on the invocation of EMACS can be found in section 12.4, page
14.

5. Basic Commands

Normally each character you type is interpreted individually by EMACS as a command. The instant you
type a character the command it represents is performed immediatly.

All of the normal printing characters when struck just inscrt themselves into the buffer at dot.

To move dot there are scveral simple commands. tF moves dot forward one character. *B moves it
backward onc character. *N moves dot to the same column on the next line, tP moves it to the same column
on the previous line.

String scarches may be used to move dot by using the +S command to search in the forward dircction and
1R to search in the reverse dircction.

Deletions may be performed using +H (backspace) to delete the character to the left of dot and D to delete
the character to the right of dot.

The following table summarizes all of the motion and delction commands.

Direction
Move Delcte
Units of Motion Left Right Icft Right
Characters +B tF +H tD
Words ESC-B ESC-F ESC-H ESC-D
Intra line tA tE tK

Inter line _ +P N

6. Unbound Commands |

Even though the number of characters available to use for EMACS commands is large, there are still more
commands than characters. You probably wouldn’t want to bind them all to keys even if you could. Each
command has a long name and by that long name may be bound to a key. For example, +F is normally
bound to the command named forward-character which moves dot forward one character.

There are many commands that are not normally bound to keys. These must be executed with the ESC-X
command or by binding them to a key (via the bind-to-key command). Heaven help the twit who rebinds
ESC-X.

The ESC-X command will print ": " on the last line of the display and cxpect you to type in the name of a
command. Space and ESC characters may be struck to invoke Tenex style command completion (ie. you type
in the first part of the command, hit the space bar, and EMACS will fill in the rest for you -- it will complain if
it can’t figure out what you’re trying to say). If the command requires arguments, they will also be prompted
for on the bottom line.

7. Getting Help

EMACs has many commands that let you ask EMACS for help about how to use EMACS. The simplest one is
FSC-? (apropos) which asks you for a keyword and then displays a list of thosc commands whosc full name
contains the keyword as a substring. For example, to find out which commands are available for dealing with
windows, type ESC-?, EMACS will ask "Keyword:" and you reply "window”. A list like the following -
appears:

" beginning-of-window ESC-,
delete-other-windows X1

delete-window tXD
end-of-window ESC-.
enlarge-window +XZ
line-to-top-of-window ESC-!
next-window tXN
page-next-window ESC-rv
previous-window +XP
shrink-window +XtZ

split-current-window X2

To get detailed information about some command, the describe-command command can be used. It asks
for the name of a command, then displays the long documentation for it from the manual. For example, if
you wanted more information about the shrink-window command, just type
"ESC-Xdescribe-command shrink-window™ and EMACS will reply:

shrink-window tX1Z
Makes the current window onc line shorter, and the window below
(or the one above if there is no window below) one line taller.
Can’t be used if there is only one window on the screen.

If you want to find out what command is bound to a particular key, describe-key will do it for you.
Describe-bindings can be used to make a "wall chart” description of the key bindings in the currently running
EMACs, taking into account all of the bindings you have made.

8. Buffers and Windows

There are two fundamental objects in EMACS, buffers and windows. A buffer is a chunk of text that can be
edited, it is often the body of a file. A window is a region on the screen through which a buffer may be
viewed. A window looks at one buffer, but a buffer may be on view in scveral windows. It is often handy to
have two windows looking at the same buffer so that you can be looking at two seperatc parts of the same file,
for example, a set of declarations and a piece of code that uses those declarations. Similarly, it is often handy
to have two different buffers on view in two windows.

The commands which deal with windows and buffers are: beginning-of-window (ESC-,), dclete-other-
windows (1X1), delete-region-to-buffer (ESC-tW), delete-window (tXD), end-of-window (ESC-.), enlarge-
window (tXZ), line-to-top-of-window (ESC-!), list-buffers (+XtB), next-window (+XN), page-next-window
(ESC-1V), previous-window (tXP), shrink-window (t+XtZ), split-current-window (tX2), switch-to-buffer
(+XB), usc-old-buffer (+X+Q) and yank-buffer (ESC-tY). See the command description section for more
details on cach of these.

9. Compiling programs

One of the most powerful featurcs of Unix EMACS is the facility provided for compiling programs and
coping with error messages from the compilers. It essential that you undcrstand the standard Unix program
make (even if you don’t use EMACS). This program takes a database (a makefile) that describes the
relationships among files and how to regenerate (rccompile) them. 1f you have a program that is made up of
many little picces that have to be individually compiled and carefully crafted together into a single executable
file, make can make your lifc orders of magnitude easicr; it will automatically recompilc only those picces that
need to be recompiled and put them together. EMACS has a set of commands that graccfully interact with this
facility.

The +X1E (execute) command writes all modified buffers and cxecutes the make program: The output of
make will be placed into a buffer called Error log which will be visible in some window on the screen. As soon
as make has finishcd EMACS parses all of its output to find all the error messages and figure out the files and
lincs referred to. All of this information is squirreled away for later use by the +XtN command.

The +X*tN (next) command takes the next error message from the set prepared by tXtE and does three
things with it;

e Makes the message itself visible at the top of a window. The buffer will be named Lrror log.
o Does a visit (sec the +XtV command) on the file in which the crror occurred.

e Scts dot to the beginning of the line where the compiler saw the crror. This sctting of dot takes
into account changes to the file that may have been made since the compilation was attempted.
EMACs perfectly compensates for any changes that may have been made and always positions the
text on the correct line (well, correct as far as the compiler was concerned; the compiler itself may
have been a trifle confused about where the error occurred)

If you've seen all the error messages tXtN will say so and do nothing clse.

So, the general scenario for dealing with programs is:

¢ Build a make databasc to describc how your program is to be compiled.
e Compile your program from within EMACS by typing tXtE.

e If there were errors, step through them by typing tX*N, correcting the error, and typing +XtN to
get the next.

e When you run out of error messages, type +X1E to try the compilation again.

e When you finally manage to get your beast to compile without any errors, type +C to say goodbye
to EMACs.

e You'll probably want to use sdb, the symbolic debugger, to debug your program.

10. Dealing with collections of files, tXtE
revisited
The tXtE command doesn’t always execute the mnake program: if it is given a non-zero argument it will
prompt for a Unix command line to be executed in place of make. All of the other parts of 1X*E are
unchanged, namely it still writes all modificd buffers before executing the command and parses the output of
the command execution for line numbcrs and file names.

This can be used in some very powerful ways. For example, consider the grep program. Typing
"tUtXtEgrep -n MyProc *.cESC" will scan all C programs in the current dircctory and look for all
occurrences of the string "MyProc”. After grep has finished you can use EMACS (via the +XtN command) to
examine and possibly change every instance of the string from a whole collection of files. This makes the task
of changing all calls to a particular procedure much casier. Note: this only works with the version of grep in
/usr/jag/bin which has been modified to print line numbers in a format that EMACS can understand.

There are many more uses. The lint program, for example. Scribc uscrs might find
"cat MyReport.ot1” tobe useful.

A file name/line number pair is just a string embedded someplace in the text of the error log that has the
form "FileName, 1ine LineNumber”. The FileName may or may not be surrounded by quotes (). The
critical component is the string ", 1ine " that comes between the file name and the linc number. Roll
your own file scanning programs, it can make your life much easier.

11. Abbrev mode

Abbrcv mode allows the user to typc abbreviations into a document and have EMACS automatically expand
them. If you have an abbrev called "rhp"” that has been defined to expand to the string “rhinocerous party”
and have turned on abbrev mode then typing the first non-alphanumeric character after having typed "rhp”
causes the string "rhp” to be replaced by "rhinocerous party”. The capitalization of the typed in abbreviation
controls the capitalization of the expansion: "Rhp" would expand as "Rhinocerous party” and "RHP" would
expand as "Rhinocerous Party",

Abbreviations are defined in abbrev tables. There is a global abbrev tablc which is used regardless of which
buffer you are in, and a local abbrev table which is sclected on a buffer by buffer basis, generally depending
on the major mode of the buffer.

Define-global-abbrev takes two arguments: the name of an abbreviation and the phrase that it is to cxpand
to. The abbreviation will be defined in the global abbrev table. Dcfinc-local-abbrev is like define-global-
abbrev except that it defines the abbreviation in the current local abbrev table.

Thc use-abbrev-table command is uséd to select (by name) which abbrev tablc is to be used locally in this
buffer. The same abbrev table may be used in scveral buffers. The mode packages (like clectric-c and text)
all sct up abbrev tables whose name matches the name of the mode. -

The switch abbrev-mode must be turned on before EMACS will attempt to expand abbreviations. When
abbrev-mode is turned on, the string “abbrev" appears in the modec scction of the mode line for the buffer.
Use-abbrev-table automatically turns on abbrev-mode if cither the global or new local abbrev tables are non-
empty.

All abbreviations currently defined can be written out to a file using the write-abbrev-file command. Such
a file can be edited (if you wish) and later read back in to define the same abbreviations again. Rcad-abbrev-
file reads in such a file and screams if it cannot be found, quietly-read-abbrev-file doesn’t complain (it is
primarily for use in startups so that you can load a current-directory dependant abbrev file without worrying
about the case where the file doesn't exist).

12. Extensibility

Unix EMACS has two extension featurcs: macros and a built in Lisp system. Macros arc used when you
have something quick and simple to do, Lisp is used when you want to build something fairly complicated
like a new language dependant mode.

12.1. Macros

A macro is just a piece of text that EMACS remembers in a special way. When a macro is executed the
characters that makc up the macro are treated as though they had been typed at the keyboard. If you have
somc common scquence of keystrokes you can definc a macro that contains them and instead of retyping
them just call the macro. There arc two ways of defining macros:

The easiest is called a keyboard macro. A keyboard macro is defined by typing the start-remembering
command (+X() then typing the commands which you want to have saved (which will be executed as you type
them so that you can make sure that they are right) then typing the stop-remembering command (tX)). To
execute the keyboard macro just type the exccute-keyboard-macro command (+Xe). You can only have one
keyboard macro at a time. If you define a new keyboard macro the old keyboard macro vanishes into the
mist.

Named macros are slightly more complicated. They have names, just like commands and MLisp functions
and can be called by name (or bound to a key). They arc defined by using the define-string-macro command
(which must be cxccuted by typing ESC-Xdefine-string-macro since it isn’t usually bound to a key) which asks

for the name of the macro and it’s body. The body is typed in as a string in the prompt arca at the bottom the
the screen and hence all special characters in it must be quoted by prefixing them with Q. A named macro
may be exccuted by typing ESC-Xname-of-macro or by binding it to a key with bind-to-key.

The current kcyboard macro can be converted into a named macro by using the define-keyboard-macro
command which takes a name a defines a macro by that namc whosc body is the current keyboard macro.

The current keyboard macro ceases 1o exist.

s ajeva

12.2. MLisp -- Mock Lisp :

Unix EMACS contains an interpreter for a language that in many respects resembles Lisp. The primary
(some would say only) resemblance between Mock Lisp and any real Lisp is the genecral syntax of a program,
which many feel is Lisp’s weakest point. The differences include such things as the lack of a cons function
and a rather peculiar method of passing parameters. '

12.2.1. The syntax of MLisp expressions

There are four basic syntactic entitics out of which MLisp expressions are built. The two simplest are
integer constants (which are optionally signed strings of digits) and string constants (which are sequencces of
characters bounded by double quote [**"""] characters -- double quotes arc included by doubling them: """ is
a onc character string. The third are names which are used to refer to things: variables or procedures. These
three arc all tied together by the use of procedure calls. A procedure call is written as a left parenthesis, “(”, a
name which refers to the procedure, a list of whitespace scparated expressions which serve as arguments, and
a closing right parenthesis, *)”. An cxpression is simply one of these four things: an intcger constant, a string
constant, a name, or a call which may itself be recursivly composed of other cxpressions.

String constants may contain the usual C excape sequences, "\n" is a newline, "\t" is a tab, "\r" is a
carriage return, "\b" is a backspace, "\¢" is the escape (033) character, "\nnn" is the character whose octal

representation is nnn, and “t\c¢" is the control version of the character .

For example, the following are legal MLisp expressions:

1 The integer constant 1.

"hi" A two character string constant

;'\TX\TF " A two character string constant

"""what?""" A scven character string constant

(+22) An invocation of the "+" function with integer arguments 2 and 2. "+" is the usual

addition function. This cxpression evaluates to the integer 4.

(setq bert (* 4 12)) An invocation of the function sefq with the variable berf as its first argument and and
expression that evaluates the product of 4 and 12 as its sccond argument. The evaluation of
this expression assigns the integer 48 to the variable bert.

(visit-file "mbox") An invocation of the function visit-file with the string "mbox” as its first argument.
Normally the visit-file function is tied to the key tXtB. When it is invoked interactively,

10

cither by typing +XtB or ESC-Xbvisit-file, it will prompt in the minibuf for the name of the
file. When called from MLisp it takes the file name from the paramecter list. All of the
keyboard-callable function behave this way.

Names may contain virmally any character, except whitespace or parens and they cannot begin with a digit,

(IR 1] or (L 14

12.2.2. The evaluation of MLisp expressions
Variables must be declared (bound) before they can be used. The declare-global command can be used to
declare a global variable; a local is declared by listing it at the beginning of a progn or a function body (ie.
immediatly after the function name or the word progn and before the executable statements). For example:
(defun
(foo i
(setq i 5)
)
)

defines a rather pointless function called foo which declares a single local variable 7 and assigns it the value 3.
Unlike real Lisp systems, the list of declared variables is not surrounded by parenthesis.

Expressions evaluate to values that are either integers, strings or markers. Integers and strings are
converted automaticly from one to the other type as needed: if a function requircs an integer paramcter you
can pass it a string and the characters that make it up will be parscd-as an integer; similarly passing an intcger
where a string is required will cause the integer to be converted. Variables may have cither type and their -
type is decided dynamically when the assignment is imade.

Marker values indicate a position in a buffer. They arc not a character number. As inscrtions and delctions
are performed in a buffer, markers automatically follow along, maintaining their position. Only the functions
mark and dot return markers; the user may dcfine ones that do and may assign markers to variables. If a
marker is used in a context that requires an integer value then the ordinal of the position within the buffer is
used: if a marker is used in a context that requircs a string value then the name of the marked buffer is used.
For example, if there has been assigned some marker, then (pop-to-buffer there) will pop to the
marked buffer. (goto-character there) willsct dot to the marked position.

A procedure written in MLisp is simply an expression that is bound to a name. Invoking the name causes
the associated expression to be evaluated. Invocation may be triggered either by the evaluation of some
expression which calls the procedure, by the user typing it’s name to the ESC-X command, or by striking a
key to which the procedure name has been bound.

All of the commands listed in scction 20 (page 32) may be called as MLisp procedures. Any paramcters
that they normally prompt the user for arc taken as string expressions from the argument list in the same
order as they are asked for interactivly. For example, the switch-to-buffer command, which is normally tied to
the tXB key, normally prompts for a buffer name and may be called from MLisp like this:
(switch-to-buffer string-expression).

11

12.2.3. MLisp functions

An MLisp function is defined by exccuting the defin function. For example:

(defun
(silly
(insert-string "Silly!")
)
)

defines a function called silly which, when invoked, just inserts the string "Silly!” into the current buffer.

MLisp has a rather strange (relative to other languages) parameter passing mechanism. The arg function,
invoked as (arg i prompi) evaluates the 7th argument of the invoking function if the invoking function was
called interactivly or, if the invoking function was not called interactivly, arg uses the promp:“to ask you for
the value. Consider the following function:

(defun
(in-parens
(insert-string "(")
(insert-string (arg 1 "String to insert? "))
(insert-string ")")

)
If you type ESC-Xin-parens to invoke in-parens interactivly then EMACS will ask in the minibuffer "String to
insert? " and then insert the string typed into the current buffer surrounded by parenthesis. If in-parens is

invoked from an MLisp function by (ir-parens "foo") then the invocation of arg inside in-parens will cvaluate
the expression "foo™ and the end result will be that the string "(foo)" will be inserted into the buffer.

The function interactive may be used to determine whether or not the invoking function was called
interactivly. Nargs will return the number of arguments passcd to the invoking function.

This parameter passing mechanism may be uscd to do some primitive language cxtension. For example, if
you wanted a statement that executed a statcment # times, you could use the following:

(defun
(dotimes n
(setq n (arg 1))
(while (> n 0)
(setg n (- n 1))
{arg 2j
)
)
)

Given this, the expression (dotimes 10 (inscrt-string "<>")) will insert the string "<>" 10 times. [Note: The
prompt argument may be omitted if the function can never be called interactivly] . '

12.2.4. Debugging
Unfortunatly, debugging MLisp functions is somcthing of a black art. The biggest problem right now is
that if an MLisp function goes into an infinite loop there is no way to stop ik,

There is no breakpoint facility. All that you can do is get a stack trace whenever an crror occurs by sctting

1Unlc&s you are running the "interruptable™ version of EMACS, in which casc typing 1G sill stop whatever is going on. This version of
EMACs has the problem that by typing +G you may cause EMACS to lose track of what is on the screen.

12

the stack-trace-on-error variable. With this set, any time that an error occurs a dump of the MLisp execution
call stack and some other information is dumped to the "Stack tracc” buffer.

12.3. A Sample MLisp Program

The following picce of MLisp code is the Scribe mode package. Other implementations of EMACS, on ITS
and on Multics have modes that influcnce the behaviour of EMACS on a file. This behaviour is usually some
sort of language-specific assistance. In Unix EMACS a mode is no more that a st of functions, variables and
key-bindings. This mode package is designed to be useful when cditing Scribe source files.

13

(défun

)

The apply-look function makes the current word "look” differcnt by changing the font that it
is printed in. It positions dot at the beginning of the word so you can see where the change will be
made and reads a character from the tty. Then it inserts "@c[” (where ¢ is the character yped)
at the front of the word and "|" at the back. Apply-look gets tied to the key ESC-l so typing
ESC-1i when the cursor is positioned on the word "begin" will change the word to "@jf beginf".

(apply-look go-forward
(save-excursion ¢
(if (! (e0lp)) (forward-character))
(setqg go-forward -1)

(backward-word)
(setg c (get-tty-character))
(it (>c* ")
(progn (insert-character '9')
(insert-character c) .
(insert-character '[')
(forward-word)

(setq go-forward (dot))
(insert-character 'J')

)
(if (= go-forward (dot)) (forward-character))

S

(defun

)

This function is called to set a buffer into Scribe mode
(scribe-mode
(remove-all-local-bindings)
If the string "LastEditDate= """ exists in the first 2000 characters of the documerit then the
Jollowing string constant is changed to the current date. The intent of this is that you should stick
at the beginning of your file a line like: “@string(LasilditDate="Sat Jul 11 17:59:01 1981")".
This will automatically get changed each time you edit the file to reflcct that last date on which
. the file was edited
(if (! buffer-is-modified)
(save-excursion
(error-occurred
(goto-character 2000)
(search-reverse "LastEditDate=""")
(search-forward """")
(set-mark)
(search-forward """")
(backward-character)
(delete-to-kiilbuffer)
(insert-string (current-time))
(setq buffer-is-modified 0)

)
)
(local-bind-to-key "justify-paragraph" "\ej")
(local-bind-to-key "apply-look" "\el")
(setq right-margin 77)
(setq mode-string "Scribe”)
(setq case-fold-search 1)
(use-syntax-table "text-mode")
(modify-syntax-entry "w -'")
(use-abbrev-table "text-mode")

(setq left-margin 1)
{novalue)

(novalue)

14

12.4. More on Invoking Emacs
When EMACS is invoked, it does several things that are not of too much interest to the beginning user.

1. EMACS looks for a file called “.emacs_pro” in your home dircctory, if it exists then it is loaded,
with the load command. This is the mechanism uscd for user profiles -- in your emacs_pro file,
place the commands needed to customize EMACS to suit your taste. If a uscr has not set up an
emacs_pro file then EMACS will use a site-specific default file for initialization. At CMU this
file is named /usr/local/lib/emacs/maclib/profile.ml

2. EMACS will then interprete its command line switches. "-IKfilename>" loads the given file (only
onc may be named), "-e<funcname>” exccutes the named function (again, only onc may be
named). -l and -e are executed in that order, after the user profile is read, but before and file visits
are done. This is intended to be used along with the csh alias mechanism to allow you to invoke
EMACS packages from the shell (that is, assuming that there is anyone out there who still uses the
shell for anything other than to run under EMACS!). For example: "alias rmail emacs -
Trmail -ermail-com” will cause the csh "rmail” command to invoke EMACS running rmail.
Exiting rmail will cxit EMACS.

3. If neither argv nor argc have yet been called (eg. by your startup or by the command line named
package) then the list of arguments will be considered as file names and will be visited; if therc are
no arguments then the arguments passed to the last invocation of EMACS will be used.

4. Finally, EMACS invokes it's keyboard command interpreter, and eventually terminates.

13. Searching

EMACS is capable of performing two kinds of scarches®. There arc two parallel scts of searching and
replacement commands that differ only in the kind of scarch performed.

13.1. Simple searches

The commands search-forward, search-reverse, query-replace-string and replace-string all do simple
searches. That is, the scarch string that they use is matched directly against successive substrings of the buffer.
The characters of the search string have no special meaning. These search forms are the easicst to understand
and are what most pcople will want to use. They arc what is conventionally bound to S, tR, ESC-Q and

ESC-R.

13.2. Regular Expression searches

The commands re-search-forward, re-search-reverse, re-query-replace-string, re-replace-string and looking-at
all do rcgular expression scarches. The scarch string is interpreted as a regular expression and matched
against the buffer according to the following rules:

1. Any character except a special character matches itsclf. Special characters are “\' [and

sometimes ‘¢’ ‘¥ *$’.

2Regulm' and Vanilla for those of you with no taste

15

2. A*) matches any character except newline,

3. A '\ followed by any character except those mentioned in the following rules matches that
character.

4. A "\w’ Matches any word character, as defined by the syntax tables.
5. A"\W’ Matches any non-word character, as defined by the syntax tables.

6. A \b’ Matches at a boundary betwecn a word and a non-word character, as defined by the syntax
tables.

7. A "\B' Matches anywherc but at a boundary between a word and a non-word character, as defined
by the syntax tables.

8. A "\ Matches at the beginning of the buffer.
9. A *\” Matches at the end of the buffer.
10. A “\<* Matches anywhere before dot.
11. A "\>’ Matches anywhere after dot.
12. A "\ =" Matches at dot.
13. A nonempty string s brackcted “[s]” (or “[* s]" matches any character in (or not in) 5. In s, *\’
has no special meaning, and ‘T may only appear as the first letter. A substring a-b, with e and b in

ascending ASCII order, stands for the inclusive range of ASCII characters.

N Tore o o~ A ctetemoa slaas ol . [
14. A '\ followed by a digit # matches a copy of the string that the bracketed regular expression
L

beginning with the # th “\(’ matched.

15. A regular expression of one of the preceeding forms followed by *** matches a scquence of 0 or
more matches of the regular expression.

16. A regular cxpression, x, bracketed “\(x \)” matches what x matches.
17. A regular cxpression of this or one of the precceding forms, x, followed by a regular expression of
once of the preceeding forms, y matches a match for x followed by a match for y, with the x match

being as long as possible while still permitting a y match.

18. A regular expression of one of the preceeding forms preceded by ‘t* (or followed by *S$), is
constrained to matches that begin at the left (or end at the right) end of a line.

19. A sequence of regular expressions of one of the preceeding forms seperated by “\|'s matches any
one of the regular expressions.

20. A regular expression of one of the preceeding forms picks out the longest amongst the leftmost
matches if scarching forward, rightmost if scarching backward.

16

21. An empty regular cxpression stands for a copy of the last regular expression encountered.

In addition, in the replaccment commands, re-query-replace-string and re-replace-string, the characters in the
replacement string are specially interpreted:

e Any character cxcept a special character is inserted unchanged.
e A*\’ followed by any character except a digit causes that character to be inserted unchanged.

e A *\’ followed by a digit n causes the string matched by the ath bracketed expression to be
inserted.

e An ‘&’ causes the string matched by the entire search string to be inserted.
The following examples should clear a little of the mud:
Pika Matches the simple string “Pika”.

Whiskey.*JackMatches the string “Whiskey”, followed by the longest possible sequence of non-newline
characters, followed by the string *Jack”. Think of it as finding the first line that contains
the string “Whiskey” followed eventually on the same line by the string “Jack”

[a-z][a-z]* Matches a non-null sequence of lower casc alphabetics. Using this in the re-replace-string
command along with the replacement string (&)™ will place parcnthesis around -all
sequences of lower case alphabetics.

Guiness\ |BassMatches either the string ‘Guincess’ or the string ‘Bass’.
\Bed\b Matches ‘ed’ found as the suffix of a word.

\bsilly\W*twit\b
Matches the sequence of words ‘silly’ and ‘twit’ seperated by arbitrary punctuation.

14. Keymaps :

When a user is typing to EMACS the keystrokes arc interpreted using a keymap. A keymap is just a table
with onc entry for each character in the ASCII character set. Each entry cither names a function or another
keymap. When the user strikes a key, the corresponding kcymap entry is examined and the indicated action is
performed. If the kcy is bound to a function, then that function will be invoked. If the key is bound to
another keymap then that keymap is uscd for interpreting the next keystroke.

There is always a global kcymap and a local keymap, as keys arc read from the keyboard the two trees are
traversed in parallel (you can think of keymaps as FSMs, with keystrokes triggering transitions). When cither
of the traversals reaches a leaf, that function is invoked and interpretation is resct to the roots of the trees.

The root keymaps are sclected using the use-global-map or use-local-map commands. A ncw empty
keymap is created using the define-keymap command.

The contents of a keymap can be changed by using the bind-to-key and local-bind- to-key commands. These

17

two commands take two arguments: the name of the function to be bound and the keystroke scquence to
which it is to be bound. This keystroke sequence is interpreted relative to the current local or global keymaps.
For example, (bind-to-key "define-keymap™ "\tZd") binds the define-keymap function to the keystroke
sequence ‘tZ’ followed by ‘d’.

A namcd keymap bchaves just like a function, it can be bound to a key or
function. When it is executed from within an MLisp function n

relative to that map.

The following sample uses the keymap to partially simulate the vi editor. Different keymaps are used to
simulate the different modes in vi: command mode and insertion mode.

(defun
(insert-before i Enter insertion mode
(use-global-map "vi-insertion-mode"))
(insert-after s Also enter insertion mode, but after
s+ the current character
(forward-character)
(use-global-map "vi-insertion-mode"))
(exit-insertion s Exit insertion mode and return to
+ command mode
(use-global-map "vi-command-mode"))
(replace-one
(insert-character (get-tty-character))
(delete-next-character))
(next-skip
(beginning-of-1ine)
(next-11ine)
(skip-white-space))
(prev-skip

(beginning~of-1ine)
(previous=-11ine)
(skip-white-space))

(skip-white-space
(while (& (1 (e01p)) (| (= (following-char) ' ') (= (following-char) 'ti')))
(forward-character)))

(vi + Start behaving like vi
(use~global-map "vi-command-mode"))

)

i setup vi mode tables
(define-keymap "vi-command-mode")
(define-keymap "vi-insertion-mode”)

(use-global-map "vi-insertion-mode"); Setup the insertion mode map
(bind-to-key "execute-extended-command” "\tX")
(progn 1
(setqg 1 ' ')
(while (< 1 0177)
(bind-to-key "self-insert™ 1)
(setq 1 (+ 1 1))))
(bind-to-key "self-insert” *\011")
(bind-to-key "newline"™ "\016")
(bind-to-key "self-insert” "\012")
(bind-to-key "delete-previous-character” "\010")

18

(bind-to-key "delete-previous-character” "\177")
(bind-to-key "exit-insertion” "\033")

(use-global-map "vi-command-mode"); Serup the command mode map
(bind-to-key "execute-extended-command"” "\tX")

(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
(bind-to-key
{bind-to-key

"next-1ine” "\tn")
"previous=-1ine™ "\tp")
"forward-word" "w")
"backward-word" “b")
"search-forward” */")
"search-reverse” "7").
"beginning-of-1ine" "0")
"end-of-1ine"” "$")
"forward-character” " ")
"backward-character” "\th")
"backward-character" "h")
"insert-after” "a")
"insert-before” "i")
"replace-one” "r")
"next-skip” "+")
"next-skip" "\tm")
"prev-skip" "-%)

(use-global-map "default-global-keymap")

15. Region Restrictions

The portion of the buffer which EMACS considers visible when it performs editing operations may be
restricted to some subregion of the whole buffer.

The narrow-region command sets the restriction to encompass the region between dot and mark. Text
outside this region will henceforth be totally invisible. It won’t appear on the screen and it won't be
manipulable by any editing commands. It will, however, be read and written by file manipulation commands
like read-file and write-current-file. This can be useful, for instance, when you want to perform a replacement
within a few paragraphs: just narrow down to a region enclosing the paragraphis and cxccute replace-string.

The widen-region command sets the restriction to encompass the entire buffer. It is usually used after a
narrow-region to restorc EMACS’s attention to the whole buffer.

Save-restriction is only useful to people writing MLisp programs. It is used to save the region restriction for
the current buffer (and only the region restriction) during the exccution of some subexpression that
presumably uses region restrictions. The value of (save-excursion expressions...) is the value of
the last expression evaluated.

16. Mode Lines

A mode line is the line of descriptive text that appears just below a window on the screen. It usually
provides a description of the state of the buffer and is usually shown in reverse video. The standard mode line
shows the name of the buffer, an “*’ if the buffer has been modified, the name of the file associated with the
buffer, the mode of the buffer, the current position of dot within the buffer expressed as a percentage of the
buffer size and and indication of the nesting within recursive-edir's which is shown by wrapping the mode line
in an appropriate number of °[' /| pairs.

19

Itis often the casc that for some silly or practical rcason one wants to alter the layout of the mode line, to
show more, less or different information. EMACS has a fairly general facility for doing this. Each buffer has
associated with it a format string that describes the layout of the mode line for that buffer whenever it appears
in a window. The format string is interpreted in a manner much like the format argument to the C printf
subroutine. Unadorned characters appear in the mode line unchanged. The ‘%’ character and the following
format designator character cause some spccial string to appear in the mode line in their place. The format
designators are:

Inserts the name of the buffer.

Inserts the name of the file associated with the buffer.

Inserts the value of the buffer-specific variable mode-string. .
Inserts the value of the variable global-mode-string.

Inserts the position of "dot" as a percentage.

Inserts an ** if the buffer has been modified.

Inserts (recursion-depth) ’s.

Inserts (recursion-depth) J's.

o — %O za hnc BN — o

If a number n appears between the ‘%’ and the format designator then the inserted string is constrained to
be exactly n characters wide. Either by padding or truncating on the right.

At CMU the default mode linc is built using the following format:
" %[Buffer: Xb%* File: Xf XM (Xm) %p%X]"

The following variables arc involved in generating mode lincs:
mode-line-format This is the buffer specific variable that provides the format of a buffers mode line.

default-mode-line-format
This is the value to which mode-line-format is initialized when a buffer is created.

mode-string This buffer-specific string variable can be inserted into the mode linc by using ‘%m’ in the
format. This is it’s only use by EMACS. Usually, mode packages (like ‘lisp-mode’ or ‘c-
modc’) put some string into mode-string to indicate the mode of the buffer. It is the
appcarance of this picce of descriptive information that gives the mode line its name.

global-mode-string This is similar to mode-string cxcept that it is global -- the same string will be inserted into
all modc lines by *%M’. It is usually used for information of global intcrest. For example,
the time package puts the current time of day and load average there.

17. Multiple Processes under Emacs

EMACs has the ability to handle multiple interactive subprocesses. The following is a sketchy description of
this capability.

In gencral, you will not want to use any of the functions described in the rest of this scction. Instead, you
should be using one of the supplicd packages that invoke them, sec 19.7 page 25. For example, the “shell”
command provides you with a window into an interactive shell and the “time” package puts the current time
and load average (continuously updated) into the mode line.

20

Multiple interactive processes can be started under EMACS (using “start-process” or "start-filtered-
process”). Processes arc tied to a buffer at inception and are thercafter known by this buffer name. Input can
be sent to a process from the region or a string, and output from processes is normally attached to the end of
the process buffer. There is also the ability to have EMACS call an arbitrary MLISP procedure to process the
output cach time it arnves from a process (see “start-filtered-process”).

Many of the procedures dealing with process management use the concept of "current-process” and
"active-process”. The current-process is usually the most recent process to have been started. Two events can
causc the current-process to change:

1. When the present current-process dies, the most recent of the remaining processes is popped up to
take its place.

2. The current-process can be explicitly changed using the "change-current-process™ command.

The active-process refers to the current-process, unless the current buffer is a live process in which case it
refers to the currcent buffer.

Below is list of the current mlisp procedures for using processes:

active-process [unbound]: (active-process) -- Returns the name of the active process as defined in the section
describing the process mechanism. '

change-current-process [unbound]: (change-current-process "process-name") -- Sets the current process to the
onc named.

continue-process [unhound]: (continue-process "process-name") -- Continue a process stopped by stop-
process.

current-process [unbound]: (currcnt-process) -- Returns the name of the current process as defined in the
section describing the process mechanism.

eot-process [unbound]: (eot-process "process-name”) -- Send an EOQ'T to the process.
int-process [unbound]: (int-process "process-name”) -- Scnd an interrupt signal to the process.

kill-process [unhound]: (kill-process "process-namc™) -- Send a kill signal to the process.

[3°]
fa—

list-processes [unbound]: (list-processes) -- Analagous to "list-buffers”. Processes which have dicd only
appear once in this list before completely disappearing.

process-output [unbound]: (process-output) -- Can only be called by the on-output-procedure to procure the
output generated by the process whose name is given by M PX-process. Returns the output as a string.

.

process-status [unbound]: (process-status "process-name™) -- Returns -1 if "process-name" isn’t a process, 0 if
the process is stopped, and 1 if the process is running.

qguit-process [unbound]: (quit-process "process-name") -- Send a quit signal to the process.

region-to-process [unbound]: (region-to-process "process-name") -- The region is wrapped up and sent to the
process.

Variable silently-kill-processes: 1f ON EMACS will kill processes when it exits without asking any questions.
Normally, if you have processes running when EMACS exits, the question "You have processes on the
prowl, should I hunt them down for you" is asked. (default OFF)

start-filtered-process [unbound]: (start-filtered-process "command” “"buffer-name” "on-output-procedure™) -
Does the same thing as start-process except that things are sct up so that "on-output-procedure” is
automatically called whenever output has been received from this process. This procedure can access
the name of the process producing the output by refering to the variable AP.X-process, and can
retrieve the output itself by calling the procedure process-output.

to avoid generating sidc-cffects (eg. search-

. .
he terminal for informa

The filter procedure must be carcfu

o
Sforward). Moreover, if it attempts to go t

[+]
fd

processes may be lost.

start-process [unbound]: (start-process "command” “buffer-name”) -- The home shell is used to start a
process executing the command. This process is tied to the buffer "buffer-name” unless it is null in
which case the "Command exccution” buffer is used. Output from the process is automatically
attached to the end of the buffer. Each time this is done, the mark is left at the end of the output
(which is the end of the buffer).

stop-process [unhound]: (stop-process “process-name”) -- Tell the process to stop by sending it a stop signal.
Usc continue-process to carry on.

22

"o

string-to-process [unbound]: (string-to-process "process-name” “string™) -- The string is sent to the process.

17.1. Blocking

When too many characters are sent to a process in one gulp, the send will be blocked until the process has
removed sufficient characters from the buffer. The send will then be automatically continued. Normally this
process is invisible to the EMACS user, but if the process has been stopped, the send will not be unblocked and
further attempts to send to the process will result in an overwrite error message.

17.2. Buffer Truncation :

EMACS does not allow process buffers to grow without bound. When a process buffer exceeds the value of
the variable process-buffer-length, 500 characters are erased from the beginning of the buffer. The default
value for process-buffer-length is 10,000.

17.3. Problems

The most obvious problem with allowing multiple interactive processes is that it is too easy to start up
useless jobs which drag everyone down. Also when checkpointing is done, all buffers including the process
buffers are checkpointed. So if you have a one line buffer keeping time, it will take more system time to
checkpoint it than it will to keep it updated once a minute.

In addition to anti-social problems, there are some real bugs remaining:

e Sometimes when starting a process, it will inexplicably expire immediately. This often happens to
the first process you fire up.

e Subprocesses are assumed to not want to try fancy things with the terminal. FMACS docsn’t know
how to handle this and for now more or less ignores stty requests from processes. This means that
csh cannot be used from within EMACS. Running chat and ftp can also causec problems.
Someday, EMACS should try to handle stty’s.

e The worst problem is that background processcs started outside EMACS will cause EMACS to hang
when they finally finish. This might get fixed if I want to think about it.

o If EMACS does crash or hang, you will find several orphan processes left hanging around. It is best
to do a ps and get rid of them.

18. The Emacs database facility

Unix EMACS provides a set of commands for dealing with databases of a rather primitive form. These
databascs are intended to be used in help facilitics to find documentation for a given keyword, but they have
many other uses: managed mailboxes or nodes in an info tree.

A database is a set of (key, content) pairs which may be retrieved or stored based on the key. Both the key
and the-content may be arbitrary strings of characters. The content may be long, but there are restrictions on
the aggragatc length of the keys.

23

A database search list is a list of databases. When a key is looked up in a databasc scarch list the databases
in the search list are examined in order for one containing the key. The content corresponding to the first key
that matches is returned. When a key is to have its content changed only the first database in the search list is
used.

The commands available for dealing with databases are:

extend-dalabase-search-list [unbound]: (extend-database-search-list dbname filename) adds the given data
base file to the data base scarch list (dbname). If the database is already in the scarch list then it is
left, otherwise the new database is added at the beginning of the list of databases.

Jetch-database-entry [unhound]: (fetch-database-entry dbname key) takes the entry in the data base
corresponding to the given key and inserts it into the current buffer.

list-databases [unbound]: (list-databases) lists all data base search lists.

put-database-entry [unbound]: (put-database-entry dbname key) takes the current buffer and stores it into the
named databasc under the given key.

19. Packages

This chapter contains a description of a few of the packages that have been written for EMACS in MLisp.
To load some package, just type “ESC-X load PackageName”. The title of cach following scction contains the
name of the package before the ‘-~

19.1. buff -- one-line buffer list
Loading the buff'package replaces the binding for tX-1B (usually list-buffers) with one-line-buffer-list.

one-iine-buffer-Iist Gives a one-line buffer list in the mini-buffer. If the buffer list is longer than onec ling, it
will print a line at a time and wait for a character to be typed before moving to thc next
linc. Buffers that have been changed since they were last saved are prefixed with an
asterisk (*), buffers with no associated file are prefixed with a hash-mark (#), and empty
buffers are prefixed with an at-sign (@).

19.2. capword -- capitalize the current word

The capword package dcfines onc function, capitalize-word, which is conveniently bound to to ESC-C
(although this is nor done by the package.) Capitalize-word is quite similar to case-word-upper or case-word-
lower, except that it first sets the entirc current word in lower case, then sets the first letter in upper case. For
example, if the current word is “¢MaCs", typing ESC-C will change it to "Emacs”.

24

19.3. c-mode -- simple assist for C programs

begin-C-comment (ESC-*) Initiates the typing in of a comment. Moves the cursor over to the comment
column, inserts "/* " and turns on autofill. If ESC-* is typed in the first column, the the
comment begins there, otherwise it begins where ever comment-column says it should.

end-C-comment (ESC-’) Closes off the current comment.

indent-C-procedure
(ESC-j) Takes the current function (the one in which dot is) and fixes up its indentation by
running it through the "indent" program.

19.4. dired -- directory editor

The dired package implements the dired command which provides some simple convenient directory
editing facilities. When you run dired it will ask for the name of a dircctory, displays a listing of it in a buffer,
and processes commands to examine files and possibly mark them for deletion. When you're through with
dired it actually deletes the marked files, after asking for confirmation. The commands it recognizes are:

d Marks the current file for deletion. A ‘D’ will appear at the left margin. It does not
actually delete the file, it just marks it. The deletion will be performed when dired is
exited. It also makes the next file be the current one.

u Removes the deletion mark from the current file. This is the command to usc if you
change your mind about deleting a file. It also makes the next file be the current one.

RUBOUT Removes the deletion mark from the line prececding the current one. If you mark a file for
deletion with ‘d’ the current file will be advanced to the next line. RUBOUT undoes both
the advancing and the marking for delction.

Y Examine a file put putting it in another window and doing a recursive-edit on it. To
resumec dired type 1C.

r Removes the current file from the dircctory listing. Tt doesn’t delete the file, it just gets rid
of the dircctory listing entry. Use it to remove some of the clutter on your screen.

q, tC Exits dired. For each file that has been marked for dcletion you will be asked for
confirmation. If you answer ‘y’ the file will be delcted, othcrwise not.

n, *N Moves to the next entry in the directory listing.

p, 1P Moves to the previous entry in the dircctory listing.

v Moves to the next page in the dircctory listing.

ESC-v Moves to the previous page in the directory listing.

ESC<K Movcs to the beginning of the dircctory listing.

ESC->- Moves to the end of the directory listing.

25

19.5. goto -- go to position in buffer

goto-line Moves the cursor to beginning of the indicated line. The line number is taken from the
prefix argument if it is provided, it is prompted for otherwise. Line numbering starts at 1.

goto-percent Moves dot to the indicated percentage of the buffer. The percentage is taken from the
prefix argument if it is provided, it is prompted for otherwise. (goto-percent) goes to the
character that is n% from the beginning of the buffer.

19.6. info -- documentation reader

This is a Unix Emacs version of the ITS INFO structured documentation readcr. Loading this package
defines one function, info, which when invoked presents you with a menu of topics. Among other things, it
documents itself. To find out how to use info, typc "h" while it is running. (To return to Emacs from info,
type "q".

If you left info while visiting some node, giving the info command again (to the same invocation of Emacs)
will return you to the node you were ‘at, rather than to the directory node. You can return to the directory
nodg, if you wish, by typing "d".

Loading info, and running it the first time, both a slow operations (several seconds on an unloaded system.)
Once initialized, however, subsequent calls will go swiftly.

19.7. occur -- find occurances of a string
The occur package allows one to find the occurances of a string in a buffer. It contains one function

Occurances When invoked, prompts with "Search for all occurances of: ". It then lists (in a new
buffer) all lines contain the string you type following dor. Possible options (listed at the

bottom of the screen) allow you to page through the listing buffer or abort the function.

In addition, a global variable controls the action of the function:

&Occurances-Extra-Lines
is a global variable that controls how many cxtra surrounding lines are printed in addition
to the linc containing the string found. If this variable is 0 then NO additional lines are
printed. If this variable is greater than 0 then it will print that many lincs above and below
the line on which the string was found. When printing morc than onc line per match in
this fashion, it will also print a scperator of --==-===-s=es--- ' 50 you can tell where the
different matches begin and cnd. At the end of the buffer it prints '<<<End of Occur>>>".

19.8. process -- high level process manipulation
The process package provides high level access to the process control features of Unix EMACS. It allows
you to interact with a shell through an EMACS window, just as though you were talking to the shell normally.

shell The shell command is used to cither start or reenter a shell process. When the shell
command is exccuted, if a shell process doesn’t exist then onc is created (running the
standard “sh™) tied to a buffer named “shell’. In any case, the shell buffer becomes the

26

lisp

grab-last-line

lisp-kill-output

pr-newline

send-eot

send-int-signal

send-quit-signal

current onc and dot is positioned at the end of it. In that buffer output from the shell and
programs run with it will appear. Anything typed into it will get sent to the subprocess
when the return key is struck. This lets you interact with a shell using EMACS, and all of it’s
editing capability, as an intermediary. You can scroll backwards over a session, pick up
picces of text from other places and use them as input, edit while watching the execution of
some program, and much more...

The lisp command is exactly the same as the shell command except that it starts up
“cmulisp™ in the “lisp” buffer. You can have both a shell and a lisp process going at the
same time. You can even have as many shells going as you want, but this package doesn't
support it.

(ESC-=) This command takes the last string typcd as input to the process and brings it
back, as though you had typed it again. So if you muff a command, just type ESC-=, cdit
the line, and hit return again.

(+XtK) [this only applies to /isp processes] Erases the output from the last command. If
you don’t want to scc the output of the last command any more, just type t+XtK and it will
g0 away.

(*M -- return) Takes the text of the current line and sends it as input to the process ticd to
the current buffer. Actually, if dot is on the last linc of the buffer, it takes the region from
mark to the end of the buffer and sends it as input (output from a process causcs the mark
to be set after the inserted text); if dot is not on the last line, just the text of that linc is
shipped (presuming that your promptis "$ ").

(tD) If dot is at the end of the buffer, then +D) behaves just as it does outside of EMACS -- it
sends an EOT to the subprocess (end of file to some folks). If dot isn’t at the end of the
buffer, then it does the usual character deletion,

(\177 -- rubout) Sends an INT (Interrupt) signal to thc subprocess, which should make it
stop whatever it is doing.

(t\) Sends a QUIT signal to the subprocess, making it stop whatcver it is doing and
produce a core dump.

19.9. pwd -- print and change the working directory

pwd
cd

Prints the current working directory in the mode line, just like the shell command “pwd”.

Changes the current working dircctory, just likc the shell command “cd”. You should
beware that c¢d only changes the current dircctory for EMACS, if it has alrcady spawned a
subprocess (a shell, for example) then a ¢d from within EMACS has no cffect on the shell.

19.10. rmail -- a mail management system
EMACS may be used to send and reccive clectronic mail. The mmail command (Usually invoked as "ESC-
Xrmail") is used for reading mail, smail is used for sending mail.

27

19.10.1. Sending Mail '

When sending mail, cither by using the smail command or from within rmail, EMACS constructs a buffer
that contains an outline of the message to be sent and allows you to edit it. All that you have to do is fill in the
blanks. When you exit from smail (by typing +C usually -- when you're editing the message body you will be
in a recursive-edit) the message will be sent to the destinations and blindcopicd to you. Several commands
are available to help you in composing the message:

justify-paragraph (ESC-j) Fixes up the linc brcaks in the current paragraph according to the current left and
right margins.

exit-emacs (+C) Exits mail composition and attempts to scnd the mail. If all goes well the mail
composition window will disappear and a confirmation message will appear at the bottom
of the screen. If there is some sort of delivery error you will be placed back into the
composition window and a message will appear. Bug: when delivery is attempted and
there are errors in the delivery, the message will have becn delivered to the acceptable
addresses and not to the others. This makes retrying the message difficult since you have
to manually eliminate the addresses to which the message has already been sent.

mail-abort-send (tXtA) Aborts the message. If you're pﬁn—way through composing a message and dcecide
that you.don't want to send it, tXtA will throw it away, after asking for confirmation.

mail-noblind-exit (+X+C) Exits smail and send the message, just as +C will, except that a blind copy of the
message will not be kept.

exit-emacs (*XtF) Same as +C.

exit-emacs (tXtS) Same as 1C.

mail-append (tXa) Positions dot at the end of the body and scts margins and abbreyv tables appropriatly.
mail-cc (tXc) Positions dot to the "cc:" field, creating it if nccessary.

mail-insert (tXi) Inscrts the body of the message that was most recently looked at with rmail into the

body of the message being composed. 1, for instance, what you want to do is forward a
message to somcone, just rcad the message with rmail, then composc a message to the
person you want to forward to, and type tXi.

mail-subject (*+Xs) Positions dot to the "subject:” field of the message.

mail-to (*+Xt) Positions dot to the "to:" field of the mcssage.

19.10.2. Reading Mail

The rmail command provides a facility for reading mail from within EMACS. When it is running there are
usually two windows on the screen: one shows a summary of all the messages in your mailbox and the other
displays the “current” message. The summary window may contain somcthing like this:

026215625335022 29 Oct 1981 research!dmr [empty]

B 02621525335030 29 Oct 1981 =>Unix-Wizards A plea for understanding
02621525335040 31 Oct 1981 CSVAX.dmr rc etymology
02621525335072 3 Nov 1981 EHF fyi

28

A 02621352421000 3 Nov 1981 JIM copyrights
B 02621353040000 3 Nov 1981 =>J1IM Re: copyrights
02621646433000 [empty] [empty] [empty]
B 02621647417000 4 Nov 1981 =>research!ikey Emacs
>N 02622024522003 5 November flaco cooking class

This is broken into five columns, as indicated by the undecrlining.
e The first column contains some flags: > indicates the current message, "B’ indicates that the

message is a blindcopy (ie. A copy of a message that you sent to somcone else), ‘A’ indicates that
you've answered the message, and "N’ indicates that the message is new.

e The second column contains a long string of digits that is internal information for the mail system.
e The third contains the date on which the mail was sent.

e The forth contains the sender of the message, unless it is a blindcopy, in which casc it contains the
destination (indicatcd by the " =>"),

o The fifth column contains the subject of the message.

When in the summary window Rmail responds to the following commands:

rmail-shell (1) Puts you into a command shell so that you can execute Unix commands. Resume mail
reading by typing +C.

execute-extended-command

(:) An cmergency trap-door for exccuting arbitrary EMACS commands. You should never
nced this.

rmail-first-message
(<) Look at the first message in the message file.

rmail-last-message () Look at the last message in the message file.

rmail-help (?) Print a very bricf help message
exit-emacs (+C) Lecave rmail. Changes marked in the message file directory (eg. deletions) will be
made.

rmail-scarch-reverse

(tR) Prompts for a scarch string and positions at the first message, scanning in reverse,
whose directory entry contains the string.

rmail-scarch-forward

(+S) Prompts for a scarch string and positions at the first message, scanning forward, whose
directory entry contains the string.

rmail-append (a) Append the current message to a file.

rmail-prcvious-page
(b) Moves backward in the window that contains the current message.

29

rmail-delete-message
(d) Flag the current message for deletion. It won’t actuall

' be deleted until you leave rma

e

rmail-next-page (f) Moves forward in the window that contains the current message. To read a message
that is longer than the window that contains it, just kecp typing f and rmail will show you
successive pages of it.

rmail-goto-message _ ,
(g) Moves to the nth message.

smail (m) Lets you send some mail.

rmail-next-message
(n) Moves to the next message.

rmail-previous-message
(p) Moves to the previous message.

exit-emacs (q) the same as +C -
rmail-reply (r) Constructs a reply to the current message.
rmail-skip (s) Moves to the nth message relative to this one.

- rmail-undelete-message
(u) If the current message was marked for deletion, u removes that mark.

19.11. scribe -- weak assistance for dealing with Scribe documents

Scribe modc binds justify-paragraph to ESC-j, defines appply-look and binds it to FSC-I, turns on autofill,
sets the right margin to 77 and updates the LastEditDatc to the current datc. It also binds index-entry to ESC-
I, and scribe-command to ESC-S.

If the string “LastEditDate ="" exists somewhere in the first 2000 characters of the document then then the
region extending from it to the next *’ is replaced by the current date and time. You're intended to stick in
your document something like: '

8String(LastEditDate="Sat Nov 28 11:17:29 1981")

EMACS will automatically maintain the date. The date will only change in the file you make some changecs,
the mere act of starting scribe-mode does not causc the date change to be permanent.

Apply-look reads a single character and then surrounds the current word with “@¢[" and “]”. So, if you've
just typed “begin”, typing ESC-I-i will change it to “@i[begin]”, which appears in the document as *“begin™.
This use of the word “look™ comes from the Bravo text editor.

Index-entry takes a number of words and creates a Scribe index entry for that phrase, on a scparate line.
The current dot and mark are not modified. If the command is given with no prefix-argument, the current
word is uscd as the index item. If a positive argument n is given, n words starting with the current word are
used as the index phrasc; a negative argument 7 causes the # words ending with the current word to be used.
The easicst way to learn what the real rules are is to try it out; if you make a mistake, you can try again

30

without having to change the cursor position, then delete the wrong index entrics once you've got a right one.

Scribe-command is uscd to create a Begin -- End bracket pair for a specified scribe command. You are
prompted for the name of the command (e.g., Index, Itemize, Description, etc.) For example, ESC-S Itemize
would insert

@Begin(Itemize),

@End(Itemize)

and would leave the cursor on the blank line inside the begin--end brackets. If you always create scribe
commands in this way, you'll never have unbalanced begin--ends in your scribe files.

19.12. spell -- a simple spelling corrector

The spell package implements the single function spell. It provides a simple facility for doing spelling
correction. If you invoke spell it will scan your file looking for spelling errors, then it will go through a
dialogue to let you fix them up. For each misspelled word EMACS will show you the word, some context
around it and ask you what to do. If you type ‘e’ or ‘tG" the spelling corrector will exit. If you type * " it will
ignore the word. If you type ‘r’ it will ask for the text to use in replacing the word and perform a query-
replace. Bug: This uses the Unix spel/ command which believes that its input is a source for the Unix
standard text formatter troff/nroff; Spell misbehaves on Scribe .mss files.

19.13. tags -- a function tagger and finder

The tags package closely resembles the tags package found in Twenex EMACS. The database used by the
tag package (called a tagfile) correlates function definitions to the file in which the definitions appear. The
primary function of the tag package is to allow the user to specify the name of a function, and then have
EMACS locate the definition of that function. The commands implemented are:

add-tag Adds the current line (it should be the definition line for some function) to the current
tagfile. . '
goto-tag golo-tag takcs a single string argument which is usually the name of a function and visits

the file containing that function with the first linc of the function at the top of the window.
The string may actually be a substring of the function name (actually, any substring of the
first line of the function definition). If goto-tag is given a numeric argument then rather
than asking for a new string it will use the old string and search for the next occurrence of
that string in the tagfile. This is used for stepping through a set of tags that contain the
samc string,

This is the most commonly uscd command in the tag package so it is often bound to a key:
Twencx EMACS binds it to ESC-., but the Unix tag package docsn’t bind it to anything, it
presumes that the user will bind it (I use tXtG).

make-tag-table Takes a list of file names (with wildcards allowed) and builds a tagfile for all the functions
in all of the files. It determines the language of the contents of the file from the extension.
This command may take a while on large directorics, be prepared to wait. A common use
is to type "make-tag-table *.c".

recomputc-all-tagsGoces through your current tag file and for each file mentioned refinds all of the tags. This

i1

is uscd to rebuild an cntire tag file if you've made very extensive changes to the files
mentioncd and the tag package is no longer able to find functions. The tagfiic contains
hints to help the system locate the tagged function, as you make changes to the various files
the hints become out of date. Periodically (no too often!) you should recompute the
tagfile.

visit-function Takes the function name at or before dot, does a goto-tag on that name, then puts you into
a recursive-edit to look at the function definition. To get back to where you were, just type
+C. This is used when you're editing somecthing, have dot positioned at some function
invocation, then want to look at the function.

visit-tag-table Normally the name of the tagfile is ".tags" in the current directory. If yi'u want to use
some other tagfile, visit-tag-table lets you do that.

19.14. text-mode -- assist for simple text entry
Implements the text-mode command which ties ESC-j to justify-paragraph and scts up autofill with a le&
margin of 1 and a right margin of 77.

19.15. time -- a mode line clock :

This package only implements one uscr-visible function, time, which puts the current time of day and load
average (continuously updating!) in the mode line of each window. It uses global-mode-string and the
subprocess control facility. Major!

19.16. transp -- transpose words or lines
The transp package allows transposition of word and lines (similar to the function of transpose-character.)

transpose-word ~ Takes the two words preceding dot and exchanges them. (If dor is within a word, it is
counted as preceeding dot.)

iranspose-line Takes the two lines preceding dot and exchanges them. (If dot is within a line, it is counted
as prececding dot.)

Therec are also several global variables to control the transpose-line function:

&Default-Transpose-Direction
(dcfault 1) Tells transposc-line which other line to transpose with the current on. If this is
set to 1 (actually your favorite non-zero number will do) then transpose-line will use the
linc above the current one and if it is 0 transposc-line will use the line below the current
one.

&Default-Transpose-Follow
(default 0) If this is set Non-zero it will cause transpose-line to leave the cursor(dot) on the
line that got transposed, and if this is sct to Zero it will stay at the same place in the filc!

&Decfault-Transpose-Magic
(default 0) This variable controls some magic inside the transpose Line function. Ifit is sct
to zero, transpose-line will behave as controlled by the settings of the above variables. If

32

this is set Non-Zcro then the magic is controlled by the cursor position when transpose-line
is invoked. If the cursor(dot) is somcwhere in the middle of a line, then it behaves as if this
variable were 0. If the cursor is at the end of a line, or at the beginning of a line, the magic
will happen. If the cursor is at the beginning of the line transpose-line will override the
abcve variable settings and assert that you want to transpose with the above linc and that
you want to follow the line you werc on. If the cursor is at the end of a linc transpose-line
will assume that you want to transpose with the next linc and that you want to follow the
line you were on. The main rcason for this magic is so that you can blip lines up and down
in your buffer real easily.

19.17. writeregion -- write region to file
This package only implements one function, write-region-to-file, which takes the region between dot and
mark and writes it to the named file,

20. Command Description

This chapter describes (in alphabetical order) all of the commands which are defined in the basic Unix
EMACS system. Other commands may be defined by loading packages. Each description names the
command and indicates the default binding.

! {unbound]
(! el) MLisp function that returns not e.

I= [unhound]
(= e, e,) MLisp function that returns truc iff e, = ey

% [unbound]
(% e, e,) MLisp function that returns e; % e, (the C mod operator).

& . [unbound]
(& e ez) MLisp function that returns e & e,

* [unbound]
* & e2) MLisp function that returns & * e,

+ ‘ [unhound]

(+ e, e;) MLisp function that returns e, + e,.

(- e, &,) MLisp function that returns e - e,

/
(7 e, e)) MLisp function that returns e/ e,

< .
(Ce; e,) MLisp function that returns true iff e <e,

<«

K<e e,) MLisp function that returns e, << e, (the C shift left opcrator).

(=
K=¢ e,) MLisp function that returns true iff g<=e,

(= e ez) MLisp function that returns true iff e = e,

b
(> €, &)) MLisp function that returns true iff e e,

)=
C= € ez) MLisp function that returns true iff & >= e,

»

o> e e2) MLisp function that returns e e (the C shift right operator).

r
* & ez) MLisp function that returns e te (the C XOR operator).

abort-operation

[98]
(9¥]

[unbound]
[unbound]
[unbound]
[unhound]
[unbound]
[unbound]
[unbound]
[milboxmd]
[unhound]
[unbound]

tG

EMACS gives up on what it is trying to do now and gocs back to standard input mode. Rings the bell. Use
*G whenever EMACS is in a state you don't like, for example, asking you for a string to be scarched for when

you decide that you don’t want to search for a string.

34

active-process [unbound]
(active-process) -- Returns the name of the active process as defined in the section describing the process
mechanism.

append-region-to-buffer [unbound]
Appends the region between dot and mark to the named buffer. Neither the original text in the destination
buffer nor the text in the region between dot and mark will be disturbed.

append-lo-file [unhound]
Takes the contents of the current buffer and appcnds it to the named file. If the files doesn’t exis - it will be
created.

apropos ESC-?
Prompts for a keyword and then prints a list of those commands whose short description contains that
keyword. For example, if you forget which commands dcal with windows, just type "ESC-?windowESC".

arg [unhound]
(arg i [prompt]) cvaluates to the i'th argument of the invoking function or prompts for it if called
interactively [the prompt is optional, if it is omitted, the function cannot be called interactivly]. For example,
(arg 1 "Enter a number: ")

Evaluates to the value of the first argument of the current function, if the current function was called from
MLisp. Ifit was called interactively then it is prompted for. As another example, given:
(defun (foo (+ (arg 1 "Number to increment? ") 1)))

then (foo 10) returns 11, but typing "ESC-Xfoo" causes emacs to ask "Number to increment? “. l.anguage
purists will no doubt cringe at this rather primitive parameter mechanism, but what-the-hell... it's amazingly
powerful.

arge [unbound]

Is an MLisp function that returns the number of arguments that were passed to EMACS when it was
invoked from the Unix shell. If cither argc or argv are called carly cnough then EMACS’s startup action of
visiting the files named on the command line is suppressed.

argument-prefix +U

When followed by a string of digits +U causes that string of digits to be interprcted as a numeric argument
which is generally a repetition count for the following command. For example, tU10tN moves down 10 lines
(the 10°th next). A string of n tU’s followed by a command provides an argument to that command of 4”.
For example, tUtN moves down four lines, and tUtUtN moves down 16. Argument-prefix should never be
called from an MLisp function.

35

argv [unbound]

(argv /) returns the ith argument that was passed to EMACS when it was invoked from the Unix Shell. If
EMACs werce invoked as "emacs blatto” then (argv 1) would return the string "blatto". If cither argc or argv
are called early enough then EMACS’s startup action of visiting the files named on the command line is
suppressed.

auto-execute : [unbound]

Prompt for and remember a command name and a file name pattern. When a file is read in via visit-file or
read-file whose name matches the given pattern the given command will be exccuted. The command is
gencrally once which sets the mode for the buffer. Patterns must be of the form “*string” or "string*":

"*string” matchcs any filename whose suffix is "string”; "string*" matches any filename prefixed by "string".
For example, auto-exccute c-mode *.c will put EMACS into C mode for all files with the extension ".c".

autoload [unbound]

(autoload command file) defines the associated command to be autoloaded from the named file. When an
attempt to execute the command is encountered, the file is loaded and then the exccution is attempted again.
the loading of the file must have redefined the command. Autoloading is useful when you have some
command written in MLisp but you don’t want to have the code loaded in unless it is actually nceded. For
example, if you have a function namcd box-it in a file named box-itml, then the command
(autoload "hox-it" "box-it.ml") will define the box-it command, but won't load its definition from box-it.ml.
The loading will happen when you try to execute the box-it command.

backward-balanced-paren-line ‘ {unbound]
Moves dot backward until either

e The beginning of the buffer is reached.

¢ An unmatched open parenthesis, °(', is encountered. That is, unmatched between there and the
starting position of dot.

¢ The beginning of a line is encountered at "parenthesis level zero”. That is, without an unmatched

')’ existing betwcen there and the starting position of dot.
The dcfinitions of parenthesis and strings from the syntax table for the current buffer arc used.
backward-character *+B

Move dot backwards one character. Ends-of-lines and tabs cach count as one character. You can’t move
back to before the beginning of the buffer.

36

backward-paragraph ESC{
Moves to the beginning of the current or previous paragraph. Blank lines, and Scribe and nroff command
lines separate paragraphs and are not parts of paragraphs.

backward-paren [unbound]

Moves dot backward' until an unmatched open parcnthesis, '(’, or the beginning of the buffer is found.
This can be used to aid in skipping over Lisp S-expressions. The dcfinitions of parenthesis and strings from
the syntax table for the current buffer are used.

backward-sentence ‘ ESC-A
Move dot backward to the beginning of the precceding sentence; if dot is in the middle of a sentence, move
to the beginning of the current sentence. Sentences are seperated by a ", ‘7" or ‘1" followed by whitcspace.

backward-word ESC-B
If in the middle of a word, go to the beginning of that word, otherwisc go to the beginning of the preceding
word. A word is a sequence of alphanumerics.

baud-rate ' [unbound]

An MLisp function that returns what EMACS thinks is the baud rate of the communication line to the
terminal. The baud rate is (usually) 10 times the number of characters transmitted ber second. (Baud-rate)
can be used for such things as conditionally setting the display-file-percentage variable in your EMACS profile: -
(sctq display-file-percentage (> (baud-rate) 600))

beginning-of-file ESC<
Move dot to just before the first character of the current buffer.

beginning-of-line tA
Move dot to the beginning of the linc in the current buffer that contains dot; that is, to just after the
prececding end-of-linc or the beginning of the buffer.

beginning-of-window ESC-,
Move dot to just in front of the first character of the first line displayed in the current window.

bind-to-key [unbound]
Bind a named macro or procedure to a given key. All future hits on the key will cause the named macro or

proccdure to be called. ‘The key may be a control key, and it may be prefixed by +X or ESC. For example, if

you want ESC- = to bchave the way ESC-Xprint docs, then typing ESC-X bind-to-key print ESC-= will do it.

37

bobp [unbound]
(bobp) is an MLisp predicate which is true iff dot is at the beginning of the buffer,

bolp [unbound]
(bolp) is an MLisp predicate which is true iff dot is at the beginning of a line.

buffer-size [unbound]
(buffer-size) is an MLisp ﬁmcuon that returns the number of characters in the current buffer.

c-mode * [unbound]
Incompletely implemented.

c= [unbound]
(c= e, e,) MLisp function that returns. true iff e, is equal to e, taking into account the character

translanons indicated by case-fold-scarch and word- modc -search. If word-mode-search is in effect, then
upper case letters are "c=" to their lower case equivalents.

case-region-capitalize {unbound]
Capitalize all the words in the region between dot and mark by making their first characters upper case and
all the rest lower case.

case-region-invert [unbound]
Invert the casc of all alphabetic characters in the region between dot and mark.

case-region-lower {unhound]
Change all alphabetic characters in the region between dot and mark to lower casc,

case-region-upper [unbound]
Change all alphabetic characters in the region between dot and mark to upper casc.

case-word-capitalize [unbound]
Capitalize the current word (the one above or to the left of dot) by making its first character upper casc and
all the rest lower case.

case-word-invert : [unbound]
Invert the casc of all alphabetic characters in the current word (the one above or to the left of dot).

38

case-word-lower [unbound]
Change all alphabetic characters in the current word (the one above or to the left of dot) to lower case.

case-word-upper [unbound]
Change all alphabctic characters in the current word (the one above or to the left of dot) to upper case.

change-current-process : ' [unbound]
(change-current-process “process-name'™) -- Sets the current process to the one named.

change-directory [unbound]
Changes the current directory (for EMACS) to the named directory. All future file write and reads (tXtS,
+XtV, etc.) will be interpreted relative to that directory.

char-to-string [unbound]
Takes a numeric argument and returns a one character string that results from considering the number as
an ascii character.

Command prefix (also known as META) ESC

The next character typed will be interpreted as a command bascd on the fact that it was preceded by ESC.
The name meta for the ESC character comes from funny keyboards at Stanford and MIT that have a Meta-
shift key which is uscd to extend the ASCII character set. Lacking a Mcta key, we make do with prefixing
with an ESC character. You may scc (and hear) commands like ESC-Y referred to as Mcta-V. Somctimces the
ESC key is confusingly written as $, so ESC-Y would be written as $V. ESC is also occasionally referred to as
Altimode, from the labeling of a key on those old favorites, modcl 33 telctypes.

command-prefix +X
The next character typed will be interpreted as a command bascd on the fact that it was preceded by tX.

compile-it R +XtE

Make is a standard Unix program which takes a description of how to compile a set of programs and
compiles them. The output of make (and the compilers it calls) is placed in a buffer which is displayed in a
window. If any crrors were encountered, EMACS makes a note of them for later usc with +X+N. Presumably,
a data base has been set up for make that causes the files which have been edited to be compiled. tXtE then
updates the filcs that have been changed and make does the necessary recompilations, and EMACS notcs any
errors and lets you peruse them with +XtN.

If +X*E is given a non-zero argument, then rather than just cxecuting make I'MACS will prompt for a Unix
command line to be exccuted. Modified buffers will still be written out, and the output will still go to the
Error log buffer and be parsed as crror messages for use with tXtN. One of the most uscful applications of
this fcature involves the grep program. "tUtXtEgrep -n MyProc *.cESC" will scan through all C source files
looking for the string "MyProc” (which could be the name of a procedure). You can then use tXtN to step
through all places in all the files where the string was found. Note: The version of grep in my bin directory,
/usr/jag/bin/grep, must be used: it prints line numbers in a format that is understood by EMACS. (ic.
" FileName, line LineNumber) i

39

concat ' [unbound]
Takes a set of string arguments and returns their concatenation.

continue-process [unbound]
(continue-process "process-name™) -- Continue a process stopped by stop-process.

copy-region-to-buffer . [unbound]
Copies the region between dot and mark to the named buffer. The buffer is cmptied before the text is
copied into it; the region between dot and mark is left undisturbed.

current-buffer-name [unbound]
MLisp function that returns the current buffer name as a string.

current-column [unbound]
(current-column) is an MLisp function that returns the printing column number of the character
immediately following dot.

current-file- name [unbound]
MLisp function that returns the file name associated with the current buffer as a string. If there is no
associated file name, the null string is returned.

current-indent [unbound]
(current-indent) is an MLisp function the returns the amount of whitespace at the beginning of the line
which dot is in (the printing column number of the first non-whitespacc character).

current-process [unbound]
(current-process) -- Returns the name of the current process as defined in the section describing the process
mechanism,

current-time [unbound]

MLisp function that returns the current time of day as a string in the format described in CTIME(3), with
the exception that the trailing newline will have been stripped off. (substr (current-time) -4 4) is the current
year.

declare-global [unbound]
Takes a list of variables and for each that is not already bound a global binding is created. Global bindings
outlive all function calls.

40

define-buffer-macro funbound]
Take the contents of the current buffer and definc it as a macro whose name is associated with the buffer.
This is how one redefines a macro that has been edited using edit-macro.

define-global-abbrey [unbound]
Define (or redefine) an abbrev with the given name for the given phrase in the global abbreviation table.

define-keyboard-macro [unbound]

Give a name to the current keyboard macro. A keyboard macro is defined by using the +X(and tX)
command; define-keyboard-macro takes the current keyboard macro, squirrcls it away in a safe pl..-c, gives it
a name, and erases the keyboard macro. define-string-macro is another way to definc a macro.

define-keymap [unbound]
(dcfine-keymap "mapnamec™) defines a new, empty, keymap with the given name. See the scction on
keymaps, 14 page 16, for more information.

define-local-abbrev [unbound]
Define (or redefinc) an abbrev with the given name for the given phrase in the local abbreviation table. A
local abbrev table must have already been set up with use-abbrev-table.

define-siring-macro [unbound]

Define a macro given a name and a body as a string entered in the minibuffer. Note: to get a control
character into the body of the macro it must be quoted with tQ. dcfine-keyboard-macro is another way to
define a macro.

defun [unbound]

(defun (name expressions...)...) is an MLisp function that defines a new MLisp function with the given
name and a body composed of the given expressions. The value of the function is the value of the last
expression. For example:

(defun
(indent-1line : this function just sticks a tab at
(save-excursion ; the beginning of the current line
(beginning-of-line) ; without moving dot.
(insert-string " ")
)
)
)
delete-buffer [unbound]

Deletes the named buffer.

41

delete-macro [unbound]
Delete the named macro.

delete-next-character +D
Delete the character immediatly following dot; that is, the character on which the terminals cursor sits.
Lines may be merged by deleting newlines.

delete-next-word ESC-D
Delete characters forward from dot until the next end of a word. If dot is currently not in a word, all
punctuation up to the beginning of the word is deleted as well as the word.

delete-other-windows) X1
Go back to one-window mode. Generally useful when EMACS has spontaneously generated a window (as
for ESC-? or tXtB) and you want to get rid of it.

delete-previous-character ‘ tH
Delete the character immediatly preceding dot; that is, the character to the left of the terminals cursor. If
you've just typed a character, tH (backspace) will delete it. Lines may be merged by deleting newlines.

delete-previous-character RUBOUT
Delete the character immediatly preceding dot; that is, the character to the left of the terminals cursor. If
you've just typed a character, RUBOUT will delete it. Lines may be merged by dcleting newlincs.

delete-previous-word ‘ ESC-H
If not in the middle of a word, dclete characters backwards (to the left) until a word is found. Then delete
the word to the icft of dot. A word is a sequence of alphanumerigs.

delete-region-1o-buffer ESC-tW
Wipe (kill, delete) all characters between dot and the mark. The deleted text is moved to a buffer whose
name is prompted for, which is emptied first.

delete-to-killbuffer 2%
Wipe (kill, dclete) all characters between dot and the mark. The deleted text is moved to the kill buffer,
which is empticd first.

delete-white-space [unbound]
Deletes all whitespace characters (spaces and tabs) on either side of dot.

42

delete-window +XD
Removes the current window from the screen and gives it's spacc to it's ncighbour below (or above) and
makes the current window and buffer those of the neighbour.

describe-bindings [unbound]

Places in the Help window a list of all the keys and the namec of the procedurc that they arc bound to. This
listing is suitable for printing and making you own quick-reference card for your own customized version of
EMACs.

describe-command [unbound]

Describe the named extended command. An “extended command” is the first word that you type to the
ESC-X command. "ESC-Xdescribe-command describe-command” will print the documentation for
the describe-command extended command. :

describe-key [unbound]
Describe the given key. ESC-Xdescribe-key ESC-X will print the documentation for the ESC-X key.

describe-variable ' [unbound]
Describe the named variable. A "variable” is something that you can set with the ESC-Xset command or

print with the ESC-Xprint command. They let the user fine-tune EMACS to their own taste.

ESC-Xdescribe-variable right-margin will print documentation about the right-margin setting.

describe-word-in-buffer +X*tD

Takes the word nearest the cursor and looks it up in a data base and prints the information found. This
data base contains short one-line descriptions of all of the Unix standard procedures and Franz Lisp standard
functions. The idea is that if you've just typed in the name of some procedure and can’t quitc remember
which arguments go where, just type tXtD and EMACS will try to tell you.

digit [unbound]
Heavy wizardry: you don’t want to know. "digit" should cventually disappcar.

dot [unbound]

(dot) is an MLisp function that returns the number of characters to the left of dot plus 1 (ic. if dot is at the
beginning of the buffer, (dot) returns 1). The value of the function is an object of type "marker™ -- if it is
assigned to a variable then as changes arc made to the buffer the variable’s value continucs to indicate the
same position in the buffer.

43

dump-syntax-table [unbound]
Dumps a readable listing of a syntax table into a buffer and makes that buffer visible.

edit-macro [unbound]

Take the body of the named macro and place it in a buffer called Macro edit. The name of thc macro is
associated with the' buffer and appears in the information bar at the bottom of the window. The buffer may
be edited just like any other buffer (this is, in fact, the intent). After the macro body has been edited it may
be redefined using define-buffer-macro.

end-of-file ESC->
Move dot to just after the last character of the buffer.

end-of-line +E
~ Move dot to the end of the linc in the current buffer that contains dot; that is, to just after the following
end-of-line or the end of the buffer.

end-of-window ESC-.
Move dot to just after the last character visible in the window.

enlarge-window tXZ
Makes the current window onc line taller, and the window below (or the one above if there is no window
below) one line shorter. Can't be used if there is only one window on the screen.

eobp [unbound]
(eobp) is an MLisp predicate that is true iff dot is at the end of the buffer.

eolp [unbound]
(colp) is an MLisp predicate that is true iff dot is at the end of a line.

eot-process [unbound]
(eot-process "process-name”) -- Send an EOT to the process.

erase-buffer [unbound]
Delctes all text from the current buffer. Docsn't ask to make surc if you really want to do it.

erase-region [unbound]
Erases the rcgion between dot and mark. It is like delete-to-killbuffer except that it doesn’t move the text
to the kill buffer.

error-message [unhound]
(error-messagce "string-expression”) Sends the string-expression to the screen as an error message where it
will appear at the bottom of the screen. EMACS will return to keyboard level.

error-occured [unbound]

(error-occured expressions...) exccutes the given expressions and ignores their values. If all executed
successfully, error-occured returns false. Otherwisc it returns true and all expressions after the one which
encountered the error will not be executed.

exchange-dot-and-mark - 1X1X

Sets dot to the currently marked position and marks the old position of dot. Useful for bouncing back and
forth between two points in a file; particularly useful when the two points delimit a region of text that is going
to be operated on by some command like tW (crase region).

execule-extended-command ESC-X

EMACs will prompt in the minibuffer (the linc at the bottom of the screen) for a command from the
extended set. Thesc deal with rarely used features. Commands are parsed using a Twenex style command
interpreter: you can type ESC or space to invoke command completion, or *?" for help with what you're
allowed to type at that point. This doesn’t work if it's asking for a key or macro name.

execute-keyboard-macro +XE

Takes the keystrokes remembered with +X(and tX) and treats them as though they had been typed again.
This is a chcap and casy macro facility. For more power, sec the define-string-macro, define-keyboard-macro
and bind-to-key commands.

execute-mlisp-buffer [unbound]

Parse the current buffer as as a single MLisp expression and exccute it. This is what is generally used for
testing out new functions: stick your functions in a buffer wrapped in a defin and usc exccute-mlisp-buffer to
dcfine them.

execute-mlisp-line ESC-ESC
Prompt for a string, parse it as an MLisp expression and execute it.

execute-monitor-command X!

Prompt for a Unix command then execute it, placing its output into a buffer called Command execution
and making that buffer visible in a window. The command will not be able to read from its standard input (it
will be connccted to /dev/null). For now, there is no way to exccute an interactive subprocess.

exit-emacs +C
Exit EMACs. Will ask if you're sure if there are any buffers that have been modified but not written out.

exit-emacs tX1C
Exit EMACs. Will ask if you're sure if therc are any buffers that have been modified but not written out,

exit-emacs . ' ESC-tC
Exit EMACs. Will ask if you're sure if there are any buffers that have been modificd but not written out.

expand-mlisp-variable ‘ [unbound]
Prompts for the name of a declared variable then inserts the name as text into the current buffer. This is
very handly for typing in MLisp functions. It’s also fairly useful to bind it to a key for easy access.

expand-mlisp-word [unbound]
Prompt for the name of a command then insert the name as text into the current buffer. This is very
handly for typing in MLisp functions. It’s also fairly useful to bind it to a key for easy access.

extend-database-search-list. [unbound]

(cxtend-database-search-list dbname filename) adds the given data base file to the data base search list
(dbname). If the database is already in the scarch list then it is left, otherwise the new databasc is added at the
beginning of the list of databascs.

fetch-database-entry [unbound]
(fetch-databasc-cntry dbnamc key) takes the entry in the data base corrcsponding to the given key and
inserts it into the current buffer.

file-exists ' [unbound]
(file-exists fn) rcturns 1 if the file named by fir exists and is writable, 0 if it does not cxist, and -1 if
it exists and is readable but not writable.

filter-region [unbound]

Take the region between dot and mark and pass it as the standard input to the given command line. Its
standard output replaces the region between dot and mark. Usc this to run a region through a Unix style-
filter.

Jollowing-char [unbound]

(following-char) is an MLisp function that returns the character immediatly following dot. The null
character (0) is returned if dot is at the end of the buffer. Remember that dot is not ‘at’ some character, it is
between two characters.

46

Sorward-balanced-paren-line [unbound]
Moves dot forward until cither '

¢ The end of the buffer is reached.

¢ An unmatched closc parenthesis, ’)’, is encountered. That is, unmatched between there and the
starting position of dot.

e The beginning of a line is encountered at "parenthesis level zero”. That is, without an unmatched
'(" existing between there and the starting position of dot.

The definitions of parenthesis and strings from the syntax table for the current buffer are used.

forward-character tF

Move dot forwards one character. Ends-of-lines and tabs cach count as one character. You can’t move
forward to after the end of the buffer.

Jorward-paragraph : ESC-]
Moves to the end of the current or following paragraph. Blank lines, and Scribe and nroff command lines
separate paragraphs and are not parts of paragraphs.

forward-paren [unbound] .

Moves dot forward until an unmatched closc parenthesis, '), or the end of the buffer is found. This can be
used to aid in skipping over Lisp S-expressions. The definitions of parcnthesis and strings from the syntax
table for the current buffer are used.

Sforward-sentence ESC-E
Move dot forward to the beginning of the ncxt sentence. Sentences arc seperated by a*.’, *?" or *I” followed
by whitespace.

forward-word ESC-F

Move dot forward to the end of a word. If not currently in the middlc of a word, skip all intervening
punctuation. Then skip over thc word, leaving dot positioned after the last character of the word. A word is a
sequence of alphanumerics.

get-tty-buffer ~ [unbound]
Given a prompt string it rcads the namc of a buffer from the tty using the minibuf and providing command
completion.

47

get-ly-character [unbound]

Reads a single character from the terminal and returns it as an integer. The cursor is not moved to the
message area, it is left in the text window. This is useful when writing things like query-replace and
incremental search.

get-tty-command " lunbound]

(get-tty-command prompr) prompts for the name of a declared function (using command completion &
providing help) and returns the name of the function as a string. For example, the expand-mlisp-word
function is simply (inscrt-string (get-tty-command " expand-mlisp-word ")).

get-ty-string [unbound]
Reads a string from the terminal using its single string parameter for a prompt. Generally used inside
MLisp programs to ask questions.

get-tty-variable [unbound]
(get-tty-variable prompi) prompts for the name of a declared variable (using command completion &
providing help) and returns the name of the variable as a string. For example, the expand-mlisp-variable

function is simply (insert-string (get-tty-variable " expand-mlisp-variable ")).

getenv [unbound]
(getenv "varname") returns the named shell environment variable. for example, (getenv "HOME") will
return a string which names your home directory. :

golo-character) [unbound]
Goes to the given character-position. (goto-character 5) gocs to character position S.

if [unbound]
(if test thenclause elseclausc) is an MLisp function that exccutes and returns the value of thenclause iff test
is true; otherwisc it exccutes elseclause if it is present. For example:

(if (eolp))
(to-col 33)
)

will tab over to column 33 if dot is currently at the end of a line.

illegal-operation [unbound]
lllegal-operation is bound to thosc keys that do not have a defined interpretation. Fxccuting illegal-
opcration is an crror.

43

indent-C-procedure ESC-J
Take the current C procedure and reformat it using the indent program, a fairly sophisticated pretty printer.
Indent-C-procedure is God’s gift to those who don’t like to fiddle about getting their formatting right. Indent-
C-procedure is usually bound to ESC-J. When switching from mode to mode, ESC-J will be bound to
procedures appropriate to that mode. For example, in text mode ESC-J is bound to justify-paragraph.

insert-character ‘ [unbound]
Inserts its numeric argument into the buffer as a single character. (insert-character '0") inserts the character
’0” into the bufTer.

insert-file +X11
Prompt for the name of a filc and insert its contents at dot in the current buffer.

insert-string [unhound]
(insert-string stringexpression) is an Ml isp function that inscrts the string that results from cvaluating the
given stringexpression and inserts it into the current buffer just before dot.

int-process ‘ [unbound]
(int-process "process-name"™) -- Send an interrupt signal to the process.

interactive {unbound]
An MLisp function which is true iff the invoking MLisp function was invoked interactively (ie. bound to a
key or by ESC-X).

is-bound [unbound]
an MLisp predicate that is true iff all of its variable name arguments are bound.

Justify-paragraph [unbound]

Take the current paragraph (bounded by blank lines or Scribe control lines) and pipe it through the "fmt"
command which does paragraph justification. justify-paragraph is usually bound to ESC-J when in text
mode.

kill-process [unbound]
(kill-process "process-name”) -- Send a kill signal to the process.

kill-to-end-of-line tK

Deletes characters forward from dot to the immediatly following end-of-line (or end of buffer if there isn’t
an end of linc). If dot is positioned at the end of a line then the end-of-line character is deleted. Text deleted
by the K command is placed into the Kill buffer (which really is a buffer that you can look at). A tK
command normally erases the contents of the kill buffer first; subscquent tK's in an_unbroken sequence
append to the kill buffer.

49

last-key-struck [unbound]
The last command character struck. If you have a function bound to many keys the function may use last-

Jou

key-struck to tell which key was used to invoke it. (insert-character (last-key-struck)) does the obvious thing.

length [unbound]
Returns the length of its string parameter. (length "time") => 4.

line-to-top-of-window ESC-!
What morc can I say? This one is handy if you've just searched for the declaration of a procedure, and
want to see thc whole body (or as much of it as possible).

list-buffers +X*B

Produces a listing of all existing buffers giving their names, the name of the associated file (if there is one),
the number of characters in the buffer and an indication of whether or not the buffer has been modified since
it was read or written from the associated file.

list-databases ‘ [unbound]
(list-databases) lists all data base search lists.

list-processes [unbound]
(list-processes) -- Analagous to "list-buffers”. Processes which have dicd only appear once in this list:
before completely disappearing.

load [unbound]

Read the named filc as a serics of MLisp expressions and exccute them. Typically a loaded file consists
primarily of defun’s and buffer-specific variable assignments and key bindings. Load is usually used to load
macro librarics and is used to load ".cmacs_pro” from your home directory when EMACS starts up.

For example, loading this file:
(setg right-margin 75)
(defun (my-linefeed
(end-of-1ine)
(newline-and-indent)
)
)
(bind-to-key "my-linefeed” 10)
sets the right-margin to 75 and dcfines a function called my-linefeed and binds it to the lincfeed key (which is
the ascii character 10 (decimal))

The file name given to Joad is interpreted relative to the EPATH environment variable, which is interpreted
in the same manncr as the shell's PATH variable. That is, it provides a list of colon-separated names that are
taken to be the names of dircctories that are scarched for the named files. The default value of EPATH
searches your current directory and then a central system directory.

Temporary hack: in previous versions of EMACS loaded files were treated as a sequence of keystrokes. This
behaviour has been decreed bogus and unreasonable, hence it has been changed. However, to avoid loud

50

cries of anguish the Joad command still exhibits the old behaviour if the first character of the loaded file is an
ESC. '

local-bind-to-key [unbound]

Prompt for the name of a command and a key and bind that command to the given key but unlike bind-to-
_ key the binding only has cffect in the current buffer. This is generally used for mode specific bindings that
will generally differ from buffer to buffer.

looking-at [unbound]

(looking-at "SearchString™) is true iff the given regular expression search string matches- the text
immediatly following dot. This is for use in packages that want to do a limited sort of parsing. For example,
if dot is at the beginning of a line then (looking-at "[\t]*clsc]) will be true if the line starts with an "else”. See
section 13, page 14 for more information on regular expressions.

mark [unbound]
An MLisp function that returns the position of the marker in the current buffer. An error is signaled if the

marker isn’t set. The valuc of the function is an object of type “marker” -- if it is assigned to a variable then as

changes arc madc to the buffer the variable’s value continues to indicate the same position in the buffer.

message [unbound]
(message stringexpression) is an MLisp function that places the string that results from the evaluation of
the given stringexpression into the message region on the display (the line at the bottom).

modify-syntax-entry [unbound]

Modify-syntax-entry is uscd to modify a sct of entrics in the syntax table associated with the current buffer.
Syntax tables are associated with buffers by using the use-syntax-table command. Syntax tables are used by
commands like forward-paren to do a limited form of parsing for language dependent routines. They define
such things as which characters are parts of words, which quote strings and which delimit comments
(currently, nothing uses the comment specification). To sce the contents of a syntax table, use the dump-
syntax-table command.

The parameter to modify-syntax-entry is a string whose first five characters specify the interpretation of the
sixth and following characters. ' '

The first character specifies the type. It may be one of the following:

'w’ A word character, as used by such commands as forward-word and case- word-capitalize.
space A character with no special interpretation.
¢ A left parcenthesis. Typical candidates for this type are the characters °(, T and '{.

Characters of this type also have a matching right parenthesis specificd ('), '] and '}’ for
example) which appears as the second character of the parameter to modify-syntax-entry.

'y : A right parcnthesis. Typical candidates for this type arc the characters Y, T and '}
Characters of this type also have a matching left parcnthesis specified (C, [and *{ for

51

example) which appears as the sccond character of the parameter to modify-syntax-entry.

A quote character. The C string delimiters " and * are usually given this class, as is the Lisp

I
N A prefix character, like \ in C or / in MacLisp.

The second character of the parameter is the matching parenthesis if the character is of the left or right
parenthesis type. If you specify that '(is a right parenthesis matched by 'y, then you should also specify that
) is a left parenthesis matched by (.

The third character, if equal to '{’, says that the character described by this syntax entry can begin a
comment; the forth character, if equal to '}’ says that the character described by this syntax entry can end a
comment. If either the beginning or ending comment sequence is two characters long, then the fifth character
provides the second character of the comment sequence.

The sixth and following characters specify which characters arc described by this entry; a rangc of
characters can be specified by putting a -’ between them, a -’ can be described if it appears as the sixth
character.

A few examples, to help élear up my muddy exposition:

(modify-syntax-entry "w -") : makes -’ behave as a normal word
. character (ESC-F will consider
. one as part of a word)
(modify-syntax-cntry (] [*) : makes " behave as a left parenthesis
: which is matched by '
(modify-syntax-entry ")}]") ; makes '}’ behave as a right parenthesis
: which is matched by [’

move-to-comment-column [unbound]

If the cursor is not at the beginning of a line, ESC-C moves the cursor to the column specificd by the
comment-column variable by inserting tabs and spaces as needed. In any case, it the sets the right margin to
the column finally reached. This is usually used in macros for language-specific comments.

nargs [unbound]
An MLisp function which returns the number of arguments passed to the invoking MLisp function. For
example, within the execution of foo invoked by (foo x y) the value of nargs will be 2.

narrow-region ' [unhound]

The narrow-region command scts the restriction to encompass the region between dot and mark., Text
outside this region will henceforth be totally invisible. It won't appear on the screen and it won't be
manipulable by any editing commands. This can be uscful, for instance, when you want to perform a
replacement within a few paragraphs: just narrow down to a region enclosing the paragraphs and exccute
replace-string.

52

newline [unbound]
Just inserts a newline character into the buffer -- this is what the RETURN (tM) key is generally bound to.

newline-and-backup +0
Insert an end-of-linc immediatly affer dot, effectivly opening up space. If dot is positioned at the beginning
of aline, then 1O will create a blank line preceding the current line and position dot on that new line.

newline-and-indent LINEFEED

Insert a newline, just as typing RETURN does, but then insert enough tabs and spaces so that the newly
created line has the same indentation as the old one had. This is quite useful when you’re typing in « block of
program text, all at the same indentation level.

next-error tX+N

Take the next error message (as returned from the +XtE (compile) command), do a visit (+XtV) on the file
in which the error occurred and set dot to the line on which the crror occurred. The error message will be
displayed at the top of the window associated with the Error log buffer.

next-line tN
Move dot to the next line. *N and tP attempt to keep dot at the same horizontal position as you move
from linc to line. '

next-page ' tV

Reposition the current window on the current buffer so that the next page of the buffer is visible in the
window (where a page is a group of lines slightly smaller than a window). In other words, it flips you forward
a page in the buffer. Its inverse is ESC-V. If possible, dot is kept where it is, otherwise it is moved to the
middle of the ncw page.

next-window +XN
Switches to the window (and associated buffer) that is below the current window.

novalue [unbound]

Does nothing. (novalue) is a complete no-op, it performs no action and returns no value. Generally the
value of a function is the value of the last expression evaluated in it’s body, but this value may not be desired,
so (novalue) is provided so that you can throw it away.

page-next-window ' ESC-tVY

Repositions the window below the current onc (or the top onc if the current window is the lowest onc on
the screen) on the displayed buffer so that the next page of the buffer is visible in the window (where a page is
a group of lines slightly smaller than a window). In other words, it flips you forward a page in the buffer of
the other window.

If ESC-1V is given an argument it will flip the buffer backwards a page, rather than forwards. So ESC-tV
is roughly equivalent to tV and tUKSC-tV is roughly cquivalent to ESC-V cxcept that they deal with the

53

other window. Yes, yes, yes. I realize that this is a bogus command structure, but I didn't invent it. Besides,
you can learn to love it.

parse-error-messages-in-region [unbound]

Parses the region between dot and mark for error messages (as in the compile-it (+X1E) command) and sets
up for subsequent invocations of next-error (tXtN). See the description of the compile-it command, and
section 9 (page 6). ~

pause-emacs [unbound]

Pause, giving control back to the superior shell using thc job control facility of Berkeley Unix. The screen
is cleancd up before the shell regains control, and when the shell gives control back to EMACS the screen will
be fixed up again. Users of the sea-shell (csh) will probably rather use this command than "return-to-
monitor”, which is similar, except that it recursivly invokes a new shell.

pop-to-buffer [unbound]

Switches to a buffer whose name is provided and ties that buffer to a popped-up window. Pop-to-buffer is
exactly the same as switch-to-buffer except that switch-to-buffer ties the buffer to the current window, pop-to-
buffer finds a new window to tie it to.

preceding-char ‘ [unbound]

(preceding-char) is an MLisp function that returns the character immediatly preceding dot: The null
character (0) is returned if dot is at the beginning of the buffer. Remember that dot is not “at’ some character,
it is between two characters.

prefix-argument-loop ' [unbound]

e\ ~E . o

3 NArAa Pty) ~ st
(prefix-argument-loop ¢stat statemcnts> prclix-argument times cvery function

. “JLEAL
invocation is always prefixed by some argument, usually by Lhe user typing tUn. If no prcﬁx argument has
been’ provided, 1 is assumed. Sce also the command provide-prefix-argument and the variable prefix-

argument.

previous-command [unbound]

(previous-command) usually returns the character value of the keystroke that invoked the previous
command. In is somcthing like last-key-struck, which rcturns the keystroke that invoked the current
command. However, a function may set the variable this-command to some value, which will be the value of
previous-command after the next command invocation. This rather bizarre command/variable pair is
intended to be used in the implementation of MLisp functions which behave differently when chained
together (ic. exccuted onc after the other). A good cxample is 1K, kill-to-end-of-line which appcnds the text
from chained kills to the killbuffer.

To use this technique for a set of commands which are to exhibit a chaining behaviour, first pick a magic
number. -84, say. Then each command in this set which is chainable should
(setq this-command -84). Then to tell if a command is being chained, it suffices to check to sce if
(previous-command) returns -84,

54

Did I hear you scream “hack™”?

previous-line tP
Move dot to the previous line. tN and *P attempt to kecp dot at the same horizontal position as you move
from line to line.

previous-page : ESC-V

Repositions the current window on the current buffer so that the previous page of the buffer is visible in
the window (where a page is a group of lines slightly smaller than a window). In other words, it flips you
backward a pagc in the buffer. Its inverse is tV. If possible, dot is kept where it is, otherwise it is moved to
the middle of the new page.

previous-window +XP
Switches to the window (and associated buffer) that is above the current window.

print [unbound]
Print the value of the named variable. This is the command you use when you want to inquirc about the
setting of some switch or parameter.

process-oulput [unbound}
(process-output) -- Can only be called by the on-output-procedure to procure the output gencrated by the
process whose namc is given by MPX-process. Returns the output as a string.

process-status) [unbound]
(process-status "“process-name") -- Returns -1 if "process-name" isn’t a process, 0 if the process is stopped,
and 1 if the process is running.

2

progn A [unbound]

(progn expressions...) is an MLisp function that evaluates the expressions and returns the value of the last
expression evaluated. Progn is roughly equivalent to a compound statement (begin-end block) in more
conventional languages and is used where you want to execute scveral expressions when there is space for
only one (eg. the then or else parts of an ifexpression). '

provide-prefix-argument funbound]
(provide-prefix-argument Cvalue> <statementd>) provides the prefix argument <value> to the <statcment>.
For example, the most cfficicnt way to skip forward 5 words is:
(provide-prefix-argument 5 (forward-word))

Sec also the command prefix-argument-loop and the variable prefix-argument.

55

push-back-character [unbound]

Takes the character provided as its argument and causes it to be used as the next character read from the
keyboard. It is generally only uscful in MLisp functions which read characters from the keyboard, and upon
finding one that they don't understand, terminate and behave as though the key had been struck to the
EMACS keyboard command interpreter. For example, ITS style incremental search.

put-database-entry ' [unbound]
(put-database-entry dbname key) takes the current buffer and stores it into the named database under the
given key.

query-replace-string ESC-Q

Replace all occurrences of one string with another, starting at dot and ending at the end of the buffer.
EMACs prompts for an old and a new string in the minibuffer (the linc at the bottom of the screen). See the
section on searching, section 13 page 14 for more information on scarch strings. For cach occurrence of the
old string, EMACS rcquests that the user type in a character to tell it what to do (dot will be positioned just
after the found string). The possible replies are:

(space> Change this occurrence and continue to the next.
n Don’t change this occurrence, but continue to the next
r Enter a recursive-edit. This allows you to make some local changes, then continue
the query-replace-string by typing +C. -
! Change this occurrence and all the rest of the occurrences without bothering to
ask.
. Change this one and stop: don’t do any more replaces.
G Don't change this occurrence and stop: don’t do any more replaces.
? (or anything elsc) Print a short list of the query/replace options.
quietly-read-abbrev-file . [unbound]

Read in and define abbrevs appearing in a named file. This file should have been written using write-
abbrev-file. Unlike read-abbrev-file, an error message is not printed if the file cannot be found.

quit-process ’ [unbound]
(quit-process "process-name") -- Send a quit signal to the process.

quote-character +Q

Insert into the buffer the next character typed without interpreting it as a command. This is how you insert
funny characters. For example, to insert a tL (form feed or page break character) type +QtL. This is the only
situation where G isn’t interpreted as an abort character.

56

re-query-replace-string [unbound]

re-query-replace-string is identical to query-replace-string cxcept that the scarch string is a regular
expression rather than an uninterpreted sequence of characters. See the scction on scarching, section 13 page
14 for more information.

re-replace-string [unbound]

re-replace-string is identical to replace-string cxcept that the scarch string is a regular expression rather than
an uninterpreted scquence of characters. See the section on searching, section 13 page 14 for more
information.

re-search-forward [unbound]

re-search-forward is identical to search-forward except that the search string is a regular cxpression rather
than an uninterpreted sequence of characters. Sec the section on searching, section 13 page 14 for more
information.

re-search-reverse) [unbound]

re-search-reverse is identical to search-reverse except that the search string is a regular expression rather
than an uninterpreted sequence of characters. Sce the section on searching, section 13 page 14 for more
information.

read-abbrev-file [unbound]
Rcad in and define abbrevs appearing in a named file. This file should have been written using write-
abbrev-file. An crror message is printed if the file cannot be found.

read-file ' +XtR
Prompt for the name of a file; erasc the contents of the current buffer; read the file into the buffer and
associate the name with the buffer. Dot is sct to the beginning of the buffer.

recursion-depth [unbound]
Returns the depth of nesting within recursive-edir's. It returns 0 at the outermost level.

recursive-edit [unbound]

The recursive-edit function is a call on the keyboard read/intcrpret/execute routine. After recursive-edit is
called the user can enter commands from the keyboard as usual, except that when he exits EMACS by calling
exit-emacs (typing +C) it actually returns from the call to recursive-edit. This function is handy for packagcs
that want to pop into some state, let the user do some cditing, then when they're done perform some cleanup
and let the uscr resume. For example, a mail system could use this for message composition.

57

redraw-display) tL
Clear the screen and rewrite it. This is useful if some transmission glitch, or a message from a friend, has
messed up the screen.

region-around-maich [unbound]
Region-around-match sets dot and mark around the region matched by the last search. An argument of n

puts dot and mark around the n’'th subpattern matched by “\(’ and \). This can then be used in conjuction
with region-to-string to extract fields matched by a patter. For cxample, consider the following fragment that
extracts user names and host names from mail addresses:

(re-search-forward "\\([a-z][a-z]*\\) *@ *\\([a-z][a-z]*\\)")

{(region-around-match 1)

(setg username (region-to-string))

(region-around-match 2)

(setq host (region-to-string))
Applying this MLisp code to the text "send it to jag@vlsi” would set the variable ‘username’ to "jag" and

‘host’ to "visi”.

region-to-process : [unbound]
(region-to-process "process-name™) -- The region is wrapped up and sent to the process.

region-to-string ' * [unbound]
Returns the region betwcen dot and mark as a string. Please be kind to the storagc allocator, don’t use
huge strings.

remove-all-local-bindings [unbound]
Perform a remove-local-binding for all possible keys: cffectively undoes all local bindings. Mode packages
should execute this to initialize the local binding table to a clcan state.

remove-binding [unbound]
Removes the global binding of the given key. Actually, it just rebinds the key to illegal-operation.

remove-local-binding [unbound]

Removes the local binding of the given key. The global binding will subsequently be used when
interpreting the key. Bug: therc really should be some way of saving the current binding of a key, then
restoring it later.

replace-string ESC-R

Replace all occurrences of one string for another, starting at dot and ending and the end of the buffer.
EMACs prompts for an old and a new string in the minibuffer (the line at the bottom of the screcn). Unlike
query-replace-string EMACS doesn't ask any questions about particular occurrences, it just changes them. Dot
will be left after the last changed string. See the section on searching, scction 13 page 14 for more information
on scarch strings.

58

return-prefix-argument | [unbound]

(return-prefix-argument n) sets the numeric prefix argument to be used by the next function
invocation to n. The next function may be either the next function in the normal flow of MLisp execution or
the next function invoked from a keystrokc. Return-prefix-argument is to be used by functions that are to be
bound to keys and which are to provide a prefix argument for the next keyboard command.

return-to-monitor L

Recursivly invokes a new shell, allowing the user to enter normal shell commands and run other programs.
Return to EMACS by exiting the shell; ie. by typing *D.

save-excursion [unbound]

(save-excursion expressions...) is an MLisp function that cvaluates the given expressions and returns the
value of the last expression evaluated. It is much like progn except that before any expressions are executed
dot and the current buffer are "marked" (via the marker mechanism) then after the last expression is executed
dot and the current buffer are resct to the marked valucs. This properly takes into account all movements of
dot and inscrtions and deletions that occur. Save-excursion is useful in MLisp functions where you want to go
do something somewhere clse in this or some other buffer but want to return to the same place when you’re
done; for example, inserting a tab at the beginning of the current line.

save-restriction ‘ [unbound]

Save-restriction is only useful to people writing MLisp programs. It is uscd to save the region restriction for
the current buffer (and only the region restriction) during the execution of some subexpression that
presumably uscs region restrictions. The value of (save-excursion expressions...) is the value of
the last expression evaluated.

save-window-excursion [unbound]

save-window-excursion is identical to save-excursion cxcept that it also saves (in a rough sort of way) the
state of the windows. That is, (save-window-excursion expressions...) saves the current dot, mark, buffer and
window state, exccutes the expressions, restores the saved information and returns the value of the last
expression evaluated.

When the window statc is saved EMACS remembers which buffers were visible. When it is restored, EMACS
makes sure that exactly those buffers are visible. EMACS docs not save and restore the exact layout of the
windows: this is a feature, not a bug.

scroll-one-line-down ESC-Z

Repositions the current window on the current buffer so that the line which is currently the second to the
last line in the window becomes the last -- effectivly it moves the buffer down one line in the window. tZis
its inverse.

59

scroll-one-line-up t7
Repositions the current window on the current buffer so that the line which is currently the second line in
the window becomes the first -- effectivly it moves the buffer up one line in the window. ESC-Z is its inverse.

search-forward *S

Prompt for a string and scarch for a match in the current buffer, moving forwards from dot, stopping at the
end of the buffer. Dot is left at the end of the matched string if a match is found, or is unmoved if not. See
the section on searching, section 13 page 14 for morc information.

search-reverse . tR

Prompt for a string and scarch for a match in the current buffer, moving backwards from dot, stopping at
the beginning of the buffer. Dot is left at the beginning of the matched string if a match is found, or is
unmoved if not. Sce the scction on searching, section 13 page 14 for more information.

self-insert [unbound]
This is tied to those keys which are supposed to self-insert. It is roughly the same as
(insert-character (last-key-struck)) with the exception that it doesn’t work unless it is bound to a key.

send-string-to-terminal ~ [unbound]

(send-string-to-terminal “string") sends the string argumetn out to the terminal with no conversion or
interpretation. This should only be used for such applications as loading function keys when EMACS starts up.
If you screw up the screen, EMACS won't know about it and won't fix it up automatically for you -- you'll have
to type tL.

set [unbound]
Cot
e

-

ho valne O‘Pcr\mn ’

varina Tta Dvear~ec DTasa H S s sl o .
v Vs DULLIV Ydild i L I

MACS will ask for the name of a variabic and a valuc to

c

set it to. The variables control such things as margins, display layout options, the behavior of search
commands, and much more. The available variables and switches are described elsewhere. Note that if set is
used from MLisp the variable name must be a string: (set "left-margin” 77).

set-mark t@
Puts the marker for this buffer at the place where dot is now, and leaves it there. As text is inserted or
celeted around the mark, the mark will remain in place. Use tX1X to move to the currently marked position.

setq [unbound]
Assigns a ncw value to a variable. Variables may have cither string or integer values. (setq i S)setsito S:
(sctq s (concat "a" "b")) sets s to "ab".

60

shrink-window tXtZ
Makes the current window one line shorter, and the window below (or the one above if there is no window
below) one linc taller. Can't be used if there is only one window on the screen.

sit-for [unbound]
Updates the display and pauses for n/10 seconds. (sit-for 10) waits for onc second. This is uscful in such
things as a Lisp auto-parcn balencer.

split-current-window . X2

Enter two-window mode. Actually, it takes the current window and splits it into two windows, dividing the
space on the screen equally between the two windows. An arbitrary number of windows can be created -- the
only limit is on the amount of space available on the screen, which, sigh, is only 24 lincs on most terminals
available these days (with the notable exception of the Ann Arbor Ambassador which has 60).

start-filtered-process [unbound]

(start-filtered-process "command” "buffér-name” “on-output-procedure™) -- Docs the same thing as start-
process except that things are set up so that "on-output-procedure” is automatically called whenever output
has been received from this process. This procedure can access the name of the process producing the output
by refering to the variable MPX-process, and can retrieve the output itsclf by calling the procedure process-
oulpul.

The filter procedure must be careful to avoid generating side-effects (eg. search-forward).
Morcover, if it attempts to go to the terminal for information, output from other processes may he
lost.

start-process [unbound]

(start-process "command” "buffer-name”) -- The home shell is uscd to start a process executing the
command. This process is ticd to the buffer "buffer-name" unless it is null in which case the "Command
exccution” buffer is used. Output from the process is automatically attached to the end of the buffer. Each
time this is done, the mark is left at the end of the output (which is the end of the buffer).

start-remembering +X(
All following keystrokes will be remembered by EMACS.

stop-process [unbound]
(stop-process "process-name”) -- Tell the process to stop by sending it a stop signal. Usc continue-process
to carry on.

(o)
P

stop-remembering tX)
Stops remembering keystrokes, as initiated by tX(. The remembered keystrokes are not forgotten and may
be re-executed with tXE.

string-to-char [unbound]
Returns the integer value of the first character of its string argument. (string-to-char "0") = 0.

string-to-process [unbound]
(string-to-process “process-name"” "string”) -- The string is sent to the process.

substr [unbound]

(substr str pos n) returns the substring of string str starting at position pos (numbering from 1) and running
for n characters. If pos is less than 0, then length of the string is addced to it; the same is done for a.
(substr "kzin" 2 2) = "zi"; (substr "blotto.c" -22) = "c".

switch-to-buffer +XB

Prompt for the name of the buffer and associate it with the current window. The old buffer associated with
this window mercly loses that association: it is not erased or changed in any way. If the ncw buffer does not
exist, it will be created, in contrast with +X+QO.

system-nanie [unboimd]
Isan MLisp function that returns the name of the system on which EMACS is being run. This should be the
ArpaNet or EtherNet (or whatever) host name of the machine.

temp-use-buffer [unbound]

Switch to a named buffer without changing window associations. The commands pop-to-buffer and switch-
to-buffer both cause a window to be tied to the sclected buffer, temp-usc-buffer docs not. There are a couple
of problems that you must beware when using this command: The kcyboard command driver insists that the
buffer tied to the current window be the current buffer, if it sees a difference then it changes the current
buffer to be the one tied to the current window. This means that temp-usc-buffer will be incffective from the
keyboard, switch-to-buffer should be used instead. The other problem is that "dot” is really a rather funny
concept. Therc is a value of "dot” associated with each window, not with cach buffer. This is done so that
there is a valid interpretation to having the same bufTer visible in several windows. There is also a valuc of
"dot" associated with the current buffer. When you switch to a buffer with temp-usc-buffer, this "transient
dot” is what gets used. So, if you switch to another buffer, then use temp-use-buffer to get back, "dot” will
have been set to 1. You can use save-cxcursion to remember your position.

62

to-col [unbound]
(to-col n) is an MLisp function that inscrt tabs and spaces to move the following character to printing
column n.

transpose-characters +T

Take the two characters preceding dot and exchange them. One of the most common errors for typists to
make is transposing two lctters, typing "hte” when “the” is meant. +1 makes correcting these errors easy,
especially if you can develop a "+T reflex”.

unlink-file ' “mbound]
(unlink-file fn) attempts to unlink (remove) the filc named fir. It returns true if the unlink failed.

use-abbrev-table [unbound]

Scts the current local abbrev table to the one with the given name. Local abbrev tables are buffer specific
and are usually sct depending on the major mode. Scveral buffers may have the same local abbrev table. If
either the selected abbrev tablc or the global abbrev table have had some abbrevs defined in them, abbrev-
mode is turned on for the current buffer.

use-global-map [unbound]

(use-global-map "mapname") uses thc named map to be used for the global interpretation of all key
strokes. use-local-map is uscd to change the local interpretation of key strokes. Sce the scction on keymaps 14
page 16, for more information.

use-local-map [unbound]

(usc-local-map "mapnamc™) uscs the named map to be used for the local interpretation of all key strokes.
use-global-map is used to change the global interpretation of key strokes. See the scction on keymaps, 14 page
16, for more information.

use-old-buffer . +X10

Prompt for the name of the buffer and associate it with the current window. The old buffer associated with
this window merely loses that association: it is not erascd or changed in any way. The buffer must alrcady
exist, in contrast with +XB.

use-syntax-table [unbound]
Associates the named syntax table with the current buffer. Sec the description of the modify-syntax-cntry
command for more information on syntax tablcs.

63

users-full-name {unhound]
MLisp function that returns the users full name as a string. [Really, it returns the contents of the gecos ficld
of the passwd entry for the current user, which is used on many systems for the users full name.]

users-login-name [unbound]

MLisp function that returns the users login name as a string.

visit-file +X1Y

Visit-file asks for the name of a file and switches to a buffer that contains it. The file name is expandced to
it's full absolute form (that is, it will start with a '/°). If no buffer contains the file alrcady then EMACS will
switch to a new buffer and read the file into it. The name of this new buffer will be just the last component of
the file name (cverything after the last /" in the name). If therc is alrcady a buffer by that name, and it
contains some other file, then EMACS will ask "Enter a new buffer name or <CR> to overwrite the old buffer”.
For example, if my current directory is "/usr/jag/emacs” and [do a +XtV and give EMACS the file name
"../.emacs pro”then the name of the new buffer will be ".emacspro” and the file name will be
"/usr/jag/.cmacs_pro”. tXtV is the approved way of switching from one file to another within an invocation
of EMACS.

while ‘ - [unbound]

»

(while test expressions...) is an MLisp function that executes the given expressions while the test is true.

widen-region [unbound]
The widen-region command scts the restriction to cncompass the entire buffer. It is usualy used after a
narrow-region to restore EMACS's attention to the whole buffer.

working-directory [unbound]
Returns the pathname of the current working directory.

wriie-abbrev-file [unbound]
Writc all defincd abbrevs to a named file. This file is suitablc for reading back with read-abbrev-file.

write-current-file +XtS
Write the contents of the current buffer to the file whose name is associated with the buffer.

write-file-exit tXtF
Write all modified buffers to their associated files and if all goes well, EMACS will exit.

64

write-modified-files tXtM
Write cach modificd buffer (as indicated by +XtB) onto the file whose name is associated with the buffer.
EMACS will complain if a modified buffer does not have an associated file.

write-named-file tXtW
Prompt for a name; write the contents of the current buffer to the named file.

yank-buffer ESC-tY
Take the contents of the buffer whose name is prompted for and insert it at dot in the current buffer. Dot
is left after the inserted text. '

yank-from-killbuffer 1Y
Take the contents of the kill buffer and inserts it at dot in the current buffer. Dot is left after the inscrted
text.

/ . [unbound]
(I ¢, e,) MLisp function that returns e, | ey

21. ‘Options

This chapter describes (in alpahbctical order) all of the variables which the user may sct to configure
EMACS to taste. :

ask-about-buffer-names

The ask-about-buffer-names variable contréls what the visit-file command docs if it dctects a collision when
constructing a buffer name. If ask-about-buffer-names is true (the dcfault) then Emacs will ask for a new
buffer name to be given, or for <CR> to be typed which will overwrite the old buffer. If it is false then a
buffer name will be synthesized by appending "<m>" to the buffer name, for a unique value of n. For
example, if I visit-file "makefile” then the buffer name will be "makefile”; then if 1 visit-file "man/makefile”
the buffer name will be "makefile<2>",

backup-by-copying

If true, then when a backup of a file is made (sec the section on the backup-before-writing variable) then
rather than doing the fancy link/unlink footwork, EMACS copies the original file onto the backup. This
preserves all link and owner information & ensures that the files I-number doesn’t change (you're crazy if you
worry about a files [-number). Backup-by-copying incurs a fairly heafty performance penalty. Scc the scction
on the backup-by-copying-when-linked variable for a description of a compromise. (default OFF)

05

backup-by-copying-when-linked

If true, then when a backup of a file is made (see the scction on the backup-before-writing variable) then if
the link count of the file is greater than 1, rather than doing the fancy link/unlink footwork, EMACS copies the
original file onto the backup. If the link count is 1, then the link/unlink trick is pulled. This prescrves link
information when it is important, but still manages rcasonable performance the rest of the time. Sce the
scction on the backup-by-copying variable for a description of a how to have owner & I-number information
preserved. (default OFF) :

backup-when-writing

If ON EMACs will make a backup of a file just before the first time that it is overwritten. The backup will
have the same name as the original, except that the string ".BAK" will be appended; unless the last name in
the path has more than 10 characters, in which case it will be truncated to 10 characters. "foo.c” gets backed
up on "foo.c.BAK"; "/usr/jag/foo.c" on "/ust/jag/foo.c.BAK™: and "EtherScrvice.c” on "EtherServi.BAK",
The backup will only be madc the first time that the file is rewritten from within the same invocation of
EMACs, so if you write out the file several times the .BAK file will contain the file as it was before EMACS was
invoked. The backup is normally made by fancy footwork with links and unlinks, to achieve acceptable
performance: when "foo.c™ is to be rewritten, EMACS cffectivly executes a "mv foo.c foo.c.BAK" and then
creates foo.c a write the new copy. The file protection of foo.c is copicd from the old foo.c, but old links to
the file now point to the .BAK file, and the owner of the new file is the person running EMACS. If you don’t
like this behaviour, sec the switches backup-by-copying and backup-by-copying-when-linked. (default OFF)

buffer-is-modified

Buffer-is-modified is truc iff the current buffer has been modified since it was last written out. You may
set if OFF (ic. to 0) if you want EMACS to ignore the mods that have been made to this buffer -- it doesn't get
you back to the unmodificd version, it just tells EMACS not to write it out with the other modified files.
EMACs sets buffer-is-modificd true any time the buffer is modificd.

case-fold-search
If sct ON all searches will ignore the case of alphabetics when doing comparisons. (dcfault OFF)

checkpoint-frequency

The number of keystrokes between checkpoints. Every "checkpoint-frequency” keystrokes all buffers
which have been modified since they were last checkpointed are written to a file named "file. CKP". File is
the file name associated with the buffer, or if that is null, the name of the buffer. Proper account is taken of
the restriction on file names to 14 characters. (dcfault 300)

comment-column
The column at which comments are to start. Used by the language-dependent commenting features
through the move-to-comment-column command. (default 33)

66

ctichar-with-1

If sct ON control characters are printed as +C (an 't character followed by the upper case alphabetic that
corresponds to the control character), otherwise they are printed according to the usual Unix convention ('\’
followed by a three digit octal number). (default OFF)

default-case-fold-search

Default-case-fold-search provides the default value for case-fold-search, which is used whenever a new
buffer is created. (default OFF)

default-comment-column
Default-comment-column provides the default value for comment-column, which is used whenever a new
buffer is created. Its initial value is 33.

default-left-margin
Default-left-margin provides the default value for left-margin, which is used whenever a new buffer is
created. (default 1) ’

default-mode-line-format A
This is the value given to mode-line-format when a buffer is created.

default-right-margin
Default-right-margin provides the default value for right-margin, which is used whenever a new buffer is
created. Its initial value is some very large number.

default-tab-size
This is the value given to tab-size when a buffer is created. (default 8).

files-should-end-with-newline

Indicates that when a buffer is written to a file, and the buffer doesn’t end in a newline, then the user
should be asked if they want to have a newline appended. It used to be that this was the default action, but
somc pcople objected to the question being asked. (default ON)

global-mode-string
Global-mode-string is a global variable used in the construction of mode lines see scction 16, page 18 for
more information.

67

help-on-command-completion .
If ON EMAcCs will print a list of possibilities when an ambiguous command is given, otherwise it just rings
the bell and waits for you to type more. (default ON)

left-margin
The left margin for automatic text justification. After an automatically gencrated newline the new line will
be indented to the left margin.

mode-line-format
mode-line-format is a buffer specific variable used to specify the format of a mode line. Sce scction 16, page
18 for more information.

mode-string
Mode-string is a buffer specific variable uscd in the construction of mode lines see section 16, page 18 for
more information,

needs-checkpointing
A buffer-specific variable which if ON indicates that the buffer should be checkpointed periodically. Ifit is
OFF, then no checkpoints will be done. (default ON)

pop-up-windows

If ON Emacs will try to use some window other than the current one when it spontancously generates a
buffer that it wants you to sce or when you visit a file (it may split the current window). If OFF the current
window is always used. (dcfault ON)

prefix-argiiment

Every function invocation is always prefixed by a numeric argument, cither explicitly with +Ux or provide-
prefix-argument. The value of the variable prefix-argument is the argument prefixed to the invocation of the
current MLisp function. For example, if the following function:

(defun
(show-it
message (concat "The prefix argument is " prefix-argument
9

)
were bound to the key tA then typing tUtA would cause the message “The prefix argument is 47 to be
printed, and t1U13tA would print “The prefix argument is 13”. Sec also the commands prefix-argument-loop
and provide-prefix-argument.

68

prefix-argument-provided
Truc iff the execution of the current function was prefixed by a numeric argument. Usc prefix-argument to
get it's value.

prefix-string
The string that is inserted after an automatic newline has been generated in responsc to going past the right
margin. This is generally used by the language-dependent commenting features. (default ")

quick-redisplay

If ON EMACS won't worry so much about the case where you have the same buffer on view 1 several
windows -- it may let the other windows be inaccurate for a short while (but they will eventually be fixed up).
Turning this ON specds up EMACS substantially when the same buffer is on view in several windows. When
it is OI'F, all windows are always accurate. (default OFF)

replace-case

If ON EMACs will alter the casc of strings substituted with replace-string or query-replace-string to match
the casc of the original string. For example, replacing "which" by “that” in the string "Which is silly" results
in "That is silly”; in the string "the car which is red” results in "the car that is red"”; and in the string
"WHICH THING?" results in "THAT THING?".

right-margin

The right margin for automatic text justification. If a character is inserted at the end of a line and to the
right of the right margin EMACS will automatically inscrt at the beginning .of the preceding word a newline,
tabs and spaces to indent to the left margin, and the prefix string. With the right margin set to something like
(for cg.) 72 you can type in a document without worrying about when to hit the retuni. key, EMACS will
automatically do it for you at exactly the right place.

scroll-step

The number of lines by which windows arc scrolled if dot moves outside the window. If dot has moved
morc than scroll-step lines outside of the window or scroll-step is zero then dot is centered in the window.
Otherwisc the window is moved up or down scroll-step lincs. Setting scroll-step to 1 will cause the window to
scroll by 1 line if you'rc typing at the end of the window and hit RETURN.

silently-kill-processes

If ON EMAcs will kill processes when it exits without asking any questions. Normally, if you have
processes running when EMACS cxits, the question "You have processes on the prowl, should I hunt them
down for you" is asked. (dcfault OFF)

69

stack-trace-on-error

If ON EMACS will write a MLisp stack trace to the "Stack trace” buffer whenever an error is encountered
from within an MLisp function (cven inside an error-occured). This is all there is in the way of a debugging
facility. (default OFF)

tab-size <

A buffer-specific variable which specifies the number of characters between tab stops. It's not clear that
user specifiable tabs are a good idea, since the rest of Unix and most other DEC styled operating systems have
the magic number 8 so deeply wired into them. (default 8)

this-command
The meaning of the variable this-command is tightly intertwined with the meaning of the function previous-
command. Look at its documentation for a description of this-command.

track-eol-on-tN-t P
If ON then tN and tP will "stick"” to the end of a linc if they arc started there. If OFF +N and +P will try
to stay in the same column as you move up and down even if you started at the end of a line. (default ON)

unlink-checkpoint-files “

If ON EMACs will unlink the corresponding checkpoint file after the master copy is written -- this avoids
having a lot of .CKP files lying around but it does compromise safety a little. For example, as you're editing a
file called "foo.c” EMACS will be periodically be writing a checkpoint file called "foo.c.CKP" that contains all
of your recent changes. When you rewrite the file (with +XtF or +X*S for cxample) if unlink-checkpoint-
files is ON then the .CKP file will be unlinked, otherwisc it will be left. (dcfault OFF)

visible-bell

If ON EMACs will attempt to usc a visible bell, usually a horrendous flashing of the screen, instcad of the
audible bell, when it is notifying you of some error. This is a more "socially acceptable™ technique when
people arc working in a crowded terminal room. (default OFF)

wrap-long-lines

If ON EMACs will display long lincs by "wrapping" their continuation onto the next line (the first line will
be terminated with a*\"). If OFF long lincs get truncated at the right edgc of the screen and a '$’ is display to
indicate that this has happened. (dcfault OFF)

22. Command summary

Key . Binding *F forward-character

+@ set-mark +G illegal-operation

tA beginning-of-linc tH delcte-previous-character
+B backward-character +I self-insert

tC exit-emacs tJ ncwline-and-indent

+D delete-next-character tK kill-to-end-of-line

tE end-of-line +L redraw-display

70

M

tN

t0

tP

*Q

1314

tS

+T

tU

tV

W

+X
+X-tB
tX-1C
1+X-tD
+X-+E
+X-¢F
+X-t1
tX-tM
+X-tN
tX-10
tX-tR
+X-1S
+X-tV
+X-tW
tX-1X
tX-tZ
+X-!
+X-(
X-)
1X-1
tX-2
+X-b
tX-d
tX-¢
tX-m
tX-n
+X-p
+X-r
tX-z
tY

+Z
ESC
ESC-1C
ESC-tv
ESC-tW
ESC-1Y
ESC-ESC
ESC-1t
ESC-!
ESC-,
ESC--
ESC-.

newline

next-line
newline-and-backup
previous-line
quote-character
search-reverse
search-forward
transpose-characters
argument-prefix
next-page
delete-to-killbuffer
+X-prefix
list-buffers
exit-cmacs
describe-word-in-buffer
compile-it
write-file-exit
insert-file
write-modified-files
next-crror
use-old-buffer
read-file
write-current-file
visit-file
write-named-f{ile
exchange-dot-and-mark
shrink-window

execute-monitor-command

start-remembering
stop-remembering
delcte-other-windows
split-current-window
switch-to-buffer
delete-window

execute-keyboard-macro

smail

next-window
previous-window
mail

enlarge-window
yank-from-kilibufTer
scroll-one-line-up
ESC-prefix
exit-emacs
page-next-window
delcte-region-to-buffer
yank-buffer
exccute-mlisp-line-
case-region-invert
line-to-top-of-window
beginning-of-window
meta-minus
end-of-window

ESC-0..ESC-9 meta-digit

ESC<
ESC->
ESC-?
ESC:{
FSC:}
ESC-t

beginning-of-file -
end-of-file

apropos
backward-paragraph
forward-paragraph
case-word-invert

ESC-a
ESC-b
ESC-d
ESC-e
ESC-f
ESC-h
ESC:j

ESC-I

ESC-q
ESC-r
ESC-u
ESC-v
ESC-x
ESC-z
1 —

i
0.9

b
eoe’

+?

backward-sentence
backward-word
delete-next-word
forward-sentence
forward-word
dclete-previous-word
indent-C-procedure
case-word-lower
query-replace-string
replace-string
case-word-upper
previous-page
exccute-extended-command
scroll-one-line-down
return-to-monitor
self-insert

minus

self-insert

digit

self-insert .
delete-previous-character

Index

Beginning-of-window 36

' 32 Bind-to-key 9, 16, 36, 44, 50
= 32 Bobp 37
Bolp 37
% 32 Buff 23
Buffer list 23
& 32 Buffer-is-modified 65
&Default-Transpose-Direction 31 Buffer-size 37
&Default-Transpose-Follow 31
&Default-Transpose-Magic 31 C-mode 37
&Occurances-Extra-Lines 2§ C= 37
Capitalize-word 23 .
* 3 Capword 23
‘ Case-fold-scarch 37, 65, 66
+ 32 Case-region-capitalize 37
Case-region-invert 37
-3 Casc-region-lower 37
Casc-region-upper 37
/ 33 Case-word-capitalize 37, 50
Casc-word-invert 37
<33 Case-word-lower 23, 38
« 33 Case-word-upper 23, 38
<= 33 Cd 26
Changc-current-process 20, 38
=3 Change-directory 38
Char-to-string 38
>33 Checkpoint-frequency 65
>= 33 Clock 31
» 33 Command prefix (also knmvnasM[;'l'A) 38
Command-prefix 38
Abbrev-mode 8, 62 Comment-column 24, 51, 65, 66
Abort-opcration 33 Compile-it 38
Active-process 20, 34 Concat 39
Append-region-to-buffer 34 Continue-process 20, 21, 39, 60
Append-to-file 34 Copy-region-to-buffer 39
Appply-look 29 Ctlchar-with-+ 66
Apropos 5, 34 Current-buffer-name 39
Arg 34 Current-column 39
Arge 34 Current-file-name 39
Argument-prefix 34 Current-indent 39
Argv 35 Current-process 20, 39
Ask-about-buffer-names 64 Current-time 39
Auto-exccute 35
Autoload 35 Declare-global 10, 39
Default-case-fold-search 66
Backup-before-writing 64, 65 Default-comment-column 66
Backup-by-copying 64, 65 Default-left-margin 66
Backup-by-copying-when-linked 64, 65 Default-mode-line-format 19, 66
Backup-when-writing 65 Default-right-margin 66
Backward-balanced-paren-line 35 Default-tab-size 66
Backward-character 35 Define-buffer-macro 40, 43
Backward-paragraph 36 Define-global-abbrev 8, 40
Backward-paren 36 Definc-keyboard-macro 9, 40, 44
Backward-sentence 36 Define-keymap 16, 40
Backward-word 36 - Define-local-abbrev 8, 40
Baud-rate 36 . Definc-string-macro 8, 40, 44
Begin-C-comment 24 Defun 11,40
Beginning-of-file 36 Dclete-buffer 40

Beginning-of-line 36 Delete-macro 41

72

Delete-next-character 41
Delete-next-word 41
Delete-other-windows 41
Delete-previous-character 41
Delete-previous-word 41
Delcte-region-t3-buffer 41
Delete-to-killbuffer 41
Delete-white-space 41
Delete-window 42
Deleting files 24
Describe-bindings §, 42
Describe-command §, 42
Describe-key 5, 42
Describe-variable 42
Describe-word-in-buffer 42
Digit 42

Directory 26

Dired 24
Display-filc-percentage 36
Dot 42
Dump-syntax-table 43, 50

Edit-macro 40, 43

Electricc 8

End-C-comment 24
End-of-file 43

End-of-line 43
End-of-window 43
Enlarge-window 43

Eobp 43

Eolp 43

Eot-process 20, 43
Erase-buffer 43

Erase-region 43
Error-message 44
Error-occurcd 44, 69
Exchange-dot-and-mark 44
Execute-extended-command 44
Execute-keyboard-macro 8, 44
Execute-mlisp-buffer 44
Execute-mlisp-line 44
Execute-monitor-command 44
Exit-emacs 45
Expand-mlisp-variable 45, 47
Expand-miisp-word 45, 47
Extend-databasc-search-list 23, 45

Fetch-database-entry 23, 45
File-exists 45
Files-should-end-with-newline 66
Filter-region 45
Following-char 45
Forward-balanced-parcn-line 46
Forward-character §, 46
Forward-paragraph 46
Forward-paren 46, 50
Forward-scntence 46
Forward-word 46, 50

Get-tty-buffer 46

Get-tty-character 47
Get-tty-command 47
Get-tty-string 47
Get-tty-variable 47
Getenv 47
Global-mode-string 19, 66
Goto-character 47
Goto-line 25
Goto-percent 25
Grab-last-line 26

Help facilities §, 22, 28, 44, 67
Help-on-command-completion 67

If 47

[llegal-operation 47, 57
Indent-C-procedure 24, 48
Index-entry 29

Info 25
Insert-character 48
Insert-file 48
Insert-string 48
Int-process 20, 48
Intcractive 48
Is-bound 48

Justify-paragraph 29', 48

Kill-process 20, 48
Kill-to-end-of-linc 48

Last-key-struck 49
Left-margin 66, 67
Length 49
Line-to-top-of-window 49
Lisp 25
Lisp-kill-output 26
List-buffers 49
List-databases 23, 49
List-processes 21, 49
Load 49
Local-bind-to-key 16, 50
Looking-at 14, 50

Mail, sending and receiving 26
Mark 50

Message 50

Mode lines 3, 18, 66, 67
Mode-line-format 19, 67
Mode-string 19, 67
Modify-syntax-entry 50, 62
Move-to-comment-column 51, 65

Nargs 51
Narrow-region 18, 51
Nceds-checkpointing 67
Newline 52
Newline-and-backup 52
Newlinc-and-indent 52
Next-error 52

Next-line 52
Next-page 52
Next-window 52
Novalue 52

Occur 25

Occurances 25

Occurancesof a string 25
On-output-procedure 21, 54, 60
One-line-buffer-list 23

Page-next-window 52
Parse-error-messages-in-region 53
Pause-emacs 53

Pop-to-buffer 53, 61
Pop-up-windows 67

Pr-newline 26

Preceding-char 53

Prefix arguments 34, 53, 54, 58, 67, 68
Prefix-argument 53, 54, 67
Prefix-argument-loop 53, 54, 67
Prefix-argument-provided 68
Prefix-string 68
Previous-command 53
Previous-linc 54

Previous-page 54
Previous-window 54

Print 54

Process-output 21, 54
Process-status 21, 54

Processes, high level access 25
Progn 10, 54
Provide-prefix-argument 53, 54, 67
Push-back-character 55
Put-database-entry 23, 55

Pwd 26

Query-replace-string 14, 55, 68
Quick-redisplay 68
Quietly-read-abbrev-file 8,55
Quit-process 21, 55
Quote-character S5

Re-query-replace-string 14, 56
Re-replace-string 14, 56
Re-scarch-forward 14, 56
Re-search-reverse 14, 56
Read-abbrev-file 8, 55, 56, 63
Read-file 18, 35, 56

Rcading mail 27

Receiving mail 27
Recursion-depth 56
Recursive-edit 18, 56
Redraw-display 57

Region restrictions 18, 51, 58, 63
Region-around-match 57
Region-to-process 21, 57
Region-to-string 57
Remove-all-local-bindings 57
Remove-binding 57

73

Remove-local-binding 57
Replace-case 68
Replace-string 14, 18, 57, 68
Return-prefix-argument 58
Return-to-monitor 53, 58
Right-margin 66, 68

Save-excursion 58, 61
Save-restriction 18, 58
Save-window-excursion 58
Scribe mode 29
Scribe-command 29
Scroll-one-line-down 'S8
Scroll-one-line-up 59
Scroll-step 68
Search-forward 14, 59
Search-reverse 14, 59
Self-insert 59

Send-cot 26
Send-int-signal 26
Send-quit-signal 26
Send-string-to-lerminal $9
Sending mail 27

Set 59

Set-mark 59

Setq 59

Shell 25

Shrink-window S, 60
Silently-kill-processes 21, 68
Sit-for 60

Spell 30
Split-current-window 60
Stack-trace-on-crror 69
Start-filtercd-process 21, 60
Start-process 21, 60
Sart-remembering 8, 60
Stop-process 20, 21, 39, 60
Stop-remembering 8, 61
String-to-char 61
String-to-process 22, 61
Substr 61
Switch-to-buffer 10, 53, 61
System-name 61

Tab-size 69
Temp-use-buffer 61
Text-mode 31
This-command 69
Time 31

To-col 62
Track-col-on-tN-tP 69
Transp 31
Transpose-characters 62
Transpose-line 31
Transpose-word 31

Unlink-checkpoint-files 69
Unlink-file 62
Usc-abbrev-table 8, 40, 62
Usc-global-map 16, 62

74

Use-local-map 16, 62
Usc-old-buffer 62
Use-syntax-table 50, 62
Users-full-name 63
Users-login-name 63

Visible-bell 69
Visit-file 9, 35, 63

While 63)
Widen-region 18, 63
Word-mode-search 37
Working-directory 63
Wrap-long-lines 69
Write-abbrev-file 8, S5, 56, 63
Write-current-file 18, 63
Write-file-exit 63
Write-modified-files 64
Write-named-file 64
Write-region-to-file 32

Yank-buffer 64
Yank-from-killbuffer 64

+ 33

| 64

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74

