; < >HYDRA.MANUAL ;1 SAT 1-FEB-75 12:20AM

00050
00100
00150
- 00200
00250
00300 _ HYDRA USER'S MANUAL
00350
00400 (Preliminary Version)
00450
00500
00550 E11is Cohen (Editor)
00600 Dave Jefferson
00650 Tom Lane
00700 Roy Levin
006750 Fred Pollack
00800 Bill Wulf
00850
00900
00950 Dept Computer Science
01000 Carnegie Mellon University
01050
01100 Nov 1974
01150
01200 This is a preliminary version of the Hydra Manual
01250 for friends. Please report any corrections
01300 or comments to E11is Cohen [N810EC03]@CMUA
01350
01400
01450
01500 This work was supported by the Advanced Research Projects
01550 Agency of the Department of Defense under contract no.
01600 F44620~73-C-0074 and monitored by the Air Force Office of
01650 Scientific Research. :
01700

L

00050
00100
00150
00200
00250
00300
00350
00400
00450
00500
00550
00600
00650
00700
00750
00800
00850
00300
00950
01000
01050
01100
01150
01200
01250
01300
01350
L

.SEC |INTRODUCTION]

This document is a user’'s manual for the HYDRA Kernel. A certain
amount of tutorial material can be found in the manual. Readers with a
sketchy background in protection are advised to first read the HYDRA
article in the CACM.

We want to stress strongly that HYDRA is not by itself an Operating
System in the usual sense, rather it augments the PDP-11 to provide a
well-protected basis on which an Operating System can be built.
Hence, HYDRA is known as the KERNEL of an Operating System. In fact,
many different Operating Systems can be running on HYDRA
simultaneously. A standard System is available and is the one that a
user initially interacts with when she logs in. This standard system
is described in a separate document. .

HYDRA provides a software virtual machine implemented on C.mmp
(Carnegie Multi-Mini Processor, though "C." actually stands for
"Computer"), a network of PDP-11 processors. The virtual machine
instructions are known as KALLs (Kernel cALLs). They are described in
terms of a standard set of BLISS-11 Macros (available on
HYKALL.R11[N810HY00]). Hence, no knowledge of the PDP-11 is necessary
to understand much of the contents of this manual. The Appendix
contains a listing of HYKALL.R11 as well as examples of the machine
code calling sequence for various KALLs.

00050
00100
00150
00200
00250
00300
00350
00400
00450
00500
00550
00600
00650
00700
00750
00800
00850
00900
60950
01000
01050
01100
01150
01200
01250
01300
01350
01400
01450
01500
01550
01600
01650
01700
01750
01800
01850
01900
01950
02000
02050
02100
02150
02200
02250
02300
02350
02400
02450
02500
02550
02600
02650
02700

.SEC |THE BASIC KERNEL]
.SUBSEC |A CAPABILITY SYSTEM|

The HYDRA Kernel provides an execution environment in which
protection plays a key part. In some systems, FILEs are the units of
protection, in others, SEGMENTS. 1In HYDRA, the basis of protection is
an entity called an OBJECT.

Many traditional operating systems are 'Access Control Systems';
that is, protection information is associated with the Object being
protected. For example, in the PDP-10 TOPS Operating System, when an
executing procedure tries to open a file (using an ASCII encoding of
the file name), the access key associated with the file is checked.

HYDRA, on the other hand, is a 'Capability System'. As we noted, the
basis of protection in HYDRA is an entity called an OBJECT, and the
protection system is invoked to determine whether particular accesses
to Objects will be allowed. In a Capability System, associated with
each executing Procedure is a C-List, a 1ist of Capabilities; each
Capability contains the name of an Object and a set of Rights which
determine how that Object may be accessed by the executing procedure.

Each different Object is assigned a unique name by the Kernel.
Rather than showing 'real' unique names in diagrams, (represented
internally by unique 64 bit combinations), we will instead substitute
unique alphanumeric names for pictorial clarity.

In HYDRA, Objects are Typed. Examples of Types built into HYDRA
{(called Kernel Types) are PAGEs, DEVICEs and PROCESSes. There is also
a facility to allow the creation of new user types. Certain types
represent physical resources (e.g. Objects of Type DEVICE represent
actual devices; one may represent a disk, another a line printer,
etc.), but in general, Types represent abstractions of resources, both
physical and virtual, and Objects of such a Type have meaning only in
terms of their 'Representation' and how that representation is
accessed and manipulated.

HYDRA is a paged system. When a procedure executes, its code (and
directly accessible data) is contained in pages represented by PAGE
Objects. Capabilities for these PAGE Objects must be in the C~List of
the executing procedure. The Paging Section describes how to indicate
to the Kernel which of these should be made directly addressable.

In HYDRA, an executing Procedure is a distinct type of Object,
called an LNS (Local Name Space) and differs from the Type
representing its static counterpart, a PROCEDURE. PROCESS Objects are
the scheduling entities of the Kernel. Each running Process has an
LNS associated with it which determines the 'Environment’' in which the
process runs. HYDRA provides a CALL Mechanism to change environments
- by associating a different LNS with a process.

.SUBSEC |OBJECTS, CAPABILITIES AND PATHS|

02750
02800
02850
02900
02950
03000
03050
03100
03150
63200
03250
03300
03350
03400
03450
03500
03550
03600
03650
03700
03750
03800
03850
03900
03950
04000
04050
04100
04150
04200
04250
04300
043590
04400
04450
04500
04550
04600
04650
04700
04750
04800
04850
04900
04950
05000
05050
05100
05150
05200
05250
05300
05350
05400

Every type of Object has two parts,a C-List containing a list of
Capabilities, and a Data-Part containing data. The C-List and
Data-Part of an Object together comprise its 'Representation’'."

Both the C-List and Data-Part are linearly ordered, based at 1. The
maximum number of Capabilities in a C-List and the maximum length of a
Data-Part varies from type to type. The Appendix contains those
numbers for Kernel types. Since C-Lists are linearly ordered, we will
often refer to a Capability as being in the k'th 'Slot’ of a C-List.

As examples, consider the representation of some Kernel Objects: A
PAGE Object contains an empty C-List and its Data-Part contains the
Tocation of the page (Disk, Drum or Core address) and its status. The
Data-Part of a Device Object contains a code identifying the device.
The Data-Part of an LNS contains (among other things) trap addresses,
a mask of processors on which the LNS may execute, and paging
information, while the C-List of the LNS contains the Capabilities
which define the 'Environment' of the LNS.

There are facilities for creating new Types of Objects as well as
for creating Objects of existing types and erasing them. For example,
a user might create a new Type of Object, a FILE, whose C-List might
contain Capabilities for PAGEs and whose Data-Part might contain
information about the file (it could even be used to hold access keys
as part of a system that could provide file access checking in a way
similar to that of the PDP-10 TOPS monitor). Or a user might create a
DIRECTORY Type. Objects of type DIRECTORY might have a C-List
containing Capabilities for FILEs and other DIRECTORYs. This could be
used to build up an hierarchical FILE system similar to the one in
MULTICS.

C~Lists and Data-Parts can only be accessed and manipulated through
the Kernel via KALLs. The Kernel provides some very basic Kalls that
do the following kinds of things: Delete Capabilities from the C-List
of some Object, Move a Capability from the C-List of one Object to the
C-List of another Object (perhaps the same) (with or without deleting
the first Capability) and move data to and fro between the Data-Part
of some Object and directly addressable memory. Of course, we again
stress that these operations cannot be performed on arbitrary objects,
rather, the executing LNS must have a Capability for the Object to be
accessed.

Most KALLs require some arguments which specify Capabilities. 1In
the simplest case, these are denoted by SIMPLE INDEXes into the C-List
of the LNS. For example, there is a KALL, 'DELETE', and DELETE (3)
Kalls the Kernel to eliminate the 3rd Capability in the LNS executing
that KALL. Often, the Kernel will allow a Capability to be denoted by
a PATH INDEX (See Diagram 2). For example, DELETE (Path(3,4,2,1))
will delete the 1st Capability in the Object referenced by the 2nd
Capability in the the Object referenced by the 4th Capability in the
Object referenced by the 3rd Capability in the executing LNS. The
Capability deleted is called the TARGET of Path(3,4,2,1). The
Capability denoted by Path(3,4,2) is called the PRETARGET and the

05450
05500
05550
05600
05650
05700
05750
05800
05850
05900
05950
06000
06050
06100
06150
06200
06250
06300
06350
06400
06450
06500
06550
06600
06650
06700
06750
06300
06850
06900
06950
07000
07050
07100
07150
07200
07250
07300
07350
07400
07450
07500
07550
07600
07650
07700
07750
07800
07850
07900
07950
08000
08050
08100

Capabilities denofed by Path(3,4) and 3 are calied STEPS. (Note: the
denotation Path(3) is the same as just 3; such paths are called
Simple)

.SUBSEC |KERNEL RIGHTS AND RIGHTS RESTRICTION]

As we noted, HYDRA implements basic protection through a set of
rights. The right to perform some class of accesses (via KALLs of
course) with respect to a Capability is determined by the presence of
a particular bit in the Rights field of a Capability. (For a listing
of all rights and respective bits, see the Appendix) The following is
a description of the rights relevant to basic The following is a
description of the rights relevant for basic Kernel Kalls. 1In
describing these rights, we consider the effect of Capability CAP
having the right in question. If CAP is an Object Reference, we write
0BJ as a shorthand for the Object Referenced by CAP.

Capability Rights

DLTRTS - Allows CAP to be Deleted

ENVRTS - Allows CAP to be Stored in some Object
C-List Rights

LOADRTS - Allows a Capability to be Loaded from 0OBJ's C-List

STORTS - Allows a Capability to be Stored into OBJ's C-List

APPRTS - Allows a Capability to be Appended onto 0BJ's C-List

KILLRTS - Allows a Capability to be Deleted from 0BJ's C-List

Data-Part Rights

GETRTS - Allows data to be gotten from OBJ's Data-Part

PUTRTS - Allows data to put into 0BJ's Data-Part

ADDRTS - Allows data to be appended onto 0BJ's Data-Part

Restriction Rights

MDFYRTS - Allows modification of either OBJ's C~-List or Data-Part

UCNFRTS - Allows 0OBJ to be 'UnCoNFined', that is, an Object
accessed through 0BJ may be modified.

Some examples:

DELETE (3) (The Capability denoted by) 3 requires DLTRTS

DELETE (Path(3,4)) 3 requires KILLRTS & MDFYRTS,

08150
08200
08250

08300
08350
08400
08450
08500
08550
08600
08650
08700
08750
08800
08850
08300
08950
09000
039050
09100
09150
09200
09250
09300
09350
09400
09450
09500
09550
09600
09650
09700
09750
09800
09850
09900
09950
09955
09960
09965
09970
09975
10000
10050
10100
10150
10200
10250
10300
10350
10400
10450
10500

Path(3,4) requires DLTRTS
DELETE (Path(3,4,2,1)) 3 and Path(3,4) require LOADRTS & UCNFRTS
. *%

Path(3,4,2) requires KILLRTS & MDFYRTS,
Path(3,4,2,1) requires DLTRTS

LOAD(x,y) is a KALL which moves the Capability at y to x, retaining
the Capability at y. x must be a Simple Index.

LOAD (4, Path(3.4.,2)) 3 requires LOADRTS
Path(3,4) requires LOADRTS
4 must be an empty slot

Note that when a Capability is moved, it picks up DLTRTS, while
the other rights remain the same as in the original.

TAKE(x,y) is just 1ike LOAD but also deletes the Capability at y.

TAKE (5, Path(3,4,3)) 3 requires LOADRTS & UCNFRTS
Path(3,4) requires LOADRTS,
MDFYRTS & KILLRTS
Path(3,4,3) requires DLTRTS
5 must be an empty slot

There is often a desire to restrict the Rights of a Capability
when it is copied from one's own LNS to the C~List
of another Object. Hence, the Kall, STORE(x,y,a)
moves the Capability at y to x (y must be a Simple Index), and
then restricts the rights of the Capability at x according to
the contents of a mask at address a (See the Appendix for
the format), by eliminating those rights not represented by a 1 in
the mask.

STORE (Path(3,4,3), 2, addr) 3 requires LOADRTS & UCNFRTS
Path(3,4) requires STORTS & MDFYRTS
Path(3,4,3) must be an empty slot
2 requires ENVRTS

If the address designating the rights restriction mask is zero,
no rights are restricted. If the address is non-zero, then ALLYRTS
(described in a later section) are always restricted regardless
of whether the mask indicates that they should be.

.SUBSEC |AUXILIARY RIGHTS AND KERNEL TYPES]

The Rights we have seen so far are called Kernel Rights because they
have meaning for any Capability regardless of the Type of the Object
it references. In addition, each Capability also contains a field of
Auxiliary rights that may be defined differently for each new Type of
Object. Their use will become apparent in future examples.

The Kernel recognizes a basic set of Types and treats them

105650
10600
10650
10700
107560
10800
10850
10900
10950
11000

11050 -

11100
11150
11200
11250
11300
11350
11400
11450
11500
11550
11600
11650
11700
11750
11800
11850
11900
119590
12000
12050
12100
12150
12200
12250
12300
12350
12400
12450
12500
12550
12600
12650
12700
12750
12800
12850
12900
12950
13000
13050
13100
13150
13200

seperately. Their auxiliary rights have predefined meanings and the
Kernel also limits the Kernel rights that any Capability for an Object
of one of these Types may have.

.SUBSEC |TYPES NULL, DATA & UNIVERSAL|

Objects of Type NULL represent absolutely nothing. They are
constrained by the Kernel to have neither a C-List nor a Data-Part.
What we have thus far referred to as an 'Empty slot’' in a C-List
contains a NULL Capability. The 'Length’ of a C-List is the index of
the last non-Null in the C-List. A Capability slot is said to be
'Defined' if its index is not greater than the Length of the C-List it
refers to. 1In actuality, the preceding is a bit of a simplification.
More details can be found in the Subsection on Nulls Revisited.

It is often convenient to be able to create a new Object which
simply encapsulates some data. The Kernel provides a Kall, 'DATA’
which does the encapsulation, creating a new Object of Type DATA whose
Data-Part contains the data. DATA Objects have no C-List and have no
defined Auxiliary rights.

It is also convenient to provide a UNIVERSAL Object, one with both a
C-List and a Data-Part. The Kall UNIV creates just such an Object.

.SUBSEC |KALL VALUES AND SIGNALS]|

Any KALL that executes successfully returns a non-negative value in
register R$0. KALLs that fail (e.g. inadequate rights) return a
negative value, called a "Signal” (In addition, certain additional
signal related information is sometimes placed in SIGDATA, a fixed
location in the stack page). There is also a mechanism that can
force signals to cause user traps (See the section on Procedure & LNS
Context Blocks for more details). A complete listing of signals and
their values can be found in the Appendix. The meaning of the various
signals that can occur during basic Kernel KALLs can be found in the
Appendix.

.SUBSEC |LOCKING OF OBJECTSI

Since it is possible for two separate LNS's to contain Capabilities
for the same Object, it is possible that both will be running
simultaneously (on different processors) and will try to STORE
different Capabilities in the same C-List slot of the shared Object.
Such operations are performed indivisibly; when a Capability or Data
is being moved either to or from an Object, that Object will (in
general) be LOCKED. Hence, in the motivating example above, one LNS
(nondeterministicaliy will gain access to the Object and STORE a
Capability in it, while the other waits on the Lock. When the STORE
Kall completes, the other LNS will gain access to the Object, but its
STORE Kall will fail (signal), since the slot in the shared Object
will no longer be Empty.

13250
13300
13350
13400
13450
13500
13550
13600
13650
13700
13750
13800
13850
13900
13950
14000
14050
14100
14150
14200
14250
14300
14350
14400
14450
14500
14550
14600
14650
14700
14750
14800
14850
14900
14950
15000
15050
15100
156150
15200
15250
15300
15350
15400
15450
15500
15550
15600
15650
15700
15750
15800
156850
15900

For certain Kalls, if some referenced Object cannot immediately be
locked, the Kall will fail. To do otherwise in those cases would
allow the possibility of deadlock. For the same reason, any Kall that
accesses a PROCEDURE Object (except when an LNS is being dincarnated
from it) must be able to lock the Procedure immediately or else the
Kall will fail.

.SUBSEC |MEMORY ADDRESSES & THE STACK]

PDP-11's as modified for C.mmp have a 16 bit address space and a
paged architecture. Pages are 8192 bytes long. The Tower 13 bits of
a 16 bit address designates a byte within a page. The high order 3
bits select one of 8 pages that may be directly addressable at any
given time. Page 0 is designated the Stack Page to be used in
conjunction with the PDP~11 SP register and is treated somewhat
specially by the-Kernel. HYDRA contains various KALLs that allow the
user to change other pages (virtual overlaying). More details can be
found in the section on PAGING. More details on the C.mmp hardware may
be found in a separate document.

Many KALLs require one or more arguments to be memory addresses.
Such memory address is expected to be the origin (low order address)
of a block of memory from which the Kernel will either store or
retrieve information. The KERNEL demands that these 'Legitimate Stack
Memory addresses' have the following properties:

1) Such addresses be in the stack page (high order 3 bits of the
address must be 0)

2) The block of memory to be accessed must 1ie within the active
region of the stack or within the Process Communication Area,
locations 0 - #176. (When an LNS begins execution, SP, the stack
register, is set to point to an initial stack location. The modified
PDP-11 hardware insures that SP can never be set higher than this
initial value, that is the stack grows down. The region between the
initial SP contents and the current contents of SP is called the
Active Region of the stack).

3) The address must be on a word boundary (low order bit 0)

The stack may also be directly accessed using PDP-11 instructions
since the stack is page 0. The modified C.mmp hardware prevents
accesses to page 0 above the LNS's initial stack location, however,
any access below that is allowed.

Locations 0 ~ #377 have special uses. Locations 0 - #177 comprise
the Process Communication Area. It can be accessed by all LNS's that
execute within a particular Process. Locations #200 - #377 comprise
the Kernel Data Area. When signals, traps and errors occur, certain
additional information is placed 1in locations within this area (The
Appendix Tists these Tields) The Kernel also uses part of this area
as working storage during Kalls.

15950
16000
16050
16100
16150
16200
16250
16300
16350
16400
16450
16500
16550
16600
16650
16700
16750
16800
16850
16900
16950
17000
17050
17100
17150
17200
17250
17300
17350
17400
17450
17500
17550
17600
17650
17700
17750
17800
17850
17900
17950
18000
18050
18100
18150
18200
18250
18300
18350
18400
18450
18500
18550
18600

.SUBSEC |INDIRECT KALLS]

Often it is useful to be able to build up the argument stack for a
KALL independently of the actual KALL itself (especially for
interpretive and debugging programs). The Appendix contains all
details necessary for constructing the argument stack.

The special KALL, INDKALL (Mem), where Mem is the beginning
address of the argument stack and must be a Legitimate Stack Memory
Address provides this function.

.SUBSEC |CONVENTIONS FOR KALL SPECIFICATIONS]|
A) KALLs are described in terms of Bliss Macros. See the Appendix.

B) The 'Parameters' section. Parameters to KALLs fall into three
classes.

1) An integer value

2) A Legitimate Stack Memory Address - in the sense of the
Subsection on Stack Memory Addresses. Where a memory
address 1is optional, its absence is denoted by 0.

The block of memory will in general be used either in
conjunction with movement of data to or from a Data-Part
or rights restriction. See the Subsection on Kernel Types
and Rights Restriction and the Appendix)

3) A Denotation for a Capability - either a Simple index,
{sometimes negated or 0 for a special effect) or

a Path index, or a Call Parameter (to be defined in the
Intermediate Kernel section). We will also indicate
necessary rights, type or kind (Object Reference or Template)
for the target Capability and its pretarget.

Unless we note otherwise in the specifications, we require that each
STEP in a Path (Capabilities in the Path other than the Target or
Pretarget) be an Object Reference Capability with LOADRTS.

We will not Tist restrictions on arguments that seem obvious or
redundant and produce obvious signals if the restrictions are not met
- most notably, indexes into C-Lists or Data-Parts less than 1 or
greater than the maximum length.

C) 'Effect' is the effect of the Kall if no signal occurred. Except
for two small subcases (of LNS incarnation and Page Set
initialization), Kalls that fail have no side effects.

D) 'Signals’ indicate unusual signals that may occur. Signals that
indicate bad arguments or arguments that denote capabilities of the
wrong kind or type or having inadequate rights are not mentioned.
These are a possibility in almost every KALL and are described in the

186560 section on Signals above.

18700

18750 E) 'Result' is the value of the Kall (returned in R$0) assuming no
18800 signal occurred. (If a signal occurred, the value of the Kall is the
18850 signal value instead) :
18900

18950 _

19000 .SUBSEC |SPECIFICATIONS FOR BASIC KERNEL KALLS]|

19050

19100

19150

19200 INFORMATIONAL KALLs

19250

19300

19350 GETCLOCK (Mem)

19400 Parameters:

19450 Mem - Legitimate Stack Memory address

19500 - The current LNS must not be Blind (See next section)
19550 Effect: Puts a reading of the system clock into the 4 word
19600 block of memory beginning at Mem. See the Appendix for
19650 the format.

19700 Signals:

19750 SBLND - Current LNS is Blind

19800 Result: 0

19850

19900

19950 LENTH

20000 Parameters: None

20050 Effect: None

20100 Result: Length of the C-List of the Executing LNS

20150

20200

20250 CLENTH (Path)

20300 Parameters:

20350 Path - Path index; Pretarget: LOADRTS;
20400 Target: Object Reference, LOADRTS

20450 Effect: None .
20500 Result: Length of the C-List of the Object Referenced by

20550 Path's Target.

20600

20650

20700 DLENTH (Path)

20750 Parameters:

20800 Path - Path index; Pretarget: LOADRTS;
20850 Target: Object Reference, GETRTS

20900 Effect: None
20950 Result: Size of the Data-Part of the Object Referenced by

21000 Path's Target.

21050

21100

21150 WHAT (Memd, Path)

21200 Parameters:

21250 Memd - Legitimate Stack Memory address

21300 Path - Path index; Pretarget: LOADRTS; Target: Defined

21350
21400
21450
21500
21550
21600
21650
21700
21750
21800
21850
21900
21950
22000
22050
22100
22150
22200
22250
22300
223560
22400
22450
22500
22550
22600
22650
22700
22750
22800
22850
22900
22950
23000
23050
23100
23150
23200
23250
23300
23350
23400
23450
23500
23550
23600
236560
23700
23750
23800
23850
23900
23950
24000

- The current LNS must not be Blind (See next section)
Effect: Information about the Capability targeted by Path
is stored in the 16 word block of memory beg1nn1ng at Memd.
See the Appendix for the format.
Signals:
SBLND - Current LNS is Blind
Result: 0

COMPAR (Path, Ncur)

Parameters:
Path - Path index; Pretarget: LOADRTS; Target: Defined
Ncur - Simple index, Defined or O

Effect: None

Result: A word of bits which indicate how the Capabilities
targeted by Path and Ncur compare. If Ncur is 0,
then just those bits pertaining to the Capability targeted by
Path are set. See the Appendix for the meanings of each bit.

SIMPLE DATA & UNIVERSAL MANIPULATION

GETDATA (Memd, Path, Disp, Knt)

Parameters:
Memd - Legitimate Stack Memory address
Path - Path index; Pretarget: LOADRTS; Target: GETRTS
Disp - Positive integer less than or equal to Dlenth(Path)
Knt - Positive integer

Effect: Moves up to Knt words of data from the Data-Part of
the Object referenced by the Target to the block of
memory beginning at Memd. The data is copied beginning at
the Disp'th word of the Data-Part and continuing for a
total of Knt words or until the end of the Data-Part is
reached.

Result: Total number of words copied

PUTDATA (Path, Memd, Disp, Knt)

Parameters: '
Memd - Legitimate Stack Memory address
Path - Path index; Steps & Pretarget: LOADRTS,UCNFRTS;

Target: PUTRTS,MDFYRTS

Disp - Positive integer
Knt - Positive integer

Effect: Copies Knt words of data beginning at Memd into the
Data-Part of the Object targeted by Path. The data is
stored beginning at the Disp'th word of the Data-Part.

Result: 0

DATA (Path, Memd, Knt, Memr)
Parameters:

24050
24100
24150
24200
24250
24300
24350
24400
24450
24500
24550
24600
24650
24700
24750
24800
24850
24900
24950
25000
25050
25100
25150
25200
25250
25300
25350
25400
25450
25500
25550
25600
25650
25700
25750
25800
25850
25900
25950
26000
26050
26100
26150
26200
26250
26300
26350
26400
26450
26500
26550
26600
26650
26700

Effect:

Result:

Path - Path index; Steps: LOADRTS,UCNFRTS;
Pretarget: STORTS,MDFYRTS; Target: Empty

Memd - Legitimate Stack Memory address
Knt - Non-negative integer
Memr - Legitimate Stack Memory address

Creates a Data Object and places a Capability for
it in Path's Target. The Data-Part of the created Object
will contain the Knt words of data copied from the block of
memory beginning at Memd. The Capability will have all relevant
rights except ALLYRTS & FRZRTS and will be further restricted
by the contents of Memr if Memr is non-zero.

0

ADDATA (Path, Memd, Knt)
Parameters:

Effect:

Result:

Path - Path index; Steps & Pretarget: LOADRTS,UCNFRTS;
Target: ADDRTS,MDFYRTS

Memd - Legitimate Stack Memory address
Knt - Positive integer

Copies the Knt words of data from the block of memory
beginning at Memd onto the end of the Data-Part of the
Object referenced by Path’s Target.

0

UNIV (Path)
Parameters:

Effect:

Result:

Path - Path index; Steps: UCNFRTS,LOADRTS;
Pretarget: STORTS,MDFYRTS; Target: Empty
Creates a Universal Object and places a Capability for
it with all but ALLYRTS & FRZRTS in Path's Target.
0

SIMPLE MANIPULATION OF CAPABILITIES

PASS (Path, Ncur, Memr)
Parameters:

Effect:

Result:

Path - Path index; Steps: LOADRTS,UCNFRTS;
Pretarget: STORTS,MDFYRTS; Target: Empty
Ncur - Simple index, DLTRTS; if Path is not Simple,
requires ENVRTS as well
Memr - Legitimate Stack Memory address or 0
Copies the Capability in the Ncur'th slot of the current
LNS to Path's target, restricting rights (if Memr
is nonzero) according to the contents of Memr. Then, the
Capability at Ncur is deleted.
0

TAKE (Nnew, Path)

26750
26800
26850
26900
26950
27000
27050
27100
27150
27200
27250
27300
27350
27400
27450
27500
27550
27600
27650
27700
27750
27800
27850
27900
27950
28000
28050
28100
28150
28200
28250
28300
28350
28400
28450
28500
28550
28600
28650
28700
28750
28800
28850
28900
28950
29000
29050
29100
29150
29200
29250
29300
29350
29400

Parameters:
Nnew - Simple index, Empty
Path - Path index; Steps: LOADRTS,UCNFRTS;
Pretarget: KILLRTS,LOADRTS,MDFYRTS; Target: DLTRTS
Effect: Copies the Capability targeted by Path to the Nnew'th
slot of the current LNS. If Pretarget lacks UCNFRTS, then
Nnew will lack UCNFRTS, MDFYRTS & ALLYRTS. Then deletes the
Capability targeted by Path.
Result: 0

STORE (Path, Ncur, Memr)
Parameters:
Path - Path index; Steps: UCNFRTS,LOADRTS;
Pretarget: MDFYRTS,STORTS; Target: Empty
Ncur - Simple index, Defined; If Path is not Simple,
requires ENVRTS as well.
If Path and Ncur are the same, then none of the above Rights

requirements holds, rather the Capability needs DLTRTS.

Memr - Legitimate Stack Memory address or 0.
Effect: Copies the Capability in the Ncur'th slot of

the current LNS to Path's target, setting DLTRTS, and (if Memr
is nonzero) restricting rights according to the contents on Memr,

If Path and Ncur are the same, however, the rights
in the target are simply restricted according to the
contents of Memr (if Memr is nonzero).

Result: 0

LOAD (Nnew, Path)
Parameters:
Nnew - Simple index, Empty
Path - Path index; Pretarget: LOADRTS; Target: Defined
Effect: Copies the Capability targeted by Path
to the Nnew’'th slot of the current LNS,
and sets DLTRTS. If any Capability in Target's Path lacks
UCNFRTS, Nnew will have UCNFRTS, MDFYRTS & ALLYRTS removed.
Result: 0

PASSAPPEND (Path, Ncur, Memr)
Parameters: ’
Path - Path index; Steps & Pretarget: LOADRTS,UCNFRTS;
Target: MDFYRTS,APPRTS
Ncur - Simple index, DLTRTS,ENVRTS
Memr - Legitimate Stack Memory address or 0
Effect: Appends the Capability in the Ncur'th slot of the current
LNS onto the end of the C-List of the Object referenced
by Path's target, restricting rights (if Memr is nonzero)
according to the contents of Memr. Then, the
Capability at Ncur is deleted.
Result: 0

APPEND (Path, Ncur, Memr)

29450 Parameters:

29500 Path - Path index; Steps & Pretarget: UCNFRTS,LOADRTS;
29550 Target: MDFYRTS,APPRTS

29600 Ncur - Simple index, ENVRTS

29650 Memr - Legitimate Stack Memory address or O

29700 Effect: Appends the Capability in the Ncur'th slot of the current
29750 LNS onto the end of the C-List of the Object referenced
29800 by Path's target, setting DLTRTS, and restricting rights
29850 (if Memr is nonzero) according to the contents of Memr.
29900 Result: 0

29950

30000

30050

30100 DELETE (Path)

30150 Parameters:

30200 Path - Path index; Steps: UCNFRTS,LOADRTS;

30250 Pretarget: MDFYRTS,KILLRTS; Target: DLTRTS

30300 Effect: Deletes the Capability targeted by Path. See

30350 the Section on Types, Creating & Erasing in

30400 . the next section for other potential effects.

30450 Result: 0

30500

30550

30600 INTERCHANGE (Path, Ncur, Memr)

30650 Parameters:

30700 Path - Path index; Steps: UCNFRTS,LOADRTS

30750 Pretarget: MDFYRTS,KILLRTS,LOADRTS,STORTS;

30800 Target: DLTRTS

30850 Ncur - Simple Index, DLTRTS

30900 Memr - Legitimate Stack Memory address or O

30950 Effect: Interchanges the Capabilities targeted by Path and by Ncur.
31000 Restricts rights (if Memr is nonzero) of the Capability
31050 placed into Path's target according to the contents of Memr.
31100 If Pretarget lacks UCNFRTS, Ncur will have UCNFRTS, MDFYRTS &
31150 ALLYRTS removed.

31200 Result: 0

31250

31300

31350

TL

00050
00100
00150
00200
00250
00300
00350
00400
00450
00500
00550
00600
00650
00700
00750
00800
00850
00900
00950
01000
01050
01100
01150
01200
01250
01300
01350
01400
01450
01500
01550
01600
01650
01700
01750
01800
01850
01900
01850
02000
02050
02100
02150
02200
02250
02300
02350
02400
02450
02500
02550
02600
02650
02700

.SEC |THE INTERMEDIATE KERNEL]
.SUBSEC |DOMAIN SWITCHING]|

When an executing program wishes to invoke another program (e.g.
call a subroutine), the caller may not trust the called program and
may wish to isolate it 1in a separate environment (LNS), specifying as
arguments only Capabilities for those Objects in its own LNS that it
wishes the called program to be able to access. Alternatively, a
program that manipulates a data base needs Capabilities to access the
data base but it should never be necessary for callers of the program
to have direct access to the data base.

To solve both problems, HYDRA provides PROCEDURE Objects. The Kall
CALL(Rtrn,Proc,Al,...,Ak) creates a new LNS in which the Procedure’s
code will execute and transfers control to it. (Proc denotes a
Capability for a Procedure Object, Al through Ak denote Capabilities
to be passed as arguments to the called procedure and Rtrn denotes a
slot where the called Procedure may return a Capability) The Kall
KRETURN passes control back to the calling LNS, optionally returning a
Capability.

The C-List of a PROCEDURE contains Capabilities that will be
duplicated in each LNS incarnated from the PROCEDURE (these are called
inherited Capabilities and can be wused to solve the Data Base problem
mentioned just above). In addition, some of the Capabilities in the
Procedure's C-List are Parameter Templates. Capabilities passed as
arguments to the Procedure will appear in those slots in the LNS's
C-List where Parameter Templates appeared in the Procedure's C-List.
In addition to specifying where Call arguments appear in the
incarnated LNS, Parameter Templates also specify a type and
check-rights. A Call will fail (signal) if some argument is not of
the same type and does not contain the minimum rights specified by the
corresponding Parameter Template.

It is often useful to build 'Protected Subsystems'. Consider a
Directory system where users have Capabilities for directories they
can access, but because the 'Directory Subsystem' maintains the
directories in a special private format, users should not be able to
directly access or manipulate their directories except through
PROCEDURES which comprise the 'Directory Subsystem'. HYDRA
accomplishes this through 'Rights Amplification'. Capabilities passed
as arguments in a CALL need not have the same rights in the incarnated
LNS as in the LNS of the CALLer. The Parameter Template may specify
new rights which may be greater than the rights of the Capability
passed as an argument; in the incarnated LNS, the Capability will have
these new amplified rights.

The diagram notes how this solves the Directory problem through the
use of auxiliary rights and parameter templates which specify
new-rights. The user's Capability for a Directory does not contain
rights which allow manipulation or access to the directories directly.
Rather various procedures of the 'Directory Subsystem' have parameter
templates which specify these rights as new-rights, so that

02750
02800
02850
02900
02950
03000
03050
03100
03150
03200
03250
03300
03350
03400
03450
03500
03550
03600
03650
03700
03750
03800
03850
03900
03950
04000
04050
04100
04150
04200
04250
04300
04350
04400
04450
04500
04550
04600
04650
04700
04750
04800
04850
04900
04950
05000
05050
05100
05150
05200
05250
05300
056350
05400

manipulation or access of a directory can only take place in the
protected environment of the 'Directory Subsystem'. Note how
auxiliary rights are used to control how a Directory may be used.
Since different procedures specify different check-rights for -
Directories passed as arguments, auxiliary rights provide a way of
specifying procedural protection. HYDRA does not permit parameter
Templates which specify new-rights to be created anywhere, otherwise
the protection afforded by the directory system could be easily
circumvented. Templates which specify new-rights can only be created
using special Capabilities (See the Subsection on Types, Creating &
Erasing), and since Templates are Capabilities, their dispersion can
be controlled. In the above case, the presumption is that only
PROCEDURES of the 'Directory Subsystem’ would have Parameter Templates
of Directory Type with New-Rights.

Creation of an LNS and transfer of control to its code can be
separated. The Kall MAKLNS incarnates an LNS from a Procedure and
arguments, while the Kall LNSCALL transfers control to the LNS. The
advantage of having such 'Canned’' LNS's is efficiency as well as the
ability to build coroutine structures. Once an LNS KRETURNs, it may
be LNSCAlLlLed again. Execution continues after the KRETURN. The LNS's
pages, its C-List and registers R$0 and the PC will be retained,
however, the rest of the registers will be clobbered and the stack
will be reinitialized.

.SUBSEC |TEMPLATES & MERGING]

The process of comparing a Capability to a Template and producing a
new Capability is called 'Merging’. It is useful not only as part of
the Call Mechanism, but at other times as well. Hence, there are
Capability Templates (for general merging) as well as Parameter
Templates (for Call-time merging). Templates contain 2 flags.

TMPLFLAG -~ 1 - Capability Template
0 - Parameter Template
NEWFLAG - - Amplify rights in Merging (new-rights)

1
0 - No amplification

These flags, if set, may be cleared in exactly the same way that
rights may be restricted. Once cleared, they may not be set again.
Since unlike Object References, Templates do not refer to specific
Objects, there is little need for Templates to have rights. Therefore,
without much conflict, rights and new-rights have been combined. Even
when new-rights are specified, there are certain rights that cannot be
amplified. This is true of the Kernel rights ENVRTS, UCNFRTS, FRZRTS
and ALLYRTS. They will be the same in the merged Capability as in the
original regardless of amplification.

.SUBSEC |NULLS REVISITED|

'Empty slots' have already been defined as slots containing NULL

05450
05500
05550
05600
05650
05700
05750
05800
05850
05900
05950
06000
06050
06100
06150
06200
06250
06300
06350
06400
06450
06500
06550
06600
06650
06700
06750
06800
06850
06900
06950
07000
07050
07100
07150
07200
07250
07300
07350
07400
07450
07500
07550
07600
07650
07700
07750
07800
07850
07900
07950
08000
08050
08100

Capabilities. In fact, it is 1impossible to create a NULL Object, and
empty slots contain NULL Templates.

NULLs have one auxilliary right predefined, NULLRTS. We use the
term 'Truenull’ to mean a Null Template with both NULLRTS and TMPLFLAG
set. When an Object is initially created, its C-List is set to
contain all 'Truenulls' with all Kernel rights. A deleted Capability
is also replaced by a Truenull.

The 'Length’ of a C-List is really the index of the last
non-Truenull in the C-List. Hence NULL Parameter Templates or NULL
Templates lacking NULLRTS are included in the Length.

.SUBSEC |CONFINEMENT, FREEZING, BLINDNESS & REVOCATION|

A number of Kernel rights are provided to solve some interesting
protection problems. ENVRTS, MDFYRTS & UCNFRTS are all used to solve
variants of the 'Confinement Problem'. That is, they may be used to
guarantee that Capabilities and data do not escape from particular
LNS's; those LNS's are then said to be confined or partially confined
with respect to the information whose leakage we wish to protect
against.

ENVRTS can be used to guarantee that Capabilities are not stored by
a Callee who is passed the Capability. Without ENVRTS, the Capability
cannot be placed in the C-List of any Object. It may be used as an
argument to an LNS which the Callee Calls, but ENVRTS cannot be gained
through rights amplification.

As an example, Capabilities for LNS's never have ENVRTS and thus can
never be accessed or manipulated outside of the Process in which the
LNS has been incarnated.

MDFYRTS and UCNFRTS can be used to protect Objects from modification
through Capabilities lacking those rights. If an LNS calls another
LNS passing a Capability Tacking MDFYRTS, that guarantees that the
Callee cannot modify the accessed Object through that Capability

~regardless of amplification. This is because MDFYRTS cannot be gained

through rights amplification and any Kall that modifies an Object
requires a Capability for that Object with MDFYRTS as well as other
relevant rights.

UCNFRTS also cannot be gained through amplification and prevents
modification of any Object reached through the C-List of an Object
referenced through a Capability lacking UCNFRTS.

Users may wish to guarantee that information passed to an untrusted
procedure will not be leaked to another user. The Kernel right UCNFRTS
also provides this guarantee. Any LNS idincarnated from a Procedure
Capability lacking UCNFRTS will be 'Confined'. Each Capability in the
LNS inherited from the Called Procedure will lose UCNFRTS & MDFYRTS.
Confinement is then provided in the following way. The reader may
note that any Kall which modifies an Object requires that the

08150
08200
08250
08300
08350
08400
08450
08500
08550
08600
08650
08700
08750
08800
08850
08900
08850
09000
09050
09100
09150
09200
09250
098300
09350
09400
09450
09500
09550
09600
09650
09700
09750
09800
09850
09900
09950
10000
10050
10100
10150
10200
10250
10300
10350
10400
10450
16500
10550
10600
10650
10700
10750
10800

Capability for the Object have MDFYRTS and that other Capabilities in
the Path to the Object have UCNFRTS. Additionally, whenever a
Capability is loaded into an LNS through a Path where some Capability
lacks UCNFRTS, the loaded Capability will have UCNFRTS, MDFYRTS and
ALLYRTS removed. Hence, information and Capabilities cannct be stored
by a Confined LNS through any Capabilities except those passed as
parameters in incarnating the LNS.

Note that if a Procedure Capability with UCNFRTS is used as an
argument in incarnating a Confined LNS, the Confined LNS will be able
to Call an Unconfined LNS through it. Otherwise, since all inherited
Capabilities of the Confined LNS lack UCNFRTS, any LNS called will be
Confined as well.

There are still a small number of ways to covertly leak a few bits
of information out of a confined LNS. It would be counterproductive
to list these. However, no large leakage of data 1is possible.

Users may also wish to guarantee that an Object they have access to
is 'Frozen', that is, the Object and all Objects reached by taking a
Path through it will NEVER be modified, even by concurrently executing
LNS's that may have a Capability for the same Object. The right
FRZRTS is used like a flag to guarantee that an Object is frozen. The
Kall FREEZE effectively freezes an Object by setting FRZRTS and
eliminating UCNFRTS & MDFYRTS in what must be the only extant
Capability for the Objecti. Since UCNFRTS & MDFYRTS cannot be gained
through amplification, all Capabilities for the Object will lack them,
guaranteeing that the Object will never be modified once frozen.
FREEZE only succeeds if all Capabilities in the Object's C-List are
already Frozen. So that FRZRTS can represent a guarantee of
Frozen-ness, it also cannot be gained through amplification.

Users might further 1ike LNS's to run 'Blind'. That is, no external
information can be made available to it (the clock, process related
information and other things that might change in different
executions). FRZRTS also provides that function. Any LNS incarnated
from a Procedure Capability with FRZRTS will be made Blind. In
addition, an LNS incarnated by a Blind executing LNS will be Blind
unless it is incarnated from a Procedure Capability with UCNFRTS.

Note that if a Procedure Capability with UCNFRTS is used as an
argument in incarnating a Blind LNS, the Blind LNS will be able to
Call an Unblind LNS through it. Otherwise, since all inherited
Capabilities of the Blind LNS must have FRZRTS and thus must lack
UCNFRTS, any LNS called will be Blind as well. Thus, with suitable
arguments, execution of two Blind LNS's incarnated from the same
Frozen Procedure Capability will be indistiguishable.

HYDRA allows Objects to act as Aliases for other Objects. Accessing
such an Alias-ing Object actually causes access of the aliased Object.
Aliases themselves may have aliases, allowing up to 23 levels of
indirection. The Object finally accessed at the end of the alias
indirection chain is called the 'Terminal Object' of an Alias.

10850
10900
10950
11000
11050
11100
11150
111565
11160
11165
11170
11200
11250
11300
11350
11400
11450
11500
11550
11600
11650
11700
11750
11800
11850
11900
119560
12000
12050
12100
12150
12200
12250
12300
123560
12400
12450
12500
12550
12600
12650
12700
12750
12800
12850
12900
12950
13000
13050
13100
13150
13200
13250
13300

An Alias may be created for any Object, and a Capability will be
provided for the Alias-ing Object with ALLYRTS. With ALLYRTS, the
Aliasing Object may be RE-AlLLYed to act as Alias for a different
Object or even for no Object at all. Thus, if a user wishes to share a
Capability for an Object with another user, but might want to revoke
the Capability at some later time, he need simply create an Alias for
the Object and share the Capability for the Alias.

To guarantee that RE-ALLYing cannot be used to illicitly
gain rights, whenever rights are restricted in a Capability,
ALLYRTS are removed as well.

.SUBSEC |TYPES, CREATING & ERASING]

Objects of Type TYPE represent all Objects in the equivalence class
of a given type. For example, the Object whose name is PROCEDURE and
whose Type is TYPE represents all Objects whose type is PROCEDURE.
Objects of Type TYPE are wused to generate Templates of the Type named
by the TYPE Object. A Template of a given Type is then used in
CREATing an Object of that Type. There is a single Object in the
system whose Name and Type are both TYPE which represents all the
Objects in the system (including itself) whose Type is TYPE. (See
diagram)

The way of creating a new Object of some type, say FILE, is to use
the Kall CREAT, supplying as an argument a FILE Template with CREARTS.
A FILE Template can first be gotten by using the Kall TEMPLATE,
supplying a Capability for the FILE TYPE Object with TMPLRTS.

Initially, HYDRA provides Templates for each Kernel Type (though
users may not directly be able to access these). These Templates do
not have all Kernel rights, but rather a restricted set, depending on
the Type. For these rights limitations, see the Appendix.

CREAT may expect some additional arguments when creating an Object
of a Kernel type. For instance, in CREATing a new TYPE Object, CREAT
expects a Memory address as an additional argument. The Kernel will
use the information in that block of memory to store the following
data in the Data-Part of the TYPE Object:

* PNAME - the Type's Print Name. While all Objects have a 64 bit
bit unique name, TYPE Objects also have a Print Name.

The Kall WHAT, given a Capability, produces (among other
information), the PNAME of its Type.

* CAPINIT & CAPMAX - the initial Tength of the C-List (filled
with Truenulls) and the maximum length of the C-List of
any Object of the Type CREATed.

* DATAINIT & DATAMAX - the initial length of the Data-Part (zeroed)
and the maximum length of the Data-Part of any Object of
the Type CREATed.

* RTRVFLAG - An indication of whether Objects of this type are
to be retrieved when all references to the Object are
deleted (See following paragraph)

13350
13400
13450
13500
13550
13600
13650
13700
13750
13800
13850
13900
13950
14000
14050
14100
14150
14200
14250
14300
14350
14400
14450
14500
14550
14600
14650
14700
14750
14800
14850
14900
14950
15000
15050
15100
15150
15200
15250
15300
15350
15400
15450
156500
155560
15600
15650
15700
16750
15800
15850
15900
15950
16000

When all Capabilities for an Object have been deleted, the Object is
normally garbage collected. However, it is possible to retrieve such
Objects and prevent garbage collection on a Type by Type basis (see
RTRVFLAG above). The Kall TYPRETRIEVE returns a Capability for an
Object, all of whose references have been deleted (including aliases).
To really garbage collect a retrievablie Object, the Kall ERASE rather
than DELETE must be used to delete the last Capabiiity for the Object.
Aliasing Objects are never retrieved.

.SUBSEC [PROTECTED SUBSYSTEMS|

Since Protected Subsystems are generally built around a particular
type of Object (e.g. - the Directory Subsystem mentioned earlier),
HYDRA provides a way to use a Subsystem without unnecessarily
proliferating Capabilities for the Procedures which define it.

The C-List of a Type Object is used to implement protected
subsystems easily by listing the Procedures which define it, and
supplying access to those Procedures through the Kall TCALL.

If the Ndx'th Capability in the current LNS is of type T, and we use
T[j] to denote the j'th Capability in the C-List of the T-Type Object,
then TCALL(Rtrn,Ndx,j,a2,...,ak) is the same as
CALL(Rtrn,T[j],Ndx,a2,...,ak). See the diagram.

.SUBSEC |SPECIFICATIONS FOR INTERMEDIATE KERNEL KALLS]
TEMPLATE MANIPULATION

TEMPLATE (Path, Nnew, Memr)
Parameters:
Path - Path index; Steps: LOADRTS,UCNFRTS;
Pretarget: STORTS,MDFYRTS; Target: Empty
Nnew - Simple index, Type TYPE, TMPLRTS
- or a negative integer between -1 and -13
Memr -~ Legitimate Stack Memory address or 0
Effect: If Nnew is a Simple index, then TEMPLATE places a Template
in Path's Target whose Type is the Name of the Nnew'th
Capability in the Current LNS. The Template will have all flags
and rights but FRZRTS & ALLYRTS.
If Nnew is negative, then a Template for the (-Nnew)'th
Kernel Type is placed in Path's Target with TMPLFLAG set as
well as various rights depending on the Type. The first 13
types are the predefined Kernel Types.
In either case, the rights of the new Template are further
restricted according to the contents of Memr (if Memr
is nonzero).
Result: 0

16050
16100
16150
16200
16250
16300
16350
16400
16450
16500
16550
16600
16650
16700
16750
16800
16850
16900
16950
17000
17050
17100
17150
17200
~17250
17300
17350
17400
17450
17500
17550
17600
17650
177060
17750
17800
17850
17900
17950
18000
18050
18100
18150
18200
18250
18300
18350
18400
18450
18500
18550
18600
18650
18700

SETCHKRTS (Path, Mem)
Parameters:
Path - Path index; Steps: LOADRTS,UCNFRTS;
Pretarget: LOADRTS,STORTS,KILLRTS,MDFYRTS;
Target: Template, DLTRTS
Mem - Legitimate Stack Memory address
Effect: Sets the Check-Rights of the Template at Index
according to the contents of Mem.
Result: 0

OBJECT MANIPULATION

CREAT (Nnew, Ncur, <arguments>)
Parameters:
Nnew - Simple index, Empty
Ncur - Simple index, Template, CREARTS; must not be NULL;
Also requires UCNFRTS if the Type 1is Retrievable
For description of additional arguments (only applicable
when CREATing a Kernel Object) see the Appendix
Effect: Creates a new Object of the same Type as Ncur and
places a Capability for it in Nnew. The rights in
Nnew are the same as those in Ncur plus DLTRTS.
Result: 0

COPY (Nnew, Ncur, <arguments>)

Parameters:
Nnew - Simple index, Empty
Ncur - Simple index, Object Reference, COPYRTS
For description of additional arguments (only applicable

when COPYing a Kernel Object) see the Appendix

Effect: Creates a new Object of the same type as Ncur
and places a Capability for it in Nnew. 1In addition, the
C-List and Data-Part of the new Object will be made the
same as those of the original.

The rights of the new Capability in Nnew . will be exactly
the same as those for Ncur plus DLTRTS, unless the Object
is of a Kernel Type in which case additional rights may be
added. See the Appendix for details.

Result: 0

SWITCH (Path, Ncur)
Parameters:
Path - Path index; Steps & Pretarget: LOADRTS,UCNFRTS;
Target: Object Reference, MDFYRTS,OBJRTS
Ncur - Simple index, same Type as Path's Target, OBJRTS,MDFYRTS
or 0
Effect: If Ncur is not zero, switches the C-List and Data-Part of
the Objects referenced by Path's Target and Ncur. If Ncur
is zero, destroys the Object referenced by the Target {same

18750
18800
18850
18900
18950
19000
19050
19100
19150
19200
19250
19300
19350
19400
19450
19500
19550
19600
19650
19700
19750
19800
19850
19900
19950
20000
20050
20100
20150
20200
20250
20300
20350
20400
20450
20500
20550
20600
20650
20700
20750
20800
20850
20900
20950
21000
21050
21100
21150
21200
21250
21300
21350
21400

Signals:

Result:

effect as ERASE).
Future accesses of the Object will fail with either SCBND or
SDBND signals.

SLOCK - If the Object referenced by Ncur cannot be locked
immediately
0

FREEZE(HNcur)
Parameters:

Ncur - Simple 1index, must be only extant reference to an
Object, OBJRTS,UCNFRTS; Object must not be an Alias;
Each Capability in C-List of Object must have FRZRTS

Effect: Effectively freezes the Object by doing the following to
the only Capability for the Object: Sets FRZRTS and
turns off UCNFRTS & MDFYRTS.

Signals:
SFRZ - Some Capability in the Object's C-List is not frozen.

SIGDATA indicates the index of the last such Capability.

SUNQ - Ncur is not the only reference to the Object.
SALIAS - Ncur references an Alias

Result: 0

ALIAS (Nnew, Ncur)

Parameters:
Nnew - Simple index, Empty
Ncur - Simple index, Object Reference

Effect: Creates an Object of the same type as Ncur to act as an
Alias for the Object referenced by Ncur. Any future
references to to the new Object (unless changed by
REALLY) will in fact access Ncur's Terminal Object. HNnew
will have the same rights as Ncur except DLTRTS and ALLYRTS
will be added and it will not have FRZRTS.

Result: 0

REALLY (Nnew, Ncur)
Parameters:

Effect:

Result:

Nnew - Simple index, ALLYRTS (insures Aliasing Object)
Ncur - Simple index, Object Reference of same type as Nnew,
except for DLTRTS & ALLYRTS, must have at least all
the rights as Nnew has.
- or 0
If Ncur is not zero, re-allies the Object referenced
by Nnew to be an alias for the Object referenced by Ncur.
If Ncur is zero, the Object referenced by Nnew will become
an alias for nothing and future references to it will fail
with signal SALLY.
0

TYPRETRIEVE (Nnew, Ncur)

21450
21500
21550
21600
21650
21700
21750
21800
21850
21900
21950
22000
22050
22100
22150
22200
22250
22300
22350
22400
22450
22500
22550
22600
22650
22700
22750
22800
22850
22900
22950
23000
23050
23100
231560
23200
23250
23300
23350
23400
23450
23500
235650
23600
23650
23700
23750
23800
23850
23900
23950
24000
24050
24100

Parameters:

Effect:

Resuit:

ERASE

Nnew - Simple index, Empty or O
Ncur - Simple index, TYPE Object Reference, UCNFRTS,RTRVRTS
If Nnew is not zero, retrieves a Capability for an Object
of Type Named by Ncur, all of whose references have been
deleted. The Kernel maintains the retrieval queue for each
Object in FIFO order. The retrieved Capabiiity has all rights
set except FRZRTS and ALLYRTS (Aliasing Objects are not
retrieved). If Nnew is non-zero, the Kall is executed for
its Result only.
Number of Objects in Ncur's Type's Retrieval queue
(inctuding Object retrieved - if any. MNote a result of O
indicates no Object was retrieved).

(Ncur)

Parameters:

Effect:

Signals:

Result:

Ncur - Simple index, must be only reference to Object, OBJRTS
Deletes last reference to an Object without placing it in its

Type's retrieval queuve. Also deletes each Capability in the

Object's C-List. (If the Capability is for an aliasing Object,

or no retrieval is indicated for the type, simply ’

deleting the last reference to the Object has the same

effect as ERASEing it.)

SUNQ - Ncur is not the only reference to the Object
0

THE CALL MECHANISM

MERGE (Nnew, Ntmpl, Path)
Parameters:
Nnew - Simple index, Empty
Ntmpl - Simple index, Template, TMPLFLAG
Path - Path index; Pretarget: LOADRTS; Target: Defined,
Rights must contain all those specified by Check-Rights
field of Ntmpl. If Ntmpl is not Null, must be an
Object Reference and must be of the same Type as Ntmpl.
If Ntmpl is Null, may be of any Type and may be either
an Object Reference or a Template.
Effect: Copies the Capability targeted by Path to the Nnew'th slot

Signals:

of the current LNS and sets DLTRTS. If Path's Target is a
Capability for an Aliasing Object and Ntmpl has NEWFLAG set,
a Capability for the Alias's Terminal Object is copied instead.
If Ntmpl has NEWFLAG set, Ntmpl's rights are copied to
Nnew, except for ENVRTS, UCNFRTS, MDFYRTS & FRZRTS which are
the same as in Path's Target.
If any Capability in the Path lacked UCNFRTS, then MDFYRTS,
UCNFRTS & ALLYRTS will be removed from Nnew.

SRTSM - Check-Rights failure

24150
24200
24250
24300
24350
24400
24450
24500
24550
24600
24650
24700
24750
24800
24850
24900
24950
25000
25050
25100
25150
25200
25250
25300
25350
25400
25450
25500
25550
25600
25650
25700
256750
25800
25850
25900
25950
26000
26050
26100
26150
26200
26250

26300 .

26350
26400
26450
26500
26550
26600
26650
26700
26750
26800

Result:

SKNDT - Ntmpl 1is not a Template or does not have TMPLFLAG set.
STYPC - Types of Path's Target and Ntmpl are not the same.
0

MAKLNS (Nnew, Nproc, <arguments>)
Parameters:

Effect:

Nnew - Simple index, Empty
Nproc - Simple index, Procedure Object Reference
- The 0 or more arguments must each be of the following form:
17 Path - Path index; Pretarget: LOADRTS;
Target: Requires ENVRTS if Nproc has PRCSRTS
2] Restrict (Path, Memr) - Path is as for [1] and
Memr is a Legitimate Stack Memory address or 0
3] Transfer (Path, Memr) - Path is a Path index;
Steps: UCNFRTS,LOADRTS;
Pretarget: MDFYRTS,LOADRTS,KILLRTS;
Target: DLTRTS, also requires ENVRTS if
Nproc has PRCSRTS.
Memr is a Legitimate Stack Memory address or 0
471 Memdata (Memd, Knt-) - Memd is a Legitimate
Stack Memory address and Knt is a positive
integer
5] Stkdata { <data>) - <data> is 0 or more words
of data
The Capability denoted by each argument must also
satisfy the requirements of its corresponding Parameter
Template (see MERGE)

An LNS is incarnated from the Procedure and arguments and
a Capability for it is placed in Nnew with DLTRTS. 1In
addition it will have UCNFRTS & FRZRTS, and the
auxiliary rights LNSRTS & PRCSRTS if Nproc does.

The LNS will be made Confined if Nproc lacks UCNFRTS. The
LNS will be made Blind if Nproc has FRZRTS or if the Current
LNS is Blind and Nproc Tacks UCNFRTS.

A1l Capabilities in the C-List of the PROCEDURE which are
either Object References or Capability Templates (TMPLFLAG set)
are copied to the same slot in the C-List of the incarnated
LNS. 1If Nproc lacks UCNFRTS, each of these will have UCNFRTS,
MDFYRTS & ALLYRTS removed.

Parameter Templates in the C-List of the PROCEDURE are
Capabilities specified by the Arguments. Arguments are matched
with Parameter Templates from last to first. If fewer arguments
are specified than Parameter Templates, the additional Parameter
slots at the beginning of the LNS may be filled by Nulls (See
the Section of PROCEDURE & LNS CONTEXT BLOCKS for details).

The Capabilities that will be placed in the parameter slots
of the LNS are the result of MERGEing the Parameter
Template with a Capability specified by the corresponding
argument. For details of each individual merge, see the Effects
part of the MERGE Kall. As noted, arguments come in 5 flavors.
The Capabilities they specify and additional side effects are
as follows:

1] Capability is Path's Target

26850
26900
26950
27000
27050
27100
27150
27200
27250
27300
27350
27400
27450
27500
27550
27600
27650
27700
27750
27800
27850
27900
27950
28000
28050
28100
28150
28200
28250
28300
283560
28400
28450
28500
28550
28600
28650
28700
28750
28800
28850
28900
28950
29000
29050
29100
29150
29200
29250
29300
29350
29400
29450
29500

Signals:

Result:

2] Capability is Path's Target, restricted by Memr's contents
if Memr 1is non-zero

3] Capability is Path's Target, restricted by Memr's contents
if Memr is non-zero. In addition, the Capability at Pdath's
Target is deleted. (N.B. use wisely, since, even if the Kall
fails, the Capability may be lost)

4] Capability is for a newly created Data Object with all
rights but FRZRTS & ALLYRTS. The Data-Part of the new
Object will contain the Knt words of Data copied from the
block of Memory beginning at Memd.

5] Capability is for a newly created Data Object with all
rights but FRZRTS & ALLYRTS. The Data-Part of the new Object
will consist of '<datad>’.

- If an argument is bad or any merge failed, the usual signal
will be generated with SLNS orred in as well. 1In addition,
the fixed location SIGDATA in the stack page contains the
index of the affected slot in the incarnated LNS in its low
order byte and the number of the affected argument in its
high order byte.

SFARG - Too few arguments. SIGDATA indicates the minimum
number of arguments acceptable.

SMARG - Too many arguments. SIGDATA indicates the maximum
number of arguments acceptable.

SXCNF - LNS is not allowed to be made Confined.
(See Section on PROCEDURE & LNS CONTEXT BLOCKS)

SXBLND - LNS is not allowed to be made Blind

0

LNSCALL (Rtra, Nlns)
Parameters:

Effect:

Signais:

Result:

Rtrn - Simple index, Empty

Nlns - Simple index, LNS Object Reference, LNSRTS;
The LNS must be "useable" (see Subsections on User
Traps and Process Objects)

The LNS is Called and execution begins in its
environment. When the Called LNS KRETURNs, it may specify
a Capability to be returned. If Rtrn is not zero, it
designates the slot where that Capability will be put.

If Rtrn is zero, a returned Capability is simply discarded.

- For Paging related signals, see the Paging Section
SSTK - Inadequate stack space available to run the LNS (See
Section on PROCEDURE & LNS CONTEXT BLOCKS).
SIGDATA contains amount of additional stack space needed.
SCNTRL - Callee returned by 'Punting a Control’ rather than
a KRETURN (See PROCEDURE & LNS CONTEXT BLOCKS).
SLOCK - LNS is currently in use (See PROCESS CREATION)
SREUSE - LNS may not be Reused (See next Section)
- When the Callee KRETURNs, it specifies a Return Value. If
that value is negative, it is treated as a signal.
Value returned by the Callee

29550
29600
29650
29700
29750
29800
29850
29900
29950
30000
30050
30100
30150
30200
30250
30300
30350
30400
30450
30500
30550
30600
30650
30700
30750
30800
30850
30900
30950
31000
31050
31100
31150
31200
312560
31300
31350
31400
31450
31500
31550
31600
31650
31700
31750
31800
31850
31900
31950
32000
32050
32100
32150
32200

CALL (Rtrn, Nproc, <arguments>)
Parameters:

Effect:

Signals:

Result:

Rtrn - Simple index, Empty or 0
Nproc - Simple index, Procedure Object Reference, CALLRTS
-~ Specifications for arguments are exactly
as for MAKLNS. 1In addition to the 5 specified in MAKLNS,
there are two more possible specifications:
6] Lns
7] Lansrestrict (Memr) - Memr is a Legitimate
Stack Memory address or O

The effect is almost equivalent to the sequence
MAKLNS (*, Nproc, <arguments>); LNSCALL (Rtrn, *).

That is, the Kernel incarnates the LNS and Calls it, without
the Caller ever having a Capability itself for the incarnated
LNS. The only difference is that, unless required by
Check-Rights in a Paramter Template, an argument's target
does not require ENVRTS, regardless of whether or not

Nproc has PRCSRTS.

The Capabilities denoted by the additional argument
specifications noted above are:

6] Capability is for the Caller’'s LNS with DLTRTS, MDFYRTS,
UCNFRTS, LOADRTS, STORTS, APPRTS, KILLRTS, GETCBRTS, SETCBRTS,
GSTKRTS and PSTKRTS.

7] Capability is as in [6] with rights additionally
restricted by the Memr’'s contents if Memr is non-zero.

See MAKLNS & LNSCALL
Value returned by Callee

KRETURN (Value, Ncur, Memr)
Parameters:

Effect:

Result:

Value - Integer
Ncur - Simple index, ENVRTS or O
Memr - Legitimate Stack Memory Address or 0

Causes return of control to current LNS's Caller with
result Value. If Value is negative, Value is signalled as
well in the Caller's environment. If the Caller specified
a Rtrn slot and Ncur is non-zero (and the return slot has -
not otherwise had a Capability STOREd into it), the
Capability denoted by Ncur 1is returned to that slot in the
Caller's LNS with rights restricted by the contents of Memr
(if Memr 1is not zero) and with DLTRTS added.

If the current LNS has no Caller, the current PROCESS will
be stopped. Attempts to restart it will be unsuccessful.

Current value of R$0. Control returns to Caller (unless a
signal occurs). Control only continues normally after a
KRETURN if the current LNS is subsequently LNSCALLed again.

PROTECTED SUBSYTEMS

32250
32300
32350
32400
32450
32500
32550
32600
32650
32700
32750
32800
32850
32900
32950
33000
33050
33100
33150
33200
33250
33300
33350
33400
33450
33500
33550
33600
33650
33700
33750
33800
33850
33900
33950
L

TLOAD

(Nnew, Ncur, Ntyp)

Parameters:

Nnew - Simple index, Empty

Ncur - Simple index, Defined

Ntyp - Simple index into the C-List of the TYPE Object
whose Name is the Type of Ncur, Defined

= Current LNS must not be Blind

Effect: If Ncur is a Capability of Type T, then the Capability in
the Ntyp'th slot of the T TYPE Object is copied to the
Nnew'th slot of the current LNS with DLTRTS added. If
Ncur Tacks UCNFRTS, then MDFYRTS, UCNFRTS & ALLYRTS will
be removed from Nnew.

Signals:
SBLND -~ Current LNS is Blind

Result: 0

TCALL (Rtrn, Ncur, Ntyp, <arguments)>)

Parameters:
Rtrn - Simple index, Empty or 0
Ncur - Simple index, Defined
Ntyp - Simple index into the C-List of the TYPE Object

whose Name is the Type of Ncur, PROCEDURE Object
Reference, CALLRTS

- Current LNS must be Blind

Effect: The effect is exactly equivalent to the sequence
TLOAD (*, Ncur, Ntyp); CALL (Rtrn, *, <Ncur,<arguments>>).
That is, the Kernel CALLs the Procedure in the Type Object
without the Caller getting a Capability itself for the
Procedure. Ncur becomes the first argument of the CALL.

Signals:
See TLOAD & CALL

Result: Value returned by Callee

00050
00100
00150
00200
00250
00300
00350
00400
00450
00500
005650
00600
00650
00700
00750
00800
00850
00900
00950
01000
01050
01100
01150
01200
01250
01300
01350
01400
01450
01500
01550
01600
01650
01700
01750
01800
01850
01900
01950
02000
02050
02100
02150
02200
02250
02300
02350
02400
02450
02500
02550
02600
02650
02700

.SEC |MORE ON PROCEDURES & LNS'S]|
.SUBSEC |PROCEDURE & LNS CONTEXT BLOCKS|

The Data-Parts of PROCEDUREs and LNS's are respectively known as
Initial Context Blocks (ICB's) and Local Context Blocks (LCB's) and
contain information relevant for execution and debugging. Information
may not be gotten from or stored directly in Context Blocks using the
standard Data-Part Kalls (GETDATA & PUTDATA), but rather specific
Kalls (GETICB, SETICB, GETLCB & SETLCB) are used in conjunction with
the auxiliary rights GETCBRTS and SETCBRTS. The 1ist of fields in the
Context Blocks, whether they can be read or written (in ICB or LCB),
and their initial values (set at Procedure Creation time) can be found
in the Appendix.

When an LNS is incarnated from a PROCEDURE, its LCB is copied from
the ICB of the PROCEDURE, except for the field LVREG, which is set to
the value of register R$0 at incarnation time.

When one LNS Calls another, the general registers of the Caller are
saved in its LCB, as well as the bounds of 1its active stack region and
the contents of three fixed locations in the stack, SAVREG, SAVVAL and
STKOWN, known collectively as SAVAREA. These values are all restored
when the Called LHNS returns. The SP, PS and PC are saved in fields LSP,
LPS and LPC of the LCB. Registers 1-5 are saved in fields LR1 - LR5,
Register 0 is saved in LVREG, the upper bound of the active stack is
saved in SPUFLO and the three fields of the SAVAREA are saved in SVREG,
SVVAL and SVOWN.

When the Callee begins execution, its PC, PS and R$0 are initialized
from the LCB (Paging information which determines the LNS's Page Set
is also taken from the LCB - See the PAGING SECTION for more Details).
When the Callee KRETURNs, R$0 and the PC are saved in the LCB (as well
as Paging information), thus if the LNS is LNSCALLed again, execution
will continue immediately following the KRETURMN, though except for R$0
and the PC, the other registers will be clobbered and the stack and
Page Set will be reinitialized.

.SUBSEC JUSER TRAPS]

The LCB contains a number of user trap addresses which indicate the
PC at which execution should continue after a Trap. Some of the traps
roughly parallel the PBP-11 hardware (such as EMT & IOT) while
others are provided by the HYDRA 'Virtual Machine'. Whenever a Trap
is taken, the current PS and PC are pushed on the stack and execution
proceeds at the Trap PC address with the PS same as the current PS
except that Trace Trap Enable (bit 4) is turned off if it was on. The
PS has the following format:

Bit Meaning

0-3 Condition Codes
4 Trace Trap Enable

02750
02800
02850
02900
02950
03000
03050
03100
03150
03200
03250
03300
03350
03400
03450
03500
03550
03600
03650
03700
03750
03800
03850
03900
03950
04000
04050
04100
04150
04200
04250
04300
04350
04400
04450
04500
04550
04600
04650
04700
04750
04800
04850
04900
04950
05000
05050
05100
05150
05200
05250
05300
05350
05400

5-7 Hardware Priority
8-9 Hardware Space
12 Reuse Flag
13 Confined Flag (0 if Confined)
14 Blind Flag (0 if Blind)
15 Error Flag

The PDP-11 RTI instruction may be used to restore the old PC and PS.
Bits 0-3, 4, 12 and 15 may have been changed in the stacked PS in any
way. However, the Kernel checks RTI's and guarantees that fields 5-7,
8-9, 13 and 14 do not have values greater than when the LNS was
incarnated.

The following Trap PC fields are used for Hardware traps:

EMTPC - EMT dinstruction
BKTPC - BKT idinstruction
TRCPC - Trace Trap

IOTPC - I0T instruction

In addition,

SIGPC Signal PC, used when a Kall produced a signal
For all of the above Kalls, if the Trap PCs are 0 (especially
important for signals), no Trap is performed.

Any hardware error that occurs while the user is executing causes a
Trap to the PC found in ERRPC. 1In addition, after the trap is taken,
the Error Flag is turned on in the current PS. It can be cleared by
RTI'ing with a PS in which Error Flag is not set (such as the one pushed
on the stack when the error trap was taken). An error that occurs while
the Error Flag is set (instead of causing a new trap) causes the process
to be stopped. - If ERRPC is zero, the trap is not dismissed; again, the
process is stopped. In any case, the reason for the error is or'ed
into the fixed location ERRCODE in the stack (See the Appendix for the
meanings of the various error codes).

The PRMASK is a mask of Processors on which the LNS can run. The mask
is necessary since all C.mmp processors are not identical. Some have
hardware floating point arithmetic, some run faster than others, and
some may have a writable control store. If none of the needed
processors are up, an Error will be caused. The PRMASK will be set to
all 1's, and the old PRMASK will be put in SIGDATA.

The CONTROL Kall (See next section) provides an inter-process
interrupt mechanism. It is meant to be used only for debugging and
'emergency' situations. The Kernel Objects PORTs and POLSEMs are meant
to be used by wusers for interprocess communication and signalling. The
CTLMASK field in the LCB 1is a mask of those control interrupts the
current LNS will accept (there are 16 bits, hence, 16 different control
interrupts). Regardless of the contents of CTLMASK, a Blind LNS will
accept no interrupts. Any interrupt not accepted simply pends till it
is accepted. CTLPC contains the Control Trap address. The control

05450
05500
05550
05600
05650
05700
05750
05800
05850
05900
05950
06000
06050
06100
06150
06200
06250
06300
06350
06400
06450
06500
06550
06600
06650
06700
06750
06800
06850
06900
06950
07000
07050
07100
07150
07200
07250
07300
07350
07400
07450
07500
07550
07600
07650
07700
07750
07800
07850
07900
07950
08000
08050
08100

interrupts accepted will be or'ed into the fixed location CTLCODE in the
stack . If CTLPC contains a 0, the current LNS will be forced to return,
giving an SCNTRL signal to the Caller. In addition, all Controls
indicated in CTLCODE will be re-controlled and thus may affect the
Caller {(as well as any control interrupts pending). This is known as
‘Punting a Control’.

Control interrupts may also be used as part of a more desperate
debugger. Before CTLPC is checked, the contents of CTLCODE are
compared against the field DBGMASK. If any bits match, a debugging
PROCEDURE is Called that will have complete access to the environment
of the current LNS.

If DBGMASK matches any bits of CTLCODE, the contents of the field
DBGNDX in the LCB is used to index the current LNS's C-List. It
should denote a Capability for a Procedure Object with CALLRTS. If so,
the Procedure is CAlLled with one argument, a Capability for the
current LNS (see the LNS specification in CALL). If the CALL results
in any kind of Signal, the CILPC trap is taken, otherwise, CTLPC is
completely ignored. '

Since the Debugging Procedure is incarnated with an argument for the
LNS to be debugged, it can manipulate and access its C-List, its LCB
(via SETLCB & GETLCB) and its stack (via the Kalls GETSTACK &
PUTSTACK) - in short anything the executing LNS could do itself.

After execution of the Debugging Procedure, the value of R$0 will be
restored from LVREG of the current LCB just as are the other registers.
Thus, unless LVREG is changed by a SETLCB executed by the Debugging
Procedure, R$0 will be the same as it was before the Control Interrupt
was accepted. The value returned by the Debugging Procedure is only
inspected to determine if it is negative, in which case, as a signal
return, it forces execution to continue at CTLPC as noted above.

It should be noted that Capabilities for LNS's with access rights
are only generated in CALLs, and thus it is impossible to access any
LNS (except the current executing one) while that LNS is executing.

.SUBSEC |THE PS AND THE STACK|

The subsection on User Traps noted how RTI's were restricted in some
ways so that the current PS would not become more priveleged than when
the current LNS was called. The PS of another LNS (given a Capability
for that LNS with SETCBRTS) can be modified as well, through modifying
the field LPS with the Kall SETLCB. The restriction on fields 5-7,
8§-9, 13 and 14 are the same.

Bit 12 of the LPS field is the Reuse Flag. It controls whether a
KRETURNed LNS can be reused, either through a subsequent LNSCALL or by
using the LNS to initialize a Process. Only if bit 12 is set may it
be reused.

The LPS field of an ICB can be set as well. The restriction is that

08150
08200
08250
08300
08350
08400
08450
08500
08550
08600
08650
08700
08750
08800
08850
08900
083850
09000
09050
09100
09150
09200
09250
09300
09350
09400
09450
09500
09550
09600
09650
09700
09750
09800
09850
09900
09950
10000
10050
10100
10150
10200
10250
10300
10350
10400
10450
10500
10550
10600
10650
10700
10750
10800

the priority and space fields (5-7 & 8-9) can be set no greater than
those of the current PS. Bits 13 & 14 of the LPS in the ICB act as
incarnation and Call requirements. If bit 13 is set, then Confined
incarnations of the ICB's PROCEDURE are not allowed. If bit 14 is
set, then Blind incarnations of the ICB's PROCEDURE are not allowed.

A1l LNS's in a Process use the same Stack Page. However, the stack
is protected so that one LNS cannot access another's stack except
through the Kalls GETSTACK and PUTSTACK. When an LNS Calls another
LNS, the current bounds of its stack are stored in the LCB. SPUFLO
(which cannot be altered) contains its upper bound, and LSP contains
its lower bound. LSP can be changed as long as it is set below SPUFLO
and above the address KALBND (See the appendix for the actual address
of KALBND).

The active stack of an LNS which is not executing extends from
SPUFLO to the value of SP when the LNS Called its Callee - #20.
PUTSTACK can {(given a Capability for an LNS) modify any portion of its
active stack. The additional #20 bytes at the bottom of the stack
provide a small area in which a debugger can extend the stack. Note
that the actual value of LSP can be set even below that, but data
cannot be put there. This is because it would run into the top of the
stack of the LNS's Callee.

The field STKGROW is an estimate of the stack needed by an executing
LNS. If not enough space is available on the stack to permit that
much growth of the stack, the signal SSTK will be given when an
attempt is made to Call the LNS.

.SUBSEC |MORE ON CONTEXT BLOCKS]|

There is often a need to allow PROCEDUREs to accept a variable
number of arguments when Called. If fewer arguments are passed to a
Procedure than there are Parameter Templates, then, if the number of
arguments is greater than or equal to the value of field ARGMIN in the
ICB, the Call will succeed and the unfilled Parameter Templates will
be filled with Nulls in the LNS; otherwise, the Call fails with signal
SFARG.

ARGCALL in the LCB contains the actual number of arguments used in
incarnating the LNS.

RTRNDX contains the index in the LNS that Called this one where a
returned Capability will be placed.

PROCDATA is an 8 word field that can be used to identify the
PROCEDURE. It is modifiable in the ICB, but when copied into the
corresponding field of an incarnated LNS, it is not modifiable. The 8
word field LNSDATA is writable in both.

The remainder of the fields in the ICB/LCB have to do with Paging
and are described in the Paging Section.

10850
10900
10950
11000
110590
11100
11150
11200
11250
11300
11350
11400
11450
11500
11550
11600
11650
11700
11750
11800
11850
11900
11950
12000
12050
12100
12150
12200
12250
12300
12350
12400
12450
12500
12550
12600
12650
12700
12750
12800
12850
12900
12950
13000
13050
13100
13150
13200
13250
13300
13350
13400
13450
13500

.SUBSEC

|SPECIFICATION FOR CONTEXT BLOCK KALLS]

GETICB (Memd, Path, Code)
Parameters:

Effect:

Signals:

Result:

Memd - Legitimate Stack Memory address
Path - Path index; Pretarget: LOADRTS;

Target: PROCEDURE Object Reference, GETCBRTS
Code - Positive integer, legitimate code

Copies information from the Initial Context Block of

the Procedure into a block of Memory beginning at Memd.
The content and amount of information copied depends
on the Code. For legitimate codes and what gets copied,
see the Appendix. :

SCODE - Bad Code
0

SETICB (Path, Memd, Code)
Parameters:

Effect:

Signals:

Result:

Path - Path index; Steps & Pretarget: LOADRTS,UCNFRTS;
Target: PROCEDURE Object Reference, SETCBRTS,MDFYRTS
must reference a PROCEDURE Object.

Memd - Legitimate Stack Memory address

Code - Positive integer, legitimate code

Uses information in the block of Memory beginning at

Memd to set various values in the Initial Context

Block. For legitimate codes and their effects, see the

Appendix.

SCODE - Bad Code
SLPS - Bad PS (See Subsection on PS & the Stack)
0

GETLCB (Memd, Path, Code)
Parameters:

Effect:

Signals:

Result:

Memd - Legitimate Stack Memory address
Path - Path index; Pretarget: LOADRTS;
Target: LNS Object Reference, GETCBRTS
- or 0

Code - Positive integer, legitimate code

Copies information from the Local Context Block of
the LNS into a block of Memory beginning at Memd (If Path
is 0, then the current executing LNS is used).
The content and amount of information copied depends
on the Code. For legitimate codes and what gets copied,
see the Appendix.

SCODE - Bad Code
0

135650

13600 SETLCB (Path, Memd, Code)

13650 Parameters:

13700 Path - Path index; Steps & Pretarget: LOADRTS,UCNFRTS
13750 Target: LNS Object Reference, SETCBRTS,MDFYRTS
13800 - or O

13850 Memd - Legitimate Stack Memory address

13900 Code - Positive integer, legitimate code

13950 Effect: Uses information in the block of Memory beginning at
14000 Memd to set various values in the Local Context

14050 Block of the LNS (if the Path is 0, then the current
14100 executing LNS is used). For legitimate codes and their effects,
14150 see the Appendix.

14200 Signals:

14250 SCODE - Bad Code

14300 SLPS - Bad PS

14350 SLSP - Bad SP

14400 Result: 0

14450

14500

14550 GETSTACK (Memd, Ilns, Meml, Knt)

14600 Parameters: :

14650 Memd - Legitimate Stack Memory address

14700 ITns - Simple index, LNS Object Reference, GSTKRTS

14750 Meml - Legitimate Stack Memory address in the active
14800 stack of the LNS denoted by Ilns.

14850 Knt - Positive integer

14900 Effect: Moves up to Knt words of data from Meml to Memd. Fewer
14950 than Knt words will be copied if there are fewer than
15000 Knt words above and including Meml in Ilns's active stack.
15050 Signals:

15100 SLMEM - Mem1 1is a bad stack address

15150 Result: Number of words copied

15200

15250

15300 PUTSTACK (Ilns, Meml, Memd, Knt)

156350 Parameters:

15400 ITns - Simple index, LNS Object Reference, PSTKRTS,MDFYRTS
15450 Meml - Legitimate Stack Memory address in the active stack
15500 of the LNS denoted by Ilns

156550 Memd - Legitimate Stack Memory address

15600 Knt - Positive integer

15650 Effect: Moves Knt words of data from Memd to Meml.
15700 Signals:

15750 SLMEM - Meml is a bad stack address
15800 Result: 0
15850

L

00050
00100
00150
00200
00250
00300
00350
00400
00450
00500
00550
00600
00650
00700
00750
00800
00850
00900
00950
01000
01050
01100
01150
01200
01250
01300
01350
01400
01450
01500
01550
01600
01650
01700
01750
01800
01850
01900
01950
02000
02050
02100
02150
02200
02250
02300
02350
02400
02450
02500
02550
02600
02650
02700

.SEC |PROCESSES, POLICIES & SEMAPHORES]
.SUBSEC |PROCESS OBJECTS|

Process Objects are the scheduling entities of the HYDRA Kernel.
Unlike many systems, there 1is no explicit process hierarchy in HYDRA.
To stop or start a process, one merely needs a Capability for the
Process with the appropriate rights. Starting or stopping of one
process has no effect on any other process.

Process creation is accomplished using the Kall CREAT already
described.

CREAT (Nnew, Nprcs, Nlns) - Creation of Process Object
Parameters:
Nnew - Simple index, Empty
Nprcs - Simple index, PROCESS Template, CREARTS
Nlns - Simple index, LNS Object Reference, PRCSRTS;
The LNS must be "useable” (not currently active in an
LNSCALL or Process CREAT which has not yet returned,
and must have its REUSE Flag set if it has already been
LNSCALLed and subsequently returned).
Effect: Creates a PROCESS Object and places a Capability for
it in Nnew. The rights in Nnew are the same as those
in Nprcs plus DLTRTS.
The LNS referenced by Nins provides the initial environment
(LNS) of the Process when it is first STARTed.
Signals:
- For Paging related signals, see the Paging Section
SLOCK - LNS currently active
SREUSE - LNS may not be reused
Result: 0

.SUBSEC |THE PROCESS BASE]

Optionally associated with a Process is a Process Base, a UNIVERSAL
Object that remains associated with the Process over calls and
returns. The Kall BLOAD loads a Capability from the current Process's
Base into the current LNS and BCALL CALLs a Procedure in the Process
Base. A Process Base can be used to provide generally available
facilities to a Process or more likely, a group of processes.

If an LNS 1is confined, the Capabilities in the Process Base act as
though they lacked UCNFRTS. If an LNS is Blind, the Process Base may
not be used.

.SUBSEC |POLICY SUBSYSTEMS & LONG-TERM SCHEDULING]|

Before a Process is able to run, it must be associated with a POLICY
Object via the POLICY Kall (which also can associate a Process with
its Base). Processes have specific resource needs, space (both for
pages, in core and out, and for Objects) and cpu time. POLICY Objects

02750
02800
02850
02900
02950
03600
03050
03100
03150
03200
03250
03300
03350
03400
03450
03500
. 03550
03600
03650
03700
03750
03800
03850
03900
03950
04000
04050
04100
04150
04200
04250
04300
04350
04400
04450
04500
04550
04600
04650
04700
04750
04800
04850
04900

04950

05000
05050
05100
05150
05200
05250
05300
05350
056400

provide the mechanism for allocation of these resources. By a 'Policy
Subsystem', we mean the set of Procedures that manage the scheduling
and allocation of the Processes associated with a particular Policy
Object. :

To allow multiple Policy Subsystems to coexist, each Policy Object
is provided (via the Kall MAKEPOLICY) with resource guarantees (a
percentage of CPU-time and memory allocation guarantees). In turn, a
Policy Subsystem may fix memory guarantees for each process associated
with it, which acts as an upper limit to the memory resources the
process may use when running.

The Kalls START and STOP start and stop Processes and are the means
by which a Policy Subsystem implements long-term scheduling.

The Kall START (given a Capability for a PROCESS with STARTS) swaps
a process's pages into memory and makes the process available for
execution. STARTing a Process associated with a POLICY Object P will
fail, if the Process's memory guarantee added to the sum of the
Process memory guarantees of all the running Processes assocaited with
P exceeds P's memory guarantee.

When a Process is stopped, either by the Kall STOP or for some other
reason, its pages may be swapped out and the memory allocated to it is
made available for reallocation by the Policy Subsystem.

.SUBSEC |KMPS & THE PCB]|

After a Process is started and until it is stopped, short-term
scheduling is provided by KMPS, the Kernel MultiProgramming System. A
Policy Subsystem can affect KMPS's scheduling by setting some fields
(FPRIORITY, FNSLICES & FSLICE) in the Data-Part of the Process, its
PCB (Process Context Block).

The fields in the PCB which affect KMPS scheduling are:

PRMASK - Processor mask, a mask of the processors upon which the
Process may run. It is the same as the PRMASK of the LNS currently
executing under the Process.

PRIORITY - Relative importance of a Process. When a processor
becomes available, KMPS first chooses a Policy Object and then runs
the highest priority Process associated with that Policy that can run
on the processor. If the high order bit of PRIORITY is 1, the Process
will not be stopped when it runs out of time (i.e. NSLICES & SLICE are
ignored).

NSLICES, SLICE - Number of time slices & time slice size (in
microseconds). KMPS will run a Process for NSLICES time slices of
SLICE size each. When the process has used up its total time quantum,
it is stopped, and must be reSTARTed before KMPS will schedule it
again.

05450
05500
05550
05600
05650
05700
05750
05800
05850
05900
05950
06000
06050
06100
06150
06200
06250
06300
06350
06400
06450
06500
06550
06600
06650
06700
06750
06800
06850
06900
06950
07000
07650
07100
07150
07200
07250
07300
07350
07400
07450
07500
07550
07600
07650
07700
07750
07800
07850
07900
07950
08000
08050
08100

In addition, KMPS contains the following fields:

POLID - A word used by a Policy Subsystem to identify the Process
(see THE POLICY QUEUE).

CPSMAX - Core Page guarantee. Maximum number of pages in the
working set of any LNS executing under the Process.

CPSCUR - Number of pages in current working set.
TIMER - Remaining time is current slice.

NUSLICES - Number of time slices used (cleared when the Process is
STARTed).

RSTATE - Running state. There are four possibilities:

0 - RUNNING. Process is actually running on a Processor.
1 - FEASIBLE. Process is in KMPS waiting to run.
2 - BLOCKED. Process is in KMPS but blocked.
3 - STOPPED. Process is not in KMPS.
RCVCODE - Policy Receive Code (See THE POLICY QUEUE). Contains bits

indicating additional status of the process, including reasons why the
process has been stopped. More than one bit may be set (See Appendix
for meanings of each bit). The field is cleared when the process is
restarted.

CTLMASK - Controls accepted by the LNS executing under the Process.

CTLCODE - Controls pending. A Control interrupt may be sent to a
stopped process. If it matches any bits in CTLMASK, it will strike as
soon as the Process begins running. Any control interrupts not
accepted by CTLMASK will continue to pend until accepted by a change
of CTLMASK. ‘

.SUBSEC |EXECUTION PROTECTION]

Though HYDRA/C.mmp has been designed to be an extremely reliable
system, a hardware failure can halt the execution of an LNS at an
arbitrary time. Hence, users should adopt (in general) the MULTICS
philosophy: When operating on sensitive information, leave enough
audit information around so that a recovery procedure can complete the
operation regardliess of where in the operation a crash might have
occurred.

More generally, while a user may build his own Policy Subsystem, it
is likely that he will elect toc use one made generally available to
the user community. A Process may be STOPped at any time, and it is
certainly within the range of possibility (especially using a buggy
Policy Subsystem) that the Process may never be restarted.

A Policy Subsystem also has available the CONTROL Kall to send
interrupts to a Process. A buggy subsystem may send so many

08150
08200
08250
08300
08350
08400
08450
08500
08550
08600
08650
08700
08750
08800
08850
08900
08950
09000
09050
09100
09150
09200
09250
09300
09350
09400
09450
09500
09550
09600
09650
09700
09750
08800
09850
09900
09950
10000
10050
10100
10150
10200
10250
10300
10350
10400
10450
10500
10550
10600
10650
10700
10750
10800

interrupts that the executing LNS will spend all of its time fielding
the control interrupts.

To solve all of these problems {except for the problem of unexpected
crashes), the RUNTIME Kall is provided. RUNTIME specifies an amount
of time during which the current Process will neither be stopped nor
will receive any Control interrupts. RUNTIME also solves a more
useful problem, to wit: Consider a Data Base that is accessed and
changed frequently by cooperating concurrent processes. If access and
modification are fast operations, then if the operations are
execution-protected by RUNTIME, a busy-wait lock which is part of the
Data Base may suffice to provide mutual exclusion rather than more
complex (though better structured) use of synchronization objects
(SEMAPHOREs, POLSEMs & PORTS).

Some uncertainties about execution can be resolved if a user has
some information about the Policy Subsystem and its status with
which her program executes. The Kall INFPOLICY returns v
a word that reflects such information. The value of that word is set
when the POLICY Object was created.

.SUBSEC |SEMAPHORES|

SEMAPHORE Objects are supplied to provide short term synchronization
for trusted Subsystems. In general, users will not have Capabilities
for Semaphores but will use POLSEMs (POLicy SEMaphores) and PORTs
instead.

Semaphore Objects are created with an initial count (parameter for
Semaphore CREAT) that specifies the number of PSEM's more than VSEM's
that may be executed without causing the Process to wait. A Process
waiting on a SEMAPHORE is not stopped, and in fact, cannot be STOPped
(and thus swapped out) until it passes the SEMAPHORE.

When a SEMAPHORE is erased, it is first V'd as many times as are
necessary to wake up all Processes waiting on the Semaphore.

For reljability, a 1imit is set for the amount of time a Process may
be blocked on a SEMAPHORE. If the Process is blocked for a longer
time, the Process continues execution and its PSEM (the Kall which P's
a Semaphore) fails.

.SUBSEC |THE POLICY QUEUE]

The Kernel keeps a queue for each POLICY Object. When a Process
stops, information about the stopped process is placed in the POLICY
queue. The Kall RCVPOLICY is used to extract an entry from the Policy
queue in FIFO order. (The Policy queue is also used for other Process
related messages. See the section on PORTS & POLSEMS for further
details). The information extracted includes POLID so that the Policy
Subsystem can identify the Process affected.

10850
10900
10950
11000
11050
11100
11150
11200
11250
11300
11350
11400
11450
11500
115650
11600
11650
11700
11750
11800
11850
11900
11950
12000
12050
12100
12150
12200
12250
12300
12350
12400
12450
12500
12550
12600
12650
12700
12750
12800
12850
12900
12950
13000
13050
13100
13150
13200
13250
13300
13350
13400
13450
13500

.SUBSEC |SPECIFICATIONS FOR PROCESS, SEMAPHORE & POLICY KALLS|
PROCESS CONTEXT BLOCKS
GETID
Parameters:
- Current LNS must not be Blind
Effect: None
Signals:
SBLND - Current LNS is Blind
Result: Process ID of the current Process

GETPCB (Memd, Path, Code)
Parameters:

Effect:

Signals:

Result:

Memd - Legitimate Stack Memory address
Path - Path index; Pretarget: LOADRTS;
Target: PROCESS Object Reference, GETCBRTS

Code - Positive integer, legitimate code

Copies information from the Process Context Block of
the Process into a block of Memory beginning at Memd.
The content and amount of information copied depends
on the Code. For legitimate codes and what gets copied,
see the Appendix.

SCODE - Bad Code
0

SETPCB (Path, Memd, Code)
Parameters:

Effect:

Signals:

Result:

PROCESS

Path - Path index; Steps & Pretarget: LOADRTS,UCNFRTS
Target: PROCESS Object Reference, SETCBRTS,MDFYRTS;
Unless the PROCESS is the current one, the PROCESS
must be stopped.
Memd - Legitimate Stack Memory address
Code - Positive integer, legitimate code
Uses information in the block of Memory beginning at
Memd to set various values in the Process Context
Block. For legitimate codes and their effects, see the
Appendix.
If current PCB is being changed, then any current RUNTIME
is cancelled.

SPRCS ~ Process not stopped

SCODE - Bad Code
0

BASE

13550
13600
13650
13700
13750
13800
13850
13900
13950
14000
14050
14100
14150
14200
14250
14300
14350
14400
14450
14500
14550
14600
14650
14700
14750
14800
14850
14900
14950
15000
150590
15100
15150
15200
15250
15300
15350
15400
15450
15500
15550
15600
15650
15700
15750
15800
15850
15900
15950
16000
16050
16100
16150
16200

BLOAD (Nnew, Ncur)

Parameters:
Nnew - Simple index, Empty
Ncur - Simple index into the current Process's Base, Defined
- Current LNS must not be Blind

Effect: Copies the Ncur'th Capability from the current Process Base
to the Nnew'th slot of the current LNS adding DLTRTS. If the
current LNS is Confined, Nnew will lack UCNFRTS.

Signals:
SKNDC - No Process Base
SBLND - Current LNS is Blind

Result: 0

BCALL (Rtrn, Ncur, <arguments>)

Parameters:
Rtrn - Simple index, Empty or 0
Ncur - Simple 1index into the current Process's Base,

PROCEDURE Object Reference, CALLRTS

- Current LNS must not be Blind

Effect: The effect is exactly equivalent to the sequence
BLOAD (*, Ncur); CALL { Rtrn, *, <arguments>).
That is, the Kernel CALLs the Procedure in the Process
Base without the Caller getting a Capability itself for
the Procedure.

Signals:
See BLOAD & CALL

Result: Value returned by Callee

SCHEDULING & CONTROL

START (Nprcs)
Parameters:
Nprcs - Simple index, PROCESS Object Reference, STARTS,UCNFRTS;
Process must be stopped but runnable
Effect: Pages in the Process and enters it in KMPS
Signals:
SPRCS - Process is not Stopped
SPOL - Process not associated with Policy Object
SPOP - Initial LNS of Process has returned
SGUAR - Policy Object guarantee has been exceeded. SIGDATA
contains more information (See Appendix).
Result: 0

STOP (HNprcs, Code)
Parameters:
Nprcs - Simple index, PROCESS Object Reference, STOPRTS,UCNFRTS;
Process must be in KMPS
Code - Integer

16250
16300
16350
16400
16450
16500
16550
16600
16650
16700
16750
16800
16850
16900
16950
17000
17050
17100
17150
17200
17250
17300
17350
17400
17450
17500
17550
17600
17650
17700
17750
17800
17850
17900
17950
18000
18050
18100
18150
18200
18250
18300
18350
18400
18450
18500
18550
18600
18650
18700
18750
18800
18850
18900

Effect: Removes Process from KMPS and enters an entry (including
Code - called the Rcvcode) in the associated Policy's
RCVPOLICY queue.

Result: O

CONTROL (Nprcs,, Code)

Parameters:
Nprcs - Simple index, PROCESS Object Reference, CTLRTS,UCNFRTS
- or O
Code - Integer
Effect: Causes Control interrupts specified by Code to be sent to

the Process (Current process if Nprcs is 0). See Subsection
on User Traps.
Result: 0

RUNTIME (Tim)
Parameters:
Tim - Integer
- Current LNS must not be Blind
Effect: If Tim is zero, forces KMPS to reconsider its scheduling,
which will cause a runnabie process at the same or higher
priority to run instead. In addition, though CTLMASK & PRMASK
may be changed in the current LCB, the change only becomes
effective if a RUNTIME (or call or return) is executed.
RUNTIME also provides for uninterrupted execution. During
that time the process may not be stopped (except due to errors,
WORKSET and PPOLSEMs) and no Control interrupts are accepted.
If Tim is positive, then if Tim is available in the total
time remaining in the current and all remaining time slices,
then execution proceeds uninterruptably (except for
short term rescheduling by KMPS)}. Tim is in 1/2 seconds up
to 1 minutes. :
If Tim is negative, then if -(Tim) is available in the
current time slice, execution proceeds uninterruptably
(except for hardware device interrupt handling). If -(Tim)
is not available in the current time slice, but is less than
or equal to the time slice size and at Teast one time slice
remains, then before uninterrupted execution begins, the current
time slice is ended and rescheduling is considered (but the
process may not be STOPped or Control Interrupted). -(Tim)
is in 16 microseconds up to 1/2 second.
In either case, if the requested time is not available,
the process is stopped. When reSTARTed, if the PCB has not
been changed to make the requested time available, the Kall
fails.
If RUNTIME succeeds and a subsequent RUNTIME is executed
in the uninterruptable period, pending STOP's and Control
interrupts are re-enabled before the new RUNTIME takes effect.
Signals:
STIM - Requested time not made available
SBLND - Current LNS is Blind
Result: 0

18950
19000
19050
19100
19150
19200
19250
19300
19350
19400
19450
19500
19550
19600
18650
19760
19750
19800
19850
19900
19950
20000
20050
20100
20150
20200
20250
20300
20350
20400
20450
20500
20550
20600
20650
20700
20750
20800
20850
20900
20950
21000
21050
21100
21150
21200
21250
21300
21350
21400
21450
21500
21550
21600

SEMAPHORES

PSEM (Path , Tim)
Parameters:
Path - Path index; Steps & Pretarget: LOADRTS,UCNFRTS;
Target: SEMAPHORE Object Reference, MDFYRTS
Tim - Positive integer
Effect: P's the Semaphore
Signals:
SSEM - Process has been blocked on the Semaphore for more than
Tim seconds.
Result: 0

CPSEM (Path)
Parameters: .
Path - Path index; Steps & Pretarget: LOADRTS,UCNFRTS;
Target: SEMPAHORE Object Reference, MDFYRTS
Effect: Conditionally P's the Semaphore. The P is only executed if
the process will not have to wait on it.
Result: 1 if the P was executed, 0 if not.

VSEM (Path)
Parameters:
Path - Path index; Steps & Pretarget: LOADRTS,UCNFRTS;
Target: SEMAPHORE Object Reference, MDFYRTS
Effect: V's the Semaphore
Result: 0

VASEM (Path)
Parameters:
Path - Path index; Steps & Pretarget: LOADRTS,UCNFRTS;
Target: SEMAPHORE Object Reference, MDFYRTS

Effect: V's the Semaphore exactly as many times as are needed to
wake up all Processes waiting on it.
Result: Number of V's done

POLICY KALLS

POLICY (Nprcs, Npol, Nuniv)
Parameters:
Nprcs - Simple index, PROCESS Object Reference, MDFYRTS;
If Npol 1is non-zero, requires POLRTS;
IT Nuniv is non-zero, requires BASERTS
Npol - Simple index, POLICY Object Reference, POLRTS,MDFYRTS

21650
21700
21750
21800
21850
21900
21950
22000
22050
22100
22150
22200
22250
22300
22350
22400
22450
22500
22550
22600
22650
22700
22750
22800
22850
22900
22950
23000
23050
23100
23150
23200
23250
23300
23350
23400
23450
23500
23550
23600
23650
23700
23750
23800
23850
23900
23850
24000
24050
24100
24150
24200
24250
L

-or 0
Nuniv - Simple index, UNIVERSAL Object Reference, ENVRTS
-or 0
Effect: If Npol is non-zero, associates POLICY with the PROCESS.
If Nuniv is non-zero, makes the UNIVERSAL Object the
Process's Base.
Result: 0

RCVPOLICY (Memd, Npol)
Parameters:
Memd - Legitimate Stack Memory address
Npol - Simple index, POLICY Object Reference, RCVRTS,MDFYRTS
Effect: Extracts an entry from the Policy's queue and puts the
information from the entry into the 16 word area in memory
beginning at Memd.
If the queue is emptity, the Process waits until an entry
arrives.
Result: 0

MAKEPOLICY (Nnew, Ncur, Memd)

Parameters:
Nnew - Simple index, POLICY Object Reference, MAKERTS,MDFYRTS
Ncur - Simple index, POLICY Object Reference, MAKERTS,MDFYRTS;
Memd - Legitimate Stack Memory address

Effect: Transfers allocations and guarantees between the two
POLICY Objects. The 16 word block beginning
at Memd contains information about how allocations and
guarantees are to be transferred.

Signals:
SGUAR - Bad guarantee specification. SIGDATA indicates

what was wrong. See Appendix for Details.
Result: 0

WHATPOLICY (Memd, Npol)
Parameters:
Memd - Legitimate Stack Memory address
Npol - Simple index, POLICY Object Reference
Effect: Information about the guarantees and allocations of the
POLICY Object is put into the 16 word area beginning at Memd.
Result: 0

INFPOLICY ()
Parameters:
- Current LNS must not be Blind
Effect: None
Signals:
SBLND - Current LNS is Blind
Result: One word of Policy information (set by Policy CREAT)

00050
00100
00150
00200
00250
00300
00350
00400
00450
00500
00550
00600
00650
00700
00750
00800
00850
00900
00950
01000
01050
01100
01150
01200
01250
01300
01350
01400
01450
01500
01550
01600
01650
01700
01750
01800
01850
01900
01950
02000
02050
02100
02150

02200 .

02250
02300
02350
02400
02450
02500
02550
02600
02650
02700

.SEC |PAGING]
.SUBSEC | INTRODUCTION|

The single largest impact of the PDP-11 on the design of the paging
system is that the PDP-11 processor is only able to generate a 16-bit
address. Thus user programs, at any instant, may address at most 64K
bytes, or 32K words. The second largest impact arises from the fact
that the relocation hardware divides the user's address space into
eight 8K-byte units called "Page frames". Since this is a rather
small address space, much of the design of the paging system is
oriented toward making these restrictions somewhat easier to live
with.

In the following material we shall use the term "Page" to refer to
an Object, in the HYDRA-technical sense of that word, of type PAGE.
In many contexts the term "Page” may also be read to mean the
information contained in the PAGE Object. The term "Page frame”, or
simply "frame”, on the other hand, will be used to refer to the area
of physical primary memory (core) in which the information content of
a Page Object resides. The term "frame" is also used to indicate a
portion (1/8th) of the user's address space; context should
disambiguate these uses.

Since Pages are Objects, a user program may, and generally will have
one or more Capabilities which reference specific Pages. These
Capabilities may be in the LNS of an executing LNS or contained in
some Object, e.g., a Directory, which can be named by a Path rooted in
the current LNS. Possession of a Capability for a Page, however, does
not make it addressable. In particular, it is possible that many more
Pages may be named in some particular LNS than can be simultaneously
addressed by the PDP-11 hardware. Thus the paging system defines
means by which the user may specify and alter the set of Page Objects
which are physically present in primary memory and which of these may
be directly accessed at any instant.

Each active LNS has associated with it a CPS (Current Page Set) and
an RPS (Relocation Page Set). The set of pages referenced by the CPS
is guaranteed to be core-resident while the LNS is executing. The set
of pages in the RPS (a subset of those in the CPS) is precisely the
set whose Page frames are named by the relocation hardware of C.mmp
(excluding the stack page which is fixed by the Kernel for the 1ife of
a Process). Thus the Pages in the RPS (plus the stack page) are those
whose information may be accessed directly by instructions executed by
the PDP-11 processor which is executing the user's program. Of
necessity the RPS must refer to seven or fewer pages; no such
restriction exists for the CPS.

Memory allocation (as well as long term scheduling) are controlled
by the particular Policy Subsystem with which the user's Process is
associated. While in principle, the CPS may be of arbitrary size, in
practice it is advantageous for a user to limit the size of her CPS to
make scheduling more 1ikely, though such guarantees depend on the
particular Policy Subsystem.

02750
02800
02850
02900
02950
03000
03050
03100
03150
03200
03250
03300
03350
03400
03450
03500
03550
03600
03650
03700
03750
03800
038590
03900
03950
04000
04050
04100
04150
04200
04250
64300
04350
04400
04450
04500
04550
04600
04650
04700
04750
04800
04850
04900
04950
05000
05050
05100
05150
05200
056250
05300
05350
056400

.SUBSEC |MANIPULATING PAGE SETS|

The Kall CPSLOAD enters pages into the CPS. Loading the current
LNS's CPS implies that the designated pages must be brought into core,
and the user may assume that they are. In reality however any i/o
necessary to make the Pages core- resident is merely requested at this
point and a wait-for-i/o-complete, if necessary, is done only when the
user requests that a Page be included in his RPS. It should be noted
that if a designated CPS slot previously contained a reference to some
other Page, that reference is lost and the corresponding Page may
become eligible to be swapped out of core, assuming, of course, that
the pages are not referenced by the CPS of some other executing LNS.

The Kall RRLOAD provides the user with the ability to move pages
from the CPS to the RPS, and hence to be able to reference these Pages
directly. As noted above, this operation may imply waiting for the
specified Page to become physically resident in primary memory. Once
the Page is resident, however, it will remain resident so long as it
remains in the CPS and the procedure is active. When the user’'s
Process is stopped, the pages may be swapped out. They are swapped
back in when the Process is reSTARTed.

The CPS, RPS, and the functions listed above effectively define a
three level memory system - the Pages namable by, or through, the LNS,
those named in the CPS, and those named in the RPS. Normally each of
these is a subset of the preceding (the exception being that once a
Page Capability is loaded into the CPS it may be deleted from the
LNS). For the small program, these sets may be identical and the user
need not concern herself with the paging system. For larger programs,
the user must manage these sets, and the way in which she does so may
significantly impact the performance of her program.

.SUBSEC |INITIALIZATION|

An LNS's LCB contains an IPS (Initial Page Set) which specifies how
the CPS/RPS is to be initialized when it is Called (by automatically
performing CPSLOADs and RRLOADs).

INCPS - Initial size of the CPS

ICPS - 47 words long, the first 'Incps’' of which are used to
initialize (CPSLOAD) the CPS. Each word contains:

0 - CPS slot will be empty

+m - CPS slot will be CPSLOADed with the Page whose Capability
is in the m'th slot of the LNS's C-List

-m - Just like +m, except the Capability is deleted from the
LNS*s C-List as well (This is useful for pages which
the program never manipulates, but must be used
carefully, since the Capability may be deleted even
if the Call fails)

05450
05500
05550
05600
05650
05700
05750
056800
05850
05900
05950
06000
06050
06100
06150
06200
06250
06300
06350
06400
06450
06500
06550
06600
06650
06700
06750
06800
06850
06900
06950
07000
07050
07100
07150
07200
07250
07300
07350
07400
67450
07500
07550
07600
07650
07700
07750
07800
07850
07900
07950
08000
08050
08100

IRPS - Seven words used to initialize the seven RPS slots. Each word
either contains an index into the CPS (that page will then be
RRLOADed) or 0 (addresing such a page will cause a NXM error - Non
eXistant Memory. The same thing occurs if the CPS slot was empty).

MAXSIZE - Maximum CPS size. Fixed for the 1ife of the LNS.

When an LNS is incarnated from a PROCEDURE, the IPS in the LNS's LCB
is copied from the IPS fields of the PROCEDURE's ICB. Slots in the
ICPS may denote Page Templates in the PROCEDURE's C-List. In the LNS,
these will denote Capabilities for Page Objects passed as arguments in
incarnating the LNS.

When an LNS Calls another LNS, the pages in the Caller's LNS become
eligible to be swapped out. When the Callee returns, the Caller's
pages are automatically first swapped back into core if necessary
before execution proceeds.

An LNS's IPS remains unchanged during the 1ife of the LNS. Hence,
if an LNS KRETURNs and is subsequently LNSCALLed again (or made the
initial LNS of a Process), its CPS and RPS will be re-initialized
using the same IPS, even though the C-List of the LNS may have changed
as a result of previous execution, and even though execution will
continue at the PC following the KRETURN.

Multiple usage of an LNS may of course be prevented by use of the
REUSE Flag in the LCB's PS word (See Subsection on the LCB & ICB)

.SUBSEC |CPS SIZE & THE WORKING SET|

There are 2 1imits placed on the size of a CPS. First, the Kernel
has a fixed 1imit on the total number of CPS slots allocated to active
LNS's (those Called which have not yet Returned) in a Process.
Secondly, a Process's PCB contains a field (CPSMAX) which 1imits the
maximum CPS size for any LNS executing under the Process. A Call may
fail if the Called LNS's MAXSIZE exceeds the first limit, or if the
LNS's INCPS field exceeds the Process's CPSMAX.

The Kall WORKSET provides a way for (all but Blind) LNS's to
dynamically change the size of the CPS (the LNS's Working Set). It is
always possible (and usuaily advantageous) to lower the CPS size. It
may not be raised at all above the LNS's MAXSIZE, but it may be raised
over the Process's CPSMAX. If it is, the Process is stopped, and much
like the Kall RUNTIME, the Policy Subsystem is given a chance to raise
the Process's CPSMAX so that the WORKSET Kall will succeed when the
Process 1is restarted.

A Call or Return always causes a WORKSET to be implicitly executed
since the CPS size may differ in the Caller and Callee. If, on a
Return, CPSMAX is Tower than the Caller's CPS size, not only will the
Process be stopped, but it will not be successfully restarted until
CPSMAX is adequately raised (it will just be stopped again). One
small additional point; a Blind LNS may not Call an LNS whose initial

08150 CPS size is greater than the current CPS size.

08200

08250

08300 .SUBSEC |AUXILIARY RIGHTS FOR PAGES]

08350

08400 Two pre-defined auxiliary rights for pages have a somewhat special

08450 property. They are used by the C.mmp hardware when loaded into the
08500 RPS to determine how the page may be addressed by PDP-11 instructions.
08550

08600 A Page loaded from a Capability lacking PGWRTS (or the Kernel right
08650 MDFYRTS) may not be written into.

08700

08750 A Page loaded from a Capability with CACHRTS (and the Kernel right

08800 FRZRTS) is cacheable. The right will be used in conjunction with
08850 the PDP-11 code cache when it is implemented.

08900

08350 In addition, the auxiliary right CPSRTS allows the Page to be

09000 CPSLOADed. If a Page Capability lacks CPSRTS but does contain

09050 COPYRTS, it is called an Initialization Page. The Page may be COPYed,
09100 and the Capability for the COPYed Page will have CPSRTS (as well as
09150 PGWRTS and CACHRTS).

09200

09250

09300 .SUBSEC |COPYING PAGES]|

09350 '

09400 When a PAGE is COPYed, a CPS slot must additionally be specified

09450 indicating where the page may be CPSLOADed. So the COPY Kall for
09500 Pages is specified as follows:

09550

09600 COPY (Nnew, Npage, Ncps) - Copying of Page Object

09650 Parameters:

09700 Nnew - Simple index, Empty

09750 Npage - Simple index, PAGE Object Reference, COPYRTS

09800 Ncps - Positive integer, no greater than the current LNS's
09850 CPS size

09300 Effect: Creates a new Page Object and places a Capability for it
09950 in Nnew. 1In addition, the contents of the page referenced by
10000 Npage is copied into the new page. The new page is then
10050 CPSLOADed in the Ncps'th CPS slot.

10100 The Kernel rights of the new Capability in Nnew will be the
10150 same as those in Npage plus DLTRTS, however, all Auxiliary rights
10200 will be set in Nnew.

10250 Signals:

10300 SCPSBND - Ncps is out of bounds

10350 Result: 0

10400

10450

10500 .SUBSEC |SPECIFICATIONS FOR PAGING KALLS]

10550

10600

10650 PAGE (Path)

10700 Parameters:

10750 Path - Path index; Steps: UCNFRTS,LOADRTS;

10800 Pretarget: STORTS,MDFYRTS; Target: Empty

10850
10900
10950
11000
11050
11100
11150
11200
11250
11300
11350
11400
11450
11500
11550
11600
11650
11700
11750
11800
11850
11900
11950
12000
12050
12100
12150
12200
12250
12300
12350
12400
12450
12500
12550
12600
12650
12700
12750
12800
12850
12900
12950
13000
13050
13100
13150
13200
13250
13300
13350
13400
13450
13500

Effect: Creates a Page Object and places a Capability for it with all
relevant rights but ALLYRTS & FRZRTS in Path's Target.
Result: 0

CPSLOAD (Nlins, <{cps-page-pairs>)
Parameters:
Nins - Simple index, LNS Object Reference, MDFYRTS,SETCBRTS
- or O
{cps-page-pairs> - One or more pairs of < Ncps, Path >, where:
Ncps - Positive integer, no greater than the LNS's
current CPS size
Path - Path index; Pretarget: LOADRTS;
Target: PAGE Object Reference, CPSRTS
- or O -
Effect: For each pair, loads the Page targeted by Path into
the Ncps'th CPS slot of the LNS denoted by Nlns (the current
LNS if NIns is 0). If Path is zero, the CPS slot is just
emptied.
See RRLOAD for additional effects.

A Signals:

SCPSBND - Some Ncps is out of bounds (above the CPS size or
below 1). SIGDATA contains the index of the bad pair
- The usual signals can occur because of a bad Path
specification. In addition, SPAGE will be or'ed in and
and SIGDATA will contain the index of the bad pair.
Result: 0

RRLOAD (Nlns, Nrps, Ncps)
Parameters:
Nins - Simple index, LNS Object Reference, MDFYRTS,SETCBRTS
- or O
Nrps - 1 through 7
Ncps - Positive integer, no greater than LNS's CPS size or 0
Effect: Loads a page into the Nrps'th RPS slot of the LNS denoted
by Nlns (the current LNS if Nins is G) from the Ncps'th CPS
slot. If Ncps is zero, the RPS slot will be set to NXM.
If the CPS slot was CPSLOADed from a Capability
with both CACHRTS & FRZRTS, the page may be cached. If the
CPS slot was CPSLOADed from a Capability with
both PGWRTS & MDFYRTS, the page may be written into.
Signals:
SCPSBND - Ncps 1is out of bounds.
SRPSBND - NRPS 1is not 1 through 7
Result: CPS slot index of the page previously loaded in the
Nrps'th RPS slot (0 if RPS slot was NXM).

WORKSET (Nlns, Size)
Parameters:
Nins - Simple index, LNS Objects Reference, MDFYRTS,SETCBRTS
- or 0, in which case, the current LNS must not be Blind
Size - Positive integer, no greater than the LNS's CPS MAXSIZE

13550
13600
13650
13700
13750
13800
13850
13900
13950
14000
14050
14100
14150
14200
14250
14300
14350
14400
14450
14500
14550
14600
14650
14700
14750
14800
14850
14900
14950
15000
15050
15100
15150
L

Effect: Changes the CPS size of the LNS denoted by Nlns (the current
LNS if Nlns is 0).
If Nlns is zero and Size is greater than the current Process's
CPSMAX, then the Process is stopped. If CPSMAX has not been
raised to cover Size when the Process is restarted, the Kall

fails.
Signals:
SIPSMAX - Size greater than MAXSIZE.
SCPSMAX - CPSMAX has not been raised to cover Size. SIGDATA
contains CPSMAX.
SBLND - Current LNS is Blind
Result:]

Paging Signals for LNSCALL & Process CREAT:

- The usual signals occur if an ICPS entry denotes something
other than a Page Object Reference with CPSRTS, however,
SPAGE will be or'red with the Signal. SIGDATA will
contain the bad ICPS index in its low order byte and
the bad LNS slot is denotes in its upper byte.

SCPSBND - An IRPS slot contains a bad index into the CPS.

The low order 3 bits of the signal indicate the
bad RPS slot (1 - 7).

SIPSMAX - INCPS is greater than MAXSIZE

SCPSMAX - One of three things may be wrong:

1) MAXSIZE > available remaining Process CPS allocation

2) Current LNS is Blind and INCPS > current CPS size

3) Current LNS 1is not Blind and INCPS > CPSMAX even after
the Process has been stopped and restarted.

If the current LNS is not Blind, SIGDATA contains CPSMAX

in its low order byte and the available remaining Process

CPS allocation in its high order byte.

00050
00100
00150
00200
00250
00300
00350
00400
00450
00500
00550
00600
00650
00700
00750
00800
00850
00900

100950
01000
01050
01100
01150
01200
01250
01300
01350
01400
01450
01500
01550
01600
01650
01700
01750
01800
01850
01900
01950
02000
02050
02100
02150
02200
02250
02300
02350
02400
02450
02500
02550
02600
02650
02700
+L

.SEC |THE PASSIVE GST|
.SUBSEC | INTRODUCTION]

The collection of Objects is called the GST (Global Symbol Table).
The entire GST is too large to completely reside in main memory. So,
only actively referenced Objects (the Active GST) are kept in core.
The remainder of the GST (the Passive GST) is kept in secondary
memory.

If an Object is in the Passive GST, it will be brought into the
Active GST when it is referenced. Normally, it will migrate back to
the Passive GST when no Capabilities for the Object are in Active
Objects. Though not currently implemented, there will be a limit to
the amount of Active GST space that a Process may use (similar to the
CPS T1imit, CPSMAX, in the PCB). Thus, it is necessary to aliow a
user to PASSIVATE an Object. The Active GST space occupied by the
Object will then no longer be charged against the Process until an LNS
executing under the Process subsequently references the Object. The
Kall PASSIVATE will not actually cause the Object to migrate back to
the Passive GST unless no other processes are actively referencing it.

The Kernel takes great care to insure the reliability of the GST.
For example, if an error occurs in an Active Object due to faulty
memory, the Kernel will attempt to fix it by using available redundant
information in the Object structure as well as the most recent copy of
the Object in the Passive GST. Thus, it is useful to provide a Kall,
UPDATE, that for reliability reasons, updates the most recent copy of
the Object in the Passive GST, regardless of whether or not other
Processes are actively referencing it.

.SUBSEC |SPECIFICATIONS FOR PASSIVE GST KALLS]

PASSIVATE (Path)

Parameters:
Path - Path index; Pretarget: LOADRTS; Target: Defined.

Effect: If Path's Target is last Active reference for
the Object it references, the Object will migrate back to
the Passive GST and each Capability in the Object's C-List
will also be PASSIVATEd.

Result: 0

UPDATE (Path)

Parameters:
Path - Path index; Pretarget: LOADRTS; Target: Defined.

Effect: Has the same effect as PASSIVATE, except the Object will
be updated in the Passive GST in any case. In addition,
each Capability in the C-List of the Object referenced is
UPDATEd.

Result: 0

00050
00100
00150
00200
00350
00400
00450
- 00500
00550
00600
00650
00700
00750
00800
00850
00900
00950
01000
01050
01100
01150
01200
01250
01300
01350
01400
01450
01500
01550
01600
01650
01700
01750
01800
01850
01900
01950
02000
02050

02100

02150
02200
02250
02300
02350
02400

02450
02500
02550
02600
02650

.SEC |PORTS]

The documentation of the port system is being revised. Beware!

The Hydra Message System is the primary means of communication,
synchronization and input/output for user PROCESSes. It consists of
a set of primitive Kernel Kalls which allow PROCESSes to exchange
"messages” with each other and with the input/output system via
software switching and queueing centers called PORTS. Message
transfers are fully synchronized so that other forms of synchronization,
i.e., semaphores, mailboxes, etc. will often be unnecessary.

Two types of objects are handled by the Message System: PORTS
and "messages". The characteristics of these objects will be discussed,
followed by a discussion of the primitive operations on them.

.SUBSEC |WHAT IS A MESSAGE]

A message is basically a string of bytes attached to some routing
and queueing information.

More concretely (but not right down at the nitty-gritty) a message
has four parts:

1) A message "type”,

2) A "reply stack" (possibly null) of places the message has been
sent from and to which it might return as a reply, and

3) A text buffer of length >=0 which may be partialiy or
completely filled with information.

4) An owner - i.e. the PORT in which the message was originally cre
**ated
and to which the (storage) resources used by the message are cha
**rged
until the message is destroyed.

The message type is an integer in the range 0-15 (decimal). It
is not a static attribute fixed at the time of creation of the message.
Instead it is set every time the message is sent (via SEND, RSVP, or REPL
**Y) which
may in general be many times before its destruction. When waiting for
a message a PROCESS might choose to accept only those of a given type
or a given set of types. Thus the programmer may encode some meaning
or classification scheme into his use of the message type field as a
convenience in structuring the communication among several PROCESSes.

02700
02750
02800
02850
02900
02950
03000
03050
03100
03150
03200
03250
03300
03350
03400

03450
03500
03550
03600
03650
03700
03750
03800
03850
03900
03950
04000
04050
04100
04150
04200
04250
04300
04350
04400
04450
04500

04550

04600
04650

04700
04750
04800
04850

04900
04950

He might, for example, use the type to distinguish "normal" messages
from "exceptional” and "catastrophic", or to distinguish replies from
non-replies.

Type 0 messages have a special meaning under certain circumstances
which are discussed later under the description of REPLY. 1If the
programmer is not interested in those circumstances he may use type 0
just as he would any other.

The "reply stack"” of a message is employed when the programmer uses
the RSVP or
the REPLY command. It is a stack of places (i.e., PORT, input channel
pairs) which are eligible to receive replies to this message.
Basically, the RSVP operation causes a frame of data about
the sender and the reply he wants to be pushed onto the message's stack w

**hile

the REPLY operation pops one (or more) frames from the
stack and uses the information to return the reply. The use
of this stack is described in greater detail under the descriptions of
RSVP and REPLY. Here it is imPORTant only to note that the maximum
stack depth (possibly zero) is set at the time of creation of the
message and is static.

The text-buffer PORTion of the message is where the data (or text)
is stored. It has a maximum length decided by the user at MCREATE-
time and cannot be changed.

The text buffer may be partially or completly filled using the MWRITE
command so that the "length" of the message is always less than or
equal to the length of the buffer. The contents of the text buffer

of a message are, of course, completely uninterpreted by the Kernel.
The "meaning” of the message is decided by the communicating PROCESSes.

It is perfectly legitimate to have a text buffer of length zero
(no text buffer). If the programmer can communicate all he needs to
in the type field then there is no need for text at ail. The current
maximum length of a text buffer is 1024 words (decimal).

The owner of the message is the PORT in which it was originally crea
**ted.
At the time a PORT is created it is given an allotment of storage to be u
**sed
for the creation of messages. When a message is created the amount of
storage it uses is deducted from the resource account of the PORT. If t
**he PORT has '
insufficient resources, the message cannot be created. The resources ar
**e
returned to the creating PORT whenever the message is destroyed. The pu
**rpose
of this feature is to 1imit the total number of messages outstanding in t
*#he
system, thus preventing the disaster that might otherwise be caused if
* %
a

PROCESS tried to create an unbounded number of messages.

05000
05050
05100
05150
05200
05250
05300
05350
05400
05450
05500
05550
05600
05650
05700
05750
05800
05850
05900
05950
06000
06050
06100
06150
06200
06250
06300

06350
06400
06450
06500
06550
06600
06650
06700
06750
06800
06850
06900
06950
07000
07050
07100
07150
07200
07250
07300
07350
07400
07450
07500
07550
07600

For efficiency reasons messages are not implemented as true
Hydra objects with unique names and capability lists. Consequently
there are no capabilities for them; they cannot be passed as parameters
to PROCEDURES; and they cannot appear in DIRECTORYs. However they are
similar to objects in that they can only be manipulated indirectly
through Kernel Kalls and they reside in storage belonging to the Kernel.

.SUBSEC |WHAT IS A PORT]

A PORT is a software post-office where messages are queued,
received, stored and dispatched. Messages may be routed from one PORT
to another (or to the same PORT) or from a PORT to an I/0 Device object,
provided that a "connection” has been established first.

Unlike messages, PORTs really are fuli-fledged Hydra objects in
the technical sense. Furthermore, they are predefined and understood
directly by the Kernel in a way similar to objects of type PAGE, LNS,
PROCEDURE, etc.

A PORT should be thought of as having five main parts:

1) A Resource Account - the total amount of storage (in words) allo
**wed
for outstanding messages created in this PORT.

2) Input Channel Section: 0-16 (decimal) "input channels" for
queueing incoming messages.

3) Output Channel Section: A fixed number of "output channels" each
of which may contain the name of (at most) one PORT or
1/0 Device object to which messages can be sent.

4) Local Name Section: A fixed number "local names". A local
name is a slot for holding a message which has come to the
attention of some PROCESS (i.e., a newly created or received
message). A message can only be referred to by its local name.

5) Waiting PROCESS Section: a queue of
suspended PROCESSes waiting for messages to arrive.

The actual capacity figures for a PORT are established when it is created
and are fixed for its entire lifetime.

.SUBSUBSEC |OUTPUT CHANNELS, INPUT CHANNELS AND CONNECTIONS]

07650 -

07700 An output channel, when connected, holds a reference to an input

07750 channel of some PORT (possibly the same one the output channel is part

07800 of) or a reference to an i/o0 object. Whenever a message is sent it

07850 is sent via some output channel to the place that channel references, and
** thus

07900 at least one output channel 1is necessary if any messages are to leave

07950 the PORT (other than as a reply). Here 1is no simple upper

08000 Timit to the number of output channels a PORT may have.

08050

08100 An input channel is simply a message queue. Since all incoming

08150 messages are received through an input channel, any PORT which is to

08200 receive messages must have at least one. A single PORT may have up

08250 to 16 input channels. Multiple 1input channels can be useful because

08300 the RECEIVE routine allows a PROCESS to wait for messages arriving

08350 on any subset of 1input channels. He can thus assign meanings to

08400 certain 1input channels as a convenience in his communication structure.

08450

08500 The CONNECT operation is used to "connect” an output channel to

08550 an input channel {(or to an I/0 Device object). Once a connection is

08600 made between two PORTs, messages can be sent between them in the

08650 direction of the connection. A connection may be broken using the

08700 DISCONNECT operation, and in general connections may be established,

08750 broken and then restablished to somewhere else many times during the

08800 lifetime of a PORT (although this is not expected to be frequent).

08850

08900 An output channel can be connected to at most one input channel

08950 at a time. However, many output channels may be connected to the same

09000 input channel. Thus, when a message is sent via an output channel it

09050 is always clear where it is going. But when a message is received

09100 from an input channel it is not in general clear which of several

09150 places it may have come from unliess the programmer restricts himself

09200 to a one-to-one connection pattern or Tabels each connection with

09250 a "connection ID". (See CONNID parameter in the CONNECT operation.)

09300 It is not possible

09350 to tell how many, if any, output channels are connected to a particular

09400 input channel.

09450

09500 A brief bit of Hydra philosophy might be injected here. Notice

09550 first that messages are sent from PORT to PORT, not PROCESS to PROCESS.

09600 Therefore, one PROCESS need not know the name of (i.e., have a

09650 capability for) another PROCESS to get a message to it. This is

09700 expecially imPORTant in a system of several equivalent server PROCESSes

09750 which are sharing a message PROCESSing load. Merely sending a message

09800 to the PORT that they presumably share is sufficient to assure that

09850 one of them (and only one) will receive it. The number of server

09900 PROCESSes may change dynamically with time with no effect upon the

09950 action of the requesting PROCESSes.

10000

10050 Another consequence of this Message System design is that the

10100 programmer of a system using PORTs has strong control over the

10150 communication structure and can use the capability mechanisms of Hydra

10200 enforce that control. Messages cannot be sent arbitrarily between

10250 any two PORTs - only between PORTs that are connected. By appropriately

10300
10350
10400
10450
10500
10550
10600
10650
10700
10750
10800
10850
10900
10950
11000
11050
11100
11150
11200
11250
11300
11350
11400
11450
11500
11650
11600
11650

11700
11750
11800
11850
11900
11950
12000
12050
12100
12150
12200

12250
12300
12350
12400
12450
12500
12550
12600
12650
12700
12750
12800
12850

controlling the flow of capabilities for PORTs, particularly those
with right PCONNRTS of connection and disconnection, he

can assure the integrity of the connection graph. He can further
restricts his communication

by limiting the distribution of the other auxilliary rights for the
message-handling primitives, thereby achieving further protection.
(See the list of auxilliary rights supPORTed by the

Message System.)

.SUBSUBSEC |LOCAL NAMES]

Every PORT contains a set of message-holding pigeon-holes
called "local names” which are numbered from 0.
There is no simple upper 1imit to the numbernof local names
a PwoRT may have. .
Each such local name can hold only one message at a time. 1In order
for a PROCESS to perform any of the primitive operations upon a message,
that message must be sitting in a local name of some PORT.

When referring to a message in order to perform an operation on
it the user cannot simply give its address because he has no way of
getting it (or accessing it even if he had it). Instead he refers to
the message by specifying the pair (P,L) where P is the LNS index of a ca
**pability for
a PORT and L is the index of a local name within that PORT. (We
will abbreviate from now on and say that L is a local name in some
PORT, as opposed to the index of a local name.) Each of the
primitive operations MREAD, MWRITE, SEND, RSVP and REPLY have just such a
pair as their first two arguments.

A local name is in one of two states, "full" or "free", according
to whether it holds a message at the moment or not. When a message
is created via MCREATE the system searches for a "free" local name and
allocates it to the new message, changing the state of the local name
to "full". The user can then operate the message using MWRITE, SEND, RSV

stP

or REPLY. Once SEND, RSVP or REPLY is done, the local name becomes
“"free" again. Similarly, when a message is received via RECEIVE, the
system has to.search for a free local name to put it in before
returning to the user, whereupon he may perform MREAD, etc., on the
message.

If the Message System is unable to find a "free” local name an
error condition is signaled. (NOTICE: The PROCESS is NOT suspended.
This is to avoid deadlock in the case that only one PORT is using
the PORT.) Thus, the local names of a PORT should
be considered a valuable and scarce resource. If a PROCESS or group of
PROCESSes uses the local names of a PORT unwisely it will require very
complex algorithms to properly handle the error signals and get out of

12900
12950
13000
13050
13100
13150
13200
13250
13300
13350
13400
13450
13500
13550
13600
13650
13700
13750
13800
13850
13900
13950
14000
14050
14100
14150
14200
14250
14300
14350
14400
14450
14500
14550
14600
14650
14700
14750
14800
14850
14900
14950
15000
15050
15100
156150
15200
16250
15300
15350
15400
15450
15500
156550

the jam without deadlock or other disaster. It may be advisable for
PROCESSes sharing a PORT to control their use of local names via some
kind of 1imit semaphore. However, any such arrangement is outside
the Message System.)

A single PORT may have up to 64 local names. the exact number is
decided at the time the PORT is created and is static for the life of
the. PORT. Since, in order to do any message operations a local name
is required, every PORT must have at least one. For simple message
PROCESSing, where each PROCESS disposes of one message before beginning
to PROCESS another, no more than one local name per PROCESS using the
PORT is necessary.

"Local names" are so called because they are "local" to a single
PORT. However, if several PROCESSes are using the same PORT it is
possible for one PROCESS to interfere with another by operating on
messages in local names that were never assigned to that PROCESS by
MCREATE or RECEIVE. 1In that sense local names are really
"common" or "global" to all PROCESSes using the same PORT. It is
therefore very imPORTant that PROCESSes using the same PORT
cooperate with one another in this respect.

.SUBSUBSEC |WAITING PROCESSES]

When a PROCESS does an unconditional RECEIVE operation for some
class of messages and no message of that class has arrived, the PROCESS
must be suspended. The identification of the PROCESS and the class of
messages it is waiting for are placed on a queue associated with the
PORT. Whenever a message arrives this queue is examined to see if
any PROCESSes are waiting for it. Since messages-waiting-for-a-PROCESS
and PROCESSes-waiting-for-a-message can both be queued, a PORT acts
very much like a fancy semaphore.

When a message arrives at a PORT no more than one PROCESS is
awakened for it. Two PROCESSes cannot receive the same message even
if they are waiting for exactly the same class of messages.

.SUBSUBSEC |RELATION OF PORTS TO I/0 OBJECTS|

As previously described, an output channel of a PORT may optionally
be connected to an input/output device object instead of to an input
channel of a genuine PORT. The device object, though technically not
part of the Message System, acts abstractly as though it were

15600 really a PORT with one input channel and no output channels. An i/o

15650 request for the physical device associated with the device object is

15700 then implemented as a message sent to the device object. The result

15750 of the i/o operation is implemented as a reply to the request message.

15800 Exceptional and normal replies will generally have different types and

15850 thus return to different places according to the reply stack of the

15900 request message. (Historically, the requirement for exception handling

15950 in i/0 was the primary model for the RSVP/REPLY mechanism of the

16000 Hydra Message System.)

16050

16100 The fact that a device object viewed as a PORT has no output channel
t*s

16150 means that there can never be a CONNECT operation between two device

16200 objects. It also means that the i/o system never creates or sends

16250 a message. It can only reply to messages that have been sent to it.

16300

16350 There is one departure from the abstraction that a device object

16400 acts like a PORT: only one output channel at a time can be connected

16450 to any particular device object. This corresponds to the notion that

16500 - at least at the lowest level - a hardware device belongs to only one
16550 PROCESS at a time.

16600

16650

16700

16750

16800 CONNECT (Portl, Outchan, Port2, Inchan, Connid)

16850 Parameters:

16900 PORT1 - Simple Index of PORT object reference;CNFRTS;PCONNRTS
16950 Outchan - Integer, either -1 or between 0 and N-1 iaclusive,
17000 where N is the number of output channels in the first
17050 PORT.

17100 Port2 - Simple Index of PORT object or I/0 Device object;
17150 PCONNRTS

17200 Inchan - Integer between 0 and N-1 inclusive, where N is the
17250 number of input channels in the second PORT. This
17300 parameter is ignored if Port2 refers to an I/0 Device
17350 object.

17400 Connid - Any 16 bit pattern.

17450

17500 Effect: The output channel designated by Outchan in the first PORT
17550 is "connected" to the input channel designated by Inchan in the
17600 second PORT, thereby forming a path for messages to travel. The
17650 output channel is marked "connected"” so that further CONNECT
17700 operations on the same output channel will fail until

17750 and unless it is DISCONNECTed first.

17800 If Qutchan is -1 the kernel selects a free output channel
17850 and makes the connection, signalling if there are no free

17900 output channels.

17950 Connid 1is used as a symbol to identify the connection, and
18000 is part of the information stamped on every message that travels
18050 along the path made by the connection. It may be used for any
18100 purpose since it is completely uninterpreted by

18150 the kernel. (See RECEIVE for another reference to this feature.

##)

18200
18250
18300
18350
18400
18450
18500
18550
18600
18650
18700
18750
18800
18850
18900
18950
19000
19050
19100
19150
19200
19250
19300
19350
19400
19450
19500
19550
19600
19650
19700
19750
19800
19850
19900
19850
20000
20050
20100
20150
20200
20250
20300
20350
20400
20450
20500
20550
20600
20650
20700
20750
20800
20850

For purposes of the CONNECT operation an I/0 Device object
is identical to a PORT which is limited to only one input
channel. However, there can be no more than one connection
to an I/0 Device object. A signal will be generated if
an attempt is made to connect to an I/0 Device object which
is already connected. (There 1is no such restriction on
connections to the input channels of a PORT.)

Signals: A1l signals from CONNECT will have SGPCONNECT in bits
6-10 and one of the following values in bits 0-5:

SGPOCHANRANGE - Outchan is less than -1 or greater than
highest output channel index of PORTL.

SGPNOFREEOCHAN - Qutchan "is -1, but there are no free
output channels available.
SGPALREADYCONNECTED - Qutchan specifies an output channel
which is already connected.
SGPICHANRANGE - Inchan is-negative, or greater than the
highest input channel index of 1in Port2.
SGPIOERR - Attempted connection to an 1/0 Device

object which is already connected.

Result: CONNECT normally returns the index of the output channel
which was connected. This 1is either Outchan or, in the
case Outchan is -1, the selected output channel.

DISCONNECT (Port, Outchan)
Parameters:
PORT - Simple Index of a PORT object; CNFRTS;PCONNRTS
Qutchan - Integer index of the output channel to be disconnected.

Effect: The output channel Qutchan of the specified PORT is
logically "disconnected" from wherever it was "connected”.
The output channel may now be re-connected to somewhere else.
There is no distinction between disconnecting from a PORT and
disconnecting from an I/0 Device object.

Signals: Signals from DISCONNECT have SGPDISCONNECT in bits 6-10
and one of the following values in bits 0-5:

SGPOCHANRANGE - Outchan is negative or larger than the
largest output channel index in the PORT.

SGPUNCONNECTED - The output channel is not connected and
thus cannot be disconnected.

Result: 0

20900 MCREATE (Port, Bufflength, Stackdepth)
20950 Parameters:

21000

21050 PORT - Simple Index of a PORT object; CNFRTS; MCREATERTS
21100 Bufflength - Integer between 0 and #4000 (octal); specifies the
21150 length of the message buffer in bytes, i.e. the
21200 maximum length of the text of the message.

21250 Stackdepth - Integer between 0 and 10 (decimal) inclusive;
21300 specifies the maximum depth of the message's reply
21350 . stack.

21400

21450 Effect: A new message is created according to the specification of
21500 of the Bufflength and Stackdepth parameters. A free local
21550 name is found in the PORT and the new message is assigned to
21600 that local name. The resources (storage) consumed by the
21650 message are deducted from the resource account associated with
21700 the PORT.

21750

21800 Signals: A11 signals from MCREATE have SGMCREATE 1in bits 6-10 and
21850 one of the following in bits 0-5:

21900

21950 SGMBUFFLENGTH - Bufflength is negative or greater than the
22000 implementation defined maximum of #4000 bytes.
22050 SGMSTACKDEPTH - Stackdepth is negative or greater than the
22100 implementation defined maximum of 10.

22150 SGMRESOURCES - There are insufficient resources left in the
22200 resource account associated with the PORT to
22250 allow creation of this message.

22300 SGMNOFREELNAME - There are no unassignad local names to give
22350 to the message.

22400

22450 Result: MCREATE normally returns the local name assigned to the new
22500 message.

22550

22600

22650

22700

22750 MREAD (Port, Lname, Pos, Len, Textadr)

22800 Parameters:

22850 PORT - Simple Index of a PORT object; CNFRTS;MREADRTS

22900 Lname - Integer Yocal name in the PORT

22950 Pos - Byte index (origin 0) of the section of the message
23000 buffer to be read.

23050 Len - Length in bytes of the section of the message

23100 buffer to be transferred.

23150 Textadr - Legitimate Stack Memory Address of an area at least
23200 Len bytes long.

23250

23300 Effect: The section of the message buffer designated by Pos and Len
23350 is copied into the stack area pointed to by Textadr.

23400

23450 Signals: A11 signals from MREAD have SGMREAD in bits 6-10 and one
23500 of the following in bits 0-5:

23550

23600
23650
23700
23750
23800
23850
23900
23950
24000
24050
24100
24150
24200
24250
24300
24350
24400
24450
24500
24550
24600
24650
24700
24750
24800
24850
24900
24850

25000 .

25050
25100
25150
25200
25250
25300
25350
25400
25450
25500
25550
25600
25650
25700
25750
25800
25850
25900
25950
26000
26050
26100
26150
26200
26250

Result:

SGMLNAMERANGE
SGMLNAMEFREE
SGMBUFFBOUNDS

SGMTEXTADR

0

Lname is negative or out of range of the local
names of the PORT.

Local name Lname is free, i.e. has no message
assigned to it. :

Pos and/or Len do not specify a segment wholly
contained within the text of the message.
Textadr does not specify a Legitimate Stack
Memory Address of an area at least Len bytes
long (or the area is not wholly contained in the
legitimate area of the stack).

MWRITE (Port, Lname, Pos, Len, Textadr)
Parameters:

Effect:

Signals:

Result:

PORT
Lname
Pos

Simple Index of a PORT object; CNFRTS;MWRITERTS
Integer local name in the PORT
Byte index (origin 0) of the section of the message

buffer to be written.
Len - Length in bytes of the section of the message
buffer to be written.

Textadr

Legitimate Stack Memory Address of an area at least

Len bytes long containing the data to be written
into the message.

The data in the area pointed to by Textadr is copied into
the section of the message buffer specified by Pos and Len.

A1l signals from MWRITE have SGMWRITE in bits 6-10 and one
of the following in bits 0-5:

SGMLNAMERANGE
SGMLNAMEFREE
SGMBUF FBOUNDS

SGMTEXTADR

0

Lname is negative or out of range of the local
names of the PORT.

Local name Lname is free, i.e. has no message
assigned to it.

Pos and/or Len do not specify a segment wholly
contained within the message buffer.

Textadr does not specify a Legitimate Stack
Memory Address of an area at least Len bytes
long (or the area is not wholly contained in the
legitimate area of the stack).

SEND (Port, Lname, Type, Outchan)
Parameters:
PORT - Simple Index of a PORT object; CNFRTS; SENDRTS
Lname - Integer local name of the message to be sent.

26300
26350
26400
26450
26500
26550
26600
26650
26700
267560
26800
26850
26900
26950
27000
27050
27100
27150
27200
27250
27300
27350
27400
27450
27500
27550
27600

27650
27700
27750
27800
27850
27900
27950
28000
28050
28100
28150
28200
28250
28300
28350
28400
28450
28500
28550
28600
28650
28700
28750
28800
28850
28900

Effect:

Signals:

Result:

RSVP (

Type - Integer in the range 0-15 to become the new type of
the message.

Outchan - Output channel index specifying the destination of the
message.

The type indicator of the message with local name Lname is
set to Type and the message is sent to the PORT or I/0 Device
to which output channel Outchan is connected. Local name
Lname becomes free. There is no effect upon the other
attributes of the message, i.e. its owning PORT, its message
buffer, or its reply stack.

When the message arrives at the destination PORT and input
channel it may satisfy the requirements of one or more PROCESSes
that were blocked in a RECEIVE operation. If so, exactly one
of the eligible blocked PROCESSes is awakened to receive the
message; the other PROCESSes remain blocked. The longest
blocked eligible PROCESS is always selected in order to
enforce a pclicy of fairness. (Strictly speaking, the PROCESS
is not awakened; rather the appropriate POLICY object is
notified that it may schedule the selected PROCESS.)

If no PROCESSes are blocked at the destination PORT
or if the incoming message does not satisfy the type or ‘input
channel criteria of any of the blocked PROCESSes, then the
message is enqueued (in FIFO order) in the proper input channel
and type queues. It will be received by the first PROCESS
which does a RECEIVE operation on the same PORT for some class of
messages to which this one belongs. Under no circumstances does

** the
sending PROCESS get blocked.

If the destination of the message is an I/0 Device (as
opposed to a PORT) the I/0 system immediately receives the
message and begins to act on it.

A11 signals from SEND have SGSEND 1in bits 6-10 and one
of the following in bits 0-5:

SGMLNAMERANGE
SGMLNAMEFREE

Lname is negative or out of range for this PORT.
Local name Lname is free, i.e. assigned to no
message.

OQutchan is negative or out of range for this
PORT.

Qutput channel Qutchan is not connected.

Type is not 1in the range 0-15 inclusive.

SGMOCHANRANGE

SGMUNCONNECTED
SGMTYPERANGE

0

Port, Lname, Type, Outchan, Messid, Inchan, Replymask)

Parameters:

PORT - Simple Index of a PORT object; CNFRTS; SENDRTS
Lname - Integer local name of the message to be sent.
Type - Integer in the range 0-15 to become the new type

28950
29000
29050
29100
29150
29200

29250
29300

29350
29400
29450
29500

29550
29600

29650
29700
29750
29800
29850
29900
29950

30000
30050
30100

30150
30200
30250
30300
30350

30400

30450
30500
30550
30600
30650
30700
30750
30800
30850
30900
30950
31000
31050
31100

31150

Effect:

of the message.

Outchan - Output channel index specifying the destination of
the message.
Messid - 16 bit identifier for the message.
Inchan - Integer index of the input channel through which the
reply (if it returns at all to this PORT) is to retur
. **n'
Replymask - 16 bit mask specifying (with 1-bits) which types of

reply are to return to this PORT. Replies of other t
**ypes will
bypass this PORT.

RSVP does the same thing as SEND, but in addition requires
that a reply be generated. The first four parameters to RSVP ar
t*e
interpreted exactly like the four parameters to SEND. It is the
last three parameters which provide the information necessary for
** the
REPLY mechanism and which distinguish RSVP from SEND.

Just before doing the equivalent of a SEND operation, RSVP
pushes a frame of information onto the message's reply-stack.
This frame controls the action of the subsequent REPLY operation,
and includes as data the last three parameters to RSVP: Messid,
Inchan and Replymask.

Rsvp guarentees that a reply message will be generated by som

**eone
at some later time. But it does not guarentee that the reply
will return to the PORT from which the corresponding RSVP was
done. Whether or not a reply is ever received at the PORT wher
t*e

the original RSVP was done depends on two things: 1) the
Replymask parameter to RSVP, and 2) the type assigned to the
message at the time the REPLY operation is done (usually by some
other PROCESS.)
If the bit in Replymask corresponding to the type of the mess
*#age
is 1, then the reply will be received at the PORT from which the
**RSVP
was done; if not, the PORT from which the RSVP was done will be
bypassed during the REPLY operation and some other PORT (or none)
will receive the reply. Thus, the only way to guarentee that a
reply will be received at the PORT where the RSVP was done is
to specify a Replymask of #177777 (octal). Then the PORT cannot
be bypassed no matter what type is assigned to the message at the
time the REPLY operation is done. (See REPLY for more details.)
A reply to an RSVP-message may or may not return to the
originating PORT, but if it does, it must arrive through an
input channel. The Inchan parameter allows the sender of an
RSVP to specify which input channel any reply will return to.
By turning on bit number Inchan in the channel-mask of a
subsequent RECEIVE operation, the user can receive the reply.
In some applications it is essential to be able to keep track
x % Of
individual messages and associate replies with the original rsvp.

31200
31250
31300

31350
31400
31450

31500

31550
31600
31650
31700
31750
31800
31850
31900
31950
32000
32050
32100
32150
32200
32250
32300
32350
32400
32450
32500
32550
32600
32650
32700
32750
32800
32850
32900
32950
33000
33050
33100

33150
33200

33250
33300

33350
33400

33450

The Messid parameter allows this bookkeeping to be done reliably.
Whatever argument is passed as Messid is used as a “"name"

which stays with the message until the reply is received. When
**a)

reply 1is received the original Messid is returned as part of the

message description. - (See RECEIVE for more information.)

The Messid parameter is completely uninterpreted by the Kernel, s
**0 the

user is permitted to devise any bookkeeping system he wishes (or
**none.)

There is no way that any subsequent handling of the message can
disturb this identification.

For more information related to RSVP, see the descriptions of
SEND, REPLY and RECEIVE.

A11 signals from RSVP have SGRSVP 1in bits 6-10 and one

Signals:
of the following in bits 0-5:
SGMLNAMERANGE - Lname is negative or out of range for this PORT.
SGMLNAMEFREE - Local name Lname is free, i.e. assigned to no
message.
SGMOCHANRANGE - OQutchan is negative or out of range for this
PORT.
SGMUNCONNECTED - Output channel Outchan is not connected.
SGMTYPERANGE - Type is not in the range 0-15 inclusive.
SGMICHANRANGE - Inchan is negative or out of range for this
PORT.
SGMSTACKOVFL - Reply stack overflow; no more room in the reply
stack of this message.
Result: 0
REPLY (Port, Lname, Type)
Parameters:
PORT - Simple Index of a PORT object; CNFRTS; REPRTS
Lname - Integer index (local name) of the message to be REPLYed.
Type - Type to be assigned to the message.
Effect: The REPLY operation is used to delete a message or to return

t*-it

to some PORT where a previous RSVP operation was done to the mess
**age.

A record of those PORTs where an RSVP was done to the message and
** the

criteria for receipt of a reply at those PORTs

is carried around with the message in its reply-stack. Each tim
**e an

RSVP 1is done to #he message one stack frame is pushed onto the

message's reply-stack, and each time a REPLY operation is done, o
#*ne

or more frames are popped from the reply-stack. Thus, at any

33500
33550
33600
33650
33700
33750
33800
33850
33900

33950

34000
34050
34100

34150

34200
34250
34300

34350

34400
34450

34500
34550

34600
34650
34700
34750

34800
34850

34900
34950
35000
35050
35100
35150

356200
35250
35300
35350
35400
35450
35500
355560

given instant the reply-stack contains frames corresponding to
exactly those PORTs which are be eligible fo receive replies.
The REPLY operation proceeds in detail as follows:

Signals:

1)

2)

3)

4)

5)

The value of the parameter Type is assigned to be the
type of the message with local name Lname.

Each reply-stack frame in the message is examined,

starting naturally from the stack-top, to see if the ¢
**urrent

message is among those that were specified in the Repl
**ymask ‘

parameter to the original RSVP operation. (See RSVP.)

If not, the reply-stack frame is popped and the examin

**ation

of frames continues. The PORT associated with the po
#tpped

frame is "bypassed” and never receives a reply.

If so, however, the examination of frames stops. The

*%
message is "sent" to the PORT associated with the repl

¥ ¥y
y
stack frame through the input channel specified in the
Inchan parameter to the original RSVP operation. (Se
**a RSVP.)

There the message will either be enqueued or

will be immediately received by a blocked PROCESS, jus
**t as

if the message had been sent using SEND. {(The last

reply-stack frame examined is also popped.)

If all frames are popped without finding a PORT eligib

**le to ,

receive the reply, then the message is destroyed. Th
**is is

the only way a message can be deleted under Hydra; the
**re

is no MDELETE Kall.

A1l signals from REPLY have SGREPLY in bits 6-10 and one

of the following in bits 0-5:

SGMLNAMERANGE - Lname parameter is negative or out of range for t

**his
PORT.

SGMLNAMEFREE - Local name Lname is free, i.e. is assigned to no

message.

SGMTYPERANGE - Parameter Type is not in the range 0-15.

Result: 0

35600
35650
35700
35750
35800
36850

35900

35950

36000

36050
36100
36150

36200
36250
36300
36350
36400
36450
36500
36550
36600
36650
36700
36750
36800
36850
36900
36950
37000
37050

37100
37150

37200
37250

37300
37350

37400
37450

RECEIVE (Port, Cond, Waitclass, Mask, Descr)

Parameters:)
PORT - Simple Index of PORT object; CNFRTS; MRECRTS
Cond - Boolean; true if RECEIVE is conditional, i.e. blockin
*%
not allowed; false if RECEIVE is unconditional and bl
**gcking
is permitted.
Waitclass - Boolean; true if specifying messages by input channel
3*5;
false if specifying messages by type.
Mask - 16 bit mask specifying either a set of input channels
or a set of types (depending on the Waitclass paramet
t*er.)
Bits are numbered 0-15 from least to most significant
*%
Descr - - Legitimate Stack Memory Address of an area at least s
**ix
words; RECEIVE fills this area with a description of
** the
received message. (See format below.)
Effect: RECEIVE is the basic message-receive primitive of the PORT sys

**tem.

The user passes a description of the class of messages he wishes
t*to

receive, and the Kernel either immediately returns access to such
*% a

message, or it blocks the PROCESS until such a message is availab
**le.

If a message is received, a more detailed description of it

is placed in the user's stack area at Descr so that

he may know what kind of message he has received.

The events in more detail are as follows:

The two parameters Waitclass and Mask form the description of

* %

the class of messages the user wishes to receive. He may either

receive a message which has one of a set of message types, or he

may elect to receive a message that arrives via any one of a set

of input channels. The choice between type-specification and ch
**annel-

specification is made through the Boolean parameter Waitclass.

The set of channels or types is specified by the parameter Ma

**sk.

Bits 0-15 of the mask specify either channels 0-15 or types 0-15

{depending on Waitclass.) Thus, if Waitclass = 1 and Mask = #03

**0777
then only a message which arrives through one of the channels 0-8
or 12-13 will be received. Any one-bits in Mask which correspo
**nd

to channel indices greater than those allowed for the PORT in
question are ignored.

37500
37550

37600
37650

37700
37750

37800
37850
37900
37950
38000

38050
38100
38150
38200

38250
38300

38350
38400

38450
38500

38550
38600
38650

38700
38750
38800
38850
38900
38950
39000
39050
39100
39150

39200
39250
39300
39350
39400
39450
39500

The Waitclass and Mask parameters form a description of a cla
**SS
of messages but do not specify a particular message. Thus, ther
**e may be many .
messages enqueued which fit the description at the time a
RECEIVE 1is done. The user has no control over which of the elig

**ible

messages will be received beyond what have already been described
** under

the Waitclass and Mask parameters. In particular, he has no way
#:of

giving "priority"” to certain channels or types. Messages are
selected by the Kernel for receipt subject to only two
restrictions:

1) Messages will be received in FIFO order within any giv
#ten
type or any given input channel.

2) Type and channel queues will be scanned according to a
"fair"” policy, so that no input channels or types will
be systematically ignored across many RECEIVE operatio

**ns.

The Cond parameter specifies whether or not the RECEIVE opera

**tion

is "conditional"”, i.e. whether or not the PROCESS doing the RECEI
*#VE

is permitted to block. If Cond is true (odd) then no blocking i
:ts

permitted. Thus, if a message fitting the Waitclass-Mask

description is available, it will be received; if not, no message
** will

be received, and a signal will be generated.

However, if Cond is false (even) then blocking is permitted.
If no satisfactory message is available the PROCESS will be suspe

**nded

until one arrives. (Actually the Kernel
doesn't “suspend" the PROCESS; it stops the PROCESS and
notifies the POLICY system not to reschedule it until further
notice. An erroneous POLICY system may schedule the PROCESS
anyway, but the Kernel will immediately re-stop it and once again
notify the POLICY system not to reschedule it.)

When a message is received a detailed description of the
message is is placed in the six-word area that the user provides

through the parameter Descr. The format of this
six word area, and the interpretation of the fields are as follow
**s5:
! LNAME !
IR! ! TYPE !INCHAN !
! LENGTH !

39550
39600
39650
39700
39750
39800
39850
39900
39950

40000
40050
40100
40150
40200

40250
40300

40350
40400
40450

40500
40550

40600
40650
40700

40750
40800
40850
40900
40950
41000
41050
41100

41150
41200

41250
41300
41350
41400
L

Signals:

Result:

- ————— - — —— - -

! BUFFLENGTH !
! MESSID !
! CONNID !
LNAME - The local name assigned to the received mess

LENGTH

BUFFLENGTH

MESSID

CONNID

A1l signals from
one of the following

**age.

Reply-bit: 1 if the message is a reply to an

earlier RSVP; 0 if it is a normal unsolicted

arriving message. This field is the only

way to distinguish replies from non-replies.

The length (in bytes) of the text in the mes
**sage

buffer. :

The length (in bytes) of the message buffer.
** Must

be greater than or equal to LENGTH.

If this message is a reply, MESSID contains

the message-id assigned to this message at t
**he

time the RSVP was done. (See RSVP.)

If this message is not a reply, CONNID conta
**ins

the connection-id of the connection through
**which

the message arrived. This gives the receiv
**er of

a message some idea of where the message cam
*te

from. (See CONNECT for a discussion of

the idea of a connection-id.)

RECEIVE have SGMRECEIVE 1in bits 6-10 and
vales in bits 0-5:

SGMNOFREELNAME - Lname is negative or out of range for this PORT.
SGMPACKADR - Packadr is not a Legitimate Stack Memory Address

x% of

a six word area.

SGMCONDRECFAIL - The

but

Cond parameter indicates a conditional recei
**ye, -
no satisfactory message is available.

RECEIVE normally returns the Tocal name assigned to the received

message.

00050
00100
00150
00200
00250
00300
00350
00400
00450
00500
00550
00600
00650
00700
00750
00800
00850
00900
00950
01000
01050
01100
01150
01200
01250
01300
01350
01400
01450
01500
01550
01600
01650
01700
01750
01800
01850
01900
01950
02000
02050
02100
02150
02200
02250
02300
02350
02400
02450
02500
02550
02600
02650
02700

.SEC |User I/0 Operations|
.SUBSEC |Overview from a Subsystem Builder's Viewpoint|

In order to perform input/output operations, the subsystem must
connect a port fo an i/o device. This action is performed by means
of the message system's PCONNECT operation, described in [ref].
After a connection has been established successfully, the i/0 device
identified by the specified object is available for exclusive use
through the given port and output channel, and such exclusive access
remains effective until disconnection (see PDISCONNECT). A1l future
operations specify the i/0 device indirectly, by way of the port and
output channel to which it is connected, and the i/0 device object

-is of no further use.

The i/0 device object may also be used to request reconfiguration,
but this is a specialized use which is documented in a separate section

([ref]).

.SUBSEC |Overview from a User Program's Viewpoint]

A user program performs i/0 operations in exactly the same
manner as it sends messages via the message system (see [ref]). In
fact, there is no way to determine whether an output connection
is to an i/0 device or to another port. A user program merely sends
messages of a prescribed format (see [ref]) and waits for a reply,
if appropriate. The information in the message specifies the requested
operation, and the reply type indicates the outcome of the request.
A1l message system primitives for sending messages and obtaining
replies are equally applicable to i/0 requests.

.SUBSEC |Conventions]|

A1l 1i/0 messages (henceforth referred to as requests) contain at
least an operation code indicating the specific action to be taken.
Most requests also include a buffer, a byte count, and some device
parameters (e.g. a sector address for a disk transfer). This section
outlines the conventions which govern the format of i/0 requests,
leaving details of specific operations for the next section.

The operation code is the first word of every i/o0 message. It
is subdivided into three fields: optype, opcode, and opformat.
The optype places the request into one of four general categories.
Immediate operations require no action by the device itself. Control
operations affect the device, but no data transfer occurs (e.g. tape
rewind). Input operations transfer one or more bytes of data from
the device to memory; output operations transfer data from memory to
the device.

The opcode field determines the particular operation to be
performed within a given class. For many devices, only one operation
of each class will be defined; however, some devices may have several.
For example, a DECtape has two control operations, rewind and findblock.
The optype and opcode fields together define a unique logical operation,

02750
02800
02850
02900
02950
03000
03050
03100
03150
03200
03250
03300
03350
03400
03450
03500
03550
03600
03650
03700
03750
03800
03850
03900
03950
04000
04050
04100
04150
04200
04250
04300
04350
04400
04450
04500
04550
04600
04650
04700
04750
04800
04850
04900
04950
05000
05050
05100
05150
05200
05250
05300
05350
05400

which may correspond to zero, one, or more physical operations on the
device.

The opformat field provides format information about the i/0 request
itself and does not directly influence the operation. It is broken
down into individual bits which specify the existence or nature of
other fields in the request. Not all of these bits may be relevant
to a particular operation, and some operations may outlaw
certain format settings -- consult the descriptions of the specific
actions for details.

The general i/0 request assumes the following form:

frmm e —— e ————— +
i 1
! Operation !
! !
L ettt +
! !
! Buffer Size !
! !
R ettt tatatatate +
! !
! !
! !
+ +
! !
! Buffer !
! !
+ +
1 !
! !
L !
Form e ———— +
! !
! Device Parameters !
! !
+ +
! !
! !
! !

The operation field has already been discussed. The buffer size field
is normally required only for transfer operations, and holds the

number of bytes of data to be transferred. Some devices (e.g. teletype)
allow the buffer size field to be omitted on some transfer operations;
in such cases the omission is indicated by a bit in the opformat field.
The buffer area is of the size specified by the byte count and is
required for all operations which transfer data. The buffer is normally
contained within the message itself, but may be specified indirectly

as an address within the requesting 1ns's address space (cps --

see [ref]). In this case, a format bit is set in the opformat field

and the buffer address is a two word quantity whose first word is a

05450
05500
05550
05600
05650
05700
05750
05800
05850
05900

05950
06000

06050
06100
06150
06200
06250
06300
06350
06400
06450
06500
06550
06600

06650
06700
06750
06800
06850
06900
06950
07000
07050
07100
07150
07200
07250
07300
07350
07400
07450
07500
07550
07600
07650
07700
07750
07800
07850
07900
07950

cps index and whose second word is a 13-bit displacement. The device
parameters field is operation dependent and for sequential devices is
usually omitted. It frequently contains positioning information for
read/write heads, but may specify auxiliary information for any of
the four optype classes.

The outcome of i/0 requests is reported via the message system
message type [ref], which summarizes the result of the operation. If
additional information is necessary to define the outcome, it will be
appended to the message following the Tast word supplied by the requestin

%
process. No information in the message itself (except possibly the
buffer during an input operation) is ever altered during an i/0 operation
*%
Thus the contents of a failing request may be examined to determine
the cause of the error. A single type, OPDONETYPE, indicates a
successful completion, while other reply types are used to
denote errors. The specific reply codes are discussed later.

.SUBSEC [Specific Device Operations]

This section describes the operations which are permitted for
each of the several device classes supported. It should be noted that
the values for specific fields are given symbolically rather than as
absolute numeric quantities. The equivalences are established by
use of the BLISS/11 "require"” file UIO.REQ[N810HY00], which should always
** be used
by user programs.

1) Operations common to all devices

A limited number of operations are defined to have a
common action for all devices.

a) DIDENTIFY

Class: Immediate

Format restrictions: not applicable

Byte Count: not used

Buffer: not used

Device Parameters: not used

Other Information: returns static information
pertaining to the device in the words immediately
following the operation code as follows:

e e et Froomm e +
! ! !
! PNUM ! CTYPE !
! ! !
Fommm e Fommmmm e +
1 !
! Registers Address !
! !
bt +

08000
08050
08100
08150
08200
08250
08300
08350
08400
08450
08500
08550
08600
08650
08700
08750
08800
08850
08900
08950
09000
09050
09100
09150
09200
09250
09300
09350
09400
09450
09500
09550
09600
09650
09700
09750
09800
09850
09900
09950
10000
10050
10100
10150
10200
10250
10300
10350
10400
10450
10500
10550
10600
10650

2)

3)

! Interrupt Vector Address !

e o ————— +
\VAVAVEYEVAVAV NS !
vt/ /7 /7 /7 /7 /7! Unit Number !
VAV AVENAY VAV AV !
i e ittt +

CTYPE CONTROLLER TYPE
PNUM PROCESSOR NUMBER

b) DSTATUS

Class: Control

Format restrictions: not applicable

Byte Count: not used

Buffer: not used

Device Parameters: not used

Other Information: returns device-specific dynamic
status information in the word(s) immediately
following the operation code

Line Frequency Clock
a) KWWAIT

Class: Control

Format restrictions: not applicable

Byte Count: not used

Buffer: not used

Device Parameters: a one-word count (treated as an
unsigned integer) denoting the number of 1/60
second clock ticks ("jiffies") wwich are to elapse
before a reply occurs.

b) DSTATUS

<< not yet specified>>
Line Printer
a) LPWRITE

Class: Output

Format restrictions: byte count is required

Byte Count: must be even - rounded up if not

Buffer: if last word is not full, high order (odd)
byte should contain a pad of binary 0

Device Parameters: none

The data contained in the buffer are transferred to the line
printer, with a reply occurring upon completion of the transfer.
The buffer should normally end with a Tine terminating character

16700 (e.g. line feed, form feed, vertical tab, carriage return,

10750 form feed, *5)

10800 '

10850 b) DSTATUS

10900

10950 << not yet specified>>

11000

11050 4) Teletype

11100

11150 a) TTREAD

11200

11250 Class: Input

11300 Format restrictions: none

11350 Byte Count: optional, as per format specification

11400 Buffer: required :

11450 Device Parameters: none

11500 '

11550 When a complete line of input is available in the terminal’
tts

11600 input buffer, it will be copied into the user's buffer. A

11650 line is defined as a sequence of zero or more characters

11700 followed by a break character. Break characters are: line

11750 feed, carriage retura, tA, 1B, tC, +G, *K, *L, tZ, altmode. A t
**yped carriage

11800 return causes both the carriage return and a generated

11850 line feed to enter the buffer.

11900

11950 Rubout, *tU, and limited type-ahead are handled by the

12000 teletype support in a manner analagous to the PDP-10. HNo

12050 break character definition, image mode, or

12100 full character set mode is available, nor will any of the

12150 above be provided until the terminal front-end system is

12200 completed. The existing teletype support is an interim

12250 stopgap package.

12300

12350 If the user-supplied buffer is inadequate to hold an

12400 entire typed line, as much of the line as will fit is supplied

12450 and a special reply is used (OPDONETYPE + LOSTINFOTYPE). The

12500 remainder of the input line is retained in the terminal's

12550 input buffer, and is supplied on the next input operation.

12600

12650 The terminal input buffer has a capacity of approximately

12700 120 characters.

12750

12800 If the user-supplied buffer resides within the i/0

12850 message itself, the size of the replied message can be used

12900 to determine the 1ength of the 1ine returned. If the buffer

12950 is specified indirectly, the break character which

13000 terminates the line is the only indication of line length.

13050

13100 b) TTWRITE

13150

13200 Class: OQutput

13250 Format restrictions: none

13300
13350
13400
13450
13500
13550
13600
13650
13700
13750
13800
13850
13900
13950
14000
14050
14100
14150
14200
14250
14300
14350
14400
14450
14500
14550
14600
14650
14700
14750
14800
14850
14900
14950
15000
15050
15100
15150
15200
15250
16300
1563560
15400
15450
15500
15550
15600
156650
16700
156750
15800
15850
15900
156950

Byte Count: optional, as per format specification
Buffer: required
Device Parameters: none

If the byte count is omitted, the buffer is assumed to

contain an ASCIZ string to be transmitted to the terminal.

An explicit byte count causes the specified number of characters
to be transmitted, including nulls if present. It is important
to note that if an indirect buffer specification is used, the
buffer must not be changed while the i/0 request is in progress,
since the output data is taken directly from the user's buffer.
An attempt to do so will result in indeterminate output.

This presents no restriction if the buffer is contained within
the message itself, since the user will be unablie to alter

the message while the i/0 system is processing it.

c) DSTATUS
<< not yet specified>>
d) TTECHOCTL

Class: control

Format restrictions: not applicable

Byte Count: not used

Buffer: not used

Device Parameters: The low order bit of the word
following the operation code determines whether
echoing is performed (bit = 1) or not (bit = 0).

e) TTOUTRESET

Class: control

Format restrictions: not applicable
Byte Count: not used

Buffer: not used

Device Parameters: none

The successful execution of this operation causes all queued
output requests, including the currently executing one, to
be aborted (reply ERRTYPE). A1l program-generated output is
thus canceled. Any pending echo characters are not affected
by this operation.

f) TTINRESET

Class: control

Format restrictions: not applicable
Byte Count: not used

Buffer; not used

Device Parameters: none

The successful execution of this operation causes all pending
input reguests to be aborted (reply ERRTYPE). 1In addition,

16000 if any complete or partial lines are present in the terminal

16050 input buffer, they are deleted. However, any pending echo
16100 for characters in the input buffer will be allowed to proceed.
16150 ’

16200 g) TTINCLEAR

16250

16300 Class: control

16350 Format restrictions: not applicable

16400 Byte Count: not used

16450 Buffer: not used

16500 Device Parameters: none

16550

16600 This operation causes any pending input requests to be aborted
16650 {(reply ERRTYPE). 1In addition, an implied tU is issued -~ any
16700 partial line in the input buffer is deleted. Complete

16750 lines in the input buffer will be preserved, as will any pending
16800 echo characters.

16850

16900 h) TTEXCP

16950

17000 Class: control

17050 Format restrictions: not applicable

17100 Byte Count: not used

17150 Buffer: not used

17200 Device Parameters: not used

17250

17300 Only one TTEXCP request may be pending on a terminal at a
17350 time; any attempt to issue a second one will cause an

17400 immediate reply of ERRTYPE. TTEXCP remains pending until an
17450 unusual condition occurs, at which time a successful reply
17500 occurs and a word of information is returned in the location
17550 immediately following the TTEXCP opcode. If an unusual
17600 condition is detected when no TTEXCP request is pending, it
17650 is ignored. The conditions are:

17700

17750 TTSAWBREAK - break key was hit

17800 TTLOSTDATA - input rate too great

17850 TTSAWCTLO - 10 typed

17900

17950 5) DECTAPE

18000

18050 a) TCSETUNIT

18100

18150 Class: Immediate

18200 Format restrictions: not applicable

18250 Byte Count: not used

18300 Buffer: not used

18350 Device Parameters: a unit number between 0 and 7
18400 inclusive in the word following the opcode.
18450

18500 If the specified unit number is available, it is allocated to
18550 the device, otherwise, the reply type REQILLDP is generated.
18600 When the DECtape connection is initially established (via

18650 PCONNECT), a unit number is allocated to it. Hence, TCSETUNIT

18700

18750
18800
18850
18900
18950
19000
19050
19100
19150
19200
19250
19300
19350
19400
19450
19500
19550
19600
19650
19700
19750
19800
19850
19900
19950
20000
20050
20100
20150
20200
20250
20300
20350
20400
20450
20500
20550
20600
20650
20700
20750
20800
20850
20900
20950
21000
21050
21100
21150
21200
21250
21300

need not be issued unless the initial unit number 1is unsatisfact
**ory.

This initial value may be determined by using the DIDENTIFY

operation. :

b) TCREWIND

Class: control .
format restrictions: not applicable
Byte Count: not used

Buffer: not used

Device Parameters: none

The specified device is rewound to the forward end-zone, with
the reply being generated upon detection of the end-zone.

c) TCFINDBLOCK

Class: control

Format restrictions: not applicable

Byte Count: not used

Buffer: not used

Device Parameter: a one-word value specifying the
block at which the tape is to be positioned.

The tape is positioned so that an immediately following TCREAD
or TCWRITE specifying the same block number will experience
minimum positioning delay. If the block number cannot be
found on the tape, an error reply will occur (reply type
ERRTYPE).

d) TCREAD

Class: Input

Format restrictions: byte count required

Byte Count: should be even -- rounded up if not

Buffer: required

Device Parameter: a one-word value specifying the
block at which reading is to begin

If the specified block cannot be found, an error reply occurs
(ERRTYPE). Otherwise, input begins at the specified block and
continues (in a forward direction) until the count is exhausted.
Any "soft"” error is retried five times before reporting the
failure.

e) TCWRITE

Class: Output

Format restrictions: byte count required

Byte Count: should be even -- rounded up if not

Buffer: required

Device Parameter: a one-word value specifying the
block at which writing is to begin

21350
21400
21450
21500
21550
21600
21650
21700

21750
21800
21850
21900
21950
22000
22050
22100
22150
22200
22250
22300
22350
22400
22450
22500
22550
22600
22650
22700
227560
22800
228560
22900
22950
23000
23050
23100
23150
23200
23250
23300
23350
23400
23450
23500
23550
23600
23650
23700
23750
23800
23850
23900
23950

6)

Identical to TCREAD, but performs output instead of input.
DECtape errors:

Reply type ERRTYPE causes a single word of error

information to be appended to i/0 message. This type can

be generated for TCREWIND, TCFINDBLOCK, TCREAD, and TCWRITE
**®

This word contains the value of the controller's status

register (TCST) at the time the error occurred. Refer to

Peripherais Manual for specific bit interpretations.

RP11 (moving head disk)
a) RPSEEK

Class: Control

Format restrictions: not applicable

Byte Count: none

Buffer: not used

Device Parameters: two words of disk addressing
information, in a format described below

A seek operation is performed to position the read/write heads
at a specified cylinder and track. No data transfer occurs.
If the seek cannot be successfully performed, a reply with
type ERRTYPE is generated, and error status information is
returned in the message immediately following the device
parameters.

b) RPREAD

Class: Input

Format restrictions: byte count required

Byte Count: should be even -- rounded up if not

Buffer: required

Device Parameters: two words of disk addressing
information, in a format described below

The device parameters are used to seek the proper starting
sector address. An input operation is then initiated which
continues until the byte count has been exhausted. The transfer
may involive more than one sector, and may cross track or
cylinder boundaries. Error recovery is attempted, and "hard”
errors are reported in the same way as for RPSEEK. See notes
below for specifics.

c) RPWRITE

Class: Output

Format restrictions: byte count required

Byte Count: should be even -- rounded up if not
Buffer: required

24000
24050
24100
24150
24200
24250
24300
24350
24400
24450
24500
24550
24600
24650
24700
24750
24800
24850
24900
24950
25000
25050
25100
25150
25200
25250
25300
25350
25400
25450
25500
25550
25600
25650
25700
25750
25800
25850
25900
25950
26000
26050
26100
26150
26200
26250
26300
26350
26400
26450
26500
26550
26600
26650

Device Parameters: -two words of disk addressing
information in a format described below.

Identical to RPREAD except that output is performed instead of
input.

d) RPWRITECHECK

Class: OQutput

Format restrictions: byte count required

Byte Count: should be even -- rounded up if not

Buffer: required

Device Parameters: two words of disk addressing
information in a format described below

Identical to RPWRITE except that data from memory is compared
to data at the specified disk address. No data is actually
written on the disk. If a comparison error occurs, an error
reply (ERRTYPE) will occur, as described below.

Notes on RP11 i/0 programming:

7)

1. Device parameters take the following form:

e ———————— +
! !
! Cylinder !
! !
e T T fom—mmm e +
! ! !
! Sector ! Track !
! ! !
Fommm Formmm——————————— +

Sector 1is not required for RPSEEK.

2. When an unrecoverable error occurs, the reply is of type
ERRTYPE, and two words of error status information are
returned in the message. The first of these is the
contents of RPER at the time of the error; the second
contains the value of RPDS. Refer to peripherals manual
for a description of the individual error bits.

3. Seek and transfer errors are retried five times by the
disk software before they are considered "hard" and

reported to the user program. Thus no further error
recovery need be attempted upon receipt of an ERRTYPE

reply.
ASLI Link (to another computer)
a) KLSETSPEED

Class: Control

26700
26750
26800
26850

26900
26950

27000
27050

27100
27150
27200
27250
27300
27350
27400
27450
27500
27550
27600

27650
27700
27750
27800
27850
27900
27850
28000
28050
28100
28150

28200
28250
28300
28350
28400
28450
28500
28550

28600
28650

28700

Format restrictions: not applicable

Byte count: not used

Buffer: not used

Device parameters: one word containing line speed inform
**ation

The parameter word contains a value in the range 0-7 in each of
**its

bytes. The even byte specifies the line input speed; the odd by
#tte

specifies the output speed. The values have the following inter
**pretations:

110 Baud
134.5

300

600

1200

2400

4800

9600

SN WN = O

The line is initialized to 4800 baud in, 300 baud out. These va
**lyes
are suitable for PDP-10 communication.

b) KLASCIIREAD

Class: Input

Format restrictions: byte count required
Byte count: required

Buffer: required

Device parameters: none

An input line of ASCII characters is assembled and placed in the
** puffer.

If the buffer is of insufficient size to hold the entire line, t
**he number

of characters specified by the byte count is returned and LOSTIN

**FOTYPE

is indicated with OPDONETYPE. No buffering is performed by the
**interrupt

routine; hence, any characters which arrive when no i/o0 request
**is in

effect will be discarded. The line break characters are the sam
**e as for

TTREAD. If a hardware error is detected (break, lost data, etc.
**), ERRTYPE

will be indicated in the reply code and the value of the input s
**tatus

register will be returned in the word following the buffer.

c) KLBINARYREAD

28750
28800
28850
28900
28950
29000
28050

29100
29150
29200

29250
29300
29350
29400
29450
29500
29550
29600
29650
29700
29750

29800

29850
29900
29950
30000
30050
30100
30150
30200
30250
30300
30350
30400
30450
30500
30550
30600
30650
30700
30750
30800
30850
30900
30950
31000
31050
31100

Class: Input

Format restrictions:
required
required
Device parameters:

Byte count:
Buffer:

byte count required

none

Identical to KLASCIIREAD except that 8-bit characters are return

no break character processing is performed.

**ed and
Thus exhaustion of
**the byte

count is the only terminating condition, and LOSTINFOTYPE is not

with OPDONETYPE.

** indicated

A request specifying KLBINARYREAD will remain

**pending

until the specified number of characters have been input.

d) KLWRITE

Class: Output

Format restrictions:
required
required
Device parameters:

Byte count:
Buffer:

Outputs the specified number of 8-bit characters.

not interpreted in any
character is legal and
.SUBSEC |Reply Codes|

The i/0 system generates a
the outcome of a request. They

REQDEVDOWN - The device is

byte count required

none

The character
¥*s are

way by the interrupt routine, so that any
** 8-bit

will be transmitted unchanged.

number of reply codes wich describe
are described in this section.

no longer on-line.

REQTOOSMALL- The i/0 request does not contain all of the
information required by the i/0 system.

- The buffer specification is illegal for one of

a) illegal cps slot
b) input operation and write-protected page
c) zero or negative byte count
d) buffer either crosses a page boundary
or is too large for message

- Illegal format for specified opcode or unrecognized

REQBADBUF

several reasons:
REQILLFMT
REQILLOP opcode.
OPDONETYPE - Normal completion,.
ERRTYPE - Error completion.

31150
31200
31250
31300
31350
31400
31450
31500
31550
31600
31650
31700
31750
31800
31850
31900
31950
32000
32050
L

In the event that completion (normal or error) occurs but not all
of the desired information can be supplied (e.g. ERRTYPE return,
but request is too small to hold error information), the value
LOSTINFOTYPE is added to either ERRTYPE or OPDONETYPE to warn

the program that not all the expected informationm is present.

.SUBSEC |Format Modifiers]

Two format modifiers are defined, INDBUF and NOCOUNT. INDBUF
specifies that the buffer is addressed indirectly, as described earlier.
NOCOUNT 1is used to indicate that the byte count has been omitted.

These modifiers are ignored when used with operations which do not
require a buffer.

To use a format modifier, the user program employs the
I00PN macro to define a composite operation code, e.g.

IOOPN(TTREAD, INDBUF+NOCOUNT)

00050 .SEC |THE APPENDIX]

00100

00150

00200 Except where necessary, absolute values and locations for fields are
00250 not given in this manual. The bindings for all symbolics may be found
00300 in the file HYKALL.R11[N810HY00] @ CMU-1DA.

00350

00400

00450 .SUBSEC |HYDRA KERNEL RIGHTS]|

00500

00550 In describing Hydra Kernel Rights, we consider the effect if

00600 Capability CAP has the right in question. If CAP is an Object
00650 Reference, we write 0BJ as a shorthand for the Object Referenced by CAP:
00700

00750

00800 LOADRTS - Allows a Capability to be Loaded from 0OBJ

00850 STORTS - Allows a Capability to be Stored into 0BJ

00900 APPRTS - Allows a Capability to be Appended onto O0BJ
00950 KILLRTS - Allows a Capability to be Deleted from 0BJ
01000

01050 GETRTS - Allows data to be gotten from OBJ

01100 PUTRTS - Allows data to be put into 0BJ

01150 - ADDRTS - Allows data to be appended onto OBJ

01200

01250 ALLYRTS - Allows OBJ to be Re-Allyed

01300 OBJRTS - Allows OBJ to be Switced or Frozen

01350

01400 CREARTS - Allows an Object to be Created from CAP

01450 COPYRTS - Allows a Copy to be made of OBJ

01500

01550 DLTRTS - Allows CAP to be Deleted

01600 ENVRTS - Allows CAP to be Stored in some Object

01650 MDFYRTS - Allows 0BJ to be modified

01700 UCNFRTS - Allows OBJ to be Unconfined, that is, an Object

01750 accessed through 0BJ may be modified.

01800 FRZRTS - Guarantees that 0OBJ is Frozen

01850

01900

01950 Note that the last set of 5 rights cannot be gained through

02000 rights amplification. WNote that whenever rights are restricted,
02005 ALLYRTS are always removed as well.

02050

02100

02150 .SUBSEC |RIGHTS RESTRICTION FORMAT|

02200

02250

02300 4-='-='emelmmlem e e e e e e e
02350 ! vt !
02400 ! AUXRTS INFITF! UNUSED !
02450 ! (8 P (6) !
02500 +__'__1__|__'__'__'__l__+__+__+__'__|__'__'__l__+
02550 ! !
02600 ! KERNEL RIGHTS !
02650 ! (1W) !

02700
02750
02800
02850
02900
02950
03000
03050
03100
03150
03200
03250
03300
03350
03400
03450
03500
03550
03600
03650
03700
03750
03800
03850
03900
03950
04000
04050
04100
04150
04200
04250
04300
04350
04400
04450
04500
04550
04600
04650
04700
04750
04800
04850
04900
04950
05000
05050
05100
05150
05200
05250
05300
05350

1 1’ A * A . ' A v 1] ' t L .

T e D B At L PR L DAL PR LS

AUXRTS - Auxiliary rights
NF - NEWFLAG
TF - TMPLFLAG

Kalls that allow restriction of rights and flags (the flags fields, NF
and TF are ignored in restricting an Object Reference) require an
address that must point to a location in the active stack. That location
is a two word area formatted as shown above. If the bit representing
the particular Kernel or Auxiliary right or Flag is 0, the right or flag
will be restricted.

Example, if the MUCH'th slot contained some Capability for a
Procedure, to get a Capability for the same Procedure in the LESS'th
slot having oniy CALLRTS, LNSRTS and DLTRTS, the following Bliss-11 code
would do:

Begin

Local RESTR[2];

RESTR[0] ¢« CALLRTS or LNSRTS;
RESTR[1] « DLTRTS;

Share (LESS, MUCH, RESTR)
End

.SUBSEC |SIZE RESTRICTIONS]

The maximum size of a Data-Part is 1000 (#1750).
The maximum number of Capabilities in a C-List is 125 (#175).

.SUBSEC |KERNEL TYPES|

For each Kernel Type, we specify a number of things:

a) Defined Auxiliary rights

b) Initialization rights & flags - At system initialization, the
initial Policy Subsystem has been provided with a Template with
these rights and flags (NEWFLAG & TMPLFLAG).

¢) Template rights and flags - The rights of a Template returned from
the TEMPLATE Kall.

d) Copy rights - The rights added when a Capability of that type
is copied.

e) Creation arguments - Additional arguments to the CREAT Kall.

f) Copy arguments - Additional arguments to the COPY Kall.

1) Type TYPE

a) Auxiliary:
TMPLRTS - Allows Template of named Type to be made with all

05400
05450
05500
05550
05600
05650
05700
05750
05800
05850
05900
05950
06000
06050
06100
06150
06200
06250
06300
06350
06400
06450
06500
06550
06600
06650
06700
06750
06800
06850
06900
06950
07000
07050
07100
07150
07200
07250
07300
07350
07400
07450
07500
075650
07600
07650
07700
07750
07800
07850
07900
07950
08000
08050

2)

3)

rights and flags.
RTRVRTS - Allows TYPRETRIEVE Kall

b) Initialization:
LOADRTS, STORTS, APPRTS, KILLRTS, OBJRTS, CREARTS, COPYRTS,
DLTRTS, ENVRTS, UCNFRTS, MDFYRTS, TMPLFLAG, A1l Auxiliary rights

c) Template:
DLTRTS, ENVRTS, TMPLFLAG

d) Copy:
DLTRTS

e) Creation arguments:

Address (in stack) of 16 word area containing
PNAME - words 1-5, Print Name
CAPINIT - word 6, Initial C-List size of CREATed Object
CAPMAX - word 7, Maximum C-List size
DATAINIT - word 8, Initial Data-Part size
DATAMAX - word 9, Maximum Data-Part size
RTRVFLAG - word 10, Retrievability flag in sign bit.

f) Copy arguments:
Same as Creation argument.

- - - - - -, -

Type NULL

a) Auxiliary:
NULLRTS - Determines whether Capability is Truenull

b) Initialization:
A1l Kernel and auxiliary rights, TMPLFLAG. Note though that
it is impossible to CREAT a Capability for a Null Object.

c) Template:
A1l Kernel and Auxiliary rights, TMPLFLAG.

d) Copy: May not be COPYed -
e) Creation arguments: May not be CREATed
f) Copy arguments: May not be COPYed
Type PROCEDURE
a) Auxiliary:
GETCBRTS - Allow access to ICB
SETCBRTS - Allow modification of ICB

PRCSRTS - Allows LNS incarnated from Procedure to initialize
a Process

08100
08150
08200
08250
08300
08350
08400
08450
08500
08550
08600
08650
08700
08750
08800
08850
08900
083850
09000
09050
09100
09150
09200
09250
09300
09350
09400
09450
09500
09550
09600
09650
09700
09750
09800
09850
09900
09950
10000
10050
10100
10150
10200
10250
10300
10350
10400
10450
10500
10550
10600
10650
10700
10750

b)

d)

e)
f)

LNSRTS - Allows LNS dincarnated from Procedure to be LNSCAlLLed.
CALLRTS - Allows Procedure to be CAlLlLed.

Initialization: : :
LOADRTS, STORTS, APPRTS, KILLRTS, OBJRTS, CREARTS, COPYRTS,
DLTRTS, ENVRTS, UCNFRTS, MDFYRTS, TMPLFLAG, A1l Auxiliary rights

Template:

LOADRTS, STORTS, APPRTS, KILLRTS, OBJRTS, CREARTS, COPYRTS,
DLTRTS, ENVRTS, MDFYRTS, TMPLFLAG, A1l Auxiliary rights
Copy:
DLTRTS
Creation arguments: None

Copy arguments: None

- - - - - -

4) Type LNS

5)

a)

b)

c)

d)

e)
f)

Auxiliary:
GETCBRTS - Allows access to LCB
SETCBRTS - Allows modification to LCB
GSTKRTS - Allows access to LNS's active stack
PSTKRTS - Allows modification of LNS's active stack
PRCSRTS - Allows LNS to initialize a Process
LNSRTS - Allows LNS to be LNSCALLed.
Initialization:

DLTRTS, ENVRTS, TMPLFLAG.

Template:
DLTRTS, ENVRTS, TMPLFLAG.

Copy: May not be COPYed
Creation arguments: May not be CREATed (See MAKLNS)

Copy arguments: May not be COPYed

Note: LNS Capabilities created with MAKLNS have the following rights:

DLTRTS as well as UCNFRTS, FRZRTS, LNSRTS & PRCSRTS only if
the Procedure it was incarnated from had those rights.

LNS Capabilities created via the "Lns" argument specification
for CALL have the following rights: LOADRTS, STORTS,

APPRTS, KILLRTS, BLTRTS, MDFYRTS, GETCBRTS, SETCBRTS,

GSTKRTS & PSTKRTS.

Type POLICY

10800 a) Auxiliary:

10850 MAKERTS - Allows the MAKEPOLICY Kall

10900 RCVRTS - Allows the RCVPOLICY Kall

10950 POLRTS - Allows the POLICY Kall

11000

11050 b) Initialization:

11100 LOADRTS, STORTS, APPRTS, KILLRTS, CREARTS, DLTRTS, ENVRTS,
11150 UCNFRTS, MDFYRTS, TMPLFLAG, A11 Auxiliary rights
11200

11250 c) Template

11300 DLTRTS, ENVRTS, TMPLFLAG

11350

11400 d) Copy: May not be COPYed

11450

11500 e) Creation arguments:

11550 One word indicating information about Policy Subsystem
11600 and its status

11650

11700 f) Copy arguments: May not be COPYed

11750

11800 - - - - - = =

11850

11900 6) Type PROCESS

11950

12000 a) Auxiliary:

12050 GETCBRTS - Allows access to PCB

12100 SETCBRTS - Allows modification to PCB

12150 STARTS - Allows the START Kall

12200 STOPRTS - Allows the STOP Kall

12250 CTLRTS - Allows the CONTROL Kall

12300 SYNRTS - Allows the DESYNCH Kall

12350 BASERTS -~ Allows association of Process Base in POLICY Kall
12400 POLRTS - Allows association of Policy in POLICY Kall
12450

12500 b) Initialization:

12550 CREARTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS, TMPLFLAG,
12600 A11 Auxiliary rights

12650

12700 c) Template:

12750 CREARTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS, TMPLFLAG,
12800 A11 Auxiliary rights except BASERTS

12850

12300 d) Copy: May not be COPYed

12950

13000 e) Creation arguments:

13050 Simple index denoting a Capability for an LNS Object
13100 with PRCSRTS. The LNS must be "useable" (See Subsection
13150 on PROCESS OBJECTS)

13200

13250 f) Copy arguments: May not be COPYed

13300

13350 - = - = - = -

13400

13450 7) Type PAGE

13500
13550
13600
13650
13700
13750
13800
13850
13900
13950
14000
14050
14100
14150
14200
14250
14300
14350
14400
14450
14500
14550
14600
14650
14700
14750
14800
14850
14800
14950
15000
15050
15100
15150
15200
15250
15300
15350
15400
15450
15500
15550
15600
15650
156700
16750
15800
15850
15900
15950
16000
16050
16100
16150

a) Auxiliary:
CPSRTS - Allows Page to be loaded into CPS
PGWRTS - Allows Page to be written into
CACHRTS - Allows Page to be cached

b) Initialization:
OBJRTS, CREARTS, COPYRTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS,
TMPLFLAG, A1l Auxiliary rights

c) Template:
0BJRTS, CREARTS, COPYRTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS,
TMPLFLAG, CPSRTS, PGWRTS

d) Copy:
OBJRTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS, CPSRTS, PGWRTS

e) Creation arguments: None
f) Copy arguments:

Index of a CPS slot. The COPYed PAGE will be CPSLOADed into
that CPS slot.

8) Type SEMAPHORE
a) Auxiliary: None

b) Initialization:
CREARTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS, TMPLFLAG

c) Template:
DLTRTS, ENVRTS, TMPLFLAG

d) Copy: May not be COPYed

e) Creation arguments:
Initial value of Semaphore

f) Copy arguments: May not be COPYed

9) Type POLSEM

a) Auxiliary:
PRTS - Allows the PPOLSEM Kall
VRTS - Allows the VPOLSEM Kall
CPRTS - Allows the CPOLSEM Kall

b) Initialization:
CREARTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS, TMPLFLAG,
A11 Auxiliary rights

16200

16250 c¢) Template:

16300 DLTRTS, ENVRTS, TMPLFLAG

16350

16400 d) Copy: May not be COPYed

16450

16500 e) Creation arguments:

16550 Initial value of the Policy Semaphore

16600

16650 f) Copy arguments: May not be COPYed

16700

16750 - - - - = = =

16800

16850 10) Type DATA

16300

16950 a) Auxiliary: HNone

17000

170650 b) Initialization:

17100 GETRTS, PUTRTS, ADDRTS, OBJRTS, CREARTS, COPYRTS, DLTRTS,
17150 ENVRTS, UCNFRTS, MDFYRTS, TMPLFLAG

17200

17250 c) Template:

17300 GETRTS, PUTRTS, ADDRTS, O0BJRTS, CREARTS, COPYRTS, DLTRTS,
17350 ENVRTS, UCNFRTS, MDFYRTS, TMPLFLAG

17400

17450 d) Copy:

17500 GETRTS, PUTRTS, ADDRTS, OBJRTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS
17650

176060 e) Creation arguments: None

17650

17700 f) Copy arguments:

17750 Length of Data-Part of COPYed Object. The Data-Part of the
17800 COPYed Object will be expanded or contracted as necessary. If
17850 less than or egqual to 0, the length will be as in the original.
17900

17950 - - - - - - -

18000

18050 11) Type UNIVERSAL

18100

18150 a) Auxiliary: None

18200

18250 b) Initialization:

18300 LOADRTS, STORTS, APPRTS, KILLRTS, GETRTS, PUTRTS, ADDRTS,
18350 OBJRTS, CREARTS, COPYRTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS,
18400 TMPLFLAG

18450

18500 c¢) Template:

18550 LOADRTS, STORTS, APPRTS, KILLRTS, GETRTS, PUTRTS, ADDRTS,
18600 OBJRTS, CREARTS, COPYRTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS,
18650 TMPLFLAG

18700

18750 d) Copy:

18800 LOADRTS, STORTS, APPRTS, KILLRTS, GETRTS, PUTRTS, ADDRTS,

18850 OBJRTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS

18900
18950
19000
19050
19100
19150
19200
19250
19300
19350
19400
19450
18500
19550
19600
18650
19700
19750
19800
18850
19900
19950
20000
20050
20100
20150
20200
20250
20300
20350
20400
20450
20500
20550
20600
20650
20700
20750
20800
20850
20900
20950
21000
21050
21100
21150
21200
21250
21300
21350
21400
21450
21500
21550

e)
)

12)

b)

c)

d)
e)

f)

13)

Creation arguments: None

Copy arguments:
Same as for DATA.

Type PORT

Auxiliary:

PCONNRTS - Allows PCONNECT and PDISCONNECT Kalls
MCREARTS - Allows MCREATE Kall

MWRITRTS - Allows MWRITE Kall

MREADRTS - Allows MREAD Kall

MSENDRTS - Allows MSEND Kall

MRSVPRTS - Allows MRSVP Kall

MRPLYRTS - Allows MREPLY Kall

MWAITRTS - Allows MWAIT Kall

Initialization:
CREARTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS, TMPLFLAG,
A1l Auxiliary rights

Template:
CREARTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS, TMPLFLAG,
A1l Auxiliary rights

Copy: May not be COPYed

Creation arguments:
To be specified

Copy arguments: May not be COPYed

Type DEVICE

Auxiliary:
PCONNRTS - Allows PCONNECT and PDISCONNECT Kalls
Rest to be specified

Initialization:
CREARTS, DLTRTS, ENVRTS, UCNFRTS, MDFYRTS, TMPLFLAG,
A1l Auxiliary rights

Template:
DLTRTS, ENVRTS, TMPLFLAG

Copy:
DLTRTS, Rest to be specified

Creation arguments:

21600
21650
21700
21750
21800
21850
21900
21950
22000

To be specified

f) Copy arguments:

L

To be specified

22050 .SUBSEC |FORMAT FOR WHAT|
22100
22150 The WHAT Kall provides a representation of a Capability. The format

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89

