
FORMULA ALGOL

Carnegie-Mellon University

Department of Computer Science

Computation Center

ABSTRACT

TM CCU- 73 ---------------------------------------
Author ____ J_a~y __ E_a_r_l_e~y~ ____________________ __

Technical Editor --------------------------
Release Approval --------------------------
Distribution FORMULA ALGOL mailing list

Date June 26 ---------------------------------------
Replaces of ---------------------
Supplements -------------------------------
Addends Page of __________________ __

Page ________________ of ____ ~1~2_5~·~p~a~g~e~s~-----

Formula Algol is an extension of Algol 60 [lJ incorporating formula

manipulation and list processing.

This manual describes the use of the version of Formula Algol which

is presently running at Carnegi~Mellon UniversitYe

Title Page.

Abstract ..

TABLE OF CONTENTS

. .. i

. . ii

Table of Contents iii

Chapter I - Introduction.1

General Description of Fo~mula Algol. . . . ~1

History and Implementation. 2

Acknowledgments. 2

Introduction to the Manual 0 .3

Introduction of Formula Algol Programming.

Chapter II - Numeric Processing.

Symbols.

Decimal Constants.

Octal Constants.

Identifiers.

Variables ...

Logic Expressions.

The Precedence of Operators and Relations

· . 3

· . 13

.13

· .14

.14

· • 16

• • 1 7

· .18

In Formula Algol. 20

Standard Func ti.ons. 21

Assignment Statements 21

Conditional Statements. 21

Labels and GO TO Statements 22

FOR Statements.

Arrays

Procedures and Block Structure ..

Chapter III - Formula Manipulation. .

FORM Variables. • .

· 22

· 23

23

• 25

• 25

FORM Arrays. . •25

Formula Expressions. . . •26

Formal Definition of VAL (E)•..... 27

iii

Evaluation of Formulae.

Formula Patterns

Transformed Formulae ..

Precedence of Formula Operators.

Special Functions

Chapter IV - List Processing.

SYMBOL Variables

• 32

37

· 43

· .47

· .47

. . 49

· 49

SYMBOL Arrays 49

Symbolic Expressions 49

Lists ...

Assignment Statements'. .

Description Lists.

Selection Expressions ..

List Patterns ..

Class Tests ..

. . . ;.

Push Down and Pop UpS ta tements.

Additional FOR Statements

· .51

· .52

· .53

· .55

.58

· .61

.61

· .62

Editing Statements• 64

Special Functions.

Appendix I - Revised Report on the Algorithmic
Language ALGOL 60..

Summary

Contents. . .

Introduction. .

Description of the Reference Language

Alphabetic Index of D~fin tions of Concepts
and Syntactic Units

Appendix 2 - Current System Limits . .

.66

• .69

· .69

69

. • • 70

. 71

· .84

· .87

Appendix 3 - Debug Snapshots 89

Appendix 4 - Error Messages 93

iv

Syntax Errors ...

Semantic Errors.

. . • . .93

• .96

Run Errors ••....•.••••••••.•.• 99

Appendix V - Input-Output .••••••••.••. 105

Appendix VI - Syntax Index. . • • •. • .109

Syntax Classes.

Reserved Words.

Appendix VII - Complete Examples.

• • 109

. .• 111

• .113

I. Markov Algorithm Solution. • • . • • • • • . 113

II. Recursive Solution. • •. 114

III. Iterative Solution. . • .114

IV. Comparison of the Three Solutions .••••. 115

Sample Program. . •••••.•..• 117

Appendix VIII - Current System Bugs .• ~ •••.. 121

References. • • • • Q • • • • • • • • • • • 125

v

FORMULA ALGOL

CHAPTER I

INTRODUCTION

GENERAL DESCRIPTION OF FORMULA ALGOL

FORM AL-3-1

Formula Algol is an extension of Algol 60 [1] incorporating formula mani­

pulation and list processing. The extension is accomplished by adding two new

types of data structures: formulae and list structures, with an appropriate

set of processes to manipulate them. The control structure of Algol 60 is

inherited and also extended.

Algorithms may -construct formulae and list structures at run time. Opera­

tions are available which alter or combine formulae and list structures, and

which access arbitrary subexpressions. Formulae may be evaluated, substitut­

ing numerical or logical values for occurrences of variables contained within.

They may be subjected to substitution processes causing the replacement of

occurrences of variables by designated formulae. They may be subjected to

transformations defined by sets of rules akin to Markov algorithms. Predicates

are available to determine precisely the structure and composition of any for­

mula or list structure, and mechanisms are provided to extract subexpressions

of a formula, or sublists of a list, provided its structure is known.

Numerical, logical, and formula values may be stored as elements in list

structures, and retrieval mechanisms exist to select them for use as con­

stituents in other processes. Description lists composed of attributes with

associated value-lists may be attached to list structures, and processes exist

for retrieving value lists and for creating, altering, and deleting attribute-

FORM AL-3-2 FORMULA ALGOL

value list pairs. Push down stacks of arbitrary depth are available for the

storage of all types of data structur~s and generators are provided in the

form of new types of FOR statements which assign to control variables the

elements of a single list structure, or alternatively, of several list struc­

tures in parallel, for use in an arbitrary process. Finally, both arrays

and procedures may be defined having formulae or list structures as values.

HISTORY AND IMPLEMENTATION

The Formula Algol language has been designed by Dr. Alan J. Perlis,

Renato Iturriaga, and l'homas A. Standish. It was initiated at Carnegie-Mellon

in January, 1963, and has undergone continual evolution and expansion since

that date. In August, 1963 an interpretive version was running and was re­

ported at the Working Conference on Mechanical Language Structures in Princeton,

New Jersey. [2J.

The version reported in this manual has been implemented as a compiler

on the CDC G-21 computer at Carnegie-Mellon University by Renata

Iturriaga, Thomas A. Standish, Rudolph A. Krutar and Jay Earley. A discussion

of the compiling techniques used was presented at AFIPS 1966 [~. For those

interested in the details of the compiler, a more complete document exists [4J.

ACKNOWLEDGMENTS

A large part of Chapters III and IV is based on "A Definition of

Formula Algol" [7 J, and much of Chapter II is based on the Algol-20 manual [3J.

Special thanks goes to Gail Jaffre, Dr. David C. Cooper, and the implementers

of the language for their help in preparing the manual.

FORMULA ALGOL FORM AL-3-3

INTRODUCTION TO THE MANUAL

This manual describes the use of the version of Formula Algol which is

presently running at Carnegie-Mellon University. It is called by writing

'FORML' in the language field of a job card.

It is assumed in this manual that the reader is familiar with Algol 60.

Since Algol 60 is not described, the Revised Report is included in the appen­

dix. Below is an introduction to Formula Algol programming, which is intended

for those who are familiar with programming, but not with this language.

Chapters II, III, and IV describe the mechanisms available in Formula Algol

and how they are to be used. All the mechanisms described in this part of

the manual may not be working perfectly at a given time. They are, however, ~

a short range goal at which the Formula Algol maintenance group will aim.

A list of current system bugs and problems, which should be updated frequently,

is included in the appendix. Operations which are illegal and therefore

produce errors are not mentioned specifically in the manual except in the

list of errors. It should be assumed that any operation or instance of an

operation which is not mentioned as being legal in the manual will produce

~n error.

INTRODUCTION OF FORMULA ALGOL PROGRAMMING

This chapter is designed to introduce a programmer who is familiar with

Algol to the mechanisms available in Formula Algol, and to give an idea how

they may be used to do formula manipulation and list processing. No attempt

. has been made to be complete or rigorous. The individual mechanisms available

are discussed more fully in Chapters III and IV.

FORM AL-3-4 FORMULA ALGOL

Formula Manipulation

Suppose that we would like to write a procedure which takes as input

a formula and differentiates it with respect to'X. We first need someway of

representing such a formula in our programming language .. Algol is inconvenient

for this because when an arithmetic expression is written in Algol, it is al-

ways to be evaluated, never to be kept around and examined. This forces the

use of indirect representationse

For this purpose we have FORM variables. When a variable declared of type

FORM is used in an expression, it indicates that a formula is to be constructed

representing the expression. These formulae may be thought of as trees e Thus,

3*XtZ + 4/X would cause the contruction of the following tree:

The normal Al~l precedence of operators determines the form of the tree. If we

assign the above expression to a FORM variable F. we can then access it later

by referring to F.

We now have a way of inputting the expression to be differentiated.

Next we need to be able to examine its structure.

For this, the language provides formula patterns. Thus we can write

F -- ANY~'< ANY ----
The It==" is to be read "is an instance of." It tests whether a formula stored

in F consists of any two subformulae connected by a multiplication sign. A

formula pattern isa Boolean expression and can be used in an

IF ••• THEN statement.

Now that we can test for the form of a formula we want to be able to alter

FORMULA ALGOL FORM AL-3-S

its form according to what we have found. To do this, we insert extractors into

the pattern. An extractor is a formula variable followed by a colon. The pat-

tern then looks like

F==LEFT: ANY*RIGHT:' ANY -- --
If the pattern matches, then the subformula which matched the left operand gets

stored into LEFT and the subformula which matched the right operand gets stored

into RIGHT. Thus if we executed this pattern on 3 * X, after it matched, LEFT

would contain 3 and RIGHT would contain X.

We can now write one rule of our differentiation program

IF F==LEFT: ANY * RIGHT: ANY THEN

DERV ~LEFT * DERV(RIGHT) + RIGHT * DERV(LEFT);

Assuming the DERV is the procedure we are writing to take the derivative, we are

using it recursively here to find derivatives of expressions containing ,~"

ANY is not the only word we can use in a pattern. We may use any

declared type words to test for a subformula of certain type. An arithmetic

or formula expression may also be used; these cause exact equality tests. Thus

we may implement the "standard" derivative formula by

.!E F== XtN: REAL THEN

DERV ~ N * xt (N-l)

However, suppose we want this transformation to apply only if N > 1.

We can implement this by declaring a Boolean procedure to make this test.

BOOLEAN PROCEDURE GRI (I); VALUE I; FORM I;

GRI ~ IF I' == REAL THEN I > 1 ELSE FALSE;

Then we use the following pattern:

F==XtN: OF (GRl)

and it will make the appropriate test for us.

Suppose in the derivative routine we would like to test whether the formula

FORM AL-3-6 FORMULA ALGOL

is a single unit (number, variable) or a binary combination (A + B). We may

use the word ATOM, which yields true for number, FORM variables, etc.

IF F==ATOM THEN DERV~ IF F==X THEN 1 ELSE o.

We may search the formula to see if any of its subexpressions match a

pattern instead of testing only the main expression. This is done by using

u»" in place of "==". The ,t;»" patterns are otherwise exactly the same.

Now, suppose that we have finished calculating the derivative of F and

have stored it back into F. We may now want to substitute a number for X and

evaluate the resulting expression. This is done by the EVAL operator:

EVAL (X) F (3)

This substitutes 3 for all occurrences of X in F and calculates the result. If

this substitution removes all formulae from F, then a number will result. How­

ever, if some are left, it will remain a formula, though it will probably be

somewhat simplified. If we had wanted only to substitute 3 for X and not eval­

uate, we would have used "SUBS" in place of "EVAL". For a third possibility,

we may want to replace X in the formula by whatever is the current value of X

as a form variable. (Remember that the name X now appears in the formula, not

its value.) This is done by REPLACE (F)

wnich replaces all form variables in F by their current values, and then evalu­

ates the resulting expression. Let's now suppose that instead of differentiating

a formula we would like to make some simplifications in it. One thing we might

like to do is apply the distributive law:

IF F==A: ANY -k (B: ANY + C: ANY) THEN

F ~ A '1(B + A "1'(C;

This works well, but this law is commutative, so we need a second rule for the

case when A is to the right of Band C. We also need another law for subtraction.

This expands our distributive law to four statements. We would like to contract

them into one.

FORMULA ALGOL FORM AL-3-7

This is done by us ing operator classes. We wi 11 use one symbol to st'and

for plus or minus. For this we use a variable of type symbol, so that we can

attach a description list to it (pg. 53). Let's call the symbol ADDOP. Then

we execute

ADDOP (- I [OPERATOR: + , -]

We can now write the pattern as

F == A: ANY''< (B: ANY \ ADDOP \ C: ANY)

and it will apply for' both + and -. We can also use this mechanism to change F.

If the above pattern matches, the operator which matched ADDOP will be stored as

its value. Then we can write F (- A .f(B \ <ADDOP> \ A * C

t.o change F to the correct form.

Now we want to take care of the commutative instances of the distributive

law. For this we declare an operator class for "",," and label it commutative:

TIMES (- I[OPERATOR: ,'<] [COMM: TRUE]

Now, by using I TIMES \ in place of ""'"", the test will also match an instance of

(B: ANY \ADDOP\ C: ANY) A: ANY.

One final construction may be used to abbreviate some sequences of actions

which might otherwise be quite long. Suppose we would like to write a routine

to clear fractions. One transformation in it would be:

if F==A: ANY - B: ANY I C: ANY THEN

F(- (A * C - B) I C;

We would need to write a sequence of these IF .•. ~ statements plus proper

circling back to the beginning to make sure that we have gotten all of the

formula. This can be shortened by the use of productions. The production which

corresponds to the above rule is:

A: any -B: any I C: any ~(.A * .C - .B) / .C

The exact reason for the dots can be found by reading chapter 30n·formula

manipulations. When this production is applied to a formula, it will have the

same effect as the above IF ... THEN statement. However, we would like to apply

FORM AL-3-8 FORMULA ALGOL

a sequence of such productions in order to clear fractions, so we store a list

of these productions by a list assignment statement (pg. 52). If the left

formulae are Li and the right are ~, this will look like:

••• ,L -7R J;
n n

This now gives CLEAR the semantics represented by these productions. Then if

we apply this schema to a formula in F by the expression

F ~ CLEAR,

F will be treated in the following way:

L1 wi1~ be tested against F and then each of its subformulae, then L2 will be,

and so on. When a match is found, the corresponding transformation R. is applied
, 1

and control returns to L1 again.

The complete schema for clearing fractions is on page 46.

List Processing

Suppose we ~1ant to write a program to play Solitaire. We can do this in

the list processing part of Formula ALGOL. First we need to represent the cards

of the deck. Let's make each card a variable of type SYMBOL, so the ace of

spades is SPADEA and the 3 of clubs is CLUB3. We can represent the deck as

a list which is the contents of the symbol DECK. So to initiate the deck we

execute the assignment statement

DECK ~ [SP ADEA, SP ADE2, SPADE3, ... J;
where we string out all 52 cards.

Now we need to be able to deal out the cards into the seven solitaire

piles. Let's make these a symbol array called PILE:

SYMBOL ARRAY PILE [1: 7J.

In order to deal we need to be able to select cards from one list (DECK) and in-

sert them into another. To select an element from a list We use a selector which

refers to the position of the element in the list by number. Since we want the

FORMULA ALGOL FORM AL-3- 9

top element of the deck we use the expression

FIRST OF DECK

Since we will be putting cards on the top of the piles we use the statement

INSERT FIRST OF DECK BEFORE FIRST OF PILE[I); - - .

We need to show that the card has been removed from the deck. This is done by

DELETE FIRST OF DECK.

Now this should do the dealing:

FOR JH STEP 1 UNTIL 7 DO

FOR If-J STEP 1 UNTIL 7 .!?Q

BEGIN

INSERT FIRST OF DECK BEFORE FIRST Q! PILE[I]:

DELETE FIRST OF DECK;

We would like to be able to compare the suits and numbers of various cards

to tell whether they can be placed on each other. For this our symbol names are

inadequate. We need to be able to associate properties of the cards with them.

This is done by using description lists. We should assign a description list to

each card with a statement such as:

SPADE4r/[SUIT: SPADES] [DENOM: 4];

In this statement, SUIT and DENOM are attributes, and SPADES and 4 are their

respective values. However, we have to test mainly the color of the cards for

solitaire, so let's add that attribute to our description list, too:

.!!!! COLOR OF SPADE4 IS BLACK;

Note that COLOR, BLACK, SUIT, etc., are all symbol variables.

We may retrieve the value of an attribute by a statement such as:

TIlE SUIT OF SPADE4

or SUIT(SPADE4)

FORM AL-3-10 FORMULA ALGOL

Using this we could write a routine to add the color attribute to all the

cards. For each card we would write

IF SUIT(CARD) ~ SPADES V SUIT(CARD) = CLUBS

THEN TIlE COLOR OF CARD I S BLACK ----
ELSE TIlE COLOR OF CARD IS RED;

To iterate through the deck we use a new type of for-statement which iterates

on the elements of a list. Using this plus a standard Algol abbreviation for the

IF THEN statement we have

FOR CARD ~ ELEMENTS OF DECK DO

TIlE COI.,OR OF CARD IS

IF SUIT (CARD) = SPADES V SUIT (CARD) = CLUBS

THEN BLACK ~ RED;

There is an alternative to this course of action. Instead of storing the

attribute color with each card, we can test each card to see if it is a spade or

club each time in the program that we need to know its color. However, we don't

want to have to write:

IF SUIT (CARD) = SPADES V SUIT (CARD) = CLUBS THEN

every time we want to test a card.

Therefore we use a class test:

LET (IBLACKI) = [X I SUIT (X) = SPADES VoSUIT (X) = CLUBS];

This establishes a test for the class of black cards. We can now write

IF CARD = = (I BLACK I) THEN

and the test will be performed for us.

We can now write a routine to test whether one card can be placed on another

or not.

Let's use color as an attribute and store JACK, QUEEN, and KING as 11, 12, 13.

Since we can store numbers directly as values, or in fact as elements of a list,

we can do just an arithmetic check on t1:le value of DENOM in our routine. The

FORMULA ALGOL FORM AL-3-11

following routine tests whether Cl can be placed on C2.

BOOLEAN PROCEDURE PLACEON(Cl, C2); VALUE Cl, C2; SYMBOL Cl, C2;

PLACEON ~COLOR(Cl) ~ COLOR(C2)

A DENOM(Cl) + 1 = DENOM(C2);

Now let's switch from Solitaire to natural language processing.

Assume we have the words of a paragraph stored in a list called PARA. We

want to search it for the words "THERE ARE" followed by a number and then a

plural noun, i.e., "THERE ARE 20 BUILDINGS." We then want to put the number

as the value of NUMBER on the description list of the noun. We have a list

of the plural nouns stored in NOUN.

To do this we need some new constructions:

(1) COUNT(L) produces an integer value corresponding to the number

of elements in list L.

(2) AMONG (X, L) is TRUE if X is an element of list L.

(3) As with formula patterns, we may test to see if an element is of

a particular type using " II == •

The routine is

FOR I~ 1 STEP 1 UNTIL COUNT(PARA) -3 DO

IF I TH OF PARA = THERE 1\

(I + 1) TH OF PARA = ARE 1\

(I + 2) TH OF PARA == INTEGER 1\

AMONG «I + 3) TH OF PARA, NOUN) THEN

THE NUMBER OF (I + 3) TH ~ PARA 18(1 + 2) TH OF PARA;

This is a lot of writing, so we would like to be able to use some of

the mechanisms of COMIT [5J to make this test. Let's first construct a class

name for nouns.

[xl AMONG (X, NOUN)J

FORM AL-3-12 FORMULA ALGOL

We can now use a list pat~ern to make the test

IF PARA == [$, THERE, ARE,' INTEGER, <!NOUNj), $J ~

$ stands for an arbitrary number of elements. This pattern is tested

against the list PARA for any match. After the match, however, we want to

be able to perform the description list store. For this we need to be able

to extract elements of PARA according to the part of the patterns they

match. This is done by writing a symbol variable and a colon in front of

an element of the pattern. Then if the pattern matches, the element that

matched the pattern element is stored into the extractor variable.

The routine now becomes:

IF PARA == [$, THERE, ARE, N: INTEGER, OBJECTS: <\NOUNI), $J

THEN THE NUMBER OF OBJECTS IS N;

FORMULA ALGOL FORM AL-3-13

CHAPTER II

NUMERIC PROCESSING

Although Formula Algol is an extension to Algol 60, there are certain

restrictions on this reference language which have been made due to character

set limitations and implementation. There are also some added features of

Formula Algol ov~r Algol 60 aside from the formula and list processing features.

These are explained in this chapter.

SYMBOLS

Formula Algol accepts all of the special symbols of ALGOL-60 except for

those shown in the following table:

ALGOL-60

~ ("implies") Use "-7 "

- ("is equivalent") Use "="

X (multiplication) Use "*"

Not available, but entier may be
used wi th II /" wi th the same e ffec t.

~ Use "":'>"

~ Use ".., <"

.- Use II~' .-
(string quotes) Not available

FORM AL-3-14 FORMULA ALGOL

DECIMAL CONSTANTS

A number, N, in a Formula Algol program must be zero .(which maybe punched

with or without a decimal point) or else its absolute value N must satisfy:

1 .27510- 5 7 ~ N ~ 3.45010+69

Because of the nature of the G-21 computer, the distinction between real

and integer numbers is unimportant. The programmer may write an integer-valued

constant with or without a decimal point (e.g., "34", "34.", or "34.0") without

changing the type of arithmetic performed on the constant.

Numbers are represented in the G-21 in "floating point" form with a maximum

of 42 binary digits of mantissa, corresponding to approximately 12 decimal digits

of precision. If more than 12 digits are written, the extra (least significant)

digits will be ignored. (The number is rounded at the 14th octal digit.)

The last character of a real number may be a decimal point; thus, the

number "6." is legal. Note: In Formula Algol "." is sometimes used as an

operator. In these cases it should not be placed adjacent to a numerical con­

stant so that these uses are not confused with its use as a decimal point.

OC TAL CONSTANTS

An octal (base 8) constant may be used in any context in Formula Algol

where a decimal number is allowed; i.e., as a primary in any arithmetic or logic

expression. Octal constants have the following syntax:

FORMULA ALGOL

syntax:

<oc tal digit> ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7

<octaliati> ::= <octal digit> I <octalian><octal digit>

<signed octaliati> ::= <octalian>I -koctalian> I -<octaliati>

<left-justified octal constant> ::= BL<octaliati>

<right-justified octal constant> ::= BR<octalian>

FORM AL-3-1!>

<floctaliati> ::= <octalian> I <octalian>.<octalian> I <octaliati>. I .<octalian>

<power of 8> ::= 1o<signed oc taliati>

<floating octal constant> ::= BF<floctaliati> I BF<power of 8>

BF<floctaliati><power of 8>

<logical octal constant> ::= <left-justified octal constant>

<right-justified octal constant>

<octal constant> ::= <floating octal constant> I <logic octal constant>

Despite this syntax, the translator does not treat the digits Band 9 in octal

constants as erroneous but will intepret them as 10)B and 11)B' respectively.·

Thus BR495 will be interpreted as BR515.

Local octal constants (BL and BR) are considered to be of type LOGIC and

so are always accessed in logic mode. Floating octal constants (BF) are con­

sidered to be of arithmetic type, and are always accessed in arithmetic mode.

The character-pairs BL, BR and BF are treated by the translator as single

entities and must be punched in adjacent columns of the same card, without in­

tervening blanks.

The value of a floating octal constant is determined by concatenating the

octalian as an octal number and mUltiplying it by the appropriate power of 8,

treating the number which follows the 10 as an octal integer. For example:

BF1010 = BtB

BF11ro-5 = 9*Bt-5

FORM AL-3-16 FORMULA ALGOL

The value of a left (right) justified octal constant is determined by

prefixing (suffixing) to the octalian enough zeros to give eleven octal digits.

This number is then concatenated and stored as a 32-bit logic word. Since eleven

octal digits require thirty-three bits for representati~n, the leftmost bit of

the leftmost octal digit is lost. Thus, 8L4=O and 8L7=8L3.

IDENTIFIERS

Only upper case (capital) letters are available in Formula Algol. Neither

spaces nor any operator may appear within an identifier (including "."). All

identifiers must be s~parated from adjacent identifiers by at least one space to

prevent the two from being interpreted as a single identifier.

Certain identifiers have special meanings in Formula Algol and are therefore

reserved. The programmer may not use these identifiers for ~ny purpose other

than that of their reserved meanings. The reserved words in Formula Algol are

FORMULA ALGOL FORM AL-3 - 1 7

'ABS CONT EXP LAST SIGN

AFTER COpy FALSE LET SIN

ALL COS FIRST LIM SgRT

ALSO COUNT FOR LN ST

ALTER CREATE ,FORM LOGIC STEP

AMONG DELETE GC ND STRING

AND DERV GO NIL SUBLIST

ANY DL GOTO NOT SUBS

ARCTAN DO' HALF OF SWITCH

ARRAY ELEMENTS HAS OPERATOR SYMBOL

ATOM ELSE IF OWN TEXT

ATTRIBUTES EMPTY IN PARALLEL TH

BEFORE END INDEX PRINT THE

BEGIN ENTlER INFI PROCEDURE THEN

BETWEEN ERADL INSERT RD TO

BOOLEAN EVAL INTEGER REAL TRUE

CELLS EX3 IS RECU UNTIL

COMM EX4 JUMP REDUCE VALUE -
COMMENT EXS LABEL REPLACE WHILE

VARIABLES

Formula Algol allows both simple and subscripted variables of type HALF,

LOGIC, FORM and SYMBOL as well as REAL, INTEGER, and BOOLEAN.

REAL variables are stored in the G-21 with a precision of 42 binary digits,

requiring two successive memory cells per variable. HALF variables are stored

with a precision of only 21 binary digits (about 6 significant decimal qigits)

and occupy only a single location, but otherwise act as REAL variables. There-

FORM AL-3-18 FORMULA ALGOL

fore, the programmer may use HALF variables to gain memory space at the expense

of precision.

The value of a REAL or HALF variable must either be zero or lie within the

range given below:

REAL:

HALF:

1.27510-57:§ abs(R) ~ 3.45010+69

1 .27510-57 :§ abs (H) :§ 1.64510+63

INTEGER variables will always take on integer values in the range

-2097152 < I < 2097152 (=221).

LOGIC variables are always positive. If used as strings, they are four or less

characters in length, ,and if used as numeric quantitites they are restricted to

o :§ L < 42949 67296 (=2
32

).

The values of BOOLEAN variables must be either TRUE or FALSE.

The G-21 replaces by zero any non-zero arithmetic result which is smaller

than 1.27510-57 in magnitude; this situation is called an underflow. An inter­

mediate arithmetic result which is greater than 3.45010+69, the largest number

representable in the G-21, is called an overflow, and causes an error to be

recorded. Executing an assignment to a half variable of intermediate results

which exceed the bound of the variable causes an overflow. On the other hand,

assignments to integer variables are truncated modulo their upper bound, and

assignments to logic variables are truncated modulo their upper bound and made

positive. In these two cases, no error occurs.

LOGIC EXPRESSIONS

In addition to arithmetic, Boolean, and designational expressions, Formula

Algol syntax includes "logic expressions" which perform bit-by-bit logic opera­

tions on 32-bit G-21 logic words. A logic expression may include any of the

following operands:

FORMULA ALGOL FORM AL .. 3-19

1. Logic constant: octal constant or string constant

2. Variable, simple or subscripted, of type LOGIC

3. Function designator of type LOGIC

48 Boolean primary (and, therefore, any Boolean expression in parentheses)

. 5. Arithmetic primary (and, therefQre, any arithmetic expression in paren-

theses)

A Boolean primary used as a logic operand is' interpreted as one of the two

32~bit logic words:

SR 37777777777 = 32 one bits for TRUE, or

SR' 0 = 32 zero bits for FALSE.

Each kind of logical operand (except number 5 above, arithmetic primary)

will always be fetched from memory with a "logic access", rather than a 1tnumer-

ic access"; for example, a CAL command will be used to fetch a logic variable

into the accumulator. When a logic variable or function designator forms the

left-part of an assignment statement, then an STL command will perform the as-

signment. Therefore, an assignment statement of the form

<logic variable> ~<arithmetic expression>

32 will truncate the absolute value of the expression modulo 2 G An STL command

is also used for any temporary store of a logical subexpression (except an

arithmetic primary) within a complete logical expression.

Any of the following three logical operators may appear in a logic ex-

pression:

(complement logic: unary)

" (extract logic: binary)

v (unite logic: binary)

Each of these~operators performs the same operation simultaneously and

independently in each of the 32-bit positions of its operand(s). If a bit =

represents the Boolean value true and a bit = 0 represents false, then the logic

FORM AL-3-20 FORMULA ALGOL

operators I, A, and V can be considered to perform the Boolean operations

" A, and V respectively, in each bit position.

The operators +, -, *, and / may also appear in a logic expression. Each

of these operates in the usual way, considering its logical operands (except

for arithmetic primaries) as 32-bit integers.

syntax:

<logic constant> ::= <string constant> I <logic octal constant>

<logic primary> ::= <logic constant> I <logic variable> I <logic function>

<Boolean primary> I «logic expression» I
<arithmetic primary>

<logic factor> ::= <logic primary> I. <logic primary>

<logic term> ::= <logic factor> I <logic term> A <logic factor>

<simple logic expression> ::= <logic term> I <simple logic expression> V

<logic term>

<logic expr~ssion> ::= <simple logic expression> I <if clause>

<simple logic expression> ELSE <logic expression>

THE PRECEDENCE OF OPERATORS AND RELATIONS IN FORMULA ALGOL

t (done first)

- + (unary operators)

/ *
- + (binary operators)

A

V

~ (done 1as0

In cases of equal precedence, association to the left is used.

FORMULA ALGOL FORM AL-3-21

STANDARD FUNCTIONS

Formula Algol contains all the recommended standard functions of Algol 60.

These are

ABS

SIGN

SQRT

ASSIGNMENT STATEMENTS

SIN

COS

ARCTAN

LN

EXP

ENTlER

In Formula Algol, ,,~, must be used instead of ":=". It has the same mean­

ing except When storing a non-integer into an integer variable. In this case,

the non-integer is truncated, not rounded.

In multiple assignment statements, the "left-part" yariables need not all be

of the same type. In fact, an assignment statement in Formula Algol may be treat­

ed as an expression whose value is the value Which is assigned in the assignment

statement. Thus

I ~ 3 * K + (J ~ 7-K) / 2;

is a legal statement. To insure that II~' is given the proper precedence, the

assignment statement should be enclosed in parentheses.

CONDITIONAL STATEMENTS

In Formula Algol, unlike Algol 6'0, the construction,

IF ••• THEN

FOR ••• DO <unconditioned statement>

ELSE <statement>

is legal and will be recognized correctly.

FORM AL-3-22 FORMULA ALGOL

LABELS AND GO TO STATEMENTS --
Only identifiers may be used as labels in Formula Algol;integer labels

are not permitted.

In Formula Algol,

GO TO Label

GOTO Label

are equivalent and permissible.

FOR STATEMENTS

The value of the controlled variable is ~ undefined upon normal exit

from a Formula Algol FOR statement. It is, in general, just what would be ob-

tained if the equivalent basic programs (section 4.6.4 of the Algol 60 report)

were substituted for the FOR statement. Thus, upon exit from an UNTIL or WHILE

form of FOR list element, the FOR variable has the first value for which the

final test failed.

Another form of FOR list element is permitted in Formula Algol,

FOR V (- E, STEP E2 WHILE B DO S-,

where E, and E2 are arithmetic expressions, B is a Boolean expression, and S is

any statement. This is equivalent to the simple program:

V (-E,

LOOP: IF B THEN

BEGIN

S

GO TO LOOP

FORMULA ALGOL FORM AL-3-23

ARRAYS

Formula Algol arrays may be of type INTEGER, REAL, BOOLEAN, HALF, LOGIC,

FORM, or SYMBOL.

A non-integer value of a subscript expression in Formula Algol is E£!

rounded, only truncated. This may lead to hard-to-detect errors. For example,

suppose that the result computed for a subscript expression is 3.9999 •.• instead

of 4, because of round-off error, this value will be truncated to 3, referring

to the wrong element of the array.

Run-time tests are made with each array access so that an access which is

out-of-bounds will pr~duce an error. OWN arrays may not be used in Formula Algol.

PROCEDURES AND BLOCK STRUCTURE

All formal parameters in a Formula Algol procedure declaration must be

specified. The following is a list of current restrictions on the use of

procedures and blocks.

1. Switches and strings may not be passed as parameters.

2. Arrays may not be called by value.

FORM AL-3-24 FORMULA ALGOL

FORM VARIABLES

FORMULA ALGOL

CHAPTER III

FORMULA MANIPULATION

FORM AL-3-25

Variables may be declared of type ~ indicating that their values are

to be formulae. With each FORM variable there is associated a data item called

an atomic formula, which may form part of a formula expression. When a FORM

variable F is declared, its value is initialized to be the atomic formula of

F. Also, a description list is associated with F, into which attributes and

values may be entered and retrieved in exactly the same way as with SYMBOL

variables (pg. 53) except that a description list may be associated only

with a FORM variable, not with a sub formula.

FORM ARRAYS

Arrays may be declared of type FORM in which case their elements may be

formulae. These are accessed in the same way as other arrays. Unlike simple

FORM variables, array elements are not initialized, and therefore should not

be accessed before they have been stored into.

I

FORM AL-3-26 FORMULA ALGOL

FORMULA EXPRESSIONS

Syntax:

<formula expression> ::= <arithmetic expression>

<Boolean expression> <an arithmetic expression (Boolean expression)

in which some of the primaries (Boolean primaries) have been

replaced by formula primaries and in which some operators have

been prefixed with a dot> t I <assignment formula> I
<formula expression> "I" [<identifier>]

"1''' <formula expression>

<formula primary> ::= <array formula> I <procedure formula> I
<transformed formula>

<conditional formula>

<evaluated formula> I .<identifier>

(<formula expression>)

<array formula> ::= <array identifier>. [<subscript list>]

<procedure formula> ::= <procedure identifier> . <actual parameter part>

<conditional formula ::= . IF <formula expression> THEN

<formula expression> ELSE <formula expression>

<assignment formula> ::= <variable> . ~ <formula expression>

Semantics:

A formula is a piece of Algol text which is to be stored for testing,

manipulation, and possibly execution later on. An Algol expression is to be

treated as a formula when either of its operands is a form variable or is

already a formula. A dot preceding a variable is used to indicate the atomic

formula of that variable.

The process by which the value of a formula expression is obtained will be

explained by means of a recurs~vely defined function called VAL. This function

t This is a short description of what could be a formal syntactic statement.

FORMULA ALGOL FORM AL-3-27

does not appear explicitly in the syntax of the source language; rather, it is

executed implicitly at run time whenever the value of an expression is needed.

In subsequent definitions quoted strings represent formulae. Such formulae are

represented within the machine as trees, with operators at their nodes, atomic

formulae at their leaves, and each branch representing a subformula. Thus

a + S * y , is represented

The normal precedence of Algol operators is used to determine how the tree will

be constructed. In addition, the "I[JI" construction has precedence just above

tha t of II-JI (pg. 47) ..

These formulae may be assigned to FORM variables, which may. then be ·evalu ...

ated or used in other formula expressions. In fact, any type of Formula Algol

expression may be assigned to a ~ variable except one of type SYMBOL.

Formula Algol is a strict extension of Algol 60 with regard to values and

types. Exactly as in Algol 60 each value has an associated type. In the ex-

planation of the function VAL below, the association of a type with a value is

given explicitly by an ordered pair of the form (TYPE, VALUE).

FORMAL DEFINITION OF VAL (E):

1. E is a constant which is either a <number> or a <log~cal value>.

TYPE (E) = INTEGER if VALUE(E) is an integer, REAL if VALUE(E) is a

floating point number, and BOOLEAN if E is a <logical value>.

VALUE (E) = the conventional value of a number or a logical vallie (identi-

cal to that given by the Algol Report).

FORM AL-3 .. 28 FORMULA ALGOL

2. E is .a, where a is an <identifier> declared of type FORM.

TYPE (E) = FORM

VALUE (E) = the atomic formula of ~.

3. E is a variable - simple or subscripted.

TYPE (E) = the type of the most recently assigned value of E, taken as

a constant.

VALUE (E) = the most recently assigned value of E.

4. E is a function designator, say P(X1, ••. ,Xn)

T~PE (E) = the declared type of P.

VALUE (E) = the value produced by executing the procedure P. as defined

in the Algol report.

5. E is a binary expression A OJ B where A and B are expressions and

TYPE (E) is. defined by the following table

()

~ TYPE (A) REAL INTEGER BOOLEAN FORM -- --
REAL Tl T1 error T4

INTEGER T1 T2 error T4

BOOLEAN error error T3 T5

FORM T4 T4 T5 FORM -- --

-where:

REAL

Tl BOOLEAN

error

FORMULA ALGOL

if ill is a numeric operator

if ill is a numeric operator

otherwise

FORM AL-3-29

INTEGER

T2 REAL

if ill is a numeric operator other than /

if 00 is /

T3

T4 =

T5 =

BOOLEAN

error

BOOLEAN

error

FORM -
error

FORM

error

if 00 is a relational operator

otherwise

if ill is a logical connective

otherwise

if 00 is either a numeric or relational operator

otherwise

if ill is a logical connective

otherwise

if TYPE (E) = REAL, INTEGER or BOOLEAN then

VALUE (E) = the number or logical value obtained by carrying out

the operation 00 with arguments VALUE (A) and VALUE (B).

If TYPE (E) = FORM then VALUE (E) = IQ' m S I where Q' is VALUE (A) and e

is VALUE (B).

6. E is AI [TJIB where T is an operator class name.

TYPE E = FORM

VALUE (E) = 'Q' ill SI where ill = the operator most recently assigned to

T by a pattern or assignment statement (pg. 37), and a = VALUE (A)

and S = VALUE (B).

7. E is a unary expression ill A where A is an expression and ill: :=-,1 +1-
or E is of the form 00 (A) where 00::=

TYPE (E) is defined by the following table:

FORM AL-3-30 FORMULA ALGOL

w

~ SIN,COS,EXP SIGN ABS
LN,SQRT ENTlER ± -,

REAL REAL INTEGER REAL error -- -- --
INTEGER REAL INTEGER INTEGER error

BOOLEAN error error error BOOLEAN

FORM FORM FORM FORM FORM -- -- -- --

If TYPE (E) = REAL, INTEGER or BOOLEAN then VALUE (E) = the number or

logical value obtained by carrying out the operation w with argument VALUE (A).

If TYPE (E) = FORM then VALUE (E) = the expression 'w Of'where Of = VALUE (A).

Examples

Suppose that at a certain point in some program Rand G have been declared

of type FORM, X and Y have been declared of type REAL, X has been assigned the

value 3.2, Y has been assigned the value 2, F has been assigned the value 'GiS',

and G has as its value the atomic formula of G. Consider the following sequence

of assignment statements:

(a) X ~ (X + Y) t 2;

(b) F ~ 3 * SIN (G) + (F + X) t Y;

(c) F ~ SQRT(F) ;

In statement (a) all variables are numeric. Thus the arithmetic expression

(X + Y) t 2 is evaluated numerically using the current values of X and Y and

the result (27.04) is stored as the value of X. In statement (b) the value of'

F becomes the formula expression '3 * SIN(G) + (GIS + 27.04) t 2'. Finally,

statement (c) replaces the value of F by the formula

'SQRT (3 * SIN(G) + (GiS + 27.04) i 2) '.

All arithmetic operators are treated as binary operators (even those which

are associative and. commutative) with association to the left. This is

FORMULA ALGOL FORM AL-3-31

illustrated by the following examples:

(d) F + (X + Y) produces 'GiS + S.2'

but (e) F + X + Y is equivalent to 'GiS + 3.2 + 2'

8. E is a conditional formula

.IF B THEN A ELSE C, where A, B, and C are expressions and B is of type

FORM or BOOLEAN.

TYPE (E) = ~

VALUE (E) = 'IF S THEN a ~ y'

where B = VALUE (B), a = VALUE (A) and y = VALUE (C)

9. E is a procedure formula

E = a.(Xl , X2 , ••• , Xn) where a is the name of a declared procedure, and

X are expressions.
n

TYPE (E) = FORM

VALUE (E) = 'a(N1 , NZ' ..• N)' where N. = VAliUE (X.). n ~ ~

Note: The formal parameters of any procedure which is used as a pro-

cedure formula must all be of TYPE FORM.

10. E is an array formula

A. [Xl' XZ' ••• , Xn] where A is the name of a declared array, and Xl' XZ'

••• , X are formula expressions. . n

TYPE (E) = FORM

VALUE (E) = 'A [N1 , NZ' ••• , NJ ' where Ni = VALUE (Xi)

An important application of array formulae is the generation of names

dynamically at run-time. Upon entrance to a block containing the declaration·

FORM ARRAY A[l:N], N array elements are created whose names may be used in

the construction of formulae even without any values having been stored into

them. Thus the name of the fifth of these is "A. [S]". Later, values may be

assigned to these elements and the formulae may then be evaluated, if desired.

FORM AL-3-32 FORMULA ALGOL

1. E is an assignment formula

a .~ B where a is a variable and B is an expression

TYPE (E) = FORM

VALUE (E) = 'a ~ S' where 13 = VALUE (B)

Evaluated and transformed formulae will be explained in succeeding

sections ..

EVALUATION OF FORMULAE

Syntax:

<evaluated formula> ::= EVAL <variable> I
EVAL «substitution list» <formula expression> «substitution list»

SUBS «substitution list» <formula expression> «substitution list»

REPLACE «formula expression»

<substitution list> ::= <formula expression list> I [<variable>]

<formula expression list> ::= <formula expression> I <formula expression list>,

<formula expression>

Se.man tics:

At some point in the execution of a program, we may wish to carry out

completely or partially the computation represented by a formula. To do this,

we could substitute values for all occurrences of some of the variables appear­

ing in a formula, and combine these values according to the computation expressed

by the formula. In order to accomplish the above we have the EVAL operator.

This is in some sense the inverse of the "." operator. The dot postpones the

action of certain Algol expressions by making them formulae, while ~ causes

the evaluation and/or execution of formulae.

FORMULA ALGOL FORM AL-3-33

If we have a formula consisting of names of formula variables joined by

arithmetic operators, then if we assign each of the formula variables a numer-

ical value, the result of the evaluation of the formula will be a number. Analo-

gously, substitution of Boolean values for formula variables in a Boolean formula

produces a Boolean value.

On the other hand, we need not substitute arithmetic or Boolean values for

formula variables, but rather, we can substitute other formulae. Thus, in this

case, evaluation of the formula, instead of producing a single value, creates

a new formula. Hence, EVAL may be used to construct formulae.

A third use of ~ is that of producing trivial simplifications in a

formula without altering its value and without substitution. This is done

according to the following table:

Simplifications of EVAL

A t 0-71 A ")'(0-70

A t 1-7A A 'k 1 -7 A commutative

A t -1 -7 1/ A A "1(-1 -7 -A

A t -n -7 l/Atn A ")'(-n-7-(A '1< n)

A/I -7 A A+ 0-7A

A / (-1) -7 -A A + (-n) -7A -n
~

A / (-n) -7 - (A/n) O+A~A

0/A-70 (-n) +A-7A - n

(-n) / A -7 ... (n/A) A - 0-7A

A ... (-n) -7A + n

o - A -7-A

(-n) - A-7 .. (n+A)

FORM AL-3-34 FORMULA ALGOL

x V true -7 true

X" true -7 X

conunutative
x V false -7 X

X" false -7 false

Whenever an expression contains two numeric (Boolean) arguments joined by

an arithmetic (Boolean) operator, it is replaced by its value. Similarly, the

truth values of relations are obtained if both arguments are numeric.

A final use of EVAL is to execute the Algol code which is represented by an

array, procedure, conditional, or assignment formula.

These uses of EVAL are usually combined; thus evaluation of a formula may

produce partial expansion and some trivial simplification.

In order to define the EVAL operator we will first define the operator SUBS,

which performs part of the operation of EVAL and may also be evoked in the source

language.

Consider a statement of the form

D ~ SUBS (Xl' X2 , ••• , Xm) F (YI , Y2 , ••• ,

where N ~ 1 andm ~ 1 (normally n = m).

If F is a formula expression then

Y)
n

(1)

(a) If TYPE (F) is numeric or BOOLEAN or if VALUE (F) is a number or Boolean

constant then the effect of (1) is precisely that of D ~ F~

(b) If TYPE (F) = FORM and VALUE (F) is a formula, then D will have the

value obtained by substituting VALUE (Y.) for each occurrence of
1

VALUE (X.) in a copy of VALUE (F) for all i ~ min (m, n) for which
1

VALUE (X.) is an atomic formula. If m f n, any extras on either side
1

are ignored.

Now we define the EVAL operator:

Consider a statement of the following form:

FORMULA ALGOL FORM AL-3-35

First the rules for SUBS are applied. Then the formula is evaluated by

a recursive process which starts at the top of the tree and is applied succes­

sively to each subformula as follows:

(1) If the formula is a constant or atomic formula, it is left unchanged.

(2) If the formula is a binary formula, its operands are evaluated from

right to left. If they reduce to numbers or logical values, then

the operation indicated by the operator is carried out and the re­

sult replaces the formula. Also, if any of the simplifications

listed previously applies, it is carried out. A similar process

is carried 0ut for unary formulae.

(3) If it is a procedure formula, the parameters are evaluated from left

to right and then the procedure call is executed and its value re­

places the formula. Note: Since the procedure call is made regard­

less of collapsing of formulae, all its arguments must be of the

right type to correspond to their actual parameters (e.g., a par­

tially collapsed formula can't be passed as a real).

(4) If it is an assignment formula the expression to be assigned is evalu­

ated, the assignment statement is executed, and the formula is replaced

by the assigned value.

(5) If it is an array formula, the subscript expressions are evaluated

from left to right and if all reduce to numbers, the array access is

carried out and its value replaces the formula.

(6) If it is a conditional formula, the IF formula is evaluated and if it

reduces to a logical value, then the corresponding THEN or ELSE for­

mula is evaluated and replaces the conditional formula.

In the above cases if the operands of the formula do not reduce properly,

the formula is left as simplified as the above transformations provide.

FORM AL-3-36 FORMULA ALGOL

EVAL and SUBS may also use [TJ in place of either list of formulae where

T must be a symbol which has been previously assigned a list of formula. This

list is then used as has been explained in the operation of EVAL.

The function REPLACE:

The function designator REPLACE (F) where F is a formula expression pro­

duces a formula which is obtained from F by replacing every atomic variable by

the current value of its associated FORM variable and evaluating the result as

in EVAL. The atomic variables used in the formula F must be declared either

locally or globally to the block in which REPLACE (F) is executed.

Examples: All variables are of type FORM.

Initially F ~X + Y * Z;

Y ~ 1 ; Z ~ 2;

Executing SUBS (Y, Z) F (3, 4)

however, will produce 'X + 12'

and REPLACE (F)

will produce 'X + 2'

Let F be 'IF B THEN P(X) ELSE A [Y+Z] ,

Executing EVAL (B) F (TRUE)

will yield 'R' where R is the result of calling procedure P with the Formula X

as a parameter

EVAL (B, Z) F (FALSE, 2)

will yield IA[Y + 2J'. Since the subscript did not reduce to an integer, the

access was not carried out.

FORMULA ALGOL FORM AL-3-37

FORMULA PATTERNS

Syntax:

<formula pattern> ::= <formula expression> == <formula pattern structure> I
<formula expression> » <formula pattern structure? I
<extractor> <formula expression> » <extractor> <formula pattern structure>

<extractor> ::= <variable> :

<formula pattern structure> ::= <a formula expression in which some of the

primaries may have been replaced by pattern primaries and some of the

dperators may have been replaced by operator classes> t

<formula pattern primary> ::= <type> I ATOM I ANY I OF «variable»

OF «procedure identifier» I «formula pattern structure» I
<extractor> <formula pattern pr{mary>

<operator class> ::= "I" <operator class name> "I"
<operator class name> ::= <variable>

<operator class assignment> ::= <operator class name> ~

/[operator: <operator list>] <Corom segment> <index segment>

<operator list> ::= <operator> I <Operator list>, <operator>

<corom segment> ::= <empty> I [COMM: <logical value list>]

<index· segment> ::= <empty> I [INDEX: <variable>]

<logical value list> ::= TRUE I FALSE I <logical value list>, TRUE

<logical value list>, FALSE

Semantics:

A mechanism is needed to determine precisely the structure of any formula.

Formula patterns are used for this purpose; they constitute a set of predicates

over the class of formula data structures. These formula patterns are sufficient

in the sense that whatever constructions are used to create a formula, the pro-

t This is a Jhort description of what could be a formal syntactic statement.

FORM AL-3-38 FORMULA ALGOL

cess may be reversed by the choice of a sequence of predicates. Furthermore,

a given formula pattern may be used 'to represent a class of possible formulae,

and any formula may be tested for membership in this class.

In the definition of a formula, a formula expression F is compared with

a formula pattern structure P to determine one of two things: (1) correspond-

ing to the construction F==P, whether the expression F is an exact instance of

the formula pattern structure P or, (2) corresponding to the construction

F»P, whether the formula expression F. contains as a subexpression an instance

of the formula pattern structure P. Both consturctions F==P and F»P are

Boolean expressions yielding values TRUE or FALSE.

The Construction F==P. The formula expression F is defined recursively to be

an exact instance of the formula pattern structure P as follows:

1. If P is an atomic formula then F==P is true if and only if F is the

same atomic formula.

2. If P is a type name REAL, INTEGER, BOOLEAN, or FORM, then F==P is

TRUE if and only if the value of F is a real number, an integer, a

logical value, or a formula, respectively. (Note that numbers and

logical values are not of type FORM.)

3. If P is the reserved word ATOM then F==P is TRUE if and only if the

value of F is either a number, a logical value, or an atomic formula.

4. If P is the reserved word ANY then F==P is always TRUE.

5. If P is the cons truc tion OF (S), where S is' a symbo 1 which has been

assigned a list 9f formula pattern structures, say [PI' P2 , ••• , Pn],

then F==P is TRUE if and only' if F==P V F==P2 V ••• V F==Pn is TRUE.

S may optionally he 'given the special attribute INDEX; see Operator

Classes ..

FORMULA ALGOL FORM AL-3-39

6. If P is the construction OF «procedure identifier» where the pro-

cedure identifier names a Boolean procedure with one formal parameter

specified of type FORM, (for example, BOOLEAN PROCEDURE B(X); FORM X;

<procedure body» then F==P is TRUE if and on~y if the procedure call

B(F) yields the value TRUE.

7e If P is Al wI B1 , then F==P is TRUE if and only if (a) F is A2 w2 B2 ,

(b) A2==A1, (c) BZ==B1, and (d) wI is w2' where wI and w2 are binary

operato~s. Similarly, for unary operators, if P is wI Bl then F==P

is TRUE if and only if' (a) F is w2 B2 and conditions (c) and (d)

above are true~ For the case where wi is an operator class, see the

next section.

8. If P is

or

or

(a) A. [SI' S2' ..• SnJ where A is an array identifier

(b) A. (SI' S2'···' S) where A is a procedure identifier n

(c) v. ~ SI where V is a variable

(d) .IF SI THEN S2 ELSE S3

where SI' S2' •.. Sn are formula pattern structures, then F==P if and

only if, respectively:

(a) F = 'A [T1 , T2 , . • · , T J' n

(b) F = 'A(T1 , T2, • • . , T) n

(c) F = 'V ~ T , 1

(d) F = 'IF Tl THEN T2 ELSE T3
, respectively

where T.==S. '1 ~ i ~ n.
~ ~

Operator Classes. Before an operator class is used in a formula pattern, it

must be defined. The definition is accomplished by an operator class assign-

ment, which assigns to a variable of type SYMBOL an operator description list.

FORM AL-3-40 FORMULA ALGOL

Suppose R is a variable declared of type SYMBOL for which the following operator

class assignment has been executed:

R ~ / [OPERATOR: +, -, /] [COMM: TRllE, FALSE, FALSE] [INDEX: J)

where J must be a variable declared of type INTEGER and where OPERATOR COMM ----, --'
and INDEX are reserved words used for special attributes. Let P be a formula

structure having the form

Then F==P is true if and only if (a) F is of the form 'A
2

ill B
2

' and (b) one of

the two following conditions holds:

(i) A2==A1, B2~=Bl' and ill is a member of the operator value list found

on the description list of R. In the specific case above, this list

is [+,-,/].

(ii) B2==A1, A2==B1, and ill is a member of the list of operators whose

corresponding member of the COMM list is TRUE. (In this specific

case, this must be +). (Note that [COMM: ~, FALSE, FALSE]need

not appear on the description list of R at all in which case no

commutative instances of any operator will be considered.)

If F==P is true the integer variable used as a value of the attribute INDEX

will be set to an integer denoting the position of ill in the operator value

list. (In the specific case above, J is set to 1, 2, or 3 according to whether

ill was +, -, or / respectively). The operator ill is stored as the value of R.

Later the construction I <R> I can be used in an expression

in place of an operator, and the operator ill extracted during the previous

matching will be used in the construction of the formula data structure that

the expression represents. Alternatively, R may be assigned any operator

by the assignment statement R ~<operator> and I <R> I may be used in the

same fashion.

FORMULA ALGOL FORM AL-3-41

Extractors. Wherever an extractor is used in a formula pattern preceding a

formula pattern primary the subexpression in F which matches that formula

pattern primary is assigned as the value of the variable found to the left

of the colon in the extractor. This variable must be of type FORM. This

assignment is made as soon as the pattern primary is matched. Therefore,

even though a pattern may fail as a whole, some of its extractors may have

been assigned values. When ":" is used in this context it binds more closely

thAn any other formula operator.

The Construction F»P. The formula pattern F»P is TRUE if F contains a

subexpression, say 8 (which may be equal to F itself) such that 8==P is

TRUE. A recursive process is used to sequence through the set of subexpres­

sions of F for successive testing against the formula pattern structure P.

The sequencing has the properties that if two subexpressions 8
1

and 8
2

are

both instances of P, then if 8
2

is nested inside 8
1

, 8
1

will match P first,

and if neither is nested inside the other, then the one on the right in a

linearized written form of 8, is recognized first.

The formula pattern A:F»B:P, in which extractors precede the right

and left hand sides of the formula pattern, has the following meaning:

First F»P is tested. If the result is true then (8) the subexpression of

F which matches P is stored as the value of B, and (b) a formula is con~

structed consisting of F with the subexpression matching P replaced by the

previous value of B (the value B had before the assignment described in (a)

took place). This formula is stored as the value of A.

Examples

Example 1. Let A,B,X,Y, and Z be declared of type FORM, let Rbe

FORM AL-3-42 FORMULA ALGOL

declared of type~, and let all form variables have their atomic formulae

as values. Suppose that the statement

X ~ 3 * SIN(Y) + (Y - Z) / R + 2 * R

has been executed. Consider the statement:

IF X » A: ,INTEGER * B: SIN (FORM). THEN Z ~ 2 i(B + A

Since the pattern X»A: INTEGER * B: SIN (FORM) is TRUE, the assignment

Z ~ 2 * B + A will be executed assigning as the value of Z the formula

2 i(SIN (Y) + 3 because A has the value 3 and B has the value ~ (Y).

Example 2. Let X be of type SYMBOL, A, B, Y, M, T, G, and P be of type

~, and D be of typ~ BOOLEAN. Then executing the statements: X ~ [REAL,

INTEGER, BOOLEAN]; G ~ Y + 8 '1((M - T); P ~ FORM + A: OF (X) '1(B: ~;

D ~ G==P; causes D to be set to TRUE 'because the pattern G~=P is TRUE, and

causes A to be set to 8 and B to be set to M - T.

Example ,3. Suppose we execute the statements F ~ 2 * (SIN(X t 2 + Y t 2)

+ COS (X t 2 - Y t 2)) / 5; T ~ . T; G ~ SIN (FORM) + COS (FORM);

where all variables used are of type FORM. Then A: F.»T: G is a pattern

with value TRUE. T gets assigned SIN (X t 2 + T t 2) + COS (X t 2 - Y t 2)

the subpatternof F which matched G. A gets assigned 2 *T/5, a copy of F

with the matched subpattern replaced by the previous value of F.

Example 4. Assume all variables in the following sequence of declara­

tions and statements are of type FORM.

BOOLEAN PROCEDURE HAS X (F) ; VALUE F FORM F ; HASX ~ F»X

G ~ (X t 2 + 3) t 2 '1((Y -1.) : F (-A: .Q.E (HASX) * B: (~-l): T (- G==F

Then T is set to~, A is ·set to (X t 2 + 3) t 2 and B is set to Y 1.

Here we use HASX to find any formula which is a function of X.

FORMULA ALGOL FORM AL-3-43

TRANSFORMED FORMULAE

Syntax:

<transformed formula> ::= <formula expression> .~ <schema variable>

<schema variable> ::= <variable>

<schema assignmenL> ::= <schema variable> ~ [<schema>]

<schema> ::= <schema element> I <schema>, <schema elemenL>

<schema element> ::= <variable> I <single production> I
<parallel productiori>

<single production> ::= <formula pattern structure> -4<formula expressiori> I
<formula pattern structure> . ~<formula expression>

<parallel production> ::= «parallel elements>]

<parallel elements> ::= <variable> I <single production>,

<parallel elements>, <variable> I
<parallel elementS>, <single production>

The following is an additional restriction on the Syntax:

Semantics:

If any schema element has an extractor as its left-most member,

then the whole element must be enclosed in parentheses.

Let F and G be formulae, and let P be a formula pattern. The applica­

tion of the production P~ G to the formula F is defined as follows:

1. If F==P is FALSE then the application is said to fail.

2. If F==P is TRUE then the application is said to succeed, and F is

changed according to G as follows: If P contains extractors,

subexpressions of F matching corresponding parts of P are assigned

as values of the extractors. Now in order to rearrange F according

to the structure of the ,extractor variables in G, we change the

FORM AL-3-44 FORMULA ALGOL

subformula of F which matched Pinto REPLACE(G). This

substitutes the extracted subexpressions for their extractor

variables in G causing the desired rearrangement.

For example, the distributive law of multiplication over addition may be

executed as a transformation by applying the production

A: ANY * (B: ANY + C: ANY) -7 • A ,;'< • B + . A * . C (1)

to a given formula. Suppose that F contains X t 2 * (Y + SIN (2). Then

applying the production (1) to F will result in the extraction of the sub-

expressions X t 2, Y, and SIN (2) into the variables A, B, and C respec-

,
tively, and will cause the repl~ement of the atomic formulae A, B, and C

occurring on the right hand side of (1) with these subexpressions, resulting

in the transformation of the value of F into the formula X t 2 -k Y + X t 2

* sin (2).

A schema is a list of transformation rules. Each rule is either a

single production or a list of single productions defining a parallel

production. Variables occurring in a schema must have single productions

as values. Expressions of the form F. ~ S, where F is a formula and S a

list, are formula primaries, and thus may be used as constituents in the

construction of formulae. The value of such a formula primary is a

formula which results from applying the productions of the schema S to

to the formula F acc'ording to one of the two possible sequencing modes

explained as follows: SequencJ.ng modes give the order in which productions

of a given schema S are applied to a given formula F and to its subexpressions.

The two sequencing modes differ in the order in which a given 'production

will be applied to different subexpressions of F, and in the cond~tions

defining when to stop.

FORMULA ALGOL FORM·AL- 3-45

One-by-one Seguencing:

One by one sequencing corresponds to a syntactic construction of the

For j ~ 1 step 1 until n, production P
j

is

applied to F. If the application of P
j

succeeds, Pj's transformation is

applied to F and the whole process (starting at PI) is reapplied to the

result. If p. fails to apply to F, it is applied recursively to each
J

sUbexpression of F. Therefore, production P
k

is applied to F if and only

if production Pk-
1

is not applicable either to F itself or to any sub­

expression of F. This sequencing will stop either when no production can

be applied to F or any ,of its subexpressions or when a production contain-

ing .~ has been executed.

Parallel Seguencing

Parallel sequencing corresponds to a syntactic construction of the

a depth of two.

... , P]]
n

or any form in which the brackets are nested at

Here j is initially set to 1. when a production p. is
J

applied to F, if it succeeds, we apply its transformation and return to the

beginning as with one-by-one sequencing. if the application P
j

fails,

production P
j
+l is applied to F, and so on up to P

n
. If all single pro­

ductioris of a parallel ptoduction fail at the topmost level of F, then

the whole sequence is applied recursively to the next lowest sUbexpressions

of F. Thus in parallel sequencing each one of the productions is applied

at level k of the formula F only if all productions have failed at level

k-l. The termination condition is reached when all productions fail at

the bottom level of F or when a production containing .~ has been executed.

In general a schema may have a combination of both sequencing modes,

FORM AL-3-46 FORMULA ALGOL

sequence, and P6 are treated one-by-.one. When the sequence [p3
' P

4
' PSJ

is reached in this schema, it is treated in parallel. Any number of these

parallel schema may be used at the same level, but none may be nested at 8

depth greater than two.

The schema varaible S has to be declared of type SYMBOL. Optionally,

a description list may be associated with S. If the special attribute

INDEX occurs in the description list of S then, when the transformation has

been completed, the value of an INTEGER variable used as the value of the

attribute INDEX is set to 0 if no transformation took place, i.e., no

production was applicable to F. The variable is set to 1 if at least one

transformation took place and exit occurred because no further production

of S was applicable. Finally,. the variable is set to 2 if 8 production

containing .~ was applicable. The following complete example of a schema

clears fractions in arithmetic expressions.

BEGIN FORM F,X,A,B,C; SYMBOL S,P,T;

A ~ A: ANY: B~ B: ANY; C~ C: ANY;

P ~ / [OPERATOR: +J [COl"1M: TRUE]; T ~ / [OPERATOR: * J [COMM: TRUE];

s ~ [A t (-B) -7 1/ .A t • B,

A Ipi (B/C) -7 (.A * .C + .B) /.C,

A lTI (B/C) -7 (.A * .B) / .C,

A -B/C -7 (,A * .C -.B) / .C,

B /C - A -7 (, B -. A * . C) / • C,

A/ (B/C) -7 (,A * .. C) / .B,

(B / C) / A ~. • B / (, C * . A) ,

(B / A) t C -7 • B t . C / • At. CJ ;

F ~ (X + 3/X) t 2 / (X - l/X) ;

FORMULA ALGOL FORM AL-3;..47

PRINT (F. l S) END

The above program will print X * (Xt 2 + 3) t 2/ (X t2 * (X t 2 - 1».

PRECEDENCE OF FORMULA OPERATORS

-Now that all the formula expressions have been explained, we present

the precedence of formula operators in both expressions and patterns:

(done first)

t

- + (unary)

/ *
- + (binary)

=:f>< -i>-,<

A

V

1 1 or 1< >1

• l (done last)

In cases of equal precedence, association to the left is used.

SPECIAL FUNCTIONS

The following functions are built into Formula Algol:

~ (F,X)

CELLS

A FORM function designator whose value is the derivative

of F with respect to X.

An INTEGER function designator whose value is the number

of cells remaining on the available space list [see 4J •

FORM AL .. 3-48

SYMBOL VARIABLES

FORMULA ALGOL

CHAPTER IV

LIST PROCESSING

FORM AL-3.49

Variables may be declared of type SYMBOL, indicating that their values

are to be list structures. In addition to this function, they may also serve

as data to be manipulated and stored in list structures. In this context they

are called atomic symbols. When a symbol S is declared, as with a form variable,

its value is initialized to the atomic symbQl S and a description list is associ­

ated with it.

SYMBOL ARRAYS

Arrays may be declared of type SYMBOL whose elements may be list structures.

Again like form arrays, they are accessed in the normal manner and they are not

initialized.

SYMBOLIC EXPRESSIONS

Syntax:

<symbolic expression> ::= .<identifier>I

<variable>l<functioIl: designator> I

Semantics:

<value retrieval expression>l<selection expression> I
U<" <symbolic expression>',>"1 NIL

A symbolic expression has as its value either an atomic symbol or a list

according to the following rules:

1. If it isa symbol variable preceded by a dot, its value is the atomic

'FORM AL-3-50 FORMULA ALGOL

symbol represented by the variable.

2. If it is a symbol variable S, its value is the contents of S. The

contents of a symbol may be modified by assignment statements

(pg. 52), push and pop statements (pg. 61), and extractors (pg. 58).

3. If it is a function designator resulting from the declaration of

a symbol procedure, its value is that assigned to the procedure

identifier by executing the body of the procedure using actual para­

meters given in the function designator call.

4. Selection. expressions are explained on page 55.

5. Value retrieval expressions are explained on page 53.

6. If it is of the form<T> , where T is a symbolic expression, the

value of T is first computed and must result in an atomic symbol.

The value of the symbolic expression is then the contents of that

atomic symbol. The angular brackets may be nested arbitrarily

many times to provide many levels of indirect access.

7. NIL is a special symbol with no contents or description list which

may be treated as an atomic symbol. It acts as an identity element

under concatenation of list elements (pg. 51).

FORMULA ALGOL FORM AL-3-51

LISTS

Syntax:

<list> ::= <list element>l<list>,<list element>

<list element> ::= <expression>l<list expressiori><description list>1

<symbolic expres~on><description list>l<list pattern primary>

<list expression> ::= [<list>]

<expression> ::= <arithmentic expression>I<Boolean expression>1

<for~ula expression>l<formula pattern structure> I
<symbolic expression>I<list expression>l<list expressiori>

Semantics:

Symbols may be concatenated into a list by writing them one afte"r another,

separating them with commas, and enclosing them in brackets. In addition to

symbol variables, any expression except a designational expression may be

written as an element of a list and its value will be entered. For example,

let X. Y, and Z be formula variables, let A, B, and C be Boolean variables,

let U, V, and W be real variables, and let R, S, and T be symbol variables.

Then the value of

[X* SIN(Y), 3 + 2 * U, IF B THEN R ELSE T, [R,T,R], -361

is obtained by causing each expression on the right to be evaluated, and

their results concatenated. 1f one of the results is NIL, the element

disappears completely from the list. Automatic data term conversion results

from using non-symbolic values in lists. The second from the last item in

the above list is the quantity (R,T,R], which becomes a sublist of the list.

Hence, the expression, in reality, is a list structure. It is further

possible for certain of the elements of a list to bear local description

lists (pg.53).

FORM AL-3-52 FORMULA ALGOL

It should be noted that one-element lists and single values are

treated identically when appearing as the contents of a symbol. Thus

S ~ 3 and S ~ [3] are the same when S is a symbol variab Ie. If we wished

to make the contents of S a list with one number, 3, we would execute

S ~ [[3]] .

List pattern primaries may be stored in lists so that the list may

later be used in a list pattern (pg. 58).

ASSIGNMENT STATEMENTS

Syntax:

We may extend the Algol 60 syntax as follows:

<assignment statement> ::=

Semantics:

<symbolic expression> ~<expression>1

<symbolic expression> ~description list>1

<veriable> ~ <description list>

When a symbolic expression (other than a variable) appears on the left

hand side of an assignment statement, it is first evaluated and must result

in an atomic symbol. The value of the expression on the right then becomes

its contents, or the description list on the right replaces its description

list. Thus any symbolic expression, unlike those of other variables, is

allowed on the left side of an assignment. In the case that a symbol variable

appears on the left by itself, the right side expr~ssion replaces the contents

of the variable mentioned, instead of the contents of its value. Description

lists may also be assigned to variables of type FORM.

FORMULA ALGOL FORM AL-3-53

DESCRIPTION LISTS

Syntax:

<description list> ::= /<attribute-value list>

<attribute value list> ::= <attribute value segmerit>I

<attribute value list><attribute value segment>

<attribute value segment> ::= [<attribute>:<list>JI

[<attribute> : <empty>]

<value retrieval expression> ::= <identifier> (<form or symb»I

THE <attribute> .Q!. <form or symb>

<form or symb> ::= <symbolic expression>l<formula expression>

<attribute> ::= <symbolic expression>

Semantics:

A description list is a sequence of associated attributes and value-lists.

An attribute must be a symbolic expression which results in an atomic symbol.

Each attribute is followed by its value-list Which is of the same form as an

ordinary list. It may contain more than one member, it may contain only one

member, or it may be empty. A description list may be attached to one of three

types of objects:

1. A variable declared of type SYMBOL for which there are two cases

(a) global attachment, and (b)' local attachment •

. 2. A variable declared of type ~.

3. A sublist of a list.

To describe these uses, consider these examples: Assuming that all variables

involved have been dE!clared of type SYMBOL, the statements

S ~[TYPES: MU,PI;~O][ANCESTORS: ORTHOL,PARA5][COLOR: GREEN]; (1)

T ~ [F,A/[NUM:l],B,C,A/[NUM: 2],D,E]; (2)

assign respectively a description list to S and a list as the contents of T. The

FORM AL-3-54 FORMULA ALGOL

description list attached to S is globally attached, meaning that it is perma­

nently bound to S for the lifetime of the variable S. In the list assigned as

the value of T, the symbol A occurs twice - in the second and fourth positions.

The description lists attached to these two separate occurrences of A are attached

locally, meaning that the separate occurrences of a given atomic symbol within a

list have been given descriptions which interfere neither with each other nor

with the global description list attached to A if such should occur. The

attributes and values of a given local description list are accessible only by

means of symbolic expressions accessing that particular occurrence of the symbol

to which the given local description list attached.

Thus, if one desired to access the global description list of that copy of

A, he would remove it from the list T, destroying its local description list and

then perform the value r~trieval. E.g., Tl ~ 2ND OF T; then use NUM OF Tl.

In the following examples suppose F is a variable declared of type FORM

and that all other. variable's involved are variables declared of type SYMBOL.

F ~ /[PROPERTIES: CONTINUOUS, DIFFERENTIABLE]; (3)

V ~ [A, [B,C] /[PROCESSED: TRUE] ,A, [B,C] /[PROCESSED: FALSE], A]; (4)'

I~ example (3) a description list is attached to a formula. In example (4) the

list assigned to be the contents of V has two identical sublists [B,C] in the

second and fourth positions having different local description lists.

Value lists stored in description lists are retrieved by means of value

retrieval expressions. To accomplish retrieval, two arguments must be supplied:

(1) an attribute consisting of an atomic symbol and (2) the atomic symbol or

formula having the description list. The attribute is then located on the de­

scription list and its associated value list becomes the value of the retrieval

expression. If there is no description list, or if there is a description list

~ut the attribute does not appear on it, or if the attribute does appear on it

but has an empty value list, then the value of the retrieval expression is the

FORMULA ALGOL FORM AL-3-55

symbol NIL. Thus in examples (1) and (2) above, the value retrieval expressions

COLOR(.S), NUM(2ND OF T), and NUM(3RD OF T) have the values GREEN, 1, and NIL

respectively. If in a value retrieval expres.sion either the description list

or the attribute is missing, it is added with a value of NIL. The construction,

THE COLOR OF .S, accomplishes the same function as COLOR(.S) but is slightly

more versatile in that any symbolic or formula expression may be used to

calculate the attribute whereas only identifiers may be used for the attribute

in the form <identifier> «symbolic expressiori».

SELECTION EXPRESSIONS

·Syntax:

<selection expressiori>::= <selector> OF < symbolic expression>

<ordinal suffiX>::= ST I ND I RD I TH

<ordinal se1ector>::= <arithmetic primary><ordina1 sUffiX>\LAST\FIRST

<elementary positiori>::= <ordinal se1ector>1

<ordinal selector> <kind> I

<ordinal selector> INTEGER <arithmetic primary>

<kind>::= <augmented type> \ <expressiori> I <class name>

<positiori>::= <elementary positiori> \ <arithmetic primary>

<ordinal suffiX> BEFORE <elementary positiori>

<arithmetic primary ><ordina1 suffiX> AFTER <elementary positiori>

<se1ector>::= BETWEEN<positiori>AND<position>\:ALL AFTER<positiori>I

ALL BEFORE<position>IFIRST<arithmetic primary> \

LAST<arithmetic primary>\<positio~\ALL<kind>\

<augmented type>::= ~I INTEGER \ BOOLEAN I FORM \ SYMBOL I SUBLIST\ ATOMI ANY

Semantics:

Selection expressions are formed by composing selector operators with

FORM AL-3-56 FORMULA ALGOL

symbolic expressions. A symbolic expression is first evaluated producing

a symbolic data structure as a value. A selector operator is then applied

to the resulting symbolic data structure to gain access to a part of it.

Assume first that the symbolic data structure S on which a selector operates

is a simple list. Then

1. An ordinal selector refers to an element of this list either by

numerical position, or by designating the last element.

E.g. 3 RD OF S, LAST OF S.

2. An elementary position refers to an element of this list by

designating it (a) as the N TH or LAST instance of an augmented

type, e.g. N TH REAL, LAST SUBLIST, where N is an expression

whose value is an integer, (b) as the N TH or LAST instance of

the value of an expression, e.g. N TH (F+G) , LAST [A,B,C],

(c) as the N TH or LAST instance of a member of a class (pg.6l),

e.g. 5TH (ITRIGFUNCTIONI), LAST (IVOWELI), (d) or by ordinal

selection.

3. A position refers to an element of this list either by designating

its elementary position or by designating it as the N TH BEFORE

or in the N TH AFTER some elementary position.

4. A selector refers to an element by its position or else designates

one of the following sub lists of the list

(a) The sublist between two positions not including either

position named, e.g. BETWEEN 3 RD and 7TH OF S produces

a list consisting of the 4th, 5th, and 6th.

(b) The sublist consisting of all elements before or after a

given position, e.g. ALL AFTER 3 RD SYMBOL OF S, ALL

BEFORE LAST REAL OF S. -----

FORMULA ALGOL FORM AL-3-57

(c) The sub lists consisting of the first n elements or the

last n elements, e.g. FIRST 3 OF S, LAST K OF S.

(d) The sub1ists composed by selecting and then concatenating

(i) all instanc~of a given expression, e.g. ALL F OF s,

(ii) all instances of a given augmented type, e.g. ALL

REAL OF S, (iii) all instancES of elements which are members

of a given class, e.g. ALL (ITRIGFUNCTIONI) OF S. These

e.1ements are concatenated in the same order that they

occur in the list from which they are selected.

Selectors may be compounded to access sub1ists and their elements. Suppose

the statement S ~A, [X, X, [A, AL XJ ,AJ has been executed. Then the expression

2 ND OF S is a list valued symbolic expression with· the list [x,X, lA, J\l, X]

as value, whereas the expression 3RD ~ 2 ND OF S has the list [A,AJ as value,

and the expression LAST OF 3 RD OF 2ND OF S has the single atomic symbol. A

as value.

If a selector refers to an element of a list which doesn't exist

because the list is of insufficient length (e.g. the 5th of a 3-e1ement list),

then the value of the expression is NIL, and the extra NIL's are added to the

structure to make it the right length.

Note that there could be an ambiguity with the statement FIRST 3 OF S.

It could mean the first 3 elements of S or the first int,eger '3' in S. We

have chosen to use the former interpretation and to require one to write

FIRST INTEGER 3 OF S if he desires the latter.

FORM AL-3-58 FORMULA ALGOL

LIST PATTERNS

Syntax:

<list patterri>::= <symb or list> == <symb or list>1

<symbolic expression> == <kind> I

<symb or list> = <symb or list>

<symb or list>::= <symbolic expressiori>l<list expressiori>

<list pattern primary>::= $ I $<arithmetic primary> I
<kind>l<extractor><list element>

"

<extractor>::= <variable>:

Semantics:

List patterns are predictates for determining the structure of lists.

They use mechanisms .like those found in COMIT [5J, to test whether a list is

an instance of a certain linear pattern. The construction to the left of

the == is the lis~ structure being tested according to the pattern on the

right. This pattern will consist of a sequence of list pattern primaries

(possibly one), some of which may be ordinary list elements. In order for

the list to match the pattern, the entire list must match the pattern, not

just a subpart of it as in COMIT.

The elements of the list pattern evoke tests as follows:

The normal list elements are evaluated as in ordinary lists. If they

result in atomic constructions, these are used in direct equality tests. If

they result in lists, then each element of the list is treated as another

list pattern primary. The one exception to this is if the element is actually

a sublist (is enclosed in brackets). This will only match the list pattern

primaries of the pattern sublist. This feature allows patterns to test whole

list structures.

The other list pattern primaries are matched in the following ways:

FORMULA ALGOL FORM AL-3-59

(1) An augmented type will match an element which is of that type

as . defined for formula patterns. (Page 37). In addition

SYMBOL will match only atomic symbols and SUBLIST naturally

matches sublists.

(2) A class name will match an element which satisfied its class test

(pg. 61).

(3) $n will match any n consecutive elements, wheren is an expression

whose value is a positive integer.

(4) $ will match an arbitrary number of elements, including O. However,

there is a limitation on this which can be explained by giving a

brief idea of the scanning algorithm for $.

When a $ is encountered in the pattern, we first pair it with no elements

and then try to match the rest of the pattern. This failing, we pair it with

one element and try again. We keep increasing the scope of the $ until ~

match is found or we run over the end of the list. However, once we have

matched the pattern primaries to the right of a $ up to the next $, we consider

the first $ fixed and we do not try to enlarge its scope any more. If we meet

failure in matching the second dollar sign, the pattern fails. We do not back

up to the first. (E.g. [1,A,2,B,A,2,B,C] == [$,A,$,B,$l] is false since after

matching the B after the second $, we will not back up to find new matches for

the $'s.)

A. It should be noted that testing for the type or class of a single

element is nothing more than a list pattern in which the right side

is a single list pattern primary •. Thus we may write:

3 rdOF S == INTEGER

. THE A OF B =~ (I NOUN P

FORM AL-3-60 FORMULA ALGOL

Like formula patterns, list patterns are boolean primaries and

thus may be combined with other booleans using logical connectives

or may be used in IF - THEN statements.

As an example, consider the list

S ~ [A, 1, B, C, A, A, C J ;
S == [A, INTEGER, $, A, $2 J is TRUE.

As with the formula pattern structures, list patterns may function not only

as predicates but also as selectors. The same mechanism is used to accomplish

this. If any list pat~ern primary in a list pattern structure is preceded

by a variable declared of type SYMBOL followed by a colan, then in the event

that there is a match, the element which matches the list pattern primary

becomes the value of the symbol· variable. It may then be accessed at any

later point in the program. In the case that there is only a partial match,

however, some of the extractors may be assigned values anyway.

Suppose the statement S ~ [A,B,C,DJ has been executed where all variables

are symbols and where A, B, C, and D have as values their atomic symbols.

Then," executing the statement

IF S == [T: $2, V: $2J THEN S ~ [V, TJ ;

changes' the contents of S to be the list [9,D,A,BJ. This is because the

contents of T is the list [A,BJ, and V has as its value the list [C,D].

Two list structures may be tested for exact equality by means of a

single =. This is necessary above the __ predicate only in that it permits

testing of stored list patterns •. Thus we may store a pattern containing

'.: " REAL, '$', etc., and then later test it for exact form using those

symbols in the patterns. For example, If=::: REAL" will match· any real number;

while "::: REAL" will match only the element "REAL".

FORMULA ALGOL FORM AL-3-61

CLASS TESTS

Syntax:

<class name> ::= ("I"<symbo1ic expression>"I")

<class definition> ::= Let <class name:::; [<formal parameter> "I" <Boolean

expression>]

Semantics:

Sets may be defined by means of class definition. For example, suppose

the statement V ~.[A,E,I,O,U] has been executed. Then the statement LET

. (IVOWELI) = [X I AMONG(X,V)]; defines the set of all vowels where AMONG(P,Q)

'is a Boolean procedure which is TRUE if P is an element of the list contained

in Q, and FALSE otherwise. Suppose that having p~vious1y executed the

statement S ~ (A, B, C], we execute the statement

IF 1 ST OF S === <I VOWEL!> THEN <statement>

The list pattern 1 ST OF S === (IVOWELI) will be evaluated by first computing

the value of the expression 1ST OF S, which is the symbol A, and second by

substituting A for the formal parameter X in the class definition of <IVOWELI).

This results in the execution of procedure AMONG(A,V) which produces the value

TRUE. Thus, A is a member of the class (IVOWELI), and the list pattern

1ST OF S == (IVOWELI) is TRUE, causing the <statement> to be executed • .
Any arbitrary Boolean expression, including a Boolean procedure call,

may be used to define a class. Thus the full generality of Boolean procedures

is obtained.

PUSH DOWN AND POP UP STATEMENTS

Syntax:

<push down operator> ::== ~ I <push down operator> ~

<pop up operator> :: == t I <pop up operat.or> t

<push down statement> ::= <push down operator> <symbolic expression>

FORM AL-3-62 FORMULA ALGOL

<pop up statement> ::= <pop up operator> <symbolic expressiori>

Semantics:

The contents of any variable declared of type SYMBOL is a push down stack.

The contents of the variable consists of the current topmost level of the push

down stack. Applying a single push down operator ~ to such a variable pushes

down each level of the stack making the topmost level (level 0) empty and

replacing the contents stored at level k with the contents stored previously

at level k-1. The empty topmost level may then acquire a value as its con­

tents by means of the execution of an appropriate assignment statement. A

lower level of the puso down stack is not accessible to the operation of

extracting contents until the execution of a pop up statement restores it to

the topmost level. Applying a single pop up operator t to the name of a

variable destroys the contents of the topmost level and replaces the contents

stored at level k with the contents previously at level k + 1. A push do~n

operator (pop up operator) consisting of n consecutive occurrences of a single

push down operator (pop up operator) has the same effect asn consecutive

applications of a single push down operator (pop up operator). A push down

0p'erator (pop up operator) is applied to a symbolic expression by evaluating

the symbolic expression and, if it results in an atomic symbol, the operator

is applied to the push down stack which is ~he contents of the atomic symbol

as described above. Any structure which occupies the contents of a symbol

variable S may become the contents of a lower level of the push down stack

in S by application to the push down operator S. In particular, list struc­

tures may be stored in the push down stack in S.

ADDITIONAL FOR STATEMENTS

Syntax:

<for list> :!= ••• I

FORMULA ALGOL

ELEMENTS OF <symbolic expression> I

ATTRIBUTES OF <symbolic expression>

<for clause> ::= .•. I FOR <symbolic expression> ~<for list> DO I
PARALLEL FOR <symb or list> ~

ELEMENTS OF <symb or list> DO

Semantics:

FORM AL-3-63

We may wish to generate the element of a list or the attributes of a

description list one by one in order to assign them to the controlled variable

in a FOR statement. Attributes on the description list of the value of S,

which must be atomic symbols, are generated in the order that they occur by

"ATTRIBUTES OF SIt, and "ELEMENTS OF S" generates the successive elements

of the list which is of the value of S. In the former case S must be any

symbolic expression with an atomic symbol as value because the attributes

from its description list will be generate. In the latter case S may be any

list valued symbolic expression. Successive elements generated are assigned

to the control variable given in the FOR clause. In either case, the lists

of,values to be assigned t~ the control variable are fixed upon initial entry

to the FOR statement, and any changes to them in the body of the FOR state­

ment will not be reflected.

Parallel generation is also permissible. Here the expression to the

left of the "~I is a list of n atomic symbols and the expression on its right

is a list of n lists or n symbols containing lists. For example: if S ~ [A,B,C],

T ~ [D', EJ, and U ~ [F, G, H, MJ have been executed where the variab les A

through I have as values their atomic symbols then executing the statement

PARALLEL FOR [I,J,KJ ~ELEMENTS OF [[SJ, [TJ, [UJJ DO L ~[L,I,J,KJ;

causes the following to happen. First, all first elements of the lists

contained in S, T, U, respectively are generated and placed in the contents

FORM AL-3-64 FORMULA ALGOL

of the controlled variables I, J, and K, respectively. Control then passes

to the body of the parallel FOR statement and returns when finished with its

execution. On the second cycle, all second elements of S, T, and U are gen­

erated and placed in the controlled variables I, J and K, respectively.

Control then passes the statement following the DO and returns. On the third

cycle, all third elements are generated, on the fourth cycle all fourth

elements are generated, and so on. If any list runs out of elements before

any of its neighbors, the symbol NIL continues to be generated. The parallel

generation stops just before the symbol NIL would have been generated from

all lists.

List valued symbolic expressions may be used to supply lists of control

variables and lists of lists to generate in parallel, as, for example, in the

construction

PARALLEL FOR V ~ ELEMENTS OF W DO L ~ [L, I, J, KJ;

where the statements V ~ [I, J, KJ and W ~ [[SJ, [TJ, [UJJ have been executed

previously. At the end L should contain [L,A,D,F,B,E,G,C,H,~.

EDITING STATEMENTS

Syntax:

<editing statement> ::= INSERT <symb or list> <insertion locator list>

<symbolic expression> I < DELETE <selector list> <symbolic expression>

DELETE <symbolic expression> I ALTER <selector list> <symboliC> TO

<expression> I <description list editing statement>

<insertion locator> ::= BEFORE <position> OF I AFTER <position> OF

<insertion locator list> ::= <insertion locator> I
<insertion locator list>, <insertion locator>

<selector list> ::= <selector> OF I <selector list>, <selector> OF

<description list editing statement> ::= THE <symbolic expression> OF

<symbolic expression> <is phrase> <expression>

FORMULA ALGOL FORM AL-3-65

<is phrase> ::= IS IS NOT IS ALSO -- --- -- ----

Semantics:

Editing statements are used to transform, permute, alter, and delete

elements of lists. The INSERT construction causes a list structure to be

inserted at each of the places given by an insertion locator list. The list

on which insertion is to be performed is obtained by evaluating the symbolic

expression which occurs last in the statement. The expression to be inserted

is then evaluated, and if it produces a list, each element of the list is

inserted as an element of the list being altered. To insert a sublist in a

list it must be surrounded by two sets of brackets. Thus, if S ~ (A,B,C,D;

INSERT (X,yJ BEFORE 2ND OF, AFTER LAST OF S causes S to be (A,X,y,C,I,X,yJ

but INSERT ((X, yJJ BEFORE 2ND OF, AFTER LAST OF S causes S to be

(A, (X,yJ ,C,l,(X,yJJ. All the insertions take place simultaneously.

The first DELETE construction above performs simultaneous deletions of

parts of a list. The list of parts to be deleted is specified by the

selector list in accord with the semantics of selectors. Thus, DELETE 2ND

BEFORE FIRST INTEGER OF S will cause our original list S to be (A,C,lJ. The

second delete construction removes the value of the symbolic expression from

the list structure in which it resides according to the form of the symbolic

expression. Thus, DELETE THE COLOR OF APPLE removes the value-list of this

attribute. DELETE. S is meaningless.

The ALTER construction is equivalent to a series of deletions followed

by insertions at each point where something was deleted.

ALTER ALL SYMBOL OF S TO (3,4J changes S to (3,4,3,4,3,4,lJ.

Whenever an assignment is made of a list structure, the entire structure

is copied and the copy becomes the contents at the left-side variables. 'Thus

editing statements should be used instead of assignment statements if a copy

FORM AL-3-66 FORMULA ALGOL

is not needed when altering a list. For example:

INSERT A AFTER LAST OF S

is more efficient than

S f- [S,A]

Description List Editing Statements. Description list editing statements

add or delete values on description lists. They supplement the role per­

formed by assignment statements in this regard. Suppose that

S f- / [THPE: MU, PI, RHO] [COLOR: RED] has been executed. Then, if the

statement THE COLOR OF S IS GREEN; is executed, the value of the attribute

COLOR on the descriptidn list of S is replaced with the new value GREEN.

This yields the altered description list / [TYPE: MU, PI, RHO] [COLOR: GREEN]

as a result. On the other hand, the statement: THE COLOR OF S .IS ALSO GREEN;

could be executed. Instead of replacing the color RED with the value GREEN

the latter statement appends the value GREEN to the value list following .the

attribute COLOR. This yields the description list / [TYPE: MU, PI, RHO]

[COLOR: RED, GREEN] as a result. Finally, description list editing statements

may be used to delete values from value lists of a specific attribute.

E~ecuting the statement: THE TYPE OF S IS NOT PI; alters the above descrip­

tion list to / [TYPE: MU, RHO] [COLOR: GREEN].

SPECIAL FUNCT IONS

CREATE(N) A SYMBOL function designator whose value is a list of N

created atomic symbols. CREATE == CREATE (1).

ERADL(S)

COUNT(L)

EMPTY(S)

A statement. which erases the description list attached to

the symbol S.

An INTEGER function designator having as value the number

of elements in the list which is the value of L.

A BOOLEAN function designator which is true if S contains

AMONG(S, L)

FORMULA ALGOL FORM AL-3-67

no elements. It is false if the structure contains

anything including NIL.

A BOOLEAN function designator which is TRUE if S is a

member of the list Land FALSE otherwise.

FORM AL-3-68 FORMULA ALGOL

FORMULA ALGOL FORM AL-3-69

APPENDIX I

Revised Report on the Algorithmic Language
ALGOL 60

PETER NAUR (Editor)
J. W. BACKUS

F. L. BAUER

J. GREEN

C.KATZ H. RUTISHA USER J. H. WEGSTEIN

J. MCCARTHY

A. J. PERLIS

K. SAMELSON A. VAN WIJNGAARDEN

M. WOODGER B. VAUQUOIS

Dedicated to the Memory of WILLIAM TURANSKI

SUMMARY

The report' gives a-complete defining description of the
international algorithmic language ALGOL 60. This is
a language suitable for expressing a large class of nu­
merical processes in a form sufficiently concise for direct
automatic translation into the language of programmed
automatic computers.

The introduction contains an account of the preparatory
work leading up to the final conference, where the language
was defined. In addition, the notions, reference language,
publication language and hardware representations are
explained.

In the first ehapter, a survey of the basic constituents
and features of the language is given, and tlie formal
notation, by which the syntactic structure is defined, is
explained.

The second chapter lists all the basic symbols, and the
syn~actic units known as identifiers, numbers and strings
are defined. Further, some important notions such as
quantity and value are defined.

The third chapter explains the rules for forming ex­
pressions and the meaning of these expressions. Three
different types of expressions exist: arithmetic, Boolean
(logical) and designational.

The fourth chapter describes the operational units of
the language, known as state~ents. The basic statements
are: assignment statements (evaluation of a formula),
go to statements (explicit break of the sequence of ex­
ecution of statements), dummy statements, and pro­
cedure statements (call for execution of a closed process,
defined by a procedure declaration). The formation of
more complex structures, having statement character, is
explained. These include: conditional statements, for
statements, compound statements, and blocks. -

In the fifth chapter, the units known as declarations,
serving for defining permanent -properties of the units
entering into a process described in the language, are
defined.

The report ends with two detailed examples of the use
of the language and an alphabetic index of definitions.

CONTENTS

INTRODUCTION

1. STRUCTURE OF THE LANGUAGE

1.1. Formalism for syntact.ic description
2. BASIC SYMBOLS, IDENTH'IERS, NUMBERS, AND STRINGS.

BASIC CONCEPTS.

2.1. Letterll
2.2. Digits. Logical values.
2.3. Delimiters
2.4. Identifiers
2.5. Numbers
2.6. Strings
2.7. Quantities, kinds and scopes
2.8. Values and types

3. EXPRESSIONS

3.1. Variables
3.2. Function designators
3.3. Arithmetic expressions
3.4. Boolean expressions
3.5. Designat.ional expressions

4. STATEMENTS

4.1. Compound statements and blocks
4.2. Assignment statements
4.3. Go tu statements
4.4. Dummy statements
4.5. Conditional statements
4.6. For statements
4.7. Procedure statements

5. nECLARA'l'lONI';

5.1. Type declaration!:!
5.2. Array declarations
5.3. Switch declarations
5.4. Procedure declarations

EXAMI'LES OF PROCEDURE DECLARA'flONS

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND

SYNTACTIC UNITS

This report was published simul­
taneously in the Communications
of the ACM, 6, No.1 (1963), 1-17;
the Numerische Mathematik, and the
Computer Journal.

FORM AL-3-70 FORMULA ALGOL

REVISED ALGOL 60

INTHODUCTION

Background

After the publication of a preliminary report on the
algorithmic language AJ .. GOL, 1,2 as prepared at a conference
in Zurich in 1958, much interest in the ALGOL language
developed.

As a result of an informal meeting held at lVlainz in
November 1958, about forty interested persons from
several European countriC's held an ALnoL implementa­
tion cOllferem'c in Copenhagen ill February 1959. A
"hardware group" was formed for working cooperatively
right down to the level of the paper tape eodt'. This
conference also led to the publieation by Rcgnecentralen,
Copenhagen, of an ALGOL Bulletin, edited by Peter
Kaur which served as a fCll'lIm for further discussion.
DuriJ~g the .Tune 195U lCll) Conference in Paris several
meetings, both formal and informal ones, were held.
These meetings revealed some misunderstandings as
to'the intent of the group whieh was primarily responsible
for the formulation of the language, but at the same time
made it dear that there exists a wide appreciation of the
effort involved. As a result of the discussions it was de­
cided to hold an international meeting in ,January 1 UGO
for improving the ALGOL language and preparing a final
report. At a European ALGOL Conference in Paris in
Kovembf'r lU59 which was attended by about fifty people,
seven European representatives were selected to attend
the ,January 1960 Conference, and they represent the
following organizations: Association FranC;aise de Calcul,
British (~oinputer Society, Gesellschaft fiir Angewandte
Mathematik und Mechanik, and Nederlands Reken­
mu('hine Genootschap. The seven representatives held a
final preparatory meeting at Mainz in December 19,1)9.

:Meanwhile, in the United States, anyone who wished to
suggest changes or corrections to ALGOL was requested to
send his comments to the Communications of the AC1IJ,
wh(~re they were published. These comments then became
the basis of consideration for changes in the ALGOL lan­
guage. Both the SHARE and USE organizations estab­
lished ALGOL working groups, and both organizations
were· ~epresented on the ACM Committee on Program­
ming Languages. The ACM Committee-met in Washing­
ton in ~ ovember 1959 and considered all comments on
ALGOL that had been sent to the ACM Communications.
Also, seven representatives were selected to attend the
January 1960 international conference. These seven
representatives held a final preparatory meeting in Boston
in December 1959.

January 1960 Conference

The thirteen representatives,3 from Denmark, England,
France, Germany, Holland, Switzerland, and the United
States, conferred in Paris from .January 11 to 16, 1960.

Prior to this meeting a completely new draft report was
worked out from the preliminary report and the recom­
mendations of the preparatory meetings by Peter N aur

and the eonference adopted this new form as the basis for
its report. The Conferenee then proceeded to work for
agreement on each item of the report. The present report
represents the union of the Committee's eoncepts and the
intersection of its agreements.

April 1962 Conference [Edited by M. WoodgerJ
A meeting of some of the authors of ALGOl, no was held

on April 2--:J, 1962 in Home, Italy, through the facilities
and courtesy of the International Computation Centre.
The following were present:
Authars

F. L. Bauer
J. Green
C. Katz
R. Kogon

(representingJ. W.
Backus)

P. Naur
K. Samelson
J. H. Wegstein
A. van Wijngaarden

Advisers

M. Paul
R. Franciotti
P. Z. Ingerman

G. Seegmiiller
H.. E. Utman

M. Woodger P. Landin

Observer

W. L. van oer Poel
(Chairman, IFIP
TC 2.1 Working
Group ALGOL)

The purpose of the meeting was to correct known
errors in, attempt to eliminate apparent ambiguities in,
and otherwise clarify the ALGOL 60 Report. Extensions
to the language were not considered at the meeting.
Various proposals for correction and clarification that
were submitted by interested parties in response to the
Questionnaire in ALGOL Bulletin No. 14 were used as a
guide.

This report* constitutes a supplement to the ALGOL 60
Report which should resolve a number of difficulties
therein. Not all of the questions raised concerning the
original report could be resolved. Rather than risk hastily
drawn conclusions on a number of subtle points, whieh
might create new ambiguities, the committee decided to
report only those points which they unanimously felt
could be stated in clear and unambiguous fashion.

Questions concerned with the following areas are left
for further consideration by Working Group 2.1 of lFIP,
in the expectation that current work on advan('ed pro-

* [EDITOR'S NOTE. The present edition follows t.hctcxt which
was approved by the Council of IFfP. Ait,hough it is 1I0t. dl~l.tr from
the Introduction,' the present. version is the original report of the
January WGO conference modified according t,o the agreements
reached during the April 1%2 conference. Thus the report. men­
tioned here is incorporated in t.he {H'esent version. The modifica­
tions touch the original report in t.he following sect ions: Changes,
of text: 1 with footnote; 2,1 footnote; 2.3; 2.7; 3.;{.3; 3.3.~,2; 4.1.3;
4.2.3; 4.2.4; 4,3.4; 4.7.3; 4,7,3.1; 4.7,3,:3; 4,7.5,1; 4.7,5,4; 4.7.6;
5; 5.3.3; .5.3.5; 5.4.3; 5.4.4; 5.4.5. Changes of syntax: 3.4.1; 4.1.1;
4.2.1; 4.5.1.)

I Preliminary rep0l't--International ·Algebraic Language.
Comm. ACM 1, 12 (1958),8.

2 Report on the Algorithmic Language ALGOL by the ACM
Committee on Programming Lang1lages and the GAMl\l Com­
mittee on Programming, edit.ed hy A. J. Perlis and K. Samelson.
Nmn. Math. 1 (In5!)), 41-60.

a William Tmunski of the American group was killed hy an
automobile just prior to the January 1960 Conference.

FORMULA ALGOL FORM AL-3-71

gramming languages will lead to better resolution:
1. Side effects of fUllctions
2. The call by name cOlltept
:t own: static or dynamie
4. For statement: statie or dynamic
;). Conflict between spc('ification and declaration
The authors of the Al..(lOI. no Rrport preRent. at the

Home Conference, heing aware of the formation of a
Working Group on ALGOl, by IFIP, aeeepted that any
eollcctive responsibility whieh they might have with
respeet to the development, Rpecifieation and refinement
of the ALGOL language will from now on be transferred to
that body.

This report has been reviewed by IFIP TC 2 on Pro­
gramming Languages in August 1 U()2 and haR heen ap­
proved by the Council of the International Federation
for Information Processing.

As with the preliminary ALGOL report, three different
levels. of language are recognized, namely a Reference
I~anguage, a Publication Language and several Hardware
Representations.

REFEHENCE LANGUAGE

1. It is the working language of the committee.
2. It is the defining langu·age.
3. The characters are determined by ease of mutual

understanding and not by any computer limitations,
coders notation, or pure mathematical notation.

4. It is the basic reference and guide for compiler
builders.

5. It is the guide for all hardware representations.
6. It is the guide for transliterating from publication

language to any locally appropriate hardware representa­
tions.

REVISED ALGOL 60

7. The main publications of the ALGOL language itsdf
will usc the reference representation.

PUBLICATION LANGUA(m

1. The publication language admits variat.ions of the
reference language aecording to usage of print.ing and hand­
writing (e.g., !!mhscripts, spaces, exponents, Greek letters).

2. It is used for stating and eommunicating processes.
:l. The characters to be used may he difTerent. in

different. ('ountries, but. univocal correspondence with
reference representatioll must. he srcured.

HAitl)WAHI~ Ih;PHEHF;N'fATIONS

]. Eaeh olle of these is a condensation of the rd('rclH~e
language enforced by the limited number of charaeters on
standard input equipment.

2. Each one of these uses the character set of a particu­
lar computer and is the language accepted by a translator
for that computer.

:1. Each one of these must be accompanied by a special
set. of rules for transliterating from Publication or Refer­
ence language.

For transliteration between the reference language and
a language suitable for publications, among others, the
following rules are recommended.

Reference Language

Subscript bracket [I

Exponentiation 1
Parentheses ()

Basis of ten 10

Publication Language

TJowering of the line between the
hrackets nnd removal of the
hrackets

Raising of the exponent
Any form of parentheses, bracket.s,

braces
Raising of the ten and of the follow­

ing integral number, insert.ing of
the intended mUltiplication sign

DESCRI,PTION OF THE REFERENCE LANGUAGE

1. Structure of the Language

As stated in the introduction, the algorithmic language
has three different kinds of representations-reference,
hardware, and publication-and the development de­
scribed in the sequel is in terms of the reference repre­
sentation. This means that all objects defined within the
language are represented by a given set of symbols-and
it is only in the ehoice of symbols that the other two
representations may differ. Structure and content must
be the same. for all representations. .

The purpose of the algorithmic language is to describe
computational processes. The basic concept used for the
description of, calculating rules is the well-known arith­
metic expression containing as constituents numbers, vari­
ahles, and functions. From sueh expressions are com­
pounded, by applying rules of arithmetic composition,

Was sich iiberhaupt sagen Il\sst. Il\sst
eich klar sagen; und wovon man nicht
reden kann, dariiber muss man 8chweigen.

LUDWIG WITTGEN8TEIN.

self-contained units of t.he language-explieit formulae
-called assignment statements.

To show the flow of computational processes, certain
nonarithmetic statements and statement clauses are
added which may describe, e.g., alternatives, or iterative
repetitions of computing statements. Since it is necessary.
for the function of these statements that one st.atement
refer to another, statements may be provided with labels.
A sequence of statements may be enclosed between the
statement brackets begin and end to form a compound
statement.

Statements are support.ed by declarations whieh are not
themselves computing instruetions but inform the tram:;­
lator of the existence and certain propert.ies of obj<,ets
appearing in statements, sueh as the class of numhe.·s
taken 011 as values by a variable, the dimension of an

FORM AL-3-72 FORMULA ALGOL

REVISED ALGOL 60

array of numbers, or even the set of rules defining a func­
tion. A sequence of declarations followed by a sequence of
statement.s and enclosed between begin and end con­
stitutes a block. Every declaration appears in a block in
this way and is valid only for that block.

A program is a block or compound statement whieh is
not contained within another statement and whieh makes
no use of other Htatements not contained wi'thin it.

In the sequel the syntax and semantics of t.he language
will be given.4

1.1. FORMAI.ISM I<'OH SYNTACTIC DESCHIPTION

The syntax will be dcseribcd with the aid of metalin­
guistic formulae. 5 Their interpretatiotl is best explained
by an example

(ab) ::= (I [I (ab) (I (ab>(d)

Sequences of characters enclosed in the brackets () repre­
sent metalillguistic variables whoso values are sequenees
of symbols. The marks ::= and I (the latter with the
meaning of or) are metalingui~tic connectives. Any mark
in a formula, which is nota variable or a connective,
denotes it.self (or the dass of marks which are similar to it).
. Juxtaposition of marks and/or variables in a formula
Rignifies juxt.aposition of the sequences denoted. Thus the
formula above gives a recursive rule for the formation of
values of the variable (ab). It indicates that (ab) may
have the value (or [or that given some legitimate value
of (ab), another may be formed by following it with the
character (or by following it with some value of the vari­
able (d). If the values of (d) are the decimal digits, some
values of (ah) are:

[« (l (37 (
(12345 (
«(
[86

In order to facilitate the study, the symbols used for
distinguishing the metalinguistie variables (Le. the se­
qUf'lleCS of dmracters appearing within the brackets ()
as ab in t.he above example) have been chosen to be words
describing approximately the naturc of the corresponding
variahle. Where words \vhieh have appeared in this manner
are w"icd elsewhere in the text they will refer to the corre­
sponding syntactie definition. In addition some formulae
have been given in more than one place.

Definition:
(empty) ::=

(i.e. the null string of symbols).

4 Whenever the precision of arithmetic. iH stated as heing in
geneml not. specified, or the outcollIe of a certain process is left
undefined or said to be undefined, this is to he interpreted in the
sense that a program only fully defines It computational process
if the accompanying information specifies the precision assumed,
the kind of arithmetic assumed, and the cO\ll'se of action to be
taken in all such cascs as may OCC\ll' during the execution of the
comput.ation.

& Cf. .J. W. Backus, The syntax nnd semantics of the proposed
international algebraic language of the Ziirich ACM-GAMM
conff'fence. Proc. InternaL Conf. lnr. Proc., UNERCO, Paris,
.Jllnc Hl59.

2. Basic Symbols, Identifit.~rs, Numbers, and
Strings. Ilasic Concepts.

The reference language is built up from the following
basic symbols:

(basic symbol) ::= (letter)l(digit)I(logical valtle)!(delimit.er)

(letter) ::= alblcldlelfl!Jlhliljlklllmlnlolplqll'lsltlulvlwlxlylzl
A I B IC!DIEWIGIHIIIJIKILIM IN IOIPIQ !RISI7'IU I V IWIXI YI Z

This alphabet may arbitrarily be restrieted, or extended
with any other distinctive character (i.e. character not
coinciding with any digit, logieal value or delimiter).

Letters do not have individual meaning. They are
used for forming identifiers and strings6 (cf. sections 2.4.
Identifiers, 2.6. Strings).

2.2.1. DIGITS

(digit) ::= 0111213141516!71819

Digits are used for forming numbers, identifiers, and
strings .

2.2.2. LOGICAL VALUFlH

(logical value) :: = true !false

The logical values have a fixed obvious meaning.

2.3. DELIMITEHS

(delimiter) :: = (opemtor)1 (separator)1 (hracket,)1 (declarator)1
(speciticnt.or)

(operat.or) ., - (nrithmetic opemt.or) I (relational opcmt:or)1
(logical opcmtor >1 (sequential operutor)

(arithmetic opemtor) ::= +I-IX 1/1+ Ii
(relational operator) ::= < I~ 1= I~ I> I~
(logical operator) ::= ==PIVIAh
(sequential operat.or) ::= go to:iflthenlelselforldo7

(separat.or) ::= .1.hol:I;I:= lulslepluntillwhilelcomment
(bracket) ::= WlfIJI'I'lheginiend
(declarator) .. - own IUnolclln lint.egerlrclll larrllylswit.ch 1

procedure
(sppcificator) ::= slringllahcllvalue

Delimiters have a fixed meaning which for the most part
is obvious or else will be given at the appropriate plaee
in the sc< IHel.

Typographical features sueh as blank space or change
to a new line have no signifieance ill the reference language.
They may, however, be used freely for faeilitating reading.

For the purpose of ineludillg text among. the symbols of

6 It shollid he particularly noted t.hat. twtoughout. thp reference
Innguage underlining [in t.ypewrrtf'en copy; holdface t . .vpe in
printed copy--Ed.) is used Jor defininf;!; independent basic symhols
(see sections 2.2.2 and 2.3). These are underst.ood to have no rela­
tion to the individual letters of which t.hey are eomposed. Within
t.he present. report, (not. including he:ulillf;!;S--Ed.J, boldface will he
used for no other purpose.

7 do is \lsed in for st.atements. It has no relation whntsoever
to t.he do of the preliminary report., which is not. included in
AI.GOL 60.

FORMULA ALGOL FORM AL-3-73

a program the following "comment" conventions hold:

7'he sequence of basic symbols: is equivalent to

; comment (a.ny sequence not containing; >;
begin comment (any sequence not containing;); begin
end <any sequence not containing end or ; or else) end

By equivalence is here meant. that any of the three struc­
tures shown in the left-hand column may be replaced, in
any occurrence outside of strings, by the symbol shown on
the same line in the right-hand column without any
effect on the action of the program. It is further understood
that the comment structure encountered first in the text
when reading from left to right has precedence in being
replaced over later structures contained in the sequence.

2.4. IDENTIFIERS

2.4.1. Syntax

(identifier) ::= (letter >1 (identifier) (letter)1 (identifier) (digit)

2.4.2. Examples

q
Soup
V17a

a34kTMNs
MARILYN

2.4.3. Semantics
Identifiers have no inherent meaning, but serve for the

identification of simple variables, arrays, labels, switches,
and procedures. They may be chosen freely (cf., however,
section 3.2.4. Standard Functions).

The same identifier cannot be used to denote two
different quantities except whEm these quantities have
disjoint scopes as defined by the declarations of the pro­
gram (cf. section 2.7. Quantities, Kinds and Scopes, and
section 5. Declarations).

2.5. NUMBERS

2.5.1. Syntax

(unsigned integer) ::=: (digit)l(unsigned integer)(digit)
(integer) ::= (unsigned integer)I+(unsigned integer >1

- (unsigned integer)
(decimal fraction) :: = . (unsigned integer)
(exponent part) :: = 10 (integer)
(decimal number) ::= (unsigned integer)l(decimal fraction)1

(unsigned integer) (decimal fraction)
(unsigned number) ::= (decimal number)l(exponent part)1

(decimal number) (exponent part) .
(number) ::= (unsigned number)I+(unsigned number>1

- <unsigned number)

2.5.2. Examples

0 -200.084 -.08310-02
177 +07.43108 -107
;5384 9.3410+10 10-4

+0.7300 2-10! +10+5

2.5.3. Semantics
Decimal numbers have their conventional meaning.

The exponent part is a scale factor expressed a3 an integral
power of 10.

REVI~,ED ALGOL 60

2.5.4. Types
Integers are of type integer. All other numbers are of

type real (ef. section 5.1. Type Declarations).

2.6. STHINGS

2.6.1. Syntax

(proper string) :: = (any sequence of basic symbols not containing
, or ')1 (empty)

(open string> ::= (proper string)I'(open string)'1
(open string) (open string)

(string) ::= '(open string)'

2.6.2. Examples

'5k,,- '[[('!\ = / :'Tt"
' .. This u is u a u 'string"

2.6.3. Semantics
In order to el1able the language to handle arbitrary

sequences of basic symbols the string y. uotes ' and ' are
introduced. The symbol u denotes a space. It has no
significance outside strings.

Strings are used as actual parameters of procedures
(cf. sections 3.2. Function Designators and 4.7. Procedure
Statements).

2.7. QUANTITIES, KINDS AND SCOPES

The following kinds of quantities are distinguished:
simple variables, arrays, labels, switches, and procedures.

The scope of a quantity is the set of statements and
expressions in which the declaration of the identifier asso­
ciated with that quantity is valid. For labels see section
4.1.3.

2.8. VALUES AND TYPES

A value is an ordered set of numbers (special case: a
single number), an ordered set of logical values (special
case: a single logical value), or a label.

Certain of the syntactic units are said to possess values.
These values will in general change during the execution
of the program. The values of expressions and their con­
stituents are defined in section 3. The value of an array
identifier is the ordered set of values of the corresponding
array of subscripted variables (cf. section 3.1.4.1).

The various "types" (integer, real, Boolean) basically
denote properties of values. The types associated with
syntact.ic units refer to the values of these units.

3. Expressions

In the language the primary constituents of the pro­
grams describing algorithmic processes are arithmetic,.
Boolean, and designational expressions. Constituents of
these expressions, except for certain delimiters, are logical
values, numbers, variables, function designators, and
elementary arithmetic, relational, logical, and sequential
operators. Since the syntactic definition of both variables
and function designators contains expressions, t.he defini­
tion of expressions, and their constituents, is necessarily
recursive.

(expression) :: = {arithmetic expression)1 {Boolean expression)1
(designational expression)

FORM AL-3-74 FORMULA ALGOL

REVISED ALGOL 60

3.1. VARIABLES

3.1..1. Syntax

(variable identifier) :: = (identifier)
(simple variable) :: = (variable identifier)
(subscript expression) ::= (arithmetic expression)
(subscript list) :: == (subscript· expression)1 (subscript list),

(subscript expression)
(array identifier) :: = (identifier)
(subscripted variable) :: = (array identifier)[(subscript list)]
(variable) ::= (simple variable)l(subscripted variable)

3.1.2. Examples

epsilon
detA
a17
Q[7,2J
x[sin(nXpi/2),Q[3,n,411

3.1.3. Semantics
A variable is a designation given to a single value. This

value may be used in expressions for forming other values
and may be changed at will by means of assignment state­
ments (section 4.2). The type of the value of a particular
variable is defined in the declaration for the variable
itself (cf. section 5.1. Type Declarations) or for the corre­
sponding array identifier (cf. section 5.2. Array Declara­
tions).

3.1.4. Subscripts
3.1.4.1. Subscripted variables designate values which

are components of multidimensional arrays (cf. section
5.2.· Array Declarations). Each arithmetic expression of
the subscript list occupies' one subscript position of
the subscripted variable, and is called a subscript. The
complete list of subscripts is enclosed in the subscript
brackets []. The array component referred to by a sub­
scripted variable is specified by the actual numerical value
of .its subscripts (cf. section 3.3. Arithmetic Expressions).

3.1.4.2. Each subscript position acts like a variable of
type integer and the evaluation of the subscript is under­
stood to be equivalent to an assignment to this fictitious
variable (cf. section 4.2.4). The value of the subscripted
variable is defined only if the value of the subscript ex­
pression is within the SUbscript bounds of the array (cf.
section 5.2. Array Declarations).

3.2. FUNCTION DESIGNATORS

3.2.1. Syntax

(procedure identifier) :: = (identifier)
~actual parameter) ::,.,; (string)1 (expression)1 (array identifier)1

(switch identifier)1 (procedure identifier)
(letter string) ::= (letter >1 (letter string) (letter)
(parameter delimiter) :: = ,I) (letter string) : (
(actual parameter list) :: = (actual parameter) 1

(actual pA.rameter list) (parameter delimiter)
(actual parameter)

(actual parameter part) ::= (empty)1 «actual parameter list»
(function designator) : :.= (procedure identifier)

(actual parameter part)

3.2.2. Examples
sin(a-b)
J(v+s,n)
R
B(s-5)Temperature: (J') Pressure : (P)
Compile(' := ')Stack:(Q)

3.2.3. Semantics
Function designators define single numerical or logical

values, which result through the application of given sets
of rules defined by a procedure declaration (cf. section 5.4.
Procedure Declarations) to fixed sets of actual param­
eters. The rules governing specification of actual param­
eters are given in section 4.7. Procedure Statements. Not
every procedure declaration defines the value of a function
designator.

3.2.4. Standard functions
Certain identifiers should be reserved for the standard

functions of analysis, which will be expressed as procedures.
It is recommended that this reserved list should contain:

abs(E) for the modulus (absolute value) of the value of the
expression E

sign (E) for the sign of the value of E(+1 for E>O, 0 for E=O,
-1 for E<O)

sqrt(E) for the square root of the value of E
sin (E) for the sine of the value of E
cos(E) for the cosine of the value of E
arctan (E) for the principal value of the arctangent of the value

of E
In(E) for the natural logarithm of the value of E
exp(E) for the exponential function of the value of E (eE).

These functions are all understood to operate indifferently
on arguments both of type real and integer. They will
all yield values of type real, except for signeE) which will
have values of type integer. In a particular representa­
tion these functions may be available without explicit
declarations (cf. section 5. Declarations),

3.2.5. Transfer functions
I t is understood that transfer functions between any

pair of quantities and expressions may be defined. Among
the standard functions it is recommended that there be
one, namely,

entier(E),

which "transfers" an expression of real type to one of
integer type, and assigns to it the value which is the
largest integer not greater than the value of E.

3.3. ARITHMETIC EXPRESSIONS

3.3.1. Syntax

(adding operator) :: = + 1-
(multiplying operator) ::= xl/l+
(primary) ::= (unsigned number)l(variable)1

(function designator)1 «arithmetic expression»
(factor) ::= (primary)l(factor)i(primary)
(term) :: = (factor)1 (term) (multiplying operator) (factor)
(simple arithmetic expression) ::= (term)1

(adding operator)(term)1 (simple arithmetic expression)
(adding operator) (term)

(if clause) ::= if (Boolean expression)then
(arithmetic expression) ::= (simple arithmetic expression)1

(if clause)(simple arithmetic expression)else
(arithmetic expression)

FORMULA ALGOL FORM AL-3-75

3.3.2. Examples
Primaries:

7.39410-8
sum
w[i+2,8)
cos(y+zX3)
(a--:-3/y+vuj8)

Factors:

omega
sumjcos (y+zX 3)
7.39410-8jw[i+2,8Jj(a-3/y+vuj8)

Terms:

U
omegaX sumjcos(y+zX 3)/7 .39410-8jw[1:+2,81i

(a-3/y+vuj8)

Simple arithmetic expression:

. U- Yu+omegaXsumjcos(y+zX3)/7.394 -8jw[i+2,81i
(a-3/y+vuj8)

Arithmetic expressions:

wXu-Q(S+Cu)j2
if q>O then S+3XQ/A. else 2XS+~Xq
if a<O then U+ V else ifaXb>17 then U/V else if

k~y then V /U else 0
aXsin(omegaXt)
0.571012Xa[NX (N -1)/2, 0)
(A X arctan (y) + Z)j (7 +Q)
if q then n-l else n
if a<O then A/R else if b=O then B/A else z

3.3.3. Semantics
An arithmetic expression is a rule for computing a

numerical value. In case of simple arithmetic expressions
this value is obtained by executing the indicated arith­
metic operations on the actual numerical values of the
primaries of the expression, as explained in detail in
section 3.3.4 below. The actual numerical value of a
primary is obvious in the case of numbers. For variables
it is the current value (assigned last in the dynamic sense),
and for function designators it is the value arising from
the computing rules defining the procedure (cf. seetion
5.4.4. Values of Funetion Desigllators) when applied to
the current values of the procedure parameters given in
the expression.' Finally, for arithmetic expressions en­
closed in parentheses the value must through a recursive
analysis be expressed in terms of the values of primaries
of the other three kinds.

In the more general arithmetic expressIons, which in­
clude if clauses, one out ot' several simple arithmetic ex­
pressions is selected on the basis of the aetual values of the
Boolean expressions (cL section :~.4. Boolean Expressions).
This selection is made as follows: The Boolean expressions
of the if clauses are evaluated one b;y one in sefJ.uence from
left to right until one having the value true is found. The
value of the arithmetic expression is then the value of
the first arithmetic expression following this Boolean
(the largest arithmetic expression found in this position

REVISED ALGOL 60'

is understood). The construction:

else (simple arithmetic expression)

is equivalent to the construction:

else if true then (simple arithmetic expression)

3.3.4. Operators and types
Apart from the Boolean expressions of if clauses, the

constituents of simple arithmetic expressions must be of
types real or integer (cf. section 5.1. Type Declarations).
The mcaning of the basic operators and the types of the
expressions to which they lead are given by the fol1owing
rules:

3.3.4.1. The operators +, -, and X have the conven­
tional meaning (addition, subtraction, and multiplication).
The type of the expression will be integer if both of the
operands are of integer type, otherwise real.

3.3.4.2. The operations (term)/(factor) and (term) -;­
(factor) both denote division, to be understood as a multi­
plication of the term by the reciprocal of the factor with
due regard to the rules of precedence (ef. section 3.3.5).
Thus for example

a/bX7/(p-q)Xv/s

means

««aX (b-1»X7)X «p_q)-I»XV)X (S-I)

The operator / is defined for all four combinations of
types real and integer and will yield results of real type
in any case. The operator -;- is defined only. for two
operands both of type integer and will yield a result of
type integer, mathematically defined as follows:

a+b= sign (a/b)Xentier(abs(a/b»

(cf. sections 3.2.4 and 3.2.5).
3.3.4.3. The operation (factor)i(primarjr) denotes ex­

ponentiation, where the factor is the base and the primary
is the exponent. Thus, for example,

2jnjk means

while

2j(ntm) means

Writing i for a number of integer type, r for a number of
real type, and a for a number of either integer or 'real
type, the result is given by the following rules:

a,ji

aTr

If i>O, aX aX ... Xa (i times), of the same type as a.
If i=O, if a~O; 1, of the same type as a.

if a=O, undefined.
If i<O, if a~O, l/(aXaX ... Xa) (the denominator has

-i factors), of type real.
if a=O, undefined.

If a>O, exp(rXll/(a», of type real.
If a=O, if r>O, 0.0, of type real.

if r~O, undefined.
If a<O, always undefined.

3.3.5~ Precedence of operators
The sequence of operations within one expression is

FORM AL-3-76 FORMULA ALGOL

REVISED ALGOL 60

generaJIy from left to right, with the following additional
rules:

3.3.5.1. According to the syntax given in section 3.3.1
the following rules of precedence hold:

first: j
second: X/+
third: +-

3.3.5.2. The expression between a leftparenthesis and
the matching right parenthesis is evaluated by itself and
this value is used in subsequent calculations. Consequently
the desired order of execution of operations within an
expression can always be arranged by appropriate posi­
tioning of parentheses.

3.3.6. Arithmetics of real. quantities
Numbers and variables of type real must be interpreted

in the sense of numerical analysis, i.e. as entities defined
inherently with only a finite accuracy. Similarly, the
possibility of the occurrence of a finite deviation from the
mathematically defined result in any arithmetic expression
is explicitly understood. No exact arithmetic will be
specified, however, and it is indeed understood that
different hardware representations may evaluate arith­
metic expressions differently. The control of the possible
consequences of such differences, must be carried out by
the methods of numerical analysis. This control must be
considered a part of the process to be described, and will
therefore be expressed in terms of the language itself.

3.4. BOOLEAN EXPRESSIONS

3.4.1. Syntax

(relational operator) :: = < I ~ I == I ~ I> I ~
(relation) :: = (simple arithmetic expression)

(relational operator) (simple arithmetic expression)
(Boolean primary) :: = (logical value)1 (variable)1

(function designator) I (relation) I «Boolean expression»
(Boolean secondary) :: "'" (Boolean primary) I, (Boolean primary)
(Boolean factor) ::= (Boolean secondary)1

• (Boolean factor) 1\ (Boolean: secondary)
(Boolean term) :: = (Boolean factor) I (Boolean term)

V (Boolean factor)
(implication) .::= (Boolean term)l(implication)::>(Boolean term)
(Rimple Boolean) ::= (implication)1

(simple Boolean)== (implication)
(Boolean expression) :: = (simple Boolean) 1

(if clause) (simple Boolean) else (Boolean expression)

3.4.2. Examples

x= -2
Y>VVz<q
a+b > -5 1\ z-d > qj2
pl\q V x~y
g= ,al\bl\, cVdVe::>, f
if k<1 then s>w else h~c
if if if a then b else c then d else f then g else h <k

3.4.3. Semantics
A Boolean expression is a rule for computing a logical

value. The principles of evaluation are entirely analogous
to those given for arithmetic expressions in section 3.3.3.

3.4.4. Types
Variables and function designators entered as Boolean

primaries must be declared Boolean (cf. section 5.1.
Type Declarations and section 5.4.4. Values of Function
Designators) .

3.4.5. The operators
Relations take on the value true whenever the corre­

sponding relation is satisfied for the expressions involved,
otherwise false.

The meaning of the logical operators.., (not), /\ (and),
V (or), ::::> (implies), and == (equivalent), is given by the
following function table.

bI false false true true
b2 false true false true -----------------------
,bl true true false false
bl1\b2 false false false true
bI Vb2 false true true true
bI ::>b2 true true false true
bI == b2 true false false true

3.4.6. Precedence of operators
The sequence of operations within one expression is

generally from left to right, with the following additional
rules:

3.4.6.1. According to the syntax given in section 3.4.1
the following rules of precedence hold:

first: arithmetic expressions according to section 3.3.5.
second: < ~ = ~ > ~ .
third: ,
fourth: 1\
fifth: V
sixth: ::>
seventh: ==

3.4.6.2. The use of parentheses will he interpreted' in
the sense given in section 3.3.5.2.

3.5. DESIGNATIONAL EXPRESSIONS

3.5.1. Syntax

(label) :: = (identifier) 1 (unsigned integer)
(switch identifier) :: = (identifier)
(switch designator) :: = (switch identifier)[(subscript expression»)
(simple designational expression) :: = (label)1 (switch designator)1

«designational expression»
(designational expression) ::= (simple designational expression)1

(ij clause) (simple designational expression) else
(designational expression)

3.5.2. Examples

17
p9
Choo,c;e[n-lj
Town[if y<O then N else N+lj
if Ab<c then 17 else q[if w~O then 2 else nl

3.5.3. Semantics
A designational expression is a rule for obtaining a label

of a statement (cf. section 4. Statements). Again the
principle of the evaluation is entirely analogous to that of
arithmetic expressions (section 3.3.3). In the general case
the Boolean expressions of the if clauses will select a
simple designational expression. If this is a label the
desired result is already found. A switch designator refers
to the corresponding switch declaration (cf. section 5.3.

FORMULA ALGOL FORM AL-3-77

Switeh Declarations) and by the actual numerical value
of its subscript expression selects one of the designational
expressions listed in the switch declaration by counting
these from left to right. Since the designational expression
thus selected may again be a switch designator this evalua­
tion is obviously a: recursive process.

3.5.4. The subscript expression
The evaluation of the 'subscript expression is analogous

to that of subscripted variables (cf. section 3.1.4.2). The
value of a switch designator is defined only if the subscript
expression assumes one of the positive values 1, 2,3, ... ,n,
where n is the number of entries in the switch list.

3.5.5. Unsigned integers as labels
Unsigned integers used as labels have the property that

leading zeros do not affect their meaning, e.g. 00217
denotes the sa~e label as 217.

4. Statements

The. units of operation within the language are called
statements. They will normally be executed consecutively
as written. However, this sequence of operations may be
broken by go to statements, which define their successor
explicitly, and shortened by conditional statements,
which may cause certain statements to be skipped.

In order to make it possible to defi!1e a specific dynamic
succession, statements may be provided with labels.

Since sequences of statements may be grouped together
into compound statements and blocks the definition of
statement must necessarily be recursive. Also since decla­
rations, described in section 5, enter fundamentally into
the syntactic structure, the syntactic definition of state­
ments must suppose declarations to be already defined.

4 .• 1. COMPOUND STATEMENTS AND BLOCKS

4.1.1. Syntax

(unlahelled basic statement) :: = {assignment statement >1
(go to statement)! (dummy statement) 1 {proced ure statement>

{basic statement> :: = (unlabelled basic statement) 1 (label):
{hasic statement>

{unconditional statement> :: = {basic statement> 1
{compound statement)1 (block)

(statement) ::= {unconditional statement >1
(conditional statement) I (for statement)

(compound tail) :: = (statement) end 1 (statement)
(compound tail)

(block head) :: = begin (declaration) I (block head)
(declaration)

(unlabelled compound) :: = begin (compound tail >
(unlabelled block) ::= (block head> ; (compound tail)
(compound statement) :: = (unlahelled compound)1

(label): (compound statement)
(hlock) ::= (unlabelled block)l(label):(block)
.(program) :: = (block> I (compound statement)

This syntax may be illustrated as follows: Denoting arbi­
trary statements, declarations, and labels, by the letters
S, D, and L, respectively, the basic syntactic units take
the forms:

Compound statement:

L: L: ... begin 8 ; 8 ; ... 8 8 end

REVISED ALGOL 60

Block:

L: L: ... begin D ; D ; e. D ; 8 ; 8 ; ... 8 ;
8 end

It should be kept in mind that each of the statements S
may again be a complete compound statement or block.

4.1.2. Examples

Basic statements:

a := p+q
go to Naples
S'l'AR'l': CONTINUE: W := 7.993

Compound statement:

Block:

begin x := 0 ; for y := 1 step 1 until n do
x := x+A[y] ;

jf x>q then go to STOP else if x>w-2then
go to S ;

Aw: Se: W := x+bob end

Q: begin integer i, k ; real w ;
for i := 1 step 1 until m do
for k := i+l step 1 unt.il m do
begin w := Ali, k] ;

A[i, kJ := A[k, iJ ;
A[k, iJ := wend for i and k

end block Q

4.1.3. Semantics
Every block automatically introduces a new level of

nomenclature. This is realized as follows: Any identifier
occurring within the block may through a suitable declara­
tion (cf. section 5. Declarations) be specified to be local
to the block in question. This means (a) that the entity
represented by this identifier inside the block has no
existence outside it, and (b) that any entity represented
by this identifier outside the block is completely inacces­
sible inside the block.

Identifiers (except those representing labels) occurring
within a block and not being declared to this block will be
nonlocal to it, i.e. will represent the same entity inside
the block and in the level immediately outside it. A label
separated by a colon from a statement, i.e. labelling that
statement, behaves as though declared in the head of the
smallest embracing block, i.e. the smallest block 'whose
brackets begin and end enclose that statement. In this
context a procedure body must be considered as if it were
enclosed by begin and end and treated as a block.

Since a statement of a block may again itself be a block .
the concepts local and nonlocal to a block must be under­
stood recursively, Thus an identifier, which is nonlocal
to a block A, mayor may not be nonlocal to the block B
in which A is one statement.

4.2. ASSIGNMENT STATEMENTS

4.2.1. Syntax

(left part) :: = (variable) : = I (procedure identifier) : = .
(left part list) :: = (left part) I (left part list)(Jeft part)
(assignment statement) :: = (left part list) {ari thmetic expression >1

(left part list> (Boolean expression>

FORM AL-3-78 FORMULA ALGOL

REVISED ALGOL 60

4.2.2. Examples

8 := p[OJ := n := n+l+s
n := n+l
A := BIC-v-qxS
S[v,k+21 := 3-arclan(8Xzela)
V:= Q>YAZ

4.2.3. Semantics
Assignment statements serve for assigning the value of

an expression to one or several variables or procedure
identifiers. Assignment to a procedure identifier may only
occur within the body of a procedure defining the value of
a function designator (ef. section 5.4.4). The process will
in the general case. be understood to take place in three
steps as follows:

4.2.3.1. ,Any subscript expressions occurring in the left
part variables are evaluated in sequence from left to right.

4.2.3.2. The expression of the statement is evaluated.
4.2.3.3. The value of the expression is assigned to all

the left part variables, with any subscript expressions
having values as evaluated in step 4.2.3.1.

4.2.4. Types
The type associated with all variables and procedure

identifiers of a left part list must be the same. If this type
is Boolean, the expression must likewise be Boolean.
If the type is real or integer) the expression must be
arithmetic. If the type of the arithmetic expression differs
from that associated with the variables and procedure
identifiers, appropriate transfer functions are understood
to be automatically invoked. For transfer from real to
integer type, the. transfer function is understood to
yield a result equivalent to

entier(E+O 5)

where E is the value of the expression. The type asso­
ciated with a procedure identifier is given by the declarator
which appears as the first symbol of the corresponding
p;ocedure declaration (cf. section .5.4.4).

4.3. Go To STATEMENTS

4.3.1. Syntax

(go to statement) :: = go to (designational expresf'ion)

4.3.2. Examples

go to 8
go to exit [n+11
go to Town[if y <0 then N else N + 11
go to if Ab<c then 17 else q[if w<O then 2 else n1

4.3.3. Semantics
A go to statement interrupts the normal sequence of

operations, defined by the write-up of statements, by
defining its successor explicitly by the value of a designa­
tional expression. Thus the next statement to be executed
will be the one having this value as its label.

4.3.4. Restriction
Since labels are inherently local, no go to statement can

lead from outside into a block. A go to statement may,
however, lead from outside into a compound statement.

4.3.5. Go to an undefined switch designator
A go to statement is equivalent to a dummy statement

if the designational expression is a switch designator whose
value is undefined.

4.4. DUMMY STATEMEN'l'S

4.4.1. Syntax

(dummy statement) :: = (empty)

4.4.2. Examples

L:
begin ; John: end

4.4.3. Semantics
A dummy statement executes no operation. It may

serve to place a label.

4.5. CONDITIONAL STATEMENTS

4.5.1. Syntax

(if clause) ::= if (Boolean expression) then
(unconditional statement) ::= {basic statement)1

(compound statement)1 (block)
(if statement) :: = (if clause) (uncondit.ional statement)
(conditional statement) ::= (if statement)l(if statement) else

(statement >1 (if clause) (for statement)1
(label) : (conditional statement)

4.5.2. Examples

if x>O then n := n+l
if V>ll then V: q:= n+m else go to R
if s<OV P~Q then AA: begin if q<v then a := vis

else y := 2Xa end
else if V>II then a ;= v-q else if v>8-1

then go to S

4.5.3. Semanties
Conditional statements cause certain statements to be

executed or skipped depending on the running values of
specified Boolean expressions.

4.5.3.1. If statement. The unconditional statement of
an if statement will be executed if the Boolean expression
of the if clause is true. Otherwise it will be skipped and
the operation will be continued with the next statement.

4.5.3.2. Conditional statement. According to the syn­
tax two different forms of conditional statements are
possible. These may be illustrated as follows:

if Bl then 81 else if B2 then 82 else 83 ; S4

and

if Bl then 81 else if B2 then 82 else if B3 then 83 ; 84

Here B1 to Ba are Boolean expressions, while S1 to sa
are unconditional statements. S4 is the statement following
the complete conditional statement. .

The execution of a conditional statement may be de­
scribed as follows: The Boolean expression of the if clauses
are evaluated one after the other in sequence from left to
right until one yielding the value true is found. T~en the
unconditional statement following this Boolean is exe­
cuted. Unless this statement defines its successor explicitly
the next statement to be executed will be S4, i.e. the state-

FORMULA ALGOL FORM AL-3-79

ment following the complete conditional statement. Thus
the effect of the delimiter else may be described by saying
that it defines the successor of the statement it follows to
be the statement following the complete conditional
statement.

The construction

else (unconditional statement)

is equivalent to

else if true then (unconditional statement)

If none of the Boolean expressions of the if clauses is
true, the effect of the whole conditional statement will be
equivalent to that of a dummy statement.

For further explanation the following picture may be
useful:

f------------r------l
if B1 <then 81 else if B2 then S2 else S3 ; 84

l _________ J t _________ J
B1 false B2 false

4.5.4. Go to into a conditional statement
The effect of a go to statement leading into a conditional

statement follows directly from the above explanation of
the effect of else.

4.6. FOR STATEMENTS

4.6.1. Syntax

(for list element) ::= (arithmetic expression)1
(arithmetic expression) step (arithmetic expression) until
(arithmetic expression) I (arithmetic expression) while
(Boolean expression)

(for list) ::= (for list element)1 (for list) , (for list element)
(for clause) ::= for (variable) := (for list) do
(for statement) ::= (for clause)(statement)1

, (label): (for statement)

.4.6.2. Examples

for q := 1 step s until n do A[q] := B[q]
for k := 1, VIX2 while VI <N do

, for j := I+G, L, 1 step 1 until N, C+D do
A[k,j] := B[k,jj

4.6.3. Semantics
A for clause causes the statement S which it precedes to

be repeatedly executed zero or more times. In addition it
performs a sequence of assignments to its controlled
variable. The process may be visualized by means of the
following picture:

r--------------~l

Initialize test ; statement S ; advance ; successor
t _______________________ ~_J

for list exhausted

In this picture the word initialize means: perform the first
assignment of the for clause. Advance means: perform the
next assignment of the for clause. Test determines if the
last assignment has been done. If so, the execution con-

REVISED ALGOL 60

tinues with the successor of the for statement. If not, the
statement following the for clause is executed.

4.6.4. The for list elements
The for list gives a rule for obtaining the values which

are consecutively assigned, to the controlled variable. This
sequence of values is obtained from the for list elements
by taking these one by one in the order in which they are
written. The sequence of values generated by each of the
three species of for list elements and the corresponding
execution of the statement S are given by the following
rules:

4.6.4.1. Arithmetic expression. This element gives rise
to one value, namely the value of the given arithmetic
expression as calculated immediately before the corre­
sponding execution of the statement S.

4.6.4.2. Step-until-element. An element of the form
A step B until a, where A, B, and a, are arithmetic ex­
pressions, gives rise to an execution which may be de­
scribed most concisely in terms of additional ALGOL
statements as follows:

V:= A ;
Ll : if (V - C) X sign (B) > 0 then go to element exhausted;

statement S
V:= V+B ;
go to L1 ;

where V is the controlled variable of the for clause and
element exhausted points to the evaluation according to
the next. element in the for list, or if the step-until-element
is the last of the list, to the next statement in the program.

4.6.4.3. While-element. The execution governed by a
for list element of the form E while F, where E is an
arithmetic and F a Boolean expression, is most concisely
described in terms of additional ALGOL statements as
follows:

L3: V := E ;
if ..., F then go to element exhausted
Statement S ;
go to L3 ;

where the notation is the same as in'4.6.4.2 above.
4.6.5. The value of the controlled variable upon exit
lJpon exit out of the statement S (supposed to be com­

pound) through a go to statement the value of the con­
trolled variable will be the same as it was immediately
preceding the execution of the go to statement.

If the exit is due to exhaustion of the for list, on the
other hand, the value of the controlled variable is unde­
fined after the exit.

4.6.6. Go to leading into a for statement
The effect of a go to statement, outside a for statement,

which refers to a label within the for statement, is unde­
fined.

4.7. PROCEDURE STATEMENTS

4.7.1. Syntax

(actual parameter) ::= (string)1 (expression)1 (array identifier)1
(switch identifier)1 (procedure identifier)

(letter string) ::= (letter)I(letter string) (letter)

FORM AL-3-80 FORMULA ALGOL

REVISED ALGOL 60

(parameter delimiter) ::= ,i)(letter string):(
(actual parameter list) :: = (actual parameter) I

(actual parameter list) (parameter delimiter)
(actual parameter)

(actual parameter part) :: = (empty) I
«actual parameter list»

(procedure statement) :: = (procedure identifier)
(actual parameter part)

4.7.2. Examples

Spur (A)Order: (7)Result to: (V)
'l'ranspose (W ,v+ 1)
Absmax(A,N,M, Yy,I,K)
Innerproducl(A [l,P,uj,B[Pj,lO,P, Y)

These examples correspond to examples given in section
5.4.2.

4.7.3. Semantics
A procedure statement serves to invoke (call for) the

execution of a procedure body (cf. section 5.4. Procedure
Declarations). Where t.he procedure body is a statement
written in AJ.JGOL the effect of this execution will be
equivalent to the effect of performing the following opera­
tions on the program at the time of execution of the pro­
cedure statement:

4.7.3.1. Value assignment (call by value)
All formal parameters quoted in the value part of the

procedure declaration heading are assigned the values
(cf. section 2.8. Values and Types) of the corresponding
actual parameters, these assignments being considered as
bf'ing performed explicitly before entering the procedure
body. The effect is as though an additional block embrac­
ing the procedure body were created in which these assign­
ments were made to variables local to this fictitious block
with types as given in the corresponding specifications
(cf. section 5.4.5). As a consequence, variables called by
value are to be considered as nonlocal to the body of the
procedure, but local to the fictitious block (cf. section
5.4.3).

~.7.3.2. Name replacement (call by name)
Any formal parameter not quoted in the value list is

replaced, throughout the procedure body, by the corre-
. sponding actual parameter, after enclosing this latter in
parentheses wherever syntactically possible. Possible
conflicts between identifiers inserted through this process
and other identifiers already present within the procedure
body will be avoided by suitable systematic changes of the
formal or local identifiers involved.

4.7.3.3. Body replacement and execution
Finally the procedure body, modified as above is

inserted in place of the procedure statement and executed.
If the procedure is called from a place outside the scope
of any nonlocal quantity of the procedure body the con·
flicts between the identifiers inserted through thi~ process
of body replacement and the identifiers whose declarations
are valid at the place of the procedure statement or func­
tion designator will be avoided through suitable systematic
changes of the latter identifiers.

4.7.4. Actual-formal correspondence
The correspondence between the actual parameters of

the procedure statement and the formal parameters of the
procedure heading is established as follows: The actual
parameter list of the procedure statement must have the
same number of entries as the formal parameter list of the
procedure declaration h~ading. The correspondence is
obtained by taking the entries of these two lists in the
same order.

4.7.5. Restrictions
For a procedure statement to be defined it is evidently

necessary that the operations on the procedure body de­
fined in sections 4.7.3.1 and 4.7.3.2 lead to a correct ALGOL
statement.

This imposes the restriction on any procedure statement
that the kind and type of each actual parameter be com­
patible with the kind and type of the corresponding formal
parameter. Some important particular cases of this gen­
eral rule are the following:

4.7.5.1. If a string is supplied as an actual parameter in
a procedure statement or function designator, whose
defining procedure body is an ALGOL 60 statement (as
opposed to nOn-ALGOL code, cf. section 4.7.8), then this
string can only be used within the procedure body as an
actual parameter in further procedure calls. Ultimately it
can only be used by a procedure body expressed in non­
ALGOL code.

4.7.5.2. A formal parameter which occurs as a left part
variable in an assignment statement within the procedure
body and which is not called by value can only correspond
to an actual parameter which is a variable (special case of
expression) .

4.7.5.3. A formal parameter which is used within the
procedure body as an array identifier can only corre­
spond to an actual parameter which is an array identifier
of an array of the same dimensions. In addition if the
formal parameter is called by value the local array created
during the call will have the same subscript bounds as
the actual array.

4.7.5.4. A formal parameter which is called by value
cannot in general correspond to a switch identifier or a
procedure identifier or a string, because these latter do not
possess values (the exception is the procedure identifier of
a procedure declaration which has an empty formal
parameter part (cf. section 5.4.1) and which defines the
value of a function designator (cf. section 5.4.4). This pro­
cedure identifier is in itself a complete expression).

4.7.5.5. Any formal parameter may have restrictions
on the type of the corresponding actual parameter asso­
ciated with it (these restrictions may, or may not, be
given through specifications in the procedure heading).
In the procedure statement such restrictions must evi­
dently be observed.

4.7.6. Deleted.
4.7.7. Parameter delimiters
All parameter delimiters are understood to be equiva­

lent. No correspondence between the parameter delimiters
used in a procedure statement and those used in the pro­
cedure heading is expected beyond their number being the

FORMULA ALGOL FORM AL-3-81

same. Thus the information conveyed by using the elabo­
rate ones is entirely optional.

4.7.8. Procedure body expressed in code
The restrictions imposed on a procedure statement

calling a procedure having its body expressed in non­
ALGOl, code evidently can only be derived from the charac­
teristics of the code used and the intent of the user and
thus fall outside the scope of the reference language.

5. Declara tions

Declarations serve to define certain properties of the
quant.ities used in the program, and to associate them with
identifiers. A declaration of an identifier is valid for one
block. Outside this block the particular identifier may be
used for other purposes (cf. section 4.1.3).

Dynamically this implies the following: at the time of an
entry into a block (through the begin, since the labels
inside are local and therefore inaccessible from outside)
all identifiers declared for the block assume the signifi­
cance implied by the nature of the declarations given.
If these identifiers had already been defined by other
declarations outside they are for the time being given a
new significance. Identifiers which are not declared for the
block, on the other hand, retain their old meaning.

At the time of an exit from a block (through end, or by
a go to statement) all identifiers which are declared for
the block lose their local significance.

A declaration may be marked with the additional
declarator own. This has the following effect: upon a re~
entry into the block, the values of own quantities will be
unchanged from their values at the last exit, while the
values of declared variables which are not marked as own
are undefined. Apart from labels and formal parameters
of procedure declarations and with the possible exception
of those for standard functions (cf. sections 3.2.4 and
3.2.5), all identifiers of a program must be declared. No
identifier may be declared more than once in anyone
block head.

Syntax.

(declaration) ::= (type declaration)'(array declaration),
(switch declaration), (procedure declaration)

5.1. TYPE DECLARATIONS

5.1.1. Syntax

(type list) :: = (simple variable)'
(simple variable) • (type list)

(type) :: = real , integer I Boolean
(local or own type) ::= (type)'own (type)
(type declaration) :: = (local or own type) (type list)

5.1.2. Examples

integer P.q.8
own Boolean Acryl.n

5.1.3. Semantics
Type declarations serve to declare certain identifiers to

represent simple variables of a given type. Real declared
variables may only assume positive or negative values

REVISED ALGOL 60

including zero. Integer deelared variables may only assume
positive and negative integral values including zero.
Boolean declared variables may only assume the values
true and false.

In arithmetic expressions any position whieh can be
occupied by a real declared variable may be occupied by
an integer declared variable.

For the semantics of own, see the fourth paragraph of
section 5 above.

5.2. ARRAY DECLARATIONS

5.2.1. Syntax

(lower bound) :: = (arithmetic expression)
(upper bound) :: = (arithmetic expression)
(bound pair) ::= (lower hound): (upper bound)
(bound pair list) :: = (bound pair), (bound pair list), (bound pair)
(array segment) :: = (array identifier)[(bound pair list) 11

(array identifier), (array segment)
(array list) :: = (array segment), (array list), (array segment)
(array declaration) :: = array (array list), (local or own type)

array (array list)

5.2.2. Examples
array a, b, c[7:n,2:ml, 8[-2:101
own integer array A[if c<O then 2 else 1:20]
real array q[-7:-1J

5.2.3. Semantics
An array declaration declares one or several identifiers

to represent multidimensional arrays of subscripted
variables and gives the dimensions of the arrays, . the
bounds of the subscripts and the types of the variables.

5.2.3.1. Subscript bounds. The subscript bounds for
any array are given in the first subscript bracket following
the identifier of this array in the form of a bound pair list.
Each item of this list gives the lower ,and upper bound of a.
subscript in the form of two arithmetic expressions sepa­
rated by the delimiter: The bound pair list gives the
bounds of all subscripts taken in order from left to right.

5.2.3.2. Dimensions. The dimensions are given as the
number of entries in the bound pair lists.

5.2.3.3. Types. All arrays declared in one declaration
are of the same quoted type. If no type declarator is
given the type real is understood.

5.2.4. Lower upper bound expressions
5.2.4.1 The expressions will be evaluated in the same

way as subscript expressions (cf. section 3.1.4.2).
5.2.4.2. The expressions can only depend on variables

and procedures which are nonlocal to the block for which
the array declaration is valid. Consequently in the outer-,
most block of a program only array declarations with
constant bounds may be declared.

5.2.4.3. An array is defined only when the values of all
upper subscript bounds are not smaller than those of the
corresponding lower bounds.

5.2.4.4. The expressions will be evaluated once at each
entrance into the block.

5.2.5. The identity of subscripted variables
The identity of a subscripted variable is not related to

the subscript bounds given in the array declaration. How-

FORM AL-3-82 FORMULA ALGOL

REVISED ALGOL 60

ever, even if an array is declared own the values of the
corresponding subscripted variables will, at any time, be
defined only for those of these variables which have sub­
scripts within the most recently calculated subscript
bounds.

5.3. SWITCH DECLARATIONS

5.3.1. Syntax

(switch list) :: = (designational expression)1
(switch list), (designntional expression)

(switch declaration) ::= switch (switchidentifier):= (switch list)

5.3.2. Examples

switch S := SI,S2,Q[m], if v>-5 then S3 else S4
switch Q :=pl,w

5.3.3. Semantics
A switch declaration defines the set of values of the

corresponding switch designators. These values are given
one by one as the values of the designational expressions
entered in the switch list. With each of these designational
expressions there is associated a positive integer, 1, 2, ... ,
obtained by counting the items in the list from left to
right. The value of the switch designator corresponding to
a given value of the subscript expression (cf. section 3.5.
Designational Expressions) is the value of the designa­
tional expression in the switch list having this given value
as its associated integer.

5.3.4. Evaluation of expressions in the switch list
An expression in the switch list will be evaluated every

time the item of the list in which the expression occurs is
referred to, using the current values of aU variables
involved.

5.3.5. Influence of scopes
If a switch designator occurs outside the scope of a

qua:ntity entering into a designational expression in the
switch list, and an evaluation of this switch designator
selects this designational expression, then the conflicts
be"tween the identifiers for the quantities in this expres­
sion and the identifiers whose declarations are valid at the
place of the switch designator will be avoided through
suitable systematic changes of the latter identifiers.

5.4.) PROCEDURE DECLARATIONS

5.4~1. Syntax

(formal parameter) :: = (identifier)
(formal parameter list) ::= (formal parameter)1

(formal parameter list) (parameter delimiter)
(formal parameter)

(formal parameter part) ::= (empty)l«formal parameter list»
(identifier list) :: = (identifier)1 (identifier list), (identifier)
(value part) ::= value(identifier list) ; 1 (empty)
(specifier) ::= string I (type)larrayl (type)arrayllabellswitchl

procedure 1 (type)procedure .
(specification part) ::= (empty)1 (specifier)(identifier list) ; I

(specification part) (specifier) (identifier list) ;
(procedure heading) :: = (procedure identifie~)

(formal parameter part) ; (value part) (specification part)
(procedure body) ::= (statement)1 (code)
(procedure declaration) :: =

procedure (procedure heading) (procedure body)1
(type) procedure (procedure heading)(procedure body)

5.4.2. Examples (see also the examples at the end of
the report)

procedure Spur(a)Order: (n)H.esult: (s) ; value n ;
array a ; integer n real s
begin integer k ;
8 := 0 ;
for k := 1 step 1 until n do s := s+a[k,kJ
end

procedure 1'ranspose(a)Order:(n) value n
array a ; integer n ;
begin real w ; integer i, k ;
for i := 1 step 1 until n do

for k := l+i step 1 until n do
ht'gin w := a[i,kJ ;

a[i,kJ := a[k,iJ
a[k,ij := w

end
end 1'ranspose

integf'r procedure Step (u) ; real u
Step := if O~ul\1t~l then 1 else 0

procedure A bsmax (a)size : (n,m)H.esult : (y)Subscripts :(i,k);
comment The absolute greatest element of the matrix a,

of size n by m is transferred to y, and the subscripts of this
element to i and k ;

array a ; integer n, m, i, k ; r~al y ;
begin integer p, q ;
y:= 0 ;
for p := 1 step 1 until n do for q := 1 step 1 until m do
if abs(a[p,q]»y then begin y .- abs(a[p,q]) ; i := p

k := q
end end Absmax

procedure Innerproduct(a,b)Order:(k,p)Result:(y) ; value k
integer k,p ; real y,a,b
begin real s ;
8 := 0 ;
for p := 1 step 1 until k do s := s+aXb
y := s
end Innerproduct

5.4.3. Semantics
A procedure declaration serves to define the procedure

associated with a procedure identifier. The principal con­
stituent of a procedure declaration is a statement or a
piece of code, the procedure body, which through the use
of procedure statements and/or function designators may
be activated from other parts of the block in the head of
which the procedure declaration appears. Associated with
the body is a heading, which specifies certain identifiers
occurring within the body to represent formal parameters.
Formal parameters in the procedure body· will, whenever
the procedure is activated (cf. section 3.2. li'unction
Designators and section 4.7. Procedure Statements)
be assigned the values of or replaced by actual parameters.
Identifiers in the procedure body which are not formal
will be either local or nonlocal to the body depending on
whether they are declared within the body or not. Those
of them which are nonlocal to the body may well be local
to the block in the head of which the procedure declara­
tion appears. The procedure body always acts like a

FORMULA ALGOL FORM AL-3-83

block, whether it has the form of one or not. Consequently
the scope of any label labelling a statement within the
body or the body itself can never extend beyond the pro­
cedure body. In addition, if the identifier of a formal
parameter is declared anew within the procedure body
(including the case of its use as a label as in section 4.1.3),
it is thereby given a loc~l significance and actual param­
eters which correspond to it are inaccessible throughout
the scope of this inner local quantity.

5.4.4. Values of fUllction designators
For a procedure declaration to define the value of a

function designator there must, within the procedure
body, occur one or more explicit assignment statements
with the procedure identifier in a left part; at least one of
these must be executed, and the type associated with the
procedure identifier must be declared through the appear­
ance of a type declarator as the very first symbol of the
procedure declaration. The last vaJue so assigned is used
to continue the evaluation of the expression in which the
function designator occurs. Any occurrence of the pro­
cedure identifier within the body of the procedure other
than in a left part in an assignment statement denotes
activation of the procedure.

5.4.5. Specifications
In the heading a specification part, giving information

about the kinds and types of the formal parameters by
means of an obvious notation, may be included. In this
part no formal parameter may occur more than once.
Specifications of formal parameters called by value (cf.
section 4.7.3.1) must be supplied and specifications of
formal parameters called by name (cf. section 4.7.3.2)
may be omitted.

5.4.6. Code as procedure body
It is understood that the procedure body may be ex­

pressed in nOn-ALGOL language. Since it is intended that
the use of this feature should be entirely a question of
hardware representation, no further rules concerning
this code language can be given within the reference
language

Exalllpies of Procedure Declarations:

EXAMPLE 1.

procedure euler (fct, sum, cps, tim) ; value cps, tim ;
integer tim ; real procedure fct ; real sum, cps ;
comment euler computes the sum of fct(i) for i from zero up to
infinity by means of a suitabley refined euler transformation. The
summation is stopped as soon as tim times in succession the abso­
lute value of the terms of the transformed series are found to be
less than cps. Hence, one should provide a function fct with one
integer argument, an upper bound cps, and an integet tim. The
output is the sum sum. euler is particularly efficient in the case
Of a slowly convergent or divergent alternating series ;
begin integer i, k, n, t ; array m[O:15] ; real mn, mp, ds
i := n := t := 0 ; m[O]:= fcl(O) ; sum:= rn[0l/2
nextlerm: i := i+1 ; mn:= fct(i) ;

for k := 0 step 1 until n do
begin mp := (mn+m[k])/2 m[k} := mn

mn : = mp end means ;

REVISED ALGOL 60

if (abs(mn)<abs(m[n])!\(n<15) then
begin ds := mn/2 ; n ;= n+1 ; m[n) :=

mn end accept
else ds := mn ;
sum : = sum + ds ;
if abs(ds)<eps then t := t+1 else t := 0
if t<tim then go to ncxtterm

end euler

EXAMPLE 2.8

procedure RK(x,y,n,FKT,cps,eta,xE,lIE,ji) ; value x,v ;
integer n ; Iloolean ji ; real x.eps,eta,xE ; array
y,yE ; procedure FK'1' ;
comment: IlK integrates the system Yk'=!k(X,YI ,Y2 , '" ,Yn)
(k= 1,2, ... ,n) of differential equations with the method of Runge­
Kutta with automatic search for appropriatc length of integration
step. Parameters are: The initial values x and y[k] for x and the un­
known functions Yk(X). The order n of the system. The procedure
FK'1'(x,y,n,z) which represents the system to be integrated, i.e.
the set of functions !k . The tolerance values eps and eta which
govern the accuracy of the numerical integration. The end of the
integration interval xE. The output parameter yE which repre­
sents the solution at x=xE. The Boolean variable ji, which must
always be gi ven the value true for an isolated or first entry into
RK. If however the functions y must he available at several mesh­
points Xo , XI , ... , Xn , then the procedure must be called repeat­
edly (with X=Xk , xE =Xk+h for k=O, 1, ... ,n-1) and then the
later calls may occur withji=false which saves computing time.
The input parameters of F K'1' must he x,y,n, the output parameter
Z represents the set of derivatives z[k)=fk(x,y[l),y[2), ... , y[n])
for x and the actual y's. A procedure comp enters as a nonlocal
identifier ;
begin

array z,y1,y2,y3[1 :n) ; real x1,x2,x3,H ; Boolean out
integer k,j ; own real S,H8 ;
procedure RKlST(x,y,h,xe,ye) ; real x,h,xe ; array

y,ye ;
comment: RKlST integrates one single RUNGE-KUTTA

with initial values x,y[k) which yields the output
parameters xe=x+h and ye[k], the latter being the
solution at x~. Important: the parameters n, FKT, Z

enter RKlST as nonlocal entities
begin

array w[l :n), a[1 :5] ; integer k,j
a[l) := a[2] := a[5] := h/2 ; a[3] := ar41 := h
xe := x ;
for k := 1 step 1 until n do ye[k] := wrkl := y[k]
for j := 1 step 1 until 4 do
begin

FKT(xe,w,n,z)
xe ; = x+a(j) ;
for k := 1 step 1 until n do
begin

w[k] := y[kl+a[jJXz[k) ;
yelk) := ye[k) + a(j+1]Xz[k)/3

8 This RK-program contains some new ideas which are related
to ideas of S. GILL, A process for the step-by-step integration of
differential equations in an automatic computing machine,
[Proc. Camb. Phil. Soc. 47 (1951), 96]; and E. FROBERG, On the
solution of ordinary differential equations with digital computing
machines, [Fysiograf. Siillsk. Lund, Forhd. 20, 11 (1950), .136-152).
It must be clear, however, that with respect to computing time
and round-off errors it may not he optimal, nor has it actually
been tested on a computer.

FORM AL-3-84 FORMULA ALGOL

REVISED ALGOL 60

end k
end J

end RKlST
Begin of program:

ifji then begin H := xE-x ; s:= 0 end else H := Hs
out := false ;

AA: if (x+2.01 X H -xE>O)=-=(H>O) then
begin H8 := H ; out := true ; H := (xE-x)/2

end if ;
RKlST (x,y,2XH,xl,yl)

BB: RKlST (x,y,H,x2,y2) RK1ST(x2,y2,H,x3,y3)
for k := 1 step 1 until n do

if comp(yl(k],y3[k],eta»eps then go to CC

cOJmnent: comp(a,bc,) is a function designator, the value
of which is the absolute value of the difference of the
mantissae of a and b, after the exponents of these quan­
tities have been made equal to the largest of the exponents
of the originally given parameters a,b,c

x := x3 ; if out then.go to DD ;
for k := 1 step 1 until n do y[k) := y3[k] ;
if 8=5 then begin 8 := 0 ; H:= 2XH end if
8 := 8+1 ; go to AA j

CC: H:= O.5XH ; out:= false ; xl := x2
for k := 1 step 1 until n do yl[k) :=. y2[k]
go to BE ;

DD: for k .- 1 step 1 until n do yE[k) := y3[k1
end RK

ALPHABETIC. INDEX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC UNITS

All references are given through section numbers. The references are given in three groups:
def Following the abbreviation "def", reference to the syntactic definition (if any) is given.
synt Following the abbreviation "synt", references to the occurrences in metalinguistic formulae are given. Refer­

ences already quoted in the def-group are not repeated.
text Following the word "text", the references to definitions given in the text are given.

The basic symbols represented by signs other than underlined words [in typewritten copy; boldface in printed copy-Ed.1
have been collected at the beginning.

The examples have been ignored in compiling the index.

+, see: plus
-, see: minus
X, see: multiply
/, +, see: divide
i, se.e: exponentiation
<, ;i!, =, ~, >, ~, see: (relational operator)
=, ~, V, /\, " see: (logical operator)
" see: comma
., see: decimal point
10, see: ten
:, see: colon
;, see: semicolon
:=, see: colon equal
U, see: space
(), see: parentheses
[], see: subscript brackets
• ': see: string quotes

(actual parameter), def 3.2.1, 4.7.1
(actual parameter list), def 3.2.1, 4.7.1
(actual parameter part), def 3.2.1, 4.7.1
(adding operator), def 3.3.1
alphabet, text 2.1
arithmetic, text 3.3.6

(arithmetic expression), def 3.3.1 synt 3, 3.1.1, 3.3.1, 3.4.1, 4.2.1,
4.6.1, 5.2.1 text 3.3.3

(arithmetic operator), def 2.3 text 3.3.4
array, synt 2.3, 5.2.1, 5.4.1
array, text 3.1.4.1

(array declaration), def 5.2.1 synt 5 text 5.2.3
(array identifier), def 3.1.1 synt 3.2.1, 4.7.1, 5.2.1 text 2.8
(array list), def 5.2.1
(array segment), def 5.2.1
(assignment statement), def 4.2.1 synt 4.1.1 text 1, 4.2.3

(ba..qic statement), def 4.1.1 synt 4.5.1
(basic symbol), def 2
begin, synt 2.3, 4.1.1

(block), def 4.1.1 synt 4.5.1 text 1, 4.1.3, 5
(block head), def 4.1.1
Boolean, synt 2.3, 5.1.1 text 5.1.3

(Boolean expression), def 3.4.1 synt 3, 3.3.1, 4.2.1, 4.5.1, 4.6.1 text
3.4.3

(Boolean factor), def 3.4.1
(Boolean primary), def 3.4.1
(Boolean secondary), def 3.4.1
(Boolean term), def 3.4.1
(bound pair), def 5.2.1
(bound pair list), def 5.2.1
(bracket), def 2.3

<code), synt 5.4.1 text 4.7.8, 5.4.6
colon :, synt 2.3, 3.2.1, 4.1.1, 4.5.1, 4.6.1, 4.7.1,5.2.1
colon equal :=, synt 2.3, 4.2.1, 4.6.1, 5.3.1
comma. ,synt 2.3, 3.1.1, 3.2.1, 4.6.1, 4.7.1,5.1.1, 5.2.1,5.3.1,5.4.1
comment, synt 2.3
comment convention, text 2.3

(compound statement), def 4.1.1 synt 4.5.1 text 1
(compound tail), def 4.1.1
(conditional statement), def 4.5.1 synt 4.1.1 text 4.5.3

(decimal fraction), def 2.5.1
(decimal number), def 2.5.1 text 2.5.3
decimal point. , synt 2.3, 2.5.1

(declaration), def 5 synt 4.1.1 text 1, 5 (complete section)
(declarator), def 2.3
(delimiter), def 2.3 synt 2
(designational expression), def 3.5.1 synt 3, 4.3.1., 5.3.1 text 3.5.3
(digit), def 2.2.1 synt 2, 2.4.1, 2.5.1
dimension, text 5.2.3.2
divide / +, synt 2.3, 3.3.1 text 3.3.4.2
do, synt 2.3, 4.6.1

(dummy statement),def 4.4.1 synt 4.1.1 text 4.4.3

else, f'lynt 2.3, 3.3.1, 3.4.1, 3.5.1, 4.5.1 text 4.5.3.2
(empty), def 1.1 synt 2.6.1, 3.2.1, 4.4.1, 4.7.1, 5.4.1
end, synt 2.3, 4.1.1
entier, text 3.2.5
exponentiation i, synt 2.3, 3.3.1 text 3.3.4.3

(exponent part), def 2.5.1 text 2.5.3
(expression), def 3 synt 3.2.1, 4.7.1 text 3 (complete section)

FORMULA ALGOL FORM AL-3-85

(factor), def 3.3.1
false, synt 2.2.2
for, synt 2.3, 4.6.1

(for clause), def 4.6.1 text 4.6.3
(for Jist), def 4.6.1 text 4.6.4
(for list element), def 4.6.1 text 4.6.4.1, 4.6.4.2, 4.6.4.3
(formal parameter), def 5.4.1 text 5.4.3
(formal parameter list), def 5.4.1
(formal parameter part), def 5.4.1
(for statement), def 4.6.1 synt 4.1.1, 4.5.1 text 4.6 (complete

section)
(function designator), def 3.2.1 synt 3.3.1, 3.4.1 text 3.2.3, 5.4.4

go to, synt 2.3,4.3.1
(go to statement), def 4.3.1 synt 4.1.1 text 4.3.3

(identifier), def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 2.4.3
(identifier list), def 5.4.1 .
if, synt 2.3; 3.3.1,4.5.1

(if .clause), def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1 text 3.3.3, 4.5.3.2
(if statement), def 4.5.1 text 4.5.3.1
(implication), def 3.4.1
integer, synt 2.3, 5.1.1 text 5.1.3

(integer), def 2.5.1 text 2.5.4

label, synt 2.3, 5.4.1
(label), def 3.5.1 synt 4.1.1, 4.5.1, 4.6.1 text 1,4.1.3
(left part), def 4.2.1
(left part list), def 4.2.1
(letter), def 2.1 synt 2, 2.4.1, 3.2.1, 4.7.1
(letter string), def 3.2.1,4.7.1
local, text 4.1.3

(local or own type>, def 5.1.1 synt 5.2.1
(logical operator), def 2.3 synt 3.4.1 text 3.4.5
(logical value), def 2.2.2 synt 2, 3.4.1
(lower bound), def 5.2.1 text 5.2.4

minus -, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply X, synt 2.3, 3.3.1 text 3.3.4.1

(multiplying operator), def 3.3.1

nonlocal, text 4.1.3
(numbH), def 2.5.1 text 2.5.3, 2.5.4

(open string), def 2.6.1
(operator), def 2.3
own, synt 2.3, 5.1.1 text 5, 5.2.5

(parameter delimiter), def 3.2.1, 4.7.1synt 5.4.1 text 4.7.7
parentheses (), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1, 5.4.1

text 3.3.5.2
plus +, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1

(primary), def 3.3.1
procedure, synt 2.3, 5.4.1

(procedure body), def 5.4.1
(procedure declaration), def 5.4.1 synt 5 text 5.4.3
(procedure heading), def 5.4.1 text 5.4.3
(procedure identifier) def 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7.5.4
(procedure statement), def 4.7.1 synt 4.1.1 text 4.7.3
(program), def 4.1.1 text 1
(proper string), def 2.6.1

real, synt 2.3, 5.1.1 text 5.1.3
(relation), def 3.4.1 text 3.4.5
(relational operator), def 2.3, 3.4.1

scope, text 2.7
semicolon ;, synt 2.3, 4.1.1, '5.4.1

(separator), def 2.3
(sequential operator), def 2.3

REVISED ALGOL 60

(simple arithmetic expression), def 3.3.1 text 3.3.3
(simple Boolean), def 3.4.1
(simple designational expression), def 3.5.1
(simple variable), def 3.1.1 synt 5.1.1 text 2.4.3
space U, synt 2.3 text 2.3, 2.6.3

(specification part), def 5.4.1 text 5.4.5
(specificator), def 2.3
(specifier), def 5.4.1
standard function, text 3.2.4, 3.2.5

(statement), def 4.1.1, synt 4.5.1, 4.6.1, 5.4.1 text 4 (complete
section)

statement bracket, see: begin end
step, synt 2.3, 4.6.1 text 4.6.4.2
string, synt 2.3, 5.4.1

(string), def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3
string quotes' " synt 2.3, 2.6.1, text 2.6.3
subscript, text 3.1.4.1
subscript bound, text 5.2.3.1
subscript brackets [I, synt 2.3, 3.1.1, 3.5.1, 5.2.1

(subscripted variable), def 3.1.1 text 3.1.4.1
(subscript expression), def 3.1.1 synt 3.5.1
(subscript list), def 3.1.1 .
successor, text 4
switch, synt 2.3, 5.3.1, 5.4.1

(switch declaration), def 5.3.1 synt 5 text 5.3.3
(switch designator), def 3.5.1 text 3.5.3
(switch identifier), def 3.5.1 synt 3.2.1, 4.7.1, 5.3.1
(switch list), def 5.3.1

(term), def 3.3.1
ten 10, synt 2.3, 2.5.1
then, synt 2.3, 3.3.1, 4.5.1
transfer function, text 3.2.5
true, synt 2.2.2

(type), def 5.1.1 synt 5.4.1 text 2.8
(type declaration), def 5.1.1 synt 5 text 5.1.3
(type list), def 5.1.1

(unconditional statement), def 4.1 .1,4.5.1
(unlabelled basic statement), def 4.1.1
(unlabelIed block), def 4.1.1
(unlabelled compound), def 4.1.1
(unsigned integer), def 2.5.1,3.5.1
(unsigned number), def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2

(upper bound), def 5.2.1 text 5.2.4

value, synt -2.3, 5.4.1
value, text 2.8, 3.3.3

(value part), def 5.4.1 text 4.7.3.1
(variable), def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1 text 3.1.3
(variable identifier), def 3.1.1

quantity, text 2.7 while, synt 2.3, 4.6.1 text 4.6.4.3

END OF THE REPORT

FORM AL-3-86 FORMULA ALGOL

FORMULA ALGOL

APPENDIX 2

CURRENT SYSTEM LIMITS

May 1, 1967

FORM AL-3-87

The following are a list of limits on the numbers of objects available

in the system:

(a) The maximum number of distinct identifiers and labels allowable

is 100 where print names of 6 characters or less count one and

print names of 7 or more characters count 1 for the first six and

1 for each 4 or fraction of 4 characters. Note that any 2

identifiers which have the same first six characters may be

treated as the same name (including reserved words). This re­

striction does not affect the internal working of the program.

It means only that when an identifier overflows and the table is

printed, what is printed is unpredictable.

*(b) The maximum number of declared objects (variables, arrays, etc.)

plus block entries is 300.

(c) The maximum number of nested dynamic blocks is 180.

(d) The maximum number of dynamically defined (e.g., by recursion) FORM

and SYMBOL variables is 832.

(e) The maximum number of words of code produced by the compi.1er is

/21000.

(f) The maximum number of words for variables and array storage is

/11600.

(g) Available space is constructed from the unused part of (e) and

(f). This gives roughly 6800 cells for small programs.

*(h) The maximum number of procedure declarations and labels at one

'FORM AL-3-88 FORMULA ALGOL

level is 24.

For a rough estimate, each element of a list and operand or operator of

a formula takes up two words of available ~pace.

* It is possible to extend the maximums in these cases. See the user con­

sultant.

FORMULA ALGOL

APENDIX 3

DEBUG SNAPSHOTS

FORM'AL-3-89

The following is a list of snapshots which may be inserted between lines

of a Formula Algol program. They provide special commands to the compiler for

printing, corrections, and debugging. The Format is "SN" in columns 1 and 2,

the name of the snapshot starting in column 10, and two optional parameters in

columns 15 and 25. Teletype tabs will give the correct columns. MOst of them

have effects at compile time; the ones which don't are so indicated.

In the following explanations whenever a snapshot may have a parameter

'of either 0 or 1, it will be denoted "0,1". It is to be understood that for

all these snapshots, the 1 turns on a certain action and the ° turns it off.

Only the action will be described.

Some of these snapshots require a more detailed knowledge of the system.

In these cases see [4] or the user consultant.

SN ~ND

SN AND

SN BKPT 0, 1

SN CDLC 0, 1

SN $ CMPL <VAL>

The And system is entered at compile time.

The And system is entered at run time.

At the end of each line a transfer to

a closed subroutine is compiled. At

routine, this subroutine prints the

location of the line of code to which

control has arrived. (It is, in effect,

a logical trace of the progr~m's ex- .

ecution.)

At the end of each line a command is

compiled to load the current location

of compiled code into an index register.

This feature is normally on.

<vAL> is compiled as a machine command

FORM AL-3-90

SN CODE

SN COR

SN DEES

SN DUMP

SN ENTR

SN EXEC

SN IXRS

SN LINE

SN LOOK

SN PAGE

SN Q1

SN REMO

FORMULA ALGOL

APPENDIX 3 (continued)

0,1

<LOC> <VAL>

0, 1

0, 1

<NUM>

0, 1

0, 1

directly into the current location

for compiled cod~.

Code is printed as it is compiled.

This can be used to change the

contents of locations at compile time.

First <LOC>, its contents, and <vAL>

are printed. The VAL replaces the

contents of <LOC>.

This prints out a series of critical

entry points of the compiler.

This causes the compiled code and the

generated abcons to be printed after the

compilation of the.program and before it

is run.

A trace of all table entries is printed.

This prints a trace of the 'calls on the

semantic routines with parameters.

This prints the index registers /30-/77

at compile time.

This upspaces <NUM> lines at compile time.

A trace of all table look-ups is printed.

The printer is upspaced to the next page.

This allows the action of SN DUMP to be

printed on TTY.

The program prints on the teletype.

.SN RCOR

SN RTRC

SN -RUN

SN SCAN

SN STAC

SN STOP

SN TRAC

SN

FORMULA ALGOL FORM AL-3-91

APPENDIX 3 (continued)

<LOC> <VAL>

<NUM> <LOC>

0, 1

<NUM> <LOC>

0, 1

Program output will print if REMO

is 1 at the end qf compilation.

At run time <VAL> replaces the

contents of <LOC>.

This has the same effect as SN TRAC,

except at run-time.

The program will be terminated after

compilation.

Characters of the input string are

printed as they are read by subscan.

At compile time, the semantic stack is

printed.

Halts compilation immediately.

At compile time, commands flags are put

on <NUM> words starting at location <LOC>.

When these words are executed Monitor

trace routines will print them.

A trace of the syntax analyzer is

printed. When an attempt is made to

match a production, the top of the

stack and the production are printed.

FORM AL-3-92 FORMULA ALGOL

FORMULA ALGOL

APPENDIX 4

ERROR MESSAGES

FORM AL-3-93

There are three kinds of errors in Formula Algol: Syntax errors,

semantic errors, and run errors. The first two kinds of errors occur

at compile time, and the third at run time. Some of these messages re­

quire a more detailed knowledge of the systemo In these cases see [4]

or the User Consultant.

SYNTAX ERRORS

These are of the form

ERROR XXX

o Program does not start with 'BEGIN'

Statement does not begin with legal character

2 Statement starts with identifier not followed by legal character

3 First character of an expression expected but not found

4 Expression formed but not followed by legal character

5 'J' is not preceded by a legal construct

6 Array element not found in legal context

7 ' : ' not preceded by a legal construct

8 ' f-' not preceded by a legal construct

9 ') , not preceded, by a legal construct

10
, ,

not preceded by a legal construct ,

11 'WEN' not preceded by a legal construct

12 'ELSE' not preceded by a legal construct

13 Illegal statement construction

14 Impossible error, system error

17 'STEP' not preceded by a legal construct

FORM AL-3-94 FORMULA ALGOL

18 'UNTIL' not preceded by a legal construction

19 'WHILE' not preceded by a legal construction

20 'DO' not preceded by a legal construction

21 'GO' not followed by a legal construction

22 'GO TO IF ..• THEN ••• I not followed by 'ELSE'

24 Obscure error in GO TO statement

25 'I~' not in stack after scanning 'BEGIN'

28 Too many 'END's within a procedure

38 Illegal const~uction within an IF ••• THEN ••• statement

39 More than one subscript in a switch call

42 Array declaration does not contain bounds expression

44 System error in GO TO statement

62 Attempt to 'ALTER' a non-symbol

75 • PRINT , not followed by '('

76 Function designator not followed by legal character

77 '.' not followed by legal character

78 Class operator not formed correctly

80 A value of 'OPERATOR' was not an operator

81 Improper description list construction

85 Operator expected and not found

98 'I~' not in stack at beginning of statement

99 System error

100 Illegal operator or control character scanned

101 ABCON table full

102 Number incorrectly formed (while scanning '. ')

103 Number incorrectly formed (while scanning '==')

104 Impossible error, system error

105 Illegal bar variable

106 Illegal SY card

FORMULA ALGOL

108 Impossible error, system error

'109 An insertion locator was expected but not found

110 An expression has been found in an illegal context

111 A selector was expected but not found

112 A selector is not followed by 'PF'

113 / not followed by [

115 Improper 'INDEX' construction

116 Improper, 'PARALLEL FOR' construction

117 DOT not followed by identifier in text

118 Class Name improperly formed

FORM AL-3-95

144 Variable declaration does not terminate properly or '[I missing

144 In array declaration

145 Array declaration does not terminate properly

163 Procedure head is incorrectly formed

164 Value or specifier part is incorrectly formed

171 Specifier list not initiated properly

174 Declaration does not begin with a legal construction

190 Identifier not found in identifier list

194 ')' missing in formal parameter list

195 Value list not terminated properly

196 Specifier list not terminated properly

200 Formal parameter list for EVAL does not contain all identifiers

201 EVAL statement not formed correctly

250 Switch declaration improperly initiated

251 Missing delimiter in switch declaration

999 Impossible error, system error

FORM AL-3-96 FORMULA ALGOL

SEMANTIC ERRORS

These are of the form

FAULT XXX

2 Procedure not declared as such

5 An identifier in a value list is not a formal parameter

6 An identifier in a specifier list is not a formal parameter

7 An identifier is not declared or

7 A procedur~ is used where a function is expected or

7 An array identifier is used where a simple variable is expected or

7 A switch identifier is used where a simple variable is expected

12 An identifier as an actual parameter has not been declared

15 In 'GO TO S[...]', S is not a switch

16 In an array access the identifier is not an array

20 Function has not yet been declared

21 Function designator not declared

22 Identifier of a class operator is not a variable

27 Boolean expression expected in 'WHILE' clause, and not found

30 In 'IF B THEN •••• ' B is not of type Boolean

44 Switch identifier is used without parameter

47 Expression in ordinal selector is not of type integer

59 Improper editing statement construction

61 System error

63 Attempt to apply selector to non-symbol

69 A value of 'OPERATOR' is not an operator

70 In 'EVAL F', F is not a formula or symbol

72 In 'EVAL(•••)F(•••)', F is not formula or symbol

FORMULA ALGOL

75 A class operator is not a symbol

76 System error processing extractor which is array element

77 System error in class operators

78 Attempt to erase description list of non-symbol

FORM AL-3-97

83 System error in pattern construction with types as primaries

85 In'F = = p' or in 'F.»P' F is not a formula

87 A label in a pattern is not of type form

88 In 'IF B THEN ••• ' B is not Boolean or formula

91 A label is used twice in the same block

94 In a DOT array the identifier is not an array

97 Expression in < > is not a symbol

98 The second parameter of 'DERV' is not a formula

99 System error in print routine

100 In a binary arithmetic expression one of the operands is of illegal

type

103 Attempt to add local description list to non-symbol

105 In a binary Boolean expression one of ~e operands is of illegal

type

106 Attempt to access non-symbolic attribute

107 Parameter of a function designator is not numeric or formula

108 Attempt to access description list of non-symbol or non-formula

109 Improper value entry construction

112 Attempt to store into illegal entity or legal entity of wrong type

116 '.' is not followed by Boolean or logic expression

155 Boolean procedure or pattern list expected and not found

175 Attempt to construct non-symbolic attribute

176 Attempt to'store list or do value entry with non-symbol

FORM AL-3-98 FORMULA ALGOL

179 Value of index is not declared integer

183 Attempt to test non-symbol against symbolic pattern

184 Expression following $ is not of type integer

186 Non-symbolic label in list pattern

189 Identifier in description list expression is not formula

190 Impossible error, system error

191 An identifier is not declared

192 Form or symbol variable expected and not found

198 Designational expression is used as actual parameter

203 Attempt to count non-symbol

213 Non-symbol in symbolic 'FOR' statement

214 Argument of 'ATTRIBUTES OF' other than symbol

229 Expression preceding ordinal selector is not of type integer

230 Argument of ERADL other than symbol

235 Second parameter to AMONG is not of type symbol

239 Parameter of 'EMPTY' is not a symbol

315 Switch not declared

391 Obscure error in procedure calls

512 Attempt to store non-numeric expression into a numeric variable

612 Attempt to store non-Boolean expression into Boolean variable

712 Attempt to store into a constant

912 System error

990 Impossible error, system error

998 System error

999 System error in 'STEP' statement

4L01 Improper left side of DOT assignment

FORMULA ALGOL FORM AL-3 ... 99

RUN ERRORS

Run Errors in Formula Manipulation

These are of the form:

RUN ERROR NNN AFTER LOCATION XXXXX

LLLLL

where NNN refers to the list below, XXXXX indicates the line in which the

error occurred and LLLLL is the location of the error routine.

'1< Attempt to eval an expression containing ~, .~ , . or I I · . ,
6 Attempt to eval an expression containing +, -, x, /, or t in

which one of the operands is neither a formula nor a number.

10 In eval I'V x, x is not logic, boolean, or formula.

* 20 Error when printing, a formula.

21 In eval xAy or XVy one of the operands is not logic, boolean,

or formula.

22 In eval XAy or xvy, there is a mixture of types logic and boolean.

25 Recursion stack overflow.

27 Run-time symbol table overflow.

* 30 Error when printing a chain.

* 31 Attempt to find an attribute on an ill-formed chain.

37 Too many subscripts in an array element.

38 Subscript in an array element is too small.

39 Subscript in an array element is too large.

40 Not enough subscripts in an array element.

46 Too many block entries.

48 Subscript in a switch designator is out of bounds.

50 Available space is empty.

FORM AL-3-100 FORMULA ALGOL

56 In derv(f,x), f is not a number or a formula.

57 A boolean data term was expected and not found.

63 Obscure error when storing a chain into a symbol.

* 79 In f • l s, s has no contents attribute.

82 In f • l s, s has a parallel production within a parallel

production.

83 In f . l s, s has a formula which is not a production.

85 A malformed formula (system error), or

A class Qperator encountered within a formula to which a pro­

duction is to be applied, or

In a dot array (production), a subscript (parameter) is not

of type form.

100 Attempt to eval In(-infi) or sqrt(-infi).

141 In EVAL (x <r> y) where r is >,<" <, or, >, one of the

operands is either undefined, a symbol chain, or of type

Boolean.

* 182 Variable of interpretive store has undefined type.

183 Interpretive store of undefined mixture of variable types, or

interpretive store into a symbol is not implemented.

271 In eval of A.[sl, ••• , sn], some subscript si is not a formula

or a number.

325 In eval . if B then . .. , B is neither a boolean or a formula.

600 In F = = P, F is the pattern of() .
601 In F = = P, F is a symbol.

602 Obscure error in F = = P, probably an attempt to test a pattern

against another pattern.

603 In F = = P, P has a class operator which has no attribute 'operator'.

*

701

702

703

711

721

731

751

5501

5502

6702

*7701

7\702

7703

7704

9009

9011

FORMULA ALGOL FORM AL-3-101

Attempt to compute 0 t -number.

Attempt to compute X t A where x<] and A is not an integer.

Attempt to compute X t A where A*ln{x) > 160.117.

Attempt to compute In(X) where X < O.

Attempt to compute E~P(x) Where ~ is out of range.

Attempt to compute sin (X) where X is out of range.

Attempt to compute sqrt(X) where X < O.

Attempt to eval the pattern 'of(B)'.

Attempt tb compute replace(F) Where F.» A:atom.

A c la.ss operator or extrac tor encountered in a formula to which

a production is to be applied.

Attempt to create A I[T]I B where T has no contents attribute.

Attempt to create A I[T]I B where [T]is empty.

Attempt to create A I[T]I B where [T] is unary.

Attempt to create I[T]I B where [T] is binary.

Attempt to EVAL (OtO).

Attempt to EVAL (ANY/O).

denotes a system error.

FORM AL-l ... 102 FORMULA ALGOL

Run Errors in Symbol Manipulation

The following messages are printed:

Recoverable Errors

Not enough chain operands cf. p.

Unless store into unused chain

Attempt to store into open chain

Attempt to get interior of empty clsd ch

Attempt to discard nil

First element of plural list uncarried

Attempt to select non-existant referent

Class name undefined

Non-Recoverable Errors

Parity of chainacc destroyed

Negative chainacc

Attempt to store in non~symbol

Malformed chain

Chainacc exceeded

Plural list used Where symbol needed

Attempt at VR from non-symbol

Attempt at VR without attribute'

Empty list used where symbol needed

Attemp,t to generate ATRS. of non-chain

, Sy~tem Error

Illegal selector

Non~primitive for ID. routine

For attempts to generate non-list

P-for control variable non-symbol

FORMULA ALGOL

No.contrl.var 1 = no. of lists in P-for

Malformed pattern

Non-numeric data term used as number

Available space exhausted

Improper symbol array access

Value of symbol array el.no exst.

Illegal transfer function

Run Errors in Recursi'on

These are of the form:

xxxx

MM:SS:ss

<octal dump>

xxxx MM:SS:ss

<octal dump of index registers /50, •.• ,/77 >

is the name of the error.

is the running time in sixtieths of a second.

indicates the state of the program.

FORM AL-3-103

* CLOB . System error indicating that the historian has been clobbered.

STOR

HIST

* PROe

* LINK

LABL

~4K

Variable stack overflow.

Historian stack overflow.

Obscure error related to procedure names as actual parameters.

Premature or illegal attempt to leave a codepiece.

Attempt to goto an undefined label or to call an undefined

procedure or switch.

Request for extra memory was refused

indicates a system error.

FORM AL-3-104 FORMULA ALGOL

FORMULA ALGOL

APPENDIX 5

INPUT - OUTPUT

Formual Algol has no'read statements.

FORM AL-3-105

At the present time, Formula Algol contains a primitive print statement

of the form PRINT(X), where X is a list of any of the following possible

objects:

(a) The name of any declared variable, in which case the value of

that variable will be printed.

(b) Any arithmetic, Boolean or Formula expression, in Which case

the value of the expression will be pri~ted.

(c) Any symbolic expression provided a switch is set as indicated

below.

For example:

FORM F, G; REAL A,B; BOOLEAN C; SYMBOL S;

LOGIC L; HALF H;

F f- F + G; A f- 3.5; B f- 2 X A; C f- B < A

S f- [F, A]; L f- 10; H f- 2.8;

PRINT(F,G,A,B,C,S,L,H, 111, G+.A);

This causes the following to be printed:

F + G

G

.35000000000w +01

. 7000000000010 +01

FALS

FORM AL-3-106 FORMULA ALGOL

/[CONT: F-f{;, (.350,0000000010 +01)][NAME: S]

00000000012

.28000000000ro +01

111

G+ (.35000000000 10 +01)

Lists may be printed in three styles: style 0, style 1, and style 2. Style 0

is in the system to begin with and causes description lists to be printed.

Style 1 prints lists and sublists with square brackets [,] and commas separat­

ing the elements, each sublist being delimited by a pair of square brackets.

Style 2 prints lists without square brackets and commas by concatenating the

elements directly into the print line.

For example:

SYMBOL S, ADJ, EC, TIVE, A,B,C, COLOR, APPLE,RED;

APPLE ~ /[COLOR: RED];

S ~ [A,A, [B,B, [C,C,C],B],A];

A ~ [ADJ ,EC, TIVE];

In Style 0 the statement PRINT(APPLE, S, A) gives:

/[CONT: APPLE][COLOR:RED][NAME:APPLE];

/[CONT: A,A, /[CONT:B,B, /[CONT:C,C,C][NAME:],B][NAME:],

A] [NAME : S]

/[CONT: ADJ, EC, TIVE][NAME:A]

In Style 1 the same print statement gives:

[APPLE]

[A,A,[B,B,[C,C,C],B],A]

[ADJ, EC, TIVE]

FORMULA ALGOL

In Style 2 the same print statement gives:

APPLE

AABBCCCBA

ADJECTIVE

FORM AL-3-107

Thus, Style 0 is used to print description lists, Style 1 is used to print

lists and sublists, and Style 2 is used to print compacted lists. Executing

the fpllowing snapshot correction changes the style switch.

SN RCOR 55212 sets Style to 1

SN RCOR 55212 2 sets Style to 2

SN RCOR 55212 0 sets Style to 0

This snapshot follows the same conventions as other debug snapshots (see

Appendix 3).

FORM AL-3-108 FORMULA ALGOL

FORMULA ALGOL

APPENDIX 6

SYNTAX INDEX

SYNTAX CLASSES

<Array Formula> - Chapter III, Page 26
<Assignment Formula> - Chapter III, Page 26
<Assignment Statement> - Chapter IV, Page 52
<Augmented Type> - Chapter IV, Page 55

<Boolean Expressiori> - Chapter III, Page 26

<Class Definitiori> - Chapter IV, Page 61
<Class Name> - Chapter IV, Page 61
<Comm Segment> - Chapter III, Page 37
<Conditional Formula> - Chapter III, Page 26

<Description List> - Chapter IV, Page 53
<Description List Editing Statement> - Chapter IV, Page 64

<Editing Statement> - Chapter IV, Page 64
<Elementary Position> - Chapter IV, Page 55
<Evaluate Fonnula»-Chapter III, Page 32
<Extractor> - Chapter III, Page 37; Chapter IV, Page 58
<Expressiori> - Chapter IV, Page 51

<For Clause> - Chapter IV, Page 63
<For LisL> - Chapter IV, Page 62
<Formula Expression> - Chapter III, Page 26
<Formula Expression List> - Chapter III, Page 32
<Formula Pattern> - Chapter III, Page 37
<Formula Pattern Primary> - Chapter III, Page 37
<Formula Pattern Structure> - Chapter III, Page 37
<Formula Primary> - Chapter III, Page 26

<Locator List> - Chapter IV, Page'64
<Insertion Locator> - Chapter IV,Page 64
<Index Segment> - Chapter III, Page 37
<Is Phrase> - Chapter IV, Page 65

<Kind> - Chapter IV, Page 55

<List> - Chapte"r IV, Page 51
<List Element> - Chapter IV, Page 51
<List Expressiori> - Chapter IV, Page 51
<List Pattern> - Chapter IV, Page 58
<List Pattern Primary> - Chapter IV~: Page 58
<Logical Value List> - Chapter III, Page 37

FORM AL-3-109

FORM AL-3-110 FORMULA ALGOL

<Operator ClasS> - Chapter III, Page 37
<Operator Class Assignment> - Chapter III, Page 37
<Operator Class Name> -' Chapter III, Page 37
<Operator LisL> - Chapter III, Page 37
<Ordinal Selector> - Chapter IV, Page 55
<Ordinal·SuffiX> - Chapter IV, Page 55

<Parallel Elements> - Chapter III, Page 43
<Parallel Production> - Chapter III, Page 43
<PopUp Operator> - Chapter IV, Page 61
<Pop Up Statement> - Chapter IV, Page 62
<Position> ... Chapter IV, Page 55
<Procedure Formula> ... Chapter III, Page 26
<Push Down Operator> ... Chapter IV, Page 61
<Push Down Statement> - Chapter IV, Page 61

<Schema> - Chapter III, Page 43
<Schema Assignment> - Chapter III, Page 43
~chema Element> - Chapter III, Page 43
<Schema Variable> - Chapter III, Page 43
<Selection Expression> - Chapter IV, Page 55
<Selector> ... Chapter IV, Page 55
<Se lector List> ... Chapter IV, Page 43 .
<Single Production> - Chapter III,Page 43
<Substitution List> - Chapter III, Page 32
<Symb or List> - Chapter IV, Page 5.8
<Symbolic Expression> - Chapter IV, Page 49

<Transformed Formula> ... Chapter Ill, Page 43

FORMULA ALGOL

RESERVED WORDS

ANY - Chapter III, Page 36, Page 42 (appears thrice)

ATOM - Chapter III, P~ge 36

COMM - Ch~pter II~, Page 36

ELSE - Chapter III, Page 25

EVAL - Chapter III, Page 31 (appears twice)

FALSE - Chapter III, Page 36 (appears twice), Page 42

IF - Chapter lIt', Page' 25

INDEX - Chapter III, Page 36

OF - Chapter III, Page 36 (appears twice)

REPLACE - Chapter III, Page 31, Page 42

SUBS - Chapter III, Page 31

THEN - Chapter III, Page 25

TRUE - Chapter III, Page 36 (appears twice), Page 42

AFTER - Chapter IV, Page 53, Page 62

ALL - Chapter IV, Page 53 (appears twice)

ALSO - Chapter IV, Page 62.

ALTER - Chapter IV, Page 62

AND - Chapter IV, Page 53

ANY - Chapter IV, Page 53

ATOM - Chapter IV, Page 53

ATTRIBUTES - Chap~er IV, Page 60

BEFORE - Chapter IV, Page 53 (appears twice), . Page 62

BETWEEN - Chapter IV, Page 53

BOOLEAN - Chapter IV, Page 53

FORM AL-3-111

FORM AL-3"!112 FORMULA ALGOL

DELETE - Chapter IV Page 62 (appears twice)

ELEMENTS - Chapter IV, Page 60 (appears twice)

FIRST - Chapter IV, Page 53 (appears twice)

FOR - Chapter IV, Page 60

~ - Chapter IV, Page 53

INSERT - Chapter IV, Page 62

INTEGER - Chapter IV, Page 53 (appears twice)

12 - Chapter IV, Page 62 (appears twice)

~ - Chapter IV, Page 53 (appears twice)

~ - Chapter IV, Page 53

NIL - Chapter IV, Page 47

!Q! - Chapter IV, Page 62

OF - Chapter IV, Page 51, Page 53, Page 60 (appears thrice),. Page 62 (appears

5 times)

PARALLEL - Chapter IV, Page 60

~ - Chapter IV, Page' 53

~ - Chapter IV, Page 53

~ - ,Chapter IV~ Page 53

SUBLIST - Chapter IV, Page 53

SYMBOL - Chapter IV, Page 53

, TH - Chapter IV, Page 53

THE - Chapter IV, Page 51, Page 62

TO - Chapter IV, Page 62

FORMULA ALGOL

APPENDIX 7

COMPLETE EXAMPLES

FORM AL-3-113

The attached photocopies of computer output present three ways that

Formula Algol can be used to solve an algebraic equation for the single oc­

currence of the variable X. These three solutions are by Markov Algorithms,

by recursion, and by iteration. Formula Algol is well suited to programming

this problem because its data structures and source language instructions were

chosen to be well adapted to problems in formal algebraic manipulation. It

can be seen from the attached programs that the Formula Algol programmer has

detailed control' over the specification of formula manipulation algorithms

and that,at the same time, abbreviation devices, such as the Markov Algorithm,

make it convenient to write them. Brief explanations of the three solutions

are as follows.

I. MARKOV ALGORITIIM SOLUTION

Lines 12 to 29 define a Markov Algorithm which gives the rules of trans­

formation by which equations are to be solved for X. The equation to be solved

for X is stored as the value of the variable E in line 30, and line 31 prints

both E and E. ~S the result of applying the Markov Algorithm S to E, which re­

sult is the solved equation. In lines 10 and 11, plus and times are defined

to be operators with commutative properties so that in lines 14 and 15 commuta­

tive instances of ~B and A+B will be considered. Lines 7,8, and. 9 define A

to be a formula pattern which will match any subexpression of a formula con­

taining an occurrence of X, and Band C to be formula patterns which will

match any arbitrary subexpression of a formula. The A's, B's, and C's are

used in the construction of the left hand sides of the transformations in the

Markov Algorithm and stand for patterns with these properties. On the right

FORM AL-3-114 FORMULA ALGOL

hand sides of the t~ansformations the .A's, .B's, and .e's are objects which

are replaced by the sUbexpressions which match the A's, B's, and e's when

given transformation applies to an input equation.

II. RECURSIVE SOLUTION

Lines 4, 5, and 9 define patterns A, B,and C with the same properties

as in the Markov Algorithm solution. The recursive procedure SOLVE(LHS,RHS)

given in lines 8 to 28 analyzes the form of the left hand side of the equation,

LHS, ~ich is assumed to contain X, and recursively calls SOLVE with that sub­

expression of LHS containing X as its new first parameter, and an appropriate

inverse expression composed of an appropriate inverse operator applied to RHS

and a subexpression ofLHS not containing X as its new second parameter. 'nle

procedure Answer(E) given in lines 30 to 34 analyzes the input equation-E to

see which side contains X and passes the side containing X as the left band

side and the side not containing X as the right hand side to SOLVE which de­

livers the answer to the problem. An equation is assigned to E in line 36

and both E and Answer(E) are printed in line 37. The printed solution is the

same as that given in the first and third solutions.

I I I.. ITERATIVE SOLUTION

Lines 6 and 7 define two operator classes OP1 and OP2 consisting respec­

tively of the binary operators to be used in input equations and the unary

operators to be used in input equations. An integer variable I is attached

to the definition of each operator class as an "Index". In lines 12 and 13

the input equation Gis compared with two patterns. The first pattern matches

if the left hand side of G contains a binary operator in the class OP1 and the

index vari .le I is set to contain an integer denoting the ordinal po~ition of

this operator in the list of operators given on line 6. Similarly, the second

pattern matches if G's· left hand side is of the form <unary o~erator>«expression»

FORMULA ALGOL FORM AL-3-115

and the index I is set to the ordinal position of the unary operator in the

list of unary operators in line 7. The integer value of this index I is used

in a designational expression containing a switch to transfer control to an

appropriate statement to perform the required transformation of the equation.

These transformations are given in lines 15 to 27. The iteration is under

the control of a FOR-WHILE statement and halts when the equation G has X as

its left hand side~ The printed solution is the same as that for solutions

I and II.

. IV. COMPARISON OF THE THREE SOLUTIONS

Markov Algorithm Recursion Iteration

seconds required 5 + 1 4 + 1 3 + 1

cells required 232 471 183

code required 771 826 595

The times givetl here are not measured as precisely as they should be for a

truly useful comparison.

FORM AL-3-116 FORMULA ALGOL

FORMULA ALGOL

A (1"[11. r202 24 OCT 6622:23:34 AND PAGES: 50 TIME: :1
993 ~C;?2062 CC~OJ011~03* T501

STATUS r,,~.\'. 25 9 19G6: EXpmUjEtJiAl SYSTEM.
C~.2: At BESH~
C03: 11(;02 FO~r.1 E,K9M,H_N,P;
0:14: 11020 FO:lM I\~O oC ,X; SVUllOL PLUS, TI MES, S;
OJS: 11037 OOOlEAN F~OCEOmE HASX(F); VALUE F; FORM F;
006: 11C31 HASX .. f » X;
CO 1: 11060 A<-A: O~(HAS X);
cas: 11072 B+-OgAWI;
C09: 11103 C.cgAt.N; .
010: 11114 PLUS~/[O?mATon :+1 (CO~t\~ lRUE1;
011: 1111~4 TIMES"'/[O?ERATO~:*] [COMM: lRUE];
012: 11174 S ... [
013: [
01ll: . 11177 (A I TIMES 10) = CA = .C / ~8,
015: 11243 (AI PLUS 10) = CA = .C - .8,
016: 113110 A - D :: CA = .C + .8,
011: 11353 0 0 A = CA = .3 - .C,
010g 11t}16 A I () = CA = .C * .6.
019: 11t~61 II / A = CA = .0 I .C,
02e: 11524 A t, o = C .. .A=.C t(1/.Fl),
,021: 11574 D t A = C .. .A = IN(.C) IlN(.6),
0223 11643 - A = CA = -.e,
023: 11677 fJtP(A) =cA : IN(.e),
02t~: 11733 IN(A) = C .. .A = EXP(.C),
G2~g 11167 S(!;lY(A) = CA = .C t 2,
02o~ 12026 A.~CiAN(A) =cA = S I r~c .c) ItOS(ee),
027g 12013 S I ~J(A) : C .. .A = fJlCTAt!(.C IS (:l V(1-.Ct2»,
020: 12152 . CCS(A) =c .. .A = ARCTAN(SQ~T(1-.Ct2)/.C),
ce.9: 12231 x = Cx = .c] 1;
03C~ 12263 E ... f<?2 + lt~(M + SIN((Xt3-K)/(IH·4)(rMt5)tN - K)*M
031g 12310 pru tJi(E1) E.tS);
032: , 121~OO p;t I fJi(CELLS);
033~ 12~OJ END;

(J Enno;(s

BEGaN EXECUTION 22:28:53; 006423 AVAILABLE CEllS
(1'2 ? lrJ(r.1 + S I N((Xt3 - K)/CH +4)*M,5)tN -' 1<)*M::?
. it:{ Anc 1 ((E}C? ((P - K 12) 1M) + t(- WI) t(1/N) IS QR T (1 .; (EXP((P
.. Ie 12) I~.'J) + t< - t.'l) t(1/ N) 1'2 » /Mt5*(H + 4) + K) t(
.J33333333330+C3)
6191

=

TH.~ tlSEO: oa:C':36 PAGES: 3
22:3Jg20 Eva>

12404 22:23:59 0 284 3 0 0 0 0 0 46 0

FORM AL':'3-117

P;

-II Mt: j

993 200500CYl 00003011403* TS01 16:0
FORM AL-3-118

STATUS MAR. 25,1966: EXPERIMENTAL SYSTEM.
2. 11002 BEG IN FORM E,K ,M,N,H ,P ,f ,G ,X;
3 • 11026 SY MBOL PL US tTl MES;
4. 11033 BOOLEAN PROCEDURE HASX(F); VALUE F; FORM F; HASX.r»X;
5. 11053 PLUS"'/(OPERATOR:+] [C'OMM: lRUEl; TI MES+-/(OPERATOR:*](COMM: lRUE1;
6.
7.
8. 11132
9. 11137

10. 11201
11. 11243
12. 11305
13. 11345
14. 11405
15. 11445
16. 11505
17. 11554
18.· 11622
19. 11656
20. 11712
21. 11746
22. 12005
23. 12053
24. 12071
25. 12134
26. 12152
27. 12215
28. 12241
29.
30. 12244
31.' 12247
32. 12256
33. 12323
34 •. 12344
35.

BEGIN
FORM PROCEDURE SOLVE(LHS~HS); FORM (jtS~HS;

BEG IN FORM A 13 ,e; ~4-A:OFCHASX);B+B:ANY;C+C:ANY;
IF LHS == CAlpLUsIB) THEN SOLVE+-SOLVE(A~HS-B);'
'F LHS == CA' TIMES IB) THEN SOlVE4-50L VEC A ~ HSIB);
IF. LHS == A-B THEN SOL VE .. SOLVEC A ,RHS+B);
IF LHS== B-A THEN SOLVE'" SOLVEC A ~ -RHS);
IF LHS == AlB THEN SOL VE ... SOLVE< A. ~ HS*8 >;
IF LHS :: B/A THEN SOLVE ... SOLVE(A~IRHS);
I.F LHS == A18 THEN SOLVE'" SOLVECA .RHSt(1IB »;
IF LHS == BfA THEN SOLVE+- SOLVE(A,LNCRHS)ILNCB»;
IF LHS =: -A THEN SOLVE ... SOLVECA,-RHS);
IF LHS == EXP(A) THEN SOL VE ... SOL VEC A ~ N(RHS»;
IF LHS == IN(A) THEN SOL VE +- SOL VECA ,EXPCRHS »;
IF lHS :: SQRT(A) THEN SOL VE ... SOL VEC A .R HS 12);
IF LHS == ARCTAN(A) THEN SOLVE'" SOLVECA,sINCRHS)/COSCRHS»;
IF LHS == SINCA) THEN

SOLVE'" SOLVECA,ARCTAN(RHS/SQRT(1-RHS12 »);
IF LHS := COSCA) THEN

SOL VE ... SOL VEC A ,A RC TANC SQRT (1-R HS 12)IR HS) >;
IF LHS :: X THEN SOLVE'" X = RHS;
END;

FORM PROCEDURE ANSWERCE); FORM E;
BEGIN FORM F,G;
IF E == G :ANY=F:ANY THEN BEG I N IF F»X THEN
ANSWER..-sOL VEC F ,G) ELSE ANSWER .-sOL VECG, F)·. ENO ELSE
ANSWER NOEQUATION; END;

36. 12352.E'" Kt2 + LNCM + SIN(CXt3-K)/CH+4)*Mt5)tN-K)*M :P;
37. 12457 PRINTCE,ANSWERCE»; PRINT(CELLS~
38. 12472 END; END;

o ERRORS

BEG I N EXEC UT ION 16: 20: 24; I) 06418 A VA I L AB L E CELL S
K 12 + lNCM + SINC (Xt3 - K)/CH + 4 >*Mt5)tN - K)*M=P
X=(ARCTCCEXPCCP - 1<12)/M) + K - M)tC1/N)/SQRTC1 - CEXPC(P .
- K12)/M) + K - M)t(1/N)t2 »/Mt5*CH + 4) + 1()1'(1/3)
5947 .

TIME USED: 00:00:32 PAGES: 2 12474 16:20:28' 0000 000 0·500

FORMULA ALGOL
C~Jljl;UT

i~rE USED: Ga~OO~~2 rAG~S~ 3 1212~ 00:41:11 0 0 0 0 0 0 0 0 45 0
A oprR o St~G2 25 OCT 6G OG~r~O~3()
993 ~OO~2052 00003011003

AND PA~£S: 50 TV~~~ 3
YS01

C~09 TS01 32 3

STI\TUS nAn .. 25,19~G:ExrERI~rMTnl SYSTEM.
CG2:::
(;.033
o;r}:!
CGJ~
OfJ5g
O[t?:
0083
CC9~
OuO~:
0113
Ou2~
0133
Ouf};:

Ou:;~
ow):!
017;:
01G:
019~
0202
021~
0223
u23~
02£}~

02?~
02c5:
027:
023:
0292
OJ()~

031:
032~

0 tn~OI1S

11002
1103r.}
11C32
11073
111fJO
11233

11353
11r~3~
11f}7G
11503
11537
11573
11027
11()()3
11731
11733
111l }?
117S7
11771
1200$
12030
12062

12114

1211(')
12123

OEG O~.l
rom'" Go r(\')r.1~NflNot' f) fl., 0, c"x;svr.mOl OP1~O?2;
H1Y(G[n u ~ snrucn l~ l1f)l2pl3ot49l5; .
snOYC~'l 0 0.- q1\)G2~Q390C}~Q?!)Q6f)Q7;
OPL~"'/[Ort~l\ um1~:::~)}f'~p/ 1)~] [I NDE}C2' 1 ;
Gr~.>"/[OPERA uO«~-oE~{r VlNf) SQRl ,{lr<C7i~No SUNf)COS] { I NOEx: D];
G~"";C'7'2 "~'lr1 n~~·s ~ r.] ((){ 13.,.,t<) I{H,N}),:~r~1~>5 > -rfJ·",:<)~!~~;:P;

FOR G (- G \II-lUtE ...,(G :::: X=ANV) no
n~GnN .
Dr- G == (A~ANV'OP1'B:t\N'I)=C:I\NV TnZN GO 10 l(ll;

UF G =: (,~·~or21 I\~I\NV)=C:/U~V wHEN GO 10 Q[~ 1 ;
pn~NT(oN0~QUAY~ON); GO TO CON1~fnjE;
l1gG~"QF I\:>~.j{ ullEN A::C/B ELSE O::C/I~; GO 10 CONTUNUE:
l2~G~-~f A~»{ ul~[EN I\::C-O ELSE O=Cq:oA; GO 10 corrv~NUJt;
l3~G'~H'" I\'»}{ 1~1tJ' J\=C~·3 ELSE B::r\~c; GO 10 COiJVH-HJf;
ll~r:G~-~~ I\:">:">}{ Y~1EN f\:C:::3 EtSE O:t\/C; GO YO CON1H~UE;
L~~G1--~f I\,>~j(rnEN A=C?(1/B) ELSE B=LN(C) ILN(A);

GO 10 COrruHJUEg
Q1~G~""I\~=C ~ GO YO CONT rNUE;
Q2~ G1-I\=lN (C) ~ GO 10 CONTI NUt; ,
03~~}:""f\:"!\D{r(C)~ GO TO corrrUNUE;
Q4~~-A=C12; GO TO CONTINur;
Q§i2G~A=S~N(C) ~OS(C)~ GO TO CONTHHjr~
QD~G<!-f\::l\nC1i\N (C/SORY (1 C12)); GO TO CONTH~UE;
(ri~l~}!-I\::!\\lC1rIN(SO\{1(1""Ct2)/C); GO 10 CONT9NU[;
CONTI NUt: : ;
END;

PQONT(G)3 PQINT(CEtlS);
ENO;

BEGHl Ei{ECUTDON OD:'}1:15; 005529 f\VIHlf\BlE CEllS
i(!:{ARCT«!D{P«P - f('?2)/M) + rc ~ r,1)?(1/N)/SQt11(1 .. (EXP«P

} - [(12)/i',n -} t{ - t(1)1'(1/N)t2»/Mt5:::(f"1 J} l~) -:- {{)1(1/3)
63tH)

T~ME USED: 00=00:42 PAGES: J
GU3 f)() 3 21 lEnD

12124 OD~41:17 0 0 0 0 0 0 0 0 45 0

FORM AL-3-119

\\\\

00:3

FORM AL-3-120 FORMULA ALGOL

FORMULA ALGOL

APPENDIX 8

CURRENT SYSTEM BUGS

May 1, 1967

FORM AL-3-12l

The following is a list of constructions which are currently not

functioning in Formula Algol:

1. Attempting to access a switch with an index which is out of

bounds.' Gives a run error instead of returning as defined in

Algol 60.

2. Recursive class names.

3. A selector using itself within itself through a class name (i.e.,

3RD (IVOWELI) where the code for VOWEL uses the "nTH" selector).

4. "Own" variables.

5. The n»" predicate will not test for subformulae of subscripts

to an array formula or parameters to a procedure formula; schema

will, however.

6. "SUBS" in either array, procedure, assignment or conditional

formula.

7. A construction of the form:

F» •.• OF(B) ...

where B is of the form:

BOOLEAN PROCEDURE B: FORM X:

G» ••• OF(B)

8. Cannot pass switches as parameters.

9. Real arrays are not stored into properly if the right hand side

is only a variable, not an expression.

e.g. A[I] ~X;

A[I] ~ X+O;

does not work (stores logic)

works

FORM AL-3-122 FORMULA ALGOL

10. Logic Arrays are always accessed arithmetically.

11. A procedure which has the form of a compound statement is

treated as a block in the declaration of labels.

12. Switches may neither be forward refe'renced nor recursively

ref~renced.

13. Print routine will not print incomplete chain.

PROCEDURE P(••• ,L), SYMBOL L; 'L' is called by name

PRINT(. •• , (., LJ); ~ incomplete chain

Inasmuch as this is now a nonrecoverable error, caution should

be exercised to avoid using this construction.

14. In the EVAL operation, the formulae which are substituted are

not evaluated in themselves, but only in combination with the

rest of the formula. Thus, if '3+4' is one of the substituted

values, it will not be reduced.

15. The identity of atomic formulae does not follow the outlines of

block structure. They act as though they were all declared

globally.

16. A multiple assignment statement for a description list is not

allowed.

17. In a procedure, A t B does not work unless A and B are either

not local to any procedures or local to the same procedure.

18. SYMBOL and FORM variables which are formal parameters of a

procedure cannot .be dotted.

19. The construction

S ~ (if B then C else D) + E

will not work if C is an arithmetic expression, but D is a

FORMULA ALGOL

number which is to be ext,racted from a list or formula

structure. Reversing C and D fails also.

The construction

FOR I ~ 1 STEP 1 UNTIL EVAL F DO S;

fails for the same reasons.

FORM AL-3-121

FORM AL-3-124 FORMULA ALGOL

[5J

FORMULA ALGOL FORM AL-3-125

REFERENCES

Naur, P. et.a1., "Revised Report on Algorithmic Language ALGOL 60,"
Communications of the ACM, Vol. ,p. 1-17, (January 1963).

Per1is, A. J. and Iturri8ga, R., "An Extension to ALGOL for
Manipulating Formulae," Communications of the ACM, Vol. 7, p. 127,
(February 1964).

Fierst, J. W., Ed., Algol-20, A LanguAge Manual, Carnegie Institute
of Technology, 1965.

Iturriaga, R., Standish, T. A., Krutar, R. A., Earley, J. C., The
Implementation of Formula Algol in FSL, Carnegie Institute of
Technology, 1965 ..

Yngve, V. H., COMIT Programmers Reference Manual, The M.I.T. Press,
(September 1961).

Iturriaga, R., Standish, T. A., Krutar, R. A., and Earley, J. C.,
"Techniques and Advantages of Using the Formal Compiler Writing
System FSL to Implement a Formula Algol Compiler," Proceedings
Spring Joint Computer Conference 1966, Spartan Books.

Per1is, A. J., Iturriaga, R., and Standish, T. A., A Definition of
Formula Algol, Carnegie Institute of Technology, 1966.

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125

