
HYDRA/C.mmp
An Experimental Computer System

McGraw-Hill Computer Science Series

Allen: Anatomy of LISP
Bell and Newell: Computer Structures: Readings and Examples
Donovan: Systems Programming
Feigenbaum and Feldman: Computers and Thought
Gear: Computer Organization and Programming
Givone: Introduction to Switching Circuit Theory
Goodman and Hedetniemi: Introduction to the Design and Analysis of Algorithms
Hamacher, Vranesic, and Zaky: Computer Organization
Hamming: Introduction to Applied Numerical Analysis
Hayes: Computer Architecture and Organization
Hellerman: Digital Computer System Principles
HeUerman and Conroy: Computer System Performance
Kain: Automata Theory: Machines and Languages
Katzan: Microprogramming Primer
Kohavi: Switching and Finite Automate Theory
Liu: Elements of Discrete Mathematics
Liu: Introduction to Combinatorial Mathematics
MacEwen: Introduction to Computer Systems: Using the PDP-ll and Pascal
Madnick and Donovan: Operating Systems
Manna: Mathematical Theory of Computation
Newman and Sproull: Principles of Interactive Computer Graphics
Nilsson: Problem-Solving Methods in Artificial Intelligence
Rice: Matrix Computations and Mathematical Software
Rosen: Programming Systems and Languages
Salton: Automatic Information Organization and Retrieval

Stone: Introduction to Computer Organization and Data Structures
Stone and Siewiorek: Introduction to Computer Organization and Data Structures:

PDP-ll Edition

Tonge and Feldman: Computing: An Introduction to Procedures and Procedure­
Followers

Tremblay and Bunt: An Introduction to Computer Science: An Algorithmic Approach
Tremblay and Manohar: Discrete Mathematical Structures with Applications to

Computer Science
Tremblay and Sorenson: An Introduction to Data Structures with Applications
Tucker: Programming Languages
Watson: Timesharing System Design Concepts
Wiederhold: Database Design
Winston: The Psychology of Computer Vision

McGraw-Hill Advanced Computer Science Series

Davis and Lenat: Knowledged-Based Systems in Artificial Intelligence
Feigenbaum and Feldman: Computers and Thought
Kogge: The Architecture of Pipelined Computers
Lindsay, Buchanan, Feigenbaum, and Lederberg: Applications of Artificial Intelligence

for Organic Chemistry: The Dendral Project
Nilsson: Problem-Solving Methods in Artificial Intelligence
Watson: Timesharing System Design Concepts
Winston: The Psychology of Computer Vision
Wulf, Levin, and Harbison: HydraIC.mmp: An Experimental Computer System

HYDRA/C.mmp
An Experimental Computer System

William A. Wulf
Carnegie-Mellon University

Roy Levin
Xerox Palo Alto Research Center

Samuel P. Harbison
Carnegie-Mellon University

McGraw-Hili Book Company
New York St. Louis San Francisco Auckland Bogota Hamburg

Johannesburg London Madrid Mexico Montreal New Delhi
Panama Paris Sao Paulo Singapore Sydney Tokyo Toronto

This book was set in Times Roman by the authors. The editors were
Diane D. Heiberg and Madelaine Eichberg; the production supervisor was
Dominick Petrellese. The drawings were done by J & R Services, Inc.
Fairfield Graphics was printer and binder.

HYDRA/C.mmp
An Experimental Computer System

Copyright © 1981 by McGraw-Hill, Inc. All rights reserved. Printed in the United
States of America. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher.

1 2 3 4 5 6 7 8 9 0 FGFG 8 9 8 7 6 5 4 3 2 1 0

Library of Congress Cataloging in Publication Data

Wulf, William Allan.
HYDRA/C.mmp, an experimental computer system.

(McGraw-Hill advanced computer science series)
Bibliography: p.
Includes index.
1. HYDRA/C.mmp (Computer system) I. Levin, Roy,

joint author. II. Harbison, Samuel P., joint author.
III. Title. IV. Series.
QA76.6.W 84 001.64 80-18424
ISBN 0-07-072120-3

To designers and builders
oj real programming systems

CONTENTS

Preface xv

I Background and Hardware 1

1 Introduction 3

2 C.mmp 9

2-1 Structure 9
2-1.1 Processors 10
2-1.2 Shared Memory and Address Translation 14
2-1.3 The Interprocessor Bus 16

2-2 The Actual C.mmp Configuration 17
2-3 Implementation Features 19

2-3.1 The Crosspoint Switch 19
2-3.2 Processor Modifications 22
2-3.3 Extensions for Error Detection 23
2-3.4 Caches 23
2-3.5 The Interprocessor Bus 24
2-3.6 Peripherals 24

2-4 Technology and Costs 25
2-5 Hardware Performance 25
2-6 Retrospective 27

II The System Design 29

3 The Hydra Philosophy 31

3-1 Achieving the Goal 32
3-2 Protection 34
3-3 Policy IMechanism Separation 35
3-4 An Aside on Data Abstraction 37
3-5 Types and Resources 38
3-6 Parallelism 40
3-7 Summary of the goal 41
3-8 Further Reading 41

ix

x CONTENTS

4 Fundamental Concepts 43

4-1 Objects 44
4-2 Types 45
4-3 Capabilities 46
4-4 Representation of Objects 47
4-5 The Local Name Space 49
4-6 Procedures 51
4-7 Processes 52
4-8 Procedures and Access Rights 52
4-9 Templates and the Merge Operation 53
4-10 The Call Mechanism and Rights Checking 55
4-11 A Note on Implementation 55
4-12 Protection vs. Flexibility 58
4-13 Retrospective 58
4-14 Further Readings 60

5 Kernel Facilities 63

5-1 Notation 63
5-2 Kernel Rights 65
5-3 Kernel Operations 68

5-3.1 Informational KalIs 70
5-3.2 Generic KalIs 71
5-3.3 KalIs for Creating Objects 73
5-3.4 The Call Mechanism 74
5-3.5 GST KalIs 77

5-4 Kernel Subsystems 78
5-5 A Complete Example 79

5-5.1 The Programming Environment 80
5-5.2 Programming Subsystems 80
5-5.3 CreateBoxSubsystem 82
5-5.4 Deposit 85
5-5.5 Withdraw 86
5-5.6 Using the Subsystem 86
5-5.7 Some Design and Implementation Issues 86

5-6 Retrospective 88
5-7 Further Readings 89

6 The Message System 91

6-1 Overview of the Message System 91
6-2 An Example: Data Base Management 93
6-3 Ports 95
6-4 Connections 96
6-5 Messages 97
6-6 Operations on Messages 98

6-7 A View of the Reply Mechanism
6-8 Retrospective
6-9 Further Readings

III The System in Use

7 Using the Protection Mechanisms

7-1 Kernel Rights
7-2 The Mutual Suspicion Problem
7 -3 The ~1odification Problem
7 -4 The Conservation Problem
7 -5 The Confinement Problem
7 -6 The Initialization Problem

17-7 Retrospective
7 -8 Further Readings

8 A File System

8-1 Files and Subfiles
8-2 Operations on Files

8-2.1 File Operations
8-2.2 Subfile Operations
8-2.3 File I/O

8-3 Implemented Subfiles
8-4 Protection
8-5 Retrospective

9 A Network Control Program

9-1 The Problem
9-2 The Hydra NCP

9-2.1 IMP-Host Communication
9-2.2 Host-Host Communication
9-2.3 Connection Management

9-3 Retrospective

10 A User-level Operating System

10-1 Anatomy of the User-Level Operating System
10-1.1 Connecting to the System
10-1.2 Logging In
10-1.3 The Command Language
10-1.4 Logging out
10-1.5 Subsystem interactions

10-2 The Job System
10-3 Reliability Mechanisms
10-4 Other Subsystems

10-4.1 Directory and Catalogue

CONTENTS xi

101
102
104

105

107

108
109
11A
llV

112
113
115
116
117

119

·120
122
122
123
123
124
124
126

129

129
131
131
133
134
135

139

141
141
142
144
144
145
146
147
148
148

xii CONTENTS

10-4.2 Device Allocation System 148
10-4.3 Fork 148
10-4.4 Commands 149
10-4.5 SYSMON 149

10-5 Retrospective 149

IV The System Implementation 151

11 The Object Store 153

11-1 A Virtual Memory System 153
11-1.1 The Representation of Objects and Capabilities 154
11-1.2 Mapping Capabilities to Objects 156

11-2 Storage Management in the GST 157
11-2.1 Active GST Maintenance 157
11-2.2 Passive GST Maintenance 158

11-3 Mechanisms for Reliability 159
11-4 Retrospective 160

12 Scheduling and Synchronization 163

12-1 Scheduling Parameters
12-2 Process and Policy Objects
12-3 Synchronization Mechanisms
12-4 Implementation
12-5 Retrospective

13 Paging

13-1 The User's View of Paging
13-2 The Working Set and Scheduling
13-3 Implementation

13-3.1 Page Replacement Policy
13-4 Retrospective

14 Input/Output

14-1 The Hardware Environment
14-2 The User's View of 110
14-3 Implementation

14-3.1 Interprocessor interrupts
14-3.2 DMA Transfers
14-3.3 Error Recovery

14-4 Kernel 110
14-5 Retrospective

15 Error Recovery

15-1 Validation Mechanisms
15-2 Fault-Tolerant Mechanisms

164
167
171
174
184

187

188
190
191
193
194

195

195
196
198
200
200
201
202
203

207

208
208

15-3 Detection Mechanisms
15-4 Error Diagnosis
15-5 Recovery Mechanisms
15-6 Autorestart
15-7 Retrospective

V Measurements and Evaluation

16 Experimental Measurements

16-1 Performance Iv1easurement Tools

CONTENTS xiii

209
210
211
212
213

217

219

220
16-1.1 The Hardware Monitor 221
16-1.2 The Kernel Tracer 223
16-1.3 The Snapshot Taker 228
16-1.4 Hercules: The Script Driver 229

16-2 Experiments and Results 230
16-2.1 Oleinick's Rootfinder Experiment 230
16-2.2 Baudet's Relaxation Experiment 234
16-2.3 Oleinick's HARPY Experiment 237
16-2.4 Marathe's Memory Interference Experiment 239
16-2.5 McGehearty's Memory Contention Experiment 241
16-2.6 Marathe's Lock Contention Experiment 243
16-2.7 lain's Semaphore and Port Experiment 245
16-2.8 Marathe's Small-Address Effect Experiment 253
16-2.9 The Small Address Effect on HARPY 255
16-2.10 McGehearty's Kall Measurements 255
16-2.11 Size of the Hydra Kernel 260
16-2.12 McGehearty's "Stretch Factor" Experiment 262
16-2.13 Almes' Study of the Active GST 263
16-2.14 Almes' Study of the Passive GST 268

16-3 Retrospective 271

17 Reflections 275

17 -1 Reflection on the Reflections 281

References 283

Index 289

PREFACE

The authors are three of the designer-implementors of Hydra/C.mmp, a
unique computing system. C.mmp is a multiprocessor composed of 16
minicomputers and a large shared memory~ Hydra is the kernel of its
operating system.

Together, C.mmp and Hydra have demonstrated that multiprocessors can
be extremely cost effective~ Hydra/C.mmp does not suffer from most of the
performance problems experienced by some earlier multiprocessor systems.
They have also demonstrated the power and flexibility of what is possibly the
most sophisticated protection facility ever implemented. Finally, they have
provided a vehicle for exploring algorithms and program structures that
exploit asynchronous parallel processing. This book is a detailed examination
of this ambitious system - its structure, its facilities, its usability, and its
performance.

Hydra/C.mmp, like all large systems, was the result of an enormous
number of interrelated decisions. Sorrietimes we knew the design alternatives
and could evaluate them. Sometimes we knew the alternatives, but were
frustrated by a lack of data on which to base an objective choice. More often
than one might suspect, we defaulted decisions because we did not even
appreciate that alternatives existed.

The result is a computing system that works well. It's a system that we
are extremely proud of, even though it is far from perfect. We and our
colleagues have invested a great deal of effort in using it, in measuring it, and
in analyzing its performance-and we have discovered many of its faults. In
his book The Mythical Man-Month [Br0751, Fred Brooks advises building a
system twice, and throwing the first version away. If we had the opportunity
of doing that, we could now correct many of the system's faults. Like many
other designers, however, we did not have that luxury. Instead, we are using
this book to disseminate our experience to other designers and implementors
of computing systems. We believe these people will have some of the same
goals and will face some of the same problems that we did. Thus, we have
two objectives:

xv

xvi PREFACE

• We want to describe the system from both the user's and the
implementor's perspective, detailing the esthetic goals and pragmatic
choices which led us to the final structure .

• We want to provide both objective data and our own subjective evalu­
ations so that our readers may analyze the consequences of our decisions
and appreciate the strengths and weaknesses of the design.

We have tried to organize this book to complement these objectives.
First, we must describe the system, and thus our design decisions. There are
three aspects to this: background information, the external model presented
by the system (the "user's view"), and the internal organization (the
"implementor's view"). Second, we must provide information on which the
reader may base an evaluation. There are also three aspects to this: the
usability of the external model, the performance of the implementation, and
our subjective impressions of what we did right and what we did wrong.
With one exception, we have tried to isolate each of these kinds of infor­
mation into separate chapters~ the exception is that most descriptive chapters
conclude with a "Retrospective" section that captures our subjective reac­
tions. Otherwise, the organization is as follows:

Part I (Chapters 1 and 2) provides background information. It includes a
brief history of the project and a description of the C.mmp hardware
design.

Part II (Chapters 3 to 6) describes the external, user-visible model provided
by Hydra. It begins by stating and amplifying a major goal of Hydra - to
allow operating system facilities to be defined by users. It then goes on
to show how this goal is achieved by an extensible, capability-based
protection mechanism.

Part III (Chapters 7 to 10) illustrates the use of the facilities provided by
Hydra. We really have two objectives for these chapters. One is to
describe some specific, interesting problems and facilities. The other is to
give the reader a "feel" for what it's like to build such facilities and thus,
indirectly, to provide information on which to base a judgment of the
usability of the external model.

Part IV (Chapters 11 to 15) describes the implementation of some of the
major components of the Hydra kernel. Again, our objective is to be
descriptive and thus to record our design and implementation decisions.

Part V (Chapters 16 and 17) returns to evaluation. Chapter 16 summarizes
the results of a number of studies of the performance of the system.
Chapter 17 collects the major reflections from the previous chapters.

In our descriptions, we have not tried to be exhaustive. We have not,
for example, defined all the operations provided by the Hydra kernel.
Neither have we tried to describe all the data structures and algorithms used
throughout the implementation. Instead, we have attempted to present

PREFACE xvii

enough detail so that the reader can project at least one plausible implemen­
tation from the information presented. Our evaluation material is similarly
not exhaustive; it is intended to provide the intuitive "gist" of some actual
experiments and their results. The complete details can be found in the cited
papers, theses, and reports.

Hydra/C.mmp, like most research efforts, contains some innovative ideas
and some re-engineering of existing ones. Even innovative notions, how­
ever, are generally derived from previous work in related areas. It is
impossible for us to acknowledge specifically the source of every technical
idea used or expioited in Hydra. Karner, in ihose chapters in WhICh we
believe our work represents a significant innovation (primarily in Part II), we
have appended a brief survey of related papers from which our work derives
or with which it may be contrasted. In chapters in which' we describe Hydra
facilities or components that are largely manifestations of the "common
wisdom," we have simply cited major or representative works in the relevant
areas.

Acknowledgements

Constructing the hardware and software of a major computing system re­
quires the dedicated effort of many people. The authors have had the
privilege of recording these efforts, but the people who made it possible are:

Ellis Cohen, Bill Corwin, David Jefferson, Tom Lane, and Fred Pollack­
who were our comrades in the design and implementation of Hydra.

Anita Jones-who provided the insight that led to the Hydra protection
structure.

Bill Broadley, Chuck Pierson, and Jim Teter-who were largely responsible
for the detailed hardware design and implementation.

Gordon Bell-who provided some of the initial hardware design concepts,
and was always a goad.

Hank Mashburn and Joe Newcomer-who joined the Hydra team later, but
without whom the system would not have been finished, and would be
neither as robust nor as polished.

Guy Almes, Rick Gumpertz, Pat McGehearty, George Robertson, Peter
Schwarz, and Mary Thompson-who provided user-level subsystems that
made Hydra/C.mmp into a usable system.

Gerard Baudet, Navindra Jain, Madhav Marathe, Don McCracken, and Peter
Oleinick-who provided performance analyses of the system.

Bruce Leverett-who maintained and improved the Bliss/ll compiler for us.
The Defense Advanced Research Projects Agency and the Office of Naval

Research-who provided the funding, and especially Steve Crocker and
Bill Carlson, our DARPA program directors, whose critiques were inci­
sive and challenging.

L *, Production Systems, ZaG, SUS, IUS, ST AROS, Algol68, and the FSAS

xviii PREF ACE

Benchmark Validation-projects whose sympathetic members struggled to
use the system while it was still maturing.

Many others, but especially: Jerry Apperson, David Babcock, D. P. Bhan­
dakar, Kitty Fischer, Sam Fuller, Wayne Gramlich, Peter Hibbard, Paul
Hilfinger, Andy Hisgen, Steve Hobbs, Richard Johnsson, Dan Klein,
Paul Knueven, Phil Karlton, David Lamb, John McCredie, Roger
Needham, Brian Reid, Andy Reiner, Bob Schwanke, Bill Strecker, Rick
Snodgrass, Leland Szewerenko, and Chuck Weinstock. Among these are
application programmers, system programmers, performance evaluators,
proofreaders, users, critics, and above all, friends.

Finally, we would like to acknowledge our debt to the Carnegie-Mellon
University Computer Science Department, one of the few places which
permits, and indeed encourages, the designing and building of realistic
experimental systems.

We don't know how to thank these friends enough. Mere mention here
seems inadequate for those with whom we have shared the predawn light,
hot on the trail of an elusive bug.

Wm. A. Wulf
Roy Levin

Samuel P. Harbison

PART

ONE
BACKGROUND AND HARDWARE

CHAPTER

ONE
INTRODUCTION

This monograph discusses Hydra/C.mmp, an experimental computer system
built by the authors and their colleagues at Carnegie-Mellon University
between 1971 and 1977. C.mmp is a multiprocessor computer, consisting of
up to 16 minicomputers and 32 megabytes of shared memory connected by a
central processor/memory switch. Hydra is the kernel of the operating
system for C.mmp.

The Hydra/C.mmp project began, slowly, in 1970. It grew out of a study
at Carnegie-Mellon University, sponsored by DARPA, l into suitable com­
puters for future research in artificial intelligence. The recommendation of
that study was a multiprocessor, called C.ai [Cai72]. Even though this
machine was never built, the study served to emphasize the potential benefits
of interconnected, small, inexpensive computers. It also emphasized how
little had been published on the design and performance of this kind of
machine.

The potential advantages of multiple computer structures were obvious in
1970; they included improved cost/performance, greater absolute perform­
ance, incremental expansability, and improved reliability and availability. The
singie-chip microprocessor was also on the horizon; although there were
clearly many single-processor applications for these machines, it seemed
possible that there would also be great advantages to multiple microprocessor
systems.

It was also obvious in 1970 that these were only potential advantages.
Whether or not such systems would actually be more cost effective, etc., was
an open question. A number of interconnected computer structures had
been built-in fact, the idea was an old one. There were examples of both
loosely coupled systems (e.g., the IBM ASP) and tightly coupled multipro­
cessors (e.g., the Burroughs 0825), but there wasn't a great deal of data in
the literature about the performance of these systems. The stories that one
heard were quite discouraging, but it was difficult to determine what aspect of
the system design or application programs were responsible for the problems.

It was in this climate that we undertook to study interconnected com­
puter structures, and multiprocessors in particular. We wanted to understand

IThe Defense Advanced Research Projects Agency, DOD

3

4 BACKGROUND AND HARDWARE

what kinds of interconnection structures, what kinds of software structures,
what kinds of user facilities, and what kinds of programming languages and
algorithms would achieve the advantages these systems offered. We realized
that this research would be difficult in several ways. First, we suspected that
no single design would simultaneously achieve all the advantages. Second,
we knew that we would have to build, use, and instrument fairly large,
realistic systems, and measure them running realistic applications in order for
our conclusions to be meaningful. Finally, we knew that we would have to
build more than one system in order to explore and contrast the alternatives.

These realizations determined a research strategy that we have pursued
for nearly a decade. That strategy has been to build a number of multipro­
cessor systems, each exploring a distinct. point in the design space. We began
with a tightly coupled multiprocessor, C.mmp, in 1971. In 1975, with the
bulk of the Hydra/C.mmp development behind us, another group at C-MU
undertook to build Cm*, [Swa77], a more loosely coupled multiprocessor. As
of this writing, a third group is beginning an even more distributed system.
With each system, augmented by numerous efforts elsewhere, we get closer
to our goal of understanding the available alternatives.

This book marks the endpoint of our first major experiment. It is not, in
itself, a complete exploration of all the alternatives in the design space. On
the contrary, it describes only one particular point in that space-an attempt
to optimize the usability and performance of a tightly coupled multiprocessor.
This book attempts to describe and evaluate the system in sufficient detail
that its properties can be related and compared to those of other systems.
The actual task of making those relations and comparisons, however, we
leave to our readers.

There are, of course, two distinct aspects in any computing system,
including Hydra/C.mmp-the hardware and the software. Each of these
poses a set of research issues that has to be addressed relative to the general
goal of understanding multiprocessor systems. The hardware issues are
constrained by the tightly coupled nature of C.mmp and primarily revolve
around avoiding contention for access to the primary memory. The issues of
incremental expansion and reliability were considered secondary, since the
nature of the processor-memory switch places an a priori bound on the
number of processors in the system and constitutes, in principle, a reliability
bottleneck.2

The software issues surrounding the C.mmp hardware are more complex
than those for the hardware for two reasons: (1) there is a much larger set of
possible design choices for the software, and (2) we must be concerned with
"usability," a subjective issue, as well as performance. Some of the software
design decisions are related to the fact that C.mmp is a multiprocessor~ many
are not. A whole class of decisions, for example, follow from using a

2Interestingly, however, the processor-memory switch proved to be the least of c'mmp's
reliability problems, as will be seen in Chapters 2 and 15.

INTRODUCTION 5

particular minicomputer, the PDP-ll, as the system's processing element. A
more consequential class of decisions, however, followed from a chain of
reasoning that went something like this:

We want to learn about the consequences of different designs on the usability and
performance of mUltiprocessors. Unfortunately, each decision we make precludes us from
exploring its alternatives. This is unfortunate, but probably inevitable for the hardware.
Perhaps, however, it is not inevitable for the software, and especially for the facilities
provided by the operating system.

Suppose that we build ~:mly the "kernel" of an operating system and allow most
operating system faciiities to be buiir as user programs-then it wouid be easy to buiid and
experiment with different kinds of facilities. We would learn more this way and would not
lock our users into a single model of how to use C.mmp~ two users, for example, could use
completely different file systems-each tuned to the special needs of that user.

We also want a "general purpose," "multi-access," "time-sharing" system~ only such a
system will allow several experimenters to be developing applications for C.mmp simulta­
neously. The advantages of the user-level definition of operating system facilities would be
lost if all users had to use the same version of a facility just because they happen to be
running at the same moment. Therefore, it must be possible for each user to have a private
and independent version of the facilities.

To satisfy these objectives, we are going to need a pretty clever protection structure.
It's going to have to have at least two properties:

• It will have to be strong enough to allow sensitive facilities, such as the file system, to
be defined and protected by user-level programs.

• It will have to be extensible, so that new kinds of facilities can be created dynamically
and still be covered by the protection system. Simple hierarchical protection, such as
that in Multics [SaI74], will be inappropriate for this system: one cannot say whether one
facility is "more privileged" than another when they are dynamically and independently
created.

Obviously, this protection will have to be enforced by the kernel~ we can't trust that to
user-level programs.

The capability model originally defined by Dennis and Van Horn [Den66], modified a
bit to allow for dynamic extension, does what we need. And, by the way, there are some
interesting protection problems that we can also solve if we use capabilities.

The result was Hydra. Initially motivated by a desire to maximize the
information to be gained from the C.mmp experiment, we were led by this
chain of reasoning to a second and almost independent research goal: the
user-level definition of operating system facilities.

Hydra's first goal, of course, was simply to be a good, general-purpose,
multiprocessor operating system-one which could support many different
users who wished to take advantage of the multiprocessor nature of C.mmp
without incurring undue overhead. (To make the system maximally available
for experimentation, we also felt that it should be a time-sharing system.) It
was not obvious in the beginning that all this could be done; other multipro­
cessor systems had experienced debilitating software overheads and conten­
tion. Thus the research issues derived from this goal were:

1. Can we devise a set of facilities with which users can easily develop and

6 BACKGROUND AND HARDW ARE

measure multiprocessing programs?
2. Can we devise a system structure free of (serious) software overheads

and contention?
3. Can we devise resource allocation and scheduling policies that work well

in a multiprocessor environment?

The second goal of Hydra was to permit essentially all the facilities one
normally associates with an operating system to be defined by user-level
programs-programs without special privileges. Moreover, we wanted to
allow an arbitrary number of such definitions to exist (and be used) simulta­
neously. Except for the initial line of reasoning sketched above, this goal has
nothing to do with multiprocessors. Yet, if one must rank them, we came to
believe that this was the more important goal. The research issues revolving
around it were:

1. What semantic model for the kernel will allow for user extension?
2. How does one provide protection in a system where even such funda­

mental facilities as files, catalogues, and schedulers are provided by
(unprivileged) user programs?

3. What other protection problems can be solved in our model, and at what
cost?

4. How can all this be implemented efficiently?

Roughly midway through the development of Hydra, a third research
goal emerged-reliability. Because of the structure of C.mmp, we initially
believed that the overall system reliability could be expected to be similar to
that of other systems of comparable (total) size and performance. This led us
to an initial design of the Hydra kernel that attended to reliability in a
manner similar to other (uniprocessor) systems. A major lesson from
C.mmp, however, has been that multiprocessors present special reliability
problems as well as special opportunities for solving them. When we finally
learned this lesson, reliability became an explicit goal.

It would be nice to be able to assert that the system emerged full-blown
from this context and those goals. In practice, however, a system of the size
and complexity of HydratC.mmp evolves in a more or less controlled way
over time. The final system, described in the following chapters, existed in a
relatively stable form during 1977-79. To appreciate how it came to have its
final form, one must look at its development history.

The study of C.ai in 1970 provoked discussions of both the overall
research strategy and the possibility of constructing a multiprocessor. These
discussions led, in 1971, to fairly specific proposals for the structure of
C.mmp, including the architecture of the crosspoint switch, the interprocessor
communication facility, and the address mapping hardware. Also during this
period, a number of analytic studies were conducted to determine the
potential memory contention~ these studies resulted in the choice of the

INTRODUCTION 7

16 x 16 configuration and the relative processor and memory speeds.
Also during 1971, an informal group met to discuss the requirements of

an operating system for the machine. It was during these meetings that
Anita Jones proposed the type-extension addition to capability-based protec­
tion that became the core of Hydra's top-level design. In the fall of 1971, an
internal memo was circulated sketching the design in a form quite similar to
the final result.

During 1972, hardware and software development proceeded in parallel.
Because the principal hardware project would be the construction of the
processor-memory switch, the switch design was tested in three prototypes.
The first version was a 1 x 1 switch~ that is, it was capable of connecting only
one processor to one memory module. The second and third prototypes were
2 x 2 and 4 x 4 versions, respectively. The 2 x 2 switch functioned in a test
environment by the middle of 1972 and was debugged with real processors
and memories by the end of that year.

Software development began, using a "simulator" developed on the
PDP-10. This simulator did not attempt to emulate the instruction set of the
PDP-l1-it merely allowed programs written in a dialect of Blissll1 (the
implementation language for Hydra) to be run on what appeared to be a
mUltiprocessing PDP-10. Although its capabilities were limited, the simulator
allowed the first portions of Hydra to be debugged before the C.mmp
hardware was available. Specifically, two components of the Hydra kernel
were actively tested~KMPS (the low-level scheduler) and the GST (the
object/capability system).

In early 1973 the 2 x 2 switch, with two processors and one memory,
became available to the software group. During a two-week period the Hydra
kernel was moved from the PDP-10 simulator and real multiprocessing
began. By May 1973 the 4 x 4 switch was operational, and the Hydra kernel
was executing on a prototype system with two processors and three memory
ports. At this point, the implementation team had expanded to about nine
people, including programmers working on user-level subsystems that were to
run "on top or' Hydra and provide the first traditional operating system
facilities: a command language, a scheduler, and a directory system.

In the next year, the 16 x 16 crosspoint switch became functional (but
not fully populated) and non-kernel software began running on a routine
basis. In the spring of 1975, virtually all the kernel facilities were complete
and a 6-processor, 8-memory hardware configuration was in daily use. By
1977, the 16 x 16 switch was fully populated with processors and memories~
at this point we had 11 PDP-11140 processors, 5 PDP-11120 processors, and
about 2.5 megabytes of primary memory. Most of the eventual I/O devices
were also available at about this time~ it is difficult to pinpoint the exact dates
at which various devices became operational, but the final system included
seven special paging disks, seven moving head disks, a magnetic tape drive,
several DECtapes, a line printer, an interface to the ARPANET, several

8 BACKGROUND AND HARDWARE

special real-time analog input devices, and a connection to a "front end"
terminal server.

The software was also essentially complete by 1977~ most of the user
facilities that were eventually constructed were available for use. Again, it is
difficult to pinpoint precisely when many of these facilities became available,
but they ultimately consisted of:

Two Policy Modules (the user-level schedulers)
A file system
Two text editors,
Two catalogue (directory) systems
A user-level debugger
Language processors for Algol '68, Fortran, C, and L * (a list-oriented system

building language) .
Two command languages
A large number of utilities for logging in and out, spooling printed output,

managing multiple terminals, allocating I/O devices, creating subsystems,
and so on

In 1978 we removed the five PDP-11120 processors from the system­
they were the oldest processors and had become unreliable. The remaining
11 PDP-11/40 processors had been extended with a writable control memory,
and special instructions had been implemented to improve system perform­
ance. To take full advantage of this, Hydra needed all the processors to
execute identical instruction sets.

Since 1976-77, the major efforts on Hydra/C.mmp have been to improve
its reliability and performance. Reliability enhancements included adding
detection and recovery strategies to cover hardware malfunctions. Perform­
ance improvements were guided by several performance evaluation studies
(reported in Chapter 16) which led to a number of enhancements in the
kernel- notably better paging and storage allocation algorithms. Only one
functional improvement was made in the system-the addition of a parallel
garbage collector for removing objects that were no longer referenced.

Throughout the 1974-1979 period there was a continuing effort to de­
velop applications programs and measure their performance. These efforts
produced three kinds of results: new algorithms especially suited to asyn­
chronous multiprocessors, performance improvements in Hydra, and ideas
about suitable programming language features for expressing these algo­
rithms.

In March 1980 C.mmp was removed from operational service to make
room for new projects.

CHAPTER

TWO
C.MMP

C.mmpl is a simple multiprocessor; it consists of a number of equal, asyn­
chronous central processors that share a large primary memory. C.mmp
differs from earlier multiprocessors such as the Burroughs D825, the IBM
360/67, and the Honeywell 645 (Multics) in two essential respects:

1. C.mmp is designed to have up to 16 processors while the Dther computers
usually had no more than 4 processors.

2. C.mmp is constructed from minicomputers rather than the larger (32 to
48 bits/word) processors used in the other systems.

The effective use of C.mmp requires that we find and exploit a much
higher degree of parallelism than was needed by earlier multiprocessors. In
the past few years, the number of existing multiprocessors has increased
significantly to include BBN's Pluribus [Orn75, Kat78] and C-MU's Cm*
[Swa77] systems. However, C.mmp still remains notable for its uniform
structure and support of a general-purpose operating system.

2-1 STRUCTURE

A block diagram of C.mmp is shown in Figure 2-1. At a gross functional
level, C.mmp consists of three parts:

1. Processors, which are modified PDP-11140E minicomputers, each with its
own UNIBUS and various peripheral devices2

2. Shared memory, including the actual memory modules, a 16 . 16 crosspoint
switch, and address relocation hardware on each processor

3. The Interprocessor Bus, which provides interprocessor communication

We will consider each of these parts in more detail.

1"C.mmp" stands for "multi-mini-processor computer"; we pronounce it "See-dot-em-em­
pee." This chapter is a slightly revised version of [FuI78].

2PDP and UNIBUS are trademarks of Digital Equipment Corporation.

9

10 BACKGROUND AND HARDWARE

Primary
memory

U
N

Cache

Reloc­
ation

Crosspoint
switch

(16 X 16)

I nterprocessor bus =:::::;=:±==:::;:::::=±===

Figure 2-1 Block diagram of C.mmp

2-1.1 Processors

Slightly modified
PDP-11/40E minicomputer
with standard peripherals

PDP-II minicomputers, manufactured by the Digital Equipment
Corporation, are the processing elements of C.mmp. PDP-1l120 models
were originally used, and were later replaced by PDP-I1I40Es. The PDP-II
has become sufficiently ubiquitous that a detailed explanation of its archi­
tecture is unnecessary [DEC73].

The PDP-ll/40E minicomputer differs from the standard PDP-ll/40 in
having a IK-word (80 bits/word) writable microstore. This feature was not
strictly required by Hydra, but we expected to achieve significantly better
performance by implementing frequently executed functions in microcode.
The processors on C.mmp are further modified to provide special features for
protection and addressing, including additional address spaces, instruction
protection, and stack protection.

C.MMP 11

Figure 2-2 C.mmp processors

• \%i~~~~,i!,"

.~~r~\:'¥ .. 1t",8":~'~' "" "'·w':', :- ~

Figure 2-3 PDP-11/40E and interprocessor bus interface panel

12 BACKGROUND AND HARDWARE

';'~YN r,! ~~ .
-.;, ;

.. "" "" ~

_ C.mmp

I

Figure 2-4 Crosspoint switch and primary memory

C.MMP 13

Address spaces A PDP-11 program can generate only a I6-bit address, but
the UNIBUS supports an I8-bit address. We therefore implemented two
"space bits" in the' processor's Program Status (PS) register; the value of
these bits is concatinated to the high-order end of the user's 16 bit address to
form the 18 bit UNIBUS address. The setting of the space bits determines in
which address space we are executing. Hydra defines '11 '-space to be kernel
space; 'OO'-space is user space; 'IO'-space is used for mapping addresses during
I/O; and '01 '-space is used for special applications.

All protection at the hardware level is controlled by the address spaces,
so we were careful to ensure that user programs could not change the PS
space bits. There are three possible ways to alter the PS, and we have
secured each one:

1. A hardware interrupt causes new values for the PS and PC (Program
Counter) registers to be fetched from fixed addresses. We modified the
processors so that these fixed addresses are located in kernel space, where
they are unreachable by users. (The same solution was applied to the
software trap instructions, TRAP, EMT, BKT, and lOT.)

2. "Return from interrupt or trap" instructions, RTI and RTT, fetch new PS
and PC values from the top of the stack. Except when we are executing
in kernel space, we force these instructions to trap to the operating
system, which will simulate the instructions after verifying that the PS and
PC are "safe."

3. The PS register is itself addressable and hence may be written like any
memory word. However, its address is in kernel space, and so is
protected.

Instruction set modifications The HALT, WAIT, RESET, BKT, R TT, and
R TI instructions were made illegal when executing in any but kernel space.
They cause a trap to Hydra, which will reflect the error in a standard way to
the user (in the first three cases) or will validate and simulate the instruction
(in the case of BKT, RTI and RTT).

Stack protection The PDP-II has several addressing modes which facilitate
managing a stack, and both programming and hardware convention dictate
the use of a standard stack area for interrupt processing, subroutine calls, and
parameter passing. This stack area is pointed to by PDP-II register 6, which
is also called the stack pointer register, or just SP

The stack introduces some problems in switching address spaces, since
the stacking of the old (PS,PC) at interrupt time occurs in the old (e.g., user)
space while the unstacking by R TI or R TT occurs in the new (kernel) space.
Taking the simplest solution for a PDP-I1I20,3 we decided to force all

3Although C.mmp was ultimately composed of PDP-I1/40E computers, many early design
decisions were made to deal with the PDP-l 1120 processors available at the start of the project.

14 BACKGROUND AND HARDWARE

address spaces to use the same stack. We do this by establishing the
convention that the low-order SK bytes of each address space are to be used
for the stack and by constructing the relocation registers so that the stack
page register in each space must hold the same value. (The detailed
operation of the relocation registers is discussed below.) Additional modifi­
cations force the SP register to be "well-behaved" when executing in user
space: any attempt to store a value in this register which would not be a legal
stack address is prohibited. Having the kernel and the user share the same
stack makes changing address spaces easy and allows users to pass arguments
to the kernel simply and efficiently.

A programmable stack underflow register is used by the operating system
to prevent users from accessing data belonging to their callers or to the
operating system. A fixed stack limit further restricts the stack and defines an
area in the lower portion of the stack page which can be used for the
communication of global information between the kernel and the user.4

2-1.2 Shared Memory and Address Translation

What is functionally thought of as "shared memory" is actually implemented
in three pieces: a number of off-the-shelf memory modules, a central
crosspoint switch, and individual address translation units on each processor.

The crosspoint switch directs single-word transfers between the memory
subunits and the processors, and up to 16 simultaneous accesses to memory
are possible if all 16 processors request words in different memory subunits.
Each of the 256 processor/memory crosspoints can be enabled or disabled
either manually (from a front panel) or under program control (by setting a
flip-flop addressable from a UNIBUS). This allows either Hydra or human
operators to remove a faulty processor or memory module or to partition the
system into two smaller multiprocessors.

Probably the greatest problem in building a large computing system from
minicomputers is their small address space [Wu17Sl. On C.mmp we must be
able to address several million bytes of primary memory from processors
which can generate only an IS-bit address. We have already discussed how
the processors divide up the UNIBUS address into four spaces~ for address
translation, these spaces are further divided into SK-byte segments called
pages, S pages per space, or 32 pages for the total IS-bit UNIBUS address.
Shared memory, with its 25-bit address, can therefore contain up to 4,096
pages. Address translation fundamentally consists of mapping the 32 (virtual)
UNIBUS pages to the 4,096 (real) shared memory pages.

C.mmp's address translation mechanism is different from other PDP-II
memory management techniques in three ways:

4PDP-ll stacks grow downward, from high addresses to low ones. Therefore the stack
underflow register contains the highest address in the current user's stack, and the stack limit
value is a low address.

C.MMP 15

1. C.mmp maps from (virtual) UNIBUS addresses to (real) shared memory
addresses, whereas other PDP-lIs map from (virtual) processor addresses
to (real) UNIBUS addresses.

2. C.mmp maps addresses generated by peripheral devices; other PDP-II s
do not.

3. C.mmp has pages of fixed size, while other PDP-lIs allow pages to be of
variable size.

7 3 13
PS I I I I I Program

word I I [I I I I address
I I --------.l 4 12 t

0

I I I
UNIBUS

Bank 00 1 address

7 2 3 13
0 L..J I

~
I

Bank 01 1 I
I
I

Relocation registers 7 I 0
1 I

Bank 10 I

7 i
0
1

Bank 11
5
6
7 ,

Primary
memory

12 13
address

Figure 2-5 Address translation in C.mmp

The address translation process is shown in Figure 2-5.5 Thirty of the 32
UNIBUS pages have associated relocation registers, whose format is shown in
Figure 2-6. The low-order 13 bits of the UNIBUS address are concatenated
with 12 bits from the relocation register indexed by the high-order 5 bits of
the UNIBUS address. The resulting 25-bit address is sent to the crosspoint
switch and there selects a byte or word of shared memory, depending on the
type of access.

Two UNIBUS pages (in kernel space) have no associated relocation
register, and hence addresses in those pages remain untranslated. The first
page addresses the small 8K-byte memory local to each processor, and the

5The two missing registers leave room for the processor's local memory and for the device
register page. Four of the 30 registers are for the stack pages and are wired together so as to act
as one.

16 BACKGROUND AND HARDWARE

second is left for the processor and device registers implemented by the
PDP-ll and its peripheral devices. (The relocation registers themselves are
addressed in this page.)

4

I I I I
I I I I

I I I I
I I I I

12

Page-frame number

Nonexistent memory I I Cacheable
Read-only Written-into ("dirty")

Figure 2-6 Format of the relocation registers

Each relocation register also contains a field of control and status bits, as
shown in Figure 2-6. The non-existent memory bit can be set by the kernel to
prevent access to that portion of the virtual address space. Any attempt to
reference memory through a relocation register with this bit set will cause a
trap. This permits the system to place a small user job in the machine
without allocating a full 64K-byte address space. The write-protect bit, when
set, permits read cycles to proceed through the register but blocks write
cycles. This feature can be used to guarantee the integrity of code pages.
The written-into bit (or "dirty" bit) in a register is set to '1' by any write cycle
through that register. This mechanism is used by Hydra to avoid updating on
secondary storage a page that has not been altered. The cacheable bit is used
in conjunction with the processor cache to indicate that the page may be
buffered. (The cache design is discussed in more detail later in this chapter.)

2-1.3 The Interprocessor Bus

The Interprocessor Bus provides a symmetric communication mechanism that
allows any processor to invoke any of several control functions on any other
processor or set of processors. Each processor has an interface to the Bus
which resembles a normal peripheral device with several control registers
(Figure 2-7). Each interface implements:

1. A programmable interval timer with 16-microsecond resolution
2. Access to the system's 56-bit time-of-day clock
3. Six inter processor control registers

The interval timer consists of a time count register and a control register.
Hydra can store a value into the count register, which will then be decre­
mented every 16 microseconds as long as the "run bit" is set in the control
register. Additionally, the timer can generate an interrupt when the count

C.MMP 17

I nterval timer I nterprocessor control Master clock

Halt Clock[O]

Start Clock[1]

Continue Clock[2]

Interrupt (4) Clock[3]

Interrupt (6)

Interrupt (7)

Figure 2-7 Interprocessor Bus interface registers

register reaches zero. Because the interrupt might not be serviced right away,
the count register keeps decrementing so that precise timings can be ob­
tained. Should the count be decremented to zero a second time before the
interrupt is serviced, a status bit in the control register is set to indicate
counter wrap-around.

The 56-bit time-of-day clock, also known as the "master" or "global"
clock, has a resolution of 4 microseconds and is an important resource for
Hydra. The Interprocessor Bus controller continuously broadcasts this clock
value on part of the Bus. When a processor wishes to know the time, it
reads the first of four registers in the interface, causing the interface to load
all four registers from the Interprocessor Bus. The processor can then read
the remaining three registers without fear of the value changing. The
interface extends the clock value in the registers to 64 bits by adding the
processor number and a "system version number," thus providing a unique
value on all processors.

Each bus interface implements six control registers corresponding to the
functions "halt," "start," "continue," "interrupt-at-Ievel-4," "interrupt-at­
level-6," and "interrupt-at-Ievel-7." (See Figure 2-7.) If a processor sets bit i
in one of these registers, the function associated with that register is invoked
on the ith processor. Thus, for instance, a processor can halt the entire
system by storing a word of all ones into the "halt" register.

Like the crosspoint switch, the Interprocessor Bus can be configured
manually to partition the system. The 256 possible interconnections are
controlled by 16 switches on each of the 16 processors. (A processor's
switches indicate which other processors it may interrupt.)

2-2 THE ACTUAL C.MMP CONFIGURATION

Tables 2-1 and 2-2 detail the actual configuration of C.mmp in 1979: 11
processors, 2.6 million bytes of shared memory, 768K bytes of swapping
storage, 700M bytes of secondary storage, and a normal complement of other
peripheral devices.

C.mmp is not an isolated resource. It is connected to both the ARPA-

18 BACKGROUND AND HARDWARE

Table 2-1 C.mmp processor configuration

Processor

o

1 - 5
6
7
8
9
10
11
12
13
14
15

Table 2-2

Memory unit

0
I
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Peripherals

Operator's console, DECtape controller (2 drives),
Line printer, 40M-byte disk controller (4 drives),
Line frequency clock

(Processors not present)
Magtape controller (1 drive), Swapping disk
ARPANET interface, 2 swapping disks
Swapping disk
Swapping disk
Front end interface
Special applications
Swapping disk
(None)
130M -byte disk controller (3 drives)
Special applications

C.mmp memory configuration

Technology Size

(Unused)
Core 64K x 18
Core 64K x 18
Core 64K x 18
Core 64K x 18
MOS 128K x 18
Core 64K x 18
Core 64K x 18
MOS 128K x 18
MOS 128K x 18
MOS 128Kx18
MOS 128K x 18
Core 64K x 18
Core 64K x 18
Core 64K x 18
Core 64K x 18

NET [Hea75] and to a front-end terminal multiplexor, as shown in Figure
2-8. The ARPANET provides a reasonably high speed link to each of three
DECsystem-lOs, considerably facilitating software development on C.mmp.
The connection to the front-end multiplexor makes C.mmp immediately
available to over a hundred terminals.

ARPANET

Terminals
and

dial-up lines

Figure 2-8 Interconnection of C.mmp to other computer systems

2-3 IMPLEMENTATION FEATURES

C.MMP 19

~ T
I

Descriptions of computer systems too often fail to point out those construc­
tion details which materially affect the final system structure. We now look
at some of the most important aspects of the implementation of C.mmp. As
a general comment we note first that, with the exception of a few
off-the-shelf components purchased later, C.mmp was built entirely with
1970-1972 technology.

2-3.1 The Crosspoint Switch

The switch is the largest component of C.mmp. Unlike some other cross­
point switches which are distributed in memory (e.g., Pluribus), this one is
located centrally. The central switch requires a larger initial configuration and
implies some non-modularity, but the cost of a complete system is less than a
distributed switch for larger configurations.6 A centralized switch also has
fewer cable delays than a functionally equivalent distributed switch.

The construction of the switch was simplified by building it with only four
basic module types:

6Cable costs are a large component of these switches. The centralized structure requires
only 16 + 16 cables, as opposed to 16 x 16 cables required for a fully connected distributed
switch.

20 BACKGROUND AND HARDWARE

Switching modules
Processor interface modules
Memory control modules
Processor priority resolution modules

Each module is simple enough to be implemented on a single printed circuit
board.

The main processor-memory data paths in the switch are 72 bits wide and
are implemented with the switching modules in a bit-slice fashion. Figure 2-9
shows a single bit-slice of the switch. 16-to-l multiplexors (SN74150s)
implement the 256 crosspoints. Sixteen of the multiplexors are used to
implement the paths from the processors to the memory units, and the other
16 multiplexors are used to implement the return paths from memory to the
processors. The symmetry between the multiplexors forming the forward
and return points allows two switch modules, each consisting of 16 multi­
plexors, to implement the bit slice shown in Figure 2-9. Control of the
multiplexors comes from the processor priority resolution modules. The 144
switch modules needed to construct the data paths in the switch form the
bulk of the logic in the crosspoint switch.

The processor interface module connects the switch to the memory
relocation units on each processor~ it contains the steering logic to partially
decode the address lines and route the memory request to the designated
memory module. This module also sets the memory-to-processor selection
lines in the switch, thus determining which memory the processor will read.
Finally, this module buffers data read from memory, allowing the switch to
overlap the end of a read cycle with the start of the next cycle for another
processor.

The memory control modules are quite straightforward and provide three
important functions:

1. They check the address parity that was generated in the relocation
hardware and report any errors back to the processor.

2. They detect missing portions of memory, so that the physical address
space need not be contiguous within a memory subunit.

3. They communicate with the processor priority resolution modules in order
to generate the timing and control pulses for the actual memory modules.

Within each memory subunit, individual memory modules reside on a central
bus and may be interleaved. Each core memory module consists of two
pages (16K bytes) and is independently driven. Semiconductor modules have
a single driver for their four 64K-byte boards and therefore offer less chance
for interleaving. Core and semiconductor technologies may be mixed within
a subunit, but typically are not.

The processor priority resolution module is the most complex component
in the switch design, maintaining a request buffer whose operation is illus-

To
memories

I

Request

Pc(O)

I
I
I
I

_.J

C.MMP 21

--- From
-+.~+=::.-= switch

----- -- --- control

Figure 2-9 Bit-slice of crosspoint switch data paths

Request
buffer

Set

Complete
-.;....-1------------1 Reset

Pc(l)

Pc(15)

Request
Set

Complete
-.;...-t----------~ Reset

Priority
encoder

Request

Set
Complete

Reset

Figure 2-10 Simplified processor arbitration logic

Enable
selected
crosspoint

trated in Figure 2-10. This module arbitrates between processors that are
simultaneously requesting access to the same memory port and queues those

22 BACKGROUND AND HARDWARE

requests that must ~ait for other requests to complete. The arbitration logic
shown in Figure 2-10 works in the following manner. When processor i
requests access to a particular memory port (as indicated by the value of the
four most significant address bits), it attempts to set bit i of the request
buffer. However, the AND gate in front of the SET input to the buffer
prevents processor i from setting latch i until the request buffer contains all
zeros. When the request buffer is empty all 16 AND gates feeding the SET
inputs of the request buffer are enabled via the OR gate and DELAY shown
at the bottom of the diagram. Now those processors with outstanding
requests will set their corresponding latches in the request buffer. As long as
a single processor is making a request, and sets its corresponding latch, the
column of AND gates will be disabled since the request buffer is no longer
empty. Now the outputs of the 16 latches of the request buffer are fed into a
priority encoder that indicates on four output lines the highest numbered
latch that is set. It is this priority encoder, therefore, that ultimately does the
arbitration. After a processor has been selected and has read or written a
word of memory, the processor asserts its "access complete" line that clears
the processor's latch in the request buffer. The priority encoder now selects
the highest-numbered remaining request. Hence, processors are serviced in
priority order from 15 to 0, and each processor should wait no more than 15
memory cycles before gaining access to memory. The scheduling discipline
induced by the priority resolution modules can be thought of as a
quasi-round-robin discipline.? (Unfortunately, the actual behavior may be
different~ see Section 16-2.5.)

2-3.2 Processor Modifications

The modifications to the processors can be considered to be in two classes:
additions and alterations. For the PDP-1l/40E, only a very small percentage
of the work is in altering existing logic. For instance, the detection and
trapping of reserved instructions in user space requires only the addition of
two ICs and the replacement of two others on the instruction-decode module
of the processor.

The addition of the other features requires that about 30
processor-generated signals be acquired from the backplane of the processor.
Additions to each processor are all contained on one new PDP-ll system
board. (A standard PDP-l 1140 is implemented on five such boards.)

7This discussion of the priority resolution module is a simplification of the actual operation.
In reality, there is also a high-priority input to each latch in the request buffer that circumvents
the column of AND gates. This high-priority feature is intended for very fast 110 devices which
may not be able to tolerate a high level of memory interference during DMA transfers.
Although this feature is exploited by the operating system, its efficacy has never been proved
conclusively.

C.MMP 23

2-3.3 Extensions for Error Detection

The most significant step in overall system error detection was the implemen­
tation of parity bits in shared memory. The relocation hardware computes
parity bits for each byte written to memory and for every address sent to the
memory. To catch common failure modes of "all ones" and "all zeros," we
use even parity on one byte of each data word and odd parity on the other
byte. Address parity is checked by the memory controller on the memory
side of the switch, and data parity is checked on each "read" cycle by the
relocation hardware at the processor. The switch actually has data paths wide
enough for singie-bit error-correcting codes on each data word, but such a
mechanism was never implemented.

The two PDP-ll system boards that implement the memory relocation
logic are also the site of much of the error-detection circuitry. Upon
detection of a switch-related error (parity errors, writing a read-only page,
etc'), the logic causes the processor to take a normal NXM ("non-existent
memory") trap by blocking the acknowledgement signal ("SSYN" in PDP-ll
terminology) from memory. The fact that a trap (rather than an interrupt) is
taken is important, because traps can take effect before the completion of an
instruction. Status bits in a control register allow the software to determine
the actual cause of the error and can cause later errors to be ignored until the
processor's state is recorded. Other exceptional conditions, including stack
underflow, violation of the SP conventions, and attempting to execute an
illegal instruction, cause normal interrupts.

Other error-related mechanisms were added to C.mmp later in response
to observed failures. For instance, the PDP-II's variable-length instructions
and its rich set of addressing modes makes locating the exact source of an
error (e.g., a parity error) difficult. For this reason, we implemented two
tracking registers. The bus address tracking register is latched upon the
occurrence of a switch-detected error (e.g., a data or address parity error) and
thus accurately specifies the UNIBUS address causing the error. The PC
tracking register latches the address of the current instruction under the same
circumstances.

Maintenance functions are also implemented in the relocation hardware,
including the ability to simulate address parity errors and the ability to write
incorrect parity into shared memory.8

2-3.4 Caches

The original design of C.mmp included a IK-word cache on each PDP-II
UNIBUS. As of July 1979 only one cache was installed, and it is not used by

8The tracking registers and maintenance features were implemented in 1978 on the third
(and last) versions of the relocation hardware. They were never completely integrated into
Hydra's error-handling mechanisms.

24 BACKGROUND AND HARDWARE

Hydra. Therefore, we can describe only the intended operation of the caches.
Caches present a potential difficulty for multiprocessor systems because

data shared between processors may be modified in one processor's cache
without the modification being reflected to other processors. We chose to
solve this problem by avoiding it; pages that are both shared and writeable
are never cached. The operating system can designate (via the cacheable bit in
the relocation registers) those pages which are safe to cache. Studies on the
PDP-ll indicate that about 70% of all memory references are to code pages,
which can be read-only and hence cacheable. Stack pages are private to a
process and hence are also cacheable. In addition, the user may explicitly
designate other cacheable pages.

It should be noted that the caches designed for C.mmp do not have to be
fast; their importance lies in their ability to eliminate switch contention by
catching a significant fraction of the memory fetches. This is especially
important because Hydra encourages the sharing of code pages among
cooperating processes, thus inviting significant contention.

2-3.5 The Interprocessor Bus

The Interprocessor Bus controller performs three functions: it implements
and broadcasts the time-of-day clock value discussed above; it generates and
broadcasts the timing pulses that are used by the interval timers in the
interfaces; and it generates and broadcasts the timing and control signals
necessary to time-multiplex the various interprocessor control functions on
the bus. By using a time-sliced function bus, we reduced a potential 1500+
wire requirement to 16 cables of 20 wires each; however, we give up knowing
which processor invoked a function. This is not a significant restriction in
practice.

2-3.6 Peripherals

C.mmp has an extremely high 110 bandwidth; each processor can support
independent DMA transfers from mUltiple devices. Assuming each processor
hosts a device with a transfer rate of 4 JLS per 16-bit word, this amounts to a
potential 110 bandwidth of 64 x 106 bits/sec.9 Hydra exploits this potential by
using a collection of fast disks, distributed over several processors, for
swapping storage.

These fixed-head swapping disks are perhaps worthy of special note.
C.mmp's page size is exactly equal to the capacity of one track on the disk,
and by modifying the controller slightly, this coincidence can be exploited in
such a way that there is no significant rotational latency on disk transfers of

9'fhis assumes a 16-processor system on which the I/O traffic is distributed fairly evenly
over the 16 memory ports to avoid memory contention.

C.MMP 25

exactly one page. Latency is avoided by having the controller start the
transfer at the beginning of the next physical disk block (16 words) and
transferring 8K bytes without track switching. By causing the first transfer to
its correct memory address, and inhibiting the appropriate carry propagation
when incrementing the memory address register, the trasfer will "wrap
around" within its proper 8K memory area. This scheme provides better
service than "shortest-Iatency-time-first" or any of the other scheduling
disciplines that have been developed to optimize the performance of paging
disks with latency.

2-4 TECHNOLOGY AND COSTS

C.mmp is a mixture of off-the-shelf and custom-built hardware. Table 2-3
gives an approximate breakdown of the equipment in terms of complexity
and cost.

The portions of C.mmp built at C-MU use a mixture of TTL and
Schottky TTL technology. ECL was not used because at the time of
C.mmp's construction (1971) ECL did not offer the range of MSI compo­
nents available in TTL. Likewise the large amount of ferrite core memory on
C.mmp is due to the state of MaS memory technology in 1972.

The cost figures given in Table 2-3 are only estimates. The cost for the
PDP-1l/40 and for memory was the purchase price of the equipment when
we bought it. The other hardware was built at C-MU, and the figures given
are our rough estimates of the replication cost in 1975, excluding design and
setup costs.

Using these figures, the total replication cost of a 16-processor C.mmp,
excluding peripherals, is about $500,000. Of this total, about $285,000 is for
the modified processors and relocation hardware, $165,000 is for 2.3 million
bytes of primary memory, and $50,000 is for the crosspoint switch.

2-5 HARDWARE PERFORMANCE

The performance of a computer system cannot always be calculated from the
speed of its components, but for comparison purposes some of C.mmp's vital
statistics are shown in Table 2-4. The processor and memory speeds are
taken from actual measurements on the running system.1° Chapter 16 gives
more data on the performance of the hardware and software.

On a PDP-1l/40, one instruction requires about 2.5 memory references
on the average, so 0.68 million memory references per second translates to

ICT[he processor speed is the average speed of a single processor executing out of a single
memory port with no other processors contending. The memory speeds are averages at a single
memory port with all processors contending on that port.

26 BACKGROUND AND HARDWARE

Table 2-3 C.mmp technology and costs

Part No. boards No.ICs Unit cost

11/40 5 332 $12,000

jJ.store 2 200 $1,300

Pc mods 57 $600

Relocation
Hardware 3 120 $1,500

Crosspoint
Switch $50,000

SWI6 24
P.I.M. 26
M.C.M. 20
P.R.M. 54

I nterprocessor
bus:
Control 2 200 $3,000
Interface 200 $3,000

Memory (core) unit=8K x 18 $1,300

Memory (MOS) unit= 128K x 18 $12,000

Table 2-4 C.mmp hardware performance

Parameter

PDP-I 1/40 execution speed

Memory (core)

Memory (MOS)

130-Mbyte disk

20 and 40-Mbyte disks

Paging disks

Value

0.68 x 106 memory references/second

1.5 x 106 memory references/second

1.7 x 106 memory references/second

2.5 jJ.s/word transfer rate
28 ms average seek
8 ms average latency

7.5 jJ.s/word transfer rate
29 ms average seek
12.5 ms average latency

4.1 jJ.s/word transfer rate
17 ms page read time
34 ms page write-and-verify time

No. in system

II (\6 max)

lIPc

lIPc

I/Pc

144
lIPc
I/Memory unit
I/Memory unit

I/Pc

80

5

about 0.27 MIPS (million instructions per second) for each processor, or
about 3 MIPS for the II-processor configuration and 4.3 MIPS for a full

C.MMP 27

16-processor configuration (with no memory contention). The above figures
are averages. Studies by Oleinick [Ole77] have indicated that individual
processors and memories may vary from this average by as much as 10% (see
Chapter 16). •

2-6 RETROSPECTIVE

If we were to build'C.mmp again we would do a number of things differently.
The hardware designer now has many more options than. were available in
1972, inCluding more powerful processors and a wider range of faster compo­
nents. Still, we have had two chronic complaints about the realization of
C.mmp that are relevant to contemporary design: its 16-bit virtual address
and its disappointing reliability. The problems came largely from two
assumptions we made at the outset which turned out to be wrong:

1. We assumed that large applications would run efficiently on a
multi-mini-processor because large uniprocessor programs could be bro­
ken down into several small concurrent processes.

2. We assumed that we would be able to construct C.mmp easily because we
were using mostly off-the-shelf components with minimal modifications.

The first assumption was wrong; we discovered that large applications
almost invariably want to address large amounts of data, even when they are
decomposed for a multiprocessor. The 16-bit virtual address provided by the
minicomputers simply did not provide enough freedom for manipulating data.
This is not just a matter of efficiency; it seriously affects the ease with which
large programs can be designed to run on C.mmp [Ole77].

The second assumption was correct in principle, but could not withstand
the realities of minicomputer architecture in 1970. We never expected to
have so many problems with our original PDP-ll:

1. The PDP-ll had several original design errors that vastly complicated
hardware debugging. Some of its more complicated instructions did not
always work correctly.

2. With no comprehensive documentation of the PDP-ll other than the
logic diagrams, some subtle points of the implementation were not
discovered until our modifications tickled them.

3. The UNIBUS turned out to be unexpectedly fragile for a device ostensibly
designed to accept a diverse set of peripherals. The UNIBUS has no
parity checking, it is prone to noise, and devices on it cannot be powered
down without affecting it.

For the most part, the C-MU-built portions of C.mmp have performed
well. The crosspoint switch has had very few problems, perhaps because of

28 BACKGROUND AND HARDWARE

the extreme care taken to avoid "glitches" in the design. I I The Interpro­
cessor Bus exhibited unexplained problems when we attempted to run the
master clock at its full 1 jJ.S resolution. Even after slowing down the clock by
a factor of four we observed intermittent periods· during which the clock
values received at a processor were incorrect. Software mechanisms eventu­
ally had to be introduced to validate the clock values, nullifying some of the
expected advantages of the clock to the operating system in the first place.

Many of these problems had indirect effects on the system. The fragility
of the UNIBUS had two effects. First, any reconfiguration of the system that
involves altering a UNIBUS configuration cannot be attempted while the
system is running. This thwarts many approaches to improving system
reliability. Second, because we designed the crosspoint switch to work closely
with the UNIBUS, we left the entire system susceptible to single UNIBUS
failures. A malfunctioning peripheral device interface can "hang" its UNI­
BUS and the entire crosspoint switch. Fortunately, this type of error is rare
except when interfacing new (undebugged) devices.

Finally, the decision to modify the processors as little as possible meant
that any extensive alteration of functionality was impractical. This is one
reason why the address translation mechanism is so rigid, and why the stack
was implemented the way it was (instead of, for instance, making separate
user and kernel stacks).

In spite of these problems, we believe the crosspoint architecture remains
a good basic design for the tightly coupled multiprocessor. 12 Our experience
with C.mmp suggests that in a general-purpose system the ease of software
construction made possible by the underlying symmetry of the hardware
more than compensates for the lack of easy expansion to more processors.
Subsequent chapters describing Hydra's scheduling and error-handling mecha­
nisms will demonstrate how C.mmp's structure may be exploited.

11 Glitch, as used here, is a technical term, referring to the propensity of an arbitration circuit
to remain in a meta-stable intermediate state for more than a prespecified settling time.

12A comprehensive survey of multiprocessors appears in [Ens77l.

PART

TWO
THE SYSTEM DESIGN

CHAPTER

THREE
THE HYDRA PHILOSOPHY

A basic goal of the Hydra design was to permit nearly all the facilities that
one normally associates with an operating system to exist as normal
user-level programs, and in addition, to allow an arbitrary number of
user-level definitions of a single facility to coexist simultaneously. This goal
arose in part from Hydra's position as a vehicle for experimenting with the
C.mmp multiprocessor and in part from a set of attitudes held by the
designers about what constitutes good software design. These attitudes are
partially reflected in the following paragraphs.

Facilities The Hydra host machine, C.mmp, is a multiprocessor. It is not
immediately obvious what facilities are appropriate in such an environment.
On the contrary, one suspects that the "right" facilities (e.g., for debugging a
co!lection of cooperating processes) will be found only after considerable
experience. By allowing these facilities to be provided at the user level (by
unprivileged programs written by ordinary users), one gains considerable
freedom to grow and evolve the system in unanticipated directions.

Extensibility All practical systems evolve under the pressure of usage
patterns and hardware innovation (especially new peripherals). The prolif­
eration of "access methods" in OS/360 and its offspring is a prime example of
evolution under both of these types of pressure. Such evolution is a fact of
life in practical systems~ the original design should anticipate it. By providing
nearly all facilities at the user level, without special privilege or status, Hydra
addresses this problem directly. Adding a new facility consists simply of
providing a user-level program that implements that facility~ the difficulty in
doing so is directly related to the inherent complexity of new facility. It may
be simplified by the prior existence of some facilities, but is never hindered
by them.

Structure Most people now recognize the intimate relation among the
structure of a program, its probability of being correct, and the ease with
which it can be modified. Providing facilities at the user level does not, of
itself, guarantee a well-structured system, but it does assure a uniform
interface between the various pieces of a system. The specific method we

31

32 THE SYSTEM DESIGN

have chosen in Hydra for allowing facilities to be defined at the user level is
strongly related to modern notions of good program structure; we shall have
more to say about this below.

Multiple usage patterns Most operating systems attempt to cater to a
variety of coexisting usage patterns. A simple example appears in systems
whose schedulers employ different strategies for batch, time-sharing, and
real-time jobs. However, there are more subtle cases-once again, the
multiple access methods of OS/360 exemplify the situation. By providing the
ability to define facilities at the user level, one obtains much more freedom
to refine, adapt, tune, and extend these facilities to match a specific appli­
cation.

Our image, then, of the Hydra environment was that there would evolve
a collection of these facilities defined at the user level, possibly with many
that were functionally similar but with different performance properties,
security properties, or whatever. An individual user would select from among
the available facilities, or create new ones where the existing ones were
inappropriate. At any instant we expected to see a large number of users on
the system-each possibly using quite different facilities-but all coexisting
without interference. It seemed to us to be the ideal environment in which
the user might experiment with multiprocessing.

3-1 ACHIEVING THE GOAL

These are, of course, all "motherhood" statements. Whether or not it is in
fact desirable to build operating system facilities as user programs depends
strongly upon the specific mechanisms used to achieve the goal- their cost
and convenience. For the moment let's assume that the goal is desirable and
examine the implications of the goal on these mechanisms.

The central goal suggests that at the heart of the system one should build
only basic, or "kernel," mechanisms-a set from which arbitrary user-visible
operating system facilities can be conveniently, flexibly, efficiently, reliably,
and quickly constructed. Moreover, lest the flexibility be constrained at any
instant, (1) the kernel mechanisms should not preempt important decisions,
and (2) it should be possible for an arbitrary number of systems created from
these mechanisms to coexist simultaneously.

This is obviously a tall order. Nevertheless, in the remainder of this
chapter we shall assume that such a set of kernel mechanisms exists. Hydra
is an attempt to provide just such a set, and subsequent chapters detail its
properties. Whether or not the particular Hydra mechanisms satisfy these
criteria and whether or not they form the best set are, of course, debatable.
The reader is encouraged to answer these questions for himself. We can,
however, help to provide some insight into the answers; to that end, the

THE HYDRA PHILOSOPHY 33

remainder of this chapter addresses the rationale for the mechanisms, the
remainder of Part II deals with the mechanisms in general terms, and the
remainder of the book gives examples of their use.

We can easily rationalize two properties that the kernel mechanisms must
possess: (I) protection and (2) minimal policy. Consider for the moment
two common descriptions of the purpose of an operating system:

1. An operating system provides a "virtual machine" which is more hospi­
table than the base hardware for two reasons: (a) It makes available
ceitain "virtual resources" such as files, directories, virtual memory, etc.,
that are absent from the base hardware. (b) It masks certain unpleasant
hardware features-such as interrupts-from the user and maps them into
more acceptable ones, such as synchronization primitives.

2. An operating system manages the physical resources of the computer,
such as primary memory, processor, channels, etc., so as to improve their
utilization.

Even though these descriptions are quite different, they are not
incompatible-they merely express two quite different views of a single entity
with multiple goals.

From the first of these descriptions we see that the user must be able to
view some collection of facilities as a virtual machine-a closed environment
in which he can program. Facilities (or users) outside the collection should
not be able to perturb the machine's behavior. That is, the user program
must be able to behave as though it were running in isolation (except for
possible differences in real-time behavior). Thus, a uniform requirement of
all multi-user operating systems is that they provide protection. In our case,
since operating systems are themselves user programs, the only candidate for
providing the necessary protection is the kernel. Moreover, the protection
provided must be both strong enough and flexible enough to permit user
programs to implement operating system functions.

From the second description we can derive a negative requirement on the
kernel mechanisms: they should not impose a policy on the way in which
physical resources are used. If the kernel mechanisms were to do this they
would preempt the possibility of specifying these at the user level-and hence
preclude an important dimension of operating system variation. As we shall
discuss below, there are practical problems with allowing arbitrary policy
decisions to be made by user-level programs; these difficulties force us to a
compromise goal: the separation of policy from mechanism. l

IBrinch Hansen [Bri70, Bri71] has made cogent arguments for this separation.

34 THE SYSTEM DESIGN

3-2 PROTECTION

The most prevalent views of protection in operating systems are quite narrow.
Often, for example, it is presumed that

• There are only a small, fixed number of kinds of things that need to be
protected, e.g., "file" and "memory."

• There are only a small, fixed number of kinds of access to the protected
objects, e.g., "read," "write," and "execute."

• The right to perform a specific access to an object is a property of the
"user" (a person) making the request.

None of these assumptions are appropriate for the Hydra goals.
We will discuss the Hydra protection mechanism and its use later in this

chapter as well as later in the book. For the moment, however, will simply
note some of its properties, contrast them with the more traditional views,
and point out how these properties support the Hydra goals.

First, Hydra does not predefine a fixed collection of things that can be
protected. Instead, it defines a general notion of a "typed object." One type of
object, for example, might be a file~ another might be a page of memory~
another might be a catalog. New types of objects can be defined at will, and
each of these types can be protected. This is essential to the system's goal~
since we wish to permit users to define new operating system facilities-a
new type of file system, for example-the protection mechanism must extend
to cover these new facilities in the same way as it covers the old ones.

Second, Hydra does not predefine a fixed collection of access rights.
Instead, it defines a general notion of "applying an operation to an object":
the right to apply an operation is the fundamental protection check in the
system. Since the concept of an "operation" is type-specific, a totally different
set of operations-and hence protection rights-can be associated with dif­
ferent types of objects. For example, "read" and "write" are indeed defined
notions for both files and memory pages~ however, the notion of "execute"
is not defined for files-and the notions of read and write may not be defined
for "programs," which are a different type from "files." Furthermore,
"catalogs" have the additional concept of "rename."

Finally, the "right" to perform an access (an operation) is not necessarily
a property of the (human) user in Hydra. Rather, it is a property of the
program that is executing on the user's behalf.2 The right to call such a
program, naturally, is at least initially inherited from the user, but associating
access rights with the program itself has several important advantages. In
effect, it allows the program to perform operations on behalf of the user on
objects to which the user does not have direct access. In a conventional

2The details of this are a good deal more subtle than this overview can hope to cover, but
we will have more to say in subsequent chapters.

THE HYDRA PHILOSOPHY 35

system the user calls upon the operating system to perform these kinds of
operations~ for example, he invokes the operating system to update his file
directory because he is not allowed to write into it himself. In Hydra, this
notion is extended to all object types. The user may, for example, create a
special data base and programs to manipulate it. He may then allow other
users to invoke these programs, thus updating the data bases, while never
permitting direct access to the files (or whatever) on which the data is stored.

3-3 POLiCY /lViECHANiSlVi SEPARATiON

To enable the construction of operating system facilities as normal user
programs, we must allow user-level control of the policies that determine the
utilization of the system's resources. The resources of primary interest are
those required by every program: processor cycles, memory, and
input/output. The policies that govern the allocation of these resources are a
major dimension of operating system variability. As many of us know from
bitter experience, the policies provided in extant operating systems, which are
claimed to work well and behave fairly "on the average," often fail to do so
in the special cases important to us. A goal of Hydra is to allow these policies
to be defined by user-level (i.e., unprivileged) programs, thus making them
more amenable to adaptation and tuning than they would be if buried deep in
the system's kernel. Moreover, to permit each application to tune the system
to its own needs, we wish to allow mUltiple policies governing the same class
of resource to exist simultaneously.

At this point, practicality intrudes~ in fact, it intrudes in several ways.
First, we must assume that any user-level program contains bugs and may
even be malevolent. We therefore cannot allow any single user or application
to "commandeer" the system to the detriment of others. By implication we
must prevent programs that define policies direct access to hardware or data
that could be (mis)used to destroy another program. That is, such programs
must execute in a protected environment.3 Further, we must not permit
these programs to monopolize any resource, whether they do so intentionally
or not. We must assure some "fairness" among competing policies. In
addition, we must recognize that many policy decisions must be made rapidly
(e.g., fast scheduling decisions are essential in order to achieve reasonable
response). Given that user-level policy programs must execute in their own
protection domains and that domain switching is costly, it is impractical to
invoke such programs each time a policy decision is required.

Thus, we compromise. We give this compromise a name: the principle
of policy/mechanism separation. Policies are (by definition) encoded in
user-level software that is external to the kernel. Mechanisms are provided

30bviously, all programs must be denied such liberties, but policy-making programs
frequently require access to information that might normally be considered privileged.

36 THE SYSTEM DESIGN

in the kernel to implement these policies. In this context we use the phrase
"kernel mechanisms" to mean two distinct but related things.

In the first instance we mean simply a safe (protected) analog of an
unsafe hardware operation. Thus, for example, we never allow a user
program to manipulate directly input/output device control registers. To do
so would allow that user program, possibly inadvertently, to overwrite an
arbitrary portion of memory. We do, on the other hand, provide a mech­
anism, a kernel operation, whose only effect is to manipulate such device
control registers after appropriate validation.4 Mechanisms such as this exist
purely to insulate the system and other users from a misbehaving policy
program.

In the second instance a kernel mechanism may actually be a paramet­
rized policy. We shall deal with several examples of such mechanisms
subsequently, but it is convenient to introduce one here to illustrate the
point. A portion of the kernel called KMPS ("Kernel Multi-Programming
System") provides primitive scheduling and synchronization facilities. KMPS
uses a simple, priority-driven scheduling scheme; processes at the same
priority level are treated in a "round-robin" fashion, and preemption of a
process may occur either when a higher-priority process becomes feasible
(unblocked) or at the end of a time-slice.

This description of the KMPS scheduling strategy may sound familiar; it
is similar to those employed in many other systems. There is an important
difference, however. The priority of a process, its time-slice, and other
parameters (to be discussed later) are determined by a user-level policy
program associated with the process, called a Policy Module, or PM Several
PMs can exist simultaneously, each controlling a different set of processes.

At intervals specified by the PM (and at other times to be described
later), KMPS relinquishes control of each process to the PM associated with
that process. At such points the PM may elect to alter the process' behavior
as it chooses. Possible actions include changing the process' scheduling
parameters and returning it to KMPS, or removing the process' pages from
core and making the space available to other programs.

Mechanisms such as KMPS, which are really parametrized policies,
provide the means by which overall, long-term policies can be enforced by
user-level software, while at the same time avoiding the need to invoke a
ponderous domain-switching mechanism for decisions that must be made
rapidly. Such mechanisms also provide a point at which fairness among
competing policies can be enforced. KMPS, for example, could attempt to
provide each PM with an equitable share of the processing power of the
machine.

4To perform such an operation the program must have appropriate access rights. Although
it is too soon to be able to explain in detail, it is interesting to note that the Hydra protection
system is used uniformly for both virtual resources such as files and physical resources such as
1/0 devices.

THE HYDRA PHILOSOPHY 37

3-4 AN ASIDE ON DATA ABSTRACTION

The view that the kernel mechanisms should provide protection and should
not define resource policies does not of itself provide sufficient information
on which to base a design; it merely specifies some properties that the design
must have. To develop an appropriate basis, we choose to turn away from
traditional operating system design considerations and to look instead at some
of the more recent results of "structured programming."

It is unfortunate that the term "structured programming" has too often
been equated with "goto-iess programming" or "top-down design." Far more
central to the issue is the concept of "abstraction." The whole rationale for
structured programming is that programs, even "simple" ones, are often too
complex for human beings to comprehend. A classical technique that
humans use when faced with complexity is to abstract from it-to ignore the
details of a problem and deal instead with only its "essence." A voiding the
"goto" and using top-down design are both abstraction techniques-they both
provide a means for localizing the implementation of an abstract concept
within a well-defined region of the text of a program. There are, however,
other techniques for abstraction in programs, and some are much more
powerful than either of these.

Several authors have noted the close relation between many program­
ming abstractions and the concept of "type" as it appears in programming
languages [DDH74, Bri75, Wu1741. This has led to considerable interest in
ways in which the programmer might express these abstractions in a program
and, in particular, what sort of language constructs support this "abstract data
type" definition. Specifically, the concept of a "class" in Simula '67 [Dah66]
and its extension to "monitors" [Hoa74] seems especially well suited to
expressing these abstractions. A class in Simula defines an abstract data type
by specifying both an underlying storage structure and a set of operations that
operate on it. Thus, for example, the abstract concept of a set-oj-integers
might be introduced into a language by a definition of the form

type intset =
begin

var a: array[J:l00} of integer, n: integer;
op union(u, v: intset) returns intset;

begin ... end;
op intersect(u, v: intset) returns intset;

begin ... end;
end;

(We have chosen a neutral syntax whose meaning should be clear; it is not
Simula '67 or any other specific language.) Such a definition is intended to
describe how any particular variable of type intset is to be represented and

38 THE SYSTEM DESIGN

how operations on this type of variable are to be performed. Thus the
declaration

var a: array[J:1 OO} of integer, n:integer;

defines how storage is to be allocated for each variable of type intset. The
operator definitions, e.g., that for union, define how such variables are
manipulated. An important property of such definitions is that all the
representational information is localized and "hidden" in the type definition;
the only way to manipulate variables of a defined type is by invoking the
operations defined in the type definition.
After having made such a definition, the programmer may write such things
as declarations of variables of type intset and statements that operate on these
sets, e.g.,

var a,b,c: intset;
a : = union(b,c)

It is important to note that the newly introduced type, intset, can be given the
same status as the predefined types (e.g., integer); one can declare variables
of the new type and perform operations with essentially the same syntax as is
used for the predefined ones. The ability to deal with the new types in this
way aids our human capacity to deal with them as abstract ideas.

This style of programming captures an essential aspect of abstraction: it
effectively separates the application of the abstract "primitives" from the
details of their implementation. The programmer, working at a level where
intsets are an appropriate medium of expression, need never concern himself
with the details of)low they are represented or manipulated. Conversely, the
implementor of the realization of the type intset may freely alter that
realization (to improve efficiency, for example) without concerning himself
with the details of how it is used, as long as he preserves the functional
properties of the operations.

I t is not our purpose here to advocate a particular approach to structuring
programs. However, the brief description given above is the model on which
Hydra is based. Except for a slight change in terminology, extensions to
provide protection, and a more dynamic definition of types than is common
in programming languages, the Hydra kernel mechanisms were chosen to
support this model.

3-5 TYPES AND RESOURCES

Earlier we used the phrase "virtual resources" to describe some of the
facilities provided by an operating system (e.g., files). The meaning of this
phrase is essentially identical to that of "type," or "abstract data type," as

THE HYDRA PHILOSOPHY 39

used in the immediately preceding discussion. A virtual resource (e.g., file,
directory, semaphore, etc,) is an abstract concept with a set of operations
defined on it (e.g., for files: read, write, append, open, close, etc,).
Moreover, the virtual resource has some realization in terms of more
primitive concepts (e.g., disk segments). Just as with structured programs,
we want the user of the file system to be unconcerned with the details of its
implementation. Conversely, we want the implementor of the file system to
focus on the issues related to that specific realization without concern for the
details of the idiosyncratic use of a particular file.

Without yet concerning ourselves with the details of the Hydra mecha­
nisms, we proceed by analogy with the programming language model and list
properties that these mechanisms must have (the first two are copied from
the previous discussion for completeness):

Protection
Policy Imechanism separation
Creation of new kinds of virtual resources (new types)
Specification of the representation of, and the operations on, a virtual

resource
Creation of instances of a resource
Application of operations to an instance of a resource
Certain "generic" operations, e.g., "storing," that are applicable to all re­

sources

We shall often use the phrase subsystem when speaking of operating
system facilities; it will mean essentially the same thing "type definition"
meant in the previous discussion. That is, a subsystem is a collection of
information that specifies the representation of a virtual resource (type) and
the nature of the implementation of various operations on that type of
resource. All knowledge about these representational and operational details
are contained and "hidden" within the subsystem. In those cases where
resource allocation (policy) issues are involved, these policies are also embed­
ded in the subsystem. Global knowledge about a specific type of virtual
resource is limited to that supplied in the external specifications of the
subsystem that implements that resource. Manipulation of the representation
of a resource is restricted by the protection mechanism to only that code that
defines the operations within a subsystem.

At this point we can pose a question, which we purposely avoided
previously, about the protection structure of the system: "What should be
protected, and against what?" This apparently simple question is complicated
by two issues: one endemic to operating systems; the other arising from the
primary goal of Hydra.

First, we recognize that sharing is as important as protection. That is, we
don't really want complete isolation of the virtual machines seen by various
users. Users want to share selectively files, pages, directories, semaphores,

40 THE SYSTEM DESIGN

or any of the other virtual resources provided to them. This is true in any
"computing utility" but especially so in a multiprocessor, where a single user
will wish to divide his job into parallel cooperating processes and share
resources between these processes. Second, because we wish to provide
virtual resources through user-level programs, we don't know a priori what
kinds of resources will exist. Hence we don't know what sorts of things will
need to be protected or what sorts of access should be granted (or prohibited)
to them.

Both of these questions can be answered in terms of the data abstraction,
or "abstract data type," model discussed above. The objects to be protected
are instances of virtual resources. We shall insist that only the operations
defined to operate on a type may manipulate the representation of objects of
that type. In addition, the protection mechanism provides the means of
selectively granting or prohibiting application of these type-specific operations
to particular objects of the type. Thus, for example, suppose type "file," with
associated operations "read," "write," "append," "open," etc., has been
defined. The protection mechanism will allow application of, for example, the
"append" operation to specific instances of files to be selectively granted or
inhibited.

3-6 PARALLELISM

Obviously, C.mmp provides the opportunity for true parallelism, and thus a
major goal of Hydra was to exploit this possibility. There are two aspects to
this goal: to exploit parallelism within the Hydra kernel itself, and to provide
sufficient facilities that users can write asynchronous parallel algorithms.

With respect to Hydra itself, there are several consequences of the goal.
For example, Hydra was written to operate in a distributed fashion-that is, it
is not a master-slave system. Any processor can execute the kernel and, in
fact, an arbitrary number of them can execute it simultaneously. Further,
resources such as the processors are treated as an anonymous pool; user
processes can execute on any processor and, in fact, may switch from
processor to processor many times during their lifetime. The kernel hides
most asymmetries of the hardware, such as the binding of specific devices to
specific processors; the user process does not need to be executing on the
same processor that controls the 1/0 devices it uses. In order to maximize
the potential parallelism in the kernel, Hydra places locks on data structures,
not on the code that accesses them; thus, parallel execution of the same code
on different data is common.

With respect to facilities for user-level parallelism, we took a conservative
approach. As in other areas, we provided (only) a minimal set of facilities
that we believed were adequate as a basis for user-level extension, and we
attempted to encourage such extension. We felt that we did not then know

THE HYDRA PHILOSOPHY 41

enough to dictate a particular style of parallel program structuring; even now,
after considerably more experience both with C.mmp and other multipro­
cessors, our attitude on this has not changed. Thus, we provided a rather
traditional notion of processes together with facilities for sharing of arbitrary
objects and basic synchronization and communication.

3-7 SUMMARY OF THE GOAL

Before proceeding to more details of Hydra, let's briefly recap the centra! goa!
and its external manifestation. The primary goal is to permit conventional
operating system facilities to be built as normal user-level programs. To do
so we conceive of an operating system as partitioned into several pieces. One
distinguished piece is called the kernel, whose basic function is to support the
existence of the remaining pieces. The kernel provides a uniform protection
mechanism and avoids arbitrary policy decisions. The remaining pieces-and
there may be an arbitrary number of them-are called subsystems. Each
subsystem defines the representation of a virtual resource and the implemen­
tation of operations on instances of that resource. It also is responsible for all
policy decisions relative to that resource.

It is crucial to note that this model makes no assumptions about the
number or kind of resources provided by the subsystems. It is not implicit in
the data abstraction model that there be one (or one hundred) subsystems
that implement a "file"; in fact, it's not necessary, from a theoretical point of
view, that there be a file system at all! Nor is there any implicit grouping of
subsystems. The "operating system" as seen by any particular user is merely
a collection of subsystems that implement the facilities that the user needs.
The collection might be the same as that for another user, partially over­
lapping with it, or totally disjoint. It might include a single file system, or
several if the different properties of the files suggest this is appropriate.

This, then, is the goal of Hydra. We hope that at this point the reader
has a general impression of the system's aims. We realize the reader may be
at a loss for concrete information. Perhaps he may also feel disquieted about
the cost and usability of all the flexibility implicit in this discussion. The
following chapters will attempt to provide the information and data on which
a rational evaluation of Hydra can be based.

3-8 FURTHER READING

The philosophy described in this chapter did not evolve in a vacuum; it was
contemporaneous with much of the work on programming methodology and
modern "data abstraction" languages. These areas remain subjects of vigo­
rous investigation, with new results appearing continually. At the time Hydra

42 THE SYSTEM DESIGN

was being designed, however, the principal influences were the emerging
notions of modular decomposition and structured programming, as reflected
in [Par71, Par72a, Par72b] and [DDH74]. The only language supporting
these notions directly was Simula [Dah68]. Programming languages, program
verification, and formal specification all evolved from essentially this same
context. CLU [Lis77], Alphard [Wu176], and most recently Ada [Ich79], are
good examples of the results of language research~ [Lon75] provides a good
survey of the direction and results in verification~ [Gut78] and [Gut80]
provide surveys of the status of formal specifications.

Although in contemporary research, languages, specification, and verifi­
cation seem more closely allied to each other than to operating systems, it is
interesting to observe their reconvergence. The interested reader may wish
to consider the interaction of abstract data types and protection [1on761, and
the use of verification in building secure systems [Wa179].

CHAPTER

FOUR
FUNDAMENT AL CONCEPTS

In this and the following chapter we will attempt to make the philosophy
espoused in the last chapter more concrete. First, we will discuss most of the
basic concepts on which Hydra is based and define the technical meaning of
these concepts within the Hydra framework~ then, in the next chapter, we
will discuss the actual mechanisms available to the Hydra user.

In some respects the facilities of Hydra are quite different from those of
more traditional operating systems, and this has presented some problems to
people initially trying to learn about the system. This problem is, unfortu­
nately, aggravated by the apparently circular nature of the definition of the
most basic notions in the system -and a firm grasp of the notions is
prerequisite to an understanding of the system.

Fortunately, in large measure the concepts of concern are simply the
analog, in the operating system domain, of familiar concepts in programming
languages-variables, types, subroutines, and so on. Indeed, one reasonable
intuitive image of Hydra is that it is just the "run time support system" for a
data abstraction language of the type discussed in the last chapter. Thus, as
both a gentler introduction to these concepts and to help avoid the apparent
circularity, we will first present' a short lexicon of Hydra terms and draw
analogies between them and their analogs from programming languages. The
subsequent sections will then give a more precise, if somewhat terse, defini­
tion.

Object. The analog of a variable in programming languages~ an object is the
abstraction of a typed storage cell. It has a "value" or "state." Often the
representation of an object will be constructed from a number of other
objects; in this sense an object strongly resembles a "record" in a
programming language.

Type. The analog of the notion of type in programming languages; the major
difference is that typed objects, and hence types, persist longer than a
single program execution. As in a programming language, the type of an
object determines which operations may legally be applied to it (that is,
type checking is performed.)

Capability. The analog of a reference, or pOinter in programming languages~ the
major difference is that a capability, in addition to pointing to an object,

43

44 THE SYSTEM DESIGN

contains protection information.
Local name space (LNS). The analog of an activation record in programming

language implementations. A local name space, or LNS, contains
(capabilities for) the local objects (i.e., "variables") of a procedure
invocation. Thus, an LNS defines the "environment" of a procedure
invocation; only those objects in the LNS, or reachable from it via a path
of capabilities (with appropriate rights), are accessible to the invocation.

Procedure. The analog of a procedure, or subroutine, in programming languages.
As in programming languages, we make a distinction between a proce­
dure and its invocation. A procedure is a static entity; the invocation of a
procedure is an LNS and is the executable entity. Procedures are
reentrant and may be recursive.

Templates. The analog of a formal parameter specification in a subroutine; the
major difference is that all parameter checking is done during program
execution, so a full description of the formal specification must be
available at procedure call time. The template is this run-time specifi­
cation.

The Call mechanism. The analog of a subroutine call in programming languages.
The primary difference is that a Hydra Call operation involves a
(complete) change in the protection domain. By contrast, programming
languages typically provide only the protection enforced by their scope
rules.

Although there are many similarities between these notions and their analogs
in programming languages, and one can exploit that similarity to aid initial
understanding, one must also be cautious. The concepts are not identical.
Most of the differences arise from the fact that objects maintained by an
operating system are likely to be "long-lived"; that is, they are likely to
persist longer than the program that created them. By contrast, the variables
of a single Algol- or Pascal-like program do not exist beyond its execution. l

The implications of this difference are significant, since it means that other
information, such as the type, must also persist and cannot be confused with
other types from other programs.

4-1 OBJECTS

The abstraction of an instance of a resource, whether physical or virtual, is
called an object. An object, for the present, may be thought of as a triple:

(unique-name, type, representation)

Every object has a unique-name, a name that differs from that of any

1 Languages like LISP and APL also retain long-lived objects in their "work space" and thus
are more like operating systems in this respect.

FUNDAMENT AL CONCEPTS 45

other extant object, any object that existed in the past, or will exist in the
future.2

The type of an object defines the nature of the resource represented by
the object. In general many objects will be of the same type, each being a
specific instance of that kind of resource. Thus, the type attribute partitions
the universe of extant objects into a set of equivalence classes. Some
examples of types might be FILE, SEQUENTIALFILE, RANDOMFILE (various
kinds of files), PAGE, CATALOGUE, PROCESS, SEMAPHORE, and so on.

The representation of an object contains its actual information content,
e.g., a sequence of bytes in the case of an ASCII file. We shall have more to
say about the representation of an object later.

4-2 TYPES

It should be clear from the preceding chapter that we do not know a pnon
what types of objects will exist. In fact we wish to permit, indeed encourage,
the dynamic creation of new types. In addition, we do not know how long a
particular object will exist and, hence, how long objects of its type will exist.
Therefore, this section describes how an object's type attribute is represented,
and, in particular, how this representation caters to the potential for
long-lived objects and types.

The type attribute of an object is in fact the unique-name of another
object-this latter object serves as a distinguished representative of the
equivalence class of objects with the same type. Of course this representative
object must itself have a type attribute; we demand that this be the special
unique-name which we will call $Type$.3 Initially the system requires a single
distinguished object whose name and type are both $ Type$. Figure 4-1
illustrates a situation in which three types (FILE, PAGE, and SEMAPHORE) have
been defined.

To create a new object, a user invokes a kernel-defined operation, Create,
and specifies the object's type. (The precise mechanism will be discussed in
the next chapter.) A user may create a whole new type of object by invoking
Create and specifying that the type of the new object is to be $ Type$. The
object returned will serve as the representative of the new class of resources.

As mentioned above, this particular mechanism for representing types is

2The unique-name of an object is a 64-bit value, obtained from the master clock (see
Chapter 2).

3We are using this dollar-sign notation to emphasize that the type names are actually unique
64-bit integers. Each type also has a readable print name, but this is in all cases for convenience
only. Two types may have the same print name, but they can never have the same type name.
In most cases we will use the print names of object types, in small capitals for emphasis, such as
TYPE or SEMAPHORE, when no confusion will result. The reader is urged to keep this important
distinction in mind.

46 THE SYSTEM DESIGN

'File' Type object

Name: $File$
Type: $Type$
Printname: File

'Page' Type object

Name: $Page$
Type: $Type$
Printname: Page

Page x

Name: X
Type: $File$

'Semaphore' Type object

Semaphore y

Name: Y
Type: $Page$

Figure 4-1 Type hierarchy

Semaphore z

Name: Z
Type: $Semaphore$

only one of several which might have been used. Its details are far less
important than the property that new types may be created at will. An
additional desirable consequence of this technique will, however, be discussed
later (see TypeCall in Section 5-3.4).

4-3 CAPABILITIES

A capability is a pair

(unique-name, allowed-rights)

Intuitively, a capability consists of a reference to an object together with a list
of access rights (allowed rights) to that object. For now, access rights may be
considered to he a list of the operations that the possessor of the capability
may legally apPlY to the object named by the capability.

Hydra departs from other capability-based protection systems by dividing
the set of access rights into two disjoint subsets: the kernel rights and the
auxiliary rights. The kernel rights apply to the generic (type-independent)
operations (e.g., Create) provided by the kernel. The auxiliary rights apply to
the operations defined on a particular object type by a user-level
Hsubsystem. "

It should be noted that the representations of capabilities are manipulated
only by the kernel, and all objects must be accessed through capabilities. It is
impossible to Hforge" a capability, or to gain access to an object without

FUNDAMENT AL CONCEPTS 47

having a capability for it. (In particular, knowing the unique-name of an
object will not help.)

4-4 REPRESENTATION OF OBJECTS

The concept of an object should be powerful enough that users may define
new types of objects for new kinds of resources. To do this, one must be
able to store various information in the object. (For example, a file object
may contain the disk address of the contents of the file.)

In many capability-based operating systems a capability is an attribute of
executors only (e.g., processes). In such systems the set of capabilities
possessed by an executor defines its protection domain. While this is also
true in Hydra, we have generalized the notion of objects and capabilities in an
important direction. Capabilities are not attributes of executors alone; any
object may contain capabilities for other objects. (Among other things this
permits us to close the circle and define executors as merely a particular type
of object.) The most important practical implication of this generalization is
that new object types (new kinds of resources) may be defined in terms of
existing types.

By analogy with programming languages, a Hydra object is a record. It is
a heterogeneous collection of simple variables (data) and pointers (capabilities
for other objects). For implementation reasons, the representation of an
object is divided into two parts: a data-part and a C-list (i.e., a capability list).
The data-part of an object is merely a block of storage that can hold
subsystem-specified data. The kernel capability mechanism places no inter­
pretation on this data, although presumably the subsystem that defines the
object type does.4 The C-list of an object contains an ordered set of capabil­
ities as defined above. Thus any object may reference other objects. Either
the data-part or C-list of an object may be empty.

It should be noted that the C-list of an object allows one to construct a
general directed graph structure. The objects themselves are the nodes in
this graph. The capabilities are the arcs; each arc is labeled with the access
rights permitted to an object when it is referenced via that particular arc. We
will often exploit this analogy with graph structures to draw diagrams repre­
senting a collection of objects. As an example, consider Figure 4-2, in which
objects are shown as rectangular boxes, the top of which denotes the
data-part and the bottom of which denotes the C-list; the objects pointed to
by the capabilities of the C-list are indicated by the directed arrows coming
from the C-list.

4A few object types are defined by the kernel; most of these will be discussed later. For
these, the defining subsystem is a part of the kernel, and the kernel does place an interpretation
on the contents of the data-part.

48 THE SYSTEM DESIGN

x
A

2

3
c

D

-empty-

1 -empty- 2
E

2

~ 3....-__ --l

Figure 4-2 Example object graph

Example Let's consider a simple example of how the representation of an
object can be used. The basic Hydra system does not provide the notion of a
"directory" or "catalogue"; suppose that we wished to introduce this notion.
(Alternatively, suppose that the notion had been defined by someone else,
but their definition was unsatisfactory for our purposes and we therefore
wished to create an alternative definition.) The function of a directory is to
map external character string names, e.g., "XYZ," onto specific objects.
More accurately in Hydra, a directory maps external names into references to
objects, that is, to capabilities.

A natural representation of directories suggests itself. First we create a
new object type, DIRECTORY. Then we build a number of user-level
programs to provide the usual kinds of directory manipulation operations,
e.g., "search," "insert," "delete," "rename," and so on. (We must defer
discussing how the programs are created. For the present the important thing
is that these programs must share certain assumptions about the structure of
DIRECTORY objects.)

We might choose any of several representations for directories, but many
of them will involve storing the external names in the data-part of the
directory object and the associated capabilities in its C-list. A few possibilities
are listed below.

1. If we are willing to restrict external names to a fixed length, say n bytes,
then the simplest representational scheme is to store the capabilities in
C-list slots 1 ,2,3,... and store the name corresponding to the ith capability
in bytes (i-l)- n+ 1 through in of the data-part.

2. The previous scheme seems to imply a linear scan of the data-part in
order to implement the "search" operation; it could be easily modified to
use a hash table or a discrimination net in the data-part.

FUNDAMENT AL CONCEPTS 49

3. If the restriction to fixed-length names is considered unacceptable, a more
elaborate data-part structure is necessary. Specifically, the one-to-one
correspondence between C-list slots and displacements in the data-part no
longer holds and information must be recorded with each name which
specifies the associated C-list slot number.

4. If a ~~delete" operation is provided, some scheme for allocation of free
storage is needed, both for the data-part and for slots in the C-list. If
there is a 1-1 correspondence between the C-list slots and displacements
in the data-part, a single mechanism will suffice. If not, separate space
management schemes must be implemented.

Before leaving the example, we would like to point out a property of
these schemes that might not be obvious from this brief description. The
directory systems of most operating systems map external names into refer­
ences to files. Indeed, often the coupling is so tight that no distinction is
made between the "file system" and the directory system - there is no
opportunity for the user to name anything other than files. That restriction is
not true here. This directory system maps external names to capabilities,
which may reference files, but may also reference pages, semaphores, or any
other type of object. Specifically then, it may map to capabilities for other
directories. Hence, the familiar "tree-structured directory" is naturally ac­
commodated by this structure.

4-5 THE LOCAL NAME SPACE

Up to this point we have described a relatively static view of Hydra and
avoided a precise definition of the execution environment of programs. In
this and the following sections we will begin to discuss the execution
environment, or domain, of a program and how it changes dynamically.

LNS (for "local name space") is one of the object types recognized and
maintained by Hydra. An LNS object defines the instantaneous protection
domain of a program. That is, the C-list of an LNS contains capabilities for
objects that a program may reference. In fact, all the objects referenced by a
program must be referenced through its LNS. However, since the objects
referenced by the capabilities in an LNS may themselves contain capabilities
for objects which contain capabilities, etc., the set of objects available to a
program is the transitive closure of the capabilities found in its LNS. As will
be discussed later, the formation of this closure is restricted by the access
rights in the relevant capabilities, but it should be clear that any object not in
the closure is inaccessible.

In any capability-based protection scheme it is of paramount importance
that the capabilities provide the only mechanism for gaining access to objects.
In particular, knowledge of the unique-name for an object does not grant
access to the object. To enforce this essential property within Hydra, all

50 THE SYSTEM DESIGN

objects are named by a path rooted in the current LNS of a program.
To illustrate this point, refer to Figure 4-3, in which we have added two

LNSs to the object structure of Figure 4-2. Each object in the figure can be
named in various ways, depending on the LNS which originates the refer­
ence. Table 4-1 lists the possible reference forms. Note that because the
capability graph is not strictly tree-structured there can be several path names
for the same object from the same LNS.

X: LNS

2

3

Y: LNS

E

2 ~
Figure 4-3 Objects in the domain of two LNSs

Table 4-1 Naming objects from two LNSs

Object

A

B

c

D

£

Path name from X

Path(l) (or just '1 ')

PathO) (or just '3')

Path(2) or Path(2,2, .. .)
or Path(1,l)
or PathO,1,2,2, .. J

Path(I,l,l) or Path(2,l)
or Path(2,1,2,2, .. J

PathO,2)

Path name from Y

Cannot be named

Path(2) (or just '2')

Path(l) or Path(I,2)
or Path(I ,2,2, .. .)

PathO,l)
or Path(1,l,2,2, .. .)

Path(2,2)

D

1 -empty-

2

31-------l

Paths are also used to name capabilities as well as objects, depending on
the context in which they are used. Thus, while Path(I,I) and Path(2) both

FUNDAMENTAL CONCEPTS 51

name object C from LNS X, the paths name two different capabilities for C.
This is important because the capabilities may have different sets of access
rights for C.

Note that the unique-name of an object is never used to name it. The
term "LNS" was originally chosen to emphasize its function as a mapping
from local names in a single program to globally unique names.

4-6 PROCEDURES

PROCEDURE is another type of object defined by the kernel; it serves as a
schematic from which an LNS is formed when the procedure is "called." The
procedure is simply an abstraction of the intuitive notion of procedure or
subroutine; that is, a procedure has some "code" and some "data" associated
with it. It may be called and may accept parameters. It is reentrant and
potentially recursive. Hydra's procedures go beyond this simple model by
including protection facilities, as we shall see shortly.5 To simplify for a
moment, the Hydra procedure call (Call) is a kernel function that accepts a
capability for a procedure, creates an LNS object, copies the C-list of the
procedure into the C-list of the LNS, binds parameters, and transfers control
to the code of the LNS (procedure). The "old," or "calling," LNS is stacked
so that the complementary kernel function (Return) can destroy the new
LNS and return control to the old one.

Thus procedures provide the initial state of an LNS, or equivalently, an
initial protection domain. Note that a complete change in execution envi­
ronment may occur when a procedure is called; in particular, an LNS does
not automatically inherit access to any of its caller's environment. This fact is
the basis of the observation that Hydra does not provide a hierarchical
protection structure; although one may implement a hierarchy if one chooses,
the system does not force subsystems to be more privileged than their callers.

The distinction between a procedure and an LNS is an important one,
even though it is frequently convenient to blur the difference (thus we may
speak of the "currently executing procedure" when we really mean an LNS
created from that procedure). An LNS may change during the course of its
execution, for example by creating new objects and storing capabilities for
them into its C-list. The procedure from which the LNS was created is not
affected by the execution; thus procedures are potentially reentrant and

5The term "procedure" in this context has unfortunately misled some people, suggesting to
them a small unit of computation. Since the software implementation imposes a considerable
overhead, a Hydra procedure is impractical for implementing simple subroutines such as sine or
cosine. Although we can imagine hardware/firmware support that would make it practical for
even the smallest subroutines to be protected procedures, with the present implementation a
Hydra procedure is used only when a change in protection domain is desirable or required.

52 THE SYSTEM DESIGN

recursive.6

4-7 PROCESSES

PRBCESS is another kernel-defined object type. As in most systems, a process
is the smallest independent unit which may be scheduled for asynchronous
execution. Technically, a process is simply a stack of LNS objects, the top one
of which defines the current protection domain of the process. The stack is
altered by calls and returns, as described above.

A PROCESS object also contains information which controls various policy
decisions (e.g., scheduling), but we shall defer explanation of this aspect of
processes until Chapter 12.

4-8 PROCEDURES AND ACCESS RIGHTS

Up to this point we have been intentionally vague about the precise meaning
of the words "access right"; in fact we have not defined what it means to
"access" an object. The remainder of the chapter will make these notions
more precise, but we will motivate that presentation here.

Procedures might be used for any of several reasons, some of which are
quite pedestrian. The natural way, for example, to implement a compiler in
the Hydra context is as a procedure. Such a procedure would need to be
called with, for example, a capability for FILE object containing the source
text to be compiled. Although there may be many useful procedures such as
compilers, loaders, etc., they are not the kind with which we are presently
concerned.

A more important use of the procedure is in implementing the notion of
an abstract type definition, which was introduced at the beginning of this
chapter. Recalling that discussion, we recognize that two things are required
in such a type definition: a definition of the representation of the new type
and a definition of the operations on instances of the type. The data-part and
C-list of objects provide the primitive tools for representing new virtual
resources. Procedures are used to define the operations.

In Hydra, the things to be protected are objects, and they are to be
protected against the unauthorized application of operations. Using the
current terminology, protection is enforced at procedure invocation time.
The protection mechanism validates that it is legal to call this particular
procedure with the given actual parameter capabilities.

A "subsystem" is, in fact, nothing more than a collection of procedures,

6To ensure reentrancy, however, the author of a procedure must exercise some care. The
LNS may, through inherited capabilities (explained later), alter objects named in the procedure,
which would thus alter all LNSs subsequently created from the procedure.

FUNDAMENT AL CONCEPTS 53

each of which implements some operation on a specified object type. A file
subsystem, for example, might consist of a set of procedures such as Read,
Write, Append, Rewind, etc. If a user happens to have a capability for a
specific file object, he may attempt to apply one of these procedures to it.
The protection mechanism is embedded in the procedure call mechanism; it
must verify that the procedure that the user is attempting to invoke is among
those permitted by the access right part of the file capability.

It is not the case, however, that the caller of a procedure must supply a
capability which has all the access rights needed by the procedure. In general
a user who possesses a capabiiity for an object, e.g., a me, will not have the
right to access the representation of the object. It would be most unwise, for
example, for the possessor of a file capability to manipulate the physical disk
addresses stored in the corresponding object. On the other hand, the
procedures in the file subsystem must have access to this information when
they are invoked to perform some operation on behalf of the user.

This is one example of a case in which a procedure, in order to do its job,
needs more access rights than its caller. The situation is a common one for
procedures that, as part of a subsystem, implement a resource. To accom­
modate this common circumstance, the kernel allows rights amplification, an
increase in access rights, when a capability is passed as a parameter. Al­
though the amplification of rights can be allowed only under tightly controlled
circumstances, it is an extremely important attribute of the Hydra protection
mechanism and crucial to the goal of allowing operating system facilities to be
defined at the user level.

4-9 TEMPLATES AND THE MERGE OPERATION

In order to describe the procedure call mechanism, we must first introduce
another concept-that of a template. There are, in fact, three kinds of
templates recognized by the kernel:

Creation templates
Simple templates
Amplification templates

A creation template is used exclusively to create a new instance of objects
of a given type; we will discuss creation templates in the next chapter. A
simple template is just a pair:

(type, required-rights)

An amplification template, on the other hand, is a triple:

(type, required-rights, new-rights)

54 THE SYSTEM DESIGN

where type specifies an object type, and required-rights and new-rights are sets
of access rights.

The relation between simple and amplification templates parallels the two
uses of Hydra procedures. Procedures implementing subsystems need ampli­
fication templates to expand the access rights of parameter capabilities passed
to them. Other procedures (e.g., compilers) can make do with simple
templates because they do not need the rights amplification facilities.

Since, in the present discussion, we shall not be concerned with creation
templates, we will use the word template to mean either of the other kinds
and hence something of the form shown above. In some cases, we shall also
refer to these two forms as parameter templates where we wish to emphasize
that they are not creation templates.

A template may occupy a slot in the C-list of an object, but it is not a
capability. It may be thought of as a specification for a capability that will
eventually occupy that slot. Templates are important because of a
kernel-supplied operation called Merge.

Merge takes two parameters, a template and a capability, and if successful,
returns a capability. Specifically, it does the following sequence of operations:

1. It verifies that the type specified in the template matches the type of the
object named by the capability. If they disagree, the operation fails.

2. It verifies that the access rights specified by the capability are a superset of
the required-rights as specified in the template. If this is not the case, the
operation fails.

3. It forms a new capability and returns it. This capability will name the
same object as the parameter capability. Its allowed-rights field is con­
structed as follows:

a. If the template is a simple template, then the resulting allowed-rights
field contains the allowed rights of the parameter capability.

b. If the template is an amplification template, then the resulting
allowed-rights field contains the new-rights field of the template. As
will be discussed in the next chapter, however, certain rights can
never be gained through amplification~ these permit a user to protect
himself from certain subsystem behaviors.

Thus the Merge operation performs a dynamic type and rights check and
potentially creates a new capability for some object. In addition, however, it
sets the allowed-rights field of the new capability to either that of the original
capability or to that of the new-rights field of the template, depending on
whether the template was a simple or amplification template.

FUNDAMENTAL CONCEPTS 55

4-10 THE CALL MECHANISM AND RIGHTS CHECKING

The Call operation, as explained previously, creates an LNS object from a
procedure. The major omission from that discussion was the handling of
parameters. We can now present the full definition, relying on the previous
discussion of Merge.

Call first creates an empty LNS object and then copies the information
from the parent procedure into the LNS object. In the process of copying the
C-list of the procedure, it may encounter either capabilities or templates. In
the former case the capability is mereiy copied; these are known as inherited
capabilities. In the latter case a Merge is performed between the template
from the procedure and a parameter capability supplied during the Call
operation. The capability resulting from the Merge is stored into the C-list of
the LNS object. Should any of these Merge operations fail, the entire Call
will fail.

As can be seen from this discussion, templates serve somewhat the same
role as formal-parameter specifications in a programming language. They
allow the designer of a procedure to specify both the type and the rights that
a parameter must have. In addition, in the case of a subsystem procedure,
the "new-rights" may be used to specify rights amplification.

The Call mechanism (including the associated merging of templates and
capabilities) is essential to the Hydra protection mechanism; it is the major
point at which protection is checked. Thus it is worth reviewing the action of
Calf.

A procedure may contain templates in addition to the usual collection of caller-independent
capabilities. Templates characterize the actual parameters expected by the procedure. When
the procedure is called, a new LNS is created. The slots in this LNS that correspond to
templates in the procedure's C-list are filled with "normal" capabilities derived from the
actual parameters supplied by the caller. This "derivation" is, in fact, a Merge operation; the
template defines the checking to be performed. If the caller's rights are adequate, a
capability is constructed in the (new) LNS referencing the object passed by the caller and
which contains rights formed by merging the caller's rights with the rights specified in the
template.

4-11 A NOTE ON IMPLEMENTATION

It might seem incongruous to inject a note on implementation at this point;
in this case, however, the nature of the implementation has a significant
impact on the conceptual issues we are discussing. The point at issue is the
representation of the allowed-rights field in a capability, and the required- and
new-rights fields of templates.

We mentioned before that all access rights (in all these fields) are broken
into two subfields: kernel rights and auxiliary rights. The kernel rights refer to
the generic operations provided by the kernel (e.g., GetCapa). The auxiliary

56 THE SYSTEM DESIGN

rights refer to the type-specific operations.
The relevant point is that both these subfields are simple bit vectors. (In

the current implementation the kernel-rights field is 16 bits and the auxiliary
rights field is 8 bits, although these sizes are arbitrary.)

Thus, let

C be the capability parameter to Merge
T ~e the template parameter to Merge
NC be the new capability returned by Merge

and let

C. type be the type of C (similarly for T. type, NC. type)
C.allowed be the allowed-rights field of C (similarly for NC.allowed)
T.required be the required-rights field of T
T. new be the new-rights field of T
amptemp(T) be a function that is true if and only if T is an amplification

template

The Merge operation is: 7

if C.type;;c T.type then ERROR else
begin

N C. type : = C. type;
if BitVectorAnd(C.allowed, T.required) = T.required

then NC.allowed:= (if amptemp(T)
then T.new
else C. allowed)

else ERROR;
end;

As can be seen, this is a simple, fast operation. However, the important
point from a conceptual viewpoint is that

• The Merge operation does not place an interpretation on the meaning of
the auxiliary rights bits .

• There does not need to be a one-to-one correspondence between the
rights bits and the operations on the type (though there can be one if the
subsystem designer so chooses).

Since the rights check is performed only after the type check has been made,
a subsystem designer is free to choose the interpretation of these bits as is
appropriate for the particular resource he is defining. In particular, there may

7This definition is incomplete. The full explanation is given in Chapter 7. The only
simplification here is that, in reality, certain rights cannot be gained through amplification.

FUNDAMENT AL CONCEPTS 57

be one bit for each possible operation, or certain operations may simply
require a specified combination of other rights.

Example Suppose one is defining a file system and that three of the
operations to be provided are "read," "write," and "update" (i.e., both
"read" and "write" during a single "open" period). These three operations
are to be implemented as procedures Read, Write, and Update; each
procedure will require (at least) a capability for the file to be passed as a
parameter.

The file (sub) system designer must choose which bits of the (auxiiiary)
rights field are to have what meaning. We will consider two schemes, either
of which may be appropriate:

Rights bit

C.allowed[O]
C.allowed [1]
C.allowed[2]

Scheme 1

Meaning

read access allowed
write access allowed
update access allowed

Rights bit

C.allowed[O]
C.allowed[l]

Scheme 2

Meaning

read access allowed
write access allowed

Under the first scheme each of the three procedures will need a template
for the parameter capability, and the type field of all these templates will
specify that the parameter must be of type FILE. The required-rights field of
each template, however, will be different:

Operation

Read
Write
Update

Scheme 1

Required-rights

T. required[O] = 1, all others zero
T.required[l] = 1, all others zero
T.required[2] = 1, all others zero

In the second scheme everything will be the same except for the
required-rights field of the template for Update:

Operation

Read
Write
Update

Scheme 2

Required-rights

T.required[O] = 1, all others zero
T.required[l] = 1, all others zero
T.required[O] = T.required[1] = 1, all others zero

In short, under the second scheme we do not have a separate right
associated with updating-we merely require that the caller have the right to
both read and write the file.

58 THE SYSTEM DESIGN

4-12 PROTECTION VS. FLEXIBILITY

Flexibility and protection are closely, but not inversely, related; that is, more
protection does not necessarily imply less flexibility, or conversely. We
believe that protection is not merely a restrictive device imposed by "the
system" to ensure the integrity of user operations, but is a key tool in the
proper design of operating systems. It is essential for protection to exist in a
uniform manner throughout the system and not to be applied to only specific
entities (e.g., files). The idea of capabilities is most important in the Hydra
design; the kernel provides a protection facility for all entities in the system.
Protection includes not only the traditional "read," "write," and "execute"
distinctions, but arbitrary protection conditions whose meaning is determined
by higher-level software.

It is important in any discussion of protection to distinguish carefully
between "protection" and "security." In our view, protection is a mechanism;
security is a policy. A system utilizing a protection mechanism may be more
or less secure, depending upon policies governing the use of the mechanism
(for example, passwords and the like are policy issues) and upon the
reliability of programs that manipulate the protected entities. Thus the design
of the Hydra protection mechanism provides a set of concepts and facilities
on which a highly secure system may be built, but does not provide that
security inherently.

The particular extensible, capability-based protection system chosen for
Hydra was picked because of its ability to allow the construction of
user-visible operating system facilities as normal user programs. It also
happens that a broad spectrum of security policies can be implemented in
terms of the Hydra mechanisms (see [Jon75] and Chapter 7 of this book).
Thus the Hydra mechanisms are interesting in their own right; however, the
ability to extend the system at the user level is, in our minds, its greatest
virtue.

4-13 RETROSPECTIVE

It may be that one of Hydra's most important contributions will be the
philosophies and concepts presented in the last two chapters. Certainly, these
are the things we believe should be emulated, albeit in evolved forms, in
future systems. Even with the perspective of several years, the model is still
both elegant and practical.

We will discuss the use of the Hydra mechanisms at length in subsequent
chapters. It is worth a small peek ahead, however, to note here that the
Hydra mechanisms have indeed fulfilled their goals. One can add new
abstract types with ordinary user code. The facilities added in this way do
assume an equal status with pre-existing ones. Hydra does routinely run with

FUNDAMENT AL CONCEPTS 59

several coexisting subsystems defining essentially the same facility-several
directory systems, for example. These multiple subsystems do not interfere
with each other, and no special provision is made to ensure this. Moreover,
we have found construction of these systems to be remarkably easy. The
construction of subsystems is substantially simpler and less error prone than
the construction of similar facilities in the conventional way.

To those familiar with modern notions of data abstraction in program­
ming languages, these assertions may not seem so remarkable-they are,
after all, current doctrine. However, the Hydra model was developed
contemporaneously with the notion of data abstraction in programming
languages, and its implementation substantially predates everything except
Simula. The model suffers only slightly from not having the benefit of
previous models to build on. In the light of subsequent developments we
might have adopted a stronger grouping of the procedures that implement the
operations on an abstraction, for example, as is done in the CAL sytem
[Stu74] or in Modula [Wir761. We might also have associated mutual
exclusion with the operations on an object as is done with monitors [Bri78].

The full generality of amplification templates provides fine-grain control~
subsystem procedures need to gain only those rights that they require to
perform a given operation. In practice, however, it is common for most
subsystem procedures to grant themselves all rights. While there is no logical
need for this, it is simpler than thinking about what is needed. Moreover, it
is not clear that this "over-amplification" is bad~ the user must trust the
subsystem to perform as specified in any case.8 Although the Merge operation
is not especially complicated, it would be even simpler if amplification
implicitly granted all rights. We could, in that case, simply elide the notion of
"new rights" from amplification templates. Other systems, such as STAROS
[Jon791, do this and we would probably do the same in a future system.

In retrospect, the principle of policy/mechanism separation seems unassail­
ably sound. At least in some cases, it also works well in practice~ the Policy
Modules in Hydra do, in fact, control medium-term scheduling. Several PMs
have been built and can run simultaneously. Significant differences in
performance result from the use of the different PMs. Policies for estab­
lishing what is meant by a "user," for handling user-authentication, for
controlling the resources of a "job," and so on, have also been successfully
factored out of the kernel. On the other hand, we have never been able to
find a clean model for separating mechanism and policy in those cases where
a resource is shared. Secondary and primary memory are two clearly essential
resources for which separation was not cleanly achieved~ in the case of the

8However, we will show in Chapter 7 how the mutual suspicion of subsystem and user can
be accommodated.

60 THE SYSTEM DESIGN

disks, in fact, policy control of shared disks was retained in the kernel.9

Perhaps one of our greater failings as a project is closely tied to the
philosophy of the system. There are a number of manifestations of this
failing, but they all relate to the fact that we all thought that the goals were
just right and the mechanism so elegant that we became preoccupied with them
to the exclusion of other important aspects of the system. The user interface,
and predominantly the command language interpreter, was never well
thought out, for example. Because the command language was not an
in tegral part of the system - and "any user can build his own easily," or so we
told ourselves-it never seemed worth the effort. To this day, we are
absolutely convinced that the most friendly, elegant interface imaginable can
be "easily" constructed for Hydra, but it was not done!

A corollary to the previous problem was our choice of general-purpose,
time-shared computing as the target use of the system. There was simply too
much additional software required for the general user-debuggers, editors,
loaders, compilers, and so on. Although much of this eventually got built, it
was too late. We would have been better off, and probably would have
learned more about multiprocessors as well as operating systems, if we had
focused on a narrower application domain. This does not mean that either
C.mmp or Hydra was unsuited to the larger domain-only that we frail
designer/programmers could not produce all the software it needed.

Finally, on reflection, we find it strange that processes did not play a
more major role in our design of the kernel. We were, after all, constructing
a system for a multiprocessor. Moreover, process-structured operating sys­
tems were very popular at the time. Nonetheless, although we supported
them at the user level, they were given only passing consideration as a
structuring tool for the operating system itself. With only a few exceptions
that will be noted later, this has turned out to be a workable, if occasionally
regretted, decision.

4-14 FURTHER READINGS

The concepts of protection, sharing, and information flow in computer
systems have been the subjects of active research for over a decade. As a
result, many of the fundamental concepts described in this chapter have
appeared in other forms in systems before and after Hydra. Dennis and Van
Horn [Den66] are generally credited with the first description of capabilities
as a mechanism for controlling access. The other canonical method of
representing protection information, access control lists, is best known from
its use in Multics [Sa174]. Although the formal equivalence of these two
representations with respect to information content is well-known [Lam74],

9User-level programs can acquire an entire disk, in which case they can also control policy.

FUNDAMENT AL CONCEPTS 61

the architectures built on top of them have rather different specific
behavior- [Sal75] contains an extensive survey. Many conventional oper­
ating systems have offered authority-based protection [Bob72], [Amd64]
(generally applied to files), and protection systems based on capabilities have
been extensively developed [Jon73, Fab74, Fer74]. These different ap­
proaches have prompted considerable investigation into the practical use of
protection mechanisms in programming languages [Mor73] and systems (see
[Eng74] and other contributions to the 1974 IRIA Workshop). The construc­
tion of systems intended for everyday use has exposed strengths and weak­
nesses of capabiiity-based approaches [Lam76, Wii79]. rrorection systems
have also been evaluated on their ability to provide a secure and reliable
computing environment~ [Lin76] is a good survey.

CHAPTER

FIVE
KERNEL FACILITIES

In this chapter we will discuss the basic facilities provided by Hydra for the
manipulation of the abstractions introduced in the last chapter: objects,
capabilities, and so on. It is neither practical nor particularly enlightening to
discuss all the facilities provided, but we will cover:

1. The generic facilities of the kernel. These include:

a. The set of operations that can be applied to any object or capability,
regardless of its type.

b. The set of kernel rights. These rights must be present in a capability
for the various generic operations to be applied to it (or, in some
cases, to the object it names).

2. The kernel-defined object types, along with their type-specific operations and
auxiliary rights. A few of these (e.g., LNS and PROCEDURE) were
mentioned in the last chapter; these types are critical concepts in Hydra.
Other kernel-defined types (e.g., PORT) could have been implemented by
user-level software but were included in the kernel for efficiency reasons;
these types are not central Hydra concepts, and discussion of them is
deferred until later chapters.

5-1 NOTATION

In the last chapter we use diagrams such as that shown in Figure 5-1 to
illustrate a collection of objects. Each object is represented by a rectangular
box. The upper portion of a box (above the double horizontal line) denotes
the data-part of the object; the lower portion denotes the C-list. The C-list is
divided into a number of rectangles (often called "slots"), each of which may
hold a capability; arrows from these C-list slots to other objects show which
objects are named by the capabilities. The rights in a given capability, or at
least those of interest, are listed in the box representing the slot; for
emphasis, we sometimes show a right crossed out to emphasize that it is not
present in a given capability. Occasionally, as in Me:LNS, we place a
mnemonic name (Me) and type (LNS) just above the rectangle representing

63

64 THE SYSTEM DESIGN

a specific object; this is merely a convenience for talking about the objects.
As we noted in the last chapter, an execution environment consists of an
LNS together with the set of objects referenced (possibly indirectly) by the
LNS. Thus, for example, A and B are part of the execution environment of
Me, but C is not.

A: Page

B: Page

Page

Page

Me: LNS

CacheRts

2 ModifyRts

2

3

You: LNS

CacheRts

ModifyRts
LookupRts

4
1------1

F: File

Page
CacheRts

1 Mod~Rts+---"",---_------,

C: Catalogue

P: Procedure
1 GetCapaRts-+---....

Semaphore

I I

Figure 5-1 A Collection of Objects

Note that we have specifically shown the capability "slots" in the figure,
and indeed have numbered them beginning with 1. In practical program­
ming, both the data-part and C-list of an object are extremely important. In
order to simplify discussions we will introduce some special notation.

Definition 1 If X is an object, then

Xd will denote its data-part
Xc will denote its C-list

KERNEL FACILITIES 65

Xd [i] will denote its ith word of its data-part (origin 1)
XC[i] will denote its ith capability (origin 1)

Thus, in Figure 5-1, Mec!2} is the capability that names the file F
In order for a program to name capabilities or objects in its execution

environment, it specifies a path to the object or capability, where the path
must be rooted in the program's LNS. More formally, a path specification is
of the form

and is defined recursively as follows:

Definition 2 Path(a) is the capability in the ath slot of the LNS and is
equivalent to the simple index a. Path(a,b, ... ,y,z) is the capability in the
zth slot of the C-list of the object referenced by the capability
Path(a,b, ... ,y),

Because we must be able to talk about the rights possessed by objects along a
path, we will call the capabilities Path (a), Path(a,b), ... , Path(a,b, ... ,y) the steps
and the capability Path(a,b, ... ,y) the pretarget. (The pretarget is also consid­
ered one of the steps.) The final capability Path(a,b, ... ,y,z) is the target.
Thus, for example, in Figure 5-1, Path(3,1,l) when interpreted in the
context of the LNS named You, names the first capability of the object P
(alternatively, it names the object C that is referenced by this capability). In
this example pe!J} is the target, ce!J} is the pretarget, and You e!3} is a step.

5-2 KERNEL RIGHTS

Every capability contains a set of access rights that determine which opera­
tions may legally be applied to itself and to the object it names. The rights in
a capability are divided into two groups:

Kernel rights. Those rights that control the application of the generic kernel
operations (such as moving capabilities from one place to another).

Auxiliary rights. Those rights that are type-specific and are inspected only
when a type-specific operation is attempted.

In this section we shall define the kernel rights. The auxiliary rights will be
discussed in those sections that deal with specific object types. The kernel
rights may be further subdivided into three groups:

Capability rights. Rights that apply to the capability. If these rights are
missing, certain kernel operations cannot be applied to the target capa­
bility.

66 THE SYSTEM DESIGN

OQject rights. Those rights that apply to the object named (referenced) by the
capability. These may be further subdivided:

Data-part rights. Those rights that, if absent, will not permit operations on
the data-part of the object named by the capability.

C-list rights. Those rights that, if absent, will not permit operations on the
C-list of the object named by the capability.

Restriction rights. Those rights that, if absent, will prevent certain operations
on any object that can be named, possibly indirectly, through this
capability.

A full and complete definition of the kernel rights requires a bit of mental
recursion. Strictly speaking, the meaning of each right is defined by the set
of kernel operations that are allowed (disallowed) by the presence (absence)
of the right. Alas, the definition of each of the operations, of course, also
depends upon the rights that are present in its parameters. To break this
circularity, Table 5-1 presents an intuitive description of the intent and
function of each of the kernel rights. After reading this and the following
section that defines most of the basic kernel operations, the reader would be
well advised to review this section and compare the intuitive definitions of
the rights with their use.

In Chapter 7 we will discuss how these access rights are used to solve
various protection problems. In this chapter we will illustrate their use to
support the construction of abstract data types as discussed in Chapter 3.

In any data abstraction facility, it is essential that only the operations of a
given type can modify objects of that type. In order to modify the represen­
tation of an object, its user would need a capability with one or more of
PutDataRts, AppendDataRts, PutCapaRts, AppendCapaRts, or KiIIRts (as well
as ModifyRts). By removing all these rights from the capability, the sub­
system can ensure that no modification can be performed by the users-and
hence that only the subsystem procedures can effect changes. Alternatively,
a subsystem may choose to permit the user to make certain modifications by
setting the rights accordingly.

Recall another basic tenet of data abstraction-one should be able to hide
the representation of the type being defined. Simply preventing modification
of the representation is not enough~ the user of the abstract type should
know about its abstract behavior-its operations-but not about its represen­
tation. By hiding a representation we ensure that the user cannot develop
dependencies on the representation, and thus we ensure that the represen­
tation can be changed if that is deemed a desirable thing to do.

KERNEL FACILITIES 67

Table 5-1 Kernel-defined access rights

De/eteRts

EnvRts

Ge!Da!aRts

PllfDataRts

AppendDataRts

GetCapaRts

PurCapaRts

AppendCapaRfs

KiIIRts

Mod{fyRts

UncfRts

CopyRrs

CreateRts

Capability rights

Permits the capability to be deleted from the C-list that contains it.

("Environment rights.") Permits the capability to be stored outside the
immediate environment, i.e., outside the LNS.

Data-part rights

Permits data to be copied out of the data-part of the object named by
the capabiiity.

Allows data to be stored into the object named by the capability.

Allows data to be appended to the end of the data-part of the object
named by the capability.

C-list rights

Allows capabilities to be copied out of the C-list of the object named by
the capability. In addition, GerCapaRts are required on all steps of a
path.

Allows capabilities to be stored into the C-list of the object named by
the capability.

Allows capabilities to be appended to the end of the C-Iist of the object
named by the capability.

Permits capabilities to be deleted from the object named by the
capability. Each capability to be deleted must, in addition, possess
De/eteRrs.

Restriction rights

Allows modification of the objects named by any path through the
capability. For example, then, both Mod{fyRrs and PutCapaRts must
be present in the pretarget in order to store a capability into its
C-list.

("Unconfined rights.") In capabilities for PROCEDURE objects, allows the
procedure to be called "unconfined." Any call of a procedure lacking
this right is termed a "confined call" and results in a "confined
LNS." Confined LNSs cannot store information in such a manner
that it can be accessed by another domain.

Allows a copy of the object named by the capability to be made.

Allows an object of the type described by a template to be created.
This right has meaning only in "creation templates."

68 THE SYSTEM DESIGN

Notice that GetCapaRts are required along all steps in a path, including the
pretarget. Further, GetDataRts are required in order to access the data-part of
an object. Without these rights, it is impossible to name the components of
an object. Therefore, the representation of an abstract type can be hidden
from its user by the simple expedient of removing GetCapaRts and
GetDataRts from capabilities for objects of the type. The subsystem that
defines the abstract type must, of course, access the representation; it can do
this, however, because it can amplify the rights in parameter capabilities to
include these rights (see the discussion of templates and the Merge operation
in Chapter 4).

Both of the previous examples (prohibiting modification and hiding the
representation) rely on the ability to remove certain rights from all capabil­
ities for objects of a given type. Actually this is easily done, and the
mechanism for doing so accomplishes another objective of a data abstraction
facility as well-namely, controlled initialization. Typically when a new
abstract type is defined, the definer will not make "creation templates"
(discussed below) publicly available; instead, he will provide a subsystem
procedure that will create, and return a capability for, an object of the new
type. This procedure will usually remove all C-list and data-part rights from
the returned capability because these rights are inappropriate for the user to
have. In addition, this "creation procedure" can initialize the data-part and
C-list of the new object in type-specific ways. The ability to do this kind of
initialization upon object creation is another essential property of a data
abstraction facility.

5-3 KERNEL OPERATIONS

Hydra may be viewed as consisting of two parts-a kernel that implements
the run-time support for subsystems (abstract data type implementations),
and a collection of initial subsystems, without which it would be impossible,
or grossly inefficient, to implement further subsystems. In this section we
will define the generic operations that support subsystem construction; these
operations are referred to as Kalis to emphasize both their similarity to, and
their difference from, the procedure calls that invoke subsystem operations.
The bulk of the section is simply a terse definition of the various KalIs, each
presented in the following format:

SomeKall(D:s/ot, A:capa, B:capaOndex,GetCapaRts), R:rights) returns
X: integer

Here we will define the effect of the Kall, including any side effects, error
conditions, etc. In addition, we will occasionally discuss special properties
of the parameters.

KERNEL FACILITIES 69

The header line, "SomeKall(. .)," provides the name of the operation and
information about its parameters (information that doesn't fit the format is
defined below the header line). The specification of each parameter is of the
form

name: parameter-type

where parameter-type may be

integer

mem[size]

rights

slot Onfo}

capa Onfo}

oNect Onfo}

template Onfo}

The corresponding actual parameter must be an integer.

The corresponding actual parameter must specify the address of a
contiguous block of at least size words in primary memory.

The corresponding actual parameter must specify a set of access rights;
generally this set is used to restrict the rights in some capability.

The corresponding actual parameter must specify a path to an empty
C-list slot. Wherever this form is used, the operation being
described will store a capability into the slot.

The corresponding actual parameter must specify a path to a capability.

The corresponding actual parameter must specify a path to a capability.
The object named by this capability is involved in the operation, not
the capability.

The corresponding actual parameter must specify a path to a template.

In SomeKall, for example, the actual parameter that corresponds to D
must specify a "slot," those that correspond to A and B must be capabilities,
and R must specify a set of access rights. If a returns clause is present, as in
this example, the Kall returns a positive integer value in addition to whatever
effects it may have.1

The info is the most interesting (and complex) part of the specification of
the parameters of most operations. Syntactically it is simply a list of
informational items separated by commas and enclosed in parentheses. Gen­
erally the information will consist of the access rights in the target capability.
There are some additional special cases, however:

1. In most cases an actual parameter capability can be named by an arbitrary
path; in a few cases, however, the capability (slot) must be in the user's
LNS - that is, only a single-step path is permitted. In these cases the
special word index appears in the info (as in parameter B in SomeKall
above).

I Any Kall may "fail" for a variety of reasons, particularly if a capability lacks sufficient
rights. Kalis indicate failure by returning a negative integer value. We will ignore this detail and
use the returns clause to indicate the data that the Kall will return if successful.

70 THE SYSTEM DESIGN

2. In some cases the rights in the pre target as well as those in the target
capability matter. In these cases we will either include "pretarget(..J" in
info or discuss the situation following the header line. Similarly, if some
right is required on all steps of a path, we will denote this by "steps(. .J."
Recall that the pretarget is considered a step; thus, if a right is mentioned
in ~~ steps (. .J" it will not necessarily be repeated in "pretarget(. .J."

There are also some conventions that we observe in the description.

1. Wherever a capability is named by a path, all steps along the path must
possess GetCapaRts. Since this is a universal requirement, we will not
repeat it in each operation specification.

2. Whenever an object is modified, ModifyRts are required in the capability
for the object (the target) and in all steps of the path leading to that
capability. Likewise, when a capability or capability slot is modified,
ModifyRts is needed in the pretarget and in all steps of the path leading to
the pre target. Because this is a universal requirement, we will omit listing
it in the Kalls.

3. Parameters are generally arranged so that, if the operation has any effect
on its parameters, (only) the leftmost is altered. This convention is
chosen by analogy with assignment statements, where the left-hand side is
altered. Where appropriate, we have also named operands as D, for
destination, and S, for source, in order to emphasize which operands are
modified.

5-3.1 Informational Kalis

A few of the generic operations of the kernel simply provide information
about objects and capabilities. The following five are typical examples:

LNSLength()

Returns the length of the C-list of the executing LNS.

CLength(X:object(GetCapaRts)) returns L:integer

Returns the length of the C-list of the object named by path X. (In the
current implementation, a C-list may contain up to 256 capabilities.)

DLength(X:object(GetDataRts)) returns L:integer

Returns the length of the data-part of the object named by path X (In
the current implementation, a data-part may contain up to 2,000 words of
data.)

KERNEL FACILITIES 71

Objectlnjo(M:mem[J6], X:capa)

Stores into M 16 words of information about the capability X and the
object it names; this information includes the access rights in the capa­
bility, the 64-bit unique-name of the object, and the 64-bit unique-name
of the object's type. Note that the user cannot create a (possibly
modified) capability from this information, so there is no reason not to
make it available.

Compare(A:capa, B:capa(index)) returns B:bits

Returns a word containing bits reflecting the reiations between the two
capabilities. These relations include: whether A and B name the same
object, whether they name objects of the same type, and whether the
access rights of A are a subset of those of B and vice versa.

5-3.2 Generic Kalis

The following KalIs can be used to manipulate the contents of an object; as
such, they are among the primary tools used in the coding of new abstract
data type operations:

GetData(D:mem, S:object(GetDataRts), Disp, Count:integer)

Copies Count words from the data-part of the object S into the memory
area beginning at D, the copy begins at the Dispth word of the data-part.

PutData (D: 0 bject(PutDataR ts), S:mem, Disp, Count:integer)

Copies Count words from memory into the data-part of D, the copy
begins at memory location S and the Dispth word of D.

AppendData(D:object(AppendDataRts), S:mem, Count:integer)

Copies Count words from memory, starting at location S, and appends
them to the end of the data-part of D.

GetCapa(D:slot(index), S:capa)

Copies a capability from S into D, DeleteRts are always added in the new
capability. If any capability in the path to Slacked ModifyRts, ModifyRts
will be removed from the copy in D, similarly, if any capability in the
path to Slacks EnvRts, EnvRts will also be deleted from the copy in D.

PutCapa(D:slot(pretarget(PutCapaRts)), S:capa(index,EnvRts), R:rights)

Copies the capability from S, a slot in the LNS, to D. DeleteRts are set,
then all rights are restricted according to R (which may therefore remove
DeleteRts again) before the copy is stored in D.

72 THE SYSTEM DESIGN

AppendCapa (D:object(AppendCapaR ts), S:capa (;ndex, EnvR ts), R:rights)

The effect is similar to PutCapa, except that the (restricted) copy of S is
appended to the end of the C-list of object D.

Restrict(D:capa (pretarget(PutCapaR ts, K illR ts) ,DeleteR ts), R: rights)

Restricts the rights of D as specified by R-that is, the existing rights of
Dare "anded" (intersected) with R. Thus, the resulting rights can be no
greater than those of either R or the original ones of D.

Delete (D:capa (pretarget(KillR tS),DeleteRts))

Deletes the capability D.

As the reader may have noted, there is a weak analogy between the
structure of the operations above and those of a "general register" computer:
the LNS is rather like the bank of registers, the "get" operations are
analogous to those instructions that load the registers, and the "put" opera­
tions are analogous to those that store them into memory.

In addition to the KalIs above, there is a moderately large collection of
composite operations. These operations, except for the fact that they are
indivisible, are each equivalent to a sequence of the operations listed above.
A few of the composites are listed below.

TakeCapa (D:slot(;ndex) , S:capa (pretarget(KillR ts), DeleteRts))

Similar to GetCapa, except that the source capability is then deleted~ that
is, except for indivisibility it is the same as

GetCapa(D,S); Delete(S)

PassCapa (D:slot(EnvR ts, DeleteR ts), S:capa(;ndex), R:rights)

Similar to PutCapa, except that the source capability is then deleted; that
is, except for indivisibility it is the same as

PutCapa(D,S,R); Delete(S)

InterchangeCapa(A:capa(DeleteRts), B:capa(;ndex,EnvRts), R:rights)

Similar to

GetCapa(N,A); PutCapa(A,B,R); TakeCapa(B,N)

except, of course that no LNS slot (N) is actually used.

These last three KalIs, and especially InterchangeCapa, turn out to be
quite useful for synchronization. We will see an example in Section 5-5.7.

KERNEL FACILITIES 73

5-3.3 KalIs for Creating Objects

There are several ways to create an object; the simplest of these is to copy an
existing object:

Copy (D:s!ot(index) , S:object(index, CopyRts))

Creates a new object of the same type as S; the initial contents (both
data-part and C-list) will be identical to those of S. A capability for this
new object will be stored in D, the initial rights in this capability will be
identical to those in S, except that DeleteRts will be added.
kernel-defined types certain other rights may also be added.)

The second method of creating an object is to use the Create Kall,
defined below. This method is only slightly more difficult than copying an
existing object-but it is more difficult to explain. First, consider the Create
operation itself:

Create(D: s!ot(index), T: temp!ate(CreateR ts))

T must be a creation template (see below); an object of this type will be
created and a capability for it will be stored in D. The capability will have
those access rights present in the creation template.

Recall from Section 4-2 that every object has a type which is specified as
the unique-name of another object whose type is TYPE. If, for example, there
is an object whose type is FILE, then there must be somewhere another object
na ed FILE whose type is TYPE. TYPE objects serve as representatives of the
class of objects of a given type, and to create an object of the type one must
possess a creation template for the class. To obtain a creation template, one
uses the Kall:

MakeCreation Temp!ate(D:s!ot(pretarget(PutCapaRts)),
S:capa(index, TYPE, Temp!ateRts))

S must be a capability for an object whose type is TYPE. (Note that this
capability must have Temp/ateRts, which is an auxiliary right specific to
type TYPE.) A creation template for the type named by S is placed in D.2

In the usual case the implementor of a subsystem will want to force all
object creations to be done by one of the subsystem procedures. Therefore,
he would never distribute either a capability for the TYPE object that has
Temp/ateRts or a creation template. The complication of having creation
templates is logically unnecessary; the Create operation could have used a

2This treatment of template creation, and that which follows, has been somewhat simplified
from what is actually implemented; the authors feel that the subject was already complicated
enough without introducing additional implementation details.

74 THE SYSTEM DESIGN

capability for the TYPE object instead of a template. However, in the case
that the subsystem wants to allow users to create objects of its type, the
subsystem can distribute creation templates without having to distribute
capabilities for the TYPE object. (Such capabilities would give a user access to
the MakeAmpliJicationTemplate Kall, discussed below.)

For kernel-defined types, Hydra provides KalIs which create objects
directly and supply the maximum permitted rights, e.g., Make Universal,
MakePort, etc. These KalIs all accept a single argument, a path to an empty
C-list slot.

5-3.4 The Call Mechanism

The Call mechanism is the heart of both the protection and the data
abstraction facilities provided by Hydra. First we have the merge operation
described in Section 4-9:

Merge (D:slot(index), T: template (index), S:capa)

If no errors are discovered, Merge leaves a capability for the object named
by Sin D, this capability will have its access rights set as follows:

• DeleteRts is always granted.
• If T is a simple parameter template, the rights will be identical to

those of the required rights of T. If T is an amplification template,
the rights will be identical to the new rights of T, except that certain
rights cannot be amplified, notably ModifyRts, UncjRts, and EnvRts.

• If any capability in the path to Slacked EnvRts, UncjRts, or ModifyRts,
the corresponding right will be removed from D as well.

An error condition will be raised if either the type of T and S do not
agree or the rights in S are not a superset of the required rights of T.

Call(D:slot(index), P:object(PROCEDURE, CallRts), argument-list)

Creates an LNS from procedure P and transfers control to it. Except for
capabilities passed as parameters (as items in argument-list), the new LNS
is a completely new environment that cannot access the objects named by
the calling LNS. If P returns a capability, it will be stored in slot D.

The details of Call are important. It works as follows:

• Each item in argument-list specifies (a path to) a capability.3

3In reality, a number of facilities are provided for conveniently restricting the rights of such
capabilities, creating temporary objects that simply hold data, and so on. Thus, Call may be
viewed as a highly parametrized composite operation. None of these more advanced facilities are
logically necessary, so they are omitted from this discussion. The Hydra Reference Manual
[New77] has more details.

KERNEL FACILITIES 75

• An LNS object is created; its C-list is initialized from the C-list of the
procedure object, P, and argument-list as follows:

• Each capability (and creation template) in the C-list of P is simply
copied to the corresponding C-list position of the new LNS. If the
capability for P lacks UncjRts, both UncjRts and ModifyRts will be
deleted from each copied capability. Similarly, if P lacks EnvRts, the
copied capabilities will have EnvRts deleted as wel1.4

• Each parameter template is merged with a capability from argument-list,
if any of these l'vferge operations fail, the entire Call will fail.

• The data-part of the LNS is initialized by copying the data-part of the
procedure P. The data-part contains information such as the starting
address of the procedure's code, and is not of importance to this presen­
tation.

When the new LNS returns (see below) it may return two "values" - a
simple integer and a capability. The integer value appears as the value of
Calf, that is, when calling the procedure named by the capability P with
parameters X, Y, and Z, one may write

if Call(D,P,X, Y,Z) < 0 then ...

to test the result value and store the capability result in D.

Return (V: integer, S:capa(index,EnvRts), R:rights)

Causes control to return from the currently executing LNS to its caller.
Two "values" are returned: a simple integer, V, and a capability, S. The
rights of the returned capability are restricted by R, except that DeleteRts
are added.

In order to create a procedure containing parameter templates, one must
first have the templates. They can be created with the following two Kalis.

MakeSimple Template (D:slot(pretarget(PutCapaR ts)),
S:object(index, TYPE, TemplateRts),
R:rights)

S must be a capability for a TYPE object. A simple parameter template
will be placed in D, the type field of this template will be the same as that
of S and its required rights field will be R.

4The motivation for these somewhat obscure manipulations with UnL:!Rts and EnvRts is
given in Chapter 7, as is a complete description of the effect of removing them. The reader may
ignore these details for now.

76 THE SYSTEM DESIGN

MakeA mplification Template(D: slot(pretarget(PutCapaR ts)) ,
S:object(index, TYPE, TemplateRts),
RR, NR:rights)

S must be a capability for a TYPE object. An amplification template will
be placed in D, the type field of this template will be the type of S, and
its required and new rights fields will be RR and NR, respectively.

Note that a subsystem will generally make simple templates widely available
for the type that it implements, but will not distribute amplification templates.

There is another Kall that facilitates calling procedures and is of enor­
mous practical importance: TypeCall.

TypeCall(D:slot(index) , S:capa, P:object(PRoCEDURE, CallRts), argument-list)

Suppose that S has type t(S) and, further, that t(S)P denotes the
capability that one would name by a path P rooted in the t(S) TYPE

object. (This is the only case in which a path is not rooted in an LNS.)
Then,

TypeCall(D, S, P, argument-list)

is equivalent to

Call(D, t (S)P, argument-list)

That is, the kernel calls a procedure stored in the TYPE object-the user
need not have a capability for either the procedure or the TYPE object.
The capability S is called the type representative for the TypeCall operation.
It may be a template or an object capability, and it need not be (but often
is) passed as one of the arguments to the procedure.

TypeCall is important for two reasons. First, we can use it to achieve an
important additional level of abstraction. In particular, by adopting conven­
tions about the way in which certain operations are named in TypeCall, we
can abstract away from the specific type of the objects involved. Second, it
provides a useful convenience in that the user need not have access to
capabilities for all the procedures he might need. The subsystem imple­
mentors can simply provide access to them via TypeCal/. Since the first of
these reasons is by far the more important, let's consider three examples of
it:

1. Certain operations, such as "What is your status?," make sense on nearly
all objects. By adopting a convention that all subsystems will provide such
an operation, and will store a capability for this operation in slot N of the
TYPE objects, we can perform

KERNEL FACILITIES 77

TypeCall(D,X,N,X)

to obtain the status of any object x.5 If X names a file, for example, this
might provide its type, its creation date, date of last access, etc. If X
names a semaphore, on the other hand, the result might simply indicate
the number of processes blocked on it. For a rigorously secure type, the
subsystem designer's "status" procedure may choose not to return any
information. Thus, even though the operation may be sensible and
subsystem implementors should provide it, there is nothing, other than
convention, that enforces particular semantics on the operation.6

2. Operations such as "Print yourself" make sense for most, but not all
object types. Note that the "print yourself' operation may be quite
different for each of the types to which it applies: printing a text file may
simply dump the ASCII characters; printing a program may cause it to be
automatically "pretty printed" and could be language-specific; printing a
binary file could provide octal, hex, decimal, instruction, and character
interpretations for each word.

3. Certain operations such as "Lookup entry" make sense only on a class of
types that implement a common abstract concept, such as "Catalogue" or
"Directory." In fact, two "directory" subsystems exist on HydratC.mmp,
and many more could be implemented. Each provides a compatible set of
operations for mapping string names to capabilities, inserting new (string,
capability) pairs into the map, changing the string names in various ways,
and so on. A command language interpreter needs access to these
facilities in order to interpret the names that a user types at the terminal,
but would like to remain impartial to the subsystem used. By convention,
all subsystems that implement the abstraction of a "directory" have
common operations and common paths to these operations from their
TYPE objects. Hence the command interpreter, or any other program that
wishes to use a specific directory, can use TypeCall to manipulate the
directory and need not know which specific directory type is involved.

5-3.5 GST KalIs

Hydra attempts to present the user with the image of a "one-level store." In
conventional systems, the user is generally conscious of two levels: primary
memory in which his program and data reside, and secondary memory in
which he has "files." For the Hydra user, however, there are simply objects
that can be named by paths rooted in his LNS; he is not (usually) conscious
of whether the object is in primary memory or secondary memory-that is an

5We assume that the status information will be returned in an object to LNS slot D. Note
that X appears as both the type representative and an argument to the procedure.

6Each subsystem would have to decide also what auxiliary rights to use to control the
application of the operations. It is unlikely that a subsystem would devote one of its rights for
each operation of this kind.

78 THE SYSTEM DESIGN

implementation detail that is left to the system.
In reality, of course, the implementation keeps the representation of

some objects in primary memory while others are on disk (Chapter 11
discusses the implementation). While the user can usually ignore this fact,
on some occasions he would like to ensure that an updated version of an
object is written to disk. Once on disk, of course, an object will survive a
system crash~ those in primary memory are more vulnerable. Therefore, the
system provides the following Kall:

Update (D:object)

The object D is "updated"~ that is, a permanent copy of the object is
made on secondary storage.

The Update operation is typically used by cautious subsystems after they
have modified an objectJ The file system example in Chapter 8 is an
excellent example of this.

5-4 KERNEL SUBSYSTEMS

As noted in the introduction to this chapter, the kernel may be visualized as
consisting of two parts: the generic operations plus the Call mechanism, and a
set of subsystems that define some basic object types. In this section we will
discuss these object types briefly. In most cases a more complete treatment
appears in a subsequent chapter. The types defined by the kernel are listed in
Table 5-2.

OAT A and UNIVERSAL objects are basic structures which can be used
when data and/or capabilities need to be encapsulated for a purpose that
doesn't justify the creation of a new object type. They are often used, for
example, to pass a collection of related data and capabilities to a procedure.
There are no type-specific operations or auxiliary rights for either of these
types~ the generic operations for manipulating the data-part and C-list are
sufficient. 8

TYPE objects have already been discussed. They have two auxiliary
rights: Temp/ateRts and Change TypeR ts. The first of these permits creation of
templates, as discussed earlier. ChangeTypeRts permits one to alter certain
information in the data-part of the TYPE object~ this information specifies, for
example, the initial and maximum size of instances of the type.

The remaining kernel-defined typesare discussed in later chapters.

7The Update Kall is a partial solution to the problem of performing atomic updates on
secondary storage. See [Stu74] and [Lam80] for additional discussion of this interesting and
complex problem.

80ata objects can be created automatically during Call to hold parameters, using mecha­
nisms that we have chosen to pass over in this presentation.

KERNEL FACILITIES 79

Table 5-2 Kernel-defined object types

Data

Universal

DATA objects contain only a data-part; they are used to encapsulate short data
segments. (See below for more details')

A UNIVERSAL object has both a data-part and a C-list; it is used to encapsulate
data and capabilities. (See below for more details')

Type TYPE objects define and represent classes of objects. (They have been

Process

Semaphore

Policy

discussed in Sections 4-2 and 5-3.3 and elsewhere')

Hydra's abstraction of an independent, schcdulable unit of computation. J ... :_
Il I::>

a separate abstraction from procedures and LNSs. (See Chapter 12.)

POLICYSEMAPHORE and KERNELSEMAPHORE objects are Hydra's abstractions of
counting semaphores. These objects may be used to achieve either
exclusion or synchronization. (See Chapter 12.)

POLICY objects provides the abstraction that allows user-level schedulers to
communicate with the kernel scheduling mechanism. (See Chapter 12.)

Page A segment of information that can be made directly addressable. It is an

CPS

RPS

Port

Device

abstraction of C.mmp 's 8K-byte page frames. (See Chapter 13.)

A CPS represents a process' "working set" of pages-those pages which are
resident in primary memory whenever the process is executing. (See
Chapter 13.)

An RPS represents that subset of the process' working set that is directly
addressable at a given instant. (See Chapter 13.)

A port is an asynchronous message-passing facility (See Chapter 6,)

DEVICE objects represent C.mmp's physical I/O devices. (Chapter 14.)

5-5 A COMPLETE EXAMPLE

To consolidate the ideas of the last three chapters, we will now show how a
user would go about creating a real Hydra subsystem. Up to this point we
have tried to hide many details to give the reader a better view of the
important concepts in Hydra. In this section, however, we will reverse this
trend and try to give the reader a feel for what it is actually like to program
under Hydra.

The subsystem we will create will be called the Box subsystem. A Box
may be thought of as something which holds a single capability; we will
provide two Hydra procedures, Deposit and Withdraw, to place a capability
into a Box and remove a capability from one, respectively. These operations
are destructive: a capability deposited in the box replaces any capability
already present, and withdrawing a capability removes it entirely. We will

80 THE SYSTEM DESIGN

implement the Box subsystem in such a way that only the Deposit and
Withdraw procedures can access the Box's representation.

5-5.1 The Programming Environment

Let us first consider the environment in which the Box subsystem will be
developed. A Hydra subsystem, like the Hydra kernel itself, is written in
Blissll1 on a PDP-10, cross-compiled and linked for the PDP-ll, and then
transferred to Hydra/C.mmp over the ARPANET. A simple program re­
ceives the subsystem's compiled and linked code and encapsulates it as a
universal object containing one or more page objects. To turn these pages
into complete procedures, the user must create procedure objects, install in
them the code pages and any necessary parameter templates or inherited
capabilities, and establish the procedures' initial addressability. When creating
new subsystems, the user must also create a new object type, install the
procedures in the new type object (for TypeCall), and define auxiliary rights
for the subsystem.

The Hydra user may perform all these operations from the Hydra
command language or he may write an additional Hydra procedure that builds
the subsystem for him. This additional procedure, as we will see, is much
simpler, and so can be assembled directly in the command language (see
Section 10-1.3) using various utilities. We will illustrate the initialization of
our example subsystem by writing a procedure (CreateBoxSubsystem) to
create the Box subsystem. We will not discuss the details of creating this
procedure using the command languge, but the reader should satisfy himself
(after reading Chapter 10) that this is straightforward.

5-5.2 Programming Subsystems

Blissll1 [Wu17!] is the programming language normally used by Hydra
subsystem implementors. However, the syntax and semantics of Pascal
[Jen76] are more widely known and better suited to an introductory example.
In the remainder of this section, we will use Pascal (occasionally with obvious
extensions) for clarity, but attempt to retain the flavor of Bliss programming
by faithfully adhering to the data structures that are actually used.

KalIs appear as predefined external functions in the programming
language~ C-list slot arguments are represented as integers, paths are repre­
sented by variable-length integer vectors, and access rights are two-compo­
nent records of bit vectors:

type
Slot = integer;
Path = array 1 .. * of Slot;
KernelRights = array 1. .16 of boolean;
AuxiliaryRights = array 1..8 of boolean;
Rights = record

KernRts: KernelRights;
AuxRts: AuxiliaryRights;
end;

iunction PutCapa(D:Path; S:Siot; R:Rights): integer;
(etc.)

KERNEL FACILITIES 81

The kernel rights are predefined as constant boolean vectors with only one
element having the value "true":

const
PutCapaRts: KernelRights := [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
GetCapaRts: KernelRights : = [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, OJ;
(etc.)

As should be evident, we are using boolean vectors to represent sets of
rights. The "or" operation (boolean "addition") is just set union, e.g.,

var PutAndGetRts: KernelRights;

PutA ndGetRts : = PutCapaRts + GetCapaRts;

We will assume the subsystem creator has compiled and linked together three
Pascal procedures: CreateBoxSubsystem, Deposit, and Withdraw, which imple­
ment the three corresponding Hydra procedures. It is these three routines
we will be examining. Because the subsystem is small, the code for all three
routines will fit into a single Hydra page and we assume that this page is
given to the user by the PDP-IO-based compiler and linker.

The following declarations will generally be needed:

const
AI/Rights: Rights := [[1,1,1, ... ,J], [1,1,1,1,1,1,1,1]];
NoAuxRights: AuxiliaryRights : = [0,0,0,0,0,0,0, OJ;
NoRestrictions: Rights := AI/Rights;

82 THE SYSTEM DESIGN

5-5.3 CreateBoxSubsystem

The CreateBoxSubsystem procedure has the following duties:

1. It must create the new object type (BOX).
2. It must create the Hydra procedures Deposit and Withdraw and place them

in the Box type object (so they may be invoked with TypeCall).
3. It must return any capabilities the subsystem builder wants to have. In

our case we will return:

a. A capability for the Box TYPE object, so the creator may modify it later
(perhaps to replace the procedure capabilities).

b. A capability for a Box parameter template, which the creator may
distribute publicly so that users may write procedures which take Box
objects as parameters.

c. A Box creation template, also distributed publicly, so that users may
create new Boxes. (This is a policy decision~ it is safe here because
Box objects happen to require no subsystem-specific initialization.)

As subsystem designers, we must establish the protection requirements
for Box objects. We define two auxiliary rights bits corresponding to the two
subsystem procedures:

const
BoxDepositRts: AuxiliaryRights : = {J, 0, 0, 0, 0, 0, 0, OJ;
BoxWithdrawRts: AuxiliaryRights:= {O,J,O,O,O,O,O,OJ;

Now we must identify the capabilities that CreateBoxSubsystem will need to do
its job and assign LNS slots for them. The first slots to be assigned are those
holding parameters or inherited capabilities~ the assignment is arbitrary but
must be known to the person who builds the CreateBoxSubsystem procedure,
since he must install the initial capabilities or parameter templates.

In our case, we need only two inherited capabilities: the capability for the
page object containing the linked code for Deposit, Withdraw, and
CreateBoxSubsystem, and a creation template for type TYPE, which we will
need to create a new Box TYPE object. We decide to use the first two C-list
slots for these capabilities:

const
TypeCreationTemplate = 1;
PageCapability = 2;

CreateBoxSubsystem will also need some temporary LNS slots to hold capabil­
ities during its execution, so we will assign them also. This assignment is
completely arbitrary as long as it doesn't conflict with the earlier ones.

const
BoxType = 3;
ReturnObject = 4;
BoxCreationTemplate = 5;
BoxAmplijicationTemplate = 6;
BoxParameterTemplate = 7;
DepositProcedure = 8;
WithdrawProcedure = 9;

KERNEL FACILITIES 83

Now we consider the KalIs needed to perform the duties listed above. First,
we create a universai object to hoid the capabiiities we win return to the
builder:

procedure CreateBoxSubsystem;
begin
MakeU niversal(ReturnObject);

We create the new type object, giving it the print-name "Box." The capability
is also placed in the object to be returned (the slot used is arbitrary):

Create (Box Type, TypeCreationTemplate, "Box");
PutCapa(Path(ReturnObject,J), Box Type, NoRestrictions); 9

We create all three kinds of templates for the new type:

MakeCreation Template (BoxCreation Template, Box Type) ;
MakeParameterTemplate(BoxParameterTemplate, Box Type) ;
MakeAmplijicationTemplate(BoxAmplijicationTemplate, BoxType);

We pHt the creation and parameter templates in ReturnObject We restrict the
rights in the creation template to eliminate all but the auxiliary rights and the
"safe" kernel rights.

PutCapa (Path (ReturnObject, 2), BoxCreation Template,
[CreateRts+ DeleteRts+ ModifyRts+ EnvRts+ UncjRts;

BoxDepositRts+BoxWithdrawRts));
PutCapa(Path(ReturnObject, 3), BoxParameterTemplate, A llRights);

We now create the two procedure objects. We give each a capability for the
same code page, but each gets a different starting address. lO The assignment
of C-list slots in these procedures is also arbitrary and independent of the
slots assigned in CreateBoxSubsystem.

9In a more suitable language environment, the argument NoRestrictions could be defaulted.
Likewise, the parameter Path(ReturnOpject, J) is really representing ref ReturnOQject[J].

IOSetStartingAddress is one Kall necessary to establish initial addressability; others (not
shown) specify the initial CPS and RPS (see Chapter 13). The actual values of the procedure
starting address for Deposit and Withdraw were assigned by the linkage editor.

84 THE SYSTEM DESIGN

const
DepositPage = 1,'
WithdrawPage = 1,'

MakeProcedure(DepositProcedure) ;
MakeProcedure (Withdra wProcedure) ;
PutCapa (Path (DepositProcedure, DepositPage) , PageCapability,

NoRestrictions) ;
SetStartingAddress(DepositProcedure, Deposit);
PutCapa (Path (WithdrawProcedure, WithdrawPage) , PageCapability,

NoRestrictions);
SetStartingAddress(WithdrawProcedure, Withdraw);

Both the Deposit and Withdraw procedures will accept a Box as a parameter.
We therefore define a parameter slot for these two procedures and place the
appropriate amplification template in them. Because the PutCapa Kalls below
specify no rights restrictions, all rights will be amplified~ the SetRequiredRights
Kall is used to insure that the caller has the appropriate auxiliary right and all
the non-amplifiable kernel rights.

const
DepositBoxParameter = 2;
WithdrawBoxParameter = 2;

PutCapa (Path (DepositProcedure, DepositBoxParameter) ,
BoxA mplijication Template, NoRestrictions);

SetRequiredR ights(Path (DepositProcedure, BoxParameter),
[ModifyRts+ EnvRts+ UncjRts; BoxDepositRts}),'

PutCapa (Path (WithdrawProcedure, Withdra wBoxParameter) ,
Box A mplijication Template, N oRestrictions);

SetRequiredR ights(Path (WithdrawProcedure, BoxParameter) ,
[ModifyRts+ EnvRts+ UncjRts; BoxWithdrawRtsl);

The Deposit procedure will also accept a second parameter: a capability of any
type. The MakeNullParameterTemplate will create a parameter template which
matches any object type. No rights are required except EnvRts.

const
AnyObjectParameter = 4;

KERNEL FACILITIES 85

MakeNullParameter Template (Path (DepositProcedure, A nyObjectParameter}};
SetRequiredRights(Path(DepositProcedure, A nyObjectParameter},

[EnvRts; NoAuxRights] };

We now store capabilities for the two procedures in the Box type object. The
rights in these capabilities do not need to be restricted because general users
will never have a capability for the type object. (The builder will keep it in his
private directory.) Again, the assignment of slots in the type object is
arbitrary.

const
Deposit! ndex = 1;
Withdraw!ndex = 2;

PutCapa (Path (Box Type, Deposit! ndex), DepositProcedure, N oRestrictions};
PutCapa (Path (Box Type, Withdraw! ndex} , WithdrawProcedure,

N oRestrictions);

Finally, we return to the subsystem builder:

Return (0, ReturnObject, NoRestrictions};

5-5.4 Deposit

The Deposit routine below is quite simple; it just stores the user's capability in
the Box and returns. If a capability is already there, it is replaced by the new
capability and the old capability is lost. (Section 5-5.7 will discuss some issues
behind this implementation.)

procedure Deposit;
begin
! nterchangeCapa (Path (DepositBoxParameter, 1), A nyObjectParameter,

N oRestrictions};
Update (DepositBoxParameter };
Return (0, 0, O}
end;

By judiciously creating the Box amplification template in CreateBoxSubsystem,
we are assured in Deposit that the correct type of argument has been passed,
that the caller has BoxDepositRts for the Box, and that all necessary kernel
rights are present, whether through inheritance (e.g., ModifyRts) or amplifi­
cation (e.g., PutCapaRts).

86 THE SYSTEM DESIGN

5-5.5 Withdraw

Withdraw is equally simple for the same
AnyObjectParameter slot in Withdraw is
CreateBoxSubsystem stored no template there.

procedure Withdraw;
begin

reasons.
initially

Note that the
empty because

TakeCapa (A nyObjectParameter, Path (WithdrawBoxParameter, 1)) ;
Update (WithdrawBoxParameter);
Return (0, AnyObjectParameter, AI/Rights)
end;

5-5.6 Using the Subsystem

After invoking CreateBoxSubsystem the subsystem creator may place the Box
parameter and creation templates in a public directory. A user wishing to
create a Box in LNS slot BoxObject will retrieve the creation template, put it
in slot Box Template of his LNS, and invoke Create.

Create (BoxObject, Box Template);

Because of the way CreateBoxSubsystem restricted the rights in the creation
template, the capability returned in BoxObject will have no C-list or data-part
rights, effectively making it impossible to do anything with the box but
invoke Deposit and Withdraw. To invoke Deposit and store a capability from
slot Capa of his LNS in the box, the user would invoke

TypeCall(O, BoxObject, DepositIndex, NewBoxObjectSlot, CapaY;

The user could then retrieve the capability (into slot NewCapa, say) by
invoking Withdraw:

TypeCall(NewCapa, BoxObject, WithdrawI ndex, BoxObject);

The subsystem creator would probably supply Blisslll macros to make the
TypeCal/look something like, say,

Deposit(BoxObject, Capa);
Withdraw(BoxObject, NewCapa);

5-5.7 Some Design and Implementation Issues

The implementation of Withdraw and Deposit, although apparently simple,
involve some subtle points that we should mention.

KERNEL FACILITIES 87

Synchronization In Deposit and Withdraw, the I nterchangeCapa and
TakeCapa Kalls were carefully chosen to make explicit synchronization unne­
cessary. The subsystem builder must be conscious of the possibility that his
procedures will be called simultaneously by different users of the same
subsystem object. In this case, if we had replaced InterchangeCapa with the
sequence Delete(.. .),. PutCapa(..) there would be an instant in which
Withdraw would find no capability in the Box. Similarly, replacing TakeCapa
with GetCapa(..),. Delete(. . .) would permit two callers of Withdraw to get the
same capability out of the Box. If the Box subsystem were more complex,
explicit synchronization could be accomplished by placing a Policy Semaphore
in each Box. (See Chapter 12.)

Fault tolerance The Box subsystem was defined so that if two users attempt
to withdraw a capability from the same Box at the same time, only one user
will get it. The Update Kalls in Deposit and Withdraw guard against unpre­
dictable behavior should Hydra/C.mmp crash in the midst of these opera­
tions.

The TakeCapa and InterchangeCapa Kalls make modifications in the
objects in the Active GST~ the changes are not necessarily reflected in the
Passive GST immediately. I I If the Update Kalls are omitted, the following
sequence of events is possible.

1. Withdraw is invoked on Box B by user 1, and it returns a capability for
object C. The capability is placed in object D, and the user invokes
Update(DJ. Box B is not updated.

2. The system crashes. The Active GST is lost. The system comes up
again.

3. Withdraw is invoked on Box B by user 2. A capability for C is returned to
user 2, because when object B is retrieved from the Passive GST it is in
the state it was in prior to the first call on Withdraw. User 1 's object D
will have survived the crash, and so it contains the original capability for
C.

By invoking Update in Withdraw and Deposit, we ensure the Box is in a
stable state (with respect to system crashes) before the procedures terminate.

Security Is the Box subsystem secure? Can a user get a capability for a
Box object with rights sufficient to access its C-list or data-part directly?
There are two questions to answer.

1. Can the user create a Box object with liberal rights? No, because the only
creation template available had its rights restricted by CreateBoxSubsystem.

liThe Active and Passive GST are discussed in Chapter 11. The reader may wish to return
to this section after reading that chapter.

88 THE SYSTEM DESIGN

2. Can he obtain an amplification template which could amplify the rights on
a restricted capability? If he could obtain a capability for the Box type
object the user could breach the security of the system by either creating
a new amplification template or by retrieving one from the subsystem
procedures, which are accessible through the type object. The only
capability for the type object was returned to the builder by
CreateBoxSubsystem. The builder can keep the capability in his private
catalogue (in which case he depends on the security of the Catalogue
subsystem), or he can imbed the capability in a Hydra procedure which
can implement any arbitrary authentication algorithm before returning it.

Subsystem maintenance All software systems undergo modifications from
time to time. For Hydra subsystems, these modifications are usually accom­
plished by changing the subsystem procedures. The CreateBoxSubsystem is
not a good vehicle for making such changes~ every time it is executed it
creates a new Box type object, i.e., a new subsystem as incompatible with the
old one as Files and Directories.

This is a common engineering problem in Hydra and other operating
systems. Additional utilities must be created to "replug" procedure capabil­
ities in existing type objects and to maintain "versions" of subsystems so that
a system can be "rolled back" when a bug is found in the current system.

5-6 RETROSPECTIVE

In general the operations and access rights provided by Hydra have proven
adequate for the construction of the subsystems that have been built. These
subsystems, in turn, span a sufficiently broad spectrum that we feel fairly
confident of the adequacy of the kernel facilities. Given the relatively
primitive level of the operations (Kalis), this is perhaps not too surprising~ it is
fairly simple to determine their adequacy by inspection. For the rights, the
case is less obvious~ this issue will be the main topic of Chapter 7.

Whether the Hydra operations and rights are the best set that could have
been chosen is unclear. In retrospect we see many things that we would have
done differently. For example,

1. There are too many rights. In practice, a subsystem either grants
complete access to its representation or it grants no access. A single right
could have controlled all seven of the C-list and data-part rights listed in
Table 5-1.

2. Some of the more esoteric rights, notably EnvRts and UncjRts (discussed
in detail in Chapter 7), are probably not worth the bother. Their effect in
many cases can be achieved more simply, and they are not complete
solutions to the problems they were intended to address. In another
iteration of the system design we would probably try for a single right that

KERNEL FACILITIES 89

covered the most common cases that these were intended to address and
let the concerned programmer handle the more subtle cases.

3. There are too many kernel-defined types; many could have been elimi­
nated, especially if we had better hardware support that allowed direct
addressing of the data-part.

4. The composite operations (e.g., InterchangeCapa) were partly a response
to the need for more convenient primitives, but the main motivation was
to ensure indivisibility. A better approach might have been to provide a
general means for applying a sequence of more primitive operations

There are, of course, a number of operations that we would add or delete;
none of these is fundamental, however.

In retrospect we see TypeCall as an essential abstraction; in a
next-generation system we might not provide· Call at all. In light of
advancements in programming methodology, we recognize TypeCall to be a
crucial part of an object-oriented programming style, providing an absolutely
indispensable level of abstraction. Strangely; we originally viewed it as
merely a convenient way to avoid a· proliferation of capabilities for
procedures.

5-7 FURTHER READINGS

The detailed design of capability-based systems offers a myriad of oppor­
tunities for variation. Hydra's design developed largely from the model in
[Jon73]. Other designs stress other aspects of protection more heavily;
[Red74] considers the problem of revocation of access, [Wil79] offers an
alternative to rights amplification, [Fer74] concentrates on domain structure.
The high cost of interpreting references through capabilities is
well-understood [Stu74], prompting hardware architectures that support capa­
bilities directly [Eng74, Wil791.

CHAPTER

SIX
THE MESSAGE SYSTEM

An operating system that encourages the use of cooperating sequential
processes has a dual responsibility. On the one hand, it must provide
protection mechanisms to insulate processes from one another so that erro­
neous or malicious behavior on the part of one cannot interfere with
unrelated ones. On the other hand, it must also provide mechanisms for
cooperation among the processes working on a common task. The last two
chapters have dealt with some aspects of Hydra's response to the first of
these responsibilities. In this chapter we shall deal with one aspect of the
second.

Within the Hydra context, a wide range of interaction mechanisms are
possible, from tightly coupled memory sharing to loosely coupled message
communication. Moreover, the user is free to define application-specific
mechanisms that lie anywhere along this spectrum. The Hydra Message
System is a particular communication facility which we believe is convenient
for many loosely coupled applications, and which can form the basis for many
others.

6-1 OVERVIEW OF THE MESSAGE SYSTEM

The design of the Hydra Message System was motivated by several objec­
tives. First, we wanted the Message System to be very flexible, in keeping
with Hydra's own Tole as a general-purpose system. We wanted to be able to
use the facility for communication between processes in a single "job" as well
as between processes in different jobs. In particular, we felt it was inappro­
priate for the destination of a message to be a process, as is common in many
systems, since it is difficult for dynamically created processes to know each
other's names.

Second, we wanted to support a "user/server model," in which processes
would provide abstract "services" to other processes via the Message System.
The separation of user and server in this model is important; both should be
able to hide details of their implementation from the other. In particular, we
wanted to be able to vary the number of user (server) processes dynamically,
without affecting the server (user).

91

92 THE SYSTEM DESIGN

Third, envisioning a system in which message communication would be
used for many purposes, we felt it was imperative to provide for "multiple
waiting," so that a process could wait for messages from a number of
different sources. Indeed, we wanted to allow the process to specify the
"nature" of message it was waiting for, in addition to the source.

Finally, because we did not think anyone knew the "best" design for a
message system, we wanted our system to be efficient enough to support
other user-level communication mechanisms which might be better suited for
particular applications.

To meet these objectives, we designed the system around a number of
concepts: ports, connections, messages, and replies.

Ports Messages are sent between objects of type PORT, not between pro­
cesses. A port is in one sense the abstraction of a "service '\ one sends a
message to a port to request that service. Since ports are objects, they may
be shared~ in particular, several server processes can share a port in such a
way as to make their number transparent to the users.

Channels and connections Messages leave ports on output channels, they
arrive at ports on input channels. A topology of possible communication paths
is established by defining a set of connections between output channels and
input channels of different ports. After a connection is established, the
destination of a message need not be specified-only the output channel is
necessary. Input channels in a single port also form a unit upon which
multiple waiting is possible.

By creating, sharing, and connecting ports appropriately, any communi­
cation graph can be established. Figure 6-1 shows a number of alternatives. l

The simplest structure is the single server/single user shown in (a). As
shown in (b) and (c), either side of the connection may be implemented by
cooperating processes sharing the port. Non-cooperating users would use
different ports, as in (d).

Messages In our system, a message is best thought of as a vehicle or
container for transmitting data, rather than as the data itself. In particular,
the operations of creating a message, putting information into it, and sending
it are all distinct. Similarly, receiving a message is distinct from reading its
contents. Since the identity of a message is distinct from its contents, it
makes sense to read a message, modify its contents, forward it to another
server, and still talk about it as being the same message.

I By historical convention, we draw ports as triangles rather than using the standard object
notation. (It was thought that the triangular shape was reminiscent of a "hydraphone.")

LNS/Process LNS/Process

R-<J---v-R
(a)

LNS/Process

R-<J---
(c)

LNS/Process
r---I
~

THE MESSAGE SYSTEM 93

LNS/Process

LNS/Process

--+t>-R
(b)

LNS/Process

Q../1 LNS/Process

~"~~ ~

L~_«)vr--1
(d)

Figure 6-1 Simple interprocess communication structures

Replies Given our view of messages as "persistent," it is also reasonable to
associate historical control information with a message. By remembering the
identity of the originating port, we are able to develop a formal notion of a
"reply" to a message-a means for returning a message to the sender. This
allows a server process to respond to a user request without an elaborate
protocol. The situation is analogous to subroutine invocations-the subrou­
tine provides a service and returns to its caller without knowing the identity
of that caller. Indeed, the analogy with subroutines is a strong one-Hydra in
fact maintains a stack of "return points" in the message. Hence it is possible
for a message to be forwarded many times, from one server to another, and
still return to each point along the inverse route.

Input/output Input/output is an asynchronous activity (service) which is
easily modeled on a message paradigm. Hydra does this explicitly by
representing peripheral devices as objects of type DEVICE to which messages
can be sent exactly as with ports.

6-2 AN EXAMPLE: DATA BASE MANAGEMENT

Before describing the Message System in detail, we can give an example of
the kind of communication that is possible in Hydra. Suppose that one
wishes to implement a data base system in which an arbitrary number of user

94 THE SYSTEM DESIGN

processes can make inquiries and updates. Further, suppose that the actual
data base is distributed across many physical disk drives, and that the
expected high degree of concurrent access to the disks means that head
motion and latency optimizations would highly desirable. Figure 6-2 illus­
trates a possible communication structure for such a system.

User 1 Disk server 1

User 2 Disk server 2

Figure 6-2 A data base communication structure

In the example, user processes each have ports with an output channel
connected to a single "service port" of the data base system. An arbitrary
number of server processes extract requests from this port and map the
requests into operations on the disk devices.2 Actually, what appear to be
disk devices to the Data Base Servers are actually Disk Server processes
which buffer and reorder the 110 requests to minimize head movement and
latency on the physical devices.

If, for the moment, we make the simplifying assumption that each user's
data base request maps to a single disk operation, we can trace such a request
through the system.

1. The user process generates the requesting message, whose contents will
reflect both the nature of the request (e.g., "read") and the logical entity
to be operated upon (e.g., "Harbison's address"). When the user process

2We assume that any server can process any request.

THE MESSAGE SYSTEM 95

sends the message it will be enqueued at the Data Base Servers' port. (It
will implicitly contain the name of the originating user's port.)

2. One of the Data Base Servers will eventually receive the message and, on
the basis of its contents, will convert the request into a physical I/O
operation on one of the disks. The Data Base Server process will then
alter the contents of the message to specify this physical operation and
forward the message to the appropriate Disk Server port.

3. The Disk Server process will receive the message, read its contents, and
decide how to schedule the operation in relation to the others it presently
has. Eventuaiiy, the message win again be forwarded-this time to the
disk DEVICE object, where the kernel will perform the actual I/O oper­
ation.

4. When the operation completes, the kernel will reply to the message. By
virtue of being the last sender, the Disk Server process will receive the
reply, giving it the chance to verify that the operation completed without
error.

5. The Disk Server can now reply to the message again; this time the
message will be enqueued at the Data Base Server port.

6. Finally, one of the Data Base Servers (not necessarily the same one that
originally serviced the user's request) will read the reply and, if all is well
and no further action is necessary, will reply it to the user process.3

With this overview in mind, we now turn to the details of the system.

6-3 PORTS

A PORT object consists of four parts:

1. A set of output channels. Each connected output channel contains a
reference to an input channel in some port. Output channels are
numbered consecutively from 0; there is no specific upper limit to the
number of them in a port.

2. A set of input channels, each of which can receive and queue messages
from any number of output channels. There are 16 input channels in a
port, numbered from 0 to 15.

3. A set of message slots. Message slots provide buffers which hold message.
and provide a local naming mechanism for them. There is no specif::
limit to the number of message slots a port may have. Message slots a (;::
used only while operating on messages; they in no way limit the numl "
of messages which may be enqueued at a port or sent by it. Mess2.;';
slots are named by small positive integers.

3In reality there is a means of short-circuiting some of this replying mechanisT', Hhich \,'t!l

be covered later.

96 THE SYSTEM DESIGN

4. A blocked process queue. A process attempting to receive a message that
has not yet arrived may be placed on this queue and suspended until a
message does arrive.

A port has multiple input channels so that it may send and forward
messages to a variety of destinations. As will be seen, multiple input
channels allow some selectivity in waiting for arriving messages. Messages
are at all times physically associated with some port-either enqueued at one
of the input channels or residing in a message slot. Messages can move
between ports only by traveling along a connection; it is not possible to
receive a message at one port and forward it out through another port.

The kernel provides a Kall, MakePort, to create ports.

6-4 CONNECTIONS

An output channel of one port may be linked to an input channel of another
port to form a connection along which messages may travel. A connection is
established by the Connect Kall:

Connect(OutPort, InPort:object(POR T,PortConnectR ts),
OutChannel, InChannel, Conn/D:integer)

Output channel OutChannel of OutPort is connected to input channel
/nChannelof InPort. ConnlD becomes the connection identifier of the
connection; every message sent over the connection will be tagged with
Conn/D. OutPort and /nPort may be the same port. (/nPort may also be a
DEVICE object.) PortConnectRts is an auxiliary right for PORT objects.

A single output channel cannot be connected to more than one input
channel, but any number of different output channels (in any number of
ports) may be connected to the same input channel. This "fan-in" at the
input channel is invisible to a receiving process.

An output channel may be disconnected at any time (for possible later
re-connection) by the Kall Disconnect.

Disconnect(Port: object (POR T, PortDisconnectR ts), OutCha nnel: Integer)

As a side effect of Disconnect, a special disconnect message is sent along
the output channel. It may be used by processes on the input side of the
connection to recognize the fact that the connection is being broken.

Connect is the only Kall that requires a single LNS to have a capability for
both the sending and receiving port, and it is not necessary for the connector
to be either the sender or the receiver. Normally, when the communication
channel is of the "user-to-server" variety, it is the server system that is given
the privilege of connecting the ports. That is, instead of simply making a

THE MESSAGE SYSTEM 97

capability for the port available to users, the server subsystem provides a
procedure that takes the user's port and output channel number. The server
procedure (which can inherit a capability for the server process' own port)
then performs the connection. This method has several advantages:

1. It allows the server to allocate his input channels and connection identi­
fiers in a controlled manner.

2. It allows the server to allocate table space or other resources for the new
user.

3. It allows the server to perform arbitrary access restriction by requiring the
user to present other capabilities for inspection. (The file system de­
scribed in Chapter 8 is a good example of this.)

4. It further hides the implementation of the server from the user. (The
server might have more than one port, for instance.)

6-5 MESSAGES

It is advantageous to think of a message as a real piece of storage which
passes from port to port and which can be read and written. This storage is
actually divided into several fields, the relevant ones being

• A text!capability buffer, holding the message text and/or a (single) capa­
bility.

• A message type, an integer in the range 0 to 15.
• A stack of reply frames, recording where the message should go when

replied.

The message type is uninterpreted by Hydra~ it is often used by applications
to differentiate classes of messages and replies (e.g., "normal" vs. "error").
The message type, the input channel on which the message arrives, and the
connection identifier all help a receiver to discriminate among messages.4

The reply stack is central to the message reply mechanism. Each reply
frame on the stack specifies:

• A port and input channel to which the reply will return.
• A reply mask that specifies which replies are of interest to the sender.
• A message identifier, an uninterpreted. token supplied by the sender and

returned with the reply.

Whenever a message is sent, a new reply frame is pushed on the message's
stack and filled with information about the sender. A "reply" operation pops

4The "type" of a message should not be confused with the "type" of an object in Hydra.
Messages are not objects, and the two uses of the term "type" are unrelated.

98 THE SYSTEM DESIGN

off the top frame and uses its contents to determine the return destination of
the message. Of course, the contents of the message's data buffer may have
been (usually is) modified by the time the message returns.

Because messages are not Hydra objects, all rights-checking in the KalIs
that follow occurs on the capability for the PORT object that is the first
argument. There is an auxiliary right for each major operation on ports or
messages, although some do double duty. For instance, the right allowing
the WriteMsg Kall also governs the PutMsgCapa Kall.

6-6 OPERATIONS ON MESSAGES

The CreateMsg Kall creates a new message in a port.

CreateMsg(Port:object(POR T,MsgCreateR ts),
StackSize, Length:integer) returns slot:integer

Creates a new message and stores it in a free message slot, whose
number is the return value of the Kall. The message's maximum text
length will be Length and its reply stack will have a possible depth of
StackSize frames.

Several KalIs are provided to read and write the text/capability buffer of a
message.

ReadMsg(Port:object(PORT,ReadRts), Slot: integer, Address:mem,
StartingByte, Length: integer)

WriteMsg(Port:object(PORT, WriteRts), Slot: integer, Address:mem,
StartingByte, Length: integer)

GetMsgCapa(Port:object(PORT,ReadRts), Slot: integer, D:slotOndex))

PutMsgCapa (Port:object(POR T, WriteR ts), Slot: integer, S:capa(EnvR ts),
Rights: rights)

These KalIs are all similar. The message is specified by a (Port, Slot) pair
and the text is specified by an address in the user's address space
(Address), a starting byte in the message buffer (StartingByte) , and a
length in bytes (Length).5 GetMsgCapa transfers a capability from the
message to a slot (D) in the LNS. PutMsgCapa moves a capability (S)
from the LNS to the message, possibly restricting rights as it does so.
(ReadRts and WriteRts are other auxiliary rights for ports.)

5This mechanism permits a user to alter small portions of the message text while leaving the
rest untouched.

THE MESSAGE SYSTEM 99

To send a message, one uses the RSVPMsg Kall,

RS VPMsg(Port:object(poR T,SendRts}, Slot: integer, Type: integer,
OutChannel:integer, ReplyMask:mask,
ReplyI nChannel: integer, MsgID: integer}

The message is specified by the (Port,Slot) pair and the destination is
specified by OutChannel. (The output channel must have previously been
connected with Connect.) The argument Type sets the message type field
of the message. The remaining three arguments affect the reply:
ReplylnChannel is the input channel on which the repiy win arrive,
ReplyMask is a bit mask that can be used to selectively ignore some
replies on the basis of their message type, and MsgId, the message
identification, is an arbitrary token that will be returned with the reply so
that the sender may identify the message even if the text buffer has been
altered or the messages are not replied in FIFO order. These three
parameters, along with Port, are stored in a reply frame which is pushed
onto the message's reply stack as the message is sent.

The ReplyMsg Kall returns ("replies") a message to its sender.

ReplyMsg(Port:object(poR T,ReplyRts}, Slot: integer, Type:integer}

Returns the message to the previous applicable sender, as specified in the
message's reply stack. If no such sender exists, the message is deleted.
Type will be the message type of the replied message.

ReplyMsg does not necessarily return the message to the most recent
sender. After obtaining the reply frame from the message, the Message
System compares the value of ReplyMask stored therein with the Type
parameter in ReplyMsg. If the bit in ReplyMask corresponding to Type is 1,
then the message is returned to the indicated port. However, if the bit in
ReplyMask is 0, the reply frame is discarded and the next reply frame is
popped and processed in the same fashion, thus causing the reply to bypass
the first port.

When the last reply frame has been popped off a message, the action of
ReplyMsg is to delete the message. Because this is the only way in which a
message can be deleted, it is impossible to thwart the reply mechanism by
prematurely destroying a message.

The ReceiveMsg Kall provides a very flexible mechanism for receiving
messages and replies.

ReceiveMsg(Port:object(POR T,ReceiveRts}, Filter:msgfilter,
Address:mem(J6}} returns Slot:integer

Returns the first applicable message waiting at the port, as specified by
Filter. Relevant characteristics of the received message are stored in the

100 THE SYSTEM DESIGN

block of memory, Address, and the number of the message slot holding
the returned message is the return value of the Kall.

Filter is actually a series of arguments with which it is possible to specify a
subset of messages waiting at a port. The details of how Filter is encoded are
not important; it suffices to know that one can specify three classes of
messages:

1. Messages from any specified subset of the 16 input channels
2. Messages having any specified subset of the 16 message types
3. Messages having a (single) specified message identifier

When more than one message satisfies the filter condition, the messages are
received in FIFO order. The message filter can also indicate whether the
ReceiveMsg Kall should block if no message matches the filter, or simply
return notifying the user that no suitable messages are present.

The message description provided by ReceiveMsg is designed to give the
receiver a lot of information about the message before reading its contents.
The information includes:

1. The message type (set by RSVPMsg or ReplyMsg)
2. The input channel on which the message arrived
3. The connection identifier set by Connect (only if this is not a reply) or the

message identifier set by RSVPMsg (only if this is a reply)
4. The length of the text in the text buffer
5. Three bits indicating (a) whether this is a reply or an "original" message,

(b) whether this is a "disconnect message," and (c) whether a capability is
present in the message

The final message operation we shall describe is ReQueueMsg.

ReQueueMsg(Port:object(PORT,ReceiveRts), Slot: integer, Type: integer,
Channel: integer, Msgld:integer,
ConnlD: integer, Replybit: integer)

This Kall allows the programmer to use the implicit queues of the
message system for enqueuing tasks to be done (where each task can be
represented by a message). It is also useful for holding messages that
cannot be processed immediately. Although the details may seem
complex, the net effect is to requeue a specified message on a specified
input channel of the same port. Any parameter of the message can be
changed at the same time, but the reply stack remains intact.

Although the Message System has a large number of KalIs, they are used
in fairly regular ways. Below are typical sequences of operations for a user
and a server.

User

slot: = CreateMsg(Port, .. .J
WriteMsg(Port,Slot, .. .J
RSVPMsg(Port,Slot, .. .J

(* Wait jor reply *)

slot: = ReceiveMsg(Port, .. .J
R eadMsg (Port, Slot, .. .J

THE MESSAGE SYSTEM 101

Server

(* Wait jor request *)

slot: = ReceiveMsg(Port2, .. .J
ReadMsg(Port2, slot, .. .J
WriteMsg(Port2, slot, .. .J
ReplyMsg(Port2, slot, .. .J

6-7 A VIEW OF THE REPLY MECHANISM

An understanding of the reply mechanism is crucial to a proper under­
standing of the Hydra Message System, for it is the key to structured
interprocess communication and exception handling in Hydr:l. An analogy 10
ordinary sequential control structures might be helpful.

With no reply stack at all in a message, there could be no RSVPMsg or
ReplyMsg primitives. The only way to transmit a message would be with a
one-way "SendMsg' Kall. SendMsg might be likened to a "GO TO" state­
ment, in which control transfer is one-way, with no information as to where
it came from.

When we add the reply stack to messages, in effect we add the call stack
of the familiar sequential process. Ignoring the ReplyMask parameter for the
moment, we see that RSVPMsg is analogous to a subroutine call and that
ReplyMsg is analogous to subroutine return. Most message systems provide
only what amounts to a one-level subroutine call mechanism.

With the ReplyMask parameter of RSVPMsg we add an exception-hand­
ling ability analogous to ON conditions in PL/I or ENABLE declarations in
Blisslll [Wu1711. The ReplyMsg operation is now more like an interprocess
version of the SIGNAL statements of PL/I or Blisslll than a simple
subroutine return. When a ReplyMsg is done, both control and data are
transferred to that environment (i.e., port) nearest the top of the reply stack
that had been "enabled" for replies of the type generated.

The use of the call-signal mechanism for structured exception handling in
sequential environments is not uncommon. However, such a mechanism is
even more important in a multiprocessing context. In addition to providing
better program structure in exception-prone applications (such as 110), it
saves a great deal-perhaps hundreds of milliseconds-of processor time,
paging time, and queuing delay by avoiding unnecessary reply handling.

It is our contention (and experience) that programmers almost always

102 THE SYSTEM DESIGN

desire to treat message transactions abstractly as subroutine calls. Both the
data structure and the control structure implied by the Hydra reply mech­
anism would nearly always be embedded in user processes anyway if the reply
mechanism were not there. With this reply mechanism, programmers are
liberated from the great deal of work needed to make effective use of a
communication system.

6-8 RETROSPECTIVE

Users and implementors have three chronic complaints about the Message
System: it's too slow, it's too "baroque," and it shouldn't be in the kernel.

The Message System was included in the kernel principally for efficiency
reasons~ PORTS could have been implemented by a user-level subsystem
without loss of functionality. For similar efficiency reasons, it was decided to
not implement messages as true Hydra objects. In retrospect, both these
decisions seem questionable. The additional effort of coding subsystems in
the kernel would have been better spent on making the basic Call mechanism
faster. Moreover, because messages are not true objects, they do not migrate
to secondary storage. Under heavy load this becomes a strain on primary
memory. Finally, Hydra's protection structure does not mesh well with the
kernel implementation of ports. A capability names a port, yet most often
one is interested in a (port, channel) pair~ to establish a connection, for
example, a process will often pass a capability for one of its ports to a server's
procedure. The process really only wishes to pass a channel, but has no way
to do so. A user-level subsystem implementation would implement connec­
tions with capabilities, and the desired protection properties would be natu­
rally available.

Even though many people lament the Message System's baroqueness­
too many KalIs with too many arguments-there is no consensus that any
features should be eliminated. In fact, most users agree that the general
RSVP-Reply paradigm is very good. The most common objection is the lack
of one particular feature - the so-called "timed receive."

A TimedReceive KalI, if it were implemented, would act exactly like
ReceiveMsg except that it would take an additional argument, an elapsed time,
which would cause the Kall to abort if no message arrived within the specified
interval. This is an important facility for a message system that wants to
allow for cooperating but mutually suspicious processes, which Hydra cer­
tainly does. In fact, we believe that this feature should have been provided
in the earliest designs of the message system.6

The slowness of the message system is also a common objection. We
tried to alleviate this situation in two ways:

6"Disconnect messages" were another feature we thought of only after we tried to build
systems without them. Fortunately, they were easier to add.

THE MESSAGE SYSTEM 103

1. We allow the Policy Module to specify, on a per-process basis, an interval
during which a process will remain under control of KMPS after blocking
on a port or Policy Semaphore. Only after this interval expires will the
process be returned to the PM. (Recall Section 3-3 and see Chapter 12.)

2. We provided several "composite" KalIs in the message system, such as
ReceiveAndRead and WriteAndRSVP. As with other composite KalIs,
these KalIs are functionally just the concatenation of the constituent
operations, but some overhead is eliminated.

Interestingly, although the message system is slower than we would like,
message transmission is still faster than a procedure call. This tends to
encourage programmers to use processes and messages rather than
procedures.

The message system's abstractions are occasionally confusing because
they try to address two different paradigms for message system interaction:
the message-switching model and the levels-of-abstraction model, also called
the File Server model.7

The message-switching model focuses on the store-and-forward facilities
of the message system. Messages travel to a port, where they are sorted and
retransmitted by an intermediate process to their final destination. Very
often, the destination of the message can be determined by the type or
connection identifier of the message, thus allowing the message text to
remain untouched. This model is the basis for our decision to unbundle the
allocation of a message buffer from the sending or receiving of that message.
The ARPANET control program example in Chapter 9 is a good demon­
stration of this model.

In the File Server model, we picture a user connecting to a server process
which implements the "file" abstraction seen by the user. The user's
messages to the server contain file operations. The File Server subtly alters
the user's message buffer so that it can be forwarded directly to a disk device;
i.e., it transforms the message from a file request to a disk request. Replies
from the disk are then sent back to the user, perhaps bypassing the Server
except when an error occurs. This model is the basis for much of the reply
mechanism.

The message system's treatment of a message buffer is a compromise
between the ideals of these two paradigms. The advantages gained by
viewing message transactions as asynchronous procedure calls are somewhat
offset by the necessity of sharing a common text/capability buffer at all levels
of the transaction. The decision to separate buffer allocation from
send/receive was based on the premise that little alteration of the buffer
contents would be necessary as the message moved from port to port.
However, viewing each port as implementing a separate and independent

7This model does not correspond exactly to the actual implementation of the current file
system (Chapter 8), but it is a possible implementation.

104 THE SYSTEM DESIGN

abstraction seems inconsistent with this premise.
Independent of its abstraction properties, the message buffer does have

the advantage of keeping message text out of the address space of the
communicating processes. Some important programs (notably the ARPA­
NET control program) have completely finessed the small address space
problem by exploiting the "auxiliary address space" implicit in message
buffers. This is a major advantage given the large amount of physical
memory on C.mmp and the small address space available to programs.

6-9 FURTHER READINGS

Operating systems have been offering message systems and message-style
interprocess communication for some time, an early example being the
RC 4000 system [Bri70]. More recent systems [Rit74, Che79] strongly
encourage or enforce message-style communication as the sole means of
exchanging information across process boundaries. The relative merits of
procedure calls versus message passing have long been debated~ [Lau79]
presents a provocative view of the relationship between these communication
paradigms.

PART

THREE
THE SYSTEM IN USE

CHAPTER

SEVEN
USING THE PROTECTION MECHANISMS

Hydra's philosophy, presented in Chapter 3, is that protection must be an
integral part of any general-purpose operating system. A set of protection
mechanisms should be part of the lowest level of an operating system, and
those mechanisms must be flexible enough to support the wide range of
security and reliability policies needed by subsystems and application pro­
grams.

Hydra was designed with four interacting mechanisms that together
provide a base for supporting a broad spectrum of such policies. These
mechanisms have been described already, but we summarize them here.

Procedure invocation. To ensure that a procedure's execution environment is
determined by only the capabilities in its own C-list plus those capabilities
passed to it by its caller.

Rights amplification. To allow (only) designated procedures to access the
representation of user-defined object types.

Rights checking. To restrict the set of operations that can be performed on an
object accessed along a path.

Rights propagation and masking. To implement a set of rules for determining
how rights are propagated when capabilities are copied.

In this chapter we will see in more detail how these mechanisms can be
used to solve a number of common protection problems. The discussion will
center on three important kernel rights: ModifyRts, EnvRts, and UncjRts.
Before considering special mechanisms, however, we should note that Hydra
procedures and the Call mechanism provide a means for implementing
arbitrary security policies, even in the absence of the other mechanisms
involving capability rights. A procedure can act as a gatekeeper for an object
by holding in its C-list the only capability for the object; where a capability for
the object would ordinarily be made available to some user, a capability for
the gatekeeper can be made available instead. The user is unable to access
the object directly; he can invoke only the gatekeeper, presenting whatever
additional capabilities are required for authentication.

107

108 THE SYSTEM IN USE

7-1 KERNEL RIGHTS

It would be unreasonable to force every user to program every security policy
explicitly, as would be required if gatekeepers were the only protection
mechanism. The most common protection problems are solved in Hydra
through the mechanism of rights checking and amplification, which is appli­
cable to all capabilities. The specific set of kernel rights was designed for
Hydra with several goals in mind.

Selective access. A number of operations, such as GetCapa, are applicable to
any object, and such operations have an associated right (e.g.,
GetCapaRts). The operation is permitted on the object only if the
capability for the object has the appropriate right.

Reliability. Even a trusted procedure may not operate correctly due to
software or hardware failures. As a result a procedure may mistakenly
delete or modify an object. The rights DeleteRts and ModifyRts help caller
and callee guard against such accidents.

Limiting propagation of access. It is possible for a capability to be copied and
placed, perhaps improperly, in objects where it would be widely acces­
sible. EnvRts is designed to prevent such propagation where it is
inappropriate.

Limiting propagation of information. Even when a capability for an object is not
made widely accessible, data contained in the object can be copied to a
new object which in turn can be made accessible. UncjRts is used in
conjunction with procedure invocation to prevent this.

We wish to examine the protection mechanism in some detail, and to do
this we choose to look at several classical protection problems. The attain­
ment of the goals above allow Hydra to directly solve these problems:

• The Mutual Suspicion Problem, which motivates the basic Hydra Call
mechanism and selective access to objects

• The Modification Problem, which addresses the problem of reconciling
reliability with privilege

• The Conservation Problem, which is the problem of limiting the propagation
of capabilities

• The Confinement Problem, which is the (harder) problem of limiting the
propagation of information

• The Initialization Problem, a particularly difficult problem that combines
aspects of all the previous problems

USING THE PROTECTION MECHANISMS 109

7-2 THE MUTUAL SUSPICION PROBLEM

In most operating systems, a user takes a risk whenever he invokes a system
utility or a program belonging to another user. He has no way of being sure
that the program he calls will not do something disastrous, such as request
that the operating system delete all his files. Most users simply take such
low-probability risks for granted and rely on backup systems to aid recovery
in the unlikely event that disaster should occur'! But in a system in which
security is important, faith is not enough. Further, in Hydra-like systems in
which most functionality is provided at the uSer level, the probability of
errors may be higher. The user needs some way to limit or circumscribe the
amount of damage a procedure that he calls can do.

Similar problems are faced by the author of a (possibly proprietary) utility
program intended to be called by many different users. The program
probably makes assumptions about the format of its private files and there­
fore wishes to have exclusive access to the files. The programmer needs
some guarantee that, except through execution of his program, users cannot
access his sensitive data structures or his program code.

This situation is known as the Mutual Suspicion Problem [Sch72].
Restated in the language of Hydra, the problem is this: the caller of a
procedure needs a guarantee that the procedure will not be able to gain access
to any of the caller's objects, except those explicitJy passed as parameters.
The procedure (i.e., the owner or maintainer of the procedure) likewise
needs a guarantee that the caller cannot gain access to any objects private to
that procedure, except when the procedure explicitly allows it. The Call
mechanism was designed to solve both problems directly.

Execution environments and access privileges in Hydra are not hierar­
chical. When a procedure is called, the execution environment of the
instantiated LNS is the union of two sets of capabilities: those passed to the
LNS from its caller, and those inherited from the procedure object. Because
the caller cannot access the procedure's capabilities,2 he cannot tamper with
the LNS's inherited environment. Because the called LNS cannot reach the

,caller's environment, the new LNS's ability to tamper with the caller's
capabilities is absolutely limited to those passed as arguments.

The Call mechanism actually provides finer control than required to solve
the Mutual Suspicion Problem. Not only can the caller control the set of
objects that he must allow the callee to access, but by restricting the rights in
the capabilities he passes, he can actually control the kinds of accesses he
risks. He thus has extremely tight access control of his objects.

Technically, there is one exception to this tight access control: if the
procedure in question has an amplification template for some type, then it

IOf course, trust in the backup systems is still necessary.

2Assuming the capability for the procedure lacks GetCapaRts, which is typical.

110 THE SYSTEM IN USE

may be able to acquire more rights to an object than the caller passed.
However, it should be recognized that the possession of an amplification
template for some object type is, more or less by definition, the distin­
guishing characteristic of the subsystem procedures that implement that type.
Subsystem procedures must be trusted to some degree~ otherwise the sub­
system should not be used. Having said this, we now consider various ways
in which a user can protect himself from subsystems and restrict even the
kinds of operations the subsystem can perform on its own objects.

7-3 THE MODIFICATION PROBLEM

Users often want guarantees that an object passed as an argument to a
procedure will not be modified as a result of the call. Ordinarily, it is
sufficient to restrict those rights that allow modification (i.e., PutCapaRts and
PutDataRts) before passing the capability for the object as an argument.
When a procedure that belongs to the subsystem for the object type in
question is called, however, rights amplification may reinstate those rights.

In general, of course, users must trust that a subsystem fulfills its
specifications, just as they trust that the subsystem maintainers do not
distribute amplification templates indiscriminately. Unfortunately, programs
are changed, and trustworthy subsystems occasionally develop bugs. Ideally,
both the user and the subsystem want a way to ensure correct operation. We
cannot do this in general, but we can provide a solution to the Modification
Problem, i.e., the problem of ensuring that an object is not modified in any
way.

The generic capability right, ModifyRts, implements the solution. Each
Hydra Kall that modifies an object in any way requires a capability with not
only the right that allows the specific operation but ModifyRts as well. Thus,
to store a capability in an object, one must have a capability for the object
with both PutCapaRts and ModifyRts. To put data in the data-part of an
object, one needs a capability for the object with both PutDataRts and
ModifyRts.3

ModifyRts can never be gained through amplification! A capability
lacking ModifyRts represents an intention to prevent all modification to the
object through that capability. A capability produced by Merge (Section 5-3.4)
will contain ModifyRts only if both the amplification template and the original
capability have ModifyRts.

Because what the user thinks of as a single "object" (e.g., a file) may
actually be implemented with many different object types (e.g., pages and
semaphores), ModifyRts must prevent the modification of the representation
of an object as well as the object itself. Hydra therefore ensures that loading

3 A Kall that modifies the internal structure of a kernel-supported object also requires
ModifvRts. Thus, P and V operations on semaphore objects require a capability with ModtfyRts.

USING THE PROTECTION MECHANISMS 111

a capability into one's LNS through an intermediate capability that lacks
ModifyRts masks out ModifyRts in the loaded capability (recall the operation
of GetCapa, section 5-3.2).

In Figure 7-1, the left-hand diagram indicates the environment of LNS A
at the time it loads a file capability into its C-list via the operation

GetCapa (2, Path 0, 1))

As seen in the right-hand diagram, the new capability for the file lacks
lvfodifyRts because the capabiiity for the UNiVERSAL object lacked them. This
masking means that if a capability for a file lacking ModifyRts is passed to a
procedure, the procedure will not be able to modify either the file or the page
and semaphore objects that make up its representation.

Fi!eWrite
Modify

A: LNS

GetCapa
M~ify

2 -empty-

D:File

R

GetCapa(2,Path(1,1))
-------------------~

Figure 7-1 Masking ModifyRts along paths

D: File

R

The practicality of this solution to the Modification Problem depends on
the cooperation of authors of procedures. A procedure can allow users to
protect themselves only if the procedure can operate without ModifyRts, and
this does pose some restrictions on the procedure. For instance, a file
system's Read procedure may wish to update a "date-of-Iast-access" field in
the data-part of the file. In this case, Read, while conceptually not altering
the file, will need ModifyRts, and thus users of Read cannot restrict
ModifyRts. (The author of Read should confirm this by including ModifyRts
in the required-rights field of the file parameter template.)

112 THE SYSTEM IN USE

7-4 THE CONSERVATION PROBLEM

Assuming that a user accepts whatever risk of modification is inherent in
passing a capability to a procedure, there is still a problem of determining
when that risk is over. Ideally, the risk should extend only over the lifetime
of the procedure invocation; when the procedure returns, the user would like
to be able to assess any damage done and, finding none, be assured that he is
once again safe. Unfortunately, it is possible for procedures to retain
capabilities passed to them, and even to pass those capabilities to other
processes which in turn could monitor or modify the object at arbitrary times
in the future. Thus we have the Conservation Problem, a special case of the
problem of limiting the propagation of capabilities.

To solve this problem, Hydra implements another kernel right, EnvRts.
EnvRts must be present in any capability to be stored outside the LNS. Thus,
an LNS with a capability lacking EnvRts could not invoke the PutCapa Kall on
that capability. Like ModifyRts, EnvRts is propagated along paths and cannot
be gained by amplification.

The lack of EnvRts does not prevent a capability from being passed to a
procedure as an argument (though perhaps it should), or returned to a calling
procedure as a result, but it does effectively prevent any sharing of the
capability with any other user since LNSs are never shared4 and no capability
lacking EnvRts can escape from the LNS into a shared object. When the LNS
returns to its caller, Hydra deletes all capabilities in the LNS (including the
ones lacking EnvRts).

Figure 7-2 shows the canonical dangerous situation. LNS A is about to
call the DIRECTORY subsystem procedure X, passing it an object of type
DIRECTORY. Unknown to A, X shares a UNIVERSAL object with another
procedure (Y), and plans to store a capability for A's directory in that object
so that Y can access the directory later. To protect himself, A restricts EnvRts
in the directory passed to X, thus resulting in the situation depicted in Figure
7-3. LNS X' has been instantiated from procedure X, but if X' now attempts
to store the directory in the UNIVERSAL object, the Kall

PutCapa(Path(2, J) I J)

will fail because the directory capability in C-list slot 1 of X' lacks EnvRts.
When X' returns, A is assured that no capabilities for the directory are
retained.

As in the case of ModifyRts, procedure writers must anticipate that their
callers may pass them capabilities lacking EnvRts and thus design their
algorit!'lmS such that the right is not needed.

41n fact, it would be nice for debugging processes to get hold of a capability for an LNS, and
this is a real problem in Hydra. We do allow an LNS to pass a capability for itself to another
procedure, but EnvRts is always removed from the capability.

A:LNS

CaliRts

Env

USING THE PROTECTION MECHANISMS 113

x: Procedure Y: Procedure

Directory GetCapa
Parameter
Template

Directory Universal

-empty-

Figure 7-2 The Conservation Problem

X: LNS

Ef(..

PutCapa
Modify

Y: Procedure

. GetCapa

Universal

1~
Figure 7-3 The Conservation Problem solved

7-5 THE CONFINEMENT PROBLEM

While EnvRts is useful in preventing propagation of capabilities, it is of
limited usefulness in preventing propagation (disclosure) of in/ormation (the
Confinement Problem). Even though a capability lacking EnvRts may not
escape outside of its execution environment, nothing prevents a user from
copying the data from the old object to an existing object.

Hydra addresses the Confinement Problem by permitting a procedure to
be confined at the time it is invoked. A procedure is confined whenever the
capability used to access the procedure at the time of invocation lacks
UncjRts.5 When a confined procedure is called, all inherited capabilities (from

5 A procedure invoked by TypeCal/ is confined if the type representative in TypeCal/lacks
Unc/Rts.

114 THE SYSTEM IN USE

the procedure) in the new LNS have ModifyRts and UncjRts removed.
Capabilities passed as arguments by the caller are not affected.

Figure 7-4 shows a situation in which LNS A wishes to call procedure X,
passing it file B.

A: LNS

FileRead

B: File

R

X: Procedure

File
Parameter
Template

FileWrite
Modify

Uncf

Figure 7-4 The Confinement Problem

Y: File

R-···
Z: Procedure

File
Parameter
Template

Although LNS X' must be able to read the file in order to perform its
functions, A wishes to ensure that the information in file B will not leak
away, as might happen if X were allowed to copy information from B into
shared file Y. Therefore, A invokes X through a capability lacking UncjRts,
yielding the situation in Figure 7-5. Although X' has all rights to file B, it
cannot copy the information into file Y because it has lost ModifyRts to that
file. (For the same reason, it could not store a capability for B in any shared
object.) Furthermore, X' cannot invoke another procedure (Z) to do the
leaking, for it has lost UncjRts to Z, which must therefore be called confined.

This mechanism solves the Confinement Problem because no infor­
mation can be copied into any inherited (and potentially shared) objects.
New objects may be created and modified, but they themselves cannot be
stored into the inherited objects, and so cannot be shared or saved after the
return. The only other modifiable objects in a confined procedure are
(possibly) the objects passed as parameters. These, being theoretically part of
the caller's environment, or at least under his explicit control, should not be
dangerous.

Because UncjRts is masked out along paths, all procedures the new LNS
might call are also confined. Capabilities (with UncjRts) for procedures may
be passed as parameters and thus called unconfined, because they represent
operations that we assume the caller has deemed safe.

In practice, it may be hard to write some procedures so that they can
operate confined. The next chapter discusses some of the problems in
connection with the design of a particular confinable subsystem.

X: LNS

U\kf
B:File

A

USING THE PROTECTION MECHANISMS 115

Y: File

A
Z: Procedure

File
Parameter
Template

Figure 7-5 The Confinement Problem solved

7-6 THE INITIALIZATION PROBLEM

In conjunction with the Conservation Problem, we showed how a procedure
could be prevented from storing away or sharing a capability for an object
passed to it. This solution depended upon an assurance that the procedure
did not inherit unrestricted access (i.e., with EnvRts) to the object. This
expectation may especially be violated in the initialization of the object.

Initializing a newly created object entails the generation of its represen­
tation. Suppose that procedure FileInit initialized a file passed to it by
creating a OAT A object and storing it in the file. We want to prevent FileInit
from making either the file or the newly created DATA object available to
another user.

Restricting EnvRts when passing the file to FileInit will not suffice, since
a capability for the newly created OAT A object could be shared with the
unwanted user at the same time it is used to initialize the file. This can be
prevented by confining FileInit (calling the procedure without UncjRts). In
that way, no capability for either the file or the newly created DATA object
can be propagated beyond FileInit's environment. Unfortunately, confine­
ment alone is not enough. Instead of initializing the file with a newly created
DATA object, FileInit might use a DATA object that it already shares with
another user.

Hydra solves this tricky problem by removing EnvRts at procedure
invocation in a way similar to the removal of UncjRts. When a procedure is
called through a capability lacking EnvRts, all capabilities in the incarnated
LNS inherited from the procedure have EnvRts removed. In the example
above, no object already available to FileInit could be stored in the file; only
newly created objects (or capabilities passed to FileInit with EnvRts) may be
stored in it.

To initialize an object safely it is necessary to call the procedure via a
capability containing neither EnvRts nor UncjRts. In that way, we guarantee
that any new capabilities placed in the object will be for newly created objects,

116 THE SYSTEM IN USE

and that the entire representation of the object will be unavailable to any
other environment.

7-7 RETROSPECTIVE

In a research environment such as ours, restrictive security policies find few
active practitioners, but the basic mechanisms of rights checking and amplifi­
cation are used regularly to restrict access to the representation of
user-defined object types. The reason for this is the users' desire for good
program structure, rather than security. Subsystems created by users likewise
define auxiliary rights and enforce their use, and careful programmers try to
design their procedures to work without requiring ModifyRts or EnvRts in the
parameters.

The more advanced mechanisms (e.g., procedure confinement) are used
very seldom, and even then mostly as experiments, such as is described in
Chapter 8. One problem is that our solutions to many of these protection
problems are overly restrictive. For instance, in solving the Conservation
Problem, we prevent a capability from being stored in any object, not just one
that is shared. Likewise, to solve the Confinement Problem, we prevent
information from leaving an LNS, whereas it might be more appropriate to
prevent information from leaving a subsystem. Unfortunately, there is no
way in Hydra of determining when an object is shared, or when a procedure
"belongs" to a subsystem.

Another example of the lack of flexibility in protection is in the way
ModifyRts is removed along a capability path. In directory-like objects, one
frequently wishes to ensure that the directory is not modified while allowing
the modification of any (or some) objects retrieved from that directory. In
Hydra, this policy cannot be expressed using ModifyRts.6

These protection mechanisms also have a subtle influence on overall
system performance. Although the simple checking and amplification of
rights has negligible overhead, the more complicated features that require
rights restriction on inherited capabilities force these capabilities to be copied
from the procedure to the LNS. LNS creation is expensive and common,
and some obvious optimizations (such as creating an LNS containing just the
actual parameters and a capability for original procedure) do not mesh well
with these protection mechanisms.

In summary, the protection facilities represent an ambitious attempt to
solve a number of complex and subtle problems in the cooperative use of
information. The mechanisms we developed offer solutions to several

6()riginally, Hydra had two rights affecting modification: ModifyRts controlled modification
of the top-level object only, and another right controlled the modification of the object's
representation (and was propagated along paths). We found that this division was not suitable
either and folded the two rights into one.

USING THE PROTECTION MECHANISMS 117

important problems, though perhaps not in the most elegant and efficient
way. Nevertheless, the problems they solve are ignored by nearly all other
real systems, and the mechanisms they supply to do so are actually used, in
practice, by some of the more important Hydra subsystems (including the file
system presented in Chapter 8). This confirms the utility and adequacy of
these facilities.

7-8 FURTHER READINGS

Hydra's protection mechanisms have the ability to solve a number of protec­
tion "problems," as illustrated in this chapter. [Red74] discusses the problem
of revocation of access, which Hydra's mechanisms do not address. The
confinement problem [Lam73] has been examined by many; its complete
solution is known to be very difficult [Lip751. Other protection problems are
considered in [Rot73] and [Coh75]. The relationship of protection mecha­
nisms to security policies and the implementation of specific security policies
has been extensively studied; [Lin76] and [SaI75] contain good surveys and
substantial bibliographies.

CHAPTER

EIGHT
A FILE SYSTEM

This is the first of three chapters that will examine actual subsystems built on
top of the Hydra kernel. In this chapter we will consider a file system which
directly addresses some of the protection issues presented in the preceding
chapter and which offers a good example of the way that Hydra procedures
can be combined with the Message System. The next chapter will consider
an application which particularly stresses the Message System, and Chapter 10
will examine some subsystems which implement basic operating system
abstractions like "user" and "job."

The Hydra file system was constructed by a team of users relatively late
in Hydra's life, after we had begun to understand some of the subtler points
of designing subsystems. The basic outline of the facility was fairly obvious
from our previous experience with Hydra and other existing file systems. In
particular,

1. A "file" would have to be represented by a new type of object so that it
could be protected in the canonical Hydra fashion. Certain operations on
files (discussed later) would be implemented with procedures and
TypeCall

2. File 1/0 would have to occur via the Message System because the
overhead of Call would be too high to impose on each read or write. (To
give the user direct access to the file's representation would be an
unacceptable violation of protection principles.) By using an asynchronous
server process to manage file representations, we could both exploit
C.mmp's parallelism and make file I/O resemble I/O to peripheral devices.
(The server's port simulates a DEVICE object-see Chapter 14.)

3. We would have to allow for different methods of data representation
within files because we could not predict in advance what representations
would be appropriate for future applications. Although the traditional
Hydra response to this problem would be to construct several independent
file systems, we felt there were advantages to be gained by accommo­
dating different representations within the same subsystem.

At the time the file system was designed, we wanted to demonstrate
clearly the power of Hydra's protection mechanisms. For that reason a
principal goal of the file system was to solve two of the classical protection

119

120 THE SYSTEM IN USE

problems presented in the Chapter 7: the Modification Problem and the
Confinement Problem. We can restate these problems using file terminology
as follows:

The Modification Problem. Suppose a user wants to grant "read-only" access to
a file. How can he prevent the file system from modifying the file in any
way? Hydra allows a capability for such a file to be passed to the file
system procedures without ModifyRts.

The Confinement Problem. Conversely, suppose a user has a file containing
sensitive data. How can he ensure that the file system will not "leak"
information from the file to the outside world? The file system described
below allows successful exploitation of Hydra's notion of "confinement"
to solve this problem.

The Confinement Problem was first posed by Lampson [Lam73]; very
few systems even attempt solutions to it. Often such systems assign a
sensitivity-level, from a partially ordered set of levels, to each datum and
ensure that information flows only in ways determined by this partial ordering
[Lip75]. This scheme models the military security system and thus repre­
sents a special case of the general problem stated by Lampson. We are able
to do somewhat better in Hydra.

8-1 FILES AND SUBFILES

Responsibility for handling files is distributed between two subsystems: the
FILE subsystem and anyone of several SUBFlLE subsystems. The FILE
subsystem handles protection and synchronization issues not related to data
representation. The SUBFILE systems are concerned only with data represen­
tation and I/O with the user.

This division has several benefits. By allowing for several independent
subfile systems, we leave open the difficult representational issues. By
having a common top-level interface (type FILE), we promote uniformity and
allow the choice of representation to be ignored in higher-level software.

To get an overview of the file system, we can examine it at several
levels. When a user wishes to establish communication with a file, he passes
his file object and a capability for a port to a FILE system "open" procedure.
Using mechanisms invisible to the user, the file system will connect the
user's port to a server process which will process I/O requests from the user.

If we examine the design of the FILE subsystem, we see that it acts as a
kind of intermediary between the user who accesses the file and the subfile
system that manages the data in it. A FILE object actually contains only a
semaphore and a single subfile. (See Figure 8-1,} When the user passes his
file to the file system, the file system extracts the subfile capability from the
file and passes it to a subfile system "open" procedure. This subfile

A FILE SYSTEM 121

procedure will return a capability for the server process' port, and by
connecting the user's and server's ports the file system establishes the
communication path.

At the bottom level, the subfile system has complete freedom in the
establishment of server processes. It could create a process and port for each
file, or it could pass the subfile to a single process which managed requests
between several users and subfiles. Likewise, there is no restriction on the
data representation used by the subfile system. A common implementation
is shown in Figure' 8-1; the subfile simply stores the data in a list of page
objects stored in the subfiie. Aiternativeiy, a subfiie sysiem couid siore daia
directly on a disk or tape, using the subfile to hold disk addresses or tape
volume numbers.

A: File

Date accessed
Date modified
Number writers S: Semaphore

r-----------i~ ~
B:Subfiie

~

P1: Page
B:Subfile

~
P2: Page

I------i~~
P3: Page

Figure 8-1 The representation of files and subfiles

There are a few implementation issues surrounding this system which
should be explained.

Synchronization One of the crucial questions in the design of any file
system is the atomicity of transactions to the file. Can readers and writers
share the same file? Do changes made by writers appear instantly to
readers? Our design for Hydra's file system closely paralleled the semantics
of the TOPS-I0 file system with which we were most familiar; to wit:

1. Any number of readers and at most one writer may simultaneously access
a file.

2. Readers and writers must explicitly initiate and terminate their
transactions; i.e., they must open and close files. (The open operation, in
addition, must specify "for reading" or "for writing.")

3. Open and close operations on a file are atomic. When a reader successfully
opens a file, he will be unaffected by any modifications by a writer. A
writer's modifications take effect only when he closes the file; subsequent
openers get the new version.

122 THE SYSTEM IN USE

The file system stores in the data-part of files the number of current
readers and writers. (This data is protected during concurrent operations on
the file by the semaphore associated with each file.) When a user opens a
file, this data is used to decide whether to allow the user his desired access.

To provide isolation between readers and writers, the file system enforces
the convention that subfiles are never modified once the file system is given
a capability for them.l This convention has two important consequences:

1. Once a reader extracts a subfile capability from a file object he can be sure
the subfile will not be modified.

2. The subfile system must create a new subfile when a writer attempts to
modify the su biile.

Closing files Because a file may be simultaneously read and written by
several users, the file system must have a way to determine which transaction
is involved in a "close" operation. Therefore the file system implements a
second object type, OPENFILE. (Likewise, subfile systems implement
OPENSUBFILES.) This object encapsulates any necessary information needed
during Close, typically the original file and the user's port.

8-2 OPERATIONS ON FILES

To summarize the file system structure, we present the detailed specifications
of the file system operations. We will use the same format we used earlier
for kernel KalIs; in fact they are invoked with TypeCall

8-2.1 File Operations

OpenForWriting(D:slot(index), F:object(F1LE,FileOpenRts),
P:object(poRT,PortConnectRts), C:integer)

Connects file F to output channel C of port P. Returns in slot D a
capability for an OPENFILE object.

OpenForReading(D:slot(index), F:object(F1LE,FileOpenRts),
P:object(poR T,PortConnectRts), C: integer)

Same as OpenForWriting except for reader/writer synchronization.

IThe file system enforces this by not including Mod(/'yRts in any subfile capability presented
to the subfile system.

A FILE SYSTEM 123

Close (F:object(OPEN FILE, FileC loseR ts))

Close disconnects the user's port from the server's port and updates the
reader/writer information in the file. Additionally, if the file had been
open for writing, the current subfile capability in the file will be replaced
with the new subfile returned from the subfile system's SubfileClose
operation.

8-2.2 Subfile Operations

Each subfile system must implement the following opemtions. The file
system invokes these operations "blindly," with TypeCalL

SUbfile Write (D:slot(index) , P:object(index,poRT),
S:object(suBFlLE)) returns InputChannel: integer

Invoked only by the file system. The subfile system performs any
necessary actions to locate or create a server process, passes to the
process the subfile S, and returns a capability for the server's port in slot
P. A capability for an open subfile object is returned in slot D.

SubfileRead(.. .)

Like Subfile Write, except the subfile system may take advantage of the
additional information that no write operations will occur.

SubfileClose(D:slot(index), S:object(OPENSUBFlLE,CloseRts))

Invoked only by the file system. Informs the server process that I/O will
cease. Returns in slot D a capability for a new subfile if the user had
been modifying the su bfile.

8-2.3 File 1/0

Different data representations could demand quite complex message formats
for file I/O to take advantage of specialized structures (e.g., "return the
object code of routine Test in module ListPackage" might be an appropriate
operation for a subfile which implemented a format to be used by program
libraries). To try to encourage standardization without restricting subfile
creators, we agreed on a few standard operations ("read/write the next group
of characters," for instance) and left new subfiles the freedom to implement
other operations with other message formats. We will not discuss them
further.

124 THE SYSTEM IN USE

8-3 IMPLEMENTED SUBFILES

To date, there are three subfile systems in active use:

The SOS SUbfile system defines a representation convenient for the
line-number-oriented SOS editor on C.mmp.

The Line Printer SUbfile system implements an output file type. Closing one
of these subfiles causes the data to be passed to a line printer spooler
process which will print the file on the system line printer.

The Random SUbfile system implements a random-access byte representation
especially suited for some types of intermediate files used by various
programs.2

The particularly flexible implementation of file 110 as interprocess com­
munication makes possible some other subfile types which have been pro­
posed but not implemented, including

The Terminal SUbfile system, which would translate file 110 to terminal 110,
thus providing a uniform 110 protocol among files and terminals.

The ARPANET Remote SUbfile system would implement files whose represen­
tations were actually on different computers. Opening one of these
subfiles would establish the appropriate network communication, and 110
operations would move data over the network.

8-4 PROTECTION

There are two ways in which the design of the file system is influenced by
the desire to solve the Modification Problem.3 First, the file system must
alter its operation when given a capability for a file lacking ModifyRts.
Whenever a file system operation has no intrinsic need to modify the file, it
detects when the passed file parameter lacks ModifyRts and functions cor­
rectly without modifying the file in any way. Thus the OpenForRead
operation refrains from modifying the date-of-Iast-access field in the file
object when the capability lacks ModifyRts.

A second, and more subtle, influence of the Modification Problem
involves the mutual exclusion semaphore that controls access to the file
object during Open and Close. (P and V operations on semaphores require
ModifyRtsJ An analysis of OpenForRead reveals that the only necessarily
indivisible operation on the file object is the copying of a capability for the

2The Random Subfile also prompted the addition of OpenForUpdate operations on files and
subfiles.

3This section and the following retrospective are based on previously published evaluations
by the File System authors [Alm77}.

A FILE SYSTEM 125

current subfile object. This operation (the GetCapa Kall) is already indi­
visible, so no explicit locking is necessary and ModifyRts is not needed. Were
it necessary to determine the current subfile by means of access to a
multi-word data structure in the file object, on the other hand, some external
synchronization, and thus ModifyRts, would be needed.

The solution of the Confinement Problem was both more difficult and
more interesting. Although it was not difficult to implement a FILE sub­
system whose procedures could be called confined (i.e., without UncjRts), it
was difficult to construct confinable subfile systems. In the case of the Line
Piintei Subtile system, there is the intrinsic need to modify a particular
inherited object, the line printer device. In other cases, the need to modify is
not intrinsic, but technological, and stems from the customary technique of
mUltiplexing a single server process among all the open subfiles of a particular
type. Given this efficiency-oriented shared-server concept, confinement is
impossible.

One particular subfile system was constructed explicitly to explore the
feasibility of a confinable subfile system. The SubjileOpen procedure of this
so-called "Confinable Subfile" system creates a new server process for each
open subfile. Due to the confinement constraint, the initial LNS of this
server process will be confined and may modify only its parameters (which in
turn must have been parameters or locals of SubjileOpen). The Policy
Module procedures which create new processes cannot be called confined,
and so the caller of Open must pass in an additional argument-a type
representative for the Policy Module. This parameter is propagated down to
SubjileOpen, which uses it to call the MakePMProcess procedure (see Section
10-1.3) ufConfined. This technique is acceptable, since passing the Policy
Module type representative is equivalent to the user explicitly "certifying" his
trust that the Policy Module will not leak information.

A point can now be made about the importance of the Modification
Problem. The most obvious motivation, that given in Chapter 7, is that a
user should be able to attempt a read-only access to a file without any risk of
its corruption, as in the case when a user suspects a file system bug. This is
not a forceful motivation, however, because such a situation would occur
very rarely in such a critical subsystem. A more convincing motivation stems
from the desire to ml:ike a solution to the Confinement Problem a practical
reality. A confined call to a subsystem will fail unless the subsystem can
effectively get its work done without ModifyRts and UncjRts in its inherited
capabilities. If, for example, a subsystem needs to read a file (or look up a
read-only item in a directory) and if the file (or directory) system did not
solve the Modification Problem (it might fail by insisting on being able to
update a date-of-Iast-access field), then it would be impractical or impossible
for the subsystem to function confined. Thus, any subsystem that intends to
solve the Confinement Problem in a practical way must also solve the
Modification Problem.

126 THE SYSTEM IN USE

8-5 RETROSPECTIVE

The distinction between file and subfile objects has made the file system
highly extensible. This kind of extensibility is very important in experimental
computing environments, like Hydra, where representational issues are
open-ended. We viewed the successful implementation of the file system as
welcome evidence that the underlying mechanisms were sufficient for real
systems whose designs we might not be able to foresee. After all, we had
not anticipated the file/subfile distinction which arose for the file system. We
had always expected that each separate file representation would give rise to a
separate and wholly independent file system.

The file system and the three subfile systems mentioned earlier have
been operational since early fall of 1976. The design of these systems took
place during May and June of 1976 and involved six people for a total of
about 14 man-days. The implementation of each of these systems took less
than one man-month. Each was written in Blissl11, and the code for all
procedures in each system totals about 3,500 words (about 2,300
instructions) . Coding, compiling, and most of the testing of the file system
and various subfile systems were done independently. The only testing that
required coordination between two implementors occurred when communi­
cation between the file system and a subfile system was in question. This
amounted to only a few man-days in each case.

While the Hydra file system design is functionally pleasing, its implemen­
tation is slower than we would like it to be. This is a natural result of using
protection mechanisms as general and powerful as those provided by Hydra.
Most of the overhead in the system is due to the Call mechanism during
Open and Close. During a measured series of calls to the file system, the
average amount of computation by user code within the file system was 49
ms and the average cost of Call was 89 ms (i.e., 65% of the total computation
time).4 Thus, while the domain crossings did make the protection and
software engineering results possible, they are expensive. File 110, which
uses the Message System, is much faster.

Finally, it is interesting to note that the file system does not occupy as
important a position in Hydra as does, say, the Catalogue subsystem, which
provides named access to arbitrary capabilities. This is partially due to the
fact that there are few language processors on C.mmp, and hence there is
little need for program source files or the compiler's intermediate files. An
even more important reason, however, is that files are not really a natural
abstraction for all long-lived objects. In Hydra, where any object may persist,
the user is more likely to use a direct implementation of the abstraction he
desires. For instance, when the need arises to store a small amount of data,
one usually tries first to encapsulate the data in the data-part of some object.

4These times were subsequently improved somewhat; see Chapter 16 for more details.

A FILE SYSTEM 127

If that is too small or cumbersome, the data can be stored in a page. If even
more data is required, pages can be strung together in a universal object. By
doing this, one is able to address his data directly (in 8K-byte chunks) and
doesn't have to interface with the Message System. These alternatives pose
interesting tradeoffs. Access is more efficient, but each programmer gener­
ally has to reinvent the whole system. It is also difficult to share such data
collections in the relatively rare cases where sharing is desired, because no
synchronization is provided. Thus, because Hydra offers several data storage
mechanisms whose functionality and performance vary significantly with the
~ ", f ,...f' rlnfn fl-."" r;1"" """t""..... j"
alllVUllL Vi uaLa, LU", 111'-' "] "~"'11. ."

where the options are more limited.
less heavily exploited than in systems

CHAPTER

NINE
A NETWORK CONTROL PROGRAM

In Chapter 6 we presented the facilities of the Hydra Message System and
motivated its structure with a small example. In practice, however, the
Message System has considerable functionality that is not needed in simple
situations. Only when one attempts to coordinate a substantial collection of
asynchronous activities does one encounter the problems that motivated the
more complex features of the Message System. In Hydra's case, the
ARP ANET control program was the application that inspired most of those
features. This chapter examines the problems inherent in ARP ANET
communication and shows how the message system is used to advantage in
solving them.

9-1 THE PROBLEM

Before we consider the internal structure of the ARPANET control program
(henceforth called the NCP), let us examine the requirements it must satisfy.
To do so, we need to understand the abstraction supplied by the ARPANET
interface and the abstractions a user-level program that wishes to use the
network would like to see.1

The ARPANET [Hea75] is a collection of message processing computers
(called IMPs) interconnected by dedicated communications lines. Each IMP
serves as an interface for one or more host computers to the communications
network. Information is transmitted between host computers in the form of
messages, which are variable-length blocks of bits. The content and sequen­
cing of messages is determined by a number of protocols, most of which are
unknown to (i.e., uninterpreted by) the IMPs. The goal of the network
control program (NCP) is to implement the lowest level of host-to-host
communication (the Host-Host Protocol), which defines a standard method of
communication through the network for heterogeneous computers. At the

IThe subsequent description of the ARPANET and its functional capabilities is necessarily
simplified. Wizards and cognoscenti will recognize many places where subtle problems are
glossed over or ignored. It is our purpose to present the network structure and function at a
sufficient level of detail that the reader can appreciate the problems facing the implementor of an
NCP.

129

130 THE SYSTEM IN USE

level of the host-host protocol, the details of interfacing to the IMP are
hidden. Thus, the NCP also must assume complete responsibility for
communicating with the IMP. In fact, the NCP implements all the host-host
protocol as well.

Most protocols rely on the notion of a connection. A connection is a
unidirectional "virtual circuit" between two sockets. A socket is thus the
entity that a program uses to communicate with another program in the
network. In principle, a host supports an arbitrary number of simultaneous
connections.2 Since communication is usually bidirectional, sockets are often
in grouped in pairs, one each for input and output.

Although users of the ARPANET tend to think of sockets as the
primitive connection mechanism, there is, in fact, a lower level. The IMPs
implement the notion of a link number, which is used to multiplex simulta­
neous logical "conversations" (e.g., socket-level connections) over the single
physical IMP-host channel. The IMP-Host protocol defines a small,
fixed-length header on every message that contains a source and destination
"address" for the message. These addresses are pairs (host number, link
number). Each host's NCP must manage the set of link numbers for its
host, except that link 0 has a special meaning. For the host-host protocol, a
connected socket within a host has a unique link number assigned by that
host's NCp.3

It is worth emphasizing the distinction between link numbers and soc­
kets. A link number is used exclusively within the NCP, since it is a part of
the IMP-Host protocol. With the exception of link 0, a link number has no
implied meaning; it is simply a local identifier for a conversation in progress.
On the other hand, a socket is, at least in principle, a long-lived entity.
Specific socket numbers may be advertised as offering particular services
(e.g., file transfer). In fact, higher-level protocols tend to treat a socket (pair)
much like a telephone; that is, it can be connected to some other "phone" in
the network for a time, then disconnected and reconnected somewhere else.
It can "talk" only to one place at a time. There are protocols (e.g., ICP, the
initial connection protocol) that establish these connections and define analogs
to the familiar telephonic notions of dialing, "busy" signal, no answer, hung
up, and call queuing. We will discuss these in more detail later.

Thus, an NCP serves, in essence, as a connection manager. It provides
mechanisms for: establishing and breaking connections, creating and destroy­
ing the "telephones" (sockets) that define the participants in a conversation,
and transmi!ting data over connections. In doing so, it provides a consistent
abstraction for communication between host computers while masking the
details and most of the complexity of the underlying communication network.
This implies that the NCP must perform a substantial amount of error

21n practice, the IMP imposes an upper bound because of its limited internal resources.

3By limiting the number of permissible link numbers, the IMP effectively limits its number
of simultaneous connections, as suggested earlier.

A NETWORK CONTROL PROGRAM 131

processing, much of which is rather complicated. In the following sections,
we will, on the whole, ignore the problems of robust communications, except
where they have a noticeable effect on the structure of the NCP.

9-2 THE HYDRA NCP

The Hydra NCP provides a comprehensive example of the use of the Hydra
message system. In fact, the design principles underlying the NCP imple­
mentation tend to emphasize the importance of the message system faciiities.
Specifically, the NCP's organization follows from two primary assumptions:

1. The "boundary of trust" is the socket-level interface. That is, all the
mechanisms that implement the facilities needed to support sockets and
connections are mutually trusting. This doesn't mean that the various
NCP components have intimate knowledge of each other's data
structures; on the contrary, they are rather well isolated from each other,
and validate scrupulously the data that passes between them. They do
not, however, rely explicitly on the Hydra protection mechanisms for that
isolation. In contrast, the socket interface is a Hydra subsystem (i.e.;
SOCKET is an object type), and user programs manipulate sockets by
invoking Hydra procedures in the socket subsystem.

2. Within the NCP, all communication among components is performed
using Hydra messages. Each logically distinct data structure of any
significance is managed by a single process, and only in response to·
requests submitted in messages. Thus, no synchronization mechanisms
are employed other than the one implicit in the sequential reception of
messages.

With these principles in mind, let us proceed to examine the organization
of the Hydra NCP. The reader may find it helpful to refer to Figure 9-1
during the following discussion. In the figure, the major communication
paths are shown as solid lines, representing port connections. The solid lines
between a user and the IMP interface are exercised whenever data is
exchanged in a conversation with a remote socket (pair). Two independent
socket (pairs) are shown. The dotted lines represent port connections used
for connection control and are less heavily exercised. The following sections
discuss these paths in detail.

9-2.1 IMP-Host Communication

One of the C.mmp processors has a peripheral device that provides a
full-duplex, DMA connection to the IMP. We can think of this interface as
two independent bit-stream channels, one for input and one for output.
Hydra provides access to this hardware interface in the usual way, by

132 THE SYSTEM IN USE

Host

Input Mux Socket pair

I I J I ... t------)
rt-------
I 1'-_______ "

I _-----..... I
I I \ I
II I

User

Figure 9-1 The NCP communication structure

predefining a device object to which messages may be sent requesting
physical 110. Since Hydra messages transmitted through this port represent
direct communication between the host (C.mmp) and the IMP, they must
observe the IMP-Host protocol. Thus, the network source and destination
are represented in these messages as (host number, link number) pairs.
Recall that link numbers are used to multiplex simultaneous conversations.
Accordingly, the NCP has a process, labeled "Input Mux" in Figure 9-1, that
accepts incoming messages from the IMP and demultiplexes them. As we
will see shortly, this generally means mapping the destination link number to
its corresponding socket. Similarly, the NCP has an output process, "Output
Mux," that accepts outgoing messages from various sources (generally
sockets), and forwards them to the IMP, inserting the source link number as
required by the IMP-Host protocol.

Together, the input and output multiplexors provide a simple,
message-oriented communication facility over a single physical channel. To
see this, let us consider the operation of these processes in a bit more detail.
Each one has a single Hydra port. The input process sends input requests to
the IMP interface port, where they remain queued until input arrives. An
incoming network message is placed in the buffer of one of these Hydra

A NETWORK CONTROL PROGRAM 133

messages and replied, causing it to return to the input multiplexor's port.4

The input process examines the destination link number, maps it to an
output channel number, and sends the message out on that channel. It then
waits for subsequent input. When the recipient of the message eventually
replies it, the message is destroyed.

The output process is slightly more complicated. From the viewpoint of a
socket, the output multiplexor does not reply to a message requesting output
until tlle data is successfully received at the destination host. Thus, when the
output multiplexor receives an output request, it forwards it to the IMP
interface. The message returns (is replied) to the output multiplexor when
the IMP has accepted its contents. However, since the network may fail to
transmit the message successfully, the output multiplexor cannot yet reply to
the output request. Instead, it temporarily places the request in a local
queue. Eventually, a notification will arrive from the IMP indicating whether
the message was successfully received by the destination host.s Upon receiv­
ing the notification message, the output multiplexor removes the original
request from its local queue and replies it to the requester. Thus, the
originator is informed of the outcome, successful or not, of the attempt to
transmit his message to its remote destination.

9-2.2 Host-Host Communication

Given the abstraction provided by the input and output multiplexors, com­
munication between connected sockets is straightforward. (We will consider
the protocol for establishing connections shortly.) Connected sockets use the
Host-Host protocol and pass streams of data bytes (of a mutually acceptable
size) between them. Recall that a connection between sockets is unidirec­
tional, so that "conversations" typically involve a pair of sockets. The NCP
typically creates a single process with a single port to manage a socket pair.
The port is connected to the input and output multiplexors at the time that
the socket (pair) is created. The socket process accepts requests from a user
program and, after appropriate transformations and validity checks, communi­
cates them to the multiplexors. Recall that these requests are beyond the
"boundary of trust" and therefore must be treated with suspicion by the
socket process. It must detect and report protocol violations and prevent
runaway user programs from clogging up the NCP's internal communications.

4This is a simplification. Because of various buffer size constraints, a single network
message may be fragmented into more than one Hydra message and subsequently reassembled.
We will ignore this complexity here.

5This notification is, in fact, an input message, and so is naturally received by the input
multiplexor. The input multiplexor recognizes the message as an acknowledgement of an output
message, and forwards the notification to the output process. This connection from input to
output multiplexor is shown in Figure 9-1 and is the only interaction between these otherwise
independent processes.

134 THE SYSTEM IN USE

The socket process actually handles the message fragmentation alluded to
earlier. The interface it offers to its user, however, is purely stream-oriented.

9-2.3 Connection Management

Up to this point, we have been considering the major communication paths
within the NCP. As we have seen, the interconnection of ports and
processes naturally follows the requirements of the IMP-Host and Host-Host
protocols. However, a certain amount of complexity is introduced by
additional protocol requirements that deal with connection management. These
include the mechanisms for establishing a socket-level connection, controlling
the flow of information along the connection, and passing control signals that
are asynchronous with the data flow through the connection. We will sketch
enough of these requirements to illustrate their effect on the structure of the
NCP.

Requests for connection (RFCs) arrive on link number O. (Recall that
this link is reserved for special purposes-this is one of them.) An RFC
specifies the socket number to which the connection is to be made and, of
course, includes the host and socket requesting the connection. The input
multiplexor demultiplexes all link 0 messages by originating host. It expects
to have an output channel for each such host, leading to a port managed by a
host process. (If no such port and process exist, they are created dynamically.)
The host process determines whether the socket number requested corre­
sponds to an extant socket object. If so, the RFC is forwarded to the socket.6

The socket may accept, reject, or queue the RFC. In the first two cases, the
socket replies to the RFC message, causing it to return to the host process
where appropriate link 0 messages are generated to either complete or
terminate the connection protocol'? If no socket can be found by the host
process, it rejects the RFC directly. Thus, socket objects are never implicitly
created in response to RFCs. (A higher level of protocol, the Initial
Connection Protocol, offers a mechanism for dynamic socket creation.)
When a network connection is successfully established, a message system
connection between the socket and the host corresponding to its remote
socket is established as well. The purpose of this connection will become
clear momentarily.

A socket-level connection is primarily intended to support a unidirec­
tional, stream-like flow of data bytes. However, it is occasionally necessary to

6The socket, in turn, may not have an associated port and process. If necessary, these are
created dynamically and appropriately initialized.

7For internal technical reasons, there is actually an "RFC" port between the host port and
the socket port. This port and its associated process exist to simplify the implementation and
because they manage a connection data base that is logically distinct from the host processes. For
ease of exposition, however, we will not consider the RFC process to be a separate entity from
the host processes.

A NETWORK CONTROL PROGRAM 135

pass control information as well, e.g., to control the amount of data trans­
mitted or to interrupt the send or receiver. Logically, this information is
asynchronous with the data flow and thus must be transmitted along a
logically distinct path. There are many ways to implement this separate path;
the Host-Host protocol chooses to use link O. Thus, all control messages for
all socket connections are transmitted on link O. The purpose of the
connection between a socket port and its corresponding host port is now
evident; the host process passes control messages along this path.

9-3 RETROSPECTIVE

The NCP took a long time to build, in part because it was the first
sophisticated user of the Message System facilities. In fact, several features
were added to the Message System because they eliminated difficulties in the
NCP. In the end, the resulting structure of the NCP was determined largely
by informational requirements of the ARPANET protocols and only mini­
mally affected by the quirks of ports and messages. It is appropriate,
therefore, to summarize what we learned about interprocess communication
by building the NCP.

The internal organization of each NCP process is extremely straight­
forward. Each has a single outer loop whose body receives a message,
processes the message contents, and finally replies the message. Of course,
each process has internal state information, which affects the precise param­
eters to the ReceiveMsg operation, the particular processing of the incoming
message, and the final disposition of the message in hand. This overall
structure is easy to understand and modify, so it is worth understanding the
message system facilities that permit this organization.

First, the RequeueMsg operation (see Section 6-6) enables the NCP to do
all its queue management using the Message System. The NCP simply treats
an input channel as a queue and uses RequeueMsg to add messages to it.
ReceiveMsg, with appropriate parameters, permits dequeuing either a selected
element or in FIFO order. Thus, no explicit queue structures exist in the
NCP.

Second, the arbitrary fan-in and fan-out allowed by the message system's
port interconnection facilities permits the NCP to model easily the multi­
plexing requirements of the network protocols. (The implicit reply mech­
anism is also vital in this regard.) Fan-out (through output channels) enables
a single process to direct messages to several distinct destinations, depending
on their contents. This is convenient for the host processes, which receive a
variety of unrelated requests on link O. Fan-in (through an input channel)
allows a single process to service requests from several distinct sources. The
multiplexor processes do just that. Typically, the connections that "fan-in" to
a particular input channel are labeled (using the message system's connection

136 THE SYSTEM IN USE

identifiers) with convenient identifiers, such (host, link) pairs. Whenever a
message arrives, the relevant connection identifier is supplied by the message
system to the receiver of the message. This substantially simplifies the
receiver by eliminating certain mapping tables in the NCP, since the message
system is, in effect, storing the map implicitly.

Third, the ability to process and store messages in a port in an essentially
arbitrary order permits the NCP to define three rather flexible styles of
communication among its components. The simplest form of message is one
that is received, immediately processed, and replied before another message
is received. This simple sequential style of processing is used by the output
portion of the IMP interface. In other cases the receiving process may have
to wait for some other event before replying to the message. The input side
of the IMP interface exemplifies this situation, since a read request cannot be
replied until the data it requests has been received from the network. Even
in this case, however, the simple loop paradigm is adequate, since such
requests are still handled in strict sequence. However, it is occasionally
useful to allow such requests to be kept "off to the side" until the infor­
mation they request is available. This situation arises in handling asynchro­
nous error conditions, where a message is sent requesting acknowledgement
of an exceptional condition. The receiver holds the message in abeyance (in
a local name of a port or by requeuing) and replies to it only when (and if)
an exception arises.

Two message system properties, however, have adverse effect on the
NCP's structure. First, the Message System imposes a resource limit on each
port. This number is determined by the port's creator, but remains a fixed
upper bound for the life of the port. This can be inconvenient for certain
ports (in particular the input multiplexor) because they must be prepared to
handle essentially arbitrary data arrival. Peculiar communication structures
tend to arise from this. Input, for example, is generally reflected as replies to
input requests, rather than original messages containing the input. In short,
the Message System does not alleviate the well-known problem of buffering
real-time input.

Second, message buffers have no implicit stacking mechanism analogous
to the stacking of reply frames. This tends to force the NCP to transform the
data in the buffers at each level of message transmission. Although in
principle the amount of data manipulation can be substantial, careful design
of the message formats eliminates most of these transformations.

In summary, we believe the NCP demonstrates that the functionality of
the Hydra Message System is worth its occasional complexity. Several
unpleasant details in the ARPANET protocols that few other NCPs imple­
ment were easily accommodated under Hydra. At the same time, the
implementation seems to run a single connection about as well as a unipro­
cess implementation would, suggesting that the overhead of multiprocessing
does not significantly affect the performance of the NCP's task. Further-

A NETWORK CONTROL PROGRAM 137

more, the NCP's multiprocess, multiport structure adapts comfortably to
C.mmp and, in fact, is one of the few large programs that is unaffected by
the 16-bit address space limitation. This, in itself, is an important affirmation
of much of the Message System design.

CHAPTER

TEN
A USER-LEVEL OPERATING SYSTEM

The previous two chapters have given a detailed picture of two subsystems
built over Hydra. In this chapter we will give a somewhat more high-level
description of the subsystems which have evolved into the "operating
system" seen by users of C.mmp. In so doing, we will try to substantiate one
of our major claims for Hydra: that it is easy to construct operating system
facilities which are non-preemptive, that is, which can be replaced or re­
moved by any user dissatisfied with the facility as supplied, without affecting
other users.

To describe these operating system subsystems, we will make use of a
simple example. We suppose that a user wishes to log on to the
Hydra/C.mmp system and print a file. First, let's simply observe a record of
the terminal session; we will analyze it in more detail later. In the following
scripts, the text typed by the user is italicized; all other text is typed by the
operating system.

CMU CS Front End
Host: c
Welcome to Hydra/C.mmp
Job Monitor
V5.09 6-Nov-1978 18:54:25
Type "Help" If you need it
@/og
Job 21 Hydra/C.mmp TTY13 On 7 Aug 79 12:33:47
Name: harbison
Password:
Command Language
V1.28.1 2-Aug-1978 10:53:55
>

Our user is now logged on to the system and can invoke various commands
to do his work. ('>' is the Command Language prompt character.) He
might, for instance, list his private catalogue with the "list directory" com­
mand:

139

140 THE SYSTEM IN USE

>diO
Fortran
Letters
Profile
PrintFile
Public
RootFinder
>

Procedure
Directory
Commands
Procedure
Catalogue
File

(377,160002)
(377,160002)
(377,162102)
(172,160002)
(377,160002)
(377,160002)

8-Mar-79
14-May-78

5-Jan-79
23-Feb-78
15-Jul-79

ll-Aug-78

A user's catalogue contains named capabilities for arbitrary objects. Here we
see six: a file, two procedures, a "commands" object, a directory, and a
catalogue. Listed for each entry are the capability's access rights and the date
the capability was entered into the catalogue. PrintFile is a capability for a
procedure which lists its single file argument on C.mmp's line printer, so the
user may type:

> prfntjile(rootjinder)

to print the file. Note that the command language interprets "printfile" and
"rootfinder" to be catalogue entries in this context. Procedures may also be
invoked as separate processes~ our user might, for instance, invoke the
Fortran compiler asynchronously on the same file by typing:

> capa &process
> &process = $MakePMProcess(fortran, rootjinder)
> $StartPMProcess(&process)
>
> $StatusPMProcess(&process)
Running
>
> $StatusPMProcess(&process)
Stopped
>

To log off the system, the user types a "break" character (represented by the
character "*"):

>*Back to Jmon, remember to Kjob
@kjob

CMU CS Front End
Host:

A USER-LEVEL OPERATING SYSTEM 141

10-1 ANATOMY OF THE USER-LEVEL OPERATING SYSTEM

With the possible exception of the command syntax and the spawning of
asynchronous processes, the terminal session above resembles those encount­
ered on most timesharing systems. Hydra is distinguished more by the way
the functions are provided than by the kind of functions. In fact, at no time
in the above example was the user communicating with the Hydra kernel
directly. All the services were provided by user-level subsystems. We now
go over the same example again, this time explaining the underlying mecha­
nisms.

10-1.1 Connecting to the System

The Hydra kernel has no concept of "user" or "terminal'\ it simply provides
a set of device objects for the terminals. When the system is initialized, the
user-level terminal multiplexor procedure, TMUX, is invoked as a separate
process and is passed capabilities for all the terminals. TMUX connects a port
to all the terminals and waits for something to be typed at one. It is TMUX's
main responsibility to multiplex a single terminal among multiple processes, a
useful function in a multiprocessing environment such as this one.

TMUX has the additional responsibility to detect an initial connection to
C.mmp and to invoke higher-level software. TMUX possesses a capability for
the job monitor procedure, JMON. When the Front End processor connects a
terminal to C.mmp, it sends a special "connect" character which causes
TMUX to spawn a JMON process connected to the user's terminal. From
this point, TMUX simply moves characters between JMON and the user's
terminal; its special responsibilities are over. If another user connects to
C.mmp, TMUX will spawn a new JMON process for him from the same
JMON procedure. The connection structure is shown in Figure 10-1.

When the JMON process is started, it immediately types out a greeting
and waits for a command to be typed. Thus we have reached the end of the
first part of the terminal script presented above. We reproduce it again
below, indicating from what source the various messages come.

142 THE SYSTEM IN USE

User 1 0 __ -
terminal ::0:: JMON

User 2 01'+---­
terminal ::0:: JMON

Figure 10-1 TMUX interposed between terminals and users

CMU CS Front End
Host: c
Welcome to Hydra/C.mmp
Job Monitor
V5.09 6-Nov-1978 18:54:25
Type "Help" If you need it
@

10-102 Logging In

Front End
Front End

TMUX
JMON
JMON
JMON
JMON

JMON understands a few commands and is principally responsible for getting
the user logged in and talking to a command language. There are two
reasons for interposing JMON at this point, rather than connecting the user
directly to a command language:

Reliability. The command language process may stop because of hardware or
software errors and it would be well to have a "backstop" process
available which could recover from such a death.l

Decoupling abstractions. The notion of a 'Job" is (we believe) a different
concept than "command language," and so we try to preserve this
distinction in the implementation.

In fact, validating a user for the purpose of "logging in" is entrusted to
still another subsystem procedure, Authenticate. When the "login" command
is typed to JMON, Authenticate (for which JMON has a capability) is invoked

iHydra cannot distinguish command language processes from any other and so takes no
special action when the command language encounters an error.

A USER-LEVEL OPERATING SYSTEM 143

and is passed a connection to the user's terminal. It is Authenticate which
performs the familiar "name and password "dialog, and returns a special
object of type USERTOKEN. (Authenticate is part of the USERTOKEN

subsystem.) USERTOKEN objects contain (among other things) the user's
official name and a capability for the user's private catalogue.

JMON can now start up a command language process for the user, using
a capability for the standard command language procedure, CL. CL is passed
the catalogue returned by Authenticate and is connected to the user's terminal
by TMUX. JMON now becomes dormant; it is still waiting for commands,
but TMUX is routing terminal trafl1c to the command language process. (See
Figure 10-2.)

JMON

CL

Figure 10-2 Processes associated with the user

Returning to the original script, we can see that what appeared to be a
dialog with a single program actually involved two processes and three
subsystems (not counting the PM that is scheduling all of this):

@/og
Job 21 HydratC.mmp TTY13 On 7 Aug 79 12:33:47
Name: harbison
Password:
Command Language
V1.28.1 2-Aug-1978 10:53:55
>

JMON
Authenticate
Authenticate

CL
CL

144 THE SYSTEM IN USE

10-1.3 The Command Language

Hydra's principal command language, CL, is quite interesting in itself.2 It
provides an interactive environment modeled after an Algol-like program­
ming language, complete with iterative and conditional statements, macros,
subroutines, and direct access to all the Hydra KalIs. At the same time, CL
is effectively decoupled from many other facilities; it has no concept of
"user" or '10b," for instance. It is simply a procedure which takes two
arguments: a terminal connection and a catalogue (which is interpreted to be
the user's private catalogue).3

Some of the "flavor" of the command language can be seen in the
portion of the user script involving the creation of a new process:

> capa &process
> &process = $MakePMProcess(fortran, rooifinder)
> $StartPMProcess(&process)

The user is declaring a "capability variable," &process, and assigning to it the
capability returned by the procedure $MakePMProcess. This returned capa­
bility, of type PMPROCESS (defined by the Policy Module), is then passed as
an argument to $StartPMProcess, which starts the process.4

The CL is also an interesting example of the use of TypeCall to allow for
many competing facilities. When CL sees a name which is not defined within
itself, it assumes the name is an entry in the user's catalogue. To retrieve
the associated capability, CL simply performs the "lookup" operation (a
standard TypeCalb on the catalogue object. In fact, Hydra has two subsys­
tems implementing two types of catalogues: CATALOGUE and DIRECTORY.

The CL need not be aware of which object type it has because both
subsystems define compatible TypeCalls.

10-1.4 Logging out

When the user logs off, he must first return to the JMON process, which
understands such things. TMUX understands the break character to be a
request to reconnect the terminal to the "previous" connection. Hence the
sequence:

2Although CL is the standard, there are other such languages (e.g., see rSn080]).

3We also note that the CL procedure has in its C-list, and hence all CL processes inherit, a
capability for a shared "system catalogue" of useful capabilities.

4$MakePMProcess and $StartPMProcess are predefined CL macros which expand into
TypeCalls on the (default) Policy Module. These operations are mapped by the Policy Module
into the corresponding Kalis provided by KMPS to create and start processes. (See Chapter 12,)

>*Back to JMON, remember to Kjob
@

A USER-LEVEL OPERATING SYSTEM 145

CL,JMON
JMON

The "kjob" command can now be typed to JMON, causing the CL process to
be destroyed. Finally, JMON will inform TMUX of the termination, and
TMUX will disconnect the terminal and destroy the user's JMON process:

@/gob

C},,1U CS Front End
Host:

10-1.5 Subsystem interactions

JMON

Front End
Front End

One of the major factors leading to the complexity of basic operating system
software is the intricate web of dependencies often found among modules.
With Hydra, however, the facilities described above are exceptionally well
isolated. In almost all cases the interface consists of a single procedure call
and no special privileges need be granted. Consider

TMUX. TMUX's only privilege consists of its being given capabilities for the
terminal devices. It would be quite easy for several multiplexors to
coexist: all that would be necessary is for them to be given disjoint
subsets of the terminals. In fact, this is the way experimental versions of
TMUX are debugged alongside the standard version.

JMON. TMUX's responsibility for higher-level software consists only of
spawning a new process from a "canned" procedure. That the procedure
is JMON is of no concern to TMUX. JMON's "privileges" consist of the
(inherited) capabilities in its C-list.

CL. Again, this is only a canned procedure invoked by JMON. Different
command languages could be associated with different users, perhaps via
the USERTOKEN object returned by Authenticate.

We do not mean to suggest that there are no interactions in the above
mechanisms. All the procedures have some knowledge of TMUX's opera­
tions because each must use TMUX to establish terminal connections. This
means only that the procedures must acquire parameter templates for the
TMUX object type which represents such connections, and that they must
know what operations are available (via TypeCall) on those objects. This
type of interaction between subsystems is common and easy to understand.

146 THE SYSTEM IN USE

10-2 THE JOB SYSTEM

In discussing the functions of JMON, we glossed over another subsystem
which is closely related: the Job System, which defines the abstraction of job
in Hydra. This is another good example of how functionality is provided by
us~r-Ievel systems.

There are three important abstractions provided at the user level:

User is defined by Authenticate and provides a protected way of associating
"user catalogues" with user names.

Terminal connection is defined by TMUX and provides the abstraction neces­
sary to manage a hierarchy of connections between a person at a terminal
and some collection of processes.

Job is defined by the Job System and provides the means to associate
resource consumption with a logical task, such as a terminal session.

The motivation for the introduction of jobs into the system was the
realization that there are a large number of housekeeping tasks which should
be performed when a user "leaves." Files should be closed, devices deallo­
cated, and in general all resources acquired by the user should be released.
This is usually done during "logout" on other timesharing systems. Under
Hydra, of course, the resources we wish to free are allocated by individual
subsystems, and it is those subsystems which need to specify their own
logout actions.

We therefore invented jobs so that we would have something to log out.s

It works like this:

1. JMON invokes the Job System to create a new job (i.e., a new JOB object)
when a user is accepted by Authenticate. A capability for the job is passed
to CL and made available to the user.

2. Any subsystem that wants to be notified when the user logs off requires
the user to pass a capability for his JOB object to one of the subsystem's
procedures, such as FileOpen or AllocateDevice.

3. The subsystem can then invoke a Job System procedure, Joblnsert. This
procedure accepts a job and any other capability and enters the capability
on the job's kill list. Typically, the capability entered on the kill list
represents the resource to be reclaimed.

4. When the user logs out, JMON invokes the LogOut procedure on the JOB

object. LogOut in turn will invoke the "destroy" TypeCall on every
capability in the job's kill list. Subsystems implement this "destroy"
operation for their own objects, and therefore they can perform arbitrary
clean-up functions.

5Note that login is no problem. It is handled by Authenticate and involves a different set of
issues.

A USER-LEVEL OPERATING SYSTEM 147

This system works very well. For example, the File System puts its
OPEN FILE objects on the kill list as part of the Open procedures. The
"destroy" TypeCall on such objects is just Close.

The Job System also allows users to create subjobs from a JOB object,
allowing resource control to be structured hierarchically. Any procedure may
consume arbitrary resources by spawning processes and invoking other sub­
systems, so passing a subjob to a procedure, and later logging out just that
subjob, provides a means to recover those resources, even (especially) if the
procedure is faulty and is unable to clean up after itself. (Subjobs are put on
the kin iist of their parent jobs. The "destroy" TypeCaii on JOB objects is just
LogOut, so the whole operation is recursive.)

10-3 RELIABILITY MECHANISMS

The subsystems which make up Hydra's operating system were contributed
by many people with different programming styles and abilities. It was
therefore always assumed that any procedure could be faulty and, in fact,
might never return if called.6 In some subsystems, such as the file and
catalogue systems, this possibility was recognized, but ignored on the grounds
that the users of those subsystems assumed the risk when they invoked the
procedures. Some subsystems, however, like Job, Authenticate, TMUX, and
CL, are critical because no one could access the system should they fail. For
this reason they take extraordinary precautions when they invoke other
subsystems.

As an example, consider the LogOut operation on jobs. The Job System
must iterate through a kill list, invoking other subsystems. To guard against
any of these invocations failing, the iteration is done in a separate process
which is monitored by the Job system. Should any subsystem fail, the
monitor will detect the stopped process and will start another process to
complete LogOut.

Another need for explicit reliability mechanisms comes from the possi­
bility that processes might be halted by Hydra due to hardware or software
errors. Hydra cannot invoke any higher-level software to handle such cases
beyond its normal interaction with the Policy Module. Therefore subsystems
which use server processes must supply their own detection and recovery
mechanisms. The Policy Module PM 1 is a good example of typical mecha­
nisms. Some of PMl 's functions are implemented by demon processes which
do ReceivePolicy operations and process KMPS' stop messages (see Section
12-2). There are several identical processes for two reasons: performance
and reliability. By having several processes, PMl achieves a high degree of
parallelism since the processes need to synchronize only when accessing the

6lt is for this reason that the Hydra kernel never invokes user-level software during any Kall
except Call and TypeCall. The kernel supplies only type-independent operations.

148 THE SYSTEM IN USE

shared scheduling tables. Also, should one of the processes encounter an
error, another process would discover the corresponding stop message in the
mailbox and could restart another process. Thus, each PM process constantly
monitors all the others.

10-4 OTHER SUBSYSTEMS

We have discussed the most important subsystems in Hydra from the
standpoint of providing operating system facilities: TMUX, JMON and the
Job System, CL, Policy Module PM!, and Authenticate. Many other
subsystems have arisen to cope with other practical problems encountered in
a real operating system. Some of the major ones are listed here to round out
this discussion.

10-4.1 Directory and Catalogue

These subsystems have been mentioned informally many times. Both of
them implement the same fundamental abstraction~ the directory subsystem
was constructed first and was superseded by the improved catalogue sub­
system some years later. A "directory" in Hydra essentially takes the place of
a "file system" in most other systems. It provides "lookup," "enter,"
"create," and "delete" operations.

10-4.2 Device Allocation System

The Device Allocation System (DAS) manages the allocation of physical I/O
devices. (The kernel enforces no policies at all with respect to DEVICE

objects-for instance, it does not prevent several users from simultaneously
connecting to, and using, the same device.) DAS provides a level of
protection between users and the I/O system: it enforces mutual exclusion
(when desired)~ it interfaces with the Job System to deallocate devices when
a user logs off the system; it keeps publicly available lists of devices in use;
and it provides special operations which can be used by an operator to
forcibly disconnect a user from a device.

10-4.3 Fork

Hydra and the Policy Modules implement a very simple process creation
mechanism. It is primitive in the sense that there is no way for a process to
return a "value," nor is there a way to block waiting for a process to
complete. The Fork System allows processes to be spawned in an envi­
ronment which provides these functions.

A USER-LEVEL OPERATING SYSTEM 149

10-4.4 Commands

COMMANDS objects are supported by the command language, CL; they are
essentially "command language procedures." They can take arguments and
inherit capabilities in much the same fashion as Hydra procedures, and are
much easier to create-hence they are heavily used.

10-4.5 SYSMON
C,,"ClI.KAlI..T = ________ =Ll_ l' __ _ .. __ .. =_~ .. L_ .. ___ 1_ .. _1 _ •• L_ .. _ .. ___ ••• L __ 11 •. ...1 __ :_

..::> I "::>lVIVl~ 1:S lC:SPUll:SlUlC lUI :Sldllllll:; lllC U:SCI-ICVCl ;:)UU;:)Y:SlClll;:) WllCll nYUld 1:)

rebooted; it is the single procedure which is given control after the kernel has
been initialized. It first starts the Policy Modules and then invokes initial­
ization procedures for all the standard subsystems. These procedures may
spawn processes (as is the case for several SUBFILE systems which spawn
servers) or may simply initialize internal tables (as is the case with DAS).
SYSMON normally operates automatically, but can receive explicit instruc­
tions from the operator's console.

10-5 RETROSPECTIVE

As we designed Hydra, our primary concern was whether we could build an
operating system on top of it, rather than what that operating system would
look like. It was therefore very satisfying when we saw an operating system
develop which was not only functionally sufficient but better structured than
many (we believe most) traditional ones. Unfortunately, most of this
development was haphazard-our concentration on the kernel mechanisms
caused us to pay very little attention to laying out this part of the system.
Building an operating system as user-level programs does not necessarily
reduce the amount of software necessary, and it should be planned with care.

One particular aspect of the user system that we never adequately
addressed was the environment in which user programs could develop and
operate. Hydra's protection mechanism is very good at ensuring that a
procedure gets sharply defined privileges; unfortunately, many programs want
to send messages to a "user" or print a message on the "console." Hydra
works at a much lower level than the concepts of "user" or "console," and
therefore every procedure must explicitly provide for appropriate capabilities
to be passed to it, in addition to the parameters the procedure is really
interested in. Many proposals for so-called "environment objects" (to be
passed to all procedures by convention) have been offered, but each has been
rejected because of its divergence from the Hydra philosophy and because we
could not agree as to what should go in such objects. In the end, JOB objects
assume'a this role to a certain extent, but no acceptable general solution was
ever designed. Most programs use a loose set of conventions supported by a
standard User Library [Rei75, Gum781.

PART

FOUR
THE SYSTEM IMPLEMENTATION

CHAPTER

ELEVEN
THE OBJECT STORE

The Hydra GST (for "Global Symbol Table") is the implementation of the
object/capability abstraction on which all of Hydra rests. Virtually all the
long-term data stored in the system is embodied in objects managed by the
GST. For this single, universal storage mechanism to be usable, these
objects must be managed efficiently and reliably. At the same time, the
internal details required to achieve these goals should not be evident in the
abstraction presented to users.

11-1 A VIRTUAL MEMORY SYSTEM

From the outside, the GST resembles a virtual memory system with a large,
graph-structured address space. In fact, however, the GST subsystem proper
implements only a large linear space of objects referenced by unique-names.
It is actually the protection mechanism, with its knowledge of "paths," that
provides higher-level structure.

Like other virtual memory systems, the GST uses several levels of the
storage hierarchy (primary memory, drum, disk) to achieve an efficient
implementation of the large address space. This is the rationale for dividing
what appears to be a uniform structure into two parts:

Passive GST, which maintains objects and capabilities on secondary storage for
long periods of time

Active GST, which maintains copies of objects and capabilities in primary
memory for short periods while they are being referenced

Objects are referred to as being active or passive, depending on whether they
are in the Active GST or not.

Initially, all objects are passive. Newly created objects are placed in the
Active GST, and older objects are copied from the Passive GST to the Active
GST if they are referenced. Active objects may be returned to the Passive
GST if they cease being referenced, or they may be explicitly updated, i.e.,
copied back to the Passive GST in order to make the two GSTs consistent.
Updating is important because at the time of a system crash only the Passive
GST is preserved.

153

154 THE SYSTEM IMPLEMENTATION

11-1.1 The Representation of Objects and Capabilities

The representation of objects differs in the Active and Passive GST, but in
each case the representation is based on the division of an object into two
parts:

Fixed-part, passive or active, which is a concise representative of the object
Representation, which is the union of the C-list and the data-part

The fixed-part is often the focus of the GST mechanisms because many
references to objects can be satisfied by consulting only the fixed-part.

In the Passive GST, an object's (passive) fixed-part and representation
are stored contiguously on a disk pack. In the Active GST, the object's
(active) fixed-part is at a fixed address in primary memory; the representation
may be in primary memory, but it may also remain passive if it is not
needed. (See Figure 11-1.)

Passive object

Active object,
active representation

Active
fixed­
part

Passive C-list Data-part
fixed-
part

Figure 11-1 Various representations of objects

Active object,
passive representation

Active
fixed­
part

Table 11-1 lists the contents of the passive and active fixed-parts. Along
with each field is a letter indicating whether the field is functionally necessary
(F), is an optimization for efficiency (E), or is there to enhance reliability
(R). Fields marked (FE) store functionally necessary information in an
optimized format. The more important fields are described in Table 11-2.

The significance of these fields will become clearer as we discuss the
mechanisms and policies for mapping capabilities to objects.

Capabilities also have passive and active forms. A passive capability
contains only two things: the unique-name of the object it represents, and the
set of kernel and auxiliary access rights. Passive capabilities may refer to
objects in either the Passive or Active GST. In active capabilities, the
object's unique-name is replaced by the memory address of the object's active
fixed-part. Active capabilities thus refer only to objects in the Active GST.

THE OBJECT STORE 155

Table 11-1 Composition of fixed-parts

Passive fixed-part Active fixed-part

Field name

UniqueName
CurVersion
PreVersion
TotRefCnt
TypeName
Flags

Table 11-2

Field name

UniqueName

CurVersion

PreVersion

TotRefCnt

ActRefCnt

TypeName

Typelndex

CList

DPart

Semaphore

Use Field name Use

F UniqueName F
F CurVersion F
R PreVersion R
F TotRefCnt F
F ActRefCnt F
F Typeindex FE

Pasprm E
DrmRefCnt R
Checksum R
State F
CList F
DPart F
Semaphore F
TimeStamp F

Fields in the fixed-parts

Contents

The 64-bit name which uniquely names the objects

The disk address of the passive object

The disk address of the previous version of the passive object

The total reference count: the number of outstanding capabilities for
the object

The active refence count; the number of outstanding references to the
address of the active fixed-part

The unique-name of the associated type object; i.e., the object's type

An optimization of the type name (TypeName); an index into a table
of addresses of the active fixed-part of TYPE objects

The address of the C-list in primary memory

The address of the data-part in primary memory

A semaphore used to ensure mutual exclusion of access to the active
fixed-part

Active capabilities are active references to objects, and as long as active
references exist, an object may not be passivated.

156 THE SYSTEM IMPLEMENT AnoN

In general, an active C-list may contain a mixture of active and passive
capabilities, but when a C-list is passivated, all its capabilities are converted
back to passive form. Thus the contents of the Passive GST does not depend
on the state of the Active GST.

11-1.2 Mapping Capabilities to Objects

We now turn to the problem of dereferencing capabilities, a fundamental
mapping operation in Hydra. Suppose we are given a capability and we wish
to access the object to which it points. If the capability is in active form, we
know that the object is also active, and in fact we have the address of the
object's active fixed-part stored in the capability. The mapping is immediate.
If the capability is in passive form, we have only the object's unique-name,
and we do not know whether the object is active or passive. We must
therefore first search the Active GST for the object, and then, should the
search fail, proceed to the Passive GST, where we must find and activate the
object.

Active

fixed-part Active fixed-parts

hash~table_D~~r{]

D~

Unique name

Figure 11-2 Mapping into the Active GST

All fixed-parts in the Active GST are stored in a 128-bin, chained
overflow hash table. (See Figure 11-2,) Thus our first step is to hash the
unique-name in the passive capability and determine in which bin the object
should lie. We then search the list linearly for the active fixed-part. If it is
found, we can immediately use the active fixed-part to change the capability
to active form and increment the object's active reference count, and the
mapping is complete.

If the object is not in the Active GST, we must find the object on disk.
To avoid a linear search of the entire Passive GST, Hydra uses one of the
fast paging disks to hold a copy of every passive fixed-part in the GST. We
call this disk "the GST drum" to avoid confusion with the Passive GST disk.
The drum is divided into 128 blocks of 256 fixed-parts, l and it is possible to

IThe dimensions have been adjusted empirically over the years.

THE OBJECT STORE 157

locate the block containing a specified object by hashing the object's
unique-name. Given the proper drum block, we read it into a buffer and
search it for the required object. (See Figure 11-3.) Once found, we can
construct an active fixed-part from the passive one, set its active reference
count to 1, link it onto the Active GST hash table, and change the original
capability to active form. The object's representation is still on disk, and
depending on the operation which originally caused the mapping, we mayor
may not bring it into core now.

Unique name

...
...... (One full drum track)

"'l I I I ,"'J
Block of passive fixed-parts

Figure 11-3 Mapping into the Passive GST

11-2 STORAGE MANAGEMENT IN THE GST

Efficient management of the Active and Passive GSTs is quite important for
the proper functioning of Hydra. If objects remain in the Active GST too
long, they consume a large amount of the available primary memory.
Likewise, the elimination of garbage (i.e., unreachable objects) from the
Passive GST is necessary lest the drum and disk fill up.

11-2.1 Active GST Maintenance

The Active GST uses a reference count scheme to determine when an active
object may be passivated, i.e., sent back to the Passive GST. Each object's
active fixed-part includes an active reference count which tallies the number
of references to the active fixed-part's address. (Active capabilities are one
source of such references; there are a few others.) If this count goes to zero,
all remaining references must be by unique-name only, and hence the object
may be returned to the Passive GST. The actual passivation process is
handled by an asynchronous process called the GST Demon. This demon
traverses the Active GST directories, looking for objects with no more active
references. When it finds one, it either passivates it, or if the object's total

158 THE SYSTEM IMPLEMENTATION

reference count is also 0, deletes it.2 The GST demon independently looks
for objects whose representation has not been accessed recently, regardless of
the object's active reference count. (This is determinable from a time stamp
held in the active fixed-part.) If the time of last access is greater than some
threshold, the demon will passivate the representation of the object (leaving
the fixed-part untouched). This can be done at almost any time because the
only reference to the active representation is from the active fixed-part, and
therefore synchronization is not difficult.

An interesting side effect of this passivation is the elimination of un­
reachable rings of objects from the Active GST. One would think that the
active reference count of such objects would remain forever positive, but in
fact when their representations become stale and are passivated, the capabil­
ities in those representations are converted to passive form, thus decre­
menting the active reference counts in the referenced objects [Alm80].

11-2.2 Passive GST Maintenance

The situation with the Passive GST is more complicated. First, at the time of
a system crash, all information in the Active GST is lost. This means that
any reference counts maintained in only the Active GST will be lost, and it is
practically impossible to keep the Passive and Active GSTs consistent at all
times.3 Second, the problem of circularity is ever present. Some form of
garbage collection is necessary.

In fact, we have two Passive GST garbage collectors. The original one
processes the GST off-line and eliminates unreachable objects. It is invoked
primarily by system developers when they switch between the User and
Experimental GSTs, since it has the side effect of rebuilding the passive
fixed-part directory on the drum. (This so-called "cold start" of the GST is a
uniprocessor algorithm which takes about 20 minutes for a 20,000-object
GST.)

The more recent addition to Hydra is a multiprocess parallel garbage
collector [Alm80], which runs automatically once a day and is able to clean
the entire GST in parallel with other users. It has many pleasant charac­
teristics, including insensitivity to system crashes. We will not discuss this

2The situation is bit more complicated than this. Certain object types, such as ports, are
nel'er passivated, because they reference dynamic storage areas outside the province of the GST.
Other types, such as processes and LNSs, can be passivated but do not survive system crashes:
capabilities for them are deleted upon reactivation after a crash. Users may cause object types
they create to have this property also.

3Reference counts in the Active GST are safe. Hence when an object is created, we keep
both an active reference count (ARC) and a total reference count (TRC). If the TRC goes to
zero when the ARC does, we can delete the object rather than passivate it. Once an object has
been passivated, the TRC is forever ignored and assumed to be infinite. This scheme works well
under observed usage patterns in which most objects are never passivated anyway (se r Chapter
16),

THE OBJECT STORE 159

interesting algorithm here, except to note that in many ways the garbage
collection problem in the GST is easier than similar problems in, for instance,
LISP systems. In our environment, the objects to be collected are fairly large
and all have integral synchronization mechanisms (semaphores).

11-3 MECHANISMS FOR RELIABILITY

In a highly interconnected structure, . it is essential to limit the spread of
damage caused by the appearance of inCOifect data somewhere in the data
base. The GST machinery is designed to detect inconsistencies as soon as
possible and prevent the proliferation of incorrect data throughout the graph
structure. The reliability mechanisms concentrate on detection of inconsis­
tencies and restoration of erroneous structures to a consistent state. In this
section we will examine the mechanisms used for error detection.

Let us first consider the representation of objects on disk. As noted
earlier, the fixed-part, C-list, and data-part are written as a single contiguous
unit. (The disk fixed-part is redundant anticipating the loss of the drum.)
Whenever an object is returned to passive form, its three components are
collected in a single buffer and written to disk, then read back and verified,
Although costly in space and time resources, this approach -practically guaran­
tees a consistent version of the object on disk. The internal structure of a
passive object has considerable redundancy as well. The fixed-part, data-part,
and each capability have independent checksums. These ensure that a
unique-name stored anywhere in the object cannot accidentally be changed to
reference a different object. All interconnections on disk are represented as
unique-names; no disk addresses are stored in passive objects. (The
fixed-parts on the drum do contain disk addresses. These are constructed by
scanning the disk and locating all objects after off-line garbage collection.)

In the Active GST structure, the data changes rapidly, and checksums are
an inefficient error detection mechanism. Key status information is coded
redundantly and legitimate values of all zeros or all ones are avoided.4 Data
that change infrequently or not at all (e.g., the unique-name) are check­
summed and validated when the cost of doing so is tolerable. However, the
most likely place for errors to creep in is in the inter-object pointers, which in
the Active GST are addresses, not unique-names. To help detect incorrect
pointers, an 8-bit "key" is computed from each object's unique-name and
type. Wherever a pointer to the object is stored (e.g., in an active capability
or fixed-part hash table link), and every time the pointer is dereferenced, the

4Formerly, a commonly observed hardware failure was the appearance of a word of all zeros
or all ones without any error indication. Accordingly, such values, where possible, are treated as
illegal. This applies even to logical single-bit fields, which are implemented as two-bit fields in
which 00 and 11 are illegal. c'mmp's parity hardware also directly addresses this problem (see
Chapter 2).

160 THE SYSTEM IMPLEMENT A TlON

key is checked against the referent before the referent is manipulated. A
mismatch signals an inconsistent data structure.

The reference counts stored in the fixed-parts of unpassivated objects are
also potentially unreliable. A few validity checks can be used to test for
reasonableness (e.g., the active reference count cannot exceed the total
reference count), but in large measure the counts must be trusted. To
miuimize the ill effects of trusting an incorrect reference count, three
techniques are used. First, during certain sensitive operations, reference
counts are deliberately left too large. An error will then leave the count
artificially high, but at least the object won't be deleted inadvertently.
Second, when the total reference count becomes zero, the object is not
immediately deleted, on the theory that if outstanding references actually
remain, the object may be referenced before it is deleted and the reference
count error detected. (The count is then set artificially high). Finally, when
a fixed-part is deleted from primary memory, the key (discussed above)
associated with the unique-name and type is altered in the released storage.
This helps catch dangling references before they are used to access mean­
ingless data.

One final mechanism is used to help ensure Passive GST integrity.
When an object is written to disk, it never occupies the same physical space
that its immediately preceding version did. Thus, in general, two copies of an
object may simultaneously appear on disk: the "current" version and the
immediately preceding one. Each version carries a time stamp, and the
addresses of both versions appear in the fixed-part directory stored on the
drum. In principle, then, if the current version is later discovered to be
inconsistent, the "backup" version can be used instead.

11-4 RETROSPECTIVE

The GST is the foundation upon which all of the object-oriented structures of
Hydra rest. It is heavily exercised and its weaknesses become easily visible.
On the other hand, the GST has also received the most programming
attention, and therefore criticisms about it tend to be more fundamental.

Probably the single greatest complaint about the GST is its performance.
The implementation biases of the GST tend to view objects as comparable to
files: of moderate size and relatively long-lived. The overheads in storage
and processing time are not unreasonable in this light. As will be seen in
Chapter 16, however, data on actual usage indicate that approximately five
objects are created and deleted per user per second, and that over 98% of all
objects are never passivated. (They are deleted first.) The file-like view of
objects is therefore clearly inappropriate; a more realistic model would be
procedure-activation records (frames) or LISP cells. The GST mechanisms
are far too costly to support such usage efficiently, and substantial internal

THE OBJECT STORE 161

redesign (certainly involving microcode support) would be required to repair
this defect.

Despite its performance problems, the GST achieves its reliability goals.
The error detection mechanisms are effective and increase execution over­
head by no more than 10%. Their presence in the initial implementation
significantly reduced debugging time by catching uninitialized pointers, syn­
chronization errors, and the like. The existence of good detection facilities
permitted the implementation of fairly extensive error recovery logic as well.
However, after initial debugging, most of the observed errors were due to
hardware failures, and rather than allowing iecoveiY to pioceed, we fre­
quently chose to stop the system in its tracks and turn the machine over to
the hardware engineers.5 As a result, many of the recovery algorithms were
never heavily exercised (and some were never implemented) , and our
experience with them is therefore more limited than we would like.

Finally, there are two general problems with a capability-based system
such as Hydra for which we do not have solutions:

Accounting. No mechanism for accounting for GST resources exists, making it
impossible to monitor or restrict usage. In the presence of object sharing,
it is difficult to devise a fair strategy for such accounting. Is the creator
responsible alone, or is responsibility shared in proportion to the rights
possessed to an object?

Incremental backup. Most traditional file systems have the ability to back up
logical portions of the system to guard against disk crashes and other
massive failures. In Hydra, the concept of restoring a "portion" of the
GST is complicated. What if a capability is restored for an object that no
longer exists? How can a mechanism know how "deep" into the
representation subgraph of an object to go when saving that object?

Although these problems can be tolerated in an experimental system, design­
ers of a "production" operating system would have to address them.

In closing, we should perhaps recall that the GST, at the time of its
design, was an ambitious, capability-based, virtual memory system. It has
been operational for six years and serves as a stable base for Hydra, despite
specific performance problems. We would doubtless implement it differently
now (even on the same hardware), taking cognizance of the usage data we
have acquired, but we are confident that the basic mechanisms for reliable
storage of objects and capabilities are appropriate and sound.

Sit is difficult to be sure that no unnoticed damage has been done to the GST structure in
the presence of malfunctioning hardware, and therefore the safest course is to reboot the system.
The probability is high that damage is confined to the Active GST, which will be discarded at the
time of the reboot.

CHAPTER

TWELVE
SCHEDULING AND SYNCHRONIZATION

One of the principal motivations for Hydra's design was our desire to
experiment with alternative operating system facilities. Scheduling policies
are particularly rich fields for experimentation, especially in a multiprocessing
environment. Consequently a great deal of attention was devoted to design­
ing a scheme with which user-level programs could specify scheduling poli­
cies.

The final design is the result of trying to satisfy several potentially
conflicting objectives. First, we wanted the maximum possible flexibility in
specifying schedulers. Second, as with other user-defined facilities, we
wanted to allow several schedulers to coexist; we felt that it should be
possible, at one instant, for different processes to be under the control of
different schedulers. Third, we wanted to ensure that an error in a scheduler
would not result in a total collapse of the system. Finally, since we believed
that some applications on C.mmp would be time critical, we did not want
large software overheads associated with aU scheduling decisions.

To satisfy these objectives, we divided the processor scheduling problem
into two parts: short-term scheduling (at the level of a few milliseconds) and
medium-term scheduling (significant fractions of a second and greater). The
Kernel Multiprogramming System (KMPS) makes short-term decisions fre­
quently and rapidly, leaving to the user-level schedulers, called Policy Modules
(or PMs) , the less frequent medium-term decisions. In fact, the Policy
Modules have two responsibilities: they make absolute decisions about
medium-term scheduling, and they influence short-term scheduling by sup­
plying (to KMPS) a set of scheduling parameters for each process.

KMPS is responsible for multiplexing among a set of processes supplied
by the PMs. The PMs can make medium-term decisions by incrementally
modifying this set. Since KMPS multiplexes (only) the processes in the set,
inserting a process into it effectively allows that process to execute; it is a
medium-term decision to schedule that process. Conversely, removing a
process from the set constitutes a decision not to schedule that process.
KMPS makes its short-term decisions based on the per-process parameters
supplied by the PMs, so although the PMs do not have absolute control of
short-term policy, they can strongly influence it.

In this chapter we will be examining several facets of this scheduling

163

164 THE SYSTEM IMPLEMENTATION

system. We will first look at the abstraction that KMPS presents to the
Policy Modules, the way scheduling is parametrized and the way KMPS and
the Policy Modules communicate. We will then consider how KMPS actually
does its scheduling, and how this scheduling interacts with synchronization
mechanisms used by the kernel and by user-level programs.

12-1 SCHEDULING PARAMETERS

As noted above, there are two aspects to the interface between KMPS and
user-defined PMs:

1. The specification of the set of processes to be multiplexed by KMPS
2. The specification of the per-process parameters that influence KMPS's

short-term scheduling decisions

We will consider the second of these first.
The set of short-term scheduling parameters was derived from a number

of assumptions about the way that C.mmp would be used and, therefore, the
kinds of policies that people would wish to implement with PMs. Among
these, two are foremost:

1. We expected that C.mmp would be composed of a heterogeneous mix of
processors. Some processors might be faster than others, only some
might have floating point hardware, only some might have special micro­
code, etc. User programs, through their Policy Modules, must be able to
specify their requirements for particular processors.

2. We had to allow Policy Modules to specify "important" expectations and
limitations on the processes they were scheduling. PMs, for example, had
to be able to limit the time their processes executed and the memory
resources they consumed. In addition, PMs had to be able, in some
cases, to assert the relative importance of the processes under their
control.

On the basis of these considerations, we decided to model KMPS after a
preemptive, time-sliced, priority-driven scheduler. Basically, KMPS treats the
processors as an anonymous resource pool and tries to keep the collection of
highest priority processes running at all times. At the end of a time slice, it
services processes round-robin within a priority level to ensure fair service
among processes of equal importance.

This quick description of KMPS correctly implies that some of the
per-process parameters supplied by a PM are related to priority and time slice
size~ the remaining parameters express resource constraints and permit
somewhat finer grained control of the short-term scheduling. The full set of
parameters is listed in Table 12-1.

SCHEDULING AND SYNCHRONIZATION 165

Table 12-1 KMPS scheduling parameters

Parameter

Priority

TimeSliceLength

NumberOfSiices

ProcessorMask

WorkingSetLimit

WairTime

Meaning

The priority of the process; higher-priority processes preempt
lower-priority processes.

The maximum time the process may run before scheduling is reconsi­
dered by KMPS. At the end of this time, KMPS will select another
process of the same priority (if any) to run.

The maximum number of iime siices (of iengih I Ime.:)llCeL.engrn , Inar
may be consumed by the process before it must be returned to the
Policy Module for possible reassignment of scheduling parameters.
(This parameter may be specified to be "infinite.")

A bit mask that designates the set of processors on which the process
is permitted to execute.

The maximum amount of primary memory that any LNS within the
process may consume without consulting the Policy Module. This
limit is expressed as a number of pages.

The time the process may remain in KMPS after it has blocked on a
port or a Policy Semaphore. If this time is exceeded, the process is
returned to the Policy Module.

A simple examp\e will illustrate how a PM might use these parameters.
A PM may specify a set of processes to KMPS and say, in effect,

Allow each of these processes to run for (say) 30 sec-as thirty I-sec time slices. Give
them all equal priority. As each one completes its alloted 30 sec, give it back to me so that
I can reassess the situation.

KMPS takes the processes (and those given to it by other PMs) and tries to
let all of them make "fair" progress on their 30-sec allotments. Since all the
processes have the same priority, they will be dynamically assigned to
processors on a round-robin basis. Because of the nature of the multiplexing
algorithm, each process will typically "move" -execute on several
processors-while it is under control of KMPS.

The scheduling parameters are normally used for finer-grained control
than is exhibited by this simple example. Priority, for example, is often used
simply to indicate the relative importance of processes. It can, however, also
be used to increase the effective parallelism in the system. By increasing the
priority of I/O-bound processes, and correspondingly decreasing the priority
of processor-bound ones, a PM can improve system throughput. If a process
is I/O bound due to frequent terminal interactions, this improves response as
well.

The specification of execution time as a combination of TimeSliceLength

166 THE SYSTEM IMPLEMENTATION

and NumberOjSlices gives the PM some control over the "scheduling grain"
of processes at the same priority level. By making TimeSliceLength relatively
short, the PM will force frequent context switching between processes-thus
ensuring similar rates of progress~ this might be advantageous for interactive
jobs, for example. The cost of this, of course, is additional scheduling and
context switching overhead. Hence, for a collection of large, compute-bound
jobs, the TimeSliceLength might be made large.

There are at least two reasons for using ProcessorMask. One is that some
global policy has divided the processors into two or more groups and assigned
processes to specific groups~ this might be done, for example, to guarantee a
certain level of service to particular processes. The other reason for using
ProcessorMask is that the process needs a (hardware) facility not available on
all processors-writable micros tore for example.

WorkingSetLimit guards against a process consuming excessive primary
memory. It gives the PM the opportunity to reconsider its scheduling
decision (s) in the case that a process expands its memory requirements.
Likewise, the use and utility of WaitTime is difficult to explain until after the
paging mechanism has been discussed (Chapter 13). In effect, however, PMs
use this parameter to avoid unnecessary, and time-consuming, paging when a
process is blocked for only short periods. The impact of this parameter is
graphically illustrated by the performance data in Chapter 16.

In order to use the scheduling parameters effectively, the PMs must have
information about the total system load as well as information about the
performance of the PM's own processes. As we shall discuss later, KMPS
provides this information, which includes, for example, per-processor idle
time, the amount of I/O activity, and the amount of primary memory
available. By relating the characteristics of individual processes to those of
the (dynamic) system load, the PMs can make intelligent medium-term
scheduling decisions. They can, for example, balance the mix of processes to
achieve high throughput.

Given all this mechanism, one might ask why a PM doesn't simply set
the scheduling parameters cleverly, then give all its processes to KMPS and
let KMPS do the scheduling. Most PMs won't do this simply because they
will want to periodically review the scheduling parameter decisions. Even if a
PM did want to do this, however, there is a problem-the management of
primary memory-to be discussed at length in the next chapter. In brief, all
processes in the set being multiplexed by KMPS must be (simultaneously)
resident in primary memory. The size of memory, therefore, limits the size
of this set. Generally there will be more processes that wish to run than can
fit into the KMPS set, and hence the PM must stay involved.

SCHEDULING AND SYNCHRONIZATION 167

12-2 PROCESS AND POLICY OBJECTS

In this section we will discuss the ways in which PMs communicate with the
kernel about the the set of processes to be multiplexed. The kernel defines
two object types for this purpose: PROCESS and POLICY.

A PROCESS object is simply the formal Hydra object that represents what
we have been informally calling a "process." From a technical point of view,
the C-list of a PROCESS holds capabilities for the LNSs which represent the
stack of protection domains corresponding to the dynamic nesting of Call and
Return in the process. l The data-part of the PROCESS holds the scheduling
parameters and some of the current execution state. The PM always refers to
processes via capabilities for PROCESS objects.

A POLICY object is not, as one might first suspect, a Policy Module. It is,
rather, a communication vehicle between KMPS and the PMs-a mailbox
through which the KMPS can notify a PM when something "interesting"
happens to a process controlled by that PM. Each process has exactly one
POLICY object associated with it, and that is the mailbox used when the
kernel wishes to inform the PM about an event concerning that process.

PMs must be executable, of course, and so are, in general, processes. It
is important to realize, however, that a "Policy Module process" is not
distinguished in Hydra. Hydra does not know which (if any) processes
implement PMs; it knows only how to communicate with something that is
behaving like a PM-namely, by sending messages to a POLICY object.2

The fact that KMPS only knows about POLICY objects, and not about
processes that implement PMs, provides a great deal of flexibility in the
design of PMs. The simplest PM, for example, can be a single process
servicing a single POLICY object. This is the way that our first PM, PMO, was
built. Alternatively, the PM can be implemented as several processes all
servicing the same POLICY object. This is the way that our second PM, PM!,
was built, and it has two immediate advantages: it allows faster response, and
it provides added reliability in the event that one of the processes fails.

Hydra defines several operations on PROCESS and POLICY objects. These
operations are typically invoked by Policy Modules in response to requests by
user programs.

I Call and Refilm affect the protection structure of a computation, but not the process

structure. Hence the Call mechanism and the process mechanism are relatively independent.

2In principle, PMs can be controlled by other PMs, and so on, but we have not seen a
genuine need for this feature. Generally, processes implementing the PM itself are given
"infinite" scheduling parameters so that they never leave KMPS and so do not need a PM to
schedule them. To satisfy Hydra, they are associated with their own POLICY object.

168 THE SYSTEM IMPLEMENTATION

MakeProcess(D:slot(index), T:capa(index,PROCESS creation template),
P:object(PRoCEDuRE,CallRts), procedure-parameters)

MakeProcess creates a new process whose initial protection domain is the
LNS formed by merging the < Procedure-parameters> into procedure P.
A capability for the new process is returned in slot D. The process does
not begin to execute until a Start operation is applied to it (see below).3

MakeProcess is an asynchronous analog of Calf, an LNS is formed in
exactly the same manner as for a Call, but it is not immediately invoked.
Instead a process is spawned (forked) and this LNS is the base domain of this
process. Notice that, as in all object creation operations, a creation template
is required. As an operational matter, only Policy Modules are given such
templates. Therefore only PMs can create processes. No hierarchical
structure (for protection or control) exists between the new process and the
process executing MakeProcess, the PROCESS capability returned by
MakeProcess may be shared in arbitrary ways.

AttachPolicy(Prcs:object(;ndex,PROCEss,AttachRts),
Pol:object(;ndex,POLlCY,A ttachR ts))

Associates the POLICY object, Pol, with the process Pres. This POLICY

object will subsequently be used as the mailbox through which KMPS
communicates with the controlling PM.

AttachPolicy, which must follow MakeProcess, defines the Policy Module
that will be responsible for scheduling the process. The scheduling param­
eters for the process may now be established by the Policy Module via the
following Kall:

SetSchedParms(P:object(PRocEss,SetPCBRts), M:mem[nJ)

Copies the scheduling parameters (in a standard format) from the block
of memory specified by M into the data-part of PROCESS P.

SetSchedParms actually sets all scheduling parameters except
ProcessorMask. ProcessorMask can be set in every LNS; its initial value is
inherited from the PROCEDURE object. This is done so that procedures may
be coded to take advantage of special processor features without the caller
needing to be aware of this. When a Call is executed, a new ProcessorMask is
established, and if necessary, the process will be moved to another processor
that satisfies this new mask. The same thing happens on Return.

After establishing the scheduling parameters for a process, a PM will
typically ask KMPS to include it in the set of processes to be multiplexed:

3 MakeProcess is a special case of the general Create Kall defined in Chapter 5. There are a
number of "Make" Kalls for creating the kernel-defined types. These are the analogs of the
type-specific creation operations that would be defined by user-level subsystems.

SCHEDULING AND SYNCHRONIZATION 169

Start(P:capa(PROCEss,StartRts))

Gives control of the process to KMPS. Start returns as soon as KMPS
verifies that the process will fit into primary memory and that there is at
least one processor in the current hardware configuration acceptable to its
ProcessorMask. The process remains under control of KMPS until it
blocks or exceeds its scheduling parameters, at which time the Policy
Module is informed via the attached POLICY object.

A PM may also choose to remove a process from the set it has given to
KMPS:

Stop (P:capa (PROCESS,StopR ts))

Requests that process P be stopped and removed from KMPS's control.
The process is not necessarily stopped immediately, but when it is, KMPS
notifies the Policy Module via the POLICY object.

Note that processes may not be actually stopped at the time that the Stop
Kall completes. In particular, KMPS will not stop a process that is inside a
critical region in the kernel. To do so would both degrade performance and
lead to potential deadlocks. Also, note that a process may stop for other
reasons than an explicit Stop Kall, namely, becoming blocked or exceeding its
scheduling parameters. Indeed, these other reasons are the most common
ones. A PM generally uses Stop only on behalf of a user request or to
implement a strongly preemptive policy.

Whenever KMPS stops a process given to it by a Policy Module, either
because of a Stop operation or something else, it places a stop message in the
POLICY object attached. to the process. This message includes the identifi­
cation of the process, the reason it waS stopped, the amount of processor and
memory resources used by the process, and some information about the total
system load.4 The Policy Module receives these stop messages with the
ReceivePolicy operation:

Receivefolicy(M:mem{J6}, Pol:object(;ndex,poLlcY,ReceivePoIRts))

Retrieves the first message from Pol and writes the information into the
block of memory specified by M

When a process is stopped, the PM must decide what to do. There are
two common cases. First, the process may have stopped because it blocked,
say, attempting to receive a message from a PORT. The PM must record this
fact and wait to restart this process until the kernel notifies it that an

4This load information is inserted in the stop messages for the convenience of the PM. It
consists, for example, of information about the number of free page frames in primary memory
and the amounts of processor and 110 time used. The PMs use this information to alter their
global scheduling strategy.

170 THE SYSTEM IMPLEMENT AnoN

appropriate message has arrived at the port.5 Since a process has been
stopped, there is probably some primary memory available now, so the PM
may wish to start other processes. It will use the information about the total
system load to make this decision. Second, the process may have stopped
because it exceeded its scheduling parameters, i.e., it consumed the resources
previously allocated to it by the PM. In this case the PM must decide
whether to restart this process or some other(s). Again, it will probably
consult the information about system load to make this decision. In either
case, it must decide on the per-process scheduling parameters to use for each
of the processes that it starts. It will probably use a combination of the total
load characteristics and those of the individual processes to make this
decision.

Up to this point we have been concerned with those KalIs that are
typically used by Policy Modules. Generally speaking, user processes do not
invoke KMPS KalIs directly, but there is one exception-the RunTime Kall.
This Kall is used by a process to negotiate scheduling requirements with its
PM.

Run Time (T: integer)

Requests the attached PM to not interrupt this process for T/60 seconds.

Normally, a process has no influence on its PM's scheduling decisions~ it
must trust its PM to allocate reasonable resources to it. There are, however,
occasions when this is unsatisfactory. Suppose, for example, that a process
needs to perform a short series of operations that must be atomic
(indivisible) . It could use the normal mutual exclusion semaphores to define
a critical section, but the cost may be excessively high compared to the size
of the critical section. The process could use inexpensive spin locks if it
could be assured that, once within the critical section, it will not be removed
by its PM from KMPS' control. (If it were removed, the spin lock would
prevent other processes from entering the critical section, but these other
processes will endlessly test the lock and thus appear active (compute-bound)
to the PM. In this way, they will compete for the PM's attention, which
should be focused on the process within the critical section,) This is the
purpose of R un Time.

Using the RunTime Kall, the process requests the kernel to guarantee that
it will not be seized by its PM for a specified interval. KMPS, which
implements RunTime, checks to see if the resources already allocated by the
PM are sufficient to satisfy the process' request. If so, KMPS returns control
to the process, indicating that its request has been satisfied. The process can
now test the spin lock with the knowledge that should its PM now attempt to

50nly the performance, not the correctness, of the port operations depend on the PM's
cooperation here. In particular, if the PM prematurely restarts the waiting process, KMPS will
simply stop it again.

SCHEDULING AND SYNCHRONIZATION 171

stop the process before it has consumed the guaranteed time interval, KMPS
will reject the stop request. On the other hand, if the process does not have
sufficient resources allocated to it, KMPS stops the process and returns it to
the PM, indicating that the process has issued a RunTime request. The PM
now has three choices:

1. It can allocate the necessary resources to the process and restart it, in
which case the RunTime reports success.

2. It can fail to allocate sufficient resources and restart the process, in which
case the RunTime reports failure.

3. It can simply fail to restart the process, in which case the process remains
blocked indefinitely.

Note that no matter what action the PM takes, the integrity of the critical
section is preserved. KMPS has acted as an intermediary in the negotiation
between the process and its PM. Once the negotiation is concluded, KMPS
enforces the agreement reached. The RunTime Kall provides a good example
of the separation of policy and mechanism, since the processor resource
allocation policy is established outside the kernel (by the PM), while the
kernel supplies the mechanism by which that policy is implemented.

12-3 SYNCHRONIZATION MECHANISMS

Scheduling and synchronization are clearly related. Having examined the
facilities KMPS provides for scheduling processes, we now turn our attention
to the mechanisms it supplies for synchronizing them.

Mechanisms for coordinating asynchronous activities are required by
users and kernel alike. There is no master-slave relation among the process­
ors. Whenever a user executes a Kall, for example, the code of that Kall
begins to execute immediately on the same processor that was running the
user process. Since all processors can access all the shared memory,
accessibility to the kernel's data is not a problem. On the other hand, the
synchronization of updates to this data, and the corresponding software
contention, are problems.

To address these problems, we chose to synchronize on data rather than
code, and to use fine-grain synchronization. Two processors, or processes,
are free to execute the same code simultaneously as long as they are
operating on distinct data structures. There are, for example, many queues
in the system, but only one set of queue manipulation routines. Each queue
is separately protected by one of the synchronization mechanisms discussed
below. The queue management routines lock a particular queue before
accessing it. Thus many queue manipulations may be proceeding in parallel
as long as they are acting on distinct queues.

By "fine-grain" synchronization we simply mean that the data structures

172 THE SYSTEM IMPLEMENT AnoN

involved are generally small. Equivalently, we mean that there are a large
number of independently locked structures-literally thousands of them in
Hydra. Having many small structures decreases the probability of contention
for anyone of them, but at the expense of more frequent execution of the
synchronization primitives. Thus keeping this cost low was a major design
problem.

To span the spectrum of needs for synchroniz~tion, Hydra provides three
different synchronization mechanisms:

Locks, low-level mechanisms designed for very fast, but short, processor
synchronization. A processor that blocks on a lock remains physically idle
until unblocked by another processor.

Kernel Semaphores, intermediate-level mechanisms designed to provide process
synchronization. When a process blocks on a Kernel Semaphore, it is
removed from its processor and. held within KMPS until it is unblocked.
It is not swapped out of primary memory.

Policy Semaphores, used to provide longer-term synchronization for users. A
process blocked on a Policy Semaphore is not only removed from its
processor, but is sent back to its Policy Module, leaving KMPS and
(possibly) primary memory.6

The reason for the three levels of synchronization should be obvious:
each is more expensive than its predecessor in execution time but less
expensive in terms of the resources tied up by a blocked process. Locks are
very rapid, but may disable a processor (even from servicing interrupts) for
some time. Kernel Semaphores .. are more expensive, especially when they
block and force a context swap.<BI~~ed processes do not consume processor
resources, but they do consuIl1~; memory since the process remains in KMPS.
Policy Semaphores are the mds't ~:¢x'JJ¢hsive since blocking may imply several
paging operations, but blocked:',~t()ct(ss.¢s consume almost no resources.

Much of the success of Hy,d~'s:multiprocessing properties are the result
of the use of these three i~~~l~': i&r synchronization primitives. We will
examine their performance in~;'m~I-'e'tIetail in Chapter 16. Here we shall just
say a a bit more about their im'rtfe;rie.Iltation and resulting characteristics.

, ~":"i~ "\ ~ : t\ .

Locks A lock is a small (twO:'~flt.J) data structure that acts as a fast mutual
exclusion semaphore. There ~,e.'two operations defined on a lock, Lock and
Unlock. If a process blocks on-:*,)~ck, the processor running the process sets
a bit in the lock structure to indicate that it is waiting for the lock, disables all

.. ,. ,

.J".

\ .
': r.

6From KMPS' standpoint, blocking in a ReceiveMsg Kall in the Message System is
equivalent to blocking on a Policy Semaphore, so this mechanism handles all user-level
interprocess and I/O synchronization.

SCHEDULING AND SYNCHRONIZATION 173

110 and scheduling interrupts, and executes a "WAIT" instructionJ If the
Unlock operation (on another processor) finds that processors are waiting on
the lock, it will send an "unlock interrupt" to all such processors. The
interrupted processors then loop to try for the lock again; one of them will
get it and the others will return to the idle state.8

Purists will recognize the potential for "individual starvation" in this
scheme. Given enough contention for a single lock, it is theoretically
possible for one of the processors to remain blocked forever, i.e., to always
lose the race. The likelihood of long-term starvation is infinitesimal, how­
ever, and we chose to permit its possibiiity rather than unnecessariiy compii­
cate the mechanism.

Kernel Semaphores Kernel Semaphores are four-word data structures con­
sisting of a process queue header, a count, and a lock (as described above).
The principal operations on Kernel Semaphores are P and V, which are
essentially identical to those originally defined by Dijkstra [Dij68].

When a P operation on a Kernel Semaphore blocks, KMPS places the
process on the semaphore's process queue, selects another process to run on
this processor, and performs a context swap to the new process. (Note that
no other processor is involved in this operation.)

When a V operation notices that some process is blocked on the
semaphore, it removes the process from the semaphore's queue, enters it in
the set of feasible processes. It then selects a processor that is executing a
lower priority process. This processor is interrupted to cause it to reconsider
its own scheduling in light of the existence of a new feasible process.

A more detailed description of the implementation of Kernel Semaphores
is given in the following section.

Policy Semaphores In contrast to locks and Kernel Semaphores, Policy
Semaphores are a true object type. Although implemented by the kernel,
they behave as any other object. Users can create objects of this type,
exchange capabilities for them, and so on. The abstract semantics of the
operations, P and V, are just like those for the corresponding operations on
Kernel Semaphores. The difference between Kernel and Policy Semaphores
centers on what happens when a process blocks.

When a process blocks on a Kernel Semaphore it remains in KMPS, on
the semaphore's queue. When a process blocks on a Policy Semaphore, on

7Ihe W AlI instruction is a nice feature of the PDP-ll; it causes the processor to cease
executing instructions until an interrupt restarts it. Because of W AlI, Hydra's locks do not cause
memory references (and hence contention)' Logically, however, a "jump-to-self' would work
just as well.

8Ihe "unlock interrupt" is just the priority-7 interprocessor interrupt. All other interrupts
have lower priority than this, so by setting its priority to 6, a blocked processor can ignore
everything except the unlock operation.

174 THE SYSTEM IMPLEMENT A TION

the other hand, it will generally be returned to the controlling PM -and that
usually implies that the process will be swapped out of primary memory. A
process is not necessarily returned to its PM when it blocks, however. When
it blocks it is first put on a special queue, the wait queue, in KMPS. It stays
there for a limited time specified by the WaitTime scheduling parameter. If
the process should be unblocked before WaitTime expires, it is returned to
the execution mix just as is done with Kernel Semaphores. If the WaitTime
expires before the process is unblocked, the process is stopped and returned
to the PM. At that time, the process is also eligible to be swapped out of
primary memory.

The choice of whether to use locks, Kernel Semaphores, or Policy
Semaphores (with or without WaitTime) is based on both the probability of
being blocked and the expected duration of the blocked period. In Chapter
16 we give data on the choices made in the kernel and some applications­
and their impact on overall performance.

12-4 IMPLEMENTATION

In this section we will describe some aspects of the implementation of KMPS,
namely, the scheduling mechanism and Kernel Semaphores. Although we
have generally avoided low-level implementation descriptions in this book,
there are two reasons for presenting this material here. First, some people
may believe that scheduling and synchronization in a distributed operating
system are necessarily complex~ this example should help debunk that view.
The implementations we shall show are among the most sensitive to the
distributed nature of Hydra, and they are not especially complex. Second,
and more importantly, this example will serve to illustrate the internal
organization and programming methodology used throughout the kernel.

In Chapter 3 we briefly described the notion of data abstraction and used
it to motivate the type-extensible, object-oriented "virtual machine" provided
by Hydra. The internal implementation of Hydra, however, also heavily uses
the data abstraction philosophy - the implementation of KMPS provides a
good illustration of this.

Before beginning we need to say a few words about the language in
which the implementation is described. Hydra is actually implemented in
Blissll1, an untyped "systems implementation" language. Bliss does not
directly support the data abstraction paradigm; instead the paradigm is en­
forced only by programming convention. This works well enough in practice,
but it does not make Bliss a suitable "publication language." Unfortunately,
there is no other widely known language that is quite suitable either.
Therefore, as in Section 5-5, we have used a Pascal-like notation with a few
additions and modifications. We expect that our readers will be sufficiently
familiar with modern languages that the programs themselves, together with

SCHEDULING AND SYNCHRONIZATION 175

some explanation, will be a adequate definition of the notation. (It should be
noted that the term "procedure" as used in this section does not refer to
"Hydra procedures;" similarly, "process" and "semaphore" are being rede­
fined in a language context.)

Conceptually, KMPS is composed of six abstractions: queues, locks,
processes, processors, semaphores, and the scheduling mechanisms. These
abstractions are defined by a set of modules:

module QueueModule is
type QueueK ind is

enumeration(FIFO, Priority, ReversePriority);
type Queue (qt:QueueKind) is private;
procedure Enqueue (q:Queue, ps:Process);
procedure Dequeue (q:Queue, pri:integer, mask:ProcessorSet)

returns Process;
implementation

end module;

module LockModule is
type LockType is private;
procedure Lock(t:LockType);
procedure Unlock(t:L ock Type) ;
implementation

end module

module ProcessModule is
type Process is private;
procedure ContextSwap(ps:Process);
procedure Priority (ps:Process) returns integer;
procedure ProcessorMask(ps:Process) returns ProcessorSet;
procedure TimeSliceEnd(ps:Process) returns boolean;
procedure WhichProcessor (ps:Process) returns Processor;
var processors: Queue(ReversePriority);
implementation

end module;

176 THE SYSTEM IMPLEMENT AnoN

module ProcessorModule is
type Processor is private;
type ProcessorSet is private;
procedure A nyProcessor returns ProcessorSet;
procedure Scheduling/ nterrupt(pr:Processor) ;
procedure Me returns Processor;
procedure MeMask returns ProcessorSet;
procedure Running(pr:Processor) returns Process;
procedure Blind;
procedure UnBlind;
implementation

end module;

module SemaphoreModule is
type Semaphore is private;
procedure P(s:Semaphore);
procedure V(s:Semaphore);
implementation

end module;

module SchedulerModule is
procedure FindProcessor(ps:Process) returns Processor;
procedure FindProcess(pri:integer) returns Process;
implementation

end module;

These module definitions illustrate our major departure from Pascal-like
languages. The type definitions, variables, and procedure headers are visible
to users of the modules~ the implementations, denoted by ellipses here, are
not.

We will describe the implementations of only the last two of these
modules-SemaphoreModule and SchedulerModule. We will informally de­
scribe the semantics of the other abstractions, however, and that will help to
define the notation as well.

Let's begin with QueueModule. The main abstraction defined by this
module is the familiar notion of a queue, but it has been specialized to
queues of processes and to the kinds of queuing operations we want to do.
Note that we simultaneously define several kinds of queues: "FIFO,"
"Priority," and "Reverse Priority ." The phrase is private attached to the
declaration of type Queue simply means that the actual representation of the
type will appear in the implementation-part of the module, and hence it is not
visible to the user. Since the type declaration is visible, however, the user

SCHEDULING AND SYNCHRONIZATION 177

may declare variables of type Queue, e.g.,

var feasible: Queue(Priority)

The parameter in this declaration is important; it says that this particular
queue is priority ordered.

Since type Queue is specified to be "private," there isn't much that one
can do with the variables of the type except pass them to the procedures
declared in the module header. Hence, if P 1 is a variable of type process, we
can write:

Enqueue (feasible, P 1)

Although we have not provided a formal specification of its semantics, the
clear implication is that the process represented by P 1 will be enqueued on
the feasible queue; since we know that that queue is priority ordered, P 1 will
be inserted into its proper priority position.

The Dequeue operation is somewhat more interesting; here we can see
the influence of the kinds of queuing operations we want to perform. Note
that it has three parameters: a queue, an integer, and a ProcessorSet. It will
dequeue the first element of the specified queue that (a) has a priority greater
than or equal to the integer value and (b) whose ProcessorMask value has a
non-empty intersection with the specified ProcessorSet parameter. If, for
example, PSM is a variable of type ProcessorSet whose value includes process­
ors 1, 3, and 5, the call

P 1 : = Dequeue (feasible, 0, PSM)

will dequeue the first process on the feasible queue with a priority of at least
zero and that can run on one of these processors. Since 0 is the minimum
priority defined by Hydra, and since the feasible queue is priority ordered,
this call will actually return the highest priority process that is capable of
running on· one of these three processors.

We have already informally described locks; LockModule is simply the
definition of them. There is nothing exotic in its definition. Because of the
type declaration one can declare variables of type Lock. Because of the
procedure declarations, one can invoke (only) Lock and Unlock operations on
these variables.

The other two modules for which we shall not give implementations are
those that define types process and processor. The type process is, of course,
merely the abstraction of the intuitive notion of a process. Its representation
contains the process state, including the scheduling parameters described
previously. The procedures Priority and ProcessorMask retrieve the values of
the two scheduling parameters we need here. The operation TimeSliceEnd
determines whether the specified processor has exceeded its current time

178 THE SYSTEM IMPLEMENT A TION

slice parameter. ContextSwap switches state between the currently executing
process and that of its parameter (it is effectively a coroutine invocation).
The operation WhichProcessor allows us to determine which processor, if any,
the process is currently executing on.

Note that ProcessModule maintains a queue variable, processors, that is
visible. This queue is simply the list of processes that are currently exe­
cuting. It is maintained (in ReversePriority order) by ContextSwap. As we
shall see, it will be necessary sometimes to know the identity of the
lowest-priority process that is currently executing-and this queue lets us
determine that quickly.

ProcessorModule defines two types. Type Processor is the abstraction of a
hardware processor. The type ProcessorSet is the abstraction of a set of
processors and is used to encode the ProcessorMask scheduling parameter
discussed previously. The variable AnyProcessor is simply the ProcessorSet
that contains all processors that are currently configured into the system.
The Schedulinglnterrupt operation allows one to cause an interrupt on the
specified processor.9 The operation Me returns the processor on which the
operation is executed. The operation MeMask returns a ProcessorSet contain­
ing just Me. The operation Running returns the process that is executing on
the designated processor. Thus "Running(Me)" returns the process executing
on the processor on which this operation is executed. The operations Blind
and UnBlind, respectively, disable and (re) enable all interrupts on the current
processor.

Now let's turn to the implementation of the two modules of most
interest-SemaphoreModule and SchedulerModule. First, SemaphoreModule is
implemented as follows:

module SemaphoreModule is
type Semaphore is private;
procedure P(s:Semaphore);
procedure V(s:Semaphore);
implementation

9'fhe Schedulinglnterrupf operation is actually implemented as a priority-four interprocessor
interrupt. See Chapter 2.

type Semaphore is
record

i: LockType,
count: integer: = 1,
q: Queue(FIFO)

end record;

procedure P(s:Semaphore) is
var ps:process;
begin

Blind;
Lock(s./};
s.count : = s.count-l;
if s. count < 0

then

SCHEDULING AND SYNCHRONIZATION 179

Enqueue(s.q, Running(Me));
ps:= FindProcess(O);

else ps: = null;
end if;
Uniock(s./};
if ps:;t: null then ContextSwap(ps);
UnBlind;

end procedure;

procedure V(s:Semaphore) is
var ps: Process;
begin

Blind;
Lock(s./};
s. count: = s. count + 1;
if s. count ~ 0

then ps:= Dequeue(s.q, 0, AnyProcessor);
else ps: = null;

end if;
Uniock(s./};
if ps:;t: null then FindProcessor(ps);
UnBlind;

end procedure;
end module;

The implementation of these routines is similar to that found in other
systems that use semaphores. Both P and V first make themselves "blind" to
interrupts to ensure that they are indivisible. They then lock the particular
semaphore on which they are operating~ this permits other P and V opera­
tions to proceed asynchronously on other semaphores, but ensures mutual

180 THE SYSTEM IMPLEMENT A TION

exclusion with respect to this particular one. The difference between disa­
bling interrupts (Blind) and the Lock operation is, of course, one of the
differences between uniprocessor and multiprocessor implementations of
semaphores. On a uniprocessor only Blind would have been needed.

The body of P is relatively simple. It decrements the semaphore's
counter and then determines whether the result is negative, indicating that
the process must be blocked. In the event that the process must be blocked,
it first enqueues the current process on the (FIFO) queue associated with the
semaphore and then determines the next process to run by calling
FindProcess. FindProcess will return the highest priority process that can run
on the current processor. (We'll explain the parameter to FindProcess
shortly.) The P implementation then invokes ContextSwap to transfer control
to this new process. The only unusual thing about this implementation is
that the invocation of ContextSwap is moved outside the critical region in
order to increase the potential for parallelism. A uniprocessor implemen­
tation would probably have invoked

ContextSwap(FindProcess(O))

directly in the then-branch of the if statement and would not have bothered
with the variable ps.

The body of V is similarly straightforward. The count field is incremented
and tested against zero. If it is non-positive there is a process on the
semaphore's queue that should be awakened. It is dequeued and passed to
FindProcessor to find a suitable processor to execute it~ if no suitable pro­
cessor is available, FindProcessor will simply insert it on the list of feasible
processes. The use of FindProcessor is the major departure from uniprocessor
implementations; on a uniprocessor one would determine only whether the
priority of the new process exceeds that of the currently executing one, and if
so, perform a context swap to it. On a multiprocessor, however, there are
several processes executing simultaneously. Not only must we determine
whether any of them has lower priority than the new process, but we would
like to preempt the one with the lowest possible priority. We'll see how this
happens below. Finally, note that, like the call on ContextSwap in P, the
scheduling operation (FindProcessor) is moved outside of the critical region to
increase potential parallelism.

Finally, let's consider the implementation of SchedulerModule, this
module actually defines the (parametrized) scheduling policy of KMPS.

SCHEDULING AND SYNCHRONIZATION 181

module SchedulerModule is
procedure Fi ndProcessor(ps: Process);
procedure FindProcess(pri: integer) returns Process;
implementation

var feasible: Queue (Priority) ;

procedure FindProcessor(ps: Process) is
begin
var newps: Process;
Enqueue (feasible, ps);
newps : = Dequeue (processors, Priority (ps) ,ProcessorMask(ps));
if newps ~ null

then Scheduling! nterrupt(WhichProcessor(newps))
end if
end procedure;

procedure FindProcess(pri: integer) is
begin
return Dequeue (feasible, pri, lvlel .. lask);
end procedure;

interrupt procedure ReconsiderScheduling is
var ps: Process;
ps := FindProcess(Priority(Running(Me)))
if ps ~ null

then FindProcessor(Running(Me)); ContextSwap(ps)
end if;
end procedure;

interrupt procedure Timer!nterrupt is
begin
if TimeSliceEnd(Running(Me))

then Scheduler! nterrupt(Me)
end if;
end procedure;

end module

182 THE SYSTEM IMPLEMENT AnON

The implementation of FindProcess is trivial; it simply dequeues a process
from the feasible queue. When called from outside the module (notably
from P), the parameter to FindProcess, pri, is always zero, and hence Dequeue
will simply find the highest priority process that is eligible to run on the
current processor.

The implementation of FindProcessor is somewhat more interesting. It
first inserts the parameter process onto the feasible queue. It then attempts
to dequeue a process from the processors queue; recall that this queue
contains the processes that are running and that it is in reverse priority order.
Therefore, if one exists, the dequeued process will be the lowest priority
process currently running on some processor that is also capable of running
the parameter process, ps. FindProcessor sends a scheduling interrupt to this
processor; as we'll see in a moment, the effect of this will (usually) be to
schedule the process on the interrupted processor.

Note that there are two internal ("hidden") procedures in
SchedulerModule, both are "interrupt procedures." One is invoked in response
to the scheduling interrupt, and the other is invoked in response to the
interval timer interrupt. The timer interrupt handler should be self-evident;
it merely checks to see whether the current process has exceeded its time
slicelO and, if so, forces scheduling to be reconsidered by sending an interrupt
to its own processor.

We can consider the scheduling interrupt handler, ReconsiderScheduling,
in more detail. Recall that FindProcessor causes a scheduling interrupt on a
processor that it believes is executing a process of lower priority than a newly
eligible one. Therefore, ReconsiderScheduling simply attempts to find a
process on the feasible queue with a higher priority than the one that is
currently executing. It will probably find the one placed there by
FindProcessor, although it is also possible that another processor has either
already removed that process or inserted one of even higher priority. In any
case, if ReconsiderScheduling finds a higher-priority process, it first attempts to
find another processor to execute the currently executing process and then
performs a context swap to the new process. As we shall illustrate below, the
interaction of FindProcessor and ReconsiderScheduling can, in principle, cause a
rippling effect in which nearly all processors reconsider their scheduling.

Let's consider an example that illustrates the interaction of these routines
in the scheduler. Figure 12-1 shows an initial configuration in which there
are three processors (Nos. 0, 1, and 2), three running processes (A, B, and
C) on the processors, and a fourth process (D) blocked on a Kernel
Semaphore. The priority of the processes are 50, 14, 6, and 20, respectively.
The ProcessorMask values for processes A, B, and C indicate that they can
execute anywhere, while D can execute only on processor 1.

Assume process A, executing on processor 0, Vs the semaphore, causing

lOWe have ignored the bookkeeping necessary to keep track of the scheduling parameters
and the mechanisms that stop processes and return them to their PMs.

SCHEDULING AND SYNCHRONIZA nON 183

Processors Blocked Feasible

G 8 D
8 8 (0 8

Priority 50 Priority 14 Priority 6 Priority 20

Processes

Figure iZ-i Execuiion siaie prior io A unbiocking D

process D to become unblocked. As part of the code for the V operation,
processor 0 will execute

J7indJ>rocessor(D)

to find a processor on which to run D. J7indJ>rocessor discovers that D can run
only on processor 1. Processor 1 is currently running process B at a lower
priority, so processor 0 enqueues D on the feasible queue and sends a
scheduling interrupt to processor 1. Processor 0 has now completed its
scheduling responsibilities associated with V'ing the semaphore, and returns
to process A.

Processor 1 receives the scheduling interrupt and begins to execute
ReconsiderScheduling. Because it is currently executing a process of priority 14
(B), ReconsiderScheduling executes

J7indJ>rocess(] 5)

to determine if there is a feasible process of greater priority than B. There is,
namely, the newly unblocked process D at priority 20. Now
ReconsiderScheduling must find a processor to run B, and therefore executes

J7indJ>rocessor(B)

B's mask indicates it can run on any processor, and since processor 2 is
running at the lowest priority, J7indJ>rocessor will put B on the feasible queue
and send a scheduling interrupt to processor 2. Processor 1 has passed the
scheduling burden to processor 2 and now begins running process D.

ReconsiderScheduling now executes on processor 2. Since it is running
process C at priority 6, ReconsiderScheduling calls

184 THE SYSTEM IMPLEMENTATION

FindProcess(7)

which returns process B. Now, rescheduling of C must be attempted, so
processor 2 invokes

FindProcessor(C)

There is no processor running at a lower priority than C, so FindProcessor just
leaves C on the feasible queue. Processor 2 now begins to run process B.
Figure 12-2 illustrates the state after these operations.

Processors Blocked Feasible

~ c=J D
0 8 8

Priority 50 Priority 20 Priority 14 Priority 6

Processes

Figure 12-2 Execution state after A unblocks 0

12-5 RETROSPECTIVE

KMPS was the first operational component of the Hydra kernel, and it has
changed remarkably little over the lifetime of the system. This correctly
suggests that the basic distributed scheduling mechanism is appropriate to the
task of utilizing the inherent parallelism of C.mmp. KMPS has exhibited
almost none of the usual chronic problems of highly parallel programs:
deadlocks and processor starvation. The two times in the history of Hydra
that bugs of this character were unearthed in KMPS, they were associated
with the addition of new (and not quite correctly implemented) facilities.

We feel strongly that the data abstraction approach to coding KMPS and
other parts of the kernel is, in large measure, responsible for the fact that it
has had few errors and has been eminently maintainable. If we were to
implement the system again we would like to use a language that more
effectively supports this kind of modularization. Despite its relatively stable
life, KMPS is not without problems. Perhaps the most notable difficulty is
the complexity of the interface it presents to the Policy Modules. This
interface evolved over time, with features being added as the Policy Modules
grew in number and sophistication. The asynchronous nature of the infor­
mation transmission (i.e., stop messages rather than procedure calls) seems
consistent with the natural asynchrony of multiprocessor scheduling, but we
are dissatisfied with the complexity of the information transmitted. For

SCHEDULING AND SYNCHRONIZA nON 185

example, a PM may receive the notification that a process has unblocked
before it knows the process blocked in the first place. Such peculiarities are
bound to complicate the logic of the PM and suggest that the interface is less
than ideal. The large scheduling turn-around time (i.e., the computation
needed for KMPS to return a process to its PM, have the PM grant the
process additional time resources, and restart the process in KMPS) also
indicates an improperly organized interface. I I

On the other hand, the use of a mailbox for communicating between the
kernel and PMs seems to us like the right approach. It has the distinct
advantage that errors and faiiures in a PM cannot cause the kernei to faiL
Moreover, while poor performance of a PM may impede the efficiency of the
processes it controls, it will not affect the performance of the kernel or the
processes of other PMs. Our major mistake here was simply not using ports,
as we did for I/O devices (see Chapter 14). In a second implementation we
would unify these three concepts.

It is interesting to note two features of KMPS that were overlooked in
the original design and added subsequently. First, although we always
expected that C.mmp would have a heterogeneous collection of processors"
we did not foresee all the mechanisms that would be required to optimize
scheduling. In particular, a process with no special scheduling constraints
ought to be allowed to execute on the most "desirable" available processor.
For example, if both a PDP-11/20 and and 11140 are available, the process
should execute on the faster 11/40. Furthermore, if an 11/40 becomes
available, KMPS should consider moving a process to it from an 11/20. We
neglected to include a mechanism for this rescheduling situation and had to
add it later.

Second, we initially failed to recognize the need for inexpensive "kernel"
processes; that is, processes that execute exclusively in kernel space and
therefore do not need the full overhead of a PROCESS object, an LNS, a CPs, a
stack page, etc. After we finally appreciated the desirability of such processes
we implemented them, but were unable to make them as inexpensive as we
would like. We suspect that the lack of this feature markedly, and adversely,
affected the structure of some kernel components, particularly the I/O
System (see Chapter 14).

In summary, and unlike much of the rest of the system, we feel much
better about the implementation of KMPS than about the abstraction it
provides-especially the interface with PMs. In terms of its original goals,
KMPS certainly allows a broad range of PMs to be defined. It is possible for
several PMs to coexist simultaneously. It does perform short-term sched­
uling decisions rapidly, and the rich set of scheduling parameters do not
adversely affect this. The implementation is relatively compact and has a
clean structure.

11 Relevant performance measurements are presented in Chapter 16.

CHAPTER

THIRTEEN
PAGING

The design of the Paging System is influenced greatly by the underlying
C.mmp architecture, which puts rather different demands on paging mecha­
nisms than is common in other large computer systems. There are two
principal problems.

1. The PDP-ll architecture provides a user program with only a I6-bit
address. This means that a process may address at most 64K bytes of
memory without intervention by the operating system, far less than the
process' expected share of C.mmp's large memory.

2. The memory relocation hardware divides the address space into eight
pages of fixed size, making it difficult to manipulate small segments (such
as records in Pascal or similar languages).

An accepted technique for paging in other large operating systems is
demand paging [Den70], whereby the system hardware and software work
together to dynamically map a program's large address space onto a smaller
amount of physical memory. Typically, only a portion of the user's program
or data is in memory at anyone time; the rest is kept on secondary storage
until it is actually referenced. This approach works because most programs
show a high degree of locality in their memory references.

On C.mmp, however, the situation is reversed-the user program sees a
small address space over a much larger physical memory. Even to do
demand paging within the 64K virtual space is almost impossible: a single
PDP-II instruction can touch up to six different pages and at the same time
have side effects on registers, making instruction suspension too difficult.
Faced with these problems, we adopted the strategy of not hiding the
hardware characteristics from the user programs. Instead, we gave the user
protected control over the hardware relocation registers and provided a
mechanism that would allow (force) him to explicitly specify his working set.

The working set of a program [Den70] is a concept originally developed in
conjunction with demand paging. In brief, the working set of a program is
that portion of the program's virtual address space which is being accessed so
frequently that it should be immediately available. Demand paging algo­
rithms are designed to identify the program's working set on the basis of the
pattern of memory requests and to attempt to keep each program's working

187

188 THE SYSTEM IMPLEMENT A TION

set in primary memory while the program is executing.
On C.mmp, the working set of a large program will usually be larger than

the set of eight pages that is currently addressable. On the other hand, the
working set will probably be less than the total memory that the program
could potentially access. Hydra therefore provides an explicit representation
of this working set.

13-1 THE USER'S VIEW OF PAGING

The Hydra Paging System defines and supports three object types:

• PAGE, which is a virtual primary memory page of 8K bytes
• CPS (for "core page set"), which is the representation of the working set
• RPS (for "relocation page set"), which is the representation of the user's

relocation registers·

(We must be careful to distinguish between a PAGE object and its physical
equivalent, a page of primary memory. Context will usually disambiguate the
meaning, but if necessary we will emphasize which we mean by referring to
page objects or page frames, the latter being the piece of primary memory.)

Page objects need not be associated with a particular LNS or process.
They may be created at any time, and capabilities for them may be stored in
catalogues, UNIVERSAL objects, procedures, or anywhere else. They may be
shared as freely as other Hydra objects. The set of pages reachable on a
capability path from a particular LNS constitutes that LNS's virtual address
space. It should be clear that this means that an LNS's virtual address space
is both nonlinear and unbounded. (See Figure 13-1.)

The CPS represents the working set of an LNS. Conceptually, every
LNS has associated with it a single, unique CPS object. The C-list of a CPS
only contains capabilities for page objects, and the presence of such a
capability in a CPS is defined to mean that the page is included in the current
working set of the LNS. LNSs may move pages in and out of the CPS at
will, and by so doing alter their working set. There is no theoretical limit to
the number of pages an LNS may have in its CPS, and the order of pages in
the CPS's C-list has no significance.

Users do not have direct access to CPS objects. Instead, Hydra provides
two KalIs to manipulate the working set.

lFor efficiency reasons. an RPS is not implemented as a true object. However, it is
convenient to think of it that way.

PAGING 189

A: LNS

B:LNS

f---------i+-----i~8 ~----t-f--_---i

C: Catalogue

f------1--B
f---------i-+----....... B

Figure 13-1 Pages in the virtual address space of two LNSs

CPSLoad (CPSSlot: integer, Page:object(PA G E, CPSLoadR ts))

Loads a. page capability into a siot in the CPS, thus adding the page to the
working set of the LNS. CPSLoadRts is an auxiliary right for pages.

CPSUnload(CPSSlot:integer)

Removes a page from the CPS and the working set of the program.

Loading a page into the CPS does not immediately make it addressable~
the working set may contain more pages than the seven which can be
addressed at anyone time.2 The user designates which of his working set
pages to make addressable by loading pages from his CPS into his RPS. The
RPS associated with each LNS has seven slots corresponding to seven of the
eight user-space relocation registers on a C.mmp processor; placing a page in
RPS slot i has the effect of making the page addressable beginning at address
i • 200008. One Kall is available to manipulate the RPS:

RPSLoad(RPSSlot, CPSSlot:integer)

Loads the page in CPS slot CPSSlot into RPS slot RPSSlot Implicitly
unloads any page already in that RPS slot. CPSSlot may be 0, in which
case the effect is to empty the RPS slot.

A few details about these mechanisms should be explained:

• CPSLoad conceptually brings a page into primary memory. If the page is

2There are eight user-space relocation registers, but one (the first) is assigned to the stack
page, over which the user has no direct control.

190 THE SYSTEM IMPLEMENT A TlON

not already in primary memory, CPSLoad only initiates the transfer of the
page from the secondary store. The first call on RPSLoad for that page
will block until the necessary I/O completes.

• Pages have an auxiliary right, WriteRts, which controls whether the user
may write into the page. If the page capability specified in RPSLoad lacks
WriteRts or the generic right ModifyRts, then the relocation register will be
set up with the Write-Protect bit set. Any attempt to modify the page will
result in a hardware trap.

• The relocation registers corresponding to empty RPS slots have the NXM
bit set. (See Section 2-1.2.) Any attempt to touch an address in the
range of those registers causes a hardware trap.

Mechanisms exist for specifying in a PROCEDURE object a number of
implicit CPSLoad and RPSLoad operations which must occur before any LNS
instantiated from the procedure may start. This ensures that the CPS and
RPS are configured correctly when transfer is made to the LNS's starting
address.

13-2 THE WORKING SET AND SCHEDULING

Paging and scheduling policies in Hydra are closely connected. In particular,
a process under control of KMPS is guaranteed to have its working set in
primary memory. Thus when a Policy Module gives a process to KMPS to be
run, KMPS must first swap in the working set. When KMPS returns a
process to the Policy Module, the working set is eligible to be swapped out.
This policy is implemented at a number of places:

1. When a PM starts a process, KMPS must swap in the working set of the
currently active LNS. The process does not enter KMPS' feasible queue
until the swap-in is complete.

2. When an LNS executing in KMPS Calls a procedure, the working set of
the calling LNS is immediately eligible to be swapped out and the working
set of the new LNS is swapped in. A similar action occurs when an LNS
returns to its caller.

3. KMPS may refuse to start a process, or may prematurely stop a process,
on the basis of paging demands. This occurs during process start or
during the KalIs Call, Return, or CPSLoad for one of two reasons:

a. There is insufficient physical memory to accommodate a new or
expanded CPS.

b. The PM-supplied scheduling parameter, WorkingSetLimit, is exceeded
by the (requested) number of pages in the CPS.

In either case, the PM may try to start the process later when it thinks

PAGING 191

there is more primary memory available or after it adjusts
WorkingSetLimit.

Thus, working set policies are closely bound to scheduling policies and
are under only limited control of the Policy Modules.

13-3 IMPLEMENTATION

The Paging System manages a virtuai memory at three storage ieveis:

Primary memory. About 140 pages of shared memory are available for users
(based on the configuration in Table 2-2).

Drum. A variable number of fixed-head disks (which we refer to as "the
paging drums"), each capable of holding 128 pages, are available for
swapping.3

Disk. A single 130-megabyte disk provides permanent storage for pages, and
may act as a swapping medium of last resort if there is insufficient space
on the drums.

In general, the Hydra Paging System is not too different from other
operating systems. The only real difference arises from the fact that pages
may be shared among processes, and those processes may be executing on
different processors at the same time. In particular,

• A page may be in the working set of several processes, and hence swap-in
and swap-out requests may come independently and asynchronously .

• A page may actually be in the RPS of two executing processes, which
means that two processors may be writing into the page simultaneously.

To deal with these complications in an orderly way, we treat pages as
finite-state machines. The portion of the Paging System dealing with pages is
conceptually table-driven; each page exists in one of several states, and
demands on pages from higher-level software are turned into state transi­
tions. The most important page states are listed below.

3The number of drums available depends on which processors are running and on the drum
requirements of other Hydra systems, such as the GST.

192 THE SYSTEM IMPLEMENTATION

State

Active

Inactive

Swapped

Dirty

Meaning

The page is in at least one working set.

The page is in no working set, but it is in primary memory and a valid copy
exists on disk or drum.

The page is in no working set and has no primary memory allocated to it.

The page is in no working set, but it is in primary memory. No valid copy
exists on secondary storage.

A semaphore is associated with each page to provide mutual exclusion
while the page state is changing. The most important functions on pages are
listed below.

Function

Swapln

SwapOut

WriteOur

Revoke

Meaning

The page is being added to a new working set and must be brought into
primary memory.

The page is leaving a working set.

Write the page to secondarl' storage (invoked by the Paging Demon).

Release the primary memory associated with the page (invoked by the Core
Module).

Figure 13-2 Legal state transitions for pages

Many of the page-state functions are legal only when the page is in a
certain subset of states; the legal transitions are depicted in Figure 13-2. As
an example, Revoke is legal only when the page is in Inactive state, state
Active indicates that someone is referencing the page, Dirty indicates that the
page must be written out before it can be revoked, and Swapped indicates that
there is no memory to revoke in the first place.

PAGING 193

13-3.1 Page Replacement Policy

Page replacement policy governs the treatment of pages in primary memory
which are no longer part of any active CPS. To free the memory for another
page takes a significant amount of time, since if the old page had been altered
it must be first written out to backing store. This updating task can take up
to 30 ms, and there is always the chance that the page will be called back into
memory almost immediately. (This often happens with the pages of the
caller of very short procedures, such as "Catalogue Lookup.")

The page replacement policy is made possible by close interaction be­
tween two moduies within the Paging System: the Page Module and the
Core Module. The Page Module is the subsystem for implementing the
PAGE object type; it manages the page states and transitions noted above.
The Core Module is responsible for the allocation of C.mmp's entire comple­
ment of shared memory; it is used by the Page Module and by Hydra's
internal storage allocator. The Core Module maintains a Core Table which
records the state of every page frame (either Allocated or Free).

The replacement policy attempts to balance the need of the Page Module
for page frames and the need of Hydra's other systems for memory (for the
GST, for 1/0 request blocks, for the Message System, etc.). This is done by
using a process called the Paging Demon to maintain a pool of free page
frames which can be acquired by the Page Module for users or by the kernel
storage allocator for other modules. The system works as follows: when a
page is no longer in any working set, its state changes to Inactive or Dirty,
depending on whether the page contents were modified since the last time it
was swapped out. (This information comes from the "dirty bit" in the
relocation registers.) The associated page frame is correspondingly marked
Inactive or Dirty. If the page should be brought into a working set later, the
Page Module will invoke the Core Module to reclaim the page frame and set
its state to Allocated

Meanwhile, the Paging Demon process continually monitors the free
storage pool. (These page frames are marked Free in the Core Table.) When
the free pool shrinks below a threshold level, the Demon scans the Core
Table looking for page frames in the Inactive or Dirty states. Inactive page
frames are moved to the free pool immediately after invoking the Revoke
operation on the associated page object. When the Demon encounters a Dirty
page frame, it invokes the WriteOut function on the associated page object,
causing the page to be swapped out to drum or disk. Eventually the page
frame will change from Dirty to Inactive and can be reclaimed for the free
storage pool.4

4In this discussion we have ignored many issues in synchronization between page objects
and the Core Table. These and other problems (such as 110) require careful programming, but
are otherwise not interesting.

194 THE SYSTEM IMPLEMENT AnoN

13-4 RETROSPECTIVE

The Paging System has worked well throughout Hydra's history, and much of
the credit is due to the clean structure that resulted from the Paging
Module's finite-state-machine design. The division of the Paging System into
Core Module and Page Module resulted in some fairly tricky intercon­
nections, but was probably necessary because of the Paging System's respon­
sibility to both high-level and low-level software. Indeed, most operating
systems have difficulty in fitting paging and I/O into any clean hierarchical
arrangement.

Two less foresighted aspects of the Paging System were the decisions to
implement both stack pages and CPS objects on a one-per-process basis.
Both of these objects are conceptually local to an LNS, but we wished to
avoid the overhead that would be incurred by having to allocate both a new
page and a new object whenever an LNS was instantiated. In the present
design, the Call and Return KalIs alter the hardware stack-limit registers to
isolate the area of the stack available to one LNS from the area used by LNSs
higher in the call stack. Similarly, the CPS object's C-list is partitioned as
LNSs are called. This design means that an LNS cannot be sure of how
much stack space or CPS space will be available to it.s We would certainly
redesign these mechanisms if we had the opportunity.

The Paging Demon works quite well in balancing memory requirements,
although it was not the first mechanism implemented for this purpose.
Initially we tried a priority scheme that attempted to determine how soon a
page might be referenced, based on its "depth" in the stack of working sets
associated with a process. Call and Return would initiate I/O requests to swap
code pages in and out of primary memory. Despite various optimizations to
short-circuit unnecessary I/O, this mechanism performed poorly and was
scrapped in favor of the Paging Demon.

Finally, it seems evident that the interaction of paging and scheduling
policies is not ideally supported by the kernel mechanisms. In general, Policy
Modules should be able to manage the set of processes in core independently
of the set of processes in the scheduling queues. We feel that the KMPS/PM
interface is already complex enough to discourage the addition of any more
features. Obviously, this is a difficult problem area and one which, despite
substantial attention, has not been adequately resolved. If we were building
Hydra anew, we would rethink this tricky interface.

5It can, however, determine if adequate stack and CPS resources are available before
endeavoring to perform its function.

CHAPTER

FOURTEEN
INPUT /OUTPUT

The Hydra kernel provides a primitive mechanism for accessing the peri­
pheral devices connected to the C.mmp processors. In keeping with the
principle of policy/mechanism separation as discussed in Chapter 3, the I/O
system seeks to supply only a base-level means of performing input-output
operations. High-level policies for convenient use of peripherals are relegated
to non-kernel software.

The I/O system is perhaps the closest approximation to a pure mech­
anism that the kernel supplies (with the possible exception of KMPS - see
Chapter 12). As such, it provides an abstraction that closely parallels the one
provided directly by the hardware, except in two practically important ways:

1. The operations defined by the I/O system are safe (i.e., protected)
versions of the corresponding hardware operations. This prevents both
blunders and malicious programs from destroying vital data and is clearly
essential to a multi-user system.

2. The abstraction simplifies the interface to the peripherals by replacing the
heterogeneous connection structure (miscellaneous devices attached to
various UNIBUSes) with a homogeneous one (all devices equally
accessible) .

These two properties of the I/O mechanism are discussed in greater detail
below.

14-1 THE HARDWARE ENVIRONMENT

As we saw in Chapter 2, all devices on C.mmp are controlled by registers
located in the I/O bank page, which is a page of addresses in the kernel
address space. Interrupts are passed to the CPU through interrupt vectors
located in the processors' local memory. The most primitive (and clearly
unsafe) kernel mechanism one can imagine would merely copy user-supplied
values into specified I/O locations. The actual kernel mechanisms try to
restrict this uncontrolled access as little as possible and still achieve a system
that provides safe access and a modicum of convenience. In doing so, they
must address the following questions:

195

196 THE SYSTEM IMPLEMENT A TION

!,

1. Several devices may be attached to a UNIBUS through a single shared
controller (e.g., disks, terminals). Can these devices be regarded as
independent by higher-level software?

2. 110 devices can be connected to only a single UNIBUS, and thus may be
manipulated directly by only one processor. Must higher-level software
that performs an 110 operation execute on the appropriate processor?

3. How are interrupts and associated status information reflected to the
higher-level software?

4. High-speed devices generally perform direct-memory access (DMA),
stealing cycles from the processor. Such accesses require valid contents in
the relocation registers that are used implicitly, or chaos will result. How
are the contents of these registers maintained during DMA transfers?

5. Some devices (e.g., tapes, keyboards) have very limited buffering or other
properties that impose real-time constraints. How are such constraints
met, particularly when the controller is shared by multiple devices?

6. Some devices exhibit recoverable errors. Should an attempt be made to
retry or correct those errors behind the program's back?

14-2 THE USER'S VIEW OF lID

Perhaps the easiest way to present our answers to these questions is to give a
brief description of the steps the 110 system executes to perform a single 110
operation. For definiteness, we will assume that a high-level program wishes
to read a block of words from a particular disk drive.

In Hydra we make an explicit attempt to make I/O look like interprocess
communication, and therefore I/O is integrated with the Message System
(Chapter 6). All 110 devices are represented by objects of type DEVICE,
which resemble PORTS with one input channel and no output channels. Thus,
in our example, any user with a capability (with ConnectRts) to the disk
device may connect a port to that device. Once the connection has been
established, the user may send messages to the disk, each message repre­
senting a request to perform an 110 operation. The format of the message is
defined by the 110 system~ it includes

• The operation to be performed (e.g., "read")
• A buffer (usually in the message itself)
• The disk address from which to read

Sending the message logically initiates the operation, and the user program
may proceed in parallel with the transfer. When the disk has successfully
completed the read operation, it puts the data into the message buffer and
replies the message back to the user. The user can invoke the ReceiveMsg
Kall at any time, suspending his process until the reply is received at his port.
He can then retrieve the data from the message (Figure 14-0.

INPUT/OUTPUT 197

Message
LNS I _ .
~ p~ I"Read sector 123" r-- Device

~ R,ply ~
~ "123: 11001010110 ... 010" I

Figure 14-1 A user's view of I/O

Returning to the questions posed in the preceding section, we see that
the 110 system enables higher-level software to regard peripherals as uni­
formly accessible, independently protected entities. In particular,

1. The point of physical connection to a controller and UNIBUS is irrelevant
to the user program.

2. A hardware-generated completion interrupt is mapped to a Message
System reply, thereby allowing the user program to synchronize with the
transfer completion when it chooses.

3. No explicit manipulation of relocation registers by the user program is
required to ensure proper DMA transfer of data from the disk.

4. The user program is relieved of the chores of optimizing arm motion and
minimizing rotational latency, which require real-time knowledge of the
read/write heads' position.

S. The user program can ignore the possibility of transient, recoverable
errors. When it receives a reply to an 110 request, either the request was
satisfied or some unrecoverable error occurred.

It might be argued at this point that the mechanism described is far from
primitive, since it answers most of the questions posed earlier by saying, in
effect, "let the kernel do it." Indeed, more primitive mechanisms that are still
"safe" could be defined but would not mesh as conveniently with other
pieces of the kernel abstraction, notably the Message System and the protec­
tion mechanism. On the other hand, the abstraction offered by the I/O
system is at a substantially lower level than the ones typically present in
conventional, multi-user operating systems (e.g., OS/360 and relatives,
TOPS-10 and relatives). For instance, the 110 system does not provide:

1. Mechanisms to ensure mutual exclusion oj access to peripherals. Any program
with an appropriate capability can connect to an 110 device and send it
arbitrary requests. Thus, in principle, two separate user programs could
simultaneously connect to the same tape drive and interfere with each
another. It is the responsibility of higher-level software to ensure
appropriate mutual exclusion by restricting the distribution of device
capabilities.

2. Device-independent requests. While messages tend to have one of a few

198 THE SYSTEM IMPLEMENT A TlON

common formats, no attempt at standardizing formats across device types
has been made. A message that the disk interprets as a read request may
cause a read-backward operation if mistakenly sent to a tape drive or may
be rejected outright by a line printer. All operations are close analogues
of those that the hardware performs directly, and only infrequently does a
single request induce multiple device operations.1

3. Buffering facilities. Multiple buffering can easily be achieved by queuing
multiple requests in the Message System, but even then the user program
is responsible for managing the message resources required for requests,
and it must ensure that replies are processed in the correct order.

4. Access modes. The I/O mechanism has no knowledge of volumes, file
structures, directories, or other higher-level concepts frequently used to
organize secondary storage media.

5. Logical addressing. Devices that require addresses (e.g., disks, DECtapes)
do not support addressing abstractions such as "logical record number."
All secondary storage addresses manipulated by the I/O system are
physical, not logical. Higher-level software (e.g., a file system) must
implement these abstractions and appropriate mappings.

14-3 IMPLEMENTATION

The internal organization of the kernel I/O system is rather conventional and
straightforward. A few details, however, pertaining to the architecture of
C.mmp deserve mention, since they provide good illustrations of the effects
of certain hardware features on the kernel software.

The I/O system is composed of

A controller-specific module for each controller type, which includes the fol­
lowing routines:

A request preparation ("prep") routine, which checks the validity of 110
requests

A start routine, which initiates validated requests at the device
A service routine, which handles device interrupts by processing completed

requests and starting new ones

A request driver and a set of utility modules, which route the request through
the I/O system and the proper controller-specific module and provide
utility functions for those modules

A onjiguration table, which describes the configuration and location of every
controller and device on C.mmp

lA notable exception to this is the "write-and-verify" operation which we implement for
those disks used by the GST and Paging. The hardware could have provided this operation, but
it didn't.

INPUT/OUTPUT 199

To see how these elements interact, let's reconsider the disk request we
examined earlier in this chapter. When the user program sends the message
to the 110 device, a routine in the Message System calls the 110 driver,
passing it the message and the device for which it is intended. This
information is packaged into a data structure called a request block, which is
easily transferred around the 110 system. The driver consults the config­
uration data structure and locates the proper prep routine for the controller
that hosts that device. It invokes the routine, passing it the request block.

The prep routine analyzes the request to decide whether it is legal. If not,
it immediately replies to the message (by passing it back to the rvlessage
System via a utility module), setting its type to reflect the rejection reason. If
the message is acceptable, the prep routine must queue it for the controller's
start routine, which can execute only on the processor to whose UNIBUS the
device is connected. The prep routine then exits, requesting that the
appropriate processor be notified that a new request has been queued for one
of its controllers. (See Figure 14-2.)

Message
system ~

"message"

(I/O request)

Request queue
(in shared memory)

Disk
device registors @
§------~~

r-~~ / ~::;~~t
Prep

I Start
Service

routine
~ routine routine

I nterprocessor II nterrupt
I
I
I
I
I
I

Any processor

Message)

system ~
"reply"

(I/O completion)

Processor hosting disk

Figure 14-2 I/O communication structure

The driver uses the inter processor interrupt hardware (Chapter 2) to alert
the designated processor. At this point, control returns to the user program
that originally issued the request.

The interprocessor interrupt will be processed asynchronously on the
processor that receives it. Code in the 110 driver will field the interrupt and
alert the appropriate controller-specific module by c~lling its start routine,
which will check if the controller is idle, and if so, dequeue and initiate the
request. When the operation completes, the controller's interrupt will be
fielded by the controller's service routine, which replies to the original
message, setting the reply type to reflect the outcome of the operation.

200 THE SYSTEM IMPLEMENT A TION

We see, then, that the kernel I/O system has a rather simple structure,
with all the device-specific processing confined to a single module (in fact,
three primary routines) per controller type. The preceding description
ignores the details of parametrization that permit multiple identical controllers
to share the same code, even if they are attached to different UNIBUSes.
Issues concerning the synchronization of start and service routines, which may
interrupt each other, have also been ignored in the description. The
resolution of these details involves careful design, but nothing particularly
unusual.

14-3.1 Interprocessor interrupts

A word or two concerning the use of the interprocessor interrupt mechanism
is in order. Multiple interrupt requests for the same processor are merged by
the PDP-ll interrupt hardware, implying that more than one start routine
may have to be invoked by the interprocessor interrupt handler. In fact, the
same routine may have to be invoked more than once, in principle. To
simplify the bookkeeping, the prep routine actually queues each validated
request on a queue associated with the destination processor. The interpro­
cessor interrupt handler on that processor dequeues each request in turn
from this queue and passes it to the start routine, which enqueues it for the
controller unless the controller is idle. Therefore, no auxiliary structure is
required to maintain the set of start routines to be involved by the interpro­
cessor interrupt handler.

14-3.2 DMA Transfers

Aside from the complexities of managing its devices, each controller-specific
module must be concerned with the memory addressing performed by DMA
operations. All controllers that perform direct transfers to memory generate
full, IS-bit addresses on the UNIBUS. By convention, the device control
modules force these addresses to be in the I/O-space of C.mmp's relocation
machinery. Before a DMA operation is started, the controller's buffer address
register is loaded with a value that has been adjusted to refer to some
relocation register in the I/O-space. This register is loaded with the appro­
priate value to access the page containing the buffer required for the
operation. It is the responsibility of the controller-specific code to ensure that
the proper values appear in these registers for the duration of DMA activity.

Figure 14-3 shows an example of this situation. Suppose processor 6 has
both a disk and a drum on its UNIBUS, and is executing process A. At the
same time, the I/O space relocation registers are set to allow concurrent
DMA transfers to pages in processes Band C, which may be simultaneously
executing on other processors. If process A should be rescheduled on
another processor, the I/O-space relocation registers will not be affected.

INPUT /OUTPUT 201

Likewise, should I/O to either B or C complete, the I/O system will alter the
I/O-space registers without affecting A.

Processor 6's relocation registers

User space Process A's RPS

01-space Unused

I
Process B's page for drum transfer I/O space
Process C's page for disk transfer

Kernel space Kernel pages

Figure 14-3 Relocation register contents during DMA I/O

Because the I/O-space relocation registers are a resource shared by all
DMA controllers on a UNIBUS, a utility module in the I/O system provides
a simple allocation mechanism that ensures proper use of this resource. In
principle, a controller may be unable to initiate an operation for lack of a
relocation register, but in practice, no UNIBUS has sufficiently many DMA
devices (more than 7) to force this situation.

14-3.3 Error Recovery

In practice, the receipt of an I/O interrupt does not always imply a successful
completion. Generally speaking, the more complex the device and its
controller, the more things that can go wrong. However, the user program
generally prefers to think of a request as either succeeding or failing;
transient errors are not of interest at the higher leve1.2 Accordingly, transient
errors are handled within the I/O system and never passed back to the user
program.

Specifically, when a service routine fields an interrupt, it checks for
successful completion of the operation. If an error occurred which the
routine considers to be recoverable, it initiates some corrective action
(usually a retry of the failing operation). This generally induces a subsequent
interrupt which the service routine must also process, implying that a certain
amount of state information must be maintained for requests that have been
physically initiated but not successfully completed. Since more sophisticated
controllers can process multiple requests simultaneously (e.g., one seek per
disk drive), the service routine must be prepared for multiple requests being

2For example, a particular disk controller that Hydra supports can generate over 30 different
error conditions, many of which are recoverable_ It is difficult enough for the 1/0 system to
respond intelligently to all these cases; user programs should be spared the irtconvenience_

202 THE SYSTEM IMPLEMENT A TION

retried at the same time. All these complexities, however, are hidden from
the user program, which eventually receives either a "success" or "failure"
reply.3

Memory contention can also represent a problem for the 110 system. If
contention is severe, shared memory will not be able to respond fast enough
during a DMA transfer, causing the transfer to abort. In this rare instance,
we retry the operation several times, enabling the crosspoint switch's
high-priority feature to bypass the normal priority resolution scheme (see
Section 2-3.1). If even this is not sufficient, a special call on KMPS causes all
processors to busy-wait, accessing only their local memories until the transfer
completes.

14-4 KERNEL 1/0

Before proceeding to an evaluation of the 110 system, we should indicate its
relationship to the rest of the kernel. The design described above supports
the user-level view of 110 as a special case of general message communi­
cation. However, the kernel itself has a fundamental need for input/output
facilities as well, e.g., to implement the GST. The GST must be able to
manipulate disks that hold the long-term representations of kernel data
structures; other kernel modules must occasionally communicate with an
operator's console or system log device. The 110 system must supply a
convenient model for these mechanisms as well.

Because kernel services operate "below" the level of the protection
mechanism (i.e., without LNSs or any implicit addressing of capabilities), it is
inconvenient for them to use the same 110 facilities that user programs do.
Accordingly, kernel subsystems issue 110 requests without going through the
Message System. They specify devices by a unique name instead of by a
Message System connection, and they invoke the 110 driver directly by
subroutine call, instead of by sending a message. The subroutine arguments

3Strictly speaking, this may not be quite adequate. For example, if a particular sector on the
disk has become difficult to read, it may be advantageous to relocate its contents. This decision
must be made by higher-level software, not the I/O system, but the higher level must somehow
be notified that the I/O system encountered difficulties. Such a mechanism does exist and is
occasionally used. Since the outcome of a request is reported in the message reply type, a small
number of types are reserved by convention to mean "success," another set to mean "failure." A
single success type is universally considered "unconditional success"; the remaining ones can be
assigned device-specific interpretations. In this way, the user program can be notified of unusual
but non-fatal problems in satisfying its request.

INPUT /OUTPUT 203

correspond directly to the information a user would place in a message.4

From this point on, the kernel I/O request is treated just as a user program's
request would be; that is, it passes through the same prep/start/service se­
quence. When the request has completed, the service routine hands it back to
the I/O driver, which then notices that the request originated in the kernel.
Instead of performing a Message System "reply," the driver calls a subroutine
supplied with the original request. This routine receives as arguments the
same information that would form the message reply type for a user
program's request. Typically, the routine will 'V' a semaphore, thus unblock-
:_~ ~~_~ __ ~~~~~ .,,~:4-:_~ r~_ 4-t..~ T fA 4-~ ~~ __ 1~4-~
llle ~Vlll~ }Jl V~~~~ WUllllle IVI Lll~ J./ V LV ~Vlll}JI~L~.

Because the kernel has the same I/O facilities available to it that a user
program does, no special coding is required in the device-specific modules to
permit kernel access, and the kernel is freed from the correspondence
between processors and devices. A small amount of additional machinery is
introduced into the driver and utility modules, and the kernel I/O model is
procedure-based rather than message-based.

14-5 RETROSPECTIVE

One generally expects a kernel mechanism to be small, i.e., to require a
modest amount of code to implement it. The kernel I/O system is approx­
imately 23,000 lines of source code; hardly a . small program. However, this
number is strongly influenced by the number of different devices it supports.
If we consider only the driver and utility modules, we find they require
approximately 5,500 lines of code; the remaining 18,000 or so constitute
device-specific modules that implement 18 different types of controllers.5 The
device-specific modules have a very regular structure imposed by the require­
ments of the driver, and for a simple device are easy to write. (On several
occasions, the low-level support for a new device was produced from scratch
in less than two programmer-weeks). Viewed in this way, the size of the I/O
system seems more a function of its regular structure than of any inherent
complexity.

Access to the I/O system is reasonably well-integrated with the other
kernel facilities. The general bias in the kernel interface is procedural;
nevertheless, the decision to access I/O devices with messages from ports is
clearly the correct one. I/O activity in C.mmp is inherently asynchronous, so

4An exception to this is the location of the data buffer itself. The kernel always specifies the
buffer indirectly with an (address, length) pair. Users generally place the data buffer in the
message, although they have the option of using a similar indirect specification.

5The I/O system supports three different disk controllers (two for moving-head drives, one
for fixed-head drives), two tape controllers (one conventional magtape, one DECtape), two kinds
of line-frequency clocks, an ARPANET interface, two kinds of bit-serial asynchronous communi­
cation lines, a line printer, various terminals, and at least six experimental devices.

204 THE SYSTEM IMPLEMENT A TlON

the ability to perform I/O in parallel without spawning a process (expensive in
Hydra) is important. The general waiting and replying mechanisms of the
Message System fit well with the I/O system's needs and avoid introducing
an additional set of mechanisms explicitly for I/O. More importantly, the fact
that I/O devices are indistinguishable from ports permits a program to
simulate the behavior of a device by supplying a port where a device is
expected and interpreting messages appropriately.

The absence from the kernel of buffering, access modes, device indepen­
dence, and other higher-level I/O structuring concepts does not imply that
they are unimportant. Indeed, practical, flexible use of the kernel mechanism
strongly suggests that some collection of such facilities be built on top of it.
It is disappointing that no single high-level I/O model was ever constructed.
As always in Hydra, the existence of such a facility would not preclude the
direct use of the kernel mechanism in appropriate cases. Rather it would
serve to simplify the vast majority of cases in which the functional I/O
demands of a particular program are confined to a small, common set. The
absence of this facility has hindered convenient program development for
Hydra/C.mmp.

The kernel I/O system was originally designed to permit dynamic recon­
figuration of peripherals. (It is for this reason that devices are a kernel type
distinct from ports; auxiliary rights were to be used to protect reconfiguration
operations') However, much of the code required for reconfiguration was
never implemented. It was originally thought that a console operator (or
perhaps internal software checks) could request that a malfunctioning pro­
cessor be shut down and that its key peripherals be switched to other
UNIBUSs. However, the necessary hardware to support this reconfiguration
of devices was never acquired, and the detailed mechanisms outside the 110
system were never designed.6 Such a facility, if successful, would provide an
interesting validation of the generality of the 110 system's structure and the
flexibility of its internal communication and synchronization schemes. It
should be noted, however, that the need for such a reconfiguration mech­
anism has almost never arisen.

The 110 system, unlike the GST, was not designed with reliability as a
primary goal. That is, few internal consistency checks exist, and mechanisms
to recover from internal errors are practically non-existent. Observation of
failure' modes suggests that a better scheme for handling lost device inter­
rupts should probably have been included as part of the original design. (It
should be noted that interprocessor interrupts are reliably transmitted; a
mechanism in the driver maintains a list of processors that have been sent
interrupts but have not F~sponded. This list is used at appropriate intervals
for retransmission). A lost interrupt from a device will effectively "hang"
that device, since no time-outs are imposed by the software. Except for this

61n conjunction with the general system error-recovery mechanisms, it is possible to
"late-start" a processor, dynamically adding it and its 110 devices to the system.

INPUT lOUT PUT 205

deficiency, however, the lack of systematic internal error recovery mecha­
nisms in the 110 system has not been a significant influence on overall kernel
reliability. Indeed, the regular structure of the I/O system has tended to
minimize the number of latent and subtle bugs. The uniform approach to
syn~hronization has virtually eliminated the occurrence of internal deadlocks.
The remaining bugs generally appear in device-specific modules where they
are relatively isolated and tend not to compromise the overall integrity of the
I/O system.

With a more modern perspective, one might debate the use of substantial
inteHupt ioutines to piocess 1/0 completions. Today, one is much mOie
inclined to view an 110 completion as triggering a process switch, and lacking
hardware or firmware to perform this switch directly, one would build
interrupt routines that merely 'V' a semaphore (or, if monitors [Hoa74] are
used for synchronization, "signal" a condition variable). We seriously
considered this approach in Hydra and rejected it on efficiency grounds, since
process switching is time-consuming and processes are space-consuming.
Consequently, interrupt routines (and everything they call) are subjected to
certain global restrictions that prevent them from being rescheduled to
execute on a different processor.? Such restrictions are awkward to enforce
and have been the source of many hard-to-find bugs. With a less costly
process mechanism we would definitely have organized 110 interrupt handling
differently. Given the facilities we had, the choice of interrupt routines was
undoubtedly correct, but we might have been able to find a less constraining
set of global restrictions that would have engendered fewer bugs. Alterna­
tively, we might have attempted to build a process mechanism that permitted
rapid context-switching and consumed only a small amount of storage per
process. Some preliminary designs aimed at producing such a mechanism
were never completed.

7In particular, an interrupt routine is not permitted to 'P' any semaphore, since blocking
would cause a context swap. This effectively prohibits any use of the GST within interrupts
because the GST makes extensive use of semaphores for synchronization.

CHAPTER

FIFTEEN
ERROR RECOVERY

The term "error recovery" really describes a continuum of actions that
collectively ensure some degree of robust operation. At one end of the
spectrum, checking and reporting invalid parameters to a requested operation
constitutes a (simple) form of error recovery. At the other extreme, a
system restart with complete validation of the GST structure is a much more
radical recovery technique. Between these limits are a variety of actions,
some of which interrupt the continuity . of system operations. In the
programmer's vernacular, these are "crashes" of varying severity. The
inherent redundancy of a multiprocessor at once complicates the crash
recovery task and offers the hope of reducing the frequency or severity of
crashes.

Hydra employs five broad categories of mechanisms to deal with the
possibility of hardware and software errors:

Validation mechanisms try to ensure that hardware components are operating
correctly before they are used. These mechanisms should be quite
conservative about what components they allow into the system.

Fault-tolerant mechanisms are employed in situations where certain passive
errors (such as lost interrupts) can be ignored. These mechanisms can
be less than 100% effective; every little bit helps.

Error detection mechanisms are designed to catch errors quickly, before serious
damage is done.

Diagnostic mechanisms are designed to analyze errors and determine the
extent of damage and the possibility of recovery.

Recovery mechanisms are designed to take corrective actions, ranging from
ignoring the error to notifying higher-level software to reloading the
entire operating system.

In this chapter we will try to enumerate the various techniques employed
by Hydra in these five categories and evaluate their success.

207

208 THE SYSTEM IMPLEMENT A TION

15-1 VALIDATION MECHANISMS

Hydra's validation mechanisms are invoked during system initialization to
determine the status of various hardware components and data structures.

Memory Validation Hydra makes no assumptions about the configuration of
the shared memory in C.mmp~ the configuration must be determined when
Hydra is booted from disk. A bootstrapping ROM finds the first good
memory page and loads into that page a routine which walks through the
entire 25-bit address space and builds a table of available memory. This table
is used as the rest of Hydra is brought into memory, and it acts as a basis for
the initialization of the Paging system. This validation is effective in
detecting malfunctioning, as well as unimplemented (i.e., missing from the
physical address space), memory pages.

Processor Validation During initialization, Hydra reads from disk a table
indicating which processors are supposed to be available. In turn, each
processor is started by being sent an "interprocessor start" interrupt from the
bootstrap processor. Processors initialize and validate themselves, posting the
results in shared memory~ the bootstrap processor builds a table of "available
processors" from the results of those initializations.

When a processor which is "supposed" to be operative does not start, a
message is printed on the operator's console. The operator can manually
start the processor at any later time. (This is partially a response to an
observed failure mode: someone left the processor's "halt" switch down.)

GST Validation Before initialization completes, the Passive Fixed Part Di­
rectory on drum is cross-checked with information on the Passive GST disk.
Any inconsistency in the data causes a longer GST initialization sequence in
which the Passive GST is garbage-collected and the GST Directory is rebuilt.

15-2 FAULT-TOLERANT MECHANISMS

In a sense, all error-handling mechanisms are supposed to promote
fault-tolerant behavior, but in this section we are concerned with the design
of mechanisms which are completely insensitive to certain types of expected
errors, especially lost interrupts. As has been seen in previous chapters, the
interrupt mechanism is very important to Hydra. Interrupts are critical to
scheduling and synchronization, as well as being the foundation of the I/O
system. Moreover, a lost interrupt is a passive occurrence which is hard to
detect. Hydra does not use time-out mechanisms to detect them-such
mechanisms are more expensive than simply resending interrupts.

As an example of this, we saw in Chapter 12 that waking a processor

ERROR RECOVERY 209

blocked on a lock is accomplished by sending an interprocessor interrupt to
all blocked processors. If an interrupt to one processor does not get through,
it probably will the next time, especially since the next interrupt will probably
come from a different processor. I If a processor is truly unreachable from all
other processors, it will be caught by the "watchdog" (discussed below).

KMPS also depends on the success of the interprocessor interrupt mech­
anism to do correct scheduling~ a lost interrupt could result in a high-priority
process remaining on the feasible queue. When KMPS interrupts a pro­
cessor, it actually resends all previously sent interrupts until it receives
positive notification that the interrupt has gotten through. The cost of this
mechanism is very low (a couple of instructions) .

The I/O system tries to tolerate lost interrupts by the use of the request
queues. (See Chapter 14.) Any time a processor receives the "I/O"
interprocessor interrupt, it processes all requests on its queue. Thus a lost
interprocessor interrupt will be corrected on the second interrupt. Likewise,
any interrupt from a device will cause the service routine to process all pending
requests. If no other interrupt arrives, the device will appear to be hung. "

15-3 DETECTION MECHANISMS

Various error detection mechanisms have been mentioned earlier in this
book in conjunction with particular kernel systems, and there are others of a
more general nature. These mechanisms must be very safe, because an
undetected error can propagate damage beyond hope of recovery. '-IVe will
discuss the mechanisms under three broad categories.

Hardware fault detection The PDP-ll hardware, as modified for C.mmp,
detects a large number of errors which can result from the malfunction of
either hardware or software. These include parity errors in shared memory,
attempts to execute illegal or reserved instructions, attempts to access
non-existent memory pages, attempts to violate write-protected pages, at­
tempts to violate the stack conventions, and failures of UNIBUS devices to
respond.2 With the exception of parity and device errors, any of these faults
may be triggered by software or hardware.

Unfortunately, many hardware faults are not detected directly. Parity
errors in local memory, and misexecuting instructions are observed to occur
without triggering a hardware trap, and thus must be caught by higher-level
mechanisms.

IThe common cause or this error is a misconfigured Interprocessor Bus-a situation not
detected by the validation mechanisms,

2This last rault is the all-purpose "NXM" (non-existent memory) exception,

210 THE SYSTEM IMPLEMENTATION

Software consistency checks Hydra, and especially the GST mechanisms,
employs a wide variety of techniques to ensure that everything is going
correctly. Checksums and back-pointers are used to ensure consistency of
data structures. The Paging System uses its page state information to
determine whether the application of particular functions to pages are appro­
priate. Finally, a count of the number of critical sections entered is kept to
ensure that no mutual-exclusion semaphores are left locked after processing a
Kall·for a user. (Leaving a semaphore locked is an invitation to deadlock.)

Over Hydra's history, all these software checks have been successful in
catching both software and hardware errors.

Asynchronous monitoring Sometimes a malfunctioning processor will simply
halt, and none of the above mechanisms are capable of detecting that. For
that reason we implemented a "watchdog" system in which every processor
periodically asserts its well-being and makes sure that every other processor
does likewise. Should any processor haIt, some other processor will eventu­
ally notice that fact and will initiate recovery actions.

15-4 ERROR DIAGNOSIS

The rapid diagnosis of a possible error is vital in a multiprocessor for two
reasons. First, damage may be propagated rapidly by other processors.
Second, the damage may cause the triggering of error mechanisms in other
processors, making a complete analysis much more complicated.

The accuracy with which an error can be diagnosed is dependent in large
part on the information the detection mechanisms can make available, and
this varies greatly among the mechanisms. In the case of hardware-detected
errors, for instance, the location (if not the cause) of the error is usually well
specified.3 Diagnosis of these errors usually consists of first determining if the
error was the user process' fault. If so, we can simply reflect the error back
to the user in some way. Likewise, parity errors occuring in the context of
the user process cannot have affected the integrity of the kernel and
therefore they can also be reflected back to the user.4

Errors detected by Hydra's software checks are more difficult to analyze
because the source of the error is almost always unknown at first. Further­
more, all such errors occur within the kernel and therefore cannot be easily
reflected back to the user. (This assumes that sufficient validation of the
user's Kall arguments occurs so that a bad argument cannot trigger one of
these consistency checks much further on.) In general, all that can be done
is to validate and/or repair the environment before proceeding.

3 As noted in Chapter 2, special tracking mechanisms were added to make this true.

4AIthough it must be anticipated that a hard parity error in a user's page will affect Hydra
when it tries to swap out that page.

ERROR RECOVERY 211

Errors detected by the watchdog system are the most difficult to deal
with because most of the information needed to analyze the error is hidden
in the malfunctioning processor and not available to the processor detecting
the malfunction. Part of the recovery action for this type of error is an
attempt to force the halted processor to copy its state to shared memory.

15-5 RECOVERY MECHANISMS

When an error has occurred and diagnostic information is avauaOle, a
selection among several recovery actions must be made. The error handlers
have four main options:

1. Dismiss or correct the error immediately.
2. Reflect the error to the user process and continue.
3. Reflect the error to higher-level kernel software and continue.
4. Stop and initiate a restart of the entire system.

In selecting among these alternatives, the error handler must consider not
only the probability of being able to correct the error but the effect the error
may have on other processors running concurrently with the error-handling.

In practice, very few errors can be handled locally. For instance, even
though most hardware errors are transient, the PDP-II architecture makes it
very difficult to back up and retry an instruction; instructions can have too
many side effects. Similarly, correction of software-detected errors requires
more state information than is available in the error handler. Only the I/O
system is able to deal wen with controller-detected errors, because it has
sufficient state information to reset the devices and retry the operations.

The GST is the only kernel module which is able to use redundant
information to recover from errors. The GST keeps two copies of each object
on the Passive GST -a "most-recent" copy and a "second-most-recent" copy.
Should the most-recent copy be unreadable, it will automatically back up to
the second-most-recent copy. Should no copy be readable, the object is
eliminated and capabilities for it are deleted.s

When an error occurs in the context of a user process, that process is
normally stopped, and an error indication is given to the responsible Policy
Module, which can distribute that information as it sees fit. However, there
is also a facility whereby an LNS may designate an error-handling routine
which is given control when an error occurs. This routine can try to correct
the error or can simply terminate the LNS with a Return Kall, in effect
punting the error to the caller. This facility is very important for subsystems,
because to stop an LNS at an arbitrary point could leave the subsystem's data

Sit is not clear that this is a good policy-users are disconcerted when their objects disappear
without warning. We should emphasize that this behavior is extremely infrequent.

212 THE SYSTEM I MPLEME.l'I'T AnoN

in an inconsistent state. (A semaphore might remain locked, for instance,
and effectively prevent all other subsystem operations.)

Reflecting an error to higher-level routines within Hydra would seem to
be a very powerful mechanism, but unfortunately the necessary recovery
mechanisms were never implemented. Much information needed for succes­
sful recovery, especially knowledge about which data structures are locked by
the process, is not available.

In practice, therefore, if an error cannot be safely reflected back to the
user process, it usually results in a crash-and-reload of Hydra. The advantage
of this course is that it is extremely conservative: it does not allow other
processors to propagate the damage, it provides an easy way to record a fairly
large amount of data for later offline analysis by hardware and software
engineers, and it automatically invokes the hardware validation mechanisms
(mentioned earlier) during reinitialization. The disadvantage of this recovery
mechanism is its severity: the work of all users is disrupted during the
reload. Because this recovery action is (unfortunately) common, we will now
describe it in more detail.

15-6 AUTORESTART

Once the autorestart mechanism has been triggered, it has a single goal: to
restart system operations promptly with a minimal loss of data and a maximal
chance of continued operation. It follows that the mechanism must be able
to reconfigure the system hardware to eliminate faulty components and must
be able to do so automatically, without relying upon a human operator (who
may not be present at the time of the crash).

The first step in the recovery is to stop normal system operation (via the
interprocessor bus) and select the Suspect and the Monitor processors. The
Suspect is the potentially faulty processor, usually the processor which
detected the error. The Monitor is selected at random from the remaining
processors to control the restart process, since the Suspect may not be
reliable enough to do so.6 Suspect and Monitor now synchronize with each
other, and the Suspect proceeds to record copies of its registers and local
memory page in an area of shared memory and then runs a complete
processor diagnostic. When the Suspect completes, the Monitor halts it and
writes the crash data out to disk for later analysis. If the Suspect should be
unable to complete this record, the Monitor will detect the fact and write out
whatever portion of the record is available.

On the basis of the circumstances surrounding the error and the perform­
ance of the Suspect during recovery, the Monitor determines if any reconfig-

6In the case of an error detected by the Processor Watchdog, the processor detecting the
fault designates himself the Monitor. After halting other processors, the Monitor attempts to
start the Suspect via the interprocessor bus and force it into the autorestart sequence.

ERROR RECOVERY 213

uration of the hardware is necessary. If the original error was a memory
parity error, for instance, and if the error was repeatable, the bad memory
page is deleted from the configuration table used by Hydra. The Monitor
consults an error history table for the Suspect processor to determine if the
Suspect has failed under similar circumstances in the past. If the Suspect
accrues too many demerits in any particular error class, or too many total
demerits, it will be designated "faulty" and will be excluded from the system.

Normally, a "faulty" processor is automatically excluded from the system
and is forced to execute special diagnostic code under the watch of a small
executive within Hydra. Shouid the processor seem error-free over a period
of time, and if an operator has not permanently excluded it, the processor is
automatically reinstated in the system. This prevents a flurry of random
errors (e.g., power fluctuations) from indefinitely excluding an otherwise
acceptable processor.

Occasionally, a faulty processor will be classified as "critical," usually by
virtue of its being host to a critical system peripheral device. In such a case
the processor is "quiesced" -it remains in the system, but it runs no
processes, only device interrupt traffic. It is hoped that the processor will be
more reliable under the lighter load.

15-7 RETROSPECTIVE

It may easily be argued that the error-handling mechanisms are too ad hoc
and incomplete. We admit these properties and attribute them to the
historical evolution of the mechanisms. The error recovery scheme was, in
essence, an add-on to the kernel dictated by the unreliability of the C.mmp
hardware. It would doubtless have been better if we had designed it as an
integral part of the original kernel, but we never believed that the hardware
would be so unpredictable. The Suspect/Monitor model was developed to
deal with hardware failures (particularly misexecuting processors) and works
well for such problems. Its general applicability to higher-level software
errors is dubious at best.

The most serious shortcoming of the error-handling mechanisms is that
continuation after most errors was not implemented. We suspect that most
hardware errors encountered while executing in the kernel are safe, by which
we mean (1) the processor detecting the error is performing a Kall for a user,
and (2) no objects or data structures are locked (and hence they are in a
consistent state). We should be able to back out of the kernel and stop the
user process, instead of initiating a system restart. Unfortunately, we cannot
verify this state because we do not record the objects that are locked, and
because we do not believe that all kernel code could tolerate being inter­
rupted at arbitrary locations, even with nothing locked.

Because so much of the total operating system is outside the kernel,

214 THE SYSTEM IMPLEMENTATION

users need very good support for their own error recovery policies. In
general, Hydra provides rather poor facilities. They have not been seriously
missed largely because we never really explored the possibility of having one
process debug another. We did, however, provide mechanisms to forcibly
reawaken processes waiting on ports and Policy Semaphores, one essential
requirement. Despite the absence of convenient mechanisms, Hydra's sub­
systems seem to maintain abstractions across crashes as reliably as conven­
tional systems do. In principle, Hydra should be able to do better and, we
believe, would do better if the recovery system had been planned at the
outset.

The "error history" mechanism for processors works quite well in general
but has some drawbacks. By associating every error with a particular
processor, intermittent memory failures cause a slow increase in the error
counts of all processors. In practice, such errors will eventually become
"hard," the memory module will be eliminated, and the demerits assigned to
guiltless processors will "evaporate" in time. (Or, more likely, the hardware
maintainer will discover what has happened and m<anually adjust the error
counts.) ,

The autorestart mechanism works well at what it is (realistically) intended
to do. It reloads and restarts the system over 95% of the time without the
loss of anything except currently executing programs. It does so without
operator intervention (Hydra has no full-time operator) and leaves detailed
records of the system state at crash time. These records have been of
enormous assistance in tracking down subtle hardware errors (which escape
the rather coarse diagnostics) and latent kernel software bugs. It provides a
convenient means for adding a (repaired) processor to the running Hydra
configuration long after it has come up, thereby encouraging prompt repair of
processors excluded by the Suspect/Monitor mechanism.

Two brief anecdotes should illustrate the effectiveness of the error
recovery mechanisms. On one occasion, a particular connection on the
interprocessor bus was broken, preventing interrupt signals from being sent
from a particular processor. The redundancy in the interrupt notifications
was so good that no degradation in performance was noticed, and days went
by before we realized that the bus was broken. On another occasion, a
serious power failure stopped C.mmp dead in its tracks. When power was
restored, Hydra was easily rebooted and it resumed operation without any
damage to its data structures on secondary memory. Unknown to us, half of
primary memory had been rendered inoperative by the power failure! Hydra
simply rebuilt the memory tables and continued; several days elapsed before
anyone noticed the missing memory!

On balance, we believe the mechanism has been a worthwhile addition to
the kernel, both because of its effect on MTBF and because of the lessons we
learned by having to add it to an existing kernel. Were we to rewrite the
Hydra kernel, we would integrate the mechanism more thoroughly. We

ERROR RECOVERY 215

believe the Suspect/Monitor model is effective in dealing with hardware
failures and is consistent with the absence of centralized control we advocate
for multiprocessor systems. We regret the need to build this specialized
recovery mechanism, but regard the effort as a useful demonstration that
reliability must be designed in, not added on.

A final anecdote illustrates that automatic recovery mechanisms can be
"too good." Many users of Hydra are unaware of the system's ability to add
processors to its running configuration. Occasionally, a processor excluded by
the error recovery mechanism will pass all its diagnostics and be returned
automatically to regular service. One unfortunate user was conducting a
series of performance measurements that required precise control of the
processor configuration. Unknown to him, Hydra automatically added a
processor to the system during his experiments. It took him several days to
figure out the anomaly in his data!

PART

FIVE
MEASUREMENTS AND EVALUATION

CHAPTER

SIXTEEN
EXPERIMENT AL MEASUREMENTS

In this chapter we present the results of a number of experiments on C.mmp
and Hydra. These results should help the reader to more accurately evaluate
both the machine and its software. Whenever one measures a complex
system, it is difficult to control all the variables; the measurements on
HydratC.mmp are no exception. Thus, before beginning we would like the
reader to keep the following points in mind:

The evolving nature of the system. The experiments reported here were per~
formed over a period of several years during which the hardware and
software evolved. Moreover, Hydra was designed to run with virtually
any configuration of processors and memory and needed only a few 110
devices for the GST and its directory. For both these reasons, one
cannot assume that any two experiments were performed pn exactly the
same configuration or the same software. We will try to explicate the
differences where they matter.

Goals oj the experiments. There are several reasons why one might perform
measurements of any system:

To improve the performance of that specific system
To compare the system to others along one or more dimensions
To learn something about the way that the system is used in order

optimize the design of future systems

Generally the experiments we shall describe started out with only one of
these objectives. But, as when measuring any complex system, we
sometimes learned more than we expected. A study into the decompo­
sition of multiprocessor algorithms, for example, led to significant im­
provements of both the KMPS and PM scheduling algorithms. These
kinds of changes contribute to the evolution of the system and thus
exacerbate the problem of comparing and combining results.

Nature of the usage patterns. HydratC.mmp was and is an experimental system.
It has never had a large user community and it would be difficult to
predict with any confidence the nature of the load that the system would

219

220 MEASUREMENTS AND EV ALUA nON

experience if there were such a community. Since some of the exper­
iments presume a load~ their results must be interpreted relative to that
load and not as "typical."

For ale these reasons we will try first to simply describe each experiment in its
own terms-without trying to relate its results to other experiments or trying
to draw conclusions beyond the intended scope of the experiment. Then, a
retrospective section will try to draw such additional conclusions and infer­
ences as seem warranted by the collection of results.

The experiments we have chosen to describe are those that concentrate
on the more novel aspects of C.mmp and Hydra-namely, the fact that
C.mmp is a multiprocessor, the fact that Hydra runs in a distributed fashion
(not master-slave), and the fact that Hydra is a capability-based system.
Thus, we shall concentrate on such things as:

• The decomposition and performance of several algorithms, particularly as
that performance reflects on design decisions in C.mmp and Hydra

• The effects of contention for resources at both the hardware and software
levels

• The effects of the address space size and relocation structure on both
programming and performance

• The size and speed of the kernel, particularly as they relate to supporting
multiprocessing and the capability model

• The usage patterns of the GST, particularly as they relate to various
implementation decisions in Hydra and the ways in which those decisions
might be different in subsequent systems

Before beginning, however, we shall describe some of the tools that have
been developed for measuring the system's performance.

16-1 PERFORMANCE MEASUREMENT TOOLS

For some experiments, of course, special measurement tools were developed.
However, most experiments on HydratC.mmp used one or more of the
following:

The Hardware Monitor. A device that permitted various hardware events (e.g.,
interrupt rates, memory references, etc.) to be monitored without dis­
turbing the system.

The Kernel Tracer. A collection of software and microcode in Hydra that
permitted a trace of certain software events (e.g., process blocking, 110
queueing, etc.) to be generated. A post-processor is used to present the
trace output in a meaningful form.

The Snapshot Taker. A collection of software in the kernel that permitted a

EXPERIMENTAL MEASUREMENTS 221

large amount of internal state to be recorded at a specified time. A
post-processor is used to present the snapshot information in a mean­
ingful form.

Hercules. A user-level program that simulated an arbitrary number of user
terminals, each executing a specified script. This program allowed us to
place known and repeatable loads on the system.

Each of these tools has advantages and limitations that outline a useful
domain of use.

16-1.1 The Hardware Monitor

The Hardware Monitor, or K. mon, is a device for detecting and recording
certain hardware events on a PDP-ll. It was initially designed and built for
measuring the performance of C.mmp, but has been used for other
PDP-ll-based hardware systems as well. In this section we will cover only
those general properties of K.mon that are relevant to the experiments
described in this chapter. A more complete description can be found in
[FuI73] .

To understand K.mon at a sufficient level for the purposes of this
chapter, one needs only to understand (1) a set of possible event definitions,
and (2) a set of possible event actions, that is, the kinds of events that can be
detected and the kinds of actions that can be taken in response to the
occurrence of an event. Two factors affected the design of K.mon in this
respect:

• The PDP-ll has the property that many, if not most, "interesting"
hardware events are detectable as signals on the UNIBUS. Therefore,
unlike the hardware monitors for other systems, K.mon event definitions
and actions are defined primarily in terms of the information on this bus.

• While in principle one can simply record all possible events of interest and
post-process the results to obtain those of real concern, in practice it is
both more convenient and more efficient to provide for some "on-the-fly"
processing power and to allow dynamic modification of the event defini­
tions.

For both these reasons, K.mon was organized to connect to two UNI­
BUSs. To one of these, the "host" in Figure 16-1, K.mon is an essentially
invisible, passive device. To the other UNIBUS, the "supervisor", K.mon
appears to be a (rather sophisticated) I/O device. The host processor is the
one being monitored. The supervisor processor controls the monitor; it is
able to set the event definitions in K.mon, it provides the memory in which
K.mon records data when events are observed, and it can be interrupted by
K.mon whenever the event action so specifies.

There are five pairs of event definitions active simultaneously; each event

222 MEASUREMENTS AND EV ALVA TION

Host
processor

Supervisory
processor

Figure 16-1 K.mon: the hardware monitor

UNIBUS

UNIBUS

definition consists of a primitive event specification and an accumulator; and
the accumulator is initialized from a register associated with the event
definition and is decremented each time the primitive event is detected.
When this counter reaches zero the event is said to have happened; the
counter is reinitialized and the action associated with the event is performed.
(Obviously, by setting the initial value of the counter to one, one can cause
the event to happen each time the primitive event is detected.)

A primitive event can be constructed by one or more of the following
criteria:

• The address on the UNIBUS lies within a specified range.
• The data on the UNIBUS lies within a specified range.
• The UNIBUS is in a specified cycle (read, write, read-pause, etc.).
• The UNIBUS cycle is, or is not, an interrupt request.
• The two special "sequence bits" (explained below) have a particular value.
• Any of 16 high-impedance probes have specified values. (Typically, these

probes are used for sampling signals from the processor, for example, to
distinguish instruction-fetch from data-fetch cycles.)

Although there are only 5 event definitions in K.mon, there are 31 event
action specifications-one such specification for each of the combinations of
events that might happen simultaneously. Each event action can result in a
number of operations:

EXPERIMENT AL MEASUREMENTS 223

• 0-9 words of data can be stored at a specified location in the supervisory
processor's memory; this data includes the data and address from the
UNIBUS, various other control signals, the accumulated event counters,
the value of a high-resolution clock, etc.

• The supervisory processor can be interrupted.
• The two "sequence bits" mentioned above can be set, allowing primitive

tests of the form "if event A follows event B."
• The high-resolution clock can be started or stopped.

A simpie example should help to put all this in peispective and illustrate
the power and flexibility of K.mon. Suppose that one wished to know how
often a particular subroutine in the kernel blocked on a lock. To do this we
would first connect a probe to the processor signal that distinguishes between
the running and idle states. Then we would set up event definitions as
follows:

First event. Use the address comparators to detect the execution of the first
instruction of the subroutine. The action associated with this event will
be to record the event counter and to set the "sequence bits" to a
configuration reflecting that the subroutine is executing.

Second event. Use the address comparators to detect the execution of the last
instruction of the subroutine. The associated action is simply to reset the
sequence bits to some neutral state.

Third event. Use the address comparators to detect that instruction in the
"lock" subroutine that is executed on failure to get the lock. If this
instruction is executed and the sequence bits are set to indicate that the
subroutine of interest is executing, record the event counter.

K.mon was used in all the memory and lock contention experiments
presented in this chapter. It supplies the lowest-level measurements of any
performance tool available to us.

16-1.2 The Kernel Tracer

The kernel tracer is a collection of software and microcode that permits one
to record the occurrence of selected events within the kernel.1 The time the
event occurred, together with a small amount of additional information
related to the event, is recorded for later processing. The collection of events
that can be traced is defined by explicit code in the kernel. Calls to the
tracing package are inserted at "interesting" points in the kernel source text;
each call identifies the event and supplies the additional parameters that
provide event-specific data. In order to define a new event, or modify the
information associated with an existing event, the relevant portion of the

IThere is also a special Kall that allows users to insert their own events into a trace.

224 MEASUREMENTS AND EV ALUA TION

kernel source program must be modified and recompiled.
Whether or not a particular event is actually recorded is determined

dynamically. In an obvious way, toggles are associated with each event, and
the appropriate toggle is tested before entering the tracing package.

Assuming that an event is enabled for tracing, the call on the tracing
package will cause a record of the event to be written into a memory page
specified by a user-level program. (We'll say more about this below.) The
record consists of the following information:

A numerical event identification
The length of the record
The (physical) processor number on which the event occurred
The (KMPS-defined) process identification of the currently executing process

on this processor
The current clock value (accurate to 4 JLs)
The event-specific data supplied in the call on the tracer

Typically, event records are 10-20 bytes long, of which 8 bytes is the standard
information.

Tracing is controlled from a user-level process. Three special KalIs exist
for this purpose. The first specifies the events to be traced and supplies a list
of pages (in the process' cPs) into which the data should be written. The
second Kall blocks until a page is full of trace data and returns that page to
the user, and the third Kall turns tracing off. Obviously the existence of the
user-level process might perturb the system in some cases, and caution must
be exercised to minimize this effect.2 However, the added effort required to
exercise this caution is more than offset by the flexibility provided. An
experimenter may, for example, make a trace, process the resulting data,
examine the results, and decide to alter and re-perform the experiment-all
while executing in parallel with other users.

It is extremely important when defining a software tracer such as this one
to keep its execution overheads as low as possible. There are two aspects of
this: the overhead when tracing of a particular event is disabled, and the
overhead when the same event is enabled. By keeping the former overhead
low we can tolerate the existence of many trace definitions in the production
version of the system~ when errors or anomalous behavior is observed we
can enable tracing as a diagnostic tool. By keeping the overhead for enabled
events low we both minimize the perturbations introduced by tracing and
permit a finer-grained analysis of behavior.

The tracer is implemented with a combination of in-line code, subrou­
tines, and microcode. The enabling toggles, for example, are tested in-line so
that the overhead in the event-disabled case is only 2 instructions. Micro­
code is used to actually make an event-record entry~ the typical cost for this

20ne can force the process to execute on only one processor, for example.

EXPERIMENT AL MEASUREMENTS 225

is 65 ILS, or about 26 (non-microcode) instruction times.3 Subroutines are
used for relatively rare cases, such as when storage must be allocated.

Our experience indicates that this scheme makes it practical to trace
events with a granularity of less than 1 ms with little perturbation.

Figures 16-2 and 16-3 show two common forms of post-processed trace
output-process time lines and processor time lines. Each figure shows
activity during approximately 114 sec of real time with a granularity of 2 ms.
In Figure 16-2, each vertical column represents the execution of one process.
Blank areas indicate periods during which the process is suspended; each
period during which the process is executing begins with a line "CPU n;"
which indicates the processor executing the process. Other lines indicate
whether the process was in user space ("USER") or what Kall was being
executed.

Figure 16-3 is a processor time-line; each column represents the activity
on a single processor. Blank areas indicate idle periods, "-CSW-" indicates a
context swap, and the process being executed is identified by the line
"USER n."

Many of the features of KMPS and the Message System are dramatically
revealed in these traces, which follow the activity of the NCP handling an
NVT -a "network virtual terminal." An NVT looks like a normal terminal to
other subsystems, notably TMUX. Figure 16-4 shows how the relevant
processes are connected in the Message System. Seven processes are shown;
from left to right in Figure 16-2 they are a PM1 scheduling process, the NCP
output multiplexor, the processor 12 idle job (to show IMP device
interrupts), the NCP input multiplexor, the socket-pair process, the NVT
process, TMUX, and the user's command language process. At time 0.910
we see the NVT starting after receiving a character from the ARPANET,
causing it to (1) pass the character on to the CL, and (2) simultaneously
echo it back over the ARPANET to the sender. At time 0.920 the NVT
executes an RSVPMsg Kall to echo the character; the message is received by
the socket process, which begins executing on processor 5 and continues on
processor 13. The socket process in turn wakes up the output multiplexor at
time 0.990, starting a series of communication between the output multi­
plexor and the IMP device (note the interrupt traffic at time 1.000). Mean­
while, the NVT has also replied the input data back to TMUX (the
WriteAndRep/y Kall at time 0.935); however, TMUX has arranged to ignore
normal replies of input, so the Message System routes the reply directly to
the CL without waking up TMUX. The CL process, however, has been
swapped out, so we see (at time 0.940) the PM process waking up and
starting the CL, which begins executing at 0.975 on processor 6. This input
causes the CL to send some output to TMUX at time 1.015, causing the PM
process to start TMUX (which actually begins executing at time 1.06 on

3 An earlier assembly-language coding of this operation required nearly 350 f.1,.S.

226 MEASUREMENTS AND EV ALUA TlON

OuIMux Idle 12 InM.Jx Socket TMUX CL 0.840

-CPU 7
Rcv&Read

·CPU 6 Rcv&Read
RcvMsg -Pagewait
RcvMsg ·Pagewa~
RcvMsg RcvMsg
Write&Aeply RcvMsg
WriIe&Reply ReadMsg
Write&Reply ReadMsg
Wrile&Reply Wr!t~&Reply
Write&Reply Wnte&Reply
Wriie&ASVP ·Interrupt
Write&RSVP Wrile~Reply

-Interupt
Wriie&RSVP Wnte&Reply
Write&RSVP Write&Reply

·Interrupt Rcv&Read ReplyMsg
·Interrupt -Will block ReplyMsg

-Will block ReplyMsg
Rcv&Read ReadMsg
Rcv&Read ReadMsg
Rcv&Read ReadMsg

Rcv&Read
-Willbaock
Rcv&Read
Rcv&Read

0.900-

-CPU 11
·PagewaH
·PagewaII
RcvMsg
RcvMsg
RSVPMsg
RSVPMsg
RSVPMsg

.cPLi 5
RSVPMsg
RSVPMsg

Rcv&Read ·User
Rcv&Read Wr~e&RepIy
·User Wr~&RepIy
Rcv&Read Wr~&RepIy

• -CPU 3
·Wi_bIock _&Reply
·Winblock WrHe&RepIy

-5tar1 ·StarlCl Rcv&Read Wrile&RSVP
·StartCl Wrire&RSVP
·User Write&RSVP
·Uoer WriIe&RSVP

· ·Uoer
.cPLi13

WriIe&RSVP
·User WriIe&RSVP
·User Rcv&Read Rcv&Read
·User Rcv&Read Rcv&Read
SIarFrca Rcv&Read ·Willblock

.Paging · ·PagIngCL ReadMsg Rcv&Read
·PaglngCl ReadMsg
·PagIngCl RepIyMog
·PaglngCL RepIyMog
·PaglngCl == · ·PaglngCl
·PagingCl RepIyMsg

.cPLi 7

J=a
RepIyMsg
Write&RSVP Rcv&Read

.cPLi 6 ·User Write&RSVP Rcv&Read
· ·User Write&RSVP ·Uoer .p--

RcvPoIicy Write&RSVP Rcv&Read .p--
Write&RSVP Rcv&Read RcvMog

.cPLi 5
WriIe&RSVP ·W1_bIock == Rcv&Read Rcv&Read

Rcv&Read Rcv&Read Rcv&Read WriIeMog
Rcv&Read -WiHbk.lck WriIeMog
Rcv&Read Rcv&Read RS~
WriIe&RSVP Rcv&Read RS~

1000 :
WrHe&RSVP RS~
Wrile&RSVP

~""'""'"
RS~

-CPU 3
WriIe&RSVP RS~
_&RSVP .1nIemJpI

~= RcvMsg ~-....pI
·Wi_bIock .1nIemJpI RPSLoad
RcvMsg ~-....pI RPSLoad
RcvMsg ·I-....pI ·Uoer

-CPU 7
·I-....pI = ·Inienupl

.star1 .startn. ... X ·lnIemIpt AcvMog
• .startTMUX Wri1eU6g

·User WriIeMog
·User ~ ·User

-CPU 11 ·Uoer RSVPMog
· ·User RcvMog RSVPMog

Star1Prcs RcvMog ·U_
IStartPrco _&RSVP

.Paging
RcvMog

I·P~TMUX WriIe&RSVP
.1"",""", ·WIHbIock · :~=~~~ WriIe&RSVP -WiHbIock

Wrile&RSVP ·Interrupt RcvMag
.Paging TMUX RcvMag ·lnlerrupC
·PagingTMUX -Willbk>c:k ·In_
·PagingTMUX RcvMsg ·lntenupI
·Paging TMUX RcvMsg ·Interrupt

• ·Paging TMUX ·Interrupt
·PagingTMUX ·Interrupt
·PagingTMUX

·CPU13
·lntenupI

·User ·lnterrupI
·User RcvMsg ·Interrupt

· RcvPolicy RcvMsg ·Interrupt
.CPU 7 RequeMsg ·Interrupt

RequeMsg ·Interrupt
-CPU 3

.PagewaII
Rcv&Read .PagewaII
Rcv&Read Rcv&Read RcvMag
·Willblock Rcv&Read AunTme
Rcv&Read Rcv&Read RunTIme

MakeMsg ReadMsg
MakeMsg ReadMog

=:~vp RSVPMag
RSVPMag

Wrile&RSVP RSVPMag

.Interrupt
Write&RSVP RSVPMag
Write&RSVP

.CPU 5
RSVPMsg

-Interrupt RcvMsg RSVPMeg
-Interrupt RcvMsg Rcv&Read RcvMsg
-Interrupt ·Willblock Rc..,&Read RcvMsg
·Interrupt RcvMsg ·User RcvMsg
-Interrupt Rc..,Msg Rcv&Read RcvMsg
-Interrupt -Will block RunTme

1.100 ·Interrupt Rcv&Read -Will stop

Figure 16-2 A process time-line

EXPERIMENT AL MEASUREMENTS 227

CPU 3 CPU 5 CPU 6 CPU 7 CPUll CPU 12 CPU 13
0.840

·cswto IMux

·CSWtoSOkt
Rcv&Read
Rcv&Read

·Pagewalt RcvMsg
-PageWait RcvMsg
RqvMsg Rcv~
RcvMsg Write&Repty
ReadMsg Write&Repty
ReadMsg Write&Reply
Write&Reply Write&Reply
Wrile&Reply Wrile&Aeply
·Interrupt Write&RSVP
Writ~&Reply Wrile&RSVP
Wnte&Reply Write&RSVP

-lnlOOupt Write&Reply Write&RSVP
ReplyMsg Rcv&Read ·Interrupt
ReplyMsg Rcv&Read ·Interrupt
ReplyMsg Rcv&Read
ReadMsg Rcv&Read
ReadMsg Rcv&Read
ReadMsg Rcv&Read
Rcv&Read -CSW
Rcv&Read
Rcv&Read
Rcv&Read

I -csW
0.900-

·CSWtoNVT
·Pagewait
-Pagewait
RcvMsg
RcvMsg
RSVPMsg
RSVPMsg
RSVPMsg

·cswto SOid
RSVPMsg
RSVPMsg

Rcv&Read ·User
Rcv&Read Write&Reply
·User Write&Reply
Rcv&Read Write&Reply

- -CSWtoPM
Rcv&Read Write&Reply
Rcv&Read Write&Reply

·StartCL Rcv&Read Write&RSVP
·StartCL -CSW Write&RSVP
·User Write&RSVP
·User Write&RSVP

- -User Write&RSVP
-CSWtoSol<l ·User Write&RSYP

-User Rcv&Read Rcv&Read
·User Rcv&Read Rcv&Read
StartPrcs Rcv&Read Rcv&Read

· StartPrcs Rcv&Read ReadMsg
-PaglngCL -csW ReadMsg
·PagingCL RepryMsg
-PaglngCL RepryMsg
-PagingCL ReplyMsg

· ·PagingCl ReplyMsg
·PagingCl

-CSWtoNVT
ReplyMsg

-PagingCL ~p -PagingCL
-CSw to CL

Rcv&Read
·User Rcv&Read Write&RSVP

- ·User -Pagewait Rcv&Read Wr~e&RSVP

RcvPoIIcy -Pagewait Rcv&Read Write&RSVP
·CSW RcvMsg Rcv&Rea:l Write&RSVP

-CSWtoOMux
RcvMsg Rcv&Read Write&RSVP
ReadMsg Rcv&Read Rcv&_

Rcv&Rea:l WriteMsg Rcv&Read Rcv&Read
Rcv&Read WriteMsg -CSW Rcv&Read
Rcv&Read RSVPMsg Rcv&_
Wrile&RSVP RSVPMsg Rcv&Roed
Write&RSVP RSVPMsg ·CSW

1.000 Write&RSVP RSVPMsg
-lntOOuPt

.csW
Write&R$VP RSVPMsg
Write&R8VP RSVPMsg -Interrupt

-CSW RcvMsg RPSLoad -In_
·Interrupt RcvMsg RPSLoad -Interrupt

- ·Interrupt RcvMsg RPSLoad -lntemJp!
RcvMsg ·User ·lntemJp!
-CSW RcvMsg

-CSWtoPM
·Interrupt

RcvMsg -Interrupt
RcvMsg -8IartTMUX -lnlemJpt
WriteMsg ·SIartTMUX
WriteMsg ·User
RSVPMsg ·USer
RSVPMsg -User
RSVPMsg -User

.csW to OMux RSVPMsg -User
-User StartPrcs RcvMsg
RcvMsg StartPrcs Wrile&RSVP
RcvMsg ·Paging TMUX Wme&RSVP

.Int~t RcvMsg -Paging TMUX Wrile&RSVl'
RcvMsg ·Paging TMUX Write&RSVP -In_
·CSW ·Paging TMUX RcvMsg ·Interrupt

·Paging TMUX RcvMsg ·lntemJp!
·Paging TMUX RcvMsg -lrrtemJPl
·Paging TMUX RcvMsg -Inlemlpt
·Paging TMUX -CSW -Inlemlpt
·Paging TMUX -Interrupt
·Paging TMUX -Interrupt

-CSWtoOMlx -User ·Interrupt
-User -Irrtenupt RcvMsg
RcvPolicy -Irrtenupt RcvMsg
-CSWto TMUX ·lnlemJpt ReqUeM!Ig

.csWlolMJx
-Pagewait -Interrupt ~~ ·Pagewait

Rcv&Read RcvMsg Rcv&Read
· Rcv&Read RunTime Rcv&Roed

Rcv&Read RunTime Rcv&Read
MakeMsg ReadMsg -CSW
MakeMsg ReadMsg
MakeMsg RSVPMsg

- Wrile&RSVP RSVPMsg
Write&RSVP RSVPMsg
Write&RSVP RSVPMsg

~ntefn,pt Write&.RSVP
-CSWtoNVT

RSVPMsg
Wrlte&R$VP RcvMsg -Interrupt

- RcvMsg Rcv&Read RcvMsg -Interrupt
RcvMsg Rcv&Read RcvMsg ·Interrupt
RcvMsg Rcv&Read RcvMsg -Interrupt
RcvMsg Rcv&Read RcvMsg -Interrupt
·CSW Rcv&Read RunTime -Inlemlpt

1.100 Rcv&Read ·Wi.stop -Inlemlpt

Figure 16-3 A processor time-line

228 MEASUREMENTS AND EV ALUA nON

processor 7). TMUX in turn forwards the output to the NVT, which is
awakened at time 1.090.

Notice how the WaitTime scheduling parameter helps here: both TMUX
and the CL had to be started by the PM, taking about 30 ms even though it
is likply that no paging 110 had to take place. In contrast, the socket and
NVT processes can be started immediately, since they have not been blocked
longer than their WaitTime value.

Finally, notice the dynamic nature of the scheduling. Figure 16-2 shows
how the socket process executes on three different processors (6, 5, and 13)
within the 1/4 sec period traced. Conversely, Figure 16-3 shows how
processor 7 executes, in turn, the input multiplexor, the NVT, the PM, and
TMUX.

Figure 16-4 Communication structure for NVTs

The tracer is probably our most useful tool for software engineers. Many
designers of user-level applications have used it to determine the perform­
ance bottlenecks in their systems. The process and processor time-lines
provide valuable insights into the operation of the system -insights which
would be hard to obtain in other ways.

16-1.3 The Snapshot Taker

The purpose of the Snapshot Taker is to permit a relatively large amount of
state information to be recorded at one moment. Like the tracer, this
mechanism is implemented within the kernel and is invoked by a special Kall
from a user-level process. The parameters to this Kall specify the pages into
which the data is to be delivered.

One can imagine two versions of a tool such as this: one would "freeze"
the state of the system while recording that state; the other would not.
Neither version is ideal for all circumstances. The first can cause massive
perturbations in the system, making subsequent data questionable. The
second can yield inconsistent data as the underlying structures are modified
during measurements. As it happens, we were primarily interested in
sampling, so only the second form (no freezing) was imp1emented for the
experiments reported here.

EXPERIMENT AL MEASUREMENTS 229

16-1.4 Hercules: The Script Driver

Hercules is a "terminal emulator," or "script driver." It is intended to allow
an experimenter to place a controlled load on the system so that various
performance properties can be measured. It accomplishes this by emulating
the activity of a number of users at terminals; the activity of each
pseudo-user is controlled by a "script" supplied by the experimenter. A script
may include:

• Commands to "type" input to the pseudo-terminal; this input may consist
of both fixed strings and random numbers drawn from specifiable distri­
butions.

• Commands to postpone further activity on the pseudo-terminal; delay can
be for fixed intervals of time, for random intervals drawn from a specified
distribution, or until a specified response has been received at the
pseudo-terminal.

• Commands to generate trace data.
• Commands to repeat or (conditionally) skip portions of the script.

In addition, the actions listed above can be made conditional on the "terminal
number." This facility permits several pseudo-users to be executing the same
script and yet exhibit different behavior.

As an example, suppose one wished to measure response time to trivial
tasks. A common design for this experiment involves placing the system
under a load consisting of N people performing editing tasks and measuring
the response as a function of N. A Hercules script can be constructed that
will simulate N terminals; the initial part of the script might delay itself by a
random amount of time based on the terminal number-this will avoid
synchronous activity. The next portion of the script would contain the
character strings to be "typed" to log into the system and create a file. The
remainder of the script could be a loop containing a sequence of editing
commands, delays for the response from the editor, and delays simulating the
user's "think time." Trace output might simply consist of time stamps at the
completion of "type-in" and at the beginning of the editor's response.

Hercules runs as a normal user process under Hydra, and thus it
consumes resources and potentially perturbs the performance of other pro­
cesses. This has not, however, been a problem. For many initial or
exploratory studies, the perturbation is negligible. In those cases where final,
reproducible results are desired, the KMPS scheduling parameters are set so
that one processor is dedicated to Hercules alone. This reduces by one the
number of processors effectively in the system, but eliminates perturbations
other than from memory contention and 110, both of which are small.

230 MEASUREMENTS AND EV ALUA nON

16-2 EXPERIMENTS AND RESULTS

Each of the following subsections describes an experiment and its results.
Many of these experiments are parts of Ph.D. theses, and so we have
included only the parts relevant to our purpose. We will try to convey the
intuitions behind the experiment's design and its major results. More details
may be found in the cited references.

16-2.1 Oleinick's Rootfinder Experiment

Relatively early in the Hydra/C.mmp project, Peter Oleinick [Ole78] began
several experiments to obtain quantitative performance measures for parallel
algorithms on multiprocessors. Rather than attempting to measure a spec­
trum of algorithms, he decided to focus on a small number of algorithms and
investigate various implementation tradeoffs in depth for each of them. We
shall describe the first of these experiments in this section.

To be suitable for Oleinick's purposes, the algorithms to be studied had
to have two properties: they had to be complex enough to permit interesting
implementation tradeoffs, and they had to be simple enough to permit
attention to be focused on the implementation issues, not the algorithm per
se. His choice was further restricted by the fact that asynchronous multipro­
cessor algorithms had not been studied in depth and not many were known.
He finally settled on a simple extension of the binary search algorithm for
finding the roots of a monotonically increasing function in a bounded region,
an algorithm we call RootFinder.

The uniprocessor implementation of the binary search algorithm is well
known. One simply divides the interval in half and evaluates the function at
the midpoint. By comparing the sign at the midpoint with those at either end
of the interval, one can determine which subinterval contains the root. From
this point one has a smaller interval and simply repeats the process.

The obvious extension for multiprocessors is to divide the original
interval into N + 1 subintervals and let one processor evaluate the function
at each of the N interior points. For Oleinick's study the sub-intervals were
chosen of equal size even though a different, optimal division was known
[Kun76]. The function chosen was the normal integral, evaluated using a
truncated power series in one region and a continued fraction in another.
The details of these computations are not relevant to the present discussion,
except to note that the time to evaluate the function is related to the
argument value and has a known distribution.

Two implementations of RootFinder were used for the experiments.
RootFinder-l stored its code in a single memory page which was shared
among all processes. RootFinder-N provided separate code pages for each
process. RootFinder-1 was thus much more subject to memory contention
than RootFinder-N.

EXPERIMENT AL MEASUREMENTS 231

Much of Oleinick's work involved discovering why the observed perform­
ance of RootFinder did not match its expected performance. Under ideal
circumstances we would expect RootFinder to generate a "pattern of
performance" similar to that illustrated in Figure 16-5; each of the N
processes (processors) completes at the same moment and after some brief
bookkeeping operations by one of the processes, they all proceed on the next
set of evaluations. Thus, we expect the overall time to find the root to
decrease as the logarithm of the number of processes.4

000

000

o
o
o

o
o
o

Locating the interval that contains

(~~: ~e~~~~~::!~~ and redispatching

F(x) calculation

o
o
o

F(x) calculation

Time

o
o
o

Figure 16-5 Expected RootFinder performance

00

00

•

Oleinick was able to identify three sources of perturbations which caused
the expected performance not to be observed.

Variation in the time to compute F(x). Since the function being studied has the
property that the time to evaluate F(x) is a function of x, the assumption
that all processes would terminate at the same time was obviously false.
Oleinick measured the actual compute time and found it to resemble a
normal distribution with a mean of 100 ms and values ranging from 50 to
170 ms. The effect of this non-constant calculation time is to slow the
entire assemblage of processes to the speed of its slowest member
because all interior points must be evaluated before the next subinterval
is chosen and the next cycle begins.

Variations due to technological factors. The expected performance can be
obtained only if all processors and memories on the system are the same
speed. In reality, this is not the case.

4We assume that the number of processes is no greater than the number of available
processors. In this case, Hydra will, in effect, dedicate the processors to arbitrarily-chosen
processes, and the process/processor distinction disappears.

232 MEASUREMENTS AND EV ALVA nON

Processor Differences. The C.mmp configuration contained both model 20
and model 40 PDP-Us when the experiments were run. The model
20 is 50-60% slower than the model 40. Although processes are
preferentially scheduled onto PDP-11/40s, any experiment using
more processes than there were 11140 processors observed significant
slowdown. Surprisingly, even within a single model of the PDP-11,
significant differences were observed; there was about a 7% differ­
ence between the fastest and slowest 11140 and an 8.3% difference
between the fastest and slowest 11/20.

Memory Differences. The C.mmp configuration also contains both core
and semiconductor primary memory; the speed difference between
the two technologies is about 5%; additionally, within the memories
of the same technology, speed differences of 2-3% were observed.

Memory Contention. The semiconductor memories are capable of deliv­
ering about 1.5 million references/second; the comparable number
for the core memories is l.7 million references/second. Either
memory will saturate when three processors are repeatedly accessing
it. This phenomenon was observed, as shown in Figure 16-6. We
will further examine it in Sections 16-2.4 and 16-2.5.

The cumulative effect of all these factors resembles the effect produced
by the variation in the time to evaluate F(x) -the total cycle time is
limited by the speed of the slowest processing element.

Operating system performance variations. Although Hydra is a multi-user sys­
tem, it is possible to reduce operating system overheads by running only
a single application that makes minimal requests for services (i.e., does
not do I/O or manipulate capabilities). Most of Oleinick's data was
collected in this way. It is never possible to eliminate all performance
perturbations introduced by Hydra. The major sources of these pertur­
bations are:

The Kernel Tracer. Detailed analysis of the performance of the rootfinder
was obtained with the aid of the kernel tracer. The use of the tracer
lengthened some kernel operations-notably synchronization.5

//0 devices and interrupts. One cannot eliminate all 110 traffic and its
associated interrupts. The occurrence of such interrupts can cause
non-negligible perturbations.

Kernel Processes and Special Functions. Policy Modules, the GST demon,
and the paging demon can all be awakened at unpredictable times and
consume measurable processor resources.

Again, the effect of these variations is to slow the assemblage of

50leinick's data was collected using the version of the tracer that did not use any microcode,
so the perturbations are worse than for later experiments.

u

325

300

275

250

~ 225

E 200
';:::;
'0
3l 175
0..
co
W 150

EXPERIMENT AL MEASUREMENTS 233

I ~ _______

;~ L--[----'-_:?:_~.L..._pr_ivate__'__COd_e pa-----L''':_-'-------'------'--: -----'~
1 2 3 4 5 6 7 8 9

Number of processors

Figure 16-6 Performance degradation due to memory contention

processes to that of its slowest member.

The results of Oleinick's study of perturbation sources is summarized in
Table 16-1. At the left is the maximum performance variation observed due
to the factors listed at the right; the factors are listed in decreasing order of
importance. Note that these are the maximum degradations observed before
remedial action was taken; thus, for example, the 1:3 slowdown due to
memory contention is eliminated by simply giving each process a private code
page in a different memory unit.

Oleinick also used the RootFinder to study the effect of various synchro­
nization mechanisms. Users cannot use the kernel "lock" mechanis ,but
they can program a "spin lock," a lock that does busy waiting. Also, kernel
semaphores are not normally provided to user-level programs, but for the
purposes of this study a special Kall was defined that gave access to this
mechanism. Thus he was able to study the effect on the performance of
RootFinder of spin locks, kernel semaphores and regular semaphores
(POLICYSEMAPHORES). In addition, two Policy Modules were available while
this experiment was run: PMO and PM1. PM1 included some performance
improvements as well as the ability to set the WaitTime scheduling parameter
for a process. The results of his experiments are shown in Figures 16-7 and
16-8 (the value of WaitTime is denoted by "e" in these figures).

Figure 16-8 is especially interesting; it illustrates the effect of the cost of
synchronization mechanisms on the total compute time as a function of the
granularity of computation between synchronizations. The lower dotted line
represents optimal performance. The upper dotted line represents
half-optimal performance-that is, half the time is used for useful computing

234 MEASUREMENTS AND EV ALUA TION

Table 16-1 Factors affecting the performance of Root Finder

Magnitude Cause

1:3.4 Variation in F(x) calculation (a property of the algorithm and the function
under study rather than of the system).

1:3 Memory contention for shared code pages. (This effect is eliminated when
each process is given a private page for its most commonly executed code.
It would also be eliminated by the cache system that was never
implemented.)

1 :2.8 Bottleneck due to Policy Module scheduling. (This effect is eliminated when
the wait time is set high enough-about 300 ms for Oleinick's experiment.)

1: 1.6 Variation in processor models. Since performance degraded as soon as any

11120 was used, it was better to run without them.}

1: 1.3 Perturbations due to operating system factors such as interrupt processing.

1: 1.1 Perturbations due to varying performance of primary memories and processors
of the same model.

and half for synchronization. One could have chosen a "three-quarters"
optimal, or any other line. Oleinick, however, chose the half-optimal line as
a minimal level of acceptable performance. The points where the perform­
ance curves cross this line, then, characterize the minimal acceptable compu­
tation intervals between synchronization events for that mechanism.

This graph confirms and quantifies (for Hydra, anyway) the intuition that
as the inter-synchronization interval becomes shorter it is increasingly impor­
tant to have rapid synchronization primitives.

16-2.2 Baudet's Relaxation Experiment

Gerard Baudet's thesis [Bau78] is primarily concerned with the design and
analysis of algorithms for asynchronous multiprocessors such as C.mmp.
Actually, the bulk of the thesis is more relevant to numerical analysts than t.o
an evaluation of Hydra/C.mmp, but he did perform one experiment on
C.mmp that we shall report here.

The problem of concern is the solution of a partial differential equation,
the Dirichlet problem for LaPlace's equation in a rectangular domain. Using
the method of finite differences, the problem can be reduced to the solution
of a set of linear equations, A x = B. In turn, this system can be solved by
iterative methods such as that of Jacobi. Baudet considered a number of
ways in which these iterative methods can be turned into parallel algorithms.
In each of the methods he studied, the solution vector is divided into k
partitions, and a separate process is assigned the responsibility for computing

U
!

Q.)

E
";:;
-0
~
Cl.
~
UJ

u
Q.)

~
Q.)

E
";:;
c
0

";:;
~
::J
Cl.

E
0
(.l

co
.:l
(.l

«

EXPERIMENT AL MEASUREMENTS 235

550

500

450

400

350

300

250

200~

150

100

50

1000

100

10

Kernel semaphore

1 2 3 4 5 6 7 8
Number of processors

Figure 16-7 RootFinder using different synchronization primitives

PM 0 semaphore

PM 1 (e = 0) semaphore

Spin look.... • ••••••••••••• -

....... ·~;o
••• N,e(!0

••• ·~o·o

10

...........
..

.........
..

........

100
Ideal computation time (msec)

..
..

Figure 16-8 Effect of inter-synchronization interval

9

1000

the "next iterate" values for the components of its partition. He used the
following methods, which only differ in the choice of the values used for the
"previous" iterates:

Asynchronous Jacobi's Method (AJ). This method consists of repeating a cycle

236 MEASUREMENTS AND EV ALUA TION

in which the value of the new iterate is computed using only the values
of the iterates computed on the previous cycle. This scheme involves
synchronizing all processes at the end of each such cycle.

Asynchronous Gauss-Sidel Method (A GS). This method also involves a cycle as
in AJ, but each process is allowed to use the new iterate values from its
own partition in computing subsequent new iterates. Iterate values from
other par litions are taken from the previous iteration. Like AJ, this

.. scheme also involves synchronization at the end of the cycle.
Purely Asynchronous Method (PA). This method does not involve a major

cycle; each process is allowed to use the most recent value of each iterate
in the entire vector, x. Since there is no major cycle, there is also no
synchronization.

350

300

250

U
!

Cll

E
.~

'0
~
C.
to
iii

AJ

AGS

PA

0
1 3 4 5 6 7

Number of processors

Figure 16-9 Performance of algorithms for the Dirichlet problem

Baudet's thesis gives conditions under which these algorithms converge
and an analysis of the expected performance. Here we will report only the
experimental results, which consisted of solving Dirichlet's problem for a
rectangular grid with 21 x 24 points; this results in a linear system with
n = 504. Convergence was assumed when the initial error had been
reduced by a factor of ten. At the time this experiment was performed,
C.mmp had only six processors, so the results displayed in Figure 16-9 are
given for k = 1, 2, 3, 4, 6.

The results in Figure 16-9 would, of course be different for different
problems; they can only be construed as an example of the behavior of
asynchronous algorithms. Also, it should be remembered that two effects are

EXPERIMENT AL MEASUREMENTS 237

combined in these results: that of using more recent iterate values and that of
synchronization. The difference between AJ and AGS is purely the first of
these- AGS uses the most recent iterates from its own partition. The
differences between P A and the other two are a combination of both.
Notice, by the way, that PA achieves essentially linear speed-up in this case­
the best that can be hoped for.

16-2.3 Oleinick's HARPY Experiment

The previous two sections are concerned with the performance of single
algorithms~ in this section we discuss the results of an experiment on the
performance of a much larger system: HARPY.

HARPY [Low77] is a system that recognizes phrases and sentences of
connected speech. The details of the speech recognition task itself are not
important to us here, so we will give only a brief description of the system.
HARPY represents its knowledge of both speech and the task domain as a
weighted, directed graph. Each node in the graph represents a phoneme and
the weighted arcs represent legal transitions from one phoneme to another,
with the weight representing the probability of that particular transition. A
preprocessor constructs the graph, assigning weights based on both the
legality of particular transitions (as derived, for example, from the syntax
rules of English) and the likelihood of particular utterances in the task
domain.

Given the preprocessed graph and a representation of an utterance,
HARPY applies a beam search to determine the most likely interpretation of
that utterance. That is, it searches several of the most likely paths through
the graph simultaneously, keeping track of the one with the highest proba­
bility. When the terminal nodes of the graph are reached-the most likely
path is accepted as the interpretation of the utterance.

The parallel implementation of the HARPY system underwent a series of
refinements [Ole78]. The final version consisted of a set of processes, each
of which could either find a successor node or compute the probability of
reaching the state represented by the (partial) path leading to that node. The
performance of this system on two tasks is shown in Figures 16-10 and 16-11.
The two graphs exhibit quite different performances; the primary cause of
this difference is the amount of work to be done. The DESCAL task (Figure
16-10) is that of a speech-activated desk calculator and has roughly a 30-word
vocabulary. The 1,000-word task has information retrieval as its task domain.
Utterances such as "Please help me," "Who was the author? ," "When was it
published? ," and "What about program verification?" were part of the
1,000-word task.

Several points should be noted from these graphs:

1. The single-process version of HARPY on the DESCAL task is compar­
able to the uniprocessor versions on both a PDP-I0 (KAI0) running the

238 MEASUREMENTS AND EV ALUA TION

70

KA 10 ~
PDP-ll UNIX

50

U
! 40 Q)

,g Real time

"0
30 ~

15-
iii

20

2 3 4 5 6 8 9 10
Number of processors

Figure 16-10 HARPY performance on DESCAL task

150

125

U
100

!
Q)

E 75 '.j:;

"0
~
a.
co
iii 50

25

O~------~------L-----~~----~------~------~
1 2 3 4 5 6 7

Number of processors

Figure 16-11 HARPY performance on 1,OOO-word task

TOPS-I0 operating system and a PDP-11140 running the UNIX operating
system. Similarly, the ratio between the single-process C.mmp version
and the PDP-I0 (KLI0) version is about 1:3, better than the ratio of the
raw machine speeds which is about 1:5. It appears as though neither the
decomposition into processes nor Hydra's support of multiprocess compu­
tations have affected performance significantly.

EXPERIMENT AL MEASUREMENTS 239

2. The C.mmp version outperforms the KLI0 version on the 1,000-word
task after three processes are used; this is the best that could have been
expected given the speed ratio for the single-process versions. The
C.mmp version approaches and finally equals the KLI0 version on the
DESCAL task, but never does better because there isn't enough work to
keep the processors busy. In this case, communication and synchro­
nization (needed to determine that there is nothing to do) dominate the
processing times.

3. Performance actually worsens at 10 processors on the DESCAL task; this
is where the first PDP-1l/20 processor is used. As with RootFinder, ihe
synchronous nature of HARPY makes it undesirable to use processors of
different speeds.

16-2.4 Marathe's Memory Interference Experiment

Madhav Marathe [Mar77] studied the effect of memory contention on
C.mmp in some of the first experiments to use the Hardware Monitor.

Prior to the design and construction of C.mmp we were extremely
conscious of the potential for serious performance degradation as the result of
contention for access to the shared primary memory. Some manufacturers
had estimated a 10% degradation for each additional processor (i.e., a 40%
degradation for a 4 processor system); other manufacturers had experienced a
50-70% degradation for the second processor. Our intent was to design
C.mmp so that contention would not be a serious problem; the basis for the
design was a set of analytic models of the contention phenomenon such as
those by Strecker [Str70], Bhandakar [Bha73], and McCredie [McC73]. The
design assumed PDP-11/20 processors (the only model of the PDP-ll
available at the time). Marathe's experiment was designed to determine the
effectiveness of the design decisions as well as to determine the effect of
using the (faster) 11/40 processors.

The use of K.mon constrained the experiment somewhat since K.mon is
capable of monitoring only one UNIBUS, whereas it would be preferable to
measure the total switch traffic. However, we can obtain an upper bound on
the effect of contention. In the presence of contention the processors are
serviced in priority order (see Chapter 2), so K.mon was set up to monitor
the lowest priority processor. This processor will experience the worst
degradation.

To measure the effect of contention, K.mon was provided with 6
one-shot flip-flops that change their state after a specified interval. The
intervals chosen were 0.5, 1, 2, 4, 14, and- 50 j.tS, respectively. By reseting
these flip-flops at the beginning of a memory request and examining them at
the end of the request, the duration of the request can be classified into one
of the six intervals. By accumulating the number of cycles in each interval, a
histogram of cycle lengths is constructed. Both to avoid systematic errors and

240 MEASUREMENTS AND EVALUATION

because of some limitations of K.mon, the histograms were accumulated by
looking at a burst of about 160 cycles, delaying for a random period,
accumulating another burst, and so on. In all, 100,000 cycles were tallied in
each experiment.

Experiments were conducted on three workloads:

Idle. No user processes were executing. Except for clock interrupts and
occasional demon activity, nothing was running. This load is as light as
one can imagine; one cannot expect contention to be less. Thus this
value can be used for comparison with the other two.

RootFinder-N. This load consisted of 16 processes executing Oleinick's Root­
Finder program discussed previously. Each process had a separate code
page. Access to the common data is minimal in this algorithm. Since the
processes are primarily processor-bound, this workload is expected to
produce contention similar to a number of independent users executing
different programs, but making heavy use of the processors.

RootFinder-l. This load also consists of 16 processes executing Oleinick's
RootFinder program. However, all processes share a common code page.
Since about 70% of the memory references generated by a PDP-II are to
the code page, this load makes heavy demands on access to a single
memory port. A large amount of contention is to be expected in this
case; indeed, we would not expect contention to ever be this bad in
practice.

The results of the experiment for these loads is shown in Table 16-2.

Table 16-2 Memory cycle length under load

Cycle length

0.0-0.5/J-s
0.5-1.0
1.0-2.0
2.0-5.0
5.0-14.0
14.0-50.0
Above 50

Average
cycle
length

Idle

o
88,439
11,404

71
79
7
o

0.85

Number of cycles

RootFinder-N RootFinder-l

o
85,134
13,876

958
31
1
o

0.88

o
69,453
11,601
3,344

15,421
181

o

2.34

We think this is one of the most encouraging results for C.mmp. As can
be seen, contention in RootFinder-N causes less than a 5% degradation; the

EXPERIMENT AL MEASUREMENTS 241

"worst case," RootFinder-1, causes degradation by a factor of almost three.
The clear implication from this experiment is that, although the user should
be cautious about sharing code pages, in most applications memory conten­
tion is simply not a factor. Although RootFinder-N in no way simulates a
timesharing system, we expect independent users to share code pages much
less frequently than RootFinder-1.6 Furthermore, even shared code pages
would not be a problem if C.mmp's caches were implemented.

16-2.5 McGebearty's Memory Contention Experiment

Patrick McGehearty [McG80] took a somewhat different approach to meas­
uring the memory contention in C.mmp. Since contention can be influenced
by the mix of instructions executed, McGehearty's experiments were run
using a synthetic program whose mix of instructions was picked to match that
measured on a large variety of programs on C.mmp [Mar??]. This mix was
run on the bare hardware so that there were no perturbations due to the
operating system, 110 traffic, timer interrupts, etc. All measurements used
the system clock to determine the time to complete a specified number of
iterations of the synthetic program.

A number of interesting results are reported in [McG80], but we shall
consider only two: the total contention, and the effect of the contention
resolution scheme used in C.mmp's crosspoint switch. For both of these, the
machine configuration consisted of 10 PDP-1 1140 processors and 16 memory
units. [Of the 16 memories, 5 contained 32 pages of semiconductor memory
(each), 10 contained 16 pages of core memory (each), and 1 had 6 pages of
core memory.1

Figure 16-12 displays the total contention effect in terms of the incre­
mental processing power obtained from the ith processor. Two cases are
considered: (1) all memory units are equally likely to be accessed, and (2) all
memory pages are equally likely to be accessed. Since some ports contain
more pages than others, they are more likely to be accessed in the second
case, and thus more contention will occur. For example, under the assump­
tion that all pages are equally likely to be accessed, the 10th processor will
deliver about 85% of its potential processing power. This corresponds to an
average effective power of about 93%-only a ?% degradation due to conten­
tion.

While conducting the contention experiments, McGehearty noticed that
different processors received drastically different service. We discovered the
cause in the priority resolution circuitry in the switch. Recall from Chapter 2
that when several processors make simultaneous requests for a port, those
requests are latched into an internal register in the switch. All requests in

6In a timesharing environment, sharing of code belonging to an editor or compiler is usually
encouraged, but experience with other systems suggests that this is far less of a factor than is
usually presumed.

242 MEASUREMENTS AND EV ALUA nON

~
en
c
.~

IJ)
u
0

C.
~
c

E
~
u
E

1.00 .__=___ __

0.95

0.90

0.85

0.80

0.75

0.70
1

Measured performance with each part
-----. having equal probability of access

~ Measured performance with each page
having equal probability of access

2 3 4 5 6 7
Number of processors

8 9 10

Figure 16-12 Incremental processing power with memory contention

11

this register are serviced before any other requests are allowed into the
register. Moreover, the requests in the register are serviced in priority order,
with the highest numbered processor having highest priority. The intent of
this scheme is to prevent a processor from being starved, and indeed, to
provide fair service to all processors.

At first glance it may appear that the design satisfies these criteria. In
reality it does not quite do so. Consider the case of three processors
repeatedly accessing the same memory. Initially all three requests will be
latched into the register and will be serviced. On the second cycle, however,
only the two higher-numbered processors will have requests latched into the
register; the third processor will have just completed a memory reference and
will not have had time to insert its next request. On the next cycle, the
middle processor will probably not have its next request latched-again,
because it had just completed a memory reference and will not yet have had
the chance to make another. In subsequent cycles the lowest-numbered
processors will alternate being excluded while the highest numbered pro­
cessor always gets service.

Figure 16-13 shows the effect of this behavior as the number of com­
peting processors is increased. The bottom heavy line shows the execution
speeds of the processors alone; the line is not perfectly horizontal because the
processors have slightly different speeds. The benchmark was then run with
different numbers of processors; first with processors Nos. 15 and 14, then
with Nos. 15, 14, and 12, etc. The curves are normalized so that processor
No. 15's time is 1.0; they show that as the number of processors increase, the
performance of the lower-numbered (lower switch priority) processors is

EXPERIMENT AL MEASUREMENTS 243

worse than the higher-numbered processors. In the final IO-processor run,
processor No. 0 is experiencing about a factor of three worse degradation
than processor No. 15.

60 ~ 5.5

(J) 5.0
E

.';::; 4.5
§

4.0 ~ .';::;
:::l
U
(J)

3.5 x
(J)

-t 3.0 til

E
..c 2.5 u
c
(J)

.0 2.0
(J)

.~ 1.5 til
a:;
cr:: 1.0

0.5 ~ Time for standalone processor speeds

0.0
15 14 12 11 10 9 8 7 6 o

Processor index

Figure 16-13 Starvation due to switch contention resolution strategy

There is little evidence that this effect is significant for production
programs on C.mmp. It does, however, provide additional motivation for
either avoiding heavily shared code pages or implementing the cache scheme.

16-2.6 Marathe's Lock Contention Experiment

Another potential source of serious performance degradation is contention for
software resources. In particular, since Hydra is a distributed system in which
all processors could in principle be executing kernel code simultaneously,
there is a potential for long delays due to such contention. The designers
were acutely aware of this potential performance problem, and consideration
of it lead to two major decisions:

1. Lock data items rather than code, and have a large number of locks (i.e.,
protect data in smaller rather than larger chunks).

2. Provide synchronization mechanisms with different resource consumption
characteristics: locks, Kernel Semaphores, ports, and Policy Semaphores.

Marathe [Mar77] studied contention for kernel locks; Jain (see Section
16-2.7) later studied the other two synchronization mechanisms. Marathe's
experiments consisted simply of using the hardware monitor to detect entry

244 MEASUREMENTS AND EVALUATION

to the lock subroutine's code (noting the address of the lock cell), to detect
entry to the code that is executed when blocking occurs, to time the interval
between lock requests, and to time the interval between a block and
corresponding wake-up.

The experiments were performed on four workloads: two versions of
RootFinder, a synthetic load that exercises most of the kernel operations, and
a general multi-user session. The two versions of RootFinder were:
RootFinder-N (K) which used kernel semaphores for synchronization, and
RootFinder-N(S) which used the regular user-level semaphores. In all cases
but the multi-user session, there were sufficient processes to keep the
processors busy. Unfortunately, only some of the data is available for the
multi-user session.

The first interesting result of Marathe's experiments is shown in Table
16-3. There are literally thousands of lock cells in Hydra;? however, some
are used a great deal more than others. As shown in the table, the most
frequently used locks are:

Processor list lock. This lock protects the "processors" list, the list of instan­
taneous processor-process bindings. KMPS maintains this list for sched­
uling purposes.

Feasible list locks. When these experiments were run, the PM assigned a
uniform priority, namely, zero, to most tasks and highest priority,
namely, 255, to others. Thus, only two feasible lists ever contained
processes.8

Page-pool locks. This is the set of locks in the storage allocator that are used
to mutually exclude simultaneous allocations of small buffers from the
same page. There are typically from 20 to 60 locks (pages) in this set.

Free core lock. This lock is used to protect the list of available page frames.
Stop mailbox lock. This lock is used to protect the mailbox through which the

kernel passes information about stopped processes to a Policy Module.
KMPS space lock. This lock is similar to each of the page-pool locks, except

that it is used for a special storage pool used by KMPS.

All other locks are listed as "miscellaneous," although they collectively
represent a significant number of the locks used; the use of no one of them
is significant in isolation.

A second set of interesting results from this experiment concerned the
time spent in the various critical sections (Table 16-4). The average
instruction time during these measurements was 2.8 j.tS; the data indicates

7There are so many lock cells because data structures, rather than code segments, are
locked.

sIn Chapter 12, the list of feasible processes was treated as a single, logical entity. The
implementation actually subdivided it into an ordered set of eight sublists to increase potential
parallel access.

EXPERIMENT AL MEASUREMENTS 245

Table 16-3 Kernel lock use in four applications

Application

Lock RootFinder-N(S) RootFinder-N (K) Synthetic Multi-user

Processor list 15.8% 30.1% 11.5% 34.2%
Feasible 1 11.8 28.3 10.5 6.0
Feasible 8 3.4 0.6 0.0 0.3
Page-pool locks 17.2 0.0 39.4 23.4
Free core lock 4.6 0.0 5.4 6.1
Stop mailbox lock 0.9 0.0 0.0 0.2
KMPS space lock 9.3 0.0 0.1 0.0
Miscellaneous 29.6 41.1 25.2 23.1

Table 16-4 Average time within kernel critical sections

Application

Lock RootFinder-N(S) RootFinder-N(K) Synthetic

Processor list 348 J.ts 409 J.ts 379 J.ts

Feasible 1 192 239 260
Feasible 8 156 169
Lock on a page 338 431
Free core lock 558 307 685
Stop mailbox lock 282 264 297
KMPS space lock 109 123 134
Miscellaneous 318 461 441

Average 279 378 279

that from 40 to 240 instructions are executed in critical sections.
Table 16-5 is a summary of some of the run-dependent data for these

experiments as well as the "bottom line" information on the contention for
locks.

We believe this data is very significant. Processor synchronization causes
less than 1% degradation in a 16-processor system. Furthermore, Marathe's
theoretical model of Hydra-like lock contention, validated against the actual
Hydra data, predicts only a 1.7% performance degradation at 48 processors.
As a practical matter, even though Marathe's data isolated several locks
which had a relatively high level of contention, the low absolute level did not
justify our spending time on obvious remedies.

16-2.7 Jain's Semaphore and Port Experiment

From Marathe's data we can draw two inferences, namely, that contention for
locks is not a serious problem and that the critical sections that are guarded

246 MEASUREMENTS AND EV ALUA nON

Table 16-5 Summary of lock contention data

Application

Lock RootFinder-N(S} RootFinder-N (K) Synthetic

Active processors 13 14 12
Test length 17.4 sec 32.9 sec 20.3 sec
Lock operations 2,955 5,041 4,360
Times blocked 130 577 146
Time between locks 5,888 JLS 6,531 JLS 4,646 JLS

Percent of locks
that blocked 5.5% 11.7% 6.1%

Percent of time
in blocked state 0.29% 0.83% 0.74%

by locks are not generally large. However, Hydra uses another synchro­
nization mechanism, Kernel Semaphores, and provides two others to users,
ports and Policy Semaphores. Navindra Jain [Jai79] undertook to analyze the
use of these mechanisms. We will separately describe his results for Kernel
Semaphores and for Policy Semaphores (and ports). For each of these we
will examine the cost of executing the mechanism when a process is blocked,
the frequency and duration of blocking, the duration of critical regions, and
the duration of computational intervals between critical sections. From this
data we can derive the fraction of processing power lost due to blocking.

Performance of Kernel Semaphores A Kernel Semaphore is intended for
use only within the kernel. When blocking, the processor is released but the
memory associated with the user-process is not. Thus, the intended function
of these semaphores is to protect those critical regions whose duration is
expected to be significantly longer than the context-swap time, but shorter
than the time to swap processes out of primary memory.

The first data collected by Jain was on the overheads associated with
executing the P and V operations. The coding of the operations has been
optimized so that the costs in the event that a non-blocking P, or a V that
does not wake up a sleeping process, are negligible (about 15 instructions).
However, the other cases are shown in the following table.

Operation

P that blocks
V that wakes a process

Overhead

2.1 ms (about 750 instr)
1.0 ms (about 360 instr)

The cost of a P operation is measured from the time at which the P
operation is invoked until the next user process begins running. Thus it
includes KMPS scheduling and context-swap time as well as the code in the P

EXPERIMENT AL MEASUREMENTS 247

itself.9 The total CPU effort expended by blocking on a semaphore is the sum
of the two components, or 3.1 ms.

The second aspect of Jain's experiment involved collecting data during
normal multi-user sessions using the kernel tracer. Due to the amount of
data gathered in this way, it was not possible to enable tracing for long
periods. Instead, shorter 0-2 minute) samples were collected at random
periods.

Jain went on to study the distribution of blocked intervals during
multi-user sessions. He used the kernel tracer and collected short samples
0-2 minutes) at random intervais. Tabie 16-6 iilustrates the typical behavior
observed.

Table 16-6 Kernel semaphores: blocked periods

Interval range Number %

0.0-0.5 ms
0.5-1.0
1.0-2.0
2.0-3.0
3.0-4.0
4.0-5.0
5.0-10.0
10.0-25.0
25.0-50.0
50.0-75.0
75.0-100.0
100.0-250.0
250.0-500.0
500.0-00

Blocked interval:
Mean:
Median:

Frequency of blocking:
Total samples:

240
247
129
54
51
59

280
286
39
26
19
67

154
415

Fraction of processor lost:

240 ms

11.6
11.9
6.2
2.6
2.5
2.9

13.6
13.9
1.9
1.3
0.9
7.5
7.5

20.1

10 ms (approx.)
20 blocks/second/processor
2,066
0.61%

Several things should be noted from Table 16-6. First, there are a
significant number of cases, over 30%, in which the blocked period was less
than 3 ms. If it were possible to identify which semaphores these were-and
if those semaphores consistently blocked for less than 3 ms, it would actually
be cheaper to use locks. Second, there are a large number of cases with
extremely long blocked durations. Kernel semaphores were not really

9The scheduling and context-swap times are about equal~ the actual time in P is much
smaller.

248 MEASUREMENTS AND EV ALUA nON

designed for this case. Again, it might be possible to possible to exploit
another mechanism if these cases could be identified. Finally, partly because
of the non-linear scale, the distribution appears trimodal-which suggests that
there might actually be three or more separate cases contributing to the total
behavior.

This last conjecture was in fact found to be true. We won't reproduce all
the data here, but Jain found that the semaphores could be classified into five
groups:

Kernel tables. No case of blocking was observed. We do not know whether it
would be better to use locks, but the performance difference would be
slight.

GST mutual exclusion semaphores. These semaphores are in the fixed-part of
every object and are used to prevent simultaneous access by the kernel
while manipulating the representation of objects. These contribute
almost all the shorter blocked periods. They appear to be mostly
uniformly distributed between 0 and 10 ms, with a few cases reaching
above 30 ms. The average is about 4.3 ms.

Page semaphores. The semaphores are part of the representation of PAGE

objects and are used to suspend processes waiting for paging operations.
They have a sharp peak around 16 ms (the drum rotation time) and a
few very long blocked periods that raise the average to 38 ms. (These
long blocked periods involve multiple I/O operations.)

GST I/O semaphores. These semaphores are used during the transfer of
objects between the Active and Passive GST; they prevent access to the
object during the requisite disk or drum 110. Blocked periods range from
5 to over 100 ms, with an average of 31 ms.

Sleep semaphores. These semaphores are used by demon processes in the
kernel; all blocked periods for these exceeded 25 ms and they contribute
the bulk of those in excess of 100 ms. Their average blocked period was
312 ms.

This finer analysis does not suggest that a change in the current use of
locks and semaphores would substantially affect performance. The longest
blocked periods, the sleep semaphores, are for demons that run in the kernel
address space; there are no additional resources that could be released. The
next longest blocked periods are during I/O for the GST and the Paging
System; in both cases releasing the process' pages would only precipitate
additional I/O. Note, however, the frequency of GST Mutex Semaphore
blocking in the 1-10 ms range makes one wonder whether there is another
mechanism with cost intermediate between locks and Kernel Semaphores that
could be used here.

Tables 16-7 and 16-8 illustrate the distribution of the length of critical
sections protected by Kernel Semaphores and the intervals between them.
As can be seen, the typical interval is short. Although the average duration

EXPERIMENT AL MEASUREMENTS 249

shown on Table 16-7 is 27 ms, much of this is due to a special case where the
duration is over 2,500 ms. Eliminating this case brings the average down to
4.15 ms.

Table 16-7 Kernel semaphores: time in critical sections

Critical section
duration Number %

0.0-0.5 ms 20,236 42.9
0.5-1.0 8,329 17.6
1.0-2.0 7,489 15.8
2.0-3.0 2,463 5.2
3.0-4.0 2,029 4.4
4.0-5.0 1,483 3.1
5.0-10.0 1,898 4.0
10.0-25.0 812 1.7
25.0-50.0 815 1.7
50.0-75.0 601 1.2
75.0-100.0 232 0.4
100.0-250.0 254 0.5
250.0-500.0 34 0.0
500.0-00 405 0.8

Time in critical section
Minimum: 0.04 ms
Mean: 27 ms
Median: 1 ms (about 360 instr)
Maximum: 5,305 ms

Total samples: 47,143

Jain's results confirmed our expectations that time lost to synchronization
is negligible; the time lost never exceeded 1%. This means that total
contention in the kernel due to synchronization (locks and semaphores) does
not exceed 1. 7%, or 114 of one processor. We emphasize these results because
they are contrary to the intuition of many system builders.

Performance of ports and Policy Semaphores Ports and Policy Semaphores
were intended as the primary means of communication and synchronization
among user-level processes. In the event of blocking, a context-swap is
performed just as in the case of kernel semaphores. In addition, however,
after a period specified by the policy module (WaitTime) the blocked process'
pages are made eligible for swapping.

As with kernel semaphores, Jain first measured the cost of these opera­
tions. For our purposes, namely, an analysis of blocking costs, ports and

250 MEASUREMENTS AND EV ALUA TION

Table 16-8 Kernel semaphores: intervals between critical sections

I nterval between
critical sections No. %

0.0-0.5 ms 11,360 34.6
0.5-1.0 5,895 17.9
1.0-2.0 4,124 12.5
2.0-3.0 3,902 11.8
3.0-4.0 2,474 7.5
4.0-5.0 2,128 6.4
5.0-10.0 1,073 3.2
10.0-25.0 492 1.4
25.0-50.0 304 0.9
50.0-75.0 112 0.3
75.0-100.0 98 0.2
100.0-250.0 216 0.6
250.0-500.0 337 1.0
500.0-00 334 1.0

I ntervals between critical sections
Minimum: 0.13 ms
Mean: 19 ms
Median: I ms
Maximum: 2,827 ms

Total samples: 32,790

Policy Semaphores behave identically-thus we will consider only the latter. I 0

The cost of a P operation on a Policy Semaphore that blocks (as opposed to
one that does not block) is 8.7 ms (about 3,100 instructions). As with
kernel semaphores, this number includes everything from the time at which
the P operation is invoked until the next process begins to run. Thus, in
particular, it includes the scheduling and context-swap costs incurred in
kernel semaphores. The cost to reawaken a process with a V operation is
6.5 ms (about 2,300 instructions).

There is an additional cost that is incurred between blocking and reawak­
ening a process, which depends upon whether the blocked period exceeds the
WaitTime parameter. If B is the blocked period and W is the value of
Wait Time, then there are two cases:

B ~ W. There is an additional cost of 2.4 ms to cancel the request to the
time-out mechanism.

B > W. In this case the kernel must inform the PM that the process has
been stopped and make its pages eligible for swapping. Later, when the
V operation is performed, the kernel must inform the PM that it is

IOObviously, the ReceiveMsg Kall for ports has some additional cost over a P for
semaphores. Messages must be dequeued and passed to the user. for instance.

EXPERIMENT AL MEASUREMENTS 251

possible to restart the process. At both times, the PM must also execute.
Also, at both times the kernel cost is a function of the number of pages
in the process' CPS. Finally, there is a cost associated with actually
moving the pages to and from the drum. If

n is the number of pages in the process' CPS
tpm is the Policy Module time
tpage is the time used to actually move pages

6.5 + l.8n + tpm + tpage ms

Thus, the total cost for executing a P operation that blocks is:

Condition

B~ W
B> W

Total cost

17.6 ms
21.7 + 1.8n + {pm + {page ms

At the time Jain made his measurements, PMl was used exclusively.
For PM1, the value of tpm is roughly 66.2 ms. Jain also measured tpage~ it
requires 13.8 ms of CPU time and 48 ms of disk time per page swapped.
The data for tpage actually involves three transfers for each page-one to
initially write it out, one to perform a read-check before the core page frame
is released, and one to read it back in when needed. Unfortunately, the
actual number of pages transferred cannot be related to n since actual paging
is performed by a demon process whose policy is related to total system load
rather than to any property of the individual process. Ignoring ~)age' the costs
for Hydra together with PM1 are11 :

Condition

B~ W
B> W

Cost

17.6 ms
87.9 + 1.8n ms

It is not meaningful to ask quite the same questions about ports and
Policy Semaphores as about Kernel Semaphores. In particular, while the
kernel might have implemented them more efficiently or might have pro­
vided a different mechanism, it cannot control their use. Thus the total time
spent executing these operations, and particularly the time spent blocking and
awakening processes, will be variable with the tasks executing at a given
moment.

llThis analysis is slightly different from Jain's due to an apparent arithmetic error on his
part. The essential conclusions are identical, however, and our analysis appears to agree closely
with the data from an independent experiment by McGehearty.

252 MEASUREMENTS AND EVALUATION

Jain did measure blocking during multi-user hours; to do this he used the
kernel tracer just as he had done for measuring Kernel Semaphores. Again,
the properties of the tracer limited the period over which a single meas­
urement could be made, and experiments consisted of a number of samples
taken at.random intervals. The distribution of blocked intervals is given in
Table 16-9.

Table 16-9 Ports and Policy Semaphores: blocked intervals

Delay duration No. %

0.0-3.0 ms 3 0.0
3.0-5.0 507 13.8
5.0-10.0 129 3.5
10.0-17.6 92 2.5
17.6-25.0 438 11.9
25.0-50.0 434 11.8
50.0-75.0 641 17.5
75.0-100.0 367 10.0
100.0-200.0 375 10.2
200.0-300.0 74 2.0
300.0-400.0 59 1.6
400.0-500.0 31 0.8
500.0-1000.0 241 6.5
over 1000.0 261 7.1

Blocked durations:
Minimum: 2.4 ms
Mean: 490 ms
Median: 60 ms
Maximum: 58,919 ms

Total samples: 3,652
Sample period: 166 sec
Processor time in block/awaken: 8.5%

The average time lost to synchronization with Policy Semaphores is about
8%. This is larger than for kernel synchronization but still fairly small. Over
80% of the blocked durations are less than 300 ms (the standard value of
WaitTime for PMl), so these processes will remain resident in primary
memory. Also note that there are a significant number of processes that
block in excess of 500 ms; these are probably processes waiting for terminal
input. (Recall from Chapter 10 that every user talking to his command
language has a JMON process waiting in the background.)

Thus it appears that a majority of user-level process are effectively using
the same logical mechanism as kernel semaphores-but at over five times the
cost each time a process blocks. While this does not substantially affect
system throughput, it can be a significant influence on an individual user's

EXPERIMENTAL MEASUREMENTS 253

application, as is shown by Oleinick's data. Those processes that do block for
more than 500 ms could probably be handled by making terminal I/O a
special case.

These conclusions should be interpreted relative to the particular costs in
Hydra. We still believe in the concepts of multi-level synchronization primi­
tives and in policy/mechanism separation. The relatively high costs of
kernel-entry and domain-crossing in the implementation of Hydra, however,
make our version of user-level semaphores of dubious value.

16-2.8 Marathe's SmaH-Address Effect Experiment

The C.mmp programmer faces a problem not unlike that faced by the
programmer of an IBM series 360 computer. The physical address space is
much larger than the "offset" portion of an instruction. In both cases, to
access the full space the programmer must maintain a set of registers and
form addresses relative to these registers; the registers in question are "base
registers" on the IBM/360 and "relocation registers" on C.mmp.

Most PDP-11 programmers, of course, do not face the problem . of
managing relocation registers because most PDP-II systems do not provide
more than a 56-64K address space. Programs either live within that limit or
use traditional overlay techniques. It is interesting to ask, therefore, to what
extent the ability to manage the relocation registers is used on C.mmp and
what impact, if any, it has on performance. Marathe used the hardware
monitor to study one aspect of this problem, namely, the use of relocation
registers in the kernel [Mar77].

Table 16-10 Assignments of kernel space relocation registers

Register Use Contents

0 Stack page Fixed
1 Common Data page Fixed
2 Data page Overlay able
3 Data page Overlayable
4 Code page Overlay able
5 Common Code page Fixed
6 Local Memory Hardware
7 110 Device Registers Hardware

To understand the following data, we first must discuss the kernel's use
of its relocation registers. The registers are assigned as shown in Table 16-10.
Hydra's use of them is typical of many large application programs. Some
registers hold fixed values by programming or hardware convention; others
are changed dynamically to address code or data. The stack page is manda­
tory. Judgments are made as to what code (data) to place in the Common

254 MEASUREMENTS AND EV ALUA nON

Table 16-11 Frequency of relocation register access: sixteen samples

Instructions Accesses to Instructions Instructions
executed in to relocation per per
kernel registers access change

45,226 2,913 15.5 46.5
73,433 5,130 14.3 42.9
33,568 1,843 18.2 54.6
55,957 3,438 16.3 48.9
48,256 3,099 15.6 46.8
33,258 1,837 18.1 54.3
33,161 1,798 18.4 55.2
36,759 2,072 17.7 53.1
39,239 2,359 16.6 49.8
68,575 4,729 14.5 43.5
49,366 3,196 15.4 46.2
35,238 1,980 17.8 53.4
66,763 4,595 14.5 43.5
32,973 1,824 18.1 54.3
69,702 4,768 14.6 43.0
68,953 4,653 14.8 44.4

Averages

49,401 3,139 16.3 48.8

Code (Data) page and what code (data) to swap. Hydra has somewhat less
flexibility in managing relocation registers than do user programs because
relocation registers 6 and 7 in kernel space are not actually usable.

Marathe's experiment consisted of executing RootFinder-N (see Section
16-2.4) and sampling sixteen I-second intervals. During each sampling
interval, the number of kernel instructions and the number of accesses to
one of the relocation registers were measured. In most (but not all) cases
the kernel code saves and restores relocation registers using a standard
Bliss!11 macro. The save-load-restore sequence involves three accesses to a
relocation register; so in Table 16-11 we display both the raw data and an
adjustment for the multiple references per change. As can be seen from
Table 16-11, a relocation register is accessed, on the average, every 16.3
kernel instructions. It would appear, then, that relocation-register manipu­
lation costs only 5.5% in kernel performance. Unfortunately, this number
belies the real price of C.mmp's relocation register structure. First, it does
not account for the cost of the other code and data needed to maintain the
relocation-register values. Second, it does not account for the added diffi­
culty of programming the machine. Users agree that the small address space
is the worst feature of C.mmp and causes substantial increases in program­
ming time and errors. Finally, it does not account for the (inestimable) cost
of not being able to make the data-part of objects directly addressable.

EXPERIMENT AL MEASUREMENTS 255

16-2.9 The Small Address Effect on HARPY

In Section 16-2.3 we discussed the performance of the HARPY speech
recognition system. The performance on two tasks was mentioned-the
30-word DESCAL task and the 1,OOO-word information-retrieval task. An
important difference between the performance of HARPY on these two tasks
was not explored in that section-and we will now do so here.

The data base for the 30-word task is small enough to fit into the 16-bit
address space of a PDP-ll. The data base of the 1,OOO-word task is not, and
thus explicit memory relocation must be programmed. The question of
interest is whether the need to use this facUity has any effect on the
performance of the 1,OOO-word version.

To answer this question, a special version of the 30-word system was
constructed. Just as in the regular version of the 30-word task, the complete
data base was held in primary memory and it was never necessary to alter a
relocation register. However, the special version did test to see whether a
relocation register change was needed-just as the 1,OOO-word version must
do. The results of this experiment are shown in Figure 16-14. As is
obvious, the system pays a healthy penalty-nearly a factor of three-to
support the possibility that an addressing change might be needed.

180

160

140

U 120
C.mmp, dynamic mapping

~
C1l 100
E

'';::;

-0 80 ~
Q.
co
W 60 KA10

40
Real Time

20 •••••• ••••••••••• ;; •• ;: •• ':': •• ::': •• :':1. P: •• ~.nTI~_ _ ... _ ... __ _'"'
KL10

0
1 2 5 6 7 8 9 10

Number of processors

Figure 16-14 The effect of the small address space on HARPY

16-2.10 McGehearty's Kall Measurements

In the spring of 1977, McGehearty examined the frequency and cost of the
various kernel Kalls found in interactive tasks. We shall report only a portion

256 MEASUREMENTS AND EV ALUA TION

of his results here; the remainder may be found in [McG80]. In particular
we shall look at the results obtained by using the kernel tracer to examine
five activities:

• Entering SOS, an interactive text editor written in L * (a list processing
and system building language

• Leaving SOS
• Listing a small file on the line printer
• Entering TECO, another interactive editor written in Blissl11
• Leaving TECO

The two editors and the listing program were invoked from the command
language interpreter and involved using the directory system to look up the
object to be edited. Returning from the editors involves returning to the
command interpreter. Thus each of these activities involves substantial
protection-domain crossing, moderate 110, and relatively small programs and
data. Taken together, we believe they are representative of the heaviest use
of kernel facilities in interactive systems on Hydra/C.mmp. In a sense they
represent the opposite extreme from compute bound tasks such as Baudet's
relaxation experiment, which is completely compute-bound.

Table 16-12 gives the relative proportion of time spent in the kernel as
opposed to at user-level during the execution of these tasks. Time inside the
kernel is further divided into time spent in interrupt routines (hence handling
1/012) as opposed to time spent directly handling KalIs. Note that these
applications were chosen because they are heavily Kall-intensive; they are
probably not typical of a normal user load.

Tables 16-14 through 16-19 give a detailed list of all of the kernel
operations used during these activities-their frequency and their minimum,
maximum, and average costs. Table 16-13 summarizes this data.13

To interpret these data properly, one should bear in mind that in early
1977 essentially no optimization or tuning had been done to Hydra. Since
that time,

• PDP-11/40 processors are used instead of the 11/20s on which this data
was collected. This means that the Kall timings should be reduced by
about 40% to come into agreement with later measurements.

• The Call mechanism was improved in several ways. The average Call
time is now 20-30 ms rather than the 60 ms cited.

• A microcoded implementation of RPSLoad now exists; it requires 18 p.s
rather than the 350 p.s taken by the version reported here.

12The I/O being handled is not necessarily related to the activity being measured; it includes
kernel demon activity, clock interrupts, etc.

13Some Kalis are omitted in the detail tables because they have not been discussed in this
book. Table 16-13 includes all calls, however.

EXPERIMENT AL MEASUREMENTS 257

With the exception of a few operations that were handled specially (e.g.,
RPSLoad), the minimum cost for any Kall is over 700 p.,s in this data-about
150 instruction times. Sadly, it takes this much code to validate the stack and
do other kernel entry checks. We believe this is due mostly to the PDP-II
architecture. 14

Table 16-12 Processor activity under an interactive load

Response User Kernel Interrupt
Activity (sec) (%) (%) (%)

Entering SOS 11.0 26.9 51.8 21.3
Leaving SOS 5.0 15.3 50.8 33.9
Listing a File 10.0 9.2 56.6 34.2
Entering Teco 4.0 29.6 45.4 25.0
Leaving Teco 2.3 19.3 47.0 33.7

Table 16-13 Kall usage in interactive tasks

Activity No. of % of all % of
class KalIs Kalls Kalls

Call mechanism 248 6.8 35.9
Ports and Semaphores 1,155 31.7 18.4
Paging Kalls 1,193 32.7 9.7
Create and Copy 76 2.1 8.9
Capability manipulation 710 19.5 9.2
Policy Module Kalls 204 5.6 12.5
Update 16 0.4 4.7
Alter kernel tracing 17 0.4 0.4

Table 16-14 Kall timings: the Call mechanism

Operation No. Mean Max Min

Call 5 92.5 ms 163.6 ms 33.0 ms
TypeCall 55 67.2 128.5 31.2

(Average Call) 60 69.8
Return 56 42.9 144.2 16.4
Merge 22 2.1 2.9 1.5
Compare 27 1.3 3.1 0.6
LNSLength 23 0.5 1.0 0.4

14This checking involves making sure there is enough stack space to handle the Kall or
interrupt, decoding the Kall number and branching to the correct code, locating the Kall
arguments, saving the user's registers, etc.

258 MEASUREMENTS AND EV ALUA TION

Table 16-15 Kail timings: ports and semaphores

Operation No. Mean Max

ReceiveMsg 70 7.8 ms 23.9 ms
ReadMsg 47 2.6 3.0
WriteMsg 50 2.7 5.3
RSVPMsg 73 5.6 12.8
CreateMsg 17 4.5 5.9
ReplyMsg 13 5.0 6.7
GetMsgCapa 3 2.6 2.7
PutMsgCapa 2 3.7 4.2
Connect 2 3.2 3.2
Disconnect 3 6.5 9.2
RequeueMsg 4 4.0 4.2
P (Pol. Sem.) 23 2.3 7.4
V (Pol. Sem.) 24 2.0 4.7
P (Kern. Sem.) 340 2.4 9.0
V (Kern. SemJ 410 2.0 5.9
PConditional 70 2.0 5.5

(Kern. Sem.)

Table 16-16 Kail timings: paging Kalis

Operation

CPSLoad
RPSLoad

Table 16-17

Operation

Create
Copy
MakeData
MakePage
Make Universal

No.

47
1,092

Mean

27.4 ms
0.35

Kall timings: object creation

No. Mean

21 29.4 ms
4 51.6
8 11.3

28 15.6
15 15.5

Min

2.9 ms
2.3
2.5
3.5
2.8
3.1
2.6
3.3
3.2
2.3
3.9
1.2
1.9

.7

.7
1.4

Max

74.8 ms
4.1

Max

145.5 ms
66.3
17.2
33.0
25.7

Min

0.7 ms
0.3

Min

7.5 ms
17.2
6.7
6.3
6.4

EXPERIMENT AL MEASUREMENTS 259

Table 16-18 Kall timings: C-list and data-part manipulations

Operation No. Mean Max Min

GetCapa 128 3.3 ms 51.6 ms 0.8 ms
GetData 177 1.8 5.7 0.7
PutCapa 68 3.2 26.8 0.7
PutData 59 1.7 3.3 1.4
Delete 170 2.0 28.7 0.7
CLength 22 2.0 16.8 1.0
DLength 26 1.0 1.4 0.9
AppendCapa 32 2.8 16.4 1.7
PassCapa 25 3.0 16.8 1.0
P(1ssAppendCapa 1 10.1 10.1 10.1
Interchange 2 2.1 2.5 1.8

Table 16-19 Kall timings: Policy Module interactions

Operation No. Mean Max Min

StartProcess 36 22.2 ms 72.9 ms 8.9 ms
StopProcess 2 2.6 2.9 2.4
ReceivePolicy 66 7.7 13.1 2.2
AttachPolicy 2 2.6 3.2 2.0
Runtime 11 1.4 1.9 1.0

(Delay) 58.1 214.1 1.0
SetSchedParms 12 1.5 2.1 1.2

We can make several general observations about HydratC.mmp from this
data.

1. Even the simplest KalIs take on the order of 500 J-ts on a PDP-I1I40;
faster communication between user and kernel code is needed. This
involves the architectural details inherent in the PDP-II.

2. Capability manipulation is not inherently difficult; the minimum times are
barely more than just kernel-entry costs. The longer maximum (and
average) times result when objects must be swapped in from the Passive
GST.

3. The Call mechanism is slow, but not necessarily because of anything
intrinsically difficult in domain switching. Rather; it is our implemen­
tation of domain switching that is expensive. For instance, every Call
creates a new LNS object; and Create alone averages 30 ms out of Calfs
total of 70 ms. We believe that several other implementation approaches
could have been used to advantage, and we shall say more about this later
(using the data in the tables).

4. Interprocess communication in Hydra is really faster than procedure calls.
The pair of composite Message System KalIs, ReceiveAndRead and

260 MEASUREMENTS AND EVALUATION

WriteAndRSVP, take about 14 ms, compared with 40-S0 ms for the
improved Call plus Return.

S. Process context switching is also slow, probably on the order of 1 ms.
This is largely due to the large amount of hardware state involved in our
rpodified PDP-lls and memory relocation hardware.

It is interesting to contrast this collection of data with that from, for
example, Oleinick's HARPY experiment. The two, we believe, represent
extremes. HARPY is basically compute bound, makes few calls on Hydra,
and uses the full processing power of the machine; Hydra does not degrade
its performance. The present data, on the other hand, represents a case in
which most of the "action" is achieved by the programs' extensive use of the
kernel operations-and here half, or more, of the time is spent in the kernel.
During general user sessions, depending upon what users are doing at a given
moment, the ratio lies somewhere in the middle of these extremes.

16-2.11 Size of the Hydra Kernel

Reporting the code size of the Hydra kernel is not an "experiment" in quite
the same sense as the others in this chapter. Nonetheless, it seems relevant
to discuss the size of Hydra and the distribution of that size among its
component pieces.

Table 16-20 attempts to break down the total system into meaningful
units, but any such breakdown has its own set of peculiarities. The portion
labeled "Debugging," for example, contains most of the mechanisms used to
debug Hydra, but some of them are located in "Autorestart" and in the other
specialized modules. Similarly, most of the code for communication between
the kernel and a Policy Module is contained in KMPS, but some is in
Message System code. Finally, we are unable to properly reflect certain
distributed costs. In particular, error detection and recovery, debugging
facilities, and tracing all involve code that is distributed throughout all the
modules; the tables given in the table are only for the service routines that
provide the mechanisms that support these facilities. Error detection and
recovery is, perhaps, the most notable example of this; we have no way to
measure its impact, but some modules such as 10 and the GST may have as
much as 30% of their code devoted to this. Thus, although the table
represents our best attempt at a meaningful breakdown, the numbers should
be treated as indicative, not absolute.

The data in Table 16-20 was derived from a linkage-editor map of the
system during October 1979. Of course, the size of the system fluctuates
slightly as changes are made. The size of the various modules in words can
be converted to a number of instructions by dividing by I.S; from other
sources we know that the typical PDP-II instruction is 3 bytes long. Also,
we have made various measurements of the size of the kernel in terms of
lines of source code. On the average, one line of Blissl11 source yields one

EXPERIMENT AL MEASUREMENTS 261

Table 16-20 Size of the Hydra kernel

Functional
classification Words Percent

I/O
Device handlers 30,786 23.6
Common support 4,832 3.7

GST 20,740 15.9
Operations 12,019 9.2
Debugging Support 11,467 8.8
Protection mechanism 8,564 6.6
Paging 7,897 6.0
Messages and Semaphores 7,617 5.8
KMPS 7,557 5.8
Initialization 5,644 4.3
Exception handling 4,493 3.4
Autorestart 3,852 2.9
Storage Allocation 2,838 2.2
Tracing 1,018 .8
Processor support 637 .5
Bliss support 663 .5

Totals 130,624 100.0

compiled instruction. This means that the entire kernel is about 100,000
lines of code.

The most obvious conclusion from this data is that Hydra is large-much
larger than the designers imagined before they started. The second obser­
vation is that a large fraction of code is devoted to things unrelated to the
philosophy of Hydra: 110, error recovery and diagnostics, initialization, opera­
tions, debugging, etc.

In addition to the obvious conclusions, however, this data also provides
some insight into other aspects of Hydra/C.mmp. Consider, for example, the
storage allocation module. This module provides allocation of small areas of
storage for buffers, messages, etc. The original intent was to use an
algorithm called "quick fit" that had been in use in the Blisslll compiler and
was known both to be fast and to avoid fragmentation problems [Wei76].
This algorithm, coded for the PDP-10, is less than 200 instructions. Yet, as
you can see, the Hydra storage allocator is an order of magnitude larger.
Why?

In the earlier section discussing the use of relocation registers by the
kernel, we asserted that the data belied the difficulties caused by C.mmp's
mapping structure. One of those difficulties is reflected in the size of the
storage allocator. Although it would be unfair to lay the whole blame on the
small address problem, it is a major factor. Because of the mapping
hardware, allocated chunks must be entirely within a single page. Thus,
while the "quick fit" algorithm could be applied within a page, it was

262 MEASUREMENTS AND EV ALUA nON

necessary to devise mechanisms that could search through multiple pages,
could return an entire page if it became free, could request new pages when
the currently allocated ones are full, and so on. Moreover, one had to devise
policies that would tend to avoid situations in which only a small fraction of
each page was occupied, and so on. As it became obvious that performance
of the allocator was a major factor in the speed of some kernel operations, it
was necessary to devise efficient intra-page search lists. In short, what had
been a simple problem on a machine with a larger address space, became a
much harder problem than simply managing the relocation registers.

16-2.12 McGehearty's "Stretch Factor" Experiment

Despite the fact that Hydra was intended to be used in an interactive,
time-sharing mode, the lack of a large user community resulted in relative
neglect of this aspect of the system's performance. Comparatively few
measurements were made that characterize its perfor~ance in this mode, and
essentially no effort was put into improving that performance-it was "good
enough" for the light loads normally encountered. Thus, in this section we
will simply present the results of the one controlled experiment in this area
that was available at the time of this writing; it is not an ideal characterization
of the system's performance as a time-sharing machine, but it is all the data
we have. We expect much more complete results to be available in
McGehearty's thesis, [McG801.

McGehearty used the script driver to put a controlled load on the system.
The load consisted of n identical simulated terminal users. Each simulated
user would request an amount of computing drawn from an exponential
distribution with a specified mean. The simulated user would wait for the
response to this request and then enter a period of "thinking" before making
the next request for computation. The duration of the "think time" was also
drawn from an exponential distribution with a specified mean. Each of the
simulated jobs was a simple compute-bound loop and did no input or output
other than accepting the next compute request and sending a character to
indicate completion of a request.

McGehearty expressed the results of this experiment in terms of the
"stretch factor." Under no load, a request for c seconds of computing should
complete in roughly c seconds, corresponding to a stretch factor of 1. As
load increases, however, the user will observe that it takes longer and longer
for the system to complete the request. When the time to respond is 2c, the
stretch factor is 2. In general, then, the stretch factor is the observed
response time divided by the no-load response.

Figure 16-15 displays the results for a 9-processor system. As can be
seen, the number of jobs varied between 1 and 50. Three cases were run; in
each case the mean think time was 10 seconds, but the mean compute time
per request was 1, 5, and 10 seconds, respectively. Shown on the graph are

EXPERIMENT AL MEASUREMENTS 263

the theoretically optimal response, the mean measured response, and the
90th percentile lines (90% of all requests responded in less than the time
indicated by these lines) .

2

o 5

• Compute time 1 sec, think time 10 sec
o Compute time 5 sec, think time 10 sec
t:. Compute 10 sec, think time 10 sec

10

Theoretical
Measured mean
90th percentila

15 20 25 30

Number of jobs

35

......••
40 45 50

Figure 16-15 "Response stretch factor" as a function of load

The observed stretch factor in these experiments is quite close to optimal.
Without Hercules we could not have observed this behavior, because it is
seldom we have more than a dozen users on the system.

16-2.13 Almes' Study of the Active GST

Almes [Alm80] studied both the Active and Passive GST. His goal was. to
implement a parallel garbage collection algorithm; this algorithm is now used
in the system to eliminate unreachable objects from the GST. In order to
make the garbage collection acceptably efficient, Almes needed data on the
way that the GST is actually used: object sizes, creation rates, any depen­
dencies on object type, and so on. The complete data from this study is
available in an appendix to Almes' thesis [Alm801. Here we shall try to
summarize only highlights and trends in the data; however, we strongly
recommend careful examination of the complete data to anyone contem­
plating building a capability-based or object-oriented system.

We will first focus on Almes' experiments on the Active GST; the
following section will consider the Passive GST study. The study of the
active GST consisted of two experiments-one collected data during normal
user sessions and the other under a simulated load. The second of these

264 MEASUREMENTS AND EV ALUA TION

resulted in more detailed analyses than were practicable during normal user
sessions.

The Active GST during user sessions In the summer of 1978, a modified
version of Hydra was run for three weeks. This version recorded a small
amount of data concerning object passivation and destruction. Several
interesting pieces of data were obtained:

• 1,007,621 objects were destroyed during this period. Of this number,
over 98% had never been passivated-that is, they were created and
destroyed without ever having been written to disk. Of the remaining
objects destroyed, two-thirds were "old" in the sense that they had been
created before the most recent system restart, and one-third had been
created during the current session.

• 282,200 objects were passivated because their active reference count
became zero while their total reference count was non-zero. (See Section
11-2.1 for a discussion of reference counts.)

• 128,070 object (representations) were passivated by the GST demon.
• 38,109 Update KalIs were made.

The most striking result in this data is that the vast majority of Hydra
objects, 98%, or 38,000 per day during the test period,15 are created, used,
and destroyed without ever being passivated. In retrospect the reasons for
this are clear-the majority of these objects are LNSs, DATA objects used for
parameter blocks, and so on. Alas, the GST contained no optimizations for
these special and frequently occurring objects; the full mechanism is available
and applied to all objects.

The Active GST under artificial load Since the amount of data that could
be collected during user sessions was limited, more elaborate experiments
were performed under a collection of artificial loads. Each experiment was
conducted in the following way:

1. Hercules, the terminal emulator, was used to simulate five users repeat­
edly performing some task. The tasks used included copying and editing a
Commands object (a special kind of file that contains command-language
programs) and retrieving a text file from the PDP-I0 via the ARPANET.

2. After the simulated programs had been running for awhile, the kernel
tracer was invoked to record all creations, activations, passivations, and
destruction of objects.

3. Once enough trace data had been collected, the "snapshot taker" was
invoked to capture the state of the Active GST. After the snapshot was

15The load on C.mmp was not heavy during this period. Even during its heaviest periods of
use, there were seldom more than a half dozen people using the system.

EXPERIMENT AL MEASUREMENTS 265

taken, Hercules was terminated.

As a quick indication of the load generated by these tests, during one
particular trace lasting 66 seconds, 1,343 objects were created and destroyed;
this is a rate of 20 objects per second, or 4 objects per second per user.
These objects had a mean lifetime of 8 seconds, and a median lifetime of less
than 5 seconds. Because the load was light (5 simulated users), these
numbers presumably are determined by the task characteristics and funda­
mental time constants of the system (CPU speed, Hydra Kall costs, etc.), not
by contention for resources.

The major resuits of these experiments are iisted beiow:

Creation rate. As noted above, the creation/destruction rate is much higher
than we anticipated, and most objects are never passivated.

Number of types. During these tests, 38 distinct types appeared in the Active
GST; there were 13 kernel-defined types and 25 user-defined types.
Table 16-21 lists the most common types as well as those that use the
most storage.

Object sizes. Figures 16-16 and 16-17 summarize the size of the C-list and
data-part of objects. As can be seen,

• 50-60% of all objects have a C-list.
• The average C-list is 260 bytes (about 16 capabilities).
• 95% of the objects have a data-part.
• The average data-part is about 130 bytes.

There is a strong correlation between an object's size and its type; we will
not explore this further here, but it implies that systems could exploit
this correlation.

Locking. At any instant, 1-2% of the active objects are locked.
Reference counts. Figures 16-18 and 16-19 show the distribution of reference

counts and provide an indirect measure of sharing. As can be seen, the
mean total reference count is 5 and the mean active reference count is 4.

Objects in both the Active and Passive GST. Even though 98% of all objects are
created and destroyed without having been passivated, 45% of the objects
in the Active GST are also in the Passive GST. Moreover, there is a
strong dependence on type:

• Eleven of the 38 types present in the Active GST had less than 10%
of their objects on the Passive GST; many of these are kernel-defined
types (e.g., LNS) that cannot be passivated.

• Seventeen of the 38 types present in the Active GST had more than
90% of their objects in the Passive GST; generally these were
user-defined types.

266 MEASUREMENTS AND EV ALUA nON

Table 16-21 Active GST types

Most numerous types

Type % Cum%

Page 25.0 25.0
Universal 14.6 39.6
Procedure 8.8 48.5
Semaphore 6.0 54.6
LNS 5.3 59.9
Port 4.3 64.3
Device 4.1 68.5
Process 3.8 72.3
SoSFile 3.7 76.0
PMProcess 3.1 79.1

1536

1280 Greater than 1052.

1024

til

~ 768
co

512

256

o 50 100

Types with most total store

150

Type

Universal
LNS
Procedure
Page
CPS
Port
ObjectList
Process
SubCatalogue
Type

N = 827
Mean 260 bytes
Median = 94 bytes
Sigma = 315.4 bytes
Max 1984 bytes
Min 32 bytes

200 250

Number of objects

% Cum%

18.9 18.9
16.0 34.9
13.7 48.6
9.8 58.4
8.3 64.7
4.9 69.6
3.4 73.0
3.2 76.2
2.8 79.0
2.7 81.7

300 350

Figure 16-16 Active GST summary: C-list sizes

en
~
>-

III

....
C
:::l
o

U

1280

1024

768

512

EXPERIMENT AL MEASUREMENTS 267

N = 1486
Mean 131 bytes
Median = 46 bytes
Sigma = 177.4 bytes
Max 1984 bytes
Min 32 bytes

256Ftf
0

35

30

25

20

15

10

5

o

200 400 600

Number of objects

800

Figure 16-17 Active GST summary: data-part sizes

Greater than 29.

100 200 300 400

N
Mean
Median =
Sigma
Max

= 1490
5
1

10.7
91
o Min

500
Number of objects

600

Figure 16-18 Active GST summary: total reference counts

1000 1200

700 800

268 MEASUREMENTS AND EVALUATION

35l

I

30 :::: Greater than 29.

25

I I I

o 100 200 300
I

400

N
Mean
Median =

Sigma
Max

= 1547
4
1

8.4
86
o Min

I

500 600

Number of objects

I

700

Figure 16-19 Active GST summary: active reference counts

16-2.14 Almes' Study of the Passive GST

I I

800 900

The second major part of Almes' study concerned the use of the Passive GST
and consisted of a static analysis of its contents- the number of objects, their
types, sizes, and reference counts.

The standard operational procedure for "backing up" the GST involves
copying the entire passive GST onto spare disk packs. This is done three
times each week. Since one disk drive was always available to be assigned to
a user program, it was possible to mount the backup packs on this drive and
analyze them with user programs. To this end, a special program was written
that

1. Eliminated all but the most recent version of an object (the system
normally keeps the previously most recent version as well)

2. Eliminated all unreachable (i.e., "garbage") objects
3. Recorded the global name, type, time-stamp of last update, C-list and

data-part sizes, (total) reference count, and the global name of each
capability in its C-list

A post-processing program analyzed this data and produced a number of
interesting statistics:

1. During the period under study, the Passive GST contained on the order
of 20,000 objects.

EXPERIMENT AL MEASUREMENTS 269

2. Eighty-two distinct object types were observed, of which 14 are the kernel
types. Of the remaining (user-defined) types, only 25 were in general use
(many of the other user types were either obsolete or were used only for
debugging the subsystems that supported the 25 generally used types).
The most frequent types, and the most space-consuming types, are shown
in Table 16-22.

3. The sizes of objects are shown in Figures 16-21 and 16-22. These sizes
are somewhat different than those for the Active GST, as may be seen in
Table 16-23.

4. The total reference counts are much smaller than in the Active GST. As
can be seen in Figure 16-20, the mean total reference count is 2 and the
median is 1. Fully 85% of all objects have a total reference count of 1.

It should be noted, by the way, that the size information may be a bit
misleading. Almes measured only the space in an object. This makes good
sense for all objects except pages since the actual 8K-byte segment repre­
sented by a page is not contained in the object's data-part. Unfortunately, it
is not clear what should be measured in the case of pages; page segments are
precisely 8,192 bytes long regardless of how much information is actually
contained in the page. Since Almes was primarily concerned with the GST
itself, not with total storage requirements, it seemed more reasonable to
exclude the space devoted to the page images.

Table 16-22 Passive GST types

Most Numerous Types Types with Most Total Store

Type % Cum % Type % Cum%

Page 35.3 35.3 Procedure 22.6 22.6
Universal 17.3 52.7 Commands 20.8 43.4
Procedure 7.9 60.6 Page 16.6 60.0
Semaphore 7.7 68.4 Universal 12.1 72.1
Commands 6.3 74.7 S u bCatalogue 8.2 80.3
Data 5.3 80.0 Data 6.5 86.8
Catalogue 4.9 85.0 Semaphore 2.6 89.4
SubCatalogue 4.9 90.0 Catalogue 2.1 91.5
SuperFile 2.0 92.0 Directory l.6 93.1
SoSFile l.3 93.3 SuperFile 1.5 94.6

270 MEASUREMENTS AND EV ALUA TION

20

15

....
C
::J
0
u 10
Q)
u
c
e
~

Q)

a:

30

25

en 20
(5
u;
ctI

g. 15
u

10

5

o

5

o 5000

N
Mean
Median =
Sigma
Max

= 18995
2.06

1
15.74
1295

1 Min

10,000

Number of objects

15,000

Figure 16-20 Passive GST Summary: total reference counts

:: :: :: :: Greater than 29.

500 1000

N =8041
Mean = 7.78 slots
Median = 2 slots
Sigma = 13.73 slots
Max 250 slots
Min 1 slots

1500

Number of objects

2000

Figure 16-21 Passive GST summary: C-Iist sizes

2500

20,000

3000

EXPERIMENT AL MEASUREMENTS 271

384 -
N = 15548

320 - •.•...••.. G h 320
256 _g: reater t an . Mean = 128.89 bytes

Median = 41 bytes
Sigma = 237.88 bytes

! ::::l
64~~======~==================~

Max 3854 bytes
Min 2 bytes

o 2000 4000 6000

Number of objects

Figure 16-22 Passive GST summary: data-part sizes

Table 16-23 Mean sizes of objects in the Active and Passive GST

Part Active GST Passive GST

Fixed-part 64 bytes (20%) 64 bytes (29%)
Data-part 124 bytes (38%) 105 bytes (47%)
C-list 138 bytes (42%) 53 bytes (24%)

Total size 326 bytes 222 bytes

16-3 RETROSPECTIVE

I

8000

As we noted in the introduction to this chapter, there are many reasons why
the various results reperted cannot be compared or combined casually.
Caution is necessary. However, it seems fair to conclude the following.

Tools In general, the tools available for measurement have been adequate.
In a few cases, such as a better analysis of memory contention, another tool
would have been desirable. However, the limitations of the tools have been
less important than the benefits of being able to use them interactively during
normal user sessions.

Contention Under normal use, contention is low-both for hardware and
software resources. We believe that the decisions to build a distributed
system, to reject a master/slave hierarchy, to lock data rather than code, and
to have a large number of locks were correct and that that belief is supported
by the data. There are, however, two exceptions to this conclusion:

• Ports and Policy Semaphores are much too slow. This, we believe, is
primarily the result of an improper implementation. Despite the WaitTime
facility, most of the work of stopping a process and preparing to return it
to its PM is done every time the process blocks on one of these objects.

272 MEASUREMENTS AND EVALUATION

A simpler implementation would have used an ordinary Kernel Sema­
phore and a demon to handle processes that block longer than their
Wai.tTime value. Had we done this, the overhead of blocking on Policy
Semaphore objects would have been similar to that of blocking on Kernel
Semaphores.

• Pooling resources such as processors and memory is usually the correct
approach. However, in a system without caches, and in the presence of
shared code pages, we should have provided another mechanism, some­
thing that allowed the programmer to indicate that (1) separate copies of
the pages should be created, and (2) that these copies should be placed in
different memory units.

Synchronization We do not know whether providing the analogs of locks
and kernel semaphores to users would have been appropriate. The issue is
not technical, but rather a matter of operational policy. Possession of either
locks or kernel semaphores allows the individual user to preempt resources
that could otherwise be given to another user. Wisely used, of course, both
of these facilities could save those resources for all users. Alas, the kind of
protection provided by capabilities does not address the (mis) use of a service
to which a user has access.

Efficiency As is usually the case, the most important component affecting
performance is the user's algorithm, not the operating system or resource
contention.

Policy/mechanism separation The concept of policy/mechanism separation
still seems a good one to us, but its cost in the Hydra implementation is too
high. Moreover, there is no agreement among us about the cause for this or
how to correct it in a second iteration. Some of us believe that the level of
the kernel-PM interface is too low and that the kernel should be allowed
more discretion over paging decisions; in this model, the PM adopts a more
advisory role. Others of us believe that precisely the opposite is the problem
and that the PM should have more control over (for example) paging
decisions independently of scheduling decisions. This latter group argues that
the PM, and the kernel/PM interface, are slow because the PM must
second-guess too many kernel actions.

The object model The GST should be optimized according to the observed
usage patterns. More hardware support, and particularly support for
short-lived objects would be a great help in this.

EXPERIMENT AL MEASUREMENTS 273

The small address space Oleinick's HARPY data clearly shows the per­
formance penalty paid by processes wishing to address large data segments. It
does not show the increased programming burden, although we think that is
just as great.

With a large virtual address space, the direct addressing of objects'
data-parts becomes feasible and the need for separate PAGE objects may
disappear. This would also simplify the programming of many subsystems.

CHAPTER

SEVENTEEN
REFLECTIONS

In this chapter we would like to reflect again upon what we learned from the
Hydra/C.mmp experience, and what we hope others can learn from us.

Much of what appears here is simply a rephrasing of the more important
points that appeared in the retrospective sections of earlier chapters. There is
only a limited amount of organization that can be placed on a chapter like
this. It is inherently a list of (only) somewhat related points; so, except for a
wrap-up at the end, we shall not try to pretend otherwise.

On multiprocessors Generally, the architectural structure of C.mmp was a
complete success. In particular,

• The memory contention that has plagued other multiprocessors was
simply not present under normal loads.

• The simple interprocessor interrupt structure proved completely adequate.
• The asymmetry of the I/O structure, the fact that devices are attached to

particular processors, posed no problem to creating a symmetric virtual
machine at the user level.

• The crosspoint switch, a potential reliability bottleneck of the system, in
fact proved to be one of our most reliable components.

If the ground rules were the same again, that is, if we were to be asked to
build another symmetric multiprocessor, we would not change these deci­
sions. We would not, for example, want a more powerful interprocessor
communication facility. Neither would we want a distributed processor/
memory switch.

Issues of technology and cost aside, simplicity and symmetry are among
the greatest allies of the system designer/implementor. Cost factors might
dictate a hierarchical switch structure, but its existence would simply add
another problem to those that the software and users must cope with. The
ability to treat all processors as identical, and the ability to assume that the
access time from any processor to any memory is identical, both simplified
the design. Had I/O been symmetric, it would have simplified the design
even more.

The realization of C.mmp, as opposed to its design, has a number of
failings that we correct in a second iteration:

275

276 MEASUREMENTS AND EVALUATION

• The "small address problem" was unanticipated, and most unfortunate. It
skews almost any attempt to evaluate the machine and its software.
Sixteen-bit computers were relatively new when we started on C.mmp,
and we had little choice-but we certainly would not choose a
small-address machine again.

• Reliability was a much greater problem than we had anticipated. In large
measure this resulted from our naive assumptions about the reliability of
the PDP-11. In retrospect, however, our own designs should have been
more robust to the problems generated by the 11s. We believe that
reliability will be a major issue in the coming decade, and a fundamental
attitude which a designer must have is suspicion toward all other compo­
nents. This is equally true of hardware and software. One cannot allow a
malfunction in one component to disable another.

• Initially we thought that it would be possible to partition the system and,
for example, do hardware maintenance on one partition while running
Hydra on another. This didn't work for several reasons, including the
inability to reconfigure devices and the presence of transients when
components were powered up or down. We would strive to achieve a
partitionable system next time.

In general, we believe that it's possible to make two major mistakes at
the outset of a project like C.mmp. One is lo design one's own processor~
doing so is guaranteed to add two years to the length of the project and, quite
possibly, sap the energy of the project staff to the point that nothing beyond
the processor ever gets done. The second mistake is to use someone else's
processor. Doing so forecloses a number of critical decisions, and thus
sufficiently muddies the water that crisp evaluations of the results are
difficult. We can offer no advice. We have now made the second mistake I -

for variety, next time we'd like to make the first! Given the chance, our
processor would:

• Be both inherently more reliable and go to extremes not to propagate
errors~ once an error is detected, it would report that error without
further effect on the machine state.

• Provide rapid domain changing~ we see no inherent reason that this
should require more than, say, a dozen instruction times.

• Provide an adequate address space~ actually, rather than a larger number
of address bits, we would prefer true capability-based addressing at the
instruction level since this leads to a logically infinite address space.

There are other things, of course, but these are the most important.

lTwice, in fact. The second multiprocessor project at C-MU, Cm*, also uses the PDP-II.

REFLECTIONS 277

On multiprocessing The multiprocessing structure of Hydra seems sound to
us. A number of other multiprocessor systems have experienced debilitating
overheads; most of these systems have been adaptations of operating systems
that were initially designed for uniprocessors. Hydra clearly shows that a
system engineered from the start for multiprocessing need not suffer these
problems. Typically, for example, less than 1% of the processing power is lost
to software contention. Critical to this are some of the more fundamental
decisions:

• TIle decision to build a symmetric system, as opposed to a mastei-slave
one, was correct. It is hard to prove that without having done it both
ways, of course, but we believe the system is both simpler and more
efficient because of this decision. It's simpler because it's more regular.
It's more efficient for two reasons: (1) we can fully exploit the parallelism,
and (2) a processor can directly perform whatever service is needed-one
never has to ask the "master" to do it.

• The decision to lock data rather than code was also correct. This is now
the modern theology-but it wasn't when we began in 1971. It seems
clear to us that this decision, coupled with the decision to have a large
number of locks (alternatively; to have each lock guard a small structure)
is the reason there there is so little software contention.

• The decision to provide several levels of synchronization still seems like a
good idea to us. Certainly the distinction between locks and Kernel
Semaphores was crucial to the system's performance. In a second
iteration of the design we would make the semantics of these identical,
rather than merely similar. We would also implement Policy Semaphores
differently. However, the concept of multiple levels would stay-and
might even be expanded to include other levels, say between Kernel
Semaphores and Policy Semaphores.

• We believe that having better linguistic constructs, such as monitors,
would not improve reliability; experience indicates that making critical
sections small causes an increase in the complexity of the algorithms (and
more errors) outside the synchronization primitives.

The realization of the multiprocessing aspects of Hydra is pretty good,
too. Of course there are things we would change, and of course we think we
could make it both smaller and faster in a next version. However, we see
these changes as fine tuning a generally sound approach. What would we
change?

• We would use more processes in Hydra itself. We would not go to the
extreme that some recent systems have of making essentially all services
into processes- the subroutine model is too natural, and usually more
efficient. We would use processes to delay those actions which logically
(or naturally) occur asynchronously. Often this can be done with no

278 MEASUREMENTS AND EVALUATION

visible change to the semantics~ at other times a slight change is benefi­
cial.

• The interface between KMPS and Policy Modules needs to be completely
rethought. We still believe in principle that an efficient policy/mechanism
separation is possible, but we did not achieve it. The benefits of such
separation are great, and we would not easily abandon them. As of this
writing, however, we do not have a firm idea of how to achieve it
efficien tly.

• The (in)efficiency of Policy Semaphores is closely, but not completely,
associated with the problems of the KMPS-PM interface. Within the
context of the current interface, we now believe more efficient Policy
Semaphores are possible. If this more efficient implementation had been
used, we would feel less guilty about not providing Kernel Semaphores or
locks to users.

It is probably worth noting, in addition, that the use of semaphores did not
create especially difficult synchronization problems. In a next iteration we
would be tempted to use more modern notions of synchronization such as
monitors. However, the absence of a more structured mechanism did not
result in many, or especially serious problems. To be sure, there were
synchronization errors, but it is not clear that simply a better linguistic
construct would have avoided these.

On the object model The object-oriented, type-extensible, capability-based
structure of Hydra is, in some ways, its most interesting contribution. We
think there are a lot of things right with it, a few things that are wrong, and
some things we would just like to change.

First, at the top level, the concept of providing a kernel that supports
type-extension is exactly right. The addition of a protection mechanism that
smoothly extends to allow dynamic type creation is also correct.

• The approach allows for, indeed caters for, the inevitable evolution and
adaptation that all real systems experience.

• The approach is non-preemptive. No user must suffer with inappropriate
facilities ifhe has the energy and gumption to define the appropriate ones
for himself. Much the same comment applies to the protection facilities.
Security and protection are related, but distinct, concepts. For the
"typical" user, the base protection facilities of Hydra will be adequate for
the kinds of security he needs. But, for applications needing greater (or
simply different) security policies, they are definable within user-level
code.

• The intrinsic costs of the approach are low. Hydra's overheads (especially
for Call) are too high, but these costs are not endemic to the approach­
as we could have proven had we had the opportunity for a second
iteration.

REFLECTIONS 279

Second, capabilities are the right basis for providing this kind of
object-oriented, extensible environment. We would, however, change sev­
eral things about our design and implementation of capabilities and objects.
Aside from preferring the "right" hardware, we would:

• Optimize the system toward small, short-lived objects. Where before our
mental model for the size and creation rate of objects was that of "files"
in a traditional system, our model now would be that of "records" in a
programming language.

e ~Y1ake the notion of "subsystem," or "type definition," actually, more
central and explicit. Several things are involved here. First, we now
believe that TypeCall is more fundamental than Call. Second, we believe
that the full generality of rights amplification is not necessary for the vast
majority of applications. Finally, we believe that the collection of proce­
dures that define a type should be a first-class concept in the system; this
collection is really a more important notion than that of the individual
procedures. Thus, in a next iteration we would probably have a notion of
type-defining-module with multiple entry points and complete amplifi­
cation of objects of the type being defined. 2

Third, we would reconsider the "one-level store" decision. We believe
that from a programming point of view, this abstraction is a good idea. We
would strive to keep it-and, indeed, make it complete by eliding the Update
Kall. However, supporting this abstraction adds substantial complexity and
size to the kernel. It would be nice to find a way to remove this complexity
from the portion of the system that operates unprotected. One possibility, for
example, is to make Passive GST management, like Policy Modules, a
user-level subsystem. Seeing how to do this in a secure way is an interesting
problem that we leave to our readers (see also [Stu74]).

Finally, there are a collection of problems that we didn't address:

Accounting. No one "owns" an object in the Hydra scheme of things; thus it's
very hard to know to whom the cost of maintaining it should be charged.

Incremental backup. In conventional file systems it's possible to incrementally
dump the updates to a file and thus recover it if necessary. The
corresponding operation for the GST is much more complex because of
its graph structure. Indeed, in the presence of sharing, it's not at all clear
what the intended effect of a back-up should be.

Revocation. Revoking privilege in a capability system is more difficult than in
an "access list" system. Roger Needham, however, once observed that
"this, like all other problems in Computer Science, can be solved by one
more level of indirection." Schemes for adding this level of indirection

2The designers of the CAL system [Lam76] foresaw the importance of both short-lived
objects and subsystems and designed them into their system.

280 MEASUREMENTS AND EVALUATION

are sometimes called "aliases" and are now reasonably well known
[Red74]. We would like to have seen such a scheme implemented and
used.

For the few who are still skeptical about the possibility of using
higher-level languages for operating systems, we must note that all but a very
small fraction of Hydra is written in Bliss/H. About the only assembly
language code appears in code which is so machine-specific that it is actually
clearer in assembly language. This includes the context-switching mech­
anism, the error detection mechanisms, and the processor diagnostics. It
does not include any of the interrupt routines or I/O drivers, which are all
written in Bliss.

We should also note that the Blissl11 compiler produces exceptionally
fine object code. Although we cannot prove it, our feeling is that Hydra
would have been less efficient if it had been coded in assembly language. It
certainly would have been nearly impossible to maintain.

In the next iteration we would certainly choose a more modern imple­
mentation language, particularly one that provides type definition and check­
ing (and preferably full data abstraction facilities). To be acceptable, it would
have to produce code comparable to that which we are accustomed to. Under
no circumstance, however, would we revert to assembly language.

On managing a research project One cannot avoid making a few comments
about the management and research strategy of the project. In general, the
management was loose. There was one faculty member (WuIO nominally in
charge of all aspects of the project. There was one full time engineer from
the start, and two full time software people were added at later stages. The
remainder of the project consisted of other faculty, interested in their own
research aspects of the project, and graduate students. In practice, the
subprojects functioned as autonomous groups, meeting as necessary to re­
solve problems.

In an industrial context, and even in some universities, such an informal
organization would not have worked. Indeed, several of Hydra/C.mmp's
failings can be traced to the management. However, it was a style that suited
the particular individuals-and perhaps that is more important than adherence
to some preconceived notions of management structure. There are, how­
ever, a number of management decisions that we would make differently
given the opportunity:

• In at least one dimension, we were too ambitious. We set out to build a
full, general-purpose, time-sharing system. In retrospect, there was no
chance that we could construct all the software necessary to achieve that
goal-editors, compilers, debuggers, etc., in addition to the operating
system. We should have chosen a narrower goal and supported it
extremely well. Had we done so, we would have attracted more users,

REFLECTIONS 281

who in turn would have developed more software and hence attracted
more users, and so on.

• Reliability is not an add-on feature. We should have designed the error
detection and recovery facilities into the base system. Patched on, as they
were, they worked reasonably well- but not nearly as well as they might
have otherwise. In this regard, it's worth noting the power of the notion
of "hitting the leading term," that is, covering the most common errors.
Our experience is that, at any given stage, most errors arise from one of a
small number of sources. Providing the software to detect and recover
from those errors produced dramatic improvements in reiiabiiity.

• Generally, we invested too little, too late in tools. The one exception to
this was Blisslll, which was a big "win." For the most part, however, we
developed debuggers, hardware diagnostics, etc., only after beating our
heads against the wall.

• One always tends to focus on the new, exciting aspects of a problem. We
were no exception. We focused on the contention problems and on the
capability/object mechanism. We neglected much of the user-visible
interface until too late.

17-1 REFLECTION ON THE REFLECTIONS

Our goal in writing this monograph was to describe, as best we could, the
design decisions in Hydra/C.mmp and the consequences of those decisions.
Our hope is that by doing so, our colleagues who also design and implement
operating systems will profit from our experiences. To that end, we felt that
the "reflections" section of each chapter was an essential, if subjective, part
of the book.

For a number of reasons, our reflections tend to focus more on the
things that are wrong with Hydra/C.mmp than on the things that are right
with it. The performance bottlenecks, the awkward places, the inconsis­
tencies and missing parts all present obstacles to using the system. They get
in one's way and hence are much more noticeable than the things that are
well designed, efficient, and "smooth." The fact remains, however, that
overall we feel the system was a great success-and much of it ought to be
emulated in future systems.

Hydra/C.mmp routinely runs with from 8 to 16 processors, depending
upon how many are functioning at a given moment. Configuration is
automatic, and memory contention is negligible. It normally runs without an
operator and automatically detects and recovers from nearly all hardware and
software failures; the period between (necessary) manual reloads is more
than an order of magnitude larger than the time between failures.

Users routinely spawn a large number of processes, sometimes 50 or
more per job, and the overhead for managing these is comparable to, or less

282 MEASUREMENTS AND EV ALUA nON

than, those in other systems. When needed, essentially the full processing
power of the machine can be applied to a single problem. In· more typical
multi-user situations, response is comparable to that observed in conventional
systems.

Definition of traditional operating system facilities by user-level subsys­
tems is the norm. Several command languages, directory (catalogue) sys­
tems, file systems, and schedulers (Policy Modules) can and do coexist.
Through use of TypeCall, facilities such as command interpreters and com­
pilers need not know which file system, for example, they are using.

Hydrate.mmp works extremely well. Yes, there are rough edges, but its
remaining problems are those of any ambitious new system and provide the
fodder for further research. Hydra addresses problems that we feel will
become extremely important as computing becomes ever more ubiquitous.
We feel that the approaches and solutions it provides are portents of the
systems of the future.

[Alm77]

[Alm80]

[Amd64]

[BaI76]

[Bau78]

[Bha73]

[Bob72]

[Bri70]

[Bri7Il

[Bri75]

[Bri78]
[Bro75]

[Cai72]

[Che79]

[Coh75]

[Dah66]

[Dah68]

[DDH74]

REFERENCES

Almes, G., and G. Robertson. An Extensible File System for Hydra. Technical
Report, Carnegie-Mellon University, Computer Science Department, 1977.

Almes, G. T. Garbage Collection in an OQject Oriented System. PhD thesis,
Carnegie-Mellon University, Computer Science Department~ June, 1980.

Amdahl, G., G. Blaauw, and F. Brooks. Architecture of the IBM System/360.
IBM Journal q(Research and Development 8:87-101, April, 1964.

Ball, J. E., J. A. Feldman, J. R. Low, R. F. Rashid, and P. D. Rovner. RIG,
Rochester's Intelligent Gateway: System overview. IEEE Transactions on
Software Engineering 2(4):321-328, December, 1976.

Baudet, G. M. The Design and AnalysiS q(Algorithms for Asynchronous
Multiprocessors. PhD thesis, Carnegie-Mellon University, Computer Science
Department, April, 1978.

Bhandarkar, D., and S. H. Fuller. Markov Chain Models for Analyzing Memory
Interference in Multiprocessor Systems. In First Annual ACMIIEEE Sympo­
sium on Computer Architecture. ACM, December, 1973.

Bobrow, D. G., et al. TENEX, a Paged Time Sharing System for the PDP-lO.
Communications q(the ACM 15(3):135-143, March, 1972.

Brinch Hansen, P. The Nucleus of a Multiprogramming System.
Communications q(the ACM 13 (4):238ff, April, 1970.

Brinch Hansen, P. RC4000 Sq(tware Multiprogramming System. A/S Regnecen­
tralen, Copenhagen, 1971. Second Edition.

Brinch Hansen, P. A Programming Methodology for Operating System Design.
In Proceedings q(the 1975 International Conference on Reliable Software.
IEEE, 1975.

Brinch Hansen, P. Concurrent Pascal. Prentice-Hall, New York; 1978.
Brooks, F. P. Jr. The Mythical Man-Month. Addison-Wesley Publishing Co.,

1975.
Bell, C. G., and P. Freeman. C.ai-A Computer Architecture for AI Research.

In 1972 Fall Joint Computer Conference, pages 779-790. AFIPS Press, 1972.
Cheriton, D. R., et al. Thoth, a Portable Real-Time Operating System.

Communications qfthe ACM22(2):105-15, February, 1979.
Cohen, E. and D. Jefferson. Protection in the Hydra Operating System. In

Proceedings qf the 5th Symposium on Operating System PrinCiples, pages
141-160. November, 1975.

Dahl, O.-J., and K. Nygaard. Simula-An Algol-Based Simulation Language.
Communications q(the ACM9(9):67lff, September, 1966.

Dahl, O.-J. Simula 67 Common Base Language. Technical Report, Norwegian
Computing Center, Oslo, 1968.

Dahl, O.-J., E. W. Dijkstra, and C. A. R. Hoare. Structured Programming.
Academic Press, London, 1974.

283

284 REFERENCES

[DEC73]

[Den66]

[Den70]
[Dij68]

[Eng74]

[Ens77]

[Fab74]

[Fer74]

[Ful73]

[FuI78]

[Gra72]

[Gum78]

[Gut78]

[Gut80]

[Hea73]

[Hea75]

[Hoa74]

[lch79]

[Jai79]

[Jen76]

[JL75]

[Jon73]

[Jon75]

[Jon76]

PDP-11105110135140 Processor Handbook Digital Equipment Corporation, May­
nard, MA, 1973.

Dennis, J., and E. Van Horn. Programming Semantics for Multiprogrammed
Systems. Communications of the ACM9(3):143ff, March, 1966.

Denning, P. 1. Virtual Memory. Computing Surveys 2(3), September, 1970.
Dijkstra, E. W. Cooperating Sequential Processes. In F. Genuys (editor),

Programming Languages,. Academic Press, New York, 1968.
England, D. M. Capability Concept Mechanisms and Structure in System 250.

In 1R1A Workshop: Protection in Operating Systems. August, 1974.
Enslow, P. H. Multiprocessor Organization-A Survey. Computing Surveys

90):103-129, March, 1977.
Fabry, R. S. Capability-based Addressing. Communications q/ the ACM

17(7):403-412, July, 1974.
Ferrie, 1., et at. An Extensible Structure for Protected Systems' Design. In 1RIA

Workshop: Protection in Operating Systems. August, 1974.
Fuller, S. H., R. Swan, and W. A. Wulf. The Instrumentation of c.mmp: A

Multi-mini Processor. IEEE Compcon, 1973.
Fuller, S. H., and S. P. Harbison. The C.mmp Multiprocessor. Technical Report,

Carnegie-Mellon University, Computer Science Department, 1978.
Graham, G. S., and P. J. Denning. Protection-principles and practice. In 1972

Spring Joint Computer Conference, pages 417-424. AFIPS Press, 1972.
Gumpertz, R. The Hydra Users LibrQ/:Y- Technical Report, Carnegie-Mellon

University, Computer Science Department, 1978.
Guttag, 1. V., E. Horowitz, and D. R. Musser. The Design of Data Type

Specifications. In R. T. Yeh (editor), Current Trends in Programming
Methodology, pages 60-79. Prentice-Hall, 1978.

Guttag, 1. V. Notes on Type Abstraction (Version 2), IEEE Transactions on
Sq/tware Engineering 6(1):13, January, 1980.

Heart, F. E., et al. A New Minicomputer/Multiprocessor for the ARPA
Network. In 1973 National Compllfer Conference. AFIPS Press, 1973.
Volume 42.

Heart, F. E. The ARPA Network. In Grinsdale, R. L. and F. E. Kuo (editors),
Computer CommunicaTion Networks, pages 19-33. NoordhofT Int. Publ., 1975.

Hoare, C. A. R. Monitors: An Operating System Structuring Concept.
Communications 0/ the A C M 17 (I 0): 549ff, October, 1974.

Ichbiah, 1. D., et al. Preliminary ADA Reference Manual. ACM SIGPLAN
NOTices 14(6A), June, 1979.

Jain, N. Pet:/onnance STlIdy q/ SynchronizaTion Mechanisms in a Multiprocessor.
PhD thesis, Carnegie-Mellon University, Computer Science Department,
1979.

Jensen, K., and N. Wirth. Pascal User Manual and Report. Springer-Verlag, New
York, 1976. LeCTUre Notes in Complifer SCience, Vol. 18.

Jones, A. K .. and R. Lipton. The Enforcement of Security Policies for Compu­
tation. In Proceedings of the 5th Symposium on Operating SYSTem Principles.
ACM, November, 1975.

Jones, A. K. Protection in Programmed Systems. PhD thesis, Carnegie-Mellon
University, Computer Science Department, June, 1973.

Jones, A. K., and W. A. Wulf. Toward the design of secure systems. Sq(tware:
Practice and El(perience 5:321-333, 1975.

Jones, A. K. and B. H. Liskov. A Language Extension for Controlling Access to
Shared Data. IEEE Transactions on Sq!iware Engineering SE-2(4):277-285,
December, 1976.

[Jon791

[Kat781

[Kun761

[Lam691

[Lam73]

[Lam74]
[Lam76]

[Lam80]

[Lau79]

[Lin76]

[Lip75]

[Lis75]

[Lis77]

[Lis79]

[Lon75]

[Low77]

[Mar77]

[McC73]

[McG80]

[Mor73]

[New77]

[Ole77]

[Ole78]

REFERENCES 285

Jones, A. K., et al. STAROS-A Multiprocessor Operating System for Imple­
menting Task Forces. In Proceedings of the 7th Symposium on Operating
System Principles. ACM-SIGOPS, Pacific Grove, CA, 1979.

Katsuki, D. et al. Pluribus-An Operational Fault-Tolerant Multiprocessor.
Proceedings IEEE 66(10), October, 1978.

Kung, H. T. Synchronized and Asynchronous Parellel Algorithms for Multipro­
cessors. In J.F. Traub (editor), Algorithms and Complexity: Recent Results and
New Directions,. Addison-Wesley, 1976.

Lampson, B. W. Dynamic Protection Structures. In 1969 Fall Joint Compllfer
Conference, pages 27-38. AFIPS Press, 1969.

Lampson, B. W. A Note on the Confinement Problem. Communications of the
ACM16(iO):6i3ff, October, 1973.

Lampson, B. W. Protection. Operating Systems Review 8(1), January, 1974.
Lampson, B. W., and H. E. Sturgis. Reflections on an Operating System

Design. Communications Qfthe ACM 19(5):251-265, May, 1976.
Lampson, B., and Sturgis, H. E. Crash Recovery in a Distributed Data Storage

System. Communications of the ACM To appear.
Lauer, H. c., and R. Needham. On the duality of operating system structures.

In D. Lanciaux (editor), Operating Systems, North Holland Publishing Co.,
Amsterdam, 1979. Reprinted in Operating Systems Review 13(2), April 1979.

Linden, T. A. Operating System Structures to Support Security and Reliable
Software. Computing Surveys 8(4):409-445, December, 1976.

Lipner, S. B. A comment on the confinement problem. Operating Systems
Review 6(5):192-196, November, 1975.

Liskov, B. H. and S. N. Zilles. Specification Techniques for Data Abstractions.
IEEE Transactions on Software EngineeringSE-l, March, 1975.

Liskov, B. H., et al. Abstraction Mechanisms in CLU. Communications Qf the
ACM20(8):564-576, August, 1977.

Liskov, B. H., et al. CLU Reference Manual Technical Report TR-225, MIT
Laboratory for Computer Science, October, 1979.

London, R. L. A View of Program Verification. In Proceedings Qf the Interna­
tional Conference on Reliable SQftware, pages 534-545. IEEE Computer
Society, April, 1975.

Lowerre, B. The HARPY Speech Recognition System. PhD thesis,
Carnegie-Mellon University, Computer Science Department, 1977.

Marathe, M., and S. H. Fuller. A study of multiprocessor contention for shared
data in c.mmp. ACM SIGMETRICS Conference. Washington, D.C.,
December, 1977.

McCredie, J. W. Analytic Models Qf Time-shared Computer Systems: New Results,
Validations, and Uses. PhD thesis, Carnegie-Mellon University, Computer
Science Department, 1973.

McGehearty, P. Petformance Evaluation Qf a Multiprocessor Under Interactive
Workload. PhD thesis, Carnegie-MeHon University, Computer Science
Department, To appear.

Morris, J. H. Protection in Programming Languages. Communications of the
ACM 160):15-21, January, 1973.

Newcomer, 1., et al. Hydra: Basic Kernel Reference Manual. Technical Report,
Carnegie-MeHon University, Computer Science Department, 1976.

Oleinick, P. H., and S. H. FuHer. The Implementation and Evaluation Qf a Parallel
Algorithm on Cmmp. Technical Report, Carnegie-MeHon University, Com­
puter Science Department, December, 1977.

Oleinick, P. H. The Implementation and Evaluation Qf Parallel Algorithms on
Cmmp. PhD thesis, Carnegie-MeHon University, Computer Science Depart-

286 REFERENCES

[Orn75]

[Par71l

[Par72a]

[Par72b]

[Red74]

[Rei75]

[Rit74]

[Rot73]

[SaI74]

[SaI75]

[Sch72]

[Sn080]

[Str70]

[Stu74]

[Swa77]

[WaI79]

[Wei76]

[WiI79]

[Wir76]

[WuI71]

[WuI74]

[WuI75]

ment, November, 1978.
Ornstein, et al. Pluribus: A reliable multiprocessor. In 1975 National Computer

COf!!'erence. AFIPS Press, 1975.
Parnas, D. L. Information Distribution Aspects of Design Methodology. In

Proceedings ollFfP Congress, pages 26-30. IFIP, 1971. Booklet TA-3.
Parnas, D. L. A Technique for Software Module Specification with Examples.

Communications of the ACM 15:330-336, May, 1972.
Parnas. D. L. On the Criteria to be Used in Decomposing Systems into

Modules. Communications of the ACM 15(12), December, 1972.
Redell, D., and R. Fabry. Selective Revocation of Capabilities. International

Workshop on Protection in Operating Systems. (RIA, 1974.
Reid, B. K. and Newcomer, J. (ed). The Hydra Songbook-A Vigilante User's

Manual. Technical Report, Carnegie-Mellon University, Computer Science
Department, 1975.

Ritchie, D.M. and K. Thompson. The UNIX Time Sharing System.
Communications of the ACM 17(7):365-75, July, 1974.

Rotenberg, L. Making computers keep secrets. Technical Report TR-115, MIT
Project MAC, 1973.

Saltzer, J. H. Protection and the Control of Information Sharing in Multics.
Communications of the ACM 17(7):388-402, July, 1974.

Saltzer, J. H., and M. D. Schroeder. The Protection of Information in Computer
Systems. In Proceedings IEEE, pages 1238-1308. September, 1975.

Schroeder, M. D. Cooperation of Mutual(v Suspicious Subsystems in a Computer
Utility. PhD thesis, Massachusetts Institute of Technology, September, 1972.
MAC TR-104.

Snodgrass, R. COLA-A Command Language for Hydra. Technical Report,
Carnegie-Mellon University, Computer Science Department, 1980.

Strecker, W. Ana(vsis of the Instruction Execlltion Rate in Certain Computer
Systems. PhD thesis, Carnegie-Mellon University, Computer Science Depart­
ment, 1970.

Sturgis, H. E. A Post-Mortem for a Time Sharing System. Technical Report CSL
74-1, Xerox Palo Alto Research Center, January, 1974.

Swan, R., S. H. Fuller, and D. Siewiorek. CM*-A modular, multi­
microcomputer. In 1977 National Computer COf!{erence, pages 637-644.
AFIPS Press, 1977.

Walker, B., R. Kemmerer, and G. Popek. Specification and Verification of the
UCLA Unix Security Kernel. In Proceedings of the Seventh Symposium 0/1

Opera ling System Principles. ACM, December, 1979.
Weinstock, C. B. Dynamic Storage Allocation Techniques. PhD thesis,

Carnegie-Mellon University, Computer Science Department, April, 1976.
Wilkes, M. V., and R. M. Needham. The Cambridge CAP Compllter and its

Operating System. Elsevier/North-Holland Publishing Co., New York, 1979.
Wirth, N. Modula-A Language for Modular Programs. Technical Report,

Technische Hochschule Zurich, March, 1976.
Wulf, W. A., et al. Bliss: A Language for Systems Programming.

Communications oIthe ACM 14(2):780ff, December, 1971.
Wulf, W. A. Alphard: Toward a Language to Support Structured Programs.

Technical Report, Carnegie-Mellon University, Computer Science Depart­
ment, 1974.

Wulf, W. A. et al. Overview of the Hydra Operating System. In Proceedings of
the 5th Symposium on Operating System Principles, pages 122-13l. ACM,
November, 1975. Austin, Texas.

[WuI76]

[WuI78]

REFERENCES 287

Wulf, W. A., R. L. London, and M. Shaw. An Introduction to the Construction
and Verification of Alphard Programs. IEEE Transactions on Software
Engineering SE-2(4), December, 1976.

Wulf, W. A., and S. P. Harbison. Reflections in a Pool of Processors: An
Experience Report on c.mmp. In 1978 National Computer Conference.
AFIPS Press, 1978.

$Type$, 45, 73, 78

Abstract data types, 37-38, 43, 52, 174, 184
Abstraction, 37-38
Access control lists, 61
Access rights, 52-53

allowed-rights, 46
amplification, 53, 107
AppendCapaRts, 66
AppendDataRts, 66
auxiliary rights, 46, 65
capability rights, 65, 66
ChanKeTypeRt!:.~ 78
C-list rights, 66
ConnectRts, 96
CopyRts, 66, 73
CreateRts, 66, 73
data-part rights, 66
De/eteRts, 66, 108
EnvRts, 66, 108, 112, 115
generic, 46, 55
GetCapaRts, 66, 108
GetDataRts, 66
implementation, 55-58, 81
kernel rights, 46, 65, 108-109
KilIRts, 66
ModifyRrs, 66,108,110,124, 190
new-rights, 53
object rights, 65
propagation, 107
PutCapaRts, 66, 110
PutDataRts, 66, 110
required-rights, 53
restriction rights, 66
retrospective, 88, 116
Temp/ateRts, 78
UncfRts, 66, 108, 113, 115, 125
WriteRts, 190

Accounting, 161,279
Active fixed-part directory, 154
Active GST, 153

INDEX

Ada (programming language), 42
for 110, 200
processor modifications for, 13
(see a/so Relocation)

Address space, 13
Algol'68,8
Allowed-rights, 46
Almes, G., 263, 268
Alphard (programming language), 42
Amplification, 53, 107

restrictions, 110, 112
retrospective, 59
template, 53

AppendCapa, 72
AppendCapaRts, 66
AppendData, 71
AppendDataRts, 66
ARPANET, 17, 103, 129-135,264

connections, 130, 134-135
HOST-HOST communication, 133-134
IMP-HOST communication, 131-133
links, 130
NCP, 129-135
protocols, 129-131
sockets, 130

ASP (IBM), 3
Asynchronous Gauss-Sidel method (for POE's),

236
Asynchronous Jacobi method (for POE's), 235
A ttachPolicy, 168
Authenticate, 142-144
Authority-based protection, 61
A utorestart, 212- 213
Auxiliary rights, 46, 65

ChangeTypeRts, 78
ConnectRts, 96
Temp/ateRts, 78
WriteRts, 190

Backup (of GST), 161,279
Bauder, G., 234

289

290 INDEX

BBN Pluribus, 9, 19
Bhandakar, Do, 239
Bliss, 7, 80, 101, 256, 260

retrospective, 280
Box subsystem (example), 79-88
Brinch Hansen, Po, 33
Brooks, Fo, xv
Burroughs D825, 3, 9

C (programming language), 8
C.ai,3
Cache, 23-24, 241

Cacheable bit, 16, 24
Call, 44,51,74, 107

definition, 55
performance, 255- 260

Call mechanism (see cam
retrospective, 61, 89, 278

Capability, 43, 46-47
active form, 154
capability rights, 65, 66
passive form, 154
retrospective, 278

Capability list (see C-list)
Catalogue System, 8, 48
CLength,70
C-list, 47, 154

rights, 66
Clock, time of day, 16, 17
Close, 123
CLU (programming language), 42
Cm*, 4,9
Command language, 8, 80, 139, 143, 144
Compare, 71
Confinement problem, 108, 113-115, 120
Connect, 96

ARPANET, 130, 134-135
Message System, 92

Conservation problem, 108, Il2-Il3
Contention, 4, 24, 202, 232, 239-243, 271, 275

on locks, 271
retrospective, 271

CONTINUE control function, 17
cacheable, 16, 24
dirty, 16, 193
NXM, 16, 190
write-protect, 16

Copy, 73
CopyRts, 66, 73
Cost of C. mmp, 25
CPSLoad, 189
CPS UnL oad, 189
Create, 45, 73
CreateMsg, 98
CreateRts, 66, 73

Creation template, 53, 73, 82
Crosspoint switch, 9, 14, 19-22, 275

address parity, 20, 23
components, 19
contention, 4, 24, 202, 232, 239-243, 271,

275
cost, 25
implementation, 20
priority resolution, 20, 241
priority resolution performance, 242
retrospective, 28

D825 (Burroughs), 3, 9
DARPA, 3, xvii
Data abstraction, 37-38, 43, 52, 174, 184

retrospective, 184
DATA object, 78
Data-part, 47, 154

rights, 66
DEC, 10

PDP-lO, 197,261. 264
PDP-I0 performance comparison, 237, 238

Definition
AppendCapa, 72
AppendCapaRts, 66
AppendData, 71
AppendDataRts,66
A ttachPolicy, 168
Call, 44, 51, 55, 74
capability, 43, 46-47
CLength, 70
Compare. 71
Connect, 96
Copy, 73
CopyRts, 66, 73
CPSLoad, 189
CPSUnLoad, 189
Create, 73
CreateMsg, 98
CreateRts1 66, 73
Delete, 72
DeleteRts, 66
Disconnect, 96
DLength,70
EnvRts,66
GetCapa,71
GetCapaRts, 66
GetData,71
GetDataRts, 66
GetMsgCapa, 98
glitch,27
Hydra (object) types, 43, 45-46
InterchangeCapa, 72
KiIIRts,66
LNS. 44. 49-51

LNSLength, 70
MakeA mp/{fication Template, 76
MakeCreationTemplate, 73
MakePort, 96
MakeProcess, 168
MakeSimpleTemplate, 75
mechanism, 35
Merge, 53-55, 74
ModffyRts, 66
object, 43, 44-45
Objlnfo, 71
PassCapa, 72
path,65
policy, 35
Policy object, 167-171
procedure, 44, 51-52
Process, 52
PwCapa, 71
PutCapaRts, 66
PutData, 71
PlltDataRts, 66
PwMsgCapa, 98
ReadMsg; 98
ReceiveMsg, 99
R eceivePo /icy, 169
ReplyMsg, 99
ReqlleueMsg, 100
Restrict, 72
Return, 51, 75
RPSLoad, 189
RSVPMsg,99
RunTime, 170
SetSchedParms, 168
Start, 169
Stop, 169
TakeCapa, 72
template, 44
TypeCall, 76
Un(fRts,66
Update, 78
WriteMsg, 98

Delete, 72
DeleteRts, 66, 108
Demand paging, 187

GST,157
paging, 193
reliability watchdogs, 212
retrospective, 185, 194

Dennis, J", 60
DESCAL (speech recognition task), 237
Device Allocation System, 148
DEVICE object, 131, 141, 196
Differential equations (parallel algorithms), 234
Digital Equipment Corporation (see DEC)

of active fixed-parts, 154

example, 48
of passive fixed-parts, 156
System, 148
(see also Catalogue System)

Dirty bit, 16, 193
Disconnect, 96
Disk (paging), 24
DLength,70
DMA I/O, 200--201
Domain, 49

INDEX 291

Duration (of kernel critical sections), 249

EnvRts, 66, 108, 112, 115
hardware, 23
retrospective, 213
software, 207, 209-21 0
tracking registers, 23
accumulator, 221
action, 221
definition, 221

Exception handling, 101

Fault tolerance, 87, 207, 208-209
File System, 8, 119-126

operations, 122-124
protection, 124-126
representation, 121
reir()spective, 126
subfile operations, 123
subfiles, 120--122
synchronization, 121

Fixed':'part, 154
Fork System, 148
Fortran, 8
Front End processor, 141

Garbage collection, 157
parallel, 158

Generic operations and rights, 46, 55
GetCapa, 71
GetCapaRts, 66, 108
GetData, 71
GetDataRts, 66
GetMsgCapa,98
Glitch, 27
Global Symbol Table (see GST)

of Hydra, 31-41
retrospective, 58
of the Message System, 91

Graph structure of objects, 47
GST, 7, 153-160

active, 153
active GST performance, 264
demon, 157
fixed-part, 154

292 INDEX

implementation, 153-160
lack of a backup mechanism, 161, 279
object creation rate, 265
passive, 153
passive GST performance, 268-271
performance, 160, 263-268
reliability, 159-160, 161
retrospective, 160

HALT control function, 17
cost, 25
error detection, 23
performance, 25-27
performance factors, 231
performance monitor, 220, 221
reliability, 27, 276
research issues, 4
retrospective, 27
technology of C. mmp, 25

HARPY, 237, 255
Hercules (script driver), 221, 229- 230
History of Hydra/C.mmp, 6
Honeywell 645 (Muitics), 9
HOST -HOST communication, 133-134

ASP, 3
OS/360,61
System1360, 9, 31, 32, 197, 253

IMP-HOST communication, 131-133
of access rights, 55-58, 81
of I/O System, 198-202
of KMPS, 174-184
of objects, 154
of the GST, 153-160
of the Paging System, 191

Initialization problem, 108, l15-116
Input channel, 95
InterchangeCapa, 72
lnlerprocess communication, 91-104, 196
[nterprocessor bus, 9, 16-17, 24

control functions, 17
interrupts, 16, 200, 275
interval timer, 16
time of day clock, 16, 17

Interprocessor interrupt, 16, 200, 275
Interval timer, 16

address mapping, 200
configuration tables, 198
direct memory access, 200- 20 I
hardware, 195-196,275
implementation, 198-202
kernel i/o, 202-203
reliability, 201-202
retrospective, 203
System, 195-203

user-level, 196-198
via the Message System, 93

IP bus (see Interprocessor bus)

IPI (see Interprocessor interrupt)

Jain, N., 245
JMON,141
JOB System, 146-147
Jones, A., 7

K.mon, 220, 221
event accumulator, 221
event action, 221
event definition, 221

Kall (see Kernel Kalis)
Kernel 1/0, 202-203

AppendCapa, 72
AppendData, 71
A ttachPolicy, 168
Call, 44,51,74
CLenKth,70
Compare, 71
Connect, 96
Copy, 73
CPSLoad, 189
CPS UnL oad, 189
Create, 73
CreateMsK, 98
Delete, 72
Disconnect, 96
DLem:th,70
GetCapa, 71
GetData, 71
GetMsgCapa, 98
InlerchanKeCapa, 72
LNSLength, 70
MakeA mpl!/lco!ion Template, 76
MakeCreation Template, 73
MakePort, 96
MakeProcess, 168
MakeSimpleTemplate, 75
Merge, 53-55, 74
notation, 68
OQj/n/o, 71
PassCapa, 72
performance, 255-260
PutCapa, 71
PutData, 71
PutMsgCapa, 98
ReadMsg, 98
ReceiveMsg, 99
ReceivePolicy, 169
ReplyMsg, 99
RequeueMsg, 100

Restrict, 72
Return, 51, 75
RPSLoad, 189
RSVPM!lg, 99
RunTime, 170
SetSchedPanns, 168
Start, 169
Stop, 169
TakeCapa, 72
TypeCal/, 76
Update, 78
Write/visg, 98

Kernel Multiprogramming System (see KMPS)
Kernel object types, 78- 79

PORT,78
cps, 78,188-190
DATA, 78
DEVICE,78
LNS, 44, 49-51
PAGE, 78,188-190
POLICY, 78,167-171
PROCESS, 78, 167-171
RPS, 78,188-190
SEMAPHORE, 78, 172, 173
TYPE, 45, 73, 78
UNIVERSAL, 78

Kernel properties, 32, 33, 41
Kernel rights, 46, 65, 108-109

AppendCapaRts, 66
AppendDataRts, 66
CopyRts, 66, 73
CreateRts, 66, 73
DeleteRts, 66, 108
EnvRts, 66, 108, 112, 115
GetCapaRts, 66, 108
GetDataRts, 66
KillRts, 66
Mod{lyRts, 66, 108, 110, 124, 190
PutCapaRts, 66, 110
PutDataRts, 66, 110
retrospective, 88, 116
UncfRts, 66, 108, 113, 115, 125

Kernel semaphores, 172
performance, 246-249
timing data, 246

Kernel tracer, 220, 223-228
example output, 225
performance, 224

KiIIRts, 66
KMPS, 7, 36, 163-184

implementation, 174-184
interaction with paging, 190-191, 194
kernel semaphores, 172
Lock operation, 172

LockModule, 175
locks, 172
number of slices, 164, 165
P operation, 173
parameters, 164-167
priority, 164, 165
ProcessModule, 175
processor mask, 164, 166
ProcessorModule, 175
QueueModu/e, 175
retrospective, 184
ScileduierModuie, 176
SEMAPHORE objects, 172
SemaphoreModule, 176
stop message, 169

INDEX 293

synchronization mechanisms, 171-174
time slice limit, 164, 165
Unlock operation, 172
V operation, 173
wait time, 164, 166, 174, 233, 249
working set limit, 164, 190

L*, 8, 256
Languages

Ada, 42
Algol 68,8
Alphard,42
Bliss, 7, 80, 10 L 256, 260
C,8
CLU, 42
command language, 8, 80, 139, 143, 144
Fortran, 8
L*, 8, 256
notion of type, 37
Pascal, 80, 174
PUl, 101
Simula, 37, 42

Links, 130
LNS, 44, 49-51, 55
LNSLength, 70
Local name space, 44, 49- 51
Lock operation, 172
LockModule, 175
Locks, 172

contention, 271
number used, 244
performance, 243-245
retrospective, 277
timing data, 277

Logging in, 142-144
Logging out, 144-145

MakeAmp/[frcationTemplate, 76
MakeCreationTemplate, 73

294 INDEX

MakePort, 96
MakeProcess, 168
MakeSimpleTemplate, 75
Marathe, Mo, 239, 243, 253
McCredie, Jo, 239
McGehearty, Po, 241, 255, 262
Memory contention, 4, 24, 202, 232, 239-243,

271, 275
Memory-processor switch (see Crosspoint

switch)
Merge, 53-55, 74
Message System, 91-104,119,131,196

connections, 92
goals, 91
110,93
message types, 92, 97
messages, 92
replies, 93
reply mask, 97

Message type, 92, 97
Modification problem, 108, 110, 120
ModifyRts, 66, 108, 110, 124, 190
Monitor (see Komon)
Multics, 9, 60
Mutual suspicion problem, 108, 109-110

NCP, 129-135
ARPANET protocols, 129-131
retrospective, 135

Needham, Ro, 279
Network Control Program (see NCP)
New-rights, 53
Non-hierarchical protection, 109

for kernel Kalis, 68
for object graphs, 63-65
paths, 65

NXM, 16, 190
control bits, 16, 190
trap, 23

Objects, 43, 44-45
C-list, 47, 154
creation rate, 265
data-part, 47, 154
definition, 43, 44-45
fixed-part, 154
graph structure, 47
implementation, 154
locking performance, 265
number in system, 265, 268
number of types, 265, 268
observed reference counts, 265, 269
representation, 45, 47-49. 154
retrospective, 272, 278
rights, 65

sizes, 265
type, 45
(see also GST)
(see also Kernel object types)

O~ilnfo, 71
Oleinick, Po, 230, 237
ONR, xvii
OpenForRead, 122
OpenForWrite, 122
Output channel, 95

P operation, 173
Page frame, 188-190

disk (drum), 24
Paging System, 187-194

implementation, 191
interaction with scheduling, 190-191, 194
paging demon, 193
replacement policy, 193-194
retrospective, 194
state of a page, 191
asynchronous Gauss-Sidel method, 236
asynchronous Jacobi method, 235
HARPY, 237, 255
partial differential equations, 234
purely asynchronous method, 236
RootFinder, 230

Parallel garbage collection, 158
in Hydra kernel, 40-41, 163-184
in user programs, 40-41, 91
(see also Parallel algorithms)

Parameter template, 54
(see also amplification template)
(see also simple template)
address, 20, 23
memory, 23

Pascal, 80, 174
PassCapa, 72
Passive fixed-part directory, 156
Passive GST, 153
Path, 49, 65

definition, 65
notation, 65
pre target, 65
steps, 65
target, 65

PDP-lO, 197,261,264
performance comparison. 237, 238

PDP-l1/40E, 8, 9, 10
Performance, 219-273

active GST, 264
basic hardware, 25-27
crosspoint switch priority resolution, 242
duration of kernel critical sections, 249
error detection/recoverv. 214

experiments, 230-271
GST, 160, 263-268
hardware factors, 231
hardware monitor, 220, 221
inter-communication intervals, 252
inter-synchronization intervals, 249
Kall frequency, 255- 260
Kall timings, 255- 260
kernel locks, 243-245
kernel semaphores, 246- 249
kernel size, 260- 262
kernei tracer, 220, 223-228
lock timing data, 277
number of objects, 265, 268
number of types, 265, 268
object creation rate, 265
object locking, 265
object sizes, 265
passive GST, 268-271
Port timing data, 250
Ports, 245-253, 271
ROOf Finder, 231, 233
script driver, 221, 229-230
SEMAPHORES; 245- 253
small-address effect, 253-255
snapshot taker, 220, 228-229
stretch factor, 262- 263
synchronization mechanisms, 233, 243-253,

272
timing of kernel semaphores, 246
tools, 220- 230
variations, 231

PUl, 101
Pluribus (BBN), 9, 19
PM (see Policy Module)
Policy Module, 8, 36, 144, 163

retrospective, 59, 272
stop message, 169
(see also KMPS)

Policy object, 167-171
Policy/mechanism separation, 33, 35, 41, 163,

195, 272
mechanism definition, 35
policy definition, 35
retrospective, 59, 272

Port System (see Message System)
Ports, 91-104

input channel, 95
message slots, 95
output channel, 95
performance, 245-253, 271
PORT objects, 92
timing data, 250

Pretarget (in a path), 65
Procedure, 44, 51-52, 55

protection, 52-53, 107
Process, 52
ProcessModule, 175

Processor modifications, 13, 22-23
address mapping, 13
stack protection, 13

ProcessorModule, 175

Productivity, 126
Propagation of access rights, 107
Properties of a kernel, 33, 41

INDEX 295

at Procedure invocation, 52-53, 107
Hydra's philosophy, 34-35
non-hierarchical, 109
relation to abstract data types, 40, 52-53
retrospective, 116-117
and security, 58
in the File System, 124-126
use of the Hydra mechanisms, 107-117
what to protect, 39

Protection domain, 49
confinement, 108, 113-115, 120
conservation, 108, 112-113
initialization, 108, 115-116
modification, 108, 110, 120
mutual suspicion, 108, 109-110
other, 117

Purely asynchronous method (for POE's), 236
PurCapa, 71
PUfCapaRfs, 66, 110
PIIfDafa, 71

PurDafaRfs, 66, 110
PIIfMsgCapa, 98

QlleueModu/e, 175

ReadMsg, 98
ReceiveMsg, 99

ReceivePo/i(v, 169

Reference counts, 265, 269
address parity, 27, 276
autorestart, 212- 213
crosspoint switch, 27
GST, 159-160, 161
hardware, 27, 276
110, 201-202
performance, 214
retrospective, 27,161,204,213,281
software, 207-213
software diagnostic mechanisms, 207,

210-211
software error detection, 207, 209- 21 0
software fault tolerance, 207, 208-209
software recovery mechanisms, 207, 211- 212
software techniques, 159-160
software validation, 207, 208

296 INDEX

suspect-monitor, 212
watchdogs, 212

Relocation, 14, 15
cacheable bit, 16, 24
control bits, 16
dirty bit, 16, 193
for I/O, 200
NXM, 16, 190
write-protect, 16

Replacement policy, 193-194
Reply, 93
Reply mask, 97
ReplyMsg, 99

C-list,47,154
data-part, 47, 154
files, 121
Hydra objects, 45, 47-49, 154

RequeueMsg, 100
Required-rights, 53

hardware, 4
software, 4, 5

Restrict, 72
Restriction rights, 66
Retrospective

access rights, 88, 116
amplification, 59
Bliss, 280
capabilities, 61, 89, 278
contention, 271
crosspoint switch, 28
data abstraction, 184
demons, 185, 194
error detection, 213
File System, 126
GST,160
hardware, 27
Hydra protection mechanism, 116-117
Hydra's goals, 58
implementation language, 277
110,203
kernel facilities, 88-89
KMPS, 184
KMPS-PM interaction, 184, 194,278
locks, 277
management, 280

Message System, 102-104
mistakes, 60, 149, 276
multiple synchronization mechanisms, 277
NCP, 135
object model, 278
objects, 272, 278
on the Retrospective, 281
paging, 194,
policy modules, 59, 272
policy/mechanism separation, 59, 272

reliability, 27, 161,213,281
revocation, 279
scheduling, 185
small address problem, 27, 273
software reliability, 204
subsystems, 149
symmetric system, 277
synchronization, 272
tools, 271
type mechanism, 278
TypeCall, 89
use of processes, 277
user-level operating system, 149

Return, 51, 75
Revocation, 279
Rights (see Access Rights)
RootFinder, 230, 240, 244, 254

expected performance pattern, 230
performance, 231, 233

RPSLoad, 189
RSVPMsg, 99
RunTime, 170

SAP (see Small address problem)
SchedulerModule, 176

implementation, 180
Scheduling, 163-184

interaction with paging, 190-191, 194
medium-term, 163
parameters, 164-167
retrospective, 185
short-term, 163, 164
(see also KMPS)

Scheduling parameters, 164-167
number of slices, 164, 165
priority, 164, 165
processor mask, 164, 166
time slice limit, 164, 165
wait time, 164, 166, 174, 233, 249
working set limit, 164, 190

Script driver, 221, 229- 230
Security, 58
SemaphoreModule, 176

implementation, 178
Kernel, 172
object type, 172
performance (kernel semaphores), 246- 249
performance (SEMAPHORE objects), 245- 253

SetSchedParms, 168
Simula, 37, 42
SIX12 (debugger), 8
Size of Hydra, 260-262
Small address problem, 14,27, 187, 253-255,

261, 273, 275
retrospective, 27, 273

Snapshot taker, 220, 228-229
Socket, 130
Software research issues, 4, 5
SOS,256

DESCAL task, 237
HARPY System, 237, 255
information retrieval task, 237

Stack protection, l3
Start, 169
ST ART control function, 17
State of a page object, 191
Steps (in a path), 65
Stop, 169
Stop message, 169
Strecker, W., 239
Stretch factor, 262-263
Structured programming, 37
Su~fileCiose, 123
Su~fileRead, 123
Subfiles, l20-122
Su~file Write, 123
Subsystems, 39, 41

Box (example), 79-88
Catalogue System, 8, 48
device allocation, 148
directories, 148
example, 79-88
File System, 8, 119-126
Fork, 148
GST, 7,153-160
I/O, 195-203
JMON,141
JOB, 146-147
KMPS, 7, 36, 163-184
Message System, 91-104,119, l31, 196
Paging, 187-194
Policy Modules, 8, 36, 144, 163
retrospective, 149
SOS, 256
SYSMON,149
TECO, 256
TMUX, 141
UserToken, 142-144

Suspect-Monitor mode, 212
examples, 87, 124
mechanisms, 171-174
object locking performance, 265

INDEX 297

performance, 233, 243-253, 272
retrospective, 272, 277

SYSMON,149

TakeCapa, 72
Target (in a path), 65
TECO, 256
Templates, 44, 55

amplification, 53
creation, 53, 73, 82
parameter, 54
simpie,53
use with Merge, 53-55

Terminal multiplexor, 141
Terminal session (example), l39
Time-sharing performance (stretch factor),

262-263
TMUX, 141
Tools for performance measurement, 220-230
Tracking registers, 23
Traps (NXM), 23
Type

abstract data types, 37-38, 43, 52, 174, 184
definition facilities, 37
Hydra definition mechanism, 73
Hydra objects, 43, 45-46
of messages, 92, 97
number of types, 265, 268
object sizes as a function of type, 265
in programming languages, 37
relation to protection, 40, 52-53
retrospective on the Hydra mechanism, 278
TYPE objects, 45, 73, 78

TypeCall, 76, 119, 144
retrospective, 89

Unc.fRts, 66, 108, 1l3, 115, 125
Unique-name, 44, 46
UNIVERSAL object, 78
UNIX performance comparison, 237
Unlock operation, 172
Update, 78, 87

Voperation, 173
Van Horn, E., 60
Virtual machine, 33

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298

