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PREFACE 

The authors are three of the designer-implementors of Hydra/C.mmp, a 
unique computing system. C.mmp is a multiprocessor composed of 16 
minicomputers and a large shared memory~ Hydra is the kernel of its 
operating system. 

Together, C.mmp and Hydra have demonstrated that multiprocessors can 
be extremely cost effective~ Hydra/C.mmp does not suffer from most of the 
performance problems experienced by some earlier multiprocessor systems. 
They have also demonstrated the power and flexibility of what is possibly the 
most sophisticated protection facility ever implemented. Finally, they have 
provided a vehicle for exploring algorithms and program structures that 
exploit asynchronous parallel processing. This book is a detailed examination 
of this ambitious system - its structure, its facilities, its usability, and its 
performance. 

Hydra/C.mmp, like all large systems, was the result of an enormous 
number of interrelated decisions. Sorrietimes we knew the design alternatives 
and could evaluate them. Sometimes we knew the alternatives, but were 
frustrated by a lack of data on which to base an objective choice. More often 
than one might suspect, we defaulted decisions because we did not even 
appreciate that alternatives existed. 

The result is a computing system that works well. It's a system that we 
are extremely proud of, even though it is far from perfect. We and our 
colleagues have invested a great deal of effort in using it, in measuring it, and 
in analyzing its performance-and we have discovered many of its faults. In 
his book The Mythical Man-Month [Br0751, Fred Brooks advises building a 
system twice, and throwing the first version away. If we had the opportunity 
of doing that, we could now correct many of the system's faults. Like many 
other designers, however, we did not have that luxury. Instead, we are using 
this book to disseminate our experience to other designers and implementors 
of computing systems. We believe these people will have some of the same 
goals and will face some of the same problems that we did. Thus, we have 
two objectives: 

xv 
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• We want to describe the system from both the user's and the 
implementor's perspective, detailing the esthetic goals and pragmatic 
choices which led us to the final structure . 

• We want to provide both objective data and our own subjective evalu­
ations so that our readers may analyze the consequences of our decisions 
and appreciate the strengths and weaknesses of the design. 

We have tried to organize this book to complement these objectives. 
First, we must describe the system, and thus our design decisions. There are 
three aspects to this: background information, the external model presented 
by the system (the "user's view"), and the internal organization (the 
"implementor's view"). Second, we must provide information on which the 
reader may base an evaluation. There are also three aspects to this: the 
usability of the external model, the performance of the implementation, and 
our subjective impressions of what we did right and what we did wrong. 
With one exception, we have tried to isolate each of these kinds of infor­
mation into separate chapters~ the exception is that most descriptive chapters 
conclude with a "Retrospective" section that captures our subjective reac­
tions. Otherwise, the organization is as follows: 

Part I (Chapters 1 and 2) provides background information. It includes a 
brief history of the project and a description of the C.mmp hardware 
design. 

Part II (Chapters 3 to 6) describes the external, user-visible model provided 
by Hydra. It begins by stating and amplifying a major goal of Hydra - to 
allow operating system facilities to be defined by users. It then goes on 
to show how this goal is achieved by an extensible, capability-based 
protection mechanism. 

Part III (Chapters 7 to 10) illustrates the use of the facilities provided by 
Hydra. We really have two objectives for these chapters. One is to 
describe some specific, interesting problems and facilities. The other is to 
give the reader a "feel" for what it's like to build such facilities and thus, 
indirectly, to provide information on which to base a judgment of the 
usability of the external model. 

Part IV (Chapters 11 to 15) describes the implementation of some of the 
major components of the Hydra kernel. Again, our objective is to be 
descriptive and thus to record our design and implementation decisions. 

Part V (Chapters 16 and 17) returns to evaluation. Chapter 16 summarizes 
the results of a number of studies of the performance of the system. 
Chapter 17 collects the major reflections from the previous chapters. 

In our descriptions, we have not tried to be exhaustive. We have not, 
for example, defined all the operations provided by the Hydra kernel. 
Neither have we tried to describe all the data structures and algorithms used 
throughout the implementation. Instead, we have attempted to present 
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enough detail so that the reader can project at least one plausible implemen­
tation from the information presented. Our evaluation material is similarly 
not exhaustive; it is intended to provide the intuitive "gist" of some actual 
experiments and their results. The complete details can be found in the cited 
papers, theses, and reports. 

Hydra/C.mmp, like most research efforts, contains some innovative ideas 
and some re-engineering of existing ones. Even innovative notions, how­
ever, are generally derived from previous work in related areas. It is 
impossible for us to acknowledge specifically the source of every technical 
idea used or expioited in Hydra. Karner, in ihose chapters in WhICh we 
believe our work represents a significant innovation (primarily in Part II), we 
have appended a brief survey of related papers from which our work derives 
or with which it may be contrasted. In chapters in which' we describe Hydra 
facilities or components that are largely manifestations of the "common 
wisdom," we have simply cited major or representative works in the relevant 
areas. 
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CHAPTER 

ONE 
INTRODUCTION 

This monograph discusses Hydra/C.mmp, an experimental computer system 
built by the authors and their colleagues at Carnegie-Mellon University 
between 1971 and 1977. C.mmp is a multiprocessor computer, consisting of 
up to 16 minicomputers and 32 megabytes of shared memory connected by a 
central processor/memory switch. Hydra is the kernel of the operating 
system for C.mmp. 

The Hydra/C.mmp project began, slowly, in 1970. It grew out of a study 
at Carnegie-Mellon University, sponsored by DARPA, l into suitable com­
puters for future research in artificial intelligence. The recommendation of 
that study was a multiprocessor, called C.ai [Cai72]. Even though this 
machine was never built, the study served to emphasize the potential benefits 
of interconnected, small, inexpensive computers. It also emphasized how 
little had been published on the design and performance of this kind of 
machine. 

The potential advantages of multiple computer structures were obvious in 
1970; they included improved cost/performance, greater absolute perform­
ance, incremental expansability, and improved reliability and availability. The 
singie-chip microprocessor was also on the horizon; although there were 
clearly many single-processor applications for these machines, it seemed 
possible that there would also be great advantages to multiple microprocessor 
systems. 

It was also obvious in 1970 that these were only potential advantages. 
Whether or not such systems would actually be more cost effective, etc., was 
an open question. A number of interconnected computer structures had 
been built-in fact, the idea was an old one. There were examples of both 
loosely coupled systems (e.g., the IBM ASP) and tightly coupled multipro­
cessors (e.g., the Burroughs 0825), but there wasn't a great deal of data in 
the literature about the performance of these systems. The stories that one 
heard were quite discouraging, but it was difficult to determine what aspect of 
the system design or application programs were responsible for the problems. 

It was in this climate that we undertook to study interconnected com­
puter structures, and multiprocessors in particular. We wanted to understand 

IThe Defense Advanced Research Projects Agency, DOD 
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4 BACKGROUND AND HARDWARE 

what kinds of interconnection structures, what kinds of software structures, 
what kinds of user facilities, and what kinds of programming languages and 
algorithms would achieve the advantages these systems offered. We realized 
that this research would be difficult in several ways. First, we suspected that 
no single design would simultaneously achieve all the advantages. Second, 
we knew that we would have to build, use, and instrument fairly large, 
realistic systems, and measure them running realistic applications in order for 
our conclusions to be meaningful. Finally, we knew that we would have to 
build more than one system in order to explore and contrast the alternatives. 

These realizations determined a research strategy that we have pursued 
for nearly a decade. That strategy has been to build a number of multipro­
cessor systems, each exploring a distinct. point in the design space. We began 
with a tightly coupled multiprocessor, C.mmp, in 1971. In 1975, with the 
bulk of the Hydra/C.mmp development behind us, another group at C-MU 
undertook to build Cm*, [Swa77], a more loosely coupled multiprocessor. As 
of this writing, a third group is beginning an even more distributed system. 
With each system, augmented by numerous efforts elsewhere, we get closer 
to our goal of understanding the available alternatives. 

This book marks the endpoint of our first major experiment. It is not, in 
itself, a complete exploration of all the alternatives in the design space. On 
the contrary, it describes only one particular point in that space-an attempt 
to optimize the usability and performance of a tightly coupled multiprocessor. 
This book attempts to describe and evaluate the system in sufficient detail 
that its properties can be related and compared to those of other systems. 
The actual task of making those relations and comparisons, however, we 
leave to our readers. 

There are, of course, two distinct aspects in any computing system, 
including Hydra/C.mmp-the hardware and the software. Each of these 
poses a set of research issues that has to be addressed relative to the general 
goal of understanding multiprocessor systems. The hardware issues are 
constrained by the tightly coupled nature of C.mmp and primarily revolve 
around avoiding contention for access to the primary memory. The issues of 
incremental expansion and reliability were considered secondary, since the 
nature of the processor-memory switch places an a priori bound on the 
number of processors in the system and constitutes, in principle, a reliability 
bottleneck.2 

The software issues surrounding the C.mmp hardware are more complex 
than those for the hardware for two reasons: (1) there is a much larger set of 
possible design choices for the software, and (2) we must be concerned with 
"usability," a subjective issue, as well as performance. Some of the software 
design decisions are related to the fact that C.mmp is a multiprocessor~ many 
are not. A whole class of decisions, for example, follow from using a 

2Interestingly, however, the processor-memory switch proved to be the least of c'mmp's 
reliability problems, as will be seen in Chapters 2 and 15. 
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particular minicomputer, the PDP-ll, as the system's processing element. A 
more consequential class of decisions, however, followed from a chain of 
reasoning that went something like this: 

We want to learn about the consequences of different designs on the usability and 
performance of mUltiprocessors. Unfortunately, each decision we make precludes us from 
exploring its alternatives. This is unfortunate, but probably inevitable for the hardware. 
Perhaps, however, it is not inevitable for the software, and especially for the facilities 
provided by the operating system. 

Suppose that we build ~:mly the "kernel" of an operating system and allow most 
operating system faciiities to be buiir as user programs-then it wouid be easy to buiid and 
experiment with different kinds of facilities. We would learn more this way and would not 
lock our users into a single model of how to use C.mmp~ two users, for example, could use 
completely different file systems-each tuned to the special needs of that user. 

We also want a "general purpose," "multi-access," "time-sharing" system~ only such a 
system will allow several experimenters to be developing applications for C.mmp simulta­
neously. The advantages of the user-level definition of operating system facilities would be 
lost if all users had to use the same version of a facility just because they happen to be 
running at the same moment. Therefore, it must be possible for each user to have a private 
and independent version of the facilities. 

To satisfy these objectives, we are going to need a pretty clever protection structure. 
It's going to have to have at least two properties: 

• It will have to be strong enough to allow sensitive facilities, such as the file system, to 
be defined and protected by user-level programs. 

• It will have to be extensible, so that new kinds of facilities can be created dynamically 
and still be covered by the protection system. Simple hierarchical protection, such as 
that in Multics [SaI74], will be inappropriate for this system: one cannot say whether one 
facility is "more privileged" than another when they are dynamically and independently 
created. 

Obviously, this protection will have to be enforced by the kernel~ we can't trust that to 
user-level programs. 

The capability model originally defined by Dennis and Van Horn [Den66], modified a 
bit to allow for dynamic extension, does what we need. And, by the way, there are some 
interesting protection problems that we can also solve if we use capabilities. 

The result was Hydra. Initially motivated by a desire to maximize the 
information to be gained from the C.mmp experiment, we were led by this 
chain of reasoning to a second and almost independent research goal: the 
user-level definition of operating system facilities. 

Hydra's first goal, of course, was simply to be a good, general-purpose, 
multiprocessor operating system-one which could support many different 
users who wished to take advantage of the multiprocessor nature of C.mmp 
without incurring undue overhead. (To make the system maximally available 
for experimentation, we also felt that it should be a time-sharing system.) It 
was not obvious in the beginning that all this could be done; other multipro­
cessor systems had experienced debilitating software overheads and conten­
tion. Thus the research issues derived from this goal were: 

1. Can we devise a set of facilities with which users can easily develop and 
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measure multiprocessing programs? 
2. Can we devise a system structure free of (serious) software overheads 

and contention? 
3. Can we devise resource allocation and scheduling policies that work well 

in a multiprocessor environment? 

The second goal of Hydra was to permit essentially all the facilities one 
normally associates with an operating system to be defined by user-level 
programs-programs without special privileges. Moreover, we wanted to 
allow an arbitrary number of such definitions to exist (and be used) simulta­
neously. Except for the initial line of reasoning sketched above, this goal has 
nothing to do with multiprocessors. Yet, if one must rank them, we came to 
believe that this was the more important goal. The research issues revolving 
around it were: 

1. What semantic model for the kernel will allow for user extension? 
2. How does one provide protection in a system where even such funda­

mental facilities as files, catalogues, and schedulers are provided by 
(unprivileged) user programs? 

3. What other protection problems can be solved in our model, and at what 
cost? 

4. How can all this be implemented efficiently? 

Roughly midway through the development of Hydra, a third research 
goal emerged-reliability. Because of the structure of C.mmp, we initially 
believed that the overall system reliability could be expected to be similar to 
that of other systems of comparable (total) size and performance. This led us 
to an initial design of the Hydra kernel that attended to reliability in a 
manner similar to other (uniprocessor) systems. A major lesson from 
C.mmp, however, has been that multiprocessors present special reliability 
problems as well as special opportunities for solving them. When we finally 
learned this lesson, reliability became an explicit goal. 

It would be nice to be able to assert that the system emerged full-blown 
from this context and those goals. In practice, however, a system of the size 
and complexity of HydratC.mmp evolves in a more or less controlled way 
over time. The final system, described in the following chapters, existed in a 
relatively stable form during 1977-79. To appreciate how it came to have its 
final form, one must look at its development history. 

The study of C.ai in 1970 provoked discussions of both the overall 
research strategy and the possibility of constructing a multiprocessor. These 
discussions led, in 1971, to fairly specific proposals for the structure of 
C.mmp, including the architecture of the crosspoint switch, the interprocessor 
communication facility, and the address mapping hardware. Also during this 
period, a number of analytic studies were conducted to determine the 
potential memory contention~ these studies resulted in the choice of the 
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16 x 16 configuration and the relative processor and memory speeds. 
Also during 1971, an informal group met to discuss the requirements of 

an operating system for the machine. It was during these meetings that 
Anita Jones proposed the type-extension addition to capability-based protec­
tion that became the core of Hydra's top-level design. In the fall of 1971, an 
internal memo was circulated sketching the design in a form quite similar to 
the final result. 

During 1972, hardware and software development proceeded in parallel. 
Because the principal hardware project would be the construction of the 
processor-memory switch, the switch design was tested in three prototypes. 
The first version was a 1 x 1 switch~ that is, it was capable of connecting only 
one processor to one memory module. The second and third prototypes were 
2 x 2 and 4 x 4 versions, respectively. The 2 x 2 switch functioned in a test 
environment by the middle of 1972 and was debugged with real processors 
and memories by the end of that year. 

Software development began, using a "simulator" developed on the 
PDP-10. This simulator did not attempt to emulate the instruction set of the 
PDP-l1-it merely allowed programs written in a dialect of Blissll1 (the 
implementation language for Hydra) to be run on what appeared to be a 
mUltiprocessing PDP-10. Although its capabilities were limited, the simulator 
allowed the first portions of Hydra to be debugged before the C.mmp 
hardware was available. Specifically, two components of the Hydra kernel 
were actively tested~KMPS (the low-level scheduler) and the GST (the 
object/capability system). 

In early 1973 the 2 x 2 switch, with two processors and one memory, 
became available to the software group. During a two-week period the Hydra 
kernel was moved from the PDP-10 simulator and real multiprocessing 
began. By May 1973 the 4 x 4 switch was operational, and the Hydra kernel 
was executing on a prototype system with two processors and three memory 
ports. At this point, the implementation team had expanded to about nine 
people, including programmers working on user-level subsystems that were to 
run "on top or' Hydra and provide the first traditional operating system 
facilities: a command language, a scheduler, and a directory system. 

In the next year, the 16 x 16 crosspoint switch became functional (but 
not fully populated) and non-kernel software began running on a routine 
basis. In the spring of 1975, virtually all the kernel facilities were complete 
and a 6-processor, 8-memory hardware configuration was in daily use. By 
1977, the 16 x 16 switch was fully populated with processors and memories~ 
at this point we had 11 PDP-11140 processors, 5 PDP-11120 processors, and 
about 2.5 megabytes of primary memory. Most of the eventual I/O devices 
were also available at about this time~ it is difficult to pinpoint the exact dates 
at which various devices became operational, but the final system included 
seven special paging disks, seven moving head disks, a magnetic tape drive, 
several DECtapes, a line printer, an interface to the ARPANET, several 
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special real-time analog input devices, and a connection to a "front end" 
terminal server. 

The software was also essentially complete by 1977~ most of the user 
facilities that were eventually constructed were available for use. Again, it is 
difficult to pinpoint precisely when many of these facilities became available, 
but they ultimately consisted of: 

Two Policy Modules (the user-level schedulers) 
A file system 
Two text editors, 
Two catalogue (directory) systems 
A user-level debugger 
Language processors for Algol '68, Fortran, C, and L * (a list-oriented system 

building language) . 
Two command languages 
A large number of utilities for logging in and out, spooling printed output, 

managing multiple terminals, allocating I/O devices, creating subsystems, 
and so on 

In 1978 we removed the five PDP-11120 processors from the system­
they were the oldest processors and had become unreliable. The remaining 
11 PDP-11/40 processors had been extended with a writable control memory, 
and special instructions had been implemented to improve system perform­
ance. To take full advantage of this, Hydra needed all the processors to 
execute identical instruction sets. 

Since 1976-77, the major efforts on Hydra/C.mmp have been to improve 
its reliability and performance. Reliability enhancements included adding 
detection and recovery strategies to cover hardware malfunctions. Perform­
ance improvements were guided by several performance evaluation studies 
(reported in Chapter 16) which led to a number of enhancements in the 
kernel- notably better paging and storage allocation algorithms. Only one 
functional improvement was made in the system-the addition of a parallel 
garbage collector for removing objects that were no longer referenced. 

Throughout the 1974-1979 period there was a continuing effort to de­
velop applications programs and measure their performance. These efforts 
produced three kinds of results: new algorithms especially suited to asyn­
chronous multiprocessors, performance improvements in Hydra, and ideas 
about suitable programming language features for expressing these algo­
rithms. 

In March 1980 C.mmp was removed from operational service to make 
room for new projects. 



CHAPTER 

TWO 
C.MMP 

C.mmpl is a simple multiprocessor; it consists of a number of equal, asyn­
chronous central processors that share a large primary memory. C.mmp 
differs from earlier multiprocessors such as the Burroughs D825, the IBM 
360/67, and the Honeywell 645 (Multics) in two essential respects: 

1. C.mmp is designed to have up to 16 processors while the Dther computers 
usually had no more than 4 processors. 

2. C.mmp is constructed from minicomputers rather than the larger (32 to 
48 bits/word) processors used in the other systems. 

The effective use of C.mmp requires that we find and exploit a much 
higher degree of parallelism than was needed by earlier multiprocessors. In 
the past few years, the number of existing multiprocessors has increased 
significantly to include BBN's Pluribus [Orn75, Kat78] and C-MU's Cm* 
[Swa77] systems. However, C.mmp still remains notable for its uniform 
structure and support of a general-purpose operating system. 

2-1 STRUCTURE 

A block diagram of C.mmp is shown in Figure 2-1. At a gross functional 
level, C.mmp consists of three parts: 

1. Processors, which are modified PDP-11140E minicomputers, each with its 
own UNIBUS and various peripheral devices2 

2. Shared memory, including the actual memory modules, a 16 . 16 crosspoint 
switch, and address relocation hardware on each processor 

3. The Interprocessor Bus, which provides interprocessor communication 

We will consider each of these parts in more detail. 

1"C.mmp" stands for "multi-mini-processor computer"; we pronounce it "See-dot-em-em­
pee." This chapter is a slightly revised version of [FuI78]. 

2PDP and UNIBUS are trademarks of Digital Equipment Corporation. 

9 



10 BACKGROUND AND HARDWARE 

Primary 
memory 

U 
N 

Cache 

Reloc­
ation 

Crosspoint 
switch 

(16 X 16) 

I nterprocessor bus =:::::;=:±==:::;:::::=±=== 

Figure 2-1 Block diagram of C.mmp 

2-1.1 Processors 

Slightly modified 
PDP-11/40E minicomputer 
with standard peripherals 

PDP-II minicomputers, manufactured by the Digital Equipment 
Corporation, are the processing elements of C.mmp. PDP-1l120 models 
were originally used, and were later replaced by PDP-I1I40Es. The PDP-II 
has become sufficiently ubiquitous that a detailed explanation of its archi­
tecture is unnecessary [DEC73]. 

The PDP-ll/40E minicomputer differs from the standard PDP-ll/40 in 
having a IK-word (80 bits/word) writable microstore. This feature was not 
strictly required by Hydra, but we expected to achieve significantly better 
performance by implementing frequently executed functions in microcode. 
The processors on C.mmp are further modified to provide special features for 
protection and addressing, including additional address spaces, instruction 
protection, and stack protection. 
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Figure 2-2 C.mmp processors 
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Figure 2-3 PDP-11/40E and interprocessor bus interface panel 
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Figure 2-4 Crosspoint switch and primary memory 
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Address spaces A PDP-11 program can generate only a I6-bit address, but 
the UNIBUS supports an I8-bit address. We therefore implemented two 
"space bits" in the' processor's Program Status (PS) register; the value of 
these bits is concatinated to the high-order end of the user's 16 bit address to 
form the 18 bit UNIBUS address. The setting of the space bits determines in 
which address space we are executing. Hydra defines '11 '-space to be kernel 
space; 'OO'-space is user space; 'IO'-space is used for mapping addresses during 
I/O; and '01 '-space is used for special applications. 

All protection at the hardware level is controlled by the address spaces, 
so we were careful to ensure that user programs could not change the PS 
space bits. There are three possible ways to alter the PS, and we have 
secured each one: 

1. A hardware interrupt causes new values for the PS and PC (Program 
Counter) registers to be fetched from fixed addresses. We modified the 
processors so that these fixed addresses are located in kernel space, where 
they are unreachable by users. (The same solution was applied to the 
software trap instructions, TRAP, EMT, BKT, and lOT.) 

2. "Return from interrupt or trap" instructions, RTI and RTT, fetch new PS 
and PC values from the top of the stack. Except when we are executing 
in kernel space, we force these instructions to trap to the operating 
system, which will simulate the instructions after verifying that the PS and 
PC are "safe." 

3. The PS register is itself addressable and hence may be written like any 
memory word. However, its address is in kernel space, and so is 
protected. 

Instruction set modifications The HALT, WAIT, RESET, BKT, R TT, and 
R TI instructions were made illegal when executing in any but kernel space. 
They cause a trap to Hydra, which will reflect the error in a standard way to 
the user (in the first three cases) or will validate and simulate the instruction 
(in the case of BKT, RTI and RTT). 

Stack protection The PDP-II has several addressing modes which facilitate 
managing a stack, and both programming and hardware convention dictate 
the use of a standard stack area for interrupt processing, subroutine calls, and 
parameter passing. This stack area is pointed to by PDP-II register 6, which 
is also called the stack pointer register, or just SP 

The stack introduces some problems in switching address spaces, since 
the stacking of the old (PS,PC) at interrupt time occurs in the old (e.g., user) 
space while the unstacking by R TI or R TT occurs in the new (kernel) space. 
Taking the simplest solution for a PDP-I1I20,3 we decided to force all 

3Although C.mmp was ultimately composed of PDP-I1/40E computers, many early design 
decisions were made to deal with the PDP-l 1120 processors available at the start of the project. 
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address spaces to use the same stack. We do this by establishing the 
convention that the low-order SK bytes of each address space are to be used 
for the stack and by constructing the relocation registers so that the stack 
page register in each space must hold the same value. (The detailed 
operation of the relocation registers is discussed below.) Additional modifi­
cations force the SP register to be "well-behaved" when executing in user 
space: any attempt to store a value in this register which would not be a legal 
stack address is prohibited. Having the kernel and the user share the same 
stack makes changing address spaces easy and allows users to pass arguments 
to the kernel simply and efficiently. 

A programmable stack underflow register is used by the operating system 
to prevent users from accessing data belonging to their callers or to the 
operating system. A fixed stack limit further restricts the stack and defines an 
area in the lower portion of the stack page which can be used for the 
communication of global information between the kernel and the user.4 

2-1.2 Shared Memory and Address Translation 

What is functionally thought of as "shared memory" is actually implemented 
in three pieces: a number of off-the-shelf memory modules, a central 
crosspoint switch, and individual address translation units on each processor. 

The crosspoint switch directs single-word transfers between the memory 
subunits and the processors, and up to 16 simultaneous accesses to memory 
are possible if all 16 processors request words in different memory subunits. 
Each of the 256 processor/memory crosspoints can be enabled or disabled 
either manually (from a front panel) or under program control (by setting a 
flip-flop addressable from a UNIBUS). This allows either Hydra or human 
operators to remove a faulty processor or memory module or to partition the 
system into two smaller multiprocessors. 

Probably the greatest problem in building a large computing system from 
minicomputers is their small address space [Wu17Sl. On C.mmp we must be 
able to address several million bytes of primary memory from processors 
which can generate only an IS-bit address. We have already discussed how 
the processors divide up the UNIBUS address into four spaces~ for address 
translation, these spaces are further divided into SK-byte segments called 
pages, S pages per space, or 32 pages for the total IS-bit UNIBUS address. 
Shared memory, with its 25-bit address, can therefore contain up to 4,096 
pages. Address translation fundamentally consists of mapping the 32 (virtual) 
UNIBUS pages to the 4,096 (real) shared memory pages. 

C.mmp's address translation mechanism is different from other PDP-II 
memory management techniques in three ways: 

4PDP-ll stacks grow downward, from high addresses to low ones. Therefore the stack 
underflow register contains the highest address in the current user's stack, and the stack limit 
value is a low address. 
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1. C.mmp maps from (virtual) UNIBUS addresses to (real) shared memory 
addresses, whereas other PDP-lIs map from (virtual) processor addresses 
to (real) UNIBUS addresses. 

2. C.mmp maps addresses generated by peripheral devices; other PDP-II s 
do not. 

3. C.mmp has pages of fixed size, while other PDP-lIs allow pages to be of 
variable size. 

7 3 13 
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word I I [I I I I address 
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Figure 2-5 Address translation in C.mmp 

The address translation process is shown in Figure 2-5.5 Thirty of the 32 
UNIBUS pages have associated relocation registers, whose format is shown in 
Figure 2-6. The low-order 13 bits of the UNIBUS address are concatenated 
with 12 bits from the relocation register indexed by the high-order 5 bits of 
the UNIBUS address. The resulting 25-bit address is sent to the crosspoint 
switch and there selects a byte or word of shared memory, depending on the 
type of access. 

Two UNIBUS pages (in kernel space) have no associated relocation 
register, and hence addresses in those pages remain untranslated. The first 
page addresses the small 8K-byte memory local to each processor, and the 

5The two missing registers leave room for the processor's local memory and for the device 
register page. Four of the 30 registers are for the stack pages and are wired together so as to act 
as one. 
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second is left for the processor and device registers implemented by the 
PDP-ll and its peripheral devices. (The relocation registers themselves are 
addressed in this page.) 

4 

I I I I 
I I I I 

I I I I 
I I I I 

12 

Page-frame number 

Nonexistent memory I I Cacheable 
Read-only Written-into ("dirty") 

Figure 2-6 Format of the relocation registers 

Each relocation register also contains a field of control and status bits, as 
shown in Figure 2-6. The non-existent memory bit can be set by the kernel to 
prevent access to that portion of the virtual address space. Any attempt to 
reference memory through a relocation register with this bit set will cause a 
trap. This permits the system to place a small user job in the machine 
without allocating a full 64K-byte address space. The write-protect bit, when 
set, permits read cycles to proceed through the register but blocks write 
cycles. This feature can be used to guarantee the integrity of code pages. 
The written-into bit (or "dirty" bit) in a register is set to '1' by any write cycle 
through that register. This mechanism is used by Hydra to avoid updating on 
secondary storage a page that has not been altered. The cacheable bit is used 
in conjunction with the processor cache to indicate that the page may be 
buffered. (The cache design is discussed in more detail later in this chapter.) 

2-1.3 The Interprocessor Bus 

The Interprocessor Bus provides a symmetric communication mechanism that 
allows any processor to invoke any of several control functions on any other 
processor or set of processors. Each processor has an interface to the Bus 
which resembles a normal peripheral device with several control registers 
(Figure 2-7). Each interface implements: 

1. A programmable interval timer with 16-microsecond resolution 
2. Access to the system's 56-bit time-of-day clock 
3. Six inter processor control registers 

The interval timer consists of a time count register and a control register. 
Hydra can store a value into the count register, which will then be decre­
mented every 16 microseconds as long as the "run bit" is set in the control 
register. Additionally, the timer can generate an interrupt when the count 



C.MMP 17 

I nterval timer I nterprocessor control Master clock 
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Continue Clock[2] 
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Figure 2-7 Interprocessor Bus interface registers 

register reaches zero. Because the interrupt might not be serviced right away, 
the count register keeps decrementing so that precise timings can be ob­
tained. Should the count be decremented to zero a second time before the 
interrupt is serviced, a status bit in the control register is set to indicate 
counter wrap-around. 

The 56-bit time-of-day clock, also known as the "master" or "global" 
clock, has a resolution of 4 microseconds and is an important resource for 
Hydra. The Interprocessor Bus controller continuously broadcasts this clock 
value on part of the Bus. When a processor wishes to know the time, it 
reads the first of four registers in the interface, causing the interface to load 
all four registers from the Interprocessor Bus. The processor can then read 
the remaining three registers without fear of the value changing. The 
interface extends the clock value in the registers to 64 bits by adding the 
processor number and a "system version number," thus providing a unique 
value on all processors. 

Each bus interface implements six control registers corresponding to the 
functions "halt," "start," "continue," "interrupt-at-Ievel-4," "interrupt-at­
level-6," and "interrupt-at-Ievel-7." (See Figure 2-7.) If a processor sets bit i 
in one of these registers, the function associated with that register is invoked 
on the ith processor. Thus, for instance, a processor can halt the entire 
system by storing a word of all ones into the "halt" register. 

Like the crosspoint switch, the Interprocessor Bus can be configured 
manually to partition the system. The 256 possible interconnections are 
controlled by 16 switches on each of the 16 processors. (A processor's 
switches indicate which other processors it may interrupt.) 

2-2 THE ACTUAL C.MMP CONFIGURATION 

Tables 2-1 and 2-2 detail the actual configuration of C.mmp in 1979: 11 
processors, 2.6 million bytes of shared memory, 768K bytes of swapping 
storage, 700M bytes of secondary storage, and a normal complement of other 
peripheral devices. 

C.mmp is not an isolated resource. It is connected to both the ARPA-
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Table 2-1 C.mmp processor configuration 

Processor 

o 

1 - 5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Table 2-2 

Memory unit 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Peripherals 

Operator's console, DECtape controller (2 drives), 
Line printer, 40M-byte disk controller (4 drives), 
Line frequency clock 

(Processors not present) 
Magtape controller (1 drive), Swapping disk 
ARPANET interface, 2 swapping disks 
Swapping disk 
Swapping disk 
Front end interface 
Special applications 
Swapping disk 
(None) 
130M -byte disk controller (3 drives) 
Special applications 

C.mmp memory configuration 

Technology Size 

(Unused) 
Core 64K x 18 
Core 64K x 18 
Core 64K x 18 
Core 64K x 18 
MOS 128K x 18 
Core 64K x 18 
Core 64K x 18 
MOS 128K x 18 
MOS 128K x 18 
MOS 128Kx18 
MOS 128K x 18 
Core 64K x 18 
Core 64K x 18 
Core 64K x 18 
Core 64K x 18 

NET [Hea75] and to a front-end terminal multiplexor, as shown in Figure 
2-8. The ARPANET provides a reasonably high speed link to each of three 
DECsystem-lOs, considerably facilitating software development on C.mmp. 
The connection to the front-end multiplexor makes C.mmp immediately 
available to over a hundred terminals. 
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Figure 2-8 Interconnection of C.mmp to other computer systems 

2-3 IMPLEMENTATION FEATURES 
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Descriptions of computer systems too often fail to point out those construc­
tion details which materially affect the final system structure. We now look 
at some of the most important aspects of the implementation of C.mmp. As 
a general comment we note first that, with the exception of a few 
off-the-shelf components purchased later, C.mmp was built entirely with 
1970-1972 technology. 

2-3.1 The Crosspoint Switch 

The switch is the largest component of C.mmp. Unlike some other cross­
point switches which are distributed in memory (e.g., Pluribus), this one is 
located centrally. The central switch requires a larger initial configuration and 
implies some non-modularity, but the cost of a complete system is less than a 
distributed switch for larger configurations.6 A centralized switch also has 
fewer cable delays than a functionally equivalent distributed switch. 

The construction of the switch was simplified by building it with only four 
basic module types: 

6Cable costs are a large component of these switches. The centralized structure requires 
only 16 + 16 cables, as opposed to 16 x 16 cables required for a fully connected distributed 
switch. 
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Switching modules 
Processor interface modules 
Memory control modules 
Processor priority resolution modules 

Each module is simple enough to be implemented on a single printed circuit 
board. 

The main processor-memory data paths in the switch are 72 bits wide and 
are implemented with the switching modules in a bit-slice fashion. Figure 2-9 
shows a single bit-slice of the switch. 16-to-l multiplexors (SN74150s) 
implement the 256 crosspoints. Sixteen of the multiplexors are used to 
implement the paths from the processors to the memory units, and the other 
16 multiplexors are used to implement the return paths from memory to the 
processors. The symmetry between the multiplexors forming the forward 
and return points allows two switch modules, each consisting of 16 multi­
plexors, to implement the bit slice shown in Figure 2-9. Control of the 
multiplexors comes from the processor priority resolution modules. The 144 
switch modules needed to construct the data paths in the switch form the 
bulk of the logic in the crosspoint switch. 

The processor interface module connects the switch to the memory 
relocation units on each processor~ it contains the steering logic to partially 
decode the address lines and route the memory request to the designated 
memory module. This module also sets the memory-to-processor selection 
lines in the switch, thus determining which memory the processor will read. 
Finally, this module buffers data read from memory, allowing the switch to 
overlap the end of a read cycle with the start of the next cycle for another 
processor. 

The memory control modules are quite straightforward and provide three 
important functions: 

1. They check the address parity that was generated in the relocation 
hardware and report any errors back to the processor. 

2. They detect missing portions of memory, so that the physical address 
space need not be contiguous within a memory subunit. 

3. They communicate with the processor priority resolution modules in order 
to generate the timing and control pulses for the actual memory modules. 

Within each memory subunit, individual memory modules reside on a central 
bus and may be interleaved. Each core memory module consists of two 
pages (16K bytes) and is independently driven. Semiconductor modules have 
a single driver for their four 64K-byte boards and therefore offer less chance 
for interleaving. Core and semiconductor technologies may be mixed within 
a subunit, but typically are not. 

The processor priority resolution module is the most complex component 
in the switch design, maintaining a request buffer whose operation is illus-
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Figure 2-9 Bit-slice of crosspoint switch data paths 
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trated in Figure 2-10. This module arbitrates between processors that are 
simultaneously requesting access to the same memory port and queues those 
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requests that must ~ait for other requests to complete. The arbitration logic 
shown in Figure 2-10 works in the following manner. When processor i 
requests access to a particular memory port (as indicated by the value of the 
four most significant address bits), it attempts to set bit i of the request 
buffer. However, the AND gate in front of the SET input to the buffer 
prevents processor i from setting latch i until the request buffer contains all 
zeros. When the request buffer is empty all 16 AND gates feeding the SET 
inputs of the request buffer are enabled via the OR gate and DELAY shown 
at the bottom of the diagram. Now those processors with outstanding 
requests will set their corresponding latches in the request buffer. As long as 
a single processor is making a request, and sets its corresponding latch, the 
column of AND gates will be disabled since the request buffer is no longer 
empty. Now the outputs of the 16 latches of the request buffer are fed into a 
priority encoder that indicates on four output lines the highest numbered 
latch that is set. It is this priority encoder, therefore, that ultimately does the 
arbitration. After a processor has been selected and has read or written a 
word of memory, the processor asserts its "access complete" line that clears 
the processor's latch in the request buffer. The priority encoder now selects 
the highest-numbered remaining request. Hence, processors are serviced in 
priority order from 15 to 0, and each processor should wait no more than 15 
memory cycles before gaining access to memory. The scheduling discipline 
induced by the priority resolution modules can be thought of as a 
quasi-round-robin discipline.? (Unfortunately, the actual behavior may be 
different~ see Section 16-2.5.) 

2-3.2 Processor Modifications 

The modifications to the processors can be considered to be in two classes: 
additions and alterations. For the PDP-1l/40E, only a very small percentage 
of the work is in altering existing logic. For instance, the detection and 
trapping of reserved instructions in user space requires only the addition of 
two ICs and the replacement of two others on the instruction-decode module 
of the processor. 

The addition of the other features requires that about 30 
processor-generated signals be acquired from the backplane of the processor. 
Additions to each processor are all contained on one new PDP-ll system 
board. (A standard PDP-l 1140 is implemented on five such boards.) 

7This discussion of the priority resolution module is a simplification of the actual operation. 
In reality, there is also a high-priority input to each latch in the request buffer that circumvents 
the column of AND gates. This high-priority feature is intended for very fast 110 devices which 
may not be able to tolerate a high level of memory interference during DMA transfers. 
Although this feature is exploited by the operating system, its efficacy has never been proved 
conclusively. 
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2-3.3 Extensions for Error Detection 

The most significant step in overall system error detection was the implemen­
tation of parity bits in shared memory. The relocation hardware computes 
parity bits for each byte written to memory and for every address sent to the 
memory. To catch common failure modes of "all ones" and "all zeros," we 
use even parity on one byte of each data word and odd parity on the other 
byte. Address parity is checked by the memory controller on the memory 
side of the switch, and data parity is checked on each "read" cycle by the 
relocation hardware at the processor. The switch actually has data paths wide 
enough for singie-bit error-correcting codes on each data word, but such a 
mechanism was never implemented. 

The two PDP-ll system boards that implement the memory relocation 
logic are also the site of much of the error-detection circuitry. Upon 
detection of a switch-related error (parity errors, writing a read-only page, 
etc'), the logic causes the processor to take a normal NXM ("non-existent 
memory") trap by blocking the acknowledgement signal ("SSYN" in PDP-ll 
terminology) from memory. The fact that a trap (rather than an interrupt) is 
taken is important, because traps can take effect before the completion of an 
instruction. Status bits in a control register allow the software to determine 
the actual cause of the error and can cause later errors to be ignored until the 
processor's state is recorded. Other exceptional conditions, including stack 
underflow, violation of the SP conventions, and attempting to execute an 
illegal instruction, cause normal interrupts. 

Other error-related mechanisms were added to C.mmp later in response 
to observed failures. For instance, the PDP-II's variable-length instructions 
and its rich set of addressing modes makes locating the exact source of an 
error (e.g., a parity error) difficult. For this reason, we implemented two 
tracking registers. The bus address tracking register is latched upon the 
occurrence of a switch-detected error (e.g., a data or address parity error) and 
thus accurately specifies the UNIBUS address causing the error. The PC 
tracking register latches the address of the current instruction under the same 
circumstances. 

Maintenance functions are also implemented in the relocation hardware, 
including the ability to simulate address parity errors and the ability to write 
incorrect parity into shared memory.8 

2-3.4 Caches 

The original design of C.mmp included a IK-word cache on each PDP-II 
UNIBUS. As of July 1979 only one cache was installed, and it is not used by 

8The tracking registers and maintenance features were implemented in 1978 on the third 
(and last) versions of the relocation hardware. They were never completely integrated into 
Hydra's error-handling mechanisms. 
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Hydra. Therefore, we can describe only the intended operation of the caches. 
Caches present a potential difficulty for multiprocessor systems because 

data shared between processors may be modified in one processor's cache 
without the modification being reflected to other processors. We chose to 
solve this problem by avoiding it; pages that are both shared and writeable 
are never cached. The operating system can designate (via the cacheable bit in 
the relocation registers) those pages which are safe to cache. Studies on the 
PDP-ll indicate that about 70% of all memory references are to code pages, 
which can be read-only and hence cacheable. Stack pages are private to a 
process and hence are also cacheable. In addition, the user may explicitly 
designate other cacheable pages. 

It should be noted that the caches designed for C.mmp do not have to be 
fast; their importance lies in their ability to eliminate switch contention by 
catching a significant fraction of the memory fetches. This is especially 
important because Hydra encourages the sharing of code pages among 
cooperating processes, thus inviting significant contention. 

2-3.5 The Interprocessor Bus 

The Interprocessor Bus controller performs three functions: it implements 
and broadcasts the time-of-day clock value discussed above; it generates and 
broadcasts the timing pulses that are used by the interval timers in the 
interfaces; and it generates and broadcasts the timing and control signals 
necessary to time-multiplex the various interprocessor control functions on 
the bus. By using a time-sliced function bus, we reduced a potential 1500+ 
wire requirement to 16 cables of 20 wires each; however, we give up knowing 
which processor invoked a function. This is not a significant restriction in 
practice. 

2-3.6 Peripherals 

C.mmp has an extremely high 110 bandwidth; each processor can support 
independent DMA transfers from mUltiple devices. Assuming each processor 
hosts a device with a transfer rate of 4 JLS per 16-bit word, this amounts to a 
potential 110 bandwidth of 64 x 106 bits/sec.9 Hydra exploits this potential by 
using a collection of fast disks, distributed over several processors, for 
swapping storage. 

These fixed-head swapping disks are perhaps worthy of special note. 
C.mmp's page size is exactly equal to the capacity of one track on the disk, 
and by modifying the controller slightly, this coincidence can be exploited in 
such a way that there is no significant rotational latency on disk transfers of 

9'fhis assumes a 16-processor system on which the I/O traffic is distributed fairly evenly 
over the 16 memory ports to avoid memory contention. 
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exactly one page. Latency is avoided by having the controller start the 
transfer at the beginning of the next physical disk block (16 words) and 
transferring 8K bytes without track switching. By causing the first transfer to 
its correct memory address, and inhibiting the appropriate carry propagation 
when incrementing the memory address register, the trasfer will "wrap 
around" within its proper 8K memory area. This scheme provides better 
service than "shortest-Iatency-time-first" or any of the other scheduling 
disciplines that have been developed to optimize the performance of paging 
disks with latency. 

2-4 TECHNOLOGY AND COSTS 

C.mmp is a mixture of off-the-shelf and custom-built hardware. Table 2-3 
gives an approximate breakdown of the equipment in terms of complexity 
and cost. 

The portions of C.mmp built at C-MU use a mixture of TTL and 
Schottky TTL technology. ECL was not used because at the time of 
C.mmp's construction (1971) ECL did not offer the range of MSI compo­
nents available in TTL. Likewise the large amount of ferrite core memory on 
C.mmp is due to the state of MaS memory technology in 1972. 

The cost figures given in Table 2-3 are only estimates. The cost for the 
PDP-1l/40 and for memory was the purchase price of the equipment when 
we bought it. The other hardware was built at C-MU, and the figures given 
are our rough estimates of the replication cost in 1975, excluding design and 
setup costs. 

Using these figures, the total replication cost of a 16-processor C.mmp, 
excluding peripherals, is about $500,000. Of this total, about $285,000 is for 
the modified processors and relocation hardware, $165,000 is for 2.3 million 
bytes of primary memory, and $50,000 is for the crosspoint switch. 

2-5 HARDWARE PERFORMANCE 

The performance of a computer system cannot always be calculated from the 
speed of its components, but for comparison purposes some of C.mmp's vital 
statistics are shown in Table 2-4. The processor and memory speeds are 
taken from actual measurements on the running system.1° Chapter 16 gives 
more data on the performance of the hardware and software. 

On a PDP-1l/40, one instruction requires about 2.5 memory references 
on the average, so 0.68 million memory references per second translates to 

ICT[he processor speed is the average speed of a single processor executing out of a single 
memory port with no other processors contending. The memory speeds are averages at a single 
memory port with all processors contending on that port. 
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Table 2-3 C.mmp technology and costs 

Part No. boards No.ICs Unit cost 

11/40 5 332 $12,000 

jJ.store 2 200 $1,300 

Pc mods 57 $600 

Relocation 
Hardware 3 120 $1,500 

Crosspoint 
Switch $50,000 

SWI6 24 
P.I.M. 26 
M.C.M. 20 
P.R.M. 54 

I nterprocessor 
bus: 
Control 2 200 $3,000 
Interface 200 $3,000 

Memory (core) unit=8K x 18 $1,300 

Memory (MOS) unit= 128K x 18 $12,000 

Table 2-4 C.mmp hardware performance 

Parameter 

PDP-I 1/40 execution speed 

Memory (core) 

Memory (MOS) 

130-Mbyte disk 

20 and 40-Mbyte disks 

Paging disks 

Value 

0.68 x 106 memory references/second 

1.5 x 106 memory references/second 

1.7 x 106 memory references/second 

2.5 jJ.s/word transfer rate 
28 ms average seek 
8 ms average latency 

7.5 jJ.s/word transfer rate 
29 ms average seek 
12.5 ms average latency 

4.1 jJ.s/word transfer rate 
17 ms page read time 
34 ms page write-and-verify time 

No. in system 

II (\6 max) 

lIPc 

lIPc 

I/Pc 

144 
lIPc 
I/Memory unit 
I/Memory unit 

I/Pc 

80 

5 

about 0.27 MIPS (million instructions per second) for each processor, or 
about 3 MIPS for the II-processor configuration and 4.3 MIPS for a full 
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16-processor configuration (with no memory contention). The above figures 
are averages. Studies by Oleinick [Ole77] have indicated that individual 
processors and memories may vary from this average by as much as 10% (see 
Chapter 16). • 

2-6 RETROSPECTIVE 

If we were to build'C.mmp again we would do a number of things differently. 
The hardware designer now has many more options than. were available in 
1972, inCluding more powerful processors and a wider range of faster compo­
nents. Still, we have had two chronic complaints about the realization of 
C.mmp that are relevant to contemporary design: its 16-bit virtual address 
and its disappointing reliability. The problems came largely from two 
assumptions we made at the outset which turned out to be wrong: 

1. We assumed that large applications would run efficiently on a 
multi-mini-processor because large uniprocessor programs could be bro­
ken down into several small concurrent processes. 

2. We assumed that we would be able to construct C.mmp easily because we 
were using mostly off-the-shelf components with minimal modifications. 

The first assumption was wrong; we discovered that large applications 
almost invariably want to address large amounts of data, even when they are 
decomposed for a multiprocessor. The 16-bit virtual address provided by the 
minicomputers simply did not provide enough freedom for manipulating data. 
This is not just a matter of efficiency; it seriously affects the ease with which 
large programs can be designed to run on C.mmp [Ole77]. 

The second assumption was correct in principle, but could not withstand 
the realities of minicomputer architecture in 1970. We never expected to 
have so many problems with our original PDP-ll: 

1. The PDP-ll had several original design errors that vastly complicated 
hardware debugging. Some of its more complicated instructions did not 
always work correctly. 

2. With no comprehensive documentation of the PDP-ll other than the 
logic diagrams, some subtle points of the implementation were not 
discovered until our modifications tickled them. 

3. The UNIBUS turned out to be unexpectedly fragile for a device ostensibly 
designed to accept a diverse set of peripherals. The UNIBUS has no 
parity checking, it is prone to noise, and devices on it cannot be powered 
down without affecting it. 

For the most part, the C-MU-built portions of C.mmp have performed 
well. The crosspoint switch has had very few problems, perhaps because of 
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the extreme care taken to avoid "glitches" in the design. I I The Interpro­
cessor Bus exhibited unexplained problems when we attempted to run the 
master clock at its full 1 jJ.S resolution. Even after slowing down the clock by 
a factor of four we observed intermittent periods· during which the clock 
values received at a processor were incorrect. Software mechanisms eventu­
ally had to be introduced to validate the clock values, nullifying some of the 
expected advantages of the clock to the operating system in the first place. 

Many of these problems had indirect effects on the system. The fragility 
of the UNIBUS had two effects. First, any reconfiguration of the system that 
involves altering a UNIBUS configuration cannot be attempted while the 
system is running. This thwarts many approaches to improving system 
reliability. Second, because we designed the crosspoint switch to work closely 
with the UNIBUS, we left the entire system susceptible to single UNIBUS 
failures. A malfunctioning peripheral device interface can "hang" its UNI­
BUS and the entire crosspoint switch. Fortunately, this type of error is rare 
except when interfacing new (undebugged) devices. 

Finally, the decision to modify the processors as little as possible meant 
that any extensive alteration of functionality was impractical. This is one 
reason why the address translation mechanism is so rigid, and why the stack 
was implemented the way it was (instead of, for instance, making separate 
user and kernel stacks). 

In spite of these problems, we believe the crosspoint architecture remains 
a good basic design for the tightly coupled multiprocessor. 12 Our experience 
with C.mmp suggests that in a general-purpose system the ease of software 
construction made possible by the underlying symmetry of the hardware 
more than compensates for the lack of easy expansion to more processors. 
Subsequent chapters describing Hydra's scheduling and error-handling mecha­
nisms will demonstrate how C.mmp's structure may be exploited. 

11 Glitch, as used here, is a technical term, referring to the propensity of an arbitration circuit 
to remain in a meta-stable intermediate state for more than a prespecified settling time. 

12A comprehensive survey of multiprocessors appears in [Ens77l. 



PART 

TWO 
THE SYSTEM DESIGN 





CHAPTER 

THREE 
THE HYDRA PHILOSOPHY 

A basic goal of the Hydra design was to permit nearly all the facilities that 
one normally associates with an operating system to exist as normal 
user-level programs, and in addition, to allow an arbitrary number of 
user-level definitions of a single facility to coexist simultaneously. This goal 
arose in part from Hydra's position as a vehicle for experimenting with the 
C.mmp multiprocessor and in part from a set of attitudes held by the 
designers about what constitutes good software design. These attitudes are 
partially reflected in the following paragraphs. 

Facilities The Hydra host machine, C.mmp, is a multiprocessor. It is not 
immediately obvious what facilities are appropriate in such an environment. 
On the contrary, one suspects that the "right" facilities (e.g., for debugging a 
co!lection of cooperating processes) will be found only after considerable 
experience. By allowing these facilities to be provided at the user level (by 
unprivileged programs written by ordinary users), one gains considerable 
freedom to grow and evolve the system in unanticipated directions. 

Extensibility All practical systems evolve under the pressure of usage 
patterns and hardware innovation (especially new peripherals). The prolif­
eration of "access methods" in OS/360 and its offspring is a prime example of 
evolution under both of these types of pressure. Such evolution is a fact of 
life in practical systems~ the original design should anticipate it. By providing 
nearly all facilities at the user level, without special privilege or status, Hydra 
addresses this problem directly. Adding a new facility consists simply of 
providing a user-level program that implements that facility~ the difficulty in 
doing so is directly related to the inherent complexity of new facility. It may 
be simplified by the prior existence of some facilities, but is never hindered 
by them. 

Structure Most people now recognize the intimate relation among the 
structure of a program, its probability of being correct, and the ease with 
which it can be modified. Providing facilities at the user level does not, of 
itself, guarantee a well-structured system, but it does assure a uniform 
interface between the various pieces of a system. The specific method we 

31 
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have chosen in Hydra for allowing facilities to be defined at the user level is 
strongly related to modern notions of good program structure; we shall have 
more to say about this below. 

Multiple usage patterns Most operating systems attempt to cater to a 
variety of coexisting usage patterns. A simple example appears in systems 
whose schedulers employ different strategies for batch, time-sharing, and 
real-time jobs. However, there are more subtle cases-once again, the 
multiple access methods of OS/360 exemplify the situation. By providing the 
ability to define facilities at the user level, one obtains much more freedom 
to refine, adapt, tune, and extend these facilities to match a specific appli­
cation. 

Our image, then, of the Hydra environment was that there would evolve 
a collection of these facilities defined at the user level, possibly with many 
that were functionally similar but with different performance properties, 
security properties, or whatever. An individual user would select from among 
the available facilities, or create new ones where the existing ones were 
inappropriate. At any instant we expected to see a large number of users on 
the system-each possibly using quite different facilities-but all coexisting 
without interference. It seemed to us to be the ideal environment in which 
the user might experiment with multiprocessing. 

3-1 ACHIEVING THE GOAL 

These are, of course, all "motherhood" statements. Whether or not it is in 
fact desirable to build operating system facilities as user programs depends 
strongly upon the specific mechanisms used to achieve the goal- their cost 
and convenience. For the moment let's assume that the goal is desirable and 
examine the implications of the goal on these mechanisms. 

The central goal suggests that at the heart of the system one should build 
only basic, or "kernel," mechanisms-a set from which arbitrary user-visible 
operating system facilities can be conveniently, flexibly, efficiently, reliably, 
and quickly constructed. Moreover, lest the flexibility be constrained at any 
instant, (1) the kernel mechanisms should not preempt important decisions, 
and (2) it should be possible for an arbitrary number of systems created from 
these mechanisms to coexist simultaneously. 

This is obviously a tall order. Nevertheless, in the remainder of this 
chapter we shall assume that such a set of kernel mechanisms exists. Hydra 
is an attempt to provide just such a set, and subsequent chapters detail its 
properties. Whether or not the particular Hydra mechanisms satisfy these 
criteria and whether or not they form the best set are, of course, debatable. 
The reader is encouraged to answer these questions for himself. We can, 
however, help to provide some insight into the answers; to that end, the 
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remainder of this chapter addresses the rationale for the mechanisms, the 
remainder of Part II deals with the mechanisms in general terms, and the 
remainder of the book gives examples of their use. 

We can easily rationalize two properties that the kernel mechanisms must 
possess: (I) protection and (2) minimal policy. Consider for the moment 
two common descriptions of the purpose of an operating system: 

1. An operating system provides a "virtual machine" which is more hospi­
table than the base hardware for two reasons: (a) It makes available 
ceitain "virtual resources" such as files, directories, virtual memory, etc., 
that are absent from the base hardware. (b) It masks certain unpleasant 
hardware features-such as interrupts-from the user and maps them into 
more acceptable ones, such as synchronization primitives. 

2. An operating system manages the physical resources of the computer, 
such as primary memory, processor, channels, etc., so as to improve their 
utilization. 

Even though these descriptions are quite different, they are not 
incompatible-they merely express two quite different views of a single entity 
with multiple goals. 

From the first of these descriptions we see that the user must be able to 
view some collection of facilities as a virtual machine-a closed environment 
in which he can program. Facilities (or users) outside the collection should 
not be able to perturb the machine's behavior. That is, the user program 
must be able to behave as though it were running in isolation (except for 
possible differences in real-time behavior). Thus, a uniform requirement of 
all multi-user operating systems is that they provide protection. In our case, 
since operating systems are themselves user programs, the only candidate for 
providing the necessary protection is the kernel. Moreover, the protection 
provided must be both strong enough and flexible enough to permit user 
programs to implement operating system functions. 

From the second description we can derive a negative requirement on the 
kernel mechanisms: they should not impose a policy on the way in which 
physical resources are used. If the kernel mechanisms were to do this they 
would preempt the possibility of specifying these at the user level-and hence 
preclude an important dimension of operating system variation. As we shall 
discuss below, there are practical problems with allowing arbitrary policy 
decisions to be made by user-level programs; these difficulties force us to a 
compromise goal: the separation of policy from mechanism. l 

IBrinch Hansen [Bri70, Bri71] has made cogent arguments for this separation. 
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3-2 PROTECTION 

The most prevalent views of protection in operating systems are quite narrow. 
Often, for example, it is presumed that 

• There are only a small, fixed number of kinds of things that need to be 
protected, e.g., "file" and "memory." 

• There are only a small, fixed number of kinds of access to the protected 
objects, e.g., "read," "write," and "execute." 

• The right to perform a specific access to an object is a property of the 
"user" (a person) making the request. 

None of these assumptions are appropriate for the Hydra goals. 
We will discuss the Hydra protection mechanism and its use later in this 

chapter as well as later in the book. For the moment, however, will simply 
note some of its properties, contrast them with the more traditional views, 
and point out how these properties support the Hydra goals. 

First, Hydra does not predefine a fixed collection of things that can be 
protected. Instead, it defines a general notion of a "typed object." One type of 
object, for example, might be a file~ another might be a page of memory~ 
another might be a catalog. New types of objects can be defined at will, and 
each of these types can be protected. This is essential to the system's goal~ 
since we wish to permit users to define new operating system facilities-a 
new type of file system, for example-the protection mechanism must extend 
to cover these new facilities in the same way as it covers the old ones. 

Second, Hydra does not predefine a fixed collection of access rights. 
Instead, it defines a general notion of "applying an operation to an object": 
the right to apply an operation is the fundamental protection check in the 
system. Since the concept of an "operation" is type-specific, a totally different 
set of operations-and hence protection rights-can be associated with dif­
ferent types of objects. For example, "read" and "write" are indeed defined 
notions for both files and memory pages~ however, the notion of "execute" 
is not defined for files-and the notions of read and write may not be defined 
for "programs," which are a different type from "files." Furthermore, 
"catalogs" have the additional concept of "rename." 

Finally, the "right" to perform an access (an operation) is not necessarily 
a property of the (human) user in Hydra. Rather, it is a property of the 
program that is executing on the user's behalf.2 The right to call such a 
program, naturally, is at least initially inherited from the user, but associating 
access rights with the program itself has several important advantages. In 
effect, it allows the program to perform operations on behalf of the user on 
objects to which the user does not have direct access. In a conventional 

2The details of this are a good deal more subtle than this overview can hope to cover, but 
we will have more to say in subsequent chapters. 
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system the user calls upon the operating system to perform these kinds of 
operations~ for example, he invokes the operating system to update his file 
directory because he is not allowed to write into it himself. In Hydra, this 
notion is extended to all object types. The user may, for example, create a 
special data base and programs to manipulate it. He may then allow other 
users to invoke these programs, thus updating the data bases, while never 
permitting direct access to the files (or whatever) on which the data is stored. 

3-3 POLiCY /lViECHANiSlVi SEPARATiON 

To enable the construction of operating system facilities as normal user 
programs, we must allow user-level control of the policies that determine the 
utilization of the system's resources. The resources of primary interest are 
those required by every program: processor cycles, memory, and 
input/output. The policies that govern the allocation of these resources are a 
major dimension of operating system variability. As many of us know from 
bitter experience, the policies provided in extant operating systems, which are 
claimed to work well and behave fairly "on the average," often fail to do so 
in the special cases important to us. A goal of Hydra is to allow these policies 
to be defined by user-level (i.e., unprivileged) programs, thus making them 
more amenable to adaptation and tuning than they would be if buried deep in 
the system's kernel. Moreover, to permit each application to tune the system 
to its own needs, we wish to allow mUltiple policies governing the same class 
of resource to exist simultaneously. 

At this point, practicality intrudes~ in fact, it intrudes in several ways. 
First, we must assume that any user-level program contains bugs and may 
even be malevolent. We therefore cannot allow any single user or application 
to "commandeer" the system to the detriment of others. By implication we 
must prevent programs that define policies direct access to hardware or data 
that could be (mis)used to destroy another program. That is, such programs 
must execute in a protected environment.3 Further, we must not permit 
these programs to monopolize any resource, whether they do so intentionally 
or not. We must assure some "fairness" among competing policies. In 
addition, we must recognize that many policy decisions must be made rapidly 
(e.g., fast scheduling decisions are essential in order to achieve reasonable 
response). Given that user-level policy programs must execute in their own 
protection domains and that domain switching is costly, it is impractical to 
invoke such programs each time a policy decision is required. 

Thus, we compromise. We give this compromise a name: the principle 
of policy/mechanism separation. Policies are (by definition) encoded in 
user-level software that is external to the kernel. Mechanisms are provided 

30bviously, all programs must be denied such liberties, but policy-making programs 
frequently require access to information that might normally be considered privileged. 
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in the kernel to implement these policies. In this context we use the phrase 
"kernel mechanisms" to mean two distinct but related things. 

In the first instance we mean simply a safe (protected) analog of an 
unsafe hardware operation. Thus, for example, we never allow a user 
program to manipulate directly input/output device control registers. To do 
so would allow that user program, possibly inadvertently, to overwrite an 
arbitrary portion of memory. We do, on the other hand, provide a mech­
anism, a kernel operation, whose only effect is to manipulate such device 
control registers after appropriate validation.4 Mechanisms such as this exist 
purely to insulate the system and other users from a misbehaving policy 
program. 

In the second instance a kernel mechanism may actually be a paramet­
rized policy. We shall deal with several examples of such mechanisms 
subsequently, but it is convenient to introduce one here to illustrate the 
point. A portion of the kernel called KMPS ("Kernel Multi-Programming 
System") provides primitive scheduling and synchronization facilities. KMPS 
uses a simple, priority-driven scheduling scheme; processes at the same 
priority level are treated in a "round-robin" fashion, and preemption of a 
process may occur either when a higher-priority process becomes feasible 
(unblocked) or at the end of a time-slice. 

This description of the KMPS scheduling strategy may sound familiar; it 
is similar to those employed in many other systems. There is an important 
difference, however. The priority of a process, its time-slice, and other 
parameters (to be discussed later) are determined by a user-level policy 
program associated with the process, called a Policy Module, or PM Several 
PMs can exist simultaneously, each controlling a different set of processes. 

At intervals specified by the PM (and at other times to be described 
later), KMPS relinquishes control of each process to the PM associated with 
that process. At such points the PM may elect to alter the process' behavior 
as it chooses. Possible actions include changing the process' scheduling 
parameters and returning it to KMPS, or removing the process' pages from 
core and making the space available to other programs. 

Mechanisms such as KMPS, which are really parametrized policies, 
provide the means by which overall, long-term policies can be enforced by 
user-level software, while at the same time avoiding the need to invoke a 
ponderous domain-switching mechanism for decisions that must be made 
rapidly. Such mechanisms also provide a point at which fairness among 
competing policies can be enforced. KMPS, for example, could attempt to 
provide each PM with an equitable share of the processing power of the 
machine. 

4To perform such an operation the program must have appropriate access rights. Although 
it is too soon to be able to explain in detail, it is interesting to note that the Hydra protection 
system is used uniformly for both virtual resources such as files and physical resources such as 
1/0 devices. 



THE HYDRA PHILOSOPHY 37 

3-4 AN ASIDE ON DATA ABSTRACTION 

The view that the kernel mechanisms should provide protection and should 
not define resource policies does not of itself provide sufficient information 
on which to base a design; it merely specifies some properties that the design 
must have. To develop an appropriate basis, we choose to turn away from 
traditional operating system design considerations and to look instead at some 
of the more recent results of "structured programming." 

It is unfortunate that the term "structured programming" has too often 
been equated with "goto-iess programming" or "top-down design." Far more 
central to the issue is the concept of "abstraction." The whole rationale for 
structured programming is that programs, even "simple" ones, are often too 
complex for human beings to comprehend. A classical technique that 
humans use when faced with complexity is to abstract from it-to ignore the 
details of a problem and deal instead with only its "essence." A voiding the 
"goto" and using top-down design are both abstraction techniques-they both 
provide a means for localizing the implementation of an abstract concept 
within a well-defined region of the text of a program. There are, however, 
other techniques for abstraction in programs, and some are much more 
powerful than either of these. 

Several authors have noted the close relation between many program­
ming abstractions and the concept of "type" as it appears in programming 
languages [DDH74, Bri75, Wu1741. This has led to considerable interest in 
ways in which the programmer might express these abstractions in a program 
and, in particular, what sort of language constructs support this "abstract data 
type" definition. Specifically, the concept of a "class" in Simula '67 [Dah66] 
and its extension to "monitors" [Hoa74] seems especially well suited to 
expressing these abstractions. A class in Simula defines an abstract data type 
by specifying both an underlying storage structure and a set of operations that 
operate on it. Thus, for example, the abstract concept of a set-oj-integers 
might be introduced into a language by a definition of the form 

type intset = 
begin 

var a: array[J:l00} of integer, n: integer; 
op union( u, v: intset) returns intset; 

begin ... end; 
op intersect( u, v: intset) returns intset; 

begin ... end; 
end; 

(We have chosen a neutral syntax whose meaning should be clear; it is not 
Simula '67 or any other specific language.) Such a definition is intended to 
describe how any particular variable of type intset is to be represented and 
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how operations on this type of variable are to be performed. Thus the 
declaration 

var a: array[J:1 OO} of integer, n:integer; 

defines how storage is to be allocated for each variable of type intset. The 
operator definitions, e.g., that for union, define how such variables are 
manipulated. An important property of such definitions is that all the 
representational information is localized and "hidden" in the type definition; 
the only way to manipulate variables of a defined type is by invoking the 
operations defined in the type definition. 
After having made such a definition, the programmer may write such things 
as declarations of variables of type intset and statements that operate on these 
sets, e.g., 

var a,b,c: intset; 
a : = union(b,c) 

It is important to note that the newly introduced type, intset, can be given the 
same status as the predefined types (e.g., integer); one can declare variables 
of the new type and perform operations with essentially the same syntax as is 
used for the predefined ones. The ability to deal with the new types in this 
way aids our human capacity to deal with them as abstract ideas. 

This style of programming captures an essential aspect of abstraction: it 
effectively separates the application of the abstract "primitives" from the 
details of their implementation. The programmer, working at a level where 
intsets are an appropriate medium of expression, need never concern himself 
with the details of )low they are represented or manipulated. Conversely, the 
implementor of the realization of the type intset may freely alter that 
realization (to improve efficiency, for example) without concerning himself 
with the details of how it is used, as long as he preserves the functional 
properties of the operations. 

I t is not our purpose here to advocate a particular approach to structuring 
programs. However, the brief description given above is the model on which 
Hydra is based. Except for a slight change in terminology, extensions to 
provide protection, and a more dynamic definition of types than is common 
in programming languages, the Hydra kernel mechanisms were chosen to 
support this model. 

3-5 TYPES AND RESOURCES 

Earlier we used the phrase "virtual resources" to describe some of the 
facilities provided by an operating system (e.g., files). The meaning of this 
phrase is essentially identical to that of "type," or "abstract data type," as 
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used in the immediately preceding discussion. A virtual resource (e.g., file, 
directory, semaphore, etc,) is an abstract concept with a set of operations 
defined on it (e.g., for files: read, write, append, open, close, etc,). 
Moreover, the virtual resource has some realization in terms of more 
primitive concepts (e.g., disk segments). Just as with structured programs, 
we want the user of the file system to be unconcerned with the details of its 
implementation. Conversely, we want the implementor of the file system to 
focus on the issues related to that specific realization without concern for the 
details of the idiosyncratic use of a particular file. 

Without yet concerning ourselves with the details of the Hydra mecha­
nisms, we proceed by analogy with the programming language model and list 
properties that these mechanisms must have (the first two are copied from 
the previous discussion for completeness): 

Protection 
Policy Imechanism separation 
Creation of new kinds of virtual resources (new types) 
Specification of the representation of, and the operations on, a virtual 

resource 
Creation of instances of a resource 
Application of operations to an instance of a resource 
Certain "generic" operations, e.g., "storing," that are applicable to all re­

sources 

We shall often use the phrase subsystem when speaking of operating 
system facilities; it will mean essentially the same thing "type definition" 
meant in the previous discussion. That is, a subsystem is a collection of 
information that specifies the representation of a virtual resource (type) and 
the nature of the implementation of various operations on that type of 
resource. All knowledge about these representational and operational details 
are contained and "hidden" within the subsystem. In those cases where 
resource allocation (policy) issues are involved, these policies are also embed­
ded in the subsystem. Global knowledge about a specific type of virtual 
resource is limited to that supplied in the external specifications of the 
subsystem that implements that resource. Manipulation of the representation 
of a resource is restricted by the protection mechanism to only that code that 
defines the operations within a subsystem. 

At this point we can pose a question, which we purposely avoided 
previously, about the protection structure of the system: "What should be 
protected, and against what?" This apparently simple question is complicated 
by two issues: one endemic to operating systems; the other arising from the 
primary goal of Hydra. 

First, we recognize that sharing is as important as protection. That is, we 
don't really want complete isolation of the virtual machines seen by various 
users. Users want to share selectively files, pages, directories, semaphores, 
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or any of the other virtual resources provided to them. This is true in any 
"computing utility" but especially so in a multiprocessor, where a single user 
will wish to divide his job into parallel cooperating processes and share 
resources between these processes. Second, because we wish to provide 
virtual resources through user-level programs, we don't know a priori what 
kinds of resources will exist. Hence we don't know what sorts of things will 
need to be protected or what sorts of access should be granted (or prohibited) 
to them. 

Both of these questions can be answered in terms of the data abstraction, 
or "abstract data type," model discussed above. The objects to be protected 
are instances of virtual resources. We shall insist that only the operations 
defined to operate on a type may manipulate the representation of objects of 
that type. In addition, the protection mechanism provides the means of 
selectively granting or prohibiting application of these type-specific operations 
to particular objects of the type. Thus, for example, suppose type "file," with 
associated operations "read," "write," "append," "open," etc., has been 
defined. The protection mechanism will allow application of, for example, the 
"append" operation to specific instances of files to be selectively granted or 
inhibited. 

3-6 PARALLELISM 

Obviously, C.mmp provides the opportunity for true parallelism, and thus a 
major goal of Hydra was to exploit this possibility. There are two aspects to 
this goal: to exploit parallelism within the Hydra kernel itself, and to provide 
sufficient facilities that users can write asynchronous parallel algorithms. 

With respect to Hydra itself, there are several consequences of the goal. 
For example, Hydra was written to operate in a distributed fashion-that is, it 
is not a master-slave system. Any processor can execute the kernel and, in 
fact, an arbitrary number of them can execute it simultaneously. Further, 
resources such as the processors are treated as an anonymous pool; user 
processes can execute on any processor and, in fact, may switch from 
processor to processor many times during their lifetime. The kernel hides 
most asymmetries of the hardware, such as the binding of specific devices to 
specific processors; the user process does not need to be executing on the 
same processor that controls the 1/0 devices it uses. In order to maximize 
the potential parallelism in the kernel, Hydra places locks on data structures, 
not on the code that accesses them; thus, parallel execution of the same code 
on different data is common. 

With respect to facilities for user-level parallelism, we took a conservative 
approach. As in other areas, we provided (only) a minimal set of facilities 
that we believed were adequate as a basis for user-level extension, and we 
attempted to encourage such extension. We felt that we did not then know 
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enough to dictate a particular style of parallel program structuring; even now, 
after considerably more experience both with C.mmp and other multipro­
cessors, our attitude on this has not changed. Thus, we provided a rather 
traditional notion of processes together with facilities for sharing of arbitrary 
objects and basic synchronization and communication. 

3-7 SUMMARY OF THE GOAL 

Before proceeding to more details of Hydra, let's briefly recap the centra! goa! 
and its external manifestation. The primary goal is to permit conventional 
operating system facilities to be built as normal user-level programs. To do 
so we conceive of an operating system as partitioned into several pieces. One 
distinguished piece is called the kernel, whose basic function is to support the 
existence of the remaining pieces. The kernel provides a uniform protection 
mechanism and avoids arbitrary policy decisions. The remaining pieces-and 
there may be an arbitrary number of them-are called subsystems. Each 
subsystem defines the representation of a virtual resource and the implemen­
tation of operations on instances of that resource. It also is responsible for all 
policy decisions relative to that resource. 

It is crucial to note that this model makes no assumptions about the 
number or kind of resources provided by the subsystems. It is not implicit in 
the data abstraction model that there be one (or one hundred) subsystems 
that implement a "file"; in fact, it's not necessary, from a theoretical point of 
view, that there be a file system at all! Nor is there any implicit grouping of 
subsystems. The "operating system" as seen by any particular user is merely 
a collection of subsystems that implement the facilities that the user needs. 
The collection might be the same as that for another user, partially over­
lapping with it, or totally disjoint. It might include a single file system, or 
several if the different properties of the files suggest this is appropriate. 

This, then, is the goal of Hydra. We hope that at this point the reader 
has a general impression of the system's aims. We realize the reader may be 
at a loss for concrete information. Perhaps he may also feel disquieted about 
the cost and usability of all the flexibility implicit in this discussion. The 
following chapters will attempt to provide the information and data on which 
a rational evaluation of Hydra can be based. 

3-8 FURTHER READING 

The philosophy described in this chapter did not evolve in a vacuum; it was 
contemporaneous with much of the work on programming methodology and 
modern "data abstraction" languages. These areas remain subjects of vigo­
rous investigation, with new results appearing continually. At the time Hydra 
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was being designed, however, the principal influences were the emerging 
notions of modular decomposition and structured programming, as reflected 
in [Par71, Par72a, Par72b] and [DDH74]. The only language supporting 
these notions directly was Simula [Dah68]. Programming languages, program 
verification, and formal specification all evolved from essentially this same 
context. CLU [Lis77], Alphard [Wu176], and most recently Ada [Ich79], are 
good examples of the results of language research~ [Lon75] provides a good 
survey of the direction and results in verification~ [Gut78] and [Gut80] 
provide surveys of the status of formal specifications. 

Although in contemporary research, languages, specification, and verifi­
cation seem more closely allied to each other than to operating systems, it is 
interesting to observe their reconvergence. The interested reader may wish 
to consider the interaction of abstract data types and protection [1on761, and 
the use of verification in building secure systems [Wa179]. 



CHAPTER 

FOUR 
FUNDAMENT AL CONCEPTS 

In this and the following chapter we will attempt to make the philosophy 
espoused in the last chapter more concrete. First, we will discuss most of the 
basic concepts on which Hydra is based and define the technical meaning of 
these concepts within the Hydra framework~ then, in the next chapter, we 
will discuss the actual mechanisms available to the Hydra user. 

In some respects the facilities of Hydra are quite different from those of 
more traditional operating systems, and this has presented some problems to 
people initially trying to learn about the system. This problem is, unfortu­
nately, aggravated by the apparently circular nature of the definition of the 
most basic notions in the system -and a firm grasp of the notions is 
prerequisite to an understanding of the system. 

Fortunately, in large measure the concepts of concern are simply the 
analog, in the operating system domain, of familiar concepts in programming 
languages-variables, types, subroutines, and so on. Indeed, one reasonable 
intuitive image of Hydra is that it is just the "run time support system" for a 
data abstraction language of the type discussed in the last chapter. Thus, as 
both a gentler introduction to these concepts and to help avoid the apparent 
circularity, we will first present' a short lexicon of Hydra terms and draw 
analogies between them and their analogs from programming languages. The 
subsequent sections will then give a more precise, if somewhat terse, defini­
tion. 

Object. The analog of a variable in programming languages~ an object is the 
abstraction of a typed storage cell. It has a "value" or "state." Often the 
representation of an object will be constructed from a number of other 
objects; in this sense an object strongly resembles a "record" in a 
programming language. 

Type. The analog of the notion of type in programming languages; the major 
difference is that typed objects, and hence types, persist longer than a 
single program execution. As in a programming language, the type of an 
object determines which operations may legally be applied to it (that is, 
type checking is performed.) 

Capability. The analog of a reference, or pOinter in programming languages~ the 
major difference is that a capability, in addition to pointing to an object, 

43 
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contains protection information. 
Local name space (LNS). The analog of an activation record in programming 

language implementations. A local name space, or LNS, contains 
(capabilities for) the local objects (i.e., "variables") of a procedure 
invocation. Thus, an LNS defines the "environment" of a procedure 
invocation; only those objects in the LNS, or reachable from it via a path 
of capabilities (with appropriate rights), are accessible to the invocation. 

Procedure. The analog of a procedure, or subroutine, in programming languages. 
As in programming languages, we make a distinction between a proce­
dure and its invocation. A procedure is a static entity; the invocation of a 
procedure is an LNS and is the executable entity. Procedures are 
reentrant and may be recursive. 

Templates. The analog of a formal parameter specification in a subroutine; the 
major difference is that all parameter checking is done during program 
execution, so a full description of the formal specification must be 
available at procedure call time. The template is this run-time specifi­
cation. 

The Call mechanism. The analog of a subroutine call in programming languages. 
The primary difference is that a Hydra Call operation involves a 
(complete) change in the protection domain. By contrast, programming 
languages typically provide only the protection enforced by their scope 
rules. 

Although there are many similarities between these notions and their analogs 
in programming languages, and one can exploit that similarity to aid initial 
understanding, one must also be cautious. The concepts are not identical. 
Most of the differences arise from the fact that objects maintained by an 
operating system are likely to be "long-lived"; that is, they are likely to 
persist longer than the program that created them. By contrast, the variables 
of a single Algol- or Pascal-like program do not exist beyond its execution. l 

The implications of this difference are significant, since it means that other 
information, such as the type, must also persist and cannot be confused with 
other types from other programs. 

4-1 OBJECTS 

The abstraction of an instance of a resource, whether physical or virtual, is 
called an object. An object, for the present, may be thought of as a triple: 

(unique-name, type, representation) 

Every object has a unique-name, a name that differs from that of any 

1 Languages like LISP and APL also retain long-lived objects in their "work space" and thus 
are more like operating systems in this respect. 
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other extant object, any object that existed in the past, or will exist in the 
future.2 

The type of an object defines the nature of the resource represented by 
the object. In general many objects will be of the same type, each being a 
specific instance of that kind of resource. Thus, the type attribute partitions 
the universe of extant objects into a set of equivalence classes. Some 
examples of types might be FILE, SEQUENTIALFILE, RANDOMFILE (various 
kinds of files), PAGE, CATALOGUE, PROCESS, SEMAPHORE, and so on. 

The representation of an object contains its actual information content, 
e.g., a sequence of bytes in the case of an ASCII file. We shall have more to 
say about the representation of an object later. 

4-2 TYPES 

It should be clear from the preceding chapter that we do not know a pnon 
what types of objects will exist. In fact we wish to permit, indeed encourage, 
the dynamic creation of new types. In addition, we do not know how long a 
particular object will exist and, hence, how long objects of its type will exist. 
Therefore, this section describes how an object's type attribute is represented, 
and, in particular, how this representation caters to the potential for 
long-lived objects and types. 

The type attribute of an object is in fact the unique-name of another 
object-this latter object serves as a distinguished representative of the 
equivalence class of objects with the same type. Of course this representative 
object must itself have a type attribute; we demand that this be the special 
unique-name which we will call $Type$.3 Initially the system requires a single 
distinguished object whose name and type are both $ Type$. Figure 4-1 
illustrates a situation in which three types (FILE, PAGE, and SEMAPHORE) have 
been defined. 

To create a new object, a user invokes a kernel-defined operation, Create, 
and specifies the object's type. (The precise mechanism will be discussed in 
the next chapter.) A user may create a whole new type of object by invoking 
Create and specifying that the type of the new object is to be $ Type$. The 
object returned will serve as the representative of the new class of resources. 

As mentioned above, this particular mechanism for representing types is 

2The unique-name of an object is a 64-bit value, obtained from the master clock (see 
Chapter 2). 

3We are using this dollar-sign notation to emphasize that the type names are actually unique 
64-bit integers. Each type also has a readable print name, but this is in all cases for convenience 
only. Two types may have the same print name, but they can never have the same type name. 
In most cases we will use the print names of object types, in small capitals for emphasis, such as 
TYPE or SEMAPHORE, when no confusion will result. The reader is urged to keep this important 
distinction in mind. 
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'File' Type object 

Name: $File$ 
Type: $Type$ 
Printname: File 

'Page' Type object 

Name: $Page$ 
Type: $Type$ 
Printname: Page 

Page x 

Name: $X$ 
Type: $File$ 

'Semaphore' Type object 

Semaphore y 

Name: $Y$ 
Type: $Page$ 

Figure 4-1 Type hierarchy 

Semaphore z 

Name: $Z$ 
Type: $Semaphore$ 

only one of several which might have been used. Its details are far less 
important than the property that new types may be created at will. An 
additional desirable consequence of this technique will, however, be discussed 
later (see TypeCall in Section 5-3.4). 

4-3 CAPABILITIES 

A capability is a pair 

(unique-name, allowed-rights) 

Intuitively, a capability consists of a reference to an object together with a list 
of access rights (allowed rights) to that object. For now, access rights may be 
considered to he a list of the operations that the possessor of the capability 
may legally apPlY to the object named by the capability. 

Hydra departs from other capability-based protection systems by dividing 
the set of access rights into two disjoint subsets: the kernel rights and the 
auxiliary rights. The kernel rights apply to the generic (type-independent) 
operations (e.g., Create) provided by the kernel. The auxiliary rights apply to 
the operations defined on a particular object type by a user-level 
Hsubsystem. " 

It should be noted that the representations of capabilities are manipulated 
only by the kernel, and all objects must be accessed through capabilities. It is 
impossible to Hforge" a capability, or to gain access to an object without 
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having a capability for it. (In particular, knowing the unique-name of an 
object will not help.) 

4-4 REPRESENTATION OF OBJECTS 

The concept of an object should be powerful enough that users may define 
new types of objects for new kinds of resources. To do this, one must be 
able to store various information in the object. (For example, a file object 
may contain the disk address of the contents of the file.) 

In many capability-based operating systems a capability is an attribute of 
executors only (e.g., processes). In such systems the set of capabilities 
possessed by an executor defines its protection domain. While this is also 
true in Hydra, we have generalized the notion of objects and capabilities in an 
important direction. Capabilities are not attributes of executors alone; any 
object may contain capabilities for other objects. (Among other things this 
permits us to close the circle and define executors as merely a particular type 
of object.) The most important practical implication of this generalization is 
that new object types (new kinds of resources) may be defined in terms of 
existing types. 

By analogy with programming languages, a Hydra object is a record. It is 
a heterogeneous collection of simple variables (data) and pointers (capabilities 
for other objects). For implementation reasons, the representation of an 
object is divided into two parts: a data-part and a C-list (i.e., a capability list). 
The data-part of an object is merely a block of storage that can hold 
subsystem-specified data. The kernel capability mechanism places no inter­
pretation on this data, although presumably the subsystem that defines the 
object type does.4 The C-list of an object contains an ordered set of capabil­
ities as defined above. Thus any object may reference other objects. Either 
the data-part or C-list of an object may be empty. 

It should be noted that the C-list of an object allows one to construct a 
general directed graph structure. The objects themselves are the nodes in 
this graph. The capabilities are the arcs; each arc is labeled with the access 
rights permitted to an object when it is referenced via that particular arc. We 
will often exploit this analogy with graph structures to draw diagrams repre­
senting a collection of objects. As an example, consider Figure 4-2, in which 
objects are shown as rectangular boxes, the top of which denotes the 
data-part and the bottom of which denotes the C-list; the objects pointed to 
by the capabilities of the C-list are indicated by the directed arrows coming 
from the C-list. 

4A few object types are defined by the kernel; most of these will be discussed later. For 
these, the defining subsystem is a part of the kernel, and the kernel does place an interpretation 
on the contents of the data-part. 
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Figure 4-2 Example object graph 

Example Let's consider a simple example of how the representation of an 
object can be used. The basic Hydra system does not provide the notion of a 
"directory" or "catalogue"; suppose that we wished to introduce this notion. 
(Alternatively, suppose that the notion had been defined by someone else, 
but their definition was unsatisfactory for our purposes and we therefore 
wished to create an alternative definition.) The function of a directory is to 
map external character string names, e.g., "XYZ," onto specific objects. 
More accurately in Hydra, a directory maps external names into references to 
objects, that is, to capabilities. 

A natural representation of directories suggests itself. First we create a 
new object type, DIRECTORY. Then we build a number of user-level 
programs to provide the usual kinds of directory manipulation operations, 
e.g., "search," "insert," "delete," "rename," and so on. (We must defer 
discussing how the programs are created. For the present the important thing 
is that these programs must share certain assumptions about the structure of 
DIRECTORY objects.) 

We might choose any of several representations for directories, but many 
of them will involve storing the external names in the data-part of the 
directory object and the associated capabilities in its C-list. A few possibilities 
are listed below. 

1. If we are willing to restrict external names to a fixed length, say n bytes, 
then the simplest representational scheme is to store the capabilities in 
C-list slots 1 ,2,3,... and store the name corresponding to the ith capability 
in bytes (i-l)- n+ 1 through in of the data-part. 

2. The previous scheme seems to imply a linear scan of the data-part in 
order to implement the "search" operation; it could be easily modified to 
use a hash table or a discrimination net in the data-part. 
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3. If the restriction to fixed-length names is considered unacceptable, a more 
elaborate data-part structure is necessary. Specifically, the one-to-one 
correspondence between C-list slots and displacements in the data-part no 
longer holds and information must be recorded with each name which 
specifies the associated C-list slot number. 

4. If a ~~delete" operation is provided, some scheme for allocation of free 
storage is needed, both for the data-part and for slots in the C-list. If 
there is a 1-1 correspondence between the C-list slots and displacements 
in the data-part, a single mechanism will suffice. If not, separate space 
management schemes must be implemented. 

Before leaving the example, we would like to point out a property of 
these schemes that might not be obvious from this brief description. The 
directory systems of most operating systems map external names into refer­
ences to files. Indeed, often the coupling is so tight that no distinction is 
made between the "file system" and the directory system - there is no 
opportunity for the user to name anything other than files. That restriction is 
not true here. This directory system maps external names to capabilities, 
which may reference files, but may also reference pages, semaphores, or any 
other type of object. Specifically then, it may map to capabilities for other 
directories. Hence, the familiar "tree-structured directory" is naturally ac­
commodated by this structure. 

4-5 THE LOCAL NAME SPACE 

Up to this point we have described a relatively static view of Hydra and 
avoided a precise definition of the execution environment of programs. In 
this and the following sections we will begin to discuss the execution 
environment, or domain, of a program and how it changes dynamically. 

LNS (for "local name space") is one of the object types recognized and 
maintained by Hydra. An LNS object defines the instantaneous protection 
domain of a program. That is, the C-list of an LNS contains capabilities for 
objects that a program may reference. In fact, all the objects referenced by a 
program must be referenced through its LNS. However, since the objects 
referenced by the capabilities in an LNS may themselves contain capabilities 
for objects which contain capabilities, etc., the set of objects available to a 
program is the transitive closure of the capabilities found in its LNS. As will 
be discussed later, the formation of this closure is restricted by the access 
rights in the relevant capabilities, but it should be clear that any object not in 
the closure is inaccessible. 

In any capability-based protection scheme it is of paramount importance 
that the capabilities provide the only mechanism for gaining access to objects. 
In particular, knowledge of the unique-name for an object does not grant 
access to the object. To enforce this essential property within Hydra, all 
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objects are named by a path rooted in the current LNS of a program. 
To illustrate this point, refer to Figure 4-3, in which we have added two 

LNSs to the object structure of Figure 4-2. Each object in the figure can be 
named in various ways, depending on the LNS which originates the refer­
ence. Table 4-1 lists the possible reference forms. Note that because the 
capability graph is not strictly tree-structured there can be several path names 
for the same object from the same LNS. 

X: LNS 

2 

3 

Y: LNS 

E 

2 ~ 
Figure 4-3 Objects in the domain of two LNSs 

Table 4-1 Naming objects from two LNSs 

Object 

A 

B 

c 

D 

£ 

Path name from X 

Path(l) (or just '1 ') 

PathO) (or just '3') 

Path(2) or Path(2,2, .. .) 
or Path(1,l) 
or PathO,1,2,2, .. J 

Path(I,l,l) or Path(2,l) 
or Path(2,1,2,2, .. J 

PathO,2) 

Path name from Y 

Cannot be named 

Path(2) (or just '2') 

Path(l) or Path(I,2) 
or Path(I ,2,2, .. .) 

PathO,l) 
or Path(1,l,2,2, .. .) 

Path(2,2) 

D 

1 -empty-

2 

31-------l 

Paths are also used to name capabilities as well as objects, depending on 
the context in which they are used. Thus, while Path(I,I) and Path(2) both 
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name object C from LNS X, the paths name two different capabilities for C. 
This is important because the capabilities may have different sets of access 
rights for C. 

Note that the unique-name of an object is never used to name it. The 
term "LNS" was originally chosen to emphasize its function as a mapping 
from local names in a single program to globally unique names. 

4-6 PROCEDURES 

PROCEDURE is another type of object defined by the kernel; it serves as a 
schematic from which an LNS is formed when the procedure is "called." The 
procedure is simply an abstraction of the intuitive notion of procedure or 
subroutine; that is, a procedure has some "code" and some "data" associated 
with it. It may be called and may accept parameters. It is reentrant and 
potentially recursive. Hydra's procedures go beyond this simple model by 
including protection facilities, as we shall see shortly.5 To simplify for a 
moment, the Hydra procedure call (Call) is a kernel function that accepts a 
capability for a procedure, creates an LNS object, copies the C-list of the 
procedure into the C-list of the LNS, binds parameters, and transfers control 
to the code of the LNS (procedure). The "old," or "calling," LNS is stacked 
so that the complementary kernel function (Return) can destroy the new 
LNS and return control to the old one. 

Thus procedures provide the initial state of an LNS, or equivalently, an 
initial protection domain. Note that a complete change in execution envi­
ronment may occur when a procedure is called; in particular, an LNS does 
not automatically inherit access to any of its caller's environment. This fact is 
the basis of the observation that Hydra does not provide a hierarchical 
protection structure; although one may implement a hierarchy if one chooses, 
the system does not force subsystems to be more privileged than their callers. 

The distinction between a procedure and an LNS is an important one, 
even though it is frequently convenient to blur the difference (thus we may 
speak of the "currently executing procedure" when we really mean an LNS 
created from that procedure). An LNS may change during the course of its 
execution, for example by creating new objects and storing capabilities for 
them into its C-list. The procedure from which the LNS was created is not 
affected by the execution; thus procedures are potentially reentrant and 

5The term "procedure" in this context has unfortunately misled some people, suggesting to 
them a small unit of computation. Since the software implementation imposes a considerable 
overhead, a Hydra procedure is impractical for implementing simple subroutines such as sine or 
cosine. Although we can imagine hardware/firmware support that would make it practical for 
even the smallest subroutines to be protected procedures, with the present implementation a 
Hydra procedure is used only when a change in protection domain is desirable or required. 
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recursive.6 

4-7 PROCESSES 

PRBCESS is another kernel-defined object type. As in most systems, a process 
is the smallest independent unit which may be scheduled for asynchronous 
execution. Technically, a process is simply a stack of LNS objects, the top one 
of which defines the current protection domain of the process. The stack is 
altered by calls and returns, as described above. 

A PROCESS object also contains information which controls various policy 
decisions (e.g., scheduling), but we shall defer explanation of this aspect of 
processes until Chapter 12. 

4-8 PROCEDURES AND ACCESS RIGHTS 

Up to this point we have been intentionally vague about the precise meaning 
of the words "access right"; in fact we have not defined what it means to 
"access" an object. The remainder of the chapter will make these notions 
more precise, but we will motivate that presentation here. 

Procedures might be used for any of several reasons, some of which are 
quite pedestrian. The natural way, for example, to implement a compiler in 
the Hydra context is as a procedure. Such a procedure would need to be 
called with, for example, a capability for FILE object containing the source 
text to be compiled. Although there may be many useful procedures such as 
compilers, loaders, etc., they are not the kind with which we are presently 
concerned. 

A more important use of the procedure is in implementing the notion of 
an abstract type definition, which was introduced at the beginning of this 
chapter. Recalling that discussion, we recognize that two things are required 
in such a type definition: a definition of the representation of the new type 
and a definition of the operations on instances of the type. The data-part and 
C-list of objects provide the primitive tools for representing new virtual 
resources. Procedures are used to define the operations. 

In Hydra, the things to be protected are objects, and they are to be 
protected against the unauthorized application of operations. Using the 
current terminology, protection is enforced at procedure invocation time. 
The protection mechanism validates that it is legal to call this particular 
procedure with the given actual parameter capabilities. 

A "subsystem" is, in fact, nothing more than a collection of procedures, 

6To ensure reentrancy, however, the author of a procedure must exercise some care. The 
LNS may, through inherited capabilities (explained later), alter objects named in the procedure, 
which would thus alter all LNSs subsequently created from the procedure. 
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each of which implements some operation on a specified object type. A file 
subsystem, for example, might consist of a set of procedures such as Read, 
Write, Append, Rewind, etc. If a user happens to have a capability for a 
specific file object, he may attempt to apply one of these procedures to it. 
The protection mechanism is embedded in the procedure call mechanism; it 
must verify that the procedure that the user is attempting to invoke is among 
those permitted by the access right part of the file capability. 

It is not the case, however, that the caller of a procedure must supply a 
capability which has all the access rights needed by the procedure. In general 
a user who possesses a capabiiity for an object, e.g., a me, will not have the 
right to access the representation of the object. It would be most unwise, for 
example, for the possessor of a file capability to manipulate the physical disk 
addresses stored in the corresponding object. On the other hand, the 
procedures in the file subsystem must have access to this information when 
they are invoked to perform some operation on behalf of the user. 

This is one example of a case in which a procedure, in order to do its job, 
needs more access rights than its caller. The situation is a common one for 
procedures that, as part of a subsystem, implement a resource. To accom­
modate this common circumstance, the kernel allows rights amplification, an 
increase in access rights, when a capability is passed as a parameter. Al­
though the amplification of rights can be allowed only under tightly controlled 
circumstances, it is an extremely important attribute of the Hydra protection 
mechanism and crucial to the goal of allowing operating system facilities to be 
defined at the user level. 

4-9 TEMPLATES AND THE MERGE OPERATION 

In order to describe the procedure call mechanism, we must first introduce 
another concept-that of a template. There are, in fact, three kinds of 
templates recognized by the kernel: 

Creation templates 
Simple templates 
Amplification templates 

A creation template is used exclusively to create a new instance of objects 
of a given type; we will discuss creation templates in the next chapter. A 
simple template is just a pair: 

(type, required-rights) 

An amplification template, on the other hand, is a triple: 

(type, required-rights, new-rights) 
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where type specifies an object type, and required-rights and new-rights are sets 
of access rights. 

The relation between simple and amplification templates parallels the two 
uses of Hydra procedures. Procedures implementing subsystems need ampli­
fication templates to expand the access rights of parameter capabilities passed 
to them. Other procedures (e.g., compilers) can make do with simple 
templates because they do not need the rights amplification facilities. 

Since, in the present discussion, we shall not be concerned with creation 
templates, we will use the word template to mean either of the other kinds 
and hence something of the form shown above. In some cases, we shall also 
refer to these two forms as parameter templates where we wish to emphasize 
that they are not creation templates. 

A template may occupy a slot in the C-list of an object, but it is not a 
capability. It may be thought of as a specification for a capability that will 
eventually occupy that slot. Templates are important because of a 
kernel-supplied operation called Merge. 

Merge takes two parameters, a template and a capability, and if successful, 
returns a capability. Specifically, it does the following sequence of operations: 

1. It verifies that the type specified in the template matches the type of the 
object named by the capability. If they disagree, the operation fails. 

2. It verifies that the access rights specified by the capability are a superset of 
the required-rights as specified in the template. If this is not the case, the 
operation fails. 

3. It forms a new capability and returns it. This capability will name the 
same object as the parameter capability. Its allowed-rights field is con­
structed as follows: 

a. If the template is a simple template, then the resulting allowed-rights 
field contains the allowed rights of the parameter capability. 

b. If the template is an amplification template, then the resulting 
allowed-rights field contains the new-rights field of the template. As 
will be discussed in the next chapter, however, certain rights can 
never be gained through amplification~ these permit a user to protect 
himself from certain subsystem behaviors. 

Thus the Merge operation performs a dynamic type and rights check and 
potentially creates a new capability for some object. In addition, however, it 
sets the allowed-rights field of the new capability to either that of the original 
capability or to that of the new-rights field of the template, depending on 
whether the template was a simple or amplification template. 



FUNDAMENTAL CONCEPTS 55 

4-10 THE CALL MECHANISM AND RIGHTS CHECKING 

The Call operation, as explained previously, creates an LNS object from a 
procedure. The major omission from that discussion was the handling of 
parameters. We can now present the full definition, relying on the previous 
discussion of Merge. 

Call first creates an empty LNS object and then copies the information 
from the parent procedure into the LNS object. In the process of copying the 
C-list of the procedure, it may encounter either capabilities or templates. In 
the former case the capability is mereiy copied; these are known as inherited 
capabilities. In the latter case a Merge is performed between the template 
from the procedure and a parameter capability supplied during the Call 
operation. The capability resulting from the Merge is stored into the C-list of 
the LNS object. Should any of these Merge operations fail, the entire Call 
will fail. 

As can be seen from this discussion, templates serve somewhat the same 
role as formal-parameter specifications in a programming language. They 
allow the designer of a procedure to specify both the type and the rights that 
a parameter must have. In addition, in the case of a subsystem procedure, 
the "new-rights" may be used to specify rights amplification. 

The Call mechanism (including the associated merging of templates and 
capabilities) is essential to the Hydra protection mechanism; it is the major 
point at which protection is checked. Thus it is worth reviewing the action of 
Calf. 

A procedure may contain templates in addition to the usual collection of caller-independent 
capabilities. Templates characterize the actual parameters expected by the procedure. When 
the procedure is called, a new LNS is created. The slots in this LNS that correspond to 
templates in the procedure's C-list are filled with "normal" capabilities derived from the 
actual parameters supplied by the caller. This "derivation" is, in fact, a Merge operation; the 
template defines the checking to be performed. If the caller's rights are adequate, a 
capability is constructed in the (new) LNS referencing the object passed by the caller and 
which contains rights formed by merging the caller's rights with the rights specified in the 
template. 

4-11 A NOTE ON IMPLEMENTATION 

It might seem incongruous to inject a note on implementation at this point; 
in this case, however, the nature of the implementation has a significant 
impact on the conceptual issues we are discussing. The point at issue is the 
representation of the allowed-rights field in a capability, and the required- and 
new-rights fields of templates. 

We mentioned before that all access rights (in all these fields) are broken 
into two subfields: kernel rights and auxiliary rights. The kernel rights refer to 
the generic operations provided by the kernel (e.g., GetCapa). The auxiliary 
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rights refer to the type-specific operations. 
The relevant point is that both these subfields are simple bit vectors. (In 

the current implementation the kernel-rights field is 16 bits and the auxiliary 
rights field is 8 bits, although these sizes are arbitrary.) 

Thus, let 

C be the capability parameter to Merge 
T ~e the template parameter to Merge 
NC be the new capability returned by Merge 

and let 

C. type be the type of C (similarly for T. type, NC. type) 
C.allowed be the allowed-rights field of C (similarly for NC.allowed) 
T.required be the required-rights field of T 
T. new be the new-rights field of T 
amptemp(T) be a function that is true if and only if T is an amplification 

template 

The Merge operation is: 7 

if C.type;;c T.type then ERROR else 
begin 

N C. type : = C. type; 
if BitVectorAnd(C.allowed, T.required) = T.required 

then NC.allowed:= (if amptemp(T) 
then T.new 
else C. allowed) 

else ERROR; 
end; 

As can be seen, this is a simple, fast operation. However, the important 
point from a conceptual viewpoint is that 

• The Merge operation does not place an interpretation on the meaning of 
the auxiliary rights bits . 

• There does not need to be a one-to-one correspondence between the 
rights bits and the operations on the type (though there can be one if the 
subsystem designer so chooses). 

Since the rights check is performed only after the type check has been made, 
a subsystem designer is free to choose the interpretation of these bits as is 
appropriate for the particular resource he is defining. In particular, there may 

7This definition is incomplete. The full explanation is given in Chapter 7. The only 
simplification here is that, in reality, certain rights cannot be gained through amplification. 
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be one bit for each possible operation, or certain operations may simply 
require a specified combination of other rights. 

Example Suppose one is defining a file system and that three of the 
operations to be provided are "read," "write," and "update" (i.e., both 
"read" and "write" during a single "open" period). These three operations 
are to be implemented as procedures Read, Write, and Update; each 
procedure will require (at least) a capability for the file to be passed as a 
parameter. 

The file (sub) system designer must choose which bits of the (auxiiiary) 
rights field are to have what meaning. We will consider two schemes, either 
of which may be appropriate: 

Rights bit 

C.allowed[O] 
C.allowed [1] 
C.allowed[2] 

Scheme 1 

Meaning 

read access allowed 
write access allowed 
update access allowed 

Rights bit 

C.allowed[O] 
C.allowed[l] 

Scheme 2 

Meaning 

read access allowed 
write access allowed 

Under the first scheme each of the three procedures will need a template 
for the parameter capability, and the type field of all these templates will 
specify that the parameter must be of type FILE. The required-rights field of 
each template, however, will be different: 

Operation 

Read 
Write 
Update 

Scheme 1 

Required-rights 

T. required[O] = 1, all others zero 
T.required[l] = 1, all others zero 
T.required[2] = 1, all others zero 

In the second scheme everything will be the same except for the 
required-rights field of the template for Update: 

Operation 

Read 
Write 
Update 

Scheme 2 

Required-rights 

T.required[O] = 1, all others zero 
T.required[l] = 1, all others zero 
T.required[O] = T.required[1] = 1, all others zero 

In short, under the second scheme we do not have a separate right 
associated with updating-we merely require that the caller have the right to 
both read and write the file. 
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4-12 PROTECTION VS. FLEXIBILITY 

Flexibility and protection are closely, but not inversely, related; that is, more 
protection does not necessarily imply less flexibility, or conversely. We 
believe that protection is not merely a restrictive device imposed by "the 
system" to ensure the integrity of user operations, but is a key tool in the 
proper design of operating systems. It is essential for protection to exist in a 
uniform manner throughout the system and not to be applied to only specific 
entities (e.g., files). The idea of capabilities is most important in the Hydra 
design; the kernel provides a protection facility for all entities in the system. 
Protection includes not only the traditional "read," "write," and "execute" 
distinctions, but arbitrary protection conditions whose meaning is determined 
by higher-level software. 

It is important in any discussion of protection to distinguish carefully 
between "protection" and "security." In our view, protection is a mechanism; 
security is a policy. A system utilizing a protection mechanism may be more 
or less secure, depending upon policies governing the use of the mechanism 
(for example, passwords and the like are policy issues) and upon the 
reliability of programs that manipulate the protected entities. Thus the design 
of the Hydra protection mechanism provides a set of concepts and facilities 
on which a highly secure system may be built, but does not provide that 
security inherently. 

The particular extensible, capability-based protection system chosen for 
Hydra was picked because of its ability to allow the construction of 
user-visible operating system facilities as normal user programs. It also 
happens that a broad spectrum of security policies can be implemented in 
terms of the Hydra mechanisms (see [Jon75] and Chapter 7 of this book). 
Thus the Hydra mechanisms are interesting in their own right; however, the 
ability to extend the system at the user level is, in our minds, its greatest 
virtue. 

4-13 RETROSPECTIVE 

It may be that one of Hydra's most important contributions will be the 
philosophies and concepts presented in the last two chapters. Certainly, these 
are the things we believe should be emulated, albeit in evolved forms, in 
future systems. Even with the perspective of several years, the model is still 
both elegant and practical. 

We will discuss the use of the Hydra mechanisms at length in subsequent 
chapters. It is worth a small peek ahead, however, to note here that the 
Hydra mechanisms have indeed fulfilled their goals. One can add new 
abstract types with ordinary user code. The facilities added in this way do 
assume an equal status with pre-existing ones. Hydra does routinely run with 
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several coexisting subsystems defining essentially the same facility-several 
directory systems, for example. These multiple subsystems do not interfere 
with each other, and no special provision is made to ensure this. Moreover, 
we have found construction of these systems to be remarkably easy. The 
construction of subsystems is substantially simpler and less error prone than 
the construction of similar facilities in the conventional way. 

To those familiar with modern notions of data abstraction in program­
ming languages, these assertions may not seem so remarkable-they are, 
after all, current doctrine. However, the Hydra model was developed 
contemporaneously with the notion of data abstraction in programming 
languages, and its implementation substantially predates everything except 
Simula. The model suffers only slightly from not having the benefit of 
previous models to build on. In the light of subsequent developments we 
might have adopted a stronger grouping of the procedures that implement the 
operations on an abstraction, for example, as is done in the CAL sytem 
[Stu74] or in Modula [Wir761. We might also have associated mutual 
exclusion with the operations on an object as is done with monitors [Bri78]. 

The full generality of amplification templates provides fine-grain control~ 
subsystem procedures need to gain only those rights that they require to 
perform a given operation. In practice, however, it is common for most 
subsystem procedures to grant themselves all rights. While there is no logical 
need for this, it is simpler than thinking about what is needed. Moreover, it 
is not clear that this "over-amplification" is bad~ the user must trust the 
subsystem to perform as specified in any case.8 Although the Merge operation 
is not especially complicated, it would be even simpler if amplification 
implicitly granted all rights. We could, in that case, simply elide the notion of 
"new rights" from amplification templates. Other systems, such as STAROS 
[Jon791, do this and we would probably do the same in a future system. 

In retrospect, the principle of policy/mechanism separation seems unassail­
ably sound. At least in some cases, it also works well in practice~ the Policy 
Modules in Hydra do, in fact, control medium-term scheduling. Several PMs 
have been built and can run simultaneously. Significant differences in 
performance result from the use of the different PMs. Policies for estab­
lishing what is meant by a "user," for handling user-authentication, for 
controlling the resources of a "job," and so on, have also been successfully 
factored out of the kernel. On the other hand, we have never been able to 
find a clean model for separating mechanism and policy in those cases where 
a resource is shared. Secondary and primary memory are two clearly essential 
resources for which separation was not cleanly achieved~ in the case of the 

8However, we will show in Chapter 7 how the mutual suspicion of subsystem and user can 
be accommodated. 
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disks, in fact, policy control of shared disks was retained in the kernel.9 

Perhaps one of our greater failings as a project is closely tied to the 
philosophy of the system. There are a number of manifestations of this 
failing, but they all relate to the fact that we all thought that the goals were 
just right and the mechanism so elegant that we became preoccupied with them 
to the exclusion of other important aspects of the system. The user interface, 
and predominantly the command language interpreter, was never well 
thought out, for example. Because the command language was not an 
in tegral part of the system - and "any user can build his own easily," or so we 
told ourselves-it never seemed worth the effort. To this day, we are 
absolutely convinced that the most friendly, elegant interface imaginable can 
be "easily" constructed for Hydra, but it was not done! 

A corollary to the previous problem was our choice of general-purpose, 
time-shared computing as the target use of the system. There was simply too 
much additional software required for the general user-debuggers, editors, 
loaders, compilers, and so on. Although much of this eventually got built, it 
was too late. We would have been better off, and probably would have 
learned more about multiprocessors as well as operating systems, if we had 
focused on a narrower application domain. This does not mean that either 
C.mmp or Hydra was unsuited to the larger domain-only that we frail 
designer/programmers could not produce all the software it needed. 

Finally, on reflection, we find it strange that processes did not play a 
more major role in our design of the kernel. We were, after all, constructing 
a system for a multiprocessor. Moreover, process-structured operating sys­
tems were very popular at the time. Nonetheless, although we supported 
them at the user level, they were given only passing consideration as a 
structuring tool for the operating system itself. With only a few exceptions 
that will be noted later, this has turned out to be a workable, if occasionally 
regretted, decision. 

4-14 FURTHER READINGS 

The concepts of protection, sharing, and information flow in computer 
systems have been the subjects of active research for over a decade. As a 
result, many of the fundamental concepts described in this chapter have 
appeared in other forms in systems before and after Hydra. Dennis and Van 
Horn [Den66] are generally credited with the first description of capabilities 
as a mechanism for controlling access. The other canonical method of 
representing protection information, access control lists, is best known from 
its use in Multics [Sa174]. Although the formal equivalence of these two 
representations with respect to information content is well-known [Lam74], 

9User-level programs can acquire an entire disk, in which case they can also control policy. 
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the architectures built on top of them have rather different specific 
behavior- [Sal75] contains an extensive survey. Many conventional oper­
ating systems have offered authority-based protection [Bob72], [Amd64] 
(generally applied to files), and protection systems based on capabilities have 
been extensively developed [Jon73, Fab74, Fer74]. These different ap­
proaches have prompted considerable investigation into the practical use of 
protection mechanisms in programming languages [Mor73] and systems (see 
[Eng74] and other contributions to the 1974 IRIA Workshop). The construc­
tion of systems intended for everyday use has exposed strengths and weak­
nesses of capabiiity-based approaches [Lam76, Wii79]. rrorection systems 
have also been evaluated on their ability to provide a secure and reliable 
computing environment~ [Lin76] is a good survey. 





CHAPTER 

FIVE 
KERNEL FACILITIES 

In this chapter we will discuss the basic facilities provided by Hydra for the 
manipulation of the abstractions introduced in the last chapter: objects, 
capabilities, and so on. It is neither practical nor particularly enlightening to 
discuss all the facilities provided, but we will cover: 

1. The generic facilities of the kernel. These include: 

a. The set of operations that can be applied to any object or capability, 
regardless of its type. 

b. The set of kernel rights. These rights must be present in a capability 
for the various generic operations to be applied to it (or, in some 
cases, to the object it names). 

2. The kernel-defined object types, along with their type-specific operations and 
auxiliary rights. A few of these (e.g., LNS and PROCEDURE) were 
mentioned in the last chapter; these types are critical concepts in Hydra. 
Other kernel-defined types (e.g., PORT) could have been implemented by 
user-level software but were included in the kernel for efficiency reasons; 
these types are not central Hydra concepts, and discussion of them is 
deferred until later chapters. 

5-1 NOTATION 

In the last chapter we use diagrams such as that shown in Figure 5-1 to 
illustrate a collection of objects. Each object is represented by a rectangular 
box. The upper portion of a box (above the double horizontal line) denotes 
the data-part of the object; the lower portion denotes the C-list. The C-list is 
divided into a number of rectangles (often called "slots"), each of which may 
hold a capability; arrows from these C-list slots to other objects show which 
objects are named by the capabilities. The rights in a given capability, or at 
least those of interest, are listed in the box representing the slot; for 
emphasis, we sometimes show a right crossed out to emphasize that it is not 
present in a given capability. Occasionally, as in Me:LNS, we place a 
mnemonic name (Me) and type (LNS) just above the rectangle representing 
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a specific object; this is merely a convenience for talking about the objects. 
As we noted in the last chapter, an execution environment consists of an 
LNS together with the set of objects referenced (possibly indirectly) by the 
LNS. Thus, for example, A and B are part of the execution environment of 
Me, but C is not. 

A: Page 

B: Page 

Page 

Page 

Me: LNS 

CacheRts 

2 ModifyRts 

2 

3 

You: LNS 

CacheRts 

ModifyRts 
LookupRts 

4 
1------1 

F: File 

Page 
CacheRts 

1 Mod~Rts+---"",---_------, 

C: Catalogue 

P: Procedure 
1 GetCapaRts-+---.... 

Semaphore 

I I 

Figure 5-1 A Collection of Objects 

Note that we have specifically shown the capability "slots" in the figure, 
and indeed have numbered them beginning with 1. In practical program­
ming, both the data-part and C-list of an object are extremely important. In 
order to simplify discussions we will introduce some special notation. 

Definition 1 If X is an object, then 

Xd will denote its data-part 
Xc will denote its C-list 
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Xd [i] will denote its ith word of its data-part (origin 1) 
XC[i] will denote its ith capability (origin 1) 

Thus, in Figure 5-1, Mec!2} is the capability that names the file F 
In order for a program to name capabilities or objects in its execution 

environment, it specifies a path to the object or capability, where the path 
must be rooted in the program's LNS. More formally, a path specification is 
of the form 

and is defined recursively as follows: 

Definition 2 Path(a) is the capability in the ath slot of the LNS and is 
equivalent to the simple index a. Path(a,b, ... ,y,z) is the capability in the 
zth slot of the C-list of the object referenced by the capability 
Path(a,b, ... ,y), 

Because we must be able to talk about the rights possessed by objects along a 
path, we will call the capabilities Path (a), Path(a,b), ... , Path(a,b, ... ,y) the steps 
and the capability Path(a,b, ... ,y) the pretarget. (The pretarget is also consid­
ered one of the steps.) The final capability Path(a,b, ... ,y,z) is the target. 
Thus, for example, in Figure 5-1, Path(3,1,l) when interpreted in the 
context of the LNS named You, names the first capability of the object P 
(alternatively, it names the object C that is referenced by this capability). In 
this example pe!J} is the target, ce!J} is the pretarget, and You e!3} is a step. 

5-2 KERNEL RIGHTS 

Every capability contains a set of access rights that determine which opera­
tions may legally be applied to itself and to the object it names. The rights in 
a capability are divided into two groups: 

Kernel rights. Those rights that control the application of the generic kernel 
operations (such as moving capabilities from one place to another). 

Auxiliary rights. Those rights that are type-specific and are inspected only 
when a type-specific operation is attempted. 

In this section we shall define the kernel rights. The auxiliary rights will be 
discussed in those sections that deal with specific object types. The kernel 
rights may be further subdivided into three groups: 

Capability rights. Rights that apply to the capability. If these rights are 
missing, certain kernel operations cannot be applied to the target capa­
bility. 
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OQject rights. Those rights that apply to the object named (referenced) by the 
capability. These may be further subdivided: 

Data-part rights. Those rights that, if absent, will not permit operations on 
the data-part of the object named by the capability. 

C-list rights. Those rights that, if absent, will not permit operations on the 
C-list of the object named by the capability. 

Restriction rights. Those rights that, if absent, will prevent certain operations 
on any object that can be named, possibly indirectly, through this 
capability. 

A full and complete definition of the kernel rights requires a bit of mental 
recursion. Strictly speaking, the meaning of each right is defined by the set 
of kernel operations that are allowed (disallowed) by the presence (absence) 
of the right. Alas, the definition of each of the operations, of course, also 
depends upon the rights that are present in its parameters. To break this 
circularity, Table 5-1 presents an intuitive description of the intent and 
function of each of the kernel rights. After reading this and the following 
section that defines most of the basic kernel operations, the reader would be 
well advised to review this section and compare the intuitive definitions of 
the rights with their use. 

In Chapter 7 we will discuss how these access rights are used to solve 
various protection problems. In this chapter we will illustrate their use to 
support the construction of abstract data types as discussed in Chapter 3. 

In any data abstraction facility, it is essential that only the operations of a 
given type can modify objects of that type. In order to modify the represen­
tation of an object, its user would need a capability with one or more of 
PutDataRts, AppendDataRts, PutCapaRts, AppendCapaRts, or KiIIRts (as well 
as ModifyRts). By removing all these rights from the capability, the sub­
system can ensure that no modification can be performed by the users-and 
hence that only the subsystem procedures can effect changes. Alternatively, 
a subsystem may choose to permit the user to make certain modifications by 
setting the rights accordingly. 

Recall another basic tenet of data abstraction-one should be able to hide 
the representation of the type being defined. Simply preventing modification 
of the representation is not enough~ the user of the abstract type should 
know about its abstract behavior-its operations-but not about its represen­
tation. By hiding a representation we ensure that the user cannot develop 
dependencies on the representation, and thus we ensure that the represen­
tation can be changed if that is deemed a desirable thing to do. 
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Table 5-1 Kernel-defined access rights 

De/eteRts 

EnvRts 

Ge!Da!aRts 

PllfDataRts 

AppendDataRts 

GetCapaRts 

PurCapaRts 

AppendCapaRfs 

KiIIRts 

Mod{fyRts 

UncfRts 

CopyRrs 

CreateRts 

Capability rights 

Permits the capability to be deleted from the C-list that contains it. 

("Environment rights.") Permits the capability to be stored outside the 
immediate environment, i.e., outside the LNS. 

Data-part rights 

Permits data to be copied out of the data-part of the object named by 
the capabiiity. 

Allows data to be stored into the object named by the capability. 

Allows data to be appended to the end of the data-part of the object 
named by the capability. 

C-list rights 

Allows capabilities to be copied out of the C-list of the object named by 
the capability. In addition, GerCapaRts are required on all steps of a 
path. 

Allows capabilities to be stored into the C-list of the object named by 
the capability. 

Allows capabilities to be appended to the end of the C-Iist of the object 
named by the capability. 

Permits capabilities to be deleted from the object named by the 
capability. Each capability to be deleted must, in addition, possess 
De/eteRrs. 

Restriction rights 

Allows modification of the objects named by any path through the 
capability. For example, then, both Mod{fyRrs and PutCapaRts must 
be present in the pretarget in order to store a capability into its 
C-list. 

("Unconfined rights.") In capabilities for PROCEDURE objects, allows the 
procedure to be called "unconfined." Any call of a procedure lacking 
this right is termed a "confined call" and results in a "confined 
LNS." Confined LNSs cannot store information in such a manner 
that it can be accessed by another domain. 

Allows a copy of the object named by the capability to be made. 

Allows an object of the type described by a template to be created. 
This right has meaning only in "creation templates." 
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Notice that GetCapaRts are required along all steps in a path, including the 
pretarget. Further, GetDataRts are required in order to access the data-part of 
an object. Without these rights, it is impossible to name the components of 
an object. Therefore, the representation of an abstract type can be hidden 
from its user by the simple expedient of removing GetCapaRts and 
GetDataRts from capabilities for objects of the type. The subsystem that 
defines the abstract type must, of course, access the representation; it can do 
this, however, because it can amplify the rights in parameter capabilities to 
include these rights (see the discussion of templates and the Merge operation 
in Chapter 4). 

Both of the previous examples (prohibiting modification and hiding the 
representation) rely on the ability to remove certain rights from all capabil­
ities for objects of a given type. Actually this is easily done, and the 
mechanism for doing so accomplishes another objective of a data abstraction 
facility as well-namely, controlled initialization. Typically when a new 
abstract type is defined, the definer will not make "creation templates" 
(discussed below) publicly available; instead, he will provide a subsystem 
procedure that will create, and return a capability for, an object of the new 
type. This procedure will usually remove all C-list and data-part rights from 
the returned capability because these rights are inappropriate for the user to 
have. In addition, this "creation procedure" can initialize the data-part and 
C-list of the new object in type-specific ways. The ability to do this kind of 
initialization upon object creation is another essential property of a data 
abstraction facility. 

5-3 KERNEL OPERATIONS 

Hydra may be viewed as consisting of two parts-a kernel that implements 
the run-time support for subsystems (abstract data type implementations), 
and a collection of initial subsystems, without which it would be impossible, 
or grossly inefficient, to implement further subsystems. In this section we 
will define the generic operations that support subsystem construction; these 
operations are referred to as Kalis to emphasize both their similarity to, and 
their difference from, the procedure calls that invoke subsystem operations. 
The bulk of the section is simply a terse definition of the various KalIs, each 
presented in the following format: 

SomeKall(D:s/ot, A:capa, B:capaOndex,GetCapaRts), R:rights) returns 
X: integer 

Here we will define the effect of the Kall, including any side effects, error 
conditions, etc. In addition, we will occasionally discuss special properties 
of the parameters. 
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The header line, "SomeKall( . .)," provides the name of the operation and 
information about its parameters (information that doesn't fit the format is 
defined below the header line). The specification of each parameter is of the 
form 

name: parameter-type 

where parameter-type may be 

integer 

mem[size] 

rights 

slot Onfo} 

capa Onfo} 

oNect Onfo} 

template Onfo} 

The corresponding actual parameter must be an integer. 

The corresponding actual parameter must specify the address of a 
contiguous block of at least size words in primary memory. 

The corresponding actual parameter must specify a set of access rights; 
generally this set is used to restrict the rights in some capability. 

The corresponding actual parameter must specify a path to an empty 
C-list slot. Wherever this form is used, the operation being 
described will store a capability into the slot. 

The corresponding actual parameter must specify a path to a capability. 

The corresponding actual parameter must specify a path to a capability. 
The object named by this capability is involved in the operation, not 
the capability. 

The corresponding actual parameter must specify a path to a template. 

In SomeKall, for example, the actual parameter that corresponds to D 
must specify a "slot," those that correspond to A and B must be capabilities, 
and R must specify a set of access rights. If a returns clause is present, as in 
this example, the Kall returns a positive integer value in addition to whatever 
effects it may have.1 

The info is the most interesting (and complex) part of the specification of 
the parameters of most operations. Syntactically it is simply a list of 
informational items separated by commas and enclosed in parentheses. Gen­
erally the information will consist of the access rights in the target capability. 
There are some additional special cases, however: 

1. In most cases an actual parameter capability can be named by an arbitrary 
path; in a few cases, however, the capability (slot) must be in the user's 
LNS - that is, only a single-step path is permitted. In these cases the 
special word index appears in the info (as in parameter B in SomeKall 
above). 

I Any Kall may "fail" for a variety of reasons, particularly if a capability lacks sufficient 
rights. Kalis indicate failure by returning a negative integer value. We will ignore this detail and 
use the returns clause to indicate the data that the Kall will return if successful. 
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2. In some cases the rights in the pre target as well as those in the target 
capability matter. In these cases we will either include "pretarget(..J" in 
info or discuss the situation following the header line. Similarly, if some 
right is required on all steps of a path, we will denote this by "steps( . .J." 
Recall that the pretarget is considered a step; thus, if a right is mentioned 
in ~~ steps ( . .J" it will not necessarily be repeated in "pretarget( . .J." 

There are also some conventions that we observe in the description. 

1. Wherever a capability is named by a path, all steps along the path must 
possess GetCapaRts. Since this is a universal requirement, we will not 
repeat it in each operation specification. 

2. Whenever an object is modified, ModifyRts are required in the capability 
for the object (the target) and in all steps of the path leading to that 
capability. Likewise, when a capability or capability slot is modified, 
ModifyRts is needed in the pretarget and in all steps of the path leading to 
the pre target. Because this is a universal requirement, we will omit listing 
it in the Kalls. 

3. Parameters are generally arranged so that, if the operation has any effect 
on its parameters, (only) the leftmost is altered. This convention is 
chosen by analogy with assignment statements, where the left-hand side is 
altered. Where appropriate, we have also named operands as D, for 
destination, and S, for source, in order to emphasize which operands are 
modified. 

5-3.1 Informational Kalis 

A few of the generic operations of the kernel simply provide information 
about objects and capabilities. The following five are typical examples: 

LNSLength( ) 

Returns the length of the C-list of the executing LNS. 

CLength(X:object(GetCapaRts)) returns L:integer 

Returns the length of the C-list of the object named by path X. (In the 
current implementation, a C-list may contain up to 256 capabilities.) 

DLength(X:object(GetDataRts)) returns L:integer 

Returns the length of the data-part of the object named by path X (In 
the current implementation, a data-part may contain up to 2,000 words of 
data.) 
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Objectlnjo(M:mem[J6], X:capa) 

Stores into M 16 words of information about the capability X and the 
object it names; this information includes the access rights in the capa­
bility, the 64-bit unique-name of the object, and the 64-bit unique-name 
of the object's type. Note that the user cannot create a (possibly 
modified) capability from this information, so there is no reason not to 
make it available. 

Compare(A:capa, B:capa(index)) returns B:bits 

Returns a word containing bits reflecting the reiations between the two 
capabilities. These relations include: whether A and B name the same 
object, whether they name objects of the same type, and whether the 
access rights of A are a subset of those of B and vice versa. 

5-3.2 Generic Kalis 

The following KalIs can be used to manipulate the contents of an object; as 
such, they are among the primary tools used in the coding of new abstract 
data type operations: 

GetData(D:mem, S:object(GetDataRts), Disp, Count:integer) 

Copies Count words from the data-part of the object S into the memory 
area beginning at D, the copy begins at the Dispth word of the data-part. 

PutData (D: 0 bject(PutDataR ts), S:mem, Disp, Count:integer) 

Copies Count words from memory into the data-part of D, the copy 
begins at memory location S and the Dispth word of D. 

AppendData(D:object(AppendDataRts), S:mem, Count:integer) 

Copies Count words from memory, starting at location S, and appends 
them to the end of the data-part of D. 

GetCapa(D:slot(index), S:capa) 

Copies a capability from S into D, DeleteRts are always added in the new 
capability. If any capability in the path to Slacked ModifyRts, ModifyRts 
will be removed from the copy in D, similarly, if any capability in the 
path to Slacks EnvRts, EnvRts will also be deleted from the copy in D. 

PutCapa(D:slot(pretarget(PutCapaRts)), S:capa(index,EnvRts), R:rights) 

Copies the capability from S, a slot in the LNS, to D. DeleteRts are set, 
then all rights are restricted according to R (which may therefore remove 
DeleteRts again) before the copy is stored in D. 
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AppendCapa (D:object(AppendCapaR ts), S:capa (;ndex, EnvR ts), R:rights) 

The effect is similar to PutCapa, except that the (restricted) copy of S is 
appended to the end of the C-list of object D. 

Restrict(D:capa (pretarget(PutCapaR ts, K illR ts) ,DeleteR ts), R: rights) 

Restricts the rights of D as specified by R-that is, the existing rights of 
Dare "anded" (intersected) with R. Thus, the resulting rights can be no 
greater than those of either R or the original ones of D. 

Delete (D:capa (pretarget(KillR tS),DeleteRts)) 

Deletes the capability D. 

As the reader may have noted, there is a weak analogy between the 
structure of the operations above and those of a "general register" computer: 
the LNS is rather like the bank of registers, the "get" operations are 
analogous to those instructions that load the registers, and the "put" opera­
tions are analogous to those that store them into memory. 

In addition to the KalIs above, there is a moderately large collection of 
composite operations. These operations, except for the fact that they are 
indivisible, are each equivalent to a sequence of the operations listed above. 
A few of the composites are listed below. 

TakeCapa (D:slot(;ndex) , S:capa (pretarget(KillR ts), DeleteRts)) 

Similar to GetCapa, except that the source capability is then deleted~ that 
is, except for indivisibility it is the same as 

GetCapa(D,S); Delete(S) 

PassCapa (D:slot(EnvR ts, DeleteR ts), S:capa(;ndex), R:rights) 

Similar to PutCapa, except that the source capability is then deleted; that 
is, except for indivisibility it is the same as 

PutCapa(D,S,R); Delete(S) 

InterchangeCapa(A:capa(DeleteRts), B:capa(;ndex,EnvRts), R:rights) 

Similar to 

GetCapa(N,A); PutCapa(A,B,R); TakeCapa(B,N) 

except, of course that no LNS slot (N) is actually used. 

These last three KalIs, and especially InterchangeCapa, turn out to be 
quite useful for synchronization. We will see an example in Section 5-5.7. 
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5-3.3 KalIs for Creating Objects 

There are several ways to create an object; the simplest of these is to copy an 
existing object: 

Copy (D:s!ot(index) , S:object(index, CopyRts)) 

Creates a new object of the same type as S; the initial contents (both 
data-part and C-list) will be identical to those of S. A capability for this 
new object will be stored in D, the initial rights in this capability will be 
identical to those in S, except that DeleteRts will be added. 
kernel-defined types certain other rights may also be added.) 

The second method of creating an object is to use the Create Kall, 
defined below. This method is only slightly more difficult than copying an 
existing object-but it is more difficult to explain. First, consider the Create 
operation itself: 

Create(D: s!ot(index), T: temp!ate( CreateR ts)) 

T must be a creation template (see below); an object of this type will be 
created and a capability for it will be stored in D. The capability will have 
those access rights present in the creation template. 

Recall from Section 4-2 that every object has a type which is specified as 
the unique-name of another object whose type is TYPE. If, for example, there 
is an object whose type is FILE, then there must be somewhere another object 
na ed FILE whose type is TYPE. TYPE objects serve as representatives of the 
class of objects of a given type, and to create an object of the type one must 
possess a creation template for the class. To obtain a creation template, one 
uses the Kall: 

MakeCreation Temp!ate(D:s!ot(pretarget(PutCapaRts)), 
S:capa(index, TYPE, Temp!ateRts)) 

S must be a capability for an object whose type is TYPE. (Note that this 
capability must have Temp/ateRts, which is an auxiliary right specific to 
type TYPE.) A creation template for the type named by S is placed in D.2 

In the usual case the implementor of a subsystem will want to force all 
object creations to be done by one of the subsystem procedures. Therefore, 
he would never distribute either a capability for the TYPE object that has 
Temp/ateRts or a creation template. The complication of having creation 
templates is logically unnecessary; the Create operation could have used a 

2This treatment of template creation, and that which follows, has been somewhat simplified 
from what is actually implemented; the authors feel that the subject was already complicated 
enough without introducing additional implementation details. 
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capability for the TYPE object instead of a template. However, in the case 
that the subsystem wants to allow users to create objects of its type, the 
subsystem can distribute creation templates without having to distribute 
capabilities for the TYPE object. (Such capabilities would give a user access to 
the MakeAmpliJicationTemplate Kall, discussed below.) 

For kernel-defined types, Hydra provides KalIs which create objects 
directly and supply the maximum permitted rights, e.g., Make Universal, 
MakePort, etc. These KalIs all accept a single argument, a path to an empty 
C-list slot. 

5-3.4 The Call Mechanism 

The Call mechanism is the heart of both the protection and the data 
abstraction facilities provided by Hydra. First we have the merge operation 
described in Section 4-9: 

Merge (D:slot(index), T: template (index), S:capa) 

If no errors are discovered, Merge leaves a capability for the object named 
by Sin D, this capability will have its access rights set as follows: 

• DeleteRts is always granted. 
• If T is a simple parameter template, the rights will be identical to 

those of the required rights of T. If T is an amplification template, 
the rights will be identical to the new rights of T, except that certain 
rights cannot be amplified, notably ModifyRts, UncjRts, and EnvRts. 

• If any capability in the path to Slacked EnvRts, UncjRts, or ModifyRts, 
the corresponding right will be removed from D as well. 

An error condition will be raised if either the type of T and S do not 
agree or the rights in S are not a superset of the required rights of T. 

Call(D:slot(index), P:object(PROCEDURE, CallRts), argument-list) 

Creates an LNS from procedure P and transfers control to it. Except for 
capabilities passed as parameters (as items in argument-list), the new LNS 
is a completely new environment that cannot access the objects named by 
the calling LNS. If P returns a capability, it will be stored in slot D. 

The details of Call are important. It works as follows: 

• Each item in argument-list specifies (a path to) a capability.3 

3In reality, a number of facilities are provided for conveniently restricting the rights of such 
capabilities, creating temporary objects that simply hold data, and so on. Thus, Call may be 
viewed as a highly parametrized composite operation. None of these more advanced facilities are 
logically necessary, so they are omitted from this discussion. The Hydra Reference Manual 
[New77] has more details. 
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• An LNS object is created; its C-list is initialized from the C-list of the 
procedure object, P, and argument-list as follows: 

• Each capability (and creation template) in the C-list of P is simply 
copied to the corresponding C-list position of the new LNS. If the 
capability for P lacks UncjRts, both UncjRts and ModifyRts will be 
deleted from each copied capability. Similarly, if P lacks EnvRts, the 
copied capabilities will have EnvRts deleted as wel1.4 

• Each parameter template is merged with a capability from argument-list, 
if any of these l'vferge operations fail, the entire Call will fail. 

• The data-part of the LNS is initialized by copying the data-part of the 
procedure P. The data-part contains information such as the starting 
address of the procedure's code, and is not of importance to this presen­
tation. 

When the new LNS returns (see below) it may return two "values" - a 
simple integer and a capability. The integer value appears as the value of 
Calf, that is, when calling the procedure named by the capability P with 
parameters X, Y, and Z, one may write 

if Call(D,P,X, Y,Z) < 0 then ... 

to test the result value and store the capability result in D. 

Return (V: integer, S:capa(index,EnvRts), R:rights) 

Causes control to return from the currently executing LNS to its caller. 
Two "values" are returned: a simple integer, V, and a capability, S. The 
rights of the returned capability are restricted by R, except that DeleteRts 
are added. 

In order to create a procedure containing parameter templates, one must 
first have the templates. They can be created with the following two Kalis. 

MakeSimple Template (D:slot(pretarget(PutCapaR ts) ), 
S:object(index, TYPE, TemplateRts), 
R:rights) 

S must be a capability for a TYPE object. A simple parameter template 
will be placed in D, the type field of this template will be the same as that 
of S and its required rights field will be R. 

4The motivation for these somewhat obscure manipulations with UnL:!Rts and EnvRts is 
given in Chapter 7, as is a complete description of the effect of removing them. The reader may 
ignore these details for now. 
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MakeA mplification Template(D: slot(pretarget(PutCapaR ts)) , 
S:object(index, TYPE, TemplateRts), 
RR, NR:rights) 

S must be a capability for a TYPE object. An amplification template will 
be placed in D, the type field of this template will be the type of S, and 
its required and new rights fields will be RR and NR, respectively. 

Note that a subsystem will generally make simple templates widely available 
for the type that it implements, but will not distribute amplification templates. 

There is another Kall that facilitates calling procedures and is of enor­
mous practical importance: TypeCall. 

TypeCall(D:slot(index) , S:capa, P:object(PRoCEDURE, CallRts), argument-list) 

Suppose that S has type t(S) and, further, that t(S)P denotes the 
capability that one would name by a path P rooted in the t(S) TYPE 

object. (This is the only case in which a path is not rooted in an LNS.) 
Then, 

TypeCall(D, S, P, argument-list) 

is equivalent to 

Call(D, t (S)P, argument-list) 

That is, the kernel calls a procedure stored in the TYPE object-the user 
need not have a capability for either the procedure or the TYPE object. 
The capability S is called the type representative for the TypeCall operation. 
It may be a template or an object capability, and it need not be (but often 
is) passed as one of the arguments to the procedure. 

TypeCall is important for two reasons. First, we can use it to achieve an 
important additional level of abstraction. In particular, by adopting conven­
tions about the way in which certain operations are named in TypeCall, we 
can abstract away from the specific type of the objects involved. Second, it 
provides a useful convenience in that the user need not have access to 
capabilities for all the procedures he might need. The subsystem imple­
mentors can simply provide access to them via TypeCal/. Since the first of 
these reasons is by far the more important, let's consider three examples of 
it: 

1. Certain operations, such as "What is your status?," make sense on nearly 
all objects. By adopting a convention that all subsystems will provide such 
an operation, and will store a capability for this operation in slot N of the 
TYPE objects, we can perform 



KERNEL FACILITIES 77 

TypeCall(D,X,N,X) 

to obtain the status of any object x.5 If X names a file, for example, this 
might provide its type, its creation date, date of last access, etc. If X 
names a semaphore, on the other hand, the result might simply indicate 
the number of processes blocked on it. For a rigorously secure type, the 
subsystem designer's "status" procedure may choose not to return any 
information. Thus, even though the operation may be sensible and 
subsystem implementors should provide it, there is nothing, other than 
convention, that enforces particular semantics on the operation.6 

2. Operations such as "Print yourself" make sense for most, but not all 
object types. Note that the "print yourself' operation may be quite 
different for each of the types to which it applies: printing a text file may 
simply dump the ASCII characters; printing a program may cause it to be 
automatically "pretty printed" and could be language-specific; printing a 
binary file could provide octal, hex, decimal, instruction, and character 
interpretations for each word. 

3. Certain operations such as "Lookup entry" make sense only on a class of 
types that implement a common abstract concept, such as "Catalogue" or 
"Directory." In fact, two "directory" subsystems exist on HydratC.mmp, 
and many more could be implemented. Each provides a compatible set of 
operations for mapping string names to capabilities, inserting new (string, 
capability) pairs into the map, changing the string names in various ways, 
and so on. A command language interpreter needs access to these 
facilities in order to interpret the names that a user types at the terminal, 
but would like to remain impartial to the subsystem used. By convention, 
all subsystems that implement the abstraction of a "directory" have 
common operations and common paths to these operations from their 
TYPE objects. Hence the command interpreter, or any other program that 
wishes to use a specific directory, can use TypeCall to manipulate the 
directory and need not know which specific directory type is involved. 

5-3.5 GST KalIs 

Hydra attempts to present the user with the image of a "one-level store." In 
conventional systems, the user is generally conscious of two levels: primary 
memory in which his program and data reside, and secondary memory in 
which he has "files." For the Hydra user, however, there are simply objects 
that can be named by paths rooted in his LNS; he is not (usually) conscious 
of whether the object is in primary memory or secondary memory-that is an 

5We assume that the status information will be returned in an object to LNS slot D. Note 
that X appears as both the type representative and an argument to the procedure. 

6Each subsystem would have to decide also what auxiliary rights to use to control the 
application of the operations. It is unlikely that a subsystem would devote one of its rights for 
each operation of this kind. 
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implementation detail that is left to the system. 
In reality, of course, the implementation keeps the representation of 

some objects in primary memory while others are on disk (Chapter 11 
discusses the implementation). While the user can usually ignore this fact, 
on some occasions he would like to ensure that an updated version of an 
object is written to disk. Once on disk, of course, an object will survive a 
system crash~ those in primary memory are more vulnerable. Therefore, the 
system provides the following Kall: 

Update (D:object) 

The object D is "updated"~ that is, a permanent copy of the object is 
made on secondary storage. 

The Update operation is typically used by cautious subsystems after they 
have modified an objectJ The file system example in Chapter 8 is an 
excellent example of this. 

5-4 KERNEL SUBSYSTEMS 

As noted in the introduction to this chapter, the kernel may be visualized as 
consisting of two parts: the generic operations plus the Call mechanism, and a 
set of subsystems that define some basic object types. In this section we will 
discuss these object types briefly. In most cases a more complete treatment 
appears in a subsequent chapter. The types defined by the kernel are listed in 
Table 5-2. 

OAT A and UNIVERSAL objects are basic structures which can be used 
when data and/or capabilities need to be encapsulated for a purpose that 
doesn't justify the creation of a new object type. They are often used, for 
example, to pass a collection of related data and capabilities to a procedure. 
There are no type-specific operations or auxiliary rights for either of these 
types~ the generic operations for manipulating the data-part and C-list are 
sufficient. 8 

TYPE objects have already been discussed. They have two auxiliary 
rights: Temp/ateRts and Change TypeR ts. The first of these permits creation of 
templates, as discussed earlier. ChangeTypeRts permits one to alter certain 
information in the data-part of the TYPE object~ this information specifies, for 
example, the initial and maximum size of instances of the type. 

The remaining kernel-defined typesare discussed in later chapters. 

7The Update Kall is a partial solution to the problem of performing atomic updates on 
secondary storage. See [Stu74] and [Lam80] for additional discussion of this interesting and 
complex problem. 

80ata objects can be created automatically during Call to hold parameters, using mecha­
nisms that we have chosen to pass over in this presentation. 
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Table 5-2 Kernel-defined object types 

Data 

Universal 

DATA objects contain only a data-part; they are used to encapsulate short data 
segments. (See below for more details') 

A UNIVERSAL object has both a data-part and a C-list; it is used to encapsulate 
data and capabilities. (See below for more details') 

Type TYPE objects define and represent classes of objects. (They have been 

Process 

Semaphore 

Policy 

discussed in Sections 4-2 and 5-3.3 and elsewhere') 

Hydra's abstraction of an independent, schcdulable unit of computation. J ... :_ 
Il I::> 

a separate abstraction from procedures and LNSs. (See Chapter 12.) 

POLICYSEMAPHORE and KERNELSEMAPHORE objects are Hydra's abstractions of 
counting semaphores. These objects may be used to achieve either 
exclusion or synchronization. (See Chapter 12.) 

POLICY objects provides the abstraction that allows user-level schedulers to 
communicate with the kernel scheduling mechanism. (See Chapter 12.) 

Page A segment of information that can be made directly addressable. It is an 

CPS 

RPS 

Port 

Device 

abstraction of C.mmp 's 8K-byte page frames. (See Chapter 13.) 

A CPS represents a process' "working set" of pages-those pages which are 
resident in primary memory whenever the process is executing. (See 
Chapter 13.) 

An RPS represents that subset of the process' working set that is directly 
addressable at a given instant. (See Chapter 13.) 

A port is an asynchronous message-passing facility (See Chapter 6,) 

DEVICE objects represent C.mmp's physical I/O devices. (Chapter 14.) 

5-5 A COMPLETE EXAMPLE 

To consolidate the ideas of the last three chapters, we will now show how a 
user would go about creating a real Hydra subsystem. Up to this point we 
have tried to hide many details to give the reader a better view of the 
important concepts in Hydra. In this section, however, we will reverse this 
trend and try to give the reader a feel for what it is actually like to program 
under Hydra. 

The subsystem we will create will be called the Box subsystem. A Box 
may be thought of as something which holds a single capability; we will 
provide two Hydra procedures, Deposit and Withdraw, to place a capability 
into a Box and remove a capability from one, respectively. These operations 
are destructive: a capability deposited in the box replaces any capability 
already present, and withdrawing a capability removes it entirely. We will 



80 THE SYSTEM DESIGN 

implement the Box subsystem in such a way that only the Deposit and 
Withdraw procedures can access the Box's representation. 

5-5.1 The Programming Environment 

Let us first consider the environment in which the Box subsystem will be 
developed. A Hydra subsystem, like the Hydra kernel itself, is written in 
Blissll1 on a PDP-10, cross-compiled and linked for the PDP-ll, and then 
transferred to Hydra/C.mmp over the ARPANET. A simple program re­
ceives the subsystem's compiled and linked code and encapsulates it as a 
universal object containing one or more page objects. To turn these pages 
into complete procedures, the user must create procedure objects, install in 
them the code pages and any necessary parameter templates or inherited 
capabilities, and establish the procedures' initial addressability. When creating 
new subsystems, the user must also create a new object type, install the 
procedures in the new type object (for TypeCall), and define auxiliary rights 
for the subsystem. 

The Hydra user may perform all these operations from the Hydra 
command language or he may write an additional Hydra procedure that builds 
the subsystem for him. This additional procedure, as we will see, is much 
simpler, and so can be assembled directly in the command language (see 
Section 10-1.3) using various utilities. We will illustrate the initialization of 
our example subsystem by writing a procedure (CreateBoxSubsystem) to 
create the Box subsystem. We will not discuss the details of creating this 
procedure using the command languge, but the reader should satisfy himself 
(after reading Chapter 10) that this is straightforward. 

5-5.2 Programming Subsystems 

Blissll1 [Wu17!] is the programming language normally used by Hydra 
subsystem implementors. However, the syntax and semantics of Pascal 
[Jen76] are more widely known and better suited to an introductory example. 
In the remainder of this section, we will use Pascal (occasionally with obvious 
extensions) for clarity, but attempt to retain the flavor of Bliss programming 
by faithfully adhering to the data structures that are actually used. 

KalIs appear as predefined external functions in the programming 
language~ C-list slot arguments are represented as integers, paths are repre­
sented by variable-length integer vectors, and access rights are two-compo­
nent records of bit vectors: 



type 
Slot = integer; 
Path = array 1 .. * of Slot; 
KernelRights = array 1. .16 of boolean; 
AuxiliaryRights = array 1..8 of boolean; 
Rights = record 

KernRts: KernelRights; 
AuxRts: AuxiliaryRights; 
end; 

iunction PutCapa(D:Path; S:Siot; R:Rights): integer; 
(etc.) 
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The kernel rights are predefined as constant boolean vectors with only one 
element having the value "true": 

const 
PutCapaRts: KernelRights := [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 
GetCapaRts: KernelRights : = [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, OJ; 
(etc.) 

As should be evident, we are using boolean vectors to represent sets of 
rights. The "or" operation (boolean "addition") is just set union, e.g., 

var PutAndGetRts: KernelRights; 

PutA ndGetRts : = PutCapaRts + GetCapaRts; 

We will assume the subsystem creator has compiled and linked together three 
Pascal procedures: CreateBoxSubsystem, Deposit, and Withdraw, which imple­
ment the three corresponding Hydra procedures. It is these three routines 
we will be examining. Because the subsystem is small, the code for all three 
routines will fit into a single Hydra page and we assume that this page is 
given to the user by the PDP-IO-based compiler and linker. 

The following declarations will generally be needed: 

const 
AI/Rights: Rights := [[1,1,1, ... ,J], [1,1,1,1,1,1,1,1]]; 
NoAuxRights: AuxiliaryRights : = [0,0,0,0,0,0,0, OJ; 
NoRestrictions: Rights := AI/Rights; 
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5-5.3 CreateBoxSubsystem 

The CreateBoxSubsystem procedure has the following duties: 

1. It must create the new object type (BOX). 
2. It must create the Hydra procedures Deposit and Withdraw and place them 

in the Box type object (so they may be invoked with TypeCall). 
3. It must return any capabilities the subsystem builder wants to have. In 

our case we will return: 

a. A capability for the Box TYPE object, so the creator may modify it later 
(perhaps to replace the procedure capabilities). 

b. A capability for a Box parameter template, which the creator may 
distribute publicly so that users may write procedures which take Box 
objects as parameters. 

c. A Box creation template, also distributed publicly, so that users may 
create new Boxes. (This is a policy decision~ it is safe here because 
Box objects happen to require no subsystem-specific initialization.) 

As subsystem designers, we must establish the protection requirements 
for Box objects. We define two auxiliary rights bits corresponding to the two 
subsystem procedures: 

const 
BoxDepositRts: AuxiliaryRights : = {J, 0, 0, 0, 0, 0, 0, OJ; 
BoxWithdrawRts: AuxiliaryRights:= {O,J,O,O,O,O,O,OJ; 

Now we must identify the capabilities that CreateBoxSubsystem will need to do 
its job and assign LNS slots for them. The first slots to be assigned are those 
holding parameters or inherited capabilities~ the assignment is arbitrary but 
must be known to the person who builds the CreateBoxSubsystem procedure, 
since he must install the initial capabilities or parameter templates. 

In our case, we need only two inherited capabilities: the capability for the 
page object containing the linked code for Deposit, Withdraw, and 
CreateBoxSubsystem, and a creation template for type TYPE, which we will 
need to create a new Box TYPE object. We decide to use the first two C-list 
slots for these capabilities: 

const 
TypeCreationTemplate = 1; 
PageCapability = 2; 

CreateBoxSubsystem will also need some temporary LNS slots to hold capabil­
ities during its execution, so we will assign them also. This assignment is 
completely arbitrary as long as it doesn't conflict with the earlier ones. 



const 
BoxType = 3; 
ReturnObject = 4; 
BoxCreationTemplate = 5; 
BoxAmplijicationTemplate = 6; 
BoxParameterTemplate = 7; 
DepositProcedure = 8; 
WithdrawProcedure = 9; 
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Now we consider the KalIs needed to perform the duties listed above. First, 
we create a universai object to hoid the capabiiities we win return to the 
builder: 

procedure CreateBoxSubsystem; 
begin 
MakeU niversal(ReturnObject); 

We create the new type object, giving it the print-name "Box." The capability 
is also placed in the object to be returned (the slot used is arbitrary): 

Create (Box Type, TypeCreationTemplate, "Box"); 
PutCapa(Path(ReturnObject,J), Box Type, NoRestrictions); 9 

We create all three kinds of templates for the new type: 

MakeCreation Template (BoxCreation Template, Box Type) ; 
MakeParameterTemplate(BoxParameterTemplate, Box Type) ; 
MakeAmplijicationTemplate(BoxAmplijicationTemplate, BoxType); 

We pHt the creation and parameter templates in ReturnObject We restrict the 
rights in the creation template to eliminate all but the auxiliary rights and the 
"safe" kernel rights. 

PutCapa (Path (ReturnObject, 2), BoxCreation Template, 
[CreateRts+ DeleteRts+ ModifyRts+ EnvRts+ UncjRts; 

BoxDepositRts+BoxWithdrawRts)); 
PutCapa(Path(ReturnObject, 3), BoxParameterTemplate, A llRights); 

We now create the two procedure objects. We give each a capability for the 
same code page, but each gets a different starting address. lO The assignment 
of C-list slots in these procedures is also arbitrary and independent of the 
slots assigned in CreateBoxSubsystem. 

9In a more suitable language environment, the argument NoRestrictions could be defaulted. 
Likewise, the parameter Path(ReturnOpject, J) is really representing ref ReturnOQject[J]. 

IOSetStartingAddress is one Kall necessary to establish initial addressability; others (not 
shown) specify the initial CPS and RPS (see Chapter 13). The actual values of the procedure 
starting address for Deposit and Withdraw were assigned by the linkage editor. 
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const 
DepositPage = 1,' 
WithdrawPage = 1,' 

MakeProcedure(DepositProcedure) ; 
MakeProcedure (Withdra wProcedure) ; 
PutCapa (Path (DepositProcedure, DepositPage) , PageCapability, 

NoRestrictions) ; 
SetStartingAddress(DepositProcedure, Deposit); 
PutCapa (Path (WithdrawProcedure, WithdrawPage) , PageCapability, 

NoRestrictions); 
SetStartingAddress(WithdrawProcedure, Withdraw); 

Both the Deposit and Withdraw procedures will accept a Box as a parameter. 
We therefore define a parameter slot for these two procedures and place the 
appropriate amplification template in them. Because the PutCapa Kalls below 
specify no rights restrictions, all rights will be amplified~ the SetRequiredRights 
Kall is used to insure that the caller has the appropriate auxiliary right and all 
the non-amplifiable kernel rights. 

const 
DepositBoxParameter = 2; 
WithdrawBoxParameter = 2; 

PutCapa (Path (DepositProcedure, DepositBoxParameter) , 
BoxA mplijication Template, NoRestrictions); 

SetRequiredR ights(Path (DepositProcedure, BoxParameter), 
[ModifyRts+ EnvRts+ UncjRts; BoxDepositRts} ),' 

PutCapa (Path (WithdrawProcedure, Withdra wBoxParameter) , 
Box A mplijication Template, N oRestrictions); 

SetRequiredR ights(Path (WithdrawProcedure, BoxParameter) , 
[ModifyRts+ EnvRts+ UncjRts; BoxWithdrawRtsl ); 

The Deposit procedure will also accept a second parameter: a capability of any 
type. The MakeNullParameterTemplate will create a parameter template which 
matches any object type. No rights are required except EnvRts. 

const 
AnyObjectParameter = 4; 
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MakeNullParameter Template (Path (DepositProcedure, A nyObjectParameter}}; 
SetRequiredRights(Path(DepositProcedure, A nyObjectParameter}, 

[EnvRts; NoAuxRights] }; 

We now store capabilities for the two procedures in the Box type object. The 
rights in these capabilities do not need to be restricted because general users 
will never have a capability for the type object. (The builder will keep it in his 
private directory.) Again, the assignment of slots in the type object is 
arbitrary. 

const 
Deposit! ndex = 1; 
Withdraw!ndex = 2; 

PutCapa (Path (Box Type, Deposit! ndex), DepositProcedure, N oRestrictions}; 
PutCapa (Path (Box Type, Withdraw! ndex} , WithdrawProcedure, 

N oRestrictions); 

Finally, we return to the subsystem builder: 

Return (0, ReturnObject, NoRestrictions}; 

5-5.4 Deposit 

The Deposit routine below is quite simple; it just stores the user's capability in 
the Box and returns. If a capability is already there, it is replaced by the new 
capability and the old capability is lost. (Section 5-5.7 will discuss some issues 
behind this implementation.) 

procedure Deposit; 
begin 
! nterchangeCapa (Path (DepositBoxParameter, 1), A nyObjectParameter, 

N oRestrictions}; 
Update (DepositBoxParameter }; 
Return (0, 0, O} 
end; 

By judiciously creating the Box amplification template in CreateBoxSubsystem, 
we are assured in Deposit that the correct type of argument has been passed, 
that the caller has BoxDepositRts for the Box, and that all necessary kernel 
rights are present, whether through inheritance (e.g., ModifyRts) or amplifi­
cation (e.g., PutCapaRts). 
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5-5.5 Withdraw 

Withdraw is equally simple for the same 
AnyObjectParameter slot in Withdraw is 
CreateBoxSubsystem stored no template there. 

procedure Withdraw; 
begin 

reasons. 
initially 

Note that the 
empty because 

TakeCapa (A nyObjectParameter, Path (WithdrawBoxParameter, 1)) ; 
Update (WithdrawBoxParameter ); 
Return (0, AnyObjectParameter, AI/Rights) 
end; 

5-5.6 Using the Subsystem 

After invoking CreateBoxSubsystem the subsystem creator may place the Box 
parameter and creation templates in a public directory. A user wishing to 
create a Box in LNS slot BoxObject will retrieve the creation template, put it 
in slot Box Template of his LNS, and invoke Create. 

Create (BoxObject, Box Template); 

Because of the way CreateBoxSubsystem restricted the rights in the creation 
template, the capability returned in BoxObject will have no C-list or data-part 
rights, effectively making it impossible to do anything with the box but 
invoke Deposit and Withdraw. To invoke Deposit and store a capability from 
slot Capa of his LNS in the box, the user would invoke 

TypeCall(O, BoxObject, DepositIndex, NewBoxObjectSlot, CapaY; 

The user could then retrieve the capability (into slot NewCapa, say) by 
invoking Withdraw: 

TypeCall(NewCapa, BoxObject, WithdrawI ndex, BoxObject); 

The subsystem creator would probably supply Blisslll macros to make the 
TypeCal/look something like, say, 

Deposit(BoxObject, Capa); 
Withdraw(BoxObject, NewCapa); 

5-5.7 Some Design and Implementation Issues 

The implementation of Withdraw and Deposit, although apparently simple, 
involve some subtle points that we should mention. 
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Synchronization In Deposit and Withdraw, the I nterchangeCapa and 
TakeCapa Kalls were carefully chosen to make explicit synchronization unne­
cessary. The subsystem builder must be conscious of the possibility that his 
procedures will be called simultaneously by different users of the same 
subsystem object. In this case, if we had replaced InterchangeCapa with the 
sequence Delete( .. .),. PutCapa(..) there would be an instant in which 
Withdraw would find no capability in the Box. Similarly, replacing TakeCapa 
with GetCapa(..),. Delete(. . .) would permit two callers of Withdraw to get the 
same capability out of the Box. If the Box subsystem were more complex, 
explicit synchronization could be accomplished by placing a Policy Semaphore 
in each Box. (See Chapter 12.) 

Fault tolerance The Box subsystem was defined so that if two users attempt 
to withdraw a capability from the same Box at the same time, only one user 
will get it. The Update Kalls in Deposit and Withdraw guard against unpre­
dictable behavior should Hydra/C.mmp crash in the midst of these opera­
tions. 

The TakeCapa and InterchangeCapa Kalls make modifications in the 
objects in the Active GST~ the changes are not necessarily reflected in the 
Passive GST immediately. I I If the Update Kalls are omitted, the following 
sequence of events is possible. 

1. Withdraw is invoked on Box B by user 1, and it returns a capability for 
object C. The capability is placed in object D, and the user invokes 
Update(DJ. Box B is not updated. 

2. The system crashes. The Active GST is lost. The system comes up 
again. 

3. Withdraw is invoked on Box B by user 2. A capability for C is returned to 
user 2, because when object B is retrieved from the Passive GST it is in 
the state it was in prior to the first call on Withdraw. User 1 's object D 
will have survived the crash, and so it contains the original capability for 
C. 

By invoking Update in Withdraw and Deposit, we ensure the Box is in a 
stable state (with respect to system crashes) before the procedures terminate. 

Security Is the Box subsystem secure? Can a user get a capability for a 
Box object with rights sufficient to access its C-list or data-part directly? 
There are two questions to answer. 

1. Can the user create a Box object with liberal rights? No, because the only 
creation template available had its rights restricted by CreateBoxSubsystem. 

liThe Active and Passive GST are discussed in Chapter 11. The reader may wish to return 
to this section after reading that chapter. 
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2. Can he obtain an amplification template which could amplify the rights on 
a restricted capability? If he could obtain a capability for the Box type 
object the user could breach the security of the system by either creating 
a new amplification template or by retrieving one from the subsystem 
procedures, which are accessible through the type object. The only 
capability for the type object was returned to the builder by 
CreateBoxSubsystem. The builder can keep the capability in his private 
catalogue (in which case he depends on the security of the Catalogue 
subsystem), or he can imbed the capability in a Hydra procedure which 
can implement any arbitrary authentication algorithm before returning it. 

Subsystem maintenance All software systems undergo modifications from 
time to time. For Hydra subsystems, these modifications are usually accom­
plished by changing the subsystem procedures. The CreateBoxSubsystem is 
not a good vehicle for making such changes~ every time it is executed it 
creates a new Box type object, i.e., a new subsystem as incompatible with the 
old one as Files and Directories. 

This is a common engineering problem in Hydra and other operating 
systems. Additional utilities must be created to "replug" procedure capabil­
ities in existing type objects and to maintain "versions" of subsystems so that 
a system can be "rolled back" when a bug is found in the current system. 

5-6 RETROSPECTIVE 

In general the operations and access rights provided by Hydra have proven 
adequate for the construction of the subsystems that have been built. These 
subsystems, in turn, span a sufficiently broad spectrum that we feel fairly 
confident of the adequacy of the kernel facilities. Given the relatively 
primitive level of the operations (Kalis), this is perhaps not too surprising~ it is 
fairly simple to determine their adequacy by inspection. For the rights, the 
case is less obvious~ this issue will be the main topic of Chapter 7. 

Whether the Hydra operations and rights are the best set that could have 
been chosen is unclear. In retrospect we see many things that we would have 
done differently. For example, 

1. There are too many rights. In practice, a subsystem either grants 
complete access to its representation or it grants no access. A single right 
could have controlled all seven of the C-list and data-part rights listed in 
Table 5-1. 

2. Some of the more esoteric rights, notably EnvRts and UncjRts (discussed 
in detail in Chapter 7), are probably not worth the bother. Their effect in 
many cases can be achieved more simply, and they are not complete 
solutions to the problems they were intended to address. In another 
iteration of the system design we would probably try for a single right that 
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covered the most common cases that these were intended to address and 
let the concerned programmer handle the more subtle cases. 

3. There are too many kernel-defined types; many could have been elimi­
nated, especially if we had better hardware support that allowed direct 
addressing of the data-part. 

4. The composite operations (e.g., InterchangeCapa) were partly a response 
to the need for more convenient primitives, but the main motivation was 
to ensure indivisibility. A better approach might have been to provide a 
general means for applying a sequence of more primitive operations 

There are, of course, a number of operations that we would add or delete; 
none of these is fundamental, however. 

In retrospect we see TypeCall as an essential abstraction; in a 
next-generation system we might not provide· Call at all. In light of 
advancements in programming methodology, we recognize TypeCall to be a 
crucial part of an object-oriented programming style, providing an absolutely 
indispensable level of abstraction. Strangely; we originally viewed it as 
merely a convenient way to avoid a· proliferation of capabilities for 
procedures. 

5-7 FURTHER READINGS 

The detailed design of capability-based systems offers a myriad of oppor­
tunities for variation. Hydra's design developed largely from the model in 
[Jon73]. Other designs stress other aspects of protection more heavily; 
[Red74] considers the problem of revocation of access, [Wil79] offers an 
alternative to rights amplification, [Fer74] concentrates on domain structure. 
The high cost of interpreting references through capabilities is 
well-understood [Stu74], prompting hardware architectures that support capa­
bilities directly [Eng74, Wil791. 





CHAPTER 

SIX 
THE MESSAGE SYSTEM 

An operating system that encourages the use of cooperating sequential 
processes has a dual responsibility. On the one hand, it must provide 
protection mechanisms to insulate processes from one another so that erro­
neous or malicious behavior on the part of one cannot interfere with 
unrelated ones. On the other hand, it must also provide mechanisms for 
cooperation among the processes working on a common task. The last two 
chapters have dealt with some aspects of Hydra's response to the first of 
these responsibilities. In this chapter we shall deal with one aspect of the 
second. 

Within the Hydra context, a wide range of interaction mechanisms are 
possible, from tightly coupled memory sharing to loosely coupled message 
communication. Moreover, the user is free to define application-specific 
mechanisms that lie anywhere along this spectrum. The Hydra Message 
System is a particular communication facility which we believe is convenient 
for many loosely coupled applications, and which can form the basis for many 
others. 

6-1 OVERVIEW OF THE MESSAGE SYSTEM 

The design of the Hydra Message System was motivated by several objec­
tives. First, we wanted the Message System to be very flexible, in keeping 
with Hydra's own Tole as a general-purpose system. We wanted to be able to 
use the facility for communication between processes in a single "job" as well 
as between processes in different jobs. In particular, we felt it was inappro­
priate for the destination of a message to be a process, as is common in many 
systems, since it is difficult for dynamically created processes to know each 
other's names. 

Second, we wanted to support a "user/server model," in which processes 
would provide abstract "services" to other processes via the Message System. 
The separation of user and server in this model is important; both should be 
able to hide details of their implementation from the other. In particular, we 
wanted to be able to vary the number of user (server) processes dynamically, 
without affecting the server (user). 

91 
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Third, envisioning a system in which message communication would be 
used for many purposes, we felt it was imperative to provide for "multiple 
waiting," so that a process could wait for messages from a number of 
different sources. Indeed, we wanted to allow the process to specify the 
"nature" of message it was waiting for, in addition to the source. 

Finally, because we did not think anyone knew the "best" design for a 
message system, we wanted our system to be efficient enough to support 
other user-level communication mechanisms which might be better suited for 
particular applications. 

To meet these objectives, we designed the system around a number of 
concepts: ports, connections, messages, and replies. 

Ports Messages are sent between objects of type PORT, not between pro­
cesses. A port is in one sense the abstraction of a "service '\ one sends a 
message to a port to request that service. Since ports are objects, they may 
be shared~ in particular, several server processes can share a port in such a 
way as to make their number transparent to the users. 

Channels and connections Messages leave ports on output channels, they 
arrive at ports on input channels. A topology of possible communication paths 
is established by defining a set of connections between output channels and 
input channels of different ports. After a connection is established, the 
destination of a message need not be specified-only the output channel is 
necessary. Input channels in a single port also form a unit upon which 
multiple waiting is possible. 

By creating, sharing, and connecting ports appropriately, any communi­
cation graph can be established. Figure 6-1 shows a number of alternatives. l 

The simplest structure is the single server/single user shown in (a). As 
shown in (b) and (c), either side of the connection may be implemented by 
cooperating processes sharing the port. Non-cooperating users would use 
different ports, as in (d). 

Messages In our system, a message is best thought of as a vehicle or 
container for transmitting data, rather than as the data itself. In particular, 
the operations of creating a message, putting information into it, and sending 
it are all distinct. Similarly, receiving a message is distinct from reading its 
contents. Since the identity of a message is distinct from its contents, it 
makes sense to read a message, modify its contents, forward it to another 
server, and still talk about it as being the same message. 

I By historical convention, we draw ports as triangles rather than using the standard object 
notation. (It was thought that the triangular shape was reminiscent of a "hydraphone.") 
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Figure 6-1 Simple interprocess communication structures 

Replies Given our view of messages as "persistent," it is also reasonable to 
associate historical control information with a message. By remembering the 
identity of the originating port, we are able to develop a formal notion of a 
"reply" to a message-a means for returning a message to the sender. This 
allows a server process to respond to a user request without an elaborate 
protocol. The situation is analogous to subroutine invocations-the subrou­
tine provides a service and returns to its caller without knowing the identity 
of that caller. Indeed, the analogy with subroutines is a strong one-Hydra in 
fact maintains a stack of "return points" in the message. Hence it is possible 
for a message to be forwarded many times, from one server to another, and 
still return to each point along the inverse route. 

Input/output Input/output is an asynchronous activity (service) which is 
easily modeled on a message paradigm. Hydra does this explicitly by 
representing peripheral devices as objects of type DEVICE to which messages 
can be sent exactly as with ports. 

6-2 AN EXAMPLE: DATA BASE MANAGEMENT 

Before describing the Message System in detail, we can give an example of 
the kind of communication that is possible in Hydra. Suppose that one 
wishes to implement a data base system in which an arbitrary number of user 
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processes can make inquiries and updates. Further, suppose that the actual 
data base is distributed across many physical disk drives, and that the 
expected high degree of concurrent access to the disks means that head 
motion and latency optimizations would highly desirable. Figure 6-2 illus­
trates a possible communication structure for such a system. 

User 1 Disk server 1 

User 2 Disk server 2 

Figure 6-2 A data base communication structure 

In the example, user processes each have ports with an output channel 
connected to a single "service port" of the data base system. An arbitrary 
number of server processes extract requests from this port and map the 
requests into operations on the disk devices.2 Actually, what appear to be 
disk devices to the Data Base Servers are actually Disk Server processes 
which buffer and reorder the 110 requests to minimize head movement and 
latency on the physical devices. 

If, for the moment, we make the simplifying assumption that each user's 
data base request maps to a single disk operation, we can trace such a request 
through the system. 

1. The user process generates the requesting message, whose contents will 
reflect both the nature of the request (e.g., "read") and the logical entity 
to be operated upon (e.g., "Harbison's address"). When the user process 

2We assume that any server can process any request. 
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sends the message it will be enqueued at the Data Base Servers' port. (It 
will implicitly contain the name of the originating user's port.) 

2. One of the Data Base Servers will eventually receive the message and, on 
the basis of its contents, will convert the request into a physical I/O 
operation on one of the disks. The Data Base Server process will then 
alter the contents of the message to specify this physical operation and 
forward the message to the appropriate Disk Server port. 

3. The Disk Server process will receive the message, read its contents, and 
decide how to schedule the operation in relation to the others it presently 
has. Eventuaiiy, the message win again be forwarded-this time to the 
disk DEVICE object, where the kernel will perform the actual I/O oper­
ation. 

4. When the operation completes, the kernel will reply to the message. By 
virtue of being the last sender, the Disk Server process will receive the 
reply, giving it the chance to verify that the operation completed without 
error. 

5. The Disk Server can now reply to the message again; this time the 
message will be enqueued at the Data Base Server port. 

6. Finally, one of the Data Base Servers (not necessarily the same one that 
originally serviced the user's request) will read the reply and, if all is well 
and no further action is necessary, will reply it to the user process.3 

With this overview in mind, we now turn to the details of the system. 

6-3 PORTS 

A PORT object consists of four parts: 

1. A set of output channels. Each connected output channel contains a 
reference to an input channel in some port. Output channels are 
numbered consecutively from 0; there is no specific upper limit to the 
number of them in a port. 

2. A set of input channels, each of which can receive and queue messages 
from any number of output channels. There are 16 input channels in a 
port, numbered from 0 to 15. 

3. A set of message slots. Message slots provide buffers which hold message. 
and provide a local naming mechanism for them. There is no specif:: 
limit to the number of message slots a port may have. Message slots a (;:: 
used only while operating on messages; they in no way limit the numl " 
of messages which may be enqueued at a port or sent by it. Mess2.;'; 
slots are named by small positive integers. 

3In reality there is a means of short-circuiting some of this replying mechanisT', Hhich \,'t!l 

be covered later. 
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4. A blocked process queue. A process attempting to receive a message that 
has not yet arrived may be placed on this queue and suspended until a 
message does arrive. 

A port has multiple input channels so that it may send and forward 
messages to a variety of destinations. As will be seen, multiple input 
channels allow some selectivity in waiting for arriving messages. Messages 
are at all times physically associated with some port-either enqueued at one 
of the input channels or residing in a message slot. Messages can move 
between ports only by traveling along a connection; it is not possible to 
receive a message at one port and forward it out through another port. 

The kernel provides a Kall, MakePort, to create ports. 

6-4 CONNECTIONS 

An output channel of one port may be linked to an input channel of another 
port to form a connection along which messages may travel. A connection is 
established by the Connect Kall: 

Connect( OutPort, InPort:object(POR T,PortConnectR ts), 
OutChannel, InChannel, Conn/D:integer) 

Output channel OutChannel of OutPort is connected to input channel 
/nChannelof InPort. ConnlD becomes the connection identifier of the 
connection; every message sent over the connection will be tagged with 
Conn/D. OutPort and /nPort may be the same port. (/nPort may also be a 
DEVICE object.) PortConnectRts is an auxiliary right for PORT objects. 

A single output channel cannot be connected to more than one input 
channel, but any number of different output channels (in any number of 
ports) may be connected to the same input channel. This "fan-in" at the 
input channel is invisible to a receiving process. 

An output channel may be disconnected at any time (for possible later 
re-connection) by the Kall Disconnect. 

Disconnect(Port: object ( POR T, PortDisconnectR ts), OutCha nnel: Integer) 

As a side effect of Disconnect, a special disconnect message is sent along 
the output channel. It may be used by processes on the input side of the 
connection to recognize the fact that the connection is being broken. 

Connect is the only Kall that requires a single LNS to have a capability for 
both the sending and receiving port, and it is not necessary for the connector 
to be either the sender or the receiver. Normally, when the communication 
channel is of the "user-to-server" variety, it is the server system that is given 
the privilege of connecting the ports. That is, instead of simply making a 
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capability for the port available to users, the server subsystem provides a 
procedure that takes the user's port and output channel number. The server 
procedure (which can inherit a capability for the server process' own port) 
then performs the connection. This method has several advantages: 

1. It allows the server to allocate his input channels and connection identi­
fiers in a controlled manner. 

2. It allows the server to allocate table space or other resources for the new 
user. 

3. It allows the server to perform arbitrary access restriction by requiring the 
user to present other capabilities for inspection. (The file system de­
scribed in Chapter 8 is a good example of this.) 

4. It further hides the implementation of the server from the user. (The 
server might have more than one port, for instance.) 

6-5 MESSAGES 

It is advantageous to think of a message as a real piece of storage which 
passes from port to port and which can be read and written. This storage is 
actually divided into several fields, the relevant ones being 

• A text!capability buffer, holding the message text and/or a (single) capa­
bility. 

• A message type, an integer in the range 0 to 15. 
• A stack of reply frames, recording where the message should go when 

replied. 

The message type is uninterpreted by Hydra~ it is often used by applications 
to differentiate classes of messages and replies (e.g., "normal" vs. "error"). 
The message type, the input channel on which the message arrives, and the 
connection identifier all help a receiver to discriminate among messages.4 

The reply stack is central to the message reply mechanism. Each reply 
frame on the stack specifies: 

• A port and input channel to which the reply will return. 
• A reply mask that specifies which replies are of interest to the sender. 
• A message identifier, an uninterpreted. token supplied by the sender and 

returned with the reply. 

Whenever a message is sent, a new reply frame is pushed on the message's 
stack and filled with information about the sender. A "reply" operation pops 

4The "type" of a message should not be confused with the "type" of an object in Hydra. 
Messages are not objects, and the two uses of the term "type" are unrelated. 
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off the top frame and uses its contents to determine the return destination of 
the message. Of course, the contents of the message's data buffer may have 
been (usually is) modified by the time the message returns. 

Because messages are not Hydra objects, all rights-checking in the KalIs 
that follow occurs on the capability for the PORT object that is the first 
argument. There is an auxiliary right for each major operation on ports or 
messages, although some do double duty. For instance, the right allowing 
the WriteMsg Kall also governs the PutMsgCapa Kall. 

6-6 OPERATIONS ON MESSAGES 

The CreateMsg Kall creates a new message in a port. 

CreateMsg(Port:object(POR T,MsgCreateR ts), 
StackSize, Length:integer ) returns slot:integer 

Creates a new message and stores it in a free message slot, whose 
number is the return value of the Kall. The message's maximum text 
length will be Length and its reply stack will have a possible depth of 
StackSize frames. 

Several KalIs are provided to read and write the text/capability buffer of a 
message. 

ReadMsg(Port:object(PORT,ReadRts), Slot: integer, Address:mem, 
StartingByte, Length: integer) 

WriteMsg(Port:object(PORT, WriteRts), Slot: integer, Address:mem, 
StartingByte, Length: integer) 

GetMsgCapa(Port:object(PORT,ReadRts), Slot: integer, D:slotOndex)) 

PutMsgCapa (Port:object(POR T, WriteR ts), Slot: integer, S:capa(EnvR ts), 
Rights: rights) 

These KalIs are all similar. The message is specified by a (Port, Slot) pair 
and the text is specified by an address in the user's address space 
(Address), a starting byte in the message buffer (StartingByte) , and a 
length in bytes (Length).5 GetMsgCapa transfers a capability from the 
message to a slot (D) in the LNS. PutMsgCapa moves a capability (S) 
from the LNS to the message, possibly restricting rights as it does so. 
(ReadRts and WriteRts are other auxiliary rights for ports.) 

5This mechanism permits a user to alter small portions of the message text while leaving the 
rest untouched. 
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To send a message, one uses the RSVPMsg Kall, 

RS VPMsg(Port:object(poR T,SendRts}, Slot: integer, Type: integer, 
OutChannel:integer, ReplyMask:mask, 
ReplyI nChannel: integer, MsgID: integer} 

The message is specified by the (Port,Slot) pair and the destination is 
specified by OutChannel. (The output channel must have previously been 
connected with Connect.) The argument Type sets the message type field 
of the message. The remaining three arguments affect the reply: 
ReplylnChannel is the input channel on which the repiy win arrive, 
ReplyMask is a bit mask that can be used to selectively ignore some 
replies on the basis of their message type, and MsgId, the message 
identification, is an arbitrary token that will be returned with the reply so 
that the sender may identify the message even if the text buffer has been 
altered or the messages are not replied in FIFO order. These three 
parameters, along with Port, are stored in a reply frame which is pushed 
onto the message's reply stack as the message is sent. 

The ReplyMsg Kall returns ("replies") a message to its sender. 

ReplyMsg(Port:object(poR T,ReplyRts}, Slot: integer, Type:integer} 

Returns the message to the previous applicable sender, as specified in the 
message's reply stack. If no such sender exists, the message is deleted. 
Type will be the message type of the replied message. 

ReplyMsg does not necessarily return the message to the most recent 
sender. After obtaining the reply frame from the message, the Message 
System compares the value of ReplyMask stored therein with the Type 
parameter in ReplyMsg. If the bit in ReplyMask corresponding to Type is 1, 
then the message is returned to the indicated port. However, if the bit in 
ReplyMask is 0, the reply frame is discarded and the next reply frame is 
popped and processed in the same fashion, thus causing the reply to bypass 
the first port. 

When the last reply frame has been popped off a message, the action of 
ReplyMsg is to delete the message. Because this is the only way in which a 
message can be deleted, it is impossible to thwart the reply mechanism by 
prematurely destroying a message. 

The ReceiveMsg Kall provides a very flexible mechanism for receiving 
messages and replies. 

ReceiveMsg(Port:object(POR T,ReceiveRts}, Filter:msgfilter, 
Address:mem(J6}} returns Slot:integer 

Returns the first applicable message waiting at the port, as specified by 
Filter. Relevant characteristics of the received message are stored in the 
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block of memory, Address, and the number of the message slot holding 
the returned message is the return value of the Kall. 

Filter is actually a series of arguments with which it is possible to specify a 
subset of messages waiting at a port. The details of how Filter is encoded are 
not important; it suffices to know that one can specify three classes of 
messages: 

1. Messages from any specified subset of the 16 input channels 
2. Messages having any specified subset of the 16 message types 
3. Messages having a (single) specified message identifier 

When more than one message satisfies the filter condition, the messages are 
received in FIFO order. The message filter can also indicate whether the 
ReceiveMsg Kall should block if no message matches the filter, or simply 
return notifying the user that no suitable messages are present. 

The message description provided by ReceiveMsg is designed to give the 
receiver a lot of information about the message before reading its contents. 
The information includes: 

1. The message type (set by RSVPMsg or ReplyMsg) 
2. The input channel on which the message arrived 
3. The connection identifier set by Connect (only if this is not a reply) or the 

message identifier set by RSVPMsg (only if this is a reply) 
4. The length of the text in the text buffer 
5. Three bits indicating (a) whether this is a reply or an "original" message, 

(b) whether this is a "disconnect message," and (c) whether a capability is 
present in the message 

The final message operation we shall describe is ReQueueMsg. 

ReQueueMsg(Port:object(PORT,ReceiveRts), Slot: integer, Type: integer, 
Channel: integer, Msgld:integer, 
ConnlD: integer, Replybit: integer) 

This Kall allows the programmer to use the implicit queues of the 
message system for enqueuing tasks to be done (where each task can be 
represented by a message). It is also useful for holding messages that 
cannot be processed immediately. Although the details may seem 
complex, the net effect is to requeue a specified message on a specified 
input channel of the same port. Any parameter of the message can be 
changed at the same time, but the reply stack remains intact. 

Although the Message System has a large number of KalIs, they are used 
in fairly regular ways. Below are typical sequences of operations for a user 
and a server. 



User 

slot: = CreateMsg(Port, .. .J 
WriteMsg(Port,Slot, .. .J 
RSVPMsg(Port,Slot, .. .J 

(* Wait jor reply *) 

slot: = ReceiveMsg(Port, .. .J 
R eadMsg (Port, Slot, .. .J 
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Server 

(* Wait jor request *) 

slot: = ReceiveMsg(Port2, .. .J 
ReadMsg(Port2, slot, .. .J 
WriteMsg(Port2, slot, .. .J 
ReplyMsg(Port2, slot, .. .J 

6-7 A VIEW OF THE REPLY MECHANISM 

An understanding of the reply mechanism is crucial to a proper under­
standing of the Hydra Message System, for it is the key to structured 
interprocess communication and exception handling in Hydr:l. An analogy 10 
ordinary sequential control structures might be helpful. 

With no reply stack at all in a message, there could be no RSVPMsg or 
ReplyMsg primitives. The only way to transmit a message would be with a 
one-way "SendMsg' Kall. SendMsg might be likened to a "GO TO" state­
ment, in which control transfer is one-way, with no information as to where 
it came from. 

When we add the reply stack to messages, in effect we add the call stack 
of the familiar sequential process. Ignoring the ReplyMask parameter for the 
moment, we see that RSVPMsg is analogous to a subroutine call and that 
ReplyMsg is analogous to subroutine return. Most message systems provide 
only what amounts to a one-level subroutine call mechanism. 

With the ReplyMask parameter of RSVPMsg we add an exception-hand­
ling ability analogous to ON conditions in PL/I or ENABLE declarations in 
Blisslll [Wu1711. The ReplyMsg operation is now more like an interprocess 
version of the SIGNAL statements of PL/I or Blisslll than a simple 
subroutine return. When a ReplyMsg is done, both control and data are 
transferred to that environment (i.e., port) nearest the top of the reply stack 
that had been "enabled" for replies of the type generated. 

The use of the call-signal mechanism for structured exception handling in 
sequential environments is not uncommon. However, such a mechanism is 
even more important in a multiprocessing context. In addition to providing 
better program structure in exception-prone applications (such as 110), it 
saves a great deal-perhaps hundreds of milliseconds-of processor time, 
paging time, and queuing delay by avoiding unnecessary reply handling. 

It is our contention (and experience) that programmers almost always 
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desire to treat message transactions abstractly as subroutine calls. Both the 
data structure and the control structure implied by the Hydra reply mech­
anism would nearly always be embedded in user processes anyway if the reply 
mechanism were not there. With this reply mechanism, programmers are 
liberated from the great deal of work needed to make effective use of a 
communication system. 

6-8 RETROSPECTIVE 

Users and implementors have three chronic complaints about the Message 
System: it's too slow, it's too "baroque," and it shouldn't be in the kernel. 

The Message System was included in the kernel principally for efficiency 
reasons~ PORTS could have been implemented by a user-level subsystem 
without loss of functionality. For similar efficiency reasons, it was decided to 
not implement messages as true Hydra objects. In retrospect, both these 
decisions seem questionable. The additional effort of coding subsystems in 
the kernel would have been better spent on making the basic Call mechanism 
faster. Moreover, because messages are not true objects, they do not migrate 
to secondary storage. Under heavy load this becomes a strain on primary 
memory. Finally, Hydra's protection structure does not mesh well with the 
kernel implementation of ports. A capability names a port, yet most often 
one is interested in a (port, channel) pair~ to establish a connection, for 
example, a process will often pass a capability for one of its ports to a server's 
procedure. The process really only wishes to pass a channel, but has no way 
to do so. A user-level subsystem implementation would implement connec­
tions with capabilities, and the desired protection properties would be natu­
rally available. 

Even though many people lament the Message System's baroqueness­
too many KalIs with too many arguments-there is no consensus that any 
features should be eliminated. In fact, most users agree that the general 
RSVP-Reply paradigm is very good. The most common objection is the lack 
of one particular feature - the so-called "timed receive." 

A TimedReceive KalI, if it were implemented, would act exactly like 
ReceiveMsg except that it would take an additional argument, an elapsed time, 
which would cause the Kall to abort if no message arrived within the specified 
interval. This is an important facility for a message system that wants to 
allow for cooperating but mutually suspicious processes, which Hydra cer­
tainly does. In fact, we believe that this feature should have been provided 
in the earliest designs of the message system.6 

The slowness of the message system is also a common objection. We 
tried to alleviate this situation in two ways: 

6"Disconnect messages" were another feature we thought of only after we tried to build 
systems without them. Fortunately, they were easier to add. 
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1. We allow the Policy Module to specify, on a per-process basis, an interval 
during which a process will remain under control of KMPS after blocking 
on a port or Policy Semaphore. Only after this interval expires will the 
process be returned to the PM. (Recall Section 3-3 and see Chapter 12.) 

2. We provided several "composite" KalIs in the message system, such as 
ReceiveAndRead and WriteAndRSVP. As with other composite KalIs, 
these KalIs are functionally just the concatenation of the constituent 
operations, but some overhead is eliminated. 

Interestingly, although the message system is slower than we would like, 
message transmission is still faster than a procedure call. This tends to 
encourage programmers to use processes and messages rather than 
procedures. 

The message system's abstractions are occasionally confusing because 
they try to address two different paradigms for message system interaction: 
the message-switching model and the levels-of-abstraction model, also called 
the File Server model.7 

The message-switching model focuses on the store-and-forward facilities 
of the message system. Messages travel to a port, where they are sorted and 
retransmitted by an intermediate process to their final destination. Very 
often, the destination of the message can be determined by the type or 
connection identifier of the message, thus allowing the message text to 
remain untouched. This model is the basis for our decision to unbundle the 
allocation of a message buffer from the sending or receiving of that message. 
The ARPANET control program example in Chapter 9 is a good demon­
stration of this model. 

In the File Server model, we picture a user connecting to a server process 
which implements the "file" abstraction seen by the user. The user's 
messages to the server contain file operations. The File Server subtly alters 
the user's message buffer so that it can be forwarded directly to a disk device; 
i.e., it transforms the message from a file request to a disk request. Replies 
from the disk are then sent back to the user, perhaps bypassing the Server 
except when an error occurs. This model is the basis for much of the reply 
mechanism. 

The message system's treatment of a message buffer is a compromise 
between the ideals of these two paradigms. The advantages gained by 
viewing message transactions as asynchronous procedure calls are somewhat 
offset by the necessity of sharing a common text/capability buffer at all levels 
of the transaction. The decision to separate buffer allocation from 
send/receive was based on the premise that little alteration of the buffer 
contents would be necessary as the message moved from port to port. 
However, viewing each port as implementing a separate and independent 

7This model does not correspond exactly to the actual implementation of the current file 
system (Chapter 8), but it is a possible implementation. 
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abstraction seems inconsistent with this premise. 
Independent of its abstraction properties, the message buffer does have 

the advantage of keeping message text out of the address space of the 
communicating processes. Some important programs (notably the ARPA­
NET control program) have completely finessed the small address space 
problem by exploiting the "auxiliary address space" implicit in message 
buffers. This is a major advantage given the large amount of physical 
memory on C.mmp and the small address space available to programs. 

6-9 FURTHER READINGS 

Operating systems have been offering message systems and message-style 
interprocess communication for some time, an early example being the 
RC 4000 system [Bri70]. More recent systems [Rit74, Che79] strongly 
encourage or enforce message-style communication as the sole means of 
exchanging information across process boundaries. The relative merits of 
procedure calls versus message passing have long been debated~ [Lau79] 
presents a provocative view of the relationship between these communication 
paradigms. 
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CHAPTER 

SEVEN 
USING THE PROTECTION MECHANISMS 

Hydra's philosophy, presented in Chapter 3, is that protection must be an 
integral part of any general-purpose operating system. A set of protection 
mechanisms should be part of the lowest level of an operating system, and 
those mechanisms must be flexible enough to support the wide range of 
security and reliability policies needed by subsystems and application pro­
grams. 

Hydra was designed with four interacting mechanisms that together 
provide a base for supporting a broad spectrum of such policies. These 
mechanisms have been described already, but we summarize them here. 

Procedure invocation. To ensure that a procedure's execution environment is 
determined by only the capabilities in its own C-list plus those capabilities 
passed to it by its caller. 

Rights amplification. To allow (only) designated procedures to access the 
representation of user-defined object types. 

Rights checking. To restrict the set of operations that can be performed on an 
object accessed along a path. 

Rights propagation and masking. To implement a set of rules for determining 
how rights are propagated when capabilities are copied. 

In this chapter we will see in more detail how these mechanisms can be 
used to solve a number of common protection problems. The discussion will 
center on three important kernel rights: ModifyRts, EnvRts, and UncjRts. 
Before considering special mechanisms, however, we should note that Hydra 
procedures and the Call mechanism provide a means for implementing 
arbitrary security policies, even in the absence of the other mechanisms 
involving capability rights. A procedure can act as a gatekeeper for an object 
by holding in its C-list the only capability for the object; where a capability for 
the object would ordinarily be made available to some user, a capability for 
the gatekeeper can be made available instead. The user is unable to access 
the object directly; he can invoke only the gatekeeper, presenting whatever 
additional capabilities are required for authentication. 

107 
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7-1 KERNEL RIGHTS 

It would be unreasonable to force every user to program every security policy 
explicitly, as would be required if gatekeepers were the only protection 
mechanism. The most common protection problems are solved in Hydra 
through the mechanism of rights checking and amplification, which is appli­
cable to all capabilities. The specific set of kernel rights was designed for 
Hydra with several goals in mind. 

Selective access. A number of operations, such as GetCapa, are applicable to 
any object, and such operations have an associated right (e.g., 
GetCapaRts). The operation is permitted on the object only if the 
capability for the object has the appropriate right. 

Reliability. Even a trusted procedure may not operate correctly due to 
software or hardware failures. As a result a procedure may mistakenly 
delete or modify an object. The rights DeleteRts and ModifyRts help caller 
and callee guard against such accidents. 

Limiting propagation of access. It is possible for a capability to be copied and 
placed, perhaps improperly, in objects where it would be widely acces­
sible. EnvRts is designed to prevent such propagation where it is 
inappropriate. 

Limiting propagation of information. Even when a capability for an object is not 
made widely accessible, data contained in the object can be copied to a 
new object which in turn can be made accessible. UncjRts is used in 
conjunction with procedure invocation to prevent this. 

We wish to examine the protection mechanism in some detail, and to do 
this we choose to look at several classical protection problems. The attain­
ment of the goals above allow Hydra to directly solve these problems: 

• The Mutual Suspicion Problem, which motivates the basic Hydra Call 
mechanism and selective access to objects 

• The Modification Problem, which addresses the problem of reconciling 
reliability with privilege 

• The Conservation Problem, which is the problem of limiting the propagation 
of capabilities 

• The Confinement Problem, which is the (harder) problem of limiting the 
propagation of information 

• The Initialization Problem, a particularly difficult problem that combines 
aspects of all the previous problems 



USING THE PROTECTION MECHANISMS 109 

7-2 THE MUTUAL SUSPICION PROBLEM 

In most operating systems, a user takes a risk whenever he invokes a system 
utility or a program belonging to another user. He has no way of being sure 
that the program he calls will not do something disastrous, such as request 
that the operating system delete all his files. Most users simply take such 
low-probability risks for granted and rely on backup systems to aid recovery 
in the unlikely event that disaster should occur'! But in a system in which 
security is important, faith is not enough. Further, in Hydra-like systems in 
which most functionality is provided at the uSer level, the probability of 
errors may be higher. The user needs some way to limit or circumscribe the 
amount of damage a procedure that he calls can do. 

Similar problems are faced by the author of a (possibly proprietary) utility 
program intended to be called by many different users. The program 
probably makes assumptions about the format of its private files and there­
fore wishes to have exclusive access to the files. The programmer needs 
some guarantee that, except through execution of his program, users cannot 
access his sensitive data structures or his program code. 

This situation is known as the Mutual Suspicion Problem [Sch72]. 
Restated in the language of Hydra, the problem is this: the caller of a 
procedure needs a guarantee that the procedure will not be able to gain access 
to any of the caller's objects, except those explicitJy passed as parameters. 
The procedure (i.e., the owner or maintainer of the procedure) likewise 
needs a guarantee that the caller cannot gain access to any objects private to 
that procedure, except when the procedure explicitly allows it. The Call 
mechanism was designed to solve both problems directly. 

Execution environments and access privileges in Hydra are not hierar­
chical. When a procedure is called, the execution environment of the 
instantiated LNS is the union of two sets of capabilities: those passed to the 
LNS from its caller, and those inherited from the procedure object. Because 
the caller cannot access the procedure's capabilities,2 he cannot tamper with 
the LNS's inherited environment. Because the called LNS cannot reach the 

,caller's environment, the new LNS's ability to tamper with the caller's 
capabilities is absolutely limited to those passed as arguments. 

The Call mechanism actually provides finer control than required to solve 
the Mutual Suspicion Problem. Not only can the caller control the set of 
objects that he must allow the callee to access, but by restricting the rights in 
the capabilities he passes, he can actually control the kinds of accesses he 
risks. He thus has extremely tight access control of his objects. 

Technically, there is one exception to this tight access control: if the 
procedure in question has an amplification template for some type, then it 

IOf course, trust in the backup systems is still necessary. 

2Assuming the capability for the procedure lacks GetCapaRts, which is typical. 
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may be able to acquire more rights to an object than the caller passed. 
However, it should be recognized that the possession of an amplification 
template for some object type is, more or less by definition, the distin­
guishing characteristic of the subsystem procedures that implement that type. 
Subsystem procedures must be trusted to some degree~ otherwise the sub­
system should not be used. Having said this, we now consider various ways 
in which a user can protect himself from subsystems and restrict even the 
kinds of operations the subsystem can perform on its own objects. 

7-3 THE MODIFICATION PROBLEM 

Users often want guarantees that an object passed as an argument to a 
procedure will not be modified as a result of the call. Ordinarily, it is 
sufficient to restrict those rights that allow modification (i.e., PutCapaRts and 
PutDataRts) before passing the capability for the object as an argument. 
When a procedure that belongs to the subsystem for the object type in 
question is called, however, rights amplification may reinstate those rights. 

In general, of course, users must trust that a subsystem fulfills its 
specifications, just as they trust that the subsystem maintainers do not 
distribute amplification templates indiscriminately. Unfortunately, programs 
are changed, and trustworthy subsystems occasionally develop bugs. Ideally, 
both the user and the subsystem want a way to ensure correct operation. We 
cannot do this in general, but we can provide a solution to the Modification 
Problem, i.e., the problem of ensuring that an object is not modified in any 
way. 

The generic capability right, ModifyRts, implements the solution. Each 
Hydra Kall that modifies an object in any way requires a capability with not 
only the right that allows the specific operation but ModifyRts as well. Thus, 
to store a capability in an object, one must have a capability for the object 
with both PutCapaRts and ModifyRts. To put data in the data-part of an 
object, one needs a capability for the object with both PutDataRts and 
ModifyRts.3 

ModifyRts can never be gained through amplification! A capability 
lacking ModifyRts represents an intention to prevent all modification to the 
object through that capability. A capability produced by Merge (Section 5-3.4) 
will contain ModifyRts only if both the amplification template and the original 
capability have ModifyRts. 

Because what the user thinks of as a single "object" (e.g., a file) may 
actually be implemented with many different object types (e.g., pages and 
semaphores), ModifyRts must prevent the modification of the representation 
of an object as well as the object itself. Hydra therefore ensures that loading 

3 A Kall that modifies the internal structure of a kernel-supported object also requires 
ModifvRts. Thus, P and V operations on semaphore objects require a capability with ModtfyRts. 
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a capability into one's LNS through an intermediate capability that lacks 
ModifyRts masks out ModifyRts in the loaded capability (recall the operation 
of GetCapa, section 5-3.2). 

In Figure 7-1, the left-hand diagram indicates the environment of LNS A 
at the time it loads a file capability into its C-list via the operation 

GetCapa (2, Path 0, 1)) 

As seen in the right-hand diagram, the new capability for the file lacks 
lvfodifyRts because the capabiiity for the UNiVERSAL object lacked them. This 
masking means that if a capability for a file lacking ModifyRts is passed to a 
procedure, the procedure will not be able to modify either the file or the page 
and semaphore objects that make up its representation. 

Fi!eWrite 
Modify 

A: LNS 

GetCapa 
M~ify 

2 -empty-

D:File 

R 

GetCapa(2,Path( 1,1)) 
-------------------~ 

Figure 7-1 Masking ModifyRts along paths 

D: File 

R 

The practicality of this solution to the Modification Problem depends on 
the cooperation of authors of procedures. A procedure can allow users to 
protect themselves only if the procedure can operate without ModifyRts, and 
this does pose some restrictions on the procedure. For instance, a file 
system's Read procedure may wish to update a "date-of-Iast-access" field in 
the data-part of the file. In this case, Read, while conceptually not altering 
the file, will need ModifyRts, and thus users of Read cannot restrict 
ModifyRts. (The author of Read should confirm this by including ModifyRts 
in the required-rights field of the file parameter template.) 



112 THE SYSTEM IN USE 

7-4 THE CONSERVATION PROBLEM 

Assuming that a user accepts whatever risk of modification is inherent in 
passing a capability to a procedure, there is still a problem of determining 
when that risk is over. Ideally, the risk should extend only over the lifetime 
of the procedure invocation; when the procedure returns, the user would like 
to be able to assess any damage done and, finding none, be assured that he is 
once again safe. Unfortunately, it is possible for procedures to retain 
capabilities passed to them, and even to pass those capabilities to other 
processes which in turn could monitor or modify the object at arbitrary times 
in the future. Thus we have the Conservation Problem, a special case of the 
problem of limiting the propagation of capabilities. 

To solve this problem, Hydra implements another kernel right, EnvRts. 
EnvRts must be present in any capability to be stored outside the LNS. Thus, 
an LNS with a capability lacking EnvRts could not invoke the PutCapa Kall on 
that capability. Like ModifyRts, EnvRts is propagated along paths and cannot 
be gained by amplification. 

The lack of EnvRts does not prevent a capability from being passed to a 
procedure as an argument (though perhaps it should), or returned to a calling 
procedure as a result, but it does effectively prevent any sharing of the 
capability with any other user since LNSs are never shared4 and no capability 
lacking EnvRts can escape from the LNS into a shared object. When the LNS 
returns to its caller, Hydra deletes all capabilities in the LNS (including the 
ones lacking EnvRts). 

Figure 7-2 shows the canonical dangerous situation. LNS A is about to 
call the DIRECTORY subsystem procedure X, passing it an object of type 
DIRECTORY. Unknown to A, X shares a UNIVERSAL object with another 
procedure (Y), and plans to store a capability for A's directory in that object 
so that Y can access the directory later. To protect himself, A restricts EnvRts 
in the directory passed to X, thus resulting in the situation depicted in Figure 
7-3. LNS X' has been instantiated from procedure X, but if X' now attempts 
to store the directory in the UNIVERSAL object, the Kall 

PutCapa(Path(2, J) I J) 

will fail because the directory capability in C-list slot 1 of X' lacks EnvRts. 
When X' returns, A is assured that no capabilities for the directory are 
retained. 

As in the case of ModifyRts, procedure writers must anticipate that their 
callers may pass them capabilities lacking EnvRts and thus design their 
algorit!'lmS such that the right is not needed. 

41n fact, it would be nice for debugging processes to get hold of a capability for an LNS, and 
this is a real problem in Hydra. We do allow an LNS to pass a capability for itself to another 
procedure, but EnvRts is always removed from the capability. 
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x: Procedure Y: Procedure 

Directory GetCapa 
Parameter 
Template 

Directory Universal 

-empty-

Figure 7-2 The Conservation Problem 

X: LNS 

Ef(.. 

PutCapa 
Modify 

Y: Procedure 

. GetCapa 

Universal 

1~ 
Figure 7-3 The Conservation Problem solved 

7-5 THE CONFINEMENT PROBLEM 

While EnvRts is useful in preventing propagation of capabilities, it is of 
limited usefulness in preventing propagation (disclosure) of in/ormation (the 
Confinement Problem). Even though a capability lacking EnvRts may not 
escape outside of its execution environment, nothing prevents a user from 
copying the data from the old object to an existing object. 

Hydra addresses the Confinement Problem by permitting a procedure to 
be confined at the time it is invoked. A procedure is confined whenever the 
capability used to access the procedure at the time of invocation lacks 
UncjRts.5 When a confined procedure is called, all inherited capabilities (from 

5 A procedure invoked by TypeCal/ is confined if the type representative in TypeCal/lacks 
Unc/Rts. 
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the procedure) in the new LNS have ModifyRts and UncjRts removed. 
Capabilities passed as arguments by the caller are not affected. 

Figure 7-4 shows a situation in which LNS A wishes to call procedure X, 
passing it file B. 

A: LNS 

FileRead 

B: File 

R 

X: Procedure 

File 
Parameter 
Template 

FileWrite 
Modify 

Uncf 

Figure 7-4 The Confinement Problem 

Y: File 

R-··· 
Z: Procedure 

File 
Parameter 
Template 

Although LNS X' must be able to read the file in order to perform its 
functions, A wishes to ensure that the information in file B will not leak 
away, as might happen if X were allowed to copy information from B into 
shared file Y. Therefore, A invokes X through a capability lacking UncjRts, 
yielding the situation in Figure 7-5. Although X' has all rights to file B, it 
cannot copy the information into file Y because it has lost ModifyRts to that 
file. (For the same reason, it could not store a capability for B in any shared 
object.) Furthermore, X' cannot invoke another procedure (Z) to do the 
leaking, for it has lost UncjRts to Z, which must therefore be called confined. 

This mechanism solves the Confinement Problem because no infor­
mation can be copied into any inherited (and potentially shared) objects. 
New objects may be created and modified, but they themselves cannot be 
stored into the inherited objects, and so cannot be shared or saved after the 
return. The only other modifiable objects in a confined procedure are 
(possibly) the objects passed as parameters. These, being theoretically part of 
the caller's environment, or at least under his explicit control, should not be 
dangerous. 

Because UncjRts is masked out along paths, all procedures the new LNS 
might call are also confined. Capabilities (with UncjRts) for procedures may 
be passed as parameters and thus called unconfined, because they represent 
operations that we assume the caller has deemed safe. 

In practice, it may be hard to write some procedures so that they can 
operate confined. The next chapter discusses some of the problems in 
connection with the design of a particular confinable subsystem. 
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Y: File 

A 
Z: Procedure 

File 
Parameter 
Template 

Figure 7-5 The Confinement Problem solved 

7-6 THE INITIALIZATION PROBLEM 

In conjunction with the Conservation Problem, we showed how a procedure 
could be prevented from storing away or sharing a capability for an object 
passed to it. This solution depended upon an assurance that the procedure 
did not inherit unrestricted access (i.e., with EnvRts) to the object. This 
expectation may especially be violated in the initialization of the object. 

Initializing a newly created object entails the generation of its represen­
tation. Suppose that procedure FileInit initialized a file passed to it by 
creating a OAT A object and storing it in the file. We want to prevent FileInit 
from making either the file or the newly created DATA object available to 
another user. 

Restricting EnvRts when passing the file to FileInit will not suffice, since 
a capability for the newly created OAT A object could be shared with the 
unwanted user at the same time it is used to initialize the file. This can be 
prevented by confining FileInit (calling the procedure without UncjRts). In 
that way, no capability for either the file or the newly created DATA object 
can be propagated beyond FileInit's environment. Unfortunately, confine­
ment alone is not enough. Instead of initializing the file with a newly created 
DATA object, FileInit might use a DATA object that it already shares with 
another user. 

Hydra solves this tricky problem by removing EnvRts at procedure 
invocation in a way similar to the removal of UncjRts. When a procedure is 
called through a capability lacking EnvRts, all capabilities in the incarnated 
LNS inherited from the procedure have EnvRts removed. In the example 
above, no object already available to FileInit could be stored in the file; only 
newly created objects (or capabilities passed to FileInit with EnvRts) may be 
stored in it. 

To initialize an object safely it is necessary to call the procedure via a 
capability containing neither EnvRts nor UncjRts. In that way, we guarantee 
that any new capabilities placed in the object will be for newly created objects, 
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and that the entire representation of the object will be unavailable to any 
other environment. 

7-7 RETROSPECTIVE 

In a research environment such as ours, restrictive security policies find few 
active practitioners, but the basic mechanisms of rights checking and amplifi­
cation are used regularly to restrict access to the representation of 
user-defined object types. The reason for this is the users' desire for good 
program structure, rather than security. Subsystems created by users likewise 
define auxiliary rights and enforce their use, and careful programmers try to 
design their procedures to work without requiring ModifyRts or EnvRts in the 
parameters. 

The more advanced mechanisms (e.g., procedure confinement) are used 
very seldom, and even then mostly as experiments, such as is described in 
Chapter 8. One problem is that our solutions to many of these protection 
problems are overly restrictive. For instance, in solving the Conservation 
Problem, we prevent a capability from being stored in any object, not just one 
that is shared. Likewise, to solve the Confinement Problem, we prevent 
information from leaving an LNS, whereas it might be more appropriate to 
prevent information from leaving a subsystem. Unfortunately, there is no 
way in Hydra of determining when an object is shared, or when a procedure 
"belongs" to a subsystem. 

Another example of the lack of flexibility in protection is in the way 
ModifyRts is removed along a capability path. In directory-like objects, one 
frequently wishes to ensure that the directory is not modified while allowing 
the modification of any (or some) objects retrieved from that directory. In 
Hydra, this policy cannot be expressed using ModifyRts.6 

These protection mechanisms also have a subtle influence on overall 
system performance. Although the simple checking and amplification of 
rights has negligible overhead, the more complicated features that require 
rights restriction on inherited capabilities force these capabilities to be copied 
from the procedure to the LNS. LNS creation is expensive and common, 
and some obvious optimizations (such as creating an LNS containing just the 
actual parameters and a capability for original procedure) do not mesh well 
with these protection mechanisms. 

In summary, the protection facilities represent an ambitious attempt to 
solve a number of complex and subtle problems in the cooperative use of 
information. The mechanisms we developed offer solutions to several 

6()riginally, Hydra had two rights affecting modification: ModifyRts controlled modification 
of the top-level object only, and another right controlled the modification of the object's 
representation (and was propagated along paths). We found that this division was not suitable 
either and folded the two rights into one. 



USING THE PROTECTION MECHANISMS 117 

important problems, though perhaps not in the most elegant and efficient 
way. Nevertheless, the problems they solve are ignored by nearly all other 
real systems, and the mechanisms they supply to do so are actually used, in 
practice, by some of the more important Hydra subsystems (including the file 
system presented in Chapter 8). This confirms the utility and adequacy of 
these facilities. 

7-8 FURTHER READINGS 

Hydra's protection mechanisms have the ability to solve a number of protec­
tion "problems," as illustrated in this chapter. [Red74] discusses the problem 
of revocation of access, which Hydra's mechanisms do not address. The 
confinement problem [Lam73] has been examined by many; its complete 
solution is known to be very difficult [Lip751. Other protection problems are 
considered in [Rot73] and [Coh75]. The relationship of protection mecha­
nisms to security policies and the implementation of specific security policies 
has been extensively studied; [Lin76] and [SaI75] contain good surveys and 
substantial bibliographies. 





CHAPTER 

EIGHT 
A FILE SYSTEM 

This is the first of three chapters that will examine actual subsystems built on 
top of the Hydra kernel. In this chapter we will consider a file system which 
directly addresses some of the protection issues presented in the preceding 
chapter and which offers a good example of the way that Hydra procedures 
can be combined with the Message System. The next chapter will consider 
an application which particularly stresses the Message System, and Chapter 10 
will examine some subsystems which implement basic operating system 
abstractions like "user" and "job." 

The Hydra file system was constructed by a team of users relatively late 
in Hydra's life, after we had begun to understand some of the subtler points 
of designing subsystems. The basic outline of the facility was fairly obvious 
from our previous experience with Hydra and other existing file systems. In 
particular, 

1. A "file" would have to be represented by a new type of object so that it 
could be protected in the canonical Hydra fashion. Certain operations on 
files (discussed later) would be implemented with procedures and 
TypeCall 

2. File 1/0 would have to occur via the Message System because the 
overhead of Call would be too high to impose on each read or write. (To 
give the user direct access to the file's representation would be an 
unacceptable violation of protection principles.) By using an asynchronous 
server process to manage file representations, we could both exploit 
C.mmp's parallelism and make file I/O resemble I/O to peripheral devices. 
(The server's port simulates a DEVICE object-see Chapter 14.) 

3. We would have to allow for different methods of data representation 
within files because we could not predict in advance what representations 
would be appropriate for future applications. Although the traditional 
Hydra response to this problem would be to construct several independent 
file systems, we felt there were advantages to be gained by accommo­
dating different representations within the same subsystem. 

At the time the file system was designed, we wanted to demonstrate 
clearly the power of Hydra's protection mechanisms. For that reason a 
principal goal of the file system was to solve two of the classical protection 

119 
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problems presented in the Chapter 7: the Modification Problem and the 
Confinement Problem. We can restate these problems using file terminology 
as follows: 

The Modification Problem. Suppose a user wants to grant "read-only" access to 
a file. How can he prevent the file system from modifying the file in any 
way? Hydra allows a capability for such a file to be passed to the file 
system procedures without ModifyRts. 

The Confinement Problem. Conversely, suppose a user has a file containing 
sensitive data. How can he ensure that the file system will not "leak" 
information from the file to the outside world? The file system described 
below allows successful exploitation of Hydra's notion of "confinement" 
to solve this problem. 

The Confinement Problem was first posed by Lampson [Lam73]; very 
few systems even attempt solutions to it. Often such systems assign a 
sensitivity-level, from a partially ordered set of levels, to each datum and 
ensure that information flows only in ways determined by this partial ordering 
[Lip75]. This scheme models the military security system and thus repre­
sents a special case of the general problem stated by Lampson. We are able 
to do somewhat better in Hydra. 

8-1 FILES AND SUBFILES 

Responsibility for handling files is distributed between two subsystems: the 
FILE subsystem and anyone of several SUBFlLE subsystems. The FILE 
subsystem handles protection and synchronization issues not related to data 
representation. The SUBFILE systems are concerned only with data represen­
tation and I/O with the user. 

This division has several benefits. By allowing for several independent 
subfile systems, we leave open the difficult representational issues. By 
having a common top-level interface (type FILE), we promote uniformity and 
allow the choice of representation to be ignored in higher-level software. 

To get an overview of the file system, we can examine it at several 
levels. When a user wishes to establish communication with a file, he passes 
his file object and a capability for a port to a FILE system "open" procedure. 
Using mechanisms invisible to the user, the file system will connect the 
user's port to a server process which will process I/O requests from the user. 

If we examine the design of the FILE subsystem, we see that it acts as a 
kind of intermediary between the user who accesses the file and the subfile 
system that manages the data in it. A FILE object actually contains only a 
semaphore and a single subfile. (See Figure 8-1,} When the user passes his 
file to the file system, the file system extracts the subfile capability from the 
file and passes it to a subfile system "open" procedure. This subfile 
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procedure will return a capability for the server process' port, and by 
connecting the user's and server's ports the file system establishes the 
communication path. 

At the bottom level, the subfile system has complete freedom in the 
establishment of server processes. It could create a process and port for each 
file, or it could pass the subfile to a single process which managed requests 
between several users and subfiles. Likewise, there is no restriction on the 
data representation used by the subfile system. A common implementation 
is shown in Figure' 8-1; the subfile simply stores the data in a list of page 
objects stored in the subfiie. Aiternativeiy, a subfiie sysiem couid siore daia 
directly on a disk or tape, using the subfile to hold disk addresses or tape 
volume numbers. 

A: File 

Date accessed 
Date modified 
Number writers S: Semaphore 

r-----------i~ ~ 
B:Subfiie 

~ 

P1: Page 
B:Subfile 

~ 
P2: Page 

I------i~~ 
P3: Page 

Figure 8-1 The representation of files and subfiles 

There are a few implementation issues surrounding this system which 
should be explained. 

Synchronization One of the crucial questions in the design of any file 
system is the atomicity of transactions to the file. Can readers and writers 
share the same file? Do changes made by writers appear instantly to 
readers? Our design for Hydra's file system closely paralleled the semantics 
of the TOPS-I0 file system with which we were most familiar; to wit: 

1. Any number of readers and at most one writer may simultaneously access 
a file. 

2. Readers and writers must explicitly initiate and terminate their 
transactions; i.e., they must open and close files. (The open operation, in 
addition, must specify "for reading" or "for writing.") 

3. Open and close operations on a file are atomic. When a reader successfully 
opens a file, he will be unaffected by any modifications by a writer. A 
writer's modifications take effect only when he closes the file; subsequent 
openers get the new version. 
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The file system stores in the data-part of files the number of current 
readers and writers. (This data is protected during concurrent operations on 
the file by the semaphore associated with each file.) When a user opens a 
file, this data is used to decide whether to allow the user his desired access. 

To provide isolation between readers and writers, the file system enforces 
the convention that subfiles are never modified once the file system is given 
a capability for them.l This convention has two important consequences: 

1. Once a reader extracts a subfile capability from a file object he can be sure 
the subfile will not be modified. 

2. The subfile system must create a new subfile when a writer attempts to 
modify the su biile. 

Closing files Because a file may be simultaneously read and written by 
several users, the file system must have a way to determine which transaction 
is involved in a "close" operation. Therefore the file system implements a 
second object type, OPENFILE. (Likewise, subfile systems implement 
OPENSUBFILES.) This object encapsulates any necessary information needed 
during Close, typically the original file and the user's port. 

8-2 OPERATIONS ON FILES 

To summarize the file system structure, we present the detailed specifications 
of the file system operations. We will use the same format we used earlier 
for kernel KalIs; in fact they are invoked with TypeCall 

8-2.1 File Operations 

OpenForWriting(D:slot(index), F:object(F1LE,FileOpenRts), 
P:object(poRT,PortConnectRts), C:integer) 

Connects file F to output channel C of port P. Returns in slot D a 
capability for an OPENFILE object. 

OpenForReading(D:slot(index), F:object(F1LE,FileOpenRts), 
P:object(poR T,PortConnectRts), C: integer) 

Same as OpenForWriting except for reader/writer synchronization. 

IThe file system enforces this by not including Mod(/'yRts in any subfile capability presented 
to the subfile system. 
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Close (F:object( OPEN FILE, FileC loseR ts)) 

Close disconnects the user's port from the server's port and updates the 
reader/writer information in the file. Additionally, if the file had been 
open for writing, the current subfile capability in the file will be replaced 
with the new subfile returned from the subfile system's SubfileClose 
operation. 

8-2.2 Subfile Operations 

Each subfile system must implement the following opemtions. The file 
system invokes these operations "blindly," with TypeCalL 

SUbfile Write (D:slot(index) , P:object(index,poRT), 
S:object(suBFlLE)) returns InputChannel: integer 

Invoked only by the file system. The subfile system performs any 
necessary actions to locate or create a server process, passes to the 
process the subfile S, and returns a capability for the server's port in slot 
P. A capability for an open subfile object is returned in slot D. 

SubfileRead( .. .) 

Like Subfile Write, except the subfile system may take advantage of the 
additional information that no write operations will occur. 

SubfileClose(D:slot(index), S:object(OPENSUBFlLE,CloseRts)) 

Invoked only by the file system. Informs the server process that I/O will 
cease. Returns in slot D a capability for a new subfile if the user had 
been modifying the su bfile. 

8-2.3 File 1/0 

Different data representations could demand quite complex message formats 
for file I/O to take advantage of specialized structures (e.g., "return the 
object code of routine Test in module ListPackage" might be an appropriate 
operation for a subfile which implemented a format to be used by program 
libraries). To try to encourage standardization without restricting subfile 
creators, we agreed on a few standard operations ("read/write the next group 
of characters," for instance) and left new subfiles the freedom to implement 
other operations with other message formats. We will not discuss them 
further. 
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8-3 IMPLEMENTED SUBFILES 

To date, there are three subfile systems in active use: 

The SOS SUbfile system defines a representation convenient for the 
line-number-oriented SOS editor on C.mmp. 

The Line Printer SUbfile system implements an output file type. Closing one 
of these subfiles causes the data to be passed to a line printer spooler 
process which will print the file on the system line printer. 

The Random SUbfile system implements a random-access byte representation 
especially suited for some types of intermediate files used by various 
programs.2 

The particularly flexible implementation of file 110 as interprocess com­
munication makes possible some other subfile types which have been pro­
posed but not implemented, including 

The Terminal SUbfile system, which would translate file 110 to terminal 110, 
thus providing a uniform 110 protocol among files and terminals. 

The ARPANET Remote SUbfile system would implement files whose represen­
tations were actually on different computers. Opening one of these 
subfiles would establish the appropriate network communication, and 110 
operations would move data over the network. 

8-4 PROTECTION 

There are two ways in which the design of the file system is influenced by 
the desire to solve the Modification Problem.3 First, the file system must 
alter its operation when given a capability for a file lacking ModifyRts. 
Whenever a file system operation has no intrinsic need to modify the file, it 
detects when the passed file parameter lacks ModifyRts and functions cor­
rectly without modifying the file in any way. Thus the OpenForRead 
operation refrains from modifying the date-of-Iast-access field in the file 
object when the capability lacks ModifyRts. 

A second, and more subtle, influence of the Modification Problem 
involves the mutual exclusion semaphore that controls access to the file 
object during Open and Close. (P and V operations on semaphores require 
ModifyRtsJ An analysis of OpenForRead reveals that the only necessarily 
indivisible operation on the file object is the copying of a capability for the 

2The Random Subfile also prompted the addition of OpenForUpdate operations on files and 
subfiles. 

3This section and the following retrospective are based on previously published evaluations 
by the File System authors [Alm77}. 
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current subfile object. This operation (the GetCapa Kall) is already indi­
visible, so no explicit locking is necessary and ModifyRts is not needed. Were 
it necessary to determine the current subfile by means of access to a 
multi-word data structure in the file object, on the other hand, some external 
synchronization, and thus ModifyRts, would be needed. 

The solution of the Confinement Problem was both more difficult and 
more interesting. Although it was not difficult to implement a FILE sub­
system whose procedures could be called confined (i.e., without UncjRts), it 
was difficult to construct confinable subfile systems. In the case of the Line 
Piintei Subtile system, there is the intrinsic need to modify a particular 
inherited object, the line printer device. In other cases, the need to modify is 
not intrinsic, but technological, and stems from the customary technique of 
mUltiplexing a single server process among all the open subfiles of a particular 
type. Given this efficiency-oriented shared-server concept, confinement is 
impossible. 

One particular subfile system was constructed explicitly to explore the 
feasibility of a confinable subfile system. The SubjileOpen procedure of this 
so-called "Confinable Subfile" system creates a new server process for each 
open subfile. Due to the confinement constraint, the initial LNS of this 
server process will be confined and may modify only its parameters (which in 
turn must have been parameters or locals of SubjileOpen). The Policy 
Module procedures which create new processes cannot be called confined, 
and so the caller of Open must pass in an additional argument-a type 
representative for the Policy Module. This parameter is propagated down to 
SubjileOpen, which uses it to call the MakePMProcess procedure (see Section 
10-1.3) ufConfined. This technique is acceptable, since passing the Policy 
Module type representative is equivalent to the user explicitly "certifying" his 
trust that the Policy Module will not leak information. 

A point can now be made about the importance of the Modification 
Problem. The most obvious motivation, that given in Chapter 7, is that a 
user should be able to attempt a read-only access to a file without any risk of 
its corruption, as in the case when a user suspects a file system bug. This is 
not a forceful motivation, however, because such a situation would occur 
very rarely in such a critical subsystem. A more convincing motivation stems 
from the desire to ml:ike a solution to the Confinement Problem a practical 
reality. A confined call to a subsystem will fail unless the subsystem can 
effectively get its work done without ModifyRts and UncjRts in its inherited 
capabilities. If, for example, a subsystem needs to read a file (or look up a 
read-only item in a directory) and if the file (or directory) system did not 
solve the Modification Problem (it might fail by insisting on being able to 
update a date-of-Iast-access field), then it would be impractical or impossible 
for the subsystem to function confined. Thus, any subsystem that intends to 
solve the Confinement Problem in a practical way must also solve the 
Modification Problem. 
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8-5 RETROSPECTIVE 

The distinction between file and subfile objects has made the file system 
highly extensible. This kind of extensibility is very important in experimental 
computing environments, like Hydra, where representational issues are 
open-ended. We viewed the successful implementation of the file system as 
welcome evidence that the underlying mechanisms were sufficient for real 
systems whose designs we might not be able to foresee. After all, we had 
not anticipated the file/subfile distinction which arose for the file system. We 
had always expected that each separate file representation would give rise to a 
separate and wholly independent file system. 

The file system and the three subfile systems mentioned earlier have 
been operational since early fall of 1976. The design of these systems took 
place during May and June of 1976 and involved six people for a total of 
about 14 man-days. The implementation of each of these systems took less 
than one man-month. Each was written in Blissl11, and the code for all 
procedures in each system totals about 3,500 words (about 2,300 
instructions) . Coding, compiling, and most of the testing of the file system 
and various subfile systems were done independently. The only testing that 
required coordination between two implementors occurred when communi­
cation between the file system and a subfile system was in question. This 
amounted to only a few man-days in each case. 

While the Hydra file system design is functionally pleasing, its implemen­
tation is slower than we would like it to be. This is a natural result of using 
protection mechanisms as general and powerful as those provided by Hydra. 
Most of the overhead in the system is due to the Call mechanism during 
Open and Close. During a measured series of calls to the file system, the 
average amount of computation by user code within the file system was 49 
ms and the average cost of Call was 89 ms (i.e., 65% of the total computation 
time).4 Thus, while the domain crossings did make the protection and 
software engineering results possible, they are expensive. File 110, which 
uses the Message System, is much faster. 

Finally, it is interesting to note that the file system does not occupy as 
important a position in Hydra as does, say, the Catalogue subsystem, which 
provides named access to arbitrary capabilities. This is partially due to the 
fact that there are few language processors on C.mmp, and hence there is 
little need for program source files or the compiler's intermediate files. An 
even more important reason, however, is that files are not really a natural 
abstraction for all long-lived objects. In Hydra, where any object may persist, 
the user is more likely to use a direct implementation of the abstraction he 
desires. For instance, when the need arises to store a small amount of data, 
one usually tries first to encapsulate the data in the data-part of some object. 

4These times were subsequently improved somewhat; see Chapter 16 for more details. 
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If that is too small or cumbersome, the data can be stored in a page. If even 
more data is required, pages can be strung together in a universal object. By 
doing this, one is able to address his data directly (in 8K-byte chunks) and 
doesn't have to interface with the Message System. These alternatives pose 
interesting tradeoffs. Access is more efficient, but each programmer gener­
ally has to reinvent the whole system. It is also difficult to share such data 
collections in the relatively rare cases where sharing is desired, because no 
synchronization is provided. Thus, because Hydra offers several data storage 
mechanisms whose functionality and performance vary significantly with the 
~ ..... ", ...... f ,...f' rlnfn fl-."" r;1"" """t""..... j" 
alllVUllL Vi uaLa, LU", 111'-' "] "~"'11. ." 

where the options are more limited. 
less heavily exploited than in systems 





CHAPTER 

NINE 
A NETWORK CONTROL PROGRAM 

In Chapter 6 we presented the facilities of the Hydra Message System and 
motivated its structure with a small example. In practice, however, the 
Message System has considerable functionality that is not needed in simple 
situations. Only when one attempts to coordinate a substantial collection of 
asynchronous activities does one encounter the problems that motivated the 
more complex features of the Message System. In Hydra's case, the 
ARP ANET control program was the application that inspired most of those 
features. This chapter examines the problems inherent in ARP ANET 
communication and shows how the message system is used to advantage in 
solving them. 

9-1 THE PROBLEM 

Before we consider the internal structure of the ARPANET control program 
(henceforth called the NCP), let us examine the requirements it must satisfy. 
To do so, we need to understand the abstraction supplied by the ARPANET 
interface and the abstractions a user-level program that wishes to use the 
network would like to see.1 

The ARPANET [Hea75] is a collection of message processing computers 
(called IMPs) interconnected by dedicated communications lines. Each IMP 
serves as an interface for one or more host computers to the communications 
network. Information is transmitted between host computers in the form of 
messages, which are variable-length blocks of bits. The content and sequen­
cing of messages is determined by a number of protocols, most of which are 
unknown to (i.e., uninterpreted by) the IMPs. The goal of the network 
control program (NCP) is to implement the lowest level of host-to-host 
communication (the Host-Host Protocol), which defines a standard method of 
communication through the network for heterogeneous computers. At the 

IThe subsequent description of the ARPANET and its functional capabilities is necessarily 
simplified. Wizards and cognoscenti will recognize many places where subtle problems are 
glossed over or ignored. It is our purpose to present the network structure and function at a 
sufficient level of detail that the reader can appreciate the problems facing the implementor of an 
NCP. 

129 
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level of the host-host protocol, the details of interfacing to the IMP are 
hidden. Thus, the NCP also must assume complete responsibility for 
communicating with the IMP. In fact, the NCP implements all the host-host 
protocol as well. 

Most protocols rely on the notion of a connection. A connection is a 
unidirectional "virtual circuit" between two sockets. A socket is thus the 
entity that a program uses to communicate with another program in the 
network. In principle, a host supports an arbitrary number of simultaneous 
connections.2 Since communication is usually bidirectional, sockets are often 
in grouped in pairs, one each for input and output. 

Although users of the ARPANET tend to think of sockets as the 
primitive connection mechanism, there is, in fact, a lower level. The IMPs 
implement the notion of a link number, which is used to multiplex simulta­
neous logical "conversations" (e.g., socket-level connections) over the single 
physical IMP-host channel. The IMP-Host protocol defines a small, 
fixed-length header on every message that contains a source and destination 
"address" for the message. These addresses are pairs (host number, link 
number). Each host's NCP must manage the set of link numbers for its 
host, except that link 0 has a special meaning. For the host-host protocol, a 
connected socket within a host has a unique link number assigned by that 
host's NCp.3 

It is worth emphasizing the distinction between link numbers and soc­
kets. A link number is used exclusively within the NCP, since it is a part of 
the IMP-Host protocol. With the exception of link 0, a link number has no 
implied meaning; it is simply a local identifier for a conversation in progress. 
On the other hand, a socket is, at least in principle, a long-lived entity. 
Specific socket numbers may be advertised as offering particular services 
(e.g., file transfer). In fact, higher-level protocols tend to treat a socket (pair) 
much like a telephone; that is, it can be connected to some other "phone" in 
the network for a time, then disconnected and reconnected somewhere else. 
It can "talk" only to one place at a time. There are protocols (e.g., ICP, the 
initial connection protocol) that establish these connections and define analogs 
to the familiar telephonic notions of dialing, "busy" signal, no answer, hung 
up, and call queuing. We will discuss these in more detail later. 

Thus, an NCP serves, in essence, as a connection manager. It provides 
mechanisms for: establishing and breaking connections, creating and destroy­
ing the "telephones" (sockets) that define the participants in a conversation, 
and transmi!ting data over connections. In doing so, it provides a consistent 
abstraction for communication between host computers while masking the 
details and most of the complexity of the underlying communication network. 
This implies that the NCP must perform a substantial amount of error 

21n practice, the IMP imposes an upper bound because of its limited internal resources. 

3By limiting the number of permissible link numbers, the IMP effectively limits its number 
of simultaneous connections, as suggested earlier. 
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processing, much of which is rather complicated. In the following sections, 
we will, on the whole, ignore the problems of robust communications, except 
where they have a noticeable effect on the structure of the NCP. 

9-2 THE HYDRA NCP 

The Hydra NCP provides a comprehensive example of the use of the Hydra 
message system. In fact, the design principles underlying the NCP imple­
mentation tend to emphasize the importance of the message system faciiities. 
Specifically, the NCP's organization follows from two primary assumptions: 

1. The "boundary of trust" is the socket-level interface. That is, all the 
mechanisms that implement the facilities needed to support sockets and 
connections are mutually trusting. This doesn't mean that the various 
NCP components have intimate knowledge of each other's data 
structures; on the contrary, they are rather well isolated from each other, 
and validate scrupulously the data that passes between them. They do 
not, however, rely explicitly on the Hydra protection mechanisms for that 
isolation. In contrast, the socket interface is a Hydra subsystem (i.e.; 
SOCKET is an object type), and user programs manipulate sockets by 
invoking Hydra procedures in the socket subsystem. 

2. Within the NCP, all communication among components is performed 
using Hydra messages. Each logically distinct data structure of any 
significance is managed by a single process, and only in response to· 
requests submitted in messages. Thus, no synchronization mechanisms 
are employed other than the one implicit in the sequential reception of 
messages. 

With these principles in mind, let us proceed to examine the organization 
of the Hydra NCP. The reader may find it helpful to refer to Figure 9-1 
during the following discussion. In the figure, the major communication 
paths are shown as solid lines, representing port connections. The solid lines 
between a user and the IMP interface are exercised whenever data is 
exchanged in a conversation with a remote socket (pair). Two independent 
socket (pairs) are shown. The dotted lines represent port connections used 
for connection control and are less heavily exercised. The following sections 
discuss these paths in detail. 

9-2.1 IMP-Host Communication 

One of the C.mmp processors has a peripheral device that provides a 
full-duplex, DMA connection to the IMP. We can think of this interface as 
two independent bit-stream channels, one for input and one for output. 
Hydra provides access to this hardware interface in the usual way, by 
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Figure 9-1 The NCP communication structure 

predefining a device object to which messages may be sent requesting 
physical 110. Since Hydra messages transmitted through this port represent 
direct communication between the host (C.mmp) and the IMP, they must 
observe the IMP-Host protocol. Thus, the network source and destination 
are represented in these messages as (host number, link number) pairs. 
Recall that link numbers are used to multiplex simultaneous conversations. 
Accordingly, the NCP has a process, labeled "Input Mux" in Figure 9-1, that 
accepts incoming messages from the IMP and demultiplexes them. As we 
will see shortly, this generally means mapping the destination link number to 
its corresponding socket. Similarly, the NCP has an output process, "Output 
Mux," that accepts outgoing messages from various sources (generally 
sockets), and forwards them to the IMP, inserting the source link number as 
required by the IMP-Host protocol. 

Together, the input and output multiplexors provide a simple, 
message-oriented communication facility over a single physical channel. To 
see this, let us consider the operation of these processes in a bit more detail. 
Each one has a single Hydra port. The input process sends input requests to 
the IMP interface port, where they remain queued until input arrives. An 
incoming network message is placed in the buffer of one of these Hydra 
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messages and replied, causing it to return to the input multiplexor's port.4 

The input process examines the destination link number, maps it to an 
output channel number, and sends the message out on that channel. It then 
waits for subsequent input. When the recipient of the message eventually 
replies it, the message is destroyed. 

The output process is slightly more complicated. From the viewpoint of a 
socket, the output multiplexor does not reply to a message requesting output 
until tlle data is successfully received at the destination host. Thus, when the 
output multiplexor receives an output request, it forwards it to the IMP 
interface. The message returns (is replied) to the output multiplexor when 
the IMP has accepted its contents. However, since the network may fail to 
transmit the message successfully, the output multiplexor cannot yet reply to 
the output request. Instead, it temporarily places the request in a local 
queue. Eventually, a notification will arrive from the IMP indicating whether 
the message was successfully received by the destination host.s Upon receiv­
ing the notification message, the output multiplexor removes the original 
request from its local queue and replies it to the requester. Thus, the 
originator is informed of the outcome, successful or not, of the attempt to 
transmit his message to its remote destination. 

9-2.2 Host-Host Communication 

Given the abstraction provided by the input and output multiplexors, com­
munication between connected sockets is straightforward. (We will consider 
the protocol for establishing connections shortly.) Connected sockets use the 
Host-Host protocol and pass streams of data bytes (of a mutually acceptable 
size) between them. Recall that a connection between sockets is unidirec­
tional, so that "conversations" typically involve a pair of sockets. The NCP 
typically creates a single process with a single port to manage a socket pair. 
The port is connected to the input and output multiplexors at the time that 
the socket (pair) is created. The socket process accepts requests from a user 
program and, after appropriate transformations and validity checks, communi­
cates them to the multiplexors. Recall that these requests are beyond the 
"boundary of trust" and therefore must be treated with suspicion by the 
socket process. It must detect and report protocol violations and prevent 
runaway user programs from clogging up the NCP's internal communications. 

4This is a simplification. Because of various buffer size constraints, a single network 
message may be fragmented into more than one Hydra message and subsequently reassembled. 
We will ignore this complexity here. 

5This notification is, in fact, an input message, and so is naturally received by the input 
multiplexor. The input multiplexor recognizes the message as an acknowledgement of an output 
message, and forwards the notification to the output process. This connection from input to 
output multiplexor is shown in Figure 9-1 and is the only interaction between these otherwise 
independent processes. 
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The socket process actually handles the message fragmentation alluded to 
earlier. The interface it offers to its user, however, is purely stream-oriented. 

9-2.3 Connection Management 

Up to this point, we have been considering the major communication paths 
within the NCP. As we have seen, the interconnection of ports and 
processes naturally follows the requirements of the IMP-Host and Host-Host 
protocols. However, a certain amount of complexity is introduced by 
additional protocol requirements that deal with connection management. These 
include the mechanisms for establishing a socket-level connection, controlling 
the flow of information along the connection, and passing control signals that 
are asynchronous with the data flow through the connection. We will sketch 
enough of these requirements to illustrate their effect on the structure of the 
NCP. 

Requests for connection (RFCs) arrive on link number O. (Recall that 
this link is reserved for special purposes-this is one of them.) An RFC 
specifies the socket number to which the connection is to be made and, of 
course, includes the host and socket requesting the connection. The input 
multiplexor demultiplexes all link 0 messages by originating host. It expects 
to have an output channel for each such host, leading to a port managed by a 
host process. (If no such port and process exist, they are created dynamically.) 
The host process determines whether the socket number requested corre­
sponds to an extant socket object. If so, the RFC is forwarded to the socket.6 

The socket may accept, reject, or queue the RFC. In the first two cases, the 
socket replies to the RFC message, causing it to return to the host process 
where appropriate link 0 messages are generated to either complete or 
terminate the connection protocol'? If no socket can be found by the host 
process, it rejects the RFC directly. Thus, socket objects are never implicitly 
created in response to RFCs. (A higher level of protocol, the Initial 
Connection Protocol, offers a mechanism for dynamic socket creation.) 
When a network connection is successfully established, a message system 
connection between the socket and the host corresponding to its remote 
socket is established as well. The purpose of this connection will become 
clear momentarily. 

A socket-level connection is primarily intended to support a unidirec­
tional, stream-like flow of data bytes. However, it is occasionally necessary to 

6The socket, in turn, may not have an associated port and process. If necessary, these are 
created dynamically and appropriately initialized. 

7For internal technical reasons, there is actually an "RFC" port between the host port and 
the socket port. This port and its associated process exist to simplify the implementation and 
because they manage a connection data base that is logically distinct from the host processes. For 
ease of exposition, however, we will not consider the RFC process to be a separate entity from 
the host processes. 
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pass control information as well, e.g., to control the amount of data trans­
mitted or to interrupt the send or receiver. Logically, this information is 
asynchronous with the data flow and thus must be transmitted along a 
logically distinct path. There are many ways to implement this separate path; 
the Host-Host protocol chooses to use link O. Thus, all control messages for 
all socket connections are transmitted on link O. The purpose of the 
connection between a socket port and its corresponding host port is now 
evident; the host process passes control messages along this path. 

9-3 RETROSPECTIVE 

The NCP took a long time to build, in part because it was the first 
sophisticated user of the Message System facilities. In fact, several features 
were added to the Message System because they eliminated difficulties in the 
NCP. In the end, the resulting structure of the NCP was determined largely 
by informational requirements of the ARPANET protocols and only mini­
mally affected by the quirks of ports and messages. It is appropriate, 
therefore, to summarize what we learned about interprocess communication 
by building the NCP. 

The internal organization of each NCP process is extremely straight­
forward. Each has a single outer loop whose body receives a message, 
processes the message contents, and finally replies the message. Of course, 
each process has internal state information, which affects the precise param­
eters to the ReceiveMsg operation, the particular processing of the incoming 
message, and the final disposition of the message in hand. This overall 
structure is easy to understand and modify, so it is worth understanding the 
message system facilities that permit this organization. 

First, the RequeueMsg operation (see Section 6-6) enables the NCP to do 
all its queue management using the Message System. The NCP simply treats 
an input channel as a queue and uses RequeueMsg to add messages to it. 
ReceiveMsg, with appropriate parameters, permits dequeuing either a selected 
element or in FIFO order. Thus, no explicit queue structures exist in the 
NCP. 

Second, the arbitrary fan-in and fan-out allowed by the message system's 
port interconnection facilities permits the NCP to model easily the multi­
plexing requirements of the network protocols. (The implicit reply mech­
anism is also vital in this regard.) Fan-out (through output channels) enables 
a single process to direct messages to several distinct destinations, depending 
on their contents. This is convenient for the host processes, which receive a 
variety of unrelated requests on link O. Fan-in (through an input channel) 
allows a single process to service requests from several distinct sources. The 
multiplexor processes do just that. Typically, the connections that "fan-in" to 
a particular input channel are labeled (using the message system's connection 
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identifiers) with convenient identifiers, such (host, link) pairs. Whenever a 
message arrives, the relevant connection identifier is supplied by the message 
system to the receiver of the message. This substantially simplifies the 
receiver by eliminating certain mapping tables in the NCP, since the message 
system is, in effect, storing the map implicitly. 

Third, the ability to process and store messages in a port in an essentially 
arbitrary order permits the NCP to define three rather flexible styles of 
communication among its components. The simplest form of message is one 
that is received, immediately processed, and replied before another message 
is received. This simple sequential style of processing is used by the output 
portion of the IMP interface. In other cases the receiving process may have 
to wait for some other event before replying to the message. The input side 
of the IMP interface exemplifies this situation, since a read request cannot be 
replied until the data it requests has been received from the network. Even 
in this case, however, the simple loop paradigm is adequate, since such 
requests are still handled in strict sequence. However, it is occasionally 
useful to allow such requests to be kept "off to the side" until the infor­
mation they request is available. This situation arises in handling asynchro­
nous error conditions, where a message is sent requesting acknowledgement 
of an exceptional condition. The receiver holds the message in abeyance (in 
a local name of a port or by requeuing) and replies to it only when (and if) 
an exception arises. 

Two message system properties, however, have adverse effect on the 
NCP's structure. First, the Message System imposes a resource limit on each 
port. This number is determined by the port's creator, but remains a fixed 
upper bound for the life of the port. This can be inconvenient for certain 
ports (in particular the input multiplexor) because they must be prepared to 
handle essentially arbitrary data arrival. Peculiar communication structures 
tend to arise from this. Input, for example, is generally reflected as replies to 
input requests, rather than original messages containing the input. In short, 
the Message System does not alleviate the well-known problem of buffering 
real-time input. 

Second, message buffers have no implicit stacking mechanism analogous 
to the stacking of reply frames. This tends to force the NCP to transform the 
data in the buffers at each level of message transmission. Although in 
principle the amount of data manipulation can be substantial, careful design 
of the message formats eliminates most of these transformations. 

In summary, we believe the NCP demonstrates that the functionality of 
the Hydra Message System is worth its occasional complexity. Several 
unpleasant details in the ARPANET protocols that few other NCPs imple­
ment were easily accommodated under Hydra. At the same time, the 
implementation seems to run a single connection about as well as a unipro­
cess implementation would, suggesting that the overhead of multiprocessing 
does not significantly affect the performance of the NCP's task. Further-
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more, the NCP's multiprocess, multiport structure adapts comfortably to 
C.mmp and, in fact, is one of the few large programs that is unaffected by 
the 16-bit address space limitation. This, in itself, is an important affirmation 
of much of the Message System design. 





CHAPTER 

TEN 
A USER-LEVEL OPERATING SYSTEM 

The previous two chapters have given a detailed picture of two subsystems 
built over Hydra. In this chapter we will give a somewhat more high-level 
description of the subsystems which have evolved into the "operating 
system" seen by users of C.mmp. In so doing, we will try to substantiate one 
of our major claims for Hydra: that it is easy to construct operating system 
facilities which are non-preemptive, that is, which can be replaced or re­
moved by any user dissatisfied with the facility as supplied, without affecting 
other users. 

To describe these operating system subsystems, we will make use of a 
simple example. We suppose that a user wishes to log on to the 
Hydra/C.mmp system and print a file. First, let's simply observe a record of 
the terminal session; we will analyze it in more detail later. In the following 
scripts, the text typed by the user is italicized; all other text is typed by the 
operating system. 

CMU CS Front End 
Host: c 
Welcome to Hydra/C.mmp 
Job Monitor 
V5.09 6-Nov-1978 18:54:25 
Type "Help" If you need it 
@/og 
Job 21 Hydra/C.mmp TTY13 On 7 Aug 79 12:33:47 
Name: harbison 
Password: 
Command Language 
V1.28.1 2-Aug-1978 10:53:55 
> 

Our user is now logged on to the system and can invoke various commands 
to do his work. ('>' is the Command Language prompt character.) He 
might, for instance, list his private catalogue with the "list directory" com­
mand: 

139 
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>diO 
Fortran 
Letters 
Profile 
PrintFile 
Public 
RootFinder 
> 

Procedure 
Directory 
Commands 
Procedure 
Catalogue 
File 

(377,160002) 
(377,160002) 
(377,162102) 
(172,160002) 
(377,160002) 
(377,160002) 

8-Mar-79 
14-May-78 

5-Jan-79 
23-Feb-78 
15-Jul-79 

ll-Aug-78 

A user's catalogue contains named capabilities for arbitrary objects. Here we 
see six: a file, two procedures, a "commands" object, a directory, and a 
catalogue. Listed for each entry are the capability's access rights and the date 
the capability was entered into the catalogue. PrintFile is a capability for a 
procedure which lists its single file argument on C.mmp's line printer, so the 
user may type: 

> prfntjile(rootjinder) 

to print the file. Note that the command language interprets "printfile" and 
"rootfinder" to be catalogue entries in this context. Procedures may also be 
invoked as separate processes~ our user might, for instance, invoke the 
Fortran compiler asynchronously on the same file by typing: 

> capa &process 
> &process = $MakePMProcess( fortran, rootjinder) 
> $StartPMProcess( &process ) 
> 
> $StatusPMProcess( &process ) 
Running 
> 
> $StatusPMProcess( &process ) 
Stopped 
> 

To log off the system, the user types a "break" character (represented by the 
character "*"): 
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@kjob 

CMU CS Front End 
Host: 
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10-1 ANATOMY OF THE USER-LEVEL OPERATING SYSTEM 

With the possible exception of the command syntax and the spawning of 
asynchronous processes, the terminal session above resembles those encount­
ered on most timesharing systems. Hydra is distinguished more by the way 
the functions are provided than by the kind of functions. In fact, at no time 
in the above example was the user communicating with the Hydra kernel 
directly. All the services were provided by user-level subsystems. We now 
go over the same example again, this time explaining the underlying mecha­
nisms. 

10-1.1 Connecting to the System 

The Hydra kernel has no concept of "user" or "terminal'\ it simply provides 
a set of device objects for the terminals. When the system is initialized, the 
user-level terminal multiplexor procedure, TMUX, is invoked as a separate 
process and is passed capabilities for all the terminals. TMUX connects a port 
to all the terminals and waits for something to be typed at one. It is TMUX's 
main responsibility to multiplex a single terminal among multiple processes, a 
useful function in a multiprocessing environment such as this one. 

TMUX has the additional responsibility to detect an initial connection to 
C.mmp and to invoke higher-level software. TMUX possesses a capability for 
the job monitor procedure, JMON. When the Front End processor connects a 
terminal to C.mmp, it sends a special "connect" character which causes 
TMUX to spawn a JMON process connected to the user's terminal. From 
this point, TMUX simply moves characters between JMON and the user's 
terminal; its special responsibilities are over. If another user connects to 
C.mmp, TMUX will spawn a new JMON process for him from the same 
JMON procedure. The connection structure is shown in Figure 10-1. 

When the JMON process is started, it immediately types out a greeting 
and waits for a command to be typed. Thus we have reached the end of the 
first part of the terminal script presented above. We reproduce it again 
below, indicating from what source the various messages come. 
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User 1 0 .... __ -
terminal ::0:: JMON 

User 2 01'+---­
terminal ::0:: JMON 

Figure 10-1 TMUX interposed between terminals and users 

CMU CS Front End 
Host: c 
Welcome to Hydra/C.mmp 
Job Monitor 
V5.09 6-Nov-1978 18:54:25 
Type "Help" If you need it 
@ 

10-102 Logging In 

Front End 
Front End 

TMUX 
JMON 
JMON 
JMON 
JMON 

JMON understands a few commands and is principally responsible for getting 
the user logged in and talking to a command language. There are two 
reasons for interposing JMON at this point, rather than connecting the user 
directly to a command language: 

Reliability. The command language process may stop because of hardware or 
software errors and it would be well to have a "backstop" process 
available which could recover from such a death.l 

Decoupling abstractions. The notion of a 'Job" is (we believe) a different 
concept than "command language," and so we try to preserve this 
distinction in the implementation. 

In fact, validating a user for the purpose of "logging in" is entrusted to 
still another subsystem procedure, Authenticate. When the "login" command 
is typed to JMON, Authenticate (for which JMON has a capability) is invoked 

iHydra cannot distinguish command language processes from any other and so takes no 
special action when the command language encounters an error. 
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and is passed a connection to the user's terminal. It is Authenticate which 
performs the familiar "name and password "dialog, and returns a special 
object of type USERTOKEN. (Authenticate is part of the USERTOKEN 

subsystem.) USERTOKEN objects contain (among other things) the user's 
official name and a capability for the user's private catalogue. 

JMON can now start up a command language process for the user, using 
a capability for the standard command language procedure, CL. CL is passed 
the catalogue returned by Authenticate and is connected to the user's terminal 
by TMUX. JMON now becomes dormant; it is still waiting for commands, 
but TMUX is routing terminal trafl1c to the command language process. (See 
Figure 10-2.) 

JMON 

CL 

Figure 10-2 Processes associated with the user 

Returning to the original script, we can see that what appeared to be a 
dialog with a single program actually involved two processes and three 
subsystems (not counting the PM that is scheduling all of this): 

@/og 
Job 21 HydratC.mmp TTY13 On 7 Aug 79 12:33:47 
Name: harbison 
Password: 
Command Language 
V1.28.1 2-Aug-1978 10:53:55 
> 

JMON 
Authenticate 
Authenticate 

CL 
CL 
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10-1.3 The Command Language 

Hydra's principal command language, CL, is quite interesting in itself.2 It 
provides an interactive environment modeled after an Algol-like program­
ming language, complete with iterative and conditional statements, macros, 
subroutines, and direct access to all the Hydra KalIs. At the same time, CL 
is effectively decoupled from many other facilities; it has no concept of 
"user" or '10b," for instance. It is simply a procedure which takes two 
arguments: a terminal connection and a catalogue (which is interpreted to be 
the user's private catalogue).3 

Some of the "flavor" of the command language can be seen in the 
portion of the user script involving the creation of a new process: 

> capa &process 
> &process = $MakePMProcess( fortran, rooifinder) 
> $StartPMProcess( &process ) 

The user is declaring a "capability variable," &process, and assigning to it the 
capability returned by the procedure $MakePMProcess. This returned capa­
bility, of type PMPROCESS (defined by the Policy Module), is then passed as 
an argument to $StartPMProcess, which starts the process.4 

The CL is also an interesting example of the use of TypeCall to allow for 
many competing facilities. When CL sees a name which is not defined within 
itself, it assumes the name is an entry in the user's catalogue. To retrieve 
the associated capability, CL simply performs the "lookup" operation (a 
standard TypeCalb on the catalogue object. In fact, Hydra has two subsys­
tems implementing two types of catalogues: CATALOGUE and DIRECTORY. 

The CL need not be aware of which object type it has because both 
subsystems define compatible TypeCalls. 

10-1.4 Logging out 

When the user logs off, he must first return to the JMON process, which 
understands such things. TMUX understands the break character to be a 
request to reconnect the terminal to the "previous" connection. Hence the 
sequence: 

2Although CL is the standard, there are other such languages (e.g., see rSn080]). 

3We also note that the CL procedure has in its C-list, and hence all CL processes inherit, a 
capability for a shared "system catalogue" of useful capabilities. 

4$MakePMProcess and $StartPMProcess are predefined CL macros which expand into 
TypeCalls on the (default) Policy Module. These operations are mapped by the Policy Module 
into the corresponding Kalis provided by KMPS to create and start processes. (See Chapter 12,) 
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CL,JMON 
JMON 

The "kjob" command can now be typed to JMON, causing the CL process to 
be destroyed. Finally, JMON will inform TMUX of the termination, and 
TMUX will disconnect the terminal and destroy the user's JMON process: 

@/gob 

C},,1U CS Front End 
Host: 

10-1.5 Subsystem interactions 

JMON 

Front End 
Front End 

One of the major factors leading to the complexity of basic operating system 
software is the intricate web of dependencies often found among modules. 
With Hydra, however, the facilities described above are exceptionally well 
isolated. In almost all cases the interface consists of a single procedure call 
and no special privileges need be granted. Consider 

TMUX. TMUX's only privilege consists of its being given capabilities for the 
terminal devices. It would be quite easy for several multiplexors to 
coexist: all that would be necessary is for them to be given disjoint 
subsets of the terminals. In fact, this is the way experimental versions of 
TMUX are debugged alongside the standard version. 

JMON. TMUX's responsibility for higher-level software consists only of 
spawning a new process from a "canned" procedure. That the procedure 
is JMON is of no concern to TMUX. JMON's "privileges" consist of the 
(inherited) capabilities in its C-list. 

CL. Again, this is only a canned procedure invoked by JMON. Different 
command languages could be associated with different users, perhaps via 
the USERTOKEN object returned by Authenticate. 

We do not mean to suggest that there are no interactions in the above 
mechanisms. All the procedures have some knowledge of TMUX's opera­
tions because each must use TMUX to establish terminal connections. This 
means only that the procedures must acquire parameter templates for the 
TMUX object type which represents such connections, and that they must 
know what operations are available (via TypeCall) on those objects. This 
type of interaction between subsystems is common and easy to understand. 
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10-2 THE JOB SYSTEM 

In discussing the functions of JMON, we glossed over another subsystem 
which is closely related: the Job System, which defines the abstraction of job 
in Hydra. This is another good example of how functionality is provided by 
us~r-Ievel systems. 

There are three important abstractions provided at the user level: 

User is defined by Authenticate and provides a protected way of associating 
"user catalogues" with user names. 

Terminal connection is defined by TMUX and provides the abstraction neces­
sary to manage a hierarchy of connections between a person at a terminal 
and some collection of processes. 

Job is defined by the Job System and provides the means to associate 
resource consumption with a logical task, such as a terminal session. 

The motivation for the introduction of jobs into the system was the 
realization that there are a large number of housekeeping tasks which should 
be performed when a user "leaves." Files should be closed, devices deallo­
cated, and in general all resources acquired by the user should be released. 
This is usually done during "logout" on other timesharing systems. Under 
Hydra, of course, the resources we wish to free are allocated by individual 
subsystems, and it is those subsystems which need to specify their own 
logout actions. 

We therefore invented jobs so that we would have something to log out.s 

It works like this: 

1. JMON invokes the Job System to create a new job (i.e., a new JOB object) 
when a user is accepted by Authenticate. A capability for the job is passed 
to CL and made available to the user. 

2. Any subsystem that wants to be notified when the user logs off requires 
the user to pass a capability for his JOB object to one of the subsystem's 
procedures, such as FileOpen or AllocateDevice. 

3. The subsystem can then invoke a Job System procedure, Joblnsert. This 
procedure accepts a job and any other capability and enters the capability 
on the job's kill list. Typically, the capability entered on the kill list 
represents the resource to be reclaimed. 

4. When the user logs out, JMON invokes the LogOut procedure on the JOB 

object. LogOut in turn will invoke the "destroy" TypeCall on every 
capability in the job's kill list. Subsystems implement this "destroy" 
operation for their own objects, and therefore they can perform arbitrary 
clean-up functions. 

5Note that login is no problem. It is handled by Authenticate and involves a different set of 
issues. 
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This system works very well. For example, the File System puts its 
OPEN FILE objects on the kill list as part of the Open procedures. The 
"destroy" TypeCall on such objects is just Close. 

The Job System also allows users to create subjobs from a JOB object, 
allowing resource control to be structured hierarchically. Any procedure may 
consume arbitrary resources by spawning processes and invoking other sub­
systems, so passing a subjob to a procedure, and later logging out just that 
subjob, provides a means to recover those resources, even (especially) if the 
procedure is faulty and is unable to clean up after itself. (Subjobs are put on 
the kin iist of their parent jobs. The "destroy" TypeCaii on JOB objects is just 
LogOut, so the whole operation is recursive.) 

10-3 RELIABILITY MECHANISMS 

The subsystems which make up Hydra's operating system were contributed 
by many people with different programming styles and abilities. It was 
therefore always assumed that any procedure could be faulty and, in fact, 
might never return if called.6 In some subsystems, such as the file and 
catalogue systems, this possibility was recognized, but ignored on the grounds 
that the users of those subsystems assumed the risk when they invoked the 
procedures. Some subsystems, however, like Job, Authenticate, TMUX, and 
CL, are critical because no one could access the system should they fail. For 
this reason they take extraordinary precautions when they invoke other 
subsystems. 

As an example, consider the LogOut operation on jobs. The Job System 
must iterate through a kill list, invoking other subsystems. To guard against 
any of these invocations failing, the iteration is done in a separate process 
which is monitored by the Job system. Should any subsystem fail, the 
monitor will detect the stopped process and will start another process to 
complete LogOut. 

Another need for explicit reliability mechanisms comes from the possi­
bility that processes might be halted by Hydra due to hardware or software 
errors. Hydra cannot invoke any higher-level software to handle such cases 
beyond its normal interaction with the Policy Module. Therefore subsystems 
which use server processes must supply their own detection and recovery 
mechanisms. The Policy Module PM 1 is a good example of typical mecha­
nisms. Some of PMl 's functions are implemented by demon processes which 
do ReceivePolicy operations and process KMPS' stop messages (see Section 
12-2). There are several identical processes for two reasons: performance 
and reliability. By having several processes, PMl achieves a high degree of 
parallelism since the processes need to synchronize only when accessing the 

6lt is for this reason that the Hydra kernel never invokes user-level software during any Kall 
except Call and TypeCall. The kernel supplies only type-independent operations. 
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shared scheduling tables. Also, should one of the processes encounter an 
error, another process would discover the corresponding stop message in the 
mailbox and could restart another process. Thus, each PM process constantly 
monitors all the others. 

10-4 OTHER SUBSYSTEMS 

We have discussed the most important subsystems in Hydra from the 
standpoint of providing operating system facilities: TMUX, JMON and the 
Job System, CL, Policy Module PM!, and Authenticate. Many other 
subsystems have arisen to cope with other practical problems encountered in 
a real operating system. Some of the major ones are listed here to round out 
this discussion. 

10-4.1 Directory and Catalogue 

These subsystems have been mentioned informally many times. Both of 
them implement the same fundamental abstraction~ the directory subsystem 
was constructed first and was superseded by the improved catalogue sub­
system some years later. A "directory" in Hydra essentially takes the place of 
a "file system" in most other systems. It provides "lookup," "enter," 
"create," and "delete" operations. 

10-4.2 Device Allocation System 

The Device Allocation System (DAS) manages the allocation of physical I/O 
devices. (The kernel enforces no policies at all with respect to DEVICE 

objects-for instance, it does not prevent several users from simultaneously 
connecting to, and using, the same device.) DAS provides a level of 
protection between users and the I/O system: it enforces mutual exclusion 
(when desired)~ it interfaces with the Job System to deallocate devices when 
a user logs off the system; it keeps publicly available lists of devices in use; 
and it provides special operations which can be used by an operator to 
forcibly disconnect a user from a device. 

10-4.3 Fork 

Hydra and the Policy Modules implement a very simple process creation 
mechanism. It is primitive in the sense that there is no way for a process to 
return a "value," nor is there a way to block waiting for a process to 
complete. The Fork System allows processes to be spawned in an envi­
ronment which provides these functions. 
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10-4.4 Commands 

COMMANDS objects are supported by the command language, CL; they are 
essentially "command language procedures." They can take arguments and 
inherit capabilities in much the same fashion as Hydra procedures, and are 
much easier to create-hence they are heavily used. 

10-4.5 SYSMON 
C,,"ClI.KAlI..T = ________ =Ll_ l' __ _ .. __ .. =_~ .. L_ .. ___ 1_ .. _1 _ •• L_ .. _ .. ___ ••• L __ 11 •. ...1 __ :_ 
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rebooted; it is the single procedure which is given control after the kernel has 
been initialized. It first starts the Policy Modules and then invokes initial­
ization procedures for all the standard subsystems. These procedures may 
spawn processes (as is the case for several SUBFILE systems which spawn 
servers) or may simply initialize internal tables (as is the case with DAS). 
SYSMON normally operates automatically, but can receive explicit instruc­
tions from the operator's console. 

10-5 RETROSPECTIVE 

As we designed Hydra, our primary concern was whether we could build an 
operating system on top of it, rather than what that operating system would 
look like. It was therefore very satisfying when we saw an operating system 
develop which was not only functionally sufficient but better structured than 
many (we believe most) traditional ones. Unfortunately, most of this 
development was haphazard-our concentration on the kernel mechanisms 
caused us to pay very little attention to laying out this part of the system. 
Building an operating system as user-level programs does not necessarily 
reduce the amount of software necessary, and it should be planned with care. 

One particular aspect of the user system that we never adequately 
addressed was the environment in which user programs could develop and 
operate. Hydra's protection mechanism is very good at ensuring that a 
procedure gets sharply defined privileges; unfortunately, many programs want 
to send messages to a "user" or print a message on the "console." Hydra 
works at a much lower level than the concepts of "user" or "console," and 
therefore every procedure must explicitly provide for appropriate capabilities 
to be passed to it, in addition to the parameters the procedure is really 
interested in. Many proposals for so-called "environment objects" (to be 
passed to all procedures by convention) have been offered, but each has been 
rejected because of its divergence from the Hydra philosophy and because we 
could not agree as to what should go in such objects. In the end, JOB objects 
assume'a this role to a certain extent, but no acceptable general solution was 
ever designed. Most programs use a loose set of conventions supported by a 
standard User Library [Rei75, Gum781. 
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CHAPTER 

ELEVEN 
THE OBJECT STORE 

The Hydra GST (for "Global Symbol Table") is the implementation of the 
object/capability abstraction on which all of Hydra rests. Virtually all the 
long-term data stored in the system is embodied in objects managed by the 
GST. For this single, universal storage mechanism to be usable, these 
objects must be managed efficiently and reliably. At the same time, the 
internal details required to achieve these goals should not be evident in the 
abstraction presented to users. 

11-1 A VIRTUAL MEMORY SYSTEM 

From the outside, the GST resembles a virtual memory system with a large, 
graph-structured address space. In fact, however, the GST subsystem proper 
implements only a large linear space of objects referenced by unique-names. 
It is actually the protection mechanism, with its knowledge of "paths," that 
provides higher-level structure. 

Like other virtual memory systems, the GST uses several levels of the 
storage hierarchy (primary memory, drum, disk) to achieve an efficient 
implementation of the large address space. This is the rationale for dividing 
what appears to be a uniform structure into two parts: 

Passive GST, which maintains objects and capabilities on secondary storage for 
long periods of time 

Active GST, which maintains copies of objects and capabilities in primary 
memory for short periods while they are being referenced 

Objects are referred to as being active or passive, depending on whether they 
are in the Active GST or not. 

Initially, all objects are passive. Newly created objects are placed in the 
Active GST, and older objects are copied from the Passive GST to the Active 
GST if they are referenced. Active objects may be returned to the Passive 
GST if they cease being referenced, or they may be explicitly updated, i.e., 
copied back to the Passive GST in order to make the two GSTs consistent. 
Updating is important because at the time of a system crash only the Passive 
GST is preserved. 

153 
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11-1.1 The Representation of Objects and Capabilities 

The representation of objects differs in the Active and Passive GST, but in 
each case the representation is based on the division of an object into two 
parts: 

Fixed-part, passive or active, which is a concise representative of the object 
Representation, which is the union of the C-list and the data-part 

The fixed-part is often the focus of the GST mechanisms because many 
references to objects can be satisfied by consulting only the fixed-part. 

In the Passive GST, an object's (passive) fixed-part and representation 
are stored contiguously on a disk pack. In the Active GST, the object's 
(active) fixed-part is at a fixed address in primary memory; the representation 
may be in primary memory, but it may also remain passive if it is not 
needed. (See Figure 11-1.) 

Passive object 

Active object, 
active representation 

Active 
fixed­
part 

Passive C-list Data-part 
fixed-
part 

Figure 11-1 Various representations of objects 

Active object, 
passive representation 

Active 
fixed­
part 

Table 11-1 lists the contents of the passive and active fixed-parts. Along 
with each field is a letter indicating whether the field is functionally necessary 
(F), is an optimization for efficiency (E), or is there to enhance reliability 
(R). Fields marked (FE) store functionally necessary information in an 
optimized format. The more important fields are described in Table 11-2. 

The significance of these fields will become clearer as we discuss the 
mechanisms and policies for mapping capabilities to objects. 

Capabilities also have passive and active forms. A passive capability 
contains only two things: the unique-name of the object it represents, and the 
set of kernel and auxiliary access rights. Passive capabilities may refer to 
objects in either the Passive or Active GST. In active capabilities, the 
object's unique-name is replaced by the memory address of the object's active 
fixed-part. Active capabilities thus refer only to objects in the Active GST. 
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Table 11-1 Composition of fixed-parts 

Passive fixed-part Active fixed-part 

Field name 

UniqueName 
CurVersion 
PreVersion 
TotRefCnt 
TypeName 
Flags 

Table 11-2 

Field name 

UniqueName 

CurVersion 

PreVersion 

TotRefCnt 

ActRefCnt 

TypeName 

Typelndex 

CList 

DPart 

Semaphore 

Use Field name Use 

F UniqueName F 
F CurVersion F 
R PreVersion R 
F TotRefCnt F 
F ActRefCnt F 
F Typeindex FE 

Pasprm E 
DrmRefCnt R 
Checksum R 
State F 
CList F 
DPart F 
Semaphore F 
TimeStamp F 

Fields in the fixed-parts 

Contents 

The 64-bit name which uniquely names the objects 

The disk address of the passive object 

The disk address of the previous version of the passive object 

The total reference count: the number of outstanding capabilities for 
the object 

The active refence count; the number of outstanding references to the 
address of the active fixed-part 

The unique-name of the associated type object; i.e., the object's type 

An optimization of the type name (TypeName); an index into a table 
of addresses of the active fixed-part of TYPE objects 

The address of the C-list in primary memory 

The address of the data-part in primary memory 

A semaphore used to ensure mutual exclusion of access to the active 
fixed-part 

Active capabilities are active references to objects, and as long as active 
references exist, an object may not be passivated. 
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In general, an active C-list may contain a mixture of active and passive 
capabilities, but when a C-list is passivated, all its capabilities are converted 
back to passive form. Thus the contents of the Passive GST does not depend 
on the state of the Active GST. 

11-1.2 Mapping Capabilities to Objects 

We now turn to the problem of dereferencing capabilities, a fundamental 
mapping operation in Hydra. Suppose we are given a capability and we wish 
to access the object to which it points. If the capability is in active form, we 
know that the object is also active, and in fact we have the address of the 
object's active fixed-part stored in the capability. The mapping is immediate. 
If the capability is in passive form, we have only the object's unique-name, 
and we do not know whether the object is active or passive. We must 
therefore first search the Active GST for the object, and then, should the 
search fail, proceed to the Passive GST, where we must find and activate the 
object. 

Active 

fixed-part Active fixed-parts 

hash~table_D~~r{] 

D~ 

Unique name 

Figure 11-2 Mapping into the Active GST 

All fixed-parts in the Active GST are stored in a 128-bin, chained 
overflow hash table. (See Figure 11-2,) Thus our first step is to hash the 
unique-name in the passive capability and determine in which bin the object 
should lie. We then search the list linearly for the active fixed-part. If it is 
found, we can immediately use the active fixed-part to change the capability 
to active form and increment the object's active reference count, and the 
mapping is complete. 

If the object is not in the Active GST, we must find the object on disk. 
To avoid a linear search of the entire Passive GST, Hydra uses one of the 
fast paging disks to hold a copy of every passive fixed-part in the GST. We 
call this disk "the GST drum" to avoid confusion with the Passive GST disk. 
The drum is divided into 128 blocks of 256 fixed-parts, l and it is possible to 

IThe dimensions have been adjusted empirically over the years. 
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locate the block containing a specified object by hashing the object's 
unique-name. Given the proper drum block, we read it into a buffer and 
search it for the required object. (See Figure 11-3.) Once found, we can 
construct an active fixed-part from the passive one, set its active reference 
count to 1, link it onto the Active GST hash table, and change the original 
capability to active form. The object's representation is still on disk, and 
depending on the operation which originally caused the mapping, we mayor 
may not bring it into core now. 

Unique name 

... ... ....... ...... ....... ...... ...... ........... ......... ... ...... 
...... (One full drum track) .......... 

"'l I I I ,"'J 
Block of passive fixed-parts 

Figure 11-3 Mapping into the Passive GST 

11-2 STORAGE MANAGEMENT IN THE GST 

Efficient management of the Active and Passive GSTs is quite important for 
the proper functioning of Hydra. If objects remain in the Active GST too 
long, they consume a large amount of the available primary memory. 
Likewise, the elimination of garbage (i.e., unreachable objects) from the 
Passive GST is necessary lest the drum and disk fill up. 

11-2.1 Active GST Maintenance 

The Active GST uses a reference count scheme to determine when an active 
object may be passivated, i.e., sent back to the Passive GST. Each object's 
active fixed-part includes an active reference count which tallies the number 
of references to the active fixed-part's address. (Active capabilities are one 
source of such references; there are a few others.) If this count goes to zero, 
all remaining references must be by unique-name only, and hence the object 
may be returned to the Passive GST. The actual passivation process is 
handled by an asynchronous process called the GST Demon. This demon 
traverses the Active GST directories, looking for objects with no more active 
references. When it finds one, it either passivates it, or if the object's total 
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reference count is also 0, deletes it.2 The GST demon independently looks 
for objects whose representation has not been accessed recently, regardless of 
the object's active reference count. (This is determinable from a time stamp 
held in the active fixed-part.) If the time of last access is greater than some 
threshold, the demon will passivate the representation of the object (leaving 
the fixed-part untouched). This can be done at almost any time because the 
only reference to the active representation is from the active fixed-part, and 
therefore synchronization is not difficult. 

An interesting side effect of this passivation is the elimination of un­
reachable rings of objects from the Active GST. One would think that the 
active reference count of such objects would remain forever positive, but in 
fact when their representations become stale and are passivated, the capabil­
ities in those representations are converted to passive form, thus decre­
menting the active reference counts in the referenced objects [Alm80]. 

11-2.2 Passive GST Maintenance 

The situation with the Passive GST is more complicated. First, at the time of 
a system crash, all information in the Active GST is lost. This means that 
any reference counts maintained in only the Active GST will be lost, and it is 
practically impossible to keep the Passive and Active GSTs consistent at all 
times.3 Second, the problem of circularity is ever present. Some form of 
garbage collection is necessary. 

In fact, we have two Passive GST garbage collectors. The original one 
processes the GST off-line and eliminates unreachable objects. It is invoked 
primarily by system developers when they switch between the User and 
Experimental GSTs, since it has the side effect of rebuilding the passive 
fixed-part directory on the drum. (This so-called "cold start" of the GST is a 
uniprocessor algorithm which takes about 20 minutes for a 20,000-object 
GST.) 

The more recent addition to Hydra is a multiprocess parallel garbage 
collector [Alm80], which runs automatically once a day and is able to clean 
the entire GST in parallel with other users. It has many pleasant charac­
teristics, including insensitivity to system crashes. We will not discuss this 

2The situation is bit more complicated than this. Certain object types, such as ports, are 
nel'er passivated, because they reference dynamic storage areas outside the province of the GST. 
Other types, such as processes and LNSs, can be passivated but do not survive system crashes: 
capabilities for them are deleted upon reactivation after a crash. Users may cause object types 
they create to have this property also. 

3Reference counts in the Active GST are safe. Hence when an object is created, we keep 
both an active reference count (ARC) and a total reference count (TRC). If the TRC goes to 
zero when the ARC does, we can delete the object rather than passivate it. Once an object has 
been passivated, the TRC is forever ignored and assumed to be infinite. This scheme works well 
under observed usage patterns in which most objects are never passivated anyway (se r Chapter 
16), 
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interesting algorithm here, except to note that in many ways the garbage 
collection problem in the GST is easier than similar problems in, for instance, 
LISP systems. In our environment, the objects to be collected are fairly large 
and all have integral synchronization mechanisms (semaphores). 

11-3 MECHANISMS FOR RELIABILITY 

In a highly interconnected structure, . it is essential to limit the spread of 
damage caused by the appearance of inCOifect data somewhere in the data 
base. The GST machinery is designed to detect inconsistencies as soon as 
possible and prevent the proliferation of incorrect data throughout the graph 
structure. The reliability mechanisms concentrate on detection of inconsis­
tencies and restoration of erroneous structures to a consistent state. In this 
section we will examine the mechanisms used for error detection. 

Let us first consider the representation of objects on disk. As noted 
earlier, the fixed-part, C-list, and data-part are written as a single contiguous 
unit. (The disk fixed-part is redundant anticipating the loss of the drum.) 
Whenever an object is returned to passive form, its three components are 
collected in a single buffer and written to disk, then read back and verified, 
Although costly in space and time resources, this approach -practically guaran­
tees a consistent version of the object on disk. The internal structure of a 
passive object has considerable redundancy as well. The fixed-part, data-part, 
and each capability have independent checksums. These ensure that a 
unique-name stored anywhere in the object cannot accidentally be changed to 
reference a different object. All interconnections on disk are represented as 
unique-names; no disk addresses are stored in passive objects. (The 
fixed-parts on the drum do contain disk addresses. These are constructed by 
scanning the disk and locating all objects after off-line garbage collection.) 

In the Active GST structure, the data changes rapidly, and checksums are 
an inefficient error detection mechanism. Key status information is coded 
redundantly and legitimate values of all zeros or all ones are avoided.4 Data 
that change infrequently or not at all (e.g., the unique-name) are check­
summed and validated when the cost of doing so is tolerable. However, the 
most likely place for errors to creep in is in the inter-object pointers, which in 
the Active GST are addresses, not unique-names. To help detect incorrect 
pointers, an 8-bit "key" is computed from each object's unique-name and 
type. Wherever a pointer to the object is stored (e.g., in an active capability 
or fixed-part hash table link), and every time the pointer is dereferenced, the 

4Formerly, a commonly observed hardware failure was the appearance of a word of all zeros 
or all ones without any error indication. Accordingly, such values, where possible, are treated as 
illegal. This applies even to logical single-bit fields, which are implemented as two-bit fields in 
which 00 and 11 are illegal. c'mmp's parity hardware also directly addresses this problem (see 
Chapter 2). 
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key is checked against the referent before the referent is manipulated. A 
mismatch signals an inconsistent data structure. 

The reference counts stored in the fixed-parts of unpassivated objects are 
also potentially unreliable. A few validity checks can be used to test for 
reasonableness (e.g., the active reference count cannot exceed the total 
reference count), but in large measure the counts must be trusted. To 
miuimize the ill effects of trusting an incorrect reference count, three 
techniques are used. First, during certain sensitive operations, reference 
counts are deliberately left too large. An error will then leave the count 
artificially high, but at least the object won't be deleted inadvertently. 
Second, when the total reference count becomes zero, the object is not 
immediately deleted, on the theory that if outstanding references actually 
remain, the object may be referenced before it is deleted and the reference 
count error detected. (The count is then set artificially high). Finally, when 
a fixed-part is deleted from primary memory, the key (discussed above) 
associated with the unique-name and type is altered in the released storage. 
This helps catch dangling references before they are used to access mean­
ingless data. 

One final mechanism is used to help ensure Passive GST integrity. 
When an object is written to disk, it never occupies the same physical space 
that its immediately preceding version did. Thus, in general, two copies of an 
object may simultaneously appear on disk: the "current" version and the 
immediately preceding one. Each version carries a time stamp, and the 
addresses of both versions appear in the fixed-part directory stored on the 
drum. In principle, then, if the current version is later discovered to be 
inconsistent, the "backup" version can be used instead. 

11-4 RETROSPECTIVE 

The GST is the foundation upon which all of the object-oriented structures of 
Hydra rest. It is heavily exercised and its weaknesses become easily visible. 
On the other hand, the GST has also received the most programming 
attention, and therefore criticisms about it tend to be more fundamental. 

Probably the single greatest complaint about the GST is its performance. 
The implementation biases of the GST tend to view objects as comparable to 
files: of moderate size and relatively long-lived. The overheads in storage 
and processing time are not unreasonable in this light. As will be seen in 
Chapter 16, however, data on actual usage indicate that approximately five 
objects are created and deleted per user per second, and that over 98% of all 
objects are never passivated. (They are deleted first.) The file-like view of 
objects is therefore clearly inappropriate; a more realistic model would be 
procedure-activation records (frames) or LISP cells. The GST mechanisms 
are far too costly to support such usage efficiently, and substantial internal 
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redesign (certainly involving microcode support) would be required to repair 
this defect. 

Despite its performance problems, the GST achieves its reliability goals. 
The error detection mechanisms are effective and increase execution over­
head by no more than 10%. Their presence in the initial implementation 
significantly reduced debugging time by catching uninitialized pointers, syn­
chronization errors, and the like. The existence of good detection facilities 
permitted the implementation of fairly extensive error recovery logic as well. 
However, after initial debugging, most of the observed errors were due to 
hardware failures, and rather than allowing iecoveiY to pioceed, we fre­
quently chose to stop the system in its tracks and turn the machine over to 
the hardware engineers.5 As a result, many of the recovery algorithms were 
never heavily exercised (and some were never implemented) , and our 
experience with them is therefore more limited than we would like. 

Finally, there are two general problems with a capability-based system 
such as Hydra for which we do not have solutions: 

Accounting. No mechanism for accounting for GST resources exists, making it 
impossible to monitor or restrict usage. In the presence of object sharing, 
it is difficult to devise a fair strategy for such accounting. Is the creator 
responsible alone, or is responsibility shared in proportion to the rights 
possessed to an object? 

Incremental backup. Most traditional file systems have the ability to back up 
logical portions of the system to guard against disk crashes and other 
massive failures. In Hydra, the concept of restoring a "portion" of the 
GST is complicated. What if a capability is restored for an object that no 
longer exists? How can a mechanism know how "deep" into the 
representation subgraph of an object to go when saving that object? 

Although these problems can be tolerated in an experimental system, design­
ers of a "production" operating system would have to address them. 

In closing, we should perhaps recall that the GST, at the time of its 
design, was an ambitious, capability-based, virtual memory system. It has 
been operational for six years and serves as a stable base for Hydra, despite 
specific performance problems. We would doubtless implement it differently 
now (even on the same hardware), taking cognizance of the usage data we 
have acquired, but we are confident that the basic mechanisms for reliable 
storage of objects and capabilities are appropriate and sound. 

Sit is difficult to be sure that no unnoticed damage has been done to the GST structure in 
the presence of malfunctioning hardware, and therefore the safest course is to reboot the system. 
The probability is high that damage is confined to the Active GST, which will be discarded at the 
time of the reboot. 





CHAPTER 

TWELVE 
SCHEDULING AND SYNCHRONIZATION 

One of the principal motivations for Hydra's design was our desire to 
experiment with alternative operating system facilities. Scheduling policies 
are particularly rich fields for experimentation, especially in a multiprocessing 
environment. Consequently a great deal of attention was devoted to design­
ing a scheme with which user-level programs could specify scheduling poli­
cies. 

The final design is the result of trying to satisfy several potentially 
conflicting objectives. First, we wanted the maximum possible flexibility in 
specifying schedulers. Second, as with other user-defined facilities, we 
wanted to allow several schedulers to coexist; we felt that it should be 
possible, at one instant, for different processes to be under the control of 
different schedulers. Third, we wanted to ensure that an error in a scheduler 
would not result in a total collapse of the system. Finally, since we believed 
that some applications on C.mmp would be time critical, we did not want 
large software overheads associated with aU scheduling decisions. 

To satisfy these objectives, we divided the processor scheduling problem 
into two parts: short-term scheduling (at the level of a few milliseconds) and 
medium-term scheduling (significant fractions of a second and greater). The 
Kernel Multiprogramming System (KMPS) makes short-term decisions fre­
quently and rapidly, leaving to the user-level schedulers, called Policy Modules 
(or PMs) , the less frequent medium-term decisions. In fact, the Policy 
Modules have two responsibilities: they make absolute decisions about 
medium-term scheduling, and they influence short-term scheduling by sup­
plying (to KMPS) a set of scheduling parameters for each process. 

KMPS is responsible for multiplexing among a set of processes supplied 
by the PMs. The PMs can make medium-term decisions by incrementally 
modifying this set. Since KMPS multiplexes (only) the processes in the set, 
inserting a process into it effectively allows that process to execute; it is a 
medium-term decision to schedule that process. Conversely, removing a 
process from the set constitutes a decision not to schedule that process. 
KMPS makes its short-term decisions based on the per-process parameters 
supplied by the PMs, so although the PMs do not have absolute control of 
short-term policy, they can strongly influence it. 

In this chapter we will be examining several facets of this scheduling 
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system. We will first look at the abstraction that KMPS presents to the 
Policy Modules, the way scheduling is parametrized and the way KMPS and 
the Policy Modules communicate. We will then consider how KMPS actually 
does its scheduling, and how this scheduling interacts with synchronization 
mechanisms used by the kernel and by user-level programs. 

12-1 SCHEDULING PARAMETERS 

As noted above, there are two aspects to the interface between KMPS and 
user-defined PMs: 

1. The specification of the set of processes to be multiplexed by KMPS 
2. The specification of the per-process parameters that influence KMPS's 

short-term scheduling decisions 

We will consider the second of these first. 
The set of short-term scheduling parameters was derived from a number 

of assumptions about the way that C.mmp would be used and, therefore, the 
kinds of policies that people would wish to implement with PMs. Among 
these, two are foremost: 

1. We expected that C.mmp would be composed of a heterogeneous mix of 
processors. Some processors might be faster than others, only some 
might have floating point hardware, only some might have special micro­
code, etc. User programs, through their Policy Modules, must be able to 
specify their requirements for particular processors. 

2. We had to allow Policy Modules to specify "important" expectations and 
limitations on the processes they were scheduling. PMs, for example, had 
to be able to limit the time their processes executed and the memory 
resources they consumed. In addition, PMs had to be able, in some 
cases, to assert the relative importance of the processes under their 
control. 

On the basis of these considerations, we decided to model KMPS after a 
preemptive, time-sliced, priority-driven scheduler. Basically, KMPS treats the 
processors as an anonymous resource pool and tries to keep the collection of 
highest priority processes running at all times. At the end of a time slice, it 
services processes round-robin within a priority level to ensure fair service 
among processes of equal importance. 

This quick description of KMPS correctly implies that some of the 
per-process parameters supplied by a PM are related to priority and time slice 
size~ the remaining parameters express resource constraints and permit 
somewhat finer grained control of the short-term scheduling. The full set of 
parameters is listed in Table 12-1. 
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Table 12-1 KMPS scheduling parameters 

Parameter 

Priority 

TimeSliceLength 

NumberOfSiices 

ProcessorMask 

WorkingSetLimit 

WairTime 

Meaning 

The priority of the process; higher-priority processes preempt 
lower-priority processes. 

The maximum time the process may run before scheduling is reconsi­
dered by KMPS. At the end of this time, KMPS will select another 
process of the same priority (if any) to run. 

The maximum number of iime siices (of iengih I Ime.:)llCeL.engrn , Inar 
may be consumed by the process before it must be returned to the 
Policy Module for possible reassignment of scheduling parameters. 
(This parameter may be specified to be "infinite.") 

A bit mask that designates the set of processors on which the process 
is permitted to execute. 

The maximum amount of primary memory that any LNS within the 
process may consume without consulting the Policy Module. This 
limit is expressed as a number of pages. 

The time the process may remain in KMPS after it has blocked on a 
port or a Policy Semaphore. If this time is exceeded, the process is 
returned to the Policy Module. 

A simple examp\e will illustrate how a PM might use these parameters. 
A PM may specify a set of processes to KMPS and say, in effect, 

Allow each of these processes to run for (say) 30 sec-as thirty I-sec time slices. Give 
them all equal priority. As each one completes its alloted 30 sec, give it back to me so that 
I can reassess the situation. 

KMPS takes the processes (and those given to it by other PMs) and tries to 
let all of them make "fair" progress on their 30-sec allotments. Since all the 
processes have the same priority, they will be dynamically assigned to 
processors on a round-robin basis. Because of the nature of the multiplexing 
algorithm, each process will typically "move" -execute on several 
processors-while it is under control of KMPS. 

The scheduling parameters are normally used for finer-grained control 
than is exhibited by this simple example. Priority, for example, is often used 
simply to indicate the relative importance of processes. It can, however, also 
be used to increase the effective parallelism in the system. By increasing the 
priority of I/O-bound processes, and correspondingly decreasing the priority 
of processor-bound ones, a PM can improve system throughput. If a process 
is I/O bound due to frequent terminal interactions, this improves response as 
well. 

The specification of execution time as a combination of TimeSliceLength 
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and NumberOjSlices gives the PM some control over the "scheduling grain" 
of processes at the same priority level. By making TimeSliceLength relatively 
short, the PM will force frequent context switching between processes-thus 
ensuring similar rates of progress~ this might be advantageous for interactive 
jobs, for example. The cost of this, of course, is additional scheduling and 
context switching overhead. Hence, for a collection of large, compute-bound 
jobs, the TimeSliceLength might be made large. 

There are at least two reasons for using ProcessorMask. One is that some 
global policy has divided the processors into two or more groups and assigned 
processes to specific groups~ this might be done, for example, to guarantee a 
certain level of service to particular processes. The other reason for using 
ProcessorMask is that the process needs a (hardware) facility not available on 
all processors-writable micros tore for example. 

WorkingSetLimit guards against a process consuming excessive primary 
memory. It gives the PM the opportunity to reconsider its scheduling 
decision (s) in the case that a process expands its memory requirements. 
Likewise, the use and utility of WaitTime is difficult to explain until after the 
paging mechanism has been discussed (Chapter 13). In effect, however, PMs 
use this parameter to avoid unnecessary, and time-consuming, paging when a 
process is blocked for only short periods. The impact of this parameter is 
graphically illustrated by the performance data in Chapter 16. 

In order to use the scheduling parameters effectively, the PMs must have 
information about the total system load as well as information about the 
performance of the PM's own processes. As we shall discuss later, KMPS 
provides this information, which includes, for example, per-processor idle 
time, the amount of I/O activity, and the amount of primary memory 
available. By relating the characteristics of individual processes to those of 
the (dynamic) system load, the PMs can make intelligent medium-term 
scheduling decisions. They can, for example, balance the mix of processes to 
achieve high throughput. 

Given all this mechanism, one might ask why a PM doesn't simply set 
the scheduling parameters cleverly, then give all its processes to KMPS and 
let KMPS do the scheduling. Most PMs won't do this simply because they 
will want to periodically review the scheduling parameter decisions. Even if a 
PM did want to do this, however, there is a problem-the management of 
primary memory-to be discussed at length in the next chapter. In brief, all 
processes in the set being multiplexed by KMPS must be (simultaneously) 
resident in primary memory. The size of memory, therefore, limits the size 
of this set. Generally there will be more processes that wish to run than can 
fit into the KMPS set, and hence the PM must stay involved. 
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12-2 PROCESS AND POLICY OBJECTS 

In this section we will discuss the ways in which PMs communicate with the 
kernel about the the set of processes to be multiplexed. The kernel defines 
two object types for this purpose: PROCESS and POLICY. 

A PROCESS object is simply the formal Hydra object that represents what 
we have been informally calling a "process." From a technical point of view, 
the C-list of a PROCESS holds capabilities for the LNSs which represent the 
stack of protection domains corresponding to the dynamic nesting of Call and 
Return in the process. l The data-part of the PROCESS holds the scheduling 
parameters and some of the current execution state. The PM always refers to 
processes via capabilities for PROCESS objects. 

A POLICY object is not, as one might first suspect, a Policy Module. It is, 
rather, a communication vehicle between KMPS and the PMs-a mailbox 
through which the KMPS can notify a PM when something "interesting" 
happens to a process controlled by that PM. Each process has exactly one 
POLICY object associated with it, and that is the mailbox used when the 
kernel wishes to inform the PM about an event concerning that process. 

PMs must be executable, of course, and so are, in general, processes. It 
is important to realize, however, that a "Policy Module process" is not 
distinguished in Hydra. Hydra does not know which (if any) processes 
implement PMs; it knows only how to communicate with something that is 
behaving like a PM-namely, by sending messages to a POLICY object.2 

The fact that KMPS only knows about POLICY objects, and not about 
processes that implement PMs, provides a great deal of flexibility in the 
design of PMs. The simplest PM, for example, can be a single process 
servicing a single POLICY object. This is the way that our first PM, PMO, was 
built. Alternatively, the PM can be implemented as several processes all 
servicing the same POLICY object. This is the way that our second PM, PM!, 
was built, and it has two immediate advantages: it allows faster response, and 
it provides added reliability in the event that one of the processes fails. 

Hydra defines several operations on PROCESS and POLICY objects. These 
operations are typically invoked by Policy Modules in response to requests by 
user programs. 

I Call and Refilm affect the protection structure of a computation, but not the process 

structure. Hence the Call mechanism and the process mechanism are relatively independent. 

2In principle, PMs can be controlled by other PMs, and so on, but we have not seen a 
genuine need for this feature. Generally, processes implementing the PM itself are given 
"infinite" scheduling parameters so that they never leave KMPS and so do not need a PM to 
schedule them. To satisfy Hydra, they are associated with their own POLICY object. 
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MakeProcess(D:slot(index), T:capa(index,PROCESS creation template), 
P:object(PRoCEDuRE,CallRts), procedure-parameters) 

MakeProcess creates a new process whose initial protection domain is the 
LNS formed by merging the < Procedure-parameters> into procedure P. 
A capability for the new process is returned in slot D. The process does 
not begin to execute until a Start operation is applied to it (see below).3 

MakeProcess is an asynchronous analog of Calf, an LNS is formed in 
exactly the same manner as for a Call, but it is not immediately invoked. 
Instead a process is spawned (forked) and this LNS is the base domain of this 
process. Notice that, as in all object creation operations, a creation template 
is required. As an operational matter, only Policy Modules are given such 
templates. Therefore only PMs can create processes. No hierarchical 
structure (for protection or control) exists between the new process and the 
process executing MakeProcess, the PROCESS capability returned by 
MakeProcess may be shared in arbitrary ways. 

AttachPolicy(Prcs:object(;ndex,PROCEss,AttachRts), 
Pol:object(;ndex,POLlCY,A ttachR ts)) 

Associates the POLICY object, Pol, with the process Pres. This POLICY 

object will subsequently be used as the mailbox through which KMPS 
communicates with the controlling PM. 

AttachPolicy, which must follow MakeProcess, defines the Policy Module 
that will be responsible for scheduling the process. The scheduling param­
eters for the process may now be established by the Policy Module via the 
following Kall: 

SetSchedParms(P:object(PRocEss,SetPCBRts), M:mem[nJ) 

Copies the scheduling parameters (in a standard format) from the block 
of memory specified by M into the data-part of PROCESS P. 

SetSchedParms actually sets all scheduling parameters except 
ProcessorMask. ProcessorMask can be set in every LNS; its initial value is 
inherited from the PROCEDURE object. This is done so that procedures may 
be coded to take advantage of special processor features without the caller 
needing to be aware of this. When a Call is executed, a new ProcessorMask is 
established, and if necessary, the process will be moved to another processor 
that satisfies this new mask. The same thing happens on Return. 

After establishing the scheduling parameters for a process, a PM will 
typically ask KMPS to include it in the set of processes to be multiplexed: 

3 MakeProcess is a special case of the general Create Kall defined in Chapter 5. There are a 
number of "Make" Kalls for creating the kernel-defined types. These are the analogs of the 
type-specific creation operations that would be defined by user-level subsystems. 
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Start(P:capa(PROCEss,StartRts)) 

Gives control of the process to KMPS. Start returns as soon as KMPS 
verifies that the process will fit into primary memory and that there is at 
least one processor in the current hardware configuration acceptable to its 
ProcessorMask. The process remains under control of KMPS until it 
blocks or exceeds its scheduling parameters, at which time the Policy 
Module is informed via the attached POLICY object. 

A PM may also choose to remove a process from the set it has given to 
KMPS: 

Stop (P:capa (PROCESS,StopR ts)) 

Requests that process P be stopped and removed from KMPS's control. 
The process is not necessarily stopped immediately, but when it is, KMPS 
notifies the Policy Module via the POLICY object. 

Note that processes may not be actually stopped at the time that the Stop 
Kall completes. In particular, KMPS will not stop a process that is inside a 
critical region in the kernel. To do so would both degrade performance and 
lead to potential deadlocks. Also, note that a process may stop for other 
reasons than an explicit Stop Kall, namely, becoming blocked or exceeding its 
scheduling parameters. Indeed, these other reasons are the most common 
ones. A PM generally uses Stop only on behalf of a user request or to 
implement a strongly preemptive policy. 

Whenever KMPS stops a process given to it by a Policy Module, either 
because of a Stop operation or something else, it places a stop message in the 
POLICY object attached. to the process. This message includes the identifi­
cation of the process, the reason it waS stopped, the amount of processor and 
memory resources used by the process, and some information about the total 
system load.4 The Policy Module receives these stop messages with the 
ReceivePolicy operation: 

Receivefolicy(M:mem{J6}, Pol:object(;ndex,poLlcY,ReceivePoIRts)) 

Retrieves the first message from Pol and writes the information into the 
block of memory specified by M 

When a process is stopped, the PM must decide what to do. There are 
two common cases. First, the process may have stopped because it blocked, 
say, attempting to receive a message from a PORT. The PM must record this 
fact and wait to restart this process until the kernel notifies it that an 

4This load information is inserted in the stop messages for the convenience of the PM. It 
consists, for example, of information about the number of free page frames in primary memory 
and the amounts of processor and 110 time used. The PMs use this information to alter their 
global scheduling strategy. 
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appropriate message has arrived at the port.5 Since a process has been 
stopped, there is probably some primary memory available now, so the PM 
may wish to start other processes. It will use the information about the total 
system load to make this decision. Second, the process may have stopped 
because it exceeded its scheduling parameters, i.e., it consumed the resources 
previously allocated to it by the PM. In this case the PM must decide 
whether to restart this process or some other(s). Again, it will probably 
consult the information about system load to make this decision. In either 
case, it must decide on the per-process scheduling parameters to use for each 
of the processes that it starts. It will probably use a combination of the total 
load characteristics and those of the individual processes to make this 
decision. 

Up to this point we have been concerned with those KalIs that are 
typically used by Policy Modules. Generally speaking, user processes do not 
invoke KMPS KalIs directly, but there is one exception-the RunTime Kall. 
This Kall is used by a process to negotiate scheduling requirements with its 
PM. 

Run Time (T: integer) 

Requests the attached PM to not interrupt this process for T/60 seconds. 

Normally, a process has no influence on its PM's scheduling decisions~ it 
must trust its PM to allocate reasonable resources to it. There are, however, 
occasions when this is unsatisfactory. Suppose, for example, that a process 
needs to perform a short series of operations that must be atomic 
(indivisible) . It could use the normal mutual exclusion semaphores to define 
a critical section, but the cost may be excessively high compared to the size 
of the critical section. The process could use inexpensive spin locks if it 
could be assured that, once within the critical section, it will not be removed 
by its PM from KMPS' control. (If it were removed, the spin lock would 
prevent other processes from entering the critical section, but these other 
processes will endlessly test the lock and thus appear active (compute-bound) 
to the PM. In this way, they will compete for the PM's attention, which 
should be focused on the process within the critical section,) This is the 
purpose of R un Time. 

Using the RunTime Kall, the process requests the kernel to guarantee that 
it will not be seized by its PM for a specified interval. KMPS, which 
implements RunTime, checks to see if the resources already allocated by the 
PM are sufficient to satisfy the process' request. If so, KMPS returns control 
to the process, indicating that its request has been satisfied. The process can 
now test the spin lock with the knowledge that should its PM now attempt to 

50nly the performance, not the correctness, of the port operations depend on the PM's 
cooperation here. In particular, if the PM prematurely restarts the waiting process, KMPS will 
simply stop it again. 
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stop the process before it has consumed the guaranteed time interval, KMPS 
will reject the stop request. On the other hand, if the process does not have 
sufficient resources allocated to it, KMPS stops the process and returns it to 
the PM, indicating that the process has issued a RunTime request. The PM 
now has three choices: 

1. It can allocate the necessary resources to the process and restart it, in 
which case the RunTime reports success. 

2. It can fail to allocate sufficient resources and restart the process, in which 
case the RunTime reports failure. 

3. It can simply fail to restart the process, in which case the process remains 
blocked indefinitely. 

Note that no matter what action the PM takes, the integrity of the critical 
section is preserved. KMPS has acted as an intermediary in the negotiation 
between the process and its PM. Once the negotiation is concluded, KMPS 
enforces the agreement reached. The RunTime Kall provides a good example 
of the separation of policy and mechanism, since the processor resource 
allocation policy is established outside the kernel (by the PM), while the 
kernel supplies the mechanism by which that policy is implemented. 

12-3 SYNCHRONIZATION MECHANISMS 

Scheduling and synchronization are clearly related. Having examined the 
facilities KMPS provides for scheduling processes, we now turn our attention 
to the mechanisms it supplies for synchronizing them. 

Mechanisms for coordinating asynchronous activities are required by 
users and kernel alike. There is no master-slave relation among the process­
ors. Whenever a user executes a Kall, for example, the code of that Kall 
begins to execute immediately on the same processor that was running the 
user process. Since all processors can access all the shared memory, 
accessibility to the kernel's data is not a problem. On the other hand, the 
synchronization of updates to this data, and the corresponding software 
contention, are problems. 

To address these problems, we chose to synchronize on data rather than 
code, and to use fine-grain synchronization. Two processors, or processes, 
are free to execute the same code simultaneously as long as they are 
operating on distinct data structures. There are, for example, many queues 
in the system, but only one set of queue manipulation routines. Each queue 
is separately protected by one of the synchronization mechanisms discussed 
below. The queue management routines lock a particular queue before 
accessing it. Thus many queue manipulations may be proceeding in parallel 
as long as they are acting on distinct queues. 

By "fine-grain" synchronization we simply mean that the data structures 
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involved are generally small. Equivalently, we mean that there are a large 
number of independently locked structures-literally thousands of them in 
Hydra. Having many small structures decreases the probability of contention 
for anyone of them, but at the expense of more frequent execution of the 
synchronization primitives. Thus keeping this cost low was a major design 
problem. 

To span the spectrum of needs for synchroniz~tion, Hydra provides three 
different synchronization mechanisms: 

Locks, low-level mechanisms designed for very fast, but short, processor 
synchronization. A processor that blocks on a lock remains physically idle 
until unblocked by another processor. 

Kernel Semaphores, intermediate-level mechanisms designed to provide process 
synchronization. When a process blocks on a Kernel Semaphore, it is 
removed from its processor and. held within KMPS until it is unblocked. 
It is not swapped out of primary memory. 

Policy Semaphores, used to provide longer-term synchronization for users. A 
process blocked on a Policy Semaphore is not only removed from its 
processor, but is sent back to its Policy Module, leaving KMPS and 
(possibly) primary memory.6 

The reason for the three levels of synchronization should be obvious: 
each is more expensive than its predecessor in execution time but less 
expensive in terms of the resources tied up by a blocked process. Locks are 
very rapid, but may disable a processor (even from servicing interrupts) for 
some time. Kernel Semaphores .. are more expensive, especially when they 
block and force a context swap.<BI~~ed processes do not consume processor 
resources, but they do consuIl1~; memory since the process remains in KMPS. 
Policy Semaphores are the mds't ~:¢x'JJ¢hsive since blocking may imply several 
paging operations, but blocked:',~t()ct(ss.¢s consume almost no resources. 

Much of the success of Hy,d~'s:multiprocessing properties are the result 
of the use of these three i~~~l~': i&r synchronization primitives. We will 
examine their performance in~;'m~I-'e'tIetail in Chapter 16. Here we shall just 
say a a bit more about their im'rtfe;rie.Iltation and resulting characteristics. 

, ~":"i~ "\ ~ : t\ . 

Locks A lock is a small (twO:'~flt.J) data structure that acts as a fast mutual 
exclusion semaphore. There ~,e.'two operations defined on a lock, Lock and 
Unlock. If a process blocks on-:*,)~ck, the processor running the process sets 
a bit in the lock structure to indicate that it is waiting for the lock, disables all 

.. ,. , 

.J". 

\ . 
': r. 

6From KMPS' standpoint, blocking in a ReceiveMsg Kall in the Message System is 
equivalent to blocking on a Policy Semaphore, so this mechanism handles all user-level 
interprocess and I/O synchronization. 
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110 and scheduling interrupts, and executes a "WAIT" instructionJ If the 
Unlock operation (on another processor) finds that processors are waiting on 
the lock, it will send an "unlock interrupt" to all such processors. The 
interrupted processors then loop to try for the lock again; one of them will 
get it and the others will return to the idle state.8 

Purists will recognize the potential for "individual starvation" in this 
scheme. Given enough contention for a single lock, it is theoretically 
possible for one of the processors to remain blocked forever, i.e., to always 
lose the race. The likelihood of long-term starvation is infinitesimal, how­
ever, and we chose to permit its possibiiity rather than unnecessariiy compii­
cate the mechanism. 

Kernel Semaphores Kernel Semaphores are four-word data structures con­
sisting of a process queue header, a count, and a lock (as described above). 
The principal operations on Kernel Semaphores are P and V, which are 
essentially identical to those originally defined by Dijkstra [Dij68]. 

When a P operation on a Kernel Semaphore blocks, KMPS places the 
process on the semaphore's process queue, selects another process to run on 
this processor, and performs a context swap to the new process. (Note that 
no other processor is involved in this operation.) 

When a V operation notices that some process is blocked on the 
semaphore, it removes the process from the semaphore's queue, enters it in 
the set of feasible processes. It then selects a processor that is executing a 
lower priority process. This processor is interrupted to cause it to reconsider 
its own scheduling in light of the existence of a new feasible process. 

A more detailed description of the implementation of Kernel Semaphores 
is given in the following section. 

Policy Semaphores In contrast to locks and Kernel Semaphores, Policy 
Semaphores are a true object type. Although implemented by the kernel, 
they behave as any other object. Users can create objects of this type, 
exchange capabilities for them, and so on. The abstract semantics of the 
operations, P and V, are just like those for the corresponding operations on 
Kernel Semaphores. The difference between Kernel and Policy Semaphores 
centers on what happens when a process blocks. 

When a process blocks on a Kernel Semaphore it remains in KMPS, on 
the semaphore's queue. When a process blocks on a Policy Semaphore, on 

7Ihe W AlI instruction is a nice feature of the PDP-ll; it causes the processor to cease 
executing instructions until an interrupt restarts it. Because of W AlI, Hydra's locks do not cause 
memory references (and hence contention)' Logically, however, a "jump-to-self' would work 
just as well. 

8Ihe "unlock interrupt" is just the priority-7 interprocessor interrupt. All other interrupts 
have lower priority than this, so by setting its priority to 6, a blocked processor can ignore 
everything except the unlock operation. 
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the other hand, it will generally be returned to the controlling PM -and that 
usually implies that the process will be swapped out of primary memory. A 
process is not necessarily returned to its PM when it blocks, however. When 
it blocks it is first put on a special queue, the wait queue, in KMPS. It stays 
there for a limited time specified by the WaitTime scheduling parameter. If 
the process should be unblocked before WaitTime expires, it is returned to 
the execution mix just as is done with Kernel Semaphores. If the WaitTime 
expires before the process is unblocked, the process is stopped and returned 
to the PM. At that time, the process is also eligible to be swapped out of 
primary memory. 

The choice of whether to use locks, Kernel Semaphores, or Policy 
Semaphores (with or without WaitTime) is based on both the probability of 
being blocked and the expected duration of the blocked period. In Chapter 
16 we give data on the choices made in the kernel and some applications­
and their impact on overall performance. 

12-4 IMPLEMENTATION 

In this section we will describe some aspects of the implementation of KMPS, 
namely, the scheduling mechanism and Kernel Semaphores. Although we 
have generally avoided low-level implementation descriptions in this book, 
there are two reasons for presenting this material here. First, some people 
may believe that scheduling and synchronization in a distributed operating 
system are necessarily complex~ this example should help debunk that view. 
The implementations we shall show are among the most sensitive to the 
distributed nature of Hydra, and they are not especially complex. Second, 
and more importantly, this example will serve to illustrate the internal 
organization and programming methodology used throughout the kernel. 

In Chapter 3 we briefly described the notion of data abstraction and used 
it to motivate the type-extensible, object-oriented "virtual machine" provided 
by Hydra. The internal implementation of Hydra, however, also heavily uses 
the data abstraction philosophy - the implementation of KMPS provides a 
good illustration of this. 

Before beginning we need to say a few words about the language in 
which the implementation is described. Hydra is actually implemented in 
Blissll1, an untyped "systems implementation" language. Bliss does not 
directly support the data abstraction paradigm; instead the paradigm is en­
forced only by programming convention. This works well enough in practice, 
but it does not make Bliss a suitable "publication language." Unfortunately, 
there is no other widely known language that is quite suitable either. 
Therefore, as in Section 5-5, we have used a Pascal-like notation with a few 
additions and modifications. We expect that our readers will be sufficiently 
familiar with modern languages that the programs themselves, together with 
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some explanation, will be a adequate definition of the notation. (It should be 
noted that the term "procedure" as used in this section does not refer to 
"Hydra procedures;" similarly, "process" and "semaphore" are being rede­
fined in a language context.) 

Conceptually, KMPS is composed of six abstractions: queues, locks, 
processes, processors, semaphores, and the scheduling mechanisms. These 
abstractions are defined by a set of modules: 

module QueueModule is 
type QueueK ind is 

enumeration(FIFO, Priority, ReversePriority); 
type Queue (qt:QueueKind) is private; 
procedure Enqueue (q:Queue, ps:Process); 
procedure Dequeue (q:Queue, pri:integer, mask:ProcessorSet) 

returns Process; 
implementation 

end module; 

module LockModule is 
type LockType is private; 
procedure Lock(t:LockType); 
procedure Unlock(t:L ock Type) ; 
implementation 

end module 

module ProcessModule is 
type Process is private; 
procedure ContextSwap(ps:Process); 
procedure Priority (ps:Process) returns integer; 
procedure ProcessorMask(ps:Process) returns ProcessorSet; 
procedure TimeSliceEnd(ps:Process) returns boolean; 
procedure WhichProcessor (ps:Process) returns Processor; 
var processors: Queue(ReversePriority); 
implementation 

end module; 
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module ProcessorModule is 
type Processor is private; 
type ProcessorSet is private; 
procedure A nyProcessor returns ProcessorSet; 
procedure Scheduling/ nterrupt(pr:Processor) ; 
procedure Me returns Processor; 
procedure MeMask returns ProcessorSet; 
procedure Running(pr:Processor) returns Process; 
procedure Blind; 
procedure UnBlind; 
implementation 

end module; 

module SemaphoreModule is 
type Semaphore is private; 
procedure P(s:Semaphore); 
procedure V(s:Semaphore); 
implementation 

end module; 

module SchedulerModule is 
procedure FindProcessor(ps:Process) returns Processor; 
procedure FindProcess(pri:integer) returns Process; 
implementation 

end module; 

These module definitions illustrate our major departure from Pascal-like 
languages. The type definitions, variables, and procedure headers are visible 
to users of the modules~ the implementations, denoted by ellipses here, are 
not. 

We will describe the implementations of only the last two of these 
modules-SemaphoreModule and SchedulerModule. We will informally de­
scribe the semantics of the other abstractions, however, and that will help to 
define the notation as well. 

Let's begin with QueueModule. The main abstraction defined by this 
module is the familiar notion of a queue, but it has been specialized to 
queues of processes and to the kinds of queuing operations we want to do. 
Note that we simultaneously define several kinds of queues: "FIFO," 
"Priority," and "Reverse Priority ." The phrase is private attached to the 
declaration of type Queue simply means that the actual representation of the 
type will appear in the implementation-part of the module, and hence it is not 
visible to the user. Since the type declaration is visible, however, the user 
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may declare variables of type Queue, e.g., 

var feasible: Queue(Priority) 

The parameter in this declaration is important; it says that this particular 
queue is priority ordered. 

Since type Queue is specified to be "private," there isn't much that one 
can do with the variables of the type except pass them to the procedures 
declared in the module header. Hence, if P 1 is a variable of type process, we 
can write: 

Enqueue (feasible, P 1) 

Although we have not provided a formal specification of its semantics, the 
clear implication is that the process represented by P 1 will be enqueued on 
the feasible queue; since we know that that queue is priority ordered, P 1 will 
be inserted into its proper priority position. 

The Dequeue operation is somewhat more interesting; here we can see 
the influence of the kinds of queuing operations we want to perform. Note 
that it has three parameters: a queue, an integer, and a ProcessorSet. It will 
dequeue the first element of the specified queue that (a) has a priority greater 
than or equal to the integer value and (b) whose ProcessorMask value has a 
non-empty intersection with the specified ProcessorSet parameter. If, for 
example, PSM is a variable of type ProcessorSet whose value includes process­
ors 1, 3, and 5, the call 

P 1 : = Dequeue (feasible, 0, PSM) 

will dequeue the first process on the feasible queue with a priority of at least 
zero and that can run on one of these processors. Since 0 is the minimum 
priority defined by Hydra, and since the feasible queue is priority ordered, 
this call will actually return the highest priority process that is capable of 
running on· one of these three processors. 

We have already informally described locks; LockModule is simply the 
definition of them. There is nothing exotic in its definition. Because of the 
type declaration one can declare variables of type Lock. Because of the 
procedure declarations, one can invoke (only) Lock and Unlock operations on 
these variables. 

The other two modules for which we shall not give implementations are 
those that define types process and processor. The type process is, of course, 
merely the abstraction of the intuitive notion of a process. Its representation 
contains the process state, including the scheduling parameters described 
previously. The procedures Priority and ProcessorMask retrieve the values of 
the two scheduling parameters we need here. The operation TimeSliceEnd 
determines whether the specified processor has exceeded its current time 
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slice parameter. ContextSwap switches state between the currently executing 
process and that of its parameter (it is effectively a coroutine invocation). 
The operation WhichProcessor allows us to determine which processor, if any, 
the process is currently executing on. 

Note that ProcessModule maintains a queue variable, processors, that is 
visible. This queue is simply the list of processes that are currently exe­
cuting. It is maintained (in ReversePriority order) by ContextSwap. As we 
shall see, it will be necessary sometimes to know the identity of the 
lowest-priority process that is currently executing-and this queue lets us 
determine that quickly. 

ProcessorModule defines two types. Type Processor is the abstraction of a 
hardware processor. The type ProcessorSet is the abstraction of a set of 
processors and is used to encode the ProcessorMask scheduling parameter 
discussed previously. The variable AnyProcessor is simply the ProcessorSet 
that contains all processors that are currently configured into the system. 
The Schedulinglnterrupt operation allows one to cause an interrupt on the 
specified processor.9 The operation Me returns the processor on which the 
operation is executed. The operation MeMask returns a ProcessorSet contain­
ing just Me. The operation Running returns the process that is executing on 
the designated processor. Thus "Running(Me)" returns the process executing 
on the processor on which this operation is executed. The operations Blind 
and UnBlind, respectively, disable and (re) enable all interrupts on the current 
processor. 

Now let's turn to the implementation of the two modules of most 
interest-SemaphoreModule and SchedulerModule. First, SemaphoreModule is 
implemented as follows: 

module SemaphoreModule is 
type Semaphore is private; 
procedure P(s:Semaphore); 
procedure V(s:Semaphore); 
implementation 

9'fhe Schedulinglnterrupf operation is actually implemented as a priority-four interprocessor 
interrupt. See Chapter 2. 



type Semaphore is 
record 

i: LockType, 
count: integer: = 1, 
q: Queue(FIFO) 

end record; 

procedure P(s:Semaphore) is 
var ps:process; 
begin 

Blind; 
Lock(s./}; 
s.count : = s.count-l; 
if s. count < 0 

then 
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Enqueue(s.q, Running(Me)); 
ps:= FindProcess(O); 

else ps: = null; 
end if; 
Uniock(s./}; 
if ps:;t: null then ContextSwap(ps); 
UnBlind; 

end procedure; 

procedure V(s:Semaphore) is 
var ps: Process; 
begin 

Blind; 
Lock(s./}; 
s. count: = s. count + 1; 
if s. count ~ 0 

then ps:= Dequeue(s.q, 0, AnyProcessor); 
else ps: = null; 

end if; 
Uniock(s./}; 
if ps:;t: null then FindProcessor(ps); 
UnBlind; 

end procedure; 
end module; 

The implementation of these routines is similar to that found in other 
systems that use semaphores. Both P and V first make themselves "blind" to 
interrupts to ensure that they are indivisible. They then lock the particular 
semaphore on which they are operating~ this permits other P and V opera­
tions to proceed asynchronously on other semaphores, but ensures mutual 
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exclusion with respect to this particular one. The difference between disa­
bling interrupts (Blind) and the Lock operation is, of course, one of the 
differences between uniprocessor and multiprocessor implementations of 
semaphores. On a uniprocessor only Blind would have been needed. 

The body of P is relatively simple. It decrements the semaphore's 
counter and then determines whether the result is negative, indicating that 
the process must be blocked. In the event that the process must be blocked, 
it first enqueues the current process on the (FIFO) queue associated with the 
semaphore and then determines the next process to run by calling 
FindProcess. FindProcess will return the highest priority process that can run 
on the current processor. (We'll explain the parameter to FindProcess 
shortly.) The P implementation then invokes ContextSwap to transfer control 
to this new process. The only unusual thing about this implementation is 
that the invocation of ContextSwap is moved outside the critical region in 
order to increase the potential for parallelism. A uniprocessor implemen­
tation would probably have invoked 

ContextSwap(FindProcess(O)) 

directly in the then-branch of the if statement and would not have bothered 
with the variable ps. 

The body of V is similarly straightforward. The count field is incremented 
and tested against zero. If it is non-positive there is a process on the 
semaphore's queue that should be awakened. It is dequeued and passed to 
FindProcessor to find a suitable processor to execute it~ if no suitable pro­
cessor is available, FindProcessor will simply insert it on the list of feasible 
processes. The use of FindProcessor is the major departure from uniprocessor 
implementations; on a uniprocessor one would determine only whether the 
priority of the new process exceeds that of the currently executing one, and if 
so, perform a context swap to it. On a multiprocessor, however, there are 
several processes executing simultaneously. Not only must we determine 
whether any of them has lower priority than the new process, but we would 
like to preempt the one with the lowest possible priority. We'll see how this 
happens below. Finally, note that, like the call on ContextSwap in P, the 
scheduling operation (FindProcessor) is moved outside of the critical region to 
increase potential parallelism. 

Finally, let's consider the implementation of SchedulerModule, this 
module actually defines the (parametrized) scheduling policy of KMPS. 
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module SchedulerModule is 
procedure Fi ndProcessor(ps: Process); 
procedure FindProcess(pri: integer) returns Process; 
implementation 

var feasible: Queue (Priority) ; 

procedure FindProcessor(ps: Process) is 
begin 
var newps: Process; 
Enqueue (feasible, ps); 
newps : = Dequeue (processors, Priority (ps) ,ProcessorMask(ps)); 
if newps ~ null 

then Scheduling! nterrupt(WhichProcessor( newps)) 
end if 
end procedure; 

procedure FindProcess(pri: integer) is 
begin 
return Dequeue ( feasible, pri, lvlel .. lask); 
end procedure; 

interrupt procedure ReconsiderScheduling is 
var ps: Process; 
ps := FindProcess( Priority(Running(Me))) 
if ps ~ null 

then FindProcessor(Running(Me)); ContextSwap(ps) 
end if; 
end procedure; 

interrupt procedure Timer!nterrupt is 
begin 
if TimeSliceEnd(Running(Me)) 

then Scheduler! nterrupt(Me) 
end if; 
end procedure; 

end module 
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The implementation of FindProcess is trivial; it simply dequeues a process 
from the feasible queue. When called from outside the module (notably 
from P), the parameter to FindProcess, pri, is always zero, and hence Dequeue 
will simply find the highest priority process that is eligible to run on the 
current processor. 

The implementation of FindProcessor is somewhat more interesting. It 
first inserts the parameter process onto the feasible queue. It then attempts 
to dequeue a process from the processors queue; recall that this queue 
contains the processes that are running and that it is in reverse priority order. 
Therefore, if one exists, the dequeued process will be the lowest priority 
process currently running on some processor that is also capable of running 
the parameter process, ps. FindProcessor sends a scheduling interrupt to this 
processor; as we'll see in a moment, the effect of this will (usually) be to 
schedule the process on the interrupted processor. 

Note that there are two internal ("hidden") procedures in 
SchedulerModule, both are "interrupt procedures." One is invoked in response 
to the scheduling interrupt, and the other is invoked in response to the 
interval timer interrupt. The timer interrupt handler should be self-evident; 
it merely checks to see whether the current process has exceeded its time 
slicelO and, if so, forces scheduling to be reconsidered by sending an interrupt 
to its own processor. 

We can consider the scheduling interrupt handler, ReconsiderScheduling, 
in more detail. Recall that FindProcessor causes a scheduling interrupt on a 
processor that it believes is executing a process of lower priority than a newly 
eligible one. Therefore, ReconsiderScheduling simply attempts to find a 
process on the feasible queue with a higher priority than the one that is 
currently executing. It will probably find the one placed there by 
FindProcessor, although it is also possible that another processor has either 
already removed that process or inserted one of even higher priority. In any 
case, if ReconsiderScheduling finds a higher-priority process, it first attempts to 
find another processor to execute the currently executing process and then 
performs a context swap to the new process. As we shall illustrate below, the 
interaction of FindProcessor and ReconsiderScheduling can, in principle, cause a 
rippling effect in which nearly all processors reconsider their scheduling. 

Let's consider an example that illustrates the interaction of these routines 
in the scheduler. Figure 12-1 shows an initial configuration in which there 
are three processors (Nos. 0, 1, and 2), three running processes (A, B, and 
C) on the processors, and a fourth process (D) blocked on a Kernel 
Semaphore. The priority of the processes are 50, 14, 6, and 20, respectively. 
The ProcessorMask values for processes A, B, and C indicate that they can 
execute anywhere, while D can execute only on processor 1. 

Assume process A, executing on processor 0, Vs the semaphore, causing 

lOWe have ignored the bookkeeping necessary to keep track of the scheduling parameters 
and the mechanisms that stop processes and return them to their PMs. 
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process D to become unblocked. As part of the code for the V operation, 
processor 0 will execute 

J7indJ>rocessor(D) 

to find a processor on which to run D. J7indJ>rocessor discovers that D can run 
only on processor 1. Processor 1 is currently running process B at a lower 
priority, so processor 0 enqueues D on the feasible queue and sends a 
scheduling interrupt to processor 1. Processor 0 has now completed its 
scheduling responsibilities associated with V'ing the semaphore, and returns 
to process A. 

Processor 1 receives the scheduling interrupt and begins to execute 
ReconsiderScheduling. Because it is currently executing a process of priority 14 
(B), ReconsiderScheduling executes 

J7indJ>rocess(] 5) 

to determine if there is a feasible process of greater priority than B. There is, 
namely, the newly unblocked process D at priority 20. Now 
ReconsiderScheduling must find a processor to run B, and therefore executes 

J7indJ>rocessor(B) 

B's mask indicates it can run on any processor, and since processor 2 is 
running at the lowest priority, J7indJ>rocessor will put B on the feasible queue 
and send a scheduling interrupt to processor 2. Processor 1 has passed the 
scheduling burden to processor 2 and now begins running process D. 

ReconsiderScheduling now executes on processor 2. Since it is running 
process C at priority 6, ReconsiderScheduling calls 
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FindProcess(7) 

which returns process B. Now, rescheduling of C must be attempted, so 
processor 2 invokes 

FindProcessor(C) 

There is no processor running at a lower priority than C, so FindProcessor just 
leaves C on the feasible queue. Processor 2 now begins to run process B. 
Figure 12-2 illustrates the state after these operations. 

Processors Blocked Feasible 

~ c=J D 
0 8 8 

Priority 50 Priority 20 Priority 14 Priority 6 

Processes 

Figure 12-2 Execution state after A unblocks 0 

12-5 RETROSPECTIVE 

KMPS was the first operational component of the Hydra kernel, and it has 
changed remarkably little over the lifetime of the system. This correctly 
suggests that the basic distributed scheduling mechanism is appropriate to the 
task of utilizing the inherent parallelism of C.mmp. KMPS has exhibited 
almost none of the usual chronic problems of highly parallel programs: 
deadlocks and processor starvation. The two times in the history of Hydra 
that bugs of this character were unearthed in KMPS, they were associated 
with the addition of new (and not quite correctly implemented) facilities. 

We feel strongly that the data abstraction approach to coding KMPS and 
other parts of the kernel is, in large measure, responsible for the fact that it 
has had few errors and has been eminently maintainable. If we were to 
implement the system again we would like to use a language that more 
effectively supports this kind of modularization. Despite its relatively stable 
life, KMPS is not without problems. Perhaps the most notable difficulty is 
the complexity of the interface it presents to the Policy Modules. This 
interface evolved over time, with features being added as the Policy Modules 
grew in number and sophistication. The asynchronous nature of the infor­
mation transmission (i.e., stop messages rather than procedure calls) seems 
consistent with the natural asynchrony of multiprocessor scheduling, but we 
are dissatisfied with the complexity of the information transmitted. For 
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example, a PM may receive the notification that a process has unblocked 
before it knows the process blocked in the first place. Such peculiarities are 
bound to complicate the logic of the PM and suggest that the interface is less 
than ideal. The large scheduling turn-around time (i.e., the computation 
needed for KMPS to return a process to its PM, have the PM grant the 
process additional time resources, and restart the process in KMPS) also 
indicates an improperly organized interface. I I 

On the other hand, the use of a mailbox for communicating between the 
kernel and PMs seems to us like the right approach. It has the distinct 
advantage that errors and faiiures in a PM cannot cause the kernei to faiL 
Moreover, while poor performance of a PM may impede the efficiency of the 
processes it controls, it will not affect the performance of the kernel or the 
processes of other PMs. Our major mistake here was simply not using ports, 
as we did for I/O devices (see Chapter 14). In a second implementation we 
would unify these three concepts. 

It is interesting to note two features of KMPS that were overlooked in 
the original design and added subsequently. First, although we always 
expected that C.mmp would have a heterogeneous collection of processors" 
we did not foresee all the mechanisms that would be required to optimize 
scheduling. In particular, a process with no special scheduling constraints 
ought to be allowed to execute on the most "desirable" available processor. 
For example, if both a PDP-11/20 and and 11140 are available, the process 
should execute on the faster 11/40. Furthermore, if an 11/40 becomes 
available, KMPS should consider moving a process to it from an 11/20. We 
neglected to include a mechanism for this rescheduling situation and had to 
add it later. 

Second, we initially failed to recognize the need for inexpensive "kernel" 
processes; that is, processes that execute exclusively in kernel space and 
therefore do not need the full overhead of a PROCESS object, an LNS, a CPs, a 
stack page, etc. After we finally appreciated the desirability of such processes 
we implemented them, but were unable to make them as inexpensive as we 
would like. We suspect that the lack of this feature markedly, and adversely, 
affected the structure of some kernel components, particularly the I/O 
System (see Chapter 14). 

In summary, and unlike much of the rest of the system, we feel much 
better about the implementation of KMPS than about the abstraction it 
provides-especially the interface with PMs. In terms of its original goals, 
KMPS certainly allows a broad range of PMs to be defined. It is possible for 
several PMs to coexist simultaneously. It does perform short-term sched­
uling decisions rapidly, and the rich set of scheduling parameters do not 
adversely affect this. The implementation is relatively compact and has a 
clean structure. 

11 Relevant performance measurements are presented in Chapter 16. 





CHAPTER 

THIRTEEN 
PAGING 

The design of the Paging System is influenced greatly by the underlying 
C.mmp architecture, which puts rather different demands on paging mecha­
nisms than is common in other large computer systems. There are two 
principal problems. 

1. The PDP-ll architecture provides a user program with only a I6-bit 
address. This means that a process may address at most 64K bytes of 
memory without intervention by the operating system, far less than the 
process' expected share of C.mmp's large memory. 

2. The memory relocation hardware divides the address space into eight 
pages of fixed size, making it difficult to manipulate small segments (such 
as records in Pascal or similar languages). 

An accepted technique for paging in other large operating systems is 
demand paging [Den70], whereby the system hardware and software work 
together to dynamically map a program's large address space onto a smaller 
amount of physical memory. Typically, only a portion of the user's program 
or data is in memory at anyone time; the rest is kept on secondary storage 
until it is actually referenced. This approach works because most programs 
show a high degree of locality in their memory references. 

On C.mmp, however, the situation is reversed-the user program sees a 
small address space over a much larger physical memory. Even to do 
demand paging within the 64K virtual space is almost impossible: a single 
PDP-II instruction can touch up to six different pages and at the same time 
have side effects on registers, making instruction suspension too difficult. 
Faced with these problems, we adopted the strategy of not hiding the 
hardware characteristics from the user programs. Instead, we gave the user 
protected control over the hardware relocation registers and provided a 
mechanism that would allow (force) him to explicitly specify his working set. 

The working set of a program [Den70] is a concept originally developed in 
conjunction with demand paging. In brief, the working set of a program is 
that portion of the program's virtual address space which is being accessed so 
frequently that it should be immediately available. Demand paging algo­
rithms are designed to identify the program's working set on the basis of the 
pattern of memory requests and to attempt to keep each program's working 
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set in primary memory while the program is executing. 
On C.mmp, the working set of a large program will usually be larger than 

the set of eight pages that is currently addressable. On the other hand, the 
working set will probably be less than the total memory that the program 
could potentially access. Hydra therefore provides an explicit representation 
of this working set. 

13-1 THE USER'S VIEW OF PAGING 

The Hydra Paging System defines and supports three object types: 

• PAGE, which is a virtual primary memory page of 8K bytes 
• CPS (for "core page set"), which is the representation of the working set 
• RPS (for "relocation page set"), which is the representation of the user's 

relocation registers· 

(We must be careful to distinguish between a PAGE object and its physical 
equivalent, a page of primary memory. Context will usually disambiguate the 
meaning, but if necessary we will emphasize which we mean by referring to 
page objects or page frames, the latter being the piece of primary memory.) 

Page objects need not be associated with a particular LNS or process. 
They may be created at any time, and capabilities for them may be stored in 
catalogues, UNIVERSAL objects, procedures, or anywhere else. They may be 
shared as freely as other Hydra objects. The set of pages reachable on a 
capability path from a particular LNS constitutes that LNS's virtual address 
space. It should be clear that this means that an LNS's virtual address space 
is both nonlinear and unbounded. (See Figure 13-1.) 

The CPS represents the working set of an LNS. Conceptually, every 
LNS has associated with it a single, unique CPS object. The C-list of a CPS 
only contains capabilities for page objects, and the presence of such a 
capability in a CPS is defined to mean that the page is included in the current 
working set of the LNS. LNSs may move pages in and out of the CPS at 
will, and by so doing alter their working set. There is no theoretical limit to 
the number of pages an LNS may have in its CPS, and the order of pages in 
the CPS's C-list has no significance. 

Users do not have direct access to CPS objects. Instead, Hydra provides 
two KalIs to manipulate the working set. 

lFor efficiency reasons. an RPS is not implemented as a true object. However, it is 
convenient to think of it that way. 



PAGING 189 
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Figure 13-1 Pages in the virtual address space of two LNSs 

CPSLoad (CPSSlot: integer, Page:object( PA G E, CPSLoadR ts)) 

Loads a. page capability into a siot in the CPS, thus adding the page to the 
working set of the LNS. CPSLoadRts is an auxiliary right for pages. 

CPSUnload(CPSSlot:integer) 

Removes a page from the CPS and the working set of the program. 

Loading a page into the CPS does not immediately make it addressable~ 
the working set may contain more pages than the seven which can be 
addressed at anyone time.2 The user designates which of his working set 
pages to make addressable by loading pages from his CPS into his RPS. The 
RPS associated with each LNS has seven slots corresponding to seven of the 
eight user-space relocation registers on a C.mmp processor; placing a page in 
RPS slot i has the effect of making the page addressable beginning at address 
i • 200008. One Kall is available to manipulate the RPS: 

RPSLoad(RPSSlot, CPSSlot:integer) 

Loads the page in CPS slot CPSSlot into RPS slot RPSSlot Implicitly 
unloads any page already in that RPS slot. CPSSlot may be 0, in which 
case the effect is to empty the RPS slot. 

A few details about these mechanisms should be explained: 

• CPSLoad conceptually brings a page into primary memory. If the page is 

2There are eight user-space relocation registers, but one (the first) is assigned to the stack 
page, over which the user has no direct control. 
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not already in primary memory, CPSLoad only initiates the transfer of the 
page from the secondary store. The first call on RPSLoad for that page 
will block until the necessary I/O completes. 

• Pages have an auxiliary right, WriteRts, which controls whether the user 
may write into the page. If the page capability specified in RPSLoad lacks 
WriteRts or the generic right ModifyRts, then the relocation register will be 
set up with the Write-Protect bit set. Any attempt to modify the page will 
result in a hardware trap. 

• The relocation registers corresponding to empty RPS slots have the NXM 
bit set. (See Section 2-1.2.) Any attempt to touch an address in the 
range of those registers causes a hardware trap. 

Mechanisms exist for specifying in a PROCEDURE object a number of 
implicit CPSLoad and RPSLoad operations which must occur before any LNS 
instantiated from the procedure may start. This ensures that the CPS and 
RPS are configured correctly when transfer is made to the LNS's starting 
address. 

13-2 THE WORKING SET AND SCHEDULING 

Paging and scheduling policies in Hydra are closely connected. In particular, 
a process under control of KMPS is guaranteed to have its working set in 
primary memory. Thus when a Policy Module gives a process to KMPS to be 
run, KMPS must first swap in the working set. When KMPS returns a 
process to the Policy Module, the working set is eligible to be swapped out. 
This policy is implemented at a number of places: 

1. When a PM starts a process, KMPS must swap in the working set of the 
currently active LNS. The process does not enter KMPS' feasible queue 
until the swap-in is complete. 

2. When an LNS executing in KMPS Calls a procedure, the working set of 
the calling LNS is immediately eligible to be swapped out and the working 
set of the new LNS is swapped in. A similar action occurs when an LNS 
returns to its caller. 

3. KMPS may refuse to start a process, or may prematurely stop a process, 
on the basis of paging demands. This occurs during process start or 
during the KalIs Call, Return, or CPSLoad for one of two reasons: 

a. There is insufficient physical memory to accommodate a new or 
expanded CPS. 

b. The PM-supplied scheduling parameter, WorkingSetLimit, is exceeded 
by the (requested) number of pages in the CPS. 

In either case, the PM may try to start the process later when it thinks 
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there is more primary memory available or after it adjusts 
WorkingSetLimit. 

Thus, working set policies are closely bound to scheduling policies and 
are under only limited control of the Policy Modules. 

13-3 IMPLEMENTATION 

The Paging System manages a virtuai memory at three storage ieveis: 

Primary memory. About 140 pages of shared memory are available for users 
(based on the configuration in Table 2-2). 

Drum. A variable number of fixed-head disks (which we refer to as "the 
paging drums"), each capable of holding 128 pages, are available for 
swapping.3 

Disk. A single 130-megabyte disk provides permanent storage for pages, and 
may act as a swapping medium of last resort if there is insufficient space 
on the drums. 

In general, the Hydra Paging System is not too different from other 
operating systems. The only real difference arises from the fact that pages 
may be shared among processes, and those processes may be executing on 
different processors at the same time. In particular, 

• A page may be in the working set of several processes, and hence swap-in 
and swap-out requests may come independently and asynchronously . 

• A page may actually be in the RPS of two executing processes, which 
means that two processors may be writing into the page simultaneously. 

To deal with these complications in an orderly way, we treat pages as 
finite-state machines. The portion of the Paging System dealing with pages is 
conceptually table-driven; each page exists in one of several states, and 
demands on pages from higher-level software are turned into state transi­
tions. The most important page states are listed below. 

3The number of drums available depends on which processors are running and on the drum 
requirements of other Hydra systems, such as the GST. 



192 THE SYSTEM IMPLEMENTATION 

State 

Active 

Inactive 

Swapped 

Dirty 

Meaning 

The page is in at least one working set. 

The page is in no working set, but it is in primary memory and a valid copy 
exists on disk or drum. 

The page is in no working set and has no primary memory allocated to it. 

The page is in no working set, but it is in primary memory. No valid copy 
exists on secondary storage. 

A semaphore is associated with each page to provide mutual exclusion 
while the page state is changing. The most important functions on pages are 
listed below. 

Function 

Swapln 

SwapOut 

WriteOur 

Revoke 

Meaning 

The page is being added to a new working set and must be brought into 
primary memory. 

The page is leaving a working set. 

Write the page to secondarl' storage (invoked by the Paging Demon). 

Release the primary memory associated with the page (invoked by the Core 
Module). 

Figure 13-2 Legal state transitions for pages 

Many of the page-state functions are legal only when the page is in a 
certain subset of states; the legal transitions are depicted in Figure 13-2. As 
an example, Revoke is legal only when the page is in Inactive state, state 
Active indicates that someone is referencing the page, Dirty indicates that the 
page must be written out before it can be revoked, and Swapped indicates that 
there is no memory to revoke in the first place. 



PAGING 193 

13-3.1 Page Replacement Policy 

Page replacement policy governs the treatment of pages in primary memory 
which are no longer part of any active CPS. To free the memory for another 
page takes a significant amount of time, since if the old page had been altered 
it must be first written out to backing store. This updating task can take up 
to 30 ms, and there is always the chance that the page will be called back into 
memory almost immediately. (This often happens with the pages of the 
caller of very short procedures, such as "Catalogue Lookup.") 

The page replacement policy is made possible by close interaction be­
tween two moduies within the Paging System: the Page Module and the 
Core Module. The Page Module is the subsystem for implementing the 
PAGE object type; it manages the page states and transitions noted above. 
The Core Module is responsible for the allocation of C.mmp's entire comple­
ment of shared memory; it is used by the Page Module and by Hydra's 
internal storage allocator. The Core Module maintains a Core Table which 
records the state of every page frame (either Allocated or Free). 

The replacement policy attempts to balance the need of the Page Module 
for page frames and the need of Hydra's other systems for memory (for the 
GST, for 1/0 request blocks, for the Message System, etc.). This is done by 
using a process called the Paging Demon to maintain a pool of free page 
frames which can be acquired by the Page Module for users or by the kernel 
storage allocator for other modules. The system works as follows: when a 
page is no longer in any working set, its state changes to Inactive or Dirty, 
depending on whether the page contents were modified since the last time it 
was swapped out. (This information comes from the "dirty bit" in the 
relocation registers.) The associated page frame is correspondingly marked 
Inactive or Dirty. If the page should be brought into a working set later, the 
Page Module will invoke the Core Module to reclaim the page frame and set 
its state to Allocated 

Meanwhile, the Paging Demon process continually monitors the free 
storage pool. (These page frames are marked Free in the Core Table.) When 
the free pool shrinks below a threshold level, the Demon scans the Core 
Table looking for page frames in the Inactive or Dirty states. Inactive page 
frames are moved to the free pool immediately after invoking the Revoke 
operation on the associated page object. When the Demon encounters a Dirty 
page frame, it invokes the WriteOut function on the associated page object, 
causing the page to be swapped out to drum or disk. Eventually the page 
frame will change from Dirty to Inactive and can be reclaimed for the free 
storage pool.4 

4In this discussion we have ignored many issues in synchronization between page objects 
and the Core Table. These and other problems (such as 110) require careful programming, but 
are otherwise not interesting. 
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13-4 RETROSPECTIVE 

The Paging System has worked well throughout Hydra's history, and much of 
the credit is due to the clean structure that resulted from the Paging 
Module's finite-state-machine design. The division of the Paging System into 
Core Module and Page Module resulted in some fairly tricky intercon­
nections, but was probably necessary because of the Paging System's respon­
sibility to both high-level and low-level software. Indeed, most operating 
systems have difficulty in fitting paging and I/O into any clean hierarchical 
arrangement. 

Two less foresighted aspects of the Paging System were the decisions to 
implement both stack pages and CPS objects on a one-per-process basis. 
Both of these objects are conceptually local to an LNS, but we wished to 
avoid the overhead that would be incurred by having to allocate both a new 
page and a new object whenever an LNS was instantiated. In the present 
design, the Call and Return KalIs alter the hardware stack-limit registers to 
isolate the area of the stack available to one LNS from the area used by LNSs 
higher in the call stack. Similarly, the CPS object's C-list is partitioned as 
LNSs are called. This design means that an LNS cannot be sure of how 
much stack space or CPS space will be available to it.s We would certainly 
redesign these mechanisms if we had the opportunity. 

The Paging Demon works quite well in balancing memory requirements, 
although it was not the first mechanism implemented for this purpose. 
Initially we tried a priority scheme that attempted to determine how soon a 
page might be referenced, based on its "depth" in the stack of working sets 
associated with a process. Call and Return would initiate I/O requests to swap 
code pages in and out of primary memory. Despite various optimizations to 
short-circuit unnecessary I/O, this mechanism performed poorly and was 
scrapped in favor of the Paging Demon. 

Finally, it seems evident that the interaction of paging and scheduling 
policies is not ideally supported by the kernel mechanisms. In general, Policy 
Modules should be able to manage the set of processes in core independently 
of the set of processes in the scheduling queues. We feel that the KMPS/PM 
interface is already complex enough to discourage the addition of any more 
features. Obviously, this is a difficult problem area and one which, despite 
substantial attention, has not been adequately resolved. If we were building 
Hydra anew, we would rethink this tricky interface. 

5It can, however, determine if adequate stack and CPS resources are available before 
endeavoring to perform its function. 



CHAPTER 

FOURTEEN 
INPUT /OUTPUT 

The Hydra kernel provides a primitive mechanism for accessing the peri­
pheral devices connected to the C.mmp processors. In keeping with the 
principle of policy/mechanism separation as discussed in Chapter 3, the I/O 
system seeks to supply only a base-level means of performing input-output 
operations. High-level policies for convenient use of peripherals are relegated 
to non-kernel software. 

The I/O system is perhaps the closest approximation to a pure mech­
anism that the kernel supplies (with the possible exception of KMPS - see 
Chapter 12). As such, it provides an abstraction that closely parallels the one 
provided directly by the hardware, except in two practically important ways: 

1. The operations defined by the I/O system are safe (i.e., protected) 
versions of the corresponding hardware operations. This prevents both 
blunders and malicious programs from destroying vital data and is clearly 
essential to a multi-user system. 

2. The abstraction simplifies the interface to the peripherals by replacing the 
heterogeneous connection structure (miscellaneous devices attached to 
various UNIBUSes) with a homogeneous one (all devices equally 
accessible) . 

These two properties of the I/O mechanism are discussed in greater detail 
below. 

14-1 THE HARDWARE ENVIRONMENT 

As we saw in Chapter 2, all devices on C.mmp are controlled by registers 
located in the I/O bank page, which is a page of addresses in the kernel 
address space. Interrupts are passed to the CPU through interrupt vectors 
located in the processors' local memory. The most primitive (and clearly 
unsafe) kernel mechanism one can imagine would merely copy user-supplied 
values into specified I/O locations. The actual kernel mechanisms try to 
restrict this uncontrolled access as little as possible and still achieve a system 
that provides safe access and a modicum of convenience. In doing so, they 
must address the following questions: 

195 
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!, 

1. Several devices may be attached to a UNIBUS through a single shared 
controller (e.g., disks, terminals). Can these devices be regarded as 
independent by higher-level software? 

2. 110 devices can be connected to only a single UNIBUS, and thus may be 
manipulated directly by only one processor. Must higher-level software 
that performs an 110 operation execute on the appropriate processor? 

3. How are interrupts and associated status information reflected to the 
higher-level software? 

4. High-speed devices generally perform direct-memory access (DMA), 
stealing cycles from the processor. Such accesses require valid contents in 
the relocation registers that are used implicitly, or chaos will result. How 
are the contents of these registers maintained during DMA transfers? 

5. Some devices (e.g., tapes, keyboards) have very limited buffering or other 
properties that impose real-time constraints. How are such constraints 
met, particularly when the controller is shared by multiple devices? 

6. Some devices exhibit recoverable errors. Should an attempt be made to 
retry or correct those errors behind the program's back? 

14-2 THE USER'S VIEW OF lID 

Perhaps the easiest way to present our answers to these questions is to give a 
brief description of the steps the 110 system executes to perform a single 110 
operation. For definiteness, we will assume that a high-level program wishes 
to read a block of words from a particular disk drive. 

In Hydra we make an explicit attempt to make I/O look like interprocess 
communication, and therefore I/O is integrated with the Message System 
(Chapter 6). All 110 devices are represented by objects of type DEVICE, 
which resemble PORTS with one input channel and no output channels. Thus, 
in our example, any user with a capability (with ConnectRts) to the disk 
device may connect a port to that device. Once the connection has been 
established, the user may send messages to the disk, each message repre­
senting a request to perform an 110 operation. The format of the message is 
defined by the 110 system~ it includes 

• The operation to be performed (e.g., "read") 
• A buffer (usually in the message itself) 
• The disk address from which to read 

Sending the message logically initiates the operation, and the user program 
may proceed in parallel with the transfer. When the disk has successfully 
completed the read operation, it puts the data into the message buffer and 
replies the message back to the user. The user can invoke the ReceiveMsg 
Kall at any time, suspending his process until the reply is received at his port. 
He can then retrieve the data from the message (Figure 14-0. 



INPUT/OUTPUT 197 

Message 
LNS I _ . 
~ p~ I"Read sector 123" r-- Device 

~ R,ply ~ 
~ "123: 11001010110 ... 010" I 

Figure 14-1 A user's view of I/O 

Returning to the questions posed in the preceding section, we see that 
the 110 system enables higher-level software to regard peripherals as uni­
formly accessible, independently protected entities. In particular, 

1. The point of physical connection to a controller and UNIBUS is irrelevant 
to the user program. 

2. A hardware-generated completion interrupt is mapped to a Message 
System reply, thereby allowing the user program to synchronize with the 
transfer completion when it chooses. 

3. No explicit manipulation of relocation registers by the user program is 
required to ensure proper DMA transfer of data from the disk. 

4. The user program is relieved of the chores of optimizing arm motion and 
minimizing rotational latency, which require real-time knowledge of the 
read/write heads' position. 

S. The user program can ignore the possibility of transient, recoverable 
errors. When it receives a reply to an 110 request, either the request was 
satisfied or some unrecoverable error occurred. 

It might be argued at this point that the mechanism described is far from 
primitive, since it answers most of the questions posed earlier by saying, in 
effect, "let the kernel do it." Indeed, more primitive mechanisms that are still 
"safe" could be defined but would not mesh as conveniently with other 
pieces of the kernel abstraction, notably the Message System and the protec­
tion mechanism. On the other hand, the abstraction offered by the I/O 
system is at a substantially lower level than the ones typically present in 
conventional, multi-user operating systems (e.g., OS/360 and relatives, 
TOPS-10 and relatives). For instance, the 110 system does not provide: 

1. Mechanisms to ensure mutual exclusion oj access to peripherals. Any program 
with an appropriate capability can connect to an 110 device and send it 
arbitrary requests. Thus, in principle, two separate user programs could 
simultaneously connect to the same tape drive and interfere with each 
another. It is the responsibility of higher-level software to ensure 
appropriate mutual exclusion by restricting the distribution of device 
capabilities. 

2. Device-independent requests. While messages tend to have one of a few 
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common formats, no attempt at standardizing formats across device types 
has been made. A message that the disk interprets as a read request may 
cause a read-backward operation if mistakenly sent to a tape drive or may 
be rejected outright by a line printer. All operations are close analogues 
of those that the hardware performs directly, and only infrequently does a 
single request induce multiple device operations.1 

3. Buffering facilities. Multiple buffering can easily be achieved by queuing 
multiple requests in the Message System, but even then the user program 
is responsible for managing the message resources required for requests, 
and it must ensure that replies are processed in the correct order. 

4. Access modes. The I/O mechanism has no knowledge of volumes, file 
structures, directories, or other higher-level concepts frequently used to 
organize secondary storage media. 

5. Logical addressing. Devices that require addresses (e.g., disks, DECtapes) 
do not support addressing abstractions such as "logical record number." 
All secondary storage addresses manipulated by the I/O system are 
physical, not logical. Higher-level software (e.g., a file system) must 
implement these abstractions and appropriate mappings. 

14-3 IMPLEMENTATION 

The internal organization of the kernel I/O system is rather conventional and 
straightforward. A few details, however, pertaining to the architecture of 
C.mmp deserve mention, since they provide good illustrations of the effects 
of certain hardware features on the kernel software. 

The I/O system is composed of 

A controller-specific module for each controller type, which includes the fol­
lowing routines: 

A request preparation ("prep") routine, which checks the validity of 110 
requests 

A start routine, which initiates validated requests at the device 
A service routine, which handles device interrupts by processing completed 

requests and starting new ones 

A request driver and a set of utility modules, which route the request through 
the I/O system and the proper controller-specific module and provide 
utility functions for those modules 

A onjiguration table, which describes the configuration and location of every 
controller and device on C.mmp 

lA notable exception to this is the "write-and-verify" operation which we implement for 
those disks used by the GST and Paging. The hardware could have provided this operation, but 
it didn't. 
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To see how these elements interact, let's reconsider the disk request we 
examined earlier in this chapter. When the user program sends the message 
to the 110 device, a routine in the Message System calls the 110 driver, 
passing it the message and the device for which it is intended. This 
information is packaged into a data structure called a request block, which is 
easily transferred around the 110 system. The driver consults the config­
uration data structure and locates the proper prep routine for the controller 
that hosts that device. It invokes the routine, passing it the request block. 

The prep routine analyzes the request to decide whether it is legal. If not, 
it immediately replies to the message (by passing it back to the rvlessage 
System via a utility module), setting its type to reflect the rejection reason. If 
the message is acceptable, the prep routine must queue it for the controller's 
start routine, which can execute only on the processor to whose UNIBUS the 
device is connected. The prep routine then exits, requesting that the 
appropriate processor be notified that a new request has been queued for one 
of its controllers. (See Figure 14-2.) 

Message 
system ~ 

"message" 

(I/O request) 

Request queue 
(in shared memory) 

Disk 
device registors @ 
§------~~ 

r-~~ / ~::;~~t 
Prep 

I Start 
Service 

routine 
~ routine routine 

I nterprocessor II nterrupt 
I 
I 
I 
I 
I 
I 

Any processor 

Message ) 

system ~ 
"reply" 

(I/O completion) 

Processor hosting disk 

Figure 14-2 I/O communication structure 

The driver uses the inter processor interrupt hardware (Chapter 2) to alert 
the designated processor. At this point, control returns to the user program 
that originally issued the request. 

The interprocessor interrupt will be processed asynchronously on the 
processor that receives it. Code in the 110 driver will field the interrupt and 
alert the appropriate controller-specific module by c~lling its start routine, 
which will check if the controller is idle, and if so, dequeue and initiate the 
request. When the operation completes, the controller's interrupt will be 
fielded by the controller's service routine, which replies to the original 
message, setting the reply type to reflect the outcome of the operation. 
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We see, then, that the kernel I/O system has a rather simple structure, 
with all the device-specific processing confined to a single module (in fact, 
three primary routines) per controller type. The preceding description 
ignores the details of parametrization that permit multiple identical controllers 
to share the same code, even if they are attached to different UNIBUSes. 
Issues concerning the synchronization of start and service routines, which may 
interrupt each other, have also been ignored in the description. The 
resolution of these details involves careful design, but nothing particularly 
unusual. 

14-3.1 Interprocessor interrupts 

A word or two concerning the use of the interprocessor interrupt mechanism 
is in order. Multiple interrupt requests for the same processor are merged by 
the PDP-ll interrupt hardware, implying that more than one start routine 
may have to be invoked by the interprocessor interrupt handler. In fact, the 
same routine may have to be invoked more than once, in principle. To 
simplify the bookkeeping, the prep routine actually queues each validated 
request on a queue associated with the destination processor. The interpro­
cessor interrupt handler on that processor dequeues each request in turn 
from this queue and passes it to the start routine, which enqueues it for the 
controller unless the controller is idle. Therefore, no auxiliary structure is 
required to maintain the set of start routines to be involved by the interpro­
cessor interrupt handler. 

14-3.2 DMA Transfers 

Aside from the complexities of managing its devices, each controller-specific 
module must be concerned with the memory addressing performed by DMA 
operations. All controllers that perform direct transfers to memory generate 
full, IS-bit addresses on the UNIBUS. By convention, the device control 
modules force these addresses to be in the I/O-space of C.mmp's relocation 
machinery. Before a DMA operation is started, the controller's buffer address 
register is loaded with a value that has been adjusted to refer to some 
relocation register in the I/O-space. This register is loaded with the appro­
priate value to access the page containing the buffer required for the 
operation. It is the responsibility of the controller-specific code to ensure that 
the proper values appear in these registers for the duration of DMA activity. 

Figure 14-3 shows an example of this situation. Suppose processor 6 has 
both a disk and a drum on its UNIBUS, and is executing process A. At the 
same time, the I/O space relocation registers are set to allow concurrent 
DMA transfers to pages in processes Band C, which may be simultaneously 
executing on other processors. If process A should be rescheduled on 
another processor, the I/O-space relocation registers will not be affected. 
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Likewise, should I/O to either B or C complete, the I/O system will alter the 
I/O-space registers without affecting A. 

Processor 6's relocation registers 

User space Process A's RPS 

01-space Unused 

I 
Process B's page for drum transfer I/O space 
Process C's page for disk transfer 

Kernel space Kernel pages 

Figure 14-3 Relocation register contents during DMA I/O 

Because the I/O-space relocation registers are a resource shared by all 
DMA controllers on a UNIBUS, a utility module in the I/O system provides 
a simple allocation mechanism that ensures proper use of this resource. In 
principle, a controller may be unable to initiate an operation for lack of a 
relocation register, but in practice, no UNIBUS has sufficiently many DMA 
devices (more than 7) to force this situation. 

14-3.3 Error Recovery 

In practice, the receipt of an I/O interrupt does not always imply a successful 
completion. Generally speaking, the more complex the device and its 
controller, the more things that can go wrong. However, the user program 
generally prefers to think of a request as either succeeding or failing; 
transient errors are not of interest at the higher leve1.2 Accordingly, transient 
errors are handled within the I/O system and never passed back to the user 
program. 

Specifically, when a service routine fields an interrupt, it checks for 
successful completion of the operation. If an error occurred which the 
routine considers to be recoverable, it initiates some corrective action 
(usually a retry of the failing operation). This generally induces a subsequent 
interrupt which the service routine must also process, implying that a certain 
amount of state information must be maintained for requests that have been 
physically initiated but not successfully completed. Since more sophisticated 
controllers can process multiple requests simultaneously (e.g., one seek per 
disk drive), the service routine must be prepared for multiple requests being 

2For example, a particular disk controller that Hydra supports can generate over 30 different 
error conditions, many of which are recoverable_ It is difficult enough for the 1/0 system to 
respond intelligently to all these cases; user programs should be spared the irtconvenience_ 
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retried at the same time. All these complexities, however, are hidden from 
the user program, which eventually receives either a "success" or "failure" 
reply.3 

Memory contention can also represent a problem for the 110 system. If 
contention is severe, shared memory will not be able to respond fast enough 
during a DMA transfer, causing the transfer to abort. In this rare instance, 
we retry the operation several times, enabling the crosspoint switch's 
high-priority feature to bypass the normal priority resolution scheme (see 
Section 2-3.1). If even this is not sufficient, a special call on KMPS causes all 
processors to busy-wait, accessing only their local memories until the transfer 
completes. 

14-4 KERNEL 1/0 

Before proceeding to an evaluation of the 110 system, we should indicate its 
relationship to the rest of the kernel. The design described above supports 
the user-level view of 110 as a special case of general message communi­
cation. However, the kernel itself has a fundamental need for input/output 
facilities as well, e.g., to implement the GST. The GST must be able to 
manipulate disks that hold the long-term representations of kernel data 
structures; other kernel modules must occasionally communicate with an 
operator's console or system log device. The 110 system must supply a 
convenient model for these mechanisms as well. 

Because kernel services operate "below" the level of the protection 
mechanism (i.e., without LNSs or any implicit addressing of capabilities), it is 
inconvenient for them to use the same 110 facilities that user programs do. 
Accordingly, kernel subsystems issue 110 requests without going through the 
Message System. They specify devices by a unique name instead of by a 
Message System connection, and they invoke the 110 driver directly by 
subroutine call, instead of by sending a message. The subroutine arguments 

3Strictly speaking, this may not be quite adequate. For example, if a particular sector on the 
disk has become difficult to read, it may be advantageous to relocate its contents. This decision 
must be made by higher-level software, not the I/O system, but the higher level must somehow 
be notified that the I/O system encountered difficulties. Such a mechanism does exist and is 
occasionally used. Since the outcome of a request is reported in the message reply type, a small 
number of types are reserved by convention to mean "success," another set to mean "failure." A 
single success type is universally considered "unconditional success"; the remaining ones can be 
assigned device-specific interpretations. In this way, the user program can be notified of unusual 
but non-fatal problems in satisfying its request. 



INPUT /OUTPUT 203 

correspond directly to the information a user would place in a message.4 

From this point on, the kernel I/O request is treated just as a user program's 
request would be; that is, it passes through the same prep/start/service se­
quence. When the request has completed, the service routine hands it back to 
the I/O driver, which then notices that the request originated in the kernel. 
Instead of performing a Message System "reply," the driver calls a subroutine 
supplied with the original request. This routine receives as arguments the 
same information that would form the message reply type for a user 
program's request. Typically, the routine will 'V' a semaphore, thus unblock-
:_~ ~~_~ __ ~~~~~ .,,~:4-:_~ r~_ 4-t..~ T fA 4-~ ~~ __ 1~4-~ 
llle ~Vlll~ }Jl V~~~~ WUllllle IVI Lll~ J./ V LV ~Vlll}JI~L~. 

Because the kernel has the same I/O facilities available to it that a user 
program does, no special coding is required in the device-specific modules to 
permit kernel access, and the kernel is freed from the correspondence 
between processors and devices. A small amount of additional machinery is 
introduced into the driver and utility modules, and the kernel I/O model is 
procedure-based rather than message-based. 

14-5 RETROSPECTIVE 

One generally expects a kernel mechanism to be small, i.e., to require a 
modest amount of code to implement it. The kernel I/O system is approx­
imately 23,000 lines of source code; hardly a . small program. However, this 
number is strongly influenced by the number of different devices it supports. 
If we consider only the driver and utility modules, we find they require 
approximately 5,500 lines of code; the remaining 18,000 or so constitute 
device-specific modules that implement 18 different types of controllers.5 The 
device-specific modules have a very regular structure imposed by the require­
ments of the driver, and for a simple device are easy to write. (On several 
occasions, the low-level support for a new device was produced from scratch 
in less than two programmer-weeks). Viewed in this way, the size of the I/O 
system seems more a function of its regular structure than of any inherent 
complexity. 

Access to the I/O system is reasonably well-integrated with the other 
kernel facilities. The general bias in the kernel interface is procedural; 
nevertheless, the decision to access I/O devices with messages from ports is 
clearly the correct one. I/O activity in C.mmp is inherently asynchronous, so 

4An exception to this is the location of the data buffer itself. The kernel always specifies the 
buffer indirectly with an (address, length) pair. Users generally place the data buffer in the 
message, although they have the option of using a similar indirect specification. 

5The I/O system supports three different disk controllers (two for moving-head drives, one 
for fixed-head drives), two tape controllers (one conventional magtape, one DECtape), two kinds 
of line-frequency clocks, an ARPANET interface, two kinds of bit-serial asynchronous communi­
cation lines, a line printer, various terminals, and at least six experimental devices. 
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the ability to perform I/O in parallel without spawning a process (expensive in 
Hydra) is important. The general waiting and replying mechanisms of the 
Message System fit well with the I/O system's needs and avoid introducing 
an additional set of mechanisms explicitly for I/O. More importantly, the fact 
that I/O devices are indistinguishable from ports permits a program to 
simulate the behavior of a device by supplying a port where a device is 
expected and interpreting messages appropriately. 

The absence from the kernel of buffering, access modes, device indepen­
dence, and other higher-level I/O structuring concepts does not imply that 
they are unimportant. Indeed, practical, flexible use of the kernel mechanism 
strongly suggests that some collection of such facilities be built on top of it. 
It is disappointing that no single high-level I/O model was ever constructed. 
As always in Hydra, the existence of such a facility would not preclude the 
direct use of the kernel mechanism in appropriate cases. Rather it would 
serve to simplify the vast majority of cases in which the functional I/O 
demands of a particular program are confined to a small, common set. The 
absence of this facility has hindered convenient program development for 
Hydra/C.mmp. 

The kernel I/O system was originally designed to permit dynamic recon­
figuration of peripherals. (It is for this reason that devices are a kernel type 
distinct from ports; auxiliary rights were to be used to protect reconfiguration 
operations') However, much of the code required for reconfiguration was 
never implemented. It was originally thought that a console operator (or 
perhaps internal software checks) could request that a malfunctioning pro­
cessor be shut down and that its key peripherals be switched to other 
UNIBUSs. However, the necessary hardware to support this reconfiguration 
of devices was never acquired, and the detailed mechanisms outside the 110 
system were never designed.6 Such a facility, if successful, would provide an 
interesting validation of the generality of the 110 system's structure and the 
flexibility of its internal communication and synchronization schemes. It 
should be noted, however, that the need for such a reconfiguration mech­
anism has almost never arisen. 

The 110 system, unlike the GST, was not designed with reliability as a 
primary goal. That is, few internal consistency checks exist, and mechanisms 
to recover from internal errors are practically non-existent. Observation of 
failure' modes suggests that a better scheme for handling lost device inter­
rupts should probably have been included as part of the original design. (It 
should be noted that interprocessor interrupts are reliably transmitted; a 
mechanism in the driver maintains a list of processors that have been sent 
interrupts but have not F~sponded. This list is used at appropriate intervals 
for retransmission). A lost interrupt from a device will effectively "hang" 
that device, since no time-outs are imposed by the software. Except for this 

61n conjunction with the general system error-recovery mechanisms, it is possible to 
"late-start" a processor, dynamically adding it and its 110 devices to the system. 
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deficiency, however, the lack of systematic internal error recovery mecha­
nisms in the 110 system has not been a significant influence on overall kernel 
reliability. Indeed, the regular structure of the I/O system has tended to 
minimize the number of latent and subtle bugs. The uniform approach to 
syn~hronization has virtually eliminated the occurrence of internal deadlocks. 
The remaining bugs generally appear in device-specific modules where they 
are relatively isolated and tend not to compromise the overall integrity of the 
I/O system. 

With a more modern perspective, one might debate the use of substantial 
inteHupt ioutines to piocess 1/0 completions. Today, one is much mOie 
inclined to view an 110 completion as triggering a process switch, and lacking 
hardware or firmware to perform this switch directly, one would build 
interrupt routines that merely 'V' a semaphore (or, if monitors [Hoa74] are 
used for synchronization, "signal" a condition variable). We seriously 
considered this approach in Hydra and rejected it on efficiency grounds, since 
process switching is time-consuming and processes are space-consuming. 
Consequently, interrupt routines (and everything they call) are subjected to 
certain global restrictions that prevent them from being rescheduled to 
execute on a different processor.? Such restrictions are awkward to enforce 
and have been the source of many hard-to-find bugs. With a less costly 
process mechanism we would definitely have organized 110 interrupt handling 
differently. Given the facilities we had, the choice of interrupt routines was 
undoubtedly correct, but we might have been able to find a less constraining 
set of global restrictions that would have engendered fewer bugs. Alterna­
tively, we might have attempted to build a process mechanism that permitted 
rapid context-switching and consumed only a small amount of storage per 
process. Some preliminary designs aimed at producing such a mechanism 
were never completed. 

7In particular, an interrupt routine is not permitted to 'P' any semaphore, since blocking 
would cause a context swap. This effectively prohibits any use of the GST within interrupts 
because the GST makes extensive use of semaphores for synchronization. 





CHAPTER 

FIFTEEN 
ERROR RECOVERY 

The term "error recovery" really describes a continuum of actions that 
collectively ensure some degree of robust operation. At one end of the 
spectrum, checking and reporting invalid parameters to a requested operation 
constitutes a (simple) form of error recovery. At the other extreme, a 
system restart with complete validation of the GST structure is a much more 
radical recovery technique. Between these limits are a variety of actions, 
some of which interrupt the continuity . of system operations. In the 
programmer's vernacular, these are "crashes" of varying severity. The 
inherent redundancy of a multiprocessor at once complicates the crash 
recovery task and offers the hope of reducing the frequency or severity of 
crashes. 

Hydra employs five broad categories of mechanisms to deal with the 
possibility of hardware and software errors: 

Validation mechanisms try to ensure that hardware components are operating 
correctly before they are used. These mechanisms should be quite 
conservative about what components they allow into the system. 

Fault-tolerant mechanisms are employed in situations where certain passive 
errors (such as lost interrupts) can be ignored. These mechanisms can 
be less than 100% effective; every little bit helps. 

Error detection mechanisms are designed to catch errors quickly, before serious 
damage is done. 

Diagnostic mechanisms are designed to analyze errors and determine the 
extent of damage and the possibility of recovery. 

Recovery mechanisms are designed to take corrective actions, ranging from 
ignoring the error to notifying higher-level software to reloading the 
entire operating system. 

In this chapter we will try to enumerate the various techniques employed 
by Hydra in these five categories and evaluate their success. 
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15-1 VALIDATION MECHANISMS 

Hydra's validation mechanisms are invoked during system initialization to 
determine the status of various hardware components and data structures. 

Memory Validation Hydra makes no assumptions about the configuration of 
the shared memory in C.mmp~ the configuration must be determined when 
Hydra is booted from disk. A bootstrapping ROM finds the first good 
memory page and loads into that page a routine which walks through the 
entire 25-bit address space and builds a table of available memory. This table 
is used as the rest of Hydra is brought into memory, and it acts as a basis for 
the initialization of the Paging system. This validation is effective in 
detecting malfunctioning, as well as unimplemented (i.e., missing from the 
physical address space), memory pages. 

Processor Validation During initialization, Hydra reads from disk a table 
indicating which processors are supposed to be available. In turn, each 
processor is started by being sent an "interprocessor start" interrupt from the 
bootstrap processor. Processors initialize and validate themselves, posting the 
results in shared memory~ the bootstrap processor builds a table of "available 
processors" from the results of those initializations. 

When a processor which is "supposed" to be operative does not start, a 
message is printed on the operator's console. The operator can manually 
start the processor at any later time. (This is partially a response to an 
observed failure mode: someone left the processor's "halt" switch down.) 

GST Validation Before initialization completes, the Passive Fixed Part Di­
rectory on drum is cross-checked with information on the Passive GST disk. 
Any inconsistency in the data causes a longer GST initialization sequence in 
which the Passive GST is garbage-collected and the GST Directory is rebuilt. 

15-2 FAULT-TOLERANT MECHANISMS 

In a sense, all error-handling mechanisms are supposed to promote 
fault-tolerant behavior, but in this section we are concerned with the design 
of mechanisms which are completely insensitive to certain types of expected 
errors, especially lost interrupts. As has been seen in previous chapters, the 
interrupt mechanism is very important to Hydra. Interrupts are critical to 
scheduling and synchronization, as well as being the foundation of the I/O 
system. Moreover, a lost interrupt is a passive occurrence which is hard to 
detect. Hydra does not use time-out mechanisms to detect them-such 
mechanisms are more expensive than simply resending interrupts. 

As an example of this, we saw in Chapter 12 that waking a processor 
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blocked on a lock is accomplished by sending an interprocessor interrupt to 
all blocked processors. If an interrupt to one processor does not get through, 
it probably will the next time, especially since the next interrupt will probably 
come from a different processor. I If a processor is truly unreachable from all 
other processors, it will be caught by the "watchdog" (discussed below). 

KMPS also depends on the success of the interprocessor interrupt mech­
anism to do correct scheduling~ a lost interrupt could result in a high-priority 
process remaining on the feasible queue. When KMPS interrupts a pro­
cessor, it actually resends all previously sent interrupts until it receives 
positive notification that the interrupt has gotten through. The cost of this 
mechanism is very low (a couple of instructions) . 

The I/O system tries to tolerate lost interrupts by the use of the request 
queues. (See Chapter 14.) Any time a processor receives the "I/O" 
interprocessor interrupt, it processes all requests on its queue. Thus a lost 
interprocessor interrupt will be corrected on the second interrupt. Likewise, 
any interrupt from a device will cause the service routine to process all pending 
requests. If no other interrupt arrives, the device will appear to be hung. " 

15-3 DETECTION MECHANISMS 

Various error detection mechanisms have been mentioned earlier in this 
book in conjunction with particular kernel systems, and there are others of a 
more general nature. These mechanisms must be very safe, because an 
undetected error can propagate damage beyond hope of recovery. '-IVe will 
discuss the mechanisms under three broad categories. 

Hardware fault detection The PDP-ll hardware, as modified for C.mmp, 
detects a large number of errors which can result from the malfunction of 
either hardware or software. These include parity errors in shared memory, 
attempts to execute illegal or reserved instructions, attempts to access 
non-existent memory pages, attempts to violate write-protected pages, at­
tempts to violate the stack conventions, and failures of UNIBUS devices to 
respond.2 With the exception of parity and device errors, any of these faults 
may be triggered by software or hardware. 

Unfortunately, many hardware faults are not detected directly. Parity 
errors in local memory, and misexecuting instructions are observed to occur 
without triggering a hardware trap, and thus must be caught by higher-level 
mechanisms. 

IThe common cause or this error is a misconfigured Interprocessor Bus-a situation not 
detected by the validation mechanisms, 

2This last rault is the all-purpose "NXM" (non-existent memory) exception, 
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Software consistency checks Hydra, and especially the GST mechanisms, 
employs a wide variety of techniques to ensure that everything is going 
correctly. Checksums and back-pointers are used to ensure consistency of 
data structures. The Paging System uses its page state information to 
determine whether the application of particular functions to pages are appro­
priate. Finally, a count of the number of critical sections entered is kept to 
ensure that no mutual-exclusion semaphores are left locked after processing a 
Kall·for a user. (Leaving a semaphore locked is an invitation to deadlock.) 

Over Hydra's history, all these software checks have been successful in 
catching both software and hardware errors. 

Asynchronous monitoring Sometimes a malfunctioning processor will simply 
halt, and none of the above mechanisms are capable of detecting that. For 
that reason we implemented a "watchdog" system in which every processor 
periodically asserts its well-being and makes sure that every other processor 
does likewise. Should any processor haIt, some other processor will eventu­
ally notice that fact and will initiate recovery actions. 

15-4 ERROR DIAGNOSIS 

The rapid diagnosis of a possible error is vital in a multiprocessor for two 
reasons. First, damage may be propagated rapidly by other processors. 
Second, the damage may cause the triggering of error mechanisms in other 
processors, making a complete analysis much more complicated. 

The accuracy with which an error can be diagnosed is dependent in large 
part on the information the detection mechanisms can make available, and 
this varies greatly among the mechanisms. In the case of hardware-detected 
errors, for instance, the location (if not the cause) of the error is usually well 
specified.3 Diagnosis of these errors usually consists of first determining if the 
error was the user process' fault. If so, we can simply reflect the error back 
to the user in some way. Likewise, parity errors occuring in the context of 
the user process cannot have affected the integrity of the kernel and 
therefore they can also be reflected back to the user.4 

Errors detected by Hydra's software checks are more difficult to analyze 
because the source of the error is almost always unknown at first. Further­
more, all such errors occur within the kernel and therefore cannot be easily 
reflected back to the user. (This assumes that sufficient validation of the 
user's Kall arguments occurs so that a bad argument cannot trigger one of 
these consistency checks much further on.) In general, all that can be done 
is to validate and/or repair the environment before proceeding. 

3 As noted in Chapter 2, special tracking mechanisms were added to make this true. 

4AIthough it must be anticipated that a hard parity error in a user's page will affect Hydra 
when it tries to swap out that page. 
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Errors detected by the watchdog system are the most difficult to deal 
with because most of the information needed to analyze the error is hidden 
in the malfunctioning processor and not available to the processor detecting 
the malfunction. Part of the recovery action for this type of error is an 
attempt to force the halted processor to copy its state to shared memory. 

15-5 RECOVERY MECHANISMS 

When an error has occurred and diagnostic information is avauaOle, a 
selection among several recovery actions must be made. The error handlers 
have four main options: 

1. Dismiss or correct the error immediately. 
2. Reflect the error to the user process and continue. 
3. Reflect the error to higher-level kernel software and continue. 
4. Stop and initiate a restart of the entire system. 

In selecting among these alternatives, the error handler must consider not 
only the probability of being able to correct the error but the effect the error 
may have on other processors running concurrently with the error-handling. 

In practice, very few errors can be handled locally. For instance, even 
though most hardware errors are transient, the PDP-II architecture makes it 
very difficult to back up and retry an instruction; instructions can have too 
many side effects. Similarly, correction of software-detected errors requires 
more state information than is available in the error handler. Only the I/O 
system is able to deal wen with controller-detected errors, because it has 
sufficient state information to reset the devices and retry the operations. 

The GST is the only kernel module which is able to use redundant 
information to recover from errors. The GST keeps two copies of each object 
on the Passive GST -a "most-recent" copy and a "second-most-recent" copy. 
Should the most-recent copy be unreadable, it will automatically back up to 
the second-most-recent copy. Should no copy be readable, the object is 
eliminated and capabilities for it are deleted.s 

When an error occurs in the context of a user process, that process is 
normally stopped, and an error indication is given to the responsible Policy 
Module, which can distribute that information as it sees fit. However, there 
is also a facility whereby an LNS may designate an error-handling routine 
which is given control when an error occurs. This routine can try to correct 
the error or can simply terminate the LNS with a Return Kall, in effect 
punting the error to the caller. This facility is very important for subsystems, 
because to stop an LNS at an arbitrary point could leave the subsystem's data 

Sit is not clear that this is a good policy-users are disconcerted when their objects disappear 
without warning. We should emphasize that this behavior is extremely infrequent. 
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in an inconsistent state. (A semaphore might remain locked, for instance, 
and effectively prevent all other subsystem operations.) 

Reflecting an error to higher-level routines within Hydra would seem to 
be a very powerful mechanism, but unfortunately the necessary recovery 
mechanisms were never implemented. Much information needed for succes­
sful recovery, especially knowledge about which data structures are locked by 
the process, is not available. 

In practice, therefore, if an error cannot be safely reflected back to the 
user process, it usually results in a crash-and-reload of Hydra. The advantage 
of this course is that it is extremely conservative: it does not allow other 
processors to propagate the damage, it provides an easy way to record a fairly 
large amount of data for later offline analysis by hardware and software 
engineers, and it automatically invokes the hardware validation mechanisms 
(mentioned earlier) during reinitialization. The disadvantage of this recovery 
mechanism is its severity: the work of all users is disrupted during the 
reload. Because this recovery action is (unfortunately) common, we will now 
describe it in more detail. 

15-6 AUTORESTART 

Once the autorestart mechanism has been triggered, it has a single goal: to 
restart system operations promptly with a minimal loss of data and a maximal 
chance of continued operation. It follows that the mechanism must be able 
to reconfigure the system hardware to eliminate faulty components and must 
be able to do so automatically, without relying upon a human operator (who 
may not be present at the time of the crash). 

The first step in the recovery is to stop normal system operation (via the 
interprocessor bus) and select the Suspect and the Monitor processors. The 
Suspect is the potentially faulty processor, usually the processor which 
detected the error. The Monitor is selected at random from the remaining 
processors to control the restart process, since the Suspect may not be 
reliable enough to do so.6 Suspect and Monitor now synchronize with each 
other, and the Suspect proceeds to record copies of its registers and local 
memory page in an area of shared memory and then runs a complete 
processor diagnostic. When the Suspect completes, the Monitor halts it and 
writes the crash data out to disk for later analysis. If the Suspect should be 
unable to complete this record, the Monitor will detect the fact and write out 
whatever portion of the record is available. 

On the basis of the circumstances surrounding the error and the perform­
ance of the Suspect during recovery, the Monitor determines if any reconfig-

6In the case of an error detected by the Processor Watchdog, the processor detecting the 
fault designates himself the Monitor. After halting other processors, the Monitor attempts to 
start the Suspect via the interprocessor bus and force it into the autorestart sequence. 
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uration of the hardware is necessary. If the original error was a memory 
parity error, for instance, and if the error was repeatable, the bad memory 
page is deleted from the configuration table used by Hydra. The Monitor 
consults an error history table for the Suspect processor to determine if the 
Suspect has failed under similar circumstances in the past. If the Suspect 
accrues too many demerits in any particular error class, or too many total 
demerits, it will be designated "faulty" and will be excluded from the system. 

Normally, a "faulty" processor is automatically excluded from the system 
and is forced to execute special diagnostic code under the watch of a small 
executive within Hydra. Shouid the processor seem error-free over a period 
of time, and if an operator has not permanently excluded it, the processor is 
automatically reinstated in the system. This prevents a flurry of random 
errors (e.g., power fluctuations) from indefinitely excluding an otherwise 
acceptable processor. 

Occasionally, a faulty processor will be classified as "critical," usually by 
virtue of its being host to a critical system peripheral device. In such a case 
the processor is "quiesced" -it remains in the system, but it runs no 
processes, only device interrupt traffic. It is hoped that the processor will be 
more reliable under the lighter load. 

15-7 RETROSPECTIVE 

It may easily be argued that the error-handling mechanisms are too ad hoc 
and incomplete. We admit these properties and attribute them to the 
historical evolution of the mechanisms. The error recovery scheme was, in 
essence, an add-on to the kernel dictated by the unreliability of the C.mmp 
hardware. It would doubtless have been better if we had designed it as an 
integral part of the original kernel, but we never believed that the hardware 
would be so unpredictable. The Suspect/Monitor model was developed to 
deal with hardware failures (particularly misexecuting processors) and works 
well for such problems. Its general applicability to higher-level software 
errors is dubious at best. 

The most serious shortcoming of the error-handling mechanisms is that 
continuation after most errors was not implemented. We suspect that most 
hardware errors encountered while executing in the kernel are safe, by which 
we mean (1) the processor detecting the error is performing a Kall for a user, 
and (2) no objects or data structures are locked (and hence they are in a 
consistent state). We should be able to back out of the kernel and stop the 
user process, instead of initiating a system restart. Unfortunately, we cannot 
verify this state because we do not record the objects that are locked, and 
because we do not believe that all kernel code could tolerate being inter­
rupted at arbitrary locations, even with nothing locked. 

Because so much of the total operating system is outside the kernel, 
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users need very good support for their own error recovery policies. In 
general, Hydra provides rather poor facilities. They have not been seriously 
missed largely because we never really explored the possibility of having one 
process debug another. We did, however, provide mechanisms to forcibly 
reawaken processes waiting on ports and Policy Semaphores, one essential 
requirement. Despite the absence of convenient mechanisms, Hydra's sub­
systems seem to maintain abstractions across crashes as reliably as conven­
tional systems do. In principle, Hydra should be able to do better and, we 
believe, would do better if the recovery system had been planned at the 
outset. 

The "error history" mechanism for processors works quite well in general 
but has some drawbacks. By associating every error with a particular 
processor, intermittent memory failures cause a slow increase in the error 
counts of all processors. In practice, such errors will eventually become 
"hard," the memory module will be eliminated, and the demerits assigned to 
guiltless processors will "evaporate" in time. (Or, more likely, the hardware 
maintainer will discover what has happened and m<anually adjust the error 
counts.) , 

The autorestart mechanism works well at what it is (realistically) intended 
to do. It reloads and restarts the system over 95% of the time without the 
loss of anything except currently executing programs. It does so without 
operator intervention (Hydra has no full-time operator) and leaves detailed 
records of the system state at crash time. These records have been of 
enormous assistance in tracking down subtle hardware errors (which escape 
the rather coarse diagnostics) and latent kernel software bugs. It provides a 
convenient means for adding a (repaired) processor to the running Hydra 
configuration long after it has come up, thereby encouraging prompt repair of 
processors excluded by the Suspect/Monitor mechanism. 

Two brief anecdotes should illustrate the effectiveness of the error 
recovery mechanisms. On one occasion, a particular connection on the 
interprocessor bus was broken, preventing interrupt signals from being sent 
from a particular processor. The redundancy in the interrupt notifications 
was so good that no degradation in performance was noticed, and days went 
by before we realized that the bus was broken. On another occasion, a 
serious power failure stopped C.mmp dead in its tracks. When power was 
restored, Hydra was easily rebooted and it resumed operation without any 
damage to its data structures on secondary memory. Unknown to us, half of 
primary memory had been rendered inoperative by the power failure! Hydra 
simply rebuilt the memory tables and continued; several days elapsed before 
anyone noticed the missing memory! 

On balance, we believe the mechanism has been a worthwhile addition to 
the kernel, both because of its effect on MTBF and because of the lessons we 
learned by having to add it to an existing kernel. Were we to rewrite the 
Hydra kernel, we would integrate the mechanism more thoroughly. We 
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believe the Suspect/Monitor model is effective in dealing with hardware 
failures and is consistent with the absence of centralized control we advocate 
for multiprocessor systems. We regret the need to build this specialized 
recovery mechanism, but regard the effort as a useful demonstration that 
reliability must be designed in, not added on. 

A final anecdote illustrates that automatic recovery mechanisms can be 
"too good." Many users of Hydra are unaware of the system's ability to add 
processors to its running configuration. Occasionally, a processor excluded by 
the error recovery mechanism will pass all its diagnostics and be returned 
automatically to regular service. One unfortunate user was conducting a 
series of performance measurements that required precise control of the 
processor configuration. Unknown to him, Hydra automatically added a 
processor to the system during his experiments. It took him several days to 
figure out the anomaly in his data! 
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CHAPTER 

SIXTEEN 
EXPERIMENT AL MEASUREMENTS 

In this chapter we present the results of a number of experiments on C.mmp 
and Hydra. These results should help the reader to more accurately evaluate 
both the machine and its software. Whenever one measures a complex 
system, it is difficult to control all the variables; the measurements on 
HydratC.mmp are no exception. Thus, before beginning we would like the 
reader to keep the following points in mind: 

The evolving nature of the system. The experiments reported here were per~ 
formed over a period of several years during which the hardware and 
software evolved. Moreover, Hydra was designed to run with virtually 
any configuration of processors and memory and needed only a few 110 
devices for the GST and its directory. For both these reasons, one 
cannot assume that any two experiments were performed pn exactly the 
same configuration or the same software. We will try to explicate the 
differences where they matter. 

Goals oj the experiments. There are several reasons why one might perform 
measurements of any system: 

To improve the performance of that specific system 
To compare the system to others along one or more dimensions 
To learn something about the way that the system is used in order 

optimize the design of future systems 

Generally the experiments we shall describe started out with only one of 
these objectives. But, as when measuring any complex system, we 
sometimes learned more than we expected. A study into the decompo­
sition of multiprocessor algorithms, for example, led to significant im­
provements of both the KMPS and PM scheduling algorithms. These 
kinds of changes contribute to the evolution of the system and thus 
exacerbate the problem of comparing and combining results. 

Nature of the usage patterns. HydratC.mmp was and is an experimental system. 
It has never had a large user community and it would be difficult to 
predict with any confidence the nature of the load that the system would 
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experience if there were such a community. Since some of the exper­
iments presume a load~ their results must be interpreted relative to that 
load and not as "typical." 

For ale these reasons we will try first to simply describe each experiment in its 
own terms-without trying to relate its results to other experiments or trying 
to draw conclusions beyond the intended scope of the experiment. Then, a 
retrospective section will try to draw such additional conclusions and infer­
ences as seem warranted by the collection of results. 

The experiments we have chosen to describe are those that concentrate 
on the more novel aspects of C.mmp and Hydra-namely, the fact that 
C.mmp is a multiprocessor, the fact that Hydra runs in a distributed fashion 
(not master-slave), and the fact that Hydra is a capability-based system. 
Thus, we shall concentrate on such things as: 

• The decomposition and performance of several algorithms, particularly as 
that performance reflects on design decisions in C.mmp and Hydra 

• The effects of contention for resources at both the hardware and software 
levels 

• The effects of the address space size and relocation structure on both 
programming and performance 

• The size and speed of the kernel, particularly as they relate to supporting 
multiprocessing and the capability model 

• The usage patterns of the GST, particularly as they relate to various 
implementation decisions in Hydra and the ways in which those decisions 
might be different in subsequent systems 

Before beginning, however, we shall describe some of the tools that have 
been developed for measuring the system's performance. 

16-1 PERFORMANCE MEASUREMENT TOOLS 

For some experiments, of course, special measurement tools were developed. 
However, most experiments on HydratC.mmp used one or more of the 
following: 

The Hardware Monitor. A device that permitted various hardware events (e.g., 
interrupt rates, memory references, etc.) to be monitored without dis­
turbing the system. 

The Kernel Tracer. A collection of software and microcode in Hydra that 
permitted a trace of certain software events (e.g., process blocking, 110 
queueing, etc.) to be generated. A post-processor is used to present the 
trace output in a meaningful form. 

The Snapshot Taker. A collection of software in the kernel that permitted a 



EXPERIMENTAL MEASUREMENTS 221 

large amount of internal state to be recorded at a specified time. A 
post-processor is used to present the snapshot information in a mean­
ingful form. 

Hercules. A user-level program that simulated an arbitrary number of user 
terminals, each executing a specified script. This program allowed us to 
place known and repeatable loads on the system. 

Each of these tools has advantages and limitations that outline a useful 
domain of use. 

16-1.1 The Hardware Monitor 

The Hardware Monitor, or K. mon, is a device for detecting and recording 
certain hardware events on a PDP-ll. It was initially designed and built for 
measuring the performance of C.mmp, but has been used for other 
PDP-ll-based hardware systems as well. In this section we will cover only 
those general properties of K.mon that are relevant to the experiments 
described in this chapter. A more complete description can be found in 
[FuI73] . 

To understand K.mon at a sufficient level for the purposes of this 
chapter, one needs only to understand (1) a set of possible event definitions, 
and (2) a set of possible event actions, that is, the kinds of events that can be 
detected and the kinds of actions that can be taken in response to the 
occurrence of an event. Two factors affected the design of K.mon in this 
respect: 

• The PDP-ll has the property that many, if not most, "interesting" 
hardware events are detectable as signals on the UNIBUS. Therefore, 
unlike the hardware monitors for other systems, K.mon event definitions 
and actions are defined primarily in terms of the information on this bus. 

• While in principle one can simply record all possible events of interest and 
post-process the results to obtain those of real concern, in practice it is 
both more convenient and more efficient to provide for some "on-the-fly" 
processing power and to allow dynamic modification of the event defini­
tions. 

For both these reasons, K.mon was organized to connect to two UNI­
BUSs. To one of these, the "host" in Figure 16-1, K.mon is an essentially 
invisible, passive device. To the other UNIBUS, the "supervisor", K.mon 
appears to be a (rather sophisticated) I/O device. The host processor is the 
one being monitored. The supervisor processor controls the monitor; it is 
able to set the event definitions in K.mon, it provides the memory in which 
K.mon records data when events are observed, and it can be interrupted by 
K.mon whenever the event action so specifies. 

There are five pairs of event definitions active simultaneously; each event 
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Host 
processor 

Supervisory 
processor 

Figure 16-1 K.mon: the hardware monitor 

UNIBUS 

UNIBUS 

definition consists of a primitive event specification and an accumulator; and 
the accumulator is initialized from a register associated with the event 
definition and is decremented each time the primitive event is detected. 
When this counter reaches zero the event is said to have happened; the 
counter is reinitialized and the action associated with the event is performed. 
(Obviously, by setting the initial value of the counter to one, one can cause 
the event to happen each time the primitive event is detected.) 

A primitive event can be constructed by one or more of the following 
criteria: 

• The address on the UNIBUS lies within a specified range. 
• The data on the UNIBUS lies within a specified range. 
• The UNIBUS is in a specified cycle (read, write, read-pause, etc.). 
• The UNIBUS cycle is, or is not, an interrupt request. 
• The two special "sequence bits" (explained below) have a particular value. 
• Any of 16 high-impedance probes have specified values. (Typically, these 

probes are used for sampling signals from the processor, for example, to 
distinguish instruction-fetch from data-fetch cycles.) 

Although there are only 5 event definitions in K.mon, there are 31 event 
action specifications-one such specification for each of the combinations of 
events that might happen simultaneously. Each event action can result in a 
number of operations: 
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• 0-9 words of data can be stored at a specified location in the supervisory 
processor's memory; this data includes the data and address from the 
UNIBUS, various other control signals, the accumulated event counters, 
the value of a high-resolution clock, etc. 

• The supervisory processor can be interrupted. 
• The two "sequence bits" mentioned above can be set, allowing primitive 

tests of the form "if event A follows event B." 
• The high-resolution clock can be started or stopped. 

A simpie example should help to put all this in peispective and illustrate 
the power and flexibility of K.mon. Suppose that one wished to know how 
often a particular subroutine in the kernel blocked on a lock. To do this we 
would first connect a probe to the processor signal that distinguishes between 
the running and idle states. Then we would set up event definitions as 
follows: 

First event. Use the address comparators to detect the execution of the first 
instruction of the subroutine. The action associated with this event will 
be to record the event counter and to set the "sequence bits" to a 
configuration reflecting that the subroutine is executing. 

Second event. Use the address comparators to detect the execution of the last 
instruction of the subroutine. The associated action is simply to reset the 
sequence bits to some neutral state. 

Third event. Use the address comparators to detect that instruction in the 
"lock" subroutine that is executed on failure to get the lock. If this 
instruction is executed and the sequence bits are set to indicate that the 
subroutine of interest is executing, record the event counter. 

K.mon was used in all the memory and lock contention experiments 
presented in this chapter. It supplies the lowest-level measurements of any 
performance tool available to us. 

16-1.2 The Kernel Tracer 

The kernel tracer is a collection of software and microcode that permits one 
to record the occurrence of selected events within the kernel.1 The time the 
event occurred, together with a small amount of additional information 
related to the event, is recorded for later processing. The collection of events 
that can be traced is defined by explicit code in the kernel. Calls to the 
tracing package are inserted at "interesting" points in the kernel source text; 
each call identifies the event and supplies the additional parameters that 
provide event-specific data. In order to define a new event, or modify the 
information associated with an existing event, the relevant portion of the 

IThere is also a special Kall that allows users to insert their own events into a trace. 
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kernel source program must be modified and recompiled. 
Whether or not a particular event is actually recorded is determined 

dynamically. In an obvious way, toggles are associated with each event, and 
the appropriate toggle is tested before entering the tracing package. 

Assuming that an event is enabled for tracing, the call on the tracing 
package will cause a record of the event to be written into a memory page 
specified by a user-level program. (We'll say more about this below.) The 
record consists of the following information: 

A numerical event identification 
The length of the record 
The (physical) processor number on which the event occurred 
The (KMPS-defined) process identification of the currently executing process 

on this processor 
The current clock value (accurate to 4 JLs) 
The event-specific data supplied in the call on the tracer 

Typically, event records are 10-20 bytes long, of which 8 bytes is the standard 
information. 

Tracing is controlled from a user-level process. Three special KalIs exist 
for this purpose. The first specifies the events to be traced and supplies a list 
of pages (in the process' cPs) into which the data should be written. The 
second Kall blocks until a page is full of trace data and returns that page to 
the user, and the third Kall turns tracing off. Obviously the existence of the 
user-level process might perturb the system in some cases, and caution must 
be exercised to minimize this effect.2 However, the added effort required to 
exercise this caution is more than offset by the flexibility provided. An 
experimenter may, for example, make a trace, process the resulting data, 
examine the results, and decide to alter and re-perform the experiment-all 
while executing in parallel with other users. 

It is extremely important when defining a software tracer such as this one 
to keep its execution overheads as low as possible. There are two aspects of 
this: the overhead when tracing of a particular event is disabled, and the 
overhead when the same event is enabled. By keeping the former overhead 
low we can tolerate the existence of many trace definitions in the production 
version of the system~ when errors or anomalous behavior is observed we 
can enable tracing as a diagnostic tool. By keeping the overhead for enabled 
events low we both minimize the perturbations introduced by tracing and 
permit a finer-grained analysis of behavior. 

The tracer is implemented with a combination of in-line code, subrou­
tines, and microcode. The enabling toggles, for example, are tested in-line so 
that the overhead in the event-disabled case is only 2 instructions. Micro­
code is used to actually make an event-record entry~ the typical cost for this 

20ne can force the process to execute on only one processor, for example. 
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is 65 ILS, or about 26 (non-microcode) instruction times.3 Subroutines are 
used for relatively rare cases, such as when storage must be allocated. 

Our experience indicates that this scheme makes it practical to trace 
events with a granularity of less than 1 ms with little perturbation. 

Figures 16-2 and 16-3 show two common forms of post-processed trace 
output-process time lines and processor time lines. Each figure shows 
activity during approximately 114 sec of real time with a granularity of 2 ms. 
In Figure 16-2, each vertical column represents the execution of one process. 
Blank areas indicate periods during which the process is suspended; each 
period during which the process is executing begins with a line "CPU n;" 
which indicates the processor executing the process. Other lines indicate 
whether the process was in user space ("USER") or what Kall was being 
executed. 

Figure 16-3 is a processor time-line; each column represents the activity 
on a single processor. Blank areas indicate idle periods, "-CSW-" indicates a 
context swap, and the process being executed is identified by the line 
"USER n." 

Many of the features of KMPS and the Message System are dramatically 
revealed in these traces, which follow the activity of the NCP handling an 
NVT -a "network virtual terminal." An NVT looks like a normal terminal to 
other subsystems, notably TMUX. Figure 16-4 shows how the relevant 
processes are connected in the Message System. Seven processes are shown; 
from left to right in Figure 16-2 they are a PM1 scheduling process, the NCP 
output multiplexor, the processor 12 idle job (to show IMP device 
interrupts), the NCP input multiplexor, the socket-pair process, the NVT 
process, TMUX, and the user's command language process. At time 0.910 
we see the NVT starting after receiving a character from the ARPANET, 
causing it to (1) pass the character on to the CL, and (2) simultaneously 
echo it back over the ARPANET to the sender. At time 0.920 the NVT 
executes an RSVPMsg Kall to echo the character; the message is received by 
the socket process, which begins executing on processor 5 and continues on 
processor 13. The socket process in turn wakes up the output multiplexor at 
time 0.990, starting a series of communication between the output multi­
plexor and the IMP device (note the interrupt traffic at time 1.000). Mean­
while, the NVT has also replied the input data back to TMUX (the 
WriteAndRep/y Kall at time 0.935); however, TMUX has arranged to ignore 
normal replies of input, so the Message System routes the reply directly to 
the CL without waking up TMUX. The CL process, however, has been 
swapped out, so we see (at time 0.940) the PM process waking up and 
starting the CL, which begins executing at 0.975 on processor 6. This input 
causes the CL to send some output to TMUX at time 1.015, causing the PM 
process to start TMUX (which actually begins executing at time 1.06 on 

3 An earlier assembly-language coding of this operation required nearly 350 f.1,.S. 
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Figure 16-3 A processor time-line 
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processor 7). TMUX in turn forwards the output to the NVT, which is 
awakened at time 1.090. 

Notice how the WaitTime scheduling parameter helps here: both TMUX 
and the CL had to be started by the PM, taking about 30 ms even though it 
is likply that no paging 110 had to take place. In contrast, the socket and 
NVT processes can be started immediately, since they have not been blocked 
longer than their WaitTime value. 

Finally, notice the dynamic nature of the scheduling. Figure 16-2 shows 
how the socket process executes on three different processors (6, 5, and 13) 
within the 1/4 sec period traced. Conversely, Figure 16-3 shows how 
processor 7 executes, in turn, the input multiplexor, the NVT, the PM, and 
TMUX. 

Figure 16-4 Communication structure for NVTs 

The tracer is probably our most useful tool for software engineers. Many 
designers of user-level applications have used it to determine the perform­
ance bottlenecks in their systems. The process and processor time-lines 
provide valuable insights into the operation of the system -insights which 
would be hard to obtain in other ways. 

16-1.3 The Snapshot Taker 

The purpose of the Snapshot Taker is to permit a relatively large amount of 
state information to be recorded at one moment. Like the tracer, this 
mechanism is implemented within the kernel and is invoked by a special Kall 
from a user-level process. The parameters to this Kall specify the pages into 
which the data is to be delivered. 

One can imagine two versions of a tool such as this: one would "freeze" 
the state of the system while recording that state; the other would not. 
Neither version is ideal for all circumstances. The first can cause massive 
perturbations in the system, making subsequent data questionable. The 
second can yield inconsistent data as the underlying structures are modified 
during measurements. As it happens, we were primarily interested in 
sampling, so only the second form (no freezing) was imp1emented for the 
experiments reported here. 
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16-1.4 Hercules: The Script Driver 

Hercules is a "terminal emulator," or "script driver." It is intended to allow 
an experimenter to place a controlled load on the system so that various 
performance properties can be measured. It accomplishes this by emulating 
the activity of a number of users at terminals; the activity of each 
pseudo-user is controlled by a "script" supplied by the experimenter. A script 
may include: 

• Commands to "type" input to the pseudo-terminal; this input may consist 
of both fixed strings and random numbers drawn from specifiable distri­
butions. 

• Commands to postpone further activity on the pseudo-terminal; delay can 
be for fixed intervals of time, for random intervals drawn from a specified 
distribution, or until a specified response has been received at the 
pseudo-terminal. 

• Commands to generate trace data. 
• Commands to repeat or (conditionally) skip portions of the script. 

In addition, the actions listed above can be made conditional on the "terminal 
number." This facility permits several pseudo-users to be executing the same 
script and yet exhibit different behavior. 

As an example, suppose one wished to measure response time to trivial 
tasks. A common design for this experiment involves placing the system 
under a load consisting of N people performing editing tasks and measuring 
the response as a function of N. A Hercules script can be constructed that 
will simulate N terminals; the initial part of the script might delay itself by a 
random amount of time based on the terminal number-this will avoid 
synchronous activity. The next portion of the script would contain the 
character strings to be "typed" to log into the system and create a file. The 
remainder of the script could be a loop containing a sequence of editing 
commands, delays for the response from the editor, and delays simulating the 
user's "think time." Trace output might simply consist of time stamps at the 
completion of "type-in" and at the beginning of the editor's response. 

Hercules runs as a normal user process under Hydra, and thus it 
consumes resources and potentially perturbs the performance of other pro­
cesses. This has not, however, been a problem. For many initial or 
exploratory studies, the perturbation is negligible. In those cases where final, 
reproducible results are desired, the KMPS scheduling parameters are set so 
that one processor is dedicated to Hercules alone. This reduces by one the 
number of processors effectively in the system, but eliminates perturbations 
other than from memory contention and 110, both of which are small. 
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16-2 EXPERIMENTS AND RESULTS 

Each of the following subsections describes an experiment and its results. 
Many of these experiments are parts of Ph.D. theses, and so we have 
included only the parts relevant to our purpose. We will try to convey the 
intuitions behind the experiment's design and its major results. More details 
may be found in the cited references. 

16-2.1 Oleinick's Rootfinder Experiment 

Relatively early in the Hydra/C.mmp project, Peter Oleinick [Ole78] began 
several experiments to obtain quantitative performance measures for parallel 
algorithms on multiprocessors. Rather than attempting to measure a spec­
trum of algorithms, he decided to focus on a small number of algorithms and 
investigate various implementation tradeoffs in depth for each of them. We 
shall describe the first of these experiments in this section. 

To be suitable for Oleinick's purposes, the algorithms to be studied had 
to have two properties: they had to be complex enough to permit interesting 
implementation tradeoffs, and they had to be simple enough to permit 
attention to be focused on the implementation issues, not the algorithm per 
se. His choice was further restricted by the fact that asynchronous multipro­
cessor algorithms had not been studied in depth and not many were known. 
He finally settled on a simple extension of the binary search algorithm for 
finding the roots of a monotonically increasing function in a bounded region, 
an algorithm we call RootFinder. 

The uniprocessor implementation of the binary search algorithm is well 
known. One simply divides the interval in half and evaluates the function at 
the midpoint. By comparing the sign at the midpoint with those at either end 
of the interval, one can determine which subinterval contains the root. From 
this point one has a smaller interval and simply repeats the process. 

The obvious extension for multiprocessors is to divide the original 
interval into N + 1 subintervals and let one processor evaluate the function 
at each of the N interior points. For Oleinick's study the sub-intervals were 
chosen of equal size even though a different, optimal division was known 
[Kun76]. The function chosen was the normal integral, evaluated using a 
truncated power series in one region and a continued fraction in another. 
The details of these computations are not relevant to the present discussion, 
except to note that the time to evaluate the function is related to the 
argument value and has a known distribution. 

Two implementations of RootFinder were used for the experiments. 
RootFinder-l stored its code in a single memory page which was shared 
among all processes. RootFinder-N provided separate code pages for each 
process. RootFinder-1 was thus much more subject to memory contention 
than RootFinder-N. 
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Much of Oleinick's work involved discovering why the observed perform­
ance of RootFinder did not match its expected performance. Under ideal 
circumstances we would expect RootFinder to generate a "pattern of 
performance" similar to that illustrated in Figure 16-5; each of the N 
processes (processors) completes at the same moment and after some brief 
bookkeeping operations by one of the processes, they all proceed on the next 
set of evaluations. Thus, we expect the overall time to find the root to 
decrease as the logarithm of the number of processes.4 
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Oleinick was able to identify three sources of perturbations which caused 
the expected performance not to be observed. 

Variation in the time to compute F(x). Since the function being studied has the 
property that the time to evaluate F(x) is a function of x, the assumption 
that all processes would terminate at the same time was obviously false. 
Oleinick measured the actual compute time and found it to resemble a 
normal distribution with a mean of 100 ms and values ranging from 50 to 
170 ms. The effect of this non-constant calculation time is to slow the 
entire assemblage of processes to the speed of its slowest member 
because all interior points must be evaluated before the next subinterval 
is chosen and the next cycle begins. 

Variations due to technological factors. The expected performance can be 
obtained only if all processors and memories on the system are the same 
speed. In reality, this is not the case. 

4We assume that the number of processes is no greater than the number of available 
processors. In this case, Hydra will, in effect, dedicate the processors to arbitrarily-chosen 
processes, and the process/processor distinction disappears. 
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Processor Differences. The C.mmp configuration contained both model 20 
and model 40 PDP-Us when the experiments were run. The model 
20 is 50-60% slower than the model 40. Although processes are 
preferentially scheduled onto PDP-11/40s, any experiment using 
more processes than there were 11140 processors observed significant 
slowdown. Surprisingly, even within a single model of the PDP-11, 
significant differences were observed; there was about a 7% differ­
ence between the fastest and slowest 11140 and an 8.3% difference 
between the fastest and slowest 11/20. 

Memory Differences. The C.mmp configuration also contains both core 
and semiconductor primary memory; the speed difference between 
the two technologies is about 5%; additionally, within the memories 
of the same technology, speed differences of 2-3% were observed. 

Memory Contention. The semiconductor memories are capable of deliv­
ering about 1.5 million references/second; the comparable number 
for the core memories is l.7 million references/second. Either 
memory will saturate when three processors are repeatedly accessing 
it. This phenomenon was observed, as shown in Figure 16-6. We 
will further examine it in Sections 16-2.4 and 16-2.5. 

The cumulative effect of all these factors resembles the effect produced 
by the variation in the time to evaluate F(x) -the total cycle time is 
limited by the speed of the slowest processing element. 

Operating system performance variations. Although Hydra is a multi-user sys­
tem, it is possible to reduce operating system overheads by running only 
a single application that makes minimal requests for services (i.e., does 
not do I/O or manipulate capabilities). Most of Oleinick's data was 
collected in this way. It is never possible to eliminate all performance 
perturbations introduced by Hydra. The major sources of these pertur­
bations are: 

The Kernel Tracer. Detailed analysis of the performance of the rootfinder 
was obtained with the aid of the kernel tracer. The use of the tracer 
lengthened some kernel operations-notably synchronization.5 

//0 devices and interrupts. One cannot eliminate all 110 traffic and its 
associated interrupts. The occurrence of such interrupts can cause 
non-negligible perturbations. 

Kernel Processes and Special Functions. Policy Modules, the GST demon, 
and the paging demon can all be awakened at unpredictable times and 
consume measurable processor resources. 

Again, the effect of these variations is to slow the assemblage of 

50leinick's data was collected using the version of the tracer that did not use any microcode, 
so the perturbations are worse than for later experiments. 
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Figure 16-6 Performance degradation due to memory contention 

processes to that of its slowest member. 

The results of Oleinick's study of perturbation sources is summarized in 
Table 16-1. At the left is the maximum performance variation observed due 
to the factors listed at the right; the factors are listed in decreasing order of 
importance. Note that these are the maximum degradations observed before 
remedial action was taken; thus, for example, the 1:3 slowdown due to 
memory contention is eliminated by simply giving each process a private code 
page in a different memory unit. 

Oleinick also used the RootFinder to study the effect of various synchro­
nization mechanisms. Users cannot use the kernel "lock" mechanis ,but 
they can program a "spin lock," a lock that does busy waiting. Also, kernel 
semaphores are not normally provided to user-level programs, but for the 
purposes of this study a special Kall was defined that gave access to this 
mechanism. Thus he was able to study the effect on the performance of 
RootFinder of spin locks, kernel semaphores and regular semaphores 
(POLICYSEMAPHORES). In addition, two Policy Modules were available while 
this experiment was run: PMO and PM1. PM1 included some performance 
improvements as well as the ability to set the WaitTime scheduling parameter 
for a process. The results of his experiments are shown in Figures 16-7 and 
16-8 (the value of WaitTime is denoted by "e" in these figures). 

Figure 16-8 is especially interesting; it illustrates the effect of the cost of 
synchronization mechanisms on the total compute time as a function of the 
granularity of computation between synchronizations. The lower dotted line 
represents optimal performance. The upper dotted line represents 
half-optimal performance-that is, half the time is used for useful computing 
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Table 16-1 Factors affecting the performance of Root Finder 

Magnitude Cause 

1:3.4 Variation in F(x) calculation (a property of the algorithm and the function 
under study rather than of the system). 

1:3 Memory contention for shared code pages. (This effect is eliminated when 
each process is given a private page for its most commonly executed code. 
It would also be eliminated by the cache system that was never 
implemented.) 

1 :2.8 Bottleneck due to Policy Module scheduling. (This effect is eliminated when 
the wait time is set high enough-about 300 ms for Oleinick's experiment.) 

1: 1.6 Variation in processor models. Since performance degraded as soon as any 

11120 was used, it was better to run without them.} 

1: 1.3 Perturbations due to operating system factors such as interrupt processing. 

1: 1.1 Perturbations due to varying performance of primary memories and processors 
of the same model. 

and half for synchronization. One could have chosen a "three-quarters" 
optimal, or any other line. Oleinick, however, chose the half-optimal line as 
a minimal level of acceptable performance. The points where the perform­
ance curves cross this line, then, characterize the minimal acceptable compu­
tation intervals between synchronization events for that mechanism. 

This graph confirms and quantifies (for Hydra, anyway) the intuition that 
as the inter-synchronization interval becomes shorter it is increasingly impor­
tant to have rapid synchronization primitives. 

16-2.2 Baudet's Relaxation Experiment 

Gerard Baudet's thesis [Bau78] is primarily concerned with the design and 
analysis of algorithms for asynchronous multiprocessors such as C.mmp. 
Actually, the bulk of the thesis is more relevant to numerical analysts than t.o 
an evaluation of Hydra/C.mmp, but he did perform one experiment on 
C.mmp that we shall report here. 

The problem of concern is the solution of a partial differential equation, 
the Dirichlet problem for LaPlace's equation in a rectangular domain. Using 
the method of finite differences, the problem can be reduced to the solution 
of a set of linear equations, A x = B. In turn, this system can be solved by 
iterative methods such as that of Jacobi. Baudet considered a number of 
ways in which these iterative methods can be turned into parallel algorithms. 
In each of the methods he studied, the solution vector is divided into k 
partitions, and a separate process is assigned the responsibility for computing 
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Figure 16-7 RootFinder using different synchronization primitives 
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9 

1000 

the "next iterate" values for the components of its partition. He used the 
following methods, which only differ in the choice of the values used for the 
"previous" iterates: 

Asynchronous Jacobi's Method (AJ). This method consists of repeating a cycle 
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in which the value of the new iterate is computed using only the values 
of the iterates computed on the previous cycle. This scheme involves 
synchronizing all processes at the end of each such cycle. 

Asynchronous Gauss-Sidel Method (A GS). This method also involves a cycle as 
in AJ, but each process is allowed to use the new iterate values from its 
own partition in computing subsequent new iterates. Iterate values from 
other par litions are taken from the previous iteration. Like AJ, this 

.. scheme also involves synchronization at the end of the cycle. 
Purely Asynchronous Method (PA). This method does not involve a major 

cycle; each process is allowed to use the most recent value of each iterate 
in the entire vector, x. Since there is no major cycle, there is also no 
synchronization. 
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Figure 16-9 Performance of algorithms for the Dirichlet problem 

Baudet's thesis gives conditions under which these algorithms converge 
and an analysis of the expected performance. Here we will report only the 
experimental results, which consisted of solving Dirichlet's problem for a 
rectangular grid with 21 x 24 points; this results in a linear system with 
n = 504. Convergence was assumed when the initial error had been 
reduced by a factor of ten. At the time this experiment was performed, 
C.mmp had only six processors, so the results displayed in Figure 16-9 are 
given for k = 1, 2, 3, 4, 6. 

The results in Figure 16-9 would, of course be different for different 
problems; they can only be construed as an example of the behavior of 
asynchronous algorithms. Also, it should be remembered that two effects are 
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combined in these results: that of using more recent iterate values and that of 
synchronization. The difference between AJ and AGS is purely the first of 
these- AGS uses the most recent iterates from its own partition. The 
differences between P A and the other two are a combination of both. 
Notice, by the way, that PA achieves essentially linear speed-up in this case­
the best that can be hoped for. 

16-2.3 Oleinick's HARPY Experiment 

The previous two sections are concerned with the performance of single 
algorithms~ in this section we discuss the results of an experiment on the 
performance of a much larger system: HARPY. 

HARPY [Low77] is a system that recognizes phrases and sentences of 
connected speech. The details of the speech recognition task itself are not 
important to us here, so we will give only a brief description of the system. 
HARPY represents its knowledge of both speech and the task domain as a 
weighted, directed graph. Each node in the graph represents a phoneme and 
the weighted arcs represent legal transitions from one phoneme to another, 
with the weight representing the probability of that particular transition. A 
preprocessor constructs the graph, assigning weights based on both the 
legality of particular transitions (as derived, for example, from the syntax 
rules of English) and the likelihood of particular utterances in the task 
domain. 

Given the preprocessed graph and a representation of an utterance, 
HARPY applies a beam search to determine the most likely interpretation of 
that utterance. That is, it searches several of the most likely paths through 
the graph simultaneously, keeping track of the one with the highest proba­
bility. When the terminal nodes of the graph are reached-the most likely 
path is accepted as the interpretation of the utterance. 

The parallel implementation of the HARPY system underwent a series of 
refinements [Ole78]. The final version consisted of a set of processes, each 
of which could either find a successor node or compute the probability of 
reaching the state represented by the (partial) path leading to that node. The 
performance of this system on two tasks is shown in Figures 16-10 and 16-11. 
The two graphs exhibit quite different performances; the primary cause of 
this difference is the amount of work to be done. The DESCAL task (Figure 
16-10) is that of a speech-activated desk calculator and has roughly a 30-word 
vocabulary. The 1,000-word task has information retrieval as its task domain. 
Utterances such as "Please help me," "Who was the author? ," "When was it 
published? ," and "What about program verification?" were part of the 
1,000-word task. 

Several points should be noted from these graphs: 

1. The single-process version of HARPY on the DESCAL task is compar­
able to the uniprocessor versions on both a PDP-I0 (KAI0) running the 
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Figure 16-11 HARPY performance on 1,OOO-word task 

TOPS-I0 operating system and a PDP-11140 running the UNIX operating 
system. Similarly, the ratio between the single-process C.mmp version 
and the PDP-I0 (KLI0) version is about 1:3, better than the ratio of the 
raw machine speeds which is about 1:5. It appears as though neither the 
decomposition into processes nor Hydra's support of multiprocess compu­
tations have affected performance significantly. 
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2. The C.mmp version outperforms the KLI0 version on the 1,000-word 
task after three processes are used; this is the best that could have been 
expected given the speed ratio for the single-process versions. The 
C.mmp version approaches and finally equals the KLI0 version on the 
DESCAL task, but never does better because there isn't enough work to 
keep the processors busy. In this case, communication and synchro­
nization (needed to determine that there is nothing to do) dominate the 
processing times. 

3. Performance actually worsens at 10 processors on the DESCAL task; this 
is where the first PDP-1l/20 processor is used. As with RootFinder, ihe 
synchronous nature of HARPY makes it undesirable to use processors of 
different speeds. 

16-2.4 Marathe's Memory Interference Experiment 

Madhav Marathe [Mar77] studied the effect of memory contention on 
C.mmp in some of the first experiments to use the Hardware Monitor. 

Prior to the design and construction of C.mmp we were extremely 
conscious of the potential for serious performance degradation as the result of 
contention for access to the shared primary memory. Some manufacturers 
had estimated a 10% degradation for each additional processor (i.e., a 40% 
degradation for a 4 processor system); other manufacturers had experienced a 
50-70% degradation for the second processor. Our intent was to design 
C.mmp so that contention would not be a serious problem; the basis for the 
design was a set of analytic models of the contention phenomenon such as 
those by Strecker [Str70], Bhandakar [Bha73], and McCredie [McC73]. The 
design assumed PDP-11/20 processors (the only model of the PDP-ll 
available at the time). Marathe's experiment was designed to determine the 
effectiveness of the design decisions as well as to determine the effect of 
using the (faster) 11/40 processors. 

The use of K.mon constrained the experiment somewhat since K.mon is 
capable of monitoring only one UNIBUS, whereas it would be preferable to 
measure the total switch traffic. However, we can obtain an upper bound on 
the effect of contention. In the presence of contention the processors are 
serviced in priority order (see Chapter 2), so K.mon was set up to monitor 
the lowest priority processor. This processor will experience the worst 
degradation. 

To measure the effect of contention, K.mon was provided with 6 
one-shot flip-flops that change their state after a specified interval. The 
intervals chosen were 0.5, 1, 2, 4, 14, and- 50 j.tS, respectively. By reseting 
these flip-flops at the beginning of a memory request and examining them at 
the end of the request, the duration of the request can be classified into one 
of the six intervals. By accumulating the number of cycles in each interval, a 
histogram of cycle lengths is constructed. Both to avoid systematic errors and 
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because of some limitations of K.mon, the histograms were accumulated by 
looking at a burst of about 160 cycles, delaying for a random period, 
accumulating another burst, and so on. In all, 100,000 cycles were tallied in 
each experiment. 

Experiments were conducted on three workloads: 

Idle. No user processes were executing. Except for clock interrupts and 
occasional demon activity, nothing was running. This load is as light as 
one can imagine; one cannot expect contention to be less. Thus this 
value can be used for comparison with the other two. 

RootFinder-N. This load consisted of 16 processes executing Oleinick's Root­
Finder program discussed previously. Each process had a separate code 
page. Access to the common data is minimal in this algorithm. Since the 
processes are primarily processor-bound, this workload is expected to 
produce contention similar to a number of independent users executing 
different programs, but making heavy use of the processors. 

RootFinder-l. This load also consists of 16 processes executing Oleinick's 
RootFinder program. However, all processes share a common code page. 
Since about 70% of the memory references generated by a PDP-II are to 
the code page, this load makes heavy demands on access to a single 
memory port. A large amount of contention is to be expected in this 
case; indeed, we would not expect contention to ever be this bad in 
practice. 

The results of the experiment for these loads is shown in Table 16-2. 

Table 16-2 Memory cycle length under load 

Cycle length 

0.0-0.5/J-s 
0.5-1.0 
1.0-2.0 
2.0-5.0 
5.0-14.0 
14.0-50.0 
Above 50 

Average 
cycle 
length 

Idle 

o 
88,439 
11,404 

71 
79 
7 
o 

0.85 

Number of cycles 

RootFinder-N RootFinder-l 

o 
85,134 
13,876 

958 
31 
1 
o 

0.88 

o 
69,453 
11,601 
3,344 

15,421 
181 

o 

2.34 

We think this is one of the most encouraging results for C.mmp. As can 
be seen, contention in RootFinder-N causes less than a 5% degradation; the 
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"worst case," RootFinder-1, causes degradation by a factor of almost three. 
The clear implication from this experiment is that, although the user should 
be cautious about sharing code pages, in most applications memory conten­
tion is simply not a factor. Although RootFinder-N in no way simulates a 
timesharing system, we expect independent users to share code pages much 
less frequently than RootFinder-1.6 Furthermore, even shared code pages 
would not be a problem if C.mmp's caches were implemented. 

16-2.5 McGebearty's Memory Contention Experiment 

Patrick McGehearty [McG80] took a somewhat different approach to meas­
uring the memory contention in C.mmp. Since contention can be influenced 
by the mix of instructions executed, McGehearty's experiments were run 
using a synthetic program whose mix of instructions was picked to match that 
measured on a large variety of programs on C.mmp [Mar??]. This mix was 
run on the bare hardware so that there were no perturbations due to the 
operating system, 110 traffic, timer interrupts, etc. All measurements used 
the system clock to determine the time to complete a specified number of 
iterations of the synthetic program. 

A number of interesting results are reported in [McG80], but we shall 
consider only two: the total contention, and the effect of the contention 
resolution scheme used in C.mmp's crosspoint switch. For both of these, the 
machine configuration consisted of 10 PDP-1 1140 processors and 16 memory 
units. [Of the 16 memories, 5 contained 32 pages of semiconductor memory 
(each), 10 contained 16 pages of core memory (each), and 1 had 6 pages of 
core memory.1 

Figure 16-12 displays the total contention effect in terms of the incre­
mental processing power obtained from the ith processor. Two cases are 
considered: (1) all memory units are equally likely to be accessed, and (2) all 
memory pages are equally likely to be accessed. Since some ports contain 
more pages than others, they are more likely to be accessed in the second 
case, and thus more contention will occur. For example, under the assump­
tion that all pages are equally likely to be accessed, the 10th processor will 
deliver about 85% of its potential processing power. This corresponds to an 
average effective power of about 93%-only a ?% degradation due to conten­
tion. 

While conducting the contention experiments, McGehearty noticed that 
different processors received drastically different service. We discovered the 
cause in the priority resolution circuitry in the switch. Recall from Chapter 2 
that when several processors make simultaneous requests for a port, those 
requests are latched into an internal register in the switch. All requests in 

6In a timesharing environment, sharing of code belonging to an editor or compiler is usually 
encouraged, but experience with other systems suggests that this is far less of a factor than is 
usually presumed. 
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Figure 16-12 Incremental processing power with memory contention 

11 

this register are serviced before any other requests are allowed into the 
register. Moreover, the requests in the register are serviced in priority order, 
with the highest numbered processor having highest priority. The intent of 
this scheme is to prevent a processor from being starved, and indeed, to 
provide fair service to all processors. 

At first glance it may appear that the design satisfies these criteria. In 
reality it does not quite do so. Consider the case of three processors 
repeatedly accessing the same memory. Initially all three requests will be 
latched into the register and will be serviced. On the second cycle, however, 
only the two higher-numbered processors will have requests latched into the 
register; the third processor will have just completed a memory reference and 
will not have had time to insert its next request. On the next cycle, the 
middle processor will probably not have its next request latched-again, 
because it had just completed a memory reference and will not yet have had 
the chance to make another. In subsequent cycles the lowest-numbered 
processors will alternate being excluded while the highest numbered pro­
cessor always gets service. 

Figure 16-13 shows the effect of this behavior as the number of com­
peting processors is increased. The bottom heavy line shows the execution 
speeds of the processors alone; the line is not perfectly horizontal because the 
processors have slightly different speeds. The benchmark was then run with 
different numbers of processors; first with processors Nos. 15 and 14, then 
with Nos. 15, 14, and 12, etc. The curves are normalized so that processor 
No. 15's time is 1.0; they show that as the number of processors increase, the 
performance of the lower-numbered (lower switch priority) processors is 
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worse than the higher-numbered processors. In the final IO-processor run, 
processor No. 0 is experiencing about a factor of three worse degradation 
than processor No. 15. 
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Figure 16-13 Starvation due to switch contention resolution strategy 

There is little evidence that this effect is significant for production 
programs on C.mmp. It does, however, provide additional motivation for 
either avoiding heavily shared code pages or implementing the cache scheme. 

16-2.6 Marathe's Lock Contention Experiment 

Another potential source of serious performance degradation is contention for 
software resources. In particular, since Hydra is a distributed system in which 
all processors could in principle be executing kernel code simultaneously, 
there is a potential for long delays due to such contention. The designers 
were acutely aware of this potential performance problem, and consideration 
of it lead to two major decisions: 

1. Lock data items rather than code, and have a large number of locks (i.e., 
protect data in smaller rather than larger chunks). 

2. Provide synchronization mechanisms with different resource consumption 
characteristics: locks, Kernel Semaphores, ports, and Policy Semaphores. 

Marathe [Mar77] studied contention for kernel locks; Jain (see Section 
16-2.7) later studied the other two synchronization mechanisms. Marathe's 
experiments consisted simply of using the hardware monitor to detect entry 
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to the lock subroutine's code (noting the address of the lock cell), to detect 
entry to the code that is executed when blocking occurs, to time the interval 
between lock requests, and to time the interval between a block and 
corresponding wake-up. 

The experiments were performed on four workloads: two versions of 
RootFinder, a synthetic load that exercises most of the kernel operations, and 
a general multi-user session. The two versions of RootFinder were: 
RootFinder-N (K) which used kernel semaphores for synchronization, and 
RootFinder-N(S) which used the regular user-level semaphores. In all cases 
but the multi-user session, there were sufficient processes to keep the 
processors busy. Unfortunately, only some of the data is available for the 
multi-user session. 

The first interesting result of Marathe's experiments is shown in Table 
16-3. There are literally thousands of lock cells in Hydra;? however, some 
are used a great deal more than others. As shown in the table, the most 
frequently used locks are: 

Processor list lock. This lock protects the "processors" list, the list of instan­
taneous processor-process bindings. KMPS maintains this list for sched­
uling purposes. 

Feasible list locks. When these experiments were run, the PM assigned a 
uniform priority, namely, zero, to most tasks and highest priority, 
namely, 255, to others. Thus, only two feasible lists ever contained 
processes.8 

Page-pool locks. This is the set of locks in the storage allocator that are used 
to mutually exclude simultaneous allocations of small buffers from the 
same page. There are typically from 20 to 60 locks (pages) in this set. 

Free core lock. This lock is used to protect the list of available page frames. 
Stop mailbox lock. This lock is used to protect the mailbox through which the 

kernel passes information about stopped processes to a Policy Module. 
KMPS space lock. This lock is similar to each of the page-pool locks, except 

that it is used for a special storage pool used by KMPS. 

All other locks are listed as "miscellaneous," although they collectively 
represent a significant number of the locks used; the use of no one of them 
is significant in isolation. 

A second set of interesting results from this experiment concerned the 
time spent in the various critical sections (Table 16-4). The average 
instruction time during these measurements was 2.8 j.tS; the data indicates 

7There are so many lock cells because data structures, rather than code segments, are 
locked. 

sIn Chapter 12, the list of feasible processes was treated as a single, logical entity. The 
implementation actually subdivided it into an ordered set of eight sublists to increase potential 
parallel access. 
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Table 16-3 Kernel lock use in four applications 

Application 

Lock RootFinder-N(S) RootFinder-N (K) Synthetic Multi-user 

Processor list 15.8% 30.1% 11.5% 34.2% 
Feasible 1 11.8 28.3 10.5 6.0 
Feasible 8 3.4 0.6 0.0 0.3 
Page-pool locks 17.2 0.0 39.4 23.4 
Free core lock 4.6 0.0 5.4 6.1 
Stop mailbox lock 0.9 0.0 0.0 0.2 
KMPS space lock 9.3 0.0 0.1 0.0 
Miscellaneous 29.6 41.1 25.2 23.1 

Table 16-4 Average time within kernel critical sections 

Application 

Lock RootFinder-N(S) RootFinder-N(K) Synthetic 

Processor list 348 J.ts 409 J.ts 379 J.ts 

Feasible 1 192 239 260 
Feasible 8 156 169 
Lock on a page 338 431 
Free core lock 558 307 685 
Stop mailbox lock 282 264 297 
KMPS space lock 109 123 134 
Miscellaneous 318 461 441 

Average 279 378 279 

that from 40 to 240 instructions are executed in critical sections. 
Table 16-5 is a summary of some of the run-dependent data for these 

experiments as well as the "bottom line" information on the contention for 
locks. 

We believe this data is very significant. Processor synchronization causes 
less than 1% degradation in a 16-processor system. Furthermore, Marathe's 
theoretical model of Hydra-like lock contention, validated against the actual 
Hydra data, predicts only a 1.7% performance degradation at 48 processors. 
As a practical matter, even though Marathe's data isolated several locks 
which had a relatively high level of contention, the low absolute level did not 
justify our spending time on obvious remedies. 

16-2.7 Jain's Semaphore and Port Experiment 

From Marathe's data we can draw two inferences, namely, that contention for 
locks is not a serious problem and that the critical sections that are guarded 
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Table 16-5 Summary of lock contention data 

Application 

Lock RootFinder-N(S} RootFinder-N (K) Synthetic 

Active processors 13 14 12 
Test length 17.4 sec 32.9 sec 20.3 sec 
Lock operations 2,955 5,041 4,360 
Times blocked 130 577 146 
Time between locks 5,888 JLS 6,531 JLS 4,646 JLS 

Percent of locks 
that blocked 5.5% 11.7% 6.1% 

Percent of time 
in blocked state 0.29% 0.83% 0.74% 

by locks are not generally large. However, Hydra uses another synchro­
nization mechanism, Kernel Semaphores, and provides two others to users, 
ports and Policy Semaphores. Navindra Jain [Jai79] undertook to analyze the 
use of these mechanisms. We will separately describe his results for Kernel 
Semaphores and for Policy Semaphores (and ports). For each of these we 
will examine the cost of executing the mechanism when a process is blocked, 
the frequency and duration of blocking, the duration of critical regions, and 
the duration of computational intervals between critical sections. From this 
data we can derive the fraction of processing power lost due to blocking. 

Performance of Kernel Semaphores A Kernel Semaphore is intended for 
use only within the kernel. When blocking, the processor is released but the 
memory associated with the user-process is not. Thus, the intended function 
of these semaphores is to protect those critical regions whose duration is 
expected to be significantly longer than the context-swap time, but shorter 
than the time to swap processes out of primary memory. 

The first data collected by Jain was on the overheads associated with 
executing the P and V operations. The coding of the operations has been 
optimized so that the costs in the event that a non-blocking P, or a V that 
does not wake up a sleeping process, are negligible (about 15 instructions). 
However, the other cases are shown in the following table. 

Operation 

P that blocks 
V that wakes a process 

Overhead 

2.1 ms (about 750 instr) 
1.0 ms (about 360 instr) 

The cost of a P operation is measured from the time at which the P 
operation is invoked until the next user process begins running. Thus it 
includes KMPS scheduling and context-swap time as well as the code in the P 
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itself.9 The total CPU effort expended by blocking on a semaphore is the sum 
of the two components, or 3.1 ms. 

The second aspect of Jain's experiment involved collecting data during 
normal multi-user sessions using the kernel tracer. Due to the amount of 
data gathered in this way, it was not possible to enable tracing for long 
periods. Instead, shorter 0-2 minute) samples were collected at random 
periods. 

Jain went on to study the distribution of blocked intervals during 
multi-user sessions. He used the kernel tracer and collected short samples 
0-2 minutes) at random intervais. Tabie 16-6 iilustrates the typical behavior 
observed. 

Table 16-6 Kernel semaphores: blocked periods 

Interval range Number % 

0.0-0.5 ms 
0.5-1.0 
1.0-2.0 
2.0-3.0 
3.0-4.0 
4.0-5.0 
5.0-10.0 
10.0-25.0 
25.0-50.0 
50.0-75.0 
75.0-100.0 
100.0-250.0 
250.0-500.0 
500.0-00 

Blocked interval: 
Mean: 
Median: 

Frequency of blocking: 
Total samples: 

240 
247 
129 
54 
51 
59 

280 
286 
39 
26 
19 
67 

154 
415 

Fraction of processor lost: 

240 ms 

11.6 
11.9 
6.2 
2.6 
2.5 
2.9 

13.6 
13.9 
1.9 
1.3 
0.9 
7.5 
7.5 

20.1 

10 ms (approx.) 
20 blocks/second/processor 
2,066 
0.61% 

Several things should be noted from Table 16-6. First, there are a 
significant number of cases, over 30%, in which the blocked period was less 
than 3 ms. If it were possible to identify which semaphores these were-and 
if those semaphores consistently blocked for less than 3 ms, it would actually 
be cheaper to use locks. Second, there are a large number of cases with 
extremely long blocked durations. Kernel semaphores were not really 

9The scheduling and context-swap times are about equal~ the actual time in P is much 
smaller. 
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designed for this case. Again, it might be possible to possible to exploit 
another mechanism if these cases could be identified. Finally, partly because 
of the non-linear scale, the distribution appears trimodal-which suggests that 
there might actually be three or more separate cases contributing to the total 
behavior. 

This last conjecture was in fact found to be true. We won't reproduce all 
the data here, but Jain found that the semaphores could be classified into five 
groups: 

Kernel tables. No case of blocking was observed. We do not know whether it 
would be better to use locks, but the performance difference would be 
slight. 

GST mutual exclusion semaphores. These semaphores are in the fixed-part of 
every object and are used to prevent simultaneous access by the kernel 
while manipulating the representation of objects. These contribute 
almost all the shorter blocked periods. They appear to be mostly 
uniformly distributed between 0 and 10 ms, with a few cases reaching 
above 30 ms. The average is about 4.3 ms. 

Page semaphores. The semaphores are part of the representation of PAGE 

objects and are used to suspend processes waiting for paging operations. 
They have a sharp peak around 16 ms (the drum rotation time) and a 
few very long blocked periods that raise the average to 38 ms. (These 
long blocked periods involve multiple I/O operations.) 

GST I/O semaphores. These semaphores are used during the transfer of 
objects between the Active and Passive GST; they prevent access to the 
object during the requisite disk or drum 110. Blocked periods range from 
5 to over 100 ms, with an average of 31 ms. 

Sleep semaphores. These semaphores are used by demon processes in the 
kernel; all blocked periods for these exceeded 25 ms and they contribute 
the bulk of those in excess of 100 ms. Their average blocked period was 
312 ms. 

This finer analysis does not suggest that a change in the current use of 
locks and semaphores would substantially affect performance. The longest 
blocked periods, the sleep semaphores, are for demons that run in the kernel 
address space; there are no additional resources that could be released. The 
next longest blocked periods are during I/O for the GST and the Paging 
System; in both cases releasing the process' pages would only precipitate 
additional I/O. Note, however, the frequency of GST Mutex Semaphore 
blocking in the 1-10 ms range makes one wonder whether there is another 
mechanism with cost intermediate between locks and Kernel Semaphores that 
could be used here. 

Tables 16-7 and 16-8 illustrate the distribution of the length of critical 
sections protected by Kernel Semaphores and the intervals between them. 
As can be seen, the typical interval is short. Although the average duration 
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shown on Table 16-7 is 27 ms, much of this is due to a special case where the 
duration is over 2,500 ms. Eliminating this case brings the average down to 
4.15 ms. 

Table 16-7 Kernel semaphores: time in critical sections 

Critical section 
duration Number % 

0.0-0.5 ms 20,236 42.9 
0.5-1.0 8,329 17.6 
1.0-2.0 7,489 15.8 
2.0-3.0 2,463 5.2 
3.0-4.0 2,029 4.4 
4.0-5.0 1,483 3.1 
5.0-10.0 1,898 4.0 
10.0-25.0 812 1.7 
25.0-50.0 815 1.7 
50.0-75.0 601 1.2 
75.0-100.0 232 0.4 
100.0-250.0 254 0.5 
250.0-500.0 34 0.0 
500.0-00 405 0.8 

Time in critical section 
Minimum: 0.04 ms 
Mean: 27 ms 
Median: 1 ms (about 360 instr) 
Maximum: 5,305 ms 

Total samples: 47,143 

Jain's results confirmed our expectations that time lost to synchronization 
is negligible; the time lost never exceeded 1%. This means that total 
contention in the kernel due to synchronization (locks and semaphores) does 
not exceed 1. 7%, or 114 of one processor. We emphasize these results because 
they are contrary to the intuition of many system builders. 

Performance of ports and Policy Semaphores Ports and Policy Semaphores 
were intended as the primary means of communication and synchronization 
among user-level processes. In the event of blocking, a context-swap is 
performed just as in the case of kernel semaphores. In addition, however, 
after a period specified by the policy module (WaitTime) the blocked process' 
pages are made eligible for swapping. 

As with kernel semaphores, Jain first measured the cost of these opera­
tions. For our purposes, namely, an analysis of blocking costs, ports and 
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Table 16-8 Kernel semaphores: intervals between critical sections 

I nterval between 
critical sections No. % 

0.0-0.5 ms 11,360 34.6 
0.5-1.0 5,895 17.9 
1.0-2.0 4,124 12.5 
2.0-3.0 3,902 11.8 
3.0-4.0 2,474 7.5 
4.0-5.0 2,128 6.4 
5.0-10.0 1,073 3.2 
10.0-25.0 492 1.4 
25.0-50.0 304 0.9 
50.0-75.0 112 0.3 
75.0-100.0 98 0.2 
100.0-250.0 216 0.6 
250.0-500.0 337 1.0 
500.0-00 334 1.0 

I ntervals between critical sections 
Minimum: 0.13 ms 
Mean: 19 ms 
Median: I ms 
Maximum: 2,827 ms 

Total samples: 32,790 

Policy Semaphores behave identically-thus we will consider only the latter. I 0 

The cost of a P operation on a Policy Semaphore that blocks (as opposed to 
one that does not block) is 8.7 ms (about 3,100 instructions). As with 
kernel semaphores, this number includes everything from the time at which 
the P operation is invoked until the next process begins to run. Thus, in 
particular, it includes the scheduling and context-swap costs incurred in 
kernel semaphores. The cost to reawaken a process with a V operation is 
6.5 ms (about 2,300 instructions). 

There is an additional cost that is incurred between blocking and reawak­
ening a process, which depends upon whether the blocked period exceeds the 
WaitTime parameter. If B is the blocked period and W is the value of 
Wait Time, then there are two cases: 

B ~ W. There is an additional cost of 2.4 ms to cancel the request to the 
time-out mechanism. 

B > W. In this case the kernel must inform the PM that the process has 
been stopped and make its pages eligible for swapping. Later, when the 
V operation is performed, the kernel must inform the PM that it is 

IOObviously, the ReceiveMsg Kall for ports has some additional cost over a P for 
semaphores. Messages must be dequeued and passed to the user. for instance. 
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possible to restart the process. At both times, the PM must also execute. 
Also, at both times the kernel cost is a function of the number of pages 
in the process' CPS. Finally, there is a cost associated with actually 
moving the pages to and from the drum. If 

n is the number of pages in the process' CPS 
tpm is the Policy Module time 
tpage is the time used to actually move pages 

6.5 + l.8n + tpm + tpage ms 

Thus, the total cost for executing a P operation that blocks is: 

Condition 

B~ W 
B> W 

Total cost 

17.6 ms 
21.7 + 1.8n + {pm + {page ms 

At the time Jain made his measurements, PMl was used exclusively. 
For PM1, the value of tpm is roughly 66.2 ms. Jain also measured tpage~ it 
requires 13.8 ms of CPU time and 48 ms of disk time per page swapped. 
The data for tpage actually involves three transfers for each page-one to 
initially write it out, one to perform a read-check before the core page frame 
is released, and one to read it back in when needed. Unfortunately, the 
actual number of pages transferred cannot be related to n since actual paging 
is performed by a demon process whose policy is related to total system load 
rather than to any property of the individual process. Ignoring ~)age' the costs 
for Hydra together with PM1 are11 : 

Condition 

B~ W 
B> W 

Cost 

17.6 ms 
87.9 + 1.8n ms 

It is not meaningful to ask quite the same questions about ports and 
Policy Semaphores as about Kernel Semaphores. In particular, while the 
kernel might have implemented them more efficiently or might have pro­
vided a different mechanism, it cannot control their use. Thus the total time 
spent executing these operations, and particularly the time spent blocking and 
awakening processes, will be variable with the tasks executing at a given 
moment. 

llThis analysis is slightly different from Jain's due to an apparent arithmetic error on his 
part. The essential conclusions are identical, however, and our analysis appears to agree closely 
with the data from an independent experiment by McGehearty. 
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Jain did measure blocking during multi-user hours; to do this he used the 
kernel tracer just as he had done for measuring Kernel Semaphores. Again, 
the properties of the tracer limited the period over which a single meas­
urement could be made, and experiments consisted of a number of samples 
taken at.random intervals. The distribution of blocked intervals is given in 
Table 16-9. 

Table 16-9 Ports and Policy Semaphores: blocked intervals 

Delay duration No. % 

0.0-3.0 ms 3 0.0 
3.0-5.0 507 13.8 
5.0-10.0 129 3.5 
10.0-17.6 92 2.5 
17.6-25.0 438 11.9 
25.0-50.0 434 11.8 
50.0-75.0 641 17.5 
75.0-100.0 367 10.0 
100.0-200.0 375 10.2 
200.0-300.0 74 2.0 
300.0-400.0 59 1.6 
400.0-500.0 31 0.8 
500.0-1000.0 241 6.5 
over 1000.0 261 7.1 

Blocked durations: 
Minimum: 2.4 ms 
Mean: 490 ms 
Median: 60 ms 
Maximum: 58,919 ms 

Total samples: 3,652 
Sample period: 166 sec 
Processor time in block/awaken: 8.5% 

The average time lost to synchronization with Policy Semaphores is about 
8%. This is larger than for kernel synchronization but still fairly small. Over 
80% of the blocked durations are less than 300 ms (the standard value of 
WaitTime for PMl), so these processes will remain resident in primary 
memory. Also note that there are a significant number of processes that 
block in excess of 500 ms; these are probably processes waiting for terminal 
input. (Recall from Chapter 10 that every user talking to his command 
language has a JMON process waiting in the background.) 

Thus it appears that a majority of user-level process are effectively using 
the same logical mechanism as kernel semaphores-but at over five times the 
cost each time a process blocks. While this does not substantially affect 
system throughput, it can be a significant influence on an individual user's 
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application, as is shown by Oleinick's data. Those processes that do block for 
more than 500 ms could probably be handled by making terminal I/O a 
special case. 

These conclusions should be interpreted relative to the particular costs in 
Hydra. We still believe in the concepts of multi-level synchronization primi­
tives and in policy/mechanism separation. The relatively high costs of 
kernel-entry and domain-crossing in the implementation of Hydra, however, 
make our version of user-level semaphores of dubious value. 

16-2.8 Marathe's SmaH-Address Effect Experiment 

The C.mmp programmer faces a problem not unlike that faced by the 
programmer of an IBM series 360 computer. The physical address space is 
much larger than the "offset" portion of an instruction. In both cases, to 
access the full space the programmer must maintain a set of registers and 
form addresses relative to these registers; the registers in question are "base 
registers" on the IBM/360 and "relocation registers" on C.mmp. 

Most PDP-11 programmers, of course, do not face the problem . of 
managing relocation registers because most PDP-II systems do not provide 
more than a 56-64K address space. Programs either live within that limit or 
use traditional overlay techniques. It is interesting to ask, therefore, to what 
extent the ability to manage the relocation registers is used on C.mmp and 
what impact, if any, it has on performance. Marathe used the hardware 
monitor to study one aspect of this problem, namely, the use of relocation 
registers in the kernel [Mar77]. 

Table 16-10 Assignments of kernel space relocation registers 

Register Use Contents 

0 Stack page Fixed 
1 Common Data page Fixed 
2 Data page Overlay able 
3 Data page Overlayable 
4 Code page Overlay able 
5 Common Code page Fixed 
6 Local Memory Hardware 
7 110 Device Registers Hardware 

To understand the following data, we first must discuss the kernel's use 
of its relocation registers. The registers are assigned as shown in Table 16-10. 
Hydra's use of them is typical of many large application programs. Some 
registers hold fixed values by programming or hardware convention; others 
are changed dynamically to address code or data. The stack page is manda­
tory. Judgments are made as to what code (data) to place in the Common 
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Table 16-11 Frequency of relocation register access: sixteen samples 

Instructions Accesses to Instructions Instructions 
executed in to relocation per per 
kernel registers access change 

45,226 2,913 15.5 46.5 
73,433 5,130 14.3 42.9 
33,568 1,843 18.2 54.6 
55,957 3,438 16.3 48.9 
48,256 3,099 15.6 46.8 
33,258 1,837 18.1 54.3 
33,161 1,798 18.4 55.2 
36,759 2,072 17.7 53.1 
39,239 2,359 16.6 49.8 
68,575 4,729 14.5 43.5 
49,366 3,196 15.4 46.2 
35,238 1,980 17.8 53.4 
66,763 4,595 14.5 43.5 
32,973 1,824 18.1 54.3 
69,702 4,768 14.6 43.0 
68,953 4,653 14.8 44.4 

Averages 

49,401 3,139 16.3 48.8 

Code (Data) page and what code (data) to swap. Hydra has somewhat less 
flexibility in managing relocation registers than do user programs because 
relocation registers 6 and 7 in kernel space are not actually usable. 

Marathe's experiment consisted of executing RootFinder-N (see Section 
16-2.4) and sampling sixteen I-second intervals. During each sampling 
interval, the number of kernel instructions and the number of accesses to 
one of the relocation registers were measured. In most (but not all) cases 
the kernel code saves and restores relocation registers using a standard 
Bliss!11 macro. The save-load-restore sequence involves three accesses to a 
relocation register; so in Table 16-11 we display both the raw data and an 
adjustment for the multiple references per change. As can be seen from 
Table 16-11, a relocation register is accessed, on the average, every 16.3 
kernel instructions. It would appear, then, that relocation-register manipu­
lation costs only 5.5% in kernel performance. Unfortunately, this number 
belies the real price of C.mmp's relocation register structure. First, it does 
not account for the cost of the other code and data needed to maintain the 
relocation-register values. Second, it does not account for the added diffi­
culty of programming the machine. Users agree that the small address space 
is the worst feature of C.mmp and causes substantial increases in program­
ming time and errors. Finally, it does not account for the (inestimable) cost 
of not being able to make the data-part of objects directly addressable. 
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16-2.9 The Small Address Effect on HARPY 

In Section 16-2.3 we discussed the performance of the HARPY speech 
recognition system. The performance on two tasks was mentioned-the 
30-word DESCAL task and the 1,OOO-word information-retrieval task. An 
important difference between the performance of HARPY on these two tasks 
was not explored in that section-and we will now do so here. 

The data base for the 30-word task is small enough to fit into the 16-bit 
address space of a PDP-ll. The data base of the 1,OOO-word task is not, and 
thus explicit memory relocation must be programmed. The question of 
interest is whether the need to use this facUity has any effect on the 
performance of the 1,OOO-word version. 

To answer this question, a special version of the 30-word system was 
constructed. Just as in the regular version of the 30-word task, the complete 
data base was held in primary memory and it was never necessary to alter a 
relocation register. However, the special version did test to see whether a 
relocation register change was needed-just as the 1,OOO-word version must 
do. The results of this experiment are shown in Figure 16-14. As is 
obvious, the system pays a healthy penalty-nearly a factor of three-to 
support the possibility that an addressing change might be needed. 
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Figure 16-14 The effect of the small address space on HARPY 

16-2.10 McGehearty's Kall Measurements 

In the spring of 1977, McGehearty examined the frequency and cost of the 
various kernel Kalls found in interactive tasks. We shall report only a portion 
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of his results here; the remainder may be found in [McG80]. In particular 
we shall look at the results obtained by using the kernel tracer to examine 
five activities: 

• Entering SOS, an interactive text editor written in L * (a list processing 
and system building language 

• Leaving SOS 
• Listing a small file on the line printer 
• Entering TECO, another interactive editor written in Blissl11 
• Leaving TECO 

The two editors and the listing program were invoked from the command 
language interpreter and involved using the directory system to look up the 
object to be edited. Returning from the editors involves returning to the 
command interpreter. Thus each of these activities involves substantial 
protection-domain crossing, moderate 110, and relatively small programs and 
data. Taken together, we believe they are representative of the heaviest use 
of kernel facilities in interactive systems on Hydra/C.mmp. In a sense they 
represent the opposite extreme from compute bound tasks such as Baudet's 
relaxation experiment, which is completely compute-bound. 

Table 16-12 gives the relative proportion of time spent in the kernel as 
opposed to at user-level during the execution of these tasks. Time inside the 
kernel is further divided into time spent in interrupt routines (hence handling 
1/012) as opposed to time spent directly handling KalIs. Note that these 
applications were chosen because they are heavily Kall-intensive; they are 
probably not typical of a normal user load. 

Tables 16-14 through 16-19 give a detailed list of all of the kernel 
operations used during these activities-their frequency and their minimum, 
maximum, and average costs. Table 16-13 summarizes this data.13 

To interpret these data properly, one should bear in mind that in early 
1977 essentially no optimization or tuning had been done to Hydra. Since 
that time, 

• PDP-11/40 processors are used instead of the 11/20s on which this data 
was collected. This means that the Kall timings should be reduced by 
about 40% to come into agreement with later measurements. 

• The Call mechanism was improved in several ways. The average Call 
time is now 20-30 ms rather than the 60 ms cited. 

• A microcoded implementation of RPSLoad now exists; it requires 18 p.s 
rather than the 350 p.s taken by the version reported here. 

12The I/O being handled is not necessarily related to the activity being measured; it includes 
kernel demon activity, clock interrupts, etc. 

13Some Kalis are omitted in the detail tables because they have not been discussed in this 
book. Table 16-13 includes all calls, however. 
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With the exception of a few operations that were handled specially (e.g., 
RPSLoad), the minimum cost for any Kall is over 700 p.,s in this data-about 
150 instruction times. Sadly, it takes this much code to validate the stack and 
do other kernel entry checks. We believe this is due mostly to the PDP-II 
architecture. 14 

Table 16-12 Processor activity under an interactive load 

Response User Kernel Interrupt 
Activity (sec) (%) (%) (%) 

Entering SOS 11.0 26.9 51.8 21.3 
Leaving SOS 5.0 15.3 50.8 33.9 
Listing a File 10.0 9.2 56.6 34.2 
Entering Teco 4.0 29.6 45.4 25.0 
Leaving Teco 2.3 19.3 47.0 33.7 

Table 16-13 Kall usage in interactive tasks 

Activity No. of % of all % of 
class KalIs Kalls Kalls 

Call mechanism 248 6.8 35.9 
Ports and Semaphores 1,155 31.7 18.4 
Paging Kalls 1,193 32.7 9.7 
Create and Copy 76 2.1 8.9 
Capability manipulation 710 19.5 9.2 
Policy Module Kalls 204 5.6 12.5 
Update 16 0.4 4.7 
Alter kernel tracing 17 0.4 0.4 

Table 16-14 Kall timings: the Call mechanism 

Operation No. Mean Max Min 

Call 5 92.5 ms 163.6 ms 33.0 ms 
TypeCall 55 67.2 128.5 31.2 

(Average Call) 60 69.8 
Return 56 42.9 144.2 16.4 
Merge 22 2.1 2.9 1.5 
Compare 27 1.3 3.1 0.6 
LNSLength 23 0.5 1.0 0.4 

14This checking involves making sure there is enough stack space to handle the Kall or 
interrupt, decoding the Kall number and branching to the correct code, locating the Kall 
arguments, saving the user's registers, etc. 
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Table 16-15 Kail timings: ports and semaphores 

Operation No. Mean Max 

ReceiveMsg 70 7.8 ms 23.9 ms 
ReadMsg 47 2.6 3.0 
WriteMsg 50 2.7 5.3 
RSVPMsg 73 5.6 12.8 
CreateMsg 17 4.5 5.9 
ReplyMsg 13 5.0 6.7 
GetMsgCapa 3 2.6 2.7 
PutMsgCapa 2 3.7 4.2 
Connect 2 3.2 3.2 
Disconnect 3 6.5 9.2 
RequeueMsg 4 4.0 4.2 
P (Pol. Sem.) 23 2.3 7.4 
V (Pol. Sem.) 24 2.0 4.7 
P (Kern. Sem.) 340 2.4 9.0 
V (Kern. SemJ 410 2.0 5.9 
PConditional 70 2.0 5.5 

(Kern. Sem.) 

Table 16-16 Kail timings: paging Kalis 

Operation 

CPSLoad 
RPSLoad 

Table 16-17 

Operation 

Create 
Copy 
MakeData 
MakePage 
Make Universal 

No. 

47 
1,092 

Mean 

27.4 ms 
0.35 

Kall timings: object creation 

No. Mean 

21 29.4 ms 
4 51.6 
8 11.3 

28 15.6 
15 15.5 

Min 

2.9 ms 
2.3 
2.5 
3.5 
2.8 
3.1 
2.6 
3.3 
3.2 
2.3 
3.9 
1.2 
1.9 

.7 

.7 
1.4 

Max 

74.8 ms 
4.1 

Max 

145.5 ms 
66.3 
17.2 
33.0 
25.7 

Min 

0.7 ms 
0.3 

Min 

7.5 ms 
17.2 
6.7 
6.3 
6.4 
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Table 16-18 Kall timings: C-list and data-part manipulations 

Operation No. Mean Max Min 

GetCapa 128 3.3 ms 51.6 ms 0.8 ms 
GetData 177 1.8 5.7 0.7 
PutCapa 68 3.2 26.8 0.7 
PutData 59 1.7 3.3 1.4 
Delete 170 2.0 28.7 0.7 
CLength 22 2.0 16.8 1.0 
DLength 26 1.0 1.4 0.9 
AppendCapa 32 2.8 16.4 1.7 
PassCapa 25 3.0 16.8 1.0 
P(1ssAppendCapa 1 10.1 10.1 10.1 
Interchange 2 2.1 2.5 1.8 

Table 16-19 Kall timings: Policy Module interactions 

Operation No. Mean Max Min 

StartProcess 36 22.2 ms 72.9 ms 8.9 ms 
StopProcess 2 2.6 2.9 2.4 
ReceivePolicy 66 7.7 13.1 2.2 
AttachPolicy 2 2.6 3.2 2.0 
Runtime 11 1.4 1.9 1.0 

(Delay) 58.1 214.1 1.0 
SetSchedParms 12 1.5 2.1 1.2 

We can make several general observations about HydratC.mmp from this 
data. 

1. Even the simplest KalIs take on the order of 500 J-ts on a PDP-I1I40; 
faster communication between user and kernel code is needed. This 
involves the architectural details inherent in the PDP-II. 

2. Capability manipulation is not inherently difficult; the minimum times are 
barely more than just kernel-entry costs. The longer maximum (and 
average) times result when objects must be swapped in from the Passive 
GST. 

3. The Call mechanism is slow, but not necessarily because of anything 
intrinsically difficult in domain switching. Rather; it is our implemen­
tation of domain switching that is expensive. For instance, every Call 
creates a new LNS object; and Create alone averages 30 ms out of Calfs 
total of 70 ms. We believe that several other implementation approaches 
could have been used to advantage, and we shall say more about this later 
(using the data in the tables). 

4. Interprocess communication in Hydra is really faster than procedure calls. 
The pair of composite Message System KalIs, ReceiveAndRead and 
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WriteAndRSVP, take about 14 ms, compared with 40-S0 ms for the 
improved Call plus Return. 

S. Process context switching is also slow, probably on the order of 1 ms. 
This is largely due to the large amount of hardware state involved in our 
rpodified PDP-lls and memory relocation hardware. 

It is interesting to contrast this collection of data with that from, for 
example, Oleinick's HARPY experiment. The two, we believe, represent 
extremes. HARPY is basically compute bound, makes few calls on Hydra, 
and uses the full processing power of the machine; Hydra does not degrade 
its performance. The present data, on the other hand, represents a case in 
which most of the "action" is achieved by the programs' extensive use of the 
kernel operations-and here half, or more, of the time is spent in the kernel. 
During general user sessions, depending upon what users are doing at a given 
moment, the ratio lies somewhere in the middle of these extremes. 

16-2.11 Size of the Hydra Kernel 

Reporting the code size of the Hydra kernel is not an "experiment" in quite 
the same sense as the others in this chapter. Nonetheless, it seems relevant 
to discuss the size of Hydra and the distribution of that size among its 
component pieces. 

Table 16-20 attempts to break down the total system into meaningful 
units, but any such breakdown has its own set of peculiarities. The portion 
labeled "Debugging," for example, contains most of the mechanisms used to 
debug Hydra, but some of them are located in "Autorestart" and in the other 
specialized modules. Similarly, most of the code for communication between 
the kernel and a Policy Module is contained in KMPS, but some is in 
Message System code. Finally, we are unable to properly reflect certain 
distributed costs. In particular, error detection and recovery, debugging 
facilities, and tracing all involve code that is distributed throughout all the 
modules; the tables given in the table are only for the service routines that 
provide the mechanisms that support these facilities. Error detection and 
recovery is, perhaps, the most notable example of this; we have no way to 
measure its impact, but some modules such as 10 and the GST may have as 
much as 30% of their code devoted to this. Thus, although the table 
represents our best attempt at a meaningful breakdown, the numbers should 
be treated as indicative, not absolute. 

The data in Table 16-20 was derived from a linkage-editor map of the 
system during October 1979. Of course, the size of the system fluctuates 
slightly as changes are made. The size of the various modules in words can 
be converted to a number of instructions by dividing by I.S; from other 
sources we know that the typical PDP-II instruction is 3 bytes long. Also, 
we have made various measurements of the size of the kernel in terms of 
lines of source code. On the average, one line of Blissl11 source yields one 
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Table 16-20 Size of the Hydra kernel 

Functional 
classification Words Percent 

I/O 
Device handlers 30,786 23.6 
Common support 4,832 3.7 

GST 20,740 15.9 
Operations 12,019 9.2 
Debugging Support 11,467 8.8 
Protection mechanism 8,564 6.6 
Paging 7,897 6.0 
Messages and Semaphores 7,617 5.8 
KMPS 7,557 5.8 
Initialization 5,644 4.3 
Exception handling 4,493 3.4 
Autorestart 3,852 2.9 
Storage Allocation 2,838 2.2 
Tracing 1,018 .8 
Processor support 637 .5 
Bliss support 663 .5 

Totals 130,624 100.0 

compiled instruction. This means that the entire kernel is about 100,000 
lines of code. 

The most obvious conclusion from this data is that Hydra is large-much 
larger than the designers imagined before they started. The second obser­
vation is that a large fraction of code is devoted to things unrelated to the 
philosophy of Hydra: 110, error recovery and diagnostics, initialization, opera­
tions, debugging, etc. 

In addition to the obvious conclusions, however, this data also provides 
some insight into other aspects of Hydra/C.mmp. Consider, for example, the 
storage allocation module. This module provides allocation of small areas of 
storage for buffers, messages, etc. The original intent was to use an 
algorithm called "quick fit" that had been in use in the Blisslll compiler and 
was known both to be fast and to avoid fragmentation problems [Wei76]. 
This algorithm, coded for the PDP-10, is less than 200 instructions. Yet, as 
you can see, the Hydra storage allocator is an order of magnitude larger. 
Why? 

In the earlier section discussing the use of relocation registers by the 
kernel, we asserted that the data belied the difficulties caused by C.mmp's 
mapping structure. One of those difficulties is reflected in the size of the 
storage allocator. Although it would be unfair to lay the whole blame on the 
small address problem, it is a major factor. Because of the mapping 
hardware, allocated chunks must be entirely within a single page. Thus, 
while the "quick fit" algorithm could be applied within a page, it was 
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necessary to devise mechanisms that could search through multiple pages, 
could return an entire page if it became free, could request new pages when 
the currently allocated ones are full, and so on. Moreover, one had to devise 
policies that would tend to avoid situations in which only a small fraction of 
each page was occupied, and so on. As it became obvious that performance 
of the allocator was a major factor in the speed of some kernel operations, it 
was necessary to devise efficient intra-page search lists. In short, what had 
been a simple problem on a machine with a larger address space, became a 
much harder problem than simply managing the relocation registers. 

16-2.12 McGehearty's "Stretch Factor" Experiment 

Despite the fact that Hydra was intended to be used in an interactive, 
time-sharing mode, the lack of a large user community resulted in relative 
neglect of this aspect of the system's performance. Comparatively few 
measurements were made that characterize its perfor~ance in this mode, and 
essentially no effort was put into improving that performance-it was "good 
enough" for the light loads normally encountered. Thus, in this section we 
will simply present the results of the one controlled experiment in this area 
that was available at the time of this writing; it is not an ideal characterization 
of the system's performance as a time-sharing machine, but it is all the data 
we have. We expect much more complete results to be available in 
McGehearty's thesis, [McG801. 

McGehearty used the script driver to put a controlled load on the system. 
The load consisted of n identical simulated terminal users. Each simulated 
user would request an amount of computing drawn from an exponential 
distribution with a specified mean. The simulated user would wait for the 
response to this request and then enter a period of "thinking" before making 
the next request for computation. The duration of the "think time" was also 
drawn from an exponential distribution with a specified mean. Each of the 
simulated jobs was a simple compute-bound loop and did no input or output 
other than accepting the next compute request and sending a character to 
indicate completion of a request. 

McGehearty expressed the results of this experiment in terms of the 
"stretch factor." Under no load, a request for c seconds of computing should 
complete in roughly c seconds, corresponding to a stretch factor of 1. As 
load increases, however, the user will observe that it takes longer and longer 
for the system to complete the request. When the time to respond is 2c, the 
stretch factor is 2. In general, then, the stretch factor is the observed 
response time divided by the no-load response. 

Figure 16-15 displays the results for a 9-processor system. As can be 
seen, the number of jobs varied between 1 and 50. Three cases were run; in 
each case the mean think time was 10 seconds, but the mean compute time 
per request was 1, 5, and 10 seconds, respectively. Shown on the graph are 
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the theoretically optimal response, the mean measured response, and the 
90th percentile lines (90% of all requests responded in less than the time 
indicated by these lines) . 
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Figure 16-15 "Response stretch factor" as a function of load 

The observed stretch factor in these experiments is quite close to optimal. 
Without Hercules we could not have observed this behavior, because it is 
seldom we have more than a dozen users on the system. 

16-2.13 Almes' Study of the Active GST 

Almes [Alm80] studied both the Active and Passive GST. His goal was. to 
implement a parallel garbage collection algorithm; this algorithm is now used 
in the system to eliminate unreachable objects from the GST. In order to 
make the garbage collection acceptably efficient, Almes needed data on the 
way that the GST is actually used: object sizes, creation rates, any depen­
dencies on object type, and so on. The complete data from this study is 
available in an appendix to Almes' thesis [Alm801. Here we shall try to 
summarize only highlights and trends in the data; however, we strongly 
recommend careful examination of the complete data to anyone contem­
plating building a capability-based or object-oriented system. 

We will first focus on Almes' experiments on the Active GST; the 
following section will consider the Passive GST study. The study of the 
active GST consisted of two experiments-one collected data during normal 
user sessions and the other under a simulated load. The second of these 
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resulted in more detailed analyses than were practicable during normal user 
sessions. 

The Active GST during user sessions In the summer of 1978, a modified 
version of Hydra was run for three weeks. This version recorded a small 
amount of data concerning object passivation and destruction. Several 
interesting pieces of data were obtained: 

• 1,007,621 objects were destroyed during this period. Of this number, 
over 98% had never been passivated-that is, they were created and 
destroyed without ever having been written to disk. Of the remaining 
objects destroyed, two-thirds were "old" in the sense that they had been 
created before the most recent system restart, and one-third had been 
created during the current session. 

• 282,200 objects were passivated because their active reference count 
became zero while their total reference count was non-zero. (See Section 
11-2.1 for a discussion of reference counts.) 

• 128,070 object (representations) were passivated by the GST demon. 
• 38,109 Update KalIs were made. 

The most striking result in this data is that the vast majority of Hydra 
objects, 98%, or 38,000 per day during the test period,15 are created, used, 
and destroyed without ever being passivated. In retrospect the reasons for 
this are clear-the majority of these objects are LNSs, DATA objects used for 
parameter blocks, and so on. Alas, the GST contained no optimizations for 
these special and frequently occurring objects; the full mechanism is available 
and applied to all objects. 

The Active GST under artificial load Since the amount of data that could 
be collected during user sessions was limited, more elaborate experiments 
were performed under a collection of artificial loads. Each experiment was 
conducted in the following way: 

1. Hercules, the terminal emulator, was used to simulate five users repeat­
edly performing some task. The tasks used included copying and editing a 
Commands object (a special kind of file that contains command-language 
programs) and retrieving a text file from the PDP-I0 via the ARPANET. 

2. After the simulated programs had been running for awhile, the kernel 
tracer was invoked to record all creations, activations, passivations, and 
destruction of objects. 

3. Once enough trace data had been collected, the "snapshot taker" was 
invoked to capture the state of the Active GST. After the snapshot was 

15The load on C.mmp was not heavy during this period. Even during its heaviest periods of 
use, there were seldom more than a half dozen people using the system. 
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taken, Hercules was terminated. 

As a quick indication of the load generated by these tests, during one 
particular trace lasting 66 seconds, 1,343 objects were created and destroyed; 
this is a rate of 20 objects per second, or 4 objects per second per user. 
These objects had a mean lifetime of 8 seconds, and a median lifetime of less 
than 5 seconds. Because the load was light (5 simulated users), these 
numbers presumably are determined by the task characteristics and funda­
mental time constants of the system (CPU speed, Hydra Kall costs, etc.), not 
by contention for resources. 

The major resuits of these experiments are iisted beiow: 

Creation rate. As noted above, the creation/destruction rate is much higher 
than we anticipated, and most objects are never passivated. 

Number of types. During these tests, 38 distinct types appeared in the Active 
GST; there were 13 kernel-defined types and 25 user-defined types. 
Table 16-21 lists the most common types as well as those that use the 
most storage. 

Object sizes. Figures 16-16 and 16-17 summarize the size of the C-list and 
data-part of objects. As can be seen, 

• 50-60% of all objects have a C-list. 
• The average C-list is 260 bytes (about 16 capabilities). 
• 95% of the objects have a data-part. 
• The average data-part is about 130 bytes. 

There is a strong correlation between an object's size and its type; we will 
not explore this further here, but it implies that systems could exploit 
this correlation. 

Locking. At any instant, 1-2% of the active objects are locked. 
Reference counts. Figures 16-18 and 16-19 show the distribution of reference 

counts and provide an indirect measure of sharing. As can be seen, the 
mean total reference count is 5 and the mean active reference count is 4. 

Objects in both the Active and Passive GST. Even though 98% of all objects are 
created and destroyed without having been passivated, 45% of the objects 
in the Active GST are also in the Passive GST. Moreover, there is a 
strong dependence on type: 

• Eleven of the 38 types present in the Active GST had less than 10% 
of their objects on the Passive GST; many of these are kernel-defined 
types (e.g., LNS) that cannot be passivated. 

• Seventeen of the 38 types present in the Active GST had more than 
90% of their objects in the Passive GST; generally these were 
user-defined types. 
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Table 16-21 Active GST types 

Most numerous types 

Type % Cum% 

Page 25.0 25.0 
Universal 14.6 39.6 
Procedure 8.8 48.5 
Semaphore 6.0 54.6 
LNS 5.3 59.9 
Port 4.3 64.3 
Device 4.1 68.5 
Process 3.8 72.3 
SoSFile 3.7 76.0 
PMProcess 3.1 79.1 
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Figure 16-16 Active GST summary: C-list sizes 
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Figure 16-19 Active GST summary: active reference counts 

16-2.14 Almes' Study of the Passive GST 

I I 

800 900 

The second major part of Almes' study concerned the use of the Passive GST 
and consisted of a static analysis of its contents- the number of objects, their 
types, sizes, and reference counts. 

The standard operational procedure for "backing up" the GST involves 
copying the entire passive GST onto spare disk packs. This is done three 
times each week. Since one disk drive was always available to be assigned to 
a user program, it was possible to mount the backup packs on this drive and 
analyze them with user programs. To this end, a special program was written 
that 

1. Eliminated all but the most recent version of an object (the system 
normally keeps the previously most recent version as well) 

2. Eliminated all unreachable (i.e., "garbage") objects 
3. Recorded the global name, type, time-stamp of last update, C-list and 

data-part sizes, (total) reference count, and the global name of each 
capability in its C-list 

A post-processing program analyzed this data and produced a number of 
interesting statistics: 

1. During the period under study, the Passive GST contained on the order 
of 20,000 objects. 
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2. Eighty-two distinct object types were observed, of which 14 are the kernel 
types. Of the remaining (user-defined) types, only 25 were in general use 
(many of the other user types were either obsolete or were used only for 
debugging the subsystems that supported the 25 generally used types). 
The most frequent types, and the most space-consuming types, are shown 
in Table 16-22. 

3. The sizes of objects are shown in Figures 16-21 and 16-22. These sizes 
are somewhat different than those for the Active GST, as may be seen in 
Table 16-23. 

4. The total reference counts are much smaller than in the Active GST. As 
can be seen in Figure 16-20, the mean total reference count is 2 and the 
median is 1. Fully 85% of all objects have a total reference count of 1. 

It should be noted, by the way, that the size information may be a bit 
misleading. Almes measured only the space in an object. This makes good 
sense for all objects except pages since the actual 8K-byte segment repre­
sented by a page is not contained in the object's data-part. Unfortunately, it 
is not clear what should be measured in the case of pages; page segments are 
precisely 8,192 bytes long regardless of how much information is actually 
contained in the page. Since Almes was primarily concerned with the GST 
itself, not with total storage requirements, it seemed more reasonable to 
exclude the space devoted to the page images. 

Table 16-22 Passive GST types 

Most Numerous Types Types with Most Total Store 

Type % Cum % Type % Cum% 

Page 35.3 35.3 Procedure 22.6 22.6 
Universal 17.3 52.7 Commands 20.8 43.4 
Procedure 7.9 60.6 Page 16.6 60.0 
Semaphore 7.7 68.4 Universal 12.1 72.1 
Commands 6.3 74.7 S u bCatalogue 8.2 80.3 
Data 5.3 80.0 Data 6.5 86.8 
Catalogue 4.9 85.0 Semaphore 2.6 89.4 
SubCatalogue 4.9 90.0 Catalogue 2.1 91.5 
SuperFile 2.0 92.0 Directory l.6 93.1 
SoSFile l.3 93.3 SuperFile 1.5 94.6 
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Table 16-23 Mean sizes of objects in the Active and Passive GST 

Part Active GST Passive GST 

Fixed-part 64 bytes (20%) 64 bytes (29%) 
Data-part 124 bytes (38%) 105 bytes (47%) 
C-list 138 bytes (42%) 53 bytes (24%) 

Total size 326 bytes 222 bytes 

16-3 RETROSPECTIVE 

I 

8000 

As we noted in the introduction to this chapter, there are many reasons why 
the various results reperted cannot be compared or combined casually. 
Caution is necessary. However, it seems fair to conclude the following. 

Tools In general, the tools available for measurement have been adequate. 
In a few cases, such as a better analysis of memory contention, another tool 
would have been desirable. However, the limitations of the tools have been 
less important than the benefits of being able to use them interactively during 
normal user sessions. 

Contention Under normal use, contention is low-both for hardware and 
software resources. We believe that the decisions to build a distributed 
system, to reject a master/slave hierarchy, to lock data rather than code, and 
to have a large number of locks were correct and that that belief is supported 
by the data. There are, however, two exceptions to this conclusion: 

• Ports and Policy Semaphores are much too slow. This, we believe, is 
primarily the result of an improper implementation. Despite the WaitTime 
facility, most of the work of stopping a process and preparing to return it 
to its PM is done every time the process blocks on one of these objects. 
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A simpler implementation would have used an ordinary Kernel Sema­
phore and a demon to handle processes that block longer than their 
Wai.tTime value. Had we done this, the overhead of blocking on Policy 
Semaphore objects would have been similar to that of blocking on Kernel 
Semaphores. 

• Pooling resources such as processors and memory is usually the correct 
approach. However, in a system without caches, and in the presence of 
shared code pages, we should have provided another mechanism, some­
thing that allowed the programmer to indicate that (1) separate copies of 
the pages should be created, and (2) that these copies should be placed in 
different memory units. 

Synchronization We do not know whether providing the analogs of locks 
and kernel semaphores to users would have been appropriate. The issue is 
not technical, but rather a matter of operational policy. Possession of either 
locks or kernel semaphores allows the individual user to preempt resources 
that could otherwise be given to another user. Wisely used, of course, both 
of these facilities could save those resources for all users. Alas, the kind of 
protection provided by capabilities does not address the (mis) use of a service 
to which a user has access. 

Efficiency As is usually the case, the most important component affecting 
performance is the user's algorithm, not the operating system or resource 
contention. 

Policy/mechanism separation The concept of policy/mechanism separation 
still seems a good one to us, but its cost in the Hydra implementation is too 
high. Moreover, there is no agreement among us about the cause for this or 
how to correct it in a second iteration. Some of us believe that the level of 
the kernel-PM interface is too low and that the kernel should be allowed 
more discretion over paging decisions; in this model, the PM adopts a more 
advisory role. Others of us believe that precisely the opposite is the problem 
and that the PM should have more control over (for example) paging 
decisions independently of scheduling decisions. This latter group argues that 
the PM, and the kernel/PM interface, are slow because the PM must 
second-guess too many kernel actions. 

The object model The GST should be optimized according to the observed 
usage patterns. More hardware support, and particularly support for 
short-lived objects would be a great help in this. 
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The small address space Oleinick's HARPY data clearly shows the per­
formance penalty paid by processes wishing to address large data segments. It 
does not show the increased programming burden, although we think that is 
just as great. 

With a large virtual address space, the direct addressing of objects' 
data-parts becomes feasible and the need for separate PAGE objects may 
disappear. This would also simplify the programming of many subsystems. 





CHAPTER 

SEVENTEEN 
REFLECTIONS 

In this chapter we would like to reflect again upon what we learned from the 
Hydra/C.mmp experience, and what we hope others can learn from us. 

Much of what appears here is simply a rephrasing of the more important 
points that appeared in the retrospective sections of earlier chapters. There is 
only a limited amount of organization that can be placed on a chapter like 
this. It is inherently a list of (only) somewhat related points; so, except for a 
wrap-up at the end, we shall not try to pretend otherwise. 

On multiprocessors Generally, the architectural structure of C.mmp was a 
complete success. In particular, 

• The memory contention that has plagued other multiprocessors was 
simply not present under normal loads. 

• The simple interprocessor interrupt structure proved completely adequate. 
• The asymmetry of the I/O structure, the fact that devices are attached to 

particular processors, posed no problem to creating a symmetric virtual 
machine at the user level. 

• The crosspoint switch, a potential reliability bottleneck of the system, in 
fact proved to be one of our most reliable components. 

If the ground rules were the same again, that is, if we were to be asked to 
build another symmetric multiprocessor, we would not change these deci­
sions. We would not, for example, want a more powerful interprocessor 
communication facility. Neither would we want a distributed processor/ 
memory switch. 

Issues of technology and cost aside, simplicity and symmetry are among 
the greatest allies of the system designer/implementor. Cost factors might 
dictate a hierarchical switch structure, but its existence would simply add 
another problem to those that the software and users must cope with. The 
ability to treat all processors as identical, and the ability to assume that the 
access time from any processor to any memory is identical, both simplified 
the design. Had I/O been symmetric, it would have simplified the design 
even more. 

The realization of C.mmp, as opposed to its design, has a number of 
failings that we correct in a second iteration: 

275 
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• The "small address problem" was unanticipated, and most unfortunate. It 
skews almost any attempt to evaluate the machine and its software. 
Sixteen-bit computers were relatively new when we started on C.mmp, 
and we had little choice-but we certainly would not choose a 
small-address machine again. 

• Reliability was a much greater problem than we had anticipated. In large 
measure this resulted from our naive assumptions about the reliability of 
the PDP-11. In retrospect, however, our own designs should have been 
more robust to the problems generated by the 11s. We believe that 
reliability will be a major issue in the coming decade, and a fundamental 
attitude which a designer must have is suspicion toward all other compo­
nents. This is equally true of hardware and software. One cannot allow a 
malfunction in one component to disable another. 

• Initially we thought that it would be possible to partition the system and, 
for example, do hardware maintenance on one partition while running 
Hydra on another. This didn't work for several reasons, including the 
inability to reconfigure devices and the presence of transients when 
components were powered up or down. We would strive to achieve a 
partitionable system next time. 

In general, we believe that it's possible to make two major mistakes at 
the outset of a project like C.mmp. One is lo design one's own processor~ 
doing so is guaranteed to add two years to the length of the project and, quite 
possibly, sap the energy of the project staff to the point that nothing beyond 
the processor ever gets done. The second mistake is to use someone else's 
processor. Doing so forecloses a number of critical decisions, and thus 
sufficiently muddies the water that crisp evaluations of the results are 
difficult. We can offer no advice. We have now made the second mistake I -

for variety, next time we'd like to make the first! Given the chance, our 
processor would: 

• Be both inherently more reliable and go to extremes not to propagate 
errors~ once an error is detected, it would report that error without 
further effect on the machine state. 

• Provide rapid domain changing~ we see no inherent reason that this 
should require more than, say, a dozen instruction times. 

• Provide an adequate address space~ actually, rather than a larger number 
of address bits, we would prefer true capability-based addressing at the 
instruction level since this leads to a logically infinite address space. 

There are other things, of course, but these are the most important. 

lTwice, in fact. The second multiprocessor project at C-MU, Cm*, also uses the PDP-II. 
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On multiprocessing The multiprocessing structure of Hydra seems sound to 
us. A number of other multiprocessor systems have experienced debilitating 
overheads; most of these systems have been adaptations of operating systems 
that were initially designed for uniprocessors. Hydra clearly shows that a 
system engineered from the start for multiprocessing need not suffer these 
problems. Typically, for example, less than 1% of the processing power is lost 
to software contention. Critical to this are some of the more fundamental 
decisions: 

• TIle decision to build a symmetric system, as opposed to a mastei-slave 
one, was correct. It is hard to prove that without having done it both 
ways, of course, but we believe the system is both simpler and more 
efficient because of this decision. It's simpler because it's more regular. 
It's more efficient for two reasons: (1) we can fully exploit the parallelism, 
and (2) a processor can directly perform whatever service is needed-one 
never has to ask the "master" to do it. 

• The decision to lock data rather than code was also correct. This is now 
the modern theology-but it wasn't when we began in 1971. It seems 
clear to us that this decision, coupled with the decision to have a large 
number of locks (alternatively; to have each lock guard a small structure) 
is the reason there there is so little software contention. 

• The decision to provide several levels of synchronization still seems like a 
good idea to us. Certainly the distinction between locks and Kernel 
Semaphores was crucial to the system's performance. In a second 
iteration of the design we would make the semantics of these identical, 
rather than merely similar. We would also implement Policy Semaphores 
differently. However, the concept of multiple levels would stay-and 
might even be expanded to include other levels, say between Kernel 
Semaphores and Policy Semaphores. 

• We believe that having better linguistic constructs, such as monitors, 
would not improve reliability; experience indicates that making critical 
sections small causes an increase in the complexity of the algorithms (and 
more errors) outside the synchronization primitives. 

The realization of the multiprocessing aspects of Hydra is pretty good, 
too. Of course there are things we would change, and of course we think we 
could make it both smaller and faster in a next version. However, we see 
these changes as fine tuning a generally sound approach. What would we 
change? 

• We would use more processes in Hydra itself. We would not go to the 
extreme that some recent systems have of making essentially all services 
into processes- the subroutine model is too natural, and usually more 
efficient. We would use processes to delay those actions which logically 
(or naturally) occur asynchronously. Often this can be done with no 
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visible change to the semantics~ at other times a slight change is benefi­
cial. 

• The interface between KMPS and Policy Modules needs to be completely 
rethought. We still believe in principle that an efficient policy/mechanism 
separation is possible, but we did not achieve it. The benefits of such 
separation are great, and we would not easily abandon them. As of this 
writing, however, we do not have a firm idea of how to achieve it 
efficien tly. 

• The (in)efficiency of Policy Semaphores is closely, but not completely, 
associated with the problems of the KMPS-PM interface. Within the 
context of the current interface, we now believe more efficient Policy 
Semaphores are possible. If this more efficient implementation had been 
used, we would feel less guilty about not providing Kernel Semaphores or 
locks to users. 

It is probably worth noting, in addition, that the use of semaphores did not 
create especially difficult synchronization problems. In a next iteration we 
would be tempted to use more modern notions of synchronization such as 
monitors. However, the absence of a more structured mechanism did not 
result in many, or especially serious problems. To be sure, there were 
synchronization errors, but it is not clear that simply a better linguistic 
construct would have avoided these. 

On the object model The object-oriented, type-extensible, capability-based 
structure of Hydra is, in some ways, its most interesting contribution. We 
think there are a lot of things right with it, a few things that are wrong, and 
some things we would just like to change. 

First, at the top level, the concept of providing a kernel that supports 
type-extension is exactly right. The addition of a protection mechanism that 
smoothly extends to allow dynamic type creation is also correct. 

• The approach allows for, indeed caters for, the inevitable evolution and 
adaptation that all real systems experience. 

• The approach is non-preemptive. No user must suffer with inappropriate 
facilities ifhe has the energy and gumption to define the appropriate ones 
for himself. Much the same comment applies to the protection facilities. 
Security and protection are related, but distinct, concepts. For the 
"typical" user, the base protection facilities of Hydra will be adequate for 
the kinds of security he needs. But, for applications needing greater (or 
simply different) security policies, they are definable within user-level 
code. 

• The intrinsic costs of the approach are low. Hydra's overheads (especially 
for Call) are too high, but these costs are not endemic to the approach­
as we could have proven had we had the opportunity for a second 
iteration. 
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Second, capabilities are the right basis for providing this kind of 
object-oriented, extensible environment. We would, however, change sev­
eral things about our design and implementation of capabilities and objects. 
Aside from preferring the "right" hardware, we would: 

• Optimize the system toward small, short-lived objects. Where before our 
mental model for the size and creation rate of objects was that of "files" 
in a traditional system, our model now would be that of "records" in a 
programming language. 

e ~Y1ake the notion of "subsystem," or "type definition," actually, more 
central and explicit. Several things are involved here. First, we now 
believe that TypeCall is more fundamental than Call. Second, we believe 
that the full generality of rights amplification is not necessary for the vast 
majority of applications. Finally, we believe that the collection of proce­
dures that define a type should be a first-class concept in the system; this 
collection is really a more important notion than that of the individual 
procedures. Thus, in a next iteration we would probably have a notion of 
type-defining-module with multiple entry points and complete amplifi­
cation of objects of the type being defined. 2 

Third, we would reconsider the "one-level store" decision. We believe 
that from a programming point of view, this abstraction is a good idea. We 
would strive to keep it-and, indeed, make it complete by eliding the Update 
Kall. However, supporting this abstraction adds substantial complexity and 
size to the kernel. It would be nice to find a way to remove this complexity 
from the portion of the system that operates unprotected. One possibility, for 
example, is to make Passive GST management, like Policy Modules, a 
user-level subsystem. Seeing how to do this in a secure way is an interesting 
problem that we leave to our readers (see also [Stu74]). 

Finally, there are a collection of problems that we didn't address: 

Accounting. No one "owns" an object in the Hydra scheme of things; thus it's 
very hard to know to whom the cost of maintaining it should be charged. 

Incremental backup. In conventional file systems it's possible to incrementally 
dump the updates to a file and thus recover it if necessary. The 
corresponding operation for the GST is much more complex because of 
its graph structure. Indeed, in the presence of sharing, it's not at all clear 
what the intended effect of a back-up should be. 

Revocation. Revoking privilege in a capability system is more difficult than in 
an "access list" system. Roger Needham, however, once observed that 
"this, like all other problems in Computer Science, can be solved by one 
more level of indirection." Schemes for adding this level of indirection 

2The designers of the CAL system [Lam76] foresaw the importance of both short-lived 
objects and subsystems and designed them into their system. 
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are sometimes called "aliases" and are now reasonably well known 
[Red74]. We would like to have seen such a scheme implemented and 
used. 

For the few who are still skeptical about the possibility of using 
higher-level languages for operating systems, we must note that all but a very 
small fraction of Hydra is written in Bliss/H. About the only assembly 
language code appears in code which is so machine-specific that it is actually 
clearer in assembly language. This includes the context-switching mech­
anism, the error detection mechanisms, and the processor diagnostics. It 
does not include any of the interrupt routines or I/O drivers, which are all 
written in Bliss. 

We should also note that the Blissl11 compiler produces exceptionally 
fine object code. Although we cannot prove it, our feeling is that Hydra 
would have been less efficient if it had been coded in assembly language. It 
certainly would have been nearly impossible to maintain. 

In the next iteration we would certainly choose a more modern imple­
mentation language, particularly one that provides type definition and check­
ing (and preferably full data abstraction facilities). To be acceptable, it would 
have to produce code comparable to that which we are accustomed to. Under 
no circumstance, however, would we revert to assembly language. 

On managing a research project One cannot avoid making a few comments 
about the management and research strategy of the project. In general, the 
management was loose. There was one faculty member (WuIO nominally in 
charge of all aspects of the project. There was one full time engineer from 
the start, and two full time software people were added at later stages. The 
remainder of the project consisted of other faculty, interested in their own 
research aspects of the project, and graduate students. In practice, the 
subprojects functioned as autonomous groups, meeting as necessary to re­
solve problems. 

In an industrial context, and even in some universities, such an informal 
organization would not have worked. Indeed, several of Hydra/C.mmp's 
failings can be traced to the management. However, it was a style that suited 
the particular individuals-and perhaps that is more important than adherence 
to some preconceived notions of management structure. There are, how­
ever, a number of management decisions that we would make differently 
given the opportunity: 

• In at least one dimension, we were too ambitious. We set out to build a 
full, general-purpose, time-sharing system. In retrospect, there was no 
chance that we could construct all the software necessary to achieve that 
goal-editors, compilers, debuggers, etc., in addition to the operating 
system. We should have chosen a narrower goal and supported it 
extremely well. Had we done so, we would have attracted more users, 
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who in turn would have developed more software and hence attracted 
more users, and so on. 

• Reliability is not an add-on feature. We should have designed the error 
detection and recovery facilities into the base system. Patched on, as they 
were, they worked reasonably well- but not nearly as well as they might 
have otherwise. In this regard, it's worth noting the power of the notion 
of "hitting the leading term," that is, covering the most common errors. 
Our experience is that, at any given stage, most errors arise from one of a 
small number of sources. Providing the software to detect and recover 
from those errors produced dramatic improvements in reiiabiiity. 

• Generally, we invested too little, too late in tools. The one exception to 
this was Blisslll, which was a big "win." For the most part, however, we 
developed debuggers, hardware diagnostics, etc., only after beating our 
heads against the wall. 

• One always tends to focus on the new, exciting aspects of a problem. We 
were no exception. We focused on the contention problems and on the 
capability/object mechanism. We neglected much of the user-visible 
interface until too late. 

17-1 REFLECTION ON THE REFLECTIONS 

Our goal in writing this monograph was to describe, as best we could, the 
design decisions in Hydra/C.mmp and the consequences of those decisions. 
Our hope is that by doing so, our colleagues who also design and implement 
operating systems will profit from our experiences. To that end, we felt that 
the "reflections" section of each chapter was an essential, if subjective, part 
of the book. 

For a number of reasons, our reflections tend to focus more on the 
things that are wrong with Hydra/C.mmp than on the things that are right 
with it. The performance bottlenecks, the awkward places, the inconsis­
tencies and missing parts all present obstacles to using the system. They get 
in one's way and hence are much more noticeable than the things that are 
well designed, efficient, and "smooth." The fact remains, however, that 
overall we feel the system was a great success-and much of it ought to be 
emulated in future systems. 

Hydra/C.mmp routinely runs with from 8 to 16 processors, depending 
upon how many are functioning at a given moment. Configuration is 
automatic, and memory contention is negligible. It normally runs without an 
operator and automatically detects and recovers from nearly all hardware and 
software failures; the period between (necessary) manual reloads is more 
than an order of magnitude larger than the time between failures. 

Users routinely spawn a large number of processes, sometimes 50 or 
more per job, and the overhead for managing these is comparable to, or less 
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than, those in other systems. When needed, essentially the full processing 
power of the machine can be applied to a single problem. In· more typical 
multi-user situations, response is comparable to that observed in conventional 
systems. 

Definition of traditional operating system facilities by user-level subsys­
tems is the norm. Several command languages, directory (catalogue) sys­
tems, file systems, and schedulers (Policy Modules) can and do coexist. 
Through use of TypeCall, facilities such as command interpreters and com­
pilers need not know which file system, for example, they are using. 

Hydrate.mmp works extremely well. Yes, there are rough edges, but its 
remaining problems are those of any ambitious new system and provide the 
fodder for further research. Hydra addresses problems that we feel will 
become extremely important as computing becomes ever more ubiquitous. 
We feel that the approaches and solutions it provides are portents of the 
systems of the future. 
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