it

Report to

CONFERENCE on DATA
SYSTEMS LANGUAGES |

Including

INITIAL SPECIFICATICNS
for a COMMON BUSINESS

ORIENTED LANGUAGE (COBOL)

for Programming
Electronic Digital Computers

|

i
|
DEPARTMENT OF DEFENSE APRIL 1960

R e

OFFICE OF THE ASSISTANT SECRETARY OF DEFENSE
WASHINGTON 25, D. C.

COMPTROLLER

g

This report has been prepared through a cooperative
effort of computer users in industry, the Department of
Defense and other Federal Government agencies and computer
manufacturers, It is believed that the use of Common
Business Oriented Language (COBOL) can assist materially
through reduced programming efforts, in achieving a more
effective and economical utilization of electronic digital
computers.

The material is published for instructional and infor-
mational purposes. Its use in Department of Defense agencies
is encouraged.

Comments and suggestions pertaining to this publication
should be addressed to the Director, Data Systems Research
Staff, Office of the Assistant Secretary of Defense (Comp-
troller), Washington 25, D. C.

s SO
W. Carl Blaisdell

Deputy Comptroller
Financial and Operating Management

COBOL

Initial Specifications
for a

COmmon Business Oriented Language

This report was prepared by the Short Range Task Force of the Conference
on Data Systems Languages and accepted by the Executive Committee January 7-8,

1960,
This report is a technical reference manual detailing the initial specifications

of COBOL., It is not intended to be a training or teaching manual, and assumes a
fair knowledge of data processing on the part of the reader.

For sale by the Superintendent of Documents, U.S. Government Printing Oftice, Washington 25, D.C.

ii

FOREWORD

To the Conference on Data Systems Languages

Subject; COBOL - Initial Specifications for a COmmon Business Oriented Language

At a meeting January 7 - 8, 1960, the Executive Committee accepted and
approved for publication and distribution to the Conference the subject report of
the Short Range Committee dated December 17, 1959, The Executive Committee
believes that such initial specifications for COBOL are a major contribution in the
development of a single business data processing language. COBOL represents
the only method of expressing business data processing problems acceptable by
such a wide group of data processing systems. Most of the manufacturers of data
processing equipment have recognized the benefits to all users and to manufac-
turers of using a common programming language and most of the manufacturers
have agreed to provide COBOL compilers as part of their programming service to
customers,

In addition to editing the report (and preliminary specifications) for typo-
graphical and other minor errors, the Executive Committee rewrote Part I,
Introduction, Section 4, Phasing, and Section 5, Maintenance, now reflect the
Executive Committee's wish to emphasize the fact that deficiencies in the initial
specifications are well recognized together with the establishment of a mechanism
by which such deficiencies can be overcome promptly and effectively,

The Conference on Data Systems Languages is a voluntary cooperative effort
of users of data processing systems (both in the government and industry) and
manufacturers of data processing systems. The objective of this effort is to
develop a common language, basically in English, which is oriented toward business
data processing problems, open-ended and independent of any make or model of
data processing equipment. The initial specifications for such a COmmon Business
Oriented Language (COBOL) as set forth herein represent the first milestone
toward this objective,

The Executive Committee recommends that users of general purpose computers
consider the use of COBOL in programming business data processing problems.

Chairman
Executive Committee
Conference on Data Systems Languages

TABLE OF CONTENTS

FOREWORD

DETAILED OUTLINE OF COBOL REPORT

L

VI.

VII,

INTRODUCTION

1. Objectives « . . « . v v v v v v i v v w . PPN .
2.History.... * e e 6 s e s e e s e
3. Attribution. e e e e et e e e e e e .

4.Phasing............... e e e e
5. Maintenance . ., , s e e e e
6. Acknowledgment. , e e e e e

CHARACTERS AND WORDS

1. CharacterSet
2. Words

NOTATION USED IN VERB AND ENTRY FORMATS

IN THIS REPORT
PROCEDURE DIVISION

1. General Description, , , , e e e e e
2. Formulas , , , , ., e et e e e e e e e e e e
3. Conditionals , , , .,
4, Rules of Formation Of Procedures e e e e e e e e ..
5. Evaluation of Conditional Sentences . e e e e e e e e e s
6. Verbs S,
7. List of Key and Optional Words in the Procedure Division,
DATA DIVISION

1. General Description. , ., , e e e e . ..
2, File Description . , .,

3. Record Description s e e e e e e e
4 Summary, ., ., . ., 0000
5. List of Key and Optional Words in the Data Division .

ENVIRONMENT DIVISION

General Description . , .,
Configuration Section , , , , .
Input-Output Section, , , , .,

.

nhWN:—ﬁ

ooooooooo

ooooooooo

List of Key and Optional Words in the Environment Division,

iii

1-43

1-44

1-12

iv

VIII. REFERENCE FORMAT VII:

1. General Description.00 1
2. Procedure Division e e e e e e e .. 1
3. Data Division. e e et e e e e e e e e e e 3
4. Environment Division e e e n e e e e e e e e 3

IX. SPECIAL FEATURES IX:

1. Libraries . . .« ¢ vt v b e et e e e e e e e e e . 1
2, Segmentation e et h e e e e e e e e e e e e 1
3. Sequence Numbers e e e e e e e e 2

APPENDICES
A. Comprehensive Rules For Forming Algebraic Expressions . . A:

B. Rules for Forming Compound Conditions. B:
C. Complete List of ReservedWords C:

1-2

1-2
1-2
1-2

DETAILED OUTLINE OF COBOL REPORT

Page
I. INTRODUCTION I 1
1. Objectives , , ., ., .. . e e e e e e e 1
ZHistorY 1
3. Attribution, ., , Gt e e e e e e e e e e 2
4. Phasing. . ., ... e e e e e e e e e e e e 3
5. Maintenance ., . , ., 4
6. Acknowledgment. e e 6
7. Figure - COBOL Maintenance Orgamzatmn e e e e e e e . 8
II., GENERAL DESCRIPTION OF COBOL II: 1-2
1. Philosophy . e e e e e e e e e e 1
2. COBOL System Descriptlon e e e e e e e e e, 1
III. CHARACTERS AND WORDS Imr: 1-7
1. Character Set , . . e e e e e e e . 1
110haractersUsedForWords S e Nt s et e et e eees 1
1.2 Characters Used For Punctuation 1
1.3 Characters Used In Formulas , |, C e et e e e e e e e 1
1.4 Characters Used In Relations , . C et e e e e e .. 1
1.5 Characters Used In Editing . . . e e e e e e e 1
1.6 Summary of Allowable Characters e e e e e e e . 2
2. Words
2.1 Definition of Words, , , et e e e e e e e e e e 2
2-2TypesofWords............... c. 2
22,1 Nouns , , ., .. it it e 2
a) Data-Names... e e e e e e e e 3
b) Condition-Names , , , ., 3
¢) Procedure-Names ., ..,............ 4
d) Literals , , ., , . . et e e i i e e e e . 4
e) Figurative Constants e e e e e e e e e e 4
f) Special Register, , . ., e e e 4
g) Special Names . , ., ..., .,.......... . 5
2.2.2 Verbs ., ., ... e e e . 5
2.2.3 ReservedWords . ., v e e e e s .. 5
a) Comnectives . , 5
b) Optional Words ., , , Gt v e i e .w B
c) KeyWords. , ., e vee. B
2.3SpecialUsage......................... 5
2.3.1 Qualifiers. N c t i e e B
2.3.2 Subseripts. e 6
2.3.3SerieS...a...................v.. 17
IV. NOTATION USED IN VERB AND ENTRY FORMATS
IN THIS REPORT Iv: 1

Page
V. PROCEDURE DIVISION V: 1-43

1. GeneralDescription . . « « ¢« ¢ ¢ ¢ ¢ v o v v v 0 0 o000 e

2. Formulas
3. Conditionals

3.1 General Description ,

3.2 Conditions , ., . . .

3.2.1 General Definition e e e ..

3.2.2 Simple Condition . . . e e e

a) ConditionName00

b) Relations . . . v v v v v v v v v v o oo v oo

c) Tests . . . v v v v o oo oo

3.2.3 Compound Condition 0.

-

W LWNNDNDNDN -

4. Rules of Formation of Procedures
4,1 General Approach ., vt o v v v o a v 0 0o
4.2 EXpressions ., s s ¢ oo 0 0 0 o o

4.2.1 Imperative Expressmn . o s s o2 .
4.2.2 Conditional Expression, . , . . e e e e

4,3 Statements , . . .
4,3.1 Imperative Statement e e e e e e e e e
4.3.2 Conditional Statement,

4,4 Sentences,
4,4,1 Imperative Sentence

a) Simple Imperative Sentence .,

b) - Compound Imperative Sentence ,

4.4.2 Conditional Sentence . . .

a) Simple Conditional Sentence .,

b) Compound Conditional Sentence.,

4,5 Paragraphs.,o
4,6 Sections . .,

S I X = X~ R R K RO LR L

ooooooooooooo

5. Evaluation of Conditional Sentences
5.1 General Notation , , ., ¢ o v o v o e v o s oo
5.2 Simple Conditional Evaluation , , .,
5.3 Compound Conditional Evaluation ,

5.3.1 AND IF
5.3.2 OR IF (Inclusive)
5.3.3 AND ALSOIFor (;IF)

0 &

.
.
-t
-~ QO WwWw

6. Verbs
6.1 List By Categories . , .
6.2 Formats

ACCEPT . .
ADD/ ., ..
ALTER
CLOSE , , .
COMPUTE , .
DEFINE, ,
DISPLAY . .
DIVIDE . ., .. 22

ooooooooooooooooo

~ Page

ENTER i i it it e e ee e 23

EXAMINE¢¢0¢oeueuon. 24

EXIT e e e e e e e e eee 25

GO C e e e e e e e e e e e 26

INCLUDE e e e e e e e e 27

MOVE e e e s e e 28

MULTIPLY v v i e e .. 30

NOTE i it i i v, A) |
OPEN........... e e e e e e e 32

PERFORM e e e e e 33

READ i i it i it it i ieeie 36

) e e .. 38

SUBTRACT e e e e e e 39

USE., e s e e e e 40

WRITE¢.'vueeeueun. 41

7. List of Key and Optional Words in the Procedure Division

7.1 KeyWords e e e s e e et e e e e 42
7.1.1 KeyWords ForVerbs ., e e .. 42

7.1.2 Additional KeyWords. e e e 43

7.2 Optional Words . . . v v v v v v v v vt v e v 0 s v v.. 43

VI. DATA DIVISION VI: 1-44
1. General Description

1.1 Overall Approach. 1
1.2 Organization . .., 1
1.3 Structure . , ., et e e e e e e e e e e e e 92

2. File Description

2.1 General Description , , , 2
2,2 Entry Formats . , e e e e e e .. 2
2,2.1 General Notes ., e e e e e 2
2.2.2 Specific Formats , , e e e e e e e . 3
Complete Entry ., , . . ., .. e e e e 4
Block Size . ., . ., ., 6
CoPY . , . .. e e e e e e e e e e e e 7
DATARECORDS , , , ., ..., C . 8
FILE Size, , ,,,....... e e e e 9
LABELRECORDS , ,,,.,....,...... 10
RECORD Size , , ., .., 12
RECORDING MODE , , ., ., ., 13
SEQUENCED , , 14
VALUE e e e e .. 15
3. Record Description
3.1 General Description

3.1.1 Elements of Record Description 16

3.1.2 Concept of Computer Independent Record
Descriptions T {4

3.1.3 Conceptof Levels. « v v v v v v v v v 0 v v v v u. 17

viii

3.1.4 Conceptof Mapping + « + ¢« ¢« ¢« ¢ o ¢ o o o« 18
3.1.5 Basic ConceptofSigns e e e e e 18
3.1.6 Concept of CharacterBase 19
3.2 Entry Formats
3.2.1 General NoteS . . . v ¢ ¢ ¢« v s v o o o o o o oo 19
3.2.2 Specific Formats e e e e e e e e ... 20
Complete Entry Skeleton . , , , ., 21
BASEt e et e e 22
CLASS | ., . i i v et et oo s o s e 23
COPY | ... i it it ittt e st aee s 24
Data-Name ., ., . . e e e e e e e e e 25
Editing . ., e e e e e e e e 26
JUSTIFIED e e e e e e e e .27
Level Number ., 28
OCCURS''veeoeeusenen .29
PICTURE. e e e e e . . 30
POINTLOCATION ,¢... 31
RANGE .| , ¢ i it it v v s oo 32
REDEFINES .| ¢t oo oo 33
] (63 34
SIZE i i i i i i e e e e e e e e 35
SYNCHRONIZED , 36
VALUE ittt tvnnnn 37
3.2.3 Specific Entry For Condition-Name , . , 38
4, Summary
4,1 FileSection, , . . v v v v v v vt v v v esssoes 38
4.1,1 Organization , , , ., 38
4,1.2 Specification and Handlmg of Labels . Ve e s e ... 39
4,2 Working Storage Section , , ., e e e e e . 41
4,2.1 Organization , , e e e e e e 41
4,2.2 Non-Contiguous Working Storages e e e 41
4,2.3 Initial Values ., , ., v v v v st oo v v oo 42
4.2.4 Condition-Names ., . . . v v o o o o s o o o s s« 42
4.3 ConstantSection . , o' v v v euonn 42
4,3.1 Organization , , ,c0c... . 42
4,3.2 Description of Constants . e e e e e e e 42
4.3.3 Tablesof Constants , ., ., e e e .. 42
5. List of Key and Optional Words in the Data Division
5.1 KeYyWOTAS v v v v v v v et oo v o oo n oo e as 43
5.2 Optional Words e e e e e e e e . 44
VII. ENVIRONMENT DIVISION VII: 1-12
1. General Description
1.1 Overall Approach, . , e e e e e e e 1
1.2 Organization . , , ., ... C e e e e e e e e e .. 1
1,3 Structure , ., , 0o 1

Page

Page

2. Configuration Section
2.1 Source-Computer. e s a s e s s s e e e e
2.2 Object-Computer « . .« o« . .
2.3 Special-Names . . . + o ¢ o ¢ ¢ s o o 0 s s s o ¢

v N

3. Input-Output Section
3.1 File-Control « ¢« ¢ ¢ ¢ ¢ o o e e e e e e e
3.2 I-0-Control. « « ¢ ¢ ¢ v o v o ¢ o o o o o o o n o o 0 oo

© -3

4, List of Key and Optional Words in the Environment Division
4,1 KeyWoOrds . . v o v v v v v o v o o v o o o o o oo o oo 11
4,2 Optional Words . « « « v v v e v o o v v o v o o0 s oo 12

VII. REFERENCE FORMAT VIIL: 1-4

General Description . .+ ¢ ¢ v ¢« ¢ v 0 v oo e s e oo e e 1
. Procedure Division . . . « ¢ ¢ ¢« « ¢« o 0 oo 0o e 0. . e e e 1
. Data Division e e e e e e e e e s e e e e 3
. Environment Division ¢ . e e e e e e s 3

[

IX. SPECIAL FEATURES X: 1-2

1., Libraries . « ¢ ¢ o ¢t v s o 0 e e e e e 000 e e e e e s 1
2. Segmentation e s e e b s e e s e e e e e e e e 1
3. Sequence Numbers. e e e e e e e e 2

APPENDICES

A. Comprehensive Rules For Forming Algebraic Expressions , ,
B. Rules for Forming Compound Conditions
C. Complete List of Reserved Words

I - INTRODUCTION

1, OBJECTIVES

There are hundreds of business, government, and educational organizations
using a wide variety of electronic computers in data processing operations. Some
of the major users have more than one type of computer applied to the same gen-
eral data processing application at different locations. The experience of these
organizations to date indicates that a major problem in using computing equipment
wisely and efficiently lies in stating the data processing application in such a way
that computer programs are developed and maintained with a minimum of time and
programming effort.

A COmmon Business Oriented Language, independent of any make or model of
computer, open-ended and stated in English, would do much to solve or reduce this
problem. Such a language would also simplify and speed up the related problem of
training personnel in the design of data processing systems and the development of
computer programs for such systems,

In general, the following situations represent some of the areas requiring the
development of a COmmon Business Oriented Language for programming computers:

a. The need to develop data processing systems for existing computers that can
be processed on future, more powerful computers with a minimum of con-
version costs. For any user possessing computers of different manufacture
and therefore not compatible, this need exists for efficient translation of a
data system from one computer type to another,

b. With the rapidly changing and expanding requirements of management, data
processing systems need constant revision and augmentation. Full docu-
mentation of the present system is required in a form conducive to compila-
tion of such changes and additions with minimum time and costs.

c. Many users are faced with the need to produce a large number of computer
programs in a short period of time, This places a heavy burden on the
existing programming staff or requires quick augmentation with relatively
inexperienced programmers,

2., HISTORY

On May 28 and 29, 1959, a meeting was called in the Pentagon for the purpose
of considering both the desirability and the feasibility of establishing a common
language for the programming of electronic computers in business-type data proc-
essing. Representatives from users, Government installations, computer manu-
facturers and other interested parties were present. There was almost unanimous
agreement that the project was both desirable and feasible at this time. The con-
cept of three committees or task forces was agreed upon. (The terms '"committee,"”
"task force" and "group" are used interchangeably in this report.) They were
called the SHORT RANGE, INTERMEDIATE RANGE, and LONG RANGE with ap-
propriate time scales. The Short Range Group was composed of six manufacturers
and three Government representatives, This Committee held its first meeting

I-2

on June 23, 1959, At that time it was decided that the tasks of the Committee fell
in four general areas, and working groups were established as follows:

Data Description
Procedural Statements
Application Survey
Usage and Experience

The first two groups held frequent meetings and prepared proposals for considera-
tion by the full committee which met August 18 - 21 and August 24 - 25 for the
purpose of preparing a report to the Executive Committee. Materials developed as
the result of the work of the latter two groups were used in the course of the devel-
opment of COBOL, The report to the Executive Committee, submitted in September
1959, stated that the Short Range Committee felt it had prepared a framework upon
which an effective common business language could be built, It was recognized that
the report contained rough spots and needed additions. It further requested that the
Short Range Committee be authorized to complete and polish the system by Decem-
ber 1959, It was also requested and approved that the Short Range Committee
continue beyond December in order to monitor the implementation, Both these
requests were approved,

The Committee held meetings between September 18 and November 7, 1959,
and proceeded steadily in its task of resolving problems and completing the language.
The name "COBOL", which suggests a COmmon Business Oriented Language, was
adopted.

The COBOL System was reviewed and approved by the Short Range Committee
during the week of November 16 - 20, Final editing and initial distribution of the
report to the Executive Committee was accomplished December 17, 1959,

3. ATTRIBUTION

One or more persons from the following companies or Government agencies
have participated in the work of the Short Range Committee at one time or another:

Air Materiel Command, U, S. Air Force

Bureau of Standards, Department of Commerce
Computer Science Corporation

Datamatic Division, Minneapolis-Honeywell Corporation
David Taylor Model Basin, Bureau of Ships, U, S. Navy
ElectroData Division, Burroughs Corporation
International Business Machines Corporation

Radio Corporation of America

Remington-Rand Division of Sperry-Rand, Inc.

Sylvania Electric Products, Inc,

Ideas and information were drawn from many sources; in particular, from the
FLOW-MATIC* System developed by Sperry-Rand, the Commercial Translator
System designed by IBM, and the AIMACO System developed jointly by the Air
Materiel Command and Sperry-Rand., With the permission of the authors and

*Trademark of Sperry-Rand Corproation

I-3

publishers, certain material has been taken from the following copyrighted publica-
tions: FLOW-MATIC* Programming System, @ 1958 Sperry-Rand Corporation,
and General Information Manual: IBM Commercial Translator (©) 1959 by Inter-
national Business Machines Corporation,

4, PHASING

In the development of any system there are problems of time and values which
must be solved by the designers. In the development of the COBOL system, con-
sideration was given to the varying amounts of time needed for implementation, the
time needed by the Committee to determine certain specifications, and the impor-
tance (i.e,, value) of these specifications, Since opinions on these elements vary,
the Short Range Committee proposed a concept called "phasing". The Committee
further defined three phases of development:

The minimum or Phase I - Basic COBOL
The present level or Phase II - COBOL
A more ideal system or Phase III - Extended COBOL

While agreeing in general with the concept and the need for recognizing different
levels of implementation, the Executive Committee considers it unrealistic to
attempt to establish precise boundaries for such levels or phases in this initial
manual, The concept of phasing is not intended to place a limitation upon the
system as a data processor but rather to recognize the limitations that may be nec-
essary as to time and state of compatibility of the language., All compilers which
accept only COBOL terms are proper COBOL processors, however, it must be
recognized that complete compatibility will not be achieved until all manufacturers
have implemented all features contained in the COBOL language,

In developing the specifications contained herein, the Short Range Committee
went beyond what they consider to be the minimum language (referred to in the
original report as Basic COBOL, Phase 1) which was specifically defined as:

1. Only those features in the ENVIRONMENT DIVISION which permit the
practical operation of the I-O system according to the requirements of particular
implementors,

2, All features of the DAT A DIVISION
3. All features and verbs in the PROCEDURE DIVISION except

a. Algebraic formulas and the COMPUTE verb

b. Segmentation

c. Conditional sentences containing more than one IF

d. REVERSE option in the OPEN verb

e. VARY option in the PERFORM verb with respect to the use of BY,
FROM, TO "field-name"

f. UNTIL option in the PERFORM verb

g. INCLUDE verb

h, USE verb

*Trademark of Sperry-Rand Corporation

I-4

i. DEFINE verb
j. ENTER verb
k. CORRESPONDING option in the MOVE verb

The Executive Committee agrees with this definition as representing, in a gen-
eral sense, the minimum language specifications that a manufacturer would be
expected to implement through a compiler, keeping in mind that no manufacturer
would be expected to implement aspects or features that are not normal data proc-
essing practice for their type of computer,

The Executive Committee does not believe that it would be realistic at this time
to attempt to define (as "Extended COBOL") or to identify the additional features
that may be added to these specifications, The Short Range Committee identified
and listed in the original report additional features which should be added as rapidly
as possible, such as:

Table Handling Functions

External Format and Media Translation
Report Writing Extension

Sort-Merge Functions

The prospective user of COBOL is reminded that a source program language
such as COBOL must be dynamic to be effective and will be subject to continuous
change., Computer manufacturers should advise prospective users very specifi-
cally as to what features of COBOL are provided for in compilers at any particular
point in time,

5. MAINTENANCE

It is clear that the task of defining a COmmon Business Oriented Language does
not end with the publication of preliminary specifications, Continuing attention to
the system is needed in order to answer questions arising from users and imple-
mentors of the language and to make definitive modifications (including additions,
clarifications, and changes).

The Executive Committee did not acceptthe method of maintaining COBOL which
was recommended by the Short Range Task Force in the December 17, 1959, report.
Instead, a subcommittee was formed to give this very important subject careful
consideration and present recommendations thereon. Such recommendations were
presented to and ‘adopted by the Executive Committee at the February 12, 1960,
meeting and are outlined hereafter,

Two committees were established and charged jointly with responsibilities for
COBOL maintenance, These committees are:

Technical Committee

Membership of the Technical Committee shall consist of one representative
of each of the six manufacturers of electronic computers who participated
in the Short Range Committee plus any other manufacturer interested in
actively participating in the maintenance of COBOL, Manufacturers not
members of the original group will apply for membership to the Executive
Committee explaining their interest. The member representing each

I-5

manufacturer should be the top person in automatic programming tech-
niques, or represent such person, and be in a position to speak for the
company.,

The Technical Committee shall consider, from the manufacturers' stand-
point, all proposals to supplement COBOL - reviewing them for need,
technical feasibility and practicality - and shall approve or disapprove as a
Committee action all such proposals. Proposals generated within the
Technical Committee will be sent to the Executive Committee for assign-
ment of a proposal number and referral to the Maintenance Committee for
concurrent consideration.

Maintenance Committee

Membership of the Maintenance Committee shall initially consist, in addi-
tion to the Chairman, of one representative of the Air Force, the Navy,

U. S. Steel and Esso Standard Oil, together with a cross-section of other
major users of data processing systems in Government or industry in-
terested in actively participating in the maintenance of COBOL. Users not
members of the original group will apply for membership to the Executive
Committee explaining their interest. The member representing each user
should be the top person in the use of automatic programming techniques,
or represent such person, and be in a position to speak for the company or
agency.

The Maintenance Committee shall consider, from the users' standpoint, all
proposals to supplement COBOL for need, technical feasibility and practi-
cality and shall approve or disapprove as a Committee action all such pro-
posals, Proposals generated within the Maintenance Committee will be sent
to the Executive Committee for assignment of a proposal number and refer-
ral to the Technical Committee for concurrent consideration.

All additions, clarifications and changes to COBOL will be reproduced and released
by the Executive Committee as a number "supplement." Proposals for supplements
to COBOL will be received from outside organizations and individuals by the Execu-
tive Committee, will be assigned a proposal number and sent to the Technical and
Maintenance Committees for concurrent consideration. Proposals generated within
the Technical or Maintenance Committees will also be sent to the Executive Com-
mittee for assignment of a proposal number. Approval by both the Technical and
Maintenance Committees will result in the immediate adoption and distribution of an
official numbered supplement to COBOL. In case of a split vote, the Executive
Committee will resolve the difference. Periodically, these supplements will be
combined and published in the same manner as the original COBOL. When a pro-
posal has been approved by Committee action of either the Technical or Maintenance
Committee and referred for action of the other Committee, the latter group must
take Committee action within two weeks. Failure to take Committee action in the
two week period will be considered as approval,

Recognizing the lack of ‘a clear-cut distinction between the intermediate range
and the long-range efforts, together with the need for a clarification of such activ-
ities as they relate to COBOL and its maintenance, the planning subcommittee
submitted further recommendations which were adopted by the Executive Committee
February 12, 1960. Such recommendations provided for the consolidation of the

I-6

long and intermediate-range efforts in a Development Committee, retaining the
present membership of the Intermediate-Range Task Force within such Committee,
The membership and responsibilities of the Development Committee were defined
as follows:

Membership of the Development Committee shall consist of representa-
tives from industry, government, universities, consultants, and manu-
facturers of data processing systems and others with competence and
interest in the furtherance of programming language development as a
means of advancing the applications of ADPS. :

. The Committee will conduct or review research in the field of program-
ming which will permit use by all systems analysts regardless of their
professions or subject-matter specialty, to describe the process to be
performed in such a manner as to be meaningful and appropriate for any
concept of implementation. Proposals for Development Committee proj-
ects can originate in the Committee, the Executive Committee or from
outside sources and will be assigned a project number by the Executive
Committee. The Committee will make periodic reports on the status of
such projects. Proposals for supplements to COBOL may generate from
Development Committee projects.

A schematic diagram (Figure 1) is included to show the Committee relationships as
they relate to COBOL maintenance,

6. ACKNOWLEDGMENT

1t is requested of all organizations who intend to implement the COBOL system
and expect to write a manual describing the operation of their processor of the
COBOL system that the remainder of the Acknowledgment Section be included in its
entirety as part of the preface to any publication.

"This publication is based on the COBOL System developed in 1959 by a volun-
tary committee composed of government users and computer manufacturers. The
organizations participating in the original development were:

Air Materiel Command, U, S. Air Force

Bureau of Standards, Department of Commerce
Datamatic Division, Minneapolis-Honeywell Corporation
David Taylor Model Basin, Bureau of Ships, U, S, Navy
ElectroData Division, Burroughs Corporation
International Business Machines Corporation

Radio Corporation of America

Remington-Rand Division of Sperry-Rand, Inc.

Sylvania Electric Products, Inc,

"These initial specifications for the COBOL language are the result of contribu-
tions made by all of the above-mentioned organizations and no warranty expressed
or implied, as to the accuracy and functioning of the programming system and
language is made by any contributor or by the committee and no responsibility is
assumed by any contributor or by the committee in connection therewith,

"It is reasonable to expect that many improvements and additions will be made
to COBOL. Every effort will be made to insure that improvements and corrections

I-7

will be made in an orderly fashion making proper provision not to invalidate exist-
ing users' investments in programming. However, this can be positively assured
only by individual implementors.

"Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures and the methods for proposing changes should be di~
rected to the Executive Committee of the Conference on Data Systems Languages.

"The authors and copyright holders of the copyrighted material used herein:
FLOW-MATIC (Trade-mark of Sperry Rand Corporation) Programming for the
UNIVAC (R Iand II, Data Automation Systems (¢) 1958, 1959, Sperry Rand
Corporation; IBM Commerclal Translator, Form No. F 28 8013 copyrighted 1959
by IBM, have specifically authorized the use of this material, in whole or in part,
in the COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

"Any organization interested in reproducing the COBOL report and initial
specifications in whole or in part, using ideas taken from this report or utilizing
this report as the basis for an instruction manual or any other purpose is free to
do so. However, all such organizations are requested to reproduce this section as
part of the introduction to the document. Those using a short passage, as in a
book review, are requested to mention "COBOL" in acknowledgment of the source
but need not quote the entire section. "

ORGANIZATIONS

Corporations, etc.

A.C.M
USER GROUPS

Share, Use,

CONFERENCE ON DATA SYSTEMS LANGUAGES
ORGANIZATION FOR COBOL MAINTENANCE

Ideas
Comment

\

/

Individuals

Manufacturers

8-1

Criticism University and other technical

1 2an31 g

Guide, et al Proposals & computer interested groups
etc
TECHNICAL COMMITTEE
Considers all numbered
proposals referred by Exec-
DEVELOPMENT COMMITTEE EXECUTIVE COMMITTEE vtive Committee from stand-

Conducts research pro-
jects assigned or approved
by Exec. Comte. involving

Assigns & maintains control
record on Projects referred
to Development Committee &

Unnumbered Proposals
~

Numbered Proposals

'
*Comte. action

point of the computer manu-

facturers and takes committee

action thereon. May also

major change or improve- Projects Proposals for COBOL supple~ generate proposals.
ment in the common pro- ments referred to Technical &
gramming language. Re- Reports Maintenance Committees.
Provides for immediate publi-
ports to Exec. Comte. on .
project status. Completed Proposals cation of proposals accepted Unnumbered Proposals MAINTENANCE COMMITTEE

by both Committees. Resolves|<t=
split votes between Technical | Numbered Proposals
Comte & Maintenance Comte >
on proposals.

Considers all numbered

proposals referred by Exec-
utive Committee from stand-
 point of the computer users

projects will normally
become proposals for
supplements to COBOL.

*Comte. action

and takes committee action
thereon. May also generate
proposals.

*When one committee has acted favorably on
a proposal, the other committee must take
committee action within two weeks or assent

Publication of COBOL

supplements

is assumed.

II, GENERAL DESCRIPTION OF COBOL

1. GENERAL PHILOSOPHY OF COBOL DEVELOPMENT

The task of the committee was that of preparing a common business language.
By this is meant the establishment of a standard method of expressing solutions
for a certain class of problems normally referred to as business data processing.
The word "Common' was interpreted to mean that the source program language
would be compatible among computers. Differences in computers relating to size,
types of peripheral equipment and different order structure make this impossible
in its entirety. Thus, the goal of achieving the maximum amount of compatibility
on present day computers was the realistic framework within which all work was
done.

In describing a data processing problem, there are two elements involved.
One is the set of procedures which specify how the data is to be manipulated and
the other is a description of the data involved. Furthermore, it was recognized
that certain information pertaining to the computer itself was a necessary part of
the description of a problem. This, of course, would never carry over from one
computer to another. However, it was felt that the advantages of a common means
of expression were sufficiently great to develop a standard form for even those
items which clearly changed from computer to computer.

As this philosophy developed, COBOL was crystallized into three parts. They
are listed in decreasing order of compatibility among computers.

Procedural Statements
Data Description
Environment Description

2. COBOL SYSTEM DESCRIPTION

The. COBOL System is composed of two elements - the source program written
in COBOL, and the compiler which translates this source program into an object
program capable of running on a computer. This report considers only the source
program and does not consider the second element directly, although the specifi-
cations of a language obviously determine to a large extent the boundaries of a
compiler. However, the compiler is mentioned in ::ertain cases to facilitate ex-
planation of the language.

A source program is used to specify the solution of a business data processing
problem., The three elements of this specification are:

1. The set of procedures which determine how the data is tobeprocessed.
2. The description of the data being processed.
3. The description of the equipment being used in the processing.

The COBOL System has a separate division within the source program for

each. The names of these divisions are: PROCEDURE, DATA, and ENVIRON-
MENT,

II-2

The COBOL System allows the user to prepare his specifications for the
problem solution in the language most natural to him - namely English.

The PROCEDURE DIVISION specifies the steps that the user wishes the com-
puter to follow. These steps are expressed in terms of meaningful English words,
statements, sentences, and paragraphs. This aspect of the overall system is
often referred to as the "program'; in reality it is only part of the total specifi-
cation of the problem solution (i.e. the program) and is insufficient to describe
the entire problem. This is true because repeated references must be made -
either explicitly or implicitly - to information appearing in the other divisions.
This division - more than any other - allows the user to express his thoughts in
meaningful English. Concepts of verbs to denote actions, and sentences to de-
scribe procedures, are basic, as is the use of conditional clauses to provide al-
ternative paths of action. The PROCEDURE DIVISION is essentially computer
independent. That is, any user of COBOL can understand the information appear-
ing in this division without regard to any particular computer. Furthermore,
every COBOL compiler will interpret this information in the same way.

The DATA DIVISION uses file and record descriptions to describe the files of
data that the object program is to manipulate or create, and the individual logical
records which comprise these files. Most physical characteristics of the files
are not included here, so that this division is to a certain extent computer in-
dependent. While compatibility among computers cannot in general be assured,
careful planning in the data layout will permit the same data descriptions to apply
to more than one computer.

The ENVIRONMENT DIVISION is that part of the source program which
specifies the equipment being used. It contains descriptions of the computers to
be used both for compiling the source program and running the object program.
Memory size, number of tape units, hardware switches, printers, etc. are
among many items that may be mentioned for a particular computer. Problem
oriented names also may be assigned to particular equipment. Those aspects of
a file which relate directly to hardware are also described here. Because this
division deals entirely with the specifications of the equipment being used, it is
largely computer dependent.

The amount of inter-computer compatibility throughout the COBOL System
varies with the division and the effort expended to obtain this goal. In the PRO-
CEDURE DIVISION, virtually no effort is needed to maintain compatibility among
computers. In the DATA DIVISION, care must be taken to minimize the loss of
object program efficiency. In the ENVIRONMENT DIVISION, almost all infor-
mation is computer dependent and therefore the compatibility is based on ease of
understanding rather than direct transference.

The COBOL System is the first large scale effort in defining a single language
which permits the writing of data processing problems for many computers. In
addition to the compatibility which has been achieved, the COBOL System provides
the user with an effective means of describing the solution of his data processing
problems.

III-1

III. CHARACTERS AND WORDS

1. CHARACTER SET

1.1 CHARACTERS USED FOR WORDS
The character set for words will consist of the 37 characters

0, 1, ..., 9
AB, ... , Z
- (hyphen or minus)

Note particularly, that "blank' or ""space' is not an allowable character for a word,
but is used to separate words and statements, Where a "blank” or "'space’” is em-
ployed, more than one may be used, except in the Reference Formats. See
VIII. Groups of characters selected from the 37 characters are called "words".

1.2 CHARACTERS USED FOR PUNCTUATION
The punctuation characters consist of the following:

" Quotation Mark

(Left Parenthesis

) Right Parenthesis
Space

. Period

, Comma

; Semicolon

1.3 CHARACTERS USED IN FORMULAS

+ Addition

- (hyphen) Subtraction

* Multiplication (* * Exponentiation)
/ Division

= Equality

1.4 CHARACTERS USED IN RELATIONS

Greater Than
Less Than
= Equal to

1.5 CHARACTERS USED IN EDITING

$ Dollar Sign
b Check Protection Symbol
s Comma

. Actual Decimal Point

-2
1.6 SUMMARY OF ALLOWABLE CHARACTERS

Those characters which are recognizable by the COBOL system include the
letters of the alphabet, decimal integers, the punctuation characters, and those
characters commonly called symbols, which are used in formulas, relations and
editing,

Because all computers may not have the complete list of characters defined
above, single character substitutions may be made as required, When fewer than
51 characters are available, double characters may be substituted for the single
characters defined, A standard list of these substitutions will be specified at alater
date,

It is also conceivable that other characters, which appear within a particu-
lar computer's character set, may be desirable for use within literals or constants.
The possibility exists, however, that the use of characters other than those previ-
ously defined as the proper COBOL set may result in a loss of compatibility depend-
ing upon the particular computer used,

2, WORDS
2.1 DEFINITION OF WORDS

A word is composed of not more than 30 characters chosen from the follow-
ing set of 37:

0-9
A-2Z
hyphen (i.e., minus)

A word is ended by a space, or a word is ended by either a period, right parenthe-
sis, comma, semicolon, followed by a space. A word may not begin or end with a
hyphen. A literal constitutes an exception to the above rules. See Literals 2.2, 1d.

The use of punctuation characters in connection with words is as follows: A
period, comma, and semicolon when used, must always immediately follow a word,
but they must be followed by a space, A left parenthesis or a beginning quote mark
(see Literals) must not be followed by a space unless the space is desired in the
literal, A right parenthesis or ending quote mark must not be preceded by a space
unless the space is desired in the literal.

2.2 TYPES OF WORDS
2.2,1 Nouns
A noun is a single word which is one of the following:

Data Name

Condition Name
Procedure Name
Literal

Figurative Constant
Special Register Name
Special Names

Im-3
A noun may contain hyphens for readability purposes. For example,

quantity-on-hand
stock-number

are legitimate nouns, whereas,
stocknumber-

is not. (Labels, tags, field names, operation numbers, and other such terms used
in other languages are considered nouns in this language.)

a) Data-Names

A data-name is a word with at least one alphabetic character,
which designates any data specified in the data description. (File names and field
names refer to two specific data levels).

b) Condition-Names

A condition-name is the name assigned to a value which a field
may assume, A condition-name must contain at least one alphabetic character. The
field itself is called a conditional variable, and those values which it may assume
are referred to by condition-names, The actual value of the condition-name is de-
fined in the Record Description,

For example, consider a conditional variable called TITLE, If
the condition-names ANALYST, PROGRAMMER, and CODER are assigned the
values 1, 2, and 3, respectively, the conditional expression:

IF CODER THEN . .
would generate a test of the field TITLE against the value "3",

Condition-names may also be defined in the SPECIAL-NAMES
paragraph within the ENVIRONMENT DIVISION, Here, a condition-name is given
to the on and/or off status of hardware devices. For example, the device SENSE
FLIP-FLOP may be called a conditional variable, The two values the variable can
assume may be named PRESENT and ABSENT. Thus, the conditional expressions:

IF PRESENT THEN , or
IF ABSENT THEN . , . . .

may be used, The major difference in this type of condition-name is that the defini-
tion of the actual value of the condition-names is automatically handled by the com-
piler,

A condition-name, then, is a name assigned to a value which a
field may have at a given time, This field, called a conditional variable, may have
many different values and a condition-name for each value. The same condition-
name may not be used for more than one value of the same variable. Further-
more, condition-names may only be used in conditional expressions,

-4
¢) Procedure-Names

A procedure, either a paragraph or a section, i,e. a group of
paragraphs, may be named to permit one procedure to refer to others. The
procedure-name may be purely numeric, Only those procedures which are referred
to within the program need be named.

Procedure-names are applied either to paragraphs or to sections
and are accordingly known as paragraph names or section names,

d) Literals

A literal is a noun whose value is identical to those characters
comprising the noun, The literal may be either numeric, alphabetic, or alphanu-
meric and may be any length, If a literal is alphabetic or alphanumeric, it must be
bounded by quotation marks, and may contain any allowable character except the
quotation marks, Three consecutive quote marks constitute a valid literal consist-
ing of a single quote mark.

A numeric literal is defined as a group of characters chosen from
the numerals O through 9, a plus (+) or minus (-) sign and a decimal point (.), and
may - but need not - be bounded by quotation marks, A numeric literal not bounded
by quotation marks may not be terminated by a decimal point.

The computer's internal representation of a literal will be de-
termined by the compiler from context. See each verb for the rules governing the
use of literals in the PROCEDURE DIVISION,

e) Figurative Constants

Certain literals, called figurative constants, have been assigned
fixed names. These names, when used as figurative constants, must not be bounded
by quotation marks,

These nimes are:

ZERO HIGH-VALUE
ZEROES HIGH-VALUES
ZEROS LOW-VALUE
SPACE LOW-VALUES
SPACES ALL any literal

Figurative constants generate a string of homogeneous informa-
tion whose length is dependent upon context. For example, MOVE ALL 4 FILLING
FIELD, where FIELD is defined as six characters in length would result in 444444,
Whereas, MOVE ALL, "FOUR" FILLING FIELD, would result in FOURFO.

f) Special Register

TALLY is the name of a special register whose length is equiva-
lent to a five decimal digit field. Its primary use is to hold information produced by
the EXAMINE verb., It may also be used, however, to hold information produced

II-5

elsewhere in a program, The compiler will allocate memory for the TALLY field
only if reference is made to it,

g) Special Names
Special names provide a means of relating hardware with
problem-oriented names and the status of hardware switches with condition-names.
See Special Names VII 2, 3,
2.2.2 Verbs

A verb is a single word which appears in the PROCEDURE DIVI-
SION and designates an action,

2.2.3 Reserved Words

The reserved words are used for syntactical purposes and may
not be used as nouns or verbs, There are three types:

a) Connectives

Connectives are words used to denote the presence of a qualifier
or the presence of a subscript,

Logical connectives are used to indicate the appearance of an in-
dependent clause and also to aid in defining the precise rules for the evaluation of
compound conditionals,

b) Optional Words

Optional words have been defined to improve the readability of the
language. The presence or absence of these optional words does not alter the com-
piler's interpretation of the statement,

c) Key Words

In some formats, certain words are required to complete the
meaning of the verbs or entries and therefore these words must be present,

2.3 SPECIAL USAGE
2.3.1 Qualifiers

Every name in a COBOL program must be unique, either because
no other name has the identical spelling or because the name exists within a hier-
archy of names such that the name can be made unique by mentioning several higher
elements in the hierarchy. The higher elements are called qualifiers when used in
this way, and the process is called qualification, With each use of a name, enough
qualification must be mentioned to make the use unambiguous, but is not necessary
to mention all possible levels of qualification unless they are needed for uniqueness.
A file-name is the highest level qualifier available for a data~name. A section-
name is the highest level qualifier available for a paragraph-name,

I11-6

Two types of qualification are allowed: prefixing (i.e., adjec-
tival modification) and suffixing. In qualifying a single occurrence of a data-name,
only one type may be used, In the first type, the nouns must appear in descending
order of hierarchy, i.e., with the name being qualified as the last, and all others
in order. Inthe second type, the nouns must appear in ascending order of hier-
archy with either of the words OF or IN separating them, The choice between IN
or OF is based only on readability because they are logically equivalent.

If, for example, two records, MASTER and NEW-MASTER, each
contains a CURRENT-DATE field and a LAST-TRANSACTION-DATE field, and if
each of these fields contains three subfields, MONTH, DAY, and YEAR, the cur-
rent month in the NEW-MASTER record may be referred to as:

MONTH IN CURRENT-DATE OF NEW-MASTER
NEW-MASTER CURRENT-DATE MONTH

; while the day of the last transaction in the Master record may be referred to as:

DAY IN LAST-TRANSACTION-DATE OF MASTER
MASTER LAST-TRANSACTION-DATE DAY

The following rules are used for Qualifications:

1. A qualifier must exist outside (above) the name it is
qualifying,

2. A name may not appear at two levels in a hierarchy so
that it would appear to qualify itself,

3. If a data-name or condition-name appears more than once
in the DATA DIVISION of a program, it must be qualified
in all references occurring in the PROCEDURE DIVISION,
The absence of qualification may not be considered quali-
fication,

4, A paragraph-name must not be duplicated within the same
Section, There is an exception to this rule which is dis-
cussed in Chapter IX 1, LIBRARIES, A paragraph-name
may be qualified by a section-name, When it is, the word
SECTION must not appear. A paragraph-name need not be
qualified when referred to from within the same Section,

2.3.2 Subscripts

The technique of subscripting is most commonly used for table
handling functions, A subscript is an integer whose value determines which element
within a table (or a list) of like elements of data is to be operated upon. The integer
may be represented by a literal or by a data-name.

The name of the element being subscripted is followed by its
subscript, The subscript, itself, is identified either by preceding it with the key
word FOR, or by surrounding it with parentheses ().

-7

A subscript value of "1'" denotes the first element of a list, a
value of "2", the second element, etc. No element within a table may be refer-
enced without a subscript; however, the entire table may be referenced, provided
the table has been given a unique name,

Examples: MOVE rate FOR age TO listing.
IF height (10) IS GREATER THAN -----
MULTIPLY price FOR 5 BY inventory -----
EXAMINE class (region) REPLACING -----
MOVE rate-table TO storage-area.

Tables are often defined such that more than one level of sub-
scripting is required to locate an element within the table, A maximum of three
dimensions, or levels, is permitted by COBOL. Multi-level subscripts are always
written from left to right: major, intermediate, and minor.

Reference to a data-name within a table must include all sub-
scripts upon which the data-name is dependent. Use of more or less than the cor-
rect number of subscripts is considered an error. For example, the premium
rate of an insurance policy might depend upon the age, the weight, and the state of
residence, A table of such rates would be considered as three dimensional, There-
fore, reference to any rate within the table would always be followed by three sub-
scripts, Multi-level subscripts must be enclosed in parentheses,

Examples: MULTIPLY policy-value BY rate (age, weight, state).
SUBTRACT rate (10, 5, 7) FROM -
2.3.3 Series

Several related nouns may be written as a series separated by
any one of the following:

The comma must be adjacent to the preceding word, and followed by a space., The
words AND and OR are considered key words,

Example: OPEN INPUT MASTER, RECEIPTS, AND ORDERS
ADD ABLE AND BAKER AND CHARLIE

-1
IV. NOTATION USED IN VERB AND ENTRY FORMATS IN THIS REPORT

1. All upper case words which are underlined are required, and an error will
occur if they are absent or incorrectly spelled.

2. All upper case words which are not underlined are used for readability only.
They may be present or absent.

3. All lower case words represent generic quantities whose value must be
supplied by the user.

4. Material in braces{ }indicates that a choice from the contents must be made.

5. Material in square brackets []represents an option and may be included or
omitted at the user's choice.

6. Notes will elaborate and specify any restrictions.

7. In cases where many choices were available, some separations into numbered
options have been made.

8. In series of two or more nouns, they have been shown separated by commas.
However, connectives s

AND
, AND
are equivalent and may be used interchangeably.

V. PROCEDURE DIVISION

1. GENERAL DESCRIPTION

The PROCEDURE DIVISION contains those operations needed to solve a given
problem. (This is commonly called the program, but is only one of the three parts
of the program.) These operations are formally divided into SECTIONS each of
which is subdivided into PARAGRAPHS. Only sections and paragraphs can be
named, and therefore they are the only elements to which control may be trans-
ferred.

2, FORMULAS

A formula consists of nouns representing quantities upon which arithmetic may
be performed, and arithmetic operators, combined according to the rules of alge-
braic expressions. (SEE APPENDIX A)., These rules assume the sequence for
executing the operations to be exponentiation, then multiplication and division, and
finally addition and subtraction,

There are six arithmetic operators which may be used in formulas. They may
be expressed by the character representing the operator, in which case it must be
surrounded by spaces, or their English equivalent may be used. The following
choices are available:-

= EQUALS
(Addition) + PLUS
(Subtraction) - MINUS
(Multiplication) * MULTIPLIED BY or TIMES
(Division) / DIVIDED BY
(Exponentiation) *% EXPONENTIATED BY

3. CONDITIONALS.

3.1 GENERAL DESCRIPTION

Conditional procedures are one of the keystones in describing data proc-
essing problems, COBOL makes available to the programmer several means of
expressing conditional situations.

COBOL conditionals generally involve the key word IF followed by the con-
ditions to be examined followed by the operations to be performed. Depending on
the truth or falsity of the conditions different sets of operations are to be
performed. '

Several different types of sentences involving more than one IF are
available.

V-2
3.2 CONDITIONS

3.2.1 General Definition

A condition is a group of words which can be determined to be
either true or false, i.e., whose truth value can be determined.

3.2.2 Simple Condition

A simple condition consists of either a condition name, a relation
or a test,

a) Condition Name
A field whose specific values can be named is called a condi-
tional variable., The names given to the values are called Condition-Names, These
may be tested to determine whether or not the designated value is present, Thus
the truth or falsity may be established,
b) Relations

The relations available in COBOL are shown below,

(IS [NOT] GREATER THAN)

IS [NOT] LESS THAN

field IS [NOT] EQUAL TO field
IF literal } literal ¢
formula IS UNEQUAL TO formula

EQUALS

EXCEEDS J
|

The following named operators and equivalent symbols may be
used interchangeably if the latter are available in the character set of the computer:

GREATER THAN >
LESS THAN <
EQUAL TO =

The left hand term of the relation is called the subject and the
right hand term is called the object. If the subject or the object or both do not
appear, the term(s) of the last executed relation in the same sentence is used for
the missing one(s). A relation missing either term, therefore, must not be used
as the first relation to be tested within a sentence. When comparing alphabetic or
alphanumeric quantities, the adjustments necessitated by different collating se-
quences will be handled automatically by the compiler.

V-3

The benefit gained by allowing the naming of the subject and/or
the object of a relation to be optional can best be shown by the following example:

IF X EQUALS Y, MOVE A TO B; IF GREATER MOVE A TO C;
IF LESS MOVE A TO D.

c) Tests,

It is possible to determine the status of a field by means of the
following tests:

ENOT]; NUMERIC

IS NOT] POSITIVE
[NOT] NEGATIVE
[NOT]. ZERO

IF [field]

If a field is not named, then the test is made on the result of the last arithmetic
operation executed in the same sentence. A field must be shown when NUMERIC
is used.

The explicit interpretations of these terms is as follows: A
field is NUMERIC if it consists of the digits zero to nine with or without a sign.
A field is POSITIVE only if it is greater than zero. A field whose value is zero is
NOT POSITIVE, A field is NEGATIVE only if it is less than zero. A field whose
value is zero is NOT NEGATIVE. More briefly, the value zero is never con-
sidered positive or negative.

3.2.3 Compound Condition

A compound condition is a sequence of simple conditions connected
by either of the words AND, OR. It is not necessary to use the same word as a
connective throughout, however, if both AND and OR appear, the rules of evalua-
tion given below must be carefully followed.

The most general form of a compound condition may be expressed
symbolically as:

. , AND) .. o+ o [AND . Cond.—
Slmple-Cond—l{—_ﬁ—-}Slmple-Cond 2{———-——0R } . . Simple-Cond-n

This is evaluated by the rules given in APPENDIX B,

It is understood that although any simple condition (i.e., condition
name, relation, test) may be compounded, only the "relation" contains both a sub-
ject and an object. COBOL allows the abbreviation of compound conditional "'rela-
tions'" so that an implied subject for both multiple relations and series of objects
can be permitted,

552133 O - 60 - 3

V-4

The abbreviated forms, each of which has its own specific mean-
ing, are the following:

Form 1:
field-1 field-2 AND field-3
IF A literal-1 literal-2 { Relatlon literal -3
formula-1 formula- formula-3
field-n
’QB' * o o @ fOI‘mU].a—n

This is the same as if

field-1
literal-1
formula-~1

appeared immediately preceding every

A=BORCANDD

Example:

is the same as
A=BORA=CANDA=D
which is defined in APPENDIX B to be

A=BOR(A=CANDA=D)

Form 2:
field-1 field-2
IF literal-1 literal -2
formula-1 formula-2) ,
field-3 field-n
literal-3 AND literal-n
formula-3_J , formula-n

This is equivalent to Form 1 with all commas replaced by which-
ever one of the words AND or OR was used.

Example:
X=2,YORZ
is equivalent to

X=20RX=YORX=17Z

4, RULES OF FORMATION OF PROCEDURES

4,1 GENERAL APPROACH

COBOL procedures are expressed in a manner similar (but not identical)
to normal English prose. The largest unit is a section, which is composed of
paragraphs. These are made up of sentences which are generally grouped for the
purpose of describing a unified idea. The sentences are composed of sequences of
statements, which in turn are made up of groups of words - normally verbs and
operands.

4.2 EXPRESSIONS

4.2.1 Imperative Expression

An imperative expression consists of a verb and its operands.

4, 2.2 Conditional Expression

A conditional expression consists of a condition preceded by the
word IF and followed by one of the following:

THEN

a comma (,) followed by a space and then a verb
a verb
4.3 STATEMENTS

4.3.1 Imperative Statement

An imperative statement is a sirigle imperative expression (i.e., a
verb and its operands) which is terminated by one of the following:

AND ALSO

; (semicolon)

V-6

The verbs GO and STOP RUN may not be followed by other expressions, No
compiler directing verb (see Section 6) may be preceded or followed by any
expression,

4,3.2 Conditional Statement

A conditional statement consists of a conditional expression fol-
lowed by either

a) any imperative statement, or a sequence of imperative state-
ments

or b) any sequence of imperative statements, the last of which is
terminated by a .semicolon and followed by the word OTHERWISE which is then
followed by any sequence of imperative statements, the last of which may be fol-
lowed by any conditional statement.
Example: IF X EQUALS Y, MOVE A TO B;

IF X EQUALS Z THEN MOVE A TO B; OTHERWISE
ADD A TO C AND ALSO IF NOT POSITIVE, GO TO ERROR-ROUTINE; OTHER -
WISE ADD A TO B;
4,4 SENTENCES

4.4.1 Imperative Sentence

An imperative sentence consists of a sequence of one or more im-
perative statements, the last of which terminates with a period.

a) Simple Imperative Sentence

A simple imperative sentence consists of an imperative state-
ment terminated by a period.

Example: MOVE A TO B.
b) Compound Imperative Sentence

A compound imperative sentence consists of a sequence of more
than one imperative statement, the last of which is terminated by a period.

Example: MOVE A TO B; ADD C TO D.

4.4.2 Conditional Sentence

A conditional sentence consists of a sequence of one or more con-
ditional statements such that the rules for connecting them shown below are satis-
fied and the last statement terminates with a period,

a) Simple Conditional Sentence

A simple conditional sentence consists of one conditional state-
ment which is either terminated by a period or followed by any imperative sentence,

Examples: IF X EQUALS Y THEN MOVE A TO B.
IF X EQUALS Y THEN MOVE A TO B; ADD C TO D.

IF X EQUALS Y, MOVE A TO B; OTHERWISE IF C
EQUALS D, MOVE A TO D AND ALSO PERFORM PATH-1 THRU PATH -6,

b) Compound Conditional Sentence

A compound conditional sentence is a sequence of conditional
statements such that the last and only the last is terminated by a period and all
others are terminated by one of the following:

; (semicolon)
AND ALSO

AND

OR

The same terminator must be repeated throughout the sentence
for all statements except that the phrase AND ALSO and the punctuation mark
semicolon (;) have identical logical significance. For purposes of separating con-
ditional statements, AND is logically equivalent to AND IF and OR is logically
equivalent to OR IF because regardless of any other rules, the expression IF IF
is never meaningful.

For the exact rules concerning the evaluation of compound con-
ditional sentences, see Section 5 of this chapter.

Examples: IF X EQUALS Y THEN MOVE A TOB;IF Y
EQUALS Z THEN ADD B TO C,

IF X EQUALS Y THEN MOVE A TO B; OTHERWISE
IF C EQUALS D THEN MOVE A TO D AND IF Y EQUALS Z THEN ADD B TO C.

IF X EQUALS Y MOVE A TO B; IF GREATER
MOVE A TO C; OTHERWISE MOVE A TO D.

4,5 PARAGRAPHS

Paragraphs permit the grouping of several sentences to convey one idea.
It is not necessary to name a paragraph unless it is to be ALTERed or entered out
of sequence by the program, When a paragraph name is given, it applies until
either a new paragraph name appears or indentation occurs, which indicates the
start of an unnamed paragraph, (See Chapter VIII, 2, REFERENCE FORMAT).

4,6 SECTIONS

A section when designated must be named and consists of one or more
paragraphs. The section-name is followed by the word SECTION and a period.
The section-name applies to all paragraphs following it until another section-name

V-8

is encountered, A program is not required to be separated into sections, For
further details see REFERENCE FORMAT, VIII-3.

5. EVALUATION OF CONDITIONAL SENTENCES

5.1 GENERAL NOTATION
There are three types of conditional sentences which provide great power
and scope in the handling of logical situations. The rules for evaluating these
sentences can most easily be shown by means of flow charts, It should be under-
stood that these flow charts are simply a means of expressing the concepts in-
volved and do not represent the method by which the implementation will be done.
The following notation is used:
C1 and C2 represent conditions (simple or compound).
S1 and S2 represent imperative statements.
W represents a sentence (imperative or conditional),
NS represents the next sentence,
T represents the truth of the condition,
F represents the falsity of the condition.
5.2 SIMPLE CONDITIONAL EVALUATION
A simple conditional sentence is defined as a conditional statement which
is either terminated by a period or followed by an imperative sentence. The gen-
eral forms of this may be written as :
IF C1 THENS1,
IF C1 THEN S1; OTHERWISE W,
IF C1, S1.,
IF C1, S1; OTHERWISE W.
where C1 is a condition, and S1 and W are sequences of imperative statements,

Another way of writing the most general form is:

IF condition THEN imp-statem-1; imp-statem-2; .., ; imp-
statem-n;

OTHERWISE imp-statem-nl; imp-statem-n2; ... ; imp-statem-nn,

If the condition (C1) is true, then statement-1 through statement-n is
executed and then control is transferred to the next sentence. If the condition (C1)
is false then control is immediately transferred to statement-nl (which is the
OTHERWISE path) and this, through statement-nn, are executed. The program

V-9

then continues at the next sentence, unless any Si contains a control transfer to a
named paragraph.

The interpretation of this sentence may be shown diagrammatically by the
following chart:

| Next

True
»1 S
1 Sentence

False
L

> S-nl Py S-n2 }—>—++ e Senn

5.3 COMPOUND CONDITIONAL EVALUATION

There are three types of compound conditional sentences whose rules
must be specified, Note that the simple form shown in 5.2 is actually a collapsed
form of each of the three general cases. If any Si contains a control transfer then
it is executed, and the remainder of the flow chart is ignored.

5.3.1 AND IF

The following sentences are logically equivalent and are evaluated
according to the flow chart below:

IF C1 THEN S1 AND IF C2 THEN S2; OTHERWISE W.
IF C1, S1 AND IF C2 THEN S2; OTHERWISE W.

IF C1 THEN S1 AND IF C2, S2; OTHERWISE W,

A
F
d > W

V-10

5.3.2 OR IF (Inclusive)

The following sentences are logically equivalent and are evaluated /
according to either of the flow charts below, They are simply two different
methods of representing the same idea.

IF C1 THEN S1 OR IF C2 THEN S2; OTHERWISE W,

IF C1, S1OR IF C2 THEN S2; OTHERWISE W,

IF C1 THEN S1 OR IF C2, S2; OTHERWISE W,

S2 - »— NS

(In the following, SW represents a switch.)

OR T
2 S1 T->SW S2 ——P-@

YES

NO

v-11

5.3.3 AND ALSO IF or (; IF)

The following sentences are logically equivalent and are evaluated
according to either of the flow charts below. They are simply two different
methods of representing the same idea.

IF C1 THEN S1 AND ALSO IF C2 THEN S2; OTHERWISE W,
IF C1, S1 AND ALSO IF C2 THEN S2; OTHERWISE W,

IF C1 THEN S1 AND ALSO IF C2, S2; OTHERWISE W,

AND ALSO T

(In the following, SW represents a switch.)

AND ALSO NS

V-12
6. VERBS

6.1 LIST BY CATEGORIES

ADD
SUBTRACT
Arithmetic MULTIPLY
DIVIDE
COMPUTE

READ
WRITE
OPEN
Input-Output CLOSE
ACCEPT
DISPLAY

GO
Procedure Branching ALTER
PERFORM

MOVE
Data Movement EXAMINE

Ending STOP

DEFINE
ENTER
EXIT

Compiler Directing Verbs INCLUDE
NOTE
USE

Note: Although the word IF is not a verb in the strictest sense, it possesses one
of the most important characteristics of one - namely the generation of coding in
the object program, Its occurrence is a vital feature in the PROCEDURE DIVI-
SION, and is fully discussed in Sections 4 and 5 of this Chapter.

6.2 FORMATS

The verb formats are shown on the following pages.

V-13

ACCEPT

FUNCTION: To allow a unit of low volume input from available devices such as
card readers, paper tape readers, console keyboards, etc.

ACCEPT data-name FROM mnemonic-name

Notes:

1, The "mnemonic-name' corresponds to a particular "hardware' unit defined
in the Special Names paragraph in the ENVIRONMENT DIVISION.

V-14

ADD

FUNCTION: To add two or more quantities and store the sum in either the last

named field or the specified one,

ADD literal-1 literal-2 literal-3
field-name-1] , | field-name-2 , | field=name=3 | . . .

[GIVING field-name -n:‘ [UNROUNDED] [; ON SIZE ERROR any impera-

Notes:

tive statement]

If the "GIVING field-name-n" option is not present, then the last named
field receives the result. This field must not be a literal,

The maximum size of any operand ("literal' or "'field-name") is 18 char-
acters. An error will be indicated at compilation time if the format of any
operand specifies a number of characters in excess of this, This does not
apply to the intermediate result fields, which will be carried out to one
more place on the right and one more place on the left than the maximum
field size.

Only numeric literals may be used. If a sign (+ or -) is included, it must
appear as the most significant character of the literal. The sign digit is
converted by the compiler to the correct computer representation when
necessary. If a decimal point appears in the literal, it is not included in
the stored representation of the literal, and is used solely to align the
literal with the associated "field-names,"

The final result will be stored in accordance with the description of the
receiving field as specified in the Record Description, Furthermore, all
fields may have different formats, Decimal position alignment for
operands is automatically supplied according to the type of operation in-
volved. The decimal position of the result will likewise be aligned prior
to storage in the result field,

Because the number of decimal places in the calculated result will always
be at least one digit greater than the number of decimal places in the
result field (See Note 2), automatic rounding will occur whenever the
UNROUNDED option is not used. The least significant digit of the result
field will be increased by 1 whenever the most significant digit of the
excess is greater than or equal to 5.

V-15

ADD

6. When the UNROUNDED option is used, the number of decimal places in the
calculated result will be truncated according to the size of the result field,

7. De-editing (i.e., the removal of any editing symbols such as dollar signs,
real decimal points, etc.) will not be supplied. Thus, only "field-name-n"
may contain any editing symbols. An error will be indicated at compila-
tion time if the format of any operand specifies the presence of such
symbols,

8. Whenever the number of integral places in the computed result exceeds
that which may be stored in the result field, a SIZE ERROR condition
arises. This causes truncation of the most significant digits of the result
field prior to storing. This action occurs regardless of whether or not the
SIZE ERROR option is used.

9. The SIZE ERROR option may only be used in conjunction with the
arithmetics.

V-16

ALTER

FUNCTION: To modify a predetermined sequence of operations,

ALTER paragraph-name-1 TO PROCEED TO procedure-name -2

[paragraph-name-3 TO PROCEED TO procedure-name-4 . . .]

Notes:

1., "Paragraph-name-1", "'paragraph-name-3", . . . are names of para-
?
graphs which each contain a single sentence consisting of only a GO state-
ment as defined under Option 1 of the GO verb.

v-17

CLOSE

FUNCTION: To terminate the processing of both input and output reels and files,

Notes:

1.

with optional rewind and/or lock.

CLOSE file-name-1 [REEL:‘ [WITH {%B%WIND}} [, file-name-2 . .]

A "CLOSE file-name" must be executed once and only once for a given file
unless the file has been reopened. It will initiate the final closing conven-
tions for this file and release the data area.

REEL option: For both input and output files, the specified rerun proce-
dures and next reel processing are instituted. (See RERUN in the I-O
CONTROL Paragraph of the ENVIRONMENT DIVISION and the verbs OPEN,
READ and WRITE).,

a) When referring to a reel of an input file, the standard end of reel
processing is eliminated for only that reel. Ifa CLOSE REEL is
given for the last reel of a file, an error may occur in the object
program, The results of this error will be specified by the individ-
ual implementor,

b) When referring to a reel of an output file, the standard end of reel
processing takes place.

The LOCK option automatically rewinds the file and supplies the appropri-
ate technique for insuring that the file cannot be read or written upon.

If the NO REWIND option is used on a tape file, the tape will remain posi-
tioned after the ending label.

If neither LOCK nor NO REWIND is specified, the tape will be rewound,
If the file were specified as OPTIONAL (see the FILE-CONTROL Para-

graph of the ENVIRONMENT DIVISION), the standard end of file processing
is not performed whenever this file is not present,

552133 O - 60 - ¢

V-18

COMPUTE

FUNCTION: To permit the use of formulas,

Notes:

FROM
COMPUTE field-name-1 [UNROUNDED] = any operation
EQUALS

[; ON SIZE ERROR any imperative statement]

""Any operation'" may be a single field or any meaningful combination of
fields parenthesized as required, employing the algebraic symbols for the
operations of addition, subtraction, division, multiplication and exponen-
tiation or their English equivalent, The precise rules are defined in
Appendix A - "COMPREHENSIVE RULES FOR FORMING ALGEBRAIC
EXPRESSIONS",

"field-name-1" must not be a literal.

All rules specified for the simple arithmetics (ADD, SUBTRACT, MULTI-
PLY, DIVIDE) apply to the COMPUTE verb.

The SIZE ERROR option applies to field-name-1 and not to each inter-
mediate result.

The words FROM and EQUALS are equivalent to each other and to the
symbol " =",

V-19

DEFINE

FUNCTION: To allow the introduction of new verbs.

DEFINE VERB name AS { Procedure-name-1 [THRU procedure -name -2]}
~— | any sentence _—

WITH FORMAT name . . .

1. A DEFINE VERB statement may not use another DEFINE within its
definition,

2, The DEFINE causes the replacement of the new verb by those COBOL
statements used in its definition,

3. Dummy names used in the DEFINE VERB and in the statements (e. g.
ABLE, BAKER, CHARLIE, as used in the example below) must be the
same, The substitution takes place based on the position of the names and
the other words used.

4, When the newly defined verb is used, its format must be exactly the same
as the format shown by the DEFINE, except that optional words will be
ignored if present.

5. In place of the three dots (. . .), the actual format is shown, Literals
may be used in the format.

EXAMPLE 1:
Defining a subroutine

DEFINE VERB COMPUTE-NUMBER AS

FIRST THRU LAST WITH FORMAT COMPUTE -NUMBER

FROM ABLE AND BAKER AND CHARLIE AS NUMBER.

FIRST. ADD ABLE TO BAKER,

MULTIPLY BAKER BY CHARLIE,

LAST. ADD CHARLIE TO 3 GIVING NUMBER.,

V-20

DEFINE

Using this subroutine
USE-NUMBER. COMPUTE-NUMBER FROM PAY AND TAX AND

TEN-PERCENT AS NUMBER.

Using this subroutine a second time
EXCEPTION-ROUTINE, COMPUTE-NUMBER FROM
OVERTIME, CITY-TAX, THREE-PERCENT AS DUE-TAX-COLLECTOR,
EXAMPLE 2:
. Defining a subroutine
DEFINE VERB SPECADD AS MULTIPLY A BY C GIVING C WITH FORMAT

SPECADD A AND B AND C.

Using this subroutine

CALCULATE, SPECADD QUANTITY AND INVENTORY AND TOTAL.

v-21

DISPLAY
FUNCTION: To allow for visual display of low volume information,
DISPLAY J literal-1 , { literal-2 UPON mnemonic -name
— |data-name-1 data-name-2, . . -

Notes:

1, The "mnemonic-name'" corresponds to a particular "hardware" unit
defined in the ENVIRONMENT DIVISION,

V-22

DIVIDE

FUNCTION: To divide one number into another and store the result in the last
named field or the specified one.

literal-1 literal-2
DIVIDE field-name-1(INTO field-name-2 GIVING field-name-3
[UNROUNDED] [; ON SIZE ERROR any imperative statement]

Notes:

1. All notes specified under the ADD verb apply to the DIVIDE verb,

2. In addition to the above, division by zero constitutes a special type of
"size error'. Regardless of whether or not the '"size error' option has
been specified, an attempted division by zero will leave the result field

unaltered,

v-23

ENTER

FUNCTION: To provide a means of allowing more than one language in the same

program.

ENTER language-name [paragraph—name]

Notes:

1.

The language-name may be any language allowable by the particular com-
piler. Examples are X-1 for Univac, Autocoder for 705, etc.

The paragraph-name is the identifier for the particular portion of other
language code written.

The other languages may be written directly in line where called or at the
end of the source program. If they are in line, then they must be followed
by ENTER COBOL to return to the main source language.

The other language coding is inserted in line in the object program at the
place in which it is called, regardless of where it may have been written
by the user,

The "paragraph-name" allows the other language section to be referenced
by other parts of the COBOL program. Thus, if the other language code
is written as a closed subroutine, it must be preceded by a GO to state-
ment and it may be executed by PERFORMING the paragraph-name. The
normal case is the execution of the other language section directly in line
as an open subroutine,

Implementors will specify how to write other languages for their com-
pilers.

V-24

EXAMINE

FUNCTION: To replace and/or count occurrences of a given character in data.

ALL
EXAMINE data-name | TALLYING LEADING literal-1
UNTIL FIRST
[REPLAC]NG WITH literal-Z] (
ALL
REPLACING ! LEADING literal-3 WITH literal-4
[UNTIL] FIRST
J

Notes:

The literal must be a single character.
Examining always starts at the left.

If the word LEADING appears, then the replacement and/or the tally
begins with the first character in the ""data-name'" and terminates as
soon as a character other than "literal-1'" is encountered.

The tally is placed in a special register called TALLY, Furthermore,

a. K the ALL option is used, the tally represents the number of
occurrences.

b. E the LEADING option is used, the tally represents the number of
occurrences of "literal-1" prior to encountering a character other
than "literal-1".

c. I the UNTIL FIRST option is used, the tally represents the number
of other characters encountered before the occurrence of "literal-1",

V-25

EXIT

FUNCTION: To furnish an end point for a loop when required.

EXIT,

1. EXIT produces no coding in the object program.

2, EXIT must be preceded by a paragraph-name and appear as a single
one-word sentence,

3. EXIT is used in conjunction with the PERFORM verb. If no related
PERFORM is in process, sequence control will pass through the EXIT
point to the next statement.

V-26

FUNCTION: To depart from the normal sequence of procedures.

Option 1:

GO TO [procedure-name]

Option 2:
GO TO procedure-name-1, procedure-name-2, [, procedure-name-3 ..]

DEPENDING ON data-name

Notes:
1. In Option 1, if a GO statement is to be ALTERED, then:
a. The statement must have a paragraph-name.

b. The paragraph may contain only a single sentence consisting of only
a GO statement.

The paragraph-name is referred to by the ALTER verb in order to
modify the sequence of the program. K the "procedure-name" is omitted,
the compiler will ingert an error stop in the object program; therefore,
the GO statement must be referenced by an ALTER statement prior to

the first execution of the GO statement.

2. In Option 2, the "data-name'" must have a positive integral value. The
branch will be to the 1st, 2nd ... ,nth "procedure-name'" as the value of
"data-name'" is 1,2, ...,n. I the value of the '"data-name" is zero, or
exceeds n (i. e. the number of procedures named) the next statement in
normal sequence will be executed.

552133 O - 60 - 5

v-27

INCLUDE

FUNCTION: To save the programmer effort by automatically incorporating
library subroutines into the source program.

INCLUDE subroutine-name(HERE REPLACING subroutine-word-l}
AS paragraph-name data-name-1

BY(word-1 subroutine-word-2| BY [word-2 }
data-name-2 , |data-name-3 data-name-4 ...
Notes:

1. The source program is compiled as though the programmer had written
the subroutine in its entirety without reference to the library, except
for the use of DEFINE. Any DEFINE in the subroutine does not affect
the program, and conversely any DEFINE in the program does not affect
the subroutine. (See also Chapter IX.1, Libraries).

2. The replacing of words does not alter the material as it exists in the
library and it may be called for again in the same program with different
replacements. Normally the programmer will wish to limit his replace-
ments to data-names and procedure-names.

3. Specified replacement will not occur within part of a literal, but the
entire literal may be replaced.

4. If the HERE option is used, the subroutine will be inserted in place of
the INCLUDE statement, and when needed, the paragraph-name
associated with the INCLUDE statement can be used to qualify paragraph-
names defined within the library material.

5. K the "AS paragraph-name" option is used, the compiler will determine
where the subroutine is to be inserted in the object program. This
"'paragraph-name' may not appear as a ""paragraph-name" elsewhere
in the program. In order to execute the subroutine, a "PERFORM
paragraph-name" must be used. I the same subroutine is included
more than once, then there must be a different "paragraph-name" for
each get of replacements.

6. After inclusion in the program, the subroutine name is not available as
a qualifier, unless it has otherwise been used as a procedure name.

v-28

MOVE

FUNCTION: To transfer data, in accordance with the rules of editing, to one or

MOVE [CORRESPONDING] data-name-1 TO

more data fields.

Notes:

_' data-name-z[, data-name-3 . .]

literal -1 FILLING
Io

If neither the FILLING nor the CORRESPONDING option is used, and if
any data-name is a higher level than field size, a straight copy into the
receiving area will be made providing the formats of both the sending

and receiving areas are identical except for names. If the formats
differ, the operation is illegal and no data transmission will be attempted.
Fields are‘(or a literal is) moved according to the rules of field editing
shown in Note 4. In any case, no editing symbols will be removed by the
MOVE.,

If the CORRESPONDING option is used, corresponding fields are moved,
edited, and arranged according to the rules of field editing. Non-
corresponding fields in the sending area are not moved and non-
corresponding fields in the receiving area are not altered. No editing
symbols will be removed by the MOVE. See Note 5 for complete defi-
nition of CORRESPONDING fields.

If the FILLING option is used, the set of characters (i.e., the literal)
is placed in the receiving area starting at the left hand side. This is
repeated until the area is filled, at which time truncation occurs, if
necessary.

The rules for editing specify that fields are moved in conformity with the
data description format of the receiving area.

a) For numeric fields this includes:

1. Alignment of decimal points with truncation or zero fill on either
end as required,

2. Zero suppression, insertion of dollar signs, commas, decimal
points, etc., and justification as specified in the Record
Description.

3. Conversion of type of representation (e.g., numeric or binary
mode to alphanumeric mode and in special cases alphanumeric
to numeric or binary mode).

V-29

MOVE

b) For non-numeric fields this includes:

1. Left justification unless otherwise specified in the detailed data
description.

2. Space fill if the receiving field is larger than the sending
field.

3. I the receiving field is smaller than the sending field the operation
is illegal.

5. In order for fields to be called CORRESPONDING as mentioned in Note 2,
the following situations must exist:

a) There must be two areas larger than field size having names which
are different or which can be made different by qualification.

b) Within these areas there must be pairs of fields which have identical
names and which have the same number of levels intervening between
the fields and their respective larger areas.

¢) Corresponding fields may contain within them corresponding pairs.
If the outer corresponding fields are of the same format, a MOVE of
the outer corresponding fields will be generated. H the inner pair
differs in size or format the MOVE CORRESPONDING operation will
ignore the higher correspondence and will operate upon the lower
correspondence. In cases of corresponding at more than two levels,
this process will be repeated. It is, of course, impossible for outer
fields to have different formats when the inner fields are alike.

6. If the hierarchy is identical in size and format, the outer pair is moved;
otherwise successive corresponding pairs are examined.

7. As the COBOL compiler will, upon encountering a MOVE CORRESPOND-
ING option generate a series of MOVES, it follows that the rules for
editing specified for MOVE will apply after determination of the specific
MOVES which result from each MOVE CORRESPONDING operation.

V-30

MULTIPLY

FUNCTION: To multiply two quantities together and store the result in the last
named field or the specified one.

literal-1 { literal-2 }
MULTIPLY | field-name-1 Ei_f field-name-2 GIVING field-name-3
[UNROUNDED] [; ON SIZE ERROR any imperative statement]

Notes:

1. All notes specified under the ADD verb apply to the MULTIPLY verb,

v-31

NOTE

FUNCTION: To allow the programmer to write explanatory material in his pro-
gram which will be produced on the listing but not compiled.

1. Following the word NOTE may appear any combination of the allowable
character set.

2. I NOTE is the first word of a paragraph the entire paragraph must be
notes. Proper format rules for paragraph structure must be observed.
This paragraph may not be named.

3. I NOTE is not the first word of a paragraph, the commentary ends with
a period followed by a space.

V-32

OPEN

FUNCTION: To initiate the processing of both input and output files.
Performs checking or writing of labels, and other input/
output functions.

OPEN [INPUT tile-name-1 [REVERSED] [, file-name-2 . . :‘]

[OUTPUT file-name=-3 [, file-name-4] . e }

1. At least one file must be named when the OPEN verb is used.

2. The verb OPEN must be applied to all files and must be executed prior to
the first READ or WRITE of this file.

3. A second OPEN of a file cannot be executed prior to the execution of a
CLOSE of the file.

4. The OPEN does not obtain or release the first data record. A READ or
WRITE respectively must be executed to obtain or release the first data
record.

5. When checking or writing the first label, the user's beginning label sub-
routine will be executed if one is specified by the USE verb.

6. The REVERSED option can only be used on single reel input files.

7. If an input file has been designated as OPTIONAL in the FILE-CONTROL
paragraph of the ENVIRONMENT DIVISION, the object program will
cause an interrogation for the presence or absence of this file to occur.

If the reply to the interrogation is negative, i.e. the file is not present,
the file will not be OPENED, a print-out indicating the absence of the file
will occur, and an "end of file" signal will be sent to the input-output con-
trol system of the object program. Thus, when the first READ for this
file is encountered, the "end of file" path for this statement will be taken.

v-33

PERFORM

FUNCTION: To depart from the normal sequence of procedures in order to

execute one statement or a sequence of statements a specified
number of times or until a limit is reached, and to provide a
means of return to the normal sequence.

PERFORM procedure-name-1 [THRU procedure-name—Z]

-

Il

‘rEXACTLY field—na.me-l} TIMES

UNTIL condition

BY integer-2
VARYING subscript-name < FROM field-name-2
TO
BY integer-3 BY integer-4
FROM field-name- FROM field-name-4
TO T

integer-1

Notes:

1. PERFORM is the means by which loops are written in COBOL. The loop
may be executed once or a number of times, as determined by a variety
of controls.

2. The first statement of "procedure-name-1" is the point to which sequence
control is sent by PERFORM. The return mechanism is automatically
inserted as follows:

a. I "procedure-name-1" is a paragraph-name, and "procedure-name-2"
is not specified, -- after the last statement of the "procedure-name-1"

paragraph.

b. If "procedure-name-1" is a section-name, and "‘procedure-name-2"
is not specified, -- after the last statement of the last paragraph of
the "procedure-name-1" section.

c. If "procedure-name-2" is specified and is a paragraph-name, -- after
the last statement of the "procedure-name-2" paragraph.

d. If "procedure-name-2" is specified and is a section-name, -- after
the last statement of the last paragraph of the "procedure-name-2"
gsection.

The last sentence performed in all the above cases must not contain a

GO TO verb. There is no necessary relation between "procedure-name-1"
and "procedure-name-2" except that a sequence beginning at "procedure-
name-1" must proceed to the last statement of "procedure-name-2". In

V-34

PERFORM

particular, GO's and PERFORM's may occur between "procedure-name-1"
and the end of "procedure-name-2". If there are two or more paths to the
end of the loop, "procedure~-name-2" must be a paragraph consisting of
the verb EXIT, to which all paths must lead,

In all cases, after completion of a PERFORM a bypass is automatically
created around the return mechanism which had been inserted after the
"last statement. Therefore, when no related PERFORM is in progress,
sequence control will pass through a "last statement" to the following
statement as if no PERFORM had existed.

The PERFORM mechanism operates as follows in the different options,
with Note 3 above applying to all:

a. Simple PERFORM (no options) - a return to the statement following
the PERFORM is inserted after the "last statement' as defined in
Note 2, and sequence control is sent to "procedure-name-1",

b. EXACTLY--TIMES. The specified number of times must be an integer,
assumed positive, and can be zero. The PERFORM mechanism sets
up a counter and tests it against the specified number of times before
each jump to "procedure-name-1'", The return mechanism after the
"last statement' sends control to the counting and test, The test sends
control to "procedure-name-1'" the specified number of times and
after the last time sends control to the statement following the
PERFORM.,

c. UNTIL condition, This option is very similar to the EXACTLY--
TIMES option, except that there is no counting and evaluation of the
condition takes the place of testing against the specified number of
times, The condition may be any simple or compound condition, as
described in V.3.2; that is, the condition may involve relations and tests.
When the condition is satisfied, that is, true, control is transferred to
the next statement after the PERFORM. If the condition is true when
the PERFORM is entered, no jump to "procedure-name-1'" takes place,

d. VARYING subscript-name. This option is used when the PERFORM
is designed to process in a systematic manner a series of quantities
distinguished by the subscript being varied. The PERFORM mecha-
nism sets the subscript to the specified starting value (the FROM-),
prepares to count by the specified increment (the BY-), and to test for
the limit (the TO-). The FROM-, BY-, and TO- may be written in
any meaningful order. The operation then proceeds as described for
EXACTLY--TIMES., The FROM, BY, and TO values must be positive
integers. The FROM value cannot be zero, because the first element
of a subscripted list is designated to be one. The PERFORM has been
completed when adding the increment results in a number greater
than the TO value. After completion of a PERFORM VARYING, the
subscript-name remains at the last used value.

5.

V-35

PERFORM

In general, "procedure-name-1" should not be the next statement after the
PERFORM. K it is, the result will be that the loop will be traversed one
more time than was probably intended, because after the PERFORM has
been satisfied control will go to "procedure-name-1" in the normal con-
tinuation of sequence.

The scope of the PERFORM statements may be nested provided that the
nesting is strictly carried out.

The following are examples of correct and incorrect nesting of routines.

CORRECT INCORRECT

V. PERFORM A THRU B, V. PERFORM A THRU B.
W. GO TO Z. W. GO TO Z.
[-A‘ e e o e e A

X. PERFORM C THRU D. X. PERFORM E THRU D,
U. GO TOE, Y. GO TO B.

E, - ~E.
g, e L| B.

e & ¢ o o o

V=36

READ

FUNCTION: To make available the next logical record from an input file and to

allow performance of any imperative statement when end of file is
detected.

READ file-name RECORD [lNTO data—namél [; AT END any imperative statement]

Notes:

1.

2.

7.

An OPEN statement for the file must be executed prior to the execution of
the first READ for that file.

When a file consists of more than one type of logical record, these records
automatically share the same memory area. This is equivalent to saying
that there exists an implicit redefinition of the area, and only the infor-
mation which is present in the current record is accessible,

The "INTO data-name'" option may only be used when the input file contains
just one type of record. The "data-name" may be the name of a working
storage or output record area. K the format of the "data-name" differs
from that of the input record, moving and editing will be performed accord-
ing to the rules specified for the MOVE verb without the CORRESPONDING
option.

When the "INTO data-name' option is used, the "file-name RECORD"
is still available in the input record area.

Every READ statement must have an END of file option, either implicitly
or explicitly. F the user does not write END, the compiler will examine
all other READ statements for the same file. K the word END appears
once and only once for a given file, the compiler will append this and its
associated "any imperative statement" to each READ for that file which
has no explicit END of file option, K more than one, but not all READs
for the same file contain the word END, the compiler will indicate an
error during compilation.

I an OPTIONAL file is not present the "any imperative statement’ will be
executed on the first READ, The standard end of file procedures will not
be performed. (See the OPEN and USE verbs and the FILE-CONTROL
Paragraph, ENVIRONMENT DIVISION)

After execution of the "any imperative statement' an attempt to perform
a READ without the execution of a CLOSE and a subsequent OPEN for this
file will constitute an error in the object program. The results of this
error are specified by the individual implementor.

After recognition of the end of reel, the READ performs the following
operations:

552133 O - 60 - 6

V-37

READ

a)

b)
c)

da)

The standard ending reel label subroutine and the user's ending reel
label subroutine (if specified by the USE verb). The order of
execution of these two routines is specified by the USE verb.

A tape swap.

The standard beginning reel label subroutine and the user's begin-
ning reel label subroutine (if specified by the USE verb), The order
of execution of these two subroutines is specified by the USE verb.

Makes the next unit record available,

V-38

STOP

FUNCTION: To halt the computer either permanently or temporarily.

literal
STOP | RUN
Notes:

1. X the word RUN is used then the ending procedure established by the
installation and/or the compiler is instituted.

2. The literal will be communicated to the operator. If the object program
environment includes a monitor printer (typewriter, etc.) the literal will
be displayed. I the display device is limited to console lights:

a) if numeric, the literal will be displayed.

b) if alphabetic the computer will display a number keyed to a list of
STOPs produced by the compiler,

"Pushing the start bar" will cause the execution of the next statement in
sequence.

V-39

SUBTRACT

FUNCTION: To subtract one or a sum of quantities from a specified quantity and
store the result in the last named field or the specified one.

literal-1 {literal-z literal-n }
SUBTRACT \field-name-1J | , \field-name-2/. . . | FROM \ field-name-n

[GIVING field-name-m} [UNROUNDED]

[; ON SIZE ERROR any imperative statement]

Notes:
1. All notes specified under the ADD verb apply to the SUBTRACT verh.

2. In addition to the above, when dealing with multiple subtrahends, the
effect of the subtraction will be as if the subtrahends were first summed
and this sum was then subtracted from the minuend.

(Note: the minuend is |literal-n)
field-name-n

V-40

USE

FUNCTION: To specify procedures for any computer I/O errot and label handling
which are in addition to the standard procedures supplied by the
input/output system.

Option 1:
USE procedure-name-1 [THRU procedure-name-z:l AFTER

file-name
STANDARD ERROR PROCEDURE ON)} INPUT
ouTPUT

Option 2:

BEFORE
USE procedure-name-1 |THRU procedure-name-2||AFTER STANDARD

file-name

BEGINNING REEL (| LABEL PROCEDURE ON INPUT
ENDING FILE OuUTPUT

Notes:

1. The designated statements will be executed by the input/output system
at the appropriate time, that is:

a) AFTER completing the standard computer I/O error routine, when
option 1 is used.

b) BEFORE or AFTER an input label check procedure is accomplished.

c) BEFORE or AFTER an output label is created, but before writing on
tape.

2. In Option 2, if BEGINNING or ENDING are not included, the designated
procedures will be executed for both beginning and ending labels., H
REEL and FILE are not included, the designated procedures will be
executed for both REEL and FILE labels.

V-41

WRITE

FUNCTION: To release a logical record for an output file and to allow for

vertical positioning if the output medium is an on-line printer.

WRITE record-name [FROM data-name]

AFTER ADVANCING {field-name | LINES
BEFORE integer

After the WRITE is given, ''record-name' is no longer available,

The ""data-name' may be the name of working storage or an input record
area, If the format of the ""data~-name" differs from that of the "record-
name', moving and editing will take place according to the rules specified
for the MOVE verb without the CORRESPONDING option.

An OPEN statement must be executed prior to giving the first WRITE for
that file.

The ADVANCING option allows vertical positioning of each record on the
printed page. The 'field-name' must have an integral value.

After recognition of the end of reel, the WRITE performs the following
operations:

a) The standard ending reel label subroutine and the user's ending reel
label subroutine (if specified by the USE verb). The order of
execution of these two subroutines is specified by the USE verb.

b) A tape swap.
c) The standard beginning reel label subroutine and the user's beginning

reel label subroutine (if specified by the USE verb). The order of
execution of these two subroutines is specified by the USE verb.

7.1 KEY WORDS

7.1.1 Key Words For Verbs

V-42

7. LIST OF KEY AND OPTIONAL WORDS IN THE PROCEDURE DIVISION

The key words appearing in the verb formats are:

ACCEPT
ADD
ADVANCING
AFTER
ALL
ALTER

AS

BEFORE
BEGINNING
BY

CLOSE
COBOL
COMPUTE
CORRESPONDING
DEFINE
DEPENDING
DISPLAY
DIVIDE
END
ENDING
ENTER
EQUALS
ERROR
EXACTLY
EXAMINE
EXIT

FILE
FILLING
FIRST
FORMAT
FROM
GIVING

GO

HERE
INCLUDE

INPUT
INTO
LABEL
LEADING
LOCK
MOVE
MULTIPLY
NO

NOTE
OPEN
OUTPUT
PERFORM
PROCEED
READ
REEL
REPLACING
REVERSED
REWIND
RUN

SIZE

STOP
SUBTRACT
TALLYING
THROUGH
THRU
TIMES

TO
UNROUNDED
UNTIL
UPON

USE
VARYING
VERB
WRITE

INTERCHANGEABLE

V-43

7.1.2 Additional Key Words

AND

ALSO
DIVIDED
DIVISION
EQUAL
EXCEEDS
EXPONENTIATED
FOR
GREATER
HIGH-VALUE
HIGH-VALUES
IF

IN

LESS
LOW-VALUE
LOW-VALUES
MINUS
MULTIPLIED
NEGATIVE
NOT

OTHERWISE
PLUS
POSITIVE
SECTION
SPACE
SPACES
TALLY
THEN
UNEQUAL
ZERO
ZEROES
ZEROS

7.2 OPTIONAL WORDS

The optional words are:

AT

I8

LINES

ON
PROCEDURE
RECORD
STANDARD
THAN

WITH

VI. DATA DIVISION

1. GENERAL DESCRIPTION

1.1 OVERALL APPROACH

Data to be processed falls into three categories - that which is
contained in files and enters or leaves the internal memory of the computer from
specified areas, that which is developed internally and placed into intermediate
or working storage, and constants which are defined by the user. (Figurative
constants and literals used in procedure statements are not listed in the DATA
DIVISION.) Tables may fall into any of the above categories.

The approach taken in defining file information is to distinguish
between the physical aspects of the file (i. e., the File Description) and the con-
ceptual characteristics of the data contained therein (i. e., the Record Descrip-
tion). By physical aspects is meant the mode in which the file is recorded, the
grouping of logical records within the physical limitations of the file-media, the
means by which the file can be identified, etc. By conceptual characteristics is
meant the explicit definition of each logical entity within the file itself.

For purposes of processing, the contents of a file are divided into
logical records. By definition, a logical record is any consecutive set of infor-
mation. In an Inventory Transaction File, for example, a logical record could
be defined as a single transaction, or as all consecutive transactions which per-
tain to the same stock item. It is important to note that several logical records
may occupy a block (i. e., physical record), or a logical record may extend across
physical records.

The concept of a logical record is not restricted to file data, but
is carried over into the definition of working storages and constants. Thus, work-
ing storages and constants may be grouped into logical entities and defined by a
Record Description.

File Description and Record Descriptions may be stored on a
COBOL library tape.

1.2 ORGANIZATION

The DATA DIVISION, which constitutes the second division of the
problem definition, is subdivided according to types of data. That is, it con-
sists of a FILE Section, a WORKING-STORAGE Section and a CONSTANT Section.

The DATA DIVISION contains two elements: descriptions of files
and descriptions of records. Both of these elements appear within the FILE Sec-
tion. The FILE Section contains File Descriptions and Record Descriptions for
both label records and data records. These two kinds of records are defined in
the same manner; however, because the input-output system of the object program
must perform special operations on label records, fixed names have been assigned
to those label fields on which specified operations must be performed.

The WORKING-STORAGE and CONSTANTS sections consist solely
of Record Descriptions and unrelated Record Description entries.

VI-2
1.3 STRUCTURE
The DATA DIVISION begins with the header:
DATA DIVISION [PREPARED FOR computer-name :l .

The optional clause is only used when the data descriptions were written for other
than the object computer. Each of the three sections begins with the appropriate
section name followed by the word SECTION and a period - i.e., FILE, WORKING-
STORAGE, or CONSTANT. When a section is not required, its name need not
appear.

The sections themselves consist of entries. This is a departure
from the paragraph-sentence-statement structure of the PROCEDURE and EN~-
VIRONMENT DIVISIONS,

An entry consists of a level indicator, a data-name and a series
of independent clauses which may be separated by semicolons. The clauses may
be written in any sequence, except when otherwise specified in the entry formats.
The entry itself is terminated by a period. A File Description consists of a single
entry, whereas, a Record Description consists of one or more entries.

A technical discussion of the reference format for the DATA DIVI-
SION is given in Chapter VIIIL. 3 of this report.

2. FILE DESCRIPTION ENTRY

2.1 GENERAL DESCRIPTION

A File Description entry contains information pertaining to the
physical aspects of a file. In general it may include the following: the manner in
which the data is recorded on the file, the volume of data in the file, the size of
the logical and physical records, the names and values of the label records con-
tained in the file, the names of the data records which comprise the file, and
finally, the keys on which the data records have been sequenced.

The listing of data and label record names in a File Description
entry serves as a cross reference between the file and the records in the file.
If the Record Description for these records is not found within the DATA DIVISION
of the problem description, they are automatically called from the COBOL
library.

2.2 ENTRY FORMATS
2.2.1 General Notes

A File Description entry consists of a level indicator, a file name,
and a series of independent clauses which define the physical and logical charac=
teristics of the file. The mnemonic level indicator FD is used to identify the start
of a File Description entry, and distinguishes this entry from those associated
with a Record Description.

2.2.2 Specific Formats

The individual clause formats are arranged in this report in
alphabetic order where as the clauses in the "Complete Entry" are shown in the
recommended order.

VI-4

FILE DESCRIPTION
Complete Entry

FUNCTION: To furnish information concerning the physical structure, identifi-
cation and record descriptions pertaining to a given file.

Option 1:
FD file~-name COPY library-name.
Option 2:
FD file-name [; RECORDING MODE IS mode]

[; FILE CONTAINS ABOUT integer-1 RECORDS]

. .) . _3 { RECORDS
; BLOCK CONTAINS [mteger 2 T_O] integer-3 {CHARACTERS}

[; RECORD CONTAINS [integer-4 TO] integer-5 CHARACTERS]

STANDARD

OMITTED

data-name-1

library-name-1 IN LIBRARY

; LABEL-RECORDS ARE}
IS

{ data-name-2 }
> | library-name-2 IN LIBRARY) * ° °

. — - literal \ [field-name-2 . . .]
[, VALUE OF field-name-1 IS { dataname-3 [HASHED]

; DATA RECORDS {ARE data-name-4
IS library-name-3 IN LIBRARY

, data~name-5
library-name-4 IN LIBRARYJ " * *

[; SEQUENCED ON field-name-3 [, field-name-4 . . 1]

Notes:

1. Option 1 is used when the COBOL library contains the entire File Descrip-
tion entry.

2. The level indicator FD identifies the beginning of the file description
entry. As such, it precedes the file-name and appears at the left margin
of the reference listing. (See Chapter VIII. 3, REFERENCE FORMAT,
DATA DIVISION.)

552133 O - 60 - 7

VI-5

FILE DESCRIPTION
Complete Entry

3. The clauses which follow the name of the file are optional in many cases.
For further details, see the individual explanations for each clause.

4, The File Description entry is terminated by a period.

5. All semicolons are optional in the File Description.

6. In the Reference Format, those entries which require more than a single
line are continued on subsequent lines starting under the first letter in

the file name. (See Chapter VIII. 3, REFERENCE FORMAT, DATA
DIVISION.)

VI-6

BLOCK Size

FUNCTION: To specify the size of the physical record (i.e,, block).

RECORDS
; BLOCK CONTAINS [integer-2 'L(_)] integer-3 | CHARACTERS

Notes:

1. This clause is required except when one of the following exists:

a. A physical record contains one and only one complete logical record.
b. The object computer has one and only one physical record size.

c. The object computer has more than one physical record size but the
implementor has designated one size as Standard. In this case, the
absence of this clause denotes the Standard physical record size.

When this clause is used, the size may be stated in terms of RECORDS,
unless one of the following situations exists; in which case the CHARAC-
TERS' option should be used:

a. Logical records extend across physical records.

b. Physical record contains padding; i.e., area not contained in a logical
record.

¢. Logical records are grouped in such a manner that an inaccurate
physical record size would be implied.

When the CHARACTERS' option is used, the physical record size is speci-
fied in terms of the number of BASIC characters which could be contained
within the physical record regardless of the way in which the information
is recorded. See VI 3. 1. 6 for definition of BASIC.

I only "integer-3" is shown then it represents the exact size of the physi-
cal record. K "integer-2" and "integer-3'" are both shown, then they re-
fer to the minimum and maximum size of the physical record respectively.

The word CHARACTERS within the BLOCK clause is an optional word as

it is everywhere else. Whenever the key word RECORD is not specifically
written in the BLOCK clause, "integer-2" and "integer-3" represent
CHARACTERS,

VI-T7

CoPY

FUNCTION: To obtain a file description entry from the COBOL library,

COPY library-name

Notes:

1. COPY is used when the COBOL library contains the entire File Description
entry,

2. During compilation, the COPY clause is replaced by the sequence of
clauses within the "library-name" entry. Thus, the level indicator and
file-name which precede the COPY clause will replace the level indicator
and file-name appearing within the "library-name" entry.

VI-8

DATA
RECORDS

FUNCTION: To crossreference the description of data records associated with
the file.

library-name-3 IN LIBRARY

, [data-name-5 L
library~name-4 IN LIBRARY

; DATA RECORDS ARE} data-name-4 }
IS

Notes:
1. This clause is required in every File Description entry.

2. The presence of more than one data name indicates that the file contains
more than one type of data record. These records may be of differing
sizes, different formats, etc. The order in which they are listed is not
significant.

3. Conceptually, all data records within a file share the same area. This is
in no way altered by the presence of more than one type of data record
within the file.

4. If the IN LIBRARY option is used, the Record Description is in the COBOL
library and need not be written in the program.

5. If logical records of different sizes are grouped into one physical record,
then, the end of the logical record must be explicitly defined in the Record
Description. See VI 3.2.2. SIZE.

VI-9

FILE Size

FUNCTION: To indicate the approximate number of logical records in a file.
[; FILE CONTAINS ABOUT integer-1 RECORDS]

Note:

1. This optional clause has been included for potential use in the language.

VI-10

LABEL
RECORDS

FUNCTION: To cross reference the descriptions of the label records associated

with the file.

STANDARD

: LABEL RECORDS {AIIEE} OMITTED

Notes:

data-name-1
library-name-1 IN LIBRARY

data-name-2 L.
’ {library-name-2 IN LIBRARY

This clause is required in every File Description entry. When a file
contains no beginning or ending, tape or file label, the word OMITT ED
must be used.

STANDARD implies a set of label description formats which are defined
by the implementor and, therefore, need not be written in the program.

The following four types of label records may appear on the tapes associ-
ated with a file. Since the type of label is significant, the fixed record
names shown in capital letters have been assigned:

a)

b)

d)

A BEGINNING-TAPE-LABEL which appears at the beginning of each
tape and which precedes all other information, and contains infor=-
mation about the tape.

A BEGINNING-FILE-LABEL which appears only once and which pre-
cedes the first data record in the file but follows the beginning tape
label if one is present. This label contains information about the file.

An ENDING-TAPE-LABEL which immediately follows the last valid
data or label record on the tape. The end of the tape label must appear
before the physical end of the tape is encountered. When both end of
file and end of tape labels are being employed, the end of tape label
will follow the end of file label. On a MULTIPLE~FILE-TAPE, when
all four types of labels are being employed, the end of tape label fol-
lows the last end of file label; all other end of file labels are followed
by the next beginning file label. This label contains information about
the tape. '

- An ENDING-FILE-LABEL which appears only once and which immedi-

ately follows the last data record in the file, and contains information
about the file.

VI-11

LABEL
RECORDS

4.

5.

Many files employ only two types of labels, namely, beginning and ending
tape labels. Instead of having separate file and tape labels, the beginning
tape labels contain all pertinent information normally found in the be-~
ginning file label, and the ending reel label contains a sentinel field for
which special end of tape and end of file conditions are defined.

All other types of labels (i. e., additional labels and labels which are
radically different from those defined above), must be defined as data
rather than label records. All such records must be listed in the "DATA
RECORDs" clause rather than in the "LABEL RECORDs" clause. These
other labels and the method of handling them will be specified by individual
implementors.

When the IN LIBRARY option is used, thé Record Description is in the
COBOL library and need not be written in this program.

VI-12

RECORD Size

FUNCTION: To specify the size of data records.

Notes:

[RECORD CONTAINS [integer-4 '_];_Q] integer-5 CHARACTERS]

The size of each data record is completely defined within the Record
Description entries, therefore this clause is never required. When
present, however, the following notes must apply.

"Integer-5" may not be used by itself unless all the data records in the

file have the same size. In this case then "integer-5'" represents the exact
number of characters in the data record. If "integer-4" and "integer-5"
are both shown, then they refer to the minimum number of characters in
the smallest size data record and the maximum number of characters in
the largest size data record, respectively.

Characters are specified in terms of the number of BASIC characters,
which could be contained within the data record, regardless of the type of
character actually employed. See VI 3. 1.6 for definition of BASIC.

VI-13

RECORDING
Mode

FUNCTION: To specify the organization or type of data as it exists on the ex~
ternal media.

I:RECORDING MODE IS mode :|

Notes:

1. The RECORDING MODE clause is necessary for those computers whose
organization of data, as it exists on the external media, may vary.

2. When a computer is capable of having only one mode, this clause is not
needed.

3. Each implementor will assign specific names to the alternative modes of
data representation which he is prepared to handle. When a standard
RECORDING MODE exists, the implementor may choose to assign names
to only the non~standard modes. In this case, the absence of the RECORD-
ING MODE clause denotes the standard mode.

VIi-14

SEQUENCED

FUNCTION: To indicate the keys on which the data records are sequenced.
[; SEQUENCED ON field-name-3 [, field-name-4 . .]:l

Notes:
1. The SEQUENCED clause is optional.

9. "field=name-3" represents the major key, "field-name-4" represents the
next highest key, etc.

3. This clause does not imply an automatic sequence check at object time.

VI-15

VALUE

FUNCTION: To particularize the description of the fields in the label records

associated with the file.

literal
; VALUE OF field-name-1 IS {data-name-3 HASHED]

Notes:

10

2.

[, field-name-2 IS ..]

When the HASHED option is not used and when the file in question is being
processed as an input, the appropriate label check routine (i.e., the be-
ginning or ending file or tape label check routine) will check for equal-
ity between "field-name-1" and the "literal" or '"data-name-3" whichever
is specified. When the file is being processed as an output file, the value
of the "literal" or ""data-name-3" will, at the appropriate time, be posi-
tioned and written as "field-name-1'", The VALUE clause must be used
without the HASHED option when specifying the required values of such
fields as File-name, File-number, etc,

When the HASHED option is specified and when the file is processed as

an input, a hash total of "data-name-3" is kept and at the appropriate
time, is checked against the "field-name-1". When the file is being
processed as an output, a hash total of ""data-name-3" is kept and at the
appropriate time, it is positioned and written as "field-name-1". When
the HASHED option is employed, 'field-name-1'"" must appear in an ending
rather than in a beginning label.

VI-16
3. RECORD DESCRIPTION

3.1 GENERAL DESCRIPTION

3.1,1 Elements of Record Description

A Record Description consists of a set of entries. Each entry
defines the characteristics of a particular unit of data. With minor exceptions,
each entry is capable of completely defining a unit of data. Because the COBOL
Record Descriptions involve a hierarchal structure (i. e., an entry giving only the
general characteristics may be followed by a set of subordinate entries which
together redescribe the unit in more specific terms), the contents of an entry may
vary considerably, depending upon whether or not it is followed by subordinate
entries. For further explanation of subordinate entries, see Chapter VI, 3. 1.3
"Concept of Level. "

In defining the lowest level or subdivision of data, (i. e., afield or
sub-field), the following information may be required:

a) A level number which shows the relationship between this
and other units of data.

b) A data-name.
¢) The SIZE in 'terms of numbers of characters.
d) The BASE in which the characters are represented.

e) The number of consecutive occurrences (OCCURS) of the
same unit of data.

f) The RANGE of values which the data may assume.

g) The CLASS or type of data - i. e., alphabetic, numeric or

alphanumeric.

h) The location and type of SIGN.

i) Location of actual or assumed radix point.

j) Location of editing symbols such as dollar signs and
commas.

k) Justification and Synchronization of data.

1) Special editing requirements such as zero suppression and
check protection.

m) Initial VALUE of a working storage or the fixed VALUE of
-a constant.

An entry which defines a unit of data may not be contradicted by a
subordinate entry. Thus, once the BASE is defined, it applies to all subordinate
entries and need not be re-specified. Similarly, when CLASS is defined as

VI-17

alphanumeric, subordinate entries may particularize the class by specifying
alphabetic or numeric; but when defined as alphabetic or as numeric, subordinate
entries may not change the CLASS.

3.1.2 Concept of Computer Independent Record Descriptions

For a record description to be computer independent, it must apply
to all computers which can accept the same input media. In addition, it should
apply to all computers for which the basic data can be converted (i. e., for com-
puters which can not accept the same data, but for which the data can be re-
recorded in an acceptable form).

These goals are partially achieved through the single or combined
use of two types of record descriptions, namely, a definition of the data as it
exists on the external media and/or a definition of the data as it exists in the in-
ternal memory of the computer. At the present time, the rules for specifying the
former are not completely defined. For this reason, the remainder of the report
will pertain to the specification of the data representation within the computer.

Commonality is further advanced by the definition of numeric
quantities in decimal terms regardless of the computer's internal representation.

Compatibility among computers is not guaranteed, however it may
be achieved in some cases with careful planning in the layout of the data.

3.1.3 Concept of Levels

A hierarchal organization of data is inherent within the concept of
a logical record. A record may be subdivided into smaller groups of data, which
in turn may be subdivided into still smaller groups of data, etc.

For example, consider a file of job tickets sorted (from major to
minor) according to division, department, employee number, and day of the week.
If the logical record has been defined as all consecutive data pertaining to a single
employee, the following levels could be defined:

a) A weekly job record which consists of--

b) Daily job ticket groupings (i. e., subrecords) which con-
sist of--

c¢) Job tickets (i. e., sub~-records) which consist of--~
d) The individual fields within the job ticket.

Within a COBOL Record Description, the programmer organizes
and defines data according to its relative level. That is, separate entries are
written for each level and for each item of data within each level. The definition
of a particular item of data consists of the entry written for that level plus all
following entries which are of a lower:level. The level, itself, is shown by a
level number which is relative to the largest element of data within the Record
Description (i. e., to the record itself). Level numbers start at 1 (for records)
and may go as high as 49. Thus, it is possible to define 49 levels of data but it
is not expected that any problems will use this many.

Vi-18

Two types of data exist for which there is no true concept of level,
namely non-contiguous constants or working storage fields and the names of con~
ditions associated with a previously defined field.

Non-contiguous constants which bear no relationship to one another
and which may not be further subdivided have been assigned the special level
number 77,

Entries which specify condition names, to be associated with a
particular value of a field, and do not themselves introduce data, have been as-
signed the special level number 88. For further details concerning the definition
of condition names, see 3.2.3 in this Chapter, ''Specific Entry For Condition
Names".

3.1.4 Concept of Mapping

The essence of defining data as it appears in the internal memory
lies in the mapping of consecutive character positions. By mapping is meant - that
each accessible memory position, within a logical record, must be accounted for
in sequence. Thus, in addition to pertinent characters, all unused or non-~
significant characters must be defined.

To aid in achieving compatibility between Record Description for
different computers, zeroes or spaces which precede or follow a field which is
isolated in a separate computer word or words, may be implied rather than ex-
plicitly defined. Such zeroes or spaces are implied by stating that the field in
question is "'synchronized". In this case, the remainder of the word is assumed
to be zero or space filled represented in the same base as that of the field. Note,
implied zeroes and spaces are not counted in the specification of such fields.

In mapping memory, a clear distinction must be drawn between
"a computer sign position' which is capable of receiving any type of character and
one which is not. If a ‘'computer sign position" is capable of receiving any type of
character, it is considered a "mappable' position, and is treated as any other
character position. If the "computer sign position' may not receive any type of
character, the sign position is considered "unmappable.

3.1.5 Basic Concepts of Signs

There are several aspects involved in the handling of signs, and
they are all interrelated. Thus, a definition and understanding of any one of these
is not sufficient to understand the whole picture. Although only one of the entries
in the Record Description pertains primarily to this problem, it is of sufficient
general importance to warrant a discussion of it.

The following concepts are involved in the specification of signs:
mappable and unmappable signs, "computer sign position", and "standard sign
position"'.

A sign is considered mappable if it appears in a memory position
capable of containing any type of character. In this case, it may appear in any
position within the data record and is included when specifying the size. A sign is
considered unmappable if it appears in a position which is incapable of containing
every type of character, and is not included in the specification of the size.

VI-19

Mappable signs may appear anywhere in the data in a computer which has an un-
mappable sign. Unmappable signs, however, may only be used on computers
with unmappable signs.

The second factor involved in sign specification is the "computer
sign position". In fixed word length computers, this means the position in which
the sign associated with each computer word may appear. In variable word
length computers, it is the normal sign position associated with each field.

The "standard sign position" in a fixed word length computer is
defined to be the "computer sign position' associated with the word containing the
most significant portion of the field if the field extends across more than one com-
puter word. In a variable word length computer, the "standard sign position" is
the normal position associated with the entire field.

Non-standard unmappable signs cannot be defined.

The sign can be defined as part of the current field only if all the
following conditions are satisfied: it is represented in the same BASE as the field,
no other fields separate it from the current field, and the sign does not apply to
more than one field.

3.1.6 Concept of Character Base

Within the Record Description, data size is expressed in terms of
characters. Because many computers use more than one type of character (for
example, binary coded decimal and pure binary), it is essential that the type of
character (i. e., base) be known.

At the present time, two different bases are permitted for each
computer: BASIC and OTHER. The actual character representation to be associ-
ated with each of these will depend upon the implementor. However, the following
criteria governs the implementor's choice.

A BASIC character is one which is capable of representing any
alphabetic, numeric or special character existing within the basic character set
of the computer. In most instances, BASIC will apply to binary coded decimal
characters which can be keypunched, read, written and/or printed.

An OTHER character is one whose representation differs from
that of a BASIC character, and which is capable of representing any numeric digit.
Normally, OTHER applies to an alternative character representation whose pri-.
mary function is to facilitate efficient computation.

Note: for those computers which permit only one type of character
representation, the base need not be defined.

3.2 ENTRY FORMATS
3.2.1 General Notes
A Record Description consists of a set of entries. Each record

description entry, itself, consists of a level number, a data name and a series of
independent clauses.

VI-20

3. 2.2 Specific Formats

The individual clause formats are arranged in this report in
alphabetic order whereas the clauses in the "Complete Entry Skeleton" are shown
in the recommended order.

VI-21

RECORD DESCRIPTION
Complete Entry Skeleton

FUNCTION; To specify the characteristics of a particular unit of data.
Option 1:
level-number data-name [; REDEFINES . .] ;COPY. .. .

FILLER }
level-number | data-name ; REDEFINES . . . ; SIZE . . .

[BASE] [g_gc_:ﬂs_] [M]

Option 2:

SYNCHRONIZED . .] [; POINT . .]
. CLASS . .] [;PICTURE. .] [;JUSTIFIED. .]

[
[
[, ZERO SUPPRESS . .]
[

RANGE . .] [;'VALUE. X] .

1. For detailed explanation of reference format, see Chapter VI, 3.

2. Those clauses which begin with SIGN, SYNCHRONIZED, POINT, PICTURE,
JUSTIFIED, ZERO SUPPRESS, BLANK, RANGE, and VALUE; may not be
specified except at the field or sub-field level. Because there is no spe-
cific identification for a field in a Record Description entry, "field level"
may be defined as the highest level at which a single (alphabetic or numeric)
quantity having a homogeneous BASE can be specified.

3. All semicolons are optional in the Record Description entry.

VI-22

BASE

FUNCTION: To specify the type of character representation.

Notes:

1.

2.

BASE IS) BASIC TYPE
OTHER

BASE is never required when the data is to be processed on computers
having only one set of character representation.

BASE is required at the lowest level of data being described. When BASE
is used, it applies to all following entries of the same or lower levels
until the word BASE is written again., The BASE given at any level must
not contradict the BASE at a higher level which contains the data.

Tf the data consists of characters having different bases, it is called non-
homogeneous. The BASE option may not be used to describe non-
homogeneous ‘data.

The actual character representation associated with the base codes BASIC
and OTHER will be specified by the implementor, according to the follow-
ing criteria:

a) A BASIC character is one which is capable of representing any
alphabetic, numeric or special character existing within the basic
character set.

b) An OTHER character is one whose representation differs from a
BASIC character, and which is capable of representing - at least
each numeric digit. Normally, OTHER applies to an alternative
representation whose primary function is to facilitate efficient
computation,

Vi-23

CLASS

FUNCTION: To indicate the type of data being described.

ALPHABETIC
NUMERIC
ALPHANUMERIC
AN

CLASS IS

Notes:
1. AN is an acceptable abbreviation for ALPHANUMERIC.

2. The CLASS option is required at the lowest level if a field PICTURE has not
been given. When CLASS is used, it applies to all following entries of the
same or lower levels until a different class is specified, either by the
CLASS option or by the field PICTURE. An error will occur if the informa-
tion in a CLASS option or PICTURE contradicts the CLASS of a higher level.
Thus, when CLASS is defined as alphanumeric, lower level entries may
particularize the class by specifying alphabetic or numeric; however, when
defined as alphabetic or as numeric, lower level entries may not change the
CLASS.

VI-24

COPY

FUNCTION: To duplicate within this record all or part of another Record
Description,

[COPY data-name]

Notes:

1. The information to be duplicated begins following the data-name in the
"data-name' entry, That is, it excludes the level number and the data-
name itself. The remainder of the '"data-name" entry and all lower level
entries are then duplicated with corresponding level number adjustments
being applied to the level entries being duplicated to reflect the data-
name level heirarchy, That is, all levels within the ""data-name’ being
copied are considered relative level numbers rather than absolute level
numbers. Duplication ends at the occurrence of a level number which is
equal to or less than the original level number associated with the "data-
name' being copied.

2. The duplication itself begins at the point in this entry where the COPY
clause appears. Thus, the level number, data-name, and all preceding
clauses are not altered by the duplication.

VI-25

Data-Name
FILLER

FUNCTION: To specify the name of the data being described, or to specify an

Notes:

unused portion of the logical record,
data-name
FILLER

The "data-name' or FILLER is required as the second element in each
Record Description entry.

Qualification of the '"data-name'" is automatically provided through higher
level data-names and file-names. Thus "data-name' need not be unique
within or between Record Descriptions provided a higher level data-name
or a file-name can be used for qualification,

A FILLER entry describes an area in the record whose contents are im-
material. However, the contents of the FILLER area must be left unaltered
by the object program. The area defined by FILLER is not addressable
but its size and BASE must be specified.

The "data-name'" may be a fixed name assigned to a label record or a
particular field within a label record. A list of these fixed names and their
significance is given VI. 4.1 ""File Section".

VI-26

EDITING

FUNCTION: To permit suppression of non-significant zeroes and commas, to per-

mit floating dollar signs or check protection, and to permit the blank-
ing of a field when its value is zero.

ZERQ SUPPRESS
CHECK PROTECT [LEAVING integer PLACES] [B LANK WHEN ZERO]

FLOAT DOLLAR SIGN

Notes:

1.

The rules for editing, as shown in the MOVE verb, specify that fields are
moved in conformity with the Record Description format of the receiving
field. This format is composed of the Editing options and the field
PICTURE.

The three options, ZERO SUPPRESS, CHECK PROTECT and FLOAT
DOLLAR SIGN, all permit suppression of leading zeroes and commas. If
the LEAVING option is not employed, suppression will stop as soon as
either a non-zero digit or the decimal point (actual or assumed) is en-
countered. Specifically,

a) When ZERO SUPPRESS is specified, leading zeroes and commas will be
replaced by spaces.

b) When CHECK PROTECT is specified, leading zeroes and commas will
be replaced by asterisks,

¢) When FLOAT DOLLAR SIGN is specified, the rightmost character sup-
pressed will be replaced by a dollar sign, and all other characters which
are suppressed will be replaced by spaces.

The LEAVING option may be employed to stop suppression before the deci-
mal point (actual or assumed) is encountered, When used, suppression
stops at the character just prior to the "integer' position, unless stopped
sooner by the rules specified in Note 2, The "integer" position is a count
of the number of characters, starting immediately at the left of the actual
or assumed decimal point,

When the BLANK WHEN ZERO clause is used, the field will contain nothing
but spaces if the value of the field is zero. Thus, all other editing require-
ments, such as zero suppress, check protect, etc., will be overridden.

Because spaces, dollar signs, and asterisks are considered alphabetic
characters, the above options may not be specified unless the field is com-
posed of BASIC characters.

VI-217

JUSTIFIED

FUNCTION: To specify non-standard positioning of data within a field when less
than the maximum number of characters may be present,

LEFT
[J USTIFIED __RIGHT} :}

Notes:

1. This option is only required when the standard rules of positioning are
not desired. The standard rules of positioning within a field are:

a. Numeric data is always right justified with zero fill.

b. Alphabetic and alphanumeric data is left justified with space fill.

VI-28

Level Number

FUNCTION: To show the hierarchy of data within a logical record. To
identify entries for condition-names, non-contiguous constant
and working storage fields.

level-number

1. The "level-number" is required as the first element in each Record
Description entry.

2. The "level-number' may have values of 1-49 and 77 and 88.

3. The level number 1 signals the first entry in each Record Description.
This corresponds to the logical record on which the READ and WRITE
verbs operate.

4, Special level numbers have been assigned to certain entries where there
is no real concept of level:

(a) Level number "77" is assigned to identify non-contiguous constants
and working storage fields.

(b) Level number 88" is assigned to entries which define condition-
names associated with a conditional variable,

5. For general discussion of the level-number, see Chapter VL 3.1.3,
"Concept of Levels"

VI-29

OCCURS

FUNCTION: To eliminate the need for separate entries for repeated data and

Notes:

to supply information required in the application of subscripts.

OCCURS [integer-l ’L(_)_] integer-2 TIMES

[DEPENDING ON {field-name }}}
condition-name

The OCCURS clause is used in defining tables and other homogeneous sets
of data. When OCCURS is used, data defined in the current and all lower
levels must be subscripted when referenced, unless "integer-2" equals
one,

This clause is required either when the data might not exist, or when it
might occur more than once. If the clause is not used, the number of
occurrences is assumed to be one.

If only "integer-2" is shown it represents the exact number of occurrences.
It is illegal to have "integer-2" equal to zero.

If both "integer-1" and "integer-2'' are shown, they refer to the minimum
and maximum occurrences respectively. ''Integer-2" must always be
greater than "integer-1". When "integer-1" is one, the data will be pres-
ent, but need appear only once. If "integer-1"is zero, the data might

not be present.

The DEPENDING option is only required when the end of the occurrences
cannot otherwise be determined.

The use of "field-name' means that the count of the number of occurrences
of the data is contained within the data unit called "field-name". This
value must appear and be an integer. '"'Field~-name' must appear within
the record to which the current Record Description entry pertains.
Furthermore, "field-name" must precede "integer-1" occurrences so

that the count can always be found.

The use of "'condition-name' within the DE PENDING option implies that
when the condition is satisfied, the occurrences terminate. The '"condition-
name' must be associated with a field which appears within the unit which
is being repeated. For discussion'of condition-names see III. 2. 2.1 (b).

VI-30

PICTURE

FUNCTION: To show a detailed picture of the field structure and permit editing
representation.

PICTURE IS any combination of allowable characters described
below]

Notes:

1. The PICTURE is required for fields containing editing symbols such as
the dollar sign, comma, and/or actual decimal point and mappable signs
which have not been specified in the SIGN clause.

2. If the PICTURE is shown at any level, then it must be shown at each lower
level.

3. The allowable characters and their respective definitions are as follows:

A represents an alphabetic character
X represents an alphanumeric character
9 represents a numeric character

V represents the assumed decimal point and is not a mappable character

P represents a scaling position that is used in locating an assumed
decimal point outside the field and it is not a mappable character

- indicates the negative sign only

S indicates the presence of a positive or negative sign

I or + 9 represents a numeric character with a sign always overpunched

R or -9 represents a numeric character with only a negative sign over-
punched

CR or DB represents the actual two positions which are attached if the
field is negative; two blanks are attached if the field is positive

B represents a position which is always blank

0 represents a position which is always zero

$ represents a position which may contain an actual dollar sign.
(See note on Editing)

. represents a position which may contain an actual decimal point.
(See note on Editing)

, represents a position which may contain an actual comma. (See
note on Editing)

J, K, L, M, N each represent a special character whose meaning will be de-
termined by each implementor.

The specific set of characters (n) where n is any integer may be used following
any of the above characters. This usage will specify that the class of data
represented by the character immediately preceding the left parenthesis exists
in the physical data n times. (e.g., A(3)X(2) and AAAXX are equivalent.)

VI-31

POINT LOCATION

FUNCTION: To define the assumed decimal or binary point.

Notes:

LEFT] PLACES
POINT LOCATION IS {RIGHT integer { BITS }

—

When the field PICTURE is not given, the definition of numeric fields
having non-integral values requires the use of this clause.

An actual decimal point (i. e., the character ".') may not be defined
through the use of this clause. Actual decimal points must be shown in
the field PICTURE.

BITS must be specified in the definition of binary points. Absence of the
word BITS indicates an assumed decimal position.

The point is located "integer' positions to the left or right of the least
significant position of the field. COBOL implementors need not accept
the BITS option in compilers for decimal computers.

VI-32

RANGE

FUNCTION: To supply additional information which may aid the compiler in
optimizing the object program.

[RANGE IS literal-1 THRU literal-2]

Notes:

1. The minimum and maximum value of the data being described are given by
"literal-1" and '"literal-2" respectively.

552133 O - 60 - 10

VI-33

REDEFINES

FUNCTION: To allow the same memory area to have more than one name and

description.

[REDEFINES data-name]

When used, this clause must immediately follow the data-name of this
entry.

The area to be redefined starts at the level of '"data-name" and ends when
the same or a lower level number is encountered. The new description

of the area begins with the entry containing the REDEFINES. The level
number of this entry must be the same as the level number of ""data-name'.

The entries giving the new description of the area must immediately follow
the entries describing the area being redefined, except when redefinition
occurs at level number 1,

This clause is not used for logical records associated with the same file.
These records must be listed in the File Description entry and will auto-
matically share the same memory area,

VI-34

SIGN

FUNCTION: To specify the presence of a sign which is not shown in the field

picture.
SIGNED
SIGN IS data-name

This clause is required when there is a sign which must be associated with
the field being defined and when that sign is not shown in the field PICTURE.,

The SIGNED option implies that the sign of the field appears in the sign
position associated with the most significant position of the field. SIGNED
is used when:

a) The sign is unmappable and it appears in the ""standard sign position'.

b) The sign is in a standard mappable sign position but the sign position
has not been mapped. Such a case may only exist when the field does
not share a computer word with any other field. In addition to the
above requirements, the character representing the sign must be
expressed in the same BASE as the characters comprising the field.

The SIGN IS option is used when the sign of the field has been defined as

a separate field. The function of this option is to provide a crossreference
between the field and its sign. SIGN IS must be used in the following
instances:

a) When the sign is mappable but applies to more than one field,

b) When the sign is mappable but physically separated from the field by
the intervention of one or more fields.

¢) When the BASE of the character representing the mappable sign differs
from that of the characters comprising the field, This concept is con-
sistent with the rule that all characters in a field must have a homoge-
neous BASE,

Non-standard unmappable signs can not be defined. They can not be defined

in the sign clause, nor can they be shown in the field PICTURE.

All other signs must be shown in the field PICTURE.

VI-35

SIZE

FUNCTION; To specify, in terms of the number of characters, the size of the
data currently being defined.

[SIZE IS [integer-l T_O_] integer-2 CHARACTERS
[DEPENDING ON field-name]]

Notes:

1. The SIZE clause is only required at the lowest level of data being described.
SIZE can only be specified in terms of homogeneous characters (i. e.,
characters represented in the same BASE), For this reason, SIZE may
not be specified at levels which contain characters having different bases.

2. I only "integer-2" is shown, it represents the exact number of characters.
If "integer-1" and "integer-2" are both shown, they refer to the minimum
and maximum number of characters respectively. K "integer-1" is zero,
the data being described will not necessarily be present.

3. The DEPENDING option pertains to variable length data, It is only required
when the means of determining the end of variable length data is not other-
wise defined, Thus, data ending with a special hardware symbol, which is
shown in the PICTURE by J, K, L, M, or N, does not require the use of
the DEPENDING option,

4. The use of "field-name'’ means that the count of the number of characters
in the data is contained within the data unit called "field-name". This
value must appear in each record and be an integer. '"field-name' must
appear within the record to which the current Record Description entry
pertains. Furthermore, the value of "field-name" must either be avail-
able at object time prior to giving the READ, or must appear in the record
being read. If it appears in the record, it must be in that portion which is
always present and must precede any variable portion.

VI-36

SYNCHRONIZED

FUNCTION: To specify positioning of a field within a computer word or words.

SYNCHRONIZED (LEFT
RIGHT

This clause applies to fixed word length computers, and aids in maintaining
compatibility across computers with different word structures.

When used, this clause indicates that the field is positioned as specified
within one or more computer words, and that no other pertinent information
is contained in these words,

When LEFT is specified, the least significant portion of the (last) word
contains zeros or spaces as defined by Note 4. When RIGHT is specified,
the most significant portion of the (first) word contains zeroes or spaces
as defined by Note 4.

I the field being SYNCHRONIZED contains alphabetic or alphanumeric
characters, spaces appear in the unused part of the word. If the field
contains numeric characters, zeroes appear in the unused part of the
word, Zeroes and spaces are represented in the same BASE as the field
itself,

When SYNCHRONIZED is used in conjunction with SIGNED, if the '"computer
sign position" is mappable, the sign of the field appears in the normal
"computer sign position” of the first word regardless of whether the field

is SYNCHRONIZED LEFT or RIGHT,

VI-37

VALUE

FUNCTION: To define the value of constants, the initial value of working storages,
or the value associated with a condition-name.

[VALUE IS literal]

Notes:

1. When used in a condition-name entry, no further information is required.

VI-38

3.2.3 Specific Entry for Condition-Name

Each condition-name requires a separate entry with the level
number 88. This entry contains only the name of the condition and the value of
the condition. The condition-name entries for a particular conditional variable
must follow the entry describing the field with which the condition~-name is as-
sociated.

More specifically,

nn field-name . . .
88 condition-name-1 VALUE IS literal-1.

88 condition-name~2 VALUE IS literal-2.

As an example,
3 GRADE . . .

88 FRESHMAN VALUE IS 1.
88 SOPHOMORE VALUE IS 2.
88 JUNIOR VALUE IS 3.

88 SENIOR VALUE IS 4.

4. SUMMARY
4.1 FILE SECTION

4.1.1 Organization

The FILE SECTION contains a Section header, File Description
entries, Record Description entries for label records and Record Description
entries for data records. Some of the information about the file may be in the
COBOL library and therefore may not appear explicitly in the FILE Section. The
order of information is as follows:

FILE SECTION,
FD file-name . . .

01 label-name . . .

VI-39

01 record-name

FD file-name . . .

4,1.2 Specifications and Handling of Labels

The COBOL System provides for the automatic handling of four
types of labels - beginning and ending, file and tape. The notes for the LABEL
RECORDs clause in the File Description entry contain an indication of the relative
position of these labels on the tape(s) associated with a file. '

A label record is a logical record containing the labelling infor-
mation about a tape or file. There are many different types of label records, but
some of these are fairly standard. In order to have common recognition of these
records, fixed names have been assigned. Any other label records and the
methods of handling them will be specified by the individual implementors. The
label records with fixed names are:

BEGINNING-TAPE-LABEL

BEGINNING-FILE-LABEL

ENDING-FILE-LABEL

ENDING-TAPE-LABEL

A Record Description must be available for each label record

employed. Record Descriptions for label records are prepared in the same
manner as those prepared for data records; however, since the input-output
system must perform special operations on certain fields within the label record,
fixed names have been assigned to those label fields which have particular sig=-
nificance.

For purposes of discussion, label fields are classified as follows:

a) Those which must contain unique values depending on the
particular file involved (e.g., name and number of the file, etc.)

b) Those which contain hash-totals.

¢) Those which have a general meaning in the processing of
files (e.g., record count, tape number, etc.)

d) Those having special functions which are not handled
automatically.

VI-40

A field which must have a unique value depending on the particular
file is handled in the following manner:

a) In preparing the Record Description entry, any name may
be assigned to the field. Since the value of the field is a variable, it is not shown.

b) In preparing the File Description entry, the name of the
field and the value which it must contain is listed in the VALUE clause.

¢) In processing an input file, an equality test is made be-
tween the contents of the label field, and the corresponding value specified in the
file description.

d) In processing an output file, the value specified in the file
description is entered in the label field of the beginning label.

A hash-total field is handled as follows:

a) In preparing the Record Description entry, any name may
be assigned to the field.

b) In preparing a File Description entry, the name of the
label field is listed with the corresponding name of the data field whose "hashed
value" is contained in the field. See HASHED option of VALUE clause in File
Description Entry.

¢) In processing an input file, an automatic hash-total will be
accumulated from the data field named. This total will then be compared against
that found in the ending label.

d) In processing an output file, an automatic hash-total will
be accumulated from the data-field named. This total will then be entered in the
label-field of the ending label.

Label records contain within themselves label fields. Again,

there are many different label fields, but some of these are fairly standard. In
order to have common recognition of these fields, fixed names have been assigned.
Any other label fields and the method of handling them will be specified by the
individual implementors. The label fields with fixed names are:

REEL-NUMBER

DATE-WRITTEN

PURGE-DATE

TEST-PATTERN

BLOCK-COUNT

RECORD-~COUNT

MEMORY-DUMP-KEY

SENTINEL

VIi-41

The last two names in the above list represent conditional vari-
ables for which the following fixed condition-names must be specified:

MEMORY-DUMP are condition names for the con-
NO-MEMORY-DUMP ditional variable MEMORY-DUMP-

KEY
END-OF-FILE are condition names for the con-
END-OF-TAPE ditional variable SENTINEL

All other label fields (i. e., class "d" fields), must be handled by
the programmer. That is, the processing required for such fields must be speci-
fied in the PROCEDURE DIVISION of the program. Since the time at which such
statements must be executed is under the control of the input-output system, the
programmer must identify those COBOL statements which are to be executed
during the preparation or checking of particular labels by the input-output system.
This is accomplished through the USE verb.

4.2 WORKING STORAGE SECTION

4.2.1 Organization

The WORKING~STORAGE Section contains a Section header,
Record Description entries for working storage records and Record Description
entries for non-contiguous working storage fields. The order of the information
~which may appear is as follows:
WORKING-STORAGE SECTION

77 field-name . . .

77 field-name . . .
01 record-name. . .

01 record-name . .

4. 2.2 Non-Contiguous Working-Storages

Working storage fields which bear no relationship to one another
need not be grouped into records providing they do not need to be further sub-
divided. Instead, they may be classified and defined as non-contiguous fields.
Such fields are defined in separate Record Description entries which begin with
the special level number 77.

VI-42
4. 2.3 Initial Values

Initial values of working storages may be specified in the VALUE
clause of the Record Description Entry.

4.2.4 Condition-names

As with data fields, a working storage field may constitute a con-
ditional variable to which one or more condition-names may be associated.
Entries defining condition-names must immediately follow the field to which they
relate. Condition-names may be associated with non~-contiguous as well as con-
tiguous working storage fields.

4.3 CONSTANT SECTION
4.3.1 Organization

The CONSTANT Section contains a section header, Record
Description entries for constant records (i. e., groups of constants, such as a
table, whose relative positions are significant), and Record Description entries
for non-contiguous constants. The order of the information which may appear is
as follows:

CONSTANT SECTION

77 field-name . . .

77 ﬁeid-name e
01 record-name . . .

01 record-name. . .

4. 3.2 Description of Constants

The minimum amount of information required in the definition of
a non-contiguous constant is the level number, constant name, and the value of
the constant. Since contiguous (grouped) constants may be addressed by use of
subscripts, an internal map is necessary and BASE is required in addition to the
minimum information required for definition of a non-contiguous constant,

4.3.3 Tables of Constants

Tables of constants must be defined in the following manner:

a) The table is considered to be a record, and, therefore, is
defined by a set of contiguous record description entries which define the contents
of the table.

552133 O ~ 60 ~ 11

VI-43

b) The record must then be redefined (see the REDEFINES
clause in the Record Description entry), to show the hierarchal structure inherent
in the table. The OCCURS clause must be used in the redefinition, if subscripts
are to be employed in referencing the table. In redefining a table, complete
Record Description entries are required (i. e., SIZE, BASE, PICTURE, editing
information, etc.).

5. LIST OF KEY AND OPTIONAL WORDS IN THE DATA DIVISION

5.1 KEY WORDS

The key words in the DATA DIVISION are:

ALPHABETIC LABEL
ALPHANUMERIC LEAVING

AN LEFT

BASE LIBRARY

BASIC MEMORY-DUMP

BEGINNING-FILE-LABEL
BEGINNING-TAPE~LABEL

MEMORY-DUMP-KEY
NO-MEMORY-DUMP

BITS NUMERIC
BLANK OCCURS
BLOCK OMITTED
BLOCK-COUNT OTHER
CHECK PICTURE
CLASS POINT
CONSTANT PREPARED
COPY PURGE~DATE
DATA RANGE
DATA-WRITTEN RECORD
DEPENDING RECORD-COUNT
DIVISION RECORDING
END-OF-FILE REDEFINES
END-OF-TAPE REEL-NUMBER
ENDING-FILE-LABEL RIGHT
ENDING-TAPE-LABEL SECTION

FD SENTINEL
FILE SEQUENCED
FILLER SIGN

FLOAT SIGNED
HASHED SIZE
JUSTIFIED STANDARD

VI-44

SUPPRESS TO

SYNCHRONIZ ED WORKING-STORAGE
TEST-PATTERN VALUE

THRU ZERO

5.2 OPTIONAL WORDS
The optional words in the DATA DIVISION are:

ABOUT

ARE
CHARACTERS
CONTAINS
DOLLAR

FOR

IN

IS

LOCATION
MODE

OF

ON

PLACES
PROTECTION
TIMES

TYPE

WHEN

vi-1

VII, ENVIRONMENT DIVISION

1, GENERAL DESCRIPTION

1.1 OVERALL APPROACH

The basic approach to the ENVIRONMENT DIVISION is to centralize those
aspects of the total data processing problem which are dependent upon the physical
characteristics of a specific computer, It provides a linkage between the logical
concepts of data and records, and the physical aspects of the files on which they
are stored.

The ENVIRONMENT DIVISION is the one part of the COBOL system which
must be rewritten each time a given problem is run on a different computer, It has
been included in the COBOL System to provide a standard way of expressing the
computer dependent information which must be included as part of every problem,

1.2 ORGANIZATION

The ENVIRONMENT DIVISION has been divided into two sections - CON-
FIGURATION and INPUT-OUTPUT.

The CONFIGURATION Section, which deals with the overall specifications
of computers, is divided into three paragraphs. They are: the SOURCE-
COMPUTER, which defines the computer on which the COBOL Compiler is to be
run; the OBJECT-COMPUTER, which defines the computer on which the program
produced by the COBOL Compiler is to be run; and SPECIAL-NAMES, which relate
the actual names of the hardware used by the COBOL Compiler to the names used
in the program, o

The INPUT-OUTPUT Section deals with the definition of the external media
and information needed to create the most efficient transmission and handling of
data between the media and the object program, This section is divided into two
paragraphs, They are the I-O Control, which defines special input-output tech-
niques, rerun, and multiple file tapes; and FILE-CONTROL, which names and
associates the files with the external media.

1.3 STRUCTURE

The following is a general outline of the Sections and Paragraphs under the
ENVIRONMENT DIVISION,

ENVIRONMENT DIVISION,
CONFIGURATION SECTION,
SOURCE-COMPUTER, computer name ., . .
OBJECT-COMPUTER. computer name . . .
SPECIAL-NAMES. hardware-name IS, . .
INPUT-OUTPUT SECTION.

FILE-CONTROL. SELECT. . .
I-O-CONTROL. APPLY . . .

VII-2

SOURCE-COMPUTER

2, CONFIGURATION SECTION

2.1 SOURCE COMPUTER

FUNCTION: To describe the computer upon which the program is to be compiled.

To provide a means of communicating with an executive routine,

Option 1:

SOURCE-COMPUTER. COPY library-name,

Option 2:

SOURCE-COMPUTER. Computer-name [WITH SUPERVISOR CONTROLj|
~ w T
WORDS
, MEMORY SIZE | integer-1 { CHARACTERS
MODULES
T ADDRESS integer-2 THRU integer-3 %
[, integer-4 THRU integer-5 . .]
L <]

’

Notes:

1.

[integer—G] hardware-name-1 [, [integer-7] hardware-name-2 , .]

Option 1 is used when the COBOL library contains the entire description
of the source computer,

Fixed "computer-name's and "hardware-name's will be assigned by the
individual implementors.

The "computer-name' provides an automatic definition of a particular
equipment configuration, The '"computer-name'" and its implied configura-
tion is specified by the implementor., The configuration definition contains
specific information concerning the memory size, memory addresses, and
types and number of hardware for a specific computer,

The configuration defined by "computer-name' may comprise moxe equip-
ment than is actually needed by the compiler. In that case, Option 2 allows
the user to specify the actual subset of the configuration he wishes to use,
The compiler replaces the number associated with the hardware in the
"computer-name' configuration with the specified "integer.

VII-3

SOURCE-COMPUTER

5. If the subset specified by the user is less than the minimal configuration re-
quired for compilation, an error will be indicated,

6. "Hardware-name's may include input/output units, floating point hardware,
indicators (i.e., breakpoints, sense devices), index registers, any special
or additional instructions, etc.

7. The SUPERVISOR option is used when it is planned that the compiler will be
run under control of an executive routine, Communication between the com-
piler and the executive routine will be specified by each implementor,

VII-4

OBJECT-COMPUTER

2.2 OBJECT COMPUTER

FUNCTION: To describe the computer upon which the program is to be run.

To provide a means of communicating with an executive routine.

Option 1:

OBJECT-COMPUTER. COPY library-name.

Option 2:

OBJECT-COMPUTER. Computer-name \:WITH SUPERVISOR CONTROL:‘

, MEMORY SIZE | integer-1 { CHAR ACTERS

-

WORDS

MODULES
ADDRESS integer-2 THRU integer-3

[, integer-4 THRU integer-5 . .]

i
I:, [integer-ﬁ] hardware-name-1 [, [integer#?] hardware-name-2 , . :]] .

Notes:

1.

2o

Option 1 is used when the COBOL library contains the entire description of
the object computer,

Fixed ""computer-name''s and "hardware-name''s will be assigned by the in-
dividual implementors.

The "computer-name' provides an automatic definition of a particular equip-
ment configuration. The "computer-name" and its implied configuration is
specified by the implementor. The configuration definition contains specific
information concerning the memory size, memory addresses, and types and
number of hardware for a specific computer.

The configuration defined by '"computer-name' may comprise more equip-
ment than is actually needed by the object program or is available on the
object computer. In that case, Option 2 allows the user to specify the actual
subset of the configuration he wishes to use. The compiler replaces the
number associated with the hardware in the "computer-name" configuration
with the specified "'integer",

If the subset specified by the user is less than the minimal configuration re-
quired for the program to run, an error will be indicated during compilation,

VII-5

OBJECT-COMPUTER

6. '"Hardware-name's may include input-output units, floating point hardware,
indicators (i.e., breakpoints, sensing devices), index registers, any special
or additional machine instructions, etc.

7. The SUPERVISOR option is used when it is planned that the object program
will be run under the control of an executive routine. Communication be-

tween the object program and the executive routine will be specified by the
individual implementor.

ViIi-6

SPECIAL-NAMES

2.3 SPECIAL-NAMES

FUNCTION: To provide a means of relating hardware with mnemonic-names and
the status of hardware switches with condition-names:

Option 1:

SPECIAL-NAMES. COPY library-name,

Option 2:

SPECIAL-NAMES. Hardware-name-1 IS mnemonic-name-1

[, hardware-name-2 IS mnemonic-name-2 . . .]
Option 3:

SPECIAL-NAMES. Hardware-name-1 [I_S_ mnemonic -name -1]

[, ON STATUS IS condition-name-1] [OFF ST ATUS IS

condition-name-Z] [, hardware-name-2 . . .] .

Notes:

1. This paragraph is not required if "mnemonic-names'" and '"condition-names'
are not used in the PROCEDURE DIVISION,

2. Option 1 is used when the COBOL library contains the entire description of
the special-names used in the program.

3. In Option 2, "hardware-name' may not be a switch, Each "hardware-name'"
may have assigned to it a ""mnemonic -name" which may then be used in the
ACCEPT and DISPLAY verbs.

4, In Option 3, "hardware-name' must be a switch and there must be associated
with it either a "mnemonic-name" or a "condition-name’ or both, Each
"hardware-name' may have assigned to it a ''mnemonic -name'" which may
then be used in the ACCEPT and DISPLAY verbs. The status of the switches
is specified by using "condition-name's and interrogated by testing the
neondition-name"s. (See Conditional Variables in Chapter V).

5. Fixed '"hardware-name's are assigned by the individual implementor.

6. Combinations of Option 2 and 3 may be used.

VII-T7

FILE-CONTROL

3. INPUT-OUTPUT SECTION

3.1 FILE-CONTROL

FUNCTION: To name each file, identify its media and allow particular hardware

assignments. To specify alternate input-output areas. To facilitate
multiprogramming.

Option 1:

FILE-CONTROL. COPY library-name.

Option 2;

FILE-CONTROL. SELECT [OPTIONAL] file-name-1 [RENAMING file-

name—2:| , ASSIGN TO [integer-l] hardware-name-1 [, hardware-name-2 ., .]

[FOR MULTIPLE REEL] [RESERVE {i“teger‘} ALTERNATE {AREA]

NO AREAS

[, PRIORITY ﬁpriority] . [SELECT -]

Notes:

1.

Option 1 is used when the COBOL library contains the entire description of
the FILE-CONTROL,

The beginning of the information for each "file-name-1" will be identified by
the key word SELECT,

The name of each selected file (e.g. "file-name-1'"") must be unique within a
program, ’

The key word OPTIONAL is required for input files which will not neces-
sarily be present each time the object program is to be run.

If more than one file utilizes the same FILE DESCRIPTION, the RENAMING
option must be included. That is, "file-name-1" utilizes the FILE DESCRIP-
TION written for "file-name-2", i.e., when a file is to be processed both as
an input and output in the same program. RENAMING '"file-name-1" or
"file-name-2" implies the sharing of a single FILE DESCRIPTION and does
not allow these files to be referenced interchangeably in the program,

All files used in the program must be assigned to an input or output medium
("hardware-name"), "Hardware-name''s are specified by the implementors.
These names may be broadened by the implementors to include additional
information about the media.

VII-8

FILE-CONTROL

10,

11,

12,

13.

As an example, for card equipment, the "hardware-name'" may include
stacker selection; for drums, "hardware name"s may include drum ad-
dresses or a storage selection technique.

"Integer-1"" may only be specified when "hardware-name-1" is tape,
"Integer-1'"" then indicates the number of tape units to be assigned to the file,

If "integer-1" is not specified (in the case of tape) the compiler will then
determine the exact number of units to be assigned, The number of avail-
able units is specified in the OBJECT-COMPUTER paragraph,

The MULTIPLE REEL option must be included when:

(a) "Integer-1" is not specified and more than one reel may exist in a file,

(b) "Integer-1" is specified but may be less than the total number of reels
in afile.

Specific hardware units are assigned by using specific "hardware-name''s.

When specific input-output units are assigned by the user, the same unit
must be assigned to all files existing on the same reel (see MULTIPLE
FILE option in I-O-CONTROL paragraph.,)

The RESERVE statement allows the user to modify the standard input-output
alternate areas allocated by the compiler,

The PRIORITY option provides a means of assigning priorities to individual
files for multiprogramming operations. The manner in which the priority is
specified will be defined by the implementor,

VII-9

I-O-CONTROL

3.2 I-O-CONTROL
FUNCTION: To specify the input-output techniques, the points at which rerun is to
be established, the memory area which is to be shared by different
files, and the location of files on a multiple file reel.
Option 1:

I-O-Control, COPY library-name.

Option 2:

I-O-Control, [APPLY input-output techniques.:l

[RERUN ON {fﬂe'“ame-l } EVERY
— | = |hardware-name

END OF REEL
{integer-l RECORDS

integer-2 CLOCK-UNITS

condition-name

} OF file-name-2

[SAME AREA FOR file-name-3 [, file-name-4 ., . . .]]

MULTIPLE FILE TAPE CONT AINS file-name-5 [POSITION
integer-3][, file-name-6 [POSITION integer-4] . .]]

Notes:
1. This paragraph is required only when one of the above options is desired,

2. Option 1 is used when the COBOL library contains the entire description of
1-O-CONTROL,

3. It is assumed that some implementors will furnish more than one input-
output system technique, The "input-output technique' option allows the
user to select the appropriate technique for his object program.

4, TIf RERUN is specified, it is necessary to indicate when a rerun point is to be
established and where the memory dump is to be written,

a) Memory dumps are written in the following ways:

i) The memory dump is written on each reel of an output file, Each
implementor will specify where the memory dump is to be written
on the reel,

VII-10

I-O-CONTROL .

ii) The memory dump is written on a separate rerun tape
("hardware-name''),

b) Many methods of establishing rerun points are available. Rerun
points are established by the following conditions:

i) When the end of REEL option is used and it is also desired to
write the memory dump on an output file ("file-name-2"), In
this case, ""file-name-1" is not required. For example,

RERUN EVERY END OF REEL OF UPDATED-INVENTORY.

ii) I "file-name-1" (which must be an output file) is specified for
the RERUN, normal reel closing functions for "file-name-1" will
be performed along with the memory dump. In this case, "file-
name-2'" may either be an input or output file.

iii) When a number of records ("integer-1") of an input or output file
("file-name-2"") have been processed. In this case, ""hardware-
name'" must be specified.

iv) When an interval of time ("integer-2") calculated by an internal
clock, has lapsed. In this case, '"hardware-name" must be
specified,

v) When a hardware switch assumes a particular status ("condition-
name"). In this case, "hardware-name' must be specified. The
"condition-name™" and the associated hardware switch must be
defined in the SPECIAL-NAMES paragraph of the CONFIGURA -
TION SECTION,

5. The function of SAME AREA under Option 2 is to provide for the overlaying
of different files on the same memory area. (Area includes the record area
as well as the alternate storage area). When one file is to overlay another,
the first file must be ""closed" before the second file can be ""opened"',

6. The MULTIPLE FILE option is required when more than one file shares the
same physical reel of tape. Regardless of the number of files on a single
tape, only those files which are used in the object program need be speci-
fied, If all file-names have been listed in consecutive order, the POSITION
need not be given. If any file in the sequence is not listed, the position rel-
ative to the beginning of the tape must be given.

VII-11

4, LIST OF KEY AND OPTIONAL WORDS IN THE ENVIRONMENT DIVISION

4.1 KEY WORDS

The key words in the ENVIRONMENT DIVISION are:

ADDRESS
APPLY

ASSIGN
CHARACTERS
CLOCK-UNITS
CONFIGURATION
COPY
ENVIRONMENT
DIVISION

FILE
FILE-CONTROL
I-O-CONTROL
INPUT-OUTPUT
IS

MEMORY
MODULES
MULTIPLE

NO

OBJECT-COMPUTER
OFF

ON

OPTIONAL

POSITION

PRIORITY

RECORDS

REEL

RENAMING

RERUN

RESERVE

SAME

SECTION

SELECT
SOURCE-COMPUTER
SPECIAL-NAMES
SUPERVISOR

THRU

WORDS

VII-12
4,2 OPTIONAL WORDS
The optional words for the ENVIRONMENT DIVISION are:
ALTERNATE
AREA
AREAS
CONTAINS
CONTROL
END
EVERY
FOR
OF
SIZE
STATUS
TAPE
TO

WITH

VIII-1

VIII. REFERENCE FORMAT

1. GENERAL DESCRIPTION

The purpose of the Reference Format is to provide a standard way of writing
COBOL programs. This Reference Format is an output from the compilation and
will be used as a means of communication, and as one of the acceptable input for-
mats for each COBOL compiler. Because the language allows the use of sen-
tences, paragraphs, sections, and divisions, a standard method of representing
these will be shown. The basic principle behind the particular formats chosen is
to allow the maximum amount of flexibility for individual tastes while still using
one form,

It is essential to note that whenever the Reference Format is being used, its
specifications take precedence over any other rules allowing an arbitrary number
of spaces. Thus, the number of spaces is critical in the Reference Format.

There are three parts to the Reference Format, one for each division.

2. PROCEDURE DIVISION

The specific format for the PROCEDURE DIVISION is as follows:

Seq. No,

A B C
(6) (l)l (4)| (4)|

The first column in the Reference Format occupies 6 spaces and is used for the
sequence number. One blank space is left and then the remainder of the page is
used for the text and names of parts of the text. Positions A, B, and C have
special significance to be described below. The right hand margin Z is determined
by the width of the paper or printing media.

The names of the division, and names of the sections and paragraphs within it
start under position A, Position B is the normal left hand margin for the text, and
C is used for indentation purposes.

The first line contains the header -
PROCEDURE DIVISION.

Section names may be used, if desired. A section name applies to all succeed-
ing information until another section name is reached. The section name is fol-
lowed by a space, the word SECTION, a period and a space. The only other
information which may appear on the same line is the priority number described
in IX. 2, "Segmentation". A section name may be used as a qualifier for otherwise
identical paragraph names. Within a section, any reference to a paragraph name
not otherwise qualified will be assumed to refer to paragraphs within the section,

A paragraph may be either named or unnamed. When it is named, the name
is followed immediately by a period and a space. The first sentence cf the para-
graph may begin anywhere on the same line as the name, or under position B on
the next line. A new paragraph is determined by either the appearance of another
paragraph name, or the beginning of a sentence under or to the right of position C

ViI-2

on a line not containing a paragraph name. (This indentation is important because
the PERFORM verb may indicate a range of execution of paragraphs, and the
scope of the verb will terminate when a new paragraph is reached.) A paragraph
may consist of only one sentence,

Any sentence which occupies more than one line must be continued by starting
under B on the next line, or else the continuation may be mistaken for another
paragraph,

If a word or literal must be split between two lines, this must be indicated by
having a hyphen in the last character position on the first line.

Thus, a hyphen appearing in the last character position on a line is never con-
sidered part of the word or the literal., Because words may not end with a hyphen,
and a minus sign is surrounded by spaces, there is no ambiguity., I the character
in the word or literal which would normally be in the last position, happens also
to be a hyphen, it will appear as the first character on the second line. Thus,
there will actually be two hyphens printed - one at the end of the first line and one
at the beginning of the second. Only the second is part of the word or literal.

No punctuation mark other than the hyphen, quote or left parenthesis should
be in the first position of a line, unless it is within a literal.

SAMPLE

Seq. A B C Z
No.

PROCEDURE DIVISION,

yyyyyyyy SECTION.

paragraph-name. aaaaaaaaaaaa. bbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb, ccccceceece. dddddd
ddddddddddddd. eeeeeeeeeeeeecee,

IEEEIESEEREREFREFELLELLOOLLL, ooopeegegagges

.........................

par-name. Kkkkkkkkkkk,

Note: K the user wishes to have the verb stand out, then he should use only simple
statements each being a full paragraph, and short paragraph names.

VIII-3

3. DATA DIVISION

The basic unit in the Record Description is an entry. This entry is started by
a level number and followed by the name of the data and a series of independent
clauses. The clauses may be preceded by a semicolon and the entry is ended by
a period followed by a space. This applies to both the File Description and the
Record Description,

The basic difference between this format and that of the procedure description
is the concept of level number. The latter defines a very detailed hierarchal
structure and it is desirable to show this in the Reference Format. This is done
by allowing the indentation of the level number and the corresponding entry.

The first line consists of the header DATA DIVISION [PREPARED FOR] .
The sequence number appears at the left as in the Reference Format for the
PROCEDURE DIVISION. The first level number then starts at the place where
the procedure names are placed. If a single entry requires more than one line,
the left margin for each is the same, namely, the position under the first letter
of the data-name. The rules for breaking words at the end of a line are the same
as in the PROCEDURE DIVISION, Each new level number is indented 4 spaces
further than the previous one. (If this causes the right hand margin to be reached,
then all subsequent lower levels are not indented any further.) Two spaces are
left between the level and the data-name., The FD (ie. File Description) entry
always begins at the left margin of the text.

SAMPLE:
nn data-name-1 yyyyyyyyyyyyyYVYVY; 2ZZZZZZZZZZZ; SSSSSSSSSSSSSSS
8588888888,
nn data-name-2 aaaaaaaaa; bbbbbbbbbbbbbbbbb; ccececeececececcee
ccececeeeeecececceceeecccecece,
nn data-name-3 dddddddddddddddddddddddd.
nn data-name-4 eceeceeceeeeeeeeeeee; IIIffffffifffff; gggooggges

£882gegEeeEeeIesrIoseoooororggog.
nn data-name-5 hhhhhhhhhhhhhhhhhhh.

nn data-name-T kkkkkkkkkkkkkkkkkkk,

4, ENVIRONMENT DIVISION

The Reference Format for the ENVIRONMENT DIVISION is the same as that
of the PROCEDURE DIVISION, However, there are only fixed section and para-
graph names, and no unnamed paragraphs. The rules for continuation of sen-
tences and words are the same, The I-O-CONTROL and the FILE-CONTROL

VIII-4

paragraphs are each composed of several sentences, whereas the other para-
graphs are composed of only one sentence each. The following is an example of
a possible format, except that all the information for each section and paragraph
has not been shown, (See Chapter VII, ENVIRONMENT DIVISION).

ENVIRONMENT DIVISION,
CONFIGURATION SECTION.,
SOURCE-COMPUTER. computer-name .. .

OBJECT-COMPUTER. computer-name .

SPECIAL NAMES, hardware-name IS

e °

INPUT-OUTPUT SECTION.

FILE-CONTROL. SELECT file-name-1... . SELECT

file-name-2... . SELECT file-name-n...

I-O-CONTROL. APPLY... . SAME... . MULTIPLE..,.

IX-1

IX. SPECIAL FEATURES

1. LIBRARIES

The COBOL library contains three types of entries, corresponding to the three
divisions of the COBOL system. Thus, there is information describing machine
configurations which is retrievable through the use of the COPY in the ENVIRON-
MENT DIVISION, and file and record descriptions retrievable through the use of
the COPY in the DATA DIVISION. Finally there are procedure statements -
commonly called subroutines - which are retrievable through the use of the verb
INCLUDE in the PROCEDURE DIVISION. Each division is capable of obtaining
material pertaining only to itself,

The actual physical makeup of the COBOL library, as well as the maintenance
and handling, are left to the individual implementor.

The calling of library material produces the same effect as if the programmer
had written the same material in his source program. Because information from
the ENVIRONMENT and DATA DIVISION is never directly translated to object
coding, library material from these divisions is obtained at compilation time and
then used as if it had originally been part of the source program. Because the pro-
cedure statements in the source code are translated to form the object program,
the library material from the PROCEDURE DIVISION is brought in at compilation
time for use as part of the object program. However, it is almost always neces-
sary for the compiler to make modifications and/or additions to the subroutines in
order to provide correct and efficient linkage with the main program.

Subroutines in the library are identified by a library name, and may have any
number of paragraph names, but may not have any section name. The subroutines
are called by name from the COBOL library by the compiler directing verb IN-
CLUDE, and at the option of the programmer are inserted either at the place the
INCLUDE occurs, or outside of the normal program sequence. When necessary,
the compiler will supply as a qualifier either the name of the paragraph containing
the INCLUDE, or an arbitrary name generated during compilation. REPLACING,
if specified by the INCLUDE verb, is accomplished at the time of compilation.
Once inserted into the program, subroutines may be referenced either by a PER-
FORM or a GO, or may simply be executed in line without any special reference.

2. SEGMENTATION

Segmentation is the partitioning of the object program into memory loads, in
those cases where the memory is too small to contain all the object coding. The
COBOL system does not provide segmentation of data, SECTIONS in the
PROCEDURE DIVISION enable the user to indicate the points at which the object
program may be segmented and thus permit the compiler to provide semi-
automatic segmentation when necessary. (Fully automatic segmentation occurs
only when the compiler itself determines the size of each memory load without in-
dication by the user. Semi-automatic segmentation occurs when the compiler uses
programmer supplied information to determine memory loads and provides for
automatic reloading where necessary.)

Segment points are defined by sections. That is, each SECTION in the PRO-
CEDURE DIVISION is automatically considered as a possible memory load. Fur-
ther, the word SECTION may be followed immediately by a priority number that

IX-2

will instruct the compiler which segment points to try first. The priority number
must be a decimal integer between 1 and 999 and may not be a field name, If a
priority number is used, the compiler will attempt to segment first at the lowest
number and successively try with higher numbers until the program is reduced to a
series of acceptable memory loads.

In order to preserve loops intact, it will be essential to insert segment points
in pairs surrounding the loop, using the same priority number for each SECTION
in the pair, and using the priority number nowhere else.

As an illustration, consider the following layout:

A SECTION, 1
B SECTION. 99
C SECTION. 99
D SECTION.

E SECTION. 98
F SECTION.. 98
G SECTION, 2

In this case, Sections A and G are most preferable to cut off, B and C are closely
related and are not to be separated, E and F are likewise related, and B - C is
more closely related to D than E - F is.

The compiler will automatically provide the necessary coding in the object pro-
gram to bring the proper segment in memory as required by GO, PERFORM or
normal statement sequence. Each segment must always be brought back in its
altered form. Thus, if any statement in a procedure is altered, or the value of
any variable changed, the compiler must keep track of their altered forms. Each
implementor has the option of providing some type of segmentation for working
storage, files, etc. In no case does the programmer have any means of indicating
segmentation for data.

3. SEQUENCE NUMBERS

In order to facilitate corrections and changes, the concept of sequence numbers
has been introduced. A sequence number consists of 6 digits. It corresponds to
the line on the coding form prior to the initial compilation, or to the listing on sub-

- sequent compilations. Corrections may be made with reference to the sequence
numbers. The functions of INSERTION, DELETION and REPLACEMENT of entire
lines are desirable. The details will be specified by each implementor,

APPENDIX A

COMPREHENSIVE RULES FOR FORMING ALGEBRAIC EXPRESSIONS

Arithmetic expressions may contain field names, constants, and literals joined by
arithmetic operators. Subexpressions may be contained in parentheses as required.
The rules for forming arithmetic expressions are as follows:

1. The basic operators are:

OPERATORS WRITTEN AS
Addition +
Subtraction -
Multiplication *
Division /
Exponentiation *k
Negation -

2. The ways in which symbol pairs may be formed are summarized in the follow-
ing table:

Second Symbol

Variable ok fHK Negation ()

é Variable - P - - P

g ok Rk P - - P -

g.; Negation P - - P -
H

% (P - p P -

) - P - - P

Where ""P" indicates a permissible symbol pair, and "-" indicates a pair which

is not permitted. Thus, '*('" is permissible, while "(*'" is not.

3. When the hierarchy of operations in an expression is not completely specified by
parentheses, the order of operations (working from inside to outside) is as-
sumed to be exponentiation, then multiplication and division and finally, addition
and subtraction. Thus, the expression A +B/C +D**EXF - G will be taken to
mean A + (B/C) + (DE-F) - G.

A-2

When the sequence of consecutive operations of the same hierarchal level (i. e.,
consecutive multiplications and divisions or consecutive additions and subtrac-
tions) is not completely specified by parentheses, the order of operations is
assumed to be from left to right. Thus, expressions ordinarily considered
ambiguous, e.g., A/B*C and A/B/C, are permitted in COBOL statements. For
instance, the expression A*B/C*D is taken to mean ((A*B)/C)*D.

5. The expression ABC, which is sometimes considered meaningful, cannot be
written as A**B**C; it should be written as (A**B)**C or A**(B**C), which-
ever is intended.

B-1
APPENDIX B

RULES FOR FORMING COMPOUND CONDITIONS

Conditional expressions may contain conditions, variables, constants, functions,
literals, arithmetic operators, relations of equality and relative magnitude and the
logical operators NOT, AND and OR. Sub-expressions may be contained in paren-
theses as required.

If either a condition-name (such as MARRIED) or a relation (such as PAY IS
GREATER THAN 2*X+Y) or a test is designated by the symbol Cj the following
rules may be stated concerning the formation of compound conditions involving Cj,
NOT, AND and OR.

1. The Condition Is True If
Cq1 Cq is true
NOT C1 Ci is false
Cq AND Cy Both C; and Cy are true
C1 OR Cy Either Ci is true, Cq is true
or both are true
NOT (C1 AND Cy) "NOT Cy OR NOT Cyp'" is true
NOT (C4 OR Cy) "NOT Cj AND NOT Cy" is true

2. If Cy and Cy are compound, then "Cq AND C2" and "'C1 OR C3'" are compound
conditions, as are similar expressions formed with the use of NOT. Thus,
given an expression of the form:

C{ AND (Cg OR NOT (C3 OR C4))
it may be successively reduced by substituting as follows:
Let Cg equal ""C3 OR C4" resulting in C1 AND (C2 OR NOT Cs)
Let Cg equal "Cg OR NOT C5" resulting in C; AND Ceq
Let Cn equal ""Cy AND Cg' resulting in Cy
This rule indicates how compound conditions may be formed from simple con-
ditions. py
3. The conditional expression "C1 OR Cg AND C3" is identical with "Cy OR
(C9 AND C3)'" but is not the same as "(C1 OR Cg) AND C3". In other words,
compound conditions are grouped first according to AND and subsequently by

OR. -However, the programmer's use of parentheses will affect the order of
grouping.

B-2

4. The rules for formation of symbol pairs are contained in the following table:

Second Symbol

c OR AND NOT ()

C - P P - - P

OR P - - P P -
2
g

%| AND P - - P P -
®
A
B

NOT P - - - P -

(P - - P P -

) - P P - - P

where the "P" indicates that the pair is permissible, and the "-" indicates a
symbol pair that is not permissible. Thus, the pair "OR NOT" is permissible,
while "NOT OR" is not permissible.

APPENDIX C

COMPLETE LIST OF RESERVED WORDS

The words shown below are an inherent part of the COBOL System. Users

ABOUT
ACCEPT
ADD
ADDRESS
ADVANCING
AFTER

ALL
ALPHABETIC
ALPHANUMERIC
ALSO

ALTER
ALTERNATE
AN

AND

APPLY

ARE

AREA
AREAS

AS

ASSIGN

AT

BASE

BASIC
BEFORE
BEGINNING

BEGINNING-FILE-LABEL
BEGINNING-TAPE-LABEL

BITS

BLANK

BLOCK
BLOCK-COUNT
BY
CHARACTERS
CHECK

CLASS
CLOCK-UNITS
CLOSE

COBOL
COMPUTE
CONSTANT
CONFIGURATION
CONTAINS
CONTROL

COoPY

CORR ESPONDING
DATA
DATE-WRITTEN

should avoid choosing these for data or procedure names.

DEFINE
DEPENDING
DISPLAY
DIVIDE
DIVIDED
DIVISION
DOLLAR

ELSE

END

ENDING
ENDING-FILE-LABEL
ENDING-TAPE-LABEL
END-OF-FILE
END-OF~TAPE
ENTER
ENVIRONMENT
EQUAL
EQUALS
ERROR

EVERY
EXACTLY
EXAMINE
EXCEEDS

EXIT
EXPONENTIATED
¥D

FOR

FILE
FILE-CONTROL
FILLER
FILLING

FIRST

FLOAT
FORMAT

FROM

GIVING

GO

GREATER
HASHED

HERE
HIGH-VALUE
HIGH-VALUES
I-O-CONTROL
IF

IN

INCLUDE
INPUT

INPUT-OUTPUT
INTO

IS

JUSTIFIED
LABEL
LEADING
LEAVING

LEFT

LESS

LIBRARY

LINES
LOCATION
LOCK
LOW-VALUE
LOW-VALUES
MEMORY
MEMORY-DUMP
MEMORY-DUMP-KEY
MINUS

MODE
MODULES
MOVE '
MULTIPLE
MULTIPLIED
MULTIPLY
NEGATIVE

NO
NO-MEMORY-DUMP
NOT

NOTE

NUMERIC
OBJECT-COMPUTER
OCCURS

OF

OFF

OMITTED

ON

OPEN
OPTIONAL

OR

OTHER
OTHERWISE
OouUTPUT
PERFORM
PICTURE
PLACES

PLUS

C-2

POINT
POSITION
POSITIVE
PREPARED
PRIORITY
PROCEDURE
PROCEED
PROTECTION
PURGE-DATE
RANGE

READ
RECORD
RECORD-COUNT
RECORDING
RECORDS
REDEFINES
REEL
REEL~-NUMBER
RENAMING
REPLACING
RERUN
RESERVE
REVERSED
REWIND

RIGHT

RUN

SAME

SECTION
SELECT
SENTINEL
SEQUENCED
SIGN

SIGNED

SIZE
SOURCE~-COMPUTER
SPACE

SPACES
SPECIAL-NAMES
STANDARD
STATUS

STOP
SUBTRACT
SUPERVISOR
SUPPRESS
SYNCHRONIZED
TALLY
TALLYING
TAPE

TEST-PATTERN
THAN

THEN

THRU

TIMES

TO

TYPE
UNEQUAL
UNROUNDED
UNTIL

UPON

USE

VALUE
VARYING
VERB

WHEN

WITH
WORDS
WORKING=-STORAGE
WRITE

ZERO
ZEROES
ZEROS

|

U. 5. GOVERNMENT PRINTING OFFICE : 1960 O - 552133

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	9-01
	9-02
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02

