
UNIX™
for the

68000

VOLU~'1E III
Tutorials and Document Prepa:ra.t~on '

8/23/82

Copyrilht 1981, Bell Telephone Laboratories, Incorporated.
Holders of a UNIXCtm) software license are permitted to copy
this document, or any portion of it, as necessary for
licensed use of the software, provided this copyrig~t notice
and statement of permission are included.

- __ , "'P"o, .. _..... ~-, --.. - - , ._

VOLUME III

Tutorials and Document Preparation

Table of Contents

Part 1: Getting to Know UNIX

1. UNIX Summary
2. The UNIX Time-Sharing System
3. UNIX for Beginners
4. Communicating with UNIX (a tutorial in 5 sessions)
5. UNIX Command Summary

Part 2: Editing

1. Edit: A Tutorial
2. A Tutorial Introduction to the UNIX Text Editor
3. Advanced Editing (ed).
4. Ex Reference Manual -- ex
5. An Introduction to Display Editing with VI
6. Ex Command Summary
7. Ex/Vi Reference Card

Part 3: Text Formatting and Document Preparation

1. Typing Documents on the UNIX System with the -ms Macro Package
2. A TROFF Tutorial
3. NROFF/TROFF User's Manual

Part 4: Additional Formatting Programs and Macro Packages

1. Tbl - A Program to Format Tables.
2. EQN - typesetting mathematics.
3. -me Macro Package

7th Edition UNIX - Summary

S(!prf'mber n. /978

Bell laboratories
Murray Hill. New Jersey 07974

A. What's new: hichlichts of the 7th edition UNIXt System

Aimed at laller systems. Devices are addressable to 231 b)"tes. files to 230 bytes. 128K
memory (separate instruction and data space) is needed for some utilities.

Portability. CoJe of the operating system and most utilities has been extensively revised to
minimize its dependence on particular hardware.

Fortnn 77. F77 compiler for the new standard language is compatible with C at the object
level. A Fortran structurer. STRUCT. converts old. ugly Fortran into RA TFOR. a structured
dialect usable with F77.

Shell. Completely new SH program supports string variables. trap handling. Structured pro­
gramming. user profiles. seltable search path. multilevel file name generation. etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is
now highly compatible with TROFF. MS macro package provides canned commands for many
common formatting and layout situations. TBl provides an easy to learn language for prepar­
ing complicated tabular mate~a1. REFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file c:opy. UUCP performs spooled file transfers between any two machines.

Data processinl. SED stream editor does multiple er.:iting functions in paraJlel on a data
stream of indefinite length. A WK report generator does free-field pattern selection and arith­
metic operations.

Program development. MAKE controls re·creation of complicated software. arranging for
minimal recompilation.

Debucging. ADB does postmortem and breakpoint debugging. handles separate instruction and
data spaces. floating point. etc.

e lanluace. The language now supports definable data types. generalized initialization. block
structure. long integers. unions. explicit type conversions. The LINT verifier does strong type
checking and detection of probable errors and portability problems even across separately com­
piled functions.

Lexical analyzer lenerator. lEX converts specification of regular expressions and semantic
actions into a recognizing subroutine. Analogous to Y ACe.

Graphics. Simple graph·drawing utility. graphic subroutines. and generalized plotting filters
adapted to various devices are now standard.

Standard inpul-ouiput packace. Highly efficient buffered stream 110 is integrated with format­
ted input and cutput.

Other. The operating system and utilities have been enhanced and freed of restrictions in
many other ways too numerous to relate.

+ L'SIX is a Trademark of Bell Laboralorles.

• 2 •

B. Hardware
The 7th edition UNIX operating system runs on a DEC PDp·11l4S or 11170· with at least

the following equipment:

128K to 2M wprds of managed memory~ parity not used.

disk: RPOJ, RP04, RP06, RKOS (more than 1 RKOS) or equivalent

console typewriter.

cloc:k: KWll·L or KWll·P.

The followinl equipment is strongly recommended:

communications controller such as OLII or OHIt.

full duplex 96·character ASCII terminals.

9·track tape or extra disk for system backup.

The system is normally distributed on 9-track tape. The minimum memory and disk space
specified is enoulh to run and maintain UNIX. More will be needed to keep all source on line.
or to handle a large number of users. bil data bases. diversified complements of devices. or
large prOlrams. The resident code occupies 12·20K words depending on confiluration: system
data occupies 10-28K words.

There is no commitment to provide 7th edition UNIX on POP·II134. 11140 and 11160
hardware.

C. Software
Most of the prolrams available as UNIX commands are listed. Source code and printed

manuals are distributed for all of the listed software except games. Almost all of the code is
written in C. Commands are self-contained and do not require extra setup information. unless
specifically noted -as- "interactive." Interactive prOlrams can be made to run from a prepared
Script simply by redirectinl input Most programs intended for interactive use (e.I .• the editor)
allow for an escape to command level (the Shell). Most file proc:essinl commands can also go
from standard input to standard output ("filters"), The piping facility of the Shell may be used
to connect such filters directly to the input or output of other programs.

1. Basic: Software
This includes the time-sharing operating system with utilities. a machine language assem­

bler and a compiler for the programming language C -enough software to write and run new
applications and to maintain or modify UNIX itself.

1.1. Operating System
Cl UNIX The basic resident code on which everything else depends. Supports the system

calls. and maintains the file system. A general description of UNIX design phi­
losophy and system facilities appeared in the Communications of the ACM,
July, 1974. A more extensive survey is in the Bell System Technical Journal
for July-August 1978. Capabilities include:
o Reentrant code for user processes.
o Separate instruction and data spaces.
o "Group" access permissions for cooperative projects. with overlapping

memberships.
o Alarm·~Jock timeouts.

'POP is a Trademark or Oilital Equipment Corporation.

- 3 -

o Timer-interrupt sampling and interprocess monitoring for debugging and
measurement.

o Multiplexed 110 for machine-to-machine communication.

CJ DEVICES All 1/0 is logically synchronous. 110 devices are simply files in the file system.
Normally, invisible buffering makes all physical record structure and device
characteristics transparent and exploits the hardware's ability to do overlapped
110. Unbuffered physical record 1/0 is available for unusual applications.
Drivers for these devices are available; others can be easily written:
o Asynchronous interfaces: DHll, DLll. Support for most common ASCII

terminals.
o Synchronous interface: DPtl.
o Automatic calling unit interface: DN 11.
o Line printer: LP 11.
o Magnetic tape: TU 1 0 and TU 16.
o DECtape: TCII.
o Fixed head disk: RS 11. RS03 and RS04.
o Pack type disk: RP03, RP04, RP06; minimum-latency seek scheduling.
o Cartridge-type disk: RKOS. one or more physical devices per logical device.
o Null device.
o Physical memory of PDP-II. or mapped memory in resident system.
o Phototypesetter: Graphic Systems Systemll through DRIIC.

CJ BOOT Procedures to get UNIX started.

CJ MKCONF Tailor device-dependent system code to hardware configuration. As distributed.
UNIX can be brought up directly on any acceptable CPU with any acceptable
disk. any sufficient amount of core. and either clock. Other changes. such as
optimal assignment of directories to devices. inclusion of floating point simula­
tor. or installation of device names in file system. can then be made at leisure.

1.2. User Access Control

C LOGIN Sign on as a new user.
o Verify password and establish user's individual and group (project> identity.
o Adapt to characteristics of terminal.
o Establish working directory.
o Announce presence of mail (from MAIL>.
o Publish message of the day.
o Execute user-specified profile.
o Start command interpreter or other initial program.

CJ P ASSWD Change a password.
o User can change his own password.
o Passwords are kept encrypted for security.

o NEWGRP Change working group (project>. Protects against unauthorized changes to pro­
jects.

1.3. Terminal Handline

o TABS

Cl STrY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deducible
from the input. these options are set automatically by LOGIN.

..

- 4 -

o Half vs. full duplex.
o Carriage return + line feed vs. newline.
o Interpretation of tabs.
o Parity.
o Mapping of upper case to lower.
o Raw vs. edited input.
o Delays for tabs. newlines and carriage returns.

1.4. File Manipulation

o CAT

o CP

o PR

o LPR

o CMP

o TAIL

o SPLIT

DOD

o SUM

Concatenate one or more files onto standard output. Particularly used for una­
dorned printing. for inserting data into a pipeline. and for buffering output that
comes in dribs and drabs. Works on any file regardless of contents.

Copy one file to another. or a set of files to a directory. Works on any file
regardless of contents.

Print files with title. date. and page number on every page.
o Multicolumn output.
o Parallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.

Compare two files and report if different.

Print last "lines of input
o May print last n characters. or from " lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for edit­
ing (ED),

Physical file formal translator. for exchanging data with foreign systems. espe­
cially IBM 370·s.

Sum the words of a file.

1.5. Manipulation of Directories and File :"-lames

o RM

:! CHMOD

:::! CHOWN

:: CHGRP

o MKDIR

:: RMDIR

:: CD

= FIND

Remove a file. Only the name goes away if any other names are linked to the
file.
o Step through a directory deleting files interactively.
o Delete entire directory hierarchies.

"Link" another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by files' owner.

Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.

·5·

o Criteria include:
name matches a given pallern.
creation date in given range.
date of last use in given range.
given permissions.
given owner.
given special file characteristics.
boolean ct)mbinations of above.

o Any directory may be considered to be the rool.
o Perform specified command on each file found.

1.6. Running of Procrams

c:: SH

Cl TEST

Cl EXPR

CJ WAIT

!:l READ

!:l ECHO

Cl SLEEP

C'1 NOHUP

:I NICE

The Shell. or command language interpreter.
o Supply arguments to and run any executable program.
o Redirect standard input. standard output. and standard error files.
o Pipes: simultaneous execution with output of one process connected to the

input of another.
o Compose compound commands using:

if ... then ... else.
case switches.
while loops.
for loop!' over lists.
break. continue and exit.
parentheses for grouping.

o Initiate background processes.
o Perform Shell programs. i.e .• command scripts with substitutable argumerits.
o Construct argument lists from all file names satisfying specified patterns.
o Take special action on traps and interrupts.
o User-settable search path for finding commands.
o Executes user-settable profile upon login.
o Optionally announces presence of mail as it arrives.
o Provides variables and parameters with default setting.

Tests for use in Shell conditionals.
o String comparison.
o File nature and accessibility.
o Boolean combinations of the above.

String computations for calculating command arguments.
o Integer arithmetic
o Pattern matching

Wait for termination of asynchronously running processes.

Read a line from terminal. for interactive Shell procedure.

Print remainder of command line. Useful for diagnostics or prompts in Shell
programs. or for inserting data into a pipeline.

Suspend execution for a specified time.

Run a command immune to hanging up the terminal.

Run a command in low (or high) priorit~·.

o KILL

C CRON

CAT

o TEE

- 6 -

Terminate named processes.

Schedule regular actions at specified times.
a Actions are arbitrary programs.
a Times are conjunctions of month. day of month. day of week. hour and

minute. Ranges are specifiable for .each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and divert a copy into one or more files.

1. 7. Status Inquiries

o LS

o FILE

:: DATE

c DF

~ DU

o QUOT

CWHO

:: PS

::; 10STAT

:; TrY

::; PWD

List the names of one. several. or all files in one or more directories.
a Alphabetic or temporal sorting, up or down.
a Optional information: size. owner, group. date last modified. date last

accessed. permissions. i-node number.

Try to determine what kind of information is in a file by consulting the file sys­
tem index and by reading the file itself.

Print today's date and time. Has considerable knowledge of calendric and horo­
logical peculiarities.
a May set UNIX's idea of date and time.

Report amount of free space on file system devices.

Print a summary of total space occupied by all files in a hierarchy.

Print summary of file space usage by user id.

Tell who's on the system.
a List of presently logged in users. po~ts and times on.
a Optional history of all logins and logouts.

Report on active processes.
a List your own or everybody's processes.
a Tell what commands are being executed.
a Optional status information: state and scheduling info. priority. atlached ter-

minal. what it's waiting for. size.

Print statistics about system 110 activity.

Print name of your terminal.

Print name of your working directory.

1.8. Backup and Maintenance

= \10U~T Attach a device containing a file system to the tree of directories. Protects
against nonsense arrangements.

:: tJMOUNT Remove the file system contained on a device from the tree of directories.
Protects against removing a busy device.

= \1KFS \1ake a new file system on a device.

= \1K~OD Make an i-node (file system entry) for a special file. Special files are physical
devices. virtual devices. physical memory. etc.

CTP

CTAR

a DUMP

c: RESTOR

a SU

C DCHECK

CICHECK

- 7 -

Manage 'file archives on magnetic tape or DECtape. TAR is newer.
o Collect files into an archive.
o Update DECtape archive by date.
o Replace or delete DECtape files.
o Print table of contents.
o Retrieve from archive.

Dump the file system stored on a specified device. selectively by date. or
indiscriminately.

Restore a dumped file system. or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof.
Requires a password.

C NCHECK Check consistency of file system.
o Print gross statistics: number of files. number of directories. number of spe-

cial files. space used. space free. '
o Report duplicate use of space.
o Retrieve lost space.
o Repon inaccessible files.
o Check consistency of directories.
o List names of all files.

c: CLRI Peremptorily expunge a file and its space from a file system. Used to repair
damaged file systems.

C SYNC Force all outstanding I/O on the system to completion. Used to shut down
aracefully.

1.9. Accountinl

The timing information on which the reports are based can be manually cleared or shut off
completely.

c: AC

t:: SA

Publish cumulative connect time report.
o Connect time by user or by day.
o For all users or for selected users.

Publish Shell accounting repon. Gives usage information on each command
executed.
o Number of times used.
o Total system time. user time and elapsed time.
o Optional averages and percentages.
o Sorting on various fields.

1.10. Communication

::: MAIL Mail a message to one or more users. Also used to read and dispose of incom'
ing mail. The presence of mail is announced by LOGIN and optionally by SH.
o Each message can be disposed of individua))y.
o Messages can be saved in files or forwarded.

- 8 -

Cl CALENDAR Automatic reminder service for events of today and tomorrow.

Cl WRITE

Cl WALL

Cl MESO

Cl CU

c UUCP

Establish direct terminal communication with another user.

W ri te to all users.

[nhibit receipt of messages from WRITE and WALL.

Call up another time-sharing system.
o Transparent interface to remote machine.
o File lransmission.
o Take remote input from local file or put remote output into local file.
o Remote system need not be UNIX.

UNIX to UNIX copy.
o Automatic queuing until line becomes available and remote machine is up.
o Copy between two remote machines.
o Differences. mail. etc .• between two machines.

1.11. Basic: Prolram Development Tools

Some of these utilities are used as integral parts of the higher level languages described in sec­
tion 2.

Cl AR

Cl AS

. ::!. library

Maintain archives and libraries.
ing efficiency.

Combines several files into one for housekeep.
"

o Create new archive.
o Update archive by date.
o Replace or delete files.
o Print table of contents.
o Retrieve from archive.

Assembler. Similar to PAL-II. but different in detail.
o Creates object program consisting of

code. possibly read-only.
initialized data or read-write code.
uninitialized data.

o Relocatable object code is directly executable without further transformation.
o Object code normally includes a symbol table.
o Multiple source files.
o Local labels.
o Conditional assembly.
o "Conditional jump" instructions become branches or branches plus jumps

depending on distance.

The basic run-time library. These routines are used freely by all software .
o Buffered character-by-character [f0.
o Formatted input and output conversion (SCANF and PRINTF) for standard

input and output. files. in-memory conversion.
o Storage allocator.
o Time conversions.
o Number conversions.
o Password encryption.
o QuicksorL
o Random number generator.
o Mathematical function library. including trigonometric. functions and

inverses. elf ·onential. logarithm. square root. bessel functions.

= ADB

COD

C LD

:: LORDER

Cl NM

C SIZE

:: STRIP

= TIME

= PROF

C MAKE

- 9 -

Interactive debugger.
C Postmortem dumping.
o Examination of arbitrary files. with no limit on size.
o Interactive breakpoint debugging with the debugger as a separate process.
o Symbolic reference to local and global variables.
o Stack trace for C programs.
o Output formats:

1-. 2-. or 4-byte integers in octal. decimal. or hex
single and double floating point
character and string
disassembled machine instructions

o Patching.
o Searching for integer. character. or floating patterns.
o Handles separated instruction and data space.

Dump any file. OUtPUt options include any combination of octal or decimal by
words. octal by bytes. ASCII. opcodes. hexadecimal.
o Range of dumping is controllable.

Link edit. Combine relocatable object files. Insert required routines from
specified libraries.
o Resulting code may be sharable.
o Resulting code may have separate instruction and data spaces.

Places object file names in proper order for loading. so that files depending on
others come after them.

Print the name list (symbol table) of an object program. Provides control over
the style and order of names that aFe printed.

Report the core requirements of one or more object files.

Remove the relocation and symbol table information from an object file to save
space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time­
sampling the execution of a program. Uses floating point.
o Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control file specifying source file
dependencies to make new version~ uses time last changed to deduce minimum
amount of work necessary.
o Knows about CC. Y ACC. LEX. etc.

1.12. UNIX Programmer's Manual

= Manual Machine-readable version of the UNIX Programmer's Manual.
o System overview.
o All commands.
o All system calls.
o All subroutines in C and assembler libraries.
o All deVices and other special files.
o Formats of file system and kinds of files known to system software.
:) Boot and mamtenance procedures.

- 10 -

OMAN Print specified manual section on your terminal.

1.13. Computer-Aided Instruction

o LEARN

2. Lanluages

A program for interpreting CAl scrip~, plus scripts for learning about UNIX by
using it.
o Scripts for basic files and commands. editor, advanced files and commands,

EQN, MS macros. C programming language.

2.1. The C Language

o CC

o LINT

o CB

2.2. Fortran

Compile and/or link edit programs in the C language. The UNIX operating sys­
tem. most of the subsystems and C itself are written in C. For a full descrip­
tion of C, read The C Programming Language, Brian W. Kernighan and Dennis
M. Ritchie. Prentice-Hall, 1978.
o General purpose language designed for structured programming.
o Data types include character. integer, float. double. pointers to all types,

functions returning above types, arrays of all types, structures and unions of
all types.

o Operations intended to give machine-independent control of full machine
facility, including to-memory operations and pointer arithmetic.

o Macro preprocessor for parameterized code and inclusion of standard files.
o AU procedures recursive, with parameters by value.
o Machine-independent pointer manipulation.
o Object code uses full addressing capability of the PDP-II.
o Runtime library gives access to all system facilities.
o Definable data types. ,
o Block structure

Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.

o Full cross-module checking of separately compiled programs.

A beautifier for C programs. Does proper indentation and placement of braces.

o F17 A full compiler for ANSI Standard Fortran 77.
o Compatible with C and supporting tools at object level.
o Optional source compatibility with Fortran 66.
o Free format source.
o Optional subscript-range checking, detection of uninitialized variables.
o All widths of arithmetic: 2- and 4-byte integer: 4- and a-byte real; 8- and 16-

byte complex.

o RATFOR Ratfor adds rational control structure i la C to Fortran.
o Compound statements.

Cl STRUcr

- 11 -

o If-else. do. for. while. repeat-until. break. next statements.
o Symbolic constants.
o File insertion.
o Free format source
o Translation of relationals like >. > -.
o Produces genuine Fortran to carry away.
o May be used with F77.

Converts ordinary ugly Fortran into structured Fortran <i.e.. Ratfor). using
statement grouping, if-else. while. for. repeat-until.

1.3 .. Other Allorithmic LaDluales

Cl BAS

CDC

Cl BC

An interactive interpreter. similar in style to BASIC. Interpret unnumbered
statements immediately. numbered statements upon 'run'.
o Statements include:

comment.
dump.
for ... next.
10tO.
if ... else ... ti.
list.
print.
prompt,
return.
run.
save.

o All calculations double precision.
o Recursive function detining and calling.
o Builtin functions include log. expo sin. cos. atn. un, sqr, abs. md.
o Escape to ED, for complex program editing.

Interactive programmable desk calculator. Has named storage locations as well
as conventional stack for holding inleaers or programs.
o Unlimited precision decimal arithmetic.
o Appropriate treatment of decimal fractions.
o Arbitrary input and output radices. in particular binary. octal, decimal and

hexadecimal.
o Reverse Polish operators:

+ --,
remainder, power. square root.
load. store. duplicate, clear,
print. enter program text. execute.

A C-Uke interactive interface to the desk calculator DC.
o All the capabilities of DC with a high-level sYntax.
o Arrays and recursive functions.
o Immediate evaluation of expressions and evaluation of functions upon call.
o Arbitrary precision elementary functions: expo sin, cos, alan.
o GO-lo-Iess programming.

1.4. Macroproc:essinl

- 12 -

CJ M4 A general purpose macroprocessor.
o Stream-oriented. recognizes macros anywhere in texL
o Syntax fits with functional syntax of most higher-level languages.
o Can evaluate integer arithmetic expressions.

2.5. Compiler-compilers

CJ YACC

CJ LEX

An LR(l)-based compiler WrIting system. During execution of resulting
parsers, arbitrary C functions may be called to do code generation or semantic
actions.
o BNF syntax specifications.
o Precedence relations.
o Accepts formally ambiguous grammars with non-BNF resolution rules.

Generator of lexical analyzers. Arbitrary C functions may be caUed upon isola­
tion of each lexical token.
o Full regular expression. plus left and right context dependence.
o Resulting lexical analysers interface cleanly with Y ACC parsers.

3. Text Processinl

3.1. Document Preparation

CJ ED

o PTX

o SPELL

C LOOK

o TYPO

o CRYPT

Interactive context editor. Random access to all lines of a file.
o Find lines by number or pattern. Patterns may include: specified characters,

don't care characters, choices among characters, repetitions of these con­
structs, beginning of line, end of line.

o Add. delete, change, copy, move or join lines.
o Permute or split contents of a line.
o Replace one or all instances of a pattern within a line.
o Combine or split files.
o Escape to Shell (command language) during editing.
o Do any of above operations on every pattern-selected line in a given range.
o Optional encryption for extra security.

Make a permuted (key word in context> index.

Look for spelling errors by comparing each word in a document against a word
list.
o 25.000-word list includes proper names.
o Handles common prefixes and suffixes.
o Collects words to help tailor local spelling lists.

Search for words in dictionary that begin with specified prefix.

Look for spelling errors by a statistical technique; not limited to English.

Encrypt and decrypt files for security.

3.2. Document Formattinl

CROFF A typesetting program for terminals. Easy for nontechnical people to learn, and
good for simple documents. Input consists of data lines intermixed with con­
trol lines. such as

.sp 2 insert two lines of space

.ce center the next line
ROFF is deemed to be obsolete: it is intended only for casual use.

CJ TROFF

- 13 -

a Justification of either or both margins ..
a Automatic hyphenation.
a Generalized running heads and feet. with even-odd page capability. number­

ing. etc.
a Definable macros for frequently used control sequences (no substitutable

arguments) .
a All 4 margins and page size dynamically adjustable.
a Hanging indents and one-line indents.
a Absolute and relative parameter settings.
a Optional legal-style numbering of output lines.
a Multiple file capability.
a Not usable as a filter.

CJ NROFF Advanced typesetting. TROFF drives a Graphic Systems phototypesetter;
NROFF drives ascii terminals of all tYpes. This summary was typeset using
TROFF. TROFF and NROFF style is similar to ROFF. but they are capable of
much more elaborate feats of formatting, when appropriately prosrammed.
TROFF and NROFF accept the same input language.
a All ROFF capabilities available or definable.
a Completely definable page format keyed to dynamically planted "interrupts"

at specified lines.
e Maintains several.separately definable typesetting environments (e.&-. one for

body text. one for footnotes. and one for unusually elaborate headings).
o Arbitrary number of output pools can be combined at will.
o Macros with substitutable arguments. and macros invocable in mid-line.
a Computation and printing of numerical quantities.
o Conditional execution of macros.
a Tabular layout facility. .
a Positions expressible in inches. centimeters. ems, points, machine units or

arithmetic combinations thereof.
a Access to character-width computation for unusually difficult layout prob­

lems.
a Overstrikes. built-up brackets. horizontal and vertical line drawing.
a Dynamic relative or absolute positioning and size selection, globally or at the

character level.
a Can exploit the characteristics of the terminal being used. for approximating

special characters. reverse motions. proponional spacing, etc.

The Graphic Systems tYpesetter has a vocabulary of several 102-character fonts (4 simultane­
ously) in 15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed. or through
the postprocessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and
NROFF. although unskilled personnel can easily be trained to enter documents according to
canned formats such as those provided by MS. below. TROFF and EQN are essentially identi­
cal to NROFF and NEQN so it is usually possible to define interchangeable formats to produce
approximate proof copy on terminals before actual typesetting. The preprocessors MS. TBL.
and REFER are fully compatible with TROFF and ~ROFF.

= ~S A standardized manuscript layout package for use with NROFFITROFF. This
document was formatted with MS .

. . -- _. --- .-~ ... _._... -..

C EQN

- 14 -

o Page numbers and draft dates.
o Automatically numbered subheads.
o Footnotes.
o Single or double column.
o Paragraphing. display and indentation.
o Numbered equations.

A mathematical typesetting preprocessor for TROFF. Translates easily readable
formulas. either in-line or displayed. into detailed typesetting instructions. For­
mulas are written in a style like this:

sigma sup 2 --- lover N sum from i-I to N (x sub i-x bar) sup 2

which produces:

o Automatic calculation of size changes for subscripts, sub-subscripts. etc.
o Full vocabulary of Greek letters and special symbols. such as 'gamma',

'GAMMA" 'integral'.
o Automatic calculation of large bracket sizes.
o Vertical "piling" of formulae for matrices, conditional alternatives. etc.
o Integrals. sums. etc .• with arbitrarily complex limits.
o Diacriticals: dots. double dots. hats. bars. etc.
o Easily learned by nonprogrammers and mathematical typists.

o NEQN A version of EQN for NROFF; accepts the same input language. Prepares for­
mulas for display on any terminal that NROFF knows about. for example.
those basefi on Diablo printing mechanism.
o Same facilities as EQN within graphical capability of terminal.

o TBL A preprocessor for NROFF/TROFF that translates simple descriptions of table
layouts and contents into detailed typesetting instructions.
o Computes column widths.
o Handles left- and right-justified columns. centered columns and decimal-point

alignment.
o Places column titles.
o Table entries can be text. which is adjusted to fit.
o Can box all or parts of table.

:r REFER Fills in bibliographic citations in a document from a data base (not supplied).
o References may be printed in any style. as they occur or collected at the end.
o May be numbered sequentially. by name of author. etc.

::J TC Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for
checking TROFF page layout before typesetting.

C GREEK Fancy printing on Diablo-mechanism terminals like DASI-300 and DASI-450.
and on Tektronix 4014.
o Gives half-line forward and reverse motions.
o Approximates Greek letters and other special characters by overstriking.

o COL Canonicalize files with reverse line feeds for one-pass printing.

C DEROFF Remove all TROFF commands from input.

o CHECKEQ Check document for possible errors in EQN usage.

- 15 -

". IDlormation Handllq

o SORT

o TSORT

o UNIQ

OTR

o DIFF

OCOMM

o JOIN

OOREP

o LOCK

OWC

o SED

OAWK

Sort or merge ASCII files line-by-line. No limit on input size.
o Son up or down.
o Sort lexicographically or on numeric key.
o Multiple keys loc::ated by delimiters or by character position.
o May son upper case tolether with lower into dictionary order.
o Optionally suppress duplicate data.

TopolOlical son - convertS a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
o Publish lines tbat were orilinally unique. duplicated. or both.
o May live redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.
o May coalesce selected repeated characters.
o May delete selected characters.

Repon line chanles. additions and deletions necessary to bring two files into
qreemenL
o May produce an editor script to convert one file into another.
o A variant compares two new versions apinst one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows
lines present in first file only. present in both. and/or present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern u used in the editor ED.
o May print all lines that fail to match.
o May print count of hits.
o May print first hit in each file.

Binary search in soned file for lines with specified prefix.

Count the lines. "words" (blank-separated strinp) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editinl operations
on each line of an input stream of unbounded length.
o Lines may be selected by address or ranle of addresses.
o Control flow and conditional testing.
o Multiple output streams.
o Multi-line capability.

Pattem scanning and processing languale. Searches input for patterns. and per­
forms actions on each line of input that satisfies the pattern.
o Patterns include relular expressions. arithmetic and lexicographic conditions.

boolean combinations and ranaes of these.
o Data treated u strin& or numeric u appropriate.
o Can break input into fields; fields are variables.
o Variables and arrays (with non-numeric subscripts).
o FuU set of arithmetic operators and control flow.
o Multiple output streams to files and pipes.
o Output can be formatted u desired.
o Multi-line capabilities.

- 16 -

5. Graphics

The programs in this section are predominantly intended for use with Tektronix 4014 storage
scopes.

Cl GRAPH

Cl SPLINE

Cl PLOT

Prepares a graph of a set of input numbers.
o Input scaled to fit standard plotting area.
o Abscissae may be supplied automatically.
o Graph may be labeled.
o Conuol over grid style, line style, II'Iph orientation. etc.

Provides a smooth curve through a set of points intended for GRAPH.

A set of filters for printina graphs produced by GRAPH and other programs on
various terminals. Filters provided for 4014, CASI terminals. Versatec
printer/plotter. "

6. Novelties. Games, and Thinas That Didn't Fit AnJWhere Else

Cl BACKGAMMON
A player of modest accomplisbmenL

Cl CHESS Plays good class C chess.

Cl CHECKERS Ditto. for checkers.

Cl BCD

Cl PPT

c BJ

Cl CUBIC

Cl MAZE

Cl MOO

o CAL

o BANNER

Cl CHING

c FORTUNE

L: UNITS

a ITT

ConvON ascii to card-image form.

Converts ascii to paper tape form.

A blackjack dealer.

An accomplished player of 4x4x4 tic-tIC-toe.

Constructs random mazes for you to solvo.

A fascinating number-guessing game.

Print a calendar of specified month and year.

Print output in huge letters.

The I Ching. Place your own interpretation on the outpuL

Presents a random fortune cookie on each invocation. Limited jar of cookies
included.

Convert amounts between different scales of measuremenL Knows hundreds
of units. For example, how many kmlsec is a parsec/megayear?

A tic-tac-toe program tbat learns. It never makes the same mistake twice.

c:: ARITHMETIC
Speed and accuracy test for number facts.

a FACTOR Factor large integers.

~ QUIZ Test your knowledge of Shakespeare, Presidents. capitals, etc.

e WUMP Hunt the wumpus, thrilling search in a dangerous cave.

e REVERSI A two person board game. isomorphic to Othello·.

:: HANGMAN Word-guessing game. Uses the dictionary supplied with SPELL.

- 17 -

o FISH Children's card-guessing game.

------------- ------------- -----

The UNIX Time-Sharing System"

D. M. Ritchie and K. Thompson

ABSTRACT

UNIXt is a general-purpose, multi-user, interactive operating system for
the larger Digital Equipment Corporation pOP-II and the Interdata 8/32 com­
puters. It offers a number of features seldom found even in larger operating
systems, including

A hierarchical file system incorporating demountable volumes,

ii Compatible file, device, and inter-process 110,
iii The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of
the user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa
1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second ver­
sion ran on the unprotected pop·lll20 computer. The third incorporated multiprogramming
and ran on the pop-11/34, 140, 145, 160, and 170 computers~ it is the one described in the pre­
viously published version of this paper, and is also the most widely used today. This paper
describes only the fourth, current system that runs on the poP·U170 and the Interdata 8/32
computers. In fact, the differences among the various systems is rather small; most of the revi·
sions made to the originally published version of this paper, aside from those concerned with
style, had to do with details of the implementation of the file system.

Since poP-l1 UNIX became operational in February. 1971, over 600 installations have been
put into service. Most of them are engaged in applications such as computer science education,
the preparation and formatting of documents and other textual material, the collection and pro·
cessing of trouble data from various switching machines within the Bell System, and recording
and checking telephone service orders. Our own installation is used mainly for research in
operating systems, languages, computer networks. and other topics in computer science, and
also for document preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful
operating system for interactive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as $40,000, and less than two man·years were
spent on the main system software. We hope, however, that users find that the most important

• Copynaht 1974. Association for Computing Machinery, Inc., reprinted by permission. This is a revised ver·
sion of an article that appeared in Communications of the ACM. 17. No.7 (July 1974). pp. 365-375. Thai artie
cle was a revised version of a paper presented at the Fourth ACM SymposIum on Operating Systems Princi·
pIes. IBM Thomas J. Watson Research Center. Yorktown HeIghts. New York. October 15·17. 19i3.
tUNIX is a Trademark of Bell Laboratortes.

- 2 -

characteristics of the system are its simplicity. elegance. and ease of use.
Besides the operating system proper. some major programs available under UNIX are

C compiler
Text editor based on QEOl
Assembler. linking loader. symbolic debugger
Phototypesetting and equation setting programs2• J

Dozens of languages including Fortran 77. Basic. Snobol. "PL. Algol 68. M6.
T~Q. Pascal

There is a host of maintenance. utility. r~reation and novelty programs. all written locally.
The l!~IX user community, which numbers in the thousands. has contributed many more pro­
grams and languages. It is worth noting that the system is totally self-supportinl. All UNIX
software is maintained on the system: likewise. this paper and all other doc:umenlS in this issue
were generated and formatted by the UNIX editor and text formatting programs.

II. HAROW ARE A~D SOFTWARE E:-iVIRONMENT
The pop-llnO on which the Research UNIX system is installed is a 16-bit word <8-bit

byte) computer with 768K bytes of core memory: the system kernel occupies 90K bytes about
equally divided between code and data tables. This system. however. includes a very large
number of device drivers and enjoys a generous allotment of space for 110 buft'ers and system
tables; a minimal system capable of running the software mentioned above can require as little
as 96K bytes of core altogether. There are even larger installations: see the description of the
PW8/t,;~IX systems;'" for e~ample. There are also much smaller. though somewhat restricted.
versions of the system.o

Our own POP-II has two 200-Mb moving-head disks for file system storage and swappinl.
There are 20 variable-speed communications interfaces attaChed to 300- and 1200-baud data
sets. and an oldditional 12 communication lines hard-wired to 9600-baud terminals and satellite
computers. There are also several 2400- and 4800-baud synchronous communication interfaces
used for machine-to-machine file transfer. Finally. there is a variety of miscellaneous devices
including nine-track magnetic tape. a line printer. a voice synthesizer. a phototypesetter. a digi-
tal switching network. and a chess machine. .

The preponderance of l.'~IIX software is written in the abovementioned C language. 1 Early
versions of the operating system were written in assembly language. but durinl the summer of
1913. it was rewritten in C. The size of the new system was about one-third greater than that
of the old. Since the new system not only became much easier to understand and to modify
but also included many functional improvements. including multiprogramming and the ability
to share reentrant code among several user programs. we consider this increase in size quite
acceptable.

III. THE FILE SYSTE~
The most important role of the system is to provide a file system. From the point of view

of the user. there are three kinds of files: ordinary disk files. directories. and special files.

3.1 Ordinary ftles
A file contains whatever information the user places on it. for example. symbolic or

binary (object> programs. ~o particular structuring is expected by the system. A file of text
consists Simply of a string of characters. with lines demarcated by the newline character. Binary
programs are sequences of words as they will appear in core memory when the program stans
executing. A few user programs manipulate files with more structure: for example. the assem­
bler generates. and the loader expects. an \JbJect file in a particular format. However. the struc­
ture of files IS controlled by the progrilms :hat use them. not by the system.

- 3 -

3.2 Directories
Directories provide the mapping between the names of files and the files themselves, and

thus induce a structure on the file system as a whole. Each user has a directory of his own
files~ he may also create subdirectories to contain groups of files conveniently treated together.
A directory behaves exactly like an ordinary file except that it cannot be written on by
unprivileged programs, so that the system controls the contents of directories. However, any­
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root direc­
tory. All files in the system can be found by tracing a path through a chain of directories until
the desired file is reached. The starting point for such searches is often the root. Other system
directories contain all the programs provided for general use; that is, all the commands As will
be seen, however, it is by no means necessary that a program reside in one of these directories
for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is
specified to the system, it may be in the form of a path name, which is a sequence of directory
names separated by slashes, "I", and ending in a file name. If the sequence begins with a
slash, the search begins in the root directory. The name lalphalbetal.amma causes the sys­
tem to search the root for directory alpha, then to search alpha for beta, finally to find .amma
in beta. lamma may be an ordinary file, a directory, or a special file. As a limiting case, the
name "I" refers to the root itself.

A path name not starting with "I" causes the system to begin the search in the user's
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
alpha of the current directory. The simplest kind of name. for example. alpha. refers to a file
that itself is found in the current directory. As another limiting case. the null file name refers
to the current directory.

The same non-directory file may appear in several directories under possibly different
names. This feature is caUed linking, a directory entry for a file is sometimes called a link. The
UNIX system differs from other systems in which linking is permitted in that all links to a file
have equal status. That is. a file does not exist within a particular directory; the directory entry
for a file consists merely of its name and a pointer to the information actually describing the
file. Thus a file exists independently of any directory entry. although in practice a file is made
to disappear along with the last link to it.

Each directory always has at least two entries. The name" ... in each directory refers to
the directory itself. Thus a program may read the current directory under the name
without knowing its complete path name. The .!ame by convention refers to the parent
of the directory in which it appears. that is. to tht~ directory in which it was created.

The directory structure is constrained to have the form of a rooted :...-ee. Except for the
special entries ... " and each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure. and more important. to avoid the separation of portions
of the hierarchy. If arbitrary links to directories were permitted, it would be quite diffiCUlt to
detect when the last connection from the root to a dir,ctory was severed.

3.3 Special files
Special files constitute the most unusual feature of the UNIX file system. Each supported

110 device is associated with at least one such file. Special files are read and written just like
ordinary disk files, but requests to read or write result in activation of the associated device.
An entry for each special file resides in directory Idev, although a link may be made to one of
these files just as it may to an ordinary file. Thus. for example. to write on a magnetic qlpe one
may write on the file Idev/mt. Special files exist for each communication line, each disk. each
tape drive. and for physical main memory. Of course. the active disks and the memory special
file are protected from indiscriminate access.

- 4 -

There is a threefold advantage in treating 110 devices this way: file and device 110 are as
similar as possible~ file and device names have the same syntax and meaning. so that a program
expecting a file name as a parameter can be passed a device name~ finallY, special files are sub­
ject to the same protection mechanism as regular files.

3.4 Remonble file systems
Although the root of the file system is always stored on the same device. it is not neces­

sary that the entire file system hierarchy reside on this device. There is a mount system
request with two arguments: the name of an existing ordinary file. and the name of a special file
whose associated storage volume (e.g •• a disk pack) should have the structure of an indepen­
dent file system containing its own directory hierarchy. The effect of mount is to cause refer­
ences to the heretofore ordinary file to refer instead to the root directory of the file system on
the removable volume. In effect. mount replaces a leaf of the hierarchy tree (the ordinary file)
b)' a whole new subtree (the hierarchy stored on the removable volume). After the mount.
there is virtually no distinction between files on the removable volume and those in the per­
manent file system. In our installation. for example. the root directory resides on a small parti­
tion of one of our disk drives. while the other drive. which contains the user's files. is mounted
by the system initialization sequence. A mountable file system is generated by writing on its
corresponding special file. A utility program is ,available to create an empty file system. or one
may simply copy an existing file sysrem.

There is only one exception to ti1e rule of identical treatment of files on different devices:
no link may exist between one file system hierarchy and another. This restriction is enforced
so as to avoid the elaborate bookkeeping that would otherwise be required to assure removal of
the links whenever the removable volume is dismounted.

3.S Prolec:tion

Although the access con:rol scheme is quite simple. it has some unusual features. Each
user of the system is assigned a unique user identification number. When a file is created. it is
marked with the user 10 of its owner. Also given for new files is a set of ten protection bits.
~ine of these specify independently read. write. and execute permission for the owner of the
file. for other members of his group. and for all remaining users.

If the tenth bit is on. the system will temporarily change: the user identification (hereafter,
user to) of the current user to that of the creator of the file whenever the file is executed as a
program. This change in user 10 is effective only during the execution of the program that calls
for it. The set-user-IO feature provides for privileged programs that may use files inaccessible
to other users. For example. a program may keep an accounting file that should neither be read
nor changed except by the program itself. If the set-user-ID bit is on for the program. it may
access the file although this access might be forbidden to other programs invoked by the given
program's user. Since the actual user 10 of the invoker of any program is always available. set­
user-ID programs may take any measures desired to satisfy themselves as to their invoker's
credentials. This mechanism is used to allow users to execute the carefully written commands
that call privileged system entrtes. For example. there is a system entry invokable only by the
"super-user" (below) that creates an empty directory. As indicated above. directories are
expec:ed to have entries for" . '. and" .• ". The command which creates a directory is owned
by the super-user lnd has the set-user-[O bit set. After it checks its invoker's authorization to
create the speCified directory, it creates it and makes the entries for .• : .. and •••. ".

Because anyone may set the set-user-IO bit on one of his own files. this mechanism is
generally available without administrative intervention. For example. this protection scheme
easily solves the ~oo accounting problem posed by .. Aleph-null."~

The system recognizes one particular user [0 (that of the "super-user") as exempt from
[he usual constraInts on file access; thus (for example), programs may be written to dump and
reload ~ne file system without unwanted interference from the protection system.

- 5 -

3.6 110 calls
The system calls to do 110 are designed to eliminate the differences between the various

devices and styles of access. There is no distinction between "random" and "sequential" 110,
nor is any logical record size imposed by the system. The size of an ordinary file is determined
by the number of bytes written on it; no predetermination of the size of a file is necessary or
possible.

To illustrate the essentials of 110, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly­
ing complexities. Each call to the system may potentially result in an error return, which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:

filep - open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag
argument indicates whether the file is to be read, written, or "updated," that is, read and writ­
ten simultaneously.

The returned value filep is called a file descriptor. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; create
also opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for
the contents of a file to become scrambled when two users write on it simultaneously, in prac­
tice difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannot prevent confusion when, for example, both
users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simultaneously in activities such as writing on the same file,
creating files in the same directory, or deleting each other's open files.

Except as indicated below, reading and writing are sequential. This means that jf a partic­
ular byte in the file was the last byte written (or read), the next 110 call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte to be read or written. If n bytes are read or written, the pointer
advances by n bytes.

Once a file is open, the following calls may be used:

n - read (filep, buffer, count)
n - write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by filep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as 110 errors or end of physi­
cal medium on special files; in a read, however, n may without error be less than count. If the
read pointer is so near the end of the file that reading count characters would cause reading
beyond the end, only sufficient bytes are transmitted to reach the end of the file; also,
typewriter-like terminals never return more than one line of input. When a read call returns
with n equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end-of­
file from a terminal by use of an escape sequence that depends on the device used.

- 6 ~

Bytes written affect only those parts of a file implied by the position of the write pointer
and th~ count; no other part of the file is changed. If the last byte lies beyond the end of the
file. the file is made to grow as needed.

To do random (direct-access) 110 it is only necessary to move the read or write pointer to
the appropriate location in the file.

location - Iseek (filep. offset. base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the
file. from the current position of the pointer. or from the end of the file. depending on base.
offset may be negative. For some devices (e.g., paper tape and terminals) seek calls are
ignored. The actual offset from the beginning of the file to which the pointer was moved is
returned in location.

There are several additional system entries having to do with 110 and with the file system
that will not be discussed. For example: close a file. get the status of a file. change the protec­
tion mode or the owner of a file. create a directory, make a link to an existing file. delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM
As mentioned in Section 3.2 above. a directory entry contains only a name for the associ­

ated file and a pointer to the file itself. This pointer is an integer called the i-"um~,. (for index
number) of the file. When the file is accessed. its i-number is used as an index into a system
table (the i-list) stored in a known part of the device on which the directory resides. The entry
found thereby (the file's i-"ode) contains the description of the file:

the user and groUP-ID of its owner

ii its protection bits

iii the physical disk or tape addresses for the file contents

iv its size

v time of creation. last use. and last modification

vi the number of links to the file. that is. the number of times it appears in a directory

vii a code indicating whether the file is a directory, an ordinary file. or a special file.

The purpose of an open or create system caU is to tum the path name given by the user into an
i-number by searching the explicitly or implicitly named directories. Once a file is open. its
device. i-number, and read/write pointer are stored in a system table indexed by the file
descriptor returned by the open or create. Thus. during a subsequent call to read or write the
file. the descriptor may be easily related to the information necessary to access the file.

When a ne.w file is created. an i-node is allocated for it and a directory entry is made that
contains the name of the file and the i-node number. Making a link to an existing file involves
creating a directory entry with the new name. copying the i-number from the original file entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by
decrementing the link-count of the i-node speCified by its directory entry and erasing the direc­
tory entry. If the link-count drops to O. any disk blocks in the file are freed and the i-node is
de-allocated.

The space on aU disks that contain a file system is divided into a number of 512-byte
blocks logically addressed from 0 up to a limit that depends on the device. There is space in
the i-node of each file for 13 device addresses. For nonspecial files. the first 10 device
addresses point at the first 10 blocks of the file. If the file is larger than 10 blocks. the 11 dev­
ice address points to an indirect block containing up to 128 addresses of additional blocks in the
file. Still larger flies use the twelfth device address of the i-node to point to a double-indirect
block naming 128 indirect blocks. each pointing to 128 blocks of the file. If required, the thir­
teenth device address is a triple-indirect block. Thus files may conceptually grow to
[i 10-128 -128~"'1:8jl'512 J bytes. Once opened. bytes numbered below 5120 can be read
with .1 single disk lccess: bytes in the range 5120 to 70.656 require two accesses~ bytes in the

- 7 -

range 70,656 to 8,459,264 require three accesses~ bytes from there to the largest file
0,082,201,088) require four accesses. In practice. a device cache mechanism (see below)
proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an I/O request is made to a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and
the first specifies an internal deVIce name, which is interpreted as a pair of numbers represent­
ing, respectively, a device type and subdevice number. The device type indicates which system
routine will deal with I/O on that device~ the subdevice number selects. for example, a disk
drive attached to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the
device name of the indicated special file. This table is searched for each i-number/device pair
that turns up while a path name is being scanned during an open or create; if a match is found.
the i-number is replaced by the i-number of the root directory and the device name is replaced
by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a
write the user's workspace may be reused. In fact, the system maintains a rather complicated
buffering mechanism that reduces greatly the number of 1/0 operations required to access a
file. Suppose a write call is made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk block currently resides in main memory; if
not. it will be read in from the device. Then the affected byte is replaced in the buffer and an
entry is made in a list of blocks to be written. The return from the write call may then take
place, although the actual 1/0 may not be completed until a later time. Conversely. if a single
byte is read. the system' determines whether the secondary storage block in which the byte is
located is already in one of the system's buffers; if so. the byte can be returned immediately. If
not. the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file.
and asynchronously pre-reads the next block. This significantly reduces the running time of
most programs while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from
the avoidance of system overhead. If a program is used rarely or does no great volume of 1/0,
it may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice. this method of organiz­
ing the file system has proved quite reliable and easy to deal with. To the system itself, one of
its strengths is the fact that each file has a shon. unambiguous name related in a simple way to
the protection. addressing. and other information needed to access the file. It also permits a
quite simple and rapid algorithm for checking the consistency of a file system. for example,
verification that the portions of each device containing useful information and those free to be
allocated are disjoint and together exhaust the space on the device. This algorithm is indepen­
dent of the directory hierarchy. because it need only scan the linearly organized i-list. At the
same time the notion of the i-list induces certain peculiarities not found in other file system
organizations. For example. there is the question of who is to be charged for the space a file
occupies. because all directory entries for· a file have equal status. Charging the owner of a file
is unfair in general, for one user may create a file, another may link to it. and the first user may
delete the file. The first user is still the owner of the file. but it should be charged to the
second user. The simplest reasonably fair algorithm seems 10 be to spread the charges equally
among users who have links to a file. Many installations avoid the issue by not charging any
fees at all.

- 8 -

V. PROCESSES AND IMAGES
An imag~ is a computer execution environment. It includes a memory image. general

register values. status of open files. current directory and the like. An image is the current
state of a pseudoooComputer.

A process is the execution of an image. While the processor is executing on behalf of a
process. the image must reside in main memory; durinl the execution of other. processes it
remains in main memory unless the appearance of an active. higher-priority process forces it to
be swapped out to the disk.

The user-memory pan of an image is divided into three logical segments. The program
text segment begins at location 0 in the virtual address space. During execution. this segment
is write-protected and a single copy of it is shared among aU processes executing the same pro­
gram. At the first hardware protection byte boundary above the program text segment in the
virtual address space begins a non-shared. writable data segment. the size of which may be
extended by a system call. Starting at the hilhest address in the virtual address space is a stack
segment. which automatically grows downward as the stack pointer fluctuates.

S.l Processes
Except while the system is bootstrapping itself into operation. a new process can come

into existence only by use of the fork system call:

processid - fork ()

Wh~n fork is executed. the process splits into two independently executing processes. The two
processes have independent copies of the original.memory imale. and share all open files. The
new processes differ only in that one is considered the parent process: in the parent. the
returned proc:essid actually identifies the child process and is never O. while in the child. the
returned value is always O.

Because the values returned by Cork in the parent and child process are distinguishable.
each process may determine whether it is the parent or child.

5.2 Pipes
Processes may communicate with related processes using the same system read and write

calls that are used for file-system 110. The call:

filep - pipe ()

returns a file descriptor file, and creates an inter-process channel caUed a pIpe. This channel.
like other open files_ is passed from parent to child process in the image by the Cork call. A'
read using a pipe file descriptor waits until another process writes using the file descriptor for
the same pipe. At this point. data are passed between the images of the two processes. Neither
process need know that a pipe. rather than an ordinary file. is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2).
it is not a completely general mechanism. because the pipe must be set up by a common ances­
tor of the processes involved.

5.3 Execution of prolrams

Another major system primitive is invoked by

execute (file. ar!,. ar!!, Uln)

which requests the system [0 read in lnd execute the program named by file. passing it string
arguments artt. art! artn. All the code and data in the process invoking execute is
replaced from the file. but open files. current directory. lnd inter-process relationships are
unalte~ed. Oniy If the call fails. for example because file could :'lOt be found or because itS
execute-permiSSion bit was not set. does a return take place from the execute primitive; it

- 9 -

resembles a "jump" machine instruction rather than a subroutine call.

S.4 Process synchronization
Another process control system call:

processid - wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then
wait returns the processid of the terminated process. An error return is taken if the calling
process has no descendants. Certain status from the child process is also available.

S.S Termination
Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes may
also terminate as a result of various illegal actions or user-generated signals (Section VII
below).

VI. THE SHELL
For most users, communication with the system is carried on with the aid of a program

called the shell. The shell is a command-line interpreter: it reads lines typed by the user and
interprets them as requests to execute other programs. (The shell is described fully elsewhere, 9

so this section will discuss only the theory of its operation.) In simplest form, a command line
consists of the command name followed by arguments to the command. all separated by spaces:

command arg i arg2 ... arsn

The shell splits up the command name and the arguments into separate strings .. Then a file
with name command is sought; command may be a path name including the 40," character to
specify any file in the system. If command is found, it is brought into memory and executed.
The arguments collected by the shell are accessible to the command. When the command is
finished, the shell resumes its own execution, and indicates its readiness to accept another com­
mand by typing a prompt character.

If file command cannot be found, the shell generally prefixes a string such as 1 bin 1 to
command and attempts again to find the file. Directory 1 bin contains commands intended to
be generally used. (The sequence of directories to be searched may be changed by user
request.)

6.1 Standard 1/0
The discussion of I/O in Section III above seems to imply that every file used by a pro­

gram must be opened or created by the program in order to get a file descriptor for the file.
Programs executed by the shell, however, start off with three open files with file descriptors 0,
1. and 2. As such a program begins execution, file 1 is open for writing, and is best understood
as the standard output file. Except under circumstances indicated below, this file is the user's
terminal. Thus programs that wish to write informative information ordinarily use file descrip­
tor 1. ConverselY, file 0 starts off open for reading, and programs that wish to read messages
typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the
user's terminal printer and keyboard. If one of the arguments to a command is prefixed by
.. > ", file descriptor 1 will, for the duration of the command, refer to the file named after the
.. > ". For example:

•

- 10 -

Is

ordinarily lists. on the typewriter.. the names of the files in the current directory. The com­
mand:

Is >there

creates a file called there and places the listing there. Thus the argument> there means "place
output on there." On the other hand:

ed
•

ordinarily enters the editor. which takes requests from the user via his keyboard. The com-
mand

ed <script

interprets scrip. as a file of editor commands: thus < suipl means "take input from scripL"

Although the file name following •• < .. or .. >" appears to be an argument to the com­
mand. in fact it is interpreted completely by the shell and is not passed to the command at all.
Thus no special coding to handle 110 redirection is needed within each command; the com­
mand need merely use the standard file descriptors 0 and 1 where appropriate.

File descriptor 2 is. like file 1. ordinarily associated with the terminal output stream.
When an output-diversion request with .. > to is specified. file 2 remains attached to the termi­
nal. so that commands may produce diagnostic messages that do not silently end up in the out­
put file.

6.1 Fillers

An extension of the standard 110 notion is used to direct output from one command to
the input of anothef. A sequence of commands separated by venial bars causes the shell to .
execute aU the commands simultaneously and to arrange that the standard output of each com­
mand be delivered to the standard input of the next command in the sequence. Thus in the
command line:

Is 1 pr -21 opr

Is lists the names of the files in the current directory; its output is passed to pro which paginates
its input with dated headings. (The argument "-2" requests double-column output.> Likewise.
the output from pr is input to opr. this command spools its input onto a file for off-line print­
ing.

This procedure could have been carried out more clumsily by:

Is >templ
pr -2 < tempi > temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and
input. a still clumsier method would have been to require the 11 command to accept user
requests to paginate its output. to print in multi-column format. and to amnge that its output
be delivered off·line. Actually it would be surprising. and in fact unwise for efficiency reasons.
to expect authors of commands such as Is to provide such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with process­
ing) is called a fllter. Some filters that we have found useful perform character transliteration.
selectlon of lines according to a pattern. soning of the input. and encryption and decryption .

- 11 -

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not
be on different lines~ instead they may be separated by semicolons:

Is~ ed

will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by "&," the shell will not
wait for the command to finish before prompting again~ instead. it is ready immediately to
accept a new command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long the
assembly takes, the shell returns immediately. When the shell does not wait for the completion
of a command, the identification number of the process running that command is printed. This
identification may be used to wait for the completion of the command or to terminate it. The
.. &" may be used several times in a line:

as source >output & Is >files &

does both the assembly and the listing in the background. In these examples, an output file
other than the terminal was provided~ if this had not been done, the outputs of the various
commands would have been intermingled.

The shell also allows parentheses in the above operations. For example:

(date; Is) > x &.

writes the current date and time followed by a list of the current directory onto the file x. The
shell also returns immediately for another request.

6.4 The sbell as a command; command flIes

The shell is itself a command, and may be called recursively. Suppose file tryout contains
the lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testPI'Ol. Lout is the (binary) output of
the assembler, ready to be executed. Thus if the three lines above were typed on the keyboard,
source would be assembled, the resulting program renamed testpl'Ol, and testpfOl executed.
When the lines are in tryout, the command:

sh <tryout

would cause the shell sb to execute the commands sequentially.

The shell has fun her capabilities, including the ability to substitute parameters and to con­
struct argument lists from a specified subset of the file names in a directory. It also provides
general conditional and looping constructions.

6.S Implementation of tbe sbell

The outline of the operation of the shell can now be understood. Most of the time, the
shell is waiting for the user to type a command. When the newline character ending the line is
typed, the shell's read call returns. The shell analyzes the command line, putting the argu­
ments in a form appropriate for execute. Then fork is called. The child process, whose code of
course is still that of the shell. attempts to perform an execute with the appropriate arguments.
If successful, this will bring in and start execution of the program whose name was given.
Meanwhile, the other process resulting from the fork, which is the parent process, waits for the

- 12 -

child process to die. When this happens. the shell knows the command is finished. so it types
its prompt and reads the keyboard to obtain another command.

Given this framework. the implementation of background processes is trivial; whenever a
command line contains ""," the shell merely refrains from waiting for the process that it
created to execute the command.

Happily. all of this mechanism meshes very nicely with the notion of standard input and
output files. When a process is created by the fork primitive. it inherits not only the memory
imale of its parent but also all the files currently open in its parent. including those with file
descriptors 0, 1. and 2. The shell, of course. uses these files to read command lines and to
write its prompts and diagnostics. and in the ordinary case its children-the command
programs-inherit them automatically. When an argument with "<" or ">" is given. how­
ever. the offspring process. just before it performs execute, makes the standard I/O file descrip­
tor (0 or 1. respectively) refer to the named file. This is easy because. by agreement. the smal­
lest unused file descriptor is asSigned when a new file is opened (or created); it is only neces­
sary to close file 0 (or 1) and open the named file. Because the process in which the command
program runs simply terminates when it is through. the association between a file speCified after
.. <" or •• >" and file descriptor 0 or 1 is ended automatically when the process dies. There­
fore the shell need not know the actual names of the files that are its own standard input and
outPUt. because it need never reopen them.

Filters are straightforward extensions of standard I/O redirection with pipes used instead
of files.

In ordinary circumstances. the main loop of the shell never terminates. (The main loop
includes the branch of the return from fork belon§ing to the parent process: that is. the branch
that does a wait. then reads another command line.> The one thing that causes the shell to ter­
minate is discovering an end-of-file condition on its input file. Thus. when the shell is exe­
cuted as a command with a given input file. as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached: then the instance
of the shell invoked by sh will terminate. Because this shell process is the child of another
instance of the shell. the wait executed in the latter will return. and another command may
then be processed.

6.6 Initialization

The instances of the shell to which users type commands are themselves children of
another process. The last step in the initialization of the system is the creation of a single pro­
cess and the invocation (via execute) of a program called init. The role of init is to create one
process for each terminal channel. The various subinstances of init open the appropriate termi­
nals for input and OUtput on files O. 1. and 2. waiting. if necessary. for carrier to be ~stablished
on dial-up lines. Then a message is typed out requesting that the user log in. When the user
types a name or other identification. the appropriate instance of init wakes up. receives the
lo§-in line. and reads a password file. If the user's name is found. and if he is able to supply
the correct password. init changes to the user's default current directory. sets the process's user
10 to that of the person logging in. and performs an execute of the shell. At this point. the
shelt is ready to receive commands and the logging-in protocol is comple!e.

Meanwhile. the mainstream path of init (the parent of ail the subinstances of itself that
will later become shells) does a wait. If one of the chiid processes termInates. either because a
shell found an end of file or because a user typed an incorrect name or password. this path of
in it simply recreates the defunct process. which in turn reopens the appropriate input and out­
put files and types another log-in message. Thus a user may log out simply by typing the end­
of-file sequence to the shell.

- 13 -

6.7 Other pro&rams as shell

The shell as described above is designed to allow users full access to the facilities of the
system, because it will invoke the execution of any program with appropriate protection mode.
Sometimes, however, a different interface to the system is desirable, and this feature is easily
arranged for.

Recall that after a user has successfully logged in by supplying a name and password, init
ordinarily invokes the shell to interpret command lines. The user's entry in the password file
may contain the name of a program to be invoked after log-in instead of the shell. This pro­
gram is free to interpret the user's messages in any way it wishes.

For example, the password file entries for users of a secrewial editing system might
specify that the editor ed is to be used instead of the shell. Thus when users of the editing sys­
tem log in, they are inside the editor and can begin work immediately; also, they can be
prevented from invoking programs not intended for their use. In practice, it has proved desir­
able to allow a temporary escape from the editor to execute the formatting program and other
utilities.

Several of the games (e.g., chess, blackjack. 3D tic-tac-toe) available on the system illus­
trate a much more severely restricted environment. For each of these, an entry exists in the
password file specifying that the appropriate game-playing program is to be invoked instead of
the shell. People who log in as a player of one of these games find themselves limited to the
game and unable to investigate the (presumably more interesting) offerings of the UNIX system
as a whole.

VII. TRAPS
The pOP-II hardware detects a number of program faults, such as references tq non­

existent memory, unimplemented instructions. and odd addresses used where an even address
is required. Such faults cause the processor to trap to a system routine. Unless other arrange­
ments have been made, an illegal action causes the system to terminate the process and to write
its image on file core in the current directory. A debugger can be used to determine the state
of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal. which is generated by typing
the "delete" character. Unless special action has been taken, this signal simply causes the pro­
gram to cease execution without producing a core file. There is also a quit signal used to force
an image file to be produced. Thus programs that loop unexpectedly may be halted and the
remains inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from log­
ging the user out. The editor catches interrupts and returns to its command level. This is use­
ful for stopping long printouts without losing work in progress (the editor manipulates a copy of
the file it is editing). In systems without floating-point hardware, unimplemented instructions
are caught and floating-point instructions are interpreted.

VIII. PERSPECTIVE
Perhaps paradoxically. the success of the UNIX system is largely due to the fact that it was

not designed to meet any predefined objectives. The first version was written when one of us
(Thompson), disSatisfied with the available computer facilities. discovered a little-used PDP-7
and set out to create a more hospitable environment. This {essentially persona!) effort was
sufficiently successful to gain the interest of the other author and several colleagues, and later
to justify the acquisition of the PDP-I 1/20. specifically to support a text editing and formatting
system. When in turn the 11/20 was outgrown, the system had proved useful enough to per­
suade management to invest in the PDP-1I/45, and later in the PDP-lInD and Interdata 8/32
machines, upon which it developed to its present form. Our goals throughout the effort, when

. ---------- --_.-- --- ----~-
-------------~~-------- -- ------ ------

- 14-

articulated at all. have always been to build a comfortable relationship with the machine and to
explore ideas and inventions in operating systems and other software. We have not been faced
with the need to satisfy someone else's requirements. and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospecL

First: because we are programmers. we naturally designed the system to make it easy to
write. test. and run programs. The most important expression of our desire for programming
convenience was that the system was arranged for interactive use. even though the original ver­
sion only supported one user. We believe that a properly designed interactive system is much
more productive and satisfying to use than a "batch" system. Moreover. such a system is
rather easily adaptable to noninteractive use. while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its
software. Given the partially antagonistic desires for reasonable effiCiency and expressive
power. the size consuaint has encouraged not only economy. but also a cenain elegance of
design. This may be a thinly disguised version of the "salvation through sutrering" philosophy.
but in our case it worked.

Third: neatly from the start. the system was able to. and did. maintain itself. This fact is
more important than it might seem. If designers of a system are forced to use that system.
they quickly become aware of its functional and superficial deficienCies and ilre strongly
motivated to correct them before it is too late. Because aU source programs were always availo
able and easily modified on-line. we were willing to revise and rewrite the system and its
software when new ideas were invented. discovered. or suggested by others.

The aspectS of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface to the file system. for example. is extremely convenient
from a programming standpoint. The (owest possible interface level is designed to eliminate
distinctions between the various devices and files and between direct and sequential access~ No
large "access method" routines are required to insulate the programmer from the system c:alls~
in fact. all user programs either call the system directly or use a small library program. less than
a page (ong. thal butTers a number of characters and reads or writes them aU at once.

Another important aspect of programming convenience is that there are no "control
blocks" with a complicated structure partially maintained by and depended on by the file system
or other system calls. Generally speaking. the contents of a program's address space are the
property of the program. and we have tried to avoid placing restrictions on the data structures
within that address space.

Given the requirement that all programs should be usable with any file or device as input
or output. it is also desirable to push device-dependent considerations into the operating system
itself. The only alternatives seem to be to load. with all programs, routines for dealing with
each device. which is expensive in space. or [0 depend on some means of dynamically linking
to the routine appropriate to each device when it is actually needed. which is expensive either
in overhead or in hardware.

Likewise. the process-control scheme and the command interface have proved both con­
venient and efficient. Because the sheil operates as an ordinary, swappable user program. it
consumes no "wIred-down" space in the system proper. and it may be made as powerful as
desired at little cost. In particular. given the framework in which the shell executes as a process
that spawns other processes to perform commands. the notions of I/O redirection. background
processes. command files. and user-selectable system interfaces all become essentially trivial to
implement.

Influences

The success of l:!'lrx !ies not so much in new inventions but rather in the full exploitation
of a carefully selected set of fertile ideas. and especially in showing that they can be keys to the
implementation of l sm:1I1 yet powerful operating system.

- 15 -

The fork operation, essentially as we implemented it, was present in the GENIE time­
sharing system. 10 On a number of points we were influenced by Multics, which suggested the
particular form of the 1/0 system calls II and both the name of the shell and its general func­
tions. The notion that the shell should create a process for each command was also suggested
to us by the early design of Muitics, although in that system it was later dropped for efficiency
reasons. A similar scheme is used by TENEX.12

IX. STATISTICS
The following numbers are presented to suggest the scale of the Research UNIX operation.

Those of our users not involved in document preparation tend to use the system for program
development, especially language work. There are few important "applications" programs.

Overall, we have today:

125
33

1,630
28,300

301,700

user population
maximum simultaneous users
directories
files
512-byte secondary storage blocks used

There is a "background" process that runs at the lowest possible priority; it is used to soak up
any idle CPU time. It has been used to produce a million-digit approximation to the constant e,
and other semi-infinite problems. Not counting this background work, we average daily:

X. ACKNOWLEDGMENTS

13,500
9.6
230
62

240

commands
CPU hours
connect hours
different users
log-ins

The contributors to UNIX are, in the traditional but here especially apposite phrase. too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys­
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D. Mcilroy, and J. F. Ossanna.

References

1. L. P. Deutsch and B. W. Lampson. "An online editor," Comm. Assoc. Compo Mach.
10(12) pp. 793-799, 803 (December 1967).

2. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
Assoc. Compo Mach. 18 pp. 151-157 (March 1975).

3. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, "UNIX Time-Sharing System: Docu­
ment Preparation," BellSys. Tech. J. 57(6) pp. 2115·2135 (978).

4. T. A. Dolotta and J. R. Mashey, "An Introduction to the Programmer's Workbench,"
Proc. 2nd Int. Corrf, on Sofrware Engineering, pp. 164-168 (October 13-15, 1976).

5. T. A. Dolotta, R. C. Haight, and J. R. Mashey, "UNIX Time-Sharing System: The
Programmer's Workbench," BellSys. Tech. J. 57(6) pp. 2177-2200 (1978).

--------- ---------

• 16 •

6. H. Lycklama. "UNIX Time·Sharing System: UNIX on a Microprocessor." Bell Sys. Tech. J.
57(6) pp. 2087-2101 (1978).

7. B. W. Kernighan and D. M. Ritchie. The C Programming Languap. Prentice-Hall. Engle­
wood Cliff's. New Jersey (1978).

8. Aleph-null. "Computer Recreations." So/rware Practice and Experience 1(2) pp. 201-204
(April-June 1911L

9. S. R. Bourne. "UNIX Time-Sharing System: The UNfX Shell." Bell Sys. Tech. J. 57(6) pp.
1911·1990 (1918).

10. L. P. Deutsch and B. W. Lampson, "sos 930 time-sharing system preliminary reference
manual." Doc. 30.10.10. Project GENIE. Univ. Cal. at Berkeley (April 1965).

11. R. J. Feiertag and E. I. Organick. "The Multics input·output system." Proc. TllIrd Sympo­
sium on Operating Systems Princ/ples. pp. 35·41 (October 18-20, 1911).

12. D. G. Bobrow, 1. D. Burchfiel. D. L. Murphy, and R. S. Tomlinson. "TENEX. a Paged
Time Sharing System for the PDp· 10. " Comm. Assoc. Compo Mach. 15(3) pp. 135-143
(March 1912).

UNIX For Beginners - Second Edition

Brtan W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to heip new users get started on the UNIXt operating
system. It includes:

• basics needed for day-to-day use of the system - typing commands.
correcting typing mistakes. logging in and out, mail. inter-terminai com­
munication, the file system, printing files, redirecting 110. pipes. and the
sheil.

• document preparation - a brief discussion of the major formatting pro­
grams and macro packages. hints on preparing documents. and capsule
descriptions of some supponing software.

• programming - using the editor. programming the shell. programming in
C, other languages and tools.

• an annotated bibliography.

Berkeley Notes

This is a standard Bell Laboratories document reproduced without any
local modification. Most of the information it contains applies to the UNIX sys­
tems on the Berkeiey campus. but there are exceptions. This document gives a
good general overview of UNIX for people with some previous computer experi­
ence. Readers should also investigate sources of local information to learn
about Berkeley software. procedures, and policies. Good sources include the
online help command. the Berkeley edition of the UNIX Programmers's Manual.
and other documents listed on the UNIX Documentation GUide which is available
from the Computing Services Library. 218 Evans Hall. Some differences
between this document and the Berkeley systems are wonh noting:

• The recommended editor at Berkeley is ex (and its variants edit and vi).

• The specific path names used in the section "What's in a Filename -
Continued" (pp. 7-8) are not the same as those used on the Berkeley sys­
tems.

• The default shell. or command line processor. at Berkeley is the C shell
(csh). not the standard Bell Laboratories shell (sh). The C shell does not
recognize .profile as the name of a login initialization file: instead. it looks
for a file called .Iogin. It's treatment of simple commands is the same.
but the syntax is different for more complicated things. such as loops.
For more information about the C shell. refer to An Inrroduct/on to the C
Shell. by William Joy.

September 29, 1980

tUNIX is a Trademark or Bell Laboratories.

UNX 1.3.2

UNIX For Beginners - Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

INTRODUCTION

From the user's point of view. the UNIX
operating system is easy to learn and use. and
presents few of the usual impediments to getting
the job done. It is hard. however. for the
beginner to know where to start. and how to
make the beSt use of the facilities available. The
purpose of this introduction is to help new users
get used to the main ideas of the UNIX system
and start making effective use of it quickly.

You should have a couple of other docu­
ments with you for easy reference as you read
this one. The most important is Tilt UNIX
ProRrammtr's Manltal; it's often easier to tell you
to read about something in the manual than to
repeat its contents here. The other useful docu-

. ment is A Tutorial Imrod,,,·tlOn 10 tht UNIX Tt."Ct
Editor. which will tell you how to use the editor
to get text - programs. data. documents - into
the computer.

A word of warning: the UNIX system has
become quite popular. and there are several
major variants in widespread use. Of course
details also change with time. So although the
basic structure of UNIX and how to use it is com­
mon to all versions. there will certainly be :1 few
things which are different on your system from
what is described here. We have tried to minim­
ize the problem. but be aware of it. In cases of
doubt. this paper describes Version 7 UNIX.

This paper has five sections:

1. Gelling Started: How to log in. how to type.
what to do about mistakes in typing, how to
log out. Some of this is dependent on which
system you log into (phone numbers. for
example) and what terminal you use. so this
section must necessarily be supplemented by
local information.

2. Day-to-day U~: Things you need every day
to use the system effectively: generally use­
ful commands; the file system.

3. Document Preparation: Preparing manu­
scripts is one of the most common uses for
UNIX systems. This section contains advice.
but not extensive instructions on any of the
formatting tools.

4. Writing Programs: UNIX is an excellent sys­
tem for developing programs. This section
talks about some of the tools. but again is
not a tutorial in any of the programming
languages provided by the system.

S. A UNIX Reading List. An annotated
bibliography of documents that new users
should be aware of.

I. GETTING STARTED

LOlling In

You must have a UNIX login name. which
you c:an get from whoever administers your sys­
tem. You also need to know the phone number.
unless your system uses permanently connected
terminals. The UNIX system is capable of deal­
ing with a wide variety of terminals: Terminet
300's: Execu"ort. TI and similar portables; video
(CRT) terminals like the HP2640. etc.; high­
priced graphics terminals like the Tektronix
4014; plotting terminals like those from GSI and
DASI: and even the venerable Teletype in its
various forms. But note: UNIX is strongly
oriented towards devices with IOWf'r (;asC'. If your
terminal produces only upper case (c.g.. model
33 Teletype. some vidco and portable terminals).
Iifc will be so difficult that you should look for
another terminal.

Be sure to set the switc:hes appropri:ucly on
your device. Switches that might need to be
adjusted include the speed. upper/lower case
mode. full duplex. even parity. and any others
that local wisdom advises. establish a connec­
tion using whatever magic is needed for your ter­
min .. l: this may involve di .. ling a telephone call
or merely nipping a switch. In either case. UNIX
should type "login:" at you. If it types g .. rb .. ge.
you m .. y be at the wrong speed: check the
switches. If that fails. push the "break" or

"interrupt" key a few times. slowly. If that fails
to produce a login message. consult a guru.

When you get a lotin: message. type your
login name in lowe, case. Follow it by a
RETURN; the system will not do anything until
you type a RETURN. If a password is required,
you will be asked for it, and (if possible) printing
will be turned off while you type iL Don't forget
RETURN.

The culmination of your login efforts is a
"prompt character:' a single character that indi­
cates that the system is ready to accept com­
mands from you. The prompt character is usu­
ally a dollar sign S or a percent sign~, (You
may also get a message of the day just before the
prompt character, or a notification that you have
mail'>

Typinl Commands

Once you've seen the prompt character, you
can type commands. which are requests that the
system do something. Try typinl

date

followed by RETURN. You should get back
something like

Mon Jan 16 14:17:10 EST 1978

Don't forget the RETURN after the command. or
nothing will happen. If you think you're beinl
ignored. type a RETURN; somethinl should hap­
pen. RETURN won't be mentioned again. but
don't forget it - it has to be there at the end of
each line.

Another command you might try is ~ho.

which tells you everyone who is currently logged
in:

~ho

gives something like

mb
ski
lam

ttyOI
tty05
tty 11

Jan 16
Jan 16
Jan 16

09:11
09:33
13:07

The time is when the user logged in; "nyxx" is
the system's idea of what terminal the user is on.

If you make a mistake typing the command
name, and refer to a non~xistent command. you
will be told. For example, if you type

... hom

you will be told

... hom: noC round

Of course, if you inadvertently type the name of
some other command. it will run, with more or
less mysterious reSUlts.

·2-

Stranle Terminal BebaYior
Sometimes you can get into a state where

your terminal acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed or a return to the left mar­
gin. You can often fix this by logging out and
logging back in. Or you can read the description
of the command stty in section 1 of the manuaL
To get intelligent treatment of tab characters
(which are much used in UNIX) if your terminal
doesn', have tabs. type the command

stty -tabs

and the system will convert each tab into the
right number of blanks for you. If your terminal
does have computer-seltable tabs, the command
tabs will set the stops correctly for you.

Mistakes In Typilll

If you make a typing mistake, and see it
before RETURN has been typed, there are two
ways to recover. The sharp-character # erases
the last character typed; in fact successive uses of
erase characters back to the beginning of the
line (but not beyond). So if you type badly. you
can correct as you 10:

dd#atte##e

is the same as date.

The at-sian @ erases all of the characters
typed so far on the current input line, so if the
line is irretrievably fouled up, type an @ and
start the line over.

What if you must enter a sharp or at-sign as
part of the text? If you precede either # or @
by a baclcsIash \, it loses its erase meaning. So
to enter a sharp or at-sign in something, type \ #
or \@. The system will always echo a newline at
you after your at-sign, even if preceded by a
baclcslash. Don't worry - the at-sign has been
recorded.

To erase a backslash. you have to type two
sharps or two at-signs, as in \##. The baclcslash
is used extensively in UNIX to indicate that the
follOwing character is in some way speciaJ.

Read.ahead

UNIX has full read· ahead. which means that
you can type as fast as you want. whenever you
want, even when some command is typing at
you. If you type during output. your input char­
acters will appear intermixed with the output
characters. but they will be stored away and
interpreted in the correct order. So you can type
several commands one after another without
waiting for the first to finish or even begin.

Stopping a Procram

You can stop most programs by typing the
character "DEL" (perhaps called "delete" or
"rubout" on your terminal). The "interrupt" or
"break" key found on most terminals can also
be used. In a few programs, like the text editor,
DEL stops whatever the program is doing but
leaves you in that program. Hanging up the
phone will stop most programs.

LOlling Out
The easiest way to log out is to hang up the

phone. You can also type

loa in

and let someone else use the terminal you were
on. It is usually not sufficient just to turn off the
terminal. Most UNIX systems do not use a
time-out mechanism, so you'll be there forever
unless you hang up.

Man
When you log in, you may sometimes get

the message

You have mail.

UNIX provides a postal system so you can com­
municate with other users of the system. To
read your mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first. After each message,
mail waits for you to say what to do with it. The
two basic responses are cI, which deletes the mes­
sage, and RETURN, which does not <So it will
still be there the next time you read your mail­
box). Other responses are described in the
manual. (Earlier versions of mail do not process
one message at a time, but are otherwise simi­
lar.>

How do you send mail to someone else?
Suppose it is to go to "joe" (assuming "joe" is
someone's login name). The easiest way is this:

mail joe
now IYpe in the lUI olille letter
on as many lilies as YOll like ...
After lhe /ast line ollhe leiter
type Ihe character "contro/-d",
Illalls, hold down "conlrol" and IYpe
a letter "d".

And that's it. The "control-d" sequence, often
called uEOF" for end-of-tile, is used throughout
the system to mark the end of input from a ter­
minal, so you might llS well get used to it.

For practice, send mail to yourself. (This
isn't as strange as it might sound - mail to one-

- 3 -

self is 'a handy reminder mechanism'>

There are other ways to send mail you
can send a previously prepared leller, and you
can mail to a number of people all at once. For
more details see mail(O. (The notation mail(l)
means the command mail in section 1 of the
UNIX Programmer's ManuaL)

WritiDa to other users

At some point, out of the blue will come a
message like

Message from joe uy07, ••

accompanied by a startling beep. It means that
Joe wants to talk to you, but unless ;,Iou take
explicit action you won't be able to talk back. To
respond, type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will
appear on yours and vice versa. The path is
slow, rather like talking to the moon. (If you are
in the middle of something, you hnve to get to a
state where you can type a command. Normally,
whatever program you are running has to ter­
minnte or be terminated. If you're editing, you
can escape temporarily from the editor - read
the editor tutorial.)

A protocol is needed -to keep what you type
from getting garbled up with what Joe types.
TYPically it's like this:

Joe types write smith and waits.
Smith types write joe and waits.
Joe now types his message (as many lines
as he likes). When he's ready for a reply,
he signals it by typing (0), which stands
for "over".
Now Smith types a reply, also terminated
by (0).
This cycle repeats until someone gets
tired; he then signals his intent to quit
with (00), for "over and out".
To terminate the conversation, each side
must type a "control-d" charncter alone
on a line. ("Delete" also works'> When
the other person types his "control-d",
you will get the message EOF on your
terminal.

If you write to someone who isn't logged in.
or who doesn', want to be disturbed, you'll be
told. If the target is logged in but doesn't nnswer
after a decent intervnl, simply type "control-d".

On-line ~fanual

The UNIX Programmer's Jlanual is typically
kept on-line. If you get stuck on something, and
can't find an expert to assist you, you can print
on your terminal some manual section that
might help. This is also useful for getting the
most up-to-date information on a command. To
print a manual section, type "man command­
name". Thus to read up on the who command,
type

man who

and, of course,

man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a pro­
gram called learn, which provides computer
aided instruction on the file system and basic
commands, the editor, docum nt preparation,
and even C programming. Try typing the com­
mand

learn

If learn exists on your system. it will tell you
what to do from there.

II. DA Y-TO-DA Y USE

Creatinl FUes - The Editor

If you have to type a paper or a letter or a
program. how do you get the information stored
in the machine? Most of these tasks are done
with the UNIX "text editor" eeL Since ed is
thoroughly documented in ed(1) and explained
in A Tutorial Introduction to th~ UNIX Text Edit~.
we won't spend any time here describing how to
use it. All we want it for right now is to make
some files. (A file is just a collection of informa­
tion stored in the machine. a simplistic but ade­
quate definition.)

To create a file called junk with some text in
it, do the following:

- 4 -

eQ junk

•
(jnvokes the text editor)
(command to ·'ed". to add text>

now ry~ in
whatever text you want ...

(signals the end of adding text)

The" 0" that signals the end of adding text must
be at the beginning of a line by itself. Don't for­
get it. for until it is typed. no other ed com­
mands will be recognized - everything you type
Will be treated as text to be added.

At this point you can do various editing
operations on the text you typed in. such as

correcting spelling mistakes. rearranging para­
graphs and the like. Finally. you must write the
information you have typed into a file with the
editor command w:

ed will respond with the number of characters it
wrote into the file junk.

Until the w command. nothing is stored per­
manently, so if you hang up and go home the
information is lost. t But after w the information
is there permanently; you can re-access it any
time by typing

ed junk

Type a q command to quit the editor. (If you try
to quit without writing. ed will print a ? to rem­
ind you. A second q getS you out regardless.)

Now create a second file called temp in the
same manner. You should now have two files.
junk and temp.

What fUes are out there?

The Is (for "list") command lists the names
(not contents) of any of the files that UNIX
knows about. If you type

Is

the response will be

junk
temp

which are indeed the two files just created. The
names are sorted into alphabetical order
automatically, but other variations are possible.
For example. the command

Is -t

causes the files to be listed in the order in which
they were last changed. most recent first. The
-1 option gives a "long" listing: .

Is -I

will produce something like

-rw-rw-rw- 1 bwk 41 lui 22 2:56 junk
-rw-rw-rw- 1 bwk 78 lul 22 2:57 temp

The date and time are of the last change to the
file. The 41 and 78 are the number of characters
(which should agree with the numbers you got
from cd). bwk is the owner of the file. that is.
the person who created it. The -rw-rw-rw­
tells who has permission to read and write the
file. in this case everyone.

t ThIS is nOI strictly lrue - ir you hanl up whIle ediun,.
lhe dal8 you wen: werlClnl on 15 Solved In • file called
e4.11 ... whIch you can conllnue wllh at your nexI sessIon.

Options can be combined: Is -It gives the
same thing as Is -I, but sorted into time order.
You can also name the files you're interested in,
and Is will list the information about them only.
More details can be found in IsO).

The use of optional argumentS that begin
with a minus sign, like -t and -U, is a com­
mon convention for UNIX programs. In general.
if a program accepts such optional arguments,
they precede any filename arguments. It is also
vital that you separate the various arguments
with spaces: Is-I is not the same as Is -I.

Prinlinl Files

Now that you've got a file of text. how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than are needed.

One simple thing is to use the editor, since
printing is often done just before making
chanles anyway. You can say

ed Junk
ItSp

eel will reply with the count of the characters in
Junk and then print all the lines in the file.
After you learn how to use the editor, you can
be selective about the parts you print.

There are times when it's not feasible to use
the editor for printin,. For example, there is a
limit on how big a file ed can handle <Several
thousand lines). Secondly, it will only print one
file at a time, and sometimes you want to print
several, one after another. So here are a couple
of alternatives.

. First is cat, the simplest of all the printing
programs, Cit simply prints on the terminal the
contents of all the files named in a list. Thus

cat Junk

printS one file, and

cat Junk temp

prints two. The files are simply concatenated
(hence the name "Cit") onto the terminal.

pr produces formatted printouts of files. As
with eIt. pr prints all the files named in a list.
The difference is that it produces heading$ with
date, time. page number and file name at the top
of each page, and extra lines to skip over the
fold in the paper. Thus.

pr Junk temp

will print Junk neatly, then skip to the top of a
new page and print temp neatly.

pr can also produce multi-column output:

- 5 -

pr -3 junk

prints junk in J-column format. You can use
any reasonable number in place of "3" and pr
will do its best. pr has other capabilities as wel1~
see prO).

It should be noted that pr is not a formatting
program in the sense of shuffling lines around
and justifying margins. The true formatters are
nroff and troff. which we will get to in the sec­
tion on document preparation.

There are also progr3ms that print files on a
high-speed printer. Look in your manual under
opr and Ipr. Which to use depends on what
equipment is attached to your machine.

Shuffling Files About

Now that you have some files in the file sys­
tem and some experience in printing them, 'You
can try bigger things. For example, you can
move a file from one place to another (which
amounts to giving it a new name), like this:

mv junk precious

This means that what used to be "junk" is now
"precious". If you do an Is command now, you
will let

precious
temp

Beware that if you move a file to another one
that already exists, the already eXisting contents
are lost (orever.

If you want to make a copy of a file (that is.
to have two versions of something), you can use
the cp com mllnd:

cp precious tempI

makes a duplicate copy of precious in tempI.

Finally, when you get tired of creating and
moving files. there is a commllnd to remove files
from the file system, called rm.

rm temp tempI

will remove both of the files named.

You will get a warning message if one of the
named files wasn't there, but otherwise rm, like
most UNIX commands. does its work silently.
There is no prompting or challer. and error mes­
sages are occasionally curt. This terseness is
sometimes disconcerting to newcomers, bu t
experienced users find it desirable.

Wbal's in a Filename

So far we have used filenlmes without ever
saying wh:u's a leg31 nnme. so it's time (or a
couple of rules. First, filen;,mes are limited to
14 characters. which is enou:.h to be descriptive.

Second. although you can use almost any chane· .
ter in a filename. common sense says you should
stick to ones that are visible~ and that you should
probably avoid characters th:u might be used
with other meanings. We have already seen. for
example. that in the Is command. Is -t means
to list in time order. So if you had a file whose
name was -to you would have 3 tough time list·
ing it by name. Besides the minus sign. there
are other characters which have special meaning.
To avoid pitfalls. you would do well to use only
letters. numbers and the period until you're fam­
iliar with the situation.

On to some more positive suggestions. Sup­
pose you're typing a large document like a book.
Logically this divides into many small pieces. like
chapters and perhaps sections. Physically it must
be divided too. for ed WIll not handle really big
files. Thus you should type the document as a
number of files. You might have a separate file
for each chapter. called

chap!
chapl
etc ...

Or. if each chapter were broken into several files.
you might have

chapl.!
chapl.Z
chapl.J

chal'Z.!
chapl.2

You can now teU at a glance where a particular
file fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the
whole book? You could say

pr chapl.l chapl.Z chap1.J .•••.•

but you would get tired pretty fast. and would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chap*

The * means "anything at all." so this translates
into "print all files whose names begin with
chap". listed in alphabetical order.

• 6 -

This shorthand notation is not a property of
the pr command. by the way. It is system· wide.
a service of the program that interprets com·
mands (the "shell." shO)). Using that fact •.
you can see how to list the names 01 the files in
the book:

Is chap-

produces

chapLI
chapl.l
chapl.J

\

The • is not limiled 10 the last position in a
filename - it can' be anywhere and can occur
several times. Thus

rm *Junk- *temp·

removes aU files that contain junk or temp as
any part of their name. As a special case, • by
itself matches every filename, so

pr -

prints all your files (alphabetical order), and

rm -

removes all fifes. (You had better be very sure
that's what you wanted to say!)

The • is not the only pattern-matching
feature available. Suppose you want to print
only chapters 1 through 4 and 9. Then you can
say

pr chapU2J491-

The 1 ••• 1 means 10 match any of the characters
inside the brackets. A range of consecutive
letters or digits can be abbreviated. so you can
also do this with

pr chapll-49!·

Letters can also be used within braclcets: la-zJ
matches any character in the range a through z.

The ? pattern matches any single character,
so

Is ?

lists all files which have single·character names.
and

Is -I chap?l

lists information about the first file of each
chapter (chap1.1, chapl.!. etc.).

Of these niceties. • is certainly the most use·
ful. and you should get used to iL The others
are frills. but worth knowing.

If you should ever have to turn otT the spe·
cial meaning of ., ? etc.. enclose the entire
argument in single quotes. as in

Is '?'

We'll see some more examples of this shortly.

What's in a Filename. Continued

When you first made that file called junk,
how did the system know that there wasn't
another junk somewhere else, especially since
the person in the next office is also reading this
tutorial? The answer is that generally each user
has a private directory. which contains only the
files that belong to him. When you log in. you
are "in" your directory. Unless you take special
action. when you create a new file. it is made in
the directory that you are currently in; this is
most often your own directory. and thus the file
is unrelated to any other file of the same name
that might exist in someone else's directory.

The set of all files is organized into a (usu­
ally big) tree, with your files located several
branches into the tree. It is possible for you to
"walk" around this tree. and to find any file in
the system, by starting at the root of the tree and
walking along the proper set of branches. Con­
versely, you can start where you are and walk
toward the root.

Let's try the latter first. The basic tools is
the command pwd ("print working directory"),
which prints the name of the directory you are
currently in.

Although the details will vary ac:eording to
the system you are on, if you give the command
pwd. it will print something like

lasr/your-name

This says that you are currently in the directory
your-name. which is in turn in the directory
lusr, which is in turn in the root directory called
by convention just I. (Even if it's not called
lusr on your system. you will get something
analogous. Make the corresponding changes and
read on.>

If you now type

Is lusr/your-name

you should get exactly the same list of file names
as you get from a: plain Is: with no arguments. Is
lists the contents of the current directory; given
the name of a directory. it lists the contents of
that directory.

Next, try

Is /usr

This should print a long series of names, among
which is your own login nllme your-name. On
mllny systems. usr is a directory that contains
the directories of all the normal users of the sys­
tem, like you.

The next step is to try

Is /

- 7 -

You should get a response something like this
(although again the details may be different):

bin
dey
etc:
lib
tmp
usr

This is a collection of the basic directories of files
that the system knows about; we are at the root
of the tree.

Now try

cat lusr/your-name/junk

(jf junk is still around in your directory). The
name

/usr/youroname/junk

is called the pathname of the file that you nor·
mally think of as "junk". "Pathname" has an
obvious me:ming: it represents the full name of
the path you have to follow from the root
through the tree of directories to get to a particu­
lar file. It is a universal rule in the UNIX system
that anywhere you can use an ordinary filename.
you c:an use a pathname.

Here is a picture whi~h may make this
clearer:

bin
11\

-(root>

11\ I \
etc usr dev tmp
11\ 11\ 11\ 11\

I \
I \

jdam re\ ma\

I junk
junk temp

Notice that Mary's junk is unrelated to Eve's.

This isn't too exciting if all the files of
interest are in your own directory, but if you
work with someone else or on several projects
concurrently, it becomes handy indeed. For
example, your friends can print your book by
saying

pr lusr/your-name/chap·

Similarly, you can find out what files your neigh·
bor has by saying

Is lusr/neighbor-name

or make your own copy of one of his files by

c:p lusr/your-neighbor/his-file yourfile

If your neighbor doesn't want you poking
around in his files, or vice versa, privacy can be

arranged. Each file and directory has read-write­
execute permissions for the owner. a group. and
everyone else. which can be set to control access.
See 15(1) and chmod(l) for details. As a matter
of observed fact. most users most of the time
find openness of more benefit than privacy,

As a final experiment with pathnames. try

Is Ibin lusr/bin

Do some of the names look familiar? When you
run a program. by typing its name after the
prompt character. the system simply looks for a
file of that name. It normally looks first in your
directory (where it typically doesn't find it), then
in Ibin and finally in lusr/bin. There is nothing
magic about commands like calor Is. except that
they have been collected into a couple of places
to be easy to find and administer.

What if you work regularly with someone
else on common information in his directory?
You could just log in as your friend each time
you want to. but you can also say "I want to
work on his files instead of my own". This is
done by changing the directory that you are
currently in:

cd lusr/your-rriend

(On some systems, cd is spelled chdlr.> Now
when you use a filename in something like cat or
pro it refers to the file in your friend's directory,
Changing directories doesn't affect. any permis­
sions associated with a file - if you couldn't
access a file from your own directory, changing
to another directory won't alter that fact. Of
course, if you forget what directory you're in,
type

pwd

to find out.

It is usually convenient to arrange your own
files so that all the files related to one thing are
in a directory separate from other projects. For
example. when you write your book, you might
want to keep aU the text in a directory caUed
book. So make one with

mkdir book

then go to it with

cd book

then start typing chapters. The book is now
found in (presumably)

lusr/your-name/book

To remove the directory book. type

rm book/·
rmdir book

- 8 -

The first command removes all files from the
directory; the second removes the empty direc­
tory.

You can go up one level in the tree of files
by saying

cd ••

...... is the name of the parent of whatever direc­
tory you are currently in. For completeness
is an alternate name for the directory you are in.

Usinl riles instead of the Terminal

Most of the commands we have seen so far
produce output on the terminal; some. like the
editor, also take their input from the terminal. It
is universal in UNIX systems that the terminal
can be replaced by a file for either or both of
input and output. As one example,

Is

makes a list of files on your terminal. But if you
say

Is > filellst

a list of your files will be placed in the file fileUst
(which will be created if it doesn't already exist.
or overwritten if it does). The symbol> means
"put the output on the following file. rather than
on the terminal:" Nothing is produced on the
'terminal. As another example. you could com­
bine several files into one by capturing the out­
put of cat in a file:

cat n fl f3 > temp

The symbol > > operates very much like >
does, except that it means "add to the end of,"
That is.

cat n fl f3 > >temp

means to concatenate n. fl and f3 to the end of
whatever is already in temp. instead of overwrit­
ing the existing contents. As with >, if temp
doesn't exist. it will be created for you.

In a similar way, the symbol < means to
take the input for a program from the following
file. instead of from the terminal. Thus. you
could make up a script of commonly used editing
commands and put them into a file called script.
Then you can run the script on a file by saying

ed file < script

As another example. you can use ed to prepare a
letter in file let. then send it to several people
with

mail adam eve mary joe < let

Pipes

One of the novel contributions of lhe UNIX
system is the idea of a pipe. A pipe is simply a
way to connect the output of one program to the
input of another program. so the two run as a
sequence of processes - a pipeline.

For example,

pr r I: h

will print the files r. I. and h. beginning each on
a new page. Suppose you want them run
together instead. You could say

cat f I h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly
what we want is to take the output of cat and
connect it to the input of pro So let us use a
pipe:

cat r I: h Ipr

The vertical bar I means to take the output from
cat. which would normally have gone to the ter·
minal. and put it into pr to be neatly formatted.

There are many other examples of pipes.
For example,

Is Ipr-3

prints a list of your files in three columns. The
program we counts the number of lines. words
and characters in its input. and as we saw earlier.
who prints a list of currently· logged on people.
one per line. Thus

wholwc

tells how many people are logged on. And of
course

Is Iwe

counts your files.

Any program that reads from the terminal
can read from a pipe instead~ any program that
writes on the terminal can drive a pipe. You can
have as many elements in a pipeline as you wish.

Many UNIX programs Ire written so that
they will take their input from one or more files
if file arguments are given; if no arguments are
given they will read from the terminal. and thus
can be used in pipelines. pr is one example:

pr -3 abc

prints files a. band e in order in ,three columns.
But in

cat abc I pr - 3

pr prints the information coming down the pipe'
line. still in three columns.

·9·

The Shell

We have already mentioned once or twice
the mysterious "shell." which is in fact sh (1).
The shell is the program that interprets what you
type as commands and arguments. It also looks
afler translating ., etc., into lists of filenames,
and <, >, and I into changes of input and out·
put streams.

The shell has other capabilities too. For
example, you can run two programs with one
command line by separating the commands with
a semicolon~ the shell recognizes the semicolon
and breaks the line into two commands. Thus

date; who

does both commands before returning with a
prompt character.

You can also have more than one program
running Simultaneously if you wish. For example.
if you are doing something time·consuming. like
the editor script of an earlier section, and you
don't want to wait around for the results before
starling something else, you can say

ed file < script &:

The ampersand at the end of a command line
says "start this command running, then take
further commands from the terminal immedi­
ately," that is, don't wait for it to complete,
Thus the script will begin, but you can do some·
thing else at the same time. Of course. to keep
the output from interfering with what you're
doing on the terminal. it would be beuer to say

ed file < script> script.out &:

which saves the output lines in a file called
script.out.

When you initiate a command with ". the
system replies with a number called the process
number. which identifies the command in case
you later want to stop it. If you do. you can say

kill process· number

If you forget the process number. the command
ps will tell you about everything you have run·
ning. (If you are desperate. kill 0 will kill all
your processes.) And if you're curious about
other people. ps I will tell you about all pro·
grams that are currently running.

You can say

(command.l; command.2; command·) "

·to start three commands in the background. or
you can start a background pipeline with

command.II command·2 "

Just as you can tell the editor or some simi·

lar program to take its input from a file instead
of from the terminal. you an tell the shell to
read a file to get commands. (Why not? The
shell. after all. is just a program. albeit a clever
one.) For instance. suppose you want to set tabs
on your terminal. and find out the date and
who's on the system every time you log in.
Then you can put the three necessary commands
<tabs. dat •• who) into a file. let's call it startup.
and then run it with

sh startup

This says to run the shell with the file startup as
inpuL The effect is as if you had typed the con­
tents of startup on the terminal.

If this is to be a regular thing. you an elim­
inate the need to type sb: simply type. once only.
the command

chmod + x startup

and thereafter you need only say

stanup

to run the sequence of commands. The
chmocl< 1) command marks the file executable;
the shell recognizes this and runs it as a
sequence of commands.

If you want startup to run automatically
every time you log in. create a file in your login
directory called .profil •• and place in it the line
startup. When the shell first gains control when
you log in. it looks for the .profile file and does

. whatever commands it finds in it. We'll get back
to the shell in the section on programming.

III. DOCUMENT PREPARATION
UNIX systems are used extensively for docu­

ment preparation. There are two major formal­
ting programs. that is. programs that produce a
text with justified right margins. automatic page
numbering and titling. automatic hyphenation.
and the like. nroff is designed to produce output
on terminals and line-printers. troff (pro­
nounced "tee-roft' ..) instead drives a photo­
typesetter, which produces very high quality out­
put on photographic paper. This paper was for·
matted with troff.

Formattlna Packages

The basic idea of nroff and troff is that the
text to be formatted contains within it "format·
ting commands" that indic:ne in detail how the
formatted text is to look. For example. there
might be commands thllt specify how long lines
are. whether to use single or double spacing. and
what running titles to use on each page.

- 10 -

Because nrorf and troff are relatively hard to
learn to use effectively. several "packages" of
canned formatting requests are available to let
you specify paragraphs. running titles. footnotes.
multi-column output. and so on. with little effort
and without having to learn nroll and trolf.
These packages take a modest effort to learn. but
the rewards for using them are so great that it is
time well spenL

In this section. we will provide a hasty look
at the "manuscript" pacicage known as -ms.
Formatting requests typically consist of a period
and two upper-case letters. such as • TL. which is
used to introduce a title. or .PP to begin a new
paragraph.

A document is typed so it looks something
like this:

.TL
Utle of document
.AU
author name
.SH
section he.dine
.PP
parqraph •• _
.PP
another paraaraph •••
.SH
another section hndllll
.PP
etc:.

The lines that begin with a period are the for·
matting requests. For example. .PP calls for
starting a new paragraph. The precise meaning
of .PP depends on what output device is being
used <typesetter or terminal. for instance}. and
on what publication the document will appear in.
For example. - ms normally assumes that a
paragraph is preceded by a space (one line in
nroff. In line in troW. and the first word is
indented. These rules can be changed if you
like. but they are changed by changing the
interpretation of .PP, not by re-typing the docu­
ment.

To actually produce a document in standard
format using -ms. use the command

troU - ms files •••

for the typesetter, and

nroff - m" files •••

for a terminal. The - ms argument tells trolf
and nrorf to use the manuscript package of for­
matting requests.

There are several similar packages~ check
with a local expert to determine which ones are
in common use on your machine.

Supporting Tools

In addition to the basic formatters. there is a
host of supporting programs that help with docu­
ment preparation. The list in the next few para­
graphs is far from complete. so browse through
the manual and check with people around you
for other possibilities.

eqn and neqn let you integrate mathematics
into the text of a document. in an easy-to-Iearn
language that closely resembles the way you
would speak it aloud. For example. the eqn
input

sum from i-O to D x sub i --- pi oYer Z

produces the output

" LX, -.!!:..
,00() 2

The program lbl provides an analogous ser­
vice for preparing tabular material~ it does all the
computations necessary to align complicated
columns with elements of varying widths.

refer prepares bibliographic citations from a
data base. in whatever style is defined by the for­
maning package. It looks after all the details of
numbering references in sequence. filling in page
and volume numbers. geuing the author's initials
and the journal name right. and so on.

spell and typo detect possible spelling mis­
takes in a document. spell works by comparing
the words in your document to a dictionary,
printing those thaI are not in the dictionary. It
knows enough about English spelling to detect
plurals and the like. so it does a very good job.
typo looks for words which are "unusual", and
prints those. Spelling mist:1kes tend to be more
unusual, and thus show up early when the most
unusual words are printed first.

srep looks through a set of files for lines
that contain a particular text pattern (rather like
the editor's context se:l.rch does. but on a bunch
of files). For example.

srep 'ingS' chap·

will find ail lines that end with the letters ins in
the files chap·. (It is almost always a good prac­
tice to put single quotes around the pattern
you're searching for, in C:l.se it contains charac­
ters like • or S that have a special me:!ning to the
shell,) srep is often useful for finding out in
which of a set of files the misspelled words
detected by spell :Ire actually 10C:l.ted.

dirr prints a list of the differences between
two files. so you Clln comp:ue two versions of
something llutomaticlllly (which c:ertllinly be:!ts
proofreading by hand).

- 11 -

wc counts the words, lines and characters in
a set of files. tr translates characters into other
characters~ ror example il will convert upper to
lower case and vice versa. This translates upper
into lower:

If A-Z a-z <input >outpUI

sort sorts files in a variety of ways~ eref
makes cross-references; ptx makes a permuted
index (keyword-in-context listing). sed prOVIdes
many of the editing facilities of ed. but can apply
them to arbitrarily long inputs. awk provides the
ability to do both pattern matching and numeric
computations, and to conveniently process fields
within lines. These programs are for more
advanced users. and they are not limited to
document preparation. Put them on your list of
things to learn about.

Most of these programs are either indepen­
dently documented (like eqn and tbU, or are
sufficiently simple that the description in the
UNIX Programmer's Manual is adequate explana­
tion.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are
finally finished. Accordingly. you should do
whatever possible to make the job of changing
them easy.

First, when you do the purely mechanical
operations of typing, type so that subsequent
editing will be easy. Start each sentence on a
new line. Make lines short, and break lines at
natural plac~s. such as after commas and semi­
colons. rather than randomly. Since most people
change doc:uments by rewriting phrases and
adding, deleting and rearranging sentences. these
precautions simplify any editing you have to do
later.

Keep the individual files of a document
down to modest size. perhaps ten to fifteen
thousand charllcters. Larger files edit more
slowly. and of course if you make a dumb mis­
take it's beuer. to have clobbered a small file
than a big one. Split into files at natural boun­
daries in the document, for the same reasons
that you start each sentence on a new line.

The second aspect of making change easy is
to not commit yourself to formatting details too
early. One of the advantages of formatting pack·
ages like -ms is that they permit you to delay
decisions to the last possible moment. Indeed.
until a document is printed. it is not even
decided whether it will be typeset or put on a line
printer.

As a rule of thumb, for all but the most
trivial jobs, you should type a document in terms
of a set of requests like .PP. and then define
them appropriately. either by using one of the
canned packages (the better way) or by defining
your own nrolf and troCf commands. As long as
you have entered the text in some systematic
way. it can always be cleaned up and re­
formatted by a judicious combination of editing
commands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any
of the programming languages available but a
few words of advice are in order. One of the
reasons why the UNIX system is a productive
programming environment is that there is
already a rich set of tools available, and facilities
like pipes, 110 redirection, and the capabilities of
the shell often make it possible to do a job by
pasting together programs that already exist
instead of writing from scratch.

The Shell

. The pipe mechanism lets you fabricate quite
complicated operations out of spare parts that
already exist. For example. the first draft of the
spell program was (roughly)

cat •••
I tr .. .
Itr .. .
I sort
I uniq
Icomm

collect 1M jilt!!
put each word on a n"" line
,.It!,. punctuation, e~.
into dictIonary ord,,.
discard duplicalt!!
P'IfIl word! in tut

but nOI IfI dictlonar,

More pieces have been added subsequently. but
this goes a long way for such a small etTort.

The editor can be made to do things that
would normally require special programs on
other systems. For example, to list the first and
last lines of each of a set of files, such as a book.
you could laboriously type

ed
e chapl.t
Ip
Sp
e chapl.Z
Ip
$p
etc.

But you can do the job much more easily. One
way is to type

Is chap· > temp

to get the list of filenames into a file. Then edit
this file to maice the necessary series of editing

• 12 -

commands (using the global commands of ed).
and write it into script. Now the command

ed <script

will produce the same output as the laborious
han~ typing. Alternately (and more easily). you
can use the fact that the shell will perform loops.
repeating a set of commands over and over again
for a set of arguments:

for i In chap·
do

ed $1 < script
done

This sets the shell variable I to each file name in
tum. then does the command. You can type this
command at the terminal. or put it in a file for
later execution.

PrOlramminlthe Shell

An option often overlooked by newcomers is
that the shell is itself a programming language,
with variables. control flow Hf-else. while, for.
case>, subroutines. and interrupt handling. Since
there are many building-block programs. you can
sometimes avoid writing a new program merely
by piecing together some of the building blocks
with shell command files.

We will not go into any details here~ exam­
ples and rules can be found in An IntroductIon to
tht! UNIX Sht!/~ by S. R. Bourne.

Prolramming in C

If you are undertaking anything substantial,
e is the onlY reasonable choice of programming
language: everything in the UNIX system is tuned
to iL The system itself is written in e, as are
most of the programs that run on it. It is also a
easy language to use once you get started. C is
introduced a.nd fully described in Tht! C Program­
mil" Language by B. W. Kernighan and O. M.
Ritchie (Prentice· Hall, 1978), Several sections
of the manual describe the system interfac:s.
that is, how you do 110 and similar functions.
Read UNIX ProgrammIng for more complicated
things.

Most input and output in C is best handled
with the standard 110 library, which provides a
set of 110 functions that exist in compatible
form on most machines that have e compilers.
In general, it's wisest to confine the system
interactions in a program to the facilities pro­
vided by this library.

e programs that don't depend too much on
special features of UNIX (such as pipes) can be
moved to other computers that have C com­
pilers. The list of such machines grows daily: in
addition to the original PDp· I I, it currently

includes at least Honeywell 6000. IBM 370.
Interdata 8/32. Data General Nova and Eclipse.
HP 2100, Harris 17, V AX 111780, SEL 86, and
Zilog Z80. Calls to the standard I/O library will
work on ,all of these machines.

There are a number of supporting programs
that go with C. Hnt checks C programs for
potential portability problems. and detects errors
such as mismatched argument types and unini­
tialized variables.

For larger programs (anything whose source
is on more than one file) make aUows you to
specify the dependencies among the source files
and the processing steps needed to make a new
version; it then checks the times that the pieces
were last changed and does the minimal amount
of recompiling to create a consistent updated ver­
sion.

The debugger adb is useful for digging
through the dead bodies of C programs. but is
rather hard to learn to use effectively. The most
effective debugging tool is still careful thought.
coupled with judiciously placed print statements.

The C compiler provides a limited instru­
mentation service. so you can find out where
programs spend their time and what parts are
worth optimizing. Compile the routines with the
-p option; after the test run, use prof to print
In execution profile. The command time will
live you the aross run-time statistics of a pro­
aram. but they are not super accurate or repro­
ducible.

Otber LIDlu_les
If you MVf to use Fortran. there are two

possibilities. You milht consider Ratfor, which
lives you the decent control structures and free­
form input that characterize C. yet lets you write
code that is still portable to other environments.
Bear in mind that UNIX Fortran tends to produce
larle and relatively slow-runninl prOlrams.
Furthermore. supporting software like adb. prof.
etc., are all virtually useless with Fortran pro­
arams. There may, also be a Fortran 77 compiler
on your system. If so. this is a viable alternative
to Ratfor, and has the non-trivial advantale that
it is compatible with C and related programs.
(The Ratfor processor and C tools can be used
with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another
language. you are in eft"ect building a compiler.
though probably a small one. In that case, you
should be usinl the yacc compiler-compiler,
which helps you develop a compiler quickly. The
lex lexical analyzer generator does the same job
for the simpler Ianluages that can be expressed

-13 -

as relular expressions. It can be used by itself,
or as a front end to recognize inputs for a
yace-based program. Both race and lex require
some sophistication to use. but the initial effort
of learning them can be repaid many times over
in programs that are easy to change later on.

Most UNIX systems also make available
other languages. such as Algol 68. APL. Basic,
Lisp. Pascal. and Snobol. Whether these are
useful depends larlely on the local environment:
if someone cares about the language and has
worked on it, it may be in good shape. If not,
the odds are strong that it will be more trouble
than it's worth.

v. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie. The UNIX
Programmer's Manual. Bell Laboratories. 1978.
Lists commands. system routines and interfaces.
tile formats. and some of the maintenance pro­
cedures. You can't live without this. although
you will probably only need to read section 1.

Documents lor U. With tM UNIX Time-sharing
System. Volume 2 of the Programmer's Manual.
This contains more extensive descriptions of
major commands. and tutorials and reference
manuals. All of the papers listed below ire in it,
as are descriptions oC most of the programs men­
tioned above.

D. M. Ritchie and K. L. Thompson. "The UNIX
Time-sharinl System." CACM. July 1974. An
overview of the system. for people interested in
operating systems. Worth reading by anyone
who prograins. Contains a remarkable number
or one-sentence observations on how to do
thinl! right.

The Bell System Technical Journal (BSTJ) Spe­
cial Issue on UNIX, Julyl Ausust. 1978. contains
many papers 'describing recent developments.
and some retrospective material.

The 2nd International Conference on Software
Engineering (October. 1976) contains several
papers describing the use of the Prosrammer's
Workbench (PWB) version,of UNIX.

Document Preparadon:

B. W. Kernighan. "A Tutorial Introduction to
the UNIX Text Editor" and "Advanced Editing
on UNIX." Bell Laboratories. 1978. Beginners
need the introduction; the advanced material will
help you get the most out of the editor.

M. E. Lesk. "Typing Documents on UNIX." Bell
Laboratories. 1978. Describes the -ms macro
package. which isolates the novice from the
vagaries of nroff and troUt and takes care of

most formatting situations. If this specific pack­
age isn't available on your system, something
similar probably is. The most likely alternative is
the PWB/UNIX macro package -mm~ see your
local guru if you use PWB/UNIX.

B. W. Kernighan and L. L. Cherry, uA System
for Typesetting Mathematics," Bell Laboratories
Computing Science Tech. Rep. 11.

M. E. Lesk. "Tbl - A Program to Format
Tables." Bell Laboratories CSTR 49, 1916.

J. F. Ossanna. Jr.. "NROFF/TROFF User's
Manual." Bell Laboratories CSTR 54, 1916.
troff is the basic formatter used by - ms. eqn
and tbL The reference manual is indispensable
if you are going to write or maintain these or
similar programs. But start with:

B. W. Kernighan. UA TROFF Tutorial." Bell
Laboratories. 1916. An attempt to unravel the
intricacies of troft

Programming:

B. W. Kernighan and D. M. Ritchie. The C Pro­
gramming Language, Prentice-Hall, 1918. Con­
tains a tutorial introduction. complete discussions
of aU language features, and the reference
manual.

B. W. Kernighan and D. M. Ritchie, "UN,X Pro­
gramming," Bell Laboratories, 1978. Describes
how to interface with the system from C pro­
grams: VO caUs. signals, processes.

S. R. Bourne. .. An Introduction to the UNIX
Shell." Bell Laboratories. 1918. An introduction
and reference manual for the Version 1 shell.
Mandatory reading if you intend to make
effective use of the programming power of this
shetl.

S. C. Johnson, uYacc - Yet Another Compiler­
Compiler," Bell Laboratories CSTR 32, 1918.

M. E. Lesk. "Lex - A Lexical Analyzer Gen­
erator," Bell LaboratoriesCSTR 39.1915.

S. C. lohnson, "Lint, a C Program Checker,"
Bell Laboratories CSTR '65, 1911.

S. L Feldman. "MAK.E - A Program for Main­
taining Computer Programs." Bell Laboratories
CSTR 57, 1971.

1. F, Maranzano and S. R. Bourne, .. A Tutorial
Introduction to ADS." Bell Laboratories CSTR
62. 1917. An introduction to a powerful but
complex debugging tool.

S. I. Feldman and P. J. Weinberger, "A Port:lble
Fortran 77 Compiler," Bell Laboratories. 1978.
A full Fortran 77 for UNIX systems.

- 14.

Communicating with UNIXt

Rick; Blau
Computing Services

University of California
Berkeley, California 94720

ABSTlUCT

UNX 1.3.1

This narrative introduction to the use of the UNIX system assumes no
prior familiarity with computers. Its aim is to lead the beginning user through
the first few sessions with UNIX. It stans with the use of the terminal and the
login procedure, and later presents the fundamental system features and com­
mands. Introductions to the file system and command line interpreter are
given.

September 1981

tUNIX is a trademark of Bell Laboratories.

Session 1: Introduction 3
Your account 3
The terminal 3
The keyboard 3
The RETURN key 4
The control key 4
Connecting 4
Port selector terminals 5
Bussiplexer terminals 5
Directly-linked terminals 5
Dial-up terminals 6
Logging in 6
Prompting 6
A summary 1

- 2 -

Contents

Interrupting command execution 7
Help 7
Logging out 8

Session 2: Simple Commands 9
The shell 9
Making corrections 9
Changing the password 10
Sending mail 10
Recei ving mail 11

Session 3: Files 12
Files 12
Filenames 12
Listing the names of files 12
Reading a file 13
Copying files 13
Removing files 14
Moving files 14
To preserve and protect 14

Session 4: Directories 15
The UNIX file structure 15
Pathnames 15
Creating a directory 16
Changing directories 16
Removing directories 17
More about pathnames 17

Session 5: More Commands 19
Issuing commands 19
Type-ahead 19

Index 23

Saving output on a file 19
Reading input from a file 19
The line printer 20
Connecting commands with pipe 20
The background 21
Characters with special meanings 21

- 3 -

Session 1: Introduction

UNIX is an interactive computer system - people and the system talk back and forth with
each other by means of a terminal connected to the computer. When users give instructions to
UNIX, they are communicating with a program, a set of instructions which has been given to
the computer telling it how to perform some task. UNIX is a collection of many programs, col­
lectively called the UNIX system. which monitors the use of the machinery and supervises all of
the programs that make up the system.

This is the first in a series of tutorials to introduce you to UNIX. Don't hesitate to experi­
ment while you are becoming familiar with UNIX. An interactive system responds quickly to
instructions, informing you about the outcome of each task and asking for a new command as
soon as it is ready to receive one. If you enter a command which doesn't work the way you
bad expected, make a change and try again. Learning about the system by using it is the best
way to become familiar with UNIX.

Your account
On the Berkeley campus there are several nearly identical, but separate, computers on

which the UNIX system is available to University personnel and students. All of the UNIX sys­
tems are very much the same, but the computers aren't completely interchangeable: so, each
computer is assigned a name to differentiate it from the other computers. Thus when we refer
to UNIX A, or UNIX E, we are referring to the system on a particular computer, in our exam­
ple, the A machine or the E machine.

Each account is assigned to one of the campus UNIX systems. To use your account, you
must make contact with the proper system. When you are given your account, by either the
Computing Services Accounting office or by the instructor of your class. you will be told the
name of the UNIX system you must use and how to access it.

Associated with your account are two pieces of identification. The login name is the name
by which your account is known. t Your password keeps unauthorized people from using your
account. Whenever you want to use UNIX, you will need to establish your identity by typing
both your login name and password.

The terminal
Entering information at a terminal is very much like typing on an electric typewriter. Ter­

minals display information either on paper (printing or hardcopy devices) or through light
displays on a tv screen (CR T terminals). Whether a terminal writes on paper or on a CRT
screen, it interacts with the computer in the same way, and you may switch from one device to
another at your convenience. Terminals vary in their characteristics from model to model, and
the labelling and placement of some keys does vary. When it is likely that devices may differ.
alternative suggestions will be given for using different terminals. It may be necessary to test a
few of the alternatives to find out which is appropriate for the equipment you are using.

The keyboard
Examine your terminal - most of the keys are the same as on a standard typewriter key­

board. Notice that there is always a key for the number one. "1". On a terminal the number
one ("I") and the lower-case letter "ell" ("I") are not interchangeable. When you type a
lower-case "I" (ell) the computer ~Iways interprets it as the letter "I" (ell) and never as the

t The login names for all or the students in a class usually stan with the course number (and possibly the
section name) followed by a different pair of letters ror each student.

-4-

number "1" (one). Another character that looks similar to these but is distinct from both is
the vertical bar •• I ", which is the shift-\ on the keyboard. Similarly, the letter "0" aad the
number "0" (zero) cannot be interchanged.

Also, a blank is actually a specific character to UNIX. When you press the space bar
<Iocated at the bottom of the keyboar~ just as 00 a typewriter) you are actually instructing
UNIX to perceive a blank space.

The RETURN key
Besides the normal typewriter keys. there are some special-purpose keys you will be usiOI

frequently. The RETURN, marked "RETURN" or "RET", is usually located near the upper
right corner of the keyboard. As commands are typed on a terminal. they are read by UNIX
character-by-character as they are entered. The command is examined and executed only after
the RETURN key is pressed. This serves as a signal to the system that you have finished enter­
inl a line and that it is UNIX's turn to handle the information it has received. In these lessons.
the symbol < cr> is written to indicate that the RETURN key should be pressed.

Suppose you wanted to enter a particularly lengthy command but found yourself at the
terminal's right hand margin before you were done. By simply continuing to type, you may on
some terminals enter the command. even though it may be longer than one physical line.
These terminals will automatically advance to give you a fresh line to type on. When you are
ready for UNIX to respond to what you have type~ press RETURN. On many terminals, the
key that may be labelled either "NEW LINE" or "LINE FEED" can be used just as the
RETURN. If UNIX doesn't respond when you think it should. try typinl a RETURN or its
equivalent. If that doesn't work you will need to examine your most recent commands or lines
of text to determine what UNIX thinks you are doinl. If that doesn't help. you will need to
seek other advice.

The control key

The control key is similar in many ways to the shift key. Just as the shift key allows the
other keys to have a second meaning, the control key (usually marked "CTRL") gives many
keys a third meaninl. To use the control key, hold down CTRL while striking a second key.
The characters you type when you hold down CTRL and press another key are invisible - they
have meaninlS to UNIX, but they don't correspond to any character that can be printed or
displayed. Some of the control characters are used to give useful instructions to the terminal ..
These invisible characters are just as real to UNlX as any characters that can appear on the ter­
minal. If UNIX ever has trouble recognizing a command or a name that looks perfectly good on
the terminal, the problem may be due to invisible control characters that crept into a word
through your typing error.

Some programs show you where you have typed a control character by printinl a
representation of the control character in symbolic form. Most of these programs follow the
convention of printing a " to mean "control" followed by the letter that was typed. On
some terminals. the appears as a "T". For example, if a program prints that you have
typed e~ At, it means that the character control·A appeared between the "c" and the "t". The
control-A would have been entered by your holding down the control key while typing an "A",
and on many terminal keyboards can be generated if your finger hits between the CTRL and
.. A" by accident. We will discuss some specific control characters when the time comes to use
them. Now we should be ready to make contact with UNIX.

Connecting

If your terminal is not already on, now's the time to tum it on. On a typewriter terminal,
the ON -OFF switch is usually clearly marked on the front of the device. On ADM terminals
(the model name of most of the public CRT terminals), there is a toggle switch on the back of
the device on the lower right hand corner. press the switch toward your right.

- 5 -

Pon selector terminals
If your terminal has a small box attached with a red button on top, it is connected to the

port selector. You can request any of several UNIX systems by turning on tbe terminal and
pressing the red button once. The terminal will respond wi th

Request:

Type the name of the system you are to use. For this example, we use the Computer Facili­
ties and Operations (C F cit 0) system E:

Request:e (and press RETURN)

The terminal will skip a line, emit a beep, and then print a greeting inviting you to login. You
are now ready to login.

Bussiplexer terminals
The bussiplexer is a communications network that makes it possible for you to connect to

any of several C F cit 0 UNIX systems. Use the same techniques as above to tum on the termi­
nal or to connect over dial-up terminals, as described below. If you don't immediately receive
a login message, press RETURN. The login message will be similar to:

U.C. Bussiplexer CA+B+C+D+E+F+)

:login:

It lists the systems that are connected to the bussiplexer. A" +" or .. -" follows 'each name.
A •• +" indicates that the system is up (in service) and a .. -" means that the system is down
(unavailable).

After the message of greeting appears, type your login name and press RETURN. Fre­
quently the characters you enter are slow to print or appear on the screen. Input is ignored for
a second or so after the message of greeting is printed. A good strategy is to type one character
and wait a few seconds for it to appear. If it doesn't, trY again. Once your first character
appears. you may type the rest of your login name, followed by a < cr>.

For most accounts the bussiplexer knows the system your account is on, and so it will
respond:

Connecting to Unix E

if E is the UNIX system your account is on. If the bussiplexer does not know which of the sys­
tems has your account. you will be asked to select one. Type a single letter for the system of
your choice (here. "e" because our example account is on UNIX E) followed by a RETURN:

Select Host: e< cr>
Connecting to Unix E

Connected

After a few seconds. your UNIX system will ask for a password:

Password: (type your password and press RETURN)

You are now logged in.

Directly-linked terminals
Tum on your terminal and press the RETURN key. You are now ready to login.

- 6 -

Dial-up terminals
If your terminal connects with the computer over a telephone line, tum on the terminal.

dial the system access number, and. when you hear a high-pitched tone, place the receiver of
the telephone in the acoustic coupler. You are now ready to login. t

Logging in
The message inviting you to login is:

:Iogin:

Type your login name, which identifies you to UNIX, on the same line as the login message,
and press R..EruR.~. If you make a mistake while typing your login name simply press the "@"
key, which tells UNIX to ignore the line you have typed so far and lets you begin again as
though you had typed nothing at all. If the terminal you are using has both upper and lower
case, be sure you enter your login name in lower case. Otherwise UNIX assumes your termi­
nal has only upper case and will not recognize lower case letters you may type. UNIX types
":login:" and you reply with your login name, for example "sherlock":

:login: sherlock (and press the RETURN key)

(In the examples, input you would type appears in "boldface" to distinguish it from the
responses from UNIX'>

UNIX will next respond with a request for a password as an additional precaution to
prevent unauthorized people from using your account. The password will not appear when you
type it, to prevent others from seeing it. The message is:

Password: (typtl your password and press RETURN)

As with typing your login name, if you think you have made.a mistake you can type the @
character to tell UNIX to ignore what you have typed on the -line so far, and to take what you
type next as your password. If any of the information you gave during the login sequence was
mistyped or incorrect. UNIX will respond with

Login incorrect.
:login:

in which case you should start the login process anew. Once UNIX accepts the password, you
are logged into the system. UNIX will print the message of the day , such as

For latest news type 'help news'

Erase set to control-H

The last line, "Erase set to control-H", indicates that you can correct typing errors in the line
you are typing by holding down the CTRL key and typing the "H" key. If you try typing
control-H, you will notice that the terminal backspaces in the line you are on. You can back­
space over your error. and then type what you want to be the rest of the line.

Promptina

The greeting message. which may consist of a few or many lines, will be followed by a
prompt from UNIX. the percent sign "OM". The prompt is how UNIX indicates it is ready to
receive commands. After each command has been executed. UNIX responds with a new
prompt to let you know that it expects another command.

tlr your terminal pnntS two letters for every one you type. your terminal is set for "half duplex." which is
used when communicatinl wuh the IBM system. Set the duplex switch on your termInal and coupler to ··full
duplex." Also. some terminals and 3COUStiC couplers have a "local copy'· SWItch thai you should set to "out"
to prevent each character belnl prInted twice.

- 7 -

A summary
Up to now, the exchange with UNIX should look something like this:

C F & 0 Version 7 Unix System - wE"

:Iogin: sberlock < cr>
Password: < cr>

For latest news type 'help news'

Erase set to control-H

%

Try typing belp news., followed by RETURN, and the latest system announcements will
appear:

% belp news< cr>
UNIX NEWS

and the rest of the news will follow. If you're working at a CRT terminal, only one screenful of
news will be sent to your terminal at a time. At the bottom of the page will be the instruction:

--More--[Press space to continue, Rubout to abortl

Pressing the space bar is the way to ask the help program for the next screenful of information
when you are ready to read it. If you press RETURN instead of the space bar, the system will
respond with a line of text and repeat the above message until you hit the space bar or the RUB
key.

Interruptinl command execution
The key labelled either "RUB" (for RUBOUT) or "DEL" (for DELETE) is another special

purpose key. If you issue a command, and wish to stop its execution before it stops of its own
accord, press this key. On ADM terminals, you will have to shift in order to type "RUB". On
some terminals the BREAK key will function as RUB (DELETE). .

For the time being, stop the transmission of news to your terminal by pressing the RUB
key. Even though a typewriter terminal may not pause after a "page" of print, you can also
stop the transmission of the news by pressing RUB or its equivalent. When you have success­
fully stopped the printing of news, UNIX will respond with a new prompt ("%").

Sometimes it is desirable to slow down or temporarily interrupt transmission to your ter­
minal, even though you do not want to stop the execution of a command permanently. The
special character "control-S", typed by holding down the CTRL key and then also pressing "S",
can be used to interrupt printing. Type control-S, and the screen will freeze; when you type
"control-Q", by holding down the CTRL key and pressing uQ", you will restan the transmis­
sion to your terminal. The control-S/control-Q sequence can also be used to pause and restan
at a printing terminal. If you'd like to see the rest of the announcements, ask for the news
again once tbe system is ready to receive new commands. Use control-S and control-Q to see
some of the news a few lines at a time.

Help

The help command is set up to provide announcements and information about many
aspects of the system. To find out what sort of information is available, type help followed by
RETURN.

% belp<cr>

·8·

When you type the command help. UNIX looks for a program named help that has, the
necessary instructions to send information to your terminal. If the command is mistyped, such
as happens when a key "bounces" (repeats itself):

% belppp< cr>

l.~IX will look for a program called helppp. ~istype this command deliberately, and you will
see how U~IX responds. There is no program by the exact name helppp so the system tells
you:

q-iJ heippp< CI'>

helppp: Command not found.
%

The message is followed by a new prompt. so you can start again and enter the command
correctly. You might want to try some of the commands described by help.

Logling out
When you decide to leave t.."NIX for the time being, you will have to log out. This is done

by typing the command

% logout

It is not sufficient simply to turn off' the terminal; you will remain logged in until you type the
logout command.

It is very important to remember to log off'. If you should leave the terminal before log­
ging off, any unscrupulous or unwitting stranger who sits down at the terminal after you leave
could continue to use your account.

This is the end of the first session with UNIX.

- 9 -

Session 2: Simple Commands

Login with UNIX as in the first session. Once you are connected to the system, UNIX will
print various messages and then signal its readiness to accept commands with the percent-sign
prompt (u%"). (The examples will no longer show the RETURN key that must be typed at the
end of each line to let the system know that the line is complete.)

C F & a Version 7 Unix System - "E"

:login: sberlock
Password: (type the password)
Last login: Wed Sep 10 09:41:29 on bx077

For latest news type 'help news'

Erase set to control-H
%

To review, communicating with UNIX consists of your giving input to programs which tell the
computer machinery how to respond to commands. For instance, there is a program which
keeps track of the terminals which are connected to UNIX. If a terminal is turned on and no
one is using it, this program prints the ":login:" message. When a name and password are
given correctly, it lets the user onto the system. Once this process has been completed, another
program is called in to supervise the rest of the session with UNIX.

Tbe sbell

It is this second program, the "shell", that coordinates communication between your ter­
minal and UNIX. It reads commands and directs them, like a conductor in an orchestra, to
other programs that will actually execute the commands.

The prompt signal ("%") comes from the shell. If you should respond by typing date,
the system reads the letters and stores them in a temporary place. Once you indicate that the
command is finished by pressing RETURN, UNIX can respond:

% date
Wed Sep 24 09:55:14 PDT 1981
%

When you type date, the shell looks for a program called dtJre and directs it to execute. The
date program then executes its task, that of typing the date and time on the terminal.

Makina corrections
As we found in Session I, UNIX provides a convenient way to correct typing errors that

you notice while you are still typing a line. By holding the crRL key and typing the "H" key,
the terminal responds by backspacing one space. We will represent control-H by H". To
review, the following lines are equivalent:

% belp news

% belppp'}£' H news

and, recalling that a blank space is actually a character to a computer, so is

% belpp n"1f'H'"H news

Remember that H" means that you hold the crRL key as you would the SHIFT key, and
press the key labelled "H", It is necessary to erase both the "n" and the blank preceding it
before erasing the extra "p", so three control-H characters were used.

Control-H can be used to erase all the way back to the beginning of a line. Suppose, how­
ever, that a mistake that you notice is so far behind your current position that it doesn't seem

.. - 10 -

worthwhile to try to salvage the line. Remember that the at-sign (u@") will erase the contents
of an entire line up to the "@ ". if it is typed before the RETt:RN key is pressed, and you will
be given a fresh line. (If you are on a bussiplexer terminal. you will not advance to the next
line after hitting "@", but there is no other difference in the way the at-sign is handled.)

% hlep ne@
help news

Begin the line again immediately after the at-sign. and when the corrected line is complete,
press RETt;RN. Erasing letters or lines with "~H" or "@" must be done be/ore pressing
RETURN. Once you have pressed RETURN, whatever you typed, including any mistakes not
erased by "~H" or "@", will be evaluated by the shell.

Changing the password
If the original password for your account was assigned randomly by your instructor or the

Computing Services Accounting office. one of the first things you should do is reset it to some­
thing you've chosen yourself.

% passwd sherlock

t:se the above command. substituting your own login name for sherlock. You will first be
asked to type your current password. which will not appear on the screen. Remember to press
the RETURN key after the password. Next you will be asked twice to enter the new password.
The purpose of repeating the password is to minimize the chance of typing errors.

% passwd sherlock
Old password: (rype your current password. followed by < cr>)
New password: (rype the new password. followed by < cr>)
Retype new password: (repeal the new password and (he < cr>)

Longer passwords are harder to guess, and therefore protect your account more securely.
The passwd program will ask you to use a longer password if the one you first enter is too sim­
ple. It's best to use passwords that are at least six characters long. Passwords may be as long'
as eight characters ana..may.contain any cnaracters but "~H" and "@".

If you snould forget the password and are prevented from logging in. the problem can be
corrected. If you have a class account, contact the instructor or T A. Other users can submit a
request at the Accounting office, 239 Evans Hall. to have a new password entered for an
account.

Sending mail

You can use UNIX to send mail to any user whose login name you know. The format of
the command is the word mail followed by the login name of the user who is to receive mail.
Follow the command with a RErURN key. and then stan writing your message. using the
RETt:RN key whenever you need a new line.

% mail sherlock
Whalever is typed on the lines following the
mail command will be reproduced as
mail in sherlock's UNIX mail box.
Finish off the message by typing
a control-D on a line by itself.
% (a control-D was ryped on {his line. then the system ryped back (he "%")

Send some mail to yourself to see how it works. When you have typed the last line of the
mail. return to a new line and type a control-D. You will be informed about the presence of
mail the next time you login.

- 11 -

Another command, trouble. works very much like maiL It automatically sends a report
of trouble to the proper people, and can be used, for example, to report terminal malfunctions.
You can find out more about it by typing

% belp trouble

ReceivinK mail
Log out after you finish sending mail, and then log back in. When you login again, there

will be a message for you:

You have mail.
% mail

Retrieve your mail with the command mail alone on a line followed by RETURN. The mail
command will print any messages waiting in your mail box. After each message, mail prints a
prompt of .. ?" to ask you what you want to do with the message. If you type a "d" (for
"delete") followed by RETURN, the message will disappear. The command "s" (for "save")
asks mail to save a copy of the message in a file called moo" More pieces of mail may be
added to mOOx even if others are already stored there. You can type .. +" to go on to the next
message. With a "q", you can quit reading your mail. Any unread messages will be waiting
for you the next time you use the command mail to read your mail. If you need to be
reminded about the different mail commands, or if you'd like to find out about further com­
mands, you can type a"?" in response to mail's prompt and receive a list of commands.

Save the mail you have sent to yourself to be retrieved in a later session. Although you
are only notified about mail upon login, the command mail may be used at any time during a
UNIX session to see any mail that may be waiting for you. There should no longer be any mail
for you, but type mail anyhow to see what happens. Finish the session by typing logout

This is the end of the second session. There is a similar series, Edit: A Tutoria4 which
show how to use the text editor to create files of text. Before starting the next session of Com­
municating with UNIX you should be familiar with the material in the first two sessions of the
edit tutorial.

- 12 -

Session 3: Files

By now you should be familiar with using the text editor to create files. It's assumed that
you've already begun a tutorial that explains the use of the editor, such as Edit: A TutoriaL
available from the Computing Services Library, 218 Evans Hall. We'll review a few terms
before elaborating on the UNIX file system.

Files

A file is a logical unit of data that is stored on a computer system. For example, the con­
tents of a file might consist of a program, the text of a paper, or the data for a program. Once
you have created a file, it is stored for you until you instruct the system to remove it. You may
create a file during one UNIX session, log off, and return to use it at a later time. Files are
stored on a device called a disk. which looks like a stack of phonograph records. Each surface
is covered with a material similar to the coating on magnetic recording tape, on which the data
is written.

Files can contain anything you write and store in them. from one small number to the
text of a thesis. Keeping files organized is usually easiest when some logical· unit of data. such
as a program or a chapter of a book, is stored in each file.

Filenames

Filenames serve the same purpose as the labels of manila folders in a file cabinet. They
are used to distinguish one set of data from another in communicating with the system. To
access the information in a file. you need only give its name to UNIX, and the system takes
care of locating it. Within certain limitations. you choose for a UNIX file whatever label you
care·to give it, ideally one which is descriptive of its contents. Names may be up to 14 charac­
ters long, but cannot contain imbedded blanks. If you wish to use two words without having to
run them together. separate them with another character, as in chapter. one. A period is gen­
erally a good choice to use for separating characters. You'll probably aim for a balance where
filenames are long enough to be descriptive, but short enough to be typed easily and correctly,
Generally, you can avoid potential trouble by creating filenames with letters. numbers~ and
periods (", ..) only, Many of the other characters have special meanings for UNIX which might
confuse the interpretation of a name.

Within these limitations, there's freedom to name files as you wish. Since filenames are
used to distinguish one file from another, no two files can have exactly the same name.

Listing tbe names of 61es

There may already be a few files associated with your account - the mail that was saved
at the end of the last session and probably some files that you've created while practicing with
the editor. The first thing we'll do in this session is to find out the names of those files. Login
with t:7'l'IX, lnd when the shell is ready to receive instructions, type the list command.

% Is

Let's say your files are te:a, notes and mbox, which has the mail you saved from the last ses­
sion. The response to the Is command would then look like

% Is
mbox notes text
%

• 13 •

Reading a file

There are a few ways to read again the mail you sent to yourself. If it was mailed and
saved successfully, one of the files named when you typed Is was mbox.

One way to read the file is to use the editor's printing commands:

% edit mbox
"mbox" 3 lines, 82 characters
: l,Sp

Then to save your mail in a file called lerrer you could tell the editor

: w letter
"letter" [New fUel 3 lines, 82 characters
:q
%

Note that Is shows that both mbox and feller now exist. There is no need to enter the
editor to read a file as long as you do not want to use it to make any changes. The command
more asks the shell to display a file. (The command l,Sp, to print all of the lines in a file, is
only used when you are working in the editor.) To request that UNIX display the mail you sent
to yourself, type

% more mbox

The form of the command is more followed by the names of one or more files. more displays a
scree nfu I of text at a time on CRTs. If more than one filename is given, all of the files are
linked together and displayed a screenful at a time. Experiment with

% more mbox text

(Substitute the name of one of your other files if you have none named text)

Copying files

There is a way to save the mail in some other file, say message, without using the editor.
This can be done by issuing to the shell the command cp (for "copy"), which copies one file
onto another. The form of the command is cp fUel fUe2 to copy file1 onto file2. If the second
file already exists, anYthing that might already be in it is destroyed before the contents of the
first file are copied. Otherwise, a new file is created with the second name. Type the
commands

% cp mbox message
% Is

Note that the response from UNIX shows that both mbox and message now exist.

% Is
letter mbox message notes text
%

To verify that the files message and mbox contain the same text, you can type

% c:mp message mbox

If there are any differences in the two files, c:mp will print them. Since the files are identical,
c:mp will print nothing.

By the way, c:p can't be used to copy a file onto itself. Try it to see what happens.

% c:p message message

- 14 -

Removing files

There's no longer any need for the file mbox now that there's a copy of it in message.
Removing files is done with the command rm Type

% rm mbox
% 1s

The output from Is should look something like:

% 15
letter message notes text
Ofo

:--Sow mbox is gone from the list.

~oving files

The same result accomplished by the two commands

% cp mbox message
Ofo rm mbox

could have been produced. even more simply, by

% mv mbox message

The command mv namel name2 changes the name of the file name] to name2. If the second
file named in the mY command already exists. it is removed before the first file is given its
name - just as with the cp command.

To prese"e and protect

To remove the contents of message type this instruction to UNIX:

Ofo rm message

But other commands could also destroy your files accidently. Suppose you already have
twO different files. message and {exr. When UNIX is asked to write new text onto one of your
files. it first removes any text already stored there. For example, in response to the request

% cp text message

U~IX will substitute a copy of te.'Ct for the previous contents of message. The command

% my text message

destroys whatever was originally in message lnd gives its name to the former contents of the
file (ext. You should use the Is command to see the names you have already used before you
select 1 new name for a file.

This is the end of the third session with UNIX. The fourth session will continue with
more :.lbout UNIX files and their organization.

- 15 -

Session 4: Directories

The UNIX file structure
UNIX associates each file with the account of the person who created it as its "owner".

This allows different accounts to have files with the same name, because UNIX uses two pieces
of information to locate a file: the name of its owner's account and the specific file name.

Files are organized into groups called directories. Directories are valuable because they
allow us to keep together such groups of related files as the files belonging to an individual
account, the accounts for all the students in a class, or the programs used for a specific project.
Each account has its own directory, called its home or login directory. The files which are
created by a user are located within that individual's home directory. Once you login to UNIX,
you begin to work "in" your directory~ that is, you use the files stored together for your
account. A filename is assumed by the system to refer to a file in the same directory as the one
you are working in. Thus, if you use the filename mbox in a command, UNIX associates the
filename with the directory name to locate your file mbox.

Directories may contain other directories as well as files of text. Within your home direc­
tory, you may wish to create more specialized directories, and each might contain files relating
to a separate project.

All files stored on the system are arranged into a hierarchy of directories. UNIX direc­
tories are organized in the form of an upside down tree. For each directory or file there is
exactly one other directory on the level above it, its "parent," which contains that directory or
file. The parent directory may in turn belong to another directory. Eventually, all branches in
the tree trace back to one source, the "root" of the tree. The root is symbolized by"'''. The
UNIX file structure can be represented by a diagram such as this:

root (",")

I
I I I

usr etc bin ea eb

I -I
Violets c4-2 sherlock

I I letter text

I I
c4-2caa c4-2cab

I
I I

text mbox letter

The root contains a number of major directories, such as etc and lIST, which contain the pro­
grams that make up the UNIX system. Also located within root are the directories of users'
files. These directories may have names similar to ea or eb, depending upon which UNIX sys­
tem you use (here, we are using the E system).

Patbnames
The command

% pwd

for "print working directory", gives you the full name of the directory you are working in.
The system's response to this command will look something like lea/sherlock or, perhaps

- 16 -

lealc4-2Ic4-2caa for a class account. The full name of a directory or file is called its "path­
name", since it traces the full "path" from root to the file.

We can trace the path from root to the directory for the account sherlock, which has the
patlmame lealsherlock. The lea says that. staning from root, sherloclis account is in the group
of user accounts called tao Different levels of the file structure are separated by a slash ("I">.
On the next level is the name of the account's directory, sherlock. The pathnames for files of
text are constructed in the same manner. For example. sherlocJts file text has the pathname

lealsherloclrltext

and the one belonging to c4.2cQQ has the pathname

lealc4-2Ic4-2caalta:t

Pathnames can be used wherever files names can be used. rmd the pathname for your account
with the command pwd, and then use it to read one of your files. Use the entire pathname
Jiven in response to pwd, followed by a .'''' and then the name of the file you want to read.
For instance if you were sherlock and wanted to read your file text:

% pwd
I eal sherlock
% more lea/sberlock/text

Assuminl that your workinl directory is leahherloclc, the last command is the equivalent of

% man text

If your account is c4-2catl, you could read your own file named text:

% pwd
lealc4-2/c4-2caa
% DlGre lea/c4-Z/c4-1c:ultext

CreatlDI a directory

A group of ftles belonlinl to a user may be orpnized into a directory. When you are
writinl a leDlthy paper, each section miaht be a separate file in the directory paper. If, instead,
you are writinl proarams. you may wish to keep a prOlram and a file of input for it tOlether in
a directory. .

To create the directory paper, give the command

% mkdlr paper

(Any valid filename may be used.)

ChaDliq directories
When you want to work in tbe directory paper, use the command cd ('~chanle working

directory">, followed by the directory's name. If you haven't yet created a directory, you
might do so now. Change to the new directory and have its pamname printed:

% mkdlr pa"r
% cd paper
% pwd
I eal sherlock! paper

You can always get back to your home directory by using the command

%cd

without a directory name.

- 17 -

As long as you remain in the directory paper, any file name you give will be interpreted as
the name of a file in that directory. After you have changed to the new directory, try to read a
file in your home directory, such as text.

% more text
text: No such file or directory

UNIX will interpret the command more text as a request for the file text in paper, your current
directory. Assuming that you have not yet created any files within paper, the system will not
find the file specified by your command.

To read text, it is necessary to tell UNIX that the file is located in the parent of the direc­
tory you are working in. Two dots (.... to) are used to symbolize the parent of whichever is the
current directory. So the command

% more •• / text

should cause the intended file to be printed.

Similarly, you can change back to the parent of your current directory by typing

% cd 00

Removing directories

The command to remove a directory is rmdir followed by the name of the directory you
wish to remove. A directory must be empty before rmdlr will work. If any files remain in the
directory, you will instead be reminded of their existence:

% rmdir paper
rmdir: paper not empty

Should you forget that paper is a directory and try to use the command for ordinary files

% lID paper

UNIX will print a different message rather than remove the directory. Create a new directory
and try it.

If you forget to change back to the parent directory before attempting to remove paper,
you might get a response like

% pwd
leal sherlockl paper
% rmdir paper
rmdir: paper non-existent

The message reminds you that UNIX was looking for a directory named paper within your
working directory, paper. That is, it tried to find a directory with a pathname like
lealsher/ock/paperlpaper and was unsuccessful.

More about pathnames

Suppose you are working in the directory lealsher/ock. To refer to the file named pard in
your directory paper, you could type either

% more /ea/sherioc:k/paper/partJ

or

% more paper/pm3

You need to specify only that pan of the pathname that follows the name of your current direc­
tory. Note that the name of a file within your directory starts with the first letter of its mime,
without the .. ," separating the current directory from the filename in the full pathname.

- 18 •

II you want to issue a command concerning a tile that is not in your current directory, do
so by IiviDi the file' s pathname. The Is command is a request to print the names of files
within the current directory, but a dift"erent directory can be specified by typinl its name aCter
the command. For instance, to print the names of the files in the parent of your current direc­
tory, type

% Is ••

The directory specified need not be one of your own. When you type

% lsI
UNIX will respond with a list of the files and subdirectories stored in the root directory. You
may uk to see a file wbich belonlS to another user by specityinl its name in a command such
as Is or mon. When users have indicated that they do not WlDt other people to have access to
their files, UNIX wiD inform you of this rather than execute your command.

This is the end of the fourth session with UNIX.

- 19 -

Session 5: More Commands

The shell's role is to interpret commands and coordinate their execution, and it is able to
carry out its duties with flexibility. This session is an introduction to some of the shell's capa­
bilities that can make your work with UNIX easier.

Issuing commands
In the previous sessions when you wanted to give a command, you typed its name on a

new line of input to the shell. Should it be more convenient, two or more commands can be
typed on a single line if they are separated by a semi-colon (";"). Login, and when the shell is
ready to receive instructions type

% date; who

Your commands will be executed in sequence. After the date and time are printed as requested
when you typed date. the response to the command who will appear as a list of all the users
who are currently logged in.

Type-abead

It is not necessary to wait for a new percent-sign prompt before staning to type a new
command. You can begin your next instruction while the last command is still being executed.
Although whatever you type will be mixed in with any output that might be sent to your termi­
nal, UNIX will read ahead and store your command correctly. Don't forget to press RETURN.
Then, as soon as the system is ready to perform a new task, your command will be interpreted
and executed. Issue the command wbo again, and while the response is still being printed, give
a second command, perhaps Is, to experience this feature of UNIX.

Saving output on a file

The output from most UNIX programs normally appears on the terminal. Let's say, how­
ever, that we wanted to create a file named people that will contain a list of all the users who
are now logged in. The wbo command provides the necessary information, and it is possible to
redirect output to a file instead of sending it to a terminal. Type the command:

% wbo > people

(or substitute some other name if you already have a file called people).

The symbol .. >" followed by the name of a file tells the system to write the output to
that file rather than on the terminal. If you don't yet have a file with the given name, it will be
created. If the file already exists, its contents will be replaced by the output produced in
response to your command.

Now suppose that we wanted to add the current date and time (that is, the output from
the command date) to the end of the file we just created. The symbol .. > >" followed by a
filename is used after the name of a command to indicate that the output is to be appended to
the end of that file. The file named after" > >" will be created if it does not already exist. To
illustrate this, you can type

% date> > people

and use more to list the file people to read' the result:

% more people

Reading input from a file

Many commands, for example maiL read information a person normally types at the ter­
minal. It is possible to have a command read this information from a file instead of the termi­
nal. The symbol .. <" is typed just before the name of the file which is to provide input.

-- -- ------------ ----~-------- ----

• 20·

To see how this works. you can send a short file to yourself as mail.
The file people, created in the previous example. can be used as input for the mail com­

mand. Send the contents of the file to your mailbox and then retrieve it by typing these
commands:

% mail < people
% mail

The IiDe printer
Printed output may be obtained from the high speed line printer as well as from a printing

terminal. The command Ipr is used to request line printer output. When you want to print the
contents of one of your files. tYpe its name after the command. as in:

% Ipr people
Output will be found in Room B6 Evans Hall (box 62).
%

The system responds with a message indicating where you can find your output.

Connectinc commands with pipe (I)
Commands may be connected so that the output from one program is used as input to the

next. The symbol "/" (the vertical bar, which is the shift-\ on the keyboard) placed between
two commands tells the shell to use the output from the first program as input to the second.
The first program' s output is neither printed at the terminal nor recorded in a permanent file -
it is used only as input for the execution of tbe command whose name appears after the .. /".

To illustrate how commands are connected. we can use the command dUr that shows
differences between two files. The form of the command is

% dUf fillJl file2

where the name of the chosen files are substituted for fild and file2. The output of diff looks
something like a series of editor commands that describe how filel would have to be changed
to make it the same as file2. Diff lists the lines that would have to be added, deleted, or
changed. Lines reproduced from the first file are marked with "<", and lines from the second
are shown with a "> ".

To get a feeling for diff, make a copy of your file people:

% cp people newpeople

(assuming you don't already have a file called newpeople). Next, use the editor to delete one
iine from newpeople and to make a substitution in another line. Quit the editor and type the
command

% dUf people newpeople

lnd you 'n see which lines differ between the two files.

If you connect the commands diff and lpr:

% diff people newpeople Ilpr

the output from the diJf command will not appear on your terminal. but will be given directly
to the lpr command as input. As a result, the output from the diff command will then be
printed for you on the line printer. The above example is the equivalent of this series of com­
mands:

- 21 -

% diff people newpeople > differences
% Ipr differences
% rm differences

The name "pipe" is used for a sequence of commands chained together with a .. Ito.

The background

Some commands take a while to execute, so you might not always want to wait for one
task to be completed before starting the next. Instead, you can have UNIX execute two or
more tasks concurrently. Typing an ampersand (U&") at the end of a command tells the sys­
tem to return control to the terminal immediately after receiving the command. Your com­
mand will be run "in the background", leaving you free to issue further instructions from the
terminal.

It's generally better to redirect to a file any output from a command that is executed in
the background. This prevents the output from being sent to the terminal while you are trying
to work on something else.

Give the system a command with a U&" and note its response:

% Is > myfiles "
13751
%

The identification number 13751 is the process number. UNIX assigns a unique process
number to each command that the system receives. Should you want to stop the execution of a
command before it is finished, you can type

% kill number

giving its process number for number. If you type the number correctly, yet the system replies
to the kill command with the message UNo such process", it is likely that the command has
already been completed or that you have mistyped the process number.

Characters with special meaniDls
Let's say that you've stored sections of a paper in individual files 'with names such as

partl, part2, and panJ. You now want to have the whole paper printed on the line printer. One
way to accomplish this would be to type

% Ipr partl para partJ "

You could produce the same results with

% Ipr part" "

When the shell reads the asterisk (.....) it treats it as a substitute for any string of characters
that it might find in a file name. The command above prints all files having names starting with
part and ending with any sequence of characters. The question mark ("?") can be used in a
similar fashion to substitute for any single character.

Although you may not use or U?" very often, it is good to be aware of their special
meanings in order to avoid situations where the shell's interpretation of your command is
different from what you intended. "." and "?" should be used with caution. The command

rm·
will remove all the files from your current directory, which is probably not what you want.

The "magic" characters shown below have special meanings for the UNIX command pro­
cessor; they should not be used in filenames. In addition, it is best to avoid the use of .. - to as
the first character of a filename.

• 22 -

• \ ? & I < > ..

Either single n or double (") quotes enclosing a special character indicates that it is to lose its
special significance. You could also precede a special character with a backslash ("\") to have
it treated as an ordinary character. These conventions for the interpretation of special charac­
ters are applicable when you are working in the shell. The editor has its own set of rules for
interpreting special characters.

This is the end of the fifth session with UNIX.

account, 3
appending output to end of a file (> >), 19
background process (&), 21
bussipiexer. 5
carriage return, 4
cd command, 16
changing directory (cd). 16
changing password (passwd), 10
cmp command, 13
"Command not found" message. 8
comparing files, 13
connecting to the system. 4-6
connecting commands (I). 20
control key, 4
control·D (end of input>. 10
control·Q (restart output), 7
control·S (pause output), 7
copying files (cp), 13
correcting typing errors, 6, 9·10

line erase (@), 6, 10
single character erase (control·H), 6, 9

cp command, 13
date command, 9, 19
DEL(ete), 7
dialing up, 6
diff command, 20
directories, IS

changing (cd), 16
creating (mkdir), 16
bome (login), IS
parent (.,), IS, 17
removing (rmdir), 17
root, IS, 18
working, 15-16

edit, II, 12, 13
erase character, 6, 9·10
filenames, 12
files, 12

groups (directories), 15
owner, IS
structure, 15

help command, 7·8
help news, 7
help trouble, 11

interrupt (ing), 7
commands or programs (RUB or DEL) 7
output (control·S, control.Q), 7 '

keyboard, 3·4
killing a (background) process 21
line printer command· Opr) 20
listing names of files CIs) 12
listing contents of files (~ore) 13
logging in, 6 '

• 23 •

Index

logging out, 8
login name. 3, 6
logout, 8
Ipr command. 20, 21
Is command, 12
magic characters, 21·22
mail, 10, 11
mbox (mailbox file). 11
mkdir command. 16
more command, 13
moving files (mv), 14
multiple commands on one line (;), 19
mv command, 14
news, 7
operating system, 3
parent directory L), IS, 17
password, 3, 6, 10

changing with passwd, 10
pathnames (of file or directory), 15, 17

from root (n, 15, 18
from paren t directory (..). 17

piping output to another command (I), 20·21
pon selector, 5
process number, 21
prompt, UNIX (%), 6
pwd (print working directory) command 15
reading files (more), 13 '
redirecting input/output, 19·20

input
from file «), 19,20
from output of another file (I). 20

output
to the end of a file (> >), 19
to a file (», 19, 20
to another command through a pipe (I). 20

removing directories, 1 7
removing files (rm), 14
renaming files (mv), 14
RETURN,4
rm command, 14
rmdir command, 17
root directory (n, 15, 18
RUB (out) , 7
shell, 9, 19
special characters, 21·22
telephone access, 6
terminal, 3·4
type·ahead, 19
UNIX, 3
w command (edit command), 13
who command. 19

UNIX Command Summary

Computing Services
University of California
Library. 218 Evans Hall
Berkeley. California 94720
415-642-5205

--~ UNX 1.4.2

• Login
:Iogin:

Select Host:

Password:

• Logout
logout

October 1980

type your login name on the same line. followed by a carriage return.

bussiplexer only. Type a for UNIX A. b for UNIX B. etc .• followed by a carriage retu

printing is turned off as you enter your password on the same line. followed by a
carriage return.

logs you off the system. You can also logout by typing a control-d: depress the conti
key (CTRU and type d simultaneously.

• General commands
mail retrieves mail which has been sent to you. and prints one message at a time. prompt

with "7" for disposition. Typing? at this point prints a list of mail commands.

mail /lame

passwd logm-name

who

sends mail to another user. Here. /lame is the login name of the person to receive
mail. Then type your message starting on a new line. and end it with a control-d ala
on a line; depress control (CTRL) and type d simultaneously. .

changes password. You are prompted once for your current password and twice for y
new one. Printing is turned off whtle the passwords are typed. New passwords may 'b
as long as eight characters. and can include any characters but "#" and "@".

lists users who are currently logged in. Typing who am i limits the report to login
information for your terminal only.

• Online documentation
man command prints a writeup from the UNIX Programmer's Manual for the command specified.

help lopic

• Accounting
pq

jobno

provides information about the system. Type help index for a list of available topics
and then help followed by the name of a listed topic for information on that subject.
help news prints the latest system news.

reports on disk storage quota (print quota): (number of blocks currently
used/maximum number of blocks allotted to the account). A block is 512 bytes. or
characters.

gives the account's job number (account number). which is used to file lineprinter
output and for accounting.

Type the commands that are printed here in boldface exactl) as shown. and suppl~ Jddillonal tnformallon. If Jny. described
here tn /lD//(:5.

UNIX IS a trademark of Bell Laboratories.

UNIX Command
Sl.Immary

• File manipulation

October 1980

Is prints a list of the files in the current directory.

Is direcTory prints a list of the files in the spedfied directory.

cat filename(s) prints the contents of the named file(s) on the terminal.

!.:niverslly of CoIhfomlOi
al Berkeley

lpr filename(s) prints the contents of the named file(s) on the system lineprinter. Type help printer f
details on where to find output.

cp file 1 file2 copies filel onto file2. There will be two separate copies of the file. See warning belo\1

cp file(s) directory makes a copy of the named file(s) in the given directory and gives it the same
filename{s) as the original file(s). See warning below.

rm filename(s) removes the named file(s).

mv oldname newname changes the name of a file from oldname to newname. See warning below.

mv file(s) directory moves file(s) to the specified directory. The original filename(s) is retained. See
warning below. .

Warning: When using cp and my. ensure that a file with a name the same as the "target". filename does not
exist already. If it does. its contents will be destroyed before the command is executed.

• Directories
pwd

mkdir name

chdir directory-name
or cd direCTory-name

rmdir directory-name

gives the palhname of the current directory (print working directory).

makes a new directory.

changes to a different working directory.

removes the indicated directory. The directory must be empty.

• Special characters
The characters shown below have special meanings for the UNIX command processor; they should not be used
in filenames. For further information about how these characters are interpreted. see the UNIX Programmer's
.'vfal7ua/, under "cshCl)''' In addition. it is best to avoid using "-" as the first character of a filename.

• \ ? & / < >

To interrupt and terminate execution of a command. press RUBOUT or DELETE. sometimes labeled RL:B or
DEL. On an ADM terminal. hold down SHIFT while typing RUB. Type control-s to stall printing at the termi­
nal. and control-q subsequently to restart printing.

T~pe the commands that are printed here," 1MIidrIJce exactly as shown. olnd supply olddlllOnal ,"formallon. If olny. de~crlbed
here In Ila/,,·s.

Edit: A Tutorial

Ricki Billu

James Joyce

Computing Services
University of California

Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editor edit assumes no
prior familiarity with computers or with text editing. Its aim is to lead the
beginning UNIXt user through the fundamental steps of writing and revising a
file of text. Edit, a version of the text editor ex. was designed to provide an
informative environment for new and casual users.

We welcome comments and suggestions about this tutorial and the UNIX
documentation in general.

September 1981

..
tUNIX is a trademark of Bell Laboratories.

UNX 3.3.1

- 2 -

Contents
Introduction 3

Session 1 4
Making contact with C~IX 4
Logging in 5
Asking for edit 5
The "Command not found" message 6
A summary 6
Entering text 6
Messages from edit 6
Text input mode 7
Making corrections 7
Writing text to disk 8
Signing off 8

Session 2 9
Adding more text to the file 9
Interrupt 9
Making corrections 9
Listing what's in the buffer (p) 10
Finding things in the buffer 10
The current line 11
Numbering iines (nu) 11
Substitute command (s) 11
Another way to list what's in the buffer (z) 12
Saving the modified text 13

Session 3 14
Bringing text into the buffer (e) 14
Moving text in the buffer (m) 14
Copying lines (copy) 15
Deleting lines (d) 15
A word or two of caution 16
Undo (u) to the rescue 16
More about the dot U and buffer end (S) 17
Moving around in the buffer (+ and -) 17
Changing lines (c) 18

Session 4 19
Making commands global (g) 19
More about searching and substituting 20
Special characters 20
Issuing U~IX commands from the editor 21
Filenames and file manipulation 21
The file (f) command 21
Reading additional files (r) 22
Writing parts of the buffer 22
Recovering files 22
Other recovery techniques 22
Further reading and other information 23
Using ex 23

Index 24

- 3 -

Introduction

Text editing using a terminal connected to a computer allows you to create, modify, and
print text easily. A text editor is a program that assistS you as you create and modify text. The
text editor you will learn here is named edit. Creating text using edit is as easy as typing it on
an electric typewriter. Modifying text involves telling the text editor what you want to add,
change, or delete. You can review your text by typing a command to print the file contentS as
they were entered by you. Another program, a text formatter, rearranges your text for you into
"finished form." This document does not discuss the use of a text formatter.

These lessons assume no prior familiarity with computers or with text editing. They con­
sist of a series of text editing sessions which lead you through the fundamental steps of creating
and revising text. After scanning each lesson and before beginning the next, you should prac­
tice the examples at a terminal to get a feeling for the actual process of text editing. If you set
aside some time for experimentation, you will soon become familiar with using the computer to
write and modify text. In addition to the actual use of the text editor, other features of UNIX
will be very important to your work. You can begin to learn about these other features by
reading "Communicating with UNIX" or one of the other tutorials that provide a general intro­
duction to the system. You will be ready to proceed with this lesson as soon as you are familiar
with (1) your terminal and itS special keys, (2) the login procedure, (3) and the ways of
correcting typing errors. Let's first define some terms:

program

UNIX

edit

file

filename

disk

buffer

A set of instructions, given to the computer, describing the sequence of steps the
computer performs in order to accomplish a specific task. The tasks must be
specific, such as balancing your checkbook or editing your text. A general task,
such as working for world peace, is something we can do, but not something we
can write programs to do.

UNIX is a special type of program, caUed an operating system, that supervises the
machinery and all other programs comprising the total computer system.

edit is the name of the UNIX text editor you will be learning to use, and is a pro­
gram that aids you in writing or revising text. Edit was designed for beginning
users, and is a simplified version of an editor named ex.

Each UNIX account is aUotted space for the permanent storage of information,
such as programs. data or text. A file is a logical unit of data, for example, an
essay, a program, or a chapter from a book, which is stored on a computer system.
Once you create a file, it is kept until you instruct the system to remove it. You
may create a file during one UNIX session, end the session, and return to use it at
a later time. Files contain anything you choose to write and store in them. The
sizes of files vary to suit your needs; one file might hold only a single number, yet
another might contain a very long document or program. The only way to save
information from one session to the next is to store it in a file, which you will
learn in Session 1.

Filenames are used to distinguish one file from another, serving the same purpose
as the labels of manila folders in a file cabinet. In order to write or access infor­
mation in a file, you use the name of that file in a UNIX command, and the system
will automaticaUy locate the file.

Files are stored on an input/output device called a disk, which looks something
like a stack of phonograph records. Each surface is coated with a material similar
to the coating on magnetic recording tape, and information is recorded on it.

A temporary work space, made available to the user for the duration of a session
of text editing and used for creating and modifying the text file. We can think of
the buffer as a blackboard that is erased after each class, where each session with
the editor is a class.

- 4-

Session 1

Makin. contact witb UNIX
To use the editor you must first make contact with the computer by logging in to UNIX.

We'll quickly review the standard U~IX login procedure for the four ways you can make contact:
on a terminal connected to the pon selector, on a terminal connected to the bussiplexer, on a
terminal that is directly linked to the computer, or over a telephone line where the computer
answers your call.

Pon selector terminals
If your terminal has a small box attached with a red button on top, it is connected to the

port selector. You can request any of several UNIX systems by turning on the terminal and
pressing the red button once. The terminal will respond with

Request:

Type the name of the system you are to use. For this example, we use Computer Facilities and
Operations (CF+O) System E:

Request:e (and press RETClR.V)

The terminal will skip a line, emit a beep, and then print a greeting inviting you to login. You
are now ready to login.

Bussiplexer terminals
The bussiplexer is a communications network that makes it possible for you to connect to

any of several CP'IlO UNIX systems. Tum on the terminal. If you don't immediately receive a
login message, press RETURN. The login message will be similar to:

U.C. Bussiplexer (A+B+C+O+E+F+)

:login:

Type your login name and press RETURN. For most accounts, the bussiplexer will
respond:

Connecting to Unix X

where X is the UNIX system that your account is on. If the bussiplexer does not know which of
the systems has your account, you will be asked to select one. Type a single letter for the sys­
tem of your choice (for instance, "e" if your account is on UNIX E) followed by a RETURN, as
in this example:

Select Host: e< cr>
Connecting to Unix E

Connected

After a few seconds, your UNIX system will ask for a password:

Password: (type your password and press RETURN)

You are now logged in.

- 5 -

Directly-linked terminals

Tum on your terminal and press the RETURN key. You are now ready to login.

Dial-up terminals

If your terminal connects with the computer over a telephone line, tum on the terminal,
dial the system access number, and, when you hear a high-pitched tone, place the receiver of
the telephone in the acoustic coupler. You are now ready to login.

Loi&inK in
The message inviting you to login is:

:Iogin:

Type your login name, which identifies you to UNIX, on the same line as the login message, and
press RETURN. If the terminal you are using has both upper and lower case, be sure you enter
your IOKin name in lower case; otherwise UNIX assumes your terminal has only upper case and
will not recognize lower case letters you may type. UNIX types ":login:" and you reply with
your login name, for example "susan":

:login: susan (and press the RETURN key)

(In the examples, input you would type appears in bold face to distinguish it from the
responses from UNIX.)

UNIX will next respond with a request for a password as an additional precaution to
prevent unauthorized people from using your account. The password will not appear when you
type it, to prevent others from seeing it. The message is:

Password: (type your password and press RETURN)

If any of the information you gave during the login sequence was mistyped or incorrect, UNIX
will respond with

Login incorrect.
:login:

in which case you should start the login process anew. Assuming that you have successfully
logged in, UNIX will print the message of the day and eventually will present you with a % at
the beginning of a fresh line. The % is the UNIX prompt symbol which tells you that UNIX is
ready to accept a command.

AskinK for edit

You are ready to tell UNIX that you want to work with edit, the text editor. Now is a con­
venient time to choose a name for the file of text you are about to create. To begin your edit­
ing session, type edit followed by a space and then the filename you have selected~ for exam­
ple, "text". When you have completed the command, press the RETURN key and wait for
edit's response:

% edit text (followed by a RETURN)
"text" No such file or directory

If you typed the command correctly, you will now be in communication with edit. Edit has set
aside a buffer for use as a temporary working space during your current editing session. It also
checked to see if the file you named, "text", already existed. It was unable to find such a file,
since "text" is a new file we are about to create. Edit confirms this with the line:

"text" No such file or directory

On the next line appears edit's prompt ":", announcing that you are in command mode and edit

expects a command from you. You may now begin to create the new file.

The "Command Dot found" message
If you misspelled edit by typing, say, "editor", your request would be handled as follows:

% editor
editor: Command not found
%

Your mistake in calling edit "editor" was treated by UNIX as a request for a program named
"editor". Since there is no program named "editor", UNIX reported that the program was "not
found". A new % indicates that UNIX is ready for another command. and you may then enter
the correct command.

A summary
Your exchange with UNIX as you logged in and made contact with edit should look some­

thing like this:

Enterinl text

:login: susan
Password:
... A Message of General Interest '"
% edit text
"text- No such file or directory

You may now begin entering text into the buffer. This is done by ap~nd;ng (or adding)
text to whatever is currently in the buffer. Since there is nothing in the buffer at the moment,
you are appending text to nothing; in effect, since you are adding text to nothing you are creat­
ing text. ~ost edit commands have two forms: a word that suggests what the command does,
and a shorter abbreviation of that word. Either form may be used. ~any beginners find the
full command names easier to remember at first, but once you are familiar with editing you
may prefer to type the shorter abbreviations. The command to input text is '~append", and it
may be abbreviated "a". Type append and press the RETURN key.

0A! edit text
: append

~essages (rom edit

If you make a mistake in entering a command and type something that edit does not
recognize, edit will respond with a message intended to help you diagnose your error. For
example, if you misspell the command to input text by typing, perhaps, "add" instead of
"append" or "a", you will receive this message:

: add
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part
of your command confused edit. The message above means that edit was unable to recognize
your mistyped command and, therefore, did not execute it. Instead. a new":" appeared to let
you know that edit is again ready to execute a command.

- 7 -

Text input mode
By giving the command "append" (or using the abbreviation "a"), you entered text input

mode, also known as append mode. When you enter text input mode, edit SlOPS sending you a
prompt. You will not receive any prompts or error messages while in text input mode. You
can enter pretty much anything you want on the lines. The lines are transmitted one by one to
the buffer and held there during the editing session. You may append as much text as you
want, and when you wish to stop entering text lines you should type a period as the only character on
the line and press the RETURN key. When you type the period and press RETURN, you signal that
you want to stop appending text, and edit responds by allowing you to exit text input mode and
reenter command mode. Edit will again prompt you for a command by printing H:".

Leaving append mode does not destroy the text in the buffer. You have to leave append
mode to do any of the other kinds of editing, such as changing, adding, or printing text. If you
type a period as the first character and type any other character on the same line, edit will
believe you want to remain in append mode and will not let you out. As this can be very frus­
trating, be sure to type only the period and the RETURN key.

This is a good place to learn an important lesson about computers and text: a blank space
is a character as far as a computer is concerned. If you so much as type a period followed by a
blank (that is, type a period and then the space bar on the keyboard), you will remain in
append mode with the last line of text being:

Let's say that the lines of text you enter are (try to type exactly what you see, including
"thiss") :

This is some sample text.
And thiss is some more text.
Text editinl is stran&e, but nice.

The last line is'tbe period followed by a RETURN that gets you out of append mode.

Makinl corrections
If you have read a general introduction to UNIX, such as "Communicating with UNIX",

you will recall that it is possible to erase individual letters that you have typed. This is done by
typing the designated erase character as many times as there are characters you want to erase.

The usual erase cbaracter is the backspace (control-H), and you can correct typing errors
in the line you are typing by holding down the CTRL key and typing the "HI' key. If you try
typing control-H you will notice that the terminal backspaces in the line you are on. You can
backspace over your error, and then type what you want to be the rest of the line.

If you make a bad stan in a line and would like to begin again, you can either backspace
to the beginning of the line or you can use the at-sign "@" to erase everything on the line:

Text edtiing is strange, but@
Text editing is stranle, but nice.

When you type the at-sign (@), you erase the entire line typed so far and are given a fresh line
to type on. You may immediately begin to retype the line. (If you are on a bussiplexer termi­
nal, you will not advance to the next line after typing "@", but there is no other difference in
the way the at-sign is handled.) This, uqfonunately, does not help after you type the line and
press RETURN. To make corrections in lines that have been completed, it is necessary to use the
editing commands covered in the next session and those that follow .

..

•

•

. 8·

Writina text to disk
You are now ready to edit the text. The simplest kind of editing is to write it to disk as a

file for safekeeping after the session is over. This is the only way to save information from one
session to the next, since the editor's buffer is temporary and will last only until the end of the
editing session. Learning how to write a file to disk is second in importance only to entering
the text. To write the contents of the buffer to a disk file, use the command "write" (or its
abbreviation "w"):

: write

Edit will copy the contents of the buffer to a disk file. If the file does not yet exist. a new file
will be created automatically and the presence of a "[New file]" will be noted. The newly­
created file will be given the name specified when you entered the editor. in this case "text".
To confirm that the disk file has been successfully written. edit will repeat the filename and give
the number of Hnes and the total number of characters in the file. The buffer remains
unchanged by the "write" command. All of the lines that were written to disk will still be in
the buffer, should you want to modify or add to them.

Edit must have a filename to use before it can write a file. If you forgot to indicate the
name of the file when you began the editing session, edit will print

No current filename

in response to your write command. If this happens. you can specify the filename in a new
write command:

: write text

After the "write" (or "w"), type a· space and then the name of the file.

Sianina off
We have· done enough for this first lesson on using the UNIX text editor, and are ready to

quit the session with edit. To do this we type "quit" (or "q") and press RETURN:

: write
-text" [New file} 3 lines. 90 characters
: quit
%

The % is from UNIX to tell you that your session with edit is over and you may command UNIX
further. Since we want to end the entire session at the terminal, we also need to exit from
UNIX. In response to the UNIX prompt of .. %" type the command

°Allolout

This will end your session with UNIX, and will ready the terminal for the next user. It is always
important to type logout at the end of a session to make absolutely sure no one could acciden­
tally stumble into your abandoned session and thus gain access to your files, tempting even the
most honest of souls.

This is the end of the first session on UNIX text editing.

- 9 -

Session 2

Login with UNIX as in the first session:

:login: susan (carriage return)
Password: (give password and carriage rerurn)

... A Message of General Interest .,.
%

When you indicate you want to edit, you can specify the name of the file you worked on last
time. This will start edit working, and it will fetch the contents of the file into the buffer, so
that you can resume editmg the same file. When edit has copied the file into the buffer, it will
repeat its name and tell you the number of lines and characters it contains. Thus,

% edit text
-text" 3 lines, 90 characters

means you asked edit to fetch the file named "text" for editing, causing it to copy the 90 char­
acters of text into the buffer. Edit awaits your further instructions, and indicates this by its
prompt character, the colon (:). In this session, we will append more text to our file, print the
contents of the buffer, and learn to change the text of a line.

Adding more text to tbe file

If you want to add more to the end of your text you may do so by using the append com­
mand to enter text input mode. When "append" is the first command of your editing session,
the lines you enter are placed at the end of the buffer. Here we'll use the abbreviation for the
append command, "a":

:a
This is text added in Session 2.
It doesn't mean mucb here, but
it does illustrate the editor.

You may recall that once you enter append mode using the "a" (or "append") command, you
need to type a line containing only a period (.) to exit append mode.

Interrupt

Should you press the RUB key (sometimes labelled DELETE) while working with edit, it will
send this message to you:

Interrupt

Any command that edit might be executing is terminated by rub or delete, causing edit to
prompt you for a new command. If you are appending text at the time, you will exit from
append mode and be expected to give another command. The line of text you were typing
when the append command was interrupted will not be entered into the buffer.

Making corrections

If while typing the line you hit an incorrect key, recall that you may delete the incorrect
character or cancel the entire line of input by erasing in the usual way. Refer either to the last
few pages of Session 1 or to "Communicating with UNIX" if you need to review the procedures
for making a correction. The most important idea to remember is that erasing a character or
cancelling a line must be done before you press the RETURN key.

--~- ----------.-~-- - - -

· 10·

Listing what's in tbe buffer (p)

Having appended text to what you wrote in Session 1, you might want to see all the lines
in the buffer. To print the contents of the buffer, type the command:

: 1,Sp

The "1"t stands for line 1 of the buffer, the "$" is a special symbol designating the last line of
the buffer. and "p" (or print) is the command to print from line 1 to the end of the buffer.
The command "1,Sp" gives you:

This is some sample text.
And thiss is some more text.
Text editing is strange, but. nice.
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Occasionally, you may accidentally type a character that can't be printed, whicb can be done by
striking a key while the CTRL key is pressed. In printing lines, edit uses a special notation to
show the existence of non-printing characters. Suppose you had introduced the non-printing
character "control-A" into the word "illustrate" by accidently pressing the CTRL key while typ­
ing "a". This can happen on many terminals because the CTRL key and the "A" key are
beside each other. If your finger presses between the two keys, control-A results. When asked
to print the contents of the buffer, edit would display

it does illustr-Ate the editor.

To represent the control-A, edit shows ... A". The sequence followed by a capital letter
stands for the one character entered by holding down the CTRL key and typing the letter which
appears after the We'll soon discuss the commands that can be used to correct this typing
error.

In looking over the text we see that "this" is typed as "thiss" in the second line, a deli­
berate error so we can learn to make corrections. let's correct the spelling.

Finding things in tbe buffer

In order to change something in the buffer we first need to find it. We can find "thiss"
in the text we have entered by looking at a listing of the lines. Physically speaking, we search
the lines of text looking for "thiss" and stop searching when we have found it. The way to tell
edit to search for something is to type it inside slash. marks:

: /thiss/

By typing !thiss/ and pressing RETURN, you instruct edit to search for "thiss". If you ask edit
to look for a pattern of characters which. it cannot find in the buffer, it will respond "Pattern
not found". When edit finds tbe characters "thiss", it will print the line of text for your
inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line it just printed, ready to make a change in the
line.

~The numeral "one" is the top left-most key. and should not be confused with the letter "el".

- 11 -

The current line

Edit keeps track of the line in the buffer where it is located at all times during an editing
session. In general, the line that has been most recently printed, entered, or changed is the
current location in the buffer. The editor is prepared to make changes at the current location in
the buffer, unless you direct it to another location.

In particular, when you bring a file into the buffer, you will be located at the last line in
the file, where the editor left off copying the lines from the file to the buffer. If your first edit­
ing command is "append", the lines you enter are added to the end of the file, after the
current line - the last line in the file.

You can refer to your current location in the buffer by the symbol period (.) usually
known by the name "dot". If you type "." and carriage return you will be instructing edi t to
print the current line:

· .
And thiss is some more text.

If you want to know the number of the current line, you can type. - and press RETURN,
and edit will respond with the line number:

· -· .
2

If you type the number of any line and press RETURN, edit will position you at that line and
print its contents:

:2
And thiss is some more text.

You should experiment with these commands to gain experience in using them to make
changes.

Numberinl lines (nu)

The number (nu) command is similar to print, giving both the number and the text of
each printed line. To see the number and the text of the current line type

:nu
2 And thiss is some more text.

Note that the shonest abbreviation for the number command is "nu" (and not "n", which is
used for a different command). You may specify a range of lines to be listed by the number
command in the same way that lines are specified for print. For example, 1,$nu lists all lines in
the buffer with their corresponding line numbers.

Substitute command (s)

Now that you have found the misspelled word, you can change it from "thiss" to "this".
As far as edit is concerned, changing things is a matter of substituting one thing for another.
As a stood for append, so s stands for substitute. We will use the abbreviation "s" to reduce
the chance of mistyping the substitute command. This command will instruct edit to make the
change:

151 thissl thisl

We first indicate the line to be changed, line 2, and then type an "s" to indicate we want edit
to make a substitution. Inside the first set of slashes are the characters that we want to change,
followed by the characters to replace them, and then a closing slash mark. To summarize:

2s1 what is to be changed I what to change it to I

If edit finds an exact match of the characters to be changed it will make the change only in the

- 12 -

first occurrence of the characters. If it does not find the characters to be change~ it will
respond:

Substitute pattern match failed

indicating that your instructions could not be carried out. When edit does find the characters
that you want to change, it will make the substitution apd automaticaUy print the changed line.
so that you can check that the correct substitution was made. In the example.

: ls/tbiss/tbisl
And this is some more text.

line 2 (and line 2 only) will be searched for the characters "thiss", and when the first exact
match is foun~ "thiss" will be changed to "this". Strictly speaking. it was not necessary
above to specify the number of the line to be changed. In

: s/tbissltbisl

edit will assume that we mean to change the line where we are currently located (". "). In this
case, the command without a line number would have produced the same result because we
were already located at the line we wished to change.

For another illustration of the substitute command. let us choose the line:

Text editing is strange. but nice.

You can make this line a bit more positive by taking out the characters "strange. but" so the
line reads:

Text editing is nice.

A command that will first position edit at the desired line and then make the substitution is:

: I slraDle/sl straDae, but II

What we have done here is combine our search with our substitution. Such combinations are
perfectly legal. and speed up editing quite a bit once you get used to them. That is. you do not
necessarily have to use line numbers to identify a line to edit. Instead. you may identify the
line you want to change by asking edit to search for a specified pattern of letters that occurs in
that line. The parts of the above command are:

Islranlel tells edit to find the characters "strange" in the text
s tells edit to make a substitution
I straDle, but /I substitutes nothing at all for the characters "strange. but "

You should note the space after "but" in "/strange, but I". If you do not indicate that
the space is to be taken out, your line will read:

Text editing is nice.

which looks a little funny because of the extra space between "is" and "nice". Again. we real­
ize from this that a blank space is a real character to a computer, and in editing text we need to
be aware of spaces within a line just as we would be aware of an "a" or a "4".

Another way to list what's in the buffer (z)

Although the print command is useful for looking at specific lines in the buffer, other
commands may be more convenient for viewing large sections of text. You can ask to see a
screen full of text at a time by using the command z. If you type

:1z

edit will start with line 1 and continue printing lines, stopping either when the screen of your
terminal is full or when the last line in the buffer has been printed. If you want to read the

- 13 -

next segment of text. type the command

: z

If no staning line number is given for tbe z command. printing will start at the "current" line.
in this case the last line printed. Viewing lines in the buffer one screen full at a time is known
as paging. Paging can also be used to print a section of text on a hard-copy terminal.

Saving tbe modified text

This seems to be a good place to pause in our work. and so we should end the second ses­
sion. If you (in haste) type "q" to quit the session your dialogue with edit will be:

:q
No. write since last change (:quit! overrides)

This is edit's warning that you have not written the modified contents of the buffer to disk.
You run the risk of losing the work you did during the editing session since you typed the latest
write command. Because in this lesson we have not written to disk at all. everything we have
done would have been lost if edit had obeyed the q command. If you did not want to save the
work done during this editing session. you would have to type "q!" or ("quit!") to confirm
that you indeed wanted to end the session immediately. leaving the file as it was after the most
recent "write" command. However. since you want to save what you have edited. you need to
type:

:w
-text- 6 lines. 1 71 characters

and then follow with tbe commands to quit and logout:

:q
% loaout

and hang up the phone or tum off the terminal when UNIX asks for a name. Terminals con­
nected to the pan selector will stop after the logout command. and pressing leeys on the key­
board will do nothing.

This is the end of the second session on UNIX text editing.

• 14.

Session 3

Bringing text into tbe buffer (e)

Login to UNIX and make contact with edit. You should try to login without looking at the
notes, but if you must then by aU means do.

Did you remember to give the name of the file you wanted to edit? That is, did you type

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named
"text" into the buffer. If you did forget to tell edit the name of your file, you can get it into
the buffer by typing:

: e text
"text" 6 lines, 171 characters

The command edit, which may be abbreviated e. tells edit that you want to erase anything that
might already be in the buffer and bring a copy of the file "text" into the buffer for editing.
You may also use the edit (e) command to change files in the middle of an editing session, or
to give edit the name of a new file that you want to create. Because the edit command clears
the buffer, you will receive a warning if you try to edit a new file without having saved a copy
of the old file. This gives you a chance to write the contents of the buffer to disk before edit­
ing the next file.

~ovinl text in tbe buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means
of the move (m> command. The first two examples are for illustration only, thougb after you
have read this Session you are welcome to return to them for practice. The command

: 2,4mS

directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for the move
command is that you specify the first line to be moved, the last line to be moved, the move
command .. m", and the line after which the moved text is to be placed. So,

: 1,3m6

would instruct edit to move lines 1 through 3 (inclusive) to a location after line 6 in the buffer.
To move only one line, say, line 4, to a location in the buffer after line 5, the command would
be "4mS".

Let's move some text using the command:

: S,Sml
2 lines moved
it does illustrate the editor.

After executing a command that moves more than one line of the buffer, edit tells how many
lines were affected by the move and prints the last moved line for your inspection. If you want
to see more than just the last line, you can then use the print (p), Z, or number (nu) command
to view more text. The buffer should now contain:

- 15 -

This is some sample text.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.

You can restore the original order by typing:

: .. ,5ml

or, combining context searching and the move command:

: / Aod tbis is some/ ,1Tbis is text/ m/This is some samplel

(Do not type both examples here!) The problem with combining context searching with the
move command is that your chance of making a typing error in such a long command is greater
than if you type line numbers. .

Copyine lines (copy)

The copy command is used to make a second copy of specified lines, leaving the original
lines where they were. Copy has the same format as the move command, for example:

: 1,Scopy 5

makes a copy of lines 2 through 5, placing the added lines after the buffer's end ($). Experi­
ment with the copy command so that you can become familiar with how it works. Note that
the shortest abbreviation for copy is co (and not the letter "c", which has another meaning).

Deletiol lines (d)

Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number
followed by delete or d This example deletes line 4, which is "This is text added in Session
2." if you typed the commands suggested so far.

: "d
It doesn't mean much here, but

Here "4" is the number of the line to be deleted, and "delete" or "d" is the command to
delete the line. After executing the delete command, edit prints the line that has become the
current line (".").

If you do not happen to know the line number you can search for the line and then delete
it using this sequence of commands:

: ladded io Session 1,/
This is text added in Session 2.
:d
It doesn't mean much here, but

The "I added in Session 2'/" asks edit to locate and print the line containing the indicated text,
staning its search at the current line and moving line by line until it finds the text. Once you
are sure that you have correctly specified the line you want to delete, you can enter the delete
(d) command. In this case it is not necessary to specify a line number before the "d". If no
line number is given, edit deletes the current line ("."), that is, the line found by our search.
After the deletion, your buffer should contain:

This is some sample text.
And this is some more text.
Text editing is nice.

- 16 -

It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.
It doesn't mean much here, but

To delete both lines 2 and 3:

you type

And this is some more text.
Text editing is nice.

: 1,Jd
2 lines deleted

which specifies the range of lines from 2 to 3, and the operation on those lines - udn for
delete. If you delete more than one line you will receive a message telling you the number of
lines deleted, as indicated in the example above.

The previous example assumes that you know the tine numbers for the lines to be
deleted. If you do not you milht combine the search command with the delete command:

: / And tbls is some/,/Text editiDI is nice./ d

A word or two of caution

In using the search function to locate tines to be deleted you should be absolutely sure
the characters you give as the basis for the search will take edit to the line you want deleted.
Edit will search for the first occurrence of the characters starting from where you last edited -
that is, from the line you see printed if you type dot (.).

A search based on too few characters may result in the wrong lines being deleted, which
edit will do as easily as if you had meant it. For this reason, it is usually safer to specify the
search and then delete in two separate steps, at least until you become familiar enough with
using the editor that you understand how best to specify searches. For a beginner it is not a
bad idea to double-check each command before pressing RETURN to send the command on its
way.

Undo (u) to the rescue

The undo (u) command has the ability to reverse the effects of the last command that
changed the buffer. To undo the previous command, type "u" or "undo", Undo can rescue
the contents of the buffer from many an unfortunate mistake. However, its powers are not
unlimited, so it is still wise to be reasonably careful about the commands you give.

It is possible to undo only commands which have the power to change the buffer - for
example. delete, append, move, copy, substitute, and even undo itself. The commands write
(w) and edit (e), which interact with disk files. cannot be undone. nor can commands that do
not change the buffer, such as print. Most importantly, the only command that can be reversed
by undo is the last "undo-able" command you typed. You can use control-H and @ to change
commands while you are typing them, and undo to reverse the effect of the commands after
you have typed them and pressed RETURN.

To illustrate, let's issue an undo command. Recall that the last buffer-changing command
we gave deleted the lines formerly numbered 2 and 3. Typing undo at this moment will
reverse the effects of the deletion, causing those two lines to be replaced in the buffer.

- 17 -

:u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of
the line which is now "dot" (the current line).

More about the dot C.) and buffer end (S)

The function assumed by the symbol dot depends on its context. It can be used:

1. to exit from append mode; we type dot (and only a dot) on a line and press RETURN;

2. to refer to the line we are at in the buffer.

Dot can also be combined with the equal sign to get the number of the line currently being
edited:

: .-
If we type" •• " we are asking for the number of the line, and if we type"." we are asking for
the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the
buffer in commands such as print, copy, and move. The dollar sign as a command asks edit to
print the last line in the buffer. If the dollar sign is combined with the equal sign (S-) edit
will print the line number corresponding to the last line in the buffer.

"." and "S", then, represent line numbers. Whenever appropriate, these symbols can be
used in place of line numbers in commands. For example

: .,ScI

instructs edit to delete all lines from the current line (.) to the end of the buffer.

Movin& around in the buffer (+ and -)

When you are editing you often want to go back and re-read a previous line. You could
specify a context search for a line you want to read if you remember some of its text, but if you
simply want to see what was written a few, say 3, lines ago, you can type

-3p

This tells edit to move back to a position 3 lines before the current line (.) and print that line.
You can move forward in the buffer similarly:

+2p

instructs edit to print the line that is 2 ahead of your current position.

You may use .. +" and .. -" in any command where edit accepts line numbers. Line
numbers specified with .. +" or "-" can be combined to print a range of lines. The command

: -It+lcopy$

makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied
lines will be placed after the last line in the buffer (S), and the original lines referred to by
.. -1" and .. + 2" remain where they are.

Try typing only .. - "; you will move back one line just as if you had typed "-1 p". Typ­
ing the command "+" works similarly. You might also try typing a few plus or minus signs in
a row (such as .. + + +") to see edit's response. Typing RETURN alone on a line is the
equivalent of typing" + Ip"; it will move you one line ahead in the buffer and print that line.

If you are at the last line of the buffer and try to move further ahead, perhaps by typing a
"+" or a carriage return alone on the line, edit will remind you that you are at the end of the
buffer: .

- 18 -

At end-of-file
or

Not that many lines in buffer

Similarly, if you try to move to a position before the first line, edit will print one of these mes­
sages:

or
Nonzero address required on this command

Negative address - first buffer line is 1

The number associated with a buffer line is the line's ··address", in that it can be used to locate
the line.

Chanlinl lines (e)
You can also delete certain lines and insert new text in their place. This can be accom­

plished easily with the chanle (e) command. The change command instructs edit to delete
specified lines and then switch to text input mode to accept the text that will replace them.
Let's say you want to cnange the first two lines in the buffer:

to read

This is some sample text.
And this is some more text.

This text was created with the UNIX text editor.

To d!J so, you type:

: l,le
2 lines changed"
This text was created with the UNIX text editor.

In the command l,le we specify that we want to change the range of lines beginning with 1 and
ending with 2 by giving line numbers as with the print command. These lines will be deleted.
After you type RETURN to end the change command. edit notifies you if more than one line will
be changed and places you in text input mode. Any text typed on the following lines will be
inserted into the position where lines were deleted by the change command. You will remain
in text input mode until you exit in the usual wa1, by typinl a period alone on a line. Note
that the number of lines added to the buffer need not be the same as the number of lines
deleted.

This is the end of the third session on text editing with UNIX.

- 19 -

Session 4

This lesson covers several topics, staning with commands that apply throughout the
buffer, characters with special meanings, and how to issue UNIX commands while in the editor.
The next topics deal with files: more on reading and writing, and methods of recovering files
lost in a crash. The final section suggests sources of further information.

Making commands global (a)
One disadvantage to the commands we have used for searching or substituting is that if

you have a number of instances of a word to change it appears that you have to type the com­
mand repeatedly, once for each time the change needs to be made. Edit, however, provides a
way to make commands apply to the entire contents of the buffer - the global (a) command.

To print all lines containing a cenain sequence of characters (say, "text") the command
is:

: g/text/p

The "g" instructs edit to make a global search for all lines in the buffer containing the charac­
ters "text". The "p" prints the lines found.

To issue a global command, start by typing a "g" and then a search pattern identifying
the lines to be affected. Then, on the same line, type the command to be executed for the
identified lines. Global substitutions are frequently useful. For example, to change all
instances of the word "text" to the word "material" the command would be a combination of
the global search and the substitute command:

: I/text/s/text/material/a

Note the "g" at the end of the global command, which instructs edit to change each and every
instance of "text" to "material". If you do. not type the "g" at the end of the command only
the first instance of "text" in each line will be changed (the normal result of the substitute
command). The "g" at the end of the command is independent of the "g" at the beginning.
You may give a command such as:

: Ss/text/material/a

to change every instance of "text" in line 5 alone. Funher, neither command will change
"text" to "material" if "Text" begins with a capital rather than a lower-case t.

Edit does not automatically print the lines modified by a global command. If you want
the lines to be printed, type a "p" at the end of the global command:

: g/text/s/text/material/ap

You should be careful about using the global command in combination with any other in
essence, be sure of what you are telling edit to do to the entire buffer. For example,

:llld
72 less lines in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your docu­
ment, since most lines have spaces between words and thus would be deleted. After executing
the global command. edit will print a warning if the command added or deleted more than one
line. Fortunately. the undo command can reverse the effects of a global command. You
should experiment with the global command on a small file of text to see what it can do for
you.

- 20 -

More about searchinl and substitutinl
In using slashes to identify a character string that we want to search for or change. we

have always specified the exact characters. There is a less tedious way to repeat the same string
of characters. To change "text" to "texts" we may type either

: Itext/s/text/textsl

as we have done in the past, or a somewhat abbreviated command:

: Itext/slltextsl

In this example, the characters to be changed are not specified - there are no characters, not
even a space, between the two slash marks that indicate what is to be changed. This lack of
characters between the slashes is taken by the editor to mean "use the characters we last
searched for as the. characters to be changed."

Similarly. the last context search may be repeated by typing a pair of slashes with nothing
between them:

:/doesl
It doesn't mean much here. but
:11
it does illustrate the editor.

(You should note that the search command found the characters "does" in the word "doesn't"
in the first search request.) Because no characters are specified for the second search. the editor
scans the buffer for the next occurrence of the characters "does".

Edit normally searches forward through the buffer, wrapping around from the end of the
buffer to the beginning, until the specified character string is found. If you want to search in
the reverse direction. use question marks (?) instead of slashes to surround the characters you
are searching for.

It is also possible to repeat the last substitution without having to retype the entire com­
mand. An ampersand (dt) used as a command repeatS the most recent substitute command.
using the same search and replacement pattems. After altering the current line by typing

: 51 textl textsl
you type

: /text/&

or simply

:11&

to make the same change on the next line in the buffer containing the characters "text".

Special characters
Two characters have special meanings when used in specifying searches: "S" and

"S" is taken by the editor to mean "end of the line" and is used to identify strings that occur
at the end of a line.

: II text.SI sl I material'! p

tells the editor to search for all lines ending in "text." (and nothing else, not even a blank
space), to change each final "text." to "material.", and print the changed lines.

The symbol indicates the beginning of a line. Thus.

: sr It. I
instructs the editor to insen "1." and a space at the beginning of the current line.

- 21 -

The characters "S" and "_,, have special meanings only in the context of searching. At
other times, they are ordinary characters. If you ever need to search for a character that has a
special meaning, you must indicate that the character is to lose temporarily its special
significance by typing. another special character, the backs lash (\), before it.

: sAS/dollar/

looks for the character "S" in the current line and replaces it by the word "dollar". Were it
not for the backslash, the "S" would have represented "the end of the line" in your search
rather than the character "S". The backs lash retains its special significance unless it is pre­
ceded by another backslash.

Issuina UNIX commands from tbe editor
After creating several files with the editor, you may want to delete files no longer useful

to you or ask for a list of your files. Removing and listing files are not functions of the editor,
and so they require the use of UNIX system commands (also referred to as "shell" commands,
as "shell" is the name of the program that processes UNIX commands). You do not need to
quit the editor to execute a UNIX command as long as you indicate that it is to be sent to the
shell for execution. To use the UNIX command rm to remove the file named "junk" type:

: !rm junk
!

The exclamation mark (!) indicates that the rest of the line is to be processed as a shell com­
mand. If the buffer contents have not been written since the last change, a warning will be
printed before the command is executed:

(No write since last change]

The editor prints a "!" when the command is completed. The tutorial "Communicating with
UNIX" describes useful features ~f the system. of which the editor is only one part.

Filenames and file manipulation
Throughout each editing session, edit keeps track of the name of the file being edited as

the current jilelUlme. Edit remembers as the current filename the name given when you entered
the editor. The current filename changes whenever the edit (e) command is used to specify a
new file. Once edit has recorded a current filename. it inserts that name into any command
where a filename has been omitted. If a write command does not specify a file, edit, as we
have seen. supplies the current filename. If you are editing a file named "draft3" having 283
lines in it. you can have the editor write onto a different file by including its name in the write
command:

: " chapter)
-chapter3- [new file] 283 lines. 8698 characters

The current filename remembered by the editor will not be changed as a ,esult 0/ the w,ite com­
mand. Thus. if the next write command does not specify a name. edit will write onto the
current file ("draft3") and not onto the file "chapter3".

The file (f) command
To ask for the current filename, type file (or f). In response, the editor provides current

information about the buffer, including the filename, your current position. the number of lines
in the buffer. and the percent of the distance through the file your current location is.

:f .
-text- [Modified] line 3 of 4 -·75%·-

If the contents of the buffer have changed since the last time the file was written. the editor

- 22 -

will tell you that the file has been .. [Modified]". After you save the changes by writing onto a
disk file. the buffer will no longer be considered modified:

:w
-text" 4 lines. 88 characters
: f
"text" line 3 of 4 --75%-·

Readinl additional files (r)

The read <r) command allows you to add the contents of a file to the buffer at a specified
location. essentially copying new lines between two existing lines. To use it. specify the line
after which the new text will be placed. the read <r) command. and then the name of the file.
If you have a file named "example", the command

: Sr example
-example" 18 lines. 473 characters

reads the file "example" and adds it to the buffer after the last line. The current filename is
not changed by the read command.

Writinl parts of the buffer
The write (w) command can write aU or part of the buffer to a file you specify. We are

already familiar with writing the entire contents of the buffer to a disk file. To write only part
of the buffer onto a file, indicate the beginning and ending lines before the write command. for
example

: 45,Sw endinl

Here all lines from 4S through the end of the buffer are written onto the file named ending.
The lines remain in th~ buffer as part of the document you are editing. and you may continue
to edit the entire buffer. Your original file is unaffected by your command to write pan of the
buffer to another file. Edit still remembers whether you have saved changes to the buffer in
your original file or not.

RecoYertnl files
Although it does not happen very often. there are times UNIX stopS working because of

some malfunction. This situation is known as a crash. Under most circumstances. edit's crash
recovery feature is able to save work to within a few lines of changes before a crash (or an
accidental phone hang up). If you lose the contents of an editing buffer in a system crash. you
will normally receive mail when you login that gives the name of the recovered file. To recover
the file. enter the editor and type the command recover (rec), followed by the name of the lost
file. For example, to recover the buffer for an edit session involving the file "chap6", the
command is:

: recanr chap6

Recover is sometimes unable to save the entire buffer successfully, so always check the con·
tents of the saved buffer carefully before writing it back onto the original file. For best results.
write the buffer to a new file temporarily so you can examine it without risk to the original file.
UnfortunatelY, you cannot use the recover command to retrieve a file you removed using the
shell command rm.

Other recovery techniques
If something goes wrong when you are using the editor, it may be possible to save your

work by using the command preserve (pre), which saves the buffer as if the system had
crashed. If you are writing a file and you get the message "Quota exceeded"", you have tried to

- 23 •

use more disk storage than is allotted to your account. Proceed with caution because it is likely
that only a part of the editor's buffer is now present in the file you tried to write. In this case
you should use the shell escape from the editor (!) to remove some files you don't need and try
to write the file again. If this is not possible and you cannot find someone to help you, enter
the command

: preserve

and wait for the reply,

File preserved.

If you do not receive this reply, seek help immediately. Do not simply leave the editor. If you
do, the buffer will be lost, and you may not be able to save your file. If the reply is "File
preserved." you can leave the editor (or logout) to remedy the situation. After a preserve, you
can use the recover command once the problem has been corrected, or the - r option of the
edit command if you leave the editor and want to return.

If you make an undesirable change to the buffer and type a write command before discov­
ering your mistake, the modified version will replace any previous version of the file. Should
you ever lose a good version of a document in this way, do not panic and leave the editor. As
long as you stay in the editor, the contents of the buffer remain accessible. Depending on the
nature of the problem, it may be possible to restore the buffer to a more complete state with
the undo command. After fixing the damaged buffer, you can again write the file to disk.

Further readinl and other information
Edit is an editor designed for beginning and casual users. It is actually a version of a

more powerful editor called c. These lessons are intended to introduce you to the editor and
its more commonly-used commands. We have not covered all of the editor's commands, but a
selection of commands that should be sufficient to accomplish most of your editing tasks. You
can find out more about the editor in the Ex Reference MallUlli. which is applicable to both c
and edit: The manual is available from the Computing Services Library, 218 Evans Hall. One
way to become familiar with the manual is to begin by reading the description of commands
that you already know.

Usinl t!%

As you become more experienced with using the editor, you may still find that edit con­
tinues to meet your needs. However, should you become interested in using ex, it is easy to
switch. To begin an editing session with ex, use the name ex in your command instead of edit.

Edit commands work the same way in ex, but the editing environment is somewhat
different. You should be aware of a few differences that exist between the two versions of the
editor. In edit. only the characters "S". and "'" have special meanings in searching the
buffer or indicating characters to be changed by a substitute command. Several additional char­
acters have special meanings in ex. as described in the Ex Reference ManUllL Another feature
of the edit environment prevents users from accidently entering two alternative modes of edit­
ing. open and 'inial. in which the editor behaves quite differently from normal command
mode. If you are using ex and the editor behaves strangely, you may have accidently entered
open mode by typing "0". Type the ESC key and then a "Q" to get out of open or visual mode
and back into the regular editor command mode. The document An Introduction to Display Edit­
ing with Vi provides a full discussion of visual mode.

addressing, see line numbers
ampersand, 20
append mode, 6·7
append (a) command, 6, 7, 9
.. At end of file" (message), 18
backslash (\), 21
buffer, 3
bussiplexer, 4
caret n, 10, 20
change (d command, 18
command mode, 5:'6
"Command not found" (message), 6
context search, 10·12, 19·21
control characters (..... notation), 10
control·H, 7
copy (co) command, 15
correcti 0 ns, 7, 16
current filename, 21
current line (.), 11, 17
delete (d) command, 15·16
dial· up, 5
disk, 3
documentation. 3, 23
dollar ($), 10, 11, 17, 20·21
dot (.) 11, 17
edit (e) command. 5. 9, 14
editing commands:

append (a), 6, 7, 9
change (c), 18
copy (co), 15
delete (d), 15·16
edit (text editod, 3, 5, 23
edit (e), 5, 9, 14
file (f), 21·22
global (g), 19
move (m), 14-15
number (nu), 11
preserve (pre), 22·23
print (p), 10
quit (q), 8, 13
read (r), 22
recover (ree), 22. 23
substitute (s), 11·12, 19, 20
undo (u), 16.17, 23
write (w), 8, 13, 21. 22
z. 12·13
! (shell escape), 21
$-, 17
+, 17
-, 17
/ /, 12. 20

• 24.

Index

??, 20
.• 11,17
.-,11, 17

ent~ring text. 3, 6·7
erasing

characters rH), 7
lines (@), 7

error corrections, 7, 16
ex (text editod, 23
Ex Reference .Wanua4 23
exclamation (!), 21
file. 3
file (f) command. 21·22
file recovery, 22·23
filename, 3, 21
global (g) command. 19
input mode. 6·7
Interrupt (message), 9
line numbers, see also current line

dollar sign ($), 10, II, 17
dot (.), 11, 17
relative (+ and -), 17

list, 10
logging in, 4.6
logging out, 8
"Login incorrect" (message), 5
minus (-), 17
move (m) command. 14-15
"Negative address-first buffer line is 1" (message.
"No current filename" (message), 8
"No such file or directory" (message), 5, 6
"No write since last change" (message), 21
non-printing characters, 10
"Nonzero address required" (message), 18
"Not an editor command" (message), 6
"Not that many lines in buffer" (message), 18
number (nu) command, 11
password, 5
period (.), 11, 17
plus (+),17
preserve (pre) command, 22·23
print (p) command. 10
program. 3
prompts

% (I1NIX), 5
: (edit>. 5, 6, 7

(append), 7
question (?). 20

qu"it (q) command, 8, 13
read (r) command, 22
recover (ree) command, 22, 23
recovery, see file recovery
references, 3, 23
remove (rm) command. 21. 22
reverse command effects (undo). 16-17,23
searching, 10-12, 19-21
shell. 21
shell escape (!), 21
sJash (f), 11.12, 20
special characters (A, S. \). 10. 11.17.20-21
substitute (s) command, 11·12, 19, 20
terminals. 4·5
text input mode, 7

. undo (u) command, 16·17, 23
UNIX, 3
write (w) command, 8, 13, 21, 22
z command. 12-13

• 25 -

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kerntghan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNIXt operating system is done with the text­
editor ed. This memorandum is a tutorial guide to help beginners get started
with text editing.

Although it docs not cover everything, it does discuss enough for most
users' day-to-day needs. This includes printing, appending, changing. deleting.
moving and inserting entire lines of text; reading and writing files; context
searching and line addressing; the substitute command; Ihe global commands;
and the use of special characters for advanced editing.

September 21, 1978

tUNIX is a Trademark of Bell Lliborlllories.

A Tutorial I ntroductioR to the UNI X Text Editor

Brta" W. Kerlllll!tQII

Bell Labora[ories
Murr.ay Hill. New Jersey 01914

(ncroduclion

Ed is a "text edilor", that is. an interactive
prOiram for creatinl and modifyinl "text",
usinl directions provided by a user at a terminaL
The tUt is often a document like this one. or a
prOlram or perhaps dala for a prOlram.

This introduction is meant to simplify learn­
inl'do The recommended way to learn ,d is to
read this document. simullaneously usina t!d to
follow the examples. then to read the description
in section I of the UNIX I'ro,rtlIP",,,'S .'vItI",,,,L all
the While experimentinl with I!d. (Solicit.tion of
advice from experienced users is also useful.>

00 the exercises! They cover material not
completely discussed in the :lClual teXI. An
appendix summarizes the commands.

Disclai r

This is an introduction and a tutorial. For
this reason. no attempt is made to cover more
than a part of the facilities thai td offers
(althouah this fraction includes the mOSI useful
and frequently used parts). When you have
mastered the Tutorial. try "'dlY1I/C,d Ed""" OIP

U.VI,,(. Also, there is not enoulh space to explain
basic UNIX procedures. We wdl assume that you
know how to 101 on to UNIX. and that you have
at least a vaaue underslllndinl of what a file is.
For more on that. read UNIX ./or S"""",s.

You must also know what character to type
as the end-of-line on your particular terminal.
This character is the RETURN key on most ter­
mInals. Throughout. we will refer to this charac­
ter, whatever it is. as RETURN.

Gettlnl Staneel

We'll assume that you have logled in to your
system and it has just printed the prompt charac­
ter. usually either a S or a 0/.1. The o!:l.Siest wa~ to
get td is to type

ed (followed by a return)

You 4re now ready to go - ~d is wallin, for you
to leU It wnat to do.

Creadne T."t - th •. \ppe comman4 "a"

As your first problem. suppose you want to
c:reate some text startins from scratCh. Perhaps
you are typinl the very first draft of a paper:
c:learly it will have to slllrt somewhere. and
undel'lo modifications later. This section will
show how to ,el some tlllt in. just to let slarted.
Later we'lI talk about how to chaRle it,

When t!d is first started. it is rather like work·
in, with a blank piece of paper - there is no
text or information present. This must be sup­
plied by the person usinl td: il is usually done by
typina in the ttxt. or by readinl it into ,d from a
file. We will Slllrt by typin, in some text. and
return shorlly to how to read files.

First a bit of terminolou. In,d jallon. the
texi beinl worked on is said to be "kept in a
bud'er:' Think of the buffer as a work space. if
you like. or simply llS the information lhal you
llre loinl to be edilin,. In effecl lhe buffer is
like the piece of paper. on which we will write
thinas. then change some of them. and finally
file the whole thIng away for another day.

The user tells t!d what to do to his text by
typing insuuC:lions ..:alled:ommands... ~OSI

c:ommands ..:onsisl of a Single leuer, which must
be typed in lower I:ase. Each ..:ommand is typed
on a sep-.u".lle line. ISometimes the command is
preceded b~' information about whal line or lines
of lext are to be "ffeclI:d - we will discuss these
shortly.) Ed makes no response to most ;:om·
mands - there is no prompting or typinl of
messages like "ready". (This silence is preferred
by experienced users. but somelimes a l1angup
for be3lnners,)

The ftrst ..:ommand is ap(ltmi, written as the
lener

a

all by \lseU·. II me:lns ""ppend lor adeU lex I
lines 10 the bulfer. JS I tlipe them in." .-\ppend­
inl is r"tner hke \Hlttn, (resh material on a ptec:e
of paper.

So 10 o!nter lines of !O!:'tt tnlO lhe bun'er. just
lype .1n ;& 101l0\\el.1 ,~ .1 RETt.:R~. foilowed by

the lines of text you want. like this:

•
N ow is the time
for III lood men
to come to the aid of their plrty.

The only way to stop appending is to type a
line that contains only a period. The ... " is used
to tell ed that you have finished appending.
(Even experienced users forget that terminating
..... sometimes. If ed seems to be ignoring you.
type an extra line with just on it. You may
then find you've added some garbage lines to
your text, which you'll have to take out later.>

After the append command has been done.
the buffer will contain the three lines

N ow is the time
for all lood men
to come to the lid of their party.

The and "." aren't there, because they are
not text.

To add more text to what you already have,
just issue another. command, and continue typ­
ing.

Error Mess.les - "!"

If at any time you make In error in the com­
mands you type to ed. it will tell you by typing

?

This is about as cryptic as it can be, but with­
practice, you can usually figure out how you
goofed.

Writing tnt out .5 • file - the Write eommand
··w"

It's likely that you'll want to sive your text
for later use. To write out the contents of the
buffer onto a file. use the MIrtle command

w

followed by the filename you want to write on.
This will copy the buffer's contents onto the
specified file (destroying any previous informa­
tion on the file). To save the teXt on a file
named junk, for example, type

w junk

Leave a space between. and the file name. Ed
will respond by printing the number of characters
it wrote out. In this case, ed would respond with

68

(Remember that blanks and the return character
at the end of each line are included in the char­
acter count.) Writing a tile just makes a copy of

- 2 -

the text - the buffer's contents are not dis­
turbed, so you can go on adding lines to it. This
is an important po in t. Ed a t all times works on a
copy of a file, not the file itself. No change in
the contents of a file takes place until you give a
• command (Writing out the text onto a file
from time to time as it is being created is a lood
idea, since if the system crashes or if you make
some horrible mistake, you will lose all the text
in the buffer but any text that was written onto a
file is relatively safe.>

Leuinl ed - the Quit eommand "q"

To terminate a session with ed. save the text
you're working on by writing it onto a file using
the. command, and then type the command

q

which stands for qUIL The system will respond
with the prompt character ($ or ~>. At this
point your buffer vanishes, with In its text,
which is why you want to write it out before
qUitting.t

Esercise 1:

Enter edand create some text using

I

.. , text ...

Write it out usinl.. Then Ielve ed with the q
command, and print the file. to see that every­
thing worked. (To print a file, say

pr filename

or

cal filename

in response to the prompt character. Try both.)

Readinl text from a file - tbe Edit eommand
"en

A common way to let texl inlo the buffer is
to read it from a file in the file system. This is
what you do to edit text that you saved with the
• command in a previous session. The edit com­
mand e fetches the entire contents of I file into
the buffer, So if you had saved the three lines
"Now is the time", etc" with a • command in
an earlier session. the edcommand

e junk

would fetch the entire contents of the file Junk
into the buffer, and respond

t ACIUIUy. rd will prlnl! if you try 10 qUit WllhoUI wnt·
inl. AI thlt point. wnte if you Willi: if nOlo mother q
will leI you out relinUess.

68

which is the number of characters in junk. If
anything ""s already In th, fJt¥f". " IS d,wfPdfirsT.

If you use the e command to read a file into
the buifer, then you need not use a file name
after it subsequent " command~ td remembers
the last file name used in an • command. and w
will write on this file. Thus a lood way to
operate is

ed
e file
[editinl session)
w
q

This way, you can simply say w from time to
time. and be secure in the knowlectae that if you
lot the file name rilht at the belinninl. you are
writinl into the proper lile each time.

You can find out at any time what file name
td is rememberinl by typinl the filr command f.
In this example. if you typed

f

td would reply

junk

Readln, tnt frolft a IU. - the R cOID.and
urn

Somelimes you want to read a file into the
buifer without destroyinl anythinl thai is already
there. ThiS is done by the rt"adcommand r. The
command

rjunk

Will read the f1le junk into the bulfer: it adds it
to the end of whatever is already in the bulfer.
So If you do it read after an edit:

ejunlc
rjunk

the bulfer will contain twO copies of the text (six
lines).

Now is the time
for all lood men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the wand e commands. r prints the number
of characters read in. after the readinl operation
is complete.

Generally speaking. r is much less used than
e.

- 3 -

Exercise 2:

Experiment with the e command - try read.
in. and printing various files. You may get an
error ~name. where name is the name of a file~
this means that the file doesn't exist. typically
because you spelled the file name wrong. or
perhaps that you d.re not allowed to read or write
it. Try allernately reading and appendinl to see
that they work similarly. Verify that

ed fllename

is exactly equivalent to

ed
e filename

What does

r fllename

do?

Prlnrln, th. contents 01 the buW.r - the Print
command "p"

To p"nr or list the contents of the bulfer (or
parts of it) on the terminal. use the print com­
mand

p

The way this is done is as follows. Specify the
lines where you want pflnting to belin and where
you want it to end. separated by a comma. and
followed by the letler p. Thus to print. the first
two lines of the bulfer. for example. (that is.
lines I thrOulh 2) say

1.2p (startin, line -1. endin, line - 2 p)

Edwil/ respond with

Now is the time
for all load men

Suppose you want to print ail the lines in the
bulfer. You could use 1.3p as above if you knew
there were exactly J lines in the buifer. But in
general. you donOt know how many there are. so
what do you use for the ending line number? £d
provides a shorthand symbol for "line number
of laSl line in bulfer" - the dollar sign S. Use It

this wlY:

I.Sp

This will print ail the lines in the bulfer (line I to
last IineJ If you want to stop the printing before

'it is finished. push the DEl. or Delete key: ed WIll
type

?

and walt for the neXl command.

To print the last line of the buifer, you could
use

$,$p

but t'd lets you abbreviate this to

$p

You can print any single line by typing the line
number followed by a p. Thus

Ip

produces the response

Now is the time

which is the first line of the buffer.

In fact, t'd lets you abbreviate even further:
you can print any single line by typing just the
line number - no need to type the letter p. So
if you say

$

t'd will print the last line of the buffer.

You can also use $ in mmbinations like

S-I,Sp

which prints the last two lines of the buffer.
This helps when you want to see how far you lot
in typinl.

Exercise 3:

As before, create some text using the a com­
mand and experiment with the p mmmand. You
will find, for example, that you can't print line 0
or a line beyond the end of the buffer, and that
attempts to print a buffer in reverse order by say­
ing

3,1p

don't work.

The curreDt JlDe - "Dot" or

Suppose your buffer still mn18ins the six
lines as above, that you have just typed

I.Jp

and t'd has printed the three lines for you. Try
typins just

p (no line numbers)

This will print

to come to tbe aid of tbeir party.

which is the third line of the buffer. In fact it is
the last (most recent) rine that you have done
anything with. (You just printed it!) You can
repeat this p command without line numbers,
and it will mntinue to print line 3.

The reason is that t'd maintains a record of
the last line that you did anything to (in this
case. line 3. which you just printed) so that it

- 4 -

can be used instead of an explicit line number.
This most recent line is referred to by the shon­
hand symbol

(pronounced "dot").

Dot is a line number in the same way that S is; it
means exactly "the current line", or loosely.
"the line you most recently did something to."
You can use it in several ways - one possibility
is to say

•• Sp

This will print aU the lines from (including) the
current line to the end of the buffer. In our
example these are lines 3 through 6.

Some commands chanae the value of dot,
while others do not. The p command sets dot to
the number of the last line printed; the last com­
mand will set both. and S to 6.

Dot is most useful when used in combina­
tions like this one:

.+1 (or equivalently •. + Ip)

This means "print the next line" and is a handy
way to step slowly throulh a buffer. You can
also say

.-1 (or .-lp)

whic:h means "print the line iw/Ore the current
line." This enables you to go backwards if you
wish. Another useful one is something like

.-3 •• -1p

which prints the previous three lines.

Don't fOllet that all of these change the
value of dot. You can find out what dot is at any
time by typing -
Edwill respond by printing the value of dol.

Let's summarize some things about the p
command and dot. EssentiaUy p can be preceded
by 0, I, or 2 line numbers. If there is no line
number given. it prints the "current line". the
line that dot refers to. If there is one line
number given (with or without the letter p). it
prints that line (and dot is set there); and if
there are two line numbers, it prints aU the lines
in that range (and sets dot to the last line
printed'> If two line numbers are specified the
first can't be bigger than the second (see Exer­
cise 2.)

Typing a Single return will cause printing of
the next line - it's equivalent to ,+lp. Try it.
Try typing a -; you will find that it"s equivalent
to .-lp.

Deledn. lines: the "d" command

Suppose you want to get rid of the three
extra lines in the butrer. This is done by the
d'{~t' command

d

Except that d deletes lines instead of prlnuna
them. its action is similar to that of p. The lines
to be deleted are specified for cI exactly as they
are for p:

startln, lin,. ,ndln' lin, d

Thus the command

4.Sd

deletes lines 4 thrOulh the end. There are now
three lines left. as you can checlc by usinl

1,S,

A nd notice that S now is line J! Dot is set to the
next line after the laSI line deleted. unless the
last line deleted is the last line in the butrer. In
that case. dot is set to S.

Exercise 4:

Experiment with I. e. r •• , p and cI until.you
are sure that you know what they do. and until
you understand how dot. S. and line numbers
are used.

If you are adventurous. try usina line
numbers with a. rand. as well. You will find
that a will append lines aJ;,' the line number that
you specify (rather than after dot); that r reads a
file in aJ", the line number you specify (not
necessarily at the end of the butrer): and that.
Will write out exactly the lines you specify. not
necessarily the whole butrer. These variations
are sometimes handy. For instance you can
insert a file at the belinning of a butrer by saying

Or filename

and you can enter lines at the belinning of the
butrer by sayinl

0.
.. , rext . ..

:-lotice that. W IS ,'ery different rrom

w

\fodiCyinl& rut: the Substitute command "5"

We are now ready to try one of the most
Important of all .;ommands - the subsUlute
command

s

- 5 -

This is the command-that is used to chanle indio
v idwal words or letters within a line or Iroup of
lines. It is what you use. for example. for
correcting spelling mistakes and typing errors.

Suppose that by a typinl error, line 1 says

Now is th time

the e has been left olf th.. You can use s to
fix this up as fa llows:

lslth/thel

This says: "in line 1. substitute for the characters
th the characters t~." To verify that it works (ed
will not print the result automatically) say

p

and let

Now is the time

which is what you wanted. Notice that dOl must
have been set to the line where the substitution
took place, since the p command printed thal
line. Dot is always set this way with the s com·
mand.

The leneral way to use the substitute com­
mand is

srarnn,-/i" •• endi",-/;", sI ~ha. th,sJ to Ihl1l

Whatever strina of characters is between the ~rst
pair of slashes is replaced by whatever is between
the second pair. in all the lines between sta"",,-
1m. and end",,-lin,. Only the first occurrence on
each line is chanled_ however. If you want to
change e\'~ry occ:urrence. see Exercise S. The
rules for line numbers are the same as those ror
p. except that dot is set to the last line chanled.
(But there is a tTap for the unwary: if no substi­
tution took place. dot is lIot changed. This
causes an error? as a warninlJ

Thus you can say

1.551 speHnl/spellina/

and correct the first speUing mistake on each line
in the texL (This is useful for people who are
consistent misspellers!)

If no line numbers are given. the s command
assumes we mean "make the substitution on line
dot". so it changes thinls only on the current
line. This leads to the very common sequence

s/somethinl/somethinl else/p

which makes some correction on the current
line. and then prints it. to make sure it worked
out right. If it didn't. you can try again. (Notice
that :here is :1 p on the same line as the s .:om­
mand. With few e:occeptlons. p can follow any
command: no other multi-command lines Jre
legal.)

It's also legal to say

sl ... II
which means "change the first string of charac­
ters to "nothing". i.e .• remove them. This is
useful for deleting extra words in a line or
removing extra letters from words. For instance.
if you had

Nown is the time

you can say

s/xxllp

to get

Now is the time

Notice that II <two adjacent slashes) means "no
characters". not a blank. There IS a difference!
(See below for another meaning of I /J

Exercise S:

Experiment with the substitute command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example. do this:

•
the other side of tbe coin

sltheloD thelp

You will get

on the other side of tbe coin

A substitute command changes only the first
occurrence of the first string. You can change aU
occurrences ·by addina a I (for "alobal") to the s
command. like this:

sl ... I ... liP

Try other characters instead of slashes to delimit
the two sets of characters in the s command -
anythina should work except blanks or tabs.

(Jf you get funny results using any of the
characters

s • \ tl

read the section on "Special Characters"'>

Context searchinc - "I ... r'
With the substitute command mastered. you

can move on to another highly important jdea of
~d - context searching.

Suppose you have the original three line text
in the buffer:

Now is the time
for all lood men
to come to the aid of their party.

- 6 -

Suppose you want to find the line that contains
thelf so you can change it to the. Now with only
three lines in the buffer. it's pretty easy to keep'
track of what line the word the" is on. But if the
buffer contained several hundred lines. and
you'd been making changes. deleting and rear­
ranging lines. and so on, you would no longer
really know what this line number would be.
Context searching is simply a method of specify­
ing the desired line. regardless of what its
number is. by specifying some context on it.

The way to say "search for a line that con­
tains this particular suing of characters" is to
type

I string 0/ characlI!rs w~ want ID fi ndl

For example. the ~dcommand

Itheirl

is a context search which is sufficient to find the
desired line - it will locate the next occurrence
of the characters between slashes ("their"). It
also sets dot to that line and prints the line for
verification:

to come to tbe aid of tbeir party .

"Next occurrence" means that ~d starts looking
for the string at line .+1. searches to the end of
the buffer, then continues at line 1 and searches
to line dot. (That is. the search "wraps around"
from S to 1'> It scans all the lines in the buffer
until it either finds the desired line or gets back
to dot again. If the given string of characters
can't be found in any line. ~d types the error
message

?

Otherwise it prints the line it found.

You can do both the search for the desired
line and a substitution aU at once. like this:

Itheir/sltheir/the/p

which will yield

to come to the aid of the party.

There were three parts to that last command:
context search for the desired line. make the
substitution. print the line.

The expression Ithelrl is a context search
expression. In their simplest form. all context
search expressions are like this - a suing of
characters surrounded by slashes. Context
searches are interchangeable with line numbers.
50 they can be used by themselves to find and
print a desired line. or as line numbers for some
other command. like 5. They were used both
ways in the examples above.

Suppose the buffer contains the three familiar
lines

Now is the time
for aU lood men
to come to the aid of their party.

Then the ed line numbers

INow/+l
IloodJ
Iparty/-l

are all context search expressions. and they all
refer to the same line (line 2), To make a
change in line 2. you could say

INowl + ls/loodJbadJ

or

IloodJs/loodJbadl

or

Iparty/-lsllood/badJ

The choice is dictated only by convenience. You
could print all three lines by. for instance

INow/.lparty/p

or

INow/.lNowl + 21'

or by any number of simihar combinations. The
nrst one of these miaht be better if you don't
know how many lines are involved. (Of course.
if there were only three lines in the butrer. you'd
use

1.S"
but nOI If there were several hundredJ

The basic rule is: a conlext search expression
is ,Ir, SlIme' as a line number, so it can be I.Ised
wherever a line number is needed.

Exercise 6:

Experiment with context searching. Try a
body of text with several occurrences of the
same string of characters. and scan through it
using the same context search.

Try usins context searches as line numbers
for the substllute. print and delete commands.
(They can also be I.Ised with r. w. and .,)

Try context searching using ?text? instead
of Itext/. This scans lines in the buffer in
reverse order rather than normal. This is some­
times I.Iseful if you go too far while looking for
some string of cnaracters - it's an easy way to
back 1.11'.

(If you get funny results with any of the
characterS

- 7 -

S • \ cI:
read the section on "Special Characters"')

Ed provides a shorthand for repe:uins a con­
text search for the same string. For example.
the ed line number

Istrinll

will find the next occurrence of lurln •. , It often
happens that this is not the desired line. so the
search must be repeated. This can be done by
typina merely

/I

This shorthand stands for "the most recently
used context search expression." It can also be
used as the first strina of the substitute com·
mand. as in

Isuinll/silsuinl21

which will find the next occurrence of strinl!
and replace it by strlnal. This can save a lot of
typinl. Similarly

??

means "scan backwards for the same expres­
sion."

Chanle and I asert - "c" a. "I"
This section discusses the eITGIlI't' command

c

which is used to chanae or replace a group of
one or more lines. and the IIlst'rr command

which is used for insertinl a group of one or
more lines.

"Chanse'·. written as

c

is used to replace a number of lines with
different lines. whICh are typed in at the termi­
nal. For e:cample, to change lines. +1 through $
to something else. type

.+ l.Sc
••. rype ,lit' Imes oj ".'{I you wanl IIt'rt' ...

The lines you type between the c: command and
the. w,1I take the place of the original lines
between start line and end line. This is most
useful in replacinl a line or several lines whICh
.have errors 1M them.

If only one line is specified in the c: com­
mand. then just that line is replaced. (You ~3n
type In 35 many replacement lines as you like.!
~otlce the use of. to end the input - thiS
works Just like the . In :he .lppend ..:ommand

and must appear by itself on a new line. If no
line number is liven. line dot is replaced. The
value of dot is set to the last line you typed in.

"Insert" is similar to append - for instance

Istriaa/i
• • • (Ype the lines to be JnSlrlltd here. . .

will insert the given text be/ore the next line that
contains "suing". The text between i and. is
inSlrted be/ore the specified line. If no line
number is specified dot is used. Dot is set to the
las I line inserted.

Exercise 7:

"Change" is rather like a combination of
delete followed by insert. Experiment to verify
that

start. endd

· •. IItxt. .•

is almost the same IS

slart. endc
· •• Itxt . ••

These are not pr«ise~ the same if line S ,ees
deleted. Check this out. What is dot?

Experiment with a and i, to see that they are
similar, but not the same. You will observe that

line-number a
• •• teXt • ••

appends a/lltr the liven line, while

Ii fW- ,."nber i
• •. IItXt • ••

inseres be/ore it. Observe that if no line number
is liven, i inserts before line dot, while a
appends after line dot.

Movlna text around: the "m" command

The move command m is used for cuttinl
and pastinl - it lets you move a IrouP of lines
from one place to another in the buffer. Sup­
pose you want to put the first three lines of the
buffer at the end instead. You could do it by
sayina:

1,3111 temp
Sr temp
1,3d

(Do you see why?) but you can do it a lot easier
with the m command:

• 8 •

1,3mS

The aeneral case is

start line, end line m after this line

Notice that there is a third line to be specified -
the place where the moved stuff lets put. Of
course the lines to be moved can be specified by
contexl searches; if you had

First paralraph

end of first paralraph.
Second para,raph

end of second parqraph.

you could reverse the two paraaraphs like this:

ISecond/,/end of second/m/First/-1

Notice the -I: the moved lextlocs a/It' the line
mentioned. Dot lets set to the last line moved.

The alo_1 comma"'l ' .. " and '~ ..
The global command I is used to execute one

or more ed commands on all those lines in the
buffer that match some specified suinl. For
example

a/pelial/p

prines aU lines that contain peU.... More use­
fully,

I/pelial/sllpeUbta/lP

makes the substitution everywhere on the line.
then prints each corrected line. Compare this to

l,Ss/peliaa/peUiaa/,p

which only prints the last line substituted.
Another subtle difference is that the I command
docs not live a! if peliDa is not found where
the s command will.

There may be several commands (including
a. c. i. r. -. but not a): in that case, every line
except the last must end with a backslash \:

,/xxx/. -ls/abc/def/B
• +2s/lhi/jkVB
.-2 •. p

makes chanles in the lines before and after each
line that contains xxx. then prints all three lines.

The v command is the same as I. except that
the commands are executed on every line that
does not match the string following v:

vlld

deletes every line that does not contain a blank.

Special Cha,.cters

You may have noticed that thinp just don't
work risht when you used some characters like .•
-, S. and others in context searches and the sub­
stitute command. The reason is rather complex,
althoulh the cure is simple. Basically, ed treats
these characters as special. with special mean­
inas. For instance. tn (I CO"IIIxt SftIfCh or the first
strtn, 0/ the subs,,,u. command on~ • • means
"any character, ,. not a period. so

1"1..,1

means "a line with an I. (lny chartlClllr, and a 'I."
1101 JUSt "a line with an I. a period. and a '1_" A
complete list of the special characters that can
cause trouble is the foUowinl:

• s . \

War",,,,: The bacleslash character \ is special to
,do For safetY's sake. avoid it where possible, If
you have to use one of the special characters in a
substitute command. you can tutn otC its malic
meaninl temporarily by precedinl it wilh the
bacalash. Thus

s/\\\.\-/backsluh dot swl

will chanle \ •• into "bacleslash dot sw",

. Here is a hurried synopsis of the other special
characters. First. the circumfiu - silnifies the
belinninl of a line. Thus

rStr1all

finds strfnl only if it is at the bqinninl of a
line: it will fi nd

suial

but not

the strial ...

The dollar·siln S is just the opposite of the
CIrcumflex: it means the end of a line:

IsuinlSI

will only find an occurrence of 5trinl that is at
the end of some line, This implies. of course.
that

rsuinlSI

will find only a line that contains just strinl. and

r.sl
finds a line containinl exactly one character,

The character " as we mentioned above.
matches anything:

Ix.yl

matches any of

·9·

I+Y
I-y
xy
I.y

This is useful in conjunction with -, which is a
repetition character a- is a shorthand for "any
number of .s:· so •• malChes any number of
any things. This is used like this:

s/.-/Slutrl

which changes an entire line. or

s/.-,II

which deletes all characters in the line up to and
includinl the laSt comma. (Since •• finds the
lonlesl possible match, this loes up to the lasl
comma.)

1 is used with I to form "character classes";
for example.

1(01234567891/

matches any sinlle dilit - anyone of the char·
acters inSide the braces will cause a matCh. This
can be abbreviated to 10-91.

Finally. the " is another shorthand character
- it is used oniy on the risht·hand part of a sub·
slUute command where it means "whatever was
matched on the left· hand side", It is used to
save typinl. Suppose the current line contained

Now is the tilDe

and you wanted to put parentheses around it.
You could JUSt retype the line. but this is tedi­
ous. Or you could say

srl(J
s/S!) I

uSing your knowledle of • and S. But the easiest
way U5es the Ie:

5/.-' (It.) I

This says "match the whole line. and replace it
by itself surrounded by parentheses." The Ie can
be used several times in a line: consider usinl

s/. -, &? It.!!/

to produce

Now is the time? Now is the time!!

You don't have to match the whole line. of
course: If the buffer contains

the end of the world

you could type

/world/s"It. is at hand/

:0 produce

the end of the world is at hand

Observe this expression carefully. for it iIIus·
trates how to take advantage of edto save typing.
The siring Iworldl found the desired line; the
shorthand II found the same word in the line;
and the" saves you from typing it again.

The" is a special character only within the
replacement text of a substitute command. and
has no special meaning elsewhere. You can turn
off the special meaning of" by preceding it with
a \:

51 ampersandl\ctl

will convert the word "ampersand" inlo the
literal symbol" in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the
command name. perhaps preceded by one or two
line numbers. and. in the case of e. r, and ",
followed by a file name. Only one command is
allowed per line, but a p command may follow
any other command (except for e, r, " and q).

a: ~ppend, that is, add lines to the buffer (at line
dot. unless a different line is specified). Append·
ing continues until. is typed on a new line. Dot
is set to the last line appended.

c: Chanle the specified lines to the new lext
which follows. The new lines are terminated by
a ., as with a. If no Jines are specified, replace
line dot. Dot is set to last line chanaed.

d: Delete the lines specified. If none are
specified, delete line dot. Dot is set to the first
undeleted line, unless S is deleted. in which case
dot is set to S. •

e: Edit new file. Any previous contents of the
buffer are thrown away, 50 issue a " beforehand.

f: Print remembered filename. If a name follows
f the remembered name will be set to it.

I: The command

1I···/commands

will execute the commands on those lines that
contain -, which can be any context search
expression.

I: Insert lines before specified line (or dot) until
a . is typed on a new line. Dot is set to last line
inserted.

m: Move lines specified to after the line named
after m. Dot is set to the last line moved.

p: Print specified lines. If none specified, print
line dot. A single line number is equivalent to
Ime-number p. A sinlle return prints .+1, the

• 10 -

next line.

q: Quit ed. Wipes out all text in buffer if you
give it twice in a row without first giving a "
command.

r: Read a file into buffer (at end unless specified
elsewhere,) Dot set to last line read.

s: The command

51 striDI 11 striDllI

substitutes the characters strinll into strinll in
the specified lines. If no lines are specified,
make the substitution in line dot. Dot is set to
last line in which a substitution took place, which
means that if no substitution took place. dot is
not changed. s changes only the first occurrence
of striDII on a line; to change all of them. type
a I after the final slash.

y: The command

v/---/commands

executes commands on those lines that do not
contain -.
w: Write out buffer onto a file. Dot is not
changed.

.-: Print value of dot. (- by itself prints the
value of S')

!: The line

!command-Iine

causes command-One 10 be executed as a UNIX
command.

1--/: Context search. Search for next line
which contains this strina of characters. Print it.
Dot is set to the line where strina was found.
Search starts at • + 1, wraps around from S to 1,
and continues to dot. if necessary.

1--1: Context search in reverse direction.
Start search at .-1. scan to 1. wrap around to S.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make
effective use of the UNlxt facilities for preparing and editing text. It provides
explanations and examples of

• special characters. line addressing and global commands in the editor ect
• commands for "cut and paste" operations on files and parts of files.

including the my. CPt eat and rm commands. and the r. w. m and t com­
mands of the editor,

• editing scripts and editor-based programs like lrep and sed.
Although the treatment is aimed at non-programmers. new users with any

backaround should find helpful hints on how to get their jobs done more easily.

AUlust 4. 1978

tUNIX is • Trademuk of Bell Laboratories.

Advanced Editinl on UNIX

Br;an W. Kernighan

Bell Laboratories
Mumy Hill. New Jersey 07974

1. INTRODUCTION

Althoulh UNlxt provides remarkably
etfective tools ror text editina. that by itself is no
luanntee that everyone will automaticany make
tbe mOIl etfective use 0(them. In particular.
people who are not computer specialists - typoo
ists. secrecaries. casual users - often use the
system less etfectively than the, mipL

This document is intended u a sequel to A
Tutoflal In"oducllolf to th~ UNIX Text Editor [1).
providinl explanations and examples of how to
edit with less etfon. (You should also be rami­
liar with the material in UNIX For _Ifn~rs (2).)
Further information on all commands discussed
here can be round in Th~ UNIX ProRttl",,,,.,.',
.'vianual (3).

Examples are based on observations of
users and the diftlcullies they· encounter. Topics
covered include special characters in searches
and substitute commands. line addressina. the
global commands. and line movinl and copyina.
There· are also brief discussions of etfective use
of related tools. like those for file manipulation.
and those based on eeL like Irep and s

A word of caution. There is only one way
to learn to use somethinl. and that is to U~ it.
Readinl a description is no substitute for tryinl
somethinl. A paper like thisQne should live
vou ideas about what to try. but until you actu­
~IlY try somethinl. you will not learn it.

2. SPECIAL CHARACTERS

The editor eel is the primary interface to
the system for many people. so it is worthwhile
to know how to get the most out of eel for the
least effort.

The next few sections will discuss
shortcuts and labor·savinl devices. Not all of
these will be instantly useful to anyone person.
of course. but a few will be. and the others
should give you ideas to store away for future
use. And as always. until you try these things.

.. t:~IX is a Trademark of Bell LaboratorIes.

they will remain theoretical knowledae. nOl
samethinl you have confidence in.

Th. Lise commanll 'I'
ell provides tWO commands for printinl the

contents of the lines you're editina. Most people
are familiar with Po in combinations lilee

1.Sp

to print aU the lines you're editina. or

slabcJdef/p

to chanae 'abc' to 'de" on the currene line. Lea
familiar is the lill command I (the letter '1".
which lives sliihtly more information than Po In
particular. I makes visible chU'lCters thal are
normally invisible. such u tabs and backspaces.
If you list a line that contains some of these, I
will print each tab u • and each backs ... u
~. This makes it much euier to correct the son
of t)'pinl mistake that inserts extra spaces adja­
cent to tabs. or inserts a backspace followed by a
space.

The I command also 'folds' lonl lines for
printinl - any line that exceeds 72 characters is
printed on multiple lines~ each print~ line
except the last is terminated by a bacltslash \. so
you can tell it was folded. This is useful ror
prinlinl lonl lines on short terminals.

Occasionally the I command will print in a
line a slrinl of numbers preceded by a bacltslash.
such as \07 or \16. These combinalions are used
to make visible characters that normally don't
print. like form feed or vertical tab or bell. Each
such combinalion is a single character. When
you see such characters. be wary - they may
have surprisinl meanings when printed on some
terminals. Often their presence means thai your
finger slipped while you were t)'pinl: you almost
never want them.

The Substitute Command '5'

~ost of the next few sections will be taken
up with a discussion of the substitute command
5. Since this is the command for changing the

contents of individual lines, it probably has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin, recall the
manin, of a trailin, , after a substitute com·
mand. With

II thisl thatl

and

s/this/that/l

the first one replaces the ,first 'this' on the line
with 'that'. If there is more than one 'this' on
the line, the second form with the trailinl ,
chan,es all of them.

Either form of the s command can be fol­
lowed by p or I to 'print' or 'list' (as described in
the previous section) the contents of the line:

s/this/tbatl p
s/this/that/l
s/tbis/that! ,p
s/this/thatl II

are all lepl, and mean sliahtly different thinas.
Make sure you know wbat the differences are.

0(course, any I command can be pre­
ceded by one or two 'line numbers' to specify
that the substitution is to take place on a If'Oup
of lines. Thus

I,Ss/mispelll misspelll

chan,es the fint occurrence of 'mispell' to
'misspell' on every line of the ftle. 'But

I,SsI mispelVmisspell/g

cbanges ~~", occurrence in' every line (and this
is more likely to be wbat you wanted in this par­
ticular case).

You sbould also notice that if you add a p
or I to the end of any of these substitute com·
mands, only the last liDe that lot chanled will be
printed. not all the lines. We will talk later about
how to print all the lines that were modified.

The Uado Commaad 'a'

Occasionally you will make a substitution
in a line. only to realize too late that it was a
pastly mistake. The 'undo' command a lets
you 'undo' the last substitution: the last line that
was substituted can be restored to its previous
state by typin, the command

u

- 2 •

Tbe Metachancter '.'
As you have undoubtedly noticed when

you use edt certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu­
lar line. In the next several sections, we will talk
about these special characters, whicb are often
called 'metacharacters'.

The first one is the period '.'. On the left
side of a substitute command, or in a search with
'1 ... 1', '.' stands for any single character. Thus
the search

Ix.yl

finds any line where 'x' and 'y' occur separated
by a single character, as in

x+y
x-y
Xcy
x.y

and so on. (We will use c to stand for a space
wbenever we need to make it visible.)

Since'" matches a sinlle character, that
lives you a way to deal with funny characters '
printed by L Suppose you bave a line that, wben
printed with the I command, appears as

.... tb\07is

and you want to aet rid of the \07 (which
represents the bell character. by the way).

The most obvious solution is to try

s/\0711

but this will fail. (Try it.) The brute force solu­
tion, which most people would now take. is to
re-type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
question isn't too big, but for a very long line,
re-typin, is a bore. This is where the metachar­
acter '.' comes in handy. Since '\07' really
represents a single chancter, if we say

s/th.islthisl

the job is done. The': matches the mysterious
character between the 'h' and the 'i', IIIIhal~ver il
is.

Bear in mind that siDce '.' matches any
single character. the command

51 J,I

converts the first character on a line into a ',',
which very often is not what you intended.

As is true of many characters in ecI., the '.'
has several meanings. depending on its context.
This line shows all three:

oSl J J

The first': is a line number, the number of the
line we are editin.. which is called 'line dot',
iWe will discuss line dot more in Section 3,) The
second '.' is a metacharacter thal matches any
single character on that line. The third'.' is the
only une that really is an honest Iiteraj period.
On the f/,~ht side of a subStitution. ''!. is not Sl'e'
cial. If you al'l'ly this command to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

The Backslub '\'
Since a period means 'any characler', the

question naturally arises of what to do when you
really want a period. For example. how do you
convert the line

Now is the time.

into

~ow is the time?

The baclcslash '\' d.. the job. A backslash
turns oft' any special maninl that the ftext char·
acter might have: in particular. '\: converts the
'.' from a 'match anythinl' into 'a period. so you
can use it to replace the period in

~ow is the time.

like this:

s/\J?1

The pair of characters '\: is considered by etI to
be a single real period.

The backs lash can also be used when
searching for lines that contain a special charac­
ter, Suppose you are lookin. for a line that can·
tains

.PP

The search

I.PPI

isn't adequlle, for it will find a line like

THE APPtICA nON OF ...

because the ' " matches the letter' A', But if you
say

I\.PPI

you will find only lines that contain' .PP·.

The backslash can also be used to tum oft'
special meanings for characters other than '_ •.
For example, consider finding a line that can-

• J •

tains a backslash. The search

1\1

won't work. because the '\' isn't a literal '\', but
instead means that the second '/' no longer
delimits the search. But by precedinl a backslash
with another one. you can search for a Iiteraj
backslash. Thus

1\\1

does work. Similarly, you can search for a for·
ward slash '/' with

IVI

The backslash turns ote the meaninl of the
immediately followinl • r so thai it doesn't ter·
minatl thl 1 .. .1 construction premalurely.

As an exercise. before readinl further,
find two substitute commands each of which wiU
convert thl line

\x\.\y

into tbe line

\x\y

Here are several solutions: verify that each
works as advertised.

s/\\\JI
s/.,..JxJ
s/ •• Vlyl

A coul'le of miscellaneous notes about
backslashes and sl'lCill characters. First. you
can use any character to delimit the pieces of an
s command: there is notbinl sacred about
slashes. (But you must use slasbes for context
searchin ..) For instance. in a line that contains a
101 of slashes already, like

lIexec I/sys.(Oft.lo /I etc •.•

you could use a colon as the aelimiter - to
delete all the slashes. type

s:/::1

Second. if # and ~ are your character
erase and line kill characters. you have to type
\11 and \<I~ this is true whelher you're talkina to
etI or any other proaram.

When you are addinl text with lor lor c:.
backslash is not sl'ecill. and you should only put
in one baclcslash for each one you really waftt.

The Dollar Sip'S"

The next metacharacter, the 'S', stands for
'the <:nd of the line'. As its most obvious use.
suppose you have the line

Now is the

and you wish to add the word 'time' to the end.
Use the S like this:

slSlclimel

to let

Now is the lime

Notice that a space is needed before 'time' in the
substitute command, or you will let

Now is thetime

As another example, replace the second
comma in the following line with a period
without altering the first:

Now is the time, for all lood men,

The command needed is

sl,SI J

The S sian here provides context to make specific
which comma we mean. Without it, of course,
the I command would operate on the first
comma to produce

into

Now is the time. for all lood men,

As another example, to conven

Now is the time.

Now is the time?

as we did earlier, we can use

s/.S!?1

Like .:, the 'S' has multiple meaninas
dependinl on context. In the line

Sa/S/SI

the first 'S' refers to the last line of the file, the
second refers to the end of that line, and the
third is a literal dollar sian, to be added to that
line.

The Clrcamfiex OA,

The circumflex (or hat or caret) ,A, stands
for the beainninl of the line. For example, sup­
pose you are lookinl for a line that beains with
'the'. If you simply say

Ithel

you will in all likelihood find several lines that
contain 'the' in the middle before arriviDI at the
one you want. But with

rthel

you Darrow the context, and thus arrive at the
desired one more easily.

- 4 -

The other use of ,-, is of course to enable
you to insen something at the beginning of a
line:

sr/cl

places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line that contains only the characters

.PP

you can use the command

I,"\.PPSI

The Star '.'

Suppose you have a line that looks like
this:

,~xt X y ,~xt

where ,~x, stands for lots of text, and there are
lOme indetenninate number of spaces between
the It and the y. Suppose the job is to replace all
the spac:es between x and y by a single space.
The line is too lona to retype. and there are too
many spaces to count. What now?

This is where the metacharacter '.' comes
in handy. A character followed by a star stands
for as many consecutive occurrences of that
character as possible. To refer to all the spaces
at once, say

s/xc·y/xcyl

The construction ·c·' means 'u many spaces as
possible'. thus ·xc.y' means 'an x, as many
spaces as possible, then a y'.

The star can be used with any character,
not just space. If the orisinal example was
instead

,~xt x--------y '~X1

then all '-' sians can be replaced by a single
space with the command

sIx -.y/xeyl

Finally, suppose that the line was

lext x •••••••••••••••••• y lexl

Can you see what trap lies in wait for the
unwary? If you blindly type

slx.eylxeyl

what will happen? The answer. naturally, is that
it depends. If ~here are no other x's or y's on
the line, then everything works. but it's blind
luck, not 100d management. Remember that '.'
matches any single character? Then' ,.' matches
as many sinale characters u possible. and unless

you're careful. it can eat up a lot more of the
line than you ex~ted. If the line was. for
example. like this:

lext It le.TI It ••••• ••••••••••• y le.'C1 y le.TI

then sayinll

s/x.-y/xeyl

will take everythinl from the /in, 'x' to the Ian
'y', which. in this example. is undoubtedly more
than you wanted.

The solution. of coune. is to tum off' the
special meaning of': witb ',::

sl It\ .-yl x r:. yl

Now everythina works. for ', •• ' means 'as many
J1#"ods as possible'.

There are times when the pattern ' •• ' is
exactly what you warn. For example. to chance

Now is the time for all ioad men ...•

into

Now is the time.

use ' •• ' to eat up everythina after the 'for':

sl :for.·1 J

There are a couple of additional pitfalls
associated with '.' that you should be aware of.
Most notable is the fact that 'as many as possi­
ble' means :ero or more. The fact th.l zero is I

legitimate possibility is sometimes rather surpris­
ina. For example. if our line contained

le.Tf lty le.Tf x

and we said

s/x:-ylx:yl

Y 1~'C1

the /im 'xy' matches this pattern. for it consists
of an 'x'. zero spaces. and a 'y'. The result is
that the substitute acts on the first 'xy', and does
not touch the later one that actually contains
some intervening spaces.

The way around this. if it matters. is to
specify a pattern like

/x-:.:-yl

which says 'an x. a space. then as many more
spaces as possible. then a y', in other words. one
or more spaces.

The other startlina behavior of '-' is again
related to the fact that zero is a legitimate
number of occurrences of something followed by
a star. The command

s/x-Iy/g

when applied to the line

·5·

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is th.t zero is a
legal number of matches. and there are no x's at
the beginning of the line (so that iets converted
into a 'y'). nor between the 'a' and the 'b' (so
that ietS converted into I 'y'), nor ... and so on.
Make sure you really want zero matches; if not,
in this case write

s/u·/y/g

'xx·' is one or more It·s.

The Brackets 'f "
Suppose that you want to delete any

numbers that appear at the beginninl of all lines
of a file. You misht fint think of tryin, a series
of commands like

I.Ssrl·/I
I.SsI"2·/I
I.Ssr3·/I

and so on. but this is clearly ioinl to talce for­
ever if the numbers are at all Ion.. Unless you
want to re~at the commands over and over until
finally all numbers are gone. you must let all the
digits on one pass. This is the purpose of the
brackets (and I.

The construction

(0123456789)

matches any single diait - the whole thina is
called a 'character class'. With a character class.
the job is easy. The paltern '(0123456789)-'
matches zero or more diailS (an entire number),
so

I.Ssr (0123456789)·/1

deletes all digits from the beginning of all lines.

Any characters can appear within a charac·
ter class, and just to confuse the issue there are
essentially no special characters inside the brack.
ets~ even the bacl<slash doesn't have a special
meaning. To search for special characters. for
example. you can say

I[.\S"{]I

Within (, .. 1. the '(' is not special. To iet a')'
into a character class. make it the first character.

It's a nuisance to have to spell out the
digits. so you can abbreviate them as [0-91;
similarly. [a - zl stands for the lower case letters.
and (A -ZI for upper case.

As a final frill on character classes. you can

specify a class that means 'none of the followina
characters'. This is done by beginnina the class
with a '-':

stands for 'any character rxC"rp' a diJiI'. Thus
you miJht find the first line that doesn'l beain
with a tab or space by a search like

rnspace)(tab)J!

Within a character class. the circumOex has
a special mean ina only if il occurs at the besin­
nina. Just to convince yourself. verify that

rr-J!

finds a line that doesn't begin with a circumflex.

Tbe Ampersand 'a'
The ampersand '". is used primarily to

save typina. Suppose you have the line

Now is the time

and you Wlnt to make it

Now is the best time

Of course you can always say

sltbeltbe bestl

but it seems silly to have to repeat the 'the'.
The "'"~ is used to eliminate the repetition. On
the right side of a substitute, the ampersand
means 'whatever wu just matched', so you can
say

s/the/" best!

and the '". will stand for 'the'. Of course this
isn't much of a saving if the thina matched is
just 'the', but if it is somethina truly lona or
awful, or if it is something like '.-' which
matches a lot of text, you can save some tedious
typina. There is also much less chance of mak­
ina a typina error in the replacement text. For
example. to parenthesize a line. rellrdless of its
lenath,

s/.-I (")1

The ampersand can occur more than once
on the riabt side:

s/the/" best and " worst!

makes

Now is the best and the worst time

and

s/.-III.? "!!I

converts the orisinal line into

- 6 -

Now is the time? Now is the time!!

To aet a literal ampersand, naturally the
backsluh is used to tum off the special meanina:

s/ampersand/\'"

converts the word into the symbol. Notice that
'&:' is not special on the left side of a substitute,
only on the fIght side.

Subltltullnl Newllnes
etI provides a facility for splitting a single

line into two or more shorter lines by 'substitut­
ina in a newline'. As the simplest example, sup­
pose a line has aoUen unmanaaeably long
because of editina (or merely because it was
unwisely typed). If it looks like

~JCt J:y lUI •

you can break it between the 'x' and the 'y' like
this:

IIJ:y/x\
yl

This is actually a sinale command, althouch it is
typed on two lines. Bearina in mind that '\'
turns ot! special meaninp. it seems relatively
intuitive that a '\' at the end of a line would,
make tbe newline there no loncer special.

You can in fact make a lin&le line into
sevenl lines with tbis same mechanism. As a
larae example, consider underiinina tbe word
'very' in a lonl line by splittinl 'very' onto a
separate line, and precediDI it by the roff or nroff
formattina command '.uI'.

lUI a very bia tUJ

The command

slcveryc/\
.w\
very\
I

converts the line into four shorter lines, preced­
ina the word 'very' by the line '.ul', and elim­
inatina tbe spaces around the 'very', all at the
same time.

When a newline is substituted in, dot is
left paintina at the last line created.

Joininl Lines
Lines may also be joined toaether, but this

is done with the J command instead of s. Given
the lines

Now is
o the time

and supposinl that dot is set 10 the first of them, ..

then the command

joins them together. No blanks are added. which
is why we carefully showed a blank at the begin­
ning of the second line.

All by itself. a j command joins line dot to
line dot +- 1. but any contilluous set of lines can
be joined. lust specify the stanina and endinl
line numbers. For example.

I,Sjp

joins all the lines into one big one and prints it.
(More on line numbers in Section J.)

Re.mnpn. a Line witb \ (.•• \)
(This section should be skipped on first

reading.) Recall thac • .t' is a shorthand that
stands for whatever was matched by the left side
of an s command. (n much the same way you
can capture separate pieces of what was matched~
the only ditrerence is that you have to specify on
the left side just what pieces you're interested in.

Suppose. for instance. that you have a fiJe
of lines that consist of names in the form

Smith, A. B.
lones. C.

and so on. and you want the initials to precede
the name. as in

A. B. Smith
C. lanes

It is possible to do this with a series of editinl
commands. but it is tedious and error-prone. (It
is instructive to fiaure out how it is done.
though.)

The alternative is to 'tal' the pieces of the
pattern (in this case. the last name, and the ini­
tials). and then rearranlle the pieces. On the teft
side of a substitution. if part of the pattern is
enclosed between \ (and \). whatever matched
that pan is remembered. and available for use on
the nght Side. On the right side. the symbol '\ I'
refers to whatever matched the first \ C .• \) pair.
'\2' to the second \ L.\). and so on.

The command

1.Ss/\ «(" .I-\) ,: -\ (.-\)1\2: \ 1/

althoullh hard to read, does the job. The first
\ C .. \) matches the last name, which is any strinl
up to the comma; this is referred to on the right
Side with '\1'. The second \C .. \) is whatever
follows the comma and any spaces, and is
reierred to .1S .\ 2'.

Of course. with any editing sequence this
complicated. It'S foolhardy to slml'ly run it and

- 7 •

hope. The global commands I and y discussed
in section " provide a way for you to print
exactly those lines which were affected by the
substitute command. and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressinl in eeL that is. how you
specify what lines are to be atrected by editinl
commands. We have already used constructions
like

1.Ss/x/yl

to speciry a change on all tines. And most users
are toni since familiar with usinl a single new­
line (or rerum) to print the next line, and with

Ithinll

to lind a line that contains 'thinl" Less familiar.
surprisingly enoulh. is the use of

?thinl?

to scan backwards for the previous occurrence of
'thinl'. This is especially handy when you real­
ize that the thinl you want to operate on is back
u!) the pap from where you are currently edit­
ina.

The slash and question mark are the only
characters you can use to delimit a context
search. thoulh you can use essentiaUy any char­
acter in a SUbstitute command.

Address .-\rithmetic

The next ste;» is to combine the line
numbers like ':, 'S', 'I .. r and '? .. ?' with '+'
and '-'. Thus

S-1
is a command to print the next to last tine of the
current file (that is. one line before line'S').
For example. to recall how far you got in a previ­
ous editinl session,

S-5,Sp

prints the last six lines. (Be sure you understand
why it's six. not five.) If there aren't six. of
course. you'll get an error messale.

As another example.

.-3,,+3p

prints from three lines before where you are now
(at line dot) to three lines after. thus givinl you
a bit of context. By the way, the '+' can be
omitted:

• - 3 •• Jp

is absolutely identical in me:ming.

Anoth'er area in which you can save typing
effort in specifyins lines is to use '-' and '+. as
line numbers by themselves.

by itself is a command to move back up one line
in the file. In fact, you can string several mi~us
sisns tosether to move back up that many lines:

moves up three lines, as does '-3'. Thus

-3,+3p

is also identical to the examples above.

Since '-' is shorter than '. - 1', construc­
tions like

- ,.s/bad/soodl

'Ire useful. This chanles 'bad' to 'Iood' on the
previous line and on the current line.

'+' and '-' can be used in combination
with searches usins '1 ... 1' and '? ... ?', and with
'S' . The search

Ithinl/--

finds the line containinl 'thins', and positions
you two lines before it.

Repeated Searches

Suppose you asle: for the search

Ihorrible thinal

and when the line is printed you discover that it
isn't the horrible thinl that you wanted, so it is
necessary to repeat the search apin. You don't
have to re-type the search. for the construction

/I

is a shorthand for 'the previous thinl that was
searched for', whatever it was. This can be
repeated as many times as necessary. You can
also 10 backwards:

??

searches for the same thinl. but in the reverse
direction.

Not only can you repeat the search. but
you can use 'II' as the left side of a substitute
command. to mean 'the most recent pattern'.

Ihorrible thinal
.... «1 p,ints lint with 'ho"iblt thing' ...

sl/Sood/p

To go backwards and change a line, say

??sl/goodl

Of course, you can still use the '.t' on the rilht
hand side of a substitute to stand for whatever

- 8 -

sot matched:

IIsl/.tc.t/p

finds the next occurrence of whatever you
searched for last, replaces it by two copies of
itself. then prints the line just to verify that it
worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a command if you don't specify the
lines it is to act on, and on what line you will be
positioned (i.e., the value of dot) when a com­
mand finishes. If you can edit without specifying
unnecessary line numbers, you can save a lot of
typing.

As the most obvious example, if you issue
a search command like

Ithinal

you are left pointing at the next line that con­
tains 'thing'. Then no address is required with
commands like s to make a substitution on that
line, or p to print it, or I to list it, or d to delete
it, or a to append text after it, or c to change it.
or I to insert text before it.

What happens if there was no 'thing'?
Then you are left rilht where you were - dot is
unchanaed. This is also true if you were sittins
on the only 'thins' when you issued the com­
mand. The same rules hold for searches that use
'? ... ?'; the only difference is the direction in
which you search.

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line'S' gets deleted, however, dot points
at the ntw line'S' .

The line-changing commands a. c and i by
default all affect the current line - if you give
no line number with them, a appends text after
the current line, c changes the current line. and i
inserts text before the current line.

a. c. and i behave identically in one
respect - when you stop appending, chan sing or
insertinl. dot points at the last line entered.
This is exactly what you want for typing and edit­
ina on the Oy. For example, you can say

a
... text .. .
... botch .. .

s/botchl correctl
a
... more text ...

(minor error)

(fix botched line)

without specifyins any line number for the sub-

stitute command or for the second append com­
mand. Or you can say

a
... text ...
'" horrible botch .. , (major error)

c (replace entire line)
... fixed up line ...

, You should experiment to determine what
happens if you add "0 lines with .. c or L

The r command will read a file into the
text beinl edited. either at the end if you pve no
address. or after the specified line if you do. In
either case. dot pointS at the last line read in.
Remember that you can even say Or to read a
file in at the bepnninl of the text. (You can
also say o. or Ii to start addinl text at the belin­
nin .. >

The .. command writes out the entire file.
If you precede the command by one line
number, that line is written. while if you precede
it by two line numbers. that fanle of lines is
wrinen. The .. command does "01 chanle dOl:
the current line remains the same. reprdless of
what lines are written. This is true even if you
say somethina like

/'.AB/.r\.AElwabstract

which involves a context search.

Since the w command is so easy to use.
you should save what you are editinl rqularfy as
you go alonl just in case the system crashes. or
in case you do somethinl foolish. like clobberinl
what you're editing.

The least intuitive behavior. in a sense. is
that of the s command. The rule is simple -
you are left sittinl on the last line that got
changed. If there were no changes. then dot is
unchanaed.

To illustrate. suppose that there are three
lines in the buffer. and you are sittinl on the
middle one:

:d
,,2

"J
Then the command

- 'I"!./y/p

prints the third line. which is the last one
changed. But if the three lines had been

"I
y2
yJ

and the same command had been ISSUed while

. 9·

..

dot pointed at the second line. then the result
would be to chanle and print only the first line.
and that is where dot would be seL

Semicolon ';'

Searches with '1 .. .1' and '?.?' slart at the
current line and move forward or backward
respectively until they either find the pattem or
let back to the current line. Sometimes this is
not what is wanted. Suppose. for example. that
the butJ'er contains lines like this:

ab

be:

Startinl at line I. one would expect thll the
command

/a/.lb/p

prints all the lines from the 'abo to the '!)c'

inclusive. Actually this is not what happens.
80th searches (for '.' and for 'b') start from the
same point. and thus they both find the line th.t
contains 'ab', The result is to print a sin lie line.
Worse. if there had been a line with a 'b' in it
before the 'ab' line. then the print command
would be in error. since the second line number
would be less than the first. and it is illepl to try
to print lines in reverse order.

This is because the comma separator for
line numbers doesn't sel dOl as each address is
processed: each search starts from the same
place. In ell. the semicolon ';' can be used just
like comma. with the sin ale diff'erence that use
of a semicolon forces dot to be set at thai point
as the line numbers are 'aeinl evaluated. In
eff'ecl. the semicolon 'moves' dot. Thus in our
example above. the command

Ia/:/b/p

printS the range of lines from 'a'o' to ·Oc'.
betause after the 'a' is found. dot is set to that
line, and then 'b' is searched for. starting beyond
that line.

This property is most of len useful in a
very simple situation. Suppose you want to find
the ;emlld occurrence of 'thinl'. You could say

Ithingl
II.

but thiS pnntS the first occurrence as well as the

second. and is a nuisance when you know very
well that it is only the second one you're
interested in. The solution is to say

Ithins/:II

This says to find the first occurrence of 'thing',
set dot to that line. then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something, as in

?something?: ??

Printing the third or fourth or... in either direc­
tion is left as an exercise.

Finally, bear in mind that if you want to
find the first occurrence of somethinl in a file.
starting at an arbitrary place within the file. it is
not sufficient to say

l~/thingi

because this fails if 'thing' occurs on line l. But
it is possible to say

O~/thingl

(one of the few places where 0 is a legal line
number), for this stans the search at line l.

IDterraptiDI the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command, things are put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,
some changes are irrevocable - if you are read­
ing or writing a file or making substitutions or
deleting lines, these will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them). Dot mayor may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line, then hit
delete, you are not sitting on that line or even
near it. Dot is left where it was when the p com­
mand was started.

.t. GLOBAL COMMANDS

The global commands I and v are used to
perform one or more editing commands on all
lines that either contain (I> or don't contain (v)
a specified pattern.

As the simplest example, the command

glUNIX/p

prints all lines that contain the word 'UNIX'.
The pattern that goes between the slashes can be

- 10 -

anything that could be used in Ii line search or in
a substitute command: exactly the same rules
and limitations apply.

As another example, then.

,)"\./p

prints all the formatting commands in a file
(lines that begin with' :).

The v command is identical to &. except
that it operates on- those line that do tint contain
an occurrence of the pattern. (Don't look too
hard for mnemonic silnificance 10 Ihe letter 'v'.)
So

vr\Jp

prints all the lines that don't begin with '.' - the
actual text lines.

The command that follows I or v can be
anything:

,,·\./d
deletes all lines that belin with ':, and

"'S/d

deletes all empty lines.

Probably the most useful command that
can follow a global is the substitute command,
for this can be used to make a change and print
each affected line for verification. For example.
we could change the word 'Unix' to 'UNIX'
everywhere, and verify that it really worked, with

"Unix/sllUNIX/gp

Notice that we used '/ /' in the substitute com­
mand to mean 'the previous pattern'. in this
case. 'Unix'. The p command is done on every
line that matches the pattern, not just those on
which a substitution took place.

The global command operates by making
two passes over -the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, each marked line in tum is exam­
ined, dot is set to that line, and the command
executed. This means that it is possible for the
command that follows a I or v to use addresses,
set dot. and so on, quite freely.

,,·\.PP/+

prints the line that follows each '.PP' command
(the signal for a new paragraph in some format­
ting packages). Remember that '+' means 'one
line past dot'. And

"topic/?·\.SH?1

searches for each line that contains 'topic', scans
backwards until it finds a line that begins '.SH'
(a section heading) and prints the line that fol­
lows that. thus showing the section headings

under which 'tOPIC' is mentioned. Finally,

i/'\ .EOI -+-.1"\ .ENI - p

pnnts all the lines that lie between lines begin·
nlng with' .EO' and' .EN' formatting commands.

The & and v commands can also be pre­
ceded by line numbers, in which case the lines
searched are only those in the range specified.

~ultl·line Global Commands

It is possible to do more than one com·
mand under the control of a global command.
although the syntax for expressing the operation
is not especially natural or pleasant. As an
example, suppose the task is to change 'x' to 'y'
and 'a' to 'b' on all lines that contain 'thing'.
Then

glthing/s/x/yl\
slalbl

is sufficient. The '\' sianals the I command that
the set of commands continues on the next line~
it terminates on the first line that does not end
with '\'. (As a minor blemish, you can't use a
substitute command to insen a newline within a
I command'>

You should watch out for this problem:
the command

glx/sllyl\
s/a/bl

does ,,(If work as you expect. The remembered
pattern is the last pattern that was actually exe­
cuted, so sometimes it will be 'x' (as expected),
and sometimes it will be 'a' (not expected). You
must spell it out, like this:

a/x/s/x/y/\
slalbl

It is also possible to execute .. c: and i
commands under a global command: as with
other multi·line constructions, all that is needed
is to add a '\' at the end of each line except the
last. Thus to add a '.nr and '.sp' command
before each '.EO' line. type

&I"\.EO/i\
.nf\
.sp

There is no need for a final line containing a '.'
to terminate the i command, unless there are
further commands being done under the global.
On the other hand, it does no harm to put it in
euher.

- 11 -

S. CL'T A;'IlD PASTE WITH U:'IlIX COM·
MA:'IlDS

One editing area in which non·
programmers seem not very confident IS in what
might be caUed 'cut and paste' operations -
changing the name of a file, making a copy of a
file somewhere else, moving a few lines from
one place to another in a file, insening one file in
the mIddle of another, splitting a file into pieces,
and splicing two or more files together.

Yet most of these operations are actually
quite easy, if you keep your wits about you and
go cautiously. The next several sections talk
about cut and paste. We will begin with the UNIX
commands for moving entire files around, then
discuss eel commands for operating on pieces of
files,

Chancing the Name of a File

You have a file named 'memo' and you
want it to be called 'paper' instead. How is it
done?

The UNIX program that renames files is
called mv (for 'move'); it 'moves' the file from
one name to another, like this:

mv memo paper

That's all there is to it: mv from the old name to
the new name.

mv oldname newname

Warning: if there is already a file around with the
new name. its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can't move a file
to itself-

mv x x

is illegal.

Makinl a Copy of a File

Sometimes what you want is a copy of a
file - an entirely fresh version. This milht be
because you want to work on a file. and yet save
a copy in case somethina gets fouled UP. or just
because you're paranoid.

In any case, the way to do it is with the cp
command, (qt stands for 'copy'; the system is
big on shon command names, which are appreci­
ated by heavy users. but sometimes a strain for
novices.) Suppose you have a file called 'good'
Ilnd you want to save a copy before you make
some dramatic editing changes. Choose ~ name
- 'savegood' might be acceptable - then type

cp good savegood

This C0l'les 'good' onto 'savegood', and ~'OU now

have two identical copies of the file 'good', (If
'savegood" previously contained somethina. it
gets overwritten.>

Now if you decide at some time that you
want to get back to the original state of 'good'.
you can say

mv savegood lood

(if you're noc interested in 'savejood' any
more), or

c:p savegood good

if you stiD want to retain a safe C01'Y.

In summa,." my just renames a file: cp
makes a duplicate copy. Both of them c:lobber
the 'target' fUe if it already exists, 50 you had
better be sure that's what you want to do ~fo~
you do it.

Remoylnl a File
If you decide you are really done with a

file forever, you can remove it with the rID com­
mand:

rm savegood

throws away (irrevocably) the fUe called
'yvegood'.

Puttinl Two or Mon Flies TOietber

The next step is the familiar one of collect­
ing two or more fUes into one big one. This will
be needed, for example, when the author of a
paper decides that several sections need to be
combined into one. There are several ways to do
it. of which the cleanest, once you get used to it,
is a program c:aJled cat. (Not all programs have
two-letter names.) cat is short for 'concatenate',
which is exactly what we want to do.

Suppose the job is to combine the files
'filel' and 'fUe2' into a single fUe called 'bigBie',
If you say

cat file

the contents of 'file' will get printed on your ter­
minal. If you say

cat file 1 fUe2

the contents of 'file I' and then the contents of
'fUe2' will both be printed on your terminal. in
that order, So cat combines the files. all right,
but it's not much help to print them on the ter­
minal - we want them in 'bigfile',

Fortunately, there is a way. You can tell
the system that instead of printing on your ter­
minal. you want the 'Same information put in a
file. The way to do it is to add to the command
line the character > and the name of the file

- 12 -

where you want the output to 10. Then you can
say

cat fUe 1 file2 > bigfiJe

and the job is done. (As with cp and rDY, you're
pUlling somethinl into 'bigfile', and anything
that was already there is destroyed.) .

This ability to 'capture' the output of a
pro m is one of the most useful aspects of the
system. Fortunately it's not limited to the cat
program - you can use it with any program that
prints on your terminal. We'll see some more
uses for it in a moment.

Naturally, you can combine several fUes,
not just two:

cat file 1 file2 file3 ... > biafile

collects a whole bunch.

Question: is there any difference between

c:p lood savelood

and

cat good >savegood

Answer: for most purposes, no. You might rea­
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that cp will do some other thinas as
well, which you can investigate for yourself by
readinl the manual. For now we'll stick to sim­
ple UYles.

Addlnl Sometbinl to tbe End of • FUe
Sometimes you want to add one file to the

end of another. We have enouah buildinl blocks
now that you can do it; in fact before reading
funher it would be valuable if you figured out
how. To be specific, how would you use cp. MY

andlor cat to add the file 'good 1 ' to the end of
the file 'good'?

You could try

cat good good1 >temp
mv temp good

which is probably most direct. You should also
understand why

cat good good I > good

doesn't work. (Don't practice with a good
'good'!)

The easy way is to use a variant of >.
called> >. In fact, > > is identical to > except
that instead of clobbering the old file. it simply
tacks stuff on at the end. Thus you could say

cat good I > > good

and 'goodl' is added to the end of 'good'. (And

"

\ ..

if 'sood' didn't exist. this makes a copy of
'loodI' called ',ood'.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulatin, pieces
of files - individual lines or groups of lines.
This is another area where new users seem
unsure of themselves.

FlIeDames

The first step is to ensure that you know
the ell commands for readin, and writin, files.
Of course you can't 10 very far without knowina
rand ". Equally useful, but less well known. is
tbe 'edit' command e. Witbin ell. the command

e newftle

says 'I want to edit I new file c:aJled Mlfl!fi/~.
without leavinl tbe editor: The e command dis·
cards whatever you're currently worlcinl on and
stans over on n~lfI!fi/~. It's exactly the same u if
you had quit witb tbe q command. then reo
entered ell with a new fUe name. except that if
you have a pattem remembered. then a com·
mand like II will still work.

If you enter ell with the command

ed ftIe

ell remembers the name of tbe file. and any sub­
sequent e. r or w commands that don't contain a
filename will refer to this remembered ftIe. Thus

eel filel
... (editinl) ...

w (writes back iD ftIeH
e file2 (edit new ftIe. without leavinl editor)
... (editina on fUe2) ...

w (writes back on file2)

(and so on) does a series of edits on various ftIes
without ever leavinl ell Ind without typin, the
name of any ftle more than once. (As an aide.
if you examine tbe sequence of commands here,
you can see why many UNIX systems use e as a
synonym for ed.)

You can find out the remembered file
nlme at any time with the f command: just type
f without a file name. You can also chanle tbe
name of the remembered file name with t. a use·
ful sequence is

eel precious
f junk
... (editin,) ...

which gets a copy of a precious file, then uses r
to lUarantee that a careless " command won',
clobber the onginal.

- 13 -

IDsertine ODe File iDeo Aaotber

Suppose you have a file c:aJled 'memo',
and you want tbe tile ca1Jed 'table' to be insened
just after the reference to Table 1. That is, in
'memo' somewhere is a line lbat says

Table 1 sbows that ...

and tbe data contained in 'table' has to ,0 there.
probably so it will be formatled properly by aro.
or tro.. Now what?

This one is easy. Edit 'memo', flDd 'Table
1', and add the file 'table' rilbt there:

ed memo
ITable 11
Tab/~ J shows that ... {mpo"Sllro", «11
.r table

The critical line is the last one. M we said ear·
lier, the r command reads a file: here you uleed
for it to be read in ri,Jn arter line dot. An r
command without any address adds lines at the
end. so it is the same u Sr.

Wrilial .. t Pan or • FII.
The olher side of the coin is writinl out

pan of the document you're editina. For exam­
ple, maybe you want to split out into a separate
file tbat table from the previous example. so it
can be formatted and tested separately. Suppose
that in the file beina edited we have

.TS
... (lots of stum

. oYE

which is the way a table is set up for the tbl pro·
aram. To isolate the table in a 5elJlrate lile
called 'table" first find the slln of the table (the
'.TS· line). tben write out the interestinl pan:

l,oTSl
o TS 1«1 p""ts t"~ I;n~ it found/
..1"'.TElw table

and the job is done. If you are confident, you
can do it all It once witb

r\oTS/~/'oT'£jw table

The point is thll the " command can write
out a aroup of lines, instead of the whole flle. In
fact. you can write out a sinaie 'tine if you like:
just live one line number instead of two. For
example, if you have just typed a horribly com­
plicated line and you know that it (or something
like it> is loinl to be needed later. then save it
- don't re-type it. In the editor, say

a
.. .lots of stu1r •..
... horrible line ...

.w temp
a
••• more stu6 •••

.r temp
a
••• more stuft" ...

This last example is worth stud yin a, to be sure
you appreciate wbat's loina on.

~O.fD' LlDn AnaD.
Suppose you want to move a parall'lPh

from its present position in a paper to lbe eDd.
How would you do it? As a concrete eumple.
suppose each paraarapb in the paper beps with
the formauin, command • .PP'. Think about it
and write down the details before radinl OD.

The brute force way (not necessaril, bid)
is to write the paraarapb onto a temporary ftle,
delete it from its curreat position. then read iD
the temporary ftle at tbe end. Assuminl that
you are sittin. on tbe • .PP' command tbat bqins
the paralP"lpb, tbis is the sequeace of coinmands:

•• /,.PP/-w temp
•• /I-d
Sr temp

That is, from where you are now ('. ') until one
line before the next' .PP' ('I,.PP/-') write
onto 'temp'. Then delete the same lines.
Finally, read 'temp' at the end.

As we said, that's tbe brute force wa,.
The easier way (often) is to use tbe nro~ com­
mand ID that ed provides - it lets you do tbe
wbole set of operations at one crack, without any
temporary file.

The ID command is like many other ..
commands in tbat it takes liP to two line
numbers in front that tell wbat lines are to be
affected. It is also Jollowd by a line number that
tells wbere the lines are to 10. Thus

Iinol, Iine2 m Iinol

says to move all the lines between 'line I' and
'Iine2' after 'linol'. Naturally, any of 'linel'
etc., can be pattems between slashes. S silDS. or
other ways to specify lines.

Suppose aaain that you're siuinl at tbe
first line of the paraarapb. Then you can say

• .r\.PP/-mS

That's all.

• 14-

As another example of a frequent opera­
tion. you can reverse the order of two adjacent
lines by movina the first one to after the second •
Suppose that you are positioned at the ftrsL
Then

m+
does it. It says to move line dot to after one Une
alter line dot. I(you an positioned on the
second line.

m--
does tbe interchanae.

As you can see. the ID commmd is more
succinct and direct tbaa writin.. deledDa and ,.
readiDIo When is brute force better anywa,?
This is a matter of personal taste - do what you
have most confidence in. The maiD diftkulty
witb tbe .. commaad is that if you use patterns
to specify both lbe lines you are moviD, and the
tarpt. you bave to take can that you specify
them properly. or you may well Dot move the
Unes you tbouibt you did. The result of a
bolChed .. command can be a thud, mesa.
Doin. lbe job a step at a time malees it easier for
you to verify at acb step lbat you accomplisbed
what you wanted to. It's also a aood idea to
issue a w commaad before doinl anytbinl com­
plicated; tben if you &001. it's easy to back up to
where)'ou were.

Marks

.. provides • facility for markin. a line
with a particular name so you can later reference
it b, name reprdless of its actual line number.
This can be haady for movina lines. and for
keepin. track of them as they move. The Marie
command is IE; the command

Ja

marks the current line with tbe name 'x'. I(a
line number precedes the It. tbat line is marked.
(The mark name must be a sinlie 19wer case
letter.) Now you can refer to the marked line
witb the address

'x

Marks are most useful for movinl thinas
around. Find the first line of lbe block to be
moved. and mark it with a. Thea find the last
line and mark it with 'IJ. Now position yourself
at the place where the stu6 is to 10 and say

'a. 'bm.

Bear in mind that only one line can have a
particular mark name associated' with it at any
siven time.

Copyinl Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often. so as to
cut down on typing time. Of course this could
be more than one line: then the saving is
presumably even greater.

N provides another command, called t
(for 'transfer') for making a copy of a group of
one or more lines at an)' point. This is often
easier than writing and readina,

The r command is identical to the m com·
mand, except that instead of moving lines ir sim·
ply duplicates them at the place you named.
Thus

I,StS

duplicates the entire contents that you are edit­
ing. A more common use for I is for creating a
series of lines that differ only slightly. For
example. you can say

a

t.
s/x/yl
t.
slylzl

and so on.

x (Jongline)

(make a COpy)
(chanle it a bit)
(make third copy)
(change it a bit)

The Tempor.r~· Escape ':.

Sometimes it is convenient to be able to
temporarily escape from the editor to do some
other UNIX command. perhaps one of the file
copy or move commands discussed in section S,
without leaving the editor. The 'escape' com­
mand ! provides a way to do thiS,

If you say

!any UNIX commllnd

your current editing state is suspended, and the
LINIX command you asked for is executed. When
the command finishes. eel will signal you by
printina another !: at that point you can resume
editing,

You can really do am' UNIX command,
induding another N. (This is quite common, in
facU In this case, you can even do another !.

1. Sl'PPORTING TOOLS

There are several tools and te~niques that
10 alona with the editor. all of which are rela·
tively easy once ~'ou know how ttl works.
because Ihe)' are all based on the editor. In thIS
settlon we will gl\'e some fairly cursory examples
of these tools. more to indicale their existence
Ihan to prOVIde II complete tUlOrlal. More Infor·

• IS •

mali on on each can be found in (3).

Grep

Sometimes you want to find all
occurrences of some word or pattern in a set of
files.. to edit them or perhaps just to verify their
presence or absence. It ma)' be possible to edit
each file separately and look for the pattern of
interest, but if there are many files this can get
very tedious. and if the files are really big, it may
be impossible because of limits in eel.

The program Irep was invented to gel
around these limitations. The search patterns
that we have described in the paper are of len
caUed 'regular expressions', and 'grep' stands for

alre/p

That describes exactly whal lrep does - il prints
every line in a set of files that contains a particu­
lar pattern. Thus

grep 'thing' file I fUe2 file3 ...

finds 'thing' wherever it occurs in any of the files
'file I', 'file2'. etc. lrep also indicates the file in
which the line was found, 50 you can later edit it
if you like.

The pattern represented by 'thing' can be
any pattern you can use in the editor, since lrep
and eel use exactly the same mechanism for pat·
tern searching, It is wisest always to enclose the
pattern in the single quotes ' .. .' if it contains any
non-lIlphabetic char.acters. since many such cha;.
icters also mean something special to the \.:NIX
command interpreter (the 'shell'). If you don't
quote them, the command interpreter ~iIl trv to
interpret them before lrep gets a chance. .

There is lisa a WilY to find lines thllt clOII',
contain a pattern:

grep -v 'thing' filel fUe2 ...

finds all lines that don '(contains 'thing'. The
- ,. must occur in the position shown. Given
trep and trep -v, it is possible to do things like
selecting all lines that contain some combination
of patterns. For example, to get all lines thaI
contain 'x' but not 'y':

Irep " file... I IreI' - v y

(The notation: is a 'pipe'. which causes the out·
put of the first command to be used as input to
the second command: see (2).)

Editint: Suip",

If a fairly complicated set of editing opera·
tions is to be done on a whole set of files. the
easiest thing to do is to make up a ·script'. i.e .. a
file that .:ontalns the operations }'OU want to per·
form, then .apply thIS SCrtpt 10 each file In turn.

For example. suppose you want to chanle
every 'Unix' to 'UNIX' and every 'Gcos' to
'GCOS' in a larle number of files. Then put
into the file 'smpt' the lines

alUnix/s/ /UNIX/I
alGcos/!/ /GCOS/I
w
q

Now you can say

ed fUel <.script
ed tile2 < script

This causes ell to take its commands from the
prepared .script. Notice that the whole job has to
be planned in advance.

And of course by usinl the UNIX c:ommand
interpreter, you can cycle throup a set of tiles
automatically, with varyin. dell'ees of eue.

Sed

sed ('stream editor') is a version of the
editor with restricted capabilities but which is
capable of processinl unlimited amounts of
input. Basically !IN copies its input to its output.
applyinl one or more editinl comman~ to each
line of input.

As an example. SUPl'OM that we want to
do the 'Unix' to 'UNIX' pan of the example
given above, but without rewritinl the files.
Then the command

sed 's/Unix/UNIX/I' file1 file2 ...

applies the command 'S/Unix/UNIX/.' to all
lines from 'fUel', 'file2', etc., and copies aJllines
to the output. The advantale of usin. sed in
such a case is that it can be used with input too
large for ell to handle. All the output can be col·
lected in one place, either in a tile or perhaps
piped into another proaram.

If the editinl transformation is so compli.
cated that more than one editinl command is
needed. commands can be supplied from a file,
or on the command line, with a sliptly more
complex syntax. To take commands from a file,
for example,

sed -f cmdtile input-files ...

sed has further capabilities, includin. con·
ditional testing and branchinl, whIch we cannot
go into here .

. -\cknowledlement .

I am grateful to Ted Dolotta for his careful
readinl and valuable sUlgestions.

• 16·

Rererences

UJ Brian W. Kemipan, A TUforlal Introduction
fO fh~ UNIX Te:ct Editor. Bell Laboratories
inten:tal memorandum.

(2) Brian W. Kernighan, UNIX For 8eginn~n.
Bell Laboratories internal memorandum.

(3) Ken L. Thompson and Dennis M. Ritchie,
Th~ UNIX Prollramm~r's Manutll. Bell
Laboratories.

•

Ex Reference Manual

William Joy

Revised for Versions 3.5 (VAX UNIX) and 2.13 (PDP UNIX) by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

UNX 3.:::.1

Ex is a line oriented text editor which supports both command and display oriented editing. This refer­
ence manual describes the command oriented part of ex; the display editing features of ex are described in An
Introduction to Display Editing with Vi Other documents about the editor include the introduction Edit: A
Tutorial, the ExlEdit Command Summary, and a Vi QUick Reference card.

Computer Science
September 1980

Computing Sen-ices Notes
This manual documents both versions 2.13 and 3.5 of the text editor ex. Version 2.13 is currently supported on
the POP UNIX Systems operated by Computer Facilities and Operations (CFO)~ version 3.6 is currently sup­
ported on the CFO VAX UNIX system. For VAX UNIX users, the changes from version 3.5 to 3.6 are listed in
an appendix to this manual. Also, a cumulative list of changes to the editor from version to version is main­
tained online on all UNIX systems; to retrieve the information type belp ex news on POP UNIX and cat
lusr/news/ex on V AX UNIX.

A small number of features available with version 3.5 are not found in version 2.13. In most cases, the
manual documents these differences with footnotes stating "Version 3 only." But there are still some Instances
in which differences are not noted, or are noted ambiguously. Here is a complete list of the editor's commands
and options available in version 3.5 but not in 2.13:

Ex Commands Vi Commands
appreviate -Et
map -yt
unmap
stop

Options
edc:ompatible
mesa
remap
tags;

tSimultaneously press the control key and the character key.

*The tag command is present in version 2.13, although the tags option is not. This means that, if tags are used
with the version 2.13 editor, they are read from a prescribed set of files. You cannot specify alternate names
for tag files.

Some size limitations differ between versions 2.13 and 3.5. Most significantly, version 3.5 can accomodate
larger files, up to 250,000 lines, as opposed to about 250,000 characters in version 2.13. For details on different
limitations, refer to the online lists of changes mentioned above.

Various other features of the editor are noted In the manual as "not available on all v2 editors." This
message relates to variants of ex designed for computers other than the POP 11170; the restrictions generally do
not apply to customers 3f CFO UNIX systems.

Computing Services
September 1981

Ex Reference Manual
Version 3.5/2.13 - September, 1980

William Joy

RevIsed lor versIons 3.S/2.13 by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

1. Starting ex
Each instance of the editor has a set of options, which can be set to tailor it to your liking.

The command edil invokes a version of ex designed for more casual or beginning users by
changing the default settings of some of these options. To simplify the description which fol­
lows we assume the default settings of the options.

When invoked, ex determines the. terminal type from the TERM variable in the environ­
ment. It there is a TERM CAP variable in the environment, and the type of the terminal
described there matches the TERM variable, then that description is used. Also if the TERM CAP
variable contains a pathname (beginning with a I) then the editor will seek the description of
the terminal in that file (rather than the 'default letc/termcap.) If there is a variable EXINlT in
the environment, then the editor will execute the commands in that variable, otherwise if there
is a file .exrc in your HOME directory ex reads commands from that file, simulating a source com-'
mand. Option setting commands placed in EXINlT or .exrc will be executed before each editor
session.

A command to enter ex has the following prototype:t

ex [-] [-v] [-t lag] [-r] [-I] [-wn] [-x] [-R] [+ command] name ...

The most common case edits a single file with no options, Le.:

ex name

The - command line option option suppresses all interactive-user feedback and is useful in
processing ediior scripts in command files. The -v option is equivalent to using vi rather than
ex. The -t option is equivalent to an initial lag command, editing the file containing the tag
and positioning the editor at its definition. The -r option is used in recovering after an editor
or system crash, retrieving the last saved version of the named file or, if no file is specified,
typing a list of saved files. The -I option sets up for editing LISP, setting the ShOWnlalCh and
lisp options. The -w option sets the default window size to n, and is useful on dial ups to start
in small windows. The -x option causes ex to prompt for a key, which is used to encrypt and
decrypt the contents of the file, wnich should already be encrypted using the same key, see
crypl(I). The -R option sets the readonly option at the start. * Name arguments indicate files
to be edited. An argument of the form +command indicates that the editor should begin by

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.
, Brackets '(' 'J' surround optional parameters here.
* Not available in all v2 editors due to memory constraints,

----------'------------------- -- ----------

- 2 -

executing the specified command. If command is omitted, then it defaults to "S", positioning
the editor at the last line of the first file initially. Other useful commands here are scanning
patterns of the form "'pat" or line numbers, e.g. "+ 100" starting at line 100.

2. File manipulation

2.1. Current file
Ex is normally editing the contents of a single file, whose name is recorded in the current

file name. Ex performs all editing actions in a buffer (actually a temporary file) into which the
text of the file is initially read. Changes made to the buffer have no effect on the file being
edited unless and until the buffer contents are written out to the file with a write command.
After the buffer contents are written, the previous contents of the written file are no longer
accessible. When a file is edited, its name becomes the current file name, and its contents are
read into the buffer.

The current file is almost always considered to be edited. This means that the contents of
the buffer are logically connected with the current file name, so that writing the current buffer
contents onto that file, even if it exists, is a reasonable action. If the current file is not edited
then ex will not normally write on it if it already exists.-

2.1. Alternate file
Each time a new value is given to the current file name, the previous current file name is

saved as the alternate file name. Similarly if a file is mentioned but does not become the
current file, it is saved as the alternate file name.

2.3. Filename e~pansioD
Filenames within the editor may be specified using the normal shell expansion conven­

tioDS. In addition, the character .%' in filenames is replaced by the current file name and the
character • #' by the alternate file name. t

2.4. Multiple files and named buffers
If more than one file i~ given on the command line, then the first file is edited as

described above. The remaining arguments are placed with the first file in the argument list.
The current argument list may be displayed with the args command. The next file in the argu­
ment list may be edited with the next command. The argument list may also be respecified by
specifying a list of names to the next command. These names are expanded, the resulting list
of names becomes the new argument list, and ex edits the first file on the list.

For saving blocks of text while editing, and especially when editing more than one file, e.Y:
has a group of named buffers. These are similar to the normal buffer, except that only a lim­
ited number of operations are available on them. The buffers have names a through z.*

2.5. Read only
It is possible to use e.Y: in read only mode to look at files that you have no intention of

modifying. This mode protects you from accidently overwriting the file. Read only mode is on
when the readonly option is set. It can be turned on with the - R command line option, by the
view command line invocation. or by setting the readonly option. It can be cleared by setting
noreadonly. It is possible to write. even while in read only mode, by indicating that you really

• The file command will say "(Not edited!" if the current file is not considered edited.
t This makes it easy to deal alternately with two files and eliminates the need for retypinl the name supplied
on an edll command after a No ... ·flfe slIIce lasr change diagnostic is receiVed.
~ It is also possible to refer to A through Z: the upper case buffers are the same as the lower but commands
append to named buffers rather than replacing if upper case names are used.

• 3 •

know what you are doing. You can write to a different file, or can use the! form of write, even
while in read only mode.

3. EX,ceptional Conditions

3.1. Errors and interrupts

When errors occur ex (optionally) rings the terminal bell and, in any case, prints an error
diagnostic. If the primary input is from a file, editor processing will terminate. If an interrupt
signal is received, ex prints "Interrupt" and returns to its command level. If the primary input
is a file, then ex will exit when this occurs. .

3.2. Recovering from hangups and crashes

If a hangup signal is received and the buffer has been modified since it was last written
out, or if the system crashes, either the editor (in the first case) or the system (after it reboots
in the second) will attempt to preserve the buffer. The next time you log in you should be able
to recover the work you were doing, losing at most a few lines of changes from the last point
before the hangup or editor crash. To recover a tile you can use the -r option. If you were
editing the file resume, then you should change to the directory where you were when the crash
occurred, giving the command

ex -r resume

After checking that the retrieved tile is indeed ok, you can write it over the previous contents of
that file.

You will normally get mail from the system telling you when a file has been saved after a
crash. The command '

ex -r

will print a list of the files which have been saved for you. (In the case of a hangup, the file
will not appear in the list, although it can be recovered.)

4. Editing modes

Ex has five distinct modes. The primary mode is command mode. Commands are entered
in command mode when a ':' prompt is present, and are executed each time a complete line is
sent. In text input mode ex gathers input lines and places them in the file. The append. insert,
and change commands use text input mode. No prompt is printed when you are in text input
mode. This mode is left by typing a '.' alone at the beginning of a line, and command mode
resumes.

The last three modes are open and visual modes, entered by the commands of the sa~e
name, and, within open and visual modes text insertion mode. Open and visual modes allow
local editing operations to be performed on the text in the file. The open command displays
one line at a time on any terminal while visual works on CRT terminals with random positioning
cursors, using the screen as a (single) window for file editing changes. These modes are
described (only) in An Introduction 10 Display Editing with Vi.

5. Command structure

Most command names are English words, and initial prefixes of the words are acceptable
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands.-

• As an example. the command SUbSIlIU/~ can be abbreviated's' while the shortest available abbreviation for
the S~I command is 'se',

- 4 -

5.1. Command parameters

Most commands accept prefix addresses specifying the lines in the file upon which they
are to have effect. The forms of these addresses will be discussed below. A number of com­
mands also may take a trailing count specifying the number of lines to be involved in the com­
mand. t Thus the command "lOp" will print the tenth line in the buffer while "delete 5" will
delete five lines from the buffer, starting with the current line.

Some commands take other information or parameters, this information always being
given after the command name.*

5.2. Command variants

A number of commands have two distinct variants. The variant form of the command is
invoked by placing an '!' immediately after the command name. Some of the default variants
may be controlled by options; in this case, the '!' serves to toggle the default.

5.3. Flags aIter commands

The characters '#', 'p' and 'I' may be placed after many commands.·· In this case, the
command abbreviated by these characters is executed after the command completes. Since ex
normally prints the new current line after each change, 'po is rarely necessary. Any number of
'+. or '-' characters may also be given with these flags. If they appear, the specified offset is
applied to the current line value before the printing command is executed.

5.4. Comments

It is possible to give editor commands which are ignored. This is useful when making
complex editor scripts for which comments are desired. The comment character is the double
quote: ". Any command line beginning with" is ignored. Comments beginning with" may also
be placed at the ends of commands, except in cases where they could be confused as part of
text (shell escapes and the substitute and map commands).

S.S. ~(ultiple commands per line

~ore than one command may be placed on a line by separating each pair of commands by
a 'I' character. However the global commands, comments, and the shell escape '!' must be the
last command on a line, as they are not terminated by a '\'.

5.6. ReportiDglarge changes

Most commands which change the contents of the editor buffer give feedback if the scope
of the change exceeds a threshold given by the report option. This feedback helps to detect
undesirably large changes so that they may be quickly and easily reversed with an undo. After
commands with more global effect such as global or v/sual. you will be informed if the 'net
change in the number of lines in the buffer during this command exceeds this threshold.

6. Command addressing

6.1. Addressing primitives

The current line. Most commands leave the current line as the last line
which they affect. The default address for most commands is the current
line, thus'.' is rarely used alone as an address.

t CountS are rounded down if necessary.
* Examples would be option names In a sel command Le. "set number". a file name In an edit command. a
regular expressIon in .. subs/ltute command. or a target address for a COP." command. i.e. "1.5 copy 25" .
•• A 'p' or 'I' must be preceded by a blank or tab except in the single specIal case 'dp',

n

S
%

- 5 -

The nth line in the editor's buffer, lines being numbered sequentially
from 1.

The last line in the buffer.

+n -n

/pal/ ?pat?

An abbreviation for "1,$", the entire buffer.

An offset relative to the current buffer line. t
Scan forward and backward respectively for a line containing pat, a regu­
lar expression (as defined below), The scans normally wrap around the
end of the buffer. If all that is desired is to print the next line containing
pat, then the trailing / or ? may be omitted. If pat is omitted or expli­
citly empty, then the last regular expression specified is located.;

" 'x Before each non-relative motion of the current line '.', the previous
current line is marked with a tag, subsequently referred to as ''''. This
makes it easy to refer or return to this previous context. Marks may also
be established by the mark command, using single lower case letters x
and the marked lines referred to as "x'.

6.2. Combining addressing primitives

Addresses to commands consist of a series of addressing primitives, separated by ',' or ';'.
Such address lists are evaluated left-to-right. When addresses are separated by';' the current
line'.' is set to the value of the previous addressing expression before the next address is inter­
preted. If more addresses are given than the command requires, then all but the last one or
two are ignored. If the command takes two addresses, the first addressed line must precede the
second in the buffer. t

7. Command descriptions

The following form is a prototype for all ex commands:

address command ! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in
the file. For sanity with use from within visual mode, ex ignores a ":" preceding any com­
mand.

In the following command descriptions, the default addresses are shown in parentheses,
which are not, however. part of the command.

abbreviate word rhs abbr: ab

Add the named abbreviation to the current list. When in input mode in visual, if word is
typed as a complete word, it will be changed to rhs.

(•) append
text

abbr: a

Reads the input lext and places it after the specified line. After the command, ','
addresses the last line input or the specified line if no lines were input. If address '0' is
given, text is placed at the beginning of the buffer.

t The forms '. + 3' • + 3' and '+ + +. are all equivalent; if the current line is line 100 they all address line
103.
* The forms \I and \? scan using the last regular expression used in a scan; after a substitute 1/ and ??
would scan using the substitute's regular expression.
t Null address specifications are permitted in a list of addresses, the default in this case is the current line .,';
thus "100' is equivalent to ' .• 100'. It is an error to give a prefix address to a command which expects none.

a!
text

args

The variant flag to append toggles the setting for the autoindent option during the input of
text.

The members of the argument list are printed, with the current argument delimited by • ['
and 'J'.

(••.) change count
text

abbr: c

c!
text

Replaces the specified lines with the input text. The current line becomes the last line
input~ if no tines were input it is left as for a delete.

The variant toggles aUloindenl during the change.

(• • .) copy addr flags abbr: co

A copy of the specified lines is placed after addr. which may be '0'. The current line '.'
addresses the last line of the copy. The command t is a synonym for copy.

(• , •) delete buffer count flags abbr: d

Removes the specified lines from the buffer. The line after the last line deleted becomes
the current line~ if the tines deleted were originally at the end, the new last line becomes
the current line. If a named buffer is specified by giving a letter, then the specified tines
are saved in that buffer, or appended to it if an upper case letter is used.

edit file
ex file

abbr: e

Used to begin an editing session on a new file. The editor first checks to see if the buffer
has been modified since the last write command was issued. If it has been, a warning is
issued and the command is aborted. The command otherwise deletes the entire contents
of the editor buffer, makes the named file the current file and prints the new filename.
After insuring that this file is sensiblet the editor reads the file into its buffer.

If the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-ASCII characters in the file they are stripped of their non­
ASCII high bits. and any null characters in the file are discarded. If none of these errors
occurred, the file is considered edited. If the last line of the input file is missing the trail­
ing newline character, it will be supplied and a complaint will be issued. This command
leaves the current line '.' at the last line read.*

t I.e .• that it is not a binary file such as a directory. a block or character special file other than Idevltty. a ter­
minal. or a binary or executable file (as indicated by the first word).
; If executed from within open or VIsual. the current line is initially the first line of the file.

- 7 -

e! file

The variant form suppresses the complaint about modifications having been made and not
written from the editor buffer, thus discarding all changes which have been made before
editing the new file.

e +nfile

file

Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, e.g.: "+/pat".

abbr: f

Prints the current file name, whether it has been • [Modified]' since the last write com­
mand, whether it is read only, the current line, the number of lines in the buffer, and the
percentage of the way through the buffer of the current line.·

file file

The current file name is changed to file which is considered • [Not edited]'.

(I , S) global lpatl cmds abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with '.' initially set to each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a '\'. If cmds (and pos­
sibly the trailing I delimiter) is omitted, each line matching pat is printed. Append, insert,
and change commands and associated input are permitted; the '.' terminating input may
be omitted if it would be on the last line of the command list. Open and visual commands
are permitted in the command list and take input from the terminal.

The global command itself may not appear in cmds. The undo command is also not per­
mitted there, as undo instead can be used to reverse the entire global command. The
options aUloprint and aUloindenl are inhibited during a global, (and possibly the trailing I
delimiter) and the value of the report option is temporarily infinite, in deference to a
report for the entire global. Finally, the context mark •••• is set to the value of '.' before
the global command begins and is not changed during a global command, except perhaps
by an open or visual within the global.

I! lpall cmds abbr: v

The variant form of global runs cmds at each line not matching pat.

(•) insert
lext

abbr: i

Places the given text before the specified line. The current line is left at the last line
input~ if there were none input it is left at the line before the addressed line. This com­
mand differs from-append only in the placement of text.

• In the rare case that the current file is '(Not edited)' this is noted also; in this case vou have to use the
form w! to write to the file, sinc:e the editor is not sure that a write will not destroy a 'file unrelated to the
current contents of the buffer,

. ,
I.

,ext

·8·

The variant toggles aurotndent during the insert.

(... + 1) join count flags abbr: j

. ,
J.

Places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at least one blank character, two if there was a '.' at
the end of the line. or none if the first following character is a' ')'. If there is already
white space at the end of the line, then the white space at the start of the next line will be
discarded .

The variant causes a simpler join with no white space processing; the characters in the
lines are simply concatenated.

(.) k x

The k command is a synonym for mark. It does not require a blank or tab before the fol·
lowing letter.

(. , .) list count flags

Prints the specified lines in a more unambiguous way: tabs are printed as ,AI' and the end
of each line is marked with a trailing ·S'. The current line is left at the last line printed.

map fhs rhs

The map command is used to define macros for use in visual mode. Lhs should be a sin­
gle character, or the sequence "#n", for n a digit, referring to function key n. When this
character or function key is typed in visual mode, it will be as though the corresponding
rhs had been typed. On terminals without function keys, you can type "#n". See section
6.9 of the "Introduction to Display Editing with Vi" for more details.

(.) mark .Y:

Gives the specified line mark x. a single lower case letter. The x must be preceded by a
blank or a tab. The addressing form "x' then addresses this line. The current line is not
affected by this command.

(. . .) move add, abbr: m

next

n!

The move command repositions the specified lines to be after add,. The first of' the
moved lines becomes the current line.

abbr: n

The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buffer not having been
written out, discarding (irretrievably) any changes which may have been made.

n file/ist
n + command file/is!

- 9 -

The specified filelis! is expanded and the resulting list replaces the current argument list;
the first file in the new list is then edited. If command is given (it must contain no
spaces), then it is executed after editing the first such file.

(. , .) number count flags abbr: # or nu

Prints each specified line preceded by its buffer line 'number. The current line is left' at
the last line printed.

(.) open flags abbr: 0

(.) open I pat I flags

Enters intraline editing open mode at each addressed line. If pat is given, then the cursor
will be placed initially at the beginning of the string matched by the pattern. To exit this
mode use Q. See An Introduction to Display Editing with Vi for more details.

*
preserve

The current editor buffer is saved as though the system had just crashed. This command
is for use only in emergencies when a write command has resulted in an error and you
don't know how to save your work. After a preserve you should seek help.

(• , •) print count abbr: p or P

Prints the specified lines with non-printing characters printed as control characters ,A x';
delete (octal 177) is represented as '''?'. The current line is left at the last line printed.

(•) put buffer abbr: pu

quit

q!

Puts back previously deleted or yanked lines. Normally used with delete to effect move­
inent of lines, or with yank to effect duplication of lines. If no buffer is specified, then the
last deleted or yanked text is restored.- By using a named buffer, text may be restored that
was saved there at any previous time.

abbr: q

Causes ex to terminate .. No automatic write of the editor buffer to a file is performed.
However, ex issues a warning message if the file has changed since the last write command
was issued, and does not quit. t Normally, you will wish to save your changes, and you
should give a write command; if you wish to discard them, use the q! command variant.

Quits from the editor, discarding changes to the buffer without complaint.

(•) read jile abbr: r

Places a copy of the text of the given file in the editing buffer after the specified line. If
no jile is given the current file name is used. The current file name is not changed unless
there is none in which case jile becomes the current name. The sensibility restrictions for
the edit command 'apply here also. If the file buffer is empty and there is no current name
then ex treats this as an edit command.

t Not available in all v2 editors due to memory constraints.
• But no modifying commands may intervene between the delete or yank and the put, nor may lines be
moved between files without using a named buffer.
t Ex will also issue a diagnostic if there are more files in the argument list.

Address '0' is legal for this command and causes the file to be read at the beginning of
the butTer. Statistics are given as for the edit command .when the read successfully ter­
minates. After a read the current line is the last line read.*

(.) read !command

Reads the output of the command command into the butTer after the specified line. This
is not a variant form of the command, rather a read specifying a command rather than a
filename; a blank or tab before the! is mandatory.

recover file

Recovers file from the system save area. Used after a accidental hangup of the phone··
or a system crash·· or preserve command. Except when you use preserve you will be
notified by mail when a file is saved.

rewind abbr: rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

set para meIer

shell

With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all of the option values.

Giving an option name followed by a '?' causes the current value of that option to be
printed. The '?' is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form 'set option' to tum them on or 'set no option' to tum them
off; string and numeric options are assigned via the form 'set option-value'.

More than one parameter may be given to set; they are interpreted left-to-right.

abbr: sh

A new shell is created. When it terminates, editing resumes.

source file abbr: so

Reads and executes commands from the specified file. Source commands may be nested.

(. , .) substitute / pat / rep/ / options count ./fags abbr: s

On each specified line, the first instance of pattern pal is replaced by replacement pattern
repl. If the global indicator option character 'g' appears, then all instances are substituted;
if the confirm indication character 'c' appears, then before each substitution the line to be
substituted is typed with the string to be substituted marked with 'T' characters. By typing
an 'y' one can cause the substitution to be performed, any other input causes no change
to take place. After a substitute the current line is the last line substituted.

Lines may be split by substituting new-line characters into them. The newline in repl
must be escaped by preceding it with a '\'. Other metacharacters available in pal and rep/
are described below.

; Withtn open :md Visual the current line is set to the first line read rather than the last .
•• The system saves a copy of the file you were editing only if you have made changes to the file.

stop

- 11 -

Suspends the editor, returning control to the top level shell. If aUlowrite is set and there
are unsaved changes, a write is done first unless the form stop! is used. This commands
is only available where supported by the teletype driver and operating system.

(•••) substitute options count flags abbr: s

If pat and repl are omitted, then the last substitution is repeated. This is a synonym for
the" command.

(•••) t addr flags

The t command is a synonym for copy.

ta tag

The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file.*

The tags file is normally created by a program such as clogs, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the
tag, the second the name of the file where the tag resides, and the third gives an address­
ing form which can be used by the editor to find the tag; this field is usually a contextual
scan using 'Ipall' to be immune to minor changes in the file. Such scans are always per­
formed as if nomagic was set.

The tag names in the tags file must be sorted alphabetically. *

unabbreviate word abbr: una

Delete word from the list of abbreviations.

undo abbr: u

Reverses the changes made in the buffer by the last buffer editing command. Note that
global commands are considered a single command for the purpose of undo (as are open
and visual.) Also, the commands write and edit which interact with the file system cannot
be undone. Undo is its own inverse.

Undo always marks the previous value of the current line '.' as "". After an undo the
current line is the first line restored or the line before the first line deleted if no lines
were restored. For commands with more global effect such as global and visual the
current line regains it's pre-command value after an undo.

unmap Ihs

The macro expansion associated by map for Ihs is removed.

(1 , S) v lpall cmds

A synonym for the global command variant g!, running the specified cmds on each line
which does not m~tch pat.

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last
changed.

* If you have modified the current file before giving a IQg command. you must write it out; giving another
IQg command. specifying no IQg will reuse the previous tag.
t Not available in all v2 editors due to memory constraints.

-- ------ -- ------~----------.

• 12 •

(•) visual rype count flags abbr: vi

Enters visual mode at the specified line. Type is optional and may be '-' , '1' or '.' as in
the z command to specify the placement of the specified line on the screen. By default. if
rype is omitted. the specified line is placed as the first on the screen. A count specifies an
initial window size: the default is the value of the option mdow. See the document An
bllroduc(lon to Display Editing with Vi for more details. To exit this mode. type Q.

visual file
visual + 11 file

From visual mode. this command is the same as edit.

(1 , S) rite file abbr: w
Writes changes made back to file. printing the number of lines and characters written.
Normally file is omitted and the text goes back where it came from. If a file is specified,
then text will be written to that file.· If the file does not exist it is created. The current
file name is changed only if there is no current file name; the current line is never
changed.

If an error occurs while writing the current and edited file, the editor considers that there
has been "No write since last change" even if the buffer had not previously been
modified.

(1 ,S) rite> > file abbr: w> >
Writes the buffer contents at the end of an existing file .

.... ! name

Overrides the checking 'of the normal write command, and will write to any file which the
system permits.

(1 , S) w !command

Writes the specified lines into cotrtmand. Note the difference between w! which overrides
checks and w ! which writes to a command.

wq name

Like a write and then a quit command.

wq! name

The variant overrides checking on the sensibility of the write command, as w! does.

xit name

If any changes have been made and not written. writes the buffer out. Then, in any case,
quits.

(• , .) yank buffer count abbr: ya

Places the specified lines in the named bu/fi!r, for later retrieval via put. If no buffer name
is specified, the lines go to a more volatile place: see the put command description .

• The editor writes to a file only if it is the current file and is edited. if the file does not exist. or if the file is
actually a teletype. Idev/tTy. Idev/null. Otherwise. you must give the variant form .! to force the write.

.. - 13 -

(. + 1) z count
Print the next count lines, default window.

(•) z type count
Prints a window of text with the specified line at the top. If type is '-' the line is placed
at the bottom; a ': causes the line to be placed in the center.- A count gives the number
of lines to be displayed rather than double the number specified by the scroll option. On a
CRT the screen is cleared before display begins unless a count which is less. than the
screen size is given. The current line is left at the last line printed.

! command
The remainder of the line after the '!' character is sent to a shell to be executed. Within
the text of command the characters '%' and '#' are expanded as in filenames and the char­
acter '!' is replaced with the text of the previous command. Thus, in particular, '!!'
repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed. The current line is unchanged by this command.
If there has been U[No write]" of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a warning. A
single '!' is printed when the command completes.

(addr, addr) ! command
Takes the specified address range and supplies it as standard input to command: the result­
ing output then replaces the input lines.

(S) -
Prints the line number of the addressed line. The current line is unchanged.

(. , .) > count ./lags
(. , .) < count./lags

'"n

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is det.ermined by the shiftwidth option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted; no non-white char­
acters are discarded in a left-shift. The current line becomes the last line which changed
due to the shifting. .

An end-of-file from a terminal input scrolls through the file. The scroll option specifies
the size of the scroll, normally a half screen of text.

(.+1,.+1)
(,+1,.+1)1

An address alone causes the addressed lines to be printed. A blank line prints the next
line in the file.

• Forms 'z -' and 'z l' also exist; 'z -' places the current line in the center. surrounds it with lines of • -'
charac:ters and leaves the current line at thiS line. The form 'zT' prints the window before 'z-' would. The
characters • + '. 'T' and • -' may be repeated (or cumulative effect. On some v2 editors. no type may be
liven.

._----------- - ----­- -- _.--------

- 14 -

(• , •) & options count flags
Repeats the previous substitute command.

(• , •) - options COUIll flags
Replaces the previous regular expression with the previous replacement pattern from a
substitution.

8. Regular expressions and substitute replacement patterns

8.1. Regular expressions

A regular expression specifies a set of strings of characters. A member of this set of
strings is said to be matched by the regular expression. Ex remembers two previous regular
expressions: the previous regular expression used in a substitute command and the previous reg­
ular expression used elsewhere (referred to as the previous scanning regular expression.) The
previous regular expression can always be referred to by a null re, e.g. '/I' or '??'.

8.2. Magic and nomagic
. The regular expressions allowed by ex are constructed in one of two ways depending on

the setting of the magic option. The ex and vi default setting of magic gives quick access to a
powerful set of regular expression metacharacters. The disadvantage of magic is that the user
must remember that these metacharacters are magic and precede- them with the character '" to
use them as "ordinary" characters. With nomagic, the default for edit, regular expressions are
much simpler, there being only two metacharacters. The power of the other metacharacters is
still available by preceding the (now) ordinary character with a "'. Note that '" is thus always
a metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of
this option is magic. t .

8.3. Basic regular expression summary

The following basic constructs are used to construct magic mode regular expressions.

char An ordinary character matches itself. The characters 'T' at the beginning of a
line, 'S' at the end of line, '.' as any character other than the first, '.', "', '[',
and ,-, are not' ordinary characters and must be escaped (preceded) by '\' to be
treated as such.

1 At the beginning of a pattern forces the match to succeed only at the begin­
ning of a line.

S At the end of a regular expression forces the match to succeed only at the end
of the line.

\<

\>

Matches any single character except the new-line character.

Forces the match to occur only at the beginning of a "variable" or "word";
that is, either at the beginning of a line, or just before a letter, digit, or under­
line and after a character not one of these.

Similar to '\<'. but matching the end of a "variable" or "word", Le. either
the end of the line or before character which is neither a letter, nor a digit, nor
the underline character.

t To discern what is true with lIomaglc it suffices to remember that the only special characters in this case will
be T at the beginning of a regular expression, '5' at the end of a regular expression. and '\'. With "omaglc
the characters' -, lnd '&' also lose their speCIal meanings related to the replacement pattern of a substitute.

(string]

- 15 -

Matches any (single) character in the class defined by string. Most characters
in string define themselves. A pair of characters separated by '-' in sIring
defines the set of characters collating between the specified lower and upper
bounds, thus '[a - z)' as a regular expression matches any (single) lower-case
letter. If the first character of sIring is an 'f' then the construct matches those
characters which it otherwise would not; thus 'Ua-z]' matches anything but a
lower-case letter (and of course a newline>. To place any of the characters T,
'[', or '-' in sIring you must escape them with a preceding '\'.

8.4. Combining regular expression primitives

The concatenation of two regular expressions matches the leftmost and then longest string
which can be divided with the first piece matching the first regular expression and the second
piece matching the second. Any of the (single character matching) regular expressions men­
tioned above may be followed by the character ,., to form a regular expression which matches
any number of adjacent occurrences (including 0) of characters matched by the regular expres­
sion it follows.

The character ,-, may be used in a regular expression, and matches the text which defined
the replacement part of the last substitute command. A regular expression may be enclosed
between the sequences '\ (' and '\)' with side effects in the substitute replacement patterns.

8.5. Substitute replacement patterns

The basic metacharacters for the replacement pattern are '&c' and '.'; these are given as
'\&' and ',., when nomagic is set. Each instance of '&' is replaced by the characters which the
regular expression matched. The metacharacter ,., stands, in the replacement pattern, for the
defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the
escaping character "'. The sequence '\n' is replaced by the text matched by the n-th regular
subexpression enclosed between ',(' and ',)'.t The sequences "u' and "I' cause the immedi­
ately following character in the replacement to be converted to upper- or lower-case respectively
if this character is a letter. The sequences "U· and '\L' tum such conversion on, either until
"E' or '\e' is encountered, or until the end of the replacement pattern.

t. Option descriptions

autoindent, at default: noai

Can be used to ease the preparation of structured program text. At the beginning of each
append, change or insert command or when a new line is opened or created by an append,
change, insert, or substitute operation within open or visual mode, ex looks at the line being
appended after, the first line changed or the line inserted before and calculates the
amount of white space at the start of the line. It then aligns the cursor at the level of
indentation so determined.
If the user then types lines of text in, they will continue to be justified at the displayed
indenting level. If more white space is typed at the beginning of a line, the following line
will start aligned with the first non-white character of the previous line. To back the cur­
sor up to the preceding tab stop one can hit "D. The tab stops going backwards are
defined at multiples of the shi/twidth option. You cannot backspace over the indent,
except by sending an end-of-file with a "D.

t When nested. parenthesized subexpressions are present. n is determined by counting occurrences of '\C
starting from the left.

• 16 •

Specially processed in this mode is a line with no characters added to it, which turns into a
completely blank line (the white space provided for the automdent is discarded.) Also spe­
cially processed in this mode are lines beginning with an 'T' and immediately followed by
a AD. This causes the input to be repositioned at the beginning of the line, but retaining
the previous indent for the next line. Similarly. a '0' followed by a AD repositions at the
beginning but without retaining the previous indent.

Autoindent doesn't happen in global commands or when the input is not a terminal.

autoprint, ap default: ap

Causes the current line to be printed after each delete, copy. jain, move, substitute, t, undo
or shift command. This has the same effect as supplying a trailing 'pt to each such com­
mand. AUloprml is suppressed in globals, and only applies to the last of many commands
on a line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the current file if you have modified it
and give a ne."Ct, rewind, stop, tag. or ! command, or a AT (switch files) or AI (tag goto)
command in Visual. Note, that the edit and ex commands do not autowrite. In each case,
there is an equivalent way of switching when autowrite is set to avoid the autowrite (edit
for next, rewmd! for.I rewind, stop! for stop, tag! for tag, shell for I, and :e # and a :t.!
command from within visual).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the
input. A complaint is registered the first time a backspace character is discarded. Beautify
does not apply to command input.

directory, dir default: dir-/tmp

Specifies the directory in which ex places its buffer file. If this directory in not writable,
then the editor will exit abruptly when it fails to be able to create its buffer there.

edc:ompatible default: noedcompatible

Causes the presence of absence of II and c suffixes on substitute commands to be remem­
bered, and to be toggled by repeating the suffices. The suffix r makes the substitution be
as in the • command, instead of like &. **

errorbeUs, eb default: noeb

Error messages are preceded by a bell.· If possible the editor always places the error mes­
sage in a standout mode of the terminal (such as inverse video) instead of ringing ·the
bell.

hardtabs, ht default: ht-8

Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase. ic default: noic

u Version 3 only.
o Sei! nngmg in ope" and ~/SUQI on errors IS not suppressed by setting noeb.

lisp

list

- 17 -

All upper case characters in the text are mapped to lower case in regular expression
matching. In addition. all upper case characters in regular expressions are mapped to
lower case except in character class specifications.

default: nolisp

Autoindent indents appropriately for lisp code. and the () () ((and II commands in open
and visual are modified to have meaning for lisp. .

default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines
as in the list command.

magic: default: magic for ex and vtt
If no magic is set, the number of regular expression metacharacters is greatly reduced, with
only 't' and'S' having special effects. In addition the metacharacters ,-, and '&' of the
replacement pattern are treated as normal characters. All the normal metacharacters may
be made magic when nomagic is set by preceding them with a "'.

mesg default: mesg

Causes write permission to be turned oft' to the terminal while you are in visual mode, if
nomesg is set. **

Dumber, nu default: nonumber

Causes all output lines to be printed with their line numbers. In addition each input line
will be prompted for by supplying the line number it will have.

open default: open

If noopen, the commands open and visual are not permitted. This is set for edit to prevent
confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage
returns when printing more than one (logical) line of output, greatly speeding output on
terminals without addressable cursors when text with leading white space is printed.

paragraphs, para default: para-IPLPPPQPP Llbp

Specifies the paragraphs for the (and) operations in open and visual. The pairs of charac­
ters in the option's value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a':'.

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb
terminal (e.g. during insertions in visual the characters to the right of the cursor position
are refreshed as each input character is typed.) Useful only at very high speed.

t Nomag/c for i'd/I.
** Version 3 only.

- 18 -

remap default: remap

If on. macros are repeatedly tried until they are unchanged. U For example. if 0 is
mapped to O. and 0 is mapped to I. then if remap is set, 0 will map to I, but if 110remap is
set, it will map to O.

report default: report-5t

scroll

Specifies a threshold for feedback from commands. Any command which modifies more
than the specified number of lines will provide feedback as to the scope of its changes.
For commands such as global, open, undo, and visual which have potentially more far
reaching scope, the net change in the number of lines in the buffer is presented at the end
of the command, subject to this same threshold. Thus notification is suppressed during a
global command on the individual commands performed.

default: scroll-'h window

Determines the number of logical lines scrolled when an end-of-file is received from a
terminal input in command mode, and the number of lines printed by a command mode z
command (double the value of scro/l).

sections default: sections-SHNHH HU

Specifies the section macros for the [(and IJ operations in open and visual. The pairs of
characters in the options's value are the names of the macros which start paragraphs.

shell, sh default: sh-/bin/sh

Gives the path name of the shell forked for the shell escape command '!', and by the shell
command. The default is taken from SHELL in the environment, if present.

shiftwidth, sw default: sw-8

Gives the width a software tab stop, used in reverse tabbing with -D when using autoin­
dent to append text, and by the shift commands .

. showmatch, sm default: nosm

In open and visual mode, when a) or } is typed, move the cursor to the matching (or {
for one second if this matching character is on the screen. Extremely useful with lisp.

slowopen, slow terminal dependent

Affects the display algorithm used in visual mode, holding off display updating during
input of new text to improve throughput when the terminal in use is both slow and unin­
telligent. See An Introduction to Display Editing with Vi for more details.

tabstop, ts default: ts- 8

The editor expands tabs in the input file to be on tabstop boundaries for the purposes of
display. '

taglength. t1 default: tl-O

Tags are not significant beyond this many characters. A value of zero (the default) means
that all characters are significant.

t; VersIon 3 only.
t :; for edll.

tags

- 19 -

default: tags-tags /usr/lib/tags

A path of files to be used as tag files for the tag command. :j:* A requested tag is searched
for in the specified files. sequentially. By default (even in version 2) files called tags are
searched for in the current directory and in /usr/lib (a master file for the entire system.)

term from environment TERM

The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

warn default: warn

Warn if there has been '[No write since last change]' before a '!' command escape.

window default: window-speed dependent

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed (I200 baud), and the full screen (minus
one line) at higher speeds.

w300, w1200, w9600

These are not true options but set window only if the speed is slow (300), medium
(1200), or high (9600), respectively. They are suitable for an EXINIT and make it easy
to change the 8/16/full screen rule.

wrapscan, ws default: ws

Searches using the regular expressions in addressing will wrap around past the end of the
file.

wrapmargin, wm default: wm-O

Defines a margin for automatic wrapover of text during input in open and visual modes.
See An Introduction 10 Text Editing with Vi for details.

writeany, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file
which the system protection mechanism will allow.

10. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line,
256 characters per global command list, 128 characters per file name. 128 characters in the pre­
vious inserted and deleted text in open or visual, 100 characters in a shell escape command. 63
characters in a string valued option, and 30 characters in a tag name, and a limit of 250000 lines
in the file is silently enforced.

The visual implementation limits the number of macros defined with map to 32. and the
total number of characters in macros to be less than 512.

Acknowledgments. Chuck Haley contributed greatly to the early development of ex. Bruce
Englar encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users see in the present editor. Mark Horton
added macros and other features and made the editor work on a large number of terminals and
Unix systems.

** Version 3 only.

-21- ___ _

Appendix: List of Changes from Version 3.5 to Version 3.6
of the Text Editor ex/vi

• A kernel problem on the version 7 PDP-ll overlay systems which causes bad EMT traps to
happen randomly, core dumping the editor, has been programmed around by catching EMT
traps.

• A bug which prevented using a screen larger than 48 lines has been fixed.

• A bug which allowed you to set window to a value larger than your screen size has been
fixed.

• The screen size limit on non-VM UNIX systems has been increased to 66 lines or 5000 char­
acters, to allow the Ann Arbor Ambassador terminal to be used.

• A bug which caused hangups to be ignored on usa systems has been fixed.

• A bug which caused maps with multiple changes on multiple lines to mess up has been
fixed.

• If you get I/O errors, the file is considered "not edited" so that you don't accidently
clobber the good file with a munged up buffer.

• An inefficiency in 3.5 which caused the editor to always call ttyname has been fixed.

• A bug which prevented the source (.so) command from working in an EXINIT or from
visual has been fixed.

• A bug which caused readonJy to be cleared when reading from a writable file with r has
been fixed.

• The name suspend has been made an alias for stop.

• The stop command now once again works correctly from command mode.

• On a dumb terminal at 1~.90 baud, slowopen is now the default.

• A bug in the shell script makeoptions which searched for a string that appeared earlier in a
comment has been fixed.

• A bug that caused an infinite loop when you did :51< 1 &./g has been fixed.

• A bug that caused & with no previous substitution to give .ore internal error" bas been
fixed.

• A bug in the binary search algorithm for tags which sometimes prevented the last tag in the
file from being found has been fixed.

• Error messages from expreserve no longer output a linefeed, messing up the screen.

-22-

• The message from expl'eserve telling you a buffer was saved when your phone was -hung up
has be amended to say the "editor was terminated," since a kill can also produce that mes­
sage.

• The directory option, which has been broken for over a year, has been fixed.

• The r command no longer invokes input mode macros.

• A bug which caused strangeness if you set wrapmargin to 1 and typed a line containinl a
backslash in column 80 has been fixed.

• A bug which caused the r< RETURN> at the wrap margin column to mess up has been
fixed.

• On terminals with both scroll reverse and insert line, the least expensive of the two will be
used to scroll up. This is usually scroll reverse, which is much less annoying than insert
line on terminals such as the mime I and mime 13.

• A bug which caused vi to estimate the cost of cursor motion without lakinl into account
padding has been fixed.

• The failure of the editor to check counts on AF and AB commands has been fixed.

• The remap option failed completely if it was turned off. This has been fixed.

• A check of the wrong limit on a buffer for the right hand side of substitutions has been
fixed. Overflowing this buffer could produce a core dump.

• A bug causinl the editor to go into insert mode if you pressed the RETURN key during an
R command has been fixed.

• A bug preventing the + command from working when you edit a new file has been fixed
by making it no longer an error to edit a new file (when you first enter the editor). Instead
you are told it is a new file.

• If an error happens when you are writing out a file, such as an interrupt, you are warned
that the file is incomplete.

- -------------------- ---- --- -------- --- - ----------

An Introduction to Display Editing with Vi

WiUiamJoy

Revised/or Versions 3.5 (VAX UNIX) and 2.13 (PDP UNIX) by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

UNX 3.2.2

Vi (visual) is a display oriented interactive text editor. When using vi, the screen of your
terminal acts as a window into the file which you are editing. Changes which you make to the
file are reflected in what you see.

Using viyou can insen new text any place in the file quite easily. Most of the commands
to vimove the cursor around in the file. There are commands to move the cursor forward and
backward in units of characters, words, sentences and paragraphs. A small set of operators, like
d for delete and c: for change, are combined with the motion commands to form operations,
such as delete word or change paragraph, in a simple way. This regularity and the mnemonic
assi&nment of commands to keys makes the editor command set easy to remember and to use.

VI will work on a large number of display terminals, and new terminals are easily driven
after editing a terminal description file. While it is advantageous to have an intelligent terminal
which can locally insen and delete lines and characters from the display, the editor will function
quite well on dumb terminals over slow phone lines. The editor makes allowance for the low
bandwidth in these situations and uses smaller window sizes and different display updating algo­
rithms to make best use of the limited speed available.

It is also possible to use the command set of vi on hardcopy terminals, storage tubes and
"&lass tty's" using a one line editing window; thus vis command set is available on all termi­
nals. The full command set of the more traditional, line oriented editor ex is available within
vi: it is quite simple to switch between the two modes of editing.

Computer Science
September 1980

Computing Services Notes
See reverse side for "Computing Services Notes" about the new versions of the vieditor: ver­
sions 3.S (VAX UNIX) and 2.13 (PDP UNIX). Also see the Appendix for a "List of Changes
from Version 3.S to Version 3.6 of the Text Editor ex/vi."

Computinl Services Notes'
This manual documents both versions 2.13 and 3.5 of the text editor. Version 2.13 is currently
supported on the PDP UNIX Systems operated by Computer Facilities and Operations (CFO);
version 3.6 is currently supported on the CFO VAX UNIX system. For VAX UNIX users~ the
changes from version 3.5 to 3.6 are listed in an appendix to this manual. Also, a cumulative
list of changes to the editor from version to version is maintained online on all UNIX systems;
to retrieve the information type belp ex news on PDP UNIX and cat /nsr/news/es. on VAX
UNIX.

A small number of features available with version 3.5 are not found in version 2.13. In
most cases, the Manual documents these differences with footnotes statinl "Version 3 only."
But there are still some instances in which differences are not noted, or are noted ambiguously.
Here is a complete list of the editor's commands and options available in version 3.5 but not in
2.13:

Ex Commands
.ppreyiate
map
unmap
stop

Vi Commands Options
edcompatible
meq
remap
tlls*

tSimultaneously press the control key and the character key.

*The tal command is present in version 2.13, although the tap option is not. This means
tha~ if tags are used with the Version 2.13 editor, they are read from a prescribed set of files.
You cannot specify alternate names for tal files.

Some size limitations differ between versions 2.13 and 3.5. Most silDificantly, version 3.S can
accomodate larger files, up to 25Q,OOO lines, as opposed to about 250,000 characters in version
2.13. For ·details on different limitations, refer to the online lists of changes mentioned above.

Various other features of the editor are noted in the manual as "not available on all v2
editors. to This message relates to variants of 'Ii designed for computers other than the PDP
11170; the restrictions generally do not apply to customers of CFO UNIX systems.

Computinl Services
September 1981

An Introduction to Display Editing with Vi

William Joy

RevIsed for 1?nIOIlS J. SIl.l.J by
Mark Hortol!

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California. Berkeley
Berkeley, Ca. 94720

1. Getting started

This document provides a quick introduction to vi. (Pronounced vee-eye.) You should be
running vi on a file you are familiar with while you are reading this. The first part of this docu­
ment (sections 1 through 5) describes the basics of using vi. Some topics of special interest are
presented in section 6, and some nitty-gritty details of how the editor functions are saved for
section 7 to avoid cluttering the presentation here.

There is also a short appendix here, which gives for each character the special meanings
which this character has in vi. Attached to this document should be a quick reference card.
This card summarizes the commands of vi in a very compact format. You should have the card
handy while you are learning vi.

1.1. Specifying terminal type

Before you can start vi you must tell the system what kind of terminal you are using.
Here is a (necessarily incomplete) list of terminal type codes. If your terminal does not appear
here, you should consult with one of the staff members on your system to find out the code for
your terminal. If your terminal does not have a code, one can be assigned and a description for
the terminal can be created.

Code Full name Type
2621 Hewlett-Packard 2621A/P Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb
actS Microterm ACT -V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
clOO Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2S00 Datamedia 2500 Intelligent
dm302S Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
h19 Heathkit h 19 Intelligent
ilOO Infoton 100 Intelligent
mime Imitating a smart act4 Intelligent

The financial support of an IB~I Graduale Fellowship and the ~ational Science Foundation under grants
MCSi4-0764+AOJ and MCS78·07291 is gratefully acknowledged.

tl061
vtS2

T eleray 1061
Dec VT-S2

- 2 -

Intelligent
Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used
by the system for this terminal is '2621'. In this case you can use one of the following com­
mands to tell the system the type of your terminal:

% setenT TERM 2621

This command works with the shell csh on both version 6 and 7 systems. If you are usinl the
standard version 7 shell then you should give the commands

S TERM-2621
S export TERM

If you want to arrange to have your terminal type set up automatically when you log in,
you can use the lset program. If you dial in on a mime, but often use hardwired ports, a typical
line for your .login file (if you use csh) would be

setenT TERM 'tset - -d mime'

or for your .profile file (if you use sh)

TElt.'i-'tsel - -d mime"

Tsel knows which terminals are hardwired to each port and needs only to be told that when you
dial in you are probably on a mime. Tset is usually used to change the erase and kill characters,
too.

1.1. Edltinl a file
After teUing the system which kind of terminal you have, you should make a copy of a.

file you are familiar with, and run vi on this file, givinl the command -

% Ti name

replacing name with the name of the copy file you just created. The screen should clear and the
text of your file should appear on the screen. If something else happens refer to the footnote.*

1.3. The editor's copy: the buft'er

The editor does not directly modify the file which you are editinl. Rather, the editor
makes a copy of this file, in a place called the buffer, and remembers the file's name. You do
not affect the contents of the file unless and until you write the changes you make back into the
original file.

* If you gave Lbe system an incorrect terminal type code then the editor may have just made a mess out of
your screen. This happens when it sends control codes for one kind of terminal to some other kind of termi­
nal. rn this case hit the keys :q (colon and the q key) and Lben hit tbeRETURN key. This should get you bac:lc
to the command level interpreter. Figure out what you did wrong (ask someone else if necessary) and try
agaia.

Another thing which can go wrona is that you typed the wrona file name and the editor just printed an
error diagnostic. rn this case you should follow the above procedure for getting out of the editor, and try
again this time spelling the file name correctly.

rf the editor doesn't seem to respond to the commands which you type here, try sendin. an interrupt to it
by hinin. the DEL or RUB key on your terminal, and then hining the :q command again followed by a c:arriap
return.

-3-

1.4. Notational conventions
In our examples, input which must be typed as is will be presented in bold face. Text

which should be replaced with appropriate input will be given in lIalit's. We will represent spe·
cial characters in SMALL CAP!T AlS.

1.5. Arrow keys
The editor command set is independent of the terminal you are using. On most terminals

with, cursor positioning keys, these keys will also work within the editor. If you don't have cur·
sor positioning keys, or even if you do, you can use the h j k and I keys as cursor positioning
keys (these are labelled with arrows on an admJa). •

(Particular note for the HP2621: on this terminal the function keys must be shifted (ick)
to send to the machine. otherwise they only act locally. Unshifted use will leave the cursor
positioned incorrectly.)

1.6. Special characters: ESC, CR and DEL

Several of these special characters are very important, so be sure to find them right now.
Look on your keyboard for a key labelled ESC or ALT. It should be near the upper left comer of
your terminal. Try hitting this key a few times. The editor will ring the bell to indicate that it
is in a quiescent state.* Partially formed commands are cancelled by ESC, and when you insert
text in the file you end the text insertion with ESC. This key is a fairly harmless one to hit. so
you can just hit it if you don't know what is going on until the editor rings the bell.

The CR or RETURN key is important because it is used to terminate certain commands. It
is usually at the right side of the keyboard, and is the same command used at the end of each
shell command.

Another very useful key is the DEL or RUB key, which generates an interrupt, telling the.
editor to stop what it is doing. It is a forceful way of making the editor listen to you. or to
return it to the Quiescent state if you don't know or don't like what is going on. Try hitting the
'I' key on your terminal. This key is used when you want to specify a string to be searched for.
The cursor should now be positioned at the bottom line of the terminal after a 'I' printed as a
prompt. You can get the cursor back to the current position by hitting the DEL or RUB key~ try
this now.- From now on we will simply refer to hitting the DEL or RUB key as "sending an
interrupt ... ••

The editor often echoes your commands on the last line of the terminal. If the cursor is
on the first position of this last line. then the editor is performing a computation. such as com·
puting a new position in the file after a search or running a command to reformat part of the
buffer. When this is happening you can Stop the editor by sending an interrupt.

1.7. Gettiol out or the editor
After you have worked with this introduction for a while, and you wish to do something

else. you can give the command ZZ to the editor. This will write the contents of the editor's
buffer back into the file you are editing, if you made any changes. and then Quit from the edi·
tor. You can also end an editor session by giving the command :q!CR;t this is a dangerous but
occasionally essential command which ends the editor session and discards all your changes.
You need to know about this command in case you change the editor's copy of a file you wish

• As we will see later. I, moves back to the left (like control·h which is a backspace), J moves down (in the
same column). k moves up lin the SlIme column}. and I mC)ves to the naht. * On slrulrt termin:1is where it is possible. the editor will qUietly flash the screen r:llher than rinsing the b.:11.
o Backspacing over the '/' will also cancel the 5C:Irch.
00 On some systems, this interruptibility comes at a price: you Clnnot type ahead when the editor is comput·
ina with the cursor on the bottom line.
t All commands which read from the !:lst display line '".In also be terminated with a liSe :IS well as an CR.

·4·

only to look at. Be very careful not to give this command when you really want to save the
changes you have made.

1. Moying around in the file

2.1. Scrolling and paging
The editor has a number of commands for moving around in the file. The most useful of

these is generated by hitting the control and 0 keys at the same time. a controt-D or '''0'. We
will use this two character notation for referring to these control keys from now on. You may
have a key labelled on your terminal. This key will be represented as '1' in this document;
.'" is exclusively used as part of the '''x' notation for control characters.*

As you know now if you tried hitting -D, this command scrolls down in the ftle. The D
thus stands for down. Many editor commands are mnemonic and this makes them much easier
to remember. For instance the command to scroll up is ·U. Many dumb terminals can't scroll
up at all, in which case hitting ·U clears the screen and refreshes it with a line which is farther
back in the file at the top.

If you want to see more of the file below where you are, you can hit "E to expose one
more line at the bottom of the screen. leaving the cursor where it is. ** The command ·Y
(which is hopelessly non-mnemonic, but next to -U on the keyboard) exposes one more line at
the top of the screen.

There are other ways to move around in the ftle; the keys ... , and "B * move forward and
backward a page, keeping a couple of lines of continuity between screens so that it is possible to
read through a ftle using these rather than "D and -U if you wish.

Notice the difference between scrolling and paging. If yo~ are trying to read the text in a
file, hitting -, to move forward a page will leave you only a little 'context to look back at.
Scrolling on the other hand leaves more context, and happens more smoothly. You can con­
tinue to read the text as scrolling is taking place.

2.2. Searching, loto, and pre"ioa~ contest
Another way to position yourself in the file is by giving the editor a string to search for.

Type the character 1 followed by a string of characters terminated by CR.. The editor will posi­
tion the cursor at the next occurrence of this string. Try hitting D to then go to the next
occurrence of this string. The character ? will search backwards from where you are. and is
otherwise like I. t

If the search string you give the editor is not present in the file the editor will print a diag­
nostic on the last line of the screen. and the cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string
with an T. To match only at the end of a line, end the search string with a S. Thus ITsearchcR.
will search for the word 'search' at the beginning of a line. and IIastScR. searches for the word
'last' at the end of a line.·

* If you don't have a ,., key on your terminal then there is probably a key labelled 'f'; in any case these
characters are one and the same.
** Version J only. * !IIot available in all v2 editors due to memory constraints.
t These searches will normally wrap around the end of the file, and thus find the strinl even if it is not on a
line in the direction you search provided it is anywhere else in the file. You can disable this wraparound in
scans by giving lhe command :s. nowrapsc:mcll, or more briefly :s. nowlCL
-Actually, the string you give to search for here can be a rPgUlar apmslon in the sense of the editors ex(I)
and ed(l). If you don't wish to learn about this yet, you can disable this more general facility by doing
:se nomaliccR; by putting this command in EXINIT in your environment, YOIl can have this always be in
effect (more about EXINITlater.)

- 5 -

The command G. when preceded by a number will position the cursor at that line in the
file. Thus IG will move the cursor to the first line of the file. If you give G no count. then It

moves to the end of the file.

If you are near the end of the file. and the last line is not at the bottom of the screen. the
editor will place only the character .-, on each remaining line. This indic:nes that the last line
in the file is on the screen: that is, the .-, lines are past the end of the file.

You can find out the state of the file you are editing by typing a AG. The editor will show
you the narne of the file you are editing, the number of the current line, the number of lines in
the buffer, and the percentage of the way through the buffer which you are. Try doing this
now. and remember the number of the line you are on. Give a G command to get to the end
and then another G command to get back where you were.

You can also get back to a previous position by using the command .• (two back quotes).
This is often more convenient than G because it requires no advance preparation. Try giving a
G or a search with / or ? and then a .. to get back to where you were. If you accidentally hit n
or any command which moves you far away from a context of interest, you can quickly get
back by hitting ".

2.3. Moving around on the scr~n

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4
or 5 keys with arrows going in each direction) try them and convince yourself that they work.
(On certain terminals using v2 editors, they won't.) If you don't have working arrow keys, you
can always use h. j. k, and I. Experienced users of vi prefer these keys to arrow keys, because
they are usually right underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next line in the
file, at the first non-white position on the line. The - key is like + but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if you
go off the bottom or top with these keys then the screen will scroll down (and up if possible) to
bring a line at a time into view. The RETURN key has the same effect as the + key.

Vi also has commands to take you to the top, middle and bottom of the screen. H will
take you to the top (home) line on the screen. Try preceding it with a number as in 3H. This
will take you to the third line on the screen. Many vi commands take preceding numbers and
do interesting things with them. Try M, which takes you to the middle line on the screen, and
L. which takes you to the last line on the screen. L also takes counts, thus SL will take you to
the fifth line from the bottom.

2.4. l\tovina within a line

Now try picking a word on some line on the screen, not the first word on the line. move
the cursor using RETURN and - to be on the line where the word is. Try hitting the w key.
This will advance the cursor to the next word on the line. Try hitting the b key to back up
words in the line. Also try the e key which advances you to the end of the current word rather
than to the beginning of the next word. Also try SPACE (the space bar> which moves right one
character and the BS (b!lcKspace or AH) key which moves left one character. The key h works
as AH does and is useful if you don't have a BS key. (Also. as noted just above, I will move to
the right.>

If the line had punctuation in it you may have noticed that that the wand b keys stopped
at each group of punctuation. You can also go back and forwards words without stopping at
punctuation by using Wand B rather than the lower case equivalents. Think of these as bigger
words. Try these on a few lines with punctuation to see how they differ from the lower case w
and b.

The word keys wrap around the end of line. rather than stopping at the end. Try moving
to a word on a line below where you are by repeatedly hitting w.

..
·6·

2.S. Summary.

SPACE advance the cursor one position
"D backwards to previous page
"D scrolls down in the file
"E exposes another line at the bottom (v3)
'" forward to next page
"G tell what is going on
"H backspace the cursor
"N next line, same column
"p previous line, same column
"U scrolls up in the file
"Y exposes another line at the top (v3)
+ next line, at the beginning

previous line, at the beginning
/ scan for a following string forwards
? scan backwards
D back a word, ignoring punctuation
G go to specified line, last default
H home screen line
M middle screen line
L last screen line
W forward a word, ignoring punctuation
b back a word
e end of current word
n scan for next instance of / or ? pattern
w word after this word

2.6. View *
If you want to use the editor to look at a file. rather than to make changes, invoke it as

view instead of v;. This will set the read only option which will prevent you from accidently
overwriting the file.

3. Making simple change!

3.1. Inserting
One of the most useful commands is the i (insert) command. After you type i. every­

thing you type until you hit ESC is inserted into the file. Try this now; position yourself to
some word in the file and try inserting text before this word. If you are on an dumb terminal it
will seem. for a minute. that some of the characters in your line have been overwritten. but
they will reappear when you hit ESC.

Now try finding a word which can. but does not, end in an '5'. Position yourself at this
word and type e (move to end of word), then a for append and then 'SESC' to terminate the
textual insert. This sequence of commands can be used to easily pluralize a word.

Try inserting and appending a few times to make sure you understand how this works; 1
placing text to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are editing, before or
after some' specific line in the file. Find a line where this makes sense and then give the com­
mand 0 to create a new line after the line you are on, or the command 0 to create a new line
before the line you are on. After you create a new line in this way, text you type up to an ESC

* :-lot available in all v2 editors due 10 memory constraints.

- 7 .

is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only in th:lt
one is given by a lower case key and the other is given by an upper case key. In these cases.
the upper case key often differs from the lower case key in its sense of direction. with the
upper case key working backward and/or up. while the lower case key moves forward and/or
down.

Whenever you are typing in text, you can give many lines of input or just a few charac­
ters. To type in more than one line of text. hit a RETURN at the middle of your input. A new
line will be created for text. and you can continue to type. If you are on a slow and dumb ter­
minal the editor may choose to wait to redraw the tail of the screen. and will let you type over
the existing screen lines. This avoids the lengthy delay which would occur if the editor
attempted to keep the tail of the screen always up to date. The tail of the screen wiJI be fixed
up. and the missing lines will reappear, when you hit ESC.

. While you are inserting new text. you can use the characters you normally use at the sys­
tem command level (usually ·H or #) to backspace over the last character which you typed.
and the character which you use to kill input lines (usually @. ·X. or ·U) to erase the input
you have typed on the current line. t The character ·W will erase a whole word and leave you
after the space after the previous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you backspace over are
not erased; the cursor moves backwards. and the characters remain on the display. This is
often useful if you are planning to type in something similar. In any case the characters disap­
pear when when you hit ESC; if you want to get rid of them immediately, hit an ESC and then a
again.

Notice also that you can't erase characters which you didn't insert. and that you can't
backspace around the end of a line. If you need to back up to the previous line to make a
correction. just hit ESC and move the cursor back to the previous line. After making the
correction you can return to where you were and use the insert or append command again.

3.1. Makin& small corrections

You can make small corrections in eXisting text quite easily. Find a single character
which is wrong or just pick any character. Use the arrow keys to find the character, or get near
the character with the word motion keys and then either backspace (hit the BS key or -H or
even just h) or SPACE (using the space bar) until the cursor is on the character which is wrong.
If the character is not needed then hit the x key; this deletes the character from the file. It is
analogous to the way you x out characters when you make mistakes on a typewriter (except it's
not as messy).

If the character is incorrect, you can replace it with the correct character by giving the
command re. where e is replaced by the correct character. Finally if the character which is
incorrect should be replaced by more than one character. give the command s which substitutes
a string of characters. ending with ESC. for it. If there are a small number of characters which
are wrong you can precede s with a count of the number of characters to be replaced. Counts
are also useful with :r to specify the number of characters to be deleted.

3.3. More corrections: operators

You already know almost enough to make changes at a higher level. All you need to
know now is that the d key acts as a delete operator. Try the command dw to delete a word.
Try hitting. a few times. Notice that this repeats the effect of the dw. The command. repealS
the last command which made a change. You can remember it by analogy with an ellipsis ••• o' .

t In facl. the character °H (b:1ckspac:el alwil~s worlcs to er:lSe the last input ch:mu:ler here. reg:1rdlo:ss of what
your erase character is.

- 8 -

Now try db. This deletes a word backwards, namely the preceding word. Try dsPACE.
This deletes a single character, and is equivalent to the x command.

Another very useful operator is c: or change. The command c:w thus changes the text of a
single word. You follow it by the replacement text ending with an ESC. Find a word which you
can change to another, and try this now. Notice that the end of the text to be changed was
marked with the character'S' so that you can see this as you are typing in the new material.

3.4. Operating on lines

It is often the case that you want to operate on lines. Find a .line which you want to
delete, and type dd, the d operator twice. This will delete the line. If you are on a dumb ter­
minal, the editor may just erase the line on the screen, replacing it with a line with only an @
on it. This line does not correspond to any line in your file, but only acts as a place holder. It
helps to avoid a lengthy redraw of the rest of tbe screen wbich would be necessary to close up
tbe bole created by the deletion on a terminal without a delete line capability.

Try repeating the c: operator twice; this will cbange a whole line, erasing its previous con­
tents and replacing them with text you type up to an ESC. t

You can delete or cbange more than one line by preceding the dd or c:c with a count, i.e.
Sdd deletes S lines. You can also give a command like dL to delete all the lines up to and
including tbe last line on tbe screen, or d3L to delete through tbe third from the bottom line.
Try some commands like this now.· Notice tbat the editor lets you know when you change a
large number of lines so that you can see the extent of the change. The editor will also always
tell you wben a change you make affects text which you cannot see.

3.S. Undoing
Now suppose tbat the last change which you made was incorrect; you could use the insert,

delete and append commands to put the correct material back. However, since it is often tbe
case tbat we regret a' change or make a change incorrectly, tbe editor provides a u (undo) com­
mand to reverse the last change whicb you made. Try this a few times, and give it twice in a
row to notice tbat an u also undoes a u.

The undo command lets you reverse only a single change. After you make a number of
cbanges to a line, you may decide that you would ratber have the original state of the line back.
The U command restores the current line to the state before you started cbanging it

You can recover text wbicb you delete, even if undo will not bring it back; see the section
on recovering lost text below.

3.6. Summary

SPACE
"H
"W
erase
kill

o "
U
a
c

advance the cursor one position
backspace the cursor
erase a word during an insert
your erase (usually "H or #), erases a character during an insert
your kill (usually @, ~X, or ~U), kills the insert on this line
repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor
cbanges the object you specify to the following text

t The command S is a convenient synonym ror ror cc, by analov with s. Think of S as a substitute on
lines. while s is a substitute on characters. .
• One subtle point here involves using the I searcb after a d. This will normally delete characters from the
current position to the point of the match. If what is desired is to delete whole lines includinl the two points.
give the pattern as Ipacl +0. a line address. .

d
i
o
u

- 9 -

deletes the object you specify
inserts text before the cursor
opens and inputs new lines, below the current
undoes the last change

4. Moving about; rearranging and duplicating text

4.1. Low level character motions
Now move the cursor to a line where there is a punctuation or a bracketing character such

as a parenthesis or a comma or period. Try the command fx where x is this character. This
command finds the next x character to the right of the cursor in the current line. Try then hit­
ting a ;. which finds the next instance of the same character. By using the f command and then
a sequence of ;'s you can often get to a particular place in a line much faster than with a
sequence of word motions or SPACES. There is also a F command. which is like f. but searches
backward. The; command repeats F also.

When you are operating on the text in a line it is often desirable to deal with the charac­
ters up to. but not including. the first instance of a character. Try dfx for some x now and
notice that the x character is deleted. Undo this with u and then try dtx; the t here stands for .. ,.
to. i.e. delete up to the next X. but not the x. The command T is the reverse of t.

When working with the text of a single line. an T moves the cursor to the first non-white
position on the line. and a S moves it to the end of the line. Thus Sa will append new text at
the end of the current line.

Your file may have tab ("I) characters in it. These characters are represented as a number
of spaces expanding to a tab stoP. where tab stops are every 8 positions.- When the cursor is at
a tab. it sits on the last of the several spaces which represent that tab. Try moving the cursor
back and forth over tabs so you understand· how this works.

On rare occasions. your file may have nonprinting characters in it. These characters are
displayed in the same way they are represented in this document. that is with a two character
code, the first character of which is ''''. On the screen non-printing characters resemble a· .. •
character adjacent to another. but spacing or backspacing over the character will reveal that the
two characters are. like the spaces representing a tab character. a single character.

The editor sometimes discards control characters. depending on the character and the set­
ting of the beautifY option, if you attempt to insert them in your file. You can get a control
character in the file by beginning an insert and then typing a "V before the control character.
The ·V quotes the following character. causing it to be inserted directly into the file.

4.2. Hieher level text objects
In working with a document it is often advantageous to work in terms of sentences. para­

graphs, and sections. The operations (and) move to the beginning of the previous and next
sentences respectively. Thus the command d) will delete the rest of the current sentence; like­
wise d(will delete the previous sentence if you are at the beginning of the current sentence, or
the current sentence up to where you are if you are not at the beginning of the current sen­
tence.

A sentence is defined to end at a''', '!' or .? which is followed by either the end of a
line. or by two spaces. Any number of closing ')'. 'J" ••• and characters may appear after
the '!' or '1' before the spaces or end of line.

The operations { and } move over paragraphs and the operations II and]] move over sec­
tions.t

• This is sellable by a command of the form :se ts-XCIl. where x is 4 to set tabstops every four columns.
This has effect on the screen representation within the editor.
t The II and II operations require the operation character to be doubled because they can move the cursor far

... _--_ .. _. ------ _ ..• _- _ .. _-_.---_ ... -

- LO -

A po.ro.!&ro.ph begins after each empty line. and also at each of a set of paragraph macros.
specified by the pairs of characters in the definition of the string valued option paragraphs. The
default setting for this option defines the paragraph macros of the -illS and -111m macro puck­
ages, i.e. the \ .IP·, • .1..P'. • .PP' and' .QP' •.. P' and '.1..1' macros.t Each paragraph boundary is
also a sentence boundary. The sentence and paragraph commands can be given counts to
operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sectiolls option. normally • .NH'. • .SH',
• .H' and • .HU'. and each line with a form feed "L in the first column. Section boundaries are
always line and paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how
they work. If you have a large document. try looking through it using the section commands.
The section commands interpret a preceding count as a different window size in which to
redraw the screen at the new location, and this window size is the base size for newly drawn
windows until another size is specified. This is very useful if you are on a slow terminal and
are looking for a particular section. You can give the first section command a small count to
then see each successive section heading in a small window.

".3. Rearr:1nging and dupUcatinc text
The editor has a single unnamed buffer where the last deleted or changed away text is

saved. and a set of named buffers a-z which you can use to save copies of text and to move
text around in your tile and between tiles. .

The operator., yanlcs a copy of the object which follows into the unnamed buffer. If pre­
ceded by a butTer name. -orr. where x here is replaced by a letter a-z. it places the text in the

. named butTer. The text em then be put back in the file with the commands p and P; p puts
the text after or below the cursor, while P puts the text before or above the cursor.

If the text which you yank forms a part of a line, or is an object such as a sentence which
partially spans more than one line. then when you put the text back. it will be placed after the
cursor (or before if you use P). If the yanked text forms whole lines. they will be put back as
whole lines. without changing the current line. In this case. the put acts much like a 0 or 0
command.

Try the command YP. This makes a copy of the current line and leaves you on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for Y'J.
The command Yp will also make a copy of the current line. and place it after the current line.
You can give Y II count of lines to yank, and thus duplicate several lines; try 3YP.

To move text within the buffer. you need to delete it in one place. and put it back in
another. You can precede a delete operation by the name of a buffer in which the text is to be
stored as in -:tSdd deleting 5 lines into the named buffer a. You can then move the cursor to
the eventual resting place of the these lines and do a "ap or "aP to put them back. In fact, you
C:ln switch and edit another file before you put the lines back, by giving a command of the form
:e Ilam£ICR where ,rame is the name of the other tile you want to edit. You will have to write
back the contents of the current editor buffer (or discard them) if you have made changes
before the editor will let you switch to the other file. An ordinary delete command saves the
text in th~ unnamed buffer. so that an ordinary put can move it elsewhere. However, the
unnamed buffer is lost when you change tiles. so to move text from one tile to another you
should use an xnamed buffer.

(rom where it C'4rt'ently is. While it is e:1Sy 10 get back with the command". Ihese commands would still be
frustr:1tinW If thlw were e:l.SY 10 hit 3c:cident:llly.
t You C".&n easIly ch3nge or e:uend this set of macros by ilSSilning a different strinl to the {KInJr:ra"/u option
in your E.",\I~IT. See se1:tion 6.2 rOt det:1ils. The '.bp· directive is also considered to St3rt II Pllf3lfl1ph.

- 11 -

4.4. Summary.

t first non-white on line
S end- of line
) forward sentence
} forward paragraph
)) forward section
(backward sentence
(backward paragraph
n backward section
fx find x forward in line
p put text back, after cursor or below current line
y yank operator, for copies and moves
tx up to x forward, for operators
F x f backward in line
P put text back, before cursor or above current line
Txt backward in line

S. High level commands

S.l. Writing, quitting, editing new files
So far we have seen how to enter vi and to write out our file using either ZZ or :wCR.

The first exits from the editor, (writing if changes were made), the second writes and stays in
the editor.

If you have changed the editor's copy of the file but do not wish to save your changes,
either because you messed up the file or decided that the changes are not an improvement to
the file, then you can give the command :q!CR to quit from the editor without writing the
changes. You can also reedit the same file (starting over) by giving the command- :e!CR. These
commands should be used only rarely, and with caution, as it is not possible to recover the
changes you have made after you discard them in this manner.

You can edit a different file without leaving the editor by giving the command :e namecR.
If you have not written out your file before you try to do this, then the editor will tell you this,
and delay editing the other file. You can then give the command :WCR to save your work and
then the :e namecR command again, or carefully give the command :e! namecR, which edits
the other file discarding the changes you have made to the current file. To have the editor
automatically save changes, include sel QulOwrile in your EXINIT, and use :n instead of :e.

S.l. Escaping to a shell
You can get to a shell to execute a single command by giving a vi command of the form

:!cmd:R. The system will run the single command cmd and when the command finishes, the
editor will ask you to hit a RETURN to continue. When you have finished looking at the output
on the screen, you should hit RETURN and the editor will clear the screen and redraw it. You
can then continue editing. You can also give another: command when it asks you for a
RETURN; in this case the screen will not be redrawn.

If you wish to execute more than one command in the shell, then you can give the com­
mand :ShCR. This will give you a new shell, and when you finish with the shell, ending it by
typing a '"D, the editor will clear the screen and continue.

On systems which support it, '"z will suspend the editor and return to the (top level)
shell. When the editor is resumed, the screen will be redrawn.

- 12 -

S.3. Marking and returning
The command .. returned to the previous place :uter a motion of the cursor by a com­

mand such as I. ? or G. You can also mark lines in the file with single letter tags and return to
these marks later by naming the tags. Try marking the current line with the command ~
where you should pick some letter for x. say 'a'. Then move the cursor to a different line (any
way you like) and hit 'a. The cursor will return to the place which you marked. Marks last
only until you edit another file. .

When using operators such as d and referring to marked lines, it is often desirable to
delete whole lines rather than deleting to the exact position in the line marked by m. In this
case you can use the form 'x rather than 'x. Used without an operator, 'xwill move to the first
non-white character of the marked line; similarly" moves to the first non-white character of
the line containing the previous context mark ".

5.4. Adjusting the screen
If t~e screen image is messed up because of a transmission error to your terminal, or

because some program other than the editor wrote output to your terminal, you can hit a ·L,
the Ascn form-feed character, to cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line
deletion, you may get rid of these lines by typing ·a to cause the editor to retype the screen,
closing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of
the screen, you can position the cursor to that line, and then give a z command. You should

. follow the z command with a RETURN if you want the line to appear at the top of the window, a
• if you want it at the center, or a - if you want it at the bottom. (z., Z-, and z+ are not avail­
able on all v2 editors.)

6. Special topics

6.1. Editing on slow terminals
When you are on a slow terminal, it is important to limit the amount of output which is

generated to your screen so that you will not suffer long delays, waiting for the screen to be
refreshed. We have already pointed out how the editor optimizes the updating of the screen
during insertions on dumb terminals to limit the delays, and how the editor erases lines to @
when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the s[owopen option. You
can force the editor to use this mode even on faster terminals by giving the command :se
slowCR. If your system is sluggish this helps lessen the amount of output coming to your ter-
minal. You can disable this option by :se noslowCR. .

The editor can simulate an intelligent terminal on a dumb one. Try giving the command
:se redrawCR. This simulation generates a great deal of output and is generally tolerable only
on lightly loaded systems and fast terminals. You can disable this by giving the command
:se noredrawCR.

The,editor also makes editing more pleasant at low speed by starting editing in a small
window, and letting the window expand as you edit. This works particularly well on intelligent
terminals. The editor can expand the window easily when you insert in the middle of the
screen on these terminals. If possible, try the editor on an intelligent terminal to see how this
works.

You can control the size of the window which is redrawn each time the screen is cleared
by giving window sizes as argument to the commands which cause large screen motions:

:I?[(J)"

Thus if you are searching for a particular instance of a common string in a file you can precede

- 13 -

the first search command by a small number, say 3, and the editor will draw three line windows
around each instance of the string which it locates.

You can easily expand or contract the window, placing the current line as you choose, by
giving a number on a z command, after the z and before the following RETURN, • or -. Thus
the command zS. redraws the screen with the current line in the center of a five line window. t

If the editor is redrawing- or otherwise updating large portions of the display, you can
interrupt this updating by hitting a DEL or RUB as usual. If you do this you may panially con­
fuse the editor about what is displayed on the screen. You can still edit the text on the screen
if you wish; clear up the confusion by hitting a AL; or move or search again, ignoring the
current state of the display.

See section 7.S on open mode for another way to use the vi command set on slow termi­
nals.

6.2-. Options, set, and editor startup files

The editor has a set of options, some of which have been mentioned above. The most
useful options are given in the following table.

Name Default Description
autoindent
autowrite
ignorecase
lisp
list
magic
number
paragraphs
redraw'
sections
shiftwidth
showmatch
slowopen
term

noai
noaw
noic
nolisp
nolist
nomagic
nonu
para-IPLPPPQPbpP LI
nore
sect- NHSHH HU
sw-S
nosm
slow
dumb

Supply indentation automatically
Automatic write before :n, :ta, AT. !
Ignore case in searching
(() } commands deal with S-expressions
Tabs print as AI; end of lines marked with $
The characters . [and • are special in scans
Lines are displayed prefixed with line numbers
Macro names which start paragraphs
Simulate a smart terminal on a dumb one
Macro names which start new sections
Shift distance for <, > and input "D and "T
Show matching (or (as) or } is typed
Postpone display updates during inserts
The.kind of terminal you are using.

The options are of three kinds: numeric options. string options. and toggle options. You
can set numeric and string options by a statement of the form

set apr-val

and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment, or given while you are
running vi by preceding them with a : and following them with a CR.

You can get a list· of all options which you have changed by the command :setcR, or the
value of a single option by the command :set opt? CR. A list of all possible options and their
values is generated by :set all CR. Set can be abbreviated se. Multiple options can be placed on
one line. e.g. :se ai aw nuCR.

Options set by the set command only last while you stay in the editor. It is common to
want to have certain options set whenever you use the editor. This can be accomplished by
creating a list of ex commandst which are to be run every time you start up ex, edit, or vi. A

t Note that the command 5z. has an entirely different effect, placing line 5 in the center of a new window.
t All commands which start with : are ~x commands. ..

------------- ------------------- ------- ----- -- -- ---

typical list includes a set command, and possibly a few map commands (on v3 editors). Since
it is advisable to get these commands on one line, they can be separated with the I character, for
example:

set ai aw terselmap @ dd!map # x

which sets the options autoindent, auto write, terse, (the set command), makes @ delete a line,
(the first map), and makes # delete a character, (the second map). (See section 6.9 for a
description of the map command, which only works in version 3.) This string should be placed
in the variable EXINIT in your environment If you use csh, put this line in the file .Iogin in
your home directory:

setenv EXINIT 'set ai aw terse/map @ ddjmap # x'
."

If you use the standard v7 shell, put these lines in the file .profile in your home directory:

EXINIT-'set ai aw terselmap @ ddjmap # x'
export EXINIT

On a version 6 system, the concept of environments is not present. In this case, put the line in
the file . exrc in your home directory.

set ai aw terselmap @ ddlmap # x

Of course, the particulars of the line would depend on which options you wanted to set.

6.3. RecoYerinl lost Hnes
You might bave a serious problem if you delete a number of lines and then regret that

they were deleted. Despair not, the editor saves the last 9 deleted blocks of text in a set of
numbered registers 1-9. You can get the n'th previous deleted text back in your file by the
command "np. The" here says that a buffer name is to follow, n is the number of tbe buffer
you wish to try (use the number 1 for now), and p is the put command, which puts text in the
buffer after the cursor. If this doesn't bring back the text you wanted, hit 11 to undo this and
then. (period) to repeat the put command. In general tbe. command will repeat the last
change you made. As a special case, when the last command refers to a numbered text buffer,
the . command increments the number of the buffer before repeating the command. Thus a
sequence of the form

"lpu.lI.u.

will, if repeated long enough, show you all the deleted text wbich has been saved for you. You
can omit the u commands here to gather up all this text in the buffer, or stop after any • com­
mand to keep just the then recovered text. The command P can also be used rather tban p to
put the recovered text before rather than after the cursor.

6.4. Recovering lost files

If the system crashes, you can recover the work you were doing to within a few changes.
You will normally receive mail when you next login giving you the name of the file which has
been saved for you. You sbould then change to the directory where you were when the system
crashed an,d give a command of the form:

OM vi -r name

replacing name with the name of the file which you were editing. This will recover your work
to a point near wbere you left off. t

t [n rare c:ases. some of the lines of the file may be lOlL The editor will give you the numbers of these lines
and the text of the lines will be replaced by the string 'LOST. These lines will almost always be amonl the
last few which you changed. You can either choose to discard the chanles which you made (if they are easy
to remake) or to replace the few lost lines by hand: .

- 15 •

You can get a listing of the flIes which are saved for you by giving the command:

% vi-r

If there is more than one instance of a particular file saved, the editor gives you the newest
instance each time you recover it. You can thus get an older saved copy back by first recover­
ing the newer copies.

For this feature to work, vi must be correctly installed by a super user on your system,
and the mail program must exist to receive mail. Theinvocation"vi -r" will not always list all
saved files, but they can be recovered even if they are not listed.

6.S. Continuous text input
When you are typing in large amounts of text it is convenient to have lines broken near

the right margin automatically. You can cause this to happen by giving the command :se
wm=10cR. This causes all lines to be broken at a space at least 10 columns from the right
hand edge of the screen.·

If the editor breaks an input line and you wish to put it back together you can tell it to
join the lines with J. You can give J a count of the number of lines to be joined as in 3J to
join 3 lines. The editor supplies white space, if appropriate, at the juncture of the joined lines,
and leaves the cursor at this white space. You can kill the white space with :x if you don't want
it.

6.6. Features for editing programs

The editor has a number of commands for editing programs. The thing that most distin­
guishes editing of programs from editing of text is the desirability of maintaining an indented
structure to the body of the program. The editor has a autoindent facility for helping you gen­
erate correctly indented programs.

To enable this facility you can give the command :se aicR. Now try opening a new line
with 0 and type some characters on the line after a few tabs. If you now start another line,
notice that the editor supplies white space at the beginning of the line to line it up with the pre­
vious line. You cannot backspace over this indentation, but you can use An key to backtab
over the supplied indentation. .

Each time you type An you back up one position, normally to an 8 column boundary.
This amount is settable; the editor has an option called shiftwidlh which you can set to change
this value. Try giving the command :se sw-4CR and then experimenting with autoindent
again.

For shifting lines in the program left and rigl11, there are operators < and >. These shift
the lines you specify right or left by one shiftwidth. Try < < and > > which shift one line left
or right, and < L and > L shifting the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses match, put the
cursor at a left or right parenthesis and hit 0/0. This will show you the matching parenthesis.
This works also for braces (and), and brackets [and].

If you are editing. C programs, you can use the 1I and II keys to advance or retreat to a
line starting with a (, i.e. a function declaration at a time. When)) is used with an operator it
stops after a line which starts with }; this is sometimes useful with y)).

• This feature is not available on some v2 editors. In v2 editors where it is available. the break can only oc­
cur to the right of the specified boundary instead of to the left.

- 16 -

6.7. Filtering portions of the buffer .
You can run system commands over portions of the buffer using the operator!. You can

use this to sort lines in the buffer, or to reformat portions of the buffer with a pretty-printer.
Try typing in a list of random words, one per line and ending them with a blank line. Back up
to the beginning of the list, and then give the command !}sortcR. This says to sort the next
paragraph of material, and the blank line ends a paragraph.

6.8. Commands for editing LIspt
If you are editing a LISP program you should set the option lisp b3(doing :se lispCR.. This

changes the (and) commands to move backward and forward over s-expressions. The { and }
commands are like (and) but don't stop at atoms. These can be used to skip to the next list,
or through a comment quickly.

The aUloindenloption works differently for LISP, supplying indent to align at the first argu­
ment to the last open list. If there is no such argument then the indent is two spaces more
than the last level.

There is another option which is useful for typing in LISP, the showmatch option. Try set­
ting it with :se smCR and then try typing a '(' some words and then a ")'. Notice that the cur­
sor shows the position of the '(' which matches the ")' briefly. This happens only if the match­
ing '(' is on the screen, and the cursor stays there for at most one second.

The editor also has an operator to realign existing lines as though they had been typed in
with lisp and aUloindent set. This is the - operator. Try the command -Oft at the beginning of
a function. This will realign all the lines of the function declaration.

When you are editing LISP" the II and]] advance and retreat to lines beginning with a (,
and are ~seful for dealing with entire function definitions.

6.9. Macros*
Vi has a parameterless macro facility, which lets you set it up so that when you hit a single

keystroke, the editor will act as though you had hit some longer sequence of keys. You can set
this up if you find yourself typing the same sequence of commands repeatedly.

Briefly, there are two Oavors of macros:

a) Ones where you put the macro body in a buffer register, say x. You can then type @x to
invoke the macro. The @ may be followed by another @ to repeat the last macro.

b) You can use the map command from vi (typically in your EXINl'n with a command of the
form:

:map firs rhs:.R

mapping lhs into rhs. There are restrictions: lhs should be one keystroke (either 1 charac­
ter or one function key) since it must be entered within one second (unless notimeout is
set, in which case you can type it as slowly as you wish, and vi will wait for you to finish it
before it echoes anything). The Ihs can be no longer than 10 characters, the rhs no longer
than 100. To get a space, tab or newline into Ihs or rhs you should escape them with a ·V.
(It may be necessary to double the ·V if the map command is given inside vi, rather than
in e.",,) Spaces and tabs inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, you can give the command

:map q :wq·V·VCR CR

which means that whenever you type q, it will be as though you had typed the four characters
:wqCR. A ·V's is needed because without. it the CR would end the : command, rather than

t The l.ISP features are not available on some v2 editors due to memory constraints.
* The macro feature is available only In version 3 editors.

• 17 -

becoming part of the map definition. There are two ·V's because from within vi, two ·V's must
be typed to get one. The first CR is part of the rhs, the second terminates the : command.

Macros can be deleted with

unmap Ihs

If the Ihs of a macro is "#0" through "#9", this maps the particular function key instead
of the 2 character "#" sequence. So that terminals without function keys can access such
definitions, the form "#x" will mean function key x on all terminals (and need not be typed
within one second.) The character "#" can be changed by using a macro in the usual way:

:map ·V·V'"l #

to use tab, for example. (This won't affect the map command, which still uses #, but just the
invocation from visual mode.

. The undo command reverses an entire macro call as a unit, if it made any changes.
Placing a "!' after the word map causes the mapping to apply to input mode, rather than

command mode. Thus, to arrange for '"T to be the same as 4 spaces in input mode, you can
type:

:map , '"ViSiSiSiS

where II is a blank. The·V is necessary to prevent the blanks from being taken as white space
between the Ihs and rhs.

7. Word Abbreviations **
A feature similar to macros in input mode is word abbreviation. This allows you to type a

short word and have it expanded into a longer word or words. The commands are :abbreviate
and :unabbreviate (:ab and :una) and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word 'eecs' to always be changed into the phrase 'Electrical Engineering and Com·
puter Sciences'. Word abbreviation is different from macros in that only whole words are
affected. If 'eecs' were typed.as part of a larger word. it would be left alone. Also, the partial
word is echoed as it is typed. There is no need for an abbreviation to be a single keystroke, as
it should be with a macro.

7.1. Abbreviations
The editor has a number of short commands whicb abbreviate longer commands which we

have introduced here. You can find these commands easily on tbe quick reference card. They
often save a bit of typing and you can learn them as convenient.

8. Nitty.gritty details

8.1. Line representation in the display
The editor folds 10ng logical lines onto many physical lines in the display. Commands

which advance lines advance logical lines and will skip over all the segments of a line in one
motion. The command I moves the cursor to a specific column, and may be useful for getting
near the middle of a long line to split it in half. Try 801 on a line which is more than 80
columns long. t

The editor only puts full lines on the display~ if there is not enough room on the display
. to fit a logical line. the editor leaves the physical line empty. placing only an @ on the line as a

** Version 3 only.
t You can make lonllines very easily by usinl J to join tOlether short lines.

- 18 -

place holder. When you delete lines on a dumb terminal. the editor will often just clear the
lines to @ to save time (rather than rewriting the rest of the screen.) You can always maximize
the information on the screen by giving the -R command.

If you wish, you can have the editor place line numbers before each line on the display.
Give the command :se nuCR to enable this, and the command :se nonuCR to tum it off. You
can have tabs represented as -I and the ends of lines indicated with'S' by giving the command
:se listCR; :se nolistCR turns this off.

Finally, lines consisting of only the character .-. are displayed when the last line in the file
is in the middle of the screen. These represent physical lines which are past the logical end of
file.

8.2. Counts
Most vi commands will use a preceding count to affect their behavior in some way. The

following table gives the common ways in which the counts are used:

new window size
scroll amount·
line/column number
repeat effect

:/?(())
"D "U
z G I
most of the rest

The editor maintains a notion of the current default window size. On terminals which run
at speeds greater than 1200 baud the editor uses the full terminal screen. On terminals which
are slower than 1200 baud (most dialup lines are in this group) the editor uses 8 lines as the
default window size. At 1200 baud the default is 16 lines.

This size is the size used when the editor clears and refills the screen after a search or
other motion moves far from the edge of the current window. The commands which take a
new window size as count all often cause the screen to be redrawn. If you anticipate this, but
do not need as large a window as you are currently using, you may wish to change the screen
size by specifying the new size before these commands. In any case, the number of lines used
on the screen will expand if you move off the top with a - or similar command or off the bot­
tom with a command such as RETURN or "D. The window will revert to the last specified size
the next time it is cleared and refilled. t

The scroll commands "n and "U likewise remember the amount of scroll last specified,
using half the basic window size initially. The simple insert commands use a count to specify a
repetition of the inserted text. Thus lOa+----ESC will insert a grid-like string of text. A
few commands also use a preceding count as a line or column number.

Except for a few commands which ignore any counts (such as "R), the rest of the editor
commands use a count to indicate a simple repetition of their effect. Thus Sw advances five
words on the current line, while SRETURN advances five lines. A very useful instance of a
count as a repetition is a count given to the . command, which repeats the last changing com­
mand. If you do dw and then 3., you will delete first one and then three words. You can then
delete two more words with 2 ..

8.3. More file manipulation commands
The following table lists the file manipUlation commands which you can use when you are

in vi. All of these commands ~ followed by a CR or ESC. The most basic commands are :w
and :e. A normal editing session on a single file will end with a ZZ command. If you are edit­
ing for a long period of time you can give :w commands occasionally after major amounts of
editing, and then finish with a ZZ. When you edit more than one file, you can finish with one

t But not by a ·L which just redraws the screen as it is.

:w
:wq
:x
:e IIame
:e!
:e + name
:e +n
:e #
:w /lame
:w! /lame
:x,yw name
:r /lame
:r !cmd
:0
:n!
:n args
:ta rag

write back changes
write and quit

- 19 -

write (if necessary) and quit (same as ZZ),
edi [file IIame
reedit, discarding changes
edit, starting at end
edit, starting at line II
edit alternate file
write file /lame
overwrite file IIame
write lines x through y to IIame
read file name into buffer
read output of cmd into buffer
edit next file in argument list
edit next file, discarding changes to current
specify new argument list
edit file containing tag rag, at lag

with a :w and start editing a new file by giving a :e command, or set aUlowrire and use :n
<file>.

If you make changes to the editor's copy of a file, but do not wish to write them back,
then you must give an ! after the command you would otherwise use; this forces the editor to
discard any changes you have made. Use this carefully.

The :e command can be given a + argument to start at the end of the file, or a + 11 argu­
ment to start at line n. In actuality, 11 may be any editor command not containing a space, use·
fully a scan like + / pat or +? pat. In forming new names to the e command, you can use the
character % which is replaced by the current file name, or the character # which is replaced by
the alternate file name. The alternate file name is generally the las-t name you typed other than
the current file. Thus if you try to do a :e and get a diagnostic that you haven't written the file,
you can give a :w command and then a :e # command to redo the previous :e.

You can write part of the buffer to a file by finding out the lines that bound the range to
be written using "G, and giving these numbers after the: and before the w, separated by ,'s.
You can also mark these lines with m and then use an address of the form 'x,'yon the w com·
mand here.

You can read another file into the buffer after the current line by using the :r command.
You can similarly read in the output from a command. just use !cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names on tt?e command
line. and then edit each one in tum using the command :n. It is also possible to respecify the
list of files to be edited by giving the :n command a list of file names, or a pattern to be
expanded as you would have given it on the initial ~'i command.

If you are editing large programs, you will find the :ta command very useful. It utilizes a
data base of function names and their locations, which can be created by programs such as
ctags, to quickly find a function whose name you give. If the :ta command will require the edi.
tor to switch files. then you must :w or abandon any changes before switching. You can repeat
the :ta command without any arguments to look for the same tag again. (The tag feature is not
available in some v2 editors.)

8.4. More about searching for strings

When you are searching for strings in the file with / and ? the editor normally places you
at the next or previous occurrence of the string. If you are using an operator such as d. c or y,
then you may well wish to affect lines up to the line before the line containing the paltern .

..

- 20-

You can give a search of the form I patl- n to refer to the n'th line before the next line con­
taining pat, or you can use + instead of - to refer to the lines after the one containing pat. If
you don't give a line offset, then the editor will affect characters up to the match place, rather
than whole lines; thus use .. +0" to affect to the line which matches.

You can have the editor ignore the case of words in the searches it does by giving the
command :se iCCR. The command :se noiecK turns this off.

Strings given to searches may actually be regular expressions. If you do not want or need
this facility, you should

set nomagic

in your EXINlT. In this case, only the characters r and S are special in patterns. The character
\ is also then special (as it is most everywhere in the system), and may be used to get at the an
extended pattern matching facility. It is also necessary to use a \ before a I in a forward scan
or a ? in a backward scan, in any case. The following table gives the extended forms when
magic: is set

r
s

\<
\>
[stn
U stn
[x-y)
•

at beginning of pattern, matches beginning of line
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
matches any single character in st,
matches any single character not in st,
matches any character between x and y
matches any number of the preceding pattern

If you use nomagic: mode, then the • [and • primitives are given with a preceding \.

8.5. More about input mode

There are a number of characters which you can use to make corrections during input
mode. These are summarized in the following table.

"H deletes the last input character
"W deletes the last input word, defined as by b
erase your erase character, same as "H
kill your kill character, deletes the input on this line
\ escapes a following "H and your erase and kill
ESC ends an insertion
DEL interrupts an insertion, terminating it abnormally
ell starts a new line
·D backtabs over autoindent
O"D kills all the autoindent
rD same as O"D, but restores indent next line
·V quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing "H to correct a single
character, or by typing one or mor~ ·W's to back over incorrect words. If you use # as your
erase character in the normal system, it will work like "H.

Your system kill character, normally @, "X or "U, will erase all the input you have given
on the current line. In general, you can neither erase input back around a line boundary nor
can you erase characters which you did not insert with this insertion command. To make
corrections on the previous line after a new line has been started you can hit ESC to end the
insertion, move over and make the correction, and then return to where you were to continue.

- 21 -

The command A which appends at the end of the current line is often useful for continuing.
If you wish to type in your erase or kill character (say # or @) then you must precede it

with a \. just as you would do at the normal system command level. A more general way of
typing non-printing characters into the file is to precede them with a "V. The "V echoes as a T
character on which the cursor rests. This indicates that the editor expects you to type a control
character. In fact you may type any character and it will be inserted into the file at that point.-

If you are using autoindent you can backtab over the indent which it supplies by typing a
"D. This backs up to a shiftwidth boundary. This only works immediately after the supplied
aUloindenl.

When you are using autoindent you may wish to place a label at the left margin of a line.
The way to do this easily is to type T and then "D. The editor will move the cursor to the left
margin for one line. and restore the previous indent on the next. You can also type a 0 fol­
lowed immediately by a "D if you wish to kill all the indent and not have it come back on the
next line.

8.6. Upper case only terminals
If your terminal has only upper case. you can still use vi by using the normal system con­

vention for typing on such a terminal. Characters which you normally type are converted to
lower case. and you can type upper case letters by preceding them with a \. The characters { - }
I . are not available on such terminals. but you can escape them as \ (\ T \) \! y. These charac-'
ters are represented on the display in the same way they are typecU *
8.7. VI and ex

Vi is actually one mode of editing within the editor ex. When you are running vi you can
escape to the line oriented editor of ex by giving the command Q. All of the : commands
which were introduced above are available in ex. Likewise, most ex commands can be invoked
from vi using:. Just give them without the : and follow them with a CR.

In rare instances. an internal error may occur in vi. In this case you will get a diagnostic
and be left in the command mode of ex. You can then save your work and quit if you wish by
giving a command x after the : which ex prompts you with, or you can reenter vi by giving ex a
vi command.

There are a number of things which you, can do more easily in ex than in vi. Systematic
changes in line oriented material are panicularly easy. You can read the advanced editing docu­
ments for the editor ed to find out a lot more about this style of editing. Experienced users
often mix their use of ex command mode and vi command mode to speed the work they are
doing.

8.8. Open mode: vi on hardcopy terminals and ullass tty's" *
If you are on a hardcopy terminal or a terminal which does not have a cursor which can

move off the bottom line, you can still use the command set of vi, but in a different mode.
When you give a vi command. the editor will tell you that it is using open mode. This name
comes from the open c~mmand in ex, which is used to get into the same mode.

The only difference between visual mode and open mode is the way in which the text is

• Tbis is not quite true. Tbe implementation of the editor docs not allow the NULL ("@) character to appear
in files. Also the LF (Jinefeed or oJ) character is used by the editor to separate lines in the file. so it cannot
appear in the middle of a line. You can insert any other character. however. if you wait for the editor to
echo the t before you type the character. In fact. the editor will treat a follo" .. in, letter as I request for the
correspondinl control character. This is the only way to type 'S or 0Q. since the system normally uses them
to suspend and resume output and never pves them to the editor to process.
* The \ character you live will not echo until you type another key. * Not available in all v2 editors due to memory constraints.

• 22 •

displayed.
In open mode the editor uses a single line window into the file. and moving backward and

forward in the file causes new lines to be displayed. always below the current line. Two com·
mands of VI work. differently in ope": Z ilnd ·R. The Z command does not take pl1r.lmeters. but
rather draws a window of context around the current line and then returns you to the current
line.

If you are on a hardcopy terminal. the 'R command will retype the current line. On such
terminals. the editor normally uses two lines to represent the current line. The first line is a
copy of the line as you started to edit it. and you work on the line below this line. When you
delete characters, the editor types a number of \'5 to show you the characters which are deleted.
The editor also reprints the current line soon after such changes so that you can see wh:ll the
line looks like ilgain.

It is sometimes useful to use this mode on very slow terminals which can support "i in the
full screen mode. You can do this by entering ex ilnd using an open command.

Acknowledgements
Bruce Englar encouraged the early development of this display editor. Peter Kessler

helped bring sanity to version 2's command layout. Bill Joy wrote versions 1 and 2.0 through
2.7. and created tbe framework that users see in the present editor. Mark Horton added macros
and other features and made the editor work on a large number ~f terminals and Unix systems.

..
- 23 -

Appendix: character functions
This appendix gives the uses the editor makes of each character. The characters are

presented in their order in the ASCII character set: Control characters come first, then most
special characters, then the digits. upper and then lower case characters.

For each character we tell a meaning it has as a command and any meaning it has during
an insert. If it has only meaning as a command, then only ·this is discussed. Section numbers
in parentheses indicate where the character is discussed; a of' after the section number means
that the character is mentioned in a footnote.
A@ Not a command character. If typed as the first character of an insertion it is

replaced with the last text inserted. and the insert terminates. Only 128 char­
acters are saved from the last insert; if more characters were inserted the
mechanism is not available. A A@ cannot be part of the file due to the editor
implementation (7 .SO.

AG

AH (ss)

AM (CIU

AN
AO

Unused.
Backward window. A count specifies repetition. Two lines of continuity are
kept if possible (2.1. 6.1, 7.2>.

Unused.
As a command, scrolls down a half-window of text. A count gives the number
of (logical) lines to scroll, and is remembered for future AD and AU commands
(2.1, 7.2). During an insert, backtabs over autoindent white space at the begin­
ning of a line (6.6. 7.5); this white space cannot be backspaced over.

Exposes one more line below the current screen in the file, leaving the cursor
where it is if possible. (Version 3. only.)

Forward window. A count specifies repetition. Two lines of continuity are
kept if possible (2.1, 6.1, 7.2). '

Equivalent to :fa, printing the current file, whether it has been modified, the
current line number and the number of lines in the file, and the percentage of
the way through the file that you are.

Same as left arrow. (See h). During an insert, eliminates the last input char­
acter, backing over it but not erasing it; it remains so you can see what you
typed if you wish to type something only slightly different (3.1. 7.5).

Not a command character. When inserted it prints as some number of spaces.
When the cursor is at a tab character it rests at the last of the spaces which
represent the tab. The spacing of tabstops is controlled by the labslop option
(4.1, 6.6).

Same as down arrow (see J).
Unused.

The ASCII formfeed character. this causes the screen to be cleared and redrawn.
This is useful after a transmission error, if characters typed by a program other
than the editor scramble the screen, or after output is stopped by an interrupt
(5.4. ;.20.
A carriage return advances to the next line, at the first non-white position in
the line. Given a count, it advances that many lines (2.3). During an insert, a
CR causes the insert to continue onto another line (3.1).

Same as down arrow (see J).
Unused.

"P

"Q

"R

"U

"V

"X
Ay

"Z

"((ESC)

A,
AJ

"j

SPACE

- 24 -

Same as up arrow (see k).
Not a command character. In input mode, "Q quotes the next character, the
same as "V, except that some teletype drivers will eat the "Q so that the editor
never sees it.

Redraws the current screen, eliminating logical lines not corresponding to phy­
sical lines (lines with only a single @ character on them). On hardcopy termi­
nals in open mode, retypes the current line (5.4, 7.2, 7.8).
Unused. Some teletype drivers use "S to suspend output until "Qis

Not a command character. During an insert, with autoindent set and at the
beginning of the line, inserts shiflwidth white space.

Scrolls the screen up, inverting "D which scrolls down. Counts work as they
do for "D, and the previous scroll amount is common to both. On a dumb ter­
minal, "U will often necessitate clearing and redrawing the screen further back
in the file (2.1, 7.2). .
Not a command character. In input mode, quotes the next character so that it
is possible to insert non-printing and special characters into the file (4.2, 1.S).

Not a command character. During an insert, backs up as h would in command
mode; the deleted characters remain on the display (see "H) (1.5).

Unused.

Exposes one more line above the current screen, leaving the cursor where it is
if possible. (No mnemonic value for this key; however, it is next to "U which
scrolls up a bunch.) (Version 3 only.)

If supported by the Unix system, stops the editor, exiting to the top level shell.
Same as :slopCR. Otherwise, unused.

Cancels a partially formed command, such as a z when no following character
has yet been given; terminates inputs on the last line (read by commands such
as : I and ?); ends insertions of new text into the buffer. If an ESC is given
when quiescent in command state, the editor rings the bell or flashes the
screen. You can thus hit ESC if you don't know what is happening till the edi­
tor rings the bell. If you don't know if you are in insert mode you can type
ESC., and then material to be input; the material will be inserted correctly
whether or not you were in insert mode when you started 0.5, 3.1, 1.S).

Unused.

Searches for the word which is after the cursor as a tag. Equivalent to typing
:ta. this word, and then a CR. Mnemonically, this command is "go right to"
(7.3).

Equivalent to :e #CR, returning to the previous position in the last edited file,
or editing a file which you specified if you got a 'No write since last change
diagnostic' and do not want to have to type the file name again (1.3). (You
have to 10 a :w before "t wilt work in this case. If you do not wish to write
the file you should do :e! #CR instead.)

Unused. Reserved as the command character for the Tektronix 4025 and 4021
terminal.

Same as right arrow (see I).

An operator, which processes lines from the buffer with reformatting com·
mands. Follow! with the object to be processed. and then the command name
terminated by CR. Doubling! and preceding it by a count causes count lines to
be filtered~ otherwise the count is passed on to the object after the!. Thus
'Z!l/mcR reformats the next two paragraphs by running them through the pro­
gram fmt. If you are working on LISP, the command :'1. gr;nct:R , • given at the

"Both Iml and grrnd are Berkeley programs and may nOL be present at aU installations.

•

S

(

)

•
+

..

- 2S -

beginning of a function, will run the text of the function through the LISP
grinder (6.7, 7.3>. To read a file or the output of a command into the buffer
use :r (7.3). To simply execute a command use :! (7.3).
Precedes a named buffer specification. There are named buffers 1-9 used for
saving deleted text and named buffers a-z into which you can place text (4.3,
6.3) ,

The macro character which, when followed by a number. will substitute for a
function key on terminals without function keys (6.9). In input mode, if this
is your erase character, it will delete the last character you typed in input
mode, and must be preceded with a \ to insert it, since it normally backs over
the last input character you gave.
Moves to the end of the current line. If you :se IistCR, then the end of each
line will be shown by printing a S after the end of the displayed text in the
line. Given a count, advances to the count'th following end of line; thus 2$
advances to the end of the following line. .
Moves to the parenthesis or brace { } which balances the parenthesis or brace
at the current cursor position.
A synonym for :&CR, by analogy with the ex & command.
When followed by a • returns to the previous context at the beginning of a
line. The previous context is set whenever the current line is moved in a
non-relative way. When followed by a letter a-z, returns to the line which
was marked with this letter with a m command, at the first non-white character
in the line. (2.2, 5.3). When used with an operator such as d, the operation
takes place over complete lines; if you use " the operation takes place from the
exact marked place to the current cursor position within the line.
Retreats to the beginning of a sentence, or to the beginning of a LISP ·s­
expression if the lisp option is set. A sentence ends at a •. ! or ? which is fol­
lowed by either the end of a line or by two spaces. Any number of closing)]
• and • characters may appear after the. ! or ?, and before the spaces or end of
line. Sentences also begin at paragraph and section boundaries (see I and ((
.below). A count advances that many sentences (4.2, 6.S).
Advances to the beginning of a sentence. A count repeats the effect. See (
above for the definition of a sentence (4.2, 6.S).
Unused .
Same as CR when used as a command.
Reverse of the last f F t or T command, looking the other way in the current
line. Especially useful after hitting too many; characters. A count repeats the
search.
Retreats to the previous line at the first non-white character. This is the
inverse of + and RETURN. If the line moved to is not on the screen, the
screen. is scrolled, or cleared and redrawn if this is not possible. If a large
amount of scrolling would be required the screen is also cleared and redrawn,
with the currenlline at the center (2.3).
Repeats the last command which changed the buffer. Especially useful when
deleting words or lines; you can delete some words/lines and then hit • to
delete more and more words/lines. Given a count, it passes it on to the com­
mand being repeated. Thus after a 2dw, 3. deletes three words (3.3, 6.3. 7.2,
7.4) .

1

o

1-9

<

>

., .
@

A

B

C

D

- 26 -

Reads a string from the last line on the ~reen. and scans forward for the next
occurrence of this string. The normal input editing sequences may be used
during the input on the bottom line; an returns to command state without ever
searching. The search begins when you hit CR to terminate the pattern; the
cursor moves to the beginning of the last line to indicate that the search is in
progress; the search may then be terminated with a DEL or RUB. or by back­
spacing when at the beginning of the bottom line. returning the cursor to its
initial position. Searches normally wrap end-around to find a string anywhere
in the buffer.

When used with an operator the enclosed region is normally affected. By men­
tioning an offset from the line matched by the pattern you can force whole
lines to be affected. To do this give a pattern with a closing a closing I and
then an offset + n or - n.
To include the character I in the search string. you must escape it with a
preceding \. A T at the beginning of the pattern forces the match to occur at
the beginning of a line only; this speeds the search. A S at the end of the pat­
tern forces the match to occur at the end of a line only. More extended pat­
tern matching is available, see section 7.4; unless you set nomagic in your
. exrc file you will have to preceed the characters • (• and - in the search pat­
tern with a \ to get them to work as you would naively expect (1.5, 2,2, 6.1,
7.2, 7.4).

Moves to the first character on the current line. Also used, in forming
numbers, after an initial 1-9.
Used to form numeric arguments to commands (2.3, 7.2).

A prefix to a set of commands for file and option manipulation and escapes to
the system. Input is given on the bottom line and terminated with an CR. 'and
the command then executed. You can return to where. you were by hitting
DEL or RUB if you hit : accidentally (see primarily 6.2 and 7.3).

Repeats the last single character find which used r F t or T. A count iterates
the basic scan (4.1).

An operator which shifts lines left one slriftwidlh, normally 8 spaces. Like all
operators, affects lines when repeated, as in < <. Counts are passed through
to the basic object, thus 3< < shifts three lines (6.6, 7.2).

Reindents line for LISP, as though they were typed in with lisp and autoindent
set (6.8).

An operator which shifts lines right one shiflw;dth, normally 8 spaces. Affects
lines when repeated as in > >. Counts repeat the basic object (6.6, 7.2). .

Scans backwards, the opposite of I. See the I description above for details on
scanning (2.2, 6.1, 7.4).

A macro character (6.9). If this is your kill character. you must escape it with
a \ to type it in during input mode, as it normally backs over the input you
have given on the current line (3.1. 3.4, i.S).
Appends at the end of line, a synonym for Sa (7.2).

Backs up a word,. where words are composed of non-blank sequences, placing
the cursor at the beginning of the word. A count repeats the effect (2.4).

Changes the rest of the text on the current line; a synonym for cs.

Deletes the rest of the text on the current line; a synonym for dS.

E

F

G

H

I
J

K
L

M

N

o

p

Q

s

T

u
V

- 27 -

Moves forward to the end of a word, defined as blanks and non-blanks, like B
and W. A count repeats the effect.
Finds a single following character, backwards in the current line. A count
repeats this search that many times (4.1).

Goes to the line number given as preceding argument, or the end of the file if
no preceding count is given. The screen is redrawn with the new current line
in the center if necessary (7.2).

Home arrow. Homes the cursor to the top line on the screen. If"a count is
given, then the cursor is moved to the count'th line on the screen. In any case
the cursor is moved to the first non-white character on the line. If used as the
target of an operator, full lines are affected (2.3. 3.2).
Inserts at the beginning of a line; a synonym for Ti.
Joins together lines, supplying appropriate white space: one space between
words, two spaces after a " and no spaces at all if the first character of the
joined on line is). A count causes that many lines to be joined rather than the
default two (6.5, 7.10.

Unused.
Moves the cursor to the first non-white character of the last line on the screen.
With a count, to the first non-white of the count'th line from the bottom.
Operators affect whole lines when used with L (2.3).
Moves the cursor to the middle line on the screen, at the first non-white posi­
tion on the line (2.3).

Scans for the next match of the last pattern given to I or ?, but in the reverse
direction; this is the reverse of D.

Opens a new line above the current line and inputs text there up to an ESC. A
count can be used on dumb terminals to specify a number of lines to be
opened; this is generally obsolete, as the sJowopen option works better (3.1).

Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole lines. Otherwise the
text is inserted between the characters before and at the cursor. May be pre­
ceded by a named buffer specification fiX to retrieve the contents of the buffer;
buffers 1-9 contain deleted material, buffers a-z are available for general use
(6.3).

Quits from vi to ex command mode. In this mode, whole lines form com­
mands, ending with a RETURN. You can give all the: commands; the editor
supplies the : as a prompt (7.7).
Replaces characters on the screen with characters you type (overlay fashion).
Terminates with an ESC.

Changes whole lines, a synonym for ceo A count substitutes for that many
lines. The lines are saved in the numeric buffers, and erased on the screen
before lhe substitution begins.

Takes a single following character, locates the character before the cursor in
the current line, and places the cursor just after that character. A count
repeats the effect. Most useful with operators such as d (4.1).

Restores the current line to its state before you started changing it (3.5).

Unused.

w

x

y

zz
([

\
JJ
r

a

b

d

e

f

g

- 28 ..

Moves forward to the beginning of a word in the current line, where words are
defined as sequences of blank/non-blank characters. A count repeats the effect
(2.4).

Deletes the character before the cursor. A count repeats the effect, but only
characters on the current line are deleted.

Yanks a copy of the current line into the llnnamed buffer, to be put back by a
later p or P; a very useful synonym for yy. A cou.nt yanks that many lines.
May be preceded by a buffer name to put lines in that buffer (7.4).

Exits the editor. (Same as :xca.) If any changes have been made, the buffer is
written out to the current file. Then the editor quits.

Backs up to the previous section boundary. A section begins at each macro in
the sections option, normally a '.NH' or '.SH' and also at lines which which
start with a formfeed "L. Lines beginning with (also stop II; this makes it
useful for looking baclcwards, a function at a time, in C programs. If the
option lisp is set, stops at each (at the beginning of a line, and is thus useful
for moving backwards at the top level LISP objects. (4.2. 6.1, 6.6, 7.2>.

Unused.

Forward to a section boundary, see ([for a definition (4.2. 6.1, 6.6, 7.2>.

Moves to the first non-white position on the current line (4.4).

Unused.

When followed by a • returns to the previous context. The previous context is
set wbenever the current line is moved in a non-relative way. When followed
by a letter a-z, returns to the position which was marked with this letter with
a m command. When used with an operator such as d, the operation takes
place from tbe exact marked place to the current position within the line; if
you use', tbe operation takes place over complete lines (2.2, S.3).
Appends arbitrary text after the current cursor position; the insert can continue.
onto multiple lines by using RETlJIlN witbin tbe insert. A count causes the
inserted text to be replicated, but only if the inserted text is all on one line.
The insertion terminates with an ESC (3.1, 7.2).

Backs up to tbe beginning of a word in the current line. A word is a sequence
of alphanumerics, or a sequence of special characters. A count repeats the
effect (2.4).

An operator which changes the following object, replacing it with the following
input text up to an ESC. If more tban part of a single line is affected, the text
whicb is changed away is saved in the numeric named buffers. If only part of
the current line is affected, then the last character to be changed away is
marked with a S. A count causes that many objects to be affected. thus botb
3c) and cJ) change the following three sentences (7.4).

An operator which deletes the following object. If more than part of a line is
affected, the text is saved in the numeric buffers. A count causes that many
objects to be affected; thus 3dw is the same as d3w (3.3, 3.4, 4.1, 7.4).

Advances to the -end of the next word. defined as for b and w. A count
repeats the effect (2.4. 3.1).

Finds the first instance of the next character following the cursor on the
current line. A count repeats the find (4.1).

Unused.

Arrow keys h. j, k. I, and H.

h

I

J

k
I

m

D

o

p

q

r

s

t

u

y

"
x

z

·29·

. ,

Left arrow. Moves the cursor one character to the left. Like the other arrow
keys, either b. the left arrow key. or one of the synonyms rH) has the same
effect. On v2 editors. arrow keys ,on certain kinds of terminals (those which
send escape sequences, such as vt52, c100, or hp) cannot be used. A count
repeats the effect (3.1. 7.5).
Inserts text before the cursor. otherwise like 'a (7.2).

Down arrow. Moves tbe cursor one line down in the same column. If the
position doe;s not exist, vi comes as close as possible to the same column.
Synonyms include "J (Iinefeed) and "N.
-Up arrow. Moves tbe cursor one line up. "P is a synonym.

Right arrow. Moves the cursor one character to the right. SPACE is a
synonym.

Marks the current position of the cursor in the mark register which is specified
by the next character a-I. Return to this position or use with an operator
using' or' (5.3).

Repeats the last / or ? scanning commands (2.2).

Opens new lines below the current line; otherwise like 0 (3.D.
Puts text after/below the cursor; otherwise like P (6.3).
Unused.
Replaces the single character at the cursor with a single character you type.
The new character may be a RETURN; this is the easiest way to split lines. A
count replaces each of the following count characters with the single character
given; see R above which is the more usually useful iteration of r (3.2).

Changes the single character under the cursor to the text which follows up to
an ESC; given a count, that many characters from the current line are changed.
The last character to be changed is marked with S as in c: (3.2).

Advances the cursor upto the character before the next character typed. Most
useful with operators such as d and c: to delete the characters up to a following
character. You can use • to delete more if this doesn't delete enough the first
time (4.D.
Undoes the last change made to the current buffer. If repeated. will alternate
between these two states. thus is its own inverse. When used after an insert
which insened text on more than one line, the lines are saved in the numeric
named buffers (3.5).

Unused.
Advances to the beginning of the next word. as defined by b (2.4).

Deletes the single character under the cursor. With a count deletes deletes
that many characters forward from the cursor position. but only on the current
line (6.5).

An operator. yanks the following object into the unnamed temporary buffer. If
preceded by a named buffer specification. "x. the text is placed in that buffer
also. Text can be recovered by a later p or P (7.4).

Redraws the screen with the current line placed as specified by the following
character: RETURN specifies the top of the screen. • the center of the screen.
and - at the bottom of the screen. A count may be given after the I and
before the following character to specify the new screen size for the redraw. A
count before the I gives the number of the line to place in the center of the
screen instead of the default current line. (5.4)

- 30 •

Retreats to the beginning of the beginning of the preceding paragraph. A para­
graph begins at each macro in the paragraphs option. normally '.IP·, '.LP',
'.Pp·, '.QP' and '.bp'. A paragraph also begins after a completely empty line.
and at each section boundary (see ((above) (4.2, 6.8, 7.6).

Places the cursor on the character in the column specified by the count (7.1.
7.2L
Advances to the beginning of the next paragraph. See { for the definition of
paragraph (4.2.6.8. 7.6>.

Unused.
Interrupts the editor, returning it to command accepting state (1.S, 7.S)

-31-

Appendix: List of Changes from Version 3.5 to Version 3.6
of the Text Editor ex/vi '

• A kernel problem on the version 7 PDp·ll overlay systems which causes bad EMT traps to
happen randomly, core dumping the editor, has been programmed around by catching EMT
traps.

• A bug which prevented using a screen larger than 48 lines has been fixed.
.....

• A bug which allowed you to set window to a value larger than your screen size has been
fixed.

• The screen size limit on non-VM UNIX systems has been increased to 66 lines or 5000 char­
acters, to allow the Ann Arbor Ambassador terminal to be used .

.
• A bug which caused bangups to be ignored on USG systems has been fixed.

• A bug which caused maps with multiple changes on multiple lines to mess up bas been
fixed.

• If you get I/O errors, the file is considered "not editedn so that you don't accidently
clobber the good file with a munged up buJrer.

• An inefficiency in 3.5 which caused the editor to always call Uyname has been fixed.

• A bug which prevented the source (.50) command from working in an EXINIT or from
visual bas been fixed.

• A bug which caused readonly to be cleared when reading from a writable file with r has
been fixed.

• The name suspend has been made an alias for stop.

• The stop command now, once again works correctly from command mode.

• On a dumb terminal at 1200 baud, slowopen is now the defaulL

• A bug in the shell script makeoptions which searched for a string that appeared earlier in a
comment has been fixed.

• A bug that caused an infinite loop when you did :5/</"'1 has been fixed.

• A bug that caused It with no previous substitution to give u re internal error" has been
fixed.

• A bug in the binary search algorithm for tal5 which sometimes prevented the last tag in the
file from being found has been fixed:

• Error messages from expreserve no longer output a linefeed. messing up the screen.

-32-

• The message from expreserve tellinl you a buft'er was saved when your phone was- hung up
has be amended to say the "editor was terminated." since a kill can also produce that mes­
sage.

• The dIrectory option. which has been broken for over a year, has been fixed.

• The r command no lonler invokes input mode macros.

• A bug which caused strangeness if you set wnpmal'liD to 1 and typed a line c:ontaininl a
backslash in column 80 has been fixed.

• A bug which caused the r<ltETUltN> at the wrap margin column to mess up has been
fixed.

• On terminals with both scroll reverse and insen line. the least expensive of the twO will be
used to scroll up. This is usually scroll reverse, which is much less annoyinl than insen
line on terminals such as the mime I and mime 2a.

• A bUI which caused vi to estimate the cost of cursor motion without taking into account
paddinl has been fixed.

• The failure of the editor to check counts on '"F and '"S commands has been fixed.

• The remap option failed completely if it was turned oft'. This has been fixed.

• A check or the wronllimit on a buffer for the right han~ side or substitutions has been
fixed. Overtlowinl this buft'er could pr!,duce a core dump.

• A bug causinl the editor to 10 into insen mode if you pressed the RETUltN key during an
R command has been fixed.

• A bUI preventinl the + command from workins when you edit a new file has been fixed
by making it no lonser an error to edit a new file (when you first enter the editor). Instead
you are told it is a new file.

• If an error happens when you are writing out a file, such as an interrupt, you are warned
that the file is incomplete.

Ex/Edit Command Summary

Computing Services
University of California
Library, 218 Evans Hall
Berkeley, California 94720
415-642-5205

UNX 3.4.1

Ex and edit are text editors, used for creating
and modif)'ing files of text on the L'~IX computer
system. Edit is a variant of ex with features
designed to make it less complicated to learn and
use. In terms of command syntax and effect the
editors are essentially identical, and this com­
mand summary applies to both.

The summary is meant as a quick reference
for users already acquainted with edit or ex.
Fuller explanations of the editors may be found
in the documents Edll: A Tutorial (a self-teaching
introduction) and the E." Reference ,"'[anual (the
comprehensive reference source for both edit and
ex>. Both of these writeups are available in the
Computing Services Library.

In the examples included with the summary,
commands and text entered by the user are
printed in boldface to distinguish them from
responses printed by the computer.

The Editor Buffer
In order to perform its tasks the editor sets

aside a temporary work space. called a buffer,
separate from the user's permanent file. Before
starting to work on an existing file the editor
makes a copy of it in the buffer, leaving the ori­
ginal untouched. All editing changes are made
to the buffer copy, which must then be written
back to the permanent file in order to update the
old version. The buffer disappears at the end of
the editing session.

Editing: Command and Text Input Modes
During an editing session there are two usual

modes of operation: command mode and text
inpllt mode. (This disregards. for the moment,
open and I'Islial modes. discussed below,) In com­
mand mode. the editor issues a colon prompt (:)
to show that it is ready to accept and execute a
command. In text input mode, on the other
hand, there is no prompt and the editor merely
accepts text to be added to the buffer. Text
input mode is initiated by the commands appelld.
insert. and chOliNe. It is terminated by typing a
period as the first character on a line. followed
immediately by a carriage return.

Line ~umbers and Command S~'ncax
The editor keeps track of lines of text in the

buffer by numbering them consecutively starting
with I and renumbering as lines are added or
deleted. At any given time the editor is posi­
tioned at one of these lines: this position is called
the "urrem 1mf'. GenerallY, commands that
change the contents of the buffer print the new
current line at the end of their execution.

August 1980

Most commands can be preceded by one or
two line-number addresses which indicate the
lines to be affected. If one number is given the
command operates on that line only: if two. on
an inclusive range of lines. Commands that can
take line· number prefixes also assume default
prefixes if none are given. The default assumed
by each command is designed to make it con­
venient to use in many instances without any
line-number prefix. For the most part. a com­
mand used without a prefix operates on the
current line. though exceptions to this rule
should be noted. The print command by itself.
for instance. causes one line. the current line, to
be printed at the terminal.

The summary shows the number of line
addresses that can be prefixed to each command
as well as the defaults assumed if they are omit­
ted. For example. (.• .) means that up to 2 line­
numbers may be given, and that if none is given
the command operates on the current line. (In
the address prefix notation, "." stands for the
current line and "S" stands for the last line of
the buffer.> If no such notation appears, no
line-number prefix may be used.

Some commands take trailing information:
only the more important instances of this are
m~ntioned in the summary.

O~en and Visual Modes
Besides command and text input modes, ex

and edit provide on some terminals other modes
of editing, open and .."sual. In these modes the
cursor can be moved to individual words or char­
acters in a line. The commands then given are
very different from the standard editor com­
mands: most do not appear on the screen when
typed. A" Imroducl/oll to Display Edlllllg wllh Vi
provides a full discussion.
Special Characters

Some characters take on special meanings
when used in context searches and in patterns
given to the subsl/llife command. For edll. these
are •• ·n and "S", meaning the beginning and
end of a line, respectively. Ex has the following
additional special characters:

& • I
To use one of the special characters as its simple
graphic representation rather than with its speCial
meaning, precede it by a backslash (\). The
backslash always has a special meaning. Consult
the more complete writeups on edit and ex for
details on the use of special characters.

:-';ame

(,):append

(. •. Jch:ange

c. • .J copy addr

(...)delete

edit tile
edit! /lle

file /lame

(1. S) \:Iob:al
(l.Sh;lob::al!

I,) ino;ert

(... ~ I)join

L .. J1bt

Abbr

a

c

co

d

e
e!

f

g
g! or v

Description

Begins text input mode. adding lines to the buffer
after the line specified. Appending continues until
"." is wped alone at the beglnntng of a new line.
followed by a carriage return. 03 places lines at the
beginning of the buffer.

Deletes indicated line(s) and initiates text input
mode to replace them with new text which follows.
New text is terminated the same way as with append.

Places a copy of the specified lines after the line
indicated by addr. The example places a copy of
lines 8 through 12. inclusive. after line 25.

Removes lines from the buffer and prints the
current line after the deletion.

Clears the editor buffer and then copies into it the
named file. which becomes the current tile. This is a
way of shifting to a different file without leaving the
editor. The editor issues a warning message if this
command is used before saving changes made to the
file already in the buffer: using the form e! overrides
this protective mechanism.

If used without a name. prints the name of the
current file. If followed by a lIame. renames the
current file to name.

globall palteml commands
Searches the entire buffer (unless '01 smaller range is
specIfied by line-number prefixes) and executes com­
mallCls on e .. ery line with an expression matching
pattern. The second form. abbre\'iated either g! or
v. executes cammal/cis on lines that do 1I0t contain
the expression patlern.

Inserts new lines of text immediately before the
specified line. Differs from appelld only in that text
is placed before. rather than after. the indicated line.
In other words. Ii has the same effect as Oa.

Join lines together. adjusting white space (spaces
and tabs) as necessary.

Prints lines in a more unambiguous way than the
prlflt command does. The end of ..l line. for example.
is marked with a "S". and tabs printed as "''1''.

Examples

:a
Three lines of text
are added to the buffer
after the current line.

:5.6c
Lines 5 and 6 are
deleted and replaced by
these three lines.

:8,12co 25
last line copied is printed

:13.ISd
New current line is printed

:e chlO
No write since last change ...
:e! chlO
• ch 10· 3 lines. 62 characters

:f
·ch 10· line 3 of 3 ...
:1 ch9
·ch9· [Not edited) line 3 ...

:g/nonsense/d

:li
These lines of text will
be added prior to line 1.

:2.5j
Resulting line is printed

:91
This is line nineS

Name

<' • .)mo\·e addr

(,,')number

Dopen

presene

("'>print

quit
quit!

Dread fill!

reeO\'er file

set parolllC'f('r

C,.)substilute

Abbr Description Examples

m Moves the specified lines to a position after the line :12.15111 25
indicated by addr. New current line is printed

nu Prints each line preceded by its buffer line number. :nu

o

pre

p

q
q!

r

ree

se

5

Too involved to discuss here, but if you enter open
mode accidentally. press the ESC key followed by q to
get back into normal editor command mode. Edit is
designed to prevent accidental use of the open com­
mand.

Saves a copy of the current buffer contents as
though the system had just' crashed. This is for use
in an emergency when a WfI(C' command has failed
and you don't know how else to save your work.
Seek assistance from a consultant as soon as possible
after saving a file with the "rC'sC'fI'C' command.
because the file is saved on s~'stem storage spal:e for
onl}' one week.

Prints the text of line(s).

Ends the editing session. You will receive a warning
if you have changed the buffer sinceJast wming liS

contents to the file. In this event you must either
type w to write. or type q! to exit from the editor
without saving your changes.

Places a copy of filC' in the buffer after the specified
• line. Address 0 is permissible and causes the copy

of file to be placed at the beginning of the buffer.
The read command does not erase any text alread~'

in the buffer. If no line number is specified. file' is
placed after the current line.

Retrieves a copy of the editor buffer after a system
crash. editor crash. phone line dis;onncction. or
presefl'e command.

Changes the settings of one or more editor options;
lists the current settings of options which have been
changed from their defaults: or lists the scttings of
all options. For more details consult the complete
manual.

substitutel "auC'ml I'(·,,10('C'1IIC'1II1
substitutt'I,IQu('",1 replon'III(,lIIlgc
Replaces the first ocurrence of "oUC'r1I on a line with
rC'placC'/I/(·IIt. Including a g after the command
changes all occurrences of 1'(1I/C'''' on the linc. The c
option allows the user to conlirm each substitution
before it is made; see the manual for details.

10 This is line ten

:presene
File preserved.

:+2.+3p
The second and third Ines
after the current line

:q
No write since last change
:q!
I~~

:Or ne\\"file
"newfile" 5 lines, 86 characters

:3p
Line J contains a misstake
:s/misst akel mistake/
Line 3 contains a mistake

Name

undo

(l.S)write rile
(1.S)write! fiie

Oz COUIlt

!commafld

control-d

I parternl

II

? pa:rC!rn?

.,.,

Abbr Description

u Reverses the changes made in the buffer by the last
buffer-editing command. :-.Iote that this example
contains a notification about the number of lines
affected.

w Copies data from the buffer onto a permanent file. If
w! no file is named. the current filename is used. The

file is automatically created if it does not yet exist.
A response containing the number of lines and char­
acters in the file indicates that the write has been
completed successfully. The editor's built-in protec­
tions against overwriting existing files will in some
circumstances inhibit a write. The form w! forces
the write. confirming that an existing file is to be
overwritten.

z Prints a screen full of text starting with the line indi­
cated: or. if cOllnt is- specified. prints that number of
lines. Variants of the = command are descrIbed in
the manual.

Executes the remainder of the line after ! as a \:SIX
command. The buffer is unchanged by this. and
control is returned to the editor when the execution
of command is complete.

Prints the next scroll of text. normally half of a
screen. See the manual for details of the scroll
option.

An address alone followed by a carri3ge return
causes the line to be printed. A carriage return by
itself prints the line following the current line.

Searches for the next line in which pattern occurs
and prints it.

Repeats the most recent search.

Searches in the reverse direction for patte",.

Repe3ts the most recent search. moving in the
reverse direction through the buffer.

Examples

:1.lSd
15 lines deleted
new line number 1 is printed
:u
15 more lines in file ...
old line number 1 is printed

:w
"file7" 64 lines. 1122 characters
:w fileS
"fileS" File exists ...
:w! fileS
"fileS" 64 lines. 1122 characters

:!date
Fri lun 9 12:15:11 PDT 1978

:<cr>
the line after the current line

:/This patternl
This pattern next occurs here.

:11
This pattern 31so occurs here.

@

Source Code Control System

User's Guide

L. E. Bonanni
C. A. Salemi

BeD TeJepboae laboratories. lacarporaleci

Soarct Cod. Coatrol Srstem
Vser's Gaid.

1. INTRODUcnON. • •
2. sees FOR. BEGINNERS • • • . . .
2.1 TerminololY 1
2.2 CreatinllD sces F"lle-The uadmiD" Command
2.3 lletrieviDla F"lle-The ",et" Command 2
2.4 R.ecOrcliDI Chanaes-The "delta" Comm.mcS 3
2.5 More about the ",el'· Command "
2.6 The uheip·· Command 5

l. HOW DELTAS All£ Nl.JMBEll£D • •

4. sces COMMAND CONVENTIONS

5. SCCS COMMANDS
5.1 leI 9
S.2 clelta 16
S.l admin 18
5.4 prs 21
5.5 help 22
5.6 rmdel 22
5.7 cdc 23
5.8 wbat 2.3
5.9 sccsdiff' 24
5.10 comb 24
5.11 val 15

.

. .

. . .
. . . .

6. sces FILES ••••••
6.1 Protection 25
6.2 Format 26
6.3 Audilinl 27

R.EFERENCES • • • • • • •

• i •

1

5

7

8

2S

28

LIST OF P'lGtJllES

Fi~re 1. Evolution or an Sea Fue. • • • • • •

Fisure 2. Tree Structure with Brmcb Deltas • • • •

Maure 3. Extendina the Branchina Concept

• ii •

. 6

• • • 1

Source Cede Contrnl Srstem User's Guide
L E. &mcznni

Bell Laboratories
Piscatawa" New 1ersey 08354

Cd. SQ/emJ

BeD Labcratories
Piscatawa" New Jersey 08854

1. INTRODUCTION

The Source Code Control System (sees) is a ceU~on of PWlI commands that help individuals
or projectS control and acct)UDt (or chanaes to files of text (typiWly, the source ccd.e and
documentation of software S)"SWD,S). It is convenient &0 conc:ive of sees as a custoc1im of
Ales: it allows retrieval of particular versions of the files. administers chanaes &0 them. centrols
updaUnI privileaes to them. and records wbo made each chanle. wben and wbere it was made.
and wby. This is imPOfWlt iD environments in which prosrams and doc:umenwion wu:ier;o
frequent chanle5 (because of maiatenanc: iDdIor enhancement work), masmuch as it is
sometimes desirable to l'eIenera&e the version of • proaram or document IS it was before
clw2aes were applied to it. Obviously, this could be done by kteplnl cepies (on paper or other
media). but this quickly becomes unmamaeable and wasteful IS the number ot prosnms and
documents increases. Scc:s provides an anraaive solution beause it stores on disk the original
ftle and. wbenever chanles are made to it. stores only the cMn,es: each set of chanles is called
a "delta."

This document, toaether with relevant ponions of Ul, is a complete user's JUide to sec. This
manual contains the tollowiDa sections:

• Sees for B~r;nMf1.~ How &0 make an sees file, how to update it. and bow to retrieve a
version thereot.

• How ~ilJU .4r~ NllIfIMrtti: How versions of sees 81es are numbered and named.
• Sees CDml'lUlM Convtntions: Conventions and rules ,enerally applicable to all sees

commands.
• Sees CDmmtZlIIU: Explanatioa of all sees commands, with discussions of the more useful

arJumeats.
• Sees Files: Protection. forma~ and tumlinl at sees files, includinl a discussion at the

di6erences between usina sees IS an individual and usml it· IS a member of a IrDUP or
project. The role of a ··project sees admiDistralOr" is iDtroduced.

1. sees FOR BEGINNERS

It is assumed thal the reader knows how to 101 onlO I PWlI system. create files. and ~ the text
editor [t]. A aumber of termiaaJ·session (ragmeats are presented below. All of them shouJd
be trieet the best way to learn sees is to use it.

To supplement the aweriaJ in this manual. the detailed sees command descriptions (appearina
in U]) should be consulted. Section 5 below coatains a list ot all the sees commands. For the
time beiDl. bowever. only basic: conc:pts will be discussed.

1.1 Termmoloc

Each sec:s tile is composed o(oae or more sets of cbanles applied to the aull (empty) version
of the file. with each set of cbanSes usw.l.ly depeadinl oa all previous sets. Ea.c:h set of clwlges
is called a "delta" and is assisned a name. caJJed the Sec:s IDentmation sui.n, (SID),
composed of at most four components. 0111y the ftrst two of whicb will concern us for noW',
these are the "release" aDd "level'· numbers, separated by a period. Hence. the first delta is
caJJed "1.1", the secoac1 ·'l.l'" the third "1.3", etc. The release Dumber can al.so be ch.anaed
allowin&. (or example. defw "1.1". "3.19·" etc. The c:han&e in the release number usually

i.c.dicates a ::::t2jcr ~!:3J:1e to u:e it ..

~ delta of us !CC ale <!e!ln~ a ~C".:!~ v~r3:icc ot ~e 51e. For example. <!elu 1 • .5 ~em:es
v~cu 1..5 ot =e sec !le, obc.ai.aet:1 ~1 a;l'lyU11 to the cull (e:::t;:cy) vemcl1 of :!:1e iIe t!1e
C:u1p:5 ~ C::1UuNte de1w 1.1, 1.2. e'..c.. lJ4' to ancL Lnciudina delU 1 • .5 i~lt. il2 that orc:!et.

U CradD, I.ZI sees Tll.-n. '.2.l:imi1l" C4m.m~l:lci

Ca~der. ror euc;le. a ~e ailed Utan,'· that =c~ a lise ot pro1l"m mj n l taa3'.1:lles:

c
i'ili
ran:r.m
c=bGl
aLp

We o;rish :.a sive C".:::stcc1'y o(this ale to sccs. n. foUcwi~ admill ~camw:lcl (weic:: ~ used to
:dm'IIIs:D'SCC dIes) c:~~t~ Ul sec 51e aad initiali%cs delu 1.1 (rem the aIe '·tan,":

admiA -=" 5.WlI
AU sec ales mw:t have ~es tb.U beIiD wim "S:·, be:sce •• os.1m,'·. The -I keytetUr.
copU:er with its value ,·t~··, inc.i=1es = admilr i3 to c::u&.e a al9 sees aIe m4 illltiGUU i,
~U1 the c=utents o{ :he dIe '·tan,'·. This initial version is a set oC =.anles applied to the l1uU
sec IDe; it is r.1e!u 1.1.

The .11 c=mmancl ~~lies:

No ici Uywcrds (=1'

~..is is a ~, CCes!a.ie (\VtUc: my aJ:so be issued "" ocher sec =mm.mcb) that i3 to ~
il%1CRd (C6 the ~ ot t.bis sec:iOIl. Its sis=idc:mce is c1esc:ibed in SC".ioa '.1 l2etow. ID.
the faUcwiD, enm;les. this wvniJ1, =e:ssqe ~ aot shaW1lo I1mculb it may a=Wly l2e ~
by the vviaus =mmanc1.

The lUe "WsI'· should be removed (be=use it c:m l2e aslly recca.muc:acl by usiDC the 1ft
~mmllnd, below):

r:1 ~

U leaiaYial a rn.-Th. '.Ju'. C4111J11uci

Thec:::mu:n.anci::

~ s.lan$

ausa the c:=tioa (reuienO of the lacest ve:.sioa of BIe '.s.1m,'·, md prints the (ollowt.a,
r:essac=

1.1
S :.iDes

Thjs me::ms t!w ~ mrieved ve.~oa 1.1 of tU 81 .. wtUdl is aIIde 1111 of' tLaes of wa. The -
rmteved te:: is)1i.:c=r1 in a aIe whas. came is f'armed. by deletiaa the .as.'. PRh (ram the
~ of the sec dle; ~. the 818 .. tazl$'· i.s c::=.ed.

l

The above rer conmwld simply crea1es the 8le ··lm." read-only, and keeps no information
whatSOever reprdinl its creatiDl1. On the other hand, in order to be able to subsequently apply
~c:s to m seo flIe ,,;th the thltIJ command (sc: below), the ~t command must be
informed of your iIlt.e%1tion to do so. This is done IS follows:

ICt -e s.lan.
The -e key letter causes ~r to create a file "Ian," (or both readina an~ writia& (so that it auy
be edited) md plac= e:ru.in information abow the seo file in another new file, called the p­
ji~. that will be read by the dtltll commancl. The Itt command prints the same messaaes as
before. except that the SID of the version to be created throuah the use of ~/IIJ is also issuecl.
ror example:

let -e s.lana
1.1
Dew delta 1.2
SliZ1es

The ftJe "1aa," may DOW be cbanaed. (or example, br­
ed lan,
27
Sa
mobol
ratfor

w
41
q

1.4 Recordlnl Chanaes-The "delta" CommaDd

In order to record within the seo file the chances that have been applied to "lanl'" execute:

delta s.1aaa .

~/tlI prompts with:

commentS?

the response to which should be a description of wby the chanles were made; (or example:

comments? added more lanauales

~/tlI then reads the ".jik, and determines Wbll chanaes were made to the file ·'lana". It does
this by doin, its own tn to retrieve the orilinal version. and byfapplYU1a diff(I) 1 to tbe ori&inal
version and the edited version.

1. All references or Ibe (orm IIIUfW (.If) reCer ID il&m l1li_ ill command WTlI&UP sectioD N oC 111 .

. -_._-----------

~-aen t!tis ~roc=ss ij e=Cl;liets. a1 waic ~inl the Q.a.n1= to "W:;" have ~:n n.om in
"s.!m,", d4i:lz ourpua:

1.l
2~rt~
o .:1eie~
5 WlC ::.:u:,eci

ne aumber ··t.l'· is :he a:me of t1:1e delu just c:euect. and me aext three lines o{ outl'ut
~!e.r to tl:e aumber of lines in me ale "s.l.an:I".
2..5 :'r!on abcuat the '"let" C~mmlJ:ul

3=t s.rml

re~r.:ves the :a.t~t ve~iaa (cow 1.Z) o(ene 51e ··~.lanl··. This is aone Oy !Ur'tinl with the
oriiinal vemoa of :ze ale Uld sUI:::~iveiy il;!;liyi.a, delw (m: ~haa1e:s) in oraer. \J.D.ul all have
Ocen ~;lied..

For oW' e.um;le. :he followin, comma.ads ue ail equivalent:

Jet s.lan,

i:t -rl s.!ma

i=t -r l.2 S.!.a::1

The numbe~ foUowin, che -r lc:yleu:r are sms (54:. Sedou 2.1 above). ~Qte tha1 om,ittin,
lhe level :lumber of the SiD (33 in t.!:e S«Qad eum;!le above) is equivaie:1t to SlJecUyi.nl the
t"ghez teve! :umber tt:.a1 e:wu withiD the s~Jied rele3Se. nu.zs. d1e seceac:1 ~mmaact
:':~ue:sa the ~:tr!eY:d of the ta~ vnoa ill relc:1Se 1. camel, 1.l. The thirci c:emm:mct
s;:ecfic;;Uy ~uesu t!:.e retrieval of a partic".liu vemen. in t!tis ase. aLso 1.l.

W'henever a trJly :::ajor c!w1,e is c:w:ie to a file. tne silCiAcmce ot ttw c=le is usually
indil::ueti by C=an3inl the rt~ aumber (am :cml'Ocent of the SID) of ene d.elu Oem, macic.
Since aor:::a.l. automauc:. aumberln, ot deltas prcceed3 ~1 in~.:ne:1tia, the level ilumber
(S«X:t1d compCt1e:ll of the sm). we cnust inctic:ua to sec that we wisJl to 0aa1e the reie:s.sa
:lumber. This ~ dOt1e widl the Ift;ommaad: .

1:t --e -d 5.!.m,

3eaU3e re!e~ 2 dces aot exist. g., r:trie~ the lacest vnC1l "'10,.. r:!ease l; it al:so
inter;re~ :his as a ~e=l to c:.a.ale the retase aumber of the <1cita .e wisJl to cr::ue to 2.
the::ey c.3U3ia1 it :0 ee cwned 2.1. runer th.m 1..3. Thi:I information is :caveyec:1 ta a./t4 via
t!le :rji~. Gn:== outputS:

1.2
t:ew t!.e!u 2.1
7li.:le:s

sea lJs. 's Gil"

wbich indicates that version 1.2 las been retrieved and that 2.1 is the version rklla will cr=t.e.
It the file is now ed.it.ed. for example. br-

ed lan,
41
/co boll d

35
q

aDd tUJlQ executed.:

delta S.lanl
comments? deleted cobol from list of lanlua&es

we will ~, by ult.a's output. that version 2.1 is indeed created:

2.1
o insened
1 deleted
6 Wlchanled

DeltaS may now be crested in refuse 2 (deltaS 2.2, 2.3, etC.). or another new release may be
created in a similar manner. This process may be continued as desired.

1.6 The "help" Command

It the command:

let abc

is executed. the (ollowing messale will be output:

ERROR [abc]: not an sees file (col)

The strins "col" is I code for the diaanostic messale. and may be used to· obtain a fuller
explanation of tbat messase by use of the h.Jp command:

belp col

This produces the (oUowinl output:

col:
"not an sees file·
A file that you think is an sees file
does aot begin with the characters ·5.·.

Thus, h.lp is a useful command to use wbenever there is any doubt about the meaning of an
sees message. Fuller explanations of almost all sees messa&es may be found in this manner.

3. HOW DELTAS ARE Nt:MBEllED

It is conveaient to conceive of the deltas applied to ID sees file as the Dodes o(a ·tr~, in which
the root is the initial version of the file. The root delta (node) is normally named "1.1" aDd
successor deltas (nodes) are named "1.2", 06 1.3", etc. The compoDents of the names of the
deltas are called the "release" and the "level" Dumbers. ~tively. Thus. Dormal c.am.inl of
successor deltaS proceed.s by iDc:rementinc the level number. which is performed automatially
by sees whenever. delta is made. In addition, the user may wish to ehanle the nkou number
wben makins • delta. to indicate that a major c:hanse is beinl made. When this is done. the
release number also applies to all successor deltas. unless specifiea1ly chanced 'Cain. Thus. the
evolution of : particular file may be represented as in rtlUre 1.

sees C:;»'1 G4UtU

o---c--o~--
1.1 1.1 !.J 1.4

~ ... t

naur- 1. Evolution o(an Sea F"ue

Suc:~ ;& str".!~.!:: :'nay '::-e :ermed the '''t,-"mk'' o(tte sec tre=. If. :-e;:r=enu the ~or.nal
SlqLl4ntlai c!e'leioQment o{ Ul sec Ole. in wi:tic:: e!aaie:5 wt are ~att o(any liven c.=lta are
d:;end..e:lt :.:~on ail the i're::dini :!elu.s.

However. :!:er: ue sit~::'c!"..s in ·~hic:: if. ~ :~ to ;:tu:e a c1TJlfci!jflZ in the tr::. in that
,;!::.3ni~ l;PUC'4 u ;:"U't of a ilven c.=lu are /fot d=~nd=t upon all i'f':vtOu.3 c.=iw. A..s ~
uampie. c:c~icier a ;:rev.un ille: ~ in l"f"Oduc:ioa U3e at versioa 1.J, md (or whic:
~veiopment werlt oa ~!e~e 2 is 1I.r::sC!y in ~cy::s.s. nuu. reie3.Se Z may lire:uiy bve some
'::iW. i'r~~ly a.3 sho'W'Q La Filure 1. .~e U:.at ;& ;roductiol1 U3et re~r"'!s a I'roole:n in
';er:sioc 1.3. and tJ::a, Ule cwure o(the ~oblem ~ Suc!l tl:w it c::umoc oqit to be :-e;:l~red in
reie35e 2. The c:~,e:s :t~~1 to re;air the t.'"'Ouble will be appUes:l a.s a. deita ~ ver:sioa 1.J
(th.e vernon ill ;:mt!l::.ioa.~). This c-=le:5 a ce. vernon th21 "';U taen :e reie::u~ to the
user. :w will !for 34~ the e:.a.nie:5 ~inl ~pUcd (or relea:se 2 (Leo. delus 1.4, 2.1. 2..~ eu:.>.

T"!e ::e. deiu ~ a. c~ ea , "branc!1" o{ the tree. and its ~a:me =~ of .faur et1m~Clne!1u.
:tar=eiy, the ~iease u:d level cumcers. a.3 w;th tr'.mX deltas. ~l'" the ··~rmch'· and
··s~ue!lc.·· Qw:t:e~. as coHoW!:

"The ~1TJ/lcit :nunber is Wii%1ed to e3Ch ~rmc!1 that is a desc=ncta.nt o{ a l'Uticulat trW1X delta..
WtU1 i.he fi.r3t 5UC: bnacl:1 bein, 1. the :len oae 2. ana 50 oa.. The S6qu.Ifr:6 ~umber il
wliI1ed. in :Jrt!er. to e3C: ~Ita 0t1 a ~., o,aMh. nus. t.l.l.l identifies the second edta
oi t!'ie mt branc!l t!:at ~rives (rom d..eiu 1.J. 'I"hU ~ stlowa in ~lUre 2.

T"-....e concpt of or:mc:hic~ cmy :. ext=c1ed to any delta ill t!:e tree: the cw:a.in, or the re:suitin,
deiw prcc..~ in the cnaanu just illumate:i.

T,vQ observuic~ are ot im;=ortm= with reop.rt1 to mmjn1 cialtas. rU'3l. the a2mes of tr'!.mk
de!w CQnuin e:ac-Jy t";WQ ecm;ocena. ;;cd the C2me:5 of ~r:u:%dz. c1das =ntW1 exact1y (our
~~aena.. Se::and.. the am. ~ ~mpcments o{ the a:ame ot 'onnc:h deibS ue alwaY" thc:se
ot" the U1c:=tr:U tr"..1ll.X a.:it:. ana the ~ c:x:ml'Qnent is a.s:ri.i:ceci in tae onier o(a"e:laon of
:!:e ~'h. ~de;e=de=til' o{ iu lcation reJ..a.ti~ to the t:UnX dc!a. Thus.. 3. ~ deit2 ~1
4i ... ~ be ld:!nuted. u suc±l (rom its aamc. Almcu<\b tho anc:nr.U trU.::1.k d..eiu alay be
.d.e!l1:jcd fr-::m t~c ~ deita's ~a. ;t is !fOt pcg6cie to d.eu:m:in. t!l.e t~ ;:aQ l~

7

(rom the ttuak delta to the braDch delta. For example, it delta 1.3 has oae branch emanatinl
(rom it. all deltas oa tba& bra.adl will be aamecl 1.3.1 • .IL If I delta CD this braDch the: bas
another bnach C!m1n'tial from It, all deltas oa the aew braach wiD be mmed 1.J.2.n (:see
PilUle 3). The oaly iDformatioa tl:w may be derived {rom the aame of delta 1.3.2.2 is thaI it
is the drronoiDliu/1y second delta oa the drronoiDgiea/Jy secoad brmch wI10se tnInk IDCeSU)r is
delta l.l. fa particular. it is ItDI possible to determine {rom the aame or delta 1.3.2.2 all of the
deltas benreea it aDd its trunk IDCeSU)I' (1.3).

Flpre 3. Exteadiaa the Branchinl Coacel'!

It is obvious that the coacept of braach dellaS allows the leaentioa of arbitrarily complex tree
StrUctures. Allhouch this capability has been provided ror certain ~ed uses, it is Stron&ly
recommended lhat the sees tree be kept IS simple as possible. because comprehensioa of itS
StrUctUre becomes extremely di1!icu1t as the tree becomes more complex .

.c. sees COMMAND CONVENTIONS

This seC1ioa discusses the col1ventions ad rules that apply to sees commands. These rules and
coaventioas are aeneraUy applicable to tdI sees commands. exc:pt IS indicated below. Sees
com.m.ands ac:ept two types of ltIuments: k,qlenl1' lI1umentS ad fik arauments.

K6YkrtB IlIWDents. (hereafter called simpl, "keyletters t.) beaiD with a minus sill1 (-) •
foUowed by a lowero.ease alphabetic character t aad. in some cases, foUowed by a value. These
keyleners coauol the execution of the commaad to wbich they are supplied.

Fil, lrIWDents (which may be names or flies aadlor direclories) specity the 61e<S) that the
liven sees command is to process; aamina a directory is equivalent to aamia& dU the sees files
wiUiin tbe directory. Non-sees files and uareadable2 files in the aamed directories are silently
ilDored.

In leaerai. flIe araumeats may nOI besin with a fniaus sian. However, it the aamc "-" (a
loae minus sian> is specified as an llIument to a coDUDaad. the command reads the staDdard
input for lines aad takes each line as the IfIIIM of aD sees flIe to be processed. The SWldard
input is read until ead-o(·file. This feature is often used in pipelines UJ with, for example. the
;tlldel) or uU) commaads. Apin. lWDes or aoa-sees mas aDd of wueadable fiies are silently
ilDored.

All key letters specified for I Jiven command apply to tU1 ftle lJ"IWDents or that command. All
keyleners are processed before any file arlumeats, with the result thai the piacemeat of
keyleners is arbitrary (i.e .• keyleners may be interspersed with file araumealS). rue arauments •

.. .. -_... ---.. -_.- - _ .. _.- ---- . __ ._---

howevu. are i'r~ left ~ r.i!1t.
Somewhat ~=re:1t U'l~e:ll e=aventioc.3 ~iy to :he "./;1, ,*Nzt. s:=diff. ana vel c::mc.anci3
(~Scs::-.ioc.s 5.5. S.S. 5.9, ana 5.10.

C:-.:zin aQOc.3 of various sec CQC1C:mcis are c::laucUec1 by J11J~ a~;e2t.n$ in sec ales. Som::
of ~=e aa" an disc:"~ below. Fer a C:OC1;11et. c1:$c:ri;UOC1 of a.Il suc~ flal'. se. ad",,,,, (1).

n. :istilldOC1 ~tw~n ~e f'ttU ~,. (see ~(1» and the tQir::iw ~ of a P'W'I ~= is
of ~l1c:m in ~.winl various ac-.ioc.3 of sees c:cmma.ac!.s. Fer the ;::r~:lt. it is mumec1 thac
OeUl :.he re2l ~r az:a the :d'ec<:ive u:ser are Ol1e ana the !ame (i.e •• the !JoSer wt:l.o ~ [oaed into
a. ~ syst&m)~ this su=;ec:: ~ rW"tl1er ~J.S.Sec1l.a 5edoa 6.1 .

. ~ sec Ctlmmaacls ::at r:odify an seo ate do 50 by writinl a tem;:oruy co~y. =ilea t!1e %.}iu.
'-¥tuQ e:uur= that tl:e SC::l dIe will act ~e ~ed si1ouic1 i'rcc:s.sinl te:::tinate louorcaily.
ne ::.m1e Qi ~e % •• 11.1.1 is (ormea ~y ~;IaC.:, the "s. " of the se::s 51e came with Ux, I.. Whe:1
;:roc:ssin, ~ ~m;:lete. t:e oic1 se::s file ~ ~:nov= uta tb. ~ .• lfl. is t"e:wned :.0 ee the sec 51e.
The :,·:"16 is :::3t:d. in the ~Of1 coauicinl the sec lila. is Jive: ttll same ~c:de (see
,hmoci(l» as the sec ~e. acel ~ owned ~ the e6edve ~r.

To j:lr:vent simulWleous '.l~tes to an sec aIe. c:ommmds Wi moc1ify sec aIes C'%"e:&te a
:ocJc-;ill. alIed the :·ftl4. wt:l.ose :wne is ror:nec1 by re~lK'".n, the us." of the sec 51e a.ame
with "z. ,.. The :·fi~ :::lataim the ;ffX.UI IWmW [11 of me ;omn:ana that er::1te5 it. and ta
~&:: ~ 34 inc1iation to other Ctlmmands tJ:w tb.u ~c 81e is beiJ:lS upiatec1. Thus. other
c:ommaac:Ls that mac1if'y sec ales wU1 act process aD sec 51e it the COInSI'OI1c1in1 :-fi1.l exin:s.
The :'Jil~ is C'::ltec1 with mcde 4.44 (racl-0111y) in the directory coataiDiD, the sec tile. and is
owuet:1 by the ed'ec-Jve u:ser. This BIa emu only ror the duratioa of the exec-.nion of the
c:omcanc1 t.ltat c::e:1tes it. I: ie::en!. U:SC'S =a il:1ore ~·/t1G ma :.jiie: they may ~ u.seiul in
:he event of system c:::l.Snes or similar situations. .

Sec c:ommanc1s i'roduce Qall1osuc::s (012 the diaanos&ic out;N' (11) of the (orm:

E.,,-ltOR. raame-of·Ql .. QeinI·p~J: me.ss:a.p tut (ccc1e)

ne ,:" ia ~th=es auy ~ Ilsed. as aD VlUmenl to the "~/p command (see Sectiol1 s..S) to
obt.ail1 a funner ex;iac..atio: of the diac:asuc me:s.saae.

Oetec"Joa of a (acal errot du.riz:ll the ~nl of a file causes the sec Ctlmmal1d to ter:niaale
~rec:ssill4 o{ riuu CIe ana to ~= with the aeXl file. in order. it mere thm one file !las been
aamed.

5. sces COMMA..'ros

This sec-jou ci=c::ices :he m.ajor (e:uuns of all the sec c=mmands Ceuilet:1 d~;uoJ1.S of
the C::::CU%W:1cls a.na of aJl t!%eit U'llmlala ate live: -U:1 the P'WI Use': .'llaIlUIIL anel should be
::::n.su1ted ror (W't!1e:r infomwioa. The di:sc'~CI11 belc .. ;overs 0111y the more commcn
4l1ucl:!1a o(the VU'ious sec command.s.

Ses:::mse t:1 ccmmacc:Ls 1ft md dlllIJ ate the mcsl rrequ.e:tiy used.. they are "resentr.1 am. The
ot!1er c:::mm.anc!s rouow in apl'Toxjm;u,e oniet 0{ Unportanc=.

sca(J,,'$~ ,
The roDowiDI is I summat)' of ali the scc:s commands IDd or their ~ functiaas:

pt Retrieves vernoa.s of sec files.

delta Applies chlnaes (clelta.s) to the text of scc:s files, Le., creates new versions.

Idm.iJ1 Creates sec tUes and applies chan,es to parameters of scc:s meso
prs Prints portlons of an sees file in user specified (ormaL

help vives explanations of dialt1cstic mes52Ie5.

rmde1 Removes I delta from aD sees Dle; allows the removal or deltas mat were created
by mistake.

cdc Chanses the commentary asscc:iated with I della.

-bat Seuc:!:1es lilY pWJ file(s) for all occurrences of I ~ panern &ad prints oat
-tw (oUows it; is useful in findinl identifyinl information insened by the 1ft
command.

SCC3Wf' Shows the di6ercn=s between lilY two versions of an sees file.

comb Combines tWo or more consecutive deltas of m sees file into a sinale delta: often
reduces lb.e size of the sea Ale.

YI1 Validates an sees file.

5.1 pi

The te' command creates a text file that contains a particular version of an sees file. The
particular version is retrieved by beJim1in1 with tbe initial version. aDd then applyinl deltas. ill
order. WltU the desired versioll is obtained. The created 61e is called the ,-jiJ~: ilS name is
(ormed by removinl the "5." from the sea file name. The ,.ji/~ is created in the currem
direCtory [1J md is owned by the rW user. The mode usipeel to the ,.jill depends 011 hew
tbe II' command is invoked. as discussed below.

The most common invocatiOIl of let is:

let s.abc:

which normally retrieves the latest version 011 the tnmk or the sees file tree. and produces (for
example) 011 the SWldard output (1):

1.3 '7 tiDes
No id ke)'Words (em 7)

wbicb indicates that:

1. Version 1.3 of dIe "s.abc" was retrieved 0.3 is the latest trw:lk delta).
2. This version has 67 lines of text.
3. No It) keywords were substituted in the tUe (see ScC'tion 5.1.1 (or I disc:ussioa oC JD

keyword.d.

The aencraled ,.ji~ (file "abc") is livea mode 44" (read-only), since this particular WIY of
invokilll It!f is iDteaded to produce ,.jila ollly (or iIlspedioll. compilation. etc.. and 1101 {or
editinl (i.e., 1101 (or makinl deltas).

LO

!!1 tlla ~ or seve1":l1 d!e U1'.!:enu (or ~.er7-a.:u::e a.r;w:::e::tu) , sic.i.1u iclor:::tmon i.s
iive: (or =C ale ;mx~~ but :!:= sec ele :.ace i'r~== it. For exam;2le:

3ct !..t!:c

,roew::=:

! • .abc:
1.J
61 !in=

So , _.

!'to iei :Ceywc:mis (C1;)

1.1
!! tines .
~o lei ,cywcrtis (~1)

1.1.1 lJJ Kqworrb

!a. ieneraru:; a ''"Ji14 to ~ Il!ed rot ~c;rilati~ it is wse{ul anei iniormaa'Ve to re=rd the <iate
anei time of c::e:s.tioa. the vernOQ ~trieved. the a:uxlule's a.:u::e, eu:.. witJ::lin the z.fiI.. sa 3JS to
::ave ~ intormation l~ ill a loact moclule wam ene ~ eventually c:uted. Sec provic1es a
~::2nvemen' mec!w:ti.sm (~ doin, this automaticl11. Idl1fn/iCJJtlOIf (ID) Icqwof'fb ~,
lI:1Ta1aer= ill the I=le!"a~ aIe are re'PIac:~ l:!y ~"ro"riac. ~ues ac::crdin, co the =etmitions ot
t!:=e tIl iceywor=.s. The (Orc:a1 ot an tIl keyword is an lJpper-c:.se tea.er enc!osect ~1 S)eraa1
sii= (~). F~r ~:ample:

~l%

~ c.:.fined 3JS the !:D lceYW<lrd th.al is re~l== by the sm ol the retrievec1 v~!r'~iou o(a file.
Simllarly, "'H~ is demu:t1 as the tIl keywor¢ (ot the C".m'e:11 I1aLe (in the (orm urrJr:J/dlJI'I1"),
uta V.M~ is deened ~ the 113m. o{ the,./i1£ Thus. ueculiaa lwt 011 all sea &e that =QWns
the PUt ~tioa:

Oct ID C'HA..>t(lOO) VAll CNrIT:;MC!4t ~r!4I ~~');

iive:s «(or example) the roilowina:

Oct ID CHARClOO) VAll IMITMOCNAME lJ G1107/77-);

W1:u:n co tIl ,eY'¥orC,s are suCstitut=i by ~1. the (oUowUls :nessaae i3 issued:

!'to icl uywcrds (c::nn

~ :::1~e is acrmally tr=Ued. as a -nr::W:l1 b1 ~1. alchou1h the l're:se:1c: o(tte 1 aa. ill :he
sec ale c::IUoSeS it to ~ tre:sted as m mot (lee Scc:"eiOll S.l ror furtt1er informatioa).

For 1 ~:c;lete tist of :':e a~xima,eiy t'YIe:1ty tIl Iceywcrds i'roviclcd. see ,nU).

!.1.1 R6!17r14i olDi.fflrml Y'm:OIlf

V;::ous ,eyleue:3 are ~rovic1ecl to l1Iow the retrieval at ocher ttw:s the c1e{auil vaell o(an
sec dle. Nor::::ally, the d.e{awt varnOll is the C1CSC rer:=c dcita ot the hi3bcsl-aumben=C
:-:!=s on the trwtJc of the sec &. tre.. However. it me scc::s me beiD, proc:=ec1 has a Ii
(wawt SIC) ~ the sm ~ as ttle V'Ilue of this !be ~ used u a c1elault. !be c1e{awl sm
~ interpreted :.n exx-Jy tne $ilme __ , as the ~ue supplied trim the -r k:ytener o{ 1ft.

The -r k.....,te~..er is u:se:1 to 5~ m sm to Oe reuie~ in wtUc: a:se the II (<ie{awt SID) aac
(if my) ~ ii%1or=L For ex:am;le:

Jet -d.J 5~

sees rJ2"s ~

retrieves version 1.3 of file "s.abc". md proc1w:::s (for e:wnple) on the su.ndard output:

1.3
64 lines

A brmch delta may be retrievcct similarly:

let -rl.5.l.3 s~bc

which proc1uus (for eumple) on the st:u:2c1J.rd output:

1.5.2.3
134lines

11

When I two- or (our-com;>oeeet SID is s~ed IS a value for the -r keyiener (as above) and
the particuJar versioe does Dot exist in the sees tile. an error messa;e results. Omission of the
level Dumber, as in:

Ict -r3 s~bc

causes retrieval of the trUnk delta with the highest level number within the Jiven release. if !.be
Jiven release exists. Thus, the above command might output:

3.1
213 lines

It the liven release does Dot exist, I~t retrieves the l1'U"/c delta with the highest level number
within tbe highest·numbered existinl release that is lower than the Jiven release. For example,
assumini release 9 does Dot exist in file "s.abc". and that release 7 is actually the highest.
numbered release below 9, execution of:

let - r9 s.abc

miaht produce:

1.6
420 lines

which indicates that trunk delta 7.6 is the lalest version of file "s~bc" below release 9.
Similarly. omissioD of the sequence number. as in:

let -r4.3.2 s.abc

results in the retrieval of the branch delta with the hishest sequence Dumber 00 the Jiven
bnac!l. if it exists. (If the liven bn.nch does Dot exist, an error messale results.) This might
result in the foUowinl output: .

4.3.2.8
89 lines

12

"The -(:e:rlet:.:r :: ~~ !.:l ~tri=ve ~e 1.at~ ("~Cl' ..) vernol1 i.a a ,wC".1lar ftUa.:z (i.e •• whe::
~o -r 'Jeeyletter :: su;:;:iied. or when iu v~ue [j 5im~ly I ~!e3.se ~umbet). Th: t4t~ ve~oll
:: ced:.e-! loS :!:..a1 ~iU w~C!l ~ ~r:-G~~ ~~ ~:!ltl1, incie;enc.:::t o{ iu loc::uioa 011 t.ll:
sec :.Ie ::~. n~ i ~: ::::~ :1:1::::t ::eiu in rei~ 3 i.5 3.j •

• et -r3 -t s.4bc

a:iibt ;:r~w:::

3.5
59 [11:e:s

However. if ~nJlQ d.eiu 3.2.1..5 wen Ule tat=t c:!u. (c:=teO. after d..elu. 3 • .5). the s.me
c=Cl~ci :!:!ii:,t '1'01:i~

3.2.1.j
~ lines

!.1.1 Rtrr.nai Wltit [!tum :c .'daJu a Dtiuz

Sp~..nc:uiOI1 of the -4 :C:yle!ter to ~e Itt =mmand is aD inc1ic::uiOt1 o(tl:1e inte::t to au.k: I

~it.a. anet.. 1.5 ~uc:±l. iu ~e [j resU"ic-:ed. The ~e::c:= of this lI:eyletter ausa 111 to Qe!:X:

1. rce:J.SD' Ii.s: (whiC:!l i.5 the !~~ of larin aames and/of IfOUP f1)! of usen allowed to make
::'C:W (~ S«-.ioa 0.2) to ~c:ter:ainc: if the \ogiA aame or ~up CC o(the ~a' eXK'.lWli
Itt [j oa tiw U3t. ~ote that I trWJ (em~ty) ~ Un behaves as if' it coauilled ail ~iole
! ciia cames.

2. nat the ftita:1 (R) of the ve~ioa. Oeitll retrieved satisnes the reiatioa:

aoor ~ R ~ c:din,

:0 cet:r.ninc: if the relc:3Se beia, lCC~ is a ;:rot~ec1 re!=se. The ./fIX" anci c~tlinr are
s;es:-..ned as ./f4~ in the sec dIe.

3. n,a, tne t'f~ (PJ i.5 1:10' !odud ~'ed.itin" The l«k i.5 !i'ed.dC'C1 1.5 .. tlac in ~e sec
ffie.

~. Wbet!:e: or 1:10C ,"uil1r:~ conCO..ll'rf1tt edia are 3ll0wed ror the sec Ole as Sl'~.neci Oy tile 1
tb.i :n the sec rue (multii'le cca.:ur:'eat edics are c1e:scribef:1 in Section 5.l.j).

A failure of any of the d:3t three coaciitiOt13 Quses t.!le Prec=sin1 or the =~a.c:ti.n, sec
~e to :er::llJlate. '

rr tne 4.bove ~:ea:s suc:...-ed. tl:1e -4 keytener QIUeS the c:ation of a ,.fi~ in the c:m'eac
Cire1:tory w;th oede 64.4 (r=4abie Oy eve:yOI1e., ~ubie only Oy the oWtter) OW1lc4 'oT tl:1e ~:aj
·JoSer. U' a w"t4b~ ,-.!tll a1re:1c1y e~a. gft ~ces with aD error. ~ i3 to preveat
illadver.ent c~tr'.u::ioa. or a. z-fiJ. t!W a.1r=dy exi:la mel i3 0em1 edile1i ror the PW'l'05e of
:naxiCi a de!u..

.~y :0 keyworC..s lPP~' il1 the l·ji£. are '"" N!minueC ~ 1ft when the -t lc.:yletter i.5
S;K'.teU. 'oe=ll:e :ttei::1ented I·/i~ is to be NCsequenuy ~ to ~ molber c1.eita. anel
re;:~ce:ne.!1t o(iI) ke~~ woulcl a~ them to 1:e ~e:1l1y ~%w11ecl widtin tl:1e sec ale.
La v1e ... o(t.!lU.. 1ft dOe:! :loe need to ~:a (Of me pr=ence of to 'I::ywortls widtin tile I-frIll. 50

UU1 -.Ile t:1~::

~o :d k.:yword3 (=n
. ~ ::1I:~ out;ut when 1ft is inVCIlc:cl with the -4 Uytener.

La lc.ciitiO~ :h: -t xe-yiener Q~ me ~CIU (or u~tinl> at a p-fill. which is ~ to i'US
UUo~oa. to the ilit4 ccmmaad (see $edea. 5.1.4).

The (olIowinl is an example of the use of the -e keyleaer:

,=t -e s..abc:

wbich produc:s (for eump!e) on the stalld.&rd out;!ut:

1.3
new delta 1."
67 lines

If' the -r and/or -I keyfetters are used tOlether with the -t k:eylener. the version retrieved
for editinl is as specified by the -r and/or -& keyleaers.

The k:eyleners -I and -s may be a.sed to specif'y a list (see ~(1) (or the syntax of such a
list> of deltaS to be indu.tUd and arlw:i~d. respectively. by:n Inc:Judinl a della meaDS {arena
the CWICS lbat constitute the partic:ular delta to be included in the retrieved vemon. This is
useful it one wants to apply the same cb2J'1lcs to more than one vemon or the sees file.
ExcludinC a delta means {orcinl it to be not applied. This may be used to DIldo, in the version
ot the sees Ale to be created, the ~ec:ts o(I previous delta. Whenever deltas are iDc1uded or
excluded. ~ checks for possible interference between such deJtas and those deltas that are
normally used in retrievinl the partic:u.lar versioD o{ the sees file. (Two deltas c:an interfere.
(or example, wben each ODe c:hances the same line o(the retrieved ,-jilL) My interference is
indicated by a wami%!1 that shows the ranle of lirles within the retrieved ,-/i16 in which the .
problem may exist. The user is expected to eumine the ,-/i14 to determine whether I problem
actually exists, and to talce wbatever c:orr~tive measures (if any) are deemed Decessary (e.&-.
edit the file) .

.,. nr~ -I and -s key/etters should ~ ~d with arreIM can.

The -It keyletter is provided to facilitate releneration of I g·fik that may have been
accidentally removed or ruined subsequent to the execution of ,~t with the -e keylener. or to

simply ,enerale a 1-/i16 in which the replacemeDt of ID keywords has been suppressed. Thus. a
l-/ik ,eneraled by the -k keyletter is identical to one produced by 16 ex~ted with the .-.
keyletter. However. no processU1C ~iated to the p-ji~ takes place.

S.I.4 COnt:W'1'ttU Edit! 0/ D~rellt S/JJJ

The ability to retrieve di1!'erent versions of an sees file allows I number of delw to be "in
proarcss" .t any Jiven time. This means tha1 I Dumber or let commands with the -e keylettcr
may be executed on the same fUe~ prov;ded that DO two executions retrieve the same version
(unless multiple concurrent edits are allowed., see Section 5.1.5).

The p-jill (which is created by 'the 1ft command invoked with the -e keyletter} is named by
replacinl the "5.'· in the sees file name with .. p.... It is created in the directory coDtainiJ11 the
sees file. is liven mode ~ (readable by everyone. writable ol11y by the owner>. and is owned
by the effective user. The p-jil~ conwns the foUowinl information for each delta that is s:W
"in prosress":l

• The SID or the retrieved version.
• The SID that will be liven to the Dew delta when it is created.
• The loain name of the real user execuliJ1& ~t.

The first execution or '"sct -e" causes the cnatlOIl of the p-jik for the correspoadinl sec:s file.
Subsequent executions oD.ly uptilul the p-fik by inserUnl IL line coau.inina the above
information. Before insertin, this line. however, ~l ch~ks that no entn' already in the p-jill

3. Otb8t llUomsauac ma, be prHeZlt. bUI \I DOl ;,f CODCel11 hcrt. See 1ft(1) far funtsa'diII:ussIOCl.

sea c:J6'S GIJJtJ6

s;e~~es l.S al.r=dy ~C'iev~ ~lle sm o{ the ve..~Ot1 to ':.e ::trievec1., 1J.lll~ =ulti;1le ::nc:".lr.":tU
~u are &llO'ill'ec1.,

[f ~oth .::'e-c!c3 s~ ~e ~~r i.s :.afor.::d ±:1t ot.b.er de!W ue in ~re1%'~. ana ;rroc=.3ia;
~::t1ti:1~. !! e:t.:=t ;:'ecx r.iili. an er:or :::~ie r=ult!. It i! im~ruat to C1ot: th,al the
various eu~..:t:e:u o{ 1'ft sllcu.lc1 ~ ar.'!ed ow from auYere:1t di.r~..crie:s.. CU1e~. om,. t!:1e
::"~t exes::"..1Cca o;,;ll sue::=' sin= su~eq1JC1 e:t=-.Jtio~ '~01Jlc1 attempt to over· writ: a ."muzbi6
l·Ji/~. wCicll ~ U1 sec error ~ccdi!1011. In ;~c:=. suci'1 :::ulti;:!e ex~.UiOCLS 3rt ~rfor.:1ec1 'oy
Cid'e:etll ~ers. 4 so ~ this ~roolem ~ QO' ar.le. sics:: e3ci'1 IJ.SU cor::t.a1ly Cas , cmermt
worX:iJli di.r~.cry (11.
T Jocle 1 siloW!. fot' ~:'e o:2~t useful =ses" wtut versicn o{ an sec 51e i! retrieveU 'oy 1ft. as well
as ,he SID of the versicn to be evennuil,. =-=ted. by dlilIl. as ~ fundon o{ t!:1e SID s~c:ci to
l't.

J.1.J CJnt:".J11"tlft.!die 01 til. Sl:m, SID

l:::t:er :or=.a1 :Qt1c1itic~ It::J fot eWti:l; C-4 ~eylett:t is spedfie<l) ~ on the same SID are
~oc j:er:ni.lad. to 0CI:".u' c::cc::menuy. !"ll.u ~ dlilIJ l:1~ be exec~d oe{ore a su~ue:t l~t
for editina i! eXec".JteG " t!:e s:ame sm as tne ;nvious In. However. multiple e:lt1~t =diu
t..:!efu::d tc be nro or C10~ ~.131M executiCltlS o{ Irt ror ec1itina based on the same retrievd
S4l:) art allawe4 if the 1 aac i! sec ill the sec ale. Thus:

iec --e s.=
1.1
:'1:-' ~e!ta 1.2
(,.
~ .Ules

- : ' r U Iouoo ._ay ",e Ic:::: ate:y .0 O'ill'~ ... "

set -~ s • .lCC
1.1
ce. lieiu. 1.1.1.1
S lines

'~ithou' an :nte:ve:ti:1 =:'Ce1:".1UOtl of rJ.1JJz. In this aM. a dIilIl c:cmmaml ~Qrr=~ot1c1iai :0 the
!r'3t 1rt ;=roauces de!ta 1.2 (~ini 1.1 is t!:e lalesE (men re1::::u) trw1lc C:!:lta). mci the "ulttt
~1'llI:W:lci e:I~ac1in1 to the seconci Iff ;rcciuc:::s delta 1.1.1.1.

1.1.6 K4yI.run rMl Agic Oruput

S p~.fQuon of the - p k:ytettef cau:ses IIlI to write the reuieved tan to me suncWU ou~ut.
:':llilet thaa to ~ z lfll. In ac1.c1itica. ail outpUt acrmally ditec:eci to the SWlc1arU OUt;::Ul (su.c:i'1 u
the sm o(the vnOIl t':U'ieved mel the cumber o(Unes retrieved) i! c1.iRc-..ecl inste2l1 to the
ciia;r1osUC: OU1~UL ~...is emy ~ u:.ed.., (ar example. to C"Ule l.fila with u~tr:ll1 aamcs:

~=t -9 ! • .aee: > ubiaary-dIename

The -9 (.=ytct::t is ~c:".1iariy u.se(ui when ~ with ~ '.!" or "S·· arzumeaa ,of the ~
~lfd (1) ccmm.a..aa. F'Jt e.x.a.m;:le:

s~c1 ~OO- s~tc R.E1.- 3 cempile

sees u.,', GtIiIU 15

TABLE 1. ~adoa of New sm

C4# SID -0 j(ey!mer 0V:er S1J) sm O/JAiuJ
Sp«ifi~ U2dt CDNiitiolU R.~trined ", 0, Cn:tItU

1. DODd DO R def~wts to mR mR.m.L !DA.(m!.+ 1)

2. DODe: yes I. defaults to mR mR.mL mR.mL.(mB+ D.l
3. I. DO it > mR mR.m.L R.l!
~. I. DO R- mR mR..mL mR.(mL+ 1)
5. I. yes I.> mR mR.m.L mR..mL. em! + 1).1
6, R yes R- mR mR..mL mR..m.L. em! + 1).1

7. R I. < mR md h.l..mL-- bR.mL. Cm! + 1).1 R does ItOI exist
Tr11D.k su==sor

I. R in release > R R.mL R.mL.(mB+ 1).1
md R exists

9. R.L 110 No trUD.k succ::ssor R..L ll.(L+ 1)

10. R.l yes No trunk suc:cssor R.l R.L.(mB+ 1).1

11. LL Trunk successor R..L LL. emB + 1).1 in release ;. R
12- R.l.B 110 No bnnc:h suc:essor R.L.B.mS R.l.B. (asS + 1)
13. R.L.B yes No branch successor R.L.B.mS R.l.(mB~ n.l
14. R.L.B.S DO No brlZlch successor R.L.B.s R.L.B. (S -+ 1)

15. R.L.B.S yes No braach SUc:teSSor R.L.B.s R.L.(mB+ D.I
16. R.L.B.S Branch sua::ssor R.l.B.S R.L.<mB+ 1).1
• "R", "L··. ".". &ad "'5" an the "rele&SC", "!eyel", "brulC:h" , and "lCq\Ieacc" I:DIDp'DaiU of the SID,

tallCiYe!y; "121" IDCIIII ·'lDuimWD". Thus. ror eumPie. "LmL" IDCIIII ''the lDuimum level D&&alber wichm
ndeue Jt."~ "1U..(ml. n.l" IDCIIII ~ ar. scquaiCC IIWDber 011 the MW brudl Ci.e_ muimlUll braISes
lIumber phil 1) of level L WlthiD reJeue R". HOle lU& it tile SID speci6ed LI 0(the form '·U ... "1U..1". or
"R.L.U". IIdI 0(tile ~ed COlDlIODCDU -.r uiA.

t l'be -. keyteaer is d'ec:n. oatr ifUle • aaa (see GdIIIr"Cl» is praeG& iD the !II. ID this WIle. Ul alUY of "­
•• maas "~IDC··.

• This CUI ."",ies it lb. • (clef,WI SID) !lac is fftH pracac ill Ule !I.. If' Ule • f1aa " present ill the me. thai the
SID obl&&Ded fralD lAe • 1lq is iDlCf'PR1eci u if' i& bacl bee qICCI6ed aD lAl c:ommiDd liDe. Thus. 0111 of lAe
other c:ua ill this l&bte ~

f This cue is \lied 10 rorc:e thl acatioD of thl /fnt c1e1ta ill • ,.. reJcue.

- .. till .. is lAc hi&besl emil,., reJease Chat is lower t!lID \be ~ed. IIOI1CDS1r1U. reteae Il.

if file "compile" CODtains:

Ilplicomp job jOkard-intormation
lIst:pl exec plic::
IIpli.sysi.a d.d -
--5

-!ael -p -rREL MOD
I-
II

will ~1Id the highest level of release 3 of tile "s~bc". Note that the line .. - -5", wbich causes
~nd(l) to make ID keyword substitutions before detectinl md interpretina CODuoi lines. is
l1ecessary if ~nd(l) is to substitute "s.abc'· for MOO and "3" for R.El. in the line "-!get
p -rREI. MOO".

16

The -s (:ylet:et su;:pr=e.s all outpUt t!:w is Mnt'f411y dir'=:= to t:e n=c1.2rt1 out;:ut. n~.
cJ:= Sil:I of cJ:c ~l:t:'i=v~ v=:3io~ t!1e !1u:nbtf of tla= ~::rievea. et= •• 11'= ClOt o'1t;Nt. T-o...i3 doe~
::C(. l1owevet. a.a"ec: !%:=.s.al= to the dU;::01tic: o'1t;Ut. T"-...is keylclur is \!:Sed to ~revent Cloa­
~c:stic: :::~e:s from a~, 011 U:e u:,er's ter:ni.c.al. anel is often ~ in =ajWlc-oica
W;t!1 ~. -$I keyter..:r tc •• "~,, the ou~ o{ ~ as in:

ict -I' -s ~ I ~
no -t k:ylener is su;:pUec1 to Nt'Press tho u::u:d :etrieval or the ~ of a vernoa ot the se=s
!leo This :::1,;Y be usc,°ui in a aumber ot ~ys. For exam;de., to verify the existeac:: o(a
pV'"oiC".:.iat stC in an sec ~e. oae QaY eXec".Jt=

set - S - r~.J S • .1Oc

This o'11;u13 :he 6iVe:1 sm if it exim in tha sec ale.. or it iene.~te:s an emf tne.ssace. if it c1o~
:lOt. A!1other use of :!lc -I keyien.et is in rqeneratiJ:%; a {J-fi~ t.C.:u :::2Y bve ~n ac:::c1enully
c:~troyed:

iet --0 -I s...1.bc:

7'ile -I ;ceyletter QWes ~o ~riOI1 of aD r-fill. wbich is camet! by re;laCnl the , .. , ... o(the
sec ele ::ame w;tn .. I.... Thi:s aIe is a::atec1 in me C"..ure:1t c1.irec:cry. w;m a1cd.e 4044 (re:sc1-
orJy). a:cct is owaed by the 1'=1 user. It cm1wa.s a table (wocse farmal is c1=cribed il1lrr(l»
si1o~ wl:1i= ~!tas were ~ in ~I a puUC"..l1ar vernoll of me sec dIe. FQ1"
~.um;:ie:

.=' -r2.3 -I S.4.ac:

;enerates an I-fi~ mowinl wttic:!1 c1elus ~ applied to ~trieve vernon 2.J of the sec file.
S~eclyiai 3. wziu6 of .• ~'. wim the -I keyt~. as in:

iet -I p -r l.J S.4.Cc

C3U3e:s ~ pner.&te4 OUrpuc to be wriUe:l to the st:U1ciarc1 OU~ ramer tl:aIl to the ('-JilL Note
~hat tbo -I k:ytet:u :nay ~ ~ with tn. -I keylea.er to SUl'Pf=S the acma1 ~uieva1 of the
text.

The -CD (eylce".=' is of use in ic:i=tityml. line by 1.U1 •• the t::han,es aQPlied to an sec CIe.
S"eCac:uioD at rnu lcz:yleaar c:auses cadlline of the IlDenceci z-fl- to be prec:clecl ~ the SID
of :i!e c1eita thai QU3ect that Ihle to ~ imerted.. l"l:= SID is se;w2tecl (ram the tut of the line
oy ~ WJc~.u.
The -Q lceylee"..er awes e:u:h tine of d1e s=ented ,-fit. to ~ ~ by the v-due of the
~M~ a:J lerovora (see Sedau 5.101) aDd & WI ~o The -a keyten.er is a1ast o(te::t u.sect
in 1 ;:Ii~lU1e W'iUs ~(l). For example. to &lel aUline:s thu" macdl a livell paaem in the t..t=t
"'e:-31CI1 o{ e:K::t sec fUe in a direc-.cry, tne roUaw;n~ may be Uec'.ll=

ill -S' -Q -S ~.arr I Il'eP ~
. I

II '!oth the -aa U%1:1 -G keyleu:", an: ~.!ed. e::u:h tine oC the pne=ec1 1"J1l1 is pn:=dect 01
cJ:e ~ue o{ dle ~~ a:J i.z:y9orti3J1c1 a taD (this is the e6ecl oC the -II Uyteaer), ronawed 01
~= lli::.e in me for.:r:::u ~rcc1u.c::d 01 the -CD keytenz:r. Be=use use 0{ th.e -131 Uytener and/or
~ -G uylenu auses the coate:lIS of the Z-~ to ~ modidecl. suc!s a,..~ muu !fOt be u.sec1
ror c:=W:~ a cieit3. Then(ore. aeithet the -GI keytea.er acr the -II u,tec.u may be
s;ec..desi to'leU1e:r with u:te -4 keylea.er.

See lff(l) (or a fUn c!.e:=dl'ticm 0{ 3ddiemw :wr k:1\ettea.

!.l <leila

The ail:: ~ is ~ to i.n=QOrua the c!1a.a~ ~ to a z ... ~r. into the corr=-pct1din~
sec dl:. i.~ to ~ I cieitl. and.. tner-:{or=. ~ CC'W veaioa. oi the aIL

17

IIIvoation of the ai1tJ commscd requires the existence of I p-ji14 (s= Sections 5.1.3 :and
5.1.4). ~i:D ex.:unines the p-fi14 to verify the presenc: of IUl ~try coauil:til1: the u:oer's 101in
name. II none is found. a.n error messa;c result.!. ~ilD aLso performs the same pe~on
cb=:b t.h.a1 r-J performs when invoiced with the -e keylener. If all chec:ks are ~ul. dei:a
c1e~rmines wl:w tw bee!l c:l:un:ed in the l.jik. by compui,nJ it (via di6'(1» with its OW'C.

temponry ~py of the l-fill as it was be.fo~ editin,. This ~mporary ~py of the t·fiU is =lIed
the rJ.ji~ (its nmle is formed by ~placinl the "5." of the sees file amle with "d.. to) and is
obtained by performinllC intcnal ~ at the SID specified in the p-fi~ C%1try.

The required p-fi~ entry is the one ~nUiain, the login name of the user executina iU/JQ.
because the user who retrieved the t-fik must be the one who will creste the delta. However,
if the lesin nama of the user appears in more than one entry (i.e., the same user executed rrt
with the -. keylener m~ th.a.a occ: on the same sees ftle), the -r keyletter must be u!Cd
with "i14 to spedfy an SID that uniqUely identifies the p-jik entry'. This enuy is the oce used
to obtain the SID of the delta to be created.

In practice, the most commoc iavocation of rkJ14 is:

delta s~bc

which prompts on the Standard output (but oaly if it is a terminal):

comments?

to which the user replies with I description of why the delta is beicg made. terminatin& the
~ply with a newline c~r. The user's response may be up to 512 characters lonl. with
newlices not intended to terminate the response =aped by", ...

If the sees file has a l' nal, delLa first prompt.! with:

MRs?

on the standard output. (Again.. this prompt is printed oaly if the staDdard output is a
terminaJ.) The standard input is then read for MR' numbers. separated by blanks and/or tabs.
terminated in the same manner as the response to the prompt "comments?".

'The -'1 and/or -m keylette%'$ are used to supply the cnmme:ltary (comments and MR
numbe%'$, respectively) on the command fine, rather tb.aa throug.b the Standard input. For
example:

delta -y-desaiptive ~mmenr- -m-mrnuml mrnum2- s.abc:

In this case, the corrcspocdin.i prompts are not printed. and the stacdard input is not read.
'The -m keyletter is allowed oaly if the sees file bas a T fla&. These keyleners are usefuJ when
rkJtQ is executed from within • SheD proatiure (see sit (1).

The commentary (comments and/ or MR numbers). whether solicited by della or supplied via
keylette%'$, is recorded as part of the entry for the delta bein& created, and applies to all sees
files processed by the same invocation of ddl4. 'This implies that if delLa is invoked wlth mo~
than one file araument, IUld the first file named has a T fla&. all files named mU$t have this tla.&.
SimiLuJy, if the first file named does not have this flal. then none of the files named may have
it. Any file that does nOl conform to these rules is not processed..

5. The SID s~Dd lDay be ether lbe SID reuieved by If!I. or the SID MIrtl IS to cn:au.
6. In. tilhtly controilcd alvirol1me~2t. it is cx;ected thaI deltas an: aeatce1 oaly u • renUl or some trouble ~rt,

Qa.alc request. troullie uc:Xet. eLC. (coUe=tlvety c::&llcd here Modi&auon R.c:qucsu, or MR..Jl lAd tbac it II d=wable
or Ilece:ssary ID tc:con1 web Mlt Ilumberu) WlIlun c:acb delta..

tS

When i'rec=.si.-:$:.s :::::;:ie~. ;"ita oUQuu (oc :!:= sunQr::! OUQU1) the SID oi ~e ~:~ted.
~ita (oouU:=i Crem :!:e p-/f16 enC7) a.ac1 tne ~QU!lU of lines iJ:uer.~ ~!eted. ana !eft
'.u:Q.a.t1~:-a or t!:e ~iu. Thus. a cni=1 cut;Ul c:.i~t ~:

1.4
14 ~enea
1 wetec1
H5 unc!:.ac,ec1

It ~ ~cs.siole t!:.:U t!:e ~QU!ltS of tina C"e;crt:d a.s imened,. <1cieted.. or unchaa;ea by rkl:z: do ace
1it'H iVit!:1 the user's l'e:::;tioc o(the ~Ies a.~lieci to the Z-filL The r=son (or this is :l::.al
~h=:e usually are a cum!:er of wars CD ~be a sec ot sue: C=ales, es;eaally it lh1a are
~oveci arOu::1a in the Z~i~. md rki!J: is li1ceiy to and a cl~l'tiol2. uw clU!'ers Crom the 1J.Ser's
;:er::;tiol2.. However. the lCrci cumber of lh1es of the ae'" cloita (me cumber in.:sen= i'lus ~he
::UClOe: left ~c!:.aciea) should. li%':~ with tl1e cumber of lh18S in the ecUt~ l-fii6.

iI, in :~e ~~=.s oi ~I 3. delta. ~zltlZ :mcis co iII keywords in the edi1e4 z.flu. the cces.saie:

~o ic1 "~crd.s (Oli)

!~ :S3Ueci u"ter tte ;:rcr.::~ for :emmetOUty, but ~~{ore Uly odler OU~UL ~ incUates that
l.C.y iD iceywcfC3 :!la, :':1ay have 4.:wted ill the sec aIe llave be:n re~lac:=i by e,:eit values. or
ae!et:-a c!ur.n; t!le etiiti:3 i'fCC::s3. This ctluld be au.secl by ~tin$ a deita Crem I t-fil~ ~~,
was c:=t:d Or a itt w;u::o~ the -of keylena' (re=1l that II:) keywords are re;lac..-d. by ,., in we
a.se), or by ac:iccntally .u:leti.al or QaaIU1I the III Iceywords curial the ef1itins or the '-filL
A!lot!1cr ~33ioility is uw the ale may cever have bad my CD ke,.-.,crds. In my =.se, it i~ left
o.:~ ~a the u.ser ~a c!ete::::tine what remet:1ia1 adoa is aer:=ssary. !Nt the cielta is mde, unle:ss
:hcre :.s 1l1, I :la, in t!1e sec ate. illciicWtI ttw tllis shoulci be auteci a.s I rata! error. In this
:~t ~e. t!1e c!cita is t:o, ::e:uec1.

.·\';'-:er ;lfoc~nl of an sec ale is :om;:lete. the corr:spocdinl {J-/IU enuy is removec:t from che
;-:i~. ~ It ~:re i.s only on~ entrY iJ1 -ne p-filL t!:l= the p-fiitl iae:.;· is ~maveci.

La ad..dition. d.irrz removes the edited. l-;ilL uniess che -II k:ytenzr is s;ec".fied. Thus:

~!ta -0 s.J.Oc:

"¥til Iceel' t!le Z-/ilt u;:on ~Qm;Jetiaa of "roc:ssin ..

n. -5 ('"sile:uJ') keytettes- sUI'presses all oUQ1.U th21 is cormally direr::ed co the SW1c1ard
out;:ut. otl:e: tiuJ:1 the jlrom;:tS ·"eammena?'· U14 '.~?". 111U3. use of the -. uylener
tCi=the: 'Nich the -1 keyten.er (ma j:embly, the -III !ceylener) au.1CS ckillJ ceidler to r=c1 che
standard In;:ut llor to write the naac1arct ouq,uL

The diB'ere!lC~ bet'iV~:1 the t.flu mc1 the a-fiu (sae above), wbic ccmUNIe the <1cita, ccay ~
ilrinte::i on che stanc!.arc1 out;:ut by usinl the -SI keyle1tu_ The Comw of this ou~u, is similar
to tiw ~uc:a ~ dii/(1).

5..3 admJ.a

The a.dmJn =mr:.a.aa is u.seri CD alinvn.i:z81' sec ales" ttw is" CD c::ue ae. sec ~ mci to
c!:.a.qe ~et.e:'3 o(e~; ones. Wheu aD sec ale is C:O=Ied., ia ~el.rs ate il1itiali%=d
by u:e of x:yten.ers or are wi;ne4 c1daw, values it llO kl1teC"..cs are su;:"Ued. The same
X:ytea.ers ar~ ~ :0 Can;e t!1: ~eW3 of 4mtml fila.

1. AJl ~:o ~ ~ an c:.ade ta a te::~ =111. tb q-:tfJr. .. lime II:Ia is siIIlli. ta * ~ of ~ ,z •• 4'" wtur::
~ 4ac:tbeli IlS Se=ca 4 ~

sees t/SIr '$ GuiM 19

Two uyleners an supplied fer use in canjunction with detectin: and co~ "corrupted'·
sees Bles, and are di!Icu=ed in Section 6.3 Ce1ow,

Newty.qcsted scc:s files arc ~vcn mcx1e 444 (r=d-only) IIld are owned by the eifcc:tive g:ser.

OI1.Iy a user with write ~:mission in the c1irec:tory conWninI the sees file may use the admill
commaad upon tlW 4le.

J.J. J CntUiolf 0/ SCa Fila

An sees fiJe may be created by executinl the command:

admin -mm s.abc:

in which the value ("tim'·) or the -I keylener specifies the name o(a file from which the text
or the inillll/ deita of the sees file "s.abc:" is to be taken. Omission o(the value or the -I
keylener indicates thaI admill is to read the sundard input for the text of the initial delta..
Thus. the com.mand:

admin -i s~ < first
.

is eqwvalent to the previous example. If' the text of the initial delta does not contain ID
keywords. the messase:

No id keywords (em7)

is issued by admill as a waminl- However, it the same invocation of the command also sets the
I fla, (Dot to be confused with the -I keylener), the messaae is treated as an error and the
sees fiJe is not created. Only OM sces file may be created al a time usin& the -1 keylener.

When an sces file is crested, the rtktw number assianed to its first delta is normally .. t·'. and
its ~~/Dumber is always "I". Thus, the first delta or Ul sces 61e is normally '·1.1". The-r
keylener. is used to specify the release number to be assianed to the first delta. 'Thus:

admia -i.&m -r3 ubc

indicates thaI the first delta should be aamed "3.1'· rather thaD '·1.1'·. Because this keyletter
is oaly meaniDaful in c:realinl the first delta. its use is only permined with the -I keylener.

J.J.~ IIWNilll CDII'IIfWIUtUY for th~ Initial Delm

When an sees file is created. the user may choose to supply commenwy stalin, the reason for
creation oC the file. This is done by supplyina comments (-1 keyleucr) and/or MR. numbersl

(-m keylener) in exactly the same manner u Cor d~iItI. If commentS (-,. keylel1er) are
omitted. a comment line oC the (orm:

date and time created YY IMM!l)O HH:MM:SS by lopame

is automatically generated.

If it is desired to supply MR numben (-m keyfen.ed, the ,. Oaa must also be set (usinC the
-I k:yletter described below). The,. Oq simply determines whether or not Mll cumbers
must be supplied when usiDl my sees commaDd t!w modifies I fhiltl COlI'IIfWntIJry (se:
~w (5» in the sees file. Thus:

admin -ifim -mmmuml -fv s.abc

Note that the -1 and -m keyleners are only d"ective if a Dew sees file is beiDa created.

I. Th. creauoll or ala sees IUe ma7 IOIDclimes ~ Ibe ditecs result or III MIL

:0

1.).) ltrrnaii::::,olf ~ • .,ti Yodif~=t1olf 0/ Sec Fiu ?:rrJr.o~!.ln

ne i'Cr"jcn o(:he sec ~~ :=e:"'/e::1 rOt ~prrw :z:::: (~ Se-:tion 6.2) :nay 'oe i.c.itlalized or
;=~~~ :!1r:u¢ :':'e ~ ~(~: -c I:1!e~..:r. i!: d~;tive t~xt i.s U1tenced 33 1 surnm,'7 of
~= ,::Qt.e::t3 ~c1 ~u .. ·~~e of ~e seQ ab, ~t.'::ou~ it.s coate::t.S alaY be arbitruy, a.ncl it C2y 0.
arbitnr'Jy :OQ3.

\\I~en &n sec :!e :., eeu:~ ==~ u:d ~: -c :Ceylen.er is S'U~;Iied. it must ~e rollowe;1 ~ Qe
:wne oi 3. :lIe (::m ',vtl!C!1 ~e d~l::":;:tlve :en i.s to be :..ken. For e:ample, t.t1e :oamu.nd:

ad.mia - i.d."'3t - cc!e$: s~l:c

sp~.fe:s ~at :!:e ~c-:;ti e ~ext i.s to be ~en (rom ale '°C=c".

~11en ;roc~ial an CCS::1'f sec 8!e. the -. lceylettet s;;=".fies that the d=sc:il'cve text (if
u:y) :.:.r:e::tiy ;n :!:.e :!e ~ to :e f't;:i.t:.t:,d wiQ Qe text in t!1e aames:i ale. Thu.s:

u1::tin -tC~ S..ll:c

s;~:.t~ :!lat ~!:e ce~d.;tive cut o(:::e sec file i.s to :e :e;lac:d ::y :he contentS of ":e~"~
omusiott of u:e :.Ie i13.:l::e af:u ~e -I :Uytette: u :.n:

a c..::i.tt - t s • .lbc:

cu.~,se:s (!:e f't!1fQvai oC :.J:e :~..crii'tive text rrom the sec aIe.

ne I '!af' (see Sec-JOtt 6.2) o(3D sec file Clay ~ i::r.itialized me:! c!:2nied. Of deleted throuih
t!:e u.se or· the -(lone:! -~ lceyte:te~ .. ~Jvel1. The flaas o(m sec file are used :0 dr=::
;:~..:W1 lCtiCa.s· of the various commands. See atJmjtr (1) ror a c1=c:i"tion o(all the flaIs. For
e~am;le. the l f!3, S;ecUies th.;& the wv:li.tt1 mes:s~e satinl :here are ao to keyword.s
c:::cuu:ed u; ttle se:s :Ie sllawd ~e tre:ued 3:1 an mor, and t.l1e (j (delawt sm) fIa.c s,,~.aes the
':ef3.wt ve~iaa of :':e sec file to be retrieved. by the get ~cmmanc1. ne -(lceylener i3 :.ueQ
to set a !ll, a.nc1. ~,"Iciy, to Sel its value. F~f example:

ad.mi:1 -idm -4 -(==oc1name s • .lbc

seu the I :13.1 ;,ad the = (moc1ule came) !!al- The v;.tue "codcm1e'· s,,~~ed (or the !D aa,
l,s ~e vaiue w, the ~t ~cm.maad w;.n wse to :e;l1a= the ~M"- CD leer-ord. (In the aasettce of
:he III t1J..I. the :tame of t!le ,.fir. is wreci 3:1, t!::e re"lac:eme.a& ror the ... M"- CD lceyword.) ~ote
~ severa! -I :<eytene::s =J' Oe su""Uecl 011 a sinlle invoc::uion o(adlf'rjlf. anet th:u -(
~eyieuu3 alaJ' be suppiied. wbethe: the ~cmmaac1 i.s c:=Wz1 & ae .. sea file or prcc~i.nI an
em~ otte. '

i:= -4 lceytet"~r i" WEed to delete a ~ rrcm an sec ale. me:! my omy be s"eC.fiC1:i waen
prcc~, Ul e:ristU:i ale. As an ex:m"te. the c:cmmand:

uimin -<1m s..u:c
~=ov~ the !D ~ (rem the seo file. Seve::U -~ lceyiette~ :nay ~ sul'1'iiC1:i on a smile
Ulvoatioa of :,tim,lt. Ule:! =y Oe il1t~oo::::ti%= with -t lceytenea.

Sec files eottuin a lisI (U$I:P" lI::) ot to'Sin came:s andI or sro~ CDS at u.se~ wtlo are allowed to
c:"::1te ~ib::s (se:: S~.i~ '.1.3 a::ct 6.2). ~ ti:t is em"" b1 c1eCwlt.. wtUch implies tllat
~1fYO~ ::.3y c:-e:u.e :.ei~ To ad.Q to1in a.:unes :&.adlor sroup CDS to the lUt. the -a lceyter-..:r is
'~ F-:lt eua:."Ie:

lC::I.in - un -."'"11 - al.!J. s..a.t:c

ad.::S ~e :op :t3Q~ 'm" ma "":If~'. and the s:ou~ CD "1l:!4·· to the list. The -& i:=ylette:
=:a., ~ ~ ~ht~u tUJmjtr is ~1 a CC"lI' sec ~ or ~ Ul existin; oue. ana .na.,
~~ ~'1en.l t:m:::s. The -of Ic:yietta' is !J:.ed in an maiC,CU3 awmer if one ..;~c= to
~ove ("e..~") ic'lin .:.u::s or gaUl' lI:"3 f:em l!le ~

sees (J:Ir 'J Gwde 21

5.4 pn

hs is ~ to print OD the SWlcbrd output all or P3tU o(an sc:c:s 8Ie (see Section 6.2) in a
(ormat. =lIed the output dDlQ sp«,ficatiolf., supplied by the user via the -d keyletter, The cbu
specification is a Strina eon.sisl.ina 0(SCC:S file diJt4 JayworrJs' iDterspers=1 with optioxW \!Ser
te.:l:L

Dau keywords are replxed by a;7propriate values aceordin$ to their definitions. For example:

:1:

is defined as the dau keyword that is replaced by the SID of I Sl)eCified delta. Similarly. :F: is
defined as the data keyword (or the sc:c:s file name currently beiDa proc:ssed. and :C: is defined
as the cornment line assoc:iated with a speciSed delta. All partS of an scc:s file have an
associated dau keyword. For I complete list of me data keywords, see prs (1) ,

There is no limit to the number of times a dau keyword may appear in a data specification.
Thus. for example:

prs -<r:I: this is the top delta for :F: :1:- s.abc

may produce on the standard output:

2.1 thiS is the top delta for s.abc 2.1

Information may be obtained from I single delta by specif'yina the SID of that delta using the
-r keyletter. For example:

prs -d·:f':: :1: comment line is: :C:" -r1.4 s.abc:

may produc= the foIlowU!a output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If tbe -r keyletter is not specified. the value of the SID defaultS to the most recently created
deJta.

In addition. information from I ranlt of deltas may be obtained by specifyinl the -lor -e
keyl.ners. The -e keyl.ner substitutes data keywords for the SID desisnated via the -r
keyletter and all deJw created tQrli~r, The -I keylener substitutes data keywords for the SID
desi&nated via the -r keylener and all deltas created /Ql~r. Thus. the command:

prs -d:I: -rl.4 -e s.abc

may output:

1.4
1.3
1.2.1.1
1.2
1.1

9 Not \.0 be coaIused WIth ,r.ID kIywordJ.

~y ;:rO<1uc::

J.J
3 • .2
3.1
2.2.1.1
2.2
2.1
1. "

Sl.l~tit" .. uoa of ~u iceywora fot all d:i~ of t~e sec ele :::';'1 'oe ocu.inec1 :1 s~e~.fyic3 ooth
:.!:e -4 led -I :(:ylec~:3.

5.5 htlp

The }ftlp c::mma::d ;:ri::3 ex;l~riot%.S of sec a:Jmmaacis and 01.· m~i= t:a' tll~
C::ClCa.ca.s oay ;:rult. Arl'.ll::e:u to htlp, !--:o or man of wbic!1 may Oe 5"w~~lieti. are sim;:iy
the tl3.QCS of sec ;:rr.:aacis or the e::de cumbers thai. a;peu in pare:thesa after SC:3

cne~aies. II co ar;wne:1t ~ give:. h.ip I'rcml'U ror one. H,lp!u.s co ccc=p' of kIy~rr8
U'iUtCC%lU or fii6 U1Ume:u. E%;laaato17 imomwioll reiatea to an arsument. it it emu. ~
i'rint.ed oa the sunQrd out;Ul. II ao i.ciormaucll is Couad.. aD error messale is printed.. !'lote
tlla' e~c!l UiUmeat is ~roc:s,s~ itlde~deat1y, and an error resultma Crom oae Uiume:lt will
trot ~e~'e :he ;roc::s,slna of the other uJUm=u.

E.:~;I3.natory imo:::latiea :-e!.at:~ to i c:omcUld is a synopsis of tbe ccmmaacL For eum;le:

I:eip ie5 n:::Icid

;:roduc::s:

ge5:
• ::caexis~:u sid-
Tole s~ed sid dc= :lac exist in the
give: file.
Cec: Cor ty;:o.s.

:md.ei:
r.:ndd -!SID :w::e .•.

~.6 r:ndai

1::e ~rU' ~m~d ~ ;:ravided to llIow f,,"ow:i of a ~eita (ram an sea Cle. thouiJ:1 iu u.se
silol.lld ee r-~~r'ed for :.!:c~e QS~ in wQie i.ccor.'ec"' .. giaCa! c~nie:s were m:u1e 1 part of :he
C~!U to ~ rer.:cved.,.

I.'le ~e!U to :e r=o"~ ::l.Ut :e a ··te~· <!:ita. Thac is. it tnU5t be the lalCSl (::lost ~::t1y
c::--~t.:d) de!b oa ics 0r.ulc!1 or on the tr.mk 0(the sec dIe tree. U1 Fi~ 3. oaly d:it4S
1.3. t,2. 1 . .3.2.~ md 2 • .2 Q.Q :e t=.:aved:. oaa they are re:naved,. then c1.eius 1.J.l.1 ana 2.1
QZl be r=aved., ma so OlL

To '::e allo~ t.o r:oove a :!e!ta. u:e =~ec:i'Ve u.se:r I%:~' have write ~r:::tis3i01:l i.a ~e Q(:'_:C17
~auic.i%11 tne sec tile. I.a ac1d:idoa. the ~e:sl user must eir.he: ~ to'le oae wba ::=u:c tile ~!u
bein~ r~coved.. or ~ ::e o-.rae:' of tile sec ale ma ics direc:ory.

sees CJ:.r·s GIUIiI 23

The -r key letter, which is mmdatory, is used to ~y the ctJmpleu sm of the ci:1u to ~
removed (i.e., it mU5t mve r:vo com;>cne:1ts for I trunk dclt:L, md four ctlmponellts for :a
tnuch ci:lta). Thus:

rmdcl -r2.3 ubc:

sped.5es the remo~ of (truD.k) delta "2.3" cl the sees Ale. Beror: remo~ oC the delta. mui~/
c.hecb that the ~~ number (R) of the siVel1 SID satislles the relation:

floor .; R .; c:eilinl

Rnui~J We checks that the sm specified is not that oC I vemon for which I ~t for editi.na has
been executed md whose associated d~iIIl bas not yet been made. In addition. the lQlia name
or &toup ID oC the user must appear in the 8Je's ~ list, or the rwr list must be empty. Also,
the release specified c;m not be I«Ud apinst editiq (i.e., it the I fl.q is set (see ",min (l».
the release spe:ified must 110t be conuiaed in the list). If these conditions are not satisfied.
processina is terminated. and the delta is 110t r:moved.. After the specijied delta h.&s been
removed, its type indicator in the tUlia IIIb~ oC the sees 8le (see Section 6.2) is chanica [rom
"0" (for "delta") to URn (for "removed").

5.7 cdc

The crk comma::d is used to clu:m~ a delta's commentary that was supplied when that delta was
created. Its inY0C3tion is analogous to that oC the mrdel commmcl. exc::pt that the delta to be
processed-is 1101 required to be I leal'delta. For example:

cdc -r3.4 s.abc:

5l)ecifies that the commentary of delta "3.4" of the sees file is to be chaqed..

The MW commentary is solicited by edt: in the same manner u that oC tUlia. The old
commentary associated with the spedfied delta is kept, but it is preceded by a cornment line
iadic:atiae that it has been chanled (i.e., superseded), and the Dew commentary is entered
ahead DC this comment line. The "inserted" comment line reands the lop name of the user
executi.a& edt: and the time or its execution.

Crk also allows ror the deletion or selected MR. Dumbers associated with the specified delta.
This is specmed by preeedina the selected MR. Dumbers by tho character U!". Thus:

cdc -rl.4 s.abc
MRs? mmum3 !mrnuml
comments? deleted wrong MR number and insened correct MR number

inseru u mmum3" and deletes umrauml" for delta 1.4_

!.I wbat

The wMt command is used to fiDd identifyma iDtormation within arty pWB file whose a.ame is
liveD as an arlumeDt to wluzL Directory names and I name o(U_" (a lone minus sign) are
not treated sped.ally, as they are by other sees commands, and no keyl4ruf'J are accepted by the
command.

What searches the s;ive:n file(s) ror aU occurrences or the striae U@(#)'" which is the
replacement (or the ~Z~ ID keyword (see ~(1». aDd prints (OD the standard output) what
(oUows that suina until the first double quote (e). &realer than (». bac:blash (\), Dewline. or

(:1CI1·9ril1W:~ ~1. ~c:"'.u. T':U3. rer ex.ac:;le •. it the sec aIe ··,.;:rc1-C'· (wbic!% Ls a C
;:r:~"'U:1), ~CI1t:W1s t:: foUOwU:l1 lie: (:!I.e ~M~ .:d. ~~ rc :Cey-;rlortis ".Vee"': \ieic.ed. in Sec-.iol1
5.1.1): -

~!::.:at ici(1 ~Z"-'J~M::;:%l%·:
a:d. Ulen :!:oe ~cm:u.cd:

Ls eX:C".1t~ and. anally :!I.e re:suitml '.Jill is COCli'iled. to ;:t'oc1uc: ";:1'01-0" anc1 "1.01."". t!::n
:!:e :::r::r.a.cd:

o;vil:U I'f'oa.= ;:rot.Q Lout

~ro::
\21'ol-::J.4

i't'C3-0:
;:rci-c:J.4

;l1'o-,.c:J .4

The !t.-in, ,ur-..!%ed. ror ~ wlu:r :ed ace be i=erted via aD III leeyword or lrt: il may :e
~e::ea in any ccnve:tie:tt ~er.

S.' se=liUf

The ~:Sliiffco~d. c=te::-...in~ (anc1 i'rina 011 t.'1e st:mdard OUllNtl the cii6e~nc::s between
~·.IIO 5;=~ed. vemons of oao or a101'e sec files. The versioes to be com;are-: are s;eciiied l:ly
:.:.sUll the -r lceytecat. wllos. rOn:1a1 is the same as (or the gn commmc1. no two ver3ioa.s
mwt ~ s;eCfied 3S the am two ar;umel1ts to this cOm.cw1cl in the ordar i4 wllich they were
c:=:ut:a. La.. the older versiol1 is ~= am. Ally (oUowU:zS uyloners are i.nuQ1'eted as
Ui'U::1e:1t3 to tU ,..(1) =mmanci (.. me: acu.ally ;mnts the <1ilf'ere:sc=s) and !:lust lP~
eefore any :!Ie aames. Sec Sles to be 1'f'CC=~ are aamed last. Oires::-.ary t1ames and 1 name
of •• -" (a lone a:tiJ:1u.s riiZ1) are "ot ac=;a.ble to seed;§.

1'".le c!i.tf'e:e::c:s are ::1".%11:ed iA the (orm sener:ued by di.ff(l). The (aUcwin, is an e:a.m~le of
ete :.nvC:C:llion or sr..;tilff.

sc:::!Cllt' -rJ.4 -0.6 s..aCc

~.10 anzso

C~mb icerates a SJr~il p7'0clriun (see sir (1» wb.icb UIemptS :0 re=a.5tZ"Ua the aamed. sec dIes
so taal the r~:::nmuc:t= files are smaller than the oriainaJ,s. ne I:::%erated. SheD i'roc:U1lre :3
wT':t"-l:n OD :!:.= ~ output.

~amed sec ales Me r=:ustr.lC:.eci Oy ~S WlTqDte:U c1e!w ansi c:ombU2iu1 ~ed o~e:
~i~ The int:::c...-=:1 use is rer tb.~ sec dIes ~ =DuiA c1elw thac are ~ oid tC.:al they an:
coo !on:;:: u.sefu1. It is lftJI r=:ommencied tl:ta& c:"rrb ~ used as a maner or rauUne; ia \J.Se

mould ~ r=tric:"'-=i. to a ~ m12ll number of' times iA the ute ot an sec dIe.

ta :!1e a~-= of m,. x:yi~..en. =mil ~rve:s oal? tat' ddtas and the mimmum cumber of
In:=tCf ;i:iw aec=sary to pr=uv. the "s~·· ot the sec ale tne. The ed'=: of ~ i.1 to
eiic;r"ce U::::.iddl." (j:l~ 011 ~. tr".mk a:si OD all ~c:es o{ the tree. Thus. in Filure J •
.:!.:iUS 1.2. 1 • .3.2.1. 1.4, 1I1si 2.1 would be elimina'e:t. Some o{ the keytenen are sum.cam:d
as rouo~

71:: -, Uyiec.:: n:ec!es ce old.=l Ce!ta :.!w is to ~e ;:reserved in u:. :~::a.5UU;::011. AU
etd-=: ~~ are ~...ed.. -

Document Formatting on CNIXt
Using the -ms Macros

Joel Kies

Computing Services
University of California

Berkeley. California 94720

ABSTRACT

This document describes the supported commands used for producing for­
matted papers. such as dissertations and journal articles. on the UJ'l:IX computer
system. It is intended to be the main source of information on formatting
documents with nrojJ or trojJ and the -ms macro package. The reader is
assumed to have basic familiarity with U~IX and with a text editor such as ex.
edll. or \'I.

This paper is based on the Bell Laboratories manual Typmg Documents on the
U.VlX System: USII/[! the -ms Macros wtlh TrojJ and /Vro./f. by M. E. Lesk. and it
replaces that document for U.C. Berkeley UNIX users.

The following people have contributed very sUbstantially to this document
by their suggestions and criticism: Ricki Blau. John Kunze. Bob Levinson, Gail
Moyer. Betty Nelson. Cindy Nelson. and Ken Wahl.

September 16. 1980

.t:~IX IS a Irademark of Bell Laboralones.

L':\' X 4.3.2

Document Formatting on U~IX
Using the -ms :\'Iacros

Contents

Page

1. Introduction ... 1
1.1 Filling. Adjusting. and Hyphenation.. 1
1.2 Purposes of a !Vlacro Package .. 2
1.3 T>'ping an Input File .. 2

2. Commands and Features of -ms.. 3
2.1 Paragraphs.. 3
2.2 Section Headings.. 4
2.3 Changes in Indention... 5
2.~ Emphasis.. 5
2.5 Type Size Changes... 6
2.6 Boxes Around Text.. 6
2.7 Title Pages and Cover Sheets .. 6
2.8 Dates.. 7
2.9 !l.fulti·column Formats... 7
2.10 Footnotes ... 7
2.11 Keeping Text Together.. 8
2.12 Displays ... 8
2.13 Modifying Default Features... 8

2.13.1 Dimensions... 9
2.13.2 Page Headers and Footers... 10

2.1 ~ Accent !l.-farks..................... 11

3. t.:sing Nrotf/Troff' Commands ... 11

~. Including Tables ,md Equations ... 11

5. Sample Input Files ... 12

6. Producing Output... 13

7. For More Information.. l~

Appendix A: Command Descriptions .. 16

Appendix B: Names of -ms ~facros. Strings olnd Registers 21

Document Formatting on U~IX
Using the -ms Macros

1. Introduction
This document describes a package of

commands used in producing formatted
papers. such as reports. dissertations. and
journal articles. on the UNIX system. The
package. called the -ms macros. provides
commands for paragraphs. section headings.
running page titles. footnotes. multi-column
format. cover sheets. and other features.
To use the facilities described in this paper.
you need to have a general familiarity with
t.:NIX and with a text editor such as ex. edit.
or I".

UNIX oft'ers several related formatting
programs. suited to handling tables and
mathematics as wel,l as ordinary text. A
number of separate writeups on these pro­
grams are available~ an annotated list is
included later in this paper (see section 7).
This paper should be read first. however.
since it provides both a description of the
most commonly-used formatting commands
and an overview of the related programs. t

The main formatting programs. nroff and
troff. read one or more UNIX files contain­
ing both the text to be formatted and com­
mands specifying how the output should
look. From this. the programs produce for­
matted output: nroft' for typewriter-like ter­
minals. troft' for a phototypesetter.
Although they are separate programs. nroft'
and troft' are very compatible: they share the
same command language and work in such a
way that it is possible for nroft' to produce
typewriter or line printer output. an<;f trofl" to
produce phototypesetter output. from the

'This documenl is based on. and replates for U,C.
Berkele~ users. the Bell Laboralortes manual Typo
"'1: Do""""",s 011 ,II, L',\ IX SI'S'~III: C.:SIIII: ,II, -illS

MQL'ms ,",11 T,oJ! QI/d ,',off. b)' ~, E. Lesk (~turo

ra)' Hill. 19781.

same input file. For convenience. we will
refer usually to nrofl". It should be under­
stood that what is said applies also to trofl"
unless stated otherwise.

1.1. Filling, Adjusting. and Hyphenation

Normally. the text of a document is
typed on lines of varying length even
though the typist wants lines of uniform
length in the finished document. One of
nroff's most important functions is ./illmg.
the process of collecting words from the
input file and placing them on an output line
until no more will fit within a given line
length. Hyphenation is also provided. so
that a line m"ay be completed with part of a
word to obtain a line of the right length.
Adjusting is performed after the line has
been filled: spaces are inserted between
words as necessary to bring the text exactly
to the right margin.; Filling and adjusting
are illustrated by the following examples.

Text that is not filled:
The Caterpillar and Alice
looked at each other
for some time in silence:
at last
the Caterpillar took the hookah
out of its mouth.
and addressed her in a sleepy.
languid voice.

Filled but not adjusted:

The Caterpillar and Alice looked at each
other for some time in silence: at last the
Caterpillar took the hookah out of its
mouth. and addressed her in a sleepy.
languid voice.

til IS poSSIble 10 oblam a ragged rt[!hl mar[!ln. as
explamed In secl10n .3. belo,"

Filled and adjusted:
The Caterpillar and Alice looked at each
other for some time in silence: at last the
Caterpillar took the hookah out of its
mouth. and addressed her in a sleepy,
languid voice.

Given a file of input consisting only of lines
of text (i.e .. without any formatting com­
mands). nrolf would produce simply a con­
tinuous stream of filled. adjusted and
hyphenated output. Additional operations
such as producing paragraphs. providing
margins at tops and bottoms of pages. and
saving footnotes to be printed at the bot­
toms of pages. must be requested by means
of formatting commands.

1.2. Purposes of a :\I:lcro Package

~rolf provides a flexible. sophisticated
command language for requesting operations
of the sort just mentioned. Largely because
of its high degree of tlexibility. however.
this language can be very difficult to use.
Even a relatively simple formatting task
such as beginning a paragraph is a multi-step
process in the nrolf language. For most
documents. it is advantageous to use instead
the commands provided by a macro package.
A macro is simply a predefined sequence of
nroff commands and lor text which you can
invoke by including just one command in
your input file. This makes it possible to
handle repeti tious tasks. such as starting
paragraphs. by typing one command each
time instead of several. The -ms package
has simple commands for a large number of
common formatting tasks.

The macro package has other kinds of
functions as well. some of which are less
visible but equally important. ~rolf.
although it provides commands and mechan­
isms for arranging page layouts with top and
bottom margins. page numbers. and running
titles automatically placed on every page.
doesn't do any of these things on its own: it
requires instructions. The -ms macro pack­
age supplies such instructions "behind the
scenes." It takes care of some of the more
difficult programming problems involved in
handling footnotes and page transitions. and
it sets up a page layout style by default. sim­
ply by virtue of your invoking the macro
package. It does this in a way. however.

- 2 -

that leaves you a great deal of control over
the formalting style should you wish to
change things.

In general. the commands and other
features of -ms are designed to be used
instead' of the more numerous building­
blocks of the nrolf language. t The macro
package olfers a limited subset of the wide
range of formatting possibilities atrorded by
nrolf~ but it compensates for its limitations
by its ease of use.

1.3. Typing an Input File

An input file for nrotr. containing text
and formatting commands. is created with
the text editor. Here is a small example of
an input file:

.TL
Simple Sample Document
.PP
These are a few lines of sample text.
It'doesn't matter whether they are
long or short,
because nroft' or troft'
will take care of that later.

~otice that in this file. some lines contain
nothing but text while the others, beginning
with a period. contain formatting com­
mands. There are several rules to observe
when typing an input file.

First. here are some of the rules with
regard to text:

• A line of text should normally end with
the end of a word. along with any trailing
punctuation. Nrolf assumes this will be
the case and always inserts a space
between whatever ends one line of input
text and whatever begins the next. This
means. for instance. that you should not
break a hyphenated word such as
"waistcoat-pocket'· between two lines in
the input file.

• Lines in the input file should start with
characters other than a space. A space at
the beginning of an input line causes a
break at that point in the output-nrotr
skips immediately to a new output line.
interrupting the process of filling and

tThere Jre some e:'tceptlons to thIS rule. discussed
In section 3.

adjusting.

• Although text lines can vary in length. it
is a good idea to keep them fairly short
and type the RETliR~ key at ends of
phrases and ends of sentences. There
are two reasons for this. First. it makes
the input file easy to modify later.
Second. whenever sentence-ending punc­
tuation (period. question mark. or excla­
mation mark) occurs at the end of an
input line. nroff leaves two additional
spaces following the sentence. To obtain
this effect consistently. always start a
new input line when starting a new sen­
tence.

Other rules govern the way commands
are typed.

• A period or an apostrophe n as the first
character on a line indicates to nroff that
the line contains a formatting com­
mand. t It would be an error to type a
line of text beginning with either of
these control characrers: nroff would try
to interpret the line as a command. and
the result at best would be the disappear­
ance of that text from the formatted out­
put.

• Following the control character is the
one- or two-character name of a format­
ting command. The names of commands
in the -ms macro package usually consist
of one or two capital letters: a few con­
sist of one capital letter and one digit.
Names of commands in the nroff
language consist of lower-case letters. or
a lower-case letter and a digit.

• Some commands occur by themselves on
a line: others can take one or more addi­
tional pieces of information following on
the same line. Extra pieces of informa­
tion on the command line are called
arguments. They must be separated from
the command name and from each other
by one or more spaces. Sometimes an
argument is a piece of text on which the
command operates: alternatively. it can
simply be some additional information

1'The \WO control characters have sli!!htl~' dlfferenl
meanmgs In a fe .. Clses: It IS preferable to use the
period excepi In rare Instances when the alternate
effeci IS needed. ThiS pomt IS expl:llned In A TroD"
Tutorial. See "For \lore Iniormallon." secllon 7

-- ---------------

- 3 -

about what the command is to do. For
example.

.sp 3

shows an nroff command with one argu­
ment. The command requests vertical
space: the argument indicates the
number of blank lines desired.

• Finally. there is an important rule about
the order in which things should appear
in an input file to be processed using the
-ms macros: the file should not begin
immedlare(\" with a line 0/ leXI. Instead.
one of the following -ms macros must
precede the first line of text:

.TL .SH .NH .PP .LP

Such a command placed before the
beginning of text is called the mlllali:mg
macro in the file.* The commands are
described in the following pages. If none
of them seems to be exactly what you
want, use .LP.

2. Commands and Features of -ms

2.1. Paragraphs
An ordinary paragraph is produced by

the command .PP, followed on subsequent
lines by the text of the paragraph. In the
output. it is set off by vertical space from
whatever preceded it. and the first line is
indented. This particular paragraph is an
example of one produced by .PP. Another
type of paragraph is produced by the com­
mand .LP, for "left-block paragraph." This
also is preceded by vertical space when
printed. but the first line is not indented.
The amount of vertical spacing before para­
graphs. and the width of the idention. nor­
mally have pre-defined standard or de/aull
values. Section 2.13 explains how to modify
default features.

A third kind of paragraph is available by
means of the command .IP. which stands
for "indented paragraph." Here are some
illustrations of the ways .IP might be used
in an input file:

*Thls palMI IS discussed more full~ belo". and
sample begmnmgs of mput files are sho n In sec­
tion 5.

. IP
The first example is simple.
This text will be set in a block
and the entire block will be indented '
from the left margin •
• IP (2)
The second instance shows how to put
a hanging label on an indented
paragraph.
The text of the label is typed as an
argument to the .IP command.
The label will be aligned at the left
margin of the paper, while the
paragraph is indented
a standard amount.
.IP "Example 3" 12
A complication arises if the label
is too long to fit in the standard
indention provided by the command.
In this case,
you must request a non-standard
indention as a second argument
on the command line.

~ow let's look at the way troft' formats these
paragraphs:

The first example is simple. This text
will be set in a block and the entire
block will be indented from the left
margin.

(2) The second instance shows how to put
a hanging label on an indented para­
graph. The text of the label is typed as
an argument to the .IP command. The
label will be aligned at the left margin
of the paper, while the paragraph is
indented a standard amount.

Example 3 A complication arises if the
label is too long to fit in the
standard indention provided by
the command. In this case.
you must request a non­
standard indention as a second
argument on the command
line.

The indention request in Example 3 is
understood by -ms to be a number of ens of
distance. An en is a unit of dimension used
frequently in typesetting; we will discuss
later what it means in nroft' and trotf. After
an indented par3graph with non-standard
indention. that indention stays in effect for a
series of .:onsecutive .1P's. It persists until
the next .LP or ,PP is used. at which point

- 4 -

it it is reset to the standard amount. Also •
the label "Example 3" must be enclosed
within double·quote marks because it con­
tains a space; otherwise. the space would
signify the end of the argument.

Finally. the macro .QP produces a
block·quote paragraph indented on
both left and right, like this one.
.QP's may be used in succession; the
indention will not accumulate. but
will remain constant for all of them.

2.2. Section Headings

Two varieties of section headings are
available with -ms: unnumbered with .SH
and automatically numbered with .~H. In
either case. the text of the section heading
is typed on one or more lines following the
command. The end of the section heading
is indicated by a subsequent paragraph com­
mand or by another section heading com­
mand. When printed. the heading is pre·
ceded by one line of vertical space and
begins at the left margin. Nroff underlines
the heading. while troft' sets it in boldface
type.

.~H section headings are numbered
automatically. The macro takes an argu­
ment representing the le\'el·"wnber of the
heading, up to S. A third-level section
number would be one like "1.2.1." The
macro adds one to the section number at the
requested level. as shown in the following
example.

.~H
Erie-Lackawanna
.~H 2
:\[orris and Essex Division
.~H 3
Gladstone Branch
.~H 3
:\{ontclair Branch
.~H 2
Boonton Line
.~H
t: n ion Pacific

The input shown above generates the fol·
lowing output:

1. Erie-L:u:kawanna

1.1. :\{orris and Essex Division

1.1.1. Gladstone Branch

1.1.2. Montclair Branch

1.2. Boonton Line

2. Union Pacific

.!'tH without a level-number means the
same thing as .!'lH 1. .~H 0 cancels the
numbering sequence in effect and produces
a section heading numbered 1.

2.3. Changes in Indention

The position of a paper's left margin is
determined by two page-layout dimensions.
the page offset and the mtienllon. The page
offset represents an absolute limit for the
left margin. and usually is not changed at
any point in the paper. The indention. on
the other hand. controls the current left
margin (the place where a section heading
or a .LP paragraph begins), and this may be
varied from one part of the paper to
another. Indention is expressed as a dis­
tance to the right of the page offset. The
indent is set by default to zero. i.e.. the
same point at which the page offset is
placed. It cannot be moved to the left of
the page offset.

Two macros .. RS and .RE. allow you to
shift the indention of a paper to the right
and back to the left. respectively. More
than one .RS may be used to shift the
indention a larger amount: to get back to
the original margin. each must be balanced
by an .RE. For example:

.IP I.
Branches of Government
.RS
.IP A.
Executive
.IP B.
Legislative
.RS
.IP 1.
House
.IP 2.
Senate
• RE
.IP C.
Judicial
.RE

-s -

produces:

I. Branches of Government

A. Executive

B. Legislative

1. House

2. Senate

C. Judicial

2.4. Emphasis

Emphasis in typewritten material is usu.
ally indicated by underlining. In typesetting
the convention is different; the usual way to
emphasize words is to set them in a
different typeface such as lIalte or boldface.
In keeping with the design of compatibility
between nroff and troff, -ms provides com­
mands which emphasize text in a manner
appropriate to the type of output.

The macro .1 produces italics on the
typesetter. underlining on the typewriter .• B
gives boldface typesetting. underlined
typewriting. A third macro, .R. restores the
normal typeface or non-underlined typewrit·
ing. The commands are used this way:

.1
This text will be output
in italics (or underlined).
.R
Text here will be,in normal
printing style.
.B
This is text to be set
in boldface (or underlined).

If only one word is needed in italics or bold­
face. it may be given as an argument on the
command line. like the following:

.1 word
or
.B word

In these examples, no .R is needed to
restore normal printing for the following
text. Also, when .I or .B is used with a
word as an argument, it can take as a second
argument any trailing punctuation to be
printed immediately after the word but set
in the normal typeface. For example .

.B word)

will print the word in boldface while the
closing parenthesis will appear in the normal

typeface. directly adjacent to the word.

On the typesetter. actual underlining is
available only in a limited way. by means of
the. t:L command. It is used like this:

.CL word

There is no way to underline more than one
word at a time on the typesetter. except by
repeating the . UL command for each word
to be underlined.

2.3. Type Size Changes

Three macros control the size of type
used for troff output. The command .LG
increases the type size by two points. while
.S:'vl decreases it by two points. A pOint is
another unit of dimension used commonly
in typesetting; its precise meaning is dis­
cussed later (see section 2.13.0. Either
command may be repeated for added effect. i.k.

:nlS, The macro .~L restores the normal
point size. cancelling all accumulated
changes. These commands are useful pri­
marily for temporary size changes for a
small number of words. They do not affect
vertical spacing of lines of text. Other tech­
niques are available for changing the type
size and vertical spacing of longer passages. t
Commands for changing type size are
ignored by nroff.

2.6. Boxes Around Te~t

A box can be drawn around a single
word with the command .BX. which is used
as follows:

This
.BX word
will appear in a box.

The output looks like this:

T:-:is ,word I will appear in a box.

To get several lines of text enclosed in a
box. precede the text with .Bl and follow it
With .B2:

.Bl
These boxes are desi2ned to look good
when typeset. but aren't as pleasing
in typewriter output.
. B2

·S.:e '\lodll',lng Default Features," seclion ~,!3.

- 6 -

produces:

These boxes are designed to look good when
typeset. but aren't as pleasing in typewriter
outout.

2.7. Title Pages and Cover Sheets

A group of macros is available to format
items that typically appear on the cover
sheet and/or title page of a paper. These
commands generate a formally laid-out
cover sheet and title page. It is possible to
use them selectively (e.g .• you might use
the .TL command without the others); but
if several are used. they should appear in
the order shown below. normally at or near
the beginning of the input file:

.RP (requeSTS a cover sheet)

.TL
The title of the paper is typed here;
it may occupy one or more lines.
.AU
One or more author's names. arranged
on one line or multiple lines. as
you would like them to appear.
.AI
Information about the author's
institution, arranged on one
or more lines.
.AD
Abstract of the paper. a brief
description of its contents.
.AE {marks {he end of (he abstract)

If the macro . RP precedes. TL. the title.
author and abstract material will be printed
separately on a cover sheet. The title and
author information (not the abstract) is then
repeated automatically on page one (the title
page) of the paper. without having to be
typed again in the input file. In the absence
of . RP. all of this material appears on page
one. followed on the same page by the main
text of the paper. The abstract is preceded
by a centered heading of the word
ABSTRACT. To suppress this heading. use
the command .AB no instead of .AB. If
there are several authors from different
institutions. the names and institutions may
be interleaved. with llternating .AU·s and
.AI's .

The use of the cover sheet and title page
commands is entirely optional: you may
begm a paper simply with a section heading

or paragraph command. When cover
sheet/title page material precedes the text.
include a paragraph or section heading com­
mand between the last title page command
and the beginning of the main text. t

2.S. Dates

When you use -ms. nroff normally prints
the current date at the bottom center of
every page starting with page one: troff does
not. Both nroff and troff print it on the
cover sheet if you have requested one with
.RP. There are various ways of changing
these defaults. To eliminate the date from
nroff output, use the command .ND at the
beginning of your input file. To make troff
print the date as the center page footer. use
.DA. To 'make nroff or troff print some
date other than the actual current date, use
.DA as follows:

.DA January 14, 1960

Finally. the command

.ND May 1, 1787

causes the specified date to be printed on
the cover sheet. and nowhere else, when
you use .RP. PI&ce either .ND or .DA
before the .RP.

Notice that in the two examples above.
no double-quote marks were placed around
the dates. These two commands represenr
exceptions to the rule that an argument con­
taining spaces must be enclosed within
double-quote marks.

2.9. Multi-column Formats

If you do not request otherwise. nroff
produces output in single-column format.
By placing the command .2C in your input
file. you cause the output to be printed in
double-column format beginning at that
pOint. Each column will have a width 7/15
that of the text line length in single-column
format. and the "gutler." or gap between
columns. will be 1/15 of the full line length.
To return to single-column. use the com­
mand .1C. Switching from double to
single-column always causes a skip to a new

tSome sample begInnIngs of input files are shown
in secllon S. to help clanf~' the proper sequence of
commands and tex\.

- 7 -

page.

To obtain formats of more than two
columns. use the command .MC as follows:

.MC column· width

This will cause output to be formatted in as
many columns of the specified width as will
fit on the page. The column·width may be
specified in any unit of scale. but if no unit
is indicated the setting will be understood as
a number of ens.* .MC without any
column·width specification means the same
thing as .2C. Any change in the number of
columns. except from one to a larger
number, causes a skip to a new page.

2.10. Footnotes

The macros .FS and .FE indicate the
beginning and end of material to be saved
and printed at the bottom of the page as a
footnote. Usage is as follows:

This sentence is in the
main body of text.·
.FS
·This is the footnote.
.FE
Continuation of the text •••

By default. footnotes are given a line length
slightly shorter than the normal text. and.
when typeset. appear in smaller size type.
The commands only save a passage of text
for printing at the bottom of the page; they
do not mark the footnote reference in any
way. Thus. in the example above, the aster­
isk had to be included as part of the text
preceding the footnote. and again as part of
the footnote text. Any character may be
used as a footnote marker.

Warning: When including a footnote in
your text. don't forget the .FE to mark the
end. Failure to include this causes the rest
of your text to be processed as if it were
part of the footnote. resulting in one of
several error conditions.

;lJnlls of scale are dIscussed In secllon ~.l.i.1.
"ThIS IS the footnole.

2.11. Keeping Text Together

The -ms package provides macros for
keeping l block of text all together on one
page. There are two ways of doing this.
The standard "keep" is begun with the
macro .KS and ended with .KE. If there is
enough room on the current page for the
material contained between these two
macros. nrolf prints it there; if not. it skips
to the next page and prints it there instead.
The other type. called a "noating keep." is
begun with .KF and ended with .KE. If it is
necessary to skip to a new page to print this
material. nrolf first fills the current page
with the ordinary text that follows the keep
in the input file. This avoids leaving blank
space at the bottom of the page preceding
the kept material. Typically. a floating keep
would be useful for positioning a table or
some other type of material not part of the
strict logical sequence of text. It is essential
to end every keep with .KE.

In double· or multi-column formats. the
keep macros attempt to place all the kept
. material in the same column.

If the material enclosed 'within a keep
turns out to require more than a page of
space. or more than a column in multi­
column format. it will start on a new page or
column and simply run over onto the fol­
lowing page or column.

2.12. Displays

Occasionally it is desirable to format
some text without filling and adjusting it­
for example. a list of items or a stanza of
poetry. To turn olf filling so that each out­
put line will correspond exactly to one line
of input. use the command .DS to start the
materIal and .DE to end it. By default, this
material is indented from the left margin.
Here is some sample input:

.DS
Display
text
lines
.DE

The resulting output is:

Display
text
lines

- 8 .

If you don't want the indention. use
.DS L to begin and .DE to end. and

you'lI get
something
like this.

A centered display begins with .DS C;

this is an
example

of a centered display.

Note that in the example above. each line is
centered individually. To get a left-adjusted
block that is

centered
on the page.
use .DS B to start.

Another possibilty is .DS I. which means
the same thing as plain .DS. You can
specify the amount of indention by includ­
ing another argument after either of these
constructions; .DS I 3 or .DS 3 begins a
display to be indented 3 ens from the mar­
gin .

Any of the displays described above is
automatically put into a standard keep. To
avoid this. use the commands .CD, .BD.
.LD or .lD instead of .DS C, .DS B .. DS
L, or .DS I, respectively. Use .DE to end
any type of display; failure to do this causes
problems similar to those caused by failure
to end a footnote or keep.

2.13. :\lodifying Default Features

One of the things -ms does to expedite
document formatting is to establish a stan·
dard page layout style. In papers produced
with -ms. the text line has a default length
of six inches: the indention of the first line
of a paragraph is five ens; the page number
is printed at the top center of every page
after page one: and so on. Many of these
features are controlled by values stored by
-ms as variables in the computer's memory.
This makes it possible to alter the default
format characteristics by changing the values
that control them.

The memory locations where these
values are stored are called /lumber regIsters
and slrll1g regIsters. Number and string
registers have names like those of com·
mands. one or two characters long. For

instance. the value of the line length is
stored in a number register named LL.
Unless you give a command to change the
value stored in register LL. it will contain
the standard or default value assigned to it
by -ms. Table 2. below. lists the number
registers you can change along with their
default values.

2.13.1. Dimensions

In order to change a dimension like the
line length from its default value. you can
reset the associated number register. To do
this. use the nroff command .nr as follows:

.nr LL 5i

The first argument is the name of a number
register. and the second is the value being
assigned to it. The value may be expressed
as an integer or may contain a decimal frac­
tion. When setting the value of a number
register. it is almost always necessary to
include a unit of scale immediately after the
value. In the example above. the "i" as the
unit of scale lets nroff know you mean five
Inches and not five of some other unit of
distance. But the point size (PS) and verti­
cal spacing (VS) registers are exceptions to
this rule: ordinarily they should be assigned
a value as a number of points 1\"IlhoUI ind,cal­
mg Ihe Will of scale. For example. to set the
vertical spacing to 24 points. or one-third of
an inch (double spacing). use the command

.nr VS 24

In the unusual case where you want to set
the vertical spacing to more than half an
inch (more than 36 points). include a unit
of scale in setting the VS register. Table 1
explains the units of measurement available
with nroff and troff.

The units poml, pica, em, and en are
units of measurement used by tradition in
typesetting. The l'erllCa/ space unit also
corresponds to the typesetting term "lead­
ing. •• referring to the distance from the
baseline of one line of type to the baseline
of the next. Em and en are particularly
interesting in that they are proportional to
the type size currently in use (normally
expressed as a number of points). An em is
the distance equal to the number of points
in the type size (roughly the widtb of the
letter "m" in that point size'. while an en is

- 9 -

Table 1
Units of Measurement in Nroff and Troff

Unll

point
pica
em

en

vertical
space

inch
centimeter
machine
unit

-Meaning Fof'--o
Abbr Nroff Troff

p 1172 inch 1172 inch
P 1/6 inch 1/6 inch
m width of one distance equal

character to number of i
points in the I
current typesize I

n width of one half an em
character

v amount of space in which each i
line of text is set. measured I

baseline to baseline
i inch
c centimeter
u 11240 inch

inch
centimeter
11432 inch

half that (about the width of the letter
un"). These units are convenient for speci­
fying dimensions such as indention. In
troff. em and en have their traditional
meanings-Le .• one em of distance is equal
to two ens. For nroff. on the other hand.
em and en both mean the same quantity of
distance. the width of one typewritten char­
acter.

The machine unll is a special unit: of
dimension used by nroff and troff internally.
This is the unit to which the programs con­
vert almost all dimensions when storing
them in memory. and is included here pri­
marily for completeness. In using the
features of -ms described in this paper. it is
sufficient to know that such a unit of meas­
urement exists.

There is another important aspect of
number registers. Because of the way -ms
uses them. a change to a register such as LL
does not immediately change the related
dimension at that point in the output.
Instead. in the case of the line length. the
change takes place at the beginning of the
next paragraph. where -ms resets various
dimensions to the current values of the
related number registers. Table 2 lists. for
each register. the place at which a change to
the register actually takes effect.

If the effect is needed immediatel~·-if.
for instance. you need to change the vertical
spacing in the middle of a paragraph-you
must use the nTofl' command ,vs. whIch
controls the vertical spacing directly. It

takes effect at the place where it occurs in
your input file. Since it does not change the
VS register. however. its effect lasts only
until the beginning of the next paragraph.
As a general rule: to make a permanent
change. or one that will last for several para­
graphs until you want to change it again.
alter the value of the -ms register. If the
change must happen immediately. some­
where other than the point shown in Table
2. use the nroff command. t If you wane the
change to be both immediate and lasting. do
both.

Table 2
Summary of -ms ~umber Re2isters

. Reg. Takes
Same Controls £./!er:t Dejault

PS pomt size next para. 10
'is vertical spacing next para. 12
LL line length next para. 6i

of text
LT line length next page 6i

of running titles
FL line length next FS 11/12 LL

of footnotes
, PD vertical offset next para. O.3v Ctroff1
: . . of pargraphs 1 v (nroff1

PI 5n I para, indent next para.
Ql left and nght next QP 5n

indent for QP
PO page offset next page 26/27i (troff1

o (nroff1
H~1 top margm next page Ii

! F\(bottom margin next page 1 i

2.13.2. Pa~e Headers and Footers
In setting up the default page layout,

-ms provides for six strll1g reglseers to store
the running titles to be printed at tops and
bottoms of pages. Like number registers.
string registers are storage locations in the
;:omputer's memory~ they differ in that their
contents lre strmgs of characters rather than
numeric values, The -ms string register
names are LH. CH. and RH. whose con­
tents are primed in left-. center· and right •
..ldjusted positlons. respectively. at the top of
every page after page one; and LF. CF. and
RF. whose contents are printed at the bot­
tom of every page starting with page one.

For nroff output. the default value of

·See "For \Iore lniormatlon," ,ectton 7.

- 10 -

C~ is the current page number surrounded
on either side by hyphens; CF contains the
current date as supplied by the computer.
For troff. CH also contains the page number
but CF. is empty. The other four registers
are empty by default for both nroff and
troff. You can use the command .ds to
assign a value to a string register. For
example:

.ds RF :'iot for publication .

This causes the character string "Not for
publication" to be printed at the bottom
right of every page. No double-quote marks
are needed to enclose the argument; this is
another exception to the rule about spaces
within arguments. In order to remove the
contents of a string register. simply redefine
it as empty. For instance. to clear string
register CH. and make the center header
blank on following pages. use the command

.ds CH

To put the page number in the right header.
use this command:

.ds RH %

In a string definition. ""'0" is a special sym­
bol referring to nrotrs automatic page
counter. If you want hyphens on either side
of the page number. place them on either
side of the % in the command.

Commands that set the values of string
and number registers. if they are meant to
take effect as of the first page of output.
should be placed at or near the beginning of
the input file. before the initializing macro;
(which. in tum. must precede the first line
of text). Among other functions. the initial­
izing macro causes what is called a "pseudo
page break" onto page one of the paper.
including the top-of-page processing for that
page. It is particularly important that com­
mands changing the value of the PO. H:\l
and F:\t number registers and the page
header string registers be placed before the
transition onto the page where they are
intended to take effect.

:The InlllahzlOg macro can be :he :tile macro or
one of the paragraph or seellon headtng m:acros.
ThiS potnt IS dtscussed In section 1.3. Sample be·
~lOntn!!s of Input files .Ire shown In section 5

2.1". Accent Marks
Certain foreign-language accent marks

have been predefined as strings in the -ms
package. Use them b~' placing a reference to
the accent strmg before the letter being
accented. The string reference \"'. placed
immediately before the letter "e" in input
text. as in

t\ "'. el\ "'. ephone

causes an acute accent to be placed over the
"e" in the output:

uHephone

Here is a list of the accent strings with
examples of their use:

Input Output Input Output
\""e e \"'-a a
\""e e \"'Ce

\

e
\"':u u \"',1: c
\·"e e

3. 1:sing NrofflTroff Commands
The -ms macros comprise a package in

the sense that they are designed to meet
most formatting needs. and to make it
unnecessary to learn a large amount of detail
about the more complex nroff command
language. You can. however. use a small
subset of nrofl' commands without losing too
much of the macro package's simplicity. It
is necessary to use the nrofl' commands .nr
and .ds to manipulate the -ms number and
string registers. as discussed previousl)·. In
addition. the following nrofl' commands may
be used freely in a file to be processed using
the -ms macro package:

.bp begin a new page.

.br break line: start a new output line
whether or not the current one
has been completel)' filled with
text.

.sp 11 provide 11 blank lines at this point
in the output. If" is omitted.
the command requests one blank
line <the current value of the
unit \.). You can attach a unn of
dimension to 11 to specify the
quantity in units other than a
number of blank lines.

.ce 1/ center the following 11 input text
lines individually in the output.

" II -

If n is omitted. only the next line
of text is centered.

.na tum off adjusting of right margin
(ragged right>.

.ad b adjust both margins. This is the
default adjust mode.

There is a reason for caution in using
nroff commands in a file also containing -ms
macros. The macro package executes
sequences of nraff commands on its own. in
a manner invisible to users. B)' inserting
your own nroff commands you run the risk
of introducing errors. The most likely unin­
tended result is simply for your nroff com­
mands to be ignored. but in some cases the
results can include fatal nrofl' errors and
expensive. garbled typesetter output.

For a very mild example. if you tried to
produce a centered section heading with the
input

.ce

.SH
Text or section heading

you would discover that the heading came
out left-adjusted: the .SH macro. appearing
after the .ce command. overrules 'it and
forces left-adjusting. On the other hand. the
sequence

.sp

.ce

.D
Line or text

would successfully produce a centered. bold­
face heading preceded by one line of vertical
space. Because it is not possible to docu­
ment in a simple way which uicks like this
work and which don ·t. it is necessary to
make the following generalization. Adapta­
tions of more sophisticated features of the
nroff language to files being processed with
-ms. while possible. are not recommended
for new or casual users of the document for­
maning programs.

... Including Tables and Equations
U~IX provides special programs to make

formamng of tables and mathematics rela­
tively easy. These are fbi to format tables.
and eql1 and IIeqll to handle mathematics for
typesetter and typewriter output. respec­
tively. They each have their own command

------ --------

lan2u::lIzes. documented in separate write­
ups~ t Tables and equations are produced by
"preprocessing" an nrolf input file: the table
ilnd equation formatters convert material
entered in their command languages to
straight nroff input. and then nrofT produces
the tables or mathematics.

Y.ou can include tbl material in your
nrolf input file along with ordinary text (as
was done in this paper to produce the tables
on pages nine and ten>. The way to identify
this material is to precede each table with
the command .TS and follow it with .TE.
These have special meaning to the tbl
preprocessor. signalling the beginning and
end of material intended for it. If you are
using the -ms package. the commands have
additional significance as -ms macros. In a
file processed with -ms. tables are set olf by
extra vertic::ll space both before and after.
Also. -ms offers a variant. TS H for begin­
ning a table. This has a corresponding com­
mand •. TH. which is placed within the table
data. All table text up to the. TH is used as

. a continuation he::lding if the table runs over
onto more than one page.

For mathematics the situation is analo­
gous. .EQ and .EN signal the beginning
and end of material to be processed by eqn
or neqn. When used with -ms. the .EQ and
.E:'-i commands cause the equation material
to be formatted specially. .EQ can take one
or two arguments. One is a format indica­
tor: use .EQ I for an indented equation.
.EQ L for left-adjusted. and .EQ C for
centered (the same thing you get with just
.EQJ. The other possible argument is an
equation number. which will be printed in
the right margin alongside the equation.
You C:l.n use ei ther of these arguments
without the other. but if both are used. the
format indicator should come first: .EQ 3.1
specIfies a centered equation numbered 3.1.
while .EQ L 3.2 specifies a left-adjusted
equation numbered 3.2.

5. Sample Input Files
Following are three sample files of input

for nroff or trolf. They are short. and are
not meant to show the usage of all of the
features covered in the prevIous sections.

"See "For ~Iore (nform311on:' section 7

- 12 -

Rather. they focus on how to begin an input
file. The order of occurrence of commands
and text at the beginning of the file is
important. and a number of problems can
arise from errors at this point. After each
example are some comments. No output
from these samples is included here. but as
an exercise you might try creating input files
identical to the ones shown and then using
nrolf to produce output from them.

.:'-lD

.nr LL 5.5i

.ds CH Hard Times - Chapter I

.ds CF. - %-

.TL
Chapter I:
The One Thing ~eedful
.LP
:'-low. what I want is. Facts.
Teach these boys and girls nothing
but Facts.
Facts alone are wanted in life.
Plant nothing else. and root out
everything else •
You can only form the minds
of reasoning animals upon Facts:
nothing else will ever be of any
service to them.

The example above is a fairly simple one.
When the file contains commands that set
values of number and string registers. and
the effect is wanted at the beginning of the
output. those commands should come first.
Their order relative to each other is not
important. The commands .:'-lD or .DA. if
used. should also be in this group appearing
first. :'IIext comes the Initializing macro.
which in this case is the .TL command.
The paragraph command •. LP. signifies the
end of the title and the beginning of the
main text of the paper.

The second example is a bit more com-
plex:

.:'IiD

.nr LL 5.5i

.nr Q(IOn

.ds LH Gulliver's Trayels

.ds CH

.ds RH Lilliput

.ds CF - '\'0 -

.LP

.ce

.B

.LG
Chapter VIII
. NL
. QP
. 1
The author. by a lucky accident.
finds means to leave Blefuscu:
and. after some difficulties,
returns safe to his nath'e country.
.R
.LP
Three da~'s after my arrival. walking
out of curiosity to the north-east coast
of the Island 1 obsen·ed. about half
a league oft'. in the sea. some"'hat that
looked like a boat overturned.

This example shows a typical way of specify­
ing a title by means other than the • TL
command. The reason for using an alter­
nate method is to avoid the standard vertical
placement of the title provided by .TL. and
simply center it at the top of the page. The
subtlety here is that. because • TL is not
being used. there must be another macro to
perform initialization. In this case it is .LP.
included solely for this purpose, even
though the following line of text is a title'
and not the beginning of a paragraph.

Finally. the third example shows the
usage of the cover sheet macros at the
beginning of a file.

.~D
• ds CH
.ds CF - %­
.nr PS 9
.nr VS 11
.nr LL Si
.nr PI 3n
.RP
.TL
Confessions of an
English Opium-Eater
.AU
Thomas De Quincey
.AB no
I here present you. courteous reader.
with the record of a .
remarkable period of m~' life;
and according to my application of it.
I trust that it will pro"e.
not merely an interesting record. but
in a considerable degree. instructive.
• AE

- 13 -

.MC 2.3i

.PP
I have often been asked ho,,' it was •
and through ,,'hat series of steps •
that I became an opium-eater .
Was it gradually,
tentatively, mistrustingly,
as one goes down a shelving beach into
a deepening sea, and
with knowledge from the first of the
dangers lying on that path:
half-courting those dangers. in fact,
whilst seeming to defy them?

When cover sheet / title page macros are
used. there are more things to keep in
proper order. The commands that change
number and string registers still come first.
Next should be the .RP command. if a
cover sheet is desired. Following this are
the commands and text for the elements of
the cover sheet and title page. It is not
necessary to include all of them. but any
that you use should be in the order shown
in section 2.7. If an abstract is included.
don't forget the .AE to end the abstract,
After the cover sheet or title page material
there must be a section heading or para­
graph macro. after which begins the main
body of text. If multi-column format is
wanted for the main text. a .2C or .MC
command may be placed between title page
material and the paragraph or section­
beading command .

6. Producing Output

When you have finished preparing the
input file for a document. you are ready to
produce the formatted output. This is done
by means of the UNIX commands nroft' or
'roft'. Typically. you might wish to preview
the output for typographical errors and mIs­
takes in formatting. There are ways to pre­
view either nroft' or troft' on crt (video
screen) terminals, typewriter terminals. or
the line printer. whichever is most con­
venient and appropriate. In addition. troff
output can be previewed on a Tektronix
4015 graphics terminal. providing a reason­
able facsimile of phototypesetter output.

The general form of the command to
produce output is

nroft' (or troft') opl/ons filename ...

The apI/OilS are described fully in the
writeup on nrolf and troff in section I of the
l.:.\'/X Programmer's Jlallllal. We can only
touch on them here. although one should
get special mention. In the command

nroff -ms file/rame ...

the -ms option has the effect of informing
nroff that you are using the -ms macro
package. If you forget this option. you get
continuous. unpaginated output in which
-ms macro commands are ignored.

~tore than one input file can be named
in the command line (as indicated by the
ellipses after filename). in which case nroff
simply processes all of them. in the order
they appear. as if they were all one file.

Following are some examples of com­
mands you might use to get preview and
final output of various sorts. Send nroff
output to lineprinter:

nroff -ms - Tlpr filename '" Ilpr

Stop after each page to change paper on a
typewriter terminal (type "control-d" as sig­
nal to resume output when ready):

n roff -ms - T type -51 filename .•.

.(Type in the command line above refers to a
code for the type of terminal being used­
see "For ~[ore Information." section 7. for
a reference on this.)

Produce a file with tables (preprocess with
fbI):

tbl filename ... 1 nroff -ms -Trype

Produce a file with equations (preprocess
with neqn):

neqn filename ... 1 nroff -ms - T type

Produce a file with tables and equations
(should be done in this order>:

tbl filename ... 1 neqn I nroff -ms - T type

Put a job in the phototypesetter queue:

troff -Q -ms filename ...

Typeset a file with tables and equations
(note that eqn is used with troff. whereas
neqn is used with nroff):

tbl filename ... I eqn I troff -ms -Q

Preview a troff approximation on terminal
(may use tbl and / or eqn as above):

. 14 -

troff -II -ms filename ...

Print a troff preview on lineprinter:

troff -a -ms filellame ... Ilpr

Preview a troff approximation on a Tek­
tronix 4015 graphics terminal (may use tbl
and/or eqn as above):

troff -t -ms filename ... 1 te

7. For »Iore Information

This document is intended to be the
main written source of information on for­
matting ordinary text with nroff or troff and
the -ms macro package. Other documents
contain information not covered here. If
your text contains tables or mathematics.
you should consult the separate manuals
describing the programs that work in con­
junction with nroff and troff to format that
material: Tbl-A. Program (0 Format Tables
by M. E. Lesk. and Typesemng .'4ath­
ematlcs-User's Gmde by Brian W. Ker­
nighan and Lorinda L. Cherry. A. Troff
Tutorial by Brian W. Kernighan provides
very useful supplementary information on
the nroff and troff command language.
though it covers many features of these pro­
grams that should be used only with caution
in a file to be processed with -ms. The
comprehensive reference source. the
.Vroffl Troff User's Jlanual by Joseph F.
Ossanna. is difficult to read and recom­
mended mainly for prospective experts.

When you are ready to produce format­
ted output. consult the U,V1X Programmer's
.\t[anual pages on nroff and troff for details
on command usage and the various
command-line options. The manual writeup
on eqn (1) should also be consulted by users
of eqn. Writeups from the Programmer's
Manual are available online by means of the
man command; the whole ~anual is avail­
able in printed form as well. A one-page
document entitled (;smg Hardcopy Termmals
WIth .Vroff contains tips for producing nroff
output on typewriter terminals such as the
DTC 302. IPS I 1622. and others. This
includes instructions on how to set up the
terminal. and a list of identifiers for various
terminal types.

Other writeups are available online by
means of the help command. Type help

Index for a list of topics.
All of the printed documentation men­

tioned here is available at the Computing
Services Library. 218 Evans Hall. For
further information. please drop by the Con­
sultina Office or phone the UNIX consultant
at 642-4072.

- IS •

Appendix A: Command Descriptions

This appendix serves as a reference manual for the -ms macro package; the intention here is
to provIde a concise but complete description of the operation of each command. Certain typo­
graphical conventions are used in presenting command syntax. Command names appear at the
left margin. followed where appropriate by the arguments available with the command. Argu­
ments are typed on the same line as the command. separated from the command and from each
other by a space. An argument which contains one or more spaces within it must be sur­
rounded by double-quote marks except where noted. Boldface indicates what must be typed
literally lS shown in the syntax statement; thus each command name appears in boldface. A
word In traltes represents an argument which you supply. The contents of the argument are
sometimes entirely your choice (for example. the label after the command .IP can be any­
thing). Sometimes the argument is restricted to a predetermined set of choices (for example.
the le~'el-llulllber after the .:"IH command must be an integer from 0 to 5). Details about what
can be supplied as an argument are contained in the description opposite each command .

. -\n argument enclosed in square brackets is optional-the command has meaning either with
or without that argument. Conversely. an argument not enclosed in square brackets must be
supplied whenever the command is used. An argument enclosed in square brackets and printed
In boldface is optional. but. if used. must be typed literally as shown.

Paragraphs

.PP

.LP

.IP [,'abel) [lildeml

.QP

Begins a standard paragraph. separated vertically from preceding text
by the value of number register PD. First line is indented by the
value of regIster PI. and following lines begin It the current main
indent level.

Begins a left-block paragraph. set off vertically by the value of regis­
ter PD. No first-line indention. All lines begin at the main indent
level.

Begins an indented paragraph. set off vertically by the value of regis­
ter PD. The entire block is left-adjusted and then. by defaUlt.
indented the value of register PI to the right of the main indent
level. If one argument is given. it is a label to be placed at the main
Indent level opposite the first line of the paragraph. If two argu­
ments are given. the second must be numeric and is an amount of
indention (in ens unless indicated otherwise) to supercede the
default indention for the paragraph. :;";onstandard indention must be
specified if the label is too wide to fit within the default indention.
This nonstandard indent persists in subsequent .IP's in a senes.
disappe:mng when the series is ended by a return to some other for­
mat such as a sectIon heading or a .PP or .LP paragraph.

For nonstandard indention without any label. the first argument
should be simply a pair of double-quote marks with nothing between
them.

Begins a block-'1uote paragraph. Preceded by vertical space as for
other paragraphs. Every line IS Indented from the main Indent level
by the value of register Ql. The rIght margm is moved in toward
the left by an equal amount I the line length is shortened>. Succes­
sive .QP·s maintain the same indention: It does not accumulate.

Section Headings

.SH

. SH [le,'el-/Iwnber]

Changes in Indention

.RS

.RE

- 17 -

Begins a heading that is left-adjusted at the main indention level and
separated by one vertical space from whatever preceded it. In nrofl'.
the heading is underlined; in trofl'. it is set in boldface .
Produces a heading similar to .SH except that it is automatically
given a consecutive number. The optional level number. from 1 to
5. causes the macro to generate the next consecutive section
number of that level (eg .• 1.2.5 is a third-level section number!. A
level-number a (zero) may be used as the argument; this cancels the
numbering sequence in efl'ect and generates a heading numbered 1.
r.;ote: When either .SH or .NH is used. all text up to the next para­
graph command or section heading command is considered part of
the heading.

Moves the indention to the right by a value based on register PI.
More than one .RS may be used. producing additional indention.
Moves the indention to the left by the same amount as the
corresponding .RS moved it to the right. To restore the original
indent, each .RS must be balanced by a corresponding .RE.
Notes: it is not possible to move the indent level to the left of the
page ofl'set. The value of register PI should not be changed within a
series of .RS and .RE commands at any point except after the inden­
tion has been returned to its default starting position.

Emphasis and Size Changes

.1 [\ford] [punctual/oil] Without an argument. this macro causes a switch to font number 2
(italic) in trofl' or underlined typing in nrofl'. If one argument is
given, it is one word to be italicized. and the efl'ect of the command
is limited to that word. A second argument may consist of trailing
punctuation to be printed directly after the word. in the typeface
(usually roman) in use for the text prior to the italicized word .

• B [word] [punctuation] Produces text in font number 3 (boldface) in trofl'. underlining in
nrofl'. Usage is analogous to that of .1.

.R Switches back to font number 1 (roman) in trofl'. non-underlined
typing in nrofl' .

• t:L word Causes the word supplied as the argument to be underlined. This is
the ani}' -ms command to produce an underlined word on the
typesetter. It works only for one word at a time .

• LG Increases the type size by two points in trofl'. (May be repeated for
added efl'ect.) Ignored by nrofl' .

• SM Reduces the point size by two points. May be repeated for added
efl'ect. Ignored by nrofl' .

• ~L Resets the point size to the normal selling. i.e .. the value of the PS
register. Ignored by nrofl'.
Note: if changing the type size by two points results in a non­
existent type size on the typesetter. the next larger valid size is
chosen. Valid point sizes are 6. 7. 8. 9. 10. 11. 12. 14. 16. 18. 20.
22. 24. 28. and 36.

Boxes Around Text

. BX I\'ord

. BI

. BZ

• 18 •

Draws a box around \1,·ord .

Begins a longer passage of text to be enclosed in a box .

Ends passage of text and draws box .

Title Pages and Cover Sheets

.RP

.Tt

.AU

.AI

. AB [no1

. AE

Dates
.~D [dare)

. DA [Jare)

Causes a cover sheet to be generated containing any of the following
information. if included with the appropriate macro after .RP: title.
authors. authors' institutions. and abstract. The current date is
printed on the cover sheet unless suppressed with the command
.~O.

When used for cover sheet and/or title page (prior to regular text),
.Tt causes title text to be filled. without hyphenation. on a 5·inch
line length. The resulting lines are individually centered when
printed. To break lines of title text differently. use the command
.br. Troff sets the title in 12·point boldface.

Centers the author's name. included on the following line of the
input file. ~ore than one name can be included. in which case they
will be printed on separate lines if entered on separate input lines.
Troff sets names in IO·point italic.

Centers lines of information about the author's institution. .AU and
.AI commands can be repeated. if dersired. for multiple authors
from different institutions .

Begins the abstract. When printed. this is preceded by a centered
heading of the word ABSTRACT unless suppressed by use of the·
argument no. The abstract is filled. hyphenated and adjusted on a
line length 5/6 the normal text line length.

Ends the abstract .

Additional notes: In order for cover sheet/title page material to be
handled properly. it must be followed by a macro such as one of the
paragraph or section heading commands before the regular text
begins. If .RP is used. all of the title/author/abstract material is put
on the cover sheet and all except the abstract is repeated at the top
of page one. Otherwise. all of the material is placed on page one
prior to the beginning of regular text.

When used without :lll argument. this macro suppresses printing of
the date on the document. (By default. if .:-.sO is omitted. -ms
C:lUses nrolf to print the current date at the bottom center of every
page. and on the cover sheet in .RP format: with troff. the date is
printed only on the cover sheet.) If a date is given as an argument
to this macro. it appears on the cover sheet in .RP format but
nowhere else .

Without an argument. OA causes the current date to be printed at
the bottom of every page of output in trolf. as well as on the cover
sheet. (This is the default condition in nroffJ With a date as an
argument. the command causes the specified date (rather than the
current date) to be printed at the bottom of every page. and on :he
cover sheet. for both nrolf and trolf.

- 19 -

Note: when typing the date as an argument to either of these mac­
ros. you can include spaces without having to enclose the whole
thing in double-quote marks as you ordinarily would in an argument
to a command.

Multi-column Formats

.2C

.IC

. !\1C !columll-Il.·tdrh I

Footnotes

.FS

• FE

Keeps

.KS

.KF

• KE

Switches to two-column format. Column widths are 7/15 of the
current value of the LL number register; gutter width is 1 II 5 LL.

Switches to single-column format (the default format>. A switch
from two or more columns to single-column causes a page break
before output is resumed .

Switches to multi-column format. The number of columns is com­
puted automatically: it will be the largest number of the specified
width that can fit within the regular line length (the value of register
LLl. The column-width argument must be numeric (it may be an
integer or contain a decimal fraction). and is understood to be a
number of ens unless a different unit is indicated. If no column­
width is specified •. MC means the same as .2C. Any change in the
number of columns. except from one to a larger number. causes a
page break first.

Begins text of footnote. This macro. and the accompanying foot­
note text. should be placed in the input file immediately after the
reference to the footnote. Footnote text is automatically saved and
printed at the bottom of the current page. separated from the main
text by a horizontal rule. If not enough space remains on the page
for all of the footnote. it continues at the bottom of the following
page. The line length of footnotes defaults to 11112 of the normal
line length (in multi-column output. this means 11/12 of the
column widthl. In troff output. footnotes are set in 8-point type.

Marks the end of footnote text .

Begins a standard keep. Text on following input lines will be kept
together on one page if possible. If not enough space remains on
the current page. a new page is begun at this point.

Begins a floating keep. If not enough space remains on the current
page for the keep. the current page will be completed with the input
text that follows the end of the keep; the kept material then begms
the next page.

Marks the end of either standard or floating keep .

Note: In formats of two or more columns. the effect is to try to keep
the material together in one column; if there isn't room in the
current column. the material starts in the next.

Displays

.DS [/ormar) [//Idem]

. LD

.lD [//Idem]

. CD

. BD

. DE

Tables and Equations
.TS [H]

. TH

. TE

. EQ (;ormar] [number]

. E:'-l

- 20 -

Begins a display. i.e .. unfilled text. Set off by vertical space before
and after the display (1 v before and afler in nroff~ 0.5v in trolf). A
format indicator may be given as an argument. The possible format
indicators are:

L left-adjusted
I indented O.Si (trolf) or 8n (nrolf)
C each line is centered individually
B left-adjusted lines are centered as :1 group

.OS with no format indicator means the same as .DS I. Either of
these forms may also take a numeric argument representing a non­
standard indention in ens. Any of the displays described above
automatically invokes a keep.

Left-adjusted display without invoking keep .

Indented display without keep. Default indention is the same as for
.OS I. Other indention may be specified as an argument.

Lines individually centered. without keep .

Left adjusted and then centered. without keep .

~arks the end of any type of display .

Signals the beginning of material to be preprocessed by rbl. When
used with -ms. it also has the effect of supplying half of a vertical
space separation between the table and any preceding text. When
used with the argument "H." table data up to the command" .TH"
is understood as a running head for the table and recurs on follow­
ing pages of a multi-page table. (This effect is obtainable only when
-ms is used,)

Signals the end of the running table heading .

Signals the end of material to be preprocessed by tbl. and. with -ms •
supplies half of a vertical space at the end of the table .

~farks the beginning of material to be preprocessed by eql1 or 'reqn.
When used with -ms. generates vertical separation before the equa­
tion is output and. by default. ~enters the equation in the output
line. Placement of the equation can be controlled by use of a for­
mat indicator as an argument: use .EQ L for left-adjusted •. EQ I
for Indented. and .EQ C for centered. An equatton number. what­
ever you choose. may also be given as an argument to .EQ. If both
Jrguments are used. the format indicator should be placed first.

Signals the end of material to be preprocessed by eqn or neqn .

Appendix B: !'iames of -ms Macros.
String Registers, and ~umber Registers

The following macro. string register. and number register names are used by -ms inter-
nally, This list is useful primarily to those who define their own macros, 1'0te that no lower
case letters are used in any -ms internal name,

Macro and String Register Names
AB Cl DE EO I KO ND R RT T~I

AE C2 DS EZ 11 KS NH Rl 50 TQ
AI CA DW FA 12 LB NL R2 51 TS
AT CB DY FE 13 LD NP R3 52 TT
AU CC E1 FJ 14 LG OD R4 SG lJL
B CD E2 FK IS LP OK R5 5H L'S

IC BI CF E3 P.-: ID MC PP RC SM ex
2C B2 CH E4 FO IE ME PT RE 51' WB
Al BB Cvl E5 FO 1M MF PY RF 5Y WH
A2 BG CS EE FS IP MH OE RH TA WT
A3 BT CT EL F\' IZ M1' OF RP TE XD
A4 BX D EM FY KE MO OP RO TH XF
AS C DA El' HO KF MR OS RS TL XK

Number Register ~ames
BI FL H4 IP LL NC 01 PO ST T\'

#T BW FP HM IR MF NF PD PS TB WF
IT CW GW HT IT MM NO PE PX TC YE
AV DW HI IF KI M1' NR PF 01 TD YY
BE EF H2 IK L1 MO NS PI OP T1' Z,;\
BH FC H3 1M LE NA NX PN RO TO

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill. New Jersey 07974

ABSTRACT

trolf is a text-formatting program for driving the Graphic Systems photo­
typesetter on the UNIXt and Geos operating systems. This device is capable of
producing high quality text~ this paper is an example of troft" output.

The phototypesetter itself normally runs with four fonts. containing
roman. italic and bold letters (as on this page). a full greek alphabet. and a sub­
stantial number of special characters and mathematical symbols. Characters can
be printed in a range of sizes. and placed anywhere on the page.

troft" allows the user full control over fonts. sizes. and character positions.
as well as the usual features of a formatter - right-margin justification.
automatic hyphenation. page titling and numbering. and so on. It also provides
macros. arithmetic variables and operations. and conditional testing. for compli·
cated formatting tasks. -

This document is an introduction to the most basic use of trott. It
presents just enough information to enable the user to do simple formatting
tasks like making view graphs. and to make incremental changes to existing
packages of trott commands. In most respects. the UNIX formatter nrott is
identical to trott. so this document also serves as a tutorial on nroft".

August 4, 1978

tUNIX 15 a Trademark of Bell La bora lones.

..

A non Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill. New Iersey 07974

1. lauoducllo ..
trIHf UI is a text-formattinl prolram. writ­

ten by J. F, Ossann .. for producinl hilh-quality
printed output from lite phototypesetter on Ihe
UNIX and GCeS operatinl systems. This docu­
ment is an example of tro« outpUL

The sinlle most important rule of usinl
tro« is not 10 use it directly. but Ihroulh some
intermediary. rn many ways. rro« resembles an
assembly lanluap - a remarkably powerful and
flexible one - but nonetheless such Ihat many
operations must be specified at a level of detail
and in a form lhat is too hard for most people 10

use eft'ectively.

For two special applications. there are pro­
grams Ihat provide an interface 10 tro« for Ihe
majority of users. eqa [21 provides an easy to
learn lanluap for typeseuinl mathematics; the
eq.. user need know no tn« whatsoever to
typeset mathematics. lbl [31 provides the same
convenience for produci"l tables of arbitrarY
complexity.

For producing strailht text (which may
well contain mathematics or tables). lhere are a
number of 'macro packages' that define format­
tlnl rules and operations for specific styles of
documents. lnd reduce the amount of direct
contact With tnaT. In particular. lhe '-ms' [41
and PWB/~M [51 :lackages for Bell Labs inter­
nal memoranda and external papers prOVide most
of the iacliiue5 needed for a 'N.de ranle of docu­
ment preparallon. (This memo was prepared
'Nuh '-'T1S',1 There are also ;Jackages for view­
!r3phs. for simulatini the older roil formatters
on lJ~(X lnd GCOS. lnd e'or other special applica­
aons. TYPII:ally you will find these packages
~3Sler to use than troaT once you get be)'ond the
most triVial operations; you should always con­
Sider them first.

In the few cases where e:'<lSting packages
don'~ \10 the whole job. the solution is nOI to
wrtte 1n ~nurely new set of trod' instructIons
(rom scratch. but !o malee small cnan@es to adapt
pack:ages that Jlre3dy eXIst.

In accordance with this philosophy of let­
tinl someone else do the work. the pan of tn.
described here is only a small part of the whole.
althoUlh it tries to concentrate on the more use­
ful parts. In any case. there is no attempt to be
complete. Rather. the emphasis is on showinl
how to do simple thinl!. and how to make incre­
meneal chanles to what already exists. The con­
tents of the remaininl sections are:

2. Point sizes and line S1'ICinl
3. Fonts and special characters
4. Indents and line lenllh
S. Tabs
6. Local motions: Drawinl lines and characters
7. Strings
8 •. Introduction to macros
9. Titles. pales and numberinl

to. Number rqisters and arithmetic
II. , Macros with arguments
12. Conditionals
I3. Environments
14. Diversions

Appendix: Typesetter character set

The tnlf described here is the C·lan@uage ver­
sion running on lj~(X at ~umy Hill. as docu­
mented in [1 J.

To use tro« you have to prepare not only
the actual text you want printed. but some infor­
mation that tells how you want it printed.
(Readers who use rolf will find the lpproach
familiar.) For tnlf ~ht: :ext and the formattinl
information are often Intertwined quite inti­
mately. Most commands to tn« are placed on a
line separate from the text itSelf. betinmnl with
a period ~one command per line). For example.

Some :ext.
,ps I~
Some more text.

Will chan@e the 'point SIZe', !hat is. the size of
the ietters :'eing :mnted. :0 '14 point' lone paint
IS It:': incnJ :ike thiS:

Some text. Some more text.
Occasionally. though. something special

occurs in the middle of a line - to produce

Area - 11',2

you have to type

Area - \(-p\flr\fR\!\s8\u2\d\sO

(which we will explain shortly l. The backslash
character \ is used to introduce troft" commands
and special characters within a line of text.

2. Point Sizes: Line SpaciDI

As mentioned above. the command .ps
setS the point size. One point is 1172 inch, so
6-point characters are at most 1112 inch high,
and 36-pomt characters are III mch. There are 15
point sizes. listed below.

~ pa,n, '.ok III! bel. "11ft Ihe dOnn lIQuor IUP
~ po,n!. Pack my bol W,lh live dozen liquor lUIS.
8 point: Pack my box with five dozen liquor jUI5.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor
11 point: Pack my box with five dozen

- 2 •

12 point: Pack my box with five dozen
14 point: Pack my box with five

16 point 18 point '20 point

22 24 28 36
If the number after .ps is not one of these

legal sizes. it is rounded up to the next valid
value. with a maximum of 36. If no number fol­
lows .ps. troft" reverts to the previous size. what­
e\'er it was. troft" begins with point size 10,
which is usually fine. This document is in 9
pomt.

The point size can also be changed in the
middle of a line or even a word with the in-line
command \5. To produce

UNIX runs on a PDP· 1 1/45

type

\s8UNIX\sI0 runs on a \s8POP-\sI011/45

As above. \5 should be followed by a legal point
size. except that \sO causes the size to reven to
its previous value. Notice that \51011 can be
understood correctly as 'slze 10. followed by an
11'. if the size is legal. but not otherwise. Be
cautious with similar constructions.

Relative size changes are also legal and
useful:

\s-2UNIX\s+2

temporarily decreases the size. whatever it is. by
two pointS. then restores it. Relative size
changes have the advantage that the size
difference is independent of the startinl size of
the document. The amount of the relative
change is restricted to a Single digit.

The other parameter that determines what
the type looks like is the spacing between lines.
which is set independently of the point size.
Vertical spacinl is measured from the bottom of
one line to the bottom of the next. The com­
mand to control vertical spacing is .VI. For run­
ning text. it is usuall)' best to set the vertical
spacinl about 20% bigger than the character size.
For example. so far in this document, we have
used "9 on 11". that is.

.ps 9

.vs IIp

If we changed to

.ps 9

.vs 9p

the running text would look like this. After a
few Jines. you will aaree it looks a lillie cramped.
The right vertical spacinl is partly a matter of
taste, depending on how much text you want to
squeeze into a liven space, and partly a maner
of traditional printing style. By default, uaft"
uses 10 on 12.

Point size and vertical spacing
make a substantial difference in the
amount of text per square inch.
This is 12 on 14.

PoIn, IIIe .l1li ~1Ca1 -.nl _k n'lIl d,Ir.,._ .n
,lie ._un' or , •• , pe' _II mdl For ••• mple. 10 on 12 UMS ._,
, II mueft __ II 7 on I Tftll II 6 on 7. whICh II .ven _II.,. h
peeD. 10, __ per bu, _ can 10 !l1.neI '17"11 10 _ II.

When used without Uluments •• ps and .VI
revert to the previous size and vertical spacinl
respectively.

The command .sp is used to let extra vert­
ical spice. Unadorned. it lives you one exua
blank line (one . VI, whatever that has been set
to). Typically, that's more or less than you
want, so .sp can be followed by information
about how much space you want -

.sp 2i

means 'tWO inches of vertical space'.

.sp 2p

means 'two points of vertical space'; and

.sp 2

means 'two vertical spaces' two' of whatever

· vs is set to (this can also be made explicit with
.sp 2v)~ troil also understands decimal fractions
in most places. so

.sp LSi

is a space of 1.5 inches. These same scale fac­
tors can be used after . VS to define line spacina.
and in fact after most commands that deal with
physical dimensions.

It should be noted that all size ftumbers
are converted internally to 'machine units"
which are 1/432 inch (1/6 point>. For most pur­
poses. this is enoulh resolution that you don't
have to worry about the accuracy of the
representation. The situation is not quite so
good vertically, where resolution is 1/144 inch
(1/2 point).

J. Fonls and SpeciaJ Cl1arllCten

troil and the typesetter allow four different
fonts at any Ofte time. Normally three fonts
(Times roman. italic and bold) and one collec­
tion of spectal characters are permanently
mounted.

abcdefghijklmnopqrstuvwxyZ 0123456189
ABCDEFGHUKLMNOPQRSTUVWXYZ
abcd~flh1jklmnopq,sN"""XY: 011)456789
ABCDEFGHUKL~NOPQRSTUVWXYZ

abcdef.hijklmno~t1I'"'~z 0113456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek. mathematical symbols and miscellany
of the special font are listed in Appendix A.

troil prints in roman unless told otherwise.
To switch mto bold. use the .ft command

.ft B

and for italics.

.ft I

To return to roman. use .ft R; to return to the
prevIOus font. whatever it was. use either .ft P or
just .ft. The 'underline' command

.ul

causes the next input line.to print in italics. .ut
can be followed by a count to indicate that more
than one line is to be italicized.

Fonts can llso be chan led within a line or
word with the in-line command \f:

boldface text

.s produced by

'. fBbold\t1face\ iR :ext

[f you Want to do :hL5 so the ;:JreVlOUS font.
· hatever It was. IS :eit undisturbed.. Insert ~xtra
\fit:ommands. :ike :hls:

- 3 -

\fBbold\fP\fifac:e\fP\fR text\fP

Because only the immediately previous font is
remembered. you have to restore the previous
font after each chanae or you can lose it. The
same is true of .ps and .vs when used without an
argument.

There are other fonts available besides the
standard set. althoula you can still use only four
at any given time. The command .fp tells troff
what fonts are physically mounted on the
typesetter.

.fp 3 H

says that the Helvetica font is mounted on posi­
tion 3. (For a complete list of fonts and what
they look like. see the trail'manual'> Appropriate
.fp commands should appear at the beginninl of
your document if you do not use the standard
fonts.

It is possible to make a document rela­
tively independent of the actual fonts used to
print it by usinl font numbers instead of names;
for example. \0 and .ttJ mean 'whatever font
is mounted at poSition 3', and thus work for any
settin.. Normal settinp are roman font on I,
italic on 2. bold on 3. and special on 4.

- There is also a way to get 'synthetic' bold
fonts by overstrikinl letters with a slilln offset.
Look at the .bet command in UI.

Special characters have four~harac:ter
names beginninl with \ <. and they may be
inserted anywhere. For example.

is produced by

\(14 +- \(12 - \04

[n particular. greek letters are all of the form
\(--. where - is an upper or lower C3se roman
letter reminiscent of the greek. Thus to get

t(aX.a) -:0

in bare troll we have to type

\ (-5(\ (ea\ (mu\ (-0) \(- > \ (if

That line is unscrambled as follows:

\(-5 t
((

\(-a a
\(mu x
\(-0 i3
) 1
\(->
\(if OQ

.-\ complete list of these speclal names occurs In
Appendix A.

In eqn [2) the same effect can be achieved
with the input

SIGMA (alpha times beta) - > inf

which is less concise. but clearer to the unini­
tiated.

Notice that each four-character name is a
sinlle character as far as uoff is concerned - the
'translate' command

. tr \(mi\(em

is perfectly clear. meaninl

. tr --

that is. to translate - into -.

Some characters are automatically
translated into others: Irave • and acute .
accents (apostrophes) become open and close
sin lie quotes '-'; the combination of " is len-
erally preferable to the double quotes Simi-
larly a typed minus siln becomes a hyphen -. To
print an explicit - sign. use \-. To get a
baclcslash printed, use \e.

... Indents aDd LiDe LellIths

troff starts with a line length of 6.5 inches.
too wide for 81/2)(11 paper. To reset the line
lenlth. use the .11 command. as in

.11 6i

As with .5P. the actual length can be specified in
several ways; inches are probably the most intui­
tive.

The maximum line length provided by the
typesetter is 7.5 inches, by the way.' To use the
full width. you will have to reset the default phy­
sical left margtn ("pale offset"), which is nor­
mally slightly less than one inch from the left
edge of the paper. This is done by the .po com­
mand.

.po 0

sets the offset as far to the left as it will 10.

The indent command .m causes the left
margin to be indented by some specified amount
from the page offset. If we use .m to move the
left marlin in, and .n to move the right margin
to the left. we can make offset blocks of text:

.in O.3i

.1I-0.3i
text to be set into a block
.11 +O.3i
.in -O.3i

will create a block that looks like this:

- 4 -

Pater noster qui est in cae lis
sanctificetur nomen tuum; adveniat
regnum tuum; fiat voluntas tua. sicut
in caelo. et in terra.... Amen.

Notice the use of '+' and '-' to specify the
amount of change. These change the previous
setting by the specified amount. rather than just
overriding it. The distinction is quite important:
.11 + Ii makes lines one inch longer; .11 Ii makes
them one inch long .

With .in •. 11 and .po. the previous value is
used if no argument is specified .

To indent a single line. use the 'temporary
indent' command .li. For example. all paragraphs
in this memo effectively begin with the com­
mand

.ti 3

Three of what? The default unit for .li. as for
most horizontally oriented commands (.U. .in.
.po). is ems; an em is roughly the width of the
letter 'm' in the current point size. (Precisely. a
em in size p is p points.> Although Inches are
usually clearer than ems to people who don't set
type for a living. ems have a place: they are a
measure of size that is proportional to the
current point size. If you want to make text that
keeps its proportions regardless of point size. you
should use ems for all dimensions. Ems can be
specified as scale factors directly. as in .li 2.5m.

Lines can also be indented negatively if the
indent is already positive:

.ti -O.3i

causes the next line to be moved back three
tenths of an inch. Thus to make a decorative
initial capital. we indent the whole paragraph.
then move the letter 'P' back with a .li com­
mand:

Pater noster qui est in caelis
sanctificetur nomen tuum; ad­
veniat regnum tuum: fiat vol un­

las tua. sicut In caelo. et in terra
Amen.

Of course. there is also some trickery to make
the 'P' bigler (just a '\s36P\sO·). and to move It

down from its normal position (see the section
on local motions).

5. Tabs

Tabs {the ASCII 'horizontal tab' character'
can be used to produce output in columns. or to
set the horizontal position of output. Typlcall~
tabs are used only in unfilled text. Tab stOPS are
set by default every half inch from the current
indent. but can be changed by the .ta command.
To set stops every inch. for example.

.ta Ii 2i 3i 4i Si 6i

Unfortunately the stops are [eft-justified
only (as on a typewriter), so Iininl up columns
of right-justified numbers can be painful. If you
have many numbers. or if you need more com­
plicated table layout. don't use troif directly; use
the lbl program described in [31.

For a hanc1ful of numeric columns. you
can do it this way: Precede every number by
enouch blanks to make it line up when typed.

.nf

.ta Ii 2i 3i
1 lab 2 tIlb 3

40 tIlb 50 lab 60
100 lab 800 tJlb 900
.n

Then chanle each leadinl blank into the strinl
\0. This is a char:u:ter that does not print. but
that hu the same width as a diliL When
prtnted. this will produce

1
40

100

2
50

800

3
60

900

It is also possible to fill up tabbed-<lver
space with some char:u:ter other than blanks by
seuinl the 'tab replacement character' with the
.tc cOMmand:

.ta LSi 2.Si

.tc \ (ru (\ (ru is __ e)

Name IDb Age lab

produces
Name _______ Age ____ _

To reset the tab replacement character to a
blanic. use .le 'Mith no argument. (Lines can also
be drawn with the \1 command. descnbed in Sec­
tion 6J

troif lisa provides a very general mechan­
Ism called 'fields' for setting up complicated
columns. (This IS used by tbU. We will not go
into It In this paper.

6. Local ~otions: Drawinc lines and chane-
ters

Remember • Area - ~r2, and the big 'P'
In the Paternoster. How are they done? trolf
prOVides l host of commands for placmg charac·
:ers of 1ny sIze It any place. You can use them
~o draw speCIal characters or to tune your OUtput
for 1 i'artlcular lopearance. ~ost of these com­
mands lre stralgntt'orward. but messy to read
lnd tough to type corret::ly.

If ::ou won't use eqn. subscripts and super·
SCrIptS lre most "laslly done with the half-line

- s -

local motions \u and \d. To go back up the page
half a point-size. insert a \11 at the desired place:
to go down. insert a \d. (\u and \d should always
be used in pairs. as explained below.) Thus

Area - \<-pr\u2\d

produces

Area - ".r2

To make the '2' smaller. bracket it witli
\5-2. .. \50. Since \u and \d refer to the current
point size, be sure to put them either both imide
or both outside the size changes. or you wilE iet
an unbalanced vertical motion.

Sometimes the space given by \u and \Q
isn't the right amounL The \v command can b:
used to request an arbiuary amount of vertical
motion. The in-line command

\v'(amound'

causes motion up or down the page by the
amount specified in '(amount)'. For example. to
move the 'P' down, we used

.in +O.6i (move paragraph in)

.II -0.3i (shorten lines)

.ti -O.Ji (move P back)
\v'2'\s36P\sO\v'-2'ater noster qui est
irrcaelis ..•

A minus sign causes upward motion. while no
sign or a plus sign means down the page. Thus
\ v' - 2' causes an upward vertical motion of two
line spaces.

There are many other ways to specify the
amount of motion -

\ v·O.li'
\v'3p'
\v·-O.Sm'

lnd so on lfe all legal. Notice that the scale
specifier i or p or m goes inside the quotes. Any
character can be used in place of the quotes; this
is also true of all other trotl commands described
in this section.

Since troir does not take withtn-the-!ine
vertical mOllons into lccount when dgunng OUt

where it is on the page. OUtput !ines can have
unexpected positions if the left lnd right ends
aren't lt the same vertical position. Thus \v.
like \u and \d. should 1lways balance upward
vertical motion in a line WIth the same amount
in the downward dire1:tton.

.\rbitrary horizontal motions are also avail­
lble - \ h :s '-1Ulle 1nalo~ous to \v. except ~hat
the defaUlt scale factor IS ems instead of line
spaces. .\5 an '!xample.

causes a backwards motion of a tenth of an inch.
As a practical matter. consIder printing the
mathematical symbol . > > '. The default spacmg
is too wide, so eqn replaces this by

>\h'-O.3m">

to produce ».
Frequently \h is used with the 'width func­

tion' \w to generate motions equal to the WIdth
of some character string. The construction

\w'thing'

is a number equal to the width of 'thing' in
machme units 0/432 inch). All troff computa­
tions are ultimately done in these units. To
move horizontally the width of an 'x', we can
sa)'

\h'\w'x'u"

As we mentioned above, the default scale factor
for all horizontal dimenSions is m. ems. so here
we must have the u for machme units, or the
motion produced will be far too large. troff is
quite happy with the nested quotes. by the way,
so long as you don't leave any out.

As a live example of this kind of construc­
tion, all of the command names in the text. like
.sp, were done by overstriking with a slight
offset. The commands for .sp are

.sp\h"-\w".sp"u'\h"lu".sp

That is. put out '.sp', move left by the width of
'.sp', move right I unit. and print '.sp· again.
(Of course there is a way to avoid typing that
much input for each command name, which we
will discuss in Section 11.)

There are also several special-purpose traff
commands for local motion. We have already
seen \0, which is an unpaddable white space of
the same width as a digit. 'Unpaddable' means
that it will never be widened or split across a line
by line justification and filling. There is also
\(blank). which is an unpaddable character the
width of a space, \I. which is half that width, \.,
which is one quarter of the width of a space, and
\11:, which has zero width. (This last one is use·
ful, for example, in entering a text line which
would otherwise begin with a ','J

The command \0. used like

\o"set of characters"

causes (up to 9) characters to be overstruck. cen­
tered on the widest. This is nice for accents. as
in

syst\o"e\ (ga"me t\o"e\ (aa"l\o"e\ (aa"phonique

which makes

- 6 •

systeme telephonique

The accents are \(sa and \(aa, or \' and \';
remember that each is just one character to troff.

You can make your own overstrikes with
another special convention, \z. the zero-motion
command. \zx suppresses the normal horizontal
motion after printing the single character x, so
another character can be laid on top of it.
Although sizes can be changed withm \0, it
centers the characters on the widest. and there
can be no horizontal or vertical motions. so \z
may be the only way to get what you want:

is produced by

.sp 2
\s8\z\(sq\sI4\z\(sq\s22\z\(sq\s36\(sq

The .sp is needed to leave room for the result.

As another example, an extra-heavy semi­
colon that looks like

; instead of ; or ;

can bo constructed WIth a big comma and a big
period above it:

\s+6\z.\v'-0.2Sm'.\v'O.25m'\sO

·0.25m' is an empirical constant.

A more ornate overstrike is given by the
bracketing function \b, which piles up characters
vertically, centered on the current baseline.
Thus we can let big brackets, constructing them
with piled-up smaller pieces:

by typing in only this:

.sp
\b,\Ut\Uk\Ob' \b,\Uc\Ur x \b'\(rc\(rr \b'\(rt\ (rk\ (rb'

troff also provides a convenient facility for
drawing horizontal and vertical lines of arbitrary
lenlth with arbitrary characters. \1'U' draws a
line one inch long, like this: .
The length can be followed by the character to
use if the _ isn't appropriate; \1'O.Si: draws a
half-inch line of dots: The construc-
tion \L is entirely analogous, except that it draws
a vertical line instead of horizontal.

7. StriDls

Obviously if a paper contains a large
number of occurrences of an acute accent over a
letter 'e', tYPing \o"e\" for each e would be a

..

great nuisance.

FortunatelY, troil provides a way in which
you can store an arbitrary collection of text in a
·string'. and thereafter use the string name as a
shorthand for it! contentS. Strings are one of
several trofl mechanisms whose judicious use
let! you type a document with less effort and
organize it so that extensive format changes can
be made with few eGiting changes.

A reference to a string is replaced by what­
ever text the string was defined as. Strings are
defined with the command .ds. The line

.ds e 'o·er"

defines the string e to have the value \o"e\"

String names may be either one or two
characters long. and are referred to by \-x for
one character names or \-(xy for twO character
names. Thus to set telephone. siven the
definition of the string e as above, we can say
t\ "el\ "ephone. I

If a string must belin with blanks. define it
as

.ds)(X • text

The double quote signals the belinning of the
definition. There is no trailing quote: the end of
the line terminates the strin ..

A string may actually be several lines lona;
if troil encounters a \ at the end of a", line. it is
thrown away and the next line added to the
current one. So you can maXe a long string sim­
ply by ending each line but the last with a
backslash:

.ds :tx this'
is a very'
long string

Strings may be defined in terms of other
strings. or even in terms of themselves: we will
discuss some of these pOSSibIlities later.

8. I ntroductfon to Macros

Before we C3n go much further in troil. we
need to learn a bit about the macro facIlity. In
its Simplest form. a macro is just a shorthand
notation quite Similar to a string. Suppose we
want every paragraph to start in exactly the same
way - WIth a space and a temporary indent of
tWO ems:

.sp

.ti +2m

Then to save typing. we would like to collapse
these IntO one shorthand line. a troil 'command'
like

- 7 •

.PP

that would be treatec1 by troil exactly as

.sp

.ti +2m

.PP is called a macro. The way we tell troil *i'lat

.PP means is to ddin~ it with the .de command:

.de PP

.sp

.ti +2m

The first line names the macro (we used '.PP'
for 'paragraph'. and upper case so it wouldr.·:
conflict with any name that troil might alreac!y
know aboud. The last line .• marks the end of
the definition. In between is the text. which is
simply inserted whenever troil sees the 'com­
mand' or macro call

.PP

A macro can contain any mixture of text and
formattinl commands..

The definition of .PP hu to precede it!
first use: undefined macros are simply ignored.
:'IIames are restricted to one or two characters.

- Usinl macros for commonly occurrinl
sequences of commands is critically ·important.
:'IIot only does it save typing. but it makes later
changes much easier. Suppose we decide tha~
the paragraph indent is too small. the vertical
space is much too big. and roman font should be
forced. Instead of changing the whole docu·
ment. we need only change the definition of .PI?
to something like

.de PP

.51' 21'

.ti ·3m

.ft R

,. paragraph macro

and the change takes effect everywhere we used
.PP.

\. is a troil command that causes the rest
of the line to be ignored. We use it here to add
comment! to the macro definition fa wise idea
once definitions get complicated).

As another example of macros. conSIder
these twO which start and end a block of offset.
unfilled text. like most of the -=xamples in thiS
paper:

.de BS

.sp

.nf

.in +O.li

.de BE

.sp

.ft

.in -O.li

'" sWt indented block

'" end indented block

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

by the commands .BS and .BE, and it will come
out as it did above. Notice that we indented by
.in +O.li instead of .in O.li. This way we can
nest our uses of .BS and BE to let blocks within
blocks.

If later on we decide thaI the indent should
be O.Si, then it is only necessary to chanle the
definitions of .BS and .BE, nOI the whole paper.

t. Titles. Pqes aad Numberiac

This is an area where thinls let toulher,
because nothing is done for you automatically.
Of necessity, some of this section is a cookbook,
to be copied literally until you get some experi­
ence.

Suppose you want a title al the top of each
Plge, saying just

-left lOp cenler top right top-

In rofr, one can say

.he 'left top'center top'right top'

.fo 'left bottom'center bottom'right bottom'

to let headers and footers automatically on every
Pile. Alas, this doesn't work in trofr, a serious
hardship for the novice. Instead you have to do
a lot of specification.

You have to say what the actual title is
(easy); when to print it (easy enoulh); and what
to do at and around the title line (harder). Tak­
ing these in reverse order, first we define a
macro .NP (for 'new pale') to process titles and
the like at the end of one page and the beginning
of the next:

.deNP
'bp
'sp O.Si
.tl 'left top'center top'right top'·
'sp 0.3i

To make sure we're at the top of a page, we

- 8 -

issue a 'begin page' command 'bp, which causes
a skip to top-of-page (we'll explain Ihe ' shortly),
Then we space down half an inch, print the title
(the use of .t1 should be self explanatory; later
we will discuss parameterizing the titles), space
another 0.3 inches, and we're done.

To ask for ,NP at the bottom of each page,
we have to say something like 'when the text is
within an inch of the bottom of the page. star!
the processing for a new pale.' This is done with
a 'when' command .wh:

.wh -Ii NP

(No '.' is used before NP; this is simply the
name of a macro, not a macro call.) The minus
siln means 'measure up from the bottom of the
page', so '-Ii' means 'one inch from the bot­
tom'.

The .wh command appears in the input
outside the definition of ,NP; typically the input
would be

.de NP

.wh -Ii NP

Now what happens? As text is actually
being output, Iroif keeps track of its vertical
position on the pale, and after a line is printed
within one inch from the bottom. the .NP macro
is activated, (In the jargon. the .wh command
sets a trap al the specified place, which is
'sprung' when that point is passed'> ,NP causes a
skip to· the top of the next page <that's what the
'bp was fod, then prints the title with the
appropriate margins.

Why 'lip and 'sp instead of .bp and .sp?
The answer is that .sp and ,bp, like several other
commands. cause a brftlk to take place. That is.
all the input text collected but not yet printed is
flushed out as soon as possible, and the next
input line is guaranteed to start a new line of
output. If we had used .sp or .bp in the .NP
macro, this would cause a break in the middle of
the current OUtput line when a new page is
started. The effect would be to print the left·
over part of that line at the top of the page. fOl­
lowed by the next input line on a new output
line. This is not what we want. Using' instead
of . for a command tells trofr that no break IS to
take place - the output line currently being
filled should not be forced out before the space
or new page.

The list of commands that cause a break IS

short and natural:

.bp .br .ce .fi .nf .sp .in .Ii

All others cause no break. regardless of whether

you use a . or a '. If you really need a break. add
. a .br ciJmmand at the appropriate place.

One other thinl to beware of - if you're
chanlina fORIlI or point sizes a lot. you may find
that if you cross a pale boundary in an unex­
pected fonl or size. your titles come out in that
size and font instead of what you intended.
Furthermore. the lenlth of a title is independent
of lhe current line lenlth. so titles will come out
at the default lenllh of 6.5 inches unless you
chanle it. which is done witlt tlte .It command.

There are several ways to fix lhe problems
of point sizes and fonlll in tides. For the sim­
plesl applications. we can chanle .NP to set tlte
proper size and fan I for the title. then reslore
the previous values. like this:

.de NP
'bp
'sp O.Si
.ft R ,. sel tille fonl to raman
.ps LO ,. and size to LO point
.It 6i ,. and lenalh to 6 incites
.tl 'left'centerrilht'
. ps ,. revert to previous size
.fl P ,. and to previous font
'sp 0.3i

This version of .NP does ""' work if the
fields in lhe .d c:ammand contain size or font
chanles. To cope with that requires trors
'environmenl' mechanism. which we wiII discuss
in Section L3.

To get a footer at the bottom of a page.
you can modify .NP so it does some processlnl
before the 'bp command. or split the job into a
footer macro invoked at the bottom margin and
a header macro invoked at the top of the page.
These variations are leit as exercIses.

OUtput pale numbers Jre computed
automatically as each page is produced (starting
at L). but no numbers are printed unless you ask
for them explicitly. To get pale numbers
printed. include the character'*' in the .U line at
the position where you want the number to
appear. For example

. tl ", % ,"

centers the page number inside hyphens. JS on
thiS page. You Clln set the page number at any
:Ime with either .bp a. which Immediately Slatts
a new pale numbered a. or witlt .pn a. which
sets the page number for the next page but
doesn't C3use a skip to the new page, Again.
.bp "'n sets the page :lumber to n :nore than Its
C:.1rrent value; .bp means .bp + 1.

,9-

lit. Number ~qisrers aad Arith tlc

trol' has a facility for dOing arithmetic. and
for defining and usinl variables with numeric
values. called num'-r '~ISIB'S. Number relis­
ters. like suinp and macros. can be useful in
seuinl up a document so it is easy to chan ..
later. And of course they serve for any ~rt of
arithmetic computation.

Like suinp. number relisters have ofte or
two character names. They are set by the ,Dr
c:ammanci. and are referenced anywhere by \ax
(one character name) or 'D(", (two charaet::
name).

There are quite a few pr .. <lelined numbE::f
relisters maintained by troif. amonl them % f':lt
the current pale number. a1 for the current 'Vert~
ical position on the page; ely, mo and yr for tn~
current day, month and year. and .s and .r fc~
the current size and fonL (The font is a number
from 1 to 4.) Any of these can be used in com­
putations like any other resister. but some. like
.s and .t. cannot be chanled with .Dr •

As an example of the use of number !'eli.!­
ten. in the -ms macro packal' [41. mo!!t
silnilicant parameters are delined in terms of th:
values of a handful of number resisters. Th=se
include the point size for text. the vertical spac­
inl. and the line and title lenlths. To set the
point size and vertical spacing for the followin:
paraaraphs. for example. a user may say

.nr PS 9

.M VS II

The paragraph macro .lIP is defined (roughly) O!-"l

follows:

.de PP

.ps \\n(PS

.vs \\n(VSp

.ft R

.sp O.Sv

.ti +3m

,. reset size
\. spacinl
\" font

'" half a line

This sets the font to Roman and the point size
and line spacing to whatever values are stored in
the number rellSters PS and VS.

Why are there two backslashes? This ill
the eternal problem of how to qUOte a quote .
When troW onginally reads the macro definition.
It peels off one backslash to see what's comlRl
next. To ensure that another is left in the
definition when the macro is :l2d. we have to
put in two backslashes In the definition. If only
one backs lash is used. POlRt sIZe and vertIcal
spacing wiil be frozen at the :Ime the macro . S

denned. not when It IS used.

PrOtec:unl by 1n ~xtra :ayer oi backslashes

IS only needed for \n, \-, \$ (which we haven't
come to yetl. and \ itself. Things like \s, \f, \h.
\v, and so on do not need an extra backslash.
since they are converted by troft' to an Internal
code immediately upon being seen.

Arithmetic expressions can appear any­
where that a number is expected. As a trivial
example.

.nr PS \\n(PS-2

decrements PS by 2. Expressions can use the
arithmetic operators +. -, ", I, oro (modl. the
relational operators >, > -, <, < -, -, and
!- (not equal), and parentheses.

Although the arithmetic we have done so
far has been straightforward. more complicated
things are somewhat tricky. First. number regis­
ters hold only integers. troft' arithmetic uses
truncating integer division. just like Fortran.
Second. in the absence of parentheses, evalua­
tion is done left-to-right without any operator
precedence (including relational operators).
Thus

7--4+3/13

becomes' -I'. Number registers can occur any­
where in an expression, and so can scale indica­
tors like p, i, m, and so on (but no spaces).
Although integer division causes truncation, each
number and its scale indicator is converted to
machine units (1/432 inch) before any arithmetic
is done. so li/2u evaluates to O.Si correctly.

The scale indicator u often has to appear
when you wouldn't expect it - in particular,
when arithmetic is being done in a context that
implies horizontal or vertical dimensions. For
example,

.11 7/2i

would seem obvious enough - 311l inches.
Sorry. Remember that the default units for hor­
izontal parameters like .n are ems. That's really
'7 ems I 2 inches'. and when translated into
machine Units. it becomes zero. How about

.11 7i/2

Sorry, still no good - the '2' is '2 ems', so
'7i/2' is small. although not zero. You must use

• 11 7i/2u

So again, a safe rule is to attach a scale indicator
to every number. even constants.

For arithmetic done within a .nr command.
there is no implication of horizontal or vertical
dimension. so the default units are 'units', and
7i/2 and 7i/2u mean the same thing. Thus

- 10 -

'nr II 7i/2
.11 \\nOlu

does just what you want, so long as you don',
forget the u on the .n command.

11_ Macros with aquments

The next step is to define macros that can
change from one use to the next according to
parameters supplied as arguments. To make this
work. we need two things: first, when we define
the macro, we have to indicate that some parts
of it will be provided as arguments when the
macro is called. Then when the macro is called
we have to provide actual arguments to be
plugged into the definition.

Let us illustrate by defining a macro .sM
that will print its argument two points smaller
than the surrounding text. That is. the macro
call

.SM TROFF

will produce TROFF.

The definition of .sM is

.de SM
\5-2\\$I\s+2

Within a macro definition. the symbol \\Sn
refers to the nth argument that the macro was
called with. Thus \ \SI is the string to be placed
in a smaller point size when .sM is called.

As a slightly more complicated version. the
following definition of .SM permits optional
second and third arguments that will be printed
in the normal size:

.de SM
,\$3\5- 2\\$1\5+2\ \S2

Arguments not provided when the macro is
called are treated as empty, so

.SM TROFF).

produces TROFF). while

.SM TROFF). (

produces (TROFF). It is convenient to reverse
the order of arguments because trailing punctua­
tion is much more common than leading .

By the -way. the number of arauments that
a macro was called with is available in number
register .S.

The following macro .BD is the one used
to make the 'bold roman' we have been using
for tro« command names in text. It combines
horizontal motions. width computations. and
araument rearrangc:p1ent.

. de 80
\&\ \S3\f1\ \SI\h' -\w,\ \SI'u + 1 u'\ \SI\fP\ \S2

The \b and \w commands need no extra
backs lash, as we discussed above, The \cl is
there in case the UlUment beBins with a period.

Two backslashes are needed with the \ \Sa
commands, though, to protect one of them when
the macro is bein. defined. Perhaps a second
example will make this clearer. Consider a
macro called .SH which produces section head­
inas rather like those in this paper, with the sec­
tions numbered automatically, and the title in
bold in a smaller size. The use is

.5H "Section title .•••

(If the aflument to a macro is to contain blanks,
then it must be surroundH by double quotes,
unlike a strin.. where only one leadin. quote is
permitted.)

Here is the definition of the .sH macro:

.nr SH 0 \. initialize section number

.deSH

.sp O.3i

.ft 8

.nr SH \\n(SH+l

.ps \\n(PS-l
\ \n(SH. \\SI
. ps \\n(PS
.sp O:.3i
.ftR

\. increment number
\. decrease PS
\. number. title
\. restore PS

The section number is kept in number register
SH, which is incremented each time just before it
is used. (A number register may have the same
name as a macro without conflict but a strIng
may not.)

We used \\n(SH instead of \n(SH and
\\n(PS instead of \n(PS. If we had used \n(SH.
we would get the value of the register at the time
the macro was de/tf/tfd, not at the time it was
USl!d. If that's what you want. fine. but not here.
SimIlarly, by using \\n(PS, we get the point sIze
at the time the macro is called.

As an example that does not involve
numbers, reail our .NP macro which had a

.tl '!eft'center'right"

We could make these into parameters by usinl
instead

.tl \\·(Lr,\·(CT'\\·(RT'

so the title comes from three strings aBed LT.
CT and RT. If these are ~mptY. then the !HIe
WIll be a blank line. ~ormally CT would be set

- 11 •

with somethinllike

.ds CT - %.

to give just the page number between hyphens
(as on the top of this pale), but a user coul~
supply private definitions for any of the strinlS.

12. Conditionals

Suppose we want the .5H macro to leav~
two extra inches of space just before section ~.
but nowhere else. The cleanest way to do thott \~
to test inside the .SH macro whether the seclioti
number is 1. and add some space if it is. The.~
command provides the conditional test that WO']

can add just before the heading line is OUtput:

.if\ \n(SH -1 .sp 2i \. first section on!~'

The condition after the .it can be anv
arithmetic or logical expression. If the conditio~
is 10lieally trUe, or arithmetically greater than
zero, the rest of the line is treated as if it were
text - here a command. If the condition is
false, or zero or negative, the rest of the line itt
skipped.

It is possible to do more than one com·
mand if a condition is true. Suppose several
operations are to be done before section 1. One
possibility is to define a macro .SI and invoke it
if we are about to do section 1 (as determined by
an .if) .

.de 51
- processinl for section 1 -

.de SH

.if\\n(SH-l.Sl

An alternate way is to use the extended
form of the .if, like this:

.if\\n(SH-l \(.- proceSSing
for section 1 --\1

The braces \(and \) must oc:cur in the positions
shown or you will get unexpected extra lines 111

your OutPUL troif also provides an 'if-else' con·
strUction, which we WIll not go into here.

A condition can be negated by preceding it
with !~ we get the same effect as above (but less
clearly) by using

.if !\\n(SH> 1 .51

There are a handful of other conditions
that can be tested with . if. For example. IS the
current page even or odd?

.if e .tl "even page title"

.if 0 .tl "odd page title"

lives facinl pales different titles when used
inside an appropriate new pale macro.

Two other conditions are t and D, which
tell you whether the formaner is Intr or arotr.

.if t troff stuff .. .

.if n nroff stuff .. .

Finally, strinl comparisons may be made
in an ,if:

.if ' strinl r strinl2' stuff

does 'Stutl' if s,,,,,,1 is the same as s"ing2. The
character separatinl the strinls can be anythinl
reasonable that is not contained in either strinl.
The strinls themselves can reference strinlS with
,-, arlumentS with'S, and so on.

13. E."iroaments
As we mentioned, there is a potential

problem when 10inl across a PIP ~undary:
parameters like size and font for a Pile title may
well be different from those in eft'ect in the text
when the Pile boundary occurs. troft' provides a
very leneral way to deal with this and similar
situations. There are three 'environmentS'. each
of which has independently sellable versions o.f
manv of the parameters usoc:iated with proc:eu­
inl •. includinl size. font, line and title lenlths,
fill/nofill mode. tab stops, and even partially col­
lected lines. Thus the titlinl problem may be
readily solved by processinl the main text in one
environment and titles in a separate one with itS
own suitable parameters.

The command .ev D shiftS to environment
n~ D must be O. I or 2. The command .IV with
no araument returns to the previous environ­
ment. Environment names are maintained in a
stack. so calls for different environmentS may be
nested and unwound consistently.

Suppose we say that the main text is pro­
cessed in environment O. which is where treI'
belins by default. Then we can modify the new
pale macro .NP to process titles in environment
1 like this:

.deNP

.ev 1

.It 6i

.ft R

.ps 10

'" shift to new environment
'" set PIrameters here

... any other processinl ...

.ev \" return to previous environment

It is also possible to initialize the parameters for
an environment outSide the .NP macro. but the

- 12 •

version shown keeps all the proc:essinl in one
place and is thus easier to understand and
chanle.

I... DI.enions

There are numerous occasions in pale lay­
out when it is necessary to store some text for a
period of time without actually printinl it. Foot­
notes are' the most obvious example: the text of
the footnote usually appears in the input well
before the place on Ihe Pile where it is 10 be
printed is reached. In facl, lhe place where il is
output normal!y depends on how bil it is, which
implies that there must be a way to process Ihe
footnote at least enoulh to decide ill size
without printinl it.

Intr provides a mechanism called a diver­
lion for dOinl this processinl. Any part of the
output may be diverted into a macro instead of
beinl printed, and then at some convenient time
the macro may be put back into the input.

The command .1Ii IY belins a diversion -
aU subsequent output is collected into Ihe macro
., until the command .1Ii with no araumenll is
encountered. This terminates the diversion.
The processed texl is available at any time
therafter. simply by livinl the command

.xy

The venical size of the Iasl finished diversion is
contained in the built·in number rqister dn.

As a simple example, suppose we want to
implement I 'keep-release' operation, so that
text between the commands JCS and .ICE will not
be split across a Pile boundary (as for a filure or
table). Clearly, when a .KS is encountered. we
have to belin divertinl Ihe output so we can find
out how bil it is. Then when a .ICE is seen. we
decide whether the divened text will fit on the
cumnt Pile. and print it either there if it fitS. or
al the top of the next PIle if il doesn'l. So:

.de ICS '" SWt keep

.br '" start fresh line

.ev 1 '" collect in new environment

.fi '" make it filled text

.di XX '" collect in XX

.de ICE '" end keep

.M '" pt last partial line

.di '" end diversion

.if \\n(dn> -\\n(.t .bp '" bp if doesn't lit

.nf '" brinl it back in no-fill

.XX '" text

.e\' \" return to normal environment

Recall that number reaister nJ is the current

..
pOSitIon on the output page. Since output was
being diverted. thIs remains at its value when the
diversion started. dn is the amount of text in
the diversion; .t (another built-in register) is the
distance to the next trap. which we assume is at
the bottom margin of the page. If the diversion
is large enough to go past the trap. the .if is
satisfied, and a .bp is issued. [n either case, the
divened output is then brought back with .xx. It
is essential to brina it back in no-fill mode so
Iroff will do no funhet processina on it.

This is not the most general keep-release,
nor is it robust in the face of all conceivable
inputs, but it would require more space than we
have here to wnte it in full generality. This sec­
tion is not intended to teach everything about
diversions, but to sketch out enough that you
can read existing macro packaaes with some
comprehension .

. "-c:knowledllements

I am deeply indebted to 1. F. Ossanna, the
author of troff. for his repeated patient explana­
tions of fine points. and for his continuing wil­
lingness to adapt ttoff to make other uses easier.
I am also grateful to Jim Blinn. Ted Dolotta.
Doug ~fcUroy. Mike Lesk and Joel Sturman for
helpful comments on this paper.

References

(11 1. F. Ossanna, NROFFITROFF User's
Manual. Bell laboratories Computinl Sci­
ence Technical Repon 54. 1976.

(21 B. W. Kernighan • ..., System for Typesetrll'fg
Jfathema(fcs - User's GUide (Second Edi­
I/on). Bell Laboratones Computing Science
Technical Repon 17. 1977.

[3 I M. E. Lesk. TBL - A Program to Format
Tables. Bell Laboratones Computing Sci­
ence Technical Repon 49. 1976.

[41 M. E. Lesk. TYPlI'ff Documents on UNIX.
Bell Laboratortes. 1978.

[51 1. R. Mashey and D. W. Smith. PWBI.~M
- !'rOf{rammer's Workbench '\"emorandum
~facros. Bell Llboratories internal
memorandum.

- 13 -

- 14 -

Appendix A: Pbototypesetter Character Set

These characters exist in roman, italic, and bold. To get the one on the left, type the four-character
name on the right.

ft" \(ft" fi \ (fi ft \(ft ffi \(Fi m \(FI
\(ru \(em 1/. \(14 III \02 Ji4 \(34

e \(co 0 \(de t \(dg \(fm ¢ \ (Cl

• \(rg • \(bu CJ \(Sq - \(hy
(In bold, \ (sq is • .>

The foUowing are special-font characters:

+ \(pl \(mi x \(mu .;- \(di
\(eq - \(-- ~ \(>- ~ \«-

~ \0- :!: \(+- \(no / \(sl
\(ap == \(-- ex: \(pt "il \(gr
\(-> \«- \(ua 1 \(da

J \(is a \(pd \(jf .J \(sr
c \(sb ::> \(sp u \(cu n \(ca
~ \(jb ~ \(jp E \(mo 0 \(es

\(aa \(ga 0 \(ci @ \(bs
§ \(sc * \(dd ,. \<Ih ,.. \(rh

I \ <It 1 \ (rt \<Ic 1 \(rc

l \(Ib J \(rb \ (If J \(rf
(\Ok J \(rk \(bv -~ \<ts

I \(br \(or \(ul - \(rn
\(..

These four characters also have two-character names. The ' is the apostrophe on terminals; the ' is the
other quote mark.

\' \' \- \-

These characters exist only on the special font. but they do not have four-character names:

< > \ # @

For greek. precede the roman letter by \(. to get the corresponding greek; for example, \(•• is a.

abgdezyhiklmncoprstufxqw
a~yB('~9LK~~V~O~PUTV~~WW

ABGDEZYHIKLMNCOPRSTUFXQW
ABr4EZHeIKAMN=OnpITY~X~n

- - -----------

Introduction

NROFF/TROFF User's Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill. New Jersey 07974

NROFF and TROFF are text processors under the PDP-II UNIX Time-Sharing System! that format text
for typewriter-like terminals and for a Graphic Systems phototypesetter. respectively. They accept lines
of text interspersed with lines of format control information and format the text into a printable.
paginated document having a user-designed style. NROFF and TROFF offer unusual freedom in docu­
ment styling. including: arbitrary style headers and footers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs. sections. etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstrik­
illg. bracket construction. and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and is
capable of utilizing the full resolution of each terminal.

Usale

The general form of invoking'NROFF (or TROFF) at UNIX command level is

nroff options jiles (or troff options jiles)

where options represents any of a number of option arguments and jiles represents the list of files con­
taining the document to be formatted. An argument consisting of a single minus (-) is taken to be a
file name corresponding to the standard input. If no file names are given input is taken from the stan­
dard input. The options. which may appear in any order so long as they appear before the files. are:

Option ~ect

-0 list Print only pages whose page numbers appear in list. which consists of comma­
separated numbers and number ranges. A number range has the form N-M and
means pages N through M; a initial - N means from the beginning to page N; and
a final N - means from N to the end.

-nN Number first generated page N.

-sN Stop every N pages. NROFF will halt prior to every N pages (default N-l) to
allow paper loading or changing. and will resume upon receipt of a newline.
TROFF will StOP the phototypesetter every N pages. produce a trailer to allow
changing cassettes. and will resume after the phototypesetter START button is·
pressed.

-mname Prepends the macro file /asr/Ilb/tmac.name to the input jiles.

-raN Register a (one-character) is set to N.

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request .

..

- 1 -

. _ .. _._------------------------- ----------_._.

NROFF/TROFF User's Manual
October 1l, 1976

NROFF Only

- T /fame Specifies the name of the output terminal type. Currently defined names are :;'J
for the (default> Model 37 Teletype", faJOO for the GE TermiNet 300 (or any t\&t'­
minal without half-line capabilities), 300S for the DASI-300S. 300 for the D . .,.s1!~
300, and 450 for the DASI-450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines. usin. full terminal resolution.

TROF' Ollly

-t Direct output to the standard output imtead of the phototypesetter.

- f Refrain from feeding out paper and stopping phototypesetter at the end of the rt!lI'J.

-w Wait until phototypesetter is available. if currently busy.

-b TROFF will repon whether the phototypesetter is busy or available. No text pro-
cessing is done.

-a Send a printable (ASCII) approximation of the results to the standard output.

-pN Print all characters in point size N while retaininl all prescribed spac:inp ana
motiom. to reduce phototypesetter elasped time.

-I Prepare output for the Murray Hill Computation Center phototypesetter and direct
it to the standard output.

Each option is invoked as a separate argument; for example.

uro. -04.8-10 -T JOOS -mabc file} file1

requests formatting of pages 4, 8. 9, and 10 of a document contained in the files named fild and fi:Ii,,-:'
specifies the output terminal as a DASI-lOOS. and invokes the macro packale abc.

Various pre- and post-processors are available for use with NROFF and nOFF. These include t~,?
equation preprocessors NEQN and EQN2 (for NROFF and nOFf reSlJectively), and the tab\~'"
construction preprocessor TBll. A reverse-line postprocessor COL" is available for multiple-colun':;;,
~ROFF output on terminals without reverse-line ability; COL expects the Model 31 Teletype escaro"
sequences that NROFF produces by default. TK" is a 37 Teletype simulator postprocessor for printin~
:-I'ROFF output on a Tektronix 4014. TCA r is phototypesetter-simulator postprocessor for TROFF tiw
produces an approximation of phototypesetter output on a Tektronix 4014. For example, in

tbl file! I eqa I tro. -t opt'OIU I fcat

the first I indicates the piping of TBl's output to EQN's input~ the second the piping of EQN's output r,:'

TROFF's input; and the third indicates the piping of TROFF's output to TCAT. GCAr can be used k,

send TROFF (-z) output to the Murray Hill Computation Center.

The remainder of this manual consists of: a Summary and Index~ a Reference Manual keyed to thl~
tndex~ and a set of Tutorial Examples. Another tutorial is [51.

Joseph F. Ossanna

References

(I) K. Thompson. 0, M. Ritchie. UNIX Programme,s Jlanual, Sixth Edition (May 1975).

(21 B. W, Kernighan. L. L. Cherry. TYfH!3erting .'.fathematics - User's GUIde (Second Edition), Bell Laboratori~
internal memorandum.

(3 I M. E. Lesk. 101 - A Program to Formal Tabla. Bell Laboratories internal memorandum.

[4) Internal on-line documentation. on UNIX.

(5) B. W, Kernighan. A TROFF TutonaL Bell Laboratones internal memorandum.

- 2 -

,

NROFF/TROFF User's Manual
October 11, 1976

SUMMARY AND INDEX

Request /nltllli 1/ No
Form VlIlue- Argument NOles# Explllnlllion

1. General Explanation

1. Font and Character Size Control

.ps ±N 10point previous E

.55 N 12/36 em ignored E

.cs FNM off P

.beI F N off P

.beI S F N off P
• ft F Roman previous E
• fp N F R.I,B,S ignored

3. Pace Control

• pl ±N 11 in 11 in l'
.bp ±N N-l B*,l'
.pn ±N N-l ignored
• po ±N 0; 26/27 in previous l'
.ne N N-IV D,l'
.mk R none internal D
.rt ±N none internal D,l'

4. Text FllUDC. Adjustinl. and Centerinl

.br B

. n fill B.E
~f'~ B~
.... c adj, both adjust E
. na adjust E
• ce N off N-l B.E

5. Vertical Spacinc

• \'5 N 1/6in;12pts previous
• 15 N N-1
.sp N
.Sl' N
• 05

.ns

.rs
space

previous
N-IV
N-IV

6. Line Lenctb and Indentinl

E,p
E
B,l'

D
D

Point size; also \s±N.t
Space-character size set to NI36 em. t
Constant character space (width) mode (font F). t
Embolden font F by N-l units. t
Embolden Special Font when current font is F.+
Change to font F - x, .n; or 1-4. Also \fx. \f(xx. \f' ...
Font named F mounted on physical position 1 ~ N~ 4 .

Page length .
Eject current page; next page number N.
Next page number N.
Page offset .
Need N vertical space (V - venical spacing).
Mark current vertical place in register R.
Return (upward only) to marked vertical place.

Break .
Fill output lines.
No filling or adjusting of output lines.
Adjust output lines with mode c .
No output line adjusting .
Center following N input text lines.

Vertical base line spacing (Y) .

Output N-l Vs after each text output line .
Space vertical distance N in either direction.
Save vertical distance N.
Output saved venical·distance .
Turn no-space mode on.
Restore spacing; tum no-space mode off.

.11 :. N 6.5 in previous E.m Line length .
• in ± N N-O previous B.E.m Indent.
.ti ± N ignored B.E.m Temporary indent.

7. Macros. Strincs, Diversion, and Position Traps

.de xx yy .yy-.. Define or redefine macro xx; end at call of yy .

. am xx yy .yy-.. Append to a macro .

. ds xx sIring - ignored Define a string xx containing string .

. as xx sIring - ignored Append string to string xx.

·Values separated by';" are for NROFF and nOFF respectively.

#Notes are explained at the end of this Summary and Index
+No effect in NROFF.

:The use of" • " IS control character (instead of",") suppresses the break funclJon.

- 3 .

-------------.--~- ---~ -

NROFF/TROFF User's Manual
October 11, 1976

UNo R~quat
Form

Ittitilll
'Yalue A,,,,,,,e,., Nota Exp/II,.IItlo,.

.rID :a

.m :ayy

.eli :a

.0 :a

. wb N:a

. cb xx N

.dt N:a

.It N xx

.em xx none

8. Number Reaisten

.nr R :l:N M
• af R c arabic
.n R

ignored
ignored
end
end

off
off
none

9. Tabs, Leaden, and Flelds

.ta Nt ... 0.8; O.Sin none
~re c none none
.Ie c none
.lc: II b oft off

o
D
T

T

D,T
E

..

E,III
E
E

Remove request, macro, or strinl.
Rename request, macro, or strinl X% to yy.
Divert output to macro :0:.

Divert and append to :0:.

Set location trap; negative is "'.r.t. Pile bottom •
Chanle trap location .
Set a diversion trap.
Set an input-line count trap.
End macro is X%.

Define and set number register R; auto-increment by !Ji!..:
Assilll format to register R (c-l, I. I, a, A) .
Remove register R.

Tab settinp; (~ft type, unless ,-Il(ril111), C(centeredi.
Tab repetition character.
Leader repetition character .
Set field delimiter II and pad character b.

10. Input and Outpat ConTentions and Character Translations

.ec c \ \ Set escape character .

. eo on Turn oft esCape character mechanism •

. JI N -; on on Ligature mode on if N>O .
• 111 N off N-l E Underline (italicize in nOFF) Ninput lines.
.cu N oft N-l E Continuous underline in NR.OFF; like .. 1 in nOFF .
. af F Italic Italic Underline font set to F (to be switched to by uU .
• cc: c E Set control character to c.
.cZ c E Set no break control character to c.
.tt abed.... none 0 Translate a to b. etc. on output.

11. Local Horizontal and Vertical Motions. and tbe Wldtb Function

12. Oyentrike. Bracket. LlnHnwinl. and Zero-widtb Functions

13. Hypbenatlon •

. Db hyphenate - E No hyphenation .

. hy N hyphenate hyphenate E Hyphenate; N - mode .
Hyphenation indicator character c.
Exception words.

. he c \~ \~ E

.hw wordl ... ignored

14. Three Part Titles •

. tt . left' center' right'
• pc c % oft
. It :I: N 6.S in previous

IS. Output Line Numberinl •

. Dm :: N M S I oft

.nn N N-l

16. Conditional Acceptance of Inllut

.if c anything

Three pan title .
Page number character.

E.m Length of title .

E Number mode on or oft. set parameters.
E 00 not number next NUnes.

If condition c true. accept anything as input,
for muJti-line use \{anything\}.

NROFF/TROFF User's Manual
October II, 1976

UNo R~qu~st

Form
Initial
Yalu~ Argument Notes Explanation

• if ! e anything
• if N anything
.if !N anything
• if 'string]' string]' anything
• if !' string]' string]' anything
• Ie e anything
• el anything

17. Environment Switching.

. ev N MaO previous

u
u

u

18. Insertions from the Standard Input

.rd prompt
• ex

prompt-BEL·

19. Input/Output rile Switching

• so filename
.nx filename
• pl program

10. Miscellaneous

end·of-file -

E.m

If condition c false, accept anything .
If expression N > 0, accept anything .
If expression N ~ O. accept anything .
If string1 identical to string]. accept anything .
If string1 not identical to string], accept anything .
If portion of if-else; all above forms Oike if) .
Else portion of if-else .

Environment switched (push down) .

Read insertion.
Exit from NROFF/TROFF .

Switch source file (push down) .
Next file.
Pipe output to program (NROFF only) .

Set margin character e and separation N. .mc eN
.tm string
• 11 yy
.pm t

off
newline
.)'Y-••

Print string on terminal (UNIX standard message output).
Ignore till call of JIY •

all Print macro names and sizes;

.n B
if t present. print only total of sizes.
Flush output buffer.

11. Output and Error Messages

Notes-

B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
0 Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical output.

v,p.m,u Default scale indicator; if not specified. scale indicators are ignored.

Alphabetical Request and Section Number Crol. Reference

ad 4 cc 10 ds 7 fe: 9 ie 16 11 6 nh 13 pi 19 m 7
If 8 ce 4 dt 7 Ii 4 if 16 Is 5 nml5 pi 3 rr 8
am 7 e:h 7 ee: 10 n 20 il 20 It 14 nn 15 pm 20 rs 5
IS 7 cs 2 el 16 fp 2 in 6 me: 20 nr 8 pn 3 rt 3
bd 2 c:u 10 em 7 ft 2 it 7 mk 3 ns 5 po 3 so 19
bp 3 cia 7 eo 10 he: 13 Ie: 9 na 4 nx 19 ps 2 sp 5
br 4 de 7 ev 17 hw 13 II 10 ne 3 os 5 rd 18 55 2
c2 10 di 7 ex 18 hy 13 Ii 10 nf 4 pc: 14 rm 7 5V 5

·5·

ta 9 vs S
te: 9 wh 7
ti 6
tl 14
tm 20
If 10
uf 10
ul 10

NROFF/TROFF User's Manual
October 11. 1976

Escape Sequences for Chancters, Indicators. Ind Functions

Stletio"
RtI/tln"c.

10.1
10.1
2.1
2.1
2.1
1

11.1
11.1
11.1
11.1
4.1

10.6
10.1
7.3

13
2.1
7.1
9.1

12.3
4.2

11.1
2.2

11.1
11.3
12.4
12.4
8

12.1
4.1

11.1
2.3
9.1

11.1
11.1
11.2
5.2

12.2
16
16
10.7

&e"lM
Stlq"."ctl

\\
\e
\'
\'
\-
\.
\(space)
\0
\1 \ ..
\.
\!
\-
\SN
\~
\Cxx
\.x. \·(xx
\.
\It' abc ••• •
\c
\d
\(;c.\I(.xx.\tN
\b'N'
\kx
\1 'Ne'
\L' Nc'
\n;c.\n(xx
\0' abc •.• '
\p
\r
\sN. \s%N
\1
\u
\y'N'
\ w' stri",'
\x',V'
\ze
\{
\}
\ (newline)
\X

M.""i".
\ (to prevent or delay the interpretation of\)
Printable version of the cu~", escape character.
• (acute accent>: equivalent to \ Ca.
• (anve accent>; equivalent to \C ••
- Minus sian in the cu~"t font
Period (dot) (see de>
U npaddable space-size space character
Disit width space
116 em narrow space character (zero width in NROFF)
1112 em half-narrow space character (zero width in NROFF)
Non-printinl. zero width character
Transparent line indicator
Belinninl of comment
Interpolate argument 1 ~ N~9
Default optional hyphenation character
Character named xx
Interpolate strinl x or xx
Non-interpreted leader character
Bracket buildinl function
Interrupt text processins
Forward (down) 1/2 em venical motion (I/2 line in NROFF)
Chanse to font named x or .xx. or position N
Local'horizontal motion: move rilht N (ntlgrztiwt'tljt)
Mark horizontal i"put place in resister x
Horizontal line drawinl function (optionally with c)
Vertical line drawinl function (optionally with c)
Interpolate number relister x or xx
Overstrike characters a, b, e, ...
Break and spread output line
Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1/2 em vertical motion (1/2 line in NROFF)
Loc:aJ vertical motion: move down N ("tlgrztiW! up)
Interpolate width of stri",
Extra line-space function (ntl,atiw! btl/o,.., pos;tiwt after)
Print c with zero width (without spacinl)
Begin conditional input
End conditional input
Concealed (ignored) newline
X. any character not listed above

The escape sequences \\, \ .. \-, \$. \-, \a. \n. \t. and \(newline) are interpreted in copy mode (§7.2>'

• 6 -

NROFF/TROFF User's Manual
October 11, 1976

PredefiDed General N umber Registers

S~ctio1f

R~/~n1fc~

3
11.2
7.4
7.4

11.3
15

4.1
11.2
11.2

R~giJt~r
NGm~]Hscriptio1f

% Current page number.
ct Character type (set by width function).
dl Width (maximum) of last completed diversion.
dn Height (vertical size) of last completed diversion.
dw Current day of the week 0-7).
dy Current day of the month (1-31).
bp Current horizontal place on inpulline.
ID Output line number.
mo Current month 0-12>.
DI Venical position of last printed text base-line.
sb Depth of string below base line (generated by width function)'
st Height of string above base line (generated by width function).
yr Last two digits of current year.

Predefined Read-ODly Number Resisters

S~etjo1f R~gtn~r

R~/~n1fe~ NGm~

7.3 .S
. A

11.1 .H
. T

11.1 .V
5.2 .a

• c
7.4 .d
2.2 .r
4 .b
6 .i
6 • 1
4 .D
3 .0
3 • p
2.3 . s
7.5 • t
4.1 .u
5.1 .V

11.2 . w
• x
• y

7.4 • Z

Duerlption

Number of arguments available at the current macro level.
Set to 1 in TROFF. if -a option used; always 1 in NROFF .
Available horizontal resolution in basic units. .
Set to 1 in NROFF, if -T option used; always 0 in TROFF .
Available vertical resolution in basic units.
Post-line extra line-space most recently utilized using \x' N'.
Number of /in~s read from current input file .
Current vertical place in current diversion; equal to DI, if no diversion.
Current font as physical quadrant (1-4).
Text base-line high-water mark on current page or diversion.
Current indent .
Current line length .
Length of text portion on previous OUtput line.
Current page offset.
Current page length .
Current point size .
Distance to the next trap .
Equal to 1 in fill mode and 0 in nofill mode.
Current vertical line spacing.
Width of previous character .
Reserved version-dependent register .
Reserved version-dependent register .
Name of current diversion .

- 7 -

NROFF/TROFF User's Manual
October ll, 1976

1. General Explanation

REFERENCE MANUAL

1.1. Form of input. Input consists of let Ilna, which are destined to be printe~ interspersed with control
lin~s. which set parameters or otherwise control subsequent processinl. Control lines bqin with a con­
lrol character-normally. (period) or • (acute accent>-followed by a one or two character name tbat
specifies a basic ~quat or the substitution of a user-defin~ macro in place of the control line. The
control character' suppresses the b~ak function-the forced output of a partially tilled line-caused by
certain requests. The control character may be separated from the request/macro name by white space
(spaces andlor tabs) for esthetic reasons. Names must be followed by either space or newline. Control
lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an e3lCape character,
normally \. For example, the function \nR causes the interpolation of the contents of the number ~g;s.
ter R in place of the function; here R is either a sinlle character name as in \nx, or left-parenthesis­
in troduced, two-character name as in \a (;ex.

1.2. Formatter and device nsolUlion. nOFF internally uses 432 units/inch, COtreSl'On:dinl to the Grapbic
Systems phototypesetter wbich has a horizontal resolution of 1/432 inch and a vertical resolution of
1/144 inch. NROFF internally uses 240 units/inch, cOrTeSl'Ondinl to the leUl common multiple of the
horizontal and vertical resolutions of various typewriter-liice output devices. nOFF rounds
horizontal/vertical numerical puameter input to the actual horizontal/vertical resolution: of the Graphic
Systems typesetter. NROFF similarly rounds numerical input to the actual resolution of the output dev­
ice indicated by the -T option (default Model 37 Teletype).

1.1. Num~ricai parameter input. Both NROFF and nOFF aa:ept numerical input with the appended scale
indicators shown in tbe foUowinl table, where S is the current type size in points, Y is the current verti­
cal line spacinl in basic units, and C is a nominai charact~r Width in basic units.

Scale Number of basic units
Indicator Meaninl .nOFF NROFF

1 Inch 432 240
e Centimeter 432xSO/127 240xSO/127
P Pica - 1/6 incb 72 240/6
III Em - Spoints 6xS C
a En - Em/2 3xS C. same as Em
p Point - 1/72 inch 6 240/72 .. Basic unit 1 1
y Vertical line space Y yo

none DefaUlt. see below

In ~ROFF, both the em and the en are taken to be equal to the C. wbich is output-device dependent;
common values are 1/10 and 1/12 inch. Actual character widths in !IlROFF need not be aU the same
and constructed characters such as -> (-) are often exua wide. The default scalinl is ems for the
horizontaUy-oriented requests and functions II, ia. t1. ta, It. po. me:, \h. and \1: Vs for the verticaUy­
oriented requests and functions pl. "II, ch. dt. sp. SY. ae. n. \ y. \x. and \L~ p for the Y!I request: and
Q for the requests IIf. if. and ie. All other requests ignore any scale indicators. When a number regis­
ter containing an already appropriately scaled number is interpolated to provide numerical input, the
unit scale indicator .. may need to be appended to prevent an additional inappropriate default scalins.

- 8 -

NROFF/TROFF User's Manual
October 11. 1976

The number, N. may be specified in decimal-fraction form but the parameter finally stored is rounded
to an integer number of basic units.

The absolute position indicator I may be prepended to a number N to generate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, I N becomes the distance in basic
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For
all other requests and functions. IN becomes the distance from the current horizontal place on the input
line to the horizontal place N. For example,

.sp 13.2c

will space in the required direction to 3.2 centimeters from the top of the page.

1.4. Numertcal expressions. Wherever numerical input is expected an expression involving parentheses.
the arithmetic operators +, -, I, ., 'Ie (mod), and the logical operators <, >, <-, >-, - (or --J.
" (and), : (or) may be used. Except where controlJed by parentheses, evaluation of expressions is
left-to-right; there is no operator precedence. In the case of certain requests, an initial + or - is
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default
scaling, the desired scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains 2 and the current
point size is 10, then

.11 (4.25l+\nxP+3) 12u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ::: N means that the
argument may take the forms N, +N, or -N and that the corresponding effect is to set the affected
parameter to N, to increment it by N, or to decrement it by_ N respectively. Plain N means that an mi­
tial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative 'values; exceptions are sp, wh, ch, Dr. and if. The requests
PS, ft. po, vs, Is. 11, in. and It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnemonics.

1. Font aDd Character Size Control

2.1. Character set. The TROFF character set consists of the Graphics Systems Commercial II character
set plus a Special Mathematical Font character set-each having 102 characiers. These character sets
are shown in the attached Table I. All ASCII characters are included, with some on the Special Font.
With three exceptions. the ASCII characters are input as themselves. and non-ASCII characters are input
in the form \(.xx where .xx is a two-character name given in the attached Table II. The three ASCII
exceptions are mapped as follows:

ASCII Input Printed by TROFF
Character Name Character Name .

acute accent
,

close quote .
grave accent • open quote

- minus. - hyphen

The characters " .. and - may be input by \', \', and \- respectively or by their names (Table m,
The ASCII characters @, #, ., " " <, >, \, (,) .• , -, and _ exist only on the Special Font and are
printed as a I-em space if that Font is not mounted'.

NROFF understands the entire TROFF character set, but can in general print only ASCII characters.
additional characters as may be available on the outPUt device. such characters as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into other
printable dlaracters. The exact behavior is determined by a drivmg table prepared for each device. The

- 9 -

NROF'F/TROF'F User's Manual
October 11, 1976

characters', '. and _ print as themselves.

2.2. Fona. The default mounted fonts are Times Roman (R>, Times Italic (I), Times Bold (B). and
the Special Mathematical Font (5) on physical typesetter positions 1. 2. 3. and 4 respectively. These
fonts are used in this document. The cu"~nl font. initially Roman. may be changed (amona the
mounted fonts) by use of the tt request. or by imbedding at any desired point either \fx. \f(xx, or \IN
where x and :r:x are the name of a mounted font and N is a numerical font position. It is not necessary
to change to the Special font; characters on that font are automatically handled. A request for a named
but not-mounted font is ;gnomi. TROFF can be informed that any particular font is mounted by use oC
the r, request. The list oC mown fonts is installation dependent. In the subsequent discussion of
font-related requests. F represents either a one/two-character font name or the numerical font position.
1-4. The current font is available (as numerical position) in the read-only number register .f.

NROFF understands font control and normally underlines Italic characters (see §la.S).

2.3. Cha1tlctl' sal. Character point sizes available on the Graphic Systems typesetter are 6. 7. 8. 9. 10,
11. 12. 14, 16. 18. 20. 22. 24. 28. and 36. This is a ranle of 1/12 inch to 1/2 inch. The p. request is
used to chanae or restore the point size. Alternatively the point size may be chan led between any two
characters by imbeddina a \sN at the desired point to set the size to N. or a \s -: N (1 < N< 9) to
increment/decrement the size by N; \sO restores the p~;ora size. Requested point size values that ate
between two valid sizes yield the laraer of the two. The current size is available in the .s rcaistet.
NROFF ianores type size control

Rlqual /11111111 q No
Form Ya/u A,.,.,III.1I1 Nota- Ezpllllltltioll

.ps :N 10 point previous

.SI N 12/36 em ignored

.c:s FNM off

. bel F ,V off

E

E

P

p

Point size set to -:N. Alternatively imbed \sN or \s-:N.
Any positive size value may be requested; if invalid. the
next laraer valid size will result. with a maximum of 36.
A paired sequence + N, - N will work because tbe previ­
ous requested value is also remembered. Isnored in
·NROFF.

Space-character size is set to N/36 ems. This size is tbe
minimum word spacinl in adjusted text. Iinored in
NROFF.

Constant character space (width) mode is set on for font
F Or mounted)~ the width of every character will be
taken to be NI36 ems. If M is absent. the em is that of
the character's point 5ize~ if M is given. the em is M·
points. All affected characters are centered in this space.
including those with an actual width larger than this
space. Special Font characters occurring while the
current font is F are also 50 treated. If N is absent. the
mode is turned otf'. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF .

The characters in font Fwill be artificially emboldened by
printing each one twice. separated by N-l basic units. A
reasonable value for N is 3 when the character size is in
the vicinity of 10 points. If N is missing the embolden
mode is turned off. The column heads above were
printed with .W I 3. The mode must be still or again in
effect when the characters are physically pnnted. Ignored
in NROFF.

·~o,es are explained at the end of the Summary and (ndex above.

- 10 -

NROFF/TROFF User's Manual
October II, 1976

.beI 5 F N off

.ft FRoman previous

.fp N F R,I,B,S ignored

3. Page eoatrol

P

E

..

The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed
with .bd 5 B 3. The mode must be still or again in effect
when the characters are physically printed.

Font changed to F. Alternatively, imbed \fF. The font
name P is reserved to mean the previous font.

Font position. This is a statement that a font named F is
mounted on position N (1-4). It is a fatal error if F is
not known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by TROFF is R. I. B,
and S on positions 1, 2, 3 and 4.

Top and bottom margins are not automatically provided; it is conventional to define two macros and to
set Iraps for them at vertical positions 0 (top) and -N (N from the bottom). See §7 and Tutortal
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs or
when the first non-divened text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the current diversion
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the
former considered as the top diversion level).

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches. beginning about
1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on
NROFF output are output-device dependent.

Request Illitial 1/ No
Fo"" Value ..4rpmellt Notes Exp/allatloll

.pl ±N 11 in 11 in

.bp ±N

.pn ±N N-l ignored

.po ±N 0; 26/27 int previous

.ae N N-l V

v Page length set to ± N. The internal limitation is about
75 inches in TROFF and about 136 inches in NROFF.
The current page length is available in the ,p register.

B- ," Begin page. The current page is ejected and a new page
is begun. If ± N is given, the new page number will be
± N. Also see request as.

Page number. The next page (when it occurs) will have
the page number ±N. A pn must occur before the ini­
tial pseudo-page transition to effect the page number of
the first page. The current page number is in the 0/0
register.

v Page offset. The current left margin is set to ± f.,: The
TROFF initial value provides about 1 inch of paper ma!­
gin including the physical typesetter margin of 1/27 inch.
In TROFF the maximum (line-length) + (page-offset I is
about 7.54 inches. See §6. The current page offset IS

available in the .0 register.

D,Y Need N vertical space. If the distance. D. to the next
trap position (see §7.S) is less than N. a forward vertical
space of size D occurs, which will spring the trap. If
there are no remaining traps on the page. D is the

"The use of' • , u control character <instead of".") suppresses the break function.

tValues separated by';" are for NROFF and nOFF respectivelY.

- 11 -

NROFF/TROFF User's Manual
Octobet 11, 1916

.mk R none internal

.n ±N none internal

o

D,T

distance to the bottom of the page. If D < V. another
line could still be output and spring the trap. In a diver­
sion. D is the distance to the divenion t,ap. if any. or is
very large.

Mark the cu"ent venical place in an internal register
(both associated with the current diversion level). or in
register R. if given. See n request.

Return upward only to a marked vertical place in the
current diversion. If ±N (w.r.L current place) is given,
the place is ± N from the top of the page or diversion or,
if N is absent, to a place marked by a previous DIk. Note·
that the sp request (§S.3) may be used in all cases
instead of n by spacinl to the absolute place stored in a
explicit register; e. II. usinl the sequence .mk R .••
• Sp /\DRIa.

4. Text FUIIDI. AdjastiDI. IDd CeDteriDI

4.1. Filling and adjulting. Normally, words are collected from input text lines and assembled into a out­
put text line until some word doesn't tiL An altempt is then made the hyphenate the word in effort to
assemble a part of it into the output line. The spaces between the words on the output line are then
increased to spread out the line to the current line length minus any current indent A wo,d is any strinl
of characters delimited by the space character or the beginninlJ/end of the input line. Any adjacent pair
of words that must be kept together (neither split across output lines nor spread apan in the adjustment
process) can be tied together by separating them with the unpaddtlbk spa~ character -, • (backs Iash­
space). The adjusted word spacings are uniform in nOFF and the minimum interword spacinl can be
controlled with the ss request (§2L In NROFF, they are normally nonuniform because of quantization
to character-size spaces; however. the command line option -e causes uniform spacinl with full output
device resolution. Filling. adjustment. and hyphenation (§13) can all be prevented or controlled. The
tat length on the last line output is available in the .D register, and text base-line position on the pale
for this line is in the 01 register.· The text base-line high-water mark (lowest place) on the current pap
is in the .h register.

An input text line ending with " ?, or ! is taken to be the end of a s~nt~n", and an additional space
character is automatically provided during filling. Multiple inter-word space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a b~alc.

When filling is in effect. a \p may be imbedded or attached to a word [0 cause a b~ak at the end of the
word and have the resulting output line spnad out to fill the current line length.

A text input line that happens to begin with a control character can be made to not look like a conuol
line by prefacing it with the non-printing. zero-width filler character \A. Still another way is to specify
output translation of some convenient character into the control character using tr (§lO.S).

4.2. Interrupted tat. The copying of a input line in nojil! (non-fill) mode can be interrupted by terminat­
ing the partial line with a \c:. The nut encountered input text line will be considered to be a continua­
tion of the same line of input text. Similarly. a word within filled text may be interrupted by terminat­
ing the word (and line) with \c:: the next encountered text will be taken as a continuation of the inter­
rupted word. If the intervening control lines cause a break. any panial line will be forced out along
with any partial word.

R~quat fllitial
Fa"" VailU!

.br

lI.vo
Arrumellt Nota Explallatioll

B Break. The filling of the line currently being collected is
stopped and the line is output without adjustment. Text
lines beginning with space characters and empty text
lines (blank lines) also cause a break.

- 12 -

NROFF/TROFF User's Manual
October 11. 1976

.n fill on

.nf fill on

.ad c adj,both adjust

.na adjust

.ce N off N-I

5. Vertical Spacinc

a,E

a.E

E

E

a.E

Fill subsequent output lines. The register .u is 1 in fill
mode and 0 in nofill mode.

Noftl!. Subsequent output lines are neither filled nor
adjusted. Input text lines are copied directly to output
lines without regard for the current line length.

Line adjustment is begun. If fill mode is not on, adjust·
ment will be deferred until fill mode is back on. If the
type indicator c is present, the adjustment type is
changed as shown in the following table.

Indicator
1
r
c

b or D

absent

Adjust Type
adjust left margin only
adjust right margin only
center
adjust both margins
unchanged

Noadjust. Adjustment is turned off: the right margin will
be ragged. The adjustment type for ad is not changed.
Output line filling still occurs if fill mode is on.

Center the next N input text lines within the current
Wne-length minus indent). If N-O, any residual count
is cleared. A break occurs after each of the N input
lines. If the input line is too long, it will be left adjusted.

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can be
set using the \'S request with a resolution of 1/144 inch - 1/2 point in TROFF. and to the output device
resolution in NROFF. V must be large enough to accommodate the character sizes on the affected out·
put lines. For the common type sizes (9-12 points), usual typesetting practice is to set V to 2 points
greater than the point size; TROFF default is 10-point type on a 12-point spacing (as in this document).
The current V is available in the .v register. Multiple- V line separation (e. g. double spacing) may be
requested with Is.

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function \x' N' can be imbedded
in or attached to that word. In this and other functions having a pair of delimiters around their parame­
ter (here'), the delimiter choice is arbitrary. except that it can't look like the continuation of a number
expression for N. If N is negative, the output line containing the word will be preceded by N extra
vertical space; if N is positive, the output line containing the word will be followed by N extra vertical
space. If successive requests for extra space apply to the same line. the maximum values are used.
The most recently utilized post-line extra line-space is available in the ,. register.

5.3. Blocks oj ~rtical spac~. A block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space past a trap. A contiguous block of vertical space may be
reserved using sv.

R~qu~:rl IIIIIIal
Form Yalu~

UNo
Arrum~nl

,vs N 1/6in;12pts previous

,Is N N-I previous

NOI~s Explallalion

E,p

E

Set vertical base-line spacing size V. Transient extra
vertical space available with \x' N' (see above).

Line spacing set to ::: N. N-l Vs (blank lines) are
appended to each output text line. Appended blank lines
are omitted. if the text or previous appended blank line

- 13 -

NROFP/TROFP User's Manual
October II, 1976

.sp N ~IV

.Sy N N-IY

.OS

.as space

.rs space

BlanJc text line.

,. Llae Lenltll alltl Indeatial

B,y

o

o
B

reached a trap position.

Space venicaJly in titho direction. Ir N is neptive, the
motion is btlckwtlni (upward) and is limited to the dis­
tance to the top of the Pille. Forward (downward)
motion is truncated to the distance to the nearest trap. Ir
the no-space mode is on, no spacinl occurs (see as, and
n below).

Save a contiluous venica1 block of size N. Ir the dis­
tance to the next trap is areater than N. N vertical space
is outpuL No-space mode has 110 eft'ecL Ir this distance
is less tban N, no venicaJ space is immediately output,
but N is remembered for later output (see GS). Subse­
quent Sy requests will overwrite any still remembered N.

Output saved venical space. No-space mode has 110

eft'ecL Used to finally output a block or vertical space
requested by an earlier sy request.

No-space mode turned on. When on, the no-space mode
inhibits sp requests and bp requests without a next pace
number. The no-space mode is turned off when a line of
output occurs, or with n.
Restore spacinl- The no-space mode is turned off.

Causes a break and output of a blank line exactly like
sp 1.

The maximum line lenlth for flll mode may be set with II. The indent may be set with ia; an indent
applicable to Ollly the lltat output line may be set with tie The line lenlth includes indent space but II0t
pale oil'set space. The line-Ienlth mi1lus the indent is the basis for centerinl with ce. The eft'ect of II,
la. or tt is delayed. if a partially collected line exists, until after that line is outpuL In 811 mode the
length of text on an output line is less than or equat to the line lenlth minus the indenL The current
line length and indent are available in registers .1 and .1 respectively. The lenlth of thre-pan litl6~ pro­
duced by t1 (see §!4) is illa/Mlldelltty set by It.

R~qfl'# 111;11111 UNo
Fa"" Val". "',.",,,,e,,' Note~ &plllllIl11011

.11 :: N 6.5 in previous

.in ±N N-O previous

.tt ±.V il110red

E.oID Line lenlth is set to :: N. In nOFF tbe maximum
(Iine-Ienlth) + (pale-offset) is about 7.54 inches.

B,E.oID Indent is set to :: N. The indent is prep ended to each
output line.

B,E.oID Temporary indenL The lltat output text line will be
indented a distance :: N with respect to the current
indent. The resultinl total indent may not be negative.
The current indent is not changed.

7. Macros, Strinls, Dlnnioa. and Position Traps

7.1. Jfacros and srring:J. A mllcro is a named set of arbitrary /ilia that may be invoked by name or with
a t,ap. A stnng is a named strinl of enamcrers. liar includinl a newline cbaracter. that may be interpo­
lated by name at any poinL Request. macro. and strinl names share the SlZme name list. ~acro and
string names may be one or two characters long and may usurp previously defined request. macro. or
strinl names. Any of these entities may be renamed wtth na or removed with nn. ~acros are created
by de and cfl. and appended to by 1m and da~ <II and da cause normal output to be stored in a macro.
Strings are created by ds and appended to by u. A macro is invoked in the same way as a request~ a

• 14 -

NROFF/TROFF User's Manual
October ll, 1976

control line beginning .xx will interpolate the contents of macro xx. The remainder of the line ma~
contain up to nine arguments. The strings x and .xx are interpolated at any desired point with \ox and
\-(.xx respectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied without interpretation except that:

- The contents of number registers indicated by \D are interpolated.
o Strings indicated by \- are interpolated.
• Arguments indicated by \5 are interpolated.
• Concealed new lines indicated by \ (newline) are eliminated.
• Comments indicated by \. are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9)'
• \ \ is interpreted as \.
• \. is interpreted as ".".

These interpretations can be suppressed by prepending a \. For example, since \ \ maps into a \. \\0
will copy as \D which will be interpreted as a number register indicator when the macro or string IS

reread.

7.3. A.rguments. When a macro is invoked by name, the remainder of the line is taken to contain up to
nine arguments. The argument separator is the space character, and arguments mar be surrounded by
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit on a
line, a concealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous
level become unavailable until the macro is completely read and the previous level is restored. A
macro's own arguments can be interpolated at any point within the macro with \5N, which interpolates
the Nth argument (1 ~ N ~ 9), If an invoked argument doesn't exist, a null string results. For exam·
pie, the macro .xx may be defined by

.de xx \ -beliD defiDitioD
Today Is \\51 tbe \\52.

\ -eDd defiDition

and called by

.xx MODday 14th

to produce the text

Today is MODday tbe 14th.

Note that the \5 was concealed in the definition with a prepended \. The number of currently available
arguments is in the .$ register.

No arguments are available at the top (non-macro) level in this implementation. Because string
referencing is implemented as a input-level push down, no arguments are available from WIthin a string.
No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan­
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy time'
and it is advisable to conceal string references (with an extra \) to delay interpolation until argumen t
reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote proce~sing
(see Tutorial §TS) or determining the horizontal and vertical size of some text for conditional changmg
of pages or columns. A single diversion trap may be set at a specified vertical position. The number
registers do and dl respectively contain the vertical and horizontal size of the most recently ende-.j
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when
reread in nofill mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text that :s
diverted can be reread correctly only if these modes are again or still in effect at reread time. One Wd~

• 15 •

NROFF/TROFF User's Manual
October 11, 1976

to do this is to imbed in the diversion the appropriate es or bd requests with the lrallSJltln'" mechanism
described in §lO.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion
level (the top aon-diversion level may be thOUght of as the Oth diversion level). These are the diver­
sion trap and associated macro, no-space mode, the intemally-saved marked place (see mil and rt), the
current venical place (.d rqister), the current high-water text base-line (.Ia relister), and the current
diversion name (.z register).

7.S. Traps. Three types of trap mechanisms are available-pale traps. a diversion trap, and an input­
line-count trap. Macro-invocation traps may be planted using wb at any page position including the top.
This trap position may be chanled usinl cII. Trap positions at or below the bottom of the pap have no
effect unless or until moved to witbin the pale or rendered effective by an increase in page length.
Two traps may be planted at the sa",. position only by first plantinl them at dift"erent positions and
then movinl one of the traps; the first planted trap will conceal the second unless and until the first one
is moved (see Tutorial Examples §TS). If the first one is moved back. it apia conceals the second
trap. The macro associated with a pale trap is automatically invoked when a line of text is output
whose venical size r«lcha or sweep ptUI tbe trap pOSition. Reaching the bottom of a page sprinp the
top-of-pale trap, if any, provided there is a next pale. The distance to the next trap position is avail­
able in the .r register, if there are no traps between the current position and the bottom of the pap. the
distance returned is the distance to the Pille bottom.

A macro-invocation trap eirective in the current diversion. may be planted usinl cit. The.r rqister
worles in a diversion; if there is no subsequent trap a Itlrp distance is retUrned. For a description of
input-Iine-count traps. see It below.

Rt!quat /11;l1li1 1/ No
Fonrt Val". .4""",.", Nota £%PltlfUltt".

.de :ayy

. am :ayy

.ds :a sfrin, -

.as :a Sfrin, -

.rm :a

.m :ayy

.dl X%

. JIY-••

ianored

ianored

ilnored

ianored

end D

Oeft.ne or redefine the macro:ex. The contents of the
macro begin on the next input line. Input lines are
copied in copy mod. until the definition is termiDated by a
line beginninl with .JIY, whereupon the macro yy is
called. In the absence of JIY, the deft.nition is terminated
by a line beginning with A macro may contain d.
requests provided the terminatins macros diirer or the
contained definition terminator is concealed. " can be
concealed as \ \.. which will copy as \.. and be reread as
.. Of

Append to macro (append version of de) .

Define a strinl :a containinl Slrin,. Any initial double­
quote in strill, is stripped ot!' to permit initial blanD.

Append strin, to strinl :a (append version of 0).

Remove request. macro, or strinl. The came :a is
removed from the name list and any related storlie
space is freed. Subsequent references will have no eirect.

Rename request. macro, or strinl :a to yy. If yy exists. it
is first removed.

Diven OUtput to macro :ex. Normal text processinl
occurs durinl diversion except that Pile ot!'settinl is aot
done. The diversion ends when the request dl or d. is
encountered without ~n afiument; extraneous requests
of this type should not appear when nested diversions are
beinl used.

- 16 -

NROFF/TROFF User's Manual
October II, 1976

.da xx

.wb N xx

.cb xx N

.dt N xx

.it N xx

.em xx none

S. Number Reaisters

end

off

off

none

D

v

v

D,v

E

Divert, appending to xx (append version of dO.

Install a trap to invoke xx at page position N; a negative N
will be interpreted with respect to the page bottom. Any
macro previously planted at N is replaced by.xx. A zero
N refers to the top of a page. In the absence of xx, the
first found trap at N, if any, is removed.

Change the trap position for macro xx to be N. In the
absence of N, the trap, if any, is removed.

Install a diversion trap at position N in the current diver­
sion to invoke macro xx. Another dt will redefine the
diversion trap. If no arguments are given, the diversion
trap is removed.

Set an input-line-count trap to invoke the macro xx after
N lines of text input have been read (control or request
lines don't count>. The text may be in-line text or text
interpolated by inline or trap-invoked macros.

The macro xx will be invoked when all input has ended.
The effect is the same as if the contents of xx had been
at the end of the last file processed.

A variety of parameters are available to the user as predefined, named number registers (see Summary
and Index, page 7). In addition, the user may define his own named registers. Register names are one
or· two characters long and do not conflict with request, macro, or string names. Except for certain
predefined read-only registers, a number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. One common use of user-defined
registers is to automatically number sections, paragraphs, lines, etc. A number register may be used
any time numerical input is expected or desired and may be used in numerical expressions (§1.4>'

Number registers are created and modified using nr, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence.
If the registers x and xx both contain N and have the auto-increment size M, the following access
sequences have the effect shown:

Effect on Value
Sequence Register Interpolated
\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+ (.xx .xx incremented by M N+M
\n- (.xx .xx decremented by M N-M

When interpolated, anum ber register is converted to decimal (default), decimal with leading zeros,
lower-case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alpha­
betic according to. the format specified by .1.

Requat l"ttllIl UNo
Form Vtllue Argumellt Notes Expltllltltioll

.nrR ±NM u The number register R is assigned the value ± N with
respect to the previous value, if any. The increment for
auto-incrementing is set to M

- 17 -

NROFF/TROFF User's Manual
October 11. 1976

.af R c arabic

.rr R ignored

,. Tabs. Leaders. and Ftelds

Assian format c to resister R. The available formats are:

Numberinl
Format Sequence

1 0,1.2.3.4,5 •...
OOt OOO,OOI,002,OO3,Q04,OOS ••••

1 O,i.ii.iil.iv. v •...
I o.l.n.m.IV. V
a O,a,b.c •...• z,aa.ab •...• zz,aaa, •••
A 0, A.B. C •... .z.AA.AB z:z.AAA ••.•

An arabic format bavins N diaits specifies a field width of
N digits (example 2 above). The read-onJy registers and
the width function (§11.2) are always arabic.

Remove register R. U' many registers are bein. created
dynamically, it may become necessary to remove no
lonler used registers to recapture internaJ storage space
for newer registers.

9.1. Tabs and Itaun. The ASCII borizontal tab character and tbe ASCII SOH (bereafter known as the
Itaur character) can both be used to generate eitber horizontal motion or I strin. of repeated charac­
ters. The length of tbe generated entity is governed by internal tab stops specifiable witb ta. The
default difference is that tabs generate motion and leade~ generate a strin. of periods; te and Ie otfer
the choi~ of repeated character or motion. There are three ty'1)eS of internal tab stops-ltjt adjustin ••
right adjusting. and ctnttrin,. In the following table: D is the distance from the current position on the
input line (where a tab or leader was found) to the next tab stop; next-stringconsisu of the input charac­
ters following the tab (or leader) up to the next tab (or leader) or end of line; and W is tbe widtb of
next-strin,.

Tab Length of motion or Location of
type repeated characters next-string

Left D Followinl D
Right D-W Right adjusted within D

Centered D-WI2 Centered on right end of D

The length of generated motion is allowed to be negative. but that of a repeated character string cannot
be. Repeated character strings contain an integer number of characters. and any residual distance is
prepended a! motion. Tabs or leaders found after the last tab stop are ignored, but may be used u
next-stnng terminators.

Tabs and leaders are not interpreted in copy modL \t and \. always generate a non-interpreted tab and
leader respectively, and are equivalent to actual tabs and leaders in copy modL

9.2. Fields. A field is contained between a pair of fitld delimittr characters. and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the
position where the field begins to the next tab stop. The ditference between the total length of all the
sub-strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example. if the field
delimiter is # and the padding indicator is -. #* x::r::x" nght # specifies a right-adjusted string with the
string x::r::x centered in the remaining space.

_ 152 _

NaoFFlTaoFF User's Manual
October II, 1976

Request
Form

.ta Nt .••

.tc c

.lc c

1"ltlal
Jlalue

O.S; O.Sin

none

QNo
Argument

none

none

none

Notes Explanation

E,m Set tab stops and types. I-R, right adjusting; I-C,
centering; I absent, left adjusting. TROFF tab stops are
preset every O.Sin.; NROFF every O.Sin. The stop values
are separated by spaces, and a value preceded by + is
treated as an increment to the previous stop value.

E The tab repetition character becomes c, or is removed
specifying motion.

E The leader repetition character becomes c, or is removed
specifying motion .

• rc a b off off The field delimiter is set to a; the padding indicator is set
to the sptlce character or to b, if given. In the absence of
arguments the field mechanism is turned off.

10. IDput aDd Output CODveDtioDs aDd Character TraDslatioDs

10.1. Input character translations. Ways of inputting the graphic character set were discussed in §2.1.
The ASCII control characters horizontal tab (§9.1), SOH (§9.0, and backspace (§10.3) are discussed
elsewhere. The newline delimits input lines. In addition, STX, ETX. ENQ, ACK, and BEL are accepted,
and may be used as delimiters or translated into a graphic with tr (§10.SL All others are ignored.

The escape character \ introduces escape sequences-causes the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same name.
The escape character \ can be input with the sequence \ \. The escape character can be changed with
ec, and all that has been said about the default \ becomes true for the new escape character. \e can be
used to print whatever the current escape character is. If necessary or convenient, the escape mechan­
ism may be turned off with eo, and restored with ec.
Request Initial Q No
Form Jlalue Argument NOles Expla"alion

• ec c \
• eo on

\ Set escape' character to \, or to c, if given .

Turn escape mechanism off .

10.2. Ligatures. Five ligatures are available in the current TROFF character set - fl, fl, ft, fIi, and fII.
They may be input (even in NROFF) by \(fi, \(fi, \(ff, \(FI, and \(Fl respectively. The ligature mode
is normally on in TROFF, and automatically invokes ligatures during input.

Request 1"ltial Q No
Form Jlalue Argument Nort!s Explanation

.11 N off; on on Ligature mode is turned on if N is absent or non-zero,
and turned off if N-O. If N-2, only the two-character
ligatures are automatically invoked. Ligature mode is
inhibited for request, macro, string, register, or file
names, and in copy mode. No effect in NROFF.

10.3. Baclcsptlcing, underlining, overstriking, etc .. Unless in copy mode, the ASCII backspace character is
replaced by a backward horizontal motion having the width of the space character. Underlining as a
form of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1.

NROFF automatically underlines characters in the underline font, specifiable with ufo normally that on
font position 2 (normally Times Italic, see §2.2). In addition to ft and \fF. the underline font may be
selected by ul and cu. Underlining is restricted to an output-device-dependent subset of reasonable
characters.

- 19 -

NROFP/TROFP User's Manual
October 11, 1976

Rcquat
Fa""
.ul N

.C1I N

.uf F

InitliJI
Val.,.

off

off

Italic

N-l

Italic

Notes ExpIIJlIattoll

E Underline in NROFF (italicize in nOFF) the next N
input text lines. Actually, switch to untk,linc font~ savini
the current font for later restoration; othe, font changes
within the span of a 01 will take effect, but the restora­
tion will undo the last change. Output generated by t1
(§14) i.I atf'ected by the font change, but does not decre­
ment N. If N> I, there is the risk that a trap interpo­
lated macro may provide text lines within the span;
environment switching can prevent this.

E A variant of 01 that causes t~ry character to be under­
lined in N1l0FF. Identical to 01 in nOFF.

Underline font set to F. In NROFF, F may not be on
position 1 (initially Times Roman).

10.4. Control characte". Both the control character. and the no-bnak control character • may be
cbanged, if desired. Sucb a change must be compatible witb the design of any macros used in tbe span
of tbe change, and particularly of any trap-invoked macros.

Reqvat InittlJl 1/ No
Fa"" Val. .4',.""._11' Nota E:tpillllIJtioll

.ccc E The basic conttol cbaracter is set to c. or reset to -.-.

.c:l c E The nobnlJk control character is set to c. or reset to

10.S. Output t1'JlruiDtio". One character can be made a stand-in for another character using tr. All text
processing (e. J. character comparisons) takes place witb tbe input (stand-in) character which appears to
have tbe width of the final cbaracter. The grapbic translation occurs at tbe moment of output (includ­
ing diversion).

Requat 11Iitl41
Farm Val.,.

. tr abed.... none

Nota E:tpillll.tloll

o Translate a into b, c into d.. etc. If an odd number of
characters is given, tbe last one will be mapped into tbe
space character. To be consistent, a particular translation
must stay in effect from input to output time.

10.6. Traruparf!nt throughput. An input line beginning with a \! is read in copy mod~ and tl'tVU/HUenrly
output (without tbe initial \!); the text processor is otherwise unaware of the line's presence. This
mechanism may be used to pass control information to a post-processor or to imbed control lines in a
macro created by a diversion.

10.7. Commena and concealed ncw/inn. An uncomfonably long input line that must stay one line (e. I­
a strinl definition, or no filled text) can be split into many physical lines by endinl all but the last one
with the escape \. The sequence \(newline) is always ignored-except in a cornmenL Comments may
be imbedded at the end of any line by prefacing them with \ -. The newline at the end of a comment
cannot be concealed. A line beginning with \. will appear as a blank line and behave like . .sp 1; a com­
ment can be on a line by itself by beginnina the line with .\-.

11. Local Horizontal mel Vertical ModoDS, IDel tbe Wldtb F1IDctioD

11.1. Local Motion!. The functions \.,. N' and \h'N- can be used for local vertical and horizontal motion
respectively. The distance N may be negative; the pO$iti~ directions are rightward and dow"ward. A
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the "et vertical local motion within a word in filled text and otherwise within a line balance to zero.
The above and cenain other escape sequences providing local motion are summarized in tbe follOwing
table.

• 20 -

NROFF/TROFF User's Manual
October 11, 1976

Vertical 1 Effect 10 II Horizontal Effect in !
Local Motion i TROFF NROFF II Local Motion TROFF NROFF i

\v' N' I Move distance ."t i \h' N' Move distance N I
I-----......;-----,..-----~I \ (space) Unpaddable space-size space I

\u ! I/: em up 112 line up I \0 Digit-size space I
\d II/: em down 112 line down Ii-I' -----+1-------.-, ----~I·
\r 11 em up 1 line up \1 11/6 em space I ignored

\. 1112 em space I ignored

As an example. E2 could be generated by the sequence E\s-2\v'-0.4m'2\v'O.4m'\s+2: it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \w'string' generates the numerical width of strlng (in basic
units). Size and font changes may be safely imbedded in string, and will not affect the current environ­
ment. For example, .ti - \,..'1. 'u could be used to temporarily indent leftward a distance equal to the
size of the string "I. ".

The width function also sets three number registers. The registers st and sb are set respectively to the
highest and lowest extent of string relative to the baseline; then, for example, the total heIght of the
string is \n(stu-\n(sbu. In TROFF the number register et is set to a value between 0 and 3: 0 means
that all of the characters in string were short lower case characters without descenders (like e): 1 means
that at least one character has a descender Oike y); 2 means that at least one character is tall mke H);
and 3 means that both tall characters and characters with descenders are present.

11.3. Mark horizontal place. The escape sequence \kx will. cause the current horizontal position in the
input line to be stored in register x. As an example. the construction \kxword\b'l\'nxu+2u'word will
embolden word by backing up to almost its beginning and overprinting it. resulting in word.

11. Overstrike, Bracket. Line-drawina. and Zero-widtb Functions

12.1.0verstriking. Automatically centered overstriking of up to nine characters is provided by the oller­
strike function \0' string'. The characters in string overprinted with centers aligned: the total width is
that of the widest character. string should not contain local vertical motion. As examples. \o'e\" pro,
duces e, and \o'\(mo\(sI' produces ~.

12.2. Zero-width characters. The function \zc will output c without spacing over it. and can be used to
produce left-aligned overstruck combinations. As examples. \z\ (ei\ (pi will produce e. and
\ (br\z\ (rn \ (ul\ (br will produce the smallest possi ble constructed box 0-
12.3. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
(f II J i } It J r 1) that can be combined into various bracket styles. The function \b'string' may be used
to pile up vertically the characters in string <the first character on top and the last at the bottom): the
characters are vertically separated by 1 em and the total pile is centered 1/2 em above the current base-

line (112 line in NROFF). For example. \b'\Ue\Ur'E\I\b'\(rc:\(rf'\x' -O.5m'\x'O.Sm' produces [E].

12.4. Line drawing. The function \I'Nc' will draw a string of repeated c's towards the right for a dis­
tance N. (\1 is \(lower case L). If c looks like a continuation of an expression for N, it may insulated
from N with a \&. If cis not specified, the _ (baseline rule) is used (underline character in NROFFl. If
N is negative, a backward horizontal motion of size N is made be/ore drawing the string. Any space
resulting from N/(size of c) having a remainder is put at the beginning (Jeft end) of the string. In the
case of characters that are designed to be connected such as baseline-rule _, underrule _. and root­
en -, the remainder space is covered by over-lapping. If N is less than the width of c. a single c IS cen­
tered on a distance N. As an example. a macro to .underscore a string can be written

.de us
\\51\I'IO\(ul'

-------- ------------ --

- 21 -

NROFF ITROFF User's Manual
October 11, 1976

or one to draw a box around a strinl

.de bs
\ (br\l\ \Sl\I\(br\l"O\(m\ 1"lo\(u"

such that

.u1 -lInderllned words-

and

.bs -words ia I bos·

yield underlined words and Iwords in a bOx L
The function \L' Nc" wiU draw a venical line consistinl of the (optional) character c stacked vertically
apan 1 em (1 line in NROf'F), with the first two characters overlapped, if necessary, to form a continu­
ous line. The default character is the box rut. I (\(br); the other suitable character is the bold v,ntcaJ I
(\ (by). The line.is belun without any initial motion relative to the current base line. A positive N
specifies a line drawn downward and a neptive N specifies a line drawn upward. After the line is drawn
no compensatinl motions are made; the instantaneous baseline is at the ttrd of the line.

The horizontal and vertical line drawinl functions may be used in combination to produce l8.l1e boxes.
The zero-width lJox-ruk and the 'h-em wide und,,,,,_ were dI1i",1d to form comers when usinl l-em
venial spaanp. For example the macro

.de eb . .1, -1 \ -compeaslte ror next aatomatic base-IiDe spaciDl

.DI \ -&Yold possibly onrfto"lnl WON blliler
\b" - .5D\L"\ \Dla-l\I"\ \D(.1a+1D\(1I1,,\L· -1\\111.+ 1\1",0.-.5D\(u'" \-dr." box
.n

will draw a box around some text whose betinninl vertical place wa saved in number relister a (e. J.
usina .mk .) as done for this oaraaraoh.

13. HnbeDltioD.

The automatic hyphenation may be switched off and on. When switched on with by, several variants
may be set. A hyph,nation indicator character may be imbedded in a word to specify desired hyphena­
cion points, or may be prepended to suppress hyphenation. In addition, the user may specify a small
exception word liSL

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic
strings are considered candic;fates for automatic hyphenation. Words that were input containing hyphens
(minus). em-dashes (\ (em), or hyphenation indicator characters-such as mother-in-Iaw-are a/way!
subject to splitting after those characters, whether or not automatic hyphenation is on or olf.

R,qu,!lt [nmal 1/ No
Form Va/rut Arrrurr'1It Nota .E:q/lJ1Iatio1l

.nh

.hyf(

.he c

hyphenate

on,N-l on.N-l

\~ \~

.bw word1 ... ignored

E

E

E

Automatic hyphenation is turned olf.

Automatic hyphenation is turned on for N";J 1. or off for
N - O. If N - 2, Itm lines (ones that wiU cause a trap)
are not hyphenated. For N-4 and 8, the last and first
two characters respectively of a word are not split off.
These values are additive~ i. e. N-14 will invoke aU
three restrictions.

Hyphenation indicator character is set to c or to che
default \~. The indicator does not appear in the output.

Specify hyphenation points in words with imbedded
minus signs. Versions of a word with terminal s are

- 22 -

NROFF/TROFF User's Manual
October 11, 1976

14. Three Part Titles.

implied: i. e. dig-it implies dig-its. This list is exam­
ined initially and after each suffix stripping. The space
available is small-about 128 characters.

The titling function tl provides for automatic placement of three fields at the left. center. and right of a
line with a title-length specifiable with It. tl may be used anywhere. and is independent of the normal
text collecting process. A common use is in header and footer macros.

Request
Form

Initial
Value

.tl 'left' center' rrght'

.pc c

.It =.N 6.5 in

UNo
Argument Notes Explanation

off

previous E.m

The strings left. center. and right are respectively left­
adjusted. centered. and right-adjusted in the current
title-length. Any of the strings may be empty. and over­
lapping is permitted. If the page-number character (ini­
tially 0/0) is found within any of the fields it is replaced by
the current page number having the format assigned to
register 0/0. Any character may be used as the string del­
imiter.

The page number character is set to c, or removed. The
page-number register remains 0/0.

Length of title set to ± N. The line-length and the title­
length are independent. Indents do not apply to titles;
page-offsets qo.

IS. Output Line Numbering.

Automatic sequence numbering of output lines may be requested with nm. When in effect. a
three-digit. arabic number plus a digit-space is prepended to output text lines. The text lines are

3 thus offset by four digit-spaces. and otherwise retain their line length; a reduction in line length
may be desired to keep the right margin aligned with an earlier margin. Blank lines. other vertical
spaces. and lines generated by tl are not numbered. Numbering can be temporarily suspended with

6 nn. or with an .nm followed by a later .nm +0. In addition. a line number indent I. and the
number-text separation S may be specified in digit-spaces. Further, it can be specified that only
those line numbers that are multiples of some number M are to be printed (the others will appear

9 as blank number fields).

Request
Form

Initial
Value

.nm =N M S I

. nn N

UNo
Argument

off

Notes Explanation

E Line number mode. If ± III is given. line numbering IS

turned on. and the next output line numbered is num­
bered ± N. Default values are M - 1. S - 1. and , - 0
Parameters corresponding to missmg arguments are
unaffected; a non-numeric argument is considered miss­
ing. In the absence of all arguments. numbering is
turned off; the next line number is preserved for possible
further use in number register In.

E The next N text output lines are not numbered .

As an example. the paragraph portions of this section are numbered with M- 3: .nm 1 3 was
placed at the beginning: .nm was placed at the end of the first paragraph: and .nm +0 was placed

12 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (b~
\",'OOOO'u) to keep the right side aligned. Another example is .nm +5 5 x 3 which turns on
numbering with the line number of the next line to be 5 greater than the last numbered line. with

15 M- 5. with spaCing S untouched. and with the indent' set to 3.

- 23 -

---.. - - --- - -- -------

NROFF/TROFF User's Manual
October 11, 1916

16. Conditional Acceptance of Input

In the following, c is a one~haracter, built-in condition name, ! signifies not, N is a numerical expres­
sion, stringi and string) are strings delimited by any non-blank, non-numeric character not in the
strings, and anything represents what is conditionally accepted.

R~quat Initial UNo
Fa"" Yal" AI'P",.nt Not.$ Ezplalfatiotl

.if c anything

.if ! c anything

.if N anything

.if !N anything

.if • stringr string)' anything

. if !' stringr string)' anything

• 1e c anything

. el anything

11

11

11

The built-in condition names are:

Condition
Name

G

e
t
11

If condition c true, accept anything as input; in multi-line
case use \{anything\}.

If condition c false, accept anything.

If expression N> 0, accept anything.

If expression N ~ 0, accept alfything.

If string1 identical to strilfg2. accept alfyth;If,.

If string1 not identical to string2. accept anything •

If portion of if-else~ all above fonm (1ike if) .

Else portion of if-else .

True If
Current page number is odd
Current page number is even
Formatter is nOFF
Formatter is NROFF

If the condition c is trw., or if the number N is greater than zero, or if the strings compare identically
(jncluding motions and character size and font>. anything is accepted as input If a ! precedes the condi­
tion. number, or string comparison. the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can Oe
either a singie input line (text, macro, or whatever) or a number of input lines. In the multi-line case,
the first line must begin with a left delimiter \(and the last line must end with a right delimiter \).

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent
and matching el (else) request then uses the reverse sense of that state. Ie - el pairs may be nested.

Some examples are:

.if e .tI 'EYen Pa.e ~' ••

which outputs a title if the page number is even: and

.ie \n~> 1 \{\
'5P O.Si
.tl ' Pile ~".
'sp 11.21 \}
.ei.spI2.si

which treats page 1 differently from other pages.

11. Environment Switc:hinl.

A number of the parameters that control the text processing are gathered together into an environmf!nt.
which can oe switched oy the user. The environment parameters are those associated with requests
noting E in their Notf!~ column; in addition. partiaJly collected lines and words are in the environment.
Everything else is global; examples are page-oriented parameters, diversion-oriented parameters,

_ '4 _

NROFF/TROFF User's Manual
October 11. 1976

number registers,
parameter values.

and macro and string definitions. All envIronments are initialized with default

Request Initial /fNo
Form Value Argument Notes Explanation

.ev N N-O previous

18. Insertions from the Standard Input

Environment switched to environment 0 ~ .".~ 2. Switch­
ing is done in push-down fashion so that restoring a pre­
vious environment must be done with .ev rather than
specific reference.

The input can be temporarily switched to the system standard input with rd. which will switch back
when two newlines in a row are found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On UNIX. the standard mput can be the user's kej­
board. a pipe, or a file.

/fNo Request
Form

Initial
Value A rgume"t Notes Explanatio"

.ref prompt prompt-BEL-

.ex

Read insertion from the standard input until two new­
lines in a row are found. If the standard Input is the
user's keyboard, prompt (or a BEL) is written onto the
user's terminal. ref behaves like a macro, and arguments
may be placed after prompt.

Exit from NROFF/TROFF. Text processing is terminated
exactly as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal.
the command line option -q will turn off the echoing of keyboard input and prompt only with BEL.
The regular input and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke
itself using nx (§19); the process would ultimately be ended by an ex in the insertion file.

19. Input/Output File Switchin&

Reque!lt l"ltlal /f No
Form Value A.rgume"t Notes Expla"atio"

.50 filename

.nx filename end-of-file

.pi program

20. Miscellaneous

Reque!lt 1"ltial /fNo
Form Value Arpme"t

.mc eN off

Notes

E,m

Switch source file. The top input (file reading) level is
switched to filename. The effect of an so encountered in
a macro is not felt until the input level returns to the file
level. When the new file ends, input is again taken from
the original file. so's may be nested.

Next file is filename. The current file is considered
ended, and the input is immediately switched to filename.

Pipe output to program (NROFF only). This request
must occur be/ore any printing occurs. No arguments are
transmitted to program.

Expla"ation

Specifies that a margm character c appear a distance .\' to
the right of the right margin after each non-empty text
line (except those produced by tt). If the output line IS
too-long (as can happen in nofill mode) the character WIll

- 25 -

NROFF/TaOFF User's Manual
October 11, 1976

.tlD stri", newline

.11 yy .yy-••

.pm t all

.n

ll. Output and Error Messa,es.

B

be appended to the line. If N is not Jiven. the previou:
N is used; the initial N is 0.2 inches in NKOFF and 1 en
in TROFF. The margin character used with this para
Vclpb was a 12-point box-rule.

After skippinl initial blank.s, SIn", (rest of the liDe) b
read in copy mod~ and written on the user's termina.l.

flDore input lines. I, behaves exutly like de (17) excepl
that the input is discarded. The input is read in CtJpj

mode, and any auto-incremented registers will be
affected.

Print macros. The names and sizes of aU of the defined
macros and strings are printed on the user's terminal: if I
is liven. onIy the toW of the sizes is printed. The sizes
is aiven in blocla of 128 chal'acte1'3.

Flush output buJrer. Used in interactive debuuinl to
force output.

The output from tID, pm, and the prompt from rd, as well as various error messages are written onto
UNIX's StllndlllTi mtmQ~ output. The latter is different from the standtJrd outpUt. where NKOFF format­
ted output aoes. By default, both are written onto the user's terminal, but they can be independently
redir~ted.

Various trror conditions may occur durin, the operation of NKOFF and nOFF. Cenain less serious
errors havinl onIy local impact do not cause processinl to terminate. Two examples are 'NOrd overjlow,
caused by a word that is too larae to fit into the word butfer (in fill mode), and Ii"e o'Nrjlow, caused by
an output line that grew too lll'le to fit in the line buif'er; in both cases, I meSUle is printed. the
offending excess is discarded, and the aff~ted word or line is marked at the point of truncation with a •
in NROFF and a'" in nOFF. The philosophy is to continue proc:essinl. if pOssible, on tbe grounds
that output useful for debugainl may be produced. If a serious error OQ:urs, processinl terminates, and
an appropriate message is printed. Examples are the inability to create, read, or write files, and the
exceeding of certain internal limits that make future output unlikely to be useful.

- 26 -

NROFF/TROFF User's Manual
October II, 1976

TUTORIAL EXAMPLES

Tl. Introduction

Although NROFF and TROFF have by design a
syntax reminiscent of earlier text processors·
with the intent of easing their use. it is almost
always necessary to prepare at least a small set of
macro definitions to describe most documents.
Such common formatting needs as page margins
and footnotes are deliberately not built into
NROFF and TROFF. Instead. the macro and
string definition, number register, diversion.
environment switching, page-position trap, and
conditional input mechanisms provide the basis
for user-defined implementations.

The examples to be discussed are intended to be
useful and somewhat realistic, but won't neces­
sarily cover all relevant contingencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. In many cases, number registers would
really be used to reduce the number of places
where numerical information is kept, and to con­
centrate conditional parameter initialization like
that which depends on whether TROFF or NROFF
is being used.

Tl. Pace Marclns

As discussed in §3, header and footer macros are
usually defined to describe the top and bottom
page margin areas respectively. A trap is planted
at page position 0 for the header. and at -N (N
from the page bottom) for the footer. The sim­
plest such definitions might be

.de bd \-define beader
'sp 11

.de fo
'bp

.wb 0 bd

.wb -11 fo

\-end definition
\ -define footer

\ -end definition

which provide blank 1 inch top and bottom mar­
gins. The header will occur on the firsl page.
only if tbe definition and trap exist prior to the

-For enmple: P. A. Crisman. Ed., Thr Co",pariblr T,,,,r­
Slum", Sys_. MIT Press, 1965. Section AH9.01 (DescrIp­
tion of RUNOFF proaram on MIT's CTSS system).

initial pseudo-page transi tion (§3). In fill mode.
the output line that springs the footer trap was
typically forced out because some part or whole
word didn't fit on it. If anything in the footer
and header that follows causes a break. that word
or part word will be forced out. In this and other
examples. requests like bp and sp that normally
cause breaks are invoked using the no-break con­
trol character ' to avoid this. When the
header/footer design contains material requiring
independent text processing, the environment
may be switched. avoiding most interaction with
the running text.

A more realistic example would be

.de bd \ ·beader

.if t .tl '\ (m ''\ (rn' \ -troB' cut mark

.if \\n%>1 \{\
'sp 10.51-1 \-tl base at 0.51
.tl "- % -" \-centered pale number
.ps \ -restore size
.ft \ -restore font
.n \} \-restore ys
'sp 11.01 \-space to 1.01
.ns \ ·turn on no-space mode

.de fo \ -footer

.ps 10 \-set footer/beader size

.ft R \ ·set font

.vs 12p \-set base-line spacing

.If \\nO/O-l \(\
'sp 1\\n(.pu-0.51-1 \-tJ base 0.5i up
.tJ "- % -" \) \-first pale number
'bp

.wb 0 bd

.wb -11 fo

which sets the size, font, and base-line spacing
for the header/footer material, and ultimately
restores them. The material in this case is a page
number at the bottom of the first page and at the
top of the remaining pages. If TROFF is used. a
CUI mark is drawn in the form of rool-en's at each
margin. The sp's refer to absolute positions to
avoid dependence on the base-line spacing.
Another reason for this in the footer is that the
footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as

- 27 -

NROFF/TROFF User's Manual
October 11. 1976

much as the base-line spacing. The "o-spac~
mode is turned on at the end of hd to render
ineffective accidental occurrences of sp at the top
of the running text.

The above method of restoring size, font, etc.
presupposes that such requests (that set pnviora
value) are "ot used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size in the follow­
ing:

. de (0

.Dr 51 \\n(.s

.ps

.Dr 51 \ \a (.s

· -
.de hd

· -
.ps \\a(s%
.ps \\a(sl

\ ·plnious size
\ ·rest 01 Cooter

\ ·header stu«
\ -restore preTlous size
\ -restore curreat size

Page numbers may be printed in the bottom mar·
gin by a separate macro tri8lered during the
footer's page ejection:

.de ba \ "bottom number

.tl •• - '" -'. \ -ceutered pale lIumber

. "h -0.51-h ba \·U bue 0.51 liP

T3. Paracrapbs and HeadlnlS

The housekeeping associated with starting a new
paragraph should be collected in a parasraph
macro that. for example, does the desired
preparagraph spacing, forces the correct font,
size. base-line spacing, and indent. checlcs that
enough space remains for mon than o,,~ line, and
requests a temporary indent.

. de PI \ ·paracnpb

.br \ "reak

.tt R \ ·force (ont,

.ps 10 \ ·size.
· vs Up \ -spaciDI.
. in 0 \ ·and indent
.sp 0.4 \ ·prespace
.De 1+\\D(.Va \-""ant more tbaD lIlDe
.tt 0.21 \ -temp Indent

The first break in PI will force out any previous
partial lines. and must occur before the YI. The
forcing of font, etc. is panly a defense against
prior error and partly to permit things like sec­
tion heading macros to set parameters only once .

The prespacing parameter is suitable for nOFF;
a larger space, at least as big as the output device
vertical resolution, would be more suitable in
NROFF. The choice of remaining space to test
for in tbe lie is the smallest amount greater thaD
one line (tbe • V is the available verticaJ resolu­
tion).

A macro to automatically number section head­
ings might look like:

.de sc \ ·sec:doa

. - \ ·rorce fODt, etc •

.sp 0.4 \ ·prespace

.De 1.4+\\a(.Vu \·""aat 1.4+ liDes

.ft
\\a+5.

.Dr 50 1 \·tait 5

The usage is .sc, followed by the section headinc
text, followed by .PI. The ae test value includes
one line of l1eadin.. 0.4 line in tbe foUowin. PI.
and one line of the paragrapb text. A word con­
sisting of the next section number and a period is
produced to begin the beadin. line. The format
of tl!e number may be set by at (§8).

Another common form is the labeled. indented
paragraph. wbere the label protrudes left into tbe
indent space •

.de Ip
·PI
.1D O.!I
.ta 0.21 1).51
.tf 0
\t\ \SI \t\c:

\ -Yabeled paracnpb

\ ·paralftph ladeDt
\ -label, paralrapb

The intended usage is -.lp lab~r; lab~1 will begin
at 0.2 inch. and cannot exceed a length of
0.3 inch without intruding into the paragraph .
The label could be right adjusted apiDSt 0.4 inch
by setting the tabs instead with .ta 0.41B. 0.51.
The last line of lp ends with \c so that it will
become a pan of the first line of the text that fol·
lows .

T4. Multiple Columa Outpat

The production of multiple column pages
requires tbe footer macro to decide wbetber it
was invoked by other than the last column. so
that it will begin a new column rather tban pro­
duce the bottom margin. The header can initial·
ize a column iegister that the footer will incre·
ment and teSL The following is arranged for two
columns. but is easily modified for more.

• 28 -

NROFF/TROFF Cser's Manual
October 11. 1976

.de hd

.nr c! 0 1

.mk

\ "header

\" in it column count
\" mark top of text

.de fo \ "footer

.ie \\n + (CI< 2 \(\

.po +3.4i \"next column: 3.1 +0.3

.rt \ "back to mark

.ns \} \" no-space mode

.e! \(\

.po \ \n:\1u \ "restore left margin

.
'bp \}

.11 3.li \"column width

.nr !\1 \\ n (.0 \"save left margin

Typically a portion of the top of the first page
contains full width text: the request for the nar­
rower line length. as well as another .mk would
be made where the two column output was to
begin.

TS. Footnote Processing

The footnote mechanism to be described is used
by imbedding the footnotes in the input text at
the point of reference. demarcated by an initial
.fn and a terminal .ef:

.fn
FootnOTe TeXT and comrol lines ...
.ef

In the following. footnotes are processed in a
separate environment and diverted for later
printing in the space immediately prior to the
bottom margin. There is provision for the case
where the last collected footnote doesn't com­
pletely fit in the available space.

.de hd \ "header

.nr x 0 1

.nr y O-\\nb

.ch fo - \\ nbu

.if \\ n (dn .fz

.de fo

.nr dn 0

.if \\nx \(\

\"init footnote count
\"current footer plac:e
\ "reset footer trap
\ "leftover footnote

\"footer
\"zero last diversion size

.e~· 1 \"expand footnotes in e\'1
• nf \" retain venica! size
.F~ \ "footnotes
.rm F~ \ "delete it
.if "\\n (.z"fy" .di \"end overflow diversion
.nr x 0 \" disable ex

.e" \}

....
'bp

.de ex \" process footnote o\'erflo,,'

.if \\nx .di fy \"divert overflo"

.de fn \" start footnote

.da F~ \"divert (append) footnote

.e~' 1 \ "in en~'ironment I

.if \ \n + x = 1 .fs \ "if first. include separator

.fi \"fill mode

.de ef , "end footnote

.br \ "finish output

.nr z \\n(.\· \"save spacing

.n '''pop e~'

.di '''end diversion

.nr ~. -\\n(dn ,"ne,,' footer position.

.if\\nx-I .nr y -<\\n(.v-\\nz) \
'''unc:enainty correc:tion

.ch fo \\nyu '''y is negathe

.if (\\n(nl+h» (\\n(.p+\\n~·) \

.ch fo \\n(nlu+h \"it didn't fit

.de fs
\1' Ii'
.br

'''separator
\"1 inc:h rule

.de fz '" get lefto~'er footnote

.fn

.nf \"retain vertic:al size

.fy ,"where fx put it

.ff

.nr b 1.0i \ "bottom margin size

.wh 0 hd '''header trap
• wh 12i fo \ "footer trap. temp position
.wh -\\nbu fx\"fx at footer position
.c:h fo -\\nbu '''conceal ex with fo

The header hd initializes a footnote count regis­
ter x. and sets both the current footer trap POSI­

tion register y and the footer trap itself to a nom­
inal position specified in register b In addition.
if the register dn indicates a leftover footnote. fz
is invoked to reprocess it. The footnote start
macro fn begins a diversion (append) in environ­
ment 1. and increments the count x: if the count
is one. the footnote separator fs is interpolated .
The separator is kept in a separate macro to per­
mit user redefinition. The footnote end macro ef
restores the previous environment and ends the
diversion after saving the spacing size In register
z. y is then decremented by the size of the

- 29 -

NROFF/TROFF Userts Manual
October 11, 1976

footnote. available in do; then on the first foot­
note. '1 is funher decremented by the cillference
in venica1 base-line specialS of the two environ­
ments, to prevent the late trillerinl the footer
trap from Clusinl the lat line of the combined
footnotes to overtlow. The footer trap i5 then set
to the lower (on the PSle) of '1 or the current
pale position (nl) plus one line, to allow for
printinl the reference line. If indicated by x, the
footer fa rereads the footnotes from rN in nofiU
mode in environment 1. and deletes IN. If the
footnotes were too larse to fit. the macro fz will
be trap-invoked to rediven the overtlow into fy,
and the relister cla wiD later indicate to the
header whether fy i5 empty. Both fa and Ix are
planted in the nominal footer trap position in an
order that causes fx to be concealed ualess the 10
trap is moved. The footer thea terminates the
overtlow divemon, if necessary, and zeros J: to
disable Ix. because the uncertainty correction
together with a not-too-Iate triaerial of the
footer can result in the footnote rereadinl finish­
inl before reachinl the h: trap.

A good exercise for the student i5 to combine
the multiple-column and footnote mechanisms.

T'. The Last Pa._
After the last input file bas ended. NR.OFF and
nOFF invoke the ,,,d mtlCl'O (§7), if any. and
when it finishes. eject the remainder of the pale.
During the ejec~ any traps encountered are pre­
cessed normally. At the ,,,d of this lat pale.
processing terminates 1I"/as a paniaJ line. word.
or panial word remains. If it is desired that

I

another page be staned. the end-macro

.de en
\c:
'bp

.em en

will deposit a null panial word. and effect
another last page.

NROFF/TROFF User's Manual
October II. 1976

Table I

Font Style Examples

The following fonts are printed in 12-point. with a vertical spacing of 14-point. and with non­
alphanumeric characters separated by It. em space. The Special Mathematica'! Font was specially
prepared for Bell Laboratories by Graphic Systems. Inc. of Hudson. New Hampshire. The Times
Roman. Italic. and Bold are among the many standard fonts available from that company.

Times Roman

abcdefghijklmnopqfstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!S%&()"*+ - .• /:~-? []I
• 0 - - _ 1,1.. Ih JA fi fl ff ffi tn 0 t ' It ~ ~

Times Italic

abcdef.~hiiklmnopqrstuvw.x:\!:
A BCD£FGHIJKLMNOPQRSTUVWXYZ
1234567890
.' $ % & () . , • + - . , / : : - ? [11
.:: - - _ ~ 0 14.Ii.1f ff.ffi.tfl 0 t ' t \!) It

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTCVWXYZ
1234567890
!S%&()·'*+ -.,I:;-?III
• ~ - - _ II. liz l~ fi ft If ffi ftI 0 t ' t 'I: ~

Special Mathematical Font

",\~_.-/< > Il#@+--­
a~ySE'~9LKA~V€O~pU~TV~X~W
r~8A=n!Y<l>'I'n
.J- ~ ~ = - == ~ -- T 1 x -+ ± U n c ::> ~ ~ eo a
§ V' ~ J ex t2J E tIF-. @ lor II H H lUll

- 31 -

NROfF/TROfF User's Manual
October 11. 1976

Table II

Input Naminl Conventions for ., ',and -
and for NOD-ASCII Special Characters

Noa-ASCII characters aa. ",IIIU oa the scaa.ant foats.

I""", Chlll'tlct.r 111"" Ollnlctn
Chllr NII",e Nil",. Chllr Nil"'. Nil"'.

close quote fl \(fl fl
open quote a \(0 a

\(em 3/4 Em dash tr \or tr
hyphen or fft \CFi t1l

\(hy hyphen m \(Ft m
\- current font minus ~ \ (de decree

• \(bu bullet t \(dl dager
CJ \(sq square \(fm foot mark

\(ru rule c \(ct cent sian
1,4 \(14 1/4 • \(ra reaistereci
liz \(12 1/2 • \ (co copyriahe
'/. \(34 3/4

Noa-ASCII chanders aad " " _, +, -, -, aad e oa tbe special foat.

The ASCII cbaracters ~, II, ., " " <. >, \Y {, }t -, -, and _ exist Ollly aD tbe special font and an
printed as a I-em space if that font is nOI mounted. The foUowinl cbaracten exist only aD the speciaJ
font except for the upper case Greek letter names followed by t which an mapped into upper case
English letters in whatever font is mounted on font position one (default nmes Roman). The special
math plus. minus. and equals are provided to insulate the appearance of equations from tbe choice oC
standard fonts.

/lfllfll Character I""", C1tllnlcter
CJrllr Na",. Nil",. CJrllr Nil"'. Nil"'.

+ \ (pi math plus If \(el(kappa
\(mi math minus A \(el lambda - \(eq math equals J.I. \(em mu

• \(e_ math star " \(en nu
§ \(sc section ~ \(ec xi

\(aa acute accent 0 \(eo omicron
\(ga grave accene 11' \(-p pi
\Cui underrule p \(er rho

/ \ (51 slash (matching baclcslash) rr \(e5 sigma
a \(ea alpha so \ (ts terminal sisma
{3 \(eb beta l' \(et tau
'Y \(-g gamma II \(eu upsilon
1) \(-d delta tb \(ef phi
f \(ee epsilon X \(-x chi , \(·z zeta til \(eq psi
7J \(-y eta ru \(-w orne ..
9 \(-h theta A \(-A Alphat

\ (-j iota B \(-B Betat

- 32 -

NROFF/TROFF User's Manual
October II, 1976

Input Charact~r Input Charact~r

Char Nam~ Nam~ Char Nam~ Nam~
r \(8G Gamma I \(br box vertical rule
~ \(80 Delta * \(dd double dagger
E \(8E Epsilont ,.. \(rh right hand
Z \(8Z Zetat ,. \Oh left hand
H \(8Y Etat @ \(bs Bell System logo
e \(8H Theta I \(or or
I \(81 lotat 0 \(ci circle
K \(8K Kappat r \Ot left top of big curly bracket
;\ \(el lambda I \(Jb left bottom
M \(8M Mut 1 \(rt right top
N \(8N Nut J \(rb right bot

- \(8C Xi i \Ok left center of big curly bracket
0 \(80 Omicront ~ \(rk right center of big curly bracket
n \(8P Pi I \(bv bold vertical
P V8R Rhot l \Of left floor Oeft bottom of big
I \(85 Sigma square bracket)
T \(8T Taut J \(rf right floor (right bottom)
y \(8U Upsilon r \(Jc left ceiling Oeft top)
~ \(8F Phi 1 \ (rc: right ceiling (right top)
X \(8X Chit
'It \(8Q Psi
n \(-W Omega

i \(ST square root
\(rn root en extender

~ \(>- >-
~ \«- <-
- \ (- - identically equal

== \(-- apPTOX -
\(ap approximates

~ \(!- 'not equal
\ (-> right arrow
\ (< - left arrow
\(ua up arrow
\(da down arrow

x \(mu multiply
..,. \(di divide
± \(+- plus-minus
u \(cu cup (union)
n \(ca cap (intersection)
C \(sb subset of
::> \(sp superset of
r; \(ib improper subset
:2 \(jp improper superset
00 \(if infinity
a \(pd partial derivative
\7 \(gr gradient .. \(no not
J \(is integral sign
II: \(pt proportional to
0 \(es empty set
E \(mo member of

• 33 •

May IS, 1977

Options

-b

-z

Old Requests

.ad c

. so name

:'ie'" Request

.ab text

. fz FN

Summary of Changes to N/TROFF Since October 1976 Manuai

(Nrotr only) Output tabs used durinl horizontal spacinl to speed output as well as
reduce output byte count. Device tab 5eninp assumed to be every 8 nominal character
widths. The default settinp of input (J01ica1) tabs is also initialized to every 8 nominal
character widths.

Efficiently suppresses formatted output. Only messale output will occur (from "tm"s
and diagnostics).

The adjustment type indicator "c· may now also be a number previously obtained from
the ".j" resister (see below).

The contents of file "name· will be interpolated at the point the "so" is encountered .
Previously, the interpolation was done upon retum to the file-readinl input level.

Prints "text- on the message output and terminates without further proceSSing. If "text"
is missing, "User Abort." is printed. Does not cause a break. The output butrer is
flushed.

forces (ant "F' to be in 5i~e N. N may have the form N, + N, or -N. For example •
.fz 3 ·2

will cause an implicit \s-2 every time font 3 is entered. and a corresponding \5 + 2 when
it is left. Special font characters occurring during the reign of font F will have the same
size modification. If special characters are to be treated differently,

.fz S F N
may be used to specify the size treatment of special characters during font F. For
example,

.fz 3 ·3

.fz S 3 ·0
will cause automatic reduction of font 3 by 3 points while the special characters would
not be affected. Any ' • .fp" request specifying a font on some position must precede
... fz" requests relating to that position.

~ew Predefined ~umber Registers.

.k

.J

. P

.L

c.

Read-only. Contains the horizontal size of the text portion (without indent) of the
current partially collected output line. if any, in the current environment.

Read·only. A number representing the current adjustment mode and type. Can be
saved lnd later given to the "ad" request to restore a previous mode.

Read·only. 1 if the current page is being printed. lnd zero otherwise .

Read·only. Contains the current line-spacing parameter ("1s·).

General register access to the input line-number in the current input file. Contains the
same value as the read-only ".c· register.

Tbl - A Program to Format Tables

M. E. Lesk

Bell laboratories
Murray Hill. New Jersey 07974

A BSTR.ACT

Tbl is a document formatting preprocessor for (roff or nro/f which makes
even fairly complex tables easy to specify and enter. It is available on the PDP·
II UNIX· system and on Honeywell 6000 GCOS. Tables are made up of columns
which may be independently centered. right-adjusted. left-adjusted. or aligned
by decimal points. Headings may be placed over single columns or groups of
columns. A table entry may contain equations. or may consist of several rows
of text. Horizontal or vertical lines may be drawn as desired in the table. and
any table or element may be enclosed in a box. For example:

1970 Federal Budget Transfers

January 16. 1979

State

New York
New Jersey
Connecticut
Maine
California
New Mexico
Georgia
Mississl pp

I Texas
i

(in billions or dollilrsl

I Taxes
I

Money
collected spent

I
22.91 21.35

8.33 6.96
4.12 3.10
0.74 0.6i

22.29 22.42
0.70 1.49
3.30 4.28
1.15 2.32
9 . .33 I 11.13

• t::'IiIX IS 01 Trademark/Service ~ark of the Bell S~'slem

I

I
Net I

-1.56 I
-1.37 I
-1.02 I
-0.07 1

·0.13 I
+0.i9 I
+0.98 i
+ 1.17
·1.80 I

Introduction.

Tbl - A Program to Format Tables

M. E. Leslc,

Bell Laboratories
Murray Hill. New Jersey 07974

Tbl turns a simple description of a table into a frot! or nrqt! OJ program (Jist of com­
mands) that prints the table. Tbl may be used on the PDP· I I UNIX [21 system and on the
Honeywell 6000 GCOS system. It attempts to isolate a portion of a job that it can successfully
handle and leave the remainder for other programs. Thus fbi may be used with the equation
formatting program eqn [3J or various layout macro packages [4,5.6J. but does not duplicate
their functions.

This memorandum is divided into two pans. First we give the rules for preparing fbi
input: then some examples are shown. The description of rules is precise but technical. and the
beginning user may prefer to read the examples first. as they show some common table
arrangements. A section explaining how to invoke fbi precedes the examples. To avoid repeti­
tion. hencefonh read frot!as ",rot!or nrotf."

The input to fbi is text for a document. with tables preceded by a ". TS" (table stan)
command and followed by a ". TE" (table end) command. Tbl processes the tables. generating
frat! formatting commands. and leaves the remainder of the text unchanged. The". TS" and
... TE" lines are copied. too. so that trolf page layout macros (such as the memo formatting
macros [41) can use these lines to delimit and place tables as they see fit. In particular. any
arguments on the ". TS" or ... TE" lines are copied but otherwise ignored. and may be used by
document layout macro commands.

The format of the input is as follows:

text
.TS
rable
.TE
text
.TS
rable
.TE
text

where the format of each table is as follows:

.TS
opflons ;
format.
dafa
.TE

Each table is independent. and must contain formatting information followed by the data to be
entered in the table. The formatting information. which describes the individual columns and
rows of the tdble. may be preceded by a few optIOns that .Ilfect the entire table. A detailed
deSCription of tables is given in the next section.

- :2 -

Input commands.

As indicated above. a table contains. first. global options. then a format section describing
the layout of the table ent'ries. and then the data to be printed. The format and data are aiways
required, but not the options. The various parts of the table are entered as follows:

1) OPTIONS, There may be a single line of options affecting the whole table. If present. this
line must follow the • TS line immediately and must contain a list of option names
separated by spaces. tabs, or commas. and must be terminated by a semicolon. The
allowable options are:

center - center the table (default is left-adjust);

expand - make the table as wide as the current line length;

box - enclose the table in a box:

allbox - enclose each item in the table in a box:

doubJebox - enclose the table in two boxes:

tab (x) - use x instead of tab to separate data items.

Iinesize (n) - set lines or rules (e.g. from box) in n point type;

deJim (xy) - recognize x :md yas the eqn delimiters.

The fbi program tries to keep boxed tables on one page by issuing appropriate "need"
(. ne) commands. These requests are calculated from the number of lines in the tables.
and if there are spacing commands embedded in the input. these requests may be inaccu­
rate: use normal froffprocedures. such as keep-release macros. in that case. The user who
must have a mUlti-page boxed table should use macros designed for this purpose. as
explained below under 'Usage.'

2) FORMAT. The format section of the 'table specifies the layout of the columns. Each line
in this section corresponds to one line of the table (except that the last line corresponds to
all following lines up to the next . T &. if any - see below). and each line contains a key­
letter for each column of the table. It is good practice to separate the key letters for each
column by spaces or tabs. Each key-letter is one of the following:

L or I to indicate a left-adjusted column entry:

R or r to indicate a right-adjusted column entry:

Cor c to indicate a centered column entry:

!'lor n to indicate a numerical column emry. to be aligned with other numerical
entries so that the units digits of numbers line up:

A or a to indicate an alphabetic subcolumn: all corresponding entries are aligned on
the left, and positioned so that the widest is centered within the column (see
example on page 12):

S or s to indicate a spanned heading, i.e. to indicate that the entry from the previous
column continues across this column (not allowed for the first column. obVI­
ously); or

.. to indicate a venically spanned heading. i.e. to indicate that the entry from the
previous row continues down through this row. (~ot allowed for the first row
of the table. obviously).

When numerical alignment is specified. a location for the decimal point is sought. The
rightmost dot (.) adJacent to a digit is used as a deCimal point: if there is no dot adjOInIng
a digit. the rightmost digit is used as a units digit: if no alignment is indicated. the Hem IS

centered In the column. However. the special non-printing character string \& may be
used to override unconditionally dots and digits. or to align alphabetic data: this string
lines up where a dot normally would. and then disappears from the final output. In the
exampie below. the items shown at the leit WIll be aligned (10 a numerical cOlumn) as

- ------ _._--_._- - -------------------

shown on the right:

- 3 -

13
4.2
26.4.12
abc
abc\&
43\&3.22
749.12

13
4.2

26.4.12
abc

abc
433.22

749.12

~ote: If numerical data are used in the same column with wider L or r type table entries,
the widest number is centered relative to the wider L or r items (L is used instead of I for
readability; they have the same meaning as key-letters). Alignment within the numerical
items is preserved. This is similar to the behavior of a type data, as explained above.
However, alphabetic subcolumns (requested by the a key-letter) are always slightly
indented relative to L items; if necessary, the column width is increased to force this.
This is not true for n type entries.

Wa",ing: the n and a items should not be used in the same column.

For readability, the key-letters describing each column should be separated by spaces.
The end of the format section is indicated by a period. The layout of the key-letters in
the format section resembles the layout of the actual data in the table. Thus a simple for­
mat might appear as:

c s s
Inn. .

which specifies a table of three columns. The first line of the table contains a heading cen­
tered across all three columns; each remaining line contains a left-adjusted item in the
first column followed by two columns of numerical data. A sample table in this format
might be:

Overall title
Item-a 34.22 9.1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key-letter system:

Horr:ontal lines - A key-letter may be replaced by '_' (underscore) to indicate a hor­
izontal line in place of the corresponding column entry, or by • -' to indicate a dou­
ble horizontal line. If an adjacent column contains a horizontal line, or if there are
vertical lines adjoining this column, this horizontal line is extended to meet the
nearby lines. If any data entry is provided for this column. it is ignored and a warn­
ing message is printed.

VerTIcal lines - A vertical bar may be placed between column key-letters. This will
cause a vertical line between the corresponding columns of the table. A vertical bar
to the left of the first key-letter or to the right of the last one produces a line at the
edge of the table. If two vertical bars appear between key-letters. a double vertical
line is drawn.

Space between columns - A number may follow the key-letter. This indicates the
amount of separation between this column and the next column. The number nor­
mally speCifies the separation in ens (one en is about the width of the letter 'n').- If
the "expand" option is used. then these numbers are multiplied by a constant such
that the table is as wide as the current line length. The default column separation

• "'fore preCisely. an en IS a number of POlMtS (\ POlMt - \172 inch) equal to hair the current type size.

- 4 -

number is 3. If the separation is changed the worst case (largest space requested)
governs.

VertIcal spanmng - Normally. venically spanned items extending over several rows of
the table are centered in their venical range. If a key-letter is followed by I or T.
any corresponding vertically spanned item will begin at the top line of its range.

Font changes - A key-letter may be followed by a string containing a font name or
number preceded by the letter for F. This indicates that the corresponding column
should be in a different font from the default font (usually Roman). All font names
are one or two letters~ a one-letter font name should be separated from whatever
follows by a space or tab. The single letters B. b. I, and i are shoneI' synonyms for
fB and rI. Font change commands given with the table entries override these
specifications.

POint size changes - A key-letter may be followed by the letter p or P and a number to
indicate the point size of the corresponding table entries. The number may be a
signed digit. in which case it is taken as an increment or decrement from the current
point size. If both a point size and a column separation value are given. one or
more blanks must separate them.

Vertical sptlcmg changes - A key-letter may be followed by the letter y or V and a
number to indicate the venical line spacing to be used within a multi-line
corresponding table entry. The number may be a signed digit. in which case it is
taken as an increment or decrement from the current vertical spacing. A column
separation value must be separated by blanks or some other specification from a
venical spacing request. This request has no effect unless the corresponding table
entry is a text block (see below).

Column width mdicatlon - A key-letter may be followed by the letter w or Wand a width
value in parentheses. This width is used as a minimum column width. If the largest
element in the column is not as wide as the width value given after the w. the larg­
est element is assumed to be that wide. If the largest element in the column is
wider than the specified value. its width is used. The width is also used as a default
line length for included text blocks. Normal rroff units can be used to scale the
width value~ if none are used, the default is ens. If the width specification is a unit­
less integer the parentheses may be omitted. If the width value is changed in a
column. the last one given controls.

Equal WIdth columns - A key-letter may be followed by the letter e or E to indicate
equal width columns. All columns whose key-letters are followed by e or E are
made the same width. This permits the user to get a group of regularly spaced
columns.

Note: The order of the above features is immaterial~ they need not be separated by
spaces, except as indicated above to avoid ambiguities involving point size and font
changes. Thus a numerical column entry in italic font and 12 POint type with a
minimum width of 2.5 inches and separated by 6 ens from the next column could be
specified as

np12w(2.Sj)fI 6

Alternative notation - Instead of listing the format of successive lines of a table on con­
secutive lines of the format section. successive line formats may be given on the
same line. separated by ;:ommas. so that the format for the example above might
have been written:

c s s. inn.

De/ault - Column descriptors missing from the end of a format line are assumed to ~e
L. The longest lir:.e In :he format section. however. defines the number of columns
in the table: extra columns in the data are Ignored silently.

- s -

3) DATA. The data for the table are typed after the format. Normally, each table line is
typed as one line of data. Very long input lines can be broken: any line whose last charac­
ter is \ is combined with the following line (and the \ vanishes>. The data for different
columns (the table entries) are separated by tabs, or by whatever character has been
specified in the option fabs option. There are a few special cases:

Trojf commands within fables - An input line beginning with a·.' followed by anything
but a number is assumed to be a command to trojfand is passed through unchanged,
retaining its position in the table. So. for example, space within a table may be pro­
duced by ... sp" commands in the data.

Full width horizontal lines - An input line containing only the character (underscore)
or - (equal sign) is taken to be a single or double line, respectively:-extending the
full width of the fable.

Single colullln hOrizontal lines - An input table entry containing only the character or­
is taken to be a single or double line extending the full width of the column-: Such
lines are extended to meet horizontal or vertical lines adjoining this column. To
obtain these characters explicitly in a column, either precede them by \& or follow
them by a space before the usual tab or newline.

Short hort:ontal lines - An input table entry containing only the string \ is taken to be a
single line as wide as the contents of the column. It is not extended to meet adjoin­
ing lines.

Repeated characters - An input table entry containing only a string of the form \Rx
where x is any character is replaced by repetitions of the character x as wide as the
data in the column. The sequence of x's is not extended' to meet adjoining
columns.

Vert/cally spanned items - An input table entry containing only the character string \ ..
indi'cates that the table entry immediately above spans downward over this row. It is
equivalent to a table format key-letter of .-'.

Text blocks - In order to include a block of text as a table entry, precede it by T{ and
follow it by TI. Thus the sequence

•.. T{
block 0/
rext
TI ...

is the way to enter, as a single entry in the table. something that cannot con­
veniently be typed as a simple string between tabs. Note that the TI end delimiter
must begin a line~ additional columns of data may follow after a tab on the same
line. See the example on page to for an illustration of included text blocks in a
table. If more than twenty or thirty text blocks are used in a table. various limits in
the (roJ! program are likely to be exceeded. producing diagnostics such as 'too many
string/macro names' or 'too many number registers.'

Text blocks are pulled out from the table, processed separately by rroif, and replaced
in the table as a solid block. If no line length is specified in the block of (ext itself.
or in the table format. the default is to use L xCI (.V 1) where L is the current line
length. C is the number of table columns spanned by the text. and .v is the total
number of columns in the table. The other parameters (point size. font. etc.) used
in setting the block 0/ rext are those in effect at the beginning of the table (including
the effect of the ". TS" macro) and any table format speCifications of size. spacing
and font. using the P. v and r modifiers to the column key-letters. Commands
within the text block itself lre llso recognized. of course. However. (roJ! commands
withIn the table data but not within the text block do not affect that block.

- 6 -

Warnings: - Although any number of lines may be present in a table, only the first 200
lines are used in calculating the widths of the various columns. A multi-page table.
of course. may be arranged as several single-page tables if this proves to be a prob­
lem. Other difficulties with formatting may arise because. in the calculation of
column widths all table entries are assumed to be in the font and size being used
when the ". TS" command was encountered. except for font and size changes indI­
cated (a) in the table format section and (b) within the table data (as in the entry
\s+3\fldata\fP\sO). Therefore. although arbitrary Iroffrequests may be sprinkled in
a table. care must be tale en to avoid confusing the width calculations; use requests
such as •. ps' with care.

4) ADDlTIONAL COMMAl"'D LINES. If the format of a table must be changed after many simI­
lar lines. as with sub-headings or summarizations. the ". T & .. (table continue) command
can be used to change column parameters. The outline of such a table input is:

.TS
oprtons ;
(ormar •
data

.T&
formar.
data
.T&
format.
data
.TE

as in the examples on pages 10 and 12. Using this procedure, each table line' can be close
to its corresponding format line.
Warnmg: it is not possible to change the number of columns. the space between columns.
the global options such as box. or the selection of columns to be made equal width.

Usage.
On UNIX, tbl can be run on a simple table with the command

tbl input-file I troir

but for more complicated use, where there are several input files, and they contain equations
and ms memorandum layout commands as well as tables, the normal command would be

tbl file-1 file-2 ••• I eqn I troir - ms

and. of course, the usual options may be used on the troffand eqn commands. The usage for
"roff is similar to that for troff, but only TELETYPE'Io Model 3i and Diablo-mechanism (DASI or
OSI) terminals can print boxed tables directly.

For the convenience of users employing line printers without adequate driving tables or
post-filters, there is a special - TX command line option to fbi which produces output that does
not have fractional line motions in it. The only other command line options recognized by tbl
are -ms and -mm which are turned into commands to fetch the corresponding macro files:
usually it is more convenient to place these arguments on the Iroff part of the command line.
but they are accepted by rbl as well.

!'1ote that when eqn and tbl are used together on the same file rbl should be used first. If
there are no equations within tables. either order works. but it IS usually faster to run tbl firs!.
since eqn normally produces a larger expansion of the input than rbl. However, if there are
equations within tables (usmg the de(lm mechanism ;n ean). rbl must be first or the output w:il
be scrambied. Users must also beware of uSing equations in n-styie coiumns: thIS is nearlY

-----~-~--~

- 7 -

always wrong, since fbI attempts to split numerical format items into two pans and this is not
possible with equations. The user can defend against this by giving the delim(xx) table option;
this prevents splitting of numerical columns within the delimiters. For example, if the eqn del­
imiters are SS, giving defim(SS) a numerical column such as "1245 $ +- 16$" will be divided
after 1245, not after 16.

Tb/ limits tables to twenty columns; however, use of more than 16 numerical columns
may fail because of limits in rroff, producing the 'too many number registers' message. Troff
number registers used by fbi must be avoided by the user within tables; these include two-digit
names from 31 to 99, and names of the forms #x, x+, xL ·x, and x-, where x is any lower
case letter. The names ##. #-, and #- are also used in cenain circumstances. To conserve
number register names. the n and a formats share a register; hence the restriction above that
they may not be used in the same column.

For aid in writing layout macros, rbl defines a number register TW which is the table
width; it is defined by the time that the ". TE" macro is invoked and may be used in the
expansion of that macro. More importantly. to assist in laying out multi-page boxed tables the
macro T # is defined to produce the bottom lines and side lines of a boxed table. and then
invoked at its end. By use of this macro in the page footer a multi-page table can be boxed. In
particular. the ms macros can be used to print a multi-page boxed table with a repeated heading
by giving the argument H to the". TS" macro. If the table stan macro is written

.TS H
a line of the form

.TH
must be given in the table after any table heading (or at the stan if none). Material up to the
... TH" is placed at the top of each page of table; the remaining lines in the table are placed on
several pages as required. Note that this is "or a feature of rbl. but of the ms layout macros.

Examples.

Here are some examples illustrating features of rbl. The symbol ~ in the input
represents a tab character.

Input:

.TS
box;
c c c
I I I.
Language ~ Authors ~ Runs on

Fortran ~ Many ~ Almost anything
PLil ~ IBM ~ 3601370
C ~ BTL ~ III 45.H6000,370
BLISS ~Carnegie-Mellon ~ PDP-IO.II
IDS ~ Honeywell ~ H6000
Pascal ~Stanford ~ 370
.TE

Output:

Language

Fortran
PLit
C
BLISS
IDS
Pascal

Authors Runs on

Many Almost anything
IBM 360/370
BTL 1I/45,H6000,370
Carnegie-Mellon PDP-IO,II
Honeywell H6000
Stanford 370

- 8 -

Input:

.TS
allbox:
css
c c c
n n n.
AT&T Common Stock
Year ~ Price ~ Oi vidend
1971 G')41-54~S2.60
2~41-54e2.70
3 ~46-SS ~2.87
4~40-S3 ~ 3 .24
5~4S-S2~3.40
6~51-59~.95·
.TE
• (first quaner only)

Input:

.TS
box:
c s s
clclc
I1I1 n.
Major New York Bridges -
Bridge G Designer ~ Length

Brooklyn ~J. A. Roebling ~ 1595
Manhattan ~G. Lindenthal ~ 1470
Williamsburg ~ L. L. Buck e 1600

Queensborough ~ Palmer & ~ 1182
(!) Hornbostel

~ ~ 1380
Triborough ~O. H. Ammann ~
~ ~383 -

Bronx Whitestone~O. H. Ammann~2300
Throgs Neck (!) O. H. Ammann ~ 1800

Output:

I AT&T Common Stock
Year I Price I Dividend I I

1971 I 41·54 I $2.60

2 I 41-54 ! 2.70
3 i 46·55 I 2.8i
4 I 40·53 I 3.24

5 I 45-52 I 3.40

6 I SI-59 I .95·
• (first Quarter only)

Output:

Major New York Bridges
Bridge Designer

Brooklyn J. A. Roebling
Manhattan G. Lindenthal
Williamsburg L. L. Buck
Queensborough

I
Palmer &

Hornbostel

I Triborough O. H. Ammann

I Bronx Whitestone O. H. Ammann
I Throgs Neck O. H. Ammann
; George Washington O. H. Ammann

George Washington ~O. H. Ammann ~3500
.TE

I

I
I

Length
1595
1470
1600
1182

1380

8 3 3
2300
1800
3500

I
I

!

I
I
I

I

I
I

Input:

.TS
cc
np-21 n 1 •
~Stack
G>_
1~46
G>_
2G>23
G>
3<£15
G>_
4G>6.5
G>_
SG>2.1
G>_
.TE

Input:

.TS
box~
LLL
LL
L LILS
LL_
L L L.
january G> february G> march
april G>may
june G> july G> Months
august CD september
october CD novem ber ~ december
.rE

- 9 -

Output:

Stack
46

2 23
J 15
4 6.5
s 2.1

Output:

january
april
june
august
october

february march
may
july I Months
september '----~
november december

- 10 -

Input: Output:

.TS Composition of Foods
box:
cfBsss.
Composition of Foods

.T&
c ! c s s
c 1 c s s
c I c I c I c.
Food ~ Percent by Weight
,,- ~
'.. ~ Protein e Fat ~ Carbo-­
\- ~\ - ~\- ~hydrate

.T&
lin I n In.
Apples (1) .4~.5 (i) 13.0
Halibut ~ 18.4 (i) 5.2 ~ .
Lima beans e 7.5 (i) .8 (i) 22.0
Milk ~ 3.3 (i)4.0 ~ 5.0
Mushrooms (i) 3.5 (i) .4 (i) 6.0
Rye bread (i) 9.0 (i) .6 (i) 52.7
.TE

Input:

.TS
allbox:
cfl s s
c cw(li) cw(li)
Ip9 Ip9 Ip9.
New York Area RocKs
Era (i) Formation (i) Age (years)
Precambrian (i) Reading Prong ~ > 1 billion
Paleozoic (i) Manhattan Prong (i) 400 million
Mesozoic (i) T I
.na
Newark Basin. incJ.
Stockton. Lockatong. and Brunswick
formations: also Watchungs
and Palisades.
Tl (1)200 million
Cenozoic (i) Coastal Plain (i) T I
On Long Island 30,000 years:
Cretaceous sediments redeposited
by recent glaciation •
. ad
Tl
.TE

------- - -------------

I

L

Food
I

Apples I
I

Halibut
,
I Lima beans I

Milk I Mushrooms
Rye bread I

Output:

Era
Precambrian i
Paleozoic
Mesozoic

CenozoIc

I

I

Percent by Weight !

Protein Fat ! Carbo- I
i I hydrate I

.4

I
.5 13.0 I

18.4 5.2
I

...
7.5 .8 22.0
3.3 4.0 5.0 I

3.5 .4 6.0 !
9.0 .6 52.7 I

New York Area Rocks
Formation Age (years)

Reading Prong I > 1 billion
Manhattan Prong I 400 million
Newark Basin. I 200 million

I
inc!. Stockton.
Lockatong. and
BrunSWick for-
mations: also
WatchunlS and
Palisades.
Coastal Plain On Long ISland

30.000 years.
Cretaceous sedl-
ments redeoo-
sJled by rec::"!1
glaciation.

:
,

,

:

Input:

.EQ
delim SS
.EN

.TS
doublebox;
cc
1 1.
Name ~ Definition
.sp
.Vs +2p

• 11 -

Output:

Name

Gamma

Sine

Error

Bessel

Zeta

Definition

Gammau>SGAMMA (z) - int sub 0 sup inf t sup Iz-I1 e sup -t dtS
Sine~Ssin (x) - lover 2i (e sup ix - e sup -ix)$
Error ~ S roman erf (z) - 2 over sqrt pi int sub 0 sup z e sup (-t sup 21 dtS
Bessel ~ S J sub 0 (z) - lover pi int sub 0 sup pi cos (z sin theta) d theta S
Zeta~$ zeta (s) - sum from k-l to inf k SUP'5 --(Re-s > 1)$
• V5 -2p
.TE

Input:

.TS

Output:

Readability of Text
box. tab(:);
cb s s s s
cp-2 s s 5 s
cllclclclc
cllclclclc

Line Width and Leudinl for IO·Point Type

r211 n21 n21 n21 n.
Readability of Text
Line Width and Leading for 10-Point Type -
Line: Set: I-Point: 2-Point: 4-Point
Width: Solid: Leading: Leading: Leading

9 Pica:\-9.3 :\-6.0:\-5.3 :\-7.1
14 Pica: \.4.5: \-0.6: \-0.3: \-1.7
19 Pica: \·5.0 : \ -5. 1 : 0.0: \ -2.0
31 Pica:\·3.7:\·3.8:\-2.4:\-3.6
43 Pica:\·9.1 :\·9.0:\·5.9:\·8.8
.TE

Line
Width
9 Pica

14 Pica
19 Pica
31 Pica
43 Pica

Set
Solid
-9.3
-4.5
-5.0
-3.7
-9.1

I·Point 2-Point 4-Point
Leading Leading Leading

-6.0 -5.3 -7.1
-0.6 -0.3 -1.7
-5.1 0.0 -2.0
-3.8 -2.4 -3.6
-9.0 -5.9 -8.8

Input:

.TS
c s
cip-2 s
In
an.
Some London Transport Statistics
(Year 1964)
Railway route miles e 244
Tube~66
Sub-surface ~ ::
Surface e 156
.sp .5
.T&
I r
a r.
Passenger traffic \- railway
Journeys ~ 6 i4 million
A verage length <IJ 4.55 miles
Passenger miles:Il3 .066 million
.T&
I r
a r.
Passenger traffic \- road
Journeys <IJ 2.252 million
Average length ~2.26 miles
Passenger miles ~ 5.094 million
.T&
In
an.
.sp .5
VehIcles ~ I :.52 I
RjJilway motor cars ~ 2.905
Railway trailer cars ~ 1.269
Total railway~4.174
Omnibuses $ 8.347
.T&
In
an .
. sp .5
Staff~' ':'3. ~39
AdminIstrative. etc. ~5.582
Civil engineering ~ 5.134
Electrical eng.~ 1. i 14
~ech. eng. \- railway <IJ 4.3 I 0
\1ech. eng. \- road ~9.152
Railway operations ~8.930
Road operations (t, 35.946
Other ~ 2. 9~ 1
.TE

. 12 -

Output:

Some London Transport Statistics
rrl'Qf /9641

Railway route miies
Tube
Sub-surface
Surface

Passenger traffic - railway
Journeys
Average length
Passenger miles

Passenger traffic - road
Journeys
A verage length
Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
TOlal railway
Omnibuses

Staff
Administrative. etc.
Civil en,gineering
Electrical eng.
Mech. eng. - railway
Mech. eng. - road
Railway operations
Road operations
Other

244
66
22

156

674 million
4.55 miles

3.066 million

2.252 million
2.26 miles

5.094 million

12.521
2.905
1.269
4.174
8.347

73.739
5.582
5.1.34
1. 714
4.310
9.152
8.930

35.946
2.971

Input:

.ps 8
• vs lOp
.TS
center box;
ess
ei s s
cee
181 n.
New Jersey Representatives
(Democrats)
.sp .5
Name <J:) Office address <J:) Phone
.sp .S

- 13 - .

James J. Florio <J:) 23 S. White Horse Pike, Somerdale 08083 <J:) 609-627 -8222
William J. Hughes ~ 2920 Atlantic Ave e, Atlantic City 08401 ~ 609-345-4844
James J. Howard<J:l801 Bangs Ave~, Asbury Park 07712 <J:l 201-774-1600
Frank Thompson, Jr. <J:l 10 Rutgers PI., Trenton 08618<J:l609-599-1619
Andrew Maguire <J:l 115 W. Passaic St., Rochelle Park 07662 <J:l 201-843-0240
Robert A. Roe<J:lU.S.P.O., 194 Ward St., Paterson 07510<J:l201-523-5152
Henry Helstoski<J:l666 Paterson Ave., East Rutherford 07073 <J:l 201-939-9090
Peter W. Rodino, Jr. <J:lSuite 1435A, 970 Broad St" Newark 07102<J:l201-645-3213
Joseph G. Minish <J:l 308 Main St •• Orange 07050 <J:) 201-645-6363
Helen S. Meyner<J:)32 Bridge St., Lambertville 08530 <J:l 609-397-1830
Dominick V. Danieis<J:l895 Bergen Ave., Jersey City 07306 <J:) 201-659-7700
Edward 1. Patten <J:l Natl. Bank Bldg., Perth Amboy Oa861 <J:l 201-826-4610
.sp .5
.T&
ci s s
18 I n.
(Republicans)
.sp .5v
~iI1ieent Fenwick (t)4t N. Bridge St., Somerville 08876 <J:l 201-722-8200
Edwin B. Forsythe~JOl Mill St., Moorestown 080S7<J:l609-235-6622
Matthew 1. Rinaldo<J:l 1961 Morris Ave., Union 07083~201-687·4235
.TE
.ps 10
. vs 12p

Output:

Name

James J. Florio
WIlliam J. HUlhes
Jlllles J. Howard
Frank Thompson. Jr.
Andrew Mlluire
Roben A. Roe I Henry Helstoskl

I Perer W. Rodino. Jr.
I Joseph G. Minish

I Helen S. Me.,ner

I Dominick V. Daniels
I Edward J. Plttea

II Millicent Fenwick
Edwin B. ForsYthe
Matthew J. Rlaaldo

I

• 14 •

New Jersey Representallves
([hMocrofSJ

Office address

23 S. White Horse Pike. Somerdale 08083
2920 Allanuc Ave .. Allanuc CilY 08401
801 BanIS Ave .. Asbury Park 07712
10 Rutlers PI .. Trenlon 08618
liS W. Passaic 51 •• Rochelle Park 07662
U.S.P.O .• 194 Ward 51 .. Palerson 07510
666 Palerson Ave .. Easl RUlherford Q7073
SUlle 1435A. 970 Broad 51 .. Newark 07102
308 Main 51 .. Oranle 07050
32 Bridie 51 •• l..1mbertville 08530
895 Berlen Ave .• Jersey CilY 07306
NaIl. Bank Bldl .. Penh Amboy 08861

(Rtpubllcans)

41 N Bridle St.. Somerville 08876
301 Mill 51 •• Moorestown 08057
1961 MorriS Ave .. Union 07083

Phone

609·627·8222
609-345-4844
201·774-1600
609·S99·1619
201·843·0240
201·S23·S152
201·939-9090
201-64S.3213 I
201·64S·6363 i
609-397·1830
201.659-7700 i

20'-8"""0 I
201· 722·8200 I
609·235·6622
201.687-4235 .

This is a paragraph of normal text placed here only to indicate where the left and right margins
are. In this way the reader can judge the appearance of centered tables or expanded tables. and
observe how such tables are formatted.

Input:

.TS
expand:
csss
ecce
II n n.
Bell Labs Locations
Name ~ Address ~ Area Code ~ Phone
Holmdel ~ Holmdel. N. J. 07733 (l) 201 ~ 949·3000
Murray Hill (l) Murray Hill. N. J. 07974 ~ 201 ~582·63i7
Whippany <Il Whippany. N. J. 07981 <Il20 1 <Il386·3000
Indian Hill ~ Naperville. Illinois 60540 ~312 ~690·2000
.TE

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

- ------------------ ----

Bell Labs Locations
Address

Holmdel. N. J. 07733
Murray Hill. N. J. 07974
Whippany. N. J. 07981
Naperville. Illinois 60540

--------- ---------- -_.

Area Code
201
201
201
312

Phone
949·3000
582·637;
386·3000
690·2000

..
Inpat:

.TS
box;
cb s s s
c I c I c ,
Itiw(!i) Iltw(2il IIp8 Ilw(1 .6ilp8.
Some Interesting Places

Name G> Description G} Practical Information

1'1
American Museum of Natural History
TIG>TI

- IS -

The collections fill 11.5 acres (Michelin) or 25 acres (MT A)
of exhlbillon halls on four noors. There is a full·sized replica
of a blue whale and the world's larlest star sapphire (stolen in 1964).
TIG>HoursG:!IO-S. ex. Sun 11·5. Wed. to 9
\ • G:! \ • G:! Locallon G>T(
Central Park West .t 79th St.
TI
\ 'G:!\'G:! AdmissionG:! Donation: SI.OO ulced
\ 'G:I\ 'G:!SubwayG:! AA to 81st St.
\ • G:!\ • G:!TelephoneG} 212·873.4225

Bronx ZooG}T!
About a mile lonl and .6 mile wide. this is the larlest zoo in America.
A lion eats 18 pounds
of meat a day while a sea lion ellIS 15 pounds of Ilsh.
TI G> HoursG:!T(
10-4:30 winter, to 5:00 summer
TI
\ • G} \ • G:! Locallon G:! T(
185th 51 • .t Southern Blvd. the Bronx.
TI
\'G:!\·G:!AdmlsslonG:!SI.00. but Tu.We,Th rree
\ 'G:!\ 'G:!Subway G:!2, 5 to East Tremont Ave.
\. G>\ 'G:I TelephoneG} 212·933·1759

Brooklyn MuseumG}TI
Five noors of galleries contain American and ilnc:ient art.
There are American perrod rooms and archllectur,lI ornaments $lived
rrom wreckers, such .IS a classical figure from Pennsylvanill Station.
TI G:I HoursG:l Wed·Sat, 10-5, Sun 12·5
\ 'G:I \ '~ Locauon G:! TI
Easlern P.ark way .t Washington Ave., Brooklyn.
TI
\ 'G:I\ 'G:I AdmisslonG:l Free
\'~\·<D5ubway\Il2.3 to Eastern Parkway.
\ 'G:!\ 'G:lTelephonell) 212,638.5000 '

I{
~ew· York Historical Society
TI~T{
,-\11 the ongmal pamllngs for Audubon's
.1
Birds of America
.R
are here. as are exhibits of American decorative arts, ~ew York history.
Hudson River school pamilngs, camages, and "ass paperweights.
TI G:I HoursG:lT{
Tues·Frr &. Sun. 1·5; Sat [0-5
TI
\' G:I\'~ Locauonll)TI
Central Park West &t 77th St.
TI
\ • ~ \ • (D AdmiSSion G:I Free
\'~\'~SubwayG:lAA to 81st St.
\. ~\' '~TelephoneG:l212·873.j400
,TE

- 16 -

Output:

Some Interesting Places

I Practical Information
I

I Name Description I
! I AmeTican Muse- The collections fill 11.5 acres Hours

I
)()'S. ex. Sun 11-5. Wed. 10 9

I I um of Natural (Michelin) or 25 acres (MTA) Loc:aIJon Central Park WCSI It 79th 51.

of exhibition halls four I I History on AdmiSSion Donilllon SI.00 ilsked I
I floors. There is a full-sized re- SubwIY AA 10 81s1 51.

I
I plica of a blue whale and the Telephone 212-873-4225

I world's largest star sapphire
(stolen in 1964). I

I !
I Bronx Zoo I About a mile long and .6 mile Hours 10-<1:30 Wlnler. 10 5:00 summer i
! wide. this is the largest zoo in Loc:allon 1851h 51. It SOUl hem Blvd. Ihe ;

I America. A lion eats 18 Bronx.

I
pounds of meat a day while a AdmlUlon S1.00. bUI Tu.We.Th (ree

sea lion eats"lS pounds of fish. Subway 2.510 Easl Tremonl Ave.
Telephone 212-933-1759

I Brook~vn Museum Five floors of galleries contain Hours Wed-Sal. 10.5, Sun 12-5
American and ancient an. Loc:allon Eastem PlrkwlY It Wuhinlton

I There are American period A ve .. Brooklyn.

I rooms and architectural orna- AdmlUlon Free

I ments saved from wreckers. SubwIY 2.310 Eastem PlrkwIY.

I such as a classical figure from Teleptlone 212-638-5000
I Pennsylvania Station. I
I I

New- York H,stor- All the origznal paintings for Hours Tucs-Fn • Sun. 1·5: Slat 10.5

I Ical SocIety Audubon's Birds qf AmeTica are Locallon Cenlral Park Wesl • 77th St.
here. as are exhibits of Ameri- AdmlUlon Free

I can decorative ans. New York Subway AA 10 81s1 SI.
; history, Hudson River school Telephone 212·873·3400 I
I paintings. carriages. and glass I I
I I j I paperweights.

Acknowledgments.

Many thanks are due to J. C. Blinn. who has done a large amount of testing and assisted
with the design of the program. He has also written many of the more intelligible sentences in
this document and helped edit all of it. All phototypesetting programs on UNIX are dependent
on the work of the late J. F. Ossanna. whose assistance with this program in panicular had been
most helpful. This program is patterned on a table formaner originally written by J. F. Gimpel.
The assistance of T. A. Dolotta. B. W. Kernighan. and J. N. Sturman is gratefully ack­
nowledged.

References.

[ll J. F. Ossanna. NROFFITROFF User's Manual. Computing Science Technical Repon No. 54,
Bell Laboratories. 1976.

[2J K. Thompson and D. M. Ritchie. "The UNIX Time-Sharing System." Comm. ACM. 17.
pp. 365-75 C19i41.

[3) B. W. Kernighan and L. L. Cherry. "A System for TypeseUlng ~athematics." Comm.
AC.\1. 18. pp. 151-5i (1975),

(4) M. E. Lesk. TYPIfIX Documents 0" UWX. UNIX Programmer's ~:lnual. Volume 2.

[5]

[6)

- 17 -

M. E. Lesk and B. W .. Kernighan. Com/luter TytJesertilfK q(Tech"ical Journals on UNIX. Proc.
AFIPS NeC. vol. 46. pp. 879-888 (I 977).

1. R. Mashey and D. W. Smith. "Documentation Tools and Techniques:' Proc. 2nd Int.
Con(. on SQ{iware Engineering. pp. 177-181 (October. 1976).

List of Tbl Command Characters and Words

Command Meamng Section
aA Alphabetic subcolumn 2
aUbox Draw box around all items 1
bB Boldface item 2
box Draw box around table 1
cC Centered column 2
center Center table in page 1
doublebox Doubled box around table 1
eE Equal width columns 2
expand Make table full line width 1
fF Font change 2
i I Italic item 2
I L Left adjusted column 2
nN Numerical column 2
nnn Column separation _ 2
pP Point size change 2
rR Right adjusted column 2
5S Spanned item 2
t T Vertical spanning at top 2
tab (x) Change data separator character 1
T(TJ Text block 3
vV Vertical spacing change 2
wW Minimum width value 2
.xx Included rroffcommand 3
I Vertical line 2
II Double vertical line 2

Vertical span 2
\- Vertical span 3 - Double horizontal line 2.3

Horizontal line 2.3 ,- Short horizontal line 3
\"Rx Repeat character 3

A System for T~-pesetting Mathematics

Bf/an W. KernIghan and Lormda L. Cherry

Bell Laboratories
Murray HilL New Jersey 07974

ABSTRACT

Thls paper describes the design and Implementation of a system for typesetting
mathematics. The language has been designed to be easy to learn and to use by people
(for example. secretaries and mathematical typists) who know neither mathematics nor
typesetting. Experience indicates that the language can be learned in an hour or so. for
it has few rules and fewer exceptions. For typical expressions. the size and font
changes. positioning. line drawing, and the like necessary to print according to
mathemallcal conventions are all done automallcally. For example. the input

sum from 1-0 to infinity x sub i-pi over 2

produces

'" ~ 11"
~x.--
,.0 2

The syntax of the language is specified by a small context-free grammar: a
compiler-compiler is used to make a compiler that translates this language into typeset­
ting commands. Output may be produced on either a phototypesetter or on a terminal
with forward and reverse half-line motions. The system interfaces directly with text
formatting programs. so mixtures of text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM. March. 1975.

1. Introduction

"Mathematics is known in the trade as
df{ficull. or penalrr. copy because it is slower.
more difficult. and more expensive to set in type
than any other kind of copy normally occurring
in books and journals." [1l

One difficulty with mathematical text is the
m'Jltiplicity of characters. sizes. and fonts. An
expressIOn such as

lim (tan x)SI" 2, _ I
1'-"'::

requires an intimate mixture of roman. italic and
greek letters. in three sizes, and a special charac­
ter or two. ("ReqUires" is perhaps the wrong
word. but mathematics has its own typographical
conventions which are quite different from those
of ordinary text.) Typesetting such an expression
by traditional methods IS still an essentially
manual operation.

A second difficulty is the two dimensional

character of mathematics. which the superscTlpt
and limits in the preceding example showed In ItS

simplest form. This is carned further by

Qo+

and still further by

f dx
ae'"'-be-"rT -

b l

... /ae"'Y-./b log ...;;.;:::=--..:..;;"
2mJOb vae"'YT..Jb

,.-
~ tanh-ie -.I::'e"'Y)
m"\lab ..Jb

-I coth-I(-.I~e"")
mvab v'b

These examples also show line-drawing. built-up
characters like braces and radicals. and a spec­
trum of positioning problems. (Secuon 6 shows

what a user has to type to produce these on our
sysre~.)

1. 'Photocom position

. Photocomposition techniques can be used
to solve. some of the problems of typesettinl
mat.hemadcs. A phototypesetter is a device
whicb exposes a piece of photographic paper or
fUm. placinl cbaracters wherever they are
wanted. The Graphic Systems phototypesetter{21
on the UNIX operatinl system[J) works by shin·
inl Iipt tbrougb a cbaracter stencil. The charac­
ter is made the right size by lenses. and the lipt
beam directed by tiber optics to the desired place
on a piece of photographic paper. The exposed
paper is developed and typically used in some
form of pboto-offset reproduction.

On UNIX. the phototypesetter is driven by
a formaltinl program called TROFF [41. TROFF
was designed for sellinl runninl text. It also
provides all of the facilities that one needs for
doinl mathematics, such as arbitrary horizontal
and vertical motions. line-drawinl. size chanlinl.
but the syntax for describina these speciaJ opera·
tions is difficult to leam. and difficult even for
experienced users to type correctly.

For this reason we decided to use TROFF
as an "assembly lanluage. ,. by desilninl a
lanauage for describinl mathematical expres­
sions. and compilinl it into TROFF.

3. Lancuace Deslla

The fundamental principle upon which we
based our language desip is that the language
should be easy to use by people (for example.
secretaries) who know neither mathematics nor
typesening.

This principle implies several things. First.
"normal" malhematical conventions about
operator precedence. parentheses. and the like
cannot be used. for to give special meaninl to
such characters means that the user has to
understand what he or she is typing. Thus the
lan\luage should not 3SSume. for instance. that
parentheses are always balanced. for they are not
in the half·open interval (a ,0 J. Nor should it
lSSume that that .Ja ~O can be replaced by
(a ... 11) ~, or that 1/ (1-."() is better written as

-L (or vice versa).
l-."(

Second. there sbould be relatively :'ew
rules. iceywords. specjal symbols and operators.
md the like. This leeeps the languaae e35Y to
team cUtd rememcer. Furthermore. there should ,e few exce;mons to :he rules :hat do eXl$t: if
lomethlng works in one situatIon. it should ',vork
!ve:-:IW !'! ere, If a vanable can ~ave a 5ubsc:'10t.
then l subscnpt an have a subscript. md so on

·2·

witbout limit.

Third. "standard" thinas sbould happen
automatically. Someone who types
"x-y+z+I" sbould get ".~-y+:+l", Sub·
scripts and superscripts sbould automatically be
printed in an appropriately smaller size. with no
special intervention. Fraction bars have to be
made tbe rilht length and positioned at tbe rigbt
heipt. And so on. Indeed a mechanism for
overridinl default actions has to exist. but its
application is tbe exception. not tbe rule.

We assume tbat tbe typist has a reasonable
picture (a two-dimensional representation) of tbe
desired tinal form. as mipt be handwritten by
the author of a paper. We also assume that tbe
input is typed on a computer terminal mucb like
an ordinary typewriter. This implies an input
alphabet of perbaps 100 characters. none of them
special.

A secondary, but still important. goal in
our desian was that the system sbould be easy to
implement. since neither of the authors had any
desire to make a long.term project of it. Since
our desilll was not firm. it was also nec:ssary
that the program be easy to change at any time.

To make tbe program easy to build and to
chan Ie. and to guarantee rqularity eOit sbould
work everywhere"), the language is defined by a
context-free grammar, described in Section S.
The compiler for tbe lanauale was' built usinl a
compiler-compiler.

A priori. tbe grammar/compiler·compiler
approach seemed the ript thinl to do. Our sub­
sequent experience leads us to believe that any
other course would have been folly. The original
lanluage was designed in a few days. Construe·
tion of a workinl system sufficient to try
Significant examples required perhaps a person­
month. Since then. we nave spent a modest
amount of additional time over several years
tuninl. addinl facilities. and occasionally chang­
ina the languale as users make crIticisms and
sUDestions.

We also decided quite early that we would
let TROFF do our work for us whenever pOSSIble.
TROFF :s quite a powerful program. with a macro
facility, lext and aritbmetic variables. numencal
computation and testin .. and conditional branch­
in" Thus we have been able to avoid writtng a
lot of '11undane but tricky software. For exam­
ple. we store no text strings. _but simply pass
them on to TROFF Thus we aVOId having to
wr.te 1 norale management package. Further·
more. ...e have been able to isolate ourselves
from most Jetails of the particular jevlce and
.:nar3cter set .:urre~tly in use. For e:'Cample. we
!et iROFF compute the Widths of ail stnngs of

characters: we need know nothing about them.

A third design goal is special to our
environment. Since our program is only useful
for typesetting mathematics. it is necessary that it
interface cleanly with the underlying typ~setting
language for the benefit of users who want to set
intermingled mathematics and text <the usual
casel. The standard mode of operation is that
when a document is typed. mathematical expres­
sions are input as part of the text. but marked by
user settable delimiters. The program reads this
input and treats as comments those things which
are not mathematics. simply passing them
through untouched. At the same time it con­
verts the mathematical input into the necessarv
TROFF commands. The resulting ioutput i~
passed directly to TROFF where the comments
and the mathematical parts both become text
and/or TROFF commands.

4. The Language

We will not try to describe the language
precisely here: interested readers may refer to
the appendix for more details. Throughout this
section, we will write expressions exactly as they
are handed to the typesetting program
(hereinafter called "EQN"), except that we won't
show the delimiters that the user types to mark
the beginning and end of the expression. The
interface between EQN and TROFF is described at
the end of this section.

As we said, typing x - y + Z +! should pro­
duce x-y":+l. and indeed it does. Variables
are made italic, operators and digits become
roman. and normal spacings between letters and
operators are altered shghtly to give a more
pleaSing appearance.

Input is free-form. Spaces and new lines
in the input are used by EQN to separate pieces
of the input: they are not used to create space In

the output. Thus

x y
.,.z+!

also gives X-.I·":-!. Free-form input is'easier
to type initially: subsequent editing is also eaSier,
for an expression may be typed as many short
lines.

Extra white space can be forced into the
output by several characters of various sizes. A
tilde "-,, gives a space equal to the normal word
spacing in text; a circumflex gives naif this
much, and a tab charcter spaces to the next tab
stop.

Spaces (or tildes, etc.) also serve to delimit
pieces of the input. For example, to get

f (/)-2r. J Sin (wI Idl

- 3 -

we write

f(t) - 2 pi int sin (omega t Jdt

Here spaces are nereSSQry in the input to indicate
that SIfI, P" ,,,,. and ome~Q are speCial. and poten­
tially worth special treatment. EQJIi looks up
each such string of characters in a table. and if
appropriate gives it a translation. In this case, p'
and ome~o become their greek equivalents, IfII
becomes the integral sign (which must be moved
down and enlarged so it looks "right"), and Sin

is made roman, following conventional
mathematical practice. Parentheses, digits and
operators are automaticall)' made roman wher­
ever found.

Fractions are specified with the keyword
over:

a+b over c+d+e -

produces

Similarly, subSCripts and superscripts are
introduced by the keywords slib and SII/I:

is produced b)'

x sup 2 + Y sup 2 - z sup 2

The spaces after the 2's are necessar\' to mark
the end of the superscripts: Similarly th'e keyword
SIII' has to be marked off by spaces or some
equivalent delimiter. The return to the proper
baseline is automatic. Multiple levels of sub·
scripts or superscripts are of course allowed:
"x sup y sup ZOO is x":. The construct "some,
thing Slib something Sill' something"' is recog­
nized as a special case, so "x sub i sup 2" IS \':

instead of x. 2.

More complicated expressions can now be
formed with these primitives:

a2,. x2 I': ------ax" Q: b l

is produced by

Ipartial sup 2 fl over Ipartial x sup 21
x "up 2 over a sup 2 + Y sup 2 over b sup 2

Braces II are used to group objects together: in
this case they indicate unambiguously what goes
over what on the left· hand side of the expres­
sion. The language defines the precedence of SII/'

to be higher than that of ol'er. so no braces are
needed to get the correct aSSOCiation on the mlht
Side. Braces can always be used when In dO~bt
about precedence.

The braces convention IS an example oj

--------- ------------

the power of usinl a recursive &ram mar to deftne
the lanluale. It is part of the lanluale that if a
construct can appear in some context. then any
apmslon in braces can also occur in that con­
text.

There is a sqn operator for makinl square
roots of the appropriate size: "sqn a + b" pro­
duces ~a +b . and

x - {-b +- sqn{b sup 2 -4ac}} over 2a

is

-b :.Jbl-4cJc x-
2d

Since larle radicals look poor on our typesetter.
sqn is not useful for tall expressions.

Limits on summations, intearals and simi·
lar constructions are specified with the keywords
from and to. To let -Ix,-o

,-0

we need only tyt)e

sum from i-O to inf x sub i -> 0

Centerinl and makinl the I bil enoup and the
limits smaller are all automatic. The from and (0

pans are bOlh oplional. and the central pan (e.,.,
tbe I) can in faa be anythinl:

is

lim from Ix -> pi 121 (tall-x) - int

lim (tan x)-­__ 12

Again. the brac:es indicate just what 10es into the
from part.

There is a fac:ility for makinl brac:es,
brac:kets, parentheses. and verticai bars of the
nght height. usinl the keywords left and nght:

left [~+y over 2a right]-·-1

makes

A .'ef; need not have a correspondinl "fht. as we
shall see in the next example. Any characters
may rollow Ie!; and fight. but leneraJly only vari­
ous parentheses and bars are me3ningful.

Bil brac:kets. elc., are often used with
lnother racility. called plln. ',vhic:h make vertical
;llles of objects. For example, to iel

1 if :(' >0
sign (x) == 0 i{ :c-O

-1 if :('<0

-4.

we an type

sian (x) -. - - left {
rpile 11 above 0 above -11
-'pile {if above it above if I
Ipile Ix>O above x-O above x<ol

The construc:tion, "left {" makes a left brace bil
enouth to enclose the "fI'ile { •.• I", which is a
ript-justified pile of "above ... above ..• , •.
"Ipile" makes a left-justified pile. There are also
c:entered piles. Because of the recursive lanlUale
definition, a pile can contain any number of ele­
ments: any element of a pile can of course con­
tain piles.

Althoup EQN makes a valiant attempt to
use the riabt sizes and fonts. there are times
when the default assumptions are simply not
wh.t is wanted. For instance the italic SIIn in the
previous example would c:onventionaJly be in
roman. Slides and transparenc:ies often require
tarler characters than normal texL Thus we also
provide size and font chanain, commands: "size
12 bold IA -x-·-y," will produce A X - y.
Si:, is followed by a number representinl a char­
acter size in points. (One point is 1172 inch: this
paper is set in 9 point type.)

I(necessary, an input strinl can be qUOted
iO' • .••• , which tums off &rammalicaJ significance.
and any font or spac:inl changes that miaht oth­
erwise be done on iL Thus we can say

Iim- roman ·sup· -x sub n - 0

to ensure that the supremum doesn't become a
superscript:

lim sup x.-O

Diacritical marlts. lonl a problem in tradi­
tional typeseuinl. are straightforward:

:!:.,~+j+i+Y-:~

is made by typin,

x dot under + x hal -+ y tilde
+ X hat -+ Y dotdot - z+Z bar

There are also fac:ilities for globally chang­
inl default sizes and fonts. for example ror mak·
inl viewlraphs or {or settins chemical equations.
The lanluale allows for matric:es. and for limnl
up equations .ll the same Itorizontal position.

Finally, there is a detinition rac:dity. so ol

user an say

derine name •...•

It Jny time In the dOC'.lmenl: !1enc:ef'Jrth. !ny
oC:C'.lr'!'enc: of .he :oken ··name·· in It! ~xo!'es­

sian 111111 ',. eX;l3naed into whatever .vlS :nSlae
~he douoie quotes In as jetinltlon. "'::115 :etS
users !allor the :anlualle :0 ~:"Ielr ollin

specifications. for it is quite possible to redefine
keywords like sup or over. Section 6 shows an
example of definitions.

The EQI' preprocessor reads intermixed
text and equations. and passes its output to
TROFF Since TROFF uses lines beginning with a
period as control words (e.g.. • .. ce" means
"center the next output line"). EQI' uses the
sequence ".EQ" to mark the beginning of an
equation and ... El"" to mark the end. The
".EQ" and" .EN" are passed through to TROFF
untouched. so they can also be used by a
knowledgeable user to center equations. number
them automatically. etc. By default. however .
.. . EQ" and" .EN" are sImply Ignored by TROFF.
so by default equations are printed in-line.

... EQ" and ... EN" can be supplemented
by TROFF commands as deSIred: for example. a
centered display equation can be produced with
the input:

.ce

.EQ
x sub i - y sub i ...
.EN

Since it is tedious to type ••. EQ'· and
... EN·' around very short expressions (single
letters. for instance), the user can also define
two characters to serve as the left and right dei­
imiters of expressions. These characters are
recognized anywhere in subsequent text. For
example if the left and TIght delimiters have both
been set to "#". the input:

Let #x sub i#. #~.# and #alpha# be positive

produces:

Let x,, y and Q be positive

Running a preprocessor is strikingly easy
on UNIX. To typeset text stored in file "f". one
issues the command:

eqn f I trolf

The vertical bar connects the output of one pro­
cess (EQN I to the input of another (TROFF).

5. Laneua.e Theory

The basic structure of the language is not a
particularly original one. Equations are pictured
as a set of "boxes," pieced together in various
ways. For example, something with a subscript
is just a box followed by another box moved
downward and shrunk by an appropriate amount.
A fraction is just a box centered above another
box. at the right altitude. with a line of correct
length drawn between them.

The grammar for the !anguage is shown

- 5 -

below. For purposes of exposition. we have col­
lapsed some productions. In the original gram­
mar. there are about ~O productions. but man\'
of these are simple ones used only to guarante~
that some keyword IS recognized early enough in
the parsing process. Symbols In capltai letters
are terminal symbols. lower case s~'mbols are
non-terminals. I.e.. syntactic categories. The
vertical bar I indicates an alternative: the brack­
ets [) indicate optional material. A TEXT IS a
string of non-blank characters or any string
inSide double quotes: the other terminal symbols
represent literal occurrences of the corresponding
keyword.

eqn : box I eqn box

box : text
I [eqn 1

box OVER box
SQRT box
box SUB box I box SUP box
[L I C I R)PILE I list I
LEFT text eqn (RIGHT text)
box (FROM box I [TO box)
SIZE text box
(ROMAN I BOLD I ITALIC) box
box [HAT I BAR I DOT I DOTDOT I TILDE]
DEFINE text text

list eqn I list ABOVE eqn

text : TEXT

The grammar makes it obvious why there
are few exceptions. For example. the observa­
tion that something can be replaced by a more
complicated something in braces is Impiicit in the
productions:

eqn : box I eqn box
box : text I I eqn 1

Anywhere a single character could be used. any
legal construction can be used.

Clearly, our grammar is highly ambiguous.
What. for instance. do we do with the input

a over b over c ~

Is it

la over b lover c

or is it

a over Ib over cl ?

To answer questions like this. the grammar
is supplemented with a small set of rules :hat
describe the precedence and assocIativity of
operators. In particular. we specify (more or less
arbitrarily I that over assocIates to the leit. so the
first alternative above is the one chosen Or. the
other hand. sub and sup bind to the TIght.

because this is closer to standard mathematical
practice. That is. we assume :c"~ is :r(Ob). not
(X,,)b.

The precedence rules resolve the ambiguity
in a construction like

a sup 2 over b

We define sup to have a higher precedence than
l

o~r. so this construction is parsed as Qb instead

1
of Q b,

Naturally. a user can always force a partie·
ular parsing by placinl braces around expres­
sions.

The ambiguous grammar approach seems
to be quite useful. The grammar we u..e is small
enough to be easily understood. for it contains
none of the productions that would be normally
used for resolving ambiguity. Instead the sup­
plemental information about precedence and
associativity (also small enough to be under­
stood) provides the compiler-compiler with the
information it needs to make a fast. deterministic
parser for the specific language we want. When
the language is supplemented by the disambi­
guatinl rules. it is in fact LRm and thus easy to
parserS).

The output code is generated as the input
is scanned. Any time a production of the gram­
mar is recognized. (potentially) some TROFF
commands are output. For example. when the
lexical analyzer reports that it has found a TEXT
(Le .• a string of contiguous characters). we have
recognized the production:

text : TEXT

The translation of this is simple. We generate a
!ocal name for the string. then hand the name
and the string to nOFF. and let TROFF perform
the storage manaaement. All we save is the
name of :he stnng. its height. and its baseline.

As another example. the translation associ­
ated 'Mith the production

'ox ,box OVER bOle

is:

- 6 -

Width of output box -
slightly more than largest input width

Height of output box -
slightly more than sum of input heights

Base of output box -
slightly more than height of bottom input box

String desc:ribini output box -
move down;
move right enough to center bouom box;
draw bottom box (i.e .• copy string for bouom box
move up; move left enouah to center top box;
draw top box (j.e •• copy string for top box);
move down and left; draw line full width;
retum to proper base line.

Most of the other productions have equally sim­
ple semantic actions. Picturini the output as a
set of properly placed boxes makes the riiht
sequence of positioning commands quite obvi­
ous. The main difficulty is in findinl the right
numbers to use for esthetically pleasinl position­
ina.

With a grammar. it is usually clear how to
extend the language. For instance. one of our
users suggested a TENSOR operator. to make
constructions like

t' 'T
", "j

Grammatically. this is easy: it is sufficient to add
a production like

box : TENSOR [list I
Semantically. we need only juUie the boxes to
the right places.

6. Experien~

There are really three aspects of
interest-how well EON sets mathematics. how
well it satisfies its goal of being "easy to use."
and how easy it was to build.

The first question is :asily addressed. This
entire paller has been set by the program.
Readers can judge for themselves whether it :s
good enough for their PUl1'oses. One of our
users commented that although the output is not
as good as the best hand-set material. it is stili
better than average. lnd !'ltuch better than the
worst. In any .:ase. who cares! Printed boolC:s
annot comllete with the birds and flowers of
illuminated manuscrillts on esthetic ;rounc1s.
ellher. but they ~ave some ..::ear ~anomlC

advantages.

Some of :he de!i;;;e~cies in th: out;:'IJt
cculd be :!e:.med .lP 'oVt:!, :~ore ... :rlc on Jur ;loino

For e:camllie. ""e 50me!lmes .'!lVe toe m:.!.:n
seace =etWeen 1 ~Jman :r:t!er u:·j .In .:.1IlC ;":e.
If we we~e wlilil'!~ to i(~el' tr:~.;'(oj ':'Ie fcr.~s

InVrl"~. life ':ould do 0:115 ,eu~!" -narC! or' :ne

time.

Some other weaknesses are inherent in our
output device. It is hard. for instance. to draw a
line of an arbitrary length without getting a per­
ceptible overstrike at one end.

As to ease of use. at the time of writing.
the system has been used by two distinct groups.
One user population consists of mathematicians.
chemists. physicists. and computer scientists.
Their tYPical reaction has been something like:

(1) It's eas)' to write. although I make the fol­
lowing mistakes ...

(2) How do I do ... ?

(3) It botches the following things Why
don't you fix them?

(4) You reall)' need the following features ...

The learning time is short. A few minutes
gives the general flavor. and typing a page or two
of a paper generally uncovers most of the
misconceptions about how it works.

The second user group is much larler, the
secretaries and mathematical typists who were
the original target of the system. They tend to
be enthusiastic converts. They find the lanluage
easy to learn (most are larlely self-taught). and
have little trouble producinl the output they
want. They are of course less critical of the
esthetics of their output than users trained in
mathematics. After a transition period. most
find using a computer more interesting than a
regular typewriter.

The main difficulty that users have seems.
to be remembering that a blank IS a delimiter;
even experienced users use blanks where they
shouldn't and omit them when they are needed.
A common instance is tYPing

f(x sub j)

which produces

Instead of

(X,)

(Ix.)

Since the EON language knows no mathematics.
it cannot deduce that the right parenthesis is not
part of the subscript.

The language is somewhat prolix. but this
doesn't seem excessive considering how much is
being done. and it is certainly more compact than
the corresponding TROFF commands. For exam­
ple. here is the source for the continued fraction
expression In Section 1 of this paper:

- 7 -

a sub 0 + b sub lover
la sub I + b sub 2 over

la sub 2 + b sub 3 over
la sub 3 + .") II

This is the mput for the large integral of Section
1; notice the use of definitions:

define emx -Ie sup mx)"
define mab "!m sqrt ab)"
define sa "!sqrt al"
define sb "!sqrt b ,"
int dx over la emx - be sup -mx I --­
left I I pile I

lover 12 mabl -Iog-
lsa emx - sb lover Isa emx + sb'

above
lover mab - tanh sup -1 (sa over sb emx)

above
-lover mab - coth sup -1 (sa over sb emx)

As to ease of construction, we have
already mentioned that there are really only a
few person-months invested. Much of this time
has lone into two things-fine-tuning (what IS
the most esthetically pleasing space to use
between the numerator and denominator of a
fraction?). and changing things found deficient
by our users (shouldn't a tilde be a delimiter?>.

The program consists of a number of
small, essentially unconnected modules for code
leneration. a simple leXical analyzer. a canned
parser which we did not have to write, and some
miscellany associated with input files and the
macro facility. The program is now about 1600
lines of C !61. a high-level language reminiscent
of BCPL. About 20 percent of these lines are
"print" statements. generating the output code.

The semantic routines that generate the
actual TROFF commands can be changed to
accommodate other formatting languages and
devices. For example, in less than 24 hours. one
of us changed the entire semantic package to
drive NROFF. a variant of TROFF. for typesetting
mathematics on teletypewmer devices capable of
reverse line motions. Since many potential users
do not have access to a typesetter. but still have
to type mathematics. this provides a way to get a
typed version of the final output which is close
enough for debugging purposes. and sometimes
even for ultimate use.

7. Conclusions

We think we have shown that it is pOSSible
to do acceptably good t~'pesettlng of mathematics
on a phototypesetter. with an mput language that
is eas~' to learn and use and that satisfies many
users' demands. Such a package can be Imple·
mented In short order. given a compiler-compiler

and a decent typesetting program undemeath.

Defining a language. and building a com­
piler for it with a compiler-compiler seems like
the only sensible way to do business. Our
experience with the use of a grammar and a
compiler-compiler has been uniformly favorable.
If we had written everything into code directly.
we would have been locked into our original
design. Furthermore. we would have never been
sure where the exceptions and special cases were.
But because we have a grammar. we can change
our minds readily and .still be reasonably sure
that if a construc:tion works in one plac:e it will
work everywhere.

Ac:knowledgements

We are deeply indebted to J. F. Ossann ••
the author of TROFF. for his willingness to
modify TROFF to make our task easier and for
his continuous assistanc:e during the develop­
ment of our program. We are also grateful to A.
V. Aho for help with language theory. to S. C.
Johnson for aid with the compiler-compiler. and
to our early users A. V. Aho. S. I. Feldman. S.
C. Johnson. R. W. Hamming. and ~(. D. McIlroy
for their constructive criticisms.

References

l1l A .'danuQ/ of Styl,. 12th Edition. Univer­
sity of Chicago Press. 1969. p 29S.

(21 .'dod,1 CIAIT Phololyl1*s,tt,,.. Graphic Sys­
tems. Inc ... Hudson. N. H.

(3) Ritchie. D. M .• and Thompson. K. L ..
"The' t.."NIX time-sharing system." Comm.
AC.'d 17, 7 (July 1974), 365-375.

(41 Ossanna. J. F .• TROFF User's ManUal.
Bell Laboratories Computing Science
Tec:hDlcal Re!'ort 54, 1977.

[51 Aho. A. Y., and Johnson. S. C .• "LR
Parsing." Compo Surv. ~, 2 (June 1974).
99-124.

[6) B. W. Kemighan and D. ~. Ritchie. nr, C
P~o~,.ammlng Lan~ual(', Prentice-Hall.
lnc: .. 1978.

- 8 -

Typesetting Mathematics - User's Guide (Second Edition)

Brtan W. Kernighan and LOflnda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This is the user's guide for a system for typesetting mathematics, using the photo­
typesetters on the UNlxt and Geos operating systems.

Mathematical expressions are described in a language deSigned to be easy to use by people
who know neither mathematics nor typesetting. Enough of the language to set in-line expres­
sions like lim (tan x) SI" 2", - 1 or display equations like

",-,"/2

1 G) (Sk:l.j s .J. /.
G(:) - e" !: - exp L-- - IIe"

I.~I k. 1.;'1

-{I+SIZ+ St: 2 + ...)(1$ S.:1 + si:4 + ...) ...
2! 2 22'2!

-L
I.

S",'"

nI~O

can be learned in an hour or so.
The language interfaces directly with the phototypesetting language TROFF, so mathemati­

cal expressions can be embedded in the running text of a manuscript, and the enure document
produced in one process. This user's guide is an example of its output.

The same language may be used with the UNIX formatter NROFF to set mathematical
expressions on DASI and GSI terminals and Model 37 teletypes.

August 15, 1978

tUNIX IS a Trademark of Bell Laboralones.

Typesetting Mathematics - User's Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill. New Jersey 07974

1. Introduction

EQN is a program for typesetting
mathematics on the Graphics Systems pho­
totypesetters on UNIX and GCOS. The EQN
language was designed to be easy to use by
people who know neither mathematics nor
typesetting. Thus EQN knows relatively little
about mathematics. In particular.
mathematical symbols like +. -. x.
parentheses. and so on have no special
meanings. EQN is quite happy to set garbage
(but it will look good).

EQN works as a preprocessor for the
typesetter formatter, TRoFF{ll. so the nor­
mal mode of operation is to prepare a docu­
ment with both mathematics and ordinary
text interspersed. and let EQN set the
mathematics while nOFF does the body of
the text.

On UNIX, EQN will also produce
mathematics on DASI and GSI terminals and
on ~odel 37 teletypes. The input is identi­
cal. but you have to use the programs NEQN
and NROFF instead of EQN and TROFF. Of
course. some things won't look as good
because terminals don't provide the variety
of characters. sizes and fontS that a
typesetter does, but the output is usually
adequate for proofreading.

To use EQN on CNIX,

eqn files I troff'

GCOS use is discussed in section ::6.

2. Displayed Equations

To tell EQN where a mathematical
expression begins and ends. we :nark it With

lines beginmng .EQ and .~. Thus if you
type the lines

.EQ
x-y+z
.EN

your output will look like

x-y+z

The .EQ and .EN are copied through
untouched: they are not otherwise processed
by EQN. This means that you ha.ve to take
care of things like centering. numbering,
and so on yourself. The most common way
is to use the TROFF and NROFF macro pack­
age package '-ms' developed by M. E.
Lesk(3). which allows you to center. indent,
left-justify and number equations.

With the '-ms' package. equations are
centered by defaulL To left-justify an equa­
tion, use .EQ L instead of .EQ. To indent it,
use .EQ L Any of these can be followed by
an arbitrary 'equation number' which will be
placed at the right margin. For example.
the input

.EQ I (3.1a)
x - f(y/2) + yl2
.EN

produces the output

;c- j(y!2)+y!2 (3.1a)

There is also a shorthand notation so
in-line expressions like ':T ,1. can be entered
without EQ and .EX We WIll talk about it in
settion 19.

3. Input spacn

Spaces and newlines within an expres­
sion .lte :hrown away by EQN. (Normal text
is lc:ft .losolutely alone.) Thus betwe:n EO
and E~.

and

and

x - Y
+z

and so on all produce the same output

You should use spaces and newlines freely
to make your input equations readable and
easy to edit In particular, very long lines
are a bad idea. since they are often hard to
fix if you make a mistake.

4. Output spaces

To force extra spaces into the OUqJUt.
use a tilde .. - •• for each space you want:

x---y-+-z

gives

x-y+z
You can also use a circumflex .. -.. , which
gives a space half the width of a tilde. It is
mainly useful for fine-tunins. Tabs may
also be used to position pieces of an expres­
sion. but the tab stops must be set by nOFF
commands.

5. Symbols. Special Names, Greek
EQN knows some mathematical sym­

bols. some mathematical names. and the
Greek alphabet. For example.

x-2 pi int sin (omep ddt

produces

x-2". I sin (til t> dt

Here the spaces in the input are necessary
to teU EQN that int. pi. sin and omega are
separate entities that should get special
treatment. The Sin. digit 2. and parentheses
are set in roman tYpe instead of italic; pI and
omega are made Greek; and mt becomes the
integral sign.

When in doubt. leave spaces around
separate pans of the input. A very common
error is to tYpe j(p'; without leaving spaces
on both sides of the pl. As a result, EQN
does not recogmze pI as a speCial word, and
it appears as /(p,) instead of /(1,).

- 2 -

A complete list of EQN names appears
in section 23. Knowledgeable users can also
use TROFF four-character names for any­
thing EQN doesn't know about.. like \ (bs for
the Bell System sign @.

6. Spaces, AcaiD
The only way EQN can deduce that

some sequence of letters might be special IS

if that sequence is separated from the letters
on either side of it This can be done by
surrounding a special word by ordinary
spaces (or tabs or new lines) , as we did in
the previous section.

You can also make special words stand
out by surrounding them with tildes or
circumflexes:

x---rpi-int-sin-(-omep-t-)-dt

is much the same as the last example,
except that the tildes not only separate the
masic words like Sin. omega. and so on. but
also add extra spaces, one space per tilde:

x.- 2 ". I sin (til t) dt

Special words can also be separated by
braces { J and double quotes , which
have special meanings that we will see soon.

7. Subscripts aDd Superscripts
Subscripts and superscripts are

obtained with the words sub and sup.

x sup 2 + Y sub k

gives

X~Yk

EQN takes care of all the size changes and
vertical motions needed to make the output
look right. The words sub and sup must be
surrounded by spaces; x suo2 will give you
xsub2 instead of Xl- Furthermore, don't
forget to leave a space (or a tilde. etc.) to
mark the end of a subscript or superscript.
A common error is to say something like

y - (x sup 2)+1

which causes

Y_(X:l• 1

instead of the intended

y-(.~~~l

Subscripted subscriptS and super­
!Cripted superscriptS also work:

x sub i sub 1

is

A subscript and su~Pt on the same
thiDi are printed one above the other if the
subscript comes fint:

x sub i!Up 2

is

Other thaD this special case.. sub and
SUI Jr0UP to the n&ht. so x SUI y sub z
meaDS x'r. aot r r

I. Braces far GlOapiDc

Normally. the end of a subscript or
su~Pt is marked simply by a blank (or
tab or tilde. etc.) Wbat if the subscript or
superxript is somethinl thal has to be typed
with blaaJcs in it? In that case, you can use
the braces (and) to marJc the Ceainainl and
end of the subsaipt or superscript:

e sup {i omep tl
is

~'.,

Rule: Braces em alwtzys be u.sed to force
EQN to treat samethinl as a unit, or just to
make your intent perfectly clear. Thus:

x sub (i sub 11 SUlJ 2

is

with btaf:es. but

x sub i sub 1 sup 2

%,(

which is rather differenL

Braces can occur within braces if
necessary:

e sup (j pi sup {rho .:.oIl!
is

- J -

~,.,.l

The genera! rule is that anywhere you could
use same sinlle thinl lilee ~ you can use an
arbitrarily complicated thinl if you enclose it
in braces. EQN will look after aU the details
of positioniI1l it and makina it the nlht size.

In all cases, make sure you have the
nlht number of brKes. Leavins one out or
addinl aD extra will cause EQN to complain
bitterly.

Occasionally you will have to print
bra&:es. To do this, eactose them in double
quotes, lilee .. t-. Quotial is di.scussed in
more detail in section 14.

,. FnctiODS

To make a fraction, use the word avo:

a+b over 2c -1

.!±!-l
2c

The line is made the rilht lenlth and posi­
tioned automatically. Braces c:an be used to
make clear whalloes over what:

{alpha ... bera} over {siD (x)}

is

a+,8
sin(x)

What happens when there is both an avtll'
and a sup in the same eXlJression? In such
aD apparently ambiguous case, EQN does the
sup before the ave-, so

-b sup 2 over pi

-b2 ~
is - instead of -0· The rules which

tr
decide which operation is done first in QSeS

like this are summarized in section 23.
When in doubt, however, :M brace to
make clear what goes with what.

10. Sqaan Roou
r a draw a square root, use sqn:

sqn a+b ~ 1 t)ver sqn {ax sup 2 .:.oox+cl
!S

Warning - square roots of tall quantities
look lousy. because a root-sign big enough
to cover the quantity is too dark and heavy:

is

sqrt la sup 2 over b sub 21

f£
-Vb;

Big square roots are generally better written
as something to the power II::

(a 2/ b:) 'I,

which is

(a sup 2 /b sub 2) sup half

11. Summation. Intetral. Etc.
Summations. integrals. and similar

constructions are easy:

sum from i -0 to Ii - infl x sup i

produces ,--LXi
,-0

Notice that we used braces to indicate where
the upper pan ,_aD begins and ends. No
braces were necessary for the lower pan
i-O. because it contained no blanks. The
braces will never hun. and if the from and to
pans contain any blanles. you must use
braces around them.

The from and 10 parts are both
optional. but if both are used. they have to
occur in that order.

Other useful characters can replace the
sum in our example:

int prod union inter

become. respectively.

f II u n
Since the thing before the from can be any­
thing. even something in braces, frOm-1O can
often be used in unexpected ways:

is

lim from In - > infl x sub n -0 .

Iimx,,-O ..--

• 4 •

..

12. Size and Font Chanles
By default. equations are set in 10·

point type {the same size as thls guide}.
with standard mathematical conventions to
determine what characters are in roman and
what in italic. Although EQN makes a vali­
ant attempt to use esthetically pleasing sizes
and fonts. it is not perfect. To change sizes
and fonts. use size n and roman. lIabc. bold
and jato Like sub and sup. size and font
changes affect only the thing that follows
them. and revert to the normal situation at
the end of it. Thus

is

and

gives

bold x y

xy

size 14 bold x - v +
size 14 (alpha';' betal

x-y+a+/3
As always, you can use braces if you want to
affect something more complicated . than a
single letter. For example. you can change
the size of an entire equallon by

size 12 I ... I

Legal sizes which may follow sIZe are
6, 7, 8. 9, 10, 11. 12. 14. 16. 18. 20, 22, 24.
28. 36. You can also change the size by a
given amount~ for example. you can say
SIZe +2 to make the size two points bigger.
or sIZe -J to make it three points smaller.
This has the advantage that you don't have
to know what the current size is.

If you are using fonts other than
roman. italic and bold. you can say jOnt X
where X is a one character nOFF name or
number for the font. Since EQN is tuned for
roman. italic and bold. other fontS may not
give quite as good an appearance.

The jat operation takes the current
font and widens it by oversuiking: jat grad is
V and far Ix sub Ii is X"

If an entire document is to be in a
non-standard size or font. it is a severe nui-'
sance to have to write out a size and font
change for each equation. Accordingly. you
can set a "global" size or font whlch

thereafter atr~ aU e1;Iuations. At the
besinninl of any equation. you milht say.
for instance.

.EQ
asize 16
liont R

.EN

to set the size to 16 and the font to roman
thereafter. In place of R. you can use any
of the nOFF font names. The size after
pizll can be a relative chanp with + or -.

GeneraJly. I3izlI and gfo", will appear at
the bcainninl of a document but they can
also appear thoulhout a document: the alo­
bal font and size can be chanced as often as
needed. For example. in a footnote~ you
will typicUly want the size of equations to
match the size of the footnote text, which is
two points smalJer than the main texL
Don't forget to reset the &loba! size at the
end of the footnote.

13. Dfacritics! Marks
To let funny mules on top DC letters.

there are several words:

X dot Z
x dotdot :i
x nat

. x
x tilde i
x vee Z
;It dyad -x
x bat i
x under ~

The diacritical mark is placed at the rilht
heilhL The btu and I.In.1' are made the
rilht lenlth for the entire constrUct. as in
x~y+:; other marks are centered.

14. Quoted Text
Any input entirely within quotes

(.....) is not subject to any of the font
chanles and spaciI1l adjustmentS normally
done Oy the equation setter. This ;lrovides !

'N'8.y to do your own 5Q3Cini and adj:J.Stlnl if
needed:

ttJte llus on.. lit .. tridt ... hay. a rew r.&ncsom
Cltcnmons like z, and r The mes for :11n11
'¥ft1I _ by ltle CDmmand ~:::.-2.

- S -

italic ·siD(x)- + sin (x)

is

si,,(.:cJ +sin (x)

Quotes are also used 'to get braces and
other EQN keywords printed:

-{ size alpha 1-
is

(.sizll alphtz }

and

roman -(size alpha)-

is

{ size alpha }

The constrUCtion .. is often used as a
place-holder when grammaticaUy EQN needs
somethins. but you don't actually want any­
thina in your outpuL For example. to make
2fie. you can't just tYl'8 sup 2 fOmtl" H.
because a sup has to be a superscript 0"

somethin.. Thus you must say

- sup 2 roman He

To let a literal quote use .~ _... nOFF
characters like \ a. can appear unquoted.,
but more comptiClted thinas like horizontal
and vertical motions with \ h and \ v should
alwayS be quoted. (If you've never heard of
\h and \ v, ilnore this seaion.)

15. Lilli ... Up Equadoas
Sometimes it's necessary to line up a

series of equations at some horizontal posi­
tion. often at an e1;Iuals sign. This is done
with twO operations called mtUle and lilfftlp.

The word marie may appear once at
my place in an equation. It remembers the
horizontal position where it a""earecL Suc·
cessive e1;Iuations can contain one
occurrenca of the word [ilffttp. The place
where lilWU/l appears is made to line up with
the place marked by the previous marie if at
aU pos~ilble. Thus. for exounple. you -:::Ln say

·EQ I
x+y mark - z
.EN
.EQ I
x lineup -
.EN

to produce

x-I

For reasons too complicated to talk about.
when you use EON and '-ms·. use either
.EO I or .EO L. mark and /Jneup don't work
with centered equations. Also bear in mind
that mark doesn' t look ahead:

x mark -1

x+y lineup -z

isn't going to work. because there isn't
room for the x+y part after the mark
remembers where the x is.

16. Bi& Brat:kets. Etc.
To get big brackets [1. braces I J.

parentheses (), and bars II around things,
use the left and fight commands:

left I a over b + 1 right)
--- left (cover d right)
+ left [e nght 1

is

The resulting brackets are made big enough
to cover whatever they enclose. Other char­
acters can be used besides these. but the are
not likely to look very good. One exception
is the floor and ceiling characters:

left floor x over y right floor
< - left ceiling a over b right ceiling

produces

Several warnings about brackets are in
order. First. braces are tYPIcally bigger than
brackets and parentheses. because they are
made up of three. five. seven. etc .• p;eces.
while brackets can be made up of two.

- 6 -

three. etc. Second. big left and right
parentheses often look poor, because the
character set is poorly designed.

The rtght part may be omitted: a "left
something" need not have a corresponding
"right something". If the rJght part is omil­
ted. put braces around the thing you want
the left bracket to encompass. OtherwIse,
the resulting brackets may be too large.

If you want to omit the left part. things
are more complicated. because techmcally
you can't have a fight without a correspond·
ing le/t. Instead you have to say

left right)

for example. The left·· means a "left noth­
ing". ThIS satisfies the rules without hurt­
ing your output

17. Piles

There is a general facility for making
vertical piles of things; it comes in several
flavors. For example:

A --- left [
. pile { a above b above c }
- pile { x above y above z J

right]

will make

A - [~ ~
The elements of the pile (there can be as
many as you wand are centered one above
another, at the right height for most pur­
poses. The keyword above is used to
separate the pieces; braces are used around
the entire list. The elements of a pile can
be as complicated as needed, even contam­
ing more piles.

Three other forms of pile exist: iplle
makes a pile with the elements left-justified:
rplle makes a right-justified pile: and cpJie
makes a centered pile. just like pile. The
vertical spacing between the pieces is some­
what larger for 1-. r- and cpJies than it IS for
ordinary piles.

roman sign (x)--­
left I

Ipile (I above 0 above -1)
-Ipile
lirx>O above irx-O above lrX<O)

makes

sian(.%) -l~
-1

if .%>0
if x-o
if.%<O

Notice the left brace without I matchina
nlht one.

II. Matrices
It is also possible to make macrices.

For example. to make a neat array like

you have to type

matrix (

x, xl
y, yl

ceol (x sub i above y sub i)
ceol (x sup 2 above y sup 2)

)

This produces I mam with two cenwed
columDS. The elemerlls of the columDS are
tbeD listed jusI as for I pile. eacb element
separated by tbe word above. You can also
use 11:01 or frOl to left or rilbt adjust '
columns. Eacb columD can be separately
adjUS1ed. and there can be as many columns
as you like.

The reason for usina a macrix instead
of two adjas:ent piles. by tbe way, is that if
tbe elements of tbe piles don't aU have tbe
same height. tbey won't line up property. A
matrix forces tbem to line up, because it
looks at the entire strUCture before decimnl
what s1)aCinl to use.

A word of wvninI about matrices -
each colUMn Mlal Irtlw the stZIM IfUM«t- of
el~~nts III it. The world will end if you get
this wron ..

1'. Shonhand (or la-Une Eqaations
In a mathemuica1 document. it is

necessary to iol1aw rnathemauca1 conven­
tions not just in disclay equations. but aJso
in the body of the text. for example by mak­
in, variable names like ;c ltaiic. .-\lthoul11
this couid be done ~ surroundir11 the
appropriate parts with EQ and .£.'f. the con­
:inual repemion of EQ lItd .£14 is a nulSance.
r'Jrthermore. with '-ms' •. EQ and .~ imply
.1 displayed ~uatl0n.

- 7 -

EQN provides a shonhand' for shon in­
line expressions. You can define two char­
acters to mark the left and nlbt ends of an
in-line equation. anel then type expressions
nlht in the middle of text lines. To set
both the left and nlht characters to dollar
sian.s. for example. add to the bqinnin, of
your document the three lines

.EQ
delim SS
.EN

Havinl done this. you em then say thin ..
like

Let Salpha sub is be the primary
variable. and let ShetaS be zero.
Theil we caD show that Sx sub 1S is
S>-Os.

This works as you milbt expect - spaces.
new lilies. anel so on are sillliJicant ill the
text. but not ill the equation part itself.
Multiple equatioDS C3Il occur in I sinaie
input line.

Enoulh room is left before and after a
line that contains in-line expressions that

" samethinl like !,x; does aot interfere .:!ith
I-l

the lines surraunc1i1ll iL

To tum olf the delimiters.

.EQ
delim olf
.EN

Warm",: don't use braces. tildes.
circumflexes. or double qUOtes as delimiters
- Cha05 will resuiL

%0. De4llidoas
EQN provides a f&dlity so you caD live

a frequently-used strinl of chancters a
name. and thereafter just type the name
instead of the whole strin.. For example. if
the sequence

x sub i sub 1 ... y sub i sub 1

appe:us repeatedly throulhout a ,a!'ef. you
;us save re-(},pinl it each time by de.tininl It
iike t1'115:

define '<Y • ~ 3ub i sub 1 ... 'f sub i sub l'

This makes .'(JI a shor.~and for w~ate'/er
ch.ar:ll:~ef3 occur ':,er .. ~:t :!'le llr:lle Juctes
in the de.dnluoil. You c:m '~~ .!!1Y ..::-::t:lc:er

instead of quote to mark the ends of the
definition, so long as it doesn't appear inside
the definition.

Now you can u.se ~ like this:

.EQ
f(x) - xy ...
.EN

and so on. Each occurrence of x,,' will
expand into what it was defined as. Be care­
ful to leave Sl'aces or their equivalent
around the name when you actually use it.
so EQN will be able to identify it as sJ)ecial.

There are several things to watch out
for. First. although definitions can use pre"
vious definitions. as in

. EQ
define xi 'x sub i '
define xi! 'xi sub 1 '
.EN

don'(define SOmtlhlfl, In t~,.ms oj ilselj A
favorite error is to say

define X 'roman X '

This is a guaranteed disaster. since X IS now
defined in terms of itself. If you say

define X 'roman ·X· , .

however. the quotes protect the second X,
and everything works fine.

EQN keywords can be redefined. You
can make 1 mean Oll~" by saying

define I 'over'

or redefine o~,. as 1 with

define over 'I'

If you need different things to print on
a terminal and on the typesener. it is some­
times wOMh defining a symbol differently in
NEON and EQN. This can be done with
ndefine and Idefine. A definition made with
ndefine only takes effect if you are running
NEON: if you use Idefine, the definition only
applies for EQN. Names defined with plain
d~fine apply to both EQN and NEQN.

21. Local Motions

Although EQN tries to get most things
at the right place on the paJ)er. it isn' I per"
feet. and occasionally you will need to tune
the output 10 make it just right. Small extra

" 8 •

- -- -- ~--------------- -- - - - ._- -------- -------- - -----

horizontal sl'aces can be obtained with tilde
and circumflex. You can also say back nand
fwd n to move small amounts horizontally.
n is how far to move in 1/100'5 of an em
(an em is about the width of the lener 'm'')
Thus bock 50 moves back about half the
width of an m. Similarly you can move
things Ul' or down with up n and down n. As
with sub or sup, the local motions affect the
next thing in the input. and thiS can be
something arbitraril)' coml'licated if it is
enclosed in braces.

%2. A LUle Example
Here is the coml'lete source for the

three disl'lay equations in the abstract of this
guide .

.EQI
O(z)"mark -" e sup (In • O'ZI 1
"-" exp left (
sum from k> -I 15 sub k z sup kl oyer k rllhl)
"-" prod from k> -1 e sup (5 sub k z sup k Ikl
.EN
.EQI .
lineup - lef! (1 ~ 5 sub 1 z -
(5 sub 1 sup 2 z sup 2 layer :!! •... rishl)
left (1 + (5 .sub 2 z sup ~ layer 2
... (S sub:! sup 2 z sup 4 layer I 2 sup 2 cdol 2! 1
+ ... rllhl) ...
.EN
.EQ1
lineup - sum from m> -0 lefl I

sum from
pIle I k sub 1 .k sub 2 k sub m >-0
aboye
k sub I +2k sub 2 "'mk sub m -ml
(S sub 1 sup (k sub 11 layer (1 sup k sub 1 k sub 1 ' I "
(5 sub 2 sup Ik sub 21 1 oyer (2 sup k sub 2 k sub 2 ! I "

(5 sub m sup Ik sub ml 1 oyer 1m sup k sub m k sub m ' 1
rllhl) Z sup m
.EN

13. Keywords. Precedences. Etc.
If you don't use braces. EQN will do

oJ)erations in the order shown in this list.

dyad !leC unde,. bo,. tilde hal dOl dordol
fwd back. down up
Jal ,.oman Italic bold sIZe
sub sup sqrr o~,.

from 10

These oJ)erations groul' to the left:

Olle,. sqrr left 1'I,hl

All others groul' to the right.

Digits. parentheses. bracket!. punctua­
tion marla. and these mathematical words
are convened to Roman font when encoun­
tered:

sin cos tall sinh cosb tanh arc
max min lim loa In exp
Re 1m and it for del

These character sequences are recolnized
and translated as shown.

>- ~
<- < -- :ii
!- ;16

+- = -> -<- -« «
» »
in(-partial a
half liz
prime
approx =
nOlhin,
cdot
times)Ie

del V
grad V

....•
sum I
int I
prod n
union U
inter n

To obtain Greek letters. simply spell
them out in whalever case you want:

DELTA .1 iota " GAMMA r ~pa If

LAMBDA .\ lambda .\.
OMEGA n mu J£
PHI eta nu " PI rt omep at

PSI '{I .omicron 0

SIGMA t phi • THETA " pi 1r

t:PSILON Y psi '" XI - rho fJ --.upna a sigma a'

- 9 -

beta {J tau 'f

chi ~ theta 9
delta 3 upsilon v
epsilon • xi f
eta " zeta ,
pmma 'Y

These are all the words known to- EQN
(except for characters with names>, tOlether
with the section wbere tbey are discussed.

above 1" 18 Ipile 17
back 21 mark 15
bar 13 nwrix 18
bold 12 ndeAne 20
c:cal 18 over 9
col 18 pile 17
cpile 17 reol 18
deAne 20 nlhc 16
delim 19 roman 12
clac 13 rpile 17
dotdoc 13 size 12
down 21 sqn 10
dyad 13 sub 7
fac 12 sup 1

- font 12 tdeAne 20
from 11 tilde 13
fwd 21 to 11
Ifont 12 under 13
pia 12 up 21
hat 13 vee: 13
iwic 12 - . 4. 6 .
Icol 18 { } 8
left 16 • • 8, 14
lineup IS

:4. Troublesboodn,

If you make a mistake in an equation.
like lavine out a brace (very common) or
havinl one too many (very common) or
havine a !Up with nOlhine before it (com­
man). EQN will ~ell you with the messase

syntll% e"", ~rwftlf li"$.T alfli y. fit. :
where x and .v are approxi mate:!y the lines
betw-=n ""hic:'! t!'1e trouble occurred. ~nd : is
the name of :r:e file :n aUe5l!on. The line
number! are l~l'rO)(lm:lle - look ne:1tb~ 15

well. There l1e lisa se!i·o!x~lanal0ry mes­
saces that l1i5e if you :e3ve out a ~'Jote or
trY .0 rJ!1 EON ,~n a :-:on·o!XlStent file.

If vou ".&:1: ~c :!1~ck a ~o~ument
bet"or: lc.:~ual:Y :!""~tlr:~ :l ' :In ·.:~,x on!y).

eqn files >/dev/null

will throwaway the output but print the
messages.

If you use something like dollar signs
as delimiters. it is easy to leave one out.
This causes very strange troubles. The pro­
gram cneckeq (on Geos. use .lcheckeq
instead) checks for misplaced or mISSing
dollar signs and similar troubles.

In-line equations can only be so big
because of an internal buffer in TROFF. If
you get a message "word overflow". you
have exceeded this limit. If you prInt the
equation as a displayed equation this mes­
sage will usually go away. The message
"line overflow" indicates you have
exceeded an even bigger buffer. The only
cure for this is to break the equation into
two separate ones.

On a related topic. EON does not break
equations by itself - you must split long
equations up across multiple lines by your­
self. marking each by a separate .EO ..•. EN
sequence. EON does warn about equations
that ~re too long to fit on one line.

!S. lise on l:NIX
To pnnt a document that contains

mathematics on the t.:N!X typesetter.

eqn files : troff

If there are any TROFF options. they go after
the TROFF part of the command. For exam­
ple.

eqn files: troff -ms

To run the same document on the Geos
typesetter. use

- 10 •

eqn files: troff -g (other options) ; gcat

A compatible version of EOl" can be
used on devices like teletypes and DASI and
GS! tem1mals which have half-line forward
and reverse capabilities. To print equations
on a ModeJ Ji teletype. for example. use

neqn files. nroff

The language for .:quatlons recognized by
"'EON IS IdentiCal to that of EON. althougn of
course the output IS more restrlcted.

To use a GS! or DAS! term mal as the
OL!tput deVIce.

neqn files; nroff - Tx

where x is the term mal type you are using.
such as 300 or JOOS.

EON and NEON can be used with the
TBL program [2J for setting tables that con·
tain mathematics. Lise TBL before i:-'IEO~.

like thiS:

tbl files
tbl files

eqn i troff
neqn ! nroff

26. Acknowledgments

We are deeply indebted to J. F.
Ossanna. the author of TROFF. for his wii·
Iingness to extend TROFF to make our task
easier. and for his continuous assistance
during the development and evolution of
EON. We are also grateful to A. V. Aho for
advice on language deSign. to S. C. 10hnson
for assistance with the YAeC complier·
compiler. and to all the EON users who have
made helpful suggestions and crtticisms.

R~ferences

OJ J. F. Ossanna. "SROFFfTROFF User·s
Manual". Bell LaboratOries Computing
Sdence Technical Report #54. 19"76.

[2J M. E. Lesk. "Typing Documents on
UNIX". Bell laboratories. 19i6.

(3J M. E. Lesk. "TBL - A Program for
Setting Tables". Bell LaboratOries
Computing SClence TechnIcal Repon
#49. 19i6.

WRITING PAPERS \VITH NROFF USI~G -!\tIE

Errc P. Allman

Electronics Research Laboratory
University of California. Berkeley

Berkeley, California 94720

This document describes the text processing facilities available on the UNIXt operating
system via NROFFt and the - me macro package. It is assumed that the reader already is gen­
erally familiar with the UNIX operating system and a text editor such as ex. This is intended to
be a casual introduction. and as such Dot all material is covered. In particular, many variations
and additional features of the - me macro package are not explained. For a complete discus­
sion of this and other issues, see The -me Reference Manual and The NROFFITROFF Reference
Manual.

NROFF, a computer program that runs on the UNIX operating system. reads an input file
prepared by the user and outputs a formatted paper suitable for publication or framing. The
input consists of rexr. or words to be printed, and requests. which give instructions to the
NROFF program telling how to format the printed copy.

Section 1 describes the basics of text processing. Section 2 qescribes the basic requests.
Section 3 introduces displays. Annotations, such as footnotes. are handled in section 4. The
more complex requests which are not discussed in section 2 are covered in section 5. Finall~.
section 6 discusses things you will need to. know if you want to typeset documents. If you are a
novice, you probably won't want to read beyond section 4 until you have tried some of the
basiC features out.

When you have your raw text ready, call the NROFF formatter by typing as a request to
the UNIX shell:

nroff -me -Trype files

where type describes the type of terminal you are outputting to. Common .values are dIe for a
DTC 300s (daisy-wheel type) printer and Ipr for the line printer. If the -T flag is omitted. a
"lowest common denominator" terminal is assumed; this is good for previewing output on
most terminals. A complete descnption of options to the NROFF command can be found In

The NROFFITROFF Reference Manual.

The word argument is used in this manual to mean a word or number which appears on
the same line as a request which modifies the meaning of that request. For example, the
request

.sp

spaces one line, but

.sp 4

spaces four lines. The number" is an argument to the .sp request which says to space four
lines instead of one. Arguments are separated from the request and from each other by spaces.

tt:~lX. SROFF. ilnd TROFF are Tr:1demarKs of Bell Laboralones

t:SI~G ~ROFF A~D - ME 1

------ ---- -- -------- --------------- --- ----

USING NROFF AND -ME

1. Basics of Test Processin,
The primary function of NROFF is to collect words from input lines. fill output lines

with those words. justify the right hand margin by inserting extra spaces in the line, and out­
put the result. For example. the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago.... .

will be read. packed onto output lines. and justified to produce:

Now is the time for all ioad men to come to the aid of their party. Four score and
seven years ago ••••

Sometimes you may want to start a new output line even though the line you are on is aot
yet full; for example. at the end of a paragraph. To do this you can cause a break. which
starts a aew output line. Some requests cause a break automatically. as do blank: input lines
and input lines beginning with a space;

Not all input lines are text to be formatted. Some of the input lines are requestS which
describe how to format the texL Requests always have a period or an apostrophe (" ...) as
the first character of the input line.

The text formatter also does more complex things. such as automatically numbering
pages. skippinlover page fOlds. pwting footnotes in the correct place. and so fonh.

I can offer you a few hints for preparing text for input to NROF'f'. First. keep the
i~put lines shan. Shon input lines are easier to edit. and NROFF will pack: words onto
longer lines for you anyhow. In keeping with this. it is helpful to begin a new line after
every period. comma. or phrase. since common corrections are to add or delete sentences or
phrases. Second. do not put spaces at the end of lines. since this can sometimes confuse
the NROFF processor. Third. do not hyphenate words at the end of lines (except words that
should have hyphens in them. such· as "mother-in-law'"); NROF'f' is smart enough to
hyphenate words for you as needed. but is not smart enough to take hyphens out and join a
word back together. Also. words such as "mother-in-law" should not be broken over a
line. since then you will iet a space where aot wanted. such as "mother- in-law".

2. Basic Requests

2.1. P:anlftpbs
Paragraphs are begun by using the .pp request. For example. ttie input:

.pp
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago •...

produces a blank line followed by an indented first line. The result is:
Now is the time for aU good men to come to the aid of their party. Four

score and seven years ago •...

Notice that the sentences of the paragraphs must not begin with a space. since blank
lines and lines begining with spaces C:1use a break. For example. if [had typed:

t:Sl~G :\'ROFF AND -ME 3

.pp
Now is the time for al\ good men

to come to the aid of their party.
Four score and seven years ago

The output would be:

Now is the time for all good men
to come to the aid of their party. Four score and seven years ago

A new line begins after the word "men" because the second line began with a space
character.

There are many fancier types of paragraphs. which will be described later.

2.2. Headers and Footers

Arbitrary headers and footers can be put at the top and bottom of every page. Two
requests of the form .he wie and .fo mle define the titles to put at the head and the foot
of every page. respectively. The tiLles are called three-part titles. that is. there is a left·
justified part. a centered part. and a right-justified pan. To separate these three parts the
first character of title (whatever it may be) is used as a delimiter. Any character may be
used. but backslash and double quote marks should be avoided. The percent sign is
replaced by the current page number whenever found in the title. For example. the'
input:

.he "%"

.fo 'Jane Jones"My Book'

results in the page number centered at the top of each page, "Jane Jones" in the lower
left corner. and "My Book" in the lower right comer.

2.3. Double Spacing
NROFF will double space output text automatically if you use the request .15 2. as

is done in this section. You can revert to single spaced mode by typing .Is 1.

2.4. Page Layout

A number of requests allow you to change the way the printed copy looks. some·
times called the layout of the output page. Most of these requests adjust the placing of
"white space" (blank lines or spaces). In these explanations. characters in italics should
be replaced with values you wish to use; bold characters represent characters which
should actually be typed.

The .bp request Stan5 a new page.

The request .sp N leaves N lines of blank space. N can be omitted (meaning skip a
single line) or can be of the form Ni (for N inches) or ,'lie: (for ,v centimeters). For
example, the input:

.51' 1.Si
My thoughts on the subject
.51'

leaves one and a half inches of space, followed by the line "~1y thoughts on the sub·
ject", followed by a single blank line.

The .in + N request changes the amount of white space on the left of the pDge (the
mdent). The argument N can be of the form +N (meaning leave S spaces more than
you are already leaving). -.v (meanmg leave less than you do now). or just .V (meanmg
le3ve exactly .'Ii spaces). C3n be of the form .\j or .'lie: aiso. For example. the input:

. ---------._---------

USING ~ROFF A~D ~ME

initial text
,in 5
some text
.in + li
more text
.in -2c
final text

produces "some text" indented exactly five spaces from the left mariin. "more text"
indented five spaces plus one inch from the left marJin (fifteen spaces on a pica type­
writer>, and "final text" indented five spaces plus one inch minus two centimeters from
the margin. That is. the output is: .

initial text
some text

more text
final text

The .tt +N (temporary indent> request is used like .in +N when the indent
should apply to one line only, after which it should revert to the previous indent. For
example. the input:

.in 1i

.ti 0
Ware. James R. The Best of Confucius.
Halcyon House, 1950.
An excellent book containing translations of
most of Confucius' most delightful sayings.
A definite must for anyone interested in the early foundations
of Chinese philosophy.

produces:
Ware. lames R. The Best of Confucius. Halcyon House. 1950. An excellent book con­

taining translations of most of Confucius' most delightful sayings. A
definite must for anyone interested in the early foundations of Chinese
philosophy.

Text lines can be centered by using the .ce request. The line after the .c:e is cen­
tered (horizontally) on the page. To center more than one line. use .c:e N (where N is
the number of lines to center), followed by the N lines. If you want to center many
lines but don't want to count them, type:

.ce 1000
lines [0 center
.ce 0

The .ce 0 request tells NROFF to center zero more lines. in other words, stop centering.

All of these requests cause a break: that is. they always start a new line. If you
want to start a new line without performing any other action, use .br.

2.S. UnderliniDI

Text can be underlined using the .ul request. The .ul request causes the next
input line to be underlined when output. You can underline multiple lines by stating a
count of inpul lines to underline, followed by those lines (as with the .ce request). For
example, the input:

.u12
Notice that thes.: two input lines
are underlined.

will underline those eight words in :-.lROFF. (In TROFF they will be set in italics.>

L'SI:'liG :"1ROFF A1'iD -ME 5

3. Displays

Displays are sections of text to be set off from the body of the paper, Major quotes.
tables. and figures are types of dispiays. as are all the examples used in this document, All
displays except centered blocks are output single spaced,

3.1. Major Quotes

Major quotes are quotes which are several lines long. and hence are set in from the
rest of the text without quote marks around them. These can be generated using the
commmands . (q and .)q to surround the quote. For example. the input:

As Weizenbaum points out:
,(q
It is said that to explain is to explain away,
This maxim is nowhere so well fulfilled
as in the areas of computer programming
.)q

generates as output:

As Weizenbaum points out:
It is said that to explain is to explain away. This maxim is nowhere so well fulfilled as in
the areas of computer programming

3.2. Lists

A list is an indented. single spaced. unfilled display. Lists should be used when the
material to be printed should not be filled and justified like normal text. such as columns
of figures or the examples used in this paper. Lists are surrounded by the requests. (I
and .>1. For example. type:

Alternatives to avoid deadlock are:
,0
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding
.)1

will produce:
Alternatives to avoid deadlock are:

Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

3.3. Keeps

A keep is a display of lines which are kept on a single page if possible. An example
of where you would use a keep might be a diagram. Keeps differ from lists in that lists
'may be broken over a page boundary whereas keeps will not.

Blocks are the basic kind of keep. They begin with the request . (b and end with
the request .lb. If there is not room on the current page for everything in the block. a
new page is begun. This has the unpleasant effect of leaving blank space at the bottom
of the page, When this is not appropriate. you can use the alternative. called flootlng
keeps.

Flootlng keeps move relative to the text. Hence. they are good for things which will
be referred to by name. such as "See figure 3", A floating keep will appear at the bot­
tom of the current page if it will fit: otherwise. it will appear at the lOP of the next page.
Floating keeps begin with the line . (z and end with the line .) z. For an example of a

USING NROFF AND -ME

noating keep. see figure 1. The .hl request is used to draw a horizontal line so that the
figure stands out from the text.

3.4. Fancier Displays
Keeps and lists are normally collected in no./ill mode. so that they are good for

tables and such. If you want a display in fill mode (for text>. type • U F (Throughout this
section. comments applied to • (l also apply to • (b and • (z). This kind of display will be
indented from both margins. For example, the input:

.(1 F
And now boys and girls,
a newer, bigger. better toy than ever before!
Be the first on your block to have your own computer!
Yes kids. you too can have one of these modem
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye! . -
.)1

will be output as:
And now boys and girls. a newer. bigger. better toy than ever before! Be the
first on your block to have your own computer! Yes kids. you too can have one
of these modem data processing devices. You too can produce beautifully for­
matted papers without even battinlJ an eye!

Lists and blocks are also normally indented (tloating- keeps are normally left
justified). To get a left-justified list. type .(1 L. To get a list centered line-for-line. type
• (I C. For example. to get a filled. left justified list. enter:

.(1 L F
text of block
.)1

The input:
.(1
first line of unfilled display
more lines
.)1

produces the indented text:

.(z

.hl
Text of keep to be floated.
.sp
.ce
Figure 1. Example of a Floating Keep .
. hl
.)z

Figure 1. Example of a Floating Keep.

CSI~G :\ROFF A~D -ME

first line of unfilled display
more lines

Typing the character L after the. Cl request produces the left justified result:

first line of unfilled display
more lines

USing C instead of L produces the line-at-a-time centered output:

first line of unfilled display
more lines

7

Sometimes it may be that you want to center several lines as a group. rather than
centering them one line at a time. To do this use centered blocks, which are surrounded
by the requests . (c: and.k All the lines are centered as a unit, such that the longest
line is centered and the rest are lined up around that line. Notice that lines do not move
relative to each other using centered blocks, whereas they do using the C argument to
keeps.

Centered blocks are nor keeps. and may be used in conjunction with keeps. For
example, to center a group of lines as a unit and keep them on one page, use:

.(b L

.k
first line of unfilled display
more lines
.)C
.)b

to produce:

first line of unfilled display
more lines

If the block requests (.(b and .)b) had been omitted the result would have been the
same. but with no guarantee that the lines of the centered block would have all been on
one page. Note the use of the L argument to . (b; this causes the centered block [0

center within the entire line rather than within the line minus the indent. Also, the
center requests must be nested tnSl(ie the keep requests.

4. Annotations

There are a number of requests to save text for later printing. Footnores are printed at
the bottom of the current page. Delayed (ext is intended to be a variant form of footnote:
the text is printed only when explicitly called for. such :lS at the end of each chapter.
Inde."Ces are a type of delayed text having a tag (usually the page number) attached to each
entry after a row of dots. Indexes are also saved until called for explicitly.

4.1. Footnotes

Footnotes begin with the request . (f and end with the request .)f. The current
footnote number is maintained automatically, and can be used by typing \ ••. to produce
a footnote number l . The number is automatically incremented after every footnote. For
example. the input:

USING NROFF AND -ME

.(q
A man who is not upright
and at the same time is presumptuoU!~
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.\··
.(f
\··James R. VVare •
. ul
The Best of Confucius,
Halcyon House. 1950.
Page 77 .
.)f
.)q

generates the result:
A man who is aot uprisht and at the same timer is presumptuous: one who is not dili­
gent and at the same time is ignorant; one who is untruthful and at the same time is in­
competent; such men I do Qat count amon, acquainrances.1

8

It is important that the footnote appe:ll'S .insid~ the quote, so that you can be sure that the
footnote will appear on the same page as the quote.

".2. Delayed Text
Delayed text is very similar to a footnote except that it is printed when ClI1ed for

explicitly. This allows a list of references to appear (for example) at the end of each
chapter. as is the convention· in some disciplines. Use \.# on delayed text instead of \ ••
as on footnotes.

If you are using delayed text as your standard reference mechanism, you can still
use footnotes. except tbat you may want to reference them with special characters­
rather than numbers.

4.3. Indexes
An "index" (actually more like a table of contents. since the entries are not sorted

alphabetically) resembles delayed te:c:t. in that it is saved until called for. However, each
entry has the page number (or some other tag) appended to the last line of the index
entry after a row of dots.

Index entries begin with the request • (x and end with .)x. The.>x request may
have a argument, which is the value to print as the "page number". It defaults to the
current page number. If the page number given is an underscore ("_") no page number
or line of dots is printed at all. To get the line of dots without a page number, type .>x
~., which specifies an explicitly null page number.

The .xp request prints the index.

For example, the input:

: James R. Ware. Tlr~ 8~$t oj COlfjllelus. Halcyon House. 1950. ?:lge i7.
·Su.:h as an astensk.

t:SI~G !'o'ROFF A~D -ME

.(x
Sealing wax
.)X
· (x
Cabbages and kings
.)X
· ex
Why tbe sea is boiling hot
.>x 2.5a
· be
Whether pigs have wings
.)X ••

· (x
This is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures~ I expect it to
take at least two lines .
.)x
.xp

generates:

9

Sealing wax ...•......••........•.. 9
Cabbages and kings
Why the sea is boiling hot .. 2.5a
Whether pigs have wings
This is a terribly' long index entry, such as might be used for a list of illustra-
tions. tables. or figures~ I expect it to take at least two lines. 9

The. (x request may have a single character argument, specifying the "name" of
the index: the normal index is x. Thus, several "indicies" may be maintained sImul­
taneously (such as a Iist·of tables. table of contents, etc.).

Notice that the index must be printed at the end of the paper, rather th:m at the
beginning where it will probably appear (as a table of contents): the pages may have to
be physically rearranged after printing.

S. Fanc:ier Features

A large number of fancier requests exist, notably requests to provide other sorts of
paragraphs, numbered sections of the form 1.2.3 (such as used in this document>, and mul­
ticolumn output.

5.1. More Paragraphs

Paragraphs generally start with a blank line and with the first line indented. It is
possible to get left-justified block-style paragraphs by using .lp instead of .pp, as demon­
strated by the next paragraph.

Sometimes you want to use paragraphs that have the body indented. and the first line
exdented (opposite of indented) with a label. This can be done with the .ip request. A
word specified on the same line as .ip is printed in the margin. and the body is lined up
at a prespecified position (normally five spaces). For example, the input:

USING NROFF AND -ME

.ip one
This is the first paragraph.
Notice how the first line
of the resulting paragraph lines up
with the other lines in the paragraph .
.ip two
And here we are at the second paragraph already.
You may notice that the argument to .ip
appears
in the margin. .
.lp
We can continue teXL •.

produces as output:

10

one This is the first paragraph. Notice how the first Une oC the resultinl paralraph lines
up with the other lines in the paragraph.

two And here we are at the second paragraph 3.Iready. You may notice that the argu­
ment to .ip appears in the margin.

We can continue text without startinl a new indented paragraph by usinl the .lp request.

If you bave spaces in the label of a .ip request, you must use an uUDpaddable
space" instead oC a relular space. This is typed as a backslash character (0" to) followed
by a space. For example, to print the label "Part 1", enter:

.ip ~Pan\ 1-

IC a label oC aD indented paragraph (that is, the argument to .ip) is longer than the
space allocated for the label, the label will not be separated from the text. and the rest of
the text will be lined up at °the old margin (and not with the first line of text>. For
example, the input:

.ip 10ngJabei
This paragraph had a long label.
The first character oC text on the first line
will not line up with the text on second and subsequent lines.
although they will line up with each other.

will produce:

10ngiaEhis paragraph had a long label. The first character of text on the first line will not
line up with the text on second and subsequent lines, although they will line up
with each other.

It is possible to change the size of the label by using a second' argument which is
the size of the label. for example, the above example could be done correctly by saying:

.ip longlabel 10
which will make the paragraph indent 10 spaces for this paragraph only. If you have
many paragraphs to indent all the same amount, use the number register ii. For example,
to leave one inch of space for the label, type:

onr ii li
somewhere before the first call to .ip. Refer to the reference manual for more informa­
tion.

If .ip is used with no argument at all no hanging tag will be printed. For example.
the input:

csr:"G ~ROFF A:"lD -:\1£

.ip fa]
This is the first paragraph of the example.
We have seen thiS sort of example before .
.ip
This paragraph is lined up with the previous paragraph.
bur it has no tag in the margin.

produces as output:

11

fa] This is the first paragraph of the example. We have seen this sort of exampie
before.

This paragraph is lined up with the previous paragraph. but it has no tag in the
margin.

A special case of .ip is .np. which automatically numbers paragraphs sequentially
from 1. The numbering is reset at the next .pp • .lp. or .sh (to be described in the next
section) request. For example, the input:

.np
This is the first point.
.np
This is the second point.
Points are just regular paragraphs
which are given sequence numbers automatically
by tbe .np request .
. pp
This paragraph will reset numbering by .np .
. np
For example,
we have reverted to numbering from one now.

generates:

(1) This is the first point.

(2) This is the second point. Points are just regular paragraphs which are given
sequence numbers automatically by the .np request.

This paragraph will reset numbering by .np.

0) For example, we have reverted to numbering from one now.

5.2. Section Headings
Section numbers (such as the ones used in this document) can be aUlomatical1~'

generated using the .sh request. You must tell .sh the depth of the- section number and
a section title. The depth specifies how many numbers are to appear (separated by
decimal points) in the section number. For example, the section number 4.:.3 has a
depth of three.

Section numbers are incremented in a fairly intuitive fashion. If you add a number
(increase the depth). the new number starts out at one. If you subtract section numbers
(or keep the same number) the final number is incremented. For example. the Input:

.sh 1 "The Preprocessor"

.sh 2 "Basic Concepts·

.sh 2 "Control Inputs"

.sh 3

.sh 3

.sh 1 ·Code Generation"

.sh 3

produces as output the result:

t,;SlNG NROFF AND -ME

1. The Preprocessor
1.1. Basic Concepts
1.2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

You can specify the section number to begin by placing the section number after
the s~tion title. using spaces instead of daIS. For example. the request:

.sh 3 "Another section" 7 3 4

will begin the section numbered 7.3.4; all subsequent .sb requests will number relative
to this number.

There are more complex features which will cause each section to be indented pro­
portionally to the depth of the section. For example. if you enter:

.nr si N
each section will be indented by an amount N. N must have a scaling factor attached.
that is, it must be of the form Nx., where x is a character telling what units N is in.
Common values for x are i for inches. c: for centimeters. and a for ens (the width of a
single character). For example. to indent eacb section one-half inch. type:

.nr si O.Si
After this, sections will be indented by one-half inch per level of depth in the section
number. For example. this document was produced using the request

.nr si 3n
at the beginning of the input file, giving three spaces of indent per section depth.

Section headers without automatically generated numbers can be done using:

. uh "Title"

which will do a section heading, but will put no number on the s~tion.

5.3. P:u1S o(the Basic: Paper
There are some requests which assist in setting up papers. The .tp request initialc

izes for a title page. There are no headers or footers on a title page. and unlike other
pages you can space down and leave blank space at the top. For example, a typical title
page might appear as:

.tp

.sp 2i

.(1 C
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank N. Furter
.)\
.bp

The request .th sets up the environment of the ~ROFF processor to do a thesis,
using the rules established at Berkeley. It defines the correct headers and footers (a page
number in the upper right hand corner only). sets the margins corr~tly. and double
spaces.

U5I~G NROFF AND - ME 13

The . +c T request com be used to start chapters. Each chapter is automatically
numbered from one. and a heading is printed at the top of each chapter with the chapler
number and the chapter name T. For example. to begin a chapler called "Conclusions".
use the request:

. +c "CONCLt:SIONS·

which will produce. on a new page. the lines

CHAPTER 5
CONCLUSIONS

with appropriate spacing for a thesis. Also. the header is moved to the fool of the page
on the first page of a chapter. Although the • +c request was nOI designed to work only
with the .rb request, it is tuned for the format acceptable for a PhD thesis at Berkeley.

If the title parameter T is omitted from the. +c request. the result is a chapter with
no heading. This can also be used at the beginning of a paper: for example, • +c was
used to generate page one of this document.

Although papers traditionally have the abstract. table of contents, and so forth at
the front of the paper, it is more convenient to format and print them last when using
NROFF. This is so that index entries can be collected and then printed for the table of
contents (or whatever). At tbe end of the paper, issue the .++ P request, which begins
the preliminary part of the paper. After issuing this request, the. +c: request will begin a
preliminary section of the paper. Most notably, this prints the page number restarted
from one in lower case Roman numbers. • +c: may be used repeatedly to begin different
parts of the front material for example, the abstract. the table of contents. acknowledg·
ments. list of iUustrations. etc. The request • + + B may also be used to begin the
bibliographic section at the end of the paper. For example. the paper might appear as
outlined in figure 2. Un this figure. comments begin with the sequence \.')

5.4. Equations and Tables
Two special UNIX programs exist to format special types of material. . Eqn and

neqn set equations for the phototypesetter and NROFF respectively. Tbl arranges to
print extremely pretty tables in a varIety of formats. This document will onl~' describe
the embellishments to the standard features: consult the reference manuals for those
processors for a description of theIr use.

The eqn and neqn programs are described fully in the document Typesertlllg
J'v/arhematlcs - Users' GUide by Brian W. Kernighan and Lorinda L. Cherry. Equations
are centered. and are kept on one page. They are introduced by the .EQ request and ter·
minated by the .EN request.

The .EQ request may take an equation Dumber as an optional ·argument. which is
printed venicaJly centered on the right hand side of the equation. If the equation
becomes too long it should be split between two lines. To do this. type:

.EQ (eq 34)
text of equation 34
.ENC
.EQ
continuation of equation 34
.EN

The C on the .EN request specifies that the equation will be continued.

The tbi program produces tables. It is fully described (including numerous exam·
pies) in the document Tbl - A Program to Formal Tables by M. E. Lesk. Tables begin
with the. T5 request and end with the .TE request. Tables are normally kept on a single
page. If you have a table which is too big to fit on a smgle page. so thaI you know It Wlil

extend to several pages. begin the table with the request • T5 H and put the request . TH

USING NROFF AND - ME

.th \" set for thesis mode

.fo "DRAFT' \" define footer for each page

.tp \" begin title page
· (l C \ .. center a large block
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank Furter
.H
· +c INTRODUCTION
· (x t
Introduction
.)X
text of chapter one
.+c"NEXT CHAPTER"
.(x t
Next Chapter
.)X
text of chapter two
· +c CONCLUSIONS
· (x t
Conclusions
.)X
text of chapter three
.++ B
· +c BIBLIOGRAPHY
· (x t
Bibliography
.)X
text of bibliography

\" end centered part
\" begin chapter named "INTRODUCTION"
\ .. make an en~ into index 't'

\ .. end of index entry

\" begin another chapter
\" enter into index 't' again

\" begin bibliographic information
\ .. begin another 'chapter'

· + + P \ .. begin preliminary material
· +c "TABLE OF CONTENTS"
.xp t \ .. print index 't' collected above
· +c PREFACE \ .. begin another preliminary section
text of preface

Figure 2. Outline of a Sample Paper

14

after the part of the table which you want duplicated at the top of every page that the
table is printed on. For example, a table definition for a long table might look like:

USI:'-iG :'-iROFF A:'-iD -ME

.TS H
c 5 5
n n n.
THE TABLE TITLE
.TH
text of the table
.n

5.S. Two Column Output

15

You can get two column output automatically by using the request .2e:. This causes
everything after it to be output in two-column form. The request .be: will start a new
column~ it differs from .bp in that .bp may leave a totally blank column when it starts a
new page. To revert to smgle column output, use .1e.

S.6. Defining Mae:ros

A macro is a collection of requests and text which may be used by stating a simple
request. Macros begin with the line .de xx (where xx is the name of the macro to be
defined) and end with the line consisting of two dots. After defining the macro. stating
the line .xx is the same as stating all the other lines. For example. to define a macro that
spaces 3 lines and then centers the next input line. enter:

.de SS

.sp 3

.ce

and use it by typing:

.S5
Title Line
(beginning of text)

Macro names may be one or two characters. In order to avoid conflicts with names
in -me. always use upper case letters as names. The only names to avoid are TS. TH.
TE. EQ, and EN.

5.7. Annotations Inside Keeps
Sometimes you may want to put a footnote or index entry inside a keep. For

example. if you want to maintain a "list of figures" you will want to do something like:

.(z

.(c
text of figure
.)C
.ce
Figure S .
. (x f
Figure 5
.)X
.)z

which you may hope will give you a figure with a label and an entry in the index r
(presumably a list of figures index). Unfortunately. the index entry is read and mter­
preted when the keep is read. not when it is printed. so the page number in the IOdex IS

likely to be wrong. The solution is to use the magic string \! at the begmning of all the
lines dealing with the index. In other words. you should use:

USING NROFF AND -ME

.(z

.{c
Text of figure
.)C
.ce
Figure S.
\!. (x f
\!Figure S
\!.)x
.)z

16

which wiD defer the processing of the index until the figure is outpuL This will guaran­
tee that the page Dumber in the index is correct. The same comments apply to blocks
{with .(b and .)b) as well.

6. TItOn aDd the Pbotosetter
With a little care, you can prepare documents (lfat will print nicely on either a resular

terminal or when phototypeset using the TROF'f' formatting program.

6.1. FODls

A lont is a style of type. There are three fonts that are available simultaneously,
Times Roman, Times Italic, -and Times Bold. plus the special math font. The normal
font is Roman. Text which would be underlined in NROFF with the .w request is set in
italics in TROFF.

There are ways of switching between fonts. The requests .r, .1. and .b switch to
Roman. italic, and bold fonts respectively. You can set a single word in some font by
typing (for example):

.i word

which will set word in italics but does not affect the surrounding text. In NROFF. italic
and bold text is underlined.

Notice that if you are setting more than one word in whatever font, you must sur­
round that word with double quote marks (... ') so that it will appear to the NROFF pro­
cessor as a single word. The quote marks will not appear in the formatted text. If you
do want a quote mark to appear, you should quote the entire string (even if a single
word), and use two quote marks where you want one to appear. For example. if you
want to produce the text:

".~laster Contro'"
in italics, you must type:

I

.i .. ··Master ControlV'''·

The ~ produces a very narrow space so that the "1" does not overlap the quote sign in
TROFF, like this:

.. ,Waster Contrar

There are also several "pseudo-fonts" available. The input:
.(b
· u underlined
· bi "bold italics"
· bx "words in a box"
.)b

generates

unde~iined
bold /lallcs
lworcis In :! cox·

17

In ~ROFF these all just underline the tex:. Notice that pseudo font requests set onl~' the
single parameter in the pseudo font: ordinary font requests will begin settmg all text in
the special font if you do not provide a parameter. No more than one word should
appear with these three font requests in the middle of lines. This is because of the way
TROFF justifies text. For example. if you were to issue the requests:

.bi 'some bold italics"
and
.bx 'words in a box·

in the middle of a line TROFF would produce S.wi:i»:kJIIllitirSS and :wor::s In :1 oox ..
which I thmk you will agree does not look good.

The second parameter of all font requests is set in the original font. For example.
the font request:

.b bold face

generates ubold" in bold font. but sets "face" in the font of the surrounding text.
resulting in:

boldface.

To set the two words bold and face both in bold face. type:

.b "bold face"

You can mix fonts in a word by using the special sequence \c at the end of a line
to indicate "continue text processing"; this allows input lines to be joined together
without a space inbetween them. For example. the input:

.u under \c

.j italics

gener:ltes underitalies. but if we had typed:

.u under

.i italics

the result would have been under Ilalies as two words.

6.2. Point Sizes

The phototypesetter supports different sizes of type. measured in points. The
default point size is 10 points for most text. 8 points for footnotes. To change the
pomtsize, type:

.sz +N
where .V is the size wanted in points. The vertical spacmg (distance between the bottom
of most letters (the baselme) between adjacent lines) is set to be proportional to the type
size.

Warning: changing point sizes on the phototypesetter is a slow mechanical opera­
tion. Size changes should be considered carefully.

6.3. Quotes

It is 'conventional when using the typesetter to use pairs of grave and acute accents
to generate double quotes. r:uher than the double quote character ('"'). This IS because
it looks better to use grave and acute accents: for example. compare "quote" to "quote".

In order to make quotes compatible between the typesetter and terminals. you may
use the sequences *Oq and *(rq to stand for the left and nght qUOle respectively.

------------- -------

USING NROFF AND -ME 18

These both appear as • on most terminals, but are typeset as .. and "respectively. For
example, use:

\ -(lqSome things aren't true
even if they did happen. \ • (rq

to generate the result:
"Some thinp aren't true even if they did happen. tO

AS a shonhand. the special font request:
.q -quoted text-

will generate "quoted text". Notice that you must surround the material to be quoted
with double quote marks if it is more than one word.

Acknowledllments

I would like to thank Sob Epstein, Sill loy, and Larry Rowe for having the courage to use
the - me macros to produce non-trivial papers during the development stages; Ricki Slau.
Pamela Humphrey, and Jim Joyce for their help with the documentation phase; and the
plethora of people who have contributed ideas and have given suppan for the project.

This document was nOFF' ed on April 29, 1979 and. applies to version 1.1 of the - me macros.

---- --- --- ----------- ----- ---------------------

The -me macros described in this
document are not supported by ~
Computing Services, but the package
is used by some experienced UNIX
users as an alternative to our
supported product, the -ms macro
package (document UNX 4.3.2).

-ME REFERENCE MA~UAL

Release 1.1120

Eric P. AI/man

Electronics Research Laboratory
University of California. Berkeley

Berkeley, California 94720

This document describes in extremely terse form the features of the -me macro package
for version seven NROFF /TROFF. Some familiarity is assumed with those programs.
specifically. the reader should understand breaks. fonts. pointsizes. the use and definition of
number registers and strings. how to define macros. and scaling factors for ens. points. ,·'s
(venical line spaces). etc.

For a more casual introduction to text processing using NROFF. refer to the document
Wming Papers with NROFF uSing -me.

There are a number of macro parameters that may be adjusted. Fonts may be set to a
font number only. In NROFF font 8 is underlined. and is set in bold font in TROFF (although
font J, bold in TROFF, is not underlined in NROFF). Font 0 is no font change; the font of the
surrounding text is used instead. Notice that fonts 0 and 8 are "pseudo-fonts"; that is. they
are simulated by the macros. This means that although it is legal to set a font register to zero
or eight, it is not legal to use the escape character form. such as:

\f8

All distances are in basic units. so it is nearly always necessary to use a sC:lling factor. For
example, the request to set the paragraph indent to eight one-en spaces is:

.nr pi 8n

and not

.nr pi 8
which would set the paragraph indent to eight basic units. or about 0.02 inch. Default parame­
ter values are given in brackets in the remainder of this document.

Registers and strings of the form $x may be used in expressions but should not be
changed. Macros of the form $x perform some function (as described) and may be redefined to
change this function. This may be a sensitive operation~ look at the body of the origmal macro
before changing it.

All names in -me follow a rigid naming convention. The user may define number regis­
. lers, strings. and macros. provided that s/he uses single character upper case names or doubie
character names consisting of letters .and digits, with at least one upper case letter. In no case
should special characters be used in user-defined names.

On daisy wheel type printers in twelve pitch. the -rd flag can be stated to make lines
default to one eighth inch (the normal spacing for a newline in twelve-pitch). ThiS is normally

tNROFF ,lnd TROFF .ire Tradc:m:lrks of Bc:!1 Uboralones.

-ME REFERE:"CE MA~l'AL 1

u~x 4.:!.~

----~---------------------~

-ME RIFERE:-lCE MANUAL

too small for easy readability, so the default is to space one sixth inch.

This documentation was nOFF'ed on lune 4, 1979 and applies to version 1.1120 of the
- me macros.

1. Paragraphinl
These macros are used to begin paragraphs. The standard paragraph macro is .pp; the

others are all variants to be used for special purposes.

The tim call to one of the paragraphinl macros defined in this section or the .sh macro
(defined in the next session) initializes the macro processor. After initialization it is not possible
to use any of the followinl requests: .sc. .10, .th. or.K. Also, the effects of changing parame­
ters which will have a global effect on the fOrmal of the page (notably page length and header
and footer margins) are not well defined and should be avoided.

.Ip Begin left-justified paragraph. Centering and underlining are turned off
if they were on, the font is set to \n(pf (1) the type size is set to \n(pp
[lOp), and a \n(ps space is inserted before the paragraph [0.3Sv in
nOFF. lv or O.Sv in NR.OFF depending on device resolution]. The
indent is reset to \n($1 (0) plus \n(po [01 unless the paragraph is inside
a display. (see .ha). At least the first two lines of the paragraph are
kept together on a page •

• pp Like .lp, except that it puts \n(pi [Sn] units of indenL This is the stan­
dard paragraph macro.

.ip T I

.np

2. Section HeadiDp

Indented paragrapb with hanging tag. The body of the following para­
grapb is indented I spaces (or \nOi [Sn] spaces if I is not specified)
more than a non-indented paragraph (such as with .pp) is. The title T
is exdented (opposite of indented). The result is a paragraph with an
even left edge and T printed in the margin. Any spaces in T must be
unpaddable.

A variant of .ip which numbers paragraphs. Numbering is reset after a
.1p, .pp, or .sh. The current paragraph number is in \n (Sp.

Numbered sections are similiar to paragraphs except that a section number is automati­
cally generated for each one. The section numbers are of the fonn 1.2.3. The depth of the sec­
tion is the count of numbers (separated by decimal points) in the section number.

Unnumbered section headings are similar, except that no number is attached to the head-
ing .

. sh + N Tab c d e / Begin numbered section of depth N. If N is missing the current depth
(maintained in the number register \n (SO) is used. The values of the
individual parts of the section number are maintained in \n ($1 through
\n($6. There is a \n(ss [1 v] space before the section. T is printed as a
section title in font \n(sf [81 and size \n(sp [lOp). The "name" of the
section may be accessed via *(Sn. If \n(si is non-zero. the base
indent is set to \n (si times the section depth. and the section title is
exdented. (See .ba.) Also, an additional indent of \n<so [01 is added to
the section title (but not to the body of the section). The font is then
set to the paragraph font. so that more information may occur on the
line with the section number and title. .sh insures that there is enough
room to print the section head plus the beginning of a paragraph (about
3 lines totan. If a through lare specified. the section number is set to
that number rather than incremented automatically. If any of a
through I are a hyphen that number is not reset. .If T is a single under­
score ("_") then the section depth and numbering is reset. but the

-~[E REFERE:"CE MANt:AL 3

.SX +:V

.uh T

.Sp T B :V

.SO T B.V

.S1 - .$6

base indent is not reset and nothing is printed out. This is useful to
automatically coordinate section numbers with chapter numbers.

Go to sec:ion depth N [-11. but do not print the number and title. and
do not increment the section number al level N. This has the effect of
starting a new paragraph at level N.
Unnumbered section heading. The title T is printed with the same
rules for spacing. font. etc .• as for .sh.

Print section heading. May be redefined to get fancier headings. T is
the title passed on the .sh or .uh line~ B is the section number for this
section. and N is the depth of this section. These parameters are not
always present~ in particular •. sh passes all three •• uh passes only the
first. and .sx passes three. but the first two are null strings. Care
should be taken if this macro is redefined~ it is quite complex and sub­
tle.

This macro is called automaticaHy after every call to .Sp. It is normally
undefined. but may be used to automatically put every section title into
the table of contents or for some similiar function. T is the section title
for the section title which was just printed. B is the section number.
and N is the section depth.

Traps called just before printing that depth section. May be defined to
(for example) give variable spacing before sections. These macros are
called from .Sp. so if you redefine that macro you may lose this feature.

3. Headers and Footers
Headers and footers are put at the top and bottom of every page automatically. They are

set in font \nhf [3] and size \n<tp [lOp], Each of the definitions apply as of the ne.'CT page.
Three-part titles must be quoted if there are two blanks adjacent anywhere in the title or more
than eight blanks total.

The spacing of headers and footers are controlled by three number registers. \n(hm [4v]
is the distance from the top of the page to the top of the header. \n(fm (3v] is the distance
from the bottom of the page to the bottom of the footer. \n(tm [7vl is the distance from the
top of the page to the tOP of the text. and \n(bm [6v] is the distance from the bottom of the
page to the bottom of the text (nominal). The macros .ml •• m2 •. m3. and .m4 are also sup­
plied for compatibility with ROFF documents.
• he • [" 111' r'

.fo '["m',

• eh '["m',

. oh '["",',

,ef' [" m',
• of'rm"

• hx

.ml +:V

.m2 +N

.m3 +N

.m4 +N

.ep

Define three-part header, to be printed on the top of every page .

Define footer. to be printed at the bottom of every p'age .

Define header. to be printed at the top of every even-numbered page.

Define header. to be printed at the top of every odd-numbered page .

Define footer. to be printed at the bottom of every even-numbered
page .

Define footer. to be printed at the bottom of every odd-numbered page.

Suppress headers and footers on the next page .

Set the space between the top of the page and the header [4v],

Set the space between the header and the first line of text [2v).

Set the space between the bottom of the text and the footer [2v],

Set the space between the footer and the bottom of the page [4v).

End this page. but do not begin the next page. Useful for forcing out
footnotes. but other than that hardly every used. Must be followed by
a .bp or the end of input.

-ME REFERENCE MANUAL 4

.Sh

• Sf
.m

4. Displays

Called at every page to print the header. May be redefined to provide
fancy (e.g., multi-line) headers. but doing so loses the function of the
.he •. to •• eb •. ob •• ef. and .of requests. as well as the chapter-style title
feature of • +c.

Print footer. same comments apply as in .Sh •

A normally undefined macro which is' called at the top of each page
(after outputing the header. initial saved noating keeps, etc.); in other
words. this macro is called immediately before printing text on a page.
It can be used for column headings and the like.

All displays except centered blocks and block quotes are preeeeded and followed by an
extra \n(bs [same as \n(ps) space. Quote spacing is stored in a separa'te register. centered
blocks have no default initial or trailing space. The venica.l spacing of all displays except quotes
and centered blocks is stored in register \n(SR instead.of \n(SI' •

• (1 m f Begin list. Lists are single spaced, untilled text. If f is F. ,the list will
be filled. If m [I] is 1 the list is indented by \n(bi [4n]; if M the list is
indented to the left marsin: if L the list is left justified with respect to'
the text (cWferent from M only if the base indent (stored in \n ($1 and
set witb .ba) is not zero); and if C the list is centered on a line-by-line
basis. The list is set in font \n(df [01. Must be matched by a .>1. This
macro is almost like • (b except that no attempt is made to keep the
display on one page •

.) I End list.

.(q

.)q

• (b I1f f

.)b

.(z m/

')z

.(c

.)c

Begin major quote. These are single spaced, filled, moved in from the
text on both sides by \n(qi [4nJ. preceeded and followed by \n(qs
[same as \n(bs) space, and are set in point size \a(qp [one point
smaller than surrounding texd .

End major quote.

Begin block. Blocks are a form of keep. where the text of a. keep is
kept together on one page if possible (keeps are useful for tables and
figures which should not be broken over a page). If the block will not
fit on the current page a new page is begun, unless that would leave
more than \0 {bt [01 white space at the bottom of the text. If \n (bt is
zero, the threshold feature is turned off. Blocks are not filled unless f
is F. when they are filled. The block will be left-justified if m is L.
indented by \n(bi [4n) if ", is I or absent. centered (line· for-line} if m
is C, and left justified to the margin (nol to the base indent> if ", is M.
The block is set in font \o(df [01.

End block.

Begin floating keep. Like. (b except that the keep is ./foated to the bot­
tom of the page or the top of the next page. Therefore. its position
relative to the text changes. The floating keep is preceeded and fol­
lowed by \n(zs [1 vI space. Also. it defaults to mode ~1.
End floating keep.

Begin centered block. The next keep is centered as a block. rather than
on a line·by·line basis as with . (b C. This call may be nested inside
keeps .

End centered block.

-ME REFERE!'4CE MA~L-\L 5

5. Annotations

.(d

.)d n

• pd

• (f

.)f n

.5s

• (x x

.)X PA

.xp x

6. Columned Output

.2c +S /II

. lc

.bc

7. Fonts and Sizes

.52 +P

. r WX

Begin delayed text. Everything i~ the next keep is saved for output
later with .pd, in a manner similar to footnotes.

End delayed text. The delayed text number register \n (Sd and (he
associated string \-# are incremented if \-# has been referenced.

Print delayed text. Everything diverted via .(d is printed and truncated .
This might be used at the end of each chapter.

Begin footnote. The text of the footnote is floated to the bottom of the
page and set in font \n (ff [1] and size \n (fp [8p]. Each entry is pre­
ceeded by \n (fs [0.2v) space. is indented \n (fi [3n) on the first line.
and is indented \n (fu [0] from the right margin. Footnotes line up
underneath two columned output. If the text of the footnote will not
all fit on one page it will be carried over to the next page.

End footnote. The number register \n ($f and the associated string \-­
are incremented if they have been referenced.

The macro to output the footnote seperator. This macro may be
redefined to give other size lines or other types of separators.
Currently it draws a l.Si line.

Begin index entry. Index entries are saved in the index x [x] until
called up with .xp. Each entry is preceeded by a \o(xs [0.2v] space.
Each entry is "undented" by \n(xu [O.Si]~ this register tells how far the
page number extends into the right margin.

End index entry. The index entry is finished with a row of dots with A
[null] right justified on the last line (such as for an author's name). fol­
lowed by P [\n%]. If A is specified. P must be specified; \n% can be
used to print the current page number. If P is an underscore. no page
number and no row of dots are printed.

Print index x [x]. The index is formated in the font. size. and so forth
in effect at the time it is printed, rather than at the time it is collected.

Enter two-column mode. The column separation is set to +S [4n. 0.5i
in ACM mode] (saved in \n ($5). The column width, calculated to fill
the single column line length with both columns. is stored in \n (S1.
The current column is in \n(Sc. You can test register \n(Sm [II to see
if you are in single column or double column mode. Actually. the
request enters /II [2] columned output.

Revert to single-column mode .

Begin column. This is like .bp except that it begins a new column on a
new page only if necessary. rather than forcing a whole new page if
there is another column left on the current page.

The pointsize is set to P [10p), and the line spacing is set proportion­
ally. The ratio of line spacing to pointsize is stored in \n (Sr. The ratio
used internally by displays and annotations is stored in \0 (SR (although
this is not used by .5Z) .

Set W in roman font. appending X in the previous font. To append
different fOOl requests. use X - \c. If no parameters. change to rom;)n
font.

-ME REFERENCE MANUAL Ii

.i WX

.b WX

:rb W X

.11 W X

.q W X

.bi W X

.bs WX

8. Rolf Support

.is +N

.bl N

• pa +N
.ro
.ar
. nl

. n2 N

.sk

Set W in italics. appending X in the previous fonL If no parameters,
change to italic font. Underlines in NROFF.

Set W in bold font and append X in the previous font. If no parame­
ters. switch to bold font. In NROFF, underlines.

Set W in bold font and append X in the previous font. If no parame­
ters, switch to bold fonL .rb differs from .b in thae .rb does noe under­
line in NROFF'.

Underline Wand append X. This is a true underlining, as opposed to
the .111 request, which changes to "underline font" (usually italics in
nOFF). It won't work right if W is spread or broken (including
hyphenated). In other words, it is safe in notill mode only.

Quote W and append X. In NROFF' this just surrounds W with double
quote marks (0. '), but in noFF' uses directed quotes.

Set W in bold italics and append X. Actually, sets W in italic and over­
strikes once. Underlines in NROFF'. It won't work righe if Wis spread
or broken (including hyphenated). In other words, it is safe in no till
mode only.

Sets W in a box, with X appended. Underlines in NROFF'. It won't
work righe if W is spread or broken (including hyphenated). In other
words, it is safe in notill mode only.

Indent, no brea1c. Equivalent to 'iD N.

Leave N contiguous white space, on the next page if not enough room
on this page. Equivalent to a .sp N inside a block.

Equivalent to .bp .

Set page number in roman numerals. Equivalent to .af % i.
Set page number in arabic. Equivalent to .af % 1.

Number lines in margin from one on each page .

Number lines from N, stop if N - O •
Leave the next output page blank. except for headers and footers. This
is used to leave space for a full-page diagram which is produced exter­
nally and pasted in later. To get a partial-page paste-in display, say
.n N, where N is the amount of space to leave~ this space will be out­
put immediately if there is room, and will otherwise be output at the
top of the next page. However. be wamed: if .V is greater than the
amount of available space on an empty page, no space will ever be out­
PUL

9. Preprocessor Support

.EQ m T Begin equation. The equation is centered if In is C or omitted.
indented \n(bi [4n] if In is I, and left justified if In is L. T is a title
printed on the right margin next to the equation. See Typeserrmg
Mathematics - User's Guide by Brian W. Kernighan and Lorinda L.
Cherry.

.E~ c End equation. [f cis C the equation must be continued by immediately
following with another .EQ, the text of which can be centered along
with this one. Otherwise. the equation is printed. always on one page.
with \n(es [O.5v in TROFF. lv in :"lROFFl space above and below it.

-ME REFERENCE :\'IA:"<CAL i

• TS "

. TH

.TE

10. Miscellaneous

• re
.ba +N

.xl +N

.11 +N

.hl

.10

11. Standard Papers

.tp

. th

. ++ mH

Table start. Tables are single spaced and kept on one page if possibie .
If you have a large table which will not fit on one page. use il - Hand
follow the header part (to be printed on every page of the table) with a
.TH. See Tbl - A Program to Format Tables by M. E. Lesk.

With . TS H. ends the header portion of the table .

Table end. Note that this table does not float. in fact. it is not even
guaranteed to stay on one page if you use requestS such as .sp inter­
mixed with the text of the table. If you want it to float (or if you use
requestS inside the table). surround the entire table (including the . TS
and. TE requestS) with the requestS. (z and .) z.

Reset tabs. Set to every O.Si in TROFF and evety 0.8i in NROFF .

Set the base indent to +N [OJ (saved in \n(Si). All paragraphs. sec­
tions. and displays come out indented by this amount. Titles and foot­
notes are unaffected. The .sh request performs a .ba request if \n(si
[0] is Dot zero. and sets the base indent to \n(si*\n(SO.

Set the line length to N [6.0i]. This differs from .11 because it only
affectS the current environment.

Set line length in all environments to N [6.0i}. This should not be used
after output has begun. and particularly not in two-columned output.
The current line length is stored in \n(SI.

Draws a horizontal line the length of the page. This is useful inside
floating keeps to differentiate between the text and the figure.

This macro loads another set of macros (in lusr/lib/me/loc:ll.me)
which is intended to be a set of locally defined macros. These macros
should all be of the form. * X, where X is any letter (upper or lower
case) or digit.

Begin title page. Spacing at the top of the page can occur. and headers
and footers are supressed. Also. the page number is not incremented
for this page .

Set thesis mode. This defines the modes acceptable for a doctoral
dissertation at Berkelc=y. It double spaces. defines the header to be a
single page number. and changes the margins to be. 1.5 inch on the left
and one inch on the top. . + + and • +c should be used with it. This
macro must be stated before initialization. that is. before the first call of
a paragraphing macro or .sh.

This request defines the section of the paper which we are entering .
The section type is defined by m. C means that we are entering the
chapter portion of the paper. A means that we are entering the appen­
dix portion of the paper. P means that the material following should be
the preliminary portion (abstract. table of contents. etc.) portion of the
paper. AB means that we are entering the abstract (numbered indepen­
dently from I in Arabic numerals). and B means that we are entering
the bibliographic portion at the end of the paper. Also. the variants RC
and RA are allowed. which specify renumbering of pages from one at
the beginning of each chapter -or appendix. respectively. The H param­
eter defines [he new header. If there are any spaces in it. the entire
header must be quoted. If you want the header to have the chapter

-ME REFERENCE MANUAL 8

. +c: T

.Sc: T

.SC K N T

.ac AN

number in it. Use the string \ \ \\n {ch. For example. to number appen­
dixes A.I etc .• type .++ RA ··'\\\n(ch.o/t·. Each section (chapter.
appendix. etc.) should be preceeded by the • +c: requesL It should be
mentioned that it is easier when using TROFF to put the front material
at the end of the paper, so that the table of contents can be collected
and output: this material can then be physically moved to the beginning
of the paper.

Begin chapter with title T. The chapter number is maintained in \D(ch .
This register is incremented every time • +c: is called with a parameter.
The title and chapter number are printed by.k The header is moved
to the footer on the first page of each chapter. If T is omitted, .Sc: is

. not called: this is useful for doing your own "title page" at the begin­
ning of papers without a title page proper. .Sc: calls .SC as a hook so
that chapter titles can be inserted into a table of contents automatically.

Print chapter number (from \D (ch) and T. This macro ~ be
redefined to your liking. It is cfefined by default to be acceptable for a
PhD thesis at Berkeley. This macro calls SC. which can be defined to
make index entries, or whatever.

This macro is called by .Sc:. It is normally undefined, but can be used
to automatically insert index entries, or whatever. K is a keyword,
either "Chapter" or "Appendix" (depending on the .++ mode); N is
the chapter or appendix number. and Tis the chapter or appendix title.

This macro (short for .ac:m) sets up the NROFF environment for
photo-ready papers as used by the ACM. This format is 25% larger,
and has no headers or footers. The author's name A is printed at the
bottom of the page (but off the part which will be printed in the confer­
ence proceedings), together with the current page number and the total
number of pages N. Additionally, this macro loads the file
lusr/Ub/me/acm.me, which may later be augmented with other macros
useful for printing papers for ACM conferences. It should be noted
that this macro will not work correctly in TROFF, since it sets the page
length wider than the physical width of the phototypesetter roll

12. Predefined Strings

\-<
\->
\-(dw

\-(mo

\ -(td

Footnote number, actually \-I\D($I*I. This macro is incremented
after each call to .) f.

Delayed text number. Actually l\n(Scll.

Superscript. This string gives upward movement and a change to a
smaller point size if possible. otherwise it gives the left bracket charac­
ter (' (').

Unsuperscript. Inverse to \ -t. For example. to produce a superscript
you might type x\ -12\ -I. which will produce x!.

Subsct!pt. Defaults to • <' if half-carriage motion not possible.

Inverse to \-<.
The day of the week. as a word.

The month. as a word.

Today's date. directly printable. The date is of the form June 4, 1979.
Other forms of the date can be used by using \n (dy (the day of the
month; for example, 4), \-(mo (as noted above) or \n(mo (the same,
but as an ordinal number. for example. June is 6), and \n(yr (the last
two digits of the current year).

-\IE REFERE:\CE \1A:\t:AL 9

'''(lq

'''(rq , .. -
Left quote marks. Double quote in ~ROFF.

Right quote.

JA em dash in TROFF; two hyphens in ~ROFF.

13, Special Characters and ~arks

There are a number of special characters and diacritical marks (such as accents) available
through -me. To reference these characters, you must call the macro ,sc to define the charac­
ters before uSing them.

,sc Define special characters and diacritical marks, as described in the
remainder of this section. This macro must be stated beiore initializa­
tion.

The special characters available are listed below.
Name Usage Example
Acute accent \ e- a\-- a
Grave accent \ e' \ e' e, e
t:mlat \ e: u\ -: U
Tilde \e. n\ e- n
Caret \e. e'.•• e
Cedilla \e, cl e , , C

Czech \ev e\:v e
Circle \e o A:o A
There exists \ e (qe ::::

-'
For all \elqa 'if

Acknowledgments

I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for havmg the courage to use
the - me macros to produce non-trIvIal papers dUring the development stage5; Rlcki Blau.
Pamela Humphrey, and Jim Joyce for theIr help with the documentation ph:l.Se: and the
plethora of people who have contnbuted ideas and have given suppon for the proJect.

@

PWB/l\11\1

Programmer's. WOikbench

~ernorandurn ~acros

D. W. Smith
J. R. Mashey

E. C. Pariser (January 1980 Reissue)

Bell Telephone Laboratories. incorporated

PnIMM
PrDcrammer's Workbeach Memoruaclum Macros

1. nr-nODUCI10N •••••••••••.••• • • • • • • • • • • •
1.1 Purpose 1
1.2 Omvenuoas 1
1.3 Overall StrUcture 0(. Document 2
1.4 DefiDitioas 2
1.5 Prerequisites and Further Readinl 3

2. INVOKING THE MACROS •
2.1 The mm Commaad 3
2.2 The -mm Flal 4
2.3 Typical Commaad Lines ·4

.

2.4 Parameters that Can Be Set from the CoJDDWld Line S
2.5 Omission or -mm 6

3. FORM,A~(j CONCE.m •
3.1 Basic Tams .7
3.2 ArlUments and Double Quotes 7
3.3 Unpaddable Spaces 8
3.4 Hypbenauon 8
3.5 Tabs 9
3.6 Special Use of the BEL Character 9
3.7 Bullets 9
3.8 DlSbes. Minus Sip. and Hypbens 9
3.9 Trademark SaiDa 9·
3.10 Use of Formatt= Requests 10

4. P ARAGIlAPHS AND HEADINGS •••••••••••••••••••
4.1 Parqrapbs 10
4.2 Numbered Headinp 11
4.3 UDDumbered Headings 13
4.4 HadiD&s and the Table of Contents 14
4.5 rust-Leve! Headinp and the Pile Numberinl Style 14
4.6 User £xiI Macros • 14
4.7 Hints (or Larse Documents 15

s. LISTS •.•••••
5.1 Basic AppfOlCb 16
5.2 Sample Nested Lim 16
5.3 Basic Lisl Macros 17
5.4 List-Begin Macro IDd CUS10IDized Lists. 21

6. MEMORANDUM A?It"D RELEASED P APEll S'riLES • • • • • • • •
6.1 ntle 22
6.2 AWhor(s) 22
6.3 TM Number(s) 2l
6.4 Absuact 23
6.5 Other Keywords 23
6.6 Memorandum Types 23
6.7 Dale and Format ChaDles 24
6.1 Released-Paper Scyle 24
6.9 Order of Invocauon of "Bqinnjnl" Macros 25

. i .

1

3

7

10

16

22

--_._-----

6.10 ~Ie 25
6.11 MaI:ras for the End or a Memorandum 26
6.12 Forcinl a One·Pqe Lener 27

1. DlSPLA YS • • • • • • • • • •
1.1 Sta&ic: Ob'piays l3
1.2 FlOlliDl O~lays 29
1.3 Tables 31
7.4 Equacioas 31
7..s fipre. Table. Equaciaa. &ad ExtIibit Captious 32
7.6 lJst 0(Fiaures. Tables. Equaliaas. mel ExtIibilS 32
7.7 Blaca or Filled Te= 32

I. ~0-rES ••••••••
8.1 Automatic Numberinl of roomotes 33
8.2 OeJimitinl Foomoce Text 33
8.l Format of Foomace Te:a. 34
8.4 SpadDl becween FoolDOce Eneries 35

.

9. PAGE HEADERS AND FOOTEllS •••••••••••••••••
9.1 Default Headers &ad Footer1 35
9.2 P3Ie Header 35
9.3 Even-Pap He2der 35
9.4 Odd-~ He:sder 3S
9.S P3Ie Foocer 36
9.6 EVeD-Pale Footer 36
9.7 Odd-pqe Fooler 36
9.8 Footer oa the rU'Sl Pqe 36
9.9 Default Header &ad Fooler with uSectioa·Pqe'· NumberiDI 36
9.10 Use o(Strinp &ad Reaisler1 ill Header &ad Foocer Macas. 36
9.11 Hader and Footer E.xam~le. 31
9.12 Generalized T01'-O(-Pqe Processia.. 37
9.13 Generalized Bonom-oC·'31e Pro:";", 37

10. TABLE OF CONTENTS AND COVEll SHEET ••• • • • • • • • • •. • • •
10.1 Table or CoateDlS 38
10.2 Cover Sheet 39

11. MISCEI..1.A.'lEOUS FEATt.11.ES
11.1 Sold. Italic, and Romaa 39
11.2 lusti.6.calioa of R.i&ht MaI'Iin 40
11.3 sces Release tdenliftc:acioa 40
11.4 Two-ColwnD OutlNt 40
11.5 CohaaU1 He:u1in1S (or Two-Colwzm OUll'ut. 41
11.6 Vertical Spac"ol1l 41
11.7 SitiPlJiDl Pqes 42
11.8 FORCING A.t.'{ 000 PAGE 42
l1.9 Setlinl POUlt Size &ad Ver.ical Spadnl 42

12. EllRORS A.t."fD DEBUGGING •
12.1 EmIr TennirlauaDS 42
lU ~c: o{ Output 43

13. EXTE..'fOING A..'m MOCIF't"l:'lG TIm MACltOS.. • • • • • • • • • • • . .
13.1 NamiDl Coaveatious 43
13.2 Sam~le Ex!eDsioDS 44

14. CONCLUSION .• • . • • • . •

• ii •

27

33

35

31

39
)

42

43

45

ReI'ereDCIIS 46
AppeDdix A:. DEfINmONS OF LIST MACROS. 49
Appendix B: USER·DEFINED LIST STllUCTtJRES. 51
AppeDdix C: SAMPLE FOOTNOTES 53
AppeDdix 0: SAMPLE LETI'ER 55
Appendix E: ElUlOR MESSAGES 58
Appendix F: SUMMARY OF MACROS. STlUNGS. AND NUMBER REGISTERS 60

• iii •

LIST OF flGlJ 1tES

rt&UR 1. This is aD illUStration . 32

)

, :'. "

" "

PwBIMM-Programmer's Workbench Memorandum Macros
D. W. Smith

I. INTllODUCfION

1.1 PIa.,...

J. R. MasMy
E. C PtuisB (January J 980 ReissW)

BeD Laboratories
Piscacaway. New Jersey 08854

This memorandum is the user's guide and reference manual for P'WlIIMM (or just -lDud. a general­
purpose package of tut formatting macros for use with the UNJXt teXl formaners ,.,.0.8'(9} and lro,6"[9}.
The purpose of I'WBIMM is to provide to the users of JIWBIUNlX • unified, consistent, and fiexible tool
(or produc:inl many common types o(documents. Although f'WBIl1NIX provides other macro packages
(or various sp«laJiud fonnats, l"NBIMM bas become the standard, general-purpose macro package for
most documents. .

PwBtMM can be used to produce:

• Leners.
• ReportS.
• Technical Memoranda.
• Released Papers.
• Manuals.
• Books.
• eu:.

The uses of PWBI MM range from single-page letters to documents of several hundred pages in length.
such as user guides. design proposals, eu:~

1.1 CoDYeatJoDI

Each section of this memorandum explains a single facility of JIWBIMM. In aeneral, the earlier a section
occurs, the more necessary it is for most users. Some of the taler sections can be completely ignored if
PWIIMM defaults are ac:eptable. Ukewise, each section progresses from nonnal-case to special-case
(acilities. We recommend reading a section in detail only until there is enough information to obtain
the desired format, then skimming the rest of it. because some details may be of use to just a few
!=COPle.

Numbers enclosed in curly bnckets ({ J) refer to section numbers within this document. For example.
this is {1.21.

Sections that require mowledge of the formatters (l.4) have a bullet (.) at the end of the section
beading.

In the synopses of macro calls. square brackets ({]) surrounding an argument indicate that it is
optional. Ellipses (•••) show that the pre=ding lrIumenl may appear more than once:

A reference of the form MnN!'(N) points to page nanN!' in section N of the PWBlUNIX Usc's ManUllI UJ.

, UNIX is • TI'8dcmark of 8eIJ LaboraUll'ia.

._--_._ .. _-----_._- _-_... . ..

1

!he exam"les of autpUt in this awuw are as produc:d by trol. nroff out""t would. of Qlurse. look
somewhat di4'erent (A~ndix 0 shows both the nroff and troff out"", for • simple letter). ID those
c:a.ses in which the behav;or of the twO formatters is truly diiferent. the ffrel a.:tioo. is c1escribec1 6m.
with the troffa.:tioa. followU1l in patea.theses. For example:

!he title is undertiDed (bald).

mans that the title is UDderlined in nrogand bold ia. tro/f.

1..3 ~eraU Stnc:nan 01 • Doawwac

The in""t ror a doc:umem that is to be formalted with P"NIIMM pQSSe5$&S four major sqments, any of
wbic:h may be omitted; if present. they must occur in the (onowin, order:

• Para~-s.aing- 'This 5eIJl1ent sets the leneni stYle and appearmc:e of a document. The user can
conuol pale width. lIWiin justific:ltioa. cumberinl styles ror hndinp and lists. pale headers and
footers (91. and many other properties of the dcc.m1ef1t. Also, the user an add macros or redetine
existinl ones. This SCIlDent c::m be omitted entirely if one is satisfied with default values: it
pnxiw:es co adUal output. but only performs the seN" ror the rest of the document.

• Beg;ffnifff-This se;c:ent inc:1udes those items tbat occur oaly oo.ee, at the be3innin1 of a doc:ument.
e.a.. title. author's came, date.

• Body-This segment is the ac:tUa.t text of the document. tt may be as smail as a sinlle paragraph. or
as large as hundreds of pqes. It may have a hierarchy of Madinp u" to seven levels de:p (41.
Headi.nis are autoawica.lly cumbered (if desired) and caD be saved to lenerate the table of
contents. five additional levels of subordination are prov;ded by a set of list macros ror automatic
aumberilll. aiphabetic sequenc:ina. and "markin," of lisc items (SI. The body may also contain
various types of displays. tables, fiaures. and (oocnotes (7. 81.

• Ending-This ~t QlnWns those items that occur oa.c:e oDly, at the end of a document.
Induded Ilere are sip.wreb) and lists of aocatioas (e.Io ... <:o1'Y ta·· lisa) (6.121. Ceruia macros
may be invoked bete to print informatica UW is whou,. or partiaUy derived (rom the rest of the
document. such as the table of contents or the Qlver sheet for a doc:umcnc (IO}.

The ai.stence and size of these four SC1JDents varies widel,. amonl cW!'erent document typeS.

Althouah a spec:i,tk item (such as dale, title, author came(s). etc.) maT be printed in several di4'erenc
ways de~ 00. the document type. there is a wUIorm way of typiac it in.

1." Oebidoas

The term fomtaag refers to either of the text-Cormaain& prosrams nroffmd. rroff.

Reqwm are built-in commands recOlllized by the formatters. Although one seldom needs to use these
requestS dU'ectly {3.91. thil document contains references to some of them. Fun details are given in
[9J. For example, the reqw:sc

..$l'

imera a blank line in the ouq,ut.

.\/aaos are c.amed c:aUectioas of requestS. Each macro is an abbrev;atica for a QlUec:aon of requ=u
that would otherrrise require re~titioa. PwlII~ supplies many maaos. and the user em define
additioaai ones. ~os and requestS share the same set of cames and are used in the same way.

SD"l~ prav;de c!w3c:er variables. e2C!l of wbic!l names a suinl of chancters. SlrinIS are often used in
pqe h.eaders. pqe footers. and lists. Th.,. share the pool of cames used by ~ and mtlC1TJs. A
strin. an be ~ven a vatue via the .ds (define string) request. and its vatue can be obtained by
referenCnl its aame. i'rec:ded by u,." (for l-cbancter names) or u,.{" (for 2-character tWnes). For
instance. the st.rinI DTilll'WBlMM normally contaim the current date. so that the illpUlline:

Today is \-(DT.

may result in the foUowina OmpuL'

Today is January 22., 1980.

The current dale can be repiacec:t. e.&-:

.ds DT 01101179

or by invokinl a macro desicned for that purpose {6.7.11.

3

Num.lJn 'tfisten fIJI the role of integer variables. They an: used for fJqs. for arithmetic, and for
automatic aumberin&. A register can !)e Jiven a value usial a .M request, and be referenced by
prccediDa its name by "\n" (for l-cbaracter names) or "\D("' (for 2-c:harac:1er names). For example.
the foUowing sets the value of the reaister d to 1 more than that of the register dd:

.M d 1+ \n(dd

Se: {13.11 regarding naminl convCDtions for requests, macros, strings. and number registers.

1.5 Prereqa.isttes aDd Fartller Read1DI

I.J.I I'ruequisltes. We assume familiarity with U'NIX at the level Jiven in [3} aDd [41. Some familiarity
with the request summary in [9) is belpful.

1.!.1 Furrhtr R~ding. [9] provides detailed descriptions of formatter capabilities, while [5] provides a
senerai overview. Se-e [6] (and possibly [7» for instructions on formatting mathematical expressions.
See tb/{O and U 1] for instructions on fonnattiDg tabular data.

Exacpl=s of rormatted documents and of their respective input, as weD as a quick reference to the
material in this manual are given in (8).

1. INVOKING THE ~CROS

This section tells bow to access I'WBIMM.. shows PW'8IUNIX command lines appropriate for various
output devices. and describes command-tine flags for I'WBIMM. Note that file names. prO&1'UD names,
and typical command sequences apply oaly to I'WBItJNIX~ diJl'ereat DImes and command lines may have
to be used on other systems.

1.1 The DUll CollllDllad

The mm(l) command can be used to print documents usinI nro6md rwBIMM; this command invokes
nro6'with the -mm flag (2.21. It bas options to specify preprocessina by tb/{I) and/or by MIl" (U, md
for postproccssins by various output filters. Any arguments or fJqs that are Dot recognized by mm(l),
e.," .rC3, are passed to nroJ! or to PWBIMM. as appropriate. The options, whicb can occur in my order
but musz appear belore the file names, arc:

-e 1WtI" (1) is to be invoked..
·t tbI (t) is to be invoked.
-c: col(1) is to be invoked.
·E the .. -e" OptioD of nror~ to be invoked..
·12 Deed 12·pitch mode. Be sure that the pitcb switch aD the terminal is set to 12.
·1300 output is to I DASl300 terminal. This is the dtj'aull termiDa1 type (UDless STER.M is

set}.
·1300-12 output is to a DA.Sl300 in 12-pitcb mode.
·13005 output is to a DASDOOS.
-T300S output is to a DASDOOS.
-13005·12 output is to a DASIJOOS in 12-pitch mode.
-T300S-12 output is to a DASDOOS in 12-pitch mode.
·T4014 output is to a Tektronix 4014.
-Thp output is to a HP264x.

4

-T4S0 output is to a OASt4S0.
-T4SQ.12 output is to a OASt4S0 in 12-91= !node.
-TID output is to a G£ TermiNet 300.
·Trn300 output is to a G£ TermiNet 300 •
• Tti ouq,ut is to a Te:xas WtrumeDC 700 series terminal.
-T37 oUqlut is to a TELETYPE- Model 37.
·T4) outlNt is to a~ Model 43.

l.l n. n..c
The f"i1f!IMM PKXa&e: c::m wo be invoked by inc!uclitll the -mm tlq as an arzument to the formatter.
It e:w.ses the file /us/libltmac/tnw:.m to be rad and processed before any other files. Tbis action
deftaes the i'WBlMM macros, sets defa.ult values (or vvious parameters, and initializes the formatter to
be re:K1y to proc:ss the: files of input text.

1.J TT1Iic:a1 CoClUllaacl tIDeS

The prototype command 1ine3 are as foUo~ (with the vvious optioas explained in (2.4) and in (91).

• Text without tables or equations:

!DIll (options) filename •.•
or lU'Oif (optio!151 .!DID filename •• ,
or troif (optio!15i '!DID filename •••

• Tex: with tables:

!DIll .([options) filename •••
or tlti lilename ••• I aro4l' [options) -GUll

or tbl 61ename ••• I troB (optionsi -GUll

• Text with equations:

I2IDI ... [options) tilea.ame •••
or Deqa filename ... I IUOtr [optiO!15) -_
or eqa filename ••• I traB [options) -GUll

• Text with both tables and equations:

IIUII ~ ... [optionsi 61ename •• ,
or tltl filename ••• I Ileqa I DroB [optionsi -cam
or tbl 61ename ••• I eqa I troB [09tioasl -GUll

When formatting a document -..nth tVOjf. the oUqNt should normally be l'roc::ssed for a ~ type of
ten:'l:tin.ai, beclllSe the output may requite some features tha& are Sl)eCific to a liVeD terminal, e.a-,
reverse paper motion or halt·line pa~r motion in both directioas. Some commonly-used termiaal
~ lOd the ct)mmand lines .~ropriate for them are given below. See (2.4) as well as]000),
450(1), hp(l), co/(O, and tmPrtnais(7) for further information.

• OASDOO (QSDOO/OTOOO) in lO-pitch. 6 tines/inch mode mel a line leqth of 65 charaaer!:

cam 61ename .••
0' IUOfI'· noo -h .!JUD tilerwne .••

• OASDOO (GSDOO/OTOOO) in 12-pitch. 6 lines/inch mode and a line leDIlh of 80-r.lmer than
6S~rs:

!DID ·12 filename ...
or IU'OB ·noo-12 ·rW80 -rOJ -h -mm tUename •••

or, equivaiently (and !norc suco:inl;-Jy):

......, -TJOo.U -rn -II -mill filename •••

• OASl4S0 in l~pitdl. 61iDesf'mch mode:

IIIID -T .. 50 ftlenamc: •••
0' III1df -T .. 50 -b -IDDI filename •••

• DASJ4S0 in 12-pitch. 6 lines/inch mode:

IIIID -T .. 50.12 flleZWDI •••
M -T.c5o.U -rW80 -103 -b -!DIll fllezwne •••
M lII'OiI' -T"So.U ern -II -mill lilaname •••

• Hewlett·Paekard HP264x CllT family:

IIIID -Tbp fllename •••
", aroit' -b -mm flleaame ••• I lip

s

• My tenninaJ incapable of reverse paper motioD (GE TenniNet, Texas Instruments 700 series, etc.):

IIIID -Tm filename •••
or aroif -mID filename... I col

• Versatec printer (see "P(t) for additional details):

..., [vp-options) wmm ern -e filename ••• W

", ..., [vp-options] wlII'Oif ern -mm filename... I col-

er course, lb/{·}) and tqn{l)/nlllw(l). if Deeded, must be invoked as shown in the command line
prototypeS at the beginning of this section.

It two-column processiD& (U.41 is used with nroff. either the -e option must be specified to mm(l), or
the lI1O..6'output must be postprocessed by coHn. In the latter cue, the -n7 termiaal type must be
speciAed to lITO§. the -b OptiOD must not be specified. and the output of co/(l) must be processed by
the appropriate termi!W filter (e.g., JOO(l»~ mm{l) with the -c option baDdies aU this automatically.

z... Panmeten that CaD Be Set from tbe CommaDd LJae

NUItIber ~s.n are commonly used within PWBIMM La bold parameter values that coatrol various
ISJICCZS of output style. MaDy or these can be changed within the text files via .Dr requests. In
addition, some of these registers can be set from the commaad line itself. I useful feature for those
parameters that should not be permanently embedded within the input tut itself. It used. these
re;is&ers (with the possible eXCCl'tioD of the register P-see below) must be set CD the command liDe
(or before the PW'8IMM macro definitions are processed) and their meaainp are:

orAl bas the effect of iDvokiD& the .AF macro without an arzument {6.1.2!.

-rBII defines the macros for the cover sheet and the table of contents. It nisi. table-of-contents
proces:sin& is enabled. If If is 2. then cover-sheet Prcc:essiDa will occur. If If is 3. both will occur.
Tlw is. B havina a value greater than 0 tWint!S the .TC (to.l) and/or .CS {lO.2} macros. Note
that to have any effect. these rnac:os must IJso be ,,,vok& .

·rClI "sets the type of copy (e.g.. DRAFT) to be printed It the bouom of each pqe. See {9.S}.
D - 1 for OFFlCIAL FD..E COPY.
n - 2 for DATE FILE COPY.
D - 3 for DRAFT.

-rOl sets ~ mod~. This f1a& requests the formatter to attempt to continue processing even if
PWBIMM detects errors that would otherwise cause termination. It also includes some debugging
information in the default paae header (9.2. 11.31.

-------_. __ .. _- .. _-

-rLk sea the lenlth o(the pbysic::al pqe to Ie lines.l The delault vUU& is 66 lines per pale. This
parameter is used for obwDina 8 liJ:1es.per-im:±l output 011 12-piu:h termi.D.aLs. or wtlen directinl
ou~ut to a Versatec printer.

-rNil speciftes the pqe aumberini stYle. When II is 0 (detauld. all pqes let the (prevaililla) hader
{9.2l. "iII1l=" is 1. the pale beader feIIl¥es the footer 011 pale 1 oaiy. Wbea" is 2. the pace
header is omit~ from pale 1. When" is 3, ··sectioll-9&le" aumberinl {4.5l occurs. Whea" is
4, the rMfauit pqe header is suppressed: bowever a user-specified beader is aot a1fected.

" o
1
1
3
4

Pagwl
beader
beader ~ footer
ao header

P~lff.

··seczioa-p:qe·· as footD'
DO Ileader no I:1eader

lIDless PH de1ined

The contena of the prevailinl header and footer do not d~nd CD at the value 0(the number
~r N; N on.\y conuols whether and wbere the Ileader (and. for N- 3. the footer) is priated.
as wei! as the pa~ aumberina style. In particular, it the beader and footer are aull {9.1. 9.51.
the value of N is irTelevanL

-rOle off sea output Ie spaces to the righL I It is beipful for adjustinl output positioainl on some
terminais. NOTE.: The rqislCr aame is the capital. lener "0". /fOr the digit zero (0).

-rP" ~ that the pales oC the docume:1t are to be aumber:d starti.aa with If. This relis&er may
also be set via a .ar request in the input teX%.

-rSil sea the point size and verUc::al ~ for the d.ocumem. The default" is 10. i.e •• lQ.point type
on 12-point lea.dini (vertica1 spaciac). &iviD& 6 lines per im:h {ll.al. This parameter applies to
rrolfon.\y.

·fT" prov;des ~er settings for certain deV;ces. Ir" is 1. then the line lenp and pqe offset are
Set for output directed ·to a OASDOO or OASI450 ill 12-piu:h, 6 lineslincb mode. i.e.. they are
set to 80 and 3. respec:tively. Set:tinl" to 1 chanaes the pqe lecath to 84 lines per pqe and
inhibia UIlderl.inini; it is meant for output sent to the Versatec printer. The default value for"
is O. nus parameter applies to nroffoaJ..,.

·rUI conuois underlininl of section Ileadinp. This fJq ClUSCS on.\y leum and dilits to be
UIld.erlined. Othmrise. all characten (indudiq spaces) are III1d.e:1ined (4.2.2.4.21. This
parameter ~pties to nroffonJ.y.

·rW/c pa3e width (Le .• line len(th and title lenlth) is set to Ic:.l This can be used to cllanle the ;:laIC
width from the defauit value of 6.5 cb.ar:laers (6.5 inches).

l..5 OmWioa of 'CDIII

If a latie aumber of argumena is required oc the cammand liIle, it ~y be caaveaient to set up the
fim (or oaiy) input me of a document as rouews:

zero or more initializatiollS of registers lbu:d ih {2.4}
.SO lusr/Ub/tmac:ltmac.m
remamder of text

.. , ,

7

In this case, ODe must 1I0r use the -DUD f!q (nor the mm (1) command); the .50 request bas the
equivalent eft'ect., but the resisters ill (2.4) must be initialized ~fo1W the .so request, because their
values are mezinsful oaly if set before the macro definitions are processed. When usma this method..
II is best to "lock" uno the input file only those parameters that are seldom chanaed. For example:

.m W 80

.m' 0 10

.ar N 3

.Dr B 1

..10 lusr/lib/tmKltmac.m

.H 1 -INTRODUcnON-

specifies. for nro§. I line leDlth of 80, a pace OlTsel of 10, .. section-pase" numberia&, aad table of
contents proc=ssin&-

3. FOIMATnNGCON~

3.1 Baie TenDS

The DOnna! action of the formatters is to fill output lines from one or more input lines. The output
lines may be juslt/ied so that both the left and right margins are aligned. A5 the lines are beina filled,
words are hypbenated (3.4) as necessary. It is possible to turn any of these modes on and off (se: .SA
(11.21, Hy (3.41, and the formaner .af and Ji requests [9». Tumina off fill mode also tums off
justification and hypbenation.

Certain formatLIl& c:ornmands (requests and macros) cause the tilling of the current output line to
cease, the line (of whatever length) to be printed, and the subsequent text to begin a new output line.
1bi.s printing of a partially filled output line is mown as a bmlk. A few formatter requests and most of
the PWBIMM macros c:ause a break.

While formalter requests can be used with PWBIMM, one must fuUy UDderstand the consequences and
side-eff'ects that each such request might have. ActUally, there is little need to use formaner requests;
the macros described here showd be USI':d in most cases because:

- it is much easier to control (and cbaD&e at any later point in time) me overall stYle of the document.

- complicated facilities (such as footnotes or tables of contents) can be obtained with ease.

- the user is insuJlled from the peculiarities of the formatter lancua&e.

A load rule is to use formatter requests oaly when absolutely necessary (3.9).

III order to make it easy to revise the input text at a later time, input lines should be kept shan and
sbould be broken at the end of clauses; each new full 2n~nt:1! must begin on a new line.

3.1 Mpmeats aad Doable Qqoces

For my macro can, a IIIIiI tI/'fUI1WnI is m araumem whose width is zero. Such an aqumcnt often has a
special meanin~ the preferred form for a nulllfl11lDeDt is ••• Note th.al omirring an araument is 1101 the
same IS supplyina a ""'I Q1'fIIIJWnr (for example, see the .MY macro in (6.6}). Furthermore, omitted
araumeats c:aa occur onJy at the end of m araumen' list, wbile null arsuments c:aa occur anywbere.

t- -- AD, macro arpmeal containina ordiDary (paddable) spaces must be e:aclosed in double quotes (-).2
Otherwise, it will be treated u several separate arauments.

2. A dDu .. quote (.) is • #IfPt dw'IC:Icr tbal 1111111 IXII be CDafu.ed willi twO apoiSU'Opbcs or lCUIe III:QIftIS C"). or wn.b two
paVilIGZIIII C').

I

Double quotes (-) are /for permiued IS put of the V'!llue 0(a aw:::o qualf;nt or of a mini thal is to be
used as a macro 3J1UDleDL II lOU must, use two &rave accents CO) UJ.dIor two acute accents ("")
imread This n::mic:tion is aecessary beause maay macro arsume.ats are processed (iaterl'reted) a
vuiable aumber of times; (or example, headinCS are 8m printed in the teXl aad may be (re)priated in
-the table of contealS.

3.3 TJllpcldule Spaces

When OUtl'Ul U.aes are justl/i«l to Ii~ an evea rigln mat'lia. exisUaI s-paces ill a U.ae may bave
additioaal Sf*:5 at'l'ended to them. This may bum the desired w~ of tat. To avoid this
problem. it is aec:ssary to be able to ~y a spu:e that c:aanoc be e."C;Jmdeci durinl justification. i.e..
an unptIdtJ4bk sptlC~. There are several ways to ac:omplWl this.

F"~ OI1e may type a bxkslash (oUo~ by a space ("'\ ",. This pair 0(characters directly ienemes
an unptJdJiJzbk sptl&~. Second. one may sacrifice some seldom-used char'Kter to be translated into a
space upon outpuL Because this trmslation occurs after justification, the chosen character may be used
anywhere an unpaddable space is desired. The tilde (-, is o{ta.a used (or this purpose. To use it in this
way. insert the (oilowinl at the ~I of the documenc:

.rr -

It a tilde must aauaUy appear in the ouq,uc. it c:m be temporarily "recovered" by insertiaa:
., .tt-

before the place where it is Deeded. Its ::m:vious usage is r=tored by repeatinl the-".rr _'0. but only
after a break or after the line c:ontai.ai.aa the tilde bas been (on::d OUL Nate ttw the use of the tilde in
this fashion is fIOt recommended for documents in which the tilde is used within equations.

3." HTPbeudaa

The formatters (and. therefore. PWBIMM) wiD automatically byphenate words, it aeed be. However.
the user may speQ!y the bYllhenation points for a speci1ic occurrence of any wont by the use of a
special character Icnowa as a bYllhenatioD indicator, or may sp=cif'y byphenatioa points for a smalllisc of
words (about 128 characters).

II the hyphf!NIllOlf IIfdiClZlOr (initiaily. the two-cbancter sequence "\~">"~ 11 the bqin.aing of a
wont. the ~rd is nor hypbenated. Alternatively. it em be used to indicate IqaI hyphenation poind.!)
inside a wont. In any case. ail oc::urrences 0(the hyphenatiOl1 indicalOr disappear OD outl'uL

The user may ~.fy a different hyphenatioa indicalor:

.HC [hYllheaalion-i.ndic:uarJ

The drI:un:Ulex (..) is often used ror thi.s purpose; this is doae by inseninc the (ollowinl al the
beginning of a doc:ument:

.HC -

Note that any wont coar.a.i.aina hyphens or dashes-wo lcDowa as ,m dashes-will be Iiypnenated
immediately after a hyphen or dash if it is necessary to hyphenate. the wont. n.n if tM ./tJrmIlae
hypiwlfdlHJIf fiIlJl:t1tJIf IS runrftJ off.

Hypbenation an be turned off in the body of the texI by specifyina:

.m' Hy 0

ona at the belinning of the doc:-.unenL For hypbenatioa cancrol ""thin foocnole teXl and u:::ass pqes.
see {8.JJ.

The user may su;!;!ly. via the .hw request. a smail list at wards with the proper hYllhenatioD potnts
im1ic:::a1ed. For exam;!le. to indicate the proper Ilyphenatioa of the word ·'printout." one may stJeCify:

.hw print-out

3.! Talis

9

The macros .MT [6.61 •• Te {to.I}, and .CS {lO.2} use the formatter .ta request to set tab stops, and
then rCSlore the d4/aul1 values' of ~b settings. Thus, seniD& ~bs LO other than the default values is the
user's responsibility.

Note that a tab character is always interpreted with respect to its position on the inpul liM, rather than
iu positiOll on the outpUt line. In~, tab c:haracters should appear only on lines processed in
uno-M" mode (3.1l.
Also DOte that tb/(l) (7.J) changes tab SlOps, but does not restore the deCault tab seuin&s.

3.6 Special Use of tbe BEL Character

The non-printin& character BEl. is used as a delimiter in many macros where it is necessary to compute
the width oC an argument or to delimit arbitrary text. e.g., in headers and footers {9J. beadings (41. and

. list maries {SI. Users who include BEl. cbaraders in their input. text (e:specia1.Iy in arguments to
m.aaos) will receive rn.a.n&Jed output.

3.1 Ballets

A bullet (.) is often obtained on a typewriter terminal by using an "0" overstrUCk by a u+ n. For
compatibility with rrojf. a bullet string is provided by I'WBIMM. Rather than o~king, use the
sequence:

\-mU
wberever a bullet is desired. Note that the bullet list (.BL) macrQS {S.J.3.2} usc this string to
automatically &enerate the buDets for the lisI items. .

3.1 Dulles. MiDas Sips, od HTPbeu

TlOlbas distinct ~bic:s for • dash, a minus sisn, and a hyphen. while nroff does noL Those wilo
intend to use nroffonly may use the minus siBIl (u.") for aU three.

Those who wish m:ainJy to use voffsbould follow the esc:ape conventions of (91.

Those wbo WUlt to use both formatters must take care during text preparation. Unfortunately. these
ch.uacters cannot be represented iD a way that is both compatible and convenient. We suuest the
follow1na approach;

DIsh Type \-(EM for each text dash for both nroffand rro§. This string generates an em dash
(-) in ITOI and &enerates U_" in nro§. Note that the dash list (.DL) macros {S.3.3.3}
automatically ienerate the em dasbes for the list items.

Hyphen Type .. • .. and use as is for both formatters. Nroffwill print it as is. and rroffwill print a true
hypb~

Minus Type u,." for a true minus sign, reprdless of formatter. NroffwiU dfer:tively ignore the u, .. , while ITOffwill print a true minus sign. .

3.' Trademark StriDI

A trademark string \e(Tm is now available with PWBIMM. This places the letters ··TM" one·haJ! line
abcwe the text that it follows.

---~~.-- ~---

10

For~le:

The PWB/UMX\ -(Tm C.ser's Manual is available" from the librvy.

yields:
The PWBlUNIXt'W User's Maaual is avUlable from the library.

l.10 U. 01 Ferman.f Requests

Most formauer requestS [91 should IfGt be used with I'W1IIMM becaU3e I'W1IIMM provides die
co~nc1in1 fonr..attial funC"Jons in a much more u.ser-oriented and SUllJri$e-(ree fashion than do the
basic formatter request! {J.ll. However. some formatter requesa an useful with I'W9IMM. aame1r.

.af .br .ce .de .ds .Ii .n .Is .m .ar

.ax .m .rr .rs . .so .,sp .1& .ti .d .a-
The .cP. .11. and .ss requests are al.so sometimes useful for rro//. U.se of oCher requests without fully
undema.r:ldinl their implicatioas very often leads to disaster.

4. P.u..-\GltAl'HS .-\.~O HI.A.DINGS

This section descibes simple p3n3I'4Pbs and section headings. AdditiorW para3I'4ph and list styles are
c:oveml in {51.

4.1 Puacnpbs

.P [type}
one or lIlore lines of text.

This macro is used to be1in two kinds oC paragraphs. la a l~lt-justJ/ied parqrapb., the ftm line belias al
the left m.argi.a. while in an lIuuntH paragraph. it is indented five spaces (see below).

A document possesses a d~/aull paragraph sryw obtained by $1'eCifyUtl ••• P·· before each para~b that
d~ not foUow a he:ldi.al \4.21. The default style is contrOlled by the register Pt. The iDitial value of
Pt is O. which always provides left·justified para;raphs. All paracrapbs em be forced to be indentec1 by
ill.serunl the foUowinl at the be3imUn& oC the documenc:

".M Pt 1

All pan;rapbs will be indented eXCC1't after beadings. lists. and displays if the foUo~

.M Pt 2

is insened at the ~nl oC the documenL

The amount a ;laragraph is indented is contained in the !'eIister PI. whose default value is S. To indent
~hs by t say. 10 spac=s. insert:

.M Pi 10

at the ~ of the doc:umenL or course. bach the Pi and Pt resiSter values mUSt be steaW' than
zero for any ~bs to be indented.

The number re~ter Ps controls the amount of ~, between paragraphs. By default. Ps is set to 1.
yie!dini one blanX space (liz a vertical space) .

.",. Vaiua that sp«:fI i~nlQtl01f musz I» unsc:ded and an! ~_ <U "drtzra.t:te poSIliolU. •• i.e.. <u a

1fJJ.miJg 0/ em. In tro6. an en 13 tJw trZIItfiJer 0/ pollia (J pallfl - 1172 0/ all ,neJr) «(fIlII (0 half (M
~I palm stU. In llto6. an en IS equal co (he wldrJr 0/ a chtzrrzt:rD'.

R~e:u of the value of P-.. an jndiVlduai pan~l'b can be forced to be leit-justiiied or indented...
··.P 0" alwaY' forces left justidclliOI£ ' •• !' It. iiways causes indentation by the amount specified by the
~l'f.

It .P oc:urs inside a lis:. the indent (if any) of the pangrapb is added to the curreatlist indent (S).

~ Nllmbereli HeadID:s

.H level [beadiDa-tut]
zero or more lines of text

11

!be .H macro provides seven levels of numbered headings, as illustrated by this document. Level 1 is
tbe most major or bieb~ leve! 7 the lowest.

,.,. ~ is 1tIJ nftd jOr 4 .P macro aft~ a .R (or .HU (4 . .3)}. b«D~ tN .H mat:IO 4i.so prdomrs 1M
j&w:r1O" o/IM .P mIJCrO. In ftJCt, if a .P /ollows a .H. tM .P is ignomi. (4.2.2.2).

4.1.1 NomrtlJ AfJPftUGla. The normal appearance of hcadinp is as shown in this document. The
etrecr o(.H varies a.ccordina to the nl argument. F"trst-Ievel hcadinp are ~tied by two blank lines
(one venic:af space); all others are pr«tdsl by one blank line (~ a vertical space) •

• H 1 heading-text pves an underlined (bold) hcadina jOllowt!d by a single blank line (~ a vertical
space). The foUowin& text begins on a new line and is indented according to the
current parasraph type. Full capital letters· should norma1ly be used to make the

.H 2 head.ina-text

.H /I heading-text

i1eadina stand OUL .

yields aD underlined (bold) heading fonowed by a single blank line (~ a venical
space). The (oUowing text begins on a new line and is indented according to the
current paragrapb type. Normally. initial capitals are used.

for .3 < n ~ 7. produces an underlined (italic:) heading fonowed by two $l)aC:S:
The following text appears on the same line. i.e •• these are run-in beadings.

Appropriate numbering and spacing (horizontal and vertical) oa:ur even if the hcadinl text is omined
from a .H macro c:a1l.

Here are the tim few .H calls of {4}:

.R 1 "PARAGRAPHS AND HEADINGS'"

.H 2 "Parqrapbs-

.H 2 ~umbered Head.in;s"

.H .3 ~ormal Appearance.-

.H .3 -A1terina Appearance of Headings.­

.H 4 "Pre·Spacing and P3le E,j~.ion.­

.H 4 -Spacing After Headings.·

.H 4 ~tered Headinp.-

.H 4 -SOld. Italic. and Underlined Headings.­

.H 5 -Canuol by Level.-

4.2.2 AlJlrirrg APPftUan~ o[HetUiings. Users satisfied with the default appearance of headinp may Skip
to (4 . .3). One can modify the appearance of beadings quite easily by setting cenain resisters and strings
It the be&innin& of the document. This permits quick alteration of a doc:ument's style. because this
style-conuol information is conc::nuated in a few lines. rather than beinI distributed throughout the
doaunenL .

4.1.1.1 p,.,.Spadng and P~ FJ«rion. A first-level headin& norma1ly has two blank lines (one vertical
space) precedina it. and all otbm have ODe blank line (~ a vertical space). It a muJti·line headina
were to be split across pales. it is automatically moved to the top of the next ,age. Every first-level
heading may be forced to the top of a new PIle by inserting:

.m' :,; 1

It tbe beg:innina of the dcc:ument. Long documents may be made more manageable if each section
SWU OD a new page. Settinl Ej to a bieber value causes the same etrect for beadings up to that level.
i.e •• a PIle eject occurs if the heading level is less than or equal to Ej.

12

4.1.1.l SptlClnr AjUr Headings. Three relisten control the appearance of text immediately (oUowinl a
.H C3l1. They are Hb (headinl bre:a.lc level). Hs (headin, space level), aad Hi (post-badinl indent>.

If the headinl level is I~ than or equal to Hb, a break (3.1) OCCW'S after the hadin.. If the headinl
level is less thaD or equal to Hs, a blank liDe ('II a vertical space) is iDsened after the beadiDa. Defaults
for Hb and Hs are 2. II a headin, level is pater than Hb and We pacer thaD Hs. then the badinl
(if any) is run into the followm, text. These rqistet'3 permit l1e:adings to be se;araled from the text in
a COasisteal way WOUchOUl a document. wbile allowina easy alterUion of white S1'&ce and head.inl
~basis.

For any S14nd-alone h=di.al. i.e.. a hudinl aoc run into the (oUowinl text, the aliamneftc of the aext
line of ou~uc is COIltrolled by the ~ter Hi. II Hi is O. text is le{t-jus&ified. II Hi is 1 (the d.lauil
value), the text is indented a.ccordinl to the parqrapb type as specified by the relister Pt (4.1). F"uWly.
it Hi is 2. text is indented to line up with. the lim word 0{ the headina itseif. so thac the headinl
aumber stands out more clearly.

For example. to cause a blank line (YJ a vertical spa&:e) to ~ after the lim three heading levels. to
have ao run-in headings, and to (orce the text followin, all !leadings to be left-justified (reprdless of
the value of Pt), the foUowinl should appear at the top of the document:

.ar lis 3

.ar Hb 7

.m' Hi 0

4.1.1.J QntemJ Heading$. The register He c:m be used to obtain Cet1lena headings. A !ladin, is
c:atered if it! level is less than or equal to He, and if it is also stand-alone (4.2.2.2). Ht: is 0 initially
(no centemi headings).

4.1.2.4 Bold. Italic. and Underlined Headings.

4.2.1.4.1 Conl11ll by LlVeL Any hadinl that is underlined by "",ffis made bold or iraJic by trrJif. The
string HF (hadin, fonu contains seven codes that specify the fanes for hadin, levels 1-7. The lqat
ccc:1es. ~eir interpretations. and the defaults for HF are:

Fomfdrt8 I HFC. IAlauil
I 1 j HF

aroal' I no underline underline undertine 3322222
troal' roman italic bold 3322222

Thus. all leveis are underlined in rrroff, in trrJ1!. levels 1 and 2 are bold.. level! 3 tbroulb 7 are italic:.
The user may re!et HF as desired. Any value omitted from the nlbt end of the lis, is takea to be 1.
For example. the foUowin, would result in five underlined (bold) levels and two Iloa-underlined
(roman) levels:

.ds HF 3 3 3 3 3

4.2.1. 4.2 Nroff Uttderliruffg SlYie. Nroff c:m underline in twa ways. The normal stYle (.ut ~uest) is to
underline oaly lettet'3 and dilia. The continuous style (.c:u request) underlines all characters. inciudinl
~ By default. PW"EIIMM attempt! to use the continuous stYle· 011 any hadin, that is to be
underlined and is short enough to fil oa a sin3le line. II. hadin, is to be underlined. but is teo 10121.
it is underlined the normal way (i.e.. only leCleTS and dilit! are underlined).

All underlininl of he:ldinp can be forced to the 11arm.a1 "y by usiDl the -rUl flaI when invokinl rrroff
{2.41.

4.2.2JJ Htadinr POIfII Si:u. The ~r may aJ50 specify the desi.r=d point m: for each Ileadinl levet
with the HP strinI (for use with rrogonly) .

. ds liP [psll [psll [P53) (ps4J [psS) (ps6) [ps1J

13

Br del'ault. the text of headiaas (.H aDd .HU) is printed in the same poilu size IS the body exrqr that
bold swxl-aJoae headiDp are printed m • size one point 1IIDIl1er than the body. The striDl lIP. similar
10 lbe sum, HF. can be specified to contain up to sevell values, correspondinl 10 the seven levels of
hadblp. For example:

.ds HP 12 12 11 10 10 10 10

specifies that the Irst and second lewl headinp are 10 be priDted in 12-point type, with the remainder
printed in I().poiDL Note that the specified values may also be reJatiw point-size chaDles, e.a.:

~ HP + 2 + 2 -I -I

It absolute point sizes are specified. then those sizes will be used reprdless of the point size of the
body 0(the doc:umenL It reiative point sizes are specified.. theD the point sizes for the hadiDp will be
relaQve to the point size of the body, eYeD if the laner is chaDged.

Omitted or zero values imply tIw the _fault poim size will be used for the correspondiDI beading
level.

rr 0,,1y rhI poilll sb% of tilt Mading: is 4If«taJ. Stl«igirrg Q lturt point _ withaut providing incrftued
Nrlictll sptldng "~iG .HX and/or .HZJ mtIY ~ oWl'pt'ilUing.

4.1.2.S Mtltking Sryla-Nu",.,au Gnd Co"t:tUelltlrion.

.~ [arsl] ••• (ars7)

The registers named HI through H7 are used as counterS for the seven levels of headiDp. Their
values are normally printed usia, Arabic Dumerals. The.HM maao (hadinl marJc style) allows this
cboic:: to be overridden. thus providiD& "outline" and other documeDt styles. This macro can bave up
to seVeD arluments; each araumeDI is a miDI indicatin& the type of mar1ciD1 to be used. LepI values
and their meaniDp are shown belOW; omined values are interpreted IS I, wbile iUepI values have DO
e8'ecL

1 Alabic (default for all levels) .
0001 Arabic with enough leadinl zeroes to let

the speciJied Dumber of eliaits
A Upper-c:ase aJpbabeUc
I Lower-c:ase alphabetic
I Upper-case R.DmID

Lower-case R.oman

By default. the complete headiq mark for a liVeD level is built by CODcateDltin& the mark for thai level
to the right of all marts for all levels or higher value. To inhibit the concatenation of be.ldinl level
maries. i.e., to obtain just the cwmn level mark followed by a period. set the resister HI (heading-mark
type) 10 1.

For example, I commoaly-used "oudiDe" style is obtained by:

.HMIAlai

.Dr Ht 1

.u tIDD HeMID&s

.HU headiD&-texl

.HU is I special case oC .R: it is bandJed in the same way u .H. excepc thai DO headiDl mark is printed.
In order 10 presero.re the hierarcbical suuc:tUre or beadi.DIS when .H and .HU calls are intermixed. eacb
.Ht1 headiDl is coasidered 10 exist at the level liven by register Hu. wbose initial value is 2. Thus, in
tbe DOrma! case, me on.Iy dift'erenc:: between:

14

.HU beading-text

aad

.R 1 beadini-teXt
is the printiJ:ll of the headinl aw1c ror the laaer. Bom have the e1!'ect of iDcrementina the numberinl
caUDle' for leYei ~ and re!ettiDl to zero the CDUDlerS for levels 3 throulh 7. Typic:aJly. the value of
Hu should be set to make lUU1umbered he:ldinp (It any) be the Iowest-Ieve! he:zdin1S in a document.

.HU C3D be especWly helpful in settiDl Ul' Appmdices and other sectioas that may not at weU iDto the
numberinl sc:beme oC the maiD body of a dOcument {13~1J.

4.4 HndiDlS aad the Tabl. 01 C4ateDts

The text of headings and their carrespondinl pqe numben caa be automaticaily cailected for a table of
co11tentS. This i.s accomplished by doing the fOUowinl three thinp:

• speciCyinl in the register a wbat level heac:liD;s are to be saved;
• involcinl the • TC m.aao (I 0.1) at the end of the doc:ument;
• and !'peCifying ·rBn {2AI 011 the command line.

AtJy he:adinl whose level is less thaD or equal to the value oC the t"e1ister a (contents level) is saved
and later disptayed in the table of contents. The deCault value for Cl is ~ i.e.. the tlrst two leveis of
headinlS are saved.

Due to the way the he3diciS are saved. it is possible to exceed the formatter's stor.qe capacity.
parUc:Watly when savini cnaay levels of many he:u:linp. while also processing disl:Ilays (7) and footnotes
{SI. It this t:appea.s. the "Out o{ te= lUe space" dial%1osUC {Appendix El will be issued; the oaly
remedy is to save fewer leveis and/or to have fewer words in the heading text.

40$ F1nt-Lc"e! Hudl.q:s aDd fU p. NUlDberiq SITte

By default. pales are numbered sequentially at the top of the PIlle. For IlI'Ie documena. it may be
c:1esinble to use pale numberil!1 of the form "section-PII~ t. where S«tlQ" is the number oC the
current am-level aeadi.nl- This pase numberial style can be achieved by sped{yina the flq -rN3 on
the command line {9.91. As a side e1!'ect. this also has the efl'ect oC settin& Ej to I, i.e., ead1 section
bqins 00 a new pqe. In this style, the paae number i.s printed at the bormm of the paP. so that the
correa section number is printed.

~, User bit ~ •

,.. 17ris S«rio" U i".ndMJ o,,1y jiJr ILWIS who an at:ClSZOtrWd lU writmg formtJlf6 macros.

.EX dleve! neve! he:u1in3-text

.HZ dlevei nevel lle:lding-text

The .HX and .HZ tnaC'OS are the a::e:ms by wbic:h the user obtains a flaaJ level of cootrol over the
pre";ously~bed heading mecllanism. PwlItMM doe$ not define .HX and .HZ:. they are intended to
be defined by the user. The.H macro invokes .HX shortly before the acnW beadina text is printed:. it
ails .HZ a3 its last ~on. All the default actioDS occur it these maaas are not defined. If the .HX or
.HZ (or both) are deiined by the user. the user-sup,:llied definition i.s inter;reted al the appropriate
poiaL These macros can therefore iniluence the I:Iandllnl of all heacHn", because the .HU macro is
-=nWly a .spccW case of the .H macro.

If the user originally invoked the .H macro, then the derived level (dkwl) mel the te:I.l level (r/lw/)
are both equal to the level given in the .H iDvoca1ion. It the user orilinaUy invoked the .HU mac:o
(4.31. dMwi is equal to the coatents of r~ Hu. and rllMi is 0_ In both c:ase:s. 1wtuJirrg-1D:l is the text
of the origiaai invocation.

By the time .H ca1ls .fIX. it h2S aire:uiy incremented tile ae.adinl c:ounlef of the specified level
{4.ll5}. ;n'Oduced blank liae(s) (vertic::1i spac:) to prec..-de the headinlI4.2.l.l}, and accumulated the

IS

"headiD& mark", Le .• the Strina 0(diaits. letters, and periods Deeded for a numbered headin&. When
.HX is called. all user·accessible rcliStCn and strings can be referenced. as MU IS the followin&:

suin& }o II rnl is non-zero. this string contains the "heading mark. It Two unpaddable spaus
(to separate the If'IIZrJc from the ~dlng) have been appended to this suin&. If rlewl is
0, this suinl i.s null.

reaister :0 This register indicates the type of spacing that is to foUow the heading (<4~2.2). A
YlJue of 0 means that the headinl is run-in. A value of 1 means a break (but no blank
line) is to foUow the beactins. A value of 2 means that a blank line (Y.z .. vertical
spICe) is to foUow the headin&-

Mill)2 If rqi.ster ;0 is 0, this suing contains two unpaddable spICeS that will be used to
separ3te the (run-in) Mading from the foUowinl rm. II resister :0 is non-zero, this
saini is null.

re;i.ster :3 This reaister contains an adjustment fac:tor for •• ne request issued before the heading
is actually printed. On entry to .HX. it has the value J if dJr,c/ equals 1. and 1
otherwise. The .ne request is for the foUowin& number or lines: the contents of the
rqi.ster ;0 taken as blank lines (halves of vertical space) plus the contents of reliSler ;3
IS blank lines (halves of vertical space) plus the number of lines or the heading.

,The user may alter the values of)0. 12. and ;J within .HX IS desired. The foUowing are examples of
actions that might be l)Cnonned by defining .HX to include the lines shown:

Change first·level beadinl mark from format n. to n.0:
.if \\51-1 .ds }O \\n(H1.0\O\O (c stands for a spac:)

Separate run-in beadina from the text with a period and two unpaddable spaces:
.if \\n(;o- 0 .ds)2 .'(:J '(:J

A5sUre that at least 15 lines are left on the page before printina I fim-leve1 hadins:
.if \\51-1 .Dr ;3 15-\\11(;0

Add 3 additional blank lines before each 8m·level beadinc:
.if \\51- 1 .sp 3

II temporary string or macro names are used within .HX. care must be taken in the choice of their
names /13.1) .

• HZ is called at the end of .H to permit user-eontrolled actions after the head.in& is produced. For
example, in a large document, sections may correspond to chapters of a book, and the user may want to
reset counters for footnotes, filW'CS, tables, etc. Another use might be to change a PIge header or
rooter .. For example:

.de HZ

.if \\SI- 1 \(.Dr :p 0 \- footnotes
Dr F, 0 \- fiaures
Dr Tb 0 \. tables
Dr Ec 0 \ - equations
PF ···Section \\$J.'~

4.7 HlDu ror Larp Doc:ameau

A large document is often oflanized for convenience into one file per section. II the files are
numbered., it is wise to use enough dilits in the names of these files for the maximum number of
sections. i.e., use su1b numbers 01 throulb 20 rather than 1 through 9 aDd 10 through 20.

Users often want to format individual sections of 10111 documents. To do this with the correct section
numbers. it is necessary to set rqisICr HI to 1 less than the number of the section just ~for~ the

16

co~adU1c ··.H I" CIJL Far example, 11 the be1imUn, o(.section 5, iDsetc

.m' HI 4

,.,. T1ra is a dturpl'Out prtJ/.:DI% it d6/etlt3 tM autcJm4lic (n)lfWrIbe;ng 01 S«ZioIlJ wh.n s«tiOIlJ an addlld
or dIllGtd. R~mtJ'N sudr /ina til soon = JIUSlble.

5. LlS1'S

This seaioa describes man,. different icineSs oC listS: automatic:aUy-aumbered anel aJl'babedzed lists.
bullet lisu. d.as.I1 lists. lists with arbitrarY marla. and lists starlin, with arbicrary mings. e.". with terms
or pbnse:s to be defined..

!.1 Basic Approach

In order to avoid repetitive typlaS of UlumeDt5 to describe the appearance oC items in a list: JlWB/M.\i
provides a convenient way to specify llsts. All lists are composed o(the (aUowin, partS:

• A lisI-",itiaJizarion a:w::o that controls the appearance oC the lise tine s~ indentation. markin,
with special symbols. and numbetinl or alpbabetizin ..

• One or more List 1t4", (.LD ~ e::ICb followed by the actual text or the correspondinllist item.

• The L~ End (.LE) aw:ro UW termi.aales the list and restores the plTlious indeDtation.

Lists may be llested up to five levels. The list-initialization macro saves the previous Us StatUS

(indentation. marlci.al stYle. etc.); the .LE mac'O restOres iL

With this approach. the format or a list is specified oaly oace at the bqinning or that list. In addition.
by buildinl OD the exislinl SUUClUte. users may a=ate their own c:t.ISlOmized sets of Us alIC'OS with
relatively liaie effort (S.ol, Appendix A. Appendix SI.
5.2 Sam"Je Nested Usts

The input for severa.! lists and the corrapondinl output are shown below. The.AL and .Dt macro
c:alls (5'.3.31 coatained therein are examples o(the lisr·ilUllaU:tltlOn macros. This example willl1elp us to
explain the materiaJ in the faUawinl sections. Input text:

)

.Al. A

.U
This is an alphabetized item.
This text sbows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dOS'S blck.
".AI.
.u
'This is a numbered item.
This text shoVPS the alicnment of the second line of the item.
The quick brown fox jumped over the lazy dol's back.
.DL
.U
This is • dash item.
This text shows the alignment of the second line of the item.
The quiclc brown fox jumped over the 1azy doa's back.
.U + 1
This is • dasb item with a "plus" IS prefix.
This text sbows the alignment of the second line of the item.
The quick brown fox jumped over the lazy doa's blck.
.LE
.Ll
This is numbered item 2 •
• LE
.Ll
This is another aiphabetized item. B.
This text" sbows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dOS'S blCk.
.LE
.P
This paragrapb appears at the left margin.

Output:

17

A. This is an alphabetized item. This text shows the alignment of the second line of the item. The
quia brown fox jumped over the lazy doa's back.

1. This is • numbered item. This text shows the alignment of the secoad line of the item.
The quick brown fox jumped over the lazy dOS'S back.

- This is a dash item. This text sbows the alignment of the second line of the item. The
quick brown fox jumped over the lazy dos's back.

+ - This is • dash item with a "plus" u prefix. This text shows the alignment of the second
line of the item. The quick brown fox jumped over the lazy dOS'S back.

2. This is Dumbered item 2.

a This is another alphabetized item. B. This text shows the aliC!iment of the second line 0(the
item. The quick brown fox jumped over the lazy dog's bKk.

This pal2lraph appears at the left DWJiD. •
5.3 Basle List Macros

Because all lists share the same overall strUcture except for the list-initialization macro. we first discuss
the mac:ros common to all lists. Eacb list-initialization macro is covered in (S.3.3).

11

S.J.l L;sr I~m.

.u [mark) [II
oae or more lines of text that make I!l' the list item.

\.

The .Ll aw::ro i! used with aU lists. It aorma1ly causes the outpal at a siDIie blaak Line (~ a vertic::d
space) before its item. althoulh this may be su~ It ao arcumeats are liva. it labels ilS item
wilb the <:IInW1ft ntIUlc, wbich is ~ed by the mas receae lisI-iDilia1iz:acioa macro. It a siDI1e
alIument is liveD to .U. tbat aqumeal is outpUt i1U2rJJl 0/ the current mart. If' twa aqumenlS are
riven. the am ugumenl becomes a ~ to the currenl marie., thus aUowiDl the ~ to ezDl'hasize ODe
or more items in a Us. One W1paddable space is imerted between the preB.:c and the awZ.. For
~x~te:

.BL 6

.U
This is • simple bullet item.
.U+
This replaa:s the bullet with a "plus:"
.U + xxx
Bat this uses "plus" as ~ to the ballet.
.LE

yields:

• 'Ibis is a simple bWlec item.

.;. 'Ibis replaas the buDel with a "plus."

-I- • But this uses "plus" as prefix to the buJJet.

,.,. 17w marie II'fU# not ",nmin ordJntUY ({JIIIidIlbIV SptIcts, b«tz1lSl aJi",lfWlIt 0/ ir.ms WIllI» lost if the right
mtUfI1I is~{3.31.

It the ~nt mtUIc (iD the ~1ft list) is a nuD saini. and the 8m arsumenl or .U is omilled or auO.
the resulliDl effect is that or. hiliif'. i_1II. i.e.. the /irs, line of the (onowtna text is "oatdeat,ed."
SWtiJ:II u the same place where the ntIUlc wowd bave started (5.3.3.61.

1.J.i List End.

.LE (11

Ust End re:srores the swe ot the list back to Uw existi:a& just belore the IDOSI rec.a1t list-iaitiaLizadOD
ID3C'O call. It the optional IlIUmen, is liven. the .LE OUIpUIS • blank line (~ a vertiCIl 51*0). This
optioa silowd generally be used oaly when the .LE is (oUowed by nmninl text. but aot -he:J followed
by a :mao t!w pn:x1uces blank lines of itS owa. such as .P, .Ii. or .ll

.R and .HU automatic:aUy dear all list informatioa. sa oae may lepJIy omit the .LE(s) that wowd
aormaUy oa:ur just before either of these macros. Sueb I pracUce is IfIJt recommeaded; bowever.
because mo" will oa:ur if the list ten is separated from the badiDs u some laler time (e,I-. by
imertiou o{ text),

1.J.J List InmaJi:atlOn Macros. The foUowinl are the vvious list-iairializa&ion macros. They are
-actually ~lemented as calls to the mare basic .La macro (5.4).

S.J.J.l AUIOmtlDea/ly-NIIIffbttftd or Alphtzbft=d Lists.

.AL [type I [text-indent! [1J

The .AL macro is used to bqi:a sequentially-aumbered or alphabetized lisa. If there are 00 arauments.
the list is aumben:d. .md text is iadenled Li (initially 5)· spac::s frem the indent in force wben the .AI..

19

is c:allcc1, thus l'eavina room for two digits. a period. and two spac:s before the text.

Spacinl at the beginning of the list and between the items can be suppressed by seuina the Ls (list
space) rqistcr. Ls is set to the innermost list level for which spacin& is done. For example:

.m' Ls 0

specifies that no spacins will oa:ur around fl1fY list items. The default value for Ls is 6 (wbich is the
mtl%i1fW1If list nestin, level).

The ~ araument may be given to obtain a ciift'erent type of sequencin;. and its value should indicate
the first element in the sequence desired. i.e •• it must be 1. A. &. I. Dr i {4.l.2.S).S If type is omiaed or
null. then "1" is assumed.. If lI!XI-;nd~nt is non-null. it is used as the number of spaca from the
current indent to the text. i.e •• it is used instead oC 1.1 for this list only. If laZ-;"."t is nuD. then the
value of Li will be used.

If the third argument is given. a blank line (~ a vertical spac:) wilJ not separate tbe items in the list. A
blank line (~ a vertical space) will oc:aar before the first item. however.

$.].].2 BulJ~r l.JSl.

.BL [text-indent] (1]

.BL begins a bullet list. in which each item is marked by a bullet (.) foUawed by one space. If rext­
in."t is non-null. it overrides the default indentation-the amount of paragraph indentation as given in
the rezister Pi {4.l1.'

If a ~nd argument is speC::Jiecf. :10 blank lines will separate the items in the list.

S.]~].] Dash LISl.

.DL hext-ind:ntl OJ
eDL is identical to .BL. except that a dash is used instead of a bulJeL

S.].]." Ma,kU Lis:.

.ML mark hext-indent} UJ
.ML is much like .BL and .DL. but expec".5 the user to specify an arbitrary mark. which may consist of
more than a smele character. Text is indented ID:t-I"d~nr spaces it the second araument is not null~
otherwise.. the text is indented one more space thaD the width of m4,k. If the thircf. qument is
specified. no blank lines will separate the items in the list.

",. TM mark IffUSI 110' c:onll2i" ordinary (paddDb~) sptlc~s. b«a~ a/ig1r",.nt O/;WfU win ,. lost if rh~ ,,,hr
trJdrrlll ~ jusli/i«J {J .3l.

S.].].S R~/er~1If2 List.

.RL [text-indent} [1]

A .RL call begins an automatically-numbered lisI in wbich the number! are enclosed by square bracketS
([]). Text-;IIMnt may be supplied. u for .At. If omined or nuD. it is assumed to be 6, a convenient
value far lists numbered up to 99. If the secand qument is specified. no blanJc lines will separate the
items in the list. The list oC references {14} was produced usin& the .n macro.

4. Values USa, SlICCil'y lIXIezUIUoo must be IIIrKlIi«I ucS are trealed IS "dW'II:ler poaIIOAS." i.e.. IS tbe DlIIDber or "lIS.
S. Mace USa, tbe "0001" romw illIOt pemultld.
6. So dIaL, G UII delault c:ae. tbe Ia1 at tNBet UId dash Iisu !iDes liP Willi UIe b liDe or iDdenled puqrapfts.

20

•
S.,J.,J.6 Yariab~-lum l.J.SL

. vt text-indent (mark-indent! [U

'When a list ~ with a • vt. there i.s etrectively no C'.Jn'tnt fl'fIZTIc: it i.s expected that each .LI will
provide itS own mark. This rorm i.s typia.i.ly used to display definitions of terms or phrases. Marlc­,.fI' gives the cumber of ~ Crom the current indent to the Oqinninl of the mtUlc. and it defaults
to 0 if omitted or cull. Tat-",d~nt gives the distance Crom the current indent to the bqinninl of the
text. If the third UIUClent i.s ~ed. 110 bl.an1c lines will separate the items in the list. Here i.s an
example of • vt usage:

.tt -

.vt 20 2

.LI mark-1
Here i.s a description of marie 1;
"marx r' of the .U line coatains a tilde tramlated to an un-paddable space in order
to avoid extr:1 S"paces between
"marie" and ''1'' !3.31 .
. U second-mark
This is the ~od mark. also IlSin3 a tilde translated. to an unpaddable space •
. LI thlrtnnark 10r:tger -tbaa -indent:
This item shows the effect of a 1001 marie; one space se~antes the marie
rrom the text.
.U -
This item enec!ively has :10 mark beause the
tilde C01l0wU13 the .U i.s translated UltO a spa~_
.U

yields:

marx 1

secoad marie

Here i.s il descriptioo of marie l~ "mark 1" of the .U line ~oatai.as a tilde
translated to an unpaddable S"pace in order to avoid eXU'a S1'ue5 between "marie"
and "I" !3.31.

This i.s the seamd marx. also usia, il tilde tran:slated to an unpaddable space.

third mark longer than indent: 1'hi3 item shows the etrect of a 1001 mar~ oDe space 5el'Ulltcs the
marie from the ten.

This item effectively Il.a.s no mark becluse the tilde roUowina the .U i.s translated
into a spao:.

The tilde ~ment on the last .U above i.s required: otherwise a htz"rrng inMnt would have been
produced.. A ha1'l!!lnJ'tUil!nt is produced by usinl . VI. and calling .U with 110 iU'I\lClents or with a null
tir3t argument. For e:umple:

.VI. 10

.U
H.:re is some text to snow a haniins indent.
The first line of text i~ at the left rnar;in..
The second is indented 10 spaas •
. LE

YIelds:

Here i.s some tex: :0 show a hanging i.cdent. The Brst line of text i.s at the left margin. The second is
indented 1 0 !pa~ •

.,. rn~:n2rlc MUSt trOt contain ordinary (ptUidtJiJ~) spat:n. b«aUS* aiignntlnl 0/ i~nu .,."n ~ lost rf {he r~hl
maT'f11f ~ Juscrfied (J.J I.

21

5." Llsa-Becia Macro u4 Cilstomized Lists •

• LB text-indent mark-indeDt pad type [r.:wk) [LJ-space] [LB-space]

The list-initialization macros described above suffice for almost all cases. However. if Decessary. one
may obtaiD more coDtrol over the layout of lists by usin& the basic list-begin macro .LB. wbich is also
used by all the otber list-iDitialization macros (Appendix AI. Its U'JUments are IS follows:

Tm-tn_nt lives the aumber of spaces that the text is to be indented from the current indent.
Normally, this value is taken from the re&isler Li for automatic lists and from the rqisler Pi for bullet
aad dash lists.

The combinatioD of mQrk-jnMm and JXld determines the pJac::ment of the mark. The mark is piKed
within aa area (called mQrk area) that swu nuuk-inMnt spaces to the ri&ht of the cumnt indeDt, and
ends wbere the leXl begiDs (i.e.. ends laM_nt spaces to the riabt o(tbe current indent>. '7 Within the
IZW'k area, the mark is ~ft-ju.slt/iU if ptld is O. It ptld is &realer tban O. say II. then " blanks are
appended to the marie; tbe nuuk-iruJ.nt value is ilDored. lbe resuitina miDI immedialely precedes the
lext. Tba1 is. tbe mark is effectively rirhl-justdiu ptJJI spaces immediately to tbe left of the lext.

TyPl and mtJrlc interact to control the type of markinl used. If typt is O. simple markina is performed
usm& the mark char'acler(s) found in the INlrk lrIumcnL If typt is areater tbaD O. automatic
numberinl or alphabetizing is done. aDd mQrk is theD interpreted IS the first item in tbe sequence to be
used for numbering or alphabetizing, i.e •• it is chosen from the set (1. ~ a. I. i) IS in {Sol.3.11. 'That
is:

TyPl Marie
o omitted
o SIr;ng

>0 omitted
>0 one 0(:

1. ~ a. I, i

Rnult
bangial indent
string is the mark
arabic Dumberina
automatic numberiDa or

alphabetic sequenc:in&

Each Don-zero value of tyPl (rom 1 to 6 selects I dift'erent way of displayiDl the items. The folJowinl
~ble shows the Output appearance (or each value of tyPl:

Tn- AP1J«Zl'Dn~

1 x.
2 x)
3 (x)
4 [x)
5 <x>
6 (xl

wbere x is tbe ,enerated Dumber or letter.

,.. TIw mark must 1101 COlllllin ordilUl'Y (paddab~) spac~ b«Du. ali".",.m 0/ ;"111$ wiD bt /051 if lh~ right
mtUgili if juslt/i«J (lol).

U-spact sives the Dumber o(blank liDes (halves of a vertical space) that should be outlNt b). each .U
macro in the list. If omjned., U-spact defaults to 1; the value 0 can be IISed to oblain compact lists. If
U-spact is areater than 0, the .LJ macro issues a .De request (or two lines JUSt before printinl the mark.

LB-spa~. the Dumber of blank lines (Y.z a vertical space) to be output by .LB itself. defaults to 0 if
omined.

22·

There are three reasccable combicatioll! of U-spaa aud c..B-spttt:8. The normal c::ase is to set U-sptJa
to 1 and LB-spaa to 0, yieldlnl one blank line be[on e3d1 item in the lisI; suctl a list is usually
terminated witll a ".LE I" to end the list wim a blank line. In the second case, for a more compact
list. set U-spac~ to 0 and LB-spat:~ to I, and. apia. use ".LE 1" at the end of me list. The result is a
List wim one blank line before and after it. If you set bam U-spaa and LlJ-sptla to O. and use ... LE"
to end the ~ a list witllout arry blank lines will result.

A,,~ndix A stlows :ne definitioll! of me List-initialization macros (S.J.J) in terms of the .L8 macro.
A,,~dix a illustrates how the user can build ul'Ot1 thos.e macros to obtain other lcinds of lists.

5. ME.'fORJu~l.rM .\;.~ RI1IASID P.U'!ll STYUS

One use of ~MM is for the preparation of memoranda and released pa~~. whict1 have special
requirements for the first pa!e and for me cover sheet. The information needed for the memorandum
or released paper (title, author, date. c::ase numbe~. etc.) is entered in ttle same way for both stYtes; an
Ui\lmect to one macro indicates whjctl style is being used. The foUowinl sectiOll! desc:ribe ttle macros
used to provide this d.a.ta. The required order is shown in (6.91.

Ir nc:1ther the memorandum nor released-pa~r Styte is desired. the maaos described below should be
omitted from the input text. If the:se macros are omined. the drst page will simply have the pale
header (9\ foUowed by the body of the doc:ument.

6.1 TItle

. Tt (cbarging-<:aSel (tiling-c1Sej
one or more lines of title text

The argumentS to the • TL maao are the charging case number(s) and filln; c:ase numbed!).' The tiue
of the memorandum or paper foUows the .Tt maao and is processed in fill mode 13.ll. Multiple
cllatging case numbe~ are entered as "sub-argumentS" by se;woatinl e2Ctl from the previous ·,vittl a
comma and a spac=. and endosing me lnr/'~ argument within double quotes. Multiple filinl case
!lumbers are entered similarly. For example:

.Tt °12345. 67890'" 987654321
On the construc:tioa of a table
of all even prime !lumbers

The .Or request may be used to bre:l.k the tiue into severa! lines.

On output, the tide appe:us after the word "subject" in the memorandum StYle. In the released-paper
style. the title is centered and underlined (bald>.

6.2 .\athorfs)

.AU o.a.me (initials I (toel (de,t} (ext) [rooml [ug) (ard rard
The .AU macro receiVe:! as arguments information Wt describes an aumor. If my argument contains
blanJcs. it must be enclosed within double quotes. The Brst six argumentS must appear iIi the order
given (a separate .AU macro is required for =:tl aumor). For exampl~:

.AU oJ. J.]ones-]JJ PY 9876 5432 lZ-2.34

In the "'from" portion in the memorandum Style. the author's aame is followed by loc:ation and
department aumber on one line and by room number and er.ension number OD me aeXL The "x" for
the exte!lSion ;5 ac.c.ed automaticaJly. The printinl of me l0C3tiOD, d~ent aumber. extension

a. The "~. QSe" :3 !tie C3SII I1lUT1ber 10 wlllc:Il time 'IrQ :.'1211ed ror tne deve!01'ftlCll o{ the pr'OJeC c1esc'Ibed <II :he
a:l&monDdum. 1'..& .• ~ c:ae" :S ~ aumber WICer Willett :.'1. :nemonadum :s 10 Oe died.

2J

number, and room number nay be suppressed on the first page at a memorandum by setting the
register Au to ~ the default value for Au is 1. Arguments 7 throuah 9, if present, will follow this
"normal" author information. each on a separate liDe. Certain organizations have their own numbering
schemes for memoranda, engineer's notes, etc. These numbers are printed after tbe author's name.
This caD be done by providing more than six araumenlS to the .AU macro, e.,.:

.AU "S. P. Lcaame" SPL IH 9988 7766 SH-444 3322.11AB

The name, initials, loc:a1ion. and department are also used in the Signature Block (6.11.1). The author
infonr.ation in the "from." portion. as well as the names and initials in the Signature Block will appear
in the same order as the .AU macros.
The names of the authors in the released-pape:- style are centered below the title. After the name of
the Iut author, "Bell Laboratories" aDd the location are centered. For the case of authors from
cillferent locations, see {6.S}.

6.J TM Number(s)

.1M [number1 •••

If the memorandum is a Technical Memorandum, the TM numbers are supplied via the . TM macro.
Up to nine numbers may be specified. Example:

.TM 7654321 77777777

This macro call is ignored in the reieased-paper and external-letter styles (6.6).

6." Abstract

.. ~ [arg] [indent!
text of the abstract
.Ar:

In both the memorandum and released-paper styles, the text of the abstract fonows the author
information and is preceded by the centered and underlined (italic) word "ABSTRACT."

The .AS (abstract start) and .AE (abstract end) macros bracket the (optional) abstract. The tim
arJUJIlent to .AS controls the printing of the abstract. If it is 0 or null. the abstract is printed on the
first page of the document, immediately fonowinl the author information. and is also saved for the
cover sheet. If the first qument is 1, the abstract is saved md priDted only 011 the cover sheet. The
margins at the abstract are indented OIl the left and riabt by five spaces. The amoUllt of indenwion
can be changed by specif'yin& the desired indentation as the second aJ'IWIlent. 9

Note that beadinp (4.2,4.3) and displays (7) are IIOt (as yet) permitted within an abstract.

6.! Other Keywonts

.OK [keyword! ...

Topical keywords should be 5J'CCified on a Technical Memorandum cover sheet. Up to Dine such
keywords or keyword phrases may be 5J'CCified as arguments to the .OK mac:ro~ if any keyword contains
spaces, it must be enclosed within double quotes. -

6.6 MeDlCH'aDdDIII TJPeS

.M!' [type] [1]

9. Values tIw spedfy inc!en"'jon !DUll be UllflCllIa/ aDd 1ft ftlled u "dIInaer posilions.. .. i Use lIumber 0(fftI.

The .M! macro CtJacroil the format of the top part of the drst pa3e of a memorandum or of a rele:ssed
paper, as well as the format of t.le =ver sheets. Le,a! codes for ry~ and the com:s"pOadin, values are:

Cadi VaJw
lL"" •• •• n.l.

.M! 0

.MT

.MT 1

.M'! 2

.M! 3

.M! 4

.M! 5

.M! • ruint!"

QO memorandum type is prinlec1
QO memorandum type is printed
ME...\-(OR.AJ.'fCUM FOR FILE
ME.\iORANDUM FOR FIll
PROGRA.MMEt'S NOTES
ENGINnR'S NOTES
Reieased-Pl;)ef stYle
ExternaJ-Letter stYle
surnt!

If ry~ indicateS I memorandum stYle, thea Wliu6 wtll be printed after the last line of author informatioa
or after the last lice of the abstract, if one ap~ on the firn pale. If ~ is lonler than one
char:lcter. then the ruin&. itself, will be printed. For example:

.M'! -r'echnicai ~o(e #1"

A simple letter is produc:c1 by calling .M!' Mth a null (but not omitted!> or zero argument.

The second MiUIIlent to .M! is used only if the firn argument is 4 (Le., (or the reiezsed-paper stYle) as
explained in (6.8\.

[n the external-letter style (.M! 5). only the date is printed in the upper nlht comer of the first pqe.
It is ex~:ed that preprinted Stationery wtU be used. providing the author's company tOI0type and
address.

6.7 0.,. IUd F OnIUI' Chaqes

6.7.1 Changrnt! tJw Dau. By default. the current date appears in the "date" part of a memorandum.
This can be overridden by Il.3inI:

.NO n"~te

The .NO maao aiter! the value of the strin& DT. whic;h is initially set to the current date.

6. 7.2 A.lle1fQl~ First-Pa~ Fomrtlt. One can specify that the W'Clrds "subject," "date." and "from" (in
the memorandum Style) be omitted and that an aiternate company name be used:

.AF [company-name!

If an aqument is ~ven. it re;laces "Bell Laboratories'", wtthout afi"ectin, the other heac1ings. II the
al'IUment i.! n:uJL "Bell Laboratories" is 3Up~ in this case. extra blank lines are inserteQ to ailow
room for stampinl the document with a BeU System 1010 or a BeU Laboratories stamp. .AF Mth no
ar;ument suppresses '"Bell L.1bor:llories" and the "Subject/Date/From" ITazdinrs. thus aUowin, output
on preprinted Stationery.

The only .M option appropriate ror rrojf'is to specify an argument to replac: "BeU Labol"3tories" wtth
UlOUler :laIIle. .

6.3 Reias.ed-P~per Style

The re!eased-p:qlet style is obtained by s-pecifying:

.M!' -4 [1}

Tais re:uiu in a =tered. underlined (bold) title followed by c:ntered names of authors. The location
of the last author is ~ a! the location foiloW'llll '"BeU Laboratories" (unless .AF (6.1.2\ specifies a
diff'erent company). If the optioc.aJ sealnd uwun:ent to .M! is ~ven. then the aame of eaQ author is
followed by the ~.ive comp31lY aa.me Uld lOClUon. The abstract.. if present. follows the author

25

iDformation.

Informatioa necessary for the memorandum style but Dot for the released-paper style is iIDored.
It the released-paper style is utilized. most an. locatiOD codesJO are de8Ded IS striDp tIw are the
addresses of the comspondin; sn. locations. These codes are needed ODly until the oM'! macro is
invoked. Thus. /ollowtllZ the .M'! macro. the user may R-use these suiD& DImes. ID additicm. the
macros described in (6.111 and their associated lines of input are isnored wben the released-papu style
is specified.

Authors from non-an. locations may include their a1!UiatioDS in the released-paper Style by specifying
the appropriate oAF M/on t:aeh .AU. For example:

oTL
A Learned Treatise
oAF -oetem IDe.­
.AU -r. Swaner-
.AF -'U Laboratories-
.AU -sam P. Lename- •• CB
.MT 4 1

'" Order 0(lIIyocsdoa 01 .. Bet1naiDC" MIIc:ros

The macros described in {6.1-6.7J. i/praent, mUSl be liVeD in the CoUowiDa order:

.ND Dew-date
• TL [c:bariing-case] (filinl-case]
one or more lines of text
oAF [companY-Dame1
.AU Dame [initials] [Joe] [dept} (ext] (room] lars] lara] (arJl
• TM [Dumber] •••
• AS [ara) [indeDt]
ODe or more lines of text
.AS
.OK (keyword) •••
oM'! [r.rPe) [1]

The ODly nquiredmacros for a memorandum or a released paper are oTL •• AU. md .MT; aU the others
(and their associated iDput lines) may be omitted if tbe features they provide are DOt needed. Ona:
.M'! his been invoked. 110M of the above macros em be re-invoked because they are removed from
the table of defined macros to save $pEe.

'.10 Ex .. ,.

The input text for this manual beains IS follows:

.TL
P\s-3WB1MM\sO\(emProcrammer's Workbencb Memorandum Macros
.AU ·0. W. Smith- DWS Py ...
• AU .J. It Mashey" JRM MIl. __
.MT 41

10. The CDIIJIIIIiN Jill is: AK. CP. CR, 0. Dil. HO. IN. IH. MY. MH. PY. U. RD. wv. UId WH.

---------- - - - --- -- ------

26

'.11 Ma~ for Ua. ED .. of • ~=ol'Ulcia=

At the end of a memorandum (but aoe of a released paper), the signatures ot the authors and a list of
notations II CUI be requested. The (oUowin& macos and their input ue isaored if the released-paper
style is se1=-.ed.

6.11.1 Sigrr.azun Brode.

.so Cal'll (1J

.so prints the author aame{s) after the last Une of text.. aligned with the "DarelFrom" block. Three
bJw tiIles are left above each aame for the actual SlIlW\lfe. It aa qument is given. the line of
reference data:% will Ifot appear foilowUll the last line.

A aan-aull first U1U%llent is treated as the typist'S initials. and is appended to the reference data.
Supply a aull argument to priat reference data with Ilather the typist's initiaL! nor the Prec:dinl
hypilen.

It there are sevenJ authors and if the second qument is given. thea the reference daIa is placed aD
the same line as the ::wne of the tim author, rather thaD aD the line that bas the came of the last
author.

The reference data conta.ills only the location and de;mtmeat aumber of the 8rst author. Thus. if
there are authors from dilfereot departments andlor (rom ditferent locations. the reference data should
be supplied manually after the invOCllioD (without arsuments) of the . .sO macro. For example:

.SCi

.n

.ll' ·Iv
py /~·9876/ S4Jl-IJJ/SPL-<:en

6.11.1 "Copy co" and OtM1' NOlaliolU.

.!'IS [alii
zero or more Unes of the llocatiOD
.NE

~ the sisDature and reference data. l%W1y typeS of Docadons may (oUow, such as a list of
attachments or "C01'Y to" li.su.. The various IlOcatiOns are obtained throulh the .NS macro. wllich
provides (or the proper spacial and (or In'eakina the notations across paaos. if necessary.

The ccc1es for arr and the corresponcUoc aocatioos are:

11. 50. (21. :. \.l:!- 16
12. 1'ba roiJowlq i.aionnauaa IS lazawa .. r=":re:a daca: Iocwoa CI:lde. ~ aumber. audlor'J iDiaal.s. Uld :)'pal's

1Dlaais. all ~1Cd ". ~ypacns. See [21. :-ce 1.11

Cod~
.NS ••
.NS 0
.NS
.NS 1
.NS l
.NS 3
.NS 4
.NS 5
• NS 6
.NS 7
.NS 8
.NS 9
.NS • str;",·

NOl/ltlons
Copy to
Copy to
Copy to
Copy (with alt.) to
Copy (without alL) to
AU.
AItS.
EDc.
EDcs •
Under Separate Cover
Letter to
Memorandum to
Copy (str,,,,) to

21

If' "rr COO5ists of more thaa one character, it is placed within parentbeses between the words "Copy"
aDd "to." For example:

.NS ·with au. 1 only"

willaenerate "Copy (with an. 1 only) to" u the notation. More thaD ODe notation may be specified
before the .l'-I"E ocaus, because a .NS macro terminates the precedinl nOlation, if any. For example:

.NS 4
Attachment I·List of rqister names
Attachment 2·Ust of string and macro names
.NS 1
1. J. JODes
.NS 2
S. P. Lenaml!
G. H. Hunz
.NE

would be fonnaned as:

Aus.
Attachment I·List of rqister names
Anacbment 2-List of suin& and macro nam:s

Copy (with an.) to
1.1. Joaes

Copy (without an.) to
S. P. Len·me
G. H. Hunz

'.ll FordII; I ODe-Pqe Len.

At times. ODe would lilce just I bit more space OD the pale, fordnj the DptUfC or items within
nowioDS onto the bottom oC the paae, so tIW the lelter or memo is just ODe page in lenlth. This can
be accomplisbed by increasinl the pale lensth throulh the -rLn option. La. -rL90. This bas tbe effect
of maki.DB the formatter believe that the page is 90 lines loal and therefore BiviDB it more room than
usual to place the DIft'lure or the notations. This win only work for a sm,lI-pagr letter or memo.

1. DISPLAYS

Displays are blocks of text thai are to be kept together-Dot split across paaes. PwalMM provides two
Sl}'ies oC c1i.splays:ll I S1Illic (.DS) style and a jlOtIlIng (.OF') style. In the SIIIIIC style. the display appears

---- ----- - -------

in the same re!ative positioa in the OLltl'ut texz as it does in the input texz; this may result in e:ttra.
wbite space at the bottom or the paIIe it the ~Iay i.s too bil to At there. In the .,ROGnnr style, the
display .. tIoacs" through the input teXZ to the top of the aexz P&le it there is aoe enough room for it on
the current ,aie~ thus the input text thal/all4W! a tIoatinl display may pnc •• it in the OU1;ut text. A
queue of tIoatull displays i.s maintained so that their relative order is aot disturbed.

By default, a display is p~ in ao-an mode and is no, indented (rom the exisUaI!!W'lia. The
user can ~.ry indentation or ceateriaa. as weU as flU-mode processiDl-

oisl'l:lYS md footnotes {al alay ff~ be oested.. in any combination what3Oever. Althoulh Usa (51 and
pat3~bs 14.1) aR permitted.. ::0 ll=diJlp <.H or .HU) em oc:ur witbia displays or (OOlZlOtes.

1.1 Static Displays

.DS ((ormat! [fill I
one or more Uaes of text
.DE

A Static display is star.ed by the .OS macro and tenninated by the .OE macro. Witb 110 ar'Iuments,
.OS wiU ~t the lines of texz enaly as they are typed (no-an mocie) and will not indent them (rom
the prevaiJiDl indentatioa. The fomrtZt arsument to .DS is aD iDteser or letter witb the (otlowinl
meanings:

..
o or I:.
1 or I
2 or C
J or CD

110 indent
ao indent
indent by standard amount
center eacb liDe .
center as a block

The fill Ui\lment i.s a.l.so an inteler or letter and <:aD !lave the (oUowinl memirl&:s:

Omitted arzumencs are takea to be zero.

..
OorN
lorF

Mftlnurg

The standard amount of indentation i.s tak= (rom the register Si. wbich is iDitiaUy S. Thus, by default,
the text of an indented ~Iay aliillS with the tim liDe of indented parqrapb,s. wbcse indent is
contained in the Pi ~ter {4.11. Even though their initial values are the same, these two rqi:5tI:rs are
inde~adent o(one another.

The ~Iay (ormat value 3 (0) centers the ,nnn diSplay as a block (as opposed to .DS 2 and .OF 2.
which c::.ater e:lCi:1 line indiVIdually). Thu is. all the coUeced lines are left-justified. and then the
display is centered. Oased on the width of the lonlest line. Tbis (ormal ItfIISl be used in oreler (or the
tqn (l)/.vqn (1) "mark" and "lineup" feature to wort with centered ~uatioas (see sectioa 7.4 betow).

By default. a blank line (Yz a vertical !pac:) is pW::d before aDd ~er nalic aDd tIoatinl displays. These
blank lines before and after SlI:Inc displays <:aD be inhibited by seniDI the resister Ds to O.

1.l FJoatilll Dlspla,..

.DF (format) (BIl]
one or more lines of text
.DE

29

A floating ~Iay is started by the .DF macro and terminated by the .DE macro. The arguments have
the same meaninzs as for .DS {7.1l, I!xc:~t that. for fl:.tin& ~Iays, indent. no indent. and centering
are always c:aJculated with respect to the initial left margin, because the prevailing indent may change
between the time wbeD the formatter fim reads the Ooalinl display IDd the time that the displa~' is
printed. One blank liDe (~ a vertic:aJ space) always occurs both before and after a floating display.

!he user may exerc".se Ileat control over the output positioaina of floaW!a displays througb the use of
two number registers, Ih and D/. When a floating display is encountered by nl'ojf or 11'011. it is
proc:ssed and placed onto a queue of displays waitina to be outpUL Displays are always removed from
the queue and printed in t1'1e order that they were entered aD the queue, which is the order that they
appeared iD the input file. If a new floating display is encountered and the queue of displays is empt)".
theD the ne'ilt display is a candidate for immediate output on the curr!:nt i'lge. Immediate output is
governed by the size of the display and the setting of the Dfregister (see below). The IN register (see
below) cont!'o!s whether or no! text will appear on the current page after a floating display bas beer.
produced.

As long as the queue contains one or more displays, new displays will be automatically entered there.
rather than being o!Jtput. When a new page is started (or the top of the second column when in two­
column Mede) the o~x: display from the queue becomes a candidate for output if' the Df register h:lS
specified "top-of-page" output. When a display is output it is also removed from the queue.

When tht end of a se...'"tion (when using section-page numbering) or the end of a QOC'.lment is reached..
all displays are autor::atic:ally removed from the queue and output. This will occur before a .CS or .TC
is processed.

A display is said to "fit on the current page" if'there is enouah room to contain the entire display on
the page, or if' the display is longer than one page in length and less than balf of the current pag= bas
be=n used. Also note tt'.at a wide (full page width) display will never fit in the 5e'"..ond column of a
lWo-column documenL

The registers. their settings, and their etrectS are 15 foUows:

Values for IN Register
Value Action

0 DEFAULT: No specal action occurs.
1 A page eject wiD always foUow the output of

ach floating display, so only ODe floating
display wiD appear on a pqe and no text
will foUow iL

NOTE: For any other values the action
perfonued is for the value 1.

Values for DfRegister
Value Action

0 Aoaliag displays will not be output until
end of section (when section-page
numberina) or end of documenL

30

Values for Df Re1ister
Value Action

1 Output tile new Qoauns display on tile
auTent pase if tilere ~ room. otherwise
Ilold it until the end of the section or
doc".unenL

2 Output eX3Ctly one bting display from the
queue at tile top of a new pqe or c:ohmm
(when in two-Ct)lumn mode),

3 Oucput one Qoatini display on current page
if tilere ~ room. Output exactly one
bUnS display at the top of a new pqe or
c:olumn.

4 Output as maay c:\is;llays as will fit (at least
one), startinI at the top of a new pqe or
c:clumn. Note that if reli:ster D~ ~ set to I,
each display will be foUowed by a page eject.
C;:-':siDg a new top of page to be reached
where at lC3Sl one more display will be
OUq,UL (This aiso applies to value S,
below.)

S DEFAULT: Output a new floalinS display on
the c:urrent page if there ~ room. Output at
lC3Sl one, but as many displaY's as will fit
starting at the top of a new page or c:olumn.

NOTE.: For any value greater than S the
aaion performed is for the value S.

'7.3 Taili.

:rs [Hl
alobal optioas:
column descriptors.
tiUe lines
[.TH [NJ}
data within the table •
• 'IE

31

The :rs (table Stan) and .TE (table end) macros make possible the use of the tb/(1) processor [11].
They are used to delimit the text to be examined by fbi U) as well as to set proper SJ*1n1 around the
table. The display functiOD and the tb/(1) delimitinl functiOD are indepeDdent of ODe another.
bowever. so in order to permit ODe to keep together blocks that contaift any mixture of tables,
equations. mJed and unfilled text, and captiOD tiD~ tbe • TS·. 'IE block should be enclosed within a
display (.DS·.DE). Floatinl tables may be enclosed inside Doating displays (.DF-.DE).

The macros . TS and • 'IE also permit lbe processing of tables tbat extend over several paae5. If a table
beading is needed for each pase of • multi-paae table, specify tbe arsument "H" to lbe • TS maao as
above. roUowing the options and format information, lbe table beadiDl is typed on IS many lines as
required and fonowed by the .TH macro. The.TH maao must occur wben ".TS H" is used.. Note.
that this is nor a feature of tbl(1). but of tbe macro definitions provided by PWBIMM.

The table header Ir.aCTO • TH may take as an argument the letter N. This argument causes the table
header to be pri.. .. ued only if it is the first table beader on lbe paae. 'Ibis option is used wben 'it is
necessary to build IODB tables from smaller .TS H/.'IE segments. ror example:

.1$ H
JlobaJ oPtions:
columD descriptors.
ntle liDes
.TH
data
.n:
.1$ H
alobal options:
column descriptors.

,ntle tiDes
.TH N
data
.'IE

will cause the table beadinl to appear at lbe top of the first table segment. and no beadiDl to appear at
lbe top of the second segment wheD both appear OD tbe same paae. However, lbe beading will still
appear II lbe top of each pase tbat the table continues ODIO. 'Ibis feamre is used wben a siD&le table
mUSl be broken into segments because of table complexity (ror example. 100 maDY blocks of filled
text). If each segment bad its OWD .TS H/.TH sequence. each segment would bave its own beader.
However. if each table segment after the fim uses .TS H/.TH N theD the table beader wiD only appear
at the besiDninI oC the table and the top of each new page or columD tbat the table continues onto.

'7.~ Eqaatloas

.DS

.EQ U.beJ]
equation (s)
.EN
.DE

32

The equation settc:3 til" (I) and "t'qn (1) [6,11 expect to use the .EQ (equation swt) and .EN
(equation end) cruu:ros ~ dcilmitcr3 in the same way that tb/(l) uses :rs and .~ however, .EQ and
.EN muse occur inside a .DS-.OE pair.

The .EQ macro takes an UiUl1lent that will be used as a label ror the equation. The label will ~ ae
the nibt m.at'iin in the '"'ve:ticli center" oi the lenenU equation.

,.,. 1?r~ is an crr~prNJff tQ this rultt: if .EO and .EN an Il:$Id only to 1P«ih eM dttlim;tIn fo, in-lin.
tqIIQliOIU 0':0 s¥'«:f/ eqnineqn "dtfina. ... DS and .DE must aoe ~ ~d: Olhuwis. atI'tI blank lina
.,11 app«Jr in (hi OUqNL

1.! F'lc1zn. Tab'" [qlladoa. aGel [xhibiC CApdoas

• .FQ {tide} [override) [flail
.113 hide! (override! [flag1
.EC [title! [override I [flail
.1:..1: (tide) [override I (fiail

The .FO (FtiUf'e ntle), :rB (Table nde) •• EC (Equation Clption) and .EX (Exhibit Clptioa) maaos
are nonnally used inside .OS-.OE pair3 to automatically numbet and tide figures. tables. and equations.
They use registers Ft. 10. £C. and b:. respectively. I" As an example, the caU:

.FO '"'Th.is is an illustration­

yields:

Ftpre 1. !his is an illustration

.rB replaces "FiiU"" by '"TABLE"'; .EC re;lac:s UFi~nt" by uEquarioa",and .EX replac:::s
"Firure" by uExhibir'·. Outpue is centered if ie can fit on a sinlle line~ otherwise. all lines bue the
first are indented to line up with the am charac:er of the tide. The format o(the numbers may be
c:han3ed usin& the .~ request o(the rOmanet.

The ollf!r1'irk string is used to modify the normal numberins. rr /1Ilr is omitted or O. own-irk is used as a
prefix to the cumber. if fttJg is 1. a~r" is used as a suffix; and if flag is 2. o~mrk re~lac::s [he
!lumber. For example, to produc:: Qgures numbered within ~.ions. supply \a(Hl ror owmd6 on each
.PO call. and reset Fg at the beginniaa of each section. ~ showa in (4.61.

As a matter of style. table heading:! ~ usually placed ahead o(the text o(the tables. while figure.
equation. and exhibit captions usually OCC'oU" after the corresponding fiaures Utd equations.

1.' Ust 01 flpns. Tabies. Lquarioas. aaci EDibits

A Ljst o(Figures. Ljst o(Tables. List o(ExhibitS. anc:1 Ust o(Equations may be obtained. They W111 be
printed after the Tabie of ContentS is printed if the number reglSters LI. LI. Lx. and 1.1 (~ve!y)
are see to 1. Ij, Lt, and Lx are 1 by default; u is 0 by default. .

~.7 Blocks oliilled Teu

One c::a.a obtain blodes of tmec1 text through the use or .OS or .OF. However, to have me block of
filled teU C&'nwed within the current lioe lenath. the wl(O prov.un may be used:

.DS 0 1
:rs
Cl:nter;
Iw40 •
T{

T)
.n
.OE .

33

The ... OS 0 I" beg:i1ls a non-indented. filled display. The tbl (1) parameters set up a centered table
with a column width of 40 eas. The ··T(••• T}" sequence allows filled text to be input as data within a
Lable.

L FOOTNOTES

There are two macros that delimit the text of footnotes. U a string used to automatically number the
fooUlotes. and a macro that specifies the style of the footnote text.

1.1 Aucomatic Numberiq o(Footnotes

Footnotes may be automatic:ally numbered by tnMS the three charac:ters "'.F' immediately after the
text to be footnoted, without any intervening spaces. This will place the next sequential foomote
number (in a smaller point size) a half-line above the text to be footnoted.

S.l Delimitiac FootDo~ Text

nere are two macros that delimit the text of each fooUlote!

.F'S [label]
OIle or more lines of footnote text
.FE

The .F'S (footnote start) marla the besiDnins of the text at the footnote. and the .FE marlc.s its end.
The 1Il~/ on the .F'S. if' present. will be used to marX the fooUlote text. Otherwise, the number
retrieved from the strins F will be used. Note that automatically-numbered and user· labeled footnotes
may be intermixed. "If a footnote is labeled (.F'S 1Il~/). the text to be footnoted fIfJlSt be followed by
IIl~L rather than by "'·F'. The text between .F'S and .FE is processed in fill mode. Another .FS, a
.DS, or a .DF are not permitted between the .F'S and .FE macros. Examples: "

1. Automatically-numbered footnote:

This is the line conWnina the word\·F
.FS
This is the text of the fooUlote .
.FE

• to be footnoted.

34

2. ubeUed (ooc::ote:

1"his is a La be! ed·
.FS •
The footnote is labeled w;th an aste:is.!(.
.FE
footnote.

The te:tl of the fooUloee (enclosed w;d:in the .FS-.FE pair) should iwtr1Wdiar.1y follow the word to be
foomoted in the input text, so :lw "'-F'" or /Q~i OC:::-.u3 at the end of a Une of input and the aext line
is the .FS ~ c:Ul. It is aLso good prac"Jc: to append a un;adc.able ~ [3.J} to "'-F'" or /Q~I
wo.en :My foHow an =::Id~i-se::lt:nc: punCtUation marX (i.e •• period.. question mark. ex:!amatioa
l'Otnt> •

Appendix C illust. .. :ues t!le various available footnote stYles as weU as aucbered andlabeJed footnotes.

S.J Format of FootDoce Text •

. FD rarg] [II

"Within the footnote t!xt. ~~e user Q.t1 control the fOm:l3tting style by !;lecifying text ~yphe:1atioa. right
margin justific:uion. and text indentation, as well as left· or n;ht·justificatiol1 of the label wben text
indenting 13 used. The.FD macro is invoked to se!e:: the appropriate style. The tim arsument is a
number from the left column of the foUowU:s table. The formattinl stYle for eaQ aumber is given Or
the remaining four columns. For further explar.ation of the first two of these columns. see the
denmtions of the .ad •• 1:1y •• m. and .ah ~uests in [9).

0 .ah .ad text indent label left justified
1 .hy ..ad • •
2 .:m .na • •
3 .hy .na· • •
4 .ah .,ad no text indent •
5 .hy .ad • •
6 .nil .Ila • •
1 .hy .na • •
8 .nil ..ad text indent label nlht justified
9 .hy .ad • -

10 .nh .na • •
11 .hy .Ila • •

II the first atiUlnel1t to .m is out of r:mIC. the effect is as it .m 0 were spec"Jiec1. II the tim
argument is omitted or aull. the etrect is equivalent to .Fe 10 in fI1'Qff311d to .Fe 0 in rrojf, these are
aLso the ~.ive initial defaults.

II a sef:Ond aIlument is spec".£ied. then wheneve: a first·level beading is' enc::wue::Q. automatic::Llly­
numbered footnotes be;Ul again with 1. 1"-~ is most u.seiw w;th the .. section-Pace" pate llumbering
sC:e:ne. As an e:u.'t!pie. the input Une: .

• FD •• 1

maintains :he default fOr::1attin, style and auses foomotes to be aumbe::c1 afresh after each first·level
bead.inio

For long foomotes that continue Ol1tO the foflowt.ai ~e. it is possible that. it hyphenation is
j:lermitted, the last line o(the footnote on the C-~=::11 page will be hY':'ilenated. £Xc::pt for this case
(over which the user Cas ~"Iltrol by s;:ecifyin3 an ev~n argume:l1 to .FD), hypilenation ac'OSS paies i3
in!:ti bi ted by PWBI MM.

Footnotes ar: se;:anted fr.,m the body of the text by a short rule. Footnotes that continue to the ae:t:
l'age are se;:a."ated ::om tbe body oi the text by a full-width rule. In l1'Off, footlloces an: set i.:l cy;:e tbat

is two points smaller than the point size used in the body of the text.

Lot SpadDc "tweea FootaGee Eaeries

35

Normally, one blank line (a three· point vertical S1)ace) separates tbe footnotes when more tban one
occurs on 1 page. To chanae this spacing, set the register Fs to the desired value. For example:

.Dr Fs 2

will cause two blank lines (I six.paiDt vertical space) to occur between footnotes.

t. PAGE HE.ADERS A.~ FOOTEltS

Text tIW occurs It the top of eacb page is known as the ptZgt h4tz •• Text printed It the bonom of
each Pile is called the JXlII foo~', There can be up to three lines of text associated with the beader:
every page, even page only I and odd Pile only. Thus the pale beader may have up to two lines of text:
the line that occurs at the top of every pale and the liDe for the even- or odd-numbered page. The
same is true for the page footer.

nus section fim describes the default appearance of page .headers and page foolers, and then the ways
of cbanaing tbem. We use tbe term Madt, (not qualified by """ or odd) to mean the line of the page
beader that occurs on every page, and similarly for the term foolJ!r ..

'.1 DeCaalt Headen Dei Foolen

By default. each page bas a centered page number as the header (9.2). There is no default fooler and
DO even/odd default headers or footers. except as specified in (9.9).

In a memorandum or 1 released paper, the page header on the first page is automatically suppressed
prOvided a break does not occur before .MT is called. The macros and text o((6.9) and o((9) as well as
.at and .ds requestS do not cause a break and are permitted before the .MT macro call.

9.2 Pap Header

.PH [ara]

For this and for the .EM •• OH •• PF •• :EF, .OF macros, the ar;ument is of the (orm:

·'left-part' center-part' rilht.part '.

If it is inconvenient to use the aposuophe (.) as the delimiter (i.e., because it occurs within one of the
pans), it may be replaced uniformly by any other character. On output, the partS are Jeft-justified.
centered, and rigbt·jusU1ied, respectively. See (9.11) (or examples.

The .PH maao specifies the header that is to appear It the top of every page. The initial value (as
swed in (9.1)) is the clefault centered pale number enclosed by hyphens. See the top of this pale for
an example of this default beader . .
If ubug fIIOdI is set using the Dal -rOI on the commaad JiDe (2.4), additional information. printed at
me top left of each pale, is included in the default header. This consists of the sees (10) Release and
Level of PW'BIMM (thus identifyinl the current versioa (11.3», (ollowed by the curr~, line number
within the current input file.

9.3 E"ea-Plle Hader

.EIi lard
The .Eli macro supplies a line 10 be printed at the top of eac:h even-numbered page. immediately
folJow'lII the header. The initial vaJue is a blank line.

t .• Odd-Pllt Header

.OH [ara]

36

This aw::o is :.he same ~ .E..~. exc::pt ±at it applies to odd·numbered pages.

,.5 Pq. Fooler

.PP' [atil
The .PP' n:w:ro ~Jies :."le line tl-.at is to appear at the bottom of eac~ pqe. Its initial value is a blank
line. If' the ·rCn !lai is spe:-..ced on the command line {2AI. the type of coC'y follows the footer oa a
se.,arate line. In I'U"ticuJar. it·rO (DRAm is specified. then. ill addition. the foote: is iuitiaJi%ed to
contain the date (6.7.11, inste::td of being 1 blank line.

9.6 tT,a-P:I~ Fooclr

.EF [ar&J
The .u macro supplies a line to be printed at the bottom of e:sc~ even-numbered page, immediately
pr«,di~ the footer. The initial value is a blank line.

9.1 Odd.PIII Foocer

.OF [ar&J
!his mac:o is the same ~ .EF, exc::pt :hat it applies to odd·aumbered pages.

9.a Footer OD the flnt PI~

By default. the footer is a blank tille. If'. in the input text. oae spec:Jies .Pt=" andlor .OF before the end
of the first p3ie of the document, then these lines will appear at the bottom of the fi:n Pile.

The header (whatever it! contents) ftp/aca the footer orr lM jint par. orrly if the ·rNl flat is specified
on the command tine {2.41.

9.J Del.alt Header aDd Fooe.r win. "Sec:loa.PI~'· ~qmberiDI
Paies e:u2 be numbered sequentially within sections {4.S1. To obtain this numbering style. specify ·rN3
on the coau::ta1ld iiae. In t1lis case, the default /(J(Jt.r is a c:nterec1 "sec"jon'page" number, e.g. 3·S,
and the default paie header is blank.

9.10 Use of Strines lIld Reds"" la Header aDd Fooler ~ •

String and re~ter names may be placed in the arguments to the beader and footer macros. If the:
value of the su".ng or ~ter is to be computed when chi! nsp«ttW 1r1!tZti8 ~ foot.,. ~ pnnlm. the
invocatioa must be ~ by four (4) b;u:k:5fashes. This is because the string or reglster invocation
will be processed tbree times:

• as the argument to the be:uier or footer macro;
• in a formatting request within the he3der or fooler macro;
• in a .u request durinl be::tder or footer prcc::ssinl-

For examl)le. the Pile number re~ter P must be esapeci witll four baclc::siashes in order to ~y a
l1eader Ul wbic:ll the PIle number is to be printed 11 the right matiia. e.g.;

.PH ····Paie \\\W'·

c:"e3te:! a right-justified !leader conwnini the ward "Page" followed by the page number. Similarly, to
specify a footer with the ··secnon·pqe" style, one spec"..ces (see (4.2.2 . .s1 for me:anin& of HI):

.PP' ••••• \\\\n(Hl·\\\\nP .'.

As another example. ~uppose that the user ur:m~es for the string al to cont:ili1 the current section
heading wh.ic:~ :.s :0 be prulted at the bottom of each pqe. The .PP' macro aU wawd then be:

.PF ·"\\\\-(al"·

If only one or :'\If(l bac:lc.slashes we:": used. the foote: would print a constant value for al. namely. its
value wilen the .PF ~~ed Ul the input text.

37

'.11 R_er ad Fooc.er ~ •

'l'be foUowina sequenc: specifies blao.k lines ror the heal1er and footer fiDes, pase numbers on the
outside edge of eat:h page (i.e.. top left ma.rgin of even pages aDd tap rislU mar&in of odd paaes), and
·'Revision 3" on the tap inside margin of each pqe:

.PH ••
n-
.Ell -, \\ \DP' ·Revisioa. r­
.OR "Revision 3"\\\\DP··

'.ll GIDeraIIzeO Topoot-Pap Proc:eaiJII •

.,. This S«rion is irwlllied ONy for ILSen Qa:ustoma/ 10 writi", /ormtlMr IIWC'GS.

DuriD& header processin" PWBIMN invokes two user-delinable macros. ODe, the.TP macro, is invoked
in the environment (see .ev request in [9]) of the beader; the other, .l'X. is I user-exit macro that is
iD'YOiced (without arguments) wben the normal environment has bc:n restored., and with "no-space"
mode already in d"ect.

!be ~ective initial definition or • 'Tl' (after the first page or I document) is:

.de TP

.sp

.U \\·Ot
JI e au "wOe
JI 0 'U \\-(}o
..sp

The strin& It contains the beader. the string }t contains the even-pace header, and the suml }o contains
the odd-PIle header, as defined by the .PH. .EIi. and .OH macros, respectively. To obWn mare
specialized paze titles. the user may redefine the .TP macro to cause any desired header processil1l
(11.51. Note that rormaninl done witbiD the .TP macro is processed in an environment difrerent fram
UW of the body.

For example, to obtain I PIle header that includes three centered Unes of data. say, a document's
number, issue date, and reYision date, ODe could define .TP as foUows:

.de TP

.sp

.ee3
177-188-999
Iss. 2. AUG 1977
Rev. 7, SEP 1977
aSp

The .PX macro may be used to provide text that is to ",pear 11 the tap or each PIle after the normal
header and that may ba"-e tab stops to align it with colUI'DDS of text in the body of the document.

t.ll GeaenllzecI Bonom-o(-Paae ProcessI.aI

.BS
zero or more Ones 0(text
.BE

Uncs of text that are specified between the .BS (bottom-block sun) and .BE (bottom-block end)
macros will be printed It the bonom of each pqe. after the footnotes (if any), but before the PlIe
foow. This block of text is removed by specifyina an empty block. i.e.:

31

1'. TABLE OF CONTI:-o"S AND COVIll SHUT

'The table o(;.ontents and the cover sheet (or. document are prcduc:ed by invokinl the .TC and .CS
macros. respectively. The appropriate -rBIt OptiOl1 {2.41 must abo be specified on the Q)mmand line.
Tbe:se macros should aormally a"pear oaly == II the Inti of the dac'.mumt. after the SilZWUfe Block
(6.11.11 lad Nowioas (6.11 . .21 macros. !her ma, OCC"oU in eicher order.

The table of ccntents is proc1uc=d at the md of the document because the entire documau must be
proce:ssed before the table of contents c:m be gClW'Ued. Similarly, the cove: sheet is often cot aeedecl.
and is tIlemore ~ociw:..-a a& the end.

1 • .1 Table 4r/ Coa'"cs

.TC [slevell [~ [UevelJ [tab) [headll [he:vilJ [headJ) [hesd4) [head5J

The • TC macro generates a table of contents amtaiDinl the headin33 that were saved (or the table of
amtents as determined by the value of the a I'eIimr [4.4l. Nora that -rBt or ·rBl (2.41 mu.s& aJ50 be
S1*Uied to the (ormatter on the comma.. ~ line.. The Uluments to • TC cancrol the ~ before each
mcry. the placement of the asscc".ated page number, and additiom.l text on the first pase or the table of
coments before the 'Nord ··CONTENTS."

5pacin& before eac:h ~ntrY is .;onuoUed by the am two arguments: headings whose leve! is less than or
equal to st.~i will have rprJCllfg blank liDes (halves of a vertical space) before them. Both s~wi and
spac:ng default to 1. This meaas that first-level headings are preceded by one blank tine (1h a vertical
spac:). ~o,e tJ:2aL sinei does 'fot contral wbat leveis a{ he:ldinl bave been saved; the saving of he:ldings
is the (unaion of the a rqister (4.4\. -

The tbird and (oUl"th uguments c:cntrol the ptac:menc of the pace aumber Cor e:adl bact;",. The pqe
!lumbers can be justified a& the nih' IDar"Iin with either blaDks or docs ("leaders") ~tinI the
he:adiat te:a (rom the PIle aumber, or the pace aumbea em (eUew the head.ial text. For headi"p
wtlose level is tess than or equal to ~ (default 2), thz= Pale numbet3 are justified at the rilht D:W'Iia­
In thi:s elSe, the vaiue of tab determines the dlaracter used to separate me headiDI text (rom me page
cumber. If tab is 0 (me default value), docs (i.e.. leaders) are used: it flJb is gre:a&er than O. SI*=S are
used. For ceadinlS whose !eyel is &raler thaa tJnIfI. me pace numbers are se;lllnted (rom the headinl
tut by two spICes (i.e.. they are "raged nlhc").

All additional artUrDents (e.", ltf!fJdl, hlttJdl, etc.), if any, are hori%enWly c:ntered 011 the pqe. and
prec::c1e the actual table o{ conteats itse1t'.

If the .TC macro is invoked with at !%lose (our U1U!DCDts, then the user-ait macro .IX is invoked
(without arguments) before the woret "CONTENTS" is printed. 8y denmn, .IX and invokinl .TC
W1th at most (our arguments. the user can spec:ify \Vbat needs to be done at the top of the (first) pqe
of the table of contents. For example, the (aUowin. input:

.de IX
41
SpeCa1 Application
Me::s3qe Tr:msmission
~l
.in + IOn
~v~ \1"3i'
.in
~

.TC

yields:

Special ApplicauOD
Message Transmission

~oYOt ______________________________ _

CONTENTS

10.1 ~er Sheet

oCS (pales] (other) [total] [fip] (tbls) [refs)

39

The oCS macro senerates I ccver sheet ill either the TM or reJeased-paJlef' styie.16 .All of the other
information for the cover sheet is obtained from tbe data given before the oMf macro call (6.91. 'If the
released-paper StYle is used. all lI'JUIDeats to .CS are isnored. If I memonadum style is used. the .CS
macro aenerates the "Cover Sheet for Technical Memorandum." The arpmezns provide the data that
appears ill the lower left corner of the TM cover sheet (2): the number of pages of text. the number of
other pqes, the lOW number of pages, the number of figures. the number of tabl~ and the number
ofret~

11. MlSCELL.\NEOUS FEATUllES

11.1 BoI" Italic, ad 1l0llWl

.B [boJd-argJ [previous-font-argJ

.1 [ita1ic-arJl (previous-fOl1l-ar&l
oIl

When called without lI11DDea~ .B (or .D changes the foat to bold (or italic) in 1I'Off. IDd initiates
underlinin& ill ruolf.11 'Ibis condition conunues until the occurreace of a .ll. when the relUlar roman
font is restored. Thus.

J
here is some text.
.ll

yields:

~ is SfJfIW tea.

If .B or .1 is called with oae Il'JUIDCDt.. that argumeat is printed ill the appropriate fODt (underlined ill
ruol). Thea the IftyioUS font is restored (.mder1iniDa is turDed off ill ruol). If two uaumeat5 are
JiveD lO I .B or .1. the seccmd UJUtDeDl is thea concatenated lO the first with DO intervenia& space. but
is printed ill the previous fonl (nol underlined ill nroff). For example:

16. .. oaIr il-d12 or ~ _ Ileal speci5ed 011 1M IN,., !iDe.

17. Far __ oI 'ion. ill tbiI-=-a Ul.lIln11bebaviar is descrihed ara. &be caavaliDa 01 11..11 DOC wj'hsIa"'ina

.1 [taW:
te:a
.1 right .ju.sti1ied

produc=:

SUllie text fl%irt-justified.

One em use both bold and italic roats if cae intends to use troff, but the fU'06'versioa. of the output
dce:s :1Ot ~b. ~twe:n bok1 and italic. It 13 probabiy a ,cod ida to use .1 oa.iy. unless bold is
truly I"eQ.Uit=i Note:!lat (ont c!:w:l.les :n h~ ~ l:w1dled separately {4.2.2.4.11.

Anyone u.sin& a ter::lina! that c:umot underline miaht wish to insert:

.rm tU

.:::n =

.SA [ar&!
The .SA :nac:-o is used to set riant-margin justifiauon for the main body of text. Twa justification flap
are used: C".Im!M and iUjauIL ,sA 0 sets !:loth flaWS to DO justifiatioa. i.e.. it xts like the .aa ~equest .
. SA 1 is the inverse: it sets both f1a8S to cause justifiation. just like the .~ request. However, catlin;
.SA ""rhOUI an araument causes the C"~!'It tlai to be copied from the tM/auil f1ac. thus performing
:ither a .!la or .Jd., depending on what the tMjau/t is. Initially. both flap are set for no ~cation in
IU'OJf md for ju.su.ficuion 1n rrojf.

In general, the request .:1& em be used to e~ure mat justification is turned elf, but ,sA should be used
to r=tore jusufiatioa. rather than the .ad request. In this 'lI8.y. justificatioa or lack thereof for the
remainder of the text is S'l'ded by iasertina .SA 0 or ,sA 1 QIfI2 at the beIiDainI of the document.

1103 sees R.ins. !d.adftcartaa

The strinl .~ contaim the sec [lO! Rele:lSe and Level of the CUrm1l vemon of I'WBI~. For
exampie, typlnI:

This is version \-(RE of the maos.

produc=:

This is vaon 15.103 of the macros.

This information is useful in maiyzinl ~ bugs in PW'BIMM, The easiest way to have this
cwni:)er appear in your output is to spedfy -rOl {2.4} on the command Une, which causes the strinl P.E
:0 be oUI;lut a:s part of tbe PllIe beader {9.21,

11." T.~IUDJI Ourp8t

~MM c:ul prone two colu..ams aD a paso:

.2C
text and (ormanina ~u=ts (exce;:lC another .2C)
.le

The ..2C macro Oe;ins two-coiuam proc::ssing whic!l CODtinUes WlUl a .le macro is encountered. In
rwo-c:oluam porocessIDi. each physic:al pqe is thoulbt of as colllaiDiDl twO coiumnar '"paces" of :qual
(but smailer) '·-;:qc" width. ~ be3ders and footetS an IfQl aifected b1 t'IVo<CIumD processinl- The
.le :nac::o does 1701 "baWu;e'" two-cchunn out;lUL

It ~ passable to have rull-pqe w;d1h footnotes and ~lay! when in CWO cciuam mode. aithouib the
<!I:fml.t COIl is for footnoteS and ~ay! to be carrow III rwo cohm1l1 mode and "",de in one column

41
•

mode. Footnote and display width is controlled by a macro, • we (Width CoauaO, which takes the
(oDowina 1rJ1UDe:Dts:

N Normal default mode (- WF, - FF, - WD)
WF Wide Fooc:aoces always (even in twa

coIUIDII mode)
-wr DEFAULT: turD • WF CCoolCotes foUow

colUIDII mode. wide ill Ie mocSc, aanow ill
2C mode, lUIless FF is Jet)

FF ItrSl FOOCDOCc; III (ootnotes have the same
widlb as the lint footnote encountered for
that PIle

-FF DErAULT: tum ott FF (footnote style
foUows the seuiDp of WF or - WF')

WD Wide Dispiays always (eYeD in two column
mode)

-WD DEFAULT: Displays foUow whichever
coIUIDII mode is in eff'ect when the display
is encountered

for example: • we WD rr will cause all displays to be wide., and all fOOUlOtes OD a PIle 10 be the same
width. wbile • we N will reinstate the default KUoas. If conf1jctina settiDgs are s"eD to • we the last
ODe is used. That is, .wc-wr-Wr his the eft"ec:t of .we -WF. Note thal by default all options are
turned oft.

11..5 Col1UlLD Head.lDp for Two-ColumD Output •

.,. 'T1rU SIlJCtiOIf is ;".ndd on6' for USD'S aa:ust/Jlf'llltl to writinz./Onnlltter mtIC"OS.

ID two<OIuam output, it is sometimes aecessuy to hi"., beaders 0ger adl coIumD.. as weD as headers
over the entire pap (91. This is aa:o~1isbed by redeftDiD& the .TP ma:;n) (9.12) 10 provide header
liDes both (or the entire pace and for each of the cohmIDs. for example:

.de TP

.sp2

.11 "Pqe \ \aPe OVERALL"

.11 •• nn.E, ••

.sp

.ZJt

.1& 16C 31R 34 SOC 6SR
Ief't-=uter-rilht-let't-center-riaht
-tirsl coIumn-:--secoad column
Ji
..spl

(wbere - stands for the tab c:baracter)

'The abo'Ie example will produce two lines of PIle heMIer text plus two lines o(headers over each
coIUIDD. 'The tab stops are (or I 6S-cD overaJ) line len_

11.' Vwdc&I 5

.sP biDes]

There exist several ways of obtainiDa vertical spacina. all with difIerenl efIects.

The .sp request ~ tile Dumber of lines ~ed, IDdes:r .aDO space" (.as) mode is OD. in which case
me request is ilDORd. 'Ibis mode is typicaUy Jet at the eud of a PIle header in order to eJimiDale
spICDa by a .sp or .bp requesl that just happeus to occur &l the top of I PIle.. This mode em be turned

The oS? :ntC'O i.s used to avoid the a.a:-.unwtion of verticU S"paCe by succ:ssive mac:o calls. Several
.sp QJ.Ls in a row ;mx1uc: IfOI the sum 0(their arramenlS. but their maximum; i.e., the (oUowing
produc:es only 3 blanJc linc:s:

.5P 2

.5P J

.5P
~y l'W&''>a.t ~ utilize .sP ror .s~," For example. ".LE 1" (5.3.2\ immediately (oUowed by
, •. P" (4.1} ~uc:s only a sutg1e bLank line (Yz a vertical SIlace) betwe:n the end of tl:te list and the
(auowin3 j:IUa~h. An omitted aJ"iUl%1elU defauUs to one blank line (on~ vmical spaa:). UnsaJed
(ncuOn.aA amounts are per:nitte¢ [lee .!'P, ..sl' is afso inhibited by the .1lS request.

lL 7 Ski"lal hces

.sK [~esl

The .SK :nacro skips ;:qe:s. but retains the u.sua1 bader and footer ,,",,=ssina. If ~ i.s omitted..
aull. or 0, .SiC sJC~ to the to~ 0(the aext pace rmG it is currently II the top of a pqe, ill which case
it does !lathing. .sx " skips "pqes. Thac i.s. .sK always positions the ten thai. foHows it " the top of
a ~e, while .SK 1 always leaves one pace that i.s bLank e:a=pt for the !leader and (ooter.

11.& FORCI~G .~-., ODD P GE

.OP

11WJ macro i.s used to csure thai. the (oDowml text betins at the lop of aD odd-aumbered Pate. If
CUJTently at the tJ:)9 of an odd pa,e, co matiaa taUs piace.. If cur:renuy oa an even pap. text resumes
printul1 at. the top of the aen pace. If currmdy oa aD odd pace (bul 110t U the top 0{ the PIle) oae
bWtit paie is produc:d. and .,rintinC resumes OIl the pace alter that.

11.J S«tia1 Poiac SIze a.aci V.nics1 Speq

In rroff, the default POUlt size (obtained (rom the. ~ S (2.41> i.s 10, with a vertical ~ of 12
pointS (j.~., 6 lines per ind1). The prevailini point size and vertical spaCna may be chanSed by
invOQnI the .s aw:ro:

.s (aral
If arz is aull. the prrIlOU.$ point size i.s restored. tr arz is neptive. the point size i.s dec:rementecl by the
~cd amount. It art i.s slg'Md positive, the point size i.s incremented by the ~ed amount. iIlld if
art i! l.I.1l:!iiIled. it 13 used as the new point sizer. if art i.s creuer thaa 99. the ~fault point size (10) i3
restored. Veroc::U s-pac:in; is always two points greater than the point size.11

11. DUlORS AND DE3CGGING

11.1 trnr T.rm.i.zwiollS

Whet! a :nacra d.i.scover:s an error, the (oilowinl GOns oa:ur.:

• A break oc::::'~.

tL Foocaaaes ill 1ft ;nued iD • SIZe I'WO IlOims ~ u.s IDa paia& sia al U. bartr ... dI III adcIiooaIY VWIII:at ~ al
u.. paaus be-.- [0Qm0UIL

• To avoid coafusioa reprd.ina the location of the crror. the formaacr output bu6er (which may
COI1lIiD some text) is printed.

• A sbart messqe is printed pvina the name at the macro that found the error. the type of error. and
the approximate line number (in the current iDput file) of the last processed input line. (All the
error messaacs are explained in Appendix E.)

• Processin& tmmnate:s. unless the register D (l.") his a positive value. In the latter case. proc::ssin&
CO!IUnues even lhouab the output is pvameed to be dermpd from that point OIL

rr T1w mW' mmagr is prinmJ by Writi". it dindy III dw "., 's tmrri1flll. (f an OUtpUt fill~, such as
3(00), 4S00). "" ~(l) is bwtr II.!2d III past-proCess a.roft' output. dw ~ ftfIZ}I ~ Itlrbll!d by
kJ-". inzenru:red 'With lD:I Mid 111 that filur 's 0IlIpUt bqff.,.

rr (f,iWr tbl(l) or eqn(l)/neqn(1), or borh are bfinr 1I.!2d, and if 1M -oUst option of 1M formtlller
anat:S W last page 0/ W dOCUlJVIII not to bt prilfUd, a hIurttJGs '"broQn pipe" masa~ n:sula.

Jl.l Dlsappeuuc:e of OaqIat

This usually occurs becamse of an unclosed diversion (e. a.. missin& .FE or .0E). Fortunately, the
IDIa'OI that use diversions are cweful about it. IDd they c:beck to make sure that UlepJ nestines do not
oc::cur. U my mcssase is issued about a missin& .DE or .PE, the appropriate adion is to sean:b
backwards from the termination pointlookina for the comspondin& .DS, .0F, or.FS.

The following command:

Ifep -n ··'.IEDFI1[E.FNQS)- files .••

prints all the .DS, .DF, .DE. .PS, .FE. .!S •. TE, .EQ, and .EN macros found in fila each
preQ:ded by its file came and the line number in that file. This listina can be used to check for illesal
nestin& and! or omission of these macros.

13. EXTE!'mING ~'lD MODIFYING THE MACltOS •

13.1 Namlq (Aayeadoas .

ID this section. the followina conventions are used to dcsaibe lepl names:

a: diait
a: lower~ letter
·k upper-case letter
z: my letter or dicit (my alphanumeric c:baracter)
s: special character (any non-alphanumeric c:haracter)

All other characters are literals (i.e •• stand for themselves).

Note tba1 ~ Macro, and SlTi~ names are kqJt by the formatters in a sin&le internal table. so that
there must be no duplication &mODI such names. Numbter ~iS1B names are kept in a separate table.

13.1.1 NGma UsaJ by FomraMn.

requests: u (most common)
m (oaly ODe. c:urreDlIr. .el)

rqisters: aa (DGI1Dal)
.l: Cnormal)
..s (oaly cae. currently: .$)
qc. (pqe number)

13.1.2 NtZIrIIU Uwi by PWBIMM.

AA (most common. aa:essible to user)
A (Jess COiZWlOi1, accessible to user)

)% ~ coastmU
> x (j11~ ctynamic)

AA (mosc c:ommca. a.:cessible to a:ser)
A (less c:ommca. acc::mOie to user)
]x (inten2al, usually aJIoc:u.ed to ~ fuaaioDS throUlhout)
)% (izuema.l~ mere clyc.amic us:qe)

~ Aa (most ccmmoa. accas:sible to useo)
An (ccmmca., a.c::ssibte to u:ser)
A (acc::ssible. set oa command !iDe)
:x (r.cc:a!y intema1~ ran:iy xc:s:s:ible. usually dediC3led)
:x (jl1tenW, dynamic.. te~es)

11.1.1 NtuIC Uw by EQNIHEQN anti 7111. The equation ple,noa:sscrs, ertll(l) and IIelllO), use
~r:! aNi min.; aames of the form lUI. The table preproc:ssor. (bI(I), uses names of the form:

a- a+ at 1m 4A ## #- #- AI. Tet. TW

11.1.4 USIT-~1tIJlJItt Nama. A!bt:r the "bove, what is left for user e:aea:ricas? To a"lOUt problems,
we SUgzesl U3iI1I a.a.rne:s that CC1lSi.sl citaer 0(a. sialle lower-case letter. or ol a lowe-c::ase lener
followed ~ allytb.inl other lban a lower~ letter. The foUowinl is a 5aml'le a.aminI COIlVeI1Coa:

ClaC'OS: aA
Aa

a
a) (or ai. or al. etc.)

a
aA

13.l S.mtri. E%tetWou

13.1.1 A~ruiix H~dings. The foUowinl gives a way of leneratinl and Iluznberinl a;lpe:2dicl:s: •

. m Hu I

.m a 0

.de aH

.m' a .;. 1

.m P a

.PH Appendix \ \Ila • \ \ \ \ \ \ \ \aP0 •

.5X

.HU "\\S1-

After the above i:nitiaJ.iz:a.ticn and dl:mlitioa. cxh caJ.l of the form. ... ~ -title·" bqins a new page
(wuh the i'3Ie header c±1an.ied to •• ~ /I - II") and s=erau:s aD um:wmbercd bead.i.D.I of lllU­
wtticl1., if desired.. c::m be saved for the table of ecntents. "I'bcse who ~ A~ tides to be
cz:ntered must, in addition. set the ~ Ht: to 1 (4.2..l.J1. •

11.1..1 Ha~1tf IndDtt with ram. The foU~ example iDu:nma the I.ISe of the hlnli"l-indent
fe:lD.lr'e of vuiablcHtem lists {S.J.J.61. F'trst. a user-dci!ned maao is buill to IICI::C;'t four a.rgumenu t1w
m.a.lce up the marie. Exh U1Ument i.s to be se~ted from the ~ous one bT a tab dlancter. tab
~ are deDned la1er. SinCl: the fim argument may Oqin widl a period or ~he. the .. \.t .. is
used 50 UW the formatW' will act interpret sud1 a line as a formaaer requc:sl or macro. I' The U\t" i.s

UIftSI·tod by the formanc into • tab character. The "\e" is used 10 c:oaca'enete tile IiDe of ta:t that
follows the maao to tbe IiDc of T.at built bJ the IDICZ'O. The IDKrO defiDiCioa IDd III eumple of its
use are IS foUows:

.de aX

.Ll
\It\ \$1\,\ \$2\1\\$3\t\\$04\t\c

.11 9a lID 21n 36D

.VL l6

.aX .Db all \. DO
No bfpheMtiou.
AU10mItic hypbcrJaUOD is turned 06.
Words cooWaiDI bypbeDS
(L&-, mccber-iD-law) may still be $pUt across·1iDes.
.aX .hr 011 \. DO
HfPhe:aate •.
Automatic hJPheDalion is turned OIL.

.aX .~\oc DOlle DODe DO
Hyphenation iJldjcator c:haracler is set to "e" or remowd.
Durina text processiq the iDdic:ator is suppressed
aDd wiD not appear in the oU1;)ut.
Prepem1in1 the indicator to a word has the etrect
of preventiq hypheDlliOD 01 that word.
.I.E

n. resultiq outpUt is:

(c SIIDds for • space)

DO No hyphe:Dation. AutomaUc hypbcDacioD is turned 06. Words
CODtaininl hypheDS (La.. molber·iD.Jaw) may sdll be split
II:rOSI JiDes.

.by

.hcc

CD

DOae DaDe

I.e. CONCLUSION •

no

HJPhemte. Automadc hyphc:DatiOD is tumed on.

HypheaatiOll iDdicator cbaracter is set to "c" or removed.
Duriq text proeessinl the iDdiCUGr is suppressed aad will DOt

appear in the outpUt. PrepencIiq tbe indicator to • word bas
the etrect of prewntiq hypheDation 01 thai word.

The followin& are the qualities that we have tried to emphasize ill P"NIINM. in approldawe order of
impanaDce:

• RDbusatGJ ill tM./tJa 0/ mw-A user Deed DOl be an fII'Q61tro.1 expert to use these IDICZ'OS. When
the ~t is iDcorrect. e.itber the macros artempI to make • reasonable interpreWiOll of the error. or
a messqe desaibina the crror is produced. We ha'le uied to minimize the possibility that • user
would let c:ypcic sysleID messqes or SU'IDIC 0U1pUl as • rault of simple erroa.

19. n. ~ "\.loo is ~ lip tbI lOl1lWleftl 10 be • ""zero.widdli" i.e.. it cav:.s DO OUqlUl
cllanCl.wllO ..-r.

• f:II.2 01 1M fiN ~ aoc-.JJ7W1fa- [t is oot necessary to write ~ml)1ex seque:u:e:s of command, to
pr'ClIducI simple dcc::w tents. R=socabje aefault V1lues U'I pnMded. wtIera 11 au l'OISible.

• ~tio,,-There are many diJ!ermt preferences in the area of dcc:'.Jment styfinl. Mm.y
pcm1eter.l are provided so that users QUl adapt the out;!ut to their re:5;)CCtive aeeds over a wide
~ otsrytes.

• ~" a, mrxiIrauiy apG't 1ISfn-We !:lave made a SU'OI1I don to use mnemonic aaminl
c::oaventioas and cotmstent ter:bDiques in the ~n.struction of the rmaos. Namini ccnventioas are
liven so th.u a user QUl add ae. a:w:ros or rede1lne e:ti3tin1 ones. if aecc:s:sarr.

• Drntz i~nUna-The most ~mmoa ~ of I'WBIMM is to print documents on hard<Ol'f
~ter term.iJ:W.s. using the Itt'Offfortnatter. The macros QUl be used c:onveaiendy with both 10-
and 12-pi~ termll:lal.s. In addition., out;!ut c:u1 be sc:umed with an a~ropriace CRT t&rminaL The
tnaa'OS have been constnu:ted to ailow compatibility with rroff, so that output an be produc=d both
OIl cy-pewr'iter-like terminals and on a phototypeSetter.

• Minimization 0/ inpul- The desilD of the c:w:ros attempts to minimize ~dtive typina. Far
~e. if a user wants to have a blank line after all am· or second· level he:adin&s. he or she aeed
only set a ~ pan.meter Old at :""! !:egi.n.ainl of a document. ~tb.er than add a blank line after
e:x:h such badin&. .

• De::Dupii~ of input /omttlt from OUZJ1Ul sryw-There is but one way to pre;are the input t&xt. aithoulh
the user may obtain a aumber of outpUt srytes by sctWl& a few globa! tlqs. For example. the .H
macro ~ il3ed for all aumbered l:u:ading:s. ~t the aI:tUa.l output scyle of the:se bead1nlS may be made
to vary Crom document to doc:-.unel1t or, for that matter. within a sinale documeaL

fuIUre rele:s.se:s of I'WBIMM will provide additional features that are found to be useful. The authors
weicome ~mme:ats. suUestioa:s. md critiemns of the macros and of this manual.

Adatawie:/:g'l.'1tI!1fc, We are indebted to T. A. Oolotta for his contil1ui.na iUidaac:e <1winc the
deveiQ9ll1eUt of FWBIM..... We also thank our maay users who have provided a:1uc:h oniuable feedbart.,
both about the rDaC:'OS ax! about this manual. Many of the features of PW'8IMM are patterned after
5irr.til.U' features tn a !lumber of earlier macro paeup:s. ami, in particuJat. aftc:r one iml)iemcnted by M.
E. I..e:sX. f"tna.Ily. beC111Se ~ often IPProadles the limits of what is possible with the text
form.a.a.ers. c1winI the =le:aenwion of I'WBIMM we have &enerated atyl'ic:a! requirements and
encountered unusual probiet:lS; we thank 1. F. Os:sanna for his williniDes3 to add acw features to the
fo~.and to in'm1t 'n1' of bavinl the formatters perform unusua! but desUed a.ctioas.

hillft8ClS

{l) Oo4ot13. T. A.. Haight, 1L c.. and ~ri1c., Eo M.... ods. PwBtuNr:r Use's MalfUtJ/-Editlon 1.0.
Bell Laboratories. May 1977.

[.21 Bell Uboratories. ~ethods and SY'tems Department. Oftlc:e Uuide. Unpublished
~emonndum. Bell Laboratories, ~ 1972 (as revised).

[31 Kcnrigb.aa. a w. UNiX for Bqinners. Bell uboratories. October 1974.

[41 ~ a w. A Tutc:Iria1 IaIroduc:tion to the UNIX Text Editor. Bell I...abontories. October
1914.

[51 ~ B. W. A TAOPP Tm.oriaL Bell Labonccries. AUCUSI 1976.

[6) Ken:li.~. a W .• md Clerry, L L Typesettini Mathematics-User', Guide (Second Edition).
Ben uboratories. June 1976.

[1] Sc:roc::a. C. New Graphic Symbols for ~H and NEQff. Bell ubontories. ~ber 1976.

[al Sand!.. O. w., and ~ E. M. TYl"in& Ooc:uments with ~ Bell uboruorie:s.
0c::.00er 1977.

!
/

J."! . /

[9) Qsswnna J. F. NROf"FrrROf"F User's M.a.cuaL BeD Laboratories, October 1976.

(10) Botwmi, L. 'E., and Glasser, A. L. 5ccsJpWS User's Manual. Bell Laboratories, November
1977.

[11] Lesk., M. Tbl-A PrOiJ"aIIl to Format Tables. Bell Laboratories. September 1977.

Appeada Ie DEFINInONS OF LIST MAClOS.

... 7'7zis cppettdix i$ i1IU1Wd only P ILSII!rS tICCUSlDmtd "' writi.,/omttlWl' maao.r.
Here are the definiLioas ot the list-initialization macros {S.3.3):20

.de AL

49

.if! e\ \S1 ••• if1.\\Sl.l •• if1I1\\Sl •••• if!.\\SI.AII .ifle\\Sl.I • .if!e\\S1eie .)0 -AL:bad ug:\ \$1

.if \\D(.$<3 \{.ie \ •• \\S2.-0 .)L \\a(J..iD 0 \\D(Lia·\.e\O\O.eu 1 "\\S1-

.eI .LB 0\\S2 0 l 1. "\\SI- \l

.if \\D(.$>2 \[.ie \,..\\$2,.-0 .)L \\DCLiD 0 \\I1CLiD·\.e\O\O •• u 1 "\\S1- 0 1

.eI .LD 0\\S2 0 2 1 "\\S1- 0 1 \l
-.de BL
.Dr ;0 \\a(Pi
.if \\II(.S>O .if \ •• \\SI.>O .Dr ;0 0\\S1
.if \\0(.S<2 .LB \\11(;0 0 1 0 \\-(]JU
.if \\IIC.$> 1 .LS \\11(;0 0 1 0 \\-(BU 0 1
.rr ;0 ..
• deOL
.Dr ;0 \ \a (Pi
.if \\I1(.S>O .if \ •• \\$111>0 .Dr ;0 0\\S1
.if \\11(.$<2 .LB \\0(;0 0 1 0 \(em
.if \\II(.S> 1 .LB \\0(;0 0 1 0 \(em 0 1
.:r;O ..
• de ML
.if !\\II(.$.)0 "ML:missiol 111-
.Dr ;0 \.e\\Sleul3u1\\D(.su+ lu\- set size in u's
.If !\\II(.S.1 .LB \\0(;0 0 1 0 "\\Sr
.if' \\D(.5-1 .if 1\\D(.$.2 .LD 0\\S2 0 1 0 ,,\\SI-
.if \\D(.$-2 .if'I\ •• \\S2 •• LB \\0(;0 0 1 0 "\\S1- 0 1
.if \\11(.5-2 .if \.(II\\S2 •• LB 0\\$2 0 1 0 "\\st- 0 1 ..
.de lU.
.JII' ;0 6
.if \\II(.S>O .if \.II\\SI.>O .Dr ;O.O\\SI
.if \\II(.S<2 .LB \\0(;0 0 2 4
.If \\II(.S> 1 .LB \\0(;0 0 2 4 1 0 1
.rr ;0 ..
.de VL
.if !\\o(.$.)0 -vI.:mj'l'ri"1 11'1-
.if 1\\II(.S·2 .LB O\\SI 0\\$2 0 0
.if \\11(.5-2 .LB 0\\$1 O\\Sl 0 0 \A: 0 1

2D. CD !!lis sqe •• ~IS m. BEL dWaI:Ier ••)D is us mccmal P'WBIMM IIIKft) tIW priDlS aror mrssaps IDd .)L is
IiIIIliar til J.B. czcep& tlw it CZl*IS iu UJUlllCDllIO be JCIIIed.

Al:J.y o(tbese em be ~ed to ,reduce di6em1C behavior. eo&-, to provide two ~ be~=n the
bullet o(a bullet item and its text. rede.dnc . .BL as (oilaws befure involcinllcl '

.de BL

.I.B 3 0 2 0 \\-(BU

A.ppeM1z. B: USEll-DmNED LIST STlUJCTU1U:S •

., This appmdiz is illlVUhd 0"" P users Qa:ustrJmed to writinr /Omtlltln' mac7'OS.

Sl

It I l&r&e document requires complex list structUres. it is useful to be Ible to define the appearance for
each list level only once. instead of havins to define it It the bea:innina of eacb UsL !his permits
consistency of stYle in I larie ciocumenL For exampie. I &eneralized list-initWization macro mi&ht be
ddned in such I ""Y that what it does depends on the list-oe:stinllevellist nestina in e6ect at the time
the mlCl'O is c:a1led. Suppose t!W levels 1 tbrouab 5 of lists are to have the foUowins appear:mc::

A-

Ul

•

+
The foUowina code deAnes I macro (.aL) that always begins I new list and detemDnes the type of list
according to the current list level. To undemand it. you should mow that the number reIister :, is
used by the I'WBIMM list macros to determine the current list level: it is 0 if there is DO aurendy active
list. £acb call to I list-i.nitiallzation mICro increments ~ and each .LE call dec:n:ments iL

.de aL

.\ - register I is used as 1 loc:a1 temporary to save :1 before it is ch.ansed below

.m I \\D(:,

.if \\na- 0 .AL A \- give me an A-

.if \\n&-l .LD \\n<Li 0 1 .. \- live me I [1]

.if \\Da- 2 .BL \- give me I bullet

.if \ \na-. 3 .LB \\n (Li 0 2 2 a \- give me III a)

.If \\na-" .M!. + \- give me I +

'Ibis macro em be used (in conjunction with .U and .LE> instead· of .AI.. .llL. .BI.. .LB. and .MI..
For example. the foUowina input:

.aL

.U
first liDe.
~
.U
second liDe.
.I.E
.U
third liDe .
.LE

wm yield:

A- 1im liDe.

U1 second line.

B. third line.

There is anolber approach to lists that is similar to the .H mechanism. The list-initialization. as well as
the .U and the .LE macros are all included in • single macro. That macro (called .bL below) requires

m aI1ument to teU it wtw level of item is required.: it adjusts the lisl level by eitber ~I a. Ilew
tisl or seaia:l the lisl levei baa to • ~ous vIlue. md then issues I .U mx:ro caD to produce the
i1em: .

• de bL
.. \\11(.$..at I \\Sl \- it there is III 1:"IIJmeDt. that is the leve!
.a ..at I \\0(:1 \- it DO atlUZIIaI&. use current level
.if \\as-\\II(=I>l .)0 --ILlEOAL. SXIPPING OF LEVEL- \-~ lew! ~ more thlll 1
.if \\D.&>\\a(:1 \(oU. \\ai-t \. it I > :a. beP aew Ust.
• Dr I \\a(:1\J \- and reset I to CUZ'm1t level (• .11. chmles z)
.j[\\a(:;>\\ai .LC \~ \- if :; > So l'fUDe baa to correa level
'\ • it :; - So Slay within ~nt lisl
.ll \ - in all CISeS. let out III item

For .bL to worX. the pre"';ous de&itiou of the .aL macro must be chan,ed to obcain the value of I
from itS ~t. rather than from ."t. InvoiCnl.bI. without a,rzumeuts causes it to suy at the ~nt
lisl leveL The E'W!IMM .Le ma='O CLlst Car} removes Ust cSe:scril'UODS ImW the lew! is less th.m or
ectY.ai to t.I1a& of its aqumeaL Fer exm":"le, the .R macro mdudes the caU ... LC 0". It text is to be
resumed a.t the end of a list. iD.sen the caU ... LC 0'· CO dar out the Iisls CDml'Ier.eiy. The eumple
below illumales the ~lauvely small amount of in1'uc aeeded by this ",praach. 'The in1'ut text:

The quiet browa rox jum1'd over the luy dOC'S back.
.bL 1
first Une •
. aL 2
sccoad Une •
• bL 1 .
third Ih1e.
.aL
CounJ1 liDe.
.LC 0
fifth line.

yieias:

The quia browa fox juml)eCi over the lazy doc's baa.

A. 5m Iiae.

[lJ !ICCOI1d line.

a. third Une.

C. r ourth line.
fifth Ime.

S3

App"""'b C: SAMPLE FOOTNOTES

17rt jD/JI1wi1ff ~ illustnna ~, joomo16 stYles and both IdbeJaJ anti autrJmdtictl/ly-~ed
.,PJt1fOIG. 1M tJCZIIIZi input joT tJw ilrlnwdi4UO' followi", tD:I IInti ./iN tJw joomota at tM bottDm 0/ this ptJZt
a WW7I 011 1M jolJowing ~:

With the footnote style set to the nro6' default. we process I footnote l followed by &Dother one.-­
Usia, the .FO macro. we chanCed the footnote stYle to bypbeDate. riabt maraiD justification. iDdc:nt.
mel lett justify the la~. Here is I footnote.2 IDd mother.t lbe footDote style is DOW set. apin via
the .FD macro. to Do hypbcnaliOl1, DO riabt J:DIII1in ju.sti&:aticm. DO iDdeDtalion., mel with the Iabe1
left-justified. Here comes the 8naI. one.l

I. This is tbe!nl (00CD0te Iezl CXIIIqIIe (.P1) 10), This is tbI default srpte tar"'" n. risIn IDII1iD is _jasdIed.
HY1I'-"'ioa is lflii permaa.ecl.. The Ial is iDdoIIDlIId. IDd the 1U1C1C!11'isIIlJ IabIi iI ,...jusIi6Id ia tbe 1al-iDdall

- 'tbis iI me SIICIDDd t~ tal IIlWIqIIe (.PI) 10), 'This is aIIo tbI defauk ..,aj'ra bu& widll IaaI tOOCDOlC
~II)'tbe __ •

2. This is \be third (00CD0Ie eumpIe (.PI) n, n. riIbI aqiD is jusdIted. tbI toamaca tal is iN1ented !be I&bel is ~.
jw&i!ed ia tbe Iat.macat.,z. AJIbouIh DOl ~ ~ II)' mia eumpIa. lIJpIMaadaD'ii pamiaed. The qWI::k
brvwD (os jImqIed em=' tbellz7 dos's t.c:L

t This iI die (0UI'lh tOOCDOte euDI$IIe (.PI) n. n..,. is die __ • tba dIinI tootDDClL
3. This iI!be MtII (oomoce eum1lie (.PI) 6), n. riPt IDII1ia isllllfjusQ&ld. bTPIIICDlI:iaa illlllfpermitted. tbe tOOCDOlC tat is
_ jndeated. IDd the label is placed 11 the ""'lim 0(tbe 6rsl1iDe. n. quick brvwD (OK juI:Dped 0". mallz7 dol's bu:L
Now is tbe ImII/ (or all IDOd IDCII 10 CDIIIC 10 !be lid 0(uaar CIIUDIr7.

.. l:D 10
Wiua ~ roccrou St1Ic SIC tD Us.
J mo6
de{aWz., j7rOCC:SS a roocno~\·F
.is
-nm is tn. am rcomoc. ten exa.all'l. C.rD 10).
Thaa is tba deia.wl szyte rot
J azaIt
'Tb. ri1b& matlizl is
J aClC
.~
H~i3
.1 ace
~aed.
!b. te:n i3 inr!e:1ted. mel Use autormuc:aily lenerateci labej is
.1 :i1iU ·justiilecl
ID me ten·~t space.
.n
(oUowed by lI1o<ber Olle.-'\c (c SUIlcis ror a space)

.FS-
!bls is the secolld rcoUlote lUt example (.m 10).
Tb&s is .usa tne deiauit
.1 arorf
srrle but with a loal rCOUlote label providecl or the user .
. FE
.rD 1
t:.sml the .::-0 aw:ro, chmleci th. roomote st)'te to ll)'l)bel1lte. rililt :D.IJ'Ii,a justification,
~t. aaa lal jusaty U:le Iabei.
Here is , rcomete,\·F
.is
"'i!Ds is Us. third (OOUlote ~I. (.m u.
n. tilDe 020U'1iD is ~ecl. the rCOUlC~ te:a is indeated. Use label is
.J IcIl 1usW1ed
iD :.be tut·iI1c1eat space.
Altboulb l20e aec=sanly iDusuated by this example, l1ypftawiea is pamietec1.
!be qWCX browa roa jumped over the Lu7 dol's bide.
.,FE
mel meCher.\(dl\Q
.F'S \(d4i1

Tbzs IS Us. rourUs rOOll1Ote exmIple (.m 1).
The st)'t. is the sa.auI as me thud toocnoce.
.n
.ro 6
'The (comOf.e style is aaw -. q:aiD v;a the .m maaa, to 120 l1ypheaacioa. ao ript ~ justi4c:ation.
no indeftQUOG. aDd ~th the t.aca !eft·jusa!ed.
Here comes Us. azw oce.\-F\c
.F'S
This is the ftfUl (cccacce aampfe (.Fe 6).
n. li1IU mar;iIl is
J!1CC
~ I%nIbcuacoa is
.laG(
~ the rCOClloce ce:a is
.1 COl

iDdalted. lad the !abe! is plac:eci u me becinaiD~ of tn. b 1iDe.
The qwdt browa roa j~ over the 1U)' dol's b-=t..
Now :s the uma ror ajl Icod IDaI tD come to the aid 0{ tneil' COWSU7 •
.FE

AllpeDlllx It: SAMPLE LETTEll

,.,. 11w nro6 dnd troit OUtpUtS ~", to thI input tDCl ~Iow tw WwrI 011 tJw jo/JDwi", paza.

.ND ~y 31. 1979"

.n. 334455
Out-O(-Hours Course DescriptiOD"
.AU -0. W. Stevenson- DWS Py 9876 5432 lX-1ll
.MY' 0
.os
J. M. Jones:
.DE
.P
Please use the foDowini de:sc:riptiOD for the Out-oC-Hours course
-oocumcnt Preparation on the PWBIUNlX-
.FS •
UNIX is • Trademark of BeU Laboratories.
.FE
time-sharin& system-:
.P
!be course is intended for clerks. typists. and others
who intead to use the PWBlUNIX system
. for preparinc doc:umentation.
!be course will cover such topics as:
.VL 18
.U Environment:
utiliziac a time-sb.arin& computer system;
aa:essin& the system;
usinC appropriate output terminals.
aU Files:
how texJ is stored on the system;
directories; "
manipuJali.D& files.
.U --rext editin&:-
how to enter text to that subsequent revisions are easier to make;
how to use the editina system to
add., delete. and move lines of text;
how to make comctioas.
.U -Text prccessinl:-
buic~;
use of ienen1-purpcse fomwtinC packaaes.
.U -other fadlities:-
additional capabilities useful to the typist such as the
J ~. spell. dilI' ••
aDd
Jpep
commands and • desk-calculator P'Ckaae.
.LE
.so jrm
.NS
S. P. Lemme
H. O. Del
M. HD1
.NE

5S

Sell ~abaratori.s

s~bj.ct: O~t.of-ao~rs Course Description
Case: 33 445'5

aat.: Hay 31, 1979

J. H. Jones:

from: D. W. Stevensoe
PI 9876
,X-123 z5432

?l.ase use t~e rc::~wi~g aescriptioa tor tae O~t-or·Bo~rs co~rs.
·Ooc~m.ct ?reparation 00 t~. P.S/ONIX. tl=e-sbaring s1st.: 8 :

The course is intendea tor cler~s. typists, aad others who intena
to use the ?W3/UNIX system tor preparing doc~mentation. The
course will cover ~ucb topics as:

Env!.roameat:

riles:

ut!.li:ing a time-sharing computer system;
accessing t~~ system; usiag appropriate o~tput
terminals.

bow text is stored on the system; directories;
mani~ulaticg riles.

~ow to eater text so that subsequ~nt revisi~ns
are easier to make; how to use the ,editing sys­
tem to add, aelete, and move lines or tez~; bow
to make corrections.

Taxt processing: basi~ concepts; use ot general-pur,ose tormat­
ting packages.

Ot~er tacilities: additional capabilities us.tul to tbe ty,ist
such as the ~. spell, ~. and ~ com­
mands ana a aesk-calc~lator packase.

?Y-9815-iJiiS-jrm

Copy to
S. ? I.ena:e
a. O. Del
H. lUll

D. W. Stevenson

• UNIX 1s a !raae=ar~ ot 3ell Laboratories.

@
Bell Laboratories

III.b;Ic:: Out-of-Hours Coarse Desc:rilJd01l
ea.: 3J.U55

dw: May 31. 1979

I. M. lODes:

&om: D. W. SteY'IDSOD

py""
1X-W~l

Please ase the foUoVrinl description for the Out-o{-Hours course "'Doc:ument Preparation on the
PWB~ time·sbari:n& syslem":

The course is intended for clerks, typists, and othus who intend to ase the PWBIUNIX system for
preparina doc:umCnlation. The course will cover such topics as:

EnviroDmem: utilizina • time-sharinl computer system; accessin& the sysl~ usin& appropriate
output termiDals.

rues: how te%t is stored OIl the ~ directories; manipuJatiD& files.

Text editin&:

Text processing:

Other facilities:

PY·9876-DWS-jrm

Copy to
S. P. LeDame
H. O. Del
M. Hill

how to enter text so tha1 subsequent revisions are easier to maJce~ how to use the
editin& system to add, delete, and move lines of text; how to make corrections.

basic concepts; use of general-purpose formanina packazes.

adcfitional capabilities useful to the typist such as the typO. spell. di/f, and pq com­
mands and a desk-c:a.lcu1l1or packaae.

D. W. SleTeDSOD

• UNIX is a Trw:Icmart 01 BeiI Ubora1Dria.

SI

A~ E: tllOa :'riESSAGIS

L PW151MM '!:rrw ~essaces

~ l'WBI~ error mc:$Sa3e coWls of a.stanciarc1 part roUowed by a vuiable part. The standard part is
0(me form:

ElUtOR;i.nQUt line II:

The vuiable ~ coasisa of 3. des::i;ti~ tncSSai=, U3Ually beljnni"1 with a macro aame. The vvia.ble
l'8n! are listed below in aJl)ha.beticaJ order by aw;:o name, =en with a mon= complete explacatioa:%Z

Cleex n., AU, AS •. ~ MI'sequenc: 1'...e I'"'per sequenc::: of aw::os for the belinninl o(a
memorandum is sllowa in (6.91. Somethialbas dislurOed this
order.

Al;bad arg:vaiue The 3Z1U.tnent to the .AI. macro is aot one 0(1. A., a. 1. or L
The incorrect afiument is showa as wziu&

CS:covet sheet too lo~ The text o(the cover sheet is too tOEII to fit on one pile. The
al:dtt3Ct should be reduced or the indeDl o(the abstnct should
'~(6."t.

OS:too many ~lays More Ihm 26 aoatinl displays are active at oace, i.e.. bave
been accumulated but aoc yet ou~t.

OS:missinl FE A dis;llay starts inside a footnote. The likely cause is the
omission (or misspcllinc) of a .n to end a previous rooUtote.

DS:missinl DE .DS or .DF oc:c:un withiD a ~Iay. i.e., 3. .DE has been
omiaedor~

Dba OS or OF active .DE bas been el2CCUDlen:d but there bas not been a previous
.DS or .DF to awd1 it.

FE:.no FS .FE bas been encountered with no previous .F'S to ma!Ch it.

FS:missinl FE A previous .F'S was aot awched by a dosin.l .FE. i.e., an
utem~t is bema made to beiiD a footnote inside another one.

FS;missiaa DE A rootnote statts inside a display. i.e" a .DS or .DF oa:urs
witbout a Marchini .DE.

H;baC u;:TIlue The firn argument to .H must be a single digit rrom 1 to 1.
but WI. bas been supplied insteId..

H:nriss:inl FE A lleadinl macro (.H or .HU) occurs inside a (ootnote.

H:II:2UsinI DE A headiaa CDaC'O (.H or .HU) occurs inside a d.i.splay.

H:mminl U1 .H needs at least 1 qument.

HU:mis:sinI3l1 .HU needs 1 argument.

I..B:missial ara(s) .L.B requires at least 4 aquments.

I..B:too many o~ U.sts Another llst was started when there wve already 6 active lists.

I.E:mismacched .LE has oc::urred without a previous .L.B or other list­
initi.aliz:uiOD mac:o 15.J.Jt. Althou1b this is aOl a rata! error.

59

the messap is issued because there almost certainly exists
some problem in the pre=d'Di tar.

U:no lists active .u oa:urs without a precectinl UsI·iDitWizatioa macro. The
latter has probably been omitted. or bas been separalC(1 from
die .U by m interveDiDI .H or .HU.

Ml..-missiD1 U1 .ML requires at leISl 1 &I'J1III:aL

ND-.mi.ssiq UI .ND requires 1 &qWIIeJlL

Skbld ars:vaIUe The arsumeDl to .sA Cit my) must be either 0 or 1. The
iDcarrecl arsumeat is shOWD

SG:inissiaa DE .SO occurs inside a display.

SG:missinl FE .so occurs inside a Cootaate.

SG:no IUthOrs .50 occurs without my previous .AU macro(s).

VL.-missiD1 U1 • VL requires at least 1 IfIUIDCI11.

Do Formatter Error Met

MOSt messales issued by the formatter are self-explazwory. Those error messales over which the IMI'

·bas (some) COl1troi are listed below. AJtyother error messqes sboukI be reponed to the local system­
~ppon aroup.
'"CaImot do ev" is caused by (a) settina I pale width that is aegative or uuemely shon.. (II) seama a

paae lel1lth thaI is netalive or extremely sbon. (c) rel)roc:essinll macro pacJcaae (e ... performinl
a .so to I macro package that was requested Crom the command line). and (d) requestiDa the - 51
optica to troll on a documeat that is lcaler thaa leD paps.

"CaDDot open jffltlUlllW" is issued if ODe DC the files in the UsI oC ales to be pmceswI ClDDot be
opeaed.

'·uc:eptiOI1 word list full" indicates that too mmy words bave been specified in the hypheaatioa
exceptioa list (via .hw requests).

"Line overflow" means that the output line beiI1& leDented wu too loa& Cor tbe Cormatter's liDe
buffer. The excess was discarded. See the "Word overflow" messqe below.

··Nca-exisw1t fOl1t type" means that I request bas been made to mOUlll III UDJc:aown ConL

IINoa-existeI1t macro 51e" means that the reqUested macro packqe docs DOt eldsL

'·Noa-aisleDt tennina1 type" means that the terminal opdoas refers to III UDJc:aowa termiDal type.

"Qul of teml) file space" means that additioaal temporary space for macro definitioas. diversioDS. etc.
ClllDot be aUocued. This messqe oCtea occurs because of UDdosed diversioas (missina .FE or
.DE). unclosed macro detinitiODS (e mjssil1l " •• "" or a hup cable oC COIltel1ts.

"Too many PIle l1umbers" is issued when the UsI or paaes speciBed JO me Cormaaer'-o option is too
loa;. .

'"Too maay s&rinaImaao DImes" is issued wIlea the pool or striq IUd macro aames is fu1l. Ul1l1eeded
SI:riqs aDd macros caD be deleted usin& the .rm requesL

'"Too mury Dumber ~ .. means that the pool or aumber reaisw aames is fun. Ul1l1eeded
resisters can be deleted by usiq the .rr request.

"Word over1low" meaas thai • word beiDa leDerated eD:eeded tbe formaaer's word buifer. The
ac:ss c:hanclers were discarded. A likely cause for this mel Cor the "Line O'Ved]ow" message
above Ire very 1011& lines or words .enerated throup the misuse of \c or or the .co request. or
VCf'/ 10111 equations produced by Iq,,(l)/neq,,(1).

L MM:r.

The fcXlowint is 1.11 al"babetical Usl 0(macro aames used by l"W'8IMM. 'The am line o(eadl item giva
the came ol the macro, a me! c1escriptioa. and a reference to the secioa in which the macro is
described. The seccad line lives I PfO&OC'1P= c::alJ of the mKrO.

MIeras r.I:IIriI:eci with aa sstwk are IlOl. ill amenl. illYOIced dlrec:d, by me user. Rather, they are
',., e:r:iD" c:U1eci from imide b.ader. fooLa', or other tDIC'QL •

IC Oae<chmm PIC bpal (11.4'
.le.

2C Two<clumn pt'O"""':sjnl (11.4)
.2C,

Af Abstr:Ict end (6.4'
.A.E

AF Altenwe formal o(''Subjec-.JDueiFrom'· bloci: [6.7.21
.M (c:cmpany-aame)

AL' Autamadca1ly-inc::reme:sted U:sl stut (5.3.3.1)
.AI. [t1l'e) (text-indent) [1J

AS Absa':M:: start {6.4J
.AS [arai (iDdcati

. AU Author informatioa (S.2'
.AU aame [imtials) [loci [del'tl [extl [rooml [ard [ard lard

s Bold (1mderlb:2e i:a nrod') (n.l)
.S (bald-uli [previoas-foac-qJ

BE Bottom EM (9.13,
.BE

BL SuJlet list sun (5.3.J.2J
.IL [text-iadencl (11

as. Bouam Start {9.13'
.BS

c:s 0,.,.. sheec (to.2'
.CS [pqal [otherl [tew) [8ss1 [cblsJ (re{sl

OE ~lay_ [1.1)
.DE

Of Ois;Jtar ~ SW"C (7.2'
.DF [fcrmu) UiUl

OL Dab U.s& SZZ't {S.3.3.J J
.DL (text-il:ldent) [lJ

OS ~ swic swt {7.U
.DS (formatl Uilll

EC Equadoa c:apciCD (7.5'
.a: hillel [oYe:ridoe! [&cl

a: !vea-~ foocer (9.6}
.D (ati1

., >',"

Eli

EN

EQ

EX

FD

FE

FG'

Ps

H

HC

8M

HU

HX-

HZ-

I

LB

LC

I.E

U

MI-

MI'

Evc:n-pqe header [9.3)
.Eli (ar;J

~ ..
61

• _... I, . , , , " End equaUon display (7.4)
.EN J • ,~: ~~ .. " :"~~i.: :: .. " /;:~~ ·,1-':.·,:~, ,

Equation display swt (7.<4)
.EQ [label)

Exbs'bit captioG (7.5)
• EX [title) (oYVride1 [ftq]

FootDOte default format (8.3)
.FD [Ull UJ
FOOUlote ead (8.2)
.FE

Figme lide (7.5)
.Fa [tide] [override1 [f1a&1

Foomote sr.an (8.2)
.FS [Jabe1)

Headinl-aumbered (4.2)
.H level [headina-text)

Hypheaation character (3.4)
.HC (hyphenation-indicator]

Headina mark stYle (Arabic: or RODWI numerals, or leners) (4.2.2.51 :

,~....' :

,,,..~ ,'.:,~' ~ ... '- ...

.... ~

'" '.--: ~~. ~'.., \.
,,~ -: ~ '\

.... "

. .:.' ~. ''''"~' ,

, '., " I,. '.,- .
• HM [lI'Ill ••• lUl7) , , ' .. "', ":'~'" .. "

HeadiDa-umwmbered (4.31
.au hevli",-cm

Headial user exit X (before priDq hactina) (4.5)
.HX dlevel nevel beadinl-text

HeadiaC user exit Z (after PI'iDtiDI hedq) {4.51
.HZ cDevel rIeve1 headiDi-text

Italic (UDdertiae in MIl) (11.1) •
j' ", J [italic-arc) lpn:vious-fODI-tr'll . . ~ . ~

List beIiD (5.<41
.LB text·indent mark-indent pad type (mart) [U-spac:e) [LB-splCe)

List-swus clear {Appezu:b BI
.LC (list-level)

Lisl end (5.3.2)
.LE UJ
Lisl item (S .3.1)
.u [mark] UJ
Marked list stan (S.3.3.4)
.Ml. mark [text-indentl UJ
Memorandum type (6.6)
.M! [type] UJ

• • _ f· ~

'-:.". - .. ,.~ . ,.,

, ..,.. ~. '~~'-

... ,..... "-~~ ~,,'" .

'*I .")'~'.: .. ~:...:
.:, ,I,

ot}
,

~ ..

New ~ 16.7Jll
.:N'Oa~ .
Nor..won md {6.lJ.1j ;m--.. .
Notanou SW't (6.11..2"
~Ns tlql

~~ femr.r {9.1'1
:OP-r~ .
&d.~$O htr.tder (9.4J
.OH [arttl .
Ower '~rds (or TIt{ CO~ she~t [6.5.)
.OK [~we;dl·... .

odd ~e (11.11
.0[-1 '.'

hr1i!~ftt!!·l.~~!1 .. 'cf~.\li:Zmn-. " "..... '" '

~f'h [4.1\
. fJ~i'

:,.,- ~~ (~tF.1' (9.5)

SA

"

51'.
' ..

SF

T~ .. . ~,

.PF £arwl.'
Paga h~~ [9.2\
.p.-rnaEd
Pa~.~dl1:r l!.:~~r emt HU2)
.!lX. ':.

R~Wm 10 ~lU' (rl~t!1.!:U1) rOtl& (eM u.n~ll3 in. nro.f1) ill.l) 1\' . . . '. . .. '. .

Re{~ !i,<n sta.n (S.:U .. Sl
.lU. ~lt~·i.ndtllrlti U.1
S~\ uoiPtWlt sizlfa~ci v~ ~i (11 . .a1
~.·[U;i

Set.adiUS'l.b'!teUt (ri~~l~~ju.."Iti.ficmaw (.k.f~rut {l-l.li
.s~ {;qj .. . ' . .

Sigaanlte tine [6.11.1}·
.so'{~ (II'

S~~ ~.~= {11.11
. •• ~"'" :r...:..:;. "1
"'-l~.~~ ..•

LS~~'~~~Cllly (11.6)
.sP~-(llr.~1

Tible\id~ (7.,SJ
.Ur.fiit1ci (override) [1lail
ijb{~:;i'~tenlS (IO.I)
.!C:cl¢~i1·~ (tleve!] [WJ~_,[h~hl (~~JJh~.~ :[head411~l"
Ta.blO end {i.31
• r:a~':": ~~:..

""""'$ W~ It/enwaNiwtt .'rI«1W 63

tH Table bader (7.,3)
.m [NJ

n. Tide 0(mcmormdum (6.ll
• TI. [c:har&inI-case] [ftlina-c3Se]

1'lwI TedmH::al Memormdum Dumber(s) (6.3)
:rM (Dumber) •••

TP- Top-oC-p.p macro ('.Ill
.TP

TS Table an (7.3)
.TS [H)

tx- TabJe-oI'-c:cmtents user un (IO.l}
:rx

VL Variabie-item list sun (5.3.3.6)
• VL lexl-iDdeDt [mark·iDdent] U1

we Width Omtrol (11.4)
.we (fomw]

IL SIrbIp

The fouowina is ID alphabetical list of strin& names used by I'WBIMM, aiviDa for each a brief
description, section reference. and initial (default) value(s). See (1.41 for notes oa seninl and
referenciD& strings.

BU Bullet (3.7)
1IIf#:.
110# •

F Footnote DUlDberer (S.l)
IU'O# \u\ \D+ (:p\d
11'0# \v' •• 4m"\s-3\\D+ (:p\sO\v' .4m'

OT Due (currem dale, UDless overridden) {6.'.1l
Month day, year (e.", January 22. 1980)

EM Em dash saiD&. produces aD em dash (or both fll't#1Dd D'D§{3.81.

HF Hadma foat list, up to sevea codes for b.eadiDi leYeIs 1 tbroulb 7 {4.l.1.4.1l
3 3 l l 2 2 2 (all undertiDed ia .rqI. IDd B B I II II ill rroI)

HP HeadiDa point size list. up to sewD codes tor beadiq levels 1 lhrOulb , (4.l.l)

RE sees Release IDd Level o(P'WIIMM {Uoll
lteJease.l.t:ve1 (e.", 15.103)

Tm Trademark suinc places the leams "1'M" ODe baIf-liDe above !he tat tbal it follows.

Note tbat if' tbe released·paper style is used., tIleD. ill addition to tbe above striDp. c:eruin Bn. 1000000a
codes Ire de:fiDeclu suinp; these locatiOD saiD&s are Deeded oaI, until the .MT mec:ro is called (6.11.

m. N_ .. JLeaUaaos

1b.is sectiOll provides aD alpbabetical list of reaister DIllIes, siviDa for each I brief descril)tioD. section
refereace. initial (default> value, and the lepll'lDle of values (wbere {m:n] mcam values (rom m to II
iDdusiYe).

Azrt resister baviDa • sin&le-chancter DIme can be ,. f'tom the command liDe. AD asterisk altlCbed 10
• reaim:r Dame iDdicau:s thai thai reaistcr CIII be set OII/y (r0t:D the CII)!IU!1atId tiDe or ~ the P'WIIMN

ma:ro de&.itio~ at: re3d by the formaCt=' (2.4, 2..51. See {IAI tor actes QIl ~ IZld refe~
re;iSe:'s.

A· }Us the eEec: of invokill$ the .AF ClX:'Q w;tboQt U1 araumC1' {2.4J
0, (0:11

All Iahibits I'rintilll at author's locauOr1, de;araDeDl, room, ICci eX%e11Sioa in the "from" portion
~ a memorandum (6.11

o

De

Os

I, [0:1)

De.dnc:s t3Cl~f<Ct1te1:1U and/or =ver-sb=l aDC:"OS [2.41
0, (0"031 . .

~C'1 type (0riiim1. ORAFT, e=.) [2.41
o (OriIinaJ>, [0-.3)

Contems leYd (i.e., level of he:1dinls saved for table of caa1eI1ts) (4.4)
2. [0:71

Oebul tlai {2.41
0, (0:1)

Oislllay eject ~ for Qoacinl dimys (7.2!
0, [0:1)

~lay fOrmal ~ for btinl_l.a?s (7.2'
'. [0".51 ,
Static dislJlay S'l'e- aDd pcst·S1*= (7.11
1. [0:1]

E,quaUon c,c=ter, used by .EC I%IIICZ'O (7.5)
0, [0:1l, il:zc:emented by 1 for ead1.EC c:a!L

~-ejec"jOtl flq for hadinp {4.2.2.11
o (no eject). [0:71

FS Rlure counter. u.sed by .ro zmao {1..5J
0, [O:?]. in.cremI:nted by 1 for ad! .ro c:a!L

Fs F~tt1ote ~ (i.e., s;acinl be~ (OOCDDCes) (SAl
1. [0:1)

Hl·H1 He:u:Uni c:cunte:rs for .Ievels 1·1 (4.2.l.J)

. t

0, [0:11. im:n:mc:nted by .H 0(c,cuesvc-c!ju& level OIl .RO It" level givea by re&ister Hu.
Hl·H1 are r=et to 0 by my beadina u a lower-aumbeted lrlel.

Hb H=dina breU level (after.H aDc1.HtJ) {4.2.2..21
l. (0: 71

He HeaGinI c=te~ level tor .H ami .au {4.l..2.JJ
o (no <=1te:'ed heodin~). [0:1}

Hi Hc:Idlnt temporary indent {alter.H md.mn {4..2.l.21
1 (indcm 3.1 ~ph). [0-.21

fb R=c1ini ~ level (after.H and .HtJ) (4.2.2..21
2 (~ oaty after .H 1 and .H 2). [0:11

Ht H=dins type (for .H: smale or c:onar....,.red numbers) {4.2.l.SJ
o (ccacueaated aum.bc::s: 1.1.1. eu:.). [0:1)

He:adint le"Id for UDDwnbeteci heKtint~{:.:ri1J1·'I.csi ' .
.2 (.Ht1 u U:e 2ma leYd as .H 2). [0: 7J

Hy

u

p

Pi

Pt

s·

Si

Tb

HypilemtiOl1 control for body oC document (l.4)
1 (automa1ic hyphcmtiOl1 cm), (0:1)

LeD:th of pq: [2.4)
66, (20:1) (Hi" 121:1J in lIQ6')23

IJsr iDdeDl (5.3.3.11
5, (~1)

Lisl specin& betweeD items by lnd {5.3.3.1}' .
5, [0".5]

Numberinl style (1.4)
0, [0-.3]

Otfset of pqe (2.4)
0, [0:1) (O.5i, [0i:1) in rro.6')2l

". :

Pale number. managed by PWBIMM (1.4)
0, [0:1)

P~ indent (4.1)
5, [0:1}

Parqraph type (4.I)
2 (pancraphs indented except after beadings, lists, IDd displap). 10-.2)

Trd default point size (2.4)
10. (6:36)

Standard indent for displays [7.I}
5, [0:1)

Type oC "",1 output device {l.4}
o. [0:2)

Table counter (7.5)
0, (0:1). iDcremeDteci by 1 (or each .TB c:a1I.

UnderliDiJ:1& style (nro§) (or .H and .HU f2.4)
o (contiDuous Wlderline when possible), (0:1)

Width or pile (line aDd title leqtb) f2.4)
65, (10:1365) (6.5i, [21:7.54i) in troff)ll

., • t..,

1tz1flllUJl 1-980

23. Por 1ft#. __ ¥Ii ... 11'1 ·aumbers '*i*CiiiDIi4tt IiMI or ~ , .. "II: ror IIfII. me. ¥Ilua IDUIt·_'~

.'

... 1Il0l,,

