
COGAR
SYSTE M 4®

- ----- r-

PROGRAMMER'S
REFERENCE
MANUAL

PROGRAMMER'S REFERENCE MANUAL

This publication is designed to be used as a reference manual by
programmers using the Cogar System 4® Processor. The manual is divided
into three parts. Part I defines the unique features of the machine
which are relative to the programmer, as well as providing a machine
specification summary. Part II provides general information on the usage
of each group of instructions in the instruction set repertoire. Part III
defines each instruction in detail, and provides the timing and an example
of how each instruction may be used in context with surrounding instructions,
in both Source and Object coding. A summation of all the instructions in
the repertoire is contained on the Cogar System 4 Instruction Reference
Card.

Other publications relating to software for the Cogar System 4 are:

Batch Assembler Operating Instructions; which contains the step-by­
step instructions for creating a self-loading program tape, which
has been assembled as part of an Object-String background.

Standard Cogar Library Functions; which contains descriptions and
operating instructions for the Language Base Library and the I/O
Libraries.

The programmer should be familiar with the content and design objectives
of the above documents in order to make full use of the capabilities of
the Cogar System 4 Processor.

COGAR SYSTEM 41S A REGISTERED
TRADEMARK OF COGAR CORPORATION

a

PROGRAMMER'S REFERENCE MANUAL

Table of Contents
Page

COGAR INSTRUCTION DESCRIPTION INDEX c.
SPECIFICATION SUMMARY .. e.

SECTION I. GENERAL
System Features 1
Language F ea tures .. 1
lOS Features 2
Assembler Features... 2
D; s play . 3
Keyboa rd . 4
Cartridge Tapes .. 4
Operator Controls .. 7

SECTION II. INSTRUCTION USAGE
Subroutine Control 8
Reg; sters .. 11
Addressing ','" 11
Symbols ..•........ 13
DPL-l Instruction Classes : .. 14
DPL Punctuation .. 16
Literal Notations•........................ 16
Standard C4 Program Record (Mini-Tape) 17
Subroutine Relocatability 19
Tape I/O Character Queue•............... 19

SECTION III. INSTRUCTION DESCRIPTIONS
Genera 1 • .. 21
Cl ass 0: Jump•.......................... 22
Cl ass 1: Branch .. 26
Class 2: Transfer .. 46
Class 2: Ordinary Arithmetic 50
Class 3: Boolean Arithmetic 54
Cl ass 3: Compare ... 60

Group 1: I/O Functions 62
Group 2: Data Modify 68
Group 3: Compay"e ... 73
Group, 3: Se,' ect .. 74
Group 4: Control Functions 81

Notations for DPL-3B Constants•...... 85
DPL-l Pseudo Instructions .•.................................. 86
DPL-l Branch and I/O ... 95

APPENDIX ... 101

b

Mnemonic

ADA
ASS
ADX
ANA
BRE
BRH
BRL
BRU
COM
CPA
CPI
CPX
DIV
DPI
EJT
END
ENT
EPI
EQU
ERA
EXB
EXU
GET

1OC-C#3
IOC-C#N .. .
1OC-C#4 .. .

IRA
LOA
LOX
LlA
LPS
LSW
MOV
MUL
ORG
OVL

PCL-PRT .. .
PCL-TYP .. .

PUT
SAC
SAN
SBE
SBH

COGAR INSTRUCTION SET INDEX

Name Format

Add to Accumulator DPL-l
Add Storage to Storage DPL-2
Add to Index Register ··················DPL-l
Logical 'AND' to Accumulator DPL-l
Branch on Equal ························DPL-l
Branch on High ·························DPL-l
Branch on Low························· DPL-l
Branch Unconditional DPL-l
Compare Storage to Storage DPL-2
Compare Accumulator ····················DPL-l
Clear Processor Interrupt DPL-l
Compare Index Regi ster DPL-l
Divide DPL-2
Disable Processor Interrupt DPL-l
Eject to Top of Form DPL-l
End Segment DPL-l
Enter Control Function DPL-l
Enab 1 e Processor Interrupt DPL-l
Equate Symbol· · · · · DPL-l
Exclusive 'OR' to Accumulator DPL-l
Exit and Branch DPL-l
Exit Unconditional DPL-l
Get Data (Read) DPL-2
I/O Keyboard DPL-l
I/O Mini-Tape ··························DPL-l
Display Control DPL-l
Inclusive 'OR' to Accumulator ··········DPL-l
Load Accumulator DPL-l
Load Index Register DPL-l
Load Instruction Address DPL-l
Load Processor Status DPL-l
Load Sense Switches ····················DPL-l
Move Storage to Storage DPL-2
Multiply································ DPL-2
Origin LOcation Counter DPL-l
Overlay DPL-l
Line Printer Control DPL-2
Typewriter Control•.. DPL-2
Put Data (Write) DPL-2
Set Arithmetic Condition' DPL-l
Shift & Logical 'AND' to Accumulator···· DPL-l
Stack and Branch on Equal ·· .. · DPL-l
Stack anff Branch on High DPL-l

c

Page

50
69
51
54
27
28
29
25
73
60
45
6'J
72
42
94
93
88
43
90
56
34
35
62
98
95
99
58
46
47
48
41
40
68
71
86
91
84
83
64
39
55
31
32

Mnemonic

SBL
SBU
SEG

SEL-EQL
SEL-HGH
SEL-LOW
SEL-NEQ
SEL-NHG
SEL-NLW
SEL-UNC

SER
SET
SIR·
SMC
SMS
SSC
STA
SUA
SUB · .
SUX
TCL
TLJ
TLX
TMJ
TMX ••••••
USE

COGAR INSTRUCTION SET INDEX

Name Format

Stack and Branch on Low················ DPL-l
Stack and Branch Unconditional DPL-l
Identify Segment DPL-l
Selcect Equal•......... DPL-2
Select High DPL-2
Select Low DPL-2
Select Not Equal··.·· DPL-2
Select Not High DPL-2
Select Not Low· DPL-2
Select Unconditional DPL-2
Shift and I EOR I Accumul ator DPL-l
Set Page DPL-2
Shift and 'IOR ' Accumulator DPL-l
Set Memory Control DPL-l
Set Memory Section DPL-l
Set Memory Section and Control DPL-l
Store Accumu 1 a tor D PL-1
Subtract from Accumulator DPL-l
Subtract Storage to Storage DPL-2
Subtract from Index Register DPL-l
Tape Control Command DPL-2
Test Literal and Jump DPL-l
Test Literal and Exit DPL-l
Test Mask and Jump •..................... DPL-l
Test Mask and Exit• DPL-l
Use External Source Segment DPL-l

d

Page

33
30
87
76
77
75
79
78
80
74
57
81
59
37
36
38
49
52
70
53
82
22
24
23
25
92

SPECIFICATION SUMMARY

Size

Weight

Power

Environment

Ventilation

Processor

Memory

Keyboard

Visual Display

Tape System

10 inches high (25 cm)
18.5 inches wide (47 cm)
24 inches deep (60 cm)

60 pounds (27 kg)

115 VAC ±10%, 220 VAC ±10%
48 to 62 Hz
2.5 amps average

10% to 80% relative humidity without
condensation

60°F to 95°F Operating Temperature
OaF to 150°F Storage Temperature

30 cubic feet per minute air flow
4 inches air flow clearance on all sides
1000 BTU per hour heat dissipation

45 instruction types plus 1/0
3 to 6 iJ.s instruction cycle time
1 Accumulator
7 Index Registers per 2K of memory
16 Member Instruction Address Stack
Hardware Bootstrap Loader

16K bytes capacity
Random Access Read/Write
Non-Destructive Read-Out
Monolithic Semiconductor

Software configurable
Hall effect keys
N-Key rollover capability
Audible cue

5 inch CRT
4 or 8 line display, with interleave

capability
32 characters per line
5 x 8 matrix under program control

10 ips write tape speed
1600 bpi density, phase modulation
2 mechanically independent transports
Read after Write, CRC, phase checks
Automatic threading
Write interlock switch
Rewind: 40 ips rewind and forward or

rewind search

Tape Cartridges 100 ft. computer grade tape
900 records of 136 characters each
Write/ Erase Protection

e

SECTION I. GENERAL

1. SYSTEM FEATURES

The Cogar System 4 is a compact, operator-oriented, general purpose data
processing system. It combines, in a single unit, an input keyboard,
magnetic tape transports, CRT visual display, I/O interface, solid state
memory and a versatile processor. The System architecture closely in­
tegrates the functioning of all sub-systems and features transparency of
graphics and coding. All major system functions are under program control.
The processor structure is designed to optimize byte handling and inter­
pretation, and provides automatic threading of recursive subroutines.

The nature of the processor design and its relationship to the other
system components make the Cogar 4 heavily dependent on software. This
means that the system is uniquely flexible in the jobs it can perform and
is especially adaptable for various operator and interfact applications.
It also means that software is an essential ingredient that must be as
fully and carefully integrated into the System as the other components.

The Cogar 4 is a binary machine using 8-bit bytes in its memory organ­
ization and most hardware data paths. Its operations are highly memory
oriented and are designed to take advantage of the performance of its
semiconductor storage.

2. LANGUAGE FEATURES

The language base for the Cogar System 4 is flexible, easy to learn and
use, yet permits the programmer to take full advantage of the System 4 1 s
power. The Cogar Language Base is comprised of a comprehensive set of
"Pre-packaged" functions to facilitate modular program construction.
The Cogar Assembler provides linkage between these functions and the
specialized routines necessary to a given application.

Programs are written and assembled in symbolic notation, with the
final stage of the assembly effecting a merge of the specialized
routines and the pre-packaged background functions. This method of
assembly allows easy and rapid modification or correction of programs
or the re-configuration of a program to accomodate different peripheral
devices or the selection of a new or modified graphic set, or key­
board configuration.

1

The DPL-l instructions for the Cogar 4 are machine level instructions
that are directly executed while the DPL-2 commands are executed inter­
pretively by a resident software monitor. DPL-l instructions are two
bytes long and must occur on even byte boundaries. DPL-2 commands are
four bytes long and should also occur on even boundaries. When DPL-l and
DPL-2 are intermixed, a new language is formed called DPL-3. The batch
assembler for DPL-3 is known as DPL-3B. A subset of the DPL-2 monitor
that handl es I/O functi on is known as the I/O Supervi sor or lOS. This
manual describes DPL-l and IDS as assembled on DPL-3B.

In order to be able to tailor the system for optimum use with particular
applications, many device functions have been designed for program control.
The codes generated by the keyboard, for example, correspond not to the
key character, but to the key location. A translate table is located in
the processor memory and is used to convert a key code into a character
code. The user program can easily modify the translate table and can thus
produce any desired code for any key.

The visual display uses a 5 x 8 dot matrix to form each display character
and has cursor control with each character. The dot matrix is stored in
the processor memory so that any possible 5 x 8 combination may be
generated by the user program to be displayed for any character code.
The standard dot pattern uses a 5 x 7 dot matrix to form the desired
character. This provides for a space between the character and the cursor.

The Cogar 4 provides an unusually efficient subroutine control mechanism
that is easy to use, yet offers powerful capabilities.

3. IDS FEATURES

Cogar has designed an Input/Output Supervisor to provide easy access for
the user to a set of standard I/O routines. The flexibility of the system
peripheral device operations is still available for special applications,
but most I/O operations can be accommodated by the I/O Supervisor. IDS
is a memory resident software monitor that is accessed using the ENT:IOS
pseudo command. It performs a complete single operation and automatically
returns control to the user program.

4. ASSEMBLER FEATURES

Computer programs must always eventually be expressed in machine language.
The machine only understands binary numbers and programs so expressed are
called Object programs. There are some circumstances when it is desirable
for the system user to be able to write Object instructions directly.
Most of the time, however, it is muCh more efficient to use an instruction
language that is easily interpreted by the user. The mnemonic expressions
used to represent the Object language form a Symbolic language. An
Assembler is a program that translates a Symbolic program into an Object
program.

2

Since the programmer spends much of his time communicating with the
Assembler, it is useful to supply commands that control the operations
of the Assembler itself. These commands are called Pseudo instructions
and normally do not result in any Object coding. Another class of Pseudo
instructions used in the Cogar 4 Assembler to control executive monitor
operations does generate Object coding.

The Cogar Batch Assembler, known as DPL-3B, provides many features de­
signed to streamline the programming process. Comments may be inserted
in the Symbolic program to help identify the operations taking place.
Instructions, data, constants and locations may all be referred to
symbolically. Diagnostics are generated to help identify errors in the
program. Editing, display and printing of both Object and Symbolic
programs are available as part of the DPL-3B package.

The Cogar Assembler also handles the appropriate translations, controls,
and linkages for the lOS and DPL-3 monitors.

5. DISPLAY

Keyboard Transparency:

The Cogar System 4 is designed to provide code hardware transparency.
Any keyboard character may be automatically translated to any desired
code and any dot matrix pattern may be displayed for a given character
code. These functions are directly under software control and are thus
available to the programmer.

Selective Blanking:

The commonly used internal key and character codes in standard Cogar
software are shown in Table 1. Notice that the high order octal digit
is always zero. This digit corresponds to the bits six and seven of
the character byte. These two bits are used to provide added features
for the CRT display. If a 1 is inserted in bit 7 (changing the code for
A, for example, from 015 to 215) of a character in the CRT buffer area,
that character will be displayed on the screen as a blank.

Cursor Underscore:

If a 1 is inserted in bit 6 (changing the code for A, for example, from
015 to 115) of a character in the CRT buffer area, that character may be
displayed with an underline. The underline feature must be enabled by
adding octal 1 to the second octal digit of the display base enable func­
tion codes. Thus, to permit underlines in display base 2 the normal
display enable of laC, C#3; 023 becomes laC, C#4; 033. The underline
feature is a convenient means of providing a cursor.

3

Selective Interlace:

Memory areas displayed are program selectable from anyone of 16 memory
Pages (256 bytes per Page), with provision for half Page (128 bytes) dis­
play only or for selective interlace of half-Pages.

6. KEYBOARD

When a character key is depressed on the keyboard after a Transfer Byte
IOC, it causes a key code to be loaded into the accumulator. The NUM
(numeric), CTRL (control) and ALPHA (alphabetic) are three special keys
that act on bits 6 and 7 of the key code for any key pressed while one
of them is held down. NUM turns on bit 6, CTRL turns on bit 7, and
ALPHA turns on both 6 and 7. If none of the special keys are activated,
bits 6 and 7 remain off. The following procedure may be used to translate
the key code residing in the accumulator into a character code.

a. The 6th and 7th bits are taken care of as follows:

6th bit on: do not change
7th bit on: turn 7th bit off (reset after translation, if

des ired) .
6th and 7th bits on: turn 6th and 7th bits off (reset after trans­

lation, if desired).

b. Store the result in an index register
c. Add to the index register the displacement within the page of the

beginning of the translate table. The standard translate table in
page 05, for example, starts at location decimal 064, therefore, add
decimal 064 to the value of the index register containing the key
code before translation.

d. Load the Accumulator using indexed addressing and the page where
the translate table resides. The Accumulator now contains the
character code for the key that was depressed. The translate table
may be designed by the user to supply any desired 8 bit character
code including ASCII, EBCDIC, etc.

7. CARTRIDGE TAPES

The resident software I/O Supervisor provides for the actual reading,
writing and tape positioning of the Mini-Tape. The user will often want
to test the status of the tape drives for his own purposes. For example,
to check the presence of a cartridge on a particular tape drive, first
execute a Status instruction (IOC, C#N; 016), then test with a mask of
020 (TMJ, +NN; OCT:020). If the condition is satisfied, the cartridge
is not present. Any of the status byte conditions may be tested by first
loading the status of the device in question into the accumulator, and
then testing it against the literal mask specified.

4

PAGE III

PAlE 83

PAGE 11'1 CRT
DDT PArT

ODD

100

20G

30D
--

ODD

110

2n

311

ODD

100

210

30a
--

ooa

liD

2"

300

ODD

100

E~
.200

300
-----~ -- - -

PAGE B5
KEYPUNCN

TRANSuliE TAIL

ODD
r====

100

;--
200

'---
300

- - -
000

100

200

.300

DOD

loa

20D

300
--i------------

00

• I

*1

SP
1l1li

ODD

000

ODD

DOD

1l1li

1l1li

II

01 02 03 04 iii OB 07 10

~ SCRATCH AREA

II 12 13 14 15 16

XII lIR2 lIR3 lIR4 XIIi • lIR7 CRC I 2 3 4 5 6

IN ~O'. II ST RTS

TERI PT

f I 2 3 4 5 • 7 8 9 A 8 +
010 010 076 otIJ 182 042 030 047 074 41 08B lOB 174 In

010 010 101 102 111 101 024 1ft 112 021 111 111 022 III

010 178 101 177 111 111 022 105 ' 111 011 111 111 021 111

DID 010 101 100 111 III 177 105 III 005 111 051 022 III

DID 010 078 DOD lOB 066 020 071 080 003 OB8 03& 174 OB8

~~
@ S •

i7
lItIS l1li' / .SEL REL BSR .O.F. Q

III IIi3 055 Z08 1217 001 1011 212 213 214 215 035

~-r • $ ~I_u .!~ I: ~ ;SEL REL BSR E.O.F +
OlIO 047 D54 058 Z08 001 212 213 214 215 002

01 02 03 04 05 DB 07 01 DB 10 II 12 13 14

CTRL

_ ~ START BOOTSTRAP LOAD 1 SEQUENCE STORAGE AREA ----T.*-f---~ LABEL FIELD ,

75 17 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 40 41 42 43 44 45 46 47 50 51 52 53 54 55 58 57' 60 61 62 63 64 65 BS 67 ' 70 71 72 73 74

7

END BOOT TRA LOA - -

C D E F G H I J K L • 076 In 177 177 076 177 000 1160 177 In 177

101 101 III 011 101 010 101 100 010 100 002

101 101 111 011 101 DID 177 100 024 100 014

101 101 101 001 111 DID 101 100 042 100 002

042 076 101 001 171 177 000 077 101 100 177

• E R T Y U I 0 P BSF LIZ
043 021 103& 040 045 041 025 033 034 230 231

) t T
J7

I 2 3 & &SF LIZ
074 DB3 115 040 D04 005 006 07B 23D 231

15 16 17 18 19 '2021 22 ·23 24 25

EOJ

SPACE BAR

,
SP' SPI SP2 SP3 SP4 SP5 SP8 SP7 SP8 S 9 SPIO SPII SPI2 SPI3 SPI4

--1--

I

r SPARE

* !

N 0 P O~ 11~7 S T U
J7 U;7

X ~7 I,!, :" ni, I~'
$ • < > / () ? t " !

~ nOn 0iX! 024 000 100 177 177 177 ~- ,JlI!L 007 143 nln 044 1li2 000 101 040 034 ODD 1l1li 034 ODD ODD ODD 000

008 101 011 101 011 105 001 100 030 040 024 010 121 130 167 062 DID 023 052 034 140 010 042 020 042 000 OOZ' 042 024 D07 ODD 007 000 ODD 100 002

Of 0 101 011 121 031 111 177 100 140 030 010 170 111 070 000 052 010 010 177 076 140 024 024 010 101 101 001 177 024 000 137 ' 007 OBB 133 100 002

DBO 101 011 041 051 121 001 100 030 040 024 010 105 000, 187 072 010 144 052 034 000 042 010 004 000 042 131 042 024 007 000 ODD OBS 073 100 002

177 177 006 136 106 042 001 007 007 177 143 007 103 000 024 014 010 143 022 O5t 000 101 000 002 000 034 008 Dill 024 ODD 000 000 000 000 100 016

ERR A S D F G H J K L SKIP HIllE BLK Z X C Y B N • COR SPACE EOJ
232 000 DDO ODO DOD 015 037 020 022 023 024 1026 1027 030 250 251 ' ODO 04G ODO 000 044 000 017 042 OIB 032 831 047 '056 12117 Il1O 27'
EIII A > --, ,

4 5 6 SKIP IDlE ILK Z ? " = ! (7 8 9 COR SPACE EOJ
232 1l1li 000 000 000 015 060 072 073 075 071 D07 010 011 250 251 ODO 04G 000 000 004 ODD 067 08B 070 082 012 013 014 287 01lI 271

2B 27 2B 29 30 31 32 ·33 34 35 36 37 38 39 40 41 42 '43 44 45 46 47 48 49 50 5f 52 53 54 55 58 57 5B 59 60 81

STACK POINTER- ----

LEYEL ,

LEYEL I

LEYEl 2

-lEYEL 3

lEVEL 4

LEVEL 5

lEYEL 6

lEVEL 7

_____ INDEX REGISTER ARRAY

~~;:;;~";;;~'.-~I~:c:=::r;~::C::~CI:~:i::::.-, (one per secti on)

1------16K-----------------I

Figure lb. Standard Keypunch Keyboard layout. 'SHADrD AREA' DISPlAYABLE PAGES

Figure Ie. Memory Map Layout.

76 77 OCTAL NOTATION

SPI5

111: ~
liB ooci

131 177

046 In

120 000

62 63 DEC IMAL NOT AT! ON

TABLE I. KEY AND CHARACTER CODES FOR COGAR 4 KEYPUNCH KEYBOARD.

KEY KEY CHAR KEY KEY CHAR KEY KEY CHAR KEY KEY CHAR KEY KEY CHAR
CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE

Space 070 000 A 037 015 N 063 032 , 065 047) 120 063

- 010 001 B 062 016 0 026 033 , 103 047 ? 156 064

+ 116 002 C 060 017 P 027 034 # 102 050 ¢ 121 065

1) 111 003 D 041 020 Q 016 035 @ 002 051 = 161 066

1 124 004 E 020 021 R 021 036 % 003 053 II 160 067

2 125 005 F 042 022 S 040 037 $ 104 054 ! 162 070

3 126 006 G 043 023 T 022 040 * 004 055 I 144 071

4 145 007 H 044 024 U 024 041 105 056 : 141 072

5 146 010 I 025 025 V 061 042 066 056 . 142 073 . ,

6 147 011 J 045 026 W 017 043 < 005 057 - 117 074

7 164 012 K 046 027 X 056 044 > 140 060 -, 143 075

8 165 013 L 047 030 Y 023 045 / 011 061 & 127 076

9 166 014 M 064 031 Z 053 046 (163 062 I 123 077

CONTROL KEYS

KEY KEY CHAR KEY KEY CHAR KEY KEY CHAR
CODE CODE CODE CODE CODE CODE

START 001 201 BKSP RECORD 014 214 HOM 051 251

MINUS 006 206 END FILE 015 215 CORR 067 267

DUP 007 207 BKSP FIELD 030 230 EOJ 071 271

PROG SELECT 012 212 ERROR 032 232 LEFT ZERO 031 231

REL 013 213 SKIP 050 250

6

Write Pin Enable

A Write Pin Sensor in the SYSTEM 4 requires that if a tape is to be
written on, the It/rite plug must be in the proper position. Otherwise,
tape will not move and no write operation can be performed on that deck
until a cartridge is inserted with the write pin in place.

Physical End of Tape Sensing

The SYSTEM 4 tape cartridges contain a reflective spot to notify the
program that during a write operation, the Physical End of Tape is
approaching. The user may write beyond this point if so desired. The
Mini -tape \~rite Software function detects thi s condition and provides
the tape status for the user to test. Once the EOT is detected, this
condition remains set until a Rewind operation is initiated.

8. OPERATOR CONTROLS

A Switch Well located beneath the CRT screen contains eight sense
switches. a Program Load/Program Interrupt switch, and a System Reset
switch.

Sense Switches

These eight toggle switches may be manually set by the user to any
combination of eight bits. The setting of these switches may then be
tested by the user program at selected times, to control specialized
applications. .

Program Load/Program Interrupt Switch

This toggle switch initiates a tape load cycle when pushed toward the
CRT (Momentary position), or initiates a Program Interrupt when set in
the ON position (away from the CRT screen).

With the switch set to ON, the user program may test the condition to
provide automatic linkage to the Interrupt Routine. Return to the point
of interrupt will occur after the interrupt routine has been completed,
and an Exit instruction to the Stack Level established by the interrupt
has been executed.

System Reset Switch

When this push button switch is pressed, a System Reset pulse is
generated which resets the Stack Pointer to Stack Levelland forces
the instruction address to P02-000 where processing is then initiated.

7

SECTION II. INSTRUCTION USAGE

1. SUBROUTINE CONTROL:

The Instruction Address Stack (lAS) is located in memory and consists of
sixteen Instruction Address Words (lAW) of two bytes each. Access to the
Stack is under control of a four-bit register called the Stack Pointer.
The current instruction address is contained in the lAW indicated by the
Stack Pointer.

During sequential instruction operations, the Instruction Address is re­
trieved from the lAW, used to locate the current instruction, incremented
by two, and inserted back into the lAW. For branch operations, a new
Instruction Address is inserted into the current lAW and execution con­
tinues with the new address.

To enter a subroutine, the Stack Pointer is incremented so that it now
points to a new lAW location and the subroutine address is inserted in the
Stack as the new IA~. Normal sequential operation then proceeds. Note
that the content of the previous lAW has not been disturbed and may be
returned to by simply decrementing the Stack Pointer with an Exit instruc­
tion. Thus it is not necessary to provide space in the sub-routine for
return address storage. If more than 16 levels of stack and branching
has occured an automatic wrap-a~ound to stack level 1 will be initiated.

Figure 2 is a diagram of the lAS and shows the actual octal locations of
the stack bytes in page ~~. Assume that the Stack Pointer is indicating
IAWl as the location of the current Instruction Address. Sequential or
Branch operations of the mainline program change the contents of IAWl but
do not affect the Stack Pointer. When the mainline program encounters
a Stack and Branch instruction, however, the Stack Pointer is incremented
to indicate IAW2 and the Branch address is inserted into IAW2. If the
Stack and Branch instruction was located at Page 10, location 52, IAWl
will now contain the coding to indicate Page 10, location 52, and IAW2
will become the current location counter. The subroutine indicated by
IAW2 may reference other subroutines in which case IAW3, IAW4, etc. may
be used. When the IAW2 subroutine is finished, an Exit instruction is
executed which simply decrements the Stack Pointer and returns program
control to IAWl at the instruction following the original Stack and
Branch. If the exit instruction was located at Page 13, location 220,
IAW2 will be left with the coding for Page 13, location 220. A subsequent
mainline Stack and Branch would insert a new Branch address into IAW2.

Note that the low order bit of the location may be on. This bit must be
removed,by using the "ANA" instruction if the user desires to use this
address after a load processor status operation (See "LPS II instruction)

8

1=1
IAW2

IAW3

IAW4

IAW15

IAW16

Octal Loc.

Address: 1)41)

CONTENT: 053Q
. U

Address: 1)42

CONTENT: 2218

Address: 1)44

CONTENT:

Address: f)46

CONTENT:

Address: 1)74

CONTENT:

Address: 1)76

CONTENT:

J

OPL Page

Address: 1)41

I CONTENT: .ell·~8

Address: 1)43

CONTENT: tJl38
....

Address: 1)45

CONTENT:

Address: 1)47

CONTENT:

..
Address: 1)75

CONTENT:

Address: '/J77

CONTENT:

I

~~
I I t I

/ Stack Pointer

Figure 2.. Snapshot of Instruction Address Stack after completion
of EXU Instruction (See Example).

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

Pl1)-tJ5fj: 2fjfj-tJ24.
PltJ-tJ52: 123-174.
PltJ-tJ54: 237-tJ54.
P13-174: 23tJ-tJl1.
P13-176: 2tJ3-234.
P13-2tJtJ: tJ14-tJ27.
P13-221): 14tJ-tJtJtJ.

EAB: LOA, R#tJ; OCT:tJ24.
SBU: OLY.
STA, R#7; Pll.

OLY: STA, R#tJ; L#l.

9

LOX, R#3; OEC:156.
TLJ, +12; (K).
EXU: tJtJtJ.

COMMENTS

Byte 1 (Octal Loc.) Byte 2 (DPL Page)

LOCATION

I I I

INSTRUCTION LOCATION

(Octal 000 to 376)

MEMORY CONTROL

o = Direct Address

I I

within Section 0, Page 0.

1 = Direct Address·

I I

within current section, Page 0.

RELOCATABLE BRANCH CONTROL

o = Normal processing.

1 = Re1ocatab1e Branch functions.
(See SMC Instruction)

SECTION NUMBER

Section 0 through Section 7.

PAGE NUMBER

U V
Bit Bit

, ,

Page 0 through Page 7 (within a section).

Section
Number

I I

Figure 3. Instruction Address Word Layout.

10

Page
Number

I I

2. REGISTERS:

The Cogar 4 contains one general purpose accumulator that IS eight bits
(one byte) long. Almost all of the nonbranch DPL-l instructions refer
to the accumulator. It is the major center for processor activity
and the primary pipeline for data flow to and from the memory and the
peripheral devices.

The Cogar 4 contains seven one-byte index registers for each memory
section available. They are often used as address displacements in
indexed addressing, but may also be used as general purpose registers.
A few of the DPL-l instructions act directly on the index registers,
but there is much more flexibility than those instructions imply because
the registers are located in memory. They may thus be addressed by all
memory reference instructions. The accumulator can retrieve, manipulate

. and restore the contents of any index register.

The hardware condition register contains the results of Test and Compare
instructions. It may be set to High, Equal or Low and retains its status
until a new Test or Compare is executed. The operation of DPL-l con­
ditional Branch instructions depends on the status of the hardware con­
dition register.

3. ADDRESSING:

The Cogar 4 contains 4K, 8K or 16K bytes of memory, with an lAW 16 bits
long. Indirect addressing may operate anywhere within this range. The
total memory capacity is divided into eight Sections of 2~48 bytes each.
requiring 11 bits to fully address. Branch operations (if not preceded by
a "SMS" instruction) may refer only to locations within a Section. Each
Section is further divided into eight pages of 256 bytes each, requiring
eight bits to fully address. Direct addressing (page ~ of the current
control section) or relocatable subroutines (branch operations with
page ~ assigned) may refer to one page only.

The object formats shown with the instruction descriptions include the
following Binary Notations:

Z = 1 bit frame

y = 2 bit frame

X = 3 bit frame

JJ = 4 bit frame

11

Instruction Addressing:

All instruction addressing is relocatable page oriented. The address
specification~ in octal notation (object)~ is Pnn-LLL where nn = SL~
S is the Section number~ L is the Level number and LLL is the byte
location within the page.

All instructions are retrieved from memory using the current Instruction
Address Word~ and all instruction addressing involves modification of the
lAW.

For sequential execution of instructions~ one of the sixteen IAW's within
the Stack is incremented by two during each instruction cycle. Instruc­
tions may be executed sequentially within a Section or across Section
boundaries. It is important to note that when instructions cross a
Section boundary~ the branch functions~ if executed~ will transfer con­
trol to the Section that was previously set. Other functions are not
affected. A "Set Memory Section" instruction is used to change the
section context of the lAW for branch instructions.

A jump to a new instruction location uses relative instruction addressing
by adding or subtracting up to 15 instruction locations to or from the
current lAW. A Jump may be across a Section Boundary.

AAA

ADDRESS NOTATIONS

DOD = Absolute Address~ in decimal notation

SSS = Symbolic Address

RRR = Symbolic Branch Reference

NNN = Address Adjustment for Symbolic
Addresses~ in decimal notation

~.-------+--

PPP Pnn = Absolute Page Number~ in decimal notation

SSS = Symbolic Page Number

12

Data Addressing:

Data is addressed by an instruction in three different modes:
Immediate, Direct and Indexed.

When using the Immediate Addressing Mode, the operand itself, instead
of the operand address, is assembled within the instruction as a self­
defining literal. The literal represents data rather than an address
of data. Literals provide a means of entering constants into a program
by specifying the constant in the operand of the instructi.on in which
it is used. Immediate Addressing is differentiated from Direct Addressing
by the operand form.

Direct Addressing Mode uses the instruction operand as the address of a
byte location for all page numbers within level~. This mode is
utilized by specifying in the operand, any form of Direct Address
notation. All DPL-l functions may take this form of operand except
Class ~ and Class 1 Instructions.

The Indexed Addressing Mode provides a method of addressing data any­
where within memory. An Indexed Address is composed of a displacement
address contained in a specified index register plus a base address con­
tained in the operand. The register specifies the location within a
page and the operand specifies the page within memory. The index register
in use may be unchanged, incremented by one or decremented by one follow­
ing the indexed operation. There are three forms of register notation
used to specify this option. X may be any integer from 1 through 7 ..

R#X = Retain Register Value

I#X = Increment Register after
Instruction Execution

D#X = Decrement Register after
Instruction Execution

When an overflow occurs (I#X), the overflow bit is lost and the register
contains octal ~~~. When an underflow occurs (D#X), the result is the
two·s compliment of the underflow count.

4. SYMBOLS:

Program elements, such as instructions or constants, may be referenced
in an instruction by specifying the absolute address of the element. The
form for this type of reference is Pnn, LLL. Pnn specifies the page in
2 digit decimal notation from ~~ to 63 andLLL specifies the location
within the page in 3 digit decimal notation from ~~~ to 255.

13

It is often more convenient to refer to program elements symbolically.
In the DPL-3B Assembler, a symbol is a combination of characters used to
represent a program element. Symbols are defined through their use in
the label field of an instruction or through the EQU pseudo instruction.
A Symbol may be used only once in a label field within one program. When
a symbol is used as an instruction operand, it must be defined somewhere
in the program. A symbol must be comprised of three non-blank aJpha­
numeric characters with the first character non-numeric. If the first
character is lip II , the following characters must be alphabetic. The
total number of symbols plus ORG statements plus page boundaries crossed
by sequential program operation is· limited to a maximum of 128.

Address adjustment may be used for convenience and to cut down on the
number of symbols defined. A signed numeric adjustment in decimal bytes
from 0 to 255 may be appended to a symbolic reference or may be used re­
lative to the current location. An "*" (asterisk) is used to indicate
the location of the first byte of the current instruction.

The I/O Control Instruction micro-codes provide for control, status
and data exchange between the processor and its interface devices. Tape
channels may be selected, tape motions initiated, and read or write
commanded; the keyboard may be read or beeped; the CRT may be enabled or
disabled; the I/O interface transmission may be started or stopped, and
data or control bytes written. With the CRT enabled, the data content
of any memory page which has a section or level number of less than 5
may be displayed in four-line consecutive mode, eight-line consecutive
mode, or eight-line interleaved mode. Several status checks are avail­
able for the processor to interrogate. Most normal I/O operations will
use the I/O Supervisor, but special purpose routines may be constructed
from the IOC instructions and there are several operations, like key­
board beep, that are not available from the lOS.

5. DPL-1 INSTRUCTION CLASSES:

The DPL-1 instruction set includes all hardware instructions and is div­
ided into four general classes covering all types of operations required
of a general purpose processor.

Class 0: Jump and Conditional Exit Instructions

Class 1: Branch, Linkage-Control, and I/O Instructions

Class 2: Data-Transfer and Arithmetic Instructions

Class 3: Boolean and Compare Instructions

14

Class 0: Jump Instructions:

Jump instructions transfer control within a context to a location
relative. to the current instruction location. All Jump Instructions are
conditional and depend on the result of a test of the contents of the
accumulator. The test comparison, the test mask, the Jump direction and
the jump increment are all specified in the instruction. The Jump in­
crement is expressed in the instruction itself as the octal number of
two-byte instructions to be jumped. However, the Batch Assembler uses
a decimal byte count for the Jump increment. Test results are stored
in the hardware condition register. For the TMJ and TMX instructions,
an unconditional Jump or Exit, and the setting of the condition register
to equal, can be effected by using a test mask of zero.

Class 1: Branch, Linkage-Control, and I/O Instructions:

Branch instructions transfer control outside a context to any section
address. Branch instructions replace the current lAW with a new instruc­
tion address. Stack and Branch instructions introduce a new instruction
address in a new lAW and preserve the contents of the previous lAW for
return linkage. Direct Branch instructions may be conditioned by pre­
vious test or compare operations. The conditional instructions allow
powerful data-dependent decisions to be made. The Exit and the Exit and
Branch instructions are used to return from subroutines. They decrement
the stack pointer and thus change program control to the next previous
lAW.

Class 2: Data Transfer and Arithmetic Instructions:

This class of instructions includes the Load and Store operations that
allow data to be moved between memory and the accumulator or index
registers. These instructions use immediate, direct, or indexed address­
ing modes. When loading or storing using indexed addressing, the
specified index register may be automatically incremented or decremented.

The arithmetic instructions in this class include Binary add and subtract
operations on the accumulator or the index registers. Immediate, direct,
or indexed addressing may be used. Automatic increment or decrement of
index registers may be specified when using indexed addressing. All
operations are available for use with the accumulator. Some operations
may also be performed on index registers.

15

Class 3: Boolean and Compare Instructions:

The Boolean instructions in this class include immediate, direct or
indexed addressing of And, Inclusive Or, and Exclusive Or operations.
The immediate instructions allow for up to seven right circular shifts
of the accumulator prior to operation with the literal.

The Compare instructions compare the contents of the accumulator with
a location specified by immediate, direct or indexed addressing. Any
index register may be compared with a literal. The comparison results
are stored in the condition register and may be tested by any following
conditional Branch instruction. In indexed addressing of both Boolean
and Compare instructions, the specified index register may be auto­
matically incremented or decremented.

6. DPL PUNCTUATION:

Rather than an implicit syntax, the DPL grammar provides an explicit
syntax by use of punctuation. Four punctuation characters are used:
the semi-colon, the comma, the colon and the period.

The semi-colon is used as an imperative terminator or a major field
delimiter. It usually separates the instruction field from the operand
field.

The comma is used as a minor field terminator. It separates multiple
field instructions or operands.

The colon is used as a declarative terminator. It follows instruction
labels, pseudo instructions and constant designators.

The period is used as a closing terminator and defines the end of the
symbolic instruction.

7. LITERAL NOTATIONS:

Literal notations may be classified as explicit terms or as implicit
terms. Explicit literals are self-defining because they include the
specific value to be used. The four explicit literal forms are
Character, Octal, Hexadecimal, and Decimal. They provide a means of
specifying values or bit configurations without equating the values to
symbols. The value of an explicit literal is assembled into an in­
struction. The value of a symbolic constant resides in memory and its
address is assembled into an instruction.

16

Literals that are assigned a value by the DPL-3B Assembler use five
forms of address constants in which AAA is a symbolic address. These
are: ADC:AAA, ADL:AAA, ADP:AAA, IDP:AAA, and DDP:AAA. These address
constants are used primarily to define the actual address of a
symbolic reference. When the literal form ADP, lOP, or DDP is used
in conjunction with an R#0 or an R#X, instruction, the DPL page value
of AAA is assembled as the operand; either with no indexing tag, or
with incrementing or decrementing tag, respectively. If the form ADL
is used, the address location value within the page is assembled as
the operand.

When the literal form ADC is used in conjunction with an R#O
instruction, the DPL page value, in increment form, is assembled as
the operand. If used in conjunction with an R#X instruction, the
symbolic address location within the page is assembled as the operand.

8. STANDARD C4 PROGRAM RECORD (Mini-Tape)

The Standard Mini-Tape Record is comprised of an 8-byte label, generated
by the Mini-Write Software Function, followed by 128 bytes of data. The
8-byte label when read into (or written from) memory resides in Page 00,
locations 0308 thru 0378. The first byte of the Record Header contains
a sequence number. The sequence number is automatically checked by
the Mini-Read Software Function to provide a method of automatically
bypassing any nCIG" (Character in Gap). This sequence number may also
be used to adjust search counters when utilizing the high-speed
capability to locate multiple records by continuation. Byte-2 contains
the control function. A value other than those specified below may be
inserted by the user for specialized functions. Bytes 3 and 4 are not
used by the Standard Mini-Read/Write, and can, therefore, contain any
value as established by the user.

17

\

\

Bytes 5 through a of a program record contain the Segment ID and the
Page Designator. Through usage of these bytes, an overlay record can
easily be located and loaded into memory. Bytes 5 through a are not
used in a data file.

a bytes
(Header)

\

\

S C

I

"'-

Not
Used

'" "'-

'" '"

Not
Used P

12a Bytes (Data)

"-
"-

'"
'" "-

"-

Page
I D Alloc.

I (Not used in Data Files)
I

Binary Sequence
Number starting
with 001 and

JL.--LI--I--I --LI--L-I -0:.1--1...1 ~I -r-ll Segment Page
J Allocation DPL Page of

Record _continually
incremented with
wraparound

Control Byte.

Program ID.
This ID is inserted by
the O-String Generation
Phase from the "SEG" ID
or the "OVL II ID. (Not used
in data files.)

375=End of Program Load
377=End of File Indicator

I

l=Relocatable
O=Non-Relocatable

O=Lower half of Page
(OOOa thru 177a)

l=Upper half of Page
(200a thru 3778)

Figure 4. Standard Mini-Tape Record Layout.

la

9. SUBROUTINE RELOCATABILITY

A method has been provided to allow the user to write subroutines that
may be executed within any Page without re-assembling the subroutine
for that Page. By executing a SET Memory Control Command that sets the
Relocatable Branch Control (RBC) Bit, any Branch, Stack and Branch or
Exit and Branch Instruction given with Page 0 specified in the Branch
Address will cause the Branch to occur within the current Section and
Page of the program. If any Page other than 0 is specified in the
Branch Address, the RBC-Bit is Inactive and a normal Branch function
will occur.

10. TAPE I/O CHARACTER QUEUE

The SYSTEM 4 tape logic contains an 8-bit chararacter buffer that will
hold a character for 512 usec., allowing this much time for other
processing before the user must return to the I/O operation.

19

For DPL-l instructions that use Immediate Addressing, the following
forms may be used in symbolic coding to specify the literal value:

(K)

OCT:NNN

HEX: HH

DEC:NNN

ADP:AAA

IDP:AAA

DDP:AAA

ADL:AAA

ADC:AAA

AAA±NNN

Where K is a valid keyboard character

Where NNN is a one-byte constant in OCTAL
notation from ~~~ to 377.

Where HH is a one-byte constant in HEXA­
DECIMAL notation from ~~ to FF.

Where NNN is a one-byte constant in DECIMAL
notation from ~~~ to 255.

Where AAA is an address constant for a PAGE
in symbolic notation (without Auto Indexing).

Where AAA is an address constant for a PAGE
in symbolic notation (with Increment Auto.
Indexi ng).

Where AM is an address constant for a PAGE
in symbolic notation (with Decrement Auto.
Indexing).

Where AAA is an address constant for a
LOCATION in symbolic notation.

An address constant for labels, in symbolic
notation (will generate page or location
dependent on the Instruction form).

~Jhere AM is an address constant for a
location in symbolic notation, and NNN is
offset ± from that location.

20

SECTION III. INSTRUCTION DESCRIPTIONS

The instructions described in this section of the manual are
presented in the same order as they appear on the Cogar System 4
Instruction Reference Card, and fall in the following four categories:

1. DPL-1 Instructions. These instructions perform all the data
manipulation and control tasks allowed by the hardware.

2. IDS Commands. These instructions provide access to the standard
software I/O routines, using the I/O Supervisor.

3. Pseudo Instructions. These instructions provide programmer
control over the DPL-3B Assembler, and the resident monitors.

4. Constants. Byte constants or string constants may be generated
using these notations.

21

·DPL-l CLASS IJ: JUMP TEST LITERAL AND JUMP [![]
OBJECT I I SOURCE

I I
00IJJJIJ-LLL I I TLJ, +NNN; Literal.
IJIJIJJJ1-LLL I I TLJ, -NN; Literal.

I I
I I
I I

WHERE: JJ is the jump count in 4 Bit
Binary notation, indicating
the number of 2-Byte instructions
to be jumped.

AND: LLL is an 8 Bit Literal.

DESCRIPTION:

WHERE: NN is the jump count in
decimal notation, indic­
ating the number of bytes
to be jumped.

NOTE: This jump count must
always be an even decimal
number (Max:30).

The Accumulator is compared to the byte of immediate data (literal), and
the result is indicated in the condition register. Comparison is binary, and
all codes are valid. If the resulting condition register is equal, a jump for­
ward (+) or a jump backward (-) up to 15 two-byte instruction locations is
performed. If however the resulting condition register is not equal (high or
low), the next sequential instruction is executed. The character in the
Accumulator is not changed. Once set, the condition register remains unchanged
until modified by the next jump or compare instruction that reflects a different
condition code.
NOTE: .The condition register contains the true arithmetic condition (high or

low) after an unsuccessful jump (unequal condition).

HIGH
LOW
EQUAL

ACCUM >
ACCUM <
ACCUM =

LITERAL
LITERAL
LITERAL

TIMING: 3 Microseconds if the jump is not performed.
4 Microseconds if the jump is performed.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-1J1J0: 1J12-1J15.
P15-00l: 1J13-1J16.
P15-1J04: 1J1J6-1J15.
P15-1J1J6: 1J1J4-1J17.

1Jl-121J.
.01-131J.
1Jl-141J.
1Jl-151J.

22

TLJ, +11J; (A).
TLJ, -11J; OCT:1Jl6.
TLJ, +1J6; DEC:1J13.
TLJ, +1J4; HEX:0F.

COMMENTS

JUMP IF
ACCUM IS
EQUAL

·DPL-l CLASS~: JUMP TEST MASK AND JUMP

OBJECT ~! SOURCE

001JJ0-MMM
~~lJJ1-MMM

,
I I
i i TMJ, +NN; LT-MASK.
I I TMJ, -NN; LT-MASK.
I I
I I
I I

WHERE: JJ is the jump count in 4 Bit
Binary notation, indicating
the number of 2-Byte Instructions
to be jumped.

WHERE: NN is the jump count in
decimal notation, indic­
ating the number of bytes
to be jumped.

AND: MMM is an 8 Bit Literal Mask. NOTE: This jump count must
always be an even decimal
number (Max:30).

DESCRI PTI ON:

The state of the Accumulator bits selected by a mask is used to set the con­
dition code.

The byte of Immediate Data (Literal-Mask) is used as an eight-bit mask. The
bits of the mask are made to correspond one for one with the bits of the
character in the Accumulator. A mask bit of one indicates that the corresponding
Accumulator bit is to be tested. When the mask bit is zero, the corresponding .
Accumulator bit is ignored. When any of the Accumulator bits thus selected are
zero, the Condition Register is made unequal. When the selected bits are
all-one, the Condition Register is made equal. If the resulting Condition
Register is equal, jump forward (+) or jump back (-) up to 15 two-byte in­
struction locations. On the resulting Condition Register not equal (high or
low), execute the next sequential instruction. The character in the Accumulator
is not changed. Once set, the Condition Register remains unchanged until modi­
fied by an instruction that reflects a different condition code.
NOTE: The content of the Condition Register is unpredictable after an un-
-- successful jump (unequal condition). .

TIMING: 3 Microseconds if the jump is not performed.
4 Microseconds if the jump is performed.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P1S-010: 050-016.
P15-~12: 051-050.
P15-~14: 076-377.

23

TMJ, +~8; OCT:~16.
TMJ, -~8; DEC:~40.
TMJ, +3~; HEX:FF.

COMMENTS

JUMP IF
MASK IS
EQUAL

'DPL-l CLASS I):

OBJECT

I)I)~-LLL

I I
,
I I
I I
I I
I I
I I
I I

TEST LITERAL AND EXIT

SOURCE

TLX, 1)~0; Literal.

WHERE: LLL is an 8 bit Literal.

DESCRIPTION:

The Accumulator is compared to the byte of immediate data (literal), and the
result is indicated in the Condition Register. Comparison is binary, and all
codes are valid. If the resulting Condition Register is equal, then a special
form of exit, (conditional exit) is performed, which completes the return
linkage established by the last executed stack and branch instruction. The
stack pointer is decremented to the preceding stack level, which contains the
address of the last stack and branch instruction executed. This address is
then incremented by 2 bytes, which establishes the address of the instruction
following the stack and branch instruction, and a new location counter value.
This value is the new instruction address, where processing continues.

The exit function may return within a section or outside a section without
any special consideration, since the stack contains the page and location of
the return address.

NOTE: The Condition Register contains the true arithmetic condition (high
or low) after an unsuccessful Jump (unequal condition).

HIGH
LOW
EQUAL

ACCUM >
ACCUM <
ACCUM =

LITERAL
LITERAL
LITERAL

TIMING: 3 Microseconds if the Jump is not performed.
4 Microseconds if the Jump is performed.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-~16: 0~1J-017.
P15-1)2~: 000-013.
P15-022: 000-~16.
P15-024: .01)1)-377.

~2-091).
~2-100.
02- 11.0.
.02-120.

24

TLX, ~IJIJ; (C).
TLX, 000; OCT:,()13.
TLX, 01)~; OEC:014.
TLX, 1)1)0; HEX:FF.

COMMENTS

EXIT IF
ACCUM IS
EQUAL

·DPL-l CLASS 0:

OBJECT

.04.0-MMM

. TEST MASK AND EXIT

I I SOURCE

I I
i I TMX, .0.0fJ; LT -MASK.
I I
I I
I I
I I

WHERE: MMM is an 8 bit Literal Mask.

DESCRIPTION:

The state of the Accumulator bits selected by a mask is used to set the
condition code.

The byte of Immediate Data (Literal-Mask) is used as an eight-bit mask. The
bits of the mask are made to correspond one for one with the bits of the char­
acter in the Accumulator. A mask bit of one indicates that the corresponding
Accumulator bit is to be tested. When the mask bit is zero, the corresponding
Accumulator bit is ignored. When any of the Accumulator bits thus selected
are zero, the Condition Register is made unequal. When the selected bits
are all one, the Condition Register is made equal. If the resulting Condition
Register is equal, then a special form of exit, (conditional exit) is performed,
which completes the return linkage established by the last executed stack and
branch instruction. The stack pointer is decremented to the preceding stack
level, which contains the address of the last stack and branch instruction
executed. This address is then incremented by2 bytes, which establishes the
address of the instruction following the stack and branch instruction, and a
new location counter value. This value is the new instruction address, where
processing continues.

The exit function may return within a section or outside a section without any
special consideration, since the stack contains the page and location of the
return address.

NOTE: The content of the Condition Register is unpredictable after an un­
-- successful Jump (unequal condition).

TIMING: 3 Microseconds if the Jump is not performed.
4 Microseconds if the Jump is performed.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-026: 040-.01.0. .02-18.0. TMX, 0.0.0; OCT: IJlIJ .
P14-.03.0: .040-31.0. .02-19.0. TMX, 00.0; DEC:2.0.0.
P15-032: .04.0-24.0. .02-2fJ.0. TMX, (1.0.0; HEX:AIJ.

25

COMMENTS

EXIT IF
MASK IS
EQUAL

.DPL-l CLASS 1: BRANCH

OBJECT I I

I I
l.0X-YXY.0 1 1

I I
I I
I I
I I

WHERE: l.0X is the command, in which
X is the page.

AND: YXY is a 7 bit address.

DESCRIPTION:

BRANCH UNCONDITIONAL

BRU

SOURCE

RRR+NNN.
, Pnn; LLL.

*+NNN.

WHERE: RRR is a symbolic address
AND: NNN is a decimal byte dis-

placement.
AND: nn is a decimal page.
AND: LLL is a decimal location
AND: * is the location of the in­

struction itself.

The unconditional branch is performed by introducing a branch address as a
new instruction address, regardless of the setting of the Condition Register.

The Branch Address may be represented in symbolic notation, as an absolute
address; or as a relative address. The Branch Address may be any location within
the current section. "OUT-Of-SECTION" branching is achieved by preceding the
branch instruction with a SET MEMORY SECTION (SMS) instruction, or a SET memory
SECTION & CONTROL (SSC) instruction. "WITHIN-A-PAGE" branching relocatability
is achieved by preceding the branch instruction with a SET MEMORY CONTROL (SSC)
instruction in which the RELOCATABLE BRANCH CONTROL (RBC) bit is set.
(i.e.: C#l or C#3). The hardware condition register remains unchanged after
execution of a branch function.

TIMING: 4 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-.034: 1.05-.042. .03-.03.0. BRU; INl.
P15-.036: 1.05-.036. .03-.04.0. BRU; *+.0.
P15-.04.0: 1.07-.0.0.0. .03-.05.0. BRU, P15; .0.0.0.
P15-.042: 15.0-.0.0.0. .03-.06.0. IN1: SMS; S#.0 .
P15-.044: 1.06-144. .03-.07.0. BRU, P.06; 1.0.0.

26

COMMENTS

WITHIN A
SECTION

OUT Of A
SECTION

'DPL-l CLASS 1: BRANCH

OBJECT I I

I I
! !

BRANCH ON EQUAL

SOURCE

H)X-YXYl I I BRE
I I

RRR+NNN.
, Pnn -; LLL.

*+NNN.
I I
i i

WHERE: l~X is the command, in which
X is the page.

AND: YXY is a 7 bit address.

DESCRIPTION:

WHERE: RRR is a symbolic address.
AND: NNN is a decimal byte dis-

placement.
AND: nn is a decimal page.
AND: LLL is a decimal location.
AND: * is the location of the in­

struction itself.

The conditional branch instruction, branch on equal, is performed when the con­
dition register, set by a previous compare or test instruction, is found to be
equal. If this condition is not satisfied, the next sequential instruction is
executed. The conditional branch is performed by introducing a branch address
as a new instruction address.

(Refer to "BRU" for Basic Rules of Branching).

TIMING: 3 Microseconds if the branch is not performed.
4 Microseconds if the branch is performed.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-~46: 1~5-~51. ~3-13~ BRE; IN2.
P15-~5~: 15~-~~~. ~3-14~. IN2: SMS; S#~.
P15-~52: 34~-2~~. ~3-15~. CPA, R#~; OCT:2~~.
P15-~54: 1~6-145. ~3-16~. BRE, P~6; l~~.
P15-~56: 15~-~1~. ~3-17~. SMS; S#1.

27

COMMENTS

WITHIN SECT.
OUT OF A
SECT. IF
EQUAL-ELSE
RESET SECT.

'DPL-l CLASS 1: BRANCH BRANCH ON HIGH I BRH I
OBJECT I I SOURCE

I I
I I RRR+NNN.

llX-YXY.0 I I BRH , Pnn; LLL.

.
WHERE: 11 Xis the command, in

which X is the page.
AND: YXY is a 7 bit address.

DESCRI PTION:

I I
I I
I I

*+NNN.

WHERE: RRR is a Symbolic address.
AND: NNN is a decimal byte dis-

placement.
AND: nn is a decimal page.
AND: LLL is a decimal location.
AND: * is the location of the in­

struction itself.

The conditional branch instruction, branch on high, is performed when the con­
dition register, which has been set by a previous compare or test instruction,
is found to be high. If this condition is not satisfied, the next sequential
instruction is executed.

(Refer to "BRU" for Basic Rules of Branching).

TIMING: 3 Microseconds if the branch is not performed.
4 Microseconds if the branch is performed.

EXAMPLE :

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-.06.0: 115-.062. .04-.03.0. BRH; *+1)2.
P15-1)62: 151)-.0.0.0. .04-.041). IN3: SMS; S#1) .
P15-1)64: 340~2.0.0. .04-1)51). CPA, R#.0; OCT:21).0.
P15-.066: 116-144. 1)4-.06.0. BRH, P1)6; 1.0.0.
P15-07.0: 15.0-.01.0. .04-.07.0. SMS; S#1.

28

COMMENTS

WITHIN SECT .
OUT OF A
SECT. IF
HIGH-ELSE
RESET SECT .

'DPL-1 CLASS 1: BRANCH BRANCH ON LOW

~ OBJECT I I SOURCE
I

I I
i I RRR+NNN.

11 X- YXY1 I I BRL , Pnn; LLL.
I I
I I
I I

WHERE: 11X is the command, in which
X is the page.

AND: YXY is a 7 bit address.

DESCRIPTION:

*+NNN.

WHERE: RRR is a Symbolic address.
AND: NNN is a decimal byte dis-

placement.
AND: nn is a decimal page.
AND: LLL is a decimal location.
AND: * is the location of the in­

struction itself.

The conditional branch instruction, branch on low, is performed when the con­
dition register, set by a previous compare or test instruction, is found to be
low. If this condition is not satisfied, the next sequential instruction is
executed. The conditional branch is performed by introducing a branch address
as a new instruction address.

(Refer to IIBRU II for Basic Rules of Branching)

TIMING: 3 Microseconds if the branch is not performed.
4 Microseconds if the branch is performed.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-1J72: 115-075. 04-131J. BRL; IN4.
P15-074: 150-001J. 04-141J. IN4: SMS; S#IJ.
P15-1J76: 341J-21J1J. 1J4-150. CPA, R#IJ; OCT:200.
P15-100: 116-145. 04-161J. BRL, P06; 11J1J.
P15-102: 150-010. 04-171J. SMS; S#1.

29

COMMENTS

WITHIN SECT.
OUT OF A
SECT. IF
LOW-ELSE
RESET SECT.

.DPL-l CLASS 1: BRANCH

OBJ E CT I I

I I

STACK AND BRANCH
UNCONDITIONAL

SOURCE

12X-YXY.fl I I SBU
I I

RRR+NNN.
, Pnn -; LLL.

*+NNN.

WHERE: 12X is the command, in
which X is the page~

AND: YXY is a 7 bit address.

I I
I I
I I

WHERE:
AND:
AND:
AND:
AND:

RRR is a symbolic address.
NNN is a decimal byte displacement.
nn is a decimal page.
LLL is a decimal location.
* is the location of the instruc­
ti on itself.

The Stack and Branch Unconditional Instruction is performed regardless of the
setting of the condition register.

DESCRIPTION:

The stack and branch instructions are in contrast with the branch instructions,
in that the stack and branch instructions preserve the current value of the
location counter which is present in the current stack; this is performed by
incrementing the stack pointer to the next stack level and creating a new
location counter value containing the branch address as a new instruction ad­
dress, within that stack. Thus, the return linkage between sub-routines is
established. For the stack and branch function there are sixteen levels of
stacks that the stack pointer can address, of which fifteen levels of stacks may
temporarily preserve the return linkages for fifteen levels of stack and
branchi ng.

TIMING: 3 Microseconds

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P1S-l,f)4: 12S-112. ,f)S-.fl4/l. SBU; INS. WITHIN A
P15- 1,f)6: 125-112. ,f)5-.fl5,f). SBU; *+.fl4. SECTION
P15-11/l: 1 27-.fl.fl,f). ,f)5-.fl6.fl. SBU, P15; .fl.fl.fl.
P15-112 : 15,f)-.fl.fl.fl. .fl5-/l7/l. IN5: SMS; S#.fl. OUT OF A
P15-114 : 126-144. .fl5- .fl8,fl. SBU, P,fl6; l,flf). SECTION

30

'DPL-l CLASS 1: BRANCH

OBJECT

I I
I I

STACK AND BRANCH EQUAL

SOURCE

12X-YXYl I I SBE
I I

RRR+NNN.
, Pnn; LLL.

*+NNN.
I I
1 1

WHERE: 12X is the command, in which
X is the page.

AND: YXY is a 7 bit address.

DESCRIPTION:

WHERE: RRR is a symbolic address.
AND: NNN is a decimal byte displace-

ment.
AND: nn is a decimal page.
AND: LLL is a decimal location.
AND: * is the location of the in­

struction itself.

The conditional stack and branch, stack and branch equal, is performed when the
condition register, set by a previous compare or test instruction, is found to
be equal. If the condition is not satisfied, the next sequential instruction
is executed.

(Refer to "SBU" for Basic Rules of Stack and Branching).

TIMING: 3 Microseconds if the stack and branch is not performed.
4 Microseconds if the stack and branch is performed.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-116: 125-121. "5-14/). SBE; *+,,2. WITHIN SECT.
P15-12,,: 15/)-~/)". "5-15,,. IN6: SMS; S#/). OUT OF A
P15-122: 34/)-2"". "5-16,,. CPA, R#/); OCT:2"". SECTION IF
P15-124: 126-145. .f)5-17.f). SBE, P,t)6; 1"". EQUAL-ELSE
P15-126: 15,,-,,1,t). "5-18". SMS; S#1. RESET SECT.

31

.DPL-l CLASS 1: BRANCH STACK AND BRANCH ON HIGH

OBJECT ! ! SOURCE

I I
13X-YXY.0 I I SBH

I I

RRR+NNN.
, Pnn; LLL.

*+NNN.

WHERE: 13X is the command, in
which X is the page.

AND: YXY is a 7 bit address.

DESCRI PTION:

I I
I I
I I

WHERE: RRR is a symbolic address.
AND: NNN is a decimal byte displace-

ment.
AND: nn is a decimal page.
AND: LLL is a decimal location.
AND: * is the location of the

instruction itself.

The conditional stack and branch, stack and branch on high, is performed when
the condition register, set by a previous compare or test instruction, is found
to be high. If the condition is not satisfied the next sequential instruction
is executed.

(Refer to IISBU II for Basic Rules of Stack and Branching)

TIMING: 3 Microseconds if the stack and branch is not performed.
4 Microseconds if the stack and branch is performed.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-13.0: 135-132. fJ6-fJ4.0. SBH; IN7. WITHIN SECT.
P15-132: 150-.000. 06-050. IN7: SMS; S#fJ. OUT OF A
P15-134: 34fJ-20.0. 06-fJ60. CPA, R#fJ; OCT:2fJ.0. SECTION IF
P15-136: 136-144. .06-07.0. SBH, PfJ6; 1.0.0. HIGH-ELSE
P15-140: 15fJ-01fJ. .06-fJ8fJ. SMS; S#lo RESET -SECT •

32

.DPl-l CLASS 1: BRANCH STACK AND BRANCH ON lOW

OBJECT !! SOURCE

13X-YXYl

I I
I !
I I SBL
I I
I I
I I

WHERE: 13X is the command, in which
X is the page.

AND: YXY is a 7 bit address.

DESCRIPTION:

RRR+NNN.
, Pnn; LLL.

*+NNN.

WHERE: RRR is a symbolic address.
AND: NNN is a decimal byte dis-

placement.
AND: nn is a decimal page.
AND: LLL is a decimal location.
AND: * is the location of the in­

struction itself.

The conditional stack and branch, stack and branch on low, is performed when
the condition register, set by a previous compare or test instruction, is found
to be low. If the condition is not satisfied the next sequential instruction
is executed.

(Refer to "SBU" for Basic Rules of Stack and Branching)

TIMING: 3 Microseconds if the stack and branch is not performed.
4 Microseconds if the stack and branch is performed.

EXAMPLE:

PPP-LLl: MP1-MP2-MP3-MP4. E SEQ. NO . lAB: VERB OPERANDS COMMENTS

P15-142 : 135-145. .06-14/). SBl; INB. WITHIN SECT.
P15-144: 150-.0.0.0. .06-15.0. INB: SMS; S#.0 . OUT OF A
P15-146: 34.0-2.0.0. .06-16.0. CPA, R#.0; OCT: 2.0.0. SECTION IF
P15-15.0: 136-145. .06-17,0. SBL, P,06; 1.0.0 . LOW-ELSE
P15-152: 1 5.0- .01.0. .06-1B.0. SMS; S#l. RESET SECT .

33

'DPL-l CLASS 1: BRANCH EXIT AND BRANCH

OBJECT ! ! SOURCE

I I
16X-YXY~ I I EXB

I I

RRR+NNN.
, Pnn; LLL.

*+NNN.

WHERE: 16X is the command, in
which X is the page.

AND: YXY is a 7 bit address.

DESCRI PTI ON:

I I
I I
I I

WHERE:
AND:
AND:
AND:

RRR is a symbolic address.
NNN is a decimal byte displacement.
nn is a decimal page.
LLL is a decimal location.

The exit and branch instruction combines the functions of the exit instruction
and the branch unconditional instruction. This form of exit does not perform
the return linkage established by the preceding stack and branch instruction.
The stack pointer is decremented to the preceding stack level. The address
specified in the operand is then used to establish a new location counter value
within that stack. This value is the new instruction address within the current
section, where processing continues.

TIMING: 4 Microseconds

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-154: 165-156. ~7-~5~. EXB; *+~2. WITHIN SECT.
P15-156: 15~-~~~. ~7-~6~. SMS; S#fJ. OUT OF A
P15-16fJ: 166-144. fJ7-fJ7~. EXB, PfJ6; lfJfJ. SECTION

34

'DPL-l CLASS 1: BRANCH EXIT UNCONDITIONAL

OBJECT. I I SOURCE ..

I I
140-00~ I I EXU; ~~~.

I I
I I
I I
I I

. WHERE: 140 is the command .
AND: 000 is the 8-Bit Operand

DESCR I PTI ON:

This form of exit, exit unconditional, performs the return linkage established
by the last executed stack and branch instruction. The stack pointer is decre­
mented to the preceding stack level, which contains the address of the last
stack and branch instruction executed. This address is then incremented by 2
bytes which establishes the address of the instruction following the stack and

.branch instruction, and a new location counter value. This value is the new
instruction address, where processing continues.

The exit function may return within a section or outside a section without any
special consideration, since the stack contains the page and location of the
return address.

The condition register is not changed by this instruction.

TIMING: 4 Microseconds.
EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-162: 150-000. 07-130. SMS; S#0.
P15-164: 126-144. 07-140. SBU; OUT.

*07-150.
07-160. ORG: P06, 100.

P06-144: 213-006. 07-170. OUT: LOA, 1#3; P01.
P06-146: 140-000. 07-180. EXU; 000.

35

COMMENTS

LINK OUT OF
A SECTION

RETURN

·DPL-l CLASS 1: BRANCH SET MEMORY SECTION

OBJECT !! SOURCE

I I
I I

l5.0-.0X.0 I ISMS; S#X.
I I
I I
I I

WHERE: X is the section number (.0-7).

DESCRIPTION:

The set section instruction provides a means of transferring control from the
current section to an outside section. A branch function (Branch, Stack &
Branch or Exit & Branch) preceded by an SMS command will transfer control to
the address defined by the branch address and the section specified in the
set section operand.

Note that once the SMS instruction has been executed, transfer to that section
will only be made when an unconditional branch function is executed or a
conditional branch function that is found to be true.

The condition register is not changed by this instruction.

TIMING: 4 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

SMS; S#.0.
BRU, P.02; .0.0.0.

36

COMMENTS

SET SECTION .0
BRANCH PAGE 2

·DPL-1

DESCRIPTION:

CLASS 1 SET MEMORY CONTROL

OBJECT !! SOURCE

I I
I I

151-Y~0 I I SMC; C#Y.
I I
I I
I I

WHERE: Y = ~ Resets U & V control bits,
Y = 1 Sets V Bit, Resets U Bit,
Y = 2 Sets U Bit, Resets V Bit,
Y = 3 Sets U and V Bits.

When the U bit is set to ~, the address of the index registers is memory
location 1-7 and direct addressing is only available in page 0 of section ~.
When the U bit is set to 1, the effective index register address is location
1-7 of the section where the indexed instruction is being executed. Like­
wise the effective direct address is page 0 of the section where the direct
address instruction is being executed.

When the V bit is set to 1 any branch, stack & branch or exit & branch in­
structions given with page ~ specified in the branch address will cause the
branch to occur within the currrent section and page of the program. If any
page other than 0 is specified in the branch address, the V bit control is
inactive and a normal branch will occur. For example, assume that the V bit
is set and a branch instruction located in page 5 specifies a branch to page 0
location AAA. The resulting branch will be, to page 5 location AAA. If the
branch address specified was page 6 location BBB, then the resulting branch will
be to page 6 location BBB. If a program resides in any page other than page
o and a branch to page ~ is desired, the V bit must be inactive.

An exit or exit and branch operation will restore the control bits to the value
associated with that stack level. A stack and branch operation will not affect
the control bits.

TIMING: 4 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

~8-14~.
08-150.
08-160.

*08-170.

37

SMC; C#3.
STA, R#[J; 128.
BRU, P00; 064.

COMMENTS

SET U, V CONTROL
STORE PAGE U)
BRANCH TO
PAGE 15-100/0CT

'DPL-l CLASS 1 SET MEMORY SECTION & CONTROL

OBJECT I ! SOURCE

152-YX0

DESCRI PTI ON:

I I
I I

: : SSC, S#X; C#Y
I I
I I

WHERE: X is the section designation
Y is the control bit designation

This instruction performs both the set memory section operation of SMS and
set memory control operation of SMC.

TIMING: 4 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-012: 152-030. ~9-030· SSC, S#3; C#~. SET SECT. 3 &
09-04~. RESET U & V-BIT

P15-014: 152-360 09-050. SSC, S#6; C#3. SET SECT. 6 &
*09-060. SET U & V-BITS

38

·[)PL-l

DESCRIPTION:

CLASS 1 SET ARITHMETIC CONDITION

OBJECT ~ ~ SOURCE

I I
I I

153-.0.0.0 I I SAC; ?J?J.o.
I I
I I
J 1

This instruction will force the arithmetical condition registers of the pro­
cessor to an equal, high or low condition, dependent upon the state of bits
4 and 5 of the accumulator at the time of the SAC instruction.

The condition forced by the SAC instruction for a given state of bits 4 and 5
of the ACC is given below. .

ACCUMULATOR BITS

7 6 5 4 3 2 1 fJ CONDITION FORCED

1 .0 Equal

fJ High

fJ fJ Low

1 1 Equal

TIMING: 4 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-fJ16: 2fJfJ-fJ2.o. fJ9-12~. LDA, R#.o; OCT:.o2.o. LOAD CONDo CODE
P15-?J2?J: 1 53-fJ.o.o. fJ9-13fJ. SAC; fJ.o.o. SET CONDo HIGH

39

·DPL-l CLASS 1 LOAD SENSE SWITCHES

(LSW I
OBJECT ~ ! SOURCE

I I
I I

l54-~~~ I I LSW; ~~~.
I I
I I
I I

DESCRIPTION:

The load sense switch instruction will load the state of 8 toggle switches
(located in the switch well under the CRT screen) to the accumulator. Switch
~ is loaded to ACC Bit ~, switch 1 to ACC Bit 1, etc.

TIMING: 4 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-t,1P3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-~22: l54-~~~.
P15-~24: ~44-~~4.

~9-l9~.
~9-2~~.

40

LSW; ~~~. LOAD S.S.
TMJ, +~4; OCT:~~4. TEST SW. #2

DPL-l
__ -c-LA-s-s-l--__ ~L-OA-D-P-RO-C-ES-S-OR-S-T-AT-U-S----1 ~

OBJECT :: SOURCE _

I I
i i
I I
I I
! I
I I

155-.0.0.0 LPS; .0.0.0.

DESCRIPTION

This instruction loads a processor status word into the accumulator. The
following shows the accumulator bits and their respective meaning.

ACCUMULATOR ,--------;
765 4 3 2 1 0

Program Interrupt Switch ~
(This bit is set whenever
the program interrupt

L L Stack Pointer Address (Level ~ to 15)

Arithmetic Condition Register (See SAC Inst)
switch is in the interrupt
position. It is reset when­ '-- Interrupt Overflow (See EPI Instruction)
ever the interrupt switch
is-in the neutral position.
Therefore, this switch could
also be used as a sense switch.)

STACK LEVEL 0 1 lP I o I A I
C I G I

I E I
PN~E 0 LOC. 40-42-

2 3

44 46

4 5 6 7
f T I

1 '0
7: 1 I
7;0 i j

I

50 -52 54 56 60

TU1ING; 4 microseconds Current Stack- ':=1'
EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COM~1ENTS

P15-P26: 155-~pp.
P15-P3P: 3p7-p36.
P15-P32: 36p-p4p.
P15-~34: 23P-PPl
P15-P36: 261-pp2.
P15-P4P: 211-~p2.
P15-P42: 3pp-376.
P15-P44: 23.0-.0P2.
P15-P46: 211-p~p.
P15-P5P: 3p6-377.
P15-P52: 23p-pp3.

*1~-fJ5~.
lp-p6p.
1~-P7fJ·
1~-p8p.
1~-p9p.
lp-lfm·
lp-ll~.
1~-12.0.
lP-13.0.
1.0-14.0.
lP-15.0.
1.0-16.0.

CALCULATE ADD.OF LAST STACK & BRANCH INST.

41

LPS; fJP.0. CALCULATE ADDR.
SAN, S#7; OCT:fJ36. OF CURRENT
IRA, R#fJ; OCT:fJ4fJ. STACK (LOC.)
STA, R#fJ; R#l. SAVE IN R#l.
SUX, R#l; OCT:fJ.02. PREVIOUS STK LV
LDA, 1#1; PfJ.0. RETRIEVE LOC.
ANA, R#P; OCT:376. FROM PRIOR STK
STA, R#P; R#2. REMOVE LO BIT
LDA, R#l; P.0fJ. RETRIEVE PAGE
SAN, S#6; OCT:377. OCTAL FORM-SHFT
STA, R#P; R#3. FOR DPL PG R-FM

'DPL-l CLASS 1

OBJECT

1 56-f).fl.fl

DESCRIPTION

DISABLE PROCESSOR
INTERRUPT

~ ! SOURCE

I I
I I DP I; f).fl.fl.
I I
I I
I I
I 1

The disable processor interrupt instruction will inhibit the auto stack and
branch that occurs upon receipt of an interrupt. It does not disable the
interrupt.

If the Disable Processor Interrupt (DPI) was executed prior to the Enable
Processor Interrupt (EPI) Instruction, and the interrupt is activated, the
interrupt will occur only immediately following the execution of an EPI
instruction.

TIMING: 4 Microseconds.

42

.DPL- 1 CLASS 1 ENABLE PROCESSOR INTERRUPT

o B J E C T ~. ~ SOU R C E

I I
I

l56-~~1 I I EPI; ~f)~.
I I
I I
I I

DESCRI PTION:

Within the SYSTEM 4 hardware structure, there are two mechanisms which provide
for the interrupting of normal instruction processing.

One is designed primarily for use by the programmer. The Interrupt Switch is
located in the Switch Well under the CRT screen and can be activated by pushing
the PROGRAM LOAD Toggle Switch in the opposite direction of the PROGRAM LOAD.
Another interrupt cannot be generated until the switch is moved to the off
position and then on again. Also an external interrupt will not be effective
unless the interrupt switch is off. Two levels of interrupts may be preserved
by the interrupt logic prior to the execution of an Enable Processor Interrupt
(EPI) Instruction. Additional interrupts will cause the interrupt overflow
indicator to be set (see 'LPS ' Instruction).

An external interrupt input is provided for use by external devices. This is
activated by a pulse from an external device.

For each interrupt (external or program) an EPI Instruction must be previously
executed. After execution, that level of interrupt will be reset. If the
interrupt is activated after the execution of the Enable Processor Interrupt (EPI)
Instruction, an automatic Stack and Branch operation to Section 0, Page 3,
Location 000 will occur. Therefore, the user program to process the interrupt
condition must be initialized in Page 03-000. The return to the point of
interrupt can be effected by an Exit (EXU) instruction to that Stack level.
(Refer to Stack and Branch Unconditional).

NOTE: If the Disable Processor Interrupt (DPI) was not executed prior to the
Enable Processor Interrupt (EPI) Instruction, and the interrupt is
activated, the interrupt will occur after the execution of the current
instruction.

INTERRUPT LOCK OUT

An interrupt will not occur duri ng any of the fo 11 owi ng conditi ons. However,
they do not inhibit the interrupt, they simply delay the auto Stack and Branch
until the condition is completed. These conditions are:

1) Tape movement (Read/Write/Rewind/Search)

43

EPI (cont'd.)

INTERRUPT LOCK OUT (cont'd.)

2)

3)

4)

If the keyboard is made ready (i.e. by depressing a key and a Read from
the keyboard has not been executed). In this case, the interrupt will
occur immediately following the keyboard Read Instruction.

During a Set Section or Set Section and Control operation.

Interrupt Disable has been set (see Disable Processor Interrupt (DPI)
Instructio~).

TIMING: 4 Microseconds.

44

·DPL-1 CLASS 1 CLEAR PROCESSOR INTERRUPT

~ : l
I

OBJECT SOURCE

I I
I I

156-002 I I CPI; 000.

I I I
I I
I I

DESCRIPTION:

An interrupt overflow condition occurs when more than two interrupts have been
activated before the execution of an Enable Processor Interrupt (EPI) in­
struction. This condition may be tested through the use of the Load Processor
Status (LPS) Instruction.

By execution of a Clear Interrupt instruction; the interrupt overflow indicator
wi 11 be c 1 ea red.

TIMING: 4 Microseconds.

45

.DPL-l CLASS 2: TRANSFER LOAD ACCUMULATOR

OBJECT ! I SOURCE

2~~-LLL I I LOA, R#~; Literal.
21~-YXX I I LOA, R#~; AAA+NNN.
21I-YXZ~~ I I LOA, R#X; PPP-:-
21I-YXZ1~ I I LOA, I#X; PPP.
21I- YXZll I I LOA, D#X; PPP.
21I-YXZiJYJ I I LOA, R#X; AAA±NNN.

WHERE: 2~~ is an immediate address WHERE: R#~ is the immediate or
command. direct indicator.

AND: LLL is any form of literal AND: AAA is a direct address
notation. page within level #~.

AND: 21~ is a direct address command. AND: NNN is a decimal byte dis-
AND: YXX is an 8-bit location address placement.

within a level zero page. AND: X is any register (1-7).
AND: 211 is an indexed address AND: PPP is a decimal page

command. notation.
AND: I is any index (1-7). AND: I-Increment register by ~~l
AND: YXZ is a 6-bit base page after execution.

address. AND: D-Decrement register by ~~l
after execution.

AND: R-Register value unchanged
after execution.

DESCRIPTION:

Load the Accumulator with the value specified by the immediate, the direct or the
indexed address. The immediate form of this instruction provides the means of
specifying machine values or bit congigurations as part of the instruction.
Literal terms may be used to specify such program elements as immediate data,
masks, and addresses. The direct form of this instruction allows the user to
directly address any level zero page. By supplying the base page as the operand
and by specifying the index register containing the address displacement within
that page, the user can address any location within the memory.

The condition register value remains unchanged after execution of this
instruction.

TIMING: 4 Microseconds when literal form is used.
6 Microseconds when literal form is not used.

EXAMPLE

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-~54: 2~~-2~~. 1l-~30. LOA, R#fJ; OCT:2fJ~. IMMEDIATE
P15-056: 20~-066. 11-~4fJ. LOA, R#,fJ; ADL:AAA. ADDRESSING
P15-~6~: 2fJfJ-064. 1l-~5fJ. LOA, R#fJ; ADP:AAA.

*1l-~6~.
P15-fJ62: 21fJ-2fJfJ. ll-fJ7~. LOA, R#fJ; 128. DIRECT
P15-~64: 21fJ-~fJ7. 1l-~80. LOA, R#~; R#7. ADDRESSING

*1l-~90.
P15-fJ66: 2l3-fJ4~. 11-1 fJ~. AAA: LOA, R#3; PfJ8. INDEXED
P15-07~: 213-~42. ll-llfJ. LOA, 1#3; P~8. ADDRESSING
P15-072: 2l3-fl43. 11-12~. LOA, 0#3; PfJ8.

46

.DPL-l CLASS 2: DATA TRANSFER LOAD INDEX REGISTER

OBJECT

20I-LLL

WHERE: I is any register (1-7).

I I

I I
I I

SOURCE

I I LDX, R#X; Li tera 1 .
I I
I I
I I

AND: LLL is any form of literal notation.

DESCRIPTION:

Load the specified index register with the value indicated by the immediate
address. The primary use of this instruction is to establish the address
displacement, within a page, for the indexed addressing instructions. Any
form of literal notation may be used.

The condition register value remains unchanged after execution of this
instruction.

TIMING: 4 Microseconds

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OP~RANDS COMMENTS

P15-074: 201-017. 11-180. LDX, R#l; OCT:017.
P15-076: 202-017. 11-190. LDX, R#2; DEC:015.
P15-100: 203-017. 11-200; LDX, R#3; HEX:Ii'F.
P15-102: 204-017. 12-010. LDX, R#4; (C).
P15-104: 205-110. 12-020. LDX, R#5; ADL:BBB.
P15-106: 206-102. 12-030. LDX, R#6; BBB-06.
P15-110: 207-066. 12-040. BBB: LDX, R#7; IDP:BBB.

47

.DPL-1

DESCRIPTION:

CLASS 2.

OBJECT

221-000
22I-LLL

I I

I I
I I

LOAD INSTRUCTION ADDRESS

SOURCE

I ILIA, R#X; 000.
II LIA, R#X; Literal.
I I
I I

WHERE: I is any register (1-7)
AND: LLL is any form of Literal Notation.

This instruction will transfer the 8 least significant bits of the current in­
struction address to the specified index register. If the instruction literal
is 000, then the section and page of the current instruction address is trans­
ferred to the accumulator. If the literal is not 000, then the literal is
transferred to the accumulator.

TIMING: 4 Microseconds

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-112: 151-2~~.
P15-114: 2f)1-123.
P15-116: 231-f)64.

P15-12f): 21f)-~f)6.
P15-122: 237-~f)1).
P15-124: 14f)-1)~1).

P16-~1)1): 227-,f)f)1).
P16-f)f)2: 247-f)06.
P16-f)f)4: 125-114.
P16-f)f)6: 354-f)f)2.

*12-1,f)1).
*12- 11 f).
*12-12.0.

12-13.0.
12-141).
12-151).

*12-161).
12-170.
12-181).
12-191l.

*12-21)1).
*13-1l11l.

13-1l21l.
13-1)31).
13-04f).
13-1)51).
13-061).

*13-1)71).

LOAD INSTRUCTION ADDRESS (MAIN ROUTINE)
MONITOR, FIXED, NON-RELOCATABLE.

SMC; C#2.
MTR: LDX, R#l; MTR+f)7.

STA, R#l; ~1TR.

LDA, R#0; R#6.
STA, R#7; Pf)IJ.
EXU; IlIJIl.

RELOCATABLE SUBROUTINE.
o RG : P 1 4, ,f)f)f).

SUB: LIA, R#7; IJIJIJ.
ADX, R#7; OCT:,f)06.
SBU; MTR.

SB1: CPA, 1#4; P,f)f).

48

SET CONTROL
SET POINTER
(ACCUM CONTAINS
PAGE NUMBER)
DATA PAGE
INSERT PAGE

ACM.CONTAINS PG
R#(-ADDR + 1
ADJUST

PAGE CHANGED
AT OBJECT-TIME

"DPL-l CLASS 2: DATA TRANSFER STORE ACCUMULATOR

OBJECT ! ! SOURCE
r

23,O-YXX I I STA, R#.o; AAA+NNN.
23I-YXZ.0.0 I i STA, R#X; PPP-:-
23I-YXZ1,O I I STA, I#X; PPP.
23I-YXZll I I STA, D#X; PPP.
23I-YXZYJYJ I I STA, R#X; AAA±NNN.

I I

WHERE: 23.0 is a direct address command. WHERE: AAA is a direct address
page within level #.0. AND: YXX is an 8-bit location address

within a level zero page. AND:
AND: 231 is an indexed address command.
AND: I is any index (1-7). AND:
AND: YXZ is a 6 bit base page address. AND:

AND:

AND:

AND:

DESCRIPTION: .

NNN is a decimal byte dis­
pl acement.
X is any register (1-7).
PPP is a decimal page
notation.
I-Increment register by .0.01
after execution.
D-Decrement register by .0.01
after execution.
R-Register value unchanged
after execution.

Store the contents of the Accumulator into the address specified by the direct
or indexed address contained in the instruction operand. The direct form of
this instruction allows the user to directly address any location within a
level zero page. By supplying the base page address as the operand and by
specifying the index register containing the address displacement within that
page, the user can address any location within the memory, thus performing
the function of indexed addressing.

The condition register value remains unchanged after execution of this in­
struction.

TIMING: 6 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS
I

P16-.o1.o: 23.0-144. 13-14.0. STA, R#fJ; 1.0.0. DIRECT
P16-.o12: 23fJ-.ofJ7. 13-15fJ. STA, R#,O; R#7. ADDRESSING

*13-16.0.
P16-fJ14: 231-YJ7fJ· 13-17fJ· STA, R#l; OCC. INDEXED
P16-.o16: 231-.037. 13-18.0. STA, D#l; P,07. ADDRESSING
P16-YJ2fJ: 231-.036. 13-19fJ. CCC: STA, 1#1; PfJ7.

49

· DPL-l CLASS 2: ORDINARY ARITHMETIC ADD TO ACCUMULATOR

OBJECT ~l SOURCE

240-LLL I I ADA, R#0; Literal.
250-YXX I I ADA, R#0; AAA±NNN.
25I-YXZ00 I I ADA, R#X; PPP.
25I-YXZ10 I I ADA, I#X; PPP.
25I-YXZll I I ADA, D#X; PPP.

WHERE:

AND;

AND:
AND:

AND:
AND:
AND:

I I

240 is an immediate address
command.
LLL is any form of literal
notation.
250 is a direct address command.
YXX is an 8-bit location address
within a level zero page.
251 is an indexed address command.
I is any index (1-7).
YXZ is a 6-bit base page address.

DESCRIPTION:

WHERE:

AND:

AND:

AND:
AND:

AND:

AND:

AND:

R#0 is the immediate
or direct indicator.
AAA is a direct address
page within level #0.
NNN is a decimal byte
displacement.
X is any register (1-7).
PPP is a decimal page
notati on.
I-Increment register by
001 after execution.
D-Decrement register by
001 after execution.
R-Register value remains
unchanged after execution.

Binary add to the Accumulator the value specified by the immediate, the direct,
of the indexed address. The immediate form of this instruction provides the
means of specifying machine values or bit configurations as part of the
instruction. The direct form of this instruction allows the user to directly
address any level zero page. By supplying the base page address as the
operand and by specifying the index register containing the address displacement
within that page, the user can address any location withi nthe memory, thus
performing the function of indexed addressing. In the event of an overflow
condition, the overflow character is lost.

The condition register value remains unchanged after execution of this
ins tructi on.

TIMING: 4 Microseconds when 1 itera 1 form is used.
6 Microseconds when 1 i t,era 1 form is not used.

EXAMPLE:

PPP-LLL. MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P16-022: 240-004. 14-060. DOD: ADA, R#0; (1). ADD IMMEDIATE
P16-024: 250-~7. 14-070. ADA, R#0; R#7. ADD DIRECT
P16-026: 253-004. 14-080. ADA, R#3; P01. ADD INDEXED
P16-030: 253-072. 14-090. ADA, I #3; DOD.
P16-032: 253-007. 14-100. ADA, 0#3; P01.

50

.PPL-l CLASS 2: ORDINARY ARITHMETIC

OBJECT I I

I I
I I

ADD TO INDEX
REGISTER

SOURCE

24I-LLL II ADX, R#X; Literal.
I I
I I
I I

WHERE: I is any register (1-7)
AND: LLL is any form of literal notation.

DESCRIPTION:

Binary add to the index register specified, the value indicated by the immed­
iate address. In the event of any overflow condition, the overflow character
is los t.

The condition register value remains unchanged after execution of this
instruction.

TIMING: 4 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P16-~34: 241-~~4.
P16-~36: 242-~~4.
P16-~4~: 243-372.

14-16~. EEE: ADX, R#l; (1).
14-17~. ADX, R#2; OCT:~~4.
14-18~. ADX, R#3; HEX:FA.

51

COMMENTS

BINARY ADD
TO INDEX
REGISTER

'DPL-l CLASS 2: ORDINARY ARITHMETIC SUBTRACT FROM
ACCUt,1ULATOR

OBJECT ~ ! SOURCE ,

26tJ-LLL
27fJ-YXX
27I-YXZfJtJ
27I-YXZlfJ
27I-YXZll

II SUA, R#fJ; Literal,
: : SUA, R#fJ; AAA±,NNN,
I SUA, R#X; ppp,
I : SUA, I #X; ppp,
I I SUA, D#X; ppp,

WHERE: 26fJ is an immediate address WHERE:
command.

AND: LLL is any form of literal AND:
notation.

AND: 27tJ is a direct address command. AND:
AND: YXX is an 8-bit location address

within a level zero page. AND:
AND: 271 is an indexed address command. AND:
AND: I is any index (1-7)
AND: YXZ is a 6-bit base page address. AND:

AND:

AND:

DESCRIPTION:

R#fJ is the immediate or
direct indicator.
AAA is a direct address
page within level #fJ.
NNN is a decimal byte dis­
placement.
X is any register (1-7)
PPP is a decimal page no­
tation.
I-Increment register by fJtJl
after execution.
D-Decrement register by fJtJl
after execution.
R-Register value unchanged
after execution.

Binary subtract from the Accumulator, the value specified by the immediate, the
direct or the indexed address. The immediate fonn of the instruction provides
the means of specifying machine values or bit configuration as part of the in­
struction. The direct form of this instruction allows the user to directly
address any location within a level zero page. By supplying the base page
address as the operand and by specifying the index register containing the
address displacement within that page, the user can address any location within
the memory, thus perfonning the function of indexed addressing. The two's com­
plement results from an underflow condition. The condition register value
remains unchanged after execution of this instruction.

TIMING: 4 Microseconds when literal form is used.
6 Microseconds when literal form is not used.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P16-fJ42: 26fJ-tJtJ4.
P16-tJ44: 27tJ-fJtJ7.
P16-fJ46: 273-tJtJ4.
P16-~tJ: 273-fJ7fJ.

15-fJ4fJ.
15-tJ5fJ.
15-fJ6fJ.
15-tJ7tJ.

SUA, R#fJ; (1)
FFF: SUA, R#7.

52

SUA, R#3; pm
SUA, R#3; FFF.

COMMENTS

SUB. IMMED.
SUB. DIRECT
SUB. INDEXED

'DPL-l CLASS 2: ORDINARY ARITHMETIC SUBTRACT FROM INDEX
REGISTER

OBJECT !! SOURCE

1 I
I I

26I-LLL I I SUX, R#X; Literal.

WHERE: I is any register (1-7).

I I
I I
I I

AND: LLL is any form of literal notation.

DESCRIPTION:

Binary subtract from the index register specified, the value indicated by the
immediate address. The two's complement results from an underflow condition.
The condition register value remains unchanged after execution of this
instruction.

TIMING: 4 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P16-~S2: 261-~~4.
P16-~S4: 262-~~4.
P16-~S6: 262-~17.
P16-~6~. 263-144.

lS-13~. GGG: SUX, R#l; (1).
lS-14~. SUX, R#2; OCT:~04.
lS-lS.o. SUX, R#2; HEX :0F.
lS-16~. SUX, R#3; DEC:ltltl.

53

COMMENTS

BINARY
SUBTRACT FROM
INDEX REG.

·DPL-l CLASS 3:
BOOLEAN ARITHMETIC

LOGICAL IIANDII TO
ACCUMULATOR

WHERE:

AND:

AND:
AND:

OBJECT I~

3,ll,ll-LLL I I
31,ll-YXX I I
31I -Y XZ,ll,ll I I
31I-YXZl,ll I I
31I-YXZll I I

I I

3,ll,ll is an immediate address
command.
LLL is any form of literal
notation.

ANA,
ANA,
ANA,
ANA,
ANA,

31,ll is a direct address command.
YXX is an 8-bit location address
within a level zero page.

SOURCE

R#,ll; Literal.
R#,ll; AAA+NNN.
R#X; PPP-:-
I#X; PPP.
D#X; PPP.

WHERE:

AND:

AND:

AND:

R#,ll is the immediate or
direct indicator.
AAA is a direct address
page within level #,ll.
NNN is a decimal byte dis­
placement.

AND:
AND:

311 is an indexed address command.
I is an index (1-7).

AND:
X is any register (1-7).
PPP is a decimal page
notati on.

AND: YXZ is a 6-bit base page address.

DESCRIPTION:

AND:

AND:

AND:

I-Increment register by n,lll
after execution.
D-Decrement register by ,ll,lll
after execution.
R-Register value remains un­
changed after execution.

Logical "and" to the Accumulator the value specified by the immediate, direct or
indexed address. The immediate form of this instruction provides the means of
specifying machine values of bit configurations as part of the instruction. The
direct form of this instruction allows the user to directly address any level
zero page. By supplying the base page address as the operand and by specifying
the index register containing the address displacement within that page, the
user can address any location within the memory, thus performing the function of
indexed addressing. The value of the operand is treated as an unstructured
logical quantity, and the value is applied bit by bit to the Accumumulator. The
bit position in the result (Accumulator) is set to one if the corresponding bit
positions in the Accumulator and the operand both contain a one; otherwise, the
result bit is set to zero. (Result is one if both are ones). All operand values
and results are valid. The condition register value remains unchanged after
execution of this instruction.

TIMING: 4 Microseconds when literal form is used.
6 Microseconds when literal form is not used.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P16-f)62: 3.of)-.o26.
P16-f)62: 31,ll-f).o7.
P16-,ll66: 314-.o3f).
P16-.o7.o: 314-,ll32.
P16-,ll72: 314-,ll33.

*16-,ll2,ll.
16-f)3.o.
1 6-f)4.o.
16-.05.0.
16-f)6,ll.
16-f)7f).

LOGICAL "AND" TO ACCUMULATOR.
ANA, R#.o; OCT:f)26. IMMEDIATE
ANA, R#.o; R#7. DIRECT
ANA, R#4; Pf)6. INDEXED
ANA, 1#4; Pf)6. ADDRESS I NG
ANA, 0#4; P,ll6.

54

·DPL-1 CLASS 3: SHIFT & LOGICAL "AND" TO
BOOLEAN ARITHMETIC ACCUMULATOR

OBJECT 11 SOURCE

I I
3f)I-LLL I I SAN, S#X; Literal.

I I
I I
I I
I I

WHERE: I is the bit shift count (1-7). WHERE: X is the bit shift count (1-7).
AND: LLL is any literal notation.

DESCRIPTION:

This form of the logical "and" instruction performs a right circular shift of
the bits in the Accumulator, by the number of bits specified in the shift counter,
before the logical "and" of the literal to the Accumulator is performed.

All literal values and results are valid. The condition register value remains
unchanged after the execution of this instruction.

TIMING: 4 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P16-f)74: 303-f)26.
*16-12,fl. SHIFT AND LOGICAL "AND" TO ACCUMULATOR.
l6-l3,fl. SAN, S#3; OCT:f)26.

Initial Accumulator Value

Accumulator Value after a Shift of 3.
Literal Value
Accumulator Value after the logical IIANDII of OCT:f)26.

55

· DPL-l CLASS 3: EXCLUSIVE "OR" TO ACCUMULATOR I ERA I
BOOLEAN ARITHMETIC

OBJECT ~ I SOURCE

320-LLL I I ERA, R#0; Literal.
330-YXX I I ERA, R#0; AM±NNN.
33I-YXZ00 I I ERA, R#X; PPP.
33I-YXZ10 I I ERA, I#X; PPP.
33I-YXZ11 I I ERA, D#X; PPP.

I I

WHERE: 320 is an immediate WHERE: R#0 is the immediate or direct
address command. indicator.

AND: LLL is any form of AND: AM is a direct address page within
literal notation. level zero.

AND: 330 is a direct AND: NNN is a decimal byte displacement
address command.

AND: YXX is an 8-bit location AND: X is any register (1-7).
address within a level AND: PPP is a decimal page notation.
zero page. AND: I-Increment register by 001 after

AND: 331 is an indexed execution.
address command. AND: D-Decrement register by 001 after

AND: I is an index (1-7). execution.
AND: YXZ is a 6-bit base AND: R-Register value remains unchanged

page address. after execution.

DESCRIPTION:

Exclusive "or" to the Accumulator the value specified by the immediate, direct
or indexed address. The immediate form of this instruction provides the means
of specifying machine values or bit configurations as part of the instruction.
The direct form of this instruction allows the user to directly address any
level zero page. By supplying the base page address as the operand and by
specifying the index register containing the address displacement within that
page, the user can address any location within the memory. The value of the
operand is treated as an unstructured logical quantity, and the value is
applied bit by bit to the Accumulator. A bit position in the result
(Accumulator) is set to one if the corresponding bit positions in the
accumulator and as specified by the operand, are unlike; otherwise, the result
bit is set to zero. (Result is one if unlike). All operand values and results
are valid. The condition register value remains unchanged after execution of
this instruction.

TIMING: 4 Microseconds when literal form is used.
6 Microseconds when literal form is not used.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P16-fJ76: 32fJ-fJ26.
P16-lfJfJ: 33fJ-fJ07.
P16-1fJ2: 334-03f).
P16-l04: 334-032.
Pl6-106: 334-033.

*17-1)6')'
17-07fJ.
l7-08fJ.
l7-f)9fJ.
17 -1 f)fJ.
17-110.

EXCLUSIVE "OR" TO ACCUMULATOR
ERA, R#fJ; OCT:fJ26. IMMEDIATE
ERA, R#fJ; R#7. DIRECT
ERA, R#4; P06. INDEXED
ERA, 1#4; P06. ADDRESSING
ERA, D#4: PfJ6.

56

'DPL-l
CL .. AS_S_3 _: _BO_O_LE_A_N_E .,..A R_IT_H_M_ET_I_C __ S_H_I F_T_A_N_D_'_' E_O_R'.....,' . I SE' R I ACCUMULATOR

OBJECT I I SOURCE

32I=LLL
I I
I I
I I
I I
I I
I I

SER, SIX; Literal.

WHERE: I is the bit shift count (1-7). WHERE: X is the bit shift count (1-7)
AND: LLL is any literal notation.

DESCRIPTION:

This form of the exclusive "or" instruction performs a right circular shift of
the bits in the Accumulator, by the number of bits specified in the shift
counter, before the exclusive "or" of the literal to the Accumulator is per­
formed. All literal values and results are valid. The condition register
value remains unchanged after execution of this instruction.

TIMING: 4 Microseconds

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P16-11~: 327-~26.

,J,
1 0 ~ ~ 1 ~ 1 1
o 0 ~ 1 " 1 1 " 10"11101

*17-l6~. SHIFT AND "EOR" ACCUMULATOR
17-17~. SER, S#7; OCT:~26.

Initial Accumulator Value

Accumulator Value after a Shift of 7.
Literal Value
Accumu,lator Value after the exclusive "OR" of OCT:026.

57

DPL-l CLASS 3: INCLUSIVE "OR II TO ACCUMULATOR
BOOLEAN ARITHMETIC

OBJECT I I SOURCE .
360-LLL I I IRA, R#0; Literal.
370-YXX I I IRA, R#0; NNN.
370-YXX I I IRA, R#0; AAA±NNN.
371-YXZ00 I I IRA, R#X; PPP.
37I-YXZ10 I I IRA, I#X; PPP.
371-YXZll I I IRA. D#X; PPP.

WHERE: 360 is an immediate address WHERE: R#0 is the immediate or direct
command. indicator.

AND: LLL is any form of literal AND: AAA is a direct address page
notation. within level zero.

AND: 370 is a direct address AND: NNN is a decimal byte displacement
command.

AND: YXX is an 8-bit location AND: X is any register (1-7).
address within a level zero AND: PPP is a decimal page notation.
page. AND: I-Increment register by 001

AND: 37 1 is an indexed address after execution.
command. AND: D-Decrement register by 001

AND: I is an index (1-7). after execution.
AND: YXZ is a 6-bit base page AND: R-Register value remaining

address. unchanged after execution.

DESCRIPTION:

Inclusive lIorll to the accumulator the value specified by the immediate, direct,
or indexed address. The immediate form of this instruction provides the means
of specifying machine values or bit configurations as part of the instruction.
The direct form of this instruction allows the user to directly address any.
level zero page. By supplying the base page address as the operand and by
specifying the index register containing the address displacement within that
page, the user can address any location within the memory. The value of the
operand is treated as an unstructured logical quantity, and the value is ap­
plied bit by bit to the accumulator. A bit position in the result (accumulator)
is set to one if the corresponding bit position in the accumulator or as
specified by the operand, either contain a one; otherwise, the result bit is
set to zero. (Result is one if either are one). All operand values and results
are valid. The condition register value remains unchanged after execution of
this instruction.
TIMING: 4 Microseconds when literal form is used.

6 Microseconds when literal form is not used.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P16-112: 36.0-026.
P16-114: 37.0-.007.
P16-116: 374-.03.0.
P16-12.o: 374-.032.
P16-l22: 374-.033.

*18-1.00.
18-11.0.
18-120.
18-130.
18-140.
18-15.0.

INCLUSIVE IIOR" TO ACCUMULATOR.
IRA, R#0; OCT:026. IMMEDIATE
IRA, R#0; R#7. DIRECT
IRA, R#4; P06. INDEXED
IRA, 1#4; Pf)6. ADDRESSING
IRA, 0#4; P 06 .

58

'DPL-l CLASS 3: BOOLEAN ARITHMETIC SHIFT AND."JORII
TO ACCUMULATOR

OBJECT

36I-LLL
I I
I I
I I
I I
I I
II

SOURCE

SIR, SIX; Literal.

WHERE: I is the bit shift count. WHERE: X is the bit shift count.
AND: LLL is any literal notation.

DESCRIPTION:

This form of the inclusive lIor" instruction performs a right circular shift of
the bits in the Accumulator, by the number of bits specified in the shift counter;
before the inclusive lIorli of the literal to the Accumulator is performed. All
literal values and results are valid. The condition register value remains un­
changed after execution of this instruction.

TIMING: 4 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P16-124: 364-~26.

11 ~.0.0l.0l

I I I
_ _-1.1_

.0 1 .0 1 1 1 .0 .0

.0 9) .0 1 .0 1 1 .0

.019)1111.0

*18-2~~. SHIFT AND INCLUSIVE IIOR II TO ACCUMULATOR.
19-~1~. SIR, S#4; OCT:~26.

Initial Accumulator Value

Accumulator Value after a Shift of 4
Literal Value
Accumulator Value after the inclusive 1I0RII of OCT:~26 .

59

DPL-l CLASS 3: COMPARE COMPARE ACCUMULATOR

OIJ E CT ~ ! SOURCE
340-LLL I I CPA, R#0; L Hera 1.
350-YXX I I CPA, R#0; AAA±NNN.
351-YXZ00 I I CPA, R#X; PPP.
351-YXZ10 I I CPA, I#X; PPP.
351-YXZll I I CPA, D#X; PPP.

I I

WHERE: 340 is an immediate address WHERE: R#0 is the immediate or direct .
command. indicator.

AND: LLL is any form of literal AND: AAA is a direct address page within
notation. level zero.

AND: 350 is a direct address AND: NNN is a decimal byte displacement
command.

AND: YXX is an 8-bit location ad- AND: X is any register (1-7).
dress within a level zero AND: PPP is a decimal page notation.
page. AND: I-Increment register by 001 after

AND: 351 is an indexed address execution.
command. AND: D-Decrement register by 001 after

AND: I is any index (1-7). execution.
A~D: YXZ is a 6-bit base page AND: R-Register value unchanged after

address. execution.

DESCRIPTION:

Compare the contents of the Accumulator to the value specified by the im­
mediate, direct or indexed address. The immediate form of this instruction
provides the means of specifying machine values or bit configurations as part
of the instruction. The direct form of this instruction allows the user to
directly address any level zero page. By supplying the base page address as
the operand and by specifying the index register containing the address dis­
placement within that page, the user can address any location within the
memory. The character in the Accumulator is not altered. The condition reg­
ister value is changed to reflect the high, low or equal result of the compare
instruction. Once set, the condition register remains unchanged until mod­
ified by an instruction that reflects a different condition code.

TIMING: 4 Microseconds when 1 iteral form is used.
6 Microseconds when 1 itera 1 form is ,not used.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P16-126: 34~-~26. 19-15tJ. CPA, R#tJ; (J). IMMEDIATE
P16-13tJ: 350-tJ~7. 19-16f). CPA, R#~; R#7. DIRECT
P16-132: 34.0-136. 19-17.0. CPA, R #tJ; ADL: CPT.
P16-134: 354-~3tJ. 19-18.0. CPA, R#4; PtJ6. INDEXED
P16-136: 354-tJ32. 19-19tJ. CPT: CPA, 1#4; P.o6. ADDRESSING
P16-14tJ: 354-tJ33. 19-2tJtJ. CPA, D#4; PtJ6.

60

·DPL-1 CLASS 3: COMPARE COMPARE INDEX REGISTER

OBJECT ~ I SOURCE

I I
34I-LLL I I CPX, R#X; Literal.

I I
I I
I I
I I

WHERE: I is any index register (1-7). WHERE: X is any register (1-7).
AND: LLL is any literal notation.

DESCRIPTION:

Compare the contents of the index register specified to the byte of immediate
data (literal). Comparison is binary, and all codes are valid. The value of
the index register is not altered.

The condition register value is changed to reflect the high, low, or equal re­
sult of the compare instruction. Once set, the condition register remains un­
changed until modified by an instruction that reflects a different condition
code.

TIMING: 4 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P16-l42: 343-~~6.
P16-144: 343-146.

20-06fJ. CRT: CPX, R#3; (3).
20-fJ7fJ. CPX, R#3; CRT+04 ..

61

COMMENTS

IMMEDIATE
ADDR. LOC.

·DPL-2

DESCRIPTION:

GROUP 1: I/O GET DATA (READ)

OBJECT ~ ~ SOURCE

I I
~17-YXX-~XX-YXX I I GET; NNN, T#N, MMM.
~17-YXX-2XX-YXX I I GET; NNN, M#N, MMM.
~17-YXX-~12-YXX I I GET; NNN, KBD, MMM.

I I
J I

WHERE: NNN is the decimal size.
AND: T#N, M#N, or KBD is the device number

of the Mini-Tape, the Maxi-Tape, or
the Keyboard, respectively.

AND: r~MM is the left-most high order decimal
address of the receiving field.

A Read operation is initiated at the I/O device, and the data is transferred
from the device into memory. Page destination is initially set to 01 but may
be changed with a SET PAGE Instruction. The Page remains at this setting until
a different SET PAGE Instruction is executed. Any data continuing past a Page
boundary will be wrapped around to the beginning of the Page.

MAXI-TAPE:

When retrieving records from Maxi-Tape, the same number of bytes as contained in
the tape record must be specified by the size operand within the instruction.
The size may be up to 256 bytes for Maxi-Tape. Data is placed in memory in
ascending order of addresses within the IIInto" Page which is currently set,
starting with the address specified in the instruction.

MINI-TAPE:

When retrieving records from Mini-Tape, the physical record length must be 136
bytes. The standard Mini-Tape record is comprised of an 8-byte label, generated
by the Mini-Write software function, followed by 128 bytes of data. Because the
label is generated by the software and not by the user, it is not included in
the record size operand. Therefore, when reading the standard Mini-Tape record,
specify 128 (number of data bytes) as the size. Although a Mini-Tape record
may contain a maximum of 128 bytes of data, it may be desirable to read a lesser
number of characters into the input buffer. By specifying a lesser number in the
size operand, only the number of characters specified will be stored into the
I/O area indicated by the user. The remainder of the record will be read and
used to check for tape errors and CRC Check but these characters will not be
stored into the I/O Buffer. The 8-byte label is automatically read into Page 00
Locations 0308 thru 0378. The data portion of the record is placed in memory in
ascending order of addresses within the tllntoll Page which is currently set,
starting with the address specified in the instruction. An automatic sequence
check is made on the first byte of the label. If the record contains the wrong
sequence number (i.e. a record was skipped), the error condition will be set.

62

GET (cont/d.)

KEYBOARD

When retrieving data from the keyboard, the same number of bytes as contained
in the size operand must be entered. The keyboard Supervisor provides for
corrections to be made to data entered. By depressing the "CORR" key on the
keyboard, the point of entry will be backspaced one location within the current
Page. The size operand may specify up to 256 bytes for the keyboard operation.
Data is placed in memory in ascending order of addresses within the "Into" Page
which is currently set, starting with the address specified in the instruction.

Device assignment is as follows:

DDD DEVICE NAME SYMBOLIC CODE OBJECT CODE

Standard Mini-Tape 1 T#l tJ!Jl
Pair 1 Mini-Tape 2 T#2 tJtJ2

Optional Mini-Tape 3 T#3 tJtJ3
Pair 2 Mini-Tape 4 T#4 tJtJ4

Optional Mini-Tape 5 T#5 tJtJ5
Pair 3 Mini-Tape 6 T#6 tJtJ6

Optional, Mini-Tape 7 T#7 '/JtJ7
Pair 4 Mini-Tape 8 T#8 '/Jl'/J

Keyboard KBD '/J12

Maxi-Tapes M#N 2~X

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-tJ'/JtJ: 15tJ-tJtJ'/J-122-tJtJ4. !Jl-l tJtJ. ENT: DPL-3.
P15-tJtJ4: '/JtJ5-tJ'/J6-'/J12-tJ66. '/Jl-11tJ. SET; P AG : F!Jl ,T tJ2 . SET PAGE
P15-'/JltJ: tJ17-2tJtJ-tJtJl-tJtJ'/J. tJl-12'/J. GET; 128, T#l ,tJ'/J'/J. READ INTO PG2
P15-tJ14: '/J'/J4-'/JtJl-'/J17-'/JtJ'/J. !Jl-13tJ. SEL; LOW,P15,tJtJ'/J. EOC RECORD?
P15-'/J2'/J: '/J'/J4-'/JtJ4-'/J17-144. '/J1-14tJ. SEL; HGH, P15, 1 tJtJ. TAPE ERROR?
P15-'/J24: 15tJ-'/Jl'/J-l'/J5-'/J3'/J. !Jl-15tJ. ENT: DPL-l • RECORD OK
P15-'/J3tJ: 14tJ-tJ'/J'/J. !Jl-16'/J • EXU; '/J'/J'/J. RETURN

63

'DPL-2 GROUP 1: I/O

DEseRI PTI ON:

OBJECT rl

~27-YXX-YXX-~XX I I
~27-YXX-YXX-2XX I I
~27-YXX-YXX-~13 I I

I I
I I
I I

PUT DATA (WRITE)

SOURCE

PUT; NNN, MMM, T#N.
PUT; NNN, MMM, M#N.
PUT; NNN, MMM, PRT.

WHERE: NNN is the decimal size.
AND: MMM is the left-most high order

decimal address of the sending
field.

AND: T#N, M#N, or PRT is the device
number of the Mini-tape, the Maxi­
tape, or the Printer; respectively.

A Write operation is initiated at the I/O device, and the data is transferred
from memory to the device. The Page source is initially set to 01 ,but may be
changed with a SET PAGE Instruction. The Page remains at this setting until a
different SET PAGE Instruction is executed. Data can be written from any
Location within a Page. Any data continuing past the Page boundaries, based on
the size operand, will be wrapped around to the beginning of the Page.

MAXI-TAPE:

When writing records to Maxi-Tape, the actual number of bytes desired to be
written must be specified by the size operand within the Instruction. The size
may be up to 256 bytes for Maxi-Tape. Data in memory is fetched in an ascending
order of addresses, within the "From" Page which is currently set, starting with
the address specified in the Instruction. .

MINI-TAPE:

When writing records to Mini-Tape, the physical record length will be 136 bytes.
The standard Mini-Tape record is comprised of an 8-byte label, generated by the
software function, followed by 128 bytes of data. Because the label is generated
by the software and not by the user, it is not included in the record size
operand. Therefore, when writing 'the Standard Mini-Tape record, specify 128
(number of data bytes) as the size. Although a Mini-Tape record may contain a
maximum of 128 bytes of data, it may be desirable to write a lesser number of
characters from the input buffer. By specifying a lesser number in the size
operand, only the number of characters specified will be written from the I/O
area indicated by the user. The remainder of the record will contain Octal
zeroes. The complete 136 byte record will be used to check for tape write
errors.

64

MINI-TAPE (cont1d.)

The 8-byte label is automatically written from Page 00 locations 0308 thru
0378. The record sequence number is automatically generated by the Mini­
Write software function. The remainder of the label may be controlled by the
user. The data portion of the record is written from memory in ascending
order of addresses within the IIFrom ll Page which is currently set, starting
with the address specified in the Instruction.

PRINTER:

When printing, the actual number of bytes desired to be printed must be
specified by the size operand within the Instruction. The size may be up
to 256 characters. Data in memory is fetched in an ascending order of add­
resses, within the IIFrom ll Page which is currently set, starting with the
address specified in the Instruction.

In order to execute a control command for the Print Function as part of the
data, the control byte must have the high-order bit present (Ref. 1/0
Instruction) (i.e. to execute an IIIndex Function for the typewriter,
either execute PCl; ~~l, PRT, lOX, or Place OCTAL 212 as a character in
the print buffer).

There will be an automatic Carriage Return after each print command.

Device assignment is as follows:

DOD DEVICE NAME SYMBOL! C CODE OBJECT CODE

Standard Mini-Tape 1 T#l ~~l
Pai r 1 Mini-Tape 2 T#2 ~~2

Optional Mini-Tape 3 T#3 ~fJ3
Pair 2 Mini-Tape 4 T#4 fJfJ4

Optional Mini-Tape 5 T#5 fJ~5
Pair 3 Mini-Tape 6 T#6 ~~6

Optional Mini-Tape 7 T#7 ~fJ7
Pair 4 Mini-Tape 8 T#8 fJl~

Printer PRT 1)13

Maxi-Tapes M#N 29JX

65

PUT (cont'd.)

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-~32: lS~-~0~-122-0~4. ~2-~2~. ENT: DPL-3.
P1S-~36: 00S-~S6-~06-066. ~2-~3~. SET; PAG:Fll ,T~l. SET PAGE
P1S-042: 027-2~0-00~-~01. ~2-~40. PUT; 128,~~~,T#1. WRITE
P1S-046: 004-~~1-~17-0~0. 02-0S~. SEL; LOW,P1S,0~0. EOF(REF . SPOT)
P1S-0S2: 004-004-017-144. 02-06~. SEL; HGH, P1S, 10~L TAPE ERROR?
P1S-0S6: lS0-01~-10S-~62. 02-07~. ENT: DPL-1. RECORD OK
P1S-~62: 14~-000. 02-~80. EXU; ~~~. RETURN

66

GET & PUT

LINKAGE:

The GET or PUT Functions may be used in a DPL-l context in conjunction with
the Pseudo (ENT:IOS) or it may be used in a DPL-3 context (ENT:DPL-3).

RETURN STATUS (DPL-3)

If the software condition value (POO-377) is "=", function good.

If the software condition val ue (POO-377) is ">", tape 8-retry error
(or Read Sequence error).

If the software condition value (POO-377) is "<", file mark read.

The above conditions may be tested by the software by using the "SEL;"
commands.

Location POO-0178 contains the Status Byte - Refer to the Instruction Reference
Cards for Error Conditions.

Return Status (IGS)

The return from ENT:IOS will set the status in the hardware condition
register and can be tested using DPL-l corresponding to the above conditions.

67

'DPL-2 GROUP 2: DATA MODIFY MOVE
STORAGE TO STORAGE

OBJECT !! SOURCE

I I
037-YXX-YXX-YXX I I MOV; NNN, AAA, BBB.

DESCRI PTION :

I I
I I
I I
I I

WHERE: NNN is
AND: AAA is

II from II
AND: BBB is

lIinto"

the decimal size.
a decimal or symbolic
address.
the decimal or symbolic
address.

The DPL-2 move instruction is used for a storage-to-storage move where the data
specified by the A-operand is moved to the address specified by the B-operand
address. In storage-to-storage movement the fields may overlap in any desired
way. Movement is left to right through each field a byte at a time.

The "fromll and "into" page are initialized as page one. To move "fromll a page,
or lIintoll a page other than page one, a SET PAGE instruction must have been
previously executed. The page remains at this setting until a different SET
PAGE instruction is executed.

The A-operand and the B-operand may be within the same page or in different pages.
Any data continuing past page boundaries will be wrapped around to the beginning
of the page.

The software condition value remains unchanged.

The hardware condition register is inpredictable after execution of any in­
struction executed in DPL-3 or lOS Mode.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-tl64: 15tl-tltltl-122-tltl4.
P15-tl7tl: tl05-012-006-066.
P15-074: tl37-012-040-04tl.

tl2-15b.
tl2-16tl.
tl2-17tl.

68

ENT: DPL-3.
SET; PAG:Ftl2,Ttll.
MOV; tl10,032,tl32.

COMMENTS

MOVE 10 CHAR.
FROM PAGE 2
TO PAGE 1

'DPL-2

GROUt-
P

2: --",-=D:..,:AT:..,:A:....,:M:;,...;O,--D_I F_Yr-+-___ ~_~~~ S=-~=b~_=R....:.:~:....::~E:..:_=___ __ __II I ADD I

I ... ~ ~.J .E.ex' T .•.• X i! A- _ _ "N"" SO A ~ R (B.E.

DESCRIPTION:

TJlfl- Y "" - Y" - Y" I I UU; N N, AA, BB •
I I
I I
I I
I I

WHERE: NNN is the decimal size.
AND: AAA is a decimal or symbolic addend

1 address.
AND: BBB is a decimal or symbolic addend

2 address.
(AAA+BBB)=BBB

The ADD command adds a decimal value specified by the A-operand to a decimal
value specified by the B-operand for the number of bytes indicated by the size
operand. The A-operand value and the B-operand value must be the same size. The
A-operand value and the B-operand value may contain a sign although it is not in­
cluded in the size count. Addition is algebraic. The results of the addition
displaces the previous contents of the B-operand field and any overflow character
is lost. The octal value of 001 (-) is the minus sign. Any other value is
assumed to be positive. If the A-operand field contains a minus sign, a sign
position must be reserved in the result field.

The A-operand field and the B-operand field may be within the same page or
different pages as specified by a Set Page instruction.

The software condition value is unchanged.

The hardware condition register is unpredictable after execution of any in­
struction executed in DPL-3 or lOS Mode.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-100: 047-003-000-100. 03-04h. ADD; 003,000,064.
*03-050.
*03-060. 600 + (B-OPERAND)
*03-070. 200 - (A-OPERAND)
*03-080.
*03-090. 400 + (B-OPERAND RESULT)

69

COMMENTS

'DPL-2 GROUP 2: DATA MODIFY SUBTRACT STORAGE-

DESCRIPTION:

TO-STORAGE

OBJECT ! I SOURCE
I

I I
,,57-YXX-YXX-YXX I I SUB; NNN, AAA, BBB.

I I
I I
I I
I I

WHERE:NNN is the decimal size.
AND: AAA is a decimal or symbolic

subtrahend address.
AND: BBB is a decimal or symbolic

minuend address.
(BBB-AAA) = BBB

The SUB command subtracts a decimal value specified by the A-operand from a
decimal value specified by the B-operand. The A-operand value and the B-operand
value must be the same size.

The A-operand value and the B-operand value may contain a sign, although it is
not included in the size count. Subtraction is algebraic. The result of the
subtraction displaces the previous contents of the B-operand field and any
overflow character is lost.

The octal value of ",,1 (-) is the minus sign. Any other value is assumed to be
positive. A sign position must be reserved in the result field.

The A-operand and the B-operand fields may be within the same page or different
pages as specified by a set page instruction.

The software condition value is unchanged.

The hardware condition register is unpredictable after execution of any in­
struction executed in DPL-3 or lOS Mode.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

SUB; ""3,,,,,,,,"64.

2"" - (B-OPERAND)
1"" + (A-OPERAND)

3"" - (B-OPERAND RESULT)

70

COMMENTS

.DPL-2 GROUP 2: DATA MODIFY MULTIPLY

OBJECT ~ ~ SOURCE

I I
I I

067-YXX-YXX-YXX I I MUL; NNN, AAA, BBB.
I I
I I
i I

WHERE: NNN is the decimal size.
AND: AAA is a high order decimal or

symbolic multiplier address.
AND: BBB is a high order decimal or

symbolic multiplicand address.

DESCRI PTION:

The MUL command multiplies a decimal value specified by the B-operand by a
decimal value specified by the A-operand (A x B) for the number of bytes in­
dicated by the size operand. The multiplier may contain a sign, although it is
not included in the size count. An unsigned multiplier is assumed to be positive.
The extended product area, the size of the multiplicand field plus one, filled
with decimal zeros, must be reserved immediately following the multiplicand field.
If the multiplicand field is to contain a sign, it must appear immediately
following the product area. An uns~gned multiplicand field is assumed to be
positive. The octal value of .0.f)l (-) is the minus sign. Any other value is
assumed to be positive. If the Multiplier contains a minus sign, a sign position
must be reserved in the product field. The sign result in the product field is
algebraic.

The product result of the multiplication displaces the previous contents of the
multiplicand field and is right justified with left zeros in the product field.

Unit Position of the Multiplier Field is:
Unit Position of the Multiplicand Field is:
Unit Position of the Product Field is:

AAA+NNN-.0t)l .
BBB+NNN-.0.t)l .
BBB+2xNNN.

The multiplier and the multiplicand fields may be within the same page or diff­
erent pages as specified by a set page instruction.

The software condition value is uhchanged.

The hardware condition register is unpredictable after execution of any i n-
struction executed in DPL-3 or lOS Mode.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-ll.0: .0.05-.0.06-.0.06-066. .04-.06.0. SET; PAG:Ft)l ,T.t)l.
P15-ll4: .067-.0.03-.0.0.0-1.0.0. .04-.07.0. ~1UL ; .0.03 ,.0.t).t) ,.064.

71

.DPL-2 GROUP 2: DATA MODIFY DIVIDE

OBJECT I I SOURCE

I I
I I

YJ77-YXX-YXX-YXX I I DIV; NNN, AAA, BBB.
I I
I I
I I

WHERE: NNN is the decimal size.
AND: AAA is a decimal or symbolic divisor

address.
AND: BBB is a decimal or symbolic dividend

address.
DESCRIPTION:

The DIV command divides a decimal value specified by the B-operand by a decimal
value specified by the A-operand for the number of bytes indicated by the size
operand. The size of the dividend field must be twice the size of the divisor
field plus one. The dividend field must be right justified and have at least one
leading zero. The maximum value of the dividend is the result of the maximum
value of a multiply of the same size. (999)2. The divisor and the dividend
fields may contain a sign although it is not included in the size count. The
size count is the size of the divisor. An unsigned field is assumed to be
positive. Division is algebraic. The octal value YJYJl (-) is the minus sign.
Any other value is assumed to be positive. If the divisor contains a minus sign,
a sign position must be reserved in the quotient field.

The quotient result of the division desplaces the previous contents of the divi­
dend field and is left justified. The size of the quotient is the size of the
divisor. The remainder is placed immediately following the quotient.

Unit Position of the Divisor Field is:
Unit Position of the Dividend Field is: .
Unit Position of the Quotient Field is:

AAA+NNN-"YJl.
BBB+2xNNN.
BBB+NNN-YJYJ1.

The divisor and the dividend fields may be within the same page or different pages
as specified by a Set Page instruction.

The software condition value is unchanged.

The hardware condition register is unpredictable after execution of any in­
struction executed in DPL-3 or lOS Mode.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-l2YJ: YJ"5-""6-YJYJ6-YJ66.
P15-l24: YJ77-""3-"YJYJ-1YJYJ.

.f)4-l3YJ.

.04-14".

72

SET; PAG:F.f)l,T"l .
DIV; f)f)3,f)YJYJ,"64 .

COMMENTS

· DPL-2 GROUP .3: COMPARE COMPARE STORAGE-TO-STORAGE

OBJECT ~ ~ SOURCE

I I
I !

0~3-YXX-YXX-YXX I I COM; NNN, AAA, BBB.

DESCRIPTION:

I I
I I
I I

WHERE: NNN is the decimal size.
AND: AAA is the high order decimal or

symbolic address of the compare
field.

AND: BBB is the high order decimal or
symbolic address of the field com­
pared to.

Within the current page setting established by a set page instruction, compare
the data specified by the A-operand address to the data specified by the B-·
operand address for the number of bytes indicated by the size operand. The
comparison operation proceeds left to right through each field a byte at a time
and ends when an inequality ;s found or end of field is reached. Comparison is
binary, with a collating sequence based on ascending binary values. All codes
are valid. Memory is not altered as a result of this operation. A field that
overflows a page boundary will wrap around to the beginning of the page.

The software condition register is memory location P00 3778' This will contain
an octal ~60 for> , 1)57 for < or 066 for =. The "SEL" instructions will test
these conditions.

The result of the compare operation is indicated by the software condition value.

HIGH
LOW
EQUAL

EXAMPLE:

AAA"
AAA
AM

>
<

BBB
BBB
BBB

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO.

P15-130: 005-002-~76-066. 05-010.
P15-134: 003-~i2-150-310. 05-020.
P15-140: 004-002-006-000. 05-030.
P15-144: ~04-000-014-000. 05-1)40.
P15-150: 05-YJ50.

LAB: VERB OPERANDS COMMENTS

SET; PAG:F0~,T15.
COM; 010,002,200.
SEL; EQL,P06,000·
SEL; UNC,P12,YJ0YJ.

CYJ2: A/N: (COMPARE XX).

73

·DPL-2

DESCRIPTION:

GROUP 3: SELECT SELECT UNCONDITIONAL

OBJECT 11 SOURCE

I I
004-000-YXX-YXX I I SEL; UNC, RRR.

I I PNN, LLL.
I I
I I
I I

WHERE:
AND:
AND:

RRR is a symbolic address.
NN is a decimal page.
LLL is a decimal address~

The Select (Branch) Uncondition command is used in a DPL-3 context to transfer
control to a new instruction location regardless of the setting of the software
condition value.

The DPL-2 commands are executed in an interpretive mode and therefore are not
limited to section boundaries. In the interpretive mode the SEL command may be
used to transfer control to any DPL-2 command or to any DPL-l command except the
DPL-l branch functions and the jump functions. DPL-l branch functions and jump
functions can only be used in the DPL-l mode of operation (ENT:DPL-l). The
branch address may be represented as a symbolic address or as an absolute
address. The software condition value remains unchanged.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-162: ~04-0~0-~17-0~0. 05-110. SEL; UNC,P15,~00.
P15-166: 004-000-015-166. ~5-120. S01: SEL; UNC,S01.

74

. DPL-2 GROUP 3: SELECT

OBJECT I I

I I

~~4-~~1-YXX~YX~ :
I I
I I
I I

SEL; LOW,

SELECT LO.W

SOURCE

RRR.
PNN, LLL.

WHERE:
AND:

RRR is a symbolic address
NN is a decimal page.

AND: LLL is a decimal address.

DESCRIPTION:

The conditional branch command, select LOW, is used in a DPL~3 context to trans­
fer control to a new instruction location if the software condition register
previously set by a DPL-2 compare or a DPL~2 1/0 instruction is found to be LOW.
If the condition is not satisfied, the next sequential instruction ;s executed.

(Refer to "SEL ;UNC" for Basic Rules of Select Branching)

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-172: ~~4-~~1-~17-~~~. ~5-l8~. SEL; LOW,P15,~~~.
P15-176: 9)~4-9)~1-9)15-176. 9)5-l9~. S~2: SEL; LOW,S~2.

75

· DPL-2 GROUP 3: SELECT SELECT EQUAL

OBJECT ~! SOURCE

I I
I I

~~4-~~2-YXX-YXX I I SEL; EQL, RRR.
I I PNN, LLL.
I I
I I

WHERE:
AND:

RRR is a symbolic address
NN is a decimal page.

AND: LLL is a decimal address.

DESCRI PTION:

The conditional branch command, select EQUAL, is used in a DPL-3 context to
transfer control to a new instruction location if the software condition value
previously set by a DPL-2 compare or DPL-2 I/O instruction is found to be
EQUAL. If the condition is not satisfied, the next sequential instruction is
executed.

(Refer to "SEL;UNC" for Basic Rules of Select Branching)

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-2~2: ~~4-~~~-~17-~~~. ~6-~5~. SEL; EQU,P15,~~~.
P15-2~6~ ~~4-~~2-~15-2~6. ~6-~6~. S~3: SEL; EQL,S~3.

76

· DPL-2 GROUP 3: SELECT SELECT HIGH

OBJECT ~!
I I

0~4-~~4-YXX-YXX I I SEL' HGH 'II 'fJ'fI I I ' ,

I I
I I
I I

SOURCE

RRR.
PNN, LLL.

WHERE:
AND:

RRR is a symbolic address.
NN is a decimal page.

AND: LLL is a decimal address.

DESCRIPTION:

The conditional branch command, select HIGH, is used in a DPL-3 context to
transfer control to a new instruction location if the software condition value
previously set by a DPL-2 compare or DPL-2 I/O instruction is found to be HIGH.
If the condition is not satisfied, the next sequential instruction is executed.

(Refer to "SEL;UNC" for Basic Rules of Select Branching)

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-212: ~~4-~~4-~17-~~~.
P15-216: ~04-0~4-015-216.

06-120. SEL; HGH,P15,000.
06-130. S04: SEL; HGH,S04.

77

COMMENTS

. DPL-2 GROUP 3: SELECT SELECT NOT HIGH

OBJECT I I SOURCE

I I
004-014-YXX-YXX I I SEL; NHG, RRR.

I I PNN, LLL.
I I
I I
I 1

WHERE:
AND:

RRR is a symbolic address.
NN is a decimal page.

AND: LLL is a decimal address.

DESCRI PTION:

The conditional branch command, select NOT HIGH, is used in a DPL-3 context to
transfer control to a new instruction location if the software condition value
previously set by a DPL-2 compare or DPL-2 I/O instruction is found to be LOW
or EQUAL. If the condition is not satisfied, the next sequential instruction
is executed.

(Refer to "SEL;UNC" for Basic Rules of Select Branching)

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-222: 004-014-017-000. 06-2~~. SEL; NHG,P15,0~~.
P15-226: 004-~14-~15-226. 07-~10 S~5: SEL; NHG,S~5.

78

• DPL-2 GROUP 3: SELECT SELECT NOT EQUAL

OBJECT !! SOURCE

I I
004-012-YXX-YXX I I SEL;NEQ, RRR.

I I PNN, LLL.
I I
I I
I I

WHERE: RRR is a symbolic address.
AND: NN is a decimal page.
AND: LLL is a decimal address.

DESCRIPTION:

The conditional branch command, select NOT EQUAL, is used in a DPL-3 context to
transfer control to a new instruction location if the software condition value
previously set by a DPL-2 compare or DPL-2 I/O instruction is found to be LOW
or HIGH. If the condition is not satisfied, the next sequential instruction is
executed.

(Refer to "SEL;UNC" for Basic Rules of Select Branching)

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-232: 9).04-9H2-9fl7-9)9)9L 9)7-9)79). SEL; NEQ,P15,9)9)9).
P15-236: 9)9)4-9)12-9)15-236. 9)7-9)89), S9)6: SEL; NEQ,S9)6.

79

· DPL-2

D ESCRI PTI ON:

GROUP 3: SELECT SELECT NOT LOW

OBJECT !! SOURCE

I I
P¢4-~11-YXX-YXX I I SEL;NLW, RRR.

I I PNN, LLL.
I I
I I
I I

WHERE:
AND:
AND:

RRR is a symbolic address.
NN is a decimal page.
LLL is a decimal address.

The conditional branch command, select NOT LOW, is used in a DPL-3 context to
transfer control to a new instruction location if the condition value previously
set by a DPL~2 compare or DPL-2 I/O instruction is found to be HIGH or EQUAL.
If the condition is not satisfied, the next sequential instruction is executed.

(Refer to "SEL;UNC" for Basic Rules of Select Branching)

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P15-242: 004-011-017-000. 07-140. SEL; NLW,P15,0~~.
P15-246: 0~4-011-~15-246. ~7-15~. S~7: SEL; NLW,S~7.

80

·DPL-2 GROUP 4: SET PAGE SET PAGE

OBJECT I I SOURCE
•
I I
I I

005-FFF-TTT - II I I I SET; PAG: FNN, TNN.

WHERE:

AND:

AND:

II
I I
I I

FFF is the DPL A-Operand WHERE:
(from) page.
TTT is the DPL B-Operand AND:
(to) page.
III is the DPL Instruction
page.

DESCRIPTION:

FNN is the decimal page setting
for the A-Operand data instructions.
TNN is the decimal page setting
for the B-Operand data instructions.

The A-Operand and the B-Operand, in the DPL-2 data functions, specify an address
within a page where the data resides. The set page instruction provides a means
of controlling the setting of that page as a base address. The page setting for
the A-Operand and the B-Operand may be the same page or they may be different
pages regardless of the section. Only operands that specify data use the page
setting. The page setting is unchanged until another set page instruction is
executed reflection different pages.

The software condition value is unchanged.

The hardware condition register is unpredictable after execution on any in­
struction executed in DPL-3 or lOS Mode.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-252: 005-006-076-066.
P15-256: 037-012-024-112.
P15-262: 037-004-012-024.

81

COMMENTS

MOVE CHAR.
FROM PAGE 1
TO PAGE 15

DPl-2 GROUP 4. I/O CONTROL TAPE CONTROL COMMANDS

OBJECT ~!
~~7-~~1-~XX-~~11 I
~~7-~0l-2XX-~~11 I
tl~7 -~~". 2XX -~~21 I
~~7-~61l-2XX-0031 I
~~7-00l-2XX-~~41 I

I I

SOURCE
TCl; 001, T#N, BSP.
TCl; 001, M#N, BSP.
TCl; 0~1, M#N, RW D.
TCl; ~~l, M#N, RWI.
TCl; 001, M#N, WFM.

WHERE: N is a decimal tape device number,
AND: BSP is a backspace record function,
AND: RWI is a maxi-tape rewind with

interlock function,
AND: RWD is a maxi-tape rewind witho~t

interlock function,
AND: WFM is a maxi-tape write file mark.

DESCRIPTION:

These commands control the basic tape operations for the device specified
in the instruction. The backspace function (BSP) applies to all tape I/O
devices. The backspace function backspaces the device specified by one
record.

The two rewind functions and the write file mark function apply only to
maxi-tape devices. The rewind with interlock function (RWI) rewinds the
maxi-tape specified and takes the device off-line. After the device has
been set off-line, manual intervention is required to return the device
to on-line status. The rewind without interlock function (RWD) rewinds
the maxi-tape specified, but does not take the device off-line. The write
file mark function (WFM) writes a special hardware 3-byte file mark
for the maxi-tape specified.

EXAMPLE:

PPP-lll: MP1-MP2-MP3-MP4. E SEQ. NO. lAB: VERB OPERANDS COMMENTS

P15-266: ~~7-tl01-0tll-0~1. ~8-l00. TCl; tlfJl ,T#l ,BSP. BKSP MINI-l
P15-272: tl07-fJfJl-2fJl-tJtll. tl8- 11 tl. TCl; tlfJl ,M#l ,BSP. BKSP MAXI
P15-276: fJfJ7-tlfJl-2tJ2-fJtJ2. tJ8-l2tl. TCl; tJfJl ,M#2, RWD. RWD MAXI W/INTl
P15-3tJ2: ~fJ7-fJfJl-2fJ3-fJfJ3. tl8-l3fJ. TCl; tlfJl ,M#3 ,RWI. RWD MAXI-NO INT
P15-3fJ6: tltJ7-tJfJl-2tl4-tJfJ4. fJ8-l4tl. TCl; tl01,M#4,WFM. WR.FIlE MK-MAXI

82

· DPL-2

DESCRIPTION:

GROUP 4. TYPEWRITER CONTROL (TYPES I & II)

OBJECT ~!
91917 -91911-9113-002 I I
0917 -D01-013-0913 I 1
D07 -001-013-0914 I I
007 -001-9113-006 I I
007 -001-013-011 I I
007 -001-013-012 I I

SOURCE
PCL; 0911t PRT t BSC.
PCL; 001t PRT, RRS.
PCl; 001, PRT, CRT.
PCL; 0~1, PRT, BRS.
PCL; 001, PRT, TAB.
PCL; 001, PRT, lOX.

These commands will control the paper and carriage positioning on the
IBM 730 and 735 typewriters.

002 (BSC) Backspace carriage one character position .

.0913 (RRS) Red ribbon shift (optional on 735).

9104 (CRT) Carriage return.

9106 (BRS) Black ribbon shift (optional on 735).

011 (TAB) Position carriage to the first tab stop.

012 (lOX) Index paper one line.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P1S-312: ~~7-~~1-~13-011. ~8-2~~. CPT: PCl; ~~1 ,PRT,TAB. TAB ONE FIELD
P1S-316: ~27-~12-~~~-~13. ~9-fH~. PUT; fH 0,0~~,PRT. PRINT 1.0 CHAR.
P1S-322: .007-.0.01-.013-.0.04. .09-.02.0. PCl; .0.01 ,PRT ,CRT. CARRIAGE RETURN
P1S-326: .0.07-.0~1-013-~12. 09-.03~. PCL; .001 ,PRT ,lOX. INDEX ONE LINE
P1S-332: .004-00.0-01S-312. .09-.041J. SEl; UNC,CPT.

83

·DPl-2

DESCRIPTION:

GROUP 4

OBJECT ~ I .
~~7-~~1-013-~6~ I I
~~7-~m-m3-f)701 I

I I
I I
I I
11

lINE PRINTER CONTROL
(TYPE I I)

SOURCE

PCl; ~~l, PRT, TOF.
PCl; 0~1, PRT, lFD.

These commands control the paper positioning on the medium speed line printers.

~60 (TOF) When this command is given the paper will slew
to "top of form".

~7~ (lFD) This command will feed one line of paper.

EXAMPLE:

PPP-lll: MP1-MP2-MP3-MP4. E SEQ. NO. lAB: VERB OPERANDS COMMENTS

P15-336: ~27-1~~-~~~-013. ~9-1~~. WTT: PUT; 064,.o~~,PRT. PRINT 64 CHAR.
P15-342: 004-~~4-~17-.o~~. .09-11.0. SEl; HGH,P15,.o.o.o. PRINT ERROR
P15-346: 0.07-.0.01-013-.070. .09-12.0. PCl; .o~l ,PRT ,lFD. ADVANCE 1 LINE
P15-352: .0.04-.0.0.0-.015-336. .09-130. SEl; UNC,WTT.

84

NOTATIONS FOR DPL-3B CONSTANTS

These statements are used to enter data constants into memory, to define and
reserve areas of memory, and to specify the address of relocatable symbols.
The statements may be named by symbols so that other program elements can
refer to the fields they generate.

The forms OCT, DEC, HEX and A/N may specify one constant or a string of
constants.

The form DSA provides a method of reserving specified areas of memory for
future reference. The contents of the reserved area is not disturbed.

The form ADC provides a means of storing the address components of relocatable
symbols. ADC generates a two-byte constant, containing the DPL code of the
page and the octal code of the location of the symbol.

CONSTANT NOTATIONS

OCT: (NNN-NNN-NNN-etc.)

A byte-string constant in octal notation where the maximum number
of terms is six.

HEX: (HH-HH-HH-etc.)

A byte-string constant in Hex notation where the maximum number
of terms is eight.

DEC: (NNN-NNN-NNN-etc.)

A byte-string constant in decimal notation where the maximum number
of terms is six.

A/N: (XXXXXXX ... etc.)

A string of keyboard characters where the maximum number of
characters is 24.

DSA: (NNN)

Define Symbol area where NNN is decimal number of bytes required up
to 256.

ADC: (AAA.±.NNN)

Address constant for labels in symbolic notation. This instruction
generates two-bytes. The first byte contains the DPL page of the
address specified in increment form. The second byte contains the
location.

85

· DPL-l

DESCRIPTION

PSEUDO

OBJECT I I

I I
I I
I I
I I
I I
I I

ORIGIN LOCATION COUNTER

SOURCE

ORG: PNN, LLL.
ORG: PNN.

WHERE: NN is the decimal page of
the program origin.

AND: LLL is the decimal location
within the page.

AND: Where LLL is not specified
location 000 is assumed.

The assembler uses the decimal term specified by the operand to alter the
setting of the location counter for the current segment. This value should
be on a half-word boundary if instruction statements are to follow. The
ORG instruction must appear following each SEG (segment) or OVL (overlay)
statement, and may appear elsewhere within the segment. If the ORG instruc­
tion is omitted following SEG or OVL, the assembler sets the initial instruc­
tion address to zero. The ORG operand specifies a page and location as
either an absolute address, or as an implied address of location 000 within
the page specified, if the location is not included in the operand. Each
ORG statement is considered one label of the 128 possible labels.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

l,t)-,t)l,t). OVL: PID. OVERLAY ID
l,t)-,t)2,t). ORG: Pl,t). ORIGIN Pl,t),,t)fJfJ

P12-,t),t)fJ: 1,t)-,t)3,t). A/N: (,l)12) •
1,t)-fJ4,t). ORG: Pl,t), 128. ORIGIN PH'),128

P12-2fJfJ: 11')-,t)5,t) • A/N: (XXX) .

86

'DPL-l

DESCRIPTION: .

CLASS: PSEUDO IDENTIFY SEGMENT

OBJECT !! SOURCE
I

I I
I I SEG: PID.
t I
I I
I I
I I

WHERE: PID is any 3 character segment
identification.

A segment is a block of program coding that can be relocated independently of
other coding if linkage addresses are changed where necessary. The concept of
program segmenting is a consideration at coding time, assembly time, and at
object generation time. By using the form of the Branch functions specifying
the absolute address to which control is to be passed at execution time,
external segments may be referenced. In assembled multi-segment programs, seg­
ments may symbolically address locations in other segments. A program is com­
posed of at least one segment, and the SEG or OVL pseudo must be the first in­
struction encountered during assembly which is immediately followed by an ORG
pseudo. Any three characters may be used for segment identification. >.The SEG
identification is contained in all subsequent source instructions up to the
end of the segment. The SEG identification assigned by the SEG pseudo is used
in conjunction with the USE pseudo to retrieve external segments at object
generation time.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

10-11.().
1.0-12.0.
1.0-13.0.

87

SEG: PID. SEGMENT 10
ORG: P.08, 0/).0. START LOCATION
LOA, R#/); OCT:0/)0.

. DPL-l PSEUDO ENTER CONTROL FUNCTION

OBJECT I I SOURCE

I I
l5~-VXX-ltlX-YXX I lENT: DPL-l.
l5~-~~fJ-122-~~4 I lENT: DPL-3.
l5fJ-fJ~fJ-123-~~41 I ENT: lOS.

I I
I I

WHERE: l5t1-YXX is the section. WHERE: DPL-l is a machine executable mode.
DPL-3 is an interpretive mode. AND:

AND: lOS is the I/O supervisor.

DESCRIPTION:

ENT:

The ENT pseudo instructions change the operating context for the program in­
structions. There are three forms of the ENT pseudo and each generates Branch
linkage code to the appropriate control point.

ENT:DPL-l switches the instruction environment from interpretive DPL-3 mode
into direct execution DPL·-l mode. DPL-l mode is the normal hardware context
and executes instructions at machine speed. Only DPL-l and Pseudo instructions
may be executed in DPL-l mode. This pseudo will be an SMS and a BRU to the
next instruction in sequence.

ENT:DPL-3 switches the instruction environment from direct DPL-l mode into
interpretive DPL-3 mode. In DPL-3 mode any DPL-l instruction except Class tI,
Class 1 and any DPL-2 statement may be executed under control of a resident
software monitor. Exit from DPL-3 mode is accomplished only with an ENT:DPL-l
pseudo instruction.

ENT:IOS switches control temporarily from a DPL-l context into the Input/Output
Supervisor for the execution of one l/Ofunction. The DPL-2 I/O commands
(GET, PUT, SET, TCL, PCL) are used to specify the I/O operation. Following
execution, control is automatically returned to DPL-l mode and the succeeding
instructions.

lOS:

The Input Output Supervisor is a resident monitor program used to provide
complete I/O functions for DPL-l programs. The ENT:IOS pseudo instruction is
used to turn program control over to the Supervisor. After one complete I/O
function has been performed, program control is automatically returned to the
using DPL-l program. The I/O function to be performed is specified using a
GET, PUT, PCL or TCL command from the DPL-2 instruction set. A SET;PAG command
may precede the I/O function command where required .

•

(continued)

88

ENT (cont'd.)

The I/O buffer page for the Supervisor is set initially to page 01. The
SET;PAG command changes the page context for the GET and PUT commands where
desired.

All index registers in section 0 are used by the lOS during its operation and
their contents lost. Any valuable data contained in these index registers
should be saved by the user progrom before calling the Supervisor and restored
by the user program after return from the lOS.

The Supervisor uses the software status byte as a status indicator upon its
return to the user program. This condition may be tested by using the DPL-2
"SEL" command. Equal condition means that the I/O function has been success­
fully completed. High condition indicates that an error has occurred. Low
condition means that a file mark or end of file record has been detected during
a tape read operation. When a high condition is encountered the user should
branch to an error routine. The software status byte (P00-0178) can help dia­
gnose an error that occurred during a mini-tape read or write. If the status
byte contains the value eight, a retry failure is indicated.

Refer to the Cogar System 4 Instruction Reference Card for explanation of the
status byte.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

P10-002: 201-012. 10-190. LOX, R#l; HEX:0A.
P10-004: 150-000-122-004. 10-2fJ0. ENT: DPL-3.
P10-010: 017-200-001-200. 11-fJ10. GET; 128,T#1,128.
P10-014: 037-012-2fJ0-226. 11-fJ2fJ. MOV; m0, 128, 150.
P10-020: 047-012-226-31fJ. 11-03fJ. ADD; m fJ , 1 5fJ ,2fJ0 .
P10-024: 1 50-01 0-1 fJ0-fJ30. ll-fJ40. ENT: DPL-l.

*1l-fJ50.
P10-030: 1 50-0fJ0-123-004. 11-fJ60. ENT: lOS.
P10-034: 005-006-076-fJ42. 11-070. SET; PAG:F01,T15. (OPTI ONAL IN ST)
P10-040: 017-200-001-000. 11-080. GET; 128,T#1,000. AUTOMATICALLY,
P10-044: 201-030. 11-090. LOX, R#l, DEC:024. ENTERS DPL-l

89

'DPL-l

DESCRIPTION

PSEUDO

OBJ ECT ! !
I I
I I
I I
I I
I I
I I

EQUATE SYMBOL

SOURCE

LAB: EQU: PNN, LLL.
LAB: EQU: RRR.

WHERE:
AND:
AND:

AND:

LAB is a symbolic label.
NN is the decimal page.
LLL is the decimal location
within the page.
RRR is a symbolic reference.

The EQU pseudo instruction defines a symbol by assigning it to either an
absolute location or another symbol. The EQU instruction is the means of
equating symbols to registers, relocatable expressions, and other arbitrary
values.

The EQU operand may be represented as an absolute expression, or as a sym­
bolic label present in the context of the program unit.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

11-16.0. SEG: ABC.
11-17.0. ORG: Pl.O.
11-18.0. E.lll: EQU: P12, .0.0.0.
11-19.0. E02: EQU: XYZ.

*11-2.0.0.
P12-.0.0.0: 231-.052. 12-.lll.0. XYZ: STA, 1#1; Pl.O.
P12-.0.02: 1.04-.0.0.0. 12-.02.0. BRU; E.Ol.

90

COMMENTS

EQUATE E.01 TO
AN EXTERNAL
SEGMENT
E.02-INTERNAL

°DPL-l

DESCRIPTION:

CLASS: PSEUDO OVERLAY

OBJECT I I SOURCE ,
I I
I I OVL: PI D °
I I
I I
I I
I I

WHERE: PID is any 3 non-blank character
overlay identification.

The OVL pseudo names a section of program coding in the same way that SEG
pseudo does, and restrictions are identical. Program overlays must be considered
at coding time.

In contrast to the SEG segment, which generates object coding into the main body
of the program, the OVL segment generates overlay records outside the main body.

At object generation time, each OVL segment is inserted into the object string
tape, in the order that they occur, following the records used in loading the
full memory. The overlay records are retrieved into memory, under user program
control, using the normal I/O procedures.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB : VERB OPERANDS COMMENTS

12-f)8f). SEG: PID. MAIN BODY OF
12-f)9f). ORG: Plf), f)f)fJ. PROGRAM

*12-1f)f).
*12-11fJ.
12-12fJ. OVL: XYZ. 1 ST OVERLAY
12- 13fJ. ORG: PfJ2, fJfJfJ. RECORD

*12-14fJ.
12-1Sf). END: *+fJ. (MUST HAVE END)

91

DPL-l CLASS: PSEUDO

OBJECT

DESCRIPTION

USE EXTERNAL SOURCE SEGMENT

! !
I I
I I
I I
I I
I I
I I

SOURCE

USE: PID.

WHERE: PID is an external OVL or
SEG i denti fi er.

The USE pseudo instruction identifies an independently de­
fined segment or overlay that is to form part of the current
program. The retrieval of these segments, at object genera­
tion time, can be effected only if the assembler is able to
identify the 3 position name in the USE operand with a seg­
ment name established on the source primer tape. At object
generation time, when a USE pseudo is encountered, the object
string generation of the current source primer is interrupted.
The user is then instructed to continue processing, using
the source primer tape containing the identification specified
by the USE operand. The first set of identifiers that satisfy
the USE operand will continue the object generation process
until an END pseudo instruction is reached. If, within the
segment specified by the USE pseud6, another use pseudo is en­
countered (nested USE) the same interrupt procedure takes
place. When a segment is completed, the trail back must be
initiated by using the most currently interrupted source primer.

LIBIlARY soullOtc:e­
PIlOt IMEIl cONTAI S
SE&M&NT: -AS c.'!

92

~eWL.Y ASSIEM8L.. D

90UA<:&'-PAII\4 .~
C:ON.AININcr A.

"USE" psEUDO.

'DPL-l

WHERE:
AND:

AND:

CLASS: PSEUDO

OBJECT

ltJX-YXX
ltJX~YXX

ltJX is a Branch command.
X is the page within
Section I.
YXX is the location.

DESCRIPTION:

I I

I I
I I
I I
I I
I I
I 1

END SEGMENT

SOURCE

END: PNN, LLL.
END: RRR.

WHERE:
AND:
AND:

NN is the decimal page address.
LLL is the decimal location.
RRR is a symbolic reference.

The END pseudo instruction is used to define the end of a program segment or
overlay and to identify the starting address for program execution. This
starting address may be different than the origin address and is specified as an
absolute or symbolic address within Section I. For multiple segment programs,
the starting address from the last encountered END instruction is used.

The END pseudo generates a Branch Unconditional instruction to the address
specified by the operand.

At object generation time, this generated Branch instruction is inserted into the
background in the corresponding location of Page 2, locations 2 and 3, and is
used as the entry point within the section assigned (PtJ2-tJtJtJ) at execution time.
If the format (END:*+tJ.) is used, this branch address will not be inserted into
the background. This format is commonally used to terminate and overlay.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS

13-14tJ. SEG: XYZ.
13-151). ORG: PtJB, tJtJtJ.

*13-16tJ.
*13-17.0.

PltJ-tJtJ.0: 174-tJll. 13-1BtJ. BGN: IOC, C#4; ml. DISPLAY
*13-19tJ·
*13-2tJtJ.
14-m tJ. END: BGN. LINK TO BEGIN

93

'DPL-l PSEUDO

OBJECT

DESCRIPTION:

I I

I I
I I
I I
I I
I I
I I

EJECT

SOURCE

EJT: ~~~,

The EJT pseudo instruction causes the printer to go to Top of Form before
printing out the next instruction, during a Source Listing operation, It
thus allows the programmer to set up the listings in easily read formats,
The Sequence Number for this instruction, but not the instruction itself,
is printed on the Source Listing.

94

· DPL-l CLASS 1: BRANCH AND I/O MINI-TAPE

OBJ ECT

17H I
171 FFF
172 1

11 SOURCE

I I
I I roc, C#N; FFF.
I I
I I
I I
I I

WHERE: FFF is Function Code WHERE: N=D Current tape channel selected.

TIMING: 4 - 6 Microseconds

FFF (function Codes) DESCRIPTION

DDD FORI.lARD, SLOW, ERASE

N=l Tape cartridge #1 selected.
N=2 Tape cartridge #2 selected.

Start Tape Forward with Erase. This command sets the run direction
and the erase control for the selected tape channel. This command
initiates a Tape Write Routine. Since the Erase is active, the
tape will be erased until subsequent write data commands. After
this command is given, a time delay of approximately 30 M sec should
be given to allow the tape to reach a stable speed of 10 in/sec. be­
fore the writing df data is begun.

DDl FORWARD, SLOW

This Instruction starts the selected tape forward with Erase condi­
tion off. This instruction generally initiates a tape read sequence.

DD2 FORWARD, FAST

This command sets the run, forward, and high speed control in the
tape electronics starting the tape forward at 40 inches/sec.

DD3 REVERSE, SLOW

This command sets the run control, resets the high speed and forward
control, starting the tape reverse normal speed. When the Forward
Control is in reset state, the erase function is inhibited preventing
the erasing of data on any tape reverse condition. When in reverse
if the clip comes home, (tape rewound) the run control is reset
stopping tape motion.

DD4 REVERSE, FAST

This command is identical to the reverse normal command except the
tape is driven at high speed 40 inches/sec.

95

FFF (Function Codes) DESCRIPTION CONTINUED

005 STOP

This command resets the run control stopping tape. Again, the
channel mayor may not be specified.

007 TAPE TRANSFER BYTE AND
207 TAPE TRANSFER BYTE, SKIP

This command controls the transfer of characters to and from the

IOC

tape interface. The transfer is controlled by a Busy or Not Ready
condition within the tape controls and can be executed in two modes,
Stall on Busy, and Skip on Busy. When executed in the Stall if Busy
mode, the program stalls at the transfer byte instruction until a
tape sprocket is generated indicating that a byte has been written or
read. In the Skip on Busy mode, the program automatically skips the
next sequential instruction if a character has not been received. *

When a program is in a Read or Write subroutine, a Transfer Byte
instruction must be given every 512 us. I.E. - the loop from trans­
fer byte to transfer byte must not exceed 512 us.

010 WRITE MODE

This command sets the write operation and begins the timing sequence
that controls the writing frequency, loads and shifts the tape buffer
and generates the sprockets to drop the stall condition.

This command will follow the start forward normal with erase command,
the time delay and any set-up commands. Included in the set-up in­
struction should be a loading of the ACC with the first to be written.
Immediately following the write set should be a transfer byte command.
The write set must be given only once in a write sequence.

011 READ MODE

This command activates the tape read circuitry within the tape systems.
It has to be executed only once in a normal tape read sequence. The
setting of the Read condition/resets the Write condition.

012 REWIND

This command will set a rewind F/F for the specified tape or the
current tape which will be reset only by the clip-in signal. This
permits overlapped rewinds or rewinding one tape while performing
an operation on the other tape.

* NOTE: The Accumulator value is destroyed after execution of a "Skip/
Busy" Instruction.

96

FFF

016

026

036

046

{Function Codes) DESCRIPTION: Continued

SELECT DECK 1 IF N=l, DECK 2 IF N=2 & LOAD ITS STATUS (PAIR 1)

SELECT DECK 3 IF N=l, DECK 4 IF N=2 & LOAD ITS STATUS (PAIR 2)

SELECT DECK 5 IF N=l, DECK 6 IF N=2 & LOAD ITS STATUS (PAIR 3)

SELECT DECK 7 IF N=l, DECK 8 IF N=2 & LOAD ITS STATUS (PAIR 4)

These commands will Select a Tape Deck and load its status
in the Accumulator. If N=0, the status of the current deck
will be loaded.

7654321 o

~gi Used I I I I
Cl i pOut -------------'
Tape - Cartridge Ou~
Tape Runaway -------------'
I/O STATUS--------------'
Tape Error ---------------~
Keyboard Error ----------------'

This instruction will end a read sequence. After the status has been
loaded to the Accumulator, the Read, Runaway and Tape Error will be
reset. It is important that this command be given before stopping
tape and before the end of the block. Either of these conditions
gives an energy dropout and a resulting tape error.

This instruction may ask for either channel of one of the 4 PAIRS
or the current channel. A specific channel command is useful in a
rewind test to determine end of rewind. It is not possible to check
the error status on both decks of a selected pair since the first
command will reset the error. A Tape error occurs during the reading
of a block of data if a significant crossing falls outside of the data
window or any energy dropout of 2 ms occurs during a write check. A
runaway condition occurs if the read F/F is set and no energy is
detected for approximately 5 sec at normal speed or 50 M sec at high
speed. These conditions set the tape error F/F and the runaway F/F
respectively.

When either F/F is set the tape logic forces the generation of sprockets
from the internal timing rather than data, to allow the program loop
to finish.

The runaway condition will also reset the run F/F, stopping tape.

97

· DPL-l CLASS 1: BRANCH AND I/O KEYBOARD

OBJECT !! SOURCE

I I
l73-FFF I I IOC, C#3; FFF.

I I
I I
I I
I I

TIMING: 4 - 6 Microseconds. WHERE: FFF is the Function Code

FFF (Function Codes) Description

007 KEYBOARD TRANSFER BYTE AND
207 KEYBOARD TRANSFER BYTE, SKIP

This command controls the transfer of characters from the keyboard
interface to the accumulator. The transfer is controlled by a Busy or
Not Ready condition within the keyboard controls and can be executed in
two modes, Stall on Busy, and Skip on Busy. When executed in the Stall if
Busy mode, the program stalls at the transfer byte instruction until a
keyboard sprocket is generated indicating that a byte is ready to be
transferred. In the Skip on Busy mode, the program automatically skips
the next sequential instruction if a character has not been received.

NOTE: The Accumulator value is destroyed after execution of a "Skip
if Busy" Instruction.

013 BEEP

This command will produce an electronic beep. This may be used for
feedback to the operator after a keystroke, an error tone, etc.

016 LOAD STATUS

This command will load a status word to the ACC. The 0 bit signals a
keyboard error. The other bits reflect the I/O and current tape status.

98

DPL-l CLASS 1.

OBJECT

174-FFF

,I I

I I
I I
I I
I I
I I
I I

DISPLAY CONTROL

SOURCE

IOC, C#4; FFF.

WHERE: FFF is the function code.

DESCRIPTION:

The function code has the following structure:

FFF = SS-LIU-DLM

WHERE: S is the section bits of the page to be displayed.
L is the level bits of the page number to be displayed.
lis the interleave bit in 8 line display mode and the half page (zone)

bit in 4 line display mode. See note for def. of interleave.
U is the underscore bit. When U = 1, any display character with a

bit 6 will be underscored.
D is the disable CRT bit.
M is the 4/8 line mode select bit. If M = 0, the 8 line display mode

is selected.

TIMING: 4 Microseconds.

EXAMPLE:

174-09.10
174-020
174-9.101
174-021

Note on

8 line normal mode - page 0
8 line interlace mode - page 0
4 line odd zone (zone 1) - (P00-200 thru P00-377).
4 line even zone (zone 0) -(P00-~00 thru P00-177).

Interleave: (8-line option only)

In the normal display mode (not interleaved), a page will be displayed
continuous fashion, location 9.19.10 through 377, octal notation.

Line 1 Lac. 9.19.10 Octal through Lac. 9.137 Octal
Line 2 Lac. 049.1 Octal through Lac. 077 Octal
Line 3 Lac. 19.19.1 Octal through Lac. 137 Octal
Line 4 Lac. 149.1 Octal through Lac. 177 Octal
Line 5 Lac. 29.19.1 Octal through Lac. 237 Octal
Line 6 Lac. 249.1 Octal through Lac. 277 Octal
Line 7 Lac. 39.10 Octal through Lac. 337 Octal
Line 8 Lac. 349) Octal through Lac. 377 Octal

99

in a

DISPLAY
(cant.)

The interleave mode will display this information in the following sequence:

Line 1 Lac. ~~0 Octal through Lac. ~37 Octal
Line 5 Lac. 2~~ Octal through Lac. 237 Octal
Line 2 Lac. ~4~ Octal through Loc. ~77 Octal
Line 6 Lac. 24~ Octal through Lac. 277 Octal
Line 3 Lac. l~~ Octal through Lac. 137 Octal
Line 7 Lac. 3~~ Octal through Lac. 337 Octal
Line 4 Lac. 14~ Octal through Lac. 177 Octal
Line 8 Lac. 34~ Octal through Lac. 377 Octal

EXAMPLE: Display Page ~9 (Octal Page 11)
Comments

IOC, C#4;123.

IOC, C#4;113.

lOC, C#4;102.

lOC, C#4; 112.

lOC, C#4; 1 22 .

IOC, C#4;132.

4 lines from loco ~~~ to 177, No Underscore.

4 lines from lac. 2~0 to 377, With Underscore.

8 lines from lac. 0~~ to 377.

8 lines from lac. ~~0 to 377, With Underscore.

8 lines Interleaved

8 lines With Underscore and Interleaved.

100

APPENDIX

DPL·l INSTRUCTION SET

Class 0

Mnemonic

Timing

Description

Binary Format

TLJ+
TLJ-

Mnemonic

Timing

Description

Binary Format

Notes

TMJ+
TMJ-

Mnemonic

Timing

Description

Binary Format

Notes:

TLX
TMX

Jump Instructions

TLJ+
TLJ-

4 us Jump, 3· us NO Jump

Test Literal and Jump
Compare the instruction Literal to the Accumulator.
On comparison equal jump +NNNN. On comparison
not equal execute next instruction.

7 6 5 4 3 2 I 076 5 4 3 2 I 0

OOONNNNOLLLLLLLL
OOONNNNI LLLLLLLL

TMJ+
TMJ-

4 us Jump, 3· us NO Jump

Test Mask and Jump
Compare the instruction Mask to the Accumulator.
On comparison equal jump +NNNN. On comparison
not equal execute next instruction. Mask logical ones
are only bits compared.

7 6 5 4 3 2 I 0 7 6 5 43 2 -I 0

NNNNOMMMMMMMM
NNNN I MMMMMMMM

o 0
o 0

I. Condition register set for +, -, = compare.
2. Jump past section boundary allowed.
3. N = Jump Count

L = Literal
M=Mask

TLX
TMX

4 us

Test literal and exit, test mask and exit.
Compare the instruction literal/instruction mask to
the accumulator. On comparison equal, exit. On
comparison not equal, execute next instruction. Mask
logical ones are only bits compared.

765 432 o

o 0 0 0 0 0 0 0
001 0 0 0 0 0

765 4 3 2 I 0

L L L L L L L L
MMMMMMMM

l. Condition register set for +, -, = compare.
2. L= literal

M=mask

*If the instruction is located at the low order address of any page, I uSee is added
to the instruction time to propagate the carry of the +2 add to the high order
portion ofthe address.

101

Class I

Mnemonic

Timing

Description

Binary Format

BRU
BRE
BRH
BRL

Notes I.

CIass I

Mnemonic

Timing

Description

Binary Format

SBU
SBE
SBH
SBL

Notes I.

Branch and 1/ a Instructions

BRU
BRE
BRH
BRL

4 us Branch, 3" us NO Branch

Branch Unconditional
Branch on Equal
Branch on High
Branch on Low
On condition, branch directly to the II bit address
carried in the instruction. Condition register
previously set by a Jump or Compare instruction. The
II bits of the direct address replace the least
significant II bits of the current lAW.

7 6 5 4 3 2 I 0

o
o
o
o

o 0 0 A A A
OOOAAA
OOIAAA
OOIAAA

7 654 3 2 I 0

AAAAAAAO
AAAAAAAI
AAAAAAAO
AAAAAAAI

The least significant bit of the direct address is
assumed to be zero and that bit in the instruction is
used as part of the operation code.

Branch and I/O Instructions

SBU
SBE
SBH
SBL

4 us Branch, 3· us NO Branch

Stack and Branch Unconditional
Stack and Branch on Equal
Stack and Branch on High
Stack and Branch on Low
On condition, increment the stack pointer, store the
II bit direct address carried by the instruction into
the least significant II bits of the new lAS member
and branch to the resulting lAW. The condition
register is set by a previous Jump or Compare
instruction.

7 6 5 4 321 0

o
o
o
o

o
o
o
o

OAAA
o A A A
IAAA
IAAA

7 6 543 2 I 0

AAAAAAAO
AAAAAAAI
AAAAAAAO
AAAAAAAI

The least significant bit of the direct address is
assumed to be zero and that bit in the instruction is
used as part of the operation code.

2. A = Address

Class 1

Mnemonic

Timing

Description

Binary Format

EXU
EXB

Notes 1.

2.

Class 1

. Branch and I/O Instructions

EXU
EXB

4 us

Exit Unconditional
Exit and Branch
The exit instructions decrement the Stack Pointer
and return program control to the previous lAS
position. For EXU the lAW in that position is used.
For EXB the 11 least significant bits of the lAW in
that position are replaced by the 11 bit direct address
carried in the instruction.

765432 o 7 6 5'4 3 2 o

o 0 0 0 0 0 0 0 0 0 0 0 0 0
o 10AAA AAAAAAAO

The least significant bit of the direct address is
assumed to be zero and that bit in the instruction is
used as part of the operation code.

A = Address

Branch and I/O Instructions

Mnemonic SMS

Timing 4 us

Description

Binary Format

SMS

Notes \.

Set memory section
Provides a means of transfering control from the
current section to an outside section.

7 6 54 3 2 I 0 7 6 5 4 3 2 o
o o 000 o 0 S S S 0 0 0

S is the section bits defining the section that control
will be transfered to.

-If the instruction is located at the low order address of any page, I uSee is added
to the instruction time to propagate the carry of the +2 add to the high order
portion of the address:

102

Class 1

Mnemonic

Timing

Description

Binary Format

Class 1

SMC
sse

Mnemonic

Timing

Description

Binary Format

SAC
Acc. (force +)
Acc. (force -)
Acc. (force =)

Branch and I/O Instructions

SMC
SSC

4us

Set memory control.
Set memory section and control.
When the U bit is set to 0, the address of the index
registers is memory location 1-7 and direct addressing
is only available in page 0 of section O. When the U
bit is set to I, the effective index register address is
location 1-7 of the section where the indexed
instruction is being executed. likewise the effective
direct address is page 0 of the section where the
direct address instruction is being executed.
When the V bit is set to I any branch, stack &
branch, or exit & 'branch instructions given with page
o specified in the branch address will cause the
branch to occur with the current section and page of
the program. If any page other than 0 is specified in
the branch address, the V bit control is inactive and a
normal branch will occur.

Set memory section and control is a combination of
set memory section and set memory control
instructions.

7 6 5 432 o 7 6 543 2 o

o
o

o
o

o 0 I
010

UVOOOOOO
UVSSSOOO

Branch and I/O Instructions

SAC

4us

Set arithmetic condition.
Arithmetical conditions of the processor will be
forced to a +, -, = condition dependent upon the
state of Acc_ bits 4 & 5_ 00 sets -,01 sets +, 10 sets
=, and II is invalid.

7 6 5 4 3 2 I 0 7 6 543 2 I 0

0 0 I 0 I I o 0 0 0 0 0 o 0
00010000
o 0 0 0 000 0
o 0 I 000 0 0

Class I

Mnemonic

Timing

Description

Binary Format

LSW

Class I

Mnemonic

Timing

Description

Binary Format

Class I

DPI
EPI
CPI

Mnemonic

Timing

Description

Binary Format

10C

Notes 1.

2.

Branch and I/O Instructions

LSW

4 us

Load sense switches.
The state of 8 toggle switches (located in the switch
well under the CRT screen) to the accumulator.

7 6 432

o o

o

o 0

7 6 5 4 3 2 o

o 000 0 0 0 0

Branch and I/O Instructions

DPI
EPI
CPI

4 us

Disable processor interrupt.
Enable processor interrupt.
Clear processor interrupt.
The automatic stack and branch that results from an
interrupt is program enabled or disabled. The
interrupt overflow indicator can be reset by the clear
instruction.

765432

o
o
o

o
o
o

o

o
o
o

7 6 432 o

000 000 0 0
000 0 0 0 0 1
o 0 0 0 0 0 I 0

Branch and I/O Instructions

10C

3* us

Input/Output Control
This instruction is used for all input and output
operations. The IWL is used to designate the I/O
sUb-class and to pick the I/O device. The IWR
designates the function to be performed.

7 6 5 4 3 2 o 7 6 432 o

o n n n y y x x x x x x

n = Device designation
y, x = Command micro-code

Appendix C gives detailed listing of all IOC
commands.

0lf the instruction is located at the low order address of any page, 1 uSec is added
to the instruction time to propagate the carry of the +2 add to the high order
portion of the address.

103

Class I

Mnemonic

Timing

Description

Binary Format
LPS

ACC BIT
o
1

2 2
3
4
5
6
7

Branch and I/O Instructions

L P S Load Processor Status

3* us

Execution of this command transfers
status word to the accumulators.

7 6 5 4 3 2 1 0 7
0 1 1 0 1 1 0 1 0

Stack Pointer Address Bit 21
Stack Pointer Address Bit 22
Stack Pointer Address Bit 23
Stack Pointer Address Bit 24
Plus Condition
Equal Condition
Interrupt Overflow
Program Interrupt Switch

6
0

5 4 3
0 0 0

a hardware

2 1 0
0 0 0

Class 2

Mnemonic

Timing

Description

Binary Format

LA)
D A)
I A)
D A)
I A)

Notes: I.

2.

3.

Mnemonic

Timing

Description

Binary Format

LIA

Notes: I.
2.
3.

Transfer and Arithmetic Instructions

LDX
LDA
S T A

4* us for Immediate Add.
5 us for Direct Addressing
6 us for Indexed Addressing

Load Index register
Load Accumulator
Store Accumulator
Specified index register is loaded with a literal carried
in the instruction. The accumulator is loaded using
immediate, direct or indexed addressing modes. The
accumulator is stored in a direct or indexed address.
In indexed addressing modes the specified index
register may be automatically incremented or
decremented.

7 6 4 3 2 I 0

LDX 0 0 0 0 XXX
LDA 0 0 0 0 000
LDA 0 0 0 I 000
LDA o 0 0 I XXX
S T A o 0 I I 000
S T A o 0 I I XXX

X ; index register number
L; literal
A; address
Y ; index modifier

LA ; Immediate Addressing
DA ; Direct Addressing
IA ; Indexed Addressing

76543210

LLLLLLLL
LLLLLLLL
AAAAAAAA
AAAAAAYY
AAAAAAAA
AAAAAAYY

Direct address 00000000 is invalid.

LIA

4* us

Load instruction address.
This instruction wlll transfer the 8 least significant
bits of the current instruction address to the specified
index register. If the instruction literal is 000, then
the section and page of the current instruction
address is transfered to the accumulator. If the literal
is not 000, then the literal is transfered to the
accumulator.

76543 2 1 0 7 6 5 4 3 2 o

o 0 OXXX LLLLLLLL

X; Index Register number
L; Literal
A; Address

'If the instruction is located at the low order address of any page, 1 uSec is added
to the instruction time to propagate the carry of the +2 add to the high order
portion of the address.

104

Class 2

Mnemonic

Timing

Description

Binary Format

LA)
D A 1
I A)

LA)
D A)
I A)

Notes I.

Transfer and Arithmetic Instructions

ADX
ADA
S U X
SUA

4* us for Immediate Addressing
5 us for Direct Addressing
6 us for Indexed Addressing

Add to Index register
Add to Accumulator
Subtract from Accumulator
Specified index register is operated on with the literal
carried in the instruction. The accumulator
operations specify the operand by immediate, direct
or indexed addressing. In indexed addressing the
specified index register may be automatically
incremented or decremented.

7 6 5 4 3 2 I 0 76543210

ADX 0 0 0 XXX LLLLLLLL
ADA 0 0 0 000 LLLLLLLL
ADA 0 0 1 000 AAAAAAAA
ADA 0 0 I XXX AAAAAAYY
S U X 0 I 0 XXX LLLLLLLL
SUA 0 I 0 000 LLLLLLLL
SUA 0 I I 000 AAAAAAAA
SUA 0 I I XXX AAAAAAYY

L; literal
A; address
X ; index register
Y ; index modifier

Class 3

Mnemonic

Timing

Description

Binary Format

(LA)
(D A)
(I A)

(LA)
(D A)
(I A)

(LA)
(DA)
(I A)

Notes 1.

Boolean and Compare Instructions

ANA
SAN
ERA
S E R
I R A
SIR

4* us

AND to Accumulator
Shift and AND to Accumulator
EXCLUSIVE OR to Accumulator
Shift and EXCLUSIVE OR.o Accumulator
INCLUSIVE OR to Accumulator
Shift and INCLUSIVE OR to Accumulator

Result
OPERAND Accumulator AND EOR lOR

o
o
I
I

o
I
o
I

o
o
o
I

o
I
I
o

o
I
I
I

All shift instructions are right circular and literal
addressing only. Remaining instructions use literal,
direct or effective addressing. In indexed addressing
mode, the specified index register may be
incremented or decremented. Shifts take place prior
to logical operation.

7 6 5 4 3 2 I 0

ANA 000 0 o 0
ANA 001 000
ANA OOIXXX
SAN o 0 0 S S S
ERA 010000
ERA o I I 0 0 0
ERA o I I X X X
S E R o lOS S S
I R A I I 0 0 0 0
I R A I I 1 0 0 0
I R A I 1 1 X X X
SIR 1 lOS S S

L = literal
A = address
X = index register
Y = index modifier
S = shift count

7 6 5 4 3 2 0

L L L L L L L L
AAAAAAAA
AAAAAAYY
L L L L L L L L
LLLLLLLL
AAAAAAAA
AAAAAAYY
L L L L L L L L
L L L L L L L L
AAAAAAAA
AAAAAAYY
L L L L L L L L

2. Direct address of 0 0 0 0 0 0 0 0 is invalid.

·If the instruction is located at the low order address of any page, 1 uSee is added
to the instruction time to propagate the carry of the +2 add to the high order
portion of the address.

105

Class 3

Mnemonic

Timing

Description

Binary Format

LA)
D A)
I A)

Notes 1.

Boolean and Compare Instructions

CPA
C P X

4· us Direct Address
6 us Indexed Address

Compare Accumulator
Compare Index Register
The CPX instruction compares the contents of the
specified index register to the literal carried in the
instruction. The CPA instructions compare the
contents of the Accumulator to a literal or to the
contents of a direct or indexed address. In the
indexed addressing mode the index register may be
incremented or decremented. All comparison results
are storet! in the Condition Register as high, low or
equal.

C P X
CPA
CPA
CPA

7 6 5 4 3 2 I 0

L = literal

o 0 X X X
00000
o I 000
OIXXX

X = index register
A = address
Y = index modifier

7 6 5 4 3 2 I 0

LLLLLLLL
LLLLLLLL
AAAAAAAA
AAAAAAYY

IOC COMMANDS

Class 1

Mnemonic

Timing

Description

Binary Format

IOC

Definition of nnn:

nnn

o
1
2
3
4
5
6

Branch and I/O Instructions

10C

3* us

Input/Output Control
This instruction is used for all input and output
operations. The IWL is used to designate the I/O
sub-class and to pick the I/O device. The IWR
designates the function to be performed.

76543 2 o

o n n n

I/O sub-class

current tape channel
tape channell
tape channel 2
keyboard
CRT
coaxial interface
communications interface

7 6 5 4 3 2 o

y y x x x x x x

Definition of yxx for the tape channel:

yxx

000
001
002
003
004
005
007
207
010
011
012
016

Function

start tape fwd, slow, erase
start tape fwd, slow
start tape fwd, fast
start tape rev, slow
start tape rev, fast
stop tape
transfer byte
transfer byte, skip next instruction if busy
write byte
read byte
rewind
read status

106

The Read Status instruction will transfer a status word to the
accumulator. This is structured as follows:

Acc bit
o

Meailing
keyboard error
tape error 1

2
3
4
5
6
7

I/O status
runaway
cartridge out
clip out
end of tape
spare

Definition of yxx for the keyboard channel:

yxx
007
207
013

Function
transfer byte
transfer byte, skip next instruction if busy
keyboard beep

Definition of yxx for the CRT channel:

yxx for the CRT has the following structure:

SSPIUDPM

WHERE: S is the section bits of the page to be displayed
P is the page bits of the page to be displayed
I is the interleave bit in 8 line display mode and

the half page (zone) bit in 4 line display mode.
U is the underscore bit. When U = 1 , any display character

with a bit 6 will be underscored.
D is the disable CRT bit
M is the 4/8 line mode select bit. If M = 0, the

8 line mode is selected.

If the character to be displayed has a 27 bit, this character
~osition will be blanked.

Definition of yxx for the coaxial interface:

yxx
000
001
201
002
003
004
006
007
010
011

Function
start transmit
receive byte
receive byte, skip next instruction if busy
transmit data byte
transmit control byte
stop transmit
inhibit line
set device address
set master mode
set slave mode

Definition of yxx for the communications interface:

yxx

000
001
002
004

Function

transfer acc. to queue reg.
select comm. interface mode
transfer queue to reg. to acc.
present status

..

107

December 1972 Manual No. S-100-2

,--.--~.-.-~--

COGAR INFORMATION SYSTEMS. INC.

COSBY MANOR ROAD UTICA, NEW YORK 13502 (315) 797-5750

	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	xBack

