COGAR

SYSTEM 49¢

PROGRAMMER'S
REFERENCE
MANUAL

PROGRAMMER'S REFERENCE MANUAL

This publication is designed to be used as a reference manual by
programmers using the Cogar System 4® Processor. The manual is divided
into three parts. Part I defines the unique features of the machine
which are relative to the programmer, as well as providing a machine
specification summary. Part II provides general information on the usage
of each group of instructions in the instruction set repertoire. Part III
defines each instruction in detail, and provides the timing and an example
of how each instruction may be used in context with surrounding instructions,
in both Source and Object coding. A summation of all the instructions in
the repertoire is contained on the Cogar System 4 Instruction Reference
Card.

Other publications relating to software for the Cogar System 4 are:
Batch Assembler Operating Instructions; which contains the step-by-

step instructions for creating a self-loading program tape, which
has been assembled as part of an Object-String background.

Standard Cogar Library Functions; which contains descriptions and
operating instructions for the Language Base Library and the I/0
Libraries.

The programmer should be familiar with the content and design objectives
of the above documents in order to make full use of the capabilities of
the Cogar System 4 Processor.

COGAR SYSTEM 4 IS A REGISTERED
TRADEMARK OF COGAR CORPORATION

PROGRAMMER'S REFERENCE MANUAL

Table of Contents

COGAR INSTRUCTION DESCRIPTION INDEX ..vuiviiniiieieenrenennnnnnas

SPECTIFICATION SUMMARY L. it ititiiititeeenenneenennnonnnennnas

SECTION I. GENERAL
System Featuresttt ittt i eneeenenennans
Language Featurescciiiiiiiiiininieneeeeeeeenenennnannnns
I0S Features ...ininiiiiiii i ittt it it tetteenennneneenennnns
Assembler Featuresc.ciiiiiiiiiininnienenneeneenneennns
D] I
Keyboard o.cuieiiii i i i i i it ittt ettt
Cartridge TapeS ..vuiueiiieieineenneeneeneeeeeneenennennennans
Operator Controlsiiiiiiiiiiiiiiiiiiiiiiennennenneennnns

SECTION II. INSTRUCTION USAGE
Subroutine Control i i i i i it e i
=T 3 A) U PO
AdAreSSTNg tuitiiiniieiiniinenneeeneneeeensoeeanesseennannens
L1 o P oue
DPL-T INnStruction ClasSSeseiiieeeeeeerenennneonneeeaneenns
DPL PUNCEURETON ittt ittt ittt et ereennnneennanans
Literal Notationsiiiiiiiiiinieeneeeeennnnnenenennnnns
Standard C4 Program Record (Mini-Tape)eeeveveneneennnnn.
Subroutine Relocatabilityccoitiiiriiiiiiiiiininnnnnnnn.
Tape I/0 Character QUEUB.veeveieeneeenneeennnnconennnns

SECTION III. INSTRUCTION DESCRIPTIONS
C L= L= - At
CT1aSS P JUMP ittt iiteeneneneeeeeneesasensnnnnanans
Class
Class
Class
Class
Class

B - 1113 =2 NP
: Ordinary Arithmetic ...oveiiiiieiiiiiiinennenenennnns
: Boolean Arithmetic ...viiiiiiiiiiiiinineeeenennnnnnns
B 01110 T o AP

wwmrn N~

/0 FUNCEIONS ittt ittt it ittt ieeneennnennnannns
tData Modify oiti ittt i i i ittt et
B 01« -
Y- =Y of

Group
Group
Group
Group
Group

AHWwrn —

Notations for DPL-3B Constantsceeeeeeeeieenneeennsannns
DPL-T Pseudo INStruCtionsvveeereeeieeneeeennsnnnoannenns
DPL-T Branch and I/0cutitetiiereneneneeeennneneneasesenns

o

COGAR INSTRUCTION SET INDEX

Mnemonic Name Format Page
ADA + Add to Accumulator ---cececcececiiinnnnn. DPL-1 50
ABD -+ Add Storage to Storage ---ccceceeieieaan DPL-2 69
ADX ---- Add to Index Register +ecccececereecenn DPL-1 51
ANA - Logical 'AND' to Accumulator ««--e-eevee. DPL-1 54
BRE -+ Branch on Equa] DPL-1 27
BRH -+ Branch on High DPL-1 28
BRL + Branch on LOW ccccecccccccccccscacsnans DPL-1 29
BRU * Branch Unconditional «eceeceeeeccnennnnn. DPL-1 25
COM - Compare Storage to Storage «--:s+ccvvee-e DPL-2 73
CPA - Compare Accumulator -eccccecceeereennn. DPL-1 60
CPI - Clear Processor Interrupt «ce-eeeececeee. DPL-1 45
CPX -+ Compare Index Register «:ececeeeveeccnnn. DPL-1 61
DIV e Divide ccccrcrrreritt ittt nans DPL-2 72
DPI - Disable Processor Interrupt «----creee--- DPL-1 42
EJT - Eject to Top of Form «ececececccceneecen. DPL-1 94
END) End Segment DPL._'I 93
ENT ---- Enter Control Function -:ccceeerceccerens DPL-1 88
EPI ---- Enable Processor Interrupt :::ccecvee-e.. DPL-1 43
EQU . Equate Symbo] DPL-1 90
ERA -+ Exclusive 'OR' to Accumulator ««eececee-- DPL-1 56
EXB ««+ Exit and Branch sccccrcececccccccccescnnss DPL-1 34
EXU -+ Exit Unconditional «ececeveceveccnecnnnn DPL-1 35
GET ---- Get Data (Read) DPL-2 62

IOC_C#3 e o I/O Keyboard DPL_] 98

IOC-C#N «++ I/0 Mini-Tape «ceccceveeccocanecnnnacacns DPL-1 95

IOC_C#4 cee Disp]ay Control DPL_] 99
IRA +--+ Inclusive 'OR' to Accumulator «ececeee-.: DPL-1 58
LDA «++ Load Accumulator ccccceecececeecccnccnnns DPL-1 46
LDX ---- Load Index Register «c:ereceveeceeccccne. DPL-1 47
LIA * Load Instruction Address «:«-ccceevcecee. DPL-1 48
LPS + Load Processor Status «---cceccceeeceennn DPL-1 41
LSW ---- Load Sense Switches :ecevcvecccccccene. DPL-1 40
MOV ---- Move Storage to Storage -:cceeeccvvecee.. DPL-2 68
MUL cee Mu]tip]y DPL-2 71
ORG * Origin LOcation Counter «-ccccecccveecen. DPL-1 86
OVL s+ Overlay trssseseesesennaneaceneecaannans DPL-1 9]

PCL-PRT --- Line Printer Control --c-ccccecccececece. DPL-2 84

PCL-TYP --- Typewriter Control -ecccccececcceccccnnes DPL-2 83
PUT ~---- Put Data (Write) DPL-2 64
SAC ---- Set Arithmetic Condition =eceeveveccecees DPL-1 39
SAN -+ Shift & Logical 'AND' to Accumulator --:- DPL-1 55
SBE ---- Stack and Branch on Equal --eecercceccee. DPL-1 31
SBH - Stack arl Branch on High c:ccceeveecee.. DPL-1 32

Mnemonic

COGAR INSTRUCTION SET INDEX

Name

Stack and Branch on Low +«+eevevneennen.
Stack and Branch Unconditional «-cecevnn.
Identify Segment «..cvniiiiiiiiiiian...

... Selcect Equal ceceviennnniniiiiiiiiinnn,
. Select High
cee SeTECEt LOW ceveeeeceeeceneeecnonceannnnas
... Select Not Equa]
... Select Not High
. Select NOt LOW cevveeeeeceenncenncnnnns
. Select Unconditional cececeeevcenncansan

Shift and 'EOR' Accumulator ««..ceee.en..
Set Page ceeiiiiiiiiiiiiiiiiiiiiiiis
Shift and 'IOR' Accumulator «eceeeeeesens
Set Memory Control-cceceeieeennennnannnn,
Set Memory Section «ceeceveneiiiiinnennann
Set Memory Section and Control
Store Accumulator --cecceececceecnnnennans
Subtract from Accumulator .c.cccce.....
Subtract Storage to Storage
Subtract from Index Register
Tape Control Command «e:ececevencennnnn.
Test Literal and Jump «cceccevnneinnnnn..
Test Literal and EXit cceccevccecececenns
Test Mask and Jump ««ceceveeeciennannn,
Test Mask and EXit = cccceerenccvecenens
Use External Source Segment «.-.........

Format

SPECIFICATION SUMMARY

Size

Weight

Power

Environment

Ventilation

Processor

Memory

Keyboard

Visual Display

Tage System

Tape Cartridges

10 inches high (25 cm)
18.5 inches wide (47 cm)
24 inches deep (60 cm)

60 pounds (27 kg)

115 VAC +=10%, 220 VAC =10%
48 to 62 Hz
2.5 amps average

10% to 80% relative humidity without
condensation

60°F to 95°F Operating Temperature
0°F to 150°F Storage Temperature

30 cubic feet per minute air flow
4 inches air flow clearance on all sides
1000 BTU per hour heat dissipation

45 instruction types plus 1/0

3 to 6 s instruction cycle time

1 Accumulator

7 Index Registers per 2K of memory
16 Member Instruction Address Stack
Hardware Bootstrap Loader

16K bytes capacity

Random Access Read/Write
Non-Destructive Read-Out
Monolithic Semiconductor

Software configurable
Hall effect keys

N-Key rollover capability
Audible cue

5inch CRT

4 or 8 line display, with interleave
capability

32 characters per line

5 x 8 matrix under program control

10 ips write tape speed

1600 bpi density, phase modulation

2 mechanically independent transports
Read after Write, CRC, phase checks
Automatic threading

Write interlock switch

Rewind: 40 ips rewind and forward or
rewind search

100 ft. computer grade tape
900 records of 136 characters each
Write/Erase Protection

SECTION I. GENERAL

SYSTEM FEATURES

The Cogar System 4 is a compact, operator-oriented, general purpose data
processing system. It combines, in a single unit, an input keyboard,
magnetic tape transports, CRT visual display, I/0 interface, solid state
memory and a versatile processor. The System architecture closely in-
tegrates the functioning of all sub-systems and features transparency of
graphics and coding. A1l major system functions are under program control.
The processor structure is designed to optimize byte handling and inter-
pretation, and provides automatic threading of recursive subroutines.

The nature of the processor design and its relationship to the other
system components make the Cogar 4 heavily dependent on software. This
means that the system is uniquely flexible in the jobs it can perform and
is especially adaptable for various operator and interfact applications.
It also means that software is an essential ingredient that must be as
fully and carefully integrated into the System as the other components.

The Cogar 4 is a binary machine using 8-bit bytes in its memory organ-
jzation and most hardware data paths. Its operations are highly memory
oriented and are designed to take advantage of the performance of its
semiconductor storage.

LANGUAGE FEATURES

The language base for the Cogar System 4 is flexible, easy to learn and
use, yet permits the programmer to take full advantage of the System 4's
power. The Cogar Language Base is comprised of a comprehensive set ¢f
"Pre-packaged" functions to facilitate modular program construction.

The Cogar Assembler provides linkage between these functions and the
specialized routines necessary to a given application.

Programs are written and assembled in symbolic notation, with the

final stage of the assembly effecting a merge of the specialized
routines and the pre-packaged background functions. This method of
assembly allows easy and rapid modification or correction of programs
or the re-configuration of a program to accomodate different peripheral
devices or the selection of a new or modified graphic set, or key-
board configuration.

The DPL-1 instructions for the Cogar 4 are machine level instructions
that are directly executed while the DPL-2 commands are executed inter-
pretively by a resident software monitor. DPL-1 instructions are two
bytes long and must occur on even byte boundaries. DPL-2 commands are
four bytes Tong and should also occur on even boundaries. When DPL-1 and
DPL-2 are intermixed, a new language is formed called DPL-3. The batch
assembler for DPL-3 is known as DPL-3B. A subset of the DPL-2 monitor
that handles I/0 function is known as the I/0 Supervisor or I0S. This
manual describes DPL-1 and I0S as assembled on DPL-3B.

In order to be able to tailor the system for optimum use with particular
applications, many device functions have been designed for program control.
The codes generated by the keyboard, for example, correspond not to the
key character, but to the key location. A translate table is located in
the processor memory and is used to convert a key code into a character
code. The user program can easily modify the translate table and can thus
produce any desired code for any key.

The visual display uses a 5 x 8 dot matrix to form each display character
and has cursor control with each character. The dot matrix is stored in
the processor memory so that any possible 5 x 8 combination may be
generated by the user program to be displayed for any character code.

The standard dot pattern uses a 5 x 7 dot matrix to form the desired
character. This provides for a space between the character and the cursor.

The Cogar 4 provides an unusually efficient subroutine control mechanism
that is easy to use, yet offers powerful capabilities.

I0S FEATURES

Cogar has designed an Input/Output Supervisor to provide easy access for
the user to a set of standard I/0 routines. The flexibility of the system
peripheral device operations is still available for special applications,
but most I/0 operations can be accommodated by the I/0 Supervisor. I0S

is a memory resident software monitor that is accessed using the ENT:I0S
pseudo command. It performs a complete single operation and automatically
returns control to the user program.

ASSEMBLER FEATURES

Computer programs must always eventually be expressed in machine language.
The machine only understands binary numbers and programs so expressed are
called Object programs. There are some circumstances when it is desirable
for the system user to be able to write Object instructions directly.

Most of the time, however, it is much more efficient to use an instruction
language that is easily interpreted by the user. The mnemonic expressions
used to represent the Object language form a Symbolic language. An
Assembler is a program that translates a Symbolic program into an Object
program.

Since the programmer spends much of his time communicating with the
Assembler, it is useful to supply commands that control the operations

of the Assembler itself. These commands are called Pseudo instructions
and normally do not result in any Object coding. Another class of Pseudo
instructions used in the Cogar 4 Assembler to control executive monitor
operations does generate Object coding.

The Cogar Batch Assembler, known as DPL-3B, provides many features de-
signed to streamline the programming process. Comments may be inserted
in the Symbolic program to help identify the operations taking place.
Instructions, data, constants and locations may all be referred to
symbolically. Diagnostics are generated to help identify errors in the
program. Editing, display and printing of both Object and Symbolic
programs are available as part of the DPL-3B package.

The Cogar Assembler also handles the appropriate translations, controls,
and linkages for the I0S and DPL-3 monitors.

DISPLAY

Keyboard Transparency:

The Cogar System 4 is designed to provide code hardware transparency.
Any keyboard character may be automatically translated to any desired
code and any dot matrix pattern may be displayed for a given character
code. These functions are directly under software control and are thus
available to the programmer.

Selective Blanking:

The commonly used internal key and character codes in standard Cogar
software are shown in Table 1. Notice that the high order octal digit
is always zero. This digit corresponds to the bits six and seven of

the character byte. These two bits are used to provide added features
for the CRT display. If a 1 is inserted in bit 7 (changing the code for
A, for example, from 015 to 215) of a character in the CRT buffer area,
that character will be displayed on the screen as a blank.

Cursor Underscore:

If a1 is inserted in bit 6 (changing the code for A, for example, from
015 to 115) of a character in the CRT buffer area, that character may be
displayed with an underline. The underline feature must be enabled by
adding octal 1 to the second octal digit of the display base enable func-
tion codes. Thus, to permit underlines in display base 2 the normal
display enable of 10C, C#3; 023 becomes IOC, C#4; 033. The underline
feature is a convenient means of providing a cursor.

Selective Interlace:

Memory areas displayed are program selectable from any one of 16 memory
Pages (256 bytes per Page), with provision for half Page (128 bytes) dis-

play only or for selective interlace of half-Pages.
KEYBOARD

When a character key is depressed on the keyboard after a Transfer Byte
I0C, it causes a key code to be loaded into the accumulator. The NUM
(numeric), CTRL (control) and ALPHA (alphabetic) are three special keys
that act on bits 6 and 7 of the key code for any key pressed while one

of them is held down. NUM turns on bit 6, CTRL turns on bit 7, and

ALPHA turns on both 6 and 7. If none of the special keys are activated,
bits 6 and 7 remain off. The following procedure may be used to translate
the key code residing in the accumulator into a character code.

a. The 6th and 7th bits are taken care of as follows:

6th bit on: do not change
7th bit on: turn 7th bit off (reset after translation, if
desired).

6th and 7th bits on: turn 6th and 7th bits off (reset after trans-
lation, if desired).

b. Store the result in an index register

c. Add to the index register the displacement within the page of the
beginning of the translate table. The standard translate table in
page 05, for example, starts at Tocation decimal 064, therefore, add
decimal 064 to the value of the index register containing the key
code before translation.

d. Load the Accumulator using indexed addressing and the page where
the translate table resides. The Accumulator now contains the
character code for the key that was depressed. The translate table
may be designed by the user to supply any desired 8 bit character
code including ASCII, EBCDIC, etc.

CARTRIDGE TAPES

The resident software I/0 Supervisor provides for the actual reading,
writing and tape positioning of the Mini-Tape. The user will often want
to test the status of the tape drives for his own purposes. For example,
to check the presence of a cartridge on a particular tape drive, first
execute a Status instruction (IOC, C#N; P16), then test with a mask of
p2p (TMJ, +NN; OCT:p2p). If the condition is satisfied, the cartridge

is not present. Any of the status byte conditions may be tested by first
loading the status of the device in question into the accumulator, and
then testing it against the Titeral mask specified.

l@—————————— START BOOTSTRAP LOAD
hscmcn AREA‘TSEWENCE STORAGE AREA —————#»ta@—————— LABEL FIELD *ﬁl
. o : 1475 77_OCTAL NOTATION
o o LI O S O T - AL /N < N O M N | N TN M AR S I I 05 52 53 54 55 % ' 6 6 62 6 ! 86 67 70 11 12 7 : B 11
000 YRI [XR2 {XR3 |XR4 |XRS | X6 [XR7|cRC | 1t | 2 |3 | 4 5 6§17 SPg SP1 sP2 SP3 SP4 SP5 SP6 SP7 Nl SP9 SP10 SP11 SP12 SP13 SP14 SP15
100
PA
_PAGE 08 200 END| BOOTSTRAP| LOAT
300
000
100
PAGE 01
200
300
000 | * MAIN PROGRAM STPRTS
100
PAGE @2 20
300
000 | * INTERRUPT
100
PAGE @3 200 Vs SPARE
300 ’/
- - oo | @[-+]8 1ol 2]a[afs5ie |7 [8[afafB[clolE[Fle o Tt] il o [wliniofe{afn {s{[Tluolviwixlylz]|], {#lel-Fa|sl*xTl. T<I>SF/TC])fz el =|"ft] ' f:71; ——f8&]I
o_m 010 { 010076 | 000 |162 {042 |030 | 047 [074 141 | 065 | 106 |174 | 177 | 076 | 177 | 177 | 177 |076 {177 {000 | 060 {177 |177 | 177 | 177 |177 | 177 | 076 {177 |042 | 001 | 007 {007 | 177 | 143 %141 | 000 | 024 {014 § 010 § 143 | 044 1052 {000 | 000 | 01040 | 034 | 000 [00D {634 | 624 [000 {000 | 000 | 00 000 | 100 | 002 }060 | 000 |
100 | 000 | 010 010|101 {102 | 111101 |o24 |15 [192| 021 119{ 111]022 | 111 | 101] 101|111 {611 | 101 | 010101 {100 |{010 | 100 | 002 | 006|101 {011 {101 | 011 | 105|001 | 100 | 030 | 040 | 024|010 {121 | 130 | 167 (062 JO10 J023 | 052 | 034 | 140 | 010 | 042 | 020 | 042 | 000 002" | 042 | 024 | 007 | 000 | 0O | 00O 000 | 100 | 002 | 116 | 000
_PAGE g4 oot Pt:n—. 200 {000 | 010 | 176{101 | 177 | 111 111(022 |105 | 11| 011 111] 111/021 | 111 | 101 | 101{111 |01 | 101 010177 {100 024 | 100 | 014 | 070|101 [of1 | 121|031 | 111177 |100 | 140 | 030 010|170 {111 | 070 | 000052 |10 Joto | 177|076 | 140 | 024 | 024 (010 | 101 | 101 {001 | 177 | 024 |000 | 137°| 007 | 066|133 | 100 | 002 131 |17
TTERN
300 [000 | 010 | 010|101 {100 {111 | 111|177 {105 [111] 005 11| 051|022 | 111|101 | 101|101 |00t 111 | 010 (101 |100 [042 | 100 { 002 060{101 |011 |041 | 051 | 127 [001 {100 | 030 | 040 024|010 |105 | 000,| 167|072 Jo10 |144 | 052 {034 | 000 | 042 | 010 {004 | 00O | 042 {131 |042 | 024 |007 |000 | 000 | 066 (073 | 100 | 002 |046 | 177
000 { oo | 010 | 010 036/174 | 066 | 042 | 076101 {001 (171 | 177 {000 {077 |101 {100 | 177 | 177|177 {006 |136 | 106 | 042 [001 |007 | 007 | 177 | 143 {007 {103 000 | 024|074 J010 |143 | 022 {052 | 00D | 101 | DOD {002 | 000 | 034 {006 |000 | 024 {000 |00 | 000 | 000 |000 | 100 | 016 {120 {000
100 WT| e BSR FO.Ff a [w[E [R [T]y Ju 1 |o]p |bsF|Lz|em ALS I DJF 16 | H) | K [L [SKIP HME|BLK | Z X C{V B NN [, COR |SPACE| EO)
KEYPUNCH 000 | 201 | 051 214 (215 |035 | 043 {021 |03 | 040 [045 |041 | 025 | 033 [034 |230 | 231 (232 f000 | 000 | 000 | 000 |015 | 037 |020 |02 | 023 | 024 027 | 030 | 250|251 | 000 {045 | 000 | 000|044 | 000 {017 042 | 016 {032 {631 |647 | 056 {267 [o000 | 271
PAGE 89 TRANSLATE TABLE) 200 NT| # BSR EOF « [- [) ¢ [T [T |71 [2 |3 [& [BSF[LZ]|ER >:;—r'”uf§5 6 [SKIP [HOME [BLK | Z ? L"'= VL] 118 | 9 [coR |sack] ED)
E— 000 |201 | 050 214 | 215 {002 | 074 | 063 {065 | 040 077 004 |005 | 005 (076 230 |231 | 232 |000 |000 | o000 | 000 [015 | o060 | 072 |073 |075 {071 {007 |010 |o11 {250 [251 |o000 {045 | 000 | coo |64 | oo Jos7 |oee | o070 Jos2 [012 | 013 | ota |267 |od0 | 271
300
000
100
P.QEGS
200
.300
000
100
PAGE @7 208
_ 300
—_ e __ - ‘
© 01 02 03 04 05 06 07 08 09 10 {1 12 13 14 15 16 {7 18 19 '20 21 22 23 24 25 26 21 28 28 30 31 32 33 34 35 35 37 38 39 40 41 42 43 44 45 46 47 48 48 50 5¢ 52 53 54 55 56 57 58 59 60 61 g2 g3 DEC/WAL NOTATION
STACK POINTER- — - —— <=| L0C: B48-— 8774 [(r#1 [r#2 [R#3 [red [res [6] Re7 |=—————— zzzixpgfﬁ'sgi?o:l;ﬁﬂ
P 1 1 T 1 L 1 1
. - SR B =l g L % ﬂPROGl:‘J %KSP FﬂEND LEVEL B ; P4 L;_.';B ‘;éJa ;n
[+ . -)
ART| @ | /o $a}< < [viNusjoup | - / |seLect] PE- |RECORD FILE oot | Desr | [eer | o
EVEL 1
6] ol [a] 2] [z [»] A =] B [7] [u] i ‘ .
+ Q _W) E R T I Y 1 U 2 I 3 0 & P BGES% LEFT LEVEL 2 P42 P52 P62 P12
FIELD] ZzERO
2 -] P43 P53 P63 P73
N . - R - B 3 O 3 U/ e 2
ERROR A >S : D ‘,‘I_— —"G ' H 4 J 5 K 6 L| skP | HoM LEVEL 4 P44 P54 P64 P14
-] 53] E] 60 l61] [62]. [83] [64] 65 | 66] 61 -] LEVEL 5 Fe5 P15 P25 P35 P45 P55 P65 P75
ji " = ¢ 7 8 9 LEVEL 6 pgs | | P16 | | P26 | | P36 ||pas || ese | | pes || P76
NUM Z| "X| C| V|'B N[M| - . |CORR| ALPHA |
-] [70] [11] LEVEL 7 Pg7 P17 P27 P37 P47 P57 P67 P77
CTRL £0J SECTION @ SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5 SECTION 6 SECTION 7
~ el |
. 8K J
SPACE BAR - 16K —~
Figure 1b. Standard Keypunch Keyboard Layout. *SHADED AREA= DISPLAYABLE PAGES

Figure lc. Memory Map Layout.

TABLE I. KEY AND CHARACTER CODES FOR COGAR 4 KEYPUNCH KEYBOARD.

KEY ~ KEY CHAR | KEY KEY CHAR| KEY KEY CHAR | KEY KEY CHAR| KEY KEY CHAR
CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE
Space 070 000 A 037 015 N 063 032 » 065 047) 120 063
- 010 001 B 062 016 0 026 033 , 103 047 ? 156 064
+ 116 002 C 060 017 P 027 034 # 102 050 ¢ 121 065
) 111 003 D 041 020 Q 016 035 @ 002 051 = 161 066
1 124 004 E 020 021 R 021 036 % 003 053 " 160 067
2 125 005 F 042 022 S 040 037 $ 104 054 ! 162 070
3 126 006 G 043 023 T 022 040 * 004 055 ' 144 071
4 145 007 H 044 024 U 024 041 105 056 141 072
5 146 010 I 025 025 V 061 042 066 056 ; 142 073
6 147 011 J 045 026 W 017 043 < 005 057 - 117 074
7 164 012 K 046 027 X 056 044 > 140 060 | — 143 075
8 165 013 L 047 030 Y 023 045 / 011 061 & 127 076
9 166 014 M 064 031 Z 053 046 (163 062 I 123 077
CONTROL KEYS
KEY KEY CHAR | KEY KEY CHAR | KEY KEY CHAR
CODE CODE CODE CODE CODE CODE
START 001 201 | BKSP RECORD 014 214 HOM 051 251
MINUS 006 206 | END FILE 015 215 CORR 067 267
Dup 007 207 |BKSP FIELD 030 230 EOJ 071 271
PROG SELECT 012 212 | ERROR 032 232 LEFT ZERO 031 231
REL 013 213 | SKIP 050 250

Write Pin Enable

A Write Pin Sensor in the SYSTEM 4 requires that i
written on, the write plug must be in the proper p
tape will not move and no write operation can be p
until a cartridge is inserted with the write pin i

tape is to be
tion. Otherwise,

fa
051
erformed on that deck
np

lace.

Physical End of Tape Sensing

The SYSTEM 4 tape cartridges contain a reflective spot to notify the
program that during a write operation, the Physical End of Tape is
approaching. The user may write beyond this point if so desired. The
Mini-tape write Software function detects this condition and provides
the tape status for the user to test. Once the EOT is detected, this
condition remains set until a Rewind operation is initiated.

OPERATOR CONTROLS

A Switch Well located beneath the CRT screen contains eight sense
switches, a Program Load/Program Interrupt switch, and a System Reset
switch.

Sense Switches

These eight toggle switches may be manually set by the user to any
combination of eight bits. The setting of these switches may then be
tested by the user program at selected times, to control speciaiized
applications.

Program Load/Program Interrupt Switch

This toggle switch initiates a tape load cycle when pushed toward the
CRT (Momentary position), or initiates a Program Interrupt when set in
the ON position (away from the CRT screen).

With the switch set to ON, the user program may test the condition to
provide automatic linkage to the Interrupt Routine. Return to the point
of interrupt will occur after the interrupt routine has been completed,
and an Exit instruction to the Stack Level established by the interrupt
has been executed.

System Reset Switch

When this push button switch is pressed, a System Reset pulse is
generated which resets the Stack Pointer to Stack Level 1 and forces
the instruction address to P02-000 where processing is then initiated.

SECTION IT. INSTRUCTION USAGE

SUBROUTINE CONTROL:

The Instruction Address Stack (IAS) is located in memory and consists of
sixteen Instruction Address Words (IAW) of two bytes each. Access to the
Stack is under control of a four-bit register called the Stack Pointer.
The current instruction address is contained in the IAW indicated by the
Stack Pointer.

During sequential instruction operations, the Instruction Address is re-
trieved from the IAW, used to locate the current instruction, incremented
by two, and inserted back into the IAW. For branch operations, a new
Instruction Address is inserted into the current IAW and execution con-
tinues with the new address.

To enter a subroutine, the Stack Pointer is incremented so that it now
points to a new IAW Tocation and the subroutine address is inserted in the
Stack as the new IAW. Normal sequential operation then proceeds. Note
that the content of the previous IAW has not been disturbed and may be
returned to by simply decrementing the Stack Pointer with an Exit instruc-
tion. Thus it is not necessary to provide space in the sub-routine for
return address storage. If more than 16 levels of stack and branching

has occured an automatic wrap-around to stack level 1 will be initiated.

Figure 2 is a diagram of the IAS and shows the actual octal locations of
the stack bytes in page Pp. Assume that the Stack Pointer is indicating
IAW1 as the Tocation of the current Instruction Address. Sequential or
Branch operations of the mainline program change the contents of IAW1 but
do not affect the Stack Pointer. When the mainline program encounters

a Stack and Branch instruction, however, the Stack Pointer is incremented
to indicate IAW2 and the Branch address is inserted into IAW2. If the
Stack and Branch instruction was located at Page 10, location 52, IAWI
will now contain the coding to indicate Page 10, location 52, and IAW2
will become the current location counter. The subroutine indicated by
IAW2 may reference other subroutines in which case IAW3, IAW4, etc. may
be used. When the IAW2 subroutine is finished, an Exit instruction is
executed which simply decrements the Stack Pointer and returns program
control to IAW1 at the instruction following the original Stack and
Branch. If the exit instruction was located at Page 13, Tocation 220,
IAW2 will be Teft with the coding for Page 13, location 220. A subsequent
mainline Stack and Branch would insert a new Branch address into IAW2.

Note that the Tow order bit of the location may be on. This bit must be
removed,by using the "ANA" instruction if the user desires to use this
address after a load processor status operation (See "LPS" instruction)

Octal Loc. DPL Page
Address: p4p Address: P41

TAWT
CONTENT: P53g CONTENT: P10g
Address: P42 Address: P43

IAW?2
CONTENT: 221g CONTENT: 013g
Address: p44 Address: ﬂ4é

IAW3| — - -
CONTENT: CONTENT: |
Address: P46 Address: P47 S

IAW4| —— — =
CONTENT: CONTENT : <
Address: 050 Address: P51

IAW5
CONTENT: CONTENT:

L L4
~ ~a Stack Pointer
Address: P74 Address: P75
IAW15
CONTENT: CONTENT:
Address: P76 Address: P77
IAWT16

CONTENT: CONTENT:

Figure 2. Snapshot of Instruction Address Stack after completion
of EXU Instruction (See Example).

EXAMPLE :

PPP-LLL: MPT1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS
P1p-p5p: 2pp-p24. p1-p1p. EAB: LDA, R#Pp; OCT:p24.

P1p-p52: 123-174. p1-p2p. SBU: DLY.

P1p-p54: 237-p54. p1-p3p. STA, R#7; P11.

P13-174: 23p-p11. p1-pap. DLY: STA, R#Pp; L#1.

P13-176: 2p3-234. p1-p5p. LDX, R#3; DEC:156.

P13-2pp: p14-p27. P1-p6p. TLJ, +12; (K).

P13-22p: 14p-ppp. p1-p7p. EXU: ppp.

Byte 1 (Octal Loc.) Byte 2 (DPL Page)

U v Section Page
LOCATION Bit | Bit| Number Number
A A
A A

INSTRUCTION LOCATION

(Octal ppp to 376)

MEMORY CONTROL

P = Direct Address
within Section @, Page 0.

1 = Direct Address-
within current section, Page f.

RELOCATABLE BRANCH CONTROL

)
1

Normal processing.

Relocatable Branch functions.
(See SMC Instruction)

SECTION NUMBER

Section @ through Section 7.

PAGE NUMBER

Page P through Page 7 (within a section).

Figure 3. Instruction Address Word Layout.

10

REGISTERS: y,

Qi1 puil pyv

(one byte) long. Almost all of the nonbranch DPL-1 instructions refe
to the accumulator. It is the major center for processor activity
and the primary pipeline for data flow to and from the memory and the
peripheral devices.

e adn Lo
The anar 4 contains one gnnaw:T nuvrpose accumulator that is eigh ht bits
r

The Cogar 4 contains seven one-byte index registers for each memory
section available. They are often used as address displacements in
indexed addressing, but may also be used as general purpose registers.

A few of the DPL-1 instructions act directly on the index registers,

but there is much more flexibility than those instructions imply because
the registers are located in memory. They may thus be addressed by all
memory reference instructions. The accumulator can retrieve, manipulate
.and restore the contents of any index register.

The hardware condition register contains the results of Test and Compare
instructions. It may be set to High, Equal or Low and retains its status
until a new Test or Compare is executed. The operation of DPL-1 con-
ditional Branch instructions depends on the status of the hardware con-
dition register.

ADDRESSING:

The Cogar 4 contains 4K, 8K or 16K bytes of memory, with an IAW 16 bits
long. Indirect address1ng may operate anywhere within this range. The
total memory capacity is divided into eight Sections of 2048 bytes each,
requiring 11 bits to fully address. Branch operations (if not preceded by
a "SMS" instruction) may refer only to locations within a Section. Each
Section is further divided into eight pages of 256 bytes each, requiring
eight bits to fully address. Direct addressing (page P of the current
control section) or relocatable subroutines (branch operations with

page P assigned) may refer to one page only.

The object formats shown with the instruction descriptions include the
following Binary Notations:

Z =1 bit frame
Y = 2 bit frame
X = 3 bit frame
JJ = 4 bit frame

11

Instruction Addressing:

A11 instruction addressing is relocatable page oriented. The address
specification, in octal notation (object), is Pnn-LLL where nn = SL,
S is the Section number, L is the Level number and LLL is the byte
location within the page.

A11 dinstructions are retrieved from memory using the current Instruction
Address Word, and all instruction addressing involves modification of the
IAW.

For sequential execution of instructions, one of the sixteen IAW's within
the Stack is incremented by two during each instruction cycle. Instruc-
tions may be executed sequentially within a Section or across Section
boundaries. It is important to note that when instructions cross a
Section boundary, the branch functions, if executed, will transfer con-
trol to the Section that was previously set. Other functions are not
affected. A "Set Memory Section" instruction is used to change the
section context of the IAW for branch instructions.

A jump to a new instruction location uses relative instruction addressing
by adding or subtracting up to 15 instruction locations to or from the
current IAW. A Jump may be across a Section Boundary.

ADDRESS NOTATIONS

DDD

Absolute Address, in decimal notation

SSS = Symbolic Address

AAA RRR = Symbolic Branch Reference
NNN = Address Adjustment for Symbolic
Addresses, in decimal notation
PPP Pnn = Absolute Page Number, in decimal notation

SSS = Symbolic Page Number

12

Data Addressing:

ta is addressed by an instruction in three different modes:
Immediate, Direct and Indexed.

When using the Immediate Addressing Mode, the operand itself, instead

of the operand address, is assembled within the instruction as a self-
defining Titeral. The literal represents data rather than an address

of data. Literals provide a means of entering constants into a program

by specifying the constant in the operand of the instruction in which

it is used. Immediate Addressing is differentiated from Direct Addressing
by the operand form.

Direct Addressing Mode uses the instruction operand as the address of a
byte Tocation for all page numbers within level Pp. This mode is
utilized by specifying in the operand, any form of Direct Address
notation. A11 DPL-1 functions may take this form of operand except
Class P and Class 1 Instructions.

The Indexed Addressing Mode provides a method of addressing data any-
where within memory. An Indexed Address is composed of a displacement
address contained in a specified index register plus a base address con-
tained in the operand. The register specifies the Tocation within a

page and the operand specifies the page within memory. The index register
in use may be unchanged, incremented by one or decremented by one follow-
ing the indexed operation. There are three forms of register notation
used to specify this option. X may be any integer from 1 through 7.

R#X = Retain Register Value

I#X = Increment Register after
Instruction Execution

D#X = Decrement Register after

Instruction Execution

When an overflow occurs (I#X), the overflow bit is lost and the register
contains octal PPP. When an underflow occurs (D#X), the result is the
two's compliment of the underflow count.

SYMBOLS:

Program elements, such as instructions or constants, may be referenced

in an instruction by specifying the absolute address of the element. The
form for this type of reference is Pnn, LLL. Pnn specifies the page in

2 digit decimal notation from PP to 63 and LLL specifies the location
within the page in 3 digit decimal notation from ppp to 255.

13

It is often more convenient to refer to program elements symbolically.
In the DPL-3B Assembler, a symbol is a combination of characters used to
represent a program element. Symbols are defined through their use in
the label field of an instruction or through the EQU pseudo instruction.
A Symbol may be used only once in a label field within one program. When
a symbol is used as an instruction operand, it must be defined somewhere
in the program. A symbol must be comprised of three non-blank alipha-
numeric characters with the first character non-numeric. If the first
character is "P", the following characters must be alphabetic. The
total number of symbols plus ORG statements plus page boundaries crossed
by sequential program operation is lTimited to a maximum of 128.

Address adjustment may be used for convenience and to cut down on the
number of symbols defined. A signed numeric adjustment in decimal bytes
from @ to 255 may be appended to a symbolic reference or may be used re-
lative tc the current location. An "*" (asterisk) is used to indicate
the location of the first byte of the current instruction.

The I/0 Control Instruction micro-codes provide for control, status

and data exchange between the processor and its interface devices. Tape
channels may be selected, tape motions initiated, and read or write
commanded; the keyboard may be read or beeped; the CRT may be enabled or
disabled ; the I/0 interface transmission may be started or stopped, and
data or control bytes written. With the CRT enabled, the data content
of any memory page which has a section or level number of less than 5
may be displayed in four-line consecutive mode, eight-line consecutive
mode, or eight-line interleaved mode. Several status checks are avail-
able for the processor to interrogate. Most normal I/0 operations will
use the I/0 Supervisor, but special purpose routines may be constructed
from the ICC instructions and there are several operations, like key-
board beep, that are not available from the IO0S.

DPL-1 INSTRUCTION CLASSES:

The DPL-1 instruction set includes all hardware instructions and is div-
ided into four general classes covering all types of operations required
of a general purpose processor.

Class @: Jump and Conditional Exit Instructions

Class 1: Branch, Linkage-Control, and I/0 Instructions

Class 2: Data-Transfer and Arithmetic Instructions

Class 3: Boolean and Compare Instructions

14

Class P: Jump Instructions:

Jump instructions transfer control within a context to a location
relative to the current instruction location. A1l Jump Instructions are
conditional and depend on the result of a test of the contents of the
accumulator. The test comparison, the test mask, the Jump direction and
the jump increment are all specified in the instruction. The Jump in-
crement is expressed in the instruction itself as the octal number of
two-byte instructions to be jumped. However, the Batch Assembler uses

a decimal byte count for the Jump increment. Test results are stored

in the hardware condition register. For the TMJ and TMX instructions,
an unconditional Jump or Exit, and the settingof the condition register
to equal, can be effected by using a test mask of zero.

Class 1: Branch, Linkage-Control, and I/0 Instructions:

Branch instructions transfer control outside a context to any section
address. Branch instructions replace the current IAW with a new instruc-
tion address. Stack and Branch instructions introduce a new instruction
address in a new IAW and preserve the contents of the previous IAW for
return linkage. Direct Branch instructions may be conditioned by pre-
vious test or compare operations. The conditional instructions allow
powerful data-dependent decisions to be made. The Exit and the Exit and
Branch instructions are used to return from subroutines. They decrement
the stack pointer and thus change program control to the next previous
IAW.

Class 2: Data Transfer and Arithmetic Instructions:

This class of instructions includes the Load and Store operations that
allow data to be moved between memory and the accumulator or index .
registers. These instructions use immediate, direct, or indexed address-
ing modes. When loading or storing using indexed addressing, the
specified index register may be automatically incremented or decremented.

The arithmetic instructions in this class include Binary add and subtract
operations on the accumulator or the index registers. Immediate, direct,
or indexed addressing may be used. Automatic increment or decrement of
index registers may be specified when using indexed addressing. ATl
operations are available for use with the accumulator. Some operations
may also be performed on index registers.

15

Class 3: Boolean and Compare Instructions:

The Boolean instructions in this class include immediate, direct or
indexed addressing of And, Inclusive Or, and Exclusive Or operations.
The immediate instructions allow for up to seven right circular shifts
of the accumulator prior to operation with the literal.

The Compare instructions compare the contents of the accumulator with

a location specified by immediate, direct or indexed addressing. Any
index register may be compared with a literal. The comparison results
are stored in the condition register and may be tested by any following
conditional Branch instruction. In indexed addressing of both Boolean
and Compare instructions, the specified index register may be auto-
matically incremented or decremented.

DPL PUNCTUATION:

Rather than an implicit syntax, the DPL grammar provides an explicit
syntax by use of punctuation. Four punctuation characters are used:
the semi-colon, the comma, the colon and the period.

The semi-colon is used as an imperative terminator or a major field
delimiter. It usually separates the instruction field from the operand
field.

The comma is used as a minor field terminator. It separates multiple
field instructions or operands.

The colon is used as a declarative terminator. It follows instruction
labels, pseudo instructions and constant designators.

The period is used as a closing terminator and defines the end of the
symbolic instruction.

LITERAL NOTATIONS:

Literal notations may be classified as explicit terms or as implicit
terms. Explicit literals are self-defining because they include the
specific value to be used. The four explicit Titeral forms are
Character, Octal, Hexadecimal, and Decimal. They provide a means of
specifying values or bit configurations without equating the values to
symbols. The value of an explicit literal is assembled into an in-
struction. The value of a symbolic constant resides in memory and its
address is assembled into an instruction.

16

Literals that are assigned a value by the DPL-3B Assembler use five
forms of address constants in which AAA is a symbolic address. These
are: ADC:AAA, ADL:AAA, ADP:AAA, IDP:AAA, and DDP:AAA. These address
constants are used primarily to define the actual address of a
symbolic reference. When the literal form ADP, IDP, or DDP is used
in conjunction with an R#@ or an R#X, instruction, the DPL page value
of AAA is assembled as the operand; either with no indexing tag, or
with incrementing or decrementing tag, respectively. If the form ADL
is used, the address location value within the page is assembled as
the operand.

When the Titeral form ADC is used in conjunction with an R#0
instruction, the DPL page value, in increment form, is assembled as
the operand. If used in conjunction with an R#X instruction, the
symbolic address location within the page is assembled as the operand.

STANDARD C4 PROGRAM RECORD (Mini-Tape)

The Standard Mini-Tape Record is comprised of an 8-byte label, generated
by the Mini-Write Software Function, followed by 128 bytes of data. The
8-byte label when read into (or written from) memory resides in Page 00,
locations 030g thru 037g. The first byte of the Record Header contains
a sequence number. The sequence number is automatically checked by

the Mini-Read Software Function to provide a method of automatically
bypassing any "CIG" (Character in Gap). This sequence number may also
be used to adjust search counters when utilizing the high-speed
capability to locate multiple records by continuation. Byte-2 contains
the control function. A value other than those specified below may be
inserted by the user for specialized functions. Bytes 3 and 4 are not
used by the Standard Mini-Read/Write, and can, therefore, contain any
value as established by the user.

17

Bytes 5 through 8 of a program record contain the Segment ID and the
Page Designator. Through usage of these bytes, an overlay record can
easily be located and loaded into memory. Bytes 5 through 8 are not
used in a data file.

8 bytes
(Header) 128 Bytes (Data)
\ S
\ N
\ ~
N
\ ~
~
\ ~
i ~N
N
Not |Not Page
S|C (UsedjUsed | P|I|D |Alloc.
(Not used in Data Files)
T

Binary Sequence '
Number starting) J R$?2§2§izﬁge
with 001 and DPL Page of
-continually Record
incremented with Program ID. 1=Relocatable
wraparound This ID is inserted by 0=Non-Relocatable

the 0-String Generation
Phase from the "SEG" ID

or the "OVL" ID. (Not used
in data files.)

Control Byte.

—

O=Lower half of Page

375=End of Program Load
J (000g thru 177g)

377=End of File Indicator

1=Upper half of Page
(200g thru 3778')

Figure 4. Standard Mini-Tape Record Layout.

18

10.

SUBROUTINE RELOCATABILITY

A method has been provided to allow the user to write subroutines that
may be executed within any Page without re-assembiing the subroutine
for that Page. By executing a SET Memory Control Command that sets the
Relocatable Branch Control (RBC) Bit, any Branch, Stack and Branch or
Exit and Branch Instruction given with Page 0 specified in the Branch
Address will cause the Branch to occur within the current Section and
Page of the program. If any Page other than 0 is specified in the
Branch Address, the RBC-Bit is Inactive and a normal Branch function
will occur.

TAPE I1/0 CHARACTER QUEUE

The SYSTEM 4 tape logic contains an 8-bit chararacter buffer that will
hold a character for 512 usec., allowing this much time for other
processing before the user must return to the I/0 operation.

19

For DPL-1 instructions that use Immediate Addressing, the following
forms may be used in symbolic coding to specify the literal value:

(K)
OCT:NNN

HEX:HH

DEC:NNN

ADP : AAA

IDP:AAA

DDP : AAA

ADL: AAA

ADC:AAA

AAAENNN

Where K is a valid keyboard character

Where NNN is a one-byte constant in OCTAL
notation from PPP to 377.

Where HH is a one-byte constant in HEXA-
DECIMAL notation from pp to FF.

Where NNN is a one-byte constant in DECIMAL
notation from QPP to 255.

Where AAA is an address constant for a PAGE
in symbolic notation (without Auto Indexing).

Where AAA is an address constant for a PAGE
in symbolic notation (with Increment Auto.
Indexing).

Where AAA is an address constant for a PAGE
in symbolic notation (with Decrement Auto.
Indexing). '

Where AAA is an address constant for a
LOCATION in symbolic notation.

An address constant for labels, in symbolic
notation (will generate page or Tocation
dependent on the Instruction form).

Where AAA is an address constant for a
location in symbolic notation, and NNN is
offset + from that location.

20

SECTION III. INSTRUCTION DESCRIPTIONS

The instructions described in this section of the manual are
presented in the same order as they appear on the Cogar System 4
Instruction Reference Card, and fall in the following four categories:

1. DPL-1 Instructions. These instructions perform all the data
manipulation and control tasks allowed by the hardware.

2. 10S Commands. These instructions provide access to the standard
software I/0 routines, using the I/0 Supervisor.

3. Pseudo Instructions. These instructions provide programmer
control over the DPL-3B Assembler, and the resident monitors.

4. Constants. Byte constanté or string constants may be generated
using these notations.

21

-DPL-1 CLASS p: JuMpP TEST LITERAL AND JUMP

TL)

OBJECT SOURCE

I
4
I
pPPIIP-LLL Il TLJ, +NNN; Literal.
Il
I
Il
|

pPPJIJN-LLL TLJ, -NN; Literal.

WHERE: JJ is the jump count in 4 Bit WHERE: NN is the jump count in
Binary notation, indicating decimal notation, indic-
the number of 2-Byte instructions ating the number of bytes
to be jumped. to be jumped.

NOTE: This jump count must

AND: LLL is an 8 Bit Literal. always be an even decimal

number (Max:30).
DESCRIPTION:

The Accumulator is compared to the byte of immediate data (literal), and
the result is indicated in the condition register. Comparison is binary, and
all codes are valid. If the resulting condition register is equal, a jump for-
ward (+) or a jump backward (-) up to 15 two-byte instruction locations is
performed. If however the resulting condition register is not equal (high or
low), the next sequential instruction is executed. The character in the
Accumulator is not changed. Once set, the condition register remains unchanged
until modified by the next jump or compare instruction that reflects a different
condition code.
NOTE: The condition register contains the true arithmetic condition (high or
Tow) after an unsuccessful jump (unequal condition).

HIGH ACCuM > LITERAL
LOW ACCUM < LITERAL
EQUAL ACCUM = LITERAL

TIMING: 3 Microseconds if the jump is not performed.
4 Microseconds if the jump is performed.

EXAMPLE :

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS
P15-ppp: P12-P15. p1-12p. TLI, +10; (A). JUMP IF
P15-pp2: P13-p16. p1-13p. TLJ, -1p; OCT:p16. ACCUM IS
P15-pp4: pP6-P15. P1-14p. TLJ, +P6; DEC:P13. EQUAL
P15-pp6: Pp4-p17. p1-15p. TLJ, +Pp4; HEX:@F.

22

-DPL-1 CLASS p: Jump TEST MASK AND JUMP

TMJ

OBJECT SOURCE

134 0-MMM TMJ, +NN; LT-MASK.

s e . - — — o o
e . — —— ——— — o

PP1JJT-MMM TMJ, -NN; LT-MASK.

WHERE: JJ is the jump count in 4 Bit WHERE: NN is the jump count in
Binary notation, indicating decimal notation, indic-
the number of 2-Byte Instructions ating the number of bytes
to be jumped. to be jumped.

AND: MMM is an 8 Bit Literal Mask. NOTE: This jump count must

always be an even decimal
number (Max:30).

DESCRIPTION:

The state of the Accumulator bits selected by a mask is used to set the con-
dition code.

The byte of Immediate Data (Literal-Mask) is used as an eight-bit mask. The
bits of the mask are made to correspond one for one with the bits of the
character in the Accumulator. A mask bit of one indicates that the corresponding
Accumulator bit is to be tested. When the mask bit is zero, the corresponding -
Accumulator bit is ignored. When any of the Accumulator bits thus selected are
zero, the Condition Register is made unequal. When the selected bits are
all-one, the Condition Register is made equal. If the resulting Condition
Register is equal, jump forward (+) or jump back (-) up to 15 two-byte in-
struction locations. On the resulting Condition Register not equal (high or
low), execute the next sequential instruction. The character in the Accumulator
is not changed. Once set, the Condition Register remains urchanged until modi-
fied by an instruction that reflects a different condition code.
NOTE: The content of the Condition Register is unpredictable after an un-
successful jump (unequal condition).

TIMING: 3 Microseconds if the jump is not performed.
4 Microseconds if the jump is performed.

EXAMPLE :

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS
P15-p10: P5p-P16. p2-91p. | T™MJ, +p8; OCT:p16. JUMP IF
P15-p12: P51-p5P. p2-p2p. TMJ, -p8; DEC:p4p. MASK IS
P15-p14: p76-377. p2-p3p TMJ, +3p; HEX:FF. EQUAL

23

‘DPL-1 CLASS p: TEST LITERAL AND EXIT

TLX

OBJECT SOURCE

pOD-LLL TLX, PPP; Literal.

free e . — —— — e

e - — — — — o c—

WHERE: LLL is an 8 bit Literal.
DESCRIPTION:

The Accumulator is compared to the byte of immediate data (literal), and the
result is indicated in the Condition Register. Comparison is binary, and all
codes are valid. If the resulting Condition Register is equal, then a special
form of exit, (conditional exit) is performed, which completes the return
linkage established by the last executed stack and branch instruction. The
stack pointer is decremented to the preceding stack level, which contains the
address of the last stack and branch instruction executed. This address is
then incremented by 2 bytes, which establishes the address of the instruction
following the stack and branch instruction, and a new location counter value.
This value is the new instruction address, where processing continues.

The exit function may return within a section or outside a section without
any special consideration, since the stack contains the page and location of
the return address.

NOTE: The Condition Register contains the true arithmetic condition (high
or low) after an unsuccessful Jump (unequal condition).

HIGH ACCUM > LITERAL
LOW AccuM < LITERAL
EQUAL ACCUM = LITERAL

TIMING: 3 Microseconds if the Jump is not performed.
4 Microseconds if the Jump is performed.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS
P15-p16: Ppp-p17. p2-p9p. TLX, ppp; (C). EXIT IF

P15-p2p: PPP-p13. 02-1p9. TLX, Pp@; OCT:p13. ACCUM IS
P15-p22: PPP-P16. p2-11P. TLX, @pp; DEC:p14. EQUAL

P15-P24: ppp-377. p2-12p. TLX, PPP; HEX:FF.

24

DPL-1 CLASS p: TEST MASK AND EXIT

TMX

OBJECT SOURCE

P4 p-MMM TMX, PPD; LT-MASK.

e —— ——— — e —d

e . ——— — — e

WHERE: MMM is an 8 bit Literal Mask.
DESCRIPTION:

The state of the Accumulator bits selected by a mask is used to set the
condition code.

The byte of Immediate Data (Literal-Mask) is used as an eight-bit mask. The
bits of the mask are made to correspond one for one with the bits of the char-
acter in the Accumulator. A mask bit of one indicates that the corresponding
Accumulator bit is to be tested. When the mask bit is zero, the corresponding
Accumulator bit is ignored. When any of the Accumulator bits thus selected
are zero, the Condition Register is made unequal. When the selected bits

are all one, the Condition Register is made equal. If the resulting Condition
Register is equal, then a special form of exit, (conditional exit) is performed,
which completes the return linkage established by the last executed stack and
branch instruction. The stack pointer is decremented to the preceding stack
level, which contains the address of the last stack and branch instruction
executed. This address is then incremented by 2 bytes, which establishes the
address of the instruction following the stack and branch instruction, and a
new location counter value. This value is the new instruction address, where
processing continues.

The exit function may return within a section or outside a section without any
special consideration, since the stack contains the page and location of the
return address.

NOTE: The content of the Condition Register is unpredictable after an un-
successful Jump (unequal condition).

TIMING: 3 Microseconds if the Jump is not performed.
4 Microseconds if the Jump is performed.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS
P15-026: pAp-P1D. p2-18p. TMX, pPp; OCT:p1p. EXIT IF
P14-p3p: pap-31pP. p2-19p. TMX, pPp; DEC:2pp. MASK IS
P15-p32: p4p-24p. p2-20P. TMX, 0PP0; HEX:AD. EQUAL

25

-DPL-1 CLASS 1: BRANCH BRANCH UNCONDITIONAL

OBJECT SOURCE
5 RRR+NNN.

10X-YXYD BRU , Pnn; LLL.
5 *+NNN.

e — o — — e]
e e —— —— — e —]

WHERE: 1PX is the command, in which WHERE: RRR is a symbolic address

X is the page. AND: NNN is a decimal byte dis-
placement.
AND: YXY is a 7 bit address. AND: nn is a decimal page.

AND: LLL js a decimal location
AND: * is the location of the in-
struction itself.

DESCRIPTION:

The unconditional branch is performed by introducing a branch address as a
new instruction address, regardless of the setting of the Condition Register.

The Branch Address may be represented in symbolic notation, as an absolute
address; or as a relative address. The Branch Address may be any location within
the current section. "OUT-OF-SECTION" branching is achieved by preceding the
branch instruction with a SET MEMORY SECTION (SMS) instruction, or a SET memory
SECTION & CONTROL (SSC) instruction. "WITHIN-A-PAGE" branching relocatability

is achieved by preceding the branch instruction with a SET MEMORY CONTROL (SSC)
instruction in which the RELOCATABLE BRANCH CONTROL (RBC) bit is set.

(i.e.: C#1 or C#3). The hardware condition register remains unchanged after
execution of a branch function.

TIMING: 4 Microseconds.

EXAMPLE:

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS
P15-p34: 1p5-p42. p3-p3P. BRU; INT. WITHIN A
P15-p36: 105-036. 03-p4p. BRU; *+p. SECTION
P15-p4p: 107-ppD. p3-p5p. BRU, P15; p@p.

P15-p42: 150-pPP. p3-p6p. INT: SMS; S#D. OuT OF A
P15-p44: 1p6-144. p3-p7p. BRU, PP6; 100. SECTION

26

-DPL-1 CLASS 1: BRANCH BRANCH ON EQUAL

OBJECT SOURCE
I
Il ; RRR+NNN.
TDX-YXYT |1 BRE , Pnn; LLL.
1 5 *+NNN.
|
i
WHERE: 10X is the command, in which WHERE: RRR is a symbolic address.
X is the page. AND: NNN is a decimal byte dis-
AND: YXY is a 7 bit address. placement.
AND: nn is a decimal page.
AND: LLL is a decimal location.

AND: * is the location of the in-
struction itself.

DESCRIPTION:

The conditional branch instruction, branch on equal, is performed when the con-
dition register, set by a previous compare or test instruction, is found to be
equal. If this condition is not satisfied, the next sequential instruction is
executed. The conditional branch is performed by introducing a branch address

as a new instruction address.
(Refer to "BRU" for Basic Rules of Branching).

TIMING: 3 Microseconds if the branch is not performed.
4 Microseconds if the branch is performed.

EXAMPLE :
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

P15-p46: 1p05-p51. P3-130 BRE; IN2.

P15-p50: 150-ppP. p3-14p. IN2: SMS; S#D.

P15-p52: 34p-2p0. p3-15p. CPA, R#P; OCT:200.
P15-p54: 1P6-145. p3-16p. BRE, Pp6; 100.
P15-p56: 15p-p10. p3-17P. SMS; S#1.

COMMENTS

WITHIN SECT.
OuUT OF A
SECT. IF
EQUAL-ELSE
RESET SECT.

27

‘DPL-1 CLASS T: BRANCH BRANCH ON HIGH

OBJECT SOURCE
I 1
I 5 RRRENNN.
T1X-YXYD I'l BRH , Pnn; LLL.
: : 5 *+NNN.
L1
WHERE: 11X s the command, in WHERE: RRR is a Symbolic address.
which X is the page. AND: NNN is a decimal byte dis-
AND: YXY is a 7 bit address. placement.
AND: nn is a decimal page.
AND: LLL is a decimal location.

AND: * is the location of the in-
struction itself.

DESCRIPTION:

The conditional branch instruction, branch on high, is performed when the con-
dition register, which has been set by a previous compare or test instruction,
is found to be high. If this condition is not satisfied, the next sequential
instruction is executed.

(Refer to "BRU" for Basic Rules of Branching).

TIMING: 3 Microseconds if the branch is not performed.
4 Microseconds if the branch is performed.

EXAMPLE :

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS
P15-p6Pp: 115-p62. P4-p3P. BRH; *+p2. WITHIN SECT.
P15-p62: 150-PPP. pA-pap. IN3: SMS; S#P. OUT OF A
P15-p64: 34p-200. P4-p5p. CPA, R#p; OCT:2pp. SECT. IF
P15-p66: 116-144. p4-pep. BRH, Pp6; 1PP. HIGH-ELSE
P15-p7p: 15p-p1p. p4-p7p. SMS; S#1. RESET SECT.

28

DPL-1

CLASS 1: BRANCH

BRANCH ON LOW

BRL

OBJECT SOURCE
[1
i ; RRR+NNN.
T1X-YXY1 I I BRL , Pnnj LLL.
I 5 *+NNN.
1 -
Il
WHERE: 11X is the command, in which WHERE: RRR is a Symbolic address.
X is the page. AND: NNN is a decimal byte dis-
AND: YXY is a 7 bit address. placement.
AND: nn is a decimal page.
AND: LLL is a decimal location.
AND: * is the location of the in-
struction itself.
DESCRIPTION:

The conditional branch instruction, branch on low, is performed when the con-
dition register, set by a previous compare or test instruction, is found to be
low. If this condition is not satisfied, the next sequential instruction is
The conditional branch is performed by introducing a branch address
as a new instruction address.

executed.

(Refer to "BRU" for Basic Rules of Branching)

TIMING:

EXAMPLE :
PPP-LLL:

P15-p72:
P15-p74:
P15-p76:
P15-1pp:
P15-1p2:

3 Microseconds if the branch is not performed.
4 Microseconds if the branch is performed.

MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS

115-075.
150-00D.
34p-20P.
116-145.
15p-01D.

P4-13p.
pa-14p.
p4-150.
p4-16p.
p4-17p.

BRL; IN4.
IN4: SMS; S#D.

CPA, R#p; OCT:200.

BRL, Pp6; 100.
SMS; S#1.

COMMENTS

WITHIN SECT.
OUT OF A
SECT. IF
LOW-ELSE
RESET SECT.

29

.DPL-1 CLASS 1: BRANCH STACK AND BRANCH

UNCONDITIONAL SBU

OBJECT ., SOURCE
: : 5 RRR+NNN.
12X-YXYPD I SBU , Pnn; LLL.
% ;%N
|
11
WHERE: 12X is the command, in WHERE: RRR is a symbolic address.
which X is the page, AND: NNN is a decimal byte displacement.
AND: YXY is a 7 bit address. AND: nn is a decimal page.
AND: LLL is a decimal Tlocation.
AND: * is the Tocation of the instruc-

tion itself.

The Stack and Branch Unconditional Instruction is performed regardless of the
setting of the condition register.

DESCRIPTION:

The stack and branch instructions are in contrast with the branch instructions,
in that the stack and branch instructions preserve the current value of the
location counter which is present in the current stack; this is performed by
incrementing the stack pointer to the next stack level and creating a new
Tocation counter value containing the branch address as a new instruction ad-
dress, within that stack. Thus, the return linkage between sub-routines is
established. For the stack and branch function there are sixteen levels of
stacks that the stack pointer can address, of which fifteen levels of stacks may
temporarily preserve the return linkages for fifteen levels of stack and
branching.

TIMING: 3 Microseconds

EXAMPLE :

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS
P15-1p4: 125-112. P5-p4P. SBU; INS. WITHIN A
P15-1p6: 125-112. P5-P50. SBU; *+p4. SECTION
P15-11p: 127-ppp. p5-06p. SBU, P15; ppp.

P15-112: 150-ppp. p5-p7p. IN5: SMS; S#D. OuT OF A
P15-114: 126-144. 05-08p. SBU, Pp6; 1PP. SECTION

30

‘DPL-1 CLASS 1: BRANCH STACK AND BRANCH EQUAL SBE
OBJECT SOURCE
I
i 5 RRR+NNN.
12X-YXY1 Il SBE , Pnn; LLL.
Il 5 *+NNN.
I -
|1
WHERE: 12X is the command, in which WHERE: RRR is a symbolic address.
X is the page. AND: NNN is a decimal byte displace-
AND: YXY is a 7 bit address. ment.
AND: nn is a decimal page.
AND: LLL is a decimal location.
AND: * is the location of the in-
struction jtself.
DESCRIPTION:

The conditional stack and branch, stack and branch equal, is performed when the
condition register, set by a previous compare or test instruction, is found to
If the condition is not satisfied, the next sequential instruction

is executed.

be equal.

(Refer to "SBU" for Basic Rules of Stack and Branching).

TIMING:

EXAMPLE :
PPP-LLL:

P15-116:
P15-12p:
P15-122:
P15-124:
P15-126:

3 Microseconds if the stack and branch is not performed.
4 Microseconds if the stack and branch is performed.

MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB

125-121.
15p-ppp.
34p-20p.
126-145.
150-p1p.

p5-14p.
p5-15p.
p5-16p.
p5-17P.
05-18p.

IN6:

SBE ;
SMS
CPA,
SBE,
SMS

OPERANDS COMMENTS
*+02. WITHIN SECT.
S#D. OuT OF A
R#p; OCT:2pp. SECTION IF
Pp6; 100. EQUAL-ELSE
S#1. RESET SECT.

31

-DPL-1 CLASS 1: BRANCH STACK AND BRANCH ON HIGH

SBH

OBJECT SOURCE
Il 5 RRR+NNN.
13X-YXYP |1 SBH , Pnnj; LLL.
! 5 *+NNN.
Il
I
11
WHERE: 13X is the command, in WHERE: RRR is a symbolic address.
which X is the page. AND: NNN is a decimal byte displace-
AND: YXY is a 7 bit address. ment.
AND: nn is a decimal page.
AND: LLL is a decimal location.

AND: * is the location of the
instruction itself.

DESCRIPTION:

The conditional stack and branch, stack and branch on high, is performed when
the condition register, set by a previous compare or test instruction, is found
to be high. If the condition is not satisfied the next sequential instruction
is executed.

(Refer to "SBU" for Basic Rules of Stack and Branching)

TIMING: 3 Microseconds if the stack and branch is not performed.
4 Microseconds if the stack and branch is performed.

EXAMPLE :

PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS
P15-130: 135-132. p6-p4p. SBH; IN7. WITHIN SECT.
P15-132: 150-ppP. P6-p5p. IN7: SMS; S#D. OuT OF A
P15-134: 34p-20p. P6-P6P. CPA, R#p; OCT:2pp. SECTION IF
P15-136: 136-144. p6-p7p. SBH, Pp6; 10P. HIGH-ELSE
P15-14p: 15p-p1D. P6-p8P. SMS; S#1. RESET-SECT.

32

.DPL-1 CLASS 1: BRANCH STACK AND BRANCH ON LOW
OBJECT SOURCE
I
I 5 RRR+NNN.
13X-YXY1 I'1 SBL , Pnn; LLL.

! ; *+NNN.

I -

|]
WHERE: 13X is the command, in which WHERE: RRR is a symbolic address.

X is the page. AND: NNN is a decimal byte dis-

AND: YXY is a 7 bit address. placement.
AND: nn is a decimal page.
AND: LLL is a decimal location.

AND: * is the location of the in-
struction itself.

DESCRIPTION:

The conditional stack and branch, stack and branch on Tow, is performed when
the condition register, set by a previous compare or test instruction, is found
to be Tow. If the condition is not satisfied the next sequential instruction
is executed.

(Refer to "SBU" for Basic Rules of Stack and Branching)

TIMING: 3 Microseconds if the stack and branch is not performed.

4 Microseconds if the stack and branch is performed.
EXAMPLE :
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS COMMENTS
P15-142: 135-145. p6-14p. SBL; IN8. WITHIN SECT.
P15-144: 150-0pP. p6-150. IN8: SMS; S#D. OUT OF A
P15-146: 34p-2p0. p6-160. CPA, R#p; OCT:2pp. SECTION IF
P15-150: 136-145. p6-170. SBL, Pp6; 100. LOW-ELSE
P15-152: 15p-Pp1p. p6-18p0. SMS; S#1. RESET SECT.

33

‘DPL-1 CLASS 1: BRANCH EXIT AND BRANCH

EXB

OBJECT ., SOURCE
h ; RRRENNN.
16X-YXYD 'l Exs , Pnn; LLL.
:: 3 *+NNN.
1
Hl
WHERE: 16X is the command, in WHERE: RRR is a symbolic address.
which X is the page. AND: NNN is a decimal byte displacement.
AND: YXY is a 7 bit address. AND: nn is a decimal page.
AND: LLL is a decimal location.

DESCRIPTION:

The exit and branch instruction combines the functions of the exit instruction
and the branch unconditional instruction. This form of exit does not perform
the return linkage established by the preceding stack and branch instruction.
The stack pointer is decremen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>