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PREFACE

. This document is a preliminary version of GEMINI Computer
Systems Principles of Operations. It is divided into

9 Chapters.

1.0 System Architecture
2.0 Memory

3.0 Addressing

4.0 1Instruction Set

5.0 Iterative Execution
6.0 Execution Breakpoints
7.0 Interrupts

8.0 Memory Processor

9.0 Processor State Vector

The first chaptgr, Systems Architecture, provides aﬁ overview
of GEMINI Computer Systems. Chapters 2, 3, and 4 6n Memory,
Addressing, and Instruction Set are fundamental to undérstanding
the programming of GEMINI Systems. The remaining chapters are

an amplification of the basic material of the previous chapters.



SYSTEM ARCHITECTURE

GEMINI Computer Systems are multiprocessing systems organ-
ized around a large central memory complex consisting of a
single, high—performance bulk memory and a memory processor
(see Figure 1.1). For this reason, the architecture of
GEMINI Computer Systems is characterized as memory oriented.
GEMINI Computer Systems include central processors, input/
output processors, and a memory processor. The central
processor and the input/output processors can be duplexed
for increased throughput and failsoft capability. The soft?
ware component of the GEMINI Computer Systems is the GEMINI
Operational Control Program‘(OCP). It performs all resource
allocation as well as failure diagnosis and recovery, and
includes the GEMINI Programming Language (GPL) and a com@lete
set of user services. The Operational Cbntrol Program is
reentrant and, in a dual central processor system, can be

simultaneously executed by both central processors.

Communication between system processors is accomplished by
means of an interprocessor control - bus, interrupt
signals, and bulk memory. The interprocessor control

bus is common to all processors and provides programmed
communication between a central processor and all the other
processors. A central processor uses the interprocessor
control bus to send data to and request data from

another processor.
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Figure 1.1 GEMINI Computer System



‘ponding real bulk memory address. =

Central processor response to asynchronous system events

is accomplished by a multilevel priority interrupt scheme.
The memory processor or an input/output prdcessor can signal
the occurrence of events by generating an intefrupt that

can be serviced by either central processor.

Access to bulk memory for all processors in the system is
controlled by the memory processor. A central processor
addresses only virtual memory and the memory processor trans-

forms the virtual address into a real bulk memory address.

The virtual memory organization makes it possible for a

central processor to access memory with contiguous addresses

even though the corresponding real bulk memory locations

may be noncontiguous. An input/output processor accesses

memory by presenting both a virtual address and its corres—

MEMORY PROCESSOR

The GEMINI Memory Processor controls all accesses to memory.
Accesses to bulk memory are automatically buffered by an
associative high-speed memory, which is transparent from a
programming viewpoint. The contents’of high-speed memory are
dynamically maintained by a mechanism that replaces those

portions of the memory least recently refer-



enced by a central processor. The high-speed memory is
accessed by means of a virtual | address. Therefore, -
. any requested data that is currently in the high-speed
memory is transferred between the high-speed memory and the
requesting processor without requiring an address transfor-

mation. . .

When a central processor requests data that is not in the
high-speed memory, the virtual address is transformed to a
real bulk memor? address. The required data is accessed

from bulk memory and is used to replace data in the high—
speed memory that was least recently used by a central
processor. When an input/output processor requests data

- that }is not in the high-speed memofy, bulk memory is“
accessed directly using the real bulk memory address supplied

by the requesting processor.

Virtual memory is divided into memory segments, and each
segment consists of over _a billion virtua; byte addresses.

The segmenting of virtual memory provides the isolation of
unrelated program areas that is required in a multiprogramming
environment. A memory segment is divided into over a million

pages, each page containing 1024 bytes.
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1.2

1.2.1

1.2.2

_accessing of individual pages within segmentsf

The GEMINI memory processor incorporates individual page

access controls to prevent unauthorized accesses to

- memory by a central processor. Unauthorized write accesses

by an input/output processor are similarly prevented by
separate write access controls for each page of memory
These two access protection mechanisms are independent of

each other.
CENTRAL PROCESSOR

The GEMINI Central Processor is a micro-
programmed digital computer which incorporates the following

features.

Operating Mode

A central processor operates in a hierarchy of four possible

modes: private, subsystem, service, and supervisor mocde.
The mode determines which instructions can be executed,

which memory segments can be accessed, and restricts the
|

Instruction Format

A GEMINI instruction consists of an operation code, break-
point control information, and from 1 to 11 addresses.

Depending on the operation code of the instruction, each



1.2.3

address can define an operand that is from 1 to 16 bytes
in length. All operations have a required number of addres-
ses, and many operations include addresses that can option-

ally be specified.

In addition to the standard instructions, there are two
extended instructions that permit up to 256 user-defined
operations and up to 256 additional system-defined operations.

The microprograms associated with the extended instructions

can reside in either bulk memory or control memory.

s

Instfuction Set

The GEMINI instruction set provides arithmetic operations,
byte string operations, list operations, and control opera-

tions.
Arithmetic Operations --

The arithmetic operations provided by the standard GEMINI

instruction set include:

Computational

Signed binary and decimal integer
Binary magnitude integer

Address

Logical



The computational operations permit the use 8 data
types which include binary or decimal, real or complex,
-sand which have fixed or floating-point adjustment.

Binary Computational Arithmetic operations have a pre-
cision of just over 33 decimal digits and an exponent
range of over .19;728 decimal orders of magnitude.
Decimal computation arithmetic operations have:a maximum
precision of 27 digits and an'exponent range of L99§ orders
of magnitude. The instruction set provides for optional
rounding.and normalization of the results of all computa-
tional arithmetic operations. If a result is not to be

normalized, it can be adjusted to a specified precision.

.Sigﬁed binary integer.arithmetic operations have a maximum
precision Jjust over 38 decimal digits, while signed
decimal integer operations havélsumaXimum precision dﬁ 31
digits. Magnitude binary integer operations have a maximum
precision of 128 bits, and address arithmetic operations
have a maximum precisién of 126 bits. The logical
operations can be performed on data that is from é to 128

bits in length.
Byte String Operations --

The GEMINI instruction set provides operations that manipu-
late a byte string or any 8-bit character within the byte

string. The byte strings can be from 1 to 16 bytes in length.




Copy operations can be performed with an optionally speci-

fied bit displacement and an optionally specified mask.

- Comparison operations can be performed with an optional

mask specification. Other operations include the generéting

of a string of contiguous .l or 0 bits, and the counting of

the number of binary or decimal digits in a string having

a 0 or non-0 value.
List Operations --

The GEMINI instruction set provides list operations that
permit the generation and maintenance of stack, queue, and

ring structures. The lists can be easily expanded and

‘relocated in memory.

Execution Breakpoints

These breakpoints permit progrém integrﬁpts to be génerated
before or after a specified instruction is executed, or
when a svecified standard or extended operation code is
detected. 1In addition, there are 8 simultaneous address
breakpoints providing selective memory access monitoring.
There are also breakpoints that monitor statemeﬁt execution

and thus provide source language debugging.

State Vectors

There are two state vectors, namely the processor state
vector and thre system state vector. The processor state

vector contains the information necessary to control



instruction execution and report the current status of a
central processor. Information such as the mode, the add-
ress of the instruction currently being executed, the
instruction breakpoint controls, and the interrupt controls
are located in the proéessor state vector. When an inter-
rupt is activated, the réquired processor state vector
information is automatically Ereserved and subsequently
restored when the interrupt servicing routine has completed

execution.

Similarly, the system state vector contains the information
necessary to control the devices which are external to a
central processor and report the current operating status

of the system.

Interrupt System

The multilevel priority interrupt system controls both
private and shared interrupts. Private interrupts are the
result of conditions caused directly by a central pro-
cessor. Shared interrupts result from the occurrence of
asynchronous conditions and in a dual central processor

system may be serviced by either central processor.

Individual controls are associated with each interrupt and
permit a central processor to service the interrupt or
ignore the occurrence of the interrupt condition. In

addition, interrupts may be deferred under program control.



INPUT/OUTPUT PROCESSOR

The GEMINI Input/Output Processor links all peripheral
devices and cormunication lines to the Memory Processor.
Peripheral devices are attached through peripheral inter-
face units and communication lines are attached

through communication inter face units.

Up to 32 peripheral interface units are supported in groups

~af 4. Each unit has a bandwidth of 5 million bytes per

second and is physically and electrically compatible with
all IBM System/360 and System/370 device controllers.

Any peripheral interface unit can be utilized as a System/360
or System/370 selector, block multiplexor, or byte multi-

plexor channel. Up to 1024 block multiplexor subchannels are -

available in 64-unit increments, and up to 256 byte multi-

plexor subchannels are available in 16-unit increments.

The communication interface uﬁits connect communication
equipment to the GEMINI system. Up to 1024 communication
interface units are supported in 64-unit increments. Each
unit has a bandwidth of 9600 bits per second and conforms

to EIA RS232C interface specifications.

The combined bandwidth of all peripheral interface units

and communication interface units is 12 million bytes per

second.

1-10



2.0 MEMORY

. The GEMINT Computer Systems memory organization is based

on a virtual memory concept. This ofganization allows the
use of a virtual memory that is larger than the available
real memory, and theréfore requires a mechanism that con-
verts virtu;lvaddresses to regl addresses. In GEMINI
Computer Systems, virtﬁél—to—real address transformation

is performed by the memory processor.

Related to the accessing of memory is the format in which
information is stored. The GEMINI System allows variable-
length, multiaddress instructions and accommodates many

types of data.
ORGANIZATION

The basic unit of addressable information in  GEMINI
Computer Systemsis the byte, which is composed

of 8 contiguous bits numbered as shown below:

trailing | 7 6 5 | 4 | 3 2 1 0 leading

Bit position 0 is defined as the leading bit position, and

bit position 7 is defined as the trailing bit position.



A page of memory is defined as 1024 contiguous bytes numbered
from O to 1023. The page is the basic unit for assignment

. and protection of memory.

2.1.1 Virtual Memory
The Virtual memory organization of GEMINI Computer

“3ystems allows awgentral processor to gsevcontiggous
addresses to access programs and data that reside in non-
contiguous pages of real memory. Virtual memory is divided
into segments so that unigque segments can be assigned to
Adistinct +asks executing in a multiprogramming environment.
There are 220 viz:tzal pages in a memory segment. A memory
segment is defined as a contiguous set of address values
ranging from O to 230_1. There are 216-1 memory segments,

each of which is identified by a unique segment number.

The following shows the organization of virtual memory:

Segment Number 216_1 2 ' 1

VIRTUAL MEMORY 230 pytes
Byte Addresses 2301 0 230-3 o 230 0

A complete virtual address is required to access virtual

memory. A complete virtual address is a 46-bit binary
number consisting of 16 high-order bits that specify the
segment number and 30 low-order bits that specify the

address value.




2.1.2

COMPLETE

VIRTUAL ,
ADDRESS Segment Number Address Value

‘Bit Position 45 B 30 29 0

The segment number specifies the memory segment, and the
address value specifies the byte location within the segment
The formation of a complete virtual address is discussed in

the following sections.

Virtual Address to Real Address Transformation

-

A page of a memory segment that has been referenced by a

task is referred to as an assigned‘paqé. A page becomes

assigned to a task when the task makes a write access to

a previously unreferenced page of a memory segment.

A central processor addresses only virtual memory. The
transformation of a complete virtual address to a real
memory address is automatically performed by the memory

processor. The memory processor utilizes an address

transformation table to accomplish the transformation of



virtual to real addresses. For each assigned page of

virtual memory, the address transformation table contains

. an entry that consists of the virtual page address, the

number of the real page associated with the virtual page, .

and page access controls that define the memory protection

associated with the page.

A virtual Page addresé is formed by using the high~order
36 bits of the complete virtual address, which is in effect
dividing the complete virtual address by 1024. The trans-
formation of a virtual address to a real address is shown

in Figure 2.1.

A detailed discussion of the assignment of memory pages and

the address transformation process is in 9.0 Memory Processor.
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CENTRAL PROCESSOR MEMORY ACCESSES

In the formation of a complete virtual address, the segment
number is obtained from one of the five 16-bit segment

number registers, which are located in the processor state

vector. An execution mode control in the processor state .

vector (as described in 2.2.3 Access Mode)determines which

segment number registers can be used.

Segment Number Registers

. .

The segment number registers are numbered O fhrough 4.

The associated memory segments are identified as follows:

Segment Memory

Number Segment
Register Nomenclature
0 Private
1 Subsystem
2 Context
3 System (private to a central processor)
4 System (shared by central processors)

Note that the memory segment being referenced by either
segment number register 3 or 4 is referred to as the system

segment.



2.2.2 Formation of a Complete Virtual Address

A Central Processor accesses virtual memory by first forming an

- effective address which consists of a 30-bit address value

and a 2-bit segment number register code (SNRC). The for-

mation of an effective address is discussed in 3.0 Addressing.

EFFECTIVE

ADDRESS Address Value.

Wz

31 30 29 0

. The segment number register code specifies the segment
number register that is to be used during the formation of

the complete virtual address according to the following

convention:
SNRC . Segment Number Register
0 Private (SNRO)
1 Subsystem (SNR1)
2 Context (SNR2) ) 14
3 System (SNR3) if address value <2

System (SNR4) if address value';;214

Note that when the segment number register code equals 3,
both the code and the address value are used to specify

the segment number.

A complete virtual address is formed by concatenating the
address value in the effective address with the

conteﬁts of the specified segment number register. The
formation of a complete virtual address is shown in

Figure 2.2.



) ' ' EFFECTIVE
SNRC Address Value ADDRESS

31 J30\&9 9

%

Address Value

Segment
Number

Registers

Private

-

_*4.

1 .__} Subsystem
—
OR

2 Context
System
Private
. *
3
System
Shared
COMPLETE
VIRTUAL
ADDRESS
<
Segment Number Address Value
45 30 29

* If SNRC = 3 and the Address Value
< 214 then system Private is chosen
for its Segment Number value; else
System Shared is chosen.

Figure 2.2 Formation of A Complete Virtual Address



Access Mode

The specification of the segment number registers is
restricted by the access mode. The access mode is normally
equal to the central processor mode, but in certain circum-

stances the value for the access mode is specified under

program control.

Instruction Access —--

An instruction is accessed from the effective address spe-

cified by the instruction location register located in the

processor state vector. During instruction access

access mode is equal to the central processor mode.

The following restrictions apply to the specification of

segment number registers during instruction access:

Legal Segment Number

Access Mode . Register Svecification
Private (0) Private

Subsystem (1) Subsystem, Context
Service (2) System, Context
Supervisor (3) System, Context



A control located in the processor state vector
allows the access mode restrictions on instruction access

to be ignored.
Data Access —-

Data is accessed at the location specified by the effective
address. During data accesses the access mode is equal to

one of the following:

¢ The central processor mode.

® The link mode specifiad by a subprogram control
block. This condition is true if the effective
address resulted from an argument addressing
calculation. Argument addressing is described
in 3.7 Argument Addressing.

¢ The mode specified by an operand of an ANALYZE
instruction. These instructions are
discussed in 4.7 Control Operations.

During data accesses the following restrictions apply to

the specification of segment number registers:

Legal Segment Number

Access Mode Register Specification

Private (0) Private

Subsystem (1) Private, Subsystem, and Context
Service (2) All registers can be selected
Supervisor (3) All registers can be selected

A control located in the processor state vector S

allows the access mode restrictions on data access to be

ignored.



2.2.4

2.3

‘write accesses by a central processor. — <7

Page Access Controls

In addition to the access mode restrictions that constrain
the specification of the segment number registers, page
access controls are associated with each page 6f virtual
memory. These controls are located in the address trans-

formation table and are shown in Figure 2.1.

The page access controls include a page mode access and a

private write access control. The page mode access

specifies the minimum mode required to access the page.

During all memory accesses, the access mode must be greater

than or equal to the page mode access ccntrol. When the
same memory segment is being referenced by independent
tasks which execute in different modes, this control enables

the protection of the higher access mode pagés.

The private write access allows a page to be protected from

e T "
S

DATA AND INSTRUCTION FORMATS

The following describes the data and instruction -

formats used in GEMINI Computer Systems. The formats of

addresses are described in 3.1 Address Formats.




2.3.1 Byte Strings

A byte string is defined as a set of contiguous bytes:

trailing n n-1 Ll 1 0 leading

Byte position 0 is the leading byte and corresponds to the
lowest numbered memory address; the trailing byte

corresponds to the highest numbered memory address.

2.3.2 Data Encoding

Several methods of data representation are used in
GEMINI Computer Systems. The GEMINI Computer Systems
data types are composed of one or more of the following

" basic forms: character, binary or decimal digits, integers;

_fractions.

Character --

The GEMINI Computer Systems can accommodate any of the
6-, 7-, or 8-bit codes in common usave. However, the
_code used by the GEMINI Operational Control Program is an
8-bit extension of the 7-bit ASA code for Information

Interchange (ANSI X3.4-1968). ASACII is embedded in the

GEMINI byte structure as follows:



Bit Position

0 b bg bg by by by by GEMINI '
Representation

Binary/Decimal Digits --

Within the arithmetic data types, either binary or decimal

representations of numbers are used. A binary digit

can be 0 or 1; a decimal digit consists of four binary

digits and can have a numeric value of O through 9. A sign
digit at the trailing end of a number indicates whether

the number is positive or negative. A binary sign digit

of 0 indicates a positive value, and a binary Sign digit

of 1 indicates a negative value. A decimal sign digit of

10 (binary lOlO) indicates a p031ulve value, and a decimal

sign digit of 11 (binary 1011) 1ndhcates a negatlve value.
Integer —--

The integer (a signed or unsigned whole number) assumes a
leading (low-order) binary or decimal point. For signed
integers the trailing digit is the sign digit, while for
the unsigned integers the trailing digit is the highest

order digit of the number.

The maximum value of an integer is expressed as:



+ (-1

r is the radix (2 for binary, 10 for decimal)
n is the number of digits in the operand,
excluding the sign digit

where

Any other integer value represented may be expressed as:

ees + dlrl + QO;O)

where g, is the ith digit in the operand
n= is the number of digits in the operand,
excluding the sign digit
r is the radix (2 for binary, 10 for decimal)
Fraction --

The fraction always has a sign digit in the trailing digit
position. The fraction assumes a binary or decimal point
between the trailing (high-order) numeric digit and the

sign digit. The value of the fraction is expressed as follows:

4+ (@poir -+ dpor™? 4+ ...+ dprl 4 g

" where is the ith numeric digit

dy

n~ 1is the number of numeric digits

r is the radix (2 for binary,l10 for decimal)
2.3.3 Arithmetic Operands

There are 3 basic forms of arithmetic data: the computational,

integer, and logical. The computational form has an exponent

part with integer format and a fixed-point part with fraction
format. There are 8 data types that have the computational

form; they are distinguished as having BINARY or DECIMAL
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base, FIXFED or FLOAT scale, and REAL or COMPLEX modée. The
integer form has only an integer‘part in the integer format.
- There are 4 data types that have the integer form: the 2
signed INTEGER data types, distinguished as having BINARY
or DECIMAL base, and the 2 unsigned data types, MAGNITUDE
and ADDRESS. The logical form~ﬁas a byte-string format.

All bits in each byte in the string are treated independ-

ently. The LOGICAL data type has the logical form.

This discussion presents the formats of the data types with
the computational and integer forms. The computational data
types include real and complex operands, and the integér
data types include integer, magnitude, and addressing

operands.
Real Operand --

A real operand (see Figure 2.3) is a binary or decimal

number consisting of a fixed-point part and an exponent.

The exponent has an integer format and occupies the 2 leading
bytes; the fixed—point part has a fraction format and occupies
the next 1 to 14 bytes. The tréiling digit in both fixed-

point part and exponent is a sign digit.

The value of the real operand is the product
£z5
where f is the value of the fixed-point part

r is the radix (2 or 10)
e is the value of the exponent



The range of the real operand is épnstrained by the wvalue

15_

of the exponent. The maximum absolute value of e is 2 1

- for binary and 103-1 for decimal.

A real operand has either a binary format or a decimal
format in both exponent aﬁd fixed-point parts. For each
format there are 2 data types distinguished as FIXED or
FLOAT. This distinction serves to speéify which of 2 sets
of computational controls are used during exedption of an

operation. (The computational controls arerdiscussed in

4.3 Computational Arithmetic.) Thus, there are 4 data types

for real operands:

" BINARY FIXED REAL
BINARY FLOAT REAL
DECIMAL FIXED REAL
DECIMAL FLOAT REAL

se o 0



BINARY REAIL OPERAND

Fixed-Point Part Exponent

ST T~ o ’,/\“ ’JI“\\ ’s__’/\_—__~\
: /f ;
1iid ...d d-...d

dp-1-+-9p-7 S7--°%0 |9
q - _ Ayl bretadald,

5 :
Binary ' 1 to 14 bytes ' 2 bytes Binary

PO — Lt ekt
| DECIMAL REAL OPERAND

Fixed-Point Part Exponent
e — —— - - - /\~‘ e - - — I o B
~ ST Ny T T ' N
S a4 .l g a o a | i, @ a , 4
g |/n-1 ~g—2l-g—3 €11 =0 g_| =2 =1 | =0
. n n
° ~ ' A
Decimal 1 to 14 bytes ’ 2 bytes Decima
Point ' ' Point

Figure 2.3 Real Operands
Complex Operand --

A complex overand (see Figure 2.4) represents numbers of the

form e

z =x + yi

where i is the imaginary coefficient and éonsists of the
pair of equal-length real operands x and y. The leading
member of the pair is the real component X, and the trailing
real number is the imaginary component y. The resulting

complex operand may be 6 to 32 bytes long in even incremeﬁts.‘
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The two real operands have the same base (BINARY or DECIMAL)
and scale (FIXED or FLOAT). Thus, there are 4 data types

- for complex operands:

BINARY FIXED COMPLEX

BINARY FLOAT COMPLEX

DECIMAL FIXED COMPLEX
DECIMAL FLOAT COMPLEX

* o e O

imaginary component real component

3 to 16 bytes _’ 3 to 16 bytes

Figure 2.4 Complex Operand
- Integer Operand --

An integer overand (see Figure 2.5) is a signed binary or

decimal integer from 1 to 16 bytes long. The trailing
digit of the operand is a sign-digit, and the digit that
immediately precedes the sign aigit is the highest order
digit. A binary or decimal point is assumed to precede

the lowest order (leading) digit. There are 2 data types

for integer operands:

e BINARY INTEGER
e DECIMAL INTEGER



BINARY INTEGER OPERAND

$1 , .
édg—l‘.‘ ’Qg—-7 // @7’ - ’@0
- ‘ -
1 to 16 bytes gérili?
= 12% 2 Ao = '
DECIMAL INTEGER OPERAND
s; ;
® .
1 to 16 bytes Decim
Point
Figure 2.5 Integer Operands -
Magnitude Operand --
A magnitude operand (see Figure 2.6) is an unsigned binary
integer from 1 to 16 bytes long. The trailing digit posi-
tion has the highest order of magnitude. All magnitude oper-
ands have the MAGNITUDE data type.

1 to 16 bytes -

Figure 2.6 Magnitude Operand

Binars
Point



Address Operand --

An address operand (see Figure 2.7) is an unsigned binary

integer 1 to 16 bytes long. The two trailing bits are

ignored in address arithmetic. The two trailing bit posi-
tions are treated separateiy so that segment number register
codes remain unaffected by address arithmetic (see 3.1.2

Address Elements). All address operands have the ADDRESS

data type.
XX Qg—l"'én-6 ' j/{;k/r o d7...dg
L]
1 to 16 bytes . Binary
) Point
‘Figure 2.7 Address Operand
2.3.4 Logical

The logical operand is a‘set of 1 to 16 contiguous bytes.
These operands are used in character or bit string manipu-
lations with logical opefétions (Boolean arithmetic). .

The instruction set permits bit manipulation within
‘operands that have byte lengths. Logical operands have the

LOGICAL data type. U
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2.3.5

Instructions

GEMINI Computer Systems provide 3 formats for

instructions: standard, extended, and null. The formats

of these instructions are shown in Figure 2.8.
Standard Instructions --

A standard instruction~coﬁsiéts.of an operation code
followed by an instruction qualifier and a variable-length

address string.

The operation code is one byte long and is used to specify

the function to be performed by the instruction.

The instruction gualifier byte contains an address count

and breakpoint controls. The address count indicates the
number of addresses to be found in the address string and
may vary from 1 to 11 in value. The address count is a
function of the operation specified by the instruction.
The breakpoinﬁ controls permit tagging of an instruction

for debugging purposes. The breakpoint controls are

"described in detail in 6.0 Execution Breakpoints.

The number of addresses in an address string corresponds

to the address count. Each address, depending upon its
type, can vary from 1 to{l17)bytes in length. Address for-

mats are discussed in 3.1 /Address Formats.




STANDARD INSTRUCTIONS

Instruction
Address String Qualifier Operation Code
1-8 - 1 \ 1
- . \
— . \
—~ \
~
Address Count Breakpoint Controls
o %/ja 4
| € ek 2/
EXTENDED INSTRUCTIONS
; Instruction Extended Operation
Address String Qualifier Operation Code =
—_— ' Code Extend
1 - 85 1 ,S 1 1

NULL INSTRUCTION

Operation
Code = Null

1

Figure 2.8 Instruction Formats Showing Field
Lengths in Bytes

2-22



2.3.6

Extended Instructions --

An extended instruction’consists of an operation code
followed by an extended operation code, an instruction
gualifier, and an address string. The operation code spe-
cifies that the byte folléwing it is an extended operation
code. The instructiop qualifier and address string for
extended instructions are'tﬁe‘same as those defined for
standard instructions, except that there can be as many as

16 addresses in the address string.
Null Instruction =--

The null instruction consists of an operation code only

~and specifies that no operation is to be performed.

Control Operand

The instruction set utilizes a variety of implicit operand
formats for passing information between called and calling
routines; for providing tables of entries to system and -
subsystem services; and for providing bqse addresses,
pointers, and element lengths for the queues, stacks, and
rings of list processing. These formats are presented here
for summary reference only; detailed information is given
where the formats are discussed in context with related

material.
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Subprogram Control Block --

The subprogram control block contains information needed

by a service program or a subprogram to effect a return to

the program that called it and to refer to arguments pro-

vided by the calling progfam. The control block contains

addresses of the calling instruction and the return location,

and an argument list address for referring to operands used

by the subprogram but provided by the calling program. An

argument index and link mode are provided for utility and

system integrity. The subprogram control block has a 16~

byte format, as shown in Figure 2.9.

2 bytes

1 byte

5 bytes

4 bytes

4 bytes

Argument
Index

& In Use Bit

Link
. Mode

P%
d
e

Argument List Address

Calling Instruction
Address

Return Address

Figure 2.9 Subprogram Control Block
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System and Subsystem Service Entry Tables --

The system and all subsystems maintain tables to specify
the entry location of the routines that perform system ahd
subsystem services. Each entry in the table is 4 byteé

long and provides a 30-bit address value and a 2-bit trans-
ition mode value, as shown in Figure 2.10. For the system
sérvice entry table the address value points to the entry

of a system service routine and has an understood segment
number register code of 3. For a subsystem service entry
table, the addreés value}poinfs té thé éntry of a subsystem
service routine and has an understood segment number register

code of 1. The transition mode specifies a central processor

mode for execution of the service.

Entry 2 30
Tr i -
1 ti?gsiode Address Value
Transi-
2 tion Mode Address Value

. / : 7

Transi- o
n tion Mode Address Value

Figqure 2.10 Service Entry Table



List and List Domain Control Blocks --

The list control block and the list domain control blocks
.are used by the list processing operations. The list control
block contains addresses and pointers to list elements, while
the list domain control block provides charactefistics of the
. list domain such as size, element length, and location of
next free element. The formats of these control blocks are

given in Figure 2.11.

LIST CONTROL BLOCK

Element Data Index

List Domain Index

LTC Pointer 1 (pl)

LTC Pointer 2 (p2)

Stack Control Rlock

LTC Pointer 3 (p3) Queue Control Block

LTC Pointer 4 (p4)

Ring Control Block

LIST DOMAIN CONTROL BLOCK

Data Length EL = Element Size Code

- LTC = List Type Code
Pointer SNRC = Segment Number
Address Value Register Code

Data Address Value

0 Zn |Oxzen|

Next Free
Element Number

o

Figure 2.11 List and List Domain Control Blocks
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3.0 ADDRESSING

A standard instruction or an extended instruction contains

a variable length address string (see Figure 2.8 Instruction

Format) . The address string contains a variable number of
addresses and each address proviaes the necessafy informa-
fion to define an opefand, An operand is a value or a
storage locationrreferenced in the execution of an instruc—
tion. Each address in the address string either defines
an operand or specifies the location of another address

which in turn defines the operand.

An address defines an operand either by containing the
operand value or by specifying the location of the operand.
The location of an operand is referred to by an effective add-
ress, which specifies the beginning byte location. Because
an operand can be variable in length, an address may also
specify the length of the operand. The various methods of

defining an operand form 5 classes of addressing:

¢ Null - the address is omitted from the address string
¢ Immediate - the address contains the operand value

s Direct - the address specifies the location of an
operand

¢ Indirect - the address specifies the location of
another address which in turn defines
the operand

¢ Argument - The address references a byte string
that contains a list of addresses. An
address in the list defines the operand



Two of the classes, direct and indirect, permit the use

of indexing to specify anAeffective address. When indexing
is used, the effective address is calculated using a value
in the address modified by a value in an index. An index
is a 4-byte fiéld in memory that contains an effective

address.



3.1 ADDRESS FORMATS

An address is a byte string consisting of an address quali-

fier and 0, 1l,0or 2 of the following elements:
*¢ Base Address
¢ TIndex Address
¢ Argument Index
¢ Immediate Operand

There are 8 address formats, ranging in length from 1 to 17

bytes. Permissible combinations are depicted in Figure 3.1.

3.1.1 Address Qualifier

The address gualifier is the leading byte of each address

and consists of a 4-bit address type code and a 4-bit

length code.

The address tvpe code indicates the class of addressing,

the address format, and optionally an indexing method. The

address type codes are listed in Table 3.1.

The length code specifies the operand length. Values of

1 through 15 specify, respectively, operand lengths of lvthrough
15 bytes. A value of 0 specifies an operand length of 16 bytes,
or in certain uses it-snecifies an address that requires no

lenath svecification, .

3.1.2 Address Elements

An address value specifies a byte location as a binary

magnitude number that is either 14 or 30 bits in length.
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Figure 3.1 Address Formats (1 of 2)




Index Address

A

_ Base Address
s —A-

Address
Qualifier
A

S S -
N Address Value N Address Value ILC ATC
R R .
C C
2 14 2 . : 30 4 4
- INDEXED ILONG
o o - - . Address
Base Address Oualifier
- LA s —
S
N e _
Argument Index R Address Value LC |ATC
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16 2 14 4 4
- ARGUMENT SHORT '
' o Address
Base Address Qualifier
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N . _ ,
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- ARGUMENT LONG
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Qualifier
4 ~ A N
Immediate Operand LC ATC
8-128 4 4

IMMEDIATE

. Figuré 3.1 Address Formats (2 of 2)



Table 3.1 Address Type Codes

Address : ) .
Type Class Format Addressing Type
Code . -

0 Null S Null Null
Direct Short Short Direct
Direct Indexed Short | Short Direct With
‘ - - Displacement Indexing
3 Direct Indexed Short Short birect With
Alignment Indexing
Indirect “Short Short Indirect
5 Argument Argument Short| Short Argument
.6 Indirect Indexed Short Short Indirect With
Displacement Indexing
7 Indirect Indexed Short Short Indirect With
Alignment Indexing
8 Immediate - Immediate - Immediate
S Direct Long Long Direct
10 Direct Indexed Long Long Direct With
o Displacement Indexing
11 Direct Indexed Long Long Direct With
: Alignment Indexing
12 Indirect Long Long Indirect
13 Argument Argument Long Long Argument
14 Indirect Indexed Long Long Indirect With
_ , Displacement Indexing
15 Indexed Long Long Indirect With

Indirect

Alignment Indexing




A 14-bit number is referred to as a short address value,

and a 30-bit number is referred to as a long address value.

. When a short address value is used,. 16 high-order 0's are
appended prior to its use in the computation of the effec-

tive address.

A segment number register code is a 2-bit binary magnitude

number used in the specification of a segment number

register. (See discussion in 2.2.2 Formation of a Complete

- Virtual Address.)

A base address consists of an address value and a segment

number register code. When a base address 1s present in
an address format, it immediately follows the address

qualifier. A short base address contains a short address

value and is 2 bytes long. A long base address contains a

long address value and is 4 bytes long.

An index address specifies the location of a 4-byte index

P——)

and has the came format as a short base address. When an index

address is present in an address format, it immediately
follows the base address. An index address is always

2 bytes long.

An argument index is a 16-bit binary magnitude number.

In an address that specifies argument addressing, the

argument index immediately follows the base address.

An immediate operand is a value in the address that is used as .

an operand in the execution of an instruction. The immediate

operand immediatelv follows the address gqualifier.
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3.2.1

INDEXING

Indexing operations can be performed in both direct and
indirect addressing. Indexing requires an address format
with a base address and an index address. When indexing

is performed, the address\value;specified by the base

address is modified by the contents of an index to form

the effective address. The segment number register code
in the effective address is specified either by the base

address or the index.

An index is 4 bytes in length and contains a long address
value and a segment number-reéister code. The format of

the index is identical to that of an effective address.

All indexing operations are performed using binary magni-
tude arithmetic which produces a result in the range 0 to
230.1 . The operation performed is identical to that

described in 4.5 Magnitude Operations except that the

;truncation interrupt is never generated.

Displacement Indexing

In displacement indexing, the address value in the base

address is added to the address value in the index to form

the address value in the effective address (see Figure 3.2).



Index Address

Base Address

O"Zn

A, - A
']
S{ Address Value S
N of N B Address
R Index I R Address Value Qualifier
C | le! :
X
\ b\ k\\
Index ‘\ \ \\
A ~ ‘\ \\ \
3 1 \ \
S .
Address Value N ~ Address Value
in R
Index ° Co

5

v

= Segment Number Register Code

Figure 3.2 Displacement Indexing
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Address Value

-
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3.2.2

3,2;3

3.3

Alignment Indexing

In alignment indexing, the address value in the index is

multiplied by the length of the operand. The product is

then added to the address wvalue in the base address to

produce the address value in the effective address (see Figure 3.

Alignment indexing specifies elements in an array by their
position within the arfay.* The positions within an array

are numbered 0 through n-1, where n is the total number of

~elements in the array. The length of the elements in the

array 1is specified by the length code of the instruction

that references the array.

8Specification of the Segment Number Register Code

When indexing is performed, the segment number register

- code in the effective address is the segment number register

code in the index or the segment number reéister code‘in
the base address, whichever is greater. However, the seg-
ment number register code in the index must be less than
or equal to the segment number register code in the index

address.

NULL ADDRESSING .

A null address consists of only an address qualifier con-
taining an address type code of 0 and a length code of O.

A null address either indicates the omission of an operand
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3.4

Operands.

or indicates that the first address in the instruction

specifies the effective address. The use of null addressing

- 1s discussed in 4.2.2 Implicit Addresses and 4.2.1 Optional

IMMEDIATE ADDRESSING

Immediate addressing uses a value in the address,called an

immediate overand, as an operand in the execution of the

instruction. The data format of the immediate operand is

determined by the operation code of the instruction.

_One addressing tvpe is associated with immediate

addressing. The address format consists of én address
qualifier with a length code value from 1 to 8, followed

by an operand that is from 1 to 16 bytes in length. Except
for complex operations, the lengfh code specifies the length
of the immediate value. For complex operations the length
code specifies the length of the real component,and the
imaginary component is assumed to be the same length; thus,
for complex operations the immediate operaﬁd is twice the

1eng£h specified by the length code.

Immediate addressing cannot be used to specify an operand
that is used as the destination for the result of an opera-

tion nor to specify a location for the transfer of control.
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3.5

DIRECT ADDRESSING

Direct addressing specifies the effectlve address using a

base address or a base address modified by a displacement
or alignment indexing calculation. The address format con-
sists of an address‘qualifier,'a bése address, and option-
ally an index address. Associated with direct addressing
are 6 addressing types: -

¢« Short Direct Type --

The effective address is specified by a short
base address.

« Long Direct Type --

The effective address is spec1f1ed by a 1ong
base address.

"s Short Direct with Displacement Indexing --
The effective address is specified by a short ,
base address modified by a displacement indexing
calculation.

« Long Direct with Displacement Indexing --
The effective address is specified by a long.
base address modified by a displacement indexing
calculation.

e Short Direct with Alignment Indexing --
The effective address is specified by a short
base address modified by an alignment indexing
calculation.

s Long Direct with Alignment Indexing --
The effective address is specified by a long

base address modified by an alignment indexing
calculation.



INDIRECT ADDRESSING

When indirect addressing is used, the address in the address

string of the instruction specifies the location of another

address. That address, referred to as the final address,

defines the operand.

In indirect addressing the location of a final address is
specified by a base address or by a base address modified
by a displacement or alignment indexing calculaﬁion. The
address format consists of an address qualifier; a base
address, and an optional index address. The length code
specifies the length of the final address. Six addressing

types specify indirect addressing:

¢ Short Indirect Type --
The location of a final address is specified
by a short base address. .

¢ Long Indirect Type ~--

The location of a final address is specified
by a long base address.

® Short Indirect with Displacement Indexing --
The location of a final address is specified

by a short base address modified by a displace-
ment indexing calculation.
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¢ Long Indirect with Displacement Indexing --

The location of a final address is specified

by a long base address modified by a displace-

ment indexing calculation.
® Short Indirect with Alignment Indexing --

The location of a final address is specified

by a short base address modified by an align-

ment indexing calculation. -
¢ Long Indirect with Alignment Indexing --

The location of a final address is specified

by a long base address modified by an align-
ment indexing calculation.

Only one level of indirect addressing is permitted, and

the final address must specify null, immediate, or direct

addressing.

ARGUMENT ADDRESSING

Argument addressing (see Figuré 3.4) provides a method for

passing operands to and from a called subprogram. When
argument addressing is used, reference is being made to an
operand defined by an address in an argument list. The

argument list contains a count of the number of addresses

- as well as the actual list of addresses. The location of

" the érgument list is specified in a subprogram control block

along with control information necessary for argument

addressing. A -



Argument § Address
Index R Base Address Qualifier
C
Return Calling Argument Link Argument
Address Address List Address Mode Index
Address Address Address Argument
n VN .2 1 Count
SNRC = Segment Number Register Code

Figure 3.4 Argument Addressing
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The addressed-operand is accessed through two levels of

indirection:

® First,. the base address in the instruction specifies the
location of the subprogram control block. The sub-
program control block specifies the location of the

argument list.

®¢ Second, an argument index in the instruction, or the
subprogram controlyblock, specifies the'appropriate
address in the argument list. The alternate argu-
‘meht index in the subprogram control block is chosen
whenever the argument index value in the instruction

has the wvalue 0.

The resulting address, referred to as the final

address, defines the operand.

3.7.1 Arqument Addressing Formats

The argument address has a format that consists of an

address qualifier specifying argument addressing and a
length code of 0, a base address, and an argument index.
The base address specifies the location of a subprogram

control block. The argument index occupies 2 bytes and

contains a binary magnitude number.



An argument index in the range of 1 to‘216—l specifies the
position of an address in the argument list. An argument
index value of 0 indicates that the alternate argument
index in thevsubprogram control block is to be used for
the specification of an address position in the argument

list.
There are 2 addressing- types that specify argument addressing.

¢ Short Argument

A short base address specifies the location of
the subprogram control block.

¢ T.ong Arqument -

A long base address specifies the location of
- thesubprogram control block.

3.7.2 Subprogram Control Block

A subprogram control block, with the exception of the
value»of the alternate argument index, is automatically
generated during the execution of CALL, SYSTEM, and SUB-
SYSTEM instructions. The use of this control block is dis-

cussed in 4.9 Control Operations. The following topics

discuss the argument index, argument list address, and

- link mode used during argument addressing.
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Argument Index --
The argument index field contains an argument index that

is used only if the argument index in the argument address

is equal to 0. If this argument index is used, its value ranges

from 1 to 210-1 and spécifies, respectively, the first
through the last addresses in the argument list. If the
argument address contains a nonzero argument index, this

field is ignored.

Argument List Address --
The argument list address field contains a long direct
address that specifies the location of an argument list.

During argument addressing, the length code specified by

~the argument list address is ignored.

Link Mode --

The leading 2 bits of the link mode field contain a value
in the range O through 3 that»specifies the access mode
used during argument addressing. This field is requiréd

only if argument addressing is performed in a central pro-

cessor mode greater than 0. If the central processor mode

is 0, the link mode is assumed also to be 0. The access

mode is discussed in 2.2.3 Access Mode.

" Arqument List

An arqument list is a byte string consisting of a 2-byte
16

arqument count and from 0 to 27 -1 fields that are each 8




3.7.4

bytes in length. The argument count specifies the number
of fields in the list. Each field contains an address
adjusted to the leading byte of the field. The argument

list format is shown below:

\

Address Address Address Argument
n. 2 1 Count

-

g, 8 2

Mechanism of Arcqument Addressing

The base address associated with an argument address speci-

fies the location of a subprogram control block. The sub-

- program control block is accessed and it specifies the

location of an argument list. In order to access the
argument list, the access must be legal in the mode speci-
fied by the link mode. The link mode must be less than or

equal to the central processor mode.

An address in the argument list is specified either by the
argument index in the argument address or by the argument
index in the subprogram control block. If the argument
index in the argument address is equal to 0, the argument
index in the control block is used. If both argument
indexes equal 0, or if the argument index used is greater
thén the argument count, the illegal argument index inter-

rupt condition occurs.




The location of the referenced address in the argument list

is calculated as follows:
Location = ALEA + 2 + 8%(AI-1)

where ALEA is the effective address of the
argument list and
Al is the argument index used

The specified address in the- argument list is referred to

as the final address and it defines the operand. Only one

level of argument addressing is permitted and the final
address must specify null, immediate, or direct addressing.
If the final address references an operand in memory, the

-

access must be legal in the mode specified Ey the link mode.
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_4.0 INSTRUCTION SET

The GEMINI instruction set is divided into 8 groups

operate:

- according to the data format on which the instructions

® Computational Arithmetic Operations -~ REAL and

COMPLEX data

¢ Integer Arithmetic Operations -- INTEGER data

® Magnitude Arithmetic Opérations —-— MAGNITUDE and

ADDRESS data
® Togical Operations
® Miscellaneous Byte
® Control Operations

-

e List Operations =--

LOGICAL data

Operations = byte strifigs

1i

instruction locations

st control blocks

®© Select Operations -- data formats specific to ifitetrnal

and external devices -

The notation used to describe the instruction set is de-~

fined in 4.1.Notation, and the features that are comimon to

more than one group of instructions are presented in

4.2 Common Characteristics. The succeeding topics (4.3 thru

4.30) enumerate and describe the individual instructions in

each of the eight groups listed above.

NOTATION

>

This {section definés the types of operands that are useéd in

the various instructions and explains the manner in which

the individual instructions are discussed.

Operand Tvoe

In the description of each instruction, the addresses that

form the address string in the instruction are classified



according £o the way the

operation uses the operénd that each address specifies.
Under this classification, theré are 2 types of oper-
ands: destination operands, source operands, and address

operands.
Destination Operands --

A destination operand is a byte string in memory whose

contents may be altered by the operation. A destination
operand is either the receiving field for the result of

an operation or a control block that is affected by the
operation. For all ‘instructions that have destination
operands, the destination operand is specified by the first
address in the instruction address string. A destination

operand cannot be specified using null addregsing or

immediate addressing.

-
-

Source Operands --

A source operand is a value used by the operation. Source

operands are specified by any type of addressing. Null
addressing’specifies an implicit oéerand (see 4.2.2 Implicit -
Addresses) or an omitted optional operand (see 4.2-1_

Optional Opverands). Immediate addressing specifies the

value of the operand. Direct addressing specifies a byte
string in memory whose contents are the value of the operand.
If indirect or argument addressing is used, the final address

may specify null, immediate, or direct addressing.
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Address Operands --

An address cperand is the effective address of a memory

location to which control may be transferred.
The contents of that memory location are not read or
altered by the operation. An address operand can be spe-

cified only by direct addressing in the instruction address

- string or by direct addreésiﬁg in the final address when

indirect or argument addressing is used.

Instruction Descriptions

Each instruction description consists of the name of the

instruction and the following topics:

-

¢ Operation

¢ Syntax

¢ Program Interrupts

¢ Semantics
Operation - -

This topic lists names for all operations to which the ‘instruc-
tion description applies. If only one operation is appli-
cable, its name is identical to the name of the instruction

and the operation topic is omitted.

Syntax --

This topic specifies the syntax of the instruction in the

' format of a GEMINI Programming Language (GPL) statement. .



The syntax consists of keywords, special characters, func-

tion names, metavariables, and metacharacters.

-

Keywords appear in capital letters. They are used to

identify the instruction or the meaning c¢f particular

operands.

Special characters are operators or delimiters. The opera-

tors are the traditiohai arithmetic, relational, and logical

operators. The equal sign is used as a relational operator
when it appears in a comparison operation and as the assign-

ment operator in noncomparison operations. The delimiters

are parentheses and commas. Parentheses are used to group
one or more operands into a list. The list may specify
the operands of a function, or it may follow a keyword that
requires more than one operand specification: Commas are

used to separate the operands.in the list.

Function names appear in small letters. In function notation,

the function name is used instead of a special character to

denote an opefation. Function notation is used only with the

assignment operation; otherwise, keyword notation.is used.

Metavafiable; appear“in boldface and represent addresses
in the address string. Each metavariable consists of a
leéter indicating the usage of the operand specified by
the address, and a number indicating the position of the

_address in the instruction address string. The letters —
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used are d for destinétion operand, s for source operand,
and a for address operand. The allowable metavariables
are dl, sl tnrough‘ggli and géythrouéh a5. In an actual
GPL statement, programmer-specified symbols or literal ..
values would repiace these metavariables. The data type
of the programmeréspecified symbols determines which of a
set of operation codes, 2l1l1 with the same syntactic repre-

sentation, is specified for execution. The data type is

ordinarily specified in a GPL DECLARE statement.

Another type of metavariable consists of the name of an
option in boldface letters. This type of metavariable is
used to specify options that are common to many instruc-

tions and whose format is described separately.

The metacharacters are the boldface brackets [ 1. -The
brackets are used to indicate an option in the address

string (see 4.2.1 Optional Operands) .




Program Interrupts --

?his §ectiOn‘df the instrdqtion;ééSCriptibh_némes the special
interrupt conditions that can occur when one or more of

the described operations is executed. If no special inter-
rupt conditions can occur; this topic is omitted. Inter-

rupt conditions that are common to all instructions (see

4.2.6 Program Interrupt) are not inclﬁded.

Interrupt conditions are listed individually, by class, or
by subclass. The class and subclass names refer to the

classification of interrupts in 7.6. Program Interrupt

Group. When a class or subclass name appears, it indicates
that every interrupt condition in that class or subclass

can occur when one or more of the operations are executed.

Semantics --

This:sectidn"giﬁégfé'déscriptioﬁ of théfiﬁstruction

execution and how the various operands affect the operations.
It does not include a description of steps common to all
instructions or to an entire group. Steps common to all
instructions are described in 4.2 ﬁommon Characteristics. .
Those common to a group of instructions aré diséusééd':

before the descriptions of that group.



4.2 COMMON CHARACTERISTICS

Certain features of the instruction set are common to all
instructions or to instructions in more than one group of
instructions. Those features are explained in the follow-

ing paragraphs.

4.2.1 Optional Operands

Almost all instructiéns allow 6ne or more of the possible
operands tobe omitted. Operands that are not needed for
meaningful execution are called optional operands.
The omission of an optional operand from an instruction is

indicated through null addressing.

In the syntax of an
instruction, optional portions are énclosed‘in brackéts.
In the following instruction format the operand s4 is
optional; it and the keyword 'MASK' may be omitted, and

the instruction will still be wvalid.

4.2.2 Implicit Addresses -

Many instructions allow the original contents of the des-
tination operand to be used as a source operand. This is

called implicit addressing. When implicit addressing is

permitted, null addressing in the address string of the



instruction, or in the final address when indirect or argu-
ment addressing is used, indicates that the source operand '

is being specified by the destination coperand address.

Any source operand that is not defined as an optional operand

(see 4.2.1 Optional Operands) can be specified by implicit

addressing if the first address in the string is a destin-
étion oper and. Note'that source operands in comparison
operations cannot be'specified‘by implicit addressing
because the first address is an address operand. 1In the
following example, source operands s2 and s3 are not op-
tional; therefore, they can be specified by implicit
addressing. |

dl = s2 + s3 - [ADJUST (s4 [, s5] )1 [iteration]

In the formation of the instruction addrgss-string, null
addresses that indicate either implicit addressing or
omitted optiona%’operands can be excluded:from the address
string completely if they are not followed by any nonnull
addresses. If a nonnull address does appear, all previous

null addreéses are required in the address string to mark

the position of the nonnull address.



4.2.3

Iteration

The arithmetic, magnitude, logical, and miscellaneous byte
T groups of instructions can be performed iteratively by speci-
fying an iteration count and index increments for appropriate
operands. The iteration count is specified by a source
operand following the keyword 'PERFORM'. The index incre-
ments are specified by a parenthesized list of source operands
following the keyword 'INCREMENTS'. One index increment may
be specified for each'operand in the instruction; therefore,
depending on the instruction, there can be 2 to 5 index
increments. Each index increment is optional. An omitted
index increment is treated as if an index increment with a
value of zero had been specified.

When iteration is specified, the instruction is executed the
number of times specified by the‘itefation céunt exqeét in
comparison operations, which are described below. After each
e#ecution, every/index that is being used to spgcify the
location of an operand is incremented by the corresponding
index increment. In this way the successive executions of
the instruction ﬁén operate with successive'elements in an

»

array. When an operand is specified by indirect or argument

.

addressing, only an index in the final address is incremented.

In comparison operations, iteration is discontinued when the
comparison condition is met even if the iteration count is
~not exhausted. If the comparison is true, control is trans-

ferred to a location specified in the instruction. Indexes
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are not incremented when the comparison is true. If the
.~ comparison is false, the indexes are incremented. The
instruction is then repeated unless the iteration count has

been exhausted, in which case control passes to the next

sequential instruction.

In all instructions for which iteration is permitted, the
iteration operands follow the other operands and are separated
from them by a comma. Iteration is optional and the option is

indicated in the instruction. syntax by enclosing in brackets

the metavariable ‘igggggigg' as in the following
example:
dl = s2 & =3 [iteration]

I1f the syntax were not abbreviated by using the metavariable,

the option would appear as follows:

dl = s2 - & 3 [, PERFORM s4 INCREMENTS (([s51],

[s61, [s71)]

The numbering of the iteration operands (s4 through s7 in the
above example) varies according to the number of operands

that precede them in the instruction format.

A more complete discussion of iteration is contained in

5.0 ITERATIVE EXECUTION.
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4.2.4

Suboperation Codes

The exact operation to be performed when an instruction is

-executed is often specified by -a suboperation code. Sub-

operation codes are always source operands. Suboperation
codes are interpreted bit by bit rather than as numeric
values. Some bits may bé ignored depending on the settings
of other bits of the code. Only a certain number of leading
bits in the specified operand are examined. All other bits
are ignored. The bits that are examined may have any ofi

the possible bit configurations.

Constraints

.The operation code of an instruction constrains the oper-

and lengths, the operand values, and the addressing types

which can be specified.
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Whenever a constraint is violated, a program interrupt condi-
tion occurs. The constraints associated with a particular
operation are discussed with the description of the operation.
Following is a list of the constraints which are common to

instruction execution.

Mode Constraints —--

The segment number register code constraints which are de-.

péndent on central processor mode are discussed in 2.2.3  _ _

- - .

Access Mode.

Length Code Constraints --

The length code is constrained by the addressing type, and
by the data format required for the operation. The con-
straints associated with an addressing type are discussed

in 3.1 Address Formats, and the data formats are discussed

in 2.3 Data and Instruction Formats. -

Because the length of a control block is a function of the
operation béing performed, the address which specifies a
control block must have an associated length code of O.
Also, whenever an address specifies a location for the

transfer of control, the length code must be O.

Destination Operand Constraints --

A destination operand cannot be specified by null or immediate

addressing.



Iteration Constraints --—

- The iteration count operand canrnot exceed 2°“-1. The index

increment operands are assumed to be of ADDRESS data type.

Control TranSfer:Constraiqts —

A control transfer location cannot be specified by null or

immediate addressing.

The segment number register code associated with the control
transfer location is constrained by the central processor

mode as follows:

- For central processor mode 0 (private mode),
‘only segment number register code 0 (private segment)

can be specified .,

- For central processor mode 1, only segment number

register code 1 or 2 can be specified .

- For central processor modes 2 and 3, only segment

number register code 2 or 3 can be specified.



Program Interrupt

During instruction execution, conditions associated with

- the program interrupt group can occur. Those conditions

which pertain to an individual instruction are listed in

the description of the instruction, and those conditions

which pertain to all instructions are listed in the following

paragraphs. Program interrupts are fﬁrther described in

7.4 Interrug}fProcessiﬁg and in 7.6 Program Interrupt Group.

Page Assignment Class --

These interrupt conditions occur when an attempt is made to write
into an unassigned virtual address or to make any kind of

access to a page currently in secondaryAstorage. Generally,

a real page assignment is made automatically by a service

program.
Mode Violation Class —--

These conditions occur when an attempt is made to execute
a privileged instruction or to address memory while the
central processor mode or the current access mode is less

than required.

Illegal Addressing Class --

These conditions occur when a read access is attempted from

an unassigned virtual address or a write access to a page

protected against write access.



Illegal Instruction Class --

These conditions occur when an gttempﬁ is made to execute

a nonexistent standard or extended operation code or when
an instruction qualifier, address qualifier, argumentvindex,
or subprogram control bloek is'inconsistent with the opera-
tion code being executed or the effective addressing calcu-

lation being made.

Address Bounds Breakpoint Class -- - .

These conditions occur when an access is attempted to an address

within the bounds specified by an active address bounds

register.

Instruction Breakpoint Class -- -

These conditions occur when the various breakpoint conditions
are satisfied and the appropriate controls in the processor
state vector and instruction qualifier are set. The break-

point controls are discussed in 6.0 EXECUTION BREAKPOINTS.

o
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Critical Operand Class —-—

These conditions occur when an operand specifies a value
that is inconsistent with the operation codes of the

instruction.

COMPUTATIONAL ARITHMETIC

There are 8 types of computational arithmetic operations
corresponding to the 8 computational data types, which are

described in 2.3.3 Arithmetic Opérahds. These are a complete

set of the data types with BINARY or DECIMAL base, FIXED or

. FLOAT scale, and REAL or COMPLEX mode.

»

For each computational data type there is a complete set of

the following operations: replace, add, subtract, multiply,

divide, absolute value, sguare, inner oproduct, polynomial,

if equal, and if not equal. For the 4 REAL types only,

there are the adaitional operations sguare root, If less

than, and if not less than.

Before the result of a computationéi operation is stored
into memory or used in a comparison determination, it is
adjucted and truncated. Adjustment is according to one of

3 methode, automatic, normalized, or manual, depending on

controls in the processor state vector and in adjustment

operands that optionally appear in the instruction. Trun-

cation consists of either simply chopping off the low-order



digits of the result or rounding the portion to be retained
before chopping off the low-order digits. Controls in the
processor state vector and in agjustment operands specify
whether or not rounding is done. Rounding is never done

in comparison operations.

For each data type there is a set of 2 control bits in the

processor state vector, a normalization control and a rounding

control. An instruction can override the current settings

of these controls by including the optional adjustment operands.

The following sections are an introduction to GEMINI computa-

tional arithmetic.

Intermediate Results . - o

All computational arithmetic operatidns are carried out to
produce intermediate results that represent the high order
portion of the true regult and which are contaiﬁed in a 116
bit register for the fixed-point part and a separate register
for the exponent'part. The fixed-point parf consists of a
sign digit position and 115 binary or 28 decimal digits.

Two separate results are produced for the real and imaginary
components of complex numbers. Thé intermediate results are
adjusted by aligning both fixed-point and exponent parts
according to one of three adjustment methods: normalized,

automatic, and manual. The adjusted result is then truncated



4.3.3

either by rounding or chopping off low-order digits to

produce the final result within a target length. Target

length, adijustment methods, and truncation methods are all

described in 4.3.2 through 4.3.9.

Target Length

For assignment operations (those in which the value of the
result is stored into a destination operand) the tar
length is the length of the destination operand. For com-
parison operations the target length is the length of the
longer of the two source operands being compared unless
adjustment operands are.included in the instruction and

specify an explicit target length. For complex operations

the target length is the same for both real and imaginary

components. . .- T

Normalized Representation

_A; .
-

A REAL data item or a component of a COMPLEX data item is

normalized if it hazs a non-zero digit in the high-order digit

position of the fixed-point part or if it is an absolute zero

(see 4.3.4 Absolute Zero and Relative Zero). Normalized

representation provides a unique way of representing any

value of a given data type.



4.3.4

4.3.5

Absolute Zero and Relative Zero

Absolute zero consists of a fixed-point part with a negative
-sign and all zero digits. The “exponent part may have any
value, but only an exponent value of +0 is returned by the
computational operations for an absolute zero result. Abso-
lute zero is understood to represent zero exactly and is

distinguished from relative zero, which is understood to

represent zero approximately. ‘Relative zero is represented

by a fixed-point part with a positive sign and all zero

digits and an exponent part with any legitimate value. 1In
computational operations a relative zero source operand is

treated like any non-zero operand with regard to alignment

. of operands and determination of the exponent of the result.

Automatic Adjustment

When the automatic adjustment method is specified, adjust-
ment of the intérmediate resuit is»made aécording.to the
exponents and the number of high-order zeros iﬁ>the source
operands. The kind of adjustment made depends on the nesture
of the operation.

The adjustments are made to provide automatic monitoring

of significant digits in the fixed-point part of the result.
Automatic significant digit monitoring uses the binary or

decimal point in the high-order position of the fixed-point
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part as a fixed reference point. The varying operand lengths
are all treated as if they were shorthand for the longest
operand length with low-order digits omitted. The program,
“however, can use the varying opé}and lengths to specify how
much of the intermediate result is to be stored, including
high-order zeros between the decimal or binary point and

the first significant digit. The purpose of the automatic
adjustments is simply'tp assure thatrthe reliability of the
results of computatioﬁal operations can be interpreted in

terms of the reliability of the source operands.

" The automatic adjustments are made as follows, where eor &1’

e, represent the exponents of the destination operand and

the two source operands, respectively; and m my, W, repre-

o’ -2
sent the number of high-order zeros in the fixed-point part
of the destination and source operands, respectively. Note
that any adjustment of the number of high-order zeros implies
a corresponding cﬁange ih the exponent, and Vice4vérsa, g0

that the same value is maintained while the representation

is changed.

~ Addition/Subtraction. The source operand'with the smaller
exponent is adjusted to have the same exponent as the
source operand before the addition or subtraction: the
result, therefore, has €9 equal to the maximum of e

and e Exception: When one of the source operands is

2°

an absolute zero, no adjustment is made on the other

source operand.



- Multiplication. The result of mumltiplication is ad-
justed to have the same number of'high—order zZeros as
the source operand with the greater number of high-order

Ta o e
e maXimum

ct

+ + 1. - 1 e L
Z&Ir0s; he J.':F"dl\_, uherefore, as Luo eguaLr ¢ T

of m, and m Exception: When one of the source

20

operands is an absolute zero, the result is absolute zero.

~ Division. The result of the division is adjusted to
have the same number of\high—order zeros as the source
operand with the greater number of high-order zeros; the

result, therefore, has m, equal to the maximum of m,

0

~and m Exceptions: An absolute zero division causes

-
a Divide by Zero interrupt condition; a relative zero

source operand causes a relative zero result with an

exponent set as follows:

So T &y T g T my AWM ifmy <m.
S0 T &1 " ety ifm Zzm,.

- -

- Square Root. The result is adjusted to have one less

high-order zero than the source operand; the result,

therefore, has m, equal to my - 1. -

o
- Square. The result is adjusted to have one more high-
order zero than the source operand; the result, therefore,

has m, equal to m, + 1.

0 1

- Composite Operations. Inner product, polynomial, and
all the COMPLEX operations are composites of two or more

of the above operations and an automatic adjustment is



made after each step of the operation. Exception:
In COMPLEX division, the steps to square the compo-
nents of the divisor and add the squares together -

always have normalized adjustment.

- Comparison Operations. The comparison is done by means
of a subtraction opefation:'the fixed—point part of the
result is adjusted by setting to zeros all the low-order
digits beyond the length of the longer source 6perand.
The relation between the two source operands is deter-
mined on the basis of the adjusted result.

Normalized Adjustment

When the normalized adjustment method is used, the inter-
mediate result is adjusted to the normalized representation.
All zero results,are expressed as an absolute zero. All non-
zero results are adjusted to have a non-zero digit in the

high-order digit position of the fixed-point part, that is

e equals O.

Manual Adjustment

When the manual adjustment method is used, the instruction
specifies an explicit adjustment source operand and the
result is unconditionally adjusted as specified. The speci-

fied adjustment is either in terms of the exponent, e; or
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the number of high‘order zeros m; or, for comparison
operations instead of m, the target léngth in digits, t.
The specification is either in genns‘of a SEeCific e, m,
or t value, or a value relative to the one that would re-

sult if the automatic method were being used.

Truncation

Truncation is performed on the intermediate result only as

the last step before storing the result into the destination
operand or determining a relation in a comparison operation.
There are two methods of truncation, depending on whether or

-

not a rounding operation is included:
Chopping --

When chopping is specified, low-order digits of the fixed-
point part of the intermediate result are uncondiéionally set
to zeros. Only the high-order digits that make up the target

length are unaffected by the chopping.

Rounding --

When rounding is specified, one of two methods is used,
decimal rounding or binary rounding. In each method the 4
bits (that is 1 decimal digit or 4 binary digits) immediately

to the low-order side of the target length are examined.
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.In decimal rounding, if the decimal digit is between 5 and 9,
1 is added to the magnitude of the fixed-point part at the
low-order digit position of the target length; carries are

‘ éropagated through the entife t;rget length, and a carry out
of the high-order significant digit causes a one digit shift

“fo the low-order end with 'a corresponding increase in the

exponent. This is the traditional rounding method.

In binary rounding, if any of the 4 bits are 1l's, the digit
in the low-order position of the target length is uncon-

ditionally set to 1. There are no carries propagated.
Once rounding has been completed, the low-order digits
béybnd the target length are set unconditionally to zeros,

as in chopping.

4.3.9 Specification of Adjustment and Truncation Method

The adjustment method and truncatioﬁ method to be used.in
executing a.computational arithmetic operation are specified
either by the normalization and rounding controls in the
processor state vector or by the optional adjustment operands
in the instrucﬁion. If the adjustment operands are omitted,
the processor state vector normalization and rounding controls
for the data type of the operation specify adjustment and

truncation methods. If the normalization bit is set, the

normalized method is used; if the normalization bit is reset,



the automatic method is used. If the rounding bit is set,
decimal or binary rounding, depending on the base of the
- data type, is used; if the rounding bit is reset, only

chopping is used.

If the adjustment operands are present, they are interpreted
as indicated below to specify_adjustment and truncation

according to processor state vector settings or explicit method.

In all computational instructions optional adjustment oper-

ands are permitted. "~ They consist of the keyword 'ADJUST'
followed by 2 source operands which are separated by a comma and
enclosed in parentheses. The first of the source operands
specifies the adjustment suboperation code. “The commé énd
second source operand are needed only to specify a manual

-

adjuétment. ' A .

The adijustment suboperation code is the leading 7 bits of

the first adjustment operand. Of these the leading 5 bits
specify the adjustment method, and the other 2 bits control

rounding.



Bit value

0 1
Bit
Position
PSvV Instruction
0 Adjustment Adjustment
Control Control
0 0
Automatic Method
01
L&2 Normalized Method
10
Manual e Adjust
11
Manual m or t Adjust
3 Specific Relative
Value Value
4 Adjustment Adjustment
Value Prototype
PSVv Instruction
5 Rounding Rounding
Control Control
6 Chopping Rounding

Figure 4.1 - Adjustment Suboperation Codes
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Bit O specifies whether the adjustment method is determined
from the'processor state vector ﬁormalization contrbl(bit
.or from bits 1 and 2 of the adjustment suboperation code.
Bits 1 and 2 specify whether the automatic method, the
normalized method, or one of the manual methods is to be
used. The 2 manual methods are'exponént adjustment and
high-order zero or target length adjustment. If a manual
method is being used, bits 3 and 4 specify how the second

adjustment operand is interpreted. Bit 3 indicates whether

a specific value or a relative value is specified. A spe-

cific value indicates the value to which e, m, or E‘is to
be adjusted. A relative value specifies an adjustment
relative to the value of e, m, or t that would'result from
automatic adjustment. Bit 4 indicates whether the second

adjustment operand is a signed integer adjustment value

or an adijustment prototvpe. A prototype is a data item of

the same data type as the opergtign._'iis exponent, high—"'”
order zeros, or length is used as a model for aligning the

result. A relative m or t prototype always specifies an

- - e —~— -

ncrease in m or t from the automatic adjustment.
- - e . e . . .

»

Bit 5 indicates whether rounding is détermined by the
processor state vector rounding control bit or by bit 6.
If bit 5 is 1, bit 6 indicates whether or not rounding is
done. The data type of the operation determines whether

decimal or binary rounding is meant.
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COMPUTATIONAI. REAL REPLACE

Opetation Codes

Binary Fixed Real Replace
Binary Float Real Replace
Decimal Fixed Real Replace
Decimal Float Real Replace

Syntax

dl = s2” [ADJUST (s3[, s41)] [itération]

Program Interrupts

Fixed Point Overflow Class (Real Subclass)
‘Exponent Overflow Class {(Real Subclass)
Illegal Decimal Digit

Semantics

The operand specified by the first address
is replaced by the operand specified by the
second address.

-



COMPUTATIONAL REAL ADD

Operation Codes

Binary Fixed Real Add
Binary Float Real Add
Decimal Fixed Real Add
Decimal Float Real Add

Syntax

dl = s2 + s3  [ADJUST (s4[, s51)] [iteration]

Program Interrupts

Overflow Class (Real Subclass) ]
Fixed Point Overflow Class (Real Subclass)
Exponent Overflow Class (Real Subclass)
Illegal Decimal Digit

-~ B
4 -

Semantics

The operand specified by the second address
is added to the operand specified by the
third address. The result replaces the
destination operand.



COMPUTATIONAL REATL SUBTRACT

Operation Codes

Binary Fixed Real Subtract
Binary Float Real Subtract
Decimal Fixed Real Subtract
Decimal Float Real Subtract

Syntax

4L = s2 - s3  [ADJUST (s4[, s51)] literstion]

Program Interrupts

Overflow Class (Real Subclass)

Fixed Point Overflow Class (Real Subclass)
‘Exponent Overflow Class (Real Subclass)
Illegal Decimal Digit

Semantics

The operand specified by the third address is
subtracted from the operand specified by the
second address. The result
replaces the destination operand.
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COMPUTATIONAL REAIL. MULTIPLY

Operation Codes

Binary Fixed Real Multiply
Binary Float Real Multiply
Decimal Fixed Real Multiply
Decimal Float Real Multiply

Syntax

dl = s2 * s3  [ADJUST (s4[, s5])] [iteration]

Program Interrupts

Overflow Class (Real Subclass) -
Fixed Point Overflow Class (Real Subclass)
Exponent Overflow Class (Real Subclass)
Illegal Decimal Digit

‘Semantics

The operand specified by the second address
is multiplied by the operand specified by
the third address. The result replaces the
destination operand. - -
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COMPUTATIONAL REAIL DIVIDE

Operation Codes

Binary Fixed Real Divide
Binary Float Real Divide
Decimal Fixed Real Divide
Decimal Float Real Divide

Syntax

- - -— -

dl = s2 / s3 [ADJUST (s4[, s51)1 [iteration]

Program Interrupts

Overflow Class (Real Subclass) B
Fixed Point Overflow Class (Real Subclass)
Exponent Overflow Class (Real Subclass)
Divide by Zero Class (Real Subclass)
Illegal Decimal Digit

Semantics

The operand specified by the second address’
is divided by the operand specified by the
third address. The quotient replaces the
destination operand. , | -

- - O
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COMPUTATIONAL REAL SQUARE

Operation Cocdes

Binary Fixed Real Square
Binary Float Real Square
Decimal Fixed Real Square:
Decimal Float Real Square

Syntax

dl = square (s2) [ADJUST (s3[,s41)1 [lteratlon]

Program Interrupts

Overflow Class (Real Subclass)

Fixed Point Overflow Class (Real Subclass)
Exponent Overflow Class (Real Subclass) -
Illegal Decimal Digit

e

Semantics

The operand specified by the second address’
is squared and the result replaces the desti-
nation operand.



COMPUTATION REAL SQUARE ROOT

Operation Codes

Binary Fixed Real Sguare Root
Binary Float Real Sguare Root
Decimal Fixed Real Square Root
Decimal Float Real Square Root

Syntax

dl = sqgrt (§gj”~ [ADJUST (s3[,s4]1)] [iteration]

- e W -

Program Interrupts .

Fixed Point Overflow Class (Real Subclass)
Exponent Overflow Class (Real Subclass)
Square Root Source Operand Negatlve
Illegal Decimal Digit B

-~
-

Semantics B -
The square root Of the operand specified by

the second address is calculated. The result
replaces the destination operand. ’



COMPUTATIONAL REAL IF EQUAL

Operation Codes

Binary Real If Equal
Decimal Real If Egqual

Syntax

- e o ——

IF s2 = s3 [ADJUST(s4[,s5])] THEN GO TO al [iteration]

Program Interrupts -

. Illegal Decimal Digit

Semantics

P

The operand specified by the second address

is compared with the operand specified by

the third address. If the comparison is

true, control is transferred to the location

specified by the first address; otherwise no

transfer occurs. - oo
i
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COMPUTATIONAL REAL TF NOT EQUAL

Operation Codes

Binary Real If Not Equal
Decimal Real If Not Equal

Syntax

IF 82 - = s3 [ADJUST(§§{,§§})] THEN GO TO il [iteration]

Program Interrupts

TIllegal Decimal Digit

Semantics

-
-

The operand specified by the second address
is compared with the operand specified by
the third address. If the comparison is
true, control is transferred to the location
specified by the first address; otherwise no
transfer occurs. ' '
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COMPUTATIONAL REAL IF LESS

Operation Codes

Binary Real If Less .
Decimal Real If Less

Syntax

IF s2 < s3 [ADJUST(s4[,s5])] THEN GO TO al [iteration]

Program Interrupts

Illegal Decimal Digit

Semantics

-~

The operand specified by the second address
is compared with the operand specified by
the third address. If the comparison is
true, control is transferred to the location
specified by the first address; otherwise no
transfer occurs. ’ A

i



COMPUTATIONAL REAL IF NOT LESS

Operation Codes

Binary Real If Not Less
Decimal Real If Not Less

Syntax

Program Interrupts

Illega1~Decimél Digit

Semantics

The operand specified by the second address
is compared with the operand specified by
the third address. If the comparison is
true, control is transferred to the location
specified by the first address; otherwise no
transfer Pccﬁré.‘ - '



COMPUTATIONAL COMPLEX REPLACE

Operation Codes

Binary Fixed Complex Replace
Binary Float Complex Replace
Decimal Fixed Complex Replace
Decimal Float Complex Replace

Syntax

§} = s2 [ADJUST(S3[ s4])1 [1teratlon]

- w an D W a-—-—

Program Interrupts

Fixed Point Overflow Class (Complex Subclass)
, Exponent Overflow Class (Complex Subclass)
Illegal Decimal Digit

Semantics X

The operand spec1f1ed by the second address
replaces the destination operand
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COMPUTATIONAL COMPLEX ADD

- Operation Codes

Binary Fixed Complex Add
Binary Float Complex Add
Decimal Fixed Complex Add
Decimal Float Complex Add

Syntax

dl = s2 + 3 [ADJUST (s4[, s3])] [iteration]

Program Interruptsﬂ

Overflow Class (Complex Subclass) 3
Fixed Point Overflow Class (Complex Subclass)

Exponent Overflow Class (Complex Subclass)
Illegal Decimal Digit

Semantics

The operand specified by the third address
is added to the operand specified by the
second address. The result of the addition
replaces the destination operand.



COMPUTATIONAL COMPLEX SUBTRACT

Operation Codes

Binary Fixed Complex. Subtract
Binary Float Complex Subtract
Decimal Fixed Complex Subtract
Decimal Float Complex Subtract

Syntax

dl = s2 - s3 [ADJUST(gé[,§§])] [iteration]

Program Interrupts .

Overflow Class (Complex Subclass)

Fixed Point Overflow Class {Complex Subclass)
Exponent Overflow Class (Complex Subclass)
Illegal Decimal Digit

-
-

Semantics

-

The operand spec1f1ed by the third address
is subtracted from the operand, specified by
the second address. The result of the sub-
traction replaces the destination operand.



COMPUTATIONAL COMPLEX MULTIPLY

Operation Codes

Binary Fixed Complex Multiply
Binary Float Complex Multiply
Decimal Fixed Complex Multiply
Decimal Float Complex Multiply

dl = s2*% s3 [ADJUST (s4[,s5])1 [iteration]

Program Interrupts .

Overflow Class (Complex Subclass)

Fixed Point Overflow Class (Complex Subclass)
Exponent Overflow Class (Complex Subclass)
Illegal Decimal Digit

Semantics

The operand specified by the second address
is multiplied by the operand specified by the
third address. The result of the multiplica-
tion replaces the destination operand.



COMPUTATIONAL COMPLEX DIVIDE

‘Oﬁeration Codes

Binary Fixed Complex Divide
Binary Float Complex Divide
Decimal Fixed Complex Divide
Decimal Float Complex Divide

Syntax

dl = s2 / s3 [AbJﬁST(gé{,gQ])] [iteration]

- e on Ow e Onewe

Program Interrupts

Overflow Class (Complex Subclass)

Fixed Point Overflow Class (Complex Subclass)
Exponert Overflow Class (Complex Subclass)
Divide by Zero Class (Complex Subclass)
Illegal Decimal Digit

Semantics

The operand specified by the second address
is divided by the operand specified by the
third address. The division is performed
~and the quotient replaces the destination
operand. . T



COMPUTATIONAL COMPLEX ABSOLUTE VALUE

Operation Codes

Binary Fixed Complex Absolute Value
Binary Float Complex Absolute Value
Decimal Fixed Complex Absolute Value
Decimal Float Complex Absolute Value

- Syntax

-y ew e - o

dl = abs (§g)[ADJUST(§§[,§§])] [1teratlon]

Program Interrupts

Overflow Class (Complex Subclass)

Fixed Point Overflow Class (Complex Subclass)
Exponent Overflow Class (Complex Subclass)
Illegal Decimal Digit

s

Semantics : -

The absoluté ‘value of the complex operand spe-
cified by the second address is calculated and
replaces the destination operand.

The result is the positive sguare root of the
sum of squares of the real and the imaginary

parts. The result is a REAL data type with the
same base (BINARY or DECIMAL) and scale (FIXED or

" FLOAT) as the COMPLEX source operand.



COMPUTATIONAL COMPLEX TIF EQUAL

Operation Codes

Binary Complex If Equal
Decimal Complex If Equal

Syntax

IF s2 = s3 [ADJUST(s4[,s5])] THEN GO TO al [iteration]

- - - e - -

Program Interrupts

Illegal Decimal Digit

Semantics

-~ .
-

The operand specified by the second address
is compared with the operand specified by
the third address. If the comparison is
true, control is transferred to the location
specified by the first address:; otherwise no
transfer'occﬁré.’ - '
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COMPUTATIONAL COMPLEX IF NOT EQUAL

Operation Codes

Binary Complex If Not Egual
Decimal Complex If Not Equal

Syntax

IF s2 0 = s3 [ADJUST (s4 [,s51) ] THEN GO TO al [iteration

Program Interrupts

Illegal Decimal Digit

Semantics

-

The operand specified by the second address.
is compared with the operand specified by
the third address. If the comparison is
true, control is transferred to the location
specified by the first address; otherwise no

transfer occurs. -
i



4.4

INTEGER OPERATIONS

~

Integer arithmetic operations allow arithmetic to be per-

formed using signed binary or decimal integers.

Constraints —-

An integer can be from 1 to 16 bytes long. See 2.3.3

Arithmetic Ovperands for the format discussion. An integer

value of -0 is accepted, but is then converted to +0. A

value of -0 is not generated by the integer operations.

" Common Operations --

Before performance of an operation, the following steps occur:

¢ The source.operands are positioned so that the
lowest order digits are aligned.

¢ If necessary, the source operands are expanded
to the same length as the longest operand by
inserting 0 digits between the sign digit and
the high order digit. -

Before storing the result of an operation, the following

steps occur:

i

¢ The result and the destination operand are
positioned so that the low order digits are
aligned. ' '

¢ If the length of the result is greater than
the length of the destination, the result is
shortened to the same length as the destination
by deleting high order digits. If any nonzero
digit is deleted, the integer overflow inter-
rupt condition corresponding to the data type
occurs. s o



The comparison operations subtract the second source
source operand from the first before making

the test. If the optional mask is specified,

the subtraction is performed only with those

bit positions corresponding to a 1 in the mask.



INTEGER REPLACE

- Operation Codes

Binary Integer Replace
Decimal Integer Replace

Syntax

dl = s2 [iteration]

- - e on e e

Program Interrupts
Overflow Class’(Integer Subclaés)
Illegal Decimal Digit

Semantics

~ The operand specified by the second address
‘replaces the destination operand.



INTEGER ADD

Operation Codes

Binary Integer Add
Decimal Integer Add

Syntax

dl = s2 + s3 [iteration]

Program Interrupts

Overflow Class (Integer Subclass)
Illegal Decimal Digit

Semantics

e

The operand specified by the third address
is added to the operand specified by the
second address. The result of the -addition
replaces the destination operand. =



INTEGER SUBTRACT

Operation Codes

Binary Integer Subtract
Decimal Integer Subtract

Syntax

10
I+
]
16)
N
!
0]
w

[iteration]

- - — o - ——

Program Interrupts -

.Overflow Class (Integer Subclass)
Illegal Decimal Digit

Semantics

The operand specified by the third address
is subtracted from the operand specified by
the second address. The result of the

subtraction replaces the destination operand.
£ s 4o r - . f it . -
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INTEGER MULTIPLY

Operation Codes

Binary Integer Multiply
Decimal Integer Multiply

Syntax

al = s2 * 53 [iteration]

Program Interrupts

Overflow Class<(Integer Subclaés)
Illegal Decimal Digit

Semantics

The operand specified by the second address
is multiplied by the operand specified by

the third address. The result of the multi-
plication replaces the destination operand.



INTEGER DIVIDE

Operation Cocdes

Binary Integer Divide
Decimal Integer Divide

Program Interrupts

,Overflow.Class’(IntegerﬁSpbclaSS)

Illegal Decimal Digit

Semantics

The operand specified by the second address
is divided by the operand specified by the
third address. The quotient replaces the
destination operand. .
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INTEGER REMAINDER

Operation Codes

Binary Integer Remainder
Decimal Integer Remainder

Syntax

dl = remainder (s2, s3) - - [iteration]

- —— -— e wn et w— o e —

Program Interrupts

~_Overflow Class (Integer Subclass)
~ Divide by Zero Class (Integer Subclass)
Illegal Decimal Digit

Semantics

The operand specified by the second address

is divided by the operand specified by the
third address. The remainder replaces the
destination operand. The sign of the re-
mainder is set to be the same as the sign
- of the operand specified by thé second address.
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INTEGER SCALE

" Operation Codes

Binary Integer Scale
Decimal Integer Scale

Syntax

-——— e o o o=

dl = scale (s2, s3) [iteration]

Program Interrupts -

Overflow Class (Integer Subclass)
Illegal Displacement
Illegal Decimal Digit

Semantics

The operand to be scaled is specified by the
second address, and the scale factor operand
is specified by the third address. The result
of the scaling operation replaces the destina-
tion operand. .
The scale factor operand is a binary or decimal
integer depending on the type of integer opera-
tion being performed. The sign of the scale
factor operand determines the direction of the
scaling operation. When the sign is_positive,
the scale operand is multiplied by r=-, and
when it is negative, the scale operand is
divided by r=. The value of r is 2 or 10
depending on the type of integer operation
being performed, and n is the absolute wvalue

of the scale factor operand.



INTEGER TF EQUAL

Operation Codes

Binary Integer If Equal
Decimal Integer If Equal

Syntax

IF s2 = s3 [MASK s4] THEN GO TO al [iteration]

- e wrv o W w———

Program Interrupts

Illegal Decimal Digit

Semantics

-

The operand specified by the second address.is
compared with the operand specified by the

_ _third address. If the comparison is true,
control is transferred to the location speci-
fied by the first address; otherwise no trans-

_fer occurs. 1If the optional mask is specified

~ by the fourth.address the comparison is per-
formed only with those digit positions cor-
responding to a 1 in the mask.

,.
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INTEGER IF NOT EQUAL

Operation Codes

Binary Integer If Not Equal
Decimal Integer If Not Equal

Syntax

IF s2 - = s3 [MASK s4] THEN GO TO al [i}eration]

Program Interrupts -

Illegal Decimal Digit

Semantics

-

The operand specified by the second address . is
compared with the operand specified by the
third address. If the comparison is true,
control is transferred to the location speci-
fied by the first address; otherwise no trans-
fer occurs. If the optional mask is specified
by the fourth address, the comparison is per-
formed only with those digit poOsitions corres-
ponding to 1 in the mask.

-



INTEGER IF LESS

'Qperation Codes

Binary Integer If Less
Decimal Integer If Less

Syntax

IF s2 < s3 [MASK s4] THEN GO TO al [1teratlon]

- — Sv -

Program Interrupts

-Illegal Decimal Digit

Semantics

The operand specified by the second address is
compared with the operand specified by the
_third address. If the comparison is true,
contreol is transferred to the location speci-
fied by the first address; otherwise no trans-
fer occurs.  If the optional mask is specified
by the fourth address, the comparison is per-
formed only with those digit positions corres-
ponding to a 1 in the mask.

-



"INTEGER IF NOT LESS

Operation Codes

Binary Integer If Not Less
Decimal Integer If£ Not Less

Syntax

IF s2 - < s3 [MASK s4] THEN GO TO al [iteration]

o e oo e e ——

Program Interruots

Illegal Decimal Digit

Semantics

The operand specified by the secon
COﬂDarcd with the overand specifie
- - third address. Iz the compariscn is true,.
control is transft ed to the location speci-=
fied by the first gddres otherwisa no trans-
fer occurs. If the ootwo“al maskis spacified
by the fourth address, the .Dcrlson is per-
formed only with those d'git positions corres-—
ask.

i
ponding to a ! in the mas

Q—t Q
Ut
< Qs



MAGNITUDE OPERATIONS

Magnitude operations allow arithmetic to be performed

using unmmsigned magnitude bindry integers.

There are 2 types of magnitude arithmetic operations:
magnitude and address. The operations differ only in the

length of the operands involved in the calculation.

Constraints --

Both magnitude and address operénds‘can vary from 1 to 16

bytes in length; For address operations, however, the 2

'trailing bits are not used during address operations. The

format of these 2 data types are discussed in 2.3.3

Arithmetic Operands.

Common Operations --

Magnitude arithmetic operations perform the specified

arithmetic operation and then express the result modulo 22

where n is the number of bits in the destination operand.
Before performance of an operation, the following steps

>

occur:

e The source operands are Qositionea so that the lowest
order digits are aligned.

e If necessary, the source operands are expanded to

the same length as the longest operand by inserting
0 digits.
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Before storing.the result of an operation, the following
steps occur:

e The result and the destination operand are positioned
so that the low order digits are aligned. )

¢ If the length of the result is greater than the
length of the destination, the result is shortened .
to the same length as the destination by deleting
high order digits. If any nonzero digit is deleted,
the integer overflow interrupt condition correspond-
ing to the data type occurs.

e The comparison operations subtract the second source
operand from the first before making the test. If
the optional mask is specified, the subtraction is
performed only with those bit positions correspond-
ing to a 1 in the mask.



MAGNITUDE REPLACE

Operation Codes

Magnitude Replace
Address Replace

Syntax

dl = s2 [iteration]

Program Interrupts

~ Truncation Class (Magnitude Subclass)

Semantics

d

The operand specified by the second address.
replaces the destination operand.



MAGNITUDE ADD

‘Oﬁeration Codes

Magnitude Add
Address Add

Syntax

dal = s2 + s3. [iteration]

Program Interrupts .

:_Truncationéclass (Maqnitude.Subclass)

Semantics

The operand'specified by the third address is
added to the operand specified by the second

address. The result of the aadltlon replaces
the destlnatlon operand.

-



MAGNITUDE SUBTRACT

-Operation Codes

Magnitude Subtract
Address Subtract

Syntax

dl = s2 - s3 [iteration]

- e - - @

Program Interrupts

Truncation Class (Magnitude Subclass)

Semantics

The operand specified by the third address is
subtracted from the operand specified by the

second address. The result:.of the subtraction
replaces the destination operand. ’

-
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MAGNITUDE MULTIPLY

Operation Codes

Magnitude Multiply
Address Multiply
Syntax

Sl =22 *s3  [iteration]

Program Interrupts

Truncation Cbags (Magnitude Suﬁclass)

Semantics

The operand specified by the second address-is
multiplied by the operand specified by the

third address. The result of the multiplication
replaces the destination operand.



MAGNITUDE DIVIDE

.Operation Codes

Magnitude Divide
Address Divide

Syntax

dl = s2 /s3  [iteration]

Program Interrupts

Truncation Class (Magnitude Subclass)’
Divide by Zero Class (Magnitude Subclass)

Semantics

The operand specified by the second
divided by the operand specified by

address. The quotient replaces the
operand. ‘

address 1is
the third
destination



MAGNITUDE REMAINDER

Operation Codes

Magnitude Remainder
Address Remainder

Syntax

Program Interrupts

. Pruncation.Class (Magnitude Subclass)
Divide by Zero Class (Magnitude Subclass)

Semantics

The operand specified by the second address is
divided by the operand specified by the third

address. The remainder replaces the destination
operand. ) i o



MAGNITUDE SCALE

Operation Codes

Magnitude Scale
Address Scale

Syntax

dl = scale (s2,s3) [iteration]

Program Interrupts

_ Truncation Class (Magnitude Subclass)
Illegal Displacement

Semantics

The operand to be scaled specified by the second
address is scaled by a factor 2™ where n the scale
factor operand is specified by the third address.
The reult of the scaling operation replaces the
destination operand. : T -

The scale factor operand n is a binary integer and
its sign determines the direction of the scaling
operation. When the scale. factor operand is posi-—
tive, the scale operand is multiplied by 27, but

,.whennit is negative, the scale operand is divided
by 2. The value of n is the absolute value of the
scale factor operand.
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MAGNITUDE IF EQUAL

'Operation Codes

Magnitude If Equal
Address If Equal

Syntax

IF s2 = s3 [MASK s4] THEN GO TO al [iteration]

Semantics

The operand specified by the second address is
. compared with the operand specified by the
_third address. If the comparison is true,

control is transferred to the location speci-

fied by the filst address; otherwise no trans-

fer occurs. the optional mask is specified b
the fourth address, the comparison 1s performed

only with those digit positions correspondlng
to a 1 in the mask.
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MAGNITUDE IF NOT EQUAL

'Oberation Codes

Magnitude If Not Equal
Address If Not Equal:

Syntax

IF s2 = = s3 [MASK s4] THEN GO TO al [iteration]

Semantics

The operand specified by the second address_is.
compared with the operand specified by the
third address. If the comparison is true,
control is transferred to the location speci-
fied by the first address; otherwise no trans-
fer occurs. - If the optional mask is specified
by the fourth address, the comparison is per-
formed only with those digit positions corres-
ponding to a 1 in the mask.

2
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MAGNITUDE IF LESS

Operation Codes

Magnitude If Less
Address If Less

Syntax

e i G o e e e

IF s2 < s3 [MASK s4] THEN GO TO a] [iteration]

Semantics

The operand specified by the second address. is
compared with the operand specified by the
third address. If the comparison is true,
control is transferred to the location speci-
fied by the first address; otherwise no trans-
fer occurs.  If the optional mask is specified
by the fourth address, the comparison is per-
formed only with those digit positions corres-
ponding to a ! in the mask.
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MAGNITUDE IF NOT LESS

Operation Codes

Magnitude If Not Less
Address If Not Less

Syntax

Semantics

The operand specified by the second address is
compared with the operand specified by the
third address.. If the comparison is true,
control is transferred to the location speci-
fied by the first address; otherwise no trans-
fer occurs. If the optional mask is specified
by the fourth address, the comparison is per-
formed only with those digit pdsitions corres-
ponding to a 1 in the mask.
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LOGICAIL OPERATIONS
Common Characteristics --

A logical operand is a byte string from 1 to 16 bytes long.
Operands are aligned at the leading bit positions before

performing an operation. For all operations, whenever the

2 source operands are of different lengths, 0's are extended

through the trailing bits of the shorter operand until both

operands are the same length.

After the operation is pefformed, one of the following steps

may be performed:

-

¢ When the length of the result is less than the
length of the destination, the result is stored

and the trailing bits of the destination are set
tO Oo'

¢ When the length of the result exceeds the length
of the destination, the trailing bytes of the
result are discarded. Note that the logical overflow
interrupt condition does not cccur if all of the
truncated bits are 0. :
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LOGICAIL REPLACE

- Syntax

—— v —————

dl = s2 [iteration]

Préqram Interrupts

Logical Truncation

Semantics

 The operand specified by the second address
replaces the destination operand.



LOGICAL AND

'Syntax

dl = 52 & s3 [iteration]

Program Interrupts

Logical Truncation

Semantics

. An and is performed between the corresponding
bits of the operands specified by the second
and third addresses. The result of the opera-
tion replaces the destination operand.

The and function is performed according to the
following truth table:

"/'

an = 82 & s3

n =-o - =-n
0 0 0
0 - * 07 1
10 1 0
1 1 1 v

where n is the bit position.
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LOGICAL INCLUSIVE OR

Syntax

a1 = s2 | s3 [iteration]

Program Interrupts

Logical Truncation

Semantics

An inclusive or is performed between the

corresponding bits of the operands specified

by the second and third addresses.

The result

of the operation replaces the destination

operand.

The inclusive or function is performed accord-

-~

dl’ = g2 s3
~-n ZZn

2 S
0o- .0 0
1 0 1
1 1 0
l: s - 1; l

E

where n is the bit positiobn.
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LOGICAL EXCLUSIVE OR

Syntax

dl = s2 | s3 [iteration]

Program Interrupts

Logical Truncation

Semantics

An exclusive or is performed between the

by the second and third addresses. The result
of the operation replaces the destination
operand.

The exclusive or function is performed accord-
ing Eo the following truth table:

al_ = s2 s3
--n T=n . -=-n
0 0 0
1" "0 1
1 1 0]
0 1 1l

.where n is the bit position. ’
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LOGICAL NOT AND

Syntax

dl = s2 - & §§ [iteration]

- o — g —p— o—

Program Interrupts

Logical Truncation

Semantics

bits of operands specified by the second and
third addresses. The result of the operation
replaces the destination operand.

A nct and is performed between the corresponding

The not and function is performed according to

the following truth table:

dl_ = s2 s3
—t --n -
1 0 0
1° “Q- 1
1 1 0
0 1 1

where n is the bit position.
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LOGICAL NOT INCLUSIVE OR

Syntax

dl = s2 - | s3 [iteration]

—— o f— . o g

Program Interrupts

Logical Truncation

Semantics

———— - o oo ———

the second and third address. The result of
_the operation replaces the destination operand.

dl_ = s2 s3
--n - -
1 0 0
0" 0 1
‘0 1 0
0 1 1

where n is the bit position.
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LOGICAIL NOT EXCLUSIVE OR

Syntax

S i . o t——

dl = s2 - | s3 [iteration]

Program Interrupts

Logical Truncation

Semantics

A not exclusive or is performed between the

the second and third address. The result of
~the operation replaces the destination operand.

The not exclusive or function is performed

ai, =s2, =3,
1l 0 0
0 o 1
0 1l 0
1 1l 1

where n is the bit position.
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MISCELLANEOUS BYTE OPERATIONS

A group of miscellaneous byte operations are included for
operation on logical operands and byte strings. These are

SHIFT, COUNT, GENERATE and COPY.

The operands used in these operations are byte strings from

1 to 16 bytes long.
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SHIFT

Syntax

——— g ot G s o

gl = shift (s2 CODE s3 COUNT s4) [iteration]

Program Interrupts

Logical Truncation
Illegal Shift Count

Semantics

The suboperation operand is specified by the
second address, the shift operand is specified
by the third address, and the optional shift-
count operand is specified by the fourth address.
The result of the Shift operation replaces the
destination operand. '

The suboperation operand indicates how the shift )
operand is to be manipulated by specifying according
- to the_ following code: '

Bit, Position

| B 0 D Bit Value
Shift Left 0
Cycle Right | 1

Shift Suboperation Codes

The shift-count operand is required for all
functions. B ' The shift-count
operand is assumed to be a binary integer that
specifies the number of single bit shifts to
be performed. In addition, a negative shift-
count operand inverts the direction of the
shift.



In a shift operation, vacated leading or
trailing bit positions are filled with O's
and bits shifted off either end of the
operand are lost. :

-

In a cycle operation, bits shifted off either
end are copied into the vacated leading or
trailing bit positions.



COUNT

Operation

Binary Count
Decimal Count

———— g —— .t

dl = count (s2 CODE s3) [iteration]

Overflow Class (Integer Subclass)
Illegal Decimal Digit

Semantics

The number of digits in the second operand
are counted according to the specified CODE
function. The count result replaces the
destination operand.

The suboperation code (third operand) deter-
mines the function to be performed as follows:



Bit Value ' 'Bit Position

1 | 0
Count Count
0 Non Zero 0
Digits Digits
00
Count Sign
01
Count Contiguous Leading 1 and 2
10
Count Contiguous Trailing
11
" Count All
Include | Exclude
Sign | Sign 3
Digit Digit

Count Suboperation Code

For the sign digit plus (+) is considred to
have the value 0 and negative (-) is con-
sidered to have the value 1.



GENERATE

Syntax

dl = generate (s2 COUNT s3 [DISP s4]) [iteration]

—— > s s e s e G S

Program Interrupts

Logical Truncation
Illegal Generate Specification
Illegal Displacement

Semantics

The suboperation operand is specified by the
second address, the bit-count operand is. speci- .
fied by the third address, and the ootional dis-
placement operand is specified by the fourth
address.

The suboperation operand indicates that trailing
or leading bits in the destination operand are
to be set to 0 or 1 according to the following

function:
Blt Pos1t10n
( 1 0
Leading O's ‘ 0
, Bitr Value
Trailing 1's , i

Generate Suboperation Codes

The bit count operand is a positive blnary
integer which specifies the number of contigu-
ous bits to be modified. The optional displace-
ment operand permits modification of contiguous
bits beginning with a bit position displaced
from leadlng or trailing according to the value



GENERATE (Cont'd)

of the operand. The displacement operand is

a positive binary integer with a maximum value
equal to 1 less than the number of bits in the
destination operand. The bit count plus the
displacement value cannot specify a bit posi-
tion outside the destination operand.

For a leading displacement, the displacement
operand specifies the initial bit position to

be modified. For a trailing displacement, the
displacement operand is subtracted from the

bit length of the destination operand to specify
the initial bit position.- '



REVERSE

Syntax

dl = reverse (s2) [iteration]

- — —————— S o——

Program Interrupts

Logical Truncation

Semantics

The contents of the byte string specified by

the second address are reversed bit for bit
between leading bit positions and trailing

bit positions. The result is stored into the
‘destination operand. If the destination operand’
is shorter than the source operand, trailing
bytes of the result are truncated. If the
destination operand is longer than the source
operand, the result is extended with trailing 0's.



COPY

Syntax

dl = copy (s2 [DISP s3] [MASK s4]) [iteration]

Program Interrupts

Logical Truncation
Illegal Displacement

Semantics

The operand specified by the second address =
replaces the destination operand. The optional
‘displacement operand 1is specified by the
third address, the optional mask is
specified by the fourth address. The
operand specified by the second address replaces
the destination operand. If the length of the
destination operand is greater than the length
of the source operand, the trailing bytes of the
destination operand are not affected.

If the optional mask is specified by.the fourth
address, bits of the source operand are copied
into the destination operand only where the
corresponding bit position of the mask is 1.

The other bits of the destination operand are
not affected. The mask is aligned with the
leading bit position of the destination operand.

The displacement operand is a binary integer.

Its maximum absolute value for a positive dis-
placement is 1 less than the number of bits in

the destination operand, and for a negative dis-
placement is 1 less than the number of bits in

the source operand. It causes the source operand
to be aligned with the destination operand accord-
ing to the following table:



COPY

(Cont'd)

placed source operand is copied into t

Displacement Bit ’ Bit
Operand Sian Position Position
‘negative S(da) ‘aligned with D (0)
positive 'S (0) aligned with D(3d)

where: S = source operand

D = destination operand

d = absolute value of the displace-~-
ment operand.

" The bits of the source operand thus aligned
a

are copiled into the destination oper
Bit positions of the destination ops
not aligned with source operand bit
not affected.

When both the mask and the dlob?ace,e 1t
operand are specified, the mask is aligned
with the destination operand, and the dis
r«

destination only where the correspondi
bit position of the mask is 1.



CONVERT

Syntax

dl = convert (s2 CODE s3) [ADJUST(s4 [,s5]) [iteration]

Program Interrupts

Overflow Class

Truncation Class

Fixed Point Overflow Class
Exponent Underflow Class
Illegal Decimal Digit

Semantics

The second operand is converted according to the
suboperation operand specified by the third address.

The result replaces the destination operand.

The suboperation operand is 1 byte and represents two
4-bit codes. The leading 4 bits designate the source
operand data type, and the trailing 4 bits designate
the destination operand data type. The 4-bit codes

are interpréted as shown in Table 4.1 Data Type Codes.
If either of the 4-bit codes is one of the null values,
no action is taken and the destination operand is

unchanged.

The conversion occurs in up to 6 steps:

Source acguisition
Mode conversion
Sign conversion
Base conversion
Scale conversion
Destination storage
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Data Type Code Data Type

o Real Float Decimal
1 Real Float Binary
2 Real Fixed Decimal
3 Real Fixed Binary
4 Complex Float Decimal
5 ‘Complex Float Binary
6 Complex Fixed Decimal
7 Complex Fixed Binary
8 Integer Decimal
9 Integer Binary
10 . Magnitude
11 .iAddress
12 Logical
13 Null
14 » Null
15 Null

Table 4.1 Data Type Codes

Source acquisition and destinat ion storage always occur
and are the first-and last steps, respectively. -The 4
]

remaining intermediate steps may or-may not occur, and

are variously ordered as shown'in Table 4.2 Intermediate

Conversion Steps.

The intermediate steps are composed of the following

functions:



Mode Conversions

This step deals with the real-complex conversions.
COMPLEX to REAL
Interrupts: none.

Method: Ignore imaginary part.

REAL to COMPLEX
Interrupts: ncne.

Method: Supply 0 as imaginary part.

Sign Conversions

This step deals with thé magnitude—integer conversions.
MAGNITUDE to BINARY INTEGER
Interrupts: Binary Integer Overflow
‘Method: The gource“is interpfeted as 2's complement
binary integer and converted to sign/magnitude binary
integer. 1If the source is a.high—order 1 followed
by 127 zeros, the Binary Integer Overflow interrupt
condition oécurs. If the interrupt is not bé;ng

accepted, the function continues with the result

the same as the source.
3

BINARY INTEGER to MAGNITUDE

Interrupts: none.

Method: The signed source is converted to a 2's
complement binary integer thch is used as the mag-

nitude result.
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Base Conversions

This step deals with the binary-decimal radix conversions.
‘These functions are of the form: target base/constant

scale.

BINARY INTEGER to DECIMAL INTEGER

Interrupts: Decimal Integer Overflow

Method: Integer conversion performed from low-order
end. If the result overflows 31 decimal digits, the

Decimal Integer Overflow interrupt condition occurs.

DECIMAL INTEGER to BINARY INTEGER
Interrupts: none.
Method: 1Integer conversion performed from low-order

end.

BINARY FLOAT to DECIMAI FLOAT
DECIMAL FLOAT to BINARY FLOAT

-

Interrupts: ~ none.

Method: Internal floating-point conversion is done.

Scale Convérsions

This step deals with the floating-integer conversiocns.

These functicas are of the form: target scale/constant
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base. The fixed-float distinction is relevant only to

the destination access sequence.

FLOAT DECIMAL to INTEGER DECIMAL
FLOAT BINARY to INTEGER BINARY

Interrupts: Decimal. Integer Overflow
Binary Integer Overflow

Method: The source is scaled appropriately. Digits
corresponding to the fraction part, if any, are
ignored and no interrupt occurs. If there are digits
corresponding to the integer paft beyond 31 decimal
or 127 binary digits, the non-critical Decimal or

Binary Integer Overflow interrupt conditions occur.

INTEGER DECIMAL to FLOAT DECIMAL

INTEGER BINARY to FLOAT BINARY

Interrupts: none.

Method: The source is scaled so that there are no
high-order zeros. Low-order digits beyond 116 bits

are lost.



S6-¥

N
‘\\iource
LY

Integer Integer Real Real " Comp lex Comp | ex Conversion
Bit Modulo Decimal Binary Decimal Binary Decimal Binary Step
Yostinatios |
Bit - - - - - ~ - -
- real real space
bin/int bin/flo bin/flo radix
- _ int/bin int/bin int/bin int/bin scale
Address mag mag mag mag mag mag sign
real real space
int - ) sign
Integer _ i int/dec int/bin int/dec int/bin scale
Decimal - dec/int dec/int dec/int : dec/int radix
!
real real space
int sign
Integer - bin/int - bin/flo _bin/flo radix
Sinary int/bin int/bin: int/bin int/bin scale
. real real space
int sign
Real - flo/bin flo/dec flo/bin - ) scale
Decimal dec/flo dec/flo dec/flo dec/flo radix
o real real space
int, ‘ ) alan
Real - : bin/int ' bin/flo = bin/flo radix
Binary flo/bin ‘flo/bin flo/bin scale
int . , sign
flo/bin flo/dec flo/déc ' scale
Comp | ex - dec/flo ~ dec/flo - dec/flo radix
Decimal comp comp comp comp comp ' space
int sign
- bin/int . bin/flo bin/flo _ radix
Comp lex flo/bin . flo/dec flo/bin scale
Binary comp comp comp comp comp SDACH .

Performed in the order written reading from top to bottom.

TABLE 4.2 INTERMEDIATE CONVERSION STEPS




LIST OPERATIONS

List operations provide for the manipulation of stack, queue,
and ring list structures. The three types of list structures
are classified by the manner in which elements are added to

or removed from the list.:

Stack structures permit addition or deletion only from the

top of the structure.

Queue structures permit addition and. deletion from the top

of the structure, and addition to the bottom of the structure.

Ring structures permit addition and deletion from arbitrary

points within the structure.

Each list structure is embedded in a list domain which con-

sists of one or more list structures, one of which, the free

element stack, contains all elements in the list domain not

assigned to other list structures.
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i Figure 4. List Structures



I.ist Domain

A iist domain consists of two areas of contiguous virtual
ﬁemory. One is a set of equal length data fields and the
othér a set of corresponding pointers, also of equal length.
An element of a list doﬁain is identified by its

number and consists of a data field together with pointer

occupying the corresponding position within the pointer area.

A list domain contains one or more list structures, which

need not be of the same type.
Linkage --

In a stack structure, the pointer field of an elemént con-
tains the element number of the element that was added to
the stack prior to the addition of the given element. The
pointer field of the first element that was added to the
stack contains 0O« |

[

In a queue structure, the pointer field of an element con-
tains the elemen?npqmber of the elemeﬁt thaF'ygsladded ﬁo
the bottom of the que&e after tﬁe q}ven‘element. The
pointer field of the last or bottomAelemenﬁ of a queue

contains 0. Note that queue pointers are identical to

stack pointers.
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In a ring structure, the pointer field of an element con-
tains a value that is the ‘exclusive or' of the element
numbers of the elements before and after the given ring

element.
Free Element Stack -

The elements within a’lis; doﬁain that are not linked to
fanothér list structure are on the free element stack. When an
element is added to a list, it is unlinked from the free
element stack and linked to éhé list. Similarly, elements
removed from the list are unlinked from the list and linked
to the free element stack. All lists within the same list
domain share the same free element stack. Because the
pointer field of an element is used for linkage, the

elements of any list, including the free .element stack,

need not occupy contiguous memory locations.

-

The top of the free element stack is denoted by the next

free element number pointer. The pointer field of each

element in the free element stack contains the element

. i 7
number of another unused element, and the pointer field
of the last available element contains a 0. When the free

element stack is empty, the next free element number has

the value O.



" List Domain and List Control Block

Each list instruction specifies5two operands. The first
operand addresses a list control block which contains
pointers to elements of its associated list structure in
addition to the address of the list domain control block
to which it belongs. The second operand is a suboperation
code which specifies one or more pointers of the list
control block which are required to PUSH an element onto,
PULL an element from,.or STEP a pointer through the list

structure.

List Control Block -=

The list control block consists of 4 to 6 four byte fields

depending upon the type of list structure; these are a.
current data index, a list domain.control block address,
and 2 to 4 pointérs for addition or removal of elements

of the structuré. The list control block differs }or each
of the three kinds of structures in that 2 pointers are
required for a sp§pg,;3 for a queue, aﬁd‘@‘ﬁq;‘a_ring

structure.
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Figqure 4. List Control Block Formats

The current data index is the effective address of the data
field of the current element being referenced by the list

control block. The current element is the'one which was

-
-

adjusted by the most recent list operation.

The list domain control block address specifies the effec-

tive address of the-‘list domain control -block:.

>

A list type code occupies the 2 trailing bits of each

rd e

pointer and identify the list type. It ranges in value’
from 1 through 3 to indicate a stack, queue, or ring,

respectively.
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The list control block pointers contain element numbers
of elements within the list structure, or are zero if the

list is empty. The number of pointers required in the

-

' rlist control block and their functions depend on the type

of list structure being used:

A stack control block consists of a current data
index, a list domain control block address, and a
push/pull pointer (pl) and step pointer (p2) with
list type codes equal to 1. The push/pull pointer
contains the element number of the element which is
at the top of the stack. The step pointer is
utilized by the STEP instructicn for data searches.

A queue control block consists of a current data
index, a list domain control block address, and a
pull pointer (pl), step pointer (p2) and push pointer
(p3) with list type codes equal to 2. The pull
pointer contains the element number of the element
which is at the top of the gueue, and the push pointer
contains the element number of the element which is

at the bottom of the gqueue. The step pointer is
utilized by the STEP instruction for data searches.

A ring control block consists of a current data 1ndexh“_
a list domain control block address, and 2 station-1
pointers (pl and p2) and 2 station-2 pointers (p3 and
p4) with list type codes equal to 3.

The first pointer of each station (pl or p3) specifies
element number of the element before the station. The
second pointer. (p2 or p4) specifies the element number
of the element after the station. Any operation may
be performed using either of the stations. When both
stations are affected by the addition or deletion of
an element, both stations are automatically adjusted
irrespective of which statioh was specified by the
PUSH or PULL instruction.

List Domain Control Block --

The list domain control block occupies 16 contiguous bytes

and contains an element number lencth code, a data field

{ 14
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length, a pointer field base address, a data field base

address, and the next free element number.

4 bytes >

Element
Size Data length
Code .
SNRC Pointer Field:

Base Address

16 bytes

SNRC Data Field

Base Address
‘0! Next Free

Element Number

The first 4 bytes of the-list domain control block contain
the length of the data fields and a size code for the

' éointer fields. The first 30 bits contain a binary magni-
tude number that specifies the data length and the remain-
ing 2 bits are the pointer size code. This.code has'values
0 through 3 which respectively specify pointer field
lengths of 1 td/4 bytes. These pointer lengths allow the

16_, .23_ 30_

maximum element,numﬁer to be Zgl, 2 1, 2 1, and 2 1,

respectively. Note that in 4-byte pbinter fields, the

re 4 3 . P ]

2 trailing bits are ignored.

The second 4 bytes of thé,listrdbmainlcontrol block con-
tain the base address of the get of pointers. The next
4 bytes are the base address of the set of aata fields.
Both of these base addresses have the format of an effec-

tive address.
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The trailing 4 bytes of the list domain control block con-
tain the next free element number which is the number of
the next available element in the free element stack. The

2 trailing bits are always ignored.

Operation Codes

There are 3 list operations: PUSH, PULL, and STEP.

The PUSH operation adds elements and the PULL operation
removes elements from a list. The STEP operation adjusts
a temporary pointer associated with either a stack or a

queue and, thus, allows the list to be searched without

disturbing the top or bottom pointer. When the STEP

operation is performed on a ring, a station is moved for-
ward (toward the direction of the element after the station)
or backward (toward the direction of the elément befére

the station).
Suboperation Codes --

The second operand ;f a list instruction‘specifies a sub-
operation codg.‘qﬁﬁefsubOPeration code ‘indicates whether
a stack, queue, or ring is to be ﬁénipulated, and when
necessary also specifies the ring étaﬁiondto be used in
the operation. Following is a list of the functions spe-
cified by the suboperation ope;and according to the list

operation being performed:
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List Operation

PULL

STEP

PUSH
Syntax:

Program Interrupts:

Semantics:

Suboperation Function

Push on top of stack
Push on bottom of queue
Push on top of queue
Push before station-1
Push after station-1
Push before station-2
Push after station-2

Pull from top of stack
Pull from top of queue
Pull before station-1
Pull after station-1
Pull before station-2
Pull after station-2

Step a stack
Step a queue
Step station-1 forward
Step station-1 backward
Step station-2 forward
Step station-2 backward

PUSH dl CODE s2

Free Element Stack Empty
Illegal List Control Block Format
Unassigned Suboperation -

A list control block is specified by
the first address. The next free
element in the list domain specified

by the list control block is added
to the list structure.

The next
free element.number is updated to
reference the next free element in
the free element..stack.

The element data index is set to the
effective address of the data field
of the element just added to the list.
The list control block pointers are
affected in the following manner.

¢ Stacks
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The new element is added to the top
of the stack by storing the initial
contents of the push/pull pointer
into the pointer field of the new
element and by setting the push/pull
pointer to the element.number of the
new. element. '

If this is the first element to be
added to the stack, the pointer field
of the new element is set to 0 and
the step pointer is set to the ele-
ment number of the new element;
otherwise, the step pointer is un-
‘affected.
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¢ Queues
Push on bottom of queue --

The new element is added to the bottom
of the queue by setting the push
(bottom) pointer and the pointer field
of the element previously on the bottom
of the queue to the element number of
_the new element. The pointer field

of the new element is set to 0. If this
is the first element to be added to

the gueue, the pull (top) pointer,

the step, and the push (bottom) pointer
are set to the element number of the
new element; otherwise the pull and
step pointers are unaffected.

Push on'top of queue --

The new element is added to the top
.of the queue by storing the initial
contents of the pull (top) pointer
into the pointer field of the new
element and by setting the pull
pointer to the element number of the
new element. - -

If this is the first element to be
added to the gqueue, the pointer field
of the new element is set to 0, and
the step and push pointers are set to
the element number of the new element:
otherwise the step and push pointers
“are unaffected.

e Rings

The new element is added to the ring
before or after the station designated
by the suboperation operand. This is
accomplished by relinking the pointers
of the elements immediately before and
after the designated station to refer-
ence the new element. The pointer
field of the new element is set to
reference the ring elements which are
immediately before and after its posi-
tion in the ring.
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The specified station pointer is up-
dated to contain the element number
of the new element.

If this is the first element to be
added to the ring, both station-1
pointers and both station-2 pointers
are set to the element number of the
new .element. If station-l1 was egual

- to station-2 prior to the operation,
the pointers are modified so that when
the instruction completes execution,
both station pairs are still equal.
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PULL
Syntax: PULL dl CODE s2

Program Interrupts: Empty List
Illegal List Control Block Format
Illegal List Domain Control Block Format
Unassigned Suboperation

Semantics: The element specified by the designated.
1list control block pointer is removed
from the list structure and returned
to the free element stack. The next
free element is updated to reference
the removed element. The list control
block is specified by the first oper-
and and the second operand provides
suboperation code which designates the
appropriate -list control block pointer.

The element data index is set to the
effective address of the data field
of the element just removed from the
list.

The list control block pointers are
affected in the following manner:

® Stacks

The top element is removed from the
stack by setting the push/pull pointer

~to the element number of the element
which was previously the second from

“the top. If the step pointer was
equal to the push/pull pointer before
the operation, it is set egqual to the
new value of the push/pull pointer;

- otherwise it is unaffected.

When the last element is removed from
the stack, the push/pull and step
pointers are set to O.
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® Queues

The top element is removed from the
queue by setting the pull pointer to
the element number of the element
which was previously the second from
the top. If the step pointer was
equal to the pull pointer before the
operation, it is set equal to the new
-value of the pull pointer; otherwise
it is unaffected.

If the last element is being removed
from the queue, the pull, step, and
push pointers are set to 0; otherwise
the push pointer is unaffected.

e Rings

An element is removed from the ring
before or after the station designated
by the suboperation operand. This is
accomplished by relinking the pointers
of the elements immediately before and
after the removed element. The speci-
fied station pointer is set to the
element number of the element which
now occupies the position in the ring
of the removed element.

When the last element is removed from
the ring, all 4 pointers are _
set to O. :

If the specified station pointer was
‘equal to one of the pointers of the
other station prior to the operation,
both station pairs are egqual after the
instruction is executed.
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STEP
Syntax:

Program Interrupts:

Semantics:

STEP dl CODE s2

Empty List
Illegal List ontrol Block Format
End of List ’

The list control block pointer speci-
fied by the suboperation operand is

stepped to.the next element position.

The list control block is specified
by the first operand, and the subcper-
ation code is specified by the second
operand..

The effective address of the data
field of the element now referenced
by the designated list control block
pointer is stored into the element
data index.

The list control block pointers are
affected in the following manner:

! ] Stacks

The step pointer is moved one element
position toward the bottom of the stack.
This is accomplished by storing the
element number contained in the pointer
field of the element being referenced
by the step pointer into thestep
pointer. The push/pull pointer is not
affected. If the step pointer is

‘pointing to the bottom element in the

v

stack before the instruction is execu-
ted, an attempt to STEP causes the end

~of list interrupt.

-3 Queues

The step pointer is moved one element
position toward the bottom of the gueue.
This is accomplished by storing the
element number contained in the pointer
field of the element being referenced
by the step pointer into the step

~pointer. The push and pull pointers

"are uvnaffected.
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¢ Rings

The specified station is stepped in

the direction indicated by the suboper-
ation operand. The element numbers of
the elements before and after the new
position are placed into the first and
second pointers of the station, respec-
tively. The other station is not

- affected.

When a station is stepped in the for-
ward direction, it is moved toward
the element specified by the after
pointer. Similarly,. when a station

is stepped backward, it is stepped

in the direction of the element speci-
fied by the before pointer.
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CONTROL OPERATIONS

The control operations provide capabilities for uncondition-

‘al transfer, subprogram control, instruction analysis, and

miscellaneous system control functions.

Subprogram Control Block

The CALL, SYSTEM, and SUBSYSTEM instructions transfer con-
trol to a subprogram and store linkage information into a

subprogram control block. This control block is also

"required for the execution of the RESTORE and RETURN

instructions.

In addition, a subprogram control block is required for

argument addressing (see 3.7 Argumént Addressing). The
CALL, SYSTEM, and SUBSYSTEM instrucfions can optionally
specify the location of an érgument list and, if specified,
the location is{automatiéally stored into' the subprogram

control block.

.An argument list is a byte string containing a list of

addresses and, a count of the number of addresses in the
list. The called subprogram can access ﬁhe data speci-
fied by the addresses in the list through the use of

argument addressing.
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A subprogram control block consists of an argument index,
a link mode, an argument list address, a return address,
and a calling instruction address. ' Each field is defined

below.

Argument Index --

Thé 2-byte argumént'index field contains a binary magni-
tude integer that can specify an address in the argument
list. This field, which is used during argument addrés—
sing, is not modified during the execution of control

operations.

Link Mode --

The l-byte link mode field contains a mode value in the
 leading 2 bits and a use flag in the trailing bit. When
a CALL, SYSTEM, or SUBSYSTEM instruction is. executed,
the current value of the central processor mode is stored
.into the mode f;gld. The use bit is set during the
execution of a CALL, SYSTEM, or SUBéYSTEM instruétion‘and
is reset during the-execution of a RETURN or RESTORE

instruction.

Argument List Address --
The 5-byte argument list address field contains the address
of an argument list. When a CALL, SYSTEM, or SUBSYSTEM

instruction specifies the location of an argument list,
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a long direct address with a length code éf 2 is stored
into this field. The length code is provided so that a
célled subprogram can access the argﬁment count, in the
ieading 2 bytes of an argument list, without having to
modify the subprogram control block. When the calling

instruction does not.speéify an argument list, a null

address is stored into this field.

Calling Instruction Effective Address --

The 4-byte calling instruction address field contains
the effective address of the éalling instruction. This
address is automatically supplied when a CALL, SYSTEM,
or SUBSYSTEM instruc¢tion is executed. This field makes

possible to identify the calling program.

Return Effective'Address - --

The 4-byte return address field contains the effective
address of a retprn lodation. When a CALL, SYSTEM, or
SUBSYSTEM instruction specifies a return address, the
effective address is stored into this field. When the
calling inétructipntdpes noﬁ specify a‘rétufn,address,
the effective address of the next instruction after the
calling instruction is storedfintogthis field. The
return address field is used during the execution of a

RETURN or RESTORE instruction. .
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Service Call Operations

‘The service call instruction, SYSTEM and SUBSYSTEM, per-

t

mit a transfer of control to subprograms that can exe-
cute in a mode different than that of the calling pro-

gram.

The subprograms associated witﬂ the SYSTEM instruction
execute in either the service_mode (2) or the supervisor
mode (3) and residé in the system segment (3 or 4).
Those associated with the SUBSYSTEM instruction execute
in subsystem mode (l) and reside inAthe subsystem seg-

ment (1).

. /
Associated with each kind of service call instruction is

a service entry"table. Each entry in the table specifies
the minimum execution mode and the location.of a sub-
program. A service call transfers control to one of the

subprograms by specifying an entry in the table.

When a service call instruction is executed, subprogram
linkage is,automatically stored into a spbprogram control

block."

Service Entry Table --
The SUBSYSTEM and SYSTEM instructions each require a

service entry table. The format of an entry in the table

is:
Transition :
i *Mode Address Value *'
2 30 bit length
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The address value specifies the location éf a subprogram.
When a SYSTEM cali is executed, the subprogram is assumed
to be in the system segment (3 or 4):; and when a SUBSYSTEM
vcall is executed, the subprogram is‘assumed to be in the

subsystem segment (1).

The transition mode specifies the execution modé

of a subprogram called by a service call instruction.

The location and length of a service entry table is
specified by registers in the processor state vector.
The effective address of the service entry table associ-

~ated with the SYSTEM call is specified by the system

service table base register. Similarly, the effective
address of the service entry table associated with the

SUBSYSTEM call is specified by the subsystem service

table base register.

A service table -is variable in length and‘entries.in the
table are numbered O through n - 1, where n is the total

number of entries in the table. The maximum entry number

(n-1) is Specifiéd'by’the system service limit recister
for a system service entry table or by the subsystem

service limit register for the SUBSYSTEM service entry.

table.
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A service limit register is 32 bits in.length: the lead-

ing 30 bits specify the maximum entry number, 1 bit is unused,
.and the trailing bit specifies whether there are any entries
in the associated service entry table. If the trailing

bit is set, the associatgd service entry table is in uée.

If the trailing bit is reset, the associated service entry

table is not in use.

Service Table Indeﬁ -

The first address of either the SYSTEM or SUBSYSTEM instruc-
tion spec1f1es an operand contalnlng the service table
index. This index specifies values of 0 through n-1, where
n is the maximum number of entries in the associated ser-

vice entry table.
Mode Transition --

When a service call is executed, the central processor
mode is changed"fo the transition mode specified by the
selected entry in tﬁe service entry table; however, if
the central processd; mode is greatef tﬁan the‘fransition
mode, it is npt'éﬁéhgéd by the instruétioﬁ: “fhé éailed
subprogram returns control to the ;allihg.program and
restores the mode of the calling pfogr;m b§ the execu--

tion of a RESTORE instruction. The RESTORE is a privi-

leged instruction.
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‘'Go To
Syntax: GO TO al

Semantics: Control is transferred to location
specified by the address.
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- Call
Syntax:

Semantics:

CALL a2 LINK d1[ARGUMENTS a3 RETURNY ad]

-~

The linkage information is stored into the
subpfogram control block specified by the
destination operand, and control is then
transferred to the subprogram entry address

specified by the second operand.

If the argument list address is épecified, a

‘long direct address containing a length code

of 2 is generated and stored into the
argument list address field. If the argu-
ment list address is not specified, a null

address is stored into this field.

If the return addreés is specified, the effec-
tive address of the return location is stored
in£o the return address field. If th; return
addreséiis not specified, the effective

address of the location foliqwipg the CALL

instruction is stored into this field.

The current central processor mode is stored

into the leading 2 bits of the link mode field

Vand the use bit ié set.
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Subszstem _
Syntax:

Program
Interrupts:

Semantics:

SUBSYSTEM sl [ARGUMENTS a2] [RETURN a3]

Illegal Subsystem Service Entry Table Index

Illegal Transition Mode

The service table index is specifiéd by the

first address, the argument list address is

specified by the second address, and the op-

tional return address is specified by the

.ﬁhird addreés.

Execution of this instruction causes control
to be transferred to a subprogram in the sub-
system segment (1) and changes the central pro-

cessor mode to subsystem mode (1).

The current central processor mode is stored
into the ieading 2 bits of the link mode field,

and the use bit is set.

The execution of this instruction requires
a service entry table. The service table
index is a binary magnitﬁde number in the
range Q through n-1 where n is the maximuﬁ

number of entries.in the table. The entry

Specified by the service table index is

accessed from the service entry table and the

4

following is performed:
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¢ The central processor mode is set equal
to the transition mode, unless it is
already higher. The transition mode

must be equal to subsystem mode (1).

¢ Control is transferred to the location

‘in the subsyétem segment (1) specified
by the leading 30 bits of the specified
entry. -

Associated with the execution of‘ﬁhis instruc-

tion is a subpfdgram control block which occu-

pies locations 1024 through 1039 (the first 16

locations of page 1) of the context segment

(2) . The argument list address, and the link

mode field of the subprogram control block are

affected by the execution of this instruction.

If the argument list address is specified, a

-
-

lohg direct address containing a lengﬁh code
of 2 i;igenerated and stored into the argument
list address field. If the argument list
address is not specified, a null address is

stored into this field.

4-122



System

Syntax:

Program
Interrupts:

Semantics:

SYSTEM sl [ARGUMENTS a2] [RETURN a3]

Illegal System Service Table Index

Illegal Transition Mode

The service table index is specified by the
first address, the optional argument list
address is specified by the second address,

and the optional return address is specified

by the third address.

Execution of this instruction causes control

to be transferred to a subprogram in the

system segment (3 or 4). The central pro-

cessor mode is changed to either the service

mode (2) or thé supervisor mode (3).

The current central processor mode it stored
into the leading 2 bits of the link mode field

and the use bit is set. . -

e Ce
%he execution of this. instruction requires

a service entry table. fhe service table
index is a binary magnitude number in the‘
range 0 through g—l where n is the maximum
number of entries in the table. The entry
spgcified by the service tablefiﬂdex entry is

accessed from the service entry table and the

following is performed:
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® The central processor méde is set equal
to the transition mode, unleés it is
already higher. ‘The transition mode
must be equal to either the service

mode (2) or supervisor mode (3).

e Control is transferred to the location
in the system segment (3 or 4) specified
by the leading 30 bits of the specified

entry.

Associated.with the execution of this instruc-
tion is a subprogram control block that occu-
pies lgcations 0 through 15 (the first 16
locations of the page 0) of the context
segment (2). The argument list address, the
return address, thé caliing instruction
address, and the link mode field of the sub-

program control block are affected by the

execution of this instruction.

}f'ﬁhé argument list address is specified, a
long direct address containing a length code
of 2 is generated and stored into the argu-
ment list address field. If the argument

list address is not specified, a null add-

ress is stored into_this field.
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If the return address is speeified, the
effective address of the return location is
stored into the return éddress field. If the
return address is not specified, the effec-
tive address of the location following the

SYSTEM instruction is stored into this field.
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Return

Syntax: RETURN LINK fg

Program None

Interrupts:

Semantics: A transfer of control occurs to the location

specified by the return effective address

field of the referenced subprogram control
block. The use bit in the referenced sub-
program control block is reset.
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Restore

Syntax:

Program
Interrupts:

Semantics:

RESTORE dl

Privileged Operation Code
Link Mode Greater than Central Processor Mode

The address specifies the location of a sub-
program control block. This instruction can
only be executed in a mode greater than user
mode (0). The mode of the central processor
is set to the value specified by the leading
2 bits of the link mode field of the sub-
program control block, and control is then
transferred to the return effective address

‘specified by the control block. The use

bit in the control block is reset.
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ANALYZE

Syntax:

Program Interrupts:

Semantics:

’ = T : 3
ANALYZE s3 CODE s2 RESULT dl [ASC s4] [MODE s5

Illegal Link Mode

The suboperation operand is specified by the
second address and its value determines the
operands that are specified by the other ad-
dresses. The suboperation operand specifies
the operation that is performed according to
the following table 4. Analyze Functions.

Calculate Element Data Index—-

A list control block is specified by the
first address and the pointer operand is
specified by the third address.

The pointer operand ranges from 0 through

3 and specifies respectively the pl through
p4 pointers of a list control block. The
effective address of the data field of the
element being referenced by the specified -
pointer is calculated, and the result is
stored into the element data index field of
the list control block.

Validate Segment Number Register Code in
Index and, Copy Index--

An index is specified by the third address
and an optional mode operand is specified
by the.fifth address.

. e

The segment number register code contained
in the index is examined to determine if
the value is legal -in the mode specified
by the mode operand. If the mode operand
is not present, the segment number regis-
ter code is validated using the current
access mode. ‘

If the segment number register code value

is legal, the index is copied into the
.destination operand.
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Function

Specified by |Length

Suboperation Code

Operand (LC1) . i i

calculate 0 pointer 10— ~- --
element number

data index :
validate SXNRC 3 index 0 ‘Null MODE*
and copy index ’
validate SNRC 3 instruction | © ASC* MODE*
and copy EA or address
validate SNRC 5 instruction | 0. ASC* MODE*
of EA and form Oor address

long direct

type address
validate SNRC 7 instruction 0 ASC* MODE*
and copy | or address

address
validate SNRC 7 subprogram G -— -

& copy argu- control -
ment address block

calculate 0-15 {instruction | 0 - -
instruction

length - -
éaiculate 0-15 {instruction 0 ASC -
instruction »

address dis- -

placement oy

calculate ‘0-15 instruction 0 ASC* -
address | or address

length ;

- Table 4.11 Analyze Functions

*Optional ,

EA=Effective Address
SNRC=Segment Number Register Code
ASC=Address Selection Code
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Validate Segment Number Register Code in
Effective Address and Copy Effective Ad-

dress --

An optional address selection code is spe-
cified by the fourth address, and an optional
mode operand is specified by the fifth address.
The address seleCtlon code is a binary mag-
nitude number, ranging in value from 0

through 15, that specifies 1 of the 16 ad-
dresses in an address string.

If the address selection code is specified,
the third address specifies the location of
the operation code in an instruction, and

the address selection code specifies an
address in the instruction address string.

If the address selection code is not specified,
the third address specifies the location of
the addresquualifier in an address.

The specified address is used to calculate
an effective address. The segment number
register code of the effective address is
examined to determine if the value is legal
in the mode spe01f1ed by the mode operand.
If the mode is not present, the segment .
number register code is validated using the
current access mode.

If the segment number reglster code is legal
the effective address is copled into the des-
tination operand .

Validate Segment Number Register Code in
Effective Address, Form a Long Direct Ad-
- dress --—

This operation is the same as that des-
cribed above for the suboperation value
equal to 2, except for the following:

A long direct address if formed using the
validated effective address and its as-
sociated length code. The formed

address 1is stored into the destination
operand.
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Validate Segment Number Register Code in
Address and Copy Address -- :

An optional address selection code is
specified by the fourth address, and an
optional mode operand is specified

by the fifth address. The address selec-
tion code is a binary magnitude number,
ranging in value from O through 15, that
specifies 1 of -16 addresses in an Address
string. : .- -

If the address selection code is specified
the third address specifies the location

of the operation code in an instruction

and the address selection code specifies

an address in the .instruction address string.
If the address selection code is not specified,
the third address specifies the location
of the address qualifier in an address.

The specified address is accessed. The
segment number register code contained in
the base address and the index address, if
present, are examined to determine if the
value is legal in the mode specified by

the mode operand. If the mode operand is
not present, the.segment number register
codes are valldated using the current access
mode.

If the segment number register code is
legal, the complete address is copied into
the destination operana If the address 1is
less than 8 bytes in length, the remaining
bytes-of the destlnatlon operand are fil-
led with 0's.

Validate‘Segment Number Register Code in
Argument Address and Copy Argument Address --

The third address specifies an dddress
within an argument list and must use
argument addressing. -

The segment number  register’code contained

in the indicated argument address is examined
to determine if the segment number register
code is legal in the mode specified by the
link mode in the subprogram control block.

If the ANALYZE instruction is executed in
mode 0, the link mode is assumed also to

be 0.
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If the segment number register code is
legal, the complete argument address is
copied into the destination operand.

If the address is less than 8 bytes long,
the remaining bytes of the destination
operand are filled with 0's.

-

Calculate Instruction—Length-——

The third address specifies the location
of the operation code c¢f an instruction.

The length in bytes of the instruction
byte string is calculated, and the binary
magnitude number replaces the destination
operand.

Calculate Instruction Address Displacement --

The location of an instruction is
specified by the third address, and an
address selection code is specified by

the fourth address. The address selection
code is a binary magnitude number, ranging
in value from 0 through 15, that specifies
1 of 16 addresses in an address string.

The number of bytes of displacement from
the leading byte of the instruction to

the leading byte of the address specified
by the address selection code is calculated.
The result, which is a binary magnitude
number, replaces the destlnatlon operand.

Calculate Address Length --

An optional Address Selection Code is
‘specified by the fourth address. The
Address Selection Code is a bindry mag-
nitude number, ranging in value from 0
through 15, that specifies 1 of the 16 ad-
dresses in an Address String.

If the Address selection code is specified,
the third address specifies the location
of the operation code in an instruction
and the address selection code specifies
an address in the instruction. If the
address selection code is not specified,
the third address specifies the location
«0of the address gqualifier in an address.

The length in bytes of the indicated ad-
dress is calculated. The result, which is
a binary magnitude number replaces the des-

‘tination operand.
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SET

SZﬂtex

SET d2 RESULT dl

Program Interrupts

Privileged Operation Code

Semantics

An interprocessor control flag, which is a
I—byte operand specified by the second address,

is set to the locked state (all 1's). The
previous contents of the flag are stored into
the destination operand specified by the first
address.

.Thls instruction can only be executed in modegs
2 and 3.

Execution of the SET instruction by a central
processor prevents accesses to the specified
interprocessor control flag by any other
processor ih'the system between the reading
of the flag and the setting of the flag.

By convention an interprocessor control flag
is in the locked state if any of the bits are
1's. It is in the unlocked state if all bits
are O's.
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Null

Syntax: NULL
Semantics: This instruction requires a null instruc-
tion format as shown in Figure 3.1.

Execution of this instruction causes con-
trol to be transferred to the next instruc-
tion in sequence.
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Pass

Syntax:

Semantics:

PASS sl, [s2] ,[s31 , [s4].[s51 . . .,[sl6]

The first address specifies the first source
operand. The second through sixteenth ad-
dresses specify optional source operands.

Execution of this instruction causes the
instruction location register to be incre-
mented by the number of bytes in the instruc-
tion string. Control is transferred to the
next instruction in sequence. '
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CONTROL

" Syntax
CONTROL ([dl1] [, s2]) CODE s3.[DISP s4] [MASK s5]

Program Interrupts

Privileged Operation Code

Semantics

The third operand is a suboperation code that specifies
a device internal to a central processor. The device
is set to the value of the source operand, which is
specified by the second address. The previous setting
of the device is stored into the destination operand,
which is specified by the first address. The fourth
and fifth addresses specify respectively optional dis-

placement and mask operands. .-
This instruction can be executed only in modes 2 and 3.

The destination and source.operands are both eptional.
If both are omitted, there is no action taken. If
only the destination is specified, the device is not
altered and its curreht-setting ié-stored into the
destination ‘Operand. When only the source operand

is presené, it specifies the new setting of the device .

and the previous setting is not saved., .

The displacement operand specifies alignment of the
byte string that contains the device setting with the
byte strings of the source and destination operands.
The displacement operand is a signed binary integer.
A-positive displacement specifies alignment of the

leading bit (bit position 0) of the source and desti-

nation operands with bit position n of the device byte
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string, where n is the absolute value of the dis-

placement. A negative displacement specifies align-
ment of bit position n of the source and destination
operands with the leading bit (bit position 0) of the

device byte string.

The mask operand specifies which bits in the device
byte string participate in the operation. The mask
operand is always aligned with the device byte string.
When the mask operand is present, bits in the device
byte string participate in the operation only if the

corresponding bit position in the mask operand is 1.

The devices that can be specified by the suboperation
code of a CONTROL instruction are the various proces-
sor state operands, the timers, and various diagnostic

~ devices.
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SELECT

. Syntax
SELECT ([dl] [, s2]) CODE s3

Program Interrupts

Privileged Operation Code

Semantics

The third operand is a suboperation code that speci-
fies a device external to a central processor and an
operation to be perfbrmed by the device. The source
operand specified by the second address is output to
the device and the destination operand receives input
from the device. The output and input are device-

" dependent status information. Both the source and
the destination operands are optional. If both are

omitted, no action is taken. -

This instruction can be executed only in modes 2 and 3.
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‘System Extended Operation

Syntax:

Program

Interrupts:

Semantics:

None

Tllegal system extended operation code.

This operation code requires the extended
instruction format as depicted in Figure
2.1 Instruction Formats. The system ex-
tended operation code specifies that the
following byte is an extended operation
code. The system extended operation code
can be utilized to specify 1 of 256 opera-
tionisin-ad&Aition to those included in the
standard GEMINI operation code set. The
system extended operation codes will be as-
signed by Computer Operations, Inc.
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Private Extended Operation

Syntax:

‘Program Interrupts:

Semantics:

None

Illegal Private Extended Operation Code

This operation code requires the
extended instruction format as depicted

‘in Figure 2.1 Instruction Formats. The

private extended operation code specifies
that the following byte is an extended
operation code. The private extended

- operation code can be utilized to specify

1 of 256 operations in addition to
those included in the standard GEMINI
operation code set.
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5.0 ITERATIVE EXECUTION

- Iterative execution allows an instruction to be accessed

once and executec repeatedly.

In addition, execution operand .indexes are automatically
incremented permitting the use of the iteration option for

array operations and searches.

All instructions except those in the control, list, and

select groups can be iteratively executed.

The iteration option is invoked by specifying a set of
iteration operands following the execution operands. The

" eXecution operands are those that can appear in the iﬁstruc-
tion when iteration is not specified. The iteration operands
include a count, which specifies the maximum number of times
the instruction is to be performed, and a set of optional

increments corresponding to the execution operands.

After each iteration the instruction may be interrupted.

"If an interrupt occurs, sufficient

iﬁformation is avéilable in the pfocessor state vectof-io
allow the iteration to be resumed after the interrupt is
serviced. If a comparison is being executed and the compar-

son is satisfied the iteration is terminated.



ITERATION SPECIFICATION

The iteration option includes an iteration count operand

and index increment operands. The iteration
count is the maximum number of times the instruction is to

be performed. The iteration count operand is assumed to

be a binary magnitude number and must be in the range of

32

0 to 2 1. An index increment operand specifies the in-

““erement valué for an index used in the calculation of the

effective address of an execution operand. It is assumed

to contain an address value.

The addresses used for the iteration option occupy the

trailing positions in the address string of the instruction.

The first position occupied by an iteration operénd

‘is the first address position available after the

execution operands. The maximum number of execution oper-
ands in an instruction is 5 and with a full complement of
iteration operands the maximum number of operands in an

instruction is 11.

The syntax of the iteration option is:

[,PERFORM S, INCREMENTS ([Sp;11.[Sp42]/[80+31: [Entals [Enes])]

where n = the first address position available
- after the required operands and other
optional operands have been specified
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S, = the address specifying the iteration
count operand. This operand is a
binary maggitude number in the range
of 0 to 2

Sp+l = addresses S, +1 through Sp+5 specify
- the index ihcrement operands for the
first through the fifth address 1in
the address string. These operands

have the format of an address operand
Each of these addresses is optional.

Following is an example>Qf the syntax of a computational

addition operation specifying the iteration option:

dl = s2 + s3 [,ADJUST(s4,[s5]1)][,PERFORM s6 INCREMENTS
([s2]1,[s8]1,[s21,18101.,[s111)]
where dl = the address of the destination operand-
- its associated index increment is speci~-
fied by s7.

s2 to s5 = the addresses of the second through fifth

- o source operands. The associated index
increments are specified by s8 through
sll, respectlvely.

s6 = the address of the iteration count operand.

An optiona} address can be omitted entirely from an address
string pro&ided that the address is not followed by a non-null
address; otherwise, the optionai address is specified by the
null addressing type. Thus, if the iteratibn option is not
desired, the s6 through sll addresses are completely omitted
from the address string. If both the adjustment option and
the iteration option are not desired, addresses s4 through

sll are omitted. If the iteration option is desired, but
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the adjustment option is not, the s4 and s5 addresses must

be specified by null addresses.

If any of the execution operands specify eiﬁher an align-
ment or displacement indexing calculation, the indexes

are incremented by the value speéified by the iﬁdex incre-~
ment operands. If an'operand is specified by either an
indirect or argument adaressing fype, the incrementation

is performed only on an index in the final address. A

discussion of the final address is in 3.6 Indirect Address-

ing and 3.7 Argument Addressing.

The incrementation is performed after each iteration.
Thus, the effective address of an operand is computed
using the index value generated during the previous

‘iteration.

If an increment value is not provided for an address.
specifying indexing, an increment of 0 is understood

and the index is not modified.
INITIALIZATION FOR ITERATIVE EXECUTION

When the iteration option is specified, the instruction
is accessed only once, and the information required for
the iterative execution is stored in the processor state
vector. When an iterative instruction is encountered,

the fdllowing operations are performed:



4 The perform state bit is set. This control specified
that an iterative instruction is being performed; the
bit remains set until the iteration terminates, when
it is automatically reset.

¢ The operation code is stored into the perform overation
code field. The instruction qualifier is stored into
the perform instruction gualifier field.

s For each instruction address, exclusive of the addresses
for the iteration operands, information describing
the final address used to specify the operand is stored.

For each final address of an execution operand, the address

qualifier is stored into one of the five perform address

qualifier fields. The other address information retained
depends on the type of addressing used to specify the

operand.

If null addressing is specified, the address qualifier is

the only information retained.

If immediate addressing is specified, the immediate value

is also stored into the perform immediate value field. TIf -

the address is not indexed, the final effective address

is calculated and stored into the perform effective

address field.

If the final address is indexed, the information necessary
to perform an effective address calculation after each

iteration is contained in the processor state vector:
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s The index address is stored into the perform index-
address field.

¢ The initial value of the index is stored into the
- perform index wvalue field. This field is updated
during each iteration by the value of the index
increment.

*¢ The index increment operand is stored into the
perform index increment field.

¢ The effective address specifying the operand
during the first iteration is calculated and -
stored into the perform effective address field.
This field is updated during each iteration and,
thus, always specifies the current effective
address of the operand.

. ® The effzctive zddress increment field is initialized.
This field specifies the increment that is to be
added to the effective address field after each iter-
ation. If displacement indexing is used, the effective
address increment is equal to the index increment
operand. If alignment indexing is used, the effective
address increment is equal to the product of the index

increment- operand multiplied by the length code.

Each index is maintained and incremented in the processor

state vector, and when the iteration terminates, the incre-

mented index is stored into memory.
MECHANISM OF ITERATIVE EXECUTION

When an iterative instruction is executed, the iteration
controls in the processor state vector = . are initialized -
and the iteration count value is examined. If the iteration
count is equal to 0, the instruction is not executed, the

iteration is terminated, and control is transferred to the
next instruction in sequence. When an iteration is termi-

nated, the perform state bit is reset and the indexes in the
processor state vector are stored into memory at the cor-

responding index address.
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If the iteration count is greater than 0, the iterative
execution is begun. During each iteration, any result is

stored into the specified destination operand. However,
indexes are maintained and incremented in the processor

state vector until the iteration is terminated.

During each iteration, the following is performed:

e The instruction is executed.

¢ If a comparison instruction is being executed and
the comparison is satisfied, the iteration is
terminated. The effective address specified by
the control transfer location is stored into the
instruction location register.

¢ If any interrupt requires servicing, the iteration
is interrupted. The information required to resume
the iteration is contained in the processor state
vector. The instruction location register specifies
the effective address of the iterative instruction,
the perform state bit remains set, and the indexes
remain in the processor state vector.

¢ If neither a comparison is satisfied nor an inter-—

rupt occurs, the indexes and the effective addresses
are incremented.

¢ The perform iteration count is decremented by 1
and, if the decremented count is zero, the iter-
ation terminates. The effective address of the
next instruction in sequence is stored into the
instruction location register. If the decremented
count is greater than zero, the above sequence is
repeated. 4



If an iteration terminates becauée a comparison condition
was satisfied, the indexes specify the operands that caused
the comparison to be met. Similarly, if a program inter-
rupt condition resulted from an execution, the indexes spe-
cify the operands involved in the current iteration. The
indexes are inrcremented prior to'thc test of thé iteration
count for termination. For this reason, if an itération
terminates because the iteratioh count was decremented to
zero, the indexes have been incremented beyond the operands

involved in the final iteration.
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6.0 EXECUTION BREAKPOINTS

.Breakpoint controls allow the user to specify conditions

for which program interrupts are to be generated. Break-
point controls are located in the instruction qualifier
and the processor state vector.- The controls in the
instruction qualifier are related only to the particular
instruction in which they ;ppéar; Those in the processor
state vector are related to all iﬁétrﬁctibns;. fﬁrfﬁer;._
certain processor state vectdrlcontrols irust be set in

order for the instruction qualifier controls to be - -

‘interpreted.

INSTRUCTION QUALIFIER BREAKPOINT CONTROLS

The breakpoint controls located in the instruction quali-
fier permit control of the execution of an individual in-

struction. These controls serve the folloWing purposes:

e To prevent the instruction from being executed. The
instruction is bypassed and control is transferred to
the next instruction in sequence.

e To define the instruction as the end of a statement.
(A statement is defined as an instruction or series
of instructions).

e To cause an interrupt either before or after the
execution of the instruction.



The instruction qualifier breakpoint controls are inter-
preted only when the corresponding master breakpoint com -
trols in the processor state vector are set. The proces-

sor state vector master breakpoint are explained in 6.2.5

Format of Master Controls. The instruction qualifier
breakpoint controls function in conjunction with a break-
point control mode master control in the processor state
vector, and are effective only when the breakpoint con-
trol mode is greater than or equal to the central pro-

cessor mode.

The format of the instruction qualifier is as follows:

-

Instruction Qualifier | Address Count | P | S| A | B |

Format 4 | 1 1 1 1

B-Bit (Before) --

If the B-bit is set in the instruction qualifier, and the

enable A-bit and B-bit in instruction qualifier control
(Bll-bit) is set in the processor state vector, the break

before instruction interrupt condition occurs before the

execution of the instruction.

A-Bit (after)-- _
If the A-bit is set in the instruction qualifier and the

enable A-bit and B-bit in instruction cqualifier control

(Bll-bit) is set in the processor state vector, the break

after instruction interrupt condition occurs after the

execution of the instruction.
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S-Bit (Statement End) --
If the S-bit is set in the instruction qualifier, the
instruction is regarcded as the end of a statement. The

end of statement control (Bl2-bit), the instruction count

control (B13-bit), and the statement count control (Bl4-bit)

in the processor state vector determine the interpretation

of the S-bit, as described in section 6.2.1 Statement Counter

P-Bit (Pass) --
If the P-bit is set in the instruction qualifier and the

enable P-bit in instruction qualifier control (B15-bit)

is set in the processor state vector, the instruction is
not executed and control is transferred to the next instruc-

tion in sequence.

Address Count --
The 4-bit address count field specifies the number of
addresses in the address string of the instruction and is

not part of the breakpoint controls.
PROCESSOR STATE VECTOR BREAKPOINT CONTROLS

Controls located in the brocessor state vector permit
interrupts to be generated:
¢ After each instruction has - been executed.

¢ Before or after an instruction has been executed
that contains an address within specified bounds.

@ Before or after an instruction has been executed
that contains a specified operation code or extended
Operation code.

¢ After a specified number of instructions have been
executed.
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e After a specified number of statements have been
executed

e After the completlon of the current statement
execution
In addition, the processor state vector contains controls
that:
e Enable the breakp01nt controls in the instruction
qualifier
© Specify a breakpoint control mode
® Enable a location counter that specifies the ef-
fective address of the previously executed instruc-
tion
The processor state vector controls consist of a statement
counter, operation code masks, address bounds registers
and controls, a prior instruction location register, and
the master breakpoint control bits numbered B0 through’
B16. All breakpoint controls, except the address break-
point céntrols are effective only when the breakpoint
control mode (indicated by masﬁer éontrol bits B2 and B3)

is greater than or equal to the central processor mode.



6.2.1

Statement Coﬁnter

A statement is a series of one or.more instructions, the
last of which is indicated by having the S-bit set in the
instruction gualifier. If the instruction count control
(B14-bit) is set, however, every instruction is considered
the end of a statement régardless of the setting of the
S-bit in the instruction qualifier. If the end of state—

ment control (B12-bit) is set, the end of statement

interrupt condition occurs after execwtion of an instruc-
tion which is the end of a statement. If the statement

count control (B14—bit)‘is set; the statement counter is
decremented by 1 after execution of am.iﬁstructiOn which

-

is the end of a statement.

The statement counter is a 4-byte register in the processor

state vector. It can be given any 32-bit binary maghitude
value. When the statement count control (Bl14-bit) is set,
the statement counter is decremented after execution of
every end of statement instruction. If decrementing the
statement counter results in a 0 result, the statement

counter equals 0 interrupt camadition eccurs. By placing

the appropriate initial value into the statement counter
and setting the statement count contfol (B14-bit), it is
possible to interrupt execution of a program after a given
number of statements has been executed, or after a given
number of instructions if the instruction count control

(B13-bit) is also set.



Operation Code Masks

Three 256-bit operation code masks are associated, respectively,

‘with standard operation codes, system extended operation codes,

and private extended operation codes. An operation code

is selected fqﬁ_preekpointing by set;ing the bit,POSitiQ? in

the mask that corresponds to the &alue assigned ﬁo the opera-
tion code. Thus, each mask can simultaneously select from 1

to 256 unique operations.

The B4 and B5 control bits determine whether a breakpoint

occurs before or after the execution of an instruction with

a standard operation code selected in the operation code mask.

If both the B4 and B5 bits are reset, the standard operation code
mask is ignored. Similarly, the B6 and B7 bits control
the private extended operation code mask, and the B8 and

B9 bits control the system extended operation code mask.

Address Bounds Registers and Controls

Eight address bounds registers detect memory references

that are within the bounds of from 1 to 8 pairs of address
boundaries. Any number of the registers can be active
simultaneously. Each 64-bit register has the following._

format:



4 S
ADDRESS M Upper N Lower
BOUNDS A Address R Address
REGISTER C Limit cC Limit

2 30 2 30

The address bounds are specified by long (30-bit)
address values that specify the upper and lower address
limits. The segment number register code (SNRC) is dis -

cussed in 2.2.2. Formation of a Complete Virtual Address.

The memory access code (MAC) specifies the type of memory

access that is to be detected and has the following

values:
MAC = 0 Compare on instruction access only
MAC =1 Compare on operand write access only
MAC = 2 Compare on any operand access
MAC = 3 ‘Compare on any access

The 16-bit address bounds register controls select a

register and determine if the address breakpoint will
occur before or after the execution of the instruction
containing a specified address. The bits in the controls
are paired, and each pair corresponds to one of the 8
address bounds registers. The leading bit ef each pair
corresponds to a breakpoint before and the trailing bit
corresponds to a breakpoint after the specified address
is detected. If both bits are resef, the contents of the

associated address bounds register are ignored.

The address bounds register controls are enabled by the Bl
master control.bit. If this bit is reset, the address bounds
register controls, and hence the address bounds registers,

are considered inactive.



6.2.4

6.2.5

Prior Instruction Location Register

The prior instruction location register is a 32-bit register

enabled by the BO master control bit. It contains the effec-
tive address of the instruction executed before the current
instruction. The effective address of the current instruc-

tion is always maintained in the instruction location register.

Format of Master Controls

The master breakpoints controls are numbered BO through Bl6

and have the format shown in Figure 6.1.

Enable
Extended Operation Breakpoint| Address Enable Prior
Operation Code Code Control |Bounds Instruction
Breakpoints Breakpoints. Mode Register Register
B9l B8! B7 IB6 B5 B4 B3 B2 Bl BO
Perform Enggég Statement Instruction
Breakpoint - Breakpoints | Breakpoints
B16 B15 B14|B13| B12 | B11 | B1O

Figure 6.1 Format of Master Breakpoint Controls
Enable Prior Instruction Location Register Bit —-
BO (enable prior instruction location register). If this

bit is set, the location of the previously executed instruc-

tion is maintained .in the prior instruction location register.




Enable Address Bounds Register Controls Bit --

Bl (enable address bounds register controls). If this bit

- is set, the address bounds register controls are enabled.
Breakpoint Control Mode (2 bits) --

B2 and B3 (breakpoint control mode). All breakpoint controls,
except the address bounds register controls, are effective
only if the breakpoint control mode is greater than or equal

to the central processor mode.
Operation Code Breakpoints (2 bits) --

B4 (breakpoint before operation code). If this bit is set
and an operation code specified by the operation code mask

is detected, the break before on operation code interrupt

condition occurs before the execution of the instruction

that contains the specified operation code.

B5 (breakpoint after operation code). If this bit is set
and an operation code specified by the operation code mask

is detected, the break after on operation code interrupt

condition occurs after the execution of the instruction

that contains the specified operation code.
Extended Operation Code Breakpoints (4 bits) --

B6 (breakpoint before sYstem extended operation code). If

this bit is set and a system extended operation code specified



by the system extended operation code mask is detected,

the break before on system extended operation code interrupt

. condition occurs before the execution of the instruction

that contains the specified operation code.

B7 (breakpoint after system extended operation code). If
this bit is set and a systazm extended operation code speci-
fied by the system extended operation code mask is detected,

the break after on svstem extended operation code interrupt

condition occurs after the execution of the instruction that

contains the specified operation code.

B8 (breakpoint before private extended operation code). If
this bit is set and a private extended operation code speci-
fied by the private extended operation code mask is detected,

the break before on private extended operation code inter-

rupt condition occurs before the execution of the instruc-

tion that contains the specified operation code.

B9 (breakpoint after private extended operation code). 1If
this bit is set and a private extended operation code speci-
fied by the private extended operation code mask is detected,

the break after on private extended overation code interrupt

condition occurs after the execution of the instruction that

contains the specified operation code.



Instruction Breakpoints (2 bits) --

B1l0 (breakpoint after instruction). If this bit is set,

the break after instruction interrupt condition occurs after

the execution of each instruction regardless of the state

of the A-bit in the instruction qualifier.

Bil (enable A-bit and B-bit in instruction qualifier). If
this bit is set, the A-bit and the B-bit in the instruction

qualifier are interpreted.
Statement Breakpoints (3 bits) --

Bl2 (end of statement control). If this bit is set, the

end of statement interrupt condition occurs after the execu-

tion of an instruction that has the S-bit set in the instruc-

tion qualifier.

B13 (instruction count control). If this bit is set, each

instruction is regarded as an end of stétement._‘



B14 (statement countrcontrol). If this bit is set, the
statement counter is decremented after the execution of
any instruction that has the S-bit set in the instruction
-qualifier, or if B13 is set after every instruction. If
the statement counter equals 0 after .the execution of the

instruction, the statement counter ecquals zero interrupt

condition occurs. If the statement counter is nonzero,

the instruction in sequencé is executed.

Enable Pass Bit (1 bit) --

Bi5 (enable P-bit in instruction qualifier). . If this bit
‘is set, any instruction that has the P-bit set in the
instruction qualifier is not executed, and control is

passed to the next instruction in sequence.

Perform Breakpoint Control (1 bit) --
B16 (perform breakpoint control). If this bit is set, the

break after perform iteration interrupt condition occurs

after each iteration of an iterative instruction.
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7.0 INTERRUPTS

-Interrupts provide the means for the system to respond to

SPecific conditions by causing an interruption of the cur-
rently executing program and a transfer of control to an
interrupt service program. The automatic sequenée per formed

by the interrupt system in acknowledging a condition and

activating a service program is termed processing an inter-
rupt. Simultaneously occurring interrupts are serviced one

at a time according to a fixed priority scheme. The sequence

" of actions taken by the service program that is activated

is termed servicing an interrupt.

A central processor controls the processing of interrupts
by means of a hierarchy of programmable control elements in
the interrupt system. These include accept, hold, dispatch,

and lockout controls.

Figure 7.1 shows the organization of the interrupt system
in terms of the controls affecting the processing of an

interrupt.
INTERRUPT PRIORITY GROUPS

An interrupt is classified as either shared or private and

has an assigned priority level. Private interrupts are the

result of conditions internal to a central processor or

caused directly by the activity of a central processor.



PRIVATE INTERRUPTS SHARED INTERRUPTS

Internal

Interrupt
Condition

Interna

Interrupt
Condition

Accept
Control

Accept
Control

I

Private Group Hold
!

|
{ 1

Private Group Dispatch

.Shared Group Hold

Shared
Group Dispatch

Private Lockout Shared Lockout—:

Determine Priority
and
Perform Activation

Figure 7.1 Organization of Interrupt Controls



7.2

7.2.1

0 7.2.2

Private interrupts are processed only by the central processor

that caused them. Shared interruvts result from the occurr-

-ence of asynchronous conditions and, in a dual central

processor system, may be processed by either central procéssor.

The priority level of a particular interrupt assigns the

interrupt to one of the interrupt priority groups. Table 7.1

lists the interrupt priority groups in the order of their
priority. A larger interrupt priority number indicates a

higher priority.

" INTERRUPT CONTROLS

~ Interrupt Accept Controls

Associated with each interrupt condition is a 1l-bit accept
control. When the accept control is set,'the interrupt is
being accepted and the occurrence of the interrupt condition

causes the corresponding priority group hold bit to be set.

Group Hold

Associated with each interrupt priority group is a hold bit
that can be set by the occurrence of any one of the inter-
rupt conditions included in the interrupt priority group.

The hold bit records the occurrence of an interrupt condition.

The hold bits for the private interrupt groups

are in- the processor state vector.
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Table 7.1 Interrupt Priority Groups

GROUP PRIORITY PRIVATE/SHARED
Diagnostic 4 and Private or Shared
~higher
Shared Processor "3 Shared
‘Program : 2 . Private
Statistical Timers Al Private
Quantum Timer 0 ,Privaté
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7.2.4

7.2.5

Group Dispatch

There is a dispatch control for each interrupt priority group

‘which can prevent the group from being scanned for activation.

The dispatch bits for the private interrupt groups

are in the processor state vector.

Interrupt Lockouts

Two interrupt lockout control bits are in the processor state

vector. The private interrupt lockout bit, when set, prevents

the private interrupts from being scanned for activation.

The shared interrupt .lockout bit, when set, prevents the shared

interrupts from being scanned,for>activation‘by the Central

Processor in question. See 7.4.2 Scanning Interrupts for Activation.’

0ld and New Processor State Ooeraﬁds

For each interrupt priority group there is an old processor
state operand O effecfive address and a new processor
state operand .0 effective address. The first effective
address specifies a memory location into which the 16 bytes
of the current processor state operand zero are to be written
when the interrupt priority group is activated. The secondv
effective address specifies a memory location from which 16
bytes are read to provide a new'érocessor state operand zero
to begin servicing the interrupt. These effective addresses

can be altered by CONTROL instructions.



INTERRUPT FLAGS

The interrupt flags specifically identify the interrupt con-

‘dition and, when applicable, the addressing circumstances

at the time of the interrupt.

The interrupt condition code is. a 16-bit number that uniquely

identifies each interrupt condition within an interrupt

priority group.

The address selection code is a 4-bit number from 1 through

11 that specifies which of the 11 addresses of an instruction
caused the interrupt, if it occurred during an effective

address computation.

The effective address code is a 2-bit number that, when

appropriate, specifies the address being evaluated in an
effective address computation when the interrupt occurred,
as indicated below:
0 - The address was in the address string of the
instruction.

1 - The address was a final address in indirect
addressing.

2 - The address was a final address in argument
addressing.

3 - The address was in a subprogram control block
in argument addressing.



7.4.1

7.4.2

INTERRUPT PROCESSING

Occurrence of an Interrupt Condition

The processing of an interrupt is initiated by the occurrence
of an interrupt condition. If it is not being accepted, the
interrupt condition is ignored and no further processing is
necessary. If the associated accept control git is set,
occurrence of the condition céuSes the setting of the corres-
ponding interrupt group hold bit. The setting 6f the hold

bit places the interrupt group in a pending state.

When a hold bit is set, the priority groué is pending or
active and subsequené occurrences of interruét conditions
of that group cannot be detected. Whenever a subsequent
interrupt condition occurs, provision is made for critical
interrupt conditions and all spurious program interrupt con-
ditions to be processed by causing a diagnostic interrupt

condition.

Scanning Interrupts for Activation

A central processor is in an interruptible state following
the completion. of each instruction or. following each itera-
tion of an iterative instruction. Each time the cehtral
processor is in an interruptible state, the interrupts are

scanned to determine which, if any, is to be activated.



7.4.3

Only those interrupt priority groups for which the corres-

ponding dispatch bit is set and the associated lockout bit

-is reset are included in the priority comparison. An inter-

rupt that is pending but not being dispatched remains pending.
In order to qualify for activation, an interrupt priority

group must be pending, dispatchable, and not locked out.

The final determination for interrupt activation is inter-
rupt priority. The priority comparison includes the currently
active interrupts. In order to be activated, an interrupt
group must have higher priority than any interrupts that are
currently active and it must have the highest priority of

all the nonactive groups that are pending, dispatchable, and

not locked out.

Interrupt Activation

When an interrupt is activated, the interrupt condition code

(see 7.3 Interrupt Flags) is stored into processor state

operand zero. The entire processor state operand zero is
written into the old processor state operand zero location
for the particular priority group that is being activated.
The contents of the new processor state operand zero location
for that group are read’into the processor state vector to
provide the processor state controls and instruction location

necessary to service the interrupt.
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7.4.4

7.5

The interrupt has been activated when the current processor

state operand zero has been saved and program control has

-been transferred to the location specified by the new

processor state operand zero. The central processor is
again in an interruptible state at the completion of the

activation. An interrupt remains active until cleared.

Clearing an Interrupt

Once an interrupt is activated, it remains acti&e until it
is explicitly cleared. Becauée an interrupt service program
can itself be interrupted by a higher priority interrupt,
more than one interrupt can be active at a time. An inter-
rupt is cleared by a CONTROL instruction which both restores
the o0ld processor state operand zero and specifies the clear-

ing of the interrupt group.

SHARED PROCESSOR INTERRUPT GROUP

The shared processor interrupt group, priority group 3, com-
prises a single interrupt condition. When the shared

processor interrupt group is activated, the interrupt

‘condition code in processor state operand zero is set to

indicate the unit number associated with the device



that originated the interrupt. The unit number is the same
one that was used by a central processor when issuing a
'Starﬁ'I/O SELECT instruction to the device. When the inter-
rupt has been activated, the service program can use the

unit number to issue a Test I/0 SELECT instruction to inter-
rogate the device and obtain a bﬁannel'status opérand. The
channel status operand contains information about the exact
condition for which the device is requesting central processor

action.
PROGRAM INTERRUPT GROUP

The program interrupt group, priority group 2,are conditions

which occur as a direct result of instruction execution.

When the interrupt is being accepted, the instruction that
caused the condition is aborted, the destinafion operénd is
not modified, and the instruction location in the old program
status operand zero contains’the effective address of the

instruction that caused the interrupt.

The program interrupts are divided into 2 categories; those

that are critical to the continued execution of the instruc-

tion, and those that are noncritical. When a critical con-
dition occurs but the interrupt is not being accepted, ﬁhe
instruction is aborted and a diagnostic interrupt occurs.
When a noncritical condition occurs and the interrupt is

not being accepted, the instruction execution is not aborted

but continues to completion as defined for that condition.



All program interrupts are critical unless otherwise speci-

fied in the interrupt description. Descriptions of non-

- critical interrupt conditions explicitly specify the result

of the continued instruction execution.

For programming convenienée, individual program interfupt
conditions that have common cha;acteristics_and handling
requirements are grouped into classes. The descriptions

of the individual conditions are grouped according to these
classes. It is also convenient to refer to subclasses within
some of thé'classes. A subclass is simply a cross-section

of the class consisting of individual conditions with one

Oor more common components to the condition name, as the

binary real overflow subclass of the overflow class, com-

prising the binary fixed real overflow and binary float
real overflow interrupt conditions. Some interrupt condi-
tions have been grouped here by subclass for reference by

the instruction operation descriptions in 4.0 INSTRUCTION SET.

Page Assignment Class

Write with Unassigned Virtual Address --

An attempt was made to write into memory using a virtual
address that did not have an entry in the address transforma-
tion table. The address transformation search key, beginning
search index, current search index, effective address and

the data to be written are stored into the memory segment

specified by segment number register 3.

7-11



Write with Secondary Storage Address --

An attempt was made to write into meméry using a virtual
address that had an entry in the address transformation table
with the secondary storage bit set. The address transiforma-
tion search key, beginning search index, current. search index,
effective address,and the data to be written are stored into

the memory segment specified by segment number register 3.

Read with Secondary Storage Address —--

An attempt was made to read from memory using a virtual

address that had an entry in the address transformation table
with the secondary storage bit set. The address transforma-
tioﬁ search key, beginning search index, current search index,
and effective address are stored into the memory segment

specified by segment number register 3.

Statistical Class

Reference to Segment Number Register 0 --

The segment number register code of an address specified
segment number register zero. If the interrupt is not>being

accepted, the specified access is continued.
Reference to Segment Number Register 1 --

The segment number register code of an address specified
segment number register 1. If the interrupt is not being

accepted, the specified access is continued.
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Reference to Segment Number Register 2 --

The segment number register code of an address specified
segment number register 2. If the interrupt is not being

accepted, the specified access is continued.
Reference to Segment Number Register 3 —-

The segment number register code of an address specified
system segment number register. If the interrupt is not

being accepted, the specified access is continued.

Mode Transition Subclass

-

The following interrupts result only from thé execution of
service instructions which cause a transition to a higher
mode. The interrupt condition occurs after the mode transi-
tion has been completed. If the interrupt is not being

accepted, the transition is performed without interrupt.

Mode 0 to Mode 1 Transition
Mode 0 to Mode 2 Transition -
Mode 0 to Mode 3 Transition
Mode 1 to Mode 2 Transition
Mode 1 to Mode 3 Transition
Mode 2 to Mode 3 Transition

The following interrupts result only from the execution of
RESTORE instructions which cause a transition to mode O,
mode 1 or mode 2. The interrupt condition occurs after the
transition has been completed. If the interrupt is not
being accepted, the transition is performed without

interruption.



Return to Mode O
Return to Mode 1
Return to Mode 2

Mode Violation Class

Privileged Operation Code --

An attempt was made to execute an operation instruction in
a central processor mode which was less than that required

by the operation.
Invalid Segment Number Register Selection --

The segment number register code of an address encountered
during an effective virtual address calculation had a value

of 1,2, or 3 when the current access mode was 0, or a value
of 3 when the current access mode was 1;

Index Segment Number Register Code Greater than

the Index Address Segment Number Register Code --

During an indexing operation, the segment number register
code contained in the index was greater than the segment
number register code in the index address that specified

the index.
Illegal Control Transfer --

A control transfer address executed in mode 0 specified a
segment number register code other than 0; or a control

transfer address executed in mode 1 specified a segment

"number register code other than lor 2; or a control transfer



address executed in mode 2 or mode 3 specified a segment

number register code other than 2 or 3.

A

' Link Mode Greater than Central Processor Mode —-—

The value of the mode operand specified in an ANALYZE
instruction, or the link mode byte in a referenced subprogram

control block was greater than the central processor mode.
Page Mode Conflict --

An attempt was made to access a page and the current access
mode was less than the mode specified in the access controls.
For write accesses the data is stored into the memory segment

specified by segment number register 3.

Illegal Addressing Class

Read with Unassigned Virtual Address --

An attempt was made to read froﬁ bulk memory using a virtual
address that did not have an entry in the éddress transfor-
mation table. The address transfo:mation search key, beginn-
ing search index, current search index, and effective

address are stored into the memory segment specified by

segment number register 3.



Private Write Access Violation --

An attempt was made to write into a page of bulk memory and

its associated private write access bit was set. The data

is stored into the memory segment specified by segment

number register 3.

Tllegal Instruction Class.

Unassigned Operation Code --

An attempt was made to execufe‘an unassigned operation code.
Unassigned Private Extended Operation Code —-

An attempt was made to execute an unassigned private extended

operation code.
Unassigned System Extended Operation Code --

An attempt was made to execute an unassigned system extended

operation code.
Illegal Instruction Qualifier —--

An instruction qualifier contained either an address count

that was inconsistent with the operation code .

Unassigned Address Qualifier --

The contents of the address qualifier byte did not corres-

pond to any of the assigned values.
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7.6.6

Illegal Address Type Code --

The specified address tY?é code was inconsistent with the

'operation code of the instruction, or specified an illegal

addressing sequence.
Illegal Length Code --

The specified length code was -inconsistent with the opera-
tion code of the instruction or the address type code of

the address.
Illegal Argument Index --

The value of the argument index was greater than
the value of the argument count in the argument list being

referenced or was O.
Illegal Subprogram Control Block Format --

The address qualifier of the argument list address in a
referenced subprogram control block did not specify null

or long direct addressing.

Tllegal Suboperation Class

Illegal List Control Block Format --

During the execution of a list operation the list type code
in the list control block did not match the list type implied

by the suboperation operand.



Unassigned Subsystem Service Entry Table Index --

Either no subsystem service entry table was active, or
the operahd specified by the first address of a
SUBSYSTEM service instruction had a value that was

unassigned as a subsystem service entry table index.

Unassigned System Service Entry Table Index --

Either no system service entry table was active, or
the operand specified by the first address of a SYSTEM
service instruction had a value that was unassigned as

-

a system service entry table index.



Address Bounds Breakpoint Class

Break Before on Address Subclass —--

The foilowing conditions were true:

- The BO-bit in processor state operand zerp was set.

- An effective address associated with the current
instruction was specified by an active address
bounds register set for break before.

The instruction is not executed.
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Before
Before
Before
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Before
Before
Before

on
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on
on
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on.

Address i

Address
Address
Address
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Address
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Address
Address
Address
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Break After on Address Subclass --

The following conditions were true:

- The BO-bit in processor state operand zero was set.

Bounds
Bounds
Bounds
Bounds
Bounds

Bounds

Bounds
Bounds

Register
Register
Register
Register
Register
Register
Register
Register

- An effective address associated with the current
instruction was specified by an active address
bounds register set for break after.

~NobhwNoRe=O

The current instruction execution is completed and then the

interrupt occurs.
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Instruction Breakpoint Class

“The instruction breakpoints are controlled by the state of

bits located in the instruction qualifier and in processor
state operand zero. An interrupt occurs either before or
after an instruction execution is completed as is indicated
by the name of the interrupt. The execution breakpoints

are discussed in 6.0 Execution Breakpoints.

Break Before on Operation Code --
All of the following conditions were true:
e The B4-bit in processor state operand zero was set.

¢ The central processor mode was equal to or less
than the breakpoint control mode.

¢ The operation code was one bf those specified by
the operation code mask.
Break After on Operation Code --
All of the followiné conditions were true:
e The B5-bit in processor.state operand zero was set.

e The central processor mode was equal to or less
than the breakpoint control mode.

¢ The operation code was one of those specified by
the operation code mask. :

Break Before on Private Extended Operation Code --

All of the following conditions were true:
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The B6-bit in processor state operand zeroc was set.

The central processor mode was equal to or less
than the breakpoint control mode.

- The private extended operation code was one of

those specified by the private extended operation
code mask.

Break After on Private Extended dperation Code -

'All of the following conditions were true:

The B7-bit in processor state operand zero was set.

The central processor mode was equal to or less
than the breakpoint control mode.

The private extended operation code was one of
those specified by the private extended operation
code mask. :

Break Before on System Extended Operation Code --

All of the following conditions were true:

The B8-bit in processor state operand zero was set.

The central processor mode was equal to or less
than the breakpoint control mode.

The system extended operation code was one of
those specified by the system extended operation
code mask.

Break After on System Extended Operation Code --

All of the following conditions were true:
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Break Before Instruction --

The B9-bit in processor state operand zero was set.

The central processor mode was egual to or less
than the breakpoint control mode.

The system extended operation code was one of
those specified by the system extended operation
code mask.

All of the following conditions were true:

The Bll-bit in processor state operand zero was set.

The central processor mode was equal to or less
than the breakpoint control mode.

The B-bit was set in the instruction qualifier of
the instruction. '

Break After Instruction --

Either of the following sets of conditions was true:

The B10-~-bit in processor state operand zero was

set and the central processor mode was equal to

or less than the breakpoint control mode.

The Bll-bit in processor state operand zero was
set and the central processor mode was equal to
or less than the breakpoint control mode, and
the A-bit in the instruction qualifier of the
instruction was set.

Break After on Statement Counter Equal Zero --

Either of the following sets of conditions was true:
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¢ The statement counter is decremented after the
execution of each instruction regardless of the
state of the S-bit in the instruction gualifier
when the Bl3-bit in processor state operand zero
is set and the central processor mode is equal to
or less than the breakpoint control mode. The
interrupt occurs after the execution of the instruc-—
tion that caused the statement counter to be decre-
mented to O.

¢ The statement counter is decremented after the
execution of an instruction when: the Bl4-bit in
processor state operand zero is set, and the central
processor mode is equal .to or less than the break-
point control mode, and the S-bit is set in the
instruction qualifier of the instruction. The
interrupt occurs after the execution of the instruc-

tion that caused the ‘statement counter to be decre-
mented to O. -

Break After End of Statement --
The following conditions were true:
¢ The Bl2-bit in processor state operand zero was set.

e The central processor mode was egual to or less
than the breakpoint control mode.

e The S-bit in the instruction qualifier of the
instruction was set.

Break After Each Perform Iteration --

The following conditions were true during the iterative

execution of an instruction:
‘¢ The Bl6-bit in processor state operand zero was set.

¢ The central processor mode was equal to or less
than the breakpoint control mode.

7-23



Critical Operand Class

Iteration Count Greater Than 23201 —-

The operand specifying the iteration count for the iterative

execution of an operation has a value greater than 232—1.

Illegal Decimal Digit -=

An illegal decimal digit was detected in a source operand

of a decimal operation.
Illegal Displacement =--—
Any of the following was detected:

¢ A COPY instruction -specified a positive displacement
that exceeded the length of the destination operand
or a negative displacement that exceeded the length
of the source operand. :

®¢ A CONTROLinstruction specified a displacement that
exceeded 127.

® The displacement operand of a GENERATE instruction
specified was a negative value or exceeded the
length of the destination operand.

Illegal Generate Specification --

Either the bit count itself or the sum of the bit count and
displacement specified by the GENERATE instruction exceeded

the length of the destination operand.
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7.6‘10

7.6.11

Non-Critical Operand Class

The source operand of the SQUARE ROOT instruction was nega-
tive. If the interrupt is not being accepted, the destina-
tion operand is assigned the negafive of the squére root of

the absolute value of the source operand.
Illegal Shift Count —--

A SHIFT instruction specified a shift count exceeding the
bit length of the operand that was being shifted. If this
interrupt is not beirng accepted, a shift count equal to the

length of the shift operand will be used.

List Processing Class . . .

Empty List --

The list control block pointers referenced by a PULL or

STEP operation were O.

End of List --

An attempt was made to STEP off the end of the list.
Free Element Stack Empty --

The next free element number was O during the execution of

a PUSH instruction.



7.6.12 Overflow Class

The result of an operation has an absclute value too large

to be represented in the destination operand. If the inter-
rupt is not being accepted, the following vélues are assigned
to the destination operandkdepending on the data. type and

adjustment method:

¢ REAL types:
Normalized Method - Absolute Zero

Automatic Method - Fixed-point part of +0, exponent
part of maximum positive value.

Manual Method - Fixed-point part as calculated,
exponent part as calculated with high-order digits
truncated.

¢ COMPLEX types:

As for REAL types, but real and imagiﬁary components

treated separately.

¢ INTEGER types:

Result as calculated with high-order digits truncated.
Real Overflow Subclass --

Binary Fixed Real Overflow
Decimal Fixed Real Overflow
Binary Float Real Overflow
Decimal Float Real Overflow



7.6.13

7.6.14

Complex Overflow Subclass --

Binary Fixed Complex Overflow Real Part
Binary Fixed Complex Overflow Imaginary Part
Decimal Fixed Complex Overflow Real Part
Decimal Fixed Complex Overflow Imaginary Part
Binary Float Complex Overflow Real Part
Binary Float Complex .Overflow Imaginary Part
Decimal Float Complex Overflow Real Part .
Decimal Float Complex Overflow Imaginary Part

Integer Overflow Subclass --

Binary Integer Overflow
Decimal Integer Overflow

Truncation Class

The result of an operation cannot be stored in the destina-
tion operand without truncating high order (trailing) digits.
If the interrupt is not being accepted, the trailing digits

of the result are truncated.
Magnitude Truncation Subclass --

Magnitude Truncation
Address Truncation

Logical Truncation Subclass --
Logical Truncation

Fixed Point Overflow Class

The fixed-point part of the result of a REAL operation or

of a component of the result of a COMPLEX cperation has been



adjusted so that high-order non-zero digits are to the left
of the radix point. If the interrupt is not being accepted,
-the result is stored into the destination operand by trun-

cating the digits to the left of the radix point.
Real Fixed Point Overflow Subclass —-

Binary Fixed Real Fixed Point Overflow
Decimal Fixed Real Fixed Point Overflow
Binary Float Real Fixed Point Overflow
Decimal Float Real Fixed Point Overflow

Complex Fixed Point Overflow Subclass —-

Binary Fixed Complex Fixed Point Overflow Real Part
Binary Fixed Complex Fixed Point Overflow Imaginary Part
Decimal Fixed Complex Fixed Point Overflow Real Part

" Decimal Fixed Complex Fixed Point Overflow Imaginary Part
Binary Float Complex Fixed Point Overflow Real Part
Binary Float Complex Fixed Point Overflow Imaginary Part
Decimal Float Complex Fixed Point Overflow Real Part
Decimal Float Complex Fixed Point Overflow Imaginary Part

7.6.15 Exponent Overflow Class

The exponent part of the fesulf of a REAL operation or of a
component of the fesult of a COMPLEX operation is smaller
than the minimum exponent value for the radix of the opera-
tion. If the interrupt is being ignored, a value is stored
into the destination operand according to the adjustment

method being used:

- Normalized Method - Absolute Zero

~Automatic Method - Condition never occurs.
- Manual Method - Fixed-point part as calculated,

exponent part as calculated with high-order digits
truncated.
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Real Exponent Underflow Subclass --

Binary Fixed Real Exponent Underfiow
Decimal Fixed Real Exponent Underflow
Binary Float Real Exponent Underflow
Decimal Float Real Exponent Underflow

Complex Exponent Under Subclass —- )

Binary Fixed Complex Exponent Underflow Real Part
Binary Fixed Complex Exponent Underflow Imaginary Part
Decimal Fixed Complex Exponent Underflow Real Part
Decimal Fixed Complex Exponent Underflow Imaginary Part
Binary Float Complex Exponent Underflow Real Part
Binary Float Complex Exponent Underflow Imaginary Part
Decimal Float Complex Exponent Underflow Real Part
Decimal Float Complex Exponent Underflow Imaginary Part

Divide by Zero Class

The divisor in a divide operation had a value of zero. For
REAL and COMPLEX operations the divide by zero interrupt
condition always occurs when there is an absolute zero
divisor, but a reiative zero di&isor raises the condition
only when the normalized adjusﬁment method is specified.
When the interrupt is not being accepted, the value stored
into the destination operand depends on the data type and

adjustment method as follows:

REAL data types:
- Normalized method - Absolute zero

- Automatic Method - Fixed-point part equals +0,
exponent equals maximum exponent value.

- Manual method - As for automatic method.



COMPLEX data types:
As for REAL data types, with the same value stored

into both components.
INTEGER, MAGNITUDE, and ADDRESS data types:
Zero in the éppropriate’data type.
Real Divide by Zero Subclaés -

Binary Fixed Real Divide by Zero
Decimal Fixed Real Divide by Zero
Binary Float Real Divide by Zero
Decimal Float Real Divide by Zero

Complex Divide by Zero Subclass --

Binary Fixed Complex Divide by Zero
Decimal Fixed Complex Divide by Zero
Binary Float Complex Divide by Zero
Decimal Float Complex Divide by Zero

Integer Divide by Zero Subclass —--

Binary Integer Divide by Zero
Decimal Integer Divide by Zero

Magnitude Divide by Zero Subclass =--

Magnitude Divide by Zero
Address Divide by Zero

STATISTICAL COUNTER INTERRUPT GROUP

The statistical counters interrupt group comprises seven

interrupt conditions, which occur when any of seven separate



7.7.1

32-bit counters is decremented to 0. The 7 counters

have their count decremented by 1 every microsecond when

. the following conditions are all true:

e The accept bit is set for the interrupt associated
with the counter.

® The central processor is in a particular state, as
defined for each counter.
When a count reaches 0, the appropriate interrupt condition
occurs, but the counter continues to be decremented until
the accept bit for the interrupt is reset. At any time a

32

counter may be given a count value in the range 0 to 2°“-1

by means of a CONTROLinstructiqn.

Mode Counters

There is a separate counter for each of the 4 central
processor modes. A counter is decremented once every micro-
second while the central processor is operating in the associ-
ated mode and the interrupt for the count reaching 0 is beihg
accepted.

Mode Zero Count Equals 0

Mode One Count Equals 0

Mode Two Count Equals 0
Mode Three Count Equals O

Interrupt Active Count Egquals 0

This interrupt is associated with a counter that is decre-
mented once every microsecond while any interrupt is active

and the interrupt for the count reaching 0 is being accepted.

7-31



7.7.4

Auxiliary Count Eguals O

This interrupt is associated with a cocunter that is decre-
mented once every microsecond while the interrupt for the
count reaching 0 is being accepted. The counter is not

associated with any particular central processor state.

Paqe Usage Table Count Equals O

This interrupt is associated with a counter that is decre-
mented once every microsecond while the interrupt for the
count reaching 0 is being accepted and the page usage table
is active. The table is active whenever page usage statis-
tics are being képt for pages addressed with one or more
segﬁent number register codes. The interrupt also occurs
when the page usage table is full and a page number not in
the table is addressed. Page usage statiétics can be
gathered by reading and clearing the entries in the page
usage table at specific intervals and whenever the table

is full. The statistics are read and cleared by means of

the CONTROL instruction.

QUANTUM TIMER INTERRUPT GROUP

Quantum Timer Equals Zero

The quantum timer equals zero interrupt condition occurs

when either of the following are true:



- The counter associated with the quantum timer has
been decremented to 0 and the central processor mode
is 0 or 1. If the timer decrements to 0 when the
central processor mode is not or 1, the interrupt
condition does not occur.

- The counter associated with the quantum timer has
been decremented to 0 and the central processor mode
is 2 or 3, and a CONTROL instruction specifying dis-
missal was executed.



8.0 MEMORY PROCESSOR

_The purpose of the memory processor is to control and
procesé all accesses to bulk memory. The memory pro-
cessor interfaces with central processors, input/out-
put processors, the ihterproceséor control bus, the

maintenance panel, and bulk memory.

The memory processor reduces thé effective access

time to bulk memory, transforms virtual addresses to
real addresses, and protects memory from unauthorized
accesses. Pages of memory can be.protected from
write access by a central processor or by the input/
output processors (which in turn interface with com-
munication terminals and peripheral equipmepp through
communication and peripheral interface units), or by
both the central and the input/output processors. In
addition a page mode access control is associated with
each page of memory and examined during central pro-

cessor accesses.
MEMORY PROCESSOR FUNCTIONS

Functionally, the memory processor_consists of 3 units:’
the high speed memory unit, the address transformation
control unit, and the interface control unit. The
high speed memory functions as a buffer containing
those portiong of bulk memory that are currently being

referenced by the central processors.,



The contents of thé buffer memory are maintained by a
technique that automatically‘repiacesAinfrequently

. used informationrm”The"add:ess.transformation control
unit transforms virtual addresses to real addresses.

The interface control unit accesses bulk memory and
”pérforms errbr checks on both tﬁe.daté énd fhe addresses.
Figure 8.1 provides an overview of memory processor

operation.

Memory requests are initiated when a central processor
presents a complete virtual address, or when an input/
output processor presents both a complete virtual address
and a real address to the memory processor. First an
attempt is made to access the data from the high speed
memory. If the requested data is in the high speed mem-
ory buffer and the memory protection conﬁrols permit the
access, the data transfer is performed between the high

speed memory and the requesting processor.

if the data is not in the high speed memory and an
input/output processor initiated the request, the access
is performed directly to bulk memory using the real
addre;s supplied with the requegt. Provided that the
memory protection controls permit the access, the data
transfer is performed between bulk memory and the re-
questing processor. Note that high speed memory is
never loaded to satisfy a memory requést from an input/

output processor.
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8.2.1

If the data is not in the high speed memory and a central

processor initiated the request, the virtual address 1is

_presented to the address transformation control unit. If
a real address is associated with the virtual address, the-

‘data is accessed from bulk memory and loaded into high

speed memory. If the memory protection controls-are not
violated, the data is transferred between the high speed

memory and the requesting processor.
HIGH SPEED MEMORY UNIT

The high speed memory unit includes a random access
buffer memory, a content addressable memory,and a device

to manage the replacement of data in the buffer memory.

Random Access Bufferv

The random access buffer memory has a

size of 8,192 or 16,384 bytés; depending on the model
of the memory processor. It réduces effective bulk
memory access time by retaining those blocks of memory
that are currently being accessed by central procéssors.
Each block is 64 contiguous bytes; thus, 128 or 256
blocks of bulk memory can be held in the high speed

buffer memory depending on the model of the processor.



Content Addressable Memory

‘unit identifies the blocks of memory that are currently

contained in high speed buffer memory and also specifies
the access control information associated with the
blocks. A block of memory is identified by its virtual
block address. A virtual block gddress is formed by div-
iding the complete virtual address by 64; thus, the high
order 40 bits of the complete-virﬁual address specify

the virtual block address@

High Speed Memory Replacement Device

The maintenance of current data blocks in the high speed
buffer memory is controlled by the replacement device.
This device maintains an activitj list, with each entry
in the list corresponding to a.block of high speed memory.
The list is ordered on a least recently wused basis. Al-
though both central processor and input/foutput processor
requests cause high speed memory to be accessed, only
central processor reqﬁests affect the activity list.

When it is necessary to replace a block of high speed
memory, the block that was least recently accessed by

a central processor is selected for replacement.



High Speed Memory Access

When a virtual block address is presented to the high
speed memory unit, the content addressable memory is
accessedito determine if the requested block is cur-—
rently in high speed memory. If the block is in high
speed memory and the aécess contrgis associlated with
the block permit the access, a data transfer is per-
formed between the high épeed buffer memory and the

requesting processor.

When an input/output processor requests data that is
not contained in high speed memory, the interface con-
trol unit of the memory proceésor performs the access
to bulk memory using the real address supplied by the
input/output processor. The data transfer is Fhen per-

formed between bulk memory and the requesting processor.

When a central processor requests data that is not con-
tained in high speed memory, the virtual aédress ié pre-
sented to the address transformation control unit. If

a real address is currently associated with the virtual
address, the requested block is accessed from bulk meﬁory.
The data is loaded into the block of high speed memory

selected by the high speed memory'replacement device.

Although high speed memory is accessed by virtual ad-

dress, the real address of each block in high speed
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memory is maintained so that it is unnecessary to trans-
form fhe virtual address in order to store the block se-
lected for replacement into bulk memory. If the block se-
lected for replacement has not been modified, the contents
of the block are not stored.since an identical copy of the
block exists in bulk memory; howé;ér, if a write éccess
occurred to the block selected_for replacement, the con-
tents of the block are written into bulk memory using the
real address associated with the block.

ADDRESS TRANSFORMATICON CONTROL UNIT

The address transformation control unit includes con-

tent addressable and random access memories, a replace-
ment device, and a hashing and search device. The hashing
and search device performs searches on the add;ess trang-

formation table (described in 8.3.1).

Address Transformation Table

The address transformatiocn table, located in memory,

maintains a record of all assigned pages of virtual
memory. It also includes the access control information

associated with each page.

Each address transformation table entry is 8 bytes in

length and contains a virtual page number, a real page

number, a segment number, and a control field.



The control field includes page access controls, a
secondary storage control, a use control, and 3 un-
_assigned bits. The format of an address transformation

table entry is shown in Figure 8.2.

The page access controls include a private write access

control and a page mode access control. These controls

areAdiscussed in 2.2.4 Page Access‘Controls.

The secondary storage control, if set, specifies that -
the virtual page address corresponds to a page in secon-

dary storage (i.e., on a periphéral device ‘rather than

in bulk memory) .

The use control, if set, specifies that the entry is
active. An entry is considered active if the virtual
page address has been assigned to either a real bulk

memory page or a page of secondary storage.

The number of entries in the address transformation
table is equal to 9/8 times the sum of the number of
pages of bulk memory and the number of pages of secon-

dary storage allocated for the storage of virtual memory.
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Segment Virtual Control Real
Number Page Field Page
Number Number
16 20 8 N 20
/
/
= \
Unassigned | Secondary Use Page
Storage Control Access
Control Controls
3 1 1 3

Figure 8.2 Address Transformation Table Entry
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8.3.2

The number of possible virtual page addresses is far

gfeater than the number of address transformation table

entries, and the virtual page addresses that are in use

at any time are unpredictable. To reduce search time,

a hashing algorithm is used to assign and to access

tﬁe virtual page addrésses\in the:address transformation
table. The hashing algorithm uniformly distributes
throughout the table the virtual page addresses in use
at any time. The address'transformation contrél unit
uses the algorithm to locate the address transformation
table entry corresponding to a given virtual page ad-

dress or to determine. that no such entry exists.

The address transformation table occupies contiguous
pages in real and virtual memory. Tﬁe addreés trans-
formation control unit has registers that specify both
the virtual page address and the real page address of the
first of these pages. These registers can be accessed
under program control by the execution of a privileged
(SELECT) instruction.

Address Transformation Control Unit Content Addressable
and Random Access Memories

The content addressable and random access memories func-
tion together to reduce the time iequired to perform an
address transformation. These memories maintain the 32
address transformation table entriés that have been most

recently accessed.



8.3.3

Address Transformation Control Unit Replacemtnt Device

The maintenance of current data in the address transfor-

‘mation control unit is controlled by the replacement

device. Similar to the high speed memory replacement
device, this device maintains an activity list with each
entry in the list corresponding to an entry in the con-
tent addressable and random access memories. When an
entry must be replaced, the entry that was least recéntly

accessed by a central processor is selected for replacement.

The input to the address transformation control unit is

a virtual page address referred to as a search key. The

~address transformation control ﬁnit content addressable

memory is accessed, and if the requested virtual page
address is present and the access controls are not vio-
lated, the associated real page address is obtained from
the random access memory and presented to the interface

control unit.

If the requested search key is not in the content ad-
dressable mémory, the hashing and search subunit

searches the address transformation table. Interlock
flags control the searching of the addfess transformation
table and prevent one central processor from reading the

table when the other central processor is modifying it.



The search key is input to the hashing algorithm,

which produces a number referred_fo as the beginning
.search index. The beginning search index is a byte dis-
placemént into the address transformation table that
"selects the entry where the search is to begin. Note
that the beginning search index. is not wmique to a
~given search key because the number of possible search
keys (i.e., virtual pagé_addrésses) exceeds the number

of address transformation table entries.

In order to search the address transformation table, the
virtual page address and real page address are obtained
from the registers that specify the beginning of the ad-
dress transformation table. These addreéses are converted
into byte addresses and the.beginning search index is
added to each of these addrésses, forming beginning
search addresses. Both the virtual and real beginning
search addresses are presented to the high speed memory
unit. In a manner similar to the processing of input/
output processor requests, the data (the address trans—
formation table entries) is accessed either from high

speed memory or directly from bulk memory.

The search of the address transformation table proceeds
from lower to higher search addresses, wraps around
the end of the table if necessary to continue the search,

and terminates when any of the following occurs:
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° An entry is encountered containing a virtual
page address identical to the search key and
assigned to a real page. ‘

e An entry is encountered containing a virtual
page address identical to the search key and
assigned to a page of secondary storage.

° An unused entry is encountered. .

If the requested virtual address has been associated
with a real address and the access controls are not vio-
lated, the real address is obtained and presented to the
interfaée control unit. The address transformation con-
trol unit memories are updated to contain this virtual
page address and its corresponding real pége address

-

and access controls.

If the virtual pagebaddress is assigned to a page of secon-

dary storage, the read with secondary storage address or

the write with secondary storage address interrupt is
generated for the central processor that presented the

search key.

If an entry that is not in use is encountered, either

the read with unassigned virtual address or the write

with unassigned virtual address interrupt is generated

for the processor that presented the search key. It is
possible to determine that the search key is unassigned
without searching the entire address transformation table

due to the manner in which the table entries are deleted.



8.3.4

Whenever a deletion is performed, subsequent entries are

rearranged so that there are no unused entries between

search index.

any active entry and the entry spe

Unassigned Page Interrupts.

Whenever the read or write with unassigned virtual page

cified by its beginning

interrupt or the read or write with virtual page in

secondary storage interrupt is generated, information

pertaining to the interrupt condition is stored into the

segment specified in segment number register (3) of the

central processor that presented the search key. The

format of the information and the locations used for

~storage are shown in Figure 8.3.

4 5 4 5 32
Unassigned
Current Beginning Virtual
Search Search Search Uhassigned Address
Index Key Address | Address Operand
49 46 41 37 32

Figure 8.3 Unassigned Page Interrupt Information

If a write access was attempted, the operand is stored

into the leading byte positions of the unassigned vir-

tual address operand field. This field is 32 bytes in

length and occupies location 0 through 31.
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‘The virtual address causing the interrupt is stored as

a long direct address (addressing type code 9) into the

unassigned address field. The length code asscciated

with the address is 0 if the interrupt resulted from an
attempt to transfer control to an unassigned page. This
field is 5 bytes in length and occupies locations 32

through 36.

The beginning search index is stored into the beginning

search index field. This field is 4 bytes in length and

occupies locations 37 through 40.

The virtual page address causing the interrupt condition

is stored into the search key field. This field is 5

bytes in length and occupies locations 41 through 45.

Similar to the beginning search. index, the current seaxch

index is a byte displacement into the address transfor-
mation table and locates the entry being examined when
the interrupt condition occurred. The current search

index is stored into locations 46 through 49.
INTERFACE CONTROL UNIT

The interface control unit performs accesses to

bulk memory. This unit consists of memory protection
controls, error checking circuitry, and bulk memory in-

terface circuitry.



The memory protection controls consist of separate write
access locks for each page bf bulk memory. These locks
prevent unauthorized write accesses for an input/output

processor.

The real address is examined, and a diagnostic interrupt
is generated if the address ‘exceeds limits determined by
the size of bulk memory . If the address is within ac-

ceptable limits, a block is accessed from bulk memory.

Each time an accesé is perforﬁed, the error chedking}
-circuitry detects and corrects single-bit errors and can
génerate a diagnostic interrupt indicating that the con-
cition occurred. All doublé-bit, and some multiple-bit
errors are also detected and reported via the interrupt

mechanism.

In addition to fhe error detection, the real address

is validated. Stored with each block of data is the as-
sociated real address. When a data access is performed,
the requested real address is compared with the real ad-
dress associated with the block. A diagnéstic interrupt

is generated if the two addresses are not equal.



9.0 PROCESSCR STATE VECTOR
- Each central processor contains registers that control and
report the state of the processor. As a group these registers

are called the processor state vector. Individual registers

are grouped to form p;pcessor Stéte opefands, which can be
accessed under program control with the privileged CONTROL
instruction. A processor sta£e'operand has a length of 1

to 16 bytes. The contents of processor state operand Zero

are described in detail in 9.1 Processor State Operand 0.

Contents of the other processor state operands are discussed

briefly in 9.2 Other -Processor State Operands.

PROCESSOR STATE OPERAND 0

Processor state operand 0 is 16 bytes longl It confains

the informatidn and controls that are automatically saved
in memory when any interrupt islactivated. Servicing of
an interrupt begins when new pfocessor state operand zero
contents with appropriate control settings reguired for
interrupt servicing are obtained from memory (see 7.4

INTERRUPT PROCESSING) .

The registers that make up processor state operand zero are
described in 9.1.1 through 9.1.10. Figure 9.1 shows the
format of these registers. Note that 6 bits of the 16-byte

operand are unused.
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Interrupt Flags

Figure 9.1 Processor State Operand 0
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9.1.1 Instruction Location Register

_The instruction location register is 32 bits long and con-
tains the effective address of thé instruction currently
being executed by this central processor. The instruction
location register contains a 30—bit address fiel@ and a

2-bit segment number register code field.

9.1.2 Microinstruction Location Register

The microinstruction location register is 32 bits long and

contains the effective address of the microinstruction
currently being executed by this central processor. The
microinstruction location register contains a 30-bit address

field and a 2-bit segment number register code field.

9.1.3 Emulate Control

The emulate (E) dontrol is 8 bits long and selects one of

256 possible microprogram sets.

9.1.4 Interrupt Flags

The interrupt flags comprise the 16-bit interrupt condition

code (ICC), the 4-bit address selection code (ASC), and the

2-bit effective addressing code -(EAC). The use of these

fields is described in 7.3 Interrupt Flags.
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9.1.5

9.1.6

Interrupt Locks

The interrupt locks (IL) consist of 2-control pits. The

first, when set, prevents activation of the private inter-
rupt groups for this central processor. The second, when
set, prevents activation of the. shared interrupt group for

this central processor.
' C

Central Processor Mode:

The central processor mode (CPM) is a 2-bit field that indi-

cates the mode in which this central processor is currently
operating. The central processor mode constrains instruc-
tion and data accesses and the execution of privileged

instructions.

Diagnostic Override Controls

The diagnostic override controls (DOC) consist of 2 control
bits. The first, when set, overrides page mode access
restrictions. The second, when set, overrides mode transfer

restrictions.

Breakpoint Controls

The breakpoint controls are 17 bits identified as BO through

B16. The names of the individual controls are listed below.
The use of these controls is discussed in 6.2 Processor

State Vector Breakpoint Controls and in 7.6.7 Address Bounds

Breakpoint Class and 7.6.8 Instruction Breakpoint Class.




9.1.10

9.2

BO Enable prior instruction location register
Bl Enable address bounds register controls

B3

B4 Operation code breakpoint before

B5 Operation code breakpoint after

B6 Private extended operation code breakpoint before
B7 Private extended operation code breakpoint after
B8 System extended operation code breakpoint before
B9 System extended operation code breakpoint after
B10 Instruction breakpoint after ’

B1ll Enable A-bit and B-bit in instruction qualifier
B1l2 End of statement control

B13 Instruction counter control

B1l4 Enable S-bit in instruction gqualifier

B1l5 Enable P-bit in instruction gualifier

Blo Perform breakpoint control

BZ'} Breakpoint control mode

Perform State Cohtrol

The perform state (PS) is a single control bit. When set,

it indicates that the current instruction is being executed

iteratively (see 5.3 Initialization for Iterative Execution).

Page Usage Statistics Controls

The page usage statistics controls (PUSC) are 4 control

bits, numbered 0 to 3. They control the keeping of page
usage statistics for pages addressed using segment number

register codes 0, 1, 2, and 3, respectively.
OTHER PROCESSOR STATE OPERANDS

The other processor state operands contain control and report
registers whose contents do not necessarily have to be saved
duaring interrupt activation. The following sections enumerate

these registers.
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9.2.1

9.2.3

Segment Number Registers

The segment number registers are five 16-bit registers

numbered from 0 to 4. Each contains a segment number that
can be used in the formation of a complete virtual address.
Segment number register selection is discussed in 2.2

Central Processor Memory Accesses.

Perform Controls

The perform controls contain the information needed for
iterative execution of the current instruction (see 5.3

Initialization for Iterative Execution). They include the

operation code and instruction qualifier of the instruction
being executed iteratively, and the iteration count.

For each of the 5 poésible execution operands, the following
information is kept in the perform controls: address quali-
fier, index address, index value, index increment, effective
address, and effective address increment. For immediate
operands, the operand itself replaces the index value and

increment and the effective address and increment.

Breakvnoint Registers

The breakpoint registers are used in conjunction with the
breakpoint controls in processof state operand zero. These

controls include:
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9.2.4

9.2.5

- The operation code masks,which allow selection of
any operation codes and extended operation codes
for breakpointing.

- The 8 address bounds registers,which allow protection
of 8 ranges of effective address; the address bounds
controls enable address bounds checking.

- The statement count,which provides breakpointing
after execution of a specified mumber of instructions
or statements . ’

- The prior instruction register,which contains the
effective address of the instruction executed immed-
iately before the current instruction

For a full description of breakpoint controls located in

the processor state vector, see 6.2 Processor State Vector

Breakpoint Controls.

Interrubt Controls

The interrupt controls include the hold and dispatch controls
for the various interrupt priority groups and the accept bits

for the individual private interrupt conditions.

Computational Controls

The computational controls comprise a rounding and a normali-

zation bit for each of the 8 computational data types (see

4.3 Computational Arithmetic).

Service Entry Table Registers

The service entry table registers contain a service entry

table base address and a service entry table index limit

for the system and subsystem service entry tables.



System Controls

The system controls are set to indicate the working
state of various private and shared system components, such
as the high speed memory unit, the address transformation

control unit, and the arithmetic'units.
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