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FOREWORD

1. Mathematical machines are widely utilized be-
cause they can perform certain calculations more
swiftly and more accurately than any human calcu-
lator could.

We define a mathematical machine as follows: A
mathematical machine is a mechanism which provides
information concerning the relationships between a
specified set of mathematical concepts. Normally,
this requires that the machine contain a realiza-
tion of the set of mathematical concepts. Thus, a
counter will contain a method of realizing certain
of the natural numbers, an adding machine will
have a realization of these and a way of realizing
the operation of addition, while a differential
analyzer will contain a realization of the notion
of function and integral. However, the essential
part of the definition of a mathematical machine
is that it provides information concerning the
mathematical concepts involved. Thus, an electri-
cal network may constitute a perfect realization
of a system of differential equations but we shall
not regard it as a mathematical machine unless it

" provides information concerning the system; for
instance, concerning the solutions of the system
of differential equations.

2. It is interesting to note that this process
of utilizing a mathematical machine is the con-
verse of the usual applications of mathematics.
Ordinarily, we have a natural system, which we
want to analyze mathematically. We endeavor to
find a set of mathematical concepts, in terms of
which we can describe the system. In a mathemati-
cal machine, however, it is the mathematical con-
cepts which are given and we set up a natural
system which realizes the concepts. In a number
of cases, it will be obvious that both processes
occur. For instance, if we have a natural system,
we may be able to describe it in mathematical
terms. However, the associated calculations may
be too laborious or time consuming. Hence, we set
up a mathematical machine to perform these. Notice
then that the mathematical machine must be abstract-
ly equivalent to the original system.

Thus the theory of mathematical machines is
quite interesting in connection with the founda-
tions of mathematics. For, if we define a system
of mathematical concepts as one which is deter-
mined by "postulates," i.e., certain statements
which can be used as the basis of a logical dis-
cussion, in general, such a system is obtained by
a process of "abstraction" and the theory of
mathematical machines may be of considerable in-
terest in the study of this latter operation.

3. However, besides its importance in calcula-
tion and from the theoretical point of view, our
subject is fascinating for its own sake. We shall
find many ingenious devices, we shall come upon
many interesting mathematical problems and incident-

ally we shall make a survey of the elementary ap-
plications of mathematical analysis.

We must, however, have an exclusion principle and
it will be this. We shall be interested in a device
as far as it realizes and gives information con-
cerning mathematical concepts. It may have a very
complex use, although it may be relatively simple
from the viewpoint of actual realization of mathe-
matical concepts. We will/not, in general, concern
ourselves with such a compllcated use of a simple
device. ‘

For a bibliography, the student is referred to
the very interesting lécture, "Instrumental Analy-
sis," by Vamnnevar Bush, published in the Bulletin
of the American Nathematical Society, Vol. 42
(1936), pp. 649-69. There have been, however, a
number of recent papers of considerable interest
to which reference will be made.

4. The use of mathematical machines is of increas-
ing importance for scientific and technical purposes.
Various theoretical developments require elaborate
mathematical procedures which can be carried out
only by machine methods.

Many aspects of the subject are of interest to
mathematicians. It is comnected in numerous ways
with basic logical questions and the relationship
between mathematics and the other sciences. There
are innumerable contacts with the extraordinary
technological advances which are characteristic of
our civilization. In mathematical machines, one
finds examples of practically every essential mod-
ern technique, either of a mechanical or electrical
nature. These techniques have a very respectable
mathematical basis with which the analyst should be
familiar.

In addition the subject is rapidly approaching
the intellectual maturity corresponding to the re-
search level. The earlier theoretical developments
were geometrical in character, although the paper
of Shannon on the differential analyzer was based
on algebraic reasoning and is definitely of a more
abstract nature. Recently, the problems of computa-
tion on sequential digital machines have indicated
the importance of stability and this is deep. The
stability problem in continuous machines is pre-
cisely analogous fo the design of computations in
the sequential digital case.

The recent papers of Goldstine and von Neumann
show that computational questions may require ad-
vanced mathematical technigques. There are, of
course, many scientific and technical problems for
which no mathematical solution is known. But even
in the case where mathematically satisfactory solu-
tions have been obtained considerable research may
be necessary before satisfactory computational pro-
cedures can be set up.






FOREWORD TO THE REVISED EDITION

Books and mathematical devices have one regrettable aspect
in common. Initially, they have "bugs." It is hoped that in
this second edition, we have eradicated most of the errors.

Planographing should at least make the fumigation monotonic.

Part I has been expanded Somewhat and a summary added. The
discussion of frigger circuits in Part II has been altered
and augmented. In Part III, new chapters on "Electronic
Digital Computers" and "Noise, Accuracy and Stability"‘have

been added. The pages have been renumbered and an index added.

The author wishes to thank the many persons who have shown
an interest in the book, indicated errors and pointed out
other ways in which the book could be improved. The assist-
ance and comments of H. H. Goldstine were particularly valu-
able as well as the author's contact with Robert Walker.
The kind cooperation of Miss Russell, Miss Pelliciari and

Mr. Aichroth is gratefully acknowledged.
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- PART ONE: DIGITAL MACHINES

. Counters

1. Let us consider the natural numbers 1, 2, 3,
... The natural numbers can be regarded either as
ordinal numbers or cardinal numbers. From the ele-
mentary standpoint both these notions can he asso-
ciated with the operation of counting. The ordinals
are used in the operation itself, the cardinal de-
note the result. For instance, if we count seven
objects, we might say one, two, three,. four, five,
six, seven, and this is clearly an ordering. When
we say that there are seven objects, we give the
cardinal meaning to seven.

Thus both aspects of the natural numbers are im-
mediately associated with the operation of count-
ing and it is in connection with aids to counting,
that we will find the natural numbers realized.

Any sequence of distinguishable objects which
can be precisely labeled can be used as a realiza-
tion of a finite part of the set of ordinals. When
we "count out loud," there is a sequence of sounds
memorized by the counter, which constitutes a
realization. It is difficult to say whether this
or "counting on one's fingers" is the most elemen-
tary. The word digit, of course, refers to finger.
It is customary to assume that the Roman numbers
I, II, IIT, ITII, represent fingers, and it has
been proposed that V stands for the hand with four
fingers closed and thumb extended. X stands for
two hands. (Cf. Clodd, E. Fistory of the Alphabet.
New York: Appleton-Century Co., 1938, p. 92.)

0f course there are very many elementary methods
of "keeping count." For instance, we may put peb-
bles in a vase, cut notches in a stick like Robin-
soh Crusoe, or use the "quipus" or knotted cords
of Peruvian Indians. (Cf. loc. cit., p. 36.)

However, keeping score by means of the chalk
marks, as for instance in the method illustrated

HH HH A HH T

in which the chalk marks are grouped in certain
ways has certain advantages. Note that the score
can be immediately read off as 23 from the four
full sets. The essential point here is apparent
from our use of the decimal itself. We do not use
100 symbols for the numbers 0 to 99; instead we
use ten symbols and position. We use the fact that
the numbers from 0 to 99 are abstractly equivalent
to the pairs of numbers «B, where a and B run be-
tween O and nine. This correspondence is order
preserving and hénce inferentially it preserves
the usual operations.

In a sense, then the decimal system of motation
satisfies certain aspects of our definition of a
mathematical machine. It is a realization of the

concept of natural number, not as we would imagine
from the definition by a simple sequence of ele-
ments but by pairs or n'tuples which have the same
prdering.

All practical modern counters use the decimal
system, and it is important to realize that we
have avoided the actual realization of the set of
ordinals and are using something abstractly equiv-
alent to it, i.e., the set of ordered n'tuples of
digits.

T T T T <71
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One of the simplest and most convenient methods
of realizing an n-tuple of digits is the abacus
(ab’a~kus). This consists of a number of beads
strung on a sequence of wires in a framework. The
beads are divided into two sets by a dividing line.
In the upper portion, "heaven," we have one bead
on each wire. This bead counts five. In the lower
portion, "earth," there are five beads, which are
of value one on each wire. The zero position is the
position in which all the beads are against the ex-
teriozkgoundary and a digit is represented by push-
ing beads of the proper value against the middle
dividing line. Thus the abacus in the diagram is
set up to represent the number 471.

The diagram represents the Japanese abacus. In a
picture of a Chinese abacus, I have seen there are
two beads in "heaven." For a description of the
use of the Japanese abacus, see Yoshino, Y. The
Japanese 4bacus Explained. Tokyo, Japan.

The abacus then realizes an n'tuple of digits. A
counter is a device which realizes an n'tuple and
also performs the operation of carrying. For in-
stance, we may have a series of dials (or cylinders)
covered by a plate with windows, arranged in such a
way that only the digit at which the arrow is point-

ing will show. This then, of course, will represent
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an n'tuple of digits. If we have a method of "car-
rying," from one place to another such a machine

O O O O O [~

can be used as a counter since it will register
ten times the number of turns of the wheel further-
est to the right.

Now there are essentially two ways in which "car-
rying" from one place to the next can be achieved.
One way is to use a pair of equal gears, with one
stripped of all but 1/10' of its teeth. When the

unit dial passes from 9 to 0, the teeth on it en-
gage the teeth on the tems dial and move it a tenth
of a revolution, thus carrying one. Thus, if the
units dial is turned once completely, the ten's
dial will move 1/10. Ten revolutions of the unit
‘dial will yield a complete revolution of the tens
dial and one-tenth of the hundred wheel. Notice
that if the wheels are engaged directly as in our
illustration, then adjacent wheels must turn in
opposite directions. It would be preferable to in-
sert an idler gear between the two gears in which
case all dials turn in the same direction.

In this arrangement then, each dial except the
first and the last has two gears on it, ome to
receive from below, the other to transmit to the
next highest.

The dial form of the counter is very common in
the older instruments. For instance one of these
is pictured in Dyck, W., Katalog mathematische
unsw. Instrumente. Munich: Wolf & Sohn, 1892, p.
148. :

In modern calculating machines, a cylinder is
preferred to a dial, because of the greater com-
pactness and greater ease in the reading of the
answer.

Each cylinder is wheel-like with a broad rim.
The interior of the rim on the side next to the
lower decimal place is fully toothed; that om the
other side is partly toothed. There is an idler
gear on a fixed partition between these. When a

given cylinder passes from 9 to 0, the partly
toothed rim engages the idler which is in mesh
with the fully toothed part of the cylinder for
the next highest place. :

The alternate method for tens transmission in a
counter is to gear each dial or cylinder directly
to the next by a gear ratio of ten to ome. This
method has the greatest accuracy, there is no
chance for a failure to transmit the one to be
carried, and this is, of course, the reason why
it is preferred by the public utility corporations
in gas and electric meters. Such a gear ratio is
indicated in the following diagram. Here we look
down on such an arrangement of gears and dials.

Each relative unit shaft is geared to an idler
shaft in a 1 to 2 ratio and the idler shaft is
geared to the relative ten shaft in a 1 to § ratio.

In the case of the stripped gear carry, a wheel
or dial should come to rest in one of ten possi-
ble positions. This can be done by means of a
positioning wheel whose circumference is dented.

A simple spring device, consisting of a plunger
sliding in a sleeve and pressed by a spring can be

used to insure that the dial comes to rest in one
of the ten possible positions. This is very desir-



able to insure accuracy and ease of reading. It
also insures that if the stripped gear has more
than one-twentieth of the original teeth, the car-
rying will take place.

In the case of the complete gear carry, accuracy
in reading is assured if we remember that each
dial represents approximately the reading of all
later dials combined. Thus, in the dials illus-
trated, it is clear that the reading should be

1,889, rather than 2,889, since the tirst dial
reads almost 2, not almost 3. A certain amount of
skill is required to read such dials accurately,
but there is no ambiguity.

Another method of indicating the digit which ap-
pears ina decimal place in a counter is by means of
a multiposition switch. Attached to the cylinder
for the place is a brusb which makes different
contacts in accordance with the position of the
cylinder. In electrically operated apparatus this
means that the digit represented as in this place
corresponds to a specific closed circuit.

Besides the radix 10 system for representing
natural numbers, there is also the radix 2 system.
In this system there are only two digits, instead
of ten and it is frequently preferred by designers
of electrical computing devices. An example will
illustrate the representation. Thus the number
1,443 = 1,10° + 4.106% + 4.10 + 3 = 1.2*° + 0,27 +
1.257+ 1,27 + 0.2° + 1.2% + 0.2° + 0.2° + 0.2° +
1.2 +1.2° = 1,01101,00011. The conversion is
readily accomplished if we have a table of powers
of two. Thus the highest power of two is less
than 1,443 is 2'°. = 1024. The expansion begins
therefore with 1.2'°. Subtracting 1,024 from
1,443, we obtain 419. Since this is smller than
512 = 2°, the next term in the expansion is 0.2°.
We can, however, subtract 2° - 26 and obtain the
term 1.2°%. The process should be clear now.

The radix two system has certain advantages due

to the fact that two is the smallest number that
can be used as the base of a radix system. Thus a
monetary system based on a radix two system will
permit one to make up any sum of money in a given
range with the least number of bills.

2. In general, electro mechanical counters are
based on the usual counter wheel which has a
clutch connection to a continuously turning shaft.
The clutch is magnetically controlled. When the
clutch is energized by a signal it connects the
shaft to the counter wheel, causing the latter to
turn and register. (Cf. 4 ¥anual of Operation for
the Automatic Sequence Controlled Calculator. Cam-
bridge: Harvard University Press.)

On the other hand, relays may be used directly
to form counters. We describe a dyadic counter
based on these.

A relay is an electrically controlled switch. It
consists of an electromagnet which activates an
armature upon which switch contacts are mounted.
Some of these are closed when the electromagnet is
not operatimg and these are called "normally
closed." We will indicate these by «. The nmormally
open contacts we will denote by B.

- Now if an electromagnet can also be energized by
a circuit through a B contact, the relay will hold
itself when an impulse is received. If the holding
circuit goes through an ¢ contact of the second
relay, the second relay can be used to release the
tirst. Suppose, furthermore, that the signal im-
pulses are channelled so that when the first relay
is not activated, the signal will pass through an
o contact to its (the B) coil but when it is ac-
tivated a signal impulse will pass through a B
contact to the second (A) relay. Thus the first
impulse will set the first relay and a second im-
pulse will return the system to its original state.
It is clear that a number of relays can be used in
this fashion to obtain a cyclic system of period n.

In the accompanying diagram, B and B' refer to
coils on the first relay. The first impulse re-
ceived passes through the « contact and causes this
first relay to operate. This opens the o contact
and causes the two B contacts to close. (If the
current is d.c., a condenser across the a contact
helps this action.) When a second impulse is re-
ceived it passes through the lower B contact to
the A coil on the second relay. The « contact on
this relay is opened which also opens the holding
circuit for the first relay. Theoretically a num-
ber of these holding relay combinations could be
connected in series to constitute a dyadic counter
The dotted line indicates the connection from the
output of the present stage to the input of the
next. Actually it would be necessary to insert a
pulsing circuit between each stage.
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For completeness, at this point, we mention the
electronic counter. These will be discussed later
in more detail when we consider the vacuum tube.
There are a variety of these designed for use in
radiation counters and the most modern large com-
puters are based on them because of their high
speed. .

The basic element is what is called a "trigger
circuit." This circuit has two states just like
the above pair of relays and an impulse can change



it from one state to the other. Consequently, the
binary system is favored in these counters. While
a good relay pair can act in about one thousandth
of a second, trigger circuits are perhaps five
hundred t1mes as fast.

There are a variety of ways in which radix 10
is reintroduced into such a system. One way is to
take a four-place binary system and have it ar-
ranged to reset itselt when 2° + 2 appears, i.e.,
permit it to lose a number of its .positions. It
should be clear how this can be accomplished with
relays and there is an electronic equivalent.
There is another way involving ten pair of trigger
circuits in which the impulse is sent to the next
pair each time and each pair resets the previous
. one. This latter is very similar to the cyclic

arrangement of relays mentioned above.

Il. Digital Adders

1. The fundamental step in counting is the pass-
ing from a number to its successor. Addition can
~be defined in terms of counting as a process in
which one first counts up to a and then proceed-
ing; one, also, counts the further steps until
‘one has counted b. This yields a + b.

Thus two counters can be used as an adder. We
begin by setting both counters at zero. We then
count a on the first, then we count simultaneously
on both until the second reads b. The first. then
reads a + b. To add another number ¢ to the result,
we set the second counter back to zero and then
proceed to count on hoth simultaneously until the
second reads c.

This illustrates two essential parts of an adder
based on counters. The first counter is the basic
counter, the second gives the measure of the ad-
dend.

However, the above does not utilize the advan-
tages present in the decimal system. We can, of
course, modify the basic counter so that one can

‘count not only by units, but by tens, hundreds,
and so forth. Addition can then be accomplished
with a much shorter feeding process. For example,
suppose we have a four-digit counter and let us
impress,. say, a number a,, d,, g, a4 on*it. To
add B,, B., Bs, Bs, we successively add g, to the
unit wheel, B, to the tens, and so forth.

Naturally this raises the question of how this
can be done conveniently. An essential device for
this is the rachet connection. It was lntroduced
quite early, I believe, by Pascal.

A rachet arrangement connects two shafts in such
a way that when one shaft moves in a certain direc-
tion, the second shaft is constrained to move with
it, but if the first shaft moves in the opposite
direction, the second may remain fixed. The connec-
tion involves a cog-wheel with teeth flat on one
side and rounded on the other, and a wedge-shaped
piece of metal called the ratchet. The cog-wheel
is on one shaft, the ratchet is mounted on a wheel
on the other shaft in-such a way that its point is

pressed against the cog-wheel by a spring. Thus in
the accompanying diagram, if the cog-wheel is
turned clockwise, the. rachet catches against the
flat part of the tooth and the rear wheel rotates
with the cog-wheel. If the cog-wheel moves in the

opposite direction, i.e., counter-clockwise, -the
ratchet is supposed. to slip over the smooth part
of the tooth and the rear wheel is supposed to re-
main stationary under the expected load conditionms.

2. The simplest way to introduce a convenient
feed for a counter for the purpose of making it
an adder is by means of a dial and rachet arrange-
ment on each position of the counter. We indicate
this, schematically, in the following diagram:

‘Counter
Unit
Dial

Counter
Hundred
. Dial

Counter
Tens
Dial

Feeder
Tens
Dial

Feeder
Hundreds
Dial

Here the letter t indicates the tens transmission
and r denotes a rachet connection between the

- feeder dial and the counter dial. It is clear that

the top line of dials with their tens transmission
constitute the basic counter. To add B,, B,, Bs to
the number present on the basic counter, we first
turn the unit feeder dial to the number B,. This
adds B, to the counter unit dial. We next turn the
tens feeder dial to B,, thus adding B, 0 to the
basic counter. (In this operation the units counter
dial should be disconnected either by the nature of
the tens transmission arrangement [for instance, it
may contain a rachet comnection], or by a special
clutch for this purpose, which we have not indi-
cated.) We then turn the hundreds feeder dial to
By, thus adding g, 00 to the basic counter. (The
tens counter dial should be disconnected during
this process. Cf above. ) We now set each dial



back to zero. Owing to the rachet comnection, this
last operation does not disturb the counter.

A variation of this is to have the rachet work
in the opposite direction so that setting the
dial does not affect the basic counter. However,
the feed dials are arranged in a semicircle and
their circumference is, say, half toothed. Within
the circle is a wheel with teeth on part of its
circumference. After all the dials are set, the
inner wheel is revolved once. The teeth on the in-
ner vwheel engage in turning the feeder dials, set-
ting them back to zero and feeding in the proper
value through the rachet connection. This method
involves fewer operations than the previous ar-
rangement and has certain more desirable opera-
tional characteristics. It is also more adaptable
for multiplication as we shall see.

0
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3. Another way in which a feed can be arranged
is by means of the Leibnitz wheel. The latter is
a cylinder along whose lateral surface teeth of
varying length are placed. Associated with this
" wheel is a smaller gear which meshes with a vary-
ing number of teeth, depending upon its positiom.

The cylinder and smaller wheel have parallel axis
and there is a small pusher, which permits one to
displace the smaller wheel along its axle. The
axle of the smaller wheel has a square cross-
section.

Each tooth starts at the same plane perpendicular
to the axis but extend different amounts along the
lateral surface of the cylinder. Thus, if we as-
sign a length of nine units to the longest tooth
the next longest will be eight and each will be
one shorter than the next longest. Consequently,
in one revolution of the cylinder, the small wheel
will engage 0, 1, 2, etc., up to nine teeth depend-
ing upon its position as determined by the pusher.
(Cf. Galle, A. Mathematische Instrumente. Leipzig:
B. G. Teubner, 1912, pp. 25-29, in particular fig-
ures 8 and 9.) The earliest commercial machines,
tgosi of Thomas and Burkhardt used the Leibnitz
wheel.

The Ohdner wheel is a similar feed, only here we
have retractable teeth instead of ‘teeth of differ-
ent length. The number of teeth which protrude is
set before addition. This, of course, is consider-
ably more compact than the previous arrangement.
(Cf. Galle, loc. cit:, pp. 33 and 34, figures 33
and 34.)

k|

Another feed similar to the Leibnitz wheel is
the feed of the "Gauss" machine. (Cf. Galle, loc.
cit., pp- %, 35, 36.) Here we have a disk instead
of a cylinder which has a different number of
teeth at varying distances from the center. If the
disk is revolved once, each feed wheel comes in
contact with a varying number of teeth depending
upon its position.

An ingenuous variation on the wheel type feed is
represented by the Haman machine.. (Cf. Meyer zur
Cappelen. Nathematische Instrumente. Leipzig:
1944. Reprinted Aon Arbor, 1947. Pp. 93—95.% Let



us consider two cylinders side by side. Fach cylin-
der has a depression on its circumference. Thus the
combination has a depression for its entire length,
which depends upon the relative position of the

two cylinders. One of these cylinders is fixed;

the other is commnected to an input lever. Thus the

position of this input lever determines the length

of depression common to both cylinders.

Concentric with the pair of cylinders is a gear
wheel with teeth on its inner circumference. There
is also a lever which is pivoted on a point A. One
end of this lever is a roller which rests on the
pair of cylinders, the other end of this lever is
a single gear tooth. As the point A revolves the
gear tooth engages the outer gear wheel only when
the roller is in the depression and thus a varia-
ble feed is accomplished.

4. In the Mercedes Euclid machine, a variable
feed is obtained by means of a lever. Instead of
the Leibnitz wheel, we have nine racks (i.e., lin-
ear strips with gear teeth on them). These racks
are in parallel grooves. One end of each rack has
a pin which fits in a slit on the lever. Thus,
moving the lever causes the rack to move in the
groove. Each rack corresponds to a digit. The piv-
ot for the lever is located so that when the lever
is turned through a fixed angle 6, each rack is

displaced in its groove an amount proportional to .
the corresponding digit by a theorem on similar
triangles.

For each decimal place we have a small wheel.

The axle for this wheel is perpendicular to grooves
for the racks and hence if we wish to feed the dig-
it o into a given place, we may displace the wheel
along its axis until it is over the o rack. We then
turn a crank which turns the level through 6 and
hence moves the o rack, a units. Since the wheel
and the a rack are now in contact, the wheel turns
a corresponding amount. (Cf. Galle, loc. cit., pp.

30-32.)

In view of the advantages of the keyboard input,
the actual positioning of the wheel which connects

the racks with the rods which go into the funda-
mental counter is by means of a keyboard arrange-
ment. On‘each rod there are five wheels and each
wheel is normally between two racks. Pressing a
key moves one of the wheels onto the appropriate

rack. ;
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Basic Counter

H. ALl the previous feeds were similar in that a
choice of possible motion is made in order to ob-
tain the proper feed. A somewhat different princi-
ple is used as the basis of keyhoard machines, for
instance, the comptometer, an American invention.
Here the various feeds are obtained by stopping a
motion at different places. To illustrate the prin-
ciple, we introduce an extremely simplified version
of such a feed.

‘In this version, the feed is actuated by pulling
on the crank marked "handle" until it reaches the
stop. A segment of a wheel is connected to the
handle by means of a spring. The segment has the
same axle as the crank and pulling on the crank

O handle stop

will cause the segment to revolve until it is
stopped by whichever one of the ten keys is pressed
down. Thus the amount of rotation of the segment is
determined by pressing down the key. A portion of
the rim of the segment is toothed and gears into a

crank



feed wheel which has a rachet connection with the
dial of the corresponding counter. When the handle
is released, a restoring spring returns the segment
to its original position. This does not affect the
counter due to the rachet comnection. Another exam-
ple of a key feed is given in Dyck, op. cit., p..
147, No. 25.

It is desirable that the original handle he per-
mitted to make a complete revolution in an opera-
tion like the above. Also that the feed for differ-
ent decimal places occur at different times both
to distritute the load and also to avoid certain
difficulties with the tens transmission which we
will discuss below. This can be accomplished by
making a cam connection between the segment and
the handle shaft. The crank is rigidly connected
to a wheel with a bump on it. On the segment is a
cylinder in which is a spring and a plunger which
presses against the rim of' the wheel connected to
the handle. When the wheel begins to rotate, the
plunger slides over the wheel until the bump comes
in contact with the plunger. Then the segment
moves with the cam wheel until the segment is
stopped by the pressed down key. The bump now _
presses the plunger into the cylinder and passes
by. Thus one turn of the crank results in one feed.
For different decimal places, the bump is at a dif-
ferent position, relative to the handle, so that
each plane is affected at a different portion of
the revolution of the crank.

The above is an extremely simplified version of
an adding machine based on the original comptom-
eter principle. In practice for various reasons,
the stops are not immediately associated with the
keys but instead are connected to them by means of
levers. There are precautionary measures to insure
that no two keys corresponding to the same place
can be pressed down at once and that normally the
zero stop is down. Also the problem of timing as
between different decimal places is treated in a
more complicated but also more efficient manner.
And finally, of course, all modern machines are
designed for a multitude of functions, which tend
to complicate the original situation.

6. There is one variation of the keyboard machine,
which may well be mentioned at this point. The nor-
mal keyboard has a bank of keys, i.e., ten rows of
ten keys each. There is a touch system for such a
board similar to the touch system in typing so that
the operator need not look at the board but only at
the work. However, in order to simplify this touch
system, ten key machines have been developed in
which one enters a number 359 by successively.press-
ing the 3§ key, the § key and the 9 key.

In the machine, there is for each decimal place

available a set of feed controls or feed limiters.
These feed limiters can shift relative to the ac-
tual feed and initially the feed limiter on the
left-hand side of the set is connected to the key-
board and it can also be thought of as being to

the right of all the feeds. When the § key is
pressed, this left-most limiter is set at the value
3 and shifted onto the feed unit position which,

of course, is furtherest to the right of all the
feeds. The next left-most limiter or feed control
is now connected to the board and when the 8 key

is pressed, this control is set at 8 and the set

of limiters shifted. Thus when the 9 key is final-
ly pressed, the first limiter controls the hundreds’
position, the second the tens' position and the
third the units' position. The machine can then feed

389. .

Again there are certain variations of this de-
vice. For instance, there are double zero and triple
zero keys, which make it possible to put a number
like 6,760,000 in four steps.

7. The magnetic clutch counter can also be used
as a feed for an adder. One recalls that in this
type of machine, the counter wheel has attached to
it a revolving brush which makes different contacts
in order to indicate the digit. The machines are
based on a time cycle with a fundamental period.
This fundamental period is divided into fifteen
subperiods. The first ten of these are numbered
9,8,%7,6,5,4,3, 2,1, 0, and by means of a
commutator arrangement a pulse is sent through the
corresponding contact for the counter wheel brush
during each of these subperiods. Thus if a counter
wheel stands at 4, its brush will receive a pulse
at the 4 subinterval. Suppose this brush is con-
nected to another counter wheel which is to receive
the feed of 4. The 4 pulse activates a holding re-
lay which in turn activates the magnetic clutch.
This clutch comnects the counter wheel of the re-
ceiving counter to a revolving shaft. At zero time,

'the hold relay is discomnected and the clutch re-

leases. Thus the amount of turn is four units and
corresponds to the time of the initial pulse.

Instead of the initial counter and commutator
arrangement, one can substitute a punched card and

" thus add a number coded on the card. This card has

a hole punched in it for each decimal place and
moves between two rollers which are synchronized
with the fundamental cycle. At the appropriate sub-
interval, a contact is made through the hole in

the card. One thus has a pulse properly timed to
yield the corresponding digit of the addend and
this is sent to the receiving counter. (Cf. 4
Hanual of Operation for the Automatic Sequence
Controlled Calculator. Cambridge: Harvard Univer-
sity Press, 1946.)

8. In our description of the ahove devices, we
have always supposed that the counter is like
those described previously and that the various
feeds for different places occur successively. For
the type of counter we have described up to now,
this is essential, since otherwise there will be
interference between the feed and the tens trans-
mission. In the case of ten-to-one gear comnection



tens transmission, feeding different places at the
same time will cause jamming. In the case of the
partially stripped gear tens transmission, if we
have simultaneous feeding, the tens transmission
may have no effect. Thus if we add 66 to 66, we
will obtain 122. For, due to the feed, both the
tens wheel and the unit wheel are moving. The par-
tially stripped gear then just moves with the tens

wheel and does not increase the amount of rotation’

of the latter.

For this reason most calculating machines use a
different arrangement. The basic counter does not
possess a tens transmission. Instead, the machine
possesses an auxiliary feeding device for this
purpose. When the counter wheel passes from Y to
0, no transmission takes place, but instead the
auxiliary feed is set up to add a one later. After
the original feed has been put in, then these aux-
iliary feeds are applied successively.

In general, the addition of a number corresponds
to a complete revolution of a certain shaft. Dur-
ing the initial part of this rotation, the origi-
nal feeds are entered, and; it any carrying is
involved, then the auxiliary feed is set up for
this purpose. Then the auxiliary feeds are intro-
duced successively with the units first then tens,
etc. The auxiliary feeds are then cleared.

To see this, one can operate such a machine very
slowly and watch the numbers change on the main
~counter. Suppose we have 666 on the counter and
wish to add 334. The successive positions of the
m,in dial are:

06 66 Initial

0777

8 g»g g Original feed

09 9 0/ Here the tens transmission has been
set between the last two places.

09 00 Here one has been added to the tens

place and the auxiliary feed for
the hundred place set up.

0000 Here one has been added to the hun-
dreds place and auxiliary feed for
the 1000 place set up.

1000 Here all the auxiliary feeds have

been used. After this the aux111ary
feeds are cleared.

The machines based on the leibnitz wheel or its
derivatives (except the "Gauss" which feeds the
places successively) in genmeral have the auxiliary

feed on the same general plan as the original feed.

Thus the Leibnitz wheel has an extension on which
is a sliding cylinder with a single projection.

wheel

wheel

A prong determines the position of this cylinder.

Thus when the unit wheel passes from nine to zero,

it moves the prong which moves the cylinder on the
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tens wheel. In the new position, the single pro-
jection on the cylinder will eventually engage a
feed wheel and move it a tenth of a revolution.
This feed wheel is on the same axle as the feed
wheel over the major part of Leibnitz wheel. Hence
the effect of the above is to increase the tens by
one. At the end of the cycle all the prongs are
moved back to the neutral position.

The situation in the key board machines is anal-
ogous. Here we have feed based on a stop principle.
Normally, the feed is stopped at zero, but when
the unit wheel passes from nine to zero, it re-
moves the zero stop on the extra feed at the tens
place. The zero stop is then retained at its new
position until the end of the cycle.

A somewhat different type of carry is employed
in the contact type counter. There are two tens
carry contacts. One of these is made and held if
during the feed the counter wheel passes from nine
to zero. During a latter part of the operational
cycle, a pulse is transmitted to the next highest
counter. This pulse operates a hold relay which in
turn causes the magnetic clutch to engage for a
unit time after which the hold relay is released.
The other contact is made it the counter wheel
stands at nine after the feed and it transmits a
carry impulse received from below to the next high-
est counter. The impulse also turns the given
counter from nine to zero. Both carry contacts are
knocked off at the end of the cycle.

9. Owing to the nature of their feeds and tens
transmissions, many of the above devices cannot be
operated in a reverse direction in order to sub-
tract. Subtraction must be, in general, carried
out by a different method. This method utilizes
the fact that if our counter contains n places

" then the number on the counter is not necessarily

the actual total but rather the total modulo 10P.

For example, suppose n = § and we have (0946
registered on the counter. Furthermore, suppose
we wish to subtract 325. To do this, we add
100,000 - 325 = 99675. The actual total then will
be 100 621. However, since our counter has only
five floures, the first one will not appear and
thi counter will register 00621, the desired re-
sult.

The rule for passing from the number to be sub-
tracted to the number which is to be added is a
particularly simple one in general. In each place
except that of the last non—zero digit, one
changes the given digit o to 9 - a. However, the
exception is a little troublesome and the rule
which is utilized mechanically is the following:
Let A be a given number. Suppose 9999 is the larg-
est number which can be registered on the counter.
Then add 99,999 — A and 1. The number 99,999 - A
is 1mmed1ately obtainable from A by changing every
digit « in A to 9-- a. After this, one is added.

In many machines, provision is made for subtrac-
tion by given two values for each possible feed,
one for addition and one for subtraction. Thus, in
the original rachet dial feeds, at each position
on the dial, we find two digits, one in black and



one in red, whose sum is nine. To add, the black

digits are used; to subtract, one must use the red.

This scheme is applicable to the Leibnitz wheel
machines in general.

In the Mercedes-Euclid machine, the analogous
result is obtained very simply by having another
possible pivot for the lever. The subtraction piv-
ot for the lever is located on the nine line. If
the lever rotates around this point, then the lin-
ear displacement of the o rack is 9 - « units.

In certain of the key board machines, a key con-
trols different stops, depending on whether one is
to add or subtract.

However, there is a method of reversing certain
of the machines. In these, there is in general a
doubling of the tens transmission auxiliary feed.
With two such auxiliary feeds, one can assure that
there is a tens transmission feed which follows
the regular feed in the cycle. If there is nothing
on this feed, of course, nothing happens and the
operation is not affected.

Another method for getting the same result is to
utilize the gear train connecting the feeds to the
basic counter to reverse the relative sense of ro-
tation. For instance, we can pass from a train
with an odd number of gears to one with an even
number of gears. Or one can use a bevel gear ar-
rangement in which two bevel gears, facing each
other, are mounted on a collar keyed to the input
shaft. The bevel gear on the output is mounted be-
tween these. The relative direction of rotation
between input and output is reversed by moving the
output so that it engages the other input bevel
gear. The central position for the output is "neu-
tral.”" The tens carry trip from the counter to the
feed must be such that one gets the same result
passing from 0 to 9 as from 9 to 0.

lIl. Digital Multipliers

1. The relationship of multiplication to addi-
tion is analogous to the relationship of addition
to the operation of taking the successor, i.e.,
the fundamental operation of counting. We recall
that we add § to 4 by first taking 4 and then
passing to the successor five times, i.e., we .
count the number of times we pass to the successor.
Now if we wish to take § times 4, we add 4's five
times, i.e., we count the number of steps of addi-

ion. :

Thus an adder can be used as a multiplier pro- -
vided it can repeatedly add a quantity without re-

setting, and it has a counter to count the number
of times the addition has been performed. If reset-
ting is necessary, as in the elementary rachet dial
system, the process is far too tedious to be prac-
tical. However, resetting is clearly not necessary
in either the Leibnitz wheel or the key board ma-
chine. Even the revolving wheel and rachet dial
combination can be arranged so that resetting is
not necessary. Instead of setting the dial, one
sets up a stop at the feed value. One has a spring
on each dial so that after a feed has been made

and the gearing on the center wheel has passed on,
then the dial turns until it is held by the stop.
Thus, after every revolution of the center wheel,
the dials are automatically reset. It is clear that
this type of machine is basically similar to the

key board machines.

It is, of course, desirable to take advantage of
the decimal representation to lessen the number of
turns. This is readily accomplished by means of a
shift of the feed relative to the basic counter.
For if the feed is shifted one place to the left
relative to the basic counter, the effect of the
feed is precisely ten times as great.

Suppose now we have an adder with an auxiliary
counter and with a feed which may be shifted. We
give an example which shows how such a device may
be used as a multiplier. Let us multiply 365 by
132. To do this, we begin with the feed in the nor-
mal position and set it for 3695. Then, we apply it
as an adder twice. 730 will now appear on the basic

[ 00365] Fee
1313

[0_0 0] [00000] Basic Counter
Auwxiliary ‘
Counter

counter. The auxiliary counter has a unit feed in
the units place. Since we have added twice, this
extra feed has been applied twice to the units
place of the auxiliary counter and hence it reads
2. We now shift the feeding mechanism relative to
the counters.

| 00365| Feed

I & T
{002] [0 0 7 3 0]Basic Counter
Auxiliary
Counter

We next apply the feed mechanism three times. This
adds 10950 to the basic counter and changes the
auxiliary counter by three in the tens place. We
again shift the feeding mechanism.

Feeding Mechanism

[ 00365 |
T3¢
[032] [11680] Basic Counter

We apply the feeding mechanism once and the answer
is obtained. Both factors appear and

[ 00365]
[f32] [481870]




can be checked. We have duplicated mechanically
the elementary method of multiplication

36H
x132

730
1095

6 .
48180

More precisely, we have duplicated the operations

In the simplest type of electrically driven-.add-
ing machine, which is used as a multiplier, one has
simply a counter in addition to the fundamental ad-
- dition mechanism. The multiplicand is entered into
the latter in the same way as an addend but a lever
is set so that the board will not be cleared af'ter
each addition. Then the multiplicand is added re-
peatedly. The number of additions appears on the
extra counter. When this number reaches the unit
digits of the multiplier, the operator shifts the
two registers one place to the right. The addition
of the multiplicand is then repeated until the tens
digit of the multiplier appears in the second place
on the extra counter. One then shifts and this
process is continued until the multiplier appears
on the extra counter.

This process can be shortened by the use of
"short multiplication." Short multiplication is
simply the use of complements when this is favor-
able. Thus to multiply by 29 one multiplies by 30 -
1, to multiply by 98 one multiplies by 100 -

When the addition mechanism is also arranged for
subtraction, the above combination’/ can also be used
for division. The dividend is entered into the reg-
ister as far to the left as possible by first put-
ting it into the addition mechanism, then register-
ing it and clearing the feed. The divisor is then
entered into the feed and it is subtracted from the
dividend a number of times which appears as the
first digit of the quotient in the extra counter.
If the division is manual, the operator notes when
the remainder in the main register becomes less
‘than the divisor and then shifts the registers to
the left. A "shortened division" is also possible
if the registers will hold negative numbers. If
the usual remainder is large relative to the divi-
sor one overshoots and then after shifting one adds
for the next place, until one gets a positive re-
mainder in the main register. This addition is
counted negatively in the quotient register.

. In most machines division is automatic. There is
a provision by which the subtraction is permitted

to.overshoot so that the remainder becomes negative.

At this point, the divisor is added once and the
registers shifted automatically.

For dutomatic multiplication, in general, another
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register is introduced. This second register holds
the multiplier and the multiplicand appears in the
normal addition mechanism as before. The multiplier
register acts like a negative counter and each
time the multiplicand is added, one is subtracted
from the units place until the units place reads
zero. At this point, the shift occurs and the
process is repeated for the tens place Sometimes
this automatic multiplier register is equipped-
with an extra input of the ten key type or even a
full key bank, which, of course, can be used to
retain the multlpller In other cases, the multi-
plier is first entered into the regular key bank
and then a special key is pressed which transfers
this into the multiplier register. The latter can
be modified so as to retain the multiplier.

For special bookkeeping purposes, machines have
been developed with many registers and special
control racks, so that a sequence of operations
can be performed with a minimum amount of atten-
tion from the operator. Thus if a sequence of
operations is to be performed with, say, only two
numbers varied from one sequence to the next,
these machines can be set up so that after the
operator enters one such variable the machine will
proceed automatically to the point where the sec-
ond variable is to be entered.

2.. There are other methods of obtaining directly
the multiples 730, 1095 and 365 of the multiplicand
rather than by repeated addition as above. One such
method is that of the Selling machine. Here the
multiplication is accomplished by means of a com-
bination of links formed into a number of parallel-
ograms similar to usual extensible brackets. In the
accompanying diagram, it is obvious that each of
the parallelograms are congruent and hence that the
length AA, =k AjA,. Thus this arrangement permits
us to ob aln a dlspiacement which is an integral
multiple-of another displacement. This holds even

if we consider only a change in AgA; and the corre-
sponding change in AjA, .

"In the Selling machine, we have for each place a
pair of such link arrangements, with the corre-
sponding A points connected by cross bars. At the
center of each cross bar there is a hole, with a
pin which can be pushed down by a key or push but--
ton. In line with these holes, there is a long bar
which has holes corresponding to cross bar holes
when the parallelogram arrangement is in the most
contracted position.

The multiplication is begun with the parallelo-
gram arrangement in this latter position. The mul-
tiplicand is entered into the machine by pressing
the key at each place for the corresponding digit.



This connects the cross bar for that digit to the
underlying bar.-

Now if the lowest cross bar is moved an amount B,
the o cross bar is moved an amount af. If B is the
first digit of the multiplier, then the lowest
cross bars are all moved an amount 8. Then if the

i'th digit of the multlpllcand is a;, the underly-
ing bar in the i’'th case is moved Ba;. This under-
lying bar has a rack extension wh1ch turns a wheel
connected to a counter. This counter has a rather
special method of tens transmission, which in-
volves the simultaneous addition from two sources

~and we shall discuss it later.

After the first multiple of the multiplicand is
fed into the counter, the counter shifts relative
to the feed mechanism and the second multiple is
fed in. The rest of the multiplication then is
similar to the previous process.

,3. Another method of obtaining the multiples
can be traced back to the "Napier Bones" and it
will be interesting to consider this device.

3 7
0] 0

8 4
0 1

9 1
0 2

2 8
1 2

5 5
1 5]

8 2
1 4

1 9
2 4

4 6
2 5

7 5
2 6

In one form, we have strips of ten different
kinds, a kind for each digit a. Let us describe an
« strip. It has nine squares arranged one below
the other along it and each square is divided by
the diagonal of negative slope into two triangles.
If we go down to the B square, we find two digits,
one, Y, in the lower left triangle and the other

_® in the upper right-hand triangle. y is the digit
in the tens place of the product of o« and § and
is the digit in the units' place.

The various multiples of the multiplicand are
obtained as follows: For each digit of the multi-
plicand, we take a strip of the corresponding kind
and lay them side by side in the order in which
they appear in the multiplicand. The product of
the multiplicand and B can now be read from the §
row. The units digit is obtained from the upper
right-hand triangle on the extreme right of the 8
row. We get the tens digit by adding the digits in
the next pair of triangles in the B row and the
hundreds digit from the next pair, addlng one if
there is anything to carry from the tens’ place
Thus, in our example, we would have
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0 3 6 5
0 0 0 0

0 8 ) 0
0 0 1 1

0 9 8 ) 5
0 0 1 }

It is evident that the method described when ap-
plied to the third row will yield

15
18

0%

There is another form of this device which fa-
cilitates the addition and carrying. Here again
we have strips of ten different kinds, but on the
« strips for each § we have a sequence of digits,
written one under the other, beginning with & and
going down to & + B — 1, with of course 0, 1, 2,
etc., instead of 10, 11 12, etc. These numbers
are written along the r1ght—hand side of the strip.
From each number, there is an arrow which points,
in general, to one of two places on the left
edge of the strip. The upper one of these two
places is down y lines below the uppermost digit
of the set and integers of the set preceding 0
have their arrows pointing at this place. The
other place is one line lower and the integers be-'
ginning with zero have their arrows pointing at
this lower place.

-———— 3
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6 6
7 /7
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9 9
8 2
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The multiples are obtained as follows: For each
digit of the multiplicand, a ccrresponding strip
is chosen and the strips are laid side by side in
the order of the digits of the multiplicand. Each
multiple is obtained by starting at the right hand
of the corresponding row and following the arrows.
Due to the slant of the arrows, this procedure ac-
complishes the equivalent of the addition of pairs
of digits of the previous method and also any car-
rying that might be necessary.

0 3 6 5
0= 6 2 0
Q= 9 8 5
1 ) / /
, 9 6
, 2‘!&\\\\“ f— 0 T

4. The above process of "splitting" the multi-
plication table is the basis of the "Millionaire"
machine, as proposed by the French inventor,
Bollee. We describe the essential idea in terms
of our previous example. (Our description differs
slightly from the precise situation.) Again, we
wish to multiply 365 by 132. The machine has three
feeds, one for the units in the multiplication
table, one for the tens in the multiplication
table and one for the tens transmission.

We begin by entering the multiplicand, 365, into
the machine. We then select 2 as the last digit of
the multiplier and enter it into the machine at
the proper place. We then turn the handle once.
During this last operation, the machine proceeds
as follows: Firstly, using the units feed, it en-
ters 620 into the fundamental counter. (Note: 2 x
3=6,2x6=12, 2 x 5 = 10. The digits 620 are
the unit digits in these products.) Next it ap-
plies its tens transmission feed. In the third
step, the fundamental counter is shifted. Then,
using the tens feed, it enters 0 1 1. The result

Feed 00365K5][00365]
Counter [0 062 0] [00620]

Result of Result of Step 3
Steps 1 and 2 )

is 7 3 0. Then the tens transmission feed is used
again.

Feed

007380
Result of Steps 4 and )

" Counter

Thus we have entered the first multiple of 3, 6,
h and the fundamental counter has also been shifted
t0 a position suitable for entering the second mul-
tiple. We now move the multiplier indicator from 2
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to 3, the second digit of the multiplier 132 and
turn the crank. The machine repeats the previous
five steps with three instead of two. Firstly, it
feeds in 989 by means of the units feed, yielding
9580. Then the tens transmission is applied, yield-
ing 10,580. Next the shift is made. Then from the
tens feed, 011 is entered. This yields 11,680. Fi-
nally, the tens transmission is again applied.

We are now in a position to add the remaining
multiple, 365. We shift the multiplier indicator
to 1 and turn the crank. The machine then shows
48,180. (In the above description, we have used
the order 2, 3, 1. I believe in the actual machine,
the order would be 1, 3, 2, and the shift works '
the other way. However, the above is somewhat sim-
pler from a theoretical point of view and we re-
tain it.)
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The part of the machine into which the multipli-
cand is entered, is analogous to that found in the
Euclid machine. We have nine racks, one for each
digit, mounted so. that they can only move length-
wise and parallel to each other. For each place in
the multiplicand, we have a pinion, mounted on an
axle perpendicular to the lines of the racks. This
axle has a square cross section and the pinion can
be displaced along its axle. The number 3, 6, 5 is
entered by moving the pinion in the units place,
until it meshes with the rack for the digit five.

Similarly, we move the pinion in the tens place
until it meshes with the rack for the digit 6 and
the pinion in the hundreds place until it meshes
with the rack for the digit 3. Externally, these
operations are performed by moving a knob which
projects through a slot. The slot is parallel to
the axle of the pinion and the pinion itself is
moved by certain projectioms on the lower and un-
seen portions of the knob. Thus, we have entered

“the multiplicand 365.



The multiplication feed involves a plate which
is perpendicular to the line of racks and has on
it lines of projecting rods of various lengths.
When the multiplier selector is moved to the num-
ber 2, the second line of projecting rods is moved
(up or down) to the same level as the racks. There
are in all 18 rods projecting from this second
line. (Some are of zero length.) At the beginning
of the revolution of the crank, the rod, in the
same line as the rack for the digit a, has a
length proportional to the units digit of the
product of 2 and «. Thus the rod in line with the
rack tor the digit 3 has length 6. The rod in line
with the rack for the digit 6 has the length 2,
and that in line with the rack for the digit § has
length 0.

The units feed is now achieved by moving the
plate parallel to itself until it reaches the line
containing the left-hand end points of the racks
in their undisturbed position. During this process,
each unit's rod displaces the rack in line with it,
by an amount equal to its own length, and the rack
turns whichever pinions are set on it. It is easi-
ly seen that this gives the correct units teed.-

After the units feed has been made, as the han-
dle turns, the tens transmission is applied and
the counter shifted. As the counter is shifted,
the plate is also shifted forward so that the sec-
ond line still remains in the horizontal plane of
the line of racks, but now the alternate rods are
in line with the different racks. These, of,course,
have. their length proportional to the tens digit
of the product of two and the digit of the corre-
sponding rack. Then the tens feed is made in a
manner analogous to the units feed.

IV. The Punch Card Machine.

There is another type of machine, the punch card
machine which has recéived wide commercial exploi-
tation. The punch card machine is particularly
suitable for calculations which involve many nu-
merical quantities in such a way that each numeri-
cal quantity is used a number of times. Of course,
for use in these machines, each number must be
punched on'a card, an operation more laborious
than entering a number into an ordinary calculat-
ing machine. However, once the card has been cut,
it may be used repeatedly.

The first Hollerith machine was devised for the
census of 1880. This machine was a sorter. It
divides a given pack of cards into various packs,
each pack containing only cards having a specified
property. In the census referred to, a card was
made out for each individual in the country. The
cards contained a number of columns. Each column
referred to a trait, concerning which the census
has information. In each such column a hole was
punched and the position of this hole corresponded
to the information obtained. There were ten posi-
tions for the hole, not all of which would be used
in every case. The modern cards have twelve posi-
tions or rows.

For instance, there is an "age" colummn. If a
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hole is punched in the first position, the person
would be less than ten years of age, if the hole
is in the second position, the person would be be-
tween 10 and 20, and so forth. Naturally, by the
use of two columns, the precise age in years

could be entered.

The machine acts by means of a relay which is
activated by a contact made through the hole in
the card. The principle of the action is illus-
trated in the iollow1ng simplified diagram which
is reproduced by permission of the Internatlonal
Business Machines Corporation.

CARD GUIDE END.
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The card passes into the machine between the
brush contact A and a roller B. If this diagram
were to extend far emough to the left it would
show thirteen bins. From above each bin there ex-
tends a pair of parallel guides which end in the
numbered chute blades shown. Suppose that the card
is punched "4." It will travel under the 9, 8, 7,
6, and 5 chute blades before contact is made. When
contact is made, the magnet D attracts the arma-
ture E and the chute blades, 12, 11, 0, 1, 2, 3,
and 4 follow down with the armature E. This cre-
ates an opening between the H and 4 chute blades
through which the card is conveyed by carrier
rolls to the bin. There is an extra bin for un-
punched cards.

For exanple, suppose that we wanted to count the
number of individuals in the ahove census whose
age was thirty-eight. We first set the sorter for
the column corresponding to the division into ten-
year age groups. The machine then sorts the cards
into packs, one of which corresponds to the ages
30 to 39. We then sort this pack according to the
last digit in the age.

The twelve positions permit one to make alpha-
betical entries onto a card. The alphabet is di-
vided into three groups, A to I, J to R, and S to
Z. Two holes in a column will specify a letter.
The upper hole which is in either the 12, 11 or 0
position determines the group and the second hole
in a position 1, 2, to 9 determines the alphabeti-
cal order within a group. The machine can be set



to sort relative to either set of holes. It is de-
sirable to sort relative to the 1, ...9 set first.

The above illustrates the fundamental principles
‘of the punch card machine. The combination of
punched card and electrical contact is a timing or
spatial control device which permits one to con-—
trol a desired operation in extent.

It is clear that this can be used as a feed in
an adder. When the card enters the roller a feed-
ing device begins to turn and continues until it
is stopped by a relay activated by a contact made
through a hole in the card. Actually the high end
of the card enters the rollers first, so the above
describes the subtraction process. The addition
feeder is started by the hole and ends when the
card has passed. I believe multiplication is by a
split table method.

In general, the principles of the calculating
portions of the punch card machines are analogous
to those of other digital machines, except in ome
respect. It is clearly preferable to use electri-
cal impulses rather than gear connections between
" different portions of such a machine, including
the tens transmission, since this permlts greater‘
flexibility in connections.

An important additional possibility with the
punch card machines is "keying." Thus if the ma-
chine contains two pairs of rollers, a certain
column can be used to control what is done with
some other columns. Thus the machine can be set up
to add columns 2, 3 and 4, provided we have a 3 in
the first column.

Keying is based on a "digital selector" which
consists, essentially, of a revolving brush which
makes various contacts at different times in the
fundamental cycle. Thus if a pulse which occurs at
a certain time in the fundamental cycle is fed
onto the brush, it will appear on and only on the
contact ccrresponding to this time.

These contacts and the brush are cconected to
jacks on a special board which also has jacks for
the various columns on a card and for holding re-
lays. Thus if a connection is made between the
jack for a certain column and the brush of the se-
lector and then the 4 contact on the selector is
connected to a holding relay, the holding relay
will be operated if and only if there is 4 punched
in the card column. The holding relay can then con-
trol a counter to add or subtract by means of fur-
ther connections which are also made on the hoard.
0f course, this means that the keying column has
to be read first.

Since we have contacts on the selector for each
column, we may arrange each digit to control a
relay or a number of relays. Thus any tunction de-
fined for digits can be realized or with sufficient
relays contact any number of functions. This is
utilized in various schemes involving the distrib-
utive law for addition and multiplication and can
also be used to control the punching of cards.

Instead of cards, tapes may be used. Complicated
devices of this sort have been constructed, in
which one tape is a "master tape" which controls
what different parts.of the machine will do and
the order of operations. . .

Summary

The basic digital operation is counting. Coun-
ters in general are based on the decimal system
and have a cylinder or disk for each place. The
tens transmission is based on either the partly
toothed gear carry or a continuous ten to one
gear ratio.

Adding machines involve a basic register and a
set of feeds one for each decimal place. A variety
of feeds exist, some are based on the partly
toothed gear pr1n01ple, for instance, the Leib-
nitz and Ohdner wheels, some on a stop primciple

READING

\‘ ~ N
/‘ POSITIO
\

\ READING

POSITION

MOVEMENT OF A COUNTER WHEEL IN ADDITION

Reproduced by permission of the International Business Machines Corp.
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like the Comptometer. A time interval feed is
used in the electromechanical clutch adder, elec-
trical pulses are used in electronic digital com-
puters. A lever and rack feed and a cam type feed
have also been described.

The tens transmission for the register in an
adder must not jam the addition feed. Four systems
have been developed. One of these consists of a
regular counter carry and the successive feeding
of each decimal place. Another involves a simul-
taneous main feed for each decimal place and an
auxiliary carry feed which is successive. A third
system involves a simultaneous main feed followed
by a doubled carry system which functions simul-
taneously. A fourth system is based on the free
addition of the differential which simultaneously
adds two inputs.

Subtraction can be obtained in an adder in sone
cases by merely reversing the feed; for instance,
in the case of a successive main addition feed or
the free addition carry. To reverse direction
with the other systems a double carry system is
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introduced. If nine complements are used it is

not necessary to reverse the feed. One can also
obtain subtraction by reversing the connection

between feed and register.

Multiplication proceeds by steps involving the
successive digits of the multiplier and hence a
shifting feed or register is necessary. The digit-
al multiples of the multiplicand are obtained by
either repeated addition or by direct geometrical
multiplication or by splitting the multiplication
table. ‘

Division involves a reversal of the operations
involved in multiplication. It is readily ob-
tained automtically. Automatic multiplication
involves an additional counter which contains
initially the multiplier and controls the repeated
additions and shifting.

A punch card set-up has in addition to the above
arithmetrical abilities, a memory in the form of
cards. Keying permits a variety of logical and
digital functions to be introduced. ‘



PART TWO: CONTINUOUS OPERATORS

. Adders

In our previous discussion, we have considered
digital machines. However, numerical quantities
can also be represented by magnitudes. In general,
the magnitudes used in calculating devices are
1) linear displacements, 2) rotations, 3) direct
current values, 4) direct current voltages, §) re-
sistances, 6) the amplitude of alternating cur-
rents, 7) the phase angle of alternating currents.
Theoretically, it seems possible to use many other
physical quantities.

- Devices using a continuous method to represent
numerical quantities are not in general as accu-
rate for the same size as digital devices but they
are much simpler if the input is a variable quan-
tity.

In this part of the course, we shall deal with
devices for operating on magnitudes, considering
successively adders, multipliers, the representa—
tion of functions, amplification devices, integra-
tors and differentiators.

1. Addition of lengths or Linear Displacements.
Suppose our quantities are represented by the dis-
placement of certain rods (from fixed initial posi-
tions) in the apparatus along themselves. We wish
to obtain a displacement corresponding to the sum
of two such displacements. There is a simple ar-
rangement by which one uses an endless chain or
tape to add displacements. The chain passes around
 sprocket wheels A, A', B, B! and C. The C sprocket

wheels are fixed in position, the wheels A, A' are
a fixed distance apart and similarly the pair B,
B*. If we move the pair A A® along their line of
centers an amount x and the pair B B* an amount y,
then a point R on the chain will move an amount
2(x+y). Itis clear that this can be applied to any
number of addends. In the drawing, y is negative.

Another way to do this would be to have the
three rods parallel and to have connection join-
ing the three, in such a way that three points,
one fixed on each rod, remain colinear. Then if
one outside rod is displaced an amount x and the
other outside rod is displaced an amoug} y, then

the middle rod is displaced an amount 5 -

There are a number of ways in which the three
rods can be connected so that the specified three
points will remain colinear. One may have a cross
bar pivoted upon the central bar, This cross bar
has a slot on each side in which a pin is fixed on
the corresponding rod slides. The pins and the
pivot are constrained then to be colinear.

|/
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This cross bar arrangement’can be replaced by a
pantagraph. The bars AC and CF are rigid and equal
g%th midpoints B and E respectively. DE = BC and

= CE. ' '

AC and CF are hinged at C, AC and BD at B, BD
and DE at D, DE.and CF at E. Owing to the equality
of opposite sides, BCED is a parallelogram. Hence,

“BD and CF are parallel. Since B is the midpoint of
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AC and BD is one half CF in length, this implies
that D is the midpoint of the line segment AF and



hence, A, D and F are always colinear. There is
also a "lazy tong" parallelogram arrangement,
which we will discuss later.

There is still a third way of accomplishing the
same objective. Two racks are used instead of the
outer rods and a pinion is mounted on the middle.
bar. Again the output is #(x+y). The gear teeth
are constructed in such a fashion that the movement
of' such a system is strictly similar to the move-
ment of a pair of rods and a wheel in contact with
them and which does not slip relative to the rods.
The motion of the latter system can be easily spec-
ified. let Co, P,, Qo denote a reference position

u M
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for the center of the wheel and its points of con-

tact to the two bars. Let C,, P;, Q, refer to the
corresponding points fixed on the circle P,, Q, the
corresponding points fixed on the bars. Now if the
system is moved to a new position in which P and Q
are the new points of contact, we see that since
the wheel did not slip relative to the bars that
P,P = P;P = Q;Q = Q.Q. Since C,P = C,Q, this yields
that P,, C, and Q, are colinear.

Note that the displacement of the P rod has the
value y = P,P, = P,P + PPy= P,P + C,C, =C,Co+ T8
where 6 = < P,C,P in radians and r = C,P. Similarly
the displacement of the Q rod is given by the ex-—
pression x = C,C, - r8. Hence, x + y = 20,Cq, i.e.,
the displacement of the center of the wheel is the
average of the other displacements.

This combination will conveniently add displace-
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ments of a considerable size but normally there
will be backlash between the pinion and the two
racks.

M

2. The customary method of adding rotations is
by means of a differential. This device is analo-

- gous to the rack and pinion adder of the previous

section with the translations, however, replaced
by rotations. .
There are two types of differential, 1) the
bevel gear differential and 2) the spur gear dif-
ferential. The accompanying diagram illustrates

the arrangement of gears in a bevel gear differen-
tial. The bevel gear A, the input spur gear A" and
the connecting collar A' are rigidly connected but
are free to rotate around the axle C". The rota-
tion of the combination A, A', A" constitutes the
input rotation x, which is applied through a gear
meshing with A". The shaft B' is rigidly connected
to the hevel gear B and the rotation of this com-
bination constitutes the .input y. The bevel gears
C are free to rotate around the axle C'. However,
the combination of C and C' is connected to the
axle C" which is perpendicular to C', so .that

.this entire combination may rotate around the

axis of the axle C". The rotation of the shaft C"
is the output K%X of the combination.



Geometrically, the motion of the bevel gears is
equivalent to the motion of non-slipping right
circular cones or frustums of cones. We can even
replace each gear by a disk contingent to other
disks, the disk representing a cross-section of
the cone perpendicular to the axis. These disks
must rotate without slipping.

Let us consider only one disk C and let C, de-
note the center of this disk and P, and Q Senote
the points of tangency with the other disks in
some reference position for the system. Let C,,

P , Q, denote the corresponding points fixed on
the C'disk, P,, Q, the points fixed on the other
disks. Let us suppose the system moves so that P
and Q are the new points of tangency between the
disks:
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The rotation of the disk A can be measured by the
arc PPy, i.e., x = P,P, = P,P + PP,. Let z denote
the rotation of the axis C' around C". This is meas-
ured by the arc C,C, = PP,. Thus x =z + P, P,

Since the disks C and A move without slipping,
P,P -P,P = r¢ where r = P,C; and 0 is the radian
measure of the angle P,C,P - Q,C,Q. Hence x = z +
rf. A similar discussion will show that the rota-
tion y of B is z - r6. Hence, x + y = 2z.

It is clear that the purpose of the gear C is to
insure that if the x input rotates an amount 6 rel-
ative to the output z, the y input will rotate pre-~
cisely the same amount relative to z but in the op-
posite direction. This purpose can also be accom-
plished by a spur gear combination. In the accom-
panying diagram, the output combination involves
the two outside disks, which form a mounting for
two meshing spur gears C. One of these mesh with
the gear A, the other with the gear B, which mesh
with input gears A' and B'. When the mounting for
the C gears is held stationary and the A gear ro-
tated by A', then the B gear will turn equally
and in the opposite direction.

Thus if the inputs x and y are applied to A and
B, and z is the rotation of the C gear mounting,
then the relative motion of A to C, i.e., x - z
must equal the relative motion of C to B, i.e.,

z -y. Hence, x -~z =2z ~yorx +y = 2z.

There is another form of the differential which
consists of an epicycloidal gear train. (See fol-
lowing diagram.) Here we have three gears in the
same plane, the outer one being an "anmular gear,"
i.e., one in which the teeth are on the inside of

- gear. The intermediate gear is mounted on an axle

which in turn is attached to an arm which revolves
around the common axis of the other two. It is the
rotation of this arm which is the output. For sim-
plicity we shall suppose that the radius of the
central gear is equal to the diameter 2r of the
intermediate gear.

_Let us now consider what happens in a motion of
the system. For the purpose of this discussion,
gears can be considered as circles. Let us suppose
that the output arm has rotated an amount z and
the central gear an amount x, so that x ~z = 6
is the relative motion of these two. Relative to
the arm, the intermediate gear will turn an
amount @, which has the same arc length on the
intermediate gear as 6 has on the central gear
or ro = 2r8. Similarly, we see that the outer
gear has a rotation by an amount y relative to
the output arm, oppositely directed to 6, for
which ro = 4ry. Hence, v = 26. If y is the total



rotation of the outer gear, we have y = z - y or
¥ =z - y. Substituting for v and 6 in the equa-
tion ¥ = 28, we obtain 3z = 2x+y.

Since the differential permits the simultaneous
addition of two quantities, it can be used in an
adding machine to combine the regular feed and the
tens transmission from a lower place. This avoids
the difficulties represented by the additional tens
transmission feed. This device was used by Selling
in his multiplication machine.

3. The Addition of Currents and Voltages. Kirch-
hoff's Law on the Currents at a point of junction
can be used for electrical addition. In the first
place if we have two currents flowing to a common
point in an electrical network, we get a current
which is the sum of the two given currents if we
join them.

Kirchhoff's law states that the sum of the cur-
rents flowing to a junction point is zero. Here C
was the original junction point, C' is the new one
added to obtain the addition. At C', we have i, +
i, -i, = 0.

Kirchhoff's law also permits the addition of a
number of voltages, which are measured from a com-
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mon point. Suppose in an electrical network we
have a number of points, A, B, C, etc., and let

X, ¥, %, etc., denote the potentials of these
points relative to a fixed point 0. Let us suppose

At By C EHH

O P

that each of the points A, B, C, etc., is con-
nected through a large resistance of value R to a
point. P. Suppose that P has a potential w relative
to the origin 0. Let i,, i,, i,, etc., denote the
current, flowing from A, B,”C, ete., to P. Then
X-W y-w

: XW - i =2
i, ="g, i, = , 1, =R ete.

Since by Kirchhoff's law, the sum of these cur-

rents is zero we have

. : . _XW YW Z-W
0=1i, +1i, +i, + ... =" +

or X+y+z+ ..o =W
.

if n is the number of terms on the left. In pass-
ing, we might mention that we can easily obtain a
linear combination of x, y, z, etc., by using dif-
ferent values of R in the connections rather than
a fixed value. However, then the coefficient of w
depends upon these values of R.

Of course, we would like either to measure w or
use it as an input for another circuit. In the
first case, let us suppose we use a voltmeter

whose resistance is %. This we would connect. be-

tween P and O and hence there would be an addi-
tional current of - %% flowing from O to P. The

equation for w then becomes
xX+y+z =m+A)w

Thus the effect of introducing the voltmeter is
just to change the constant or proportionality
for w.

If we wish to use the voltage w as an input in
other portions of the circuit, it is essential
that this does not disturb the original equation
to too great an extent. This can be done by means
of a "voltage duplication" vacuum tube circuit.
This circuit reproduces the input voltage w; as a
potential drop due to current flowing through a
resistance but with a relatively large current.
The two input leads of this circuit are applied
to the original circuit in the same way as the
leads of a voltmeter and relative to the original
circuit; it behaves like a voltmeter of rather
high resistance, for instance of 1 megohm.*

The purpose of the '"voltage duplication cir-

* A megohm 1s 108 otms.



cuit is power amplification. For instance, if the
.original current flow1n0 from P to O through R is
i, then i, = w/R =w * 10°S and the power is
wi, = w? 10 If the output re51stance is, say,
103 ohms, the output power is w2+10" and hence
the power has been amplified a thonsand times.

*— . *.
input | votage duplicating output
——9

Actually even better power outputs are possible
and also voltage amplification can be obtained if
desired.

Voltages from independent circuits can be added
by connecting the circuits in a proper fashion.
For example, if we have two batteries with poten-
tiometers across them and connected as in the
diagram below, the voltage z = x + y. For the

points A and A* are x volts above ground and the
point B is y volts.above these. Hence, B is x +y
volts above ground. The trouble with this game is
that it can be played only once. After one such
connection the circuits are no longer independent.
However, the batteries can be replaced by the
secondary coils of transformers.

4. When two resistances are in series, the re-
sulting resistance is the sum of the two. Induct-
ances in series or capacities in parallel have the
same property (provided there is no interaction in
the first case)..

Resistances are compared by means of the Wheat-
stone bridge. Although the addition of resistances
is only a relatively minor appllcatlon of this de-
vice, we will discuss it here in the most general
form since the differences between the special and
general case are relatively trivial.

A Wheatstone bridge for resistances consists of
two parallel systems of resistances, with a gal-
vanometer connected between the circuits as in the
accompanying diagram. Let F and G be known resist-

|
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ances. G may be variable but its value is known.

R, and R, are resistances to be compared. Let i,
denote the current ‘through R, i, through F and 1,
the current through the galvanometer, which we ‘
suppose flows from P, to P,. Let E be the applied
voltage. The current through R, = i, - i and hence

Bp =Ry i + Ry(,-1) = (Ry*R,) iy - Ry
Similarly, the current through G = i, + i and
Bo = (F+8) i, + G i

Let the galvanometer have internal resistance r,
then the voltage across the galvanometer is

Fi, -R i, =ri

If we eliminate i, and i, between these equations
we get
R, G . RRy
RR, ™G B =1 6+R1+R2 *

FG
H =( r + )

Thus to add two resistances by means of a Wheat-
stone bridge, we may take G = F and use ‘the two
given resistances R' and R" in series as R,. We
then vary R, until i is zero. In this case we have

R,

However, our formula will also give the sensitiv-
ity of our experiment. For we my write the equa-
tion in the form

(R, — [R'+R"])
|, TRwT o
In the denominator and in H we may write R' + R" =
R, and thus obtain
2 - (R'*‘R") E
R,
or if &R =R, - (R'+R")
E, - 3R
° R,
Hence, a fractional error 6R/R, will yield a current
i of this amount through the galvanometer Knowing
the smllest current that we can detect with the
galvanometer and the quantities E, and F, we can

find the largest possible fractional error in our
result.

FG
F+G ) = (say) Hi

where

+ RiRy
Ry*R,

-%=0 orR, =R +R"

=201

= 4r +z[R,*F1) i

= 2 (F+R,*2r)i

Example Suppose in a given experiment, 5 micro_
amperes is detectable Then if F has the value 107,
R, 10% and r, 4x10% ohms and E, 8 volts then

3 e = 2,000 x 5 X 107°
=3.3x10°°

Thus the error in the determlnatlon of R is about a
third of an ohm.

"Ohm's law can also be used to determine resist-
ances. For since I R = E, if we apply a known volt-



age E and read I on an ammeter, we can determine
R. However, the linearity of a good ammeter is
seldom as good as 1 percent, and this limits the
accuracy of this method.

It should be mentioned that when we are measuring
the resistances of wires by means of bridge meth-
ods, we are actually measuring lengths. For the re-
sistances may change with temperature put if we use
the same material in all parts of the bridge, this
effect would not change the balance point provided
the change in temperature is uniform in all parts
of the bridge. In a sense then, this is another
method of adding lengths, and frequently more con-
venient and accurate than any direct method.

K. We descrive briefly certain elementary notions
in electrical circuit theory. In many interesting
cases the differential equations which describe the
behavior of a mathematical device are identical
with those of an electrical circuit. This fact is
very useful since the most important problems, such
as stability, have been carefully investigated for
circuits.

An electrical circuit consists of points called
"nodes™ and "branches" connecting the nodes. In
~each branch AB, we have a current i,g, which de-

- pends upon certain voltages. In each branch we can
conceive of a generator, say a voltage generator,
producing a voltage e(t). The current i,g produces
counter voltages depending upon the "lumped" im-
pedances, while the currents in the other branches
may also induce voltages in this branch. Therefore,
in general, for each branch we have an equation

di, g di . i,.dt
- ZM%Q——"- ;:"’ +Ri he“ +el(t) =e

where e,, is the total voltage drop from A to B,
refers to the various mutual inductances between
branches, L is the inductance, R the resistance

and C the capacitance in the given branch These
last, of course, contain the internal impedances
the generator.

+ L

A t AB

M

of

This system of equations relates the set of quan-
tities i, 5 with the set e, ,. Usually we are given
the various constants M, L,'ﬁ and C and the e(t)
and we endeavor to find all the i, ,'s or all the
e, p's. If we have found the e, ,'$, we can invert
thé above system to find the i, ,'s as linear oper-
ators on the e, ,'s. The effect’of e(t) is then
similar to a current generator,

Now for the quantities i, ,, we have at each node
an equation on the currents flowing from A,

23 connected to 4 a,p = U

(Kirchhoff's law on currents.) There is a suitable
modification of this to incorporate the effect of
vacuum tubes. For the e, 5, there is the loop volt-
age law. 1f P, P, ..., P, is any set of nodes
such that P, is connected by a branch to P,,, and
P, to Py then

k-1
Zile , P,

It is evident that these linear relations are
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. for which A

not independent. Thus if we add the equation for
all the nodes, we will get zero, since each current
i,p will appear as flowing away from A in the A
noge equation, and toward B in the B node equation.

Using our branch relations, we can express these
equations with either the iAB's or the eAB's as
unknowns. However, in order to deal conveniently
with the question of linear dependence, it is cus-
tomary to introduce new unknowns in terms of which
the i, p's or the e, y's can be- expressed.

When we are seeking the i, p's the new unknowns
are associated with various loops and are called
mesh currents. We give a method of obtaining mesh
currents vhich determine all the i, ,'s.

We deal with the case in which every node can be
connected to any other node by a chain of branches.
If the circuit breaks up into more than one con-
nected part, each part can be treated in an analo-
gous manner.

We specify certain points and branches as fol-
lows: Let a node A, be chosen. let A; be a point
which is directly connected to A, by a branch. We
choose one of the branches connecting A, to A,
and call it the return branch for 4,. 1f 4,,

Ay, ..., A _, have been enumerated, let A, be a
point directiy connected to one of these and let
the return branch for A, be such a connecting
branch. It seems advantageous to use a return
branch 4, A, ' with k'as low as possible.

For the remaining branches, we introduce loops
in the following way Suppose we have a branch
connecting A, with an A 1 with lower subscript.
We regard this as the first branch of the loop.
Another branch is the return branch A, A, for
the point A,. We continue the loop from Kk-
and A, 4 by return branches to points of lower
subscripts until we reach a common point, whose
subscript, of course, will be the lowest subscript
of the nodes on the loop. The loop has two parts,
the down part which starts with the given branch
A, A, and continues down to the point of minimum
subseript and the remaining or up part.:

The mesh current for this loop, we take to be
the current in the given branch A, A ,. We con-
sider it as flowing completely arouné the loop.

Kirchhoff's law on current permits us to express
the current in any return branch A, A, in terms of
the mesh currents. The current in Kk | is the sum
of the mesh currents for which A, A, is on the down
part of the mesh, minus the sum of %he mesh currents

A, is on the up part. This is readily
seen to h015 for A and it can be shown in general
for An_p by an induction on p.

Thus we have expressed the current in each branch
in terms of the mesh currents in such a way that
Kirchhoff's law on current holds. Furthermore for
each loop we can write the voltage equations around
the loop and if we express the currents in the re-
turn branches as in terms of the mesh currents, we
will have as many equations on these last as we
have unknowns. These are differential equations.
in the mesh currents and since our operators in-
volve only differentiation and constants, we know
that we can treat such a system as if the differen-



.tiation operator were a numerical quantity. Mathe-
matically, these equations are independent, since
in each mesh equation, we find an arbitrary im-
pedance which does not appear in any other equa-
tion, i.e., the impedance of the branch which
determines the mesh in the above construction.

We can solve immediately for the current in any
branch which is not a return branch

Al =1

where A is the determinant of the system and f is
a linear combination of the generator voltages of
the system. A similar formula holds for the current
in a return branch, since the current in a return
branch is a linear combination of the mesh currents
with + 1 as coefficients,

Now A is linear in the impedance z for the branch
in which i flows; in fact it is linear in any im-
pedance. Let A = A' + A" z and let us divide by A".
We then get -

(z' +2) i=f/a"=E" (T)

where z' = A'/A". If z is very large, this is ap-
proximately z i = E' and E' which is a linear com-
bination of the generated voltages is called the
open circuit voltage for the branch. z' is called
the internal impedance.

Sometimes this form (T) permits a simplification
of the circuit analysis when one's interest is con-
fined to one branch. This is particularly true if
we have only resistances in the network and con-
stant voltages since then z' and E' are constants.
Suppose, for instance, that we can insert various
resistors in this one branch and measure the cor-
responding currents in this branch. Then even if
we know nothing else about the rest of the circuit,
{wo - such measurements will suffice to determine z'
and E' and hence the behavior of the current in
this branch,

For example, let us return to the Wheatstone
bridge. Removing the galvanometer let us consider

iR
R e R,
+
F[b G 4B

it as a two-terminal network. The open.circuit
voltage across P; P, is clearly:

R, G :)
'— ———— e ——
B - éHRQ F+G/E-

The internal impedance z' does not depend upon E
and we can obtain it most simply in the case E=0.
The usual rules on parallel and series resistance,
then yield :

7' - 1 R2 + EG
“\R;+R, ~ F4G

Thus if r is the resistance in the cross piece,
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we have the following formula for the current

R, R, FG ) Ro G )
(I‘ * R.+R, * 4G, b “"\R.+R, WG E.

which can be written in the form Hi = E,.

If it is relatively simple to solve the e
equations for the i,g's, we may introduce the nodal

-voltages e,, relative to a fixed node A, as un-

knowns. Since e,5 = e, — eg, the loop voltage equa-
tions are all satisfied. For every node other than
Ao, we have Kirchhoff's current law, in which every
i,p has been expressed in terms of esp = €4 - ep.
This gives as many equations as unknowns. When the
circuit also contains vacuum tubes, these nodal
equations are frequently preferred. The vacuum

_tube is considered simply as a current generator,

with internal impedance, of course, connected
between the cathode and plate.

<11, Multipliers

It is far easier to multiply quantities if one of
of them is constant. We discuss this method first,
for displacements, rotations, the multiplication
of a voltage by a constant, and the multiplication
of an alternating current voltage by a constant.
For the multiplication of two variable displace-
ments, there are a mmmber of ways based on similar
triangles. The product of two rotations can be ob-
tained by either converting to displacements or di-
rectly by means of "difference of squares" multi-
plication. The use of logarithmic cams will reduce
either problem to the addition problem. Another
method for multiplication is based on the Wheat-
stone Bridge and servo motors. Servo motors can
also be used for logarithmic resistance multipliers.
For linear combinations in which addition as well
as multiplication is desired, a "difference of
squares" resistance mltiplier is possible. Inte-
grators also offer methods of multiplication. later
on we shall discuss certain other methods of multi-
plication involving electronic methods.

1. Multiplication of a Displacement by a Constant.

This can be theoretically accomplished by means of
the lever principle. Let us suppose that our input

g




and output displacements apply to bars which are
constrained to move parallel to each other, for in-
stance, in grooves or guides. On each bar, we have
a pin which fits in a slot in a cross-bar. We also
have a pivot in the slot which may be fixed in any
position along a line perpendicular to the two
parallel bars. When the position of the pivet is
determined and one of the parallel bars is moved
the other is displaced a proportional amount. For
by congruent triangles

x/y = s,/s,-

This arrangement even takes care of the sign, for
if the pivot is not between the two parallel bars
the displacement is in the same direction, the
equivalent of multiplying by a positive factor,
while the displacements are in opposite directions
when the pivot is between the parallel bars.

It is possible to replace the cross bar by a pan-
tagraph arrangement. This gives better mechanical
results but four adjustments have to be made to set
up the smaller parallelogram.

If the desired ratio is r,/r,, we must first
choose A so that a,/a, = r,/r, and B, so that
by/by = r(/r,. We then must fix the lengths of the
remaining arms so that AP = b, and BP = a,.

The above is not suitable for a continuous input
of the ratio p = s,/s,, because the scale for p is
not linear. However, we can position the pivot by
an arrangement, whose input is linear in p as fol-
lows. Let us suppose we have two such arrangements
in parallel planes, with a common pivot which may
move in a direction perpendicular to the bars. We
assume that the pairs of bars are parallel, one set
above the other. Let us suppose that the lower

rpldmg

=
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arrangement is analogous to our previous one and
that the upper arrangement will be used to posi-
tion the pivot. Suppose we move the upper bar over
the x bar to the unit position and the one over
the y bar an amount p. This will determine the
position of the common pivot so that s,/s, = p.
Hence the output y will have the value y = px
where p and x can be variable.

2. Multiplication of a Rotation by a Constant.
If the constant is to have only one value, then a
pair of gears can be used to obtain the product.
We wish to discuss briefly certain parts of the
theory of gears in this section. We begin by de-
scribing the motion of a lamina.

Consider a right cylinder, i.e., one whose di-
rectrix is arbitrary but whose elements are per-
pendicular to the plane of the base. This is the
geometrical description of a lamina. We will only
be concerned with rigid motions which do not change
the plane of the base, so we can neglect the height
of the cylinder. Let us call such a motion a per-
mitted motion.

Lemma. Any permitted motion is equivalent to
either a rotation or a translation.

Proof. We first show that two points determine
the motion. For suppose A moves to A', B to B'.

- Let C'be any other point, we wish to show that the

position of C' is determined. For since AB = A'B',
AC = A'C', BC = B'C', we see that the triangle
A'B'C' is congruent to ABC. (There is an obvious

-special case neglected in which A, B, C are col-

linear.) This shows that C' can have at most one
of two possible positions and one of these is
ruled out by the requirement that the motion be in
a plane.

Thus the rigid motion can be specified by the
condition that A= A', B~ B'. Let us then con-
struct ‘the perpendicular bisectors of the line AA'
and BB'. There are three possibilities. :

Case 1. Suppose these bisectors inmtersect at a
point O. Then AQ = A'0, BO = B'0 by the equidistant

A A

BI

O -]

property of the bisectors. We also have AB = A'B!
since ‘the motion is rigid. Thus the triangles AOB
and A'OB' are congruent. Since the rigid motion
brings AB into A'B' and is orientation preserv-
ing, it must bring ome of the triangles onto the



other. Hence the point 0 is fixed under the motion
which is therefore a rotation around O.

Case 2. These bisectors are parallel. Thus AA' is
is parallel to BB'. We also have AB = A'B'. This °
implies that sin < AA'B' = sin < A'AB

A AT
B B!

and the quadrilateral AA'B'B is either a narallelo-
gram or a equilateral trapezoid. In the latter
case, the bisectors would coincide. Thus the gquad-
rilateral is a parallelogram. Hence, AB has been
moved parallel to itself, i.e., we have a transla-
tion.

Case 3. The bisectors coincide. Under these cir-
cumstances it is easily seen that if we continue
the lines AB and A'B', they are either parallel or
they intersect at a point 0 which is on the bisec-
tor. In the first case an argument like Case 2 is
applicable. In the second case, we can readily show
that the point O is taken into itself, by consider-
ing line segments.

Instantaneously then every motion of a lamine can
be considered as a rotation whose center is termed
the instantaneous center of motion.

Let us now consider two lamina in contact and
with a common base plane. Let us consider only the
bases. At the point of contact, the edges must have
a common tangent. This is also sufficient to permit
contact provided no other point of the bases coin-
cide. It is possible to express the sufficiency
conditions in the small for contact in terms of the
expression for the curvature of the edge. The read-
er is urged to look at these conditions.

Let us suppose now that one lamina is fixed and
that the other moves on it without slipping. Let us
take the point of contact as the origin and the
common tangent as the x-axis. Let the equations of
the laminas be respectively:

2
Y1 =2 X
2
Y2 =byx tbyx
Now if the point (x,, y,) on the first curve is to

be in contact with the point (x,, y,) on the second
curve we must have

Xq Xo
Jo \/J.-l»y{"2 dx = Jo V1syd? dx

This equation becomes
2

3

3
tagx, t.

3
+ ..

Xg 2,2 %3 o Tx, 30,2 x, 3 L
which can be regarded as defining x, as a function
of x,. By implicit differentiation and the Taylor's

expansion we obtain

° X, = X, + 2 (2,7 - b,%) x3 + ...
Thus while the change iny, ([b, - a,] x* +
is in general of the second order, the change of x
is of the third order. Hence for small values of x,
the displacement x; > X,, which occurs as the up--
per lamina rolls in such a way that its point of

),
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contact changes from the origin to x,, is nearly
perpendicular to the x-axis. It is ciear that the
point on the moving lamina which was originally at
the origin must have a similar motion only upward
instead of downwards. It is easy to see that the
rotation which describes the motion of the lamina
must have its center somewhere between these two
displacements, which are approximately parallel but
in opposite directions. ) :

This is true for every motion of this sort, no
matter how small. Consequently, in the limit, we
have:

The instantaneous center of motion of one lamina
rolling upon another is at the point of contact.

This. has the following consequence:

Let P be fixed on the rolling lamina and let D be
the path of P. The normal to D at P goes through
the point of contact between the laminas.

We are now in a position where we can describe
the possible points of contact between two laminas,
each of which revolve around an axis perpendicular
to the base. :

Let O, and O, be the centers of rotation of the
bases of the laminas. Let A be a poimt on the line
joining the two centers and let C, and C, be two
curves which are cotangent at A. tet C, fe still
another curve with the same tangent at A. Let P be
a point fixed on C,.

Let C, roll on C, and then suppose it to roll on
C,. Let D, be the path of P in the first case and
D, the path of P in the second case.

The point P is common to the curves D, and D,,
since this is a position corresponding {o contact
of C; with C, and C, at A. Since C, is rolling on
the other curves in each case D, and D, have a com-
mon normal AP gt P from the above. Thus, D, and D,



are cotangent at P. It follows that if we have a
lamina with edge D, and another with edge D,, then
P is a possible point of contact between these
laminas. It will be convenient to designate a lamina
by its edge.

Now suppose the curves C, and C, are such that
if the corresponding laminas are rotated around 0,
and 0, respectively, then it is possible for them
to remin in rolling contact, without slipping,
along the line 0,0,. C, can then also roll on these
without slipping and with the common point of con-
tact. Of course, in this process the point P moves
in space, but if we consider the lamina D, as rig-
idly connected to the lamina C, and D, to C,, then
P is still a possible point of contact between D,
and D,, since the cotangency property is preserved
during this operation.

Suppose now that we have two lawinas D, and D,
which are free to rotate around 0, and 0,. Let us
suppose now that we have D, and D, in contact at P
and that D, moves through a small angle 6,. Let
B, = < APO0,, B, = < APO,.

The point P, fixed on D; which correspond to P
initially, will be displaced an amount 0, P 8, (ap-
proximately) and the component normal to D; will be
approximately 0, P sin B, 6,. .

The lamina D, will rotate an amount 8,. At P, the
normal component of the motion must be the same for
each lamina if they are to remain in contact. (In
general, the laminas will slip relative to each
other, but this corresponds to a difference in the
tangential components of the motion of the laminas
at P.) Thus, 0, is determined approximately by the
equation

0, PO, sin B, = 0, P 6, sin 62‘.
Let 9 = < PAO,. Then < PAO, = 180 - ¢ and by
the law of sines, we obtain 0,P sin B, = 0,A sin ¢
0,P sin B, = 0,A sin (180 - ¢) = 0,A sin ¢. Substi-

tuting in our previous equation and dividing by
sin ¢ we obtain

81/62, = 0,A70,A (1)
In the limit, therefore,(we have

40 v
B . om0, @)

1 .
We have established this equation under the hypo-
thesis that D, and D, rotate in contact at P.

The above is essentially a sufficiency discus-
sion which proves that if two laminae D, and D,
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have been constructed by means of curves C,, C,,
and C, they can rotate around 0, and 0, in contact
respectively so that (2) holds.

But these arguments can also be used in the re-
verse direction. Suppose we take two arbitrary
laminae D; and D, mounted so that they can rotate
around 0, and 0, respectively, and suppose that
they rotate in contact. If P denotes the point of
contact and AP, A on 0,0, is the common normal to
D, and D, at P, then the above argurent shows tlat
(2) holds for the motion.

Now let C, and C, be defined as the locus of A
attached to D, and D, respectively. We can readily
show that the laminae D, and D, move as it C, and
C, were in non-slipping rolling contact, since (2)
holds.

For suppose (2) is satisfied and laminae D, and
D, rotate an amount 6 6, and & 6, respectively as
indicated in the accompanying diagram. We can sup-
pose that in this rotation the point A moves to a

A
do, do,
O A A O,

new point A" along the line 0,0,. The new point A"
corresponds to two points A', one on C,, the other
on C,. The condition (2) is readily seen to be
equivalent to the statement -that before the motion
takes place A'A" is the sane in each case to first
order differentials. Thus A'A and ds is the same
for each curve and thus the motion of C, and C, is
a non-slipping roll.

We have shown then that the gemeral rotational
motion of two laminae D, and D, which are in slid-
ing contact can be referred back to a non-slipping
motion of two laminae C, and C, attached to D, and
D, respectively.

3. The result of the previous section is the
basis for the theory of gear teeth. The -objective
in shaping a gear tooth is that the rotation of
one shat't should be a constant multiple of the ro-
tation of the other. Two circles C; and C, which
are in non-slipping contact will rotate in this
fashion if their diameters have the appropriate
ratio.

But if one shaft is to drive the other, it is
clearly undesirable that the contacts be purely
frictional. Instead one introduces the laminae D,
and D, constructed as in the above so that the
motion will have a component normal to the sur-
faces of contact. This component is the driving
element and, while friction is now present due to
the slip between D, and D,, it no longer affects
the relative motion but just the energy necessary
to accomplish the result. -

The curves C, and C, are specified by the re-
quirement on the relative motion and are referred
to as pitch circles. C; remains arbitrary to a
considerable extent. When C, is also a circle it



it is referred to as the tooth circle. Choosing
C, and C, will determine the shape of D,. For a
small part of its circumference, D, is traced out
by a point of C; as it rolls on C,. The latter,
of course, is fixed.
. It C; is considered as rolling on the outside of
C, for D,, it must, of course, be considered as
rolling on the inside of C, when determining the
shape of D,. However, a cycloidal curve such as
the path of P will have cusp points at which one
can reverse these relations. Thus before the cusp
point one can regard C, as rolling outside C, and
inside C, and afterwards as inside C, and outside

C,.

The situation can be clarified perhaps by a sim-
ple ‘example. Suppose one wishes to design two
gears with pitch circles C, and C, with diameters
2 and 3 units respectively and 200 and 300 teeth
respectively. Suppose we wish a tooth circle of
1 unit diameter.

It is clear that while two specified teeth are
in contact, the two pitch circles will move in
contact an amount on their circumference of n/100
units. Thus to shape the gear we begin by dividing
the circumference of each pitch circle into arcs
of length n/100. The tooth circle C, is also di-
vided in this fashion.

Now we want the midpoint of each interval on the
piteh circles to correspond to a cusp point or

change over point as described above. So the face
of a tooth is determined by placing C, outside C,
in contact at P and then rolling C, down an amount
corresponding to half an interval. The locus of P,
fixed on C;, then gives half the face. The other
half is obtained by placing C, inside C,, in con-
tact at P and rolling C, up. This determines one
face of each tooth and if the motion were always
in ome direction this would be adequate provided
the remaining parts of the two gears did not in-
terfere.

To provide for motion in the other direction,
the other side of each tooth must be shaped in a
similar fashion, with P taken at some other point

I -11

P, in the interval. To avoid binding the width
P,P of each tooth at the pitch circle must not
exceed one half an interval if it is the same for
each gear. It should not be too small since this
leads to backlash when the direction of motion is
changed. The indentation between teeth is always
deeper than the shaped faces, the outside of each
gear tooth, i.e., the part between the faces is
finished off on a circle concentric with pitch
circle, in general.

4. The use of gears permit one to multiply a
rotation by one fixed ratio. If it is desired to
have a number of ratios at one's command, it is
customary to use a clutch and shift arrangement.
The details of such an arrangement is not of
great interest to us; however, we will define a
clutch as’'an arrangement to disconnect a shaft
and use the symbols below for it, the first in-
dicating that it is normally closed or closed in
the situation described.

J

For a pair of gears we shall use the notation

5] |

N

rd

The ratio of rotation of corresponding shafts will
be indicated in the boxes by a number, not by the
size of the boxes. The possibility of shifting
will be indicated as follows:

L —
o

The full possibilities of shift and clutch gear
arrangements can only be realized when the differ-
ential is introduced. The symbol for a differen-
tial most widely used is

r-)

<

The two side lines indicate the inputs. They may
be put in different positions. The output is con-
nected to the middle. The following is a gear box



rangement which would give a large number of
ratios from relatively few gears.

in put

output

(There is little practical difficulty in arrang-
ing the indicated gear shift.) Notice that the
output can be any multiple from 0 to 99 of the
input.) '

Clutches and differentials can be used together
for the same purpose without gears. However, in
this case the ratio of input to output is ex-
pressed with radix two. In what follows, y is to
stand for a "clutch function,” i.e., its independ-
ent variable is the clutch condition and it has
the value of 1 when the clutch is engaged, zero
otherwise.

Let us consider a single differential with two
clutches. Let x be the rotation of one side wheel

L%}/J—’-

of the differential, y the negative of the other
and z that of the center wheel. Then

_ v

%

X-y=9% or x=y+ 2z.

Iet vy, and y, be the clutch functions of the z
and y clutches respectively, X the input. Then
the output

0=x=1(2y, +va) X
Thus . the possible ratios are 0, 1, 2, 3.
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Now suppose that k-1 differentials can yield
ratios 0, 1, ..., s, , where s, | is an odd num-
ber. We will show that k differedtials will yield
ratios from 0 to s, where s, -='2s,_, + 1. For con-
sider the arrangement. Here again x = 2 z + y;

X oX X
R-1 >
differentials y
Yy
and z = o X where o is a-possible ratio from the

k-1 differentials. Hence,
x=(20+y)X

where y is the clutch function for the y clutch.
It is clear that if ¢ can take on the values from .
0 tos, ; 20+ ycan assume all values from 0 to

2s,_, + 1. Bince s, = 3, we can conclude from this
that

Sk = 2k+1 - 1-

Proper and improper fractions can be obtained
in somewhat a similar manner. One can locate the
"decimal" point by means of gears. The electrical
equivalent is interesting. !

In closing this section, we wish to point out
that the variable speed drive which will be dis-
cussed as an integrator in a future chapter will
also permit one to multiply a reotation by a con-
stant. The limitations on this will also be dis-—
cussed. '

- h. A potentiometer permits one to multiply a
voltage by a constant with the output a voltage.
However, unless one has an infinite resistance in
the take-off circuit, this process will disturb
the voltage drop along the potentiometer and in
general even the original voltage.*

B
A

-1

1oy

i
!
X
|
|
A —-

¥
A
L

G

Let X be the input voltage, Y the output voltage
across the resistance r (which may be an impedance
of a more general character). Let P be the total
resistance in the potentiometer, A the fraction of
P in parallel with R from A to G. The resistance
from A to G is that of the two parallel resistances
AP and r, i.e.,

L AP
r+ AP
* It is true that both these effects can be compensated

for, but we wish to study them first without the compensa-
tion.

R

AG T



while the resistance from B to A is
Rgy = (1-M) P.
Thus,

Rig X - T A

= = X
Y R + Rga rh + (r + PA) (1 - \)

Now if we let p = P/r and simplify we get

=——.—————L-—
Y 1+u(x—f7x

Thus, if p is small, i.e., r is large in relation

to P, then Y depends almost linearly on A. Let p

be the output ratio. Then _

p = A ..
T+ 0 (-2

The term p(A - A?) measures the fractional depar-
ture from linearity and has a maxinum at A = %
with value % u.

We also note

A? (1-1)

%o __ .
1+ n [A-22])2

e

The latter indicates how the p will vary with the
load. The maximum gﬁ is approximately obtained

for A = 2 and has a value of about .15 (except

3 \
for relatively large values of p). If o is the

fractional variation in r, g% = po?. Taking ¢ = 1,

we get the approximate formula

% . -,
J0 154

Hence, if p = .1, a variation of 10 percent in o
will vary p by .0015.

The above discussion is quite conservative. No-
tice that A fixed gB increases as u—> 0. Hence

n
.the value .15 > 4/27 = maximum value at p = 0, is
greater than any possible value for gﬂ.
m

Let x be a measure for the deflection of the

pointer on the potentiometer scale and let us sup--

pose that x runs from ¢ to 1. For a linear wound
potentiometer A = x, but, in general, A can be
any monotonically increasing function of x. The
derivative %% gives the increase in resistance

with x and by interposing the correct resistance
between taps, it can take on any positive value.
(There is, of course, a discreteness difficulty
here but for carbon resistance potentiometers
even this is not important. However, in the lat-
ter there are some very interesting mathematical
questions.) :

The derivative %2 gives a measure of the ease
x

II - 13

and correctness with which one can set in a given
ratio. For an error in x will be multiplied by
this factor when it appears in p. In the case, A=x
we have

gﬁ_ 1 +vX2U-
dx - (1 +w xx"1)°

For x between 0 and 1, the numerator is increas-
ing and the denominator has its least values at
the end points. For this interwval, is a maximum
where the numerator is greatest and“denominator is
least, i.e., for x = 1. The value of the maximum
is 1 + u. This will give little difficulty in the
matter of setting if p < .25.

If r and hence 1 is constant, then it is possi-
ble to wind the potentiometer so that p = x. This,
of course, would permit p to be fed in as a con-
tinuous input. We must determine A as a function
of x so that

N S
1+ p (A=A%)

Since this is quadratic in A, one can solve for A
in terms of x. However, especially wound potenti-
ometers are quite expemsive and it is customary
to use linear potentiometers and make p small.
Indeed it is possible to get the effect of a very
small p by using vacuum tubes, for instance, as
"cathode followers.™

=p = X.

_One can double the range of a potentiometer by
the use of a double pole, double throw switch and
an extra resistance. The extra resistance has pre-

-~
output
cisely the resistance of the potentiometer P.
This has the effect of "folding the scale."
The potentiometer has now two scales, one for
the right-hand position of the switch, the

other for the left-hand. The scale would look
like this if the total deflection was 180° and

2

.3

1.0

u was so small as to be negligible. The upper
scale corresponds to the right-hand position
tor the switch. .Practically the effect is to
double the scale. For instance, if the switch



is in the right-hand position, then for positions
between O and h the effect is similar to that of
a potentiometer with twice the scale length and
twice the resistance. The right-hand position of
the switch corresponds to the range between 0§ to
.H for A on this equivalent large potentiometer,
the other position that for .5 to 1.

It is possible to repeatedly fold the scale hy
such means. For instance, here the scale is folded

LRy [ s

twice, and R, has the resistance 2 P. The lowest
end of the scale of the equivalent larger potenti-
ometer is obtained by setting both switches to the
right. Let us call this the r,, r, switch position.
The reader can verify that successive switch posi-
tions are r, 1,, 1, 1, and 1, r,, i.e., to pass
from one position to the next, only one switch is
thrown. If only a few such switches are used, all
scales can be placed on the potentiometer and at
each turn in the scale, the corresponding switch
can be indicated. Ten such switches would give a
multiplication of 1024. It is, of course, possible
to construct a purely dyadic potentiometer. It is
also possible to use six d.p.d.t. switches to give
an almost directly reading multiplication by ten.

| Rg Eg: output
RC. lj':\_
) lj':\_
Al r _

The resistances R have the value P, the value of

R, is 5 P. The first d.p.d.t. switch, of course,
distinguishes between the \ range, 0 to .H and .H
to 1.0. Only one of the remaining switches should
be thrown to the right. This will insert the poten-
tiometer into the circuit in series with four of
the smaller R's in same order.

Many such switching arrangements are possible.
In fact, the usual method of setting up a decimal
potential is based on a double selector switch.
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The output has the resistance of one of the R's
which are all equal. -

A more efficient method of decimal setting is
to have eleven resistors in series and have a

double selector which shunts two of these by a

potentiometer having 2R resistance. Of course,

the potentiometer could be itself a decimal ar-
rangement of this sort.

In the case of continuous resistance potentiom-
eters and indeed in other cases also, to realize

. the greatest possible accuracy in setting, the

potentiometer may be set by a Wheatstone bridge.
When one has a large number of such potentiom-
eters, this would eliminate the necessity for a
careful calibration of each and save dial space
and so on. In this case, the addition of two
rheostats in series with the potentiometer, will
give a "vernier" setting for the resistance.

P -~

output
<—-I

L T

Ilet P denote resistance of the potentiometer.
Now if we have added 6,P from the lower rheostat
and 6,P from the upper rheostat, we have the equiv-
alent of replacing the potentiometer P with setting
Ao, by a larger potentiometer, in which the total



resistance is (1 + 6, + 6,) P and the setting is
Ao+ 8y
i+6 +6

Mﬁleu=u0(1+6 +6) Now at &
the following parélal differenti

A=

=0, we have
ai refatlonshlps

a>\ 1_)\ 8)\ :‘..)\ - =
—— = > 4 Ho™
661 0 66—2— 0 6%; 06%
- A ap 898)\ @BM
and since p = T+ - 2) “BA3d; oudd;
we have
e 1-hg O o, @rp)
%%, (I+u ’ 3, O @+ DT

Since the ratio of scale displacement on the rheo-
. stats ‘to &, can be made large, we see that for \ <
3, vary1ng b5, will give a vernier action and for

N\ > %, we may vary 62 Of course by having the neu-
‘tral setting for the rheostat in the middle and
counting half its resistance with P in each case,
we can arrange to have negative 5,'s.

Combinations of the above may often be effective-
ly used. For instance, in the following circuit the
d.p.d.t. switch permits one to omit one vernier
rheostat and also have the scale doubling associ~
ated with the switch and resistance.

deoguf

In general, it is not easy to synchronlze two
potentiometers. However, it is possible to use a
second potentiometer to adjust for the variation
of total resistance due to the different settings

of the potentiometer provided the load is speci-
fied. Commercial combinations of this type exist.

vernier

If we return to the beginning of this sectiom,
we see that the total resistance of a potentiometer
is

A iy
1+u 1+uh

It is, of course, possible to have another ‘vari-

able resistance with total value pr /{1+p\) which
_is cut in as A increases to counteract the effect

of the second term. Another arrancement of this
sort is ‘the following:

(i

1-

"Ryg *Rag=P (1 -2 +-——) =P )

R AX_|

Here x and y are varlable re51stors.connected so
that x /{ - 2R and y = R\, It is readily seen
that for every value of A < %, the total resist-

~ tion that f(H)
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ance is R if the output has resistance R. Also that
for A < %, the output voltage X = AY, where Y is
the input voltage. A chain of these can be used
without load errors.

6. If the quantity used is the amplitude of an
alternating current, this amplitude may be changed
by a constant in a transformer. A transformer in
general consists of an iron core and a number of
coils wound around the core. We will confine our
attention to the case in which there are two coils.
One coil will be referred to as the primary, the
other as the secondary. Approximately the voltages
across these coils are in the same ratio as the
number of turns.

" Let us consider such a transformer. A current
flowing in a coil produces a "magnetic force" H on
the core, which may be measured in ampere turns,

i.e., it is proportional to the number of turns
and to the current in the coil. Thus we have
H= n_i_ +n_ i (1)

s 8

PP

where n is the number of turns and i is the current
in the primary or secondary coil, depending on the
subscript.

The magnetic force H results in a magnetic. flux
¢ in the core, where :

= f(H)

In the case of an air core transformer, ¢ is a
linear function of H, ¢ = kH where k depends upon
geometrical considerations.

(2)

However for an irom core ¢ is a much larger func-
tion of H for a given area but not a linear one;
in fact it depends upon the entire past history of

‘the core.

If the magnetic flux inside a coil changes, a
voltage is impressed on the coil, which is propor-

‘tional to the number of turns. Thus if E is the

voltage applied to a coil and R the resistance

B, =R, i, +n, ¥ 3)

E, =R i, +n, %g (4)

¢=f(n, i, +n, i) (5) -
For definiteness let us assume that E, = - R' i,

(i.e., it is due to an external resistance drop)
and let r, = R, + R'. Let us also make the assump-
k. This, of course, is false in
iron cases where the rate of change of ¢ will de-
pend on ¢ as well as H. We then have

_ . de
E, =R i, +n, I
. de
0 = I’a 15 + n‘ -d—{-
dp _ di,
Tmk o, T T



If we eliminate ;% between the first two equa-
tions we can express i, in terms of i,. This can
be used to eliminate ip and 4ip, and we obtain

ds

dE r_ R di

- — = 8P 2 2 —a
o, n, D sk i, + (11p r, +n: Rp) ey

If we suppose that E = A sin wt (w = 2 n f where

f is the frequency in cycles per second) then the
steady state solution of this equation is
i, = - a sin (wt+ y) vhere

Rp r,

1 = v
MY TR (ni r, +n? Rp)

and
An n
P S

a= r. R . *
. . 2
\//(_E-;E) + (ng r, + n? Rp)

Hence, for an air core transformer, a depends
linearly on A. This is not true for the iron core
transformer because the relationship between ¢ and
H is not linear.

7. In Section 1 of the present chapter we de-
scribed a similar triangle multiplier in which the
central pivot was movable. In the present section we
describe a device in which the central pivot is
fixed. In the accompanying diagram, the limes g

——pivot

9
I ' Y in put 7 g
g ~
Q. 'g \o(((‘ 7
'\\lo
° |
%in put
- [
G- o o U i) I
+ L > |
utput |2 out common pin |
piece o B L _______ -
g
fixed I
1 pivot |
g| Ig L et | ]
\
s

stand for grooves and indicate that the element
contained between them (or the part of an element)
can only move parallel to itself. The output ele-
ment and one input element are essentially similar
but at right angles to each other. The other imput
element has a pivot arm which links the fixed piv-
ot with the common pin of all three elements. It
is easy to see that the two inputs and the output

are related as in the triangle. By similar triangle
X

2z
we see that 3 =y or z =Xxy.
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common
pin

There is another kind of multiplier which while
it is only approximate and is limited in range has
been very often used because of its simple posi-
tive action. This is what is frequently referred
to as the "links multiplier." The principle can be
understood from the following diagram, where how-

A

—

ever the method for putting in the x imput
is not indicated. The y input and the out-
put z are angles. The cross piece is con-—
strained to move parallel to itself. The x
input is a length. The cross piece causes
the two triangles pictured to have a common
side c¢. For this common side we have ¢
sin z, c =x siny, or sin z = x sin y
which is approximately z = xy.

X in put

‘The x input is usually entered by means
of a screw or a groove cam. In the latter
case, the groove on the cam positions the



x pivot along the y bar, according to the amount
of relative motion between cam and bar. Hence, if
the bar is turned an amount y, we must turn the
cam an amount y + x. This can be accomplished by
means of a differential which adds the two inputs
x and y. In the screw case the situation is simi-
lar.

The above described device differs from the or-
dinary "links multiplier" in the way in which the
cross piece or link is constrained to move paral-
lel to itself. Usually this is accomplished by the

use of another pivot arm similar to the output arm.

The result is a parallelogram as indicated in the
accompanying figure.

The equation sin z = x sin y may itself be very
useful, especially in connection with the law of
sines in trigonometry. When one has our previous
arrangement, i.e., the one with the link in a
groove, we may take the z arm also as a variable
and get the equation W sin z = x sin y.

We can construct a device on this basis for

solving a triangle in which three sides are given.
Let the symbol '

() ()=

denote a links multiplier which realizes the equa-
tion x sin y = w sin z,

Suppose three sides, a, b, c, of a triangle are
given. Let a be the largest of these so that angle
A is the largest. Consequently B and C are acute.
We now use two links multipliers as follows:

Ao @ BiC

—(©) @

[ -|;B+ /4

2

In this device, we continue to feed in 4,
starting (say) with A = 0. The outputs of the two
links multipliers will be the acute angles B and
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C for which b sin A = a sin B and ¢ sin A = a sin
C respectively. These angles are added and A also.
The actual output is 4 (A+B+C) and one continues
tg increase A until this quantity has the value
45°,

8. We have seen in our discussion of gears that
we can shape two laminas D1 and Dé in such a way
that when they revolve in contact, we get the same
motion as that in which the two laminas C, and C,
revolve in rolling contact, along the line joining
the centers of rotation. We now comsider this for
the purpose of cams.

Let two such laminas C; and C, be given. Let us
consider some initial contact position for the two
and let us give the equations in polar coordinates
for the pair of edges, p = f (68), 5 =g (p). If we
rotate the first through an angle 6 and ¢ is the
corresponding value of the second coordinate we
have

f () +g(p)=4d (1)

where d is the distance between the centers of
rotation. The tangency requirement is that

1df , ldo -
p de v 5 do 0 (@)

- Suppose that ¢ is to be a specified function of
0. We have found in Section 2 above, that the con--

dition
de =
w5 3)

determines the relative motion since A the point
of contact is on the line of centers.

.(3) also indicates that the motion is non slip-
ping. Consider the diagram. Since pd6 = P,Q = odg,

B

o

d¢ .

P

l
1
dé !

R Q

P1 and P, are (to the first order) points of con-
tact. The arc length on each C curve is the same
Pl P2 and hence the motion is non-slipping.

Equation (1) determines g when f is known. It
also yields

dedo, df | ~
do a0 * @6 ° (4)
which makes (2) and (3) equivalent to
do £ (8) (5)
de " d - f ()
Let us take d = 1. We have
do
de
f6) -—37 (6)
1 +-a%}

Since ¢ is a given function of 6, this determines f.



(1) and (6) then determine C, and C,. In partic-
ular (1) becomes

0]) = 1
g (o [6]) 1"3%

0f course, %% must be positive.

Let ® be the angle between the tangent at the
point of contact and the line of centers. If a

unit torque is applied to the first cam, the force
between the surfaces is proportional to sec o.

If o is close to 90°, this will introduce numerous
friction difficulties. It is better under these
circumstances to pass to laminas D, and D,. One
should notice that an epicycloidal curve has a
cusp at the point where it meets the base curve.
Its tangent is perpendicular to the base curves
and hence the new angles « for the D curves differ
by 90° from the previous omes. This can be best be
used by using a number of D curves, i.e., properly
shaped gear teeth.

Thus the theory of cams permits us to mechanize
any function @ of ome variable 0 for which 3¢ > 0.
For instance, we may take ¢ = log 6 and by the use
of three such cams and a differential we may mul-
tiply two positive quantities. One of them is to
be operated with ¢ as input.

X

log cam

log XY delogc Xy

1
———log cam I

There are other types of cams, as well as those
described in previous sections. In Section 7, we
have mentioned the groove cam. A groove cam in

eneral must have the angle of rotation as the
Input. The output is the displacement of a pin
which slides along a fixed radius of the disk.
The output, of course, is described by the equa-
tion in polar coordinates of the groove.

9. Logarithmic multiplication does mnot perm@t
a change of sign. An alternate method of multi-
plying is by the use of squares, since

+ v 2
Xy=g2y‘)2—@x'2‘)

Here three differentials but only two cams are
used (see diagram at top of next column).
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In the usual form of this device it is customary
to use a pin cam.

A pin cam is a disk with pins mounted on it in a
spiral. As the disk revolves these pins successive-
ly push a wheel which is mounted on an axis paral-
lel to the disk. In order to permit more than one
turn of the main disk provision must be made to
move the little wheel parallel to itself. This mo-
tion is not to appear in the output, only the rota-
ti9ntof the little wheel. We will return to this
point.
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As a pin passes the little wheel it causes the
wheel to revolve. Let the pin be at a distance p
from the center of the disk. The relative motion
of disk and wheel are such as if the wheel and
spiral were turning in contact with same component
of motion in the direction which is parallel to the
disk and the plane of the wheel at their point of
contact. We can see this if we take a cross-section
of the pins and gears at the region of contact. Let
6 be the angle of rotation of the disk, B that of

ear
q’roo’rh‘



the little wheel and r its "pitch radius;WFrom the

contact, we see that pg.g_ = ;‘}% or g% =‘__§’.

In the squaring pin cam, p = k0. Hence,

dﬁ-= ko or B=%k'"62+c.

As we have mentioned, it is necessary for the
little wheel to move along its axle as the disk
turns. The axle, of course, has a polygonal cross-
section and the pinion is displaced along it by
means of prongs which are mounted on a screw which
turns with 6. The linear displacement then given
by the screw is, of course, proportional to 0.
This is effective in the case of squaring cams
since p is essentially equal to 6. Presumably 'in
the case of pin cams with a different spiral, some
sort of guiding groove on the disk itself would be
necessary.

~ Another method by which squares may be obtained
is by wrapping a tape around itself. The length of
the tape is proportional to the square of the
angle turned by the spool.

B:(::)

Let .us comsider such a tape on a spool whose
angle of rotation we will call 6. The length of
the tape can be measured by causing it to turm a
cylinder an amount 8. If r is the radius of the
cylinder rdB = pde We see- that if d is the thick-

ness of the tape, 28 is the number of revolutions

for a change A6 and Ap = d2
dB = kede.

Thus we may assume

We shall see later, electrical methods for
squaring, based on a rectifier. In a later sec-
tion, we will discuss methods for getting square
- value resistances. ‘

10. It is also possible to base multiplication
of two positive quantities on the Wheatstone
bridge principle. (Cf. Section 4 of the previous
chapter ) .
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R

R, 1 s FR,
- F =k1 or -T;--

e R, = Fki.

We may consider the resistances F and R, as inputs,
G as a constant (or as a quantity, we are dividing
by) and R ‘as the output. To multiply, we put in F
and R by means of linear rheostats and then vary
R, unfil i, as read on the galvanometer is zero.

Since F and R, are linear rheostats, the inputs
can be considered as a rotation. The output can
also be obtained as a rotation if R; is a linear
rheostat turned by a "servo motor,"

A servo motor is an electrical (or hydraulic)
motor which can be controlled to turn in either
direction depending upon a signal. In this case,
the signal would be the current i. In our given
bridge, let us replace the galvanometer G by a
resistance r. Then the voltage drop A B has the

T

relay o—
-
amplifier

same sign as i. If i is p051t1ve R, is too small
and hence should be increased. A B is positive,
a voltage amplifier and a relay c1rcu1t will cause
the motor to turn so as to increase R. On the other
hand, if i is negative R1 is too large. Since the
voltage drop AB is negative, the relay circuit
will cause the motor to turn in the opposite di-
rection and reduce R,.

Notice that the inputs and output of this device
are rotations, There is another advantage in this
device which is, however, not 1mmed1ateLy obvious.
The output comes. from a motor in such a way that
the load on the inputs is precisely uniform. In
most devices for multiplication of a mechanical
sort, the load on the inputs depends on the value
of the other input and the output. This does not



occur here. On the other hand, one must admit that
the use of servo motors has certain disadvantages,
which we will discuss later.

11. The device mentioned in the preceding sec-
tion does not, of course, take advantage of all
the possibilities 1nherent in the use of a servo
motor and a Wheatstone bridge to force the equal-
ity of two resistances. We mention two other uses
for this combination; one in this section.

In the first case, we will consider a method of
obtaining the product of any number of positive

quantities by the use of logarithmic potentiometers.

In the simplest case, we will consider all the
quantities as greater than 1. Of course, the guan-
tities have to be bounded in any case and if they
are also bounded away from zero, we can satisfy
this restriction by the use of a scale factor. We
will discuss later the most effective way of doing
this, but for the moment, let us suppose that our
factors are all greater than 1. For instance, sup-
pose we want the product w = xyz, and let us sup-
pose for definiteness that x varies between 1 and
1000 y and z between 1 and 100.

We can use a Wheatstone bridge and a servo motor
to force the equality

log w=1log x + logy + log 2

reloy _

If R, is the value chosen as unit re51stance, the
maximum resistance for x should be 3R,, that for y
and z 2R, and for W, 7R,. This illustrates the con-
venience of logarlthms when one has to deal with
greatly varying quantities. However, this has its
difficulties too as we shall see.

Resistances must be positive and one way of deal-
ing with the case in which x, y and z are less than
one is to multiply the orlglnal equation by a power
of 10 in such a way that the quantities entered
into the machine are all greater than ome. For in-
stance, if x varies between .01 and 10, y between -
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" a thousand must contain log 2R

.1 and 10 and z between 1 and 100, then 103 w =
(102x) (10y)-z and we may equate log (10%w) = log
(10%x) + log (10y) + log z.

It is interesting to study the question of ac-
curacy for these devices. Let us suppose that we
can obtain logarithmic rheostats whose total re-
sistance is a multiple of Ry, the resistance whose
value is log 10 in the above eguat1on One of
these is to yield value log 10%x. Hence, its re-
sistance must vary between ( and 3R,. Let us imag-
ine the scale as divided into 1000 parts The con-
tact is to be connected to x by a gear so that as
x goes between .01 and 10, the contact goes from
0 to 1000 on the scale.

Notice that on the scale the first mark out of

= .301 R0 resist-
ance. This is one-tenth of the total resistance

in about one thousand of the scale. The next mark
will contain .477 R, total or .176 R, more. Thus
the increase in resistance between tﬂe 0 and the
first mark is more than 50 percent greater than
that between the first and second mark. This could
not, of course, be given by a potentiometer with a
wire winding of the usual sort, with one winding
besides the next. Some kind of special construc-
tion would be necessary in this case, as, for in-
stance, an extra form for winding the lower part
of the scale. This is feasible because the resist-
ance here is relatively large. Mechanical devices
to put in extra resistance at the lower end of the
scale could also be used.

The situation, of course, relative to W, would
be worse.

12. Frequently, it is desirable to use multipli-
cation by squares, rather than by logarithms. This
is particularly true when it is desired to obtain
a linear combination of variable inputs as for in-
stance :

Yy =233 a;x;+b

There are two relatively simple ways of obtain-
ing a resistance which is the square of an input
which-may be either a displacement or a rotation.

One method involves a K wound potentiometer card.

1




Let us suppose for simplicity in our explanation
that our contact is td be displaced linearly. The
K is made up of two right triangles, with a com-
mon apex and with a leg of one along an extension
of the leg of the other. The common line of these
two legs 1s the line of motion of the contact and
the wire is wound perpendicular to this edge. The
resistance from the center point is proportional
to the length of wire which in turn is proportion-
al to the area of the K between the center point
and the line on the triangle perpendicular to the
contact edge at the point of contact. At the apex,
one must replace the windings by a solid bar for
physical reasons. If the begimning of the winding
has a proper resistance between it and the center
point, this does not introduce any error in any
other portion of the scale. let Ax be the length
of one-half this solid contact recgion. Then for a
contact in a neighborhood of the zero, the abso-
lute error in the resistance is (Ax)2.

By displacing the contact in one direction by
an amount a and the K winding in the opposite di-
rection by an amount x, we can obtain a resistance
with value (a+x)?. Similarly, if they are both dis-
placed in the same direction, we can obtain a re-
sistance (a-x)?2.

This can be used to obtain a linear combination by
means of a Wheatstone Bridge. For the equation
y = Z?=13‘1x1+b
can be written in the form
R+ 4y + Z;):.l (ali—xi)2 = Z;‘:l (a1+x1)2 +4b + R
and we can obtain the value of y from the follow-
ing circuit

relay

z? ‘(0i+xi)2+4b G

The potentiometer P is linear and if y corre-
sponds to the displacement of its contact from
the midpoint, the resistance of it in ome circuit
is R - 2y and in the other R + 2y. One sees then
from our equation that for equality we must have

¥y = By e X5 * b

In general, onme can hope that the error due to
the center piece in the K cards will not occur. In
"any case, one can by proper design insure that the
error of the amount Ax? is negligible relative to
the other quantities involved.
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However, there is still another way of obtaining
a square by means of resistances, which can be used.
This involves only a linearly wound potentiometer
and hence does not have any of the difficulties as-
sociated with the center piece. Let us suppose we

have a potentiometer whose ends are joined. let x
denote the displacement of the contact from the
center point. Then the resistance between the con-
tacts and the common ends consists of two resist-
ances in parallel. One has value R(1-x), the other

R(1+x) and hence the total has the value R(1-x2)/2=
Ry - Rox? or in suitable units 1 - x2.

As before, we can obtain 1 - (a,i+xi)2 and 1 -
(2;-x;)? and then our original equatlon can be writ-
ten in the form

R+dy + 20 1 - (ai+xi)2) =30 (1_(a'i_xi)2) +
4b + R which can be realized as before.

13. In the foregoing we have not discussed multi-
plying in the case in which both inputs are variable
and electrical in nature. Of course, one way in
which this can be done is to convert the electrical
input into a geometrical one by a servo arrangement
and then use one of the above methods. For instance
a rotation or a displacement proportional to a volt-
age may be obtained by means of a servo and linear

potentiometer. The purpose of the servo is to place

‘ .
|
| .

R
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the contact so that the displacement from the cen-
ter of the scale is proportional to the input volt-
age. By using the voltage across the potentiometer
as another variable, a quotient can be obtained.
The center tap on the potentiometer is used to per-
mit the signs of the various quantities to be free.

However, we will see later on certain ways in
which vacuum tubes can be used to multiply. One of
these is reasonably direct although the range of
variables is limited. There is a way also in which
logarithms are used. However, it seems to me that the
most effective method of electrical multiplication
is by squares. This is because any rectifying de-
vice can be used as a squarer. For if we apply an
alternating voltage whose amplitude is not too
great across a rectifier, the direct current com-
ponent of the resulting current, in general, will be
proportional to the square of the amplitude of the
applied voltage.

let us examine this more carefully. A rectifier



can be defined as a device in which the current I
is a function f (E) of the applied voltage in such
a way that f (E) does not equal —f (E). Sometimes
rectifying devices are used in which I depends
upon the previous history of the device as well as
E but these would not be very useful for our pres-
ent discussion. Two possible such functions f (E)
are illustrated. We can imagine the rectifier in

I
E

I
A E

series with an ameter and a voltage applied.' The
above graphs. and the functions f- (I) are obtained
by plotting I against E for different fixed values

N
'l
E
of the latter. We assume that I depends only on E.
This would mean that the above graphs are valid

even when E is not fixed but a function of the
time.

Let us suppose now that a voltage in the form
eo + e, sin wt is applied.: Let us apply Taylor's
Theorem with the remainder to f (E) around the
point eo, i.e.; with x - a =e, sin wt. Then

2
e
I =f(eo) + esf'(eo) sin wt + Eﬁ‘ f"(eo) sin® wt
3 .

4
L £ (e,) sin® wt + %? £Civ) (e”) sin® wt

1 . .
where e is a function of eo, e, and t.

Lo

’m
P

+

Now an ordinary direct current ammeter will yield

the average value of I, provided w is not too small.

To find this average value, we integrate I from say
0 to 2n/w and multiply by w/2n. The average of sin
wt and sin” wt is of course zero. Hence the result
is

2
I =1 (eo) + E&.f%ﬁiﬁel + et H

where H = 4Tg3-f02“/' £Civ) (') sin* wtdt. We re-
gard e; as fixed and e, as the input. We may dis-
regard f (eo). Of course, H depends upon e, and e,
but we will get a square output if e, H is negli-
gible compared with f"(eo)/2. Later on we will dis-
cuss methods of improving this situation.

A "full wave" rectifier can be used to give a
similar result, provided we have voltage -E, as
well as +E;. This is true even for direct current.
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Let us suppose we wish to square the value of a
current i."We have two similar rectifiers and sup-
pose we operate them relative to 0 voltage. It is

i)

clear that if the voltage across the rectifier p
is e,, that across the rectifier p, is -e,. (We
neglect the current drawn by the rectifiers here.)
Consequently the current through p, is

P>

<

A

is = £(0) + £'(0)e, + Liolea f"'§$lexa+

1 4
.££ilé§g_lg;_, while that through p, is

ip = f(o) - f*(0)ey + f"<?)e1’ _f"(0)es®
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The ammeter measures the sum of these two in which
the odd powers cancel and of course this is essen-
tially a square. The difficulty with this circuit

is of course matching the rectifiers and in gener-
al a rather elaborate biasing arrangement would be
necessary..

lII. Integrators and Differentiators

A variable input is, of course, a function of
time or it may be considered as a function of an-
other variable. We have seen in the foregoing,
methods by which we could add or multiply two such
functions. The remaining two operations which we
would like to consider are integration and differ-
entiation.

For these a relatively large number of methods
are known.' For the integration of a rotation or
displacement we have a variable speed drive.' This
can be used as a differentiator also by the use of
a suitable servo arrangement. There are a large
number of instruments which are essentially differ-
entiators, for instance, a speedometer or tachom-
eter. ’

Electrically a watt hour meter is an integrator.:
Also a condenser can be used as an integrator and
with a resistance as a differentiator. Theoretical-
l{ an inductance can be used for either purpose
also.

A word of caution should be imserted concerning
the objectives of the present chapter, which is
also applicable to a certain extent to our previous
discussion. We are dealing with the principles
which may be used to perform the indicated opera-
tions, our discussions are still inadequate to de-
scribe practical devices. In the present chapter in



particular, we are forced to assume that our out-
puts have zero or practically zero loads. Conse-
quently, to complete the discussion here to the
point where the principles can be incorporated into
actual devices, we must utilize the theory of am-
plifiers as given in the next -chapter. '

To a certain extent this was true of the earlier

devices but in the previous cases a certain amount
of load could be tolerated without introducing es-
sential errors. In the theory of integrators, al-
most no load is permitted. Our reason for discuss-
ing integrators and differentiators before the
amplifiers is that the theory of the latter is in
‘general more readily understood if the principles
of the integrators and differentiators are avail-
able.

1. The standard method for the integration of a
displacement or rotation is based on a principle
vwhich can be illustrated by the simple considera-
tion of a sphere rotating in contact with a disk.

The sphere is mounted on an axle which intersects
the axis of the rotating disk. If the contact be-
tween the disk and the sphere is a non-slipping
one and if for the moment we consider the relative
positions of the center of the sphere and disk as
fixed, then a rotation A « of the disk will cause
a rotation A B of the sphere, such that rAd = tAB
where t is the radius of the sphere and where r is
the distance of the center of the sphere from the
axis of the disk. Let us suppose t = 1. Then 4B -
rha.

For a brief introductory discussion, let us first
suppose that the contact between the two occurs at
a point. Let us suppose also that there is another
mechanism not shown, which moves r in such a way
' that r and o are both functions of a variable «.
Since the motion of r is along the axis of rotation
of the sphere, it does not contribute to the rota-
tion of the sphere and hence we have df = rda or B
is an integral of the differential rda. However
this requires that the point of contact move with
perfect slip along the radii of the disk but with
perfect non-slipping contact on the circles with
the same center as the disk.

Véry many variations of the above have been in-

troduced using, say, instead of a disk and a sphere,

a cone and a sphere or two spheres or cone and
ellipsoid! However, they are all subject to the
difficulty given above, when no more than two ele-
ments are used.

The modern "ball cage variable speed drive" uses
essentially four elements and is not subject to

either the difficulty mentioned above or to a cer-
tain extent to the difficulty represented by the
fact that the point of contact of the disk and
sphere is not a point.

To understand this device, let us consider the
rotation of a sphere which is placed on a rotating
disk and which is being shoved by an apparatus
that does not interfere with its rotation, along a
radial line of the disk. At first let us suppose
that the contact is at a point.

It is immediately apparent that the point of con-
tact moves on the disk, a vectorial amount which

is the sum of two mutually perpendicular components,
one of which has the value Ar and the other rda. If
we suppose that contact is non-slipping then a
point of the sphere also has this motion and one
can see that the instantaneous rotation of sphere
is about an axis in the plane parallel to the plane
of the disk.

This was, of course, on the assumption of contact
at a point. Acétually, we have an area of contact
with a line of no relative motion and areas in
which the relative motion is opposing. This gives
a tendency to rotate around an axis perpendicular
to the plane of the disk. The actual instantaneous
rotation then must be compounded from this instan-
taneous rotation and the instantaneous rotation of
the previous paragraph.

This can be done by considering the motion of a
point on the end of a radius perpendicular to both
axes of rotation. It is easy to see that the actual
instantaneous axis of rotation is in the plane

4

given by the other two axes of rotation. In fact,
we have shown that the instantaneous rotation, we
are interested in,can be considered as made up of



three components, each of which is a rotation
around one of three mutually perpendicular axes
and, of course, this is true for any rotatory
motion.

Let us now consider the H. Ford variable speed
drive. The essential elements are a disk, two
spheres in a cage, one on the disk, the other on
the first, and a cylinder, with axis parallel to
the face of the disk and in contact with the upper-
most sphere.

Let us consider such an arrangement and see what
happens to each of the three components of the ro-
tation. The component due to the rotation of the
disk is around an axis of the sphere which passes
through. the axis of the disk. This component is

easily seen to be transmitted to the upper ball
and the latter in turn transmits it to the cylin-
der and if B is the amount of rotation of the
cylinder, o that of the disk and r the displace-
ment of the point of contact from the center of
the disk, then dp = rde.

The component of the rotation which is due to
changing r is about an axis perpendicular to the
previous one but parallel to the disk. The upper
sphere receives .a rotation about a parallel axis
but in the opposite direction. If this sphere is
in non-slipping contact with the cylinder, this
rotation will cause it to roll along an element of
the cylinder without transmitting any motion to
the cylinder and of course this is the desired re-
sult.

Thus in. these two cases, as long as we have non-
slipping contact, the desired effects occur. The
situation relative to the third component is mot
so happy. For as we have seen if there is an area
of contact between the disk and the sphere, we
must have a rotation around the axis perpendicular
to the disk if we are to have non-slipping contact.
On the other hand, under the same conditions for
the contact of cylinder and upper sphere, we must
have no rotation about this axis. Consequently
there must be a certain amount of slipping at the
three points of contact if the device is to move
at all. These devices are constructed so that

there are large pressures on the contact points.
Presumably the last effects are not negligible.

Two integrators can be used as a multiplier.
Thus uv = fud v + fv d u. In general, however,
slipping limits the application of this formula to
the case where one uses the formula

d(u-v) dv  du,
dx = Udx * Vdx

2. A ball cage variable speed drive can be used
as a differentiator by the use of a servo hook-up.
Suppose we have a shaft whose rate of rotation is
to be measured. The idea is to cause another shaft
to turn with the same rate by means of a variable
speed drive. The displacement of the ball cage in
the variable speed drive shows the rate of turn of
the latter provided the disk is turned by a con-
stant speed motor. Since the servo hook-up is sup-
posed to match the rates, the displacement of the
ball cage is the answer. :

But one should be cautioned against trying to

-match the rotations themselves in such a set up

when the desired matching is between rates. Let us
take the following simple example of a set up that

Servo CoNTAcTS

o
O
hod

Retay

will not work. Here a is the shaft whose rate of
rotation is to be measured, b is the shaft whose
output is to match the other. The output of the
differential is the difference of the shafts a and
b. The servo contact arrangement is such that when
a~b is positive, the servo motor tends to increase

s+ db :
b (5gy) and conversely when a-b is negative, the
arrangement tends to decrease b,

Let A(o) = +1 for 6 > 0, A(0) = -1 for o.< 0.
For simplicity in our discussion, let us neglect
the acceleration of the motor, i.e., let us sup-
pose that it runs at two speeds, + v and - v. Then
the differential equation for the motionm of the b
shaft is simply

b = Aa-b) v.
Hence b is a parabolic function of t.

Let us describe the situation more precisely in
terms of various possible motioms for the a shaft.
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The curve which expresses a as a function of time
divides the t-b plane into two parts. Above this

A SHAFT

=

curve the b curves are parabolas bent down, below
they are parabolas bent up. When a parabola
crosses the boundary curve the continuity of the
first derivative determines the path below the
curve. ’

It is clear that the result is an oscillating
motion for the difference which may even 1ncrease
in magnitude. The reader is urged to consider the
possibilities in which the velocity of the servo
motor V (=b) is governed by different laws, for
instance

Vo A(a-b) = V + B V'
_ where B is positive and about 100 in size or say
has different constant values above or below the
a curve. ‘

It is clear that even when the follower approxi-
mates the a curve, its rate has an added oscilla-
tion.

The correct method for matching rates then must
avoid the difficulties inherent in the effort to
match the rotations themselves. It is clear that
vwhat is desired is to make the difference a con-
stant not necessarily zero. let us mount our servo
contacts then on a shaft which is positioned so
that normally neither contact is made but that a
slight shift will close one or the other contact
and reach the limits of motion of this shaft. let
us now couple this contact shaft to the difference
shaft by a frictional connection which will perm1@
slipping when the contact shaft is at the end posi-
tions. Then when a-b is increasing, one contact
will be closed and this can be used to increase b
through the servo arrangement. Similarly, by the
use of the other conmtact, we can imsure that b de-
creases when a-b is decreasing.

In the simplified case for the motor velocities,
i.e., if v can have only three values +v,, 0 and
-vo, it is readily seen that the b follow curve
will be parabolic until its tangent is parallel to
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the tangent of the a curve for some value of t.

The situation is clearly indicated by the accom-
panying diagram. Here we suppose that a is posi-
tive, b is zero initially. Since 4:(a~b) = a - b

is positive, a — b is increasing and the servo
contacts cause b to increase. Presumably, the
motor is effective enough to cause b to overtake

a and hence we eventually get to a situation where
a = b. It is clear that any device which registers
the sign of a — b can be used instead of the fric—

tion coupling indicated.

At this point in the simplified assumption, we
can suppose that if a is a constant, the motor
would stop and b would remain equal to a. Actually
what does happen in gemeral is that the value of
b oscillates about a. The nature of these oscilla-
tions is of great importance and we shall discuss
them but it is hoped that they should be relative-
ly small. However, the time it takes for the ini-
tial equality of a and b is frequently of great
importance especially in evaluating the operation
of devices whose value depends upon their speed of
obtaining the solution. Let us call it the tran-
sient period. During the tramsient period, b gives
no information concerning a.

When the time needed to accelerate the motor can
be ignored, the length of this transient period
can be obtained by solving the equation

a(t) = by  vot

where the sign of the vot term dépends upon the
initial difference of a and b. In many applica-
tions a can be predicted to within certain param-
eters and hence the possible values of t deter-
mined. For instance, the reader is urged to con-
sider the case in which say a(t) = ¢, + oyt where
oo may take on values between -1 and +1, a, be-
tween 0 and 1. Let b, = 0 and suppose that we can
vary v between 3 and 5. The possible speeds are
limited by the oscillations which occur after the
transient phase.

In the above discussion the change in b was
taken to be 4 vot and the time necessary for ac-
celeration ignored. In general, however, it is
quite easy to take the acceleration time into ac-
count for the purpose of finding the transient
period. For the output of most motors can in gen-
eral be considered as asymptotic to a line, Ab -
+ Vo(t = to). For the purpose of finding the



transient period, these asymptotic expressions can
be used, i.e.,

a(t) = bg £ Volt = to)-

Let us flow discuss the oscillations of b about a
which occur after the transient period. The spe-
cific answer in a particular case must of course
depend upon the type of servo connection and the
motor characteristics. However, we can point out
certain aspects of the situation which are rela-
tively general.

Let us consider the case in which b is original-
ly too small. In general b will increase until it
overshoots a. The servo mechanism will, of course,
bring it back and in general it will overshoot in

the other direction. In a well designed mechanism;
this overshooting should decrease in magnitude
rapidly. Thus b - & should look somewhat like this:

After the first maximum, the curve can be compared
essentially with e=%* sin wt. If the ratio of suc-
cessive maxima is fairly constant this can be con-
sidered as a measure of damping. If the times be-
tween zeros are relatively constant they can be
termed half periods.

The knowledge of the nature of such oscillations
is necessary inm order to analyze how such a mechan-
ism would behave as part of a more complicated de-
vice. Oscillations of one sort or another are al-
most always present in a calculating machine and in
the inputs also. They are called "noise." The be-
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haviour of a device relative to noise is very im-
portant in evaluating it. This subject is somewhat
obscure and the reader is referred to: Moulin, E. B.
Spontaneous Fluctuations of Voltages. Oxford: Clar-

~endon Press, 1938.

For the general problem of designing servo fol-
lowers for various purposes, based upon the theory
of feedback amplifiers, the following reference is
given: MacColl, L. A. Servo Nechantsms. New York:
D. Van Nostrand Co., 1945.

3. The usual speedometer is an instrument for
measuring the rate of rotation of a shaft. If we
have a wire moving in an electromagnetic field, a
voltage is induced which is proportional to the

rate of increase of flux within the loop formed by
the wire. In order to be more specific, let us as-

N

sume that the field is uniform and that the wire
loop lies in a plane. If 6 is the angle of rotation
of the loop from a fixed position of maximum flux.

then ¢ = A cos 6 and e = ké =kA sin 6 §f.

The principle of a direct current generator can be
described by reference to the accompanying diagram.

L)
RN >




Here a permanent. field is given by the two poles
of a magnet. Within the poles is an armature whose
iron core we ignore. On this armature we have
mounted various wire loops which are represented

in the diagram by a solid radial line and a dotted
loop which is suppose to indicate that the wire
goes all the way around the armature, in fact may
be a coil which loops the armature a number of
times. The solid portions of circle are the commu-
tator bars, A and B are the take-off brushes which
are fixed in space. (We have simplified the follow-
ing explanation by doubling the brushes. The actu-
al windings used vary in different ways depending
on the voltage and current characteristics desired
and the number of poles, but those aspects of the
situation which are of interest to us are precisely
the same.)

It is clear that the coils near the A brushes
have minimum flux across them since they are almost
parallel to the field and those near the B brushes
have maximum flux through them. Thus the flux is
* increasing for those coils we have marked II and
IV, decreasing for those marked I and III. Thus in
all four paths going from A to B we have a voltage
rise.

This voltage rise depends upon the position of
the coils as well as the rate of rotation. Thus
the voltage rise is not simply proportional to
the rate of rotation, %%, but contains a varying

component. In the diagram, however, it is clear
that the geometric situation repeats itself every
47° and we could make this repetition occur at
360°/n by taking n coils instead of 8.

Thus the direct current generator is a differ-
entiator. Notice that the difficulties mentioned
are of relatively little importance if all that is
desired is the sign of the derivative, as when the
rotation of the difference shaft in previous sec~
tion is considered. A generator could be used in-
stead of the friction arrangement to control the
relay. The characteristics would be somewhat dif-
ferent though, the generator might permit a cer-
tain accumulation of difference if the rate were
slow, i.e., if a — b is not too great in absolute
value.

An alternating current generator differs from a
direct current gemerator in that the rotating
coils are in series (except where it is desired
to increase the current at the expense of the volt-
age) and electrically the position of the coils
relative to the slip rings is fixed. In the fol-
lowing diagram, the solid radial lines represent
wire loops, the dotted lines simply represent
connections. The two circles are slip rings.

For this diagram the total flux through coils
1, 2 and 3 is

A cos 8 + A cos 8 +45°) + A cos (8+90°)

where 6 is the amount of rotation from the posi-
tion shown. (The other circuit is analogous.)
Consequently the voltage rise is

e ='%% = -Alsin 6 + sin (é+45°)’+ sin (6+90°)] &
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= -A [sin 8 (1 + cos 45° + cos 90°) +

' cos 8 (1 + sin 45° + sin 90°)] b
=-A' [sin (8 +y)] &

1 + cos 45° + cos 90°

vwhere tan y =

1 4+ sin 4H° + sin 90° °

Now if 8 is relatively constant, we see that the
output is an alternating current which is modu-
lated both in magnitude and frequency by 6. This
can be used in a number of ways. The above discus-
sion generalizes to any number of coils.

It may be well at this point to indicate the
relationship between generators and motors. In
the accompanying diagram, let us consider the ac-

tion of the magnetic field M on an element dl of
length of the wire. Let m denote the motion of
the element. Then the voltage rise e is a vector
which is given by the equation e =m xHdl, i.e.,
e is perpendicular to bothm and H and has size
mll sin 6'dl where 6' is the angle betweenm and H.



On the other hand, if we had a current i through
the wire and H is the same, then there would be a
force f on the wire element ff =H x i. If we had
two such elements symmetrically placed relative to
the axis of the rotating conductor, we would get a
torque with value 2rf sin 6, where r is the radius
of the corducting loop.

Considering the sum of such elements, we get the
result that if we put a current through the con-
ductor, instead of rotating it, we will get a
torque instead of a voltage rise. This, of course,
is the principle of the electric motor.

In the usual ammeter, this is the method used to
measure currents. The current produces a torque
which is proportional to it. This torque is meas-
ured by observing how far a spring is compressed.

In the wall galvanometers, an amount q of charge
. is measured by discharging it through such a de-
vice. Here %% = i and hence the torque T is pro-
portional to d:. The current i causes a turning
impulse = JTdt which is proportional to the charge.
The turning impulse gives a corresponding change

in momentum, from rest say to a velocity v. With
the velocity v is associated a certain kinetic
energy. The above discharge occurs almost instant-
ly and the rotating part is then turning with a
certain energy. This energy is then gradually
transformed into the potential emergy of a delicate
torsion spring. One obtains a measure of this ener-
gy by observing how far the spring is wound up when
the rotating part is first brought to rest. (The
above, of course, is a qualitative, not a quantita-
tive deseription. A quantitative description would
have to consider back e.m.f.'s in the discharge
process which are due to the motion of the rotating
part, i.e., its generator action and the influence
of damping in the winding up process.)

4. A watt hour meter is also used as an integra-
tor. Essentially this is an electric motor with a
special type of load which permits it to represent

Jef IEdt.

Consider a motor whose field is obtained from an
electromagnet and hence is proportional to the
current I in the coil. The current I for the load
to be measured goes through this coil while the
armature current is obtained through a resistance
shunted across the load and hence is proportional
to E. From the preceding section we see that the
torque is proportional to IE.

Llet w be the rate of rotation of the armature.
Iet m denote the moment of inertia of the armature
and the associated rotating parts. Then we have
the torque equation

=T = dw
IE=T=m o) + 1w

where lw is the load torque.

Solving for w, we obtain

£ 1 w0

-1
w=J Se IEdt + Ce ™.
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Let us ignore the transient, i.e., the last term
and write this:

1.
we[5len®®) L 1E)qn,
m 1

This is a weighted average of the function {*IE
over the interval from — to t. Changing the vari-
able of integration we have

1
w=f_0<,c 1 w" E@® +1)dx
m 1
and

1
1 jf; e d = 1.
m

It is customary to refer to this average as a time
delay and indeed if } is sufficiently large and IE
does not charge too rapidly, the integral may be
approximated as

w=1E(t-1,)

where t, is the value such that the total weight
from —= to -1, is #. For this we have

1 1
% - [0 % e™ dt = e

or
T = % log, 2 = .7

=13

- Since w = §2, we see that
t
8y = 0, = Jpt TE (t-7o) dt.

Thus the value of the integral is given by the
rotation of the shaft.

Theoretically the load torque lw could be ob-
tained as follows: Let us turn a generator with a
velocity w. The generated potential E = kw. Let us
apply E across a resistance R. Then the current is
E/R = k'w. Since there is now a current in the
armture of the generator we have a counter torque,
i.e., the generator begins to act like a motor. In
turning the armature we do work against this torque
and this work is the energy dissipated in the re-
sistance. This counter torque is proportional to
the current and hence equal to lw.

MAGNETIC
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We must then hook our meter motor to a dissipat-
ing generator, remembering to keep m low. This is
accomplished in the meter by introducing an alumi-
num disk between two poles of a magnet. The meter
motor turns the disk. The magnetic field is lo-
cated on one side of the center of the disk. The
rotation of the disk sets up a voltage rise from
the center to the edge of the disk on this side
and hence a current flows in the disk whose energy
is dissipated by the resistance of the disk. In
the diagram (foot of foregoing page) the current
is indicated by dotted lines.

Such currents are called eddy currents and will
occur in any conductor rotating in a magnetic
field. They are very objectionable in electrical
machinery where they introduce a dissipating torque
proportional to the speed. To minimize these losses
.the iron in such machines is laminated so that the

resistance to these currents is as high as possible.

* 5. The simplest type of an electrical integrator
is a condenser. Let us consider the following sim-
ple circuit. If q is the charge on the condenser,

R

£ ' ]

I

then the voltage E' across the condenser is q/C
where C is the capacity of the condenser. The cur-
rent i through the resistance is §§ and thus the
input voltage .

1
Cq

E dg 1
R+ CRe

= et/CR ‘g%+ et/CR (1/CR) q

= .@
E =R it +

Fet/CR

= %—t (et/CRq)_

t t/CR
ft'f Eﬁ dt = 2

t,/CR ty/CR
) q e Q.

Dividing by Ce?’" e get .t
1 rt (t-t )/CRY t Sata)
ﬁftiEe Tty dr =E, e (R E, -

Now if 1/CR is small, i.e., if CR is large, then
we see that we have

t
3z Ji2 Bdv - By - By

The factor 1/CR is not particularly troublesome
since we can amplify the output E'.

For this purpose a mica condenser or an oil or
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paper condenser should be used. An electrolytic
condenser is not suitable because to be effective
the polarity must be maintained.

If we take R = 10 megohms and C = 10 microfarads
we get a time base of a second in which the errors
due to ignoring the factors e (T-tz)/CR apg
e (1-t2)7CR j5 less than 1 percent.

A similar circuit but with different values of
the constants can be used to differentiate K. Let
us put the output across the resistance. We will

have again the equation

= Rd C)q.
F Ra%-+ (1/C)q
Differentiating and dividing by R, we get

148 di :
AT (1/CR) i.

R dt
We may solve this for i :
. (ti-t)/CR
1l =1, €
¢
. eb-t)/cR 1 dE
Cle o™ tr

If at the time t,, i, = 0 and if 1/CR is relative-
ly large, then the integral on the right represents
a time delayed value of C$E.

'The derivative of a current can be obtained in
an analogous way, at least theoretically from a
linear inductance. The difficulty, of course, is
that most inductances have a good deal of resist-
ance associated with them. However, the latter
can be compensated for by means of a certain cir-
cuit.

Let us suppose we have a current i flowing
through a circuit. The accompanying diagram shows

L —

L
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part of this circuit and we suppose that the vari-
ations in voltage in the part shown is negligible
as far as i concerned. If i is steady, the voltage
drop in the box equals that across R and since the
effect of the resistances R, = R, is to average
the end voltages we see that the output voltage is
zero. On the other hand, if i varies the voltage
across the box is L%% + Ri and across the resist-
ance R, it is Ri. The output voltage is then an
average of L9 + Ri and —Ri and proportional to 4
In closing this section on the condenser inte-
grator, we wish to point out that if a variable
speed drive is connected with a differential as
in the accompanying diagram, then we have the

X Y

mechanical equivalent of a condenser circuit. The
output X - Y of the differential is applied
through gearing to the rate input of the ball cage
variable speed.so that the equation

v 1 _

Y o= n X -Y)

is obtained or
X-Y+kY.

As before Y can be considered as lagging value for
X or depending on the size of k as an integrating
or differentiating circuit.

6. In the previous discussion, we have seen that
the output of various devices contains besides the
correct answer a noise term. Relatively, the noise

term is oscillating while the signal is a constant.

In the present section we wish to discuss filters,
which will permit the relatively constant part to
go through (with a time delay) but will cut down
the oscillating part. More generally we will see
that it is possible to arrange circuits which will
discriminate in favor of some frequencies and
against others.

Let us first consider the reaction of dn elemen-
tary two-terminal network to a voltage which con-
tains various frequencies.

E =eo +e; sin (wits®y) 4e, sin (wot+as) + ...

re,sin (wyt o+ ap)

i
dt*
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If the circuit has inductance L, resistance R and

capacity C, the voltage equation is.
4’ 1
dt*

E = Cq

R da.
+ T +
in terms of the charge on the condenser. Differ-
entiating, we get the current equation

48 |
dt

di

2. .
1 d7i i
41, R it

: + (1/0) 1.
dt,
This assumes that the resistance, inductance and
capacity are in series.

Now if we solve the above equation for i and
neglect the transient terms, we obtain a term for
each frequency that is present in the applied
voltage ¥. Since the network equations are linear,
this additivity property extends to any network
made up of such elementary networks. For each fre-
quency present in the circuit, we may solve the
system of equations which we obtain by writing
all other components of the various voltages as
zero. In each case we will get a current of the
same frequency. The current in any individual
elementary network is the sum of the currents in
this network thus obtained for every frequency
present. This procedure, of course, ignores-the
transients. :

For the component of the voltage e sin (wt + a),
solving the above equations yields

1- = sin (wt + o + y')
“VR? 4 (WL -%C_” Y
1 _
where tan y' = _(}ﬁ__w_L)
R

Now it is customary to consider an alternating
voltage or current as a complex quantity when one
wishes to consider only a single frequency. The
real part of this complex quantity is the usual
value for the quantity. Thus if e is the voltage

_with value e sin (wt + a)

e =R (e sin (wt + a)-i e cos (wt + a)]
=R [e(-i)(cos (wt 4+ a) + i sin (wt + a)]

=R [eexp (i (wt + a - n/2)].
The voltage can be represented by the complex
quantity & = e exp [i(wt + ¢ — n/2)].

Similarly the current can be represented by

- = exp [i (wt '-n/2)].
Vs e n L

Furt hermore our resul if 2, is.the
complex quantity \/% + (WL = 1/wC)® exp (-1 Y')

then the equation

LZ, =¢

w

holds. This is readily seen to be a generaliza- -
tion of Ohm's Law.



Another way of comsidering the above is to note
that if we use a complex value for the voltage in
the differential equation we will get a complex
value for the current. Since, however, the coeffi-
cients in the differential equation are real, the
same derivative relationship holds between the
real parts of these complex quantities as between
the quantities themselves. Thus for a fixed fre-
quency, the differential equation for a given ele-
mentary circuit can be replaced by an algebraic
equation with a complex constant Z,.

The resulting equation is a generalization of
Ohm's law. Z, is the generalization of the notion
of resistance. It is called the complex impedance,
while 1Z,| =/R? + (wL - %3)2 is generally called
the impedance. -y' is called the phase shift. Note
. that |Z,| has a minimum for
2 1 1

W =22 OF . Wa=;-—
e V'ic

If v is ‘the frequency of the voltage corresponding
to w, then w = 2nv and the frequency which gives
the minimum impedance is v = gy . Thus if we
wish only frequencies near a fixed value Vo to be
present in a certain part of a circuit, we may in-
sert in the input an elementary two-terminal net-
work of whose impedance is a minimum for the de-
sired frequency. Thus if the output z is small

— T — MN—] |—
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relative to Z, for the undesired frequency, then
if a voltage e of this frequency is applied only
a small part of it will appear across the output
since
.zi.82

So—Zl--Z;T—Z-
Here g, is the output voltage of this frequency
and i is the current. Since the voltage across the
interposed circuit is z_ i, we see that the total
voltage € = Z,i + zi = IZ' + 2z) i which determines
the current i. Incidently this shows that imped-
ances in series yield an impedance equal to the
sum of the given impedances.

It is also possible to get an impedance which
discriminates against one fixed frequency. Consid-
er for a moment, two elementary circuits in paral-

lel. let & denote the applied voltage. The ¢ = zit;.

The total current is
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1

st = Ayl
Z1 Zo

-
1

_ 421 t 22
=)

or g =21 22 .
Zy t+ Zo

e wL-2)® emty

Let us now recall that z,= b

i)
where tan y = Eﬂli%llq. Hence

20 =AR* + (wL—“C:l:)2 (cos y - i sin y)

=R+i(wL—wlC_)

The customary choking circuit has two parts in
thisiform. Hence, the above discussion ‘applies to

R L
>~ e
]
cll
it with-zs = R+ iwlL, z, = - i/Cw. The complex

impedance is L . R

7 = Zy Zo _ S
Zs + Zo —Q_'(E'—T',
Rvi (b -

and the impedance in the usual sense is
P R
ol -
WVR? + (L - Lw)?
Cw
lz] A/L°w® + R®
C wy/ R® + (U'Ez - w)?

1 .
=L R
|Z|-C\/l¥2+(C1__LW)F2\/1+L2w2
w

In general, these circuits are considered for the
case in which R is small relative to Lw. Hence the
last” factor can _be considered one and z clearly has
a maximum for w* = 4, Thus by the use of two such
circuits we can pick out a fixed frequency out of
any applied voltage and let it come through. Thus
the usual discriminating filter with a single stage
can be set up in the fashion as shown in the dia-
gram at the top of the next page. Suppose the im-
pedance of the crossing circuit is z,, that of the
inserted circuits z, and z, and the load z. From
our previous results, we see that the total imped-
ance must be

2y (zs + 27)
Zy Y23 + 2 *

Zo +
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Hence the voltage drop g,5 from A to B is
€ 2, (25 + 2) // ( 2, (25 + 2) >
Z1 + 23 t 2 Z2 * Z ¥ 24 * 2
= €% (25 +2) /2, (25 + 25 + 2) + 21 (25+2)
=821(Z$+z)/ {22 21 + (2, +2,) (24 + 2)].
The output voltage drop is e,p z/(z + z3) =

g 21 2/[2%5 21 + (21 + 22) (25 + 2)]

- € 72y Z

B Zo Z1 + (21 + 2,) (25 + 2)
e 74 2 N
=71 (Zo + Z3 + Z) + Zp (25 + Z)

Now if z, is to be a maximum at a given frequency
and z,and z, minima for this frequency, then for the
given frequency the output ratio is essentially

—z
Zo +Z3 + Z

if z,/z, is small. On the other hand, for frequen-
cies where z, is small and z, and z, are large,
the output ratio is essentially

Z, % .
Zo (Zg + 2)

One could of course use a number of stages in
succession, for instance

—
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with the shorting circuits having a high impedance
for the desired frequency and the series circuits
having low impedance. It is clear that this shunts
the undesired frequencies through the shorting
circuits, while the low impedance of the series
circuits favors the desired frequency.

For constant current filters, the situation is
essentially simpler. Thus the circuitlhas the prop-

T T T —

I
|
BRL

erty that it tends to shunt the non-constant cur-
rents but offers little resistance (just that nec-
essarily associated with the inductances) to the
direct current.

A band pass filter is somewhat analogous. Thus
the circuit|will tend to shunt frequencies for

- fUUUUUU\————‘
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which 1/Cw << wL. For the condenser offers a path
with impedance 1/0w for these. frequencies, while
the impedance of the other path contains the term
wL. (There is a case where this won't work. The

. reader is urged to consider the possibilities for

the output impedance.)

Similarly the circuit

Py

will discriminate against frequencies for which
Lw << 1/Cw, i.e., against low frequencies. A com-
bination

. 1]
LR




“can be used to discriminate against all frequen-
cies, which do not lie in a certain interval. The
first part discriminates against frequencies which
are higher than a certain number, the second
against those which are lower than another number.

A sequence of such filter sections can be used
to obtain as sharp a discrimination as desired.

For audio frequencies, 20 to 20,000 cycles per
second, the use of inductances is inconvenient in
general and resistor capacity combinations are pre-
ferred. Thus the first of these circuits favors the
the low frequencies, the second favors the higher.

—{ 1 ala
1. e
=

These can be combined as before in series and even
parallel arrangement of series.

Another type of filter element which can be used
to discriminate against a prescribed frequency is
based on the use of an alternating current bridge
which is balanced just at a prescribed frequency.
For instance, in the circuit

L.

o>
o

d

_I".

the open circuit voltage between A and B is

(22 1
EA,B (Z1 T Z, 3> EO

- where z, = R + ;%C, Z, = R/(1 + iRwC). Substitut-
ing yields
s _ 41
i (RwC ,ﬁﬁﬁ)

-1
EAB_%?”'i(RWC'RLwC)EO

E,p is zero when w = 1/RC or when the frequency
¢ =3 /anRC. -
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One well known combination of these ideas which
is used to discriminate against a fixed frequency
is the "bridged T" circuit.

Eim joot

R R
ZC:_:I:_

.The discriminated freduency is again given by
fo = 1/2rRC. The nodal equations readily yield
for any frequency f, if p = f/f,, that E_ =
i il = £)/14 + 2R/Ry + i(p - 20(1 + 2R/R}])]

it RL is the resistance connected across E_ ..

The importance of the bridged T circuit lies in
the fact that it provides-a "bridge effect," i.e.,
discrimination against a fixed frequency in a cir-
cuit in which one side of input and output is
grounded. This is very useful in coupling circuits
involving vacuum tubes.

If the theory of calculating machines develops

.in certain directions, the use of different fre-

quencies will permit the same electrical unit to
be used for a number of calculations at the same
time. Such filters as those discussed ahove will
then become of great importance.

7. The above filtering and smoothing electrical.
¢ircuits have their mechanical analogues. For in-
stance, let us consider the following:

1

friction BrRYsH
Or Viscous FricTion

FLYWHEEL/

The second combination of flywheel, viscous fric-
tion drag and spring is analogous to the electric
circuit if we assume that the total charge passing

SPRING



into the circuit is analogous to the rotation of
the input shatt. The torque applied to the mechani-
cal circuit is analogous to the applied voltage,
the moment of inertia of the .flywheel is analogous
to the inductance and the spring whose torque is
proportional to the angle turned is analogous to
the condenser. All this is immediately apparent if
we compare the voltage equation
2
g .99 dg ¢

R—=, =
at?* " dv ' C

with the torque equation

T oM Qfg + R %% + ke,
dt

(The first term is the torque used in acceleration,
the second is the torque used to overcome the vis-
cous friction, and the third term corresponds to
the torque of the spring.)

It is readily seen that this analogy extends to
more complicated circuits. Hence, we can have
mechanical filters and smoothers as well as elec-:
trical ones. In general, the frequencies are small-
er in the mechanical case. Unfortunately, in gen-
eral, the resistance coefficients are unknown and
highly varying which is a difficulty with design-
ing mechanical circuits.

There is another way in which the analogy can be
drawn which is particularly suitable for electro-
magnetic devices. Here the notions of force, mass,
velocity and the compliance of a spring correspond
to the electrical notions of current, capacity
voltage and inductance. Thus the impulse equation

t
ft: F dt = m(vy-vy)

is compared with that for the flow of current into
a condenser

t
Je; 1 dt = C (ep-ey)
and the compliance relation for a spring
kF =x

where x is the displacement with the inductance
relation .

Li=/edt.

To illustrate this, let us consider a coil of re-

sistance R, pivoted to turn so that it cuts a con-
stant magnetic field. Let us suppose that the coil
has moment of inertia I and is subject to springs
which tend to keep it in a position 6 = 0. (The

D'Arsonal movement is, of course, a good example.)

Let k be defined by the equation k F = 6. That
is, Fg is the force exerted by the spring when the
coil has been turned an amount 6.

If there is a current i in the coil, the mag-
netic field will exert a force Fy on the coil
which is proportional to i.
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h Fy = i.

If Fy does work there must also be a counter e.m.f,
e' and the power Iy r %% must equal i e'. Since

r do

hF,= i, we must have Edt - e'. The equations of
motion
.14’ .1d% .8
Foelqm P -Tgmx
become
i.gthde! b '
h I rdt ke Je! dt
or

h2 de' 112 t
(I-?) d— + EI-‘I (] dt.

i

Thus the current voltage relationship is the same
as that of circuit

cL 3

. _pde . 1
i=C i L_f e dt
provided C = I.%f, L = kr/h®.

Power considerations also show that if e" =R i
is the resistance voltage drop in the coil, then
the total voltage drop is e" + e'. Consequently
the "equivalent circuit" for our coil is




where, of course, R, C and L have the values indi-
cated above. This means that as far as the elec-
trical circuit connected to the coil is concerned,
we can get the same effect by substituting this
circuit instead of the coil. A shunt resistance
will indicate the effect of viscous frictionm.

The use of equivalent circuits in this fashion
is a very effective method of determining the in-
terplay of electrical and mechanical elements,
which are connected magnetically. It is interest-
ing to note that

LC-1k

i.e., the resonance frequency of the mechanical
circuit and its electrical equivalent are the
same. When one has expressed the mechanical ele-
ments in a device by their electrical equivalents,
circuit theory can be used to describe the action
‘of the device in time and also to discuss such
questions as stability.

This conversion of mechanical elements to their
electrical equivalent is quite customary in the
design of sound reproducing devices. Cf.: Mason,
Warren P. The Application of Electromechanical

Impedance Flements in Transducers and Wave Filters.

New York: D. Van Nostrand Co., 1942.

The analogy between electrical circuits and hy-
draulic ones is reasonably well known. The amount
of fluid corresponds to the amount of charge, the
pressure difference corresponds to voltage drop,
the inductance corresponds to the mass of the
fluid, viscous friction corresponds to the resist-
ance and a storage cylinder corresponds to a con-
denser. (In the latter either gravity or a piston
pushed by a spring can be considered as providing
the pressure proportional to amount of fluid in
the cylinder.)

For current of a fixed frequency, the analogue
of a set of gears is a transformer which increases
the voltage in the same way as the gears will in-
crease the torque. The equivalent of backlash is
the hysteresis. (It may be recalled that backlash
is the amount of play between gears when the
driver reverses direction.)

Normally every effort is made to eliminate back-
lash. However, sometimes it is deliberately in-
serted because it makes the device insensitive to
vibrations of less than a certain size. For if we
have two teeth moving together, of course, with a
certain momentum in the driven gear, then if the
driver has a high frequency vibration of ampli-
tude less than one-half the backlash, the back-
lash permits the driver to move back and forth,
touching the driven wheel only at one point in
each cycle of the vibration. Of course, the driven
gear receives a number of impulses but its moment
of inertia will smooth these out considerably.

" (The reader is urged to’study the differential
equations for the above process and also the elec-
trical analogues.)

In most cases as I have said before, the effort
is made to eliminate backlash. Thus the driven
gear may be split in two parts, which may move
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relative to each other but which are fastened to-
gether by a spring in such a way that the acting
tooth of the driver is pressed on both sides, one
by each half of the split gear. Consequently when
the driver reverses direction, it reverses the
half of the split gear it presses on but it does
not move relative to the split gear.

There are other arrangements.also for eliminat-
ing backlash. For instance in the above, the pres-
sure of the spring must be large enough to stand
the pressure between wheel and driver and is it-
self another pressure on the gear tooth faces of
the gear. To eliminate this, it has been proposed
that the split gears be kept apart by a wedge.

Consider the following patented arrangement
which is due to C. W. Nieman. Again we have a
split gear on the driven shaft but each half is
free to rotate around the driven shaft. On each
half, there is a pin which protrudes from the
face of the gears and I believe that one passes
through a slit on the other. On the driven shaft
there is a rod perpendicular to the axis. On this
rod there is a stud which slides up and down but
which is normally pressed between the two pins on
the halves of the split gear by a spring. (See .
diagram, top ot page II - 36.)

With no load the spring presses the stud onto
the pins and this pressure causes the two halves
of the split gear to press against the teeth of
the driven gear. When the driver applies a force,
this force is transmitted by ome-half of the split
gear and one pin to one side of the stud. Since
this force is not balanced by a like force from
the pin on the opposite side of the stud, the
stud presses on its axial rod. Thus friction pre-
vents the stud from moving up on the rod and the
torque is transmitted by the rod to the driven
shaft.

This arrangement has the advantage that the
pressure by the spring on the gear teeth may be
relatively light. It is quite important in many
precision devices.

8. We have already discussed a number of methods
for finding a rate of rotation. Besides these,
there are stroboscopic methods which while very .
accurate have not as far as I know been adapted
for calculating purposes; there are methods in-
volving the drag of viscous fluids, there are
electrical methods involving charging and dis-
charging of condensers and finally there is the
gyroscope principal of the airplane turn indica-
tor. We wish to consider the latter in the present
section.

A gyroscope is a solid body having rotational
symmetry around an axis which is called the spin
axis. The moment of inertia around this axis will
be denoted by A. If we take the moment of inertia
around any axis perpendicular to this one and
through the center of gravity, the result B will
be the same and in the usual gyroscopes B is
smaller than A.

It is customary to regard the gyroscope as rotat-
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ing with a motion which has a large component It is also customary to introduce two other sets
around the spin axis. The gyroscope is considered “of axes. One of these is fixed in space, with the
as mounted in such a manner that the center of z axis extending positively upward, the x axis ‘ex-
gravity remains fixed. The spin axis is generally tending positively to the right and the y axis
drawn with a considerable vertical component. The " positively toward us. The other axes are considered
intersection of the plane perpendicular to the as fixed in the gyroscope. The z' axis of this set

spin axis with the horizontal plane is then called
the axis of nodes. We also consider a third axis,
perpendicular to these two.
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coincides with the spin axis. Consequently the x'
and y' axes for this body fixed set remain in the
plane determined by the axis of nodes and the
third axis of our previous discussion.

The equatlons of motion for the gyroscope were
discovered by Euler, who introduced the three
angles which are known as the Eulerian angles. 6
is the angle between the spin axis and the fixed
z axis, ¢ is the angle between the fixed y axis
and the axis of nodes and y is the angle between
the axis of nodes and the body fixed x axis. These
are related to the usual manner of mounting the
gyroscope in gimbals. The gimbals are a set of
concentric rings, each pivoted in the next outer-
most one. Let us number them from the outside in:
The outermost is fixed, the next inner or second
ring is pivoted so as to permit a rotation around
a vertical axis. The third ring. is pivoted so that
it can rotate around a horizontal axis and the
gyroscope itself is mounted on the third ring
with the spin axis perpendicular to the axis of
rotation of the third ring. Notice that the fixed
point is also the center of the mass.

" In this gimbal mounting the axis of nodes is the
pivot axis for the third ring. Consequently 9 is
‘the angle of rotation of this ring around its
p1vot 9 is the angle of rotatlon of the second
ring around its pivot and y is the angle of rota-
tion of the gyroscope relative to its spin axis.

[Tt -is suggested that the reader prove that the
direction cosines of the spin axis are (-sin 6
cos 9, sin 8 sin ¢, cos 8), of the axis of nodes
are (sin ¢, cos 9, 0) and the third axis (cos 6
cos 9, - cos O sin 9, sin 6).]

We now wish to tonsider the motion of a rigid
body in general, with one point fixed. Let us con-
sider any transformation

x'=f (x, 5, 2z)
y' =y (X, Y, z) (1)
z' - h (x, y, z)

of a coordinate system 0X, 0Y, 0Z into one 0X',
0Y', 0Z' which preserves d1stances and has O as a
Pixed point. If A is the vector (x, y, z) and A'
is the transform (x', y', z'), we write A' = TA.
The distance preserving property yields that if
A and B are any two vectors and a is any real
number that

T (¢A + (1-a)B) = oTA + (1-2)TB
T(kA) = kTA

(Since-a straight line is the shortest distance
between two points colinearity must be preserved.)
Consequently the transformation is linear, i.e.,

T (ad + bB) = aTA + »TB

for any two vectors A and B and any two numbers
a and b. Consequently the transformation equatlons
may be written

also

X' = 81,1 Xy +83,0Y + Q1,3 2
1

Y = 82,1 X3 + 82,2 Y + 82,5 2
1

Z = Agy1 X3 +* 83,2 Y + 83,3 Z
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Let us now consider the condition that a vector
A be such that it 15 taken into a multlple of 1t—
self, i.e., TA = M.

For such an A we must have

0 - (51,1"7\))( + 83,0y + 81,35 %Z
0 - Ag,1 X + (8-2,2">\) Yy + 2,3 2
0 =851 X + 83,5 + (a5,0-N)z

The necessary and sufficient condition that a A
satisfying these equations will exist is that the
determinant of the coefficients be zero. This de-
terminant is a cubic in A\ and hence must have a
real root A.

Since TA = M and the lengths must be preserved,
this real root must have the values one or minus
one. Since the latter involves an inversionm, it
does not correspond to any possible motion of a
rigid body.

We may then assume,

If a motion of a rigid body leaves one point
fixed, it leaves every point on a line unchanged.

The planes ﬁerpendicular to this fixed line are
taken into themselves, i.e., each is rotated
through the same angle.

Let us now consider a moving body. During the
small interval of time At, the body will rotate
an amount Aa about a line, with unit vector u. The
displacement of a vector A fixed in the mov1n% body
is approximately given by A x UAa and hence $% -

A x w, vhere w is the vectorial rotation w - Ug$%
If the vector A is moving relative to the body with
a motion A', then the total motion is

=A' + Axw

e =

dt

Since w is a vector, we can add it vectorially.
Thns if we suppose that there is an angular veloci-
ty v around the spin axis, 6 around the axis of
nodes and ¢ is changing with the amount ¢, then

w =1y (- sin 6 cos ¢, sin 6 sin ¢, cos 8)
$ (sin ¢, cos g, 0)
¢ (0, 0, 1)
= (-~ y sin ¢ cos ¢ + 6 sin 9,
v sin.0 sin ¢ + 6 cos 9, y cos 6 + @)

+

+

We may consider a set of axes which is to be
fixed in space but instantaneously ‘coincides with
the spin axis, axes of nodes and third axis. Let
5, 0 and T denote unit vectors along these. Then

=(y+9cos 0) 5+0T+0sindt

For a rigid body with a fixed point, in order to
apply Newton's laws, it is necessary to comsider
the angular momentum p instead of the usual momen-
tum considerations. This is particularly easy to
see in the case where we have an axis of symmetry.
and the fixed point is center of mass. For if we
have two equal masses symmetrically placed rela-
tive to an axis, it is clear that we must apply a-



torque around the axis to effect the rate of rota-
tion around this axis. It can be shown that in gen-
eral Newton's Laws of Motion become

@0
where T is applied torque. The torque itself can
be resolved into three components
T=T5+Ta+Tt

On the other hand, from the expression for w, we
see that .

P = A(y+o cos 8) 5 + Bbm + Bp sin 6T

These equations, of course, remain valid only if
we permit S and fi to move. It is clear that the
set §, @, T revolve with a vector w*, which is ob*
tained from w by letting v = 0, i.e.,

w¥ = (¢ cos 6, 8, ¢ sin 6)

Consequenﬁly‘we have the formulas

%%:‘s‘xw*=(0,—ésin6,é)
%% =T x w* = (¢ sin 6, 0, - ¢ cos 6)

%% ~Txw=1(-8, pcoss, 0)

These formulas permit us to substitute in the equa-
tion of motion and obtain

A+ 3cos 8-96sine) =T,

B6&-Avy¢cos 0sin 8- 5(A-B) ¢> sin 2 0
B$sin 6+ Bgpb cos 6 + AGy-(B-A) yd cos 6

T

n

T

o

In the applications of the gyroscope as a differ-
entiator the angle ¢ is kept zero, 6 is the quan-
tity to be measured. From the last equation, we see
that if v is kept constant T, is proportional to 8.
y is generally kept constant and rather large by a
governor controlled electric motor.

IV. Amplifiers

In the present section we wish to discuss the
theory of amplifiers. Before considering details,
we wish to make certain general remarks concerning
the nature of calculating devices. Fach such device
will have a number of inputs and an output. A pure-
ly calculating device can be defined as one which
has no source of energy between the input and out-
put. For such a device the outputs must do all the
work. In general it is also true that the results
will be accurate only when the output does no work.
Indeed the order of magnitude of the error is
closely associated with the ratio of output work to
input work. '

It follows therefore that if we wish to use the
mathematical output of such a device as an input to
a similar device, we must provide an energy source.
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The present chapter discusses such energy sources.
Since a relationship must be maintained between the
input and output, we must discuss the very impor-
tant question of the accuracy of such a device.

The ratio of the output energies to input ener-
gies of available amplifiers is very important in
considering the physical principles upon which a
device is to be based. Fortunately this ratio is
quite large for electronic amplifiers and indeed
the latter are frequently used as part of other
amplifiers for this reason.

The reader is cautioned, however, that it is not
this ratio but rather the square root of it that
represents the available amplification. The reason
for this is the possibility of error in the ampli-
fier itself. We shall see that in general accuracy
in amplification can be obtained only at the ex-
pense of amplification.

[The customary way in which amplifiers are de-
scribed is in terms of decibels. If o is the ratio
of output power to input power, the decibel rating
is

d = 10 log,, o.

This can be used very conveniently if one remembers
that logy, 10 = 1 and that log,, 2 is very close to
.3. Furthermore the use of successive amplifiers
will yield an amplifier with a decibel rating equal
to the sum of the ratings of the components.%

We will discuss the various methods by which
servo motors can be used as power sources, the ac-
tual torque amplifiers and then the various uses
for the electronic amplifiers. We discuss the gen-
eral theory of the amplifiers, the use of !nega-
tive feedback" which is essential in calculating
devices, the use of rectifiers or detectors, and
oscillators.

It is true, of course, that energy comsidera-
tions limit the accuracy of ordinary continuous
machines. However, it is also true that it is pos-
sible to combine continuous devices in such a way
that digital results may be obtained, also itera-
tive processes may be used to supplement the con-
tinuous devices.

1. In Sections 10, 11 and 12 of Chapter 1I above
we have indicated devices in which the output is
driven by a servo motor. With a proper control set-
up, these probably correspond to the best method of
inserting power into a mechanical device. It corre-
sponds to a number of uses of negative feedback am-
plification in electrical circuit and has a certain

* flexibility which we will discuss later.

" The difficulty with mechanical tollowing devices
is, of course, the possibility of overshooting when
the equilibrium point is reached. If the leading
motion is intermittent, i.e., of such a nature that
it consists of changes tollowed by periods of no
motion, the following motion can be obtained by
means of a system which involves braking when the
equilibrium point is reached.

~For example, let us consider a servo system in



which the motor is to go in one direction when
the input signal is sufficiently positive, remain
at rest for signals in a certain small region
about zero and go in the opposite direction for
signals which are sutficiently negative.

Ordinarily such a circuit consists of an elec—
tronic amplifier to give voltage and power ampli-
fication of the signal and a control circuit.

Thus the control circuit would normally receive
the ampllfled signal on two "trigger circuits,"
whose precise character we will discuss later.

MOTOR

S/I6NAL

AMPLIFIER BRAKE

CONTROL CIRCUIT

trigger circuit has two outputs. There will be a
current through one output if the signal voltage
is greater than a certain value and none in the -
other. If the voltage is less than the given value,
the first output will have no current and the sec-
ond will receive the current. These circuits can
be used in suitable relays.

Let us suppose now that each trigger circuit has
two relays. Let us number the relays R,, R,, R,
and R,. Let us suppose that the first trigger cir-
cuit is adjusted so that it the signal voltage o
exceeds €, then relay R, works, otherwise R, works.
Let the second trigger c1rcu1t be adjusted so that
if the signal voltage exceeds - e,, then R, oper-
‘ates, otherwise R,. For definiteness let us sup-
pose that the motor is a direct current motor with
constant field, so that the direction of rotation
is determined by the polarity of the distributor
brushes. let us suppose that the braking act1on is
obtained by shorting the armature.

From the above, it is seen that if o > e,, R,
and R, operate, for o between e, and -eo, R, and
R, operate and for ¢ < -eq, R, and R, operate. In
the case o0 > €5, in the circuit illustrated R,
applies the D.C. voltage to the motor, so as to
@urn it in ome direction. Ry makes no difference-
since R, is open. In the case &, > 0 > —go, both
R, and R, are open, so that no power is applied to
the motor and the armature is shorted through R,
and R;. The case 0 < —g, is analogous to the case
0 > go with R, instead of R, and R, instead of R
acting.

Of course, the two relays R, and R, could be re-
placed by a single relay operating off the upper
output of: the first circuit, provided it had two
normally open and one normally closed contacts.

(The "normal" is.the non-operating condition of
the relay.) But two trigger circuits are needed if
we are to have three distinct regions of response
to a signal. Indeed it should be clear that a trig-
ger circuit specifies a point between regions of
response. )

D.C.

POWER ¢
RELRY
TRIGGER R
"CIRCUIT
O—mad —
SIGNAL - D.C.POWER TO CIRCUIT
AS BEFORE.
D.C. POWER It is possible using

servo systems with
more trigger circuits
to get varying motor

- speeds. Thus if we
wish to have two motor

speeds corresponding
to positive signals,
we might introduce

another trigger cir-
cuit with a critical

voltage €,. The rest
of the circuit is the
same as before. Nor-
mally the resistance R

is in the power lead,
~but if the critical
voltage €, is exceeded,

the relay shorts this

resistance and a high-
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the negative signal, one has another trigger cir-
cuit with critical voltage, €, whose lower out-
put is also capable of shunting the resistance R.
Thus R is shorted if o > &, or 6 < -€,.

We wish to point out ways in which the requisite
signal can be obtained in the case of two shafts

X and Y, such that Y is supposed to be driven by
the servo arrangement so that its rotation matches
X. The difference between X and Y is obtained by
means of a differential. If X - Y can exert a cer-
tain force without injuring X, then we could apply
spring contacts on X - Y so that X - Y positive
would press on one contact and X - Y negative would
press on the other. It is clear from the circuit
illustrated that these would give voltages of dif-
ferent signs across the output. Of course, a poten-
tiomet§r cguld be used to give voltages proportion-
al to X - Y.

=1

If the potentiometer is connected to X — Y by a
gear arrangement with a partly toothed gear on the
X - Y shaft, then the motion of the X - Y shaft is
not restricted as much &s by the previous arrange-
ments. However, if a straight potentiometer con-
nection is used one has a voltage proportional to
the difference. :

By the use of a number of trigger circuits vary-
ing speeds for the servo motor are obtainable, so
that even in the case of a continuously changing
motion one could keep the speed of the follower
approximately equal to that of the leader. In the
case of a small motor which requires little cur-
rent, this can be done by means of contact arrange
ment on the X - Y shaft. For instance, suppose we
have a contact arrangement such that if X - Y is
positive, then contact A, is broken and B, is made.
Suppose that C,, D,, etc., will be made in succes-
sion when X - Y becomes more and more positive.
Suppose we have analogous contacts for X - Y nega~
tive. It is clear then that output of the circuit
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can be used to run a small motor at varying speeds
or as a signal to a servo system for ghe same pur-
pose. One could, of course, replace C, D* &nd the
corresponding resistances by a rheostat in which
the resistance is cut out as X - Y increases., How-
ever,. the rheostat would have to be driven by a

' partly toothed gear so that it remains unchanged

when X - Y is negative.

T

INPUT [:]R R[]
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However, in the case of a continuously changing
motion, the rotation matching device of Chapter III,
Section 2, can be used with a supplementary device
to take care of the difference X - Y which is lost
in the matching process. The difference X - Y is to
be put in much more slowly than'Y so that it will
not overshoot. As a consequence Y will lag behind
X in time. The difference X - Y is used to control
the supplementary system and the sign of its deriva-
tive is used to control Y. (See diagram, p.II-41.)

At the end of Section 4 we have given a time
delay connection for a ball cage variable speed
drive, which is often used to obtain both torque
amplification and smoothing.

One exceedingly effective method of making a
servo control connection is based on the fact that
a polarizing disc will only permit the component
of light polarized in a certain direction to pass
through it. Thus if a beam of light passes through
a disc A and then through another which makes an
angle 6 with A, the amount of light transmitted is
proportional to cos 8. This is utilized to make a
servo connection in the following manner.

The disc A is attached to the input shaft. Two
beams of light obtained by mirrors from the same
source are directed through this disc. Thus as the
shaft rotates, the direction of polarization of
the "extraordinary component" of these beams which
alone is transmitted through A rotates also. These
two .beams pass through separate discs B and B'
which are mounted on the output shaft and then to
separate phototubes. The polarizing planes for B
and B' are at right angles and hence there is only
one position in each quadrant at which equal
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amounts of light enter both phototubes. A varia- A side, this has a value of,Fo equal to the pull
tion from this position by the output shaft will from A. Let « denmote the angle between the radius
favor one or the other phototube and hence can be . .
used to control a servo. (Cf. Berry, T. M., Trans.
- Amer. Inst. Electrical Eng., IXIII (1944), p. 195). Fai)
A general theory for servo mechanisms is devel- ‘fr(tl‘fAQCZ)

oped in MacColl, L. A., Fundamental Theory of Servo

Hechanisms. New York: D. Van Nostrand Co, 1945.

This theory is based on the general notion of a
feedback amplifier. : . o

IES

2. The customary method for torque amplification
in the case of rotations is by means of a band on.
a rotating drum. The principle is illustrated in
the accompanying diagram. From the lever A we have

.
for this point of first contact and an arbitrary
radius. Then the longitudinal temsion in the band

A 8 is a function F(a) of this angle.
To determine F(a), let us consider the piece of
band between o and @ + Aa., For this we will have
v the two tensions, F(a) and F(x+da), pulling at the

& band, which passes once around the drum and then end of the piece, we will have the effect of the

to B. If now we pull on A, then the band tightens drum on the piece and, of course, imertial effects.

on the drum and the lever B is pulled by a force Let v denote the linear speed of the band. let f

which' is augmented by the pull of friction between denote the resultant of the perpendicular forces

the band and the drum. : of the drum on the disk. It seems reasonable to
: assume that f makes an angle 340 with the radius
In the case in which the drum moves faster than vector for a. We can also assume that the effect

the band, we can present the following somewhat of the drum perpendicular to f is uf where p is a

simplified discussion of the situation. Let us coefficient of friction. (This will be justified

consider the longitudinal tension in the band. At in the limit.) Let p denote the amount of mass of

the point where the band touches the drum on the ‘ the band per unit length.
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We suppose that the band is inelastic. One can
easily see that the inertial resultant has a com-
ponent phav, directed inwardly along r and a com-
ponent phad along F(a). If we take components of

£

following. The rotating drums are comcentric with
the control and driven shafts and the bands which
are brake bands are interior to the drums. There

lF(d.-an)

the forcesAperpendicular to the radius vector for
@, Newton's Law becomes

F(a) - F(a+Aa) cos Ao + pf cos Aza-—fsin-A—;- = phatr

while the compoments parallel to the radius vector
yield

F(a+Ae) sin Ao - £ cos A; + uf-smTA“ = +Aav

or

F(a+Ax) sin Aa —pAav = [cosA—za + | sin (9-21)] f.
This shows that f is an infinitesimal of the order
of ba. Neglecting infinitesimals of higher than
first order, we may eliminate f between the equa-
tions. Hence,

F(a) -F(a+bda) + uF(a) sin Ace = phAa(Veuv).

Dividing by Ae¢ and passing to the limit we get

- %% + WP = p(¥+pv),

In general the mass of the band may be neglected
and this equation simplifies to

dr
‘a-.a:ch

The solutlon of this equation which is F, for o = 0
is

F = Fo ep‘“.

Consequently for a single loop around the drum we
have the output tension

= Fo e2mh

Of course, this is on the assumption that the
drum revolves faster than the band. If the band
and drum move together, the assumption that the
friction component of the force of the drum on the
band is puf is no longer valid.

In the type of torque amplifier which is suitable
for calculating devices, provision must be made for
torque amplification in either direction. A commer-
cially available amplifier of this character is the
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Drum

is a set ‘of drum and band for each direction. The
control shaft can be considered as a hollow cylin-
der surrounding the solid driven shaft. The brake
bands are mounted on a steel strip of spring-like
nature. One end of this strip is comnected to a
projection from the control shaft, the other end
to a projection on the driven shaft, which passes
through a slot on the control shaft.

Normally each band presses against its corre-
sponding drum a certain amount due to the action
of spring. When the shafts are moving together,
the corresponding torques cancel. If, however, one
shaft is turned relative to the other, then one
spring is tightened on itself and the other loos-
ened on itself. The first band is therefore pulled
away from its drum and the second is permitted to
press on its drum. Since the torque exerted by a
brake band is proportional to the radial pressure,
the resultant torque exerted by the brake drums is
proportional to the angular difference between the
shafts. The angular difference in turn is propor-
tional to the torque exerted by the input shaft on
the springs. Thus the added torque due to drums is
proportional to the input torque -and hence this is
also a torque multiplier.

3. Electronic amplifiers, of course, are the most
common and their use is essential to the accurate
operation of calculating devices of an electrical
nature. They have the two advantages of being rela-
tively inexpensive and extremely sensitive.

From the point of view of power, there are three
ranges of amplifier tubes. The most sensitive types
are the "electrometer" tubes. The ‘intermediate
range includes the usual radio receiving tubes. The
more powerful tubes are the transmltt1ng tubes and
the industrial control tubes.

Our discussion will be concerned mainly with re-
ceiving tubes. They are definitely the least expen-
sive and the most widely available. In general,



they provide adequate amplification range for cal-
culating devices, being more accurate and sensitive
than the remaining portions of the circuit.

Electrometer tubes can be described as more ac-
curate and more precise versions of receiving tubes.
They are used in delicate physical experiments.
High frequency miniature receiving tubes in general,
are similar in principle to ordinary receiving
tubes. However, certain high frequency oscillators
do work on somewhat different principles which are
not utilized in calculating devices as yet so far
as we know. .

The transmitting tubesvat first appear to be
larger replicas of receiving tubes. But greater
precision is required in their manufacture and

frequently they have more desirable characteristics,

even in characteristics which one might expect to
become worse with size. They are naturally more. ex-
pensive to purchase and to operate. :

Certain tubes developed for television are also
larger versions of receiving tubes (although not
by any means as large as transmitting tubes). They
are only slightly more expensive than receiving
tubes and use the same auxiliary. equipment. We
will consider them as receiving tubes. This, of
course, does not refer to oscilloscopic tubes
which are only incidently amplifying tubes.

There are forms of industrial control tubes
which are simply larger versions of. receiving
tubes. However there are in addition gaseous types
which are particularly suitable for handling large
currents, diodes and triodes. In addition there
‘are photosensitive tubes. All these are exceeding-
ly useful as auxiliary equipment in mechanical com-
puting devices.'For instance, the difference in
rotation between two shafts may be measured by
some photometric method which imposes almost no
load on the input shaft, and the output of a photo-
metric tube may then be amplified and used to con-
trol the other shaft. v :

4. In the discussion which appears in these notes,
we will suppose that the reader is familiar with
the R.C.4. Recelving Tube Manual, published by the
R.C.A. Manufacturing Co. The manual describes the
various types of tubes and their uses in radio re-
ceiving sets. Many of these uses are immediately
applicable to calculating devices, others require
a certain amount of reorientation. The ‘manual con-
tains the technical information necessary for the
design of circuits and is a remarkable summation
of the application of vacuum tubes for radio re-
ceiving purposes.

We will begin by considering the diede as a rec-
tifying device. We have already seen how a rectify-
ing device can be used for squaring. In the range
in which it is operated, a diode has the property
that a voltage drop from plate to cathode will in-
duce a current to flow from plate to cathode, but
if the voltage drop is in the opposite direction
no current flows. (More precisely in the latter
case, there is a minute current flowing against
the voltage drop.) Consequently when an alternat-
ing voltage is applied across o diode, the current
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which flows is a pulsating current always in the
same direction. Let E, denote the plate voltage
relative to the cathode, I, the resulting current.
The voltage-current diagram is given by

- IP

-
.

So‘that if we have E, as function of the time,
E, = A sin wt, then I, is a function which assumes
only positive values and is largest when E, is
largest and has minima when E; has minima. It is
important to notice that I, is a periodic function
of the time when Ep is and hence can be described
by a Fourier series. When Ip is expressed as a
Fourier series, it is possible to estimate the ef-
fect on various linear circuit elements. Such es-
timates are frequently used. Very often, in order
to obtain in turn an estimate of I, as a function
of the time, assumptions are made concerning the
nature of the functional relationship between E
and 18. For instance, one may assume that if

2

Ep < Io = 0 and for Eo 2 0, I, = k. Then if
p = A sin wt, I, = 0 if (2k+1) n/w £t £ 2kn/w,
IP = k A sin wt if 2kn/w S t £ (2k+1)n/w for
I
™\ LN ¢t
—zZm -7 w2 an
w w W (73 [,

k=0,*1, 12, .... Then by the usﬁal method of
finding the Fourier series, we obtain

1 1 . o 2
I, - kA B+ sin wt + = 5 Freqcos (2lort)],
One must admit though that it gould probably be

better to assume that I, = k Eg in the case E, 2 0.

On the other hand, simplified assumptions such as
that given above can be introduced into a general
circuit analysis and results on the order of magni-
tude of the higher frequency components obtained
which are frequently very useful. The formula for I
which we have obtained is used in a number of ways.
For instance, if a diode is in a circuit then in



some cases the assumption is made that the plate
voltage is proportional to E when the latter is

positive.

£

But probably graphical methods offer the most di-
rect method of attack on the problem of studying
the actions of vacuum tubes. Thus in the most com-
mon form of the problem of detection, we have an
impressed voltage in the form E =(A sin at + 1)
sin wt where w is much larger than a. The problem
is to obtain a voltage proportional to A sin at,

v = w/2n is the carrier frequency, A sin at is
the modulation.

Ep

ol
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If the voltage E = (A sin ot + 1) sin wt is ap-
plied to the plate of a diode we obtain a current

' Iﬂnnlﬂﬂ[ ¢
n m 3m (27
2xX o 2d o

For I_, we have a constant component i, obtained by
averaging. We also have a component iy sin at,

since it is clear that %? Ipsin at dt is not
zero. (Notice that I, is largest when sin at is
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positive and least when sin ot is negative.) There
are, of course, components corresponding to sin wt
and its harmonics sin nwt. Hence,

Ip = io + iy sin at + 2 i sin (nut + v,).

If we use a band pass filter, we can obtain the
component i, sin ot and minimize the effect of the
higher frequencies and the constant. Notice that
the component iy sin at is not present in the ap-
plied voltage since Ep = A sin « sin wt =
3A(cos [w-a] t - cos [w+a] t).

Thus the essential diode detector circuit is

.—-
o *~—f—e
BAND )
4 v PASS &
FILTER

In order to measure accurately the peak voltage
of an alternating current, the following circuit
is used

: T

ouTPUT

WNPUT

P e
[ v ®

where R is supposed to be large. When an alternat-
ing current is applied to the input during the
positive peaks, the condenser charges. Only a rel-
atively small amount of the charge leaks away
through the resistance. When however the condenser
voltage approaches that of the positive peaks,
then only as much is charged during a cycle as
leaks off through the resistance. Hence, the out-
put potential is a direct current measurement of
the peak voltages. If the modulation of a variable
signal is to be obtained the same circuit is used
if R is large enough to prevent much of a varia-
tion during the carrier wave cycle w but not large
enough to prevent the modulation cycle from ap-
pearing.

0f course, the reader should study the discus-
sion of detection in the manual.

For electronic amplifiers in general, it is nec-
essary to use high voltage direct currents. These
are obtained by the use of step-up transformers
and diode type rectifying tubes as explained in
the tube manual. Making the same assumptions as
before for the single diode, we see that the
output of the full wave rectifier is in the form
shown at the top of the next page and has a
Fourier expansion

1 = 2
I-2kA G+ 2y, TRT) cos (2kwt )]

where, of course, now w has the value 2160. Notice



that in the full wave rectifier the # sin wt term
has disappeared. It is characteristic of full wave
rectifiers that the odd harmonics disappear. In
order to minimize the effect of the harmonics, the
output of the rectifiér is sent through a filter.
A typical circuit is shown below. The inductances

| § R e

o |
| R
)
1

are called "filter chokes" and may have values
from 8 to 30 henries, the condensers are usually
electrolytic condensers of 8 to 30 microfarads.
The inductances have resistances of about 200
ohms. The condensers should be of the correct
"working voltage" which is, in general, the peak
‘output voltage of the rectifier. (Sometimes it is™
higher if the inductances are too low.}

In the case of a choke input filter, the assump-
tion that the output voltage of the rectifier has
the form given above for I is reasdnable. The
reader is urged to calculate the output voltage
for the various figures given under the assump-
tion that the output load is a pure resistance of
between H and 20 thousand ohms.

h. Essentially the two uses of a vacuum tube are
1) rectification, i.e., the process of obtaining a
pulsating one directional current from an alternat-
ing voltage, and 2) amplification, the control of
power by less power. We have discussed the first
and we will not consider the second.

We assume that the reader is familiar with the
usual discussion of the action of triodic and multi-
electrode vacuum tubes. Wg wish to point out cer-
tain aspects of amplifying circuits which are im-
portant from our point of view. Amplifiers can be
roughly divided into two kinds. One type is a volt-
age multiplier and the other is a power multiplier
proper. We begin by considering a simple resist-
‘ance coupled amplifier such as those given in the
tube manual. The effect of a change in value of
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the input voltage, e, causes a variation in the

- voltage between the grid and the cathode. This

causes a change in the current flowing between
plate and cathode. As far as the right side of the
circuit is concerned the tube acts like a current
generator, corresponding to this variation. Since
the purpose of the present circuit is voltage am-
plification, this current variation is permitted
to cause a voltage variation. When the current
variation alone is considered, the left-hand por-
tion of the circuit is a two terminal network,
consisting of two parallel impedances between the
plate and ground. [In the triode, at high frequen-
cies, there are two other paths to ground. One is
through the plate grid capacity, the other is
through the plate-cathode capacity and cathode
circuit to ground. Besides these, in the pentode
there is plate-suppressor capacity path and plate-
screen and screen circuit paths. Proper shielding
should eliminate other paths.] The impedance be-
tween plate and ground is called the load imped-
ance. In the circuit shown

Z - R‘L (Rg—l/WC)
L R + Rg - i/wC
The variation ¢ in the current flowing through this
impedance produces a voltage e, = ZL t. The right-
hand side of the circuit is a voltage divider (the
purpose of the condenser C is to block the d.c.
plate voltage from ground). Thus the output

€0 = [Rg/Rg—-i/wC)] e*

where €* is the voltage of the plate relative to
ground.

Now let e denote the imput voltage
e, the variation in grid cathode voltage
€p the variation in plate cathode voltage
eo the output voltage, Z;, ¢* and i as
above. Since we are dealinr with small changes, we
may write '

oL o1
L = 5E£ Eg * 552 €
, g P
alp . . . .
5 = g, is the transconductance (as defined in
g ol '
the tube manual) and —2 is the reciprocal of the

ok

. p
plate resistance r,. Hence, 1 = g, e, + (1/1) e,.



Looking at the grid circuit we obtain

- *
=g, + L, 1, €* = Ep + /!

R L
where 7 =itrid%§—.Eliminating e, and e, we obtain
c

I+ (gg + 1) L) = gy e+ (1)) e*.
We also have - ¢ Z; = ¢* and hence
- e* (1 + [g, + Ur,) Lc)/2y + 1/r,) = g, .
Since we have the output voltage
to = Ry/(Rg= i/vC)] e*
we have g0 = —ae where
a=(1- i/ngC) g/l + (g, + 1/rp]Zc)/ZL+1/I‘p]-

Now 1/((1 + [g, + 1/rplZ¢) /%y + 1/rp) is an imped-
ance Z;. We choose the by-pass condenser C¢ so
large that (g, + 1/rp) Z¢ is negligible. Then we

may write that

7. T
v L P
ZL rp + ZL

Z, is, of course, the inductance that one would
get if one considered rp as parallel to Z;. For
complete generality one could also consider the
"output capacity" as parallel to Z; and introduce
it into Z;. Thus Z; is an impedance

z/ - R | (R

ouTPUT Rs
CARACITY '

and the formula one obtains is simply

- gm X
= 1 ' . 1
Eo 1+ w"’ClQRE Zg, (1-+ wCRg) &
or
Eo = —QE
where

! .
0« Bl 1+ =2-)
1. 1 R,
w”CQRZ

is the actual amplification. This is not th "am-—
plification factor" u = ryg, which is a limiting
value for a.

In triodes ome generally chooses Ry conside?ably
larger than r, for voltage amplification but in
pentodes r, is larger in general. From the formula
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1 1 1 1
TI'T =+ w Chyppue + Tp +_R'; +,Rg—17m

we notice that in gemeral it is the smaller of rp
and R;, which determines the situation. R, is gener-
ally quite large although its size may be restricted
by the character of the output.

In the applications to mathematical machines, it
is very frequently desirable to have a as close to
being real as possible. This would incline one to
take CR, large and under certain circumstances
this wifl work. However, one should notice that the
output grid circuit of C and R is a time delay
circuit with time delay CRs (cf. Section 3 of the
preceding chapter}. If CRg is too large the tran-
sients will persist too long.

The above discussion was carried through on the
assumptions that €z and €, were small enough so
that the differential of ghe plate current repre-
sents the change t. If Z'; is essentially real, the
characteristic curves can be used to determine the
amplification, as explained in the tube manual,
by means of a load line. For if we consider the
circuit

z

we see immediately that

Zy(tety)
Zov + (Z2/Z4) €p

SB+ - GP = Zglg

n

or

SB+ = Z_2l + (1 + Zg/Zi) SP:

Now if we have a system of coordinates in which
ep and t are measured along the x and y axis
respectively, then this corresponds to a straight
line with slope — (4:4Z,)/Z2,2, = - 1/Z; and whose
x intercept is [Z4,/(2,+Z;)] ep,. Now if we take a
plot of the characteristic curves for different
grid voltages and draw this line on it, then we
know that ¢ and g, can only vary along this line.
Thus the operating point for a specific value of
e_ is obtained by taking the intersection of this
1ine with the characteristic curve for the value
of e_. For example, consider the diagram for a’
pentgde which is shown at the top of the next page.

Let eg, = 330 volts and the ratio Z./(Z, +2:) =.9
so that the voltage intercept is 300 volts. Suppose
Zi = .2 megohms = 2 x 10° ohms. This is, of course,
reciprocal of the slope in an ampere-volt scale.



o
& 4 Eg=-2
e

|

¥, Eg=-3
N | |
SE T ‘;~"‘--;-;~‘£§?;‘-v4

50 100 158 200 250 J00 350 £00
PLATE YoLTs

If we wish to use a system in which the unit of
current is .001 amperes, then the unit of resist-
ance is 1000 ohms. Hence in this system Z = 2.10?
= 200 units. If we wish our voltage unit to be

50 volts we must give Z the value 4. (Another way
of getting the above is to.notice that in a milam-
pere 50 volt system the unit of resistance is
50,000 ohms.) Consequently the slope is & and we
draw this line.

In the above discussion of voltage amplifiers we
have kept in mind the situation in which the total
load impedance Zj is mainly resistive. However if
we use instead of R, a general impedance, then ¢
can of course be made selective; for instance, to
have a maximum at a certain frequency w. Since

&n 21 N
‘s 1 +_:;;j::; “ +—;§§;)
w2C*R2

it should be clear how this is to be done. This
gives "selective amplification" which is essential
in radio sets. Another place where selection may

be introduced is in the grid circuit. The grid cir-
cuit may be shunted by an impedance Z. This yields

the equivalent of a filter circuit between & and

€, when one considers that the relationship between
the grid and cathode is similar to the plates of a
condenser and hence one has a capacitance commec-
tion (the "input capacity") between them. For audio
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pean
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frequencies, the input capacity is negligible but
very important in radio and higher frequencies.
This also holds for the output capacity which we
have entered into Z in the above.

O0f course, very high frequencies are not used in
calculating devices at present. But there is a
case where R; may be replaced by a general imped-

" ance which 'is of interest to us and that is in

power amplification. Qur formla e = -ae does, of
course, give the dependence of the output voltage
on the input voltage in general. However in power
circuits, the part of the circuit containing C and
R, is omitted and the output capacity neglected.
Thus Z, consists simply of r, and the load imped-

o Z,

ance in parallel and ¢ = g, Z;. Thus e, = g, €.
Thus the variation in the current through Z, is
given by t = eo/Z; = (g, Z;/Z;)e and it is this
current alone that can be used.

6. If the amplification of a circuit containing
only one vacuum tube is inadequate the output can
in turn be amplified by another such circuit and
so on. Thus, if we have three such stages, the
final output is

Eg = =0y Oy O3 &4

However, in a calculating device the accuracy of
reproduction must be maintained in amplification.
Electronic amplification is subject to three
hazards: 1) Variations in characteristics of the
tubes, 2) non-linearity in the characteristics of
the tube, and 3) noise.

By the use of feedback amplifiers, 1 and 2 can
be improved without making 3 worse. Consider the
following circuit for the moment. We suppose that

the amplifier is such that
€9 = —Q 4.
We also have by Kirchhoff's Law on Currents

g€ - & €9 — €
1,8 -8

R1 R2

=0
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if there is no input current flowing into the am-
plifier. Thus if we eliminate e,, we obtain

- R, a c
" Rya 4 Ry + R,

We see then that this circuit can be regarded. as
an amplifier with amplification

€o

o Rya .
" Rye+ Ry + R,

We may write this
R2 1
"R, 1 1 . Ry
1 V1 + 5 (1 + R—f)

al

al

which shows that for o large relative to 1 + Ro/Ry,
a' is essentially R,/R,. Thus the amplification
depends upon the passive elements of the circuit
under these circumstances rather than o. In fact,
differentiation yields the relationship

da' R, + R, de

—_— 2
a! R;a + Ry + R, «

which shows that a percentage change in « yields
a percentage change in o' which is diminished by

R, + R .
a factor R;q + R, . R, vhich is essentially the

same factor as that by which the amplification
has been reduced.

The tube characteristics upon which o depend can
vary due to many causes; for instance, age and
variations in the power supply. With ample feed-
back, however, the amplification does_not vary
greatly.

The non-linearity of the tube characteristics
can be considered as varying «, making it a func-
tion of e, and this effect is reduced since varia-
tions in « are made less effective. Notice also
that &, is small if a is large and this will also
improve linearity.

A noise is also reduced in the same ratio as the
amplification. Suppose the amplifier has an output

Eo = -0 6y + &

where £ originates in the amplifier. Eliminating 4
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as before by using the current equation, we ob-
tain -

- _Ra s R1+R2
EO-R1G+§1+R2 +R1a+R2+R1C"

Thus the new &' for the complete circuit is

(:' = Ra + R ¢,
Ria + pl + i&.ﬁ,

Thus &' has been diminished by essentially the
same factor as the amplification and hence the
noise is not relatively any worse than before.

It is, of course, desirable in feedback amplifi-
cation that the amplification factor be real. That
is why that in these circuits, the output is ob-
tained by voltage division rather than by a. block-
ing condenser. The circuit for three triode units
would look like this (for the amplifier). The first

I\

[ S——
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stage should be modified to minimize drift. This
will also provide bias relative to ground. Confer
the article by Y.P. Yu in Flectronics, Vol. 19,
No. 8 (August 1946), pp. 99-103. Relative to the
output, this device is a two-terminal voltage
source, whose value depends on the input voltage.
The internal resistance can be calculated by con-
sidering the evident bridge circuit.

In general, however, the capacity of the tubes

-used in such a circuit will introduce a phase

shift at each stage,and at a high enough frequency
this phase shift for the three stages may -add up
to a regenerative feedback, which will cause such
a circuit to oscillate. This can be avoided by a
more sophisticated design of the stages and feed-
back circuit. Cf. Bode, H. W., Network Analysis
and Peedback Amplifier Design. New York: D. Van
Nostrand Company, 1945. ’

These circuits are used as power amplifiers when
the amplification factor is one. As amplifiers,,
these circuits can be regarded as connecting cal-
culating circuits. However, there has also been



developed a technique in which they are used as
part of calculating devices. The requisite power
amplification is still obtained but the accuracy
can be considerably improved.

For instance, if it is desired to add the volt-
ages X, y and z, one has the connection

X

L]

A R
o AMPLIFIER

Y P4
/Ll] &
i A
o
A 1

One can show as in the above that if e, = ag; + &,
we have by Kirchhoff's Law of Current that

7%—(x+y+z ~ [44Ry1/R,] g;+4e0) = 0
1

or

€ (x+y+z+C).

=1
1 4+0+R, /R,

Now when we substitute in the expression for e,
we find that the terms in & almost cancel each
other and hence .

(xey+z) + AR/Rs o
+ 2

EQ=—-a
4+a+R,-R, 4+a+R,

This is typical of the feedback theory. Even when

load variations occur, the output is not essential-

ly changed. For a load variation essentially

corresponds to changes in the output circuit.

Hence a is changed. But as long as « is large,

this has only a slight effect on the output e¢,.

There is also an improvement in linearity due to

the fact that the signal impressed on the grid is

much smaller. ‘

This idea can be used in many ways. For instance,
we can eliminate the voltage drop across the con-
denser from the integrating circuit to a certain
extent. Consider the following circuit:

ouTrPUT

Let J denote the voltage across the condenser.
Let R, denote the resistance between the input
and tﬁe ground in the amplifier (sometimes this
may be neglected). The current i through the re-
sistance R is easily seen to be

i = C-g%+ 81/R1

ghere g, is the input voltage relative to ground.
ow

Ri + &, =RC %%‘+ e, (R + Ry)/R,.
If B is the effective amplification of the circuit

J = (1 +B) €1,

Hence

=
{

= RedL , R+ Ry g
Ot Ry 5T ©

Without the amplifying circuit the equation would
be

E-RCLE 4 d

The reader is urged to solve the two equations
and compare the result.

It is also possible to compensate for the resist-
ance losses in a circuit by using two feedback cir-
cuits. An extra resistance is imserted in the cir-
cuit. The voltage drop across this is a certain
fraction of the total resistance voltage drop. One
amplifier changes the sign, the other reverses it
again so that the output voltage is proportional
to the input. The gain is adjusted so that the new
voltage introduced into the circuit by the ampli-
fiers is proportional to the resistance loss.

o . . -
.: —» o '

Thus we have methods for artificially changing
the capacity and resistance of a circuit. The in-
ductance can be similarly varied.

7. In conjunction with a tuned circuit, a vacuum
tube may be used to produce an alternating voltage.
The associated current can be amplified by means
of other vacuum tube stages into larger currents
capable of supplying reasonable power demands.

- This offers a very convenient method of producing

alternating current of a wide range of frequency.

Let us consider for a moment a tuned circuit and
let us suppose that at an instant t, we have a
charge qo and a current i,. We have, of course,
the equation

%+Ri+L%%=0



i
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for the current. If we solved the first for q, we
have that

R
t z
q = Ae2L cos(wt+y),w=/.{.c_4_“f§

and that R
i=- AGR cos [wtsy] + w sin [wt+y])e2L”

for the charge and

where A and y are determined by the conditions that
t=0,1=10’q=q0‘

Now it is clear from these expressions that the
current in this circuit will die out exponentially.
But we have seen in the previous section that we
can change the apparent resistance of a circuit by
using amplifiers. Thus if we have two stages, the
circuit would be:

Now if the feedback were adjusted properly, the
voltage drop in the circuit which is proportional
to the i would be zero or positive. The resulting
current would have an exponential term with a
non-negative exponent and hence the current would

not die out. The circuit is then said to be oscil-
lating. :

There are a great variety of oscillating cir-
cuits. For instance, a one-tube oscillator can be
constructed using a transformer to reverse the
direction of the output. This does not yield a
perfect result but it is entirely adequate to pro-
duce oscillation. The reader is urged to study
the descriptions of various audio oscillators
which one finds in the Radio Amateur's Handbook
and in the textbooks on radio.

Our immediate concern is with a tuned circuit
which is essentially an inductance and a capaci-
tance. We wish to study its actions when an alter-
natin% current is impressed upon it. For definite-
ness let us take a circuit of the following sort
where the amplifiers are supposed to compensate
for the resistance and at the same time power the
output. Notice that since R = 0, the "natural"
frequency

IT - 50

= _ R
YT T oE

and the frequency for minimum impedance
w = 1/4/LC are the same.
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Such a circuit can be used as a selective al-
ternating current integrator. Theoretically it
is the precise generalization of the direct cur-
rent integrator of the previous section based on
a condenser. Let us consider what happens when
n cycles of a voltage a sin wyt is impressed on
such a circuit. We suppose that the turns ratio
of the transformer is one. Thus we have a voltage
¢, sin w,t impressed on a circuit which is essen-
tially

Thus we have the differential equation
. 1 d*q
o, sin wyt = cd+ L FTES

which may be written

4’

& sin wit = w’
1t = q+dt2

L

Iﬂ-
et

For w 4 wy, the solution which has q = 0, i =
=0 fort=20is

oy

1= L(w2- w,2) [Sinv wit — (wy/w) sin wt)],

For this we have

i =_Iﬁ?f (cos wyt — cos wt).

On the other hand, for w; - w we have

L W j
1= 57 [- t cos wt 4 (1/w) sin wt]

and
i =3t (gin wi).
2L

It is clear from the above that if w 4 w,, the
response of the circuit to the signal is limited



in magnitude, while the response to a signal of
frequency w will continue to increase in size as
long as the signal is applied. After the signal is
removed, the circuit will satisfy the equation

0 - woq + giﬂ.
dt?.

Now if we have k cycles of the natural frequency
imposed, the charge and current will be at the end
of this time, i.e., for t = 2kn/w,

q = a;kn/IMQ = agkn.(:

‘and i = 0 respectively. Let us suppose that from
then on no voltage is applied to the input. The

charge from then on must satisfy the new differ-
ential equation and hence

q = Ca,kn cos wt.

Now let us suppose that the amplitude of the im-
pressed voltage is slowly varying. In this case
the impressed e.m.f. can be considered as made up
of a sum of functions

E = EN]FI alel(t)

where e, (t) is defined by the conditions e,(t) =
sin wt for (1-1)2n/w < t < 2ln/w and e (t) = 0
otherwise. For each e,(t) we have a current i,(t),
which is 0 for t < (1-1)2n/w, i,(t) =

(¢q [t-(1-1)2n/w] sin wt)/2L for t between
(1-1)2n/w and 21n/w and such that i,(t) =

~Caywn sin wt for t > 2In/w. It is easily seen
that i,(t) = é% a,(t) is such that

ey(t) <da, 1.

Hence if q(t) = 2J., q;(t), then

E(t) =%q + L.g%;

It follows that for t 2 2mN/w, the current i has
the value .

i=~Cwn(2Y., ;) sin wt.

Hence if @, is regarded as a function of its sub-
script the Z¥_, a, is approximately an integral.

This arrangement has the advantage and disadvan-
tage of a relatively short time base. Of course,
one can never precisely compensate for the resist-
ance of a circuit and to prevent self oscillation,
a certain amount of resistance must be left in the
circuit. This introduces a decay term in the out-

.
put e 2L *, which has an effect similar to the de-
cay term in a condenser circuit.

The short time base can be compensated for by
the use of an auxiliary counting circuit. This cir-
cuit- has the property that whenever the integral
reaches a certain value, it essentially shorts the
condenser. Thus the condenser is replaced by the

NEON TUBE

[ —

above., Normally the amplifier circuit behaves just
like a high resistance. But when the voltage
reaches a certain value, the neon tube discharges
and the circuit is briefly then a relative shopt
across the condenser.

Alternately a "high Q" coil can be used and the
capacity artificially raised (as in the previous
section) to bring the frequency down to -audio fre-
quencies. (Q is the ratio of the total emergy in
such a circuit to the energy dissipated in a cycle.

For the frequency of resonance f it is essentiall:
2LL/R.) , Y
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An integrating circuit can also be used for modu-
lation, i.e., to control the amplitude of an alter-
nating current by a direct current (or one of
lower frequency). The foregoing diagram is for the
customary form of modulation in which zero corre-
sponds to a certain value of the amplitude, larger
values of the amplitude correspond to positive sig-
nals and smaller values of the amplitude correspond
to negative signals. For simplicity a battery is
shown to indicate the bias on the output of the
linear detector.

When the input signal is zero, the integrating
circuit should produce the amplitude corresponding
to zero. For at this amplitude of input, the de-
tector gives an output just adequate to maintain
the other end of the battery zero. Hence, the sig-
nal grid of the mixing tube permits only a certain
amount of signal to enter the circuit. This signal
has a frequency determined by the oscillator. This
zero signal should be considered as- compensating

for a certain amount of resistance in the integrat-

ing circuit.

It is clear that for every other value of the
input voltage there is corresponding amplitude
which will give an even output for the integrating
circuit. If the output amplitude varies from the
equilibrium value, a signal is sent to the grid
of the mixing tube, which varies the input of the
mixing tube. Thus if the output is too large, the
output of the linear detector is depressed, thus
lowering the signal on the signal grid of the
mixer. This lowers the input to the integrating
circuit which in turn eventually depresses the
output.

In this the resistance compensation in the inte-
grating circuit is not critical. Much of it can be
obtained from the zero imput situation.

To obtain phase modulation for the amplitude of
the output, i.e., if negative signals differ from

positive omes by 180° in phase, it is necessary to
add to the output, a signal of the same frequency
differing in phase by 1§n° and with the amplitude
corresponding to the zero signal. One way of doing
this is to use two circuits similar to the diagram,
bottom of page II - H1, but differing relative to
the oscillator. The same oscillator is used in
both circuits but the phase is inverted before
being applied to the second circuit. Phase inver-
sion is, of course, immediately obtainable from a
single -tube.

It should be mentioned that the above is only a
suggestion. The problem of accurately modulating
an alternating current so that the amplitude ac-
curately represents a quantity is, of course, a
problem of greatest importance if alternating cur-
rent calculating devices are to be developed. In
books on radio transmitters, the problem of modu-
lation is discussed and a number of ways of doing
this are given. Thus the plate voltage of a tube
may depend upon the signal while the grid varies
with the carrier frequency or the voltage on the
suppressor of a pentode may depend on the signal.
The use of a "mixer" tube like the 6 L 7 seems
logical as suggested above. However, it seems
clear that in every case, the output must be de-
tected linearly and fed back to control the signal
on the mixer.

For modulation circuits, the reader is referred
to the current Radio 4mateur's Handbook which will
haye sections on transmitters. (The handbook is a
yearly publication of the American Radio Relay
league, West Hartford, Connecticut.) Certain issues
of the 1945 edition do mot contain advertisements
which is an unfortunate omission. The advertise-
ments are a very important part of the book.

Other references are: "R.C.A. Air-Cooled Trans-
mitting Tubes,™ Technical Kanual TT3. R.C.A. Manu-
facturing Co., Inc., Harrison, N.J. Also by the
same company: R.C.4. Guide for Transmitting Tubes.
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8. For the purpose of electrical multiplication,
it is very desirable to have a rectifier whose
output is a direct current or voltage which is, to
a good approximation, proportional to the square
of the amplitude of the impressed alternating cur-
rent. It is not particularly difficult to compen-
sate to a certain extent for the departure of the
output of a diode from a square form. We wish to
discuss this question in the present section.

Notice that A, - 4 A, , 9 A,, under the above
assumptions, is a parabola and in general it would
be pardbolic except possibly for terms of the
eighth degree.

By the use of filter circuits, it is possible to
obtain such a combination. Consider the circuit
where full wave rectification is used to eliminate
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Let us consider again the characteristic of the
diode, i.e., the curve which expresses the plate
current as a function of the plate voltage.

I=-1 (E)

Let us suppose that within a region with which we
are concerned it is possible to choose a point E4
such that

I-f(Ey+h)=a,+a,h+a,h’+ash®+a h*+agh®+ach®

to a sufficiently good approximation. Now if we
let h = e sin wt and express the various powers of
sin wt in terms of the harmonics we have

I -A, +A; sinwt - A, cos 2 wt — A; sin 3 wt
+ A, cos 4wt 4+ Ay sin §H wt - A, cos 6 wt
where

Ao = (ap + 8, €°/2 + 3 a, e*/8 + 5 ag e°/16)

Ay = (a, e + 3 ag e’/4 + 5 ag e®/8)
A, = (8, e%/2 + as e*/s + 15 a, e9/32)
Ay = (a5 /4 + a5 €°/2)

A, = (a, e*/8 + 3 a, e°/16)

Ag = ag e®/16, A = ag e°/32.

Now in general for a diode, the a;'s are positive.
Thus A, is somewhat similar to a parabola but has
a tendency to increase too quickly for larger val-
ues of e. (It will be convenient to assume a, = 0
in our discussion). Notice that A, is similar while
A, is also an even function beginning with e*. A,
is also an even function.
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the odd harmonics. The combination of impedances
Z, and 7} is intended to form a selective filter
for the 2 w frequency, i.e., Z, is a minimum, 7]
is a maximum for this frequency. Similarly 7, and
Z) and Z, and 7} are selective filters for 4w and
the 6w frequencies respectively. The resistances
Ry, R, and R, are chosen to yield the desired lin-
ear combination of the output voltages or perhaps
better, the empirical combination that works best.
Presumably, the linear detector for the 4w fre-
quency should yield a voltage opposite in direc-
tion to that of the other two. In the case of a
diode detector, this is easily arranged by inter-
changing the plates and cathodes.

‘Of course, on occasion sufficient accuracy may
be obtainable from two frequencies. Another possi-
bility is to use A, as the main term and introduce
a correction obtained by rectifying the even har-
monics. (See diagram, top of mext page.)' The plates
and cathodes are oppositely comnnected in the“di-
odes. This gives a negative output. Inverting both
diodes will give a positive output. Both are de-
sirable in multiplication. In view of the trans-
former coupling the input can be amplified consid-
erably before being applied to the device. The
transformer can then have a considerable step-down
ratio. R; and R, can be varied for best empirical
results. The amplifiers can be used for resistance
elimination or only one may be used on the output
side of the device.

The study of accurate electrical squarers is
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extremely important for the development of elec-
trical calculators. Of course, the above refers

to any rectifier. In particular, tubes of other

types may be effectively used.

In connection with multipliers two further facts
may be mentioned. One of these is remote cut-off
tubes in general have a characteristic in the form
I =exp (ky §;+ k,) which can be used with feed-
back to obtain a logarlthmlc output. This offers a
simple way of multiplying positive quantities.

Also in the case of pentodes inputs can be im-
pressed on different grids and if a suitable por-
tion of the characteristic is chosen the product
can be obtained. Also in a "push-pull" yoked pair
of pentodes, the difference between the screen
voltages can be one input and the control grids
connected to the other input. The suppressor grids
can also be used instead of the screen.

_V. The Representation of a Function of
One Variable

1. In our previous discussion, we have pointed
out a number of ways in which a function of one
variable may be realized. Thus a potentiometer
may be used to yield a voltage which is a function
of a rotation, cf. Chapter II, Section 5, or
groove cam or a cam with linear follower may be
used to yield a displacement which is a function
of a rotation (Chapter II, Section 7). In Section
8 of Chapter II, we have seen how a rotation can
be- expressed as a function of a rotation by means
of geared cams and in Section 9 by means of a pin
cam. Although we have not discussed it, one way of
representing a function in digital machines is by
a set of cards on each of which is the difference
of two successive values of the function. The val-
ues on the card are added as the independent vari-
able changes.

In connection with the new digital electronic
computers, "memories" of various sorts have been
introduced. These, of course, can be used to hold
a function table but the serial type memory can be
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used to represent a function for use in devices
whose output appears on an oscillograph. For in-
stance, a magnetic wire memory consists of a wire,
which is moving rapidly through a reading head,
which responds to the variations in the magnetic
state of the wire. To maintain a periodic func-
tion, we can impress the signal which corresponds
to the value of the function on another point on
the wire which will enter the reading head one
period later. Such a function could be depicted
on an oscillograph. If we wish to modify the func-
tion with time, as we may in an adjuster type
device, we can impress the modified value on the
wire. If the function does not vary in the prob-
lem, it could be placed on a closed loop of wire
which runs through the machine. An acoustical de-
lay line memory can be used in a similar way.

Another way of representing a function is by
means of the Fourier Series. There must be a meth-
od for representing a constant function, and
sin nx and cos nx (this supposes that the interval
for the independent variable is -n to +n) and a
method for taking a linear combination of the out-
put of these. In the case of a voltage, tuned cir-
cuits offer methods of representing the trigono-
metric functions.

Let us briefly discuss the possibilities for
such a device. We consider a function on the in-
terval -n < x < n. With certain reservations rela-
tive to continuity and differentiability such a
function can be represented by a series

{eo] .
f(x) = ao + 2,,_,(a, sin nx + b, cos nx).

In Section 77 of the previous chapter, we have
seen how to produce a voltage a, sin nx, where a,
is a d.c. input and x = wt where w corresponds to
some convenient frequency. An analogous circuit
can be used to produce b, sin nx. If we apply this
output to a c1rcu1t which introduces a phase
change of 90°, we obtain b cos nx.

A circuit containing a condenser and a resistor
can be used to change the phase. Thus if we have
the circuit illustrated at the beginning of the

next page, we can show that if Ry R, = ;;;;E-E—



there will be a phase shift of §O° for the nw com-
ponent,.
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We may mention that in order to synchronize the
outputs one may use a common oscillator for all
the integrating circuits tuned to a frequemcy cor-
-responding to w, provided this oscillator is of a
type which produces terms corresponding to the
various higher harmonics. A relaxation oscillator
has this property. A relaxation oscillator is one
that is characterized by the property that there
is in each cycle a period in which a condenser is
slowly charged, then rapidly discharged. A number
of such circuits are given in the Radio Amateur's
Handbook but the principle can be simply illus-
trated by means of any gaseous tube having a
breakdown characteristic. Thus in the following
circuit if the input is a fixed high voltage the

1

o |

| ®

condenser will slowly charge until the breakdown
potential is reached, then it will dischlarge. Un-
fortunately, the current will continue even with a
much lower voltage unless the plate is made nega-
tive with respect to the cathode. (This assumes
that the cathode is emitting electromns.) This can
be accomplished by introducing a resistance and a
capacity in the cathode circuit. Thus in this cir-

R

(]
i I
T Ak
G|

cuit, the two condensers C, and C, charge until C,
reaches the potential at which the "trigger grid"
of the gaseous triode will initiate a discharge.
Then C, will discharge through the tube and G,
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through R,. This discharge passes partly through
Rs and partly into C; until the cathode becomes -
positive relative to the plate. (The inductance L
permits the cathode to be actually positive rela-
tive to the plate.) Presumably, the output should
be amplified and a condenser coupling should be
used to the imtegrating circuit instead of the
transformer coupling.

The output of these circuits are averaged by
means of resistances. The result is a periodic
function of the time in which the interval -
-n/w < t < n/w corresponds to -n < x < n. If the
original function is periodic and continuous with
continuous derivatives this representation can. be
used effectively.

On the other hand, if.it is desired to represent
a function just for the interval -n < x < n, even
if the function itself is continuous, the repre-
sentation may have discontinuities at the end
points, either in itself or its derivatives. In -
this case, the representation by means of trigono-
metric functions is neither uniformly convergent
nor can term by term differentiation apply.

" However, it is possible to introduce new terms
which permit term by term differentiation. We do
not have the time to give a precise discussion of
this situation but we must content ourselves with
the following outline.

It is customary to consider the orthogonal series
representation of a function as representing it as
a vector in an infinite dimensional function space.
In this space the inner product of two vectors
f(x) and g(x) is given by the formula

(f, g) = JT f(x) g(x) dx.

The functions 1, sin nx and cos nx, correspond to
vectors along a set of coordinate axes. The set of
coordinate axes form a "complete" set since there
is no vector orthogonal to all of them. A finite
sum :

o =

N .
y = 8 * Zp_, (a, sin nx + b, cos nx)

is an approximation to f if the integral

- 2
J5 Mf-oyl” dx

is a minimum when regarded as a function of ao,
a, and b .

In order, however, to get a series representa-
tion in which the series approximation oy approxi-

mates not only f but o'y approximates f' and say

oy approximates f", then we must minimize the in-
tegral

Joo Uf-oygl® + If'-oyl® + I£"-0%1®) dx.
To obtain a discussion analogous to the preceding

one in this case, we must use a space W in which
the inner product is ’



ffﬂ (f g+ flgl + fnéu) dx.

That there is such a space with the requisite prop-
erties is shown in the author's thesis (Trams.

Amer. Math. Soc. 87, pp. 301-08 (1935]) for two
independent variables. However, the discussion can
be readily simplified to one variable or expanded
to any number.

One can readily show that the functions 1,
sin nx, cos nx are orthogonal in this space also.
Thus they also determine coordinate axes. But this
set is incomplete, i.e., there are functions which
are orthogonal to every one of these. let us find
all functions f with this property.

Let ¢ denote any of the functions 1, sin nx,
cos nx and suppose f is orthogonal to ¢ in the
space W. Then

0= (f,9) = ffn (f5 + £'%' + £'%") dx

= (£'-f") T + £99'17 4 J™ (f-fr+ £UV)) G dx,
If we let ¢ = sin nx, we obtain
n(-1)™1 (f'(x) - £"(-n)] = ST [f-f"f V)] G dx.

. Since the limit as n > « of the right-hand side is
zero, we must have f"(n) = f"(-n), Similarly if we
let ¢ = cos nx, we get

£'(n) - £ (n) = £'(~x) - £"(-n),

~ Thus we have established that the three conditions

f-f"+ v -0, f17 -0, £' - f"']" =0
are necessary if f is orthogonal to all ¢s in the
new space W. They are clearly sufficient. (We have
assumed that f has two further derivatives. This
assumption can be justified but the discussion is

somevhat lengthy.)

By the usual considerations of ordinary linear
differential equations, it can be shown that all
solutions of the equation

£ -+ £ 2 0

are given by the expression

Y3 VT
-Ae 2 sin (§x+yi)+Be—az

f 2%sin (#x + va2)

;T =0
becomes
A sin (y; 4 5n/6) = B sin (y, - Hn/6)
and f'-f"]% -0,
becomes

A cos (ys + AHn/6)=-B cos (y2 - Hn/6),

If ,We square these two equations and add, we get
A?=B? or A=*B. A-B implies v + Hn/6 = Yo — 5n/§ =
(say) o and A=-B implies yy + hn/6 = o = v, - hn/b

"+ n. However when either of these is substituted

in the expression for f, it becomes

Peale ® sin (4 _+ a.- 5n/6)

F in xaas 5/6))

and it can be shown that this expression satisfies

the conditions for f for all values of A and a.
Let us take A = 1. This expression can be written

+ €

~ in the form

N o -

where A, B, y, and y, are constants of integration.

The successive derivatives of f are easily shown
to bqv_ ¢§

f‘=Aé_%xsin(§x+y,+n/6) - sin (x+y2+8n)

e
f"=Ae_3131n(éx+Y1+n/3) + Be”

X

V3
f"=Ae 2 sin(dx+y:1+7/2) - Be

3 “sin(gx+y2+5n)
-hgx \
sin(Fx+y2+1/2).

If we substitute, we find that the condition

f=1f cos ¢+ £, sin a,

where v

fi =€ 2 sin (3x - Hn/6) + e
Y3
f2 = e 2

- sin (4x + 5n/6)

7
cos (&x - Hn/6) . em'Bx cos (¥x + Hn/6).

X

We can readily find the length of f in the new
space '

HENH? - (F, 1)

£ f 4 £ £ 1T 4 ST (f - £ 4 £UY) fdx

= (/37 ~ eV3M) (cos *a +/F sin Za)

= (say) C (cos *a +3 sin ’a).

This can be used to show that (fy, f,) = 0 and
et = C, £ lI® = CUB.

In the space W, the function 1 has length /2rn ,
the function sin nx and cos nx have lengths JT
\/1+n +n*, If we apply the usual method of obtain-
ing the Fourier coefficients, we find that a fumc-

tion F(x) can be represented on the interval
-n £ x £ n, by a series

S Jm (17 4 18012 4 1212) dx

F(x) = ap +dy fy +d, f, + Z;_,(a, sinnx « b, cosnx)

where ag = QL.ffﬂ F(x) dx
= (1/€) ffﬂ [F(x) £f. + F' £,' + P £,"] dx
dQ = (1/0\/3.) f1_t,n (F f2 + fgu + n fg") dx

=

while if ¢ = sin nx or cos nx, a_ or b, are equal
respectively to
(1/m [14n*4n*]) J® (Fp +F'o' + PUg") dx.

This representation has the property that the term



by term derivatives converge to the corresponding
derivatives of F (at least in the mean).

Thus the problem of representing functions in
this fashion can be referred to the problem of rep-
resenting f, and f,. These are_linear combinations

X i &X - ﬂx -
e 2" sin 3x, e ? cos ix, e sin %x, €
The first two of these are two linearly independent
solutions of the differential equation

d’g _ d )

H—)?g' ﬁa%+g_0
and the second pair are solutions for

2

dg dg” -

dx® +'\/3—3%+g=0

Let us consider the second equation first. It is
particularly easy to obtain a function g which sat-
isfies this equation. For if we have a circuit con-
taining inductance resistance and capacity, the
charge on the condenser will satisfy this equation
if the constants are properly chosen. However, if
this is to be used to yield a periodic representa-—
tion of a function, we must have a means of setting
the value of q and 2 back to the proper initial
values at the end of each cycle and the beginning

X
27cos $x.

This can be do&& most effectively in the case
2X

in which ¢ = e cos % since we have g(-n) = 0,

g'-n) = de T 2"

The accompanying circuit is such that when no
keying impulse is being received, the screen voltage
on the pentodes is kept so low that practically no
current flows through the pentodes. This also ap-
plies to the pentodes in the lower amplifier. Con-
sequently the rest of the circuit has almost no
effect on the tuned circuit of R, L and C. However
when a sufficiently negative keying impulse is re-
ceived the screen voltages in the pentodes become
normal. The upper amplifying circuit then induces
a current in the tuned circuit up to the point
where the voltage drop across the resistor equals
the input voltage.

Normally the lower amplifier behaves simply as a
high resistance short across the condenser but when
the keying impulse is received, this amplifier sup-
plies current to make the voltage drop across the
condenser zero, i.e., it becomes a low resistance
short:

Yarious relaxation oscillators can also be used
using the idea of controlling the screen voltage
by an auxiliary tube.

L/
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We may use the voltage across the condenser as

input. This, of course, gives q = e §xcos"g‘l'. By

taking the voltage across R as output, we obtain

_ /3
i=%g.=-e ‘/;x%(x/fcosx+sinx).

To obtain the solutions of

d’g N .dg 0

at’ at * ¢
it is necessary to replace the resistance R by a
"negative resistance" as at the end of Section 6.
We must introduce a voltage into the circuit,
which is twice the drop across the resistance and
opposite in value and this, of course, can be done
by two amplifiers. .

However in general it would seem as if a device
of the above sort would be too complicated. An al-
ternative method of obtaining repeated representa-
tions in time of a function on an interval would be
to mount potentiometer contacts on a motor driven
shaft and to use potentiometers which would repre-
sent the functions f;, f, sin nx and cos nx. It is
obvious how a function can be represented as a
voltage by such a device.

2. We have previously mentioned trigger circuits
in connection with servo circuits. There are two
types of these of interest to us. A trigger circuit
is characterized by the property that it has two
states of operation. Unless perturbed it will re-
main in whichever state it finds itself.

The ‘following circuit has the property that the
change depends on the voltage of inmput 1mpulse In
the first state of the circuit, tube A is conduct-
ing. Since this lowers the plate voltage, the grid

Q *ﬂ

B+ o

fJ
@

of B is below cut off énd the tube B is non-conduct-
ing. This is consistent with A conducting since the
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plate of B is high and hence also the grid of A.
The second state is identical with this when A and
B are interchanged.

When A is conducting a negative input impulse
which drives the grid of A below that of B, will
cause A to become temporarily non-conducting. This
causes the A plate and B grid to rise. Thus B will
become conducting and the circuit will pass over
into the second state. A positive input will cause
no effect while A is conducting. When A is non-
conducting the impulses must be changed im sign.
This type of trigger circuit is valuable for con-
trol purposes. The voltage drop across the load
resistors can be utilized in a number of ways.

Two bentodes can be linked into a circuit which

responds to negative impulse. In the accompanying
diagram, when one tube is conducting, it forces

B+

8— -

the screen of the other tube down so that the other
tube is not conducting. Under these circumstances,
the voltage drop across this screen resistor is low
while the drop across the screen resistor leading
into the conducting tube is relatively large. Now
if the first grids in both tubes are brought down
to cut off, both tubes become non-conducting. Now

if this occurs only briefly so that the charge on
the condensers do not disappear and then the first
grids come back to normal, the screen grid in the
tube which was formerly conducting is lower in
voltage than the screen grid in the formerly non-
conducting tube. This favors the flow of current.
through the formerly non-conducting tube so that
the circuit changes state.

A number of such arrangements can be used as a
binary counter. In each such circuit, one of the
tubes conducting corresponds to the 0 state, the
other to the digit 1. Such a system will constitute
a binary counter if the plate of the 0 tube is
coupled through a small condenser to the grids of
the following circuit.

By properly choosing the value of the condenser



and R, the impulse time for the output can be reg-
ulated. The product CR for the output circuit and
for the screen resistor and condenser should be
equal. The situation in the counter can be con-
veniently indicated by an electron ray tube having
two ray control electrodes as, for instance, the
6AF6-G. The target in the latter is commected to
B+, the cathode is 13h volts lower and each con—
trol electrode is comnnected to the plate of a pen-
tode in a pair. The shadow will indicate the con-
ducting tube.

In radiation counters, trigger circuits involv-
ing gas triodes are used. The grid in the gas tri-
ode, of course, has a trigger action. If its volt-
age relative to the cathode is made less negative
than a certain negative value a discharge occurs
between the plate and cathode which .will continue
however independently of the voltage of the grid
and must be "quenched" by lowering the voltage on
the plate. This is the basis of the relatively
simple circuits described in the Electronics Engi-
neering Manual, New York: McGraw-Hill & Co., pp.

68-70.
For instance, we have the following circuit.
B+
L L

7
Vg ) TR
» B8~
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If the tube A is conducting and B is mot, there
will be a considerable voltage drop across the con-
denser. If now the grids are excited, tube B will
become conducting. This lowers. the voltage on the
B end of the condenser and, of course, the A end
is also lowered. If the voltage fall of the A
plate is adequate, the A tube will be quenched.

In many counters a trigger circuit is used in-
volving a pair of triodes, which is essentially .
the pentode circuit used above but with the con-
trolling characteristics of the screen grid.trans-
ferred to the grid. One can show that such a cir-
cuit has two stable states provided the circuit

E in

T
ol |

Le
T,

Re

constants are properly chosen. Furthermore a prop-
erly shaped input pulse of.the correct magnitude
will cause this circuit to go from one steady
state to the other.



We will refer to the state in which tube B is
conducting as the normal state. In this state the
current flowing through the B plate resistance Rp
. causes the plate voltage of this tube to be low.
Since the A grid is connected by a voltage divider

t6 the B plate, the A tube is biased below cut off.

Consequently, the A plate takes no current and all
the current in R; for this side flows through R{
and R to C7. In the normal state, the B grid is
at ground potential which requires the relation

R+ Rl ~ R

(C" is a negative voltage.) The A platé voltage

has a value —B— . If I, is the plate current
RL+ Ri

for the B tube the plate voltage is e, - e* where
1
* _ Io Ry (R + Ra) The A grid has the value

e’ =
RL+R1+R2 '

- ke*= -Rﬂe*_ IRy Ry .
Ry + R, ~ Rl + Ry + R,

Now suppose a negative pulse is applied to the
input. (We suppose that the generator of the pulse
is a voltage generator with zero internal imped-
ance.) This pulse has a steep. fall initially. Both
grids are capacitatively coupled to the inmput and
thus receive the negative voltage pulse. This

o

drives them both lower. Consequently the B grid is
also cut off and both tubes are non-conducting.
Following the steep fall the pulse has a flat por-
tion. During this time both tubes are cut off but
both grids will tend to rise to the zero voltage
position. However, the circuit constants are
chosen so that the non-conducting tube grid will
enter the conducting region before the other grid.
To see this one must appreciate that in the nor-
mal state, the voltage drop across the C; conden-
ser attached to the B plate is less than that
- across the other C., since the input is normally
considered to be at ground potential and, of
course, the potential at the plate of the conduct-
ing tube is lower than that at the other plate.
Both condensers are fed by a resistance network
which will tend to bring the plate ends up to the
cut off plate potential e,. Since the B plate is
further away from eo it will have the faster rate
of rise.
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On the other hand, the voltage drop across C is
initially lower than that across C', by an amount
(1 - k) e*. Now the relaxation time for the C R,
circuit is smaller than that for C; R and this
difference is essentially maintained &uring the
rise of the plates.

Imediately after the initial fall E;, the B
grid was E; volts below zero and the A grid E; +ke*
below zero. Let y be such that =$ is the cut off
grid voltage. However, due to the faster rise of -
the B.plate the A grid rises the amount E; + k e*
- % before the B grid rises E; - . We will dis-
cuds this in detail below. As sool as the A tube
becomes conducting, the plate voltage falls ’
abruptly and this drives the B grid down and the
circuit is in the other state essentially. The
charge on the C and C' condensers are permitted
to adjust themselves to the new state and the E
voltage rises to zero but slowly enough so that
the new state is not disturbed.

A number of outputs from such a circuit are pos-
sible. The plate potentials can be directly cou-
pled to "gate tubes" which will conduct only when
the plate is high. The state of the circuit can
be indicated by means of neon lamps. When a suit-
able resistance is in series with a typical lamp
of this kind it will glow when a 90-volt potential
is applied across the combination and extinguish
itself when the applied voltage is less than 60
volts. Besides these two pulse outputs are obtain—
able by condenser coupling to the plate. Thus,
when the circuit passes from the normal to the
activated state, the A tube plate falls abruptly
generating a negative pulse which is considerably
larger than the input voltage, while the B tube
will send out a positive pulse.

It is clear that the design of such a circuit
involves a number of interesting mathematical ques-
tions. We will discuss mathematically a somewhat
simplified situation but one which has the essen-
tial aspects of the trigger circuit. Normally, we
will assume that the plate resistance of the tri-
odes is infinite but we will also indicate how the
discussion can be varied to take care of finite
plate resistance. We assume that for each triode,
the plate current I (e,) is zero for grid voltage
e, < - 1/y and that for -1/y < e, <0, I, =

10(1 + Yeg.

e‘
d

-y~ 1

The nodal equations for this circuit are feadily
derived. We assume that the circuit is symmetric



so that we need not write down the primes. Thus,
if we add the currents flowing away from the A
grid whose voltage we indicate by e, we have

%*’PC) (ei-e4)+§1_(el_c—)=0

1

or

(ﬁ_+ﬁl_+90) ei-(-Rl—+pC) e4=kl-C‘ 1)
1 1

2 2

For the A plate with voltage e,, we have similar-
ly for the sum of currents flowing away,

(1)""1""' ) (e2—es) (e.-E)) l(2—B+)=0
Ip e R pC) (e2-es) + pCyleo-E;) + RLe
or '
v 1 o
Tyes) # G vie o 10 2 = QL+ 0 e Oy
(2)

Similarly we have for the B grid and plate volt-
~ ages eg and e, respectively

L 1,1 s =0 (
‘ (R1+DC) ex +‘(R2+R1+90)e B 3)

_(ﬁl—i- +‘DC)e1 + I (ea) + (R%JrRlL + L.)[C +Cl)es = PCIE1+% B
(4)

Let us consider briefly the stability of the nor-
mal state. In this state, the desired values of

e, ez, € and e, are respectively - ke', eq, 0 and .

eo — e' respectively. We will suppose that each of
these has been slightly displaced from these values
but not enough to disturb the situation relative to
cut off. Thus, I_(es L+
‘Stability means Ehat the circuif will remain in the
state under these conditions and these voltages
will tend to return to the correct values.

Let €, denote the difference between e, and tye _
desired values. Under these circumstances equations
(2) and (3) become

(ﬁlz + pC + Elz + PCI) €y — (lél_l + pC) e, = pC.IEI ')
S e e g0 -0 G
1 2 1

We intend to eliminate g, between these equations
and obtain a second order equation on ¢,. Conse-
quently we wish to express our imitial conditions
on e,, g4 as initial conditions on €,,,, €4,4, the
s s i o e )
initial values of ¢, and e}. Initially we have

(Rl‘ " Rl) €2,0 + (C +Cp) eh,0 - RL €5,0 - C €,0 =
L 1 1

PCEy 1o = 1o

_%82,0—08£,°+('}%+%‘) €s,0 + C eg,0 = 0
1 . 2 1
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) = 0and I_(es) = Ioll + yes].

Solving for e},,, we obtain

If we eliminate e, between equations 2' and §',
and divide by CC;, we obtain

2, 1)+1d+d) py Ll 1y 1
o (é;‘x%L*R)*c‘é'*RJ P (R2R1+R2RL+E1§£> gede

- %(-I%;+%)+NPEI

The coefficient of* e, is quadratic in p. The dis-
criminant d is determined by the equation

d? - b? - . dy-1@d.1p*, 4
tac - G (e ) - § G oo

The coefficient of e, can be expressed in the form
gp +ay) (p + a,) where ¢, + ¢, = b, a, ¢, = ¢c. It
is easy to see that

s(b - d)
(b +d)

ay

a,

"

Now let w, = & (L + L1 -1 1
o JEb Y (R1 ' Rz), o2 CI ([%]-, ¥ Rz).
Then b = w; + 6, d = V{0, -0,)? ¢ 4/C; CR3.
0y = %((ﬂi + W — ¥V (wz_wi)Q + 4/CICR3) (5)

dp = 3(w + wp + V{(wg-w)7 & 4/C;CRz)  (6)

Both .a; and a, are positive. For ¢, is obviously
positive and ¢ = @, a, is also'positive.

Our equation for e, becomes
(P +a) (p+a) e =(p+w)pEL;

If we multiply by the obvious integrating factor
e*1t and integrate we get

Q. t
et (P +0y) ey = Jo eT (P+('-'1) PEIdT“‘ 55,0 + 0Op €2,0

If we break the integral on the right-hand side
and integrate by parts, use our previous expres-—
sion for e},, and divide by e%2!, we obtain (since
i/C = pE;1,2p)

(p+ay) ep = (p+wy —ay) EI—
oy (W, —0ay) f;; Eexp (- a; (t-7))dt + Aeat

where

€3,0

————e

A= (2 - 1) Bo + (2 — k) €2,0 -
1 1 o} 2 RLCI 250 RQCI

and E, is the initial value of E .

We now multiply by eazt and integrate by parts
to remove the various operators which modify E; un-

der the radical sign to obtain '



e n Bt ) gty (o, (4 - ) EBds
Qg — 0Oy
_ta (o - as) ﬁf exp (- a, (t - 1)) Edr
Ay — 0Oy

+ Al e'“it + A2 e'“Qt
where
Ay = Mag—as), Ay = - Eq = May - ay) + €2,0

Now if we return to (2') and (3') and eliminate
€5, We will obtain

(p + ay) (P +0ay) €5 = (D + wy) DE

where wy = 1/R,C. We now proceed to a similar dis-
cussion with w, instead of w,. We find for ej,,
the value

ig 1 1 _ 1
€3,0 = "C—I + (CR—i'— CIRL) E2,0 (wy + CIRQ) €s,0

The constant B analogous to A obtained after onme
integration will be

B = (a,_—-w,,) E°+(C%1'—‘(fi{—1") 52’0 + (az_wi -(ﬁ?’) 53’0

and if we let B, = B/(a, — ay), By = = Bg = B/(a, - a1) +
3,0 W will again obtain

o Wg — O
e o B4 %2 (05 = 22
Og =0y
@y (w, - ay)
Qo — 0y

+ B1 e-“xt + B2 e—azt

fot exp (- a, (t — 1)) Edx

[ exp (< oy (t-t)) Bds

It is clear then that ¢, and e, will vary like
E plus some time delayed terms, plus transients.
- If E is not too large, these voltages vary only
slightly. A precisely similar discussion holds
for e; and e, except the p C;E; is replaced by
PCr-y Toes and L is replaced by é— + #L where
L

r, is the plate resistance of the conducging tube.

Again the fact that a, a,ndba2 are positive in-
sures the stability of the circuit for small
changes of E.

Next let us discuss the respomse of the circuit
to a pulse of the shape previously described. The
circuit is initially in the normal state, say,
when_a sharp negative jump occurs in the input
voltage E;. After this jump the input voltages re-
mains constant for a time. Initially the values
of ey, €,, €, and e, are respectively -ke', eq,

0 and e, - e'. Since these points are connected
directly to the input by condensers, the immedi-
ate effect of the pulse is to change these voltages
to - Eq - ke',- Eg + eq, - Ey, -Eg 4 eg-e'.

Both tubes are now cut off and the distinction be-
tween the voltage pairs e,,e, and e,, e, is simply"
in their initial values - E, + eq, — Eo and - E; +
eo - €', - E; - ke'.Thus if we solve our nodal
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equations for e,, e, we can obtain the pair e,, eq
by simply setting e' = 0 in the result.

For e,, e,, we have the equations (4) and (1)
above with I_(e,) = 0. If we subtract trom e, the
constant volgage eo, the constant terms on the
right-hand side drop oft and if we further confine
ourselves to an interval t > 0 in which E is a
constant these equations become

- (L 1,1 = G
(R1 +pCle, + (ﬁf + R +p (C+Cp)) e, = G
1.1 . )
(R2+R1+pC)e1 (R1+pC)e4—0
where e, and e, now have initial values -E,~ ke'
and -E, - e' respectively. Qur e, is now the varia-

tion from e,.

Let €, and €, be the Laplace transform of e, and
e,. According to the usual rules, we have ‘

-(R1:+p0)a+(-I}T+§*L—L+p(0+01>)€4=

~CrEg-e' (Cp+ (- k) C)

1,1 5, - (L g, = -
(R2 s +pC)E, (R1 +pCle, =Ce' (1 -k)

Now if we solve for &, we obtain

(p+a,) (p+ay) E,:—Eo(d%wp)+e'(1:3-.1__kw

CR, T,

If we solve this for e,; we obtain

ey = _L e,'(l _ k) (__1_ _ _1_) (e—out _ e—azt)

Qp — Oy CIRL CR:,

1 ' _dy soat _ 1 ~apt]
ey (Eo + ke') [(ay CRl)e 1t~ (e, CR1)e ]

The expression for e, is obtained from this by
setting e' = 0. Thus

Be_ ((a, k) et - (s - ) ererl

e, =
Gy — Oy CR, 1

Now e, and ‘e, start from negative values -E,
and -(E, + ke') respectively. In general, the cir-

cuit values are chosen so that o, is close to Uﬁ?
and e; in its decay behaves approximately like

~Ece~%2t The second line for e, behaves similarly

but the first term quickly becomes positive. Con-
sequently the grid voltage e; enters the conducting
region first and as soon as plate current flows,

e; is forced down and the state is determined.

The situation will be more clearly understood
from a numerical example using values roughly cor-
responding to a known case. Suppose the grid cut-
off voltage is -1, e' = 10, Ec = § voltage units,
C=Cy, Rt = R, =10 R; and let to = CR; be our
unit of time, t' = t/CR,; is the time in this unit.
Using our above formulas, we find k = %,
0y = 1.89/to, Oy = 11.11/to and



-15.86 e-11.11 ¢' 586 e-1.89¢t'

- F.48 e-11.11t" . 4g o-1.89 ¢!

e; =

esg =

(e', of course, increases both coefficients but
relatively the coefficient of e~1:82t'is greatly
increased.) The variation of these functions can
be readily tabulated.

t'{ .00 | .05 .08 .09 .108
es | -10 | -3.74 | -1.45 | - .87 0
es | -5 | -2.71 | -1.8¢ | -1.61 | -1.25

Thus some time between .08 and .09 t', the pre-

viously cut off grid enters the conducting region.

At this point the A plate voltage will begin to
fall, driving e; down and establishing the new
state. The remainder of the pulse is shaped so as
not to disturb this new state. Thus a properly
shaped pulse will change the state of the system.
Our discussion has been simplified by the assump-
tion of zero generator impedance for the input
voltage. .

We have shown the input condensers connected to
the plate. Alternately they could be connected to
the grids 0. If a cathode resistor is introduced
for each tube, the input condensers can be con-
nected to the cathode, in which case a positive
voltage jump will cut off both tubes and induce
the change of state.

A very good discussion of circuits having various

states and not used as amplifiers is contained in

the reference, Puckle, 0. S., Time Bases. New York:
John Wiley & Soms. :

3. A synchro system is a system set up to repro-
duce a rotation at a distance. The connection be-
tween the two points is purely electrical.

The simplest type of synchro system involves two
parts or "units." One is a "synchro signal genera-
tor" or "synchro transformer,'" in which the rota-
tion to be transmitted is set up. The other unit is
the "synchro motor" which reproduces the rotationm.

These units differ only in minor respects. Both
units are similar in appearance to motors. In each
case there is a field due to three symmetrically
placed pole pieces, each having a coil. The rotor
has a single coil and is an electromagnet.
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However, the units are intended to function as
transformers in which the rotor coil is the pri-
mary and the field coils are the secondaries. If
the signal generator rotor and the motor rotor are
similarly placed relative to the field pieces,
then the voltages induced in the pair of field
coils are equal and oppesite and no current will
flow in any of the three field circuits. If, how-
ever, the rotors are not similarly placed, the

voltages will not cancel and current will flow.
This will set up a magnetic field which will act
on both rotors, setting up a torque tending to
cause the rotors to be similarly placed.

We can indicate the direction of the magnetic
field by the following considerations. let us sup-
pose that the rotor of the motor has been removed.
The effect of the induction due to the transformer
rotor is, of course, to induce a current which
sets up a magnetic field in the generator field
poles opposite to the field of the rotor. Let us
look at this first in the transformer or signal
generator. Of course, there are three field poles,
each with a magnetic field. But it is clear that
the resulting magnetic field is opposite to the
one that induced it. However, the current that
flows in the generator poles also flows in the
motor poles and sets up a precisely similar field
there 1f we neglect resistance and other losses.

The effect of the motor rotor is, of course,
analogous. However, actually the current that
flows when both rotors are present must set up a
field that corresponds to the vector difference
between the two magnetic fields, one of which is
opposite to the field of the generator rotor, the
other opposite to the motor rotor field.

The effect of this can be readily obtained. Let
us suppose that the generator rotor magnetic field
and the motor field are as indicated. %Zt H, denote
the vector deroting the genmerator rotor magnetic
field, H_ the corresponding vector for the motor,
the field then is k(i - W,). The torque exerted
by this field on the glectromagnet H, is given by
k(f, - H)x H, = kB, x H,. This torque, of course,

FIELD
FORCE VECTOR

GENERATOR MOTOR
ROTOR FIELD ROTOR FIELD

is in the direction tending to bring H_ and H, in
coincidence and its size is proportional to the
sine of the angle between them. The generator rotor
has precisely the opposite torque exerted on it but
presumably the input determines its position. Note
however that this means that the input must do work
if there is any load on the output.

However, torque amplification is possible if one
uses an additional motor on the output shaft. The
rotor is parallel to the previous motor rotor and
so are the corresponding pole pieces. The current
in the new motor field pole coils is controlled to
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be a multiple of the current in the original field

coils. This is done by magnetic means.

Another selsyn unit of considerable importance
is the differential selsyn. This unit is similar
in appearance to the other selsyn units and the
field pole pieces are the same. But the rotor has.
three coils and three faces precisely analogous to
the field pole pieces.

s al

The use of the differential selsyn permits one
to specify the difference between the input and
the output rather than just insure equality. If
we consider the effect of selsyn generator alone
it is clear from the following diagram that the
magnetic field set up by the rotor of the dif-
ferential selsyn is a replica of that of the

" generator rotor relative to the field coils.

Hence, if the rotor of the differential is posi-
tioned so that the rotor coils face the pole
pieces, the field coils of the differential are
affected the same way as those of the generator.
Also rotating the rotor of the differential will
change the induced currents in the field coils to
those corresponding to a rotation of the same
angle in the field of the generator. Thus if « is
the rotation of the generator rotor, B that of the
motor rotor and 6 that of the differential rotor,
for no torque we must have

o+ 86 =B,

The differential selsyn is particularly useful in
situations where two quantities are to be added to
yield a third and the three are far apart in space.

Another selsyn device of wide application is the
selsyn control transformer. If a selsyn motor has
no voltage impressed upon its rotor from the power
source, the field itself will induce a voltage.
This voltage is zero only when the receptor rotor
is perpendicular to the position corresponding to
the generator and its phase will show on which
side of the perpendicular position the receptor
rotor is. (There are, of course, two positions of
zero voltage 180° apart.) This can be used to con-
trol an alternating current servo.

A selsyn éystem or its equivalent is valuable in
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calculating devices because it permits one great rather than induction) is used to connect the
freedom in connecting various units. Thus in the units and, of course, this permits one the same
latest version of the differential analyzer at freedom in the intercomnecting that one would
M.I.T. a selsyn system (based on capacity, however, have with a purely electrical set-up.
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PART THREE: THE SOLUTION OF PROBLEMS

I. Introduction

1. We have discussed in the above, various de-
vices to perform mathematical operations. We now
consider how these can be combined to solve mathe-
matical problems.

There are a number of principles upon which such
a ccmbination can be based.

1. The Principle of Similitude. If one wishes to
solve a mathematical problem, one sets up a physi-
cal situation which is governed by essentially the
same equations and obtains the answer by measure-
ments on the system.

2. Direct Calculation. This is suitable only for
certain problems. In this the operational devices
previously discussed are utilized and combined in
a manner suitable for the calculation at hand.

3. Adjusters. In this the mathematical problem
to be solved is set up as a calculational problem
in which the unknowns are inputs. The values of
the unknowns are then adjusted either by the opera-
tor or by an auxiliary calculating system until
the requisite conditions are satisfied.

These principles are, of course, not ‘mutually
- exclusive.

In the present chapter, we wish to discuss these
principles in general. Our remarks are intended to
be introductory in character. However, it would be
advisable for the reader also to return to this
chapter after he has read the remaining chapters
of Fart III, since certain remarks will then be
clearer. k

2. Let us briefly discuss the Principle of Simi-
litude.

The devices based on this principle in general
have the two advantages of being simple and rela-
tively inexpensive. This is particularly apparent
in the case of devices for the solution of partial
differential equations. .

In general, however, their accuracy is limited
by the fact that there is no unidirectional flow
of signal. In general, in such devices in an in-
dividual part one cannot clearly distinguish be-
tween inputs and outputs.

In order to make this last statement precise
mathematically, let us consider an individual part
F and let us suppose that it is connected to the
rest of the device by connections whose state can
be described by means of the variables, xi, ..., X,
The part F then determines a relationship between
these variables, F (x;, ..., x,) = 0. However,
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this relationship will also depend upon which
variables are inputs and which are outputs.

This can be easily illustrated by such a sim—
ple device as a pair of gears. For simplicity,
we shall suppose that the gear ratio is one. Then
if o is the amount of turn of one shaft and B
that of the other, then one has the relationship

e +p=C

or

a+p=0C-5

where 6 is the backlash depending upon which one
is driving the other.

If we consider even such a simple thing as a
shaft, it is clear that the relationship between
the amount of turn of the ends depends upon the
driving relationship.

This variation in the mathematical relationship
governing any part of the device is, of course, a
limitation on the accuracy. To be effective, de-
vices based on this principle must be simple and
have relatively few parts.

3. The advantage of the other two types of prob-
lem solvers is that there is a one-directional
flow of signal. For a given part, the variables
are related by an equation

xp = f x1, .00, xp0,)

(at least theoretically).

Fach variable then has associated with it a part
of which it is the output. In the complete device
we have paths of signal flow and the first problem
of gesign is the determination of the paths to be
used.

One valuable result of the one directional flow
of signal is the fact that digital devices may be
utilized as part of the complete problem solver.
For, in many instances, it is true that for a
given over-all accuracy, this accuracy need only
be maintained in a certain part of the circuit,
i.e., in a certain signal path. In the other paths
of the device, less accuracy is permissible and
may even be desirable in view of the compensating
speed of calculation. g

Il. Examples of Similitude Solvers

In-the present chapter, we wish to discuss vari-
ous devices, based on the principle of similitude.
As we have mentioned before, it is not always easy
to classify precisely a given device under one of
the three principles mentioned, since a given de-



vice may be based on a number of principles. But
the devices of the present chapter are character-
ized by a certain simplicity of the calculational
parts so that a relatively complex mathematical
result is obtained from few parts. In some of
these, there is also a well defined flow of sig-
. nal which, of course, is a great advantage.

We shall discuss devices of this sort for solv-
ing simultaneous linear equations, ordinary linear
differential equations and partial differential
equations. We shall point out that there is essen-
tially two methods for attacking the latter prob-
lem. One involves the precise duplication of a
situation governed by the equation. The other in-
volves the replacement of the fundamental spatial
region by a network of discrete points. The reg-
uisite finiteness obtained in this last fashion,
however, can be obtained by other methods as well.

2. Linear Equation Solvers. A linear equation -
z,8, %, %)

can be realized in many ways. We have discussed a
number of such in which the x,'s are inputs. For
the present section, we must confine our atten-
tion to devices in which this restriction does
not apply.

It is clear that a system of equations
o1 24y Xy = by
can be realized by gear boxes and differentials in
such a fashion that when we set in the coefficients
a; 4 and turn the b,'s to the proper value then
thédretically the values of the x,'s will be deter-
mined at the proper value. But, o% course, this
would be exceedingly expensive and as we see from
our previous discussion the multiplicity of parts
would limit the accuracy.

To use effectively the principle of similitude
it is essential that the number of parts be kept
as small as possible. We wish to mention two de-
vices which have been constructed in which it cer-
tainly seems as if the number of parts is a mini-
mum. ‘

One device is that of Wilbur as described in the

"Tech" Engineering Journal of M.I.T., vol. 16
(1935), pp. 48-49, 56, 60. Each equation is repre-
resented by a tape and each variable by the sine
of the angle of rotation of a shaft. The part of
‘the device corresponding to a,, x, is illustrated
above. The tape corresponding {o ghe i equation
passes over pulleys in such a fashion that the
tape is shortened in length along the.line corre-
sponding to the equation by an amount a Xy.
This tape is part of an endless chain aAéer..

For each equation we have a device like this for
each variable. Thus the total shortening of the
tape is 2, a, RIE Now if we can permit this to
equal b,, theh we will have realized the equation.
The reaéer is referred to the discussion of the
endless chain adder in Part II, Chapter I, Sec. 1.

A later version of this device is described in
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Wilbur, J. B. "The Mechanical Solution of Simul-
taneous Equations," Journal of Fragnklin Institute,
Vol. 222 (1936), pp. '715-24.

More effective and definitely more expensive is
the well known machine of Mallock. Here each un-
known is represented by the flux in a transformer
and each equation is represented by a closed cir-
cuit consisting of a series of coils, one around
each variable transformer and one around the trans-—
former corresponding to the constant term. We have
then a coil for each coefficient a p and the num-
ber of turns on the coil is proportlonal to ay -

If B, is the total flux in the x transformer,
then the voltage across the coil 2y, is

dB
By, H‘E‘L

The coils are in series and presumably we can com-
pensate by electronic methods for the resistance
loss in each circuit. (Cf. Part II, Chapter IV,
Sec. 6.) Hence if we go around the circuit corre-
sponding to the i'th equation we find
dB, dB2 dBn d
83,17dt *Yag,2dt teer YA 048 il

The circuit is indicated in the diagram tbp of

" p. IIT - 3. On the constant transformer, besides the

equation coils we also have a power coil or primary
and another measuring coil of a fixed number of

" turns. There is also a similar measuring coil on

each of the variable transformers. Each measuring
coil is connected across a circuit which is essen-
tially an alternating current voltmeter, so that
the flux change in each transformer is measured.

An alternating current is applied to the power
coil. This induces voltages in each equation cir-
cuit which in turn induce flux in the various vari-
able transformer. Except perhaps for a brief peri-
od, the above equations are satisfied. The power .
is adjusted until the constant measuring circuit

-indicated the value 1, in which case the other

measuring circuits indicate the values of the vari-
ables. '

It is clear that an equation can be represented
by the torques on a shaft. Here the coefficients
are the distances from the axis and the variables
represented by forces. The forces can be equalized
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between different shafts by hydraulic methods.
There was ‘a German device of this nature about
half a century ago.

A machine for finding the roots of a polynomial
equation is described in the paper: Hart, H. C.,
and J. Travis. Journal of Franklin Institute,

225 (1938), pp. 63-72.

Another device for solving linear equations by
mechanical means is that of Schuman, T. E. W
Philos. Mag. 29 (1940), pp. 258-73.

A real symmetric matrix can be represented by a
network in a number of ways. Consider a simple
network made up of n + 1 points, Aqg, Ay, ..., A
At each point Ay, i > 1, we have a current genera-
tor which generates a current I,. Suppose that
each pair of nodes is comnected by a conductor of
conductance Y4 ; which is the reciprocal of the
impedance Z;, . Then the current equation for the
i'th node becomes

- Y1,1 el—Yi,2 B H+eeat (Yi,o + Y1,1 Feeot Yi,n) ey +eon

-Yy.e,= L

i,n *n

Now it has been proposed to use this as a method of
solving the system of linear equations

;\__.b“__—l. v
I
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!
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I
| .
!
e g = ||
: 7T
E% POWER
Xz X, g%
MEASURNG MEASURING MEASURING
C/IRCUI T CIRcUrr CIRCUT
By,9 Xy * By g beent By Xy = by, 1=, , 0

where the ai,J's and b,'s are real and as,; = ay, 1.
Obviously, we can consider the voltages e; as the
unknowns x;. The aj,3's correspond to the conduct-
ances Yj,'s. Because of stability questions, one
would prefer to use passive impedances. If resist-
ors are used, the Yi,j's are all positive and

ay, y's are clearly restricted. On_the other hand,
if one uses reactances Yy j = - V=1/(Ly,jw-1/uCy 4),
these restrictions disappear and theoretically any
matrix with real coefficients can be realized for
input, currents of a specified frequency.

In this case, the b;'s must be realized as cur-
rent generators having a specified current output,
i.e., they must be obtained from constant current
generators. If one uses a normal adjustable current
source with a measured output, one would have to
adjust each source until all the I;'s coincide with
the b;'s. However relatively constant current
sources are possible. A constant current generator
is one with infinite internal impedance so that
variations of the external comnections have no ef-
fect. This situation can be approximated by a high
voltage source and a large adjustable resistance
which can be set for the desired current. If this
is inadequate, electronic constant current sources
are available based on the high plate impedance of

" a-pentode which becomes effectively even higher
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when an unbiased -cathode resistor is used. Cf.
Puckle, 0. S., Time Bases. New York: John Wiley &
Sons. For direct current signals the plate current
itself can be used but for other frequencies, a
transformer coupling would be used.

The use of inductances is not desirable because
of their expense. However, by doubling the number
of nodes, so that for each x; both a voltage and
its negative appears, it is possible to use only
capacities, as in the paper of Many and Meiboom,
Review of Scientific Instruments, Vol. XVIII, No. 1i,
pp. 831-36, or only resistors to realize a matrix.
The objective of the Many and Meiboom paper is to
obtain the characteristic roots of a matrix rather
than to solve a system of equations but the prob-
lem of realizing the matrix is the same.

In the double node case, onme has 2n + 1 nodes,
-ns Ane1s --e Ag, Ap, ..., AL The circuit is
to be set up in such a way that relative to A, or
ground, the A_; voltage is to be the negative of
the Ay voltage, i.e., the unknown x, corresponds
to a voltage e; of A; and A_; has voltage -x;. An

equation ay 5 X, +...+ @1,n X, = by is realized
and also the equation obtained by multiplying both
sides of -1. If a;,y is positive, we comnect Ay
‘and Aj by a conductance of this value and we do
the same with A_, and A_;. On the other hand, if
ajy,y is negative, we comnect Ay with A_; and we
connect A_y with Ay. Finally at Ay and A-i, we

" locate current sources which are such that I and
I_, are always negatives of each other. For suit-
able current sources, for instance, transformer
output sources this can be accomplished by using
two terminals of the source. ’

To obtain the characteristic roots of a real
symmetric matrix, in the manner used by Many and
Meiboom, the matrix a;,j is realized by a capaci-
tator network as indica%ed above. For this reali-
zation, it may be necessary to add a constant term
to the diagonal elements of the matrix but this
term is simply added to the characteristic roots
and offers no difficulty. In addition, an induct-
ance L is connected between each node and Ay. Let
V=T = j. Then the current equations become

iy, w-1/lw) es+ jal,zw eg +..k jaynwey = Iy

jag, ey + jlagw - 1/Iw) ez +...+ jag awe,= Ip
jan,1wey + jan,z weg +...+ jl@anau-1/Luw) e, = I

If we divide these by w and let A = 1/Lw®, we see
that we have represented the system

(ay,1 - N ey + 81,2 € +...+ 81,n € = 1,/ju
8n,1 €1 +...+ (apn - A\) en = In/ju.
Now we can solve, say, for e, and obtain
AA) ey = I '
In

where I is'a linear combination of I,, ..., I,.

- for a voltage ey, we

the theoretical case of no resistamce, there are
frequencies for which A = 1/Le® yields A(A) = O.
These are the resonance frequencies of the matrix
and the values of A\ are the characteristic roots
of the matrix. Here A must be positive but we

have already insured this when we added a constant
to the diagonal terms in order to obtain a matrix
which can be realized by capacitative elements.

With actual matrices of finite Q, the voltage
response is humped at the resonmant points and the
current decreases to a minimum. But‘this is not
used. At resonance, the input currents and the
voltages are in phase and these points can be
sharply detected by an oscilloscope.

Another method of locating the characteristic
roots of a matrix is given in a paper of Lusternik
in the Compte Rendus (Doklady) de l'Academie des
Sciences de 1'U.R.S8.S., Vol. 55, No. 7 (1947), pp.
5'7H-78. This is based on a consideration of tran-
sients. The method of realizing a matrix is not
indicated in this paper, but if a matrix is real-
ized by a set of nodal equations and if we solve
i obtain a differential equa-

1on . ’

Ae1=I

A is now a differential operator since we must
consider transient. phenomena. The solution e; of
this differential equation is a linear combination
of exponentials exp (-Ay x) where Ax is one of the
characteristic roots. The coefficients of the ex-
ponentials depend upon the choice of initial val-
ues for ey, ..., e,. Now the term with least Ay
will decay more slowly than any other and we would
expect that after a while this term will be pre-
dominant. Thus the decapy characteristics of the

" the transients, after a settling period, should
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indicate the least characteristic root.

It is desirable to represent the transients on
an oscilloscope. One can blank out the part which
is not appropriate. The initial voltages are im-
pressed on the circuit, which represents the ma-
trix by a pulse controlled circuit and the same
pulse also controls the sweeps and the blanking
voltages of the oscilloscope. '

When the least characteristic root has been de-
termined, the corresponding characteristic vector
must also be found. Presumably the components of
this vector could be obtained by comparing the
transient voltages at the different nodes when the
exponential terms of least A have become predomi-
nant. To locate the next lowest characteristic
root, a set of initial voltages orthogonal to the
characteristic vector previously obtained is used
as above, since the resulting transient will not
contain an exponential term for the least charac-
teristic root.

3. It is possible to use a feedback amplifier to
invert operators of a certain kind. This idea
seems to be well known now. The input is a certain
function f(t), the output is y(t). The feedback
circuit takes y(t) and applies an operator P(y) to
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it. The resistances R are equal, consequently the
input to the amplifier is the average of f(t) and

P(y)
£(t) + P(y) = 2e(t)

Ignoring noise, we see that the output y(t) = ae(t)
and hence

£(t) + POY) - 2y(t)

Letting Q(y) = - P(y) + (2/a) y(t), we see that
f(t) = Qly)

which is an equation which must be satisfied by the
output.

This can be used to realize any second order
linear differential operator in a simple way. For
instance, if our feedback circuit is an ordinary
linear series network as shown in diagram below,

INPUT

—e

FEED BACK
AMPLIFIER

o

A

FEED BACK
AMPLIFIER
*—]

i

—

—

we have that the charge q on the condenser satis-
fies the equation

- q dg , 1 d%g
yeotRR e

Now if our lower amplifier has a feedback ratio of
unity we have

£(t) =

if we neglect 2y/e¢. Eliminating q, we obtain that

= f(t) + CR df + CL gtf

Notice that this is precisely the opposite to
the circuit whose output is the solution of the
differential equation

b))

T |
—_ [

Here if y(t) is the voltage across the condenser
we have

£(t) = y+RC—¥+IBgt2

Cf. J. R. Ragazzini, R. H. Randall, F. A. Russell.
Proceedings of I.R.E., XXXV (1947), pp. 440 ff.

4. In a number of cases, the solution of systems
of partial differential equations by analogy meth-
ods is well developed. For instance, two dimen-
sional problems in stress or strain are mathemati-
cally analogous to the flexure problem of a thin
plate Since instruments for measuring curvature

by optical methods are available, this can be used
for the analysis of stress in large slabs. Cf.

R. D. Mindlin. Quarterly of Applied Kathematics,
IV (1946), pp. 279-90. This paper contains refer-
ences to earlier work.

For linear partial differential equations, a
change of scale is an effective method of study by
analogy. For non-linear partial differential equa-
tions, the use of small scale models is particular-
ly desirable on account of the mathematical com-
plexity of these problems, particularly problems
in fluid dynamics. The scale difficulties are part-
ly compensated for by the use of Reynolds numbers.

The Laplacian can be solved by model systems in
a number of ways. Let us suppose_that we wish to
obtain a solution of the partial differential equa-
tion

X2 ay2
for a particular region S, subject to certain
boundary conditions.

?%u _
t o =0

Now the electric potential function V satisfies
this equation in any conductor. It is convenient
to take as our conductor, an electrolytic solution.
We take a container in the shape of the region S
and fill it with the solution. To approximate the
boundary conditions, we place various conductors
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on the non-conducting walls of the container. If
the boundary condition specifies that the func-
tion u has a certain value at a certain point on
the boundary, then we maintain the conductor at
this point on the boundary at the corresponding
potential. On the other hand, if the_boundary con-
dition at a certain point specifies 2%, the elec-

trical equivalent of this is to determine the cur-
rent flowing across a unit area of boundary at
this point. Constant current electronic devices
can be set up to accomplish this. They can also he

set upato establish linear relationships between
u

u and-g;; which occur in certain types of boundary
problems. The value of V is obtained by means of
probes. :

For two-dimensional Laplacian problems, a slab
of a high resistance conductor can be used instead
of the region S.

5. Another method for the solution of partial
differential equations involves the replacement
of the fundamental region by a network of points.
This method for the analysis of physical problems
actually predates the use of partial differential
equations and is still very important. For in-
‘stance, the recent work of Kron presents methods
for the solution of Maxwell's equations and the.
Schrodinger equation. We present the following two
recent references which contain references to pre-
vious work: Journal of Applied Nathematics, Amer.
Soc. of Mechanical Engineers (1944), pp. A149-61.
Journal of Applied Physics, Vol. 16 (1945), pp.
172-85. ’

We'do.not have time in our course for an ade-
guate discussion aof this method. Instead we will
indicate the solution of a specific problem.

Let us try to solve the equation

?’u  2’u ‘
2t 2" f(x,}’) u

ox oy

on a region S, with a specified system of boundary

conditions

The first step in the approximate solution of this

problem is to replace the given region by a net-
work of points. The points are part of a rectangu-

L
*

lar lattice and those points which can be connected
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to four points of this set correspond to interior
points of the original S.

We set up an electrical network with junction
points corresponding to the points. of this set in
vhich two adjacent points are connected by resist-
ances all of which have the same value. Fach junc-
tion point is also connected to the ground by a
resistance inversely proportional to f(xx’y).

Let us now consider an interior junction point

Let h denote the change in x, between two succes-
sive lines of the lattice, k that in y. Let u de-
note potential of the point. Then our current
equation for the junction is

uwmg)—ﬁwq) u(x-h,y) - ulx,y)
RhZ ¥ Rh®
u(x,y+k) - u(x,y) N u(x,y-k) - ulx,y) f
+

Rh® Rn® guloy) =0

Or

u(*+h,ilig(x—h,y)-2u(x,y)+ u(x,y+k) +ulx,y-k)-2u(x,y)

h2 h2
= flx,y) ulx,y).

The expression on the_left hand is an approximation

2 2 . .
to 22U + 9%U and hence our u is an approximate solu-

x2 oy’
tion of
d%u @’
&‘;21- + ay—g = f(x,y) U(X,y)

For a somewhat mere complete discussion the read-
er is referred to Gutenmacher, L., Compte Rendus
(Doklady), de l'Academie des Sclences de I'U.R.S.S.
(¥.8.), Vol. 27 (1940), pp. 198-202. .

. Direct Calculators

1. We have devices for the performance of the
operations of addition, multiplication and inte-
gration. The inverses of these operations are also
available as we shall see.

The present chapter is concerned with devices
which are essentially combinations of such. opera-



tors. Again we repeat that the classification
adopted for this part is not precise. However, in
each class it is possible to emphasize certain
characteristics. For the present chapter, these
are the use of operators designed for a single
mathematical operation and the fact that the prob-
lems treated do not require an adjustment of the
initial inputs. In the course of the calculation
certain feedbacks and adjustments may be made but
these appear only in subsidiary procedures.

2. It might be well to begin this chapter by
pointing out that .undoubtedly the most widespread
methods for the solution of differential equations
involve the use of ordimary calculating machines.
These methods are such that their accuracy, in
most cases, is limited only by the time available
for the calculation.

We will not have time to discuss the various
methods of finite differences upon which these
methods are based. The basic principles, however,
can be simply illustrated by an example. For this
we avail ourselves of certain literature of the
Marchant Calculating Machine Company (1475 Powell
Street, Oakland, Calif.) M.M. 260, 261; on the
Milne Method (W. E. Milne, 4mer. Xath. Nonthiy,

33 (1926), pp. 455-60, also 40, pp. 322-27). How-
ever, we wish to emphasize that a study of the
fundamentals of finite difference theory is essen-
tial to anyone who wishes to apply calculating
machines to solving differential equations. We
shall see also that the existence and uniqueness
theories for differential equations are necessary.

Suppose we wish to solve the system of differen-
tial equations

y' o= f(x,y,2)

z' = glx,y,z)
where the functions f and g can be evaluated by
means of tables and the usual operations of calcu-

lating machines. We first change these to a system
of integral equations:

i

Y = Yo + f§0 f(x,y,z) dx
2 = zZo + f:o g(x,y,z) dx

One method of utilizing arithmetical calculating
devices involves the replacing of these integrals
by approximations. There are many types of approxi-
mations to integrals available in the theory of
finite differences with different properties and
the methods involve the selection and use of suit-
able ones of these.

The general procedure is a step—byéstep process
in which the values of y and z are calculated for
equally spaced values of x. Let us suppose that we
have .

X0y X1y Xo, eaey Xn_z, X"l_,
Yos Y15 Y25 «oes Yooqs Ya-1

Zoy 215 Za, ey Zn_z, Zn-,

and wish to continue to'x, and>zn. We first replace
our integral equation by an equivalent system

Yo =Vaop + Jx» flx,y,2) dx
n-p

Z =2 4 f:" g(x,y,z) dx

n n-p n-p .
where p depends upon the accuracy desired, the
choice of intervals between the x's and the size of
certain derivatives of the y's. We shall indicate
in a moment the essential point in its determina-
tion.

The determination of y, and z, begins with an es-
timate yé°), zé°) based on the previously deter-
mined yo, ¥4 ..., ¥,._,. This can be obtained by ex-
trapolation based fhe successive finite differ-
ences.

Ya
on

The estimate y°, z° is used as the first step in
an iterative solution of the set of equations

_ P
Yo " Vnop ¥ Zizo €5 TG s Vaipays Zanpyy) d

= P .
z, Zn-p * zj:o cj g(xn-v+i’ yn-P+J’ Zn-p+1) d

where the finite sum represents an approximation.

to the previous integrals. The iterative process

is the direct onme, in which y(*-1), z(k-1 jgs sub-
stituted in the right-hand side to yield y{&, z),

In using a method like the above, it is necessary
to use p "starting values," which must be obtained
from some other method, for instance, the Taylor
Series for the solution. '

The essential difficulty, of course, with any
finite approximation of the above sort is that er-
rors are cumulative. It is this fact that makes
the simplest approximation

Yo © Yoo + df(Xn-l’ yn-l’ zn-l)

Z, ° Zya * dg(xn-l’ Yo-12 Zn-l)
so inefficient. In general d, the distance between
two successive values of x, mist be taken very
small to yield comparative accuracy. The use of
three terms is itself a tremendous improvement.

The accumulation of errors indicates also that
to be certain of the degree of accuracy, one should
also calculate the last value of the table by pre-
cise methods, say the Taylor Series as a check. Al-
ternately a number of intermediate values of the
functions may be obtained for check purposes.

In some cases, the direct use of the Picard iter-
ative method of obtaining a solution can be used.
This is effective when an approximate solution in
the form of a polynomial is known and the equations
are not too complicated algebraically. It is, of
course, precise. The nth approximation y(»)(x) is
obtained from the n-1st by the formla

]

y (") (x)

z () (x)

Y, * f:o flx, yla-1, z2(-D] gx

z, + fio g[x, y(n-l), z (-] dx

The convergence of this process is discussed in the



existence theory for differential equations. In the
practical cases the integration is carried out for-
mally, machines being used in the various computa-
tions.

9. The differential analyzer is essentially a
combination of integrators, gear boxes and differ-
entials which is used to solve systems of ordinary
differential equations. To appreciate the method
of use, we will first give a theoretical discus-
sion of the problems which may be solved by such
a combination. This discussion is essentially that
of the paper by C. Shannon in the Journal of Hathe-
matics and Physics, M.I.T., Vol. XX (1941), pp.
337-54. (Our discussion is not as inclusive.)

Now it is clear that if we have n integrators
and let W, denote the output, U, the linear input
and V, the angle input of the 1th integrator, then
we have the equations

dw, dav

A, = U, —L
(Ao, 1) = U5
fori =1, ..., n. The U,'s and V,'s must be linear

combinations of the other U,'s, V s, W, and x.
Since they must be uniquely determlned 1t must be
possible to solve for these explicitly

Ui = a.i W
(Ao, 2)

1 ° bi,o

tag X o+ EJ 124,

(RRLIWILIT

Thus the differential analyzer permits us to
solve any differential system in the above form and
also any differential equation system whose un-
knowns are a subset of the variables of a set of
the above type.

s+ 0

+b) x + 20

We shall have to discuss the equivalence of dif-
ferential equations and also a process of "expand-
ing" the system. If we add an unknown to the system
and an equation in such a fashion that if we elimi-
nate the new unknown, we get the original system
back, then we have expanded the system. The elimi-
natlon process may involve an integration and a
choice of the constant of integration. It is clear
that if we solve the expanded system, we obtain
solutions of the original system. The above form
for a system is remarkably inclusive although this
is not apparent. To show this, let us take what may
appear at first to be a special case. Let us sup-
pose tgat we have n” integrators, so that i=1,

.., n~ for the equation

aw, U av, )

dx 1 dx

Now we wish to replace the subscripts 1 = (k-1)n +
1-1, j = (p-1)m + q-1 by the pairs, k,1 and p,q re-
Aspectlvely If we do this we get

Wy Ly OV

ey

kol
dx E, 1 gy

(4) U + 3! Z
= +
k,1 - 8k,1,0 T 25,1 X a2k, 1,p,q "p,q

Vie1 = biya,e * by X 435 oby o W
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Let
- 1 - At -
a’kyls o Ak’ a'k’ 1 Ak’ ak: 1,p,q Ak"P’ q
- 1 - Al =
bk,l,o Al’ bk, Al" bkylypaq ~A1:p’q.

Then Uk 1 does nct depend upon L, Vk 1 does not de-
pend updn k and indeed U, )1 v, K for every pair
of 1l,s with each less than n. Suppose then we let
Wy = Uk 1 Then the above system of equa-
tions afe sucﬂ tha

de 1. dw,
(A) = "k

Wy = A + Alx + 3 Ak - Wp’q, k-1, ..., n 4

If we differentiate the last n equations and
eliminate the-ﬂ-(W q) by means of the others we
get the system .

dw

dw '
kK - ] g
(€) dx Ak ¥ Zn,q Ak,p,q Yp ax

A'+Z P .4
dx

where P a = Zp A, K, . Now if we suppose that
one of tﬁe equatlons C is in the form §X d" 1, this
system is clearly equivalent to the system

dw, _ n dw
(0) = Pro * 2401 Pk,qTq‘

where P, ,o and the P, s are arbitrary linear com-
bmatlons of the w's a,nd x. We have proven:

Theorem I. Any system of differential equations
in the form D can be expanded into a system in the
the form A and hence can be set in the differen-
tial analyzer. Conversely every system in the form
A can be contracted to the form D. (Eliminate the
U's and V's.)

Notice that the equations A' glve the exact con-
nections for the analyzer. The W 1 's are the out-
puts of the integrators, the w,' s are linear com-
binations of these. The wpper set of equations
show how the integrators are to be connected, i.e.,
their inputs, while the lower set shows what lin-
ear combinations, wj, are to be taken.

Again we can remark that D is more general than
it appears. To show this, we first establish the
general lemma.

Lemma. Let
dw n dw, -,
(E,) dxi BRI zj:l Pi,_j’(Kl i*1, ..., n

denote a system of differential equations in which
the P, ;'s are polynomials in x and w,, ..., w_ of
the mth or lower degree where m is > 1. Then the
system E, can be expanded into'a system E,_; of
the same sort in which the degree of the P's is
m-1 or lower.



Proof. For simplicity in our discussion, let us
add the dependent variable wo = x. Our system is
then '

(E ) Clw1 - 2n

) dw, . _
n dx 1z0 F1,y H;l’ i=0, 1, ..., n.

To prove the lemma, we append the variables .
Zy,y % Wy Wy, 1,) = 0, ..., n by adding the (n+1)
equations

(Em-l 0) __L.Ld21 = w1 ﬂl + w .dw_l.
! dx J

each of which is in the E_ form but with linear P's.

Returning to the original system E_, we see that

in every monomial of degree 2 or larger, we may
substitute for a product w, w, a z, 5 This process
will lower every polynomial o degrée greater than
1 in the set.

dw n dw
(E, ') 75:1 = 23:0 Pi’J(w,z) a;i’

The enlarged set (E,_,), consisting of (Em-l,o) and
(E,_,') clearly has the desired properties.

It follows that:

Theorem II. Every set E_ can be expanded into a
set D and hence can be solved by the differential
analyzer.

Suppose in E_, we replace ogr polynomials P, J
by rational functions Ri’J = Y4, 4 and obtain the
system 61’5

dw, N dw

n
T heo Ry

Theoretically, at least there is mo loss in gener-
ality in assuming that all the denominators are.the
same and thus that (F) can be written

(F)

dw 1.n dw
1 - Ly vy
ax Q j=o0 Pi’J dx

We wish to expand this to a system in the form
E . We introduce the variables v, = Q, v, = i/v,.
This leads to the expanded system

(F*)

dw n dw
i -
R RGN -

dVg . n 6l aW
—_— 2, Fi% —1
dx =0 Ow dx

dVQ - V2 dV1
dx ? dx
L. . . o .
which is in the E form, 31nce‘5%; is a polynomial

in w,, ..., w,. Hence, we have:
Theorem III. Fvery system in the form (F) can be

expanded into the form E_ and hence set up in the
differential analyzer.

where f, is a polynominal in w,,

In the latest differential analyzers, one has a
servo feedback mechanism that permits one to use
the angle input as the output. Thus if U and V are
inputs and W is the cutput, we have

o

ax = U ax
or

M1y,

dx U dx

This permits a more efficient use of integrators
when fractions are present.

However, our system (F) can be expressed in a
simpler form

G dwy _
(G) R,

——

dx

where R, is rational in the w's. For it is clear
that the system (G) are special cases of the sys-
tems (F) and on the other hand, every system (F)
is equivalent to a system in the form éG) as one
can see by solving explicitly for the Ezl.
X

The form (G) for a system of ordinary differen-
tial equations is, of course, a well known one.
There 1is, of course, a well known process by which
one can take equations of higher order than the
first and express it in the form (G). Thus if we
have a differential equation

R C S e ¥
axk = Y G (@x)2 Y dxket

d
we may introduce unknowns wo = X, Wy =y, Wp = 3%, cee

Wy = e and set up the system
dWo
dx

dw 1

— = Wy

=1

—X = fwo, Wi, +ue, Wy)

" which is in the form (G) if f is rational.

However, this does not exhaust the possibilities
for the differential analyzer. Consider a system

(H) £ =0 4=1, ..., n

«e., W and their
derivatives. In general, the system (H) can he ex-
panded into a system in the form (G).

Iet us differentiate the system (H). The result
will be a set of equations which are linear in the
derivatives of highest order which appear. We may
solve for these highest derivatives explicitly and
then by introducing more variables as in the above
example, obtain a system in the form (G).

Imr-9



We will make only one further extension. let the
system of equations on wy, ..., w, and their deriv-
atives

(1) £, = 0

be constructed by the use of the rational opera-
tions and by functions of one variable which are
themselves solutions of algebraic differential
equations. Such a system can be expanded into the
form (H).

let F(x) be a non-rational function occurring
in the f's, with an argument z which is a ratiomal
function of the w's. Of course, some of the func-
tions used may themselves have non-rational func-
tions in their arguments. But then we may go
further in until we meet an F such as described.
Thus, we see that there is always an F as described.

F may have a number z,, ..., z, of rational ar-
guments in different places in the system of equa-
tions. Let us consider only F(z;) - y. We may use
the equations '

dF dz, _ dy
X

z dx = dx
2y dF d°z d°
X dzyy. d¥de dy
dz? ‘dx dz dx dx
2
to express QE, Q_E, ..., rationally in terms
dZ1 dZ1

of Wo, ..., W,, ¥, and their derivatives. Now F is
determined by an equation

dF a7
dz,” ©77’ da? .

d
by hypotheses. If we substitute for z., F, q7 ,
etc., the values given above, g will become an al-
gebraic equation on the w's, y and their deriva-
.tives. If in the original system, wherever F(z.)

occurs we now substitute y, we will have expanded
our.system to one which does not contain F(z,).

).= 0

g(zl) F)

. The above process is repeated for F(z.), ...,
Flz,).

It is clear that the above'prbcéss can be con-
tinved until all the non-rational functions are
removed .

Thus we have established:

Theorem IV. Every system of differential equa-
tions in the form (I) can be expanded into a sys-
tem of the form A and hence can be set in the dif-
ferential analyzer.

The above theoretical discussion is, I think,
very interesting in itself, but the major reason
for considering it is because it gives us a step-
by-step process for finding the system (Ac) which
we must have if we are to use the differential
analyzer to solve a system of differential equa-
tions say in the form (I).

It is clear that the essential steps in using a
differential analyzer is first to expand the given
system into a system in the form (A,;) making a
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careful note of how the constants of integration
are concerned in the expansion process and then
setting up the analyzer.
let us take a few examples:
Suppose we have a system
dy ,dz _ , dy
i

gg‘
dx = Y-

We wish to find the solution which at x = x, has
Yy =Yoand z = zs.

This system is in the form D. We rewrite it

d d d :

dz | dx
dx "~ Ydx

Our discussion above shows that it will be ade-
quate to introduce four integrators with outputs,
Wy, W, Wy, W, with

LIS
ax - ax
dw, dz
ax  Yax
dw:; _ dy
x = %ax
dw, dx
x  Yax
and three u's which are also V's
U1 =AX

(y:) U2=W1+W2—W9+yo
(Z =) Ua = W4 + Zge.

(Each W has been set so as to yield W = 0 at x =x,.
It is clear from the above how the constants of
integration can be entered in any problem of this

type.)

Since we have the equations

dw, ) du,
dx | tdx
dw, U du,
dx = %dx
dw, v dau,
dx | Cdx

% U du,
dx  Zdx

the connections of the differential analyzer are

completely indicated.

It is clear that the constants of integration
will introduce no difficulty in the general case,



provided we know the value of W1 for x = x4, for OQur system then becomes
each i. It is just this that we must keep in mind

in our successive expansions of the system, i.e., gx - u
whenever a new variable is introduced, its ini- X

tial value must be determined. dz

RRLCA Y
Let us consider another example: dx
d ' 4.5 (0 4 pa) - su
(E&-)2 = x sin y X
dv
This is in the form I. Our first step is to ex- Pt e va)
pand this to a system in the form H. To do this
we introduce z = sin y for which we have dw _ _ pdu
dx dx
d’z . .. 0 . . .
quz tZ = _ oydw v
dy H& = Ve + W
Now if we eliminate the derivatives of z relative da d d
to y, we obtain : 99 _ QW | w32z
dx dx dx
dy d®z dz d°y  dy.,
—_— = = — - . dr d
xad xae @ 20 dr . gudw

with dy 2 _ ds du dz
()" = xz. | ds . odu, gz

This is in the form H. However to revert to the

form (G) it is desirable to differentiate only the

second equation. Hence Finally we introduce f = xp, g = pq, h =su, j = fp

) and obtain
dy dy  dz '
dx dx® ~ Yax *® _ gl=.u
d%z 1 dz . , dz dy. o x
5 = X(_) + Z(—) - 22( ) d
dx 9(dy)? dx” - dx dx az _ v
;& dx
d? 1 d . du _ 1q: _
'-&;%= d (xd—i+z) x §(J+g) h
2(gL)
_ | &V - 4(f 4 q)
We introduce u = &Y, v = 92, We then have the (G) dx
system ; dx dx ’ dw _ _ odu
’ HX = u dx dx
X
d : dp . ydw , ,dv
a—)zz =V a‘% vdx * ng
du _ 1 dq _ ,dw . .dz
dx ° 5ue (xv® + zv - 2zu*) ﬁ = v Vaix
dv .1 dr _ 9, dw
& "3 V7 & " %
To return to an B system, we introduce w = % : . ds _ ,du , ,dz
. dx dx dx
dy _ af _ .d
J%I( = u ‘ ‘ = - Xa§ + P
dz _ dg . ,dq , od
= = pdd p
dx & " P T %
du _ o+ W2 xv? 2 2 : .
Ll 4 Xv: 4 ZvW2) - zu dh _ .du ds
ji(, x-S G
&Y - 3 (wxv + wz) .
dx dj _ ,df , pdp
d_w L W2 Qll_ ' HJ),(_ PHY dx
dx - dx This system is in the form (D) and can be expanded
as in our above example to the form (A). For the
This is in the form E_. To reduce it, we intro- arrangement dealing with the least number of inte-
- duce p = vw, q = Zw, I = W2, § = ZU. grators we introduce

IIr-11



VO = X
(y =) Vi =W +y,
(z=) Vy, =W, + 2z
(Il =) VB = Ws + Up
(v =) Vo =W, + v
(w=) Vg=Hg + wo
(P =) Vo = Wiz + Wii + Do
(g =) V, =Wio + Wg +qo
(r=) Vg =2W, sr,
(s =) Vg =W, 4 Wio + s
(f =) Vio = w:.s + we + o
(g =) Vi = Wiy + Wip 4 go
(h =) V12 = wa + waa + ho
(J =) Vis = wze + w'zo + jo
(5(j+g]l - h =)
‘ Vie =3 (Wog + Wyy 4 Wag & Woo)
= (we + wis)
+ F (jo+g6) - he
( (f +g) =
Vic =3 (We + Wis + w17 + wia)
+3 (£ + 2.
dw, dav, dx
= " R
dav, dV, dx
dx V. dx (=vdx)
dwﬂ dVO ) I ﬁ
dx V.“’dx = [5(j+g)-h] dx
d_w4_ dVo | ix_
dx = "*%dx T [x(fg) dx ]
dW, dv, - du
dx ° Ve dx (+ rdx)
dWe dVo dx
x " e ax - P
dw, dv, du
ax Ve dx (< de)
dWg: dv, du
Era el
dW, dv, dz
=V, —— (= w—)
ax s am  VE
dWy av, dz,
x - xR
dW,, dv, dv
dx Vs dx (- wdx)
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a¥,, davg dw
dx % dx (= vdx)
dW,, Ve . dw
- w CR
daw,, dvVe dw
- e R
My Ve dp
dx % dx T Tdx
dw,, dv, dp
dx ©4x (= 5
., av, dq
w - e Py
dWyg dv, , ds
rranil LR el el
dWy, dV, dp
& - w %
dW o, dVsy af
= - Ve a;-(= Pa;9

4. We wish at this point to refer briefly to the
literature in place of a technical discussion for
which we do not have the time. The reader is prob-
ably familiar with the fact that the differential
analyzer was developed to a great extent at the
Massachusetts Institute of Technology. An interest-
ing and modern version is described in the follow-
ing: Vannevar Bush and S. H. Caldwell, Journql of
Franklin ‘Institute, Vol. 240 (1945), pp. 255-326.

A list of differential analyzers known in 1940 is
given on page 127, Vol. 1, of the Xathematical Re-
views by M. Vallarta in a review of the paper
by S. Rosseland in Naturwissenschaften, Vol. 27
(1332), pp. 729-35, which describes a particular
model.

A large differential analyzer of good accuracy
was constructed by General Flectric and described
in an article by H. P. Fuehni and H. A. Peterson,
Elect. Ens. 63 (1944), pp. 221-28. Here the output
of each integrator has a torque amplification with
a polarized light connection.

A German version is described in the paper by
R. Sauer and I. H. Poesh in Engineer's Digest,
V (1944), pp. 94-96.

h. It is interesting to compare the above methods
for solving differential equations. Owing to the
inevitable slipping in the integrators, the last
method can be compared to the situation in the
first when one approximates the integral using
only one term in the sum. By elaborate devices, it
is possible to keep the load on the output of each
integrator low which is precisely equivalent to
shortening the interval. One wonders whether it
might not be possible to obtain a linear combina-
tion of integrators, the outputs having varying
time delays, to yield results analogous to the re-



sults obtained by means of the theory of finite
differences.

It is clear that if one were to use multipliers
and dividers and integrators relative to the inde-
pendent variable, an analogous result can be ob-
tained. It might be desirable at this point to
indicate that a multiplying circuit can be con-
nected as the feedback circuit of an amplifier to
yield division.

MULTIPLIER
INPUT OUTPUT
A [ . .
b ovrPur
MULTIPLIER AMPLIFIER -
- IC
B
CINPUT

6. There is a device due to 0. Vierling of Ger-
many which obtains the complex roots of a poly-
nomial equation. An oscilloscopic tube is used to
plot these as points in the complex plane. The
real and imaginary parts of the polynomial are
realized in terms of the modulus and argument of
z as well as the real and imaginary parts of z it-
self. The modulus and argument of z are varying
voltages. The real and imaginary parts of z are
used to position the beam in the oscilloscopic
tube while the parts for the polynomials are ap-
plied to trigger circuits which control the inten-
sity of the beam in such a way that a spot shows
only when both real and imaginary parts of the
polynomial are zero.

7. One of the most remarkable direct calculators
is the Automatic Sequence Controlled Calculator.
This machine was invented and constructed by the
International Business Machines Company and pre-
sented to Harvard University. A full description
is published in 4 ¥anual of Operation for the
Automat ic Sequence Controlled Calculator, Cam-
bridge, Mass.: Harvard University Press, 1946.

The calculator consists of various units whose
operation is controlled by a tape. There are many
adders which function as storage counters, a cen-
tral multiply-divide unit and three function units
which produce log;, x, 10* and sin x. When the mul-
tiplication unit receives the multiplicand it forms
and stores up a table of the nine digital multiples
of the multiplicand and the multiplication is based
on this table. The function units involve an in-
genuous use of the power series expansion for these
functions and their properties.

IV. Adjusters

1. In adjusters, the signal path is closed and
the device continues to operate until the derived
result is obtained. Some are intended to work in
cycles, in others there is a continuous feedback.
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At present, there are a number of commercially
available devices for solving simultaneous linear
equations by the Gauss Seidel method. We will dis-
cuss the Gauss Seidel method and point out the re-
strictions.

The present commercial devices are limited in
the kind of system to which they may be applied
although it is possible by means of a preliminary
calculation to bring any system into a suitable
form. The author has constructed a device which
is directly applicable to any system.

We next discuss the method of making such de-
vices vary continuously to the correct answer. We
then consider the theory of adjusters in general.
We indicate a mathematical form for the adjustment
signal in a variety of problems. The mathematical
procedure involved is always stable.

2. The Gauss Seidel method itself can be de-
scribed as follows. Suppose we have a system of
equations

2?,1 ay,y Xy = by, i1, ..., n.

We begin with a relatively arbitrary assignment
of valnes to the unknowns, x©, x@, ..., x®. Denote
the corresponding point in n dimensions, PO, We
substitute x@, ..., x® for the corresponding un-
knowns in the first equation, then solve for x;.
We call this x®. Let P9 denote the point (x®, x®,
x®, ..., x®. Now substitute x¢, x@, ..., x® in
the second equation and solve for x,. let x® de-
note this value and let P® denote the point (x9,
x®, x9, ..., x®). In a similar way we obtain

PQ, PO, etc., until we obtain F® with coordinates
(x®, x®, ..., x®). We then repeat the above cycle
with x@, x®, ..., x0, instead of x@, x®,- ..., x©®
obtaining the points P9, (x@, x@, ..., xO),

P9, (x@, x®, x¥, ..., x¥) and so on up to

PO (x@, x9, ..., xQD An infinite sequence of
points can be obtained in this manmer.

If the sequence of points
pe), PO, L, PO PO, L, PO PO, L,

is convergent, it converges to a solution of the
system. For we have for the ith equat1on

k) _
Zj:i By,4 fk By I%41 24, x} ) = by
Hence if we have for each j, x(k+1)-> x, as k-> ©
then

23,:1 a“l,j XJ = bi'

It is somewhat easier to consider convergence
questions in the case in which the limit is zero.
We confine our attention to the case in which the
determinant of the coefficients is not zero. Then,
we shall show that the convergence of a set of P®
for-the system

Ziz1 84,5 Xy = by



with starting values x@, ..., x® is equivalent to

the convergence of.a set of points Q@ for the sys-

tem i
) Z?=l a.i’J XJ =0

with starting values (x@ - x4, ..., x® - x ),

where X;, ..., X, is the solution of the first

problem.

We. show that Q¥ is obtained from P® by substract-
ing X3, ..., X, from the corresponding coordinate.
This is certainly valid for P°. let us assume that
it is true for -all the predecessors of P®. Now
x¥*1 is determined by the equation
3fztay,y X0y x (M 4 2

= I B4,y %

. Kk
=141 21, xj( ' - by

or

I8V a,, (x}k+1) - xy) vayy k{Vx,)

TR S P (x}k)—xJ) = 0.

On the assumption of our induction, this shows
that x {k+1) - x, is thei'thcoordinate of Q{¥.
The other coordinates have not changed from Q{X)
and so the statement holds for Q;k). It is clear
then that convergence for either sequence implies
that of the other.

This discussion shows in particular that if a
matrix ((a; ,)) is such that we have convergence
for the systgm

Z?=1 ay 4 Xy = 0
for every set of initial values, then we have con-
vergence for every initial condition for the sys-
tem

n =
2=y 84,5 Xy = by

and every set of values of the constants b,, ...
ne
Not every system yields convergent sequences.
For instance if we take the system

x-y=0
Xx+y =20

and start with a set of values (a, b) with b # 0,
we get successively (a,b), (b,b), (b-b), (-b,-b),
(-b,b), (b,b) and from here on the cycle repeats.

It is therefore desirable to obtain sufficient
conditions on a matrix so that we have convergence
in the sequence P(®), P{9)  for the problem
P18,y %= 0
for every initial condition. The following pair of
conditions are sufficient: 1) a, 3.5, 0 i.e.,
the matrix is symmetric; 2) the matrix“is positive
definite, i.e., if
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b= Zyy B,y % X
then p > 0 except when x, = ... = x, = 0.

Let us consider such a p. It is clear that the
condition 1) shows that the equation

' 5.1 2q,yxy =0

can be written )

ox,

It follows then that the process of applying the
Gauss Seidel method is a matter of finding a series
of points at which p is stationary relative to in-
dividual variables, taken in cyclic order.

However, we can show that these one-variable
stationary values are minima relative to the vari-
able involved. To show this notice that a, , >0
for every i. For if in u, we substitute x,’= 84,5
we find that u has the value a,; ,, which must bé
greater than zero by condition 2;. Let us now con-
sider the process in which x {¥*1) is determined.
The variables other than x, are fixed. p is then a
quadratic expression in x,, with a, , as the coef-
ficient of x? and x{¥*1) is the stationary value.
Thus 1 can be written

2
bo=ay g (x, - x§k+1)) + Ho.

Since ay,y > 0, the stationary value must be a
minimum,

It follows then that the Gauss Seidel process
corresponds to minimizing p relative to the dif-
ferent variables taken in cyclic order. Thus the
values of 1 are decreasing. Since they are all 5
positive, they must approach a minimum value m = 0.

Let us now consider p on the unit sphere
S, % x2? = 1. u is continuous on S and since S is
compac%, it must assume its relative minimum A, on
some point of S. Since u is not zero om S by condi-
tion 2, we have A, > 0. Thus 2 xi = 1 implies
|J.2>\1>0a

Now if we let.xi, ..., X, be arbitrary, we have
Zn_ xj = k® and the vector (xi/k, ..., x,/k) is a
unié vector. Thus

bo(xa/ky eeey X /K) 2 Ay

or B(Xy, eees Xp) ESS VI S W (1., xi)

This has two consequences: 1) Inasmuch as the -
values of p are bounded, it follows that the set
PO, PO, ...,is_bounded, i.e., there is a number C
such that (2 x73)% < C for every point in the se-
quence. 2) If the limit m, of the values of u is
zero, then the P,'s must converge to zero.

Hence, we must show that m = 0 for every set of
initial conditionms.

By a direct calculation, we see that

TR 23'“%%"1



Now for every point of the sequence IxJI < C and
thus we have

3
g g, B

We know, of course, that the sequence of values
of p converges. Hence for € > 0, we can find an
integer N so that for k 2 N, we have p (P(¥)) = mse,
When x (¥*1) is to be determined, we write i in the
form

2 1
Ho=ag (xi _ x§k+l)) TR

since m < 4 2m 4 & for x, between x{¥ and x {1
we have

a'i’i (xj(.k+1) - xi(k))2 5 &
Consequently, we see that
ou 2 <
Fax, PID|" “ag,ne
and

laxs 17 o Ix (D) - x (W ® Zg/a,

We also have that

. o
- k By =
£, (P00 < 35, (1) - 2zt ey, g iy

Taking absolute values, we get
1 Ou < -
Ifgxu-i (PO = VB (VAT + Bzt lay, ) I/ Va )

= (say) V& Ay
If we then return to our inequality on u, we have

lw(PU)| £ 5 ¢ (Z?dlg_:‘i) 2C VB (25,4

Since we may take & arbitrarily small, we obtain
_ " (p(k)) -0
This implies that m = 0, the desired result.

3. Conditions 1 and 2 of the previous section,
of course, are restrictive. Besides, although it
is easy to test 1, even the most convenient gener-
al method for testing -2 is not easier than solving
the equations directly.

A symmetric quadratic form p is positive definite
if and only if

> >
a4 0, ay,10 24,3 0, ..., 81,15 <205 By 4

>
22 R )

By 1s +ees Bp g
The proof is by induction on n. It is clearly true
for n = 1. Let us suppose that the result holds in
the case n - 1. We show it for n.

L -can be written in the form

2 g n
By, Xy + 2 (B1.5 a5 4 xy) xp + By,

For x,, ..., x_, given, this quadratic expression is
positive for al1"values of x, if and only if we
have

: 87,0 >0

and
8y 4 Bnoy > (B1pay 4 xy)?

The last inequality can be written

Vnoy = 25ea 212 By 8y -8y g ay ) xy x>0

By the hypotheses of our inductiom, v _

all values of x.,
equality

1 >0 for
..., X, is equivalent to the in-

s _ a2 -
By, pdg,2 ~ 87 95 eve; By g Bg y — 8y 58y

N

- g _ a2
89,182,k ~ By1,2 B3,k +-é By B,k T 27,k

for k = 2, ..., n, Now if we take the determinant

By gs eees By oy
e e e e e e

Bp,k0 covs By

and multiply each column except the first by a, ,
and then proceed by subtracting multiples of the
first column from the others to obtain the form in
which the first row is 1, 0, ..., 0, we can show

that
ak-1ljg a. a, .8, ,—a2 ,, ceey @y 48, ,—8y , B,
1,1|21,10 <2 By p) 121,12, 27 8] 25 0058y 183, 31,0 P2,k
a a. a, .8, .~ a a veey B 18, ,—82
k12 oo B i |21,1%2, k7 21,2 2,10 000 P11 Pu,k %,

Thus the combined conditions a, , > Oand v, _, >0
are equivalent to
By g vees By

e e e e e e >0

Br,1 0002 i,k
for k =1, ..., n and we know that these are equiv-
alent to p > 0.

But this test is just about as difficult to ap-
ply as solving the equations themselves, However,
given the system of equations '

2?:1 ay,yX; =bj;i=1, ..., m (a)
with a unique solution, we can find a positive def-
inite system with the same solution. Define

8y = E?_l ay, 5 Xy - by,

The equivalent system is

.y 8585 ., =0,k=1, ..., n (b)

or

0., (30 8y 5 ay,,) xy =302, byay 45 kel,...om (c)
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It is clear that (a) and (b) are equivalent when
the determinant of the ai’J's'is not, zero.

The matrix for the system (c) is clearly symmet-
ric. We show that it satisfies 2). Form

V=2 zj-l (2121 84,4 ai,k) Xy Xy
=21, (292, ay,y X5) (BRag 2y, xy)

= Erll-l (23‘.1 a‘i.,J xj>2.

Thus v = 0 is equivaleﬁt to 2.8y yx;=0 for
1, ..., n and since the determinant is not
X

i
zero, this is equivalent to x,

n

X2

4. It is, of course, relatively simple to con-
struct devices to solve simultaneous linear equa-
tions based on the Gauss-Seidel method and a
number of commercial devices for this purpose
are available. These are based on direct current
methods, one equation is realized at a time, a
gang switch changes the equation. The multipli-
cation is by a potentiometer method and the addi-
tion is by means of the addition of voltages. We
show a possible circuit for such a device for two
equations below. The six pole switch is a double
throw switch, which determines the equation. The

double pole switch and potentiometer marked x,

- gives a voltage x. A potentiometer a; , across

0.

the output gives a; , x as its voltage output.
We add a1,3 x and a3, y and- b, to realize the
voltage

83,10 X +3; Y - by

which is measured by the voltmeter,

Alternatively, we have seen how a linear combina-
tion can be realized as a resistance in Section 12
of Chapter II of Part II above. Using linear poten-
tiometers we mount two potentiometers for each co-
efficient on each variable shaft. This, of course,
can be done in a number of ways but for simplicity
let us suppose that the resistance portion of the
potentiometer turns with the variable shaft. Let
us begin with each variable shaft in the zero posi-
tion. Then each coefficient is entered by displac-
ing the contacts from the center position a propor-
tionate amount, the contacts going in opposite
directions on the two potentiometers associated
with the same coefficient. This also permits one
to enter the sign of each coefficient. These con-
tacts are now fixed in space. If then the x shaft
is rotated, we see from Sec. 12, that one poten-
tiometer will have resistance

L
A
x E‘\*———r as, | asy
! N L | '
[ >J<§17
—
——‘;‘ a'/,zt R2y2
St
T - 1™
| J
N
T ' .._l e & VOLTMETER

—1|—
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[ (]

and the other

ee- ()

(See diagram above.) For a given equation all the
resistances of the first kind are connected in
series and all the second kind in another series.
A resistance corresponding to the constant term is
connected to one or the other of these series, de-
pending on its sign.

The two series are used as two branches of a
Wheatstone bridge. When equality is obtained, we

S .

2|
R 1-(’.‘:32_14_1)]+R 1 _(-”"_3“21,_

pALT T
2

o
S——

by =8y, X+2a; 5y

This circuit is due to the author. It has the
disadvantage that two potentiometers are used for
each coefficient, each coetficient has to be en-
tered twice or some mechanical arrangement to ac-
complish this purpose has to be used. However, it
has the advantage that only one voltage is used
and the value of this voltage does not enter into
the calculation. In fact, a potentiometer across
this voltage may be used for volume control pur-
poses. This permits one to use sensitive galvanom-
eters. The switching arrangement is far simpler ,
and the device can be readily augmented so as to
produce the value of each equation.

The following paper may prove of interest:
Berry, C. E., D..E. Wilcox, S. M. Rock, and H. W.
Washburn, "A Computer for Solving Linear Simul-
taneous Equations," Journal of Applied Physics,
Vol. 17, No. 4, pp. 262-72. This article descrites
a device for solving simultaneous linear equations
by the Gauss-Seidel method. Alterpating current is
used for convenience. The multiplication is by
successive potentiometers and the addition is by

" the resistance averaging method. The coefficients

III - 17

are set by a Wheatstone bridge method.



5. The devices of the preceding section can be
used only when the equations permit one to apply
the Gauss-Seidel method. In general, this would
require a preliminary transformation as indicated
in Sec. 3. However, the author has constructed a
device which is immediately applicable to any sys-
tem. (See diagram below.)

The machine produces directly

2 - %¥n n 2
b= 29, 83 = 2% (23-1 ay,5 X3~ b,)”.
The variables are used in rotation to minimize p,
whose value appears on a meter. This is equivalent

to applying the Gauss-Seidel method to the system

ou .
a—xi=0,1=1, ey I
whose matrix is positive definite, as ome sees

when one sets b, = 0 in the expression for pu.

A preliminary model has been constructed for
four equations and four unknowns. However, the
ideas can be completely outlined by using the two
variable, two equation case. The schematic is the
diagram below. The variable boxes, x and y pro-
duce an alternating voltage, and by an averaging
process the voltages proportional to

L
[ 1{

l

81 =891 X +3) 5¥ - b1 t

‘Bg =8y 3 X +8 5y -byt
are produced. (t is a scale variable which 1s fre-
quently very useful in fitting the device to the

problem and for volume control purposes.)

g, and €, are alternating voltages and hence may
be amplified by means of an audio frequency ampli-
fier suitable for that frequency. The amplified
signal is applied to the plates of a diode and by
square law rectification a direct current propor-
tional to

L =87+ €5

is obtained and read on the meter.

The resistances R_ shown are the output grid re-

sistances of the amplifying stages. Each is joined
to the plate of the final amplifying stage by a
blocking condenser. These resistances are necessary
since they supply a path for the normal direct cur-
rent generated by thermal emissjon in the diode.
The voltage drop generated by this current would
over bias the diode plates if the battery were not

© provided. A smoothing circuit is associated with
the microammeter. - :

€2

__: X Y [ A,/
al
—
l | [ |
l.htlo » —
1o 7 Q2 _ Qg2
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Each variable box has the circuit

| he!

A C. POWER

I I

-

nR

ovTrPUTr

A

The power is obtained from a step down transformer
across the line. Bell transformers are used in the
model. It would be better if a single transformer
having secondaries for each variable and the con-
stants were available. The double pole switch de-
termines the sign of x and the 400-ohm wire-wound
potentiometer P, determines the size of x. (We

give values for 4 x 4 model.) The constant R,

of 3000 ohms and the .1 megohm volume control are
used to equalize the load on the transformer with
different x settings. It is not necessary that this
be done with great accuracy and one adjustment when
the value of x is approximately known is all that
is necessary.

(The larger the value of x, the less is: the total
resistance of the potentiometer P, and its load.
This is to be balanced by increasing the resistance
in the shunt Py, R.)

The single pole single throw switch is convenient
for testing purposes.

The coefficient boxes with values for the 4 x 4
model are illustrated in this diagram :

VARIABLE ‘

>

oUVTPYUT

The double pole double throw switch is set accord-
ing to the sign of a - The potentiometer P is
10,000 ohm wire wound’and R, is a resistance matched
to P. R, is .5 megohm and must be matched with the
R,s of the other coefficient boxes. This can be
easily done by taking twice as many .25 megohm re-
sistors evaluating each and then combining them in
pairs with the proper total resistance.

~ The groundings in the various coefficient boxes
locate the variable circuits relative to ground
and hence permit one to add by averaging the volt-
ages @31,1 X, 21,2 y and by t through the matched
resistances R,. Adding by averaging voltages is
desirable since it permits one to obtain the dif-
ferent equations simultaneously. But if we have
negative coefficients and wish to average voltages,
we must have a voltage corresponding to —x as well

as one for +x. In the present device, this is accom-
plished by locating the x voltage in a balanced
position relative to ground so that one terminal is
as far below ground as the other is above.

It is seen then that the use of alternating cur-
rent in this device has three advantages. One of
these is the ease of positioning the variable cir-
cuits relative to ground. Two is the use of simple
audio frequency amplifiers. The third ome is the
ease of squaring.

The model gave results accurate to about 1 per-
cent of the largest unknown. The model was crude
and better results could hardly have been expected
from it. However, it should be pointed out in con-
nection with devices for solving simultaneous lin-
ear equations that it is a very simple matter to
improve the results by an iterative process. For
suppose xgh <.+, x¥ is an approximation to the
answer. let Ax, be defined by the equation

xi = X(? + Axi'

‘The eduation

2521 81,y Xy = by

then becomes
(1))
23‘._.1 ay 4 Oxy =Dy - 23‘=1 ay,y Xy = Oby.

Now if the Ab,'s have only onme-tenth the value of
the b, we may introduce a scale factor for the
ij's, i.e., multiply the equation by 10 and solve
for 10 8x,, 10 &x,, ..., 10 Ax_. Thus as long as

the accuracy is adequate to reduce the constants

by a factor of 10 at each stage, we may conveniently
obtain any accuracy desired. Since it is not neces-
sary to reset the coefficients a, , in the reitera-

" tive process, the labor in each s{ége is mainly one

of calculating the errors Ab, and resetting the con-
stants to these values.

The use of distinct transformers introduces a
phase lag between the line and the alternating volt-
ages corresponding to the variables. In the present
model, ‘varying the load permits one to equalize the
lag between the variables to the accuracy of the
device. A better equalization could undoubtedly be
obtained if the variable voltages were obtained
from distinct secondaries on the same transformer..

However, the customary method of dealing with a
situation in which one wishes to maintain a con-
stant voltage under a variable load is to use a
feedback circuit. The idea can be illustrated by
means of the following diagram for a power box.

IIT - 19



2ME6 IIII 6£<8-G

&-C-

However, in using this power box in the general
schematic shown on page III - 18, B+ replaces
ground in the coefficient boxes and blocking con-
densers should be inserted at e¢; and e€,. The in-
put to the power box is taken from a potentiometer
which determines the absolute value of x. These
potentiometers in turn can be powered by an os-
cillator tuned to some frequency which should in
general not be a harmonic or subharmonic of the
power supply a.c. frequency.

The value of the resistors depends upon the B
supply available and the frequency chosen. For
low frequencies and B = +300, C- = -100, one might
suggest, Ry, R. = .5 megohm, R,, R, = 40,000 ohms.
We suppose that the output load is 2,500 ohms be-

" tween B+ and x+ and 2,500 ohms between B+ and x-.
We suppose that the B+ and C- supplies are sepa-
rate and each has a grounded terminal.

The right-hand sides and the left-hand sides
of the tubes each constitute three stage feedback
amplifiers, the right-hand side taking its input
from the output of the other. When the coeffi-
cients are set at different valnes the load on
the terminals vary. But this is equivalent to a
variation in the gain of the last stages of the
feedback amplifiers -and the feedback will compen-
sate for this to a great extent. Once adjusted
such a circuit should be stable except possibly
at high frequencies. .

For higher frequencies, the phase shift due to
tube capacities and parasitic effects of the stages
increases and if the feedback is too high the cir-
cuit will oscillate. On the other hand, the gain of
each stage falls off too and if the signal fed back
is less in amplitude than the original for the fre-
quencies with regenerative feedback, the circuit
will be stable. Inductances or capacities can also
be used in the feedback to weaken it for the higher
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frequencies. The reader is again referred to Bode's
boock on feedback amplifier design.

6. It is, of course, possible to provide a feed-
back arrangement which is such that the adjustment
leading to a solution will be performed automatical-
ly. We will consider this question in detail for
there are a number of interesting variations and
the discussion generalizes in many directions.

Consider égain a system of simultaneous linear
equations. Of course, we must minimize
i 2
2
W= 20, 6% =30, (B9, 8, x5~ b)),
Now we obtain
u
Tox, = 2 Zi=1 84 8y,
We recall that

du_\ 2
VvV = 23’=1 (axj)

is a positive definite quadratic form in e,, ...,
€ . A result of Sec. 2 above shows that there is a
constant C such that

v2C (3 e)) -Cu

In any calculating device, the x's must be func-
tions of the time and hence p must be also. Thus,

de _ yn  Ou dx
at - J"lﬁj a

Thus %% is the immer product of the gradient vector

(gﬁl,-%ﬁ;, cees %g;) and the rate vector

(g%i, 3%3, ceny dxy . It is clear that to reach a



. d
solution, we must mpinimize p, i.e., we want E% to
be negative.

dx 4 .

One method of doing this is to take i o,

Then

au

n op 2
q = - A a1 (5;3).

d 3
One method of realizing the equations H%l: —Ag&;
= - N2}, 8,2y, is to realize the g,'s and

then form a linear combination of these. Thus what
is desired is a pair of devices for forming Linear
combinations. The coefficient inputs can be mechan-
ically linked so that a single shaft will determine
the values of a certain coefficient in both boxes.

2 . .
Having formed - Ag%;, we may integrate this to ob-

tain x, i.e., x is continuously changed in such a

way that % = - )\g%.
1

We show that such a device will converge asymp-
totically to the correct answer. For we have

d
el = n I, @2 2 cC .

ox
Th
" du
dt _ d log u
H dt

is more negative than - A C. Hence, if we start
the device at t = 0

log v - log up <-ACt
and we may conclude that
k< g e TACE,
So we.see that in general a device with the block

diagram (illustrated below) will converge to a posi-
tion of p = 0, when the solution is unique.

€
, )
€=, 0y 3 X5k gxf“‘z €, 4
€n
Xp--—--- x 24 244
K i 3, oz,

T
X%, +] A

Notice that we have established the stability
of this device. An arbitrary feedback, for in-

d
stance, 321 =he, = A(Zai,jxj) is not stable ex-
cept f_or' special matrices [a.i’J] as one can readily

see by solving this system of differential equations.
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Of course, the idea used here is not confined to
linear equations. For instance, if we are éngaged

in solving a system of equations

fo(xq, ovvy x) =0, 321, ..., n

(the f's may depend upon parameters not shown) we
may let e, = f, and form pu = 27, €% and proceed
as before to oétain

dp _ of
3 5%}" 28y é;j

and then feed in the x's so that the machine goes
down the gradient, i.e.,

Of course, the accuracy of the device certainly
depends upon the accuracy with which the equations

£, =0

are realized. On the other hand, we certainly are
permitted a large range in percentage accuracy as
far as realizing

dx of
ekl RS U 3 it
T ARCREE-"

. d
is concerned. For instance, as long as-a%l and %%

are opposite in sign and there is a contant 8 > 0,
such that ’

L4

dx ou
=1 > 6 I5c
dt Ox

we will have the result

de < _g (gn QM%) 2 :
i 8 ( J=1[6xJ] ) 8Cu
which will imply as in the above that
: b S g e-6Ct

A complete feedback arrangement is always rela-
tively expensive even if the auxiliary feedback is
not.as accurate as the original equations. We think
that it is clear from the above that what is de-
sired in the feedback circuit is sensitivity around
the zero, while relatively large percentage errors
can be tolerated.

This permits a number of compromises between a .
completely automatic set-up and a minimum of device
parts. The device described in Sec. H was obtained
originally as such a compromise, not as an effort
to generalize or improve existing devices. Im it,

u only is calculated. The operator determines the
sign oi‘é%? for each i in succession and varies Xy

1
accordingly. -

Another compromise is readily obtainable. One
can use a relatively inexpensive combination of
resistances with highly amplified versions of the
€, to obtain ’

3
ﬁx}l—J =291 8y 24,



approxiﬁately, (The amplification should not in- Such an arrangement would permit a number of -

volve any great phase lag and for this purpose operators to work simultaneously, each minimizing
yoked stages of the phase inverter type such as b by means of a certain set of variables. This ar-
described in the end of Sec. H should be used. A rangement would be useful if a device were con-
simple circuit of this type is indicated. Fssen- structed for a large system.

tially this is two stages, with the second stage )

grid at the voltage of the plate of the first. The This is compromise in which the operator does
yoked stages have a number of advantages. One of not have to differentiate, but still performs the
these is the absence of by-pass condensers. (When feedback.

pentodes are used one can even yoke the screens

and use no screen condenser. Of course. the voltage If the matrix ((313)) is positive definite, we
supply limitations should be observed.) This means can use the feedback 9%4 - — e.. Since

that the only delaying capacities are in the tubes ‘ at 3
themselves. Also the stages adjust themseives more
readily. The plate currents should be those given

b ) n
under characteristics in the tube manual. In de- 55— = 2.1 &4 B4y
signing these care should be taken in regard to the J
expected voltage ranges. : we see that
é: du o Op dx,; n
T A 815 By &

Since ((a,, ,)) is positive definite, gf is always

negative and, in fact, the same type of exponen—
tial decay for u can be established as in the
above.

7. The discussion of the feedback circuit in the
previous section permits one to compare any other
feedback circuit with th&s one. For to operate ef-

d

fectively, we must have -ﬁ%negative in every case

and we can obhserve in each case the manner in
which p decreases.

One very frequent feedback that is used can be
described in the following manner. let S (g) be
defined as the function, such that if & < -§,

' S () =-1,if -6 2 <5, we have S (g) = 0, and
B ' ife >0, S (¢) = 1. Thus if 6 is small, S (g) is
essentially sign (g). '

_ The right-hand side of the first tube receives
its signal as follows: When a signal is put on the Now our feedback is precisely described if we

input grid, say a positive voltage, the unby-passed coo dx . :

cathode resistor will be subjecigd to an igzrease SpeCIfy'E{i' In the case‘con51dered, an effort is

in current so that the cathode tends to follow the made to obtain the feedback.

signal grid. But the right-hand grid is fixed so \

that we have an increase in voltage drop from right- dx

hand cathode to grid. Thus the cathode is in gener- HTJ-= -~ k5 (sy), where fy = g,.

al, except for the bias voltage, midway between the : , '

two grids and an increase in current on one side is (k is positive and does not depend on j in general.)

approximately balanced by a decrease on the other The reason for this is of course that it is very

side of the tube. In the use suggested, a transformer easy to mechanize this feedback. On each g, shaft,

may be used to bring the signal back to ground level we have say a pair of contacts or a pair o% sets

or in the final stages a push-pull output trans- of contacts. If g, departs in one direction from

former used in the usual manner. the zero position) one set of contacts are closed.

These control a motor on the x, shaft causing it

We have obtained-%ﬁ-. With proper consideration to rotate in one direction. On"the other hand, if

the g4 shaft goes in the other direction, another-
pair of contacts are made and Xy motor turns in
the opposite direction.

of phasing, we can obiain an alternating voltage
with amplitude - '

9 o
1 +7§%—. Of course a complete analysis of the operation
, J ‘ of such a device would have to study the equations
. . . . 2.
If we detectatyls linearly, we can easily obtain of motion precisely. These would involve d 21 in
the size of Ze. This could be visually indicated =

» eneral. Nevertheless, one can frequently assume
by means of-electron ray tubes to the operator. %hat the equations ’ 4 v s
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dx .
-dt_J= - k sign ()

describe the situation with sufficient accuracy.

In order to insure that g%?is negative, we must
have sign €, = sign ( ) in general, i.e., this

condition is sufflclent and this is the premise
generally used. This may seem like a very heavy
assumption but it should be realized that given a
system of equations

£y Xy, «on, xp) =0, i21) ..., m

we may solve any equivalent system. For instance,
we may transform it by any matrix of rank n, i.e.,
consider the equivalent system

yay, f; =0, i=l, ..., n

for which the determinant of the ay,4's is not
zero. In special cases, this may permlt one to ob-
tain the desired result even when it is not true
of the original system. For instance, if the
jacobean matrix at the desired zero is known ap-
proximately, we may use its transpose as the set
of ai’J's

Now if the jacobean of the system, i.e., the
matrix ((fy x, )) is bounded away from zero for the

permissible range of values of x, then we can show

that there is a constant C such that
Zy |Biey £4,0] 2 C VI

(We assume that the f, , are continuous on a
closed compact set including the permissible val-
ues.) For if we consider the quantities

Yy = 28y fi,x

we see that under our assumptions, we can solve
for the €,'s as a linear combination of the y,'s
with uniformly bounded coefficients. Thus there is
a constant D such that
D (% Iyyl) 2z le,l

This yields )

vir D (3, ly, 02 v
when we square both sides add over i and extract

the square root. This leads immediately to the de-
sired result when we divide by D v .

If we substitute

dx A
H—- = - k sign %5?f
in the expression

dl-l Zn au dxy - _ k zn lau. |
o in

-

or d du'

@YD) -dE f-kC
VT
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Thus VI VB S5 kC (4 - to)

or

JE <Vl -5 kC (b -ty

Thus ¢ must approach zero in a finite time. In
general, however, the x,'s are moving with a fin-
ite velocity at the point where p = 0 and there is
a tendency to overshoot and the machine oscillates
or "hunts." There are, however, devices to slow the
Xy in the region around gy = 0.

8. In view of the fact that many questions of
analysis can be approximately answered by finite
approximations, we discuss in the present section
the possibility of using a general feedback device
for problems involving functions.

For definiteness, let us suppose that we have a
second order d1fferent1al equation

F (x,y,ﬂx al) =0

to be solved in an interval a < x £ b, with bound-
ary conditions

G (ylal, %¥]x=a) =0
H (ylb], g¥1x=b) = 0.

We then let A
= f: F? dx+ G° + H®
(In the interesting special case in which
F (x,y %;Z) is the Euler equat1on for mini-

m1z1ng an 1ntecra1

b
/] E (x,y, %i’ dx
we may substitute this integral for fz F? dx.)

At this point, we introduce for the unknown func-
tion y = f(x) a finite linear combination o(x),
which is supposed to approximate f and for which
o'(x) and o"(x) are supposed to approximate f'(x)
and f"(x) respectively. We have seen in Part II,
Chapter V, Sec. 1, how such a ¢ could be con-
structed for the interval - n < x < n. o may be
expressed in the form

o(x) =ag+ds f1 +ds fo + Z:=1 {2, sin mx + b, cos mx)

We have two alternative procedures at this point.
One of these is to realize o as a function of the
time as indicated in Part II, Chapter V, Sec. 1,
ahd then obtain k by applylng the necessary opera-
tions. The other possibility at this point is to
express L as a function of the coefficients in the
above expression for o and realize this function..

The net effect, however, in each case is to pro-’
duce 1 as a function of the coefficients. We may
then try to minimize p as in Sec. h or § above.

If we have a feedback device, we must have the

. partial derivatives of p relative to the coeffi-

cients as outputs of a part of the device.



In connection with the feedback, the following
operational considerations are worth noting. We can
consider our problem as concerning an operator from
an infinite dimensional vector space consisting of
triples of functions in the form ly, y', y"] to a"
function space with elements [F(x), A, Bl consist-
ing of the functions F(x) on the interval and with
two extra dimensions. The norm is obtained from the
usual T, norm in an obvious manner.

Let us consider

hy) = [P (x, 5,5, 5" & + Gy ot B, v i -

This is clearly the norm squared of the transforma-
tion

T [y: v }’"J = lF(X, Y, ¥ }'"), G(Y; y'), H(Y: y')]
between the spaces mentioned.

Let us try to find the vectorial increment (8y,
8y', &y"), which will minimize u. In the usual
notation of the calculus of variation, we have

b
61 = fa r Fy &y + F Fy. éy' + F Fyf' &y") dx
+ G(6, 8y + G, 6y')]x=a'+H(Hy6y-FHy,6y')]x=b.

Let us introduce K(x) = IXF F, dx and integrate
the first term under the integral sign by parts.

3ou = [L(F FK[c]) o' + FF,, ") dx + GO oy + G ,65"],,
+ (M Hy - K &y + Hy By oy')), .

Now let Cs = (HH - K)], _,. We insert this con-
stant in the coefficient of 6y' under the integral
sign. The net result is the following:

sou = [y (®F, K6 + C)oy' + PR, &) &
+ (G Gy +Cl &y +G G};, By')]x=a + Hy Hy’ 6y']x=b'

The purpose of this manoeuvre was to eliminate the
"8y at x = b terms.

Next let
L) = Sy FF, - K&) + C,) dx

and again integrate the first term under the inte-
gral sign by parts. The result is :

3 = [u® P, — Lix)) &y" dx + (66, + Ca oy + G Gy6y)],
+ (H Hy; + Lixl) 6y'l,

We then let C, = (H Hy + L)1 _p and insert this
constant under the integral sign. We then have

sou = Jo FE, ~Lid 4+ Cy) 6" dx + (GB, +Ca) &y,
+ (G Gyo + C.) 8y'l,
Iﬁt ky = G Gy+ C"]Xaa’ kg = GG « + C2]x=a‘ It is

now evident that if we let &y be “any negative mul-
tiple of

Vioky vk Goa) + Sy Sy BF - L4 Cy) " dx’

6u will be negative. Under suitable continuity re-
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strictions, this will imply that the actual varia-
tion in p will be negative provided the variation.
in 8y is small. :

The formulas thus obtained could be utilized to
plan a feedback, no matter what method is used to
represent the functions. In the case of a linear F,
the expression for yu is the well-known expression

T*Ty.

9. The basic ideas of the preceding section gen-
eralize with little difficulty to problems in two
or more variables. To illustrate this let us brief-
ly consider a problem of the following sort. Sup-
pose we have a region S whose boundary consists of
a rectifiable curve which has a continuously turn-
ing tangent except for at most a finite number of
points. For simplicity in the formulas, we will
suppose that S can be described in both of the
following ways: 1. There are two functioms g, (x),
@, (x) defined on the interval a < x £ b such that
S is the set of points (x, y) with a < x < b and
9,(x) <y < 9o(x). 2. There are two functions
vi(y), w.(y) defined on an interval ¢ £y £ d such
that S consists of points (x, y) for which ¢ <y <d
and v, (y) < x < y,(y). These restrictions are by no
means essential. Their sole purpose is to simplify
the formulas and for the same reason we will also
suppose that boundary does not contain line seg-
ments parallel to an axis, which is again a non-
essential restriction.

Let us suppose that our problem is to obtain a
solution of the equation

F (x, ¥> %2, P> Q, T, 5, 1) =0
on the region S, where
2 2 .
P=2yq=?ﬁyr=—azs=a—z’t=a—2?ﬁ
ox . %y ax* oxay dy*?
subject to the boundary condition
G (x, 5, z, p, @) = 0.

F is to have continuous partial derivatives rela-
tive to the various apparent variables.

We consider the equivalent of the discussion of
the previous section. Incidently, this discussion
should be of interest in connection with existence

theorems{
We let :
p=JffF2dS + J G ds
s B
We then have in the usual notation
61 = {{ F(Fz6z+Fp6p+Fq6q+Fr6r+Fsés+Ft6t) ds
+ fB G(G26z+Gp6p+Gq6q) ds.

Now if we integrate the last term of the spatial
integral by parts, we obtain

£f F Pt dy dx = [ F Fiéq dx - éf%(}? F,) 6q dS

Let Ky (c,y) = Jg % (FF,) dx.



Then
ff FF,6tdS . { 6q (FF, dx - K, dy) +

gf Ky (x,y) 6s dS.

3
Similarly, if K, = ¥ ax (FF) dy, we have

Py (x).
_ngFr 6rdS={36p (FF.dy - K, dx) +
£f Kz (X,y) 6s dS.

Thus
ﬁu:éf (F'szz+ FFpép+FFq6q+ [FFS+K1 + K] 8s) dS

+[GG, bz ds+ op (GG, ds + FF, dy - K dx)
r6q (GG + F P, ax - Ku dy).

We now integrate the first term under the integral

sign by parts, letting Ks = f"( , F F, dx. We obtain
Y1 (y

20U = Js'f[(F F -Kg) 8p + FF &g+ (FF, +K +K;) 8] dS
+[ 62 (GG, ds + Ky dy) + 6p (GG ds + FF, dy - K, dx)
+ [ 6q GGy ds + P, dx - K, dy).
Now consider
fB(G G, ds + Ky dy) sz.
let us choose a fixed point P, on the boundary and

let 6z have the value ko at Po. Then on the bound-
ary we have

P dé
62=k0+£° (6p dx + 6q dy) = ko * { dS( Z) ds.

Let K,(s) - {" (G G, ds , K, dy). This integration,

0
of course, extends along a branch of the boundary
whose arc length is s. Let K, , denote

{ (G G, ds + K, dy).
Then .
é (GG, + Ka%) 6z ds

- [ 66, + K gz) (ko + {;Pad_[az] ds) ds

= ko K4 o + g ds £° a—— (52)
= ko K.,,o + (gd—s (62] ds) Ka,o - | K4a‘ig (62) ds,

Now

Po
lfaésL (6z) ds = f>z]P 0 a.nd (6z) ds = ép dx

+ 6q dy.

Hence,

Ifa GG, + Ka.‘i%) 6z ds = ko K.,,o—{; K, (6p dx +6q dy).

Thus

ééu:,é‘f [FFP_KS) 6P+FFq6q+(FFs+K1 +K2) 65] dS

+ [0 (66, ds . FF, dy - K, dx - K, d)
+£6q (GG, ds + FF, dx - K, dy - K, dy)
+ ko Kio.
We now let K, = c{:’ . (FF, - K)) dy and let us in-
tegrate the first term by parts. The result is
ééu:Js’f (FF,6q+ (FF, + Ky + K, - Kg) 6s] dS
+£6p [GGpds+FFrdy+ (Ks - K, — K,) dx]
+ é 6q (G Gq ds + FF, dx - (&, , K,) dy!
+ ko Ko
Similarly, we let K, f’: ) (F Fy) dx and obtain
fJ[(FF + Ky + Ko - K5 - Ky) 6s] dS
6p (GG, ds + FF.dy + (K - Ko - K,) dx]J
6q [G Gy ds + F Fy dx + (Ko - Ky - K,) dx}

+ kO K4,O-

_'.
2

e U% 'I:

Now,for i =1, 2, let

H,(x) = [GG +FF HX+(115-1\2-1()]y%(x).

Then
gép [GGpds+FFrdy+ (Fe - K, - K,) dx]

b
- fa 6pl _— Hy dx - fab ép) y=g, H2 dx
= [P opl oy, By ~H,) dx - /P H, (sp]¥2 ) dx
. a P1
b
- fb 8pl oy, (Hy - W) dx - J, Wa(x) f:’f 6s dy dx

= f: &pl - (Hy - H,) dx - éf H, (x) &s dS.

Similarly, if we put for i=1, 2

Hip(y) GG, 4S8 + P F d_;+ (Ko - Ky - K,)1 .

1 dy =gy ()

we obtain

[ 8¢ (66 ds + FF, dx - (K, + K,) dy]

= {d f;q]xw1 (Hy - Hy) dy + éf H,(y) 6s dS.

Substituting in the expression for éu, we obtain

JQ“GIJ-:.éf <FFS +K1 +K2"‘K5-Ke +H4—H2) 6sds

+ f: 6p]y=(91 (Hy —Hy) dx + fcd 5(1] Xy, (H4 - Hy) dy
' + ko K4)oo

- We have chosen a point P, with coordinates (xo, yo)
Let

Li(x) =, (e - Hy) dx
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Lz(y) = fgo (H4 - Hs) dy
He(x,y) =FF_ + Ky + K, - Ky — Ko + Hy =

and let S(x,y) denote the set of points (n, &) in
S withn <x, Z<y. Let

Vi = Koo ¢ Li(x) + Lao(y) + [/ - Wg dS
S (xy)

Now one readily shows that vi(xo, Vo) = K o
%:- H1 —‘HQ wheny = @4, ga-yV—E-= HA ‘_HQ when
X = 9, and %: Hs. Thus if our increment 6z is

proportional to - yu, we see that 6u is negative.

10. We wish also to point out that a device whose
output is a quadratic form can be easily modified
so as to permit one to obtain the characteristic
values and vectors of a Hermitean matrix.

Suppose (ai’J) is the matrix and

1,J=1,e00,n
b= 3 EJai’j Xy Xy

is the corresponding quadratic form. Now a quadrat-
ic form can be expressed as the difference of two

sums of squares of linear combinations of the x,'s.
(Cf. Dickson, Xodern Algebraic Theories, pp. 68-74.)

Thus, in general, we have

2 n n
b= 29y Gpey by, X907 - Tymgey Gy by, x)?

although in certain cases, the total number of
squares may be less than n.

Consequently the device described in Sec. 5 can
be readily modified to produce such a p. For in-
stance, one may produce both sums of squares and
obtain minus the second sum by a one-stage direct
current amplifier with gain one and then one aver-
ages.

There is a characteristic vector (xi, ..., x,)
which maximizes ¢ subject to the condition
2 x2 - 1. Thus, we must vary the x vector subject
to this condition so as to maximize p. This could
be done by hand if one had an auxiliary device
which produces 2%., x% = 1. For instance, if we
had a power control on the line before the x-boxes,
we could use the x dials simply to indicate the di-
rection numbers for the vectors x and by varying
the power input insure that k = 2., x§ = 1.

Since, however, this means that two controls must
be manipulated simultaneously, it would probably be
desirable to have an ‘automatic feedback to control
the length of the vector x. This could readily be
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N

AMP

arranged in the case in which the x boxes are
power amplifying circuits. The input signal for
each box can be arranged with a current from C,
whose value will be determined so as to maintain
K constant, across a potentiometer whose contact
position will correspond to the direction number

“e

X BoX

—

n, for the corresponding x,. (The sign, of course,
would be determined by a d.p.d.t. switch which is
not shown.) We now determine C by an integrating
circuit arranged so that

dec . _ h(K-1) -
0 h(K-1) -

- h(C*[2n}) -1

where h is a large positive constant. For brevity
let 6% = 1/2 ni. (We can regard 6 as a constant
since the changes which occur in it as the ny's
are manipulated are supposed to be relatively
slow.) Then this differential equation becomes

dc
dt_ . 2
coer -8
which integrateé into
log Q_:-QD - -21 0%t +k
e\lc+o
or
C-8 .4 o-2n0°¢t
C+90 Ae

Solving for C this becomes
C. (Lrhe®™) o
1 - A e-20°ht
Now if C is positive at t = 0, then A will have
absolute value < 1 and hence C will approach 6 in

a manner which is similar to an exponential ap-
proach.
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V. Electronic Digital Machines

1. The present chapter is devoted to the two
types of electronic digital devices which have been
developed. The simpler of these consists of elec-
tronic counters which are used in experimental
physics and industrial production controls. The
other type is the high speed electronic computer.

The input to these counters are electrical
pulses. The simplest type is a binary counter
whose result is translated by the operator into
a decimal value. However, there are now well de-
veloped methods of using an essentially binary
setup to obtain a decimal result. There are also
counters which are essentially decimal.

The high speed electronic computers are expen—
sive and complicated devices suitable for perform-
ing very intricate calculations. They involve
devices for the usual arithmetrical operations,
for "memory" and the automatic control of these
operations. In view of the general similarity of
purposes, we will also treat the electromechanical
computers in this chapter. Their general organi-
zation is similar although their performance is
slower.

Although interesting refinements have been in-
troduced, the general principles of the arithmet-
rical organs are similar to those of the digital
devices previously studied. In order to obtain
high speed and automatic functioning, these prin-
ciples have been translated into electronic cir-
cuits. For the arithmetrical organs, we will
indicate this translation, assuming that the
reader is familiar with the principles given be-
fore. ‘

However, the advance répresented by these ma-
chines consists of the use of large memories, high
speed computation and automatic controls. These
present very interesting mathematical questions
and the successful use of these machines requires
a preliminary mathematical analysis of the prob-
lems which must satisfy certain criterions which
we will discuss. We shall see also that their
iterative abilities permit, them to proceed on a
more absiract level than ordinary computing.

In the present chapter we will first discuss the
representation of numbers and, in particular,
digits in these devices. We then indicate the



nature of the arithmetrical organs developed, the
memories and the control systems. Finally we will
discuss the specific problems that arise in the
use of these machines.

2. In these machines, the various digits are
represented either by states of certain circuits
_or by pulses, coded relative to a fundamental time
cycle. In a time coded machine, a number is repre-
sented by a timed sequence of signals. There is a
signal for each radix place and each signal has a
pulse character which indicates the digit in the
corresponding place. In these the binary system
is employed and a digit is represented by either
a pulse or its absence. A storage element involves
a closed circuit with a time delay in which the
signal sequence corresponding to a number circu-
lates.

In a position coded machine, each digit is nor-
mally represented by a state of a circuit and a
number is represented by means of a set of such
circuits, one for each radix place. When a number
is operated on, each digit is transformed into a
pulse coded signal but the signals travel in paral-
lel paths, one for each decimal place.

In the Fniac and in the Harvard calculator the
base ten is used, in a position coded system. An
active signal in the Eniac, is a set of pulses
equal in number to the digit represented. In the
FKarvard calculator the subinterval of the funda-
mental cycle in which a signal cccurs indicates
the digit. In the newest I.B.M. sequence calcula-
tor, the decimal system is used but each digit is
expressed as a binary. This is called the binary
decimal system.

In the newer machines, the binary system is'used.
An active signal for a position coded device is
just a pulse or its absence.

In the course of a long computation, the various
numbers which appear may differ considerably in
size. This may be taken care of by using registers
of adequate length or by writing the mumber in the
form #o, @3, ®z ... xr" where ris the radix used
and recording both g, ¢1, @, ... and n. This last
method is referred to as the "floating decimal.
point." Its use does tend to complicate the arith-
metrical units but the simpler system requires
much more mathematical analysis to insure the
proper functioning of the machine and to prevent
unnecessary loss of accuracy.

In both types of devices, it is necessary to
introduce the electronic equivalent of a switch.
These are referred to as "gates." A gate has an
input channel, an output chammel and a control
channel. A signal on the input channel appears in
the output only when the control is activated. For
example, a double grid tube or "mixer" can be used
as gate. The first control grid is the input, the
plate is the output. Normally the second control .
grid is below the cut-off but a control voltage
can bring it into the active region in which case
a signal on the first grid will appear on the
plate. The screen grid of a pentode or the sup-
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pressor grid can also be used for cut-off pur-
poses.

An alternative gate can be obtained by means
of a double diode, which is to function as a vari-
able resistance shunted across the main channel.

I 1
L1
R,
In — Out
— N
. l [:::] I [::] |
B A

Normally no current flows in resistors R, and
Rs and the output is essentially shorted throuch
the diodes and R, and Rs. If a current flows
through R, and Ry from A to B, then each diode
plate is below its cathode and the diode is ef-
fectively a large resistance and the output volt-
age is a considerable fraction of the input volt-
age. '

A third gate possibility is connected with grid
bias. The control voltage determines the grid
bias. Normally this is far below the cut-off but
when a signal is to be passed the voltage is
brought . just to the bias peint and the tube will
pass a positive pulse.

3. The tundamental arithmetrical unit for a
high speed digital machine of the position coded
type is a device to correspond to a digit. For
each place in a register, we must have a unit
which is capable of receiving the digit it is to
represent, storing the digit indefinitely, indi-
cating the digit when signalled and it must be
capable of clearing.

These four properties are the minimum require-
ments for a place in a register. They are adequate
for registers which correspond to memory or tem-
porary storage. For an accumulator or adder, the
addition operation must also be provided for. In
current practice, this requirement is satisfied
by making this type of digit unit a cyclic counter
controlled by pulses and with a cycle equal to the
radix. This counter can either count unit pulses
or it may be subject to initiating and terminating
pulses. When a cycle is completed a pulse is
emitted which is to activate a carry arrangement.

A trigger circuit is the obvious unit for a bi-
nary counter. A pulsed output can be obtained from
the plate of either tube. Let us refer to the
tubes which are conducting in the 0 and 1 state as
the 0 tube and 1 tube respectively. An output con-
nected to the 0 tube will give a positive pulse
when the circuit changes from 0 to 1, a negative



pulse when it changes from 1 to 0. The polarities
are reversed for the 1 tube.

A set of such circuits can be readily combined
into a binary counter. For instance, if the trig-
ger circuits respond to negativé pulses, we con-
nect a sequence of these, so that the inpnt trigger
circuit corresponds to the 2° place. The 0-tube
output of this circuit is connected to the input
of the 2! trigger circuit and so forth. This cor-
responds to a counter. For an accumulator provi-
sion must be made for a carry system. Notice that
with the binary system there is no advantage in
using a simultaneous feed and successive carries
since the latter would take as leng as a succes-
sive feeding of the original addition. Two systems
have been proposed. One of these involves two
carry registers. When the first addition occurs
the first carry register receives the carries. It
then adds into the main register and any second
carry appears in the second register. The second
register is now used as an addend and the process
is repeated until both registers are cleared.

The other is, of course, the binary equivalent
of the "standing on nine" carry. Consider the
place corresponding to 2", If after the main addi-
tion, the 2™ place stands on one, its carry is

. empty. Consequently the 27*! place can be con-
nected directly to the entrance of the 2" place
so that if the 2™ place receives a pulse, the 27"*1
place receives one also. This channel is to be
open only in the carry time following the main ad-
dition. After the carry time, the carry registers
are cleared. Shifting one place can be accomplished

by performing the main feed for 1°2V + 1:28-14.41,25

thus causing the original number to appear in the
carry register. The main register is then cleared-
and the carry performed.

+For each decimal place, the Eniac uses a ring
counter consisting of tem trigger circuits, with a
mutual cathode bias which favors the state in
which only one trigger circuit is on. As one trig-
ger circuit is pulsed off, its successor is turned
on. The Warvard Calculator uses a rotating brush
set up for each decimal place with a solenoidal
clutch feed for addition. It also uses the "stand-
ing on nine" carry.

In a time coded device, the addition of two
quantities is accomplished by a circuit involving
gates. The two terms are fed into the %ircuit as
a sequence of signals in the order 2" + 032" +...
+ a 9" and the sum appears as the output. Actually
it 1s necessary to have a gate arrangement in
which there are three inputs at a time and two
outputs. The carry from the addition in‘the>pre—
vious place must also be treated as an input along
with digits of the terms and output -must also in-
dicate the carry which enters a time delay network
from which it emerges at the input in time for the
addition in the next place.

It is not difficult to set up a gate arrangement
to accomplish this. A pulse can be used as a con-
trol voltage either to open a gate or to close it.
Thus two gates with the output of the first going
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in to the second will have three inputs and a

pulse will appear on the output only if each in-
put has a prescribed character. Thus we can ar-
range it so that a pulse will appear in a pre-

scribed output if, for instance, a pulse appears
?p tile second and third input but none on the
irst.

There are eight possible states for the three
inputs. One of these (1,1,1) should cause pulses
to appear in both outputs, one should cause no
pulses and can be ignored and for each of the
others, a pulse should appear in one but not the
other outlet.

Apparently this type of addition will take a
long time but this disadvantage can be cempensated
for in many problems by performing many additions
at once.

4. In many physical experiments, in particular,
those involving Geiger counters, it is desired to
count high speed pulses. For these electronic
pulse counters were developed, originally in a
binary form as a simple sequence of trigger cir-
cuits, but eventually with a decimal indication
to the operator. High speed counters with a deci-
mal indication were also developed for production
controls. These are used, for instance, in packag-
ing in conjunction with a photocell to count the
objects passing on a conveyor belt. In a high
speed .electronic computer which uses the binary
system, it is necessary to convert decimal inputs

into binary form and also perform the reverse oper-
ation.

Four trigger circuits in a sequence would nor-
mally constitute a counter with modulus of 16.
However, it is possible to introduce auxiliary
circuits which will reset the device to zero at
the tenth pulse. In these counters, it is neces-
sary to provide a method for sending a signal to
one grid of every pair so that the circuit can
be reset to the (0,0,0,0) state. This reset ar-
rangement can also be used to make the cycle ten
pulses in length. Starting with (0,0,0,0) one
finds that the first time at which both the first
and the fourth trigger circuit are in the omne .
state is for (1,0,0,1) or 9. Suppose we have a
gate which is controlled by these two circuits so
that when they are both in the 1 state, a path is
opened to the reset arrangement. Thus the tenth
pulse will reset the circuit to (0,0,0,0). It is
also possible to set up an arrangement in which
the states 6-1A are used.

The usuval output of a trigger circuit is the
negative pulse which occurs at the 0 tube plate
when the circunit passes from the 1 to the 0 state
and in a binary counter, this is fed to the stage
for the next higher power of two. However, it is
also possible to obtain a negative pulse output
from the plate of the 1 tube when the circuit
passes from the 0 to the 1 state. Thus we can -
schematize the usual trigger circuit as shown in
the following diagram.

The second output can be used in a number of
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ways to cause the four stage binary counter to-
skip 6 states and thus become a decade counter.
These are discussed in a paper by I. E. Grosdorf,
R.C.4. Reviews, Vol. VII, No. 3 (Sept. 1946), 438.
We may have, for instance,

|np_uLT°-|TT._|TTz-|_T,—
' |

The stages To, Ty, T, constitute a scale of 8
counter which will pass through the states cor-
responding to 0, 1, ..., 7 without any output to
T,. When the first three stages reach the (%,1,1)
state corresponding to 7 = 1-2° + 1.2 + 1.2° and a
-pulse is received, these three stages clear and a
pulse is sent to Ts . Ty then changes to 1 and
sends a pulse from its second output to T, and T,.
These also go into a 1 state so that the circuit
passes from the (1,1,1,0) state to the (0,1,1,1)

state, which corresponds to 1.2 + 1.2% + 1.2° = 14.

The next pulse changes the circuit to (1,1,1,1)
and then the next pulse clears in the usual fash-
ion. Thus the circuit passes through the binmary
stages 0,1,2, ..., 7,14,15,0 and has a cycle of
ten.

There is still another possibility involving two
feedbacks. This combination passes from (G,0,0,0)

Input |

to (1,1,0,0) in response to the first three pulses.

As above the effect of the next pulse is to send
it to the (0,1,1,0) stage, i.e., the counter °
passes from 3 to 6 skipping two states. The next
state is (1,1,1,0) or 7. The next pulse, at first,
‘clears the system to6 (0,0,0,1). However, there is
also a feedback from the last stage so the circuit
goes to (0,0,1,1) or 12. [One would also expect
that when T, turns to 1 from 0 in this process,
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that another pulse is returned to T,. However, T,
is in the 0 state so briefly that the capacitative
connections have not adjusted themselves to the 0
state, so the feedback signal from T, to T, is not
adequate to change the state of T,. The circuit
continues then through 13, 14, 15 to 0. Thus the
circuit goes through the binary states equivalent
to 0,1,2,3,6,7,12,13,14,15 and back to 0.

The state of this circuit is indicated by neon
lamps. A neon lamp will glow only if the total
voltage across it exceeds a certain amount. In the
R.C.A. counter described by Grosdorf, a neon lamp
is used for each state. For each state two points
are chosen so that only when the circuit is in
this state is the full voltage available. The lamp
is connected between these points.

For odd numbers, the negative point is taken to
be the plate of the 1 tube in the T, stage and for
even numbers the plate of the 0 tube in the T,
stage. The positive point is obtained as follows:
For each of the pairs (0,1), (2,3), (4,5), (6,7),
(8,9), we find a pair of tubes which are both off
for this pair of states but no other. Let the
plate current for these two tubes go through a
cormon resistor from B+ before it goes into the
individual load resistor. let the lower end of
this resistor be the positive point for both lamps-
of the pair. If neither tute is. conducting this
point is at B+ voltage, otherwise lower. Thus only
when both tubes are off, will the positive end of
these lamps be high enough to permit glow. For the
pairs (0,1), the tube pair is T,1 and T,1; for
(2,3), T,0 and T,1; for (4,5), T,0 and T,1; for
4667), T;1 and T,0, and for (8,9), it is T,0 and

20.

Another interesting type of counter is the pen-
tode pair ring counter developed by Regener; Rev.
of Sct. Instruments, XVII (1946), pp. 180-89. (Two
papers). For each decimal place, this consists of
a.ring of ten pentodes. These ten pentodes can be
considered as equally spaced around a circle and
connected so that diametrically opposed tubes con-
stitute a trigger pair, i.e., the screen grid of
each tube is directly connected to the plate of

" its opposite number. In addition, resistors are

connected between adjacent pairs of plates, so
that the voltage on a plate is partly determined
by the plate voltage of its neighbor and this
tends to keep adjacent pairs in the same state.
Consequently as we go around the circle the most
stable configuration is five adjacent pentodes on
and five adjacent ones off.

The above connections are intended primarily to
maintain a state for the ring. The method of
changing state is the following: The control
grids of the pentodes are comnected together. A
positive pulse received by an off tube will bring
the plate voltage down but only slightly affect
the on tube. Now each tube plate is conmected to
the suppressor grid of the next clockwise tube.
When the pulse is received each tube which is the
successor of an off tube receives a negative pulse
on its suppressor which would turn it off if it
were on. But the only tube of these which is .onm,



is the first clockwise on tube and this is turned
off and its successor turned on.

A cathode ray tube can be used to indicate the
state of the decade.

5. An accumulator is a register designed for

. addition. In most automatic calculators, negative
numbers are represented by their nines' comple-
ment or ones' complement, and subtraction is re-
ferred to addition. The manipulation of signs in
the elementary operations, for such a system can
be best understood from an example. We will use
the decimal system in the example since it will
be easy to pass from the decimal to binary sys-
tem, while the reverse process may be a little
obscure.

Suppose then we wish to represent the numbers
between —.499 and +.499 to three decimal places.
We have three decade counters ome for each decimal
~ place and a binary place for the sign. This binary
place receives a carry from the decimal place be-
sides the decimal point and sends a carry to the
last decimal place. A positive number +.246 then
is represented by 0.242 while a negative number
js represented by its nines' complement with a 1,
j.e., -.324 is represented by 1.675 where the
first one is to stand for both the negative sign
and the extra one that must be added in last
place in the complementation process. We suppose
also that there is some alarm system which oper-
ates when the numbers are off scale, i.e., when
numbers appear between .500 and 1.500 in the reg-
jster. Alternately, we can suppose that we have
a "floating decimal point" and when a number is
off scale an appropriate shift in -the number.and
exponent occurs. In the "floating decimal point"
case, addition or subtraction must be preceded by
a shifting process which yields equal exponents.

Now one can readily show that the addition of
algebraic quantities is obtained by straight addi-
tion in this accumlator. Since positive quanti-
ties are less than .5, the addition of two of them
will not introduce any end carry. Consider next
the addition of a positive and a negative quanti-
ty. If the positive quantity exceeds the negative
one in absolute value, for instance, if we are add-
ing .325 to 1.847 (i.e., -.152), then there will be
a carry from the decimal place next to the decimal
point to the binary place. Added to the one in the
binary place, this causes this place to clear to
zero and a one is sent to the last decimal place.
This one compensates for the fact that the usual
complement for -.152 would be .848 not .847. The
result is .173 as it should be. If the negative
number exceeds the positive in absolute value, we
will have no carry from the decimal place next to
the decimal point and the result appears in the
correct code. If two negative numbers are added,
one can verify again that all the carries operate
and leave the result in the correct code.

Multiplication is most easily accomplished by
taking absolute values and obtaining the sign
separately.
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The binary equivalent of the above discussion
is obvious.

Since electronic accumulators and registers are
available, one can readily construct an arithmet-
rical organ analogous to an ordinary desk calcu-
lator, provided ome introduces a method of shift-
ing. Multiplication is by repeated addition which,
in the binary case, coincides with the split mul-
tiplication table method. As in the case of the
desk calculator one needs a register for the mul-
tiplier, another for the multiplicand and an ac-
cumulator for the product.

The multiplication process begins by entering
the multiplier and multiplicand into their respec-
tive registers. The next step, in the binary case,
consists of sensing the digit in the last place
of the mltiplier and if it is 1, adding the mul-
tiplicand into the accumulator for the product.
Then both product and multiplier are shifted one
to the right. The accumulator has n places and in
this shift the digit on the right-hand end of the
accumulator is shifted to the left end of the mul-
tiplier register. The digit of the multiplier
which has been used disappears and the digit for
the next higher place in the multiplier appears
at the right end of the multiplier register. Thus
we can repeat the above process of sensing the
right end digit of the multiplier, adding if neces-
sary and shifting until all the digits of the mul-
tiplier have been used and the product appears
with the digits for the higher places in the ac-
cumulator and for the lower places in the multi-
plier register.

In the time coded binary machines, multiplica-
tion is again by repeated additions. In the Har-
vard calculator, which uses the decimal system,
the multiplication begins by storing the nine
digital multiples of the multiplier and then a
process analogous to the above is carried on,
with the appropriate multiple of the multiplier
being added to the accumulator at each step. A
split multiplication table method of multiplica-
tion is used in the Eniac, involving a bank of
tubes. Cf. A. W. Burks, Proc. of I.R.E., XXXV
(1947), pp. 756-67.

There is another method of representing a number
which has the multiplicative advantages of the
binary system. This uses the radix three but dig-
its - 1,0,1 are used instead of the usual (,1,2.
Two carry systems are needed but sign procedures
are simpler.

If a number of accumulator registers are avail--
able in a decimal machine, they can be used for
multiplication. For instance, suppose we have
three such accumulators. We associate these with

‘the digits 1, 3 and 5. Each digit of the multi-

plier is expressed in terms of 5, $and +1. Then

at each place, a properly shifted version of the
maltiplicand is fed into the appropriate accumu-
lators. For instance, if the multiplier digit is
4 =5 -1, the mltiplicand is fed in to the five
accumulator and subtracted from one. Shifting of



the multiplicand occurs at every step and at the
end the content of the five accumulator is added
five times to the one accumulator and the content
of the three accumulator is added three times.

Division can be carried out in the usual fash-
ion by subtracting multiples of the quotient. In
the Harvard machine, the various multiples are
available in the multiplier and the appropriate
one is selected by a selective comparison process.
In the binary devices, division must begin with
appropriate shifting. One can proceed in the usu-
al manner or one can permit the sign of the re-
mainder to vary. Another method for division in-
volves finding a reciprocal and multiplying by it.
Reciprocals can be found approximately by means of
a table and then made precise by interpolation in
the table or by an iterative process such as the
following. Suppose N is a number whose reciprocal
is desired and let x, be such that |(1-Nx,)| < 1.
Consider the sequence defined by the relation
X,y = X2 =Nx ). One can verity that 1-Nx ,, =
(1-8x_ )% - (1-Nxo)2("*1D) and hence approaches
Zero as n —> «,

There are a number of methods for extracting the
square root. The usual method involves a trial
process. If x is our approximation to VN then we
seek a Ax such that 2xAx + (Ax)? < N-x2. Such a
trial process can be carried out on these machines
but other methods are preterable. For instance, we
can first find an integer n such that N - n®N,
with & < N, < 1. This reduces the problem to that
of extracting the root of a quantity less than 1.

For N, the following sequence can be used. Let

Xo = Ny, X x, + #(Ny - x]). One can readily

show that .
Ny - xb = (@ -x, - 40N - x2)) (N - x7)

Let us suppose for the moment that x < vN;. Con-
sider

n+1

N
=1-x, -4 UF; -x;) O +x)
>21-x,-% WN; -x,)
=1-% (N, +x,) >0

This result and the above equation for N, - x:+l
shows that x .| < VN;. We also have 6, <1 and "
thus x, < x_,,. Therefore, 6, <1 - X, and

n
N1-X:+1 < (1 - x,)™! (N, - x%). Hence the se-

gquence x, converges to vi;.

.

Functions are taken care of by tables in which
the values of the function are given at various
intervals and the coefficients for interpolation
in the Newtonian formula. In the I.B.M. sequence
calculator, a table is constructed by the use of
selective switching, utilizing the argument, and
a number of tapes.

6. Punched cards are, of course, the most com-
mon form of memory for a computing device. The
Harvard calculator uses this form of memory with
other forms. However, a punched card memory is
a sequential memory, i.e., to get to a specific

place in this memory, it is necessary to go through
a number of cards until one comes to the desired
card. Card reading and card punching are slow rel-
ative to the speed of electronic devices and for
this reason cards are used in the purely electronic
devices only for record purposes.

A tape or a magnetic wire recorder is another
type of sequential memory. These are used to store
functions. However, as a rule the functions are
not stored as a table but selected values and the
interpolation coefficients are given so that,
other values can be obtained by using Newton's
Formula. This procedure is the desirable one for
the machine since the sequential nature of the
memory is minimized. )

Notice that if a stack of cards is used as a
memory it is desirable to punch on each card not
only the number to be recalled but also another
number which acts like an index and indicates
the place in the memory. A memory is a function
of one variabhle. The index or key is this vari-
able and the value of the function is the number
to be recalled.

For many types of problems, it is desirable to
have a memory with an .immediate response, i.e.,
one that is not sequential. There are in the Eniac
and also in the Harvard calculator a large number
of accumulators and these are used for this pur-
pose. In addition, there are registers, in which
each decade can be set by -hand.

However, the new binary machines will he de-
signed around an electronic memory in which the
response to the key is essentially of the same
order of magnitude in time as the other opera-
tions of the machine. o

The time coded machines will have a memory
which is essentially a delay line. The pulses and
omissions travel along a mercury tube as shock
pulses. When they reach the end of the tube,
they are detected, amplified and impressed on
the initial end of the tube. This memory has a
slightly sequential character, since eight num-
bers, each of forty bimary digits are present in
the tube and one must wait until the desired one
appears. '

The position coded machine will have a special
memory tube, which is equivalent to a large num-
ber of trigger circuits. However, the basis of

" the device 1s not a matter of external circuits
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but depends upon the secondary emission charac-
teristics of certain substances entirely within
the tube. Suppose we have.a substance, which is
such that when an electron with a certain veloc-
ity strikes it more than one electron is ejected
but if the velocity is lower than a critical
value, the electron is simply absorbed.

Now suppose we have a number of pieces of this
material in the path of an electron beam. The
speed v, corresponds to a certain voltage eo. If
a piece has a higher positive voltage than e,
the electrons which strike the piece will have



higher velocity than the critical value and more
electrons will be emitted than received and hence
the voltage of the piece will tend to become more
positive. On the other hand, a piece at the same
potential as the source will receive low velocity
electrons and since no secondary emission will oc-
cur, it will tend to become more negative. Thus a
steady stream of electrons will tend to maintain
each piece in one of two states and thus each
piece can be used as a stage in a binary register.

The emitted electrons are collected on a sup-
pressor grid. The pieces of emitting material are
placed on one side of a sheet of dielectric and
the other side is metal coated. This arrangement
constitutes a number of condensers with a common
plate, which is connected to the suppressor by
means of a resistor. Now if a slowly moving beam
is concentrated on a piece which is positiveiy
charged then the corresponding condenser is dis-
charged and the dlscharglng current flows through
the resistor. The latter is the desired external
signal.

The keying of the memory may depend upon posi-
tioning the beam vertically and horizontally and
in addition the suppressor grid can be split for
selection purposes. The more keying parameters
that are available the better, for if there are
k parameters, each with n possible values, the
total memory positions are nk.

For memory selection and also for fulfilling
orders, it is necessary to have a method by which
a binary number signal will select one of a num-
ber of channels. The diode clamp1ng gate can be
used for selection purposes, since it can be used
to ground a number of circuits at once. For in-
stance, suppose we have eight channels, one of
which is to be selected by a three-digit binary,
@1, @, 0g. Bach a; chooses between two clamplng
circuits so that the input of one of these is
grounded, the other then is open to ground. This
is equivalent to a single pole, double throw
switch with center grounded and the situation
then can be described by the diagram.
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Notice that for each choice of positions for
all the switches one and only one channel remains
ungrounded. If the signals are all of given polar-
ity, only one diode is necessary for grounding. A
matrix selecting switch system can also be used
in multipliers to obtain the two digits in the
split multiplication table method and circuits of
this type were originally developed by Rajchman
and Crawford for this purpose. Multiple contact
relays are used for selection also.

7. The new digital calculators are intended to
carry through calculations which are primarily cy-
clic in nature. These cycles are in general com-
plex with subeycles and sub-subcycles wh1ch may
vary in character

Each step of such a calculation is governed by
an order which is stored in the machine either on
tapes or in the memory. After each order has been
executed, the next order appears. A cycle or sub- -
cycle of a calculation then corresponds to a se-
quence of orders.

In many mathematical procedures, a given cycle
of computation is repeated until a desired result
is obtained, for instance, until a given equation
is satlsf1ed The sequence ot orders corresponding
to such a cycle willi end then with a conditional
order which causes the machine either to return to
the first order of the sequence or to go to a new
sequence of orders.

For a more detailed discussion of the various
orders that are to be used in the new binary digi-
tal computers, the reader is referred to the re-
ports by Burks, A. W., H. H. Goldstine, and John
von Neumam, Preliminary Discussion of the Logdical
Desién of an Electronic Computing Instrument, 2nd
edition. Princeton, New Jersey: The Institute for
Advanced Study, 1947.

In general, an order will appear as a binary
number. This number will be broken into two parts,
@1y oy Q@ Br, ooy By The digits ai, .. o %y
will be applled to an order switch circuit simi-
lar to that described in the previous section and

‘a channel is selected. When a pulse is sent along

this channel, the appropriate circuits are put .
into the correct states to execute the order. For
instance, suppose a number is to be read out of a
certain register A, and into another register B.
For each position in the A register we have a gate
to the main bus which is opened or closed depend-
ing on the digit in the place. The order opens a
common input channel to these gates so that a
pulse is sent out on the main bus in each place
where there is a one in the A register. At the B
register, gates are opened so that the pulses
which appear on the main bus enter the register.

One type of.order then refers to the transfer
of a number from one register to another. Fre-
quently it is also desirable to clear the receiv-
ing register. However, in the case of an accumu-
lator, the number received is added to the content
of the register, and one can have orders to multi-

" ply or divide or carry through a sequence of



arithmetrical operations when this sequence is
wired into the arithmetrical unit.

Another type of order selects a position in the
memory and orders the contents.of this position
read into the memory register. The B's are used
to determine the memory position and are zero
otherwise. :

The steps in the ordering and the mathematical
"processes are timed by a crystal controlled oscil-
lator, called the "clock," which sends out micro- .
second pulses. The time to carry out an order
varies and the control system must sense when the
order has been carried out in order that a new
one may be initiated. '

A control system for a digital calculator then
~ consists of a register or registers to indicate
the memory position it is to use. Normally this
acts like a counter which changes by one at each
step in the order sequence but a particular order
may reset it to the initiating position. There
will be two switching matrices, one for orders,
one for selecting a memory position. Finally, for
each order there will be various circuits associ-
ated with other components in the computer.

The above refers in the main to the projected
binary digital computers. The order sequence in
the Harvard calculator is tape controlled and the
gating by which the orders are executed is accom-
plished by relays. The control system for the
Eniac is decentralized and each unit in the Eniac
has a control associated with it. The control
initiates the operation of the unit, including
gating, when signaled.and atter its function has
been performed it sends a signal to another unit.

In the Eniac, there are a larme number of accumu-

lators some with special features, and a large
multiplying unit. There is a set of comtrol cir-
cuits associated with each unit. Instead of one
bus, provision is made for comnecting the various
units by a number of multi-channelled conneptors,
which are set up in advance of the computation.

In the new I.B.M. Sequence Controlled Calcula-
tor; orders appear on tapes. There are a mumber
of order tapes and each order contains a direc-
tion as to which tape contains the order which is
desired next. This' permits multiple subsequencing
in a convenient way. The selective switching is
based on relays.

A tape controlled device can also be used effec-
tively for a long sequence of non-repetitious cal-
culations, provided one intends to do this a
number of times. The order sequence is recorded
on tapes, independently of the numerical values
involved and this tape used repeatedly. The mag-
netic wire memory of an electronic device can be
used for the same purpose.

The input systém for a binary calculator must
involve a provision for transforming a decimal
number to the binary system. Purely from the
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mathematical point of view, the easiest way to ac-
complish this transformation, is in two steps.
Firstly, each digit is expressed as a binary,
i.e., the number is changed to the "binary deci-
mal" system. Thus, if the number is aja,¢s. in the
decimal system we can express ¢, =‘Bi,0 + Bi,lz +
61,222 + Bi,szs where Bi,j isyO or 1. We then’
have

a:10% + .10 4+ g

(Bz,o + 31,12‘+ 81,222 + 61’928) 102
(Bz,o + B2 12 + B2 22° + Bs 52°) 10
+ (Bo,0 + Bo,s2 + Bo 22° + Bo o2°)

PR P12

)

+

If we express 10® and 10 in the binary system, ‘it
is clear that by a distributive process, the orig-
iral number will appear in the binary system.

This can be used in a binary computer as follows.
Suppose we begin with a twelve-digit number. We
express this first in the binary decimal system.
This is done in the input circuits and the result
stored in the memory, using a memory place for
each digit. Each digit is then multiplied by the
appropriate power of ten expressed as a binary and
the results added. This requires a total of 22

_memory places and 12 multiplication times but this

is much faster than any method ot feeding the de-
vice, indeed, the conversion could occur digit by
digit as the numbers enter the machine. The con-
verse process is best carried out by reversing
this process, i.e., the given binary is first di-
vided by the highest power of ten used until the
remainder is less than this power. The quotient
is then a decimal digit expressed in the binary
form and as such is sent to output for conversion.
The remainder is then divided by the next highest
power of ten and so on.

8. We are now in a position to- give a schematic
for the proposed digital computers.

Input
Main
Bus Control
1 Memory J
[T
‘| Organ

As we have explained in the previous section,
the machine will continue to carry out a given



cycle of computation until a desired result is ob-
tained. This cycle, which in turn may consist of
subcycles, is executed by means of a sequence of
orders stored in the memory. The control system
ordinarily proceeds from one order to the next.
It has registers which contain the parameters
which specify the step in the cycle involved and
consequently the memory position trom which the
next order is to be obtained. Ordinarily this
register changes by a single step. However, a
‘conditional order may reset this counter to its
initial value if one desires to repeat the cycle.

In a tape controlled system, each order appears
on a tape and each order contains a line which in-
dicates from which tape the next order is to be
obtained. It is obvious that various smbcycles
my be carried out by this process. A subcycle is
initiated by referring to a specified tape which
contains the subcycle orders. The orders continue
to refer to this tape until the subcycle is com-
pleted or until a desired result is obtained. In
the latter case, by means of a conditional order,
the subcycle may be repeated a number of times.

In the purely electronic devices, there will be -

at least one order register and we will simplify
our discussion by assuming that there are order
registers for any cyclic parameter we need. How-
ever, . the memory can be used in such a fashion
that one can proceed quite conveniently with only:
one order register.

We will illustrate the behavior of these devices
in general by indicating the way they would be
used to solve a system of linear equations

bn
Zje1 21,5 X5 = by

i=1,...,n

by the Gauss Seidel method. As a practical matter,
there are other methods more suitable for the
solution of simultaneous linear equations in a
device of this type. (Cf. the paper of Goldstine,
H. H., and J. von Neumann, Bulletin of the Amer.
Hath. Soc., LIIT (1947), 1021-99.) However, its
procedures do give a simple example of the type
of situation to which a sequence calculator is
well suited.

Let us suppose that k is the number of cycles
which have been completed and that we are engaged
in the k + 1st cycle. This cycle consists of n
steps. Suppose we have completed t-1 steps. We
now have as values for xj, ..., X, the values

x{&#D L, x &Y and for x, X4, cees Xg, the
values x{®), x{&], ..., x(®). Mathematically we
wish to calculate with these values of x

n
x£k+l) = (b, - zj=1,j#t_at,j X;) /2, ¢

and substitute this value for Xg o We must also

note where x£k+l) differs from xék) and when no

difference occurs during an entire cycle we stop
the procedure.
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It is clear that t is an order parameter. But
in executing a step, we must carry out n substeps
which we enumerate by means of the parameter j.
Substep j consists of the orders:

A. Compare j with t. If j = t the step-is com-
pleted and we change j to t + 1 and start over
again. Otherwise '

B. Locate a, : in the memory and bring to the
memory register” (one order) and then transfer to
multiplicand register of the arithmetrical organ.
(These two orders would normally appear on one
line.)

C. Locate x; in the memory, transfer to the
memory register and then to the multiplier regis-
ter.

. j=1"

D. Multiply ag, ; and_xj; locate 2&=1,a#c A o Xg

in the memory and transter to the memory register.

- ‘
E. Add Eé=l,a%t 8¢, aXq t0 8. ;X; in the accumu-
lator and compare j with n.

F. If j # n, transfer 2&:1,a#: 2, Xy to proéer

memory position and set j to j + 1; and return to
A. Otherwise

G. If j = n, locate b, in the memory and torm
n . !
be = Zja, jfe B, ¥ 0
H. Locate B ¢ in the memory and transfer to
divisor register.

P n
I. Divide b; - Za=1,aft 2y oXq by 3, , and lo-
cate xék) in the memory. '

J. Subtract x(k) from x(k+1) and if result is
zero proceed to (L) below. If result is not zero,
add xgk) to x£k+l) - xék) and

K. Transfer x£k+1) to memory place.for x, and

send a unit to the place in the memory where the
condition number for the full cycle is stored.
(We suppose that the memory is set up so that a
position is cleared iust before anything is writ-
ten into it. Thus xé ) is erased in the X, place
and if we already had a unit in the condition
number place, this unit is erased and then re-
placed.) - :

L. Compare t with n. If t f‘n, change t tot+1
and repeat the full step. If t = n, consider

M. Recall the condition number for the full cy-
cle. If this is zero stop the machine. If not
reset t to zero, put a zero in the condition num—
ber place and repeat the process.

We may schematize thié by
(L(A(NBODE(F))T., GHLI (KDL, M)*,

Notice that we can add to or subtract from a



quantity in the accumulator immediately with an
addend or subtrahend trom any other register. The
conditional orders can be set up by means of a
switching circuit. One simple arrangement would
involve a register to control this switching cir-
"cuit. To execute a conditional order, we use a
tull Line which consists of two orders. (We have
indicated this in the above.) The first part of
the first order causes the nmumber to appear in
the condition register. If this register now reads
zero, the machine is referred to the memory posi-
‘tion given by the B,B,... of this order for its
next order. If this register does not read zero,
the machine proceeds to take the second order on
this line.

Of course, many variations on the design of
such a computer are possible. For instance,
since most operations involve two numbers, one
may have two main busses and two memory registers.
The arithmetrical organ will contain two registers
and an accumulator at least. It may be convenient
in certain circumstances to have one other regis-
ter here.

9. There are many complex problems associated
with the use of the new computers. One of the most
. important of these is checking. Certain checking
procedure can be considered as maintenance for
electronic devices. For instance, one can have
routine inspections which will spot and replace
any unit when it enters a marginal condition and
before tailure occurs.

In addition, however, other checks which are
mathematical in character are usually considered
necessary. When a mathematical procedure has been
decided upon, check runs should be mde in the .
tirst place to check the mathematics. This can be
done on hand machines by operators and should be,
in order to provide a record for study. When_the
procedure has been set up as a sequence of grders,
further test runs should be made on the device
itself to test the ordering set up.

Two proposals have been made to check the mathe-
mtical functioning of the machine. Une of these
would construct two machines to operate in paral-
lel with cross connections between the accumula-
tors in the arithmetrical organ and certain other
registers. These cross connections would detect
any discrepancy between analogous registers and
stop the computation in order to permit an inspec-
tion to determine the error. The alternate propos-
al is to program the usual computational checks
as part of the ordering. These are well known and,
in particular, smoothness checks have been well
developed and are relatively easy to apply. If
any of these criteria are not satisfied, the
machine is stopped.

10. It is clear that a preliminary mathematical
analysis ot the computation is necessary for the
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use of a digital computer. The validity of each
step must be carefully examined so that a precise
sequence of orders will be laid out. The length
of a computation is important if it is possible
for round off errors to have an accumulative ef-
fect or if the time needed is impractically large.

There is considerable room for mathematical in-
vestigations of the type represented by the paper
of Goldstine and von Neumann referred to above
which precisely specifies the error in the elimi-.
nation method for solving linear equations. While
the use of these devices will undoubtedly'provide
empirical information on the validity of various
computational procedures, precise theoretical
analyses are also essential.

VI. Accuracy, Noise and Stability

1. In this Chapter, we wish to briefly introduce
the reader to the stability problem in the design
of mechanisms. The stability question has been
considered in a number of connections and reason-
able methods tor dealing with it have been de-

veloped in certain cases. In general for each

problem, there is at least one method of obtaining
a stable solution to a problem, i.e., essentially

the "down the gradient" method of Sections 6-10

of Chapter 1V above. However, this will be an "ex—
pensive" solution in most cases and the practical

problem is one of obtaining a compromise which is

still stable.

We will first briefly discuss the question of |
noise in calculating procedures in general and the
related question of accuracy. We will then con-
sider the problem of linear stability and then
the non-linear problem. Our treatment will be in-
troductory with references to the literature where-
ver practical.

2. In most calculating procedures, either by
machine or by hand, we have definite inputs, say
numbers, and specific outputs are desired. But the
actual output will in general be the sum of three
terms, one of these is the actual answer, the sec-
ond is a definite error of the device, which may
be the tunction of the inputs and, finally, there
is a chance variable called the noise, which is
a consequence of chance occurrences which happen
during the computation.

The detinite error of the machine, itself, can
be analyzed in more detail. Certain errors are
due to specific macroscopic causes and can be
analyzed directly in the mechanism. Another type

-of error is due to a large number of relatively

smll causes and it may be impractical to con-
sider such a sum causally. On the other hand,
for design purposes this second type of error
may be considered as a chance variable which
is the sum of a large number of small chance
variables. For instance, a certain error may
be due to the variations of a relatively large
number of resistors, and while each variation
is small, the resultant may not be negligible.



At the design stage, the resistors are not avail-
able but the probability function for the varia-
tions may be known to a certain extent. The
central limit theorem in probability states that
the sum %;_; €; of a large number of chance vari-

ables, in general, is normally distributed with
variance the square root of the sum of the squares
of the variances of the &; to a good approximation.
Thus, we can predict the probable errors for such
a sum quickly. For instance, if each e; is such
that the probability is .5 and that the e; will be
at least e in size, then the probability is .H

that the sum will be at least evn in size. (We
have assumed that the expected value of each e;

is zero.) Procedures of this type are treated in
probability textbooks. For instance, a proof of

the central limit theorem is given in Kamke, E.

Wahrscheenlichtketitstheorie. Leipzig: S. Hirzel,
1932, pp. 148-60.

The noise term in the answer in general is due
to sudden discontinuities which occur by chance
during the computation. These can occur in a num-
ber of ways. A sudden application of a load may
change the line voltage and affect an electronic
calculator, or a computer may make an error.
Smaller errors can occur, for instance, the round-
ing errors or deviations from a statisticql equi-
librium, such as the thermal noise in resistors
or the "shot effect" in vacuum tubes.

Noise then is a chance variable which is to be
treated by statistical methods. For the type of
error represented by an error of a computer that
occurs rarely but when it does has a large effect,
the so-called Poisson Distribution is available.
(Cf. ¥amke, loc. cit., pp. 129-30.) For the more

.common type of noise which results from a large
number of small errors which occur at random, one
has the noise theory developed for electronic
circuits and given in the two articles by Rice,
S.0., The Bell System Technical Journal, Vol. 23,
(1944), 282-332, and Vol. 24 (1945), 46-156.

3. The relationship between noise and stability
can be immediately recognized in the case where
the system is governed by a linear systgm.of dif-
ferential equations with comstant coefficients.
If the motion is uniguely determined by these and
the initial conditions, then we can proceed to
solve the system by eliminating all but one un-
known function. For this remaining unknown func-
tion x(t) we will have a linear differential
equation of the nth order

_ x(n) + ax(n-1) 4+, .+ a.X = f(t)
with constant coefficients. The corresponding
characteristic equation

Cp™ o+ aptl owllls a, = 0

will have n roots, pi:, P2, .-+ Pp-

A noise effect introduces a sudden discontinu-
ity in the behavior of the function x at a time
t,. This means that after the time t,, x(t) is a.
somewhat different solution of the differential
equation from that before the noise occurred. The
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difference between these two solutions is a conse-
quence of the noise and must satisfy the homo-
geneous differential equation obtained by setting
f(t) = 0 in the above. This difference function

. is therefore a linear combination in the form

2., c; exp(p;t). If all the p;'s have negative
real parts, such'a linear combination will ap-
proach zero with time. If any p; has a positive
real part, any noise effect can introduce a dif-
ference function of this sort which increases in-
definitely with time. Thus the system will be
stable under the effect of random noise, if and
only if, all the p,;'s have negative real parts.

Rational conditions on the coefficients of a
polynomial which will insure that the roots are
all on the left of the imaginary axis were origi-
nally obtained by Hurwitz (Mathematische Annallen,
XLVI (1895), 273-84). The question of stability
in electrical circuits has been carefully consid-
ered and practical methods for the design of
stable circuits with prescribed characteristics
have been developed. Cf., for instance, the dis-
cussion in Bode, H. W., Network Analysis and Feed-
back Amplifier Design. New York: D. Van Nostrand,
1945, pp. 103-69, or MacColl, L. A., Servo Nech-
g;t;zs; New York: D. Van Nostrand Co., 1945, pp.

It is customary to regard instability as associ-
ated with energy as in amplifiers, so that when a
slight signal can effect the introduction of
energy into the system, which may in turn by some
devious route cause a larger version of the origi-
nal signal to appear. Of course, in a discussion
of stability all possible paths for the transfer
of signals must be considered and the study of
electrical circuits has shown the importance of
"parasitic" paths for stability. In a mechanical
device, besides the intentional connections, one -
may have other paths between units, for instance,
through the frame of the device and mountings for
the units.

However, instability caun appear in a purely
mathematical procedure, in which a chance devia-
tion is repeatedly magnified during the course of
a computation. Here the "feedback" which causes
the instability is in mathematics itself. The
stability of a long computation such as those
which are the objectives in electronic digital
computers must always be considered. Numerical
methods in which errors are repeatedly reduced are
desirable since an introduced error merely slows
down rather than destroys the computation. "Down
the gradient" procedures such as indicated in
Chapter IV above are of this character. However,
one may have a cyclic procedure, which at a cer-
tain point considers the errors and tends to
rectify them in a stable fashion, but is not a
complete "down the gradient" procedure. Indeed,
gradient procedures in general indicate the di-
rection of a step but not its size.

4. For the study of stability in the case in
which one does not have linear equations with con-
stant coefficients, the modern theories of non-
linear mechanics are available as given, for in-
stance, in Minorsky, N., Introduction to Non-



‘Linear Mechanics, Parts I-IV. Washington, D. C.:
David Taylor Model Basin, 1944-46.

In the general case it is necessary to study
the solutions of differential equations in the
large. It is clear that the definite stability
necessary for a mathematical machine requires that
every solution should be asymptotic to the correct
solution, but in the present state of theory this
requires practically an individual investigation
in each case. The study of systems of differential
equations in the large goes back to Poincaré and
G. D. Birkhoff, but the possibilities are exceed-
ingly complex. Cf. the paper of N. Levinson, 4nnals
of Kath. (2), 45 (1944), pp. 723-37, for a number
of earlier references :

There are really two stability problems which
appear in the use of mathematical machines. One of
these is the stability of the mathematical proce-
dure involved, the other is the problem of the

stability of the specific device used and its com-
ponents. There is no way for component stability
to compensate for a non-stable mathematical proce-
dure. Since we must start from a situation in
which the answer is unknown, perturbatlons analo-
gous to noise are always present. It is for this
reason that "down the gradient" procedures have
been emphasized in this book. These are stable
even though as we have pointed out, they my not
be the most economical stable method in individual
cases.

One presupposes, of course, the stability of the
components. But one should also consider in this
connection, the accuracy of the components since
these can destroy the stability of the procedure.
For instance, the Gauss Seidel iteration method
for solving linear equations 1is stable if the
matrix is positive definite. But if a positive
definite matrix is inaccurately realized, this
property may be lost.-
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PART FOUR: MATHEMATICAL INSTRUMENTS

I. Planimeters

1. The present part is devoted to a brief dis-
cussion of mathematical instruments. Many of
these are relatively inexpensive time-saving
devices whose mathematical theory is quite in-
teresting. ‘ :

There is little point in trying to draw a hard
and fast distinction between mathematical instru-
ments and continuous computing devices in general.
Our reason for the distinction is purely onme of
convenience. In general, mathematical instruments
operate on a graph. They are relatively simple in
construction, are used for a single mathematical
operation and are not intended for joint operation
with other devices but are complete in themselves.

An instrument whose purpose is to measure the
area enclosed by a curve is called a planimeter.
For convenience we divide planimeters into two
types, one of which consists of those planimeters
which operate directly on areas. The second type
consists of those which operate on the boundary of
the area to be measured.

The purpose of an integrometer is to provide in-
tegrals suchas [P y? dx, JP y° dx, etc. An inte-
graph is an instrument to draw the graph of an in-
definite integral of a given function. The harmonic
analyzers are designed to yield the Fourier coeffi-
cients of a function. There are also instruyents,
curvometers, to yield the arc length of a given

curve.

For this part of the course, our two main refer—
ences will be: A Galle, Xathematische Instrumente,
leipzig: B. T. Teubner, 1912, and H. de Morin, les
Appareils d'Integration, Paris: Gauthier Villars,

1913.

9. The remainder of the present chapter w@ll be
devoted to considering those planimeters which
operate directly on areas.

Perhaps the simplest such device is a piece of
glass ruled into squares. One places the glass on
the area to be measured and counts the number of
squares which lie wholly within the area and esti-
mates the remaining area around the boundary.

The "harp planimeter" is designed to assist one
in forming a sum 2J., y, Ox. One has a large number

of ‘threads strung in parallel on a frame. To find
the area under a given curve we lay the frame so
that the threads are perpendicular to the x-axis.
A compass is used to measure the ordinates of the
points on the curve midway between two threads. The
sum of the ordinates of these points can be ob-
tained by a ratchet and counter arrangement
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on the compass or by laying the ordinates off
along a straight line. A

If in the latter case, the total length is ex-
cessive we may use a fixed length 1 and whenever
this. length is exceeded, we may shift back by 1.
Thus if the first k coordinates have a sum which
exceeds 1 we take another compass or ruler and
measure back 1 from the final point of the sum. We
may then continue to lay off the ordinates using
the point obtained by shifting back as the start-
ing point. The final answer must allow for the
shifting.

Instead of the threads and compass, a glass
slide may be fitted in the frame and used to meas-
ure the ordinates. Marks ‘along the side of the
slide parallel to the x axis can be used to show
where the ordinates are to be taken. The slide
moves parallel to the y axis until the proper mark
is on the curve. The displacement of the slide
measures the ordinate.

Of course, an ordinary adding machine can be used
in conjunction with a formula for numerical inte-
gration for obtaining areas. This is particularly
valuable in the case in which the function is given
in the form of a table rather than a graph. For a
discussion of numerical integration, the reader is
referred to: C. Jordan, Calculus of Finite Differ-
ences, Budapest: Eggenberger, 1939, pp. 512-27.

3. Another device based on the formula Z y, Ax
is also described by Galle, op. cit., pp. 67-68.
The ordinates are measured by a roller wheel prin-
ciple which is of great importance in the theory
of instruments. The principle is the following.
Suppose we have a wheel of radius r, resting on
paper with its plane perpendicular to the. plane of
the paper. Suppose, then, that we shove the wheel
across the paper an amount s in a direction which

makes an angle « with the axle of the wheel. During
this displacement the axle remains parallel to its
original position. The component of the displace-
ment parallel to the axle will induce no rotation,
while if the wheel turns freely, there will be no
slipping perpendicular to the axle. Consequently,
the wheel will turn through an angle o such that

re = s sin a.

This formula generalizes readily‘to the case iﬁ



which the wheel is displaced so that the point of
contact moves along an arc C in such a fashion
that o, the angle between the tangent and the axle,
is a Riemann integrable function of the arc length.
For instance, if « is continuous except possibly
at a finite number of points where it has a right
and left limit, it satisfies this condition. Since
a is Riemann integrable, one can show that sin «
is also a Riemann integrable function of s. Thus
if we consider the motion as a limit of polygonal
motions on sets of chords, we obtain that the
wheel will turn through an angle ¢ such that

rq>=fc sin o ds

Now let us suppose that we have a wheel which is
initially in contact with the x axis and with its
axle parallel to the x axis. Suppose the wheel is
constrained to move in a circle with center on
the x axis and in such a way that the axle is al-
ways parallel to the x axis. For instance, one
might have a bar pivoted at the circle center. The
other end of this bar has a pivot in which there
is a u~shaped yoke, which holds the axle of the
wheel. The yoke has a rigidly attached rod extend-

ing perpendicular to the axle of the wheel. In
turn this rod slips freely through a collar which
is rigidly attached to another collar which slides
along a rod parallel to the x—axis. Since the two
collars are mutually perpendicular, the rod exten-
sion of the yoke is always perpendicular to the .
x axis and the wheel axle is always parallel to
the x axis.

Now then if the wheel is moved from its origi-
nal position of contact on the x axis to a point
(x,y), the wheel will turn through an angle o
such that r ¢ = y, where r is the radius of the
wheel. This is evident from the above integral
formula since dy = sin @ ds. Thus if we attach
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a counter to measure the revolution of such a
wheel, we can measure the ordinate of a point.

The actual planimeter described by Galle is con-
structed so that while an indicator moves from a
point (a,0) to the point (x,y), the actual wheel

- moves in a motion which is a mirror image of this.

There is a worm-gear positioned for each quarter
turn so that the wheel apparatus is displaced
parallel to the x axis equal amounts between the
measurements of the ordinates. It is also neces-
sary that when the wheel is returned to a position
at which the measurement of an ordinate begins,
the counter does not register.

4. Galle also describes the conversion planimeter
which obtains the area of a polygon by converting
it into a triangle with the same area. We give a
discussion of this based on analytic geometry.

We firgt‘obtain a formula for the area of a poly-
gon. It is easily seen, for instance, that the

(x, 242)

\ / {7"4 7¢)

(x5 '73)

\\\\ {kr173)
#s %s)

(i9;74)

accompanying polygon has area

'§(yx+y2) (XQ-Xi) + %(.Yzﬂ’s) (xa=x2) + é(ys*rya.) (Xo,—Xa)

b B(yatye) (kexa) + £(T547) (Kexs) + $(y147e) (xeXe)

= é[yﬂcz-myz + YoXaXoYs + an4~Xay4 + YaXeX4Y5
+ YeXeXeYo + YeXsXayle
In generalwe see that the formula
A = Z?;{ (ijj+1 - nyJ+1) Y Xy — XY,y

holds for a polygon with vertices (x1,y1), (X2,y2),
ey (xy,) - . :



Now we can construct a triangle with this area
as follows: Suppose we have a slide which moves
parallel to the x axis. On this slide, we have a
pivot and on the pivot we have a ruler. We set the
ruler perpendicular to the x axis and slide until
(x4,y1) is on the edge. Next we turn the ruler un-
til it passes through (x.,y.)}. The ruler now has
slope my = yo/{(xo-X1). :

We then slide the ruler parallel to itselif until
it passes through (x;,y.). The equation for the edge
is then

Yy -Y: = [yz/(xz - Xl)] (X - X1)
and the x- intercept a, is such that
81 Y2 = X1 Yo - Y1 X2 + X1 ¥y = (say) As

We then turn the ruler until it passes through
(xg,ys). The slope is then

My = Yo Yo/ {Xa ¥o — Ay)

We then slide the ruler parallel to itself until
it passes through (x,,y.). The equation of the
edge is then

y - yQ = [yQ ya/(xa yQ _.At)] (x - x2)
and the x intercept a, of this line is such that
Yoo = ¥oXaXa¥z + A1 = Tjag Ky y0 7 X o) + XY = Ao

The procedure in general is the following: Sup-
pose the ruler passes through (x,,y,) at the end
of the k'th step. We suppose that the k'th inter—
cept a, is such that

ka1 = Z§=1 (xjy5+l—nyJ+1) +Xy, = A,

We then turn the ruler until the edge is on
(X425 Yip2) - The slope of the edge is then

My = Yisz Yier/ Kiwz Yuer - Ay).

We slide the rule until the edge passes through
. The equation for the edge is then

A (x

(xk+l’ yk+1)

Y-Virr = Wien Yirr/ Tuer Xz ~ - Xpyq)

The new intercept a,,, is such that

a =

Yiez Pka1 = Xiet Yre2 ~ Yke1 Xy t Ay = Ay

Thus y
+1
Appr = 2401 Oy Xyp1 = X5 Yyeqg) + X1 Yo

Hence if we carry this process through to the n'th
step, we get

B Y1 ™ A = z;=1 UXp1 - XPgea) + X Vs
This yields, since (xn+1, Yner) = (X1, 1)
y: K-8 ) = Z?_:_i (x.1 yjﬂ'— X141 yj) * Y ¥ = Xy = 2A.
Or Fy, (xy —a,) - A

Thus the right triangle, one leg of which is the
ordinate y; and the other is x; - a  has the same
area as the given polygon.
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The apparatus described by Galle consists of a
bar along which the slide moves. On this slide, we
have the pivoted ruler. For the above result, of
course, the x axis can be taken in any direction.-
The pivoted ruler is first set up perpendicular ‘to
the bar. The bar is then located so that y, has a
fixed value and then fixed with two pins. Conse-
quently the quantity x, - a_ is always proportion-
al to the area and a directfy reading scale is lo-
cated on the bar.

H. One old method for the evaluation of an area
is to cut out a replica from some material of uni-
form density and thickness and to weigh the result.
A modern method is to make a mask from which the
desired area is cut out and then to measure the
total illumindtion which passes through such a mask
by means of a photo tube. With less delicate photo
sensitive methods, the entire light may be concen-
trated by means of lens onto the tube itself but,
in general, it is preferable to disperse the light
in a cavity and to determine the general level of
illumination. Of course, the entire light should
be concentrated first in the latter case so that
it will enter the cavity through a small aperture.

Since the output of a photo tube is not a linear
function of the illumination falling on it, the
answer is obtained in general by a bridge method.
One has besides the above a duplicate arrangement
associated with another photo tube with however an
adjustable shutter instead of the mask. One adjusts
the shutter yntil the output of the two tubes are
identical. Then the opening of the shutter will
have the same area as the hole in the mask.

This method of integration is used in the "cinema
integraph" described in the paper of Hazen and
Brown, Jour. Franklin Institute, Vol. 280 (1940)
pp- 19-44 and 183-205, which also gives an histori-
cal account of the development of the instrument.
The cinema integraph is designed to evaluate quan-
tities in the form

L flxty) glx) dx

and similar quantities.

The following ingenious method is used to obtain
the product. Let us consider the case of two posi-
tive functions f(x) and g(x). Masks are cut out
for each function but with different x scales. The
source of light is linear and the masks for g(x)
and f(x) are wrapped around concentric cylinders
whose common axis is the linear light source; g(x)
will be on the inner cylinder. The ordinates on
the mask run along the elements of the cylinder
while the x axis is perpendicular to the elements.
Now consider a value of x. Corresponding to x, we
have a plane containing the linear light source.
Now let us consider a point P on the outer cylinder
in this plane. The mask on the inner cylinder is
such that there is an opening of height g(x),
through which the linear light source is visible
from this point. The actual length of the light
source which is visible is Ezg(x). Consequent ly,

1 .

if we ignore the slight variation in intensity due
to distance, we see that the illumination on: the
outer cyclinder at anmy point on the x plane is the
same and proportional to g(x). The f(x) mask; of



course, permité a fraction of this proportional to
f(x) to pass.

For the general case in which f(x) and g(x) vary
in sign, allowance is made for the four possibili-
ties in signs. Let g, = max [g(x), 0}, g_- max
[-g(x), 0], fy and T_ are defined similarly. In
the device, there are two photo tubes whose balance
indicates the result. The integrals Lf g+fy dx,

JP £ g dx, S fig_ dx and JP f_g. dx are obtained

as indicated above but the illumination from the
first two goes to one photo tube, that of the other
two to the second tube. A biasing light also enters
the first tube so that it is always possible to
balance the arrangement by positive illumination

on the second tube. The balancing shutter is con-
trolled by a servo motor.

Of course, one may readily rotate the outer cyl-
inder to obtain the integrals

JP f(x+y) glx) dx.

For the reader who is interested in actually us-
ing photo tubes, the brief pamphlet: R.C.4. Photo-
tubes, R.C.A. Manufacturing Co., will be useful.
It describes the various types of tubes available
and gives circuits for various purposes.

Il. Planimeters

1. In the present chapter, we will discuss pla-
nimeters, i.e., devices for obtaining areas. The
earliest type of planimeter was based on the vari-
able speed drive but these have been superseded by
the mechanically simpler fixed length planimeters.

A variable speed drive can be utilized to evalu-
ate the integral /P y dx from a graph in an obvious
fashion..One has a pointer which traces the curve
and this is attached to the variable speed drive.
in such a way that the ordinate of the point traced
is the linear or rate input of the variable speed
drive and the abscissa is the rotatory or disk in-
.put. :

This can be done in a number of ways. We may have
a carriage on broad rimmed wheels which rolls
across the paper parallel to the x axis. The rota-
tion of the wheels then yields the abscissa. The
ordinate is entered by means of an extension of
variable length which remains parallel to the y
axis.

A 1grge variety of such devices can be found in
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the references, (Galle and Morin cited in the be-
ginning of the previous chapter. Historically
these devices are important since they led to the
development of the variable speed drive itself.

2. The most common type of modern planimeter is
concerned with the area swept out by a line seg-
ment of fixed length. This line segment is gener-
ally represented in planimeters by a bar, one end-
of which carries a pointer which traces the curve
C. There is also an integrating wheel, i.e., a
wheel with a counter on it to measure the amount
of rotation. The axle of this wheel is parallel to
the bar and if the point of contact of this wheel
traces a curve C', then the wheel will register

Jorsin a ds

where o is the angle between the axle of the wheel
and ds (cf. Section 3 of the preceding chapter).
In general, o is also the angle between the bar
and ds.

It will simplify matters if we go through certain
mathematical preliminaries before discussing the
devices themselves, We do this in the present sec-
tion.

Although it is not customary in mathematical
discussions, we will suppose that in traversing a
simple closed curve, the arc length is increasing

‘when the point moves in a clockwise direction.

Now let us consider a simple closed rectifiable
curve and let us take n points on it. These can be
chosen so that they are the successive vertices of
a polygon whose area approximates the area enclosed
by the rectifiable curve.

(xé-?s.) :

(% <44)

O3 24,

The area of this polygon has been proven in Sec.
4 of the preceding chapter to be

n-1 .
A= 830 (X0 - Xy Yer) * % B Xs - X, 51)
If we let Xy = Xy + DXy Yypq = Vg * byy,

X1 =X, + Bx,, y1 =y, + AQy,, where these appear
in this formula, we obtain

Ao

n
ZJ=1(yJ AXJ.— X AyJL
If we pass to the limit, we obtain
A=3 o (ydx - xdy)

a formula which, of course, is well known but which
we derive in order to establish the sign.



Consider the area swept out by a line segment of
length 1 moving in a plane. This is an essential
notion in our present discussion and our immediate
objective is to define it. We suppose that the mo-
tion is continuous and smooth. Thus we suppose that
each point describes an arc with a continuously
turning tangent. (It would be sufficient for this
if just two distinct points on the line segment
move in this manner.)

We first discuss the question of the definition
of this area and in particular the matter of sign.
Suppose we have a directed line segment QP which
moves to a new position Q'P'. We suppose that this
motion is small which is justifiable in view of
the fact that any motion of the postulated sort
can be considered as the consequence of a number
of small motions.

There are essentially two possibilities. In one

P

£y

[ 1o 3
-~

X=A=8 P

Q

- of these, the new position Q'P' does not intersect
QP, in the second -case, it does. In the first case
the area is readily defined. The point P describes
an arc P P' and the point Q an arc Q Q' and these
together with the initial and final position of
the line segment enclose an area which is given by
the formula

AA=[f +f "'f

Qp PP QQ'

This formula clearly specifies the sign of the
area. An area such as that. shown will be positive,
while if the line segment had moved upwards, the
area would be negative.

-/

Q'P!

] (ydx-xdy).

In the second case the situation is not immedi-
ately clear since in general points not in the_ two
triangles shown may be covered in the motion. Let
X be the point on the plane where the initial and
final position of the line segment intersect. Sup-
pose X is the image of a point A on the initial
segment.. We will call X, B, when it is considered
to be on the initial segment, i.e., X = A' = B.
Now A is either on BP or QB of the initial segment
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and no essential generality will be lost if ye
assume the former. Then B' the image of B is on
either Q'A' or A'P'. In the first case the line
segment BA in moving to its new position would

turn through.a total angle equal to PXP' while in
the second case, it would turn through an angle
equal to PXQ'. Now the motion is supposed to be
small and hence only the smaller rotation is possi-
ble. Thus if A is on XP, we may suppose B' is on
XQ'. Hence the line segment AP moves onto XP' -
A'P' and these have no common points and QX - QB
moves onto Q'B' and these two also have no common
points. Now we suppose that the motion is so slight
that the area is not greatly altered by using the
line segments AA' or BB' as boundaries instead of
the actual paths. But then it is clear that we can
regard the area swept out by AP and QB as in the
first case.

Since only a small motion is considered, the
actual displacement A'A - XA = BA is small and
hence the area swept out can be considered as neg-
ligible. Let us then arbitrarily assign to it the
value

(J + [

BA AA!

-/

B'A

- ) (y dx - x dy).
BB!

For the area swept out by AP and QB, we have, of
course, the previous formulas. If we add these
three expressions for the area, we find that we
have exactly the same formula for AA. In this case,
it is clear that the area is broken up into two
parts, @' and #*, The former is positive, the
latter is negative.

.

Let us take now a motion which is not. restricted
in size and, as we have suggested, consider it as a
number of small motions to each of which the above
formula for AA is applicable. We then find that.if
C,; is the path of P and C, that of Q then

A=l -J +J -J1 (ydx-xdy)
@ o'P' cC; C,

If the large motion is such that the line segment,
returns -to its original position then

A-=J fydx -xdy)-J (y dx - x dy).
. C; " Cg

Notice that our argument really depended very
little on the nature of the integrand. We could
have used any F(x,y,§¥) ds, provided that F was
continuous in the three variables. (

In the area case in particular, it is worth not-
ing that if the points P and Q circumscribe an area
A, and A, respectively, i.e., C; and C, are the
bourdaries of these curves, them A = A, - A,.

3. We have described the integrating wheel on
the fixed length planimeters and the fact that it
registers

J sin «a ds.
This expression is also associated with the area
swept out by a fixed length. Consider a differen-

tial dA of the area. Let ¢ denote the clockwise
rotation between the original position and the



present position. It is readily seen that
dA = 1 sin a ds + % 1% do-
' p

Thus if the fixed length moves from one position
to another and C is the path of P we have

A-=1 { sin a ds + 3 17 ¢ + k.

But it is evident that the constant of integration
is zero and thus

A-1l[sinads + % 1% o.

If the fixed length returns to its original posi-
tion.without making a complete revolution we have

A-1 é sin a ds,

Let us now consider three points, Q, Py, P,, on
the fixed length. Let us suppose that the fixed
length moves and returns to its original position.
P, traces out a path C,. Q is however constrained
to move on a path either a line segment or an arc
of a circle in such a way that when it has returned
to its original position, no area has been enclosed.
We will suppose that P, lies between Q and P,. The
other cases are treated in an entirely analogous
manner so we will not consider them further.

Z

Let 1, denote the length Q P,, I, the length P, P,.
Let A, denote the area enclosed by C,. (If P, cir-
cumscribes the area in the usual sense a number of
times in traversing Cy, then A, is a multiple of
the area as usually. understood.)

We first notice that

1, / sin ¢ ds = Area swept out by Py P, =
61 1, [ sin ads,

Co
Thus the integral [ sin a ds is independent of the
position of the point P on the line.

On the other hand, if 1 = Q P, we have
1 { sin @ ds = Area swept out by Q P, = A.
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4. The last two formulas of the previous section
are the basis of many planimeters. The operator
moves a pointer at P, so that it circumscribes the
desired area. The integrating wheel is at some
other point I along the fixed length. The planim-
eters are classified as linear if the point Q
moves along a straight line or polar if Q moves
along the arc of a circle.

If one mounts the fixed length on a carriage
with broad wheels or on a track in such a way that
the fixed length is pivoted at Q, then Q will move
in a straight line. If one connects the fixed
length at 8 by means of a hinge to an arm which it-
self is pivoted at a fixed point, we obtain a polar
planimeter.

It is desirable that the curve C and the permis-
sible path of Q be suchk that if we take any circle
of radius 1 = P, Q with center on a point of C,
then this circle will intersect the path of Q at
only ome point. This will insure that when the
operator returns the point P to its original posi-
tion after traversing the curve, Q will return to
its original position. '

For a more detailed descfiption of the various
instruments the reader is referred to the refer-
ences of Chapter I, Sec. 1, i.e., Galle or de Morin.

5. If we refer again to the formpla'
A-1 { sinads +5 1% ¢

of Sec. 3 for the area swept out by a moving line,
we see that there is one other interesting possi-
bility. Let us suppose that C refers to the path

of Q. Let us suppose that at Q we have a knife

edge parallel to the fixed length and resting on
the paper. Now if we move the P end of the fixed
length, then Q will move along a path which is tan-
gent to the fixed length at every instant. Conse-
sequently sin o = 0 on C. Thus if we enclose the
area A, in our motion of the point P and ¢, is the

“total change in the angle in this process then

% L0 = Area swept out by a fixed length = A -Ag.

In general, Ay will be small - or we can measure it
by repeating the process. This is the principle of
the Prytz or "hatchet" planimeter.

lll. Integrometers

1. Integrometers are very interesting develop-
ments of linear planimeters designed to evaluate
integrals in the form [ y? dx, ['y® dx and so

forth. The principle upon which these are based

can be readily understood from a discussion of the
part of such a device concerned with the evaluation
of [ y® dx and we will confine our attention to
this for the present.

The frame of the device is constrained to move
parallel to the x-axis. The fixed length will be
denoted QP. P will trace out the curve and Q is
pivoted on the frame so that Q moves on the x-axis.
We have a gear G:; which rotates with PQ. We have
another gear G, meshing with G; whose radius is
one half that of Gi. Thus when PQ rotates through



an angle o from_a position coinciding with x-axis,
G, will rotate through an angle 2a. :

Mounted on G, there is an integrating wheel,
whose point of contact with the paper is on the
axis for G,. The integrating wheel is arranged so
" that when o = 0, its angle 1s perpendicular to the
x-axis. Consequently when FQ rotates through an
angle a, the axle will turn through an angle 2a
and make angle - -20 with the x-~axis.

As P moves around a closed curve C, Q will also
move along the x-axis. We can call its path on the
x-axis D. D is closed and of course folded on it-
self. It is clear that the integrating wheel meas-
ures

% sin (§--2a) dx = % cos 20 dx.

I believe it is evident that by using
G,, etc., instead of G., with radii, 4, 3, etc.,
of the radius of Gy and by orienting the original
position of the axle correctly we can ob@aln

% sin 3¢ dx, % cos 4a dx, etc.

2. Let us now consider the integral [ y° dx
around a closed curve C which is traced by the
point P. Let o denote the angle PQ makes with the
x-axis. Then y = 1 sin a and

[y®dx = 1° é sin® o dx = (1%/2) é(l - cos 2a) dx
c
‘2 (=1%/9) gcos 2a dx

since the integral é dx around a closed curve is
zero.

Since the integrating wheel registers [ cos 2¢ dx
many of the books seem to think that this settles
the matter. But the wheel registers

J cos 2a dx
D

while the quantity desired is [ cos 2a dx. Of
course, the angle a« is the same but the dx is
clearly different in géneral. For instance, Q may
even remain fixed while P.traverses an arc of the
circle, thus dx on D is zero but not on C.

ears Gs, .
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. ete. Thus ¢

Thus it is nmecessary to show that

£ cos 2a dx = é cos 2a dx
around any closed curve C. We now prove this.

Denote the coordinates of P by (x,y) and those
of Q by (n,0). We can consider x, ¥ and n as func-
tions of s the arc length variable on the curve C.

Indeed
- x.- JITTy?

n =
5
dn = dx + \/IQ__—-_y—"’dy'
2
We also recall that cos 20 = 1 - 2 sin® a = (1—2{7‘).

Hence

g cos 2¢ dx = é cos 2a dn = { cos 2¢ dx

Since any integral in the form { F(y) dy,where C
is a closed curve, is zero we have

J cos 2a dx = { cos 2a dx,
D

3. It is readily seen how the above can be gen-
eralized to evaluate integrals [ y® dx, é y* dx,

y® = 1® sin %0 = 1° sin ¢ 3 (1 - cos 2a)

=4 1° (sin o« — sin a'cos 2a) - % 1° (3 sina-sin3q)

and
vyt =1* 4 (1-2cos 22 4+ cos? 2a)
='%: (3 - 4 cos 2a + cos 4a).

As mentioned in Sec. 1 above, by the use of gears
G; and G, with different gear ratios relative to
Gy, we can obtain the integrals

J sin 3a dx, [ cos 4a dx, etc.
) )

and the proof that the D integral is equal to the
C integral is quite analogous to that of Sec. 2.
The only difference is that in the F(y) mentioned
at the end of Sec. 2, the factor (1 - 2 y2/l2) is
replaced by other functions of y: 3 y/1 - 4 ys/13,
8 (y+/l+ - y2/12) + 1, etc.

IV. Integraph

In the present chapter we wish to describe brief-
ly the integraph. An integraph is an instrument
used to draw the graph of a function for which the
derivative is given. In certain modern developments,
this has become an instrument for-solving differen-
tial equations.

The principle of the integraph is essentially
that of the steering wheel on a tricycle. To de-
scribe the situation precisely let us introduce a
theoretical device. This is similar to a tricycle
except that the rear wheels have been replaced by
a pair of spherical ball bearings,in sockets.



Now if a force F. which is not too great is ap-
plied to this tricycle in a direction not perpen-
dicular to the front wheel, then as in the case of
the integrating wheél described in Section 3 of
Chapter I above, the tricycle will move in a path
to which the front wheel is tangent. The component
of F which is parallel to the axle of the wheel is

counteracted by a friction force at the point of
contact of the wheel and the plane on which it
moves while the component of F perpendicular to
the axle will cause the tricycle to move. We sup-
pose that the turning moments are counteracted in
some other manner.

To set up an integrating device then we must
steer this tricycle so that the line of the steer-
ing wheel always makes an angle o with the x-axis
such that tan a¢ = f(x) where f(x) is the function
whose integral is desired.

9. The above principle is applied in a number of
ways which can be roughly classified under two
headings. One type is represented by the Conradi
instrument, described by Galle, loc. cit., pp. 158~
59. We present a diagram of it below, looking at
it from above.

The frame of the device comsists of two parallel
rails, r, which are mounted on wheels so that the
frame moves parallel to the x-axis. There are two
carriages, u and v, which move along r.

One of these carriages, u, has an extension on
which is a pointer P which follows the given curve.-

A F_

1
i = w
B
@ P
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On this carriage we have a pivoted collar through
vwhich rides a bar s. The other end of this bar is
pivoted at the point p which is on a fixed exten-
sion of frame. This arrangement of collar and
p%v?t insures that the slope of the bar s equals
f(x).

On s we have another slide q (it actually is a
carriage but we show it as a collar) which con-
tains a line CD which remains perpendicular to s.
CD is part of a parallelogram ABCD, whose other
side AB determines the direction of the wheel W.
The carriage v has a pivot upon which the mounting
for W turns. From this arrangement the wheel W al-
ways has the same slope as s and the motion of W
is also the motion of the carriage v. Since the
direction of W always has slope f(x), the point of
contact of the wheel with the basic plane moves on
a curve which is an integral of f(x). The pencil
F traces this motion essentially, since the upward
displacement merely changes the constant of inte-
gration.

3. Notice that the arrangement of the bar s and
the slide q is such that the slope of the line CD
js determined but mot its position. This is essen-
tial since the only permitted restraint on the
wheel W is the determination of its slope relative

to the. x-axis.
There is one other way in which the desired con-

nection between the given curve and the slope of
the wheel can be obtained which is due to Abdank

=

1 [ 1 {

Abankanowicz. Instead of having the steering wheel
on the original plane, we permit it to ride on a
cylinder which is free to displace itself parallel
to the y-axis. This cylinder turns at the same rate
as the tracing point covers the x-axis. However,
the wheel is fixed on the frame and so the desired
relative motion of wheel and cylinder is obtained
by the displacement of the cylinder. (Cf. H. de
Morin, loc. cit., pp. 136-41.)

In the accompanying diagram, the point P traces
the given derivative curve f(x). This determines
the slope of the wheel w. The front wheels of the
carriage turn the cylinder d (which can be toothed
like a gear), whose rotation is communicated to the
cylinder C. Owing to the slope of the wheel w, C
rides up or down in the carriage as it turnms. A
pencil F fixed on the carriage and pressing against
C will record the motion of é. Of course, the inte-
gral curve can wind around C a number of times.

4. A number of steering wheel integrators can be
combined into a device for solving differential
equations. A modern example of this is given by the
device described in: Myers, D. M., Jour. Sci. In-
struments, Vol.XV1 (1939), pp. 209-22. This involves -
two integrating wheels and is suitable for solving
differential equations )

dx

where b and c¢ are constants but a and d may be
functions of any one of the variable x, z or 4z,

X AXIS
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The two integraph wheels are comnected to real-
ize the pair of equations

dy _ 1 (q- -
= "3 (d -by - cz)

dz - -

= - y
The comnection to the integraph wheels is essen-
tially the parallelogram arrangement of the Con-
radi integraph. Consequently z and y - 4% are
present as linear displacements in the device.
This permits one operator to enter a as a function
of either one of these variables or of x from a
graph. Similarly d can be entered.

The multiplications involved are based on similar
triangle principles. This permits ‘one to readily

multiply by 1/a. Addition is accomplished by means
of a "lazy tongs" form of a linear differential.

§

| |

V. Harmonic Analyzers

1. An harmonic analyzer is a device for evaluat-
ing the Fourier coefficients of a function f(x) on
the interval 0 < x = 2n.

1 1.2
8o = 35 /o7 £(x) dx, a, =7 S £(x) cos nx dx

1 )
b, = ",;f:n f(x) sin nx dx

(If the interval given is not this, we can easily
change scale.)

In general, they are diréct calculating devices
utilizing elements, many of which we are familiar
with,

Naturally any of the numerical methods for com-
puting integrals can be used. In_this connect}on
the reader is referred to the following: H. Lip-
‘son and C. A. Beevers, Proc. Phys. Soc., Vol. 48

(1936), pp. 772-80.

There is a rather well-known mathematical treat-
ment upon which both calculational Qrocedures and
many harmonic analyzers and synthesizers have been
based and this we now give.

Let us consider now the simplest numerical ap-
proximation to an integral. let x, = pn/n for
p=1, ..., 20, y, = f%xp). The points x,, divide
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the interval 0 < x < 2n into 2n equal subintervals.
From the obvious approximation for the integral we
obtain

ag = (1/2m) 220y
2
a; = (1/n) Zp:1 YpCOS A X, Q= 1, ..., n
. 2n .
b; = (1/n) 2wy Yp sin q xp.

(Note that b; =0 for n Xp = PN and sin pr = 0.)"

Now form the expression
n-1

1)
Qg + qul

1 ' .
(a4 cos q x, + by sin q x,)

v \ 1 . .
+% (a, cosnx, + b, sin n'x)

2n n-1
=§; 2p=1 Yp (1+2 Z4=1 (cos . q X, €0S q X,
+ sin q x, sin‘q Xp)+ COS B X, COS I X,

+sin n x, sin n X,) =

5%-(2§:l yp (1 +2 E:;: cos q (xy=x;) + cosn (x,—x.)]).

Now let 8 = XpXp. Since for 6 4 0, we have cos q 6
_ sin (g+$)6 - sin (g-%)8 X 40,

T

sin g 0 - we have for x

P

-1 .
14+2 2:_1 cos q (xp—xr) + COS n (xp—xr) =

sin (n-3) (x —x_) - sin & (xp—xr)

sin (xp—xr)

1+ b

+ COS n (xp—xrh

Now if X=X, + 0, we have XpXp = k n/n. Thus

n (xp—xr) = kn and sin n (XP~X,) = 0. Hence
sin (n-%) (xp—xr) = — sin & (xp—xr) cos n (XP—X,)-
Substituting in the above expression yields that

if x,-x, + 0 we have 1 + 2 Z:;: cos q (xp=x,) +

cos n (x,-x;) = 0. On the other hand if x,x, = 0,
it is clear that 1 + 2 Z;;i cos q (x -x.) +

P
cos n (x,—x.) = 2n. Consequently when we go back

to the first expression and substitute in the for-
mula previously obtained, we have

] + 2n-1 1 En-l b’ .
ao q=1 aq Cos q X, + q=1 g sin q X,

+ % (a) cos n x_ + by sin n x,) = y,.
In other words, if we calculate the coefficients
a; and b! by the above approximation formulas, we
get a trigonometric polynomial which takes on the
values yi, ..., yon (For convergence reasons this
is in general a desirable procedure only for the
situation in which y is continuous and y(2n) = y(0).)

Now the above formal calculations essentially
shows that if we consider the system of equations
-1 -
Yp = 80 + Z:=1 a4 COS ¢ X + E:;i bq sin q X,

+%a,cosn Xp

as a system of 2n equations on the 2n quantities



a0, A1, s @y bi, ..., b, _,, then the system
_ 1 2n
ag = T Ep=1 Yp

aqc

Ep 1Ypcosaxy,, q=1, ..., n

1
™
bg =.%_Zp=1 Yp sin q Xpr 4 = 1, ..., n-1
has a matrix which is inverse to the matrix of the
first set. Consequently each of these systems is
non-singular.

This has the very important consequence that if
a device is constructed to yield the various lin-
ear combinations

n
lp = Zia kq cos p xq4

n
r =2-_.15

P q sin p x4

q
then it can be used to either obtain the Fourier
coefficients of a given function or given the
Fourier coeff1c1ents, we can obtain the value of
the function at the specified points. (The formu-
las do vary slightly but this can be readily taken
care of.)

Naturally these formulas are readily adapted to
calculations based on ordinary arithmetical ma-
chines or punched card machines.

2. It is clear from the discussion of the preced-
ing section that what is desired is a device to
produce linear combinations

s(l)- y dg cos (p q n/n)
séz)-zq_l e, sin (p q n/n)
As an example let us consider the harmonic analyzer

of Michelson and Stratton. For this we have the
schematic diagram

cos .
-Z (Sin) c{/

‘ 60 ?)
cos 24 (9 )

& (siN) '3 &
]
__________________ <
co.
yiid (9/5) dﬂp

This arrangement is such that if we‘replace the
input p n/n by a continuous variable x, we get the
sums

]

S £

P d cos q X

n
ql

5(2) = Zq 1 ¢ sin q x.
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By adding these to a,, we evaluate the function

whose Fourier coefficients are the d_'s and e_'s.

This fact is used to draw a complete graph of the
function.

In the Michelson Stratton instrument, the input
p n/n or x is an angle. The multlpllcat1on by q is
obtained by a gear ratio. The cosine is obtained

by an eccentric.

(Notice that in the accompanying diagram

. . 2
rcos ¢ + Lcos B=rcosa+1 J1 -sin ° B
] Z '
rcos ¢ + 1 /1 - sin a-&; =1l isrcosa+

r2
+ 1 ( J.-sin?al_z—l)
r \
L+ \/J_Q—ri’sini’a)

Thus the percentage error which results when we
consider the other end of the eccentric to have a
harmonic motion is about 100 r/21.)

=
[

N . 2
l+rcosa—-rsin a

The multiplication by the constant dg is obtained
by means of a simple similar trlanule

} cos pfn;hy
G g

The method of addition that is used is very in-
teresting since it is a mechanical counterpart to
the voltage averaging which we have previously
discussed. Let us describe it in the case of two
addends since this case contains the essential
ideas. Suppose we have a cylinder which can rotate




around its axis. On one side of the cylinder, we
have two bands. One end of ‘these bands is fastened
to the cylinder, the other end to a spring. The
band is partly wrapped around the cylinder and ex-
tends down vertically to the corresponding spring.
Each band and spring corresponds to an input..On
the opposite side of the cylinder is a similar ar-
rangement of band and spring for the output.

We suppose that the two input springs are simi-
lar. We suppose that these are normally extended
an amount 1,. By Hooke's law, the force exerted by
each of these springs is ki 1, where k; is the

force necessary to extend the spring a unit length.

let k. and 1, be the corresponding quantities for
the output spring. Since the cylinder is in equi-
librium, a consideration of moments shows that
2k1 11 Skg _].2. !

Now suppose we move the other end of the input
springs down amounts x and y respectively. The
" cylinder will rotate and the output spring whose
lower end is fixed will be extended an amount z.
The input springs will be extended amounts x - z
and y - z respectively. The moment equation will
still be
ki (Li+ x-2) + kg (1, + y—Z) = ke (I + 2)
or :
ki (x+y) = (2 ki+ko) 2

It should be clear how any number of inputs can be
introduced into such a device.

The output is then a linear displacement.

When the machine is used as a synthesizer, i.e.,
to graph a function y whose Fourier coefficients
are given, the output appears as the displacement
of a pencil above a horizontal line which corre-
sponds to the x-axis. This pencil presses against

< X Axrs

a piece of paper on a vertical drawing board. As

. we mentioned above, in this case we have a continu-
ous input x and the drawing board is continuously
displaced to the left with this input. Thus while
the pencil remains in the same vertical plane, the
graph of y appears on the drawing board. - :

3. A modern development of the above is. given in
S.L., Brown, Jour. Franklin Institute, Vol. 228
(1939), pp. 675-94. The schematic diagram is the
the same, the pn/n input is again an angle, the
multiplication by q is again by a gear box, so
that pqn/n appears as an angle.

The cosines and sines of this angle are obtained
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by taking projections on the x-axis of a line seg-
ment which makes an angle o with x-axis. This is
readily accomplished by a sliding arrangement.

/)
& F “7,@93—7(—
&4/ d?éos o«

1/
V!
o/

The multiplication by d, is obtained by varying
the Iength of the segment. Addition is by means of
an endless chain,

" Another modern analyzer and synthesizer is de-
scribed in the reference: F. W. Kranz, Jour.
Franklin Inst., Vol. 204, pp. 245-62.

In these two references the following point is
made. For the synthesizer, we need essentially the
linear combinations

2:=1 ag COS (qpr/n)

and ‘
n .
ZQ=1 by sin (pgr/n)

so that we have only n terms. However, the corre-
sponding analyzer formulas are

2

ag = 2p:1 ¥Yp COS (qpn/n)
2 .

b, = Zp:1 ¥y, sin (qpn/n)

which include 2 n terms. Nevertheless, it is rela~
tively simple as these authors point out to obtain

2n
Ep-l ¥, cos (pan/n)
from a device which yields
n .
Z,=y dp cos (pqn/n).
For
2n n
8q=2pa1 Yp COS (pqr/n) = Zp;1 Yp éos pan/n
* Zpu1 Ypep C0s (am + pan/n)
n
=2y (yp + F11%y,,,) cos (pqn/m)
Similarly
320 in (pan/n) = Zo., ( [-1]e
p=1 Yp sin (pan/n) = 2., (yp + [F110y,,)
sin (pqn/n)



This reasoning generalizes readily. Suppose we
wish to obtain

Aq = Zf:: ¥, cos (rqn/kn)
and

2kn .
By = Zp2; ¥, sin (rqn/kn)
from a device which can produce
n n L
Zp=1 d, cos (tp) and Z,=1 €p sin (tp)
where t is an input which can assume any value.

Now let r = sn + p where p < n. Then if y, = Ys,p

A, - Zf:: Y. cos (rqn/kn)
- Z:_l 25:;1 Ys,p €0s (san/k + pan/kn)
= Z:=1 (2::;1 Ye,p COS sqn/k) cos (pqn/kn)
- E:=1 (2::;l Ys,p sin san/k) sin (pqn/km).
Now let
dy g = i::;l Ys,p COs asm/k
e, q = Ezfal Ys,p Sin asn/k.
Then

A, - 2:=1 d,, qcos (pqn/km)

zl’l

p=1 €p,q Sin (pqn/kn).

Thus Aq is the sum of two expressions, which can
be obtained from the device by letting t = qn/kn
in the expressions given above for the output. If
we let t = qn/k, we see.that we also have

2k-1

dy,q = Zs=0 Ys,p COs st
2k-1 .
€p,q = 2520 Ys,p Sin st.

Thus if 2k-1 is < n, we may obtain these from the
device also. (We may have to set certain coeffi-
cients zero.) Theoretically the expressions for
dp,q and e, o could also be compounded in the way
AVWas if 321 > n. Hence, theoretically the ana-
lyzer could be used to calculate any number of
coefficients. The limitation on this process is
the accuracy with which t = qn/kn could be entered
in the device. An error of € in radians yields in
general an error of (kn/n) € 100 per cent in the
coefficients.

4. Naturally we can use-an ordinary integrator
to evaluate the integrals

ﬁnf&)cmlmdx;ﬁ"f&)smlmdm

Thus Galle describes an instrument (Sommerfeld-
Wiechert, loc. cit., pp. 145-48) in which the in-
tegrand is obtained by projecting a line segment
of length f(x). The graph of f(x% is wrapped
around a horizontal cylinder C. As x varies, the

' element upon which f(x) is represented appears
uppermost. At the same time the cylinder itself
rotates about a vertical axis so that the axis of
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the cylinder makes an angle kx with a horizontal
line 1. An arrangement with a wire perpendicular
to 1 can move parallel to L. The operator keeps the
wire on the uppermost point of curve. The linear
displacement of the arrangement is then f(x) cos kx.

<)

(Z)

This linear displacement is the linear input of
a simple disk integrator. This consists of a disk
which rotates an amount x and an integrating wheel

“on it which is displaced from the center an amount

equal to the linear input.

An alternate to the arrangement above is to ap-
ply f(x) to the linear displacement and let the
Fotatory input @ = (1/k) sin kx. Since the output
is

27 2n
Jo f(x) da = Js f(x) cos kx dx
this yields the desired result.

This can be done in a number of ways. For in-
stance o may be produced as a linear displacement
by means of projecting arrangement and then changed
to a rotation by means of a rack and pinion.

D)

An alternative method of getting the desired re-
sult is to use a spherical integrator. This is the
basis of the Henrici-Conradi analyzer. The basic
calculating device consists of a sphere, whose ro—
tation is the function f(x). The integrating wheel
is at a spherical distance ka from the plane per-
pendicular to the axis of rotation. It is clear



that if the axle of the integrating wheel is in

the same plane as the axis of rotation, the in-
stantaneous change in the output is

dB = h cos k x d f(x)

where h is the ratio of the radius of the wheel to
that of the sphere. Thus if x goes from 0 to 2rn we
have :

ﬁf“ h cos hxdf(x) - h cos kxf(x)]gﬁ
kh 2" sin kef (x) dx

+

h [£(21) - £(0)) + kh JET sin kx £(x) dx.

.The cos kx integral is obtained when n/2 - kx is
substituted for kx.

A modern version of the Henrici integrator is
described in an article by D. C. Miller, Jour.
Frankl n Inst., Vol. 182, pp. 285-322.

6. There are a number of relatively simple de-
vices which permit one to use a planimeter to
evaluate the Fourier coefficients of a function.
An auxiliary of this sort is accredited by Galle
to Yule (loc. cit., pp. 134-35). The interval
0 £ x £ 2n is divided into 2n parts. For each sub-
interval a rectangle is formed. If y, is the value
of f(x) at the midpoint of the subinterval, the
sides of the rectangle have length y, and
sin ([k+1] qn/n) - sin (kgqn/n) = 2 cos ([k+zlqn/n)
sin (qn/2n) = (qn/n) cos ([k+3lqn/n). A planimeter
is used to obtain the sum of the areas of these
rectangles. Thus the reading is

2 Zi:1 f([k+#}n/n) cos ([k+z]lqn/n) sin (qn/2n)

1-%; (Ei:1 f{(k+z)n/n] cos [(k+z)qn/n])

zq ﬁfﬁ £(x) cos gx dx = gma,.

There are a number of ways in which the desired
rectangles can be constructed. Consider the draw-
ing board upon which the graph of the function is
drawn. The graph covers the x-interval from 0 to
2n. We have a wire which moves parallel to the x-
axis and this we can set on the ordinate of the’
curve at the desired point. This wire and the x-
axis will constitute opposite sides of the rectan-
gle. '

- The other sides of the rectangle are positioned
by means of a sine scale -along the left-hand side
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- is the same,)

of the x-axis. We have two slides with wires paral-

v

(LT

SINESCALE 2.

27

MY
o

2

lel to the y-axis. To set up a rectangle with one
pair of sides having the length sin B - sin a, we
set the wire of one slide on the value @ of the
sine scale and the other on the value B. The dis-
tance between the wires is then sin B - sin a.
The x-axis, the first slide wire and these last
two now enclose a rectangle. (This is not the de-
vice described by Galle, loc. cit., but the idea

Notice that if we take our interval end points
in the form (k+s)n/n, so that the midpoints are in
the form kn/n, the individual rectangles have the
area

f(kn/n) (sin [(k+%)qn/n] - sin [(k-%)qn/n])
= 2 f(kn/n) cos (qnk/n) sin (qn/2n)

The sum of these rectangles

s 2n
-‘2lsmq1(t nr/x2n) (™/n) Zya, f£(kn/n) cos (qnk/n)
: sin (qn/2n)
differs only by the factorW (qn/2)

from the expression
: 2
i% Zkgl f(kn/n)_cps (qnk/n)

which we have considered in the preceding sections
of this chapter. The situation relative to the
sine expression is similar.

Another type of device for the evaluation of the
Fourier coefficients by means of a planimeter is
based on the following geometrical construction.
Suppose that as the point P traces the curve
y = f(x), it carries a wheel with it. The wheel
revolves in a plane parallel to the plane of the
graph around an axis through P. The rotation is
k. Let us comsider a point Q on the circumference
of the wheel, which is uppermost when x = 0.

Suppose Q has the coordinates (n, &), then

n =X +7r sin kx

g

¥y + T cos kx



X
Consider now the integral which corresponds to the
area under the curve traced by Q. We have

Jh Zdn = ﬁfﬂ (y + r cos kx) (1 + kr cos kx) dx

- 2T y dx + kr Jom y cos k x dx
+ ﬁfﬂ r cos kx dx 4 kr® ﬁfﬂ cos ? kx dx
- KT y dx + kr ﬁfn y cos kx dx + knr®

since k is integral. Thus if we have a planimeter
to find the area under the given curve and to
trace the Q curve and find the area under it, then
we know both f2" y dx and Jo %dn and from these
the desired integral

27
b

can be readily obtained. To obtain the integral

ﬁfﬂ y sin kx dx

we start with a point Q whose radius is initially
horizontal.

y cos kx dx

There are a number of ways in which the desired
result can be obtained. One of these, described
by Galle as due to Yule comsists of a pinion and
a rack parallel to the x-axis. The rack can slide
up and down in grooves, but remains parallel to
its original position. Let P denote the pointer
that is used to follow the curve. We have a con-
nection from P to the rack such that the pitch

+ WA O
A‘,LAAI \
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line of the rack has an ordinate which differs

from that of P by a fixed amount. Another connec-
tion to the pinion insures that the center of the
wheel has the same ordinate as P and the abscissae
differ by a constant. The rate of rotation of the
pinion is determined by the choice of the radius.
There is a hole in the pinion in which the follower
of a planimeter is inserted to trace the Q curve.

A number of other ways of doing this are also
discussed by Galle.

8. It is clear that the devices which produce in-
tegrals in the form

J2£(x) glx) dx

can be used to obtain the Fourier coefficients of
a function. For instance, there is the "cinema in-
tegraph" described above. Another device for this
purpose is that described by J. A. Van der Akker,
Journ. Opt. Soc. of Amer., Vol. 29 (1939), pp. 364-
69 and 501. This consists apparently of two input
boards, a similar triangle multiplier and a disk
integrator.

There is one other geometrical comstruction

which has been utilized in barmomnic analyzers. Con-
sider a half-cylinder of diameter 2/k. The circum-
ference of the semicircle is n/k. Let us measure
off a distance x along the semicircle from one end
and wrap' the graph of f(x) on the interval 0<x < n/k
around the half-cylinder. Now consider the projec-
tion on the diametrical half plane of the area un-
der the curve and with abscissa less than x. This

is a function of x, A(x). The central angle sub-
tended by the arc of length x is kx dnd it is
readily seen that -

d A = f(x) sin kx dx.
Thus the total area of the projection is

¥ £(x) sin kx dx.

(This assumes f({x) is positive, a result which can
always be attained by adding a constant, an opera-
tion which does not affect any of the Fourier
coefficients except the first.)



A similar argument shows that if we use the por-
tion of the graph from n/k to 2n/k, we obtain

- 7 £x) sin e dx
and if we use the portion 2n/k < x < 3n/k, we get

&Z:‘r f(x) sin kx dx.

It is clear from these, we can build up

ﬁfﬂ f(x) sin kx dx.

If we begin with a quarter cylinder using the in-
tifval 0 < x < n/2k, then the half cylinders for

Ted  ,n

(24-%)mg

intervals (L + %) w/k < x £ (1 + 3/2) n/k and fi-
nally using the quarter cylinder for the interval
(2k - %) n/k £ x < 2n, we get the integrals

ﬂ?/zk f(x) cos kx dx, - ézyfk f(x) cos kx dx, etc.

B .
f(2nk_b).n/]‘ f(X) cos k dX
and from these we can construct
Lf" f(x) cos kx dx.

The projections involved can be done photographi-
cally. Thus, if the cylinders are transparent and
the graph of function is cut out as a mask, then
if we have light rays perpendicular to the diamet-
rical plane of the semicylinder, we can obtain a
shadow corresponding to the area projection. The
area projection can be measured by a planimeter or
a photocell bridge.

Presumably, in the. latter case, it would be more
convenient to have a flat slide, which controls
the illumination along an ordinate, so that it is
proportional to sin kx. This could be done by hav-—
ing varying opaqueness, differently spaced lines
or dots of different denseness. Two masks would
be needed for each coefficient to take care of
the sign of sin kx.
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Cathode followers use, IT: 13b »
Central limit theorem, IIT: 37a Haman machine, I: 5b-6a
Characteristic roots, III: 4, 26 Harmonic analyzers, IV: la, 10-16
Checking, III: 36a Harp planimeter, IV: 1a.
Cinema integraph, IV: 3b Harvard, Automatic Sequence Controlled Calculator,
Circuit theory, II: 6-7 I: %, 7b; III: 1%a, 29a, 34a
Clock, III: 34a Hatchet planimeter, IV: 6b ‘
Clodd, E., I: 1la Hazen, IV: 3b .
Clutch, II: 11b-12 _ Henrici Conradi analyzer, IV: 13b
Comptometer feed (see Feed) Holding relay, I: 3
Condenser integrator, II: 29-30a, 49 Hydraulic circuits, II: 3ha
Conradi instrument, IV: 8b
Control system for digital computer, III: 34-35 I.B.M. Sequence Controlled Calculator, III: 32a,
Conversion, Binary system (see Binary system) 34a
Conversion Planimeter, IV: 2b-3 Impedance, II: 30b-3la
Counters, I: 1b-3, 9b, 10a Index for memory, III: 32-33
Crawford, P., IT1: 33b Input system for digital computer, II1: 34
Current addition, II: 4a Integraph, IV: 1a, 3b, 7b-10a
Cycles, III: 33b, 35 Integrators, II: 22b-38a, 49a, H0b-51
‘ Integrometer, IV: la, 6b-7
Delay line memory, III: 32b
Detection, II: 44 : ' Jordan, C., IV: 1b
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Kamke, III: 37

Keyboard I 6-7a, 8b, 9
Keying, I: 14-1ha

Kranz, F. W., IV: 12b

" Kron, III: 6a
Kuehni, H. P., III: 12b

laplacian, III: Hb, 6
leibnitz wheel, I: Ha, 8a, 9b

levinson, N., III: 38

Linear equatlon solvers, III: 2-4, 16-21
Linear planimeter, IV: "6b

Links mult1p11er, II: 16b

Lipson, H., IV: 10a

Log cam, II 18a

Log potentiometers, II: 20

Lusternlk III: 4b

MacColl, II: 26b; III: 37b

Magnetlc memory, II: 54 IIiI: 33

Mallock, III: 2b-3

Many, III 4a

Marchant Calculating Machine Co., III: 7a
Mask, IV: b, 16b

Mason, Warren P., II: 3ha’

Matrix representation, III: 34
Mechanical analogues, II: 33b-35
Meiboom, III: 4a

Memory, I: 15b; II: 54; III: 27, 32
Memory index, III: 32, 33

Mercedes Euclid machine, I: 6, %a
Michelson, IV: 11a

Miller, D. C., IV: 14a
"Millionaire" machine, I: 12-13a
Milne, W. E., III: 7a

Mindlin, R. D., III: hb

Minorsky, III: 37b .
Modulation, II: Ha, 52
Morin, M. de, III: 1la -

Moulin, E. B., II 26b

Multipliers, I: 9-13a; II: 7b-22, 24b; III: 31b
Murray, F. J., III 18

Myers, D. M., IV: 9b

"Napier Bones," 1: 11-12a

Nine, "standing on-nine" carry, I: 8b
Nlnes complement, I: 8b

Nodes, II: 6-7a

Noise, II: 26; III: 36b, 37

Ohdner wheel, I: §b
Orders, III: 33b-35
Oscillators, II: 49b-H0a.

Partial differential equations, III: Ab-6
Peterson, H. A., III: 12b
Phototube, II: 41a; IV: 3b
Pin cam, II: 18b, 1%
Planimeters, -IV: 16
Poesch, I. H., III: 12b
Polar plan1meter, IV: 6b
Position coded, III: 28a, 32b
Positioning, I: 2b
Potentiometers, II: 12b-14, 19-21
Power supply, I1: 44b—45
Prytz, IV: 6b

II: 63 III: 4a

Puckle, O. S.,
Punch card machlnes : 13-14; III: 32
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Quipus, I: la

Radix two (see Binary)
R.C.A. Tube Manual, II: 43

Rachet, I:

Ragaz21n1 J R., III: 5b
Rajchman, III:

Randall, R, H., III b

Rate matching, “IT: 249

Rectifier squarer, I1: 21b-22

Rectifying tubes, II: 43-45H

Regener, III: 30b

Register (see also Counter), I: 10, ITI: 28

Relay, I: 3 : '

Resistances, addition of, II: §-6a
Multiplication, II: 19-20b

Rock, S. M., III: 17b

Roller wheel principle, IV: 1b

Roots of polymomial, III: 13a

Rosseland S., III: 12b

Russell, F. A., III: hb

Saver, R., III: 12b :

Secondary emission, III: 32b
Selection circuit, IIT: 33

Selling machine, I: 10b-11a

Selsyn, II: 64-6§

Selsyn control transformer, II: §4b
Servos, II: 19b, 20a, 21, 24b, 25, 2, 38b—41a
Shannen, G. IT1: &

Shift, II: 1la 12

Similar triangle multiplier, II: 16
Similitude III: 1-6

Sommerfeld, IV: 13a

Speedometer, II: 26b

Squarer, IT: 18b-19a, 20b-22, 53, Hda
Square root, III: 32a

Stability, III: 36b-38

Steering wheel, IV: '7b

Stratton, IV: 11a

Subtraction, I: 8b-9%, 15

Switch counter, I: 3a

Synchro system, II: 63b-65

Tape control, III: 35a

Tape squarer, I1: 1%a

Ten key machine, I: 7a

Tens carry, (see Carry)

Tens transmission (see Carry)
Thomas machine, I: Ab

Time coded machine, III: 28, 29, 32b
Torque amplifier, II: 41-42
Transformer, II: 15b-16a
Transient, II: 28a

Transient period, II: 2hb-26
Triangle solver, II: 17

Trigger Circuit, I: $b—4a; II: 39, 58-63; III: 28~

30
Tuned circuit integrator, II: HOb-H2a

Vacuum tubes, II: 13b, 42-49

Vallarta, III: 12b

Van der Akker, IV: 15b

Varigear, II: 12

Vierling, 0., III: 13a

Voltage addltlon, II: 4-ha

Voltage dupllcat1on circuit, use of, II: 4b-fa
von Neumann, J., III: 33b, 35a



Washburn, H. W., III: 17b Yoshino, Y., I: 1b

Watt hour meter, II: 28-29a Yu, Y. P., II: 48
Wheatstone bridge, II: 5-6a, 7, 19-20 Yule, IV: 14a, 15a
Wiechert, IV: 13a

Wilbur, J. B., III: 2

Wilcox, D. E., III: 17b zur Cappelen, Meyer, I: Ab
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Here is the basic material of a course in the theory of functions
which the author has given at Columbia University for some years,
Published a year ago in mimeographed form, it met with such
success that it is now presented in more substantial format, entirely
revised and edited by the author and by Dr. Milton Sobel. The
emphasis is on the complex variable, From this standpoint, about
two-fifths of the work is on the real variable with the remaining
time given to the complex. Halfway through, the student will
find himself equipped for higher courses on the real variable or
for a course on existence theorems for differential equations. At
the end he can study almost any topic of mathematical analysis;
above all, he has learned what it means to understand mathematics
and can deal with any mathematical book.

Professor Ritt, in treating the real number system, has used the
method of infinite decimals rather than the Dedekind or Cantor
theories. The decimals have the advantage of lacking profundity
and of not putting the student through a mathematical revolution.
All geometrical questions are formulated in arithmetic terms and
every topological assumption made is explicitly stated. The stu-
dent quickly sees that topological considerations are important
only for securing a rounded theory and may be disregarded as far
as cases arising on the applications are concerned.
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