
United States Patent (19)
Wooten

US005644755A

11 Patent Number: 5,644,755
45 Date of Patent:

54 PROCESSOR WITH VIRTUAL SYSTEM
MODE

(75) Inventor: David R. Wooten, Spring, Tex.

(73) Assignee: Compaq Computer Corporation,
Houston, Tex.

(21) Appl. No.: 394,680
22 Filed: Feb. 24, 1995
(51) int. Cl. ... G06F 12/10
52 U.S. Cl. ... 395/500
58) Field of Search 395/500, 800,

395/375, 650, 775, 700, 405

(56) References Cited
U.S. PATENT DOCUMENTS

12/1993 Bracking et al. 395/405
4/1994 Cohen ..

5,274,791
5,303,378
5,355,490 10/1994 Kou 395/700
5,517,651 5/1996 Hucket al. 395/775
5,517,657 5/1996 Rodgers et al. 395/800

OTHER PUBLICATIONS

Reaching Physical BoardAddresses in a PCFrom Windows
Protected Mode David Huffman, IEEE Mar. 1995.
Intel486TM SL Microprocessor SuperSet System Design
Guide, Nov., 1992 (Chapters 1-4 and 12).
Intel486TMSLMicroprocessor SuperSet Programmer's Ref
erence Manual, Nov., 1992 (Chapters 1-4 and 6).

Jul. 1, 1997

Pentium TM Processor User's Manual vol. 3: Architecture and
Programming Manual by Intel®, 1993, (Chapters 1-4, 9-15,
20 and 22).

Primary Examiner-Kevin J. Teska
Assistant Examiner-Dan Fiul
Attorney, Agent, or Firm-Pravel, Hewitt, Kimball &
Krieger

57 ABSTRACT

A processor having the prior three user addressing modes
and a new virtual system mode (VSM). The user modes
include real mode, protected mode and virtual 8086 mode.
In VSM, the processor can utilize the VSM addressing
mechanism and the mode of operation prior to entering
VSM. Transitions from the user modes to virtual system
mode can be made by indirect calls through a call gate or
through vectored entries. While in VSM the processor can
utilize VSM memory and I/O space modes, but can also
directly utilize the I/O space and memory of the user mode
present prior to entry into VSM by using a segment override.
The upper 16MB of the virtual system mode memory space
(0xff000000 through 0xffffffff) is designated as non-mapped
virtual system mode memory. Virtual system mode logical
addresses below 0xff000000 will be translated to physical
addresses by the current page table if paging is enabled
(protected mode). Upon exiting VSM, any processor regis
ters that were saved are restored so the user mode operation
can continue as if the emulation operation were performed
by the normal interrupt service routine.

86 Claims, 8 Drawing Sheets

WRTUAL SYSTEMMODEADDRESSING

310

ACCESS
RIGHTS

312

CSSEGMENT
SELECTOR SEGMENT

DESCRIPTOR

31 O

OFFSET 316

19 4 O

SELECTOR OOOO

DSSEGMENT
WOVERRIDE

314

31 O

OFFSET

306

PAGING
UNIT

300

PHYSICAL
ADDRESS

U.S. Patent Jul. 1, 1997 Sheet 1 of 8 5,644,755

100 102
MEMORY PROCESSOR UNIT

0 -o

BUS 106
CONTROLLER

108

110 to 1112
DEVICE

F.G. 1A

122

EXECUTION

BUS
INTERFACE

UNIT

ADDRESS

ONTROL

MEMORY
MANAGEMENT

UNIT

F.G. 1B

U.S. Patent Jul. 1, 1997 Sheet 2 of 8 5,644,755

GENERAL PURPOSE REGISTERS
31 15 87 O 16-BIT 32-BIT

200 ACCUMULATOR HX EAX
2O2 BASE BX EBX
204 COUNT CX ECX
206 DATA DX EDX

208 BASE POINTER BP EBP
210 SOURCE INDEX S ES
212 DESTINATION INDEX D ED
214 STACKPOINTER SP ESP

FIG. 2A

SEGMENT REGISTERS

15 O
220 CODE CS
222 STACK SS
224 DATA Ds

EXTRADATA ES
2263EXTRADATA FS

EXTRADATA Gs

INSTRUCTION POINTERREGISTER
1 15 O 32-BIT 3

232 EIP

U.S. Patent Jul. 1, 1997 Sheet 3 of 8 5,644,755

31

W
S
M

EFLAGS REGISTER

191817161514131211109 8 7 6 5 4 3 2 1 0

W NOPODITSZ
M | F. FFFFFF

WSM

ALIGNMENT CHECK

234

EMULATOR BUSY

CONTROLREGISTER

3.13029 18 16 5 4 3 2 1 0

T

PAGENGENABLE

PROTECTION ENABLE

FIG. 2D

U.S. Patent Jul. 1, 1997 Sheet 4 of 8 5,644,755

WSMENABLE REGISTER

31 8 7 6 5 4 3 2 1 0

W W
238 RESERVED D S

BF EM

WSM DEBUG

IGNORE INTERRUPT CHECK

DEFERRED INTERRUPT ENABLE

SOFTWARE EXCEPTION ENABLE

HARDWARE INTERRUPT ENABLE

IDFAULT ENABLE

LEVEL ENABLE
WSMENABLE

WSM STACK REGISTER
31 2 1 0

WSM VECTOR BASE
31 2 1 0

242 VECTOR BASE

FIG. 2F

U.S. Patent Jul. 1, 1997 Sheet 5 of 8 5,644,755

WSM I/O PROTECTION BITMAP REGISTERS

31 A 3 O

244 WSM IO PROTECTION BITMAP BASE ADDRESS SEZE

M
N
N

n N

WSM IO PROTECTION BITMAP

BTMAP
246

BITMAP

- one
FIG. 2G

REAL MODE ADDRESSING
15 O

304

ADDRESS
19 4.

SEGMENT
SELECTOR

FIG. 3A

302

5,644,755 Sheet 6 of 8 Jul. 1, 1997 U.S. Patent

008

13 SH40 018
#708

Gl

5,644,755 Sheet 7 of 8 Jul. 1, 1997 U.S. Patent

oc -ºl-l

808,

908

13 SHH00?8 018
9NISSHH00W 300W WHISAS TW[118||M

5,644,755 Sheet 8 of 8 Jul. 1, 1997 U.S. Patent

#7047

18

5,644,755
1.

PROCESSOR WITH VIRTUAL SYSTEM
MODE

FIELD OF THE INVENTION

This invention relates to a processor and more specifically
to a processor having a mode of operation for emulating
standard PC hardware transparently to the operating system,
with this mode of operation allowing segment registers to
operate according to different addressing modes at the same
time.

BACKGROUND OF THE INVENTION

The x86 family of personal computers is well established
in the marketplace. Computer manufacturers strive to design
the highest performing systems at the lowest cost. However,
often the highest performing or lowest cost parts from which
a computer can be built are not PC-compatible. If a com
puter is not PC compatible, the sales market for the com
puter is severely diminished, thus PC-compatibility is very
desirable. Currently, PC systems designers are limited in
their ability to build systems that do not conform to PC
hardware standards. The reason for the limitation is that
much of the existing software that runs on PC's makes
explicit assumptions about the nature of the hardware. If the
hardware provided by the systems designer does not con
form to those standards, many software programs will not be
usable. This limits the systems designer's ability to reduce
costs and improve functionality.

Currently, the most common means of running the soft
ware on a non-compatible machine is to use a software
program that does complete emulation of a PC. The emu
lation is performed on each instruction. This method is
practical only for machines that are not binary compatible
with x86 PC's because performance is poor.
One prior approach to using non-standard hardware

devices provided hardware circuitry to trap and store each
bus access to a standard PC device and then cause the
execution of an interrupt. The invoked interrupt handler then
determined the accessed address from the hardware
circuitry, converted this to the proper device address and
executed that operation. This technique worked adequately
when the processor and system were relatively simple and
only for certain operating systems. However, it is not
practical on current computer systems because of increased
complexity of the processor, system and operating systems
and the frequent unavailability of an interrupt.
This interrupt problem could be solved by the use of

System Management Mode (SMM) found in certain
processors, such as the Intel 486SL, 486 S-class and Pen
tium microprocessors. The SMIinterrupt cannot be masked
by software and therefore is always available to the system
manufacturer. However, there are several disadvantages to
the current SMM implementations for doing hardware emu
lation. The first is that entry to and exit from SMM requires
many processor cycles. This is because SMM implementa
tions were done with the assumption that the only thing that
would be done in SMM is power management. This assump
tion caused the SMM implementor to design the processors
so that the full state of the processor was saved on entry to
SMM and the full state of the processor was restored on exit
from SMM. These operations require 100's of processor
cycles. This entry/exit overhead of current SMM implemen
tations greatly limits it's usefulness for emulation.
A second disadvantage is that while in SMM access to

user memory is limited and/or cumbersome because of the
different modes of operation and their corresponding

5

10

15

20

25

30

35

45

50

55

65

2
addressing mechanisms. In this context, user memory is
memory that is used by programs when the processor is
operating in one of its operating modes. In the 386 family of
microprocessor, three different operating modes exist in
addition to SMM. Real mode is the default mode of opera
tion for the microprocessor and is provided for backwards
compatibility with the earlier 8086 and 8088 processors.
Protected mode was first introduced in the 80286 micropro
cessor and improved in the 386 microprocessor. Protected
mode removes most of the memory management limitations
of the earlier processors. The preferred mode of operation
for the 386 processor is its protected mode. Once the
processor is in protected mode, an additional real mode
environment, called virtual 8086 mode, can be created for
backward compatibility with real mode applications.
Memory management in the processor is performed by a
segmentation unit and a paging unit. Real mode utilizes a
16-bit selector, shifted left four bits, and a 16-bit offset to
produce a 20-bit address for addressing up to 1MB of
memory. The 16-bit offset limits the segment to a maximum
of 64k of memory. In protected mode the segment register
is redefined as a selector which points to a 32-bit segment
base address and the offset is increased to 32 bits, with the
segment base address and the offset simply being added to
provide the linear address. Protected mode may enjoy a 4GB
maximum memory segment. If paging is enabled, the linear
address is then translated by the paging unit into a physical
address. Paging is a mechanism to support a large physical
address space in memory using a small amount of memory
and some hard disk space. Virtual 8086 mode addressing is
similar to real mode in that the same 16-bit selector and
offset are used, however, it is different from real mode in that
the 1MB address range can be placed anywhere within the
32-bit protected mode addressing range. Thus, three differ
ent addressing schemes may exist in a computer system
using a 386 compatible processor. When the processor
switches to system management mode, a fourth hybrid
addressing mechanism is utilized. SMM generally uses a
32-bit flat memory model addressing scheme. Segment
register values are stilled shifted 4 bits and added to the
offset values, but both can be 32 bit values.

In a 386 compatible processor, addressing mechanisms
cannot be mixed between different modes of operation. For
example, when the processor is operating in 32-bit protected
mode and then switches to 16-bit real mode, no protected
mode addressing selectors or offsets can be directly used. To
access a protected mode address space with a real mode
addressing mechanism, the entire protected mode addressing
mechanism including selectors, offsets, and paging must be
calculated. Such is the case between any two addressing
modes. This limitation complicates device emulation when
using SMM because the SMM code must devote significant
amounts of time in an address translation process which
converts the address used by the user program into an
address that SMM can use to access the same memory
location. This process is complicated by the fact that the x86
architecture supports several different addressing modes so
that the SMM code must analyze the operational mode of the
user program and select an address conversion algorithm
that is appropriate to that mode. So this addressing mode
change in SMM further exacerbates the overhead problems,
so that use of the SMI is not readily feasible.
Thus, it is desirable to have a processor that can provide

emulation transparently to the operating system and appli
cation software while using the built-in memory manage
ment features but using very few processor cycles to enter
and exit the emulation operations and not having large
address translation burdens.

5,644,755
3

SUMMARY OF THE INVENTON

A processor embodying the principles of the present
invention includes a processor having the prior three user
addressing modes and a new virtual system mode (VSM).
The processor is preferably compatible with Intel 486 or
higher processors, and therefore in this context, the user
modes refer to normal operational modes of the processor,
including real mode, protected mode and virtual 8086 mode.

Virtual System mode (VSM) refers to the features pro
vided by the present invention. In VSM, the processor can
utilize the VSM addressing mechanism and one other, that
being the addressing mechanism of the mode of operation
prior to entering VSM.

Transitions from the user modes to virtual system mode
can be made by indirect calls through a callgate, such as by
a jump or call instruction, or through vectored entries, such
as a hardware interrupt or I/O fault. When transitioning from
the user modes to virtual system mode, the processor treats
the transition similar to a task switch, thus saving only
certain minimal processor registers depending on the VSM
entry cause. The remaining processor registers are not
disturbed, thereby providing low overhead for entry and exit
from virtual system mode.
While in the user modes, user mode addressing mecha

nisms remain unchanged. While in virtual system mode, the
processor can utilize VSM memory and I/O space modes,
but can also directly utilize the I/O space and memory of the
user mode present prior to entry into VSM. If in VSM and
a segment override is applied, the segment override register
is interpreted according to the addressing mechanism of the
mode of operation prior to entering VSM.
While in virtual system mode, memory addresses may be

paged or non-paged depending on the user mode from which
virtual system mode was called. Virtual system mode code
executes in a 32-bit logical space. The default data size is
32-bits, but overrides may be used. The upper 16MB of the
virtual system mode memory space (0xff000000 through
0xffffffff) is designated as non-mapped virtual system mode
memory. Virtual system mode logical addresses in this range
are directly converted to an addressable range of the pro
cessor. Virtual system mode logical addresses below
0xff000000 will be translated to physical addresses by the
current page table if paging is enabled (protected mode).
Otherwise, these addresses become physical addresses with
out modification (real mode).
VSM may be exited by one of three instructions. Upon

exiting, any processor registers that were saved are restored
so the user mode operation can continue as if the emulation
operation were performed by its own interrupt service
routine.

BREEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:

FIG. 1A is a block diagramillustrating a computer system
C containing a processor according to the present invention.

FIG. 1B is a block diagram of the processor.
FIG. 2A illustrates the general purpose registers of the

processor.
FIG. 2B illustrates the segment registers and instruction

pointer register of the processor.
FIG. 2C illustrates the flags register of the processor.

5

10

15

20

25

30

35

45

50

55

65

4.
FIG.2Dillustrates the Control Register 0 of the processor.
FIG. 2E illustrates the VSM enable register of the pro

CCSSO.

FIG. 2F illustrates the VSM stack register and VSM
Vector Base register of the processor.

FIG. 2G illustrates the VSM I/O protection bitmap reg
ister and VSM I/O protection bitmap of the processor.

FIG. 3A illustrates the real mode addressing mechanism
of the processor.

FIG. 3B illustrates the protected mode addressing mecha
nism of the processor.

FIG. 3C illustrates an exemplary addressing situation for
the VSM addressing mechanism of the processor.

FIG. 4 illustrates a segment descriptor of the processor.
DETALED DESCRIPTION OF THE

PREFERRED EMBODIMENT
The processor of the presentinventionis preferably based

on an Intel compatible 486 or Pentium class microprocessor,
however the invention could also be used with an Intel 386
class microprocessor. The use of the features described
herein could also be used with other types of microproces
sors. For purposes here, the terms microprocessor and
processor can be used interchangeably. The new mode
defined according to the present invention is in addition to
the existing modes of the 486 and Pentium processors, and
unless otherwise indicated, the operation and features of the
processors remain unchanged. Familiarity with the operation
of the 486 and Pentium are assumed in this description. For
any details, reference should be made to the appropriate data
book.
The processor of the present invention is designed to be

used in a DBM compatible computer. FIG. 1A is a block
diagram of the processor Pin an exemplary computer system
C. The processor P is connected to a memory unit 102 and
abus controller 106 by a hostbus 104. Processor P provides
the data, address and control signals to the hostbus 104 for
communicating with external circuits, and likewise receives
data on the host bus 104 from the external circuits. One of
such external circuits is the memory unit 102. Memory unit
102 provides conventional memory storage for programs
and data of the computer system C. The bus controller 106
is connected by an I/O bus 108 to a ROM 110 and several
I/O devices 112, such as a keyboard, floppy disk, hard disk,
serial port, parallel port, and monitor. The items referred to
herein but not explicitly shown on the figures are offered for
illustrative purposes and are not generally important to the
enablement of the present invention since the PC architec
ture is well known to those of ordinary skill in the art.
Additionally, the processor of the present invention could be
used in a wide variety of computer systems.

FIG. 1B illustrates the major portions of processor P. The
processor P has a bus interface unit 120 connected to an
execution unit 122 and a memory management unit 124. Bus
interface unit 120 provides data, address and control signals
for communicating with external circuits. Execution unit
122 contains logic necessary for executing instructions,
including an instruction prefetch and predecode unit, a
control unit for decoding and sequencing of instructions, and
an arithmetic logic unit containing a set of registers for
executing each individual instruction. The execution unit
122 works in conjunction and is connected to the memory
management unit 124. The memory management unit 124
contains the logic necessary for address generation and
protection checking and includes a segmentation unit and a
paging unit. These functions will be described in more detail
below.

5,644,755
5

The bus controller 106 translates the processor P cycles
into I/O bus 108 cycles for providing communication
between the processor P and the I/O devices 112. In the
preferred embodiment of the computer system C, the I/O
devices 112 may not be PC-compatible. Compatibility is
important because in the PC, software generally expects:
certain registers and bits to be present in most I/O devices.
If a device is designed into a computer that is not
compatible, the software would not be able to communicate
directly with the device, therefore the computer would not
operate properly. A processor embodying the present inven
tion would handle non-compatible device by having a facil
ity for: interrupting the processor when software tries to
access the known non-PC-compatible device; and process
ing the operation transparently to the software so that the
software believes the device is PC compatible. The feature
that provides these benefits is hereinafter known as virtual
system mode (VSM).
The processor Phas four modes of operation, namely, real

mode, protected mode, virtual 8086 mode and virtual system
mode. In this context, real mode, protected mode and virtual
8086 mode are referred to as user modes. Those having
ordinary skill in the art will recognize that the user modes
refer to the modes of operation for executing conventional
software such as the operating system and applications
software. A complete description of real mode, protected
mode and virtual 8086 mode can be found in the Intel 486
microprocessor databook. Briefly, the purpose of real mode
operation is for backward compatibility with the earlier
16-bit, 8086 processor. Additionally, real mode is the default
mode of the processor and is required to setup the processor
for protected mode operation. Real mode and virtual 8086
mode are limited to accessing only 1MByte of physical
memory and are thus not the preferred mode of operation.
Protected mode provides access to the memory management
capabilities of paging and protection, discussed below, and
operates in a 32-bit environment with 4GByte physical
memory limit and therefore, in conjunction with virtual
system mode, is the preferred mode of operation of the
processor. Within protected mode, software can perform a
task Switch to enter into tasks known as virtual 8086 mode
tasks thus emulating real mode as a task from within the
protected mode of operation.

Virtual system mode (VSM) provides an additional mode
of operation from which a VSM emulation task can be
performed transparently to the conventional software
executing on the computer system. Abetter understanding of
VSM can be obtained from the following detailed descrip
tion.

REGISTERS
The processor P contains eight general purpose registers

which are used for both address calculation and data opera
tions and can support data operands of 1, 8, 16 and 32 bits.
FIG. 2A illustrates the general purpose registers of the
processor P. The eight registers are: the accumulator register
(AX) 200, the base register (BX) 202, the count register
(CX) 204, the data register (DX) 206, the base pointer
register (BP) 208, the source index register (SI) 210, the
destination index register (DD 212, and the stack pointer
register (SP) 214. Those having ordinary skill in the art will
recognize the terms in parenthesis as the commonly used
names for the 16-bit form of the registers. The 32-bit form
of the general purpose registers are named EAX, EBX,
ECX, EDX, ESI, EDI, EBP and ESP respectively. The least
significant 16-bits of the 32-bit general purpose registers can
be accessed separately by using the 16-bit names of the
registers AX, BX, CX, DX, SI, DI, BP and SP as described
above.

10

15

20

30

35

45

55

65

6
Turning now to FIG.2B, six 16-bit segment registers and

the instruction pointer are shown. The six 16-bit segment
registers are used for segmentation, discussed below, and are
named the code segment register (CS) 220, the stack seg
ment register (SS) 222, the data segment register (DS) and
the extra data segment registers (ES, FS and GS) 226. The
commonly used names are the CS, SS, DS, ES, FS and GS
segment registers. The 16-bit segment registers hold values,
called selectors, identifying the currently addressable
memory segment. A segment is simply a section of memory
whose boundaries can be described by a base address and an
offset from the base address. The selectorin CS indicates the
current code segment, the selectorin SS indicates the current
stack segment while the selectors in DS, ES, FS and GS
indicate the current data segments.
The instruction pointer 232 holds the offset of the next

instruction to be executed. The 32-bit instruction pointer 232
is commonly referred to as the EP register and the 16-bit
instruction pointer 232 is named the IP register. The offset
contained in the instruction pointer 232 is always relative to
the base of the code segment, thus the logical address for the
next instruction address is calculated by adding the offset to
the code segment base address.

Referring now to FIG. 2C, the flags register 234 of the
processor Pis shown. The flags register 234 contains a 32-bit
value named EFLAGS, while the lower 16-bits of flags
register 234 contain the 16-bit value named FLAGS. The
16-bit portion is used when executing 8086 and 80286 code.
Bit 17 is defined as the virtual 8086 mode (VM) flag and is
set by the processor P if virtual 8086 mode is the current
operating mode. Bit 3 is defined as the emulator busy (EB)
flag and is set when, in virtual system mode, an exception is
taken causing VSM to again be entered, and is cleared when
the exception routine is exited. When set, and the next
instruction executed causes an exception that enters VSM,
the pushed EFLAGS/FLAGS image will have the EB flag
sets. If the instruction does not cause a fault or exception,
then a deferred interruptfault is generated. Bit 31 is defined
as the Virtual System Mode (VSM) flag and is set when
virtual system mode is entered and cleared when virtual
system mode is exited by an IRET instruction or the flags
register 234 is loaded without the VSM flag set. The VSM
flag cannot be set with a Pop Stack into Flags (POPF)
instruction or an Interrupt Return (IRET) instruction. It may
be set by a task switch if VSM is enabled. All defined flags
of the flags register 234, with the exception of the EB flag
and VSM flag, are used by the user modes. When in virtual
system mode, instructions are additionally responsive to the
EB flag and VSM flag so that if VSM code is running and
an additional exception is again taken to VSM code, upon
return from the subsequent exception, processing will return
to the original VSM routine instead of exiting VSM code
completely.

Referring now to FIG. 2D, Control Register 0 (CR0) 236
of the processor P is shown. CR0 contains 6 bits for control
and status purposes including the Paging Enable (PG) bit
and the Protection Enable (PE) bit. Those skilled in the art
will recognize that these bits help define the user modes of
operation in the processor P, and are accessed by load and
store instructions. If the PGbit and the PE bit are cleared, the
processor Pis operating in real mode. If the PGbit is cleared
and the PE bitis set, the processor Pis operating in protected
mode. If the PG bit and the PE bit are set, the processor P
is operating in paged protected mode. When the PGbit is set
and the PE bit is cleared, the processor state is undefined and
loading this combination will cause an exception. However,
if this is attempted while operating in virtual system mode,

5,644.755
7

loading this combination will not raise an exception but will
enable paging, thus having the effect of enabling paging for
a real mode application. If the PE-bit is set and the VM-bit
is set, the processor is operating in virtual 8086 mode.
Virtual system mode selection is controlled by a bit in the
VSM Enable register 238, discussed below, and is indepen
dent of the user mode and therefore does not affect the use
of the PG, PE or VM bits.

Referring now to FIGS. 2E-G, four VSM registers are
shown. FIG. 2E illustrates the VSM enable register 238 for
enabling most VSM functions. FIG. 2F illustrates the VSM
stack register 240. FIG. 2G illustrates the VSM vector base
register 242. FIG. 2G illustrates the VSM I/O protection
bitmap register 244 and it's corresponding bitmap 246. The
four VSM registers are used only during execution in virtual
system mode and are not used by user mode tasks. These
registers are accessible from any user mode until VSM is
enabled. Turning now to FIG. 2E and Table 1 below, the
format of the VSM Enable register 238 is defined.

TABLE 1.

Bits Name Description

O VSME VSM Enable. Setting this bit enables
Virtual System Mode. This bit may
only be set when the processor is
executing in real mode or protected
mode level 0. Once set, accesses to
this or any other VSM register may
only be made while the processor is
executing in VSM.
Level 0 Enable. When this bit is set,
all calls that target level 0 will
cause a switch to WSM. When the RPL
of the selector in the call gate is 0,
WSM will be entered using the offset
portion of the gate as the starting
address in VSMlogical space. If the
gate specifies an argument value, the
specified number of words are copied
to the WSM stack. This bit should
only be set when the OS is VSM aware.
The call frame on the VSM stack is
slightly different from the call frame
fora level 0 call.
Setting this bit also causes the
processor to maintain the WSM stack in
the TSS of a task. When LOE is set,
the level 0 stack pointer in the TSS
contains the base of the VSM stack.
The level OTSS is not used. A task
switch to a TSS with the WSM bit set
in the saved EFLAGS image will cause
the new task to be started in WSM. If
LOE is not set, the VSM bit in the
EFLAGS register is ignored on a task
switch.
I/O Fault Enable. Setting this bit to
1 causes all I/O accesses by other
than VSM code to be checked against
the VSM I/O protection bitmap. If the
I/O location is protected, then
accesses will cause a fault to VSM
through the VSM I/O protection fault
vector. When this bit is set and the
processor is running in protected
mode, the protected mode I/O
protection bit map will be checked
exceptions generated before the VSM
I/O protection bitmap is checked.
VSM I/O faults are generated after all
other access checks have been
completed. The normal protected mode
I/O protection bitmap is checked and
exceptions generated before any
address checks. The VSM I/O

2 IOE

10

15

20

25

30

35

45

50

55

65

8

TABLE 1-continued

Bits Description

protection bitmap is checked last
(after memory addresses have been
validated).
If SEE is set, this bit becomes
redundant.
Hardware InterruptEnable. Setting
this bit to 1 causes all external
hardware interrupt events (INTR and
NMT) to be dispatched through the
Hardware Interrupt Vector.
Software Exception Enable. Setting
this bit to 1 causes all exception
conditions generated by user mode
software to be dispatched through the
Software Interrupt Vector. When this
bit is set, I/O protection faults
generated from the I/O protection
bitmap in the TSS will fault using the
VSM semantics and through the VSM I/O
protection fault vector. Also, the
I/O protection bitmap in the TSS will
be checked instead of the WSMI/O
protection bitmap (after address
checking).
Deferred Interrupt Enable. When this
bit is set, a VSM Deferred Interrupt
is generated when the IF bit is set by
user code. This bit is used in
combination with the Ignore IF bit to
allow VSM to manage hardware
interrupts regardless of the IF
manipulations by other software. If a
hardware event occurs that needs to be
handled by non-VSM code, that code may
have IF cleared, indicating that it is
not capable of accepting a hardware
interrupt at this time. If this
occurs, the VSM hardware interrupt
handler should setIDE so that VSM
will regain control when the user code
sets IF. The deferred interrupt may
then be delivered.
Ignore Interrupt Flag. Setting this
bit causes the processor to allow
entry to VSM when any external
hardware interrupt pin is active
regardless of the setting of IF in
EFLAGS. IF is not ignored in WSM.
VSM mode debug. Setting this bit
enables the processor dependent debug
exceptions when running in WSM
Reserved for future use.

5 DIE

7 VDB

8-31 Reserved

FIG. 2F illustrates the VSM stack register 240 and VSM
vector base register 242. The VSM stack register 240 is a
32-bit register indicating the starting logical address, or top,
of the VSM stack. The VSM vector base register 242 is also
a 32-bit register indicating the logical base address of the
VSM interrupt vector table. These registers are both acces
sible from any user mode until VSM is enabled. In both
registers, bits 0-1 are always "0" and writing a “1” is
ignored and will not produce an exception.

Turning now to FIG. 2G, the VSM I/O protection bitmap
register 244 and its corresponding VSM I/O protection
bitmap 246 are illustrated. The 28-bit base address field
defines the physical base address of a physically contiguous,
16-byte-aligned, VSM I/O protection bitmap 246. The size
field is a 4-bit value that when raised to the power of two
indicates the size, in bytes, of the bitmap. For example, a
value of 0 indicates a single byte table, a value of 1 indicates
a 2-byte table and a value of 12 indicates an 8-Kbyte table
(64 kbits). Each bit of the bitmap specifies whether the
byte-wide address associated with the bit can be accessed by

5,644,755

a user mode operation. This bitmap is in addition to the I/O
permission bitmap of the Intel486 microprocessor. Thus, the
normal I/O permission bitmap is checked, and exceptions
generated before the VSM I/O protection bitmap is checked.
When the VSME-bit is set, every I/O access is confirmed
through the VSM I/O protection bitmap register. If access to
that address is protected, then the user mode operation is
vectored into a VSM handler.

MEMORY MANAGEMENT

Memory management in the processor P is performed by
a segmentation unit and a paging unit. Segmentation is a
mechanism for providing many independent address spaces.
Paging is a mechanism to support a large physical address
space in memory using a small amount of memory and some
hard disk space. Addresses are generated differently depend
ing upon the mode of operation.
The processor has three distinct address spaces known as

logical, linear, and physical. An address issued by a program
is a logical address and consists of a selector and an offset.
Generally, the selector identifies a particular segment, and
the offset identifies an address within the segment. Selector
values are used by loading the value into the corresponding
segment register discussed above. By using segments and
offsets the processor can access a total of 64 Terabytes of
logical address space in protected mode. The segmentation
unit translates the logical address into an address for a
continuous, unsegmented address space, called the linear
address space. If the paging unit is enabled, the linear
address is translated into the physical address, otherwise, the
linear address corresponds to the physical address. The
processor can access up to 4 Gigabytes of physical address
space.
As stated, a logical address consists of a selector and an

offset. One of the primary differences between real mode
and protected mode is the way the segmentation unit trans
lates the logical address into a linear address.

FIG. 3A illustrates the real mode addressing mechanism.
In real mode, the segmentation unit shifts the 16-bit selector
302 left four bits and adds it to the 16-bit offset 304 to create
a physical address 300. No paging is used and all tasks
operate at the most privileged level. Virtual system mode
addressing is similar, except that no segment values are used
and the offset is 32-bit based, not 16-bit based as shown.
Because no segment values are used, all offsets are zero
based. Therefore VSM addressing is a flat 32 bit model.

FIG. 3B illustrates the protected mode addressing mecha
nism. Also referring briefly to FIG. 4, in protected mode, the
16-bit selector 302 is used to specify an index to a segment
descriptor 400 containing the 32-bit segment base address
602 which the segmentation unit then adds to a 32-bit offset
304 to create the linear address 308. Each selector has a
corresponding segment descriptor 400 which is automati
cally loaded into a segment descriptor register when a
selector value is loaded into a segment register. The two
lower bits of the 16-bit selector 302, are termed the requestor
privilege level bits (RPL) and define the privilege level of
the original supplier of the selector. Privileges are discussed
in more detail below.

In real mode, protected mode and virtual 8086 mode,
there are two main types of non-system segments: code and
data. Instructions do not explicitly need to specify which
segment register is used to access a segment. In general,
code references use the selector in the CS register, data
references use the selector in the DS register, and stack
references use the selector in the SS register, however, the

10

15

20

25

30

35

45

50

55

65

10
defaults can be overridden. Special segment override pre
fixes allow a specific segment register to be used in place of
the default segment registers. However, since the addressing
mechanism for real mode and protected mode are
incompatible, real mode selectors and offsets cannot be used
when operating the processor P in protected mode, and
similarly, protected mode selectors and offsets cannot be
used when operating the processor P in real mode.
A similar problem is found in those processors having a

system management mode. The addressing mechanism of
the processor in system management mode, is incompatible
with either real mode or protected mode, thus if using a
processor with system management mode and emulation is
desired, the user mode addresses must be translated into
addresses compatible with the SMM addressing mechanism.
This procedure is costly in terms of processing time.
When the processor Pis operating in virtual system mode,

the prior mode of the processor P (the mode of operation
when the VSM event occurred), can be determined by the
state of the PE-bit and the VM-bit. VSM can therefore be
looked at as a submode of each of the user modes. When a
segment register override is requested in VSM, the segment
selector value is interpreted as being either a segment base
address (real mode or virtual 8086 mode) or an index
(protected mode) according to the context of the processor
Pas defined by the PE-bit and VM-bit. Thus, whenin virtual
system mode, the addressing mechanism of the previous
mode of operation can be used for VSM operations, there
fore making emulation much simpler.

Returning to FIG. 4, the segment descriptor register
contains the segment descriptor 400 corresponding to the
particular segment selector 302 loaded in a segment register
(220-226). The segment descriptor 400 consists of a seg
ment base address 402, a segment limit 404, and segment
attribute and access right bits 406. The segment descriptor
400 contains two access bits, called DPL or descriptor
privilege level bits, which define the least privileged level at
which a task may access that descriptor, and an attribute bit
termed the D-bit which indicates the default length for
operands and offsets. If D=1 then 32-bit operands and 32-bit
addressing modes are assumed. If D=0 then 16-bit operands
and addressing modes are assumed. Regardless of the
default precision of the operands or addresses, the processor
is able to execute either 16-bit or 32-bit instructions by
specifying an override prefix. The segment base address 402
defines the starting address of the segment. The segment
limit 404 is combined with the granularity (G) bit to define
a logical page size of 1 byte or 4kbytes with an offset limit
of 1MB or 4 GB. The AVL, P, S, and Abits are used as in
the 486 or Pentium and are described below.

Virtual System Mode Addressing
In virtual system mode, addresses are generated assuming

32-bit addressing without segmentation, and the flat memory
model is employed, thus resulting in code, stack and data
segments pointing to the same 4 GB address space. If a
segment override is applied, then the address generation is
performed using the specified segment register(s) with the
contents of the segment register(s) interpreted as being
either a segment value (real mode or virtual 8086 mode) or
a selector (protected mode) according to the context of the
processor prior to entering VSM as defined by the PE-bit and
VM-bit, followed by paging checks if enabled, as similarly
performed in user mode addressing. For example, if the
processor was in real mode, PE=0 and VM=0, prior to
entering VSM (i.e., a VSM event occurred while in real

5,644,755
11

mode) and then if while in VSM a segment override is
applied, the VSM addressing mechanism will interpret the
address using the real mode addressing mechanism.

FIG. 3C illustrates the exemplary addressing situation
described above. The default mode, of an instruction is
always 32-bits. Thus, the segment selector 312, here illus
trated by the code segment, indexes to a base address 402
that is the combined with an offset 310 to produce the linear
address 308. Normally the paging unit 306 is disabled in
VSM and the linear address is also the physical address. In
the flat memory model used by VSM the base address 402
is set to 0x00000000h and the offset produces the 32-bit
address. If a segment override is applied, here represented as
a data segment, the segment selectorisinterpreted according
to the context of the processor prior to entering VSM-in
this case real mode. Therefore the DS selector 314 is shifted
left four bits and added to an offset 316 to produce a 20-bit
real mode address. Protected mode addresses can be simi
larly generated but only if the processor P was in protected
mode prior to entering VSM.
When a segment override prefix is present on an

instruction, the address modulus of the operand is deter
mined by the D-bitin the code segment descriptor. The D-bit
in the code segment descriptor register represents the default
addressing and data size for the user mode. For instructions
which have two memory operands, the D bit only affects the
address modulus of the operand associated with the segment
override prefix. For example, if the D-bit is 0 and a move
data from string to string instruction (MOVS) is executed,
the source address will be ESI (a VSM memory source) and
the destination address will be EDI (a VSM memory
destination). If the same instruction is executed except a DS
user mode segment override is applied, the source address
will be DS:SI (a user mode source) and the destination will
be EDI (a VSM memory destination). An instruction that
uses ES as the default segment (i.e., no segment override
allowed) may only have an address size prefix. An instruc
tion that defaults to the DS segment and allows a segment
override prefix, may use any segment as the override.
Instructions that have two memory operands (e.g., MOVS,
CMPS)may have two segment prefixes. For these
instructions, if the ES override prefix is present, it will apply
to the destination address only. Any segment overrides other
than ES will apply to the source operand. ES may not be
used twice to force its use for both source and destination.
The foregoing discussion of VSM segment override prefixes
is summarized in Table 2.

TABLE 2

Segment Address
Override Size Address
Prefix Prefix D-bit Modulus

No X X 32
Yes No O 16
Yes No 1. 32
Yes Yes O 32
Yes Yes 1. 16

In virtual system mode, instructions such as Loop Control
with CX Counter (LOOP) and Repeat Following String
Operation (REP) which have an implied CX/ECX counter
will use ECX unless an segment override and/or address
prefix is present. If only an address prefix is present, then CX
is used as the count register. If a segment override prefix is
present, then the D-bit of the code segment descriptor will
govern the choice along with an address prefix, if present.

10

15

20

25

30

35

45

50

55

65

12
Therefore, if a segment override prefix is present and, if the
D-bit is 0 and no address prefix is present or if the D-bit is
1 and an address prefix is present then CXis used, otherwise
ECX is used. The foregoing discussion of LOOP/REP
Counter usage is summarized in Table 3.

TABLE 3

Segment Address Count
Override Size Register
Prefix Prefix D-bit Used

No No X ECX
No Yes X CX
Yes No O CX
Yes No 1. ECX
Yes Yes O ECX
Yes Yes 1. CX

The processor P can support 8-bit, 16-bit and 32-bit data
types. While in virtual system mode, the default data size is
32-bits, regardless of the D-bit, unless an instruction explic
itly calls for a byte operand. Additionally, a operand-size
prefix may be used to force a 16-bit operand. If a segment
override prefix is present, the size of operands that are not
explicitly byte operands are controlled by the D-bit in the
code segment descriptor and an operand-size prefix. The
foregoing discussion of VSM operand sizing is summarized
in Table 4.

TABLE 4

Segment Operand
Override Size Data
Prefix Prefix D-bit Size

No No X 32
No Yes X 16
Yes No O 16
Yes No 1. 32
Yes Yes O 32
Yes Yes 1. 16

If a segment override prefix is present on an instruction
that has two memory operands, the size is determined by the
combination of the D-bit in the code segment descriptor and
the operand-size prefix and will apply to both operands. The
combinations for an instruction having two memory oper
ands and not explicitly a byte operand are listed in Table 5.
Any segment register other than ES can be used as a segment
override prefix to modify the source address. The destination
operand address alone can be modified by using an ES
prefix

TABLE 5

Oper- Ad
Segment and dress
Override Size Size Data
Prefix Prefix Prefix D-bit Size Source Dest'n Count

None No No X 32 ESI EDI ECX
None No Yes X 32 ESI EDI CX
None Yes No X 16 ESI EDI ECX
None Yes Yes X 16 ES EDI CX
DS No No O 16 SI EDI CX
DS No No 1. 32 ESI EDI ECX
DS No Yes O 16 ESI EDI ECX
DS No Yes 1. 32 SI EDI CX
DS Yes No O 32 SI EDI CX
DS Yes No 1. 16 ESI EDI ECX
DS Yes Yes O 32 ESI EDI ECX

5,644.755
13

TABLE 5-continued

Oper- Ad
Segment and dress
Override Size Size Data
Prefix Prefix Prefix D-bit Size Source Dest'n Count

DS Yes Yes 1. 16 SI EDI CX
DS, ES No No O 16 SI DI CX
DS, ES No No 1. 32 ESI ED ECX
DS, ES No Yes O 16 ESI EDI ECX
DS, ES No Yes 1. 32 SI D CX
DS, ES Yes No O 32 SI DI CX
DS, ES Yes No 1. 16 ESE EDI ECX
DS, ES Yes Yes O 32 ESI EDI ECX
DS, ES Yes Yes 1. 16 SI DI CX

While in virtual system mode, memory addressing to
VSM memory may be paged or non-paged and is dependent
on whether paging is enabled by the user mode operations.
VSM code executes in a 32-bit logical space and VSM
addresses are generated as 32-bit addresses by default. The
upper 16-MByte of VSM memory (0xff000000 through
0xffffffff) is designated as non-mapped VSM memory. Logi
cal addresses generated in this range are converted to an
address that is in the upper 16-Mbyte of the physically
addressable range of the processor PVSMlogical addresses
generated below 0xff000000 are translated to physical
addresses by the current page table if paging is enabled,
otherwise these addresses become physical addresses with
out modification.

If a segment override is applied when addressing VSM
memory, and the resulting logical address references
memory at or above 0xff000000, the address is deemed not
to reference non-mapped VSM memory and is translated
into a physical address by the paging unit, if enabled. If no
segment override prefix is used, the access is to VSM
memory.

PROTECTION

The processor Phas four levels of protection for support
ing multi-tasking operating systems and to isolate and
protect user programs from each other and the operating
system. The privilege levels control the use of privileged
instructions, I/O instructions, and access to segments and
segment descriptors. Level 0 is the most privileged and level
3 is the least privileged. The current privilege level (CPL)
specifies the task's privilege level which equals the privilege
level of the code segment being executed. For virtual system
mode addressing, CPL is level 0. While in VSM, for
purposes of protection checking of user mode addresses,
CPL is determined by the settings of the PE-bit, the VM-bit
and the two low bits of the CS register. If PE=0, then CPL
is assumed to be level 0. Ef PE=1 and VM=1, then CPL is
assumed to be level 3. If PE=1 and VM=0, then the CPL is
the low two bits of the CS segment register.

Segmentation provides another basis for protection. All of
the descriptors in a system are contained in tables recog
nized by processor hardware. As described above, segment
descriptors are 8-byte quantities which contain the attribute
information about a given segment. These attributes include
the access rights such as: protection level, read, write or
execute privileges, the default size of the operands, and the
type of segment. There are two main types of non-system
segments: code segments and data segments (includes
stacks). The segment (S) bit determines if a given segment
is a system segment (S=0), or a code or data segment (S=1).
Code and data segments have several descriptor fields in

10

15

20

25

30

35

45

50

55

65

14
common. The accessed (A) bit is set whenever the processor
accesses a descriptor. The executable (E) bit indicates if a
segment is a code (E=1) or data segment (E=0).

In a data segment descriptor, the expansion direction (ED)
bit specifies if a segment expands downward (ED=1, i.e.,
stack) or upward (ED=0, i.e., data). Data segments are
readable and the write (W) bit controls the ability to write
into a segment. Data segments are read-only if W-0.
A code segment may be designated execute-only or

execute/read as determined by the read (R) bit. Code seg
ments are execute only if R=0, and execute/read if R=1.
Code segments may never be written to, however in virtual
system mode, the DS segment register may be loaded with
a code selector with no exception generated. Upon loading
the DS register, the access rights for the segment will be
forced to E=1 (code), ED=1 (expand down segment) and
W=1 (read/write).

Protection checking is also automatically performed when
a task switch is undertaken. Call gates are used to change
privilege levels and are used to control access to entry points
within the target code segment. Call gates are primarily used
to transfer program control to a more privileged level. The
call gate descriptor consists of three fields: the access byte,
a selector and an offset which point to the start of a routine,
and an argument count which specifies how many param
eters are to be copied from the caller's stack to the stack of
the called routine. The argument countfield is only used on
call gates when there is a change in the privilege level.

If the level 0 enable (LOE) is set in the VSM enable
register 238, indirect calls through a call gate will enter
virtual system mode if the requestor privilege level (RPL) of
the gate's selectoris 0. In this case the calling routine pushes
ESP, EFLAGS and EP onto the stack, and the gate's offset
value is placed in EIP. If the gate indicates that an argument
listis present, the specified number of words are transferred
from the stack of the calling program into the VSM stack.
When VSM is entered due to a level 0 call, the entry point
for the routine cannot be the same as it is for WSM code
calling the same routine. AVSM routine that is callable from
privilege levels 1, 2 and 3 requires a stub routine. This stub
routine may simply call the VSM routine, but when a return
is made to the stub routine, it is responsible for adjusting the
stackpointer (ESP) pushed on the stackso that the user stack
will not pop the call values. The stub routine then executes
an IRET that returns control to the outer level. If EFLAGS
is used to convey the return conditions, the stub routine must
also update the pushed EFLAGS values before returning.

I/O SPACE

The processor has two distinct physical address spaces,
namely, memory and I/O space. The I/O space consists of 64
kbytes of physical address space. The processor includes a
VSM I/O protection bitmap register 244, as shown in FIG.
2G. The VSM I/O protection bitmap register 244 contains a
size field and an address field, as discussed above. While in
virtual system mode and the hardware interrupt enable bit is
set, the processor consults the VSM I/O protection bitmap
246 to determine if access to the I/O port is allowed, or a
VSM interrupt to be generated instead. If the bit correspond
ing to an I/O address is set, then an access to that address will
cause VSM to be entered through the VSM I/O protection
fault vector for emulation. The VSM I/O protection bitmap
address register 244 is only accessible in virtual system
mode.

INTERRUPTS/EXCEPTIONS
Interrupts and exceptions alter the normal programflow in

order to report errors or handle external events or excep

5,644,755
15

tional conditions. All VSM events excepta VSMStackFault
are enabled in the VSM Enable register 238. If the VSM
event is not enabled, then interrupt processing occurs
through the conventional interrupt descriptor table. If the
VSM event is enabled, for VSM events, interrupts and
exceptions are handled through a VSM vector table. This
vector table contains a single 32-bit value for each VSM
event that points to the entry point for the VSM handler as
defined in Table 6. The VSM vector table is located in VSM
memory starting at the logical address contained in the VSM
vector base register 242.

TABLE 6

Vector Offset WSMEvent

O OOh VMI Instruction Trap
1. 04h Deferred Interrupt Trap/Fault
2 08h WSMTO Protection Fault
3 0Ch. Hardware Interrupt
4. 1Oh WSM Software Exception
5 14h WSM Stack Fault
6 18h RESERVED
7 Ch. RESERVED

VSM interrupts and exceptions are referred to here as
VSM events. When an VSM event occurs, the following
actions happen. First, at a minimum, the current program
address (EIP) and the flags register 100 (EFLAGS) are
pushed on the stack to allow resumption of the interrupted
program. If the processor is not in virtual system mode when
the VSM eventis generated, the current stackpointer (ESP)
is pushed first before the current program address and flags
register 100. Thus, the VSM-bit in the pushed EFLAGS
value will indicate whether the stack pointer (ESP) was
pushed on entry so that it can be restored on VSMexit. Next,
an 8-bit vector is supplied to the processor which identifies
the conventional entry in the user interrupt table. Interrupts
have externally supplied vectors, while exceptions have
internally supplied vectors. The processor then determines
from the user vector which of the eight VSM vectors is
applicable. The VSM vector table contains the starting
address of the VSM interrupt service routine. Then the VSM
interrupt service routine is executed. VSM code can then
determine the source of the interrupt and respond
appropriately, thus handling conventional interrupts conven
tionally or handling non-conventional interrupts with VSM
emulation code. The VSM vectors are individually described
below.

If enabled in the VSM enable register 238, a Virtual
System Mode Interrupt (VMI) instruction will be trapped
and the exception handled by VSM vector 0, thus immedi
ately forcing the processor into virtual system mode. Traps
are exceptions that are reported immediately after the execu
tion of the instruction which caused the problem. Faults are
exceptions that are detected and serviced before the execu
tion of the faulting instruction.

If the Deferred Interrupt Fault/Trap (DIE) bit is set in the
VSM Enable register 238, and a user mode program
executes an instruction that sets the interrupt enable (IF-bit)
in EFLAGS, a trap is taken through VSM vector 1. A
deferred interrupt fault/trap is required when the following
situation arises. When certain programs do not want to
service interrupts, the interrupt enable (IF) bit in EFLAGS
may be disabled. However, the ignore interrupt flag (IIF-bit)
in the VSM Enable register 238 allows the processor to enter
VSM when any external hardware interrupt is active regard
less of the setting of the F-bit. Therefore, a subsequent
hardware interrupt will cause a VSM interrupt through VSM

10

15

20

25

30

35

45

50

55

60

65

16
vector 3. If the VSM hardware interrupt handler determines
that the interrupt needs to be handled by non-VSMhandlers,
the deferred interrupt enable (DIE) bit should be set so that
the VSM deferred interrupt handler will regain control when
the user code sets the IF-bit again and the deferred interrupt
can then be delivered to the user code.

If the DIE-bit is cleared in the VSM enable register 238
but the emulator busy (EB) bit is set in EFLAGS and the user
mode program executes an instruction that sets the IF-bit,
but does not cause any otherfault or trap, thenafaultistaken
through VSM vector 1. If the DIE-bit is set in the VSM
enable register 238 and the emulator busy (EB) bit is set in
EFLAGS and the user mode program executes an instruction
that sets the IF-bit, then a fault is taken through VSM vector
1, but the F-bit is left cleared.

If the I/O fault enable (IOE) bit in the VSM enable register
238 is set and an I/O access is made to a location that has the
corresponding bit in the VSM I/O protection bitmap setto 1,
then that I/O device requires a VSM handler, and the
processor will enter virtual system mode and begin execut
ing at the location pointed to by VSM vector 2. If the
instruction causing the I/O access references more than one
byte, any individual byte that has a corresponding bit in the
VSM I/O protection bitmap 246 set will generate a I/O fault
through this vector. When this fault is taken, the VSM stack
will contain the following pushed register values, starting
with the first pushed: ESP, EFLAGS, EIP, EAX, Next
Instruction EP, SEGREG and VFLAGS. Table 7 defines the
stack values.

TABLE 7

Stack
Offset Value

18h ESP (always)
14h EFLAGS
1Oh EP
OC EAX
08h Next

Instruction
EP

04h SEGREG
OOh WFLAGS

EAX contains the I/O address referenced by the instruc
tion causing the fault. Next Instruction EP contains the
logical address of the instruction following the faulting
instruction of the interrupted routine. If the VSM emulation
is completed allowing execution to resume after the faulting
instruction, the VSMhandler will then move this value to the
location of the saved EP, thus effectively changing the fault
into a trap. The SEGREG contains a copy of the segment
register prefix specified in an OUTS instruction. Its contents
are only defined for an OUTS instruction that has a segment
prefix other than the DS segment. The pushed VFLAGS
value is a 32-bit value having the definitions set forth in
Table 8.

TABLE 8

Bits Name Description

O IO This bit is set if the faulting
instruction was an IN or INS.

1. STR This bit is set if the faulting
instruction was an NS or OUTS.

5,644,755
17

TABLE 8-continued

Bits Name Description

This bit is set if the faulting
instruction was an NS or OUIS that
had a REP prefix.
This bit is set if the processor was
operating in protected mode and no
address size prefix was used on the
faulting instruction or if the
processor was in any other mode and
an address size prefix was used on
the faulting instruction. If the
instruction was not an INS or OUTS,
this bit is set to zero.
This bit is set if a segment override
prefix other than DS was applied to
an OUTS instruction. In all other
cases, this bit will be 0.
Reserved
This bit is set if the data size of
the operand is 32 or 16 bits.
This bit is set if the data size of
the operand is 32 bits.
Reserved

RES
8 DSO

9 DS1

10
31

RES

By providing all of this information in the stack, the VSM
routine can readily determine the intended I/O operation
which must be emulated. Then the use of a segment override
allows the desired data to be obtained in the case of write
emulation or placed in the case of read emulation without
performing address translation. Thus, allowing two address
ing modes to be active at one time, the short stack as
compared to SMM and the detailed information provided,
the I/O emulation can be rapid and efficient.

If the Hardware Interrupt Enable (HIE) bit in the VSM
enable register 238 is set, all external hardware interrupts
(INTR and NMI) will cause virtual system mode to be
entered through vector 3. This vector allows conventional
hardware to be transparently emulated with non
conventional hardware and a VSM handler,

If the Software Exception enable (SEE) bit in the VSM
Enable register 238 is set, all software exceptions (including
faults, traps, and aborts) and software interrupts (INT in
instructions) are dispatched through VSM vector 4. This
vector will also be used, regardless of the SEE setting, if
while executing VSM code a software exception is gener
ated. When this vector is entered, the VSM stack will
contain the following pushed register values, starting with
the first pushed: ESP (again, not present if exception gen
erated by VSM code), EFLAGS, EIP, EAX, and CAUSE.
Table 9 defines the stack.

TABLE 9

Stack
Offset Value

10h. ESP
0Ch. EFLAGS
08h EP
04h EAX
00h CAUSE

EAX will contain the exception number as defined by the
x86 architecture. If the trap was taken due to an INT in
instruction, the exception number will be the interrupt
number plus 256. A one byte interrupt, interrupt number 3
(INT), will have an exception number of 3. CAUSE will
contain the condition code associated with the exception. If

10

15

20

25

30

35

45

50

55

65

18
the exception type does not have an associated cause, the
CAUSE value pushed onto the stack will be undefined. For
a page fault, x86 architecture interrupt 14, the cause value is
extended by one bit. Bit 3 will be cleared if the address
causing the page fault had a segment override prefix in
which case the access is to user memory space. If the address
did not have an override prefix, then this bit is setto indicate
that it was an access to VSM memory space.
The VSM stackfault vector is used when there is a page

fault on the VSM stack. No values are pushed onto the VSM
stack because the stack is in an undefined state. When the
fault occurs, the Control Register 2 (CR2) will contain the
logical address of the instruction causing the fault. The VSM
flag is set in the EFLAGS register but the remainder of
EFLAGS is unchanged, including the interrupt enable (IF)
bit, although while in VSM the interrupts are disabled. If the
VSM stack can be repaired, EFLAGS and the logical
address of the instruction causing the fault can be pushed
onto the VSM stack and the VSM handler can return to the
faulting instruction with an IRET instruction. The IRET
instruction will re-enable interrupts if the IF bit is set in the
popped EFLAGS.
When VSM has completed processing the interrupting or

excepting event, control can be passed back to the operating
system through either an Interrupt Return (IRET), Reflect
Exception with Condition Code (RECC) or Reflect Excep
tion without Condition Code (RENCC) instruction.

For VSM purposes, the IRET instruction restores the EIP
register and EFLAGS register. If a return is being made to
non-VSM code, the ESP register is also restored. If a return
is being made to VSM code, the VSM bit of the EFLAGS
register will be set and the ESP register will not be popped.
The RECC instruction is used to transfer exception han

dling back to the operating system service routine from
VSM code when there is a condition code associated with
the exception causing the VSM event. This instruction is
executed with EAX containing the user mode interrupt
number, or exception number, that is to be reflected back to
the OS. This value is used by the user mode operating
system to index to the user mode interrupt vector for
processing of the condition code. When this instruction is
executed, the VSM stack is pushed according to Table 10.

TABLE 10

Stack
Offset Value

10h. ESP
0Ch EFLAGS
08h EP
04h EAX
00h. CAUSE

The CAUSE value contains the condition code to be
processed. EAX contains the user mode interrupt number, or
exception number. When EFLAGS is moved from the VSM
stack to the stack appropriate for the exception processing,
the EB bitmay be set. No further exception will be generated
by the presence of the EB bit, but if set, EB will remain set
when EFLAGS is written to the exception stack. These
values are popped from the stack and located accordingly
when the return occurs.
The RENCC instruction is used for hardware interrupts

and exceptions that do not have a condition code or cause
value. When this instruction is executed, the VSM stack is
pushed according to Table 11. Operation is otherwise similar
to the RECC instruction.

5,644,755
19

TABLE 11

Stack
Offset Value

10h ESP
0Ch. EFLAGS
08h EP
04h EAX

INSTRUCTION SET

In addition to instructions already defined by the x86
architecture, and the instructions previously discussed, a
processor according to the present invention preferably
would include the instructions set forth below to facilitate
VSM operations.
A Move String with Variable Size (VMOVS) instruction

copies the operand at (E)SI to the location at ES:(E)DI.
Format:VMOVS
The destination operand must be addressable from the ES

segment and no segment override prefix is allowed. A
segment override can be used for the source operand, but the
default is the DS segment. After the data is moved, both the
(E)SI and (E)DIregisters are advanced automatically by a
value contained in the AL register. The value loaded into AL
prior to executing the VMOVS instruction specifies the size,
in bytes, of the data being transferred with each iteration.
The VMOVS instruction can be preceded by the Repeat
(REP) instruction for block moves of (E)CXbytes. In this
case, (E)CX will decrement by 1 on eachiteration regardless
of the value in AL.
A.Jump (JMP) instruction transfers control to a different

point in the instruction stream without recording return
information. A Call (CALL) instruction causes the proce
dure named in the operand to be executed, and upon
completion, execution continues at the instruction following
the CALLinstruction. Intersegment jumps and calls may be
performed while executing user mode code. While execut
inginVSM, if an intersegment jump or callis specified, only
the offset portion of the address is used. The segment value
in the instruction is ignored.
A Translate (VTOP) instruction returns the physical

address of the memory operand in EAX, and if necessary
EDX.

Format: VTOP EAX, memory
VTOP returns the upper 32-bits of the physical address

into EDX and the lower 32-bits of the physical address into
EAX. If paging is not enabled, this instruction returns the
linear address of the operand. If paging is enabled, the
address is translated using the current page table. If there is
no corresponding address because the logical address is out
of range of the segment orif the page is not present, the Page
Fault (PF) bit is set in EFLAGS. If the translation is
successful, PF is cleared. If the processor has a physical
addressing range greater than 4GByte, the Carry Flag (CF)
will be set in EFLAGS. If the address is a VSM logical
address (in VSM and no segment prefix on the operand), and
the logical address is at or above 0xff000000, and the
processor has physical addressing capabilities above
4GByte, then EDX will contain the most significant 32-bits
necessary to cause the physical address to be in the upper 16
MByte of the processor's physical address range and CF will
be set.
A Probe for Read Access (PROBER) instruction is used

for testing a memory read operation for exceptions.

10

15

20

25

30

35

45

50

55

65

Format: PROBER regs, memory
regió, memory
reg32, memory

The memory operand represents the location to be read
into reg8/16/32, however, no data is actually returned and no
exceptions are generated. If the read operation would have
generated an exception (including page faults) had the read
operation been performed, the Page Fault (PF) bit is set in
EFLAGS. If the read operation would not have generated an
exception, PF is cleared. Therefore, when operating in VSM,
user mode memory may be checked for readability and if a
page fault is anticipated by the PROBER instruction, VSM
can call on the operating system to load the page into
physical memory without requiring the pagefault to actually
occur. Executing this instruction on real mode memory will
never result in a page fault, however, a test on virtual 8086
mode memory will only fail if paging is enabled (PE=1 and
PG=1) and the page is not present or if the page is a
supervisor page. No other bits in EFLAGS are modified as
a result of this instruction.
AProbe for Write Access (PROBEW) instruction is used

for testing a memory write operation for exceptions.

Format: PROBEW memory, reg&
memory, reg16
memory, reg32

The regs/16/32 represents the value to be written into the
location specified by memory value, however, no data is
actually written and no exceptions are generated. If the write
operation would have generated an exception (including
page faults) had the write operation been performed, the
Page Fault (PF) bit is set in EFLAGS. If the write operation
would not have generated an exception, PF is cleared.
Therefore, when operating in VSM, user mode memory may
be checked for writeability and if a page fault is anticipated
by the PROBER instruction, VSM can call on the operating
system to load the page into physical memory. Executing
this instruction on real mode memory will never result in a
page fault, however, a test on virtual 8086 mode memory
will only fail if paging is enabled (PE=1 and PG=1) and the
page is not present or if the page is a supervisor page. No
other bits in EFLAGS are modified as a result of this
instruction.
A Default Address and Data Size (DADS) instruction

returns a value indicating the default address and data size
by examining the settings of the PE bit in CR0 and the D bit
of the current code descriptor.

Format: DADS reg8
regl6
reg32

If PE is set and the D bit is set, then DADS returns a value
of 2, otherwise a value of 1 is returned. If DADS is executed
while in VSM without a segment prefix a value of 2 is
returned.
A Test for Interrupt Pending (TIP) instruction sets the

Parity Flag (PF) in EFLAGS if a hardware interrupt (INTR
or NMI) is active. No other flags are altered. This allows
VSM code to execute with interrupts disabled, because of
the overhead of restarting an emulation sequence, but still
periodically check interrupts.

5,644,755
21

As an additional change, while in VSM, for a Load Full
Pointer (LDS, LES, LFS, LGS, or LSS) instruction, the
offset values are always 32-bits unless a data size prefix is
applied to the instruction.
The addition of these instructions further simplifies device

emulation by providing the effective results of the user code
intended operation without actually executing the user code
instruction, incurring exception or fault overheads and then
handling the problem. Further, the emulator code does not
have to be incorporated into the conventional exception or
fault handlers, but can remain separate, thus greatly simpli
fying the software requirements.
While the use of two different addressing modes concur

rently has been described with regard to a new mode, it is
understood that such capabilities could be provided to
processors having just two or three conventional user
modes. For example, if this dual concurrent addressing
mode technique were used with a 486 or Pentium processor,
transitions between real and protected mode code due to
exceptions and faults would be simplified as the required
reflections and address translations could be eliminated or
greatly simplified.

It is noted that this description has used the phrase address
mode to refer to the different addressing interpretations. It is
not to be confused with the various addressing types, such
as direct, indirect and indexed. The addressing types are
available in each of the addressing modes and are indepen
dent of the addressing mode.
Thus a processor allowing is simplified use of non

standard devices by providing efficient and operating system
independent emulation has been described.
The foregoing disclosure and description of the invention

are illustrative and explanatory thereof, and various changes
in the circuit elements as well as in the details of the
illustrated circuitry and construction and method of opera
tion may be made without departing from the spirit of the
invention.

I claim:
1. A processor operable in a number of modes, compris

Ing:
a plurality of segment registers for specifying portions of

an address;
a first interpreter for interpreting values in said segment

registers in a first mode to provide a linear address;
a second interpreter for interpreting values in said seg

ment registers in a second mode to provide a linear
address; and

a mode control circuit for allowing said first and second
mode interpreters to operate concurrently on different
of said segment registers.

2. The processor of claim 1, further comprising:
a memory management unit receiving said linear address

provided by said first and second mode interpreters and
providing a physical address.

3. The processor of claim 2, further comprising:
a third mode interpreter for interpreting values in said

segment registers in a third mode to provide a linear
address, and

wherein said memory management unit receives said
linear address provided by said third mode interpreter
and provides a physical address, and wherein said
mode control logic allows concurrent operation in said
first mode and either of said second or third modes.

4. The processor of claim3, further comprising:
a fourth mode interpreter for interpreting values in said

segment registers in a fourth mode to provide a linear
address, and

10

15

20

25

30

35

45

50

55

65

22
wherein said memory management unit receives said

linear address provided by said fourth mode interpreter
and provides a physical address, and wherein said
mode control logic allows concurrent operation in said
first mode and either of said second, third or fourth
modes.

5. The processor of claim 4, wherein the processor is
compatible with an Intel 386 processor.

6. The processor of claim 5, wherein said second, third
and fourth modes are real, protected and virtual 8086 modes.

7. The processor of claim2, wherein the processor further
includes an instruction for translating a memory operand
into a physical address and providing a lower portion of said
physical address into a first register and an upper portion of
said physical address into a second register.

8. The processor of claim 7, wherein said memory man
agement unit further includes a selectably enabled paging
unit and wherein if paging is enabled said memory operand
is translated into a physical address and if paging is not
enabled said memory operand is translated into a linear
address.

9. The processor claim 2, wherein said memory manage
ment unit further includes a selectably enabled paging unit
and wherein said first mode causes said memory manage
ment unit to provide said linear address as said physical
address if said linear address is in a reserved range.

10. The processor of claim 9, wherein if said linear
address is not in said reserved range then said first mode
causes said memory management unit to either translate said
linear address to said physical address by said paging unit if
paging is enabled or provide said linear address as said
physical address if paging is disabled.

11. The processor of claim 9, wherein a segment override
can be applied to the segment registers, and wherein if said
segment override causes said linear address to be in said
reserved range, then said first mode causes said memory
management unit to either translate said linear address to
said physical address by said paging unitif paging is enabled
or provide said linear address as said physical address if
paging is disabled.

12. The processor of claim 2, further comprising:
a code segment register for receiving a code segment

selector for addressing a code segment containing
instruction sequences; and

a data segment register for receiving a data segment
selector for addressing a data segment containing data;
and

wherein if the processor is in said first mode, an exception
is not generated when said code segment selector is
loaded into said data segment register.

13. The processor of claim 12, wherein said code segment
is write protected and said data segment is readable and
writable and wherein if the processor is in said first mode,
said code segment is writable when said code segment
selector is loaded into said data segment register.

14. The processor of claim 1, wherein entry into said first
mode is performed under one of a plurality of conditions and
wherein the processor further includes a stack for receiving
values upon entry into said first mode, said stack values
including a program address and flags.

15. The processor of claim 14, wherein the processor
further includes an input/output space and further compris
ing:

an input/output protection bitmap, each bit in said bitmap
indicating entry or non-entry into said first mode from
said second mode if an access is made to an input/
output address corresponding to said bit.

5,644,755
23

16. The processor of claim 15, wherein said stack values
further include a current instruction address, next instruction
address and bits for indicating instruction type, operand data
size and prefix presence of an instruction causing the entry
into said first mode.

17. The processor of claim 14, wherein entry into said first
mode is caused on receipt of a hardware interrupt.

18. The processor of claim 17, wherein said stack values
further include a stack pointer.

19. The processor of claim 17, wherein the processor
further includes the ability to ignore hardware interrupts in
said second mode and wherein a first bit may be set to
indicate entry into said first mode even if said second mode
is set to ignore hardware interrupts.

20. The processor of claim 19, wherein if said first bit is
set and said second mode is operational and ignoring hard
ware interrupts and a hardware interrupt occurs causing
entry into said first mode, a second bit is set and said
hardware interrupt is not responded to so that upon return to
said second mode and when said second mode is no longer
ignoring hardware interrupts, entry into said first mode
occurs to handle said hardware interrupt.

21. The processor of claim 20, wherein if the processor is
operating in said first mode and one of said plurality of
conditions causes reentry into said first mode a third bit is
set, wherein said first mode reentry is further caused if said
third bit is set and if an instruction is executed causing the
hardware interrupts to be ignored in said second mode.

22. The processor of claim 14, wherein entry into said first
mode is caused by any software exception including faults,
traps, aborts and software interrupts.

23. The processor of claim 22, wherein said stack values
further include an exception type and condition code of said
condition causing said entry into said first mode and a stack
pointer.

24. The processor of claim 14, wherein entry into said first
mode is caused if a page fault to said stack occurs.

25. The processor of claim 24, further comprising:
a control register; and
wherein said control register receives a logical address of

an instruction causing said page fault.
26. The processor of claim 14, wherein entry into said first

mode is caused by executing a special instruction for imme
diately forcing the processor into said first mode.

27. The processor of claim 26, wherein said stack values
further include a stackpointer.

28. The processor of claim 1, wherein exit from said first
mode is caused by executing one of a plurality of instruc
tions.

29. The processor of claim 28, wherein the processor
further includes an interrupt return instruction for exiting
from said first mode after an interrupt.

30. The processor of claim 29, wherein said interrupt
return instruction causes a program address and flags to be
provided to the processor from said stack.

31. The processor of claim 30, wherein if said interrupt
return instruction causes the processor to return to said first
mode, a bit is set and if said interrupt return instruction
causes the processor to return to said second mode, a stack
pointer is provided to the processor from said stack.

32. The processor of claim 28, wherein the processor
further includes a reflect exception instruction for passing
exception handling to said second mode from said first mode
and for exiting said first mode to said second mode.

33. The processor of claim 32, wherein said reflect
exception instruction causes an exception number, program
address, flags and stack pointer to be provided to the
processor from said stack.

O

15

20

25

30

35

45

50

55

65

24
34. The processor of claim 28, wherein the processor

further includes a reflect exception with condition code
instruction for passing a condition code to said second mode
from said first mode and for exiting said first mode after an
exception having a condition code has occurred.

35. The processor of claim 34, wherein said reflect
exception with condition code instruction causes a condition
code, exception number, program address, flags and stack
pointer to be provided to the processor from said stack.

36. The processor of claim 1, wherein the processor
further includes an instruction for moving a string of vari
able size, said instruction having a source operand for
indicating a source address, a destination operand for indi
cating a destination address, and a size operand for indicat
ing a number of bytes to be moved from said source address
to said destination address in the move operation.

37. The processor of claim36, wherein said instruction for
moving a string of variable size may be repeated for the
number of operations in a count register, said source address
and said destination address incrementing by said size
operand value in each move operation and said count
register being decremented by one in each move operation.

38. The processor of claim 1, wherein the processor
further includes an instruction for probing a memory loca
tion for access exceptions and setting a bit if an exception
would have been generated had said access occurred.

39. The processor of claim 1, wherein the processor
further includes an instruction for determining a default
address and data size.

40. The processor of claim 1, wherein the processor
further includes an instruction for testing for presence or
non-presence of an interrupt when the processor is set to
ignore interrupts.

41. The processor of claim 1, wherein said first mode
operations have a default data and address size of 32-bit.

42. The processor of claim 1, wherein the processor
further includes a plurality of instructions having two
memory operands, said memory operands each being
capable of being overridden with a different segment register
by a segment override, and wherein said plurality of instruc
tions cause said mode control logic to operate when the
processor is operating in said first mode and one of said
memory operands are overridden with a segment override,
whereby one said memory operand can be interpreted
according to said first mode interpreter and a second said
memory operand can be interpreted according to said second
mode interpreter.

43. The processor of claim 1, wherein the processor
further includes a plurality of instructions for performing
operations in said first and second modes, said instructions
having operands for performing the instruction, wherein in
said first mode if a segment override is applied to said
instruction or said instruction operand said values in said
segment registers are interpreted according to said second
mode interpreter.

44. A computer system having a processor for emulating
input/output devices, the computer system comprising:

a host bus;
an I/O bus;
abus controller for communicating between said hostbus
and said I/O bus;

a hard disk system coupled to said I/O bus; and
a processor coupled to said hostbus for accessing said a

hard disk system, said processor comprising:
a plurality of segment registers for specifying portions of

an address;

5,644,755
25

a first mode interpreter for interpreting values in said
segment registers in a first mode of said processor to
provide a linear address;

a second mode interpreter for interpreting values in said
segment registers in a second mode of said processor to
provide a linear address; and

mode control logic for allowing said first and second
mode interpreters to operate concurrently on different
of said segment registers.

45. The computer system of claim 44, wherein said
processor further comprises:

a memory management unit receiving said linear address
provided by said first and second mode interpreters and
providing a physical address.

46. The computer system of claim 45, wherein said
processor further comprises:

a third interpreter for interpreting values in said segment
registers in a third mode to provide a linear address, and

wherein said memory management unit receives said
linear address provided by said third mode interpreter
and provides a physical address, and wherein said
mode control logic allows concurrent operation in said
first mode and either of said second or third modes.

47. The computer system of claim 46, wherein said
processor further comprises:

interpreter for interpreting values in said segment regis
ters in a fourth mode to provide a linear address, and

wherein said memory management unit receives said
linear address provided by said fourth mode interpreter
and provides a physical address, and wherein said
mode control logic allows concurrent operation in said
first mode and either of said second, third or fourth
modes.

48. The computer system of claim 47, wherein said
processor is compatible with an Intel 386 processor.

49. The computer system of claim 48, wherein said
second, third and fourth modes are real, protected and virtual
8086 modes.

50. The computer system of claim 45, wherein said
processor further includes an instruction for translating a
memory operand into a physical address and providing a
lower portion of said physical address into a first register and
an upper portion of said physical address into a second
register.

51. The computer system of claim 50, wherein said
memory management unit further includes a selectably
enabled paging unit and wherein if paging is enabled said
memory operand is translated into a physical address and if
paging is not enabled said memory operand is translated into
a linear address.

52. The computer system claim 45, wherein said memory
management unit further includes a selectably enabled pag
ing unit and wherein said first mode causes said memory
management unit to provide said linear address as said
physical address if said linear address is in a reserved range.

53. The computer system of claim 52, wherein if said
linear address is not in said reserved range then said first
mode causes said memory management unit to either trans
late said linear address to said physical address by said
paging unit if paging is enabled or provide said linear
address as said physical address if paging is disabled.

54. The computer system of claim 52, wherein a segment
override can be applied to the segment registers, and
wherein if said segment override causes said linear address
to be in said reserved range, then said first mode causes said
memory management unit to either translate said linear

10

15

20

25

30

35

45

50

55

65

26
address to said physical address by said paging unitif paging
is enabled or provide said linear address as said physical
address if paging is disabled.

55. The computer system of claim 45, wherein said
processor further comprises:

a code segment register for receiving a code segment
selector for addressing a code segment containing
instruction sequences; and

a data segment register for receiving a data segment
selector for addressing a data segment containing data;
and

wherein if said processor is in said first mode, an excep
tion is not generated when said code segment selector
is loaded into said data segment register.

56. The computer system of claim 55, wherein said code
segmentis write protected and said data segmentis readable
and writable and wherein if said processor is in said first
mode, said code segment is writable when said code seg
ment selector is loaded into said data segment register.

57. The computer system of claim 44, wherein entry into
said first mode is performed under one of a plurality of
conditions and wherein said computer system further com
prises:

an input/output device coupled to said I/O bus; and
a memory unit, coupled to said hostbus, for storing data

including instruction sequences and a stack;
wherein said stack receives values upon entry into said

first mode, said stack values including a program
address and flags.

58. The computer system of claim 57, wherein said
processor further includes an input/output space and said
computer system further comprises:

an input/output protection bitmap, stored in said memory
unit, each bit in said bitmap indicating entry or non
entry into said first mode from said second mode if an
access is made to an input/output device having an
input/output address corresponding to said bit, said bit
indicating entry if access is made to an input/output
device requiring emulation, said bit indicating non
entry if an access is made to an input/output device not
requiring emulation.

59. The computer system of claim.58, wherein said stack
values further include a current instruction address, next
instruction address and bits for indicating instruction type,
operand data size and prefix presence of an instruction
causing the entry into said first mode.

60. The computer system of claim 57, wherein said
input/output device is capable of providing a hardware
interrupt and entry into said first mode is caused on receipt
of a hardware interrupt.

61. The computer system of claim 60, wherein said stack
values further include a stack pointer.

62. The computer system of claim 60, wherein said
processor further includes the ability to ignore hardware
interrupts in said second mode and wherein a first bit may be
set to indicate entry into said first mode even if said second
mode is set to ignore hardware interrupts.

63. The computer system of claim 62, wherein if said first
bit is set and said second mode is operational and ignoring
hardware interrupts and a hardware interrupt occurs causing
entry into said first mode, a second bit is set and said
hardware interrupt is not responded to so that upon return to
said second mode and when said second mode is no longer
ignoring hardware interrupts, entry into said first mode
occurs to handle said hardware interrupt.

64. The computer system of claim 63, wherein if said
processor is operating in said first mode and one of said

5,644.755
27

plurality of conditions causes reentry into said first mode a
third bit is set, wherein said first mode reentry is further
caused if said third bit is set and if an instruction is executed
causing the hardware interrupts to be ignored in said second
mode.

65. The computer system of claim 57, wherein entry into
said first mode is caused by any software exception includ
ing faults, traps, aborts and software interrupts.

66. The computer system of claim 65, wherein said stack
values further include an exception type and condition code
of said condition causing said entry into said first mode and
a stack pointer.

67. The computer system of claim 57, wherein entry into
said first mode is caused if a page fault to said stack occurs.

68. The computer system of claim 67, wherein said
processor further comprises:

a control register; and
wherein said control register receives a logical address of

an instruction causing said page fault.
69. The computer system of claim 57, wherein entry into

said first mode is caused when said processor executes a
special instruction for immediately forcing said processor
into said first mode.

70. The computer system of claim 69, wherein said stack
values further include a stackpointer.

71. The computer system of claim 44, wherein exit from
said first mode is caused by executing one of a plurality of
instructions.

72. The computer system of claim 71, wherein said
processor further includes an interrupt return instruction for
exiting from said first mode after an interrupt.

73. The computer system of claim 72, wherein said
interrupt return instruction causes a program address and
flags to be provided to said processor from said stack.

74. The computer system of claim 73, wherein if said
interrupt return instruction causes said processor to return to
said first mode, a bit is set in said processor and if said
interrupt return instruction causes the processor to return to
said second mode, a stack pointer is provided to said
processor from said stack.

75. The computer system of claim 71, wherein said
processor further includes a reflect exception instruction for
passing exception handling to said second mode from said
first mode and for exiting said first mode to said second
mode.

76. The computer system of claim 75, wherein said reflect
exception instruction causes an exception number, program
address, flags and stack pointer to be provided to said
processor from said stack.

77. The computer system of claim 71, wherein said
processor further includes areflect exception with condition
code instruction for passing a condition code to said second
mode from said first mode and for exiting said first mode
after an exception having a condition code has occurred.

10

15

20

25

30

35

45

50

28
78. The computer system of claim 77, wherein said reflect

exception with condition code instruction causes a condition
code, exception number, program address, flags and stack
pointer to be provided to said processor from said stack.

79. The computer system of claim 44, wherein said
processor further includes an instruction for moving a string
of variable size, said instruction having a source operand for
indicating a source address, a destination operand for indi
cating a destination address, and a size operand for indicat
ing a number of bytes to be moved from said source address
to said destination address in the move operation.

80. The computer system of claim 79, wherein said
instruction for moving a string of variable size may be
repeated for the number of operations in a count register,
said source address and said destination address increment
ing by said size operand value in each move operation and
said count register being decremented by one in each move
operation.

81. The computer system of claim 44, wherein said
processor further includes an instruction for probing a
memory location for access exceptions and setting a bit if an
exception would have been generated had said access
occurred.

82. The computer system of claim 44, wherein said
processor further includes an instruction for determining a
default address and data size.

83. The computer system of claim 44, wherein said
processor further includes an instruction for testing for
presence or non-presence of an interrupt when said proces
sor is set to ignore interrupts.

84. The computer system of claim 44, wherein said first
mode operations have a default data and address size of
32-bit,

85. The computer system of claim 44, wherein said
processor further includes a plurality of instructions having
two memory operands, said memory operands each being
capable of being overridden with a different segment register
by a segment override, and wherein said plurality of instruc
tions cause said mode control logic to operate when said
processor is operating in said first mode and one of said
memory operands are overridden with a segment override,
whereby one said memory operand can be interpreted
according to said first mode interpreter and a second said
memory operand can be interpreted according to said second
mode interpreter.

86. The computer system of claim 44, wherein said
processor further includes a plurality of instructions for
performing operations in said first and second modes, said
instructions having operands for performing the instruction,
wherein in said first mode if a segment override is applied
to said instruction or said instruction operand said values in
said segment registers are interpreted according to said
second mode interpreter.

ck : : :: :

