MPX-1

TECHNICAL MAN

- o

Xy

- |[EEE 696/ S-100

MULTIPLEXER CHANNEL
4K or 16K RAM
6 MHz 8085 Processor

BULLDOG COMPUTER
IBM PC - XT - AT COMPUPRO
1334 Chapel Street
New Haven, CT 06511
(203) 777-1476 or -7763

Scanned by Howard M. Harte, March 26, 2003. www.hartetec.com

TABLE OF CONTENTS

WARNING © ¢ ¢ ¢ ¢ ¢ v ¢ ¢ s o o s o o o o o o »

About MPX-1 . . ¢ ¢ v e v v v v 4 4 v e e e

Technical overview ¢ ¢ ¢ v ¢ ¢« ¢ o & &

How to use the MPX-1 ¢« ¢« . « . .
MPX-1 block diagram « ¢« ¢« ¢ ¢ o .
Local address map . . « « «
Accessing memory on the bus
Accessing I/0 ports on the bus
Getting the MPX-1 attention« « o
Getting the main system CPU"s attentlon . .
Interrupt acknowledge response on the bus .

Hardware switch setting and jumper options . .
Switch settings . ¢ ¢« ¢« ¢« ¢ ¢ v o« & o o « &
Switch 1 - ATTN port address select
Standard ATTN port address selection
Switch 2 ¢« ¢ v ¢ o v i vt s e e e e e e e
Interrupt "CALL" jumpers« e e .

Selecting and using 4K or 16K RAM chips .« v e
Using 2147 4K x 1 type RAM chips
Using 2167 16K x 1 type RAM chips . .

Configuring the MPX-1 for different size EPROMS . .

Using a 2716 or 2732 EPROM . . . « « +« « o &
Using a 2764 EPROM « « « & ¢ ¢ ¢ « o o o o« &
Standard software supplied with MPX-1
Basic command structure and protocol
Opcode byte . ¢ ¢« ¢ v v v v 4 v o o o o o
Status indication®byte « « « 4+ ¢ « « « o . .
General purpose parameter bytes O through 8
Link address bytes ¢« + . .
Result 1 and result 2 bytes«
General notes 4 4 4 4 4 e 0 e o .
Command descriptions . « « ¢« « o ¢ + « « o & &
NOP — no operation « « « « o o « + « « & &
RESET - reset the MPX-1 s e s e .

SET MASK - mask or unmask interrupt inputs to MPX

SENDDEOI - send end-of-interrupt command

to interrupt controller
READREG - read interrupt controller registers
SETRESPONSE - set interrupt response byte .
SIZE - indicate whether 4K or 16K MPX-1 . .
LOADRAM - load MPX local RAM from system RAM
EXRAM - execute a program in local RAM . . .

BLKMOV - move block of RAM of system bus . + « .

FASTMOV - move block of RAM on system bus - fast

RESERVED ~ opcode « « 4 o « o o o « « o ¢ «

WCWOWOWOWOOVWOORO~NIO TN

About the ROM code « « o = ¢ ¢ ° °° R 19
Initialization « « o ¢ ¢ = = ¢ * * 7 S I 19
ATTN respomse =« « o« « * = * ° ¢ °° T 20
General purpose subroutines . « ¢ ¢ ¢ ¢t "0 .. . 20
Writing your own custom commands o o o o o+ s ottt 0 0 20
Listing of standard software supplied with MPX-1 . . . 21-28
Theory of operatiom . « « « ¢ ¢ = ¢ T 29-32
Appendix
INTEL 8259A programmable interrupt controller . . . = 33-53
Hardware
Logic diagram « « ¢ = o ¢ = ° * " [I 54=57
Parts 1i8t « « o = o & = o ¢ 0 007 R 58
Component layout « « o « =« * * ° R L 59
Customer service / limited warranty information « ¢ « ¢ ¢ ¢ ° 60

DISCLATMER
Godbout Electronics makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Godbout Electronics reserves the
right to revise this publication and to makes any changes from
time to time in the content hereof without obligation of Godbout
Electronics to notify any person of such revision or changes-

This document was proofread with the aid
of SpellGuard™ from ISA, Menlo Park, CA-

FIRST - A WORD OR TWO OF WARNING!

This manual is intended to guide the sophisticated systems integrator or
OEM through the hardware features of the MPX-1l. This manual 1is not intended for
novice or inmexperienced users. If you are an end-user who has purchased an MPX-
1 all by itself, you should have a thorough knowledge of hardware and software
as CompuPro or your local dealer is not prepared to provide applications assis—
tance for this product, (beyond the contents of this manual). If you are an
end-user who has purchased a system with an MPX-1 integrated into it, your
systems integrator should have done all the work for you. This means that they
should have provided the operating system software with the MPX-1 integrated
into it already. If this is the case, feel free to read this manual for your
information, but you should never have to worry about this manual’s contents.

If you don’t feel that you are sophisticated enough to handle programming
the MPX-1 (be honest with yourself now!), please return it to the place of
purchase for a full refund.

ABOUT THE MPX-1

The MPX-1 from CompuPro is a very useful addition to any multi-user or
interrupt intensive environment. Its extreme versatility and flexibility makes
it a very bewildering product on the surface - it can do so much, where do you
start? The basic function of the MPX-1 is that of an interrupt pre—processor.
It takes the interrupt servicing and handling load off of the main processor in
a system. Interrupts in the system are now processed in parallel with other
processing resulting in higher system throughput, which i1s a paramount consider-
ation in multi-user, multi-tasking situations.

The MPX-1 was designed for the IEEE 696/5-100 Bus because of that bus”
modularity and its unique ability to handle multiple temporary bus masters (of
which the MPX-1l is one). The IEEE 696/S-100 bus is the choice of professionals
for business, industrial amd scientific applications.

TECHNICAL OVERVIEW

The MPX-1 has its own on-board processor, an Intel 8085AH~1 running at 6
MHz. This processor is supported by either 4K or 16K of fast static RAM and up
to 8K of EPROM. In additiom, a flexible 8259A interrupt controller monitors the
eight vectored interrupt lines on the S-100 Bus. None of these local resources
take up any address space on the S-100 Bus.

When an interrupt request occurs on one of the vectored interrupt lines,
the interrupt response is handled by the on-board interrupt controller and CPU,
taking up no processing time on the bus.

When needed, the MPX-1 can access any system resource on the bus. This
means that it can talk to any I/0 port or memory location on the bus. It does
this by requesting the bus from the permanent master on a cycle-by-cycle basis.
This request/grant procedure is fully arbitrated to 16 levels as provided for by
the IEEE 696/5-100 bus standard. This allows up to 16 such devices to exist in
a system at any_given time. Multiple MPX-1s could even be used.

The uses of the MPX-1 are vast. Obvious uses would include terminal inter-
rupt handlers, print spoolers, task allocation and management, and resource
control. A unique feature of the MPX-1 allows it to load execution code from
the system memory so that the MPX-1"s function can be altered dynamically.

5

HOW TO USE THE MPX-1

A simplified block diagram of the MPX-1 appears in Figure 1. In the
following discussions, it may be useful to refer to the block diagram.

Here 1s a quick-and-dirty overview of how the MPX-1 works: When the on-
board 8085 powers up, it begins executing code from its on-board EPROM. Usually
it will be sitting in a loop waiting for something to happen, 2an externsal
interrupt for example. Suppose an interrupt occurs. The 8085 will be inter-
rupted and vectored to a service routine by the 8259A interrupt controller. The
MPX-1 can access any 1/0 port on the $§-100 Bus by simply doing an INPUT or
OUTPUT instruction. Since the "ports" on the MPX-1 are all memory mapped, no
conflicts occur and all 256 ports can be accessed. The on-board logic takes
care of the DMA request, arbitration and the actual running of the bus cycle.
The 8085 will "stall” until the operation is completed allowing program execu=
tion to continue.

The MPX-1 can also access any memory location on the $=100 Bus. To do
this, the program first writes the upper 16 address bits (A8-23) to two regis—
ters. Then if a memory reference to address CO00 to FOOO is made, the lower 8
bits from the reference are used to make up the lower 8 bits of the desired
memory location on the bus. If the memory reference 1is a read operation, then
the bus access will also be a read operation. 1f the memory reference is a
write operation, then the bus access will be a write operation. This address
space from CO00 to FOOO is known as the "external window". As in the case of
1/0 accesses, the on-board logilc takes care of the DMA request, arbitration and
the actual running of the bus cycle. The 8085 will "stall” until the operation
is completed allowing program operation to continue.

Sounds simple, doesn’t it? Well, it is. The following sections discuss
the above overview in greater detail. First is a local address map showing
where everything lives on the MPX-1.

Figure 1. MPX-1 BLOCK DIAGRAM i

—
ADDRESS, STATUS
& CONTROL BUSES -~
8-100 B LOCAL
‘BUS — ROM
DATA BUSES -~ INTERFACE
AND 8085
A LOGIC
DMA HANDSHAKE ~stmmnmmpe- DMA LO cPu
o LOCAL
il R
$-100 AM
BUS
VECTORED INTERRUPTS s INTERRUPT | i
CONTR.
RST.
7.5 sob
A
CONTROL INPUTS mmmmeep} ATTM
R PORT
L_ INTERRUPT OUTPUT —

LOCAL ADDRESS MAP

FROM TO SIZE FUNCTION NOTZS
0000 3FFF 4-16K RAM 1,4
4000 5FFF 2-8K EPROM 1,2,5
8000 8001 2 8259A Registers

8002 1 Set Interrupts Latch 2
8004 1 DMA Address Bits 8-15 3
8005 1 DMA Address Bits 16-23 3
8007 1 Interrupt Response Byte 3
€000 FFFF 16K External Window 6
All 1/0 Ports 256 External Window 6

Notes: 1. RAM and EPROM exchange locations for power-on- jump.
2. Read Only.
3. Write Only.
4. 4K or 16K depending on chips used.
5. 2K for 2716, 4K for 2732, 8K for 2764.
6. Lower 8 address bits (AO0-7) pass through.

ACCESSING MEMORY ON THE BUS

An access to memory that resides on the S-100 Bus will be performed if the
CPU makes an access to the, range noted as the external window in the address map
above (addresses CO000 to F%FF). The low order 8 bits of the address (AO-7) will
be taken from the CPU’s address lines directly, while the high order 16 bits
(A8-23) will come from the address that has been previously written to the DMA
address registers. So the procedure for accessing memory on the bus would be:

1. Write desired A8-15 bits to memory location 8004.
2. Write desired A16-23 bits to memory location 8005.

3. Perform a memory reference to COXX to FOXX, where XX
represents the low order 8 bits (AO-7) of the desired address.

If the memory reference to the external window is a read operation, then a
memory read will occur on the bus. If the memory reference is write operation,
data will be written to the memory on the bus. Note that Ml cycles may also be
executed on the bus meaning that the MPX-1 may actually execute a small amount
of code (less than 256 bytes) directly from the bus.

Note that the high order byte of the external window is insignificant. Any
address in the range C000 to FFFF will be treated identically. For example,
C083, BD83, A983, and FF83 would all access the same external memory location -
XXXX83, where XXXX are the two bytes from the DMA address registers.

ACCESSING 1/0 PORTS ON THE BUS

All of the "I/O Ports” local to the MPX-1 are "memory mapped”. This means
they are decoded in the memory address space rather than in the 1/0 space. This
leaves all 256 I/0 addresses free. Any input or output cycle performed by the
CPU will cause a corresponding cycle to be executed on the S-100 Bus. Since the
lower 8 bits of the DMA Address pass through from the actual lower 8 address
bits from the CPU, the port address specified in the 1/0 instruction will be the
one accessed on the bus.

The high order 8 bits of the 1/0 access will come from the DMA address
register as in a memory reference. This allows the port address to be
"mirrored” in A8-15 as early §-100 (8080) processors did, or this byte may be
loaded with different data to emulate Z-80 1/0 modes (the 7-80 passes the
accumulator contents on A8-15). This also allows the MPX-1 to emulate the
current generation of 16 bit processors such as the CPU 8085/88, CPU 86/87 and
the CPU 68K, which can put out 16 bit 1/0 addresses.

If an input instruction is executed, then an input cycle will be performed
on the S-100 Bus. If an output instruction is executed, then an output cycle
will be performed on the bus.

GCETTING THE MPX-1"s ATTENTION

In any system it will be necessary for the main CPU in the syscem to get
the attention of the MPX-1. This can be for initial start-up of the MPX-1, or
to "interrupt” its current task to be given another. This is done through a
mechanism called the ATTN port. This port is on the $-100 Bus and its address
is selected by switch S1. When the system CPU executes an output to the ATTN
port, a RST 7.5 will be generated to the on-board 8085. Note that no data is
accepted by the MPX-l. *y

GETTING THE MAIN SYSTEM CPU’S ATTENTION

The MPX-1 may need to get the attention of the system CPU to tell it that a
task is complete, a buffer is nearing full, or many other reasons. The MPX-1
may signal the main CPU by causing an interrupt on the bus. This interrupt may
occur on the INT*, NMI* or any of the vectored interrupt lines. A hardware
jumper is used to select which of the ten possible lines are used.

Two methods of causing this interrupt are available, again selected by a
jumper. The first type uses the Serial Output Data (SOD) line from the 8085 to
cause the interrupt. The state of this line is set and reset by the Set Inter-—
rupt Mask (SIM) instruction. The state of the interrupt request must be reset
in software.

The second method uses a one bit latch that is set by performing a read
from address 8002 (S8et Interrupt Latch in the address map above). This latch is
automatically reset by the occurrence of an interrupt acknowledge cycle.

Note that if one of the vectored interrupt lines is selected tv cause the
system interrupt, the corresponding interrupt input to the 8259A should be
masked, unless you want the MPX-1 to interrupt itself.

INTERRUPT ACKNOWLEDGE RESPONSE ON THE BUS

The MPX-1 may provide a single byte of data during bus interrupt acknow-
ledge cycles. This respouse must be enabled by a switch. The data to be passed
during interrupt acknowledge cycles is written to the latch ac address 8007
(Interrupt Response Byte in the address map above).

Note that this single byte response may cause an 8080/2-80 RESTART instruc-—
tion, or is compatible with the vector information required by 8088/86 or 68000
CPUs. Note that if the response is desired and the CPU is an 8088/86 or 68000,
the SOD interrupt call method (described above) should be used. This is because
the 8086 and 68000 run two interrupt acknowledge cycles (the first byte of data
is ignored) and the interrupt latch used in the second method would be reset
prematurely. This may cause a system problem.

HARDWARE SWITCH SETTINGS AND JUMPER OPTIONS
SWITCH SETTINGS

There are two dip-switches on the MPX-l. Switch Sl selects the address of
the ATTN port on the 5-100 bus. Switch S2 is used to select the various board
options and the DMA arbitration address of the MPX-l.

S1 - ATTN PORT ADDRESS SELECT
PADDLE # ADDRESS BIT

s e e e e e e . A7
A -
e o s o o s+ s o A5 "ON" = "O"
Ab
Y &
I V) “OFF" = "1"
Y |
Y (o

o~ H~WN
-
.
.
.
.
.
.

STANDARD ATTN PORT ADDRESS SELECTION

The CompuPro “"standard” port address for MPX ATTN calls is Fl hex. To set
the MPX-1 to respond to ATTN calls on port Fl hex, set Sl as follows: Paddles 1-
4 and paddle 8 should be OFF. Paddles 5-7 should ON.

s2
PADDLE # FUNCTION

. - « « « » "ON" enables EPROM walt state.

e« « +« . . "ON" enables interrupt response byte.

. +°« + « . DMA priority address 3

.« « « . DMA priority address 2 "ON = "0"

DMA priority address 1

. « « + + » DMA priority address 0 "OFF" = "1"

. "ON" enables SLAVE CLR* to reset MPX-1.
« + « o . not used

O~ Lo
. .

.

.

.

.

INTERRUPT "CALL" JUMPERS

The MPX~1 "calls” the system CPU by causing an interrupt on the bus. There
are ten possible interrupt lines that the MPX-1 may assert. They are: INT¥,
NMI* or any of the eight vectored interrupt lines (VIO*~VI7*). There are also
two methods by which the MPX-1 can assert the interrupt request - the SOD line
or by setting a hardware latch (described above in the section entitled "Getting
the Main System CPU's Attention™).

The interrupt line asserted and the method of asserting it are selected by
Jumpers J1-10. These jumpers are implemented with push-on shorting plugs and
pins soldered into the board. Each jumper has three pins l1abeled A, B and C.
The "A" pin of each jumper is connected to the SOD interrupt source. The "c
pin of each jumper is connected to the interrupt response latch. The "B" pin of
each jumper is connected to an interrupt line on the bus according to the chart
below:

JUMPER # LEGEND MARKING *B" POSITION CONNECTION
1 7 Vi7*
2 6 VIi6*
3 5 Vi5%
4 4 VI4*
5 3 VI3*
6 2 VI2*
7 1 VIl*
8 0 VIO*
9 NMI NMI*

10 INT INT#*

EXAMPLE: To connect the MPX-1 interrupt request output to the INT* line on the
bus with the interrupt source?from the SOD line, 2 shorting plug should be
installed at J10 from the "A" to "B" position (left of center).

EXAMPLE: To connect the MPX-1 interrupt request output to the VI3* line on the
bus with the interrupt source from the interrupt latch, a shorting plug should
be installed at J5 from the "B to *c" position (right of center).

NOTE: The software supplied with the MPX-1 assumes the use of the SOD interrupt
mode, so if you wish to use the MPX in an interrupt driven mode with the
standard software, use only the SOD interrupt source.

SELECTING AND USING 4K OR 16K RAM CHIPS

The MPX-1 can use either 2147 4Kxl RAM chips, or 2167 16Kxl RAM chips. The
MPX~1 should have come from the factory already jumpered correctly for the type
of chip that was originally ordered with the board. Should it become necessary
to change these jumpers once the board is in the field, here is how different
RAMs are jumpered and inserted:

USING 2147 4Kx1 TYPE RAM CHIPS
To use 2147 type RAM chips, jumpers J11 through J17 should be installed and
J18 should be open. J11 through J17 are located in-between the RAM array (U10-

10

17), and J18 is located at the right-hand side of the RAM array.. The RAM chips
come in 18 pin packs, but the sockets are 20 pin to accomodate 2167 type RAMs.
When using 2147 type RAMs, plug them in so that the chips are in the bottom-most
part of the socket, that is pins 1 and 20 are blank.

USING 2167 16Kx1 TYPE RAM CHIPS

To use 2167 type RAM chips, jumper J18 should be installed and jumpers J1l-
17 should be open. Jumper J18 is located at the far right-hand side of the RAM
array and jumpers J11-17 are located in-between the RAM chips.

CONFIGURING THE MPX-1 FOR DIFFERENT SIZE EPROMS

The MPX-1 has a JEDEC 28 pin socket for the EPROM (U27). With the use of
one jumper, this socket can accomodate a 2716, 2732 or a 2764 type EPROM. This
gives 2K, 4K or 8K of storage, respectively.

USING A 2716 or 2732 EPROM

To use a 2716 or 2732 type EPROM, jumper J19 should have a shorting plug
installed connecting pins "A" and "C" (left of center). J19 is located just
above U26. The 2716 or 2732 should be installed at location U27 such that it
uses the bottom—most pins of the socket, that is pins 1,2,27 and 28 are left
blank.

USING A 2764 EPROM
To use a 2764 type EPROM, jumper J19 should have a shorting plug installed
connecting pins "C" and "B" (right of center). J19 is located just above U26.

The 2764 should be installed at location U27, and all the pins of the socket are
used.

11

STANDARD SOFTWARE SUPPLIED WITH MPX-1

The MPX-1 is supplied with an EPROM that contains some general purpose
utility routines. It contains code to initialize the interrupt controllers (to
a benign state), several useful subroutines and a general purpose command
interpreter that implements a "channel protocol”. Included are several built-in
commands to perform useful tasks such as loading and executing programs from
system memory, changing the interrupt controller parameters and block memory
moves on system RAM. The command structure includes a sophisticated "link"
protocol that allows chaining of command sequences and recursion.

Note that no representation is made that this is the most efficient way to
program or use an MPX board. Rather, it is intended as partly tutorial and
partly a useful way to get "up and running” with the MPX in a minimum amount of
time.

What follows is a discussion of the basic command structure and then
descriptions of the actual commands. Following that is a discussion of the code
itself that explains how to add custom commands and describes several useful
subroutines.

BASIC COMMAND STRUCTURE AND PROTOCOL

When the MPX-1 powers up, it masks all its interrupt inputs, does some
internal initialization and waits quietly for an ATTN on its ATTN port. When it
receives an ATTN it will read in 16 bytes from the system memory starting at
address 50 hex. The meaning of the bytes follows:

Byte O: Opcode Byte
Byte 1l: Status Indication Byte
Byte 2: General PurposesParameter Byte O

Byte 10: General Purpose Parameter Byte 8

Byte 11: Link Address (least significant byte)
Byte 12: Link Address

Byte 13: Link Address (most significant byte)
Byte l4: Result 1 byte

Byte 15: Result 2 byte

The following 1s a more detailed description of the bytes shown above:

OPCODE BYTE

The opcode byte contains the information that tells the MPX what command to
execute, and also contains two bits that control the completion interrupt and
link structures. The actual bit coding of the opcode byte is shown below:

Bit 7 Bit O

| cont| 1INT| O | BIT4 | BIT3 | BIT 2 | BIT 1 | BIT O |

12

Bits O through 4 of the opcode contain the "command number” of which there
are a possible 31 (one command is reserved). The first 10 commands have already
been defined and the remaining 21 may be implemented by you.

Command "OF" is reserved, and if invoked will be translated internally to 2
NOP command.

The INT bit (bit 6) of the opcode byte is the INTERRUPT ENABLE bit. If
this bit is set to one in the opcode, the MPX will cause an interrupt (50D
interrupt) when it has completed the command. If this bit zero, an interrupt
will not be generated when the command has completed execution. Note that in
order for the interrupt to make it to the bus, it must be jumpered to an inter-
rupt line (see the hardware configuration section of this document for further
details).

The CONT bit (bit 7) of the opcode byte is the CONTINUE bit and is asso-
ciated with the link structure. If the CONT bit is set high, execution of the
next command (pointed to by the link address) will commence immediately after
execution of the current command is complete. If the CONT bit is zero, the MPX
will stop when execution of the current command is complete, and wait for
another ATTN before executing the next command.

There are two considerations when using the CONT bit. The firsi is that
the INT bit is ignored if the CONT bit is set. This means that an interrupt
will only occur if no command is to follow, which is the way one would normally
want things to happen when executing a sequence of commands.

Secondly, if the link address points to the beginning of this same instruc-—
tion (pointing to itself) and the CONT bit is set, endless execution of the
instruction will occur. This could be useful. The way to stop execution would
be to change the opcode so that the CONT bit is zero. The opcode could be
changed to a NOP, or merely the same opcode with the CONT bit zeroed. Either
the system CPU or the MPX could change the opcode. DO NOT try to change the
link address on the fly! =+

Bit 5 is unused and is really a "don’t care” bit, but a good practice would
be to always set this bit to zero.

STATUS INDICATION BYTE

This byte is used to “"handshake” with the MPX when the use of a completion
interrupt is not desired, or they may be used in conjunction. This byte should
be set to zero before an ATTN is sent to the MPX. When the MPX is done
executing the command, it will set this byte to FF hex. In a non-interrupt
environment, this byte should be checked before another command is sent to the
MPX.

If the CONT bit is set in the command opcode, the status byte for that
particular command will NOT be set to FF hex. This means that in a sequence of
commands, only the status byte in the last command (the one with CONT = 0) will
be set to FF hgx.

13

GENERAL PURPOSE PARAMETER BYTES O through 8

These bytes are used to send parameters to the MPX along with the command.
The parameter(s) sent vary with the command. Only the block move commands use
all nine bytes, and they would contain the starting, ending and destination
addresses for the block move (3 bytes each). Sometimes only a few bytes are
used and sometimes none are used at all. The exact usage of these bytes is
detailed in each individual command description. :

LINK ADDRESS BYTES

These three bytes are a pointer to the place at which the next command line
is resident in the system memory. When not executing multiple commands (CONT
bit = 0), this address would normally point to the beginning of the same
command. When executing a sequence of commands, this address would point to the
address of the next command.

The address is stored low byte first and is a full 24 bit address.

The initial link address is 50 hex, but the NOP instruction may be used to
change the link address to any other system address.

Note that the link address is read only once and at the start of each
command, not at the end. This means that the command itself may modify the link
address, but it will only affect the following command (mot the where the next
command will be fetched). The main system CPU should not modify the current
link address unless the MPX is not active.

RESULT 1 AND RESULT 2 BYTES
».

Sometimes it is desirablg to have the MPX return parameters to the caller,
and that is the purpose of these two bytes. Only two of the built-in commands
return data to these locations, but user generated commands should use these
bytes for that purpose as well.

GENERAL NOTES

Commands are assumed to be resident on 16 byte boundaries ie: 50H, 60H,
180H, etc.

The only bytes in the command line that the MPX modifies are the status
indication and result bytes. All others are left intact.

14

COMMAND DESCRIPTIONS
NOP ~ No Operation
OPCODE BIT CODING:

Bit 7 . -Bit O

| cosT | sy | o | o | o | o0 | o | o |

PARAMETERS PASSED: Link Address.
PARAMETERS REURNED: None.

DESCRIPTION: This command seems useless on the surface, but in reality has many
uses. This command may be used to change the link address if address 50 hex is
not a good one for your system. It may also be used to reset the interrupt
output from the MPX if it was set by the completion of a previous command (of
course the INT bit should be zero). This command is also useful in debugging a
command sequence since it may be used to cause execution to skip the command
that is replaced with a NOP.

RESET - Reset the MPX-1
OPCODE BIT CODING:

Bit 7 : ' Bit O

Icom|1m|o|o|o|o|o|1|

PARAMETERS PASSED: None.
PARAMETERS RETURNED: None.

DESCRIPTION: This command resets the MPX-1 to its initial starting state. The
internal command table will be cleared (so any custom commands you have loaded
into RAM will now be ignored). The address where the MPX picks up its first
command line will be set to 50H. All interrupts will be masked and the inter-
rupt controller will be re-initialized.

SET MASK — Mask or Ummask interrupt imputs to MPX-1

OPCODE BIT CODING:

Bit 7 Bit O

| coc] nr | o | o | o |} o | 1 | o |

PARAMETERS PASSED: Mask Byte, Link Address.
PARAMETERS RETURNED: None.

DESCRIPTION: This command is used to mask or unmask interrupt inputs to the
MPX-1. The byte passed in Parameter Byte 0 is written to the mask register of
the 8259A interrupt controller. If a bit in the mask byte is set to one, the
corresponding interrupt will be masked. Conversely, if a bit is zero, that

15

interrupt will be unmasked. Bit O of the mask byte corresponds to VIO* on the
bus, and Bit 7 corresponds to VI7* on the bus. This is the same as sending OCWl
to the interrupt controller (see the 8259A application note in the appendix of
this document for more information).

SENDEOI - SEND END-OF-INTERRUPT COMMAND TO INTERRUPT CONTROLLER

OPCODE BIT CODING:

Bit 7 Bit O

ICONTIINT|0|0|0|0|1|1I

PARAMETERS PASSED: EOI Command Byte, Link Address.
PARAMETERS RETURNED: Nomne. :

DESCRIPTION: This command is used to send an End-of-Interrupt Command to the
8259A interrupt controller. It is also useful for rotating the interrupt prior=
ity levels. The byte to be sent to the 8259A is passed in Parameter Byte O.
This is equivalent to sending OCW2 to the 8259A. For more information on what
this byte does to the 82594, refer to the 8259A application note contained in
the appendix of this document.

READREG - READ INTERRUPT CONTROLLER REGISTERS

OPCODE BIT CODING:

Bit 7 Bit O

Icomlnrrlol%olol1|0|ol

PARAMETERS PASSED: Link Address.
PARAMETERS RETURNED: Contents of IS and IR registers in 8259A.

DESCRIPTION: This command is used to read the contents of the Interrupt Request
(IR) and In Service (IS) registers in the 8259A. It returns the contents of the
IR register in the Result 1 Byte location and the contents of the IS register in

the Result 2 Byte location. For more information on the meaning of the IS and
IR registers, see the 8259A application note in the appendix of this document.

SETRESPONSE - SET INTERRUPT RESPONSE BYTE
OPCODE BIT CODING:

Bit 7 Bit 0

lcomIIN'rlolololllolll

PARAMETERS PASSED: Response Byte, Link Address.
PARAMETERS RETURNED: None.

DESCRIPTION: The MPX-1 is capable of putting an 8 bit value on the system data

16

bus during system interrupt acknowledge cycles. The value is called the inter-
rupt response byte and may be set as desired with this command. Note that this
response will only appear on the bus if this feature in enabled by a hardware
switch. See the hardware section of this document for more information.

SIZE - INDICATE WHETHER 4K OR 16K MPX-1

OPCODE BIT CODING:

Bit 7 Bit O

| covt | =t | o | o | o | v | 1 | o |

PARAMETERS PASSED: Link Address.
PARAMETERS RETURNED: Size indication.

DESCRIPTION: This command is used by the system to determine the aaount of
memory installed in this particular MPX-l. The Result 1 Byte is set to 00 hex
if this is a 4K MPX-1 and is set to FFH if this is a 16K MPX-1.

LOADRAM - LOAD MPX LOCAL RAM FROM SYSTEM RAM

OPCODE BIT CODING:

Bit 7 Bit O

| contr | IN* | O | o | o | 1 { 1 | 1 |

PARAMETERS PASSED: Starting Address in System RAM (3 bytes)
Ending "Address in System RAM (3 bytes)
Destination Address in Local RAM (2 bytes)
Link Address

PARAMETERS RETURNED: None.

DESCRIPTION: This command is used to load the MPX local RAM from system RAM.
Three addresses are passed to the MPX: The starting address of the block to be
loaded, its ending address, and the starting address of the place to put it in
local RAM. The starting and ending addresses are 3 bytes long and the destina-
tion address is only two bytes long. All addresses are stored low byte first
and the starting address is at Parameter Bytes 0-2, the ending address is at
Parameter Bytes 3-5, and the destination address is at bytes 6-7.

EXRAM - EXECUTE A PROGRAM IN LOCAL RAM
OPCODE BIT CODING:

Bit 7 Bit O

| cotr | It | o | o | 1 | o | o | o |

17

PARAMETERS PASSED: Execution Address (2 bytes), Link Address.

PARAMETERS RETURNED: None.

DESCRIPTION: This command is used to cause a routine stored in local RaM on the
MPX-1 to be executed. A "call” is made to the routine, so when it has finished
executing a RETURN instruction will pass control back to the interpreter
(assuming a clean stack). The starting address of the routine is two bytes long
and is stored low byte first at Parameter Bytes O and 1.

BLEKMOV - MOVE A BLOCK OF RAM ON THE SYSTEM BUS

OPCODE BIT CODING:

Bit 7 ' Bit O

|com|m'r|o|olllolo|1|

PARAMETERS PASSED: Starting Address in System RAM (3 bytes).
Ending Address in System RAM (3 bytes).
Destination Address in System RAM (3 bytes).
Link Address.

PARAMETERS RETURNED: None.

DESCRIPTION: This command is used to move a block of RAM (of any size) on the
§-100 bus. Three addresses are passed: The starting address of the block to be
moved, its ending address and the destination address of where it’s being moved
to. FEach address is three byfes long and is stored low byte first. The
starting address should be at Parameter Bytes 0-2, the ending address should be
at Parameter Bytes 3-5 and the destination address should be at Parameter Bytes
6-8. Note that this command is useful for putting code in extended pages that
normal 8 bit processors cannot talk to without a lot of effort.

FASTMOV — MOVE A BLOCK OF RAM ON THE SYSTEM BUS - FAST
OPCODE BIT CODING:

Bit 7 Bit O

|CONT|INT|0|0|1|0|1|0|

PARAMETERS PASSED: Starting Address in System RAM (3 bytes).
Ending Address in System RAM (3 bytes).
Destination Address in System RAM (3 bytes).
Link Address.

PARAMETERS RETURNED: None.

DESCRIPTION: This command is almost the same as above, except that all blocks
must be a multiple of 256 bytes, and begin on 256 byte boundaries. This allows

18

the transfer to occur at a much higher rate. Three addresses are passed: The
starting address of the block to be moved, its ending address and the destina-
tion address of where it"s being moved to. Each address is three bytes long and
is stored low byte first. The starting address should be at Parameter Bytes o-
2, the ending address should be at Parameter Bytes 3-5 and the destination
address should be at Parameter Bytes 6~8. Note that even though each aadress is
three bytes long, the low byte is assumed to be 00 hex.

RESERVED — DO NOT USE
OPCODE BIT CODING:

Bit 7 ~ Bit O

| coxt | InNr | o | o + v | 1 | 1 | 1 |

Note: This opcode is reserved and should not be used by custom command
routines. Attempts to call this opcode will be translated internally to NOP
opcodes (link address will still be valid, however). The reason this opcode is
reserved is because its jump table address is used by the ATTN routine.

ABOUT THE ROM CODE

This is a brief description of what goes on in the standard software
routine.

The first thing in the code is a jump to the actual beginning of the code.
The reason this is there is because of the way the MPX-1 does its "power-on-
jump” sequence. The ROM appears at address 0O000H for the first three cycles and
then appears at 4000H théreafter.

INITIALIZATION

The first thing that happens is to set up the interrupt controller with all
interrupts masked, and the interrupt vector table at address 804 (4 byte
interval).

Starting at 0000H in RAM are two tables: the command jump table and the
interrupt vector table. The first thing that happens is that all these jump
locations are initialized to point to a routine called DUMMY, which is nothing
more than a RET instruction. This is where all interrupts and all unused
commands go to, (until you change the table). The next thing that happens is to
patch the command jump table with the addresses of the ten command routines that
are supplied in the ROM. Next the stack pointer is initialized leaving about 77
bytes free for stack usage. That should be more than enough, the routines in
the ROM never get more than about 6 bytes deep.

Next the initial link address is set up to point address 50H and then the
ATTN interrupt (RST 7.5) is armed and the MPX sits quietly waiting for an ATTN.

19

ATTN RESPONSE

When an ATTN occurs, first the interrupt output is cleared, the ATTN inter-
rupt input is masked and the last link address is copied into CURRENT. Then 16
bytes are read from the system memory (pointed to by CURRENT) into a buffer
called CMNDBUF. The opcode byte is read from the buffer and decoded. A call is
then made to the address pointed to by the lower 5 bits of the opcode. The
opcode is first checked to see if it is the same as the ATTN jump address. If
it is, a NOP command is substituted instead. Control has now been transfered to
the actual command routine. When the command is done executing, all it need do
is a RET instruction to get back to the main interpreter loop. i

When a command is finished, the program branches to CHECK. This routine
checks to see if the CONT bit was set in that opcode. I1f it was, a jump occurs
to the ATTN routine and the next command is executed. If the CONT bit is not
set, the INT bit is checked. If it is set, the status byte is set to FFH and
the SOD interrupt output is set and the MPX then waits for the next ATTN. If
the INT bit is not set, the status byte is set to FFH and the MPX waits for the
next ATTN. :

GENERAL PURPOSE SUBROUTINES

The ROM contains several useful subroutines that may be utilized by your
own custom commands. They include functions such as managing the address
pointers, storing them in appropriate registers for bus accesses, and reading
and writing bytes on the system bus. Their functions are pretty well documented
in the assembly listing that follows.

WRITING YOUR OWN CUSTOM COMMANDS -

Ten commands are used by the standard ROM and one is reserved, so that
leaves a total of 21 command opcodes that are available for your custom usage.
Less than 1/4th of the 2K bytes in the ROM are used by the standard routines, so
custom commands could be added to the ROM if you have access to an EPROM burner.
1f not, commands can be assembled to run from the ample free RAM space and
loaded using the LDRAM command. The command jump table is kept in RAM (from
0000H to OO7FH) so it may also be changed with the LDRAM command. Control may
be passed to the new commands by use of the opcode protocol or by the EXRAM
command .

Some considerations about writing into the internal RAM: Be careful mot to
overwrite the buffer, stack or ATIN jump locations (the ATIN jump resides at 3C
— 3FH). The program does not use RAM above 200H at any time, so all RAM above
this address is free for your use. It is a good idea to issue a SIZE command to
determine the amount of RAM available (4K or 16K) before issuing a LDRAM
command. This is because the RAM in a 4K MPX-1 "wraps around” and appears in
eack 4K block in the 16K RAM space.

20

8000
8001
8004
8005
8007
00CO
0000
0080
00AQ
00A2
00A5

LISTING OF STANDARD SOFTWARE SUPPLIED WITH THE MPX-1

00A8 =

00AB
00AE
00AF
00BO
OCFF
0100
0030

4000

4000
4003
400C

4031
4033
4036
4038
403B
403E
4040

4043
4046
4049
404C

C33140
564552532E
434F 505952

3E9E
320080
3E00
320180
320180
3EFF
320180

;MPX PROM VERSION 1.0

;WRITTEN 1-7-82 BY HMARK GARETZ

;COPYRIGHT 1982 BY GODBOUT ELECTRONICS

3VERSION 1.1

;s EQUATES

INTCLA
INTCLB
DMALO
DMAHI
INTRSP
WINDOW
CMNDTBL
INTTBL
CMNDBUF
STRTAD
ENDAD
DESTAD
LINKAD
RESULT1
RESULT2
CURRENT
STACK
BUFFER
SIM

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

Multiple command linking bug fixed-llo

80001
8001H
8004H
8005H
8007H
O0COH
0000H
0080H
00AOH
CMNDBUF+2
STRTAD+3
ENDAD+3
DESTAD+3
LINKAD+3
RESULT1+1
OOBOH
OOFFH
0100H
304

;Beginning of Code

START:

sThe following code initializes
s Interrupt Jump Table.

OR%

JMP
DB
DB

MVL
STA
MVI
STA
STA
MVI
STA

4000H

START
“VERS.

A,9EH
INTCLA
A,0
INTCLB
INTCLB
A,OFFH
INTCLB

1.0
“COPYRIGHT 1982

;Interrupt Controller

- " "

sDMA Addr. Bits A8-15

;DMA Addr. Bits Al6-23
s;Interrupt Response Byte Reg.
;External Window

;Command Jump Table

;Interrupt Response Jump Table
;Temporary Command Buffer
;Starting Address, 3 bytes
1+Ending Address, 3 bytes
;Destination Address, 3 bytes
sLink Address, 3 bytes

;Result byte 1

;Result byte 2

;Current Command Address, 3 bytes
;Stack Space

;Fast Block Move Buffer

sSIM INSTRUCTION

;3 Init Bytes

BY GODBOUT ELECTRONICS”
;ICW1

s ICW2

3ICW3 too

3OCW1 Mask all interrupts

;Done with interrupt controllers

the Command Jump Table and

Unused entries jump to DUMMY

;Note: all entries are first initialized to DUMMY, then

spatched for commands and ATTN.

210000
117842
0100C3
7D

LOOP1:

LXI
LXI
LXI
MOV

H, CMNDTBL

D, DUMMY
B,0C300H
A,L

21

;D gets DUMMY addr.
3sJUMP and a NOP

404D
404F
4052
4053
4054
4055
4056
4057
4058
4059
4054
405D
4060

4063
4066
4069
406C
406F
4072
4075
4078
4078
407E
4081
4084
4087
408A
408D
4090
4093
4096
4099
409C
409F
40A2

4045
40A8
40AB
40AD
40AE
40AF
40BO
40B1

40B2
40B4
40B5
40B6

FEAO
CAS5D40
70

23

73

23

72

23

71

23
C34940
21E040
223D00

21CE41
220100
213140
220500
21CF4l
220900
21D641
220D00
21DD4l
221100
21F841
221500
21FF41
221900
213342
221D00
214B42
222100
214F42
222500
216542
222900

31FF00
21AB00
3650
23

AF

77

23

77

3E1B
30
FB
76

CP1

JZ
MOV
INX
MOV
INX
MOV
INX
MOV
INX
JMP
MORE: LXI1
. SHLD

QAOH
MORE
M,B

,C

ERERXRDXE
o

LOOP1
H,ATTN
003DH

;check for end
sthe JUMP

;the DUMMY addr.

sthe NOP

;addr. of ATTN routine

;This part of the code writes the addresses of the command
;routines into the command table.

LXI
-SHLD
LXT
SHLD
LX1
SHLD
LXI
SHLD
LXI
SHLD
LXI
SHLD
LXI
SHLD
LXI
SHLD
LXI
SHLD
LXI
SHLD
LXI1
SHLD

LXI
LXI
MVI
INX
XRA
MOV
: - INX
MOV

H,NOPR
CMNDTBL+1

‘H, START

CMNDTBL+5
H, SETMSK
CMNDTBL+9
H,SETEOL
CMNDTBL+13
H,READRG
CMNDTBL+17
H,SETRSP
CMNDTBL+21
H,SIZE
CMNDTBL+25

« H, LDRAM

CMNDTBL+29
H,EXRAM
CMNDTBL+33
H, BLKMOV
CMNDTBL+37
H,FSTMOV
CMNDTBL+41

SP,STACK
H,LINKAD
M, 50H

saddress 6f NOP routine
sRESET Jump

;set mask routine

;EOI routine

;INT regester read routine
;set response byte routine
;return size routine

;load RAM routine

;execute RAM routine
;block move routine

;fast block move routine

;low order initial link addr.

;This routine arms the attention interrupt and waits.

REARM: MVI
DB
EL
HLT

A,1BH
SIM

22

40B7
40BA
40BC
40BF
40C2
40C4
40C7
40CA
40CB
40CD
40CF
40D0
40D3
40D6
40D7
40D9

40DC
40DF
40E0
40E2
40E3
40E6
40E9
40EC
40EY¥
40F2
40F5
40F8
40FB
40FD
4100
4101
4104
4105
4106
4108
4108
410D
410E
410F

3AA000
E680
€2DC40
3AA000
E640
CAD340
CD1041
23
36FF
3ECB
30
C3B240
CD1041
23
36FF
C3B240

21B740
E5
3E5F
30
3AABOOQ
328000
3AACO0
32B100
3AADOO
32B200
CD49%41
3AA000
E61F
110F41
D5
210000
07

07
FE3C
C20D41
3E00
6F

E9

Cc9

;This routine checks the CONT and INT bits of the opcode
;and acts accordinmgly.

CHECK: LDA
ANL
JNZ
LDA
AN1
JZ
CALL
INX
MVI
MV1
DB
JMP

DONE: CALL
INX
MVI
JMP

;This is the main command interpreter routine.

CMNDBUF
80H
ATTNO
CMNDBUF
40H
DONE
PUTCHMD
H

i, OFFH
A,OCBH
SIn
REARM
PUTCMD
H

i, OFFH
REARM

;Check the CONT bit

;1f set then a successive command
;get it again

;Check the INT bit

;1f not set

;put current addr into regs

;for status byte addr.

;set status byte in memory

;set SOD high

It first copies

;the LINK addr. into CURRENT and then reads in the command

;bytes.

Then an indirect call is executed to the address of

;the command. It also unsets the interrupt output (SOD).

ATTNO: LXI
PUSH
ATTN: MVI
DB
LDA
STA
LDA
STAs
LDA
STA
CALL
LDA
ANI
LXI
PUSH
LXI
RLC
RLC
CPI1
JNZ
MVI
ATTN1: MOV
PCHL
BACK: RET

H,CHECK
H

A, SFH

SIM
LINKAD
CURRENT
LINKAD+1
CURRENT+1
LINKAD+2
CURRENT+2
GETCMD
CMNDBUF
1FH
D,BACK

D

H, CMNDTBL

3CH
ATTN1
A,0
L,A

sADDRESS TO RETURN TO
sPUT ON STACK
;reset SOD and mask 7.5

scopy LINKAD into CURRERT

;get the command line from memory
;get the opcode byte

;mask the INT and CONT bits

;put return addr. in D

;and put in on the stack

;HL gets addr. of command table

;shift the opcode for pointer
;check for reserved op-code
;skip next 1if OK

;otherwise, do a nop command
;L gets low byte

;and go there

;we“re done

5General Purpose Subroutines Follow:

;This subroutine puts: CURRENT+2 into DMAHI, CURRENT+1
;into DMALO, CURRENT into L reg and WINDOW into H

23

4110 3AB200 PUTCMD: LDA CURRENT+2

4113 320580 STA DMAHT
4116 3AB100 LDA CURRENT+1
4119 320480 STA DMALO
411C 3AB0O0O LDA CURRENT
411F 6F MOV L,A

4120 26C0 MVI H,WINDOW
4122 C9 RET

;This subroutine puts: STRTAD+2 into DMAHI, STRTAD+1
;into DMALO, STRTAD into L reg and WINDOW into H

4123 3AA400 PUTST: LDA STRTAD+2
4126 320580 STA DMAHI
4129 3AA300 LDA STRTAD+1
412C 320480 STA DMALO
412F 3AA200 LDA STRTAD
4132 6F MOV L,A
4133 26C0 MV1 H,WINDOW
4135 C9 RET

;This subroutine puts: DESTAD+2 into DMAHI, DESTAD+1
sinto DMALO, DESTAD into L reg and WINDOW into H

4136 3AAA00 PUTDST: LDA DESTAD+2
4139 320580 STA . DMAHIL
413C 3AA900 LDA DESTAD+1
413F 320480 STA DMALO
4142 3AA800 LDA DESTAD
4145 6F MOV . L,A

4146 26CO MV1 B,WINDOW
4148 C9 RET

;This subroutine gets 16 bytes from system memoIry pointed to
;by CURRENT and puts them into CMNDBUF .

4149 CD1041 GETCMD: CALL PUTCMD ;set up the registers
414C 11A000 LXI D, CMNDBUF

414F 0610 MVI B,16

4151 7E GET1l: MOV AM ;get bus byte

4152 12 STAX D ;put in buffer

4153 23 INX H.

4154 13 INX D

4155 05 DCR B

4156 C25141 JNZ GET1

4159 C9 RET

;This subroutine increments STRTAD (3 bytes) and DESTAD
;(3 bytes). Entry at BUMP2 bumps only the upper two bytes.

415A 3AA200 BUMP: LDA STRTAD
415D 3C INR A
415E 32A200 STA - STRTAD
4161 3AA800 LDA DESTAD
4164 3C INR A

24

4165
4168
4169
416C
416D
4170
4173
4174
4177
4178
417B
417C
417F
4182
4183
4186

4187
418A
418B
418E
418F
4190
4193
4194
4197
4198
4199
419C
419D
41A0
41A1

41A2
41A5
41A6

41A7
41A8
41AB
41AC
41AD

324800
co
3AA300
3C
32A300
3AA900
3C
324900
co
3AA400
3C
32A400
3AAAQ0
3C
32AA00
c9

3AA200
47
3AA500
B8
co

3AA300

47
3AA600
B8
co
3AA400
47
3AA700
B8
c9

CD2341
7E
c9

F5
CD3641
Fl
77
c9

STA DESTAD
RNZ

BUMP2: LDA STRTAD+1
INR A
STA STRTAD+1
LDA DESTAD+1
INR A
STA DESTAD+1
RNZ
LDA STRTAD+2
INR A
STA STRTAD+2
LDA DESTAD+2
INR A
STA DESTAD+2
RET

;This subroutine has two entry points: CMPAR3 checks all three
ibytes of both STRTAD and ENDAD for equality. CMPAR2 checks
;only the upper two bytes. Returns with Z flag set if equal.

CMPAR3: LDA STRTAD
MOV B,A
LDA ENDAD
cMP B
RNZ

CMPAR2: LDA STRTAD+1
MOV B,A
LDA ENDAD+1
CMP B
RNZ
LDA STRTAD+2
MOV B,A
LDA ENDADH2
CMP B
RET

;This subroutine reads a byte from external memory pointed to
sby STRTAD. The byte read returns in A.

RDEXT: CALL PUTST
MOV AM
RET

;This subroutine writes a byte to exteral memory pointed to by
;DESTAD. The byte to be written should be in A.

WREXT: PUSH PSW
CALL PUTDST

POP PSW
MOV M,A
- RET

:This subroutine reads 256 bytes from external memory poeinted
;to by STRTAD and puts them into BUFFER.

25

41AE
41B1
41B3
41B6
4187
41B8
41B9
41BA
41BD

41BE
41C1
41C3
41C6
41C7
41C8
41C9
41CA
41CD

41CE

41CF
41D2
41D5

41D6
41D9
41DC

41DD
41E0
41E1
41E3
4L1E4
41E6
41E9
41EC
41ED
41EF
41F2
41F5

CD2341
2E00
110001
7E

12

1C

2C
C2B641
c9

CD3641
2E00
110001
1A

77

1C

2C
C2C641
c9

c9

3AA200
320180
c9

344200
320080
c9

CD1041
D
C60E
6F
3EQA
320080
340080
77
3EOB
320080
3A0080
2C

RD256: CALL PUTST

MV L,0 jzero L reg.

LXI D,BUFFER ;DE gets BUFFER address
RD2: MOV A ;get byte

STAX D ;store it in buffer

INR E

INR L

JNZ RD2

RET

;This subroutine writes 256 bytes from BUFFER to exiernal '
smemory pointed to by DESTAD.

WR256: CALL PUTDST

MVI L,0
LXI D,BUFFER
WR2: LDAX D ;A gets byte from buffer
MOV M,A
INR . E
INR . L
JNZ WR2
RET

sThe actual commands gtart below:
;Command does nothing, but is useful anyway.

NOPR: RET

;Command to set oCWl (Mask Byte)

SETMSK: LDA «STRTAD ;Get the mask byte
STA INTCLB
RET

;Command to gend EOI to interrupt controller (OCwW2)

SETEOQL: LDA STRTAD : ;get the EOI byte
STA INTCLA
RET :

;Command to read the IR and IS registers in the Interrupt
:Controller. FPuts IR in RESULT1 and IS in RESULT2.

READRG: CALL PUTCMD

MOV A,L
ADI OEH soffset of RESULT1
MOV L,A
MVI A, 0AH ;read IR command
STA INTCLA

° LDA INTCLA sread it
MOV M,A ;Store it external
MVI A,OBH ;read IS command
STA INTCLA
LDA INTCLA jread 1t
INR L ;offset of RESULT2

26

41F6 77 MOV M,A ;Store it external
41F7 C9 RET

;Command to set the interrupt response byte

41F8 3AA200 SETRSP: LDA STRTAD
41FB 320780 STA INTRSP
41FE C9 RET

;Command to return size of MPX1 (4K or 16K). If 4K MPX1,
;sets RESULT1 to O, if 16K MPX1, sets RESULT1 to FFH

41FF 3AFFOF SI1ZE: LDA OFFFH ;top of 4K RAM
4202 F5 PUSH PSW ;save it on the stack
4203 3AFF3F LDA 3FFFH ;top of 16K RAM
4206 F5 PUSH PSW. ;save it as well
4207 3EAA MVI A,0AAH

4209 32FFOF STA OFFFH

420C 3ES55 MVL A,55H

420E 32FF3F STA 3FFFH

4211 3AFFOF LDA OFFFH

4214 FES5 CP1 55H sis 1t 4K?

4216 CAlE42 Jz 184K

4219 3EFF MV1 A,OFFH

421B C32042 JMP SIZE2

421E 3E00 IS4K: MVI A,0

4220 F5 SIZE2: PUSH PSW

4221 CD104l - CALL PUTCMD

4224 7D MOV A,L

4225 C60E ADI OEH

4227 6F MOV L,A

4228 Fl POP PSW

4229 77 MOV M,A

422A Fl POP PSW

4228 32FF3F STA 3FFFH

422E Fl POP PSW

422F 32FFOF STA OFFFH

4232 C9 RET

;Command to load local RAM from external memory.

4233 CDA241 LDRAM: CALL RDEXT ;jread the byte

4236 2AA800 LHLD DESTAD

4239 77 MOV M,A

423A CD5A41 CALL BUMP ;Bump the pointers

423D CD8741 CALL CMPAR3 sare they equal?

4240 C23342 JNZ LDRAM

4243 CDA241 CALL RDEXT ;once more for last byte
4246 2AAB00 LHLD DESTAD

4249 77 MOV M,A

424A C9 - RET

;Command to execute program in local RAM. A "call” is made
;to the execution address, so all the program has to do is a
;RET to get back to the main loop.

27

42438
424E

424F
4252
4255
4258
425B
425E
4261
4264

4265
4268
426B
426E
4271
4274
4271
427A

4278

2AA200
E9

CDA241
CDA741
CD5A41
CD8741
C24F42
CDA241

CDA741

c9

CDAE4L
CDBE41
CD6941
CD9041
C26542
CDAE4L
CDBE41
c9

c9

EXRAM: LHLD
PCHL

STRTAD ;address in HL
;go there

;Command to move a block of RAM on the external bus
;s (slow version).

BLKMOV: CALL
CALL
CALL
- CALL

JNZ
CALL
CALL

RET

RDEXT
WREXT
BUMP
CMPAR3
BLKMOV
RDEXT

" WREXT

:Command to move a block of RAM on the external bus
; (fast version).

FSTMOV: CALL
CALL
CALL
CALL
JNZ
CALL
CALL
RET

;Dummy routine

DUMMY: RET

RD256
WR256
BUMP2
CMPAR2
FSTMOV
RD256
WR256

that does nothing but return.

28

MPX - THEORY OF OPERATION

The MPX is designed around the Intel 8085 microprocessor. In this applica-
tion, the 8085 may access resources which are local to the MPX without use of
the §-100 bus. Resources external to the MPX may be accessed through a temporary
master interface as defined in the IEEE 696/S-100 specification.

The 8085 is a single chip microprocessor which requires very few external
support chips. The processor includes a built in oscillator. An external crystal
is provided for oscillation at 12.000 Mhz which results in a 166 nsec "T" state.
Use of this oscillator rather than the $-100 bus clock makes MPX internal
operations asynchronous with activities on the S-100 bus, but allows the MPX to
operate at 6 Mhz independent of the external bus speed. (i.e. the MPX may
execute local code at 6 Mhz even though the external bus is 2 Mhz). An LS373
(U28) is used to latch the low order address byte from the multiplexed Address-—
/Data bus. This IC is controlled by the Address Latch Enable (ALE) signal
provided by the 8085 for that purpose. A buffer (U29) is provided for a group of
loads which are inputs only.

The MPX local environment includes both RAM and ROM memory. The processor
Read and Write strobes are "OR"ed and qualified with MEMORY status (by U3l) to
produce a MEMORY STROBE signal. This signal is used to enable a one of four
decoder (U32) which decodes the two high order address lines Al4 and Al5. The
resulting outputs are RAM STB which is decoded for addresses in the range of
0000 through 3FFF, ROM STB which is decoded for addresses of 4000 through 7FFF
and INT STB (INT for Internal) which is decoded for 8000 through BFFF.

The RAM consists of either eight 2147 or 2167 type ICs (Ul0-Ul7) which are
each either 4K or 16K by 1 bit. The high order address inputs A8-All come
directly from the 8085 while the lower eight lines come from the address latch
described above. The data input and data output lines of each IC are tied
together to provide a bidirectional connection to the internal data bus. The
remaining inputs are Chip Enable (CE) which is driven by the RAM STB as de-
scribed above and Write Enable (WE) which is controlled by 8085 S1 line. If WE
is false, CE will cause the contents of the addressed location to be driven onto
the data bus. If WE is true, the memory outputs are forced to their high Z
state. CE will cause the data on the bus to be written at the addressed
location.

ROM storage is provided by a 2716, 2732 or 2764 EPROM. The ROM STB de-
scribed above is used to drive the Output Enable (OE). A ROM ENA signal is
derived from address and status information (without strobes) by a decoder
(U32). This "look ahead” signal is used to drive Chip Enable CE of the ROK and
to generate a wait state.

The 8085 samples its RDY input at the rising edge of the clock to determine
if a wait state is required. Because of set-up and hold time requirements, the
RDY line is held low for a full “T" state from the falling edge of the clock
preceding the ROM STB. This function is controlled by a pair of "D" flip~-flops
(U20) and enabled by S2-1.

The 8085 will fetch the first instruction following a Reset from location
0000. The interrupt flexibility of the MPX requires RAM memory at the interrupt
vector locations. This apparent dilemma is resolved by having the ROM and RAM
exchange locations during initialization. $-100 bus signals RESET* or SLAVE CLR*

29

clear a counter (U5) which in turn generates INIT. INIT is "OR"ed with address
line Al4 (U21) so that memory accesses in the range of 0000 to 3FFF will actual-
1y access 4000 to 7FFF when INIT is active. The initial instruction fetch by the
8085 will actually come from location 4000 which is the start of the ROM. The
ROM contains a jump to 4003 (or the actual start of the code) at this location.
When the 8085 goes to fetch the next instruction, the initialization counter
which has been counting ALEs counts to & removing INIT and hanging the counter.
The 8085 address will be used directly to fetch the next address in the ROM.

The remaining features of the MPX hardware make up its interface to the
external bus. :

The primary function of the MPX is to assist the bus CPU in the servicing
of interrupts. To facilitate the capability, the MPX data bus includes an 8259A
interrupt controller (U26). The eight active low S-100 bus vectored interrupt
lines (VIO* = VI7¥) are tied through inverters (U36) to the eight active high
interrupt request lines (IRO - IR7) of the 8259A. (See the 8259A application
note in the appendix of this document for a complete description of the 8259A.)
The resulting INT line from the 8259A is tied directly to the INTR input of the
8085 and the 8085 Interrupt Acknowledge line (INTA) is tied back to the 8259A
INTA input. Thus, bus interrupts that are not masked will interrupt the 8085
directly and B085 interrupt acknowledge cycles will accept data from the 8259A.
Programming the 8259A requires two eight bit ports.

The LS138 one of eight decoder (U48) decodes the three low order address
lines (A0 - A2) qualified by Internal Strobe (INT STB) described above to obtain
Interrupt Controller Enable (INT CTIL ENA), Set Interrupt (SET INT), Interrupt
Acknowledge Strobe (INTA STB), A8-15 STB and A16-23 STB making all of these
facilities memory mapped within the 8000 to BFFF range. The INT CTL ENA is
generated for a pair of addresses as required for programming the 8259A as
described above.

An S-100 bus I/0 port with a switch selectable address is decoded by the
152521 (U41). No data is accepted by this port, however writing to the port will
generate an attention signal (ATTN) to the 8085 by causing RST7.5 to be
asserted.

Two methods are provided for the MPX to call the bus CPU. The SET INT
signal described above may set a latch (U24). The output of the latch is buf-
fered (U25). 1t may be jumpered to any of the §-100 interrupt lines, including
NMI and INT. The latch is cleared by an interrupt acknowledge cycle on the 5-100
bus which is decoded by (U7). The other CPU call option uses the 8085 Serial
Output Data line (SOD). The buffered SOD output (U25), may also be jumpered to
any of the S-100 bus interrupt lines.

For environments where the MPX is the only interrupt controller in the
system, the MPX may provide a single byte response to the CPU interrupt acknow-
ledge cycle which results from a call by the MPX to the bus CPU. (This response
would normally be a RST inmstruction for 8080 type CPUs, or vector information
for 8086/88 or 68Q00 type processors). Another of the addresses decoded by the
1S138 is INTERRUPT RESPONSE. The resulting strobe loads an eight bit latch with
the contents of the data bus. The buffered latch will enable its outputs onto
the $-100 DI bus during a bus interrupt acknowledge cycle if the interrupt
response enable switch is on.

30

The MPX may also communicate with the S-100 bus as a temporary master. As
the name implies, the bus CPU or permanent master will give up the bus for a
short time allowing a temporary master to take control. The protocol for trans-
fer of the bus as defined in the IEEE 696/S-100 specification must be carefully
adhered to if proper operation is to be obtained. Once the bus is obtained, the
temporary master will generate all of the bus signals usually provided by the
CPU (with the exception of INTA cycles or releasing the bus to other temporary
- masters).

The MPX will perform a DMA cycle if either a memory address in the range of
C000 - FFFF is accessed or an I1/0 port is accessed. Since there are no port
addresses used on the MPX, all port accesses must be external. The signal
External Enable (EXT ENA) is generated on EXT MEM which was decoded from the
high order address lines or on I/0 status and not interrupt acknowledge. EXT ENA
will assert a false level on the 8085 RDY line making the 8085 hang in a wait.
If EXT ENA (which was decoded entirely from status signals) has remained until
the leading edge of the 8085 strobe, the flip-flop I WANT will be set. When the
bus is available as determined by the signals HOLD* and Hold Acknowledge (pHLDA)
both being inactive, I_WANT will set Assert Priority (APRIO). APRIO will assert
HOLD* and enable the priority arbitration logic.

Priority arbitration is handled by the three ICs U33,34 and 35. The 5-100
bus DMA address bus consists of four open collector lines which are active low.
To understand this process, consider the arbitration of the most significant bit
DMA3*, If a device has set APRIO and the most significant bit of its priority is
a "1", it will assert DMA3* by pulling the line low. If a different device also
has APRIO set, but the most significant bit of its priority is a "0", its open
collector output will be unable to pull DMA3* high. Based on consideration of
this single bit, the second device will see that some device on the bus has a
priority bit of "1" where he has a "0" and will know that he is not the highest
priority device on the bus at this time. The first device on the other hand will
see his own address bit assegxted and know that he is the highest priority device
(based on consideration of this single bit only).

If a device has asserted a given bit of his priority and there are no other
devices asserting a higher priority in that bit, it may enable the next most
significant bit. The operation of the bits is cascaded. In a finite amount of
time, the address of the highest priority device will have stabilized on the DMA
address lines. The device asserting the least significant bit and not finding a
higher priority bit on the least significant address line will generate the
signal IMHI.

The time required for the arbitration to settle is provided by the bus CPU
sensing the HOLD* line one "T" state before acknowledging the bus. This scheme
would not work if additional devices could enter the arbitration just prior to
the CPU asserting pHLDA, but this may not happen because a device asserts HOLD*
once it sets APRIO. HOLD* will lockout other devices by preventing them from
setting APRIO. Arbitration really only occurs when two devices set APRIO almost
simultaneously.

On receipt of pHLDA, a device will clear APRIO if IMHI is false. If, on the
other hand, the device had the highest priority, APRIO will remain set and the

control of the bus will be received. This operation procedes as follows:

At the falling edge of the bus clock following pHLDA, the transfer flip-

31

flop XFER will set. XFER will enable the Tri-State puffer (U39 which drives the
5-100 bus »p" or processor control lines. At this time, the bus CPU is also
driving the same 1ines. It is very jmportant that both devices drive the lines
in exactly the same directions as described by the S-100 bus specifications. The
same IC will also assert the disable lines ADSB*, SDSB* and DODSB* which disable
the CPU address, status and data output drivers respectively.

At the next rising edge of the bus clock, the signal Bus Cycle (BC) will
set. BC enables the MPX drivers for the address, status and data output busses-
1t also causes Command Disable (CDSB*) to be asserted, turning off the CPU bus
drivers for the processor control l1ines. This overlap in drive on the control

bus is necessary to prevent spikes on the active high strobe signals.

The signal BC brackets the MPX cycle on the external bus. The signal pSYNC
will go high for the first ~* gtate with pSTVAL* going lov for the second half
of pSIYNC. The status which 1is asserted 1is determined by the 8085 cycle which is
gtill held in a walt. An appropriate g-100 status is decoded for 1/0 or memory
cycles (including M1 cycles) and asserted for the entire cycle. The twenty-four
bit extended address is aade up of two sections. The high order sixteen bits are
driven from registers which are writable at memory locations decoded by the
1S138 (U48). The least significant eight bits are taken directly taken from the
8085 address jatch. For memory operations, the two address 1atches define 2 256
byte wwindow" which may be accessed by the 8085. For 1/0 operations, the port
address 1is asserted directly from the address 1atch. Since the high order ad-
dress byte may be software controlled by writing to the latch, the 8085 may
simulate 280 or 16 bit CPU 1/0 jnstructions. The address 18 also asserted for
the duration of BC.

At the end of the first "TI" state which is signalled by the next rising
edge of the bus clock, STB ENA will set jnhibiting pSYNC and endbling the bus
strobe. Either pDBIN or pWR* wtil be decoded, again depending on the state of
the waiting 8085. At this same edge of the clock, the bus signals RDY and XRDY
are sampled. 1f either signal is false, an additional strobe (wait) state will
follow.

At the end of 2 strobe state which began with the ready 1ines high, STB INH
will be set. This terminates the strobes providing one »r" gtate of hold time.

At the next clock, the presence of STB INH will clear BC. BC low with STB
ENA still active will generate RELEASE. RELEASE clears I_FANT which then clears
APRIO. The absence of BC marks the start of the bus transfer back to the CPU.
All of the MPX bus drivers except for the control bus are disabled and the CPU
control bus drivers are enabled providing the overlap period.

At the next falling edge of the clock, APRIO being lo¥ will cause XFER to
clear, inhibiting the control bus driver. This completes the DMA cycle as seen
¢rom the bus however it is not until the following rising edge of the clock that
BC being low clears STB ENA. The falling edge of STB ENA sets END WAIT which
will release the 8085. If the 8085 had been in a memory or 1/0 write cycle, its
data has already been transferred. 1f a memory oT 1/0 read had been performed,
the data received from the bus has been latched by the end of the bus strobe and
is available to be accepted by the 8085 from the MPX internal data bus.

One more clock ig required with STB ENA jow to clear sTB INH. This com~
pletes the DMA cycle returning all of the DMA hardware to its jnitial state.

32

APPENDIX

33

{NTRODUCTION

The Intel B259A is @ pProgrammable interrupt Controller
(PIC) designed for use in real-time interrupt driven
microcomputer systems. The 8259A manages eight
levels of interrupts and has built-in features tor expan-
sion up to 64 levels with additional 8259A’s. Its versatile
design allows it to be used within MCS-80, MCS-85,
MCS-86, and MCS-88 microcomputer systems. Being
tulty programmable, the 8259A provides a wide variety of
modes and commands to tailor B25%A interrupt process-
ing for the specific needs of the user. These modes and
commands control a number of interrupt oriented func-
tions such as interrupt priority selection and masking of
interrupts. The 8259A programming may be dynamically
changed by the software at any time, thus allowing com-
plete interrupt contro! throughout program execution.

The 8258A is an enhanced, fully compatible revision of
its predecessor, the B259. This means the 8259A can use
ali hardware and software originally designed for the
8259 without any changes. Furthermore, it provides ad-
ditional modes that increase its flexibility in MCS-80
and MCS-85 systems and allow it to work in MCS-86 and
MCS-88 systems. These modes are:

MCS-B6/88 Mode

Automatic End of Interrupt Mode
Leve! Triggered Mode

Special Fully Nested Mode
Butfered Mode

Each of these are covered in depth further in this app!i-
cation note.

This application note was written to explain completely
how to use the 8259A within MCS-80, MCS-85, MCS-86,
and MCS-88 microcomputer systems. It is divided into
five sections. The tirst section, “Concepts“.,gxplains
the concepts of interrupts and presents an overview of
how the 8259A works with each microcomputer system
mentioned above. The second section, “Functional
Block Diagram”, describes the internal functions of the
8259A in block diagram form and provides 2 detailed
functional description of each device pin. “Operation of
the 8259A", the third section, explains in depth the
operation and use of each of the B259A modes and com-
mands. For clarity ot explanation, this section doesn't
make reference to the actual programming of the B259A.
instead, all programming is covered in the fourth sec-
tion, “Programming the B250A". This section explains
fiow to program the 8259A with the modes ang com-
mands mentioned in the previous section.

The reader should note that some of the terminology
used throughout this application note may ditfer
slightly from existing data sheets. This is done to better
clarity and explain the operation and programming of
the B259A.

1. CONCEPTS

\n microcomputer systems there is usually a need tor
the processor to communicate with various Input/Out:
put (/O) devices such as keyboards. displays. sensors.
and other peripherats. From the system viewpoint. the
processof should spend as little ime as possible servic-
ing the peripherals since \he time required for these 1O
chores directly affects the amount of ime avavable for

34

other tasks. in other words. the system should be
designed so that \/O servicing has little or no effect on
the total system throughput. There are two basic
methods of handling the VO chores in a system: status
poliing and interrupt servicing.

The status poll method of /O servicing essentially in-
volves having the processor “ask” each peripheral it
needs servicing by testing the peripheral's status line. !f
the periphera| requires service, the processor pranches
1o the appropria\e service routine: if not., the processor
continues with the main program. Clearly, there aré
several problems in implementing such an approach.
First, how often a peripheral is polied is an important
constraint. Some idea of the "1requency-of—service"
required by each peripheral must be known and any soft-
ware written for the system must accommodate this
time dependence by “scheduling” when a device is
poiled. Second, there will obviously be times when a
device is polied that is not ready for service, wasting the
processor time that it took to do the poll. And other
times, a ready device would have to wait until the proc-
essor '‘makes its rounds’ before it could be serviced.
slowing down the peripheral.

Other problems arise when certain peripherals are more
important than others. The only way 1o imptement the
“priority” of devices is to poll the high priority devices
more frequently than jower priority ones. it may even be
necessary to polt the high priority devices whileina low
priority device service routine. It is easy to se€ that the
polled approach can be inefficient poth time-wise and
goftware-wise. Overall, the polied method of /O servic:
ing can havea detrimental effecton system throughput.
thus limiting the tasks that can be pertormed by the
processor.

A more desirable approachin most systems would allow
the processor {0 be executing its main program and only
stop to service the 1O when toid to do so by the 1O
itself. This is called the interrupt service method. In
effect, the device would asynchronously signal the proc-
@ssor when it required service. The processor would
tinish its current instruction and then vector to the
service routine for the device requesting service. Once
the service routine is complete, the processor would
resume exactly where it left off. Using the interrupt sef-
vice method, no processor {ime is spent testing devices.
scheduling is not needed, and priority schemes are
readily implemented. It 15 easy to see that. using the in-
terrupt service approach. system throughput would in-
crease, aliowing more tasks to be handled by the
processof.

However. 10 ymplement the interrupt service method
between processor and peripherals. additional hargware
is usually required. This is because. after interrupling
the processor. the device mus! supply information for
vectoring program execution. Depending on the proc-
essor used. 1his can be accomplished by the device 1ak-
ing control of the data bus and “jamming’ an nstruc:
tion(s) onto it. The instructionis) then vectors the pro-
gram to the proper service routine. This of course re-
quires additional control logic for each interrupt fre-
questing device. Yet the implementation SO taris only in
the most basic form. what if certain peripherals are to

be of higher priority than others? What it certain inter-
rupts must be disabled while others are to be enabled?
The possible variations go on, but they all add up toone
theme; to provide greater flexibility using the interrupt
service method, hardware requirements increase.

So, we're caught in the middie. The status poll method
is a less desirable way of servicing WO In terms of
throughput, but its hardware requirements are minimal.
On the other hand, the interrupt service method is most
desirable in terms of flexibility and throughput, but
additional hardware is required.

The perfect situation would be to have the flexibility and
throughput of the interrupt method in an implementa-
tion with minimal hardware requirements. The 8259A
Programmable Interrupt Controlier (PIC) makes this all
possible.)

The 8259A Programmable interrupt Controller (PIC) was
designed to function as an overall manager of an inter-
rupt driven system. No additional hardware is required.
The 8259A alone can handle eight prioritized interrupt
tevels, controlling the complete interface between pe-
ripherals and processor. Additional 8258A's can be
»cascaded' to increase the number of interrupt levels
processed. A wide variety of modes and commands for
programmir'\g the B259A give it enough fiexibility for
almost any interrupt controlled structure. Thus, the
8250A is the feasible answer {0 handling 1O servicing in
microcomputer systems.

Now, before expiaining exactly how to use the B8259A,
jet's go over interrupt structures of the MCS-80, MCS-85,
MCS-86, and MCS-B8 systems, and how they interact
with the 8259A. Figure 1 shows a block diagram of the
B259A interfacing with a standard system bus. This may
prove useful as reference throughout the rest of the
“Concepts’” section.

e
! ADDRE SS 8US D)
S CONTROL BUS 5
[7OR |iTow [INT |INTA
S DATA BUS)
S &, D,0, RD WR INT INTA
«—=lcaso
CASCADE
LINES @ ——aqd CAS Y 8259A
a——e) CAS2 (RO 1RQ IRQ IR IRC 1RO 1RQ 1RO
SpEN 7 6 5 & 3 2) 0
SLAVE L : -
PROG/ENABLE INTERRUPT
BUFFER REQUESTS
Figure 1. 8258A Intertace to Standard System Bus

35

1.1 MCS-80"™—8259A OVERVIEW

tn an MCS-80—8259A interrupt configuration, as in
Figure 2, a device may cause an interrupt by pulling one
of the 8250A's interrupt request pins (IR0O-IR7) high. If
the 8259A accepts the interrupt request (this depends
on its programmed condition), the 8258A’'s INT (inter-
rupt) pin will go high, driving the 8080A's INT pin high.

The BO80A can receive an interrupt request any time,
since its INT input is asynchronous. The BO8CA, how-
ever, doesn't always have t0 acknowledge an interrupt
request immediately. It can accept or disregard re-
quests under software control using the Ei (Enabie Inter-
rupt) or DI (Disable interrupt) instructions. These in-
structions either set or reset an internal interrupt enable
flip-fiop. The output of this flip-flop controis the state of
the INTE (Interrupt Enabled) pin. Upon reset, the BOB0A
interrupts are disabled, making INTE low.

At the end of each instruction cycle, the 80BOA exam-
ines the state of its INT pin. if an interrupt request is
present and interrupts are enabled, the BOBOA enters an
interrupt machine cycle. During the interrupt machine
cycle the BOBOA resets the internal interrupt enable flip-
fiop, disabling further interrupts until an El instruction
is executed. Unlike normal machine cycies, the interrupt
machine cycle doesn't increment the program counter.
This ensures that the BOBOA can return to the pre-
interrupt program tocation after the interrupt is com-
pleted. The BOBOA then issues an TNTA (Interrupt
Acknowledge) puise via the 8228 System Controller Bus
Driver. This INTA pulse signals the 8259A that the BOBOA
is honoring the request and is ready to process the inter-
rupt.

The B259A can now vector program execution to the cor-
responding service routine. This is done during a se-
quence of the three TNTA pulses from the 80BOA via the
8228, Upon receiving the first INTA puise the 8259A
places the opcode for a CALL instruction on the data
bus. This causes the contents of the program counter to
pe pushed onto the stack. In addition, the CALL instruc-
tion causes two more INTA pulses to be issued, allow-
ing the 8259A to place onto the data pbus the starting
address of the corresponding service routine. This
address is called the interrupt-vector address. The tower
8 bits (LSB) of the inlg_ry_pt-vector address are released
during the second INT__A_guIse and the upper 8 bits
(MSB) during the third INTA puise. Once this sequence
is completed, program execution then vectors to the
service routine at the interrupt-vector address.

If the same registers are used by poth the main program
and the interrupt service routine, their contents should
be saved when entering the service routine. This in-
cludes the Program Status word (PSW) which consists
of the accumulator and flags. The best way to do thisis
to “PUSH" each register used onto the stack. The ser-
vice routine can then “POP™ each register off the stack
in the reverse order when it is completed. This prevents
any ambiguous operation when returning to the main
program.

Once the service routine is completed, the main
program may be re-entered by using a normal RET
(Return) instruction. This will "POP" the original con-

tents of the program counter back off the stack 1o
resume program execution where it left off. Note, that
because interrupts are disabled during the interrupt
acknowledge sequence, the El instruction must be
executed either during the service routine or the main
program before further interrupts can be processed.

For additional information on the B080A interrupt struc-
ture and operation, refer to the MCS-80 User's Manual.

1.3 MCS-86/88™ —8259A OVERVIEW

Operation of an MCS-86/88—8259A configuration has
basic similarities of the MCS-B0/85—8259A configura-
tions. That is. a device can cause an interrupt by putling
one of the B259A's interrupt request pins (IR0-1R7) high.
I the 8259A honors the request. its INT pin will go high,
driving the 8086/8088's INTR pin high. Like the BOBOA
and 80B5A, the INTR pin of the 8086/8088 is asynchro-
nous, thus it can receive an interrupt any time. The
8086/8088 can also accept or disregard requests on
INTR under software control using the STI (Set interrupt)
or CLI (Clear interrupt) instructions. These instructions
set or clear the interrupt-enabled flag IF. Upon
80B6/8088 reset the IF flag is cleared, disabling external
interrupts on INTR. Beside the INTR pin, the 8086/8088
provides an NMi (Non-Maskabiz Interrupt) pin. The NMi
functions similar to the 8085A's TRAP: it can't be dis-
abled or masked. NM| has higher priority than INTR.

Although there are some basic similarities, the actual
processing of interrupts with an 8086/8088 is difterent
than an 8080A or BO85A. When an interrupt request is
present and interrupts are enabled, the B0B6/8088 enters
its interrupt acknowledge machine cycle. The interrupt

acknowledge machine cycle pushes the flag registers .

onto the stack (as in a PUSHF instruction). It then clears
the IF flag which disables interrupts. The contbnts of
both the code segment and the instruction pointer are
then also pushed onto the stack. Thus, the stack retains
the pre-interrupt flag status and pre-interrupt program
location which are used to return from the service
routine. The BOBB/BOBS then issues the first of two INTA
pulses which signal the B259A that the 8086/8088 has
honored its interrupt request. If the 8086/8088 is used in
its “MIN Mode" the TNTA signal is available from the
B8086/8088 on its INTA pin. If the B0B6/8088 is used in the
“MAX Mode" the TNTA signal is available via the 8288
Bus Controller INTA pin. Additionally. in the -"MAX
Mode'' the 8086/8088 LOCK pin goes low during the in-
terrupt acknowledge sequence. The LOCK signal can be
used to indicate to other system bus masters not to gain
control of the system bus during the interrupt acknowl-
edge sequence. A “HOLD" request won't be honored
while LOCK is fow.

The 82594 is now ready to vector program execution to
the corresponding service routine. This is done during
the sequence of the two TNTA pulses issued by the 8086/
8088. Unlike operation with thé BOS8OA or BO85A, the
8250A doesn’t place a CALL instruction and the starting
address of the service routine on the data bus. Instead.
the first INTA pulse is used only to signal the 8259A of
the honored request. The second INTA pulse causes the
8259A to place a single interrupt-vector byte onto the

36

data bus. Not used as a direct address, this interrupt-
vector byte pertains to one of 256 interrupt “‘types’ sup-
ported by the 80B6/8088 memory. Program execution is
vectored to the corresponding service routine by the
contents of a specified interrupt type.

All 256 interrupt types are located in absolute memory
locations O through 3FFH which make up the BOB6/
8088's interrupt-vector tabte. Each type in the interrupt-
vector table reguires 4 bytes of memory and stores a
code segment address and an instruction pointer ad-
dress. Figure 5 shows a block diagram of the interrupt-
vector table. Locations 0 through 3FFH should be
reserved for the interrupt-vector table aloné. Further-
more, memory locations 00 through 7FH (types 0-31) are
reserved for use by Intel Corporation for Intel hardware
and software products. To maintain compatibility with
present and future \nte! products, these locations
should not be used.

IFFH

RUPT TYPE 256
INTERRU! YPE 28! 3FCH
IFBH

INTERRUPT TYPE 254
IFBH

INTERRUPT TYPE 2
8H
™

INTERRUPT TYPE 1
aH

kL

INTERRUPT TYPE O
- oH

Figurs 5. 8086/8088 Interrupt Vactor Table

When the BOBE/B0OBB receives an interrupt-vector byte
from the 8259A. it multiplies 1ts value by fouf 10 acquire
the address of the interrupt type For example. if the
interrupt-vector byte specifies lype 128 (80H) the vec:
tored address in 8086/8088 memaory 15 4 x BOH. which
equais 200H. Program execution is then vectored to the
service routine whose address is specified by the code
segment and instruction pointer values within type 128
iocated at 200H. To show how this is done. let's assume
interrupt type 128 is to vector data to B086/8088 memory
location 2FF5FH. Figure 6 shows two possible ways to
set values of the code segment and instruction pointer
for vectoring to location 2FF5FH, Address generation
by the code segment and instruction pointer is ac-
complished by an oftset (they overlap). Of the total
20-bit address capability, the code segment can desig-
nate the upper 16 bits, the instryction pointer can
designate the lower 16 bits.

CS (MSB) 2FH 1EFH
CS(LS8) FOM 1FEM TypE 128
1P (MSB) 00M 1FDH
1P(LSB) SFH 1FCH
4 1
ﬁ; 3=
CS (MS8) 20H 1FFH
CS (LS8 00H 1FEH .
1P (MSB) FFR sepH | TYPEN2
P(LS8) SFM 1FCH
E E 9

Figure 6. Two Examples of 8086/3088 Interrupt Type 128 Vectoring
to Location 2FFSFH

When entering an interrupt service routine, those regis-
ters that are mutually used between the main program
and service routine should be saved. The best way to do
this is to "PUSH " each register used onto the stack im-
mediately. The service routine can then “POP" each
register off the stack in the same order when it is com-
pleted.

Once the service routine is completed the main program
may be re-entered by using a IRET (Interrupt Return) in-
struction. The IRET instruction will pop the pre-interrupt
instruction pointer, code segment and flags off the
stack. Thus the main program will resume where it was
interrupted with the same flag status regardless of

changes in the service routine. Note especially that this
inciudes the state of the IF flag, thus interrupts are re-
enabled automatically when returning from the service
routine. -

Beside external interrupt generation from the INTR pin.
the 8086/8088 is also able to invoke interrupts by soft-
ware. Three intefrupt instructions are provided: INT. INT
(Type 3), and INTO. INT is a two byte instruction. the sec-
ond byte selects the interrupt type. INT (Type 3)is aone
byte instruction which selects interrupt Type 3. INTO is
a conditional one byte interrupt instruction which
selects interrupt Type 4 if the OF flag (trap on overflow)
is set, All the software interrupts vector program execu-
tion as the hardware interrupts do.

For further information on 8086/8088 interrupt operation
and internal interrupt structure refer to the MCS-86
User's Manua! and the B0OB6 System Design application
note.

2. 8259A FUNCTIONAL BLOCK DIAGRAM

A block diagram of the 8259A is shown in Figure 7. As
can be seen from this figure, the B259A consists of eight
major blocks: the interrupt Reguest Register (IRR), the
In-Service Register (ISR), the interrupt Mask Register
(IMR), the Priority Resolver (PR), the cascade butfer/
comparator, the data bus butfer, and logic blocks for
control and read/write. We'll first go over the blocks
directly related to interrupt handling, the IRR, 1SR, IMR,
PR, and the control logic. The remaining functional
blocks are then discussed.

PIN CONFIGURATION
= \J

BLOCK DIAGRAM

& f 28 :]Vcc INTA INY
——— Ty
wa(]:2 27104,
a3 26 [JiNTA T
o,]« 25 Jm7
o, s 24 16 0.0 DATA CONTROL LOGIC
o, e ams 1o iR
D ? 22 R4
s 8250A P [
b, 2 [Jwm3
0,9 20 [JIR2
3
o, w0 18 IRy \r
o,] 18 [R0 |
caso (]2 17 [JINT i —d e 1RO
—0]
casi[} 16) SPiEN WR —ec| READ/ . :.,;
WRITE g N INTERRUPT|
oND (] 14 15 [1CAS 2 LOGIC SEAVICE |7~\JPRIORITY REQUEST [=—— 'R3
Ay —— REC [RESOLVER| REG fot—— 1R4
[133.1] ORR} RS
PIN NAMES _ ? | 1R6
D,-0, DATA BUS (BI.DIRECTIONAL! s 3 "
AD READ INPUT 1
Wh WRITE INPUT =
A, COMMAND SELECT ADDRESS CASO =l <—_> INTERRUPT MASK REG
— CASCADE LIMR)
cs CHIP SELECT CASt «——=1 QUFFER [=— !
CAS1-CASO CASCADE LINES o COMPARATOR i
SPEN SLAVE PROGRAM/ENABLE BUFFER CAS 2 o
INT INTERRUPT OUTPUT I
INTA INTERRUPT ACKNOWL EDGE INPUT ShEN ___j b
\RO-1R7 _ INTERAUPY REQUEST INPUTS LJ INTEANAL BUS

Figure 7. 8259A Biock Diagram and Pin Configuration

37

2.1 INTERRUPT REGISTERS AND CONTROL LOGIC

Basically, interrupt requests are handied by three ‘‘cas-
caded” registers: the interrupt Request Register (IRR) is
use to store ail the interrupt levels requesting service;
the In-Service Register (ISR) stores all the levels which
are being serviced;, and the Interrupt Mask Register
(IMR) stores the bits of the interrupt lines to be masked.
The Priority Resolver (PR) looks at the IRR, ISR and IMR,
and determines whether an INT should be issued by the
the control logic to the processor.

Figure 8 shows conceptually how the Interrupt Request
(IR) input handies an interrupt request and how the
various interrupt registers interact. The figure repre-
sents one of eight “daisy-chained” priority cells. one for
each IR input. :

The best way to explain the operation of the priority cell
is to go through the sequence of internal events that
happen when an interrupt request occurs. However,
first, notice that the input circuitry of the priority cell
allows for both teve! sensitive and edge sensitive IR in-
puts. Deciding which method to use is dependent on the
particular application and will be discussed in more
detail later.

When the IR inputis inan inactive state (LOW), the edge
sense latch is set. If edge sensitive triggering is
gelected, the “Q" output of the edge sense latch will
arm the input gate to the request latch. This input gate
will be disarmed after the IR input goes active (HIGH)
and the interrupt request has peen acknowledged. This
disables the input from generating any further inter-
rupts until it has returned low to re-arm the edge sense
fatch. If level sensitive triggering is selected, the "Q"
output of the edge sense latch is rendered useless. This
means the level of the IR inputis in complete controt ot
interrupt generation; the input won't be disarmed once
acknowledged. . '

When an interrupt occurs on the IR input, it propagates
through the request latch and to the PR (assuming the
input isn't masked). The PR looks at the incoming re-
quests and the currently in-service interrupls to ascer-
tain whether an interrupt should be issued to the proc-
essor. Let's assume that the request is the only one in-
coming and no requests are presently in service. The PR
then causes the control logic to pull the INT line to the
processor high.

LTiv B1Y
0 =EDGE

YO OTHER PRIDRITY CELLS

CLRISR

1= LEVEL

CLR gt iSABIT
EDGE e
f:::: Val SEY ISR PRICRITY
IN SERVICE RESOLVER
TR) LATCH
CONTROL
LOGIC
AEQUESTY
St LATCH
é NOMN
" T MASK MASKED
LATCH nEG
—4C O o Py
NTA))
WMCSe0ieS .
MODE cn ’_{
\ I

o INTERNAL

DATA BUS
8 H & =z
L e H v 2
& e S ¢35
w
- - = v e
® & v &

b H

NOTES

4 MASTEA CLEAR ACTIVE ONLY DURING ICW1
2 FREEZE/ IS ACTIVE DURING INTA/ AND POLL SEQUENCES ONLY
3 TRUTH TABLE FOR D-LATCH

c; b

Q | OPERATION

oS

IO'IIM-\ l-

FOLLOW
HOLD

Figure 6. Priority Cell

When the processor honors the INT pulse, it sends a se-
quence of INTA pulses to the 8250A (three for 8080A/
8085A, two for B086/8088). During this sequence the
state of the request latch is frozen (note the iINTA-freeze
request timing diagram). Priority is again resolved by the
PR to determine the appropriate interrupt vectoring
which is conveyed to the processor via the data bus.

38

immediately after the interrupt acknowledge sequence,
the PR sets the corresponding bit in the ISR which
simultaneously clears the edge sense latch. if edge sen-
sitive triggering is used, clearing the edge sense latch
also disarms the request latch. This inhibits the
possibiiity of a still active IR input from propagating
through the priority cell. The IR input must return to an

inactive state, setting the edge sense latch, before
another interrupt request can be recognized. I level sen-
sitive triggering is used, however, clearing the edge
sense latch has no affect on the request latch. The state
of the request latch is entirely dependent upon the IR in-
put level. Another interrupt will be generated immedi-
ately if the IR level is Ieft active after its ISR bit has been
reset. An ISR bit gets reset with an End-of-Interrupt (EO1)
command issued in the service routine. End-of-
interrupts will be covered in more detail later.

2.2 OTHER FUNCTIONAL BLOCKS

Data Bus Butfer

This three-state, bidirectional 8-bit buffer is used to in-
terface the 8259A to the processor system data bus (via
DB0-DB?7). Control words, status information, and
interrupt-vector data are transferred through the data
bus buffer.

Read/Write Control Logic

The function of this block is to controf the programming
of the 8259A by accepting OUTput commands from the
processor. It also controls the releasing of status onto
the data bus by accepting INput commands from the
processor. The initialization and operation command
word registers which store the various control formats
are located in this block. The RD, WR, AD, and C5
pins are used to control access to this block by the
processor.

Cascade Buffer/Comparator

As mentioned earlier, multiple 8259A's can be combined
to expand the number of interrupt levels. A master-siave
relatnonshm of cascaded B259A's is used for the expan-
sion. The SP/EN and the CAS0-2 pins.are used for oper-
ation of this block. The cascading of 8259A°s is covered
in depth in the “Operation of the 8259A" section of this
application note.

2.3 PIN FUNCTIONS

Name Pin# /0 Function

Vee 28 I+ 5V supply

GND 14 I Ground

cs ' | Chip Select: A low on this pin en-
ables AD and WR communication be-
tween the CPU and the 8259A. INTA
functions are independent of 5.

WR 2 | Write: A low on this pin when CS is
low enables the 8258A to accept
command words from the CPU.

RD 3 | Read: A low on this pin when CS is
low enables the B259A to release
status onto the data bus for the CPU.

D7-D0 4-11 1O Bidirectional Data Bus: Control,

status and interrupt-vector informa-
tion is transferred via this bus.

39

CAS0- 12,13, /O Cascade Lines: The CAS lines form a

CAS2 15 private 8259A bus to control a multi-
ple 8259A structure. These pins are
outputs for a master 8259A and in-
puts for a slave 8259A.

/O Slave Program/Enable Buffer: This is
a dual function pin. When in the buf-
fered mode it can be used as an out-
put to control buffer transceivers
(EN). When not in the buffered mode
it is used as an input to designate a
master (8P = 1) or slave (8P = 0).

Interrupt: This pin goes high when-
ever a valid interrupt request is as-
serted. It is used to interrupt the
CPU, thus it is connected to the
CPU's interrupt pin.

SPEEN 16

INT 17 O

IRO-
IR7

18-25 | Interrupt Requests: Asynchronous in-
puts. An interrupt request can be
generated by raising an IR input (low
to high) and holding it high until it is
acknowledged (edge triggered mode),
or just by a high ievel on an (R input
(level triggered mode).

interrupt Acknowledge: This pin is
used to enable 82594 interrupt-vector
data onto the data bus. This is done
by a sequence of interrupt acknow!-
edge pulses issued by the CPU.

A0 Address Line: This pin acts in con-
junction with the CS, WR, and RD
pins. It is used by the 8259A to de-
cipher between various command
words the CPU writes and status the
CPU wishes to read. It is typically
connected to the CPU A0 address
line (A1 for 8086/8088).

AQ

3. OPERATION OF THE 8259A

Interrupt operation of the 8259A falls under five main
categories: vectoring, priorities, triggering, status, and
cascading. Each of these categories use various modes
and commands. This section will explain the operation
of these modes and commands. For clarity of explana-
tion, however, the actual programming of the 82594 isn't
covered in this section but in “Programming the 8259A".
Appendix A is provided as a cross reference between
these two sections.

3.1 INTERRUPT VECTORING

Each IR input of the 8259A has an individual interrupt-
vector address in memory associated with it. Designa-
tion of each address depends upon the initial program-
ming of the B259A. As stated eariier, the interrupt
sequence and addressing of an MCS-80 and MCS-85
system differs from that of an MCS-86 and MCS-88
sysiem. Thus, the 8259A must be initially programmed
in either a MCS-80/85 or MCS-86/88 mode of operation to
insure the correct interrupt vectoring.

mcs-80/85™ Mode

When programmed in the MCS-80/85 mode, the 8259A
should only be used within an 8080A or an 8085A
system. In this mode the 8080A/8085A will handle inter-
rupts in the format described in the “MCS-80—8259A or
MCS-85—8258A Overviews."”

Upon interrupt request in the MCS-80/85 mode, the
8259A will output to the data bus the opcode fora CALL
instruction and the address of the desired_rggline. This
js in response to a sequence of three INTA pulses
issued by the 80BOA/B085A after the B259A has raised
INT high.

The first INTA puise to the 8259A enables the CALL
opcode “CDy" onto the data bus. It also resolves IR pri-
orities and effects operation in the cascade mode,
which will be covered later. Contents of the first
interrupt-vector byte are shown in Figure SA.

During the second and third TNTA pulses, the 8259A
conveys a 16-bit interrupt-vector address 10 the BOBOA/
8085A. The interrupt-vector addresses for all eight levels
are selected when jnitially programming the B259A.
However, only one address is needed for programming.
interrupt-vector addresses of IRO-IR7 are automatically
set at equally spaced intervals based on the one pro-
grammed address. Address intervals are user definable
10 4 or 8 bytes apart. If the service routine fora device is
short it may be possible to fit the entire routine within
an 8-byte interval. Usually, though, the service routines
require more than 8 bytes. So,2a 4-byte interval is used to
store a Jump (JMP) instruction which directs the BOBOA/
8085A to the appropriate routine. The 8-byte interval
maintains compatibility with current BOBOA/BOBSA
Restart (RST) instruction software, while the 4-byte in-
terval is best for a compact jump table. If the 4pyte in-
jerval is selected, then the 8259A will automatically
insert bits AD-A4. This leaves A5-A15 to be pro-
grammed by the user. if the 8-byte interva! is selected,
the B259A will automatically insert bits A0-A5. This
leaves only AG-A15 to be programmed by the user.

The LSB of the interrupt-vector address is placed on the
data bus during the second INTA puise. Figure 9B
shows the contents of the second interrupt-vector byte
for both 4 and B-byte intervals.

The MSB of the interrupt-vector agdress is placed on the
data bus during the third INTA pulse. Contents of the
third interrupt-vector byte is shown in Figure 9C.

A. FIRST INTERRUPT VECTOR BYTE, MCS80/85 MODE

07 o8 D5 pa D3 D2] Do

8. SECOND INTERRUPT VECTOR BYTE, MC580/85 MODE

" intervel = 4]
o7 o8 Ds Da 03 D2 O Lj
7 | A7 A8 AS 1 1 1) 0
s | A7 A8 As 1 T o o o]
s | A7 AS A5 3 0 1) 0
e | A7 A8 AS 1 0 0 0 [}
3 A7 A6 AS [1 1 0 ﬂ
2 | AT A8 AS 0 1 0) 0
T] AT a8 A5 O 0 1 o o |
o T a7 a6 A o 0o 0 0 o |
L] interval = B
o7 o8 D5 04 03 02 O 0o
7 | AT A6 Y 1 \ 0))
e | A7 A6 Y 1)))) \
S | A7 A6 1 0 1) o 0
T | A7 AB v o) 0))
3 | AT A6) 1 1 o) 0
2 AT A6 0 1 0 0 0 0 :
1 A? AS 0 0 1 [} 0 0 l
0 | a1 as [} 0 0 0) o |
C. THIRD INTERRUPT VECTOR BYTE, MCS80/85 MODE
o7 Ds 0s Y] D3 p2 Ot DO
a5 | Al | A Taz | an T a0 | a9 | a8 |

Figure 9. 9A-C. interrupt-Vector Bytes tor 8259A, MCS 80/85 Mode

MCs-86/88™ Mode

When programmed in the MCS-86/88 mode, the B259A
should only be used within an MCS-86 or MCS-88
system. In this mode, the 8086/8088 will handle inter-
rupts in the format described earlier in the “8259A—
8086/8088 Overview™.

Upon interrupt in the MCS-86/88 mode, the 8259A will
output a single interrupt-vecior_byte to the data bus.
This is in response to only two INTA pulses issued by
the B086/8088 after the 8259A has raised INT high.

The tirst INTA pulse is used only for set-up purposes in-
ternal to the B259A. As in the MCS-80/85 mode, this set-
up includes priority resolution and cascade mode oper-
ations which will be covered later. Unlike the MCS-80/85
mode, no CALL opcode is placed on the data bus.

40

The second INTA pulse is used 10 enable the single
interrupt-vector byte onto the data bus. The 8086/8088
uses this interrupt-vector byte 1o select one of 256 inter-
rupt “types’ in 80B6/8088 memaory. Interrupt type selec
tion for ail eight iR levels is made when initially pro-
gramming the 8259A. However, reference to only one in-
terrupt type is needed for programming. The upper5biis
of the interrupt vector byte are user definable. The lower
3 bits are automatically inserted by the 8259A depend-
ing upon the IR level.

Contents of the interrupt-vector byte for 8086/8088 type

selection is put on the data bus during the second INTA
puise and is shown in Figure 10.

D7 | D6 | DS | D4 | D3 | D2 D1 DO
IR7 T7 T6 T8 T4 T3 1 1 1
IR6 7 T6 T8 T4 T3 1 1 0
RS T7 T6 T5 T4 T3 1 0 1
IR4 T? T6 T5 T4 T3 1 0 0
IR3 T7 T6 T5 T4 T3 0 1 1
IR2 T7 T6 T5 T4 T3 [} 1 (s}
IR1 7 76 T5 T4 T3 0 0 1
1RO 7?7 TE T8 T4 T3 [¢] 0 0

Figurs 10. Interrupt Vector Byts, MCS 3688™ Mode

3.2 INTERRUPT PRIORITIES

A variety of modes and commands are available for con-
trolling interrupt priorities of the 8259A. All of them are
programmable, that is, they may be changed dynamic-
ally under software controi. With these modes and com-
mands, many possibilities are conceivable, giving the
user enough versatility for almost any interrupt con-
trolled application.

Fully Nested Mode

The fully nested mode of operation is a general purpose
priority mode. This mode supports a multilevel-interrupt
structure in which priority order of all eight IR inputs are
arranged from highest to lowest.

Unless otherwise programmed, the fuily nested mode is
entered by default upon initialization. At this time, IR0 is
assigned the highest priority through IR7 the lowest.
The fully nested mode, however, is not cqgfined to this
IR structure alone. Once past initialization, other IR in-
puts can be assigned highest priority also, keeping the
multilevel-interrupt structure of the fully nested mode.
Figure 11A-C shows some variations of the priority
structures in the fully nested mode.

IR LEVELS |IR7 IR6 IRS IR4 1R3 IR2 IR1 tRO
PRIORITY | 7 & 5 4 3 2 1 0

A

iR LEVELS [IA? RS IR5 TR4 1IR3 IRZ 1R IR0
PRIORITY [4 3 2 t 0 7 6
[]

- B TR TR IRG
v O 7 & 5 4 3 2

[

'R LEVELS
PRIORITY

Figure 11. A-C. Some Veriations of Priority Structure in the
Fully Nested Mode

Further explanation of the fully nested mode, in this
section, is linked with information of general B259A in-
terrupt operations. This is done to ease explanation to
the user in both areas. .

In general, when an interrupt is acknowledged, the
highest priority request is determined from the IRR (In-
terrupt Request Register). The interrupt vector is then
placed on the data bus. In addition, the corresponding
bitin the ISR (In-Service Register) is set to designate the

41

routine in service. This ISR bit remains set until an EOI
(End-Of-Interrupt} command is issued to the B253A.
EOI's will be expiained in greater detail shortly.

In the fully nested mode, while an ISR bit is set, al! fur-
ther requests of the same or lower priority are inhibited
from generating an interrupt to the microprocessor. A
higher priority request, though, can generate an inter-
rupt, thus vectoring program execution to its service
routine. Interrupts are only acknowledged, however, if
the microprocessor has previously executed an “Enable
Interrupts” instruction. This is because the interrupt
request pin on the microprocessor gets disabled auto-
matically after acknowiedgement of any interrupt. The
assembly language instructions used to enable inter-
rupts are “El” for B0OBOA/8085A and “STI" for 8086/8088.
Interrupts can be disabled by using the instruction “DI"
for 8080A/ 8085A and "CLI" for 8086/8088. When a
routine is completed a ‘‘return” instruction is executed,
“RET" for B0BOA/B8085A and “IRET" for 80B6/8088.

Figure 12 illustrates the correct usage of interrupt
related instructions and the interaction of interrupt
levels in the fully nested mode.

Assuming the IR priority assignment for the example in
Figure 12 is {RO the highest through IR7 the lowest. the
sequence is as follows. During the main program, IR3
makes a request. Since interrupts are enabled, the
microprocessor is vectored to the IR3 service routine.
During the IR3 routine, IR1 asserts a request. Since IR1
has higher priority than IR3, an interrupt is generated.
However, it is not acknowledged because the micro-
processor disabled interrupts in response to the 1R3 in-
terrupt. The IR1 interrupt is not acknowledged until the
“Enable interrupts” instruction is executed. Thus the
1IR3 routine has a “protected”’ section of code over
which no interrupts (except non-maskable) are allowed.
The IR1 routine has no such “‘protected’ section since
an "“Enable Interrupts” instruction is the first one in its
service routine. Note that in this example the IR1 re-
quest must stay high until it is acknowledged. This is
covered in more depth in the “interrupt Triggering”
section.

W) SERVICE
AOUTINE

[eonsn]
C |
1
L]
.|

Figure 12. Fully Nestsd Mode Example (MCS 30/85™ or MCS sa/ss ™)

What is happening to the ISR register? While in the main
program, no ISR bits are set since there aren't any inter-
rupts in service. When the IR3 interrupt is acknowl-
edged, the ISR3 bit is set. When the IR1 interrupt is
acknowledged, both the ISR1 and the ISA3 bits are set,
indicating that neither routine is complete. At this time,
only 1RO could generate an interrupt since it is the only
input with a higher priority than those previously in ser-
vice. To terminate the IR1 routine, the routine must
inform the 8259A that it is complete by resetting its ISR
bit. It does this by executing an EOl command. A
“return” instruction then transfers execution back to
the IR3 routine. This allows IR0-IR2 to interrupt the IR3
routine again, since ISR3 is the highest ISR bit set. No
further interrupts occur in the example so the EOl com-
mand resets ISR3 and the “return” instruction causes
the main program to resume at its pre-interrupt location,
ending the example.

A single B259A is essentially always in the fully nested
mode unless certain programming conditions disturb it.
The following programming conditions can cause the
8259A to go out of the high to low priority structure of
the fuliy nested mode.

» The automatic EOl mode
¢ The special mask mode

¢ A slave with a master not in the special fully nested
mode

These modes will be covered in more detail later,
however, they are mentioned now so the user can be
aware of them. As long as these program conditions
aren't inacted, the fully nested mode remains undis-
turbed.

End of interrupt

»,

Upon completion of an interrupt service zoutine the
8259A needs to be notified so its ISR can be updated.
This is done to keep track of which interrupt levels are in
the process of being serviced and their relative priori-
ties. Three different End-Of-Interrupt (EOI) formats are
avaifable for the user. These are: the non-specific EQI
command, the specific EO! command, and the auto-
matic EO! Mode. Selection of which EO! 1o use is depen-
dent upon the interrupt operations the user wishes to
perform.

Non-Specitic EOl Command

A non-specific EOl command sent from the microproc-
essor lets the 8259A know when a service routine has
been completed, without specification of its exact inter-
rupt level. The B259A automatically determines the inter-
rupt ievel ang resets the correct bit in the ISR.

To take advantage of the non-specific EOl the 8259A
must be in a mode of operation in which it can predeter-
mine in-service routine levgls. For this reason the non-
specific EOl command should only be used when the
most recent level acknowledged and serviced is always
the highest priority level. When the 8259A receives a
non-specific EOI command, it simply resets the highest
priority ISR bit, thus contirming to the 8259A that the
nighest priority routine of the routines in service is
finished.

42

The main advantage of using the non-specific EOl com-
mand is that IR level specification isn't necessary as in
the “Specitic EOl Command”, covered shortly.
However, special consideration should be taken when
deciding to use the non-specific EO!l. Here are two pro-
gram conditions in which it is best not used:

e Using the set priority commangd within an interrupt
service routine.

¢ Using a special mask mode.

These conditions are covered in more detail in their own
sections, but are listed here for the users reference

Specitic EO! Command

A specific EOl command sent from the microprocessor
lets the 8259A know when a service routine ot a particu-
far interrupt level is completed. Unlike a non-specific
EOI command, which automatically resets the highest
priority ISR bit, a specific EOl command specifies an
exact ISR bit to be reset. One of the eight IR levels of the
8259A can be specified in the command.

The reason the specific EOl command is needed, is t0
reset the ISR bit of a completed service routine when-
ever the 8259A isn't able to automatically determine it.
An example of this type ot situation might be if the
priorities of the interrupt levels were changed during an
interrupt routine (“Specific Rotation”). In this case, if
any other routines were in service at the same time, a
non-specific EOl might reset the wrong ISR bit. Thus the
specific EOl command is the best bet in this case, or for
that matter, any time in which confusion of interrupt
priorities may exist. The specitic EOl command can be
used in all conditions of 8259A operation, including
those that prohibit non-specific EOI command usage.

Automatic EOI Mode

When programmed in the automatic EOI mode, the
microprocessor no longer needs to issue a command to
notify the 8259A it has completed an interrupt routine.
The B259A accomplishes this by performing a non-
specific EOI automatically at the traiting edge of the last
INTA pulse (third putse in MCS-80/85, second in
MCS-86).

The obvious advantage of the automatic EOl mode over
the other EOl command is no command has to be
issued. In general, this simplifies programming and
lowers code requirements within interrupt routines.

However, special consideration should be taken when
deciding to use the automatic EOI mode because it
disturbs the fully nested mode. in the automatic EOI
mode the ISR bit of a routine in service is reset right
after it's acknowledged, thus leaving no designation in
the ISR that a sevice routine is being executed. if any in-
terrupt request occurs during this time (and interrupts
are enabled) it will get serviced repardiess ot its priority,
jow or high. The problem of “over nesting” may also
happen in this situation. “QOver nesting’ is when an IR
input keeps interrupting its own routine, resulting in un-
necessary stack pushes which could fill the stack in a
worst case condition. This is not usually a desired form
of operation!

So what good is the automatic EOl mode with problems
like those just covered? Well, again, like the other EQls,
selection is dependent upon the application. If inter-
rupts are controlled at a predetermined rate, so as not to
cause the probiems mentioned above, the automatic
EOI mode works perfect just the way it is. However, if in-
terrupts happen sporadically at an indeterminate rate,
the automatic EQI mode should only be used under the
following guideline:

* When using the automatic EO! mode with an inde-
terminate interrupt rate, the microprocessor should
keep its interrupt request input disabled during
execution of service routines.

By doing this, higher priority interrupt levels will be ser-
viced only after the completion of a routine in service.
This guideline restores the fully nested structure in
regards to the IRR; however, a routine in-service can't be
interrupted.

Automatic Rotation — Equal Priority

Automatic rotation of priorities serves in applications
where the interrupting devices are of equal priority,
such as communications channegls. The concept is that
once a peripheral is serviced, all other equal priority
peripherals should be given a chance to be serviced
before the original peripheral is serviced again. This is
accomplished by automatically assigning a peripheral
the lowest priority after being serviced Thus, in worst
case, the device wouid have to wait until all other
devices are serviced before being serviced again.

There are two methods of accompligﬁing automatic
rotation. One is used in conjunction with the non-
specific EQI, “rotate on non-specific EO! command”.
The other is used with the automatic EOt mode, ‘‘rotate
in automatic EOl mode".

Rotate on Non-Specific EOI Command

When the rotate on non-specific EQl command is
issued, the highest ISR bit is reset as in a normal non-
specific EOl command. After it’s reset though, the cor-
responding IR level is assigned lowest priority. Other IR
priorities rotate to conform to the fully nested mode
based on the newly assigned low priority

Figures 13A and B show how the rotate on non-specific
EOl command effects the interrupt priorities. Let's
assume the IR priorities were assigned with IR0 the
highest and IR7 the lowest, as in 13A. IR6 and IR4 are
already in service but neither is completed. Being the
higher priority routine, IR4 is necessarily the routine
being executed. During the iR4 routine a rotate on non-
specitic EOl command is executed. When this happens,
bit 4 in the ISR is reset. IR4 then becomes the lowest
priority and IR5 becomes the highest as in 138.

43

IS? IS8 1S5 1S4 1S3 182 1S1 IS0
a ISRSTATUS 3 i U0~ BEFORE
PRIORITY | 7 6 5 4 3 2 10 COMMAND

¥ [

I
HIGHEST PRIORITY

LOWESTY PRIORITY

1S7 156 1SS 1S4 1S3 1S2 IS1 IS0

g ISRSTATUS [0 1 © 0 0 0 0 0 AFTER
PRIORITY 2 1 0 7 6 _5 4 3 COMMAND
4ot

I

i
HIGHEST PRIORITY LOWEST PRIORITY

Figure 13. A-8. Rotate on Non-specitic EOI Command Exampie

Rotate in Automatic EQI Mode

The rotate in automatic EQI mode works much like the
rotate on non-specific EOl command. The main differ-
ence is that priority rotation is done automatically after
the iast INTA pulse of an interrupt request. To enter or
exit this mode a rotate-in-automatic-EQO! set command
and rotate-in-automatic-EQI| clear command is provided.
After that, no commands are needed as with the normal
automatic EOI mode. However, it must be remembered,
when using any form of the automatic EQl mode, spe-
cial consideration should be taken. Thus, the guideline
for the automatic EOl mode also stands for the rotate in
automatic EOI mode.

Specific Rotation — Specific Priority

Specific rotation gives the user versatile capabilities in
interrupt controlled operations. It serves in those ap-
plications in which a specific device's interrupt priority
must be altered. As opposed to automatic rotation
which automatically sets priorities, specific rotation is
completely user controlled. That is, the user selects
which interrupt level is to receive lowest or highest
priority. This can be done during the main program or
within interrupt routines. Two specific rotation com-
mands are available to the user, the *set priority com-
mand’” and the “rotate on specific EOl command.”

Set Priority Command

The set priority command allows the programmer to
assign an IR level the lowest priority. All other interrupt
levels will conform to the fully nested mode based on
the newly assigned low priority.

An example of how the set priority command works is
shown in Figures 14A and 14B. These figures show the
status of the ISR and the relative priorities of the inter-
rupt levels before and after the set priority command.
Two interrupt routines are shown to be in service in
Figure 14A. Since IR2 is the highest priority, it is
necessarily the routine being executed. During the |R2
routine, priorities are altered so that IR5 is the highest.
This is done simply by issuing the set priority command
to the B259A. In this case, the command specifies IR4 as
being the lowest priority. The result of this set priority
command is shown in Figure 14B. Even though IR7 now

has higher priority than IR2, it won't be acknowledged
until the IR2 routine is finished (via EQ). This is because
priorities are only resolved upon an interrupt request or
an interrupt acknowledge sequence. if a higher priority
request oceurs during the IR2 routine, then priorities are
resolved and the highest will be acknowledged.

A ISR STATUS
PRIORITY

1S7 1S8 1S5 1S4 1S3 1S2 1S1 IS0
0 0 0 0 1 0 0 BEFORE
7 6 5 4 3 2 1 , COMMAND

7

0
4 [}
) |
|

LOWEST PRIORITY HIGHEST .FIIIORITV

I1S7 156 1S5 IS4 1S3 152 IS1 150
g 'SR STATUS [O T_C C) AFTER
PRIORITY 2 1 3| COMMAND

G 06 0
0_7 & 5 4
s .

|
HIGHEST PRIORITY LOWEST PRIORITY

Figure 14. A-B. Set Priority Command Exsmpie

When compieting a service routine in which the set
priority command is used, the correct EOl must be
issued. The non-specific EOI command shouldn’t be
used in the same routine as a set priority command.
This is because the non-specific EOl command resets
the highest ISR bit, which, when using the set priority
command, is not always the most recent routine in ser-
vice. The automatic EOI mode, on the other hand, can be
used with the set priority command. This is because it
automatically performs a non-specific EQI before the
set priority command can be issued. The specific EOl
command is the best bet in most cases when using the
set priority command within a routine. By resetting the
specific ISR bit of a routine being completed, confusion
is eliminated.

Rotate on Speciftic EOl Command

The rotate on specific EOl command is literally a com-
bination of the set priority command and the specific
EO! command. Like the set priority command, a speci-
fied IR level is assigned lowest priority. Like the specific
EOI command, a specified leve! wili be reset in the ISR.
Thus the rotate on specific EOI command accomplishes
both tasks in only one command.

I it is not necessary to change IR priorities prior to the
end of an interrupt routine, then this command is advan-
tageous. For an EOl command must be executed any-
way (unless in the automatic EOl mode), so why not do
both at the same time?

44

Interrupt Masking

Disabling or enabling interrupts can be done by other
means than just controlling the microprocessor's inter-
rupt request pin. The 8259A has an IMR (Interrupt Mask
Register) which enhances interrupt control capabilities.
Rather than all interrupts being disabled or enabled at
the same time, the IMR allows individual IR masking.
The IMR is an 8-bit register, bits 0-7 directly correspond
to IR0-IR7. Any IR input can be masked by writing to the
IMR and setting the appropriate bit. Likewise, any IR in-
put can be enabled by clearing the carrect IMR bit.

There are various uses for masking off individual IR in-
puts. One example is when a portion of a main routine
wishes only to be interrupted by specific interrupts.
Another might be disabting higher priority interrupts for
a portion of a lower priority service routine. The possi-
bilities are many.

When an interrupt occurs while its IMR bit is set, it isn't
necessarily forgotten. For, as stated earlier, the IMR
acts only on the output of the IRR. Even with an IR input
masked it is still possible to set the IRR. Thus, when
resetting an IMR, if its IRR bit is set it will then generate
an interrupt. This is providing, of course, that other
priority factors are taken into consideration and the IR
request remains active. |{ the IR request is removed
pefore the IMR is reset, no interrupt will be acknowi-
edged.

Special Mask Mode

In various cases, it may be desirable to enable interrupts
of a lower priority than the routine in service. Or, in other
words, allow lower priority devices to generate inter-
rupts. However, in the fully nested mode. all IR levels of
priority below the routine in service are inhibited. So
what can be done to enable them?

Well, one method could be using an EO! command
before the actual completion of a routine in service. But
beware, doing this may cause an “over nesting” prob-
lem, similar to in the automatic EQl mode. In addition,
resetting an ISR bit is irreversible by software control,
so lower priority IR levels coutd only be later disabled by
setting the IMR.

A much better solution is the special mask mode. Work-
ing in conjunction with the IMR, the special mask mode
enables interrupts from all levels except the level in set-
vice. This is done by masking the level that is in service
and then issuing the special mask mode command.
Once the special mask mode is set, it remains in effect
until reset.

Figure 15 shows how to enable lower priority interrupts
by using the Special Mask Mode (SMM). Assume that
IR0 has highest priority when the main program 1s inter-
rupted by IR4. In the IR4 service routine an enable inter-
rupt instruction is executed. This oniy aliows higher
priority interrupt requests to interrupt IR4 in the normal
fully nested mode. Further in the IR4 routine, bit 4 of the
{MR is masked and the special mask mode is entered.
Priority operation is no longer in the fully nested mode.
All interrupt levels are erabled except for IR4. To leave
the special mask mode, the seguence is executed In
reverse.

MAIN PROGRAM

R4 SERVICE
ROUTINE

0L
.

RA —a

EIORSTI

IR0-3 ENABLED
IR4-7 DISABLED

—

]
I I
-

-—
-

._
[3
»
»
x
>
4
-

-—

B

SET SMM

IR0-3, 5-7 ENABLED
IR4 DISABLED

RESET SMM

1RO-3 ENABLED
iR4-7 DISABLED

RET OR IRET

Figure 15. Spacial Mask Mode Example (MCS 80/85 ¥or MCS aasa™)

Precautions must be taken when exiting an interrupt
service routine which has used the special mask mode.
A non-specific EOl command can’t be used when in the
special mask mode. This is because a non-specific
won’t clear an ISR bit of an interrupt which is masked
when in the special mask mode. in fact. the bit will ap-
pear invisible. If the special mask mode is cleared
before an EOI command is issued a non-specific EQOI
command can be used. This could be the case in the ex-
ample shown in Figure 15, but, to avoid any confusion
it's best to use the specific EOl whenever using the
special mask mode.

It must be remembered that the special mask mode ap-
plies to all masked levels when set. Take, for instance,
IR1 interrupting IR4 in the previous example. if this hap-
pened while in the special mask mode, and the {R1
routine masked itself, all interrupts would be enabled
except IR1 and IR4 which are masked.

3.3 INTERRUPT TRIGGERING

There are two classical ways of sensing an active inter-
rupt request: a level sensitive input or an edge sensitive
input. The B259A gives the user the capability for either
method with the edge triggered mode and the level trig-
gered mode. Selection of one of these interrupt trigger-
ing methods is done during the programmed initializa-
tion of the 8259A.

45

Level Triggered Mode

When in the level triggered mode the 8259A will recog-
nize any active (high) level on an IR input as an interrupt
request. If the IR input remains active after an EOl com-
mand has been issued (resetting its ISR bit), another in-
terrupt wili be generated. This is providing of course, the
processor INT pin is enabled. Unless repetitious inter-
rupt generation is desired, the IR input must be brought
to an inactive state before an EOlI command is issued in
its service routine. However, it must not go inactive so
soon that it disobeys the necessary timing require-
ments shown in Figure 16. Note that the request on the
IR input must remain until after the failing edge of the
first INTA pulse. If on any IR input, the request goes
inactive before the first INTA pulse, the 825%A will
respond as if IR7 was active. In any design in which
there's a possibility of this happening, the IR7 default
feature can be used as a safeguard. This can be accom-
plished by using the IR7 routine as a "'clean-up routine”
which might recheck the 8259A status or merely return
program execution to its pre-interrupt location.

Depending upon the particular design and application,
the level triggered mode has a number of uses. For one,
it provides for repetitious interrupt generation. This is
useful in cases when a service routine needs to be con-
tinually executed until the interrupt request goes inac-
tive. Another possible advantage of the level triggered
mode is it allows for “wire-OR’ed” interrupt requests.
That is, a number of interrupt requests using the same
IR input. This can't be done in the edge triggered mode,
for if a device makes an interrupt request while the IR in-
put is high (from another request), its transition will be
“shadowed''. Thus the 8259A won't recognize further in-
terrupt requests because its IR input is already high.
Note that when a “‘wire-OR'ed” scheme is used, the ac-
tual requesting device has to be determined by the soft-
ware in the service routine.

Caution should be taken when using the automatic EOQI
mode and the level triggered mode together. Since in
the automatic EO!l mode an EOI is automatically per-
formed at the end of the interrupt acknowiedge se-
quence, if the processor enables interrupts while an IR
input is still high, an interrupt will occur immediately. To
avoid this situation interrupts should be kept disabled
until the end of the service routine or until the IR input
returns low.

Edge Triggered Mode

When in the edge triggered mode, the 8259A will only
recognize interrupts if generated by an inactive (low) to
active (high) transition on an IR input. The edge trig-
gered mode incorporates an edge lockout method of
operation. This means that after the rising edge of an
interrupt request and the acknowledgement of the re-
quest, the positive level of the IR input won't generate
further interrupts on this level. The user needn’t worry
about quickly removing the request after acknowledge-
ment in fear of generating further interrupts as might be
the case in the level triggered mode. Before another in-
terrupt can be generated the IR input must return to the
inactive state.

N ee—

LATCH®
ARMED

EARLIEST IR
CAN BE REMOVED

N
Navave

/"
Ve

LATCH®

+€DGE TRIGGERED MODE ONLY ARMED

Figure 16. IR Triggering Timing Requirsments

Referring back to Figure 16, the timing requirements for
interrupt triggering is shown. Like the level triggered
mode, in the edge triggered mode the request on the IR
input must remain active until after the falling edge of
the first INTA puise for that particular interrupt. Unlike
the level triggered mode, though, after the interrupt
request is acknowledged its IRR latch is disarmed. Only
after the IR input goes inactive will the IRR latch again
pecome armed, making it ready to receive another inter-
rupt request (in the level triggered mode, the IRR latchis
always armed). Because of the way the edge triggered
mode functions, it is best to use a positive level with a
negative pulse to trigger the IR requests. With this type
of input, the trailing edge of the pulse causes the inter-
rupt and the maintained positive level meets the neces-
sary timing requirements (remaining high until after the
interrupt acknowledge occurs). Note that the IR7 default
feature mentioned in the “level triggered mode"” section
also works for the edge triggered mode.

Depending upon the particular design and application,
the edge triggered mode has various uses. Because of
its edge lockout operation, it is best used in those
applications where repetitious interrupt generation isn't
desired. It is also very useful in systems where the inter-
rupt request is a puise (this should be in the form of a
negative pulse to the B259A). Another possible advan-
tage is that it can be used with the automatic EQ! mode
without the cautions in the level triggered mode. Over-
all, in most cases, the edge triggered mode simplifies
operation for the user, since the duration of the interrupt
request at a positive level is not usually a factor.

3.4 INTERRUPT STATUS

By means of software control, the user can interrogate
the status of the 8259A. This allows the reading of the
internal interrupt registers, which may prove useful for
interrupt control during service routines. It aiso pro-
vides for a modified status pol! method of device moni-
toring, by using the poll command. This makes the
status of the internal IR inputs available to the user via
software control. The poll command offers an alterna-
tive to the interrupt vector method, especially for those
cases when more than 64 interrupts are needed.

46

Reading Interrupt Registers

The contents of each &-bit interrupt register, IRR, ISR,
and IMR, can be read to update the user's program on
the present status of the 8259A. This can be a versatile
tool in the decision making process of a service routine,
giving the user more control over interrupt operations.
Before delving into the actual process of reading the
registers, let's briefly review their general descriptions:

IRR (Interrupt Specifies all interrupt levels re-
Request Register) questing service.

ISR (In-Service Specities all interrupt levels
Register) which are being serviced.

IMR (Interrupt
Mask Register)

Specifies all interrupt levels that
are masked.

To read the contents of the IRR or ISR, the user must
first issue the appropriate read register command (re_an_j
IRR or read ISR) to the 8259A. Then by applying a RD
pulse to the B259A (an {Nput instruction), the contents
of the desired register can be acquired. There is no need
to issue a read register command every time the IRR or
ISR is to be read. Once a read register command is
received by the 8259A, it “remembers’ which register
has been selected. Thus, all that is necessary to read
_tﬂg contents of the same register more than once is the
RD pulse and the correct addressing (A0=0, explained
in “Programming the B259A"). Upon initialization, the
seléction of registers defaults 10 the IRR. Some caution
should be taken when using the read register command
in a system that supports several levels of interrupts. If
the higher priority routine causes an interrupt between
the read register command and the actual input of the
register contents, there's no guarantee that the same
register will be selected when it returns. Thus it is pest
in such cases to disable interrupts during the operation.

Reading the contents of the IMR is different than read-
ing the IRR or ISR. A read register command is not
necessary when reading the IMR. This is because the
IMR can be addressed directly for both reading and
writing. Thus all that the 8258A requires for reading the
IMR is a RD pulse and the correct addressing (A0 =1,
explained in "'Programming the B2538A").

Poll Command

As mentioned towards the beginning of this application
note, there are two methods of servicing peripherals:
status polling and interrupt servicing. For most applica-
tions the interrupt service method is best. This is
because it requires the ieast amount of CPU time, thus
increasing system throughput. However, for certain ap-
plications, the status poll method may be desirable.

For this reason, the 8259A supports polling operations
with the poll command. As opposed to the conventional
method of polling, the poll command offers improved
device servicing and increased throughput. Rather than
having the processor poll each peripheral in order to
find the actual device requiring service, the processor
polis the 8259A. This allows the use of all the previously
mentioned priority modes and commands. Additionalily,
both polled and interrupt methods can be used within
the same program.

To use the poll command the processor must first have
its interrupt request pin disabled. Once the poll com-
mand is issued, the B259A wili treat the next (CS quali-
fied) RD puise issued to it (an INput instruction) as an in-
terrupt acknowledge. It will then set the appropriate bit
in the ISR, if there was an interrupt request, and enable a
special word onto the data bus. This word shows
whether an interrupt request has occurred and the
highest priority level requesting service. Figure 17
shows the contents of the “poil word"” which is read by
the processor. Bits W0-W2 convey the binary code of
the highest priority level requesting service. Bit | desig-
nates whether or not an interrupt request is present. If
an interrupt request is present, bit | will equal 1. If there
isn’t an interrupt request at all, bit | will equal 0 and bits
WO-W2 will be set to ones. Service to the requesting
device is achieved by software decoding the poll word
and branching to the appropriate service routine. Each
time the B259A is to be polled, the poli command must
be written before reading the pol! word.

The poll command is useful in various situations. For in-
stance, it's a good alternative when memory is very
limited, because an interrupt-vector table isn't needed.
Another use for the poll command is when more than 64
interrupt levels are needed (64 is the limit when cascad-
ing 8259's). The only limit of interrupts using the poll
command is the number of 8259's that can be addressed
in a particular system. Still another application of the
poll command might be when the INT or INTA signals
are not available. This might be the case in a large
system where a processor on one card needs to use an
8259A on a different card. In this instance, the poll com-
mangd is the only way to monitor the interrupt devices
and still take advantage of the B259A's prioritizing
features. For those cases when the B259A is using the
poll command only and aot the interrupt method, each
8259A must receive an initialization sequence (interrupt
vector). This must be done even though the interrupt
vector features of the 8259A are not used. In this case,
the interrupt vector specified in the initialization
sequence could be a "fake'.

a7

Lo]-] - welwiwo)

WO-W2 = BINARY CODE OF HIGHEST
PRIORITY LEVEL REQUESTING SERVICE

t= 1 IF AN INTERRUPT OCCURRED

Figure 17. Poll Word

3.5 INTERRUPT CASCADING

As mentioned earlier, more than one 8259A can be used
to expand the priority interrupt scheme to up to 64 levels
without additional hardware. This method for expanded
interrupt capability is called '‘cascading”. The B259A
supports cascading operations with the cascade mode.
Additionally, the special fully nested mode and the but-
tered mode are available for increased flexibility when
cascading 8259A’s in certain applications.

Cascade Mode

When programmed in the cascade mode, basic opera-
tion consists of one 8259A acting as a master to the
others which are serving as slaves. Figure 18 shows a
system containing a master and two slaves, providing a
total of 22 interrupt ievels.

A specific hardware set-up is required to establish
operation in the cascade mode. With Figure 18 as a ref-
erence, note that the master is designated by a high on
the SP/EN pin, while the SP/EN pins of the siaves are
grounded (this can also be done by software, see buf-
fered mode). Additionally, the INT output pin of each
slave is connected to an IR input pin of the master. The
CASO0-2 pins for alt B259A’s are paralleled. These pins
act as outputs when the B259A is a master and as inputs
for the staves. Serving as a private 8259A bus, they con-
trol which slave has control of the system bus for inter-
rupt vectoring operation with the processor. All other
pins are connected as in normal operation (each 8259A
receives an INTA pulse).

Besides hardware set-up requirements, all 8259A's must
be software programmed to work in the cascade mode.
Programming the cascade mode is done during the in-
itialization of each 8259A. The 8259A that is selected as
master must receive specification during its initializa-
tion as to which of its IR inputs are connected to a
slave's INT pin. Each slave B259A, on the other hand,
must be designated during its initialization with an 1D (0
through 7) corresponding to which of the master's IR in-
puts its INT pin is connected to. This is all necessary so
the CAS0-2 pins of the masters will be able to address
each individual slave. Note that as in normal operation,
each 8259A must aiso be initialized to give its IR inputs
a unigque interrupt vector. More detail on the necessary
programming of the cascade mode is explained in *Pro-
gramming the 8259A"".

Now, with background information on both hardware
and software for the cascade mode, let's go over the

ADDRESS BUS 16 S

CONTROL BUS

i ||

TA INT b cs D07 INTA INT
CASO b caso
82594
CAS Y cas)y mfs,n
cas2 cas2 ¢
[! FR M7 M6 M5 Ma M3 M2 M1 MO

DATA BUS (8}

|
1
N | !

i

1.0 s 4 (32 v 0O

—

T
INTERAUPT REQUESTS

Figure 18. Cascaded B259A'S 22 Interrupt Levels

sequence of events that occur during a valid interrupt
request from a slave. Suppose a slave IR input has
received an interrupt request. Assuming this request is
higher priority than other requests and in-service levels
on the slave, the slave’s INT pin is driven high. This
signals the master of the request by causing an inter-
rupt requeston a designated IR pin of the master. Again,
assuming that this request to the master is higher priori-
ty than other master requests and in-service levels
(possibly from other slaves), the master's INT pin is
pulled high, interrupting the processor.

The interrupt acknowledge sequence appears to the

processor the same as the non-cascaging interrupt
acknowledge sequence; however, it's different among
the 8259A’s. The first INTA pulse is used by all the
8250A's for internal set-up purposes and, it in the
8080/8085 mode, the masteg__n_iﬂ place the CALL opcode
on the data bus. The first INTA pulse aiso signals the
master to place the requesting slave's ID code on the
CAS lines. This turns contro! over to the slave for the
rest of the interrupt acknowledge sequence, placing the
appropriate pre-programmed interrupt vector on the
data bus, completing the interrupt request.

During the interrupt acknowledge sequence, the cor-
responding ISR bit of both the master and the siave get
set. This means two EOI commands must be issued (if
not in the automatic EOI mode), one for the master and
one for the slave.

Special consideration should pe taken when mixed
interrupt requests are assigned 10 a master 8259A; that
is, when some of the master's IR inputs are used tor
slave interrupt requests and some are used for individ-
val interrupt requests. In this type of structure, the
master's IR0 must not be used for a slave. This is
because when an IR input that isn't initialized as a slave
receives an interrupt request, the CASO0-2 lines won't be
activated, thus staying in the default condition address-
ing for IR0 (slave IR0D). If a slave is connected to the
master's RO when a non-slave interrupt occurs on
another master IR input, efroneous conditions may

48

result. Thus IR0 should be ihe last choice when assign-
ing slaves to IR inputs.

Special Fully Nested Mode

Depending on the application, changes in the nested
structure of the cascade mode may be desired. This is
because the nested structure of a slave 8259A ditfers
from that of the normal fully nested mode. in the cas-
cade mode, if a slave receives a higher priority interrupt
request than one which is in service (through the same
slave), it won't be recognized by the master. This is
because the master's ISR bit is set, ignoring all requests
of equal or lower priority. Thus, in this case, the higher

. priority slave interrupt won't be serviced until after the

master's ISR bit is reset by an £0O! command. This is
most likely after the completion of the lower priofity
routine.

If the user wishes to have a truly fully nested structure
within a slave B259A, the special fully nested mode
should be used. The special fully nested mode 1S pro-
grammed in the master only. This 1S done during the
master's. initialization. in this mode the master will
ignore only those interrupt requests ot lower priofnty
than the set ISR bit and will respond to all requests of
equal or higher priority. Thus it a slave receives a nigher
priority request thanone in service, itwili be recognized.
To insure proper interrupt operation when using the
special fully nested mode. the software must determine
it any other slave interrupts are still in service before
issuing an EOI command 10 the master. This 1s done by
resetting the appropriate slave ISR bit with an EOI and
then reading its ISR. It the ISR contains all 2eros. there
aren't any other interrupts from the slave !n service and
an EO! command can pbe sent to the master. If. the ISR
isn't all zeros, an EO! command shouldn't be sent to the
master. Clearing the master's ISR bit with an EO! com:
mand while there are still slave interrupts 1n service
would allow lower priority interrupts to be recognized at
the master. An example of this process is shown in the
second application in the "Applications Examples’ sec-
tion.

4. PROGRAMMING THE 8259A

Programming the 8259A is accomplished by using two
types of command words: Initialization Command
Words (ICWs) and Operational Command Words
(OCWs). All the modes and commands explained in the
previous section, "Operation of the 8259A", are pro-
grammable using the ICWs and OCWs (see Appendix A
for cross reference). The ICWs are issued from the proc-
essor in a sequential format and are used to set-up the
8259A in an initial state of operation. The OCWs are
issued as needed to vary and control 8259A operation.

Both ICWs and OCWSs are sent by the processor to the
8250A via the data bus (8259A CS=0, WR=0). The
8259A distinguishes between the different ICWs and
OCWs by the state of its A0 pin (controlied by processor
addressing), the sequence they're issued in (ICWs only),
and some dedicated bits among the ICWs and OCWs.
Those bits which are dedicated are indicated so by fixed
values (0 or 1) in the corresponding ICW or OCW pro-
gramming formats which are covered shortiy. Note,
when issuing either ICWs or OCWSs, the interrupt
request pin of the processor should be disabled.

4.1 INITIALIZATION COMMAND WORDS (ICWs)

Before normal operation can begin, each 8259A in a
system must be initialized by a sequence of two to four
programming bytes called ICWs (Initialization Com-
mand Words). The ICWs are used to set-up the neces-
sary conditions and modes for proper 8259A operation.
Figure 20 shows the initialization flow of the 8259A.
Both ICW1 and ICW2 must be issued for any form of
8259A operation. However, ICW3 and ICW4 are used
only if designated so in ICW1, Determining the neces-
sity and use of each ICW is covered shortly in individual
groupings. Note that, once intialized, if any program-
ming changes within the ICWs are to be made, the entire
ICW sequence must be reprogrammed, ndt just an indi-
vidua! ICW.

Certain internal set-up conditions occur automatically
within the 8259A after the first ICW has been issued.

These are:

A. Sequencer logic is set to accept the remain ng ICWs
as designated in ICW1.

B. TheISR(in-Service Register) and IMR (Interrupt Mask
Register) are both cleared.

C. The special mask mode is reset.
D. The rotate in automatic EOl mode tlip-tlop is cleared.

E. The IRR (interrupt Request Register) is selected for
the read register command.

F. f the IC4 bit equals 0 in ICW1, all functions in ICW4
are cleared; 8080/8085 mode is selected by default.

G. The fully nested mode is entered with an initial prior-
ity assignment of IR0 highest through IR7 lowest.

H. The edge sense latch of each IR priority cell is
cleared, thus requiring a low to high transition to
generate an interrupt (edge triggered mode effected
only).

49

The ICW programming format. Figure 21, shows bit
designation and a short definition of each ICW. With the
ICW format as reference, the functions of each ICW will
now be explained individually.

IN
CASCADE
MODE

NO (SNGL=1)

YES (SNGL = 0)

|

l Icw3

NO(IC4=0)

15 ICW4
NEEDED

YES (iC4=1)

]

| Icwa

READY TO ACCEPT
INTERRUPT REQUESTS

Figure 20. initializstion Flow

Initialization Command Word Format
iCwi
4 © b, 4, 5 0, 0O, D D

CLL [TT=FT]
[T

1 ICwa NEEDED
0 NOICWaNEEDED

1 SINGLE
0 - CASCADE WUDE

CALL INTERVAL
1 INTERVAL OF 4
0 - INTEAVAL OF B

1 LEVEL TRIGGERED INPUY
EDGE TRIGGERED INPUT

o

4) A&, OF INTERRUPT VECTOR
ADDAESS -MCS80 85 MODE

wewz
A D, 5 0 0, 0, %o
ayy Ay,
Y

C DT

HCW) IMASTER OEVICE!
o, 0 0 B

ay
)

O

CTLLD D]
HEEEE

l 1 IR INPYT HAS & SLAVE
@ IR INPUT DDESHOT MAVE

A SLAVE

icw3 SLAVE DEVICE:
o, & D 0, b O

mx\‘{.\x;\hl.o%

2
siavi D’
of1]203]ajslsl?
olvjolv]ofrlof:
olofr|r1]0}° vl
olojofofrfrir]?
0Wwe
ag (1%} 06 Dy [0 0y O
I v oa 0 0 SENM.HUF M S AE! va
'. | 1ML SHL B MODE
o A AESRO B NOD
Toauto o
¢ NOR8AL B
A k]
[To 7 x ; NONRUREERED MODU
1 tE MU FHED DODE S1AavE
| v v HUFSEHED MODE MASTER
1, TnRREIaE POELY SESTED
L Al

NOTE 1
SLAVE |

N AR B Ly b
“ont

D 1S EQUAL TO THE CORRESPONDING MASTER IR INPUT

DATA SHEETS. THIS IS DONE TO BETTER CLARIFY AND EXPLAIN THE PRAOGRAM: |
MING OF THE 8259A, THE OPERATIONAL RESULTS REMAIN THE SAME. !

SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTLY FROM EXISTING 8250A

—

Figure 21. Initialization Command Words (ICWS) Programming Format

ICW1 and ICW2 .

Issuing ICW1 and ICW2 is the minimum amount of pro-
gramming needed for any type of 8259A operation. The
majority of bits within these two ICWs are used to desig-
nate the interrupt vector starting address. The remain-
ing bits serve various purposes. Description of the ICW1
and ICW?2 bits is as follows:

IC4:

SNGL:

The IC4 bit is used to designate to the 8259A
whether or not ICW4 will be issued. If any of
the ICW4 operations are to be used, ICW4
must equal 1. If they aren’t used, then ICW4
needn't be issued and IC4 can equal 0. Note
that if IC4 = 0, the B259A will assume operation
in the MCS-80/85 mode.

The SNGL bit is used to designate whether or
not the 8259A is to be used alone or in the cas-
cade mode. |f the cascade mode is desired,
SNGL must egual 0. In doing this, the 8259A
will accept ICW3 for further cascade mode pro-
gramming. If the 8259A is to be used as the
single B259A within a system, the SNGL bit
must equal 1; ICW3 won't be accepted.

ADL:

LTIM:

A5-A15:

T3-T7:

The AD! bit is used to specify the address in-
terval for the MCS-80/85 mode. If a 4-byte ad-
dress interval is to be used, ADI must equal 1.
For an B-byte address interval, ADI must equal
0. The state of ADI is ignored when the 8259A
is in the MCS-86/88 mode.

The LTIM bit is used to select between the two
iR input triggering modes. i LTIM =1, the level
triggered mode is selected. If LTIM=0, the
edge triggered mode is selected.

The A5-A15 bits are used to select the inter-
rupt vector address when in the MCS-80/85
mode. There are two programming formats
that can be used to dp this. Which one is im-
plemented depends upon the selected address
interval (AD1). If AD! is set for the 4-byte inter-
val, then the B259A will automatically insert
AOD-A4 (AD, A1=0 and A2, A3, A4 =IR0-7).
Thus A5-A15 must be user selected by pro-
gramming the A5-A15 bits with the desired ad-
dress. It ADI is set for the 8-byte interval, then
AD-A5 are automatically inserted (AD, A1,
A2=0 and A3, A4, A5=IR0-7). This leaves
A6-A15 to be selected by programming the
A6-A15 bits with the desired address. The
state of bit 5 is ignored in the latter format.

The T3-T7 bits are used 1o select the interrupt
type when the MCS-86/88 mode is used. The
programming of T3-T7 selects the upper 5
bits. The lower 3 bits are automatically in-
serted, corresponding to the IR level causing
the interrupt. The state of bits A5-A10 will be
ignored when in the MCS-86/88 mode. Estab-
lishing the actual memory address of the inter-
rupt is shown in Figure 22.

UPSER 5 BITS OF $085.8084
INTERRUPY TYPE WSER PAOGRAMMED)

[FLem]
.

|
1
i
REQUESTING 1R LEVEL
te} —

'I (AUTOMATICALLY INSERTED 8Y B259A1

1
1 '
i

|
mnmnm e COMPLETE 80868088 INTERAUPT TYRE
d

1
--- _

[eTolo] ol[n[v.]u[v.lv,[r,} ""°l1 2]0] ___ MEMORY ADDRESS OF $046.4080

INTERRUPT TYPE WTYPE 2 &

Figure 22. Estabiishing Memory Adcdress of 8086/8088 Interrupl Type

ICW3

The 8259A will only accept ICW3 if programmed in the
cascade mode (ICW1, SNGL=0). ICW3 is used for
specific programming within the cascade mode. Bit
definition of ICW3 differs depending on whether the
8259A is a master or a slave. Definition of the ICW3 bits
is as follows:

$0-7 If the B259A is a master (either when the

(Master): SP/EN pin is tied high or in the buffered
mode when M/S = 1 in ICW4), ICW3 bit defi-
nition is S0-7. corresponding to 'slave 0-7"".
These bits are used to establish which IR in-
puts have slaves connected to them. A 1
designates a slave, a 0 no slave. For exam-
ple, if a slave was connected to IR3, the S3
bit should be set to a 1. (S0) should be last
choice for slave designation.

IDO-ID2 1f the 8259A is a slave {either when the SF/EN

(Slave): pin is iow or in the buffered mode when
M/S = 0 in ICW4), ICW3 bit definition is used
to establish its individual identity. The ID
code of a particular slave must correspond
to the. number of the masters IR input it is
connected to. For example, if a slave was
connected to IR6 of the master, the slaves
1D0-2 bits should be set to ID0O=0, ID1=1,
andiD2=1.

ICw4

The 8259A will only accept ICW4 if it was selected in
ICW1 (bit IC4 = 1). Various modes are offered by using
ICW4. Bit definition of ICW4 is as follows:

uPM: The uPM bit allows for selection of either the
MCS-80/85 or MCS-86/88 mode, If set as a 1 the
MCS-86/88 mode is selected, if a 0, the
MCS-80/85 mode is selected.

AEOI: The AEO! bit is used to select the automatic
end of interrupt mode. If AEOI=1, the
automatic end of interrupt mode is selected. If
AEQI=0, it isn't selected; thus an EQI com-
mand must be used during a service routine.

M/S: The M/S bit is used in conjunction with the buf-
fered mode. If in the buffered mode, M/S
defines whether the B259A is a master or a
slave. When M/S is set to a 1, the 8259A
operates as the master; when M/S is 0, it
operates as a slave. If not programmed in the
butfered mode, the state of the M/S bit is
ignored.

BUF: The BUF bit is used 1o designate operation in
the buffered mode, thus controlling the use of
the SP/EN pin. M BUF is settoa 1, the buftered
mode is programmed and SP/EN is used as a
transceiver enable output. If BUF is O, the buf-
tered mode isn't programmed and SP/EN is
used tor masterislave selection. Note if ICW4
isn’t programmed, SP/EN. is used for master/
slave selection.

51

SFNM: The SFNM bit designates selection of the
special fully nested mode which is used in
conjunction with the cascade mode. Only the
master should be programmed in the special
fully nested mode to assure a truly fully nested
structure among the slave IR inputs. If SFNM
is set to a 1, the special fully nested mode is
selected, if SFNM is 0, it is not selected.

4.2 OPERATIONAL COMMAND WORD (OCWs)

Once initialized by the ICWs, the 8259A will most likely
be operating in the fully nested mode. At this point,
operation can be further controlied or modified by the
use of OCWs (Operation Command Words). Three
OCWs are available for programming various modes and
commands. Unlike the ICWs, the OCWs needn’t be in
any type of sequentiai order. Rather, they are issued by
the processor as needed within a program.

Figure 23, the OCW programming format, shows the bit
designation and short definition of each OCW. With the
OCW format as reference, the functions of each OCW
will be explained individually.

OCwW1

OCW1 is used solely for 8259A masking operations. It
provides a direct link to the IMR (Interrupt Mask Regis-
ter). The processor can write to or read from the IMR via

“OCW1. The OCW1 bit definition is as follows:

MO-M7: The M0-M? bits are used to control the mask-
ing of IR inputs. If an M bit is set to a 1, it will
mask the corresponding IR input. A 0 clears
the mask, thus enabling the IR input. These
bits convey the same meaning when being
read by the processor for status update.

OoCw2

OCW?2 is used for end of interrupt, automatic rotation,
and specific rotation operations. Associated commands
and modes of these operations (with the exception of
AEOQI initialization), are selected using the bits of OCW2
in a combined fashion. Selection of a command or
mode should be made with the corresponding table for
OCW2 in the OCW programming format (Figure 20),
rather than on a bit by bit basis. However, for com-
pleteness of explanation, bit definition of OCW2 is as
follows:

LO-L2: The LO-L2 bits are used to designate an inter-
rupt level (0-7) to be acted upon for the opera-
tion selected by the EOI, SL, and R bits of
OCW2. The level designated will either be
used to reset a specific ISR bit or to set a
specific priority. The LO-1.2 bits are enabled or
disabled by the SL bit.

EOL The EOI bit is used for all end of interrupt com-
mands (not automatic end of interrupt mode).
if set to a 1, a form of an end of interrupt com-
mand will be executed depending on the state
of the SL and R bits. If EOl is 0, an end of inter-
rupt command won't be executed.

ocw!
s, O, O 0 O O o, b

pEpDonnaEnn
T rere

0 MASK RESET

0cw?

r'rrq!w-w.'f\'f\-"ii\g
|

\ WA LEVEL 70 BE

1
!* ACTED UPON
(- ADBRDEnE
:1 o nlrjolt]of”
P [e S T
bl Blapponoan

oT0]] Non speciic ECI Commard } END OF INTERRUPT
ol 1! *Specdic EQI Command
TT5T71 Botate On Non Specitic EDI Command
TTG10] Rotate in Aviomane EOF Mode (SET) AUTOMATIC ROTATION
1010 Rotate in Aulomanc EOI Mode {CLEAR}
Y17 {7] -Rotate On Speciic EQI Command
1T - et Pronty Commans } SPECIFIC ROTATION
0] 1]0] wooperation
‘LG L2 are used

} \ READ REGISTER COMMAND
J— a 1 .
—_— ° a 1

1

ataD Al
mats ISR
QN MENT [ONNERT
W6 ruist | AD PuLSE

N ACTION

1= POLL comtimo
© = NO POLL COMMAND

WEC AL MASH MODE

° ‘| o
° °)

ur
wiCiaL
mase

nESET
O ACTION @rCIaL
magx

SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTLY FROM EXISTING 8259A
DATA SHEETS. THIS IS DONE TO BETTER CLARIFY AND EXPLAIN THE PROGRAM:

MING OF THE 82594, THE OPERATIONAL RESULTS REMAIN THE SAME.

Figure 23. Operational Command Words (OCWs) Programming Format

SL: The SL bit is used to select a specific level for
a given operation. If SLis settoa 1, the LO-L2
bits are enabled. The operation selected by the
EO!I and R bits will be executed on the
specified interrupt level. 1t SL is 0, the LO-L2
bits are disabled.

R: The R bit is used to control all 8259A rotation
operations. If the R bit is set to a 1, a form ot
priority rotation will be executed depending on
the state of SL and EOI bits. It R is 0, rotation
won't be executed.

52

OCW3

OCW3 is used to issue various modes and commands to
the 8259A. There are two main categories of operation
associated with OCW3: interrupt status and interrupt
masking. Bit definition of OCW3 is as follows:

The RIS bit is used to select the ISR or IRR for
the read register command. If RIS is set 1o 1,
ISR is selected. If RiISis 0,1RRis selected. The
state of the RIS is only honored if the RR bitis
a1

The RR bit is used to execute the read register
command. f RRis settoa 1, the read register
command is issued and the state of RIS deter-
mines the register to be read. !If RR is O, the
read register command isn’t issued.

P: The P bit is used to issue the po!l command. If
Pis settoa1,the poll command is issued. if it
is 0, the poll command isn't issued. The poll
command will override a read register com-
mand if set simultaneously.

The SMM bit is used to set the special mask
mode. If SMM is setto a 1, the special mask
mode is selected. it it is O, it is not selected.
The state of the SMM bitis only honored if itis
enabled by the ESMM bit.

The ESMM bit is used 1o enable or disable the
effect of the SMM pit. if ESMM is setto a 1,
SMM is enabled. i ESMM is 0, SMM is dis-
abled. This bitis useful to prevent interference
of mode and command selections in OCW3.

RIS:

RR:

SMM:

ESMM:

SUMMARY OF 8259A INSTRUCTION SET

inst. # Mnemonic AD D7 D8 DS D4 DI D2 DV DO Operation Description
1 IcW1 A D A7 A8 A5 1 0 % 1 0 Format= ¢ single eage trggered
2 Icwi 8 0 A7 A6 AS 1 1 A\ 1 0 Format = 4 single leve: tngaerec
3 WCwi ¢ 0 A7 A8 A5 1 4] 1 0 0 Byte t tniishization Formal = 4 not single edge trggered
4 iICwr D 0 A7 A6 A5 ¢ 1 1 0 0 Format = 4 not single tevet trigrered
5 ICWY € 0 A7 A8 O 1 [} 0 1 o] No ICW4 Required Format = 8 single edge triggered
[] ICwy F 0 A7 A6 O 1 1 0 1 0 Format = 8 single leve triggered
7 ICwWY G 0 A7 A8 O 1 0 o} 0 0 Format = 8. not single. edge tnggered
8 ICWS H 0 A7 A6 O 1 1 0 0 0 Formet=8 not singie. leve! triggered
9 ICWY | 0 A7 A6 A5 0 1 1 1 Format = 4, singie. sdge iriggered
10 Icw1 0 A7 A8 A5 1 1 1 1 1 Formai = 4, singie. leve! triggered
1 ICW1 K 0 A7 A6 A5 17 0 1 0 1 Byte 1 ininalizalion £o,mg; < 4 not single. edge triggeres
12 Icwyr L 0 A7 A6 A5 1 1 1 0 1 Format = 4. not single. ievel triggerey
13 ICW1 M 0 A? A6 O , o 0 1 \ ICW4 Required Format = 8. single. edge triggered
14 ICW1 N 0 A7 A8 O 1 1 [+ 1 1 Format = 8. single. leve triggered
15 ICws O 0 A? A6 O 1 ¢ 0 0 1 Format = 8, not singie, edge Iriggered
1% ICwr P 0 A7 A6 O 1 1 0 0 1 Format = 8. not single, iave! tnggersd
17 1ICw2 1 OAYS A4 A3 A12 AT AID0 AS A8 Byte 2 initialization
18 ICW3 M 1 87 S6 S5 S4 S S2 S5 SO Byte 3 initialization — master
19 ICW3 S 1 o 0 0 o0 o0 Ss2 s1 SO Byte 3 initialization — slave
20 1ICWa A 9 o o0 o o0 © 0 o0 o0 No action, redundant
FAl ICwé B) ¢ 0 o o ©0 0 O 1 Non-buffered mode, no AEOI. 80868088
22 ICws C 1 o 0 o 0 o0 0 1 0 Non-buffered mode, AEQI, MCS-B0 85
23 ICwe D 1 [+ 0 0 0 0 0 t | Non-butfered mode. AEOI. 8086 /8088
24 o1 7 T 3 1 6o 0 o 6o 0 1 [No action, redundant
25 ICwé F 1 ¢ 0 0 o0 o0 1 0 A\ Non-butfered mode, no AEOI, BOB6/BOBS8
26 ICWé G 1 c o0 o0 o0 © 1 1 0 Non-butfered mode, AEOI, MCS-80/85
7 ICW4 M 1 © 0 0 o0 o 1 1 1 Non-buttered mode, AEOI, 8086 /8088
28 ICWe i 1 e 0 o o0 1 o 0 o Buftered mode. siave. no AEOL, MCS-80/85
29 ICwa) 1 [¢] [+] 0 0 1 0 0 1 Buttered mode, stave, no AEQI, 80868088
30 ICWeE K 1 ¢c 0 o O 1 1] 1 0 Buffered mode, stave, AEOI. MCS-80/85
31 1ICwa L 1 Q 0 0 0 1 0 1 1 Buttered mode, siave, AEQI, 8086 /8088
32 ICWa ™ 1 6 o0 o0 © 1 1 o 0 Buffered mode, master. no AEQI. MCS-80 85
3 ICW4 N 1 Q 0 0 4 1 1 0 1 Butfered mode, master, no AEQ!, B086 BO88
k7l ICW4 O 1 ¢ o0 0 © 1] 1 0 Butfered mode, masier, AEOQI, MCS-80/85
» ICwWe P 1 c 0 o ,9.' 1 1 1 1 Buffered mode, master AECI, 8086, 8088
k' ICWé NA 1 4] 0 [4] 0 [+] (] Fully nested mode, MCS-80. non buffered. no AEO!
¥ ICw4 NB t ¢ 0 o v 0 0 0 1 ICW4 NB through ICW« ND are identical 1o
k] 1ICW4 NC 1 4] 0] 1 ¢] [+] 1 0 ICW4 B through ICW4 D with the aoaition ot
39 ICWa ND 1t 0 0 0 1 ©o 0 1 1 Fully Nested Mode
40 ICwWe NE 1 4] 0 0 1 0] o 0 Fulty Nestec Mode. MCS.-80/85 non buttered no AEO!
a4 ICW4 NF 1 0 0 © 1 0 1 0 1
[F3 ICWe NG 1 0 0 [+] 1 ¢}] 1 0
43 ICW4 NH 1 Q o] 0 1 0 1 1 1
44 ICWa NI 1 0 [+ 0 1 1 0 0 0
a5 ICWe NJ 1 0o 0 o0 1 1 [] 1
a6 ICW4 NK 1 0 0 0 , f 0 5 0 ICW4 NF through ICWe NP are 1dentical to
F thr ¥ 4 P with th 1tion ot
48 ICWd NM 1 0 4] 0 1 1 1 0 0
49 ICW4& NN 1 o}) 0 1 1 1 0 1
S0 ICW4 NO] 0 0 0] 1 1 1 [
$1 ICW4 NP 1 0 0 0 1 t 1 1 1
52 OCwi TOM7? M6 M5 Me M3 M2 M1 MO Load mask regisier, read mask register
53 ocwe € o o 90 1 o0 0 0 0o 0 Non-specitic EOI
54 OCwz2 SE 0 [} 1 1 0 6 L2 L L Specific EOI, LO-L2 code ot IS FF 1o be reset
5% OCw2 RE 0 1 [}] o] [0 0 0 Rotate on Non-Specific EOI
%6 OCwz RSE 0 1 1] 0 0 L2 LY Lo Rotate on Specific EQI LO-L2 code of line
5° oCcw2 R 0o*y 9 0 0 O 0 0 O Rotate in Auvto EOI (set)
58 OCwz CR 0] o] 4] 0 0 0 0 o] Rotate in Auto EOI (ciear)
%9 OoCw2 Rs 0 0 D 0 L ou o Set Prionty Command
by OCwl P 0 [+] 0 0 0 1 1 0 0 Poli mode
A OCW3 RIS 0 0] 0 0 1 0 1 1 Read IS register

53

PAGE 1 OF 4

uilg
uis ,
LT To/Mpe— 10/M)-—-i{>0-6—-> M/10 0100 = oas FeH
= s035 AP o8 _ ooe 8 [Gn R
X1) SIE 51 T 351 DI0S — P> A5
i) ROPEES RO>— = > RD Diod —| = A4
RESET)--3—6- RESET IN WR OS—MR)——J 3 2 DR 0103 —7] T§_>A3
oK 37 >CTLK DIOZ = > A2
5 ouT —21—) NC DIOol -3 5 > Al
SIpY»—=2s1D SODf==——> SO plOp —__4 > AP
ROV >3 RDY ALSIE=—D ALS A A
A4 {EL— A14 L
AL3 2D AL u29=
AL2 o> Al2 0107 >—2 D3 — 007
A= A1l $ 181~
23 D106 > > D06
Alp [P D105 > D> > D05
RO = AS T V7 N3 S om
ps b2l pg D104 >—T5RTTT
39 D103 > > D03
7 ALES—D ALE DIOZ > 852 3 poz
ATTN)—-—8- RST 7.5 AD7 TS—— D107 6 7 > 001
S{RST 6.5 AD6 [r— D106
HRST 5.5 ADS o DI0S
TRAP ADA fr2—DIOA
. e AD3 |2 D103
- ADZ [z=—— D102
AD1 -17—0101 1 INT
ADp F—=D102 SET INT 11 19 8
= 12|u24 SID ‘ C
INTR >——;g‘1m INTA 0;—1—)INTA 2 Y 5]ues
-L—--HOLD HLDA =8> NC i 13 17 300
- 9 5 b3 | 12]u25 A
CLR INT >——1—0--U24 '
MPX MULTIPLEXER CHANNEL U3e j; 73> IN
T2 > WM
166C ©1981 D107 4 IRﬂ‘ls 11 12 J8 7 1P
5 19 g g 97 =
DI06 —— IR1 5> V1
3 .20 13 4 =2J6 Latd
DI05 —= IR2 6> Vi2
7 uz2¢ 21 7 6 J5 —
DI04 =5 RS2 15 O SLS 3
103 —= IR4 8> Via
9 23 5 4 73 i
DI02 == IR5| Vi5
o1 —4 1R6 2> i 18_odZlI0> i6
DIOp — IR7 |2 3 2 AT 717
8259A
INTA 22 INTA INT -%—9 INTR L Lo
RD)—-50 RD CASP a NC —
WSOt CASTIE— NC vee =
AP >—i—- AP CAS2 —I—G-NC
INT CLT ENA »—O)CS SP/EN
10K RS
6
5
4
3
s27 g3 -
SLAVE CLR ‘ 6 ALE >——
RESET W 3| U9 RESET)_9'0
vee

COMPUPRO division GODBOUT ELECTRONICS

54

PAGE 2 OF 4

% 6 : 167 E 76> pSYNC
STB ENA g L STVAL >—— 2> oSTIA.
2 vecg BN ol PeBIN
—_— 1 pHR)_—8- us9o vam pHR
STB INH >— L5244 26> PHLDA
1L SIS mose
i: é TE> SOSE
8 5 R ‘ 23> 00D5B
[1 19
vee XFER
4 2 R2
2 P — -
EXTEN A T QF——> 1 WANT APRI0 3 w5 o2 B35 tvAs
STB Sy Y3
N 1
RELEASE LR
52 O[5> DMA2
HOLD 2 19 s,]
HLDA L >4 Y7 e .
use IMHI =D Qp===> APRIO :)}6__
BI=G WA
HLDA INE s 4 ppY—iH us U35 P->E1=O-56> DMAT
13T DT 13
RPRIO >~ o1 12 Dm 3 o
HLDA >—= 2 — 1] ya- :))-a_ BMAR
§ . >3 >p Q> TFER | uas -B-O-F>
vee U6 — 13
INIT
STB 2 DU4 b 32)
TTE ENA Y———b> O} S ENDWAIT QT 8 9fu 1Ml
1
STB
4 MPX MULTIPLEXER CHANNEL
e
578 T RELEASE 166C ©1981
XFER 2 1 ur 115 6 1o/M g c Y7 o—-> %%
ST INH i3 T 51 >—18 Y6 O3
° a ng BS 5p >—=d A Y5 o-ﬂ—> TOW
STB STB ENA DZ Qz > STB ENA vec U46 va D
4 uz3 @ P31 STB ENA L6 a1 13138 y3|olZ 5
STB INH AL3 9 D3 LS175 Q3 |-==—> STB INH g oA 2 1 iz S W
READY Q3 O—-) STB INH G2B Y1 D=—> W
XRDY [_3_>———4 D4 o ——> NC = vp
RDY @__- uz4 Q 2= READY
ck L
’ ’ \ 9] 1
15y mn»—j .
[o
M o] ue Yob—id 14
L R— M7 Sl . —
3] 2 CDSB 4 o
BS — 2 — 15| U45 5
W> 3 W > e PE
4 o — Y47 TR >4 O
TOW >— Ve ¥ 3
. HOLD 77
APRlor——Euzs 2 ; R R ﬁ—"Do"og__
P3 | 52—
ue 4
HOLD > &O<\9ﬁ 5 ;g?l ‘1[-?_- Il]?19
= > PP B
= 52

COMPUPRO division GODBOUT ELECTRONICS

SRl
Y
A6 @ 1 E 12
o4
a5 25> 3
03 0—O7g 25182521

DI7
D16
DI5
D14 {8
DI3
pI2
DIl
DIp

166C

PDBIN 7)ol
SINTA

COMPUPRO division GODBOUT ELECTRONICS

MPX MULTIPLEXER CHANNEL

PAGE 3 OF 4

D107 —28 129 > A23
D106 L o3> a2
DIS—H 37 [e—fee> Al
p1os— o e A
D103~ Ls3 25> A19
D102 —33 = Al8
o101 3 7> AL
DI10P N 16> Al6
e s]

BS

D07)____13 57> Al5
D06 >—2 56> Ala
DOS Yool Al3
004 >— usz 5> A12
D03 >—3 LS374] All
002 >—3 ALD
po1 >—7 134 > A9
DOP >——{_A 84 > A8

us > ATTN s
D107
D106
D105
D104
D103
D102
DIO1
D10
5
BS Y—-
51]
©1981
vee
R4
$2-2
CLR INT »———0""

56

womsm—a

D07)—]—81
D06 >— 3
DO 5 Dt
004>——]13 u4a3
003 >—1 L5244
D02 >_T
Dol >——?
DOP >———

1 19
vaz)ol

D07)-—1—; ;2 3> 017
pos >—2f 2535 016
o>—H . >0
o>—4 U3 B—I> one
003 >—=3 217> o3
002 > 3> o1z
D01 > e—fi> o1l
Dop>—H A %S DIp

— 1
INTA STB F—ig ?

PAGE 4 OF ¢

vccf
O————0- O —0- —0— -0 -0
J8 Jil J12 13 J14 J15 J16 a7
A13 >—O O O O e O O
. 19 T19 T19 T19 TIQ T19 TIQ 19
Al2)—13 .
All >—1—,1
Alp >T
A >
A >—=
A7)T
A6 >==1 U10 uill ui2 uis ui4 uis uie ut?
A5 >— RAM RAM RAM RAM RAM RAM RAM
A4 >—5
A3 >-T
A2)——3
Al >—2—
p—H
S1 >T RD/WR
TR cE
RAM STB 5 oo
i I Y [f T JF =2 CRE Is NE [T8 Z[_J?
D107 D106 D105 D104 D103 DIO2 D101 DIog
RAM = 214772167 ivcc
PROM = 2716/32/64
5 Y32 . Ly 3 O 19
ALS Y] V3lo—> INT 578 ALD >—rf ALD ¢
18 vz nc A9 >——r1h9 19 BO—AIl
A1g >—={a 1 e A8 =<2 Ag 08— D107
E— Y1D=—=—> RAM STB 3 p7 18
WV 575 18 Yo Raore A7 i 07f=— D106
O=—> RO 578 A6 >—X46 06 (i D105
3 A5 Y] AS 05— DI04
As >—2 a4 >—2na PR g4fl3 1o
[y am— A3 Ymrf A3 03 %g—- DI02
1 a2 >——=1a2 02— p101
10/ >—C Al >-—]9 AL o1pAl— p1op
ap >—8,p 2
___ = Al2fg A2
ROM ENA)—;go CE J vee
ROM STB >—=Of OF T
— 18
R0 2 u3i 1]) STB 2 3 -‘L
WR 12 Huai > MEM STB -
2 M/10
10 >—— 3 s 9 8 QVCC vee
VA >—21 T T o 12] U3 ! > EXT ENA 208 c 1y OIP
RoM era>—d 1.0 D _
AL4 2 1 . M ENA 311574 Jvee 11f1574fs S22
INT E@c’_—> A) e
A u20%L u209Q13_§
TLK
uas ROM ENA
3
A2 vipl-ne warr 11
AL > B Y6 > INTA ST8 EXT ENA Sl 3 2 13 S RDY

Y5

Gl Y20 NC
7OlG2A V1
—QIG2B YAP==NC

INT STB >

COMPUPRO - division GODBOUT ELECTRONICS

L5138

18 Ly 216 - 23 578
ps—2|usnoin wupll o m ot
ﬁ Y3 DT> SET INT

5

D%-) INT CTL ENA

END WAIT 2]

us

MPX MULTIPLEXER CHANNEL

166C

©1981

57

PARTS LIST FOR MPX-1

QTY DESCRIPTION
SEMICONDUCTORS
4 74L500 Quad two input NAND (U7,24,31,47)
3 741502 Quad two input NOR (U8,21,22)
2 74LS04 Hex Inverter (U6,19)
2 741Ls08 Quad two input AND (U9,34)
2 741532 Quad two input OR (U33,38)
2 741838 Quad two input NAND O0.C. (U25,35)
3 74L874 Dual D Flip-Flop (U3,4,20)
2 7415138 One of eight decoder (U46,48)
1 7415139 Dual one of four decoder (U32)
1 7418160 4 bit counter (U5)
1 74LS5175 Quad D Latch (U23)
1 7418240 Octal Inverting Bus Driver (U45)
3 74LS244 Octal Bus Driver (U39,40,43)
2 7418373 Octal Transparent Latch (U28,30)
3 74L8374 Octal D Latch (U37,42,44)
1 811.S95/97 Octal Buffer (U29)
1 810L896/98 Octal Inverting Buffer (U36)
1 25182521 Octal Comparator (U41)
1 8085AH-1 6 MHz CPU (U18)
1 8259A Interrupt Controller (U26)
1 2716 Type EPROM w/MPX software (U27)
2 7805 5 Volt Positive Voltage Regulators (Ul1,2)
8 2147 Type RAM chips (U10-17) 4K version
or
8 2167 Type RAM chips (U10-17) 16K version

OTHER MISC. ELECTRICAL COMPONENTS

SIP Resistor Packs (R1,2)
4.7K ohm resistor (R3,4)
10K ohm resistor (R5)
10V tantalum capacitors (Cl-4)
1 Bypass Capacitors (all unmarked)
Crystal 12 MHz (X1)
8 position DIP switch (S1,2)

o S

58

COMPONENT LAYOUT

IF YOU NEED ASSISTANCE ALWAYS CONTACT
YOUR COMPUPRO DEALER FIRST

CUSTOMER SERVICE INFORMATION

Our paramount concern is that you be satisfied with any Godbout
CompuPro product. If this product fails to operate properly, it may be
returned to us for service; see warranty information below. .

if you need further information feel free to write us at:

Box 2355, Oakland Airport, CA 946 14-0355

LIMITED WARRANTY INFORMATION

Godbout Electronics will repair or replace, at our option, any parts
found to be defective in either materials or workmanship for a period of 1
year from date of invoice. Defective parts MUST be returned for
replacement.

If a defective part causes a Godbout Electronics product to operate
improperly during the 1 year warranty period, we will service it free
(original owner only) if delivered and shipped at owner's expense to and
from Godbout Electronics. |f improper operation is due to an error or
errors on the part of the purchaser, there may be a repair
charge. Purchaser will be notified if this charge exceeds $50.00.

We are not responsible for damage caused by the use of solder in-
tended for purposes other than electronic equipment construction,
failure to follow printed instructions, misuse or abuse, unauthorized
modifications, use of our products in applications other than those in-
tended by Godbout Electronics, theft, fire, or accidents.

Return to purchaser of a fully functioning unit meeting all advertised
specifications in effect as of date of purchase is considered to be com-
plete fulfiliment of all warranty obligations assumed by Godbout
Electronics. This warranty covers only products marketed by Godbout
Electronics and does not cover other equipment used in conjunction
with said products. We are not responsible for incidental or conse-
guential damages.

Prices and specifications are subject to change without notice, owing
to the volatile nature and pricing structure of the electronics industry.

ST e Rl N AR AT R T [P

BULLDOG COMPUTER

... IBM.PC-XT-AT COMPUPRO), pages A137
S 1334 Chapel Street .poration.
""" New Haven, CT 06511 -

. (209) 777-1476 or 7763

Copyrigh P W » L rights reserved. We
“E”m;%ﬂ”i&?‘fré‘“pﬁfﬁéseswpp;anuct review if source is
credited. Printed in U.S.A.

COMPUPRO division GODBOUT ELECTRONICS - BOX 2355 OAKLAND AIRPORT, CA 94614

