
Software Section

.. SOF'l'WARE SECTION

The third section of this manual contains information about software
··that is helpful in configuring COMPUPRO systems to meet the varied
~needs of end users. This includes, making changes in the BIOS to work

.. with different peripherals, choosing and installing the correct CP/M
system, as well as updates and patches for the software.

Technical manuals for MP/M 8-16, CP/M 86 and CP/M 8-16 are included as
well as handouts on software updates and patches.

the purpose of this section is to give the technician an easy
reference to documentation on the software that is necessary to run
COMPUPRO equipment in a variety of situations.

CONTENTS

CP/M 80 Technical Manual & Installation Procedures

Software Alteration Guide For CP/M 2.2 Version N

CP/M 86 Technical Manual & Installation Procedures

Software Alteration Guide For CP/M 86 Version R

MP/M 8-16 Technical Manual & Installation Procedures

CP/M 68K Technical Information & Installation Procedures

CP/M 68K BIOS and LOADER Modification Guide for 1.lK

Appendix Section

This is a list of the I/O ports used by all COMPUPRO products.

PORT PRODUCT

00 through 03 INTERFACER 1 and 2'

10 t~rough 17 INTERFACER 3 and 4

50 through Sf SYSTEM SUPPORT

90 DISK 3

CO through C3 DISK 1

C4 and C5 RESERVED

C6 and C7 MDRIVE/H

C8 DISK 2 ,

FO SELECTOR CHANNEL

F1 MPX

F2 through F5 RESERVED

FD MEMORY MANAGER and
SWAP PORT ON DUAL PROCESSOR

FFFO through FFFF 80130 on CPU 8086/87

COMPUPIlO TECHNICAL TRAINING MANUAL

COMPUPRO
SOFTWARE ALTERATION GUIDE FOR CP/M 2.2 VERSION R

5/1/84

OPENING

This document is designed to aid the user of CP/M 2.2 in its
'reconfiguration and alteration. It includes the following main
sections:

I REQUIREMENTS AND DEFINITIONS
II A GUIDE TO DESIRED CHANGES WITH STEP-BY-STEP EXAMPLES
III A GUIDE TO THE RECREATION OF THE SYSTEM
IV CLOSING AND REFERENCE SECTION

I REQUIREMENTS AND DEFINITIONS

This section of the manual will describe the features of
this version of the operating system and the changes since the
last revision, the required files for the modification and
recreation of the operating system, a short description of the
files involved in creating the CP/M 2.2 BIOS, and some simple
file designator definitions

FEATURES

The 2.2N version of this operating system incorporates the
following special features and capabilities:

A) DISK 2 and DISK 3 hard disk support
B) Support for MDRIVE using RAM with CPU 8085/88
C) Support for MDRIVE/H
D) Support for minifloppies using DISK 1 - 5
E) Support for interrupts

The new CP/M BIOS supports all of the same physical devices
that the previous BIOS did.

CHANGES SINCE LAST REVISION

Since the last revision, 2.2M, The following changes have
been made:

1) 2.2N now supports X/ON X/OFF and DTR protocols.
2) The I/O Byte is supported more extensively.
3) The DISK 3 controller is supported.

1

REQUIREMENTS:

Before you begin to use the instructions given here, you
should become familiar with certain other documentation that is
included with CP/M 2.2. You should be familiar with the material
covered in Digital Research's CP/M 2.2 Manual and the CompuPro
CP/M 2.2 Technical Manual & Installation Proceedures. If you do
not have a word processor, you should carefully study and
practice with the line editor, ED.COM. This document also
assumes that you understand the function of the BIOS and the
LOADER in the CP/M operating system.

The most important item that is required for the alteration
of the 2.2 BIOS is Digital Research's RMAC assembler and linker.
If you do not have it, you cannot reassemble the BIOS. The next
item of importance is a text editor of some kind. Almost
anything is better and easier to use than ED.COM. The following
list of files and their short descriptions are required to
reassemble the system and are included on your master diskette.

NOTE: Do not modify your master diskette! Make a copy of it and
modify the copy! You will receive no sympathy if you destroy
your master.

FILES REQUIRED FOR BIOS MODIFICATION

ACTIVE.LIB: Contains control variables which set the
conditions, according to the particular hardware configuration
for BIOS customization.

COMPUPRO.LIB: Contains data constants common to all
the CP/M Operating System's components. For example,
Input/output Port Assignments, UART register bit definitions for
the I/O boards, etc.

BOOTSCPM.LIB: Contains a set of routines which perform
cold and warm boot functions.

CPMDISK.LIB: Contains CP/M disk constants, definition
of base page as related to file operations, definition of vectors
to call CBIOS Routines as well as BDOS call function numbers.

ASCII.LIB:
control characters.

Contains definitions for all ASCII

HMXFBOOT.ASM: Contains a portion of the cold boot
initialization as well as USART initialization.

HMXIBIOS.ASM: This is the main body of the BIOS.
Consults all .LIB files for the conditions set within them.

HMX2BIOS.ASM: This is the BIOS to be used when extra
I/O driver and lor interupt routines are used. This BIOS has
minimal I/O drivers ie. system console and a printer. Other
drivers and interupt routine are in HMX2IO (see HMX2IO.ASM).

2

HMX2IO.ASM: Contains extended I/O driver routines
with software handshaking protocols for all I/O boards and
initialization for UARTs 0-11. All changes made in HMXFBOOT.ASM
should also be made in HMX2IO.ASM when using HMX2BIOS.ASM.

HMXFPROM.ASM: Contains floppy disk (8 & 5 1/4)
initializing program loader, similar to the routine found in Boot
Rom on the Disk 1 Controller Board. It loads the loader for the
Operating System.

DSBLINTR.ASM:
System Support I
printer.

A command file which will disable the
interupts, except the system console and

CPMHMX2.COM: This is the assembled HMX2BIOS.ASM file
ready for SYSGENing onto the boot diskette. This is used with
HMX2IO.COM.

CPMPLAIN.COM:
with 8 ms. step rate.
tracks.

Contains floppy only Operating System
This is the system found on the system

CPM220.COM: Contains Hard Disk Operating System for
the Pragmatic 20 Megabyte Hard Disk and Disk 2 Controller.

CPM210.COM: Contains Hard Disk Operating System for
the Pragmatic 10 Megabyte Hard Disk and Disk 2 Controller.

CPMQ540.COM: Contains Hard Disk Operating System for
the Quantum 40 Megabyte Hard Disk and Disk 3 Controller.

STARTUP.SUB:
with HMX2BIOS.COM.

This file loads HMX2IO.COM when used
It also loads MFORM.COM.

Here are some short descriptions of file name extensions
that you will find in the directory •

• LIB = library file •
• COM = 8 bit executable command file •
• CMD = 16 bit executable command file •
• ASM = assembly language file •
• HEX·= hexadecimal file •
• PRN = print file produced by the assembler •
• SYM = symbol table file produced by the assembler •
• REL = relocatable binary file •
• ASC = ASCII text file •
• LST = ASCII list file •
• DOC = documentation file •
• TXT = text file •
• RSP = resident system process file •
• SUB = submit file used with SUBMIT command •
• SYS = operating system file.

3

II GUIDE TO DESIRED CHANGES WITH STEP-BY-STEP EXAMPLES

This section of the manual is a guide to which files need to
be modified to accomplish specific changes in the operating
system. It is divided into four parts. Part 1) describes

,changes that can be made without reassembling the BIOS but just
using a different system file already provided. Part 2)
describes simple changes to the ACTIVE.LIB file for modifications
1 ike flo ppy dri ve cha rac te r is tic s, turning M-DRIVE S on and of f ,
turning on and off both DISK 2 and 3, handshaking for INTERFACER
3 and 4, etc., and Part 3) describes major changes involving
alteration of the HMX1BIOS.ASM file like baud rates, handshaking,
I/O protocols, etc. Part 4) describes a simple method of
modifying the baud and step rates on existing CPMxxxx.COM files,
using DDT.

PART 1) There are several CPMxxxxx.COM files already configured
~un-many standard hardware configurations. If one of these
configurations fulfills your requirements, you do not need to
reassemble your BIOS. To use these configurations, you simply
SYSGEN your diskette with the proper file. An example is given
at the end of this section.

CPMPLAIN.COM

CPM210.COM

CPM220.COM

CPMQ540.COM

Four 8" floppy drives @ 8 ms. step rate
No hard disk
Console @ 9600 baud - no handshaking
List device @ 9600 baud - no handshaking
Supports M-DRIVE/H
No "soft" M-DRIVE

CPU 8085/88
DISK2 and 10 Mb hard disk
Four 8" floppy drives @ 3 ms. step rate
Console @ 9600 baud - no handshaking
List device @ 9600 baud - no handshaking
Supports M-DRIVE/H
No "soft" M-DRIVE

CPU 8085/88
DISK2 and 20 Mb hard disk
Four 8" floppy drives @ 3 ms. step rate
Console @ 9600 baud - no handshaking
List device @ 9600 baud - no handshaking
Supports M-DRIVE/H
No "soft" M-DRIVE

CPU 8085/88
DISK3 and 40 Mb Quantum Q540 hard disk
Four 8" floppy drives @ 3 ms. step rate
Console @ 9600 baud - no handshaking
List device @ 9600 baud - no handshaking
Supports M-DRIVE/H
No "soft" M-DRIVE

4

CPMSYS.COM

CPMHMX2.COM

CPU 8085/88
Four 8" floppy drives @ 3 ms. step rate
Console @ 9600 baud - 7 data bits 1 stop
List device @ 9600 baud - DTR handshaking
Supports M-DRIVE/H
No "soft" M-DRIVE

Loads HMX2IO.COM which has:
Capability for interrupts and considerable
other features. This file should be reviewed
and altered by only experienced users. We do
not reccomend that this file be used without
customization.

EXAMPLE FOR USING THE ABOVE FILES:

To use one of the above stock system files, you must SYSGEN
them onto the system tracks of the diskette. The proceedure for
doing this is as follows:

Type the following:

SYSGEN CPMxxxxx.COM<CR)

It will respond asking for the destination drive name or hit
return to terminate. You should respond with the drive name that
corresponds to the floppy that you wish to have the new system
placed on. You should now be able to use the new diskette.

PART 2) Many changes to the system may be made by altering the
ACTIVE.LIB file and then simply reassembing the BIOS using RMAC.
The easiest way to do this is first print out the ACTIVE.LIB on
your printer for r~ference. After reviewing the printout and
deciding which changes you would like to make, then load the
ACTIVE.LIB file using your text editor. Most changes will be
made by changing equates from true to false or false to true, or
changing the value of a constant. Examples are shown below.

EXAMPLE: To turn the SYSTEM SUPPORT 1 BOARD off (if it is not
present) and hence the 8088 off (since it cannot be used without
RAM up at OFFFFOH), you would turn the underlined "true" to
"false".

;--------------------~-----------------
Z80 EQU FALSE ;Z80 CPU present
18085 EQU TRUE ;8085 proc~ssor present
CPUSPD EQU 6 ;CPU speed factor delay for "x"
;
18088
18087

EQU
EQU

TRUE
FALSE

;8088 present (dual processor board)
;8087 coprocessor present

;--------------------------------------

5

And the following:

;--------------------------------------
· ,
j System Support I setup characteristics:
SYSUP1 EQU TRUE jSystem Support board is present

j System Support Uart Active Status Masks:
SS1TMSK EQU SS1TBE jor SS1DSR jTransmit Ready Mask
SS1FMSK EQU SS1TBE ;or SS1DSR ;Transmit Ready Bit Flip Mask

· ,
j Timer/Counter Commands and Values:
TIMEBASE EQU 10000 ;Divide 2MHz clock for other clock/

(as a more reasonable time base -­
;Real Time Clock interval (not acti
; 1 sec interrupt to read clock

TIME1
TIME2

EQU
EQU

20
200

;--------------------------------------

EXAMPLE: To turn the DISK 3 BOARD off (if it is not present) you
would turn the underlined "true" to "false".

;--------------------------------------
· ,
j CompuPro DISK 3 Equates:

· ,
D3Q540
D3M20
D3ST506
DISK3
NDISK3
DISK3X
DISK3Y
DISK3Z

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

TRUE
FALSE
FALSE
D3Q540
1
NDISK3
NDISK3
NDISK3

or D3ST506 or D3M20 ;DISK 3 code active contr

> 1
> 2
> 3

;Number of drives on all DISK3s
;Second drive on line
;Third drive on line
jFourth drive on line

;--------------------------------------

EXAMPLE: To turn the XMDRIVE "ON" (M-DRIVE using sys tem memory
beyond 64K) you would turn the underlined "false" to "true".

;--------------------------------------

MEMORY DRIVE and BOOT activity indicators:

j (18088 must also be true if using dual processor memory drive).
XMDRIVE EQU (FALSE and 18088) jMemory drive using dual processor
XMBOOT EQU (TRUE and 18088) ;Warm boot from extra memory

HMDRIVE EQU
HM$NUM EQU

TRUE ;M-DRIVE/H memory drive
8 ;Total number of boards (may be

RAM if fewer boards than this maximum are ever to be
HMSIZER EQU (TRUE and HMDRIVE) ;Must be turned off if HM$NUM not
;--------------------------------------

6

EXAMPLE: To change the Floppy drive step rate from 3 ms. to a
ms. you would change the underlined "3" to "a" shown below.

Floppy Disk (DISK 1) controller and drive constants:

a inch drive
FLOPPya EQU
FPyaX4 EQU
STEPRa EQU
ULOADa EQU
HDLTa EQU

characteristics:
TRUE
FALSE
3
240
35

;a inch floppy disk system (Disk 1) prese
;4 drives present (2 is default)
;a inch drive step rate in milliseconds
;Head unload time delay in milliseconds
;Head load settling time in milliseconds

EXAMPLE: To turn on DTR handshaking on the SYSTEM SUPPORT 1 and
INTERFACER 3 or 4 boards, you would remove the underlined ";"
that turns the OR statement into a comment as shown.

;--------------------------------------
,
; Interfacer 3,4 composit status masks and activity indicators:
· ,
INTERFACER3 EQU TRUE
INTERFACER4 EQU TRUE
· ,
IF3TMSK EQU
IF3FMSK EQU

IF3TBE ~or IF3DSR
IF3TBE ~or IF3DSR

;Interfacer 3 board is present
;Interfacer 4 board is present

;Xmit ready mask (for either board)
;Xmit buffer empty flip bit mask

;-------------------------------------
; System Support I setup characteristics:
SYSUP1 EQU TRUE ;System Support board is present

; System Support Uart Active Status Masks:
SS1TMSK EQU SS1TBE jor SS1DSR ;Transmit Ready Mask
SS1FMSK EQU SSlTBE Ior SSlDSR ;Transmit Ready Bit Flip Mask
· ,
; Timer/Counter Commands and
TIMEBASE EQU 10000

TIME1
TIME2

EQU
EQU

20
200

Values:
;Divide 2MHz clock for other clock/
(as a more reasonable time base -­
;Real Time Clock interval (not acti
; 1 sec interrupt to read clock

;--------------------------------------

The key to altering this file is to simply look and see what
the comment says, and change the appropriate label. Save the
file after altering it and you are ready to recreate the system.

The first thing that must be done is to create a CCP and
BDOS that have been relocated to the right memory address for
this version of the BIOS. BIOS HMX1BIOS wants to start at EaOOH,
therefore, the BDOS must start at DDOOH and the CCP must start at
D200H (CCP always starts 1600h bytes below the BIOS). Step one
is to tell MOVCPM the size of the BIOS, then MOVCPM will relocate
the CCP and BDOS to the right place. Once the file ACTIVE.LIB as
been set for your system, the system is built as follows (enter
the underlined words):

7

A>STAT MOVCPM.COM

Recs Bytes Ext Acc
100 14K 1 R/W A:MOVCPM.COM

Bytes Remaining On A: xK

A>;MOVCPM must be 14K bytes long.
A>DDT MOVCPM.COM
DDT VERSION 2.2
NEXT PC
3300 0100
-SB06
B0614 1B
B07 00 •
_AC

A>SAVE 50 MOVCPM.COM
A>MoVCPM64 *
CONSTRUCTING 64K CP/M Vers 2.2
READY FOR "SYSGEN" OR
"SAVE 43 CPM64.COM"
A>SAVE 43 CPM64.COM
A>RMAC HMX1BIOS (or RMAC HMX2BIOS)
CP~MAC ASSEM 1.1
F3AF (These numbers may change)
04FH USE FACTOR
END OF ASSEMBLY

A>LINK HMX1BIOS [LEBOO] (or LINK HMX2BIOS [LEBOO])
LINK 1.3

ABSOLUTE
CODE SIZE
DATA SIZE
COMMON SIZE
USE FACTOR

OBAF (E800-F3AE) (These numbers may change)
0000
0000
0000

00

A>RMAC HMXFBOOT
CP/M RMAC ASSEM 1.1
0200 (These numbers may change)
016H USE FACTOR
END OF ASSEMBLY

A>LINK HMXFBOOT
LINK T. 3

ABSOLUTE
CODE SIZE
DATA SIZE
COMMON SIZE
USE FACTOR

0100 (0100-01FF) (These numbers may change)
0000
0000
0000

00

8

A>DDT CPM64.COM (CPMHMX2.COM for HMX2BIOS)
NEXT PC
2COO 0100
-IHMXFBOOT.COM
-RaOO
NEXT- PC
2COO 0100
-IHMX1BIOS.COM (or IHMX2BIOS.COM)
-R900
NEXT PC
2COO 0100 _ C

A>SAVE 43 CPM.COM
A>'SYSGENCPM.COM
SYSGEN Version 2.2D
Destination drive name (or RETURN to terminate).!
Function complete.
Destination drive name (or RETURN to terminate).£E

A>;Now your "B" disk should boot up

PART 3) The HMX1BIOS.ASM file is the main body of the BIOS, and
HMXFBOOT.ASM file that performs the loader and initialization
functions. These are the files that must be changed to alter
features that cannot be altered by just changing the ACTIVE.LIB
file. After making changes to HMX1BIOS.ASM or HMXFBOOT.ASM, the
system must be reassembled using RMAC as it was in PART 2.

To alter these files, load the HMX1BIOS.ASM or HMXFBOOT.ASM
file using your text editor after deciding which changes you
would like to make. Most changes will be made by changing
equates from true to false or false to true, or changing the
value of a constant. Examples are shown below.

EXAMPLE: To alter the USART initialization parameters, you would
alter the INPUT/OUTPUT DEVICE INITIALIZATION SEQUENCE TABLE in
the HMXFBOOT.ASM file below. The parameter values may be found
in the INTERFACER 3 or 4 manuals, and the appropriate values may
be changed •

. ** , .
;* INPUT/OUTPUT DEVICE INITIALIZATION SEQUENCE TABLE *
;**
INISEQ: ;Port, Value to transmit sequence until Port = OFFh.

Interfacer 3,4 UART
DB IF3UX, 4

initialization.
;Select Uart 4

DB IF3UM,01011010b
DB IF3UM,01111110b
DB IF3UC,00100111b

jAsync, 16x, 7 bits, odd parity, 1 stop
j 9600 baud
jTrans. on, DTR low, rec. on, no break/

DB IF3UX, 5 jSelect Uart 5
DB IF3UM,01011010b jAsync, 16x, 7 bits, odd parity, 1 stop
DB IF3UM,01111110b j 9600 baud
DB IF3UC,00100111b jTrans. on, DTR low, rec. on, no break/

9

DB IF3UX, 6 ;Select Uart 6
DB IF3UM,01011110b ;Async, 16x, 8 bits, odd parity, 1 stop
DB IF3UM,01111110b . 9600 baud ,
DB IF3UC,00100111b ;Trans. on, DTR low, rec. on, no break/

DB IF3UX, 7 ;Select Uart 7
DB IF3UM,01011010b ;Async, 16x, 7 bits, odd parity, 1 stop
DB IF3UM,01111110b . 9600 baud ,
DB IF3UC,00100111b ;Trans. on, DTR low, rec. on, no break/

System Support I UART initialization.
DB SSIUM,01011010b ;Async, 16x, 7 bits, odd parity, 1 stop
DB SSIUM,Olllllllb ;19200 baud
DB SSIUC,00100111b ;Xmit on, DTR low, rec. on, no break,

DB OFFh jEnd of I/O port initialization string

EXAMPLE: To alter the USART handshaking and device
configuration, you would alter the INPUT/OUTPUT DEVICE INITIAL
SELECT TABLE in the HMXFBOOT.ASM file below.

This is a sample switch that you will find in the table
below. This table corresponds directly with S2 positions 1 and 2
on the DISK 1.

SWITCH 2 POSITIONS

EXAMPLE:

Switch = 2
DB 10000001b
DB 00010101b

1 AND

The two "DB's" above can

TOP DB:

2
BOTH OFF = SWITCH = 3
1 ON 2 OFF = SWITCH = 2
1 OFF 2 ON = SWITCH = 1
BOTH ON = SWITCH = 0

jLST:=LPT:, PUN:=TTY:, RDR:=TTY:, CON:=CRT:
;LPT:=Interfacer 3,4 USER 4, CRT:=System Support

be decoded as shown below.

DB AABBCCDD (line one) AA=LST: 00= TTY: BB= PUN: 00= TTY:
01= CRT: 01= PTP:
10= LPT: 10= UPl:
11= UL 1: 11= UP 2:

CC=RDR: 00= TTY: DD= CON: 00= TTY:
01= PTP: 017= CRT:
10= UPI : 10= BAT:
11= UP2: 11= UC 1:

10

BOTTOM DB:
DB AABBCCDD(line two) AA=LPT:OO= I/O 3&4USER 4

01= I/O 1&2 UART 1
10= I/O 1&2 UART 2
11= SAME AS ABOVE

BB= XON/XOFF
00= NO PROTOCOL
01= XON/XOFF
10= EXT/ACT

CCa:: XON/XOFF
00= NO PROTOCOL
01= XON/XOFF
10= EXT/ACT

DD=CRT: 00= I/O 3&4 USER 0
01= SYSTEM SUPPORT
10= I/O 1&2 UART 1
11= I/O 1&2 UART 2

And (always): UC1:= Interfacer 3,4 USER 7
TTY:= Interfacer 3,4 USER 6
UL1:= Interfacer 3,4 USER 5 at all times.

The actual listing is shown next:

.** ,
;* INPUT/OUTPUT DEVICE INITIAL SELECT TABLE *
.** ,

BIOTBL: ;1/0 byte (IOBYTE) value, Aux I/O control byte (IOCNTL) v
Switch = 0

DB 10$00$00$01b
DB 01$00$00$10b

Switch = 1

;LST:=LPT:, PUN:=TTY:, RDR:=TTY:, CON:=CRT:
;LPT:=Interfacer I UART 1, CRT:=Interfacer I UART

DB 10$00$00$01b
DB .00$00$01$00b

Switch = 2

;LST:=LPT:, PUN:=TTY:, RDR:=TTY:, CON:=CRT:
jLPT:=Interfacer 3 USER 4 xon/xoff, CRT:=USER 0

DB 10$00$00$01b
DB OOOOOl$Olb

Switch = 3

;LST:=LPT:, PUN:=TTY:, RDR:=TTY:, CON:=CRT:
;LPT:=Interfacer 3,4 USER 4, CRT:=System Support

DB OOOOOO$llb
DB OOOOOl$Olb

jLST:=TTY:, PUN:=TTY:, RDR:=TTY:, CON:=UC1:
;LPT:=Interfacer 3,4 USER 4, CRT:=System Support

IOBYTE value
; IOCNTL =
;(second byte
;of each entry
;in BIOTBL).

is the first entry for each switch selection, and
wwxxyy$zzb selects the following:
ww xx yy 00 CRT:=Interfacer 3 USER O.
ww xx yy 01 CRT:=System Support I.
ww xx yy 10 CRT:=Interfacer 1,2 UART O.

xx yy 11 CRT:=Interfacer 1,2 UART 1 (Custom Routin
00 xx yy LPT:=Interfacer 3,4 USER 4.
01 xx yy LPT:=Interfacer 1,2 UART 1.
10 xx yy LPT:=Interfacer 1,2 UART 2 (Custom Routin
11 xx yy LPT:= It II II

xx Interfacer 3,4 USER 5 list routine select
, yy Interfacer 3,4 USER 4 list routine select
;Where xx and/or yy = 00 Straight output, no software protocol.

And (always):

01 XON/XOFF software protocol active.
10 ETX/ACK software protocol active.

UC1:= Interfacer 3,4 USER 7
TTY:= Interfacer 3,4 USER 6
UL1:= Interfacer 3,4 USER 5 at all times.

11

;<========= If CON:=BAT: then --
;/==1 BAT:= RDR:= Interfacer 3,4 USER 3 when RDR:=UR2: on input.
;\==1 BAT:= PUN:= to 3 when PUN:=UP2: on output.
;/==1- BAT:= RDR:= Interfacer 3,4 USER 2 when RDR: =UR1: on input.
;\==1 BAT:= PUN:= to 2 when PUN: =UP2: on output.
;/==1- BAT:= RDR:= Interfacer 3,4 USER 1 when RDR:=PTR: on input.
;\==1 BAT:= PUN:= to 1 when PUN:=PTP: on output.
;x /--=1 BAT:= ----- Interfacer 3,4 USER 0 when RDR:=TTY: on input.
;x \--1 BAT:= ----- to 0 when PUN:=TTY: on output. . and for reader/punch vectors only --,
;X ------ RDR:= Interfacer 3,4 USER 6 when RDR:=TTY: on input.
jX ------ PUN:= It 6 when PUN:=TTY: on output.

END

PA!! i2 This section describes a method of altering the baud
rates and floppy step rates in existing CPMxxxx.COM files using
DDT. An example for each is shown below.

FOR DISK DRIVE STEP RATES:

A)DDT CPMXXXX.COM
DDT VERS 2.2
NEXT PC
2COO 0100
-S9AO
09AO
09A1 8F {SF for 8ms.,AF for 6ms., DF for 3ms.}
09A2 -.-
_AC
A>SAVE 43 CPMNEW.COM

After saving the file, you must SYSGEN it onto your diskette.

FOR SERIAL BAUD RATES:

A)DDT CPMXXXX.COM
DDT VERS 2.2
NEXT PC
2COO 0100
-S9BF
09BF 04 {RELATIVE USER 4}
09CO 12 Consult Interfacer 3 or 4 manual for values
09C1 EE {MODE REGISTER 1} of the mode and command registers.
09C2 12
09C3 7E {MODE REGISTER 2} (79 for 1200 baud, 7E for 9600 baud)
09C4 13
09CS 27 {COMMAND REGISTER}
09C6 17
09C7 05 {RELATIVE USER S}
09C8 12
09C9 EE {MODE REGISTER 1}

12

09CA 12
09CB 7E {MODE REGISTER 2}
09CC 13
09CD 27 {COMMAND REGISTER}
09CE 17
09CF 06 {RELATIVE USER 6}
09DO 12
09D1 EE {MODE REGISTER 1}
09D2 12
09D3 7E {MODE REGISTER 2}
09D4 13
09DS 27 {COMMAND REGISTER}
09D6 17
09D7 07 {RELATIVE USER 7}
09D8 12
09D9 EE {MODE REGISTER 1}
09DA 12
09DB 7E {MODE REGISTER 2} (7E for 9600 baud, 7F for 19200 baud)
09DC 13
09DD 27 {COMMAND REGISTER}
09DE SE
09DF EE {MODE REGISTER 1}
09EO SE
09E1 7E {MODE REGISTER 2} (7E for 9600 baud, 7F for 19200 baud)
09E2 SF
09E3 27 {COMMAND REGISTER}
09E4 FF . --""C
A>SAVE 43 CPMNEW.COM

You must now SYSGEN the new file onto your diskette. This is
-described below.

111 GUIDE TO THE RECREATION OF THE SYSTEM

This section describes how to reassemble your BIOS using
RMAC, and how to place your special system onto your diskette.
The majority of this section you have seen before in this and
oth'r manuals, but it is reproduced here for quick reference.

Before getting into the process of reassembling your BIOS,
below is a quick note on how files interact when assembling.

WHICH .ASM FILE USES WHICH .LIB FILE FOR ASSEMBLING:

HMXFBOOT.ASM uses COMPUPRO.LIB and ACTIVE.LIB during assembly.
HMX1BIOS.ASM uses all .LIB files during assembly.
HMXFPROM.ASM uses ACTIVE.LIB and .LIB during assembly.
HMX2IO.ASM uses ACTIVE.LIB, COMPUPRO.LIB,CPMDISK.LIB and

ASCII.LIB during assembly.
DSBLINTR.ASM uses all .LIB except BOOTSC,M.LIB.

The first thing that must be done is to create a CCP and

13

BDOS that have been relocated to the right memory address for
this version of the BIOS. BIOS HMX1BIOS wants to start at EBOOH,
therefore, the BDOS must start at DDOOH and the CCP must start at
D200H (CCP always starts 1600h bytes below the BIOS). Step one
is to tell MOVCPM the size of the BIOS, then MOVCPM will relocate
the CCP and BDOS to the right place. Once the file ACTIVE.LIB as
been set for your system, the system is built as follows (enter
the underlined words):

This section deals with the creation of a MOVCPM.COM that know
the size of the BIOS.

A)STAT MOVCPM.COM (check the size of MOVCPM)

Recs Bytes Ext Acc
100 14K 1 R/W A:MOVCPM.COM

Bytes Remaining On A: xK

A);MOVCPM must be 14K bytes long.
A)DDT MOVCPM.COM (load MOVCPM.COM under DDT)
DDT VERSION 2.2
NEXT PC
3300 0100
-SB06
B0614 1B
B07 00 •
_AC
A>SAVE 50 MOVCPM.COM
A)MoVCPM64 *

(change the BIOS size)

(save the corrected copy)
(create a new image of CP/M)

CONSTRUCTING 64K CP/M Vers 2.2
READY FOR "SYSGEN" OR
"SAVE 43 CPM64.COM"
A)SAVE 43 CPM64.COM (save th~ new image for later use)

Now that a new image of CP/M has been made for your size BIOS, we
must reassemble and link the BIOS and BOOT LOADER.

A)RMAC HMX1BIOS (or RMAC HMX2BIOS)
CP/M RMAC ASSEM 1.1
F3AF (These numbers may change)
04FH USE FACTOR
END OF ASSEMBLY

A)LINK HMX1BIOS [LEBOO] (or LINK HMX2BIOS [LEBOO])
LINK 1.3 --------

ABSOLUTE
CODE SIZE
DATA SIZE
COMMON SIZE
USE FACTOR

OBAF (EBOO-F3AE) (These numbers may change)
0000
0000
0000

00

A)RMAC HMXFBOOT
CP/M RMAC ASSEM 1.1

14

0200 (These numbers may change)
016H USE FACTOR
END OF ASSEMBLY

A)LINK HMXFBOOT
LINK 1.3

ABSOLUTE
CODE SIZE
DATA SIZE
COMMON SIZE
USE FACTOR

0100 (0100-01FF) (These numbers may change)
0000
0000
0000

00
Now that we have assembled and linked the BIOS and BOOT LOADER,
we must overlay them onto the newly created image of CP/M (CCP
and BDOS).

A)DDT CPM64.COM (CPMHMX2.COM for HMX2BIOS) (load the image)
NEXT PC
2COO 0100
-IHMXFBOOT.COM
-R800 (overlay the BOOT LOADER)
NEXT PC
2COO 0100
-IHMX1BIOS.COM (or IHMX2BIOS.COM)
-R900 (overlay the BIOS)
NEXT PC
2COO 0100
-""C
A>SAVE 43 CPM.COM (save the new image for SYSGENing)

Now that the new image is overlayed and complete, it is ready to
SYSGEN onto the system tracks of the floppy.

A)SYSGEN CPM.COM
SYSGEN Version 2.2D
Destination drive name (or RETURN to terminate).!
Function complete.
Destination drive name (or RETURN to terminate).~

Now the diskette in your "B" drive is ready to boot up.
just completely recreated the system!

IV CLOSING AND REFERENCE SECTION

CLOSING

You have

In short, we hope that this document helps you in the
alteration and recreation of your operating system. CompuPro is
open to any suggestions you might have concerning this
information. If you find any inaccuracies, errors, or just have
some comments or ideas for inclusion, please feel free to write a
tell us. Address all correspondence to:

15

Kevin Fischer
Vice President of Customer Assurance
CompuPro
3506 Breakwater Court
Hayward, CA 94545

REFERENCE SECTION

For further information about CP/M 2.2 you may refer to the
following manuals:

CompuPro Digital Research CP/M 2.2 Manual

CompuPro CP/M 2.2 Operating System Technical Manual

You may wish to
technical manuals for
board.

consult any of the CompuPro Hardware
information specific to an individual

16

COMPUPRO
SOFTWARE ALTERATION GUIDE FOR CP/H 86 OR 816 VERSION R

5/3/84

OPENING

This document is a guide to aid the user of CP/M 86 or 816
in its reconfiguration and alteration. Since the BIOS for CP/M
816 is the same as CP/M 86, we will only treat latter. This
document includes the following sections:

I REQUIREMENTS AND DEFINITIONS
II A GUIDE TO DESIRED CHANGES WITH STEP-BY-STEP EXAMPLES
III A GUIDE TO THE RECREATION OF THE SYSTEM
IV CLOSING AND REFERENCE SECTION

I REQUIREMENTS AND DEFINITIONS

This section of the manual will describe the features of
this version of the operating system and the changes since the
last revision, the required files for the modification and
recreation of the operating system, a short description of the
files involved in creating the CP/M 86 BIOS, and some simple file
designator definitions.

FEATURES

The 86 R version of this operating system incorporates the
following special features and capabilities:

A) DISK 2 and DISK 3 hard disk support
B) Support for MDRIVE/H
C) Support for minifloppies using DISK 1 - 5
D) Support for interrupts

The new CP/M 86 BIOS supports all of the same physical
devices that the previous BIOS did.

CHANGES SINCE LAST REVISION

Sine the last revision, PD, the following changes have been
made:

1) ASM86 assembler has been added. Linking is done with
GENCMD.CMD.

2) DISK 2 sector allocations are revised requiring
reformatting from any previous revision.

3) A Skeleton for 5 1/4" floppy support has been added.
4) Interrupt capability has been introduced.

1

REQUIREMENTS

Before you begin to use the instructions given here, you
should become familiar with certain other documentation that is
included with CP/M 86. You should understand the material
covered in the Digital Research s CP/M 86 Manuals and the
CompuPro Technical Manual & Installation Procedures. If you do
not have a word processor, you should carefully study and
practice with the line editor, ED.CMD. This document also
assumes that you understand the function of the BIOS and the
LOADER in the CP/M 86 operating system.

The following list of files and their short descriptions are
required to reassemble the system and are included on your master
diskette.

Note: Do not modify your master diskette! Make a copy of it
and modify the copy! You will receive no sympathy if you destroy
your master.

FILES REQUIRED FOR BIOS MODIFICATION

ACTIVE.EQU Contains control variables which set the
conditions, according to the particular ha-rdware configuration
for BIOS customization.

SINGLES.LIB, DEBLOCK.LIB and BOB7.LIB are library files
refered to in DRI s manuals. These do not get used by CompuPro s
BIOS.

ASCII.EQU
character.

Contains definitions for all ASCII control

COMPUPRO.EQU Contains data constants common to all the
CP/M Operating System s components. For example, Input/Output
Port Assignments, USART register bit definitions for I/O boards,
etc.

CPMDISK.EQU Contains CP/M disk constants, definition of
base page as it relates to file operations, definition of vectors
to call CBIOS routines as well as BDOS call function numbers.

TMXDEVIO.INI Contains all I/O drivers for all I/O boards.
This file is used for changing the initialization of USART
parameters, as well as the type of software protocol for the I/O
boards.

TMXDISK 1, 2 AND 3.INI All of these files contain the
initialization code specific to the disk controller.

TMXINTIO.DVR Contains the interrupt driven console, list
and auxilary device I/O drivers.

2

TMXDISK 1, 2 AND 3.DVR All of these files contain the
driver code for specific to the disk controller.

TMXDISK 1, 2 AND 3.TBL All of these files contain DPB and
DPH tables for their repective disk controllers.

TMXCONIO.DVR
for the loader.

This file contains Console device I/O drivers

TMXXLATE.TBL
format tables.

This file contains sector translation and

TMXALLOC.TBL
allocation tables.

This file contains uninitialized storage

MAKLDR86/88.SUB Both files contain a group of sequential
operations which generate the proper LOADER.CMD file which is
then run with SYSGEN.CMD to place the loader onto the system
tracks.

Here are some short descriptions of file name extensions
that you will find in the directory.

.CMD

.COM
• EQU
.DVR
.H86
.A86
.TBL
.88
.86
.INI
.DEF
.SYS

= 16 bit executable command file
= 8 bit executable command file
= equate table file
= driver routines file
= hex format file
= assembly files
= table of equates
= system file (used with CPU 8085/8088)
= system file (used with CPU 8086)
= initialization routine file
= Digital Research file
= operating system file

.SUB

.DOC =
= submit file used with the SUBMIT command

document file
= text file .TXT

.ASC

.LST
= ASCII text file
= ASCII list file

3

II GUIDE TO DESIRED CHANGES WITH STEP-BY-STEP EXAMPLES

This section of the manual is a guide to which files need to
be modified to accomplish specific changes in the operating
system. It is divided into three parts. Part 1) describes
changes that can be made without reassembling the BIOS but just
using a different system file already provided. Part 2)
describes simple changes to the ACTIVE.EQU file for modifications
like floppy drive characteristics, turning M-DRIVES on and off,
turning on and off both DISK 2 and 3, handshaking for INTERFACER
3 and 4, etc., and Part 3) describes major changes involving
alteration of the TMXFBOOT.A86 and TMXBIOS.A86 files like baud
rates, handshaking, I/O protocols, etc.

PART!l There are several CPMxxxxx.SYS files already configured
to run many standard hardware configurations. If one of these
configurations fulfills your requirements, you do not need to
reassemble your BIOS. To use these configurations, you simply
rename the appropriate file to CPM.SYS on your diskette. An
example is given at the end of this section.

CPM. SYS

CPM210.SYS

CPM220.SYS

CPM340.SYS

CPM35.SYS

Four 8" floppy drives @ 3 ms. step rate
No hard disk
Console @ 9600 baud - no handshaking
List device @ 9600 baud - no handshaking
Supports M-DRIVE/H

DISK2 and 10 Mb hard disk
Four 8" floppy drives @ 3 ms. step rate
Console @ 9600 baud - no handshaking
List device @ 9600 baud - no handshaking
Supports M-DRIVE/H

DISK2 and 20 Mb hard disk
Four 8" floppy drives @ 3 ms. step rate
Console @ 9600 baud - no handshaking
List device @ 9600 baud - no handshaking
Supports M-DRIVE/H

DISK3 and 40 Mb Quantum Q540 hard disk
Four 8" floppy drives @ 3 ms. step rate
Console @ 9600 baud - no handshaking
List device @ 9600 baud - no handshaking
Supports M-DRIVE/H

DISK3 and 5 Mb ST506 type hard disk
Four 8" floppy drives @ 3 ms. step rate
Console @ 9600 baud - no handshaking
List device @ 9600 baud - no handshaking
Supports M-DRIVE/H

4

EXAMPLE FOR USING THE ABOVE FILES:

To use one of the above stock system files, you must first
SYSGEN the LOADER onto the system tracks, then rename the .SYS
files. Do this only on a copy of the master diskette! Never do
this on the master itself! The proceedure for doing this is as
follows:

Type the following:

SYSGEN LDRxx.CMD<CR) (where "xx" is 88 when using
CPU 85/88, and 86 when using
CPU 86/87)

It will respond asking for the destination drive name or hit
return to terminate. You should respond with the drive name that
corresponds to the floppy that you wish to have the new system
placed on.

Now type the following:

REN CPMOLD.SYS=CPM.SYS

Then type:

PIP CPM.SYS=CPMxxxx.SYS[V]

(save the old .SYS file)

(create a copy of the desired
.SYS file and name it
CPM.SYS)

You should now be able to BOOT your new diskette.

PART 2) Many changes to the system may be made by altering the
ACTIV~EQU file and then simply reassembling the BIOS and the
LOADER using ASM86.CMD. The easiest way to do this is to first
print out the ACTIVE.EQU and TMXDEVIO.INI files on your printer
for reference. After reviewing the printout and deciding which
changes you would like to make, then load the ACTIVE.EQU or
TMXDEVIO.INI file using your text editor. Most changes will be
made by changing equates from true to false or false to true, or
changing the value of a constant. Examples are shown below.

The following tables are a composite of TMXDEVIO.INI and
ACTIVE.EQU. You should refer to the actual file for additional
patches not covered in this section.

The first section deals with USART initialization. These
values may be changed in TMXDEVIO.INI.

5

The following example will show you the basics of changing USART
initialization. For INTERFACER 3 or 4, four bytes are defined:

DB IF3UX, 0 ; This is the relative user number.
DB IF3UM,01011010b This is mode register 1.
DB IF3UM,01111110b This is mode register 2.
DB IF3UC,00100111b This is "the command register.

Mode register 1 = ABCDEFGH

AB= STOP BIT LENGTH C=PARITY D=PARITY CONTROL EF=CHAR.LENGTH
00 for none 0= odd
01 for 1 stop l=even
10 for 1 1/2 stop
11 for 2 stop

GH=MODE BAUD FACTOR
OO=synchronous Ix rate
01=asynchronous Ix rate
10=asynchronous 16x rate
11=asynchronous 64x rate

Mode register 2 = ABCDEFGH

O=disable 00 = 5 bits
l=enable 01 = 6 bits

10 = 7 bits
11 = 8 bits

AB=NOT USED C=TRANSMITTER CLOCK D=RECIVER CLOCK EFGH =BAUD SELECTION
O=external O=external 0000=50 1000=1800
l=internal l=internal 0001=75 1001=2001

0010=110 1010=2400
0011=134 1011=3600
0100=150 1100=4800
0101=300 1101=7200
0110=600 1110=9600
0111=1200 1111=19.2k

COMMAND REGISTER = ABCDEFGH

AB=OPERATING MODE
OO=normal
01=async auto echo
10=local loop
11=remote loop

C=RTS
O=high
l=low

G=DTR
O=high
l=low

H=TRANSMIT CNTRL.
O=disable
l=enable

An example from the file:

D=RESET E=ASYNC OR SYNC F=REC.CNTRL.
O=normal O=normal O=disable
l=reset flag l=force break l=enable

or send DLE

DB
DB
DB
DB

if INTERFACER3 or
IF3UX, 4
IF3UM,11101110b
IF3UM,01111110b
IF3UC,00100111b

INTERFACER4
;Select Uart 4
;Async, 16x, 8 bits, No parity, 2 stop
; 9600 baud
;Trans. on, DTR low, rec. on, no break/

6

DB IF3UX, 5 ;Select Uart 5
DB IF3UM,11101110b ;Async, 16x, 8 bits, No parity, 2 stop
DB IF3UM,01111110b . 9600 baud ,
DB IF3UC,00100111b ;Trans. on, DTR low, rec. on, no break/

DB IF3UX, 6 ;Select Uart 6
DB IF3UM,01101110b ;Async, 16x, 8 bits, no parity, 1 stop
DB IF3UM,01110111b ; 1200 baud
DB IF3UC,00100111b ;Trans. on, DTR low, rec. on, no break/

DB IF3UX, 7 ;Select Uart 7
DB IF3UM,01011010b ;Async, 16x, 7 bits, odd parity, 1 stop
DB IF3UM,01111110b . 9600 baud , ,
DB IF3UC,00100111b ;Trans. on, DTR low, rec. on, no break/

For the SYSTEM SUPPORT 1 console USART, there are three defined
bytes:

System Support I UART initialization.
if SYSUPI

DB SSIUM,11101110b ;Async, 16x, 8 bits, No parity, 2 stop
DB SSIUM,01111110b ;9600 baud
DB SSIUC,00100111b ;Xmit on, DTR low, rec. on, no break, run,

By substituting the appropriate values into the above
statements in the file, you will change the configuration of the
port. You must reassemble the BIOS and LOADER of course •••

This is a sample switch that you will find in the table
below. By modifying these values, you can redefine your I/O
configuration. This table corresponds directly with S2 positions
1 and 2 on the DISK 1.

SWITCH 2 POSITIONS 1 AND 2
BOTH OFF
1 ON 2 OFF
1 OFF 2 ON
BOTH ON

= SWITCH 3
= SWITCH 2
= SWITCH 1
= SWITCH 0

From the two defined bytes below, you can determine the exact I/O
configuration.

Switch = 2
DB 10000001b
DB 00010101b

;LST:=LPT:, PUN:=TTY:, RDR:=TTY:, CON:=CRT:
;LPT:=Interfacer 3,4 USER 4, CRT:=S. S. 1

The defined bytes may be decoded as follows.
TOP BYTE:

DB AABBCCDD (line one) AA=LST: 00= TTY: BB= PUN: 00= TTY:
01= CRT: 01= PTP:
10= LPT: 10= UPl:
11= ULl: 11= UP2:

7

CC=RDR: 00= TTY: DD= CON: 00= TTY:
01= PTP: 01= CRT:
10= UPl: 10= BAT:
11= UP2 : 11= UC 1:

LOWER BYTE:

DB AABBCCDD(line two) AA=LPT:OO= I/O 3&4USER 4
01= I/O 1&2 UART 1
10= I/O 1&2 UART 2
11= SAME AS ABOVE

BB= XON/XOFF
00= NO PROTOCOL
01= XON/XOFF
10= EXT/ACT

CC= XON/XOFF
00= NO PROTOCOL
01= XON/XOFF
10= EXT/ACT

DD=CRT: 00= I/O 3&4 USER 0
01= SYSTEM SUPPORT 1
10= I/O 1&2 UART 1
11= I/O 1&2 UART 2

And (always): UCl:= Interfacer 3,4 USER 7
TTY:= Interfacer 3,4 USER 6
ULl:= Interfacer 3,4 USER 5 at all times.

THIS IS THE TABLE AS PRESENTED WITHIN TMXDEVIO.INI:

.** ,
;* INPUT/OUTPUT DEVICE INITIAL SELECT TABLE *
.** ,
BIOTBL RS 0 ;1/0 byte (IOBYTE) value, Aux I/O control byte (IOCNTL)

Switch = 0
DB 10000001b
DB 01000010b

Switch = 1
DB 10000001b
DB 00010100b

Switch = 2
DB 10000001b
DB 00010101b

Switch = 3
DB 00000011b
DB 00010101b

;LST:=LPT:, PUN:=TTY:, RDR:=TTY:, CON:=CRT:
;LPT:=Interfacer I UART 1, CRT:=Interfacer I 0

;LST:=LPT:, PUN:=TTY:, RDR:=TTY:, CON:=CRT:
jLPT:=Interfacer 3 USER 4 xon/xoff, CRT:=USER 0

jLST:=LPT:, PUN:=TTY:, RDR:=TTY:, CON:=CRT:
jLPT:=Interfacer 3,4 USER 4, CRT:=System

jLST:=TTY:, PUN:=TTY:, RDR:=TTY:, CON:=UCl:
jLPT:=Interfacer 3,4 USER 4, CRT:=System

IOBYTE value is the first entry for each switch selection, and
; IOCNTL = wwxxyy$zzb
j(second byte ww xx yy
jof each entry ww xx yy
jin BIOTBL). ww xx yy

xx yy
00 xx yy
01 xx yy
10 xx yy
11 xx yy

xx
j YY
jWhere xx and/or yy = 00

01

00
01
10
11

selects the following:
CRT:=Interfacer 3 USER O.
CRT:=System Support I.
CRT:=Interfacer 1,2 UART O.
CRT:=Interfacer 1,2 UART 1 (Cust Rout).
LPT:=Interfacer 3,4 USER 4.
LPT:=Interfacer 1,2 UART 1 •
LPT:=Interfacer 1,2 UART 2 (Cust Rout).
LPT:=
Interfacer 3,4 USER 5 list routine sel,
Interfacer 3,4 USER 4 list routine sel,
Straight output, no software protocol.
XON/XOFF software protocol active.

8

10 ETX/ACK software protocol active.
And (always): UC1:= Interfacer 3,4 USER 7

TTY:= Interfacer 3,4 USER 6
UL 1: = Interfacer 3,4 USER 5 at all times.

;<========= If CON:=BAT: then --
;/==1 BAT:= RDR:= Interfacer 3,4 USER 3 when RDR:=UR2: on input.
;\==1 BAT:= PUN:= II 3 when PUN:=UP2: on output.
; /== 1- BAT:= RDR:= Interfacer 3,4 USER 2 when RDR: =UR1: on input.
;\==1 BAT:= PUN:= II 2 when PUN: =UP 2: on output.
;/==1- BAT:= RDR:= Interfacer 3,4 USER 1 when RDR:=PTR: on input.
;\==1 BAT:= PUN:= II 1 when PUN:=PTP: on output.
;x /-=T BAT:= ----- Interfacer 3,4 USER 0 when RDR:=TTY: on input.
;x \--1 BAT:= ----- II 0 when PUN:=TTY: on output.

· and for reader/punch vectors only --,
;x ------ RDR:= Interfacer 3,4 USER 6 when RDR:=TTY: on input.
;x ------ PUN:= II 6 when PUN:=TTY: on output.

By changing the value in the above tables, you can change
the device configuration in your system.

Below is an example of where to change the floppy step rate
and the hardware serial port handshaking. The follwing table is
contained in ACTIVE.EQU. Any of these values may be changed to
meet special hardware needs.

The two underlined semicolons in each grouping may be
removed to enable DTR protocol in both sections either I/O 3 and
4 or SYSTEM SUPPORT 1.

THIS IS THE TABLE AS SHOWN IN ACTIVE.EQU:

;Interfacer 3,4 composite status masks and activity indicators:
· ,
INTERFACER3
INTERFACER4
· ,
IF3TMSK EQU
IF3FMSK EQU

EQU
EQU

TRUE
TRUE

IF3TBE; + IF3DSR
IF3TBEI + IF3DSR

;Interfacer 3 board is present
;Interfacer 4 board is present

;Xmit ready mask (for either board)
jXmit buffer empty flip bit mask

; System Support I setup characteristics:
SYSUPl EQU TRUE ;System Support board is present

· ,
; System Support Uart Active Status Masks:
SSlTMSK EQU SSlTBE; + SSlDSR ;Transmit Ready Mask
SSlFMSK EQU SSlTBE~ + SSlDSR ;Transmit Ready Bit Flip Mask

To alter the configuration parameters of the floppy disk
drives, change the underlined constants.

9

;CompuPro Floppy Disk (DISK 1 or DISK lA) controller and drive constants: . ,
; 8 inch drive characteristics:
FLOPPY8 EQU TRUE
FPY8X4 EQU TRUE

;8 inch floppy disk system (Disk 1)
;4 drives present (2 is default)

STEPR8 EQU (3=8is.)
ULOAD8 EQU 240
HDLT8 EQU ~

;8 inch drive step rate in millisec
;Head unload time delay in millisec
;Head load settling time in millisec

PART 3) This section deals with the alteration and reassembly
'Oftheactual TMXBIOS.A86 and TMXFBOOT.A86 files. When changes
are made to the operating system, they can affect the BIOS, the
LOADER, or both.

MODIFICATION REQUIREMENT TABLE

The following table explains which files must be modified in
order to accomplish desired changes in the operating system.

DESIRED CHANGE MODIFY BIOS MODIFY LOADER

SYSTEM CONSOLE I/O XXXXXXXXX XXXXXXXXXX

I/O BAUD RATE XXXXXXXXXX

FLOPPY DISK STEP RATE XXXXXXXXXX

HARD DISK SELECT XXXXXXXXX

FLOPPY/HARD DISK ORDER XXXXXXXXX

EXTRA FLOPPY DISK SELECT XXXXXXXXX

The BIOS and the LOADER are assembled from many files. Below is
a description of which of the above uses which .EQU, .TBL, .DVR
OR .INI file for assembling:

For the LOADER, TMXFBOOT.A86 uses:

COMPUPRO.EQU
ACTIVE.EQU
TMXDISKl.TBL
TMXDISK2.TBL
TMXDISK3.TBL
TMXXLATE.TBL
TMXALLOC.TBL

TMXDISKl.INI
TMXDISK3.INI
TMXDEVIO.INI
TMXDISKl.DVR
TMXDISK2.DVR
TMXDISK3.DVR
TMXCONIO.DVR

10

For the BIOS, TMXBIOS.A86 uses:

COMPUPRO.EQU
ACTIVE .EQU
TMXDISKl.TBL
TMXDISK2.TBL
TMXDISK3.TBL
TMXALLOC.TBL
TMXXLATE.TBL
TMXINTIO.INI
TMXINTIO.DVR

TMXDISKl.INI
TMXDISK2.INI
TMXDISK3.INI
TMXDEVIO.INI
TMXDISKl.DVR
TMXDISK2.DVR
TMXDISK3.DVR
TMXDEVIO.DVR

III A GUIDE TO THE RECREATION OF THE SYSTEM

After you have completed the changes you wish to make within
the appropriate files, then you will need to reassemble the BIOS
and LOADER.

There are .SUB routines prepared to execute each step in
assembling and linking for you. The files are called
MAKLDR??SUB for the LOADER, and MAKSYS.SUB for the BIOS. To
evoke these files you will type in the following:

or
or

SUBMIT MAKSYS.SUB <CR)
SUBMIT MAKLDR88.SUB <CR)
SUBMIT MAKLDR86.SUB <CR)

(for CPU 85/88)
(for CPU 86/87)

MAKSYS.SUB consists of the following commands:

; Make CPM86.SYS file for System 8-16
ASM86 TMXBIOS $$$1
PIP CPMX.H86=CPM86.H86,TMXBIOS.H86
GENCMD CPMX 8080 code[A41]
PIP CPM.SYS=CPMX.CMD

This command file assembles the BIOS and creates a file
called CPMX.CMD and a new CPM.SYS file.

After this submit routine is complete, you will need to
submit the MAKLDR??SUB routine. Be sure to choose the proper
routine (88 or 86) depending on your CPU type.

MAKLDR88.SUB consists of the following commands:

;Make LOADER.CMD file for CP/M 86
ASM86 TMXLOAD $$$1
PIP LOADER.H86=LDCPM.H86,LDBDOS.H86,TMXLOAD.H86
GENCMD LOADER 8080 code[A800]
PIP LDR88.CMD=TMXFBOOT.88,LOADER.CMD
ERA LOADER.CMD
;SYSGEN LDR88.CMD

11

MAKLDR86.SUB consists of the following commands:

;Make LOADER.CMD file for CP/M 86
ASM86 TMXLOAD $$$1
PIP LOADER.H86=LDCPM.H86,LDBDOS.H86,TMXLOAD.H86
GENCMD LOADER 8080 code[A800]
PIP LDR86.CMD=TMXFBOOT.86,LOADER.CMD
ERA LOADER.CMD
;SYSGEN LDR86.CMD

After your submit routine is complete, you will need to
SYSGEN the LOADER onto the system tracks. Perform this task as
follows:

SYSGEN LDR??CMD <CR>
COPYSYS VER.??

(??=88 or 86 depending on CPU)

Destination drive name (or return to terminate). !

That completes the regeneration process on both the
operating system and the loader.

IV CLOSING AND REFERENCE SECTION

CLOSING

In short, we hope that this document helps you in the
alteration and recreation of your operating system. CompuPro is
open to any suggestions you might have" concerning this
information. If you find any inaccuracies, errors, or just have
some comments or ideas for inclusion, please feel free to write a
tell us. Address all correspondence to:

Kevin Fischer
Vice President of Customer Assurance
CompuPro
3506 Breakwater Court
Hayward, CA 94545,

REFERENCE SECTION

For further information about CP/M 86 you may refer to the
following manuals:

CompuPro CP/M 86 Operating System Technical Manual
Digital Research CP/M-86 Operating System System Guide

Operating System Programmer's Guide
Operating System User's Guide

You may wish to
technical manuals for
board.

consult any of the CompuPro Hardware
information specific to an individual

12

CP/M-68K BIOS and LOADER MODIFICATION GUIDE

SOFTWARE REV 1.lK
DOCUMENT REV 1.0, 29 MAY 84

This is a guide to modifying the CompuPro CP/M-68K BIOS and
loader. You can change console or printer baud rates, change the
floppy disk drive step rate, or set up the system to talk to
CompuPro supported hard disk drives by following instructions
in this document.

The information provided here is organized according to the
following outline:

1) A status report on the features of the current version
(l.lK) of CP/M-68K.

2) A list of of the files, documents and programs needed
to accomplish the modifications as well as definitions of the
files and their function.

3) A list of changes made since the last released revision
of CP/M-68K (l.lH) and their significance to the user.

4) A tabular guide to which file(s) (BIOS or loader) must
be modified in order to accomplish common changes to the
operating system.

5) An explana~ion of what alternate configurations are
already supplied with the system and how to put them in place of
the standard configuration.

6) An explanation of what alternate loaders are already
supplied with the system and how to put them in place of the
standard loader.

7) A list of data constants that are likely to be changed
in the BIOS and their locations.

8) A list of data constants that are likely to be changed
in the loader and their locations.

9) A few words on using the CP/M-68K editor IED.68K" to
actually change the files.

10) A step-by-step procedural guide to generating a new
CPM.SYS file from a modified BIOS.

11) A step-by-step procedural guide to generating a new
loader and placing it on the system tracks of a diskette.

12) A step-by-step'procedural guide to setting up a BIOS
to automatically execute a command line at boot time.

1

13) And finally, a guide to where further information can
be found regarding the subjects covered here.

THE CURRENT REVISION: CP/M-68K 1.1 K

Revision 1.1 K of CP/M-68K follows reVISIon 1.1 Hi revisions
I and J were used for in-house development, and were not released
to the field. There is one major difference between the K and H
reVISIons: the K revision incorporates the FORTH COMPILER as a
module called FORTH-83 that runs in the CP/M environment, the H
revision included FORTH as a separate, stand-alone operating
system called MAPFORTH. (MAPFORTH is still available as a
separate package.) FORTH-83 is considerably different from
MAPFORTH in that it uses CP/M to talk to disk and I/O. Also, a
number of new words are supported. Refer to the FORTH-83
documentation provided with the CP/M-68K package and on
distribution diskette #3 for further information.

There are some minor changes in the K revision that should
be noted:

1) The logical order of the disk drives in a system with
both hard disk and floppy disk can now be changed by changing an
equate in the BIOS called "ORDER". (See the section on BIOS DATA
CONSTANTS.)

2) The floppy disk drive step rate can now be changed by
changing an equate in the loader called "STEPR8". (See the
section on LOADER DATA CONSTANTS.)

3) The BIOS now supports two printer devices for the
INTERFACER 3 or 4: device LPT at relative user 4, and device ULI
at relative user 5.

NEEDED FILES AND REFERENCE MATERIAL

Before you begin to use the instructions given here, you
should become familiar with certain other documentation that is
included with CP/M-68K. You should understand the material
covered in the DIGITAL RESEARCH CP/M-68K OPERATING SYSTEM USER'S
GUIDE (past users of CP/M 80 or CP/M-86 will already know most of
this material). Practice with the line editor ED.68K in
particular will be useful for those who have ignored ED on other
C P /Ms i n f a v 0 r 0 f w 0 r d pro c e s sin g s c r e en e d ito r s • An
understanding of sections five and six of the Digital Research
CP/M-68K PROGRAMMER'S MANUAL, though not necessary, might prove
useful to the more experienced programmer. You should also read
the CompuPro CP/M-68K manual to get some background information.
(You may find that you do not need this guide after reading the
CompuPro CP/M-68K manual.) You should also understand the
function of the BIOS and loader in the CP/M operating system.

2

Most of the actual files and programs you will need are
available on diskettes #1 and #2 of the distribution set of three
diskettes. Those files that are not supplied can be created
following instructions given below.

The assembler provided with CP/M-68K is different from
assemblers provided with CP/M 80 or CP/M-86 (primarily because it
creates relocatable code). Consequently, the fields of CP/M-68K
filenames follow a different format than those of the other
CP/Ms, and an explanation of filename fields will clarify your
understanding of the function of files listed below.

In CP/M-68K, an assembly language source file is identified
by the field ".S" (e.g. BIOS.S), sim ilar to ".ASM" in CP/M 80.
When that source file is assembled, the result is an object code
file identified by the field ".0" (e.g. BIOS.O), similar to
".HEX" in CP/M 80.

The object code file must then be linked into an executable
command file which mayor may not be relocatable. If the linked
file is to be relocatable, as is the case when linking BIOS.O,
the result is a file identified by the field ".REL" (e.g.
BIOS.REL).

The relocatable file is already executable, but it may be
necessary to relocate it, as is the case with BIOS.REL. When a
relocatable file is relocated, the result is an executable file
identified by the field ".68K", similar to ".COM" in CP/M 80.

Here is a list of the names and functions of particular
files that are used when modifying the BIOS or loader:

BIOS.S

LBIOS.S

BOOT.S

CPM.SYS

CPMLDR.SYS

the source file for the BIOS.

a source file for the ~art of the loader
containing code which 1S mostly device
specific. Modifications to the loader will be
done in this file.

a source file for the loader which contains
the simple routines which load the rest of the
loader. Since this file is so simple, it
should not need modification when modifying
the loader.

the executable BIOS file which is loaded into
system memory by the loader at the boot time.

the executable loader file which is loaded
from the system tracks of the boot diskette at
boot time. This file is not supplied on the
distribution masters but can be easily
generated.

CPMLDR??SYS files which are variations of the standard
loader file.

CPM?????SYS files which are executable variations of the
standard BIOS file.

3

AS.68K

LO.68K

RELOC.68K

PUTBOOT.68

ED.68K

DDT.68K

DDTl.68K

CPMLIB

LDRLIB

the assembler program provided by Digital
Research with CP/M-68K.

the linker program provided
Research with CP/M-68K.

by Digital

the relocator program provided by Digital
Research with CP/M-68K.

the program used to place a loader file onto
the system tracks of a diskette.

the editor program provided by Digital
Research with CP/M-68K.

a debugging program provided by Digital
Research with CP/M-68K.

a DDT overlay file.

an archive file containing Digital Research
supplied object code functions that are
linked to the BIOS.S file using the program
LO.68K.

an archive file containing Digital Research
supplied object code functions that are
linked to the LBIOS.S file using the program
LO.68K.

AS68SYMB.DAT a data file that must be available on the

MAKESYS.SUB

RC.SUB

MAKELDR.SUB

currently logged disk when running the
assembler program AS.68K

a submit file which assembles and links the
BIOS.S file. MAKESYS.SUB provides the correct
command lines for proper assembly, and
produces the relocatable file CPM.REL.

a submit file which relocates the file
CPM.REL. RC.SUB provides the correct command
lines for proper relocation and produces the
executable BIOS file CPM.SYS.

a submit file which assembles and links the
loader file LBIOS.S. MAKELDR.SUB provides the
correct command lines for proper assembly and
produces the executable loader file
CPMLDR.SYS.

MODIFICATION REQUIREMENT TABLE

The following table explains which files must be modified in

4

SUPPLIED VARIATIONS OF THE CPM.SYS FILE

In an effort to make it easier for you to modify your
standard operating system to accommodate commonly supported
options, the CP/M-68K distribution diskettes (specifically #1 and
#2) come with several executable BIOS files which are variations
of the standard BIOS. These files are named

CPM?????SYS

where the ? s are optional characters which denote various
configurations supported by a particular BIOS.

Here is a chart of what each? character can contain:

C P M ? ? ? ? ? • S Y S

I FOR I/03 OR 4 &) I\l\l_ 128K OF MEMORY; --S FOR SYSTEM SUPPORT 340 FOR D3 & Q540 HD
& 256K OF MEMORY 35 FOR D3 & ST506 HD

/ 210 FOR D2 & FUJITSU 10M HD
/ 220 FOR D2 & FUJITSU 20M HD

F FOR FLOPPY AS DRIVE A, 240 FOR D2 & FUJITSU 40M HD
H FOR HARD DISK AS DRIVE A

For example, a file named CPMSH340.SYS supports the SYSTEM
SUPPORT serial port as its system console port, 256 Kbytes of
memory, and a DISK3 with a Quantum Q540 hard disk.

If you wish to set up a boot diskette that loads a BIOS that
is supplied in one of the CPM?????SYS files, then you simply
rename that file to CPM.SYS and put it in place of the original
CPM.SYS file on your boot diskette.

For example, let's set up a boot diskette for a SYSTEM
SUPPORT, 256K of memory, and a DISK3 with a Quantum Q540 hard
disk. First, make copies of your master diskettes and put the
originals away for safe keeping. On the cQPY of distribution
diskette #1, erase all CPM?????SYS files except CPMSH340.SYS and
CPM.SYS (this will make room on the diskette). Next, rename the
CPM.SYS file to CPMFLPY.SYS. Finally, rename the CPMSH340.SYS
file to CPM.SYS. The diskette will now boot and load the Quantum
Q540 hard disk as drives A through E.

6

order to accomplish desired changes in the operating system.

DESIRED CHANGE MODIFY BIOS I MODIFY LOADER

SYSTEM CONSLE I/O I x x

I/O BAUD RATE I X

FLOPPY DISK STEP RATE I X

HARD DISK SELECT I X

FLOPPY/HARD DISK ORDER I X

MEMORY SIZE I X

EXTRA FLOPPY DISK SELECT I X

5

SUPPLIED VARIATIONS OF THE STANDARD LOADER

In order to make it easy for the user who wants to change
the loader on his system boot diskette, distribution diskette
#1 comes with two executable loader files:

1) CPMLDRSS.SYS - a loader that initializes the SYSTEM
SUPPORT serial port as the system console I/O device, and the
floppy disk drive step rate to 3 milliseconds. This loader is
already on the system tracks of distribution diskette #1.

2) CPMLDRIO.SYS - a loader that initializes the 1/03 or 4
relative user 7 serial port as the system console I/O device, and
the floppy disk drive step rate to 8 milliseconds. This loader
is already in place on the system tracks of distribution diskette
#2.

Now, let's put the loader for SYSTEM SUPPORT console, 256K,
and 3 millisecond step rate on a blank diskette. First, format
the write-enabled blank diskette, and PIP the following files to
it: PUTBOOT.68K and CPMLDRSS.SYS. Next, log on to this newly
formatted diskette, and type:

"PUTBOOT CPMLDRSS.SYS y"

where "y" is the logical letter of the currently logged drive.
This puts the loader file onto the system tracks of the

diskette. ,Now the diskette only needs an executable BIOS fi Ie
(CPM.SYS) to be a boot diskette.

BIOS DATA CONSTANTS

If neither the standard BIOS file nor the alternate
executable BIOS files that are supplied with the distribution
diskettes are adequate for your use, you may want to change the
BIOS source file (BIOS.S) and reassemble it to produce a custom
BIOS. The simplest way to change the BIOS.S file is to change
certain data constants (assembly language "equates") that are
declared in its first 50 lines. Here is a list of the constants,
what line number of the source code they are found on, what they
determine, and how to set them.

1)
SYSSUP
set it
user 7.

"SYSSUP", line 23 - determines console I/O device. Set
to "0" for console device at SYSTEM SUPPORT serial port;
to "I" for console device at INTERFACER 3 or 4 relative

An equate of the same name must be set the same way in

7

the loader source.

2) "HIMEM", line 25 - determines top of transient program
area (TPA). Change this when you want your system to reside in a
larger block of memory than 12BK.or 256K (smaller blocks are not
recommended as they do not leave enough transient program area).
HIMEM is a hex value that should always follow this formula:

HIMEM = [(highest memory address + l)H - BOOOH].

For example, in a system with 256 Kbytes of memory, the
highest address in hex is 3FFFF. Using the above formula:

HIMEM = [(3FFFF + l)H - BOOOH] = 35000

Note that a change in the value of HIMEM must be taken into
account when relocating the assembled BIOS (see below).

3) "ORDER", line 27 - determines the order of disk drive
logical letters when the system contains a floppy and a hard
disk. Setting ORDER to "0" for a floppy/hard system makes the
floppy drives correspond to logical drives A through D, and the
hard drive correspond to logical drives E through I. (In systems
with less than four floppies, the logical partitioning of the
hard drive begins with C.) Setting ORDER to "1" for a floppy/hard
system makes the hard drive correspond to logical drives A
through E, and the floppy drives correspond to logical drives F
through I. (In systems with an ST-506 type 5-Megabyte drive, the
hard drive will only occupy logical drive A. But the logical
partitioning of the floppy drives will still begin with E unless
the equa te "FDBASE" is chang.ed.) In floppy-only systems, ORDER
must be set to "0".

4) "XDB " , line 29 - determines whether the system supports
two or four floppies. Set XDB to "0" for four floppies, and to
"I" for only two floppies.

5) "FDBASE", line 31 - determines the logical number of the
first floppy drive. Set FDBASE to "0" for floppy-only systems
and floppy/hard systems where ORDER (see above) is set to "0";
set FDBASE to the number of logical partitions of the hard drive
in hard/floppy systems where ORDER is set to "I". (Number of
logical partitions is 5 for Q540 and 1 for ST-506.)

6) "D2????", lines 36 to 39 - equates to select DISK2
drivers for one of four types of hard drives. "????" variations
depend on the type of hard drive; here are the options supported:

A) "M10" - 10 Mbyte Fujitsu drive (2301 series)
B) "M20" - 20 Mbyte Fujitsu drive (2302 series)
C) "F20B" - BE type 20 Mbyte Fujitsu drive (23XX-BE

series)
D) "F40B" - BE type 40 Mbyte Fujitsu drive (23XX-BE

series)

8

Set one of these equates to "0" to assemble the BIOS with
drivers forthe D{SK2 with that particular drive. Only one hard
disk driver equate (DISK2 ~ DISK3) should be set to "0".

7) "D3??", lines 43 and 44 - equates to select DISK3 drivers
to one of two types of hard drive. ".??" variations depend on the
type of hard drive; here are the options supported:

A) "M5" - 5 Mbyte ST-506 type drive
B) "M40" - 40 Mbyte Quantum drive (Q540 series)

Set one of these equates to "0" to assemble the BIOS with
drivers for-the DISK3 with that particular drive. Only one hard
disk driver equate (DISK2 or DISK3) should be set to "0".

LOADER DATA CONSTANTS

If neither of the alternate executable loader files that are
provided with the distribution diskettes are adequate for your
needs, you may want to change the loader source file and
reassemble it to produce a custom loader. There are actually two
source files for the loader: BOOT.S and LBIOS.S. Since BOOT.S
is, by design, very simple, it should be left intact; any changes
to the loader should be made in the file LBIOS.S.

The simplest way to modify the LBIOS.S file is to change the
data constants (assembly language equates) or certain
initialization bytes which are found in the first seventy lines
of the file. Here is a list of those constants and
initialization bytes, what line number of the source code they
are found on, what they determine, and how to set them.

1) "SYSSUP", line 12 - determines console device. Set
"SYSSUP" to "0" for console device at SYSTEM SUPPORT, and to "I"
for console device at INTERFACER 3 or 4, relative user 7. An
equate of the same name in the BIOS.S file must be set in the
same way.

2) "STEPR8", line 29 - determines the step rate for the
floppy disk drive(s). Set it to the number of the desired actual
step rate in milliseconds (3 for 3 mSecs., 8 for 8 mSecs.).

3) I/O device protocol (baud rate, parity, etc.) bytes
lines 42 and 43 for SYSTEM SUPPORT as console device, lines 50
and 51 for INTERFACER 3 or 4 as console device, lines 57 and 58
for PRINTER 0, and lines 62 and 63 for printer 1. The specific
bytes which can be changed are underlined in the following
excerpts from the code:

console device routines "move.b #$ee, · ..
move.b #$3e, " · . .

printer routines "move.b #$ee, · . .
move.b #$7e, "

9

The underlined bytes are bytes which initialize the
registers of the programmable USART chips on the I/O cards.
can be changed according to the charts provided on the top
of page eighteen of the INTERFACER 4 MANUAL.

mode
They
half

For example, if the console I/O device is the SYSTEM
SUPPORT, and you wish to change its baud rate to 19.2 kilobaud·,
replace the hex byte "3e" on line 43 with the hex byte "3f".

EDITING THE SOURCE FILES

Once you know where to find the constants and initialization
bytes in the source files for the loader and BIOS, the next step
is changing them with an editor. The only text editor that comes
with CompuPro's CP/M-68K is the program ED.68K, supplied by.
Digital research with CP/M-68K. Instructions on its use are in
the CP/M-68K USER'S GUIDE (pages 79-103), also supplied by
Digital Research with CP/M-68K. If you are not already familiar
with ED.68K (it is almost identical to ED.COM and ED.CMD) then
you should practice the basic append, insert, delete and exit
commands on a garbage file before attempting to edit an important
source file. (Of course no mistakes could be at all disastrous
because you have already copied and stored the distribution
masters and are only working with the copies.)

One tip for those using ED.68K: after opening a file with
ED.68K, you have to append lines from it into your working text
buffer. The simplest way to do this is by typing "#A"; this will
append all of the lines of the opened file into your buffer.
Unfortunately, the file BIOS.S is too large to fit into the
ED.68K buffer" so you should just append the first 200 or so
lines as they include all of the code you would normally want to
change. (Note that the file LBIOS.S will entirely fit into the
ED.68K buffer.)

REASSEMBLING A MODIFIED BIOS

Once the desired changes have been edited into BIOS.S source
file, it must then be assembled, linked with the library routines
supplied by Digital Research, and relocated for the appropriate
memory size. To make those steps as easy as possible, two submit
files have been supplied on distribution diskette #1:
MAKESYS.SUB which assembles and links the BIOS, and RC.SUB which
relocates it.

MAKESYS.SUB is made up of the following three command lines:

1) "as -1 BIOS.S" which assembles the file BIOS.S, ensures
that all--address constants are generated as longwords, and
produces an object code output file called BIOS.O.

2) "10 -r -ucpm -0 cpm.rel cpmlib BIOS.O" which links BIOS.O
with the CPMLIB file of Digital Research routines, preserves the

10

relocation bits, and produces a relocatable output file called
CPM.REL.

3) "era BIOS.O" which erases the post-assembled, pre-linked
file BIOS.O to save disk space. (When MAKESYS.SUB is run on
systems with large amounts of disk space, this line may be
considered unnecessary, and edited out.)

In order to run MAKESYS.SUB, you will need the following
files on the currently logged, write-enabled disk drive:

BIOS.S
AS68SYMB.DAT

AS.68K
CPMLIB

LO.68K
MAKESYS.SUB

You may want to run MAKESYS.SUB on M-DRIVE or a hard drive if
either are available because it takes a few minutes to run on the
floppy.

When you have the correct files on the correct drive, type
"MAKESYS" and watch for errors. If no error messages appear
during any of the phases of MAKESYS.SUB, you have created a
relocatable BIOS file called CPM.REL and are now ready to
relocate CPM.REL using RC.SUB. Be aware that since MAKESYS.SUB
is a SUBMIT file, an error during the assembly phase will not
prevent the running of the linking and erasing phases. If any
errors are noted, refer to appendix tables E-2 (pp. 161-171) and
E-9 (pp. 187-191) of the DIGITAL RESEARCH CP/M-68K PROGRAMMER'S
GUIDE.

When -you have successfully assembled the BIOS and created
the CPM.REL file, you can relocate it using RC.SUB. RC.SUB is
made up of the following two command lines:

1) "reloc -b35000 cpm.rel $l:cpm.sys" which relocates the
file CPM.REL with a starting address 35000H, and produces an
executable BIOS file called CPM.SYS on the drive of the logical
letter invoked on the command line (e.g. typing "RC A" will put
CPM.SYS on logical drive A). The use of parameter "-b35000"
assumes that the BIOS.S constant HIMEM has not been changed (see
BIOS DATA CONSTANTS above) If HIMEM has been changed, the RC.SUB
file should be edited to reflect the new value or the correct
relocation command sequence should be entered manually, without
using the submit file RC.SUB.

2) "era cpm.rel" erases the CPM.REL file created by the
MAKESYS.SUB file since it is no longer needed. Again, when using
a system with ample disk space, you may want to edit out this
line of the submit file.

In order to run RC.SUB, you need the following files
resident on the currently logged disk drive:

RC.SUB RELOC.68K CPM.REL

In addition you should have a write-enabled floppy diskette ready

11

for the destination disk drive. (You can send the output file to
a hard disk logical drive for speed and ease, but at this date,
CP/M-68K cannot load the BIOS from the hard disk at boot time.)

When you have the appropriate files ready, type "RC
where "Y" 'is the logical letter of the destination drive.
completes the regeneration of a non-standard BIOS.

Y",
This

Obviously, the process executed by RC.SUB is not a
complicated one and you may choose simply to use the file as a
guide for typing out the actual command lines yourself.

REASSEMBLING A MODIFIED LOADER

Once you have made the desired changes to the LBIOS.S loader
file, you must assemble both BOOT.S and LBIOS.S, and link them
together with the library of CP/M routines supplied by Digital
Research (the loader does not need to be relocated). To make this
easy, a SUBMIT file called MAKELDR.SUB is provided on
distribution diskette #1 which includes the correct command lines
for successful assembly and linking of the loader files. SUB is
comprised of the following five command lines:

1) "as boot.s" assembles the source file BOOT.S and produces
the object code file BOOT.O.

2) "as -1 lBIOS.S" assembles the source file LBIOS.S,
assures th~alr-addresses are longwords, and produces the object
code file LBIOS.O.

3) "10 -s -to -uldr =E.. cpmldr.sys boot.o ldrlib IBIOS.O"
links LBIOS.O, BOOT.O, and the loader library files; strips the
symbol table and relocation bits to save space; specifies a
starting address of OH, and produces an executable loader file
called CPMLDR.SYS.

4) "era boot.o" erases the assemblea' but unlinked file
BOOT.O. (Some users may consider this line unnecessary, and may
choose to edit it out of the file.)

5) "era lBIOS.O" erases the assembled but unlinked file
LBIOS.O. ~is line, too, may be considered unnecessary.)

To use MAKELDR.SUB, prepare a write-enabled diskette with
the following files on it:

BIOS.S
AS.68K
MAKELDR.SUB

BOOT.S
LO.68K

LDRLIB
AS68SYMB.DAT

Log on to the prepared diskette, type "MAKELDR", and watch
the terminal for error messages. Be careful: as with
MAKESYS.SUB, an error in one of the early assembly phases of the
MAKELDR series of commands will probably not prevent the submit

12

program from continuing with the linking and erasing phases. So
watch carefully for error messages throughout the whole process.

If the MAKELDR.SUB file finishes running without any
errors, then an executable loader file named CPMLDR.SYS will be
generated on the currently logged drive.

This loader can be placed on the system tracks of a floppy
diskette using the program PUTBOOT.68K. Just PIP the new
loader and the file PUTBOOT.68K onto the diskette which will
contain the loader. Then log on to the prepared disk and type

PUTBOOT CPMLDR.SYS Y

where nyn is the logical letter of the currently logged disk.

The diskette now only needs a CPM.SYS file and it will boot.

13

AUTOMATIC EXECUTION OF A COMMAND LINE AT TIME OF BOOT

It is sometimes necessary to set up a BIOS that will
automatically execute a CP/M command line just after the sign-on
at boot time. The easiest way to accomplish this is to patch the
desired command line into the appropriate area of the relocatable
system file CPM.REL.

The patch can be done using DDT.68K, a debugging program
which is explained in detail in section eight (pp. 129-139) of
the DIGITAL RESEARCH CP/M-68K PROGRAMMER'S GUIDE. First, enter
DDT and load the CPM.REL file using the ,"r" command. Then
replace the OOH byte at address 428H with the byte OlH which
indicates that the following bytes are a command line which
should be executed at boot time. Finally, place the upper case
ASCII bytes which spell the desired command line in the locations
following address 428H. Use the byte OOH to delimit, or indicate
the end of, the command line.

For example, let's set up a BIOS that will run MFORM M X to
format the M-DRIVE at boot time. Log onto a write-enabled disk
which contains the files CPM.REL and DDT.68K. Then enter DDT and
type in the following commands:

i) "rcpm.rel" which reads the CPM.REL file into a contiguous
block of memory.

2) "s148" which enters into the byte substitution mode
address l48H. Place the following bytes at these addresses:

" " .

ADDRESS BYTE PURPOSE

428 01 set automatic
429 4D ASCII M
42A 46 ASCII F
42B 4F ASCII 0
42C 52 ASCII R
420 40 ASCII M
42E 20 ASCII SPACE
42F 40 ASCII M
430 20 ASCII SPACE
431 58 ASCII X
432 00 DELIMITER

which leaves the substitute mode.

execute flag

at

3)

4)
disk.

"wcpm.re1 which writes the patched CPM.REL file back to

Now the patch is accomplished and you can leave DDT by
pressing control-C. The resulting CPM.REL file is ready to be
relocated and used as the CPM.SYS file.

14

REFERENCE MATERIAL

We hope that this document helps you in the alteration and
recreation of your operating system. CompuPro is interested in
any suggestions you might have concerning this information. If
you find any errors or have any comments or ideas for inclusion,
please feel free to write, to us. Address all correspondence to:

Kevin Fischer
Vice President of Customer Assurance
CompuPro
3506 Breakwater Court
Hayward, CA 94545

For further information about CP/M-68K you may refer to
these manuals:

You
technical
board.

COMPUPRO CP/M-68K OPERATING SYSTEM TECHNIAL MANUAL
DIGITAL RESEARCH OPERATING SYSTEM USER'S GUIDE

PROGRAMMER'S GUIDE
SYSTEM GUIDE

may wish
manuals

to consult any of the
for information specific

15

CompuPro Hardware
to any individual

