
COMPUTER
AUTOMATION

ALPHA 16 & NAKED MINITM 16

COMPUTER REFERENCE MANUAL

INDEX

1. GENERAL DESCRIPTION

2. ALPHA 16 AND NAKED MINI 16
INSTRUCTIONS

3. INPUT/OUTPUT

4. PROCESSOR OPTIONS

Appendix A: HEXIDECIMAL ARITHMETIC

Appendix B: INSTRUCTION SET BY CLASS

{

Appendix C: LOGICAL FUNCTION DESCRIPTION

1.1 Introduction

1.2 Characteristics

1.3 Processor Configuration

2.1 Introduction

2.2 Arithmetic Overflow

2.3 Memory Reference Instructions: Word Mode

2.4 Memory Reference Instructions: Byte Mode

2.5 Immediate Instructions

2.6 Conditional Jump Instructions

2.7 Shift Instructions

2.8 Register Change Instructions

2.9 Control Instructions

3.1 Introduction

3.2 Priority Interrupt System

3.3 General Input/Output Instructions

3.4 Block Transfer Instructions

3.5 Automatic Input/Output Instructions

4.1 Introduction

4.2 TTY Interface

4.3 Power Fail/Restart

4.4 Real-Time Clock

4.5 Autoload

4.6 Memory Protect

Appendix D: INSTRUCTION SET, ALPHABETICAL ORDER

Appendix E: INSTRUCTION SET, NUMERICAL ORDER

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
III
II
II
II

II

II

II

II

ALPHA 16 and NAKED MINI™16
COMPUTER

REFERENCE MANUAL
JANUARY 1972

(REVISED EDITION)

COMPUTER AUTOMATION,INC. 895 W. 16th ST.,NEWPORT BEACH,CALIF. 92660

COPVRIGHT,1971 COMPUTER AUTOMATlON,INC.

$20.00

00-9701900-AO

TABLE OF CONTENTS

Section Page

1. GENERAL DESCRIPTION 1-1

1.1 Introduction 1-1

1.1.1 General 1-1

1.1.2 The NAKED MINI Concept 1-1

1.1.3 The ALPHA 16 1-4

1.1.4 Applications 1-4

1.2 Characteristics 1-4

1.2.1 General 1-4

1.2.2 Processor 1-4

1.2.3 Instruction Set 1-5

1.2.4 Memory Addressing 1-5

1.2.5 I/O Structure 1-7

1.2.6 Processor Mounted Options 1-7

1.2.7 Processor Plug-In Options 1-8

1.2.8 Peripheral Equipment 1-8

1.2.9 Standard Software 1-8

1.2.10 Optional Software 1-11

1.2.11 Processor Physical Characteristics 1-12

1.3 Processor Configuration 1-12

1.3.1 General 1-12

1.3.2 Adder 1-14

1.3.3 Hardware Registers 1-14

1.3.4 Processor Data Paths 1-14

1.3.5 Shift Control 1-15

1.3.6 I/O Control and Data Paths 1-15

1.3.7 Instruction Execution Sequences 1-18

1.3.8 Data Word Format 1-21

1.3.9 Data Byte Format 1-23

1.3.10 Memory Address Formats 1-25

1.3.11 Con trol Console 1-28

1.3.12 Console Operation 1-31

2. ALPHA 16 AND NAKED MINI 16 INSTRUCTIONS 2-1

2.1 Introduction 2-1

2.1.1 General 2-1

2.1.2 Symbolic Notation 2-1

iii

Section

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

iv

TABLE OF CONTENTS (Continued)

Arithmetic Overflow

2.2.1 General

2.2.2 Overflow Conditions

-Memory Reference Instructions: Word Mode

2.3.1 General

2.3.2 Memory Addressing: Word Mode

2.3.3 Instruction Description Format

2.3.4 Memory Reference Instruction Descriptions

Memory Reference Instructions: Byte Mode

2.4.1 General

2.4.2 Byte Addressing

2.4.3 Instruction Descriptions

Immediate Instructions

2.5.1 General

2.5.2 Immediate Instruction Format

2.5.3 Immediate Instruction Functions

2.5.4 Instruction Descriptions

Conditional Jump Instructions

2.6.1 General

2.6.2 Testable Conditions

2.6.3 Instruction Descriptions

Shift Instructions

2.7.1 General

2.7.2 Single Register Shifts

2.7.3 Double Register Shifts

2.7.4 Shift Instruction Formats

2 .. 7.5 Shift Timing

2.7.6 Instruction Descriptions

Register Change Instructions

2.8.1 General

2.8.2 Instruction Format

2.8.3 Instruction Descriptions

Control Instructions

2.9.1 General

2.9.2 Format

2.9.3 Instruction Descriptions

Page

2-2

2-2

2-2

2-4

2-4

2-4

2-9

2-10

2-19

2-19

2-20

2-24

2-30

2-30

2-30

2·30

2-30

2·33

2-33

2-34

2·36

2-40

2-40

2-40

2-43

2·43

2A3

2-44

2·58

2·58

2·58

2·58

2·66

2·66

2·66

2-67

TABLE OF CONTENTS (Continued)

Section Page

3. INPUT /OUTPUT 3-1

3.1 Introduction 3-1

3.1.1 General 3-1

3.1.2 Control Requirements 3-1

3.1.3 Organization 3-2

3.1.4 . Reserved Device Addresses 3-4

3.2 Priority Interrupt System 3-5

3.2.1 General 3-5

3.2.2 Basic Concepts 3-6

3.2.3 Interrupt Processing 3-7

3.2.4 Interrupt Latency 3-12

3.2.5 Interrupt Priorities 3-14

3.2.6 Reserved Interrupt Locations in Memory 3-14

3.3 General Input/Output Instructions 3-15

3.3.1 General 3-15

3.3.2 Sense Instructions 3-17

3.3.3 Select Instructions 3-18

3.3.4 Input to Register Instructions 3-18

3.3.5 Output from Register Instructions 3-22

3.4 Block Transfer Instructions 3-23

3.4.1 General 3-23

3.4.2 Block Transfer Operation 3-23

3.5 Automatic Input/Output Instructions 3-26

3.5.1 General 3-26

3.5.2 Format 3-26

3.5.3 Operation 3-27

3.5.4 Direct Memory Channels 3-27

3.5.5 In-Line Programming 3-29

3.5.6 Instruction Descriptions 3-30

4. PROCESSOR OPTIONS 4-1

4.1 Introduction 4-1

4.1.1 General 4-1

4.1.2 Standard Configurations 4-1

4.2 TTY Interface 4-1

4.2.1 General 4-1

4.2.2 Operation 4-1

4.2.3 Data Transfer Rates 4-2

v

Section

4.3

4.4

4.5

4.6

TABLE OF CONTENTS (Continued)

4.2.4 Programming

4.2.5 Reserved Memory Locations

Power Fail/Restart

4.3.1 General

4.3.2 Operation

4.3.3 Interrupt Control

4.3.4 Programming Examples

4.3.5 Reserved Memory Locations

Real-Time Clock

4.4.1 General

4.4.2 Clock Sources

4.4.3 Operation

4.4.4 Control Instructions

4.4.5 Interrupt Locations

Autoload

4.5.1 General

4.5.2 Operating Procedures

4.5.3 Operation

4.5.4 Reserved Memory Locations

~emory Protect

4.6.1 General

4.6.2 Operation

4.6.3 Control Instructions

4.6.4 Reserved Memory Locations

Appendix A HEXIDECIMAL ARITHMETIC

Appendix B: INSTRUCTION SET BY CLASS

Appendix C: LOGICAL FUNCTION DESCRIPTION

Appendix D: INSTRUCTION SET, ALPHABETICAL ORDER

Appendix E: INSTRUCTION SET, NUMERICAL ORDER

vi

Page

4-2

4-5

4-6

4-6

4-6

4-7

4-7

4-8

4-8

4-8

4-8

4-9

4-9

4-10

4-10

4-10

4-10

4-11

4-11

4-11

4-11

4-11

4-12

4-12

A-I

B-1

C-I

lD-1

E-I

LIST OF ILLUSTRATIONS

Figure Page

1-1. Evolution of Compatible 16-Bit Computers 1-2

1-2. Conventional Mini Computer Application 1-3

1-3. NAKED MINI 16 Application 1-3

1-4. ALPHA 16 and NAKED MINI 16 Block Diagram 1-13

1-5. I/O Control and Data Paths 1-17

1-6. Data Word Bit Identification 1-21

1-7. Byte Storage, Two Bytes Per Word 1-24

1-8. Data in Memory, One Byte Per Word 1-26

1-9. Data in Memory, Two Bytes Per Word 1-26

1-10. Basic Word Address Format 1-27

1-11. Byte Address Format 1-27

1-12. Indirect Address Pointer Format 1-28

1-13. ALPHA 16 Control Panel 1-29

2-1. Memory Reference Instruction Format: Word Mode 2-6

2-2. Direct Memory Addressing: Word Mode 2-7

2-3. Indirect Addressing: Word Mode 2-8

2-4. Memory Reference Instruction Format: Byte Mode 2-21

2-5. Direct Memory Addressing: Byte Mode 2-22

2-6. Indirect Addressing: Byte Mode 2-23

2-7. Immediate Instruction Format 2-31

2-8. Conditional Jump Format 2-35

2-9. Logical Right Shift 2-41

2-10. Logical Left Shift 2-41

2-11. Rotate Right 2-41

2-12. Rotate Left 2-41

2-13. Arithmetic Left Shift 2-42

2-14. Arithmetic Right Shift 2-43

2-15. Long Right Shift 2-43

2-16. Long Left Shift 2-43

2-17. Long Rotate Right 2-43

2-18. Long Rotate Left 2-44

2-19. Single Register Shift Format 2-44

2-20. Long Shift Format 2-44

3-1. Computer /Interface/Device Relationships 3-3

3-2. Party Line 110 Structure 3-5

3-3. Single Instruction Interrupt Processing 3-10

3-4. Interrupt Subroutine Processing 3-11

vii

LIST OF ILLUSTRATIONS (Continued)

Figure

3-5. General Input/Output Instruction Format

3-6. Word Movement Sequence

3-7. Byte Movement Sequence

viii

Page

3-17

3-28

3-28

SECTION 1

GENERAL DESCRIPTION

1.1 INTRODUCTION

1.1.1 General

. The ALPHA 16 and NAKED MINI 16 are general purpose,

stored program digital computers. They are extensions of

the successful and proven 16-bit computer family from

Computer Automation, and are effectively repackaged and

improved versions of the Model 116 computer.

1.1.1.1 Upward Compatibility. Both the ALPHA 16 and

NAKED MINI 16 are upward software and I/O compatible

with earlier 16-bit computers from Computer Automation.

Figure 1-1 illustrates the evolution of these computers.

Upward software compatibility means that programs

written for the earlier 16-bit computers will run without

change on the ALPHA 16 or NAKED MINI 16. However,

due to the expanded and improved instruction set of the

ALPHA 16 and NAKED MINI 16, programs written for

these computers may not run on the earlier computers.

1.1.1.2 General Features. All of the 16-bit computers

from Computer Automation feature a 16-bit word format

and' a very powerful and efficient instruction set of over

145 basic instructions. The ALPHA 16 and NAKED

MINI 16 incorporates all of the power and flexibility of the

earlier computers plus some new instructions and features

that make these computers a major advance in the mini

computer field. Perhaps the most significant advance is the

incorporation of byte processing and byte addressing as

well as full 16-bit word processing and 16-bit word address­

ing. Since most peripheral devices are byte oriented, this

feature alone improves software efficiency and memory

efficiency tremendously. Software packing and unpacking

of bytes is virtually eliminated. Data may be packed two

bytes to each word automatically by the computer hard­

ware even when performing block transfers of data between

the computer and high speed peripheral devices such as

magnetic tape or disks.

In addition to byte processing instructions, additional

instructions have been incorporated in the ALPHA 16 and

NAKED MINI 16 to improve I/O operations, interrupt

control, and processor control.

1.1.2 The NAKED MINI Concept

Within the 16-bit computer family from Computer Auto­

mation, the NAKED MINI 16 is the most revolutionary.

Conventional mini computers have followed the design

concepts of larger computers in that they have been

designed to work as stand-alone processors with some peri­

pheral devices attached. Figure 1-2 illustrates a conven­

tional mini computer in a typical application. This figure

shows that the conventional mini computer is effectively a

separate entity from the system in which it is used. It has

its own power supply and control panel separate from the

power supply and control panel used by the remainder of

the system. It treats the remainder of the system as peri­

pherals to the mini computer.

1.1.2.1 System Component. The NAKED MINI 16 is

designed to be a component of a system rather than a sepa­

rate entity that is connected to the system in which it is

used. Figure 1-3 illustrates a typical NAKED MINI 16

application. The NAKED MINI 16 is designed to be used

as a system component along with other system compo­

nents. It depends on the system power supply for a source

of power. It depends on the system control panel for con­

trolling signals that may be needed. It is truly a modular

component of the system in which it is used.

1.1.2.2 System Advantages. Elimination of a separate

computer power supply and control panel reduces the cost

of the computer component in the system. Elimination of

1-1

II

NAKED - MINITM 16

ALPHA 16

Model 116

Model 216

Figure 1.1. Evolution of Compatible 16-Bit Computers

1-2

CONTROL
PANEL

MINI
COMPUTER

POWER
SUPPLY

~~ !
SYSTEM
DEVICE

All-

SYSTEM
CONTROL
PANEL

'"
SYSTEM
DEVICE

f

~r ~ r

SYSTEM
DEVICE

f

~r ~~

SYSTEM
DEVICE

f

Figure 1-2. Conventional Mini Computer Application

" ! ~ ,
SYSTEM NAKED
DEVICE MINI16

1 f

Figure 1-3. NAKED MINI 16 Application

SYSTEM
POWER
SUPPLY

SYSTEM
CONTROL
PANEL

SYSTEM
POWER
SUPPLY

,~ ~ Ir

SYSTEM
DEVICE

1

1-3

the control panel also reduces the possibility of

inexpedenced operators interfering with system operation

by misuse of the computer control panel. Since the com­

puter control panel is incorporated in the system control

panel, the need for the computer to be "front and center"

is eliminated, thus enhancing design and packaging flexibility

for the total system in which the NAKED MINI 16 is used.

1.1.2.3 Module Concept. The name "NAKED MINI 16"

was chosen to emphasize the concept of a computer as a

component or module which is a fully tested operational

unit. Apply power and the NAKED MINI 16 runs without

a control panel. If external control is needed, a console

connector is available for connecting the NAKED MINI 16

to a system control panel.

1.1.3 The ALPHA 16

The powerful instruction set and I/O structure of the

NAKED MINI 16 can be very useful in a stand-alone proc­

essor in the conventional sense. The ALPHA 16 is a conven­

tional mini computer with all of the power of the NAKED

MINI 16. It is effectively a "dressed" NAKED MINI 16.

It has a dedicated control panel and its own power supply.

In addition, it is mounted in an air cooled chassis.

The ALPHA 16 processor is identical to the NAKED

MINI 16 processor. Printed circuit boards are interchange­

able between the two machines. The two machines are

identical in every respect, except for the packaging and the

inclusion of a power supply and a control panel with the

ALPHA 16.

1.1.4 Applications

These computers are designed for commercial, industrial

control, and monitoring applications where emphasis is on

reliability, flexibility, and economy. Extensive experience

has shown that there is no limit to the applications of this

16-bit computer family. Some current applications

include:

1-4

• Production test and automation

• EDP source data entry

• Point-of-sale systems

• Scientific and medical instrumentation

1.2 CHARACTERISTICS

1.2.1 General

Detailed characteristics of the ALPHA 16 and NAKED

MINI 16 are explained in subsequent sections of this

manual. The following is an overview of the character­

istics of these computer.

1.2.2 Processor

Some of the significant characteristics of the computer

processor are:

• Parallel processing of full 16-bit words and 8-bit

bytes

• Seven 16-bit hardware registers

• Memory word size of 16 bits, with each word

addressable as a full 16-bit word or as two sepa­

rate 8-bit bytes

• Memo.ry capacity is 2,048 words minimum,

expandable to 32,768 words maximum, with

4,096 words standard

• Computer cycle time is 1.6 microseconds with

memory cycle time included within the computer

cycle time.

• Binary 2's complement arithmetic processing

• Automatic memory scan (standard)

• Hardware Multiply and Divide (standard)

1.2.3 Instruction Set

These computers have a very powerful instruction set

consisting of 145 basic instructions divided into seven

classes. The instruction classes are:

• Memory Reference

• Immediate

• Conditional Jump

• Shift

These instructions access

memory in either full word or

byte mode and perform logi­

cal and arithmetic operations

involving data in memory and

data in hardware registers.

These instructions are similar

to memory reference in that

they perform logical and

arithmetic operations involv­

ing memory data and data in

hardware registers. The

memory data, however, is con­

tained within the instruction

word so that it is immediately

available for processing with­

out requiring an operand

cycle to fetch it from

memory.

These instructions test condi­

tions within the processor and

perform conditional branches

depending on the results of

the tests performed. Jumps

may be as much as ±64 loca­

tions from the location of the

conditional jump instruction.

These instructions include

single-register logical shifts,

single-register arithmetic shifts,

single-register rotate shifts,

double-register logical shifts,

and double-register rotate

shifts. The hardware multiply

• Register Change

• Control

• Input/Output

1.2.4 Memory Addressing

and divide instructions are

part of this class.

These instructions provide

logical manipulation of data i.
within hardware registers.

These instructions are used to

enable and disable interrupts.

suppress status, control word

or byte mode data processing

and perform other general

control functions.

These are the instructions that

provide communications

between the computer and

external devices. They

include conventional I/O

instruction plus Block Trans­

fer and Automatic Input/

Output instructions.

An important feature of these machines is the ability to

access full 16-bit words and 8-bit bytes (half words) in core

memory. Core memory may be as small as 2K 16-bit

words, and as large as 32K 16-bit words. Since memory

may contain 32K words, and since each word contains two

bytes, provisions are made for addressing up to 64K bytes.

Instructions which access memory may operate in either

word or byte mode. Memory ref,erence instructions are

sixteen bits in length (one-word instructions), with the

eight least-significant bits plus three control bits dedicated

to memory addressing. The eight least significant bits

address 256 words or bytes. The ALPHA 16 and NAKED

MINI 16 computers use the three control bits to specify

several addressing modes. These addressing modes are dis­

cussed briefly in the following paragraphs, and are

explained in detail in Section 2. The addressing modes

1-5

used are Scratchpad, Relative Forward, Relative backward,

Indexed, and Indirect.

• Scratchpad

• Relative

• Indexed

1-6

Scratchpad addressing uses

the 8-bit address field of the

memory reference instruction

as the effective memory

address. Scratchpad address­

ing accesses the first 256

words in memory in Word

Mode, or the first 256 bytes

in Byte Mode. The first 256

words in memory are referred

to as "Scratchpad" memory,

because these are common

words which can be addressed

directly by instructions

located anywhere in memory.

Relative addressing uses the

location of the instruction

which is addressing memory

as a reference point, and

address memory relative to

that instruction. In Word

Mode, relative addressing can

address an area of memory

extending from the instruc­

tion address forward 256

words (+256) or backward

255 words (-255). In Byte

Mode, the range is forward

5 12 bytes. Bytes cannot be

directly addressed relative

backward.

There is a register in the proc­

essor which can be added to

the address field of memory

reference instructions to form

an effective memory address.

This register is the Index, or

• Indirect

X, register. The Index

register is a 16-bit register

which can be set by software

to any desired value. The

address of any specific word

(in Word Mode) or byte (in

Byte Mode) may be formed

by adding the address field of

the instruction to the value in

the Index register and using

the result to address memory.

Indirect addressing uses

scratchpad or relative

addressing to access a word in

memory which contains the

address of a memory operand.

The word that contains a

memory address rather than

an operand is called an

Address Pointer. In Word

Mode multi-level indirect

addressing is possible; i.e.,

one Address Pointer may con­

tain the address of another

address pointer rather than

the address of an operand.

In Byte Mode, only one level

of indirect addressing is

possible.

Indirect addressing may also

be used in conjunction with

indexing. When indexed

indirect addressing is speci­

fied, the indirect operation is

performed first and then the

contents of the X Register

are added to the contents of

the Address Pointer. This

process is called Post Indexing.

1.2.5 I/O Structure

The ALPHA 16 and NAKED MINI 16 have a parallel I/O

structure that provides both ease of interfacing and power­

ful peripheral control. Some special features of the I/O

Structure are:

• Vectored Interrupts These machines feature vec­

tored hardware priority inter­

rupts. There are three

standard interrupt lines. The

third, with control lines, can

accommodate a virtually

unlimited number of vectored

interrupts.

• Direct Memory Channels Direct memory channels

(DMC) provide data transfers

between the computer and

peripheral components with­

out affecting the operating

registers of the computer.

DMC's are a standard feature

of these computers. The

maximum data transfer rate

using DMC's under interrupt

control is 238,000 bytes/sec.

• Block Input/Output

• Parallel Busses

The Block I/O feature of

these computers dedicates the

computer to I/O data transfer

at the maximum possible

transfer rate. The maximum

transfer rate using Block I/O

is 1,000,000 bytes/sec. Block

I/O is a standard feature of

these computers.

Separate busses providing

device address selection, data

transfer, and control signals

are used for ease of inter­

facing. Busses are not time

shared for I/O functions.

This feature alone simplifies

interface design considerably.

1.2.6 Processor Mounted Options

Processor Mounted Options are those optional features

which are mounted directly on basic processor printed

circuit boards. Since these options are mounted on basic

processor boards, they do not occupy plug-in interface/

option slots within the computer chassis. The processor

mounted options are:

• Teletype Interface

• Power Fail Restart

• Real Time Clock

Interfaces a modified ASR-33

or ASR-35 Teletype to the

computer. This is a fully­

buffered interface that

includes remote Teletype

power on/off control.

This option includes the

hardware necessary to detect

low input power conditions,

and bring the computer to an

orderly halt until normal

input power is restored.

When normal power is

restored this option will gen­

erate an orderly restart. The

Power Fail Restart option

allows completely unattended

operation of the computer at

locations where power con­

ditions are unreliable.

The Real Time Clock option

features a crystal controlled

internal clock which may be

wired to produce clock rates

of 100 microseconds, 1 milli­

second, or 10 milliseconds.

The 10 millisecond rate is

standard. An external clock

1-7

• ~emoryProtect

• ~ulti-Device Autoload

source, such as AC line

frequency, may also be used.

The Real Time Clock pro­

vides time-of-day information

to the computer and may be

used to time periodic events

that must be controlled by

the computer.

~emory Protect provides a

means for protecting selected

sections of core memory from

destruction by program­

generated or I/O-generated

write commands. The segment

to be protected is selected by

jumper wiring. Protect mode

may optionally be enabled

and disabled by software.

The ~ulti-Device Autoload

option consists of a Read­

Only ~emory (RO~) pro­

grammed with a complete

binary loader which is

capable of loading binary pro­

grams from anyone of several

input devices. The Autoload

hardware consists of the RO~

and the necessary logic to

cause the computer to execute

the program in RO~ when the

Autoload switch is activated.

1.2.7 Processor Plug-In Options

Locations are provided within the computer chassis for the

installation of processor options, peripheral interfaces, and

memory modules. The options are mounted on printed cir­

cuit boards which plug into the locations within the com­

puter chassis. Some of the available plug-in processor

options are:

1-8

• DTL I/O buffers, up to 64 bits

• Relay I/O buffers, up to 32 isolated relays

• ~odem interfaces: non-synchronous, synchronous,

parallel, and autodial; multiplexed up to

16 channels

• Direct Memory Access, allowing peripheral access

to memory on a cycle-steal basis at data transfer

rates of 1,250,000 bytes/sec.

• Read Only ~emory (RO~)

1.2.8 Peripheral Equipment

The following is a partial list of the various types of peri­

pheral eqUipment for which interfaces to the ALPHA 16

and NAKED ~INI 16 have been developed. This list does

not imply that these are the only devices for which inter­

faces can be developed. The interface structure of these

computers is such that virtually any peripheral device can

be interfaced to the computer.

• ASR-33 and ASR-35 Teletypewriters

• High speed paper tape readers and punches

• Line printers

• Card readers

• Open reel and cassette magnetic tape units

• Magnetic disks

• A/D and D/ A converters

• CRT terminals

1.2.9 Standard Software

The following is a brief description of the standard software

packages provided with the ALPHA 16 and NAKED ~INI

16 computers. Detailed operating procedures and descrip­

tions of each program are provided separately.

• BETA BETA is a symbolic

assembler for translating

free-form source

(symbolic code) tapes into one program. Source code

Object Language tapes which may be typed in, edited, and

can be loaded into the com- assembled using this one pro-

puter and executed. In addi- gram. Source tapes, source

tion to recognizing symbolic listings, Object (assembly)

instruction codes, BETA tapes, and assembly listings

recognizes a full set of pseudo- are produced by OMEGA.

operation codes. The symbolic
ROLL Relocatable Object Language • instruction codes recognized

. Loader. BETA and OMEGA
by BETA are those codes

generate Object Language
listed in the definitions of the

ALPHA 16 and NAKED
tapes. These tapes are not

MINI 16 instructions in sub-
binary images of programs as

sequent sections of this
they appear in core memory

when the programs are exe-
manual.

cuted. Object Language tapes

• STP Source Tape Preparation. are relocatable; i.e., they may

STP provides a means for pre- be loaded anywhere in

paring and/or editing symbolic memory by an Object Lan-

source tapes for input to guage Loader. ROLL is a

BETA. STP is used with an sophisticated loader capable

ALPHA 16, a teletype key- of reading Object language

board, and a paper tape punch. tapes, assigning memory loca-

Source lines are entered tions, linking separate Object

through the keyboard and are language tapes together into

stored temporarily in the one program, and relocating

computer memory where programs in memory. Object

they may be edited before language program tapes pro-

being punched on paper tape. duced by BETA or OMEGA

Source code may be edited in must be loaded into the

memory, or previously pre- ALPHA 16 or NAKED

pared source tapes may be MINI 16 by ROLL.

read into memory through a
BLD/BDP Binary Load/Binary Dump . • paper tape reader and edited

This program provides a
to produce a corrected source

means for loading and dump-
tape. Source listings are also

ing programs in absolute
produced by STP.

binary format. The Binary

• OMEGA OMEGA is a conversational Dump portion of the program

assembler that includes the is normally used to dump

features of BETA and STP in binary images of memory in

1-9

a format that may be loaded features assist debugging

using the Binary Load portion operations, and 16 relocation

of the program. Object Lan- pseudo registers are included

guage programs that have been for accessing subroutines.

loaded into the computer
• MATH 1 Fixed Point Arithmetic Pack-

memory using ROLL may be
age. This package consists of

dumped onto a binary tape
twelve Object language pro-

using BDP. Binary tapes may
grams which perform single-

then be loaded into the com-

puter memory in binary for-
and double-precision

arithmetic functions.
mat using BLD. BLD/BDP is

a much shorter program than • MATH 2 Fixed Point Elementary Func-

ROLL, therefore much tions Package. This package

longer programs can be loaded is composed of the twelve

with BLD than with ROLL. most frequently used mathe-

Also, ROLL is often used to matical functions, organized

link main programs on one into six convenient Object

tape with subroutines on language programs on one

another tape. The total pro- tape. The six programs are:

gram, including main program

and subroutines, may be
1. Square Root: SQRT

dumped by BDP and subse- 2. Exponential: EXP2,
quently loaded using BLD. EXPE,EXPI
This procedure incorporates

object language programs on 3. Logarithmic: LOG2,

several tapes into a single LOGE,LOGI

binary image tape.
4. Trignometric: SIN, COS,

• DBUG Debug Package. DBUG is an TAN

interactive program which aids

the user in debugging his
5. Arctangent: ATAN

programs on the ALPHA 16 6. Hyperbolic Tangent:

or NAKED MINI 16. An TANH
ASR-33 or ASR-35 Teletype

is required by DBUG. DBUG • TUP Teletype Utility Package.

functions include: transfer TUP consists of 15 object

control, fill memory, copy programs which perform the

memory, search memory , most common teletype

breakpoint, inspect and/or input/output functions. The

change memory, and modify basic routines input or out-

memory. Register savel change put a single character, right

1-10

• IDP

• CMD

• WPMD

justified in the A Register of

the computer. Conversion

routines input and output

single- and double-precision

decimal, hexadecimal, and

octal values.

Instruction Diagnostic Pro­

gram. This diagnostic program

tests all memory reference and

register change instructions for

all possible results, and tests

enough conditional jump

instructions to test the skip

logic. All types of addressing

are checked on three of the

memory reference instructions.

If any test on any instruction

fails, the processor will halt.

Core Memory Diagnostic.

CMD tests every core of

memory to ensure that no bits

are 'picked' or 'dropped.'

Address logic is checked by

storing the address of each

memory word within the

word it addresses. All words

are read twice to check the

read and restore logic. Error

messages are typed on the

teletype printer.

Worst Pattern Memory Diag­

nostic. WPMD occupies the

first 32 (: 20) words of

memory and fills the remain­

der of core, to a preset limit,

with the worst case pattern of

zeroes and ones. This pattern

is then read back and verified

under the worst case noise

• TDP

1.2.1 0 Optional Software

level of memory. WPMD is

preset to protect the Binary

Loader during testing to

facilitate reloading programs.

Teletype Diagnostic Program.

TDP tests all I/O logic that is

used by the teletype inter­

face. It tests the teletype

reader, punch, and printer

for every character code. It

tests input and output under

program control, interrupt

control, and block input and

output.

Software packages which are available but not included in

the standard software package are briefly described below.

These packages include higher-level language compilers,

executives, and symbolic assemblers which may be run on

machines other than Computer Automation's 16-bit

computers.

• FORTRAN

• Advanced BASIC

Complies with ANSI (ASA)

Basic FORTRAN. In addi­

tion it provides such features

as N Dimensional Subscripts

and Free Field Data Input.

It accepts source statements

and operates in 4K words of

core. It operates as a one­

pass compiler and provides a

source listing and a relocat­

able object tape.

This package includes all the

Elementary BASIC and

Advanced BASIC statements

defined by Kemeny and

Kurtz in their book BASIC

Programming, published by

1-11

• Extended BASIC

• Extended Time-Sharing

BASIC

• Sigma Cross ASsemblers

(CROSS)

1-12

John Wiley & Sons. Some

additional features of this

package are: unlimited depth

of expression in equations, a

business arithmetic package

which includes picture for­

matting, and an immediate

execute mode. This program

will operate in 4K words of

memory.

Includes all the features of

Advanced BASIC, plus text

variables (string manipulation)

and Matrix instructions.

Requires 8K words of

memory.

This package provides all the

features of Extended BASIC

to up to 16 users simultane­

ously. A system with eight

users requires 8K words of

core. A system with sixteen

users requires 12K words of

core.

These are assembly programs

for assembling ALPHA 16 and

NAKED MINI 16 source

statements on XDS Sigma

series computers. CROSS

performs the same functions

as BETA, except that CROSS

runs on the Sigma machines.

For the Sigma 2 and 3,

CROSS is written in Sigma 3

Basic FORTRAN, and

operates under the Sigma 3

Real Time Batch Monitor.

For the Sigma Sand 7, CROSS

is written in FORTRAN IV

and operates under the Batch

Time Sharing Monitor as a

terminal job, and under the

Batch Processing Monitor as

a batchjob.

1.2.11 Processor Physical Characteristics

Physical characteristics of the ALPHA 16 and NAKED

MINI 16 are summarized below. Refer to the ALPHA 16 ---
and NAKED MINI 16 MAINTENANCE MANUAlL for

more detailed information concerning the physical char~

acteristics of these machines.

• Operating Temperature -50 C to +550 C

• Operating Humidity 5% to 90% relative,

non-condensing

• Dimensions, ALPHA 16 5 -I /4 in. high, 19 in. wide,

19-1/2 in. deep; power supply

is 3-1/2 in. high and 19 in.

wide

• Dimensions, NAKED

MINI 16

5-1/4 in. high, 19 in. wide,

18-1/4 in. deep

• AC Power Requirements 6A at 115 VAC, 3A at

ALPHA 16 220 VAC, 47-63 Hz

• Weight, ALPHA 16

• Weight, NAKED

MINI 16

75 lb, including power

supply and operato:rs panel

8.6 lb.

1.3 PROCESSOR CONFIGURATION

1.3.1 General

The ALPHA 16 and NAKED MINI 16 contain seven hard­

ware registers, an Adder unit, a Control section, and the

necessary busses to transfer data and control signals

between the various units within the computer. Fig-

ure 1·4 is a block diagram of the ALPHA 16 and NAKED

MINI 16 processor. Note that the Console applies to the

ALPHA 16 only.

CONSOLE (ALPHA 16 ONLY)

• t -- CONSOLE DATA
..... COUPLING ...

I/O
II

~>
D BUS

... I/O DATA BUS ... r-

...
DRIVE/RECEIVE

..

P& F BUS
~ ..

P& FBUV .. .
A REGISTER

.. .. DRIVERS Jll"'1 -...,

... r
X REGISTER 1 ~

•
...

A
I CARRY IN] B

...
SHIFT

~ I

U +- ~ ADDER
CONTROL ~

S -- S
~ CONTROL AND ; * INTERRUPT C BUS

B COUPLING
OV U

U S ~~

....
P REGISTER 1- ...

Jll"'1 ' ...
B

~-+I
U

I REGISTER
1 ... 4 IL S PROCESSOR

W - CONTROL ...
B -+I R REGISTER 1

J ...
U -
S •• 1 -rt M REGISTER

___ r-+l W REGISTER I ...
•

...
L.-.-

M H 4K X 16 ~ M
D MEMORY ""'" R

B B

U H 4K X 16 ... U
MEMORY

....
S S

r 4KX16--'

I MEMORY I

Figure 1-4. ALPHA 16 and NAKED MINI 16 Block Diagram

1-13

1.3.2 Adder

The adder is a 16-bit parallel adder which produces the sum

of a 16-bit input from the S Bus, another 16-bit input from

the U Bus, and a I-bit input from the Carry-In input. The

sum of these three inputs is applied to the A Bus via the

Shift Control section.

The adder is a completely passive device that always presents

the sum of its three inputs to the computer shift logic as

long as power is applied to the computer. It has no storage

capability and no control over the inputs which it receives.

1.3.3 Hardware Registers

There are seven hardware registers in the ALPHA 16 and

NAKED MINI 16. The functions of the registers are

described in the following paragraphs.

1.3.3.1 W Register. The W Register is a 16-bit register

that interfaces the processor to the computer memory.

Data read from memory is stored in the W Register after the

memory read cycle is completed. Data to be written into

memory is palced in the W Register prior to the start of the

memory write cycle.

1.3.3.2 M Register. The M Register is a 16-bit register

that interfaces the processor to the address decoding cir­

cuits of the memory. Address information is stored in the

M Register at the beginning of a memory cycle and is held

there until the memory cycle is completed.

1.3.3.3 P Register. The P Register is a 16-bit register that

serves as the program counter. It addresses each instruction

that is executed, and is incremented automatically as

instructions are executed. When Skip or Jump instructions

that modify the normal sequence of program execution are

executed, the program branch is performed by loading the

P Register with the address of the next instruction to be

executed.

1.3.3.4 A Register. The A Register is a 16-bit register that

is used as an accumulator for arithmetic operations. It is a

1-14

general purpose register that is available to the

programmer for arithmetic operations, logical functions,

and I/O control.

1.3.3.5 X Register. The X Register is a 16-bit register that

is used as an index register for memory address modifica­

tion, and as a general purpose register for use by the pro­

grammer. It may be used for I/O control, and serves as

an extension of the A Register for long shifts, hardware

multiply, and hardware divide.

1.3.3.6 I Register. The I Register is the computer instruc­

tion register. It holds the instruction that is currently being

executed by the computer. It is a 16-bit register.

1.3.3.7 R Register. The R Register is the computer

operand register. It is a 16-bit register which holds the

memory operand for memory reference instructions. It is

used to hold the multiplicand for hardware multiply instruc­

tions, and the divisor for hardware divide instructions.

1.3.3.8 OV Register. The OV Register is a l·bit register

that flags arithmetic operations that exceed the capacity of

the adder. It is also used in various shift, rotate, and con­

trol instructions. It may be tested and conditioned by

software.

1.3.4 Processor Data Paths

Computer memory modules, registers, and control circuitry

are connected by data and control busses. Busses within

the ALPHA 16 and NAKED MINI 16 are parallel trans­

mission busses. Data busses are normally 16 parallel data

lines, and control busses contain the number of lines

reqUired to perform the required control functions. Fig·

ure 1-4 illustrates the bus structure of the ALPHA 16 and

NAKED MINI 16 processor.

1.3.4.1 A Bus. The A Bus is one of the two principle

data paths within the computer processor. It receives data

from shift control and from the Console Data Coupling

logic. It is the only source of data for the A, X, P, and

M Registers. It is also a source of data for the W Register.

Data to be transmitted on the I/O Data Bus (D Bus) must

first be placed on the A Bus.

1.3.4.2 S Bus. The S Bus is the second of the two princi­

ple data paths within the computer processor. The S Bus

receives the output of the A, X, P, W, and M Registers. It

also is the internal bus for data received from the D Bus,

via the I/O Data Bus Receivers. The S Bus transmits data

received from any of these sources to the Adder.

1.3.4.3 MD Bus. The MD Bus is a bi-directional data bus

that connects the W Register with the computer memory

modules. Data to be written into memory is first placed in

the W Register via the A Bus. It is then carried to the

memory modules via the MD Bus. Data read from memory

is placed on the MD Bus for transmission to the

W Register.

1.3.4.4 MR Bus. The MR Bus carries addressing informa­

tion from the M Register to the memory modules. All

memory addresses, whether for data or instructions, must

first be placed in the M Register and carried to memory via

the MR Bus.

1.3.4.5 W Bus. The W Bus connects the W Register with

the R Register and the I Register. Words read from

memory are usually computer instructions or data to be

processed (operands). Instructions are loaded into the

I Register for execution, and operands are loaded into the

R Register for processing. The W Bus is the path for carry­

ing instructions from the W Register to the I Register, and

operands from the W Register to the R Register.

1.3.4.6 U Bus. The U Bus provides the second input to the

Adder. It receives data from the R Register and the

I Register, and transmits that data to the Adder for

processing.

1.3.5 Shift Control

As shown in Figure 1-4, data passing from the Adder to the

A Bus must pass through the processor Shift Control. Shift

Control has the ability to pass data unchanged, shift data

. left, shift data right, and rotate dataleft or right.

Specific shift instructions and timing considerations are

discussed in Section 2 of this manual. The following

paragraphs briefly describe the control functions

involved.

1.3.5.1 Shift Gates. The shift gates for each bit position

of the sum produced by the Adder have the capability of

shifting data one bit left, one bit right, or passing data

, without being shifted. If data is to be shifted more than

one bit position, it must be passed through the adder and

shift gates once for each bit position that it is to be shifted.

1.3.5.2 Shift Timing. Computer instructions allow shifts

of up to eight bit positions for single-register shifts, and up

to sixteen bit positions for double-register shifts. Since the

shift gates can handle shifts of only one bit position each

time data is passed through them, the processor must pass

data through them once for each bit position to be shifted.

The processor must "stretch" the computer execution cycle

to accommodate the extra shifts. For single-register shifts,

the cycle must be stretched by 1/4-cycle for each additional

bit position that is to be shifted. For example, a shift of

one bit position requires one cycle. A shift of two bit posi­

tions requires 1-1/4 cycles, and a shift of three bit positions

requires 1-1/2 cycles.

Double-register shifts require that data from two registers

be passed through the Adder and shift gates sequentially,

therefore additional stretching is required. An additional

1/4 cycle stretch is required for each bit position shifted

for double-register shifts. For example, a shift of one bit

position requires 1-1/4 cycles. A shift of two bit positions

requires 1-3/4 cycles, and a shift of three bit positions

requires 2-1/4 cycles.

Shift timing is discussed in more detail in Section 2 of this

manual.

1.3.6 I/O Control and Data Paths

A mini computer is of little or no use unless it can com­

municate with those who use it. Communication and

control functions are accomplished through peripheral

1-15

devices of some sort. Devices such as Teletypewriters

provide a means for entering information into and receiving

information from the computer. Devices such as Analog­

to-Digital (A/D) and Digital-to-Analog (D/ A) converters

provide a means for the mini computer to monitor or con­

trol external functions such as measuring devices or

assembly lines.

Peripheral devices generally bear little resemblance to the

computer with which they must communicate. They differ

in speed of operation, mode of data transmission, and the

language or codes used to represent data. For example, the

ALPHA 16 can move a 16-bit data word from the A Register

to the X Register in the computer in 1.6 microseconds. An

ASR-33 Teletypewriter requires 200 milliseconds to move

two bytes (total of 16 data bits) from the teletype to a

receiving device. The computer is 125,000 times faster than

the teletype in this data move. The ALPHA 16 transmits

data in a parallel mode; i.e., it has separate data lines in each

data bus for each bit of the data word that is to be moved.

The ASR-33 transmits data in a bit-serial mode; i.e., it has

only one data line, and transmits each data bit on the same

line, one bit following the other, in a serial fashion. The

ALPHA 16 uses a voltage level of 0 volts to represent a one­

bit on the I/O Data Bus, and a +5 volt level to represent a

zero-bit on the bus. The ASR-33 transmits a one-bit as the

presence of current flow, and a zero-bit as the absence of

current flow.

It is obvious that the ALPHA 16 cannot communicate

directly with the ASR-33 Teletypewriter. There appears to

be little or no similarity between the two devices. There­

fore, for the two to communicate some means must be

found to match these two dissimilar devices. The matching

is accomplished by an Interface.

1.3.6.1 Interface Control. Figure 1-5 illustrates the

relationship between the mini computer, the peripheral

interface, and some peripheral device. A peripheral inter­

face is especially designed to match a specific peripheral

device to a specific mini computer. The busses which con­

nect the mini computer to the interface must provide

1-16

sufficient general control signals to permit the matching

of the computer to a wide variety of peripheral devices.

There are four specific functions which must be accom­

plished by these control lines:

1. Device Selection

2. Function Command

3. Sense Status

4. Data Transfer

Since a mini computer may

be controlling several peri­

pheral devices, some means

must be provided to select,

or address, a specific device.

A peripheral device may be

capable of performing many

different functions. The mini

computer must have some

means for specifying which

function it wants the device

to perform.

A peripheral device may re­

quire a relatively long period

of time (as the computer

measures time) to complete a

function. The computer must

be able to determine the

availability or functional

status of the peripheral device

to determine whether or not

the device is ready to accept

another command.

The ultimate objective of the

computer /device hook-up is

the transfer of data between

the computer and the peri­

pheral device. Data transfer

paths must be established

between the two devices and

the speed of transfer must be

controlled so that no data is

lost.

The ALPHA 16 and NAKED MINI 16 have a number of

control and data transfer modes available for optimum

P&F BUS CONTROL --.. .. ~ ..

ALPHA 16
OR ... C BUS .. PERIPHERAL PERIPHERAL
NAKED ~ .. INTERFACE DEVICE
MINI16

... D BUS DATA ..

....

Figure 1-5. I/O Control and Data Paths

data transfer and control functions involving peripheral

devices. Computer instructions and general timing consid­

erations are discussed in Section 3 of this manual. Detailed

interfacing considerations are discussed in the ALPHA 16

and NAKED MINI 16 INTERFACE MANUAL. The follow­

ing paragraphs briefly describe the busses which connect the

mini computer to the peripheral interface.

1.3.6.2 P&F Busses. The eight least significant bits of the

I Register drive the P and F busses. These bits are used as a

device address and a function code for Input/Output instruc­

tions. These eight bits are arbitrarily divided into two

busses. The P Bus contains five bits and is the Device

Address bus. Five bits give the computer the ability to

address up to 32 different devices. The F bus contains three

bits and is the Function Code bus. Three bits give the com­

puter the ability to specify anyone of eight functions for

the selected device to perform.

The separation of the eight bits into two busses is purely an

arbitrary separation. There is really no difference between

the lines that drive the P Bus and those that dirve the F Bus.

They may be considered to be a single eight-bit Device

Address bus capable of addressing up to 256 devices, where

each function within a device is assigned a different address.

1.3.6.3 C Bus. The C Bus contains all the control lines

connecting the computer and the peripheral interface.

These are individual control lines such as interrupt lines,

sense response lines, and timing lines.

1.3.6.4 D Bus. The D Bus is a I6-bit data bus used for

the parallel transfer of data between the peripheral interface

and the mini computer. Data transmission may be in either

I6-bit words or 8-bit bytes. The D Bus is a bi-directional

bus; i.e., it is used for data transmission from the computer

to the peripheral interface, and from the peripheral inter­

face to the computer.

1-17

1.3.7 Instruction Execution Sequences

Figure 1-4 illustrates the internal configuration of the

ALPHA 16 and NAKED MINI 16 processor. Registers and

data paths are shown, but the use of these registers and data

paths may not be readily apparent. The purpose of the

following paragraphs is to present several examples of

internal computer operations so that the functions of the

internal computer registers and busses may be more easily

understood.

1.3.7.1 Instruction Cycle. Before any computer instruc­

tion can be executed, it must first be read from memory

and then loaded into the computer Instruction Register

(I Register) for decoding and execution. In order to get the

instruction from the computer memory, the location of the

instruction must be known. The Program Counter

(P Register) contains the address of the next instruction to

be executed. The sequence of events which must occur

during the instruction cycle are:

1. (P) - M

2 .. Start Read Cycle

3. (P) + 1 -- P

1-18

The contents of the P Register,

written (P), are gated onto the

S Bus and applied to the

Adder inputs. (P), via the

S Bus, are passed through the

Adder and Shift Control

unchanged, and are placed on

the A Bus. A signal is gen­

erated to load the contents of

the A Bus, containing (P),

into the M Register for use as

an address to memory.

Processor control logic gen­

erates a signal to Memory to

read the location addressed

by (M).

The P register must be incre­

mented to point to the next

instruction to be executed.

While the memory is

4. Instruction -- W

5. Instruction -.... I

performing the read cycle,

(P) are gated onto the S Bus

and applied to one input to

the Adder. The U Bus is

forced to all zeros, and a

Carry In is generated to pro­

vide a + 1 to the Carry In

input to the Adder. The sum

at the output of the Adder is

then (P) + 1. The sum is

passed through Shift Control

without change and is applied

to the A Bus. Processor con­

trol then generates a signal to

store (A Bus) into the

P Register, completing the

incrementing of the

P Register.

When the memory read cycle

is completed, the word read is

placed on the MD Bus, and is

then loaded into the W Regis­

ter. At this point, the

W Register contains the

instruction to be executed.

(W) are placed on the W Bus

and then applied to the inputs

to the I Register. Processor

control logic generates a signal

to load (W Bus) into I where

it can be decoded and exe­

cuted as a computer

instruction.

The only distinction between instructions and data in

memory is that instructions are addressed by the P Register

and are placed into the I Register for decoding and execu­

tion. If the P Register should contain the address of a data

word rather than an instruction, the computer would

attempt t6 recognize that data word as an instruction and

would attempt to execute it as an instruction.

1.3.7.2 Register Load. A common function within the

computer is the loading of either the A or X register with a

data word from memory. The instruction to load the

A Register (or X Register) must first be read and decoded.

The load sequence, after the instruction is decoded, is

accomplished as follows:

1. Address -- M

2. Start Read cycle

3. Data -- W

4. Data - R

5. Data - Aor X

An effective data address

must be formed using the

eight least significant bits of

the instruction word and

possibly some other informa­

tion. The exact manner of

address formation is dis­

cussed in Section 2 of this

manual. The address appears

on the A Bus and is stored in

the M Register for use as an

address to memory.

Processor control generates a

signal to memory to read the

memory cell addressed by the

M Register.

When the read cycle is com­

pleted, the data word is placed

on the MD Bus and loaded

into the W Register.

The W Register places the data

on the W Bus where it is

applied to the inputs to the

R Register. A signal from

Processor Control causes the

(W Bus) to be stored in the

R Register.

(R) are placed on the U Bus

and applied to the inputs to

the Adder. (U Bus) are

passed unchanged through the

Adder and Shift Control, and

are applied to the A Bus. A

signal from Processor Control

causes (A Bus) to be stored in

the A or X register, com­

pleting the load operation.

1.3.7.3 Add. A common arithmetic function in the com­

puter is the addition of a word in memory to (A), with the

results stored in the A Register. This is the addition of two

values, where one value is in the A Register and the other

value is in some word in memory. The two values are added

together and the sum is stored in the A Register. The

instruction to perform the add operation must first be read

and decoded. The data word must then be addressed and

read into the W Register. The following sequence of events

describes the operation after the data word has been stored

in the W Register:

1. (W)-R

2. (R) -- Adder

3. (A) -- Adder

4. Sum -- A

The data word is palced on

the W Bus and stored in the

R Register by a signal from

Processor Control.

The data word from memory,

now in the R Register, is

placed on the U Bus and

applied to one set of Adder

inputs.

The second value to be added

is in the A Register. (A) are

gated to the S Bus and

applied to a second set of

Adder inputs.

The Adder is a passive

device which always pro­

duces the sum of all of its

inputs. (S Bus) are added to

(U Bus) in the Adder and the

1-19

result is applied to the Shift

Control where it is passed

unchanged to the A Bus.

(A Bus) are then applied to the

inputs to the A Register

where a signal from Processor

Control stores the sum in A.

1.3.7.4 Shift. A simple single-register shift involves the

movement of all 16 bits of a data word either left or right

one or more bit poSitions. For purposes of this example, it

is assumed that the word to be shifted is in the A Register,

and that the shift instruction is in the I Register and has

been decoded. The sequence of events is as follows:

1. (A) - Adder

2. Shift one bit position

3. (A Bus) - A

4. Check Shift Count

1-20

The word to be shifted is

gated from the A Register

onto the S Bus and is applied

as an input to the Adder.

The word is passed unchanged

through the Adder.

A control signal from Proc­

essor Control causes the word

to be shifted one bit position

in the direction specified by

the shift instruction. Shift

Control accomplishes the shift.

The shifted data word is then

applied to the A Bus.

The shifted data word on the

A Bus is then stored in the

A Register by a signal from

Processor Control.

The shift count is then

checked for the completion of

the shift instruction. If all

shifts have been completed,

the instruction is terminated.

If more shifts must be

performed, the sequence is

repeated until all shifts have

been completed.

1.3.7.5 Register Change. Register change instructions

perform logical operations or simple moves between regis­

ters. The logical operation that will be illustrated is the

logical product, or AND, of the contents of the A and

X registers, written symbolically as

(A) "(X) - A

where each bit of the A Register is logically ANDed with

the corresponding bit of the X Register, and the result is

stored in the A Register.

The logical product is formed on the S Bus. The S Bus is a

positive true bus, with zero levels predominating.. That is,

if a logical one and a logical zero are simultaneously gated

onto the S Bus in the same bit position, the logical zero

will predominate and the S Bus will contain a logical zero

in that bit position. If two logical ones are gated onto the

S Bus in the same bit position, a logical one will appear on

the S Bus in that bit pOSition. Therefore, the S Bus may be

used to perform an AND of two registers which are gated

onto the bus at the same time.

The sequence for performing the logical product of the A

and X registers is:

1. (A), (X) - S Bus

2. (A) " (X) - A

Processor Control gates the

A Register and the X Regis­

ter onto the S Bus simultane­

ously, and the logical product

of the two registers is

formed, bit by bit.

(S Bus) is applied to one

input to the Adder, and is

passed through the Adder

and Shift Control unchanged

onto the A Bus. Processor

Control then generates a

1.3.8 Data Word Format

signal to store (A Bus) in the

A Register, completing the

operation.

Processor registers and memory word locations are capable

of storing data words consisting of 16 binary digits, or

"bits." A word may be handled as a single 16-bit field, or as

two 8-bit bytes. The following paragraphs describe the word

format of the computers. Byte format is described later in

this section.

1.3.8.1 Bit Identification. A data word may contain a

single number, or it may contain a string of individual binary

bits, with each bit having a unique meaning. For purposes

of explanation and identification, each bit within a word is

uniquely identified. The identification is accomplished by

numbering each bit within a word from right to left. The

bit on the extreme right of the word is bit 0, and the bit on

the extreme left is bit 15. Figure 1-6 illustrates the format

of a 16-bit data word with the bit number shown above the

bit position.

1.3.8.2 Bit Values. The ALPHA 16 and NAKED MINI 16

are binary computers, therefore numeric information stored

in the computer and processed by the computer must be in

binary format. Figure 1-6 illustrates the binary value of a

one-bit in eachbit position of the 16-bit data word. These

values are expressed as powers of two. For example, a one­

bit in bit position 3 has the value of 23, or 8. Note that the

~it position identification number is the same as the expo­

nent of 2 for the value of a one-bit in that bit position. The

single exception to this rule is bit position 15.

15 14 13 12 11 10

1.3.8.3 Signed Numbers. The ALPHA 16 and NAKED

MINI 16 are capable of performing arithmetic operations

with signed numbers. Binary two's complement notation

is used to represent and process numeric information.

Bit 15 of a data word indicates the algebraic sign of the

number contained within that word.

1.3.8.4 Positive Numbers. A positive number is identi­

fied by a ° in bit 15, and the binary equivalent of the mag­

nitude of the positive number is stored in bits 0 - 14. For

example:

Digital Number

+5

+32

+585

Binary Signed Word

S Magnitude

o 000 0000 0000 0101

o 000 0000 0010 0000

o 000 0010 0100 1001

In the examples above, the decimal value of the binary num­

ber is obtained by adding the values of each bit position con­

taining a one-bit. For example:

(+585ho = (0000001001001001)2

The' binary number contains one-bits in positions 0, 3, 6,

and 9. Therefore:

23 = 8

26 = 64

29 = 512

Total = 585

Figure 1-6. Data Word Bit Identification

1-21

The largest positive signed number which can be stored in a

16-bit word is +32,767. The binary equivalent of this num­

beris: 011111111111 1111.

Note that positive numbers contain a O-bit in the sign bit

position, and generally have O-bits preceding the most sig­

nificant I-bit.

1.3 .8.5 Negative Numbers. A negative number is identified

by a 1 in bit 15 of the data word. A negative number is

represented by the binary two's complement of the equiva­

lent positive number. A negative number must follow the

mathematical rule where:

0- (+n) =-n

For example:

0- (+5) =-5

Negative numbers must also be constructed such that:

(+n) + (-n) = 0

The binary two's complement of some numeric value may

be constructed by subtracting the binary representation of

the absolute magnitude of that value from O. For example:

+5 = 0000 0000 0000 0101

Subtracting from 0:

0000 0000 0000 0000

- 0000 0000 0000 0101

1111 1111 1111 1011 =-5

To satisfy the condition that (+n) + (-n) = 0:

0000 0000 0000 0101 = +5

+ 1111 1111 1111 1011 =-5

0000 0000 0000 0000 = 0

Note that the formation of a binary two's complement

negative number from the equivalent positive number

automatically sets the sign bit to a one. Binary two's

complement negative numbers generally have I-bits pre­

ceding the most significant O-bit.

It was shown above that binary two's complement numbers

may be formed by subtracting the corresponding positive

number from a binary zero. Since the computer does not

1-22

have the ability to subtract, other than through the addi­

tion of a binary two's complement number to a positive

number, some other method must be used to form two's

complements. A characteristic of binary numbers is that

the one's complement of a binary number can be formed

by substituting O-bits for alII-bits in the number, and

substituting I-bits for all O-bits in the number. For

example:

+ 5 = 0000 0000 0000 0101

One's complement:

+5 = 1111 1111 1111 101 0

The two's complement is then formed by adding +1 to the

one's complement:

+5 = 1111 1111 1111 1010

+ 1

-5= 1111 1111 1111 1011

1.3.8.6 Arithmetic Operations. When a negative number,

represented by a binary two's complement, is added to a

positive number, the sum is the actual difference between

the two numbers. For example:

+6 0000 0000 0000 0110

+ (-4) = 1111 1111 1111 11 00

Sum = 0000 0000 0000 0010 =: +2

In the above example the sum of the positive and negative

numbers is positive because the absolute magnitude of the

positive number is greater than the absolute magnitude of

the negative number. The following example illustrates

the results where the negative number is greater in absolute

magnitude than the positive number:

+4 = 0000 0000 0000 0100

+ (-·6) = 1111 1111 1111 1 010

Sum = 1111 1111 1111 1110 =: -2

When two negative numbers are added, or when a positive

number is added to a negative number which has a larger

absolute magnitude, the sum is a binary two's complement

number.

1.3.8.7 Word Processing. The ALPHA 16 and NAKED

MINI 16 computers have the ability to place the one's com­

plement of certain registers on the output busses connected

to those registers. The one's complement of the A or

X registers can be placed on the S Bus. The one's comple­

ment of the R Register can be placed on the U Bus. Refer

to figure 1-4. The three inputs to the Adder are (1) the

S Bus, (2) the U Bus, and (3) the Carry In.

Adds and subtracts in the processor are accomplished by

controlling these three inputs to the Adder. For example,

one number may be subtracted from another by adding its

two's complement to the number from which it is to be

subtracted. The SUB (subtract) instruction in the com­

puter subtracts a value that is stored in memory from a

value in the A Register. The difference is stored in A. For

normal subtract operations, the value in memory is usually

represented as a positive value. This is not a requirement,

however, because the subtract may be used to subtract

positive or negative numbers from positive or negative num­

bers. The result will be algebraically correct. The computer

operations are as follows:

1. (Memory) -- R

2. (R) - U Bus

3. Carry In - Adder

The number to be subtracted

from (A) is stored in the

R Register during the computer

operand cycle.

The one's complement of the

R Register is gated to the

U Bus. For example, if R

contains +5, then:

R = +5 =0000 0000 0000 0101

U Bus = +5 = 1111 1111 1111 1010

An initial Carry In is generated

and added to the other inputs

to the Adder. The carry in,

added to the (R) negates (R).

The inputs to the Adder at

this point are:

4. (A) -.. S Bus

5. Sum - A

UBus=(R)= 1111111111111010

Carry In = 1 =

Sum=-5 = 1111111111111011

The absolute binary value of

the A Register is gated to the

S Bus and applied as an input

to the Adder. If the A Regis­

ter contains + 1 0, the three

inputs to the Adder are:

UBus=(R)= 1111111111111010

Carry in = 1

S Bus = +10 = 0000 0000 0000 1010

Sum = +5 = 0000 0000 0000 0101

The sum at the output from

the Adder is the sum of the

three inputs. The sum is

passed through Shift Control

unchanged and is stored in

the A Register.

1.3.9 Data Byte Format

A 16-bit data word is capable of storing two 8-bit bytes.

Since most data transfers between mini computers and

peripheral devices are in the form of bytes rather than

words, the ALPHA 16 and NAKED MINI 16 computers

provide the capability of addressing individual bytes as

well as full data words. Figure 1-7 illustrates the storage

of two bytes within one computer word.

Bit positions within bytes are identified much the same as

in 16-bit words. Figure 1-7 also illustrates the numbering

of data bits within a byte. The bits are numbered 0

through 7, where bit 0 is the least-significant bit (LSB), and

bit 7 is the most-significant bit (MSB) of the byte.

1.3.9.1 Byte Mode Processing. There are two control

instructions in the computer which control Word Mode

processing and Byte Mode processing. One of the

1-23

16 - BITWORD
.....

, 16 14 13 12 11 10 9

BYTE 0 BYTE 1

7 '3 0 7 • I 0
'~ ______ ~T,-______ JJ ~~------~T,-------JI

8 - BIT BYTE 8 - BITBYTE

~-----------------.---
Figure 1-7. Byte Storage, Two Bytes Per Word

instructions causes the computer to enter Byte Mode

processing, and the other causes the computer to enter

Word Mode.

In Word Mode all memory reference instructions access full

words in memory. In Byte Mode all memory reference in­

structions (except IMS, SCN, JMP, and JST) access one byte

within a word. The method of addressing individual bytes

is discussed in a subsequent part of this Section. The pres­

ent discussion is concerned with computer operations while

in Byte Mode as contrasted with computer operations in

Word Mode.

Byte Mode affects the operand cycle of the computer only.

All other computer functions operate the same as in Word

Mode. In Byte Mode the computer operand cycle readsa

single byte from memory instead of a full word. The fol­

lowing paragraphs illustrate Byte Mode operations for

memory reference instructions.

1.3.9.2 Register Load. In Word Mode, a register load in­

struction causes a full 16-bit word in memory to be read and

'stored in a 16-bit register in the computer. In Byte Mode

one byte within a word in memory is read and stored in the

lower eight bits of the computer register. The upper eight

bits are set to zeros. For example:

Memory Word = 1001 0110 1111 0000
Byte 0 Byte 1

Load A with Memory Word: A= 1001 0110 1111 0000

Load A with Byte 0: A = 0000 0000 1001 0110

Load A with Byte 1: A = 0000 0000 1111 0000

1-24

In Word Mode the full word is loaded into the selected

register. In Byte Mode the selected byte is loaded into the

lower eight bits of the selected register, and the upper eight

bits are cleared. Note that the location of the byte within

the memory word does not determine the location the byte

will occupy in the register being loaded.

1.3.9.3 Arithmetic Operations. For arithmetic purposes,

bytes are handled as positive numbers only. The reason is

that a byte occupies the lower eight bits of a register or a

data bus, and the upper eight bits are logical zeros. Con­

sider an ADD operation as an example. In Byte Mode, the

selected byte is added to the contents of the A Register.

The byte occupies the lower eight bit positions of the

U Bus during the addition, and (A) occupies the full S Bus:

1001 0110 1111 0000
Memory Word:

Byte 0 Byte 1

A Register: 0000 1100 0111 1100

Add Byte 0 to A Register:

S Bus= 0000 1100 0111 1100

UBus= 0000 0000 1001 0110

Sum = 0000 1101 0001 0010

The addition is handled in the computer as the addition of

two 16-bit words, with the word from memory containing

significant data in the eight least-significant bit positions

only.

A subtract operation subtracts the absolute magnitude of

the selected byte from the value in the A Register. To

understand the functions of the subtract in Byte Mode it

must be remembered that the operand goes from memory

to the R Register and is then placed on the U Bus in one's

complement form:

1001 0110 1111 0000
Memory Word:

Byte 0 Byte 1

A Register: 0000 1100 0111 1100

Subtract Byte 0 From A Register:

R Register = 0000 0000 1001 OIlO

The one's complement of the R Register is gated to the

UHus:

UBus= 1111 1111 0110 1001

Carry In:::

S Bus = (A) = 0000 1100 0111 IlOO

Sum = 0000 1011 1110 0110

The subtract is performed as an operation involving two

16-bit numbers. The byte being subtracted occupies the

lower eight bits of the word being subtracted from the con­

tents of the A Register.

1.3.9.4 Data Packing. One of the most useful features of

byte mode processing is in the packing and unpacking of

data in memory. Since most of the peripheral devices used

with mini computers are byte oriented, high-speed data

transfers between the computer and the peripheral device

·generally require data to be packed one byte per word.

Such an arrangement is illustrated in Figure 1-8. In this

illustration, the upper eight bits of each data word to be

transmitted to a peripheral device contain zeros. A full

16-bit word is transmitted to the device, but the device dis­

cards the upper eight bits and accepts only the lower eight

bits. Data received from a byte oriented peripheral device

during high-speed data transfers is packed in memory one

byte per word in the format shown in Figure 1-8. If a soft­

ware subroutine were required to pack the data two bytes

per word, in the format illustrated in Figure 1-9, it would

waste memory and time in performing the formatting

required for high-speed data transfers.

The capability of the ALPHA 16 and NAKED MINI 16

computers to address individual bytes in memory allows

high speed data transfers using the memory format shown

in li'igure 1-9 for both transmission and reception of data.

Bytes may be addressed sequentially and transmitted or

received sequentially, just as words are transmitted or

received sequentially in conventional unpacked data trans­

fers. This arrangement saves memory space since none of

the memory word is wasted, and it saves time since no soft­

ware routines are required to pack and unpack data for

internal processing.

1.3.10 Memory Address Formats

Maximum memory capacity in the ALPHA 16 and NAKED

MINI 16 computers is 32,768 words, which means a byte

ca pacity of 65,536 bytes. A fifteen bit address is required

to address 32,768 words, and a sixteen bit address is

required to address 65,536 bytes. The following paragraphs

discuss the formats of the addresses that must be presented

to memory for addressing both words and bytes. This dis­

cussion is concerned only with address formats. Section 2

of this manual discusses the memory address modes which

form these addresses.

1.3.10.1 Word Addressing. Figure 1-10 illustrates the for­

mat of an address presented to memory to address a full

word. This is the format that is used to address instructions

or full data words. The address is contained in bits 0 - 14,

and bit 15 contains a zero.

1.3.10.2 Byte Addressing. Figure 1-11 illustrates the for­

mat used to address a byte within a data word. Bits 1 - ·15

contain the address of the memory word, and bit 0 speci­

fies which byte within the word is to be addressed.

Bit 0 = 0 specifies Byte 0 (Most Significant Byte).

Bit 0 = 1 specifies Byte 1 (Least Significant Byte).

If the computer is set for Byte Mode, all operand addresses

presented to memory are assumed to be byte addresses.

1-25

15 14 13 12 11 10

WORooio 0 0 0 0 0 0 0 BYTE 0

15 14 13 12 11 10 4 3 2 0

WORDllo 0 0 0 0 0 0 o I BYTE~

Iii 14 13 12 11 10

WORD 21 0 0 0 0 0 0 0 0 BYTE 2

Iii 14 13 12 11 10

WORD 31 0 0 0 0 0 0 0 o I BYTE 3

15 14 13 12 11 10 0

WORD 41 0 0 0 0 0 0 0 o I BYTE 4

15 14 13 12 11 10

WORD 51 0 0 0 0 0 0 0 o I BYTE 5

Figure 1-8. Data in Memory, One Byte Per Word

15 14 13 12 11 10

WORDOI~ ________ BY_T_E __ O ______ ~~ ______ B_Y_T_E,_l ______ ~

15 14 13 12 11 10

WORD11~ ________ BY_T_E_2 ________ ~ _______ B_Y_T_E __ 3 ______ ~

15 14 13 12 11 10

WORD 2-1L. ____ B_YT_E _4 _____ '--___ B_YT_E __ S ___ ---I

Figure 1-9. Data in Memory, Two Bytes Per Word

1-26

16 14 13 12 11 10 9

I 0 I WORD ADDRESS, 15 BITS

Figure 1-10. Basic Word Address Format

16 14 13 12 11 10 9

WORD ADDRESS: 15 BITS

BYTE INDICATOR: 0 = BYTE 0
(LEFT BYTE)

1 = BYTE 1
(RIGHT BYTE)

Figure 1-11. Byte Address Format

The computer assumes that the address is in the format

shown in Figure 1-11. If the computer is set for word

mode processing, all addresses presented to memory are

assumed to be word addresses in the format shown in Fig­

ure 1-10. These assumptions apply to operand cycles

only. They do not apply to instruction cycles or indirect

addressing cycles.

1.3.10.3 Indirect Addressing. The ALPHA 16 and

NAKED MINI 16 computers are capable of performing

single level indirect addressing for addressing bytes, and

multi-level indirect addressing for addressing words.

Indirect addressing uses direct addressing to read a word

in memory, called an Address Pointer, which contains the

address of another word. In Byte Mode the Address

1-27

Pointer contains the address of the byte to be addressed.

The format of the address in the Address Pointer is the

same as that shown in Figure 1-11.

In Word Mode the format of the address in the Address

Pointer is that shown in Figure 1-12. Bits 0 - 14 contain

the address of another word in memory. Bit 15 is a multi­

level indicator. If bit 15 contains a 0, the address in

bits 0 - 14 is the address of an operand. If bit 15 contains

aI, the address in bits 0 - 14 is the address of another

indirect Address Pointer. The number of levels of indirect

addressing which may be used is limited only by the size of

memory.

1.3.11 Control Console

Figure 1-13 illustrates the ALPHA 16 Control Console.

The NAKED MINI 16 does not have a console, so the

description that follows applies to the ALPHA 16 only.

The Control Console contains register display lights, data

entry switches, register select switches, and various control

switches and indicators. Functions of the switches and indi­

cators are explained in the following paragraphs. Refer to

Figure 1-13 for the location of each component.

15 14 13 12 11 10 9

1.3.11.1 Register Display. The Register Display lights

are 16 light emitting diodes which display the contents of a

selected register when the computer is halted. The A, X,

I, and P registers may be displayed. When the computer is

running the contents of the A Bus are displayed.

1.3.11.2 Data Entry Switches. Sixteen latching switches

are provided for entering data into computer registers.

Data is entered into the selected register by entering the

data in the entry switches and depressing the ENTRY

switch. A I-bit is entered when a data switch is down, and

a O-bit is entered when a data switch is up. Data can be

entered only when the computer is halted and the STOP

switch is down (STOP position).

The four least significant data switches, switches 0 thru 3,

may be examined by software and may be used as sense

switches for operator interface to the operating program.

These four switches may be read by a computer instruction

and their settings stored in either the A or X register for

software examination.

1.3.11.3 Register Select Switches. Four Regist,er Select

switches are provided to select the A, X, I, and P registers

for data entry or display. A register is selected for data

o

WORD ADDRESS: 15 BITS I

1-28

\ MULTILEVEL INDIRECT INDlCATDR: 0= OPERAND
ADDRESS

1 = POINTER
ADDRESS

Figure 1-12. Indirect Address Pointer Format

N
'..0

I'

\..

~
COMPUTER
AUTOMATION
ALPHA 16

o 0 0 0 o 000
I 15 I 14 I 13 I 12 11111U19181

~~

I~II~I ~-:; ~~-:C 0""

000 0 000 0
I I I II I 5 I 4 I 3 I 2 1 I 0 I

~ ~ -==--=---
I~II~I

~ • KEY I' 0Ii- I BYTE liiv-r RUN . ~::: 0 0 0 01 '_' __ B!:n' W·'-:rr~I~' I' I' 1-'-=

l -COCK I I~ml I~I ISE~11 J

Figure 1-13. ALPHA 16 Control Panel

""'"

~

entry or display when the associated switch is down, and no

switch of higher priority is down.

The switches are wired in a priority series with each switch

having priority over the Register Select switches to its right.

Switch A has priority over the X, I, and P switches. Switch X

has priority over the I and P switches. Switch I has priority

over the P switch, and switch P has no priority.

These switches are not automatic return switches. When one

switch is depressed, it remains depressed until lifted by the

operator. If two switches are down simultaneously, the

register selected by the higher priority switch is displayed

and the register selected by the lower priority switch is

ignored. In practice, the P switch may be left down at all

times, since the P register can then be selected by lifting

higher priority switches.

1.3.11.4 ENTRY Switch. The ENTRY switch is a momen­

tary switch used to load the contents of the data entry

switches into the selected register. The switch is activated

when depressed, and automatically returns to the inactive

position when released. This switch is totally disabled

when the STOP switch is in the RUN position (STOP

switch up).

1.3.11.5 RUN Switch. The RUN switch is a momentary

switch which causes the computer to execute one instruction

if the STOP switch is down (STOP position), or enter the

RUN mode if the STOP switch is up (RUN position).

1.3.11.6 AUTO LD Switch. The AUTO LD switch is a

momentary switch which initiates the Autoload sequence

(if the Autoload option is included in the system). The

Autoload sequence can be entered only if the STOP switch

is up (Run position) and the computer is not in the RUN

mode; i.e., the STOP switch must be in the run position and

the RUN Mode indicator must be off.

If the computer is in the Run mode, the AUTO LD switch

has a different function. If the computer is running and the

AUTO LD switch is depressed, a console interrupt is gen­

erated. The computer is interrupted to location: IE in

1-30

memory, where it will execute the instruction at the

interrupt location. (Refer to Section 3 for interrupt

processing.)

1.3.11.7 SENSE Switch. The SENSE switch is a latching

switch which provides operator interface to an operating

program. This switch differs from the four data entry

switches which may be examined by software in that the

SENSE switch may be tested directly for conditional pro­

gram branches according to the setting of the switch.

1.3.11.8 MAN EX Switch. The MAN EX (Manual Exe­

cute) switch is a latching switch which, when down, locks

an instruction in the I Register, provided the STOP switch

is also down. The instruction in the I Register is then exe­

cuted once each time the RUN switch is depressed. The

MAN EX switch is used primarily for displaying data in

memory and entering data into memory from the control

console. Refer to the Console Display Procedure (para­

graph 1.3.12.6) and the Console Load Procedure (Para­

graph] .3.12.5) for Manual Execute switch functions.

1.3.11.9 RESET Switch. The RESET switch is a momen­

tary action switch which, when depressed, initializes the

processor control flip-flops, resets the OV (Overflow) indi­

cator, resets the BYTE (Byte Mode) indicator, and sends an

initialize pulse to all peripheral interfaces. This switch does

not affect processor registers.

1.3.11.10 ON Indicator. The On indicator is a light

emitting diode which is illuminated when power is applied

to the computer.

1.3.11.11 RUN Indicator. The RUN indicator is a light

emitting diode which is illuminated when the processor is

in the Run mode; i.e., when the processor is executing com­

puter instructions. It is turned off when the processor

executes a Halt instruction. If the processor is in the Run

mode and the STOP switch is depressed, the processor will

leave the Run mode and the RUN indicator will be turned

off at the end of the instruction being executed at the time

the STOP switch was depressed.

1.3.11.12 STOP Switch. The STOP switch is a latching

switch which puts the computer in the Stop mode when

depressed. With the STOP switch depressed, the computer

will execute one instruction each time the RUN switch is

depressed. When the STOP switch is depressed, the MAN EX

and ENTRY switches are enabled. When the STOP switch is

up, the computer Run mode is enabled but is not entered

until the RUN switch is depressed. The MAN EX and

ENTRY switches are disabled when the STOP switch is up.

1.3.11.13 BYTE Indicator. The BYTE indicator is a light

emitting diode which is illuminated when the computer is

set for Byte Mode processing. When the computer is set for

Word Mode processing, the BYTE indicator is off.

1.3.11.14 OV Indicator. The OV (Overflow) indicator is

a light emitting diode which is illuminated when the Over­

flow flip-flop within the computer is set. The OV indicator

is off when the Overflow flip-flop is reset.

1.3.11.15 Key Lock. The Key Lock is a four-position

switch which is activated by a key. Two of the four posi­

tions are key removal positions (KEY and LOCK). The four

positions are:

1. KEY

2. OFF

3. ON

4. LOCK

1.3.12 Console Operation

Power OFF, key removal

position.

Power OFF.

Power ON, control console

enabled.

Power ON, control console

switches disabled except for

SENSE switch, the AUTO LD

console interrupt, and the

four low order data entry

switches (data sense switches).

Key removal position.

The ALPHA 16 Control Console is used for initial start-up,

program debug, and troubleshooting. The primary functions

executed at the console are register display and

register change, and the display and entry of memory data.

The following paragraphs discuss detailed procedures for

performing these operations.

1.3.12.1 Hexadecimal Notation. Memory addresses,

data patterns, and instruction codes are difficult to work

with when expressed in binary machine language. For

this reason hexadecimal notation is used as a shorthand no­

tation for binary bit patterns. Table 1-1 is a conversion

table for Binary and Hexadecimal numbers, along with their

decimal equivalents. Appendix A discusses the hexadecimal

number system in detail and provides numerous tables of

hexadecimal arithmetic operations. The remainder of this

manual makes extensive use of hexadecimal notation. For

purposes of clarity, hexadecimal numbers are distinguished

from other numbers by a colon (:) preceding the hexadeci­

mal number. For example, :FA35 is a hexadecimal number

representing the binary number 1111 1010 0011 0101.

Note that the binary number is separated into groups of

four binary bits. This facilitates conversion to or from

hexadecimal notation.

Table 1-1. Binary, Hexadecimal, and Decimal Conversion

Binary Hexadecimal Decimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 A 10

1011 B 11

1100 C 12

1101 0 13

1110 E 14

1111 F 15

1-31

1.3.12.2 Console Preparation. There are several common

steps that must be performed before any console operations

may be attempted. These steps prepare the console and the

computer for console operations. The initial steps are:

1. Power ON

2. Depress STOP

3. Depress RESET

Insert the key into the key

lock and turn the key lock

switch to the ON position.

This applies power to the com­

puter and enables the console.

The computer may come up in

the Run mode because of a

previously loaded program.

Depressing STOP causes the

computer to leave the Run

mode.

NOTE: In some cases the

RUN indicator may remain

on after the STOP switch is

depressed. This condition

may exist when the com­

puter is attempting to exe­

cute certain I/O instructions.

This does not indicate a mal­

function of the computer.

When this occurs, step 3 of

this procedure will correct

the condition.

Depressing RESET puts the

computer in word mode and

initializes the computer and

peripheral interfaces. It forces

the termination of any incom­

plete instructions.

1.3.12.3 Register Display. After the console has been pre­

pared as described in the preceding paragraph, the contents

of the A, X, I, and P registers may be displayed in the Regis­

ter Display indicators. Display procedure is as follows:

1-32

1. Select Register

2. Read Contents

The register to be displayed is

selected by depressing the appro­

priate Register Select switch with

all higher priority Register Select

switches up. Paragraph 1.3.11.3

discusses the priority of these

switches.

The contents of the selected

register are automatically dis­

played in the Register Display

indicators in binary format.

1.3.12.4 Register Entry. The following procedure is used

to enter data into the A, X, I, and P registers from the Con­

trol Console.

1. Select Register

2. Enter Data in

Data Switches

3. Depress ENTRY

Depress the Register Select

switch corresponding to the regis­

ter in which data is to be entered.

Be sure all higher priority switches

are up.

The data to be stored in the

selected register is entered in the

Data Entry switches.

The ENTRY switch loads the con­

tents of the Data Entry switches

into the selected register.

1.3.12.5 Console Load Procedure. The Console Load Pro­

cedure is used to store data into selected memory locations

from the ALPHA 16 Control Console. The general pro­

cedure is to address the desired memory location, enter the

data that is to be stored in memory into the A Register, and

execute an instruction that stores the contents of the

A Register into the addressed memory location. The detailed

procedure is as follows:

1. Ready Console Prepare the console and the com­

puter for console operations as

described in paragraph 1.3.12.2.

2. Depress MAN EX

3. :9EOO - I

4. Memory Address

-P

5. Data -- A

6. Depress RUN

7. Sequential Stores

When the MAN EX switch is

depressed, an instruction can

be entered in the I Register

from the console for direct

execution without performing

a memory instruction cycle.

Enter : 9EOO in the I Register.

:9EOO is a memory reference

instruction that stores the con­

tents of the A Register in the

memory location addressed by

the P Register.

The address of the memory

location where data is to be

stored is entered in the

P Register.

Select the A Register and enter

the data word that is to be

stored in memory.

When the RUN switch is de­

pressed, the instruction in the

I Register is executed. The

instruction stores the data

word in the A Register into

the memory location addressed

by the P Register.

The P Register is automatically

incremented each time RUN

is depressed. To store data in

sequential locations, go back

to step 5 for each succeeding

word. To store data in a new

location, go back to step 4.

1.3.12.6 Console Display Procedure. The Console Display

Procedure is used to display words stored in memory. The

general procedure is to address the memory location that is

to be displayed, and read the contents of that location into

the A Register. The contents of the A Register are then

displayed in the Register Display indicators. The detailed

procedure is as follows:

1. Ready Console

2. Depress MAN EX

3. :B600 - I

4. Memory Address

-. P

5. Depress RUN

6. Display A

7. Sequential Displays

Prepare the console and the

computer for console operations

as described in paragraph

1.3.12.2.

When the MAN EX switch is

depressed, an instruction can be

entered in the I Register from

the console for direct execution

without performing a memory

instruction cycle.

Enter : B600 in the I Register.

:B600 is a memory reference

instruction that reads the

memory location addressed by

the P Register and loads the con­

tents of that location into the

A Register.

The address of the memory

location to be displayed is

entered in the P Register.

When the RUN switch is

depressed, the instruction in the

I Register is executed. The in­

struction reads the addressed

memory location and copies it

in the A Register. Memory is

unchanged.

Display the A Register. The

A Register contains a copy of

the data stored in the addressed

memory location.

The P Counter is incremented

each time RUN is depressed.

1-33

Therefore, to display data in

sequential locations in

memory, go back to step 5 for

each subsequent word to be

displayed. To display data

from another location, go back

to step 4.

1.3.12.7 Program Execution. Programs to be executed may

be entered into memory by a number of different means.

Short programs may be entered using the Console Load Pro­

cedure described in paragraph 1.3.12.5. Longer programs

may be entered using the Autoload feature or various Loader

programs. Regardless of the means used to get a program

into memory, the method used to execute that program is

generally the same. The Program Counter (P Register) must

be set to the starting address of the program, and the com­

puter Run mode must be entered. The following steps are

used to start program execution from the Control Console:

1. Ready Console

2. Start Address

-P

3. Release STOP

1-34

Prepare the console and the

computer for console opera­

tions as described in

paragraph 1.3.12.2.

Enter the starting address of

the program to be execu ted in

the P Register.

Lift the STOP switch. This

enables Run mode, but does

not cause the computer to

enter Run mode.

4. Depress RUN

NOTE: Releasing STOP

also disables the MAN EX

switch and the ENTRY

switch.

Depress the RUN switch to

cause the computer to enter

the Run mode. The computer

will continue to run until it

executes a Halt instruction, or

until the STOP switch is depressed.

1.3.12.8 BOOTSTRAP Program. If a machine is not

equipped with Autoload, a simple loader program must be

entered into memory from the computer console in order

to load more complex programs. The standard

BOOTSTRAP program is listed below. This program is

normally used to load the Binary Loader, BLD/BDP.

BOOTSTRAP is a simple program consisting of only eight

words. It is designed to read a program from a Teletype

paper tape reader, and store the program into memory at a

starting location specified by the X Register.

BOOTSTRAP is loaded into memory from the ALPHA 16

console using the Console Load Procedure (paragraph

1.3.12.5). Each instruction is loaded into sequentialloca­

tions starting at :OFF8 for machines with 4K words of

memory, and location: 1 FF8 for machines with 8K words

of memory.

Detailed procedures for using BOOTSTRAP are contained

in the BOOTSTRAP program description.

SECTION 2

ALPHA 16 AND NAKED MINI 16 INSTRUCTIONS

2.1 INTRODUCTION

2.1.1 General

The instruction set of the ALPHA 16 and NAKED MINI 16

computers is divided into seven classes:

1. Memory Reference

2. Immediate

3. Conditional Jump

4. Shift

5. Register Change

6. Control

7. Input/Output

The Memory Reference class processes data in either Word

Mode or Byte Mode. Because of the significance of these

two modes of processing, the Memory Reference class is

divided into two subclasses. The subclasses are Memory

Reference: Word Mode, and Memory Reference Byte

Mode.

Each instruction class and subclass is treated separately in

this Section. The general format of each class is explained

along with any special considerations. The format and

binary bit pattern of each instruction are covered in detail.

2.1.2 Symbolic Notation

Some standard abbreviations and symbols are used in

explaining the functions of instructions and the forma.tion

of memory addresses. These symbols and abbreviations

are listed in Table 2-1.

2.1.2.1 Symbol Usage. It is very important that the

usage of the standard symbols in Table 2-1 be thoroughly

understood. Most of the symbols are self explanatory, but

there are some subtle differences between symbols that

+

Table 2-1. Standard Symbols

Addition

Subtraction

" Logical AND

v Inclusive OR

V Exclusive OR

= Equals

Transfer

(a -- b, a is transferred to b)

One's Complement (a)

Two's Complement (-a)

() "Contents or' or "the number in"

> Greater Than

< Less Than

2: Greater than or equal to

S Less than or equal to

D Address portion of Memory Reference Instructions

Y Any Effective Memory Location

A Accumulator Register

X Index Register

P Program Counter (Register)

OV Overflow Flip-Flop

lOB Input/Output Bus

AP Address Pointer

BA Base Address

BIS Bit Store

we Word Count

should be noted. The following examples illustrate these

differences.

l.A

2. (A)

The symbol A refers to the

A Register in the computer.

The symbol (A) stands for

contents of A; i.e., the value

2-1

II

3. Y

5. (Y)

6. =

7. -

8. - (minus)

2-2

that is stored in A rather than

the A Register itself.

Y is an effective memory

address. Y represents the value

which will be placed in the

M register to be used as an

address to memory.

(Y) stands for the contents of

the memory location addressed

by the value Y.

This is the conventional

mathematical Equality sign.

It is generally used to show

how some value is derived;

e.g., Y = (P) - (D) means that

the value Y is derived by sub­

tracting the contents of the D

field of an instruction from

the contents of the

P Register.

The transfer symbol should

not be confused with the

equality symbol. The transfer

symbol is often used to show

where some value is to be

stored; e.g., (Y) + (A) -

A means that the value

derived by adding (Y) to (A)

is stored in the A Register

after the operation is

performed.

The two's complement sym­

bol, when applied to some

value, means that the two's

complement of that value is

used in the operation that is

being performed; e.g.,

- (Y) + (A) - A means that

the two's complement of (Y)

is added to (A) and the result

is stored in A.

2.2 ARITHMETIC OVERFLOW

2.2.1 General

Arithmetic Overflow is a condition which occurs when the

result of an arithmetic operation exceeds the capacity of the

computer Adder. When arithmetic overflow occurs, an
'\

indicator called the Overflow (OV) indicator is set. OV is a

testable indicator which may be tested by software to

determine whether or not arithmetic operations have

exceeded the capacity of the Adder.

Part 1.3.8 of Section 1 describes the word format of the

computer and binary two's complement arithmetic. The

binary two's complement format used by the ALPHA 16

and NAKED MINI 16 dictates the conditions which will

cause arithmetic overflow.

2.2.1.1 Sign Bit. In binary two's complement format, the

arithmetic sign of a number contained in a word or register

is specified by the most significant bit, bit 15, of that

memory word or register. The following conditions are

true by definition of binary two's complement notation:

1. Bit 15 = 0; the number contained in the word or

register is positive.

2. Bit 15 = 1: the number contained in the word or

register is negative.

In general, any arithmetic operation which causes the sign

of the result to be incorrect will cause OV to be set. The

conditions which will set OVare discussed in detail in the

following paragraphs.

2.2.1.2 Maximum and Minimum Numbers. For purposes

of this discussion, it is assumed that all numbers are inte­

gers; i.e., the binary point of all numbers is immediately

to the right of bit O. For integer arithmetic, the following

is true.

1. The maximum positive number that can be stored

in a word or register is:

S
+32,767 = 0 111 1111 1111 1111

2. The smallest number (most negative number) that

can be stored is:

S
- 32,768 = 1 000 0000 0000 0000

In this case, the sign bit is also a magnitude bit.

Note that the binary number is the two's comple­

ment of +32,768.

2.2.2 Overflow Conditions

An Overflow occurs when the result of an arithmetic opera­

tion exceeds the maximum or minimum number which can

be stored in a computer word or register. An Overflow

occurs when:

1. Result> +32,767 (0 111 1111 1111 1111)

2. Result < -32,768 (l 000 0000 0000 0000)

2.2.2.1 Addition of Positive Numbers. When the addition

of two positive numbers produces a result that is greater

than +32,767, OV will be set:

S
+32,767 = 0 111 1111 1111 1111

+ (+1) = 0 000 0000 0000 0001

Sum +32,768 * 1 000 0000 0000 0000

(Sum = -32,768)

In this case the addition produced a result which is, by

definition of two's complement numbers, a negative

result (bit 15 = 1). A negative result is impossible when

two positive numbers are added, therefore OV is set.

2.2.2.2 Addition of Negative Numbers. When the addition

of two negative numbers produces a result that is less than

-32,768, OV will be set:

S
-32,768 = 1 000 0000 0000 0000

+ (-1) = 1 111 1111 1111 1111

Sum = -32,769 #= 0 111 1111 1111 1111

(Sum = +32,767)

The addition produced a result which is, by definition, a

positive number (bit 15 = 0). A positive result is •

impossible when two negative numbers are added, therefore

OV is set.

2.2.2.3 Subtraction of Negative from Positive. When the

subtraction of a negative number from a positive number

produces a result that is greater than +32,767, OV will be

set:

S
+32,767 = 0 111 1111 1111 1111

(-1) = 0 000 0000 0000 0001 (Two's comple­

ment of -1)

Sum = +32,768:f. 1 000 0000 0000 0000

(Sum = -32,768)

Subtracting a negative number from a positive number is

the same as adding two positive numbers. A negative result

is impossible. The result in this case is, by definition, a

negative number. Therefore OV is set.

2.2.2.4 Subtraction of Positive from Negative. When the

subtraction of a positive number from a negative number

produces a result which is less than -32,768, OV will be

set:

S
-32,768 = 1 000 0000 0000 0000

(+1) = 1 111 1111 1111 1111 (Two'scomple­

ment of+l)

Sum = -32,769 * a 111 1111 1111 1111

(Sum = +32,767)

Subtracting a positive number from a negative number is

the same as adding two negative numbers, which cannot

2-3

produce a positive result. In this case the result is, by

definition, positive. Therefore, OV is set.

2.2.3 Computer Determination of Overflow Condition

The ALPHA 16 and NAKED MINI 16 computers examine

the carry into bit 1~ of the Adder and the carry out of

bit 15 of the Adder to determine whether or not OV should

be set. If the carries match (carry in and carry out, or no

carry in and no carry out), the result is within the capacity

of the Adder and OV will not be set. If the carries are

different (carry in and no carry out, or carry out and no

carry in), the result exceeds the capacity of the Adder and

OV will be set.

2.2.3.1 Carry In and Carry Out Condition. This condition

results from the addition of two negative numbers, the sum

of which is greater than -32,768:

S
11..) 11 1111 1111 11 - Carries

-5 = '1 111 1111 1111 1011

+ (-5) = 111 1111 1111 1011

Sum = -10 = 111 1111 1111 0110

This condition also exists when a positive number is sub­

tracted from a negative number.

2.2.3.2 No Carry In and No Carry Out. This condition

results from the addition of two positive numbers, the sum

of which is less than +32,767:

S 1 1 - Carries
+5 = a 000 0000 0000 0101

+(+5) = a 000 0000 0000 0101

Sum = +10 = a 000 0000 0000 1010

This condition also exists when a negative number is sub­

tracted from a positive number.

2.2.3.3 Carry In and No Carry Out. This condition exists

when the sum of two positive numbers exceeds +32,767:

(OV set)

2-4

S
1 111 1111 1111 111

+32,767 = 0 111 1111 1111 1111

+ (+1) = a 000 0000 0000 0001

1 000 0000 0000 0000

Carries

This condition may also occur when a negative number is

subtracted from a positive number.

2.2.3.4 Carry Out and No Carry In. This condition occurs

when the sum of two negative numbers is less than

-32,768: (OV set)

S
b~

-32,768 1 000 0000 0000 0000

+ (-1) = 1 111 1111 1111 1111

a 111 1111 1111 1111

Carry

This condition may also occur when a positive number is

subtracted from a negative number.

2.3 MEMORY REFERENCE INSTRUCTIONS: WORD

MODE

2.3.1 General

Memory Reference instructions are those computer instruc­

tions which perform arithmetic and logical operations

involving data stored in memory and data stored in the

operating registers of the computer. The following para­

graphs describe memory addressing and the functions of

memory reference instructions when the computer is set for

word mode processing; i.e., when the memory operand is a

full 16-bit word rather than an 8-bit byte.

2.3.2 Memory Addressing: Word Mode

Memory address formats are discussed in Part 1.3.10 of

Section 1. Figure 1-10 illustrates a basic word address.

This is the format that is used to address computer instruc­

tions, Address Pointers for indirect addressing, and full-word

operands. The purpose of the present discussion is to

describe the various methods used in the ALPHA 16 and

NAKED MINI 16 computers to form full-word operand

addresses. The addressing modes used are described

briefly in Section 1 (Part 1.2.4). They are described in' ,

detail in the following paragraphs.

2.3.2.1 Memory Reference Instruction Format. Figure 2-1

illustrates the format for Memory Reference instructions.

The Mode Code (M'Field), Indirect Tag (I Bit), and D Field

(Base address) are used to define the address of an Operand

or an indirect Address Pointer.

2.3.2.2 Direct Addressing. If I = 0 (Bit 8 = 0), the

addressing mode specified by the M Field defines the

address of a memory operand. The operand address may be

formed in the following ways (refer to Table 2-1 for symbol

definitions): (Figure 2-2 illustrates the memory areas

accessed by these addressing modes.)

M = 00 Operand in Scratchpad. The D Field of the

instruction contains the operand address:

Y=(D)

Since the D Field contains only eight bits, the

address will have the form:

Y = 0000 0000 xxxx xxxx

(D) are right-justified in the effective address and

the upper eight bits of the address word are set to

zeros. An eight-bit address field has the capability

of addressing 256 words (locations 0 through 255

decimal, or :00 through :FF). This is the only

area in memory that can be addressed directly by

an instruction located anywhere in memory.

M = 01 Operand Relative to P, Forward. The operand ad­

dress is formed by adding the value in the D Field

of the instruction to the value in the P Register.

The addition is performed after the P Register has

been incremented during the instruction cycle, so

the effective address is defined as:

Y = (D) + (P) + 1

M=l1

(D)

The address generated has the form:

(D) = 0000 0000 xxxx xxxx

(P) + 1 = Oxxx xxxx xxxx xxxx

Y Oxxx xxxx xxxx xxxx

This form of addressing accesses memory loca­

tions up to 256 locations forward from the

memory reference instruction itself. The loca- II
tions that can be addressed directly by this

mode are (P) + 1 through (P) + 256.

Operand Relative to P, Backward. The effective

address is formed by subtracting the value in the

D Field from the value in the P Register. This

mode can access the location of the instruction

itself, and 255 locations backward from that

location:

Y = (P) - (D)

Since the P counter is incremented before the

operand address is formed, the address is gen­

erated as follows:

= 1111 1111 xxxx xxxx (One's complement)

(P) + 1 = Oxxx xxxx xxxx xxxx

Y = Oxxx xxxx xxxx xxxx

M= 10

Since the one's complement of (D) is added to

(P) + 1, the result is (P) - (D). The locations

that may be addressed using this mode are (P)

through (P) -255.

Indexed. The operand address is formed by

adding the value in the D Field to the value in

the X register:

Y = (X) + (D)

2-5

2-6

Field

OpCode

I REGISTER
16 ,14 13 12 11 10 II 8 1 0

.....,
'V

OP CODE

Bits

11-15

.... , L INDIRECTTAG

LMODECODE

Definition

Operation Code. Defines the specific instructions to be executed.

Mode Code (M Field) 9, 10 Used in conjunction with the Indirect Tag to define the memory

addressing mode to be used:

Indirect Tag (I)

D Field

M=OO Scratchpad

M =01 Relative to P, Forward

M= 10 Indexed

M=ll Relative to P, Backward

8 Specifies Direct or Indirect addressing.

I = 0 Direct. M specifies operand address.

1= 1 Indirect. M specifies address

pointer address. Address Pointer

specifies operand address, or the

address of another Address

Pointer.

0-7 Base value used to form operand or address pointer address.

Figure 2-1. Memory Reference Instruction Format: Word Mode

The address generated has the

form:

(D) = 0000 0000 xxxx xxxx

(X) = Oxxx xxXx xxxx xxxx

Y = Oxxx xxxx xxxx xxxx

This mode of addressing forms a

IS-bit address which uses the

D Field of the instruction as

modified by the X register.

Since the X register may be

easily incremented or decre­

mented, this mode is

especially useful for stepping

through tables in memory.

The locations which may be

(X) +: FF

i
(X)

INDEXED: 256 LOCATIONS
(M = 10) Y = (X) + (D)
LOCATIONS (X) ... (X) + 255

I<~-------------

(P)+1 :FF ~----------- - ---

i
RELATIVE TO P, FORWARD: 256 LOCATIONS
(M = 01) Y = (P) + 1 + (D)

(P)+.1 .. ~~C~IONS~).:!"'(P~l.:!~ _____ _

(~P) ~ RELATIVE TO P, BACKWARD: 256 LOCATIONS
(M = 11) Y = (P) - (D)

LOCATIONS (P) .. (P) - 255
(P)·:FF --------------------

:FF -------------

i
SCRATCHPAD: 256 LOCATIONS
(M = 00) Y =(0)

LOCATIONS 0 255
:00

Figure 2-2. Direct Memory Addressing: Word Mode

addressed using this mode are

(X) through (X) +255.

2.3.2.3 Indirect Addressing. If 1=1 (Bit 8 = 1), Indirect

addressing is used to address a memory operand. In general,

the address mode specified by M is used to address an in­

direct Address Pointer, AP, in memory. The Address

Pointer contains the address of the operand. If multi-level

indirect addressing is used, the Address Pointer may contain

the address of another Address Pointer. The final Address

Pointer contains the address of the memory operand.

contains the address of another Address Pointer. The

number of indirect Address Pointers that may be accessed

before the memory operand is accessed is limited only by

memory capacity. Each Address Pointer is examined inde­

pendently to determine whether or not another indirect

level is required.

Figure 1-12 illustrates the format of the Address Pointer.

Each Address Pointer is examined by the computer after it

is read from memory. If Bit 15 of the pointer contains a 0,

the pointer contains the address of the memory operand. If

Bit 15 of the Address Pointer contains aI, the pointer

Figure 2-3 illustrates indirect addressing. Important points

to note in the illustration are these:

1. A memory reference instruction uses either

Scratchpad (M=OO) or Relative to P (M=OI or

M= 11) addressing to access an indirect address

pointer in memory. Indexed addressing is not

used to address the address Pointer.

2. The Address Pointer contains a memory

address and an indicator bit. The memory

2-7

2-8

~)

MEMORY

==== OPERAND ====
- -- --OPERAND-----------------

= = INSTRUCTION: (ADDRESS) = =
= = ADDRESS POINTER (BIT 15 = 0)_ = = = ADDRESS POINTER (BIT 15 = 1) = =-

SCRATCH PAD ADDRESSING OR RELATIVE TO P ADDRESSING IS
USED TO ADDRESS AN ADDRESS POINTER

BITS 0 -14 OF THE ADDRESS POINTER CONTAIN A MEMORY ADDRESS. IF BIT 15 OF
THE ADD RESS POINTER CONTAINS A 1-BIT, THE MEMORY ADDRESS IN BITS 0 - 14 IS
THE ADDRESS OF ANOTHER ADDRESS POINTER.

IF BIT 15 OF THE ADDRESS POINTER CONTAINS A O-BIT, THE ADDRESS IN BITS 0 - 14
IS THE ADDRESS OF THE MEMORY OPERAND.

IF INDEXING IS SPECIFIED BY THE INSTRUCTION, THE ADDRESS IN BITS 0 - 14 IS
ADDED TO THE CONTENTS OF THE X REGISTER TO FORM THE EFFECTIVE OPERAND
ADDRESS.

Figure 2-3. Indirect Addressing: Word Mode

address is contained in bits 0-14 (word address:

not byte address). Bit IS of the Address

Pointer is an indicator which tells what the

memory address in bits 0-14 is addressing. If

bit IS contains a I-bit (Bit 15=1), then the

address in bits 0-14 is the address of another

Address Pointer. The computer uses the address

in bits 0-14 to read another word from

Address Pointer is the address of the memory

operand that the memory reference instruction

is looking for.

4. If indexing is specified by the memory reference

instruction, the contents of the index register

(X Register) are added to the address in the

Address Pointer to form the effective operand

address. This addition is performed with the

Address Pointer that addresses the operand

only. Indexing is not used to address the

Address Pointer. Also, if indexing is specified,

the first Address Pointer must be in the Scratch­

pad area of memory. Relative addressing can­

not be used to address the Address Pointer if

memory. If bit IS of the Address Pointer con­

tains a 1 bit, the computer will treat the word

addressed by the Address Pointer as another

Address Pointer.

3. If bit IS of an Address Pointer contains a O-bit,

then the address contained in bits 0-14 of the

indexing is to be used. The process of

indexing the operand address rather than the

Address Pointer address is called post indexing.

The following is a detailed description of indirect addressing

using various addressing modes:

M=OO

M=OI

M=l1

Address Pointer in Scratchpad. The value in the

D Field of the Memory Reference instruction is

used as the address of the Address Pointer.

AP=(D)

If multi level indirect addressing is required, the

value in the Address Pointer is the address of

another Address Pointer:

AP=(AP)

The final Address Pointer contains the address of

the memory operand:

Y=(AP)

Address Pointer Relative to P, Forward. The

value in the D Field is added to the contents of

P+ 1 to form the address of the first Address

Pointer:

AP=(D)+(P)+ 1

The remainder of the addressing steps are the

same as for Address Pointer in Scratchpad:

AP=(AP), Y=(AP)

Address Pointer Relative to P, Backward. The

value in the D Field is subtracted from the

value in P to form the address of the first

Address Pointer:

AP=(P)-(D)

The remainder of the address steps are the same

as for Address Pointer in Scratchpad:

AP=(AP), Y=(AP)

M= 10 Address Pointer in Scratchpad, Indexed. The

value in the D Field is used to address the first

Address Pointer.

AP=(D)

If multi level indirect addressing is required,

the value in the Address Pointer is the address

of another Address Pointer:

AP=(AP)

The value in the final Address Pointer is added

to the value in the X Register to form the .

effective operand address:

Y=(AP)+(X)

2.3.3 Instruction Description Format

The instruction descriptions which follow completely

describe each Memory Reference instruction used for Word

Mode processing. Each instruction description follows the

same format. The ADD instruction description, Para­

graph 2.3.4.1, is used to explain the format. Refer to that

description while reading the following explanation of the

format.

2.3.3.1 Title. Each instruction description contains a title

made up of the symbolic assembler code and short instruc­

tion description:

ADD ADD TO (A)

"ADD" is the symbolic code recognized by the ABLE and

OMEGA assemblers for operation code assembly. "ADD

TO (A)" is the short description of the instruction.

2.3.3.2 Format. Immediately following the title is a

drawing of the instruction bit pattern showing fixed bits

and variable fields. In the case of the ADD instruction,

bits 11 through 15 contain the fixed operation code that

uniquely defines the instruction. Bits 8, 9, and 10 define

addressing modes, and bits Othrough 7 contain the D Field

of the instruction.

2-9

2.3.3.3 Description. The bit format is followed by a

detailed description of the functions of the instruction.

The description contains both a word description stating

what the instruction does, and a symbolic description of the

functions of the instruction.

2.3.3.4 Machine Codes. There are eight different

memory addressing modes which may be used with most

memory reference instructions. The Machine Codes section

contains the hexadecimal code defining the Operation Code

and address mode for each memory addressing mode that

may be used with the instruction:

:88nn Direct, Scratchpad Y=(D)

The ":88nn" is the hexadecimal code that defines an ADD

instruction when Direct, Scratchpad memory addressing is

used. The "nn" defines the variable D Field of the instruc­

tion. "Direct, Scratchpad" describes the memory addressing

mode associated with the hexadecimal code. "Y=(D)" is a

symbolic representation of the method used to form the

effective address, Y, when that particular code is used.

2.3.3.5 Registers Affected. In this part of the instruction

description, registers that may be changed by the execution

of the instruction are listed along with the changes that may

take place. For purposes of this explanation, the memory

location that takes part in the operation is considered to be

a register and is listed if memory is changed.

Since the P Register is normally incremented during the

execution of an instruction, the P Register is not listed as a

register affected unless some condition may cause the

P Register to be modified in some way other than:

(P)+l -- P

2.3.3.6 Timing. The number of computer cycles required

to execute the instruction is defined by the timing descrip­

tion. For example, the ADD instruction requires two

machine cycles (one cycle to fetch the instruction and one

to fetch the operand) if no indirect addressing is used. A

cycle is defined as 1.6 microseconds. Therefore, the time

2-10

required to execute an ADD instruction if no indirect

cycles are involved is:

{1.6)(2)=3.2 microseconds

Add 1.6 microseconds for each level of indirect

addressing.

2.3.4 Memory Reference Instruction Descriptions

Detailed descriptions of ALPHA 16 and NAKED MINI 16

Memory Reference (Word Mode) instructions are contained

in the following paragraphs.

2.3.4.1

ADD ADD TO A

I REGISTER
16 14 13 12 11 10

Adds contents of effective memory location to contents of

A Register. Results stored in A:

(Y) + (A) -- A

Memory is unchanged. Previous contents of A are lost.

Machine Codes:

:88nn Direct, S.cratchpad Y=(D)

:8Ann Direct, Relative to P, Y=(P)+ 1 +(D)

Forward

:8Enn Direct, Relative to P, Y=(P)-(D)

Backward

:8Cnn Indexed Y=(D)+(X)

:89nn Indirect, Pointer in AP=(D), Y=(AP)

Scratchpad

:8Bnn Indirect, Pointer Relative to AP=(P)+ 1 +(D) ,

P, Forward Y=(AP)

:8Fnn Indirect, Pointer Relative to AP=(P)-(D) ,

P, Backward Y=(AP)

:8Dnn Indirect, Indexed, Pointer AP=(D), Y=(AP)

in Scratchpad +(X)

Registers Affected:

A Previous contents replaced by sum.

OV Set if arithmetic overflow occurs.

Timing: 2 + 1 for each indirect level.

2.3.4.2

SUB SUBTRACT FROM A

I REGISTER
3 2

D FIELD

Subtracts the contents of effective memory location from

contents of A Register. Results stored in A:

(A)-(Y) - A

Memory is unchanged. Previous contents of A are lost.

Machine Codes:

:90nn Direct, Scratchpad Y=(D)

:92nn Direct, Relative to P, Y=(P)+1 +(D)

Forward

:96nn Direct, Relative to P, Y=(P)-(D)

Backward

:94nn Indexed Y=(D)+(X)

:91nn Indirect, Pointer in AP=(D),

Scratchpad Y={AP)

:93nn Indirect, Pointer Relative to AP=(p)+ 1 +(D),

P, Forward Y=(AP)

:97nn Indirect, Pointer Relative to AP=(P)-(D),

P, Backward Y={AP)

:9Snn Indirect, Indexed, Pointer in AP={D) ,

Scratchpad Y=(AP)+(X)

Registers Affected:

A Previous contents replaced by difference

OV Set if arithmetic overflow occurs.

Timing: 2+1 for each indirect level.

2.3.4.3

IMS INCREMENT MEMORY AND SKIP ON ZERO

RESULT

I REGISTER
15 14 13 12 11 10 3 2

D FIELD

The contents of effective memory location are incremented

by one count and replaced. If the incrementing causes the

result to become zero, a one place skip occurs:

(Y)+1 - Y

If (Y)+ 1 'f 0, then (P)+ 1 - P

If (Y)+ 1 = 0, then (P)+2 - P

Overflow is set if (Y)+ 1 = :8000.

Not:,: IMS is often used as an interrupt instruction. When

IMS is used as an interrupt instruction, the skip will not

occur when (Y)+ 1 = 0, and OV will not be set when

(Y)+ 1 = :8000. An Echo is generated to the device request­

ing the interrupt when (Y)+ 1 = O.

Machine Codes:

:D8nn Direct, Scratchpad Y=(D)

:DAnn Direct, Relative to P, Y=(P)+ 1 +(D)

Forward

:DEnn Direct, Relative to P, Y=(P)-(D)

Backward

:DCnn Indexed Y=(D)+(X)

:D9nn Indirect, Pointer in AP=(D), Y={AP)

Scratchpad

:DBnn Indirect, Pointer relative to AP=(p)+ 1 +(D) ,

P, Forward Y={AP)

:DFnn Indirect, Pointer Relative to AP=(p)-(D) ,

P, Backward Y={AP)

:DDnn Indirect, Indexed, Pointer AP=(D) ,

in Scratchpad Y=(AP)+(X)

2-11

Registers Mfected:

Memory The contents of Yare incremented and replaced.

P

OV

P is incremented twice if a skip condition occurs.

OV is set if an arithmetic overflow occurs.

Timing: 2+ 1 for each indirect level.

2.3.4.4

LDA

Note: When executed as an interrupt instruction,

execution time is 2-1/2 cycles. "(All interrupt in­

structions are stretched 1/4 cycle, and IMS is

stretched an additional 1/4 cycle.)

LOAD A

I REGISTER
16 14 13 12 11 10 9 8 3 2

D FIELD

Loads the contents of the effective memory location into

the A Register:

(Y) - A

Memory is unchanged. Previous contents of A are lost.

Machine Codes:

:BOnn Direct, Scratchpad Y=(D)

:B2nn Direct, Relative to P, Y=(P)+ 1 +(D)

Forward

:B6nn Direct, Relative to P, Y=(P)-(D)

Backward

:B4nn Indexed Y=(D)+(X)

:Blnn Indirect, Pointer in AP=(D), Y=(AP)

Scratchpad

:B3nn Indirect, Pointer Relative to AP=(P)+ 1 +(D),

P, Forward Y=(AP)

:B7nn Indirect, Pointer Relative to AP=(P)-(D),

P, Backward Y=(AP)

:B5nn Indirect, Indexed, Pointer in AP=(D) ,

Scratchpad Y=(AP)+(X)

2-12

Registers Affected:

A Previous contents replaced by (Y).

Timing: 2+ 1 for each indirect level.

2.3.4.5

LDX LOAD X

I REGISTER
16 14 13 12 11 10 9 6 6 3 2

Loads the contents of the effective memory location into

the X Register:

(Y) - X

Memory is unchanged. Previous contents of X are lost.

Machine Codes:

: EOnn Direct, Scratchpad Y=(D)

:E2nn Direct, Relative to P, Y=(P)+ 1 +(D)

Forward

:E6nn Direct, Relative to P, Y=(P)-(D)

Backward

:E4nn Indexed Y=(D)+(X)

:Elnn Indirect, Pointer in AP=(D), Y=(AP)

Scratchpad

:E3nn Indirect, Pointer Relative to AP=(P)+ 1 +(D),

P, Forward Y=(AP)

:E7nn Indirect, Pointer Relative to AP=(P)-{D),

P, Backward Y=(AP)

:E5nn Indired, Indexed, Pointer AP=(D),

in Scratchpad Y=(AP)+(X)

Registers Mfected:

X Previous contents replaced by (Y).

Timing: 2+1 for each indirect level.

2.3.4.6

STA STORE A

I REGISTER
3 2

D FIELD

Stores contents of the A Register into the effective

memory location:

(A) - Y

A is unchanged. Previous contents of memory are lost.

Machine Codes:

:98nn Direct, Scratchpad Y=(D)

:9Ann Direct, Relative to P, Y=(p)+ 1 +(D)

Forward

:9Enn Direct, Relative to P, Y=(P)-(D)

Backward

:9Cnn Indexed Y=(D)+(X)

:99nn Indirect, Pointer in AP=(D), Y=(AP)

Scratchpad

:9Bnn Indirect, Pointer Relative to AP=(P)+ 1 +(D),

P, Forward Y=(AP)

:9Fnn Indirect, Pointer Relative to AP=(P)-(D) ,

P, Backward Y=(AP)

:9Dnn Indirect, Indexed, Pointer AP=(D),

in Scratchpad Y=(AP)+(X)

Registers Affected:

Memory Previous contents of Y replaced by (A).

Timing: 2+ 1 for each indirect level.

2.3.4.7

STX STORE X

I REGISTER
15 14 13 12 11 10

D FIELD

Stores contents of the X Register into the effective

memory location:

(X) -- Y

X is unchanged. Previous contents of memory are lost.

Machine Codes:

:E8nn Direct, Scratchpad Y=(D)

:EAnn Direct, Relative to P, Y=(P)+ 1 +(D)

Forward

:EEnn Direct, Relative to P, Y=(P)-(D)

Backward

:ECnn Indexed Y=(D)+(X)

:E9nn Indirect, Pointer in AP=(D), Y=(AP)

Scratchpad

:EBnn Indirect, Pointer Relative to AP=(P)+ 1 +(D),

P, Forward Y=(AP)

:EFnn Indirect, Pointer Relative to AP=(P)-(D) ,

P, Backward Y=(AP)

:EDnn Indirect, Indexed, Pointer AP=(D) ,

in Scratchpad Y=(AP)+(X)

Registers Affected:

Memory Previous contents of Y replaced by (X).

Timing: 2+1 for each indirect cycle.

2.3.4.8

EMA EXCHANGE MEMORY AND A

I REGISTER
15 14 13 12 11 10

D FIELD

Simultaneously stores contents of A Register in the effec­

tive memory location and loads contents of effective

memory location into the A Register:

(Y) - A

(A) - Y

No data is lost when this instruction is executed.

2-13

Machine Codes:

:B8nn Direct, Scratchpad Y=(D)

:BAnn Direct, Relative to P, Y=(P)+ 1 +(D)

Forward

:BEnn Direct, Relative to P, Y=(P)-(D)

Backward

:BCnn Indexed Y=(D)+(X)

:B9nn Indirect, Pointer in AP=(D), Y=(AP)

Scratchpad

:BBnn Indirect, Pointer Relative to AP=(P)+ 1 +(D),

P, Forward Y=(AP)

:BFnn Indirect, Pointer Relative to AP=(P)-(D),

P, Backward Y=(AP)

:BDnn Indirect, Indexed, Pointer AP=(D) ,

in Scratchpad Y=(AP)+(X)

Registers Affected:

A Previous contents of A are replaced by previous

contents of Y.

Memory Previous contents of Yare replaced by previous

contents of A.

Timing: 2+ 1 for each indirect level.

2.3.4.9

AND AND TO A

I REGISTER
115 14 13 12 11 10 9 B 6 5 3 2

D FIELD

Performs the AND Oogical product) of the contents of the

effective memory location and the contents of the A Regis­

ter. Results stored in A:

(Y) 1\ (A) - A

Memory is unchanged. Previous contents of A are lost.

2-14

Machine Codes:

:80nn Direct, Scratchpad Y=(D)

:82nn Direct, Relative to P, Y=(P)+ 1 +(D)

Forward

:86nn Direct, Relative to P, Y={P)-(D)

Backward

:84nn Indexed Y=(D)+(X)

:81nn Indirect, Pointer in AP=(D), Y=(AP)

Scratchpad

:83nn Indirect, Pointer Relative to AP=(P)+ 1 +(D),

P, Forward Y=(AP)

:87nn Indirect,Pointer Relative to AP=(P)-(D),

P, Backward Y=(AP)

:85nn Indirect ,Indexed, Pointer AP=(D) ,

in Scratchpad Y=(AP)+(X)

Registers Affected:

A Previous contents replaced by logical product.

Timing: 2+ 1 for each indirect level.

2.3.4.10

lOR INCLUSIVE OR TO A

I REGISTER
15 14 13 12 11 10 9 6 5 3 2

D FIELD

Inclusively OR's the contents of the effective memory

location with contents of the A Register. The result is

stored inA:

(Y) V (A) - A

Memory is unchanged. The previous contents of A are lost.

Machine Codes:

:AOnn Direct, Scratchpad

:A2nn Direct, Relative to P,

Forward

Y=(D)

Y=(P)+I+(D)

:A6nn Direct, Relative to P, Y=(P)-(D)

Backward

:A4nn Indexed Y=(D)+(X)

:Alnn Indirect, Pointer in AP=(D), Y=(AP)

Scratchpad

:A3nn Indirect, Pointer Relative to AP=(P)+ 1 +(D),

P, Forward Y=(AP)

:A7nn Indirect, Pointer Relative to AP=(P)-(D),

P, Backward Y=(AP)

:A5nn Indirect, Indexed, Pointer AP=(D),

in Scratchpad Y=(AP)+(X)

Registers Affected:

A Previous contents of A are replaced by the result

of the Inclusive OR.

Timing: 2+ 1 for each indirect level.

2.3.4.11

XOR EXCLUSIVE OR TO A

I REGISTER
15 14 13 12 11 10 9 3 2

Performs the Exclusive OR of the contents of the effective

memory location and the A Register. The result is stored

in A:

(Y) V (A) -- A

Memory is unchanged. The previous contents of A are lost.

Machine Codes:

:A8nn Direct, Scratchpad Y=(D)

:AAnn Direct, Relative to P, Y=(P)+I+(D)

Forward

:AEnn Direct, Relative to P, Y=(P)-(D)

Backward

:ACnn Indexed Y=(D)+(X)

:A9nn Indirect, Pointer in AP=(D), Y=(AP)

Scratchpad

:ABnn Indirect, Pointer Relative to AP=(P)-(D) ,

P, Forward Y=(AP)

:AFnn Indirect, Pointer Relative to AP=(P)-(D),

P, Backward Y=(AP)

:ADnn Indirect, Indexed, Pointer AP=(D),

in Scratchpad Y=(AP)+(X)

Registers Affected:

A Previous contents of A are replaced by the result

of the Exclusive OR.

Timing: 2+ 1 for each indirect level.

2.3.4.12

CMS COMPARE AND SKIP IF HIGH OR EQUAL

I REGISTER
3 2

D FIELD

Compares contents of effective memory location with con­

tents of A Register and tests for A equal to, less than or

greater than memory.

• If A less than memory, next instruction in

sequence is executed (no skip). (A) < (y), then

(P)+l -- P

• If A greater than memory, a one-place skip

occurs. (A) > (Y), then (P)+2 -- P

• If A equal to memory, a two-place skip occurs.

(A) = (Y), then (P)+3 -- P

CMS is not interruptable if the skip is executed. (A) and

(Y) are unchanged.

Machine Codes:

: DOnn Direct, Scratchpad Y=(D)

:D2nn Direct, Relative to P, Y=(P)+l +(D)

Forward

:D6nn Direct, Relative to P, Y=(P)-(D)

Backward

2-15

:D4nn Indexed Y=(D)+(X)

:D1nn Indirect, Pointer in AP=(D), Y=(AP)

Scratchpad

:D3nn Indirect, Pointer Relative to AP=(P)+ 1 +(D),

P, Forward Y=(AP)

:D7nn Indirect, P<:>inter Relative to AP=(P)-(D),

P, Backward Y=(AP)

:DSnn Indirect, Indexed, Pointer AP=(D),

in Scratch pad Y=(AP)+(X)

Registers Affected:

P Incremented normally if (A) < (Y).

Incremented twice if (A) > (Y).

Incremented a third time if (A) = (Y).

Timing: 2+1 for each indirect level.

2.3.4.13

SCN

15 14 13 12 11 10

SCAN MEMORY

I REGISTER

1 I 1 I 0 I 0 i 1 I 1 I 0 I 1 I D FIELD

SCAN causes a specified area in memory to be read and

compared with the contents of the A Register. If a match

is found within the area being scanned, the computer ter­

minates the scan and skips one instruction. If no match is

found, the computer terminates the instruction after all

words have been compared and executes the next sequential

instruction. The Scan instruction compares each full

memory word with (A) if OV is reset (OV=O), and com­

pares bits 8-15 of the memory word with bits 8-15 of (A)

if OV is set (OV= 1). The nJmber of words to be scanned

2-16

is specified by a word count in the X Register, and the base

address (minus one) of the area to be scanned is contained

in an indirect Address Pointer in Scratchpad. The D field of

the Scan instruction contains the address of the Address

Pointer. Therefore, the value assignments are:

A = Compare value

X = Word Count

(D) = Address of Address Pointer in Scratchpad: AP

(AP) = Base Address-1

(OV) = Compare indicator: 0 = compare full word.

1 = compare bits 8-15 only.

The X Register is decremented for each word scanned.

The first word to be scanned is addressed through Indirect,

Indexed addressing. The scan is performed from the

highest address to the lowest. The Scan is terminated when

one of two conditions occurs:

1. A match is found

2. All words scanned and no match found

If no match is found, the computer executes the next

sequential instruction. If a match is found, the computer

skips one instruction

If a match is found, the X Register contains tne number of

words remaining to be scanned, therefore the remainder of

the table can be scanned simply by executing the SCN

instruction again. The location of the word where the

match was found is:

Y = (AP) + (X) +1

The following is a flow chart of the SCN instruction.

READ SCAN
-·INSTRUCTION TO I

READ ADD RESS
POINTER: AP

AP INDI RECT?

NO

Y = (AP) + (X),
Y-+-M

(X) = O?

NO

READ (Y)

(Y) = (A)?

NO

(X) - I-+-X

FORM NEW Y:
(M) - I-+-M

SCN INSTRUCTION FLOW CHART

YES

YES

YES

(P)-M

(P) + I-+-M

(X) - I-X

THE SCAN INSTRUCTION IS READ
AND LOADED INTO THE I REGISTER.
THE P COUNTER IS INCREMENTED TO
POINT TO THE NEXT INSTRUCTION.

INDIRECT ADDRESS CYCLES ARE
PERFORMED. THE SCAN INSTRUCTION
USES AT LEAST ONE LEVEL OF
INDIRECT ADDRESSING.

THE EFFECTIVE ADDRESS OF THE FIRST
WORD TO BE SCANNED, Y, IS FORMED BY
INDIRECT, INDEXED ADDRESSING. THIS
IS THE HIGHEST ADDRESS TO BE SCANNED.

THE WORD COUNT IS TESTED FOR ZERO.
IF WC ¢. 0, THE SCAN PROCEEDS.

THE WORD TO BE COMPARED IS READ.
FROM MEMORY.

THE WORD FROM MEMORY IS COMPARED
WITH THE CONTENTS OF THE A REGISTER.

IF (A) ::t: (Y), THE X REGISTER IS
DECREMENTED.

THE M REGISTER IS DECREMENTED
TO POINT TO THE NEXT WORD TO BE
COMPARED, AND THE INSTRUCTION
LOOPS BACK TO THE (X) = 0 TEST.

IF (X) = 01, THE CONTENTS OF
PARE TR,ANSFERED TO M,
AND THE INSTRUCTION
TERMINATES.

IF (Y) = (A), (P) ARE INCREMENTED
TO CAUSE A ONE-PLACE SKIP, AND
(X) ARE DECREMENTED SO THAT
(X) + (AP) WILL POINT 10 THE
NEXT WORD TO BE SCANNED.
THE INSTRUCTION TERMINATES.

2-17

Machine Codes:

:DCnn Indirect, Indexed AP=(D),

Y=(AP)+(X)

Register Status:

A Contains compare key

x
OV

P

Contains number of words remaining to be scanned.

Compare indicator: full word (OV=O) or upper

byte (OV=I)

Incremented once (next instruction) if no compare

found: (P)+ 1 P

Incremented twice (skip one instruction) if com-

pare found: (P)+2 P

Timing: 2 + 1 for each word scanned

2.3.4.14

JMP JUMP UNCONDITIONAL

I REGISTER
15 14 13 12 11 10 - 9 8 3 2

The P counter is loaded with the value of the effective

memory address, causing an unconditional branch to that

address:

Y-P

The previous contents of P are lost, therefore there is no

return linkage to the point from which the JMP occurred.

Machine Codes:

:FOnn Direct, Scratchpad Y=(D)

:F2nn Direct, Relative to P, Y=(P)+ 1 +(D)

Forward

:F6nn Direct, Relative to P, Y=(P)-(D)

Backward

:F4nn Indexed Y=(D)+(X)

:Flnn Indirect, Pointer in AP=(I», Y=(AP)

Scratchpad

:F3nn Indirect, Pointer Relative to AP=(P)+ 1 +(I»,

P, Forward Y=(AP)

2-18

:F7nn Indirect, Pointer Relative to AP=(P)-(D) ,

P, Backward Y=(AP)

:F5nn Indirect, Indexed, Pointer AP=(D) ,

in Scratchpad Y=(AP)+(X)

Registers Affected:

P The previous contents of P are replaced by Y.

Timing: 1 + 1 for each indirect level

2.3.4.15

JST JUMP AND STORE

I REGISTER
15 14 13 12 11 10 9

o FIELD ~

The contents of the P counter (P + I) are stored in the

effective memory address. The P counter is changed after

the store to contain the effective memory address plus

one:

(P) + 1 - Y

Y+I - ... P

This instruction provides an unconditioned jump to another

location in memory, and stores a pointer to provide a return

to the location following the JST instruction.

Machine Codes:

:F8nn Direct, Scratchpad Y=(D)

:FAnn Direct, Relative to P, Y=(P)+ 1 +(D)

Forward

:FEnn Direct, Relative to P, Y=(P)-(D)

Backward

:FCnn Indexed Y=(D)+(X)

:F9nn Indirect, Pointer in AP=(I», Y=(AP)

Scratchpad

:FBnn Indirect, Pointer Relative to AP=(P)+ 1 +(D) ,

P, Forward Y=(AP)

:FFnn Indirect, Pointer Relative to AP=(P)-(I» ,

P, Backward Y=(AP)

:FDnn Indirect, Indexed, Pointer

in Scratchpad

AP=(D),

Y=(AP)+(X)

Registers Affected:

Memory Previous contents of Y replaced by (P)+ 1.

P Previous contents of P replaced by Y+ 1.

Timing: 2+ 1 for each indirect level.

2.4 MEMORY REFERENCE INSTRUCTIONS: BYTE

MODE

2.4.1 General

When the ALPHA 16 or NAKED MINI 16 computer is set

for Byte Mode processing, Memory Reference instructions

perform their logical or airthmetic operations using byte

operands instead of word operands. When in Byte Mode,

all of the memory reference instructions use byte operands

with four exceptions: JMP, JST, IMS, and SCN. Even in

Byte Mode, these instructions use word operands.

2.4.1.1 Byte Operands. General concepts of byte mode

processing are discussed in Part 1.3.9 of Section 1. Several

important points are illustrated in that discussion:

1.

2.

3.

When a byte operand is read from memory, the

byte is right justified within the operand word

and the upper eight bits of the operand word are

set to zeros.

Byte Mode affects the operand cycle only. Once

the operand is read from memory, all other

operations within the computer are performed the

same as for full 16-bit words. In the case of byte

operands, only the eight least significant bits of the

operand word contain significant information.

A byte operand is an unsigned, absolute magnitude

value for arithmetic operations; i.e., byte operands

are always handled as positive values. This is true

because the upper eight bits of a byte operand

word always contain all zeros.

4. For arithmetic operations, carries are ~ndled

as if both values involved are full 16-bit words.

Overflow will be set only if an arithmetic opera­

tion causes a full word arithmetic overflow; i.e.,

a carry from bit 7 to bit 8 of the Adder will not

set the Overflow indicator. Overflow is set by

the same conditions as for Word Mode.

5. Register store operations store the lower byte

(eight least significant bits) of the register in the

effective byte address.

2.4.1.2 Excluded Instructions. There are four memory

reference instructions which are not affected by Byte

Mode. These instructions always use a full word operand

regardless of whether or not the computer is set for Byte

Mode. The four excluded instructions are:

1. IMS

2. SCN

3. JMP

4. JST

IMS is normally used to incre­

ment counters for loops and

timers, or indirect addresses for

stepping through tables. Byte

operands for IMS would be a

limitation rather than an asset.

Scan Memory is normally used

for full word searches. It is used

extensively in program debug

operations when searching for

program branches, etc.

The unconditional Jump instruc­

tion generates an instruction

address rather than an operand

address. Instruction addresses

are always full word addresses.

The Jump and Store instruction

performs an operand cycle when

it stores the contents of the

P Register in the effective

address. The full value of the

2-19

•

2.4.2 Byte Addressing

P Register must be stored

for the instruction to be

meaningful, therefore this

instruction is excluded from

Byte Mode.

The ALPHA 16 and NAKED MINI 16 computers have a

maximum memory capacity of 64K bytes (32K words). A

16-bit address is required to address the maximum memory

capacity in Byte Mode. When the computer is set for Byte

Mode processing, the computer assumes that all operand

addresses presented to memory by byte processing instruc­

tions are byte addresses. The computer assumes that the

address is in the format shown in Figure 1-11.

2.4.2.1 Memory Reference Instruction Format. Fig-

ure 2-4 illustrates the format of memory reference instruc­

tions. The format for Byte Mode instructions is the same

as for word mode instructions, except for the interpretation

of the M Field of the instruction. There is nothing in the

format of the instruction that distinguishes-a memory ref­

erence instruction executed in Byte Mode from a memory

reference instruction executed in Word Mode. The param­

eter that causes the computer to address a byte operand

rather than a word operand is the Byte Mode indicator. If

the Byte Mode indicator is set, the computer addresses byte

operands. If the Byte Mode indicator is reset, the computer

addresses word operands.

2.4.2.2 Direct Byte Addressing. Direct memoryaddress­

ing in Byte Mode is not the same as for Word Mode

addressing. The interpretation of the M Field is handled

differently. Direct addressing is specified when 1=0

(Bit 8=0). Direct memory addressing modes are explained

below and are summarized in Figure 2-4: (Figure 2-S

illustrates the memory areas covered by each addressing

mode.)

M=OO Byte Operand in Scratchpad. The D Field of the

instruction contains the address of the byte

operand in the scratchpad area of memory:

2-20

Y{byte)={D)

Since the D Field contains only eight bits, the

address will have the form:

Y{byte)=OOOO 0000 xxxx xxxx

(D) are right justified in the address word, and the

total word is used as a byte address to memory.

Since an 8-bit address can address up to 2S 6 byte

locations, direct Scratchpad addressing can

address the first 2S 6 bytes in memory (contained

in the first 128 words in memory).

M=OI, Byte Operand Relative to P, Forward. Relative

M=11 addressing uses a word address in the P Register

along with a word address in the D Field of the

instruction to form the address of the word con­

taining the byte to be addressed:

Y{word)={P)+ 1 +(D)

The address thus formed addresses the word, and

the M Field of the instruction specified which byte

in the word is to be used:

M=OI Byte 0 (left Byte)

M=ll Byte 1 (right Byte)

It is important to note that the address generated

by relative addressing is a word address rather than

a byte address. The M Field of the instruction

specifies which byte of the word is being addressed.

The address generated has the form:

{D)word = 0000 0000 xxxx xxxx

(P)+1 word = Oxxx xxxx xxxx xxxx

Y{word) = Oxxx xxxx xxxx xxxx

Note. Byte addressing does not permit direct

addressing relative to P, backward.

M= 10 Indexed. The byte operand address is formed by

adding the byte address value in the D Field to the

byte address value in the X Register.

Field

OpCode

M Field (Mode)

I Bit

D Field

Addressing Modes:

MM I

Direct Addressing:

00 0

01 0

11 0

10 0

Indirect Addressing:

00

01

11

10

I REGISTER

16 14 13 12 11 10 9 B 3 2

D FIELD

... OP ;OOE -1- L INOIRECT TAG

MODE CODE

Bits Definition

II-IS Operation Code. Defines the specific instruction.

9, 10 Mode Code. Used in conjunction with the Indirect Tag

8

0-7

Scratchpad

Relative to P, Forward; Byte 0

Relative to P, Forward, Byte 1

Indexed

AP in Scratchpad

AP Relative to P, Forward

AP Relative to P, Backward

AP in Scratchpad, Indexed

to define the memory addressing mode to be used.

Indirect Tag. Specifies direct or indirect addressing.

Address Field. Base address used to form byte operand

address or address pointer address.

Y(byte)={D)

Y(word)={P)+ 1 +(D)

Y(word)={P)+ 1 +(D)

Y(byte)={D)+{X)

AP{word)={D), Y{byte)={AP)

AP{word)={P)+ 1 +(D), Y{byte)=(AP)

AP{word)={P)-{D), Y{byte)={AP)

AP{word)={D), Y{byte)=(AP)+{X)

Figure 2-4. Memory Reference Instruction Format: Byte Mode

2-21

2-22

BYTE WORD
ADD RESS ,..-______ M_E_M_O_R_Y _____ ._ ADD RESS

(X) + 255 ~ - - - - - - - - - - - - - (X) + 255
2

INDEXED: 256 BYTES
(M = 10) Y (BYTE) = (X) + (0)

BYTE LOCATIONS (X) ~(X) + (D)
WORD LOCATIONS (X)/2":«X) + (D))/2

(X) ~ - - - - - - ~ - - - - - - - (X)/2

2 UP) + 1 + 255) ~ - - - - - - - - - - - - - _. - (P) + 1 + 255
RELATIVE TO P1 FORWARD: 512 BYTES
(M = 01 : BYTEO, M = 11 : BYTE 1)
Y(WORD)=(P)+1+(D) ..

BYTE LOCATIONS 2 ((P) + 1)-.. ·2 «P) + 1 + (D))
. WORD LOCATIONS (P) + 1~(P) + 1 + (0)

2 «P) + 1) I- - - - - - - - - - - - - - - - (P) + 1

:FF ~ - - - - - - - - - - - - - - - - : 7F
SCRATCHPAD: 256 BYTES
(M = 00), Y (BYTE) = (D)
BYTE LOCATIONS 0~255

'WORD LOCATIONS 0~127
:00 --------------.-~ : 00

Figure 2-5. Direct Memory Addressing: Byte Mode

Y(byte)=(D)+(X)

The address generated has the form:

(D)byte = 0000 0000 xxxx xxxx

(X)byte = xxxx xxxx xxxx xxxx

Y(byte) = xxxx xxxx xxxx xxxx

This mode of addressing forms a 16-bit

address capable of addressing any byte in

memory. Since the X Register may be

easily incremented or decremented, this

mode is especially useful for stepping

through segments of memory where data

is packed two bytes per word.

2.4.2.3 Indirect Byte Addressing. If 1=1 (Bit 8=0,

Indirect addressing is used to address a byte operand.

Indirect byte addressing is limited to single level indirect

addressing; i.e., there is only one indirect Address Pointer

between the instruction and the byte operand.

For indirect byte addressing, the M Field of the memory

reference instruction is interpreted the same as for indirect

word addressing. The addressing mode specified by the

M Field is used to form the address of an Address Pointer,

AP, in memory. The address of the Address Pointer is a

full word address, since the Address Pointer must have a

full 16-bit capacity. The Address Pointer contains a btye

address in byte address format. The byte address in the

Address Pointer may be used directly as an effective

memory address, or it may be modified by the contents of

the X Register. Figure 2-6 illustrates Indirect Byte

addressing.

M=Ol Address Pointer Relative to P, Forward.

The value in the D Field of the Memory

Reference instruction is added to the

contents of P, + 1, to form the address

of the Address Pointer:
The addressing modes used for Indirect Byte addressing are

as follows:

M=OO Address Pointer in Scratchpad. The

D Field of the Memory Reference instruc­

tion contains the word address of an

Address Pointer in Scratchpad:

AP(word)=(D)

The Address Pointer contains the byte

address of the byte operand:

Y(byte)=(AP)

M=l1

BYTE OPERAND

BYTE OPERAND

INSTRUCTION: ADDRESS

ADDRESS POINTER: BYTE

AP(word)=(P)+l +(D)

The Address Pointer contains the byte

address of the byte operand:

Y(byte)=(AP)

Address Pointer Relative to P, Back­

ward. The value in the D Field of the

Memory Reference instruction is sub­

tracted from the value in the P Register

CD

CD SCRATCHPAD OR RELATIVE ADDRESSING IS USED TO ADDRESS A FULL WORD ADDRESS
POINTER.

CD IF INDEXING IS NOT REQUIRED, THE ADDRESS POINTER CONTAINS THE EFFECTIVE 16-BIT
BYTE ADDRESS.

@ IF INDEXING IS REQUIRED, THE BYTE ADDRESS IN THE ADDRESS POINTER IS ADDED TO THE
VALUE IN THE X REGISTER TO FORM THE EFFECTIVE BYTE ADDRESS.

Figure 2-6. Indirect Addressing: Byte Mode

2-23

M=lO

to form the word address of the Address

Pointer:

AP(word)=(P}(D)

The Address Pointer contains the byte

~~dress. of the byte operand.

Address Pointer in Scratchpad, Indexed.

The D Field of the Memory Reference

instruction contains the word address of

the Address Pointer in Scratchpad:

AP(word)=(D)

The contents of the Address Pointer are

added to the contents of the X Register

to form the effective byte operand

address:

Y(byte)=(AP)+(X)

2.4.3 Instruction Descriptions

Memory reference instruction functions, when executed in

Byte Mode, are explained in the following paragraphs. The

description format is the same as for the instruction descrip­

tions explained in Part 2.3.3.

2.4.3.1

ADDB ADD BYTE TO (A)

I REGISTER
16 14 13 12 11 10 9

D FIELD

Adds the absolute magnitude of effective byte to contents

of A Register. Results stored in A:

(Y)byte+(A) - A

The byte is right justified in the operand word and added

to the contents of the A register. The addition is a full

16 bit add. OV is set if arithmetic overflow occurs.

2-24

Machine Codes:

Direct Addressing:

:88nn Scratchpad

:8Ann Relative to P, Forward;

Byte 0.

:8Enn Relative to p, Forward,

Byte 1

:8Cnn Indexed

Indirect Addressing:

:89nn AP in Scratchpad

:8Bnn AP Relative to P,

Forward

:8Fnn AP Relative to P,

Backward

:8Dnn AP in Scratchpad,

Indexed

Registers Mfected:

Y(byte)=(D)

Y(word)=(p)+ 1 +(D)

Y(word)=(P)+l +(D)

Y(byte)=(D)+(X)

AP(word)=(D),

Y(byte)=(AP)

AP(word)=(P)+l +(D),

Y(byte)=(AP)

AP(word)=(P}(D),

Y(byte)=(AP)

AP(word)=D,

Y(byte)=(AP)+(X)

A Previous contents replaced by sum.

OV Set if arithmetic overtlow occurs.

Timing: 2+1 if indirect.

2.4.3.2

SUBB SUBTRACT BYTE FROM (A)

I REGISTER
16 14 13 12 11 lQ 9 e 3 2

o FIELD

Subtracts the absolute magnitude of effective byte from

contents of A Register. Results stored in A:

(A)word-(Y)byte - A

The byte operand is right justified in the operand word and

subtracted from the contents of the A Register. OV is set

if airthmetic overflow occurc;.

Machine Codes:

Direct Addressing:

:90nn Scratchpad Y(byte)=(D)

:92nn Relative to P, Forward; Y(word)=(P)+l +(D)

Byte 0

:96nn Relative to P, Forward, Y(word)=(P)+ 1 +(D)

Byte 1

:94nn Indexed Y(byte)=(D)+(X)

Indirect Addressing:

:91nn AP in Scratchpad AP(word)=(D),

Y(byte)=(AP)

:93nn AP Relative to P, AP(word)=(P)+ 1 +(D),

Forward Y(byte)=(AP)

:97nn AP Relative to P, AP(word)=(P)-(D),

Backward Y(byte)=(AP)

:95nn AP in Scratchpad, AP(word)=(D),

Indexed Y(byte)=(AP)+(X)

Registers Mfected:

A

OV

Previous contents replaced by difference.

Set if arithmetic overflow occurs.

Timing: 2+1 if indirect.

2.4.3.3

LDAB LOAD A

I REGISTER
3 2

D FIELD

Loads the contents of the effective byte into the lower half

of the A Register. The upper half of the A Register is set to

zeros:

xxxx xxxx
A = 0000 0000 ----

Byte

The operation is:

(Y)byte - A

Memory is unchanged. The previous contents of A are lost.

Machine Codes:

Direct Addressing:

: BOnn Scratchpad

:B2nn Relative to P, Forward;

Byte 0

:B6nn Relative to P, Forward,

Byte 1

:B4nn Indexed

Indirect Addressing:

Y(byte)=(D)

Y(word)=(P)+ 1 +(D)

Y(word)=(P)+ 1 +(D)

Y(byte)=(D)+(X)

:Blnn AP in Scratchpad AP(word)=(D),

Y(byte)=(AP)

:B3nn AP Relative to P, Forward AP(word)=(P)+l +(D),

Y(byte)=(AP)

: B7nn AP Relative to P,

Backward

:B5nn AP in Scratchpad,

Indexed

Registers Affected:

AP(word)=(P)-(D),

Y(byte)=(AP)

AP(word)=(D),

Y(byte)=(AP)+(X)

A Previous contents replaced by (Y)byte

Timing: 2+ 1 if indirect.

2.4.3.4

LDXB LOAD X

I REGISTER
15 14 13 12 11 10 9 8 3 2

D FIELD

2-25

Loads the contents of the effective byte into the lower half

of the X Register. The upper half of the X Register is set to

zeros:

xxxx xxxx
X= 0000 0000

Byte

The operation is:

(Y)byte - X

Memory is unchanged. The previous contents of X are lost.

Machine Codes:

Direct Addressing:

: EOnn Scratchpad

:E2nn Relative to P, Forward;

Byte 0

:E6nn Relative to P, Forward,

Byte 1

:E4nn Indexed

Indirect Addressing:

:Elnn AP in Scratchpad

:E3nn AP Relative to P,

Forward

:E7nn AP Relative to P,

Bac,kward

:E5nn AP in Scratchpad,

Indexed

Registers Mfected:

Y(byte)=(D)

Y(word)=(P)+ 1 +(D)

Y(word)=(P)+1 +(D)

Y(byte)=(D)+(X)

AP(word)=(D),

Y(byte)=(AP)

AP(word)=(P)+1 +(D),

Y(byte)=(AP)

AP(word)=(P)-(D),

Y (byte)=(AP)

AP(word)=(D),

Y(byte)=(AP)+(X)

X Previous contents replaced by (Y) byte.

Timing: 2+1 if indirect.

2.4.3.5

STAB STORE A

I REGISTER
15 14 13 12 11 10 9 8 6 5 3 2

D FIELD

2-26

Stores contents of the lower half of the A Register into

the effective byte location:

(A)0-7 - Y(byte)

A is unchanged. lhe previous contents of the effective

byte location are lost.

Machine Codes:

Direct Addressing:

:98nn Scratchpad

:9Ann Relative to P, Forward;

Byte 0

:9Enn Relative to P, Forward,

Byte 1

:9Cnn Indexed

Indirect Addressing:

:99nn AP in Scratchpad

:9Bnn AP Relative to P,

Forward

:9Fnn AP Relative to P,

Backward

:9Dnn AP in Scra tchpad,

Indexed

Registers Mfecte~:

Y (byte)=(D)

Y(word)=(P)+ 1 +(D)

Y(word)=(P)+ 1 +(D)

Y (byte)=(D)+(X)

AP(word)=(D),

Y (byte)=(AP)

AP(word=(P)+ 1 +(D),

Y(byte)=(AP)

AP(word)=:(P)-(D),

Y(byte)=(AP)

AP(word)==(D),

Y (byte)=(AP)+(X)

Memory Previous contents of effective byte location

replaced by contents of A Register, bits 0-7.

Timing: 2+1 if indirect.

2.4.3.6

STXB STORE X

I REGISTER
15 14 13 12 11 10 9 8 6 5 3 2

o FIELD

Stores contents of the lower half of the X Register into

the effective byte location.

]

(X)0-7 - Y(byte)

X is unchanged. The previous contents of the effective

byte location are lost.

Machine Codes:

Direct Addressing:

:E8nn Scratchpad Y(byte)=(D)

:EAnn Relative to P, Forward; Y(word)=(P)+1 +(D)

Byte 0

:EEnn Relative to P, Forward, Y(word)=(P)+ 1 +(D)

Byte 1

: ECnn Indexed Y(byte)=(D)+(X)

Indirect Addressing:

:E9nn AP in Scratchpad AP(word)=(D),

Y(byte)=(AP)

:EBnn AP Relative to P, AP(word)=(P)+1 +(D),

Forward Y(byte)=(AP)

:EFnn AP Relative to P, AP(word)=(P)-(D),

Backward Y(byte)=(AP)

:EDnn AP in Scratchpad, AP(word)=(D),

Indexed Y(byte)=(AP)+(X)

Registers Mfected:

Memory Previous contents of effective byte location

replaced by contents of X Register, bits 0-7.

Timing: 2+1 if indirect.

2.4.3.7

EMAB EXCHANGE MEMORY AND A

I REGISTER
16 14 13 12 11 10 9 8 7 6 5 4 3 2

Simultaneously stores contents of the lower half of the

A Register in the effective byte location and loads contents

of effective byte location into the lower half of the A Regis­

ter is unconditionally set to zeros:

(A)0-7 - Y(byte)

(Y)byte - AO-7

o - A8-15

The previous contents of the upper half of the A Register

(bits 8-15) are lost.

Machine Codes:

Direct Addressing:

:B8nn Scratchpad

:BAnn Relative to P, Forward;

Byte 0

:BEnn Relative to P, Forward,

Byte 1

:BCnn Indexed

Indirect Addressing:

: B9nn AP in Scratchpad

:BBnn AP Relative to P,

Forward

:BFnn AP Relative to P,

Backward

:BDnn AP in Scratchpad,

Indexed

Registers Affected:

Y(byte)=(D)

Y(word)=(P)+1 +(D)

Y(word)=(P)+1 +(D)

Y(byte)=(D)+(X)

AP(word)=(D),

Y(byte)=(AP)

AP(word)=(P)+ 1 +(D),

Y(byte)=(AP)

AP (word)=(P)-(D),

Y(byte)=(AP)

AP(word)=(D) ,

Y(byte)=(AP)+(X)

A Previous contents of A, bits 0-7, replaced by

(Y) byte.

Previous contents of A, bits 8-15, replaced by

O's.

Memory Previous contents of Y(byte) replaced by

(A)0-7'

Timin~: 2+1 if indirect.

2-27

2.4.3.8

ANDB AND TO A

I REGISTER
16 14 13 12 11 10 9 8 6 5 3 2

D FIELD

Performs the AND (logical product) of the contents of the

effective byte location and the contents of the A Register.

Results stored in A:

(Y)byte " (A) -- A

Since the byte operand occupies bits 0-7 of the operand

word and bits 8-15 of the operand word contains zeros,

bits 8-15 of the A Register are unconditionally set to zeros

as a result of this operation. Memory is unchanged.

Machine Codes:

Direct Addressing:

:80nn Scratchpad Y(byte)=(D)

: 82nn Relative to P, Forward; Y(word)=(P)+l +(D)

Byte 0

: 86nn Relative to P, Forward, Y(word)=(P)+1 +(D)

Byte 1

: 84nn Indexed Y(byte)=(D)+(X)

Indirect Addressing:

:81nn AP in Scratchpad AP(word)=(D),

Y(byte)=(AP)

:83nn AP Relative to P, AP(word)=(P)+1 +(D),

Forward Y(byte)=(AP)

:87nn AP Relative to P, AP(word)=(P)-(D),

Backward Y(byte)=(AP)

:8Snn AP in Scratchpad, AP(word)=(D),

Indexed Y(byte }=(AP)+(X)

2-28

Registers Affected:

A Previous contents replaced by logical product of

(A)0-7 and (Y)byte. (A)8-1S set to zeros.

Timing: 2+1 if indirect.

2.4.3.9

IORB INCLUSIVE OR

I REGISTER
16 14 13 12 11 10 9 6 5 3 2

D FIELD

Inclusively OR's the contents of the effective byte location

with contents of the A Register:

(Y)byte V (A) -- A

This instruction effectively performs the inclusive OR of

(A)0-7 with (Y)byte. Since the upper half of the operand

word contains all zeros, the upper half of A, (A)8-1 5, is

unchanged by this instruction. Memory is unchanged.

Machine Codes:

Direct Addressing:

: AOnn Scratchpad Y(byte)=(D)

:A2nn Relative to P, Forward; Y(word)=(P)+l +(D)

Byte 0

:A6nn Relative to P, Forward~ Y(word)=(P)+l +(D)

Byte 1

:A4nn Indexed Y(byte)=(D)+(X)

Indirect Addressing:

:Alnn AP in Scratchpad AP(word)=(D),

Y(byte)=(AP)

:A3nn AP Relative to P, AP(word)=(P)+l +(D),

Forward Y(byte)=(AP)

:A7nn AP Relative to P,

Backward

:ASnn AP in Scratchpad,

Indexed

Registers Affected:

-.

AP(word)=(P)-(D),

Y(byte)=(AP)

AP(word)=(D),

Y(byte)=(AP)+(X)

A Previous contents of A, bits 0-7, replaced by

inclusive OR of (A)0-7 and (Y)byte. (A)8-1S

unchanged.

Timing: 2+1 if indirect.

2.4.3.10

XORB EXCLUSIVE OR TO A

I REGISTER

15 14 13 12 11 10 9 6 6 3 2

D FIELD

Performs the Exclusive OR of the contents of the effective

byte location and the A Register. The result is stored in A:

(Y)byte V (A) - A

This instruction effectively performs the exclusive OR of

(A)0-7 with (Y)byte. Since the upper half of the operand

word contains all zeros, the upper half of A, (A)8-1S, is not

changed by this instruction. Memory is unchanged.

Machine Codes:

Direct Addressing:

:A8nn Scratchpad

:AAnn Relative to P, Forward;

Byte 0

:AEnn Relative to P, Forward,

Byte 1

: ACnn Indexed

Indirect Addressing:

: A9nn AP in Scratchpad

Y(byte)=(D)

Y(word)=(P)+ 1 +(D)

Y(word)=(P)+1 +(D)

Y(byte)=(D)+(X)

AP(word)=(D),

Y(byte)=(AP)

:ABnn AP Relative to P, AP(wor d)= (P)+ 1 +(D),

Forward Y(byte)=(AP)

:AFnn AP Relative to P, AP(word)=(p)-(D),

Backward Y(byte)=(AP)

:ADnn AP in Scratchpad, AP(word)=(D),

Indexed Y(byte)=(AP)+(X)

~egisters Mfected:

A Previous contents of A, bits 0-7, replaced by

exclusive OR of (A)0-7 and (Y)byte. (A)8-1S

unchanged.

Timing: 2+1 if indirect.

2.4.3.11

CMSB COMPARE AND SKIP IF HIGH OR EQUAL

I REGISTER
16 14 13 12 11 10 9 3 2

[:1 I 1 I 0 I 1 I 0 1M 1M l' I D FIELD

Compares contents of effective byte location with contents

of A Register and tests for A equal to, less than or greater

than memory.

•

•

If A less than memory, next instruction in sequence

is executed (no skip). (A) < (Y)byte, then

(P)+1 - P

If A greater than memory, a one-place skip occurs.

(A) > (Y) byte, then (P)+ 1 - P

• If A equal to memory, a two-place skip occurs.

(A)=(Y)byte, then (P)+ 3 - P

The compare is a full word (16 bit) compare. For the

instruction to be meaningful when executed with a byte

operand, the upper half of A, A8-1 5, should contain all

zeros.

(A) and (Y)byte are unchanged by this instruction. CMSB

is not interruptable if a skip is executed.

2-29

Machine Codes:

Direct Addressing:

: DOnn Scratchpad

:D2nn Relative to P, Forward;

Byte 0

:D6nn Relative to P, Forward,

Byte 1

:D4nn Indexed

Indirect Addressing:

:Dlnn AP in Scratchpad

:D3nn AP Relative to P,

Forward

:D7nn AP Relative to P,

Backward

: DSnn AP in Scratchpad,

Indexed

Registers Affected:

Y(byte)=(D)

Y(word)=(P)+1 +(D)

Y(Word)=(P)+ 1 +(D)

Y(byte)=(D)+(X)

AP(word)=(D),

Y(byte)=(AP)

AP(word)=(P)+1 +(D),

Y(byte)=(AP)

AP(word)=(P)-(D),

Y(byte)=(AP)

AP(wor d)=(D),

Y(byte)=(AP)+(X)

P Incremented normally if (A) < (Y)byte.

Incremented twice if (A) > (Y)byte.

Incremented by 3 if (A)=(Y) byte.

Timing: 2+1 if indirect.

2.5 IMMEDIATE INSTRUCTIONS

2.5.1 General

Immediate instructions are similar to Memory Reference

instructions in that they perform logical and arithmetic

operations involving memory data and operating registers.

The memory data, however, is stored within the Immediate

instruction itself rather than in a separate operand word or

operand byte.

2.5.2 Immediate Instruction Format

Figure 2-7 illustrates the general format used by Immediate

instructions. The format is divided into three fields.

2-30

2.5.2.1 Class. The Immediate instruction class is defined

by the bit pattern in bits 11 - 15 of the instruction. By

class definition, Immediate instructions are a subclass of

Memory Reference instructions because Bit 15 of the

Immediate class contains a I-bit. Because of the difference

in function, however, Immediate instructions are treated

as a separate class.

2.5.2.2 Op Cod~. Bits 8 - 10 define the specific Immedi­

ate instruction to be executed once the class is decoded.

Since there are three bits in this field, there are eight

possible Immediate instructions.

2.5.2.3 D Field. The D Field of an Immediate instruction

contains the operand used by the instruction; i.e., the value

in the D Field is the actual value used by the instruction

rather than an address parameter.

Immediate instruction operands are similar to byte oper­

ands in that the lower eight bits of the instruction are right

justified in the operand word and the upper eight bits of

the operand word are set to zeros. The operand is then

handled as a full 16-bit word with significant data in the

eight least significant bits only.

2.5.3 Immediate Instruction Functions

There are two distinct advantages to using Immediate in­

structions instead of Memory Reference instructions:

1.

2.

Speed Immediate instructions require only

one cycle since no operand cycle is

required.

Memory Since the operand is stored in the in­

struction word, no additional memory

space is required to store the operand.

These instructions are especially useful for storing constants

for comparisons, iteration counts, etc.

2.5.4 Instruction Descriptions

Detailed descriptions of the Immediate instructions are

contained in the following paragraphs. The descriptions

I REGISTER

Bits

11-15

8-10

0-7

15 14 13 12 11 10 9 8

~~---...--
IMMEDIATE CLASS OP CODE

Field

Class

OpCode

D Field

D FIELD (OPERAND)

Definition

Specifies the Immediate Instruction class ..

Defines the specific Immediate instruction.

Contains the Operand of the Immediate instruction.

Figure 2-7. Immediate Instruction Format

follow the same format as the Memory Reference instruction

descriptions. The format is described in Part 2.3.3.

2.5.4.1

AXI ADD TO X IMMEDIATE

I REGISTER
15 14 13 12 11 10 9 8

I 1 I 1 I 0 I 0 I 0 I 0 I 1 I 0 I D FIELD <OPERAND)

The operand (D Field of the instruction) is added to the

contents of the X Register:

(D) + (X) - X

The Add is in the form:

(X) = xxxx xxxx xxxx xxxx

(D) = 0000 0000 xxxx xxxx

Sum= xxx x xxxx xxxx xxxx

The upper half of X is changed if there are carries from the

add operation in the lower half. OV is set if arithmetic over­

flow occurs. Previous contents of X are lost.

Machine Code:

:C2nn

Registers Affected:

X Previous contents replaced by sum.

OV Set if arithmetic overflow occurs.

Timing:

2.5.4.2

SXI SUBTRACT FROM X IMMEDIATE

I REGISTER
15 14 13 12 11 10

D FIELD <OPERAND)

The operand (D Field of instruction) is subtracted from

the contents of X Register:

(X) - (D) - X

The subtract is in the form:

(X) =

+ (-D) =

Result =

xxxx xxxx xxxx xxxx

1111 1111 xxxx xxx x = 2's Complement

of (D)

xxxx xxxx xxxx xxxx

The value in the D Field is treated as an absolute magnitude,

positive value. The two's complement of the full 16-bit

operand, with (D) right justified, is added to (X). The

2-31

•

result is (X) - (D). The result is stored in X, and the previous

contents of X are lost. OV is set if arithmetic overflow occurs.

Machine Code:

:C3nn

Registers Affected:

X Previous contents replaced by (X) - (D).

OV Set if arithmetic overflow occurs.

Timing:

2.5.4.3

LAP LOAD A POSITIVE IMMEDIATE

I REGISTER

D FIELD (OPERAND)

The operand (D Field of instruction) is loaded into lower

half of A Register. The upper half of A is set to zero:

(D) - Ao-7

o - A8-15

Previous contents of A are lost.

Machine Code:

:C6nn

Registers Mfected:

A Previous contents replaced by (D), right justified.

Timing:

2.5.4.4

LXP LOAD X POSITIVE IMMEDIATE

I REGISTER
16 14 13 12 11 10 9 8 6 4

f 1 I 1 I 0 I 0 I 0 I 1 I 0 I 0 I D FIELD (OPERAND)

2-32

The operand (D Field of instruction) is loaded into the

lower half of the X Register. The upper half is set to zero:

(D) - XO-7

O-X8-15

Previous contents of X are lost.

Machine Codes:

:C4nn

Registers Affected:

X Previous contents replaced by (D), right justified.

Timing:

2.5.4.5

LAM LOAD A MINUS IMMEDIATE

I REGISTER
16 14 13 12 11 10 9 8

The operand (D Field of instruction) is negated (two's

complemented) and loaded into the A Register:

-(D) - A

The value stored in A has the form:

(A) = 1111 1111 xxxx xxxx

Previous contents of A are lost.

Machine Code:

:C7nn

Registers Mfected:

A Previous contents replaced by -(D).

Timing:

2.5.4.6

LXM LOAD X MINUS IMMEDIATE

I REGISTER
16 14 13 12 11 10 9 8

D FIELD (OPERAND)

The operand (D Field of instruction) is negated (two's

complemented) and loaded into the X Register:

- (D) - X

The value stored in X has the form:

(X) = 1111 1111 xxxx xxxx

Previous contents of X are lost.

Machine Code:

:C5nn

Registers Affected:

X Previous contents replaced by -(D).

Timing:

2.5.4.7

CAL COMPARE TO A IMMEDIATE

I REGISTER
16 14 13 12 11 10 9 8

D FIELD (OPERAND)

The operand (D Field of instruction) is compared to lower

half of A Register. If unequal a skip of one place occurs.

If equal, the next instruction in sequence is executed. The

contents of A are not disturbed:

If (D) = (A)O-7 then (P)+l - P

If (D) 1: (A)O-7 then (P)+2 - P

The upper half of A, (A)8-15, does not take part in the

comparison.

Machine Code:

:COnn

-Registers Affected:

P

2.5.4.8

CXI

Incremented normally if (A)O-7 = (D).

Incremented twice if (A)O-7 t' (D).

COMPARE TO X IMMEDIATE

I REGISTER
16 14 13 12 11 10 9 8 7

The operand (D Field of instruction) is compared to lower

half of X register. If unequal, a skip of one place occurs.

If equal, the next instruction in sequence is executed. The

contents of X are not disturbed:

If (D) = (X)O-7 then (P)+ 1 - P

If (D) 1: (X)O-7 then (P)+2 - P

The upper half of X, (X)8-1 5, does not take part in the

comparison.

Machine Code:

:C1nn

Registers Affected:

P Incremented normally if (X)O-7 = (D)

Incremented twice if (X)O-7 # (D)

Timing:

2.6 CONDITIONAL JUMP INSTRUCTIONS

2.6.1 General

Conditional Jump instructions are those instructions which

test conditions within the ALPHA 16 or NAKED MINI 16

computers and perform program branches depending on the

2-33

•

results of the test. A Jump occurs if the test condition is

satisfied, and the next sequential instruction is executed if

the test condition is not satisfied. All branches are relative

to the contents of the P Register (location of the Condi­

tional Jump instruction). Jumps may be relative to P for­

ward, from 1 to 64 locations, or relative to P backward,

from 0 to 63 locations:

Forward Jumps:

Backward Jumps:

P+ 1 through P+64

p-o through P-63

Figure 2-8 illustrates the general format for Conditional

Jump instruction.

2.6.2 Testable Conditions

There are five different conditions within the computer

which may be tested by Conditional Jump instructions.

These conditions are:

1. Sign of A (positive or negative)

2. Contents of A (zero or not zero)

3. Contents of X (zero or not zero)

4. Overflow Indicator (set or reset)

s. Sense Switch (on or off)

The testable conditions may be tested individually or in

combination. Test instructions may be coded so that all

conditions specified must be met for a jump to occur

(AND test group), or they may be coded so that only one of

the selected conditions must be met for a jump to occur (OR

test group). There are limits to the conditions that can be

tested in each group. For example, the AND test group can

test the A Register for a response if A is positive, but cannot

test for a response if A is negative. The OR test group can

test for a response if A is negative, but not for a response if

A is positive.

2.6.2.1 AND Test Group. The AND test group is identi~·

fied by a I-bit in the G Field (Bit 12) of a Conditional

Jump instruction. Bits 7 through 11 of the instruction

2-34

identify the conditions to be tested. A I-bit indicates that

the test is to be performed, and a O-bit indicates that the

test is not to be performed. For example, a I-bit in bit 7

specifies that the A Register is to be tested for a positive

condition; Le., the sign bit (Bit 1 S) of A is positive. If

bit 8 is on, the A Register is tested for a non-zero condition.

If bits 7 and 8 are both on, the A Register is tested for both

positive and non-zero. Both conditions must be met for the

test to be satisfied.

The test conditions in the AND test group are:

Bit Test

7 A Positive

8 A40

9 OV Reset

10 SSOn

11 X#O

Description

The test is satisfied if the sign

bit of A is positive (AI S=O).

The test is satisfied if the

A Register contains at least one I-bit.

The test is satisfied if the Over­

flow indicator is reset (OV=O).

The test is satisfied if the Sense

Switch on the console is On

(down).

The test is satisfied if the

X Register contains at least one

I-bit.

In the AND test group, all of the conditions specified by

the instruction must be satisfied for the branch to occur.

2.6.2.2 OR Test Group. The OR test group is identified

by a O-bit in the G Field (Bit 12) of a Conditional Jump in­

struction. The OR group differs from the AND group in

that only one of the conditions specified by the instruction

must be satisfied for the branch to occur. Also, the OR

group tests for opposite states than the AND group.

Test conditions in the OR test group are:

Bit Test

7 A Negative

Description

The test is satisfied if the sign bit

of A is negative (A 1 S= 1).

16 14 13 12 11 10 9

o FIELD

Bits Field Definition ----
13-15 Class Identifies the Conditional Jump Instruction Class

12 G Test Group Indicator:

G=1 for AND Group

G=O for OR Group

7-11 Conditions Microcode of Test Conditions:

Bit AND Group OR Group

7 A Positive A Negative

8 A:/=O A=O

9 OV Reset OV Set (Resets OV)

10 SSOn SS Off

11 X=/:O X-O

6 R Jump Direction:

R=O for Forward Jump

R=1 for Backward Jump

0-5 D Field Jump Distance (-63 to +64)

Figure 2-8. Conditional Jump Format

Bit Test Description Bit Test Description

8 A=O *The test is satisfied if the NOTE: The Overflow indicator

A Register contains all zeros. is conditionally reset when

9 oVSet The test is satisfied if the this test is executed.

Overflow indicator is set 10 SS Off The test is satisfied if the Sense

(OV=I). Switch on the console is Off (up).

*NOTE: All of the OR tests can be used in combination except for A=O andX=O. These two cannot be used in the same text.

For example, the test:

(A=O) OR (X=O)

cannot be used. The reason is that a condition such as the following would satisfy the test:

A = 0101 0101 0101 0101

X = 1010 1010 1010 1010

If the two registers taken together have a O-bit in each bit position, the test is satisfied. Therefore, this combination is excluded

as a legitimate test.

2-35

Bit Test Description

11 X=O *The test is satisfied if the

X Register contains all zeros.

2.6.3 Instruction Descriptions

Conditional Jump instructions for which symbolic codes

have been derived are explained in the following paragraphs.

A general code, JOC, for Jump on Condition, is provided

so that the programmer may microcode jump conditions

for which symbolic codes are not provided.

The format of the instructions described is similar to the

Memory Reference description format with the exception

of the Machine Codes section. The hexadecimal codes

listed show the range of each instruction for both forward

and backward jumps.

2.6.3.1

JOC JUMP ON CONDITIONS

Assembler Format:

JOC XX, ADR

JOC is a general symbolic operation code recognized by the

16-bit machine language assemblers. It allows the pro­

grammer to microcode specific Conditional Jump instruc­

tions for which symbolic codes are not provided. The

Assembler Format is as follows:

1. JOC

2. xx

3. ADR

The general symbolic Op Code.

The hexadecimal code for the bit

pattern in bits 7-12 (condition

bits).

Jump direction and distance or

symbolic address to which jump

is to be made if jump condition(s) .

is met.

Example: The JAL instruction could be microcoded using JOC

in this manner:

2-36

JOC

2.6.3.2

JAM

:03, Loop (LOOP must be within

±64 locations)

JUMP IF A MINUS

I REGISTER
15 14 13 12 11 10

OFlHO =oJ

A jump occurs if the A Register is less than zero

(AIS = 1). Otherwise the next instruction in sequence is

executed.

If (A) < 0, then Jump

If (A) 2: 0, then (P)+1 - P

(A) are unchanged.

Machine Codes:

:2080 - :20BF for forward jumps (+1 thru +64)

:20CO - :20FF for backward jumps (0 thru -63)

Registers Affected:

P

Timing:

2.6.3.3

JAP

Incremented normally if test conditions not met.

Loaded with jump address if test condition met.

JUMP IF A POSITIVE

I REGISTER
15 14 13 12 11 10 2 0

A jump occurs if the A Register is positive (AIS = 0). Other­

wise the next instruction in sequence is executed:

If (A) 2: 0, then Jump

If (A) < 0, then (P)+ 1 - P

(A) are unchanged.

Machine Codes:

:3080 - :30BF for forward jumps (+1 thru +64)

:30CO - :30FF for backward jumps (0 thru -63)

Registers Affected:

P Incremented normally if test condition not

satisfied.

Offset by (D) if test condition satisfied.

Timing:

2.6.3.4

JAZ JUMP IF A ZERO

I REGISTER
16 14 13 12 11 10 9 8 6

D FIELD

Ajump occurs if the A Register is zero. Otherwise the next

instruction in sequence is executed.

If (A) = 0, then Jump

If (A)=FO, then (P)+ 1 - P

(A) unchanged.

Machine Codes:

:2100 - :213F for forward jumps (+1 thru +64)

:2140 - :217F for backward jumps (0 thru -63)

Registers Affected:

P

2.6.3.5

Incremented normally if test condition not

satisfied.

Offset by (D) if test condition satisfied.

JAN JUMP IF A NOT ZERO

I REGISTER
16 14 13 12 11 10 8

D FIELD

Ajump occurs if the A Register is not zero. Otherwise the

next instruction in sequence is executed:

If (A)=;O, then Jump

If (A)=O, then (P)+ 1 - P

(A) are unchanged.

Machine Codes:

:3100 - :313F for forward jumps (+1 thru +64)

:3140 - :317F for backward jumps (0 thru -63)

Registers Affected:

P

2.6.3.6

JAG

Incremented normally if test condition not

satisfied.

Offset by (D) if test condition satisfied.

JUMP IF A GREATER THAN ZERO

I REGISTER

D FIELD

A jump occurs if the A Register is greater than zero. Other­

wise the next instruction in sequence is executed.

If (A) > 0, then Jump

If (A) S 0, then (P)+ 1 -+ P

(A) are unchanged.

Note: The test conditions are:

(A) Positive AND (A)=FO

Machine Codes:

: 3180 - : 31 BF for forward jum ps (+ 1 thru +64)

:31CO - :31FF for backward jumps (0 thru -63)

Registers Affected:

P Incremented normally if test conditions are not
satisfied.

Timing:

2.6.3.7

JAL

Offset by (D) if all test conditions are

satisfied.

JUMP IF A LESS THAN OR EQUAL TO ZERO

I REGISTER
16 14 13 12 11 10

D FIEl D

Ajump occurs if the A Register is less than or equal to zero.

Otherwise the next instruction in sequence is executed.

If (A) < 0, then Jump

If (A) = 0:1 then Jump

If (A) > 0, then (P)+ 1 - P

(A) are unchanged.

Machine Codes:

:2180 - :21BF for forward jumps (+1 thru +64)

:21 CO - :21 FF for backward jumps (0 thru -63)

Registers Affected:

P

Timing:

2.6.3.8

JXZ

Incremented normally if neither test condition

satisifed.

Offset by (D) if either test condition

satisfied.

JUMP IF X ZERO

I REGISTER
16 14 13 12 11 10 8

D FIELD

A jump occurs if the X Register is zero. Otherwise the next

instruction in sequence is executed:

2-38

If (X) = 0, then Jump

If (X}I=O, then (P)+ 1 - P

(X) are unchanged.

Machine Codes:

:2800 - :283F for forward jumps (+1 thru +64)

:2840 - :287F for backward jumps (0 thru -63)

Registers Affected:

P Incremented normally if test condition not

satisfied.

Offset by (D) if test condition satisfied.

Timing:

2.6.3.9

JXN JUMP IF X NOT ZERO

I REGISTER
16 14 13 12 11 10

D FIELD

Ajump occurs if the X Register is not zero. Otherwise the

next instruction in sequence is executed:

If (X):fO, then Jump

If (X)=O, then (P)+ 1 P

(X) are unchanged.

Machine Codes:

:3800 - :383F for forward jumps (+1 thru +64)

:3840 - :387F for backward jumps (0 thru -63)

Registers Affected:

P Incremented normally if test conditions not

satisfied.

Offset by (D) if test condition

satisfied.

2.6.3.10

JOR JUMP IF OVERFLOW RESET

I REGISTER
15 14 13 12 I 11 10 9

D FIELD

Ajump occurs if the overflow bit is reset (0). Otherwise the

next instruction in sequence is executed.

If OV = 0, then Jump

If OV = 1, then (P)+1 -. P

OV is unchanged.

Machine Codes:

:3200 - :323F for forward jumps (+1 thru +64)

:3240 - :327F for backward jumps (0 thru -63)

Registers Mfected:

P

Timing:

2.6.3.11

JOS

Incremented normally if test condition

satisfied.

Offset by (D) if test condition satisfied.

JUMP IF OVERFLOW SET

I REGISTER
15 14 13 12 11 10 9

D FII:.LO

A jump occurs if the overflow bit is set (l). Otherwise the

next instruction in sequence is executed:

If OV = 1, then Jump and reset OV.

If OV = 0, then (P)+1 -- P

OV is unconditionally reset by this instruction.

Machine Codes:

:2200 - :223F for forward jumps (+1 thru +64)

:2240 - :227F for backward jumps (0 thru -63)

Registers Mfected:

OV Unconditionally reset.

P

2.6.3.12

JSS

Incremented normally if test condition not

satisfied.

Offset by (D) if test condition satisfied.

JUMP IF SENSE SWITCH SET

I REGISTER
15 14 13 12 11 10

o FIELD

A jump occurs if the sense switch is set down. Otherwise

the next instruction in sequence is executed.

If SS ON, the Jump

If SS Off, then (P)+ 1 -- P

Machine Codes:

:3400 - :343F for forward jumps (+1 thru +64)

:3440 - :347F for backward jumps (0 thru -63)

Registers Affected:

P Incremented normally if test condition not satisfied.

Offset by (D) if test condition satisfied.

Timing:

2.6.3.13

JSR JUMP IF SENSE SWITCH RESET

I REGISTER
15 14 13 12 11 10

~I 0 l' 10 I 0 l' 10 10 I 0 I R I D FIELD

2-39

A jump occurs if the SENSE SWITCH is reset up. Otherwise

the next instruction in sequence is executed:

If SS Off, then Jump

If SS On, then (P)+ 1 - P

Machine Codes:

:2400 - :243F for forward jumps (+1 thru +64)

:2440 - :247F for backward jumps (0 thru -63)

Registers Mfected:

P Incremented normally if test condition not

satisfied

Offset by (D) if test condition satisfied.

Timing: 1

2.7 SHIFT INSTRUCTIONS

2.7.1 General

Shift instructions move bit patterns in the computer registers

either right or left. Shifts may involve a single register (A or

X), a single register and the Overflow (OV) indicator, or both

the A and X registers and the OV indicator.

Shift instructions have a variety of uses in a computer. They

may be used to pack and unpack data for Input/Output

operations; they may be used to move specific data bits into

the OV indicator for testing; they may be used for code con­

versions; they may be used for arithmetic operations. The

ALPHA 16 and NAKED MINI 16 computers provide logical,

arithmetic, and rotate shifts for these functions.

2.7.2 Single Register Shifts

Three types of single register shifts are available in the

ALPHA 16 and NAKED MINI 16 computers: logical, arith­

metic, and rotate. The general features and bit paths are

described in the following paragraphs.

2.7.2.1 Logical Shifts. Logical single register shifts couple

a computer register and the Overflow indicator together to

form a 17-bit register. Since individual bits within the A and

2-40

X registers cannot be tested directly, logical shifts are often

used to move bits into OV for testing. Logical shifts may

couple either the A or X register with OV for shifting.

Figure 2-9 illustrates a Logical Right shift. When a Logical

Right shift is executed the entire 16-bit word within the

specified register is shifted right. Bits shifted out of bit 0 of

the register are shifted into the OV indicator. As each bit is

shifted into OV, the last bit that occupied OV is lost. Bit

positions vacated on the left are filled with zeros. The end

result is that zeros are shifted into the register on the left

(into bit position 15), and data is shifted right within the

register. Bits shifted out of bit 0 of the register are shifted

into OV. Bits shifted out of OV are lost.

Figure 2-10 illustrates a Logical Left shift. The operation is

the same as for the right shift, except that the direction is

left instead of right. As the data in the register is shifted

left, zeros are shifted into bit 0 of the register. Bits shifted

out of bit 15 of the register are shifted into the OV indica~

tor. Bits shifted out of OV are lost.

The follOWing examples illustrate logical single register shifts:

Right Shift OV

Original contents: A Reg. 0000 1010 0011 1111 0

1-T~~~
0000 0101 0001 1111 1

--~~~~
0000 0000 0101 0001 1

Shift Right 1 place:

Shift Right 4 more places:

Left Shift OV Register

Original Contents: A Reg. o 0000 1010 0011 1111

/ ----I I / I
o 0001 moo Oili iT10 Shift Left 1 place:

/ ------/£///
1 moo 0il1 il10 0000 Shift left 4 more places

2.7.2.2 Rotate Shifts. Rotate shifts operate in the same

manner as logical shifts, except~ that no data is lost. Data

15 14 13 12 11 10 9

O~I-----------------.~DATA------------~ ~ r-l_
L...--__ -~=rrr

A OR X REGISTER

Figure 2-9. Logical Right Shift

shifted out of one end of the combined register is shifted

into the other end.

OV .

Figure 2-11 illustrates the data path followed when a Rotate

Right instruction is executed. The data bits within the regis­

ter are shifted right. Bits shifted out of bit 0 are shifted into

OV. Bits shifted out of OV are shifted into bit 15.

Figure 2-12 illustrates the data path followed when a Rotate

Left instruction is executed. The data bits within the regis­

ter are shifted left. Bits shifted out of bit 15 are shifted into

OV. Bits shifted out of OV are shifted into bit O.

The follo,Wing examples illustrate Rotate shifts:

Rotate Left: OV Register

1~010 1111 0000 1100

/ZIZ!:
Original Contents:

Rotate Left 2 places: o 1011 1100 0011 0011
-.--- ---- ---- '-'.-'

/// ---- ---- ---- ----Rotate Left 4 more places: 1100 0011 0011 0101

Rotate Right: OV Register

Original Contents: 1010 1111 0000 1100 --------"" "'. '" " - --- ------ ---- ----Rotate Right 2 places:

~~~~~ 
Rotate Right 4 more places: o 0110 0110 1011 1100 

15 14 13 12 11 10 9 

~ __ ::~:~::::::~~~=_D_A_TA __ ~·=================:lo 
OV A OR X REGISTER 

Figure 2-10. Logical Left Shift 

15 14 13 12 11 10 9 

~--------------~. DATA--------------~ 
A OR X REGISTER OV 

Figure 2-11. Rotate Right 

2.7.2.3 Arithmetic Shifts. In general, logical shifts and 

rotate shifts are used to process data words which contain 

something other than numeric information. Arithmetic 

shifts are used to process numeric data. 

A characteristic of numbers, regardless of the number base 

used, involves the shifting of numbers right or left one or 

more digit positions. For examples, if the decimal number 

+150. 

is shifted left one digit position, the following number is 

obtained: 

+1500. 

Shifting the number left one digit position causes the num­

ber to be multipled by 10. If the number + 150 is shifted 

right one digit position, the following number is obtained: 

+15. 

The right shift causes the number to be divided by 10. 

If octal numbers are shifted right or left in a like manner, 

the numbers are multiplied or divided by 8. Whenever any 

number in any base is shifted right or left, the number is 

15 14 13 12 11 10 9 8 

~.~------------DATA~.----------------~ 

OV A OR X REGISTER 

Figure 2-12. Rotate Left 

2-41 

I 



divided or multiplied by the base of the number system. 

This characteristic holds true for negative numbers as well 

as positive numbers. If the number 

-150. 

is shifted left one digit position, the result is 

-1500. 

If the number is shifted right one digit position, the result is 

-15. 

Since this characteristic is true regardless of the base of the 

number system, it is true for binary numbers. If the binary 

number 

0000 0000 0000 0110 

is shifted left one bit position, the result is 

0000 0000 0000 1100 

which is the same number, multiplied by the base of the 

number system. The original number is equivalent to a deci­

mal +6, and the second is equivalent to a decimal +12. If 

the original number is shifted right one bit position, the re­

sult is: 

0000 0000 0000 0011 

which is equivalent to the decimal number +3. 

The ALPHA 16 and NAKED MINI 16 computers use binary 

two's complement numbers to represent negative numbers in 

memory and in computer registers. A characteristic of a 

two's complement number is that it has leading 1 's instead 

of leading D's. However, an arithmetic shift of a binary 

two's complement number must maintain the integrity of 

the number. A left shift must multiply the number by two 

for each bit postion shifted, and a right shift must divide 

the number by two for each bit position shifted. If the 

two's number comp,lement 

1111 1111 1111 1000 

2-42 

is shifted left one bit position, the result is 

1111 1111 1111 0000 

which is the correct result. 

However, if the same original number is shifted right one 

bit position by a Logical Right shift the result is 

0111 1111 1111 1100 

which is not the correct result. A zero is shifted into the 

sign bit position, changing the number from negative to 

positive. The result is not a division by two. 

To correct this condition, Arithmetic shift instructions 

divide the register being shifted into two parts: the sign, 

and the numeric value. Arithmetic shifts do not shift the 

sign bit. The sign bit remains unchanged, regardless of the 

number of bit positions shifted. In the case of left shifts, 

data bits are shifted to the left into bit 14 and out of 

bit 14. Bit ISis not changed. Zeros are shifted into bit O. 

Figure 2-13 illustrates the data path used for Arithmetic 

left shifts. 

For right shifts, the sign in bit ISis duplicated in bit 14 

for each bit position shifted. The sign bit again remains 

unchanged. Bits shifted out of bit 0 are lost. Figure 2-14 

illustrates the path followed by Arithmetic right shifts. 

Note that the OV indicator is not used for Arithmetic shifts, 

and that only fifteen bits are shifted. The sign bit does not 

get shifted, but instead is duplicated in bit position 14 

during right shifts. 

15 14 13 12 11 10 9 

Gf_....--_-_DAT
_
A
-. _-_ -_ ---+-----110 

A OR X REGISTER 

Figure 2-13. Arithmetic Left Shift 



16 14 13 12 11 10 9 

[]I · DATA ----...1· 
A OR X REGISTER 

Figure 2-14. Arithmetic Right Shift 

2.7.3 Double Register Shifts 

Double register shifts couple the A Register, X Register, and 

OV indicator together for shifting operations. The two regis­

ters and the OV indicator act as a 33-bit register. There are 

two types of long shifts: Long Logical shifts, and Long Ro­

tate shifts. Two long shifts, Multiply Step and Divide Step, 

are special cases of the Long Logical shift group. 

2.7.3.1 Long Logical Shifts. Figure 2-15 illustrates the 

data path used for Long Logical right shifts. Zeros are 

shifted into bit 15 of the A Register, bits are shifted from 

bit 0 of A into bit 15 of X, bits are shifted from bit 0 of X 

into OV, and bits shifted out of OV are lost. 

Figure 2-16 illustrates the data path used for Long Logical 

Left shifts. Zeros are shifted into bit 0 of X, bits are 

shifted from bit 15 of X into bit 0 of A, bits are shifted 

from bit 15 of A into OV, and bits shifted out of OV are 

lost. 

2.7.3.2 Long Rotate Shifts. Figure 2-17 illustrates the data 

path used for long Rotate right shifts, and Figure 18 illus­

trates the data paths used for Long-Rotate left shifts. The 

Long Rotate shifts are similar to the Single Register Rotate 

shifts except that both the A and X registers are involved in 

the shifts. 

2.7.4 Shift Instruction Formats 

Shift instructions are a special case of the Register Change 

class of instructions. Figure 2~ 19 illustrates the format for 
16 14 13 12 11" 10 9 8 o 

o~I _____________ ·_DA_T_A========~'_~ __ ~1 
f"'"j ----------.- A 

15 14 13 12 11 10 9 o 

I 1-1 -------.-. DATA ----+- ----.I....,E} 
X OV 

Figure 2-15. Long Right Shift 

15 14 13 12 11 10 9 o 

~B ~[ ______ D~AT-A _' --------+-Ijl 
OV I---------A .. 

15 14 13 12 11 10 9 7 6 

[L: ~4------------DATA~,--------------_+lo 
X 

Figure 2-16. Long Left Shift 

Single Register shifts, and Figure 2-20 illustrates the for­

mat for Long shifts. Bits 12-15 identify the Shift class, and 

bit 11 specifies Single Register or Long shift. 

2.7.4.1 Single Register Format. A zero in bit 11 of a shift 

instruction identifies a Single Register shift. The shift code 

is contained in bits 3-10. The shift code identifies the type 

of shift to be performed (shift Op Code). The K Field, 

bits 0-2, specify the number of bit positions to be shifted. 

The formula for determining the number of bits to be shifted 

is 1 +K. The maximum shift distance is 8 bit positions, 

since the maximum value which can be contained in K is 7. 

If K contains a value of 0, the shift instruction will shift 

one bit position (l +0=1). If K contains a value of 5, the 

shift instruction will shift 6 bit positions (l +5=6). 

2.7.4.2 Long Shift Format. A one in bit 11 of a shift in­

struction identifies a Long shift. The shift code, identifying 

the type of shift to be performed, is contained in bits 4-10. 

The K Field, in bits 0-3, specifies the number of bit posi­

tions to be shifted. Note that the K Field of the Long Shift 

format contains four bit positions instead of three. There· 

fore the maximum number of bit positions that can be 

shifted by a Long shift is 16 instead of 8. The formula for 

calculating the number of bit positions to be shifted is 

again 1 +K, where K has a maximum value of 15 (: F). 

2.7.5 Shift Timing 

The ALPHA 16 and NAKE MINI 16 have the capability 

of shifting one bit position each time data is passed through 
15 14 13 12 11 10 9 

rt-------------, 
~ .. DATA ------.... ~ I 

r--
15 14 13 12 11 10 9 

L....-_______ .... DATA -----... ~ ----I ........ 

X OV 
Figure 2·17. Long Rotate Right 

2·43 



15 14 13 12 11 10 9 

.. DATA 

OV I A 
15 14 13 12 11 10 9 

DATA 

X 

Figure 2-18. Long Rotate Left 

the Adder and Shift Control logic of the computer. fu order 

to shift more than one bit position, the computer execution 

cycle must be "stretched" to pass the data to be shifted 

through the Adder and Shift Control once for each bit posi­

tion to be shifted. For long shifts, data from two registers 

must be passed through the Adder and Shift Control lOgic. 

lbis requires additional time. However, it is not necessary 

to repeat the entire computer cycle for each bit position to 

be shifted. It is necessary to repeat only a portion of the 

cycle. 

2.7.5.1 Single Register Shift Timing. For single register 

shifts, the cycle must be stretched by 1/4 cycle for each bit 

position to be shifted beyond the first bit position. If data 

is to be shifted only one bit position, the shift can be com­

pleted ina single cycle. If data is to be shifted two bit posi­

tions, one cycle is required for the first bit position and an 

additional 1/4 cycle is required for the next. For a three 

position shift, one cycle is required for the first position, 

1/4 cycle for the second, and 1 /4 cycle for the third, for a 

total of 1-1/2 cycles. The formula for calculating the num­

ber of cycles required for a Single Register shift is: 

1 + {1/4)K 

where K is the value in the K Field of the shift instruction. 

2.7.5.2 Long Shift Timing. For Long shifts, the cycle must 

be stretched by 1/4 cycle for the first bit position to be 

shifted and by 1/2 cycle for each additional bit position to 

be shifted. The additional 1/4 cycle for each bit position is 

15 14 13 12 11 10 9 

SHIFT CODE K 

Figure 2-19. Single Register Shift Format 

2-44 

15 14 13 12 11 10 9 

SHIFT CODE K 

Figure 2-20. Long Shift Format 

required because the contents of two registers must be 

passed through the Adder and Shift Control logic of the 

computer. The formula for calculating the number of 

cycles required for Long shifts is: 

1-1/4 + {1/2)K 

2.7.6 Instruction Descriptions 

The Shift instruction descriptions follow the same general 

format as the Memory Reference instruction with these 

exceptions: 

1. 

2. 

A shift path diagram is shown for each 

instruction. 

The Machine Codes portion of the description 

includes the hexadecimal code for a minimum 

(1 place) shift and a maximum (8 or 16 place) 

shift. 

The Multiply Step and Divide Step instructions are handled 

as special cases. In addition to the instruction description, 

programming examples are included to clarify the use of 

these very powerful instructions. 

2.7.6.1 

ARA ARITHMETIC SHIFT A RIGHT 

I REGISTER 
15 14 13 12 11 10 8 3 

I 0 I 0 10 I, 10 10 10 10 I, I, 10 I, 10 I K J 
The contents of the A Register are shifted right 1 +K places. 

The sign bit (bit 15) is unchanged and is shifted into and 

propagated through bit 14. Bits shifted out of bit 0 are lost. 

Shift Path: A Register. 



16 14 13 12 11 10 9 o 

rJ I I 2.7.6.3 Ll-+-------.-. DATA ----------1-.-. (LOST) 

Machine Codes: 

: 1000 for 1 place shift 

thru 

: 1 OD7 Jor 8 place shift 

Registers Mfected: 

A Previous contents replaced by result of shift. 

Timing: 1 + 1 14K 

2.7.6.2 

ALA ARITHMETIC SHIFT A LEFT 

I REGISTER 
16 14 13 12 11 10 9 8 5 3 2 

The contents of the A Register (bits 0-14) are shifted left 

1 +K places. The sign bit (bit 15) is unchanged. Zeros are 

shifted into bit 0, and bits shifted out of bit 14 are lost. 

Shift Path: A Register 

16 14 13 12 11 10 9 

GJ;E~_-_-_DA_TA _. _ -_ -_____ ---+-10 
(LOST) 

Machine Codes: 

: 1050 for one place shift 

thru 

: 1057 for eight place shift 

Registers Mfected: 

A Previous contents replaced by result of shift. 

Timing: 1 + 1 14K 

ARX ARITHMETIC SHIFT X RIGHT 

I REGISTER 
16 14 13 12 11 10 9 8 

K 

The contents of the X Register are shifted right 1 +K places. 

The sign bit (bit 15) is unchanged and is shifted into and 

propagated through bit 14. Bits shifted out of bit 0 are 

lost. 

Shift Path: X Register 

16 14 13 12 11 10 9 8 o 

[3£,--------DATA --------...,I!foIo-. (LOST) 

Machine Codes: 

: 10A8 for 1 place shift 

thru 

: lOAF for 8 place shift 

Registers Affected: 

x Previous contents replaced by result of shift. 

!iming: 1 + 1 14K 

2.7.6.4 

ALX ARITHMETIC SHIFT X LEFT 

I REGISTER 
16 14 13 12 11 10 9 8 

K 

1be contents of the X Register (bits 0-14) are shifted left 

1 +K places. The sign bit (bit 15) is unchanged. Zeros are 

shifted into bit 0, and bits shifted out of bit 14 are lost. 

2-45 



Shift Path: X Register 

15 14 13 12 11 10 9 o 

G;f~~.~_DAT_A_. _-~_ ---+ ___ \0 
(LOST) 

Machine Codes: 

: 1028 for 1 place shift 

thru 

: 102F for 8 place shift 

Registers Mfected: 

X Previous contents replaced by result of shift. 

Timing: 1 + 1 14K 

2.7.6.5 

LRA LOGICAL SHIFT A RIGHT 

I REGISTER 
15 14 13 12 11 10 9 5 

K 

The contents of the A Register are shifted right 1 +K places 

through OV. Zeros are shifted into bit 15. Bits are shifted 

from bit 0 of A into OV. Bits shifted out of OVare lost. 

A and OV set as a 17-bit register. 

Shift Path: A Register and OV 

15 14 13 12 11 10 9 

-+--------......... DATA-------_ ](l 
'---------~y 

Machine Codes: 

2-46 

:1300 for a 1 place shift 

thru 

: 13D7 for 8 place shift 

(LOST) 

Registers Mfected: 

A,OV Previous contents replaced by result of shift. 

Timing: 1 + 1 14K 

2.7.6.6 

LLA LOGICAL SHIFT A LEFT 

I REGISTER 

The contents of the A Register are shifted left 1 +K places 

through OV. Zeros are shifted into bit O. Bits are shifted 

from bit 15 of A into OV. Bits shifted out of OV are lost. 

A and OVact as a 17 bit register. 

Shift Path: A Register and OV 

15 14 13 12 11 10 9 

~------------DATA~.~--------------~-+O 
(LOST) 

Machine Codes: 

: 1350 for 1 place shift 

thru 

: 1357 for 8 place shift 

Registers Mfected: 

A,OV Previous contents replaced by result of shift. 

Timing: 1 + 1 14K 

2.7.6.7 

LRX LOGICAL SHIFT X RIGHT 

I REGISTER 
15 14 13 12 11 10 9 8 



The contents of the X Register are shifted right 1 +K places 

through OV. Zeros are shifted into AlS, bits are shifted 

from Aoo into OV, and bits shifted out of OVare lost. X and 

OV act as a 17 bit register. 

Shift Path: X Register and OV 

16 14 13 12 11 10 9 

o I ' DATA ----+-. 3GJ 
Machine Codes: 

: 13 A8 for 1 place shift 

thru 

:13AF for 8 place shift 

Registers Affected: 

(LOST) 

X,OV Previous contents replaced by result of shift. 

Timing: 1 + 1 14K 

2.7.6.8 

LLX LOGICAL SHIFT X LEFT 

I REGISTER 
16 14 13 12 11 10 9 8 6 3 2 

I 
The contents of the X Register are shifted left 1 +K places 

through OV. Zeros are shifted into bit 0, bits are shifted 

from XIS to OV, and bits shifted out of OV are lost. X and 

OVact as a 17-bit register. 

Shift Path: X Register, OV 

(LOST) 

r+,~1 _4 __ 13 __ 1_2 __ 11 __ 10 __ 9 __ 

L:tt:~ __ ~ _______________ O_A_TA_"'_~~~~~~~~~~~~~~~~~~+lo 
OV X REGISTER 

Machine Codes: 

1328 for 1 place shift 

thru 

: 13 2F for 8 place shift 

Registers Affected: 

X,OV Previous contents replaced by result of shift. 

Timing: 1 + 1 14K 

2.7.6.9 

RRA ROTATE A RIGHT WITH OV 

I REGISTER 
1Ii 14 13 12 11 10 9 

K 

The Contents of the A Register are shifted right 1 +K places 

through the OV flip-flop. OV is shifted into bit 15, and bit 0 

of A is shifted into OV. No bits are lost when this shift is 

executed. A and OV act as a 17-bit register. 

Shift Path: A Register and OV 

~------------~~~OATA------------~ 

A REGISTER 

Machine Codes: 

: 11 DO for 1 place shift 

thru 

: 11 D7 for 8 place shift 

Registers Affected: 

o 

OV 

A,OV Previous contents replaced by results of shift. 

Timing: 1 + 1 14K 

2-47 



2.7.6.10 

RLA ROTATE A LEFT WITH OV 

I REGISTER 

I : 1 : 1 : 1 ': I ~ I: I: 1 : I :1" 1 0 1" I 0 1 
K 

The contents of the A Register are shifted left 1 +K places 

through the OV fip-flop. OV is shifted into bit 0, and bit 15 

is shifted into OV. No bits are lost when this shift is exe­

cuted. A and OVact as a 17-bit register. 

Shift Path: A Register and OV 

13 12 11 10 9 

DATA -. .. --------..111 
ov A REGISTER 

Machine Codes: 

: 11 50 for 1 place shift 

thru 

: 11 57 for 8 place shift 

Registers Affected: 

A,OV Previous contents replaced by result of shift. 

Timing: 1 + 1/4K 

2.7.6.11 

RLX ROTATE X LEFT WITH OV 

I REGISTER 
15 14 13 12 11 10 

K 

The contents of the X Register are shifted left 1 +K places 

through the OV flip-flop. OV is shifted into bit 0, and bit 15 

is shifted into OV. No bits are lost when this shift is exe­

cuted. X and OVact as a 17-bit register. 

2-48 

Shift Path: X Register and OV 

~-----------------------------------, 
13 12 11 10 9 

-------- DATA ...... ---

X REGISTER 

Machine Codes: 

: 1128 for 1 place shift 

thru 

: 112F for 8 place shift 

Registers Affected: 

2 1 0 

A,OV Previous contents replaced by result of shift. 

Timing: 1 + 1 14K 

2.7.6.12 

RRX ROT ATE X RIGHT WITH OV 

I REGISTER 
15 14 13 12 11 10 9 8 

The contents of the X Register are shifted right 1 +K places 

through the OV flip-flop. OV is shifted into bit 15, and 

bit 0 is shifted into OV. No bits are lost when this shift is 

executed. X and OV act as a 17-bit register. 

Shift Path: X Register and OV 

L.

_t __ 14 ___ '3 __ '_2 ____ " __ '_0 ___ 9 ___________________________ ~ I' L.. -----------.. DATA ------------.. jfJ 
X REGISTER 

Machine Codes: 

: 11 A8 for 1 place shift 

thru 

: 11 AF for 8 place shift 



Registers Affected: 

X,OV Previous contents replaced by result of shift. 

Timing: 1 + 1/4K 

2.7.6.13 

NOR NORMALIZE X REGISTER 

I REGISTER 
15 14 13 12 11 10 8 5 3 

I 0 I 0 I 0 I 1 I 0 I 0 I 1 I 0 I 0 I 0 I 1 I 0 I 1 I K 

The contents of the X Register are arithmetically shifted 

left 1 +K places or until XIS is not equal to X 14, whichever 

occurs first. Zero is shifted into XOO. When XIS 1= X14' the 

remaining shifts are inhibited and OV will be set to indicate 

the contents of X are normalized. Bits shifted out of bit 14 

are lost. 

Shift Path: X Register 

15 14 13 12 11 10 9 

D;E~--_DAT_A-. _-_ -~---I-Io 
..... (LOST) 

'V 

X REGISTER 

Machine Codes: 

: 1228 for 1 place shift 

thru 

: 122F for 8 place shift 

Registers Affected: 

Xo-14 
OV 

Previous contents replaced by result of shift. 

Set if XIS -+ X14' 

Unchanged if all shifts executed and XIS = X 14 

Timing: 1 + 1/4K 

2.7.6.14 

SAO SIGN OF A TO OV 

15 14 13 12 11 10 9 8 6 5 3 

C:I 0 H 1 I 0 10 11 11 10 11 10 Hoi 0 10 10 I 
Copy the sign of the A Register in the Overflow indicator: 

(Als) -- ov 

Machine Code: 

:1340 

Registers Affected: 

OV Previous contents replaced by sign of A. 

Timing: 1 
----

2.7.6.15 

LLR LONG LOGICAL SHIFT RIGHT 

I REGISTER 
15 14 13 12 11 10 9 5 

I 0 I 0 I 0 I 1 I 1 I 0 I 1 I 1 I 1 I 0 I 0 I 0 I K 

The contents of the A and X Registers are logically shifted 

right through OV 1 +K places. For each bit position shifted, 

zero is shifted into Als, Aoo is shifted into X 15, and Xoo 

is shifted into OV. The previous contents of OV are lost. 

A, X and OV act as a 33-bit register. 

Shift Path: A Register, X Register, OV 
15 14 13 12 11 10 9 

A oE ~ DATA -----.. ~ I 
~(LOST) 

lr14 13 12 11 10 9 1 0 ~ 

X rt= · DATA I tJ 
OV 

2-49 



Machine Codes: 

: 1 B80 for 1 place shift 

thru 

: 1 B8F for 8 place shift 

Registers Mfected: 

A,X,OV Previous contents replaced by result of shift. 

Timing: 1-1/4 x 1/2K 

2.7.6.16 

LLL LONG LOGICAL SHIFT LEFT 

I REGISTER 

15 14 13 12 11 10 9 

The contents of the A and X Registers are logically shifted 

left through OV 1 +K places. For each bit position shifted, 

zero is shifted into XoO, XIS is shifted into Aoo, and A 15 

is shifted into OV. The previous contents of OV are lost. 

A, X and OV act as a 33-bit register. 

Shift Path: A Register, X Register, OV 

A REGISTER 
OV 15 14 13 12 11 10 9 

~=='===========D~AT=A;·~~=-=-=-=-=-=-=-=-=-=~~II 
LOST) lk 14 13 12 11 10 9 

... 1 _L_~i===~~::~'~_-_-_-_D_AT_A_~_.-:..-:..-:..-:..-:..-:.-:.-:.-:.-:.-:.====...+1 0 

X REGISTER 
Machine Codes: 

: IBOO for 1 place shift 

thru 

: IBOF for 16 place shift 

Registers Affected: 

A,X,OV Previous contents replaced by result of shift. 

Timing: 1-1/4 x 1 /~K 

2-50 

2.7.6.17 

LRR LONG ROTATE RIGHT 

I REGISTER 
16 14 13 12 11 10 9 

Contents of A and X Registers are shifted right through 

OV 1 +K places. OV is shifted into A 15, Xoo is shifted 

into OV, and AOO is shifted into XIS. A, X, and OV act 

as a 33-bit register. No bits are lost when this shift is 

executed. 

Shift Path: A Register, X Register, and OV 
A REGISTER 

16 14 13 12 11 10 9 o 

II I DATA --------... 3 
I 

16 14 13 12 11 10 9 o 

~---------------DATA----------~. ----~~ 

Machine Codes: 
X REGISTER 

: 1980 for 1 place shifts 

thru 

:198F for 16 place shifts 

Registers Mfected: 

OV 

A,X,OV Previous contents replaced by result of shift. 

Timing: 1-1/4 + 1/2K 

2.7.6.18 

LRL LONG ROTATE LEFT 

I REGISTER 
16 14 13 12 11 10 8 

I 0 I 0 I 0 I 1 I 1 I 0 I 0 I 1 I 0 I 0 I 0 I 0 I K 

Contents of A and X Registers are shifted left through OV 

1 +K places. OV is shifted into XoO, A 15 is shifted into OV. 



XIS is shifted into AnO' A, X, and OVact as a 33-bit 

register. 

Shift Path: A Register, X Register, OV 
A REGISTER 

13 12 11 10 9 

~~- ~~-----------DATA~--------------~ 

14 13 12 11 10 9 

~----------- DATA~----------------~ 

X REGISTER 
Machine Codes: 

: 1900 for 1 place shift 

thru 

: 190F for 16 place shift 

Registers Affected: 

A,X,OV Previous contents replaced by result of shift. 

Timing: 1-1/4 x 1/2K 

2.7.6.19 

MPS MULTIPLY STEP 

I REGISTER 
15 14 13 12 11 10 9 8 7 8 5 4 

K 

The Multiply Step instruction is used to code fast multiply 

routines. It performs all of the shifts and conditional adds 

necessary to multiply two IS-bit numbers and produce a 

30-bit product. MPS is not a complete multiply instruction, 

but it does perform the time consuming shift/test/add loop 

that is the heart of all software multiply routines. 

MPS multiplies a signed IS-bit number in the R Register by a 

signed IS-bit number in the X Register. It produces a 30-bit 

product in the A and X registers. The product produced by 

MPS is not a standard double-precision format, and the upper 

15 bits of the product (in the A Register) will require soft­

ware correction if the Multiplier is negative. 

The following is a typical software multiply routine using 

MPS. This routine will multiply two IS-bit numbers to 

produce a 30-bit product. The product will be in standard 

double-precision format, and the upper 15 bits of the 

product will be corrected if the Multiplicand was negative: 

LDX MPLR 

RRX 

SIN 3 

LDA MCND 

ZAR 

MPS 15 

JOR $+2 

SUB MCND 

LRX 

Place the Multiplier in the 

X Register. 

Pre-shift X. Place the LSB of the 

Multiplier in OV, and save previous 

contents of OV in XIS' 

Suppress .Interrupts. The Multipli­

cand will be loaded in the R Register, 

which cannot be saved by software. 

Interrupts must be disabled until 

MPS is executed. 

This instruction loads the Multipli­

cand into R and A simultaneously. 

Clear the A Register, but don't 

change R Register. 

Do a IS-bit multiply. Form the 

product in A and X. 

OV will be set if the Multiplier was 

negative (sign bit = 1). Skip the next 

instruction if sign is +. 

Subtract the Multiplicand from the 

upper 15 bits of the product if the 

Multiplier was negative. This cor­

rects the product. 

Shift the X Register right one place. 

This restores the original contents of 

OV, and separates the product into 

standard double-precision format. 

Several points should be noted in this Multiply 

routine. 

2-51 



1. 

2. 

3. 

eMS 

JMP 

NOP 

4. 

2-52 

The second instruction (RRX 1) shifts the 

Multiplier right one place and saves the contents 

of OV. If this is not done, OV must first be 

cleared, and the MPS instruction must be MPS 16 

rather than MPS 15. The method used in this 

example is shorter and also saves OV. 

The third instruction (SIN 3) suppresses inter­

rupts for three instructions. The R Register may 

be loaded by the programmer, but it can't be 

saved by the programmer. Any interrupt will 

destroy the contents of R, therefore interrupts 

must be suspended until the contents of Rare 

no longer needed. 

The fourth and fifth instructions (LDA MeND, 

ZAR) load the multiplicand into the R Register 

and clear the A Register. The MPS instruction 

forms the partial product in the A Register by 

conditionally adding the contents of R to the 

contents of A and then shifting the partial pro­

duct into X as each bit of the Multiplier is shifted 

into OV for testing. If the A Register contains 

some prior value, the product generated will be 

the'product of the Multiplier and the Multipli­

cand, plus the value in A. 

NOTE: An alternate method of 

loading R is: 

MeND Load Multiplicand into R, but don't 

disburb A or X 

$+2 Jump to MPS if MeND greater than 

(A) 

Filler if MeND less than (A) 

The sixth instruction (MPS 15) does the actual 

mUltiply. The algorithm used is: 

a. Test OV. If OV=I, add (R)+(A) and store 

result in A. If OV=O, do not add. 

b. 

c. 

Shift A and X right one place. This is a 

Long Logical Right shift. AO goes to X 15 
and Xo goes to OV. 

Test for expiration of shift count. If all 

shifts are done, exit. If more shifts to be 

done, go back to step a. 

This algorithm forms the partial product in A 

and X. The sign of the product is in A15 ; The 

fifteen most significant bits of the product are 

in bits 0 - 14 of A. The fifteen least significant 

bits of the product are in bits 1 - 15 of X. 

Bit 0 of X contains the original contents of OV, 

and OV contains the sign of the Multiplier. The 

register conditions at the end of MPS are: 

SIGN OF PRODUCT 

A REGISTER 
13 12 11 10 9 

15 PRODUCT BITS ~ 
~---~ 

v 
BITS 0 - 14 

X REGISTER 
15 14 13 12 11 10 9 

5. 

BITS 1 - 15 

SIGN OF MULTIPLIER 

The product extends from A 14 through Xl' If 
the sign of the multiplier is negative (OV=I), 

then the product bits in A will require correc­

tion. The product at this point is not in stand­

ard double-precision format. The remaining in­

structions in this routine correct the upper 

15 bits of the product, restore the original con­

tents of OV, and put the product i:n standard 

double-precision format. 

The two instructions following MPS(JOR $+2, 

SUB MeND) test the sign of the Multiplier and 

correct the product if the Multiplier was nega­

tive. The correction requirement is the result of 

the multiplication of two's complement num­

bers. If the Multiplicand is negative in this rou­

tine, the sign of the product indicates that the 

product is negative .. If the Multiplier is positive, 



6. 

then the sign of the product is correct and the 

product requires no further correction. The 

same holds true if the Multiplier and Multipli­

cand are both positive. 

However, if the Multiplier is negative with 

either ~l positIve or negative Multiplicand, the 

sign of the product is wrong, and the leading 

bits require correction. The correction may be 

performed very easily. The SUB MeND instruc­

tion performs the total product correction that 

may be required. 

The last instruction (LRX 1) places the product 

in standard double-precision format. Standard 

double precision format is as follows: 
16 14 13 12 11 10 9 8 7 6 5 4 3 o 

I S ! 15 PRODUCT BITS 

16 14 

A REGISTER X REGISTER 
13 12 11 10 9 6 6 4 3 

15 PRODUCT BITS 

In standard double precision format the sign of 

the number is in bit 15 of the word containing 

the 15 most significant bits of the number. 

Bit 15 of the word containing the 15 least sig­

nificant bits of the number always contains a O. 

Machine Codes: 

: 19AO for 1 bit mUltiply 

thru 

:19AF for 16 bit multiply 

Registers Affected: 

A,X Previous contents replaced by product. 

Timing: (MPS instructions only) 1-1/4 + {l/2)K 

2.7.6.20 

DVS DIVIDE STEP 

16 14 13 12 11 10 9 

K 

The Divide Step (DVS) instruction is used to code fast soft­

ware divide routines. It performs the shifts and adds or sub­

tracts necessary to divide a 30-bit dividend in the A and 

X Registers by a 15-bit divisor in the R Register. When the 

DVS instruction is completed, the quotient is in the 

X Register and the remainder is in the A Register. 

The DVS instruction is not a complete divide instruction, 

but instead performs the repetitive shift/test/add or subtract 

loop of a non-restoring divide algorithm. DVS does not test 

for divide faults (quotient too large for a single-precision 

register). The quotient is not rounded by DVS, and the re­

mainder may require correction. However, the DVS instruc­

tion requires only 9-1/4 cycles to complete the shift/test/ 

add or subtract loop for a 16-bit divide as compared to over 

60 cycles if DVS is not used. 

Page 2-54 contains a flow chart of the functional opera­

tion of the DVS instruction. 

Fractional Divide Example. The following is an example of 

fractional divide where the numerator must be less than the 

denominator in absolute magnitude. This routine assumes 

that the remainder is insignificant, and that the quotient 

need not be rounded (least significant bit may be off by 1). 

Tills routine does check for divide faults, and does save the 

remainder. Page 2-55 contains a flow chart of a fractional 

divide. The flow chart is followed by a sample program 

which implements the flow chart. 

2-53 



(A) + (R)~A 

2-54 

DIVIDE STEP: FUNCTIONAL FLOW CHART 

SHIFT X LEFT 1: 
SAVE X15 

SHIFT A LEFT 1: 
A15--OV 
X15--Ao 

(A)-(R)-A 

NO 

START CONDITIONS DEPEND ON 
SOFTWARE ROUTINE BEING USED, 
NORMALLY OV = A15• 

ALL BITS OF X ARE SHIFTED LEFT 
1 PLACE. X15 IS SAVED IN A TEM­
PORARY STORE. THE NEXT QUOTIENT 
BIT IS PLACE IN Xo ACCORDING TO 
THE FOLLOWING TEST. 

IF OV = A15, STORE A 1 IS THE 
QUOTIENT, XO' AND SUBTRACT THE 
DIVISOR FROM THE UPPER 15 BITS 
OF THE DIVIDEND. 

IF OV 1= A15, STORE A 0 IN THE 
QUOTIENT AND ADD THE DIVISOR 

TO THE UPPER 15 BITS OF THE 
DIVIDEND. 

A IS SHIFTED LEFT 1 PLACE. THE 
SIGN OF A, A15, IS SHIFTED INTO OV. 
THE SAVED DIVIDEND BIT FROM 
X15 (SEE FIRST BLOCK) IS SHIFTED 
INTO AO. 

THE SHIFT COUNT IS TESTED TO 
SEE IF ALL BITS HAVE BEEN 
DIVIDED. IF NOT, THE LOOP IS 
REPEATED. 

AT THE END OF A 16-BIT DIVIDE, 
THE QUOTIENT IS IN X AND THE 
REMAINDER IN A, SHIFTED lEFT 
1 PLACE. THE SIGN OF THE 
REMAINDER IS IN OV. 



DIVIDEND 
TO A & X 

PACK 
DIVIDEND 

DIVISOR 
TO R 

TEST FOR 
DIVIDE FAULT 

DIVIDE FAULT? 

NO 

DIVIDE 
(DVS) 

SAVE 
REMAINDER 

FRACTIONAL DIVIDE FLOW CHART 

YES 

SET 
FLAG 

15 MSBs of DIVIDEND IN A WITH SIGN, 
15 LSB's IN X, WITH X15 = O. 

PACK WITH 15 LSB's IN Xl -15. 

PLACE THE DIVISOR IN R WITHOUT 
DISTURBING A OR X. 

TEST TO SEE THAT HA)I < I(R)j . 

IF HA)I ~ j(R)1 , SET OV AND EXIT. 
QUOTIENT WOULD BE TOO BIG TO 
HOLD IN A SINGLE-PRECISION WORD. 

EXECUTE DIVIDE IF NO DIVIDE 
FAULT. QUOTIENT FORMED IN X, 
REMAINDER IN A. 

RIGHT JUSTIFY REMAINDER IN A. 

EXIT. 

2-55 



Fractional Divide Program 

Place double-precision dividend in the A and X Registers. 

Dividend is assumed to be in standard double precision 

format. 

1. 

2. 

3. 

4. 

S. 

6. 

7. 

8. 

2-56 

LDA HDND 

LDX LDND 

15 MSB's to A. 

AIS = sign. 

15 LSB's to X. 

The dividend is packed so that it extends from 

AIS to Xl' This removes the insignificant 

O-bit from Xl S. 

LLX 1 Pack dividend. 

For purposes of testing, the sign of the dividend 

is copied in the OV indicator. This is necessary 

because the test for a Divide Fault for a negative 

dividend is not the same as for a positive dividend. 

SAO Copy dividend sign in OV 

Since the divisor will be placed in the R Re~ster, 

and since (R) cannot be saved by software, inter­

rupts must be inhibited so long as the 

R Register contains significant information. 

SIN 7 Suppress interrupts for 7 

instructions. 

The R Register must be loaded with the divisor 

without changing the contents of A or X. The 

only Memory Reference instruction which can 

accomplish this task is CMS. 

CMS DVSR 

JMP $+2 

NOP 

Load R with divisor. 

Filler from CSM. The JMP or 

the NOP may be executed, but 

not both. 

The next step is to test for a potential Divide 

Fault. The first step is to see if the dividend is 

positive or negative and go to the appropriate 

test. 

15 

..... 

9. 

10. 

11. 

12. 

13. 

JOR DIVI If the dividend is positive, 

go to DIVI to test a positive 

dividend. Otherwise, con­

tinue for negative test. 

The Divide Fault test is made by attempting a 

I-bit divide and then testing the OV indicator. 

For a negative dividend, OV must be reset. If 

OV is set, a Divide Fault condition exists. 

DVS 

JOR DIV2 

JMP DIV4 

Perform I-bit divide. 

If OV is reset after the 

I-bit divide, there :is no 

Divide Fault. Jump to 

completion of Divide. 

If OV is set, there is a Divide 

Fault. Jump to EXIT 

routine. 

The Divide Fault test for a positive dividend is 

the same as for a negative dividend except for 

the test following the I-bit divide. If OV is set, 

there is no Divide Fault. If OV is reset, there is 

a Divide Fault. 

DIVI DVS 1 Perform I-bit divide. 

JOR DIV3 If OV is reset after the I-bit 

divide, a Divide Fault 

exists. Jump to the EXIT 

routine. If OV is set, con­

tinue with the completion 

of the divide. 

If no Divide Fault condition exists, the next 

step is to perform the divide. The condition that 

exists in the A and X registers and the OV indi­

cator at this point are: 

A REGISTER 0 15 X REGISTER 0 

(Al - (Rl i I ill 
.", '- .., 

y Y' 

15 BITS: A1-15 . 15 BITS: Ao -X2 



• 

• 

• 

14. 

A Register, bits 1-15, contains the difference 

between the 15 MSB's of the dividend and the 

divisor. This is because the DVS 1 instruction 

subtracted (R) from (A) and shifted the result 

left one place. Bit 0 of A contains the previous 

conten~s of bit 15 of X due to the long left 

shift. 

X Register, bits 2-15 , contains the 14 LSB's of 

the dividend due to the left shift. Bit 1 of X 

contains a O-bit, and bit 0 of X contains the 

complement of the eventual sign of the quotient. 

OV contains the sign of the remainder. 

The divide is performed by executing the DVS 

instruction for a 16-bit divide. 

DIV2 DVS 16 Do the divide. 

When the divide is completed, the status of the 

registers is as follows: A REGISTER 

• 01" .. " " " ,. 'REMAIN~ER'. 5 • 

16 14 13 12 11 10 9 

I s I QUOT lENT 

X REGISTER 
• X Register contains the quotient and its proper 

sign.' The quotient is unrounded, therefore Xo 
may be incorrect. 

• A Register contains the remainder in bits 1-15. 

• 

15. 

Bit 0 contains an insignificant sign bit. 

OV contains the sign of the remainder. 

The next step is to right justify the remainder 

and insert its proper sign bit. 

RRA 1 Rotate A right 1 place. 

COY) -- A15' Right justify 

AI-IS to AO-14' 

The divide is now complete. The remaining steps 

are housekeeping. The EXIT routine must be 

0 

I s I 
0 

I 

16. 

17. 

18. 

included, and a flag must indicate 

whether or not a Divide Fault 

occurred. The conventions used by 

this routine at the EXIT are: 

OV=O No Divide Fault. A contains uncor­

rected remainder if A is negative. X 

contains unrounded quotient. 

OV=1 Divide Fault detected. A and X con­

tain insignificant data. 

If there is no Divide Fault and the divide was 

executed, OV must be conditioned prior to 

going to the EXIT routine. 

SOY The EXIT routine will complement OV, 

so it is set before going to EXIT. The 

EXIT routine, for Divide Fault and nor­

mal divide is as follows: 

DIV3 COY Complement OV if the 

step is entered from the 

normal divide or from 

positive Divide Fault test. 

DIV4 (EXIT) End of program for all 

conditions. This is nor-

mally an indirect JMP back 

to a main program. 

Machine Codes: 

: 1940 for 1 place divide 

thru 

: 194F for 16 place divide 

Registers Affected (DVS instruction only): 

A 

X 

OV 

Contains remainder (uncorrected) in bits 1-15 

for 16 place divide. 

Contains signed quotient for 16 place divide. 

Contains sign of remainder. 

Timing: 1-1/4 + 1/2K 

2-57 



2.8 REGISTER CHANGE INSTRUCTIONS 

2.8.1 General 

Register Change instructions are those instructions which 

perform arithmetic and logical operations involving the A 

and X registers without requiring data from memory. 

Operations are performed using the contents of A and X 

only. The overflow (OV) indicator may be affected as a 

result of the operations performed. 

2.8.2 Instruction Format 

Figure 2-21 illustrates the format of the Register Change 

instructions. Bits 11-15 define the Register Change instruc­

tion class. The operation code defining specific instructions 

is contained in bits 3-10. 

Two instructions use a special format. These instructions 

are the Input Data Switches to A (ISA) and Input Data 

Switches to X (ISX). These instructions are special cases of 

the Input/Output instruction class. They are actually coded 

as Unconditional Input instructions with Device Address 0 

and Function Code 1. The use of I/O instructions for 

special computer functions is discussed in Part 3.1.4 of 

Section 3. 

2.8.3 Instruction Descriptions 

The following paragraphs describe the Register Change in­

structions. The descriptions follow the same format as that 

used for Memory Reference instructions. 

2.8.3.1 

ZAR ZERO A REGISTER 

I REGISTER 
15 14 13 12 11 10 9 2 0 

I 0 [ 0 [ 0 JoI 0 [ 0 [ 0 [11 0 JoI 0 [1 10 [0 [0 [0 [ 

Sets contents of A Register to Zero. 

:0000 -·A 

Previous contents of A are lost. 

2-58 

OP CODE 3 [ : [ : [ : 1 1 
15 14 13 12 11 10 9 

1
0

1
0

1
0

1
0101 

Figure 2-21. Register Change Format 

Machine Code: 

:0110 

Registers Affected: 

A Previous contents replaced by :0000. 

Timing: 

2.8.3.2 

ZXR ZERO X REGISTER 

I REGISTER 

• 
Sets contents of X Register to Zero (:0000). 

:0000 - X 

Previous contents of X are lost. 

Machine Code: 

:0108 

Registers Affected: 

X Previous contents replaced by :0000 

Timing: 

2.8.3.3 

ZAX ZERO A AND X REGISTER 

I REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

[o[ o[ o[ 01 o[ o[ o[ '1 0[0[0['1 ' [0 [0 [0] 



Sets contents of A and X Registers to Zero. 

:0000 -- A 

:0000 -- X 

Previous contents of A and X are lost. 

Machine Codes: 

:0118 

Registers Mfected: 

A 

X 

Previous contents replaced by : 0000 

Previous contents replaced by :0000 

Timing: 

2.8.3.4 

ARM SET A REGISTER TO MINUS 1 

I REGISTER 
15 14 13 12 11 10 9 8 7 8 6 4 3 2 1 0 

10101010101010101010101,101010101 

Sets contents of A Register to -1 (:FFFF). 

-1 -+ A 

Previous contents of A are lost. 

Machine Code: 

:0010 

Registers Affected: 

A Previous contents replaced by : FFFF. 

Timing: 

2.8.3.5 

XRM SET X REGISTER TO MINUS 1 

I REGISTER 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1010101010101010101010101'101010 I 

Sets contents of X Register to -1 (:FFFF). 

-1 -- X 

Previous contents of X are lost. 

Machine Code: 

:0008 

Registers Mfected: 

X Previous contents r~placed by :FFFF. 

Timing: 

2.8.3.6 

AXM SET A AND X REGISTER TO MINUS 1 

I REGISTER 
15 14 13 12 11 10 9 8 8 6 3 2 0 

~I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 l' 1, I 0 10 10 I 
Sets contents of A and X Registers to -1 (:FFFF). 

-1- A 

-1 - X 

Previous contents of A and X are lost. 

Machine Code: 

:0018 

Registers Mfected: 

A 

X 

Previous contents replaced by :FFFF. 

Previous contents replaced by : FFFF. 

Timing: 

2.8.3.7 

ARP SET A REGISTER TO PLUS 1 

I REGISTER 
15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 

[0 I 0 I 0 I 0 I 0 I 0 l' l' I 0 l' I 0 l' I 0 I 0 I 0 I 0 I 
2-59 

• 



Sets contents of A Register to plus 1 (:0001). 

:0001 - A 

Previous contents of A are lost. 

Machine Codes: 

:0350 

Registers Mfected: 

A Previous contents replaced by + 1 (:0001). 

Timing: 

2.8.3.8 

XRP SET X REGISTER TO PLUS 1 

I REGISTER 
Iii 14 13 12 11 10 III 8 6 Ii 4 3 2 1 0 

10 I 0 I 0 I 0 101,101,10 101' 101' 1
0 10 10 I 

Sets contents of X Register to plus 1 (:0001). 

:0001 - X 

Previous contents of X are lost. 

Machine Code: 

:0528 

Registers Mfected: 

X Previous contents replaced by :0001. 

Timing: 

2.8.3.9 

AXP SET A AND X REGISTERS TO PLUS 1 

I REGISTER 
Iii 14 13 12 11 10 8 6 6 

10 10 10 101 0 I 01 ' 1
,
1 0 l' 101' 1' 1

0 10 
1
0

1 

Sets contents of A and X Registers to plus 1 (:0001). 

2-60 

:0001 - A 

:0001 - X 

Previous contents of A and X are lost. 

Machine Code: 

:0358 

Registers Affected: 

A 

X 

Previous contents replaced by :0001. 

Previous contents replaced by :0001. 

Timing: 1 

2.8.3.10 

DAR DECREMENT A REGISTER 

I REGISTER 

Subtracts one from the contents of A Register and places 

results in A. 

(A)-l - A 

OV set if previous (A) = :8000. 

Machine Code: 

:OODO 

Registers Mfected: 

A 

OV 

Timing: 

2.8.3.11 

Contents decremented 

Set if previous (A) = -32,76810 (:8000). 

DXR DECREMENT X REGISTER 

I REGISTER 
Iii 14 13 12 11 10 III 6 6 4 3 2 1 0 

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 1' 10 l' 10 1, I 0 I~ 



Subtracts one from the contents of X Register and places 

result in X. 

(X) -1 -- X 

OV set if previous (X) = : 8000. 

Machine Code: 

:00A8 

Registers Affected: 

X Contents decremented. 

OV Set if previous (X) = -32,76810 (:8000). 

Timing: 1 

2.8.3.12 

IAR INCREMENT A REGISTER 

I REGISTER 
Iii 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

101010101010101'101'101'101010101 

Adds one to contents of A Register and places results in A. 

(A)+l-A 

OV set if (A) = :7FFF. 

Machine Code: 

:0150 

Registers Affected: 

A Contents incremented. 

OV Set if previous (A) = 32,76710 (:7FFF) 

Timing: 1 

2.8.3.13 

IXR INCREMENT X REGISTER 

I REGISTER 
Iii 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

101010101010101,10101'101'1010101 

Adds one to the contents of the X Register and places 

result in X. 

(X) +1 - X 

OV set if previous (X) = :7FFF. 

Machine Code: 

:0128 

Registers Affected: 

X Contents incremented. 

OV Set if previous (X) = 32,767 (:7FFF). 

Timing: 1 

2.8.3.14 

NAR NEGATE A REGISTER 

I REGISTER 
Iii 14 13 12 11 10 9 8 7 6 5 4 3 2 I 0 

Gioioiol 01 01'1,1010101,101010101 

Performs 2's complement of contents of A Register and 

places result in A. 

-(A) - A 

OV set if previous (A) = :8000. 

Machine Codes: 

:0310 

Registers Affected: 

A Contents negated. 

OV Set if (A) = -32,768 (:8000). 

Timing: 1 

2.8.3.15 

NXR NEGATE X REGISTER 
I REGISTER 

Iii 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

~I 0 I 0 I 0 I 0 I, I 0 1,1 0 I 0 I 0 I 0 I, I 0 I 0 I 0 I 
2-61 



Performs 2's complement of contents of X Register and 

places result in X. 

-(X) - X 

OV set if (X) = :8000. 

Machine Code: 

:0508 

Registers Mfected: 

X Contents negated. 

OV Set if (X) = -32,768 (:8000). 

Timing: 1 

2.8.3.16 

CAR COMPLEMENT A REGISTER 

II REGISTER 
Iii 14 13 12 11 10 9 8 7 6 II 4 3 2 1 0 

I 0 I 0 I 0 I 0 1 0 I 0 11 Hoi 0 I 0 11 10 10 10 10 I 
Performs l's complement of contents of A Register and 

places result in A. 

(A) - A 

Machine Code: 

:0210 

Registers Mfected: 

A Contents complemented. 

Timing: 1 

2.8.3.17 

CXR COMPLEMENT X REGISTER 

I REGISTER 
Iii 14 13 12 11 10 9 8 7 6 II 4 3 2 

2-62 

Performs l's complement of contents of X Register and 

places result in X. 

(X) -X 

Machine Codes: 

:0408 

Registers Mfected: 

X Contents complemented. 

Timing: 1 

2.8.3.18 

TAX TRANSFER A TO X 

I REGISTER 
Iii 14 13 12 11 '10 9 8 7 6 6 3 2 0 

10101010101 01010101110101110 I~ 
Transfers contents of A Register to the X Register. A is 

unchanged. 

(A) - X 

Previous contents of X are lost. 

Machine Codes: 

:0048 

Registers Affected: 

Previous contents replaced by (A). 

Timing: 1 

2.8.3.19 

TXA TRANSFER X TO A 

I REGISTER 



Transfers contents of X Register to A Register. X is 

unchanged. 

(X) - A 

Previous contents of A are lost. 

Machine Codes: 

:0030 

Registers Affected: 

A Previous contents replaced by (X). 

Timing: 1 

2.8.3.20 

NAX NEGATE A AND PUT IN X 

I REGISTER 
16 14 13 12 11 10 9 8 

Places the 2's complement of contents of A into X. A is 

unchanged. 

-(A) - X 

OV set if (A) = : 8000. Previous contents of X are lost. 

Machine Codes: 

:0308 

Registers Affected: 

X Previous contents replaced by -(A). 

OV Set if (A) = -32,768 (:8000) 

Timing: 

2.8.3.21 

NXA NEGATE X AND PUT IN A 

I REGISTER 

16 14 13 12 11 10 9 8 

Places the 2's complement of contents of X into A. X is 

unchanged. 

-(X) - A 

OV is set if (X) = : 8000. Previous contents of A are lost. 

Machine Code: 

:0510 

Registers Affected: 

A Previous contents replaced by -(X). 

OV Set if (X) = -32,76810(:8000) 

:fiming: 1 

2.8.3.22 

CAX COMPLEMENT A AND PUT IN X 

I REGISTER 

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1010 10 1010 10 1110101010 H 11 0 10 10 I 
Places the l's complement of contents of A Register into X. 

A is unchanged. 

(A) -x 

Previous contents of X are lost. 

Machine Codes: 

:0208 

Registers Affected: 

X Previous contents replaced by (A). 

Timing: 1 

2.8.3.23 

CXA COMPLEMENT X AND PUT IN A 

I REGISTER 
15 14 13 12 11 10 9 8 6 2 0 

10101010101110101010101110101010 I 
2-63 



Places the l's complement of contents of X Register into A. 

X is unchanged. 

(x) - A 

Previous contents of A are lost. 

Machine Code: 

:0410 

Registers Affected: 

A Previous contents replaced by eX). 

Timing: 1 

2.8.3.24 

lAX INCREMENT A AND PUT IN X 

I REGISTER 
HI 14 13 12 11 10 9 

Adds one to contents of A Register and puts results in X. 

A is unchanged. 

(A) +1 - X 

OV set if (A) = :7FFF. Previous contents of X are lost. 

Machine Codes: 

:0148 

Registers Affected: 

X Previous contents replaced by (A)+l. 

OV Set if (A) = 32,76710 (:7FFF) 

2.8.3.25 

IXA INCREMENT X AND PUT IN A 

I REGISTER 
15 14 13 12 11 10 9 8 5 

2-64 

Adds one to contents of X register and puts results in A. 

X is unchanged. 

(X) +1 -- A 

OV is set if (X) = : 7FFF. Previous contents of A an! lost. 

Machine Codes: 

:0130 

Registers Affected: 

A Previous contents replaced by (X) + 1. 

OV Set if (X) = 32,76710 (:7FFF) 

Timing: 1 

2.8.3.26 

DAX DECREMENT A AND PUT IN X 

I REGISTER 

Subtracts one from contents of A Register and places 

results in X. A is unchanged. 

(A) -1 - X 

OV set if (A) = :8000. Previous contents of X are lost. 

Machine Codes: 

:00C8 

Registers Affected: 

X Previous contents replaced by (A) -1. 

OV Set if (A) = -32,768 (:8000) 

Timing: 1 

2.8.3.27 

DXA DECREMENT X AND PUT IN A 
I REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

10 Hoi 0 10 10 10 H ,1 0 1,1,1 0 I 0 10 10 I 



Subtracts one from contents of X Register and places results 

in A. X is unchanged. 

(X)-1 - A 

OV set if (X) = :8000. Previous contents of A are lost. 

Machine Codes: 

:OOBO 

Registers Affected: 

A Previous contents replaced by (X) -1. 

OV Set if (X) = -32,76810 (:8000). 

Timing: 1 

2.8.3.28 

NRX NOR OF A AND X TO X 

I REGISTER 
15 14 13 12 11 10 9 8 7 6 5 

Performs NOR (A) V (X) of contents of A and X Registers 

and places results in X. A is unchanged. 

(A) V (X) -- X 

Previous contents of X are lost. 

Machine Codes: 

:0608 

Registers Affected: 

X Previous contents replaced by (A) V (X) 

Timing: 1 

2.8.3.29 

NRA NOR OF AANDXTOA 

I REGISTER 
15 14 13 12 11 10 9 0 

101010101 01,1,1 01010101,1010 10 101 

Performs NOR (A) V (X) of contents of A and X Registers 

and places results in A. X is unchanged. 

(A) V (X) -- A 

Previous contents of A are lost. 

Machine Codes: 

:0610 

Registers Affected: 

A Previous contents replaced by (A) V (X). 

2.8.3.30 

ANX AND OF AANDXTOX 

I REGISTER 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

[ 0 10 10 10 10 10 10 10101,1,1 0 I, 10 10 101 
AND's contents of A and X Registers and places result in X. 

A is unchanged. 

(A) 1\ (X) -- X 

Previous contents of X are lost. 

Machine Codes: 

:0068 

Registers Affected: 

X Previous contents replaced by (A) /\ (X). 

Timing: 

2.8.3.31 

ANA AND OF A AND X TO A 

I REGISTER 
15 14 13 12 11 10 

2-65 



AND's contents of A and X Registers and places result in A. 

X is unchanged. 

(S) 1\ (X) -" A 

Previous contents of A are lost. 

Machine Codes: 

:0070 

Registers Affected: 

A Previous contents replaced by (A) 1\ (X). 

Timing: 1 
---

2.8.3.32 

ISX INPUT DATA SWITCHES TO X 

15 14 13 12 11 10 9 B II 

Read 4 low order data switches (bits 0-3) into 4 low order 

bit positions of X Register (bits 0-3). Bits 4-15 of X are 

set to zeros. Previous contents of X are lost. 

NOTE: This is a special case of the I/O 

INA instruction. See Part 3.1.4 of 

Section 3 

Machine Code: 

:5BOI 

Registers Affected: 

X Previous contents replaced by contents of data 

switches 0-3. 

Timing: 1-1/4 

2-66 

2.8.3.33 

ISA INPUT SWITCHES TO A 

Read 4 low order data switches (bits 0-3) into 410w order 

bit positions of A Register (bits 0-3). Bits 4-15 of A are set 

to zeros. Previous contents of A are lost. 

NOTE: This is a special case of the I/O 

INA instruction. See Part 3.1.4 of 

Section 3. 

Machine Code: 

:5801 

Registers Affected: 

A Previous contents replaced by contents of data 

switches 0-3. 

Timing: 1-1/4 

2.9 CONTROL INSTRUCTIONS 

2.9.1 General 

Control instructions are those instructions which are used 

for general status manipulation in the computer. Interrupts 

are enabled and disabled by Control instructions. The com-

. puter status word is saved and restored using Control instruc­

tions. Miscellaneous instructions such as Halt, No Operation, 

and OV status change are part of the Control class. 

2.9.2 Format 

There is no fixed format for the Control class. The formats 

used by this class technically fall into the Register Change 



class, Shift class, and I/O class. Those instructions which 

fall in the I/O class are pointed out in the instruction 

descriptions, because these instructions place data and control 

signals on the I/O busses. However, all of these instruc-

tions are discussed as Control instructions because their func­

tions are control functions rather than I/O, Register Change, 

or Shift. 

2.9.3 Instruction Descriptions 

The Control class instruction descriptions follow the same 

general format as the Memory Reference instruction 

descriptions. The primary difference is in the Registers 

Affected portion of the description. This has been expanded 

to read Registers and Status Affected in most cases. Con­

trol instructions are concerned with much more than general 

registers. They have influence throughout the computer, 

therefore their total range must be described. 

2.9.3.1 

HLT HALT 

I REGISTER 
15 14 13 12 11 10 3 

Halts the computer. Resets the Run mode indicator. 

Machine Code: 

:0800 

Registers and Status Affected: 

Run 

Timing: 

2.9.3.2 

NOP 

Resets Run mode 

NO OPERATION 

I REGISTER 
15 14 13 12 11 10 

This instruction causes a I-cycle pause in the program. 

Machine Code: 

:0000 

.Registers and Status Affected: 

None 

Timing: 

2.9.3.3 

ROV RESET OVERFLOW 

I REGISTER 
IIi 14 13 12 11 10 

Resets the Overflow indicator II 

0- OV 

Machine Code: 

:1200 

Registers Affected: 

OV Unconditionally reset. 

Timing: 

2.9.3.4 

SOY SET OVERFLOW 

I REGISTER 
15 14 13 12 11 10 

Sets the Overflow indicator. 

1 -- OV 

Machine Code: 

:1400 

2-67 



Registers Affected: 

OV Unconditionally set. 

Timing: 

2.9.3.5 

COY COMPLEMENT OVERFLOW 

I REGISTER 
Iii 14 13 12 11 10 9 8 6 

Complements the Overflow indicator. 

(OV) - OV 

Machine Code: 

:1600 

Registers Affected: 

OV Complemented. 

Timing: 

2.9.3.6 

SBM SET BYTE MODE 

Iii 14 13 12 11 10 9 

The Set Byte Mode (SBM) instruction conditions the com­

puter to address byte operands rather than word operands 

when executing Memory Reference instructions. (See 

Memory Reference instruction descriptions for those'in­

structions affected by Byte Mode.) 

Machine Code: 

:OEOO 

2-68 

Registers and Status Affected: 

Byte Mode 

Timing: 

2.9.4.7 

SWM 

Conditions the computer for 

Byte Mode addressing. 

SET WORD MODE 

Iii 14 13 12 11 10 

The Set Word Mode (SWM) instruction conditions the com­

puter to address word operands rather than byte operands 

when executing Memory Referenc.e instructions. 

Machine Code: 

:OFOO 

Registers and Status Affected: 

Word Mode 

Timing: 1 

2.9.3.8 

EIN 

Conditions the computer for 

Word Mode addressing. 

ENABLE INTERRUPTS 

I REGISTER 
11i 14 13 12 11 10 9 

Sets the Enable Interrupt flip-flop in the processor. Enables 

the recognition of external interrupts by the computer. (See 

Part 3.2 of Section 3.) 

Machine Code: 

:OAOO 



Registers and Status Affected: 

Interrupts Enables recognition of external interrupts. 

2.9.3.9 

DIN DISABLE INTERRUPTS 

I REGISTER 

Resets the Enable Interrupt flip-flop in the processor. Pre­

vents processor from responding to any interrupts (except 

Power Fail and Console. See PFE and CIE instructions). 

Machine Code: 

:ocoo 

Registers and Status Affected: 

Interrupt 

Timing: 1 

2.9.3.10 

SIN 

Prevents recognition of all interrupt which 

are under EIN/DIN control. 

ST ATUS INHIBIT 

10 

This instruction suspends Enable Interrupts status and Byte 

Mode status for the number of computer instructions speci­

fied by the ID Field of the instruction. When this instruction is 

executed, interrupts are inhibited and the computer is placed 

in Word Mode until the computer has executed a specified 

number of computer instructions. The number of instructions 

is one less than the number specified by the ID (Inhibit Dura­

tion) field of the Status Inhibit instruction. When the com­

puter executes the specified number of instructions, Interrupt 

status and Byte Mode status are returned to the status they 

were in prior to the execution of the Status Inhibit 

instruction. This instruction is especially useful when 

writing subroutines which are entered from random 

locations in a main program. Computer status may be 

inhibited for up to 6 instructions. A count of 0 in the 

ID field does not inhibit computer status. 

NOTE: This instruction is a special case of the 

I/O OTZ instruction. See Part 3.1.4 of 

Section 3. 

Machine Code: 

:680Z for 1 instruction inhibit duration. 

thru 

:6807 for 6 instruction inhibit duration. 

Registers and Status Affected: 

Byte Mode Unconditionally set to Word Mode for one 

less than the number of instructions speci­

fied by ID Field, then returned to previous 

status. 

Interrupts 

Timing: 1-1/4 

2.9.3.11 

TRP 

Unconditionally inhibited for one less 

than the numbe.r of instructions specified 

by ID Field, then returned to previous 

status. 

TRAP 

15 14 13 12 11 10 9 8 7 6 5 4 3 

Causes the computer to be interrupted to the console inter­

rupt location. Several conditions govern the execution of 

this instruction: 

L If Status Inhibit (SIN) is not in effect, the Trap will 

be recognized immedi~tely. The Trap will be proc­

essed the same as any other interrupt. 

2-69 



2. 

3. 

If a SIN instruction has been executed and has not 

expired (the number of instructions specified by the 

SIN instruction have not been executed), the recog­

nition of the Trap will be delayed until the required 

number of instructions have been executed. 

Power Fail interrupts have priority over Trap inter­

rupts. If a Power Fail interrupt is generated before a 

Trap interrupt is recognized, the Power Fail interrupt 

will be processed first. 

Interrupt Location: Normal 

Displaced 

:OOIE 

:OllE 

NOTE: This instruction is a special case of the I/O 

SEL instruction. See Part 3.1.4 of Section 3. 

Machine Code: 

:4007 

Registers and Status Affected: 

Interrupt Generates an interrupt to location :001 E 

(or :OIIE if displaced). 

Bits 3-1 5 of X are set to zeros. A I-bit in the X Register 

indicates that the corresponding status indicator was set· 

when read. A O-bit indicates that the indicator was reset. 

The previous contents of X are lost. 

NOTE: This instruction is a special case of the I/O 

INA instruction. See Part 3.1.4 of Section 3. 

Machine Code: 

:SAOO 

Registers and Status Affected: 

X 

OV 

Byte Mode 

Timing: 1-1/4 

2.9.3.13 

SIA 

Previous contents replaced by computer 

status. 

Unconditionally reset after status read. 

Unconditionally reset after status read. 

STATUS INPUT TO A 

16 14 13 12 11 10 8 

Timing: 1-1/4 1 0 11 1 0 11 11 1 0 1 0 1 0 I 0 1 0 1 0 1 0 I 0 1 0 I 0·1 0 1 
2.9.3.12 

SIX STATUS INPUT TO X 

16 14 13 12 11 10 9 8 7 8 6 3 2 0 

10
1 1 I 0 I 1 I 1 1 0 1 1 101 0 I 0 I 0 I 0 I 0 I 0 I 0 1 0

1 

Reads the status of the OV indicator, Byte Mode indicator, 

and Enable Interrupts flip flop into hits 0, 1, and 2 of the 

X Register. Unconditionally resets the OV indicator and the 

Byte Mode indicator after status is read. Does not reset the 

Enable Interrupts flip flop. The format of the status in the 

X Register is: 
16 14 13 12 11 10 9 

2-70 

Reads the status of the OV indicator, Byte Mode indicator, 

and Enable Interrupts flip flop into bits 0, 1, and 2 of the 

A Register. Unconditionally resets OV indicator and Byte 

Mode indicator after status is read. Does not reset the Enable 

Interrupts flip flop. The format in the A Register is: 

Iii 14 13 12 11 10 9 

Bits 3-1 S' of A are set to zeros. A I-bit in the A Register 

indicates that the corresponding status indicator was set 

when read. A O-bit indicates that the indicator was reset. 

Previous contents of A are lost. 



NOTE: This instruction is a special case of the I/O 

INA instruction. See Part 3.1.4 of Section 3. 

Machine Code: 

:5800 

Registers and Status Affected: 

A Previous contents replaced by computer 

status. 

OV Unconditionally reset after status is read. 

Byte Mode Unconditionally reset after status is read. 

Timing: 1-1/4 

2.9.3.14 

SOX ST ATUS OUTPUT FROM X 

16 14 13 12 11 10 9 B 

Sets the OV indicator to the status of bit 0 of the X Register, 

and sets the Byte Mode indicator to the status of bit 1 of the 

X Register. This instruction does not restore the status of 

the Enable Interrupts flip flop. 

NOTE: This instruction is a special case of the I/O 

OTA instruction. See Part 3.1.4 of Section 3. 

Machine Code: 

:6EOO 

Registers and Status Affected: 

OV Set to condition of bit 0 of the X Register. 

(1 =Set, 0= Reset) 

Byte Mode Set to condition of bit 1 of the X Register. 

(1 =Set, 0= Reset. 

Timing: 1-1/4 

2.9.3.15 

SOA ST ATUS OUTPUT FROM A 

Iii 14 13 12 11 10 9 B 7 6 5 4 3 

Sets the OV indicator to the status of bit 0 of the A Regis­

ter, and sets the Byte Mode indicator to the status of bit 1 

of the A Register. This instruction does not restore the 

status of the Enable Interrupts flip-flop. 

NOTE: This instruction is a special case of the I/O 

OTA instruction. See Part 3.1.4 of Section 3. 

Machine Code: 

:6COO 

,Registers and Status Affected: 

OV Set to condition of bit 0 of the A Register. 

(1 =Set, 0= Reset) 

Byte Mode Set to condition of bit 1 of the A Register. 

(1 =Set, 0= Reset) 

Timing: 1-1/4 

2.9.3.16 

CIE CONSOLE INTERRUPT ENABLE 

15 14 13 12 11 10 

This instruction enables console interrupts. Console inter­

rupts are generated when the AUTO LD siwtch is depressed 

and the computer is in the Run mode. Console interrupts 

are also under the control of the Enable Interrupts (EIN) or 

2-71 



Power Fail Enable (PFE) instructions, depending on the 

computer configuration selected. If Power Fail interrupt 

enable is placed under the control of the EIN instruction, 

then console interrupts are also under EIN control (both 

EIN and CIE instructions must be executed for console 

interrupts to be recognized), b~t if Power Fail interrupt 

enable is placed outside EIN control then console interrupts 

are also outside EIN control and under PFE control (both 

PFE and CIE instructions must be executed for console inter­

rupts to be recognized). 

NOTE: This instruction is a special case of the I/O 

SEL instruction. See Part 3.1.4 of Section 3. 

Machine Code: 

:4005 

Registers and Status Affected: 

Console Interrupts 

Timing: 1-1/4 

2.9.3.17 

CID 

Sets the Console Interrupt Enable 

flip flop. 

CONSOLE INTERRUPT DISABLE 

115 14 13 12 11 10 IJ 8' 7 6 3 2 0 

I 0 I ' I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I ' I ' 1
0

1 

This instruction unconditionally disables console inter­

rupts, regardless of the Enable Interrupts flip flop or 

Power Fail Enable flip flop (see Console Interrupt 

Enable instruction). 

NOTE: This instruction is a special case of the I/O 

SEL instruction. See Part 3.1.4 of Section 3. 

Machine Code: 

:4006 

2-72 

Registers and Status- Affected: 

Console Interrupts Unconditionally disabled. 

Timing: 1-1/4 

2.9.3.18 

PFE POWER FAIL INTERRUPT ENABLE 

16 14 13 12 11 10 

A special computer option allows Power Fail Interrupt 

Enable and Power Fail Interrupt Disable to be placed out­

side EIN and DIN control. When this option is exercised, 

the Power Fail Enable (PFE) instruction is effective. This 

instruction enables Power Fail interrupts. (See Part 4.3 of 

Section 4 for a description of the Power Fail option.) When 

power fail interrupts are enabled, low power conditions will 

be recognized by the computer and will generate a Power 

Fail Interrupt to location :001 C (location :011 C if 

displaced). 

NOTE: This instruction is a special case of the I/O 

SEL instruction. See Patt 3.1.4 of Section 3. 

Machine Code: 

:4002 

Registers and Status Affected: 

Power Fail Enables power fail interrupts. 

Timing: 1-1/4 

2.9.3.19 

PFD POWER FAIL INTERRUPT DISABLE 
16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I ai, I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 ElJ 



A special computer option allows Power Fail Interrupt 

Enable and Power Fail Interrupt Disable to be placed out­

side EIN and DIN control. When this option is exercised, the 

Power Fail Interrupt Disable (PFD) instruction is effective. 

This instruction disables Power Fail interrupts. (See Part 4.3 

of Section 4 for a description of the Power Fail option.) 

CAUTION 

WHEN THIS INSTRUCTION IS EXECUTED, 

LOW POWER CONDITIONS CANNOT BE 

RECOGNIZED BY THE COMPUTER UNTIL 

POWER FAIL INTERRUPTS ARE AGAIN 

ENABLED. 

NOTE: This instruction is a special case of the I/O 

SEL instruction. See Part 3.1.4 of Section 3. 

Machine Code: 

:4003 

Registers and Status Affected: 

Power Fail 

Timing: 1-1/4 

2.9.3.20 

MPE 

Inhibits recognition of power fail 

interrupts. 

MEMORY PROTECT ENABLE 

15 14 13 12 11 10 9 

When the Memory Protect option is installed in the com­

puter, a special option allows protection to be enabled or 

disabled by computer software. The Memory Protect 

Enable (MPE) instruction enables the memory protect fea­

ture and prevents the modification (writing) of data in tht( 

protected area of memory. When this instruction is exe­

cuted the computer may read instructions and data from the 

protected area, but may not write into the protected area. 

(See Part 4.6 of Section 4 for a description of the Memory 

Protect. option.) 

~: This instruction is a special case of the I/O 

SEL instruction. See Part 3.1.4 of Section 3. 

Machine Code: 

:4000 

Registers and Status Affected: 

Memory Protect Enables memory protect feature. 

Timing: 1-1/4 

2.9.3.21 

MPD MEMORY PROTECT DISABLE 

When the Memory Protect option is installed in the com­

puter, a special option allows protection to be enabled or 

disabled by computer software. The Memory Protect Dis­

able (MPD) instruction disables the memory protect feature 

and allows the modification (writing) of data in the protected 

area. (See Part 4.6 of Section 4 for a description of the 

Memory Protect option.) 

CAUTION 

WHEN THIS INSTRUCTION IS EXECUTED 

THE CONTENTS OF THE PROTECTED AREA 

OF MEMORY MAY BE MODIFIED BY COM­

PUTER SOFTWARE. THE AREA REMAINS 

UNPROTECTED UNTIL THE MPE INSTRUC­

TION IS EXECUTED. 

NOTE: This instruction is a special case of the I/O 

SEL instruction. See Part 3.1.4 of Section 3. 

Machine Code: 

:4001 

~egisters and Status Affected: 

Memory Protect Disables memory protect feature. 

2-73 



Timing: 1-1/4 

2.9.3.22 

RAM SET RANDOM ACCESS MODE 

Iii 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 0 1'101 0 I 0 10 Hoi 0 1, 10 Hoi, 10 I, I 
A special option allows the installation of up to 4K words of 

Read Only Memory in the computer. The Read Only Memory 

may be paralleled in the lower 256 words by Random Access 

Memory. When this option is installed, special control in­

structions are provided to select the random access memory 

or the read only memory. The Set Random Access Mode 

(RAM) instruction conditions the computer to address the 

random access memory rather than the read only memory 

when addressing the lower 256 words of the Read Only 

Memory option. 

NOTE: This instruction is a special case of the I/O 

SEL instruction. See Part 3.1.4 of Section 3. 

Machine Code: 

:4045 

Registers and Status Affected: 

Read Only Memory 

2-74 

Computer addresses Random 

Access Memory rather than Read 

Only Memory when addressing 

Read Only Memory option. 

Timing: 1-1/4 

2.9:3.23 

ROM SET READ ONLY MODE 

A special option allows the installation of up to 4K words of 

Read Only Memory in the computer. The Read Only Memory 

may be paralleled in the lower 256 words by Random Access 

Memory. When this option is installed, special control in­

structions are provided to select the random access memory 

or the read only memory. The Set Read Only Mode (ROM) 

instruction conditions the computer to address the read 

only memory rather than the random access memory when 

addressing the lower 256 words of the Read Only Memory 

option. 

NOTE: This instruction is a special case of the I/O 

SEL instruction. See Part 3.1.4 of Section 3. 

Machine Code: 

:4046 

Registers and Status Affected: 

Read Only- Memory 

Timing: 1-1/4 

Computer addresses Read Only 

Memory rather than Random 

Access Memory when addressing 

Read Only Memory option. 



SECTION 3 

INPUT /OUTPUT 

3.1 INTRODUCTION 

3.1.1 General 

A computer, if it is to perform any useful function, must 

have the ability to receive information from external 

sources and to send information to external devices. A 

characteristic of the ALPHA 16 and NAKED MINI 16 

computers is a very powerful input/output configuration 

which allows very efficient communication between the ' 

computer and external devices. 

Part 1.3.6 of Section 1 is a general discussion of the I/O 

configuration used by these computers. The purpose of 

Section 3 is to describe in detail the I/O functions of the 

ALPHA 16 and NAKED MINI 16 computers. The intro­

duction to this section describes control requirements, I/O 

organization, and general data movement. The second part 

of this section describes the priority interrupt system. The 

third part describes general I/O instructions. The fourth 

part describes block transfer instructions. The final part 

describes direct memory channels (automatic I/O 

instructions). 

3.1.2 Control Requirements 

Part 1.3.6 of Section 1 points out that there are four 

general functions which a computer must perform in order 

to effectively control peripheral devices. These functions 

are required to provide effective data transfer in both 

directions, and to properly monitor peripheral activities. 

3.1.2.1 Device Selection. A computer is capable of con­

trolling more than one peripheral device. For this reason, 

there must be some means for selecting or addressing each 

device with which the computer must communicate. Each 

peripheral device is assigned some unique device address 

which the computer may use to select the device for con­

trol or data transfer. 

3.1.2.2 Function Command. Most peripheral devices 

are capable of performing several different functions. For 

example, a magnetic tape unit is capable of writing data, 

reading data, rewinding, backspacing, etc. The computer 

must be able to tell the device exactly which function it is 

to perform. Therefore, the computer must not only be 

able to select a device, but it must also be able to command 

the selected device to perform certain functions. 

3.1.2.3 Sense Status. Because of the vastly different 

operating speed of computers and peripheral devices, 

there may be a relatively long period of time between the 

issuing of a command and the completion of that command. 

Also, because peripheral devices often must execute some 

mechanical action to perform the commands that are • 

given, the chances for errors to occur in peripheral devices 

are much greater than in the computer. Peripheral devices 

often have elaborate error checking schemes. The computer 

must be able to interrogate the peripheral device to see 

whether or not commands have been completed, and 

whether or not error conditions have been detected. In 

order to do this, the computer has the ability to address a 

device interface and sense certain status conditions in the 

device or interface. 

3.1" 2.4 Data Transfer. There are many types of peripheral 

devices. Many of them are extensions of the computer 

memory (disks, magnetic tape units, etc.). Others convert 

information from computer codes to a form that can be 

read by humans (printers, CRTs, plotters, etc.). Others allow 

the computer to monitor and control physical events and 

actions (analog to digital and digital to analog converters). 

The types of peripheral devices are virtually unlimited. But 

a common characteristic of all is that they send data to 

and/or receive data from the computer. The ultimate objec­

tive of all peripheral devices is the transfer of data in one 

form or another. 

3-1 



3.1.3 Organization 

Control of peripheral devices and data transmission between 

the devices and the computer are accomplished by the use 

of a peripheral interface and computer instructions to condi­

tion and interrogate the interface. Figure 1-5 illustrates the 

relationship between the computer, the interface and the 

peripheral device. Figure 3-1 is a more detailed block dia­

gram of this relationship. The following paragraphs discuss 

the four general functions which the computer must per­

form, using Figure 3-1 to illustrate how these functions are 

performed. 

3.1.3.1 Device Selection. Device selection starts with the 

decoding of an I/O instruction in the I Register of the 

computer. Each I/O instruction contains an operation code 

specifying the type of instruction that is being executed, 

the address of the device which is to respond to the instruc­

tion, and a function code specifying the action that the 

device is to take. 

The device address is gated directly from the I Register of 

the computer to the P Bus. The P Bus is applied directly to 

an Address Decode section in all peripheral interfaces which 

are connected to the computer. Only one interface will be 

able to decode the address and respond to it. Those inter­

faces which are not selected will not be able to decode the 

address. The interface which can decode the address gener­

ates a signal which enables the Function Decode and Control 

Logic of the interface. Those interfaces which cannot decode 

the address have their Function Decode and Control Logic 

sections disabled by the lack of an address code. 

3.1.3.2 Function Command. The function thatis to be per­

formed by the peripheral device is determined by two 

things: (1) the type of I/O instruction that is being executed, 

and (2) the instruction function code. The operation code in 

the I Register determines the type of instruction that is 

being executed. Processor Control decodes the operation 

code and sends signals via the C Bus to the interface. These 

signals tell the interface whether the instruction is a Select, 

3-2 

Sense, Input, or Output instruction. These signals are 

applied to the interface Control Logic. 

The I/O instruction function code is passed from the 

I Register to the interface Function Decode section via the 

F Bus. The function code is decoded in Function Decode 

and is applied to the interface Control Logic. The Control 

Logic examines the function code from Function Decode 

and the instruction type from Processor Control to 

determine what control signals must be generated in the 

interface and what control signals must be applied to the 

peripheral device via the Device Control1ines. Note that 

the Control Logic section in the interface cannot perform 

any of these functions unless it is enabled by the Address 

Decode section. 

3.1.3.3. Sense Status. The peripheral interface receives 

status information from the peripheral device via the 

Device Control1ines. The computer may interrogate the 

interface to determine the status of the peripheral device. 

The computer uses a Sense instruction to perform the 

interrogation. 

When a Sense instruction is decoded in the I Register of the 

computer, the Process Control section sends control infor­

mation to the peripheral interface. The device address 

portion of the Sense instruction specifies which device is 

being sensed, and the function code specifies what status in 

the device is being sensed. The Control Logic of the inter­

face examines the enable signal from Address Decode, the 

fact that a Sense instruction is being executed from 

Processor Control, and the function code from Function De­

code. The Control Logic then sends the status, of the 

sensed function to Processor Control via the C Bus. 

Processor Control examines the status of the sensed function 

and takes appropriate action in the computer. 

3.1.3.4 Data Transfer. Data transfer between the computer 

and the peripheral device is accomplished by executing 

appropriate control instructions in the computer and having 

the peripheral interface control the data transfer operations 



COMPUTER PERIPHERAL INTERFACE PERIPHERAL DEVICE 
I REGISTER 

OPERATION- DEVICE FUNCTION I I CODE ADDRESS CODE 

l F BUS .. FUNCTION I ... 
DECODE 

I ~ ~ I 
PBUS .. ADDRESS 

I ... DECODE 

~, 

I 
~, 1r I DEVICE • C BUS FUNCTION 

PROCESSO-R .... .. CONTROL .... DECODE AND 
CONTROL 

~ 

I 
.. 

LOGIC 
., I CONTROl' CONTROL 

I ~l' I --.. ... 
DATA DATA 

DATA """'-
D BUS .. ..L 

DATA --.. TRANSFER TRANSFER 
RECEIVERS 

.... ... ... ., 
TRANSFEIf SBUS CONTROL CONTROL 

+0-

I I ~ ... 
DATA 

I ABUS DRIVERS I .. 
~ 

Figure 3-1. Computer/Interface/Device Relationships 

w 
W 



of the peripheral device. The peripheral interface often acts 

as an intermediate storage location for data being transferred 

between the computer and the peripheral device. 

For example, many peripheral devices transmit and receive 

data in a serial mode; i.e., one bit at a time rather than all 

bits making up a word or byte in parallel. Since the com­

puter moves data in parallel, the interface must act as a data 

assembler when reading data from the peripheral device, 

and as a disassembler when writing data to the peripheral 

device. Also, because the computer moves data very rapidly 

and peripheral devices often move data relatively slowly, the 

interface is used as an intermediate buffer for the speed 

transition. 

Data transfers may often be accomplished in several steps. 

The computer may execute some function command type 

instructions (Select instructions) to set up the conditions in 

the peripheral device to allow the movement of data. In the 

case of a magnetic tape unit, for example, the tape unit 

must be commanded to start tape motion before the transfer 

of data can be started. The tape must then be allowed to 

accelerate to its operating speed before data transfer can 

begin. The computer may then be required to sense the 

status of the device to see if it is ready to begin data transfer. 

When the device is ready, the computer may execute Input 

or Output instructions to cause the transfer of data. The 

operation code of the I/O instruction tells whether the 

transfer is an input or an output, and the device address and 

function code of the instruction specify the device that is to 

take part. 

Data is transferred between the Data Transfer Control section 

of the peripheral device and the Data Transfer Control sec­

tion of the interface. The computer either reads the data from 

the Data Transfer Control section of the interface, or sends 

data to the Data Transfer Control section of the interface. 

When data is read from the interface, it is placed on the 

S Bus of the computer. When data is sent to the interface, it 

is sent from the A Bus of the computer. 

3-4 

3.1.3.5 Party Line I/O Structure. Figure 3-1 illustrates the 

relationship between the computer and one peripheral inter­

face. Figure 3-2 illustrates the party line I/O structure used 

by the ALPHA 16 and NAKED MINI 16 computers. The 

I/O busses apply their signals to all peripheral interfaces in 

parallel. However, only one interface will be able to decode 

the device address that is placed on the P Bus. The other 

interfaces will not be able to decode the address, and thus 

will be unable to respond to the other signals on the other 

busses. 

3.1.4 Reserved Device Addresses 

Because of the flexibility of the I/O structure of the 

ALPHA 16 and NAKED MINI 16 computers, I/O instruc­

tions can be used to control functions and operations other 

than peripheral devices. Two device addresses are reserved 

for internal computer use for control of processor options 

and special functions. The reserved device addresses are 

Device Address 0 and Device Address 8. 

3.1.4.1 Device Address O. Device Address 0 is use:d for 

control of processor options and implementation of certain 

internal processor instructions. Functions controlled by 

Device Address 0 are: 

1. Option Control. The Memory Protect and Power 

Fail/Restart options are controlled by use of 

special I/O instructions using Device Address o. 
Refer to the MPE, MPD, PFE, and PFD Control 

instructions in Section 2. 

2. Option Sense. Special Sense instructions, using 

Device Address 0 along with function codes, are 

used by diagnostic programs and executive pro­

grams to sense the presence of processor options. 

These instructions can determine which options 

are installed in the computer which is executing 

the program. The options which can be slmsed 

using these instructions are the Autoload, Power 

Fail/Restart, Real Time Clock, Memory Protect, 



ALPHA 161 
NAKED MI NI 16 

~ 7 
V 

110 BUSES 

~ ,. 
V 

.... 
-> 

~ ,. 
\J 

~ 7 
V 

PERIPHERAL PERIPHERAL 

1 
PERIPHERAL PERIPHERAL 

INTERFACE INTERFACE INTERFACE INTERFACE 

l\ 1\ 1\ '" .. ~ 

PERIPHERAL 
DEVICE 

PERIPHERAL 1 
DEVICE 

PERIPHERAL 
DEVICE 

PERIPHERAL 
DEVICE 

Figure 3-2. Party Line I/O Structure 

and TTY options. (Refer to the descriptions of the individual 

options for the specific sense instructions used.) 

3. Processor Instructions. Several processor instruc­

tions are special cases of I/O instructions using 

Device Address o. These instructions are: CIE, 

CID, TRP, SOA, SOX, SIN, SIA, SIX, ISA, and 

ISX. Refer to the instruction descriptions in 

Section 2 for details concerning these instructions. 

3.1.4.2 Device Address 8. Device Address 8 is used to con­

trol the Real Time Clock option and to implement two con­

trol instructions. The two control instructions are RAM and 

ROM. 

3.2 PRIORITY INTERRUPT SYSTEM 

3.2.1 General 

Interrupts allow a computer to respond to external stimuli. 

A mini computer may be used in a wide variety of applica­

tions where it must communicate with many different 

types of devices. The devices with which the computer 

must communicate often operate at widely varying speeds. 

Often the events to which the computer must respond 

occur randomly rather than at evenly spaced time intervals. 

And if the events do occur at evenly spaced time intervals, 

these intervals may be relatively far apart. 

3-5 

• 



If a computer does not have a priority interrupt system, the 

computer must poll all of the external devices which may 

require service. The polling must be at frequent enough in­

tervals so that events are serviced within a reasonable time 

after they occur. Polling consumes considerable time, and 

may not allow much processing time between the handling 

of external events. 

A priority interrupt system relieves the computer of the 

polling responsibility. The computer may continue processing 

data between external events, and may take time out from 

main program processing to handle external events as they 

occur. 

3.2.2 Basic Concepts 

An external interrupt causes the computer to execute one 

instruction outside of the main program. If that one instruc­

tion does not modify the P Register (Program Counter), the 

computer continues with the main program after executing 

the interrupt instruction. If the interrupt instruction modi­

fies the Program Counter, the computer continues processing 

at the location specified by the new value in the Program 

Counter. 

3.2.2.1 Interrupt Location. If an external device is to 

operate under interrupt control, reserved locations in 

memory are assigned to the device. Interrupt lines are con­

figured to cause the computer to execute the instruction at 

the reserved location when the external device generates an 

interrupt to the computer. Each device may be assigned one 

or more reserved locations. For example, if a device must 

move a block of data from the device to the computer, it 

may generate one interrupt for each word to be moved and 

another interrupt when the whole block has been moved. 

The interrupt for each word would require one location, and 

the interrupt indicating the end of the block of words would 

require another location. 

Interrupt locations are fixed by hardware. The design of the 

computer and the design of peripheral interfaces determine 

the reserved interrupt locations associated with each periph­

eral device. 

3-6 

3.2.2.2 Interrupt lines. Interrupts are transmitted from a 

peripheral device to the computer via interrupt lines. The 

ALPHA 16 and NAKED MINI 16 interrupt lines are con­

figured in such a manner that large numbers of devices can 

be handled under interrupt control. There are three standard 

interrupt lines. Two of these lines are assigned fixed inter­

rupt locations, and the third can be used to vector interrupts 

from a virtually unlimited number of peripheral devices. 

The standard interrupt lines are: 

1. ILl 

2.IL2 

3.IUR 

Interrupt Line 1. This is a 

standard interrupt line which 

is assigned memory location 

:0002 as its interrupt 

location. 

Interrupt Line 2. This is a 

standard interrupt line which 

is assigned memory location 

:0006 as its interrupt 

location. 

Interrupt Request Line. This 

is a standard interrupt line 

which transmits interrupts 

from more than one peripheral 

device to the computer. When 

a peripheral device requests an 

interrupt via IUR, the periph­

eral interface also provides 

the computer with the address 

of the interrupt location. 

Therefore, the reserved inter­

rupt location is a function of 

the peripheral interface design. 

In addition to the three standard interrupt lines, certain 

options have special interrupt lines. Because of the special 

nature of the options, special lines are generated so that 

the option need not compete with other peripheral devices 

for interrupt recognition. 



3.2.3 Interrupt Processing 

An interrupt is a signal from some peripheral device re­

questing computer action. The interrupt generally means 

that some external event has occurred which requires com­

puter recognition or some positive action on the part of the 

computer. 

Example 1. Conside a computer which uses a Tele­

typewriter as a peripheral device. Messages are 

printed on the Teletype printer one character at a 

time. Since the transfer rate from the computer to the 

printer is very slow, the computer can continue 

processing data between characters. The Teletype 

interface can be programmed to interrupt the com­

puter after each character has been printed. The com­

puter responds to the interrupt by sending another 

character to the interface for printing. 

Example 2. Consider a computer which is being used 

in a highway traffic monitoring system. One purpose 

of the system is to count the traffic in each lane of 

the highway and store that information for further 

processing. Sensors are placed in each lane of the high­

way, and each sensor generates an interrupt to the 

computer each time an automobile crosses the sensor. 

The computer response to each interrupt is to incre­

ment a counter. 

3.2.3.1 Interrupt Recognition. Before any interrupt can be 

recognized by the computer, several conditions must be met: 

1. Interrupts Must Be Enabled. The programmer has 

absolute control over the recognition of interrupts. 

If interrupts are to be recognized, the Enable Inter­

rupts (EIN) instruction must be executed. This 

instruction enables interrupts until some condition 

occurs to disable interrupts. Paragraph 3.2.4 

discusses the conditions which will disable 

interrupts. 

2. The Interrupt Mask Must Be Set. The EIN instruc­

tion enables interrupts in general. Specific interrupts 

are enabled by setting an interrupt mask in the 

peripheral interface. Masks are generally set by 

executing a Select (SEL) instruction with a device 

address and function code specifying which inter­

rupt is to be enabled. By using interrupt masks, the 

programmer can selectively enable and disable 

interrupts. 

3. The Interrupt Condition Must Exist. The EIN 

instruction and setting the interrupt mask allow an 

interrupt to occur. For the interrupt to actually 

occur, the event which has been enabled must 

occur. In the case of Example 1, the Teletype 

interface must complete the transmission of a 

character to the Teletype for an interrupt to be 

generated. In the case of Example 2, an auto­

mobile must cross a sensor. 

4. No Higher Priority Interrupt Must Be Waiting. 

Each peripheral interface or computer option has 

a definite priority assignment. Each interrupt must 

wait its turn. Interrupts are processed by the com­

puter in the order received, or according to pri­

ority if more than one interrupt is pending. 

(Priorities are discussed in Part 3.2.5.) 

5. In Run Mode. Interrupts cannot be recognized if 

the computer is halted or if the STOP switch is 

down. 

Once these conditions have been met, the computer can 

recognize and process the interrupt. The computer com­

pletes the instruction that it is currently executing and then 

recognizes the highest priority interrupt that is waiting. 

3.2.3.2 Interrupt Instructions. When an interrupt is recog­

nized, the computer executes one instruction at the inter­

rupt location. If that instruction does not modify the 

Program Counter the computer then continues with its 

main program. If the interrupt instruction modifies the 

Program Counter, the computer resumes processing at the 

location specified by the new value in the Program Counter. 

Almost any computer instruction can be used as an 

3-7 



interrupt instruction, but some lend themselves more 

readily to this function than others. The instructions which 

are most commonly used as interrupt instructions are: 

1. IMS 

2. JST 

3-8 

The Increment Memory and 

Skip on Zero instruction is 

normally used when the com­

puter is counting external 

events. When IMS is used for 

this purpose, it does not cause 

a skip when the memory loca­

tion being incremented goes 

to zero. Instead, it generates 

a signal (called an Echo) to 

the peripheral interface which 

generated the interrupt. (See 

Part 4.4, Real Time Clock 

programming example, for an 

example of IMS used as an 

interrupt instruction.) 

When an interrupt cannot be 

processed by a single instruc­

tion, a subroutine must be 

entered. But there must be 

some way to get back to the 

main program after the inter­

rupt has been processed. The 

1ST instruction is the only 

unconditional jump instruc­

tion which fIlls this need. It 

stores the address of the next 

instruction to be executed in 

the main program. This pro­

vides a return to the main 

program. It then sets the Pro­

gram Counter to the start of 

the interrupt processing sub­

routine. 

3. Auto I/O: 

AIN 

AOT 

AlB 

AOB 

NOTE: When executed as 

an interrupt instruction, the 

JST instruction also dis­

ables interrupts. The pro­

grammer must re-enable 

interrupts before leaving the 

interrupt subroutine if he 

wants subsequent interrupts 

to be recognized. 

The Automatic Input/Output 

instructions are designed 

specifically as interrupt instruc­

tions. Each Auto I/O instruc­

tion is effectively a complete 

interrupt subroutine in one 

instruction. These instructions 

contain their own word or 

byte count and their own 

memory addresses. They can 

be used to transfer large 

blocks of data between the 

computer memory and 

peripheral devices. Since they 

do not affect the A Register, 

X Register, OV indicator, or 

the Program Counter when 

transferring data, they are 

ideal as interrupt processing 

instructions. (See Part 3.5 

for a complete description of 

the Auto I/O instructions.) 

3.2.3.3 Single Instruction Interrupt Processing. If an inter­

rupt can be processed by a single instruction, such as an 

IMS or an Auto I/O instruction, the computer executes 

the interrupt instruction in response to the interrupt and 



continues with the main program. Figure 3-3 illustrates 

the sequence of events involved in the processing of an 

interrupt using a single interrupt instruction. The events 

shown in this figure are: 

1. An interrupt will usually be received by the 

computer while the computer is busy executing 

an instruction. The computer must complete the 

execution of that instruction before it can recog­

nize the interrupt. If all other necessary conditions 

have been met (see Paragraph 3.2.3.2), the com­

puter will recognize the interrupt when it com­

pletes its current instruction. If the computer re­

ceives an interrupt while executing the instruction 

at P-l, it completes that instruction before recog­

nizing the in terru pt. 

2. When the computer recognizes the interrupt, it 

executes the instruction at the interrupt location. 

The Program Counter is not incremented by virtue 

of the execution of the interrupt instruction. It is 

assumed that in this case the interrupt instruction 

does not modify the program counter. 

3. Once the interrupt instruction has been executed, 

the computer resumes the execution of the main 

program by executing the next sequential instruc­

tion following the last one completed. The com­

puter had finished the instruction at P-l, so it 

resumes with the instruction at P. 

The end result of single instruction interrupt processing is 

that the computer executes one instruction outside of the 

main program, and then .continues with the main program. 

NOTE: When a Memory Reference instruction is used 

as an interrupt instruction, all memory addressing 

modes are valid. If relative addressing is used to fetch 

an operand or address pointer, however, the fetch will 

be relative to the interrupt location rather than relative 

to the Program Counter. 

3.2.3.4 Subroutine Interrupt Processing. If an interrupt 

cannot be processed by a single instruction, a subroutine 

must be used to process the interrupt. Figure 3-4 illustrates 

the general sequence of events involved in the execution of 

interrupt subroutines: 

1. Assume that the computer is executing the instruc­

tion at P-l when the interrupt is received. The 

computer first completes its current instruction 

and then recognizes the interrupt. 

2. When the interrupt is recognized the computer 

executes the instruction at the interrupt location. 

In this case the instruction at the interrupt loca­

tion is a Jump and Store. A Jump and Store is an 

unconditional jump instruction that modifies the 

Program Counter. 

3. The Jump and Store instruction causes the value 

in the Program Counter to be stored at the jump 

address. Since the value in the Program Counter 

is the address of the next instruction in the main 

program, this provides return linkage for the 

subroutine. 

4. The Jump and Store instruction causes the jump 

address plus 1 to be placed in the Program Counter 

(in this case, SUB+ 1 goes to P). The computer then 

begins the execution of the interrupt subroutine. 

5. The computer continues the execution of the inter­

rupt subroutine until it is completed. Completion 

is signaled by the execution of an unconditional 

jump back to the main program. In this case the 

instruction is JMP *SUB. This instruction causes an 

indirect jump using the value stored in SUB as an 

address pointer. Since the value in SUB is the 

address of the instruction at P, the computer will 

transfer back to the main program and continue 

execution beginning with the instruction 

at P. 

3-9 



MEMORY MAP 
:FFF 

r -------------------------------.-C!) P RESUME 
MAIN 
PROGRAM 

-----------------CD p., COMPLETE 

:00 

3·10 

-·------T-------

(INTERRUPT INSTRUCTION) INTERRUPT LOCATION 

AN INTERRUPT IS RECEIVED WHILE THE COMPUTER IS EXECUTING THE INSTRUCTION AT P-1. 
THE COMPUTER COMPLETES THAT INSTRUCTION BEFORE RECOGNIZING THE INTERRUPT. 

THE COMPUTER RECOGNIZES THE INTERRUPT AND EXECUTES THE INSTRUCTION AT THE 
INTERRUPT LOCATION. IN THIS CASE THE INTERRUPT INSTRUCTION DOES NOT MODIFY 
THE PROGRAM COUNTER. 

AFTER COMPLETING THE INTERRUPT INSTRUCTION THE COMPUTER RESUMES MAIN 
PROGRAM EXECUTION WITH THE INSTRUCTION AT P. 

Figure 3·3. Single Instruction Interrupt Processing 



MEMORY MAP 

:FFF 

JMP *SUB 

i INTERRUPT SUBROUTINE 

START EXECUTION ----- -
STORE (P) 

i 
RESUME MAIN PROGRAM ---------

P-l COMPLETE 

i 
eD JST SUB INTERRUPT LOCATION 

:00 

CD INTERRUPT IS RECEIVED WHILE THE INSTRUCTION. AT P-l IS BEING EXECUTED. 
THE COMftUTER COMPLETES THE INSTRUCTION AT P-1. 

eD THE COMPUTER RECOGNIZES THE INTERRUPT AND EXECUTES THE INSTRUCTION AT 
THE INTERRUPT LOCATION. 

CD 
CD 

THE JST INSTRUCTION CAUSES THE CONTENTS OF THE PROG RAM COUNT TO BE STORED 
AT SUB. THE VALUE STORED IN SUB IS THE ADDRESS OF THE INSTRUCTION AT P. 

THE JST INSTRUCTION CAUSES THE ADDRESS OF THE INSTRUCTION AT SUB + 1 TO BE 
PLACED IN THE PROGRAM COUNTER. THE COMPUTER BEGINS EXECUTING THE 
SUBROUTINE. 

WHEN THE SUBROUTINE IS COMPLETED, A JMP INDIRECT IS EXECUTED USING THE 
VALUE AT SUB AS AN INDIRECT ADDRESS POINTER. THIS CAUSES THE COMPUTER TO 
RESUME EXECUTION OF THE MAIN PROGRAM BEGINNING WITH THE INSTRUCTION AT P. 

Figure 3-4. Interrupt Subroutine Processing 

3-11 



CAUTION 

WHEN A JUMP AND STORE (JST) INSTRUC­

TION IS EXECUTED AS AN INTERRUPT 

INSTRUCTION IT AUTOMATICALLY 

DISABLES INTERRUPTS. INTERRUPTS 

MUST BE RE-ENABLED IN THE INTER­

RUPT SUBROUTINE IF SUBSEQUENT 

INTERRUPTS ARE TO BE RECOGNIZED. 

3.2.4 Interrupt Latency 

Interrupt latency may be defined as the conditions which 

may delay the recognition of an interrupt. The general rule 

is that the highest priority interrupt that is waiting will be 

recognized at the end of the instruction that the computer is 

currently executing. The time required to execute an instruc­

tion becomes a determining factor in interrupt recognition. 

Certain instructions can cause unusual interrupt delays in 

addition to the execution time of the instruction itself. The 

conditions which can delay the recognition of interrupts are 

discussed in the following paragraphs. 

3.2.4.1 Instruction Completion. When an interrupt request 

is generated during the execution of an instruction, that in­

struction must be completed before 'the request is recognized 

and processed. The maximum delay which may be encoun­

tered can be computed by computing the maximum time 

required to execute an instruction. For example, Memory 

Reference instructions require a minimum of two cycles to 

complete execution (one cycle to get the instruction and one 

cycle to get the operand and perform the necessary logical 

operations). Memory reference instruction execution times 

are extended if indirect addressing is used. One additional 

cycle is required for each level of indirect addressing; There­

fore, if a Memory Reference uses two levels of indirect 

addressing to fetch an operand, the total number of cycles 

required to execute the instruction is four. Since each cycle 

is 1.6 microseconds in length, total execution time would be 

(4)(1.6)=6.4 microseconds. If an interrupt request were gen­

erated at the beginning of such an instruction, the recogni­

tion of the request would be delayed for a maximum of 

6.4 microseconds. 

3-12 

Most instructions are executed in fewer than four cycles. But 

there are some instructions which may require more cycles 

and may cause unusually long delays. These instructions are: 

1. Scan. The time required to execute a Scan instruc­

tion is a function of the number of words being 

scanned. The minimum execution time is 1 cycle 

for the instruction, 1 cycle for the first indirect 

level (there is always at least one indirect address 

level), and 1 for the first word that is scanned. If it 

is assumed that there is only one indirect addressing 

level, then the timing is 2 cycles plus 1 cycle for 

each word scanned. If 100 words are scanned, the 

timing is 2+100=102 cycles. The time required to 

execute the Scan is (102)(1.6) = 163.2 microseconds. 

If 4000 words are being scanned, the timing is 

4000+2=4002 cycles. The time required to exe­

cute the scan is (4002)(1.6)=6403.2 microseconds, 

or approximately 6.4 milliseconds. A delay of this 

sort may be insignificant for some peripheral de­

vices, but it may be unbearable for others. There­

fore, the Scan instruction should be used with 

extreme caution when interrupts may occur while 

the scan is in process. 

2. Block I/O. Block I/O instructions are similar to 

the Scan instruction in that a large number of words 

may be handled before the instruction terminates. 

The timing is computed in a manner similar to that 

used for the Scan instruction. (See the Block I/O 

instruction descriptions for the timing formula.) 

These instructions must also be used with caution 

when interrupts may occur during the execution of 

the instruction. 

3. Shift Instructions. The maximum time which may 

be required to complete a shift instruction is 

1-1/4+8=9-1/4 cycles. This is for a Long shift of 

16 places. The time required to complete that 

number of cycles is (9-1/4)(1.6) = 14.8 microsec­

onds. If high speed peripheral devices are operating 

under interrupt control, a delay of 14.8 microseconds 



in recognition of an interrupt may be 

excessive. 

3.2.4.2 Interrupt Control Instructions. Several instructions are 

used to control the times during which interrupts may be recog­

nized. There are special situations which must be considered 

when using these instructions: 

1. Enable Interrupts (EIN). When the EIN instruction 

is executed, the computer guarantees that the next in­

struction following the EIN instruction will be executed 

before the first interrupt is recoginized. (The primary 

reason for this is in the use of EIN at the end of an in­

terrupt subroutine. This allows EIN to be executed 

and a Jump back to the main program to be executed 

before another interrupt is recognized.) Therefore the 

earliest that an interrupt can be recognized following 

an EIN is the time required to execute the EIN plus the 

time required to execute the next instruction in 

sequence. 

2. Power Fail Enable (PFE). When Power Fail interrupt 

control is outside EIN/DIN control, the PFE instruction 

has the same timing considerations as EIN. 

3. Disable Interrupts (DIN). When the DIN instruction is 

executed, interrupts are disabled during the instruction 

execution, therefore no interrupts can be recognized 

following the DIN until an EIN instruction is executed. 

4. Status Inhibit (SIN). The SIN instruction inhibits in­

terrupts for the number of instructions specified by the 

SIN instruction. Note that the inhibit time is for a 

specified number of instructions and not for a specified 

number of cycles. The total time that interrupts will 

be inhibited when the SIN instruction is executed is the 

total time required to execute the instructions for which 

interrupts have been inhibited, plus the time required 

to execute the SIN instruction. 

3.2.4.3 Interrupt Instructions. Special timing considerations 

are involved when an instruction is executed as an interrupt in­

struction. These special considerations are: 

1. Interrupt Delay. When any interrupt instruction is 

executed, the computer guarantees that at least one 

instruction will be executed following the interrupt 

instruction before another interrupt will be recog­

nized. For example, if a peripheral device sends a 

constant interrupt to the computer, and the com­

puter services the interrupt with a single instruc­

tion, the computer will recognize the interrupt and 

execute the interrupt instruction. It will then 

execute one instruction in the main program 

before recognizing the interrupt again. If the 

interrupt never goes away, the computer will con­

tinue to execute the interrupt instruction, then one 

instruction from the main program, then the inter­

rupt instruction, then the next instruction from the 

main program,etc. 

2. Jump and Store. The Jump and Store instruction 

is a special case. When this instruction is executed 

as an interrupt instruction, it unconditionally dis­

ables interrupts. The programmer must execute an 

EIN instruction to re-enable interrupts before another 

interrupt can be recognized. 

3. Auto I/O Instructions. The Automatic I/O instruc­

tions are single instructions which require 4-1/2 

cycles to execute. Since the computer must exe­

cute one instruction following the interrupt instruc­

tion, the total delay required before another inter­

rupt can be recognized is 4-1/2 cycles plus the 

number of cycles required to execute the next 

instruction. The safest practice would be to com­

pute the maximum delay as 4-1/2 cycles plus the 

number of cycles of the longest instruction in the 

main program sequence where interrupts may be 

generated. 

4. Instruction "Stretch", Every instruction which is 

executed as an interrupt instruction is stretched by 

1/4 cycle. This is to allow the generation of the 

interrupt address. This additional 1/4 cycle must 

be added to the execution time of any instruction 

used as an interrupt instruction. (The IMS instruc­

tion is also stretched an additional 1/4 cycle. See 

IMS instruction description.) 

3-13 



3.2.5 Interrupt Prioritie~ 

When more than one peripheral device or computer option 

is operating under interrupt control, a priority scheme must 

be established to determine which interrupt will be 

processed first if more than one interrupt is waiting to be 

processed. 

In general, the highest priority interrupt waiting to be 

processed will be processed first, regardless of the sequence 

in which interrupt requests are generated. This means that 

if a lower priority device generates an interrupt request first, 

and then a higher priority device generates a request before 

the lower priority request is recognized by the computer, 

the higher priority request will be recognized and processed 

first by the computer. 

3.2.5.1 Standard Priorities. The standard priorities which 

have been established for the ALPHA 16 and NAKED 

MINI 16 computers are as follows~ 

3-14 

I. Power Fail Option. The Power Fail/restart option 

has the highest priority for interrupt processing in 

the computer, provided the option is installed in the 

computer. Power Fail is on a separate interrupt 

line. 

2. Console Interrupt and Trap. The Console interrupt 

and the Trap instruction share the second highest 

priority. Console and Trap interrupts take priority 

over all interrupts except power fail. Console and 

Trap interrupts are on a separate interrupt line from 

all other interrupts. 

3. Interrupt Line 1 (ILl). ILl has the third level of 

priority. The peripheral device assigned to ILl will 

have the highest priority of all peripheral devices or 

options except Power Fail or the Console/Trap 

interrupt. 

4. Interrupt Line 2 (IL2). Interrupt Line 2 has the next 

priority level. 

5. Memory Protect Option. The Memory Protect option 

generates an interrupt when a write operation is 

attempted in the protected area of memory with 

Memory Protect enabled. 

6 .. Real Time Clock (RTC). The RTC option gen­

erates two interrupts which share equal priority. 

These two interrupts are on special interrupt lines. 

7. Teletype Interface (TTY). The TTY interface 

requests interrupts on the Interrupt Request (IUR) 

line, but has the highest priority on that line. 

8. Interrupt Request Line (IUR). All remaining inter­

rupts are vectored on the IUR line. The priority 

of the devices using this line is determined by the 

physical location of the devices interface in the 

ALPHA 16 or the NAKED MINI 16 chassis. In the 

basic chassis, the priority sequence is: 

a. Slot E200 

b. Slot EIOO 

c. Slot FIOO 

d. Slot F200 

3.2.6 Reserved Interrupt Locations in Memory 

The standard interrupt locations which are assigned to 

computer functions and common options are summarized 

in Table 3-1. Note that several functions and options 

have two interrupt locations. Refer to the description of 

the function or option for the use of each interrupt 

location. 

3.2.6.1 Interrupt Offset. All of the standard interrupt 

locations are in the Scratchpad area of memory. Since 

Scratchpad is the only area of memory that can be 

addressed directly by an instruction located anywhere in 

memory, it may prove useful to move interrupt locations 

outside of Scratchpad. A computer option allows all 

standard interrupt locations (except Power Up, which is 

not really an interrupt) to be displaced by : 100 locations. 

In Table 3-1, the Offset column gives the interrupt loca­

tion if the offset option is exercised. 



Table 3 .. 1. Standard Interrupt Locations 

Function 
(By Priority) 

Power Fail/Restart: 

Power Do~n Interrupt 

Power Up Restart location 

Console Interrupt and Trap 

Interrupt Line I (ILl) 

Interrupt Line 2 (IL2) 

~ennory Protect 

Real Tinne Clock: 

Oock Interrupt 

Sync Interrupt 

Teletype (TTY): 

Standard 

End of Word Interrupt 

End of Block Interrupt 

Optional 

Elld of Word Interrupt 

End of Block Interrupt 

Interrupt Request Line (IUR) 

*Interrupt locations are deternnined by interface design. 

3.2.6.2 IUR Interrupt Locations. Peripheral devices which 

generate interrupt requests on the IUR line are not assigned 

standard interrupt locations by the connputer. Instead, the 

interrupt address is assigned by the interface designer. Inter­

rupt locations nnay be anywhere in nnennory. They are not 

linnited to Scratchpad, or even to the lower 4K words of 

nnennory. They can be assigned anywhere. When an interface 

is being designed, the design engineer and the progrannnner 

Standard Offset 
Location Location 

:OOIC :Ol1C 

:0000 :0000 

:OOIE :Ol1E 

:0002 :0102 

:0006 :0106 

:0014 :0114 

:0018 :0118 

:OOIA :Ol1A 

:0002 :0102 

:0006 :0106 

:0022 :0122 

:0026 :0126 

* * 

should work together to deternnine the optinnunn 

interrupt location address. 

3.3 GENERAL INPUT/OUTPUT INSTRUCTIONS 

3.3.1 General 

The General I/O instructions are those instructions which 

are used for single word or single byte data nnoves, and 

for general conditioning and interrogation of peripheral 

3-15 

• 



interfaces. These instructions may be used to load or read 

data buffers in an interface, trigger control flip flops or 

relays, sense the state of a flip flop or incoming line, and 

other similar functions. 

3.3 .1.1 Instruction Types. The instructions in the' General 

I/O group are these: 

1. Sense. Sense instructions are used to test certain 

conditions in the peripheral interfaces and per­

form conditional branches on the results of the 

tests. 

2. Select. Select instructions are used to condition 

peripheral interfaces to perform certain functions 

other than data transfer. These instructions may 

be used to set control flip flops, set interrupt 

masks, reset the interface, etc. The functions that 

are performed by the Select instructions are 

determined by the design of the individual peripheral 

interfaces. 

3. Input. There are several types of input instructions 

in this group. However, all of the input instructions 

in this group read data from the peripheral interface 

to either the A or X register in the computer. Data 

may be read either as full 16-bit words or as 8-bit 

bytes. Inputs may be masked so that only certain 

bits are recognized. Inputs may be unconditional, or 

they may be combined with Sense functions to read 

data upon a sense response. 

4. Output. Output instructions move data from either 

the A or X register in the computer to the peripheral 

interface. Outputs may be unconditional, or they 

may be combined with sense functions to output 

data only upon a sense response. 

3.3.1.2 Instruction Format. Figure 3-5 illustrates the format 

of the General I/O instruction group. Bits 14 and 15 identify 

the instruction as being part of the I/O class. Bits 8-13 define 

the specific instruction within the class. Bits 0-7 are arbitrarily 

divided into a Device Address in bits 3-7, and a Function 

Code in bits 0-2. 

3-16 

If the Device Address is considered to be contained in 

bits 3-7 and the Function Code in bits 0-2, each instruction 

may address up to 32 different devices and have up to 

8 different functions specified with each address. When an 

instruction is executed, a signal is sent from the computer 

to the peripheral interface to tell the interface what type 

of instruction is being executed. The functions that will 

be performed by the peripheral interface are determined 

by both the function code and the type of instruction 

that is being executed. For example, a function code of 

"4", when used with a Select instruction, may cause the 

interface to turn on a particular control flip flop. The 

same function code, when used with a Sense instruction 

may test to see if that control flip flop is turned on. The 

same function code, when used with an Input instruction 

may gate a certain set of lines to the Data Bus. Therefore, 

each function code may not have just one meaning. It 

may have a different meaning for each type of instruction 

with which it is used. 

The division of bits 0-7 into a Device Address and Function 

Code is purely an arbitrary division. The user may wish to 

consider all eight bits as a single Device Address field, with 

each function within a device having a separate address. If 

this convention is used, the computer may be considered 

to have the capability of addressing up to 256 different 

devices. 

3.3.1.3 Description Format. The instruction descriptions 

which follow use the same general format as that used for 

Memory Reference instructions. Variations in the descrip­

tion format are: 

1. Instruction Diagram. Bit 9 of the Input and Out­

put instructions contains the letter R. Since data 

transfers are made between the peripheral interface 

and either the A or X register for the General I/O 

instructions, bit 9 specifies Which computer 

register takes part in the transfer. The identifica­

tion is: 

R=O, A Register 

R= 1 , X Register 



16 14 13 12 11 10 9 

Field 

Class 

OP CODE 

Bits 

DEVICE 
ADDRESS 

Description 

14, 15 These bits define the I/O instruc­

tion class. 

Operation Code 8-13 These bits identify the specific 

I/O instruction that is being 

executed. 

Device Address *3-7 

Function Code *0-2 

Used to select the specific 

peripheral device which is to 

respond to the I/O instruction. 

Specified the function which the 

peripheral device is to perform. 

May also be used to identify a 

data source within the interface, 

or a status that is beingsensed. 

*The Device Address and Function Code fields may be com­

bined into a single Device Address field, where each func­

tion within a device has a separate address. 

Figure 3-5. General Input/Output Instruction Format 

2. Machine Codes. The Machine Codes section shows 

the possible hexadecimal codes that may be used in 

the two upper positions, and the letters "nn" in the 

two lower positions. The letters "nn" stand for the 

variable Device Address and Function Code fields 

which are determined by the device with which the 

instruction is used. 

3.3.2 Sense Instructions 

The Sense and Skip instructions allow the ALPHA 16 and 

NAKED MINI 16 computers to sense the state of a specified 

function in a peripheral interface and execute a conditional 

skip depending on the result of the test. There are two 

instructions in this group. One causes a skip on a true response, 

and the other causes a skip on a false response. 

3.3.2.1 

SEN SENSE AND SKIP ON RESPONSE 

16 14 13 12 11 10 

I REGISTER 

DEVICE 
ADDRESS 

Tests the specified function in the specified device. If a 

true response is obtained, a one-place skip is executed. If a 

false response is obtained, the next instruction in sequence 

is executed. 

Machine Codes: 

:49nn 

Registers Affected: 

P Incremented normally if a false response obtained: 

(P)+I-P. 

Incremented twice if a true response obtained: 

(P)+2-P. 

Timing: 1 1/4 

3.3.2.2 

SSN SENSE AND SKIP ON NO RESPONSE 

16 14 13 12 11 10 

I REGISTER 

DEVICE 
ADDRESS 

Tests the specified function in the addressed device. If a 

false response is obtained, a one-place skip is executed. If 

a true response is obtained, the next instruction in sequence 

is executed. 

Machine Codes: 

:48nn 

3-17 



Registers Affected: 

P Incremented normally if a true response is obtained: 

(P)+I-P. 

Incremented twice if a false response is obtained: 

(P)+2-P. 

Timing: 1 1/4 

3.3.3 Select Instructions 

Select instructions are used to set up conditions in a periph­

eral interface which will cause the peripheral device to per­

form some specified function. Select instructions are 

sometimes called "External Control" instructions because 

they are used primarily for control functions rather than 

data transfer functions. 

There are two basic instructions in the Select group. One 

instruction presents a Device Address and Function Code to 

the peripheral interface along with a control signal stating 

that the instruction being executed is a Select instruction. 

The peripheral interface examines the Device Address, 

Function Code, and control signal to determine what func­

tion is to be performed. 

The other instruction in this group does exactly the same 

thing, but in addition it places the contents of either the A 

or X register on the Data Bus. The peripheral interface then 

examines the Device Address, Function Code, control 

signals, and Data Bus to determine what functions are to be 

performed. 

3.3.3.1 

SEL 

15 14 13 12 11 10 

3-18 

SELECT FUNCTION 

I REGISTER 

DEVICE 
ADDRESS 

The Function Code is transmitted to the addressed device 

along with a Select Control signal. The actual function per­

formed within the device is a function of interface design. 

Machine Codes: 

:40nn 

Registers Mfected: 

None in the computer. 

Timing: 1 1/4 

3.3.3.2 

SEA SELECT AND PRESENT A 

SEX SELECT AND PRESENT X 

15 14 13 12 11 10 

DEVICE 
ADDRESS 

The Function Code is transmitted to the addressed device 

interface with control signals. In addition, the contents of 

either the A or X register are placed on the I/O data bus. 

Machine Codes: 

:44nn 

:46nn 

Registers Mfected: 

None in the computer. 

Timing: 1 1/4 

SEA 

SEX 

3.3.4 Input to Register Instructions 

The Input to Register group of instructions cause data to 

be moved from a peripheral interface or device to either 

the A or X register of the computer. Input instructions may 

input either full 16-bit words or 8-bit bytes. If a byte input 

instruction is used, the byte is read into the lower half of 



the receiving register without affecting the upper half 

of the register. 

Inputs may be unconditional, or may be conditioned 

on sense response. Unconditional inputs read the specified 

data source within the peripheral device regardless of the 

conditions existing in the device. Inputs conditioned on 

sense response sense a specified condition in the peripheral 

device and input on a true response. If a true response is 

not received, the computer repeats the input instruction. 

The computer effectively "hangs" on the input instruction 

until a true response is received. Input instructions which 

are conditioned by a sense response are interruptable; i.e., 

if an external interrupt is received while the computer is 

executing an instruction which inputs on a true response, 

the computer will recognize the interrupt at the end of the 

test and, if the input was not accomplished (a true response 

was not received), the computer will return to the execution 

of the input instruction after the interrupt is processed. 

Inputs may be made directly to the receiving register, or 

may be ANDed with the contents of the receiving register 

with the results of the AND operation replacing the 

original contents of the register. ANDing the input data with 

the contents of the receiving register is called a Masked input. 

For masked word inputs, the input data is ANDed with the 

full 16 bits of the receiving register. For masked byte inputs, 

the input data is ANDed with the lower half of the receiving 

register and the upper half of the receiving register is 

unchanged. 

3.3.4.1 

INA INPUT TO A REGISTER (UNCONDITIONALLY) 

INX INPUT TO X REGISTER (UNCONDITIONALLY) 

I REGISTER 
15 14 13 12 11 10 

DEVICE 
ADDRESS 

Unconditionally inputs a full 16-bit word from the 

addressed device to the A or X register. The previous 

contents of the selected receiving register are lost. (The 

source of data in the addressed device may be specified by 

the function code.) 

Machine Codes: 

:58nn INA 

:5Ann INX 

Registers Affected: 

AorX Previous contents replaced by input word. 

Timing: 1 1/4 

3.3.4.2 

IBA INPUT BYTE TO A REGISTER (UNCONDITIONALLY) 

IBX INPUT BYTE TO X REGISTER (UNCONDITIONALLY) 

I REGISTER 
16 14 13 12 11 10 

DEVICE 
ADDRESS 

Unconditionally inputs an 8-bit byte from the addressed 

device to the lower half of the selected re.:;eiving register. 

The upper half of the receiving register is unchanged. (The 

source of the data in the addressed device may be specified 

by the function code.) 

Machine Codes: 

:78nn IBA 

: 7 Ann IBX 

Registers Affected: 

Aor X Previous contents of lower half replaced by 

input byte. 

Timing: 1 1/4 

3-19 



3.3.4.3 

INAM 

INXM 

MASKED [NPUT TO A REGISTER 

(UNCONDITIONALLY) 

MASKED INPUT TO X REGISTER 

(UNCONDITIONALLY) 

I REGISTER 
16 14 13 12 11 10 9 

DEVICE 
ADDRESS 

Inputs a full 16-bit word from the addressed device. The 

incoming word is logically ANDed with the contents of the 

selected receiving register, and the results are stored in the 

selected receiving register: 

(Input word) 1\ (A)-A 

or 

(Input word) 1\ (X)-X 

This instruction is normally used to mask off unwanted bits 

or fields from the incoming word. 

Machine Codes: 

:5Cnn INAM 

:5Enn INXM 

Inputs a byte from the addressed device. The incoming 

data is logically ANDed with the lower 8 bits of the 

receiving register, and the results are placed in the lower 

8 bits of the receiving register: 

(Input Byte) 1\ (A)0-7 - AO-7 

or 

(Input Byte) 1\ (X)0-7 - Xo-7 

This instruction is normally used to mask off unwanted 

data bits from the incoming byte and retain only those bits 

which are wanted. 

Machine Codes: 

:7Cnn IBAM 

:7Enn IBXM 

Registers Mfected: 

AorX Previous contents of lower half replaced by 

masked input. 

Timing: 1 1/4 

3.3.4.5 

RDA READ WORD TO A REGISTER 

RDX READ WORD TO X REGISTER 

Registers Affected: I REGISTER 

Aor X Previous contents replaced by masked input. 

Timing: 1 1/4 

3.3.4.4 

IBAM 

IBXM 

INPUT BYTE TO A REGISTER MASKED 

(UNCONDITIONALLY) 

INPUT BYTE TO X REGISTER MASKED 

(UNCONDITIONALLY) 

I REGISTER 
15 14 13 12 11 10 9 8 

3-20 

DEVICE 
ADDRESS 

115 14 13 12 11 10 9 

DEVICE 
ADDRESS 

Senses the specified data source in the addressed device. If 

a true response is received, a word is input from the device 

to the selected register. If a false response is received, the 

instruction is repeated. The instruction continues to repeat 

itself until a true response is received. 

NOTE: This instruction is interruptable. 

Machine Codes: 

:59nn RDA 

:5Bnn RDX 



Registers Affected: 

AorX Previous contents replaced by input word. 

Timing: 1 1/4 

3.3.4.6 

RBA 

RBX 

READ BYTE TO A REGISTER 

READ BYTE TO X REGISTER 

I REGISTER 
16 14 13 12 11 10 9 

DEVICE 
ADDRESS 

Senses the specified data source in the addressed device. If 

a true response is received, a byte is input from the device 

to the lower half of the selected register. If a false response is 

received, the instruction is repeated. The instruction con­

tinues to repeat itself until a true response is received. 

Note: This instruction is interruptable. 

Machine Codes: 

:79nn RBA 

:7Bnn RBX 

Registers Mfected: 

AorX 

Timing: 

3.3.4.7 

RDAM 

RDXM 

Previous contents of lower half replaced by input 

byte. Upper half unchanged. 

1/4 

READ WORD TO A REGISTER MASKED 

READ WORD TO X REGISTER MASKED 

I REGISTER 
16 14 13 12 11 10 9 

DEVICE 
ADDRESS 

This instruction is a combination of the Read Word instruc­

tion and the Input Word Masked instruction. The specified 

data source in the addressed device is sensed. If a true 

response is obtained, a word is read from the device. The 

input word is ANDed with the contents of the selected 

register and the result is stored in the selected register. If a 

false response is obtained, the instruction repeats itself 

until a true response is obtained. 

Note: This instruction is interruptable. 

Machine Codes: 

:5Dnn RDAM 

:5Fnn RDXM 

Registers Affected: 

AorX Previous contents replaced by masked input. 

Timing: 1 1/4 minimum 

3.3.4.8 

RBAM READ BYTE TO A REGISTER MASKED 

RBXM READ BYTE TO X REGISTER MASKED 

I REGISTER 
16 14 13 12 11 10 9 

[:1' l' 1'1' l' I R 1, I DEVICE 
ADDRESS 

This instruction is a combination of the Read Byte instruc­

tion and the Input Byte Masked instruction. The specified 

data source in the addressed device is sensed. If a true 

response is obtained, a byte is read from the device. The 

input byte is ANDed with the lower half of the selected 

register, and the results of the AND are stored in the lower 

half of the register. If a false response is obtained, the 

instruction is repeated until a true response is obtained. 

Note: This instruction is interruptable. 

Machine Codes: 

:7Dnn RBAM 

:7Fnn RBXM 

3-21 



Registers Affected: 

Aor X Previous contents of lower half replaced by 

masked input. Upper half unchanged. 

Timing: 1 1/4 

3.3.5 Output from Register Instructions 

The Output from Register instructions transfer data from 

either the A or X register to the addressed device. The 

function code of the instruction may be used to specify the 

destination of the data in the addressed device. 

Outputs may be unconditional, or they may be conditioned 

on a sense response. If conditional output instructions are 

used, the instruction function code is normally used to 

specify the condition being sensed within the addressed 

device. Conditional output instructions effectively "hang" 

until a true response is received from the addressed device. 

Unconditional output instructions transfer data to the device 

regardless of the conditions existing in the device. Uncondi­

tional output instructions are normally used in conjunction 

with Sense instructions to see if a device is ready to accept 

data. 

Output instructions transfer a full 16-bit word to the 

addressed device. If the device is byte oriented, it is 

normally designed to accept only the lower 8 bits of the 

word. The registers in the computer which are used as 

sources of output data are not changed by output instruc­

tions. Thus, for byte oriented peripheral devices, a register 

can be loaded with a full word and the word can be output 

to the device. The device accepts only the lower 8 bits. The 

word in the register can then be shifted and the other 8 bits 

transferred to the device. 

Since the ALPHA 16 and NAKED MINI 16 computers may 

address byte operands, an alternate byte transfer mode is 

to load the output register one byte at a time. A single 

output instruction in an output loop is then sufficient to 

output bytes to the peripheral device. 

3-22 

3.3.5.1 

OTA OUTPUT A REGISTER (UNCONDITIONALLY) 

OTX OUTPUT X REGISTER (UNCONDITIONALLY) 

I REGISTER 
15 14 13 12 11 10 

DEVICE 
ADDRESS 

Unconditionally outputs the contents of the A or X register 

to the addressed device. (The function code may be used 

to specify the destination of the data within the selected 

device.) 

Machine Codes: 

:6Cnn OTA 

:6Enn OTX 

Registers Affected: 

None in the processor. 

Timing: 1 1/4 

3.3.5.2 

OTZ OUTPUT ZERO (UNCONDITIONALLY) 

15 14 13 12 11 10 

I REGISTER 

DEVICE 
ADDRESS 

This is an unconditional output instruction which places 

an all-zero word on the I/O Data Bus, along with output 

control signals to the addressed device. 

Machine Codes: 

:68nn 

or 

:6Ann 



Registers Affected: 

No processor registers. 

Timing: 1 1/4 

3.3.5.3 

WRA WRITE FROM A REGISTER 

WRX WRITE FROM X REGISTER 

I REGISTER 
16 14 13 12 11 10 

DEVICE 
ADDRESS 

The specified condition in the addressed device is sensed. 

If a true response is received, the contents of the selected 

register are transferred to the device. If a false response is 

received, the instruction is repeated until a true response 

is received. 

Note: This instruction is interruptable. 

Machine Codes: 

:6Dnn WRA 

:6Fnn WRX 

Registers Mfected: 

None in the processor. 

Timing: 1 1/4 minimum 

3.3.5.4 

WRZ WRITE ZEROS 

I REGISTER 
16 14 13 12 11 10 

DEVICE 
ADDRESS 

The specified condition in the addressed device is sensed. 

If a true response is obtained an all-zero word is transferred. 

to the device. If a false response is obtained the instruction 

is repeated until a true response is obtained. 

. Note: This instruction is interruptable. 

Machine Codes: 

:69 nn 

or 

:6Bnn 

Registers Affected: 

None in the processor. 

Timing: 1 1/4 minimum 

3.4 BLOCK TRANSFER INSTRUCTIONS 

3.4.1 General 

To allow very high speed input and output from 

memory the ALPHA 16 and NAKED MINI 16 computers 

incorporate a very powerful pair of instructions called 

BLOCK IN and BLOCK OUT. A block of any length 

(limited only by memory size) may be transferred into 

or out of memory at a maximum rate of 500,000 16-bit 

words per second. If the peripheral interface is capable of 

unpacking bytes, the transfer rate may be thought of as 

1,000,000 bytes per second. However, the Block Transfer 

instructions operate only with full 16-bit words. 

The processor is totally devoted to the Block Transfer 

instruction until the entire block has been transferred. 

Data does not go through the A or X register during the 

move, but instead goes directly between the peripheral 

interface and memory. 

3.4.2 Block Transfer Operation 

Block Transfer instructions are double word instructions. 

The first word contains the instruction operation code, 

device address, and function code as in general I/O 

instructions. The second word contains the base address, 

minus one, of the block of data to be moved. 

3-23 

• 



3.4.2.1 Word Count. Whenever a block of data is to be 

moved by a single instruction between memory and a 

peripheral device, the number of words that the instruction 

is to move must be known. In order to increase the speed of 

the Block Transfer instructions, the X Register in the 

computer is used to hold the word count. As each word is 

moved, the word count in the X Register is decremented. 

When the word count is decremented to zero, the instruc­

tion terminates. The programmer must load the X Register 

with the word count before executing a Block Transfer 

instruction. (If the word count were stored in memory, an 

extra cycle would be required for each word transferred to 

decrement and test the word count.) 

3.4.2.2 Base Address. Whenever data is to be moved 

between memory and a peripheral device, the address of that 

data in memory must be known. In the case of an output 

instruction, the address is the location of the data that must 

be transferred to the peripheral device. In the case of an input 

instruction, the address is the location where the data must 

be stored after it is received from the peripheral device. 

For the Block Transfer instructions, the base address, minus 

one, is contained in the memory location immediately 

following the Block Transfer instruction: 

P = BLOCK TRANSFER INSTRUCTION 

P+ 1 = BASE ADDRESS - 1 

The Block Transfer instructions are effectively double word 

instructions. The first word is the instruction, and the second 

word is the base address of the data block in memory. 

3.4.2.3 Data Movement. When a Block Transfer instruction 

is executed, the address of the first word to be moved is 

formed by adding the word count in the X Register to the 

value in location P+ 1" which contains the Base Address less 

one. Therefore, the address of the first word to be moved is 

effectively formed by indirect indexed addressing. The 

address thus formed is stored in the memory address, M, 

register. Each subsequent address is obtained by decrementing 

3-24 

the M register. The sequence of movement of data is the 

word at the highest address first, and the word at the base 

address last: 

First Word Moved: (P+l)+(X) 

Second Word Moved: (P+ 1 )+(X)-l 

* 

* 

* 
Last Word Moved: (P+l)+l 

The instruction terminates when the X Register is 

decremented to zero. A word is transferred when 

(X)=l, but a word is not transferred when (X)=O. 

3.4.2.4 Sense Response. Before a word is transferred, 

the peripheral device is sensed. If a true response is received, 

a word is transferred and the M and X registers are 

decremented. If a false response is received, the M and 

X registers are not decremented and the device is sensed 

again. (This requires another instruction cycle.) Thus 

the speed of the data transfer is a function of the speed of 

the peripheral device. The processor tests the peripheral 

device once during each computer cycle until a true 

response is obtained. Data transfers are made only after a 

true response is received from the peripheral device. The 

maximum data transfer rate is 500,000 16-bit words per 

second, or 2.0 microseconds per word. 

3.4.2.5 Interrupt Considerations. There are two factors 

concerned with interrupt operation which must be 

considered: 

1. Not Interruptable. Block transfer instructions can­

not be interrupted. The ALPHA 16 and NAKED 

MINI 16 computers can be interrupted only at the 

end of the instruction being executed when the 

interrupt is received. Block transfer instructions 

do not end until the last word of the block has 



been transferred, therefore they cannot be 

interrupted until the last word has been trans­

ferred. The computer is totally dedicated to the 

data move. 

2. Not Interrupt Instructions. Block transfer instruc­

tions cannot be used as normal interrupt instruc­

tions since the X Register must be loaded with the 

word count prior to executing the instruction. 

This means that Block Transfer instructions cannot 

be used as single-instruction interrupt processing 

instructions. It does not mean that these instruc­

tions cannot be used as part of an interrupt 

subroutine. 

3.4.2.5 Program Counter. Since Block Transfer instruc­

tions occupy two sequential words of memory, the P Regis­

ter (program Counter) must be incremented twice to point 

to the next instruction to be executed. Thus, if a Block 

Transfer instruction is located at location P in memory, the 

Program Counter will point to location P+2 after the instruc­

tion is executed: 

P = BLOCK TRANSFER INSTRUCTION 

P+1 BASE ADDRESS - 1 

P+2 NEXT INSTRUCTION 

3.4.2.6 Programming Example. Use of Block Transfer 

instructions is relatively simple. The data buffers must be 

set up as for any other movement of data to or from 

memory. The only thing to remember is that data will be 

moved using the highest address in the buffer and then 

using sequentially lower addresses. In coding the instruc­

tion itself, a location must be reserved for the Base Address 

word immediately following the Block Transfer instruction, 

and the X Register must be loaded prior to executing the 

instruction. The coding for a Block In may be as follows: 

LDX COUNT Load the X Register with the Word 

Count. 

BIN DA/FC 

DATA BA 

Block Input instruction with Device 

Address and Function Code. 

Put the Base Address, less 1, at the 

location immediately following the 

BIN instruction. 

(Next instruction) The next location continues the· 

program. When BIN is executed, Pis 

incremented twice instead of only 

once. This causes the computer to 

skip the Base Address word. 

BIN 

16 14 13 12 ." 10 

16 14 13 12 11 10 9 

BLOCK IN 

DEVICE 
ADDRESS 

P+l R BASE ADDRESS -1 

o 

This instruction inputs a block of data from the addressed 

device. Each word is input upon receipt of a true response 

when the condition specified by the function code is 

sensed. The X Register must contain the Word Count, and 

location P+ 1 must contain the Base Address, less 1, of the 

data buffer in memory. 

Machine Codes: 

:71nn 

Registers Affected: 

X Contains all zeros after the instruction is 

completed. 

Memory Previous contents of the data buffer in memory 

replaced by input data. 

P Incremented two times instead of one. P=(P)+2 

Timing: 2 + 1h for each word transferred 

3-25 



3.4.2.8 

BOT 

15 14 13 12 11 10 

15 14 13 12 11 10 9 

BLOCK OUT 

DEVICE 
ADDRESS 

1'>1 I 0 I BASE ADDRESS -, 

This instruction outputs a block of data from memory to 

the addressed device. Each word is output upon receipt of 

a true response when the condition specified by the func­

tion code of the instruction is sensed. The X Register must 

contain the Word Count, and location P+ 1 must contain 

the Base Address, less 1, of the location of the data in 

memory. 

Machine Code: 

:75nn 

Registers Affected: 

X 

P 

Contains all zeros when the instruction is 

completed. 

Incremented two times instead of one. P=(P)+2 

Timing: 2+ 1/2 for each word-transferred 

3.5 AUTOMATIC INPUT/OUTPUT INSTRUCTIONS 

3.5.1 General 

Automatic Input/Output instructions are powerful I/O 

instructions which provide data transfers directly between 

memory and peripheral devices. An Automatic I/O 

instruction is effectively a complete I/O subroutine in 

a single instruction. When a block of data is to be moved 

between the computer memory and a peripheral device 

using a subroutine, the subroutine must perform these 

functions: 

3-26 

1. Decrement a word count so that the subroutine 

will know when the last word has been moved. 

2. Increment an address pointer to point to the next 

data location in memory for reading or storing 

data. 

3. Transfer a data word between memory and the 

peripheral device. 

An Automatic I/O instruction performs all of these func~ 

tions in a single instruction. 

There are four Automatic I/O instructions which the 

ALPHA 16 and NAKED MINI 16 computers are capable 

of executing: Automatic Input Word, Automatic Input 

Byte, Automatic Output Word, and Automatic Output 

Byte. The Automatic Word instructions transfer full 

16-bit words between the computer memory and peripheral 

devices. The Automatic Byte instructions transfer 8-bit 

bytes, packed two bytes per word, between memory and 

peripheral devices. 

Automatic I/O instructions may be used for in-line pro­

gramming, or as interrupt instructions. They are primarily 

designed to be used as interrupt instructions. When used 

as interrupt instructions, they provide a virtually unlimited 

number of Direct Memory Channels in the computer for 

fast transfers of data directly between memory and periph­

eral devices under interrupt control. 

3.5.2 Format 

Each Automatic I/O instruction occupies thre,e words in 

memory. The first word contains the instruction, the 

second word contains the two's complement of the word 

count, and the third word contains an address pointer: 

P 

P+1 

P+2 

AUTOMATIC I/O INSTRUCTION 

WOftD COUNTER 1 

AnD R ESS PO IfNE R 

3.5.2.1 Instruction. The instruction word has the same -----
general format as all other I/O instructions. The operation 



code is contained in bits 8-15, and the Device Address 

and Function Code are contained in bits 0-7. 

3.5.2.2 Word Count. The word immediately following 

the instruction word must contain the negative of the 

word count; i.e., if n words are to be moved, the Word 

Counter must contain -n (two's complement of the 

word count). Each time the instruction is executed, the 

Word Counter is incremented and tested for zero. There­

fore, the Word Counter counts from -n to O. 

3.5.2.3 Address Pointer. The Address Pointer must con­

tain an address which is one less than the address of the 

first word to be moved; i.e., if the first word to be moved 

is at location m, then the Address Pointer must contain the 

value m-I. The reason is that the Address Pointer is 

incremented before it is used as an address to memory. 

3.5.3 Operation 

Automatic I/O instructions are unconditional transfer 

instructions. When the instruction is executed, a word or 

byte is unconditionally moved between the peripheral 

device and memory. Each time the instruction is executed 

one word or byte is moved. Four memory cycles are 

required for each word or byte transferred. The memory 

cycles are: 

1. Read and decode the Automatic I/O instruction. 

2. Read the Word Counter, increment it, restore it, 

and test it for zero. 

3. Read the Address Pointer, increment it, restore it, 

and use it as an address to memory. 

4. Transfer the data: read it from memory for an 

output or store it in memory for an input. 

3.5.3.1 Timing. Since the Automatic I/O instructions are 

I/O instructions, the first memory access will require a total 

of 1 1/4 computer cycles. Each subsequent memory cycle 

will require 1 computer cycle. Therefore, each word or byte 

transferred requires a total of 4 1/4 computer cycles to 

finish the transfer. 

3.5.3.2 Word Transfers. Automatic I/O Word 

instructions transfer full 16-bit words between the com­

puter memory and the peripheral device. Figure 3-6 

illustrates the sequence of words moved, and the address­

ing of those words. The memory location for the first 

word (source if an output; destination if an input) is one 

greater than the address in the Address Pointer of the 

Auto I/O instruction. If the address in the address 

pointer is identified by the symbol BA, then the location 

of the first data word is BA + 1. If n words are moved, the 

location of the last word moved in BA+n. The words. 

moved, then, are located at BA+1 through BA+n. Words 

are transferred using the lowest address in the memory 

buffer first through the highest address in the buffer. 

3.5.3.3 Byte Transfers. The only difference between 

Automatic I/O Byte instructions and Automatic I/O Word 

instructions is that the byte instructions move 8-bit bytes 

rather than full words. The byte instructions address 

sequential bytes as illustrated in Figure 3-7. For the byte 

instructions, the word immediately following the Auto 

I/O Byte instruction is a Byte Count rather ~han a word 

count. The Address Pointer contains a Byte Address 

rather than a Word Address. The Auto I/O Byte instruc­

tion handles the packing and unpacking of bytes which are 

stored two bytes per word. The starting byte address may 

be odd or even (left right byte within a word), and the 

number of bytes moved is limited only by memory size. 

3.5.4 Direct Memory Channels 

When an Automatic Input/Output instruction is used as 

an interrupt instruction, a Direct Memory Channel is 

formed. Since these instructions are single instructions 

which do the job of a complete I/O subroutine, they are 

ideal as interrupt instructions. 

3.5.4.1 Word Transfers. When an interrupt is recog­

nized by the ALPHA 16 or NAKED MINI computer, 

the computer executes one instruction at the interrupt 

location. If the instruction at the interrupt location 

3-27 

• 



----------------------------~---------------------------------------------------

BA + n-1 

BA+2 

3-28 

MEMORY DATA BUFFER 

BA + n nTH WORD MOVED 
~--------.~----------~~ Jl 

~--------------'-
BA+2 2ND WORD MOVED f---------------.-
BA+1 1ST WORD MOVED 

BA 1.-. ________ -...1 

ADDRESS POINTER = BA (ADDRESS OF FIRST WORD TO BE MOVED·1) 
WORD COUNTER =·n (TWO'S COMPLEMENT OF WORD COUNT) 

Figure 3·6. Word Movement Sequence 

n - 1 BYTE MOVED nth BYTE MOVED 

2ND BYTE MOVED 3RD BYTE MOVED ----------BA (NOT MOVED) 1ST BYTE MOVED 

BYTE COUNTER = ·n 
ADDRESS POINTER = BA (ADDRESS OF 1ST BYTE 

TO BE MOVED .1) 

Figure 3·7. Byte Movement Sequence 

BA+n 

BA+3 

BA+ 1 



is an Automatic I/O instruction, the following sequence 

of events occurs: 

1. The Automatic I/O instruction is read from 

memory and decoded. The instruction addresses 

the interrupting device and selects the data 

source/destination in the device. 

2. The Word/Byte Count is read from the location 

immediately following the Auto I/O instruction. 

The word or byte count is incremented and 

tested for zero, and the updated count is written 

back into memory. 

3. The Address Pointer is read from the second 

location following the Auto I/O instruction. The 

word or byte address is incremented and restored 

to memory. The incremented address is also used 

as an address to memory for reading or storing 

data. 

4. A word or byte is transferred between the com­

puter memory and the peripheral device. The data 

is stored in memory for an input, or read from 

memory for an output. This completes the trans­

fer of a single word or byte. 

Each time the peripheral device is ready to transfer a word 

or byte, it interrupts the computer and the above sequence . 

is repeated. This continues until all data has been moved. 

3.5.4.2 End of Block. When the Word/Byte count reaches 

zero, the computer sends an Echo signal to the peripheral 

device to indicate that all data has been moved. The action 

at that point is determined by the design of the peripheral 

interface. The normal action is that the peripheral interface 

will generate an End of Block interrupt to a different 

interrupt location to signal that the peripheral device has 

completed its job. It is then up to the programmer to do the 

necessary housekeeping associated with the end of a data 

transfer. 

3.5.5 In-Line Programming 

Although Automatic I/O instructions are designed to be 

used as interrupt instructions, they can also be used as in­

line instructions. The format is expanded somewhat when 

this application is used. 

3.5.5.1 Format. When an Automatic I/O instruction is 

executed as an in-line instruction, a single word or byte is 

unconditionally transferred each time the instruction is 

executed. If device sensing is required to determine 

whether or not the peripheral device is ready for a data 

transfer, the sensing must be accomplished before the 

Automatic I/O instruction is executed. When the Auto­

matic I/O instruction is executed the location of the next 

instruction to be executed is a function of the word count 

in the location following the Auto I/O instruction. The 

format of the program, including the Auto I/O instruc­

tion and the locations which immediately follow, is as 

follows: 

P 

P+l 

P+2 

P+3 

P+4 

AUTOMATIC 1/0 INSTRUCTION 

WORD/BYTE COUNTER 

ADDRESS POINTER 

END OF BLOCK EXIT (WORD COUNT = 0) 

NEXT INSTRUCTION (WORD COUNT,O) 

3.5.5.2 Operation. When an Auto I/O instruction is 

executed in-line, it functions exactly the same as when it 

is executed as an interrupt instruction in that the Word/ 

Byte counter and the Address Pointer are incremented 

and restored and a single word or byte is transferred 

between memory and the peripheral device. However, the 

instruction which is executed after the Auto I/O instruc­

tion depends on whether or not the word/byte count is 

equal to zero. If the Auto I/O instruction is at P, and 

3-29 



the count at P+ 1 is not equal to zero after it is incremented, 

the instruction at P+4 will be executed following the Auto 

I/O instruction. However, if the count at P+ 1 is equal to 

zero after it is incremented, the instruction at P+3 will be 

executed following the Auto I/O instruction. The instruc­

tion at P+3 is referred to as the "End of Block Exit", 

since it will normally be an unconditional jump to get out 

of the data transfer loop. 

3.5.6 Instruction Descriptions 

Descriptions of the individual Automatic I/O instructions 

follow. The description format follows the same general 

format as that used for Memory Reference instructions, 

except that the instruction diagrams show the three words 

required by the instructions. The descriptions also assume 

an understanding of the preceding general description of 

the functions of these instructions. 

3.5.6.1 

AIN AUTOMATIC INPUT TO MEMORY: WORD 

16 14 13 12 11 10 

16 14 13 12 11 10 9 

DEVICE 
ADDRESS 

WORD COUNTER (TWO'S COMPLEMENT OF WORD COUNT) 

16 14 13 12 11 10 9 I 0 I ADDRESS POINTER IOATA LOCATION -1) 

1 • 0 

This instruction increments the Word Counter and the 

Address Pointer and inputs one word from the addressed 

device to the updated address in memory specified by the 

Address Pointer. When the word count is incremented to 

zero, the computer sends an Echo signal to the peripheral 

interface if the instruction is executed as an interrupt 

instruction, or executes the End of Block Exit instruction 

if the instruction is an in-line instruction. 

3-30 

Machine Codes: 

:50nn 

Registers Affected: 

Memory The two locations immediately following the 

instruction are incremented each time the 

instruction is executed, and the previous con­

tents of the location addressed by the updated 

Address Pointer are replaced by the input 

word. 

P If the instruction is executed in-line, then P 

is incremented according to the contents of 

the Word Counter: 

If Word Counter t- 0, then P+4 --+ P 

If Word Counter = 0, then P+3 -- P 

Timing: 4 1/4 

3.5.6.2 

AOT AUTOMATIC OUTPUT FROM MEMORY: WORD 

16 14 13 12 11 10 

16 14 13 12 11 10 

DEVICE 
ADDRESS 

WORD COUNTER (TWO'S COMPLEMENT OF WORD COUNT) 

111 14 13 12 11 10 9 0 I 0 I ADDRESS POINTER (DATA LOCATION - 1) 

This instruction increments the Word Counter and the 

Address Pointer. It reads the word from the location 

addressed by the updated address in the Address Pointer 

and unconditionally outputs that word to the addressed 

peripheral device. When the word count is incremented 

to zero, the computer sends an Echo signal to the 

peripheral interface if the instruction is executed as an 



interrupt instruction, or executes the End of Block 

instruction if the instruction is executed in-line. 

Machine Codes: 

:60nn 

Machine Codes: 

:54nn 

Registers Affected: 

Memory The two word locations immediately 

Registers Affected: following the instruction are incremented 

Memory The two locations immediately following the 

P 

instruction are incremented each time the 

instruction is executed. The data locations in 

memory are unchanged. 

If the instruction is executed in-line, then Pis 

incremented according to the contents of the 

Word Counter: 

If Word Counter *' 0, then P+4 - P 

If Word Counter = 0, then P+3 - P 

Timing: 4 1/4 

3.5.6.3 

AlB AUTOMATIC INPUT TO MEMORY: BYTE 

15 14 13 12 11 10 

16 14 13 12 11 10 ·s 

DEVICE 
ADDRESS 

BYTE COUNTER <TWO'S COMPLEMENT OF BYTE COUNT) 

16 14 13 12 11 10 9 

ADDRESS POINTER (BYTE LOCATION - 1) 

o 

This instruction increments the Byte Counter and the 

Address Pointer, and inputs one byte from the addressed 

device to the updated byte location in memory addressed 

by the Address Pointer. When the Byte Count is incre­

mented to zero, the computer sends an Echo signal to the 

peripheral interface if the instruction is executed as an 

interrupt instruction, or executes the End of Block Exit 

instruction if the instruction is an in-line instruction. 

P 

each time the instruction is executed, and 

the previous contents of the byte location 

addressed by the updated Address Pointer are 

replaced by the input byte. 

If the instruction is executed in-line, then P 

is incremented according to the contents of 

the Byte Counter: 

If Byte Counter =f 0, then P+4 -- P 

If Byte Counter 0, then P+3 -- P 

Timing: 41/4 

3.5.6.4 

AOB AUTOMATIC OUTPUT FROM MEMORY: BYTE 

15 14 13 12 11 10 

16 14 13 12 11 10 9 

DEVICE 
ADDRESS 

BYTE COUNTER (TWO'S COMPLEMENT OF BYTE COUNT) 

15 14 13 12 11 10 

[ ADDRESS POINTER .BYTE LOCATION -1) 

o 

This instruction increments the Byte Counter and 

Address Pointer. It reads the byte from the location 

addressed by the updated address in the Address Pointer 

and unconditionally outputs th~t byte to the addressed 

peripheral device. When the Byte Count is incremented 

to zero, the computer sends an Echo signal to the 

peripheral interface if the instruction is executed as an 

3-31 



interrupt instruction" or executes the End of Block Exit 

instruction if the instruction is executed in-line. 

Machine Code: 

:64nn 

Registers Affected: 

Memory The two word locations immediately following 

the instruction are incremented each time the 

3-32 

instruction is executed. The data locations in 

memory are unchanged. 

P If the instruction is executed in-line, then 

P is incremented according to the contents of 

the Byte Counter: 

If Byte Counter =f 0, then P+4 -. P 

If Byte Counter = 0, then P+3 -- P 

Timing: 4 1/4 



SECTION 4 

PROCESSOR OPTIONS 

4.1 INTRODUCTION 

4.1.1 General 

There are five computer options which are mounted on 

basic processor boards and do not require separate I/O con­

nector slots in the computer chassis. The options are: 

• Teletypewriter (TTY) Interface 

• Power Fail/Restart (PFR) 

• Autoload (AL) 

• Memory Protect (MP) 

• Real Time Clock (R TC) 

4.1.2 Standard Configurations 

Most of the processor options may be installed individually 

in the processor. However, the Autoload option uses some 

of the circuitry used by the Power Fail/Restart option. 

Autoload cannot be installed without Power Fail/Restart, 

but Power Fail/Restart can be installed without Autoload. 

These options are manufactured in certain "off-the-sheIr' 

configurations. Any configuration other than these config­

urations must be handled as a special case. The standard 

configurations are: 

1. Power Fail/Restart and TTY Interface 

2. Power Fail/Restart, TTY Interface, and Real 

·time clock 

3. 

4. 

5. 

Power Fail/Restart, TTY Interface, and 

Autoload 

Power Fail/Restart, TTY Interface, Real Time 

Clock, and Autoload 

Power Fail/Restart, TTY Interface, Real Time 

Clock, Autoload, and Memory Protect 

4.2 TTY INTERFACE 

4.2.1 General 

The Teletypewriter (TTY) Interface option interfaces a 

modified ASR-33* or ASR-35* to the ALPHA 16 or 

NAKED MINI 16 computer. It performs all of the data and 

control signal conversion required for the computer to con­

trol the TTY. An ASR-33 or ASR-35 Teletypewriter pro­

vides four I/O features in one package: keyboard input, 

page printer, paper tape reader, and paper tape punch. 

4.2.2 Operation 

The interface contains a data buffer register which performs 

parallel-to-serial data conversion for outputing data from 

the computer to the Teletype, and serial-to-parallel conver­

sion when inputing data from the Teletype to the com­

puter. In addition the interface has provisions for 

interrupt generation for both word interrupts and end of 

bloek interrupts. 

4.2.2.1 Device Address. The standard device address for 

the TTY Interface option is Device Address 7. Since the 

device address field of an I/O instruction spans two hexa­

decimal characters, the device address 7 with a function 

code of 0 would be written : 38 in hexadecimal code. 

4.2.2.2 Output. All outputs from the computer are 

printed on the page printer. If the punch is turned on at 

the teletype, outputs are also punched. The punch and 

the page printer cannot be controlled separately by the 

computer. Selecting punch outputs is an operator function. 

4.2.2.3 Input. Inputs may be made from either the key­

board or the paper tape reader. The paper tape reader may 

be programmed to read a single byte from paper tape, or 

to continuously read tape. When the TTY Interface is 

conditioned to input data from the teletype, it will accept 

*The ASR-33 and ASR-35 Teletypewriters are manufactured by Teletype Corporation. 

4-1 

-• 



data from any source. 'The only difference between selecting 

the keyboard and selecting the paper tape reader is that the 

instructions that select the paper tape reader turn the reader 

on. The instruction that selects the keyboard does not turn 

the reader on. A special feature allows inputs from the key­

board or tape reader to be automatically echoed back to the 

TTY for printing. This feature-is called Automatic Echo. 

CAUTION 

WHEN THE PAPER TAPE READER 

IS READING TAPE, DO NOT DE­

PRESS KEYS ON THE KEYBOARD. 

IF KEYS ON THE KEYBOARD 

ARE DEPRESSED, INCORRECT DATA 

WILL BE SENT TO THE COMPUTER. 

4.2.2.4 Control. Since the TTY operates at a much slower 

rate than the computer, there must be some method for 

sensing whether or not the interface is ready to accept data 

for output, or has assembled a complete byte for input. A 

Buffer Ready flip flop is used in the interface to indicate 

the condition of the interface data buffer. Generally when 

the computer is placed in a read mode, the Buffer Reaqy 

flip flop is turned off until a complete character has been 

assembled in the data buffer. When a complete character 

has been read from the teletype to the buffer, the Buffer 

Ready flip flop is turned on automatically by the TTY 

Interface. The Buffer Ready flip flow is then turned off 

again when the computer reads the byte from the interface 

buffer into the computer. 

When the computer is sending data to the TTY Interface, the 

Buffer Ready flip flop is turned off when the computer 

loads the interface buffer with a byte. The interface turns 

the Buffer Ready flip flop on automatically after the inter­

face has finished sending the byte to the TTY for printing. 

4.2.3 Data Transfer Rates 

The teletypes have a maximum data transfer rate of ten (10) 

bytes per second. Outputs to the printer and/or punch may 

be made at the maximum rate. Inputs from the paper tape 

reader are at the maximum rate when the reader is selected 

for continuous read mode. When inputing through the 

4-2 

keyboard, care must be taken to insure that typing speeds 

do not exceed the maximum data rate (it is possible, even 

for a relatively slow typist, to exceed the maximum per­

missible rate for two consecutive characters.) 

4.2.4 Programming 

The teletype interface can be controlled using all types of 

I/O instructions. General I/O instructions must be used to 

condition the interface for data transfer. Once the inter­

face has been conditioned, any type of instruction may be 

used for the actual transfer of data. Teletype speed does 

not require the speed associated with Block Transfer 

instructions, but these instructions may be used with the 

teletype. 

4.2.4.1 General Instructions. The following is a list of 

general I/O instructions used with the teletype option. 

These instructions assume Device Address 7 is used to 

address the teletype. Table 4-1 lists the function codes 

associated with the TTY Interface. 

SEL :38 

SEL :39 (:4039) 

SEL :3A (:403A) 

SEL :3B (:403B) 

ENABLE AUTO ECHO. This 

instruction causes all inputs 

from the TTY keyboard or 

paper tape reader to be echoed 

back to the TTY for printing. 

SELECT Keyboard. This in­

struction resets the Buffer 

Ready flip-flop and puts the 

teletype interface in the read 

mode. 

STEP Read. This command 

causes the character under 

the read station on the paper 

tape reader to be read and 

the tape advanced one char-

acter. The reader switch on 

the teletype must be in the 

RUN position. TIle Buffer 

Ready flip-flop is reset. 

SELECT Continuous Read. 

This command causes the 



paper tape reader to continu- SEN :39 (:4939) Sense Buffer Ready. This 

ously read at a rate of 10 instruction senses the On 

char/sec until the reader is state of the Buffer Ready flip-
stopped or the tape runs flop, i.e., a true response will 
out. The reader switch must occur if the flip-flop is set. 
be in the RUN position. The 

Buffer Ready flip-flop is SEN :3A (:493A) Sense Word Xfer Mask Off. 

reset. This instruction senses the 

SEL :3C (:403C) Initialize the teletype inter-
Word Xfer Mask flip-flop and 

face. This command 
generates a true response if 

resets the control flip-
the flip-flop is in the off 

flops, stops the oscillator state. 

and puts the interface in a 

static marking condition. SEN :3B (:493B) Sense TTY not busy. This 

The Buffer Ready flip-flop instruction senses the state of 

is set. the TTY controller and gen-

erates a true response if the 
SEL :30 (:4030) SET Word Xfer Mask. This TTY is not printing or 

command sets a mask flip-
reading a character. 

flop in the interface to 

enable an interrupt to be OTA :38 (:6C38) Output A or X Register to 
generated by Buffer Ready OTX :38 (:6E38) teletype. This instruction 
flip-flop. (The interrupt transfers the contents of the 
line is wired according to 

Register to the teletype 
system requirements.) 

interface and causes the char-

SEL :3E (:403E) SET Block Xfer Mask. acter to be printed. If the 

This command sets a punch is on, the character 

mask flip-flop in the will also be punched. 

interface to allow an 
IBA :38 (:7838) Input byte from teletype to 

interrupt to be generated 
IBX :38 (:7A38) the A or X Register. The 

when the Word Xfer 

Mask is in the off state. 
character in the teletype 

interface buffer is transferred 
The interrupt can be 

to the A or X Register. 
used to indicate "End of 

Block." 
RBA :39 (:7939) Read Byte from teletype to 

SEL :3F (:403F) RESET Masks. This RBX :39 (:7B39) the A or X Register on sense 

instruction disables both response. This instruction 

interrupt lines in the senses the Buffer Ready flip 

teletype interface by flop in the TTY Interface 

resetting the mask and inputs a bypte on a true 

flip-flops. response. 

4-3 



Table 4-1. TTY Interface Function Codes 

Select Instructions: 

0 Enable Au to Echo 

1 Keyboard 

2 Step Read 

3 Continuous Read 

4 Initialize the Interface 

5 Set Word Transfer Mask 

6 Set Block Transfer Mask 

7 Reset Masks (Word Transfer and Block 

Transfer) 

Sense Instructions: 

2 

3 

Buffer Ready 

Word Transfer Mask Off 

TTY Not Busy 

4.2.4.2 Automatic Instructions. Since the teletype is a 

byte oriented device, the Auto I/O Byte instructions will 

normally be most useful for automatic data transfers. These 

instructions automatically pack data two bytes per word in 

memory. The Automatic I/O Byte instructions associated 

with the teletype option are: 

AlB :38 

AOB :38 

4-4 

(:5438) 

(:6438) 

Input Byte to Memory 

from TTY Interface. This 

instruction uncontionally 

reads the contents of the 

TTY Interface data buffer 

and stores the contents in 

the byte location in 

memory specified by the 

AlB instruction Address 

Pointer. This will normally 

be executed as an interrupt 

instructio n. 

Output Byte From Memory 

to TTY Interface. This 

instruction unconditionally 

reads the byte location in 

memory specified by the AOB 

Address Pointer and outputs 

the contents to the TTY 

Interface data buffer. This 

instruction will normally be 

executed as an interrupt· 

instruction. 

4.2.4.3 Programming Examples. The following are typi­

cal examples of teletype subroutines. These examples are 

illustrations only. They are not necessarily the most 

efficient methods which may be used to handle a specific 

problem. 

1. Data output under program control. The following is a 

portion of a routine to output data from a data buffer 

in memory to the TTY interface. This routine does not 

use interrupts. 

SBM 

SEL 

LOOP LDA 

IMS 

SEN 

JMP 

OTA 

:3C 

Set Byte Mode so that data 

will be automatically 

unpacked by the computer 

hardware. 

Initialize the TTY Interface. 

*DATA Read a byte from the data 

buffer in memory and hold 

in the A Register. 

DATA 

:39 

$-1 

:38 

Increment the data buffer 

address pointer. 

Sense the Buffer Ready flip 

flop. 

Jump hack to the Sense 

instruction if the interface 

is not ready to accept data. 

Output the byte from the 

A Register to the interface 

data register when the inter­

face data buffer is ready. 



IMS COUNT 

JMP LOOP 

(Next 

Instructio n) 

The location COUNT 

contains the negative of the 

number of bytes to be 

removed. When COUNT 

goes to zero, the computer 

will skip the next instruc­

tion and exit from the 

subroutine. 

If COUNT =/= 0, go back to 

the LDA instruction and 

repeat the loop. 

When COUNT goes to 

zero, the computer skips the 

JMP instruction and exe­

cutes the instruction fol­

lowing JMP. 

2. Data input under program control. The following is a 

portion of a routine to input data from the data buffer 

in the TTY Interface to the A Register and then to 

memory. Note the similarity between this routine and 

the output routine above. 

SBM 

SEL :3B 

LOOP SEN :39 

JMP $-1 

INA :38 

Set Byte Mode. The com­

puter will pack data in 

memory. 

Start the paper tape reader 

in a continuous read mode 

and reset the Buffer Ready 

flip flop. 

Sense the Buffer Ready 

flip flop. It will be set 

when a byte has been read 

from paper tape. 

Sense again if not set. 

Input the byte from the 

interface data buffer to 

the A Register and reset 

Buffer Ready. 

STA *DATA Store the data in the data 

buffer in memory. 

IMS DATA Increment the memory byte 

address so that the next byte 

will be stored at the next 

sequential location. 

IMS COUNT Increment COUNT. When 

COUNT goes to zero, the 

computer will exit from this 

routine. 

JMP LOOP If COUNT =/= 0, go back to the 

SEN instruction. 

SEL :3C Initialize the TTY Interface 

to stop the paper tape 

reader once all data has been 

read. 

4.2.5 Reserved Memory Locations 

Two memory locations are reserved as interrupt locations 

to be used with the TTY Interface option. The locations 

used are determined by other option selections. 

4.2.5.1 Standard Interrupt Locations. The following are 

the standard interrupt location assignments for the TTY 

Interface option: 

:0002 Word Interrupt. TTY Interface interrupts 

to this location when the Word Transfer 

Mask is set, interrupts are enabled, and 

the Buffer Ready flip-flop is set. 

: 0006 End of Block Interrupt. TTY Interface 

interrupts to this location when the 

Block Transfer Mask is set, interrupts are 

enabled, and an Echo signal is received 

from the computer. 

4-5 



4.2.5.2 Alternate Interrupt Locations. A jumper option 

provides two alternate interrupt locations for use by the 

TTY Interface. Locations :0002 and :0006 are used by 

Interrupt Line 1 and Interrupt Line 2, therefore it may be 

desired to cause TTY Interrupts to go to these alternate 

locations: 

:0022 Word Interrupt. 

:0026 End of Block Interrupt. 

4.2.5.3 Offset Interrupt Locations. A jumper option 

allows all interrupts to be moved out of Scratchpad and off­

set by : 01 00 locations. When this is done, the standard 

interrupt locations are offset to these locations: 

:0102 Word Interrupt 

:0106 End of Block Interrupt 

The alternate interrupt locations are offset to these 

locations: 

:0122 Word Interrupt. 

:0126 End of Block Interrupt. 

4.3 POWER FAIL/RESTART 

4.3.1 General 

The Power Fail/Restart (PFR) option allows the ALPHA 16 

and NAKED MINI 16 computers to be operated from 

unreliable AC power sources. A low power condition or a 

temporary power outage will be detected in time to allow 

the operating program to prepare for the power loss. When 

power returns to normal, the computer is automatically 

restarted without loss of data or operating position. Thus, 

unattended operation is possible. 

4.3.2 Operation 

The PFR logic monitors the unregulated DC power supply 

voltages to detect low power conditions for its power down 

sequence, and to determine when power has been restored 

to an acceptable level for its power up sequence. The DC 

power supply must guarantee that the regulated DC supply 

4-6 

voltages will remain within operating tolerances for a 

minimum of 2.0 milliseconds following the detection 

of a low power condition. 

4.3.2.1 Power Down Sequence. When an imminent power 

failure is detected, a power fail interrupt is generated to the 

processor and a 0.9 millisecond Down Sequence is started. 

If the Power Fail Interrupt is enabled, the processor is 

interrupted to a reserved location in memory (location 

:OOIC). The processor will execute the instruction at that 

location. The interrupt instruction will normally be a 

Jump and Store (JST) to a power-down software routine. 

The software routine should be written to store all volatile 

registers and indicators in core memory so that information 

will not be lost when power is lost. The processor has 

0.9 millisecond to complete the power-down routine once 

the PFR Down Sequence is started. 

The power-down software routine will normally execute a 

Halt once all volatile data has been stored in core memory. 

The processor then waits for the PFR hardware to complete 

the Down Sequence. 0.9 millisecond after the Down 

Sequence is started, PFR disables memory by removing 

read/write current from the memory. This is done so that 

data in memory cannot be inadvertently destroyed when 

power is completely lost. PFR and the computer then wait 

for power to be restored. 

4.3.2.2 Power Up Sequence. When PFR detects that 

power has been restored to an acceptable level, a Power Up 

sequence is started. PFR waits 100 milliseconds to insure 

that power is stabilized, and then re-enables memory. PFR 

then sets the Program Counter (P Register) in the computer 

to :0000, and generates a run signal to the computer. The 

computer then executes the instruction at location :0000. 

The instruction at location :0000 will normally be a Jump 

(JMP) to a software routine to restore the contents of the 

volatile registers and indicators that were saved during the 

Down Sequence, and restart the program at the point where 

it was interrupted by the power failure. 

Once an Up Sequence is started by PFR, power fail inter­

rupts are disabled for 0.9 millisecond so that the Up 



Sequence can be completed before another Down Sequence 

can be initiated. Therefore the power supply must guaran­

tee reserve power sufficient to complete an Up Sequence 

followed by a Down Sequence. Another 200 microseconds 

are reserved for possible electronic component timing 

variations, thus the power ~upply must guarantee 2 milli­

seconds of operating power once a power failure is detected. 

4.3.3 Interrupt Control 

The enable and disable of power fail interrupts may be 

handled in one of two ways. They may be placed under the 

control of the normal EIN and DIN instructions, or they 

may be separated from these instructions and placed under 

separate enable and disable instructions. A hardware wiring 

option makes the selection. 

4.3.3.1 EIN/DIN Control. When power fail interrupts are 

under EIN/DIN control the execution of the EIN instruc­

tion enables power fail interrupts, and the execution of the 

DIN instruction disables power fail interrupts. It is not 

necessary to execute any masking instructions, since the 

PFR option is not designed for interrupt masking. . 

4.3.3.2 PFE/PFD Control. When it is desired to separate 

power fail interrupts from EIN/DIN control, two new 

instructions are generated: 

PFE Power Fail Enable 

PFD Power Fail Disable 

These instructions enable and disable power fail interrupts 

independently of the EIN and DIN instructions. 

4.3.3.3 Enable Timing. Power fail interrupts are enabled 

10 microseconds after the execution of the PFE instruction 

or the EIN instruction. This allows a power-up subroutine 

to enable all interrupts and exit before another power fail 

interrupt can be generated. 

4.3.4 Programming Examples 

The following is an example of a simple power fail subrou­

tine. It saves program status and volatile registers when a 

power failure is detected. It restores the status and 

registers when power is restored and continues the inter­

rupted program at the pOint where it was interrupted. 

More sophisticated routines which print out power fail 

messages upon restoration of power may be used in actual 

practice. 

1. Interrupt locations contain the following: 

:0000 JMP UP 

:OOIC JST DOWN 

This is the Power Up restart 

location. It contains an 

unconditional Jump to the 

Power Up subroutine. 

This is the Power Down 

interrupt location. It con­

tains a Jump and Store to the 

Power Down subroutine. 

Using a JST automatically 

saves the contents of the Pro­

gram Counter. 

2. Subroutines for Power Down and Power Up may be 

written as follows: 

DOWN RES 

SIN 

STA ASAVE 

SIA 

STA STAT 

STX XSAVE 

HLT 

Reserved location for storage 

of P Counter when JST 

instruction at the power fail 

interrupt location is executed. • 

Inhibit Byte Mode if set. 

Save the A Register contents. 

Read the computer status 

word to the A Register and 

turn off Byte Mode and OV. 

Save the computer status 

word. 

Save the X Register contents. 

Halt the computer and wait 

for power to be restored. 

4-7 



UP LDX 

LDA 

SOA 

SIN 

LDA 

PFE 

EIN 

JMP 

ASAVE RES 

XSAVE RES 

STAT RES 

XSAVE 

STAT 

ASAVE 

"'DOWN 

The JMP instruction at the 

Power Up restart location 

enters here. This instruc­

tion restores the contents 

of the Register. 

Read the computer status 

word into the A Register 

from its temporary storage 

location. 

Restore the computer 

status. Restore OV status 

and Byte Mode status. 

Inhibit Byte Mode if it is 

set. 

Restore the contents of 

the A Register. 

Enable power fail inter­

rupts (if they are outside 

EIN/DIN control). 

Enable all other 

interrupts. 

Restart the main program 

by doing an indirect Jump 

to the location specified by 

the saved contents of the 

P Counter. 

A Register save location. 

X Register save location. 

Status word save location. 

4.3.5 Reserved Memory Locations 

The Power Fail/Restart option requires two reserved 

memory locations: one for the power fail interrupt, and 

one for the power up restart. The power fail interrupt is a 

true interrupt. The power up restart, however, is not a true 

interrupt. It is a direct hardware reset of the P Register in 

4-8 

the computer and does not use the interrupt structure 

of the computer. 

4.3.5.1 Power Fail Interrupt Location. Since the power 

fail interrupt is a true interrupt, it has a standard interrupt 

location which may be offset by the jumper option which 

offsets all standard interrupt locations. The standard 

interrupt location and offset location are: 

Standard location: :OOIC 

Offset location: :OllC 

4.3.5.2 Power Up Restart Location. Since the power up 

restart operation does not operate through the interrupt 

structure of the computer, the restart location cannot be 

offset by the interrupt offset jumper option. The restart 

location is: 

Standard location: :0000 

Offset location: :0000 

4.4 REAL-TIME CLOCK 

4.4.1 General 

The Real-Time Clock (RTC) option provides a means for 

determining elapsed time and/or creating a time-of-day 

clock with software. The RTC keeps time by counting 

electrical pulses of known frequency, such as the output of 

a crystal oscillator or the input frequency of an AC power 

source. 

4.4.2 Clock Sources 

A number of different sources are available for use as RTC 

timing pulses. The standard configuration uses a I MHz 

crystal oscillator as the basic timing source. The 1 MHz 

clock is applied to a decade counter to produce 10KHz, 

1 KHz, and 100 Hz clock sources. These sources produce 

timing increments of 100 microseconds, 1 millisecond, and 

10 milliseconds. The desired clock source to be used with 

the RTC option is selected by a jumper wire. 



An external timing source may be applied to the RTC option 

if some source other than the crystal oscillator is desired. 

This allows the use of almost any timing period that may be 

desired. 

4.4.3 Operation 

The RTC provides timing signals to the computer each time 

a timing pulse from the clock source is detected, and a sync 

pulse when a specified elapsed time has expired. The RTC 

uses two interrupts to perform its functions. 

4.4.3.1 Time Interrupt. If RTC interrupts are enabled, the 

RTC generates a time interrupt to the computer each time 

a clock pulse is detected from the clock source. This inter­

rupt is usually serviced by an IMS instruction at the inter­

rupt location. The interrupt instruction in this case is 

IMS COUNT 

where COUNT is a memory word used to maintain a count 

of the number of Time interrupts received from the RTC. 

If COUNT goes to zero when it is incremented, an Echo is 

sent to the RTC (whenever IMS is used as an interrupt 

instruction an Echo is sent to the interrupting device when 

the location being incremented goes to zero.) This opera­

tion allows COUNT to be set to some negative value so that 

an Echo will be generated to the R TC after some specific 

period of time has elapsed. 

4.4.3.2 Sync Interrupt. If Sync interrupts are enabled, the 

RTC generates a Sync interrupt to the computer whenever 

an Echo is received from the computer. Since an Echo is 

sent to the RTC when COUNT goes to zero, the Sync inter­

rupt normally signals that some specified time interval has 

elapsed. The Sync interrupt is normally serviced by an 

interrupt subroutine. 

4.4.3.3 Timekeeping Example. The Time interrupt is nor­

mally used to increment a memory location which is being 

used as a computer clock. The Sync interrupt is used to flag 

the main program when some specified time period has 

elapsed. For example, assume that the 10 millisecond clock 

is being used as a clock source. Assume also that some 

external device must be sampled by the main program once 

each second. The main program could set COUNT to -100 

and enable Time and Sync interrupts. The Time interrupt 

could then be serviced by 

IMS COUNT 

so that COUNT would go to zero after being incremented 

100 times. A Sync interrupt would be generated when 

COUNT goes to zero, telling the main program that one 

second has elapsed. The main program could service the 

Sync interrupt by jumping to a subroutine that resets 

COUNT to -100 and samples the external device. 

4.4.4 Control Instructions 

The RTC is controlled through the I/O structure of the 

computer. It is assigned Device Address 8, and is controlled 

by I/O instructions. The control instructions used are: 

SEL :40 

SEL :42 

SEL :43 

SEL :44 

(:4040) 

(:4042) 

(:4043) 

(:4044) 

Enable RTC. Sets a mask 

flip flop in the RTC allowing 

Time and Sync interrupts to 

be generated (if Sync is 

armed). 

Arm Sync. Allows Sync 

interrupts to be generated if 

the RTC is enabled and an 

Echo is received. 

Clear RTCinterrupts. 

Resets both Time and Sync 

interrupt requests. Does not 

disable or disarm interrupts, 

but instead removes inter­

rupt request history from the 

RTC. 

Initialize RTC. Disarms, dis­

ables, and clears interrupt 

requests, preventing RTC 

interrupts and removing 

history. 

4-9 

II 



SEL :47 (:4047) 

4.4.5 Interrupt Locations 

Disarm Sync. Prevents 

Sync interrupts from being 

generated without disabling 

Time interrupts. 

Since there are two interrupts associated with the RTC, two 

interrupt locations are required. Since they are true inter­

rupts, they may be offset by the interrupt offset option. 

4.4.5.1 Standard Locations. The standard interrupt loca­

tions for the Time and Sync interrupts are: 

Time interrupt location: :0018 

Sync interrupt location: :OOIA 

4.4.5.2 Offset Locations. If the interrupt offset jumper 

option is used, the offset interrupt locations are 

Time interrupt offset location: :0118 

Sync interrupt offset location: :OllA 

4.5 AUTOLOAD 

4.5.1 General 

The Autoload (AL) option consists of a read only memory 

(ROM) pre programmed with a binary loader and the 

necessary logic to cause that loader to be executed. Auto­

load uses the Power Up sequence logic of the Power Fail! 

Restart option to initialize the computer and start the auto­

load sequence. Therefore, the PFR option is a prerequisite 

for the Autoload option. 

The Autoload option is a multi-device loader which reads 

programs in standard binary format and stores them in the 

computer memory. Autoload may read in programs from a 

TTY paper tape reader, high speed paper tape reader, mag­

netic tape unit, cassette tape unit, or disk. 

4.5.2 Operating Procedures 

The Autoload sequence may be entered by depressing the 

AUTO LO switch on the operators panel with the STOP 

4-10 

switch up and the machine not in RUN mode. (RUN 

indicator must be off. If the machine is running, the AUTO 

LD switch generates a console interrupt.) The device 

from which the load is to be performed is selected with the 

Data Entry switches. Detailed operating procedures are as 

follows: 

1. Depress STOP 

2. RESET 

3. Ready Device 

4. Select Device 

5. STOP Up 

6. Depress AUTO LD 

Depressing the STOP switch 

halts the computer. 

Depress the RESET switch to 

initialize the computer logic. 

Ready the input device from 

which the binary program is 

to be loaded. Ready the pro­

gram in the device and place 

the device on line. 

Select the input device in the 

Data Switches on the opera­

tor's panel. Switch selections 

are: 

TTY All switches 

up. 

High Speed Switch 0 

Paper Tape Down 

Magnetic Switch 1 

Tape Down 

Cassette Switch 2 

Tape Down 

Disk Switch 3 

Down 

Put the STOP switch up to 

take the machine out of Step 

mode and enable Run mode. 

Depress the AUTO LD switch 

to start the Autoload 

sequence. 



4.5.3 Operation 

When the Autoload sequence is entered the Power Up 

sequence of the PFR option is entered to renerate a general 

reset to the computer, force the Program Counter to :0000; 

and generate a start pulse to the computer. This puts the 

computer in Run mode and causes it to address location 

: 0000 for its first instruction. 

4.5.3.1 Loader Execution. The ROM program parallels 

locations :0000 thru ·007F. The Autoload logic causes all 

instruction cycles to fetch instructions from the ROM, and 

all data cycles to access core memory. Thus the load pro­

gram in the ROM is executed, and the program being read 

from the peripheral device is treated as data which is stored 

in core memory. 

4.5.3.2 Autoload Termination. In the standard Autoload 

option, the autoload sequence is terminated when the com­

puter executes the instruction at location :005F in the ROM. 

The computer action at that point is a function of the pro­

gram which was loaded. A special option allows the loader 

in the ROM to use a11128 words of ROM. In that case, the 

autoload sequence is terminated when the instruction at 

location :007F. 

4.5.3.3 ROM Diagnostic. In machines with less than 32K 

words of core memory the program in the ROM may be 

read by reading memory locations :7000 and above, 

modulo 128. These locations must be read in Word mode 

rather than Byte mode. This allows diagnostic programs to 

read ROM and verify the program. It also allows special 

ROM's other than loader programs to be used. If the com­

puter has 32K words of core memory, the software access 

of ROM must be disabled. 

4.5.4 Reserved Memory Locations 

There are no reserved memory locations associated with the 

Autoload option. During the execution of the autoload 

sequence the load program appears to reside in locations 

:0000 through :005F for instruction cycles. However, all 

of core memory, including locations : 0000 through 

:005F, are available for data cycles. 

4.6 MEMORY PROTECT 

4.6.1 General 

The Memory Protect (MP) option allows the user to pro­

tect the contents of a selected segment of core memory by 

preventing memory write operations in that segment. Any 

2K, 4K, 8K, 16K, or all 32K, may be protected. 

4.6.2 Operation 

Segments of memory are selected for protection by 

removing jumper wires to decode the addresses which are 

to be protected. If all jumper wires are removed, a1l32K 

words of memory are protected. The jumpers are part of a 

plug which connects to the back of one of the computer 

control boards. If the plug is inadvertently removed, all of 

the memory is protected. (Refer to the INSTALLATION 

PROCEDURES Appendix for jumper connections.) 

4.6.2.1 Memory Protect Enable. The normal Memory 

Protect configuration is for Memory Protect to be operable 

at all times. An optional feature allows Memory Protect to 

be enabled and disabled by software. 

4.6.2.2 Protect Operation. When Memory Protect is 

enabled the MP logic decodes all memory reference 

addresses and compares them with the protected addresses. 

If the memory location being accessed is outside the pro­

tected segment, or if the memory reference is a memory 

read operation rather than a write operation, MP does not 

interfere. However, if the memory location being accessed 

is within the protected segment, and the program is 

attempting to write in that location, the MP option sets a 

Write Disable latch which prevents altering the contents of 

memory. At the same time an interrupt is generated to 

flag the attempted violation of the protected area. At the 

end of the memory cycle the Write Disable latch is reset 

and the computer is returned to normal operation. 

4-1 ) 

• • 



4.6.2.3 Interrupt Operation. MP interrupts are under the 

control of the EIN/DIN instructions. If interrupts are 

enabled, and MP has priority, the computer is interrupted 

to flag the attempted modification of protected memory. If 

interrupts are not enabled the protected segment will still be 

protected, but the attempted write violation flag may be 

lost. 

4.6.3 Control Instructions 

An optional feature allows memory protection to be placed 

under software control. If this feature is included, two con­

trol instructions become effective: 

MPE Memory Protect enable 

MPD Memory Protect disable. 

4-12 

When Memory Protect is enabled, the generation of MP 

interrupts is also enabled. The recognition of memory pro­

tect interrupts is under control of the EIN/DIN instructions. 

When Memory Protect is disabled, the normally protected 

areas of memory may be accessed just like the unprotected 

areas of memory. 

4.6.4 Reserved Memory Locations 

A single interrupt is associated with the Memory Protect 

option, thus one memory location must be reserved as an 

interrupt location. The location may be offset by the 

interrupt offset option. 

Standard interrupt location: :0014 

Offset interrupt location: :0114 



Appendix A HEXIDECIMAL ARITHMETIC 

NUMBERING SYSTEMS 

Efficient and accurate commun ications with numbering 
sys tems be tween a computer conso I e and operator, wri tten 
page and reader, I/O devi ces and a computer are a 
necess ity in computer systems. 

Each of the many numbering systems in use today has its 
spec i fi c set of characters. The name of each numbering 
system describes the quantity of symbols used to define 
each discrete power (base) of the basic set of characters. 
As an examp Ie: 

a. The binary numbering system is a base 2 system 
so that each character is a or 1. 

b. The quinary numbering system is a base 5 system 
so that each character is 0, 1, 2, 3 or 4. 

c. The octa I numbering system is a base 8 system 
so that each character is a, 1, 2, 3, 4, 5, 6 
or 7. 

d. The decima I numbering system is a base 10 
system so that each character is 0, 1, 2, 3, 4, 
5, 6, 7, 8 or 9. 

e. The hexidecimal numbering system is a base 16 
system so that each character is 0, 1, 2, 3, 4, 
5, 6, 7, 8, 9, A, B, C, 0, E or F. 

A binary number with 24 characters is almost impossible 
to remember, or communicate in its original form. It is 
common practice therefore in the computer environment 
to convert such a binary number to an octa I or hexi­
decimal numbering system when it is printed, spoken, or 
entered on a contro I pane I. The purpose of the convers ion 
is only to ease the communication problem between the 
binary displays or controls designed into the computers, 
and the people who must analyze and control the machines. 

An example of a 24 bit binary number is given below with 
its octal and hexidecimal equivalents. 

Example 

a 1 1 1 a 1 a 1 1 a a 1 1 a 1 1 1 1 a 1 1 1 a 1 binary 

all 101 011 001 101 111 all 101 
353 1 573 5 

0111 01 01 1 001 1 01 1 11 01 1 1 01 
759 BOD 

octal 

hexadec ima I 

It is exident in the example above that it takes 24 
characters to represent the binary number, eight char­
octers to represent the binary number in octal, and six 
characters to represent the same binary number in hexi­
decimal. Table A-l identifies the binary, octal, and 
hexidecima I representation of a sing Ie character and shows 
t'he re lationsh ip between each. 

Table A 1. Binary, Octal, Hexidecimal Characters 

r Octal Hexidecima I 
Binary Equiva lent Binary Equivalent 

000 a 0000 a 
001 1 0001 1 
010 2 0010 2 
all 3 0011 3 
100 4 0100 4 
101 5 0101 5 
110 6 0110 6 
111 7 0111 7 

1000 8 
1001 9 
1010 A 
1011 B 
1100 C 
1101 0 
1110 E 
1111 F 

A-l 

• 



a 1 2 3 4 

1 02 03 04 05 

2 03 04 05 06 

3 04 05 06 07 

4 05 06 07 08 

5 06 07 08 09 

6 07 08 09 OA 

7 08 09 OA OB 

8 09 OA OB ex: 
9 OA OB OC 00 

A OB ex: OD OE 

B OC 00 OE OF 

C 00 OE OF 10 

0 OE OF 10 11 

E OF 10 11 12 

F 10 11 12 13 

1 2 3 4 5 

2 04 06 08 OA 

3 06 09 OC OF 

4 08 OC 10 14 

5 O/-.. OF 14 19 

6 OC 12 18 1E 

7 OE 15 1C 23 

8 10 18 20 28 

9 12 1B 24 20 

A 14 1E 28 32 

B 16 21 2C 37 

C 18 24 30 3C 

0 1A 27 34 41 

E 1C 2A 38 46 

F 1E 2B 3C 4B 

A-2 

5 

06 

07 

08 

09 

OA 

OB 

DC 

00 

OE 

OF 

10 

11 

12 

13 

14 

HEXADECIMAL ARITHMETIC 

Table A-2. ADDITION TABLE 

6 7 8 9 

07 08 09 OA 

08 09 OA- OB 

09 OA OB ex: 

OA OB ex: 00 

OB DC 00 OE 

ex: 00 OE OF 

OD OE OF 10 

OE OF 10 11 

OF 10 11 12 

10 11 12 13 

11 12 13 14 

12 13 14 15 

13 14 15 16 

14 15 16 17 

15 16 17 18 

A 

OB 

ex: 
00 

OE 

OF 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Tobie A-3. MULTIPLICATION TABLE 

6 7 8 9 A 

qc OE 10 12 14 

12 15 18 1B 1E 

18 1C 20 24 28 

1E 23 28 2D 32 

24 2A 30 36 3C 

2A 31 38 3F 46 

30 38 40 48 50 

36 3F 48 51 5A 

3C 46 50 SA 64 

42 40 58 63 6E 

48 54 60 6C 78 

4E 5B 68 75 82 

54 62 70 7E 8C 

SA 69 78 87 96 

B C D E F 

DC OD OE OF 10 

OD OE OF 10 11 

OE OF 10 11 12 

OF 10 11 12 13 

10 11 12 13 14 

11 12 13 14 15 

12 13 14 15 16 

13 14 15 16 17 

14 15 16 17 18 

15 16 17 18 19 

16 17 18 19 1A 

17 18 19 1A 1B 

18 19 1A 1B 1C 

19 1A 1B 1C 10 

1A 1B 1C 10 1E 

I 
B C 0 E F 

16 18 1A 1C 1E 

21 24 27 2A 20 

2C 30 34 38 3C 

37 3C 41 46 4B 

42 48 4E 54 5A 

4D 54 5B 62 69 

58 60 68 70 78 

63 6C 75 7E 87 

6E 78 82 . 8C 96 

79 84 8F 9A A5 

84 90 9C A8 B·4 

8F 9C A9 86 C3 

9A A8 B6 C4 02 

AS B4 C3 D2 E 1 



Table A-4. HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE 

The table below provides for direct conversions between hexa­
dec imal integers in the range O-FFF and decimal integers in 
the range 0-4095. For conversion of larger integers, the 
tabl {' values may be added to the following figures: 

Hexadecimal 

01 000 
02 000 
03 000 
04 000 
05 000 
06 000 
07 000 
08 000 
09 000 
OA 000 
OB 000 
OC 000 
00 000 
OE 000 
OF 000 
)0 000 
) 1 000 
12 000 
13 000 
14 000 
15 000 
16 000 
17 000 
18 000 
19 000 
IA 000 
lB 000 
lC 000 
10 000 
IE 000 
IF 000 

000 
010 
020 
030 

040 
050 
060 
070 

080 
090 
OAO 
OBO 

OCO 
000 
OEO 
OFO 

0 

0000 
0016 
0032 
0048 

0064 
0080 
0096 
0112 

0128 
0144 
0160 
0176 

0192 
0208 
0224 
0240 

Decimal 

4096 
8 192 

12 288 
16384 
20 480 
24576 
28672 
32768 
36864 
40 960 
45 056 
49 152 
53 248 
57 344 
61440 
65536 
69632 
73 728 
77 824 
81 920 
86 016 
90 112 
94 208 
98304 

102 400 
106 496 
110 592 
114688 
118784 
122 880 
126 976 

1 2 

0001 0002 
0017 0018 
0033 0034 
0049 0050 

0065 0066 
0081 0082 
0097 0098 
0113 0114 

0129 0130 
0145 0146 
0161 0162 
0177 0178 

0193 0194 
0209 0210 
0225 0226 
0241 0242 

Hexadecimal 

20 000 
30 000 
40000 
50 000 
60000 
70000 
80 000 
90 000 
AO 000 
BO 000 

CO 000 
DO 000 
EO 000 
Fa 000 

100 000 
200 000 
300 000 
400 000 
500 000 
600 000 
700 000 
800 000 
900 000 

AOO 000 
BOO 000 

COO 000 
DOO 000 
EOO 000 
FOO 000 

1 000 000 
2000 000 

3 4 

0003 0004 
0019 0020 
0035 0036 
0051 0052 

0067 0068 
0083 0084 
0099 0100 
0115 0116 

0131 0132 
0147 0148 
0163 0164 
0179 0180 

0195 0196 
0211 0212 
0227 0228 
0243 0244 

Decimal 

131 072 
196608 
262 144 
327680 
393 216 
458 752 
524 288 
589824 
655 360 
720896 
786 432 
851 968 
917 504 
983 040 

1 048576 
2097152 
3 145 728 
4 194 304 
5 242 880 
6 291 456 
7 340 032 
8 388 608 
9437 184 

10 485 760 
11 534 336 
12582 912 
13 631 488 
14680 064 
15 728 640 
16 777 216 
33 554432 

5 6 

0005 0006 
0021 0022 
0037 0038 
0053 0054 

0069 0070 
0085 0086 
0101 0102 
0117 0118 

0133 0134 
0149 0150 
0165 0166 
0181 0182 

0197. 0198 
0213 0214 
0229 0230 
0245 0246 

7 

0007 
0023 
0039 
0055 

0071 
0087 
0103 
0119 

0135 
0151 
0167 
0183 

0199 
0215 
0231 
0247 

Hexadecimal fractions may be converted to decimal fractions 
as follows: 

1. Express the hexadecimal fraction as an integer times 
16 -ni where n is the number of significant hexadecimal 
places to the right of the hexadecimal point. 

O. CA9BF3 16 ~. CA9 BF3 16 x 16-6 

2. Find the decimal equivalent of the hexadecimal integer 

CA9 BF3
16 

= 13 278 195
10 

3. Multiply the decimal equivalent by 16-n 

13 278 195 
x 596 046 448 x 10-16 

0.791 442 09610 

Decimal fractions may be converted to hexadecimal fractions 
by successively multiplying the decimal fraction by 16 10, 
After each multiplication, the integer portion is removea to 
form a hexadecimal fraction by bui Iding to the right of the 
hexadecimal point. However, since decimal arithmetic is 
used in this conversion, the integer portion of each product 
must be converted to hexadecimal numbers. 

Example: Convert 0.89510 to its hexadecimal equivalent 

0.895 

,-------@ .31~ 
----1Q. 

,-----@.120 

~ ~ 
O.E51 EI6 .. ·----@.7~~ 
8 9 A B C 

0008 0009 0010 0011 0012 
0024 0025 0026 0027 0028 
0040 0041 0042 0043 0044 
0056 0057 0058 0059 0060 

0072 0073 0074 0075 0076 
0088 0089 0090 0091 0092 
0104 0105 0106 0107 0108 
0120 0121 0122 0123 0124 

0136 0137 0138 0139 0140 
0152 0153 0154 0155 0156 
0168 0169 0170 0171 0172 
0184 0185 0186 0187 0188 

0200 0201 0202 0203 0204 
02·16 0217 0218 0219 0220 
0232 0233 0234 0235 0236 
0248 0249 0250 0251 0252 

D E F 

0013 0014 0015 
0029 0030 0031 
0045 0046 0047 
0061 0062 0063 

0077 0078 0079 
0093 0094 0095 
0109 0110 0111 
0125 0126 0127 

0141 0142 0143 
0157 0158 0159 
0173 0174 0175 
0189 0190 0191 

0205 0206 0207 
0221 0222 0223 
0237 0238 0239 
0253 0254 0255 

A-3 



Table A-4. HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C D E r 

1l)0 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
I~O 0288 0789 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
1 BO 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

ICO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
100 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
lFO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
260 0608 0609 06 ~O 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
2BO 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
200 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

30e 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
300 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
JFO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

A-4 



Table A-4. HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 
I 

I 
0 1 2 3 4 5 6 7 8 9 A B ( D E F 

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 lOSS 
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
460 1120 1121 1122 1123 1124 1125 1126 1:127 1128 1129 1130 1131 1132 1133 1134 1135 
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
4BO 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4(0 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 131 I 
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 ;388 1389 1390 1391 
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

580 1408 1409 1410 141 I 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
5BO 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 

5(0 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
660 1632 1633 1634 1635 1636 1637 1638 1639 164.Q, 1641 1642 1643 1644 1645 1646 1647 
670 1648 1649 16-S0 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1616 1677 1678 1679 
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6BO 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

6(0 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 17"55 1756 1757 1758 1759 
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

A-5 



Table A-4. HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1 Y64 1965 1966 1967 
7BO 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7DO 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 20;4 2075 2076 2077 2078 2079 
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089- 2090 2091 2092 2093 2094 2095 
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
9BO 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 251 \ 
9DO 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 .2527 
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

A-6 



Table A-4. HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C 0 E r 

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
AIO 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
Bl0 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 295<l 2955 2956 2957 2958 2959 
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C30 3120 3121 3122 3123 3:24 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
C50 3152 3153 3154 3155 3156 3157 3158 3i59 3160 3161 3162 3163 3164 3165 3166 3167 
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

A-7 



Tobie A-4. HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cant.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
Dl0 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
D20 3360 3361 3362 3363 3364 3365 3366 "3367 3368 3369 3370 3371 3372 3373 3374 3375 
D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 

D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 

D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
DAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
DBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 

DCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
DDO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
E 10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E60 3680 3681 36,82 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

Faa 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

FCO 4032 403:-1 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

A-a 



Table A-4. HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

Hexadec imal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00 000000 .00000 00000 .40 000000 .25000 00000 .80 000000 .50000 00000 .CO 000000 .7 5000 00000 

.01 000000 .00390 62500 .41 000000 .2539062500 .81 000000 .50390 62500 .C I 000000 .75390 62500 

.02 000000 .00781 25000 .42 000000 .25781 25000 .82 000000 .50781 25000 .C2 000000 .7578 I 25000 

.03 000000 .0117187500 .43 000000 .26171 87500 .83 000000 .5117187500 .C3 000000 .76171 87500 

.04 000000 .0156250000 .44 000000 .26562 50000 .84 000000 .5156250000 .C4 000000 .76562 50000 

.05 000000 .01953 12500 .45 000000 .26953 12500 .85 000000 .51953 12500 .C5 000000 .76953 12500 

.06 000000 .02343 75000 .46 000000 .27343 75000 .86 000000 .52343 75000 .C6 000000 .77343 75000 

.07 000000 .02734 37500 .47 000000 .27734 37500 .87 000000 .52734 37500 .C7 000000 .77734 37500 

.08 000000 .03125 00000 .48 000000 .281 25 00000 .88 000000 .53125 00000 .C8 000000 .781 25 00000 

.09 000000 .03515 62500 .49 000000 .28515 62500 .89 000000 .53515 62500 .C9 000000 .78515 62500 

.OA 000000 .03906 25000 .4A 000000 .28906 25000 .8A 000000 .53906 25000 .CA 00 00 00 .78906 25000 

.OB 000000 .04296 87500 .4B 000000 .29296 87500 .8B 000000 .5429687500 .CB 000000 .79296 87500 

.OC 000000 .04687 50000 .4C 000000 .29687 50000 .8C 000000 .54687 50000 .CC 000000 .79687 50000 

.00 000000 .05078 12500 .40 000000 .30078 12500 .80 000000 .55078 12500 .CD 00 00 00 .80078 12500 

.OE 000000 .05468 75000 .4E 000000 .30468 75000 .8E 000000 .55468 75000 .CE 000000 .80468 75000 

.OF 000000 .05859 37500 .4F 00 00 00 .30859 37500 .8F 000000 .55859 37500 .CF 000000 .80859 37500 

.10 000000 .06250 00000 .50 000000 .31250 00000 .90 000000 .56250 00000 .00 000000 .81250 00000 

.11 000000 .06640 62500 .51 000000 .31640 62500 .91 000000 .5664062500 .01 000000 .81640 62500 

.12 000000 .07031 25000 .52 000000 .32031 25000 .92 000000 .57031 25000 .02 000000 .82031 25000 

.13 000000 .07421 87500 .53 000000 .32421 87500 .93 000000 .57421 87500 .03 000000 .82421 87500 

.14 000000 .07812 50000 .54 000000 .32812 50000 .94 000000 .5781 2 50000 .04 000000 .82812 50000 

.15 000000 .08203 12500 .55 000000 .33203 12500 .95 000000 .58203 12500 .05 000000 .83203 12500 

.16 000000 .08593 75000 .56 000000 .33593 75000 .96 000000 .58593 75000 .06 000000 .83593 75000 

.17 000000 .08984 37500 .57 000000 .33984 37500 .97 000000 .58984 37500 .07 000000 .83984 37500 

.18 000000 .09375 00000 .58 000000 .34375 00000 .98 000000 .59375 00000 .08 000000 .84375 00000 

.19 000000 .09765 62500 .59 000000 .34765 62500 .99 000000 .59765 62500 .09 000000 .84765 62500 

.IA 000000 .10156 25000 .SA 000000 .35156 25000 .9A 000000 .60156 25000 .DA 000000 .85156 25000 

.1 B 000000 · 10546 87500 .5B 000000 .35546 87500 .9B 000000 .60546 87500 .OB 000000 .85546 87500 

.IC 000000 .10937 50000 .5C 000000 .35937 50000 .9C 000000 .60937 50000 .DC 000000 .85937 50000 

.10 000000 .1 1328 12500 .50 000000 .36328 12500 .9D 000000 .61328 12500 .00000000 .86328 12500 

.1 E 000000 .11718 75000 .5E 0000 00 .36718 75000 .9E 000000 .6171875000 .OE 000000 .86718 75000 

.1 F 000000 .1210937500 .5F 000000 .37109 37500 .9F 000000 .6210937500 .DF 000000 .87109 37500 

.20 000000 .12500 00000 .60 000000 .37500 00000 .AD 000000 .62500 00000 .EO 000000 .87500 00000 

.21 000000 .12890 62500 .61 000000 .37890 62500 .A 1 000000 .62890 62500 .E 1 000000 .87890 62500 

.22 000000 .13281 25000 .62 000000 .38281 25000 .A2 000000 .63281 25000 .E2 000000 .88281 25000 

.23 000000 .13671 87500 .63 000000 .38671 87500 .A3 00 0000 .63671 87500 .E3 000000 .88671 87500 

.24 000000 .14062 50000 .64 000000 .39062 50000 .A4 00 0000 .64062 50000 .E4 000000 .89062 50'000 

.25 000000 .14453 12500 .65 000000 .39453 12500 .AS 0000 00 .64453 12500 .E5 000000 .89453 12500 

.26 000000 .14843 75000 .66 000000 .39843 75000 .A6 00 0000 .64843 75000 .E6 000000 .89843 75000 

.27 000000 .1523437500 .67 000000 .40234 37500 .A7 000000 .65234 37500 .E7 000000 .90234 37500 

.28 000000 .15625 00000 .68 000000 .40625 00000 .AU 000000 .65625 00000 .E8 000000 .906 25 00000 

.29 000000 .16015 62500 .69 000000 .4101562500 .A9 000000 .66015 62500 .E9 000000 .9101562500 

.2A 000000 · 16406 25000 .6A 000000 .41406 25000 .AA 00 00 00 .66406 25000 .EA 000000 .9140625000 

.2B 00 00 00 · 167Y6 87500 .6B 000000 .41796 87500 .AB 000000 .66796 87500 .EB 000000 .91796 87500 

.2C 000000 .17187 50000 .6C 000000 .42187 50000 .AC 000000 .67187 50000 .EC 000000 .92187 50000 

.20 000000 .17578 12500 .60 000000 .42578 12500 .AD 00 00 00 .67578 12500 .ED 000000 .92578 12500 

.2E 000000 .17968 75000 .6E 000000 .42968 75000 .AE 000000 .67968 75000 .EE 000000 .92968 75000 

.2F 0000 00 .18359 37500 .6F 000000 .43359 37500 .AF 000000 .68359 37500 .EF 000000 .93359 37500 

.30 000000 .18750 00000 .70 000000 .43750 00000 .BO 000000 .6875000000 .FO 000000 .93750 00000 

.31 000000 . 1914062500 .71 000000 .44140 62500 
.. 

.Bl 000000 .6914062500 .F I 000000 .94140 62500 
.32 000000 · 1953 I 25000 .72 000000 .44531 25000 .B2 000000 .69531 25000 .F2 000000 .94531 25000 
.33 000000 .19921 87500 .73 000000 .44921 87500 .B3 000000 .69921 87500 .F3 00 00 00 .94921 87500 
.34 000000 .2031 2 50000 .74 000000 .45312 50000 .B4 000000 .7031 2 50000 .F4 000000 .95312 50000 
.35 000000 .20703 12500 .75 000000 .45703 12500 .B5 000000 .70703 1 2500 .F5 000000 .95703 12500 
.36 000000 .21093 75000 .76 000000 .46093 75000 .B6 000000 .71093 75000 .F6 000000 .96093 75000 
.37 000000 .21484 37500 .77 000000 .46484 37500 .B7 000000 .7148437500 .F7 000000 .96484 37500 
.38 000000 .21875 00000 .78 000000 .46875 00000 .B8 00 0000 .71875 00000 .F8 000000 .96875 00000 
.3'1 0000 00 .22265 62500 .79 000000 .47265 62500 .B9 0000 00 .72265 62500 .F9 000000 .97265 62500 
.3A 00 00 00 .22656 25000 .7A 00 00 00 .47656 25000 .BA 000000 .72656 25000 .FA 000000 .97656 25000 
.3B 00 00 00 .23046 87500 .7B 000000 .48046 87500 .BB 000000 .73046 87500 .FB 000000 .98046 87500 
.3C 00 00 00 .23437 50000 .7C 000000 .48437 50000 .BC 000000 .73437 50000 .FC 000000 .98437 50000 
.30 GO 00 00 .23828 12500 .70 000000 .48828 12500 .BO 00 00 00 .73828 12500 .FO 000000 .98828 1 2500 
.3E 0000 00 .2421875000 .7E 000000 .49218 75000 .BE 000000 .74218 75000 .FE 000000 .9921875000 
3F 00 00 00 2460937500 .7F 00 00 00 .49609 37500 .BF 000000 .74609 37500 .FF 000000 .99609 37500 

A-9 



Table A-4. HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadec imal Decimal Hexadecimal Decimal 

.0000 0000 .00000 00000 .0040 00 00 .0009765625 .0080 0000 .00195 31250 .00 CO 0000 .00292 96875 

.0001 0000 .00001 52587 .0041 00 01) .00099 18212 .0081 0000 .00196 83837 .00 ClO~ 00 .00294 49462 

.0002 0000 .00003 05175 .0042 0000 .0010070800 .0082 0000 .00198 36425 .00 C2 0000 .00296 02050 

.00 03 0000 .00004.57763 .0043 00 00 .00102 23388 .0083 0000 .0019989013 .00 C3 0000 .00297 54638 

.00 04 0000 .00006 10351 .0044 0000 .0010375976 .0084 0000 .00201 41601 .00 C4 0000 .00299 07226 

.0005 0000 .00007 62939 .0045 0000 .00105 28564 .0085 0000 .00202 94189 .00 C5 0000 .00300 59814 

.00 06 0000 .00009 15527 .0046 0000 .00106 81152 .0086 0000 .00204 46777 .00 C6 0000 .00302 12402 

.0007 0000 .00C10 68115 .0047 0000 .00108 33740 .0087 0000 .00205 99365 .00 C7 0000 .00303 64 ?90 

.00 08 0000 .00012 20703 .0048 0000 .0010986328 .0088 0000 .00207 51953 .00 C8 0000 .00305 17578 

.0009 0000 .0001373291 .0049 0000 .00111 38916 .0089 0000 .0020904541 .00 C9 0000 .00306 70166 

.OOOA 0000 .00015 25878 .004A 00 00 .00112 91503 .008A 0000 .0021057128 .00 CA 00 00 .00308 22753 

.00 DB 0000 .00016 78466 .004B 0000 .00114 44091 .008B 00 00 .0021209716 .00 CB 0000 .00309 75341 

.00 DC 0000 .0001831054 .004C 0000 .00115 96679 .008C 0000 .00213 62304 .00 CC 0000 .00311 27929 

.0000 00 00 .0001983642 .0040 0000 .0011749267 .0080 0000 .00215 14892 .00 CD 00 00 .00312 8051 7 

.00 DE 0000 .00021 36230 .004E 0000 .0011901855 .008E 0000 .0021667480 .00 CE 0000 .00314 33105 

.00 OF 0000 .00022 88818 .004F 0000 .00120 54443 .008F 0000 .00218 20068 .00 CF 0000 .00315 85693 

.00 10 0000 .00024 41406 .0050 0000 .0012207031 .0090 0000 .0021972656 .00 DO 0000 .00317 38281 

.00 11 0000 .00025 93994 .0051 0000 .001 23 5961 9 .0091 0000 .00221 25244 .00 01 0000 .00318 90869 

.00 12 0000 .00027 46582 .0052 0000 .00125 12207 .0092 0000 .00222 77832 .00 02 0000 .00320 43457 

.00 13 0000 .00028 99169 .0053 0000 .00126 64794 .00 93 0000 .00224 30419 .00 03 0000 .00321 96044 

.00 14 0000 .00030 51757 .0054 0000 .00128 17382 .00 94 0000 .00225 83007 .00 04 0000 .00323 48632 

.00 15 0000 .00032 04345 .0055 0000 .0012969970 .00 95 0000 .00227 35595 .00 05 0000 .0032501220 

.00 16 0000 .00033 56933 .0056 0000 .00131 22558 .0096 0000 .00228 88183 .00 06 0000 .00326 53808 

.00 17 0000 .0003509521 .0057 0000 .00 1 32 75 146 .0097 0000 .00230 40771 .00 07 0000 .00328 06396 

.00 18 0000 .00036.62109 .0058 0000 .00134 27734 .00 98 0000 .00231 93359 .00 08 0000 .00329 58984 

.00190000 .00038 14697 .0059 0000 .00135 80322 .00 99 0000 .00233 45947 .00 09 0000 .00331 11572 

.00 lA 0000 .0003967785 .00 SA 0000 .00137 32910 .00 9A 00 00 .00234 98535 .00 DA 00 00 .00332 64160 

.00 I B 0000 .00041 19873 .005B 0000 .00138 85498 .009B 0000 .00236 51123 .00 DB 0000 .00334 16748 

.00 lC 0000 .00042 72460 .005C 0000 .00 1 40 38085 .00 9C 0000 .0023803710 .00 DC 0000 .00335 69335 

.00 1 D 0000 .00044 25048 .00 5D 0000 .001 4 1 90673 .00 9D 0000 .00239 56298 .00 DD 0000 .00337 21923 

.00 1 E 0000 .00045 77636 .005E 0000 .0014343261 .009E 0000 .00241 08886 .00 DE 0000 .00338 74511 

.00 1 F 00 00 .00047 30224 .005F 00 00 .00144 95849 .009F 0000 .0024261474 .00 OF 0000 .00340 27099 

.00 20 0000 .00048 82812 .0060 0000 .00146 48437 .00 AD 0000 .00244 14062 .00 EO 0000 .00341 79687 

.00 21 0000 .00050 35400 .0061 0000 .00148 01025 .00 Al 00 00 .00245 66650 .00 El 0000 .00343 32275 

.0022 0000 .00051 87988 .0062 0000 .0014953613 .00 A2 00 00 .00247 19238 .00 E2 0000 .00344 84863 

.00 23 00 00 .00053 40576 .0063 0000 .00 1 5 1 06201 .00 A3 0000 .0024871826 .00 E3 00 00 .00346 37451 

.00 24 00 00 .00054 93164 .0064 0000 .00152 58789 .00 A4 0000 .00250 24414 .00 E4 0000 .00347 90039 

.00 25 0000 .00056 45751 .0065 0000 .00154 11376 .00 A5 0000 .00251 77001 .00 E5 0000 .00349 42626 

.00 26 0000 .00057 98339 .0066 0000 .00155 63964 .00 A6 0000 .00253 29589 .00 E6 0000 .00350 95214 

.00 27 0000 .0005950927 .0067 00 00 .00157 16552 .00 A7 0000 .00254 82177 .00 E7 0000 .00352 47802 

.00 28 00 00 .00061 03515 .0068 0000 .0015869140 .00 A8 00 00 .00256 34765 .00 E8 0000 .00354 00390 

.00 29 00 00 .00062 56103 .0069 0000 .00160 21728 .00 A9 0000 .00257 87353 .00 E9 0000 .00355 52978 

.002A 0000 .00064 08691 .006A 0000 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 0000 .00357 05566 

.00 2B 0000 .00065 61279 .006B 0000 .00163 26904 .00 AB 0000 .00260 92529 .00 EB 0000 .00358 58154 

.00 2C 0000 .00067 13867 .006C 0000 .00164 79492 .00 AC 0000 .00262 45117 .00 EC 0000 .00360 10742 

.00 2D 0000 .00068 66455 .0060 0000 .00166 32080 .00 AD 00 00 .00263 97705 .00 ED 0000 .00361 63330 

.00 2E 0000 .00070 19042 .006E 0000 .00167 84667 .00 AE 00 00 .00265 50292 .00 EE 0000 .00363 15917 

.002F 0000 .00071 71630 .006F 00 00 .0016937255 .00 AF 00 00 .00267 02880 .00 EF 0000 .00364 68505 

.0030 0000 .00073 24218 .0070 0000 .00170 89843 .00 BO 0000 .00268 55468 .00 FO 0000 .00366 21093 

.0031 00 00 .00074 76806 .0071 0000 .00172 42431 .00 Bl 0000 .00270 08056 .00 Fl 0000 .00367 73681 

.0032 0000 .00076 29394 .0072 0000 .0017395019 .00 B2 0000 .00271 60644 .00 F2 0000 .00369 26269 

.00 33 0000 .00077 81982 .0073 0000 .00175 47607 .00 B3 0000 .00273 13232 .00 F3 0000 .00370 78857 

.0034 0000 .00079 34570 .0074 0000 .00177 00195 .00 B4 0000 .00274 65820 .00 F4 00 00 .00372 31445 

.0035 0000 .00080 871,)8 .0075 0000 .0017852783 .00 B5 0000 .00276 18408 .00 F5 0000 .00373 84033 

.0036 00 00 .00082 39746 .0076 0000 .0018005371 .00 B6 0000 .00277 70996 .00 F6 0000 .00375 36621 

.0037 0000 .00083 92333 .0077 0000 .00181 57958 .00 B7 0000 .00279 23583 .00 F7 0000 .00376 89208 

.0038 0000 .00085 44921 .0078 00 00 .00183 10546 .00 B8 0000 .0028076171 .00 F8 0000 .00378 41796 

.0039 00 00 .00086 97509 .0079 0000 .0018463134 .00 B9 0000 .00282 28759 .00 F9 0000 .00379 94384 

.003A 0000 .00088 50097 .007A 0000 .00186 15722 .00 BA 0000 .00283 81347 .00 FA 0000 .00381 46972 

.003B 0000 .0009002685 .007B 0000 .0018768310 .00 BB 0000 .00285 33935 .00 FB 0000 .00382 99560 

.003C 0000 .00091 55273 .007C 0000 .0018920898 .00 BC 0000 .00286 86523 .00 FC 0000 .0038452148 

.00 3D 0000 .00093 07861 .0070 0000 .00190 73486 .00 BD 0000 .00288 39111 .00 FD 00 00 .00386 04736 

.003E 0000 .00094 60449 .007E 0000 .00192 26074 .00 BE 0000 .00289 91699 .00 FE 0000 .00387 57324 

.003F 0000 .00096 13037 .007F 0000 .00193 78662 .00 BF 0000 .00291 44287 .00 FF 0000 .00389 09912 

A-lO 



Table A-5. HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00 00 00 00 · 00000 00000 .00 00 40 00 · 00000 38146 .00 00 80 00 .00000 76293 .00 00 CO 00 · 0000 I 14440 

.00 00 01 00 .00000 00596 .00 00 41 00 .00000 38743 .00 00 81 00 .00000 76889 .00 00 CI 00 .00001 15036 

.00 00 02 00 .00000 01192 .00 00 42 00 .00000 39339 .00 00 82 00 · 00000 77 486 .00 00 C2 00 .00001 15633 

.00 00 03 00 · 00000 01788 .00 00 43 00 .00000 39935 .00 00 83 00 .00000 78082 .00 00 C3 00 .00001 16229 

.00 00 04 00 .00000 02384 .00 00 44 00 .00000 40531 .00 00 84 00 .00000 78678 .00 00 C4 00 .0000 1 16825 

.00 00 05 00 .00000 02980 .00 00 45 00 .00000 41127 .00 00 85 00 .00000 79274 .00 00 C5 00 .00001 17421 

.00 00 06 00 .00000 03576 .00 00 46 00 .00000 41723 .00 00 86 00 .00000 79870 .00 00 C6 00 .00001 18017 

.00 00 07 00 · 00000 04 172 .00 00 47 00 .00000 42319 .00 00 87 00 · 00000 80466 .00 00 C7 00 .00001 18613 

.00 00 08 00 .00000 04768 .00 00 48 00 .00000 4291.'.> .00 00 88 00 .00000 81062 .00 00 C8 00 .00001 19209 

.00 00 09 00 .00000 05364 .00 00 49 00 · 00000 435 1 I .00 00 89 00 .00000 81658 .00 00 C9 00 .00001 19805 

.00 00 OA 00 · 00000 05960 .00 00 4A 00 .00000 44107 .00 00 8A 00 .00000 82254 .00 00 CA 00 .00001 20401 

.00 00 OB 00 .00000 06556 .00 00 48 00 .00000 44703 .0000 8B 00 .00000 82850 .00 00 C8 00 .00001 20997 

.00 00 OC 00 .00000 07152 .00 00 4C 00 .00000 45299 .00 00 8C 00 .00000 83446 .00 00 CC 00 .00001 21593 

.00 00 00 00 .00000 07748 .00 00 40 00 .00000 45895 .00 00 80 00 · 00000 84042 .00 00 CD 00 .00001 22189 

.00 00 OE 00 .00000 08344 .00 00 4E 00 · 00000 46491 .00 00 8E 00 .00000 84638 .00 00 CE 00 .00001 22785 

.00 00 OF 00 .00000 08940 .00 00 4F 00 .00000 47087 .00 00 8F 00 .00000 85234 .00 00 CF 00 .00001 23381 

.00 00 10 00 .00000 09536 .00 00 50 00 .00000 47683 .00 00 90 00 .00000 85830 .00 00 DO 00 .00001 23977 

.00 00 II 00 .00000 10132 .00 00 51 00 .00000 48279 .00 00 91 00 .00000 86426 .00 00 01 00 .00001 24573 

.00 00 12 00 .00000 10728 .00 00 52 00 .00000 48875 .00 00 92 00 .00000 87022 .00 00 02 00 · 0000 I 25 169 

.00 00 13 00 .00000 11324 .00 00 53 00 .00000 49471 .00 00 93 00 .00000 87618 .00 00 03 00 .00001 25765 

.00 00 14 00 .00000 11920 .00 00 54 00 · 00000 5006 7 .00 00 94 00 .00000 88214 .00 00 04 00 .00001 26361 

.00 00 15 00 .00000 12516 .00 00 55 00 .00000 50663 .00 00 95 00 · 00000 8881 a .00 00 D5 00 .0000 I 26957 

.00 00 16 00 .00000 13113 .00 00 56 00 .00000 51259 .00 00 96 00 .00000 89406 .00 00 D6 00 .00001 27553 

.00 00 17 00 .00000 13709 .00 00 57 00 .0000051856 .00 00 97 00 ;00000 90003 .00 00 D7 00 · 0000 I 28 149 

.00 00 18 00 .00000 14305 .00 00 58 00 .00000 52452 .00 00 98 00 .00000 90599 .00 00 08 00 .00001 28746 

.00 00 19 00 .00000 14901 .00 00 59 00 .00000 53048 .00 00 99 00 .00000 91195 .00 00 D9 00 .0000 1 29342 

.00 00 lA 00 .00000 15497 .00 00 5A 00 .00000 53644 .00 00 9A 00 .00000 91791 .00 00 DA 00 .0000 I 29938 

.00 00 18 00 .00000 16093 .00 00 58 00 .00000 54240 .00 00 9B 00 .00000 92387 .00 00 DB 00 .00001 30534 

.00 00 lC 00 .00000 16689 .00 00 5C 00 · 00000 54836 .00 00 9C 00 .00000 92983 .00 00 DC 00 .00001 31130 

.00 00 10 00 .00000 17285 .00 OO:jD 00 .00000 55432 .00 00 90 00 .00000 93579 .00 00 DD 00 .0000 I 31726 

.00 00 IE 00 .00000 17881 .00 00 5E 00 .00000 56028 .00 00 9E 00 .00000 94175 .00 00 DE 00 .00001 32322 

.00 00 1 F 00 .00000 18477 .00 00 5F 00 .00000 56624 .00 00 9F 00 .00000 94771 .00 00 DF 00 .00001 32918 

.00 00 20 00 .00000 19073 .00 00 60 00 .00000 57220 .00 00 AO 00 .00000 95367 .00 00 EO 00 .0000 1 33514 

.00 00 21 00 · 00000 1 9669 .00 00 61 00 .00000 57816 .00 00 Al 00 .00000 95963 .00 00 E I 00 .00001 34110 

.00 00 22 00 .00000 20265 .00 00 62 00 .00000 58412 .00 00 A2 00 .00000 96559 .00 00 E2 00 .0000 I 34706 

.00 00 23 00 .00000 2086 1 .000063 00 .00000 59008 .00 00 A3 00 .00000 97155 .00 00 E3 00 .00001 35302 

.00 00 24 00 .00000 21457 .00 00 64 00 · 00000 59604 .00 00 A4 00 00000 97751 .00 00 E4 00 .0000 I 35898 

.00 00 25 00 .00000 22053 .000065 00 .00000 60200 .00 00 A5 00 .00000 98347 .00 00 E5 00 .00001 36494 

.00 00 26 00 .00000 22649 .00 00 66 00 .00000 60796 .00 00 A6 00 .00000 98943 .00 00 E6 00 .00001 37090 

.00 00 27 00 .00000 23245 .00 00 67 00 .00000 61392 .00 00 A7 00 .00000 99539 .00 00 E7 00 .0000 I 37686 

.00 00 28 00 .00000 23841 .00 00 68 00 · 00000 61 988 .00 00 A8 00 .00001 00135 .00 00 E8 00 .00001 38282 

.00 00 29 00 .00000 24437 .00 00 69 00 .00000 62584 .00 00 A9 00 .00001 00731 .00 00 E9 00 .0000 1 38878 

.00 00 2A 00 .00000 25033 .00 00 6A 00 .00000 63180 .00 00 AA 00 .00001 0 i 327 .00 00 EA 00 .00001 39474 

.00 00 28 00 .00000 25629 .00 00 6B 00 .00000 63776 .00 00 AB 00 .00001 01923 .00 00 E8 00 .00001 40070 

.00 00 2C 00 .00000 26226 .00 00 6C 00 .00000 64373 .00 00 AC 00 .00001 02519 .0000 EC 00 .00001 40666 

.00 00 20 00 .00000 26822 .00 00 60 00 .00000 64969 .00 00 AD 00 .00001 03116 .0000 ED 00 .00001 41263 

.00 00 2E 00 .00000 27418 .00 00 6E 00 .00000 65565 .00 00 AE 00 .0000 I 03712 .00 00 EE 00 · 0000 1 41 859 

.00 00 2F 00 .00000 280 14 .00 00 6F 00 .00000 66161 .00 00 AF 00 .00001 04308 .00 00 EF 00 .0000 1 42455 

.0000 30 00 · 00000 286 I a .00 00 70 00 .00000 66757 .00 00 BO 00 · 0000 1 04904 .00 00 Fa 00 .00001 43051 

.00 00 31 00 · 00000 29206 .00 00 71 00 .00000 67353 .00 00 81 00 .00001 05500 .00 00 Fl 00 .0000 I 4364 7 

.00 00 32 00 .00000 29802 .00 00 72 00 .00000 67949 .00 00 B2 00 .00001 06096 .00 00 F2 00 .00001 44243 

.00 00 33 00 .00000 30398 .00 00 73 00 .00000 68545 .00 00 83 00 · 0000 1 06692 .00 00 F3 00 .00001 44839 

.00 00 34 00 .00000 30994 .00 00 74 00 .00000 69141 .00 00 B4 00 .00001 07288 .00 00 F4 00 .00001 45435 

.00 00 35 00 .00000 31590 .00 00 75 00 .00000 69737 .00 00 B5 00 .00001 07884 .00 00 F5 00 .00001 46031 

.00 00 36 00 .00000 32186 .00 00 76 00 .00000 70333 .00 00 B6 00 .00001 08480 .0000 F6 00 .00001 46627 

.0000 37 00 .00000 32782 .00 00 77 00 .00000 70929 .00 00 B7 00 .00001 09076 .00 00 F7 00 .0000 1 47223 

.00 00 38 00 .00000 33378 .00 00 78 00 .00000 71525 .00 00 B8 00 .00001 09672 .0000 F8 00 .00001 47819 

.00 00 39 00 .00000 33974 .00 00 79 00 .00000 72121 .00 00 B9 00 .00001 10268 .00 00 F9 00 .00001 48415 

.00 00 3A 00 .00000 34570 .00 00 7A 00 · 00000 7271 7 .00 00 BA 00 · 0000 1 10864 .00 00 FA 00 .00001 49011 

.00 00 3S 00 · 00000 35 166 .00 00 7B 00 .00000 73313 .00 00 SS 00 .00001 11460 .00 00 FB 00 .00001 49607 

.00 00 3C 00 .00000 35762 .00 00 7C 00 .00000 73909 .00 00 Be 00 .00001 12056 .00 00 FC 00 .00001 50203 

.00 00 3D 00 · 00000 36358 .00 00 70 00 · 00000 74505 .00 00 SD 00 .00001 12652 .00 00 FD 00 .0000 I 50799 

.00 00 3E 00 .00000 36954 .00 00 7E 00 .00000 7510 1 .00 00 SE 00 .0000 1 13248 .00 00 FE 00 .0000151395 

.00 00 3F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BF 00 · 0000 1 13844 .00 00 FF 00 · 0000 1 5 1 991 

A-ll 



Table A-5. HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00 00 00 00 · 00000 00000 .00 00 00 40 .00000 00149 .00 00 00 80 .00000 00298 .00 00 00 CO .00000 00447 

.00 00 00 01 · 00000 0000 2 .00 00 00 41 .00000 00151 .00 00 00 81 .00000 00300 .00 00 00 Cl .00000 00449 

.00 00 00 02 · 00000 00004 .00 00 00 42 .00000 00 153 .00 00 00 82 .00000 00302 .00 00 00 C2 .00000 0045 1 

.00 00 00 03 · 00000 00006 .00 00 00 43 .00000 00155 .00 00 00 83 .00000 00305 .00 00 00 C3 .00000 00454 

.00 00 00 04 .00000 00009 .00 00 00 44 .00000 00158 .00 00 00 84 .00000 00307 .00 00 00 C4 · 00000 00456 

.00 00 00 as · 00000 000 I I .00 00 00 45 · 00000 00 160 .00 00 00 85 · 00000 00309 .00 00 00 C5 · 00000 0045 B 

.00 00 00 06 .00000 000 13 .00 00 00 46 · 00000 00 162 .00 00 00 86 .00000 00311 .00 00 00 C6 .00000 00461 

.00 00 00 07 · 00000 000 I 6 .00 00 00 47 .00000 00165 .00 00 00 87 · 00000 0031 4 .00 00 00 C7 .00000 00463 

.00 00 00 08 · 00000 000 I 8 .00 00 00 48 .00000 00 167 .00 00 00 88 .00000 00316 .00 00 00 C8 · 00000 00465 
" . 

.00 00 00 09 .00000 00020 .00 00 00 49 .00000 00169 .00 00 00 89 · 00000 0031 8 .00 00 00 C9 · 00000 0046 7 

.00 00 00 OA .00000 00023 .00 00 00 4A · 00000 001 72 .00 00 00 BA .00000 00321 .00 00 00 CA .00000 00470 
.00 00 00 as .00000 00025 .00 00 00 4S · 00000 00 I 74 .00 00 00 BS .00000 00323 .00 00 00 CB .00000 00472 
.00 00 00 OC .00000 00027 .00 00 00 4C .00000 00176 .00 00 00 8C .00000 00325 .00 00 00 CC · 00000 00474 
.00 00 00 aD · 00000 00030 .00 00 00 4D .00000 00 179 .00 00 00 8D · 00000 00328 .00 00 00 CD · 00000 00477 
.00 00 00 OE .00000 00032 .00 00 00 4E .00000 00 181 .00 00 00 8E .00000 00330 .00 00 00 CE .00000 00479 
.00 00 00 OF · 00000 00034 .00 00 00 4F .00000 00183 .00 00 00 8F .00000 00332 .00 00 00 CF .00000 0048 1 

.00 00 00 10 .00000 00037 .00 00 00 50 · 00000 00 186 .00 00 00 90 .00000 00335 .00 00 00 DO · 00000 00484 

.00 00 00 11 .00000 00039 .00 00 00 51 .00000 00 188 .00 00 00 91 .00000 00337 .00 00 00 Dl · 00000 00486 

.00 00 00 12 · 00000 0004 I .00 00 00 52 .00000 00 1 90 .00 00 00 92 .00000 00339 .00 00 00 D2 .00000 00488 

.00 00 00 13 · 00000 00044 .00 00 00 53 · 00000 00 I 93 .00 00 00 93 .00000 00342 .00 00 00 D3 · 00000 00491 

.0000 00 14 .00000 00046 .00 00 00 54 .00000 00 195 .00 00 00 94 .00000 00344 .00 00 00 D4 .00000 00493 

.00 00 00 15 · 00000 00048 .00 00 00 55 · 00000 00 I 97 .00 00 00 95 · 00000 00346 .00 00 00 D5 · 00000 00495 

.00 00 00 16 · 00000 0005 1 .00 00 00 56 .00000 00200 .00 00 00 96 .00000 00349 .00 00 00 D6 .00000 00498 

.00 00 00 17 .00000 00053 .00 00 00 57 .00000 00202 .00 00 00 97 .00000 00351 .00 00 00 D7 .00000 00500 

.00 00 00 18 .00000 00055 .00 00 00 58 · 00000 00 204 .00 00 00 98 · 00000 00353 .00 0000 D8 · 00000 0050 2 

.00 00 00 19 .00000 00058 .00 00 00 59 .00000 00207 .00 00 00 99 .00000 00356 .00 00 00 D9 .00000 00505 

.00 00 00 IA .00000 00060 .00 00 00 5A .00000 00209 .00 00 00 9A .00000 00358 .00 00 00 DA .00000 00507 

.00 00 00 I B .00000 0006 2 .00 00 00 5S .00000 00211 .00 00 00 9B · 00000 00360 .00 00 00 DB · 00000 00509 

.00 00 00 IC .00000 00065 .00 00 00 5C .00000 00214 .00 00 00 9C .00000 00363 .00 00 00 DC · 00000 005 1 2 

.00 00 00 I D .00000 00067 .00 00 00 5D .00000 00216 .00 00 00 9D .00000 00365 .00 00 00 DD .00000 00514 

.00 00 00 IE · 00000 00069 .00 00 00 5E .00000 00218 .00 00 00 9E .00000 00367 .00 00 00 DE .00000 00516 

.00 00 00 IF .00000 00072 .0000 00 SF .00000 00221 .00 00 00 9F .00000 00370 .00 00 00 DF .00000 005 1 9 

.00 00 00 20 .00000 00074 .00 00 00 60 .00000 00223 .0000 00 AD .00000 00372 .0000 00 EO .00000 00521 

.00 00 00 21 .00000 00076 .00 00 0061 .00000 00225 .00 00 00 Al .00000 00374 .000000 E 1 .00000 00523 

.00 00 00 22 .00000 00079 .00 00 00 62 .00000 00228 .00 00 00 A2 .00000 00377 .00 00 00 E2 .00000 00526 

.00 00 00 23 .00000 00081 .00 00 00 63 .00000 00230 .00 00 00 A3 .00000 00379 .00 00 00 E3 · 00000 00528 

.00 00 00 24 .00000 00083 .00 00 00 64 .00000 00232 .00 00 00 A4 .00000 00381 .00 00 00 E4 .00000 00530 

.00 00 00 25 .00000 00086 .00 00 00 65 .00000 U0235 .00 00 00 A5 .00000 00384 .00 00 00 E5 .00000 00533 

.000000 26 · 00000 00088 .000000 66 .00000 00237 .00 00 00 A6 · 00000 00386 .0000 00 E6 .00000 00535 

.00 00 00 27 .00000 00090 .0000 00 67 .00000 00239 .00 00 00 A7 .00000 00388 .0000 00 E7 .00000 00537 

.00 00 00 28 · 00000 00093 .0000 00 68 .00000 00242 .00 00 00 A8 .00000 00391 .00 00 00 E8 .00000 00540 

.00 00 00 29 .00000 00095 .00 00 00 69 .00000 00244 .00 00 00 A9 .00000 00393 .00 00 00 E9 .00000 00542 

.00 00 00 2A .00000 00097 .00 00 00 6A .00000 00246 .00 00 00 AA .00000 00395 .000000 EA .00000 00544 

.00 00 00 2B .00000 001 00 .00 00 00 6B .00000 00249 .00 00 00 AB .00000 00398 .0000 00 EB .00000 00547 

.0000 00 2C .00000 00 1 02 .0000 00 6C .00000 00251 .00 00 00 AC · 00000 00400 .00 00 00 EC .00000 00549 

.0000 00 2D .00000 00 I 04 .0000 00 6D .00000 00253 .0000 00 AD .00000 00402 .00 00 00 ED .00000 0055 I 

.00 00 00 2E .00000 00107 .00 00 00 6E · 00000 00256 .00 00 00 AE .00000 00405 .0000 00 EE .00000 00554 

.00 00 00 2F .00000 00109 .00 00 00 6F .00000 00258 .000000 AF .00000 00407 .00 00 00 EF · 00000 00556 

.0000 00 30 .00000 00111 .0000 00 70 .00000 00260 .00 00 00 BO .00000 00409 .00 00 00 FO .00000 00558 

.00 00 0031 .00000 00114 .0000 0071 .0000000263 .00 00 00 B 1 .00000 00412 .00 00 00 FI · 00000 0056 1 

.00 00 00 32 · 00000 00 I 16 .00 00 00 72 .00000 00265 .000000 B2 .00000 004 1 4 .00 00 00 F2 .00000 00563 

.0000 0033 .00000 00118 .00 00 00 73 .00000 00267 .000000 B3 .00000 00416 .00 00 00 F3 .00000 00565 

.00 00 00 34 .00000 00 121 .000000 74 .00000 00270 .00 0000 B4 .00000 004 I 9 .00 00 00 F4 .00000 00568 

.00 00 00 35 .00000 00 123 .0000 0075 .00000 00272 .00 00 00 85 .00000 00421 .0000 00 F5 .00000 00570 

.00 00 00 36 · 00000 00 1 25 .0000 00 76 .00000 00274 .00 00 00 86 .00000 00423 .00 00 00 F6 .00000 00572 

.00 00 00 37 .00000 00 1 28 .00 00 00 77 .00000 00277 .00 00 00 B7 .00000 00426 .00 00 00 F7 .00000 00575 

.00 00 00 38 .00000 00 I 30 .00 00 00 78 · 00000 00 27 9 .0000 00 88 .00000 00428 .0000 00 Fa .00000 00577 

.00 00 00 39 .00000 00132 .00000079 .00000 00281 .0000 00 89 .00000 00430 .00 00 00 F9 .00000 00579 

.00 00 00 3A .00000 00 I 35 .00 00 00 7A .00000 00284 .0000 00 8A .00000 00433 .00 00 00 FA .00000 00582 

.00 00 00 3B .00000 00137 .00 00 00 7B .00000 00286 .00 00 00 BS · 00000 00435 .00 00 00 FB .00000 00584 

.00 00 00 3C .00000 00 139 .00 00 00 7C .00000 00288 .00 00 00 BC .00000 00437 .00 00 00 FC .00000 00586 

.00 00 00 3D .00000 00 142 .00 00 00 7D .00000 00 291 .00 00 00 BD .00000 00440 .0000 00 FD .00000 00589 

.00 00 00 3E · 00000 00 144 .00 00 00 7E .00000 00293 .00 00 00 BE .00000 0044 2 .00 00 00 FE .00000 00591 

.00 00 00 3F .00000 00 i 46 .00 00 00 7F .00000 00295 .00 00 00 BF · 00000 00444 .00 00 00 FF .00000 00593 

A-12 



Table A-6. MATHEMATICAL CONSTANTS 

Constant Oecimal Value Hexadecimal Value 

rT 3.14159 26535 89793 3.243F 6Af1J 
-1 

0.31830 98861 83790 0.517C C1B7 rr 

.r;; 1.77245 38509 05516 1.C5BF 891C 

In rT 114472 98858 49400 1.2500 048F 

e 2.71828 18284 59045 2.B7E 1 5163 
-1 

0.36787 944' 1 71442 0.5E20 5809 e 

Je 1.64872 12707 00128 l.A612 98E2 

109 We 0.43429 44819 03252 0.6F20 EC55 

109
2
e 1.44269 50408 88963 1.7154 7653 

} 0.57721 56649 01533 0.93C4 67E4 

In} -0.54953 93129 81645 -0.8CAE 9BC1 

12 1.41421 35623 73095 1.6A09 E668 

In2 0.69314 71805 59945 0.8172 17F8 

109 10
2 0.30102 99956 63981 0.4010 4042 

JW 3.16227 76601 68379 3.298B 075C 

In 10 2.30258 50929 94046 2.4076 3777 

Table A-7. ASC II TELETYPE CODES 

Hexadecimal Hexadecimal 
Symbol Code Symbol Code 

@ CO l'S AD 
A Cl Al 
B C2 A2 
C C3 # A3 
D C4 $ A4 
E C5 % A5 
F C6 & A6 
G C7 , A7 
H C8 A8 
I C9 A9 
J CA * AA 
K CB + AB 
L CC AC 
M CD AD 
N CE AE 
0 CF / AF 
P DO 0 BO 
Q Dl 1 Bl 
R D2 2 B2 
S D3 3 B3 
T D4 4 B4 
U D5 5 B5 
V D6 6 B6 
W D7 7 B7 
X DB 8 B8 
Y D9 9 B9 
Z DA BA 
[ DB ; BB , 
\ DC < BC 

DD BD 
DE > BE 
DF ? BF 

NULL 00 CR 8D 
BELL 87 LF 8A 

RUBOUT FF A-13 



2" 

1 
l 
4 
H 

16 
32 
64 

128 

256 
512 
024 

2 048 

4 096 
8 192 

16 384 
'32 768 

6') 536 
131 072 
262 144 
524 2H8 

1 048 576 
2 097 152 
4 194 304 
8 388 608 

16 777 216 
33 554 432 
67 108 864 

134 217 728 

268435456 
536870912 

1 073 741 824 
2 147 483 648 

4 294 967 296 
8 589 934 592 

17 179 869 184 
34 359 738 368 

68 719 476 736 
137 438 953 472 
274 877 906 944 
549 755 813 888 

1 099 511 627 776 
2 199 023 255 552 
4 398 046 511 104 
8 796 093 022 208 

17 592 186 044 416 
35 184 372088 832 
70 368 744 1 77 664 

140 737 488 355 328 

281 474 976 710656 

A-14 

n 

0 

l 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

32 
33 
34 
35 

36 
37 
38 
39 

40 
41 
42 
43 

44 
45 
46 
47 

48 

Table A-B. TABLE OF POWERS OF TWO 

l" 

1.0 
O. 5 
0'. l5 

n. Il5 

0.0625 
0.031 25 
0.01561.,) 
0.0078125 

0.003 906 25 
0.001 953 125 
0.000 976 562 5 
O. 000 4 H p l8 I 2. ') 

o~ 000 244 140 625 
0.000 122 070 31 2 5 
0.000 061 035 156 25 
O. 000 030 517 578 125 

o. 000 015 258 789 062 5 
0.000 007 629 394 531 25 
O. 000 00 3 8 1 4 6 9 7 26 5 6 25 
O. 000 00 I 907 348 63 2 81 2 5 

0.000 000 953 67431640625 
O. 000 000 476 837 158 203 125 
O. 000 '100 l3d 418 579 101 %2 5 
O. 000 000 ) 19 209 289 550 781 25 

0.000 000 059 604 644 775 390 625 
0.000 000 Ol9 802 322387 695 n l 5 
0.000000014 901161193 847656 25 
0.000 000 007 450 580 596 923 828 125 

0.000 000 003 725 290 298 461 914 062 I; 
0.000 000 001 862 645 149 230 957 031 25 
O. 000 000 '000 93) 3l.l. 574 615 478 515 625 
0.000 000 000 465 661 287 307 739 257 812 5 

0.000 000 000 232830 643 65~ 869628 906 25 
O. a a a 000 000 1 1 6 4 1 5 3 21 8 26 934 8 1 4 4 53 1 25 
0.000 000 000 058207 660 913 467 407 226 562 5 
0.000000 000 02910383045673370361328125 

0.000 000 000 014 551 915 228 366 851 806 640 625 
0.000 000 000 007275957614183425903320 312 5 
0.000 000 000 003 637 978 R07 091 712 951 660 156 25 
0.000 000 000 001 818 989 403 545 856 475 830 078 125 

0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
0.0000)0 000 00045474735088646411895751953125 
0.000 000 000 000 227 373 675 443 232 059 478 7"9 765 625 
0.000000 000 0001136868377216160297393798828125 

O. 000 000 000 000 056 843 418 860 808 014 869 689 941 406 2" 
o. a a 0 a 0 a 0 a 0 000 0 28 4 21 709 4 3 0 4 a 4 a 07 4 34 844 970 703 1 25 
0.000 000 000 0000142108547152020037174224853515625 
O. 000 000 000 000 007 105427 357 601 001 858 711 242675 781 25 

O. 000 000 000 000 003 552 713 678 800 500 92.9 355 621 337 890 625 



Number of 
Class Mnemonics 

1. Memory Reference 15 

2. Memory Reference 8 

Immediate 

3. Conditional Jump 13 

4. Shift 20 

5. Register Change 33 

6. Control Instructions 23 

7. Input/Output 33 

145 

APPENDIX B 

INSTRUCTION SET BY CLASS 

Number of 
Instructions 

15 

8 

63 

86 

186 

23 

33 

414 

Format 
15 14 13 12 11 10 

11 I OP CODE M I I 
15 14 13 12 11 10 8 

1 1 1 1 1 0 1 0 10 1 OP CODE 

15 14 13 12 11 10 

1 0 1 0 1 1 1 0 1 MICROCODE 1 ± 1 

15 14 13 12 11 10 9 

[±I~}I 0 1 MICROCODE 

15 14 13 12 11 10 9 

1
0
1

0
101

0
1

0
1 

MICROCODE 

15 14 13 12 11 10 

VARIABLE FORMAT 

15 14 13 '12 11 10 

DEVICE 
ADDRESS 

0 

0 

0 

0 

0 

K 

1 0 1 0 1 0 1 

II 

B-1 



Definition of Symbols 

+ Addition D Address portion of Memory 

Subtraction Reference Instructions 

1\ Logical AND Y Any Effective Address 

V Inclusive OR A Accumulator Register 

V Exclusive 0 R X Index Register 

Equals P Program Counter (Register) 

Transfer OV Overflow Flip-Flop 

(a - b, a is transferred to b) lOB Input/Output Bus 

One's Complement: 00 AP Address Pointer 

Two's Complement: -(a) BA Base Address 

() "Contents or' or "the number in" BIS Bit Store 

> Greater Than we Word Count 

< Less Than 

~ Greater Than or Equal 

~ Less Than or Equal 

B-2 



1. MEMORY REFERENCE INSTRUCTIONS 

STRUCTURE 
16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

D = Address Field (0 to 255)10 

I = Direct/Indirect Address Bit 

M = Address Mode Code 

ADDRESSING 

M I Word Mode (Word Operand) 

00 0 Y = (D), Words :00 -:FF 

01 0 Y = (D) + (P) + 1 

10 0 Y = (D) + (X) 

11 0 Y = (P) - (D) 

00 AP = (D), [AP = (AP)] , Y = (AP) 

01 AP = (D) + (P) + 1, [AP = (AP)], Y = (AP) 

10 AP = (D), [AP = (AP)] , Y = (AP) + (X) 

11 AP = (P) - (D), [AP = (AP)], Y = (AP) 

INSTRUCTIONS 

Instruction codes are shown with: 

M=OO 

I = 0 

D = :00 

Hexa 
Code 

8800 

9000 

8000 

9800 

E800 

BOOO 

EOOO 

AOOO 

A800 

B800 

D800 

Mnemonic 

ADD 

SUB 

AND 

STA 

STX 

LDA 

LDX 

lOR 

XOR 

EMA 

IMS 

Function 

(A) + (Y) - A 

(A) - (Y) - A 

(A) 1\ (Y) -A 

(A) - Y 

(X) --- Y 

(Y) - A 

(Y) - X 

(Y) V (A) -- A 

(Y) v (A) -- A 

(Y)-A, (A) -- Y 

(Y)+1 - Y 

If (Y) + 1 :f0, (P) + 1 - P 

If (Y) + 1 :f0, (P) + 2 - P 

* Each level of indirect addressing adds 1 cycle to total time 

o 

Byte Mode (Byte Operand) 

y= (D), Bytes :OO-:FF 

Y = (D) + (P) 1, Byte 0 

Y = (D) + (X) 

Y= (D) + (P) + 1, Byte'l 

AP = (D), Y = (AP) 

AP = (D) + (P) + 1, Y = (AP) 

AP = (D), Y = (AP) + (X) 

AP = (P) - (D), Y = (AP) 

Description Cycles'" 

Add to A 2 

Subtract from A 2 

Logical and with A 2 

Store A 2 

Store X 2 

Load A 2 

Load X 2 

Inclusive or with A 2 

Exclusive or with A 2 

Exchange Memory and A 2 

Increment and Skip if Zero 2 

n·3 



Hexa 
Code Mnemonic 

FOOO JMP 

F800 JST 

DOOO CMS 

CDOO SCN 

Function 

Y-P 

(P) + 1 - Y 

Y+l - P 

If (A) < (Y), (P) + 1 - P 

If (A) > (Y), (P) + 2 - P 

If (A) = (Y), (P) + 3 - P 

Description 

Jump Unconditional 

Jump and Store P 

Compare and Skip 

Scan Memory 

If (A)= Any of List «D) + (X)) to «D) + 1 )), then (P) + 2 - P 

If (A) t- Any of List «D) + (X)) to «D) + 1 )), then (P) + 1 - P 

where (D) is table address - 1 

also, if QV=l, upper 8 bits of A is compared (8 bits) 

QV=O, full contents of A is compared (16 bits) 

Cycles* --

2 

2+(X) 

If (A) = Any of List then (X) Reg = Compared Address - Table Address 

*Each level of indirect addressing adds 1 cycle to total time 

B-4 



2. MEMORY REFERENCE IMMEDIATES 

15 14 13 12 11 10 9 8 7 6 5 

11 11 I 0 I 0 I 0 I OP CODE I 

STRUCTURE 

D = The Immediate Operand with Eight-Bit Precision 

Opcodes, Eight As Follows: 

INSTRUCTIONS 

Code Mnemonic Function 

COOO CAl If D 1 (AO-7), (P) + 2 - P 

If D = (AO-7), (P) + 1 - P 

C100 CXI If D 1 (XO-7), (P) + 2 -- P 

If D = (XO-7), (P) + 1 -p 

C200 AXI (X) + D - X 

C300 SXI (X) - D - X 

C400 LXP O+D -- X 

CSOO LXM O-D - X 

C600 LAP O+D - A 

C700 LAM O-D - A 

3 2 o 

o 

Description Cycles 

Compare A Immed. 

Compare X Immed. 

Add to X Immed. 

Subtract from X Immed. 

Load X Positive Immed. 

Load X Minus Immed. 

Load A Positive Immed. 

Load A Minus Immed. 

B-S 



3. CONDITIONAL JUMP INSTRUCTIONS 

15 14 13 12 11 10 9 6 5 4 3 2 

STRUCTURE 

D = Displacement Field (0 to 63) 

R = Sign of Displacement (I) 

,ucode = Five Bits each of which may select a Jump Condition 

G = Group Select Bit. If G = 0 the ,ucode is interpreted as an "OR" group condition. If G = 1 the p.code is 

interpreted as an "And" Group 

ADDRESSING 

If Selected Conditions = Machine Status 

Then [(P) + 1)] + (R,D) - P 

If Selected Conditions =f Machine Status 

Then (P) + 1 - P 

SINGLE ,uCODE "OR" (G=O) INSTRUCTIONS 

Code Mnemonic Function 

2080 JAM If (A) < 0 

2100 JAZ If (A) = 0, 

2180 JAL If (A) 'S 0 

2200 JOS If(OV) = 1,0 - OV 

2400 JSR If Sense Switch = 0 

2800 JXZ If (X) = 0 

SINGLE p.CODE "AND" (G=I) INSTRUCTIONS 

Code Mnemonic Function 

3080 JAP If(AIS) ~O 

3100 JAN If (A) =f 0 

3180 JAG If (A) > 0 

3200 JOR If (OV) = 0 

3400 JSS If Sense Switch = 

3800 JXN If (X) =f 0 

UNIVERSAL JUMP ON CONDITION 

Mnemonic Function 

JOC Specified by given /-tcode 

B-6 

Description 

Jump If A Minus 

Jump If A Zero 

Jump If A Less Than or 

Equal to Zero 

Jump If Overflow Set 

Jump If Sense Switch Reset 

Jump If X Zero 

Description 

Jump If A Positive 

Jump If A Not Zero 

Jump If A Greater Than Zero 

Jump If Overflow Reset 

Jump If Sense Switch Set 

Jump If X Not Zero 

Description 

Jump on Condition Specified 



4. SHIFT INSTRUCTIONS 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 0 1 0 1 0 11 1 0 I MI CROCOD. K 

SINGLE REGISTER SHIFTS 

K = Shift Count. Shift Will Move 1 + K Bit Positions. 

p.code = Shift Control Code Which Selects Source, Type of Shift, and Location of Results 

INSTRUCTIONS 

Code 

1050 

1028 

10DO 

10A8 

lIDO 

lIA8 

1150 

1128 

13DO 

13A8 

1350 

1328 

1228 

1340 

Mnemonic 

ALA 

ALX 

ARA 

ARX 

RRA 

RRX 

RLA 

RLX 

LRA 

LRX 
LLA 

LLX 
NOR 

SAO 

Function 

Al 5 Unchanged 

o -AO 

XIS Unchanges 

o - XO 

A15 Unchanged 

A15 - A14 

XIS Unchanged 

XIS -- XI4 

AO -- OV 

OV -- AI5 

XO -- OV 

OV -- XIS 

A15 - OV 

OV -- AO 

X15- OV 

OV- XO 

o - AI5 

o -- XIS 

o - AO 

o -XO 

Left Arithmetic 

Shift X Until 

X14:f XIS 

Then I -- OVand Stop Shift 

Description 

Arithmetic Shift A Left 

Arithmetic Shift X Left 

Arithmetic Shift A Right 

Arithmetic Shift X Right 

Rotate A Right With OV 

Rotate X Right With OV 

Rotate A Left With OV 

Rotate X Left With OV 

Logical Shift A Right 

Logical Shift X Right 

Logical Shift A Left 

Logical Shift X Left 

Normalize X Register 

A15 -- OV Sign of A to OV 

1 + 1/4 K 

1 + 1/4 K 

I + 1/4 K 

I + 1/4K 

1 + 1/4 K 

1 + 1/4 K 

1 + 1/4 K 

1 + 1/4 K 

1 + 1/4 K 

I + 1/4 K 

1 + 1/4 K 

1 + 1/4 K 

1 + 1/4 K 



LONG SHIFTS 

B-8 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

p.code = Shift Control Code Which Selects The Type of Long Shift to be Executed 

K = Shift Count. Shift Will Move 1 + K Bit Positions. 

Code Mnemonic Function Description Cycles 

1980 LRR AO - XIS Long Rotate Right 1-1/4+1/2K 

XO- OV 

OV -- AlS 

1900 LRL AIS - OV Long Rotate Left 1-1/4 + 1/2 K 

OV -- XO 

XIS -- AO 

1 BOO LLL AIS -- OV Long Logical Shift Left 1-1/4 + 1/2 K 

XIS -- AO 

o - XO 

IB80 LLR o -- AIS Long Logical Shift Right 1-1/4+1/2K 

AO -- XIS 

XOO -- OV 

I9AO MPS Multiply Step 1-1/4 + 1/2 K 

Multiply Step Instruction Performs a Conditional (on OV = 1) 

Add with the A Register and the R Register and a Long Right Shift. 

For Each Shift of 1 + K Shifts 

1. IfOV= 1;0 -- OV,(R)+(A) -- A 

2. And then Long Logical Shift Right One, (AI S) V (OV) -- Al S 

1940 DVS Divide Step 1-1/4 + 1/2 K 

Divide Step Instructional Performs A Special Long Left Shift With A 

Bit Store Flip-Flop (BIS) and OV 

In Three Steps per Shift Count as follows: 

1. X Logical Left Shift 1, Xl S - BIS, (OV) 'V (RI5) - XO 

2. If XO = 1, (A) - (R) -- A; If XO = 0, (A) + (R) - A 

3. A Logical Left Shift 1, BIS -- AO, Al5 - OV 



5. REGISTER CHANGE INSTRUCTIONS 

1& 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

STRUCTURE 

p.code = The Register Change Control Code which specifies the Source, Operation, and Location of Results 

INSTRUCTIONS 

Code Mnemonic Function Description Cycles 

0008 XRM -1 -- X Set X Register to -1 

0010 ARM -1 - A Set A Register to -1 

0018 AXM -1 -- X, -1 -- A Set A and X Registers to -1 

0108 ZXR O--X Zero X Register 

0110 ZAR O-A Zero A Register 

0118 ZAX O-X,O-A Zero A and X Registers 

0528 XRP +1 -X Set X Register to + 1 

0350 ARP +1 -- A Set A Register to + 1 

0358 AXP +1 -- A,+1 -X Set A and X Registers to +1 

00A8 DXR (X) -1 -- X Decrement X 

OODO DAR (A)-1 -- A Decrement A 

0128 IXR (A)+I-X Increment X 

0150 IAR (A) +1 - A Increment A 

0408 CXR (X) -- X Complement X 

0210 CAR (A) -- A Complement A 

0508 NXR -(X) -- X Negate X 

0310 NAR -(A) -- A Negate A 

0030 TXA (X) - A Transfer X to A 

0048 TAX (A) -X Transfer A to X 

0070 ANA (A) 1\ (X) -- A And of A And X to A 

0068 ANX (A) /\ (X) -- X And of A And X to X 

0610 NRA [(A) V (X)] -A NOR of A And X to A 

0608 NRX [(A) V (X)] --X NOR of A And X to X 

00C8 DAX (A)-1 -X Decrement A And Put In X 

OOBO DXA (A)-1 - A Decrement X And Put In A 

0148 lAX (A) +1 -- X Increment A And Put In X 

0130 IXA (X) +1 - A Increment X And Put In A 

0208 CAX (A) -- X Complement A And Put In X 

B-9 



Code Mnemonic Function Description Cycles 

0410 CXA (X) - A Complement X And Put In A 

0308 NAX -(A) - X Negate A And Put In X 

0510 NXA -(X) - A Negate X And Put In A 1 

5801* ISA DSO_3 - Ao-3 Data Switches 0-3 to A 0-3 1-1/4 

5B01* ISX DSO_3 - Xo-3 Data Switches 0-3 to X 0-3 1-1/4 

*Special I/O codes used for register change. 

B-IO 



B-ll 



7. INPUT/OUTPUT INSTRUCTIONS 

15 14 13 12 11 10 9 6 5 4 3 2 

DEVICE 
ADDRESS 

ONE WORD INSTRUCTIONS 

B-12 

Function Code = The Order to the Selected Device 

Device Address = The Number to Which the Device Will Respond 

Opcode = Operation Code Specifying One of the Instructions Listed 

Code 

4900 

4800 

4000 

4400 

4600 

S800 

SAOO 

SCOO 

SEOO 

S900 

SBOO 

SDOO 

SFOO 

7800 

7AOO 

7COO 

7EOO 

Mnemonic 

SEN 

SSN 

SEL 

SEA 

SEX 

INA 

INX 

INAM 

INXM 

RDA 

RDX 

RDAM 

RDXM 

IBA 

IBX 

IBAM 

IBXM 

Function 

If Sense Response, (P) + 2 -. P 

If No Sense Response, (P) + 1 - P 

If Sense Response, (P) + 1 :...... P 

If No Sense Response, (P) + 2 - P 

Device Address And Function 

Code to Control Bus 

Same as SEL, With (A) to Data Bus 

Same as SEL, With (X) to Data Bus 

(lOB) -~ A 

(lOB) - X 

(IOB) 1\ (A) - A 

(IOB) 1\ (X) - X 

If Sense Response, (IOB) - A, 

(P) + 1 -- P 

If No Sense Response, (P) -- P 

If Sense Response, (IOB) - X, 

(P) + 1 -- P 

If No Sense Response, (P) -- P 

If Sense Response, (IOB) 1\ (A) -- A 

(P) + 1 - P 

If Sense Response, (IOB 1\ (X) - X, 

(P) + 1 -- P 

If No Sense Response, (P) -- P 

(IOBO-7) -- AO-7 

(IOBO-7) - XO-7 

(IOBO-7) /\ (AO-7) -- AO-7 

(IOBO-7) t\ (XO-7) -- XO-7 

Description 

Sense And Skip On Response 

Sense And Skip On No 

Response 

Select Function 

Select And Present A 

Select And Present X 

Input To A Register 

Input To X Register 

Masked Input To A Register 

Masked Input To X Register 

Read Word To A Register 

Read Word To X Register 

Read Word To.A Register 

Masked 

Read Word To X Register 

Masked 

Input Byte To A Register 

Input Byte To X Register 

Input Byte To A Register 

Masked 

Input Byte To X Register 

Masked 

1-1/4 

1-1/4 

1-1/4 

1-1/4 

1-1/4 

1-1/4 

1 .. 1/4 

1 .. 1/4 

1-1/4 

1-1/4 

1 .. 1/4 

1·1/4 

1-1/4 

1-1/4 

1-1/4 

1-1/4 

1-1/4 



Code Mnemonic Function Description 

7900 RBA If Sense Response, Read Byte To A Register 

(IOBO-7) - A, (P) + 1 - P 

If No Sense Response, (P) - P 

7BOO RBX If Sense Response, Read Byte To X Register 

(IOBO-7) - X, (P) + 1 -- P 

If No Sense Response, (P) - P 

7DOO RBAM If Sense Response, Read Byte To A Register 

(IOBO-7) /\ (AO-7) -- A, (P) + 1 -1 Masked 

If No Sense Response (P) - P 

7FOO RBXM If Sense Response, Read Byte to X Register 

(IOBO-7) /\ (XO-7) -- X, (P) + 1 -- P Masked 

If No Sense Response (P) -- P 

6COO OTA (A) -- lOB Output A Register 

6EOO OTX (X) -- lOB Output X Register 

6800 OTZ o -- lOB Output Zero 

6DOO WRA If Sense Response, (A) -lOB, Write From A Register 

(P) + 1 - .. P 

If No Sense Response (P) - P 

6FOO WRX If Sense Response, Write From X Register 

(X) - lOB, (P) + 1 - P 

If No Sense Response (P) -- P 

6900 WRZ If Sense Response, 0 -- lOB, Write Zeros 

(P) + 1 -- P 

If No Sense Response, (P) -P 

AUTOMATIC I/O INSTRUCTIONS 
15 14 13 12 11 10 

P 0 1 I Cg6E I 0 I B I 0 I 0 I DEVICE I FUNCTION 
ADDRESS CODE 

P+1 1 

P+2 0 

Opcode; 01 = Input, 10 = Output 

Byte/Word Counter = Number of Executions Until Skip or Echo 

Address Pointer = Memory Location of I/O Transaction 

B = 0: Word Transfer 

B = 1: Byte Transfer 

BYTE/WORD COUNTER, WC (2'5 COMPLEMENTl 

ADDRESS POINTER, AP (START LOCATION -1) 

Cycles 

1-1/4 

1-1/4 

1-1/4 

1-1/4 

1-1/4 

1-1/4 

1-1/4 

1-1/4 

1-1/4 

1-1/4 

These Instructions may be executed in In-Line Code or as single execute interrupt instructions. In either case, the execution 

takes three cycles in addition to the basic instruction cycle. 

B-13 



Hexa 
Code Mnemonic Function Description 

---

AIN, AlB Automatic Input 

5000 A. In Line Code 

5400 l. (WC) + 1 -- WC 

If (WC) + 1 = 0, (P) + 3 - P 

If (WC) + 1 =f 0, (P) + 4 - P 

2. (AP) + 1 - AP, Memory Address Register 

3. (lOB) -- (Y) = Where Y = Memory Address of (2) above. 

B. Single Execute Interrupt Instruction 

1. (WC) + 1 - .. WC 

If (WC) + 1 = 0, Echo 

2. (AP) + 1 -- AP, Memory Address Register 

3. (lOB) - (Y) = Where Y = Memory Address of (2) above. 

AOT, AGB Automatic Output 

6000, A. In Line Code 

6400 1. (WC) + 1 -- WC 

If (WC) + 1 = 0, (P) + 3 --P 

If (WC) + 1 =f 0, (P) + 4 - P 

2. (A) + 1 -- AP, Memory Address Register 

3. (Y) - lOB Where Y = Memory Address of (2) 

B. Single Execute Interrupt Instruction 

1. (WC) + 1 -- WC 

If (WC) + 1 = 0, Echo 

2. (A) + 1 -- AP, Memory Address Register 

3. (Y) -- lOB Where Y = Memory Address of (2) 

BLOCK I/O INSTRUCTIONS 

p 

P+1 

15 14 13 12 11 10 9 8 

OP CODE I 
6 5 

DEVI CE 
ADDRESS 

BASE ADDRESS 

Opcode, Two Codes For Input or Output 

7100 BIN 

B-14 

A. The X Register Must Be Preset With the 

Number of Words to be Transferred 

B. The Instruction is Fetched from Memory 

Location Y = (P) 

3 2 

I 
FUNCTION 

CODE 

Input Block 

Cycles 

4-1/4 

4-1/4 

4-1/4 

4 .. 1/4 



7500 BOT 

C. The Base ~ddress is Fetched from Memory 

Location Y = (P) + 1 

D. The Following Word Transfer Cycle is 

Executed (X) Times 

If Sense Response, (lOB) -- Y = BA + (X) 

(X)-l -~X 

If (X) - 1 = 0, (P) + 2 - P 

If (X) - 1 =f: 0, Get Next Word 

If No Sense Response (X) - X, Repeat Sense 

A. Same as for BIN 

B. Same as for BIN 

C. Same as for BIN 

D. Same as for BIN Except 

If Sense Response, (Y) - lOB 

Output Block 

B-15/B-16 





APPENDIX C 

LOGICAL FUNCTION DESCRIPTIONS 

The following examples while only 4 bits in length are (SUB) 

applicable to any length of binary bit strings. (A) 0101 

(A) = A Register (M) 0011 

(M) = Memory Word Content Result in (A) 0010 

(X) = X Register (ADD) 

(lOR) Inclusive OR (A) 0001 

(A) 0101 (M) 0011 --
(M) 0110 Result in A 0100 

Result in (A) 0111 (CAR) (1 ~s) Compliment A Register. 

(XOR) Exclusive OR (A) 0010 

(A) 0011 Result in (A) 1101 

(M) 0101 (NAR) (2's) Negative A Register. 

Result in (A) 0110 (A) 0010 

(AND) Result in (A) 1100 

(A) 0101 

(M) 0011 

Result in (A) 0001 DIV.* 

(NRA) Nor of A and X to A register 

(A) 0101 

(X) 0100 
1010 (10)10 

Result in (A) 1010 0111 11000110 (70)10 

Try Yes Subtract 0111 
MUL* 

Result & Next 00011 
1010 (10)10 Try No Subtract 0000 
0111 (7)10 Result & Next 0111 

Sum 1010 Try Yes Subtact 0111 
Shift & Add 1010 Result & Next 00000 
Sum 11110 Try No Subtract 0000 II Shift & Add 1010 

Sum 1000110 

Shift & Add 0000 

Product 1000110 (70)10 

*The MUL & DIV. do not represent actual machine mechanization. 

C-1/C-2 





APPENDIX D 

INSTRUCTION SET, ALPHABETICAL ORDER 

Instructions are listed in alphabetical order by instruction mnemonic in this section. 

*Instructions having an asterisk (*) following the instruction hexadecimal code are shown with variable fields containing all 

zeros. Refer to the instruction descriptions in Section 2 and Section 3 for the definitions of the variable fields. Instructions 

which do not have an asterisk following the instruction code do not have variable fields and the code listed is the only code 

that defines the instruction. 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

----
ADD 8800* Add to A direct, scratchpad 2 2-10 

ADD 8900* Add to A indirect, AP in scratchpad 2+1n 2-10 

ADD 8AOO* Add to A relative to P forward, direct 2 2-10 

ADD 8BOO* Add to A relative to P forward, indirect 2+1n 2-10 

ADD 8COO* Add to A indexed, direct 2 2-10 

ADD 8DOO* Add to A indexed, indirect 2+1n 2-10 

ADD 8EOO* Add to A relative to P backward, direct 2 2-10 

ADD 8FOO* Add to A relative to P backward, indirect 2+1n 2-10 

ADDB :8800* Add Byte, direct, scratchpad 2 2-24 

ADDB :8900* Add Byte, indirect, AP in scratchpad 3 2-24 

ADDB : 8AOO* Add Byte 0, relative to P forward, direct 2 2-24 

ADDB : 8BOO* Add Byte, indirect, AP relative to P, forward 3 2-24 

ADDB :8COO* Add Byte, direct, indexed 2 2-24 

ADDB : 8DOO* Add Byte, indirect, indexed, AP in scratchpad 3 2-24 

ADDB :8EOO* Add Byte 1, relative to P forward, direct 2 2-24 

ADDB :8FOO* Add Byte, indirect, relative to P, backward 3 2-24 

AlB 5400* Automatic Input: Byte 4-1/4 3-31 

AIN 5000* Automatic Input: Word 4-1/4 3-30 

ALA 1050* Arithmetic shift A left 1+1/4K 2-45 

ALX 1028* Arithmetic shift X left 1+1/4K 2-45 

ANA 0070 AND of A and X to A 1 2-65 

AND 800Q* AND to A direct, scratchpad 2 2-14 

AND 8100* AND to A indirect, AP in scratchpad 2+1n 2-14 

AND 8200* AND to A relative to P forward, direct 2 2-14 

AND 8300* AND to A relative to P forward, indirect 2+1n 2-14 

AND 8400* AND to A indexed, direct' 2 2-14 • AND 8500* AND to A indexed, indirect 2+1n 2-14 

AND 8600* AND to A relative to P backward, direct 2 2-14 

AND 8700* AND to A relative to P backward, indirect 2+1n 2-14 

0·1 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

ANDB :8000* AND to A Byte, direct, scratchpad 2 2-28 

ANDB :8100* AND to A Byte, indirect, AP in scratchpad 3 2-28 

ANDB :8200* AND to A Byte 0, direct, relative to P forward 2 2-28 

ANDB :8300* AND to A Byte, indirect, AP relative to P forward 3 2-28 

ANDB :8400* AND to A Byte, indexed, direct 2 2-28 

ANDB :8500* AND to A Byte, indexed, indirect, AP in scratchpad 3 2-28 

ANDB :8600* AND to A Byte 1, direct, relative to P forward 2 2-28 

ANDB :8700* AND to A Byte, indirect, AP relative to P backward 3 2-28 

ANX 0068 AND of A and X to X 1 2-65 

AOB 6400* Automatic Output: Byte 4-1/4 3-31 

AOT 6000* Automatic Output: Word 4-1/4 3-30 

ARA 10DO* Arithmetic shift A right 1+1/4K 2-44 

ARM 0010 Set A to minus 1 1 2-59 

ARP 0350 Set A to plus 1 2-59 

ARX 10A8* Arithmetic shift X right 1+1/4K 2-45 

AXI C200* Add to X immediate 2-31 

AXM 0018 Set A and X to minus 1 2-59 

AXP 0358 Set A and X to plus 1 2-60 

BIN 7100* Block input to memory 2+1-1/2w 3-25 

BOT 7500* Block output from memory 2+1-1/2w 3-26 

CAl COOO* Compare to A immediate 1 2-33 

CAR 0210 Complement A 2-62 

CAX 0208 Complement A and X 1 2-63 

CID 4006 Console interrupt disable 1-1/4 2-72 

CIE 4005 Console interrupt enable 1-1/4 2-71 

CMS DOOO* Compare memory to A and skip if high or equal; 2 2-15 

direct, scratch pad 

CMS D100* Compare memory to A and skip if high or equal; 2+1n 2-15 

indirect, AP in scratchpad 

CMS D200* ,Compare memory to A and skip if high or equal; 2 2-15 

relative to P forward, direct 

CMS D300* Compare memory to A and skip if high or equal; 2+1n 2-15 

relative to P forward, indirect 

CMS D400* Compare memory to A and skip if high or equal; 2 2-15 

indexed, direct 

CMS D500* Compare memory to A and skip if high or equal; 2+1n 2-15 

indexed, indirect 

CMS D600* Compare memory to A and skip if high or equal; 2 2-15 

relative to P backward, direct 

D-2 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

-----
CMS D700* Compare memory to A and skip if high or equal; 2+1n 2-15 

relative to P backward, indirect 

CMSB :DOOO* Compare Byte and skip if high or equal, direct, 2 2-29 

scratchpad 

CMSB :DI00* Compare Byte and skip if high or equal, indirect, 3 2-29 

AP in scratchpad 

CMSB :D200* Compare Byte 0 and skip if high or equal, direct, 2 2-29 

relative to P forward 

CMSB :D300* Compare Byte and skip if high or equal, indirect, AP 3 2-29 

relative to P forward 

CMSB :D400* Compare Byte and skip if high or equal, indexed, 2 2-29 

direct 

CMSB :D500* Compare Byte and skip if high or equal, indexed, 3 2-29 

indirect. AP in scratchpad 

CMSB :D600* Compare Byte 1 and skip if high or equal, direct, 2 2-29 

relative to P forward 

CMSB :D700* Compare Byte and skip if high or equal, indirect, AP 3 2-29 

relative to P backward 

COY 1600 Complement overflow 2-68 

CXA 0410 Complement X and put in A 2-63 

CXI CI00* Compare to X immediate 2-33 

CXR 0408 Complement X 2-62 

DAR OODO Decrement A 2-60 

DAX 00C8 Decrement A and put in X 2-64 

DIN OCOO Disable interrupts 1 2-69 

DVS 1940* Divide step "1-1/4 + 1/2K 2-53 

DXA OOBO Decrement X and put in A 2-64 

DXR 00A8 Decrement X 2-60 

EIN OAOO Enable interrupts 1 2-68 

EMA B800* Exchange memory and A; direct, scratchpad 2 2-13 

EMA B900* Exchange memory and A; indirect, AP in scratchpad 2+1n 2-13 

EMA BAOO* Exchange memory and A; relative to P forward, direct 2 2-13 

EMA BBOO* Exchange memory and A; relative to P forward, indirect 2+1n 2-13 

EMA BCOO* Exchange memory and A; indexed, direct 2 2-13 

EMA BDOO* Exchange memory and A; indexed, indirect 2+1n 2-13 

EMA BEOO* Exchange memory and A; relative to P backward, direct 2 2-13 

EMA BFOO* Exchange memory and A; relative to P backward, 2+1n 2-13 

indirect 

D-3 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description CyCles Page 

EMAB ;B800* Exchange Memory and A Byte, direct, scratchpad 2 2-27 

EMAB :B900* Exchange Memory and A Byte, indirect, AP in scratchpad 3 2-27 

EMAB :BAOO* Exchange Memory and A Byte 0, direct, relative to P 2 2-27 I 

forward 

EMAB :BBOO* Exchange Memory and A Byte, indirect, AP relative to 3 2-27 

P forward 

EMAB : BCOO* Exchange Memory and A Byte, indexed, direct 2 2-27 

EMAB : BDOO* Exchange Memory and A Byte, indexed, indirect, AP 3 2-27 

in scratchpad 

EMAB : BEOO* Exchange Memory and A Byte 1, direct, relative to 2 2-27 

P forward 

EMAB : BFOO* Exchange Memory and A, indirect, AP relative to P 3 2-27 

backward 

HLT 0800 Halt 2-67 

IAR 0150 Increment A 2-61 

lAX 0148 Increment A and put in X 1 2-64 

IBA 7800* Input byte to A (unconditionally) 1-1/4 3-19 

IBAM 7COO* Input byte to A, masked (unconditionally) 1-1/4 3-20 

IBX 7AOO* Input byte to X (unconditionally) 1-1/4 3-19 

IBXM 7EOO* Input byte to X, masked (unconditionally) 1-1/4 3-20 

IMS D800* Increment memory and skip on zero result; direct, 2 2-11 

scratchpad 

IMS D900* Increment memory and skip on zero result; indirect, 2+1n 2-11 

AP in scratchpad 

IMS DAOO* Increment memory and skip on zero result; relative 2 2-11 

to P forward, direct 

IMS DBOO* Increment memory and skip on zero result; relative 2+1n 2-11 

to P forward, indirect 

IMS DCOO* Increment memory and skip on zero result; indexed, 2 2-11 

direct 

IMS DDOO* Increment memory and skip on zero result; indexed, 2+1n 2-11 

indirect 

IMS DEOO* Increment memory and skip on zero result; relative to 2 2-11 

P backward, direct 

IMS DFOO* Increment memory and skip on zero result; relative to 2+1n 2-11 

P backward, indirect 

INA 5800* Input word to A (unconditionally) 1-1/4 3·19 

INAM 5COO* Input word to A, masked (unconditionally) 1·1/4 3·20 

D·4 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction' 
Mnemonic Code in Hex Description Cycles Page 

INX SAOO· Input word to X(unconditionally) 1·1/4 3·19 

INXM 5EOO· Input word to X, masked (unconditionally) 1·1/4 3·20 

lOR AOOO· Inclusive OR to A; direct, scratchpad 2 2·14 

lOR AI00· Inclusive OR to A; indirect, AP in scratchpad 2+1n 2·14 

lOR A200· Inclusive OR to A; relative to P forward, direct 2 2·14 

lOR A300· Inclusive OR to A; relative to P forward, indirect 2+1n 2·14 

lOR A400· Inclusive OR to A; indexed, direct 2 2·14 

lOR A500· Inclusive OR to A; indexed, indirect 2+1n 2·14 

lOR A600· Inclusive OR to A; relative to P backward, direct 2 2·14 

lOR A700· Inclusive OR to A; relative to P backward, indirect 2+1n 2·14 

IORB : AOOO· Inclusive OR Byte, direct, scratchpad 2 2·28 

IORB :AIOO· Inclusive OR Byte, indirect, AP in scratchpad 3 2·28 

IORB :A200· Inclusive OR Byte 0, direct, relative to P forward 2 2·28 

IORB :A300· Inclusive OR Byte, indirect, AI) relative to P forward 3 2·28 

IORB :A400· Inclusive OR Byte, indexed, direct 2 2·28 

IORB :A500· Inclusive OR Byte, indexed, indirect, AP in scratchpad 3 2·28 

IORB :A600· Inclusive OR Byte 0, direct, relative to P forward 2 2·28 

IORB :A700· Inclusive OR Btye, indirect, AP relative to P backward 3 2·28 

ISA 5801 Input data switches to A 1·1/4 2·66 

ISX 5BOI Input data switches to X 1·1/4 2·66 

IXA 0130 Increment X and put in A 2·64 

IXR 0128 Increment X 2·61 

JAG (JOC Jump if A positive and not equal to zero: (A) >0 2·37 

:23, ADR) 3180· Forward jump 

31CO· Backward jump 

JAL(JOC Jump if A negative or equal to zero: (A):!: 0 2·38 

:03,ADR) 2180· Forward jump 

21CO· Backward jump 

JAM (JOC Jump if A negative: (A) < 0 2·36 

:01, ADR) 2080· Forward jump 

2OCO· Backward jump 

JAN(JOC Jump if A not zero: (A);.! 0 2·37 

:22,ADR) 3100· Forward jump 

3140· Backward jump 

JAP(JOC Jump if A positive or equal to zero: (A) 2: 0 2·36 

:21, ADR) 3080· Forward jump 

3OCO· Backward jump 

0·5 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

JAz (JOC Jump if A zero: (A) = 0 2~37 

:02, ADR) 2100* Forward jump 

2140* Backward jump 

JMP FOOO* Jump unconditionally; direct, scratchpad 1 2-18 

JMP FI00* Jump unconditionally; indirect, AP in scratchpad 2 2-18 

JMP F200* Jump unconditionally; relative to P forward, direct 1 2-18 

JMP F300* Jump unconditionally; relative to P forward, indirect 2 2-18 

JMP F400* Jump unconditionally; indexed, direct 2-18 

JMP F500* Jump unconditionally; indexed, indirect 2 2-18 

JMP F600* Jump unconditionally; relative to Pbackward, direct 2-18 

JMP F700* Jump unconditionally; relative to P backward, indirect 2 2-18 

JOC :01, Jump if A negative: (A) < 0 2-36 

ADR(1AM) 2080* Forward jump 

20eO* Backward jump 

JOe :02, Jump if A zero: (A) = 0 2-36 
ADR (JAZ) 2100* Forward jump 

2140* Backward jump 

JOC :03, Jump if A negative or equal to zero: (A) 5 0 2-36 

ADR (JAL) 2180* Forward jump 

21CO* Backward jump 

JOC :04, Jump if overflow set: OV = 1 2-36 

ADR (10S) 2200* Forward jump 

2240* Backward jump 

JOC :05, Jump if overflow set or A negative: OV == 1 V (A) < 0 1 2-36 

ADR 2280* Forward jump 

22CO* Backward jump 

JOC :06, Jump if overflow set or A equals zero: OV = 1 V (A) = 0 2-36 

ADR 2300* Forward jump 

2340* Backward jump 

JOC :07, Jump if overflow set or A less than or equal to zero: 2-36 

ADR OV= 1 V (A) 5 0 

2380* Forward jump 

23CO* Backward jump 

JOC :08, Jump if Sense Switch off: SS = 0 2-36 

ADR (JSR) 2400* Forward jump 

2440* Backward jump 

JOC :09, Jump if Sense Switch off or A negative: SS = 0 V (A) < 0 2-36 

ADR 2480* Forward jump 

24CO* Backward jump 

D-6 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex "- Description Cycles Page 

----
JOC:OA, Jump if Sense Switch off or A equal to zero; 2-36 

ADR SS = 0 V (A) = 0 

2500* Forward jump 

2540* Backward jump 

JOC :OB, Jump if Sense Switch off or A less than or equal 2-36 

ADR to zero: SS = OV (A) ~ 0 

2580* Forward jump 

25CO* Backward jump 

JOC :OC, Jump if Sense Switch off or overflow set: SS = OVOV=1 2-36 

ADR 2600* Forward jump 

2640* Backward jump 

JOC :OD, Jump if Sense Switch off or overflow set or A negative: 2-36 

ADR SS = 0 V OV = 1 V (A) < 0 

2680* Forward jump 

26DO* Backward jump 

JOC :OE, Jump if Sense Switch off or overflow set or A equals 2-36 

ADR zero: SS = 0 V OV = 1 V (A) = 0 

2700* Forward jump 

2740* Backward jump 

JOC :OF, Jump if Sense Switch off or overflow set or A less than 2-36 

ADR or equal to zero: SS = 0 V OV = 1 V (A) ~ 0 

2780* Forward jump 

27CO* Backward jump 

JOC : 10, Jump if X equals zero: (X) = 0 2-36 

ADR(JXZ) 2800* Forward jump 

2840* Backward jump 

JOC :11, Jump if X equals zero or A negative: (X) = 0 V (A) < 0 2-36 

ADR 2880* Forward jump 

28CO* Backward jump 

JOC : 12, 2900* Illegal combination (includes (X) = 0 V (A) = 0) 2-36 

ADR 2940* 

JOC : 13 2980* Illegal combination (includes (X) = 0 V (A) = 0) 2-36 

ADR 29CO* 

JOC : 14, Jump if X equals zero or overflow set: (X) = 0 V OV = 1 2-36 

ADR 2AOO* Forward jump 

2A40* Backward jump 

D-7 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

JOC : 15 Jump if X equals zero or overflow set or A negative: 2·36 

ADR (X)= 0 V OV = 1 V (A) < 0 

2A80* Forward jump 

2ACO* Backward jump 

JOC : 16, 2BOO* Illegal combinations (include (X) = 0 V (A) = 0) 2·36 

ADR 2B40* 

JOC :17 2B80* Illegal combinations (include (X) = 0 V (A) = 0) 2·36 

2BCO* 

JOC : 18, Jump if X equals zero or Sense Switch off: 2·36 

ADR (X) = 0 V SS = 0 

2COO* Forward jump 

2C40* Backward jump 

JOC: 19, Jump if X equals zero or Sense Switch off or A is 2·36 

ADR (X) = 0 V SS = 0 V (A) < 0 

2C80* Forward jump 

2CCO* Backward jump 

JOC : lA, 2DOO* Illegal combination (includes (X) = 0 V (A) = 0) 2·36 

ADR 2D40* 

JOC :IB, 2D80* Illegal combination (includes (X) = 0 V (A) = 0) 2·36 

ADR 2DCO* 

JOC : lC, Jump if X equals zero or Sense Switch off or over· 2·36 

ADR flow set: (X) = 0 V SS·O V OV = 1 

2EOO* Forward jump 

2E40* Backward jump 

JOC : ID, Jump if X equals zero or Sense Switch off or overflow 2·36 

ADR set or A negative: (X) = 0 V SS = 0 V OV = I V (A) < 0 

2E80* Forward jump 

2ECO* Backward jump 

JOC :IE, 2FOO* Illegal combination (includes (X) = 0 V (A) = 0) 2·36 

ADR 2F40* 

JOC :IF, 2F80* Illegal combination (includes (X) = 0 V (A) = 0) 2·36 

ADR 2FCO* 

JOC :21, Jump if A positive or equal to zero: (A) V 0 2·36 

ADR 3080* Forward jump 

(JAP) 30CO* Backward jump 

JOC :22, Jump if A not zero: (A) = 0 2·36 

ADR 3100* Forward jump 

(JAN) 3140* Backward jump 

D·8 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page ----
JOC :23, Jump if A greater than zero: (A» 0 2-36 

ADR 3180* Forward jump 

(JAG) 31CO* Backward jump 

JOC:24, Jump if overflow is reset: OV == 0 2-36 

ADR 3200* Forward jump 

(JOR) 3240* Backward jump 

JOC :25, Jump if A positive and overflow is reset: 2-36 

ADR (A) ~ 0 " OV = 0 

3280* Forward jump 

32CO* Backward jump 

JOC:26, Jump if a non-zero and overflow reset: 2-36 

ADR (A) ;e 0 " OV = 0 

3300* Forward jump 

3340* Backward jump 

JOC :27, Jump if a non-zero and overflow reset: 2-36 

ADR (A) > 0 " OV = 0 

3380* Forward jump 

33CO* Backward jump 

JOC :28, Jump if Sense Switch on. SS = 1 2-36 

ADR 3400* Forward jump 

(JSS) 3440* Backward jump 

JOC :29, Jump if Sense Switch on and A positive: 3-26 

ADR SS = 1 " (A) > 0 

3480* Forward jump 

34CO* Backward jump 

JOC :2A, Jump if Sense Switch on and A non-zero: 2-36 

ADR SS = 1 " (A);eO 

3500* Forward jump 

3540* Backward jump 

JOC :2B, Jump if Sense Switch on and A greater than zero: 2-36 

ADR SS = 1 " (A) > 0 

3580* Forward jump 

35CO* Backward jump 

JOC :2C, Jump if Sense Switch on and overflow reset: 2-36 

ADR SS = 1 " OV = 0 

3600* Forward jump 

3640* Backward jump 

D-9 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

JOC :2D, Jump if Sense Switch on and A positive and overflow 2-36 

ADR reset: SS = 1 " (A) > 0 " OV = 0 

3680* Forward jump 

36CO* Backward jump 

JOC :2E, Jump if Sense Switch on and A non-zero and overflow 2-36 

ADR reset: SS = 1 " (A);e 0 "OV = 0 

3700* Forward jump 

3740* Backward jump 

JOC :2F, Jump if A greater than zero and Sense Switch on and 2-36 

ADR overflow reset (A);eO " SS = 1 " OV = 0 

3780* Forward jump 

37CO* Backward jump 

JOC :30, Jump if X non-zero (X).=O 2-36 

ADR(JXN) 3800* Jump forward 

3840* Jump backward 

JOC :31, Jump if X non-zero and A positive: (X);eO " (A) ~ 0 2-36 

ADR 3880* Forward jump 

38CO* Backward jump 

JOC :32, Jump if X non-zero and A non-zero. (X);eO " (A);e 0 2-36 

ADR 3900* Forward jump 

3940* Backward jump 

JOC :33, Jump if X non-zero and A greater than zero 2-36 

ADR (X).c 0" (A) > 0 

3980* Forward jump 

39CO* Backward jump 

JOC :34, Jump if X non-zero and overflow reset 2-36 

ADR (X);e 0 " OV = 0 

3AOO* Forward jump 

3A40* Backward jump 

JOC :35, Jump if X non-zero and A positive and overflow reset: 2-36 

ADR (X);e 0 " (A) ~ 0 " OV = 0 

3A80* Forward jump 

3ACO* Backward jump 

JOC :36, Jump if X non-zero and A non-zero and overflow reset: 2-36 

ADR (X);e 0 "(A);eO "OV = 0 

3BOO* Forward jump 

3B40* Backward jump 

D-IO 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Descriptio~ Cycles Page 

JOC :37, ADR Jump if X non-zero and A greater than zero and over- 2-36 

flow reset. (X):;I; 01\ (A) > 0 " OV = 0 

3B80* Forward jump 

3BCO* Backward jump 

JOC :38, ADR Jump if X non-zero and Sense Switch on: (X) =1= 0 " SS=1 2-36 

3COO* Forward jump 

3C40* Backward jump 

JOC :39, ADR Jump if X non-zero and A positive and Sense Switch on: 2-36 

(X) i= 0 1\ (A) :# 0 1\ SS-1 

3C80* Forward jump 

3CCO* Backward juinp 

JOC :3A, ADR Jump if X non-zero and A non-zero and SenseBwitch 2-36 

on: (X) *- 01\ (A) > 0 1\ SS = 1 

3DOO* Forward jump 

3D40* Backward jump 

JOC :3B, ADR Jump if X non-zero and A greater than zero and Sense 2-36 

Switch on: (X):to: 01\ (A) > 0 1\ SS = 1 

3B80* Forward jump 

3DCO* Backward jump 

JOC :3C, ADR Jump if X non-zero and Sense Switch on and overflow 2-36 

reset: (X) =1= 0 /\ SS = 1 1\ OV == 0 

3EOO* Forward jump 

3E40* Backward jump 

JOC :3D, ADR Jump if X non-zero and A positive and Sense Switch 2-36 

on and overflow reset: (X) =-1= 01\ (A) ~ 01\ SS=I/\ OV=O 

3E80* Forward jump 

3ECO* Backward jump 

JOC :3E, ADR Jump if X non-zero and A non-zero and Sense Switch 2-36 

on and overflow reset: 

(X) :t= 0 1\ (A) :7-: 0 1\ SS = 1 1\ OV = 0 

3FOO* Forward jump 

3F40* Backward jump 

JOC :3F, ADR Jump if X non-zero and A greater than zero and 2-36 

Sense Switch on and overflow reset: 

(X) :t= 0 " (A) > 0 1\ SS = 1 " OV = 0 

3F80* Forward jump 

3FCO* Backward jump 

JaR (JOC :24, Jump if overflow reset: OV = 0 2-36 

ADR 3200* Forward jump 

3240* Backward jump 

D-11 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction [nstruction 
Mnemonic Code in Hex Description Cycles Page 

JOS (JOC : 04, Jump if overflow set: OV = 1 2-39 

ADR 2200* Forward jump 

2240* Backward jump 

JSR (JOS : 08, Jump if Sense Switch off: SS = 0 2-39 

ADR) 2400* Forward jump 

2440* Backward jump 

JSS (JOC : 28, Jump if Sense Switch on: SS = 1 2-39 

ADR) 3400* Forward jump 

3440* Backward jump 

JST F800* Jump and Store; direct, scratch pad 2 2-18 

JST F900* Jump and Store; indirect, AP in scratchpad 3 2-18 

JST FAOO* Jump and Store; relative to P forward, direct 2 2-18 

JST FBOO* Jump and Store; relative to P forward, indirect 3 2-18 

JST FCOO* Jump and Store; indexed, direct 2 2-18 

JST FDOO* Jump and Store; indexed, indirect 3 2-18 

JST FEOO* Jump and Store; relative to P backward, direct 2 2-18 

JST FFOO* Jump and Store; relative to P backward, indirect 3 2-18 

JXN (JOC : 30, Jump if X non-zero: (X):=I= 0 2-38 

ADR) 3800* Forward jump 

3840* Backward jump 

JXZ (JOC : 10, Jump if X equal to zero: (X) = 0 2-38 

ADR) 2800* Forward jump 

2840* Backward jump 

LAM C700* Load A minus immediate 2-32 

LAP C600* Load A positive immediate 1 2-32 

LDA BOOO* Load A; direct, scratchpad 2 2-12 

LDA BI00* Load A; indirect, AP in scratchpad 2+1n 2-12 

LDA B200* Load A; relative to P forward, direct 2 2-12 

LDA B300* Load A; relative to P forward, indirect 2+1n 2-12 

LDA B400* Load A; indexed, direct 2 2-12 

LDA B500* Load A; indexed, indirect 2+1n 2-12 

LDA B600* Load A; relative to P backward, direct 2 2-12 

LDA B700* Load A; relative to P backward, indirect 2+1n 2-12 

LDAB : BOOO* Load A Byte, direct, scratchpad 2 2-25 

LDAB :BI00* Load A Byte, indirect, AP in scratchpad 3 2-25 

LDAB :B200* Load A Byte 0, direct, relative to P forward 2 2-25 

LDAB :B300* Load A Byte, indirect, AP relative to P forward 3 2-25 

LDAB :B400* Load A Byte, indexed, direct 2 2-25 

LDAB :B500* Load A Byte, indexed, indirect, AP in scratchpad 3 2-25 

D-12 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

LDAB :B600* Load A Byte 1, direct, relative to P forward 2 2-25 

LDAB :B700* Load A Byte, indirect, AP relative to P backward 3 2-25 

LDX EOOO* Load X; direct, scratchpad 2 2-12 

LDX E100* Load X; indirect, AP in scratchpad 2+1n 2-12 

LDX E200* Lmid X; relative to P forward, direct 2 2-12 

LDX E300* Load X; relative to P forward, indirect 2+1n 2-12 

LDX E400* Load X; indexed, direct 2 2-12 

LDX E500* Load X; indexed, indirect 2+1n 2-12 

LDX E600* Load X; relative to P backward, direct 2 2-12 

LDX E700* Load X; relative to P backward~ indirect 2+1n 2-12 

LDXB :EOOO* Load X Byte, direct, scratchpad 2 2-25 

LDXB :E100* Load X Byte, indirect, AP in scratchpad 3 2-25 

LDXB :E200* Load X Byte 0, direct, relative to P forward 2 2-25 

LDXB :E300* Load X Byte, indirect, relative to P forward 3 2-25 

LDXB :E400* Load X Byte, indexed, direct 2 2-25 

LDXB :E500* Load X, indexed, indirect, AP in scratchpad 3 2-25 

LDXB :E600* Load X Byte 1, direct, relative to P forward 2 2-25 

LDXB :E700* Load X Byte, indirect, relative to P backward 3 2-25 

LLA 1350* Logical shift A left 1+1/4K 2-46 

LLL 1BOO* Long logical left shift 1-1/4+1/2K 2-50 

LLR 1B80* Long logical right shift 1-1/4+1/2K 2-49 

LLX 1328* Logical shift X left 1+1/4K 2-47 

LRA 13DO* Logical shift A right 1+1/4K 2-47 

LRL 1900* Long rotate left 1-1/4+1/2K 2-50 

LRR 1980* Long rotate right 1-1/4+1/2K 2-50 

LRX 13A8* Logical shift X right 1+1/4K 2-46 

LXM C500* Load X minus immediate 2-33 

LXP C400* Load X positive immediate 1 2-32 

MPD 4001 Memory Protect disable 1-1/4 2-73 

MPE 4000 Memory Protect enable 1-1/4 2-73 

MPS 19AO* Multiply step 1-1/4+1/2K 2-51 

NAR 0310 Negate A register 2-61 

NAX 0308 Negate A and put in X 2-63 

NOP 0000 No operation 1 2-67 

NOR 1228* Normalize 1/4K 2-49 

NRA 0610 NOR if (A and X) to A: (A) V (X) - A 2-65 

NRX 0608 NOR of (A and X) to X: (A) V (X) - A 2-65 

NXA 0510 Negate X and put in A 2-63 

NXR 0508 Negate X register 2-61 

D-13 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

OTA 6COO* Output A Register (unconditionally) 1-1/4 3-22 

OTX 6EOO* Output X register (unconditionally) 1-1/4 3-22 

OTZ 6800* Output zero (unconditionally) 1-1/4 3-22 

PFD 4003 Power Fail interrupt disable 1-1/4 2-72 

PFE 4002 Power Fail interrupt enable 1-1/4 2-72 

RAM 4045 Set Random Access mode 1-1/4 2-74 

RBA 7900* Read byte to A 1-1/4 3-21 

RBAM 7DOO* Read byte to A, masked 1-1/4 3-21 

RBX 7BOO* Read byte to X 1-1/4 3-21 

RBXM 7FOO* Read byte to X, masked 1-1/4 3-21 

RDA 5900* Read word to A 1-1/4 3-20 

RDAM 5DOO* Read word to A, masked 1-1/4 3-21 

RDX 5BOO* Read word to X 1-1/4 3-20 

RDXM 5FOO* Read word to X, masked 1-1/4 3-21 

RLA 1150* Rotate A left with OV 1+1/4K 2-48 

RLX 1128* Rotate X left with OV 1+1/4K 2-48 

ROM 4046 Set Read Only mode 1-1/4 2-74 

ROV 1200 Reset overflow 2-67 

RRA I1DO* Rotate A right with OV 1+1/4K 2-47 

RRX l1A8* Rotate X right with OV 1+1/4K 2-48 

SAO 1340 Sign of A to OV 2-49 

SBM OEOO Set byte mode 2-68 

SCN CDOO* Scan memory, Indexed, indirect 2+1w 2-16 

SEA 4400* Select and present A 1-1/4 3-18 

SEL 4000* Select function 1-1/4 3-18 

SEN 4900* Sense and skip on response 1-1/4 3-17 

SEX 4600* Select and present X 1-1/4 3-18 

SIA 5800 Status input to A 1-1/4 2-70 

SIN 6800 Status inhibit 1-1/4 2-69 

SIX 5AOO Status input to X 1-1/4 2-70 

SOA 6COO Status output from A 1-1/4 2-71 

SOX 6EOO Status output from X 1-1/4 2-71 

SOY 1400 Set overflow 1 2-67 

SSN 4800* Sense and skip on no response 1-1/4 3-17 

STA 9800* Store A; direct, scratchpad 2 2-13 

STA 9900* Store A; indirect, AP in scratchpad 2+1n 2-13 

STA 9AOO* Store A; relative to P forward, direct 2 2-13 

STA 9BOO* Store A; relative to P forward, indirect 2+1n 2-13 

STA 9COO* Store A; indexed, direct 2 2-13 

D-14 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

STA 9DOO* Store A; indexed, indirect 2+1n 2-13 

STA 9EOO* Store A; relative to P backward, direct 2 2-13 

STA 9FOO* Store A; relative to P backward, indirect 2+1n 2-13 

STAB :9800* Store A Byte, direct, scratchpad 2 2~26 

STAB :9900* Store A Byte, indirect, AP in scratchpad 3 2-26 

STAB :9AOO* Store A Byte 0, direct, relative to P forward 2 2-26 

STAB :9BOO* Store A Byte, indirect, AP relative to P forward 3 2-26 

STAB :9COO* Store A Byte, indexed, direct 2 2-26 

STAB :9DOO* Store A Byte, indexed, indirect, AP in scratchpad 3 2-26 

STAB :9EOO* Store A Byte 1, direct, relative to P forward 2 2-26 

STAB :9FOO* Store A Byte, indirect, AP relative to P backward 3 2-26 

STX E800* Store X; direct, scratchpad 2 2-13 

STX E900* Store X; indirect, AP in scratchpad 2+1n 2-13 

STX EAOO* Store X; relative to P forward, direct 2 2-13 

STX EBOO* Store X; relative to P forward, indirect 2+1n 2-13 

STX ECOO* Store X; indexed, direct 2 2-13 

STX EDOO* Store X; indexed, indirect 2+1n 2-13 

STX EEOO* Store X; relative to P backward, direct 2 2-13 

STX EFOO* Store X; relative to P backward, indirect 2+1n 2-13 

STXB :E800* Store X Byte, direct, scratchpad 2 2-26 

STXB :E900* Store X Byte, indirect, AP in scratchpad 3 2-26 

STXB :EAOO* Store X Byte 0, direct, relative to P forward 2 2-26 

STXB :EBOO* Store X Byte, indirect, relative to P forward 3 2-26 

STXB :ECOO* Store X Byte, indexed, direct 2 2-26 

STXB :EDOO* Store X Byte, indexed, indirect, AP 3 2-26 

STXB :EEOO* Store X Byte 1, direct, relative to P forward 2 2-26 

STXB :EFOO* Store X Byte, indirect, relative to P backward 3 2-26 

SUB 9000* Subtract from A; direct, scratchpad 2 2-11 

SUB 9100* Subtract from A; indirect, AP in scratchpad 2+1n 2-11 

SUB 9200* Subtract from A; relative to P forward, direct 2 2-11 

SUB 9300* Subtract from A; relative to P forward, indirect 2+1n 2-11 

SUB 9400* Subtract from A; indexed, direct 2 2-11 

SUB 9500* Subtract from A; indexed, indirect 2+1n 2-11 

SUB 9600* Subtract from A; relative to P backward, direct 2 2-11 

SUB 9700* Subtract from A; relative to P backward, indirect 2+1n 2-11 

SUBB 9000* Subtract Byte, direct, scratchpad 2 2-24 

SUBB :9100* Subtract Byte, indirect, AP in scratchpad 3 2-24 

SUBB :9200* Subtract Byte 0, direct, relative to P forward 2 2-24 

SUBB :9300* Subtract Byte, indirect, AP relative to P forward 3 2-24 

0-15 



INSTRUCTION SET, ALPHABETICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

SUBB :9400* Subtract Byte, indexed, direct 2 2-24 

SUBB :9500* Subtract Byte, indirect, indexed, AP in scratchpad 3 2-24 

SUBB :9600* Subtract Byte 1, direct, relative to P forward 2 2-24 

SUBB :9700* Subtract Byte, indirect, relative to P backward 3 2-24 

SWM OFOO Set word mode 2-68 

SXI C300* Subtract from X immediate 1 2-31 

TAX 0048 Transfer A to X 1 2-62 

TRP 4007 Trap 1-1/4 2-69 

TXA 0030 Transfer X to A 1 2-62 

WRA 6DOO* Write from A 1-1/4 3-23 

WRX 6FOO* Write from X 1-1/4 3-23 

WRZ 6900* Write zeros 1-1/4 3-23 

XOR A800* Exclusive OR to A; direct scratchpad 2 2-15 

XOR A900* Exclusive OR to A; indirect, AP in scratchpad 2+1n 2-15 

XOR AAOO* Exclusive OR to A; relative to P forward, direct 2 2-15 

XOR ABOO* Exclusive OR to A; relative to P forward, indirect 2+1n 2-15 

XOR ACOO* Exclusive OR to A; indexed, direct 2 2-15 

XOR ADOO* Exclusive OR to A; indexed, indirect 2+1n 2-15 

XOR AEOO* Exclusive OR to A; relative to P backward, direct 2 2-15 

XOR AFOO* Exclusive OR to A; relative to P backward, indirect 2+1n 2-15 

XORB :A800* Exclusive OR Byte, direct, scratchpad 2 2-29 

XORB :A900* Exclusive OR Byte, indirect, AP in scratchpad 3 2-29 

XORB :AAOO* Exclusive OR Byte 0, direct, relative to P forward 2 2-29 

XORB :ABOO* Exclusive OR Byte, indirect, AP relative to P forward 3 2-29 

XORB :ACOO* Exclusive OR Byte, indexed, direct 2 2-29 

XORB :ADOO* Exclusive OR Byte, indexed, indirect, AP in scratchpad 3 2-29 

XORB :AEOO* Exclusive OR Byte 1, direct, relative to P forward 2 2-29 

XORB :AFOO* Exclusive OR Byte, indirect, AP relative to P backward 3 2-29 

XRM 0008 Set X to minus 1 2-59 

XRP 0528 Set X to plus 1 2-60 

ZAR 0110 Zero A register 2-58 

ZAX 0118 Zero A and X registers 2-58 
\ 

ZXR 0108 Zero X register 2-58 

D-16 



APPENDIX E 

INSTRUCTION SET, NUMERICAL ORDER 

Instructions are listed in numerical order by hexadecimal code in the Appendix. 

*Instruction codes followed by an asterisk (*) are shown with variable fields containing all zeros (address fields, jump distances, 

shift counts, device addresses, etc.). Instruction codes not followed by an asterisk do not have variable fields and the code 

shown is the only code that defines the instruction. 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

NOP 0000 No operation 2-67 

XRM OOOB Set X to minus 1 2-59 

ARM 0010 Set A to minus 1 2-59 

AXM 0018 Set A and X to minus 1 2-59 

TXA 0030 Transfer X to A 2-62 

TAX 0048 Transfer A to X 2-62 

ANX 0068 AND of A and X to X 3-31 

ANA 0070 AND of A and X to A 2-65 

DXR 00A8 Decrement X 2-60 

DXA OOBO Decrement X and put in A 2-64 

DAX 00C8 Decrement A and put in X 2-64 

DAR OODO Decrement A 2-60 

ZXR 0108 Zero X register 2-58 

ZAR 0110 Zero A register 2-58 

ZAX 0118 Zero A and X registers 2-58 

IXR 0128 Increment X 2-61 

IXA 0130 Increment X and put in A 2-64 

lAX 0148 Increment A and put in X 2-64 

IAR 0150 Increment A 2-61 

CAX 0208 Complement A and put in X 2-63 

CAR 0210 Complement A 2-62 

NAX 0308 Negate A and put in X 2-63 

NAR 0310 Negate A register 2-61 

ARP 0350 Set A to plus 1 2-59 

AXP 0358 Set A and X to plus 1 2-60 

CXR 0408 Complement X 2-62 

CXA 0410 Complement X and put in A 2-63 

NXR 0508 Negate X register 2-61 

NXA 0510 Negate X and put in A 2-63 

E-1 

II 



INSTRUCTION SET, NUMERICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

XRP 0528 Set X to plus 1 1 2-60 

NRX 0608 NCP of (A and X) to X: (A) V (X) - X 2-65 

NRA 0610 Nap of (A and X) to A: (A) V (X) - A 1 2-65 

HLT 0800 Halt 2-67 

EIN OAOO Enable interrupts 2-68 

DIN OCOO Disable interrupts 2-69 

SBM OEOO Set byte mode 1 2-68 

SWM OFOO Set word mode 1 2-68 

ALX 1028* Arithmetic shift X left 1+1/4K 2-45 

ALA 1050* Ari thmetic shift A left 1+1/4K 2-45 

ARX 10A8* Arithmetic shift X right 1+1/4K 2-45 

ARA 10DO* Arithmetic shift A right 1+1/4K 2-44 

RLX 1128* Rotate X left with OV 1+1/4K 2-48 

RLA 1150* Rotate A left with OV 1+1/4K 2-48 

RRX llA8* Rotate X right with OV 1+1/4K 2-48 

RRA IIDO* Rotate A right with OV 1+1/4K 2-47 

ROV 1200 Reset overflow 1 2-67 

NOR 1228* Normalize 1/4K 2-49 

LLX 1328* Logical shift X left 1+1/4K 2-47 

SAO 1340 Sign of A to OV ] 2-49 

LLA 1350* Logical shift A left 1+1/4K 2-46 

LRX 13A8* Logical shift X right 1+1/4K 2-46 

LRA 13DO* Logical shift A right 1+1/4K 2-46 

SOY 1400 Set overflow 1 2-67 

COY 1600 Complement overflow 1 2-68 

LRL 1900* Long rotate left 1-1/4+ 1/2K 2-50 

DVS 1940* Divide step 1-1/4+1/2K 2-53 

LRR 1980* Long rotate right 1-1/4+1/2K 2-50 

MPS 19AO* Multiply step 1-1/4+ 1/2K 2-51 

LLL IBOO* Long logical left 1-1/4+ 1/2K 2-50 

LLR IB80* Long logical right 1-1/4+ 1/2K 2-49 

JAM (JOC :01, Jump if A negative: (A)< 0 2-36 

ADR) 2080* Forward jump 

20CO* Backward jump 

JAZ (JOC :02, Jump if A zero: (A)=O 2-37 

ADR) 2100* Forward jump 

2140* Backward jump 

E-2 



INSTRUCTION SET, NUMERICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

JAL (JOC :03, Jump if A negative or equal to zero: (A)!5 0 2-38 

ADR) 2180* Forward jump 

21CO* Backward jump 

JOS (JOC :04, Jump if overflow set: OV=1 2-39 

ADR) 2200* Forward jump 

2240* Backward jump, 

JOC :05,ADR Jump if overflow set or A negative: OV=1 V (A) < 0 2-36 

2280* Forward jump 

22CO* Backward jump 

JOC :06,ADR Jump if overflow set or A equals zero: OV=1 V (A)=O 2-36 

2300* Forward jump 

2340* Backward jump 

JOC :07,ADR Jump if overflow set or A less than or equal to zero: 2-36 

OV=l V (A)< 0 

2380* Forward jump 

23CO* Backward jump 

JSR (JOS :08, Jump if Sense Switch off: SS=O 2-39 

ADR) 2400* Forward jump 

2440* Backward jump 

JOC :09,ADR Jump if Sense Switch off or A negative: SS=O V (A)< 0 2-36 

2480* Forward jump 

24CO* Backward jump 

JOC :OA,ADR Jump if Sense Switch off or A equal to zero: 2-36 

SS=O V (A)=O 

2500* Forward jump 

2540* Backward jump 

JOC :OB,ADR Jump if Sense Switch off or A less than or equal to zero: 2-36 

SS=O yeA)=:: 0 

2580* Forward jump 

25CO* Backward jump 

JOC :OC,ADP Jump if Sense Switch off or overflow set: SS=O VOV=1 2-36 

2600* Forward jump 

2640* Backward jump 

JOC :OD,ADR Jump if Sense Switch off or overflow set or A negative: 2-36 

SS=O V OV=1 V (A) < 0 

2680* Forward jump 

26DO* Backward jump 

E-3 



INSTRUCTION SET, NUMERICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

JOC :OE,ADR Jump if Sense Switch off or overflow set or A equals zero: 2-36 

SS=O V OV=1 V (A)=O 

2700* Forward jump 

2740* Backward jump 

JOC :OF,ADR Jump if Sense Switch off or overflow set or A less than 2-36 

or equal to zero SS=O V OV=1 V (A):5 0 

2780* Forward jump 

27CO* Backward jump 

JXZ (JOC : 10, Jump if X equal to zero: (X)=O 1 2-38 

ADR) 2800* Forward jump 

2840* Backward jump 

JOC : 11,ADR Jump if X equals zero or A negative (X)=O V (A)< 0 2-36 

2880* Forward jump 

28CO* Backward jump 

JOC: 12,ADR 2900* Illegal combination (includes (X)=O V (A)=O) 2-36 

2940* 

JOC: 13,ADR 2980* Illegal combination (includes (X)=O V (A)=O) 2-36 

29CO* 

JOC : 14,ADP Jump if X equals zero or overflow set: (X)==O V OV=1 2*36 

2AOO* Forward jump 

2A40* Backward jump 

JOC : 15,ADR Jump if X equals zero or overflow set or A negative 2*36 

(X)=O V OV=1 V (A)< 0 

2A80* Forward jump 

2ACO* Backward jump 

JOC : 16,ADR 2BOO* Illegal combinations (include (X)=O V (A)=O) 2-36 

2B40* 

JOC : 17 2B80* Illegal combinations (include (X)=O V (A)=O) 2-36 

2BCO* 

JOC :18,ADR Jump if X equals zero or Sense Switch off: (X)=O V 8S=0 2-36 

2COO* Forward jump 

2C40* Backward jump 

JOC : 19,ADR Jump if X equals zero or Sense Switch off or A is negative: 2-36 

(X)=OV SS=OV (A)< 0 

2C80* Forward jump 

2CCO* Backward jump 

JOC :lA,ADR 2DOO* Illegal combination (includes (X)=O V (A)=O) 2-36 

2D40* 

E-4 



INSTRUCTION SET, NUMERICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

JOC :IB,ADR 2D80* Illegal combination (includes (X)=O V (A)=O) 2-36 

2DCO* 

JOC :IC,ADR Jump if X equals zero or Sense Switch off or overflow set: 2-36 

(X)=O V SS=O V OV=1 

2EOO* Forward jump 

2E40* Backward jump 

JOC :ID,ADR Jump if X equals zero or Sense Switch off or overflow set 2-36 

or A negative: (X)=O V SS=O V OV=1 V (A) < I 
2E80* Forward jump 

2ECO* Backward jump 

JOC :IE,ADR 2FOO* Illegal combination (includes (X)=O V (A)=O) 2-36 

2F40* 

JOC :IF,ADR 2F80* Illegal combination (includes (X)=O V (A)=O) 2-36 

2FCO* 

JAP (JOC :21, Jump if A positive or equal to zero: (A) ~ 0 2-36 

ADR) 3080* Forward jump 

30CO* Backward jump 

JAN (JOC :22, Jump if A not zero: (A) ¢ 0 2-37 

ADR) 3100* Forward jump 

3140* Backward jump 

JAG (JOC :23, Jump if A positive and not equal to zero: (A»O 2-37 

ADR) 3180* Forward jump 

31CO* Backward jump 

JaR (JOC : 24, Jump if overflow reset: OV=O 2-39 

ADR) 3200* Forward jum p 

3240* Backward jump 

JOC :25,ADR Jump if A positive and overflow is reset: 2-36 

(A) ~ 0 AOV=O 

3280* Forward jump 

32CO* Backward jump 

JOC :26,ADR Jump if A non-zero and overflow reset: (A)¢O AOV=O 2-36 

3300* Forward jump 

3340* Backward jump 

JOC :27,ADR Jump if A greater than zero and overflow reset: 2-36 

(A»O A OV=O 

3380* Forward jump 

33CO* Backward jump 

E-5 



INSTRUCTION SET, NUMERICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

JSS (JOC :28, Jump if Sense Switch on: SS=1 2-39 

ADR) 3400* Forward jump 

3440* Backward jump 

JOC :29,ADR Jump if Sense Switch on and A positive: SS=1 /\ (A) ~ 0 2-36 

3480* Forward jump 

34CO* Backward jump 

JOC :2A,ADR Jump if Sense Switch on and A non-zero: SS=1 /\ (A) ~ 0 2-36 

3500* Forward jump 

3540* Backward jump 

JOC :2B,ADR Jump if Sense Switch on and A greater than zero: 2-36 

SS=I/\ (A) >0 

3580* Forward jump 

35CO* Backward jump 

JOC :2C,ADP Jump if Sense Switch on and overflow reset: 2-36 

SS=I/\ OV=O 

3600* Forward jump 

3640* Backward jump 

JOC :2D,ADR Jump if Sense Switch on and A positive and overflow 2-36 

reset: SS=1 /\(A) ~O /\OV=O 

3680* Forward jump 

36CO Backward jump 

JOC :2E,ADR Jump if Sense Switch on and A non-zero and overflow 2-36 

reset: SS=1 /\(A),cO /\OV=O 

3700* Forward jump 

3740* Backward jump 

JOC :2F,ADR Jump if A greater than zero and Sense Switch on and 2-36 

overflow reset (A)~ 0/\ SS ~ 1/\ OV=O 

3780* Forward jump 

37CO* Backward jump 

JXN (JOC :30, Jump if X non-zero: (X),c 0 2-38 

ADR) 3800* Forward jump 

3840* Backward jump 

JOC :31,ADR Jump if X non-zero and A positive: (X) ~ 0 /\ (A) ? 0 2-36 

3880* Forward jump 

38CO* Backward jump 

JOC :32,ADR Jump if X non-zero and A non-zero: (X) ¢ 0/\ (A);t: 0 2-36 

3900* Forward jump 

3940* Backward jump 

E-6 



INSTRUCTION SET, NUMERICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

JOC :33,ADR Jump if X non-zero and A greater than zero: 2·36 

(X):;e 0 t\ (A) > 0 

3980* Forward jump 

39CO* Backward jump 

JOC :34,ADR Jump if X non-zero and overflow reset: (X) ;z!: 0 " OV=O 1 2-36 

3AOO* . Forwardjump 

3A40* Backward jump 

JOC :35,ADR Jump if X non-zero and A positive and overflow 1 2-36 

reset: (X);z!: 0/\ (A) 2: 0" OV=O 

3A80* Forward jump 

3ACO* Backward jump 

JOC :36,ADR Jump if X non-zero and A non-zero and overflow 2-36 

reset: (X);r- 0" (A) ~ 0 t\ OV=O 

3BOO* Forward jump 

3B40* Backward jump 

JOC :37,ADR Jump if X non-zero and A greater than zero and 2-36 

overflow reset: (X) ~ 0 /\ (A) > 0 /\ OV=O 

3B80* Forward jump 

3BCO* Backward jump 

JOC:38,ADR Jump if X non-zero and Sense Switch on: (X);z!: 0/\ SS=l 2-36 

3COO* Forward jump 

3C40* Backward jump 

. JOC :39,ADR Jump if X non-zero and A positive and Sense Switch on: 2-36 

(X);z!: 0 /\(A) ~ 0" SS=l 

3C80* Forward jump 

3CCO* Backward jump 

JOC :3A,ADR Jump if X non-zero and A non-zero and Sense Switch on: 2-36 

(X);z!: 0 A (A) ;z!: 0 A SS= 1 

3DOO* Forward jump 

3D40* Backward jump 

JOC :3B,ADR Jump if X non-zero and A greater than zero and Sense 2-36 

Switch on: (X);z!: 0 A (A) > 0 t\ SS=l 

3D80* Forward jump 

3DCO* Backward jump 

JOC :3C,ADR Jump if X non-zero and Sense Switch on and overflow 2-36 

reset: (X);z!: 0 /\ SS=l /\ OV=O 

3EOO* Forward jump 

3E40* Backward jump 

E-7 



INSTRUCTION SET, NUMERICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

JOC :3D,ADR Jump if X non-zero and A positive and Sense Switch 1 2-36 

on and overflow reset: (X) ¢ 0 1\ (A) ~ 0 A SS= 1 Ov~O 

3E80* Forward jump 

3ECO* Backward jump 

JOC :3E,ADR Jump if X non-zero and A non-zero and Sense Switch 2-36 

on and overflow reset: (X) ~ 0 A (A) ~ 0 A SS= 1 " OV=O 

3FOO* Forward jump 

3F40* Backward jump 

JOC :3F,ADR Jump if X non-zero and A greater than zero and Sense 2-36 

Switch on and overflow reset: 

(X) ~ 0 A(A) > 0 A SS=1 A OV=O 

3F80* Forward jump 

3FCO* Backward jump 

SEL 4000* Select function 1-1/4 3-18 

MPE 4000 Memory Protect enable 1-1/4 2-73 

MPD 4001 Memory Protect disable 1-1/4 2-73 

PFE 4002 Power Fail interrupt enable 1-1/4 2-72 

PFD 4003 Power Fail interrupt disable 1-1/4 2-72 

CIE 4005 Console interrupt enable 1-1/4 2-71 

CID 4006 Console interrupt disable 1-1/4 2-72 

TRP 4007 Trap 1-1/4 2-69 

RAM 4045 Set Random Access mode 1-1/4 2-74 

ROM 4046 Set Read Only mode 1-1/4 2-74 

SEA 4400* Select and present A 1-1/4 3-18 

SEX 4600* Select and present X 1-1/4 3-18 

SSN 4800* Sense and skip on no response 1-1/4 3-17 

SEN 4900* Sense and skip on response 1-1/4 3-17 

AIN 5000* Automatic Input: Word 4-1/4 3-30 

AlB 5400* Automatic Input: Byte 4-1/2 . 3-31 

INA 5800* Input word to A (unconditionally) 1-1/4 3-19 

SIA 5800 Status input to A 1-1/4 2-70 

ISA 5801 Input data switches to A 1-1/4 2-66 

RDA 5900* Read word to A 1-1/4 3-20 

INX 5 AOO* Input word to X (unconditionally) 1-1/4 3-19 

SIX 5AOO Status input to X 1-1/4 2-70 

RDX 5BOO* Read word to X 1-1/4 3-20 

ISX 5BOl Input data switches to X 1-1/4 2-66 

INAM 5COO* Input word to A, masked (unconditionally) 1-1/4 3-20 

E-8 



INSTRUCTION SET, NUMERICAL ORDER 
Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

RDAM 5DOO* Read word to A, masked 1-1/4 3-21 

INXM 5EOO* Input word to X, masked (unconditionally) 1-1/4 3-20 

RDXM 5FOO* Read word to X, masked 1-1/4 3-21 

AOT 6000* Automatic Output: Word 4-1/4 3-30 

AOB 6400* Automatic Output: Byte 4-1/4 3-31 

SIN 6800 Status Inhibit 1-1/4 2-69 

OTZ 6800* Output zero (unconditionally) 1-1/4 3-22 

WRZ 6900* Write zeros 1-1/4 3-23 

OTA 6COO* Output A Register (unconditionally) 1-1/4 3-22 

SOA 6COO Status output from A 1-1/4 2-71 

WRA 6DOO* Write from A 1-1/4 3-23 

OTX 6EOO* Output X register (unconditionally) 1-1/4 3-22 

SOX 6EOO Status output from X 1-1/4 2-71 

WRX 6FOO* Write from X 1-1/4 3-23 

BIN 7100* Block input to memory 2+1-1/2w 3-25 

BOT 7500* Block output from memory 2+1-1/2w 3-26 

IBA 7800* Input byte to A (unconditionally) 1-1/4 3-19 

RBA 7900* Read byte to A 1-1/4 3-21 

IBX 7AOO* Input byte to X (unconditionally) 1-1/4 3-19 

RBX 7BOO* Read byte to X 1-1/4 3-21 

IBAM 7COO* Input byte to A, masked (unconditionally) 1-1/4 3-20 

RBAM 7DOO* Read byte to A, masked 1-1/4 3-21 

IBXM 7EOO* Input byte to X, masked (unconditionally) 1-1/4 3-20 

RBXM 7FOO* Read byte to X, masked 1-1/4 3-21 

AND 8000* AND to A direct, scratchpad 2 2-14 

AND 8100* AND to A indirect, AP in scratchpad 2+1n 2-14 

AND 8200* AND to A relative to P forward, direct 2 2-14 

AND 8300* AND to A relative to P forward, indirect 2+1n 2-14 

AND 8400* AND to A indexed, direct 2 2-14 

AND 8500* AND to A indexed, indirect 2+1n 2-14 

AND 8600* AND to A relative to P backward, direct 2 2-14 

AND 8700* AND to A relative to P backward, indirect 2+1n 2-14 

ANDB :8000* AND to A byte, direct, scratch pad 2 2-28 

AN DB :8100* AND to A byte, indirect, AP in scratchpad 3 2-28 

ANDB :8200* AND to A byte 0, direct, relative to P forward 2 2-28 

ANDB :8300* AND to A byte, indirect, AP relative to P forward 3 2-28 

AN DB :8400* AND to A byte, indexed, direct 2 2-28 

ANDB :8500* AND to A byte, indexed, indirect, AP in scratchpad 3 2-28 

£09 



INSTRUCTION SET, NUMERICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

ANDB :8600* AND to A byte 1, direct, relative to P forward 2 2-28 

ANDB :8700* AND to A byte, indirect, AP relative to P backward 3 2-28 

ADD 8800* Add to A direct, scratchpad 2 2-10 

ADD 8900* Add to A indirect, AP in scratchpad 2+1n 2-10 

ADD 8AOO* Add to A relative to P forward, direct 2 2-10 

ADD 8BOO* Add to A relative to P forward, indirect 2+1n 2-10 

ADD 8COO* Add to A indexed, direct 2 2-10 

ADD 8000* Add to A indexed, indirect 2+1n 2-10 

ADD 8EOO* Add to A relative to P backward, direct 2 2-10 

ADD 8FOO* Add to A relative to P backward, indirect 2+1n 2-10 

ADDB :8800* Add byte, direct, scratchpad 2 2-24 

ADDB :8900* Add byte, indirect, AP in scratchpad 3 2-24 

ADDB :8AOO* Add byte 0, relative to P forward, direct 2 2-24 

ADDB :8BOO* Add byte, indirect, AP relative to P, forward 3 2-24 

ADDB :8COO* Add byte, direct, indexed 2 2-24 

ADDB :8000* Add byte, indirect, indexed, AP in scratchpad 3 2-24 

ADDB :8EOO* Add byte 1, relative to P forward, direct 2 2-24 

ADDB :8FOO* Add byte, indirect, relative to P, backward 3 2-24 

SUB 9000* Subtract from A; direct, scratchpad 2 2-11 

SUB 9100* Subtract from A; indirect, AP in scratchpad 2+1n 2-11 

SUB 9200* Subtract from A; relative to P forward, direct 2 2-11 

SUB 9300* Subtract from A; relative to P forward, indirect 2+1n 2-11 

SUB 9400* Subtract from A; indexed, direct 2 2-11 

SUB 9500* Subtract from A; indexed, indirect 2+1n 2-11 

SUB 9600* Subtract from A; relative to P backward direct 2 2-11 

SUB 9700* Subtract from A; relative to P backward, indirect 2+1n 2-11 

SUBB :9000* Subtract byte, direct, scratchpad 2 2-24 

SUBB :9100* Subtract byte, indirect, AP in scratchpad 3 2-24 

SUBB :9200* Subtract byte 0, direct, relative to P forward 2 2-24 

SUBB :9300* Subtract byte, indirect, AP relative to P forward 3 2-24 

SUBB :9400* Subtract byte, indexed, direct 2 2-24 

SUBB :9500* Subtract byte, indirect, indexed, AP in scratchpad 3 2-24 

SUBB :9600* Subtract byte 1, direct, relative to P forward 2 2-24 

SUBB :9700* Subtract byte, indirect, relative to P backward 3 2-24 

STA 9800* Store A, direct, scratchpad 2 2-13 

STA 9900* Store A; indirect, AP in scratchpad 2+1n 2-13 

STA 9AOO* Store A; relative to P forward, direct 2 2-13 

STA 9BOO* Store A; relative to P forward, indirect 2+1n 2-13 

E-IO 



INSTRUCTION SET, NUMERICAL ORDER 

Instmction Instmction 
Mnemonic Code in Hex Description Cycles Page 

STA 9COO* Store A; indexed, direct 2 2-13 

STA 9DOO* Store A; indexed, indirect 2+1n 2-13 

STA 9EOO* Store A; relative to P backward, direct 2 2-13 

STA 9FOO* Store A; relative to P backward, indirect 2+1n 2-13 

STAB :9800* Store A byte, direct, scratchpad 2 2~26 

STAB :9900* Store A byte, indirect, AP in scratchpad 3 2-26 

STAB :9AOO* Store A byte 0, direct, relative to P forward 2 2-26 

STAB :9BOO* Store A byte, indirect, AP relative to P forward 3 2-26 

STAB :9COO* Store A byte, indexed, direct 2 2-26 

STAB :9DOO* Store A byte, indexed, indirect, AP in scratchpad 3 2-26 

STAB :9EOO* Store A byte 1, direct, relative to P forward 2 2-26 

STAB :9FOO* Store A byte, indirect, AP relative to P backward 3 2-26 

lOR AOOO* Inclusive OR to A; direct, scratchpad 2 2-14 

lOR AI00* Inclusive OR to A; indirect, AP in scratchpad 2+1n 2-14 

lOR A200* Inclusive OR to A; relative to P forward, direct 2 2-14 

lOR A300* Inclusive OR to A; relative to P forward, indirect 2+1n 2-14 

lOR A400* Inclusive OR to A; indexed, direct 2 2-14 

lOR A500* Inclusive OR to A; indexed, indirect 2+1n 2-14 

lOR A600* Inclusive OR to A; relative to P backward, direct 2 2-14 

lOR A700* Inclusive OR to A; relative to P backward, indirect 2+1n 2-14 

IORB : AOOO* Inclusive OR byte, direct, scratchpad 2 2-28 

IORB :AI00* Inclusive OR byte, indirect, AP in scratchpad 3 2-28 

IORB :A200* Inclusive OR byte 0, direct, relative to P forward 2 2-28 

IORB :A300* Inclusive OR byte, indirect, AP relative to P forward 3 2-28 

IORB :A400* Inclusive OR byte, indexed, direct 2 2-28 

IORB :A500* Inclusive OR byte, indexed, indirect, AP in scratchpad 3 2-28 

IORB :A600* Inclusive OR byte 0, direct, relative to P forward 2 2-28 

IORB :A700* Inclusive OR byte, indirect, AP relative to P backward 3 2-28 

XOR A800* Exclusive OR to A; direct, scratchpad 2 2-15 

XOR A900* Exclusive OR to A; indirect, AP in scratchpad 2+1n 2-15 

XOR AAOO* Exclusive OR to A; relative to P forward, direct 2 2-15 

XOR ABOO* Exclusive OR to A; relative to P forward, indirect 2+1n 2-15 

XOR ACOO* Exclusive OR to A; indexed, direct 2 2-15 

XOR ADOO* Exclusive OR to A; indexed, indirect 2+1n 2-15 

XOR AEOO* Exclusive OR to A; relative to P backward, direct 2 2-15 

XOR AFOO* Exclusive OR to A; relative to P backward, indirect 2+1n 2-15 

XORB :A800* Exclusive OR byte, direct, scratchpad 2 2-29 

E-II 



INSTRUCTION SET, NUMERICAL ORDER 
Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

XORB :A900* Exclusive OR byte, indirect, AP in scratchpad 3 2·29 

XORB :AAOO* Exclusive OR byte 0, direct, relative to P forward 2 2·29 

XORB :ABOO* Exclusive OR byte, indirect, AP relative to P forward 3 2·29 

XORB : ACOO* Exclusive OR byte, indexed, direct 2 2·29 

XORB :ADOO* Exclusive OR byte, indexed, indirect, Af in scratchpad 3 2·29 

XORB :AEOO* Exclusive OR byte 1, direct, relative to P forward 2 2·29 

XORB :AFOO* Exclusive OR byte, indirect, AP relative to P backward 3 2·29 

LDA BOOO* Load A; direct, scratchpad 2 2·12 

LDA B100* Load A; indirect, AP in scratchpad 2+1n 2·12 

LDA B200* Load A; relative to P forward, direct 2 2·12 

LDA B300* Load A; relative to P forward, indirect 2+1n 2·12 

LDA B400* Load A indexed, direct 2 2·12 

LDA B500* Load A; indexed, indirect 2+1n 2·12 

LDA B600* Load A; relative to P backward, direct 2 2·12 

LDA B700* Load A; relative to P backward, indirect 2+1n 2·12 

LDAB : BOOO* Load A byte, direct, scratchpad 2 2·25 

LDAB :B100* Load A byte, indirect, AP in scratchpad 3 2·25 

LDAB :B200* Load A byte 0, direct, relative to P forward 2 2·25 

LDAB :B300* Load A byte, indirect, AP relative to P forward 3 2·25 

LDAB :B400* Load A byte, indexed, direct 2 2·25 

LDAB :B500* Load A byte, indexed, indirect, AP in scratchpad 3 2·25 

LDAB :B600* Load A byte 1, direct, relative to P forward 2 2·25 

LDAB :B700* Load A byte, indirect, AP relative to P backward 3 2·25 

EMA B800* Exchange memory and A; direct, scratchpad 2 2·13 

EMA B900* Exchange memory and A; indirect, AP in scratchpad 2+1n 2·13 

EMA BAOO* Exchange memory and A; relative to P forward, direct 2 2·13 

EMA BBOO* Exchange memory and A; relative to P forward, indirect 2+1n 2·13 

EMA BCOO* Exchange memory and A; indexed, direct 2 2·13 

EMA BDOO* Exchange memory and A; indexed, indirect 2+1n 2·13 

EMA BEOO* Exchange memory and A; relative to P backward, direct 2 2·13 

EMA BFOO* Exchange memory and A;relative to P backward,indirect 2+1n 2·13 

EMAB :B800* Exchange Memory and A byte, direct, scratchpad 2 2·27 

EMAB :B900* Exchange Memory and A byte, indirect, AP in 3 2·27 

scratchpad 

EMAB :BAOO* Exchange Memory and A byte 0, direct, relative 2 2·27 

to P forward 

EMAB :BBOO* Exchange Memory and A byte, indirect, AP relative 3 2·27 

to P forward 

E-12 



INSTRUCTION SET, NUMERICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

EMAB :BCOO* Exchange Memory and A byte, indexed, direct 2 2-27 

EMAB :BDOO* Exchange Memory and A byte, indexed, indirect, 3 2-27 

AP in scratchpad 

EMAB :BEOO* Exchange Memory and A byte 1, direct, relative 2 2-27 

to P forward 

EMAB :BFOO* Exchange Memory and A, indirect, AP relative 3 2-27 

to P backward 

CAl COOO* Compare to A immediate 2-33 

CXI CI00* Compare to X immediate 2-33 

AXI C200* Add to X immediate 2-31 

SXI C300* Subtract from X immediate 2-31 

LXP C400* Lead X positive immediate 2-31 

LXM C500* Lead X minus immediate 2-33 

LAP C600* Load A positive immediate 2-32 

LAM C700* Load A minus immediate 2-32 

SCN CDOO* Scan memory, indexed, indirect 2+1w 2-16 

CMS DOOO* Compare memory to A and skip if high or equal; 2 2-15 

direct, scratchpad 

CMS DI00* Compare memory to A and skip if high or equal; 2+1n 2-15 

indirect, AP in scratchpad 

CMS D200* Compare memory to A and skip if high or equal; 2 2-15 

relative to P forward, direct 

CMS D300* Compare memory to A and skip if high or equal; 2+1n 2-15 

relative to P forward, indirect 

CMS D400* Compare memory to A and skip if high or equal; 2 2-15 

indexed, direct 

CMS D500* Compare memory to A and skip if high or equal; 2+1n 2-15 

indexed, indirect 

CMS D600* Compare memory to A and skip if high or equal; 2 2-15 

relative to P backward, direct 

CMS D700* Compare memory to A and skip if high or equal; 2+1n 2-15 

relative to P backward, indirect 

CMSB :DOOO* Compare byte and skip if high or equal; 2 2-29 

direct, scratchpad 

CMSB :DI00* Compare byte and skip if high or equal, indirect, 3 2-29 

AP in scratchpad 

CMSB :D200* Compare byte 0 and skip if high or equal, 2 2-29 

direct, relative to P forward 
E-13 



INSTRUCTION SET, NUMERICAL ORDER 

Instruction Ins truc ti on 
Mnemonic Code in Hex Description Cycles Page 

CMSB :D300* Compare byte and skip if high or equal, indirect, 3 2-29 

AP relative to P forward 

CMSB :D400* Compare byte and skip if high or equal, indexed, direct 2 2-29 

CMSB :D500* Compare byte and skip if high or equal, indexed, 3 2-29 

indirect, AP in scratchpad 

CMSB :D600* Compare byte 1 and skip if high or equal, direct, 2 2-29 

relative to P forward 

CMSB :D700* Compare byte and skip if high or equal, indirect, 3 2-29 

AP relative to P backward 

IMS D800* Increment memory and skip on zero result; direct, 2 2-11 

scratchpad 

IMS D900* Increment memory and skip on zero result; indirect, 2+1n 2-11 

AP in scratchpad 

IMS DAOO* Increment memory and skip on zero result; relative 2 2-11 

to P forward, direct 

IMS DBOO* Increment memory and skip on zero result; relative 2+1n 2-11 

to P forward, indirect 

IMS DCOO* Increment memory and skip on zero result; 2 2-11 

indexed, direct 

IMS DDOO* Increment memory on skip on zero result; indexed, 2+1n 2-11 

indirect 

IMS D£OO* Increment memory and skip on zero result; relative 2 2-11 

to P backward, direct 

IMS DFOO* Increment memory and skip on zero result, relative 2+1n 2-11 

to P backward, indirect 

LDX £000* Load X; direct, scratchpad 2 2-12 

LDX £100* Load X; indirect, AP in scratchpad 2+1n 2-12 

LDX £200* Load X; relative to P forward, direct 2 2-12 

LDX £300* Load X; relative to P forward, indirect 2+1n 2-12 

LDX £400* Load X; indexed, direct 2 2-12 

LDX £500* Load X; indexed, indirect 2+1n 2-12 

LDX £600* Load X; relative to P backward, direct 2 2-12 

LDX £700* Load X; relative to P backward, indirect 2+1n 2-12 

LDXB :£000* Load X byte, direct, scratchpad 2 2-25 

LDXB :£100* Load X byte, indirect, AP in scratchpad 3 2-25 

LDXB :£200* Load X byte 0, direct, relative to P forward 2 2-25 

LDXB :E300* Load X byte, indirect, relative to P forward 3 2-25 

LDXB :£400* Load X byte, indexed, direct 2 2-25 

E-14 



INSTRUCTION SET, NUMERICAL ORDER 

Instruction Instruction 
Mnemonic Code in Hex Description Cycles Page 

LDXB :E500* Load X, indexed, indirect, AP in scratchpad 3 2-25 

LDXB :E600* Load X byte 1, direct, relative to P forward 2 2-25 

LDXB :E700* Load X byte, indirect, relative to P backward 3 2-25 

STX E800* Store X; direct, scratchpad 2 2-13 

STX E900* Store X; indirect, AP in scratchpad 2+1n 2-13 

STX EAOO* Store X; relative to P forward, direct 2 2-13 

STX EBOO* Store X; relative to P forward, indirect 2+1n 2-13 

STX ECOO* Store X; indexed, direct 2 2-13 

STX EDOO* Store X; indexed, indirect 2+1n 2-13 

STX EEOO* Store X; relative to P backward, direct 2 2-13 

STX EFOO* Store X; relative to P backward, indirect 2+1n 2-13 

STXB :E800* Store X byte, direct, scratchpad 2 2-26 

STXB :E900* Store X byte, indirect, AP in scratchpad 3 2-26 

STXB :EAOO* Store X byte 0, direct, relative to P forward 2 2-26 

STXB :EBOO* Store X byte, indirect, relative to P forward 3 2-26 

STXB :ECOO* Store X byte, indexed, direct 2 2-26 

STXB :EDOO* Store X byte, indexed, indirect. AP 3 2-26 

STXB :EEOO* Store X byte 1, direct, relative to P forward 2 2-26 

STXB :EFOO* Store X byte, indirect, relative to P backward 3 2-26 

JMP FOOO* Jump unconditionally; direct, scratchpad 2-18 

JMP FI00* Jump unconditionally; indirect. AP in scratchpad ,., 
2-18 .. 

JMP F200* Jump unconditionally; relative to P forward, direct 2-18 

JMP F300* Jump unconditionally; relative to P forward, indirect 2 2-18 

JMP F400* Jump unconditionally; indexed, direct 2-18 

JMP F500* Jump unconditionally; indexed, indirect :2 2-18 

JMP F600* Jump unconditionally; relative to P backward, direct 2-18 

JMP F700* Jump unconditionally; relative to P backward, 2 2-18 

indirect 

JST F800* Jump and Store; direct, scratchpad 2 2-18 

JST F900* Jump and Store; indirect. AP in scratchpad 3 2-18 

JST FAOO* Jump and Store; relative to P forward, direct 2 2-18 

JST FBOO* Jump and Store; relative to P forward, indirect 3 2-18 

JST FCOO* Jump and Store; indexed, direct 2 2-18 

JST FDOO* Jump and Store; indexed, indirect 3 2-18 

JST FEOO* Jump and Store; relative to P backward, direct 2 2-18 

JST FFOO* Jump and Store; relative to P backward, indirect 3 2-18 

E-15/16 




	0000
	0001
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-1
	C-2
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16

