816 CONTROLLER REFERENCE MANUAL 895 WEST SIXTEENTH STREET NEWPORT BEACH, CALIF. 92660 TELEPHONE: (714) 642-9630 DECEMBER 1968 # 816 CONTROLLER REFERENCE MANUAL ## CONTENTS | Ι | GENERAL DESCRIPTION | 1-1 | |---|----------------------------------|------| | | Introduction | 1-1 | | | 816 Processor | 1-2 | | | 816 Memory | 1-5 | | | Memory Addressing | 1-5 | | | Block I/O Addressing | 1-7 | | п | PROCESSOR INSTRUCTIONS | 2-1 | | | Introduction | 2-1 | | | Memory Reference | 2-1 | | | Conditional Jump Instructions | 2-7 | | | Immediate Instructions | 2-13 | | | Register Change Instructions | 2-15 | | | Shift Instructions | 2-16 | | | Register Change | 2-21 | | | Control Instructions | 2-32 | | Ш | INPUT/OUTPUT (I/O) SECTION | 3-1 | | | Introduction | 3-1 | | | Input/Output Instructions | 3-1 | | | Block Transfer Instructions | 3-9 | | | Load/Dump Memory Instructions | 3-13 | | | Priority Interrupt System | 3-12 | | | Control Console | 3-18 | | | Peripheral Equipment Description | 3-17 | | | Mainframe Options | 3-2 | | | Reserved Memory Locations | 3-23 | ## Contents - continued | IV | I/O INTERFACE REFERENCE | 4-1 | |---------|---|------------| | | Introduction | 4-1 | | | Party Line I/O Bus | 4-1 | | | Interface Timing | 1-5 | | | | | | V | INSTALLATION | 5-1 | | | Physical Mounting | 5-1 | | | Power | 5-1 | | | Operation Environment | 5-1 | | | I/O Cable Termination List | 5-4 | | | | | | APPEN | NDIX A | | | | Hexadecimal Arithmetic | A-1 | | | Addition Table | A-1 | | | Multiplication Table | A-1 | | | Hexadecimal - Decimal Integer Conversion | | | | Table | A-2 | | | Hexadecimal - Decimal Fraction Conversion Table | Δ-8 | | | Mathematical Constants. | | | | Table of Powers of Two | | | | Teletype Code | | | | Teletype code | ** ** | | APPEN | NDIX B | | | *** * 2 | 816 Instruction Set - Numerical Order | B-1 | | | To histration per Hamerical Gradi | <i>2</i> 1 | | APPE | NDIX C | | | | Control Console | C-1 | | | | C-2 | | | | C-3 | # 816 # PROGRAMMED DIGITAL CONTROLLER 816 Controller - Front View ## I GENERAL DESCRIPTION #### INTRODUCTION The Model 816 Programmed Digital Controller is a digital, stored-program unit that utilizes integrated circuits and a 3D core memory for simplicity and reliability. The moderate speed of the memory improves operating margins and allows powerful instructions to be implemented with ease in the processor. Parallel organization and over 140 instructions provide general-purpose computer power and flexibility. The 816 is designed for commercial and industrial control and monitoring applications where emphasis is on reliability, flexibility and economy. Examples of the uses of the 816 include: - Central control station for inter-city communications network for concentrating and distributing messages. - Controller for plotting tables and optical scanners. - Automation of production line logic element testing. - Remote-site valve control and monitoring. - Mass spectrometer controller. The 816 Controller has the following characteristics: - Parallel processing - Seven hardware registers - 4096-word (a word is 16 bits) memory expandable to 16,384 words - Over 140 basic instructions - Binary, 2's complement arithmetic - 8-microsecond memory cycle - Block input/output from memory standard - Three hardwired priority interrupt lines standard - Relative, Indirect and Indexed addressing - Automatic memory scan standard - Immediate instructions - Optional features Real-time clock Power fail/restart Priority interrupt module Buffered output channels Gated input channels Modem interfaces #### • Peripheral equipment ASR-33 Teletype with paper tape reader and punch High speed paper tape reader and punch Fixed head disc storage unit, 16,000 to 131,000 words Magnetic tape deck interfaces #### Software Symbolic assembler, 2 and 3 pass Debug package Diagnostic package Math library - All silicon semiconductors - Operating temperature range: 0° to 45°C - Power 250 watts, approximately - Dimensions: 8-3/4 in. high, 19 in. wide, 17 in. deep - Weight: 40 lbs., including power supply #### 816 PROCESSOR The 816 Controller contains seven hardware registers, the adder unit and the control section. Refer to Figure 1-1. The adder is a 16-bit parallel-add, serial-carry unit utilizing complex function TTL integrated circuits. Two 16-bit words are presented to the adder unit via the S and U buses. The sum appears on the A bus, which distributes it to the W, M, P, A and X registers. The sum is then strobed into the desired register by a set or load pulse. Control of the adder is achieved by controlling the contents of the S and U buses. The output of the adder can be shifted left or right by selection gates between the adder and the A bus. Figure 1-1 816 Controller Block Diagram One bit of a typical bus structure is shown below: The information on the buses is under the control of the processor control logic. By placing the contents of one register on a bus, it may be transferred to another register by routing it through the various buses and/or adder unit until it appears as an input to one or more registers, and then strobing it into the desired register. - The W Register is a 16-bit register that interfaces the processor to the data circuits in memory. Data read from or stored in memory is held in the W Register during the memory cycle. The W Register is always cleared at the beginning of a memory cycle. If data is to be stored in memory, it is strobed into W halfway through the cycle. If data is being read from memory, it is placed in W approximately 2 to 3 microseconds after the beginning of the memory cycle and held there during the restore portion (last half) of the cycle. - The M Register is a 16-bit register that interfaces the processor to the address decoding circuits in the memory. Address information is stored in the M Register at the beginning of the memory cycle, where it is held throughout the cycle. - The <u>P Counter</u> is a 16-bit register that serves as the program counter. It is used to hold the memory location (address) of the <u>next instruction</u> word in the program. - The A Register is a 16-bit register that is used as the accumulator for arithmetic operations and serves as a word buffer register for programmed data transfers to or from I/O devices. - The X Register is a 16-bit register that is used as an index register and also as a word buffer register for programmed transfers to or from I/O devices. - The I Register is a 16-bit register that holds the current instruction being executed. • The R Register is a 16-bit register that serves as an operand register to hold operands used in Memory Reference instructions. #### 816 MEMORY The basic controller memory is a conventional 4-wire, 3-D core memory with an 8-microsecond full cycle time. Access time is around 2 microseconds. The basic configuration is 4096 words of 16 bits, and expansion is in 4096-word blocks up to 16K words. A power fail-safe option is available to prevent loss of memory as power collapses due to a primary AC power failure or a power turn-off. If power is detected, an interrupt occurs which allows entry into a subroutine to effect an orderly halt to operations. #### MEMORY ADDRESSING The memory is random access requiring 14 bits of address (for 16K). The address is supplied by the M Register in the processor. There are several modes of memory addressing to obtain the 14-bit effective address. The modes are specified by the address modifier bits (bits 8 through 10) of the memory reference instruction. See Figures 1-3 and 1-4. Figure 1-3 Memory Reference Instruction Format Figure 1-4 Address Modifiers #### Direct Addressing - OO Scratchpad. The A field is used as the effective address in the scratch area (first 256 locations in memory) - 01 Relative to P forward. The A Field is added to the current contents of the P counter and the sum is used as the effective memory location. - 10 Indexed. The A Field is added to the contents of the X Register and the sum is used as the effective memory location. - 11 Relative to P backward. The A Field is subtracted from the current contents of the P counter and the difference is used as the effective memory locations. #### Indirect Addressing The above methods of direct addressing allow an operand (or an instruction in the case of Jump) to be addressed directly by the instruction. In some cases, however, the location of the operand is specified by an indirect pointer - a word in memory which contains the address of the operand. This is particularly useful if the location of the desired operand is subject to change. The instruction can specify the location of the pointer and the pointer then specifies the location of the operand. This is indirect addressing. There can be several levels of indirect addressing, i.e., "multi-level indirect addressing." If the most significant bit of the indirect pointer is a zero, the pointer is the address of the operand. If the most significant bit of the pointer is a one, the pointer is the address of another pointer. - OO Scratchpad. The A Field is used as the effective address of the pointer in the scratch area (first 256 locations in memory.) The pointer is used as the address of the operand. - Relative to P forward. The A Field is added to the current contents of the P counter and the sum is used as the effective address of the pointer. The pointer is then used as the address of the operand. - Indexed. The A Field is used as the effective address of the pointer in the scratch area. The contents of the X Register is added to the contents of the pointer and the sum is used as the effective address of the operand. The contents of the pointer in memory is unchanged and X Register is unchanged. - 11 Relative to P backward. The A Field is subtracted from the current contents of the P counter and the difference is used as the address of the pointer. Indirect addressing adds one memory cycle for each level.
Indexing or going relative to P does not add to execution time. #### BLOCK I/O ADDRESSING The Block input/output instructions also involve addressing memory, but always indirectly. That is, the instruction word does not contain addressing information. Instead each Block instruction has a pair of memory words associated with it. One location is used as a word counter and the other is used as an address counter. The word counter is incremented each transfer and tested for carry to indicate end-of-block. The address word is incremented each transfer and the incremented value used as the operand address. Thus Block I/O are addressing instructions, but of a special type. # II PROCESSOR INSTRUCTIONS #### INTRODUCTION This section describes the 816 Controller basic instruction set except for the I/O instructions which are described in the next section. There are six classes or groupings of instructions: Memory Reference, Immediate, I/O, Conditional Jumps, Register Change and Control. All instructions are single word, and most require only one memory cycle to excute. #### MEMORY REFERENCE The format of the Memory Reference instructions is shown below. The first eight bits of the word contains the Operation Code and the address modifiers. The last eight bits of the word contain the A-Field which is used to specify or augment a memory address. #### MEMORY REFERENCE FORMAT The indirect tag specifies direct or indirect addressing: I = 0 = direct I = 1 = indirect The mode code specifies one of four modes of forming the address: MM = 00 = Scratch area, 256 locations MM = 01 = Relative to P forward MM = 10 = Indexed MM = 11 = Relative to P backward ADD Adds contents of effective memory location to contents of A Register. Results stored in A. Registers affected: A, OV Timing: 2 plus 1 for each indirect level SUB #### SUBTRACT | | | | | | | | ı Re | gister | • | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|-----|-------|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3_ | 2 | 1 | 0 | | 1 | 0 | 0 | 1 | 0 | М | M | Ι | | | | A F | 'ield | | | | Subtracts the contents of effective memory location from contents of A Register. Results stored in A. Registers affected: A, OV Timing: 2 plus 1 for each indirect level AND Performs the AND of the contents of the effective memory location and the contents of the A Register. Results stored in A. Registers affected: A Timing: 2 plus 1 for each indirect level STA #### STORE A Stores contents of the A Register into the effective memory location. A is unchanged and previous contents of memory are lost. Registers affected: Memory Timing: 2 plus 1 for each indirect level STX STORE X | | | | | | | | I Re | giste | r | | | | | | | |-----|----|----|----|----|----|---|------|-------|---|---|-----|------|---|---|---| | _15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | _4 | 3 | 2 | 1 | 0 | | 1 | 1 | 1 | 0 | 1 | M | М | I | | | | A I | reld | | | | Stores contents of the X Register into the effective memory location. X is unchanged and the previous contents of memory are lost Registers affected: Memory Timing: 2 plus 1 for each indirect level Loads the contents of the effective memory location into the A Register. Memory is unchanged. Registers affected: A Timing: 2 plus 1 for each indirect level Loads the contents of the effective memory location into the X Register. Memory is unchanged. Register affected: X Timing: 2 plus 1 for each indirect level IOR #### INCLUSIVE OR I Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 0 0 M M I A Field Inclusively OR's the contents of the effective memory location with contents of the A Register. Memory is unchanged. Registers affected: A Timing: 2 plus 1 for each indirect level XOR #### EXCLUSIVE OR I Register | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|---|---|---|---|---|-----|-------|---|---|---| | 1 | 0 | 1 | 0 | 1 | М | M | I | | | | A F | `ield | - | | | Performs the Exclusive OR of the contents of the effective memory location and the A Register. Memory is unchanged. Registers affected: A Timing: 2 plus 1 for each indirect level **EMA** #### EXCHANGE MEMORY AND A I Register |
15 | | | 12 | | | | | 7 | 6 | 5 | _4 | 3 | 2 | _1 | 0 | |--------|---|---|----|---|---|---|---|---|---|---|-----|------|---|----|---| | 1 | 0 | 1 | 1 | 1 | М | М | I | | | | A F | ield | | | | Simultaneously stores contents of A Register in the effective memory location and loads contents of effective memory location into the A Register. Registers affected: A and Memory Timing: 2 plus 1 for each indirect level IMS #### INCREMENT MEMORY AND SKIP ON ZERO RESULT I Register | 15 | <u>. </u> | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|--|----|----|----|----|----|---|---|---|---|---|-----|-------|---|---|---| | 1 | | 1 | 0 | 1 | 1 | M | M | I | | | | A F | 'ield | | | | The contents of effective memory location are incremented by one count and replaced. If the incrementing causes the result to become zero, a one place skip occurs. Overflow is set if the result of the incremention is 100000₈. NOTE: Neither skip nor OV occurs if IMS is executed as an interrupt instruction. Registers affected: OV, Memory and P Timing: 2 plus 1 for each indirect level JMP #### JUMP UNCONDITIONAL I Register | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8_ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|---|----|---|---|---|-----|------|---|---|---| | 1 | 1 | 1 | 1 | 0 | M | M | I | | | _ | A F | ield | | | | The A Field is placed in the P counter if the Jump is direct to scratchpad. If relative to P is specified, the A Field is added (or subtracted) to P and the results placed in P. If indexing is specified, the A Field is added to the contents of the X Register and the results placed in P. If indirect addressing is specified the Jump occurs after the last level of addressing. Registers affected: P Timing: 1 plus 1 for each indirect level JST #### JUMP AND STORE I Register | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5_ | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|---|---|---|---|----|-----|-------|---|---|---| | 1 | 1 | 1 | 1 | 1 | M | М | I | | | | A F | `ield | | | | The contents of the P counter (P+1) are stored in the effective memory address. The P counter is changed after the store to contain the effective memory address plus one. The effective memory address is obtained in the same manner as in any other Memory Reference instruction. Registers affected: P and Memory Timing: 2 plus 1 for each indirect level CMS #### COMPARE AND SKIP IF HIGH OR EQUAL | | | | | | | | I Re | gister | • | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|-----|-------|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 1 | 1 | 0 | 1 | 0 | М | М | I | | | | A F | ield' | | | | Compares contents of effective memory location with contents of A Register and tests for A equal to, less than or greater than memory. - If A less than memory, next instruction in sequence is executed (no skip). - If A greater than memory, a one-place skip occurs. - If A equal to memory, a two-place skip occurs. Registers affected: P Timing: 2 plus 1 for each indirect level SCN #### SCAN MEMORY Scans table in memory specified by X Register and base address. Compares memory to contents of A Register (Key). Contents of X specifies the number of words in table to be scanned. The base address (minus one) of the table is stored as an indirect pointer in the scratch area, and the first location is accessed by indirect indexed addressing. If a comparison is found (A equal to memory), a one-place skip occurs. If A and memory are not equal, the X Register is decremented, M Register is decremented and the next sequential memory location is compared. If X goes to zero, the next instruction is executed. Since X is kept current, a return to the table to pick up the scan after a comparison is accomplished by executing the SCN instruction again. - If OV is reset, a comparison is made against the full contents of the A Register. That is, all 16 bits are compared. - If OV is set, a comparison of the upper 8 bits of the A Register is made. The lower eight bits are ignored. Registers affected: X, M, P Timing: 2 plus 1 for each indirect level plus 1 for each additional compare. #### CONDITIONAL JUMP INSTRUCTIONS Instructions that test conditions within the controller and take action depending upon the results of the test fall into the Conditional Jump instruction class. If the condition tested is satisfied, a jump of 1 to 64 locations is executed by adding or subtracting the contents of the Jump Field (J field) to the Program Counter (P counter). If the condition is not satisfied, the next instruction in sequence is executed. The Conditional Jump instructions provide for conditional branching within a program, or branching to another program. There are five items that can be tested by Conditional Jumps: - Sign of A (positive or negative) - Contents of A (zero or not zero) - Contents of X (zero or not zero) - OV -- set (1) or reset (0) - Sense Switch on Console -- on (depressed) or off #### CONDITIONAL JUMP INSTRUCTION FORMAT *NOTE: OV will be reset when tested for the set condition. If tested for the reset condition, it is unchanged. Conditional Jump is a single-word, micro-programmed instruction. Bits 15-13 (001) specify the Conditional Jump class. Bit 12 specifies the AND (1) or OR (0) group of conditions. Conditions to be tested are selected by setting (to 1) the appropriate condition bits (11-7). Bit 6 is set (1) to produce a backward jump. The J field (bits 5-0), contains the relative jump address. A forward jump is executed by adding the J field to the contents of the P register plus one. A backward jump is executed by subtracting the J field from the contents of the P register. #### OR JUMP GROUP OR Jump
Instruction Format The 31 instructions in this group are combinations of the five conditions that may be tested as shown above. If more than one condition is specified, the jump will occur if <u>any</u> of the specified conditions are met. The following instructions are representative of the instructions that may be derived from this group. Refer to Appendix B for a complete listing of all conditional jump instructions. JAM JUMP IF A MINUS | | | | | | | | I Re | giste | r | | | | | | | |----|----|----|----|----|----|---|------|-------|---|---|----|-------|------|----|----| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1_ | 0_ | | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | R | | Ju | ımp I | ield | | | A jump occurs if the A register is less than zero (A15 = 1). Otherwise the next instruction in sequence is executed. Registers affected: P Timing: 1 JAZ JUMP IF A ZERO | | | | | | |] | Reg | gistei | : | | | | | | | |----|----|----|----|----|----|---|-----|--------|---|---|----|------|------|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | R | | Ju | mp F | ield | | | A jump occurs if the A Register is zero. Otherwise the next instruction in sequence is executed. Registers affected: P Timing: 1 JAL JUMP IF A LESS THAN OR EQUAL TO ZERO | | | | | | | | | I Re | giste | • | | | | | | | |---|----|----|----|----|----|----|---|------|-------|---|---|----|-------|------|---|---| | 1 | .5 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | R | | Ju | ımp F | ield | | | A jump occurs if the A Register is less than or equal to zero. Otherwise the next instruction in sequence is executed. Registers affected: P Timing: 1 JOS JUMP IF OVERFLOW SET | | | | | | | | ı ke | giste | C. | | | | | | | |----|----|----|----|----|----|---|------|-------|----|---|---|------|-------|----|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6_ | 5 | 4 | 3 | 2 | 1_ | 0 | | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | R | | J | Jump | Field | ! | | A jump occurs if the overflow bit is set (1) and the overflow bit is reset. Otherwise the next instruction in sequence is executed. Registers affected: P Timing: 1 JSR JUMP IF SENSE SWITCH RESET | | | | | | | | I Re | gi st ei | r | | | | | | | |----|----|----|----|----|----|---|------|-----------------|---|---|-----|-------|-----|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | _3 | 2 | 1 | 0 | | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | R | | Jur | np Fi | eld | | | A jump occurs if the SENSE SWITCH is reset (not depressed). Otherwise the next instruction in sequence is executed. Registers affected: P Timing: 1 JXZ #### JUMP IF X ZERO | | | | | | | | I Re | giste | r | | | | | | | |----|----|----|----|----|----|---|------|-------|---|---|-----|-------|-----|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | R | | Jun | np Fi | eld | | | A jump occurs if the X Register is zero. Otherwise the next instruction in sequence is executed. Registers affected: P Timing: 1 #### AND JUMP GROUP AND Jump Instruction Format The 31 instructions in this group are combinations of the five conditions that may be tested, as shown above. If more than one condition is specified, the jump will occur only if all of the specified conditions are met. The following instructions are representative of the instructions that may be derived from this group. Refer to Appendix B for a complete listing of all conditional jump instructions. JAP #### JUMP IF A POSITIVE I Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 0 0 1 R Jump Field A jump occurs if the A Register is positive (A15=0). Otherwise the next instruction in sequence is executed. Registers affected: P Timing: 1 JAN #### JUMP IF A NOT ZERO | | | | | | | • | i ne | graces | | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|-------|-------|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | R | | J | ump 1 | Field | | | I Dominton A jump occurs if the A Register is not zero. Otherwise the next instruction in sequence is executed. Registers affected: P Timing: 1 JAG #### JUMP IF A GREATER THAN ZERO A jump occurs if the A Register is greater than zero. Otherwise the next instruction in sequence is executed. Registers affected: P Timing: 1 JOR #### JUMP IF OVERFLOW RESET A jump occurs if the overflow bit is reset (0). Otherwise the next instruction in sequence is executed. Registers affected: P Timing: 1 | | | | | | | | I Re | gıste | r | | | | | | | |-------|----|----|----|----|----|---|------|-------|---|---|-----|-------|----|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |
0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | R | | Jum | p Fie | ld | | | A jump occurs if the sense switch is set (depressed). Otherwise the next instruction in sequence is executed. Registers affected: P Timing: 1 JXN JUMP IF X NOT ZERO | | | | | | | | I Re | giste | r | | | | | | | |----|----|----|----|----|----|---|------|-------|---|---|-----|--------|-----|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | R | | Jun | ıp Fie | eld | | | A jump occurs if the X Register is not zero. Otherwise the next instruction in sequence is executed. Registers affected: P Timing: 1 #### IMMEDIATE INSTRUCTIONS The immediate instructions allow certain operations that are similar to Memory Reference operations to be performed without going to memory for the operand. For example Add requires the operand to be located in memory, while Add Immediate, uses the last eight bits of the instruction as the operand. The format of the Immediate Instructions is shown below: IMMEDIATE INSTRUCTION FORMAT The Immediate Instructions are limited to eight bit operands. When specifying a minus number, for instance Load A Immediate Minus, the eight bit operand is negated and all 1's are inserted in the upper half of the A register. Thus all 16 bits of A are affected. CAI COMPARE to A IMMEDIATE The operand (lower half of instruction) is compared to lower half of A Register. If unequal a skip of one place occurs. If equal, the next instruction in sequence is executed. The contents of A are not disturbed. Registers affected: P Timing: 1 CXI COMPARE to X IMMEDIATE The operand (lower half of instruction) is compared to lower half of X Register. If unequal, a skip of one place occurs. If equal, the next instruction in sequence is executed. The contents of X are not disturbed. Registers affected: P Timing: 1 AXI #### ADD to X IMMEDIATE | | | | | | | | | I Re | giste | r | | | | | | | |----|----|----|----|----|----|----|---|------|-------|---|---|------|-----|---|---|---| | _1 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | | | Oper | and | | | | The operand (lower half of the instruction) is added to the lower half of the contents of the X Register. If a carry out of bit 7 occurs, it is added to the upper half of X (bit 8). Registers affected: X, OV Timing: 1 SXI #### SUBTRACT from X IMMEDIATE The operand (lower half of instruction) is subtracted from the lower half of the contents of X Register. If a borrow occurs, upper half of X is decremented. Registers affected: X, OV Timing: 1 LXP #### LOAD X POSITIVE IMMEDIATE | | | | | | | | I Re | giste: | r | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|------|-----|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | | | | Oper | and | | | | The operand is loaded into the lower half of the X Register. The upper half is set to zero. Registers affected: X Timing: 1 LXM #### LOAD X MINUS IMMEDIATE | | | | | | | | I Re | giste | r | | | | | | | |----|----|----|----|----|----|---|------|-------|---|---|------|-----|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | | | | Oper | and | | | | The operand is negated (2's complement) and loaded into the lower half of X Register. The upper half of X is set to all 1's. Registers affected: X Timing: 1 LAP #### LOAD A POSITIVE IMMEDIATE | | | | | | | | 1 Re | giste | I. | | | | | | | |----|----|----|----|----|----|---|------|-------|----|---|------|------|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | _3 | 2 | 1 | 0 | | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | | | | Oper | rand | | | | The operand (lower half of instruction) is loaded into lower half of A Register. The upper half of A is set to zero. Registers affected: A Timing: 1 LAM #### LOAD A MINUS IMMEDIATE The operand (lower half of instruction) is negated (2's complement) and loaded into the lower half of the A Register. The upper half of A is set to all 1's. Registers affected: A Timing: 1 #### REGISTER CHANGE INSTRUCTIONS The Register Change class contain the instructions for handling the A and X Registers. The Shift instructions are a part of the Register Change class. The instructions are micro-coded allowing many combinations, some of which are not useful except in special situations. The more useful ones are presented here and the bit assignments in the instruction are identified to allow the programmer to make up additional instructions. Two micro codes are used; one for shift and one for the rest of the Register Change class. #### SHIFT INSTRUCTIONS The micro-code instruction format for the Shift instructions is shown below. SHIFT INSTRUCTION FORMAT K field. The K field is used to specify more than a one place shift. If K=0, a one place shift occurs. A maximum of eight places may be shifted in one instruction. SET X. The Set X bit controls the set pulse to the X Register. SET A. The Set A bit controls the set pulse to the A Register. <u>SEL X.</u> The Sel X
bit controls the select X logic. The contents of X are selected on to the S Bus with this bit on. SEL A. The Sel A bit controls the select A logic. The contents of A are selected on to the S Bus with this bit on. RIGHT. If this bit is on it indicates a right shift. Otherwise a left shift occurs. ROTATE. The rotate bit controls the handling of the contents of the OV flip-flop. If the bit is on OV is shifted on to the register being shifted. RESET OV. This bit controls the OV flip-flop. If the bit is on, OV is reset just prior to the shift. Thus a logical shift is created by resetting OV and shifting it in as in the rotate. SET OV. This bit controls the set enable to the OV. It is not used for normal shifts. ALA #### ARITHMETIC SHIFT A LEFT I Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 X X X The contents of the A Register (bits 0-14) are shifted left 1+K places. The sign bit (bit 15) is unchanged. Zeros are shifted into bit 0, and bit 14 is lost. Registers affected: A Timing 1+1/4K ALX #### ARITHMETIC SHIFT X LEFT | | | | | | |] | Reg | gister | r | | | | | | | |----|----|----|----|----|----|---|-----|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | X | x | x | The contents of the X Register (bits 0-14) are shifted left 1+K places. The sign bit (bit 15) is unchanged. Zeros are shifted into bit 0, and bit 14 is lost. Registers affected: X Timing: 1+1/4K ARA #### ARITHMETIC SHIFT A RIGHT | | | | | | | | т ке | gistei | ŗ | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | X | x | х | The contents of the A Register are shifted right 1+K places. The sign bit (bit 15) is unchanged and propagated. Bit 0 is lost. Registers affected: A Timing: 1+1/4K ARX #### ARITHMETIC SHIFT X RIGHT | | | | | | | | ı Ke | gıster | r | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Ø | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | x | х | х | The contents of the X Register are shifted right 1+K places. The sign bit (bit 15) is unchanged and propagated. Bit 0 is lost. Registers affected: X Timing: 1+1/4K RRA #### ROTATE A RIGHT WITH OV | | | | | | | | I Re | gister | r | | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---|--| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | x | X | X | | The contents of the A Register are shifted right 1+K places through the OV flip-flop. OV is shifted into bit 15. Registers affected: A, OV Timing: 1+1/4K RRX #### ROTATE X RIGHT WITH OV | | | | | | | | I Reg | giste | r | | | | | | | | |----|----|----|----|----|----|---|-------|-------|---|---|---|---|---|---|---|--| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | х | x | X | | The contents of the X Register are shifted right 1+K places through the OV flip-flop. OV is shifted into bit 15. Registers affected: X, OV Timing: 1+1/4K RLA #### ROTATE A LEFT WITH OV | | | | | | | | I Reg | gistei | • | | | | | | | |----|----|----|----|----|----|---|-------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | x | x | х | The contents of the A Register are shifted left 1+K places through the OV flip-flop. OV is shifted into bit 0. Registers affected: A, OV Timing: 1+1/4K RLX #### ROTATE X LEFT WITH OV | | | | | | | | i Re | gistei | | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | х | X | X | 7 Dominton The contents of the X Register are shifted left 1+K places through the OV flip-flop. OV is shifted into bit 0. Registers affected: X, OV Timing: 1+1/4K flip-flop. OV is shifted into bit 0. Registers affected: X, OV Timing: 1+1/4K LRA #### LOGICAL SHIFT A RIGHT | | | | | | | | I Reg | gister | r | | | | | | | |----|----|----|----|----|----|---|-------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | x | X | x | The contents of the A Register are shifted right 1+K places through OV. Zeros are shifted into bit 15. Registers affected: A, OV Timing: 1+1/4K LRX #### LOGICAL SHIFT X RIGHT | | | | | | | | I Re | gistei | r | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | X | X | x | The contents of the X Register are shifted right 1+K places through OV. Zeros are shifted into bit 15. Registers affected: X, OV Timing: 1+1/4K LLA #### LOGICAL SHIFT A LEFT The contents of the A Register are shifted left 1+K places through OV. Zeros are shifted into bit 0. Registers affected: A, OV Timing: 1+1/4K LLX #### LOGICAL SHIFT X LEFT I Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 0 0 1 1 0 0 1 X X X The contents of the X Register are shifted left 1+K places through OV. Zeros are shifted into bit 0. Registers affected: X, OV Timing: 1+1/4K LRR #### LONG ROTATE RIGHT * | | | | | | | | I Re | gistei | ŗ | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | x | x | X | x | Contents of A and X Registers are shifted right through OV 1+K places. OV is shifted into A15. X00 is shifted into OV. Registers affected: A, X, OV Timing: 1+1/4K LRL #### LONG ROTATE LEFT Contents of A and X Registers are shifted left through OV 1+K places. OV is shifted into X00. A15 is shifted into OV. Registers affected: A, X, OV Timing: 1+1/4K * NOTE: Long shift micro-coding deviates from the standard shift format. The K field is four bits, allowing up to 16-place shifts to be accomplished with one instruction. #### 816 REFERENCE MANUAL #### ADDENDUM TO SHIFT INSTRUCTIONS LLL #### LONG LOGICAL SHIFT LEFT* The contents of the A and X Registers are logically shifted left through OV 1+K places. Zero is shifted into X00, X15 is shifted into A00, and A15 is shifted into OV. The previous contents of OV are lost. Up to 16 place shifts are allowed. A, X and OV act as a 33-bit register. Registers affected: A, X and OV Timing: 1+1/4K LLR #### LONG LOGICAL SHIFT RIGHT* The contents of the A and X Registers are logically shifted right through OV 1+K places. Zero is shifted into A15, A00 is shifted into X15, and X00 is shifted into OV. The previous contents of OV are lost. Up to 16 place shifts are allowed. A, X and OV act as a 33-bit register. Registers affected: A, X and OV Timing: 1+1/4K NOR #### NORMALIZE X REGISTER The contents of the X Register are arithmetically shifted left 1+K places or shifted until X15 is not equal to X14, whichever occurs first. Zero is shifted into X00. If X15 is not equal to X14, OV is set and the last shift is inhibited. That is, when X15 \neq X14, the remaining shifts are inhibited and OV will be set to indicate the contents of X are normalized. Up to 8 place shifts are allowed. Registers affected: X, OV Timing: 1+1/4K ^{*} See Note page 2-20 #### MPS #### MULTIPLY STEP * The MPS instruction is a combination ADD and Long Right Shift in which the contents of the R Register are conditionally added to A and the result shifted right. Both A and X are shifted. The instruction is used to code fast software multiply Since the multiplicand is held in the R Register (which is not normally accessible to the programmer), care must be exercised in the use of MPS. #### 1 + K multiply steps are executed per the following algorithm: - 1) If OV is set (contains a one), it is reset, and the contents of the R Register are added to the contents of the A Register. If an overflow occurred as a result of the addition, OV is set. - 2) The A and X Registers are shifted right one place. shifted into A14, A00 goes to X15, X00 goes to OV, and the exclusive OR of OV and A15 goes to A15. Registers affected: A, X, OV Timing: 1+1/4K DVS #### DIVIDE STEP* The DVS instruction is a combination ADD or SUB and Long Left Shift in which the contents of R are conditionally subtracted from or added to A and the result shifted left. Both A and X are shifted. The instruction is used to code fast divide subroutines. Since the divisor is held in the R Register (which is not normally available to the programmer), care must be exercised in the use of DVS. #### 1+K divide steps are executed per the following algorithm: - 1) The contents of the X Register are shifted left one place, with X15 going to a temporary bit store (LSRF) flip-flop. - 2) X00 is set to zero if OV is not equal to R15, or it is set to one if OV and R15 are equal. - 3a) If X00 is one, the contents of the R Register are subtracted from A and the result placed in A. ^{*} See Note page 2-20 - 3b) If X00 is zero, the contents of the R Register are added to A and the result placed in A. - 4) The contents of the A Register are shifted left one place with A15 going to OV and bit store (LSRF) going to A00. Registers affected: A, X, OV Timing: 1+1/4K NOTE: To load the R Register with an operand (multiplier or divisor), other registers are loaded normally and a Compare instruction executed. This will cause R to be loaded, but will not affect A or X. Since the contents of R must be held throughout an MPS or DVS, and usually in
multiply or divide subroutines, the routines should not be interruptable. This is accomplished by disabling interrupts at the beginning of the routines and enabling interrupts at the end of the routines. #### REGISTER CHANGE The micro-code instruction format for the Register Change instructions (excluding shifts) is shown below. Bit assignments that are different than the shift micro-code are described. REGISTER CHANGE INSTRUCTION FORMAT INCR. Not Increment. When this bit is on, the carry into the adder is inhibited. SELRR. Select R and R Not. When this bit is on, both R and the 1's complement of R are selected onto the U-Bus to guarantee the U-Bus contains all zeros. <u>SELA</u>. Select A Not. When this bit is on, the 1's complement of the contents of A Register is selected onto the S-Bus. SELX. Select X Not. When this bit is on, the 1's complement of the contents of the X Register is selected onto the S-Bus. NOTE: The S-Bus is an AND bus. Thus if the contents of A and X are both selected onto the S-Bus, the result is the AND of A and X on the S-Bus. If \overline{A} and \overline{X} are selected, the result is \overline{A} AND \overline{X} on the S-Bus. (Logically equivalent to $\overline{A} + \overline{X}$.) XRM #### SET X REGISTER to MINUS 1 Sets contents of X Register to all 1's. Registers affected: A Timing: 1 ARM # SET A REGISTER to MINUS 1 I Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 X X X Sets contents of A Register to all 1's. Registers affected: A Timing: 1 AXM # SET A and X REGISTER to MINUS 1 | | | | | | | | т ке | gistei | r | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | х | x | х | Sets contents of A and X Registers to all 1's. Registers affected: A, X Timing: 1 ZXR # ZERO X REGISTER Sets contents of X Register to Zero. Registers affected: X Timing: 1 ZAR # ZERO A REGISTER Sets contents of A Register to Zero. Registers affected: A ZAX # ZERO A and X REGISTER | | | | | | | | I Re | gister | r | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | X | Х | х | Sets contents of A and X Registers to Zero. Registers affected: A, X Timing: 1 XRP # SET X REGISTER to PLUS 1 Sets contents of X Register to plus 1 (bit 0 on). Registers affected: X Timing: 1 ARP SET A REGISTER to PLUS 1 Sets contents of A Register to plus 1 (bit 0 on). Registers affected: A Timing: 1 AXP SET A and X REGISTERS to PLUS 1 Sets contents of A and X Registers to plus 1 (bit 0 on). Registers affected: A, X DXR # DECREMENT X REGISTER 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 0 1 0 1 X X X Subtracts one from the contents of X Register and places result in X. Registers affected: X, OV Timing: 1 DAR ## DECREMENT A REGISTER | | | | | | | | I Re | giste | r | | | | | | | | |----|----|----|----|----|----|---|------|-------|---|---|---|---|---|----|---|--| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | _1 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | х | х | x | | Subtracts one from the contents of A Register and places result in A. Registers affected: A, OV Timing: 1 IXR # INCREMENT X REGISTER Adds one to the contents of the X Register and places result in X. Registers affected: X, OV Timing: 1 IAR # INCREMENT A REGISTER Adds one to contents of A Register and places results in A. Registers affected: A, OV Timing: 1 CXR ## COMPLEMENT X REGISTER I Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 X X Performs 1's complement of contents of X Register and places result in X. Registers affected: X Timing: 1 CAR # COMPLEMENT A REGISTER | | | | | | | | I Re | gister | r | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | x | X | x | Performs 1's complement of contents of A Register and places result in A. Registers affected: A Timing: 1 NXR # NEGATE X REGISTER | | | | | | | | I Ke | giste | r | | | | | | | | |----|----|----|----|----|----|---|------|-------|---|---|---|---|---|---|---|--| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | X | X | X | | Performs 2's complement of contents of X Register and places result in X. Registers affected: X Timing: 1 NAR # **NEGATE A REGISTER** Performs 2's complement of contents of A Register and places result in A. Registers affected: A TXA # TRANSFER X to A I Register 14 11 10 9 0 0 0 0 0 0 0 0 0 1 1 0 X Transfers contents of X Register to A Register. X is unchanged. Registers affected: A Timing: 1 TAX TRANSFER A to X | | | | | | | | I Re | giste | r | | | | | | | |----|----|----|----|----|----|---|------|-------|---|-----|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | _5_ | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | x | x | X | Transfers contents of A Register to the X Register. A is unchanged. Registers affected: X Timing: 1 ANA AND of A and X to A AND's contents of A and X Registers and places result in A. X is unchanged. Registers affected: A Timing: 1 ANX AND of A and X to X AND's contents of A and X Registers and places result in X. A is unchanged. Registers affected: X NRA #### NOR of A and X to A I Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 X X X Performs NOR (A + X) of contents of A and X Registers and places results in A. X is unchanged. Registers affected: A Timing: 1 NRX NOR of A and X to X | | | | | | | | I Re | gister | r | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | х | X | X | Performs NOR (A + X) of contents of A and X Registers and places results in X. A is unchanged. Registers affected: X Timing: 1 DAX DECREMENT A and Put in X | | | | | | | | I Re | giste | r | | | | | | | |----|----|----|----|----|----|---|------|-------|---|---|---|---|---|---|----| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0_ | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | X | X | x | Subtracts one from contents of A Register and places results in X. A is un-changed. Registers affected: X, OV Timing: 1 DXA DECREMENT X and Put in A | | | | | | | : | I Reg | gistei | : | | | | | | | | |----|----|----|----|----|---|---|-------|--------|---|---|---|---|---|---|---|--| | 15 | 14 | 13 | 12 | 11 | | 9 | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | X | X | Х | | Subtracts one from contents of X Register and places results in A. X is unchanged. Registers affected: A, OV Timing: 1 IAX # INCREMENT A and Put in X I Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 0 1 0 1 X X X Adds one to contents of A Register and puts results in X. A is unchanged. Registers affected: X, OV Timing: 1 IXA #### INCREMENT X and Put in A | | | | | | | | I Ke | gistei | r . | | | | | | | |----|----|----|----|----|----|---|------|--------|-----|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6_ | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | х | X | x | Adds one to contents of X Register and places results into A. X is unchanged. Registers affected: A, OV Timing: 1 CAX # COMPLEMENT A and Put in X Places the 1's complement of contents of A Register into X. A is unchanged. Registers affected: X Timing: 1 CXA #### COMPLEMENT X and Put in A Places the 1's complement of contents of X Register into A. X is unchanged. Registers affected: A NAX # NEGATE A and Put in X I Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 1 0 0 0 0 1 X X X Places the 2's complement of contents of A into X. A is unchanged. Registers affected: X Timing: 1 NXA NEGATE X and Put in A | | | | | | | 1 | I Reg | gister | • | | | | | | | |----|----|----|----|----|----|---|-------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | x | X | X | Places the 2's complement of contents of X into A. X is unchanged. Registers affected: A Timing: 1 ANB AND of A and X to A and X Places AND of A and X into A and X Registers. Registers affected: A, X Timing: 1 NRB NOR of A and X to A and X Places NOR (A + X) of A and X into both the A and X Registers. Registers affected: A, X DAB # DECREMENT A and Put in A and X Subtracts one from contents of A and places results in both A and X. Registers affected: A, X, OV Timing: 1 DXB DECREMENT X and Put in A and X Subtracts one from contents of X and places results in both A and X. Registers affected: A, X, OV Timing: 1 IAB INCREMENT A and Put in A and X Adds one to contents of A and places results in both A and X. Registers affected: A, X, OV Timing: 1 IXB INCREMENT X and Put in A and X Adds one to contents of X and places results in both A and X. Registers affected: A, X, OV CAB # COMPLEMENT A and Put in A and X I Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 X X X Places the 1's complement of A in both A and X. Registers affected: A, X Timing: 1 CXB COMPLEMENT X and Put in A and X | | | | | | | | i Re | gister | 7 | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | x | X | X | Places the 1's complement of X in both A and X. Registers affected: A, X Timing: 1 NAB NEGATE A and
Put in A and X Places the 2's complement of A in both A and X. Registers affected: A, X Timing: 1 NXB NEGATE X and Put in A and X Places the 2's complement of X in both A and X. Registers affected: A, X # CONTROL INSTRUCTIONS The control instructions utilize various formats. NOP uses the Register Change format; OV control uses the Shift format and the other control instructions use a modified Register Change format which is shown below. CONTROL INSTRUCTION FORMAT Using the above format, several instructions can be formed which may or may not be useful. Only three of them are presented here. Others are left to the programmer's imagination. NOP NO OPERATION | | | | | | | | | I Re | gister | r | | | | | | | |---|----|----|----|----|----|----|----|----------------|--------|----|----------------|---|---|----|----|----| | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | > | _ | | | _ | 77 | 77 | 37 | 37 | 37 | 37 | ^ | _ | 37 | 37 | 37 | | ı | U | U | U | U | U | X | X | $ \mathbf{X} $ | X | X | $ \mathbf{X} $ | U | U | X | X | X | This instruction causes an 8 microsecond pause in the program. Bit locations marked with an X have no meaning in the instruction. Registers affected: NONE Timing: 1 SOV SET OVERFLOW Sets the Overflow flip-flop Register affected: OV Timing: 1 ROV # RESET OVERFLOW | | | | | | | | I Re | giste | r | | | | | | | | |----|----|----|----|----|----|---|------|-------|---|---|---|---|---|---|---|--| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | X | X | X | | Resets the Overflow flip-flop Registers affected: OV Timing: 1 COV # COMPLEMENT OVERFLOW | | | | | | | ; | Reg | gister | : | | | | | | | |----|----|----|----|----|----|---|-----|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | x | X | x | Complements the Overflow flip-flop Registers affected: OV Timing: 1 EIN # **ENABLE INTERRUPTS** Sets the Enable Interrupt (ENIX) flip-flop in the processor. Registers affected: None Timing: 1 DIN # DISABLE INTERRUPTS Resets the Enable Interrupt (ENIX) flip-flop in the processor. Prevents processor from responding to any interrupts. Registers affected: No None HLT HALT | | | | | | | | I Re | gister | r | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 0 | 1 | 0 | 0 | x | x | x | X | 0 | 0 | x | x | x | Halts the Controller. Registers affected: None Timing: 1 # III INPUT/OUTPUT SECTION # INTRODUCTION The 816 Programmed Digital Controller is designed for communications, control, data acquisition and monitoring applications. Thus the I/O section of the unit has capabilities usually found only in much larger computers. The 29 I/O instructions provide the power and flexibility to allow the 816 to handle tasks other machines in its class cannot. Data transfers to and from the unit are either 8 or 16 bits parallel. The I/O bus utilizes the party-line technique to simplify the interface system. For real-time applications, the 816 has two fully implemented priority interrupt lines, plus a third interrupt request line that can be used to implement additional priority interrupts. Interfacing to the 816 Controller is simple both logically and electrically. The use of standard DTL integrated circuits in the I/O eliminates special circuits and attendant complexity. There are six types of I/O instructions: Sense, select, input to register (either A or X), output from register, input to memory or output from memory. By combining the sense with the input and output, two additional instructions are created: read to register and write from register. The Block Input/Output and the Load/Dump instructions allow great flexibility and high speed transfers to and from memory. Each I/O instruction may refer to one of 32 different device numbers or addresses, and can operate up to eight functions per device address. # INPUT/OUTPUT INSTRUCTIONS The I/O instructions allow the 816 Controller to communicate with the "outside world" — peripheral device controllers such as the teletype controller and special logic generated by Computer Automation or the user. Communication is in the form of commands which can trigger flip-flops or relays, sense signals which test the state of a flip-flop, relay, or incoming line, and data transfer operations which transfer parallel 8-bit bytes or 16-bit words into or out of the Controller. All peripheral logic is connected in parallel on the I/O cable, which contains the data bus, control lines, and the device address bus. Selection of the device (peripheral logic group) with which communication is desired is accomplished by assigning each device a number or address and applying this number to the device address bus in the I/O cable during the I/O instruction. There are up to 32 device addresses available. # **INSTRUCTION Format** The instruction format for I/O instruction is shown below. The first eight bits define the class, the op code within the class and the modifier for the op code. Of the remaining eight bits, five are used for the device address and three are used as a three bit function code. The function code allows up to eight functions to be created within the same device address for a given op code. For instance, at device 4, eight different flip-flops may be tested (sensed) by executing the "sense device 4" instruction eight times with the eight different function codes. I/O INSTRUCTION FORMAT # Sense Instructions The sense and skip instruction allows the 816 to test the state of a specified function in an I/O device. Up to eight different conditions may be tested in each device. The modifier specifies whether the skip is to occur on a sense response from the device being tested or on no response. SEN #### SENSE AND SKIP ON RESPONSE The function specified will be tested in the device specified and a skip of one place will result if a response is obtained. If no response is obtained, the next instruction in sequence is executed. Registers affected: P Timing: 1 #### SSN | | | | | | | | I Re | gister | | | | | | | | |----|----|----|----|----|----|---|------|--------|---|---|---|---|---|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 1 | 0 | 0 | 1 | x | X | 0 | | | | | | | | | The function specified will be tested in the device specified and a skip will occur if a response is not obtained. If a response occurs, the next instruction in sequence is executed. Registers affected: P Timing: 1 ## Select (External Control) Instruction The select (SEL) instruction allows the 816 to pulse a specified flip-flop, relay, or external line in a device controller or special logic connected to the I/O bus. Instructions such as start tape, rewind, clear, stop reader, are examples of uses of the SEL instruction. Up to eight control functions may be implemented for each device address. #### SEL #### SELECT FUNCTION The control function specified by the function code is executed. Registers affected: None Timing: 1 # Input to Register Instructions There are 16 I/O instructions that can cause data to be transferred from I/O devices to the A or X registers in the 816 processor. All register input instructions operate either with A or X. Briefly the types of input to register instructions are: - input 16-bit word unconditionally - input byte unconditionally - input 16-bit word conditioned on sense response - input byte conditioned on sense response - input 16-bit word, masked, unconditionally - input byte, masked, unconditionally - input 16-bit word, masked conditioned on sense response - input byte, masked, conditioned on sense response Masking is accomplished by performing the AND of the data in the register to be loaded with the data coming in from the I/O. The transfer instructions that are conditioned on a sense response (for instance Read to A Register) will first test or sense the device to determine if the device is ready to make a transfer. If the response is obtained, the transfer is made. If the response is not obtained, the instruction is executed again. Thus the Read instruction will test the device once each eight microseconds until the sense response is obtained and the transfer made. In situations where it is undesirable to have the processor wait on a peripheral, the separate sense, transfer and jump instructions can be used to perodically test the device and transfer when ready. For byte inputs, the upper half of the register (either A or X) is undisturbed. This allows transferring a byte into the lower half of the register, shifting it left eight places and bringing in another byte for packing two bytes per word. The formats shown for the input instructions contain an R in bit 9 which is the bit that specifies whether the A or X register is to be used: R = 0 = A Register R = 1 = X Register INA INX INPUT TO A REGISTER (UNCONDITIONALLY) INPUT TO X REGISTER (UNCONDITIONALLY) A 16-bit word will be transferred from the device specified to the A or X Register. The function code can be used to designate the source of data within the device if multiple sources exist. Up to eight sources may be specified by the function code, allowing a 128-bit input data word to be handled in 8 successive inputs, greatly simplifying the device logic. Registers affected: A or X INAM INXM MASKED INPUT TO A REGISTER (UNCONDITIONALLY) MASKED INPUT TO X REGISTER (UNCONDITIONALLY) The masked input instruction causes the input data word (16-bits) from the specified device to be AND'ed with the previous contents of the register and the results placed in the register. The source of the data word within the device may be specified by the function code if multiple sources exist. Registers affected: A or X Timing: 1 RDA RDX READ WORD TO A REGISTER READ
WORD TO X REGISTER The Read instruction first senses the specified function in the specified device. If a response is obtained, the transfer is made and the next instruction in sequence is executed. If no response is obtained, the P counter is decremented and the Read instruction is executed again. Thus the processor "hangs" on the Read instruction until the device responds. Registers affected: A or X Timing: 1 minimum RDAM RDXM READ WORD TO A REGISTER MASKED READ WORD TO X REGISTER MASKED This instruction is the same as RDA or RDX except the input is masked by previous contents of the selected register. Registers affected: A or X Timing: 1 minimum IBA IBX INPUT BYTE TO A REGISTER (UNCONDITIONALLY) INPUT BYTE TO X REGISTER (UNCONDITIONALLY) An eight bit byte will be transferred from the specified device to the lower half (bits 0 through 7) of the selected register. The upper half of the selected register is undisturbed. Registers affected: A or X Timing: 1 IBAM IBXM INPUT BYTE TO A REGISTER MASKED (UNCONDITIONALLY) INPUT BYTE TO X REGISTER MASKED (UNCONDITIONALLY) The contents of the lower half of the selected register is AND'ed with the incoming data and the results placed in the lower half of the selected register. The upper half of the selected register is undisturbed. Registers affected: A or X or X Timing: 1 RBA RBX READ BYTE TO A REGISTER READ BYTE TO X REGISTER The Read Byte instruction first senses the specified function in the specified device. If a response is obtained, the transfer is made and the next instruction in sequence is executed. If no response is obtained, the P counter is decremented and the Read Byte instruction is executed again. Thus the processor "hangs" on the instruction until the device responds. Only the lower half of the selected register is affected. Registers affected: A or X Timing: 1 minimum RBAM RBXM # READ BYTE TO A REGISTER MASKED READ BYTE TO X REGISTER MASKED The instruction is a combination of the Read Byte and the masked Byte instructions. The processor 'hangs' on the instruction until the device responds. When the response is obtained the contents of the lower half of the selected register are AND'ed with the incoming byte and the result placed in the lower half of the selected register. The upper half of the register is not affected. Registers affected: A or X Timing: 1 minimum Timing: 1 # Output from Register Instructions The output register instructions transfer data from the A or X registers to the specified device. All 16 bits are presented to the device, but for byte oriented peripherals only the lower eights will be accepted. The contents of A and X are not disturbed. OTA OTX OUTPUT A REGISTER (UNCONDITIONALLY) OUTPUT X REGISTER (UNCONDITIONALLY) The contents of the A or X Register are transferred to the specified device. The function code can be used to specify various destinations within the device address if more than one destination exists. The contents of A and X are not altered. Registers affected: I/O OTZ # OUTPUT ZERO (UNCONDITIONALLY) This instruction outputs all zeros on the data bus to the specified destination. A and X may have any value. Registers affected: I/O Timing: 1 WRA WRX WRITE FROM A REGISTER WRITE FROM X REGISTER The contents of A or X register are transferred to the specified device on a sense response. If no response is obtained, the P counter is decremented and the Write instruction executed again. To prevent the data from being strobed into the device register the I/O signal PLSE is inhibited if no response is obtained. The processor "hangs" on the instruction until a response from the device is received. When the transfer is made, the next instruction in sequence is executed. The contents of A and X are not altered. Registers affected: P, I/O Timing: 1 minimum WRZ ## WRITE ZEROS This instruction transfers zeros to the specified device upon response from the device. Contents of A and X are immaterial and are not altered. Registers affected: I/O Timing: 1 minimum #### **BLOCK TRANSFER INSTRUCTIONS** The block input/output instructions are powerful I/O instructions that allow access to memory without going through the A or X registers. Automatic data channels may be multiplexed with ease using the block I/O instructions as single execute interrupt instructions. Three memory locations are required for the block instruction; instruction, word counter and address counter. Four memory cycles are required for each input or output: - Instruction cycle to fetch the instruction, - Word cycle to fetch, increment and test the word counter, - Address cycle to fetch and increment the address and transfer result to the memory address register, - Operand cycle to transfer the data word to or from memory at the address specified by the address pointer. The word counter and the address pointer are located immediately behind the block instruction: The word counter contains the 2's complement of the number of words to be transferred using the Block instruction. Each time the Block instruction is executed, the word counter is incremented by one and tested for zero. If after incrementing it is zero, a flag is set within the processor indicating this is the last transfer (end-of-block). During the transfer cycle this flag will cause an echo pulse to be sent to the device transferring data. NOTE: The block may be any size, limited only by memory available. The address pointer contains one less than the next memory location. After the word counter has been accessed, the address pointer is incremented, replaced and the incremented value used as the operand address. Any address may be used as the starting address. This can be dangerous if care is not taken to insure the proper starting address since the scratch area can be reached by the Block instructions. It is also a very useful feature since all of memory can be used by the Block instructions. The most powerful use of the Block instructions is as interrupt instructions. Since Block does not alter A, X, P, or OV when executed by interrupts, automatic data channels may be implemented with ease. As many channels as there are interrupt lines may be multiplexed since each Block instruction carries its own word counter and address pointer with it. The end-of-block (EOB) Echo notifies the interrupting peripheral when the last transfer is made and this action can be used to cause an EOB interrupt from that peripheral. The EOB interrupt may drive its own interrupt line or it may share the IURX line with other devices and the device interrupting with an EOB interrupt may be determined by polling. When the Block instructions are not used with interrupts, the instruction following the address pointer is the EOB exit and will be executed when the last word in the block has been transferred. The instruction following the EOB exit will be executed if the end of the block has not been reached. INB INPUT BLOCK TO MEMORY The Block Input instruction transfers one word from the specified device to the address specified by the address pointer (after the pointer is incremented). The word counter is incremented and tested for zero result. The word counter and the address pointer must be located directly after the instruction. The instruction acts somewhat like a "data break" or "cycle steal" when used with interrupts. The operating program will see a $32\mu s$ pause for each transfer. Registers affected: Memory Timing: 4 OTB #### OUTPUT BLOCK FROM MEMORY The Block Output instruction transfers one word to the specified device from the address specified by the address pointer (after the pointer has been incremented). The word counter is incremented and tested for zero result. The word counter and the address pointer must be located directly after the instruction. The instruction acts somewhat like a "data break" or "cycle steal" when used with interrupts. The operating program will see a 32µs pause for each transfer. Registers affected: I/O Timing: 4 # LOAD/ DUMP MEMORY INSTRUCTIONS To allow very high speed input and output from memory, the 816 incorporates a very powerful pair of instructions called LOAD MEMORY and DUMP MEMORY. A block of any length (limited to maximum memory size) may be transferred into or out of memory at a maximum rate of 125,000 words (16-bits) per second. The processor is totally devoted to the instruction until the entire block has been transferred. Data does not go through the A or X Registers, but rather goes directly to or from memory. The operation of the instruction is as follows. The block length (number of words to be transferred) is placed in the X Register. Each transfer causes the X Register to be decremented and when the contents of X equals zero the instruction terminates. The base address minus 1 of the block is stored in the next memory location following the LOAD/DUMP instruction. The first transfer is made at the address formed by adding X to the base address pointer. Thereafter the memory address register is decremented after each transfer. Essentially, the first location is reached by indexed indirect addressing. The transfer of data is made only on response from the peripheral device. If no response is obtained, X and M are not decremented and the device is tested again (this requires another memory cycle). Thus the input rate is determined by the speed of the peripheral device. The maximum rate is 125,000 words/second or 8μ s per transfer. If the maximum rate is not achieved by the peripheral the next slower rate is 16μ s per transfer, then 24μ s and so on. The processor will test every 8μ s and make transfers on those cycles where a response is obtained. After the last transfer in the block is made, the next instruction in the program is executed. The LOAD/DUMP instructions cannot be interrupted. Thus in real time systems consideration should be given to the amount of delay allowable in responding to interrupts and the block lengths kept to a size to accommodate the
interrupts. The LOAD/DUMP instructions cannot be used as a normal interrupt instruction since the X and P Registers are altered by the instruction. No special I/O logic is required in the peripheral control logic to utilize the LOAD/DUMP instructions. LDM #### LOAD MEMORY This instruction loads a block of data from the specified device upon a sense response from the condition specified by the function code. The memory location immediately following the instruction must contain the base address minus one. The X Register must contain the number of words in the block to be transferred. The first data word will be stored in location "X plus base address pointer". The last word in the block will be stored in location "base address", i.e., the table is loaded backwards. After the last word is transferred, the instruction following the base address pointer is executed. Registers affected: Memory, X Timing: Indefinite DPM #### DUMP MEMORY This instruction operates exactly as the LOAD instruction except data is transferred from memory to the peripheral. Registers affected: I/O, X Timing: Indefinite # PRIORITY INTERRUPT SYSTEM The 816 priority interrupt system makes the controller an extremely flexible and powerful real-time systems component. The interrupt system provides: • Ability of fast response to external stimuli, - Ability to automatically transfer blocks of data without attention of operating program, - Ability to multiplex data to and from memory automatically, - Ability to generate timing intervals and or time-of-day clock (with Real Time Clock option), - Ability to react to low power line conditions (using Power Fail/ Restart option). When an interrupt request is received by the controller, the controller responds to the interrupt at the end of the current instruction being processed (provided the interrupts are enabled). Control is transferred to the memory location associated with the particular interrupt line requesting the interrupt. There are four reserved memory locations reserved for each interrupt line in the system. Normally only one location is required, but when Block I/O is used as an interrupt instruction, two adjacent locations are required. Since it is easier to address every fourth location than every third one, the interrupt instruction locations are four locations apart. For single-instruction interrupts, the interrupt instruction is one of the 816 instructions that does not change the program counter, the A Register or the X Register. A single-instruction interrupt can be serviced without altering the operating program except to delay it for the amount of time it takes to execute the interrupt instruction. The most common interrupt instruction is Jump and Save which transfers control to a sub-routine designated by the Jump and Save instruction. The contents of P are saved (stored) in the first memory location of the sub-routine and is used later for a return jump back to the operating program. The number of interrupt levels available with the 816 is limited only by economics. Interrupt lines are added in groups of eight and using every fourth memory word, up to 1,000 interrupts could be put in a 4K system. Interrupt addressing is accomplished two ways; hard-wired addresses in the processor for the standard interrupt lines, and externally supplied addresses for interrupts using the IURX line. - Interrupt lines 1 and 2 (IL1X and IL2X) have address generators in the processor to force the unit to go to locations 2 and 6 respectively. - For all other interrupts, the processor requests an interrupt address from the interrupting device with the signal IARX. The interrupt address is placed on the data bus by the interrupting peripheral and it is then transferred to the M Register. If the interrupt instruction involves pointers as in the case of Block I/O, the M Register is incremented to obtain their addresses. Priority of interrupts are determined by the processor logic and/or system wiring among the interrupt devices. The highest priority is given to the Power Fail/Restart option (when it is in the system) followed by Interrupt Line 1 (IL1X) and Interrupt Line 2 (IL2X). The assignment of priority among the remaining interrupt devices is determined by the wiring of the Priority Out (PROT) signal which emanate from the processor when none of the three highest interrupts are present. Control of the interrupt system is implemented with the Enable Interrupts mask flip-flop ENIX. When it is off, the 816 will not respond to any interrupt requests regardless of priority. The flip-flop is automatically turned off when a Jump and Save instruction is executed under interrupt. This allows time to disarm the line causing the interrupt before enabling other interrupts. Each interrupt line driver in peripheral logic has an individual arm/disarm mask associated with it to allow selective enabling or selective disabling. Two control instructions allow the ENIX flip-flop to be set or reset under program control. Single-instruction interrupts do not require control of the interrupt mask by the program. For example, if Teletype Buffer Ready flip-flop is the stimuli causing an interrupt and the interrupt instruction is the Block Output instruction, the stimuli is removed by the time the interrupt instruction is over. If the interrupt instruction had been Jump and Save, the interrupt request would remain and would cause another interrupt before the transfer to teletype has occured, with the result that the return address is within the interrupt subroutine and the controller cannot recover from the loop. Thus it is necessary to automatically disarm the interrupt system until one of two things occur; either (a) the line in the Teletype is disarmed or (b) the transfer to the Teletype occurs, which satisfies the interrupt condition. Only certain 816 instructions are useful as interrupt instructions. For single-instruction interrupts, the following are most useful: - Block Input - Block Output - Increment Memory (skip is prevented when Interrupt Acknowledge is on) - Select Instructions that alter A, X, OV or P registers are not generally useful as interrupt instructions since the interrupt may occur randomly within an operating program, and changing A, X or P randomly in an operating program can have disastrous results. (The Jump and Save instruction alters the P counter but its previous contents are saved.) Interrupt location assignments are fixed for IL1X, IL2X, Power Fail/Restart, and Real Time Clock options. - 0000 Restart interrupt instruction (Usually Jump to Restart subroutine) - 0002 IL1X interrupt location - 0006 IL2X interrupt location - 0010 IURX interrupt location when Power Fail/Restart option is in the machine and no address is supplied by the interrupting device. - 0018 Real Time Clock pulse interrupt location. (Usually Increment Memory) - 001A Real Time Clock sync. interrupt location. (Usually Jump and Save) - 001C Power Fail/Restart low power interrupt location. (Usually Jump and Save) (NOTE: That the above locations are in hexedecimal.) # **CONTROL CONSOLE** (Refer to Appendix C) The 816 Controller console consists of a sixteen-bit register display, sixteen data switches, four register select switches and miscellaneous control switches and indicators. Register Display. A sixteen-bit register display is provided to allow viewing the contents of a selected register. Contents of A, X, I and P may be displayed while the controller is halted. In the RUN mode the contents of the A Bus are displayed. <u>Data Entry Switches.</u> Sixteen data entry switches are provided for entering data into the selected register. The switches are momentary action. Data is entered immediately upon depression if the controller is halted and in the STEP mode. In the RUN mode, the switches are disabled. Register Select Switches. Four interlocked, alternate action switches are provided for selection of the register to be connected to the display and the data switches. The switches are wired on a priority basis such that should two switches be depressed at one time, the switch on the left takes priority, disabling the one on the right. This prevents the contents of the two registers from being mixed and placed in both registers. <u>CLEAR Switch</u>. A momentary action switch is provided for clearing the selected register. The switch is disabled in the RUN mode. CYCLE Switch. A momentary action switch is provided for cycling the controller in the STEP mode, and for initiating the RUN mode if the STEP/RUN switch is in the RUN (out) position. STEP/RUN Switch. An alternate action switch is provided for controlling the two operating modes of the controller. When the switch is out the controller will enter the RUN mode when the CYCLE switch is depressed. If the controller is in the RUN mode, depressing the STEP/RUN switch will cause the controller to enter the STEP mode; i.e., the controller will halt at the end of the next instruction. STEP Indicator. An indicator is provided to indicate the controller is in the STEP mode (controller halted and the STEP/RUN switch in the STEP (in) position). RUN Indicator. An indicator is provided to indicate the controller is in the RUN mode. OVERFLOW (OV) Indicator. An indicator is provided to indicate the state of the Overflow flip-flop. The indicator lights when the OV flip-flop is set. MANUAL EXECUTE Switch. An alternate action switch is provided to allow the operator to insert an instruction into the I Register and manually execute it by depressing the CYCLE switch. SENSE Switch. An alternate action switch is provided to allow the operator to interface to an operating program. The state of the SENSE switch can be tested under program control, allowing branching conditions to be executed conditioned on the state of the SENSE switch. The switch may be changed in the RUN mode. MEMORY DISABLE. An alternate action switch is provided to allow the operator to disable memory. When the MEMORY DISABLE
switch is depressed, the current generators in the memory core stack drive circuitry are disabled, inhibiting the memory from operating. This allows contents of memory to be protected from transients when power is collapsing on turn-off or when power is coming up on turn-on. If the controller is equipped with the Power Fail/Restart option, the MEMORY DISABLE switch need not be used except in instances where the power fail subroutine is not in memory. NOTE: The MEMORY DISABLE switch must not be depressed while the controller is in the RUN mode. RESET Switch. A momentary action switch is provided to allow the controller system (including peripherals) to be initialized when power is turned on. The RESET switch initializes the processor flip-flops, placing the controller in the STEP mode, and provides a pulse on the I/O cable which is used by peripheral logic for initialization. The RESET switch may be used as a PANIC button to break a runaway loop. POWER Switch. An alternate action switch is provided for controlling AC power to the power supply. Power is ON when the switch is depressed. POWER Indicator. An indicator is provided to indicate when the POWER switch is depressed. # PERIPHERAL EQUIPMENT DESCRIPTION This section describes some of the I/O devices that are available with the 816 Controller. #### 33 TELETYPE OPTION The 33 Teletype Option provided the 816 system with four I/O features in one package: Keyboard input, page printer, paper tape reader and paper tape punch. The peripheral device is a Model 33TC Send-Receive set* operated in the duplex mode. A peripheral interface to connect the 816 to the teletype is contained in one option logic board and is mounted in the basic 816 chassis. The interface contains a buffer-shift register that performs parallel-to-serial conversion when outputing from the 816 to the teletype and serial-to-parallel conversion when inputing from the teletype to the 816. Additional control logic is used to implement external control functions and sense functions in the interface. The teletype option allows printing and punching (output mode) at a rate of 10 char/sec. Paper tape can be read at a rate of 10 char/sec in continuous mode or one char at a time in the step mode. # Programming The teletype option increases the number of useful I/O instructions in the 816 instruction set. Using 07 as the device address, the instructions associated with the teletype options are listed below. - 4039 SELECT Keyboard. This instruction resets the Buffer Ready flip-flop and puts the teletype interface in the read mode. - 403A STEP Read. This command causes the character under the read station on the paper tape reader to be read and the tape advanced one character. The reader switch on the teletype must be in the RUN position. The Buffer Ready flip-flop is reset. - SELECT Continuous Read. This command causes the paper tape reader to continuously read at a rate of 10 char/sec until the reader is stopped or the tape runs out. The reader switch must be in the RUN position. The Buffer Ready flip-flop is reset. - Initialize the teletype interface. This command resets the control flip-flops, stops the oscillator and puts the interface in a static marking condition. The Buffer Ready flip-flop is reset. 403D SET Word Xfer Mask. This command sets a mask flipflop in the interface to enable an interrupt to be generated by Buffer Ready flip-flop. (The interrupt line is wired according to system requirements.) 403E SET Block Xfer Mask. This command sets a mask flipflop in the interface to allow an interrupt to be generated when the Word Xfer Mask is in the off state. The interrupt can be used to indicate "End of Block." 403F RESET Masks. This instruction disables both interrupt lines in the teletype interface by resetting the mask flipflops. 4939 Sense Buffer Ready. This instruction senses the On state of the Buffer Ready flip-flop, i.e., a true response will occur if the flip-flop is set. 493A Sense Word Xfer Mask Off. This instruction senses the Word Xfer Mask flip-flop and generates a true response if the flip-flop is in the off state. 493B Sense TTY not busy. This instruction senses the state of the TTY controller and generates a true response if the TTY is not printing or reading a character. 6838 Output A or X Register to teletype. This instruction thru transfers the contents of the Register to the teletype 6F38 interface and causes the character to be printed. If the punch is on, the character will also be punched. 6038 Output memory to teletype. This is a block output instruction that causes one word of a block to be transferred from the memory location specified by the output pointer (which the instruction automatically interrogates and updates). The character transferred is printed/punched on the teletype. 7938 Input byte from teletype to the A Register. The character in the teletype interface buffer is transferred to the A thru 7F38 Register. The word may be AND'ed with previous contents of the register. 5038 Input from teletype to memory. This is a block input instruction that inputs the word from the teletype interface buffer to memory. The memory location is specified by the input pointer. Block transfers using the teletype as the I/O device provides the capability of reading or printing blocks interrupt control. # HI-SPEED READER OPTION The Hi-Speed paper tape reader option (PTR) consists of a 300 char/sec optical reader and the interface logic between the reader and the 816. The reader is a unidirectional, eight-level unit that reads continuously or steps one character at a time under control of the interface. Each word (8-bit character) is read in parallel and transferred to a buffer register in the interface where it is held until it is transferred to the 816. The reader mounts in a standard 19 inch equipment rack, requiring 7 inches of rack height. The interface is contained on one logic board and is mounted within the basic 816 chassis. # Programming Adding the high speed paper tape reader to the 816 Controller increases the instruction set of the system. The instructions associated with the PTR are listed below. - Initialize the reader interface. This instruction resets the control flip-flops in the interface, and makes the "buffer not ready." - 4031 STOP Reader. This instruction causes the reader to stop. - 4035 SET Word Xfer Mask (WXM). This instruction causes the WXM flip-flop to be set, enabling interrupts to be generated with Buffer Ready. (The actual use of interrupts is determined by system wiring.) - 4033 RUN. This instruction causes the reader to continuously slew tape at 30 inches/sec. - 4032 STEP READ. This instruction causes the reader to read one character and stop. - SET Block Xfer Mask (BXM). This instruction causes the BXM flip-flop to be set enabling an interrupt to be generated when WXM is off, i.e., at end-of-block. - 4037 Reset Masks. This instruction resets both the WXM and BXM flip-flops which disables interrupts for Buffer Ready and end-of-block. - Sense Buffer Ready. This instruction tests the state of the Buffer Ready flip-flop and generates a true response if the flip-flop is set. - 4932 Sense Word Xfer Mask. This instruction tests the state of the WXM flip-flop and generates a true response if the flip-flop is off. | 7930 | Input Buffer to A or X Register (byte). This instruction | |------|--| | thru | transfers the contents of the buffer to the A or X Register. | | 7F30 | | 5030 Input Buffer to Memory. This is a block input instruction that inputs the word from the buffer to memory. The memory location is specified by the contents of the input pointer. #### HI-SPEED PUNCH OPTION The Hi-Speed paper tape punch option (PTP) consists of a 60 char/sec. punch and the interface logic between the punch and the 816. The punch is an eight-level unit that can punch paper or mylar tapes. The punch interface contains an 8-bit buffer register to hold information being punched, and the control and interface logic required to control the punch and communicate with the 816. The punch mounts in a standard 19 inch equipment rack and requires 10-1/2 inches of rack height. The interface is contained on a logic board which mounts in the basic 816 chassis. # Programming Adding the Hi-Speed paper tape punch to the 816 increases the instruction set of the system. The instructions associated with the PTP are listed below. - Initialize. This instruction resets all control flip-flops in the punch interface and makes the buffer "not ready." - 4030 Punch Contents of Buffer. This instruction is used when copying an existing paper tape. - 4035 SET Word Xfer Mask (WXM). This instruction causes the WXM flip-flop to be set enabling an interrupt to be generated with Buffer Ready. (The actual use of interrupts is determined by system wiring.) - 4036 SET Block Xfer Mask (BXM). This instruction causes the BXM flip-flop to be set enabling an interrupt to be generated when WXM is off, i.e., at end-of-block. - 4037 Reset Masks. This instruction resets both the WXM and BXM flip-flops which disables interrupts for Buffer Ready and end-of-block. - Sense Buffer Ready. This instruction tests the state of the Buffer Ready flip-flop and generates a true response if the flip-flop is set. - Sense Word Xfer Mask. This instruction tests the state of the WXM flip-flop and generates a true response if the flip-flop is off. | 6830
thru
6F30 | Punch Contents of A or X Register. This instruction causes the contents of A or X Register to be transferred to the punch interface and punched. | |----------------------|---| | 6030 | Output Memory and Punch. This instruction is a block output that outputs the word in memory specified by the output pointer. The word is transferred
to the interface buffer and punched. | # MAINFRAME OPTIONS This section describes some of the options available with the 816 processor. # POWER FAIL/RESTART OPTION The 816 Power Fail/Restart (PFR) option allows the controller to be operated from an unreliable AC source. A low power condition or a temporary power outage will be detected in time to allow the operating program to prepare for the power loss. When power returns to normal, the controller is automatically restarted. Unattended operation is possible at remote sites. The PFR option consists of a voltage detector, interrupt register, and priority interrupt logic on an option module in the 816 chassis. Two interrupts are provided with the option. One interrupt flags the low power condition, and the other interrupt restarts the controller one second after power resumes. # Operation The PFR option monitors the 115V AC line voltage and closes a switch when the voltage drops below a preset value (typically 100V). The switch closing sets a flip-flop which requests an interrupt. The interrupt location should contain a Jump and Save to the power fail subroutine. Approximately two milliseconds after low power is detected, inhibiting memory start pulses and shunting the current sources in the memory drive electronics prevent spurious memory cycles as power collapses. When power returns, the detector output (indicating power is normal) is delayed one second and then used to create the restart interrupt. During the one second interval between power up and the restart of the controller, the 816 system is initialized. After the one second delay, the controller is forced to location zero to obtain the restart interrupt instruction (Jump to Restart subroutine). # Priority The PFR priority is the highest in the interrupt system. # Reserved Memory Locations The PFR option requires two memory locations for the two interrupt instructions. 001C Power low interrupt instruction. (Jump & Save to shutdown routine.) 0000 Restart interrupt instruction. (Jump to Restart routine.) #### REAL TIME CLOCK OPTION The Real Time Clock (RTC) is a 816 processor option that provides a means of determining elapsed time and/or creating a time-of-day clock with software. The RTC derives time pulses from the 60-cycle primary input to the 816. These time pulses are then used to generate an interrupt (clock interrupt) every 8.33 milliseconds to increment a counter in memory. A second interrupt (sync interrupt) is generated by the RTC when the counter in memory reaches a count of 1,000 while being incremented by the clock interrupt instruction. The sync interrupt is used to enter a time keeping subroutine. The two interrupts required by the clock and sync pulses are contained within the RTC. Interrupt addresses for each line are also generated by the RTC logic, providing a complete stand alone option. # Operation The instruction set of the basic 816 system is increased by the RTC. The number of interrupt in the 816 system is also increased by two. Each instruction, including the suggested interrupt instructions, are described below. #### Control Instructions | 4040 | Enable RTC. Sets a mask flip-flop in the RTC, allowing an | |------|---| | | interrupt to be requested by either pulse or sync (if sync is | | | armed). | - 4042 Arm Sync. Sets the arm/disarm flip-flop on the sync interrupt, allowing an interrupt to be requested when clock counter in memory overflows. - Clear RTC Interrupts. Resets both interrupt flip-flops (clock & sync) removing history from RTC. Does not disable or disarm RTC. - Initialize RTC. Disarms, disables, and clears RTC preventing interrupts and removing history. Does not stop oscillator. - Disarm Sync. Resets the arm/disarm flip-flop on the sync interrupt. RTC will store the sync pulse if received while sync interrupt disarmed. # Interrupt Instructions Two memory locations in scratch area are reserved for the two interrupts associated with the RTC. | Location | Contents | |----------|--| | 0018 | Increment Memory. RTC clock pulse interrupt instruction. | | 001A | Jump & Save. Sync interrupt instruction. | # Priority Priority of the RTC interrupts, relative to other interrupts in 816 system, is determined by the wiring of the PROT line. Since the two standard interrupt lines in the 816 have priority over all interrupts, (except PFR) the RTC competes with other interrupts in the 816 system for priority. # RESERVED MEMORY LOCATIONS Since each interrupt line has a memory location associated with it, these locations must not be used for other purposes. As an aid to the programmer, all reserved locations in the basic 816 system plus mainframe options are listed. In larger systems additional locations may be required. All reserved locations are in the scratch area. | LOC | USE | |------|-----------------------------------| | 0000 | Restart interrupt instruction | | 0002 | Interrupt Line 1 instruction | | 0006 | Interrupt Line 2 instruction | | 0010 | IURX Polling instruction | | 0018 | Real Time Clock pulse instruction | | 001A | Real Time Clock sync instruction | | 001C | Power Fail interrupt instruction | # IV I/O INTERFACE REFERENCE #### INTRODUCTION The 816 Controller is a highly flexible systems component designed to be easily applied to communications, control and monitoring tasks. Great care was taken to make the unit easy to program using assembly or machine language. The organization of the processor enables the 816 to obtain high memory efficiency, avoiding the problem of "core burning" that is so prevalent in small computers. Memory utilization is further enhanced by the powerful and flexible I/O instruction set. The interface to the 816 is elegant in its simplicity. Considerable effort was expended to reduce the amount of interface logic required outside the controller. The interfacing 'problems' have been solved inside the 816 leaving the user free to concentrate on his system rather than on a complicated and expensive interface. Standard DTL circuits are used throughout the I/O, providing additional savings in parts cost and power. ## PARTY LINE I/O BUS The 816 incorporates a "party-line" I/O bus to communciate with peripheral logic. Each peripheral logic group or 'device" is given an address which is used in all communications between the 816 processor and that device. A block diagram of a 816 system with three devices is shown in Figure 4-1. Note that while the I/O cable is physically connected in a serial fashion, the devices are electrically connected in parallel. A termination "shoe" containing line terminating resistors is connected to the end of the I/O cable at the last device. The resistor is required to maintain the integrity of the transmission line by terminating the line in its characteristic impedance (or approximation thereof) at the receiving end to minimize reflections. Since the Data lines are bilateral, i.e., they can be driven from either end, a termination is required at each end. The unilateral lines require a terminating resistor only on the receiving end. Figure 4-2 shows the circuit schematics of the two types of lines. All lines are twisted pair. The length of the I/O cable should be kept as short as possible to minimize cross talk between lines. When possible peripheral logic should be located adjacent to the 816. The maximum length allowable will vary with the application, but in general it should be kept under ten feet. The I/O cable consists of a number of lines grouped according to functions. Each functional grouping is called a bus. See Figure 4-9. Figure 4-1 Block Diagram of 816 Controller System Figure 4-2 I/O Line Schematics <u>Data Bus</u> — sixteen bidirectional lines that transmit data between devices and the 816. Each line is terminated on each end. <u>Peripheral Address Bus</u> — five lines that transmit the device address to devices during the execution of an I/O instruction. Function Bus — three lines that transmit the function code to the devices during an I/O instruction. Control Bus — fourteen lines that transmit control signals between the 816 and I/O devices. Each signal is described below. - SELX Select. Signal present for two microseconds during execution of Select instructions. - OUTX Output. Signal present for two microseconds during execution of any output instructions. - INXX Input. Signal present for two microseconds during execution of any input instructions. - PLSE Pulse. Strobe signal present for 500 nanoseconds at the end of EXCX, INXX, OUTX and IARX. Used to create trigger pulses for control flip-flops and load pulses for strobing data into register. - ECHO Signal generated by Processor during Block I/O instruction if the block pointer overflowed (became zero) when incremented. Signal is used to disable the Word Xfer interrupt at end-of-block. - RSTX Reset. Signal generated when the Reset switch on the 816 console is depressed and during power fail restart. Signal is used to initialize the Processor and all I/O interface logic. - SERX Sense Response. Signal that is present when an I/O interface is interrogated with Device Address and Function Code if the test or sense conditions are met. The SERX line can be true even though a Sense instruction is not being executed. Further gating is performed in the Processor. - IL1X Interrupt Line 1. Priority Interrupt line with priority over all other interrupts (except PFR). When acknowledged, this interrupt forces Processor to memory location 0002 to obtain the interrupt instructions. - IL2X Interrupt Line 2. Priority Interrupt line with priority next to IL1X. Interrupt address 0006 is reserved for this line. IURX Interrupt Request. Common request line used by Interrupt Module and other mainframe interrupts. Use of this line obtains the interrupt, but the interrupt address must be supplied by the device requesting interrupt during IARX time. IARX
Interrupt Address Request. Signal that requests interrupt address from interrupting device at the beginning of Interrupt Acknowledge. IUAX Interrupt Acknowledge. Signal that indicates an interrupt instruction is being processed. PROT Priority Out. Signal that indicates neither IL1X, IL2X nor PFR are requesting interrupts and a downstream device may request interrupt. By serially chaining this line through priority devices, relative priorities between priority devices may be established. I/O Clock. A 500 K Hz pulse train for use with priority interrupt devices and I/O logic. The signal is interrupted during IUAX (Interrupt Acknowledge). <u>Miscellaneous Lines</u> — the power lines for the termination resistors and several spare lines that are used for PROT wiring and other systems requirements. NOTE: The signals appearing on the I/O cable are "ground true" logic, i.e., the false level is the high level. This permits the parallel connection of devices using the "wired OR" technique, and also conserves power since the line terminations do not dissipate power except when the true (ground) signal exists. #### INTERFACE TIMING The 816 employs an eight microsecond memory system. Consequently, considerable time is available in implementing the signals necessary to interface with peripheral logic, eliminating the need for fast or special circuits. The shortest pulse width used is the 500ns PLSE signal which is used as a strobe. All other signals are at least 2 microseconds in duration, providing plenty of time for decoding and gating. #### OUTPUT COMMAND The output instructions all employ the same peripheral logic and timing. Data are placed on the Data Bus for two microseconds and at the same time the device address and function code is placed on the Peripheral Address Bus and Function Bus respectively. The OUTX control line is true for the 2 microseconds data is present indicating an output instruction is being executed. At the end of the 2 μ second OUTX signal, the PLSE signal occurs if the output transfer is to be made. In the case of a sense and output combination, the PLSE signal will not occur unless a sense response is obtained by the processor. The composite timing of an output command is shown in Figure 4-3. Figure 4-3 Output Timing #### INPUT COMMAND The input instructions all employ the same peripheral logic and timing. Data are placed on the Data Bus by the device which is addressed during the 2 microseconds the INXX signal is true. At the end of this time, the PLSE signal occurs if the input transfer is to be made. In the case of the sense and input instructions, the PLSE will not occur if a sense response is not obtained by the processor. The absence of the PLSE signal indicates the transfer was not made. The composite timing of an input command is shown in Figure 4-4. SELECT CONTROL COMMAND The SEL instruction timing is similar to the transfer instructions except the Data Bus is not active. The SELX control signal is true for 2 microseconds. The PLSE signal occurs at the end of the SELX signal and is used to generate set pulses which are gated by the Function Codes generated by decoding the Function Bus. Figure 4-5 shows the timing of the SEL command. #### SENSE COMMAND The sense instructions do not use a sense control line, since the final gating for sense is done inside the processor. This allows the sense instruction to be combined with the input and output instructions, creating powerful I/O instructions that conserve memory and shorten program execution times. When a peripheral device is addressed by the processor, the function code is used to gate the condition of the specified function onto the sense response line, SERX. If a true response exists, the SERX line in the control Bus is driven to ground. Thus the sensing is accomplished during all I/O instructions, but using the results of the sense is determined by the instruction being executed. The processor must receive the sense response one microsecond after the beginning of the instruction to allow time for decision making within the processor. Figure 4-6 shows the timing for Sense. #### INTERRUPT TIMING The use of the standard interrupts in the basic 816 enables the controller to perform as a real time systems component responding to external stimuli and to allow considerable time savings in executing I/O programs that transfer data to/from peripheral devices. A typical interrupt sequence using one of the two fully implemented interrupt lines in the 816 is as follows. - A. The Buffer Ready status flip-flop in a device turns on indicating that device desires data to be transferred from the 816 and drives the IL1X line in the Control bus to ground (true) state requesting an interrupt. - B. The processor finishes the current instruction and if interrupts are enabled, i.e., the processor is allowed to respond to interrupts, the request for interrupt will be acknowledged, and the instruction located in the reserved memory location associated with IL1X will be executed. The IUAX signal becomes true as soon as the request is acknowledged and stays on for the time required to execute the interrupt instruction, typically 8 to 32 microseconds. - C. If the interrupt instruction is a JST, the interrupt enable flip-flop in the processor is turned off preventing further interrupts from being acknowledged until enable flip-flop is again turned on by the program. - D. A subroutine is entered (if JST used) which will transfer the desired data to the interrupting device, satisfying the request and resetting the Buffer Ready flip-flop which removes the interrupt request. Interrupts can now be enabled and a return Jump back to the operating program executed. - E. If the interrupt is a single-execute instruction such as Block Output, the request for data is satisfied by the execution of the interrupt instruction and the program continues as soon as IUAX goes off, creating only a 32 microsecond pause in the program. The use of the IURX line is different from that of the IL1X and IL2X lines in that the interrupt address must be specified by the device requesting the interrupt whereas the IL1X and IL2X lines have associated address generators within the 816. To obtain the interrupt address from the device, the processor sends an Interrupt Address Request signal IARX to the devices and the device requesting sends back the address the processor is to use to fetch the interrupt instruction. The IARX signal is 2 microseconds long. The PLSE signal occurs at the end of the IARX signal to notify the device the processor has received the address. The timing of the interrupt sequence using the IURX line in this fashion is shown in Figure 4-7. Figure 4-7 Interrupt Timing Another method of using the IURX line is the scanning technique. Several devices are allowed to generate an interrupt request at will and a subroutine is entered which polls each device capable of having generated a request. The polling is done by executing sense instructions until the requesting device is located. In this manner, priorities may be changed at will by the programmer by merely changing the order in which the devices are sensed. The technique is slower, however, than a fully automatic interrupt sequence but is considerably less expensive. If a device requests an interrupt using IURX and does not respond with an address during IARX, the processor will access memory location 0000(Location 0010 if PFR option is used) for the interrupt instruction (which in almost all cases must be a JST). All 816 standard peripheral interfaces have two interrupt line drives implemented. One driver is normally connected to IL1X and is used to generate an interrupt on Buffer Ready. The other driver is normally connected to IL2X and is used to generate an interrupt on end-of-block when performing block transfers under interrupt control. Each driver has a mask associated with it which may be controlled by the operating program. Several peripheral devices may be connected to the IL1X and IL2X lines provided only one device is allowed to be operating under interrupt control at a given time. Since the IL1X and IL2X lines are fully implemented and therefore general purpose, they may also be used by customer interface logic without the need to generate priority and address logic outside the 816. This one fact alone typically saves hundreds of dollars over comparably priced machines in implementing real time systems interfaces. Figure 4-8 shows the logic in a standard 816 peripheral controller that transfers data to/from the processor (Hi-speed reader, etc). The Buffer Ready flip-flop is set when the device is ready to send or receive data. If the Mask FF 1 is on, an interrupt is generated on IL1X which is used to cause data to be transfered. If the Block transfer instructions are used, an End-of-Block echo pulse occurs when the pointer overflows which resets Mask FF 1. This creates an interrupt on IL2X (if Mask FF 2 has been previously set) which is used to signal the end of the block being transferred. Note that each interrupt line driver can be disabled by the mask flip-flops allowing complete system flexibility in the use of the interrupts. Figure 4-8 Standard Interrupts in Peripheral Devices Figure 4-9 I/O Cable Buses ## Y INSTALLATION #### PHYSICAL MOUNTING The 816 chassis is designed to mount in a standard 19 inch rack or cabinet. It is 8 3/4 inches high and extends 17 inches behind the front rails. The chassis proper extends 16 inches and one inch is allowed for clearance of connectors on the rear of option I/O controller cards. The power supply is 13 inches wide, 5 1/4 inch high and 5 1/4 inch deep. The power supply is mounted onto a bracket that is fastened to the back rails of a cabinet by four captive retractable panel screws. See Figure 5-1. The 816 chassis is open at the top and bottom. <u>Free</u> vertical air flow will provide sufficient cooling for the system. When mounted in a cabinet with other
equipment the use of a circulating air fan within the equipment cabinet is recommended. #### POWER The 816 needs only 250 watts of 60 cycle 115 volt power. The specifications on primary power are: Voltage: 105 to 130 VRMS Frequency: 50 Hz to 400 Hz #### OPERATING ENVIRONMENT Temperature: 0°c to 45°c Humidity: 10% to 90% relative Figure 5-1 Installation Dimensions LAYOUT FOR CHASSIS MOUNTING Figure 5-2 ELCO 90-pin Connector Dimensions ## I/O CABLE TERMINATION LIST | Signal
Name | Signal
Pin | Return *
Pin | | Signal
Name | Signal
Pin | Return *
Pin | |----------------|---|---|--|--|---|---| | DB00- | A | J | | SERX- | вн | BC | | DB01- | В | K | | IL1X- | BS | BK | | DB02- | C | L | | IL2X- | вт | BL | | DB03- | D | M | | IURX- | BU | вм | | DB04- | E | N | | IARX- | вv | BN | | DB05- | F | P | | PROT- | вw | BP | | DB06- | H | x | | IUAX- | ВX | BR | | DB07- | R | Y | | DB08- | CN | BY | | PB00- | S | \mathbf{z} | | DB09- | CF | \mathbf{BZ} | | PB01- | T | AA | | DB10- | CH | CA | | PB02- | U | AB | | DB11- | CJ | СВ | | PB03- | v | AC | | DB12- | CK | CC | | PB04- | w | AD | | DB13- | \mathbf{CL} | CD | | FB00- | AE | AN | | DB14- | CM | CE | | FB01- | AF | AP | | DB15- | CW | CP | | FB02- | AH | AR | | Spare | CX | CR | | EXCX- | AJ | AS | | Spare | CY | CS | | OUTX- | AK | AT | | Spare | \mathbf{CZ} | CT | | INXX- | AL | AU | | Spare | DA | CU | | PLSE- | AV | AW | | Spare | DB | CV | | ECHO- | AZ | BA | | COMM | ΑY | | | CLRX- | BD | BE | | +3v | AM | | | IOCL- | \mathbf{BF} | вв | | Filter | AX | | | | Name DB00- DB01- DB02- DB03- DB04- DB05- DB06- DB07- PB00- PB01- PB02- PB03- PB04- FB00- FB01- FB02- EXCX- OUTX- INXX- PLSE- ECHO- CLRX- | Name Pin DB00- A DB01- B DB02- C DB03- D DB04- E DB05- F DB06- H DB07- R PB00- S PB01- T PB02- U PB03- V PB04- W FB00- AE FB01- AF FB02- AH EXCX- AJ OUTX- AK INXX- AL PLSE- AV ECHO- AZ CLRX- BD | Name Pin Pin DB00- A J DB01- B K DB02- C L DB03- D M DB04- E N DB05- F P DB06- H X DB07- R Y PB00- S Z PB01- T AA PB02- U AB PB03- V AC PB04- W AD FB00- AE AN FB01- AF AP FB02- AH AR EXCX- AJ AS OUTX- AK AT INXX- AL AU PLSE- AV AW ECHO- AZ BA CLRX- BD BE | Name Pin Pin DB00- A J DB01- B K DB02- C L DB03- D M DB04- E N DB05- F P DB06- H X DB07- R Y PB00- S Z PB01- T AA PB02- U AB PB03- V AC PB04- W AD FB00- AE AN FB01- AF AP FB02- AH AR EXCX- AJ AS OUTX- AK AT INXX- AL AU PLSE- AV AW ECHO- AZ BA CLRX- BD BE | Name Pin Pin Name DB00- A J SERX- DB01- B K IL1X- DB02- C L IL2X- DB03- D M IURX- DB04- E N IARX- DB05- F P PROT- DB06- H X IUAX- DB07- R Y DB08- PB00- S Z DB09- PB01- T AA DB10- PB02- U AB DB11- PB03- V AC DB12- PB04- W AD DB13- FB00- AE AN DB14- FB01- AF AP DB15- FB02- AH AR Spare EXCX- AJ AS Spare OUTX- AK AT Spare INXX- AL AU | Name Pin Pin Name Pin DB00- A J SERX- BH DB01- B K IL1X- BS DB02- C L IL2X- BT DB03- D M IURX- BU DB04- E N IARX- BV DB05- F P PROT- BW DB06- H X IUAX- BX DB07- R Y DB08- CN PB00- S Z DB09- CF PB01- T AA DB10- CH PB02- U AB DB11- CJ PB03- V AC DB12- CK PB04- W AD DB13- CL FB00- AE AN DB15- CW FB02- AH AR Spare CX CXCX- AJ A | ^{*} Signal returns are connected to COMM Connector type: ELCO Series 8016 VARICON/VARILOK #### ORDERING INFORMATION: | CONTACT | SHELL | |-----------------|------------------| | 000 - Crimp | 703 - Plug | | 296 - Wire Wrap | 707 - Receptacle | | 217 - Solder | | ### HEXADECIMAL ARITHMETIC #### ADDITION TABLE | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | E | F | |---|----|-----------|----|----|------------|----|----|----|----|----|----|----|----|----|----| | 1 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | ОВ | 0C | 0D | 0E | 0F | 10 | | 2 | 03 | 04 | 05 | 06 | 07 | 80 | 09 | 0Α | OB | 0C | 0D | 0E | 0F | 10 | 11 | | 3 | 04 | 05 | 06 | 07 | 80 | 09 | 0A | ОВ | 0C | 0D | 0E | 0F | 10 | 11 | 12 | | 4 | 05 | 06 | 07 | 08 | 09 | 0д | ОВ | 0C | 0D | 0E | 0F | 10 | 11 | 12 | 13 | | 5 | 06 | 07 | 80 | 09 | 0Α | OB | 0C | 0D | 0E | 0F | 10 | 11 | 12 | 13 | 14 | | 6 | 07 | 08 | 09 | 0A | ОВ | 0C | 0D | 0E | 0F | 10 | 11 | 12 | 13 | 14 | 15 | | 7 | 08 | 09 | 0A | ОВ | 0 C | 0D | 0E | 0F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 8 | 09 | 0Α | OB | 0C | 0D | 0E | 0F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 9 | 0A | OB | 0C | 0D | 0E | 0F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | А | ОВ | 0C | 0D | 0E | 0F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | В | 0C | 0D | 0E | 0F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | | С | 0D | OE | 0F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | | D | 0E | 0F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 18 | 1C | | E | 0F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C | 10 | | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C | 10 | 1E | #### MULTIPLICATION TABLE | J | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | А | В | С | D | E | F | |---|----|----|----|----|----|----|----|------------|----|------------|----|------------|------------|------------| | 2 | 04 | 06 | 08 | 0A | 0C | 0E | 10 | 12 | 14 | 16 | 18 | 1A | 1C | 1E | | 3 | 06 | 09 | oc | OF | 12 | 15 | 18 | 1B | 1E | 21 | 24 | 27 | 2A | 2 D | | 4 | 80 | 0C | 10 | 14 | 18 | 1C | 20 | 24 | 28 | 2C | 30 | 34 | 38 | 3C | | 5 | A0 | 0F | 14 | 19 | 1E | 23 | 28 | 2D | 32 | 37 | 3C | 41 | 46 | 4 B | | 6 | 0C | 12 | 18 | 1E | 24 | 2A | 30 | 36 | 3C | 42 | 48 | 4E | 54 | 5A | | 7 | 0E | 15 | 1C | 23 | 2A | 31 | 38 | 3F | 46 | 4D | 54 | 5B | 62 | 69 | | 8 | 10 | 18 | 20 | 28 | 30 | 38 | 40 | 48 | 50 | 58 | 60 | 68 | 70 | <i>7</i> 8 | | 9 | 12 | 18 | 24 | 2D | 36 | 3F | 48 | 51 | 5A | 63 | 6C | 75 | 7E | 87 | | Α | 14 | 1E | 28 | 32 | 3C | 46 | 50 | 5A | 64 | 6E | 78 | 82 | 8C | 96 | | В | 16 | 21 | 2C | 37 | 42 | 4D | 58 | 63 | 6E | 7 9 | 84 | 8F | 9A | A5 | | С | 18 | 24 | 30 | 3C | 48 | 54 | 60 | 6C | 78 | 84 | 90 | 9C | 8A | B4 | | D | 1A | 27 | 34 | 41 | 4E | 5B | 68 | 75 | 82 | 8F | 9C | Α9 | B 6 | C3 | | E | 1C | 2A | 38 | 46 | 54 |
62 | 70 | 7 E | 8C | 9A | A8 | B 6 | C4 | D2 | | F | 1E | 2B | 3C | 4B | 5A | 69 | 78 | 87 | 96 | A5 | B4 | C3 | D2 | E١ | #### HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE The table below provides for direct conversions between hexadecimal integers in the range 0-FFF and decimal integers in the range 0-4095. For conversion of larger integers, the table values may be added to the following figures: | Hexadecimal | Decimal | Hexadecimal | Decimal | |----------------|------------------------|-----------------|--------------------------| | 01 000 | 4 096 | 20 000 | 131 072 | | 02 000 | 8 192 | 30 000 | 196 608 | | 03 000 | 12 288 | 40 000 | 262 144 | | 04 000 | 16 3 84 | 50 000 | 327 680 | | 05 000 | 20 480 | 60 0 00 | 393 216 | | 06 000 | 24 576 | 70 000 | 458 752 | | 07 000 | 28 672 | 80 000 | 524 288 | | 08 000 | 32 768 | 90 000 | 589 824 | | 09 000 | 36 864 | A0 000 | 6 5 5 36 0 | | 0A 000 | 4 0 9 60 | BO 000 | 720 896 | | OB 000 | 45 056 | C0 000 | 786 432 | | OC 000 | 49 152 | D0 000 | 851 968 | | 0D 000 | 53 248 | E0 000 | 917 504 | | 0E 000 | 57 344 | F0 000 | 983 040 | | 0F 000 | 61 440 | 100 000 | 1 048 <i>5</i> 76 | | 10 00 0 | 65 5 3 6 | 200 000 | 2 097 152 | | 11 000 | 69 632 | 300 000 | 3 145 728 | | 12 000 | 73 728 | 400 000 | 4 194 304 | | 13 000 | 7 7 82 4 | 500 000 | 5 242 880 | | 14 000 | 81 920 | 600 000 | 6 291 456 | | 15 000 | 86 016 | 700 000 | 7 340 032 | | 16 000 | 90 112 | 800 000 | 8 388 608 | | 17 000 | 94 208 | 900 000 | 9 437 184 | | 18 000 | 98 304 | A00 000 | 10 485 760 | | 19 000 | 102 400 | B00 000 | 11 534 336 | | 1A 000 | 106 496 | C00 000 | 12 582 912 | | 1B 000 | 110 592 | D00 000 | 13 631 488 | | 1C 000 | 114 688 | E00 0 00 | 14 680 0 64 | | 1D 00 0 | 118 <i>7</i> 84 | F00 0 00 | 15 728 640 | | 1E 000 | 122 880 | 1 000 000 | 16 7 77 216 | | 1F 000 | 126 976 | 2 000 000 | 33 554 432 | | | 1 0 | 2 | <i>c</i> / | Hexadecimal fractions may be converted to decimal fractions as follows: Express the hexadecimal fraction as an integer times 16⁻ⁿ, where n is the number of significant hexadecimal places to the right of the hexadecimal point. 0. $$CA9BF3_{16} = CA9 BF3_{16} \times 16^{-6}$$ 2. Find the decimal equivalent of the hexadecimal integer 3. Multiply the decimal equivalent by 16⁻ⁿ Decimal fractions may be converted to hexadecimal fractions by successively multiplying the decimal fraction by 16_{10} . After each multiplication, the integer portion is removed to form a hexadecimal fraction by building to the right of the hexadecimal point. However, since decimal arithmetic is used in this conversion, the integer portion of each product must be converted to hexadecimal numbers. Example: Convert 0.895₁₀ to its hexadecimal equivalent | | 0 | 1_ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | E | F | |-----|------|---------------|--------------|------|------|------|------|------|------|------|------|------|------|-------|------|------| | 000 | 0000 | 0001 | 0002 | 0003 | 0004 | 0005 | 0006 | 0007 | 8000 | 0009 | 0010 | 0011 | 0012 | 0013 | 0014 | 0015 | | 010 | 0016 | 0017 | 0018 | 0019 | 0020 | 0021 | 0022 | 0023 | 0024 | 0025 | 0026 | 0027 | 0028 | 0029 | 0030 | 0031 | | 020 | 0032 | 0033 | 0034 | 0035 | 0036 | 0037 | 0038 | 0039 | 0040 | 0041 | 0042 | 0043 | 0044 | 0045 | 0046 | 0047 | | 030 | 0048 | 0049 | 0 050 | 0051 | 0052 | 0053 | 0054 | 0055 | 0056 | 0057 | 0058 | 0059 | 0060 | 0061 | 0062 | 0063 | | 040 | 0064 | 0065 | 0066 | 0067 | 0068 | 0069 | 0070 | 0071 | 0072 | 0073 | 0074 | 0075 | 0076 | 0077 | 0078 | 0079 | | 050 | 0080 | 0081 | 0082 | 0083 | 0084 | 0085 | 0086 | 0087 | 0088 | 0089 | 0090 | 0091 | 0092 | 0093 | 0094 | 0095 | | 060 | 0096 | 0097 | 0098 | 0099 | 0100 | 0101 | 0102 | 0103 | 0104 | 0105 | 0106 | 0107 | 0108 | 0109 | 0110 | 0111 | | 070 | 0112 | 0113 | 0114 | 0115 | 0116 | 0117 | 0118 | 0119 | 0120 | 0121 | 0122 | 0123 | 0124 | 0125 | 0126 | 0127 | | | 0100 | 0100 | 0120 | 0101 | 0100 | 0100 | 0104 | 0105 | 010/ | 0107 | 0120 | 0120 | 0140 | 01.41 | 0142 | 0143 | | 080 | 0128 | 0129 | 0130 | 0131 | 0132 | 0133 | 0134 | 0135 | 0136 | 0137 | 0138 | 0139 | 0140 | 0141 | | | | 090 | 0144 | 0145 | 0146 | 0147 | 0148 | 0149 | 0150 | 0151 | 0152 | 0153 | 0154 | 0155 | 0156 | 0157 | 0158 | 0159 | | 0A0 | 0160 | 0161 | 0162 | 0163 | 0164 | 0165 | 0166 | 0167 | 0168 | 0169 | 0170 | 0171 | 0172 | 0173 | 0174 | 0175 | | ОВО | 0176 | 01 <i>7</i> 7 | 0178 | 0179 | 0180 | 0181 | 0182 | 0183 | 0184 | 0185 | 0186 | 0187 | 0188 | 0189 | 0190 | 0191 | | oco | 0192 | 0193 | 0194 | 0195 | 0196 | 0197 | 0198 | 0199 | 0200 | 0201 | 0202 | 0203 | 0204 | 0205 | 0206 | 0207 | | 0D0 | 0208 | 0209 | 0210 | 0211 | 0212 | 0213 | 0214 | 0215 | 0216 | 0217 | 0218 | 0219 | 0220 | 0221 | 0222 | 0223 | | OEO | 0224 | 0225 | 0226 | 0227 | 0228 | 0229 | 0230 | 0231 | 0232 | 0233 | 0234 | 0235 | 0236 | 0237 | 0238 | 0239 | | 0F0 | 0240 | 0241 | 0242 | 0243 | 0244 | 0245 | 0246 | 0247 | 0248 | 0249 | 0250 | 0251 | 0252 | 0253 | 0254 | 0255 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | |
Е | F | |------------|--------------|----------------------|----------------------|----------------------|--------------|-------------------------------|--------------|--------------------------------|-----------------------|----------------------|--------------|--------------|--------------|----------------------|--------------|-----------------------| | | | | | | | | | | ··· | | | | | | | | | 100 | 0256 | 0257 | 0258 | 0259 | 0260 | 0261 | 0262 | 0263 | 0264 | 0265 | 0266 | 0267 | 0268 | 0269 | 0270 | 0271 | | 110
120 | 0272
0288 | 0273
0289 | 027 4
0290 | 0275
0291 | 0276
0292 | 0 277
0 2 93 | 0278
0294 | 0279
02 95 | 0280 | 0281 | 0282 | 0283 | 0284 | 0285 | 0286 | 0287 | | 130 | 0304 | 0305 | 0306 | 0307 | 0308 | 0309 | 0294 | 0293
0311 | 0296
0312 | 029 7
0313 | 0298
0314 | 0299
0315 | 0300
0316 | 0301
0317 | 0302
0318 | 0303
031 <i>9</i> | | 100 | 0304 | 0000 | 0500 | 0007 | 0300 | 0307 | 0310 | 0311 | 0312 | 0313 | 0314 | 0313 | 0310 | 0317 | 0310 | 0317 | | 140 | 0320 | 0321 | 0322 | 0323 | 0324 | 0325 | 0326 | 0327 | 0328 | 0329 | 0330 | 0331 | 0332 | 0333 | 0334 | 0335 | | 150 | 0336 | 0337 | 0338 | 0339 | 0340 | 0341 | 0342 | 0343 | 0344 | 0345 | 0346 | 0347 | 0348 | 0349 | 0350 | 0351 | | 160 | 0352 | 0353 | 0354 | 0355 | 0356 | 0357 | 0358 | 0359 | 0360 | 0361 | 0362 | 0363 | 0364 | 0365 | 0366 | 0367 | | 170 | 0368 | 0369 | 0370 | 0371 | 0372 | 0373 | 0374 | 0375 | 0376 | 0377 | 0378 | 0379 | 0380 | 0381 | 0382 | 03 83 | | 180 | 0384 | 0385 | 0386 | 0387 | 0388 | 0389 | 0390 | 0391 | 0392 | 0393 | 0394 | 0395 | 0396 | 0397 | 0398 | 0399 | | 190 | 0400 | 0401 | 0402 | 0403 | 0404 | 0405 | 0406 | 0407 | 0408 | 0409 | 0410 | 0411 | 0412 | 0413 | 0414 | 0415 | | 1A0 | 0416 | 0417 | 0418 | 0419 | 0420 | 0421 | 0422 | 0423 | 0424 | 0425 | 0426 | 0427 | 0428 | 0429 | 0430 | 0431 | | 180 | 0432 | 0433 | 0434 | 0435 | 0436 | 0437 | 0438 | 0439 | 0440 | 0441 | 0442 | 0443 | 0444 | 0445 | 0446 | 0447 | | 1C0 | 0448 | 0449 | 0450 | 0451 | 0450 | 0.450 | 0454 | 0455 | 0457 | 0.457 | 0.450 | 0.150 | | 0441 | | | | 1D0 | 0446 | 0465 | 0450
0466 | 0451
0467 | 0452
0468 | 0453
0469 | 0454
0470 | 04 5 5
04 7 1 | 0456
04 7 2 | 0457
0473 | 0458
0474 | 0459 | 0460 | 0461 | 0462 | 0463 | | 1E0 | 0480 | 0481 | 0482 | 0483 | 0484 | 0485 | 0486 | 0487 | 0472 | 0473 | 0474 | 0475
0491 | 0476
0492 | 04 77
0493 | 0478
0494 | 0479
04 9 5 | | 1F0 | 0496 | 0497 | 0498 | 0499 | 0500 | 0501 | 0502 | 0503 | 0504 | 0505 | 0506 | 0507 | 0508 | 0509 | 0510 | 0511 | | — | | | | | | | | | | | | | | | | | | 200 | 0512 | 0513 | 0514 | 0515 | 0516 | 0517 | 0518 | 0519 | 0520 | 0521 | 0522 | 0523 | 0524 | 0525 | 0526 | 0527 | | 210 | 0528 | 0529 | 0530 | 0531 | 0532 | 0533 | 0534 | 0535 | 0536 | 0537 | 0538 | 0539 | 0540 | 0541 | 0542 | 0543 | | 220
230 | 0544
0560 | 0545
0561 | 0546
0562 | 054 7
0563 | 0548
0564 | 0549
0565 | 0550
0566 | 0551
056 7 | 0552
0568 | 0553
0569 | 0554
0570 | 0555 | 0556 | 0557 | 0558 | 0559 | | | | | | | | | | | | | | 0571 | 0572 | 0573 | 0574 | 05 7 5 | | 240 | 0576 | 0577 | 0578 | 0579 | 0580 | 0581 | 0582 | 0583 | 0584 | 0585 | 0586 | 0587 | 0588 | 0589 | 0590 | 0591 | | 250
260 | 0592
0608 | 0593
060 9 | 0594 | 0595 | 0596 | 0597 | 0598 | 0599 | 0600 | 0601 | 0602 | 0603 | 0604 | 0605 | 0606 | 0607 | | 270 | 0624 | 0625 | 0610
0626 | 0611
0627 | 0612
0628 | 0613
0629 | 0614
0630 | 0615
0631 | 0616
0632 | 061 7
0633 | 0618
0634 | 0619
0635 | 0620
0636 | 0621 | 0622 | 0623 | | 270 | 0024 | 0025 | 0020 | 0027 | 0020 | 0027 | 0030 | 0031 | 0032 | 0033 | 0034 | 0033 | 0030 | 0637 | 0638 | 0639 | | 280 | 0640 | 0641 | 0642 | 0643 | 0644 | 0645 | 0646 | 0647 | 0648 | 0649 | 0650 | 0651 | 0652 | 0653 | 0654 | 0655 | | 290 | 0656 | 0657 | 0658 | 0659 | 0660 | 0661 | 0662 | 0663 | 0664 | 0665 | 0666 | 0667 | 0668 | 0669 | 0670 | 0671 | | 2A0 | 0672 | 0673 | 0674 | 0675 | 0676 | 0677 | 0678 | 0679 | 0680 | 0681 | 0682 | 0683 | 0684 | 0685 | 0686 | 0687 | | 2B0 | 0688 | 0689 | 0690 | 0691 | 0692 | 0693 | 0694 | 0695 | 0696 | 0697 | 0698 | 0699 | 0700 | 0701 | 0702 | 07 03 | | 2C0 | 0704 | 0705 | 0706 | 0707 | 0708 | 0709 | 0710 | 0711 | 0712 | 0713 | 0714 | 0715 | 0716 | 0717 | 0718 | 0719 | | 2D0 | 0720 | 0721 | 0722 | 0723 | 0724 | 0725 | 0726 | 0727 | 0728 | 0729 | 0730 | 0731 | 0732 | 0733 | 0734 | 0735 | | 2E0 | 0736 | 073 7 | 0738 | 0739 | 0740 | 0741 | 0742 | 0743 | 0744 | 0745 | 0746 | 0747 | 0748 | 0749 | 0750 | 0751 | | 2F0 | 0752 | 0753 | 0754 | 0755 | 0756 | 0 7 57 | 0758 | 0759 | 0760 | 0761 | 0762 | 0763 | 0764 | 0765
 0766 | 0767 | | 30C | 0768 | 0769 | 0770 | 0771 | 0772 | 0773 | 0774 | 0775 | 0776 | 0777 | 0778 | 0779 | 0780 | 0781 | 0782 | 0783 | | 310 | 0784 | 0785 | 0786 | 0787 | 0788 | 0789 | 0790 | 0791 | 0792 | 0793 | 0794 | 0795 | 0796 | 0797 | 0798 | 0799 | | 320 | 0800 | 0801 | 0802 | 0803 | 0804 | 0805 | 0806 | 0807 | 0808 | 0809 | 0810 | 0811 | 0812 | 0813 | 0814 | 0815 | | 330 | 0816 | 0817 | 0818 | 0819 | 0820 | 0821 | 0822 | 0823 | 0824 | 0825 | 0826 | 0827 | 0828 | 0829 | 0830 | 0831 | | 340 | 0832 | 0833 | 0834 | 0835 | 0836 | 0837 | 0838 | 0839 | 0840 | 0841 | 0842 | 0843 | 0844 | 0845 | 0846 | 0847 | | 350 | 0848 | 0849 | 0850 | 0851 | 0852 | 0853 | 0854 | 0855 | 0856 | 0857 | 0858 | 0859 | 0860 | 0861 | 0862 | 0863 | | 360 | 0864 | 0865 | 0866 | 0867 | 0868 | 0869 | 0870 | 0871 | 0872 | 0873 | 0874 | 0875 | 0876 | 0877 | 0878 | 0879 | | 370 | 0880 | 0881 | 0882 | 0883 | 0884 | 0885 | 0886 | 0887 | 0888 | 0889 | 0890 | 0891 | 0892 | 0893 | 0894 | 0895 | | 380 | 0896 | 0897 | 0898 | 0899 | 0900 | 0901 | 0902 | 0903 | 0904 | 0905 | 0906 | 0907 | 0908 | 0909 | 0910 | 0911 | | 390 | 0912 | 0913 | 0914 | 0915 | 0916 | 0917 | 0918 | 0919 | 0920 | 0921 | 0922 | 0923 | 0924 | 0925 | 0926 | 0927 | | 3A0
3B0 | 0928 | 0929 | 0930 | 0931 | 0932 | 0933 | 0934 | 0935 | 0936 | 0937 | 0938 | 0939 | 0940 | 0941 | 0942 | 0943 | | | 0944 | 0945 | 0946 | 0947 | 0948 | 0 94 9 | 0950 | 0951 | 0952 | 0953 | 0954 | 0955 | 0956 | 0957 | 0958 | 0959 | | 3C0 | 0960 | 0961 | 0962 | 0963 | 0964 | 0965 | 0966 | 0967 | 0968 | 0969 | 0970 | 0971 | 0972 | 0973 | 0974 | 0975 | | 3D0 | 0976 | 0977 | 0978 | 0979 | 0980 | 0981 | 0982 | 0983 | 0984 | 0985 | 0986 | 0987 | 0988 | 0989 | 0990 | 0991 | | 3E0 | 1000 | 0993 | 0994 | 0995 | 0996 | 0997 | 0998 | 0999 | 1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007 | | 3F0 | 1008 | 1009 | 1010 | 1011 | 1012 | 1013 | 1014 | 1015 | 1016 | 1017 | 1018 | 1019 | 1020 | 1021 | 1022 | 1023 | | | | | <u> </u> | | | | | | | | | | | | | | |-----|---------------|--------------|--------------|------|--------------|------|----------------------|------|---------------|--------------|---------------|---------------|--------------|--------------|--------------|--------------| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8
 | 9 | A | B | | D | E | F | | 400 | 1024 | 1025 | 1026 | 1027 | 1028 | 1029 | 1030 | 1031 | 1032 | 1033 | 1034 | 1035 | 1036 | 1037 | 1038 | 1039 | | 410 | 1040 | 1041 | 1042 | 1043 | 1044 | 1045 | 1046 | 1047 | 1048 | 1049 | 1050 | 1051 | 1052 | 1053 | 1054 | 1055 | | 420 | 1056
1072 | 1057
1073 | 1058
1074 | 1059 | 1060
1076 | 1061 | 1062
1 078 | 1063 | 1064 | 1065
1081 | 1066
1082 | 1067
1083 | 1068
1084 | 1069
1085 | 1070
1086 | 1071
1087 | | 430 | 1072 | 10/3 | 10/4 | 1075 | 1076 | 1077 | 10/6 | 1079 | 1080 | 1001 | 1002 | 1003 | 1004 | ίνω | 1000 | 1067 | | 440 | 1088 | 1089 | 1090 | 1091 | 1092 | 1093 | 1094 | 1095 | 1096 | 1097 | 1098 | 1099 | 1100 | 1101 | 1102 | 1103 | | 450 | 1104 | 1105 | 1106 | 1107 | 1108 | 1109 | 1110 | 1111 | 1112 | 1113 | 1114 | 1115 | 1116 | 1117 | 1118 | 1119 | | 460 | 1120 | 1121 | 1122 | 1123 | 1124 | 1125 | 1126 | 1127 | 1128 | 1129 | 1130 | 1131 | 1132 | 1133 | 1134 | 1135 | | 470 | 1136 | 1137 | 1138 | 1139 | 1140 | 1141 | 1142 | 1143 | 1144 | 1145 | 1146 | 1147 | 1148 | 1149 | 1150 | 1151 | | 480 | 1152 | 1153 | 1154 | 1155 | 1156 | 1157 | 1158 | 1159 | 1160 | 1161 | 1162 | 1163 | 1164 | 1165 | 1166 | 1167 | | 490 | 1168 | 116 9 | 1170 | 1171 | 1172 | 1173 | 1174 | 1175 | 1176 | 11 <i>77</i> | 1178 | 1179 | 1180 | 1181 | 1182 | 1183 | | 4A0 | 1184 | 1185 | 1186 | 1187 | 1188 | 1189 | 1190 | 1191 | 1192 | 1193 | 1194 | 1195 | 1196 | 1197 | 1198 | 1199 | | 4B0 | 1200 | 1201 | 1202 | 1203 | 1204 | 1205 | 1206 | 1207 | 1208 | 1209 | 1210 | 1211 | 1212 | 1213 | 1214 | 1215 | | 4C0 | 1216 | 1217 | 1218 | 1219 | 1220 | 1221 | 1222 | 1223 | 1224 | 1225 | 1226 | 1227 | 1228 | 1229 | 1230 | 1231 | | 4D0 | 1232 | 1233 | 1234 | 1235 | 1236 | 1237 | 1238 | 1239 | 1240 | 1241 | 1242 | 1243 | 1244 | 1245 | 1246 | 1247 | | 4E0 | 1248 | 1249 | 1250 | 1251 | 1252 | 1253 | 1254 | 1255 | 1256 | 1257 | 1258 | 1259 | 1260 | 1261 | 1262 | 1263 | | 4F0 | 1264 | 1265 | 1266 | 1267 | 1268 | 1269 | 1270 | 1271 | 1272 | 1273 | 1274 | 1275 | 1276 | 1277 | 1278 | 1279 | | 500 | 1280 | 1281 | 1282 | 1283 | 1284 | 1285 | 1286 | 1287 | 1288 | 1289 | 1290 | 1291 | 1292 | 1293 | 1294 | 1295 | | 510 | 1296 | 1297 | 1298 | 1299 | 1300 | 1301 | 1302 | 1303 | 1304 | 1305 | 1306 | 1307 | 1308 | 1309 | 1310 | 1311 | | 520 | 1312 | 1313 | 1314 | 1315 | 1316 | 1317 | 1318 | 1319 | 1320 | 1321 | 1322 | 1323 | 1324 | 1325 | 1326 | 1327 | | 530 | 1328 | 1329 | 1330 | 1331 | 1332 | 1333 | 1334 | 1335 | 1336 | 1337 | 1338 | 1339 | 1340 | 1341 | 1342 | 1343 | | 540 | 1344 | 1345 | 1346 | 1347 | 1348 | 1349 | 1350 | 1351 | 1352 | 1353 | 1354 | 1355 | 1356 | 1357 | 1358 | 1359 | | 550 | 1360 | 1361 | 1362 | 1363 | 1364 | 1365 | 1366 | 1367 | 1368 | 1369 | 1370 | 1371 | 1372 | 1373 | 1374 | 1375 | | 560 | 1376 | 1377 | 1378 | 1379 | 1380 | 1381 | 1382 | 1383 | 1384 | 1385 | 1386 | 1387 | 1388 | 1389 | 1390 | 1391 | | 570 | 1392 | 1393 | 1394 | 1395 | 1396 | 1397 | 1398 | 1399 | 1400 | 1401 | 1402 | 1403 | 1404 | 1405 | 1406 | 1407 | | 580 | 1408 | 1409 | 1410 | 1411 | 1412 | 1413 | 1414 | 1415 | 1416 | 1417 | 1418 | 1419 | 1420 | 1421 | 1422 | 1423 | | 590 | 1424 | 1425 | 1426 | 1427 | 1428 | 1429 | 1430 | 1431 | 1432 | 1433 | 1434 | 1435 | 1436 | 1437 | 1438 | 1439 | | 5A0 | 1440 | 1441 | 1442 | 1443 | 1444 | 1445 | 1446 | 1447 | 1448 | 1449 | 1450 | 1451 | 1452 | 1453 | 1454 | 1455 | | 5B0 | 1456 | 1457 | 1458 | 1459 | 1460 | 1461 | 1462 | 1463 | 1464 | 1465 | 1466 | 1467 | 1468 | 1469 | 1470 | 1471 | | 5C0 | 1472 | 1473 | 1474 | 1475 | 1476 | 1477 | 1478 | 1479 | 1480 | 1481 | 1482 | 1483 | 1484 | 1485 | 1486 | 1487 | | 5D0 | 1 48 8 | 1489 | 1490 | 1491 | 1492 | 1493 | 1494 | 1495 | 1496 | 1497 | 1498 | 1499 | 1500 | 1501 | 1502 | 1503 | | 5E0 | 1504 | 1505 | 1506 | 1507 | 1508 | 1509 | 1510 | 1511 | 1512 | 1513 | 1514 | 1515 | 1516 | 1517 | 1518 | 1519 | | 5F0 | 1520 | 1521 | 1522 | 1523 | 1524 | 1525 | 1526 | 1527 | 1528 | 1529 | 1530 | 1531 | 1532 | 1533 | 1534 | 1535 | | 600 | 1536 | 1537 | 1538 | 1539 | 1540 | 1541 | 1542 | 1543 | 1544 | 1545 | 1546 | 1547 | 1548 | 1549 | 1550 | 1551 | | 610 | 1552 | 1553 | 1554 | 1555 | 1556 | 1557 | 1558 | 1559 | 1560 | 1561 | 1562 | 1563 | 1564 | 1565 | 1566 | 1567 | | 620 | 1568 | 1569 | 1570 | 1571 | 1572 | 1573 | 1574 | 1575 | 1 <i>57</i> 6 | 1577 | 1578 | 1579 | 1580 | 1581 | 1582 | 1583 | | 630 | 1584 | 1585 | 1586 | 1587 | 1588 | 1589 | 1590 | 1591 | 1592 | 1593 | 1594 | 1595 | 1596 | 1597 | 1598 | 1599 | | 640 | 1600 | 1601 | 1602 | 1603 | 1604 | 1605 | 1606 | 1607 | 1608 | 1609 | 1610 | 1611 | 1612 | 1613 | 1614 | 1615 | | 650 | 1616 | 1617 | 1618 | 1619 | 1620 | 1621 | 1622 | 1623 | 1624 | 1625 | 1626 | 1627 | 1628 | 1629 | 1630 | 1631 | | 660 | 1632 | 1633 | 1634 | 1635 | 1636 | 1637 | 1638 | 1639 | 1640 | 1641 | 1642 | 1643 | 1644 | 1645 | 1646 | 1647 | | 670 | 1648 | 1649 | 1650 | 1651 | 1652 | 1653 | 1654 | 1655 | 1656 | 1657 | 1658 | 1659 | 1660 | 1661 | 1662 | 1663 | | 680 | 1664 | 1665 | 1666 | 1667 | 1668 | 1669 | 1670 | 1671 | 1672 | 1673 | 1674 | 1675 | 1676 | 1677 | 1678 | 1679 | | 690 | 1680 | 1681 | 1682 | 1683 | 1684 | 1685 | 1686 | 1687 | 1688 | 1689 | 1690 | 1691 | 1692 | 1693 | 1694 | 1695 | | 6A0 | 1696 | 1697 | 1698 | 1699 | 1700 | 1701 | 1702 | 1703 | 1704 | 1705 | 1706 | 1 <i>7</i> 07 | 1708 | 1709 | 1710 | 1711 | | 6B0 | 1712 | 1713 | 1714 | 1715 | 1716 | 1717 | 1718 | 1719 | 1720 | 1721 | 1722 | 1723 | 1724 | 1725 | 1726 | 1727 | | 6C0 | 1728 | 1729 | 1730 | 1731 | 1732 | 1733 | 1734 | 1735 | 1736 | 1737 | 1738 | 1739 | 1740 | 1741 | 1742 | 1743 | | 6D0 | 1744 | 1745 | 1746 | 1747 | 1748 | 1749 | 1750 | 1751 | 1752 | 1753 | 1754 | 1755 | 1756 | 1757 | 1758 | 1759 | | 6E0 | 1760 | 1761 | 1762 | 1763 | 1764 | 1765 | 1766 | 1767 | 1768 | 1769 | 1 <i>7</i> 70 | 1771 | 1772 | 1773 | 1774 | 1775 | | 6F0 | 1776 | 1777 | 1778 | 1779 | 1780 | 1781 | 1782 | 1783 | 1784 | 1785 | 1786 | 1787 | 1788 | 1789 | 1790 | 1791 | | Ь | i | | | | | | | | | | | | | | | | | Total Tota | | | | | | | | | | | | | | | | | |
--|-----|------|--------------|-------|--------------|------|--------------|--------------|------|---------------|---------------|---------------|--------------|------|--------------|------|------| | | | 0 | <u> </u> | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | B | С | D | E | F | | | 700 | 1792 | 1793 | 1794 | 1795 | 1796 | 179 7 | 1798 | 1799 | 1800 | 1801 | 1802 | 1803 | 1804 | 1805 | 1806 | 1807 | | | 710 | 1808 | 1809 | 1810 | 1811 | 1812 | 1813 | 1814 | 1815 | 1816 | 1817 | 1818 | 1819 | 1820 | 1821 | 1822 | 1823 | | 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1871 1872 1873 1874 1875 1876 1871 1872 1873 1874 1875 1876 1871 1872 1873 1874 1875 1876 1871 1872 1873 1874 1875 1876 1871 1872 1873 1874 1875 1876 | 720 | 1824 | 1825 | 1826 | 1827 | 1828 | 1829 | 1830 | 1831 | 1832 | 1833 | 1834 | 1835 | 1836 | 1837 | 1838 | 1839 | | | 730 | 1840 | 1841 | 1842 | 1843 | 1844 | 1845 | 1846 | 1847 | 1848 | 1849 | 1850 | 1851 | 1852 | 1853 | 1854 | 1855 | | | 740 | 1856 | 1857 | 1858 | 1859 | 1860 | 1861 | 1862 | 1863 | 1864 | 1865 | 1866 | 1867 | 1868 | 1869 | 1870 | 1871 | | | 750 | 1872 | 1873 | 1874 | 1875 | 1876 | 1877 | 1878 | | 1880 | 1881 | 1882 | 1883 | 1884 | 1885 | 1886 | 1887 | | PRO | 760 | 1888 | 1889 | 1890 | 1891 | 1892 | 1893 | 1894 | 1895 | 1896 | 18 9 7 | 1898 | 1899 | 1900 | 1901 | 1902 | 1903 | | | | 1904 | 1905 | 1906 | 1907 | 1908 | 1909 | 1910 | | 1912 | 1913 | 1914 | 1915 | 1916 | 1917 | 1918 | 1919 | | 1936 1937 1938 1939 1940 1941 1942 1943 1946 1945 1947 1948 1949 1950 1951 1950 1951 1955 1965 1951 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1984 1985 | 780 | 1920 | 1921 | 1922 | 1923 | 1924 | 1925 | 1926 | 1927 | 1928 | 19 29 | 1930 | 1931 | 1932 | 1933 | 1934 | 1935 | | | 790 | 1936 | 1937 | 1938 | 1939 | 1940 | 1941 | 1942 | 1943 | 1944 | 1945 | 1946 | 1947 | 1948 | 194 9 | 1950 | 1951 | | TCO | | 1952 | 1953 | 1954 | 1955 | 1956 | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | | The Decision The Decision | 7B0 | 1968 | 1969 | 1 970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1 9 78 | 1979 | 1980 | 1981 | 1982 | 1983 | | TFO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 TFO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2063 810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2125 2126 850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2155 2155 2157 2158 2159 870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2185 2187 2188 2189 2190 2191 890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 880 2274 2242 2242 2228 222 | 7C0 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 19 9 2 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | | Pro | 7D0 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 20 13 | 2014 | 2015 | | BOO 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 810 2064 2065 2066 2067 2068 2089 2097 2071 2072 2073 2074 2075 2076 2077 2078 2079 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 20 | 7E0 | 2016 | 201 7 | 2018 | 2019 | 2020 | 2021 | 2022 |
2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | | 810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2 | 7F0 | 2032 | 2033 | 2034 | 2035 | 2036 | 2037 | 2038 | 2039 | 2040 | 2041 | 2042 | 2043 | 2044 | 2045 | 2046 | 2047 | | 810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2 | 800 | 2048 | 2049 | 2050 | 2051 | 2052 | 2053 | 2054 | 2055 | 2056 | 2057 | 2058 | 2059 | 2060 | 2061 | 2062 | 2063 | | 830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2125 2125 2126 2127 280 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2155 2157 2158 2159 870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2201 2202 2203 2201 2202 2203 2201 2202 | | 2064 | 2065 | 2066 | | | | | | 2072 | 2073 | 2074 | | 2076 | 2077 | 2078 | 2079 | | 840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2188 2129 2196 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2188 2129 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 8A0 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 223 880 2224 2225 2226 2227 2228 2229 2330 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2205 2206 2207 2208 2207 2208 2209 2209 2209 2209 2209 2209 2209 | 820 | 2080 | 2081 | 2082 | 2083 | 2084 | 2085 | 2086 | 2087 | 2088 | 2089 | 2090 | 2091 | 2092 | 2093 | 2094 | 2095 | | 850 | 830 | 2096 | 20 97 | 2098 | 2099 | 2100 | 2101 | 2102 | 2103 | 2104 | 2105 | 2106 | 2107 | 2108 | 2109 | 2110 | 2111 | | 860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2200 2201 2202 2203 2204 2205 2206 2207 2288 2219 2210 2211 2212 2212 2212 2219 2202 2202 2203 2201 2219 2202 <td>840</td> <td>2112</td> <td>2113</td> <td>2114</td> <td>2115</td> <td>2116</td> <td>2117</td> <td>2118</td> <td>2119</td> <td>2120</td> <td>2121</td> <td>2122</td> <td>2123</td> <td>2124</td> <td>2125</td> <td>2126</td> <td>2127</td> | 840 | 2112 | 2113 | 2114 | 2115 | 2116 | 2117 | 2118 | 2119 | 2120 | 2121 | 2122 | 2123 | 2124 | 2125 | 2126 | 2127 | | 870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2187 2188 2189 2190 2191 2191 2202 2203 2204 2205 2206 2207 8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2231 2232 2233 2234 2235 2236 2237 2238 2239 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2260 2261 2262 2247 2248 2249 2250 2251 2252 2253 2254 2255 2260 2261 2262 2263< | 850 | 2128 | 2129 | 2130 | 2131 | 2132 | 2133 | 2134 | 2135 | 2136 | 2137 | 2138 | 2139 | 2140 | 2141 | 2142 | 2143 | | 880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2191 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 880 2224 2225 2221 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2231 2232 2233 2234 2235 2236 2237 2238 2239 8C0 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2289 2270 2271 286 2277 2278 2279 2280 2281 </td <td>860</td> <td>2144</td> <td>2145</td> <td>2146</td> <td>2147</td> <td>2148</td> <td>2149</td> <td>2150</td> <td>2151</td> <td>2152</td> <td>2153</td> <td>2154</td> <td>2155</td> <td>2156</td> <td>2157</td> <td>2158</td> <td>2159</td> | 860 | 2144 | 2145 | 2146 | 2147 | 2148 | 2149 | 2150 | 2151 | 2152 | 2153 | 2154 | 2155 | 2156 | 2157 | 2158 | 2159 | | 890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 8B0 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 8C0 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 8D0 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2267 2268 2289 2269 2270 2271 286 2272 2273 2274 2275 2276 2277 2278 2299 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 | 870 | 2160 | 2161 | 2162 | 2163 | 2164 | 2165 | 2166 | 2167 | 2168 | 2169 | 2170 | 2171 | 2172 | 2173 | 2174 | 2175 | | 8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 8D0 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 8E0 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2280 2281 2282 2283 2284 2285 2286 2287 2299 2300 2301 2301 2311 2312 </td <td>880</td> <td>2176</td> <td>2177</td> <td>2178</td> <td></td> <td>2180</td> <td>2181</td> <td>2182</td> <td>2183</td> <td>2184</td> <td>2185</td> <td>2186</td> <td>2187</td> <td>2188</td> <td>2189</td> <td>2190</td> <td>2191</td> | 880 | 2176 | 2177 | 2178 | | 2180 | 2181 | 2182 | 2183 | 2184 | 2185 | 2186 | 2187 | 2188 | 2189 | 2190 | 2191 | | 880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2288 2289 2280 2301 2311 2312 2313 2314 2315 2316 2317 2318 2319 900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2315 2316 2317 | 890 | 2192 | 2193 | 2194 | 2195 | 2196 | 2197 | 2198 | 2199 | 2200 | 2201 | 2202 | 220 3 | 2204 | 2205 | 2206 | 2207 | | 8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2313 2316 2317 2318 2319 900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 </td <td>8A0</td> <td>2208</td> <td></td> <td>2210</td> <td>2211</td> <td>2212</td> <td>2213</td> <td>2214</td> <td>2215</td> <td>2216</td> <td>2217</td> <td>2218</td> <td>2219</td> <td>2220</td> <td>2221</td> <td>2222</td> <td>2223</td> | 8A0 | 2208 | | 2210 | 2211 | 2212 | 2213 | 2214 | 2215 | 2216 | 221 7 | 2218 | 2219 | 2220 | 2221 | 2222 | 2223 | | 8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 8FO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 900
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2316 2317 2318 2319 910 2320 2321 2322 2323 2344 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 930 2352 2353 2354 2355 2356 <t< td=""><td>8B0</td><td>2224</td><td>2225</td><td>2226</td><td>2227</td><td>2228</td><td>2229</td><td>2230</td><td>2231</td><td>2232</td><td>2233</td><td>2234</td><td>2235</td><td>2236</td><td>2237</td><td>2238</td><td>2239</td></t<> | 8B0 | 2224 | 2225 | 2226 | 2227 | 2228 | 2229 | 22 30 | 2231 | 2232 | 2233 | 2234 | 2 235 | 2236 | 2237 | 2238 | 2239 | | 8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 910 2320 2321 2322 2323 2344 2342 2342 2342 2343 2346 2347 2348 2349 2333 2334 2335 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 940 2368 2369 2370 2371 | | | | | | | | | | 2248 | 2249 | | | 2252 | | | | | 8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2345 2346 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 | | 2256 | | | | 2260 | | 2262 | 2263 | 2264 | 2265 | 2266 | | 2268 | 2269 | 2270 | 2271 | | 900 | | 1 | | | | | | | | 2280 | | | | | | | | | 910 | 8F0 | 2288 | 2289 | 2290 | 2291 | 2292 | 229 3 | 2294 | 2295 | 2296 | 2297 | 2298 | 2299 | 2300 | 2301 | 2302 | 2303 | | 920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 970 2416 2417 2418 2419 2420 2421 2422 2423 2440 2441 2442 </td <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2312</td> <td>2313</td> <td>2314</td> <td></td> <td></td> <td></td> <td></td> <td>2319</td> | | 1 | | | | | | | | 2312 | 2313 | 2314 | | | | | 2319 | | 930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 960 2400 2401 2402 2403 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 970 2416 2417 2418 2419 2420 2421 2422 2423 2440 2441 2442 2443 2444 2445 2446 2447 980 2432 2433 2434 2435 <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2328</td><td></td><td></td><td></td><td></td><td></td><td></td><td>2335</td></t<> | | 1 | | | | | | | | 2328 | | | | | | | 2335 | | 940 | | | | | | | | | | | | | | | | | 2351 | | 950 | 930 | 2352 | 2353 | 2354 | 2355 | 2356 | 2357 | 2358 | 2359 | 2360 | 2361 | 2362 | 2363 | 2364 | 2365 | 2366 | 2367 | | 960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 9A0 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 9B0 2490 2491 <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2376</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | 1 | | | | | | | | 2 376 | | | | | | | | | 970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2482 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2488 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2526 2527 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2542 2543 2543 2544 2542 2543 2543 2544 2545 2543 2544 2545 2543 2545 2546 2547 2544 2545 254 | | E . | | | | | | | | | | | | | | | | | 980 | | i _ | | | | | | | | | | | | | | | | | 990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 9A0 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 9B0 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2540 2542 2543 9E0 2528 2529 2530 <t< td=""><td>970</td><td>2416</td><td>2417</td><td>2418</td><td>2419</td><td>2420</td><td>2421</td><td>2422</td><td>2423</td><td>2424</td><td>2425</td><td>2426</td><td>2427</td><td>2428</td><td>2429</td><td>2430</td><td>2431</td></t<> | 970 | 2416 | 2417 | 2418 | 2419 | 2420 | 2421 | 2422 | 2423 | 2424 | 2425 | 2426 | 2427 | 2428 | 2429 | 2430 | 2431 | | 9A0 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 9B0 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 9E0 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 | | E . | | | | | | | | | | | | | | | | | 980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2500 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2545 254 | | | | | | | | | | | | | | | | | | | 9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 9E0 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 | | 3 | | | | | | | | | | | | | | | | | 9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 9E0 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 | 9B0 | 2480 | 2481 | 2482 | 2483 | 2484 | 2485 | 2486 | 2487 | 2488 | 2489 | 2490 | 2491 | 2492 | 2493 | 2494 | 2495 | | 9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 9E0 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 | 90 | | 2497 | 2498 | 249 9 | 2500 | 2501 | 2502 | 2503 | 2504 | 2505 | 2506 | 2507 | 2508 | 2509 | 2510 | 2511 | | | | 1 | | | | | 2517 | | 2519 | | 2521 | | 2523 | | 2525 | | | | 9F0 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 | | 1 | | | | | | | | | | | | | | | | | | 9F0 | 2544 | 2545 | 2546 | 2547 | 2548 | 2549 | 2550 | 2551 | 2552 | 2553 | 2554 | 2555 | 2556 | 2557 | 2558 | 2559 | | C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3227 3228 3229 3230 3231 CA0 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 CB0 3248 3249 3250 3251 3252 3253 3254 3255 3256 </th <th></th>
<th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th> <th>Α</th> <th>В</th> <th>С</th> <th>D</th> <th>E</th> <th>F</th> | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | E | F | |---|--------------|---------------|---------------|---------------|----------------------|--------------|----------------------|-----------------------|----------------------|-----------------------|--------------|--------------|-----------------------|-----------------------|--------------|--------------|-----------------------| | \$\ \begin{array}{c c c c c c c c c c c c c c c c c c c | | | | | | | | | | | | | | | | | | | A30 | | | | | | | | | | | | | | | | | -) | | A-00 2674 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2635 2637 2638 2639 2636 2640 2641 2642 2644 2645 2646 | | | | | | | | | | | | | | | | | | | \$\frac{1}{2}\frac{9}{2} \frac{9}{2} \frac{1}{2} \frac{2}{2} \fra | A 3 0 | 2608 | 2 6 09 | 2610 | 2611 | 2612 | 261 3 | 2614 | 2615 | 261 6 | 2617 | 2618 | 2619 | 2620 | 2621 | 2622 | 2623 | | A-00 | | | | | | | | | | | | | | | | | | | AFO 2872 2873 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2685 2686 2687 2688 2689 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2718 2718 2719 2700 2711 2712 2713 2714 2715 2716 2717 2718 2718 2719 2708 2727 2728 2728 2729 2730 2731 2722 2733 2734 2735 2736 2737 2732 2733 2734 2735 2736 2737 2738 2739 2730 2731 2732 2733 2734 2735 2736 2731 2732 2733 2734 2735 2736 2736 2736 2731 2732 2733 2734 2735 2736 2736 2736 2736 2736 2737 2738 2736 2737 2738 2736 2736 2736 2736 2736 2736 2737 2738 2736 2736 2736 2736 2736 2736 2738 2 | | | | | | | | | | | | | | | | | | | ## A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 ## A80 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 ## A80 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2744 2745 2746 2747 2748 2749 ## A80 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 ## A80 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2746 2747 2748 2749 2750 2751 ## A80 2736 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2765 2765 ## A80 2736 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 ## A80 2736 2756 2757 2758 2759 2750 2750 2751 2772 2773 2774 2775 ## A80 2736 2736 2736 2737 2738 2739 2730 2731 2732 2733 2734 2735 ## A80 2736 2736 2736 2737 2738 2779 2738 2779 2780 2781 2782 2783 ## A80 2736 2736 2736 2737 2738 2739 2730 2731 2732 2733 2734 2735 ## A80 2736 2736 2736 2737 2737 2738 2779 2780 2779 2778 | 1 1 | | | | | | | | | | | | | | | | | | A-O 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 A-AO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2720 2731 2734 2735 2733 2734 2735 ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 ACO 2758 2759 2750 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2789 ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 ACO 2752 2753 2754 2755 2756 2757 2778 2779 2778 2779 2778 2779 2778 2779 ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2762 2781 2782 2783 ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2762 2781 2782 2783 ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2761 2762 2763 2764 2762 2783 2784 2785 2786 2787 2788 2789 2789 2789 2789 2789 2789 2881 2881 2881 2882 2883 2884 2885 | A/0 | 26/2 | 26/3 | 26/4 | 26/5 | 26/6 | 26// | 26/8 | 20/9 | 2680 | 2081 | 2002 | 2003 | 2004 | 2000 | 2000 | 2007 | | ABO | A80 | 2688 | 2689 | 2690 | 2691 | 2 692 | 269 3 | 2694 | 2695 | 2696 | 2697 | 2698 | 2699 | 2700 | 2701 | 2702 | 270 3 | | ABO | A90 | 2704 | 2705 | 2706 | 2707 | 2708 | 2709 | 2710 | 2711 | 2712 | 271 3 | 2714 | 2715 | | | | | | ACQ 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 AEO 2784 2785 2786 2787 2788 2789 2780 2791 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 AEO 2784 2785 2786 2787 2788 2789 2780 2791 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 AEO 2784 2785 2786 2787 2788 2789 2780 2791 2779 2779 2779 2778 2779 2778 2779 2779 | AA0 | 2720 | 2721 | 2722 | 2723 | 2724 | 2725 | 2726 | | 2728 | | _ | | | | | | | ADD | AB0 | 27 3 6 | 27 3 7 | 27 3 8 | 27 3 9 | 2740 | 2741
 2742 | 2743 | 2744 | 2745 | 2746 | 2747 | 2748 | 27 49 | 2750 | 2751 | | ADD | AC0 | 2752 | 275 3 | 2754 | 2755 | 2756 | 2757 | 2758 | 2759 | 2760 | 2761 | 2762 | 2763 | 2764 | | 2766 | 2767 | | RFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 | AD0 | 2768 | 2769 | 2770 | 2771 | 2772 | 2773 | 2774 | 2775 | 2776 | 2777 | | | 2780 | | | | | BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 B40 2880 2881 2882 2883 2884 2885 2886 2887 2887 2887 2887 2889 B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2901 B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 BA0 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 BB0 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 BC0 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3091 3001 3010 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3010 3011 3012 3033 3034 3035 3036 3067 3071 3071 3072 3073 3074 3075 3076 3077 3078 3079 3098 3081 3081 3084 3085 3086 3087 3076 3076 3076 3078 3076 3077 3078 3076 3077 3078 3079 3079 3079 3099 3099 3010 3011 3102 3103 312 | AE0 | 2784 | 2785 | 2786 | | | | | | | | | | | | | | | B10 | AF0 | 2 80 0 | 2801 | 2802 | 280 3 | 2804 | 2805 | 2806 | 2807 | 2808 | 2809 | 2810 | 2811 | 2812 | 2813 | 2814 | 2815 | | Record Section Section Record Section Record Section Section Record Section | B00 | 2816 | 2817 | 2818 | 2819 | 2820 | 2821 | 2822 | 2823 | 2824 | 2825 | 2826 | 2827 | | 2829 | | 28 3 1 | | B40 | B10 | 2832 | 2833 | | | | | | | | 2841 | _ | | | | | | | B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2899 2890 2890 2901 2902 2903 2904 2905 2907 2908 2999 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2942 2942 2942 2942 2942 2942 2942 2942 2942 2942 2942 2942 2942 2942 2942 2942 2942 2943 2942 2943 2942 2942 2943 2942 2943 2942 2943 2942 2944 2945 2946 2967 2958 2959 2957 2958 2959 2970 2971 2973 | | 2848 | | | | 2852 | | | | | | | | | _ | | | | B50 28% 2897 2898 2899 2000 2901 2902 2903 2904 2905 2906 2970 2908 2909 2910 2911 2918 2912 2913 2914 2915 2916 2917 2918 2912 2920 2921 2922 2923 2924 2925 2926 2927 2920 2921 2924 2925 2926 2927 2920 2921 2922 2923 2924 2925 2926 2937 2938 2939 2940 2940 2942 2943 2944 2945 2946 2965 2966 2967 2968 2987 2970 2971 2973 2978 2998 2989 2980 3000 3001 3001 3001 3 | B 3 0 | 2864 | 2 86 5 | 2866 | 2867 | 2868 | 2869 | 2870 | 2871 | 2872 | 287 3 | 2874 | 2875 | 2876 | 2877 | 2878 | 2879 | | B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2943 2943 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2942 2942 2942 2943 2944 2945 2946 2965 2964 2965 2966 2967 2988 2989 2997 2971 2972 2973 2974 2975 2974 2975 2976 2977 2978 2979 2998 2989 2980 2985 2986 2985 2986 2985 2986 2986 2985 2988 2989 2997 2979 2998 2999 3000 3001 3003 | B40 | 2880 | | | | | | | | | | | | | | | | | B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2999 3000 3001 3001 3005 3006 3007 3008 3009 3010 3011 3012 3013 3015 3016 3017 3018 3019 3020 3021 3022 3023 3037 3038 3037 3038 3029 3030 3031 3035 3035 3036 3 | I | | _ | | | | | | | | | | | | | | | | B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2957 2978 2977 2978 2977 2978 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2972 2973 2974 2975 BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3028 3029 3030 3031 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3023 3031 3032 3033 3034 3035 3036 3037 3038 3039 3030 3031 3032 3033 3034 3035 3053 3055 3053 3064 3045 3045 | | ı | | | | | | | | | | | | | _ | | | | B90 | B70 | 2928 | 2929 | 29 3 0 | 2931 | 2932 | 293 3 | 2934 | 2935 | 2936 | 293/ | 2938 | 2939 | 2940 | 2941 | 2942 | 294 3 | | BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2987 2988 2987 2988 2987 2988 2987 2988 2987 2980 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3001 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 BD0 3024 3024 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3053 3059 3060 3061 3062 3063 3064 3065 3063 3067 3078 3079 3080 3081 3082 3083 3084 3085 3085 3086 3087 C10 3088 3089 <td>B80</td> <td>2944</td> <td>2945</td> <td>2946</td> <td>2947</td> <td>2948</td> <td>2949</td> <td>2950</td> <td>2951</td> <td>2952</td> <td>2953</td> <td>2954</td> <td>2955</td> <td>2956</td> <td>2957</td> <td>2958</td> <td>2959</td> | B80 | 2944 | 2945 | 2946 | 2947 | 2948 | 2949 | 2950 | 2951 | 2952 | 295 3 | 2954 | 2955 | 295 6 | 2957 | 2958 | 2959 | | BBO | B90 | 2960 | 2961 | 2962 | 296 3 | 2964 | 2965 | 2966 | 2967 | 2968 | 2969 | 2970 | | 2972 | | | | | BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 BDO 3024 3025 3026 3027 3028 3029 3031 3032 3033 3034 3035 3036 3037 3038 3039 BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 BFO 3056 3057 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3068 3087 C10 3088 3089 3090 3091 3072 3073 3078 3079 3080 3081 3082 3080 3084 3085 3086 3087 C10 3088 30897 3099 3100 < | BA0 | 2976 | | | | | | | | | | | | | | | | | BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 C00 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3110 3111 3112 3113 | вво | 2992 | 299 3 | 2994 | 2995 | 2996 | 2997 | 2998 | 2999 | 3000 | 3 001 | 3002 | 3003 | 3004 | 3 005 | 3 006 | 3 007 | | BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 C00 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3114 3114 3147 3148 | BC 0 | 3008 | 3 009 | 3 010 | 3 011 | 3 012 | 3013 | 3 014 | 3 015 | 30 16 | 3 017 | 3 018 | 3 019 | 3 020 | 3 021 | 3 022 | 3 02 3 | | BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3078 3070 3071 C00 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3086 3087 C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3101 3101 3111 3112 3113 3114 3115 3116 3117 3118 3119 3110 3111 3112 3113 3113 3131 3132 3133 3134 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 C40 3136 3137 3138 3155 3156 3157 3158 | BD0 | 3 024 | 3 025 | 3 026 | 3 027 | 3 028 | 3 029 | 3 0 3 0 | 3031 | 3 0 3 2 | 3033 | 3034 | 3 0 3 5 | 3 0 3 6 | 3037 | 3038 | 3 0 3 9 | | C00 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 CA0 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 CB0 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3278 3279 CD0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3293 3294 CD0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 CE0 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 | BEO | 30 40 | 3041 | 3 042 | 3043 | 3044 | 3 045 | 3046 | 3047 | 3 048 | 3 049 | 3 050 | | | | | | | C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 C20 3104 3105 3106 3107 3108 3109 3110 3111
3112 3113 3114 3115 3116 3117 3118 3119 C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 CA0 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 CB0 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 CC0 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 CE0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 CE0 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 | BF0 | 3 056 | 3 057 | 3 058 | 3 059 | 3 060 | 30 61 | 30 62 | 3 06 3 | 3064 | 3 065 | 3066 | 3067 | 3 068 | 3 069 | 3 070 | 3 071 | | C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3173 3174 3175 3178 3179 3180 3181 3182 3183 C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 | C00 | 3 072 | 3073 | 3 074 | 3 075 | 3 076 | 3 077 | 3 078 | 3 079 | 3 080 | 3081 | | | | | | | | C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 C40 3136 3137 3138 3139 3140 3141 3142 3143 3145 3146 3147 3148 3149 3150 3151 C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 C80 3200 3201 3202 <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | 1 | | | | | | | | | | | | | | | | | C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 CA0 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 CB0 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 CC0 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 CD0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 CE0 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 | | 1 | | | | | | | | | | | | | | | | | C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3227 3228 3227 3228 3227 3228 3227 | C30 | 3120 | 3121 | 3122 | 3123 | 3124 | 3 125 | 3 126 | 3 1 27 | 3 128 | 3129 | 3130 | 3131 | 3132 | 3133 | 3134 | 3135 | | C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3227 3228 3229 3230 3231 CA0 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 CB0 <t< td=""><td></td><td>3136</td><td></td><td>3138</td><td>3139</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | 3136 | | 3138 | 313 9 | | | | | | | | | | | | | | C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 CA0 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 CB0 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 CC0 3264 3265 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3167</td></t<> | | | | | | | | | | | | | | | | | 3167 | | C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 CA0 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 CB0 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 CC0 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 CD0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 CE0 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 | | 1 | | | | | | | | | | | | | | | | | C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 CA0 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 CB0 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 CC0 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 CD0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3210 CE0 3296 3297 3298 <t< td=""><td>C70</td><td>3184</td><td>3185</td><td>3186</td><td>3187</td><td>3188</td><td>3189</td><td>3190</td><td>3191</td><td>31 92</td><td>3193</td><td>3194</td><td>3195</td><td>31 %</td><td>3197</td><td>3198</td><td>3199</td></t<> | C70 | 3184 | 3 185 | 3186 | 3187 | 3188 | 3189 | 3190 | 3191 | 3 1 92 | 3 193 | 3194 | 3195 | 31 % | 3197 | 3198 | 3199 | | CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 CDO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 | | | | | | | | | | | | | | | | | | | CB0 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 CC0 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 CD0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3290 3291 3292 3293 3294 3295 CE0 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 | 1 | | | | | | | | | | | | | | | | | | CC0 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 CD0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 CE0 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 | | | | | | | | | | | | | | | | | | | CD0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 CE0 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 | CB0 | 3248 | 3249 | 3 250 | 3 251 | 3252 | 3253 | 3254 | 3255 | 3 256 | 3257 | 3258 | 3 259 | 3 260 | 3 261 | 3 262 | 326 3 | | CD0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 CE0 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 | cco | 3264 | 3 265 | 3 266 | 3 267 | 3 268 | 3 269 | 3 270 | 3271 | 3 272 | 3273 | 3274 | 3 275 | 3 276 | 3 277 | 3 278 | 3279 | | | CD0 | 3280 | 3 281 | | 3 28 3 | | | 3 286 | 3 287 | | | 3290 | 3 291 | 3 292 | | | 3295 | | CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 | CF0 | 3312 | 3313 | 3314 | 33 15 | 3316 | 33 1 <i>7</i> | 3318 | 33 19 | 332 0 | 3321 | 3322 | 3323 | 3324 | 33 25 | 33 26 | 3327 | | Dec 1 2 3 3 4 5 6 7 8 9 A B C D E F | 1 | | | | | | | | | | | | | | | | |
--|-------|--------------|--------------|---------------|--------------|--------------|-------|--------------|--------------|--------------|----------------------|--------------|----------------------|--------------|----------------------|--------------|--------------| | D10 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | E | F | | D10 | D00 | 3328 | 33 29 | 3330 | 3331 | 3332 | 3333 | 3334 | 333 5 | 3336 | 3337 | 3338 | 333 9 | 334 0 | 3341 | 3342 | 3343 | | Day | D10 | 3344 | | 3346 | 3347 | | 3349 | 3350 | | | | 3 354 | 33 55 | 33 56 | 3357 | 33 58 | 3 359 | | D30 | D20 | 3 360 | 33 61 | 336 2 | 3363 | 3364 | 3365 | 3366 | 33 67 | | | | 3 371 | 33 72 | | | 1 | | DSO | D30 | 33 76 | 3377 | 3378 | 3379 | 3380 | 3381 | 33 82 | 3383 | | 33 85 | | 338 7 | | | | 33 91 | | DSO | 1 | • | | | | | | | | | | | | | | | İ | | Decoration Dec | D40 | 339 2 | 3393 | 3394 | 33 95 | 3396 | 3397 | 3398 | 33 99 | 3400 | 3401 | 3 402 | 3403 | 3404 | 3405 | 3406 | 3407 | | DFO | D50 | 3408 | 3409 | 3410 | 3411 | 34 12 | 3413 | 3414 | 3415 | 3416 | 3417 | 3418 | 3419 | 3420 | 3421 | 3422 | 3423 | | DRO 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3480 3481 3482 3483 3484 3485 3486 3487 3480 3481 3482 3483 3484 3485 3486 3487 3480 3481 3482 3483 3484 3485 3486 3487 3480 3481 3482 3483 3484 3485 3486 3487 3480 3481 3482 3483 3484 3485 3486 3487 3480 3481 3482 3483 3485 3486 3487 3481 3 | D60 | | 3425 | 3426 | 3427 | 3428 | 3429 | 3430 | 3431 | 3432 | 3433 | 3434 | 343 5 | 343 6 | 3437 | 3438 | 3439 | | DPO | D70 | 3440 | 3441 | 3442 | 3443 | 3444 | 3445 | 3446 | 3447 | 3448 | 3449 | 34 50 | 3 451 | 3452 | 3453 | 34 54 | 3455 | | DPO | | | | | | | | | | | | | | | | | l | | DAO 3488 3489 3490 3491 3492 3493 3494 3495 3495 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3 | | | | | | | | | _ | | | - | | | | | | | DBO | | | _ | | | - | | | | | | | | | | | 1 | | DCO | | | | | - | | | | | | | _ | | | | | 1 | | DDO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3454 3547 3348 3347 3358 3359 3350 3551 3555 3555 3555 3555 3555 3555 3555 3555 3555 3555 3556 3357 3358 3357 3358 3359 3350 3351 3362 3363 3 | DBO | 3504 | 35 05 | 3506 | 3507 | 3508 | 3509 | 35 10 | 3511 | 3 512 | 3 51 3 | 3514 | 3 515 | 3516 | 351 <i>7</i> | 3518 | 3519 | | DDO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3454 3547 3348 3347 3358 3359 3350 3551 3555 3555 3555 3555 3555 3555 3555 3555 3555 3555 3556 3357 3358 3357 3358 3359 3350 3351 3362 3363 3 | l ! | | | | | | | | | | | | | | | | | | DED 3552 3553 3554 3555 3556 3557 3578 3578 3575 3576 3577 3578 3579 3580 3561 3562 3563 3564 3562 3583 3582 3583 | 4 | | | | | | | | | | | | |
| | | | | DF0 | | ľ | | | | | | | | | | | | | | | | | E00 3584 3585 3586 3587 3588 3587 3598 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3660 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3712 5728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3744 3745 3746 3747 3748 3749 3750 3761 3762 3763 3764 3765 3765 3765 3765 3765 3765 3765 3765 | | | | | | | | | | | | | | | | | | | E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3670 3681 3682 3683 3684 3685 3686 3687 3688 3689 3670 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3718 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 E50 3726 3726 3726 3726 3726 3726 3726 3726 | DF0 | 3568 | 3569 | 3570 | 3571 | 357 2 | 3573 | 3574 | 35 75 | 3576 | 3577 | 3578 | 3 579 | 3580 | 3581 | 3 582 | 3583 | | E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3670 3681 3682 3683 3684 3685 3686 3687 3688 3689 3670 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3718 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 E50 3726 3726 3726 3726 3726 3726 3726 3726 | 500 | 2504 | 2505 | 250/ | 2507 | 0500 | 2500 | 0500 | 0501 | 2500 | 2500 | 2504 | 2505 | 250/ | 2507 | 25.00 | 2500 | | E20 | | ı | | | | | | | | | | | | | | | | | E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3646 3646 3646 3645 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3681 3682 3683 3684 3685 3686 3687 3688 3689 3679 3700 3701 3702 3703 3704 3705 3707 3701 3702 3703 3704 3705 3707 3708 3093 3693 3693 3693 3693 3694 3695 E70 3696 3697 3683 3688 3687 3688 3689 3699 3691 3692 3673 3674 3695 3697 3691 3691 3692 3693 3691 3691 3691 3692 36973 3693 3691 3691 369 | | | | | | _ | | | | | | - | | | _ | | - 1 | | E40 3648 3649 3650 3651 3652 3653 3654 3655 3655 3656 3657 3658 3659 3660 3661 3662 3663 550 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 560 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 570 3698 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 5744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 5800 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 580 3750 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 580 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 580 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 580 3750 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 580 3750 3751 3752 3753 3754 3755 3756 3757 3758 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 580 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 580 3750 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 580 3760 3776 3777 3778 3779 3798 3799 3799 3800 3801 3802 3803 3804 3805 3805 3805 3805 3805 3805 3805 3805 | 1 | | | | | | | - | | | | | | | | | | | E50 | [E30 | 3032 | 3033 | 3034 | 3033 | 3030 | 303/ | 3038 | 3039 | 3040 | 3041 | 3042 | 3043 | 3044 | 3043 | 3040 | 304/ | | E50 | FAO | 3648 | 3449 | 36.50 | 3651 | 36.52 | 3453 | 3654 | 3655 | 3454 | 3657 | 3658 | 3459 | 3660 | 3661 | 3662 | 3663 | | E60 3680 3681 3682 3683 3684 3685 3486 3687 3698 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3723 3730 3731 3731 3731 3731 3731 3734 3743 3743 3744 3745 3744 3745 3744 3745 3744 3745 3744 3745 3744 3745 3744 3745 3744 3745 3744 3745 3746 3747 3748 3749 3750 3751 3755 3755 3755 3757 3758 3759 3760 3761 3762 3753 3764 3765 3760 3777 3778 3779 3798 3799 3800 3801 3802 3803 | | 1 | | | | | | | | | | | | | | | | | E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 E80 3712 3713 3714 3715 3716 3717 3718 3720 3721 3722 3723 3724 3725 3726 3727 E90 3728 3729 3730 3731 3732 3733 3731 3732 3733 3751 3752 3753 3756 3755 3756 3757 3788 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3773 <td>1</td> <td></td> <td>-</td> <td></td> <td></td> | 1 | | | | | | | | | | | | | | - | | | | EBO 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3857 F2O 3872 3873 3874 3875 3876 3877 3878 3879 3800 3801 3802 3803 3804 3809 3801 3802 3803 3804 3809 3809 3801 3804 3805 3806 3807 3807 3870 3871 570 3872 3873 3874 3875 3876 3877 3878 3879 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3809 3809 3809 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3809 3809 3809 3809 3809 | 1 | | | | | | | | | | | | | | | | | | E90 | 1 570 | 0070 | w,,, | 0070 | 5077 | 0,00 | 0, 0. | 0,02 | 0,00 | 0,04 | 0,00 | 0,00 | 0, 0, | 0,00 | 0,07 | 0, 10 | ا ۱۰۰ | | E90 | E80 | 3712 | 3713 | 3714 | 3715 | 3716 | 3717 | 3718 | 3719 | 3720 | 3721 | 3722 | 3 72 3 | 3724 | 3725 | 3 726 | 3727 | | EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3753 3751 3752 3770 3771 3772 3773 3774 3775 ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3771 3773 3773 3773 3774 3773 3773 3774 3773 3774 3775 3788 3789 3790 3791 3790 3791 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3824 3825 3826 3827 3828 3829 3830 3831 3831 3832 3833 3831 3825 3823 3823 3833 3831 3825 3823 3824 3825 3826 3827 3828 3829 3830 3831 | 1 | | | | | | | | | | | - | | | | | | | EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 ECO 3776 3777 3778 3779 3780 3781 3782 3783 3786 3787 3788 3789 3790 3791 3800 3801 3801 3804 3805 3804 3805 3804 3805 3804 3805 3804 3805 3804 3805 3801 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 EFO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3839 3836 3837 3838 3839 FOO 3840 3841 3842 3843 3844 3845 3848 3849 3850 3851 3852 3853 3854 | 1 | ı | 3745 | 3746 | | _ | | | | | | | | 3 756 | 3757 | 3758 | 3759 | | ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 FOO 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 F2O 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 F3O 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 F4O 3902 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3955 F7O 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3988 3999 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 F5O 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3955 F6O 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 F7O 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 F8O 3984 3985 3986 3987 3988 3989 3990
3991 3992 3990 3991 3992 3993 3940 3961 3962 3963 3964 3965 3966 3967 FBO 4004 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 FCO 4034 4046 4047 4048 4049 4050 4051 4052 4063 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 FEO 4064 4065 4066 4067 4068 4069 4071 4072 4073 4074 4075 4076 4077 4078 4079 FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 | EBO | 3760 | 3761 | 3762 | 3763 | _ | | _ | | | | | 3771 | 3 772 | 3773 | 3774 | 3 775 | | EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3803 3804 3805 3806 3807 EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3851 3855 3870 3871 586 3867 3868 3869 3877 3878 3879 3880 3881 3882 3883 3884 3885 3866 3867 3888 3889 3890 3891 3892 3893 | | | | | | | | | | | | | | | | | | | EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 F2O 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 F3O 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 F4O 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 F5O 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 F6O 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 F7O 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 F8O 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 F9O 3984 3985 3986 3987 3988 3989 3990 3991 3991 3992 3993 3994 3995 3996 3997 3998 3999 FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 FBO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 FEO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 | EC0 | 3776 | 3777 | 3778 | 3779 | 3780 | 3781 | 3 782 | 3783 | 3784 | 3 785 | 3786 | 3787 | 3788 | 3 789 | 3790 | 3 791 | | EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3870 3871 3878 3879 3880 3897 3898 3899 3900 3901 3902 3903 3911 3912 3913 3915 3916 3917 3918 3919 3911 3912 | ED0 | 3792 | 3793 | 3794 | 3 795 | 3796 | 3797 | 3798 | 3799 | 3800 | 3801 | 3802 | 3803 | 3804 | 3805 | 3806 | 3807 | | FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 F40 3902 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 F80 3988 3989 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 F80 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 FCO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4079 | EEO | 3808 | 3809 | 3810 | 3811 | 3812 | 3813 | 3814 | 3 815 | 3 816 | 3817 | 3 818 | 3 819 | 3820 | 3821 | 38 22 | 3823 | | F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3886 3887 3870 3871 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3901 3911 3912 3913 3914 3915 3916 3917 3918 3919 5902 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3944 3942 3943 3944 3945 3948 3949 3949 3949 3949 | EFO | 3824 | 3825 | 3826 | 3827 | 3828 | 3829 | 3830 | 3831 | 3832 | 3833 | 3834 | 383 5 | 3836 | 3837 | 3838 | 3839 | | F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3886 3887 3870 3871 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3901 3911 3912 3913 3914 3915 3916 3917 3918 3919 5902 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3944 3942 3943 3944 3945 3948 3949 3949 3949 3949 | | | | | | | | | | | | | | | | | | | F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3888 3899 3900 3901 3902 3903 F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 F70 3952 3953 <t< td=""><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3848</td><td>3849</td><td></td><td></td><td>3852</td><td>3853</td><td></td><td></td></t<> | 1 | 1 | | | | | | | | 3848 | 3849 | | | 38 52 | 3 85 3 | | | | F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 F70 3952 3953 3954 3955 3953 3973 3973 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 F80 <t< td=""><td></td><td>1</td><td></td><td>3858</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | 1 | | 3858 | | | | | | | | | | | | | | | F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 FA0 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 F80 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4076 4075 4076 4077 4078 4079 | | 1 | | | | | | | | 38 80 | | | | | | | | | F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3965 3967 F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 FAO 4004 4001 <t< td=""><td>F30</td><td>3888</td><td>3889</td><td>3890</td><td>3891</td><td>3892</td><td>3893</td><td>3894</td><td>3895</td><td>3896</td><td>3897</td><td>3898</td><td>3899</td><td>3900</td><td>3901</td><td>3902</td><td>3903</td></t<> | F30 | 3888 | 3889 | 3890 | 3891 | 3892 | 3893 | 3894 | 3 895 | 3 896 | 3 897 | 3 898 | 3899 | 3900 | 3901 | 3 902 | 3903 | | F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3965 3967 F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 FAO 4004 4001 <t< td=""><td>5.40</td><td>1 2001</td><td></td><td></td><td>2007</td><td></td><td></td><td>•</td><td>•</td><td></td><td>•</td><td>201.4</td><td></td><td>201/</td><td></td><td></td><td></td></t<> | 5.40 | 1 2001 | | | 2007 | | | • | • | | • | 201.4 | | 201/ | | | | | F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 FBO 4032 4033 <t< td=""><td>t
.</td><td>l .</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<> | t . | l . | | | | | | | | | | | | | | | 1 | | F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 FC0 4032 4033 <t< td=""><td>L</td><td>E .</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | L | E . | | | | | | | | | | | | | | | | | F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 | | 1 | | | | | | | | | | | | | | | | | F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 FA0 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 FB0 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 FC0 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 FD0 4048 4049 4050 4051 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 FE0 4064 4065 4066 <t< td=""><td> 1/0</td><td>3752</td><td>3753</td><td>JY)4</td><td>3722</td><td>3706</td><td>370/</td><td>3758</td><td>3727</td><td>3760</td><td>3761</td><td>3762</td><td>3763</td><td>3964</td><td>3765</td><td>3766</td><td>376/</td></t<> | 1/0 | 3752 | 3753 | JY) 4 | 3722 | 3706 | 370/ | 3758 | 3727 | 3760 | 3761 | 3762 | 3763 | 3964 | 3765 | 3766 | 376/ | | F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 FA0 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 FB0 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 FC0 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 FD0 4048 4049 4050 4051 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 FE0 4064 4065 4066 <t< td=""><td>EON</td><td>2040</td><td>3040</td><td>3070</td><td>2071</td><td>2070</td><td>2072</td><td>2074</td><td>3075</td><td>2074</td><td>2077</td><td>3070</td><td>3070</td><td>3000</td><td>2001</td><td>2002</td><td>3003</td></t<> | EON | 2040 | 3040 | 3070 | 2071 | 2070 | 2072 | 2074 | 3075 | 2074 | 2077 | 3070 | 3070 | 3000 | 2001 | 2002 | 3003 | | FA0 | | 1 | | | | | | | | | | | | | | | | | FB0 | | 1 | | | | | | | | | | | | | | | | | FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 | 4 | | | | | | | | | | | | | | | | | | FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 | . 50 | " | .017 | | .017 | 7020 | 7021 | 7042 | 7020 | 704 | -1025 | -7020 | .027 | 7020 | -10 27 | | 7001 | | FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 | FC0 | 4032 | 4033 | 4034 | 403 5 | 4036 | 4037 | 4038 | 4039 | 4040 | 4041 | 4042 | 4043 | 4044 | 4045 | 4046 | 4047 | | FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 | 1 | 1 | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | ## HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE | 1.01 00 00 00 00 00 00 078 2500 | Hexadecimal | Decimal | Hexadecimal | Decimal | Hexadecimal | Decimal | Hexadecimal | Decimal | |--|--|--------------|--------------|-------------------------------|--------------|--------------|--------------|--------------| | 0.00 00 00 00 00 00 00 00 00 00 00 00 0 | .00 00 00 00 | .00000 00000 | .40 00 00 00 | .25000 00000 | .80 00 00 00 | .50000 00000 | .C0 00 00 00 | .75000 00000 | | 0.00 00 00 00 0.01171 87500 | .01 00 00 00 | .00390 62500 | .41 00 00 00 | .25 3 90 62 500 | .81 00 00 00 | .50390 62500 | .C1 00 00 00 | .75390 62500 | | 0.4 00 00 00 00 0.01525 20000 | | .00781 25000 | .42 00 00 00 | .25781 25000 | .82 00 00 00 | .50781 25000 | .C2 00 00 00 | .75781 25000 | | 1.00 | | | | | | | | .76171 87500 | | 0.00 00 00 00 02243 75000 | | _ | 1 | | | | | .76562 50000 | | 0.00 00 00 00 0.02743 473900 | 4 | | | | | | | | | .88 00 00 00 00 .0315 25000 | | | | | | | | | | 0.00 0.00 0.00 0.0515 62500 | 1 | | | | | | | | | 0.00 0.00 0.00 0.03976 25000 0.48 0.00 0.00 0.27956 25000 0.80 0.00 0.00 0.04296 75000 0.80 0.00 0.00 0.04296 75000 0.80 0.00 0.00 0.04296 75000 0.80 0.00 0.00 0.00 0.00 0.00 0.00 | | | | | 1 | | | | | .08 0.00 0.00 .0.4487 50000 .4.60 0.00 0.29296 875000 .8.60 0.00 0.14276 875000 .6.60 0.00 0.00 .0.4687 50000 .4.60 0.00 0.00 .0.4687 50000 .4.60 0.00 0.00 .0.4687 50000 .4.60 0.00 0.00 .0.4687 50000 .0.60 0.00 0.00 .0.4687 50000 .4.60 0.00 0.00 .0.4687 50000 .4.60 0.00 0.00 .0.4687 50000 .4.60 0.00 0.00 .0.4687 50000 .4.60 0.00 0.00 .0.4687 50000
.4.60 0.00 0.00 .0.4687 50000 .4.60 0.00 0.00 .0.4687 50000 .4.60 0.00 0.00 .0.4687 50000 .4.60 0.00 0.00 .0.4687 50000 .4.60 0.00 0.00 .0.4687 50000 .0.60 0.00 .0.4687 50000 .0.60 0.00 .0.4687 50000 .0.60 0.00 .0.4687 50000 .0.60 0.00 .0.4687 50000 .0.60 0.00 .0.4687 50000 .0.40 | | | | | B . | | | | | 0.00 0.00 0. 0.04487 50000 | 1 | | | | | | | | | 0.00 00 00 00 0.0578 12500 | | | | | | | | | | 0.6 00 00 0 | , | | | | i | | | | | 0.00 0.00 0. 0.6859 37500 | 1 | | | | B . | | | | | 10 00 00 0 | | | | | | | | | | 1.1 00 00 00 | Į. | | | | | | | | | 12 00 00 00 00 0.07031 25000 | • | | | | | | | | | 1.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | II . | | i . | | ŧ | | | | | 1.4 00 00 00 0.87812 50000 .54 00 00 00 .32812 500000 .94 00 00 00 .58703 50000 .D5 00 00 00 0.83203 12500 .D5 00 00 00 .083203 12500 .D5 00 00 00 .083203 12500 .D5 00 00 00 | | | ł . | | | | | | | 1.5 00 00 00 | | | | | | | | | | 1.6 0 0 0 0 0 0 0.68593 75000 5.6 0 0 0 0 0 0 33593 75000 7.7 0 0 0 0 0 0.68593 75000 7.7 0 0 0 0 0 0.68593 75000 7.7 0 0 0 0 0 0.68593 75000 7.7 0 0 0 0 0 0.88593 75 | | | I . | | | | | | | 1.7 0 0 0 0 0 0 0 0.09884 37500 57 0 0 0 0 0 0 33984 37500 97 0 0 0 0 0 0 0 .59884 37500 1.7 0 0 0 0 0 0 .63878 37500 1.8 0 0 0 0 0 0 .9975 6 0 0 0 0 0 .34765 6 2500 98 0 0 0 0 0 .59765 6 2500 1.0 0 0 0 0 .09765 6 2500 3.4 0 0 0 0 0 0 .34765 6 2500 9.9 0 0 0 0 0 .59765 6 2500 1.0 0 0 0 0 0 .10546 87500 3.5 0 0 0 0 0 0 .35346 87500 9.8 0 0 0 0 0 .60546 8750 1.0 0 0 0 0 0 .10546 87500 5.0 0 0 0 0 0 .35346 87500 9.8 0 0 0 0 0 .60546 8750 1.0 0 0 0 0 0 .10737 5 0 0 0 0 0 0 .35346 87500 9.8 0 0 0 0 0 .60546 8750 1.0 0 0 0 0 0 .11328 12500 5.0 0 0 0 0 0 .35348 87500 9.8 0 0 0 0 0 .60548 8750 1.0 0 0 0 0 0 .11718 75000 5.5 0 0 0 0 0 0 .35718 75000 9.5 0 0 0 0 0 .11718 75000 5.5 0 0 0 0 0 0 .35718 75000 9.9 0 0 0 0 0 .61368 12500 1.0 0 0 0 0 0 .11718 75000 5.5 0 0 0 0 0 0 .3718 75000 9.9 0 0 0 0 0 .61368 12500 1.0 0 0 0 0 0 .12109 37500 5.5 0 0 0 0 0 0 .3718 75000 9.9 0 0 0 0 0 .6138 12500 1.0 0 0 0 0 0 .12109 37500 5.5 0 0 0 0 0 0 .3718 75000 9.9 0 0 0 0 0 .6138 12500 1.0 0 0 0 0 0 .8718 75000 9.9 0 0 0 0 0 .6138 12500 1.0 0 0 0 0 0 .8718 75000 9.9 0 0 0 0 0 .6138 12500 1.0 0 0 0 0 0 .8718 75000 9.9 0 0 0 0 0 .6138 12500 1.0 0 0 0 0 0 .8718 75000 9.9 0 0 0 0 0 .6138 12500 1.0 0 0 0 0 0 .8718 75000 9.9 0 0 0 0 0 .6138 12500 1.0 0 0 0 0 0 .8718 75000 9.9 0 0 0 0 0 .62500 0 0 0 .62500 0 0 0 .62500 0 0 0 .62500 0 0 0 .62500 0 0 0 .62500 0 0 0 .62500 0 0 0 .62500 0 0 0 .62500 0 0 0 .62500 0 0 0 .62500 0 0 0 .62500 0 0 .62500 0 0 .62500 0 0 0 .62500 0 0 .62500 0 0 .62500 0 0 .62500 0 0 .62500 | | | | | ľ | | 1 | | | 18 00 00 00 00 0,07375 00000 .58 00 00 00 .34475 50200 .99 00 00 00 .5975 562500 .D9 00 00 00 .84765 62500 .P9 00 00 00 .97756 562500 .97757 50000 5000 50000 .P9 00 00 00 .97757 50000 .P9 00 00 00 .97757 5000 .P9 00 00 00 .97757 5000 | li . | | ł . | | | | ı | | | 1.9 00 00 00 00 07/65 62500 | | | | | | | | | | 1.0 0.0 0.0 0 | | | | | | | | | | 18 00 00 00 1.10546 87500 .58 00 00 00 .35546 87500 .98 00 00 00 .60546 87500 .DE 00 00 00 .85546 87500 .DC 00 00 00 .85746 .25786 87500 .DC 00 00 00 .42786 | 1 | | | | | | | _ | | 1.1 | | | | | | | | | | 11 00 00 00 00 1.1328 12500 .55 00 00 00 .36328 12500 .95 00 00 00 .61318 75000 .56 00 00 .62109 37500 .57 00 00 00 .62109 37500 .57 00 00 00 .86328 12500 .57 00 00 .62109 37500 .57 00 00 .57509 37500 .57 00 00 .57509 37500 .57 00 00 .57509 37500 .5 | .1C 00 00 00 | .10937 50000 | .5C 00 00 00 | | 1 | | 1 | .85937 50000 | | 1.1F 00 00 00 1.2109 37500 .5F 00 00 00 .37109 37500 .9F 00 00 00 .62109 37500 .DF 00 00 00 .87109 37500 .20 00 00 00 .12500 00000 .60 00 00 .37800 00000 .21 00 00 00 .12500 00000 .61 00 00 00 .37800 02500 .41 00 00 00 .62809 02500 .E1 00 00 00 .88281 25000 .22 00 00 00 .13671 87500 .62 00 00 00 .38281 25000 .42 00 00 00 .63281 25000 .E2 00 00 00 .88281 25000 .25 00 00 00 .146453 12500 .65 00 00 00 .39281 25000 .44 00 00 00 .39433 12500 .45 00 00 00 .64453 12500 .E4 00 00 00 .89431 37500 .26 00 00 00 .40243 37500 .67 00 00 00 .40243 37500 .46 00 00 00 .40243 37500 .67 00 00 00 .40243 37500 .46 00 00 00 .40243 37500 .68 00 00 00 .40243 37500 .4000 . | | .11328 12500 | .5D 00 00 00 | .36328 12500 | .9D 00 00 00 | .61328 12500 | .DD 00 00 00 | .86328 12500 | | 20 00 00 00 | .1E 00 00 00 | .11718 75000 | .5E 00 00 00 | .36718 75000 | .9E 00 00 00 | .61718 75000 | .DE 00 00 00 | .86718 75000 | | 21 00 00 00 1.2890 62500 .61 00 00 00 .37890 62500 .A1 00 00 00 .62890 62500 .E1 00 00 00 .88281 25000 .22 00 00 00 .13281 25000 .62 00 00 00 .38281 25000 .A2 00 00 00 .63281 87500 .E2 00 00 00 .88281 25000 .A3 00 00 00 .63471 87500 .E3 00 00 00 .88281 25000 .A4 00 00 00 .63471 87500 .E3 00 00 00 .88281 25000 .A4 00 00 00 .63471 87500 .E3 00 00 00 .88281 25000 .A4 00 00 00 .63481 87500 .E3 00 00 00 .88281 25000 .A4 00 00 00 .64483 12500 .E5 00 00 00 .88281 25000 .A4 00 00 00 .64483 12500 .E5 00 00 00 .88281 25000 .A5 00 00 00 .64483 12500 .E5 00 00 00 .88283 25000 .A5 00 00 00 .64483 12500 .E5 00 00 00 .88283
25000 .A5 00 00 00 .64483 12500 .E5 00 00 00 .88283 25000 .A5 00 00 00 .64483 12500 .E5 00 00 00 .88283 25000 .A5 00 00 00 .64483 12500 .E5 00 00 00 .88283 25000 .A5 00 00 00 .64483 12500 .E5 00 00 00 .88283 25000 .A5 00 00 00 .64483 12500 .E5 00 00 00 .88283 25000 .A5 00 00 00 .65234 37500 .E5 00 00 00 .89283 12500 .A5 00 00 00 .65234 37500 .E5 00 00 00 .89283 12500 .A5 00 00 00 .65234 37500 .E5 00 00 00 .90234 37500 .A5 00 00 00 .65625 00000 .E5 00 00 00 .90234 37500 .A5 00 00 00 .65625 00000 .E5 00 00 00 .90234 37500 .A5 00 00 00 .65625 00000 .E5 00 00 00 .90234 37500 .A5 00 00 00 .66015 62500 .E5 00 00 00 .91406 25000 .A5 00 00 00 .66015 62500 .E5 00 00 00 .91406 25000 .A5 00 00 00 .66015 62500 .E5 00 00 00 .91406 25000 .A5 00 00 00 .67788 12500 .E5 00 00 00 .91406 25000 .A5 00 00 00 .67788 12500 .E5 00 00 00 .91406 25000 .A5 00 00 00 .67788 12500 .E5 00 00 00 .92278 12500 .A5 00 00 00 .67788 12500 .E5 00 00 00 .92278 12500 .A5 00 00 00 .67788 12500 .E5 00 00 00 .92278 12500 .A5 0 | | | Į. | | 1 | | | .87109 37500 | | 1.22 0.00 0.00 1.3281 25000 .62 0.00 0.00 .38281 25000 .A2 0.00 0.00 .63281 25000 .E2 0.00 0.00 .88281 25000 .A3 0.00 0.00 .63281 25000 .E3 0.00 0.00 .88281 25000 .A3 0.00 0.00 .63462 50000 .E4 0.00 0.00 .88261 25000 .A3 0.00 0.00 .63462 50000 .E4 0.00 0.00 .88261 25000 .A5 0.00 0.00 .63462 50000 .E4 0.00 0.00 .88261 25000 .A5 0.00 0.00 0.0 | | | | | | | | | | 23 00 00 00 | 1 | | 1 | | | | • | | | 24 00 00 00 | 1 | | | | i | | ! | | | 25 00 00 00 14453 12500 .65 00 00 00 .39453 12500 .A5 00 00 00 .64453 12500 .E5 00 00 00 .89453 12500 .26 00 00 00 .14843 75000 .66 00 00 00 .39843 75000 .A7 00 00 00 .64843 75000 .E6 00 00 00 .89843 75000 .28 00 00 00 .15625 00000 .68 00 00 00 .40625 00000 .A8 00 00 00 .65625 00000 .E8 00 00 00 .90234 37500 .29 00 00 00 .16015 62500 .69 00 00 00 .41015 62500 .A9 00 00 00 .666015 62500 .E9 00 00 00 .91015 62500 .28 00 00 00 .16796 87500 .6C 00 00 00 .41796 87500 .A8 00 00 00 .66796 87500 .EB 00 00 00 .91167 62500 .20 00 00 .17187 50000 .6C 00 00 00 .42578 12500 .AD 00 00 00 .67578 12500 .ED 00 00 00 .92187 50000 .2E 00 00 00 .18796 87500 .6E 00 00 00 .43750 12500 .AE 00 00 00 .67968 75000 .EE 00 00 00 .92187 50000 .2E 00 00 00 .18796 87500 .6E 00 00 00 .43750 12500 .AE 00 00 00 .68389 37500 .EE 00 00 00 .92378 12500 0 | | | 1 | | | | | | | 1.26 00 0 0 0 0 1.4843 75000 .66 00 0 0 0 0 .39843 75000 .A6 00 0 0 0 .64843 75000 .E6 00 0 0 0 .90234 37500 .E7 00 0 0 0 .90234 37500 .E8 00 0 0 0 .90234 37500 .E8 00 0 0 0 .90234 37500 .E8 00 0 0 0 .90235 00000 .91406 25000 .91406 | | | 3 | | | | | | | 1.27 00 00 00 1.5234 37500 1.67 00 00 00 1.40234 37500 1.40 00 00 1.5625 00000 1.600 1.5625 00000 1.60 | | | | | I. | | | | | 1.28 00 00 00 0.15625 00000 0.68 00 00 0.40625 00000 0.40625 00000 0.40625 00000 0.40625 00000 0.40625 00000 0.40625 00000 0.40625 00000 0.40625 00000 0.40625 00000 0.406025 00000 0.406025 00000 0.406025 00000 0.406025 0.40 00000 0.406025 0.40 0.40000 0.406025 0.40 0.40000 0.406025 0.40 0.40000 0.406025 0.40 0.40000 0.406025 0.40 0.40000 0.406025 0.40 0.40000 0.406025 0.40000 0.40000 0.40000 0.400000 0.400000 0.400000 0.400000 0.4000000 0.4000000 0.400000000 0.4000000000 0.40000000000 | The state of s | | i . | | | | g . | | | 1.29 00 00 00 1.6015 62500 .69 00 00 00 .41015 62500 .A9 00 00 00 .66015 62500 .EP 00 00 00 .91015 62500 .B0 00 00 .41406 25000 .AA 00 00 .66406 25000 .EA 00 00 .91406 25000 .BA .91796 87500 .BA 00 00 .92187 50000 .BC .82187 50000 .BC 00 00 .92187 50000 .BC 00 00 .82187 | | | 1 | | i . | | | | | .2A 00 00 00 .16406 25000 .6A 00 00 00 .41406 25000 .AA 00 00 00 .66406 25000 .EA 00 00 00 .91406 25000 .2B 00 00 00 .16796 87500 .6B 00 00 00 .41796 87500 .AB 00 00 00 .66796 87500 .EB 00 00 00 .91796 87500 .2C 00 00 00 .17578 12500 .6C 00 00 00 .42187 50000 .AD 00 00 00 .67787 12500 .ED 00 00 00 .92187 50000 .2E 00 00 00 .17968 75000 .6F 00 00 00 .42578 12500 .AD 00 00 00 .67868 75000 .EE 00 00 00 .92187 50000 .2F 00 00 00 .18359 37500 .6F 00 00 00 .43750 00000 .AF 00 00 00 .68359 37500 .EF 00 00 00 .92578 12500 .30 00 00 00 .18750 00000 .70 00 00 00 .43750 00000 .B0 00 00 00 .68750 00000 .F0 00 00 00 .93359 37500 .31 00 00 00 .19140 62500 .71 00 00 00 .44140 62500 .B1 00 00 00 .68750 00000 .F0 00 00 00 .93312 5000 .33 00 00 00 .19921 87500 .73 00 00 00 .44531 25000 .B2 00 00 00 .69791 87500 .F3 00 00 00 . | | | | | | | | | | 28 00 00 00 16796 87500 .68 00 00 00 .41796 87500 .AB 00 00 00 .66796 87500 .EB 00 00 00 .91796 87500 .2C 00 00 00 .7187 50000 .6C 00 00 00 .42187 50000 .AC 00 00 00 .67187 50000 .EC 00 00 00 .92187 50000 .2D 00 00 00 .17578 12500 .6D 00 00 00 .42588 12500 .AD 00 00 00 .67588 12500 .ED 00 00 00 .92288 75000 .ED 00 00 00 .92388 12500 .92487 50000 | | | 1 | | 1 | | | | | CC 00 00 00 17187 50000 .6C 00 00 00 .42187 50000 .AC 00 00 00 .67187 50000 .EC 00 00 00 .92187 50000 .2D 00 00 00 .17578 12500 .6D 00 00 00 .42578 12500 .AD 00 00 00 .67578 12500 .ED 00 00 00 .92578 .92187 5000 | L Company | | I . | | | | | .91796 B7500 | | .2E 00 00 00 .17968 75000 .6E 00 00 00 .42968 75000 .AE 00 00 00 .67968 75000 .EE 00 00 00 .92968 75000 .2F 00 00 00 .18359 37500 .6F 00 00 00 .43359 37500 .AF 00 00 00 .68359 37500 .EF 00 00 00 .92968 75000 .30 00 00 00 .18750 00000 .70 00 00 00 .43750 00000 .80 00 00 00 .68750 00000 .F0 00 00 00 .93250 0000 .31 00 00 00 .19140 62500 .71 00 00 00 .44140 62500 .81 00 00 00 .69140 62500 .F1 00 00 00 .94140 62500 .32 00 00 00 .19531 25000 .72 00 00 00 .44531 25000 .82 00 00 00 .69531 25000 .F2 00 00 00 .94531 25000 .34 00 00 00 .20312 50000 .74 00 00 00 .45312 50000 .84 00 00 00 .70312 5000 .F3 00 00 00 .95312 50000 .35 00 00 00 .21093 75000 .75 00 00 00 .45703 12500 .85 00 00 00 .70703 12500 .F5 00 00 00 .95703 12500 .37 00 00 00 .21484 37500 .76 00 00 00 .46875 00000 .87 00 00 00 .71875 00000 .F6 00 00 00 .9 | | .17187 50000 | | | | | | .92187 50000 | | .2F 00 00 00 .18359 37500 .6F 00 00 00 .43359 37500 .AF 00 00 00 .68359 37500 .EF 00 00 00 .93359 37500 30 00 00 00 .18750 00000 .70 00 00 00 .43750 00000 .80 00 00 00 .68750 00000 .F0 00 00 00 .93359 37500 .31 00 00 00 .19140 62500 .71 00 00 00 .44140 62500 .81 00 00 00 .69140 62500 .F1 00 00 00 .94140 62500 .32 00 00 00 .19531 25000 .72 00 00 00 .44531 25000 .82 00 00 00 .69531 25000 .F2 00 00 00 .94531 25000 .34 00 00 00 .19921 87500 .73 00 00 00 .44531 25000 .83 00 00 00 .69921 87500 .F3 00 00 00 .94921 87500 .34 00 00 00 .20312 50000 .74 00 00 00 .45731 25000 .84 00 00 00 .70703 12500 .F5 00 00 00 .95703 12500 .35 00 00 00 .21993 75000 .75 00 00 00 .46693 75000 .85 00 00 00 .71093 75000 .F6 00 00 00 .95703 12500 .37 00 00 00 .21884 37500 .77 00 00 00 .46875 00000 .87 00 00 00 .71884 37500 .F7 00 00 00 .96875 00000 .39 00 00 00 .22265 62500 .79 00 00 00 <td></td> <td></td> <td>.6D 00 00 00</td> <td></td> <td></td> <td>.67578 12500</td> <td>.ED 00 00 00</td> <td>.92578 12500</td> | | | .6D 00 00 00 | | | .67578 12500 | .ED 00 00 00 | .92578 12500 | | 30 00 00 0.18750 00000 .43750 00000 .80 0.00 0.00 .68750 00000 .F0 0.00 0.00 .93750 00000 .31 0.00 0.00 .19140 62500 .71 0.00 0.00 .44140 62500 .81 0.00 0.00 .69140 62500 .F1 0.00 0.00 .94140 62500 .32 0.00 0.00 .19531 25000 .72 0.00 0.00 .44531 25000 .82 0.00 0.00 .69531
25000 .F2 0.00 0.00 .44921 87500 .83 0.00 0.00 .94921 87500 .F3 0.00 0.00 .94921 87500 .F4 0.00 | 1 | | | | | | | .92968 75000 | | .31 00 00 .19140 62500 .71 00 00 .44140 62500 .81 00 00 .69140 62500 .F1 00 00 .94140 62500 .32 00 00 00 .19531 25000 .72 00 00 00 .44531 25000 .82 00 00 00 .69531 25000 .F2 00 00 00 .94531 25000 .34 00 00 00 .20312 50000 .74 00 00 .45703 12500 .84 00 00 .69921 87500 .F3 00 00 .94921 87500 .35 00 00 00 .20703 12500 .75 00 00 .45703 12500 .85 00 00 .70703 12500 .F5 00 00 .95703 12500 .36 00 00 .21484 37500 .76 00 00 .46484 37500 .86 00 00 .71993 | | | .6F 00 00 00 | | .AF 00 00 00 | | ł | .93359 37500 | | .32 00 00 00 .19531 25000 .72 00 00 00 .44531 25000 .82 00 00 00 .69531 25000 .F2 00 00 00 .94531 25000 .33 00 00 00 .19921 87500 .73 00 00 00 .44921 87500 .83 00 00 00 .69921 87500 .F3 00 00 00 .94921 87500 .34 00 00 00 .20312 50000 .74 00 00 00 .45312 50000 .84 00 00 00 .70312 50000 .F4 00 00 00 .94921 87500 .36 00 00 00 .20703 12500 .75 00 00 00 .45703 12500 .85 00 00 00 .70703 12500 .F5 00 00 00 .95703 12500 .37 00 00 00 .21484 37500 .76 00 00 00 .46484 37500 .87 00 00 00 .71093 75000 .F6 00 00 00 .96484 37500 .38 00 00 00 .21875 00000 .78 00 00 00 .464875 00000 .88 00 00 00 .71875 00000 .F8 00 00 00 .96875 00000 .39 00 00 00 .22656 62500 .79 00 00 00 .47265 62500 .89 00 00 00 .72265 62500 .F9 00 00 0 .97265 62500 .38 00 00 00 .23437 50000 .78 00 00 00 .48265 62500 .88 00 00 00 .72346 87500 .FR 00 00 00 .97265 62500 .38 00 00 00 .23437 50000 .78 00 00 00 <td></td> <td></td> <td></td> <td></td> <td>.B0 00 00 00</td> <td></td> <td></td> <td>.93750 00000</td> | | | | | .B0 00 00 00 | | | .93750 00000 | | .33 00 00 00 .19921 87500 .73 00 00 00 .44921 87500 .83 00 00 00 .69921 87500 .F3 00 00 00 .94921 87500 .34 00 00 00 .20312 50000 .74 00 00 00 .45312 50000 .84 00 00 00 .70312 50000 .F4 00 00 00 .95312 50000 .35 00 00 00 .21093 75000 .75 00 00 00 .45703 12500 .85 00 00 00 .70703 12500 .F5 00 00 00 .95703 12500 .37 00 00 00 .21484 37500 .76 00 00 00 .46484 37500 .87 00 00 00 .71093 75000 .F6 00 00 00 .96093 75000 .38 00 00 00 .21875 00000 .77 00 00 00 .46484 37500 .87 00 00 00 .71484 37500 .F7 00 00 00 .96484 37500 .39 00 00 00 .22265 62500 .79 00 00 00 .47265 62500 .89 00 00 00 .72265 62500 .F9 00 00 00 .97656 25000 .RA 00 00 00 .72656 25000 .FA 00 00 00 .98046 87500 .BB 00 00 00 .73437 50000 .FC | 3 | | | | L | | | .94140 62500 | | .34 00 00 00 .20312 50000 .74 00 00 00 .45312 50000 .84 00 00 00 .70312 50000 .F4 00 00 00 .95312 50000 .35 00 00 00 .20703 12500 .75 00 00 00 .45703 12500 .85 00 00 00 .70703 12500 .F5 00 00 00 .95703 12500 .36 00 00 00 .21093 75000 .76 00 00 00 .46093 75000 .86 00 00 00 .71093 75000 .F6 00 00 00 .96093 75000 .37 00 00 00 .21875 00000 .78 00 00 00 .46875 00000 .88 00 00 00 .71875 00000 .F8 00 00 00 .96484 37500 .39 00 00 00 .22265 62500 .79 00 00 00 .47265 62500 .89 00 00 00 .72265 62500 .F9 00 00 00 .97265 62500 .3A 00 00 00 .23046 87500 .78 00 00 00 .48046 87500 .8B 00 00 00 .73046 87500 .FB 00 00 00 .98437 5000 .3C 00 00 00 .23828 12500 .7D 00 00 00 .48828 12500 .BD 00 00 00 .73428 75000 .FC 00 00 00 .98828 12500 .3E 00 00 00 .24218 75000 .7E 00 00 00 .48928 75000 .BE 00 00 00 .74218 75000 .FE 00 00 00 .99218 75000 | | | 1 | | | | | .94531 25000 | | 35 00 00 00 .20703 12500 | | | | | | | | .94921 87500 | | .36 00 00 .21093 75000 .76 00 00 .46093 75000 .86 00 00 .00 .71093 75000 .F6 00 00 .96093 75000 .37 00 00 00 .21484 37500 .77 00 00 00 .46484 37500 .87 00 00 00 .71484 37500 .77 00 00 00 .96484 37500 .38 00 00 00 .21875 00000 .78 00 00 .46875 00000 .88 00 00 00 .71875 00000 .78 00 00 .47265 62500 .89 00 00 .72265 62500 .F8 00 00 .97265 62500 .3A 00 00 .22656 25000 .74 00 00 .47656 25000 .BA 00 00 .72656 25000 .FA 00 00 .97656 25000 .3C 00 00 | | | | | | | | | | .37 00 00 00 .21484 37500 .77 00 00 00 .46484 37500 .87 00 00 00 .71484 37500 .F7 00 00 00 .96484 37500 38 00 00 00 .21875 00000 .78 00 00 00 .46875 00000 .88 00 00 00 .71875 00000 .F8 00 00 00 .96885 00000 .39 00 00 00 .22265 62500 .79 00 00 00 .47265 62500 .89 00 00 00 .72265 62500 .F9 00 00 00 .97265 62500 .3A 00 00 00 .22656 25000 .7A 00 00 00 .47656 25000 .8A 00 00 00 .72656 25000 .FA 00 00 00 .97656 25000 .3B 00 00 00 .23046 87500 .7B 00 00 00 .48046 87500 .8B 00 00 00 .73046 87500 .FB 00 00 00 .98046 87500 .3C 00 00 00 .23828 12500 .7D 00 00 00 .48828 12500 .8D 00 00 00 .73437 50000 .FC 00 00 00 .98828 12500 .3E 00 00 00 .24218 75000 .7E 00 00 00 .49218 75000 .8E 00 00 00 .74218 75000 .FE 00 00 00 .99218 75000 | | | | | | | | | | 38 00 00 00 .21875 00000 .78 00 00 00 .46875 00000 .88 00 00 00 .71875 00000 .F8 00 00 00 .96875 00000 .39 00 00 00 .22265 62500 .79 00 00 00 .47265 62500 .89 00 00 00 .72265 62500 .F9 00 00 00 .97265 62500 .3A 00 00 00 .22656 25000 .7A 00 00 00 .47656 25000 .8A 00 00 00 .72656 25000 .FA 00 00 00 .97656 25000 .3B 00 00 00 .23046 87500 .7B 00 00 00 .48046 87500 .8B 00 00 00 .73046 87500 .FB 00 00 00 .98046 87500 .3C 00 00 00 .23437 50000 .7C 00 00 00 .4828 12500 .BD 00 00 00 .73437 50000 .FC 00 00 00 .98437 50000 .3E 00 00 00 .24218 75000 .7E 00 00 00 .49218 75000 .BE 00 00 00 .74218 75000 .FE 00 00 00 .99218 75000 | 1 | | I . | | | | | | | .39 00 00 00 .22265 62500 .79 00 00 00 .47265 62500 .89 00 00 00 .72265 62500 .F9 00 00 00 .97265 62500 .3A 00 00 00 .22656 25000 .7A 00 00 00 .47656 25000 .BA 00 00 00 .72656 25000 .FA 00 00 00 .97656 25000 .3B 00 00 00 .23046 87500 .7B 00 00 00 .48046 87500 .BB 00 00 00 .73046 87500 .FB 00 00 00 .98046 87500 .3C 00 00 00 .23437 50000 .7C 00 00 00 .48437 50000 .BC 00 00 00 .73437 50000 .FC 00 00 00 .98437 50000 .3D 00 00 00 .23828 12500 .7D 00 00 00 .4828 12500 .BD 00 00 00 .73828 12500 .FD 00 00 00 .99218 75000 .3E 00 00 00 .24218 75000 .7E 00 00 00 .49218 75000 .BE 00 00 00 .74218 75000 .FE 00 00 00 .99218 75000 | | | 1 | | 4 | | ł | | | .3A 00 00 00 .22656 25000 .7A 00 00 00 .47656 25000 .BA 00 00 00 .72656 25000 .FA 00 00 00 .97656 25000 .3B 00 00 00 .23046 87500 .7B 00 00 00 .48046 87500 .BB 00 00 00 .73046 87500 .FB 00 00 00 .98046 87500 .3C 00 00 00 .23437 50000 .7C 00 00 00 .48437 50000 .BC 00 00 00 .73437 50000 .FC 00 00 00 .98437 50000 .3D 00 00 00 .23828 12500 .7D 00 00 00 .48828 12500 .BD 00 00 00 .73828 12500 .FD 00 00 00 .9828 12500 .3E 00 00 00 .24218 75000 .7E 00 00 00 .49218 75000 .BE 00 00 00 .74218 75000 .FE 00 00 00 .99218 75000 | 1 | | 4 | | 1 | | | | | 38 00 00 00 .23046 87500 | 1 | | I . | | | | | | | .3C 00 00 00 .23437 50000 .7C 00 00 00 .48437 50000 .BC 00 00 00 .73437 50000 .FC 00 00 00 .98437 50000 3D 00 00 00 .23828 12500 .7D 00 00 00 .48828 12500 .BD 00 00 00 .73828 12500 .FD 00 00 00 .98828 12500 3E 00 00 00 .24218 75000 .7E 00 00 00 .49218 75000 .BE 00 00 00 .74218 75000 .FE 00 00 00 .99218 75000 | 1 | | 1 | | · · | | | | | 3D 00 00 00 .23828 12500 |) | | } | _ | | | | | | 3E 00 00 00 .24218 75000 | | | | | | | 1 | .98828 12500 | | 1 1 | | | | | 1 | | | .99218 75000 | | | .3F 00 00 00 | 24609 37500 | .7F 00 00 00 | .49609 37500 | .BF 00 00 00 | .74609 37500 | .FF 00 00 00 | .99609 37500 | | Hexadecimal | Decimal | Hexadecimal | Decimal | Hexadecimal | Decimal | Hexadecimal | Decimal | |-------------------------------------|--|-----------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|------------------------------|---------------------------------------| | .00 00 00 00 | .00000 00000 | .00 40 00 00 | .00097 65625 | .00 80 00 00 | .00195 31250 | .00 CO 00 00 | .00292 96875 | | .00 01 00 00 | .00001 52587 | .00 41 00 00 | .00099 18212 | .00 81 00 00 | .00196 83837 | .00 C1 00 00 | .00294 49462 | | .00 02 00 00 | .00003 05175 | .00 42 00 00 | .00100 70800 | .00 82 00 00 | .00198 36425 | .00 C2 00 00 | .00296 02050 | | .00 03 00 00 | .00004 57763 | .00 43 00 00 | .00102 23388 | .00 83 00 00 | .00199 89013 | .00 C3 00 00 | .00297 54638 | | .00 04 00 00 | .00006 10351 | .00 44 00 00 | .00103 75976 | .00 84 00 00 | .00201 41601 | .00 C4 00 00 | .00299 07226
.00300 59814 | | .00 05 00 00 | .00007 62939 | .00 45 00 00 | .00105 28564
.00106 81152 | .00 85 00 00
.00 86 00 00 | .00202 94189
.00204 46 <i>7</i> 77 | .00 C5 00 00
.00 C6 00 00 | .00300 37814 | | .00 07 00 00 | .00007 13327 | .00 47 00 00 | .00108 33740 | .00 87 00 00 | .00205 99365 | .00 C7 00 00 | .00303 64790 | | .00 08 00 00 | .00012 20703 | .00 48 00 00 | .00109 86328 | .00 88 00 00 | .00207 51953 | .00 C8 00 00 | .00305 17578 | | .00 09 00 00 | .00013 73291 | .00 49 00 00 | .00111 38916 | .00 89 00 00 | .00209 04541 | .00 C9 00 00 | .00306 70166 | | .00 0A 00 00 | .00015 25878 | .00 4A 00 00 | .00112 91503 | .00 8A 00 00 | .00210 <i>5</i> 71 <i>2</i> 8 | .00 CA 00 00 | .00308 22753 | | .00 ОВ ОО ОО | .00016 78466 | .00 4B 00 00 | .00114 44091 | .00 88 00 00 | .00212 09716 | .00 CB 00 00 | .00309 75341 | | .00 OC 00 00 | .00018 31054 | .00 4C 00 00 | .00115 96679 | .00 8C 00 00 | .00213 62304 | .00 CC 00 00 | .00311 27929 | | .00 00 00 00 | .00019 83642 | .00 4D 00 00 | .00117 49267 | .00 8D 00 00 | .00215 14892 | .00 CD 00 00 | .00312 80517
.00314 331 0 5 | | .00 0E 00 00
.00 0F 00 00 | .00021 36230
.00022 88818 | .00 4E 00 00
.00 4F 00 00 | .00119 01855
.00120 54443 | .00 8E 00 00
.00 8F 00 0 0 | .00216 67480
.00218 20068 | .00 CE 00 00
.00 CF 00 00 | .00314 33103 | | l | _ | | | i | | | | | .00 10 00 00 | .00024 41406 | .00 50 00 00 | .00122 07031 | .00 90 00 00 | .00219 72656 | .00 D0 00 00 | .00317 38281 | | .00 11 00 00 | .00025 93994 | .00 51 00 00 | .00123 59619 | .00 91 00 00 | .00221 25244 | .00 D1 00 00 | .00318 90869
.00320 43457 | | .00 12 00 00 | .00027 46582
.00028 99169 | .00 52 00 00 | .00125 12207
.00126 64794 | .00 93 00 00 | .00222 77832
.00224 30419 | .00 D3 00 00 | .00320 43437 | | .00 14 00 00 | .00028 77187 | .00 54 00 00 | .00128 17382 | .00 94 00 00 | .00225 83007 | .00 D4 00
00 | .00323 48632 | | .00 15 00 00 | .00032 04345 | .00 55 00 00 | .00129 69970 | .00 95 00 00 | .00227 35595 | .00 D5 00 00 | .00325 01220 | | .00 16 00 00 | .00033 56933 | .00 56 00 00 | .00131 22558 | .00 96 00 00 | .00228 88183 | .00 06 00 00 | .00326 53808 | | .00 17 00 00 | .00035 09521 | .00 <i>57</i> 00 00 | .00132 75146 | .00 97 00 00 | .00230 40771 | .00 D7 00 00 | .00328 063% | | .00 18 00 00 | .00036 62109 | .00 58 00 00 | .00134 27734 | .00 98 00 00 | .00231 93359 | .00 D8 00 00 | .00329 58984 | | .00 19 00 00 | .00038 14697 | .00 59 00 00 | .00135 80322 | .00 99 00 00 | .00233 45947 | .00 D9 00 00 | .00331 11572 | | .00 1A 00 00 | .00039 67285 | .00 5A 00 00 | .00137 32910 | .00 9A 00 00
.00 9B 00 00 | .00234 98535
.00236 51123 | .00 DA 00 00
.00 DB 00 00 | .00332 64160
.00334 16748 | | .00 1B 00 00
.00 1C 00 00 | .00041 19873
.00042 72460 | .00 5B 00 00
.00 5C 00 00 | .00138 85498
.00140 38085 | .00 9C 00 00 | .00238 03710 | .00 DC 00 00 | .00334 10748 | | .00 1D 00 00 | .00042 7 2400 | .00 5D 00 00 | .00141 90673 | .00 9D 00 00 | .00239 56298 | .00 DD 00 00 | .00337 21923 | | .00 1E 00 00 | .00045 77636 | .00 5E 00 00 | .00143 43261 | .00 9E 00 00 | .00241 08886 | .00 DE 00 00 | .00338 74511 | | .00 1F 00 00 | .00047 30224 | .00 5F 00 00 | .00144 95849 | .00 9F 00 00 | .00242 61474 | .00 DF 00 00 | .00340 27099 | | .00 20 00 00 | .00048 82812 | .00 60 00 00 | .00146 48437 | .00 A0 00 00 | .00244 14062 | .00 EO 00 00 | .00341 79687 | | .00 21 00 00 | .00050 35400 | .00 61 00 00 | .00148 01025 | .00 A1 00 00 | .00245 66650 | .00 E1 00 00 | .00343 32275
.00344 84863 | | .00 22 00 00 | .00051 87988
.00053 40576 | .00 62 00 00 | .00149 53613
.00151 06201 | .00 A2 00 00
.00 A3 00 00 | .00247 19238
.00248 71826 | .00 E2 00 00
.00 E3 00 00 | .00346 37451 | | .00 24 00 00 | .00054 93164 | .00 64 00 00 | .00151 00201 | .00 A4 00 00 | .00250 24414 | .00 E4 00 00 | .00347 90039 | | .00 25 00 00 | .00054 75154 | .00 65 00 00 | .00154 11376 | .00 A5 00 00 | .00251 77001 | .00 E5 00 00 | .00349 42626 | | .00 26 00 00 | .00057 98339 | .00 66 00 00 | .00155 63964 | .00 A6 00 00 | .00253 29589 | .00 E6 00 00 | .00350 95214 | | .00 27 00 00 | .00059 50927 | .00 67 00 00 | .00157 16552 | .00 A7 00 00 | .00254 82177 | .00 E7 00 00 | .00352 47802 | | .00 28 00 00 | .00061 03515 | .00 68 00 00 | .00158 69140 | .00 A8 00 00 | .00256 34765 | .00 E8 00 00 | .00354 00390 | | .00 29 00 00 | .00062 56103 | .00 69 00 00 | .00160 21728 | .00 A9 00 00 | .00257 87353 | .00 E9 00 00 | .00355 52978 | | .00 2A 00 00 | .00064 08691 | .00 6A 00 00 | .00161 74316 | .00 AA 00 00 | .00259 39941
.00260 92529 | .00 EA 00 00
.00 EB 00 00 | .00357 05566
.00358 58154 | | .00 2B 00 00
.00 2C 00 00 | .00065 61279
.00067 13867 | .00 6B 00 00
.00 6C 00 00 | .00163 26904
.00164 79492 | .00 AB 00 00
.00 AC 00 00 | .00260 92529 | .00 EC 00 00 | .00360 10742 | | .00 2D 00 00 | .00068 66455 | .00 6D 00 00 | .00166 32080 | .00 AD 00 00 | .00263 97705 | .00 ED 00 00 | .00361 63330 | | .00 2E 00 00 | .00070 19042 | .00 6E 00 00 | .00167 84667 | .00 AE 00 00 | .00265 50292 | .00 EE 00 00 | .00363 15917 | | .00 2F 00 00 | .00071 71630 | .00 6F 00 00 | .00169 37255 | .00 AF 00 00 | .00267 02880 | .00 EF 00 00 | .00364 68505 | | .00 30 00 00 | .00073 24218 | .00 70 00 00 | .00170 89843 | .00 BO 00 00 | .00268 55468 | .00 F0 00 00 | .00366 21093 | | .00 31 00 00 | .00074 76806 | .00 71 00 00 | .00172 42431 | .00 B1 00 00 | .00270 08056 | .00 F1 00 00 | .00367 73681 | | .00 32 00 00 | .00076 29394
.000 <i>7</i> 7 81 <i>9</i> 82 | .00 72 00 00 | .00173 95 0 19
.00175 47607 | .00 B2 00 00
.00 B3 00 00 | .00271 60644
.00273 13232 | .00 F2 00 00
.00 F3 00 00 | .00369 26269
.00370 78857 | | .00 34 00 00 | .00077 81762 | .00 74 00 00 | .00173 47607 | .00 84 00 00 | .00273 13232 | .00 F4 00 00 | .00370 70837 | | .00 35 00 00 | .00080 87158 | .00 75 00 00 | .00177 00173 | .00 85 00 00 | .00274 03020 | .00 F5 00 00 | .00373 84033 | | .00 36 00 00 | .00082 39746 | .00 76 00 00 | .00180 05371 | .00 B6 00 00 | .00277 70996 | .00 F6 00 00 | .00375 36621 | | .00 37 00 00 | .00083 92333 | .00 77 00 00 | .00181 57958 | .00 B7 Ó0 O0 | .00279 23583 | .00 F7 00 00 | .00376 89208 | | .00 38 00 00 | .00085 44921 | .00 78 00 00 | .00183 10546 | .00 B8 00 00 | .00280 76171 | .00 F8 00 00 | .00378 41796 | | .00 39 00 00 | .00086 97509 | .00 79 00 00 | .00184 63134 | .00 B9 00 00 | .00282 28759 | .00 F9 00 00 | .00379 94384 | | .00 3A 00 00 | .00088 50097 | .00 7A 00 00 | .00186 15722 | .00 BA 00 00 | .00283 81347 | .00 FA 00 00 | .00381 46972 | | .00 3B 00 00 | .00090 02685 | .00 7B 00 00 | .00187 68310 | .00 BB 00 00
.00 BC 00 00 | .00285 33935
.00286 86523 | .00 FB 00 00 | .00382 99560
.00384 52148 | | .00 3C 00 00
.00 3D 00 00 | .00091 55273
.00093 07861 | .00 7C 00 00
.00 7D 00 00 | .00189 20898
.00190 73486 | .00 BD 00 00 | .00288 39111 | .00 FC 00 00
.00 FD 00 00 | .00384 52148 | | .00 3E 00 00 | .00073 07861 | .00 7E 00 00 | .00190 73480 | .00 BE 00 00 | .00289 91699 | .00 FE 00 00 | .00387 57324 | | .00 3F 00 00 | .00096 13037 | .00 7F 00 00 | .00193 78662 | .00 BF 00 00 | .00291 44287 | .00 FF 00 00 | .00389 09912 | | | | L | | <u> </u> | | | | | | | | | T | | | | |--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Hexadecimal | Decimal | Hexadecimal | Decimal | Hexadecimal | Decimal | Hexadecimal | Decimal | | .00 00 00 00 | .00000 00000 | .00 00 40 00 | .00000 38146 | .00 00 80 00 | .00000 76293 | .00 00 C0 00 | .00001 14440 | | .00 00 01 00 | .00000 00596 | .00 00 41 00 | .00000 38743 | .00 00 81 00 | .00000 76889 | .00 00 C1 00 | .00001 15036 | | .00 00 02 00 | .00000 01192 | .00 00 42 00 | .00000 39339 | .00 00 82 00 | .00000 77486 | .00 00 C2 00 | .00001 15633 | | .00 00 03 00 | .00000 01788 | .00 00 43 00 | .00000 39935 | .00 00 83 00 | .00000 78082 | .00 00 C3 00 | .00001 16229 | | .00 00 04 00 | .00000 02384 | .00 00 44 00 | .00000 40531 | .00 00 84 00 | .00000 78678 | .00 00 C4 00 | .00001 16825 | | .00 00 05 00 | .00000 02980 | .00 00 45 00 | .00000 41127 | .00 00 85 00 | .00000 79274 | .00 00 C5 00 | .00001 17421 | | .00 00 06 00 | .00000 03576 | .00 00 46 00 | .00000 41723 | .00 00 86 00 | .00000 79870 | .00 00 C6 00 | .00001 18017 | | .00 00 07 00 | .00000 04172 | .00 00 47 00 | .00000 42319 | .00 00 87 00 | .00000 80466 | .00 00 C7 00 | .00001 18613 | | .00 00 08 00 | .00000 04768 | .00 00 48 00 | .00000 42915 | .00 00 88 00 | .00000 81062 | .00 00 C8 00 | .00001 19209 | | .00 00 09 00 | .00000 05364 | .00 00 49 00 | .00000 43511 | .00 00 89 00 | .00000 81658 | .00 00 C9 00 | .00001 19805 | | .00 00 0A 00 | .00000 05960 | .00 00 4A 00 | .00000 44107 | .00 00 8A 00 | .00000 82254 | .00 00 CA 00 | .00001 20401 | | .00 00 0B 00 | .00000 06556 | .00 00 4B 00 | .00000 44703 | .00 00 88 00 | .00000 82850 | .00 00 CB 00 | .00001 20997 | | .00 00 0C 00 | .00000 07152 | .00 00 4C 00 | .00000 45299 | .00 00 8C 00 | .00000 83446 | .00 00 CC 00 | .00001 21593 | | .00 00 0D 00 | .00000 07748 | .00 00 4D 00 | .00000 45895 | .00 00 8D 00 | .00000 84042 | .00 00 CD 00 | .00001 22189 | | .00 00 0E 00 | .00000 08344 | .00 00 4E 00 | .00000 46491 | .00 00 8E 00 | .00000 84638 | .00 00 CE 00 | .00001 22785 | | .00 00 0F 00 | .00000 08940 | .00 00 4F 00 | .00000 47087 | .00 00 8F 00 | .00000 85234 | .00 00 CF 00 | .00001 23381 | | .00 00 10 00 | .00000 09536 | .00 00 50 00 | .00000 47683 | .00 00 90 00 | .00000 85830 | .00 00 D0 00 | .00001 23977 | | .00 00 11 00 | .00000 10132 | .00 00 51 00 | .00000 48279 | .00 00 91 00 | .00000 86426 | .00 00 D1 00 | .00001 24573 | | .00 00 12 00 | .00000 10728 | .00 00 52 00 | .00000 48875 | .00 00 92 00 | .00000 87022 | .00 00 D2 00 | .00001 25169 | | .00 00 13 00 | .00000 11324 | .00 00 53 00 | .00000 49471 | .00 00 93 00 | .00000 87618 | .00 00 D3 00 | .00001 25765 | | .00 00 14 00 | .00000 11920 | .00 00 54 00 | .00000 50067 | .00 00 94 00 | .00000 88214 | .00 00 D4 00 | .00001 26361 | | .00 00 15 00 | .00000 12516 | .00 00 55 00 | .00000 50663 | .00 00 95 00 | .00000 88810 | .00 00 D5 00 | .00001 26957 | | .00 00 16 00 | .00000 13113 | .00 00 56 00 | .00000 51259 | .00 00 96 00 | .00000 89406 | .00 00 D6 00 | .00001 27553 | | .00 00 17 00 | .00000 13709 | .00 00 57 00 | .00000 51856 | .00 00 97 00 | .00000 90003 | .00 00 D7 00 | .00001 28149 | | .00 00 18 00 | .00000 14305 | .00 00 58 00 | .00000 52452 | .00 00 98 00 | .00000 90599 | .00 00 D8 00 | .00001 28746 | | .00 00 19 00 | .00000 14901 | .00 00 59 00 | .00000 53048 | .00 00 99 00 | .00000 91195 | .00 00 D9 00 | .00001 29342 | | .00 00 1A 00 | .00000 15497 | .00 00 5A 00 | .00000 53644 | .00 00 9A 00 | .00000 91791 | .00 00 DA 00 | .00001 29938 | | .00 00 1B 00 | .00000 16093 | .00 00 5B 00 | .00000 54240 | .00 00 9B 00 | .00000 92387 | .00 00 DB 00 | .00001 30534 | | .00 00 1C 00 | .00000 16689 | .00 00 5C 00 | .00000 54836 | .00 00 9C 00 | .00000 92983 | .00 00 DC 00 | .00001 31130 | | .00 00 1D 00 | .00000 17285 | .00 00 5D 00 | .00000 55432 | .00 00 9D 00 | .00000 93579 | .00 00 DD 00 | .00001 31726 | | .00 00 1E 00 | .00000 17881 | .00 00 5E 00 | .00000 56028 | .00 00 9E 00 | .00000 94175 | .00 00 DE 00 | .00001 32322 | | .00 00 1F 00 | .00000 18477 | .00 00 5F 00 | .00000 56624 | .00 00 9F 00 | .00000 94771 | .00 00 DF 00 | .00001 32918 | | .00 00 20 00 | .00000 19073 | .00 00 60 00 | .00000 57220 | .00 0A 00 00 | .00000 95367 | .00 00 E0 00 | .00001 33514 | | .00 00 21 00 | .00000 19669 | .00 00 61 00 | .00000 57816 | .00 00 A1 00 | .00000 95963 | .00 00 E1 00 | .00001 34110 | | .00 00 22 00 | .00000 20265 | .00 00 62 00 | .00000 58412 | .00 00 A2 00 | .00000 96559 | .00 00 E2 00 | .00001 34706 | | .00 00 23 00 | .00000 20861 | .00 00 63 00 | .00000 59008 | .00 00 A3 00 | .00000 97155 | .00 00 E3 00 | .00001 35302 | | .00 00 24 00 | .00000 21457 |
.00 00 64 00 | .00000 59604 | .00 00 A4 00 | .00000 97751 | .00 00 E4 00 | .00001 35898 | | .00 00 25 00 | .00000 22053 | .00 00 65 00 | .00000 60200 | .00 00 A5 00 | .00000 98347 | .00 00 E5 00 | .00001 36494 | | .00 00 26 00 | .00000 22649 | .00 00 66 00 | .00000 60796 | .00 00 A6 00 | .00000 98943 | .00 00 E6 00 | .00001 37090 | | .00 00 27 00 | .00000 23245 | .00 00 67 00 | .00000 61392 | .00 00 A7 00 | .00000 99539 | .00 00 E7 00 | .00001 37686 | | .00 00 28 00 | .00000 23841 | .00 00 68 00 | .00000 61988 | .00 00 A8 00 | .00001 00135 | .00 00 E8 00 | .00001 38282 | | .00 00 29 00 | .00000 24437 | .00 00 69 00 | .00000 62584 | .00 00 A9 00 | .00001 00731 | .00 00 E9 00 | .00001 38878 | | .00 00 2A 00 | .00000 25033 | .00 00 6A 00 | .00000 63180 | .00 00 AA 00 | .00001 01327 | .00 00 EA 00 | .00001 39474 | | .00 00 2B 00 | .00000 25629 | .00 00 6B 00 | .00000 63776 | .00 00 AB 00 | .00001 01923 | .00 00 EB 00 | .00001 40070 | | .00 00 2C 00 | .00000 26226 | .00 00 6C 00 | .00000 64373 | .00 00 AC 00 | .00001 02519 | .00 00 EC 00 | .00001 40666 | | .00 00 2D 00 | .00000 26822 | .00 00 6D 00 | .00000 64969 | .00 00 AD 00 | .00001 03116 | .00 00 ED 00 | .00001 41263 | | .00 00 2E 00 | .00000 27418 | .00 00 6E 00 | .00000 65565 | .00 00 AE 00 | .00001 03712 | .00 00 EE 00 | .00001 41859 | | .00 00 2F 00 | .00000 28014 | .00 00 6F 00 | .00000 66161 | .00 00 AF 00 | .00001 04308 | .00 00 EF 00 | .00001 42455 | | .00 00 30 00 | .00000 28610 | .00 00 70 00 | .00000 66757 | .00 00 80 00 | .00001 04904 | .00 00 F0 00 | .00001 43051 | | .00 00 31 00 | .00000 29206 | .00 00 71 00 | .00000 67353 | .00 00 B1 00 | .00001 05500 | .00 00 F1 00 | .00001 43647 | | .00 00 32 00 | .00000 29802 | .00 00 72 00 | .00000 67949 | .00 00 B2 00 | .00001 06096 | .00 00 F2 00 | .00001 44243 | | .00 00 33 00 | .00000 30398 | .00 00 73 00 | .00000 68545 | .00 00 B3 00 | .00001 06692 | .00 00 F3 00 | .00001 44839 | | .00 00 34 00 | .00000 30994 | .00 00 74 00 | .00000 69141 | .00 00 B4 00 | .00001 07288 | .00 00 F4 00 | .00001 45435 | | .00 00 35 00 | .00000 31590 | .00 00 75 00 | .00000 69737 | .00 00 B5 00 | .00001 07884 | .00 00 F5 00 | .00001 46031 | | .00 00 36 00 | .00000 32186 | .00 00 76 00 | .00000 70333 | .00 00 86 00 | .00001 08480 | .00 00 F6 00 | .00001 46627 | | .00 00 37 00 | .00000 32782 | .00 00 77 00 | .00000 70929 | .00 00 B7 00 | .00001 09076 | .00 00 F7 00 | .00001 47223 | | .00 00 38 00 | .00000 33378 | .00 00 78 00 | .00000 71525 | .00 00 B8 00 | .00001 09672 | .00 00 F8 00 | .00001 47819 | | .00 00 39 00 | .00000 33974 | .00 00 79 00 | .00000 72121 | .00 00 B9 00 | .00001 10268 | .00 00 F9 00 | .00001 48415 | | .00 00 3A 00 | .00000 34570 | .00 00 7A 00 | .00000 72717 | .00 00 BA 00 | .00001 10864 | .00 00 FA 00 | .00001 49011 | | .00 00 38 00 | .00000 35166 | .00 00 7B 00 | .00000 73313 | .00 00 BB 00 | .00001 11460 | .00 00 FB 00 | .00001 49607 | | .00 00 3C 00 | .00000 35762 | .00 00 7C 00 | .00000 73909 | .00 00 BC 00 | .00001 12056 | .00 00 FC 00 | .00001 50203 | | .00 00 3D 00 | .00000 36358 | .00 00 7D 00 | .00000 74505 | .00 00 BD 00 | .00001 12652 | .00 00 FD 00 | .00001 50799 | | .00 00 3E 00 | .00000 36954 | .00 00 7E 00 | .00000 75101 | .00 00 BE 00 | .00001 13248 | .00 00 FE 00 | .00001 51395 | | .00 00 3F 00 | .00000 37550 | .00 00 7F 00 | .00000 75697 | .00 00 BF 00 | .00001 13844 | .00 00 FF 00 | .00001 51991 | | | | | | | | | | | Hexadecimal | Decimal | Hexadecimal | Decimal | Hexadecimal | Decimal | Hexadecimal | Decimal | |------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | .00 00 00 00 | .00000 00000 | .00 00 00 40 | .00000 00149 | .00 00 00 80 | ,00000 00298 | .00 00 00 C0 | .00000 00447 | | .00 00 00 01 | .00000 00002 | .00 00 00 41 | .00000 00151 | .00 00 00 81 | .00000 00300 | .00 00 00 C1 | .00000 00449 | | .00 00 00 02 | .00000 00004 | .00 00 00 42 | .00000 00153 | .00 00 00 82 | .00000 00302 | .00 00 00 C2 | .00000 00451 | | .00 00 00 03 | .00000 00006 | .00 00 00 43 | .00000 00155 | .00 00 00 83 | .00000 00305 | .00 00 00 C3 | .00000 00454 | | .00 00 00 04 | .00000 00009 | .00 00 00 44 | .00000 00158 | .00 00 00 84 | .00000 00307 | .00 00 00 C4 | .00000 00456 | | .00 00 00 05 | .00000 00011 | .00 00 00 45 | .00000 00160 | .00 00 00 85 | .00000 00309 | .00 00 00 C5 | .00000 00458 | | .00 00 00 06
.00 00 00 07 | .00000 00013 | .00 00 00 46 | .00000 00162 | .00 00 00 86 | .00000 00311 | .00 00 00 C6 | .00000 00461 | | .00 00 00 08 | .00000 00018 | .00 00 00 47 | .00000 00165
.00000 00167 | .00 00 00 87 | .00000 00314 | .00 00 00 C7 | .00000 00463
.00000 00465 | | .00 00 00 09 | .00000 00018 | .00 00 00 48 | .00000 00187 | .00 00 00 88 | .00000 00316 | .00 00 00 C8 | .00000 00467 | | .00 00 00 0A | .00000 00023 | .00 00 00 47 | .00000 00172 | .00 00 00 8A | .00000 00310 | .00 00 00 CA | .00000 00470 | | .00 00 00 0B | .00000 00025 | .00 00 00 4B | .00000 00174 | .00 00 00 8B | .00000 00323 | .00 00 00 CB | .00000 00472 | | .00 00 00 OC | .00000 00027 | .00 00 00 4C | .00000 00176 | .00 00 00 8C | .00000 00325 | .00 00 00 CC | .00000 00474 | | .00 00 00 0D | .00000 00030 | .00 00 00 4D | .00000 00179 | .00 00 00 8D | .00000 00328 | .00 00 00 CD | .00000 00477 | | .00 00 00 0E | .00000 00032 | .00 00 00 4E | .00000 00181 | .00 00 00 8E | .00000 00330 | .00 00 00 CE | .00000 00479 | | .00 00 00 0F | .00000 00034 | .00 00 00 4F | .00000 00183 | .00 00 00 8F | .00000 00332 | .00 00 00 CF | .00000 00481 | | .00 00 00 10 | .00000 00037 | .00 00 00 50 | .00000 00186 | .00 00 00 90 | .00000 00335 | .00 00 00 D0 | .00000 00484 | | .00 00 00 11 | .00000 00039 | .00 00 00 51 | .00000 00188 | .00 00 00 91 | .00000 00337 | .00 00 00 D1 | .00000 00486 | | .00 00 00 12 | .00000 00041 | .00 00 00 52
.00 00 00 53 | .00000 00190 | .00 00 00 92 | .00000 00339 | .00 00 00 D2 | .00000 00488
.00000 00491 | | .00 00 00 13 | .00000 00044 | .00 00 00 54 | .00000 00175 | .00 00 00 94 | .00000 00342 | .00 00 00 D3 | .00000 00471 | | .00 00 00 15 | .00000 00048 | .00 00 00 55 | .00000 00173 | .00 00 00 95 | .00000 00344 | .00 00 00 D5 | .00000 00495 | | .00 00 00 16 | .00000 00051 | .00 00 00 56 | .00000 00200 | .00 00 00 96 | .00000 00349 | .00 00 00 D6 | .00000 00498 | | .00 00 00 17 | .00000 00053 | .00 00 00 57 | .00000 00202 | .00 00 00 97 | .00000 00351 | .00 00 00 D7 | .00000 00500 | | .00 00 00 18 | .00000 00055 | .00 00 00 58 | .00000 00204 | .00 00 00 98 | .00000 00353 | .00 00 00 D8 | .00000 00502 | | .00 00 00 19 | .00000 00058 | .00 00 00 59 | .00000 00207 | .00 00 00 99 | .00000 00356 | .00 00 00 D9 | .00000 00505 | | .00 00 00 1A | .00000 00060 | .00 00 00 5A | .00000 00209 | .00 00 00 9A | .00000 00358 | .00 00 00 DA | .00000 00507 | | .00 00 00 1B | .00000 00062 | .00 00 00 5B | .00000 00211 | .00 00 00 9B | .00000 00360 | .00 00 00 DB | .00000 00509 | | .00 00 00 1C | .00000 00065 | .00 00 00 5C | .00000 00214 | .00 00 00 9C | .00000 00363 | .00 00 00 DC | .00000 00512 | | .00 00 00 1D
.00 00 00 1E | .00000 00067
.00000 00069 | .00 00 00 5D
.00 00 00 5E | .00000 00216
.00000 00218 | .00 00 00 9D
.00 00 00 9E | .00000 00365
.00000 00367 | .00 00 00 DD
.00 00 00 DE | .00000 00514
.00000 00516 | | .00 00 00 1F | .00000 00072 | .00 00 00 5E | .00000 00218 | .00 00 00 7E | .00000 00370 | .00 00 00 DF | .00000 00519 | | .00 00 00 20 | .00000 00074 | .00 00 00 60 | .00000 00223 | .00 00 00 A0 | .00000 00372 | .00 00 00 E0 | .00000 00521 | | .00 00 00 21 | .00000 00076 | .00 00 00 61 | .00000 00225 | .00 00 00 A1 | .00000 00374 | .00 00 00 E1 | .00000 00523 | | .00 00 00 22 | .00000 00079 | .00 00 00 62 | .00000 00228 | .00 00 00 A2 | .00000 00377 | .00 00 00 E2 | .00000 00526 | | .00 00 00 23 | .00000 00081 | .00 00 00 63 | .00000 00230 | .00 00 00 A3 | .00000 00379 | .00 00 00 E3 | .00000 00528 | | .00 00 00 24 | .00000 00083 | .00 00 00 64 | .00000 00232 | .00 00 00 A4 | .00000 00381 | .00 00 00 E4 | .00000 00530 | | .00 00 00 25 | .00000 00006
88000 00000 | .00 00 00 65 | .00000 00235 | .00 00 00 A5 | .00000 00384 | .00 00 00 E5 | .00000 00533 | | .00 00 00 27 | .00000 00090 | .00 00 00 66 | .00000 00237
.00000 00239 | .00 00 00 A6 | .00000 00386
.00000 00388 | .00 00 00 E6
.00 00 00 E7 | .00000 00535
.00000 00537 | | .00 00 00 28 | .00000 00073 | .00 00 00 68 | .00000 00237 | 8A 00 00 00. | .00000 00380 | .00 00 00 E8 | .00000 00537 | | .00 00 00 29 | .00000 00095 | .00 00 00 69 | .00000 00244 | .00 00 00 A9 | .00000 00393 | .00 00 00 E9 | .00000 00542 | | .00 00 00 2A | .00000 00097 | .00 00 00 6A | .00000 00246 | .00 00 00 AA | .00000 00395 | .00 00 00 EA | .00000 00544 | | .00 00 00 2B | .00000 00100 | .00 00 00 6B | .00000 00249 | .00 00 00 AB | .00000 00398 | .00 00 00 EB | .00000 00547 | | .00 00 00 2C | .00000 00102 | .00 00 00 6C | .00000 00251 | .00 00 00 AC | .00000 00400 | .00 00 00 EC | .00000 00549 | | .00 00 00 2D | .00000 00104 | .00 00 00 6D | .00000 00253 | .00 00 00 AD | .00000 00402 | .00 00 00 ED | .00000 00551 | | .00 00 00 2E | .00000 00107 | .00 00 00 6E | .00000 00256 | .00 00 00 AE | .00000 00405 | .00 00 00 EE | .00000 00554 | | .00 00 00 2F | .00000 00109 | .00 00 00 6F | .00000 00258 | .00 00 00 AF | .00000 00407 | .00 00 00 EF | .00000 00556 | | .00 00 00 30 | .00000 00111 | .00 00 00 70 | .00000 00260 | .00 00 00 BO | .00000 00409 | .00 00 00 F0 | .00000 00558 | | .00 00 00 31 | .00000 00114 | .00 00 00 71 | .00000 00263 | .00 00 00 B1 | .00000 00412 | .00 00 00 F1 | .00000 00561 | | .00 00 00 32
.00 00 00 33 | .00000 00116
.00000 00118 | .00 00 00 72
.00 00 00 73 | .00000 00265
.00000 00267 | .00 00 00 B2 | .00000 00414 | .00 00 00 F2
.00 00 00 F3 | .00000 00563
.00000 00565 | | .00 00 00 33 | .00000 00118 | .00 00 00 74 | .00000 00287 | .00 00 00 B3 | .00000 00418 | .00
00 00 F3 | .00000 00568 | | .00 00 00 35 | .00000 00121 | .00 00 00 75 | .00000 00270 | .00 00 00 B5 | .00000 00417 | .00 00 00 F5 | .00000 00570 | | .00 00 00 36 | .00000 00125 | .00 00 00 76 | .00000 00274 | .00 00 00 86 | .00000 00423 | .00 00 00 F6 | .00000 00570 | | .00 00 00 37 | .00000 00128 | .00 00 00 77 | .00000 00277 | .00 00 00 B7 | .00000 00426 | .00 00 00 F7 | .00000 00575 | | .00 00 00 38 | .00000 00130 | .00 00 00 78 | .00000 00279 | .00 00 00 B8 | .00000 00428 | .00 00 00 F8 | .00000 00577 | | .00 00 00 39 | .00000 00132 | .00 00 00 79 | .00000 00281 | .00 00 00 B9 | .00000 00430 | .00 00 00 F9 | .00000 00579 | | .00 00 00 3A | .00000 00135 | .00 00 00 7A | .00000 00284 | .00 00 00 BA | .00000 00433 | .00 00 00 FA | .00000 00582 | | .00 00 00 3B
.00 00 00 3C | .00000 00137 | .00 00 00 7B | .00000 00286 | .00 00 00 BB | .00000 00435 | .00 00 00 FB | .00000 00584 | | .00 00 00 3C | .00000 00139
.00000 00142 | .00 00 00 7C
.00 00 00 7D | .00000 00288 | .00 00 00 BC
.00 00 00 BD | .00000 00437
.00000 00440 | .00 00 00 FC
.00 00 00 FD | .00000 00586 | | .00 00 00 3E | .00000 00142 | .00 00 00 7E | .00000 00291 | .00 00 00 BE | .00000 00440 | .00 00 00 FD | .00000 00591 | | .00 00 00 3 F | .00000 00146 | .00 00 00 7F | .00000 00275 | .00 00 00 BF | .00000 00444 | .00 00 00 FF | .00000 00571 | | | .00000 00170 | 100 00 00 71 | .50000 00275 | 1 .00 00 00 01 | .00000 00777 | | .00000 00070 | ## MATHEMATICAL CONSTANTS | Constant | Decimal \ | /alue | | Hexadecii | mal Value | |---------------------|-----------|-------|---------------|-----------|-----------| | _ | 3,14159 | 26535 | 8979 3 | 3.243F | 6A89 | | π
π-1 | 0.31830 | | 83790 | 0.517C | C187 | | $\sqrt{\pi}$ | 1.77245 | | 05516 | 1.C5BF | 89 1C | | ln π | 1.14472 | 98858 | 49400 | 1.250D | 048F | | e | 2.71828 | 18284 | 59045 | 2.B7E1 | 5163 | | e ⁻¹ | 0.36787 | 94411 | 71442 | 0.5E2D | 58D9 | | √e | 1.64872 | 12707 | 00128 | 1.A612 | 98E2 | | log 10e | 0.43429 | 44819 | 03252 | 0.6F2D | EC55 | | log ₂ e | 1.44269 | 50408 | 88963 | 1.7154 | 7653 | | y | 0.57721 | 56649 | 01533 | 0.93C4 | 67E4 | | lnγ | -0.54953 | 93129 | 81645 | -0.8CAE | 9BC1 | | $\sqrt{2}$ | 1.41421 | 35623 | 730 95 | 1.6A09 | E668 | | In2 | 0.69314 | 71805 | 59945 | 0.8172 | 17F8 | | log 10 ² | 0.30102 | 99956 | 63981 | 0.4D10 | 4D42 | | $\sqrt{10}$ | 3.16227 | 76601 | 68379 | 3.298B | 075C | | ln 10 | 2.30258 | 50929 | 94046 | 2.4D76 | 3777 | #### TABLE OF POWERS OF TWO ``` 2n 2-4 n l 0 1.0 2 0.5 0.25 4 2 0.125 Я 0.0625 16 4 0.031 25 32 64 0.015 625 0.007 812 5 1 28 0.003 906 25 256 Я 512 9 0.001 953 125 0.000 976 562 5 1 024 10 2 048 0.000 488 281 25 0.000 244 140 625 4 096 12 8 1 9 2 1 3 0.000 122 070 312 5 16 384 14 0.000 061 035 156 25 32 768 15 0,000 030 517 578 125 0.000 015 258 789 062 5 65 536 16 131 072 17 0.000 007 629 394 531 25 0.000 003 814 697 265 625 262 144 18 524 288 0.000 001 907 348 632 812 5 19 0.000 000 953 674 316 406 25 1 048 576 20 0.000 000 476 837 158 203 125 2 097 152 21 4 194 304 2.2 0.000 000 238 418 579 101 562 5 0.000 000 119 209 289 550 781 25 8 388 608 0.000 000 059 604 644 775 390 625 16 777 216 24 0.000 000 029 802 322 387 695 312 5 33 554 432 25 67 108 864 26 0.000 000 014 901 161 193 847 656 25 134 217 728 27 0.000 000 007 450 580 596 923 828 125 0.000 000 003 725 290 298 461 914 062 5 268 435 456 28 0.000 000 001 862 645 149 230 957 031 25 536 870 912 29 1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 0.000 000 000 116 415 321 826 934 814 453 125 8 589 934 592 33 0.000 000 000 058 207 660 913 467 407 226 562 5 17 179 869 184 34 0.000 000 000 029 103 830 456 733 703 613 281 25 34 359 738 368 35 0.000 000 000 014 551 915 228 366 851 806 640 625 68 719 476 736 36 0.000 000 000 007 275 957 614 183 425 903 320 312 5 137 438 953 472 37 0.000 000 000 003 637 978 807 091 712 951 660 156 25 274 877 906 944 38 549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 2 199 023 255 552 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 41 4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 ``` ### ASCII TELETYPE CODES | Ho
Symbol | exadecimal
Code | Symbol | Hexadecimal
Code | |-------------------------|--------------------|---------------------|------------------------| | @ | C0 | 16 | A 0 | | A | C1 | ! | A1 | | В | C2 | •
11 | A2 | | C | C3 | # | A3 | | Ď | C4 | **
** | A4 | | $\tilde{\mathbf{E}}$ | C5 | *
\$
% | A 5 | | $\overline{\mathbf{F}}$ | C6 | & | A6 | | G | C7 | 1 | A7 | | H | C8 | (| A8 | | I | C9 |) | A9 | | J | CA | * | $\mathbf{A}\mathbf{A}$ | | K | CB | + | AB | | ${f L}$ | CC | , | AC | | M | CD | - | $\mathbf{A}\mathbf{D}$ | | N | \mathbf{CE} | • | \mathbf{AE} | | Ο | \mathbf{CF} | / | \mathbf{AF} | | ${f p}$ | $\mathbf{D0}$ | 0 | B0 | | Q | D 1 | 1 | B1 | | ${f R}$ | D2 | 2 | B2 | | S | D3 | 3 | B3 | | ${f T}$ | D4 | 4 | B4 | | U | D5 | 5 | B5 | | V | D6 | 6 | B6 | | W | D7 | 7 | B7 | | X | D8 | 8 | B8 | | Y | D9 | 9 | B9 | | Z | DA | ;
; | BA | | [\ | DB | ; | BB | | j | DC | _ | BC | | | DD | = | BD
BE | | †
← | DE
DE | >
? | BF | | ₹- | DF | ţ | Dr | | NULL | 00 | | | | \mathbf{BELL} | 87 | | | | CR | 8D | | | | \mathbf{LF} | 8 A | | | | RUBOUT | \mathbf{FF} | | | # 816 INSTRUCTION SET - NUMERICAL ORDER | Instruction Code
In Hexadecimal | Instruction
Mnemonic | Name | Cycles | |------------------------------------|-------------------------|---|--------| | 0000 | NOP | No Operation | 1 | | 0008 | XRM | Set X register to minus 1 | 1 | | 0010 | ARM | Set A register to minus 1 | 1 | | 0018 | AXM | Set A and X register to minus 1 | 1 | | 0030 | TXA | Transfer X to A | 1 | | 0048 | TAX | Transfer A to X | 1 | | 0068 | ANX | AND of A and X to X | 1 | | 0070 | ANA | AND of A and X to A | 1 | | 0078 | ANB | AND of A and X to A and X | 1 | | 0088 | | Set X to minus 2 | 1 | | 0090 | | Set A to minus 2 | 1 | | 0098 | | Set A and X to minus 2 | 1 | | 00A8 | DXR | Decrement X register | 1 | | 00B0 | DXA | Decrement X and put in A | 1 | | 00B8 | DXB | Decrement X and Put in A and X | 1 | | 00C8 | DAX | Decrement A and put in X | 1 | | 00D0 | DAR | Decrement A register | 1 | | 00D8 | DAB | Decrement A and put in A and X | 1 | | 00E8 | | AND of A and X-1 to X | 1 | | 00F0 | | AND of A and X-1 to A | 1 | | 00F 8 | | AND of A and X-1 to A and X | 1 | | 0108 | ZXR | Zero X register | 1 | | 0110 | ZAR | Zero A register | 1 | | 0018 | ZAX | Zero A and X register | 1 | | 0128 | IXR | Increment X register | 1 | | 0130 | IXA | Increment X and put in A | 1 | | 0138 | IXB | Increment X and put in A and X | 1 | | 0148 | IAX | Increment A and put in X | 1 | | 0150 | IAR | Increment A register | 1 | | 0158 | IAB | Increment A and put in A and X | 1 | | 0168 | | AND of A and X +1 to X | 1 | | 0170 | | AND of A and X+1 to A | 1 | | 0178 | | AND of A and X+1 to A and X | 1 | | 0208 | CAX | Complement A and put in X | 1 | | 0210 | CAR | Complement A register | 1 | | 0218 | CAB | Complement A and put in A and X | 1 | | 0228 | | Complement of A ANDed with X to X | 1 | | 0230 | | Complement of A ANDed with X to A | 1 | | 023 8 | | Complement of A ANDed with X to A and X | 1 | | 0288 | | A-2 to X | 1 | | 0290 | | A-2 to A | 1 | | 029 8 | | A-2 to A and X | 1 | | Instruction Code In Hexadecimal | Instruction Mnemonic | Name | Cycles | |---------------------------------|----------------------|---|--------| | 02A8 | | Complement of A ANDed with X-1 to X | 1 | | 02B0 | | Complement of A ANDed with X-1 to A | 1 | | 02B8 | | Complement of A ANDed with X-1 to A and X | 1 | | 0308 | NAX | Negate A and put in X | 1 | | 0310 | NAR | Negate A register | 1 | | 0318 | NAB | Negate A and put in A and X | 1 | | 0328 | | Complement of A ANDed with X+1 to X | 1 | | 0330 | | Complement of A ANDed with X+1 to A | 1 | | 0338 | | Complement of A ANDed with X+1 to A and X | 1 | | 0350 | ARP | Set A register to plus 1 | 1 | | 0358 | AXP | Set A and X register to plus 1 | 1 | | 0408 | CXR | Complement X register | 1 | | 0410 | CXA | Complement X and put in A | 1 | | 0418 | CXB | Complement X and put in A and X | 1 | | 0448 | | A ANDed with complement of X to X | 1 | | 0450 | | A ANDed with complement of X to A | 1 | | 0458 | | A ANDed with complement of X to A and X | 1 | | 0488 | | . X-2 to X | 1 | | 0490 | | X-2 to A | 1 | | 0498 | | X-2 to A and X | 1 | | 04C8 | | A ANDed with complement of $(X)-1$ to X | 1 | | 04D0 | | A ANDed with complement of (X)-1 to A | 1 | | 04D8 | | A ANDed with complement of (X)-1 to A and X | 1 | | 0508 | NXR | Negate X register | 1 | | 0510 | NXA | Negate X and put in A | 1 | | 0518 | NXB | Negate X and put in A and X | 1 | | 0528 | XRP | Set X register to plus 1 | 1 | | 0548 | | A ANDed with complement of $(X)+1$ to X | 1 | | 0550 | | A ANDed with complement of (X)+1 to A | 1 | | 0058 | | A ANDed with complement of $(X)+1$ to A and X | 1 | | 0608 | NRX | NOR of (A and X) to X | 1 | | 0610 | NRA | NOR of (A and X) to A | 1 | | 0618 | NRB | NOR of (A and X) to A and X | 1 | | 0688 | | NOR of (A and X)-1 to
X | 1 | | 0690 | | NOR of (A and X)-1 to A | 1 | | 0698 | | NOR of (A and X)-1 to A and X | 1 | | 0708 | | NOR of (A and X)+1 to X | 1 | | 0710 | | NOR of (A and X)+1 to A | 1 | | 0718 | | NOR of (A and X)+1 to A and X | 1 | | *0080 | HLT | Halt | 1 | | 0A00* | EIN | Enable interrupts | 1 | | 0C00* | DIN | Disable interrupts | 1 | ^{*}These codes may be added to any OP Code less than 0200 to define a multi-condition operation. 816 Instructions - Numerical Order (continued) | Instruction Code In Hexadecimal | Instruction
Mnemonic | Name | Cycles | |---------------------------------|-------------------------|---------------------------|--------| | 1028 | ALX | Arithmetic shift X left | 1+25K | | 1050 | ALA | Arithmetic shift A left | 1+25K | | 10A8 | ARX | Arithmetic shift X right | 1+25K | | 10D0 | ARA | Arithmetic shift A right | 1+25K | | 1128 | RLX | Rotate X left with OV | 1+25K | | 1150 | RLA | Rotate A left with OV | 1+25K | | 11 A8 | RRX | Rotate X right with OV | 1+25K | | 11D0 | RRA | Rotate A right with OV | 1+25K | | 1200 | ROV | Reset overflow | 1 | | 1328 | LLX | Logical shift X left | 1+25K | | 1350 | LLA | Logical shift A left | 1+25K | | 13A8 | LRX | Logical shift X right | 1+25K | | 13D0 | LRA | Logical shift A right | 1+25K | | 1400 | sov | Set overflow | 1 | | 1600 | cov | Complement overflow | 1 | | 1980 | LRR | Long rotate right A and X | 1+25K | | 1900 | LRL | Long rotate left A and X | 1+25K | | Instruction Code In Hexadecimal | Instruction
Mnemonic | Name | Cycles | |---------------------------------|----------------------------------|---|--------| | 2080 | JAM | Jump forward if A negative | 1 | | 2100 | $\mathbf{J}\mathbf{A}\mathbf{Z}$ | Jump forward if A zero | 1 | | 2180 | JAL | Jump forward if A negative or equal zero | 1 | | 2200 | JOS | Jump forward if overflow set | 1 | | 2280 | | Jump forward if X equal 1 or A negative | 1 | | 2300 | | Jump forward if X equal 1 or A equal zero | 1 | | 2380 | | Jump forward if X equal 1 or A negative or equal to zero | 1 | | 2400 | JSR | Jump forward if SS off | 1 | | 2480 | | Jump forward if SS off or A negative | 1 | | 2500 | | Jump forward if SS off or A equal to zero | 1 | | 2580 | | Jump forward if SS off or A negative or equal to zero | 1 | | 2600 | | Jump forward if SS off or OV set | 1 | | 2680 | | Jump forward if SS off or OV set or A negative | 1 | | 2700 | | Jump forward if SS off or OV set or A equal zero | 1 | | 2780 | | Jump forward if SS off or OV reset or A less than or equal to zero | 1 | | 2800 | $\mathbf{J}\mathbf{X}\mathbf{Z}$ | Jump forward if X equal zero | 1 | | 2880 | | Jump forward if X equal zero or A negative | 1 | | 2900 | | Jump forward if X equal zero or A equal zero | 1 | | 2980 | | Jump forward if X equal zero or A negative equal zero | 1 | | 2A00 | | Jump forward if X equal zero or OV set | 1 | | 2A80 | | Jump forward if X equal zero or OV set or A negative | 1 | | 2B00 | | Jump forward if X equal zero or OV set or A equal zero | 1 | | 2B80 | | Jump forward if X equal zero or OV set or Anegative equal to zero | 1 | | 2C00 | | Jump forward if X equal zero or SS off | 1 | | 2C80 | | Jump forward if X equal zero or SS off or A negative | 1 | | 2D00 | | Jump forward if X equal zero or SS off or A equal zero | 1 | | 2D80 | | Jump forward if X equal zero or SS off or A negative or equal zero | 1 | | 2E00 | | Jump forward if X equal zero or SS off or OV set | 1 | | 2E80 | * | Jump forward if X equal or SS off or OV set or A negative | 1 | | 2F00 | | Jump forward if X equal zero or SS off or OV set or A equal to zero | 1 | | 2F80 | | Jump forward if X equal zero or SS off or OV set or A negative | 1 | 816 Instructions - Numerical Order (continued) | Instruction Code In Hexadecimal | Instruction
Mnemonic | Name | Cycles | |---------------------------------|-------------------------|---|--------| | 3080 | JAP | Jump forward if A positive or equal to zero | 1 | | 3100 | JAN | Jump forward if A not zero | 1 | | 3180 | JAG | Jump forward if A positive and not equal to zero | 1 | | 3200 | JOR | Jump forward if OV reset | 1 | | 3280 | | Jump forward if A positive and OV reset | 1 | | 330 0 | | Jump forward if A non-zero and OV reset | 1 | | 3 380 | | Jump forward if A non-zero and positive and OV reset | 1 | | 34 00 | JSS | Jump forward if SS on | 1 | | 3480 | | Jump forward if SS on and A positive | 1 | | 3500 | | Jump forward if SS on and A non-zero | 1 | | 35 80 | | Jump forward if SS on and A positive and non-zero | 1 | | 360 0 | | Jump forward if SS on and OV reset | 1 | | 3680 | | Jump forward if SS on and A positive and OV reset | 1 | | 3700 | | Jump forward if SS on and A non-zero and OV reset | 1 | | 3780 | | Jump forward if A non-zero and positive and SS on and OV reset | 1 | | 3800 | JXN | Jump forward if X non-zero | 1 | | 3880 | | Jump forward if X non-zero and A positive | 1 | | 390 0 | | Jump forward if X non-zero and A non-zero | 1 | | 3980 | | Jump forward if X non-zero and A positive and non-zero | 1 | | 3A00 | | Jump forward if X non-zero and OV reset | 1 | | 3A80 | | Jump forward if X non-zero and A positive and OV reset | 1 | | 3B00 | | Jump forward if X non-zero and A non-zero and OV reset | 1 | | 3B80 | | Jump forward if X non-zero and A non-zero and positive and OV reset | 1 | | 3C00 | | Jump forward if X non-zero and SS equal 1 | 1 | | 3C80 | | Jump forward if X non-zero and A positive and SS on | 1 | | 3D00 | | Jump forward if X non-zero and A non-zero and SS on | 1 | | 3D80 | | Jump forward if \boldsymbol{X} non-zero and A non-zero and positive and SS on | 1 | | 3E00 | | Jump forward if X non-zero and SS on and OV reset | 1 | | 3E80 | | Jump forward if X non-zero and A positive and SS on and OV reset | 1 | | 3F00 | | Jump forward if X non-zero and A non-zero and SS on and OV reset | 1 | | 3 F80 | | Jump forward if X non-zero and A non-zero and positive and SS on and OV reset | 1 | | Instruction Code In Hexadecimal | Instruction
Mnemonic | Name | Cycles | |---------------------------------|-------------------------|---|--------| | 4000 | SEL | Select function | 1 | | 4800 | SSN | Sense and skip on no response | 1 | | 4900 | SEN | Sense and skip on response | 1 | | 5000 | INB | Input block to memory | | | 5800 | INA | Input to A register (unconditionally) | 1 | | 5900 | RDA | Read word to A register | 1 | | 5A00 | INX | Input to X register | 1 | | 5B00 | RDX | Read word to X register | 1 | | 5C00 | INAM | Masked input to A register (unconditionally) | 1 | | 5D00 | RDAM | Read word to A register masked | 1 | | 5E00 | INXM | Masked input to X register (unconditionally) | 1 | | 5 F 00 | RDXM | Read word to X register masked | 1 | | 6000 | OTB | Output block from memory | | | 6800 | OTZ | Output zero (unconditionally) | 1 | | 6900 | WRZ | Write zeros | 1 | | 6C00 | OTA | Output A register (unconditionally) | 1 | | 6D00 | WRA | Write from A register | 1 | | 6E00 | OTX | Output X register (unconditionally) | 1 | | 6F00 | WRX | Write from X register | 1 | | 7100 | LDM | Load memory | 1 | | 7500 | DPM | Dump memory | 1 | | 7800 | IBA | Input byte to A register (unconditionally) | 1 | | 7900 | RBA | Read byte to A register | 1 | | 7A00 | IBX | Input byte to X register (unconditionally) | 1 | | 7B00 | RBX | Read byte to X register | 1 | | 7C00 | IBAM | Input byte to A register masked (unconditionally) | 1 | | 7D00 | RBAM | Read byte to A register masked | 1 | | 7E00 | IBXM | Input byte to X register masked (unconditionally) | 1 | | 7F00 | RBXM | Read byte to X register masked | 1 | | Instruction Code In Hexadecimal | Instruction
Mnemonic | Name | Cycles | |---------------------------------|-------------------------|---|--------| | 8000 | AND | AND to A, direct | 2 | | 8100 | | AND to A, indirect | 3 | | 8200 | | AND to A relative to P forward | 2 | | 8 3 0 0 | | AND to A relative to P forward, indirect | 3 | | 8400 | | AND to A indexed | 2 | | 8500 | | AND to A indexed, indirect | 3 | | 8600 | | AND to A relative to P backward | 2 | | 8700 | | AND to A relative to P backward, indirect | 3 | | 8800 | ADD | Add to A direct | 2 | | 890 0 | | Add to A indirect | 3 | | 8A00 | | Add to A relative to P forward | 2 | | 8B00 | | Add to A relative to P forward, indirect | 3 | | 8C 0 0 | | Add to A indexed | 2 | | 8D00 | | Add to A indexed, indirect | 3 | | 8E00 | | Add to A relative to P backward | 2 | | 8 F0 0 | | Add to A relative to P backward, indirect | 3 | | 9000 | SUB | Subtract from A, direct | 2 | | 9100 | | Subtract from A, indirect | 3 | | 9200 | | Subtract relative to P forward | 2 | | 9300 | | Subtract relative to P forward, indirect | 3 | | 9400 | | Subtract from A, indexed | 2 | | 9500 | | Subtract from A, indexed, indirect | 3 | | 9600 | | Subtract, relative to P backward | 2 | | 970 0 | | Subtract, relative to P backward, indirect | 3 | | 9800 | STA | Store A direct | 2 | | 9900 | | Store A indirect | 3 | | 9A00 | | Store A relative to P forward | 2 | | 9B 0 0 | | Store A relative to P forward, indirect | 3 | | 9C 0 0 | | Store A, indexed | 2 | | 9D00 | | Store A indexed, indirect | 3 | | 9 E00 | | Store A relative to P backward | 2 | | 9 F00 | | Store A relative to P backward, indirect | 3 | | A000 | IOR | Inclusive OR to A, direct | 2 | | A100 | | Inclusive OR to A, indirect | 3 | | A200 | | Inclusive OR to A, relative to P forward | 2 | | A300 | | Inclusive OR to A, relative to P forward, indirect | 3 | | A400 | | Inclusive OR to A, indexed | 2 | | A500 | | Inclusive OR to A, indexed, indirect | 3 | | A600 | | Inclusive OR to A, relative to P backward | 2 | | A700 | | Inclusive OR to
A, relative to P backward, indirect | 3 | | A800 | XOR | Exclusive OR to A, direct | 2 | | A900 | | Exclusive OR to A, indirect | 3 | | AA00 | | Exclusive OR to A, relative to P forward | 2 | | AB00 | | Exclusive OR to A, relative to P forward, indirect | 3 | | Instruction Code In Hexadecimal | Instruction
Mnemonic | <u>Name</u> | Cycles | |---------------------------------|-------------------------|---|--------| | AC00 | XOR | Exclusive OR to A, Indexed | 2 | | AD00 | | Exclusive OR to A, indexed, indirect | 3 | | AE00 | | Exclusive OR to A, relative to P backward | 2 | | AF00 | | Exclusive OR to A, relative to P backward, indirect | 3 | | в000 | LDA | Load A, direct | 2 | | B100 | | Load A, indirect | 3 | | B200 | | Load A, relative to P foreard | 2 | | B300 | | Load A, relative to P forward, indirect | 3 | | B400 | | Load A, indexed | 2 | | B500 | | Load A, indexed, indirect | 3 | | В600 | | Load A, relative to P backward | 2 | | B700 | | Load A, relative to P backward, indirect | 3 | | в800 | EMA | Exchange memory and A, direct | 2 | | B90 0 | | Exchange memory and A, indirect | 3 | | BA00 | | Exchange memory and A, relative to P forward | 2 | | BB00 | | Exchange memory and A, relative to P forward, indirect | 3 | | BC00 | | Exchange memory and A, indexed | 2 | | BD00 | | Exchange memory and A, indexed, indirect | 3 | | BE00 | | Exchange memory and A, relative to P backward | 2 | | BF00 | | Exchange memory and A, relative to P backward, indirect | 3 | | C000 | CAI | Compare to A immediate | 2 | | C100 | СХІ | Compare to X immediate | 3 | | C200 | ADI | Add to X immediate | 2 | | C300 | SBI | Subtract from X immediate | 3 | | C400 | LXP | Load X positive immediate | 2 | | C500 | LXM | Load X minus immediate | 3 | | C600 | LAP | Load A positive immediate | 2 | | C700 | LAM | Load A minus immediate | 3 | | C800 | SCN | Scan memory, direct | 2 | | C900 | | Scan memory, indirect | 3 | | CA00 | | Scan memory, relative to P forward | 2 | | СВ00 | | Scan memory, relative to P forward, indirect | 3 | | CC00 | | Scan memory, indexed | 2 | | CD00 | | Scan memory, indexed, indirect | 3 | | CE00 | | Scan memory, relative to P backward | 2 | | CF00 | | Scan memory, relative to P backward, indirect | 3 | | D000 | CMS | Compare and skip if high or equal, direct | 2 | | D100 | | Compare and skip if high or equal, indirect | 3 | | D20 0 | | Compare and skip if high or equal, relative to P forward | 2 | | D300 | | Compare and skip if high or equal, relative to P forward, indirect | 3 | | D40 0 | | Compare and skip if high or equal, indexed | 2 | | D500 | | Compare and skip if high or equal, indexed, indirect | 3 | | D600 | | Compare and skip if high or equal, relative to P backward | 2 | | D700 | | Compare and skip if high or equal, relative to P backward, indirect | 3 | | Instruction Code In Hexadecimal | Instruction Mnemonic | Name | Cycles | |---------------------------------|-------------------------|--|------------| | D800 | IMS | Increment memory and skip on zero result, direct | 2 | | D900 | | Increment memory and skip on zero result, indirect | 3 | | DA00 | | Increment memory and skip on zero, relative to P forward | 2 | | DB00 | | Increment memory and skip on zero, relative to P forward, indirect | 3 | | DC00 | | Increment memory and skip on zero, indexed | 2 | | DD00 | | Increment memory and skip on zero, indexed, indirect | 3 | | DE00 | | Increment memory and skip on zero, relative to P backward | 1 2 | | DF00 | | Increment memory and skip on zero relative to P backward, indirect | 3 | | E000 | $\mathtt{LD}\mathbf{X}$ | Load X, direct | 2 | | E100 | | Load X, indirect | 3 | | E200 | | Load X, relative to P forward | 2 | | E300 | | Load X, relative to P forward, indirect | 3 | | E400 | | Load X, Indexed | 2 | | E500 | | Load X, indexed, indirect | 3 | | E60 0 | | Load X, relative to P backward | 2 | | E700 | | Load X, relative to P backward, indirect | 3 | | E8 0 0 | STX | Store X, direct | 2 | | E900 | | Store X, indirect | 3 | | EA00 | | Store X, relative to P forward | 2 | | EB00 | | Store X, relative to P forward, indirect | 3 | | EC00 | | Store X, indexed | 2 | | ED00 | | Store X, indexed, indirect | 3 . | | EE00 | | Store X, relative to P backward | 2 | | EF00 | | Store X, relative to P backward, indirect | 3 | | F000 | JMP | Jump unconditionally, direct | 2 | | F100 | | Jump unconditionally, indirect | 3 | | F200 | | Jump unconditionally, relative to P forward | 2 | | F300 | | Jump unconditionally, relative to P forward, indirect | 3 | | F400 | | Jump unconditionally, indexed | 2 | | F500 | | Jump unconditionally, indexed, indirect | 3 | | F600 | | Jump unconditionally, relative to P backward | 2 | | F700 | | Jump unconditionally, relative to P backward, indirect | 3 | | F800 | JST | Jump and store, direct | 2 | | F900 | | Jump and store, indirect | 3 | | FA00 | | Jump and store, relative to P forward | 2 | | FB00 | | Jump and store, relative to P forward, indirect | 3 | | FC00 | | Jump and store, indexed | 2 | | FD00 | | Jump and store, indexed, indirect | 3 | | FE00 | | Jump and store, relative to P backward | 2 | | FF00 | | Jump and store, relative to P backward, indirect | 3 | #### CONSOLE DISPLAY PROCEDURE - 1. Place the STEP/RUN switch in the STEP mode. - 2. Check the MEMORY DISABLE switch to be sure it is reset (not depressed). - 3. Depress the Instruction REGISTER ENTRY switch (I), depress the CLEAR switch, and enter B600 on the DATA ENTRY switches. The B600 instruction loads the Accumulator register (A), relative to the Program Counter register (P). - 4. Set (depress) the MANUAL EXECUTE switch. This prevents the processor from executing the instruction fetch cycle, effectively 'locking' the load instruction into the Instruction register. - 5. Depress the Program Counter REGISTER ENTRY switch (P), depress the CLEAR switch, and enter on the DATA ENTRY switches the address of the memory word to be displayed. - 6. Depress the Accumulator REGISTER ENTRY switch (A). - 7. Depress the CYCLE switch. The contents of the memory word specified by the Program Counter register (P) will be loaded into the Accumulator register (A) and displayed on the REGISTER DISPLAY lights, and the Program Counter will be incremented by one (P = P+1). - 8. Repeat step 7 for each successive memory word to be displayed. - 9. To display data from a new location, go to step 5. #### CONSOLE LOAD PROCEDURE - 1. Place the STEP/RUN switch in the STEP mode. - 2. Check the MEMORY DISABLE switch to be sure it is reset (not depressed). - 3. Depress the Instruction REGISTER ENTRY switch (I), depress the CLEAR switch, and enter 9E00 on the DATA ENTRY switches. The 9E00 instruction stores the Accumulator register (A), relative to the Program Counter register (P). - 4. Set (depress) the MANUAL EXECUTE switch. This prevents the processor from executing the instruction fetch cycle, effectively 'locking' the store instruction into the Instruction register. - 5. Depress the Program Counter REGISTER ENTRY switch (P), depress the CLEAR switch, and enter on the DATA ENTRY switches the address of the word to be loaded into memory. - 6. Depress the Accumulator REGISTER ENTRY switch (A). - 7. Depress the CLEAR switch and enter on the DATA ENTRY switches the instruction or data to be loaded into memory. - 8. Depress the CYCLE switch. The contents of the Accumulator register (A) will be loaded into memory at the location specified by the contents of the Program Counter register (P), and the Program Counter register will be incremented by one (P = P + 1). - 9. Repeat steps 7 and 8 for each successive instruction or data word to be loaded into memory. - 10. To load data at a new location, go to step 5. COMPUTER AUTOMATION INCORPORATED 895 WEST SIXTEENTH STREET NEWPORT BEACH, CALIF. 92660 TELEPHONE: (714) 642-9630