CC: TUTER AUTOMATION. INC.

10077-00B1 SUP
FEBRUARY 1974

LSI-2 EXTENDED INSTRUCTION SET
SUPPLEMENT

TO

NAKED MINI®/ALPHA LSI SERIES

PROGRAMMING REFERENCE MANUAL

This document contains information that is supplementary to the NAKED MINI ®/ALPHA
LSI SERIES PROGRAMMING REFERENCE MANUAL -- Document 10077-00B1.

This supplement consists of three sectionsand three appendices. Each section and
appendix provides information that will be incorporated into Document 10077-00B1 at
a future date. For correlation purposes, the section and appendices of this supple-
ment relate to the basic manual as follows: .

Supplement Basic Manual Title

Section 1 Section 1 General Information

Section 2 Section 3 Instructions and Directives

Section 3 ‘ To be added Programming Examples"

Appendix A Appendix D Instruction Set in Alphabetical Order
Appendix B ' ~ Appendix E Instruction Set in Numerical Order -

Appendix C Appendix F ALPHA LSI Execution Times

Section 1

GENERAL INFORMATION

1.1 INTRODUCTION

This supplement describes Computer Automation's LSI-2 Processor Extended instruc-
tion set. The instruction set consists of 20 new instructions for the NAKED MINI /
ALPHA LSI Type 2 Computer only. Other versions of Computer Automation's family
of computers cannot execute these new instructions. :

1.2 STACK INSTRUCTIONS'

The stack processing instructions extend Memory Reference operations to operands
maintained in "stacks" in memory. :

The number, size, and location of stacks in use at any time are unlimited as are the
number of stacks in use by any code module and the number of code modules using
any given stack.

All stack accesses are controlled by a stack pointer. Stacks may be accessed in the
‘conventional "PUSH" and "POP" fashion utilizing automatic hardware pre-decrement
and post-increment respectively, of the stack pointer. Stack contents can alsc be
accessed directly or with mdexmg thru the stack pointer without altering the stack
pointer value.

Stack processing instructions greatly facilitate the generation of reentrant code
modules by allowing the reentrant module to operate only on variables contained in
stacks. Simple manipulation of the one-word stack pointer, by exchanging one
parameter for another, can then cause the re-entrant module to operate on any of a
number of stacks.

Since access to stacks is unrestricted, no hardware prevention or detection of stack
overflow, underflow, or overlap is provided.

1.3 REGISTER CHANGE INSTRUCTIONS

This class of instructions has been expanded to include the ability to complement one

register and either AND or OR the result with the other register. The EIX instruction

provides the ability to execute a single instruction that is not part of the inline pro-
ram sequence.

1-1

COMPUTER AUTOMATION, INC. afi —

COMPUTER AUTOMATION, INC.

Section 2

INSTRUCTIONS AND DIRECTIVES

2.1 INTRODUCTION

This section defines the new LSI-2 instructions. Also defined is one new directive
that is processed by the various assemblers used with the LSI-2.

2.2 STACK, DOUBLE WORD INSTRUCTIONS (Figure 2-1)

-Stack.instructions permit the. Programmer-to enter. or retrieve a full 16-bit word from
a stack. A stack is a group of contiguous memory locations whose length is variable
up to 32,768 words. A stack is organized on a last-in-first-out basis whereby the
last word entered into the stack will be the first word retrieved from the stack.

A stack can start at any address and fills from upper memory toward lower memory
(decreasing addresses). The stack instructions themselves do not provide any stack
boundary limit testing features. The user must provide boundary limit testing as
overhead associated with using stack instructions.

All stack accesses are controlled by a stack pointer for each stack. The stack pointer
is a 15-bit word address which points to the most recently accessed location in the
stack (this address is referred to as the stack element address ~- SEA). The stack
pointer may be located anywhere in memory.

Stack instructions occupy two consecutive words in memory. The first word contains
the instruction while the second word contains the address of the stack pointer.

2.2.1 Addressing Modes

To provide flexibility in stack management, four addressing modes are provided with
stack instructions.

2.2.1.1 Direct Access to Stack
In the Direct Access Mode, the second word of the instruction (the stack pointer ad-

dress -~ SPA) is used to fetch the stack pointer from memory. The stack pointer, in
turn, is used to access the stack element for entry, retrieval, or testing of data.

2.2.1.2 Indexed Access to Stack

In the Indexed Access Mode, the stack pointer address in the second word of the in-
struction is used to fetch the stack pointer from memory. The contents of the X regi-

2-1

COMPUTER SUTOMATION, INC.

!
{
|
|
{
Full |
~_Full SEA+N
A UPPER
STACK INSTRUCTION MEMORY
b OP CODE
STACK POInLER :
P+1 |ADDRESS |
¥ POP
Full SEA+1
SPA L |STACK POINTER* —SEA o “Full SEA
_ -Empty SEA]
Empty’ SA -
*STACK POINTER ALWAYS Rty SEA e
POINTS TO MOST RECENT , '
ENTRY IN STACK ' A
) LOWER
i MEMORY
Emoty SEA-n
Empty

Figurce 21,

Stack Organization and Management

22

COMPUTER AUTOMATION, INC. ¢ 15

ster (Index register) is then summed with the stack pointer to form the stack element
address. This allows access to the nth element in the stack relative to the last stack
entry when the X register contains n. For example, if X=0 the most recent stack entry
is accessed while if X=1 the next most recent entry is accessed.

2.2.1.3 Auto-Increment Access to Stack (POP)

In the Auto-increment Mode, the stack pointer address is used to obtain the stack
pointer. The stack pointer, in turn, provides access to the stack element. Upon com-
pletion of the stack access, the stack pointer is incremented and restored to memory.
This mode of addressing appears to romove (POP) the most recent entry from the
stack when used with-a load type instruetion.

2.2.1.4 Auto-Decrement Access to Stack (PUSH)

In this mode, the stack pointer is accessed via the stack pointer address, decremented
by one and restored. The stack element is then accessed using the decremented stack
pointer. This mode of addressing appears to insert (PUSH) a new entry ento the stack
when used with a store type instruction.

2.2.2 Assembler Format

The assembler format for Stack instructions is as follows:
[LaBEL] OPCODE OPERAND EAM] [CO\SI’FNTS]

The label and comment fields are optional with this class of instruction.

The op code must be present. The legal op,codes for Stack mstructmns are defined
in paragraphs 2.2.3 thru 2.2.7, inclusive.

The operand field consists of one or two expressions. The first expression represents
a memory word address and must be present. The second expression {(Al) is optional
and, when included, must be separated from the first by a comma. This expression
represents the addressing mode of the Stack instruction. The following is a list of valid
expression characters and their associated addressing modes.

These instructions generate two 16-bit words. The first word is the stack instruction
op code. The second word is the absoclute address of the stack pointer.

2-3

COMPUTER AUTOMATION, INC. &

Character ' Address Mode

No second expression ‘ DIRECT. Stack element is accessed thro'ugh.

Stack Pointer. The Stack Pointer is un-
changed.

PUSH. Stack Pointer is DECREMENTED.
Stack element is then accessed through
Stack Pointer. '

POP. Stack element is accessed through
Stack Pointer; Stack Pointer is then INCRE-
MENTED.

INDEXED. The sum of the Stack Pointer
and index register form the effective ad-
dress of the Stack element to be accessed.

2.2.3 Arithmetic Stack Instructions

ADDS

SUBS

ADD STACK ELEMENT TO A. Adds the contents of the stack ele-

‘ment to the A register. OV is set if arithmetic overflow occurs.

SUBTRACT STACK ELEMENT FROM A. Subtracts the contents of
the stack element from the A register. OV is set if arithmetic over-
flow occurs.

2.2.4 Logical Stack Instructions

.ANDS
IORS

XORS

AND STACK ELEMENT TO A. Logically AND's the contents of the
stack element with the A register.

INCLUSIVE OR STACK ELEMENT TO A. Inclusively OR's the con-
tents of the stack element with the A register.

EXCLUSIVE OR STACK ELEMENT TO A. Exclusively OR's the con-
tents of the stack element with the A register.

2.2.5 Da*a Transfer Stack Instructions

EMAS

EXCHANGE STACK ELFMENT AND A. Simultaneously stores the
contents of the A register in the stack element location and loads
the contents of the stack element location int> the A register.

2-4

COMPUTER AUTOMATION. INC. ;

- o

LDAS LOAD STACK ELEMENT INTO A. Loads the contents of the stack
element into the A register.

LDXS v LOAD STACK ELEMENT INTO X. Loads the contents of the stack
element into the X register.

STAS STORE A IN STACK ELEMENT. Stores the contents of the A regi-
ster in the stack element location.

STXS STORE X IN STACK ELEMENT. Stores the contents of the X regi-
ster in the stack element location.

2.2.6 Prngram Transfer Stack Instructions

CMSS COMPARE AND SKIP IF HIGH OR EQUAL. Compares the contents
of the stack element with the A register. If the A register is
greater than the contents of the stack element, a one-word skip
occurs. If the A register is equal to the contents of the stack
element, a two-word skip occurs. If the A register is less than
the contents of the stack element, the next sequential instruction

~ is executed.

IMSS INCREMENT STACK ELEMENT AND SKIP ON ZERO RESULT. The
contents of the stack element is incremented by one. If the incre-
ment causes the result to become zero, a one-word skip occurs.
OV is set if arithmetic overflow occurs.

JMPS JUMP UNCONDITIONAL. The P counter is loaded with the value
of the stack pointer, causing an unconditional branch to the ad-
dressed stack element location (SEA). The next instruction is
executed from location SEA.,

JSTS JUMP AND STORE. The contents of the P counter (P+2) are stored
in the addressed stack element location and the P counter is then
loaded with the address of the addressed stack element plus one
(SEA+1). The next instruction is accessed from location SEA+1.

2.2.7 Stack Control Instruction

SLAS STACK LOCATION TO A. Loads the contents of the stack pointer
into the A register.

2.3 REGISTER CHANGE INST2UCTIONS

Five new Register Change instructions have been added to the LSI-2 Processor. All
five instructions fall into the Multi-Register Change Subclass (refer to parazraph 3.7.5
in the NAKED MINI/ALPHA LSI SERIES PROGRAMMING REFERENCE MANUAL -- Docu-
ment 10077-00B1).

2-5

COMPUTIR AUTOMATION, (¢,

2.3.1 Assembler Format

These instructions use the same format and syntax as used by the Register Change in-
structions discussed in the Programming Reference Manual.

2.3.2 Multi-Register Change Instructions

BCA

BSA

BSX

EIX

BIT CLEAR A. The contents of the X register are ones complementcd '
and then logically ANDed with the contents of the A register. The
result replaces A and the original value of X is left unchanged.

-BIT'CLEAR X. The contents of the X register-are ones.complemented

and then logically ANDed with the contents of the A pegister. The
result replaces X and the original value of A ‘isleft unchanged.

BIT SET A. The contents of the X register are logically ORed with
the contents of A. The result replaces A and X is left unchanged.

BIT SET X. The contents of the A register are logically ORed with
the contents of X. The result replaces X and A is left unchanged.

EXECUTE INSTRUCTION POINTED TO BY X. The instruction whose
address is contained in the X register is executed as though it
occupied the location following the EIX instruction. The location
following the EIX instruction is skipped during execution of the

'EIX instruction. .

If the executed instruction:

1, Is a multi-word:instruction, the second and succeeding words
of the instruction must be located at the second location after
the EIX instruction (EIX+2). '

2. Modifies the program counter, the modification is relative to
location EIX+1. '

3. Is a SCM or conditional 1I/0 instruction, the location follow-
ing the EIX instruction (EIX+1) should be coded with a
JMP $-1. This is required for recovery purposes in the
event of an interrupt or the lack of a true sense response.

Note that EIX is not interruptable.

2-6

CCLITUTER AUTOMATION, INC.

2.4 ASSEMBLER DIRECTIVES

2.4.1 Machine Directive (MACH)

[LaBEL] MACH Expression [comMENTS]

The MACH directive allows the user to specify which CAI 16-bit computer's instruc-
tion set is to be considered valid during this assembly. This allows the assembly,
and/or error detection, of programs written for either (or both) LSI (1 or 2) and
ALPHA 16 computers. Instructions declared invalid by the MACH directive will be
flagged with an "O" error, but will be assembled correctly.

The expression in the operand field must be present, absolute (not relocatable or
external), and must be previously defined. The value of the expression will re-
place the current value in the MACH flag word, remaining in effect until the end of
the current assembly or until another MACH directive is encountered. The acceptable
values of the MACH directive are shown in table 2-1, below.

The label, if present, will be given the current location counter value.

Table 2-1. MACH Flag Word Values

MACH Value* Instruction Set Allowed

Common subset-of ALPHA 16 and LSIonly
ALPHA 16 .

LSI

ALPHA 16 and LSI

Extended LSI-2

ALPHA 16 and Extended LSI-2

LSI and Extended LSI-2

ALPHA 16, LSI and Extended LSI-2

~N1 OO WO

*Default value of 2 is assumed if no MACH directive is entered.
MACH directives should appear prior to program instructions.

The common subset of ALPHA 16 and LSI instructions is always allowed.

2-7

COMPUTER AUTOMATION, INC.

P

Section 3

PROGRAMMING EXAMPLES

3.1 INTRODUCTION
This section provides programming examples of how to use the new Stack and Register
Change instructions.
3.2 STACK INSTRUCTIONS
The following-are examples of Stack instructions:
Example 1 - This example illustrates a save/restore sequence using the Stack
capability, allowing convenient coding of re-entrant or recursive

routines. This example assumes interrupts were disabled by the
JST instruction which caused control to be passed to this routine.

SUBR- ENT

© STAS - PTR, - Push 'A' on Stack
STXS ~ PTR, - Push 'X' on Stack -

- SIA ' Get CPU status
STAS PTR, - Push on Stack
LDA . SUBR Get return adcress
STAS PTR, - Push on'Stack
EIN Restore interrupts

. 1

SIN 6 ‘ Disable interrupts
LDAS PTR, + Pop return
STA ' SUBR and save
LDAS PTR, + Pop save
SOA ' * and restore
LDXS PTR, + Pop 'X'
LDAS PTR, + Pop 'A’
JMP *RTN Return

3-1

COMPUTER AUTO ™" “TION. INC.

Example 2 - This example illustrates an indexed stack move of 100 entries from
Stack 1 to Stack 2, while simultaneoulsy zeroing Stack 1.

LOOP

PTR1
PTR2
'STACK1
STACK?2

LXP
ZAR
EMAS
STAS
DXR
JXN

DATA
DATA
RES
RES

100

PTR1, @
PTR2, @

| LOOP

STACK1 -1

- STACK2 -1

100
100

3.3 REGISTER CHANGE INSTRUCTIONS

Count to move

Zero out buffer 1

Get data (indexed)

Put data (indexed)
Decrement count and Pointer
Loop'back 29 more

Pointer te.Stack- 1
Pointer to Stack 2
Stack 1
Stack 2

The following are examples of Register Chénge instructions:

Example 1 - This example shows how a single mask word can be used to set or
clear one or more flag bits in a flag word.

LDX
LDA
BSA
STA

LDX
LDA
BCA
STA

Setting Bits
MASK
FLAG

FLAG

Clearing Bits

MASK
FLAG

FLAG

Mask bits to X
Flag word to A
Set bits in flag word
Store new flag word

Mask bits to X

Flag word to A

Clear bits in flag word
Store new :lag word

MASK word - Contains "1"s in those bit poistions which are to be set or cleared.

3-2

COMPUTER AUTOMATION, INC.

Example 2 - This example illustrates how the EIX instruction could be used in
a universal output driver, where the I/0 commands of each particu-
lar device are contained in tabulor form, i.e., in tables ordered by
logical unit number. '

ADD
EAX
EIX

JMP

IOINST DATA
OTA
OTA
OTA

OTA

IOINST

$-1

$+1

DAX0, FCX0
DAX1, FCX1
DAX2, FCX2

. .

.

DAXn, FCXn

3-3

X contains the character to be output
A contains the logical unit number
Add table address

Address to X, character to A
Execute OTA instruction

Required for conditional I/0

I/0 Table, ordered by logical unit

Device address and
function code for
each logical unit.

CCPUTER AUTOMATION, ¢, (o) o

Appendix A
INSTRUCTION SET IN-ALPHABETICAL ORDER
This appendix contains the ALPHA LSI-2 Extended instruction set in alphabetical order

by instruction mnemonic. Instructions with variable fields have been appended with
an asterisk (%).

Instruction ~ Instruction

Mnemonic Skeleton in Hex Description
ADDS 1438* Add Stack Element to A.
ANDS - 1418+ AND Stack Element to A.
BCA -~ 06CA Bit Clear A.
BCX 06C8 | Bit Clear X.
BSA 068A Bit Set A.
BSX | , 0688 Bit Set X.
CMSS 1658%* Compare and Skip if High-or Equal
EIX 0218 | Execute'Instruction Pointed to by X.
EMAS - 14F8* Exchange Stack Element and A.
IMSS 1678* Increment Stack Element and Skip on Zero
IORS 1478* Inclusive OR Stack Flemerit to A.
JMPS 16D8* Jump Unconditional.

- JSTS : 16F8* Jump and Store.
LDAS 14D8* Load Stack Element into A.
LDXS 1698* Load Stack Elemént into X.
SLAS 1618* Stack Location to A.
STAS 1478* Store A in Stack Element.
STXS 16B8* Store X in Stack Element.
SUBS 1458* Subtract Stack Element from A.
XORS 14B8* Exclusive OR Stack Element to A.

A-1

COMPUTER AUTO!/ 2 TION, INC.

Appendix B

INSTRUCTION SET IN NUMERICAL ORDER

This appendix contains the ALPHA LSI-2 Extended instruction set in machine code
numerical order. For each instruction, reference is made to one of the machine code

formats listed below. Instructions with variable fields have been appended with
asterisks (*).

15. 14 13 12211 10 9 8 7 6 5 4 3 2 1 0

6 0 0 1 0 1 OPCODE |1 1 0! AM

0 STACK POINTER ADDRESS (SPA)

AM = Addressing Mode

00 = Direct Access to Stack

01 = Indexed Access to Stack

10 = Auto-increment Access to Stack (POP)
11 = Auto-decrement Access to Stack (PUSH)

Figure B-1. Stack Instruction Machine Code Format

v

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0 0 0 0 OP CODE

OP CODE = The Register Change Control Code which specifies
the source, operation, and location of results.

Figure B-2. Register Change Instruction Machine Coce Format

Instruction Instruction
Skeleton in Hex Mnemonic

0218 EIX
0688 BSX
068A BSA
06C8 BCX
06CA “BCA.
1418* " 'ANDS
1438* ADDS
1458* SUBS
1478* STAS
1498* IORS
14Bg* XORS
;14D8* LDAS
14F 8* EMAS

1618* SLAS
1658* cMss
1678%* IMSS
1698* LDXS
16B8* STXS

- 16D8* JMPS
16F8* ISTS

Description

Execute Instruction Pointed to by X.

Bit Set X.

'Bit Set A.

Bit Clear X.

Bit Clear A.

AND Stack Element fo A.

Add Stack Element to A.

Subtract Stack Element from A.
Store A in Stack Element
Inclusive OR Stack Element to A.
Exclusive OR Stack Element to A

Load Stack Element into A.

'Exchange Stack Element and A.

Stack Location to A.
Compare and Skip if High or Equal.

Increment Stack Element and Skip

on Zero.

Load Stack Element into X.
Store X in Stack Element.
Jump Unconditional.

Jump and Store.

B-2

CONPUTER AUTOMATION, INC.

Machine
Code Format

2

2

COMPUTER AUTOMATION, INC. Fam |

Appendix C

ALPHA LSI EXECUTION TIMES

C.1 GENERAL

This appendix defines the execution time of each instruction in the ALPHA LSI-2
extended instruction set. A variety memories, with varying access times, are
offered with the ALPHA LSI-2. The variation in memory access time makes a tab-
ulation of execution times difficult. For this reason time calculation algorithms are
provided. These aigorithms are useful with any memory access time by making
the appropriate memory parameter substitution.

C.2 MEMORY PARAMETERS

Currently, four memories are offered in the ALPHA LSI family, ‘three of these are
core memories, while the fourth is a semiconductor memory. Table C-1 lists the
parameters of these memories. All times listed are in nanoseconds.

Table C-1. LSI Family Memory Parameters

Memory - .

Type Configurstion C RA RO WA WO _ M M’ ROI WOl _ |
Core 980 Add on 4K, 8K 980 380 600 180 800 © 600 400 220 420
Core 1200 Add on 16K 1200 400 800 200 1000 600 400 300 500
Core 1600 Add on or integral 4K, 8K 1600 450 1150 250 1350 600 400 0 0
SC 1200 Add on 2K, 4K, 8K 1200 500 700 200 1000 600 400 0 0

Integral 2K, 4K

Parameters in nanoseconds are:

C= Cycle Time
RA = Read Access
RO = Read Overhead

WA = Write Access

w0 = Write Overhead

M= LS1-1 Effective Read Access

M= LSI-1 Effective Write Access

RO! = Interleaved Effective Read Overhead
WOl = Interleaved Effeciive Write Overhead

207 UTER AUTOMATION, INC.

C.3 LSI-2 EXECUTION TIME ALGORITHMS

The LSI-2 execution time algorithms are listed in table C-2. The algorithms are par-
titioned by class and subclass. The Stack instruction address calculation times pre-
cede the Stack instruction execution algorithms. Note that threc different sets of ad-
dress calculations are provided. The list of Stack instructions have algorithms which
list §; , 8, , or S; . The appropriate address calculation variable should be used as
indicated.

All memories may be overlapped to achieve higher {ransfer rates. Core 1600 and
'SC1200 may be overlapped 100 percent to achieve twice the data transfer rate of a
singlc memory module. Core 1200 and Core 980 may be overlapped to achieve a
maximum transfer rate of 171 and 163 percent, respectlvely, of a single memory.

Overlapping is always effective for DMA operation.

Overlapping is effective for LSI-2 as indicated by the execution time equations. Terms
of the form n/RO or m/WO mean that the larger of the two times indicated are to be
used. When overlapping is achieved by alternate memory accesses in different mem-
ory modules, the overhead times are masked and the effective RO and WO become zero
except for Core 980 and Core 1200 which have an overhead time even when interleaved.

Numerous instructions have several times listed to define variations of an instruction.

Table C-2. LSI-2 Execution Time Algorithms

STACK CLASS
ADDRESSING MODE | S, S, S,
direct access 3RA + 2(400/RO) + 550/RO | S; + 100 Sy + 300
indexed access 3RA + 2(400/RO) + 850/RO | § + 100 S; + 300
auto;increment (POP) 3RA + 2(400/R0O) + 500/RO* | S + 100 5 + 300
or auto-decrement (PUSH) + WA + 400/WO

*not effected by overlap

S is used with ADDS, SUBS, ANDS, IORS, XORS, EMAS, LDAS, LDXS, CMSS
and IMSS. '

S, is used with STAS, STXS, and JSTS.

S; is used by JMPS and SLAS.

» CONMPUTER AUTOMATION, 13:C.
Table C-2. LSI-2 Execution Time Algorithms (Cont'd)

ARITHMETIC
ADDS
SUBS

LOGICAL ' S, + RA + 400/RO
ANDS
IORS
XORS

DATA TRANSFER

LDAS S; + RA + 400/RO
LDXS S + RA + 400/RO
STAS S, + WA + 250/R0
STXS : S, + WA + 250/RO
EMAS S; + RA + 500/RO* + WA + 550/WO
PROGRAM TRANSFER
JMPS S;
JSTS S, + WA + 550/WO
IMSS Sy + RA + 500/RO* + WA
+ T700/RO. £ 0in line, no skip
or + 1450/RO = 0 in line, skip
or+ 850/RO # 0 interrupt, no echo
or +.1600/RO = interrupt, echo
CMSS S; +RA
+ 550/RO A<Y
or+ 850/RO A=Y
or + 1150/RO A>Y
STACK CONTROL ,
SLAS S,
REGISTER CHANGE CLASS
MULTI -REGISTER CHANGE
BCA
BCX
BSA RA + 1300/RO
BSX)
EIX RA + 500/RO + normal time of mstructlon
executed

C.4 LSI-2 EXTENDED INSTRUCTION SET EXECUTION TIMES

The execution times of the LSI-2 extended instruction set are listed in table C-4. The

Stack instruction address calculation times are listed in table

C-3

C-3.

COMPUTER AUTCATION, INC.

Table C-3. Stack Instruction Address Calculation Times

MEMORY ADDRESSING .
direct access 4.8 4.9 5.1
CORE indexed access 4.8 4.9 5.1
1600 auto-increment (POP) 6.4 6.5 6.7
or 2uto-decrement (PUSH)
direct access 3.6 3.7 3.9
CORE " indexed access 3.65 3.75 3.95
1200 auto-increment (POP) 4.8 4.9 5.1
- or auto-decrement (PUSH)
< direct access ‘ 2.94 3.04 3.24
CORE indexed access . 3.19 3.29 3.49
980 auto-inerement (POP) 3.92 4.02 4.22
or auto-decrement (PUSH)
direet access 3.6 3.7 3.9
SC indexed access 3.75 3.85 4.05
1200 auto-increment (POP) 4.8 4.9 5.1
' or auto-decrement (PUSH)

S, is used with ADDS, SUBS, ANDS, IORS, XORS, EMAS, LDAS, LDXS, DMSS
and IMSS.

S, is used with STAS, STXS, and JSTS.

S, is used by JMPS and SLAS.

Table C-4. LSI-2 Extended Instruction Set Execution Times

-2

[JS]-Z
MNEMONIC C1600 C1200 C980 SC1200
STACK
Arithmetic)
ADDS
SUBS
Logic L E
ANDS Sy +1.6 S, +1.2 Sy+0.98 S;+1.2
IORS :
XORS
Data T;'ransfer
LDAS
LDXS J
STAS
. S,+ 1. - S,+1.2 + 0, S,+1.2
STXS } 2+ 1.6 2 S+ 0.98 2
EMAS S,+3.2 S,+2.4 S,+1.96 S,+2.4
Program Transfer .
CMSS S, +1.6 S+ (1.2 0r 1.55) . S+ (0.98 0or 1.353) S;+ (1.2or 1.65)
IMSS S;y+ (3.00r 3.3) S+ (2.2 0r 2.85) - 8¢+ (1.86 or 2,61) S1+ (2.10r 2.85)
JMPS S3 Si3 _ ’ S, S,
JSTS S2+1.6 S,+1.2 S,+0.98 S,+1.2
Stack Control
» REGISTER CHANGE
Multi-Register
BCA
BCX
BSA 1.75 1.7 1.68 1.8
BSX
'EIX 1.2 0.98 1.2

1.6

()
e
C
-
m
o
>
S
o
<
2
2
Il

CONPUTER AUTOMATION, INC. g

96018-03D0

BETA ASSEMBLER REFERENCE MANUAL
(Supplement)

LSI-2 EXTENDED INSTRUCTIONS

1.0 INTRODUCTION

The NAKED MINI/ALPHA LSI-2 supports an extended set of instructions not found in
the LSI-1 or ALPHA 16 computers. This document describes their operation in the
syntax of the BETA assemblers (BETA 4/8 and OMEGA), and assumes the user is
familiar with the BETA 4 Assembler Reference Manual (document 96018-00) .

These instructions are supported in all BETA Assemblers beginning with version -DO
and are made available through use of the MACH directive (described in the BETA 4
Assembler Reference Manual) as follows:

MACH Value* ‘ Instruction Set Allowed

Common subset of ALPHA 16 and LSI only
ALPHA 16 .

LSI -

ALPHA 16 and LSI

Extended LSI-2

ALPHA 16 and Extended LSI-2

LSI and Extended LSI-2

ALPHA 16, LSI and Extended LSI-2

SO W - O

* Default value of 2 is assumed if no MACH directive is entered.
MACH directives should appear prior to program instructions.

" The common subset of ALPHA 16 and LSI instructions is always allowed.

2.0 » LSI-2 EXTENDED INSTRUCTIONS
2.1 . Instruction Syntax
2.1.1 General

For assembly purposes the LSI-2 extended instructions are divided into
two classes. '

CO*PUTER AUTOMATION, INC. P

2.1.2

2.1.3

202

o 2.2.1

96018-03D0

Instruction Classes

The LSI-2 extended instructions are discussed in this section in a logical
sequence rather than numerical sequence. The instruction classes and
their sequence of discussion are as follows:

Class 10: Stack, Double Word
Class 5: Register Change and Control

Syntax Description

This section describes the syntax for each instruction class. In the
following descriptions brackets are used to indicate optional fields.

Class 10 - Stack, Double Word
General

The combination of post-autoincrement addressing in which the stack
pointer is stepped toward higher memo¥y after the operand ‘address is
determined, and pre-autodecrement addressing in which the stack pointer
is stepped toward lower memory before the operand address is determined,
is the basic requirement for convenient low.overhead stack operations.

The LSI-2 has extensive stack processing capabilities allowing, for
example, the nested handling of interrupts and/or subroutine calls.
Elements in the stacks may be accessed through indexed addressing.
This provides for convenient access of dynamieally assigned temporary
storage, especially useful in nested procedures. The stack pointer may
be manipulated without accessing the stack to allow convenient boundary
condition testing. :

' Stack instructions require two consecutive words of memory, a word

for stack pointer, and one or more consecutive words for the stack
itself. Addressing modes include direct, indexed, pre-autodecrement
(push), and post-autoincrement (pop).

151413 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 1 0j0({0] 1} 01 |X|O0|X|X|X]|1]l1]0]| AM
Word 2 0 Stack Pointer Address (SPA) —
Stack .
Pointer 0 Stack F.lemenf Address (SEA)
SEA +1 Stack Element. (Full)

STACK SEA Stack Element (Full)
SEA -1 Stack Element (Empty)

Figure 1 - Class 10 Machine Language Format

Where: X - Op Code
' AM - Addressing Mode
SPA - Stack Pointer Word Address; indirection not allowed.
SEA - Stack Element Word Address; indirection not allowed.

Applicable Addressing Modes (AM) are:
00 - Direct Access to Stack
01 - Indexed Access to Stack
10 - Post-Autoincrement Access to Stack (POP)
11 - Pre~Autodecrement Access to Stack (PUSH)*

2.2.2 Assembly Format

Class 10 instruction format for assembly purposes is as follows:
[LaBEL] OP CODE OPERAND AM] [COMMENT]

2.2.2.1 Label Field. The Label field is optional with Class 10 instructions.

2.2.2.2

2.2.2.3

‘ Operation Code Field. The Operation Code (Op Code) must be present.

- first of which must be present. The first expression represents a memory

COMPUTER AUTOMATION, INC. | ~== [

96018-03D0

Legal Op Codes for Class 10 instructions are:

ADDS Add Stack Element to A

ANDS Logical AND Stack element with A
CMSS Compare Stack element and A
EMAS Exchange Stack element and A
IMSS Increment Stack element and Skip on zero
IORS Inclusive C! Stack element with A
JMPS Jump to Stack element

JSTS Jump and Store in Stack element
LDAS Load A from Stack element

LDXS Load X from Stack element

SLAS* Stack Pointer to A

STAS Store A to Stack element

STXS Store X to Stack element

SUBS Subtract Stack element from A
XORS Exclusive OR Stack element with A

*Note: SLAS does not access a Stack clement, but the STACK POINTER (SPA4) .

Operand Field. The operand field consists of one or two expressions, the

word address.

The second expression (AM) is optional and, when incluced, must be
separated from the first by a comma. This expression represents the
addressing mode of the Stack instruction. The following is a list of valid
expression characters and their associated addressing modes.

Character Address Maode

No second expression DIRECT . Stack element is accessed through
Stack Pointer. The Stack Pointer is unchangec.

- : ' PUSH. Stack Pointer is DECREMENTED; Siack
‘ element is then accessed through Stack Pointer.

+ POP, Stack element is accessed through Stack
Pointer; Stack Pointer is then INCREMENTED.

@ INDEXED ., The sum of the Stack Pointer and
index register form the effective address of
the Stack element to be accessed.

2.2.2.4

2.2.2.5

COMPUTER AUTOMATION. INC.

96018-03D0

Comments Field. The comments field is optional.

Class 10 Examples. The following are examples of Class 10 instructions:

Example 1 - This ‘example illustrates a save/restore sequence using the

SUBR

Example 2 -

LOOP

PTR1
PTR2
STACK 1
STACK 2

Stack capability, allowing convenient coding of re-entrant
or recursive routines. This example assumes interrupts
were disabled by the JST instruction which caused control
to be passed to this routine.

ENT

STAS PTR,- ’ Push 'A' on Stack

-STXS PTR,- © - Push 'X' onStack

SIA Get CPU status

STAS PTR,- Push on Stack

‘LDA "SUBR Get Return Address

STAS PTR,- Push on Stack

EIN Restore Interrupts

SIN 6 Disable interrupts
: © during restore

LDAS PTR, + Pop return

STA SUBR . and save.

LDAS PTR, + Pop status

SOA and restore.

LDXS PTR, + Pop 'X’

LDAS PTR, + Pop 'A'

JMP *RTN Return

This example illustrates an indexed Stack move of 100
entries from Stack 1 to Stack 2, while simultaneously
zeroing Stack 1.

LXP 100 Count to move

ZAR Zero out buffer 1

EMAS PTR1,@ © Get data (indexed)

STAS PTR2,@ Put data (indexed)

DXR Decrement count and Pointer
JXN LOOP Loop back 99 more

DATA STACK1 -1 Pointer to Stack 1

DATA STACK2 - 1 Pointer to Stack 2

RES 100 Stack 1

RES 100 Stack 2

COMPUTER AUTCMATION, INC. 7 71 15

96018-00A0

2.3 Class 5 - Register Change and Control
2.3.1 General

The functions of register change instructions and control instructions
are explained in subsections 3.7 and 3.8 of the BETA 4 Assemhler
Reference Manual (document $6018-00).

2.3.2 Assembly Format

_The only mandatory field for Class 5 instructions is the Operation Code
Field. The Label and comment fields are optional.

- [LaBEr] OP CODE [cosvenTs]

2.3.2.1 Register Change and Control Op Codes. The following are the extended
Class 5 register change and control instructions which are supported on
LSi-2.

BCA Bit Clear A. The contents of the X register
are logically complemented and then-ANDed
with A. The original value of X iz left un-
changed and the result is leftin A.

BCX Bit Clear X. The contents of the X register
are logically comp!emented and then ANDed
with A. The original value of A is left un-
changed and the result is left in X.

BSA Bit Set A. The eontents of the X register
are logically ORed with A. The original
value of X is left unchanged and the result
is left in A.

BSX Bit Set X. The contents of the A register
are logically ORed with X. A is left un-
changed and the result is left in X.

2.3.2.2

COMPUTER AUTOMATION, INC.

96018-03D0

EIX Execute Instruction pointed to by X. The
instruction whose address is contained in
the X register is executed as though it
occupied the location following the EIX
instruction. The location following the
EIX instruction is skipped during execution
of the EIX instruction.

If the executed instruction:

L 1. Is multi-word instruction, the second
and succeeding words of the instruction
must be located at the second location
after the EIX instruction (EIX+2).

2. Modifies the program counter, the
modification is relative to location EIX+2.

3.. Is a SCM or conditional I/0 instruction,
the location following the EIX instruction
- (EIX+1) should be coded with a JMP $-1.
This is required for recovery purposes
in the event of an interrupt or the lack of
a true sense response.

Note that EIX is not interruptable.

Class 5 Examples. The following are examples of Class 5 instructions:

Example 1 - This example shows how a single mask word can be used to
set or clear one or more flag bits in a flag word.

Setting Bits

LDX MASK Mask bits to X

LDA . FLAG Flag word to A
BSA Set bits in flag word
STA FLAG Store new flag word

ho v oo

T

LDX
LDA
BCA
STA

.

3

\

€O PUTER AUTOMATION, INC. §571 F89

96018-03D0
Clearing Dits
MASK Mask bits to X
FLAG Flag word to A
Clear bits in flag word
FLAG Store new flag word

MASK word - Contains "1"s in those bit positions which are to be set
: or cleared.

Example 2 - This example illustrates how the EIX instruction-
could be used in a universal output driver, where the I/0
commands of each particular device are contained in tabular
form, i.e., in tables ordzred by logical unit number.

- ADD
EAX
EIX
JMP

IOINST DATA
OTA
. OTA
OTA

OTA

e

X contains the character to be output
A contains the logical unit no.

IOINST Add table adcress

Address to X, character to A
Execute OTA instruction
$-; . Required for conditional I/0

$+1 I/0 Table, ordered by logical unit
DAXO0, FCX0
DAX1, FCX1
DAX2, FCX2

DAXn, FCXn

	001
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	A-01
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08

