
cc;:,:rUTERAUTOMATlON.IN(, fa;]
l0077-00Rl sUP
FEBRUARY 1974

LSI-2 EXTEXDED INSTRUCTION SET

SUPPLEMENT

TO

NAKED' MINI®/ ALPHA LSI SERIES

PROGRAMl\~ING REFERENCE l\1ANUAL

This document contains information that is s~pplementary to the NAKED MINI ®/ ALPHA
LSI SERIES PROGRAMMING REFERENCE MANUAL -- Document l0077-00Bl.

This supplement consists of three sections and three appendices. Each section and
appendix provides information that will be incorporated into Document l0077-00Bl at
a future date. For correlation purposes t the section and appendices of this supple­
ment I'elate to the basic manual as follows: f

Supplement

Section 1
Section 2
Section 3
Appendix A
Appendix B
Appendix C

Basic Manual

Section 1
Section 3
To be added
Appendix D
Appendix E
Appendix F

Title

G~neral Information
Instructions and Directives
Prograrnmin'g Examples
Instruction Set in Alphabetical Order
Instructi~n Set in Numerical Order·
A LPHA LSI Execution Times

(OMPUTER AUTOMATION. INC.

Section 1

GENERAL INFORl\lATION

1.1 INTRODUCTION

This suppl~men1. describes Computer Automntion's LSI-2 Processor Extended instruc­
tion set. The instruction sct consists of 20 new instructions for the NAKED MINI /
ALPHA LSI Type 2 Computer only. Other versions of Computer Automation's family
of computers cannot execute these new instructions.

1.2 StrACK INSTRUCTIONS

The stack processing instructions extend Memory Reference operations to operands
maintained in "stacks" in memory.

The !lumber ,size, and location of stacks in use at any time are unlimited as are the
number of stacks in use by :any eode module and the nut:nber of code modules using
any given stack.

All stack accesses are controlled by a stack pointer. Stacks may be accessed in the
. conventional "PUSH" and "POP" fashion utili~ing automatic hardware pre-decrement
and post-increment respectively, of the stack pointer. Stack, contents can also be
accessed directly or with indexing thru the stack pointer without altering the stack
pointer value.

Stack processing instructions greatly facilitate the generation of reentrant code
modules by allowing the reentrant module to operate only on variables contained in
st8(, ks. Simple manipulation of the one-word stack pointer ,by exchanging one
par~imeter for another, can then cause the re-entrant module to operate on any of a
number of stacks.

Since access to stacks is unrestricted, no hardware prevention or detection of stack
overflow, underflow, or overlap is provided.

1.3 REGISTER CHANGE INSTRUCTIONS

This class of instructions has been expanded to include the ability to complement one
register and either AND or OR the result with the other register. The EIX instruction
proyides the ability to execute a single instruction that is not part of the inline pro­
gram sequence.

1-1

COMPUTER AUTOMATION, INC. §§.
Section 2

INSTRUCTIONS AND DIRECTIVES

2.1 INTRODUCTION

This section defines the new LSI - 2 instructions. Also defined is one new directive
that is processed by the various assemblers used with the LSI-2.

2.2 STACK, DOUBLE WORn INSTRUCTIONS (Figure 2-1)

. Stack, instrnctions .. permit the: .. P'rQgrammer'to .. ~nt~rN or retrieve. a full 16~bit'word from
a stack. A stack is a group of contiguous memory locations whose length is variable
up to 32,768 words. A stack is organized on a last-in-first-out basis whereby the
last word entered into the stack will be the first word retrieved from the stack.

A stack can start at any address and fills from upper memory toward lower memory
(decreasing addresses). The stack instructions themselves do not provide any stack
boundary limit testing features. The user must provide boundary limit testing as
overhead associated with using stack instructions.

All stack accesses are controlled by a stack pointer for each stack. The stack pointer
. is a 15-bit word address which points to the most recently accessed location in the
stack (this address is referred to as the stack eleme!1t address -.- SEA). The stack
pointer may be located anywhere in memory.

Stack instructions occupy two consecutive words in memory. The first word contains
the instruction while the second word contains the address of the stack pointer.

2 .2 . 1 Addressing Modes

To provide flexibility in stack management, four addressing modes are provided with
stack instructions.

2.2 .1. 1 Direct Access to Stack

In the Direct Access Mode, the second word of the instruction (the stack pointer ad­
dress -- SPA) is used to fetch the stack pointer from memory. The stack pointer, in
turn, is used to access the stack element forentI'y, 'retrieval, or testing of data.

2 .2 . 1 . 2 Indexed Access to Sta.ck

In the Indexed Access Mode, the stuck pointer address in the second word of the in­
struction is used to fetch the stack pointer from memory. The contents of the X regi-

2-1

SPA

p

p .. 1

STACK INSTRUCTION

OP CODE

STACK POE\TER
ADDRESS

I...-.......... ISTACK POINTER*

*STACK POINTER ALWAYS
POINTS TO ~;IOST RECENT
ENTRY IN STACK

l
SEA

,-

Full
Full

~~

1~

Full
-Full

·Empty
·Empty·

A

l}f
W

Err.~ty --,.,....
Empty

Fig-ur'l' 2 1. ShICk Oll~'HJli~atiot) und l\1anagenH~J;l

sEr\+n 1 L

,

SE"\+l

SEA
SE.-\.-}

SEA '-2

UPPER
MEMO({Y

POP

PUSH

I.OWER
MEMORY

~

- . , L-__________ --__________________ ~ ________________ ,

COMPUTER AUTOMATION. mc. .~

ster (Index register) is then summed with the stack pointer to form the stack element
address ~~ This allows access to the nth element in the stack relative to the last stack
entry when the X register contains n. For example t if X=O the most recent stack entry
is accessed while if X=l the next most recent entry is accessed.

2.2.1.3 Auto-Increment Access to Stack (POP)

In the Auto-increment Mode, the stack pointer address is used to obtain the stack
pointer. The stack pointer, in turn, provides access to the stack element. Upon com­
pletion of the stack access, the stack pointer is incremented and restored to memory.
This mode of addressing appears to remove (POP) the most recent entry from the
sia:.ek' when used v:..ith" a load type'instrtl£tion.

2.2.1.4 Auto-Decrement Access to Stack (PUSH)

In this mode , the stack pointer is accessed via the stack pointer address 9 decremented
by one and restored. The stack element is then accessed using the decremented stack
pointer. This mode of addressing appears to insert (PUSH) a new entry en to the stack
when used with a store type instruction. .

2 .2.2 Assembler Format

The assembler format for Stack instructions is asfoliows:

[LABEL] OPCODE OPERAND ~AlVl] [COl\ll\!ENTS]

The label and comment fields are optional with this class of instruction.

The op code must be present. The legal op ,codes for Stack instructions are defined
in paragraphs 2.2.3 thru 2.2.7, inclusive.

The operand field consists of one or two expressions. The first expression represents
a memory word address and must be present. The second expression (Al\l) is optional
and, when included, must be separated from the first by a comma. This expression
represents the addressing mode of the Stack instruction. The following is a list of valid
expression characters and their associated addressing modes.

These instructions generate two I6-bit vlords. The first word is the -stack instruction
op code. The second word is the absolute address of th.e stack pointer.

2-3

r

COMPUTER AUTOMATION. INC. ~ 121 l:;:.1. &

Character Address Mode

No second expression DIRECT. Stack element is accessed through.
Stack Pointer. The Stack Pointer" is un­
changed.

+

@

PUSH. Stack Pointer is DEC RE1'.1 ENTED .

Stack element is then accessed through
Stack Pointer. .

POP. Stack element is accessed through
Stack Pointer; Stack Pointer is then INCRE­
lVIENTED.

I:~DEXED. The sum of the Stack -Pointer
and index register form the effective ad­
dress of the Stack element to be accessed.

2 .2.3 Aritl1metic Stack Instructions

ADDS

SUBS

ADD STACK ELEMENT TO A. Adds the contents of the stack" ele­
ment to the A register. OV is set if arithmetic overflow occurs.

SUBTRACT STACK ELEI\IENT FROM A. Subtracts the contents of
the stack element from the A register. OV is set if arithmetic over­
flow occurs.

2.2.4 Logical Stack Instructions

.AKDS

IORS

XORS

AND STACK ELEl\1ENT TO A. Logically AND's the contents of the
stack element with the A register.

INCLUSIVE OR STACK ELEMENT TO A. Inclusively OR's the con­
tents of the stack element with the A register.

EXCLUSIVE OR STACK ELEMENT TO A. Exclusively OR's the con­
tents of the stack element with the A "register.

2 .2.5 .D,1:iJ. Transfer St~'J~k Instructions

E1\1:\S EXCIL\r\GE STACK ELL\IENT AND A. Simultaneously stores the
cont(~nts of the A reg-istcr in the stack element location and loads
the contents of the stack clement location int:> the A register.

2-4

LDAS

LDXS

STAS

STXS

COMPUTER AUTOMATION. INC. • [3 E1
LOAD STACK ELEMENT INTO A. Loads the contents of the stuck
element into the A register.

LOAD STACK ELEMENT INTO X. Loads the contents of the stack
element in to the X registe r .

STORE A IX STACK ELE:.IE~T. Stores the contents of the A regi­
ster in the stack element location.

STORE X IN STACK ELE;,IF.NT . Store'S 'the contents'of the X regi­
ster in the stack element location.

2~ 2.6 Progr::lm Transfer 'Stack Instructions

ClVISS

IMSS

Jl\lPS

JSTS

COMPARE AND SKIP IF HIGH OR EQUAL. Compares the contents
of the stack element with the A ;l'egister. If the A r-egister is
greater than the contents of the stack element, a one-w'ord skip
occurs. If the A register is equal to the contents of the stack
element, a two-word skip occurs. If the A register is less than
the contents of the stack element, the next sequential instruction
is executed.

INCREMENT STACK ELE!'v1ENT AND SKIP ON ZEROREStJLT. The
contents of the stack element is incremented by one. lithe incre­
ment causes the result to become zero, aOfle-word skip occurs.
OV is set if arithmetic overflow occurs .

JUMP UNCONDITIONAL. The P counter is loaded with the value
of the stack pointer, causing an unconditional branch to the ad­
dressed stack element location (SEA). The next instruction is
executed from location SEA.

JUMP AND STORE . The contents of the P counter (P+2) are stored
in the addressed stack element location and the P counter is then
loaded with the address of the addressed stack element plus one
(SEA+l). The next instruction is accessed from location SEA+l.

2.2.7 Stack Control Instruction

SLAS STACK LOCATION TO A. Loads the contents of the stack pointer
into the A register.

2.3 REGISTER CHANGE INS-T::,CCTIONS

Five new Register Change instructions have been added to the LSI-2 Processor. All
five instructions fall into the :\1ulti-Register Change Subclass (refer to puras-raph 3.7.5
in the NAKED MINI/ALPHA LSI SERIES PROGRAI\lMING REFERENCE MANUAL -- Docu­
ment l0077-00Bl).

2-5

I

COMPU1!? AUTOMATION, I~!C. ,t3-;3
2.3.1 Assembler Format

These instructions use the same format and syntax as used by the Register Change in­
structions discussed in the Programming Reference l\1anual.

2.3.2 :'.Iulti-Register Change Instructions

'EGA

BSA

B'SX

BIT CLEAR A. The CO!1tents of the X register are ones complement0d
and then logically A~Ded with the contents of theA register. The
result replaces A and the original value of X is left unchanged.

'BIT'CLEAR X. The contents of the X registelt"'81'e,onee..,complemented
and then logically ANDed with the contents ()f·t:~,;A~gjs,t~:r~. The,
result replaces X and the original value of A 'is 'left unchanged.

BIT SET A. The contents of the X register are logically ORed with
the contents of A. The result replaces A and X is left unchanged.

BIT SET X. The contents of the A register are logically ORed with
the contents of X. The result replaces X and A is left unchanged.

EXECUTE INSTRUCTION POINTED TO BY X. Theinstruction.whose
address is contained in the X register is executed as tho1:lg:h it
occupied the location following the EIX instructiqn. The location
following the EIX instruction is skipped duri1\gexecutionof the
EIX instruction.

If the executed instruction:

1. Is a multi-worddnstruction, the second and succeeding words
of the instruction must be located at the second location after
the EIX instruction (EIX +2) .

2. Modifies the program counter, the modification is relative to
location EIX + 1 .

3. Is a SCM or conditional I/O instruction, the location follow­
ing the EIX instruction (EIX+ 1) should be coded with a
JMP $-1. This is required for recovery purposes in the
event of an interrupt or the lack of a true sense response.

Note that EIX is not interruptable.

2-6

CO'::'UTER AUTOMATION. INC. , 13 ~,-~
2.4 ASSEMBLER DIRECTIVES

2 .4. 1 Machine Di rective (MACH)

MACH Expression [COl\1~1ENT s]

The MACH directive allows the user to specify which CAl 16-bit computer's instruc­
tion se~ is to be considered valid during this assembly. This allows the assembly,
and/or error detection, of programs written for either (or. both) LSI (1 or 2) and
ALPHA 16 computers. Instructions declared invalid by the MACH dir~ctive will be
flagged "with an "OT! error, but will be assembled correctly.

The expression in the operand field must be present, absolute (not relocatable or
external), and must be previously defined. The value of the expression will re­
place the current value in the MACH flag word, remaining in effect until the end of
the current assembly or until another MACH directive is encountered. The acceptable
values of the MACH directive are shown in table 2-1, below.

The label, if present, will be given the current location counter value.

Table 2-1. l\IACH Flag Word Values

MACH Value*

o
1
2
3
4
5
6
7

Instruction Set Allowed

Common subset·of ALPHA 16 and LSI ·only
ALPHA 16
LSI
ALPHA 16 and LSI
Extended LSI-2
ALPHA 16 and Extended LSI-2
LSI and Extended LSI-2
ALPHA 16, LSI and Extended LSI-2

*Default value of 2 is assumed if no MACH directive is entered.

MACH directives should appear prior to program instructions.

The common subset of ALPHA 16 and LSI instructions is always allowed.

2-7

COMPUTER AUTOMATlON.ltK :3E}
Section 3

PROGRAMI\UNG EXAIV1PLES

3.1 INTRODUCTION

This section provides programming examples of how to use the new Stack and Regi~ter
Change ·in:-;tructions.

3.2 STACK INSTRUCTIONS

The,fOllowing'<:rare examples of Stack instructions:

Example 1 - This example illustrates a save/restore sequence using the Stack
capability, allowing convenient coding of re-entrant 'Or recursive
routines . This example assumes interrupts were disabled by the
JST instruction which caused control to be passed to this routine.

SUER ENT
STAS PTR, Push 'A' on Stack
STXS PTR, - Push 'X'on ~tack
SIA 'Get CfPU -status
STAS PTR, - Push on Stack
LDA SUBR Get re1urnaacress
STAS PTR, - Push on 'Stack
EIN Restore interrupts

SIN 6 Disable interrupts
LDAS PTR, + Pop return
STA SUBR and save
LDAS PTR, + Pop' save
SOA and restore
LDXS PTR, + Pop tx'
LDAS PTR, + Pop 'A'
JrVIP *RTN Return

3-1 .

COMPUTER AUTO:~.:nON.INc.

Example 2 - This example illustrates an indexed stack nlove of 100 entries from
Stack 1 to Stack 2 t while simultaneou1sy zeroing Stack 1.

LXP 100 Count to move
LOOP ZAR Zero out buffer 1

EMAS PTR1, @ Get data (indexed)
STAS PTR2, @ Put data (indexed)
DXR Decrement count and Poir.ter
JXN LOOP Loop back 99 more

PTR1 DATA STACK! - 1 Pointer to., Stack 1
PTR2 DATA STACK2 - 1 Pointe~ to Sta.ck 2
STACK1 RES 100 Stack 1
STACK2 RES 100 Stack 2

3.3 REGISTER CHANGE INSTRUCTIONS

The following are examples of Register Change instructions:

Example 1 - This example shows how a single mask word can be us~d t~ set or
clear one or more flag bits in a flag 'wo~rd .

..

LDX
LDA
BSA
STA

LDX
LDA
BCA
STA

Setting Bits

MASK
FLAG

FLAG

Clearing Bits

MASK
FLAG

FLAG

Mask bits to X
Flag word to A
Set bits in flag word
Store new flag word

l\fask bits to X
Flag word to A
Clear bits in flag word
Store ne\-'! 11ag word

MASK word - Contains "1" s in those bit poistions which are to be set or cleared.

3-2
..J

COMPUTER AUTOMATION. INC. f3:§
Example 2 - This example illustrates how the EIX instruction could be used in

IOINST

a universal output driver, where the I/O commands of each particu­
lar device are contained in tabulor form, i. e. , in tables ordered by
logical unit number.

ADD
EAX
EIX
JMP

DATA
OTA
OTA
OTA

IOINST

$-1

$+1
DAXO,FCXO
DAX1,FCX1
DAX2, FCX2

OTA DAXn, FCXn

3-3

X contains the character to be output
A contains the logical unit number
Add table- address
Address to X, character to A
Execute OTA instruction
Required for conditional I/O

I/O Table, ordered by logical unit

Device address and
function code for
each logical unit.

W:c?UTER AUTOMATION.I1;C §§ ---...,
Appendix A

INSTRUCTION SET IN· ALPHABETICAL ORDER

This appendix contains the ALPHA LSI-2 Extended instruction set in alphabetical order
by instruction mnemonic . Instructions with variable fields have been appended with
·an asterisk (*).

In struction
l\Inemonic

ADDS

ANDS,

BCA

BCX

BSA

BSX

CMSS

EIX

EMAS

IMSS

IORS

JMPS

JSTS

LDAS

LDXS

SLAS

STAS

STXS

SUBS

XORS

Instruction
Skeleton in Hex

1438*

1418*

06CA

06e8

06SA

0688

1658*

0218

14F8*

1678*

1478*

16D8*

16F8*

14D8*

1698*

1618*

1478*

16B8*

1458*

14B8*

Description

Add Stack Element to A.

AND Stack Element to.A.

Bit Clear A.

Bit Clear X.

Bit Set A.

Bit Set X.

Compare and Skip if High-or Equal

Execute;Instruction P'ointed to by X.

Exchange Stack Element and ,A.

Increment Stack Element ana Skip on Zero

Inclusive OR Stack Element to A.

Jump Unconditional.

Jump and Store.

Load Stack Element into A.

Load Stack Element into X.

Stack Location to A.

Store A in Stack Element.

Store X in Stack Element~

Subtract Stack Element from A.

Exclusive OR Stack Element to A.

A-I

COMPUTER AUTO;/,'SION.INc' I : 1 r,':
Appendix B

INSTRUCTION SET IN NUMERICAL ORDER

This appendix contains the ALPHA LSI-2 Extended instruction set in machine code
numerical order. For each instruction, reference is made to one of the machine code
formats listed below. Instructions with variable fields have been appended with
asterisks C~).

15:; 14 13 12. 11 10 9 8 7 6 5 4 3 2 1 0

0

o I
!

0 0 1 0 1 OP CODE 1 1 0 i Al\1
i

STACK POINTER ADDRESS (SPA)

AM = Addressing Mode

00 = Direct Access to Stack
01 = Indexed Access to Stack
10 = Auto-increment Access to Stack (POP)
11 = Auto-decrement Access to Stack (PLSH)

Figure B-1. Stack Instruction Machine Code Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 0 0 0 0 OP CODE I
OP CODE = The Register Change Control Code which specifies

the source, operation, and location of results.

FiQ:ure B-2. Register Change Instruction Machine Code Format

B-1

COMPUTER AUTOMATION. INC. >"~~~-1' @]I L::~

Instruction Instruction 1\1achinc
Skeleton in Hex Mnemonic Description Code Format

0218 EIX Execute Instruction Pointed to by X . 2

0688 BSX Bit Set X. 2 I
" 2

L
OSSA BSA Bit Set A. !

I
I

06e8 BCX Bit Clear X. 2 I
1

06CA ,.'BCf., Bit Clear A. 2

1418'" ANDS A~D Stack Element to A. 1

1438* ADDS Add Stack Element to A . 1

1458* SUBS Subtract Stack Element from A. 1

1478* STAS Store A in Stack Element 1

1498* IORS Inclusive OR Stack Element to A. 1

14B8* XORS Exclusive OR Stack Elemen~ to A. 1

14D8* LDAS Load Stack Element into A . 1

14F8* ElVIAS Exchange Stack Element and A. 1

1618* SLAS Stack Location to A. 1

1658* CMS~ Compare and Skip if High or Equal. 1

1678* IMSS Increment Stack Element and Skip 1
on Zero.

1698* LDXS Load Stack Element into X. 1

16B8* STXS Store X in Stack Element. t

16D8* JMPS Jump Unconditional. 1

16F8 • JSTS .lump lind St<ll·P. 1

I
L B-2

------------..;----.J

COMPUTER AUTOMATION. INC. .1 §~;

Appendix C

ALPHA LSI EXECUTION TIMES

C.l GENERAL

This appendoix d'2fines the execution time of each instruction in the ALPHA L81-2
extended instrucLon set. A variety .' memories, with varying access times, are
offered with the ALPHA LSI-2. The variation in memory access time makes a tab­
ulation of execution times difficult. For this reason time calculation algorithms are
provided ~"These o.l6'orithms are useful with any memory access time by making
the appropria.te memory parameter substitution.

c .2 MEMORY PARAl\1ETERS

Currently, four memories are offered in the ALPHA LSI family, three of these are
core memories, while the fourth is a semiconductor memory. Table C-l lists the
parameters of these memories. All times listed are in nanoseconds.

Table C-l. LSI Family l\iemory Parameters

Memory
Type Configurstion C RA RO WA WO M M' ROI

Core 980 Add on 4K, 8K 980 380 600 180 800 600 400 220

Core 1200 Add on 16K 1200 400 800 200 1000 600 400 300

Core 1600 Add on or integral 4K. 8K 1600 450 1150 250 1350 600 400 0

SC 1200 Add on 2K. 4K. 8K 1200 500 700 200 1000 600 400 0
Integral 2K, 4K

Parameters in nanoseconds are:

C = Cycle Time
RA = Read Access
RD = Read Overhead
WA = ° Write Access
WO :: Write Overhead
1\1 = LSl-l Effective Read Access
M' = LSI-l Effective Writt" Access
ROI = Interleaved Effective Read Overhead
WOf = InlerleavedEfff>c,ivt> Write Overhead

C-l

WOI

420

500

0

0

CC:':"lJTER AUTOMATION. INC. f ffi EJ
C .3 LSI-2 EXECUTION TIME ALGORITHMS

The LSI-2 execution time algorithms are listed in table C-2. The algorithms are par­
titioned by class and subclass. The Stack instruction address calculation times pre­
cede the Stack instruction execution algorithms. Note that three different sets of ad­
dress calculations are provided. The list of Stack instructions have algorithms which
list Sl ' 8 2 ' or S3. The appropriate address calculation .variable should be used DS

indicated.

All memories may be overlapped to achieve higher it'ansfer rates. Core 1600 and
SC 1200 may be overlapped 100 percent to achieve twice the data transfer rate of a
sing-Ie memory module. Core 1200 and Core 980 mny be overlapped to achieve n
maximum transfer rate of 171 and 163 percent, respectively, of a single memory.
Overlapping is always effective for DMA operation.

Overlapping is effective for L81-2 as indicated by the execution time equations. Terms
of the form n/RO or m/WO mean that the larger· of the two times indicated are to be
used. . When overlapping is achieved by alternate memory accesses in different mem-
0ry modules, the overhead times are masked and the effective RO and WO become zero
except for Core 980 and Core 1200 which have an overhead time even when interleaved.

Numerous instructions have several times listed to define variations of an instruction.

Table C-2. LSI -2 Execution Time AlgoTithms

I

ADDRESSING MODE

direct access

indexed access

auto-increment (POP)
or auto;... decrement ' (PUSH)

STACK CLASS

3RA + 2 (400/RO) + 550/RO Sl + 100

3RA + 2(400/RO) + 850/RO 51 + 100

3RA + 2 (400/RO) + 500/RO* S, + 100
+ WA + 400/WO

~not effected by overlap

81 + 300

~ + 300

s, + 300

S, is used with ADDS, SUBS, ANDS, IORS, XORS, EMA5, LDAS, LDXS, CMSS
and IMSS.

52 is used with STAS, STXS, and JSTS.

S3 is used by Jl\lPS and SLAS.

L C-2

----------------------'

COMPUTER AUTOMATION. INC.

Table C-2. LSI-2 Execution Time Algorithms (Cont'd)

ARITHMETIC
ADDS
SUBS

LOGICAL
ANDS
IORS
XORS

DATA TRANSFER
LDAS
LDXS
STAS
STXS
El\1AS

PROGRAM TRANSFER
Jl'tlPS
JSTS
Il\ISS

CMSS

STACK CONTROL
SLAS

MULTI-REGISTER CHANGE
BCA
BCX
BSA
BSX
EIX

Sa + RA + 400/RO

81 + RA + 400/RO
S. + RA + 400/RO
82 .,. WA + 250/RO
82 +WA + 250/RO
81 + RA + 500/RO* + WA + 550/\VO

83
82 + WA + 550/WO

- S, + RA + 500/RO* + WA
+ 700/RO :f 0 in line, no skip

or + 1450/RO = 0 in line, skip
or + 850/RO :f 0 interrupt. no echo
or +.1600/RO = interrupt, echo
81 + RA

+ 550/RO
or + 850/RO
or + 1150/RO

REGISTER CHANGE CLASS

I RA + 1300/RO

A<Y
A=Y
A>Y

RA + 500/RO +- normal time of instruction
executed

C.4 LSI-2 EXTENDED IKSTRUCTION ,SET EXECUTION TIMES

The execution times of the LSI-2 extended instruction set are listed in table C-4. The
Stack instruction address calculation times are listed in table C-3. . - -

C-3

COMPUTER AUTOMATlON,INC.

Table C-3. Stack Instruction Address Calculation Times

MEMORY ADDRESSING
TYPE l\iODE S1 82 8 3

direct access 4.8 4.9 5.1
CORE indexed access 4.8 4.9 5.1
1600 auto-increment (POP) 6.4. 6.5 6.7

or 3.uto-decrement (PUSH)

direct access 3.6 3.7 3.9
CORE" indexed access 3.65 3.75 3.95
1200 auto-increment (POP) 4.8 " 4.9 5.1

or auto-decrement (PUSH) . "

direct access 2.94 3.04 3.24
CORE indexed access 3.19 3.29 3.49
980 auto-increment (POP) 3.92 4.02 4.22

or auto-decrement (PUSH)

direct access 3.6 3.7 3.9
se indexed access 3.75 3.85 4.05

1200 auto-increment (POP) 4.8 4.9 5.1
or auto-decrement (PUSH)

S1 .is used. with ADDS, SUBS, ANDS, IORS, XORS, E-~,1A8, LDAS, LDXS, DMSS
and IMSS.

82 is used with STAS, STXS, and JSTS .

S3 is used by JMPS and SLAS.

C-4

'''1

Table C-4. LSI -2 Extended Instruction Set Execution Times

~ ___ ~L:~S~I-~2~--------------------------------_______ ~
C1200 C980 SC1200

-n ,
CJ1

l\1NEl\10NIC

Arithmetic
ADDS
SUBS

Logic
ANDS
IORS
XORS-

Data Transfer
LDAS
LDXS
STAS
STXS
EMAS

Program Transfer
CMSS
IMSS
JMPS
JSTS

Stack Control
SLAS

l\1ulti -Register
BCA
BCX
BSA
BSX

. EIX

C1600

}
8 1 +3.2

8 1 + 1.6
8 1 + (3.0 or 3.3)
83
S2 + 1.6

} 1.75

1.6

STACK

81 + 1.2

8 2 + 1.2

8 1 + 2.4

8 1 + (1. 2 o.r 1. 55)
8, + (2.2 or 2. B 5)
83
82 + 1.2

REGISTER CHANGE

1.7

1.2

8 1 + 0.98

82+0.98

8 1 + 1.96

8, + (0.98 or 1.53)
. 8,'+ (1.86 or 2.61)

8 3
S2 + 0.98

1.68

0.98

S1 + 1.2

8 1 +2.4

Sl + (1.2 or 1.65)
8 , + (2.1 or 2.85)

S3
8 2 + 1.2

1.8

1.2

1 .0

(OM?UTERAUTOMATtoN. INC. (3 M

BETA ASSEMBLER REFERENCE 1\·1ANUAL
(Supplement)

LSI-2 EXTENDEO INSTRUCTIONS

INTRODUCTION

96018-03DO

The NAKED MINI/ ALPHA LSI-2 supports an extended set of instructions flot found in
the LSI-l or ALPHA 16 computers. This document descrihes their operation in the
syntax of the BETA assemblers (BETA 4/8 and OMEGA), and assumes the user is
familiar with the BETA 4 Assembler Reference Manual (document 96018-1)0) .

These instructions are supported in all BETA Assemblers beginning with version -DO
and are made available through use of the MACH directive (described in the BETA 4
Assembler Reference Manual) as follows:

2.0

2.1

2.1.1

MACH Value*

o
1
2
3
4
5
6
7

Instruction Set Allowed

Common subset of ALPHA 16 and LSI only
ALPHA 16
LSI .
ALPHA 16 and LSi
Extended LSI- 2
ALPHA 16 and Extended LSf- 2
LSI and Extended LSI-2
ALPHA 16, LSI and Extended LSI-2

* Default value of 2 is assumed if no }\I1ACH directive is entered.

MACH directives should appear prior to program instructions.

The common subset of ALPHA 16 and LSI instructions is always allowed.

LSI ~ 2 EXTENDED INSTRUCTIONS

Instruction Syntax

General

For assembly purposes the LSI - 2 extended instructions are divided into
two classes.

1

2.1.2

2.1.3

2.2

2.2.1

co:r?UTER AUTOMATION. INC. ~

96018-03DO

Instruction Classes

The LSI - 2 ex tended instructions are discussed in this section in a logical
sequence rather than numerical sequC'nce. The instruction classes and
their sequence of discussion are as follows:

Class 10: Stack, Double Word
Class 5: Register Change and Control

Syntax Descripti,on

This section describes the syntax for each instruction class. In the
following descriptions brackets are used to indicate optional fields.

Class 10 - Stack, Double Word

General

The combination of post-autoincrement addressing in which the stack
pointer is stepped. toward higher m·emot·yaftet't:he operand (address is
determined, and pre-autodecrement addressing in. which the stack pointer
is stepped toward lower memory befo~e the operand address is determined,
is the basic requirement for convenient low. overhead ~tack opera.tions.

The LSI-2 has extensive stack processing capabilities allowing, for
example, the nested handling of interrupts and/or subroutine calls.
Elements in the stacks may be accessed through indexed addressing.
This. provides for convenient access of dynamically assigned temporary
storage, especially useful in nested procedures. The stack pointer may
be manipulated without accessing the stack to allow convenient boundary
condition testing.

Stack instructions require two consecutive words of memory, a word
for stack pointer t and one or more consecutive words for the stack
itself. Addressing modes include dtrel .. 't, indexed", pre-autodecr'ement
(push), and post..-autoincrement (pop) .

2

Word 1

Word 2

Stack
~p. olnter

96018-03DO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~1_o~I ____ ~ ___ s_t_a_c_k_E_~l_e_m_e_n_t_A __ d_d_r_C_S0_c_(_S_E_A_) ____________ I---

SEA + 1
~STACK SEA

SEA - 1

Stack Element (Full)
Stack Element (Full)

~---------
Stack Element (Empty)

2.2.2

Where:

Figure 1 - Class 10 Machine Language Format

x - Op Code
AM - Addressing Mode

SPA - Stack Pointer ·Word Address; indirection not allowed.
SEA - Stack Element Word Address; indirection not allowed.

Applicable Addressing Modes (AM) are:
\

00 - Direct Access to Stack
01 - Indexed Access to Stack
10 - Post-Autoincrement Access to StacJ< (POP)
11 - Pre;';'Autodecrement Access to Stack (PUS'H}'

Assembly Format

Class 10 instruction format for assembly purposes is as follows:

OP CODE [COMMENT]

2.2.2.1 Label Field. The Label field is optional with Class 10 instructions.

3

2.2.2.2

2.2'.2.3

COMPUTER AUTOMATION, INC. ~ ... ----
96018-03DO

Operation Code Field. The Operation Code (Op Code) must he present.
Legal Op Codes for Class 10 instructions are:

ADDS
ANDS
CMSS
EMAS
IMSS
IORS
JMPS
JSTS
LDAS
LDXS
SLAS*
STAS
STXS
SUBS
XORS

Add Stack Element to A
Logical AND Stack element with A
Compare S~ack element and A
Exchange S tack element and A
Increment Stack element and Skip on zero
Inclusive on Stack element ,,>lith A
Jump to Stack element
Jump and Store in Stack element
Load A from Stack element
Load X from Stack element
Stack Pointer to A
Store A to Stack element
Store X to S tack element
Subtract Stack element from A
Exclusive OR Stack element with A

*Note: i SLAS does not access a Stack clement, hut the STACK POINTER (SF /\) 4 . I
Operand Field. The operand field consists of one or two expressions, the
first of which must be present. The first expression represents a memory
word address.

The second expression (AM) is optional and, when included, must be
separated from the first by a comma. This expression represents the
addressing mode of the Stack instruction. The following is a list of valid
expression characters and their associated addressing modes.

Character

No second expression

+

@

Address l\~ crd-e

DIRECT. Stack element is accessed through
Stack Pointer. The Stack Pointer is unchanged.

PUSH. Stack Pointer is DECRE~V[ENTED; Stack
element is then accessed through Stack Pointer.

POP. Stack element is accessed through Stack
Pointer; Stack Pointer is then I~CREMENTED.

INDEXED. The sum of the Stack Pointer and
index register form the effective address of
the Stack element to be accessed.

4

I
I
I

I
i
I
!

I

L-________________________________ - ______ .. _~ ... ,

2.2.2.4

.2.2.2.5

COMPUTER AUTOMATION. INC. t:a tJ
96018-03DO

Comments Field. The comments field is optional.

Class 10 Examples. The following are examples of Class 10 instructions:

Example 1 - This example illustrDtes a save/restore sequence using the
Stack capability, allowing convenient coding 'nf re-entrant
or recursive routines. This example assumes interrupts
were disabled by the JST instruction which caused control
to be passed to this routine.

SUBR ENT
STAS PTR,- Push 'A' on Stack.
STXS PTR,- . Push 'X' on Stack
SIA Get CPU status
STAS PTR,- Push on Stack
LDA 'SUBR Get Return Address
STAS PTR,- Push on Stack
EIN Restore Interrupts

SIN 6 Disable interrupts
during restore

LDAS PTR, + Pop return
STA SUBR and save.
LDAS PTR, + Pop status
SOA and restore.
LDXS PTR, + Pop 'X'
LDAS PTR, + Pop 'At
JMP *RTN Return

Example 2 - This example illustra.tes an indexed Stack move of 100
entries from Stack 1 to Stack 2, while simultaneously
zeroing Stack 1.

LXP 100 Count to move
LOOP ZAR Zero out buffer 1

EMAS PTR1,@ Get data (indexed)
STAS PTR2,@ Put data (indexed)
DXR Decrement count and Pointer
JXN LOOP Loop 'back 99 mo·re

PTRI DATA STACK1 - 1 Pointer to Slack 1

PTR2 DATA STACK2 - 1 Pointer to Stack 2

STACK 1 RES 100 Stack 1

STACK 2 RES 100 Stack 2

5

2.3

2.3.1

2.3.2

2.3.2.1

9601 R-- OOAO

Class 5 - Register Change and Control

General

The functions of register change instructions flnd control instructions
are explained in subsections,3. 7 and 3.8 of the BETA 4 Asserr~hler
Reference ~Manu[ll (document 9G018-00) .

Assembly Format

The only mandatory field for Class 5 instructions is the Operation Code
--Field. The Label and corom ent fields are optional.

OP CODE [CO:\Y:\1ENTS]

Register Change and Control Op Codes. The following are the extended
Class 5 register change and control instructions which are suppurtcd on
LSI -2.

RCA

BCX

BSA

BSX

Bit Clear A. The -.contentsof the 'X register
are logically complemented and then ·ANDed
with A. The original value of X is left un­
changed and the result is left in A.

Bit Clear X. The contents of the X rpgister
are logically comp>-,mented and then ANDed
with A. The original value of A is left un­
changed and the result is left in X.

Bit Set A. Thecor.tent's of the Xr(lgister
are logically ORed 'vvith A. The or i ginal
value of X is leftun:changedand 'fhe result
is left in A.

Bit Set X. The contel'ltsof the A register
are logically ORed '\lith X. A is left un­
changed and the result is left in X .

· j
!

1 _____ 6_---~

2.3.2.2

EIX

COMPUTER AUTOMATlOI'f. INC. R~

96018-03DO

Execute Instruction pointed to by X. The
instruction whose address is contained in
the X register is executed as though it
occupied the location following the EIX
instruction. The location following the
EIX instruction is skipped during execution
of the EIX instruction.

If the executed instruction:

1. Is multi-word instruction, the second
and succeeding words of the instruction
must be located at the secoBd location
after theEIX instruction (EIX +2) .

2. Modifies the program counter, the
modilica:Uon is relative to location EIX +2 .

3.. Is a SCM or conditional I/O instruction,
the location foll~wing the EIX instruction
(EIX + 1) should be coded with a JMP $-1.
This is required for recovery purposes
in the event of an interrupt or the lack of
a true sense response.

Note thatEIX is.not interruptable.

Class 5 Examples. The foUGwing are examples of Class 5 instructions:

Example 1 - This example shows how a single mask word can be used to
set or clear one or more flag bits in a flag word.

LDX
LDA·
BSA
STA

Setting Bits

MASK
FLAG

Fl,AG

Mask bits to X
Flag word to A
Set bits in flag word
Store new flag word

7

~--------------------------------------- «(y "?UTER AUTOM:..rJ0N. tNC.

. \

LDX '\

LDA
BCA
STA

96018-03DO

Clearin9;' l~ its

MASK
FLAG

FLAG

M·ask bits to X
Flag word to A
Clear bits in flag word
Store new flag word

MASK word - Con!~ins "l"s in those bit posit~ons which are to he set
or cleared.

Example 2 - This example illustrates how the EIX instruction'

IOINST

could be used in a universal output driver, where the I/O
commands of each particular device are contained in tabular
form, i.e. t in tables ol'ch3red by logical unit number.

ADD
EAX
EIX
JMP

DATA
OTA

.OTA
OTA

OTA

X contains the charactor to be output
A contains the logical unit no.

IOINST Add table ad(~ress
Address to X ,. character to A
Execute OT A instruction

$-1 : Required' fer conditional I/O

$+1 I/O Table, ordered by logical unit
DAXO,FCXO
DAX1,FCXl
DAX2,FCX2

DAXn, FCXn

8

1
J

L_. __ ________ _______ .-.. -~---------.-------.-----------,.I

	001
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	A-01
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08

