
NAKED MINl
e

LSI SERIES

COMPUTER HANDBOOK

91-20400-00A2
OCTOBER 1974

Patent Pending

~
ComputerAutomation

Naked Mini~ Division
18651 Von Karman, Irvine, Calif. 92664

Tel. 714-833-8830 TWX 910-595-1767

COPYRIGHT 1973. COMPUTE R AUTOMATION, INC .

COMPUTER AUTOMATION. INC. ~

NAKED MINI LSI-1

NAKED MINI LSI-2/20

ALPHA LSI

ii

Paragraph

1.1
1.1.1
1.1.2
1.1.3

1.2

1.3

1.4
1.4.1
1".4.2
1.4.3
1.4.4
1.4.4.1
1.4.4.2
1.4.5
1.4.5.1
1.4.5.2
1.4.5.3
1.4.6
1.4.7
1.4.8

1.5
1.5.1
1.5.1.1
1.5.1.2
1.5.1.3
1.5.1.4
1.5.1.5
1.5.2
1.5.2.1
1.5.2.2
1.5.2.3
1.5.2.4
1.5.3
1.5.3;1
1.5.3.2
1.5.3.3

TABLE OF CONTENTS

Section 1. GENERAL INFORMATION

INTRODUCTION .••
The ALPHA LSI Family
Upward Compatibility •
General Features • . .

THE . NAKED MINI. LSI CONCEPT

THE ALPHA LSI • .

CEUUlACTEBlSTICS
Processor and Memory .
Instruction Set. • • • .
Registers .••.•..
Memory Addressing • .

Memory Reference Addressing .
Stack Addressing .

I/O Structure • • • • .
Control Modes. • .
Input Output Modes •
Vectored Interrupts

Processor Options • •
Plug-In Options • . . . •
Peripheral Equipment .

DATA HANDUNG CHARACTERISTICS .
Data Word Format • •

Bit Identification.
Bit Values •.•.
Signed Numbers .
Positive Numbers
Negative Numbers .

Data Byte Format • . .
Byte Mode Processing •
Register Load . . . •
Arithmetic Operations
Data Packing • . • .

Memory Address Formats
Word Addressing .
Byte Addressing. .
Indirect Addressing

iii

..

'.

Page

1-1
1-1
1-1

· 1-2

1-2

1-3
• 1-3

1-3
1-4
1-5
1-5
1-6
1-6
1-6

· 1-6
· 1-8
· 1-8
• 1-9

i-l0

· 1-10
1-10
1-10
1-11
1-11
1-11
1-11
1-12
1-12
1-13

• 1-13
1-13
1-14
1-14
1-15
1-15

Paragraph

2.1

2.2
2~2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.6.1

2.2.7
2.2.8

2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.2
2.3.2.1
2.3.2.2
2.3.3
2.3.3.1
2.3.3.2

3.1

3.1.1

3.1.2
3.1.2.1
3.1.2.2
3.1.2.3
3.1.2.4

TABLE OF CONTENTS (Cont'.d)

Section 2. INTEGRATION

INTRODUCTION. • . • • • • • . ••••••

ALPHA LSI INTEGRATION . • . . • • • • • • • • • •
Mounting (Figure 2-1) . • • •• • . ••••••
Cooling (Figure 2~2) . • • • • • • . ••••••
Joining Two Half PC Boards • • • • . • • •.• •
Option Board Installation • • • • • • • • • • • • • • • • •
Module Installation. Processor Chassis Otlly • • • . • ~
Expansion (Figure 2-3) •••••••••••••••.••

Module Installation. Processor and Expansion
Chassis •.•.••••••••••••••••••••

AC Power Application. • • . . . • • • .
110 to 220/240 Power Line Conversion •..••••.••

NAKED MINI LSI INTEGRAT10N •••••••.••••••• "
Mounting, •••• '.' .••.••.•••• '.' •••• , •

LSI-1 Mounting Considerations (Figure 2-4) ••••
LSI-2 Mounting •..••••.••••••.••••.

Cooling ••.••••..•••.•.••••••••••••
LSI-1 Cooling. , , • • • • • . . • . • • • • • . . , •
LSI-2 Cooling. • • . • . . • , • . . • . . . • • • , •

Interconnection • . •.. , • • • • • • • • • • • • . • • , •
NAKED MINI LSI-l Interconnections.
NAKED MINI LSI-2 Interconnections .••.•••.•

Section 3. CONSOLES

PRoq~~Q C9mtOJ,E •. , .

Switches and Indicators ,••• , •..••

Machine Modes. • • , . . • • • . . • . . •
Stop Mode. • •••••
Step Mode, '.'•.•..•..••.••
Run Enable Mode • • • •
Run Mode •.•• , , , , •.••••••• , •.•••

iv

Page

2-1

2-1
2-1
2-1
2-4
2-$
2-5
2-7

2-9
2-9
2-10

2-1~ .
2-11
2-11
2-13
2.,..13
2-13
2-13
2-13
2-13
2-14

3-1

3-1

3-7
3-7
3-7
3-7
3-8

Paragraph

3.1.3
3.1. 3.1
3.1.3.2
3.1. 3.3
3 J. 3. ~

3.1.4

3.2
3.2.1
3.2.2
3.2.3

4.1
4.1.1
4.1.2
4.1.3
4.1.3.1
4.1. 3.2
4.1.3.3
4.1.3.4
4.l.4
4.1.5

4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4
4.2.1.5
4.2.2
4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.3
4.2.4
4.2.5
4.2.6

COWUTB AUTOMATION. INC. ~

TABLE OF CONTENTS (Cont'd)

Console Operation. . . •
Console Preparation
Console Data Entry Procedure.
Console Display Procedure . .
Program Execution. •

Unattended Operation

OPERATOR CONSOLE
Introduction . . .
Switches and Indicators
Strapping Requirements

Section 4. INSTRUCTIONS AND DIRECTIVES

INTRODUCTION
Instruction a~d Di~e'cti~e 'cia~~e~ : : : : : : : :
Symbolic Notation. . . • . . •
Assembler Source Statement Fields

Label Field . .
Op Code.
Operand Field . • •
Comments Field. . • . . . • • • . . .

Arithmetic Operations and Overfiow.
Relocatability •

MEMORY REFERENCE INSTRUCTIONS
Word Mode Operations and Instruction Format . .

Word Mode Direct Addressing.
Word Mode Indirect Addressing.
Word Mode Direct Indexed Addressing. . . .

. Word Mode Indirect Postindexed Addressing.
Word Mode Summary.

Byte Mode Operations and Instruction Format ..
. Byte Mode Direct Addressing.

Byte Mode Indirect Addressing.
Byte Mode Direct Indexed Addressing
Byte Mode Indirect Postindexed Addressing.
Byte Mode Summary '.

Arithmetic Memory Reference Instructions
Logical Memory Reference Instructions.
Data Transfer Memory Reference Instructions . . .
Program Transfer Memory Reference Instructions.

v

Page

3-8
3-8
3-9
3-9
3-10

3-11

3-11
3-11
3-12
3-13

4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-4
4-4
4-5

4-6
4-6
4-6
4-7
4-7
4-7
4-9
4-9
4-10
4-10
4-10
4-10
4-12
4-12
4-12
4-13
4-13

Paragraph

. 4.3
. 4.3.1

4.3.2

4.4
4.4.1
4.4.1.1
4.4.1.2
4.4.1.3
4.4.1.4
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6

4.5
4.5.1
4.5.2

4.6
4.6.1
4.6:2
4.6.3
4.6.4

4.7
4.7.1
4.7.2
4.'1.3
4.7.4
4.7.5
4.7.6

4.8
4.8.1
4;8.2
4.8.3
4.8.4
4.8.5
4.8.6.

4.8.7

(0MfUHI MnOMATION.INC. ~

TABLE OF CONTENTS (Cont'd)

P-.e

DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS 4-15
Format. • . • . . • • • . • .. 4-15
Instructions. '. ~ • • .'. . • • 4-16

~ STACK, DOUBLE WORD INSTRUCTIONS (LSI-2 only). 4-18
Addressing Modes (Figure 4-13). . . • • . . 4-19

Direct Access to Stack . . . • • . • • . • . . . 4-19
Indexed Access to Slack •...•...••...••. 4-1t
Auto-Postincrement Access to Stack (POP) •.•... 4-19
Auto-Predecrement Access to Stack (PUSH) ...•. 4-19

Arithmetic Stack Instructions . • • • 4-21
Logical Stack Instructions . • . • . . • 4-21
Data Transfer Stack Instructions. . • • • . . . • . 4-21
Program Transfer Stack Instructions • 4-22
Stack Control Instruction. 4-22

IMMEDIATE· INSTRUCTIONS. . . 4-22
Format • . . . 4-22
Instructions. 4-23

CONDITIONAL JUMP INSTRUCTIONS • • . . • .
Format •.....•.....••.....•
Microcoding • ~ . . •
Arithmetic Conditional Jump Instructions .
Control Conditional Jump Instructions. . . .

4-24
4-24
4-24
4-25

....... 4-26

SHIFT INSTRUCTIONS • '. . . 4-26
Operand Restrictions and Instruction Format 4-26
Arithmetic Shift Instructions • . '4-2'1
Logical Shift Instructions. 4-2'1
Rotate Shift Instructions. 4-28
Double Register (Long) Logical Shift Instructions . 4-29
Double Register (Long) Rotate Shift Instructions. . 4-30

REGISTER CHANGE INSTRUCTIONS. 4-31
Format '. 4-31
A Register Change Instructions. 4-31
X Register Change Instructions .. '. 4-32
OV Register Change Instructions. 4-32
Multi-Register Change Instructions. 4-33
Extended Multi-Register Change Instructions (LSI-2

only). 4-34
Console Register Instructions. 4- 35

vi

Paragr~ph

4.9
4.9.1
4.9".i-
4.9.3
4.9.4
4.9.5

4.10
4.10.1
4.10.1.1
4.10.1.2
4.10.2
4.10.2.1
4.10.2.2
4.10.3
4.10.3.1
4.10.3.2
4.10.4
4.10.5

4.11
4.11.1
4.11.2
4.11.3

4.12
4.12.1
4.12.2

4.13
4.13.1
4.13.2

4.14

4.15.

4.16

5.1
5.1.1
5.1.1.1

TABLE OF CONTENTS (Cont'd)

Page

CONTROL INSTRUCTIONS. ". - 4-36
Format 4-36

- - -PrOcessor-Control iDSiNctlons:-. • .: • . . • • 4-36
Mode Control Instructiona ••••••...•••••.•. 4-37
Status Control Instructions • • . • . • . • • . • • • • • • • 4-37
Interrupt Control Instructions .•.•.....•.••.. 4-38

INPUT/OUTPUT INSTRUCTIONS . . • . 4-39
Control Input/Output InstrUctions. 4-39

Sense Instructions . • • • . . • 4-40
Select Instructions . • • • • . • 4-40

Word Input/Output Instructions • • • . • . . 4":'40
Unconditional Word Input/Output Instructions. • . . 4-41
Conditional Word Input/Output Instructions .••.. 4-41

Byte Input Instructions. • . . • • . . . • • . • . • 4-42
Unconditional Byte Input Instructions • . . 4-42
Conditional Byte Input Instructions. . . . 4-43

Block Input/Output Instructions • . . • • . . • • 4-43
Automatic Input/Output Instructions. . • . . • . . • • . . 4-45

ASSEMBLER CONTROL DIRECTIVES • . . • • . 4-48
Conditional Assembly Controls. • . . . • 4-48
Program Location Controls . • • . . 4-49
Machine Directive (MACH) • • . • . . . • • • • 4-49

DATA AND SYMBOL DEFINITION DIRECTIVES••.. 4-50
Formats. • . 4-50
Directi-.res • • . • . • • • . • 4-51

PROGRAM LINKAGE DIRECTIVES •..•..•.•...•.... 4-52
Formats. • • • • • . . .- . . . 4-52
Directives • • • . 4-52

SUBROUTINE DEFINITION DIRECTIVES. . , . . , . • . •

LISTING FORMAT AND ASSEMBLER INPUT CONTROLS .

. 4-53

. 4-54

USER DEFINED OPERATION CODE DIRECTIVE •.. , .•... 4-55

Section 5. INPUT/OUTPUT AND INTERRUPT OPERATIONS

INTRODUCTION•........... 5-1
Discussion of Input/Output Operations 5-1

Controi • • 5-1
vii

Paragraph

5.1.1.2
5.1.1.3
5.1.2
5.1.2.1
5.1.2.2
5.1.2.3

5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

5.3
5.3.1
5.3.2
5~3.3

5.4
5.4.1
5.4.2

6.1

6.2

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.6.1
6.3.6.2
6.3.6.3
6.3.7
6.3.8
6.3.9

TABLE OF CONTENTS (Cont'd)

Sense' •••..•...
Data Transmission. •

Interrupt Operations. . • • • . . • •
Non-Input/Output •...•...•.•••.•••••.•
Input/Output • . • . • • • .
End-of-Block Interrupts ..•). •...••.•••.•••

Page

5-2
5-2
5-4
5-5
5-5
5-5

NON-INTERRUPT INPUT/OUTPUT EXAMPLES. . . . • . . •. 5-6
Control Instructions . • . • . • • • . • . • • • . • . . •• 5-8
Unconditional Instructions. . . • • . . • • . • .. 5-9
Conditional Instructions. • . • • . • . • • . • .. 5-9
Block I/O Instructions •......•.....••. '" 5-9
Automatic I/O Instructions. • • . • • • • • . .. 5-10

INTERRUPT STRUCTURE AND EXAMPLES. • 5-10
General Interrupt Handling • . • . . • . • . .. 5-10
Examples of Initialization and Enabling Sequences. • .. 5-11
Examples of Interrupt Instructions 5-12

INTERRUPT LATENCY. • . . . • • 5-14
Interrupt Service. •• 5-14
Priority Resolution. • •• 5-15

Section 6. PROCESSOR OPTIONS

INTRODUCTION. • • . . • . . .

REAR EDGE CONNECTORS (Figures 6-2 and 6-3) .

TELETYPE/CRT /MODEM CONTROLLER.
Baud Rate Selection •
Word Length Selection . .". ~ . . .
Parity Selection • •
Stop Bit Selection. • . .'.' . • "
Alternate Interrupt Locations.".
Data Interface Selection.

Current Loop Interface (Figure 6-3)
EIA RS232C/CCITT Interface (Figure 6-4)
TTL/DTL Compatible Interface (Figure 6-5).

Special Teletype Controls
Half-Duplex Usage
Half-Duplex Controller Instructions.

viii

6-1

6-1

6-2
6-2
6-6
6-6
6-7
6-7
6-7
6-7
6-8
6-10
6-11
6-11
6-12

Paragraph

6.3.10
6.3.11

6.4
6.4.1
6.4.2
6.4.3
6.4.3.1
6.4.3.2

6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.4.1
6.5.4.2
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9

6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5

6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5

6.8
6.8.1

COMPUTa AUTOMATION. INC. em
TABLE OF CONTENTS (Cont'd)

Full-Duplex Usage
Full-Duplex Controller Instructiorts

REAL TIME CLOCK
Clock. Source Selection.
Discussion of Usage . .
Summary .•.....

RTC Interrupt Locations
RTC Instructions.

AUTOLOAD
Description
Device and Mode Selection .
Autoload Sequence. . ~ . .
Termination of Autoload ..

TTY and High-Speed Paper Tape Reader .
Magnetic Tape. Cassette and Disk

Error Detection
Accessing Autoload ROM .
Remote· Autoload Initiation
Automatic Autoload . . .
Autoload Operation Summary .

BASIC V ARJABLES PACKAGE
Independent Processor Interrupt Operations
Interrupt Offset
Secondary Console Sense Register .
Secondary Console Switch Functions
I/O Timing Extension

POWER FAIL/RESTART
General ..
Power Fail
Restart
Interrupt Control Option .
Programming Examples

AUTOMATIC START-UP
Restart

ix

Page

6-16
6-17

6-22
6-22
6-22
6-24
6-24
6-24

6-24
6-24
6-2'5
6-26
6-26
6-26
6-26
8-27
6-27
6-27
6-28
6-28

6-28
6-28
6-29
6-29
6-29
6-29

6-30
6-30
6-30
6-30
6-30
6-30

6-34
6-34

Paragraph

7.1
7.1.1
7.1.2

7.2
7.2.1
7.2.2

7.3
7.3.1
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3

8.1

8.2
8.2.1
8.2.2
8.2.3
8.2.3.1
8.2.3.2
8.2.3.3
8.2.3.4

8.3
8.3.1
8.3.2
8~3 .3
8.3.4
8.3.5
8.3.6
8.3.7

8.4
8.4.1
8.4.1.1
8.4.1.2

COMPU'IBt AUlOMATION.INC. ~

TABLE O~ CONTENTS (Cont'd)

Section 7. . MEMORY INTERLEAVING AND BANKING

INTRODU CTION
Memory Interleaving .
Memory Banking

INTERCONNECTIONS .
Memory Interleaving .
Memory Banking

USAGE AND INSTALLATION
Memory Interleaving (Figure 7-2)
Memory Banking (Figure 7-3)

Operation .•...
Memory Installation
Cabling

Section 8. MAXI-BUS CHARACTERISTICS

INTRODUCTION

MAXI-BUS COMPONENTS (Figure 8-2)
Address Bus (A)
Data Bus (0) . . .
Control Bus (C)

I/O Commands . /.
Utility Signals
Interrupt Signals
DMA Signals

I/O TRANSFER TIMING
I/O Bus Considerations
Sense Instruction Timing
Select Instruction Timing
Input Timing
Output Timing
Automatic Input and' Output Timing
I/O Instruction List

INTERRUPT CHARACTERISTICS
Interrupt Lines

Power Fail Interrupt
Console (TRAP) Interrupt

x

Page

7-1
7-1
7-1

7-1
7-1
7-2

•• 7-3
• 7-3

7-3
7-3

•• 7-5
7-7

8-1

8-2
8-2
8-2
8-4
8-4
8-4
8-5
8-6

8-7
8-8
8-8
8-8
8-8

. 8-9
8-9
8-10

8-11
8-11
8-12
8-12

Paragraph

8.4.1.3
8.4.1.4
8.4.1.5
8.4.2
8.4.2.1
8.4.2.2
8.4.2.3
8.4.2.4
8.4.2.5
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7

8.5
8.5.1
8.5.1.1
8.5.1.2
8.5.1.3
8.5.1.4
8.5.2
8.5.2.1
8.5.2.2
8.5.2.2.1
8.5.2.2.2
8.5.2.3

8.6

8.7
8.7.1
8.7.2
8.7.3

8.8

8.9

8-10

TABLE OF CONTENTS (Cont'd)

Interrupt Line 1 .
InterJ"Upt Line 2 .
Interrupt Request

Processor Generated Interrupts
Power Fail/Restart Interrupt (Optional)
Autoload (Optional) '.' . .
Console Interrupt and Trap (Standard)
Real Time Clock (Optional) . . . • .
Teletype/CRT IModem Controller . . .

Offsetting Processor Generated Interrupts
Peripheral Generated Interrupts . . • •
Interrupt Transfer Timing (Figure 8-5)
Interrupt Operation Control . . .
Interrupt Request Line Trade orts

DMA OPERATIONS
General Characteristics .

Processor Provisions
Memory Operations
I/O . Operations
Limitations

DMA Timing
Maxi-Bus Acquisition Timing (Figure 8-6)
Memory Transfer Timing (Figure 8-7) ..

DMA Read Access Timing (Figure 8-8)
DMA Write Access Timing (Figure 8-9)

1/0 Transfer Timing

ELECTRICAL CHARACTERISTICS

MOTHERBOARD ORGANIZATION
Interrupt Priority
Memory Bank Control, DMA Priority .
Processor Power Supply Signals ...

EXPANSION AND CONSOLE INTERCONNECT

NAKED MINI LSI MAXI-BUS REQUIREMENTS

TWO-MODULE OPTIONS • • .

xi

Page

8-12
8-12

•• 8-12
8-12
8-13
8-13
8-13
8-13
8-13
8-13
8-15
8-15

. 8-16
8-17

8-18
8-18
8-18
8-18
8-19

.• 8-19
• 8-19

8-20
8-21
8-22
8-23
8-23

8-24

8-24
8-25
8-25
8-25 .

8-25

8-26

8-26

TABLE OF CONTENTS (Cont'd)

Paragraph Page

Section 9. DEVICE INTERFACE CONTROLLER, DESIGN TECHNIQUES

9.1

9.2
9.2.1
9.2.2
9.2.2.1
9.2.2.2
9.2.2.3
9.2.3

9.2.3.1
9.2.3.2
9.2.4
9.2.5
9.2.5.1
9.2.5.2

9.3

9.3.1
9.3.2
9.3.3
9.3.4

9.4
9.4.1
9.4.2

9.4.3

9.4.4
9.4.5

9.4.6

9.5
9.5.1
9.5.2
9.5.2.1
9.5.2.2
9.5.2.3

INTRODUCTION . . •'.

I/O' CONTROL IMPLEMENTATION
Device Address Decoder (Figure 9,..1)
Function Decoder (Figure 9':"'2)

Example A
Example B
Example C .•......

Select. Input or Output Instruction Decoding
(Figure 9-3)

Example A•..•..•.
Example B•.

Initialization Implementation (Figure 9-4}
Positive Sensing
Positive Sensing
Negative Sensing

DATA TRANSFER CONTROL IMPLEMENTATION (Figure
9-6)

Example A
Example B
Example C
Example D

9-1

9-1
9-1

•• 9-2
9-2
9-2
9-5

9-5
9-5
9-5
9-5
9-6
9-6
9-9

9-9
9-9
9-10
9-10
9-10

PERIPHERAL DIVICE INTERRUPT IMPLEMENTATION. 9-10
Interrupt Address Rationale 9-10
Single Interrupt Implementation Using IUR - (Figure
9-7)•......•..•...• " 9-12

End-of-Block Interrupt Implementation Using IUR
(Figure 9-8) 9-15

Reentrant Interrupt Implementation (Figure 9-9). 9-15
Single Interrlipt. Implementation Using IL1- or.IL2-
. (Figure 9-10) " 9-16
End-ot-Block Interrupt Implementation Using ILl and
IL2 (Figure 9-11) 9-18

DIRECT MEMORY ACCESS IMPLEMENTATION
Initialization
Execution (Figures 9-13 through 9-15) .

Maxi-Bus Acquisition
Priority Auction .
Data Transfer . .

xii

9-18
• 9-18

9-21
9-21
9-21
9-22

PaJ'llll'llPb

9.5.3
9.5.4
9.5.4.1
9.5.4.2
9.5 ••• S
9.5.4.4

9.S

1.7

9.8

9.9

'.10

1.11

10.1

10.2

10.3
10.3.1 -
10.S.2
10.3.3
10.3.4

10.4
10.4.1
10.4.2
10.4~'
10.4.4

10.5
10.5.1
10.5.2
10.5.3
10.5.4

TABLE OP CONTENTS (Cont'd)

Termination • • • • . • • • •
Buic DIIA Controller ArcJdtecture .

Control Section • •
Word/Byte Counter
AddreH Counter ••
Data CJuumeI ••••

PRIORITY AND IIBIIOaY BAMlDHG PROPAGATION

1/0 BUS LOADDfO lWLB8 • • . • . . • • •

POWER AND GROUND SYSTEM CONCEPTS

"LTBRING TBCHlfIQUB8 •••••.••

STANDARD INTEBFACB COMNBCl'Oll • •

NORIIAL INTEItrACB PINS • • • • • •

Section 10. CONSOLE INTIRF ACE REQUlREJlBMTS

INTRODUCTION ••••••••••

CONSOLE - PROCESSOR INTBRFACE (Figure 10-1) .

CONSOLE TRANSFER TIMING ••.•.••.
Elltablishment of Stop IIode (Figure 10-2)
Register Entry and Display (P:lcure 18-3)
Step lIode Operation (Plpre 10-·4) ••.
Eatablisbment of Run Mode (Figure 10-5)

CONSOLE WORD FORMATS (Figure 10-6)
Computer Status Word .
Console Sense Word.
Console Data Word •.•..•
Coneo1e CcJatrol Word • . • • •

MINIMUM CONSOLE REQUIREMENTS
Stopping the Proceaaor
Resetting the System
Starting the Syet.. .
Visual Indicators .

p.
.1-12

· .1-2S
· . 1-2.

· 9-18
· . 9-28
· . 9-21

• • 9-29

• • 9-30

••• 9-38

• .9-31

• 1-32

• 1-32

• 10-1

10-1

10-3
• 10-.

10-4
10-4

•• 10-5

• 10-5
10-7
10-7
10-7
10-7

10-8
•• 10-8

10-8
10-1
10-9

Paracraph

10 ••
10.'.1
10 ••. 2
10.6.'
10 ••• 4
10 ••• 5
10 ••••
10 ••• '1

10."

10.8

11.1

11.2
11.2.1
11.2.2
11.1.'
11.2.4
11.2.5
11.2 ••

11.3
11.3.1
11.3.2

11.4

11.5

11.5.1
11.5.2

TABLB OF- CONTENTS (Coat'd)

OPTIONAL CONSOLB FEATURES • . . • • • • . •
Data EDb7 and msp 1., • . . . • • • •.• •• .
Reciater and M8IDOI7Diapiay and IIodtftcetlOll .
Senae RegIster Entry and Display
Sen .. Switch Peature . . .
Console Intenupt Feature .
Auto1oa4 InitUdion CcDtI'ola
Step lIode Feature •••.•

USD COIISOLB INTEIIOOlfNECTION (Plpra 10-7)

OPTION CAJU) CONSOLE ACCOIOIODATlOIIS ••••

SectiGn'l1. POIfD SUPPLY INTIUACB DQuiJunIaIrrs

INTRODUCTION •

DC POWER RBQUIllDIBM'T8
B.u..tinC DC CUrNDt BequiraDenta •
OYervolt .. e and Voltap ProtectiaD
Ripple ad NoIae JtequiraDeDt8
Turnon/Tul'Doft OYenboat •
Regulation RequirelDeDta .
DC Power Storage .

POWER MONITOR FACILITIES (F1~res 11-2 and 11-3)
+5H (Hangpower) Regulator
Power Fail Detector •

AC IJNE SYNCHllONlZIID TOlING SOURCE (OPTIONAL)

INTERCONNECTION RlQUIREMENTS (Picures 11-4 and
11-5)

Motherboard Interface Requirements
NAKED JIINI LSI Power ConnectiOll8

Pa ..

18-1
10-1
10-10
10-10
10-10
10-10
10-10
10-11

• 10-11

10-11

11-1

· 11-1
• 11-1

11-1
11-4
11-4
11-4
11-4

11-4
11-4
11-5

11-6
11-7
U-7

Section 12. INTERFACE CONTROLLER MECHANICAL CONSIDERATIONS

12.1 INTRODUCTION . • • . 12-1

12.2 CHASSIS CONSTRAINTS 12-1

xiv

COMPUTER AUTOMATION. INC. ~

TABLE OF CONTENTS (Cont'd)

Paragraph Page

12.3 PRINTED-CIRCUIT BOARD CONSIDERATIONS- (Figures
12-1 thru 12-3) 12-2

12.4 WIRE-WRAP BREADBOARD PC BOARD (Figure 12-4) 12-2

12.5 FILLER BOARD PC BOARD (Figure 12-5) 12-2

Appendix A. HEXADECIMAL TABLES

Appendix B. RECOMMENDED DEVICE AND INTERRUPT ADDRESSES

Appendix C. INSTRUCTION Set BY CLASS

Appendix D. INSTRUCTION SET IN ALPHABETICAL ORDER

Appendix E. INSTRUCTION SET IN NUMERICAL ORDER

Appendix. F. ALPHA LSI EXECUTION TIMES

F.1 GENERAL ... , F-1

F.2 MEMORY PARAMETERS F-l

F.3 LSI-1 EXECUTION TIME ALGORITHMS F-2

F.4 LSI-2 EXECUTION TIME ALGORITHMS F-8

F.5 ALPHA LSI FAMILY INSTRUCTION EXECUTION TIMES. F-17

F.6 MAXIMUM I/O TRANSFER RATES F-17

Appendix G. SOFTWARE SUMMARY

G.l INTRODUCTION G-l

G.2 BOOTSTRAP G-2

xv

Paragraph

G.3
G.3.1
G.3.2
G.3.3
G.3.4
G.3.5

.G.3.fi
G.3.7
G.a.s
G.3.9
G.3.10
G.3.11

Figure

1-1
1-2
1-3
1-4
1-5
1-6
1-7

2-1
2-2
2-3
2-4
2-5

3-1

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9

TABLE OF CONTENTS (Cont'd)

SOFTWARE OPERATION SUMMARY
Autoload
Binary Loader (BLD) • . . .
Binary Dump/Verify (BLD/VER) .
Object Loader (LAMBDA)
BETA-4 Assembler••
BETA-8 Assembler•
IMEGA Conversational Assembler.
Source Tape Preparation Program
Debug (DBG) •
Concordance (CONC) • •
OS-Command Summary (OOS. MTOS and COS)

LIST OF ILLUSTRATIONS

Data Word Bit'Identification
~yte Storage, Two Bytes Per Word •
Data in Memory, One Byte Per Word.
Data in Memory. Two Bytes Per Word
Basic Word Address Format . .
Byte Address Format
Indirect Address Pointer Format

ALPHA· LSI Outline and Mounting Diagram
ALPHA LSI Ventilation Systems
Motherboard Priority String
Expansion Chassis Cabling Scheme
NAKED MINI LSI-l Outline and Mounting Diagram

Console Switches and Indicators . .

Instruction and Directive Classes
Source Statement Format
Arithmetic Overflow
Word Mode Memory Reference Instruction Format
Word Mode. Addressing Summary.
Byte Mode Memory Reference Instructjon Format
Byte Mode Addressing Summary
Double-Word Memory Reference. Format
Divide .. , ,..

xvi

Page

G-2
G-2
G-3
G-3
G-4

• G-4
G-4
G-5

· G-6
G-7
G-8
G-9

Page

1-11
1-12

· 1-13
1-14
1-14
1-15

· 1-16-

2-2
2-3
2-7
2-9
2-13

3.-2

4-1
4-2
4-5
4-6
4-8
4-9
4-11
4-15
4-16

4-10
4-11
4-12
4-1S
4-14
4-15
4-16
.-1'1
'4-18
4-19
4-1.
4-21
4-22

4-13
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45

5-1
5-2
5-3
5-4

TABLa OP CONTENTS (Cont'd)

UST OP ILLUSTRATIONS (Cont'd)

Multiply and Add 0

NO ShtftPatb • 0

Stack Instruction Pormat. 0

Stack Orpnialion aDd llanacement
Immediate Inatructioa Pormat
JOC Jump on Coadidao Fo!'lDat
JOC Expresldon 1 DeftnitloDa 0 •

CoDcftticmal Jump POIfaat
Singl~ Resister Shift ,f'onIMt 0 0

Double Register (Lone) Shift Format 0

Arltlunetie Left SbSft 0

Arlthmetie Right Shift •
Locfc8I Lett 9blft • •
Logical Il1gbt Shift
Rotate Left Srtift. . 0

Rotate Right Shift 0 0

Long Left Shift • •
Long Right Shift
Long Rotate Left Shift •
Long Rotate Right Shift
Register Ch8llle Format • 0

Control FOl'IDat 0 • • • •

CGmputer Status Word Format
Single Word Input/Output Instruction Format
Block Input/Output Instruction Format . 0 •

Automatic Input/Output Instruction Format .
In-Hne Auto I/O Instruction Sequence 0 0 •

Interrupt Location Auto I/O Instruction Sequence.
Begin Conditional Auembly Directives Format
End Conditional Assembly Directive Pormat
Location Control Directive Pormat 0 0 0 • •

MACH Directive Format 0 0 0 • 0 0 • 0 0 •

Data and Symbol Dermition Directive Format
Program Linkage Directive Ponnats 0 0 0

Subroutine Definition Directive Formats
-Title Directive Format 0 0 0 0 0 •

Sense Routines . 0 • • 0 • • • •

Unconditional Data Transmission 0

Conditional Data Transmission
Block Data Transmission

xvii

Page

o 0 • 4-17
o • 4-17

o 4-18
o 4-20

o 0 4-23
o 0 4-24

o 4-25
o 4-25

4-28
o 4-26

4-21
o 0 4-21

0+-2&

o 4-28
o 4-2'

4-29
o 0 0 4-30

4-30
4-30
4-30
4-31
4-36

o 4-37
o 4-39
o 4-44

4-45
4-46
4-47
4-48

o 4-48
4-49

o 4-49
4-51
4-52
4-53
4-54

5-2
5-2
5-3
5-3

5-,
5-&
5-7

5-8
5-1
5-1'0
5-11
5-12
5-13
5-f4
5-15

8-1
6-1
6-3
&-1
6-5
6-&
6-7
6-8
6-9
6-10
6-11

1-1
1-2
7-3

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-1t
8-10
8-11

TABLE OF CONTENTS (Cont'd)

LIST OF ILLUSTRATIONS (Cont'd)

Page

In-Une Auto I/O Dats Transmission 0 0 • • 0 • 0 • •• 5-4
Initialization end Unconditional Output to LinePrinter . . 5-6-
Unconditional Character Read from' Teletype Paper Tape
Reader 0 • 0 0 •• 0 0 0 •• 0 • 0 0 0 •• 0 • 0 •• 0

IDitialization and Conditional Control of Line Printer . 0

Conditional Input from Teletype Keyboard with Auto Echo.
Uninterruptable Block Outpllt to Line Printer

5-6
5-&
5-7
5-7

Automatic Byte Input fram CareS Beade!! • . 0 0 0

Line Printer laterrupt Initializati08 s.quenee. 0 0

5-8
5-11'

Real Time Cloelt ~terrupt lnitializafton Sequence 0 • o • 0 5-12
Lkle Printer Interrupt Instructions 0 • 0

Real Time Clock interrupt Instructions. . 0

Procesao. Option Board 0 • • • • • 0 0 • • •

Option Board Connector .n Pin A8eignmants
Option Bovd Connector J2 Pill Autsnments
current Loop Interface
lElA RS2S2CICCITT InterfMe 0 • 0 0 • • • 0

TTL/DTL Interface .. 0 • • • 0 • 0 0 0 0

Half-Duplex Program-Controlled nata Output 0

Program-Controlled TTY Reader Input .
Pull-Duplex Auto-Input Under Interrupt
RTC Interrupt Programming Example .
Power Fail/Restart Software Routines

Memory Control Connector 0 • •

Interleaved Memory Installation
Memory Banking Example

Maxi-Bus Configuration .
Maxi-Bus Components 0 0

1/0 Transfer Timing
ALPHA LSI Intel'l"Upt Organization
Interrupt Transfer Timing . 0 • •

Maxi-Bus Acquisition Timing
Memory Addressing Comparisons
Read Access Timing. 0 • • 0 0 •

Write Access Timing
Maxi-Bus Expansion Connector. Pin assignments
ALPHA LSI Motherboard Slot Organization (Rear View)

xviii

~12
o 5-13

6-1
o 8-4

6-5
o 8-8

6-9
6-10
6-11
6-12
&-18
6-23
6-32

7-2
1-'4
7-6

8-1
o 8-3

8-7
8-14
8-16
8-20
8-21
8-22
8-23
8-26
8-29

~--------------------------------.. ~~IK. ~

Figure

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16

10-1
10-2
10-3
10-4
10-6
10'-7

11-1
11-2
11-3
11-4
11-5

12-1
12-2
12-3
12-4
12-5

C-1

C-2

C-3

TABLE OF CONTENTS (Cont'd)

IJST OF ILLUSTRATIONS (Cont'd)

Page

Device Address Decoding Techniques 9-3
Function Decoder Configurations (Typical) • 9-4
Initialization Circuit. '. . . . • . . . • • • 9-6
Select. Input. or Output Instruction Decode Corulgurations 9-7
Positive. and Negative Sense, Circuit Configurations • 9-8
Data Transfer ContrOl'. 9-11
Single Interrupt Implementation Using IUR- .9-14
Reentrant Interrupt. Implement~ion . . 9-16
Simple Itl-/IL2- Interrupt Structure . 9-16
End-of-Block Interrupt Implementation 9-17
DMA Operational.Phases • 9-19
Enq-:-of-Block Interrupt Implementation Using ILl- and IL2- 9-19
Maxi-Bus Acquisition and Priority Auction Controls . 9-23
State Counter and Decoder 9-24
DMA Transfer Timing • . . • 9-25
Basic DMA Controller Architecture' . . 9-21

Processor/Console interrace- . . .
Establishment of Stop Mode
Register Entry/Display Seque,nce
Step Mode Sequence

10-2
10-3
10-4
10-5

Console WordFormats.
Motherboard/Console ConnectQr (Jl) Pin Assignments

. 10-6
10-12

ALPHA LSI Power Supply
Power Monitor Block Diagram ...
Power Monitor Timing- Requirements
User Power Supply Transition Adapter.
Motherboard Power Adapter Pin Assignments .

Full Board Design Guide
Half Board Design' Guide
Standard PC Board Hardware
Wire-Wrap Breadboard PC Board
Filler Board PC Board

Class 1 - Single-Word Memory Reference Instruction
Format•...

Class 2 - Double-Word Memory Reference Instruction
Format•.

Class 3 - Stack Instruction Format (LSI-2 only) . . .

xix

11-3
11-5
11-6
11-7
11-8

12-3
12-4
12-5
12-6
12-6

. C-l

C-l
C-l

'.

Figure

C-4
C-5
C-6
C-7
C-8
C-9

E-l

E-2

E,..3
E-4
E-5
E-6
E-1
E-8
E-9
E-I0
E-11
E-12

Table

3-1
3-2
3-3

4-1

6-1
6-2
6-3
6-4

8-1
8-2

COMPUnR AUTOMATION. INC. f§I

TABLE OF CONTENTS (Cont'd)

IJST OF ILLUSTRATIONS (Cont'd)

Page

Class 4 - Byte Immediate Instruction Format . • C-2
Class 5 - Conditional Jump Instruction Format C-2
Class 6 - Register Shift Instruction Format • • C-2
Class 1 - Register C~ge and Control Instruction Format. C-2
Class 8 - Input/Output Instruction Format . . • • •. C-2
ClaSs 9 - JOC Jump-On-Condition Instruction Format ., C-3

Single-Word Memory Reference Instruction Machine Code
Format • • E-l

Double-Word Memory Reference Instruction Machine Code
Format • . . • • . . . • . . . E-l

Byte Immediate Instruction Machine Code Format E-l
Conditional Jump Instruction Machine Code Format .. E-2
Single-Register Shift Instruction Machine Code Ji'ormat E-3
Double-Register Shift Instruction Machine Code Format E-3
Register Change Instruction Machine Code Format . • E-3
Control Instruction Machine Code Format•. .-. E-3
Input/Output Instruction Machine Code Format E-4
Automatic Input/Output Instruction Machine Code Format • E-4
Block Input/Output Instruction Machine Code Format E-4
Stack Instruction Machine Code Format. • . .. E-5

IJST OF TABLES

Console Switches/Indicators
Switch/Indicators - Operator Console
Device Selection. . . .

MACH Flag Word Values

Baud Rate Selection . .
Word Length Selections
Clock Source Selection
I/O Stretch Selection

I/O Instruction'List .
Maxi-Bus Load, Drive and Termination Summary .

xx

Page

3-2
• 3-12

3-13

4-50

6-6
6-6
6-22
6-30

8-10
• 8-27

Table

9-1
9-2

10-1

11-1

A-I
A-2.

B-1
8 ... 2
8-3

F-l
F-2
F-3
F-4,

F-5

F-6
F-7
F-8

G-l

TABLE OF CONTENTS (Cont'd)

LIST OF TABLES (Cont'd)

Power and Ground Pin Aaaignments
Normal Interface Pins . •• •

Console Special Signal Load/Drive Summary

Standard, Module Load CUrrents .

HexadeciJDal-Decimal ConvtV'sions
8-BJT ASaJ Teletype Codes ••

Recommen<led Dev(ce Addnaaes .•
Recommended I.tempt Address m'ap
Device Address - Command Summary

LSI Family Memory Parameters
LSI-l Execution Time Alaorithms
LSI-2 Executioa Time AJaortthllls

Page

.9-31
• 9-32

10-13

• 11-2

A-2
A-3

• • B-2
... 8-3

· .8-4

· F-l
•••• F-2

· P-9
LSI-l Memory Reference Instruction Address Calculation

Times .•••• ~ .••••.•.•••.•.•••• · F-17
LSI-2 Memory Reference Instruction Address Calculation

Times ..•.•..........••.•
Stack Instruction Address Calculation Times • .
ALPHA LSI Family Instruction Execution Times .
ALPHA LSI Family Muimum Data Transfer Rates

Assembler Directives •

xxi

F-18
F-19

• • F-20
F-27

• G-l

Section 1-

'GENERAL DESCRIPTION-

1.1 INTRODUCTION

The ~HA LSI and NAKED ~LSI (hereafter referred to as ALPHA LSI when
discussed together) are general purpose, stored program digital computers. They
are extensions of the successful and proven 16-bit computer family from Computer
Automation, Inc.

1.1.1 The ALPHA LSI Family

The ALPHA LSI is not just one computer that can be packaged with or without a
chassis, power supply and console. Instead, it is an integrated family of compatible
components -- two central, processors; three kinds of memories in fourteen sizes
and three speeds; peripheral controllers; computer options, general purpose
interfaces; etc. -- which can be combined in a multitude of configurations to match
a wide range of needs.

Several central processors are available and are referred to as the NAKED MINI LSI
type 1 (LSI-I) and the NAKED MINI LSI type 2 (LSI-2). The LSI-1 and LSI-2 Process­
ors feature the same basic architectQre, instruction set and I/O capabilities. They
differ in terms of performance wherein the LSI-2 is faster than the 1.81-1 and also
features additional instl1lctions. Both processors are plug-to-plug compatible and,
except for timing differences, programs will execute properly in either Processor
without change (except when the additional instructions applicable to LSI-2 only are
used).

Several memories are available: Core 980, Core 1200, Core 1600, and semiconductor -
SC1200. The numbers define the tull cycle time of the memory in nanoseconds and each
memory type can be interleaved.

The user can mix memories of varying speeds, sizes, and technologies with either
processor to obtain the best price/performance margin possible.

1.1.2 Upward Compatibility

The ALPHA"LSI is upward software and I/O compatible with "earlier l6-bit computers
from Computer Automation. Upward software compatibility means that virtually all
programs written for the earlier l6-bit computers will run without change on the

1-1'

COMPUTER AUTOMATION. INC. f3!

ALPHA LSI. However, due to the expanded and improved instruction set of the
ALPHA LSI, programs written for these computers may not run on the earlier
computers. "

1.1. 3 General Features

The ALPHA LSI computer family features a l6-bit word format and 168 basic instruc­
tions (188 in the LSI-2). The instruction set is divided into seven major classes
(eight with LSI-2) which provide memory-to-register and register-to-register data
movement as well as conditional jump, single and double-register shift. register
change. machine control and Input/Output instructions. The computer utilizes eight
addressing modes (12 in the LSI-2) for effective and efficient management of memory
resources.

The ALPHA LSI computer has fully buffered I/O structure coupled with five levels of
interrupts and five I/O modes which permit high speed. low speed, synchronous and
asynchronous data transfers to take place.

The ALPHA LSI may readily accommodate additional memory modUles and I/O by
adding expanSion chassis to the basic system. An optional Memory Banking feature
permits the user to extend the upper limit of Memory from ~2K words to 256K words.

1.2 THE NAKED MINI LSI CONCEPT

The NAKED MINI LSI-1 computer consists ofthe Processor and first memory module
on one printed circuit (PC) board. The NAKED MINI LSI-1 is a complete stand alone
computer without a chassis, motherboard. power supply or operators console.

The NAKED MINI LSI -1 computer is designed to be used as a system component along
with other system components. It depends on the system power supply for a power
source, the system control panel for operational control signals, and the system
enclosure for structural and environmental support.

The NAKED MINI LSI-2 computer consists of the Processor (full PC board) and one
or more memory modules. a motherboard and a chassis. Like the LSI-I. the
NAKED MINI LSI-2 Processor depends on the system power supply for power and a
system control panel for operational control signals.

1.3- THE ALPHA LSI

Take a NAKED MINI LSI-lor -2 computer and add a power supply module. a mother­
board, a chassis and an operator's console and you get the ALPHA LSI computer.
The Motherboard interconnects the NAKED MINI LSI computer with additional I/O
and memory modules. the power supply. and the operator's console.

1-2

1.4 CHARACTERISTICS

The characteristics of the ALPHA LSI ~ explained in subsequent sections of this
manual. The following is an overview of the characteristics of this computel".

1 .4.1 Processor and Memory

Some of the significant characteristics of the Processor and Memory are:

Parallel processing of full I6-bit words and 8-bit. bytes.

Seven 16-bit hardware registers , one 8-bit Status register.

Memory word size of 16 bits, with each word addressable as a full 16-bit
word or as two separate 8-bit .bytes.

Memory capacity is 1,024 words minimum, expandable to 32,768 words per
bank maximum. (Up to 262,144 words with optional Memory Banking.)

Computer cycle time is 1.6 microseconds for LSI-I; 150 nanoseconds for
LSI-2.

Direct Memory Access (standard) provides data transfer rates up to 1 .020,000
words per second in a single memory bank or 1.666,667 words per second
with interleaved memory banks.

Binary 2t s complement arithmetic processing.

Automatic memory scan (standard).

Hardware Multiply and Divide (standard).

1. ~ . 2 Instruction Set

These computers have a very powerful instruction set consisting of 168 basic instruc­
tions divided into seven classes (188 instructions and 8 classes with the LSI-2
Processor). The instruction classes are:

1. Memory Reference.

Access Memory in either full Word or Byte mod.e and perform logical
and arithmetic operations involving data in Memory and data in hard­
ware registers. The hardware Multiply. Divide and Normalize
instructions are included in this class.

2. Stack (LSI-2 only)

Similar to the Memory Reference class of instructions except they
operate on words maintained in "stacks" in Memory. The number,
size, and location of stacks in use at any time are unlimited,
as are the number of stacks in use by any code module, and the
number of code modules using any given stack.

1-3

3. Byte Immediate.

Similar to the Memory Reference class in that logical and aritbmetic operations
are performed involving data in hardware registers. The memory data, however.
is contained within the instruction word so that it is immediately available for
processing without requiring an operand cycle to fetch it from Memory.

4. Conditional Jump.

Test conditions within the Processor and perform conditional branches depending
on the results of the tests performed. Jump may be as much as :. 64 locations
from the location of the conditional jump instruction.

5. Shift.

Include singleregister logical, arithmetic, and rotate shifts; double register
logical and rotate shifts.

6. Register Change.

Provide logical manipulation of data within bardware registers.

7. Control.

Enable and disable interrupts; suppress status. control word, or byte mode
data processing; anei perform other general control functions.

8. Input/Output.

Provide communications between the computer and external de\1ices They include
conventional I/O instructions plus Block Transfer and Automatic Input/Output
instructions. I/O may be to/from register or directly to/from Memory.

1. 4.3 Registers

Following are descriptions of hardware registers of interest to the operator and
programmer. Except for the I and P registers, all others are under program control.

1.

2.

A Register.
operations.

X Register.
modification.
operations.

A I6-bit register used for arithmetic, logical and input/output

A I6-bit register that holds the index value for memory address
It is also used for input/output and certain arithmetic and logic

3. OV (Overflow). A one-bit register set by arithmetic logic when an overflow
occurs. It is also used for extended shift operation. It can be tested and
modified by software.

4. BM (Byte mode). A one-bit register that specifies either word or byte mode.
It is set and cleared by software.

5. EIN (Enable Interrupts). A one-bit register that. when set. enables interrupts
of processor operation. It is set and cleared by software.

6. I Register. A 16-bit registe.r that holds the instruction currently being pro­
cessed by the computer.

}-4

COMPUlBl AUTOMATION. INC. f3!
7. P Register. A I6-bit register that holds the proF;t'atn location counter. It

addresses each instruction and increments as ell'· h instruction is executed.
For skip or jump instructions (modifying normal program sequence), P is
loaded with the next instruction to be executed.

1.4.4 Memory Addressing

1.4.4.1 Memory Reference Addressing

An important feature of these machines is the ability to access full I6-bit words and 8-
bit bytes (half words) in Memory. Memory may be as small as lK x 16-bit words, and
as large as 32K x I6-bit words. Since Memory. may contain 32K words, and· since each
word contains two bytes, provisions are made for addressing up to 64K bytes.

Instructions which access Memory may operate in either Word or Byte mode. Memory
Reference instructions are sixteen bits in length (one-word instructions), with the
eight least-significant bits, plus three control bits, dedicated to memory addressing.
The eight least..,significant bits address 256 words or bytes. The ALPHA LSI computer
uses the three control bits to specify several addressing modes. These addressing
modes are discussed briefly below and are explained in detail in section 3. The address­
ing modes used are Scratchpad, Relative Forward ,Relative Backward, Indexed, and
Indirect.

1. Scratchpad

Scratchpad addressing accesses the first 256 words in Memory in Word mode,
or the first 256 bytes in Byte mode. The first 256 words in Memory are referred
to as "Scratchpad" memory, because these are common words which can be
addressed words which can be addressed directly by instructions located anywhere
in Memory.

2 . Relative.

In Word mode. relative addressing can address an area of Memory extending
from the instruction address forward 256 words (+256) or backward 255 words
(-255). In Byte mode ,the range is forward 512 bytes. Bytes cannot be directly
addressed relative backward.

3. Indexed.

The Index (X) register can be added to the address field of Memory Reference
instructions to form an effective memory word or byte address.

4. Indirect.

Indirect addressing uses scratchpad or relative addressing to
access a word in Memory which contains the address of a memory
operand. The word that contains a memory address rather than
an operand is called an Ilddress pointer. In Word mode. multi-

1-5

COMPUtlR AUT0MA11OH.1NC. fa!

level indirect addressing is possible; i.e .• one address poiJlter
may contain the address of another address pointer rather than
the address of an operand. In Byte mode ,1only one level of in-­
direct addressing is possible.

Indirect addressing may also be used in conjunction with indexing.
When indexed indirect addressing is specified. the indirect opera­
tion is performed first and then the contents of the X register are
added to the contents of the address pointer. This process is called
Post Indexing.

1 .4.4.2 Stack Addressing

All stack accesses are controlled by a stack pointer. Stacks may be accessed in the
conventional "PUSH" and "POP" fashion utilizing automatic hardware predecrement
and postincrement respectively, of the stack pointer. Stack contents can also be
accessed directly or with indexing through the stack pointer without altering the stack
pointer value.

1.4.5 I/O Structure

The ALPHA LSI series computers are highly flexible system components designed
for easy application to control, communications, and monitoring tasks. These com­
puters are extremely easy to program using assembly language. Organization of the
Processor enables the computer to obtain high memory efficiency. avoiding the prob­
lem of "core burning", so prevalent in many computers. Memory utilization is fur­
ther enhanced by the powerful and flexible I/O instruction set. The lIO structure is
simple and efficient. sharply reducing the amount of I/O logic required by units in­
terfacing with the Processor.

1.4. 5 .1 Control Modes

Two type of I/O instructions. Select and Sense, provide control information to and
from an interface. The Select instructions establish operating modes, control inter­
rupts or initialize the interface. The Sense instructions permit the Processor to .
obtain the operational status of an interface.

1.4.5.2 Input Output Modes

The ALPHA LSI computer features five distinct I/O modes which, when combined with
an extensive set of I/O instructions. provides a very powerful and €asy to use I/O

1-6

structure. These modes are:

1. Programmed I/O via Registers
2. Programmed I/O via Memory
3. Automatic I/O under Interrupts
4. Block I/O
5. DMA

Transfers can be made to or from the A or X registers or directly .to or from Memory ,
whichever is more convenient. Both word and byte data can be handled directly.
with byte data being packed automatically, if desired. without the need for time and
space-consuming programmed routines.

I . Programmed Input/Output via Registers

For greater convenience in handling data that must be examined
immediately upon input. or is the result of computations that must be
output immediately, programmed I/O transfers the data db'ectly to
and from the operating registers of the Processor. Furthermore.
programmed I/O instructions can be combined with Sense and Skip
instructions to allow testing of controller or peripheral status prior
to making a transfer.

2. Programmed Input/Output via Memory

This mode capitalizes on the power of the Automatic I/O instructions
to transfer data to or from Memory without disturbing the working
registers of the Processor. Any size block of data may be transferred
into or out of Memory .

3. Automatic Input/Output under Interrupt Control

This mode permits an interface to tl"snsfer data to or from Memory at
its own data rate with minimal disturbance of the main program.
When all data has been transferred, the interface develops an End­
of-Block interrupt. This, in turn. causes an interrupt subroutine to
be entered which performs the necessary housekeeping associated
with End-of-Block operations.

4. Block Input/Output

For high speed transfer rates, Block I/O transfers data blocks of any
length. Data is exchanged directly between Memory and the peripheral
interface with the index register providing the word count. During
execution of Block I/O instructions, the computer is totally dedicated to
'the Block I/O transfer and cannot respond to interrupts until the entire
block has been transferred.

1-7

5.

cowura AUTOIIAJIOk INC. ~ __ ---

Direct Memory Access (DMA)

For very high speed transfer rates. DMA transfers da~a directly to and
from Memory. Since this data transfer does not require the Processor.
the Processor can be performing other opuations while interleaving with
DMA on s cycle stealing baais. MultipleDMA controllers may use the ..
DMA feature simultaneously (interleaved cycles) up to the full memory
transfer rate. When more than one memory module is installed, the modules
may be two way interleaved to provide data transfer at twice the individual
memory data l"ates.

1. 4.5 . 3 Vectored Interrupts.

The LSI series computers feature vectored hardware priority interrupts, wherein each
peripheral controller supplies its own unique intenupt address to any location in
MeDlOry. There are five standard interrupt levels (two internal and three external) .
The third external level, with control lines, can accommodate a virtually unlimited
number of vectored interrupts.

1.4.8 Processor Options

Four general options are offered with the ALPHA LSI computer. They are: Power
Fail/Restart; the Teletype/CRT Interface; Real Time Clock, and Autoload.

The Power Fail/Restart option mounts directly on the NAKED MINI LSI computer PC
board. The other three options mount on an option board which plugs into a special
connector (in piggyback fashion) on the NAKED MINI LSI computer PC board. None of
these options interface directly with the motherboard.

1. Teletype/CRT Modem Interface.

Interfaces a modified ASR-33 Teletype, CRT terminal, or modem to the
computer. This is a fully-buffered interface that includes remote
Teletype motor on/off control. In addition to the standard TTY baud rate
(110 baud), nine user selectable baud rates, ranging from 75 to 9600
bauds, are provided for driving a CRT terminal. Either Half or Full­
duplex operation is selectable on command.

2. Power Fail/Restart.

This option includes the hardware necessary to detect low input power
conditions and bring the computer to an orderly halt until normal input
power is restored. When norrr:al power is restored. this option will
generate an orderly restart. The Power Fail/Restart option allows

1-8

COMPUlB AUTOMATION. 11K. ~

completely unattended operation of the computer at locations where power
conditions are unreliable.

3 . Real Time Clock.

The Real Time Clock option features a crystal controlled internal clock
which may be wired to produce clock rates of 100 microseconds, 1
millisecond, 10 mUliseconds, or twice the input AC line frequency,
(8.33 or 10 m11liseconds -60 Hz and 50 Hz. respectively). The 10 milli­
second (crystal derived) rate is standard. An external clock source
may also be used. Th~ Real Time Clock provides time-of-day
information to the computer and may be used to time peri()dic events
that must be controlled by the computer. .

4. Multi-Device Autoload

The Multi-Device Autoload option consists of a Read-Only Memory
(ROM)progroammed with a complete binary loader which is capable
of loadini{ binary programs from anyone of several input devices.
The Autoload hardware reads from the ROM when the Console AUTO
switch is activated.

1.4. 7 Plug-In Options

Locations are provided within the ALPHA LSI computer chassis for the installation of
. processor options, peripheral interfaces, and memory modules. The options are
mounted on printed circuit boards which plug into the locations within the computer
chassis. Some of the available plug-in processor options are:

1. Digital I/O interfaces: up to 64 bits.

2. Relay I/O interfaces: up to 32 isolated relays.

3. Modem interfaces: asynchronous and synchronous.

4. Memory Banking controller: extends upper limit of Memory
to 262,144 words.

5. Read Only Memory (ROM) .

6. Priority Interrupt module.

1-9

COMPUTER AUTOMATION. INC. f3]J

1.4. 8 Peripheral Equipment

The following is a partial list of the various types of peripheral equipment for which
interfaces to the ALPHA LSI have been developed. This list does not imply that these
are the only~ devices-tor which interfaces can be developed. The interface structure of
these computers is such that virtually any peripheral device can be interfaced to the
computer.

1. ASR-33 Teletypewriter

2. High speed Paper Tape Readers and Punches

3 ~ Line Printers

4. Card Readers

5. Open reel and cassette Magnetic Tape Units

6. Magnetic Disks

7. CRT terminals

8. Communications interfaces

1.5 DATA HANDLING CHARACTERISTICS

1.5.1 Data Word Format

Proc~ssor registers and memory locations are capable of storing data Words consisting
of 16 binary digits or "bits". A word may be handled as a single 16-bit field or as two
8-bit bytes. The following paragraphs describe the word. format of the computer.
Byte format is described later in this section.

1.5.1.1 Bit Identification

A data word may contain a single number , or it may contain a string of individual binary
bits. with each bit having a unique meaning. For purposes of explanation and identifica­
tion. each bit within a word is uniquely identified. The identification is accomplished
by numbering each bit within a word from right to left. The bit on the extreme right

1-10

COMPUlU AUTOMATION. INC. ~

of the word is bit O. and the bit on the extreme left is bit 15. Figure 1-1 illustrates the
format of a 16-bit data word with the bit number shown above the bit position.

15 14 13 12 11 10 9 8 6 4 0

Is 2'4 2'3 2'2 2" 2 '0 29 ,a 27 26 ,0 2" 23 22 2' 201

Figure 1-1. Data Word Bit Identification

1. 5.1. 2 Bit Values

The ALPHA LSI is a binary computer; therefore numeric information stored in the
computer and processed by the computer must be in binary format. Figure 1-1 illustrates
the binary value of a one- bit (1) in each bit position of the 16-bit data word. These
values are expressed as powers of two. For example. a 1 in bit 3 has the value of 23

or 8. The single- exception to this rule is bit 15 which is the sign bit.

1 .5 .1.3 Signed Numbers

The ALPHA LSI is capable of performing arithmetic operations with signed numbers.
Binary two's complement notation is used to represent and process numeric information.
Bit 15 of a data word indicates the algebraic sign of the number contained within that
word.

1 . 5 .1 .4 Positive Numbers

A positive number is identified by a 0 in bit 15. and the binary equivalent of the magni­
tude of the positive number is stored in bits 0 to 14. The largest positive signed number
which can be stored in a 16-bit word is +32.767

1.5.1.5 Negative Numbers

A negative number is identified by a 1 in bit 15 of the data word. A negative number
is represented by the binary two's complement of the equivalent positive number. A
negative number must follow the mathematical rule where:

0- (+n) ;: -n
For example:

o - (+5) = -5

1-11

COWUlU AUTOMATION. INC. ~.-~--~ -........"

Negative numbers must also be constructed such that:

(+n) + (-n) = 0

The binary two's complement of some numeric value may be constructed by subtracting
the binary representation of the absolute magnitUde of that value from O.

Note that the formation of a binary two's complement negative number from the equivalent
positive number automatically sets the sign bit to 8 one. The largest negative number
that can be stored in a 16-bit word is -32.76810 ,

1 . 5 .2 Data Byte Format

A 16-bit data word is capable of storing two 8-bit bytes. Since most data transfers
between mini computers and peripheral devices are in the form of bytes rather than
words. the ALPHA LSI computer provides the capability of addressing individual bYtes
as well as full data words. Figure 1- 2 illustrates the storage of two bytes within one
computer word.

Bit positions within bytes are identified much the same as in 16-bit words. Figure
1-2 also illustrates the numbering of data bits within a byte. The bits are numbered 0
throUlh 7. where bit 0 is the least-significant bit (LSB). and bit 1 is the most-signi­
ficant bit (MSB) of the byte.

r
15 14 13 12 11

BYTE 0

16·BIT WORD

10 9 8 6

o 6

BYTE 1

,
o·

~ ______ ~ ________ JI ',--------v-------~

8·BIT TBYTE 8.BIT
T
BYTE

Figure 1-2; Byte Storage. Two Bytes Per Word

1.5.2.1 Byte Mode Processing

There are two control instructions in the computer which control Word r,10d~ processing
and Byte mode processing. One of the instructions causes the computer to enter Byte
mode processing. and the other causes the computer to enter Word mode processing.

In Word mode, all Memory Reference instructions access full words in Memory. In
Byte mode. all Memory Reference instructions (except IMS, MPY. DVD, :-JRM. JMP. and
JST) access one byte within a word. The method of addressing individual bytes is
discussed in a subsequent part of this seGtion. The present discussion is concerned
with computer operations while in Byte mode as contrasted with computer operations
in Word mode.

1-12

Byte mode affects the address and operand cycles of the computer only. All other com­
puter functions operate the same as in Word mode. In Byte mode. the computer operand.
cycle reads a single byte from Memory instead of a full word. The following paragraphs
illustrate Byte mode operations for Memory Reference instructions.

1.5.2.2 Register Load

In Word mode. the full word is loaded into the selected register. In Byte mode, the
selected byte is loaded into the lower eight bits of the selected register and the upper
eight bits are set to zero. Note that the location of the byte within the memory word
does not determine the location the byte will occupy in the register being loaded.

1. 5. 2 . 3 Arithmetic Operations

For arithmetic purposes. bytes are handled as positive numbers only. The reason is
that a byte occupies the lower eight bits of a register. or a data bus, and the upper
eight bits contain zeros.

1.5.2.4 Data Packing

One of the most useful features of Byte mode processing is in the packing and unpacking
of data in Memory. Since most of the peripheral devices used with mini computers are
byte oriented. high-speed data transfers between the computer and the peripheral
device generally require data to be packed one byte per word. Such an arrangement
is illustrated in figure 1-3. In this Ulustration, the upper eight bits of each data word
to be transmitted to a peripheral device contain zeros. A full 16-bit word is transmitted
to the device. but the device discards the upper eight bits and accepts only the lower
eight bits. Data received from a byte oriented peripheral device during high-speed
data transfers is packed in Memory one byte per word in the 'Same format described pre­
viously (figure 1-3). If a software subroutine were required to pack the data two bytes
per word. in the format illustrated in figure 1-4, it would waste memory space and time
in performing the formatting required for high-speed data transfers.

WORD 0

WORD 1

WORD 2

WORD 3

WORD 4

WORD 5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 BYTE 0

0 0 0 0 0 0 0 0 BYTE 1

0 0 0 0 0 0 0 0 BYTE 2

0 0 0 0 0 0 0 0 BYTE 3

0 0 0 0 0 0 0 0 BYTE 4

0 0 0 0 0 0 0 0 BYTE 5

Figure 1-3. Data in Memory, One Byte Per Word

1-13

(0MPU18t MITOMAlION.INC. eJ

WORD 0

WORD 1

WORD 2

15 14 13 12 11 10 9 8 7 6 5 4 3 -2

BYTE 0 BYTE 1

BYTE 2 BYTE 3~

BYTE4 B~_5

Figure 1-4. Data in Memory. Two Bytes Per Word

o

--

The capability of the ALPHA LSI computer to address individual-bytes in Memory allows
high-speed data transfers using the memory format shown in figure 1-4 for both trans­
mission and reception of data. Bytes -may be addressed sequentially and transmitted
or reCeived sequentially. just as words are transmitted or received sequentially in
conventional unpacked data transfers. This arrangement saves memory space since
none of the memory word is wasted. and it saves time since no software routines are
required to pack and unpack data for internal processing.

1.5.3 Memory Address Formats

Maximum memory capacity (exclusive of Memory Banking control) is the ALPHA LSI
computer is 32,768 words which means a byte capacity of 65.536 bytes. A fifteen bit
address is required to address 65,536 bytes. The followtug paragraphs discuss the
formats of the addresses that must be presented to Memory for addressing both words
and bytes. This discussion is concerned only with address formats. Section 3 of
this manual discusses the memory address modes which form these addresses.

1.5.3.1 Word Addressing

Figure 1-5 illustrates the format of an address presented to Memory to address a full
word. This is the format that is used to address instructions or full data words. The
address is contained in bits 0 - 14. and bit 15 contains a zero.

15 14 13 12 11 10 9 8 6 5 4 3 2 o

WORD ADDRESS: 15 BITS

Figure 1-5. Basic Word Address Format

1-14

1. 5.3 .. 2 Byte Addressing

Figure 1-6 illustrates the format used to address a byte within 8 data word. Bits 1-15
contain the address of the memory word. and bit 0 specifies which byte within the word
is to be addressed.

Bit 0 = 0 specifies Byte 0 (Most Significant Byte) .

Bit 0 = 1 specifies Byte 1 (Least Significant Byte) .

If the computer is set for Byte mode. all operand addresses presented to Memory are
assumed to be byte addresses. The computer assumes that the address is in the format'
shown in figure 1-6. If the computer is set for Word mode processing, all addresses
presented to Memory are assumed to be word addresses in the format shown in figure
1-5. These assumptions apply to operand cycles only. They do not apply to instruc­
tion cycles or indirect addressing cycles.

15 14 13 12 11 10 9 8 4 o

I WORD ADDRESS: 15 BITS ~I
BYTE INDICATOR: O=BYTEO ,j

(LEFT BYTE)
1 = BYTE 1

(RIGHT BYTE)

Figure 1-6. Byte Address Format

1 . 5 . 3 . 3 Indirect Addressing

The ALPHA LSI computer is capable of performing single level indirect addressing
for addressing bytes, and multF level indirect addressing for addressing words. Indi- ,
rect addressing uses direct addressing to read a word in Memory, called an address
pointer, which contains the address of another word. In Byte mode. the address
pointer contains the address of the byte to be addressed. The format of the address in
the address pointer is the same as that shown in figure 1-6.

In Word mode I the format of the address in the addl"eSS pointer is that shown in figure
1-7. Bits 0 - 14 contain the address of another word in Memory. Bit 15 is a multi­
level indicator. If bit 15 contains aI, the address in bits 0 - 14 is the address of
another indirect address pointer. The number of levels of indirect addressing which
may be used is limited only by memory size.

1-15

COMPUTER AUTOMATION. INC. ~

15' 14 13 12 11 10 9 7 6 5

I ~. WORD ADDRESS,,, "TS

" MULTilEVEL INDIRECT INDICATOR:

3

0: OPERAND
ADDRESS

1 = POINTER
ADDRESS

Figure 1-7. Indirect Address Pointer Format

1-16

o

-Section 2

INTEGRATION

2.1 INTRODUCTION

This section provides detailed information pertaining to the mounting. cooling. and
inter.connection of either the ALPHA LSI or NAKED MINI LSI-l and -2 computers.

2.2 ALPHA LSI INTEGRATION

The following paragraphs discuss mounting. cooling. installation of PC boards. and ac
power application for the ALPHA LSI computer.

2.2.1 Mounting (Figure 2-1)

The ALPHA LSI computer is designed to be mounted in a standard 19-inch rack
or cabinet. Figure 2-1 provides outline and mounting dimensions to facilitate instal­
lation of the computer.

2.2.2 Cooling (Figure 2-2)

The ALPHA LSI Computer is designed to operate over a temperature range of 0° C to
50° C. When the computer is installed in an enclosure. the installation requirements
depend on the ventilating system employed such that the thermal requirements of the
computer are maintained.

There are thre", installation criteria which provide the minimum cooling conditions
allowable for the ALPHA LSI computer.

1. Closed Ventilation System

2 • Side Ventilation System

3. Top/Bottom Ventilation System /

In the closed ventilating system. it is assumed the ambient temperature will be main­
tained by the U,ermal interface. The minimum size enclosure must provide adequate
air flow paths for the computer's internal fans.

2-1'

COWUT£RAUTOMATION.IHC. f3!

2-2.
/'

COMPUTER AUTOMATION. INC. ~

~
0

't:l --ttl
~
0
3
<:
CD

a
Ul::
;e.
CD
3

~

~.
~
(1)

N
I

t-.:I

> r-
'"0
:I:
>
t"'
~
<:
CD

S
a s·

!JG
rn
'<
III

~
3
rJl

Ul

5:
(!l

» ____ ~ -=n

. - - - -- .-/=;:-. ~
r-~"...,,....,... I~. ":;

0 ->
~-> .t .t ttl~

-- (':)~ I'%j 'tj "lj ~t"'
'*" '*" '*" ~ .~ ~ -0

~~

Ul I >-3 (':) <: a 0 t"' ttl
t'I:l .:: ~ UlZ

rJl ><>-3
~ t'fl Ul

i 0 >-Jt"'
:3 ttl>
8 :::j
0 0
~ Z

<:
(!l

a
Ul

~ > CX) '!' t>j

~ ~ 0

'< OJ (ll

CIl

~
3

-::t

~ 0 I I
I

.....
I I en
I I ~

°i
I

(,11
I q I 0 I
I

I
~

I
Ul "'" I ~ tij ~ "'" I

0 0 I 5'

2-3

ttl
Z
(':)
t"'
0
Ul
C!
~
ttl

>-3
>
ttl
c:::
t"'
>
>-3
0
Z

COMPUTSt AUTOMATION. INC. ~

The side ventilating system establishes the minimum enclosure size and rectangular
surface for the minimum size opening. This provides for a safety guard if necess~ .

The toplbottom ventilating system def"mes the minimum airflow paths for a cabinet
with stacked equipment or an individual console enclosure.

Figure 2-2 def'mes the minimal dimension parameters for each of these ventilating
systems.

2.2.3 Joining Two Half PC Boards

Most I/O modules occupy only half a PC board slot in the computer. When several half
board options are used. it is recommended that half boards be joined together to form
fun boards. In those cases where an odd multiple of half board 110 modules is used.
a blank Filler PC board is available from Computer Automation. Inc. to join with the
last half board. (Refer to section 12 for further details on the Filler PC board,
Part No. 10053-00).

Half board modules are joined together by means of a stiffener kit which is supplied
with each half board module (CAl part no. 95-20389-00). Each stiffener kit consists
of the following parts:

1. Two 14-inch stiffener bars
2. Twelve 4-40 x .500 inch nylon screws
3. One nylon board extractor with roll pin
4 . One interface connector

When joining two half boards together. two stiffener kits are required.

The stiffener bars are installed on the component side of each printed circuit board.
One stiffener bar is located parallel to the computer interface contacts on each mod­
ule. Another stiffener bar is located at the back edge of each module parallel to the
peripheral interface contact strips. Finally, two stiffener bars (one for each module)
are located on the adjacent edges of each module (what would be the center of a full PC
board) .

Stiffener bars are installed in the following manner:

1. First determine the physical placement of the module in the computer. that is.
the relative placement of the module with regard to the priority string.

2 . ~ext, install the center stiffener bars. The nylon screw is inserted through
from the solder side of the board. Tighten the screws.

3. Install a stiffener bar on the front and rear edges of both modules. Do not
tighten the screws.

2-4

COMPUTER MJTOMA1'ION.IfK. 8!

4. Next. find a level work surface. Stand both modules in a vertical position
with the front edge down. Ensure that the contact edge of each module is
touching the table surface and that the modules are butted together. Tighten
the nylon screws on the front edge. Now tighten the screws on the back edge.

5. Finally. examine the board extractors on one of the processor boards in the
computer. Find the similar extractor mounting holes on each module. Mount
the extractor on each side of the module and insert the roll pin.

This completes the joining operation. The PC board is now ready to install in the
computer. When all boards· are installed. be sure to install the board retainer at the
rear of the computer.

2.2.4 Option Board Installation

The Option PC board (option board) mounts in piggyback fashion to the left half (as
viewed from the front) of either the LSI-lor LSI-2 processor module. Support stand­
offs are provided with the processor modules. All loose hardware (screws. lock­
washers. washers and rear-edge connectors) is provided with the option board.

The option board has three edge connectors. . Connector PI interfaces with JI on the
processor module. Connector JI is the option jumper connector and connector J2
is the Teletype interface connector. Detailed information about the use of connectors
Jl and J2 is provided in section 6 of this manual.

To install the option board. proceed as follows:

1. Take the option board and insert JI and J2 through the slots in the rear stiffener
of the processor module.

2. Position connector PI for insertion into connector Jl on the processor module.

3. Gently push the option board into processor connector JI aligning the four
mounting holes with the prt'cessor module standoffs.

4. Install a screw. lockwasher. and washer in each standoff and tighten.

5. Install rear edge connectors per instructions in section 6.

2.2.5 Module Installation. Processor Chassis Only

I CAUTION .1
Do not remove or install any PC boards or cables while power is
applied to the computer.

2-5

COWUftI NJTOMATION.INC. 8!

The ALPHA LSI motherboard slot organization is shown. in figure 2-3. All modules.
except the processor module which is restricted to the top slot (slot A) • can be placed
in any location within the processor chassis. In the placement of these modules.
however. consideration mu~ be given to priority chains. These priority chains.
namely Interrupt. DMA. and Memory Banking. must be maintained.' DMA and memory
modules provide for the propagation of all priorities. The I/O modules provide for
Interrupt priority. but may not provide for DMA and Memory Banking. If I/O modules
are placed above DMA or memory modules. the priority input and output pins relating
to DMA and Memory Banking must be jumpered. The priority input and output pins
for DMA and Memory Banking are given in the chart below •

DMA

PRIORITY IN
MNEMONIC PIN

DPIN- 209

'PRIORITI OUT
MNEMONIC PIN

DPOT- 210

Memory Banking MBIN 237 MHO'!' 238

NOTE

Some I/O modules have the priority input and output pins brought
out to plated holes to facilitate jumpering. If these plated holes
are not provided. the jumpers should be soldered directly to the
co~ector pin etch.

Interrupt priority is determined by physical location of the interface module within the
chassis. The priority line begins with slot B200 and weaves thl'ough the motherbo~d
as shown in figure.l~~. It is routed through each I/O controller so it C8D,!nhibit the
lower priority devices when requesting service • Therefore. all I/O modules must be
placed in consecutive priority level slots to provide continuity in the prioritY chain.
If the priority chain is broken. down-stream interrupts may not be serviced. If they
are serviced. they will be serviced improperly.

As with Interrupt priority. DMA pljorlty is determined by the physical location of the
DMA controller. The DMA priority chain runs down the 200-series side connectors
only. the highest priority being in slot B200 and the lowest in slot B200. Half bo~d
DMA cOntrollers must be installed in 20G-series connectors only.

The Memory Banking chain runs down the 200-series side connectors only. If half
board memory modules are used. they must be installed in 200-series connectors only.

If no specific module placement scheme is required. the general rules below may be
applied to facilitate module installation. If these rules are follOWed. no particular
problems should occur.

NOTE

Install all modules with component side up .

2-6

'--4

8°·- i c
~ "lj

~.
..,
ID
~
I ~~ ~ :J~

-; r-m

3: -<~

~ a ID
I:D

::J'
..,

ID <: a ..,
0- lD ."
0

~ 8 I:D ..,
Po ;I: ;I:

~
m m
;I: ;I: .., I

~ o· t::! .., §
0

~ c
~ ..,
5'

(JQ

:n 0

8 8

(') III >
~ ~ ~

~
a

;I: ;I:
m m
;I: ;I:
I I

~ ~

(') at >
8 8 8

2-7

...
~

...
10)

1. Install processor module in the top slot (slot A) .'

2. Install memory modules next. The various sizes and types of memory
modules can be intermixed in any order. (Refer to section 7 for
Memory Interleaving and Banking information.) Half board memory
modules must be installed in 200-series connectors only.

3 . Install DMA controllers after memory modules.

4. Install I/O modules last.

Documentation is provided for each type of I/O interface module. This document defines
the software and cabling requirements of the interface module. Refer to the appropriate
~terface description to resolve any questions about the interface module .

t CAUTION

All I/O interface modules must have the rear-edge cable connector
installed prior to oper~tion of the Processor. If the connector is
not installed. a default device address of zero will be assigned to
the module. causing improper instruction execution. Device ad­
dress zero is reserved exclusively for Processor use. For details
concerning assignment of a unique device address to each I/O inter­
face module, refer to the associated interface description which is
packed with each module.

2.2.6 Expansion (Figure 2-4)

In the event insufficient slots are provided in the processor chassis for a given
application, the Maxi-Bus maybe expanded via one or more expansion chassis. The
expansion chassis is identical to the processor chassis (same motherboard, etc.) but
includes a Buffer PC board (buffer board) to regenerate Maxi-Bus signals, and also
ribbon cables of the appropriate length for interconnecting between chassis. (The
length of the cables depends upon whether the interconnection.is from the processor
chassis to the first expansion chassis, or between subsequent expansion chassis.)

To facilitate the computer system expansion, Maxi-Bus expansion connectors J2 and
J3 are provided on the motherboard immediately above slot A. (Refer to figure 8-11
for the pin assignments of connectors J2 and J3.) Connectors J2 and J3 are connected
to buffer board connectors J2 and Jl • respectively. in the first expansion chassis.
If further expansion is required. connectors J4 and J3 at the bottom of the buffer
board are connected to J2 and J 1. respectively. of the next buffer board. The inter­
connect cables should be routed through slots located at the front. bottom and top
of each chassis.

2-8

The Buffer PC board is mounted with the component side facing the expansion chassis
motherboard. Emanating from the center of the component side of each buffer board
are two ribbon cables (Wl and W2). When facing the front of the chassis. the cable
on the right. W2. interfaces with conn~or J2 on the expansion chassis motherboard.
The cable on the left. WI. interfaces with connector J3.

Expansion may extend to a maximum of three chassis. As expansion chassis are
- installed. a speed degradation will occur. Memory modules located in expansion
chassis will exhibit an apparent slower system access and cycle time (200 ns for
each expansion chassis) -. Similarly. I/O modules located in a ~cond expansion
chassis or beyond may require that the processor timing circuit be altered to provide
ad~tional phase stretching during I/O operations (refer to paragraph 6.6.5). (A
minimum I/O stretch periodof.100 ns is recommended for each "subsequent" expan­
sion chassis beyond the "ftrst" expansion chassis.) This timing circuit is modifled
simply by changing an option-jumper connector which configures all jumper­
controlled processor options in the machine. This option-jumper connector mounts
to the rear-edge of the processor option board. Note that whenever any stretch is
inserted. all I/O timing throughout the system is slowed down by the stretch period.

Expansion Chassis
Motherboard
(535()().(J()

J3 J1 J2

t-.... ~::::::111~~-+-.....:::::~ First EICP/Iflsion
OIessis Assembly
(12097.QO)

Expansion ChassiS---~==:::;~ri~==:::=:::::~F~J
Buffer PC Board
(63536-00)

~-C~~~~-~~~~&bgqwmt

J3 J4

Figure 2- -l. Expansion Chassis Cabling Scheme

2-9

Expansion Chassis
Assemblies
(12097-91)

2.2.8.1 Module Installation. Processor and Expansion Chassis

In general. the processor chassis module installation rules described in paragraph
8. 2 . 5 (referring- to priority chains._ placement of half board DMA and inemory modules.
etc.) are also applicable to modUle installation in expansion chassis. In addition to .
these general rules, the following rule applicable to installation of DMA controllers In
expansion chassis must be adhered to.

DMA controllers cannot communicate with memory or I/O modules
located in up-stream chassis. They can. however ,communicate
with these modules if they are installed in any slot within the
saine chassis. or· within any down-stream chassis.

NOTE

Expansion chassis must be installed below the processor chasSis.

If no specific module placement scheme is required. the general rules below may be
applied to facilitate module installation in the processor and expansion chassis.

1. Install the processor module in slot A ot the processor chassis.

Z. Install DMA controlleH immediately below the processor module.

NOTE

If the LSI-l Processor is being used and a DMA module is in an
expansion chassis. it will not be able to eommunicate with the
Memory on the LSI-l Processor board. For this reason. another
memory module with which the DMA controller can communicate
must be placed within the same chassis. or a chassis down-stream
from the DMA controller.

3. Install all memory modules next.

4. Install all I/O modules last.

2 .2. '1 AC Power Application

Computers intended for use with 110 Vac are shipped with a line cord containing a
standard3-prong ac plug. Computers intended for use with 220/240 Vac are shipped
with a line cord • but without a plug due to the various plug configurations possible
when using 220/240 Vac. In these instances. the customer must install an appropriate
ae plug. Color coding for the wires contained in the 8C line cord are as follows:

2-10

Black Hot line-fused

White Neutral line-unfused

Green Ground

Before plugging the ac Une cord into ~ power source. be sure that the main power switch.
located on the back of the chassis, is In the OFF position. Plug the ac line cord into the
power source.

I CAUTION I
Connect ac line cord to properly grounded 3-prong receptacle only.

NOTE

When ac power is applied, the fans will operate whentl:le main
power switch is in the ON position. Ensure that they are oper­
ating.

2.2.8 110 to 220/240 Power Line Conversion

The ALPHA LSI computer may be powered from either 110 Vac or 220/240 Vac. To
convert from 110 to 220/240, or 220/240 to 110, tollow the procedure outline below and
perform the appropriate step 4 tor the conversion desired. Step 4a is for converting
from 110 to 220/240 and step 4b is for converting from 220/240 to 110.

Step 1

Step 2

Step 3

Step 4a

Step 4a1

Step 482

Step 4a3

Turn power oft and remove line cord from ac power source.

Remove Console from front of chassis.

Disconnect ac power connector PI from the power supply. Power
connector PI is connected to the power supply through an opening.
in the motherboard.

110 Vac to 220/240 Vac

Using a Molex removal tool, remove pin 3 from power connector PI. -
(The pins are numbered on the wiring side of the connector.)
Insulate the pin with a piece of electrical tape and tie back to cable.

Remove pin 6 from power connector PI and insert in pin 3 of Pl.

Install a 220/240 Vac plug on the line cord.

2-11

Step 484

Step 485

Step 4b

Step 4b1

Step 4b2

Step 4b3

Step 4b4

Step 5

Step 6

Step 7

COMPU1'El AUTOMATIOft INC. ~

Change Une fuse from 7A. 125 V to 3A. ~50 V.

Proceed to step 5.

220/240 Vee to il0 Vac

U sing a Molex removal tool. remove pin 3. frOm power coimector
PI and insert in pin 6 of Pl. (The pins are numbered on the
wiring side of the connector.)

TBke the pin which is tied back to the power cable (contains a
blue and a black wire) and insert in pin 3 of Pl.

Install a 110 Vac plug on the line cord.

Change line fuse from 3A to 7 A.

Reconnect power connector PI to the power supply.

Install the Console.

Connect the line cord to the appropriate source of ac power.
Then turn power on and test the computer.

2.3 NAKED MINI LSI INTEGRATION

The following paragraphs discuss mounting, cooling and interconnection of the NAKED
MINI LSI-l and -2 computers.

2.3.1 Mounting

There are two mounting considerations: one for LSI-l and one for LSI-2.

2.3.1.1 LSI -1 Mounting Considerations (Figure 2- 5)

The LSI-l computer may be mounted in any plane as long as the cooling requirements
are satisfied. The computer may be hard mounted with mobile or fixed interface con­
nector or slide mounted with fixed interface connectors.

Five mounting holes are provided for hard mounting. Two holes are at the front of
the module near the corners, two are at the back of the module and one hole is located
in the center of the module. It is recommended that standoffs be used when hard
mounting the computer.

2-12

t AIR OUT PUT t

1.505-

1

1-00----------15.94 ~@) -------,.j m
1

!'156!:gg1 DIA ~
'----------- 16.050 -----7-.3-0-0-_-_-_-_-_-_-.. -I:,.j1 5 tIOUNTING HOLES

\" ME""'ORY CARD
\ /MAIN CARD .250 1

L- ..JV

I&'

~-------,.--
11.100 ""

! / ~
RE,J~b- t

Ii]' r -~, j
REF 14 ~O~~~~+~~~~~~R~!~w~w~m~~\~~~~~~~~ll~~K~

.34'11-0 1--_________ 16.90 ____________ ~ _o_ll
MAX LENGTH ~

REF OPTION
CARD

1'5~: d MAX 11-o._--------15.90~------- -,
HEIGHT _h..:..:l______ I ~ .47mX

~14 I =i~
t. IIO

MAX

THE COMPUTER MAY BE MOUNTED UTILIZING SLIDE IN RAILS. THE
AREA PROVIDED AT THE EDGE OF EACH SIDE OF THE MAIN CARD
IS FREE OF ETCH AND COMI=ONENTS TO DIMENSION INDICATED.

~~D~~~~t~Er.-Y BE HARD MOUNTED UTILIZING 'THESE FIVE (5)

MATES WITH CONNECTOR (SPECTRA STRIP P/N SSBOO-034) OR EQUIVAlENT.

MATES WITH CONNECTOR (VIKING PIN 3VH2S/IJN-5) OR EQUIVALENT.

MATES WITH CONNECTOR (WINCHESTER PIN 8BDJ185) OR EQUIVALENT.

MATES WITH CONNECTOR (VIKING PIN 2VK43D/1-I2) OR EQUIVALENT.

THE NAKED MINI ALPHA LSI COMPUTER SHALL BE KEPT FREE OF
EXCESSIVE FORIGN MATERIAL (OIL,DUST, SALTS,ETC).
OBSTRUCTIONS AND AIR LEAKS SHALL BE ALLOWABLE TO THE
EXTENT THAT A MINIMUM OF 150 FPM OF AIR ~S EXHAUSTED
~~?~ c~~b ?sR1ND'iH-P(t5'. THE OUTPUT SIDE OF THE COMPUTER

AIR SHALL BE SUPPLIED AT THE VOLUME OF 20 CFM MINIMUM
WITH A MAXIIt1UM PRESSURE DROP OF.2 INCHES OF WATER
THROUGH AN AIR CORRIDOR AS INDICATED.
AIR FLOW SHALL BE IN THE INDJCATED DIRECTION ONLY.

THE NAKED MINI ALPHA LSI COMPUTER MAY BE MOUNTED IN
ANY PLANE PROVIDING NOTES ~,2 &!Q ARE ADHERED TOO.

~ THE OPTION CARD IS ACCESSABLE BY THE REMOVAL OF FOUR (4) '"'4
SCREWS AND PULLING THE CARD FROM THE CONNECTOR IN THE
01 RECTION SHOWN.

~ THE MEMORY CARD IS ACCESSABLE BY THE REMOVAL OF TWO (2) '4
SCREWS AND PULLING THE CARD fROM THE CONNECTOR IN THE
DIRECTION SHOWN.

~ THE MEMORY AND OPTION CARD ARE ACCESSABLE FROM THE SURFACE
INDICATED. m CLEAR ARfA (ETCH OR FEED THRUS) .350 DIA MINIMUM AROUND MOUNTING
HOLES BOTH SIDES. m MAXIMUM HE:IGHT OF MEMORY CARD &. OPTION CARD (OPTION CARD
NOT SHOWN). o MAXIMUM COMPONENT· HEIGHT OF MAl N CARD.

NOTES: UNLESS OTHERWISE SPECIFIED

Figure 2-5. NAKED MINI LSI-l Outline and Mounting Djagrarn

For slide mounting. a clear area of 0.200 inch is provided along each side of the
module to accommodate various types of PC board guides. The PC board guide should
be able to handle a PC board thickness of 0.062 inch. The LSI-l computer module should
be supported aloni all four edges. The interface connectors along the front of the
module should be hard mounted to the users structure and some type of support should
be provided at the rear ~ the module.

2.3.1.2 LSI-2 Mountina

The LSI-2 is mounted in the same manner as the ALPHA LSI. Reier to paragraph 2.2.1
and t1pioe 2-1.

2.3.2 ~

The cooUng requirements for the LSI-l and LSI-2 are discussed below.

2.3.2.1 LSI-l Coolini

The LSI-l computer is designed to operate over a temperature range of 0° C to 50° C.
Cooling air must fiow from the. processor . side of the module to the memory side of the
module. Notes 8, 9, and 10 of figure 2-5 must be adhered to.

2.3.2.2 LSI-2 Cooling

The LSI-2 chassis has a fan housing with three fans. These fans provide adequate
cooling for the computer.

2.3.3 Interconnection

The interconnection requirements of the LSI-I and LSI-2 are discussed below.

2.3 .3 .1 NAKED MINI LSI-I Interconnection

The LSI-I interconnections consist of bringing power to the module. strapping all of the
signals from Pl to P2 (with the exception listed below). and interfacing the system
control console to PI .

There are ten special signals that interface with the PI connector that are not part of
the Maxi-Bus. Biiht of these signals are dedicated console interface signals while the
other two are dedicated power supply signals. Under no circumstances should these
signals be strapped across to the P2 connector. These dedicated signals and their pin
assignments are listed below.

2-14·

(0WU1IR AUTOMATION ••• ~

Signal Pin Dedicsted to

SSW- PI-9 Console
IF- Pi-lO Console
TTLF- Pl-11 Power Supply
+5H PI-12 Power Supply
AL- PI-33 Console
BM- PI-34 Console
OV- PI-37 Console
START- PI-38 Console
SBRV- PI-83 Console
CINT- PI-84 Console

Table 8-2Usts Maxi-Bus and power signals. aloni with associated pin assignments.

2.3.3.2 NAKED MINI LSI-2 Interconnections

All LSI - 2 interconnections are made at the motherboard. Motherboard connector J 1
provides the console interface while connector FIOO provides the power interface.
Console interface information is available in section 10 while power supply interface
information is available in section 11.

To convert the LSI-2 from 110 Vac to 220/240 Vac. refer to paragraph 2.2.8.

NOTE

The NAKED MINI LSI- 2 consists of a processor module •
memory module(s). chassis. motherboard and fan housing.
In addition to dc power. the user must provide fan power
ofl10 Vac at 0.6 amps to pin· I and 2 of connector PI of
the fan housing.

2-15

Section 3

• CONSOLES

3.1 PROGRAMMING CONSOLE

The ALPHA LSI Programming Console provides the switches and indicators required to
operate. display and control the computer. This section describes the controls and
indicators on the· Console. provides operating procedures. and d~fines machine modes.

3.1.1 Switches and Indicators

For the convenience of the user. the switches and indicators have been grouped into
the following sections:

1. Status
2. Control
3. Entry and Display

Figure 3-1 illustrates the ALPHA LSI Console. AU console switches. except the Console
Enable switch. are momentary contact touch switches and all indicators are light­
emitting diodes (LED's). The switches and indicators are listed and explained in
table 3-1.

NOTE

Due to the momentary contact nature of the Console
switches. the information entered via these switches
is volatile since it is stored electrically rather than
mechanically. The information will be lost during a
power outage. AU pertinent information can be
restored. however. upon power resumption through
use of the Power Fail/Restart option and appropriate
software to restore tile Status word. (Refer to Power
Fail/Restart. section 6. and Status Control instruct­
ions. section 4.)

3-1

Table 3-1. Console Switches and Indicators

SWITCH OR INDICATOR

System Status Section

ON Indicator

. ENABLE Slide Switch
and Indicator

BYTE Indicator

OV Indicator

SENSE Switch and
Indicator

System Control Section

STOP Switch and
Indicator

PURPOSE

On when power is applied. off when power is removed.
The main power switch is located on the rear of the
computer .

The console enable/disable slide switch is located in a
recess on the edge of the QOnsole. When the switch is on I
the ENABLE indicator is on. Likewise. when the switch
is off the indicator is off. When in the ENABLE state. all
switches and indicators are enabled. When in the
disabled state. the only functions that are effective are:

1. The SENSE switch and indicator.
2. The console sense register. console sense register

display. hex entry keyboard for the console sense
register I . console interrupt •. and interrupt indicator.

On when the Processor is in Byte mode. Off when the
Processor is in Word mode.

On when the Processor OVerflow flag is on. Off when
the Overflow nag is off.

-- The SENSE- Switch toggles the SENSE indicator.
The SENSE indicator may be tested by program instruct­
ions. The Sense test will be true if the SENSE indicator
is on.

The STOP switc~ toggles the STOP indicator. The
indicator is on when the Stop mode is established. When
the indicator is off the Run Enable mode is established.

When the Stop mode is established· and the Console is
enabled (ENABLE indicator on) I data entry and display
operations may be performed. In addition, the Processor
will fetch and execute one program instruction each time
the RUN switch is pressed.

When in the Run Enable mdde. data entry and display
operations may not be performed. The Run mode is
enabled but not entered until the RU~ switch is pressed.

3-2

~
I
~

• • • • • ••• •••• • ••• •••• Ott fIA'LE t:Yl't O'Y f'S M IS 11 It 10 , I T , 5 4 3 2 I 0

• •• • • • • • • • • • .'
I , I , , ,

jlJf\ kt.:A' l ~tllt}, Nf I i)· ..

, i.,' ".,1__ _I •

A X I P M

- ~ ., ~~......... ~ i""'-"-

Figure 3-1. ALPHA LSI Console

COWURI AU1OMA1IOk INC. BI
Table 3·1. Coneole Switches and Indicators (Cont'd)

SWITCH OR INDICATOR

RESET Switch and
Indicator

AUTO Switch and
Indicator

INT Switch and
Indicator

RUN Switch and
Indicator

Entry/Display Section

Register Display
Indicators (0 thru 15)

PURPOSE

The indicator is on when the RESET switch is on and
remains on only as long 88 the switch is pressed. The
RESET switch generates 8 system reset aipal which
causes the Processor and allinterfacea to be initialized.

The RESET switch should not normally be used to stop
the computer. If RESET is press8ci while the computer
is running, the instruction currently being executed
may not complete. The STOP switch should normally
be used to halt the co~puter.· The only time that
RESET should be used to halt the computer ia in the
case where the Processor is hung up in a non- .
escapable one instruction loop (e.g •• multi-level
indirect address instruction with closed address chain) •

The RESET switch should not be used atter entering
data via the Console or any flags" and indicators turned
on during data entry will be turned off.

The AUTO switch is used to initiate an Autoload sequence
if the Autoload option is installed. The AUTO switch is
enabled only during the Run Enable mode. Depressing
the Switch establishes the Run mode and initiates the
Autoload sequence. The indicator turns on when the
switch is pressed and remains on until the Autoload
sequence is completed. With no Autoload option
installed. depression of AUTO wID still cause the
processor to run starting at location : 0000. However.
no loading occurs.

The INT switch is used to initiate a Console interrupt.
The switch is enabled only during the Run mode. The
indicator turns on when the switch is pressed and
remains on until the Processor honors the Console
interrupt request.

The RUN switch is used to establish the Run mode when
the STOP indicator is off. When the STOP in,aicator is
on. the RUN switch causes one instruction to be fetched
and executed when pressed. The WRITE/READ and
register indicators (A ,X .1. P and M) are turned off
whenever RUN is pressed. The RUN indicator is
turned on when in the Run mode.

The 16 Register Display indicators display the contents
of either the Console Data register or the Console Sense

3-4

Table 3.-1. Console Switches and Indicators (Cont'd)

SWITCH OR INDICATOR

Register Select Switches
and Indicators (A.X. I.
P andM)

WRITE/READ Switch
and Indicator

PURPOSE

register depending on the state of the 8 UG/DATA
indicator. When the S REG/DATA indicator is off. the
contentS of the Console Data register. are displayed.
The Console Data register contains either: 1) the
most recent contents of the A •. X. I or P register Or
Memory as requested by the Register Select switches;
2) the last processor output to the Console Data
register; or 3) the last keyboard entry to the Console
Data register.

When the S REG/DATA indicator is on, the contents of
the 4-bit Console Sense register are displayed on the
Register Display indicators. The Console Sense
register contains either the last }teyboard entry to the
sense register or the last procesaor output via the
Status Output command. The upper 12 Register
Display indicators are turned off when aisplaying the
Console Sense register.

The five Register Select switches determine which one
of four processor registers or memory data is to be
involved in a read/write operation. Bach switch has a
corresponding indicator which turns on when a given
switch is pressed. The indicators are interlocked such
that only one indicator is on at a time. The A, X. I and
P switches cause a transfer to occur between the target
register and the Console Data register. The M switch
causes a transfer between the addressed memory loca­
tion addressed by-P Register and Console Data register
to occur and also causes the P counter to increment after
the transfer. This feature permits manual scanning or
loading of sequential memory lOcations by repeated
pressing of the M switch".

The WRITE/READ switch is used in conjunction with the
Register Select switches. When the WRITE/READ
indicator is on. the contents of the Console Data register
will be written into the target register or addressed
memory location when the appropriate Register Select
switch is pressed. When the WRITE/READ indicator is
off. the contents of the selected register or addressed

3-5

COMPU1Bl AUTOMATIOft ••

Table 3-1; CoD8Ole Switches and Indicators (Cont'd)

SWITCH OR INDICATOR PURPOSE

-1IleIDOJ7 location are copied into the Console Data
register and displayed.

H exa4ecimal Entry The Hexadecimal Entry Keyboard consists of 18 switches
Keyboard (0 thru P) which are used to enter data into either the 18-bit

Console Data register or the 4-bit Console Sense reelster
·as determined by the S REG/DATA switch lDd indicator.

When the S REG/DATA indicator is off. each depression
of a key cauaes a correspondin, 4-bit binary hex code
to be entered into the four leaat-strntflcant bite (LSD's)
of the Console Data register with the previously entered
data shifted four places to the left. The Console Data
register w1U be statically displayed as lon, as the
S REG/DATA indicator is off and the computer prqrram
does not alter the contents of the ConSole Data register.

When the S REG/DATA indicator is turned on, each
depression of a hex entry key causes the correspondin,
binary hex code to be entered into the four-bit Console
Sense register. The Console Sense register is atatically
displayed in the four least signitlcant Register Display
indicators 80 long as S REG/DATA is in the on state and
the computer program does not modify the contents of
the Console Sense register. The upper 12 Register
Display indicators are exti~guished.

S REG/DATA Switch The S REG/DATA switch toggles the S REG/DATA
and Indicator indicator which determines whether the Console Data

repster or the Console Sense register is to be connected
to the hex entry keyboard and the Register Display
indicators. If the S REG/DATA indicator is off, the hex
entry keyboard is used to enter data into the Console
Date register and the Register Display indicators are
connected to the Console Data register. If the S REG/
DATA indicator is on, the keyboard and display are
connected to the Console Sense register.

CLEAR Switch The CLEAR switch, when pressed, clears data from the
Console Data register. The switch does not affect the
Console Sense register.

3-6

3.1.2 IIachiDe Modes

There are four machiDe modes which are conb"ouecs from the C0D801e. These modes
.. e:

1. Stop M ••
2. StepM.e
3. Run Enable Mode
4. Run Moele

Moele .. lection is made by use of the RUN and STOP switches. The RUN and STOP
indicators define the current machine mode as follows:

STOP RUN MODE

on off Stop
on on Step
off off RunBnable
off on Run

S. 1.2.1 Stop Mode

The Stop mode unconditionally halts prognm execution and enables the Entry and
Display section of the Console. The Stop mode is manually entered from either the
Run mode or the Run Enable mode when the STOP switch is pressed. While in the Stop
mode, the Entry and Display section of the Console is enabled.

3.1.2.2 Step Mode

The Step mode is a transient condition in which a single instruction is executed. The
Stop mode is re-entered upon completion ot'the instruction .. A single instruction is
executed each time the RUN switch is pressed while the STOP indicator is on. Interrupts
are not serviced whUe in Step mode.

3. 1. 2.3 Run Enable Mode

The Run Enable mode is an intermediate mode between the Stop and Run modes. Either
the Run or Stop mode may be entered from the Run Enable mode. Conversely, the Run
Enable mode can be entered from the Run mode by execution ot a programmed halt. The
Run Enable mode can be entered from the Stop mode by turning off the SrC>P indicator.
While in the Run Enable mode, the Entry and Display section of the Console is disabled.

3-7

COWU1II AUTOMATION. INC. B!

3.1.2.4 Run Mode

The Run mode can be entered only from the Run Enable mode. When entered, the Run
mode permits the user's program to execute. The Run mode can be established manually
from the Console; semi-automatically by means of the Autoload option; or. automatically
by means of the Power Fail/Restart option.

The Run mode is entered manually from the Run Enable mode by pressing the Console
:RUN switch. If the Autoload and Power Fail/Restart options are installed. the Run mode
is entered from the Run Enable mode when the AUTO switch is pressed. The Power Fail/
Restart option automatically establishes the Run mode upon application of adequate power
regardless of processor or console status prior to the power fallure.

3. 1.3 Console Operation

The ALPHA LSI Console is used for initial start-up. program debug. and trouble­
shooting. The primary functions executed at the Console are register display and
register change. and the display and entry of memory data. The following paragraphs
discuss detailed procedures for performing these operations.

3. 1.3. 1 Console Preparation

There are several common steps that must be performed before any console operation
may be attempted. These steps prepare the Consol«i! and the computer for console
operations. The initial steps are:

1. Power On

2. Enable
Console

3. Press
STOP

The main poweT switch for the computer is at the rear of the
chassis. Place the power switch in the up position (ON).
The ON indicator on the Console win light and the chassis
blowers will run.

Enable the Console by moving the Console Enable slide switch
Oocated in the recess on the side of the Console) to the enable
position. The ENABLE indicatQr is on when the Console is
enabled.

The computer may come up in the Run mode because of a
previously loaded program. Pressing STOP causes the
computer to leave the Run mode.

NOTE

In some cases the RUN indicator may remain on after the
STOP switch is pressed. This condition may exist when
the computer is attempting to execute certain I/O
instructions. This does not indicate 8 malfunction of the
computer. When this occurs. step 4 of this procedure
will correct the condition.

3-8

COMP\mR AUTOMATION. INC. B!

4. Press
RESET

Pressing RESET puts the computer in Word mode and
initializes the computer and peripheral interfaces. It
forces the termination of any incomplete instructions.

3. 1. 3.2 Console Data Entry Procedure

The Console Data Entry procedure is used to store dats into selected registers or
memory locations from the ALPHA LSI Console. The general procedure is to
enter the data into the Console Data register via the hex keyboard and then trmsfer
the data to a target register or addressed memory location via the Register Select
switches. The detailed· procedure is as follows:

I . Re8dy Console

2. Turn S REG/DATA
Indicator off

3. Turn WRITE/READ
Indicator on

4. Memory Address
--P

5. Data -Target
Register or Memory

6. Sequential Memory
Stores

Prepare the Console and the computer for console
operations as described in paragraph 3. 1. 3 .1.

Enables Console Data register entry. display and
transfer.

Enables writing into a selected target register or
memory location.

Before writing into memory locations. the memory
address where data is to be stored is entered into the
Console Data register and the P switch is pressed to
transfer the contents of the Console Data register to
P. This step is not required to enter data into the
A. X. I or -P registers only.

The data is entered into the Console Data register.
The appropriate register select switch is pressed to
transfer the contents of the Console Data register to
the target register or addressed memory location.

The P register is automatically incremented each
time M is pressed. To store data in sequential
memory locations ~ go back to step 5 for each 8U~ing
word. To store data in a new location. go back to
step 4.

3. 1. 3 . 3.- Console Display ProcedUre

The Console Display procedure is used to display the contents of selected registers or
memory locations. The general procedure is to transfer the data Crom a register or
memory location to the Console Data register by use o(the appropriate Register Select
switch. The detailed p~dure is as follows:

3-1

1.

2.

3.

4.

5.

6.

7.

Ready Console

Turn S REG/DATA
Indicator off

Turn WRITE/READ
Indicator on

Memory Address
-p

Turn WRITE/READ
Indicator off

Target Register or
Memory - Console

Sequential Memory
Displays

Prepare the Console and the computer for console
operations as described in paragraph 3.1. 3.1.

Enables Console Data register. entry. displq and
transfer.

Enables writing desired address into P register.
(Required only prior to displaying memory
locations.)

The address of the memory location to be disp18)'ed is
entered into the Console Data register and the P switch
is pressed. (Required only prior to displ8)'ing
memory Jocation8.)

Enables reading from a selected register or memory
location.

When the appropriate Register Select switch is pressed.
the contents of the selected target register or memory
location are copied into the Console Data register and
displa~.

The P register is incremented each time M is pressed.
Therefore. to display data in sequential memory
locations. go back to step 6.

I CAUTION I
The following caution is applicable when stepping through
a program on the LSI - 2 computer:

If the computer is halted (execution of HLT instl"uction)
within the range of a SIN instruction. any Console operation
will cause execution of the remaining instructions within
the SIN range before the Console is serviced.

3. 1.3.4 Program Execution

Programs to be executed may be entered into Memory by a number of different means.
Short programs may be entered using the Console Data Entry procedure described in
paragraph 3. 1. 3.2. Longer programs may be entered using the Autoload feature or
various loader programs. Regardless of the means used to get a program into Memory •
the method used to execute that program is generally the same. The Program counter
(P register) must be set to the starting address of the program. and the computer Run
mode must be entered. The following steps are used to start program execution from
the Console:

3-10

1 • Ready Conaole

2. Start Address
-P

Prepare the Console aDd the computer for console
operations as describe« In paragraph 3 .1. 3 .1.

Enter the starting address of the program to be
executed in the P register.

NOTE

Enter any required starting information associated
with the program in the A. X or Sense register as
appropriate.

3. Press STOP This enables Run mode. but does nOt cause the
computer to ent .. Run mode.

4. Press RUN Pressmc the RUN switch causes the computer to
enter the Run mode. The computer will continue to
run until it executes a Balt inatl"uction. or untU the
STOP switch is pressed.

3.1.4 Unattended Operation

If for any reason the computer is left unattended when executing a program. it is
recommended that the Console be disabled by placing the Console Enable switch to
the Disable position.

3.2 OPERATOR CONSOLE

3 .2 . 1 Introduetion

The Operator Console provides minimum facilities for the control and display of pro­
cessor operations. It can be used in systems having at least one of the following
options: Power Fail/Restart (PFR). Autoload (AL) or Automstic Start-up (ASU).

The Operator Console is connected to console interface connector Jl on the mother­
board and receives its power. +5VDC and ground. through the motherboard. The
console provides switches to reset the system. to interrupt the processor. and to
start the processor or initiate autoload. depending on the options installed. Indicators
are provided to indicate power on. system running. and overfiow.

3-11

COWU1B MnOMA1ION.IfK.

3.2 .2 Switches and Indicators

All switches are of the momentary-contact type activated in the down position. All
indicators are LED's. Switch and indicator operation is summarized in table 3.2.

Table 3.2 Switch/Indicators - Operator Console

Switch/Indicator Function

ENABLE Activation of this switch provides a ground-true signal that
Switch enables all other switches on the Operator Console. ENABLE

must be held down while any other switch is activated and
not released until the activated switch is released.

RESET The RESET switch. when activated. forces system Reset (RST-)
Switch ground true initializing the processor and all interfaces.

START In systems having the Autoload option. this switch. when acti':'
Switch vated. generates the Autoload signal (AL-. ground-true)

/ starting the Autoload sequence. For this operation. signals
must be strapped as described in paragraph 3.2.3.

In systems without Autoload option. AL- starts the processor oper-
ting from location: 0000 by initiating a power-up sequence provid-
ing that signals are strapped as described in paragraph 3.2.3.

INTerrupt When activated. this switch generates the Console Interrupt
Switch signal (CINT-. ground true) commanding the processor to

interrupt normal processing. Once the processor has serviced
this interrupt. the Console Interrupt Enable Mask (CIE) is not
reenabled for I. S ms. under software control.

Power ON This indicator. when "on." indicates that power (+5VDC) is
Indicator applied to the Operator Console.

RUN Indicator This indicator. when "on." indicates that the processor is in
Run-mode. This LED is energized as a result of Memory Start.
MST-. from the processor.

OVerflow This indicator. when "on." indicates data overflow in the pro-
Indicator cessor. It is energized by the OV flip-flop.

-

3-12 /

3.2.3 Strapping Requirements

Since the Operator Console-does not have a SENSE switch o~ Sense Register. jumpers,
, (or switches) mu-st be installedfo replace these functions. The requirements vary with
I two system configurations:

1. Systems Without Autoload Option. To start processor operation upon acti­
vation of the START switch as explained in table 3.2. AL- must be jumpered
-to "QA'l'LD- on the option board -Or at pl"Oce880r connector Jl-.-mema~--
AL- can be jumpered to PFD- on t~ motherboard. I

Z. Systems with Autoload Options. With this option. -the activation of START
initiates an Autoload sequence. To perform an autoload and execute ftoom
a loader device, the Sense Switch signal (SSW-. pin 2) and Enable Data Sense -
Word (ENDSW-. pin 28) must be strapped to ground at option board con­
nector Jl. Also. data sense signals DSOO - DS03 must be strapped at the
option board connector Jl for proper selection of the loader device. These
signals are on the fonowing pins of Jl (see figure 6-2):

- fiSOO":~-pln 34
DSOl-, pin 33
DS02-. pin 38
DS03-, pin -31

The device is selected by strapping the appropriate pin (s) according to
table 3.3.

Table 3.3 Device Selection

LO}J) (Jl pin no.) EQUIVALENT
LOADER DEVICE MODE STRAP TO GND HEX ADDRESS

TTY /P • TReader ABS None :0
Hi Speed P . T . ABS 34 : 1
MagTape ABS 33 :2
Cassette ABS 33.34 : 3
Disc ABS 36 :4

TTY /P • TReader REL 31 :8
Hi Speed P.T. REL - 31.34 :9
MagTape REL 31,33 :A
Cassette REL 31.33.34 / :B
Disc REL 31.36 :C

To perform an Autoload and execute without a loader device. all data sense signals
(bits) must be grounded (: F). This causes an unconditional exit to location: 31 (see
paragraph 6.5.6).

3-13

-'

Section 4

INSTRUCTIONS AND DIRECTIVES

4.1 INTRODUCTION

This section deals with the various instructions and directives reoognized by the
assembler. The Seta assembler translates programs which are written in a symbolic
language (mnemonics. etc.) into an object lanI'Jage (machine code - see appendices
C and D) which may be loaded into the ALPHA LSI computer. Outputs boom the
assembler consist of the program object code (typically a punched paper tape) and
the program assembly listing. The Seta assembler is a two-pass assembler. A symbol
table for the program is compUed on the 1"1I'st pass and'the program object code and
assembly listing are produced on the second pass.

4.1.1 Instruction and Directive Classes

The instruction and directive classes are listed below in figure 4-1. They are
discussed in this section.

CLASS 1
CLASS 2
CLASS 3
CLASS ..
CLASS 5
CLASS 8
CLASS 7
CLASS 8
CLASS 9
CLASS 10
CLASS 11
CLASS 12
CLASS 13
CLASS 14
CLASS 15

SINGLE-WORD MEMORY REFERENCE INSTRUCTIONS
DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS
STACK INSTRUCTIONS
BYTE IMMEDIATE ,INSTRUCTIONS
CONDITIONAL JUMP INSTRUCTIONS
SHIFT INSTRUCTIONS
REGISTER CHANGE AND CONTROL INSTRUCTIONS
INPUT /OUTPUT INSTRUCTIONS
JUMP ON CONDITION INSTRUCTIONS
ASSEMBLER CONTROL DIRECTIVES
DATA AND SYMBOL DEFINITION DIRECTIVES
PROGRAM UNKAGE DIRECTIVES
SUBROUTINE DEFINITION DIRECTIVES
LISTING FORMAT AND ASSEMBLER INPUT DIRECTIVES
USER DEFINED OPERATION CODE DIRECTIVES

Figure 4-1. Instruction and Directive Classes

4-1

4'.1.2 5mboUc Notation

The 8)'DlboUc source code input to the Beta assembler CQnsists of individual symbolic
statements. All of the statements taken together make up a program which Is to be
translated •

All instructions and certain directives generate an object code. Other directives serv.e
only to control the mbly process .

A source statement represents either an instruction or a directive. It contains foUr
fields - the Label tield. the Operation Code (Op Code) tield. the Operand tie1d and the
Comments fteld. Adjacent ftelds are separated by one or more spaces which allows
free-form symbolic input to the 8888mbler. A space in the ftrst character position of a
source statement indicates no label present. The listing output from the assembler is
formatted for ease in reading. with the Op Code. Operand and the Comments ftelds
beginning at fixed positions on the listing. Source statements on paper tape are
terminated with a carriage return. Line feeds and "rubouta" are ignored. All source
statements are limited to 72 characters.

The instructions and directives acceptable to the BETA assembler are described m
detail in the remainder of this section. The following conventions apply:

1. Square brackets [] enclose elements which are optional and may
be included or omitted as required.

2. Two or more elements separated by a vertical bar (I) indicates a
choice must be made from the enclosed elements.

3. A rirht square bracket followed by dots (] ...)
indicates that the enclosed element may be repeated an arbitrary
number of times.

4.1.3 Assembler Source Statement Fields

The following paragraphs discuss the four assembler source statement fields. The
relative positions of the fields are shown below in figure 4-2.

I LABEL FIELD OP CODE FIELD I OPERAND FIELD I COMMENTS FIELD ·1

Figure 4- 2 . Source Statement Format.

4. 1. 3 . 1 Label Field

The Label field may contain a name which can be referenced by other instruction state­
ments. It is identitled by an alphabetic (A-Z) character in the first position of the
source statement. This first character may be followed by as many as five alpha­
numeric (A-Z. 0-9) or colon (:) characters. This field is terminated by one or more
spaces.

4-2

COWUlBt AUTOMATION. INC. ~

At assembly time. the label is assigned the current value and relocation attribute of the
Program counter (P register). The same name may not appear in the Label field of more
than one source statement in a given program (except when used with the SET directive).

4.1.3.2 Op Code Field

The Op Code field contains a legally defined symbolic instruction or directive. In
addition. user-defined Op codes may appear in this field. The Op Code field consists
of not less than one nor more than four characters, and is terminated by one or more
spaces. The Op Code field of a source instruction statement must be present.

4. 1. 3 . 3 Operand Field

The various instructions and directives mayor may not require operands. In any case.
the syntax of the Operand field depends on the type of instruction or directive with which
it is associated. The Operand field syntax description is contained in the discussions of
the instructions and directives. If the Operand field is present, it contains an expres­
sion consisting of one of the following:

1. The currency symbol ($). representing the current program location.
2. A single symbolic term.

iI' 3. A single numeric term.
4. A combination of symbolic terms. numeric terms and/or the currency

symbol joined by the arithmetic operators plus (+) or minus (-).
5. A text string.
6. A literal (=xx).

The value assigned the currency symbol by the assembler is the value of the assembler's
Working Location Counter at the time the currency symbol is encountered. The value is
absOlute if an absolute assembly is being performed and relative if a relocatable assembly
is being performed. The currency symbol allows the programmer to reference memory
locations relative to the instruction being written rather than assigning labels to the
referenced location.

Symbolic terms (names) may be absolute or relative, depending on the assembly mode
under which they have been defined.

Numeric terms are always absolute. They consist of decimal, octal and hexadecimal
numbers. Decimal numbers can be any value in the range -32768 through +32767.
The first digit of the number must be non-zero. Octal numbers can be any octal value
in the range 0 through 0177777. The first - or leading - digit of the number must be
zero to specify octal numbers. Hexadecimal numbers can be any hexadecimal value in
the range: 0 through: FFFF. The number must be preceded by a colon (:). Although
octal and hexadecimal numbers may be signed. they are normally used to generate a bit
pattern or reference a particular memory location rather than to generate a signed
numeric value.

4-3

(0MPUTal AUTOMATION. INC. ~

Combinations of terms (including the currency symbol) can be achieved by using the
arithmetic operators plus (+) and minus (-). The value of the final expression will be
in the range : 0 thru : FFFF. Combinations of relative and absolute terms are governed
by additional restrictions (see paragraph 4. 1. 5) .

Text strings consist of any sequence of characters surrounded by single quotes (').
Inclusion of a single quote within the character string is accomplished using two adjacent
single quotes. The object code generated consists of 8-bit ASCII character codes. packed
two characters per word, or one 8-bit ASCn character in the LS byte of an instruCtion
(e.g., the operands of Immediate instructions). When a DATA directive is used. the
text string may consist of one or two characters. When one character is specified. the
8-bit code appears in the LSB byte of the computer word, with the MS byte set to zero.

If two characters are specified. the code for the first character is put in the MS byte of
the computer word and the code for the second character is put in the LS byte of the
computer word. When the TEXT directive is used. the text string may consist of as many
as 57 characters. The characters are packed two per word, with the code for the first
character appearing in the MS byte of the computer word and the code for the second
character appearing in the LS byte of the computer word. Trailing character positions
are filled with blanks (:AO) - e.g .• TEXT 'A' would generate a v:alue of: ClAO for the
specified computer word.

Literals are designated by preceding the expression in the operand with an equal (=)

sign Oiterals are only valid for class 1 instructions). This affects the entire expression,
not just one term in the expression. When a literal is encountered by the assembler, a
word is reserved in the scratchpad area of Memory to hold the computed value of the
expression in the Operand field. Memory addressing is then generated to access the
scratchpad location.

4. 1. 3 . 4 Comments Field

The Comments field follows the Operand field or. for those instructions which do not
require operands, the Op Code field. This field generally contains programmer's notes,
cryptic messages, helpful hints, etc. Comments appear on the assembly listing, but
do not generate obj ect code.

4. 1. 4 Arithmetic Operations and Overflow

The ALPHA LSI computer perfortns two's complement arithmetic. All additions and
subtractions are performed on full I6-bit values. Thus, addition operations involving
byte values place the 8-bit data in the least significant 8 bits of the adder and set the
most significant 8 bits to zero (e. g. , AXI : 50 would add: 0050 to the I6-bit X register) .
Subtraction operations involving byte values similarly obtain the 16-bit two's comple­
ment of the data (e. g. , sXi : 50 would add: FFBO to the I6-bit X register) .

4-4

Arlthmet1c overflow occurs when the result of an arithmetic operation exceeds the range
-32768 through +32'167. Specifically. this-involves the carry from bit 14 to bit 15 of the
adder. and the carry out of bit 15 (CO). If the carry from bit 14 to 15 is not the same
88 the carry from 15 to CO (0 and 10r 1 and 0), an arithmetic overflow has occurred and
the overnow (OV) indicator is set. The operation is described below in figure 4-3.

-5 =
+ (-5) =

-10 =

+32767 =
+ (+1) =
132768 -

1. Carry In and Carry Out
No Overflow

COS
T,l, 111 1111 1111 011-carries

1 111 1111 1111 1011 +5 =
1 lU 1111 1111 1011 + ~+5)=
1 111 1111 1111 0110 +10=

3. Carry In and No Carry Out
Overfiow

CO S
o T 111 1111 1111 111-carries

0'111 1111 1111 1111 -32768 =
0 000 0000 0000 0001 + (-1~ =
1 000 0000 0000 0000 -32769 -

2. No Carry In and No Carry Out
No Overfiow

CO S
00 101~arries

0 000 0000 0000 0101
0 000 0000 0000 0101
0 000 0000 0000 1010

4. Carry Out and No Carry In
Overnow

CO S
To -carries

'1 000 0000 0000 0000
1 111 1111 1111 1111
0 111 1111 1111 1111

Figure 4-3. Arithmetic Overflow

4. 1. 5 Relocatability

Relative and absolute programming modes are controlled by the REL and ABS directives.
The default condition of the assembler is the Relative (REL) mode.' The programmer should
note that the ORG directive modifies the contents, but not the relocation attribute, of the
assembler's Working Location Counter.

An absolute program (or section of coding) can only be loaded and executed in the memory
locations specified by the user at assembly time, whereas a relative (orrelocatable) pro­
grams may be loaded and executed in any memory area specified by the user at load time.
Out-of-range memory references are resolved through the use of the scratchpad area in
the base page (the first 256 words of Memory). The user should refer to the LAMBDA
Object Loader documentation.

Multiple-term expressions are reduced by the assembler to a single expression which
may be relocatable or absolute, according to the following rule:

R = (Number of added relocatable terms) - (Number of subtracted relocatable terms)

If R = I, the expression is relocatable; if R = 0, the expression is absolute; and if R is
not equal to 0 or I, the expression is illegal.

4-5

Relocatable expressions are modified by the load bias (established at program load
time) when the LAMBDA Object loader is executed:

Relocated Expression Value = Assembled Expression Value + Load Bias

In addition, the location of the entire program (or block of coding) is offset by the same
load bias:

Relocated Program Location = Assembled Program Location + Load Bias.

4.2 MEMORY REFERENCE' INSTRUCTIONS

4.2.1 Word Mode Operations and Instruction Format

Word mode Memory Reference operations access full 16-bit memory operands. The
default mode of the computer is the. ,Word mode - i. e., when no mode control
instruction has been executed. the computer is in the Word mode. SWM is the
mode control instruction which places the computer in the Word mode. In addition.
the SIN. SIA' and SIX instructions force the computer into the Word mode. The SIN
instruction forces the Word mode for the number of succeeding instructions specified
by its associated operand. The SIA and SIX instructions unconditionally force the
Word mode. The format for the Word mode Memory Reference instru~ions
is shown in figure 4-4.

OPCODE [·1 @ I·~] E2:{PRESSION

No Operator = Direct Address
• = Indirect Addressing (multi-level)
@ = Indexed Addressing

[COMMENTS]

'It €I = Indirect Post-indexed Addressing (multi -level)

Figure 4-4. Word Mode Memory Reference Instruction Format

All (16-bit) word address pointers (defined by DATA statement's) consist of fifteen
/bits of address in the least significant 15 bits. The most significant bit '(bit 15)

specifies indirect addressing if equal to 1 or direct addressing if equal to o.

4.2.1. 1 Word Mode Direct Addressing

Word mode direct addressing allows any Memory Reference instruction to access the first
256 words of Memory (the base page/scratchpad area) as well as 512 memory locations
about the instruction itself (relative to P). Relative to P forward addressing includes
256 words forward (toward higher memory) of the instruction and relative to P backwards

4-6

(OWUTER MJTOMATION.INC. ~

addressing includes the instruction itself and 255 memory locations backward from
the instruction. When direct addressing is desired. the expression in the Operand
field should not be preceded by an * or @ character. When the assembler encounters
a direct reference to an out of range memory location. it automatically generates an
address pointer in the scratchpad area and references the associated memory
location indirectly through the pointer.

4.2.1.2 Word Mode Indirect Addressing

Word mode indirect addressing allows any Memory Reference instruction to access
any memory location through an address pointer in the scratchpad area or .an
address pointer in the 512 memorY locations about the instruction itself (relative to P).
Relative to P forward indirect addressing allows the address pointer to reside in any
memory location up to 256 words forward (toward higher memory) of the instruction
and relative to P backwards indirect addressing allows the address pointer to be in
any memory location 255 words or less prior to the instruction. When indirect
addressing is desired. the expression in the Operand field should be preceded by
an asterisk (*). Multi-level indirect addressing is accomplished by accessing address
poi!1ters in which the most significant bit (bit 15) is set. The memory operand is not
accessed until an address pointer with the most significant bit reset (= 0) is
encountered. Indirect address pointers can be defined by the programmer through
the use of the DATA directive by preceding the expression in the Operand field with
an asterisk (*).

4.2.1.3 Word Mode Direct Indexed Addressing

Word mode direct indexed addressing allows any Memory Reference instruction to
access memory locations by algebraically summing the signed contents of the X
register and any offset v~ue in the range 0 through 255. The offset value is defined
by the expression in the Operand field. When direct indexed addressing is desired.
the expression in the Operand field should be preceded by an @ symbol. When the
assembler encounters an expression with a value greater than 255 in the Operand
field of a direct indexed Memory Reference instruction. it automatically generates
an address pointer in the scratchpad area and references the associated memory
location indirect postindexed. through the pointer.

4. 2.1 .4 Word Mode Indirect Postindexed Addressing

Word mode indirect postindexed addressing allows any Memory Reference instruction
to access memory locations by algebraic81ly summing thecontellts of the X register and
the contents of an address pointer in the scratchpad area. If the most significant bit
of the address pointer is set. it contains the address of another address pointer. which
in turn may contain the address of another pointer. and so forth. When an address

4-7

CD

CD

(0MPUTEft AUTOMATION. INC. f3!!I -_.

IXI+: FF 1------------.,.--1
f
IX)

INDEXEO: 251 LOCATIONS
Y-IXI. (0)
lOCATIONS IX~IC) • 255

~-----------.--

IPJ+I:FF ---------------

f
RELATIVE TD', FORWARD: 218 LOCATIONS
Y-IPJ+1+IOI
LOCATIONS IPJ + 1-11'1 + I .255

IPJ
CPtl
+ '~ '-ii(WM TO. ;;iiCKWARii: i5iUiwiOis-

IM-11) Y -CPt-CDI .
LDCAnollS IPJ.IPJ -2lI5

IPJ·:FF ------.---___ _

:FF

f
:nn

1--------------SCRATCHPAD: Z51lDCATIONS
Y-IDI
LOCATlONS8-255 .

Direct Adressing

MEMORY

=====oRwO::==== =====@:R!!C====
= = :Iri!~:]rO~~= = = = ~§!EaRiiNij!1!im :]1= = = = ~~~POiii1!!mTJI~ =:::

SCRATCH PAD ADDRESSING OR RELAT!VE TO P ADDRESSING IS
USED TO AODRESS AN ADDRESS !'OINTER

81TSO.14 OF THE AODRESS POINTER CONTAIN A MEMORY ADDREss. IF BIT 15 OF
THE ADDRESS POINTER CONTAINS A I·SIT.THE MEMORY ADDRESS IN BITS 0-14 IS
THE ADDRESS OF ANOTHER ADDRESS !'OlffTER.

IF BIT 15 OF THE ADDRESS POINTER CONTAINS A O-lIT, THE ADDRESS"' 111$1-14
IS THE ADDRESS OF THE MEMORY OPERAND.

IF INDEXING IS SPECIFIED BY THE INSTRUCTION, THE ADDRESS IN Bin 0 . 14 IS
ADDED TO THE CDNTEIIITS OF THE X REGISTER TO FORM THE EFFECTIVE OPERAJlD
ADDRESS.

Indirect Adressing

Figure 4-5. Word Mode Adressing Summary

4,..8

pointer with the most significant bit (bit 15) let to zero is found. the contents of the X
register are added to it to form the effective memory address. The memory operand
is then accessed. When indirect postindexed addressing is desired. the expression
in the Operand field should be preceded by an asterisk (.) and an e symbol.

Because the Scan Memory (SCM) instruction always uses indirect postindexed
addressing. the assembler automatically generates the necessary machine code
and does not allow e or • operators on the associated operand expression. The
operand expression for this instruction should reference a user-defined address
pointer in the base page.

4.2.1.5 Word Mode Summary

A summary of Word mode addressing is shown in figure 4-5.

4. 2 . 2 Byte Mode Operations and Instruction Format

Byte mode Memory Reference operations access 8-bit byte operands. The Byte mode
is established by execution of the Set Byte Mode (SBM) instruction. Byte mode
is inhibited (the computer is forced into the Word mode) by execution of the SIN, SWM.
SIA and SIX instructions. The SIN instruction inhibits Byte mode operations for the
number of succeeding instructions specified by its associated operand. The SWM.
SIA and SIX instructions unconditionally force the computer into the Word mode.
The format for Byte mode Memory Reference instructions is shown below in figure 4-6.

OP CODE

No Operator = Direct Address
• = Indirect Addressing (One Level)
il = Indexed Addressing

*e = Indirect Postindexed Addressing (One Level)

Figure 4-6. Byte Mode Memory Reference Instruction Format

[COMMENTS]

All (16-bit) byte address pointers (BAC directive) consist of fifteen bits of word
address in the most significant 15 bits. The least significant bit (bit 0) specifies
the most significant 8 bits (MS byte) of the addressed word if equal to O. or the least
significant 8 bits (LS byte) if equal to 1. Only one level of byte memory reference
indirect addressing. specified in the instruction itself. is possible. Byte operands
affecting the register are always right-justified. i.e .• bytes cannot be loaded into. added
to or stored from the MS bytes of the A and X registers.

The IMS. MPY. DVD. NRM. JMP and JST instructions are not affected by the Byte
mode. They always use full 16-bit word operands.

4-9

COMPUlU AUTOMATION. INC. (§!

4. 2 . 2.1 Byte Mode Direct Addressing

Byte mode direct addressing allows any byte Memory Reference instruction to access
the first 256 bytes (128 words) of Memory as well as 512 byte locations forWard
(toward higher memory) of the instruction itself. When direct addressing is
desired. the expression in the Operand field should not be prec~ed by an • or e
character. When the assembler encounters a direct reference to an out of range
byte location. it automatically generates a byte address pointer in the scratchpad
area and references the associated byte location indirectly through the pointer.

4.2.2.2 Byte Mode Indirect Addressing

Byte mode indirect addressing allows any byte Memory Reference instruction to
acces8 any byte location through a byte address pointer in the scratchpad area
or a byte address pointer in the memory locations about the instruction itself
(relative to P). Relative to P forward indirect addressing allows the byte address
pointer to reside in any memory location up to 256 words forward (toward higher
memory) of the instruction and relative to P backwards indirect addressing allows
the byte address pointer to be in any memory location 255 words or less prior to the
instruction. When indirect addressing is desired. the expression in the Operand
field should be preceded by an asterisk (*). Byte address pointers to be used by
indirect byte Memory Reference instructions can be defined 'by the programmer by
using the BAC directive. Since a byte address pointer utilizes all 16 bits to specify
a given byte location. indirect byte addressing is limited to one level.

4. 2 .2. 3 Byte Mode Direct Indexed Addressing

Byte mode direct indexed addressing allows any byte Memo~ Reference instruction
to access byte locations by summing the contents of the X regtster and any base value
in the range 0 through 255. The base value is defined by the expression in the
Operand field. When direct indexed addressing is desired I the expression in the
Operand field should be preceded by an e symbol. When the. assemble: en~unters
an expression with a value greater than 255 in the Operand fIeld of a dIrect tndexed
byte Memory Reference instruction. it automatically generates a byte a~dre.ss ?Dinter
in the scratchpad area and references the associated byte memory location mdIrect
postindexed through the byte address pointer.

4. 2.2.4 Byte Mode Indirect Postindexed Addressing

Byte mode indirect postindexed addressing allows any byte Memory Refe:ence
instruction to access byte locations by summing the contents of the X regtster and the
contents of a byte address pointer in the scratchpad area. When indirect postindexed
byte addressing is desired. the expressio,n in the Operand field should be preceded by
an asterisk (*) and an @ symbol.

4-10

00+_ '- - -- - - - - - - --- J!l.!.D!
IIDEXfD: _ rnu
Y IIYTE) • (XJ + CDI
IYTIlCICAnOM oo--IXI + 101
WORD LOCATIOIIS 00/2--(00 + (Olin

2

IXI~ ------------- (XII2.

2111'1.1+_1---------------- CP/.1+_
MLATIYE TO'1 FOAWAID: 5121YTR .
Y IWOIDJ -CPt + 1+ 101
IYTE LOCATlOIU "" + 11.2 I'" + 1 + loll
.110 LCICAn .. ., +,.., + 1 +CDI

21"'+111-- - -- - - - -- - - ---- (1'1.1

:FF I- _ - - - - - - - - - - - - - -' : 7F
SCItATCH'AI): _IYTES
y ClYTEI- (01
IYTE lOCAn

:.L------WO~I~O~lO~CA~n~0~.~ ... ~1~n------~:.

Direct Addressing

1'111 OPfIlAIIII - - - -: - - - - - - - --
IYTE OI'EIIMD

INSTIIUCTIOI: ADDIUS

AIIDIIUS POIIlTER: IYTE

Q)

Q) ICRATCHPAII 011 !ilLATIVE ADDII£SSING "URD TO AIIO.RUS A FUll WOIIO ADORED
POtIlTEI. •

® IF IIDEXII& IS lOT REQUIIEO. T1fE ADORED 'O •• TEI COIITAlIIS TM£ EFFEcnVE , ,
ImADOIIEII.

(j) IF /lOEXIN' IS REQUIRED. THE IYTE ADDRUS IN T1fE ADD RED POINTEIIII ADDED TO TIfE
YAlUE IN T1fE X REalmR TO FORM T1fE EFFEcnVE IYTE ADORES&.

Indirect Addressing

Figure 4-7. Byte Mode Addressing Summary

·4-11

(0MPUltR ~ATION.INC. f3JI

-8ecause the Scan M~ry_B~_iSCMB) instructio~ arw~fs ~se~ indirect_pos~dex~:~L
addressing. the assembler automatically generates the necessary ma~hine code and
does not aUow 0 or • operators on the associated operand expression. When
performing byte scans. the operand expression for this instruction should reference
a user defined byte address pointer in the base page.

4.2.2.5 Byte Mode Summary

A summary of Byte mode addressing is shown in figure 4-7.

4. 2.3 Arithmetic Memory ReferenCe Instructions

ADD ADD TD A. Adds contents of effective memory location to co~tents of A
register. DV is set if arithmetic overflow occurs .

ADDB ADD BYTE TD A. Adds contents of effective byte location to contents
of A register. DV is set if arithmetic overflow occurs.

SUB SUBTRACT FRDM A. Subtracts contents of effective memory lOcation
from contents of A register. OV is set if arithmetic overflow.occurs.

SUBB SUBTRACT BYTE FROM A. Subtracts contents of effective byte location
from contents of A register. DV is set if arithmetic overflow occurs.

4.2.4 Logical Memory Reference Instructions

AND AND TO A. Logically AND's contents of effective memory location with
contents of A register. Result replaces contents of A register.

ANDB AND BYTE TD A. Logically AND's contents of effective byte location with
contents of LS byte of A register. Result replaces contents oiLS byte of~
register. MS byte of A register is reset to zero.

lOR

IORB

XOR

INCLUSIVE OR TD A. Inclusively OR's contents of effective memory
location with contents of A register. Result replaces contents of A
register.

INCLUSIVE OR BYTE TD A. Inclusively DR's contents of effective byte
location with contents of LS byte of A register. Result replaces contents
of LS byte of A register. MS byte of A register remains unchanged.

EXCLUSIVE OR TO A. Exclusively DR's contents of effective memory
location with contents of A register. Result replaces contents of A
register.

4-12

xoas EXCLU81VB OR BYTE TO A. bc1U81vely OR's contents of effectlve byte
locat1cm with conteDts of LS byte of A r8llster. 1leau1t replacea contenta
of LS byte of A repater. lIS byte of A "lister remalna uncbaDpcl.

".2.5 Data Tranater lIemory ~ference Instructicme

LDA LOAD A. Loads contents of effective memory location into A reelster.

LDAB LOAD A BYTE. Loads contents of effective byte location into LS byte
of A regiater. liS byte of A reci8ter 18 reset to zero.

LDX LOAD X. Loads contents of effective memory location into X regiater.

LDxB LOAD X BYTE. w.da contents of eftective byte location into LS byte
. of X reglater. lIS byte of X register is reset to zero.

STA STORE A. Stores contents of A register in effective memory location.

STAB STORE A BYTE. Stores contents of LS byte of A register in eftective
byte location.

STX STORE X. Stores contents of X register in effective memory location.

STXB STORE X BYTE. Stores contents of LS byte of X register in effective
byte location.

EMA EXCHANGE MEMORY AND A. Simultaneously stores contents of A
register in effective memory location and loads contents of effective
memory location into A register.

EMAB EXCHANGE MEMORY BYTE AND A. Simultaneously stores contents
of LS byte of A register in effective byte location and loads contents
of effective byte location into LS byte of A register. liS byte of A
register is reset to zero.

".2.6 Program TranSfer Memory Reference Instructions

CMS COMPARE MEMORY TO A AND SKIP IF HIGH OR EQUAL. Comparea
contents of effective memory location with contents of A-register. If
A register is greater than contents of memory location. a one word
skip occurs. If A register is equal to contents of memory location.
a two word skip occurs. If A register is less than contents of memory
location. next sequential instruction is executed.

" 4-13

CIIIB CQIIPAaB BYTE AND SKI!' IF m_ OIl BQUAL. eoa.par. cont.a of
elrecdve byte locatloa with 00IDDta of A repatv. It A ~ Is ~
than contenta of b7te Joeatlan. a ane word aId.p oecura. II' A reIlster fa
equal to contents of byte location •• two word aldp occure. If A recister is
leu than ccmteDta of byte locatian. DUt sequeJJt1a1 instruction is a:ecuted.
All IS bits of A reglater are compared to contents of effective byte locatiOn.
110 lIS byte of A register should be equal to zero.

IllS

JMP

JST

SCM

INCREMENT IIEIIORY AND SUP ON ZERO RESULT. Contents of effective
memory location are ineremented by ODe. If Increment C8WJe8. rault to
become zero. a one word aId.p oceura. If DOt. next sequential inatructkla
is executed. OV is set if U'itbmet1c overflow 0C!CUr8.

NOTE

018 is often used as an interrupt instruction in which cue •
when the increment C8WI88 • zero result. an ECHO dpal"is
pnerated and MDt to the interruptinc device. The inter- .
rupting device U888 the ECHO IIipal to develop an BOB, (Ind­
of-Block) interrUpt. Under these condItlOl'l8 a skip does not
occur and OV is unaffected. (See paragraph 5. S) •

JUMP UNCONDmONAL. P register is loaded with the .sdress of effective
memory location causlnc an lDlcooctitional branch to that address.

.TUlIP AND STORE. Contents of P register (address of JST inatructiGrl +1)
are stored in effective memory Jocation and P register is then loaded with
address of effective memory location +1. causing aD unconditional branch
to that addreu. "

NOTE

JST is often ueed as an interrupt instruction. When used
as such. all interrupts under EIN/DIN control are auto­
matically disabled upon instruction execution. (See
paragraph 5.3). In thia case. the P regiater content is
not the adclreBB of JST iDat:ruction +1.

SCAN MIIIORY. Comparee contents of A register with contents of memory
location in data buffer defined by address pointer in acratchpad (bue
address of data buffer - 1) added to contents of X register (buffer length) .
If a match is found. Scan is terminated and next sequential instruction is
executed. X register is decremented once for each word scanned. Thus.
data butler is scanned in deecencting order. beginning with highest
memory location and end:lng with lowest (base address). When a match
is found. X register containa DWDber of words remaining to be ecanned.
Remainder of data butler can be .eenned simply by executing SCM
instruction again. If a match is DOt found wbell X register reaches zero.
a one 1iford skip occurs and iJuItructloa terminates.

4-14

SCMB SCAN MEMORY BYTE. Compares contents of A register with contents of
memory byte locations in data buffer defined by byte address pointer in
scratchpad (byte base address of pointer - 1) added to contents of X regis­
ter (data buffer length in bytes). If a match is found. Scan is terminated
and next sequential instruction is executed. X register is decremented. once
for each byte scanned. Thus, data buffer is scanned. by byte. in descend­
ing order. beginning with-highest memory byte location and ending with
lowest (base address). Remainder of data butfer can be scanned simply
by executing SCMB instruction again. If a match is not found when X regis­
ter reaches zero, a one word skip occurs and instruction terminates. All
16 bits of A register are compared to contents of effective byte location. so
MS byte of A register should be equal to zero.

NOTES·

1. The SCM and SCMB instructions are interruptable. Upon
completion of interrupt processing. Scan resumes operation
at the point where the interrupt occurred .

2. The Set Byte Mode (SBM) instruction must be executed prior
to the execution of the SCMB instruction.

4.3 DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS

4.3.1~

The Double-Word Memory Reference instructions require two consecutive memory
locations and allow direct and indirect addressing. Indexed addressing is not
allowed and is. in fact. not useful. since these instructions manipulate both the
A arid X registers. The format for Double-Word Memory Reference instructions
is shown in figure 4-8.

OP-CODE r]EXPRESSION I~EXPRESSION 2] [COMMENTS]

No Operator = Direct Address
* := Indirect Addressing (multi-level)
EXPRESSION 1: any absolute or relative expression defining the

effective memory location.
EXPRESSION 2: an optional instruction count in the range 0 thru

31 for NRM.

Figure 4-8. D,.·,ble-Word Memory Reference Format

4-15

4.3 . 2 Instructions

DVD DIVIDE. Divides contents of the A and X registers by contents of memory
location addressed by Expression 1. This address pointer (Expression 1)
may be direct or indirect and occupies second word of double-word DVD
instruction.

Prior to execution of instruction. A and X registers contain signed 30 bit
dividend· (as shown in figure 4-9). and addressed memorY location
contains. signed full-word divisor. Both dividend and divisor must be
positive.

Quotient is placed in X register (sign plus 15 bits) and fractional
remainder in A register (sign plus 15 bits). OV is set if a divide fault
occurs (Divisor ~ most significant half of dividend). If no divide fault
occurs. OV is returned to original state (prior to DVD instruction) .
Note that least significant half of dividend is 15 bits. left justitied.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 I! 7 6 5 4 3 2 1

1
0
I DIVIDEND (MSHI l I DIVIDEND (LSH,

A REGISTER X REGISTER

0

I X I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13. 12 11 10 9 8 7 6 5 4 3 2 1 0

L(S-LI _____________ R_E_M_A_IN_D_E_R ____________ ~I 151 QUOTIENT

MPY

A REGISTER X REGISTER

Figure 4-9. Divide

MULTIPLY AND ADD. Multiplies contents of X register by contents o.f
the memory location addressed by Expression 1 and then adds contents of
A register to product. Address pointer <Expression 1) may be direct or
indirect and occupies second word of double-word MPY Instruction.

Prior to execution of MPY instruction. X register contains signed
full-word multiplicand. addressed memory location contains full­
word mUltiplier. and A register contains " offset If to be added. (Refer
to figure 4-10.) Multiplier and offset must be positive or zero ..
Multiplicand may be either positive. negative or zero. Result IS

placed in A and X registers (sign plus 30 bits). Note that least
significant half of result is a I5-bit left justified value consistent
with format of least significant half of dividend.

4-16

In aU cases OV will be reset (= 0) at completion of a full multiply. The
contents of1JV prior to execution of MPY will be returned in the least
signiftcant bit (bit 0) of the X register.

15 14 13 12 11 10 9 8 7 .. 5 4 3 2 1 0 15 14 13 12 11 10 I 8 7 .. 5 4 3 2 1 0

l-Jlo II..--______ OFF_SET ___ --" I s I MULTIPLICAND

A REGISTER X REGISTER

15 14 13 12 11 10 9 8 7 " .. 4 3 2 1 0 15 14 13 12 11 10 • 8 7 , 5 4 3 2 1

I ... S...JI ______ RE_S_U_LT_'_MSH_I _____ I I RESULT'LSHI

NRM

A REGISTER X REGISTER

Figure 4-10. Multiply and Add

NORMALIZE A AND X. Contents of A and X registers are arithmetically
shifted left (see figure 4-11) until bit 15 of A register is not equal to bit
14 or until maximum shift count specified (Expression 2) is exhausted.
Exponent (count cell), addressed by Expression I, is a two's complement
number which is decremented (incremented in two's complement) once for
each shift until normalization occurs. Address of exponent may be direct

o

or indirect and occupies second word of double-word NRM instruction. No
indication is given if arithmetic overflow occurs when exponent is decremented.

NRM instruction treats A and X registers as a combined 31-bit. plus
sign, register.

OV is reset (= 0) if normalization occurs; otherwise it is set (= 1). In
eith,:r case •. exponent will be d~remented once for each shift performed.

A full 31-bit normalize is performed if no instruction count (Expression
2) is specified. Otherwise. specified count will determine maximum
shifts performed. A normalize operation with a count of zero (Expression
2) provides a test for normalization without affecting contents of A and X
registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D/~I ----1..-..· t=1 ===-.::::::-.::::-..::::-...:::-_-~o
(LOST! A REGISTER X REGISTER

Figure 4-11. NRM Shift Path
4-17

4.4 STACK, DOUBLE WORD INSTRUCTIONS (LS1-2 only)

Stack instructions permit the programmer to enter or retrieve a full la-bit word from
a stack. A stack is a group of continuous 1De1DOI'J locationa whOse length is variable
up to 32,768 words. A stack is organized on a laat-in-first-out basis whereby the
last word entered into the stack will be the first word retrieved from the stack.

A stack can start at any address and ft11s from upper memory toward lower memory
(decreasing addresses). The stack instructions themselves do not provide any stack
boundary limit testing features. The user must provide boundary limit testing as
overhead .saociated with using Stack instrucdons.

All stack accesees are controlled by a stack pointer for each stack. The stack pointer
is a IS-bit address which points to the most recently accessed location in the stack.
The contents of the stack pointer are referred, to as the stack element addreu--SEA.
The stack pointer may be located anywhere in Memory •

Stack instructions occupy two consecutive worela in memory and opera$e in Word mode
only. independent of proce8801' status. The first word contains the instruction whUe
the second word contains the address of the stack pointer. The format for Stack
instructions is shown below in figure 4-12.

With the stack pointer and the stack pointer addresa. indirection is not possible since
the Processor ignores bit 15. If bit 15 of the stack pointer is a I, the stack pointer
will be treated as a negative number when indexing (see paragraph 4.4.1.2) .

OPCODE OPERAND [.AII]

AM = No Operator = Direct Access
PUSH (stack pointer decremented prior to access)

+ POP (stack pointer incremented after access)
e Indexed (single level)

Figure 4-12. Stack Instruction Format

The Label and Comment fields are optional with this class of instruction.

The Op Code fteld must be present. The legal op codes for Stack instructions are
defined in paragraphs 4.4.2 through 4.4.6 inclusive.

The Operand field consists of one or two expressions. The first expression represents
a memory address and must be present. The second expression (AM) is optional
and, when included, must be separated from the first by a comma. This expression
represents the addressing mode of the Stack instruction. Figure 4-12 gives a list of
valid expression characters and their associated addressing modes, and 4.4.1 describes
them in greater detail.

4-18

COMMa AU'IOMAJION.INC. BD

These instructions generate two IS-bit words. The first word is the Stack instruction
Op code. The second word is the absolute address of the stack pointer.

4.4.1 Addressing Modes (Figure 4-l3)

To provide Oexibility in stack management. four addressing modes are provided with
Stack instructions.

4.4. 1.1 Direct Access to Stack

In the Direct Access mode. the second word of the instruction (stack pointer address -­
SPA) is used to fetch the stack pointer from Memory. In this mode. the stack pointer
contains the etfective stack element address (SEA) and is used to access the stack
element for entry. retrieval. or testing of data.

4.4.1.2 Indexed Access to Stack

In the Indexed Access mode. the SPA in the second word of the instruction is used to
fetch the stack pointer from Memory. The contents of the signed X register are then
algebraically summed with the stack pointer to form-the effective SEA. After the
summation, bit 15 is treated as a 0 for accessing the stack element. This allows
access to the nth element in the stack relative to the last stack entry when the X
register contains n. For example. if X =0. the most recent stack entry is accessed
while if X = 1. the next most recent entry is accessed.

4.4. 1.3 Auto-Posfincrement Access to Stack (POP)

In the Auto-Postincrement mode. the SPA is used to obtain the stack pointer. In this
mode. the stack pointer contains the effective SEA and provides direct access to the
stack element. Upon completion of the stack access. the stack pointer is incremented
and restored to its memory location. This mode of addressing appears to remove (POP)
the most recent entry from the stack when used with a load type instruction.

4.4.1.4 Auto-Predecrement Access to Stack (PUSH)

In this mode. the stack pointer is accessed via the SPA. decremented by one. and
restored. The stack element is then accessed using the decremented contents of the
stack pointer. This mode of addressing appears to insert (PUSH) a new entry onto
the stack when used with a store type instruction.

4-19

COWUTER AUTOMATION. INC.

· · · Full
Full

STACK INSTRUCTION-

OPCODE
P

STACK POINTER
~

P+1 ADDRESS

Full ---..t STACK POINTER- I SEA SPA STACK ELEMENT - Full
I Empty

Empty

-Steck Pointer Always Points to Most Recent Entry in Stack.

Empty

Empty

· · ·
Figure 4-13. Stack Organization and Management

4-20

--"-.-

:7FFF

SEA+n t
UPPER
MEMORY

POP

SEA + 1

1 SEA

SEA·l
SEA· 2 PUSH

LOWER
MEMORY

SEA·n -1
:0000

4.4.2 Arithmetic Stack Instructions

ADDS ADD STACK ELEMENT TO A. Adds contents of stack element to contents
of A register. OV is set if arithmetic overflow occurs.

SUBS SUBTRACT STACK ELEMENT FROM A. Subtracts contents of stack
element from contents of A register. OV is set if arithmetic overflow
occurs.

4.4. 3 Logical Stack Instructions

ANDS AND STACK ELEMENT TO A. Logically AND's contents of stack element
with contents of A register. Result replaces contents of A register.

IORS INCLUSIVE OR STACK ELEMENT TO A. Inclusively OR's contents of
stack element with contents of A register. Result replaces conteJlts
of A register.

XORS EXCLUSIVE OR STACK ELEMENT TO A. Ex~lusively OR's contents of
stack element with contents of A register. Result replaces contents
of A register.

4.4.5 Program Transfer Stack Instructions

CMSS COMPARE STACK ELEMENT TO A AND SKIP IF HIGH OR EQUAL. Compares
contents of stack element with contents of A register. If A register is
greater than contents of stack element. a one word skip OCCUl'S. If A
register is equal to contents of stack element. a two word skip occurs.

IMSS

If A -register is less than contents of stack element. next sequential
instruction is executed.

INCREMENT STACK ELEMENT AND SKIP ON ZERO RESULT. Contents of
stack element are incremented by one. If increment causes result to
become zero. a one word skip OCCUl'S. If not. the next sequential instruct­
ion is executed. OV is set if arithmetic overfiow occurs.

JMPS JUMP UNCONDITIONAL. P register is loaded with contents of stack
pointer (SEA). causing an unconditional branch to the addressed stack
element location. Next instruction is executed from location SEA.

JSTS JUMP AND STORE TO STACK ELEMENT. Contents of P register (P + 2)
are stored in stack element and P register is then loaded with address of
stack element plus one (SEA + 1). Next instruction is accessed trom
location SEA + 1.

4.4 . 6 Stack Control Instruction

SLAS STACK ELEMENT ADDRESS TO A. Loads contents of stack pointer into A
4.4.4 Data Transfer Stack Instructions register.

EMAS EXCHANGE STACK ELEMENT AND A. Simultaneously stores contents
of A register 1.n stack element and loads contents of the stack element
into A register.

LDAS LOAD STACK ELEMENT INTO A. Loads contents of stack element into
A register.

LDXS LOAD STACK ELEMENT INTO X. Loads contents of stack element into
X register.

STAS STORE A IN STACK ELEMENT. Stores contents of A register in stack
element.

STXS STORE X IN STACK ELEMENT. Stores contents of X register in stack
element.

4-21

4.5 IMMEDIATE INSTRUCTIONS

4. 5 . 1 .!2!:!!!!!.

Immediate instructions are similar to Memory Reference instructions in that they
perform logical and arithmetic operations involving memory data and operating
registers. The memory data. however. is stored within the immediate instruction .
itself rather than in a separate operand word or byte. The operands of.the instruchons
may be any absolute expression which is within the range ~ th~ugh : F: (i. e .• any
absolute expression which fits into eight bits). The Immedlate mstruction format is
shown in figure 4-14.

4-22

COWU'l8t AUTOMATION. 11K. ~

OP-CODE EXPRESSION [COMMENTS]

EXPRESSION: must be absolute and in the range: 0 thru : FF

Figure 4-14. Immediate Instruction Format

4.5.2. Instructions

AAI

AX!

SAl

SXI

CAl

eXI

LAP

LXP

LAM

LXM

ADD TO A IMMEDIATE; Operand is added to contents of A register •.
OV is set if arithmetic overflow occurs.

ADD TO X IMMEDIATE. Operand is added to contents of X register.
OV is set if arithmetic overDow occurs.

SUBTRACT FROM A IMMEDIATE. Operand is negated (two's
complemented) and added as a 16-bit word to A register. OV is set
if arithmetic overDow occurs.

SUBTRACT FROM X IMMEDIATE. Operand is negated (two's
complemented) and added as a 16-bit word to X register. OV is set
if arithmetic overDow occurs.

COMPARE TO A IMMEDIATE. Op'erand is compared to contents of
LS byte of A register. If unequal,a one word skip occurs. If equal.
next sequential instruction is executed. Contents of A register are
not disturbed. MS byte of A register does not take part in comparison.

COMPARE TO X IMMEDIATE. Operand is compared to contents of
LS byte of X register. If unequal. a one word skip occurs. If equal.
next sequential instruction is executed. Contents of X register are
not distrubed. MS byte of X register does not take part in comparison.

LOAD A POSITIVE IMMEDIATE. Operand is loaded into LS byte of
A register. MS byte of A register is set to zero.

LOAD X POSITIVE IMMEDIATE. Operand is loaded into LS byte
of X register. MS byte of X register is set to zero. .

LOAD A MINUS IMMEDIATE. The operand is negated (two's comple­
mented) and loaded as a 16-bit word into the A register.

LOAD X MINUS IMMEDIATE. The operand is negated (two's comple­
mented) and loaded as a 16-bit word into the X register.

4-23

COMPUTER AUTOMATION. INC. f3:I

4.6 CONDITIONAL JUMP INSTRUCTIONS

4.6.1 ~

Conditional Jump instructions test conditions within the computer and perform program
branches depending on the results of the test. A jump occurs if the specff:led condi­
tions are satisfied. All branches are direct and relative to the P register Oocation
of the Conditional Jump instruction). The range of Conditional Jump'instructloos Is:

Forward Jumps:
Backward Jumps:

P + 1 through P + 64
P through P - 63 -

4.6.2 Microcoding

A general code. JOC. for Jump On Condition. is provided so the programmer can
microcode jump conditions. There are five different conditions ~h1ch may be tested
individually or in combination:

1. Sign of A (positive or negative)
2. Contents of A (zero or not zero)
3. Contents of X (zero or not zero)
4. OverDow indicator (set or reset)
5. SENSE indicator (on or oft)

The conditions may be tested individually or in combination. Figure 4-15 shows the
format for the JOC instruction:

JOC EXPRESSION 1. EXPRESSI~~ 2 [COMMENTS]

EXPRESSION 1: must be absolute and in the range: 0 thru : 3F
EXPRESSION 2: must represent a location within -63 thru +64

computer words.

Figure 4-15. JOC Jump On Condition Format

JOC commands consist of two groups. the AND group and the OR group. The AND test
group requires that all of the test conditions specified by bits 0 through 4 of Expression '1
be true for the jump to take place. The OR group requires that anyone or more of the
test conditions specified be true if the jump is to take place. Expression 1 consists of 6
bits (TO through T5) as defined by f'IgUre 4-16. Bit T5 specifies which test gl-oup
is used. Bits TO through T4 specify inclusion of a specific test condition if equal
to 1. If equal to O. the associated test condition is not examined.

4-24

1
1
1
1
1

COWUl£R AUTOMATION. INC. em

JOC :XX.ADR
r ,
Ts T4 T3 TJ T, To

AND GROUP (Ts
x#o
SENSE on
OV reset
A:lO
A positive

1) OR GROUP IT5 0)

X=O
SENSE off
OV set (resets OV)
A = 0
A negative

Figure 4-16. JOC Expression 1 Definitions

The following Conditional Jump instructions are special cases of the general JOC
instruction. Since they are utilized more often than the general conditional jumps.
they have been given their own mnemonics. Figure 4-17 illustrates the general
format for the Conditional Jump instructions.

[LABEL] OP-CODE EXPRESSION [COMMENTS]

EXPRESSION: must represent a location within -63
thru +64 computer words.

Figure 4-17. Conditional Jump Format

4.6.3 Arithmetic Conditional Jump Instructions

JAG JUMP IF A GREATER THAN ZERO. Jump occurs if contents of A register
are greater than zero.

JAP

JAZ

JUMP IF A POSITIVE. Jump occurs if contents of A register are greater
than or equal to zero (A'5 == 0).

JUMP IF A ZERO. Jump occurs if contents of A register are zero.

JAN JUMP IF A NOT ZERO. Jump occurs if contents of A register are not zero.

JAL JUMP IF A LESS THAN OR EQUAL TO ZERO. Jump occurs if contents of
A register are less than or equal to ZE:ro.

JAM JUMP IF A MINUS. Jump occurs if contents of A register are less than
zero (A 15 = 1).

4-25

COMPUTER AUTOMATION. INC. em
JXZ JUMP IF X ZERO. Jump occurs if contents of X register are zero.

JXN JUMP IF X NOT ZERO. Jump occurs if contents of X register are not zero.

4.6.4 Control Conditional Jump Instructions

JSS

JSR

JOS

JOR

JUMP IF SENSE INDICATOR SET. Jump occurs if SENSE indicator is on.

JUMP IF SENSE INDICATOR RESET. Jump occurs if SENSE indicator
is off.

JUMP IF OVERFLOW SET. Jump occurs if OV equal one. OV is reset
to zero during jump.

JUMP IF OVERFLOW RESET. Jump occurs if OV equal zero.

4.7 SHIFT INSTRUCTIONS

4. 7 . 1 Operand Restrictions and Instruction Format

Shift instructions move bit patterns in the computer registers either right or left.
Shifts may involve a single register (A or X). a single register and the overflow (OV)
indicator. or both the A and X registers and the OV indicator. The Processor provides
logical. arithmetic and rotate shifts. The operands (n) for single register and dO',lhle
register instructions can be any absolute value from 1 through 8 and 16, rt:!specti"/ely.
The single register shift instruction format is shown in figure 4-18 and the instruction
format for double register (long) shifts is shown in figure 4-19.

OP-CODE EXPRESSION [COMMENTS]

EXPRESSIOr.;: --:1ust be absolute and in the range 1 thru 8.

Figure 4-18. Single Register Shift Format

OP-CODE EXPRESSION [COMMENTS]

EXPRESSION: must be absolute and in the range 1 tl)ru 16.

Figure 4-19. Double Register (Long) Shift Format

4-26

I

4.7.2 Arithmetic Shift Instructions

The shift paths for the arithmetic shift instructions are illustrated below in figures 4-20
and 4-21.

16 14 13 12 11 10 8 8 7 8 5 4 3 2 1 0

El;doLI :,:,:.:.::::::_D_AT_A~~~::-::-::-,:-_-_-_-~
A OR X REGISTER

Figure 4-20. Arithmetic Left Shift

16 14 13 12 11 10 9 S 7 ,6 6 4 3 2 1 0

~ I DATA I,

COMPUTER AUTOMATION. INC. BI

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-[] I DATA ,0
ov A ORX' REGISTER

Figure 4-22. Logical Left Shift

15 14 13 12 11 10 9 S 7 6 5 ,4 3 2 1 0

o I DATA I [J.
A OR X REGISTER ov

Figure 4-23. Logical Right Shift

AOR X REGISTER LLA LOGICAL SHIFT A LEFT. Contents of A register are shifted left n
places through OV. Zeros are shifted into bit O. Bits are shifted
from bit 15 of A into OV. Bits shifted out of OV are lost. A and OV
act as a 17-bit register.

ALA

ALX

ABA

ARX

Figure 4-21. Arithmetic Right Shift

ARITHMETIC SHIFT A LEFT. Contents of A register (bits 0-14) are
shifted left n places. The sign bit (bit 15) is unchanged. Zeros are
shifted into bit 0 and bits shifted out of bit 14 are lost.

ARITHMETIC SIUFT X LEFT. Contents of X register (bits 0-14) are
shi~ed left n places. The sign bit (bit 15) is unchanged. Zeros are
shifted into bit 0 and bits shifted out of bit 14 are lost.

ARITHMETIC SHIFT A RiGHT. Contents of A register are shifted right
n places. The sign bit (bit 15) is unchanged and is shifted into and
propagated through bit 14. Bits shifted out of bit 0 are lost.

ARITHMETIC SHIFT X RIGHT. Contents of X register are shifted right
n places. The sign bit (bit 15) is unchanged and is shifted into and
propagated through bit 14. Bits shifted out of bit 0 are lost.

4. 7 . 3 Logical Shift Instructions

The shift paths for the logical shift instructions are illustrated below in figures 4-22
and 4-23.

4-27·.

LLX

LRA

LRX

LOGICAL SIUFT X LEFT. Contents of X register are shifted left n
places through OV. Zeros are shifted into bit O. Bits are shifted
from bit 15 of X into OV. Bits shifted out of OV are lost. X and OV
act as a 17-bit register.

LOGICAL SHIFT A RIGHT. Contents of A register are shifted right n
places through OV. Zeros are shifted into bit 15. Bits are shifted
from bit 0 of A into OV .' Bits shifted out of OV are lost. A and OV act
as a 17-bit register.

LOGICAL SHIFT X RIGHT. Contents of X register are shifted right n
places through OV. Zeros are shifted into bit 15'. Bits are shifted
from bit 0 of X into OV. Bits shifted out of OVO are lost. X and OV act
as a 17-bit register.

4.7 .4 Rotate Shift Instructions

The shift paths for the rotate shift instructions are illustrated below in figures 4-24
and 4-25. .

4-28

RLA

RLX

RRA

RRX

COMPUTER AUTOMATION. INC. ~

15 14 13 12 11 10 9 8 7 6 5 4 3

~~----------------- DATA--------------~

ov A OR X REGISTER

Figure 4-24. Rotate Left Shift

14 13 12 11 10 9 8 7 6 5 3 2 1

L-___________ DATA --------------~

A OR X REGISTER ov

Figure 4- 25. Rotate Right Shift

ROTATE A LEFT WITH OVERFLOW. Contents of A register are shifted
left n places through OV. OV is shifted into bit a and bit 15 is shifted
into OV. No bits are lost when this shift is executed. A and OV act as
a 17-bit register.

ROTATE X LEFT WITH OVERFLOW. Contents of X register are shifted
left n places through OV. OV is shifted into bit 0 and bit 15 is shifted
into OV. No bits ere lost when this shift is executed. X and OV act as
a 1 7-bit register.

ROTATE A RIGHT WITH OVERFLOW. Contents of A register are shifted
right n places through OV. OV is shifted into bit 15 and bit 0 is shifted
into OV. No bits are lost when this shift is executed. A and OV act as
a 17-bit register.

ROTATE X RIGHT WITH OVERFLOW. Contents of X register are shifted
right n places through OV. OV is shifted into bit 15 anq. bit 0 is shifted
into OV. No bits are lost when this shift is executed. X and OV act as
a 17-bit register.

4.7.5 Double Register {Long) Logical Shift Instructions

The shift paths for the Long Logical Shift instructions are shown below in figures
4-26 and 4-27.

4-29

(OWUT£R AUTOMATION. INC. ~ --

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~D I DATA-__ I_ I DATA-----J.lo

ov A REGISTER X REGISTER

Figure 4- 26. Long Left Shift

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o I DATA I .. I DATA ---+...+1 D~"
A REGISTER X REGISTER ov

Figure 4-27. Long Right Shift

LLL LONG LOGICAL SHIFT LEFT. Contents of A and X registers are logically
shifted left n places through OV. Zeros are shifted into bit 0 of X register.
Bits shifted from bit 15 of X enter bit 0 of A, and from bit 15 of A they enter
OV. Bits shifted out of OV are lost. A, X and OV act as a 33-bit register.

LLR LONG LOGICAL SHIFT RIGHT. Contents of A and X registers are logically
shifted right n places through OV. Zeros are shifted into bit 15 of A register.
Bits shifted from bit 0 of A enter bit 15 of X. and from bit 0 of X they enter
OV. Bits shifted out of OV are lost. A. X and OV act as a 33-bit register.

4.7.6 Double Register (Long) Rotate Shift Instructions

Shift paths for the Long Rotate Shift instructions are shown below in figures 4-28
and 4-29:

• 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 876543210

~+----------- GATA --------- J.._-+----------- DATA ---------'

ov A REGISTER X REGISTER

Figure 4-28. Long Rotate Left Shift

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 '2 .: 10 9 8 7 6 5 4 3 2 1 0

1 1 --------- OAT II ----------+--.1---------- c'" - '" ------------+-I~

A REGISTER x :::n,GISTER ov

Figure 4-29. Long Rotate Right Shift

4-30

LRL

COWUTEIt AuToMATION. INC. f3]lI

LONG ROTATE LEFT. Contents of A and X registers are shifted left n places
through OV. OV is shifted into bit 0 of X register. Bits shifted from bit 15
of X enter bit 0 of A. and from bit 15 of A they enter OV. No bits are lost
when this shift is executed. A. X and OV act as a 33-bit register.

LRR LONG ROTATE RIGHT. Contents of A and X registers are shifted right
n places through OV~ OV is shifted into bit 15 of A register. Bits shifted from "',
bit 0 of A enter bit 15 of X. and from bit 0 of X they enter OV. No bits are lost
when this shift is executed. A. X and OV act as a 33-bit register.

4.8 REGISTER CHANGE INSTRUCTIONS

4.8.1 Format

Register change instructions perform arithmetic and logical operations involving the
A register. the X register and/or the OV indicator. The Register Change instruction
format is shown in figure 4-30.

OP-CODE [EXPRESSION]

EXPRESSION; there is no expression in the Operand field
except for the BAO and BXO instructions
where it must be absolute and in the range
o thru 15.

Figure 4-30. Register Change Format
l

[COMMENTS]

4 . 8. 2. A Register Change Instructions

ARM A REGISTER TO MINUS ONE. Sets contents of A register to -1 (: FFFF).

ARP

CAR

DAR

JAR

NAR

A REGISTER TO PLUS ONE. Sets contents of A register to +1.

COMPLEMENT A REGIS.TER. Performs one's complement on contents of A
register.

DECREMENT A REGISTER. Subtracts one from contents of A register. OV
is set if arithmetic overflow occurs. .

INCREMENT A REGISTER. Adds one to contents of A register. OV is set if
arithmetic overflow occurs.

NEGATE A REGISTER. Performs two's complement on contents of A register.
OV is set if arithmetic overflow occurs.

ZAR ZERO A REGISTER. Sets contents of A register to zero.

4-31

COMPUTtR AUTOMATION. INC. ta!

4.8. 3 X Register Change Instructions

ZXR

XRP

XRM

CXR

NXR

IXR

DXR

ZERO X REGISTER. Sets contents of X register to zero.

X REGISTER TO PLUS ONE. Sets contents of X register to +1.

X REGISTER TO MINUS ONE. Sets contents of X register to -1 (: FFFF) •

COMPLEMENT X REGISTER. Performs one's complement on contents of X
register.

NEGATE X REGISTER. Performs two's complement on contents of X register.
OV is set if arithmetic overfiow occurs.

INCREMENT X REGISTER. Adds one to contents of X register ~ OV is set
if arithmetic overflow occurs.

DECREMENT X REGISTER. Subtracts one from contents of X register. OV
is set if arithmetic overfiow occurs.

4.8.4 OV Register Change Instructions

SOY SET OVERFLOW. Sets OV indicator (=1).

ROV RESET OVERFLOW. Resets OV indicator (=0).

COY

SAO

SXO

LAO

LXO

BAO

BXO

COMPLEMENT OVERFLOW. Complements OV.

SIGN OF A TO OVERFLOW. Bit 15 of A register is copied into OV.
A register remains unchanged.

SIGN OF X TO OVERFLOW. Bit 15 of X register is copied into OV.
X register remains unchanged.

LSB OF A TO OVERFLOW. Bit 0 01 A register is copied into OV. A
register remains unchanged.

LSB OF X TO OVERFLOW. Bit 0 of X register is copied into OV. X
register remains unchanged.

BIT OF A TO OVERFLOW. Bit n of A register is copied into OV. A
regi~ter remains unchanged. Bit n is specified in Operand field.

BIT OF X TO OVERFLOW. Bit n of X register is copied into OV. X
register remains unchanged. Bit n is specified in Operand field.

4-32

COMPUTER AUTOMATION. INC. ~

4.8.5 Multi-Register Change Instructions

ZAX

AXP

AXM

ZERO A AND X. Sets contents of A and X registers to zero.

A AND X REGISTERS TO PLUS ONE. Sets contents of A and X registers to +1.

A AND X REGISTERS TO MINUS ONE. Sets contents of A and X registers to
-1 (: FFFF).

TAX TRANSFER A TO X. Transfers contents of A register to X register. A
register remains unchanged.

TXA

EAX

ANA

ANX

NRA

NRX

CAX

CXA

NAX

NXA

lAX

IXA

IPX

TRANSFER X TO A. Transfers contents of X register to A register. X register
remains unchanged.

EXCHANGE A AND X. Exchanges contents of A and X registers.

AND OF A AND X TO A. Contents of A and X registers are logically ANDed.
Result replaces contents of A register. X register remains unchanged.

AND OF A AND X TO X. Contents of A and X registers are logically ANDed.
Result replaces contents of X register. A register remains unchanged.

NOR OF A AND X TO A. Contents of A and X registers are logically NORed
Result replaces contents of A register. X register remains unchanged.

NOR OF A AND X TO X. Contents of A and X registers are logically NORed
Result replaces contents of X register. A register remains unchanged.

COMPLEMENT OF A TO X. Performs one's complement on contents of A
register and places result in X register. A register remains unchanged.

COMPLEMENT OF X TO A. Performs one's complement on contents of X
register and places result in A register. X register remains unchanged.

NEGATE A TO X. Performs two's complement on contents of A register and
places result in X register. A register remains unchanged. OV is set if
arithmetic overflow occurs.

NEGATE X TO A. Performs two's complement on contents of X register and
places result in A register. X register remains unchanged. OV is set if
arithmetic overflow occurs.

INCREMENT A TO X. Adds one to contents of A register and places result
in X register. A register remains unchanged. OV is set if arithmetic
overflow occurs.

INCREMENT X TO A. Adds one to contents of X register and places result
in A register. X register remains unchanged. OV is set if arithmetic over­
flow occurs.

INCREMENT P TO X. Adds two to current program counter (address of IPX)
and places result in X register. P is then incremented for the next instruc­
tion fetch. Example:

4-33

(P)

(P+l)
(P+2)

DAX

DXA

GO

ROUT

IPX
JMP
EQU

EQU

JMP

ROUT
$

$

Place P+2 in X
Jump to routine with address of GO in X

Subroutine starts here

Return to GO

DECREMENT A TO X. Subtracts one from contents of A register and places
result in X register. A register remains unchanged. OV 1s set if arithmetic
overflow occurs.

DECREMENT X TO A. Subtracts one from contents of X register and places
result in A register. X register remains unchanged. OV is set if arithmetic
overflow occurs.

4.8.6 Extended Multi-Register Change Instructions (LSI-2 Only)

BCA

BCX

BSA

BSX

ElX

BIT CLEAR A. The contents of the X register are ones complemented
and then logically ANDed with the contents of the A register. The
result replaces A and the original value of X is left unchanged.

BIT CLEAR X. The contents of the X register are ones complemented
and then logically ANDed with the contents of the A register. The result
replaces X and the original value of A is left unchanged.

BIT SET A. Contents of X register are logically ORed with contents of A
register. Result is placed in A register and X register remains unchanged.

BIT SET X. Contents of A register are logically ORed with ,contents of X
register. Result is placed in X register and A register remains unchanged.

Execute instruction pointed to by X. Instruction contained in location
addressed by contents of X register is executed immediately following EIX
instruction. Next sequential instruction following EIX instruction is skipped.

Note the following:

1. If the executed instruction is a multi-word instruction, the second and
succeeding words of the instruction must be located at the second location
after the EIX instruction (EIX+2).

2. If the executed instruction modifies the P register. the modification is
relative to location EIX+l.

4-34

3. If the executed. instruction is a SCM or conditional I/O instruction. the
location following the EIX instruction (EIX+l) should be coded. with a
JMP $-1. This is required. for recovery purposes in the event of an
interrupt or the lack of a true lIense response.

4. EIX is not interruptable.

4.8. 7 Console Register Instructions

lAB INPUT CONSOLE DATA REGISTER TO A AND HALT. Contents of Console Data
register are loaded into A register. Computer then halts.

IXH INPUT CONSOLE DATA REGISTER TO X AND HALT. Contents of Console
Data register are loaded into X register. Computer then halts.

ICA INPUT CONSOLE DATA REGISTER TO A. Contents of Console Data register
are loaded. into A register.

ICX

IIH

IMH

IPH

ISA

ISX

OAH

OXH

INPUT CONSOLE DATA REGISTER TO X. Contents of Console Data register
are loaded. into X register.

INPUT CONSOLE DATA REGISTER TO I AND HALT. Contents of Console
Data register are loaded into I register. Computer then halts.

INPUT CONSOLE DATA REGISTER TO MEMORY AND HALT. Contents of
Console Data register are stored into memory location following IMH instruc­
tion. Computer halts with P register set to location following modified
memory location.

INPUT CONSOLE DATA REGISTER TO P AND HALT. Contents of Console
Data register are loaded into P register. Computer then halts. When RUN
is depressed. execution of the program will begin at address just input
to P register.

INPUT CONSOLE SENSE REGISTER TO A. Four-bit contents of Console
Sense register are loaded into least significant 4 bits of A register. Most
significant 12 bits of A register are set to zero.

INPUT CONSOLE SENSE REGISTER TO X. Four-bit contents of Console
Sense register are loaded into least significant 4 bits of X register. Most
significant 12 bits of X register are set to zero.

OUTPUT A TO CONSOLE DATA REGISTER AND HALT. Contents of A register
are loaded into Console Data register. Computer then halts.

OUTPUT X TO CONSOLE DATA REGISTER AND HALT. Contents of X register
are loaded into Console Data register. Computer then halts.

4-35

OCA OUTPUT A TO CONSOLE DATA REGISTER. Contents of A register are loaded
into Console Data register.

OCX

OLH

OMH

OPH

OUTPUT X TO CONSOLE DATA REGISTER. Contents of X_regis~er are loaded.
into Console Data relPster.

OUTPUT LOCATION TO CONSOLE DATA REGISTER AND HALT. Location of
OLH instruction is loaded into Console Data register. Computer then halts.

OUTPUT MEMORY TO CONSOLE DATA REGISTER AND HALT. Contents of
memory location following OMH instruction are loaded into Console Data
register. Computer halts with P register set to icicati0E...!ollowing
output memory location (OMH instruction +2) • ---

OUTPUT P TO CONSOLE DATA REGISTER AND HALT. Contents of P register
(address of OPH instruction +1) are loaded. into Console Data register.
Computer then halts.

4.9 CONTROL INSTRUCTIONS

4.9.1 ~

Control instructions are used for general status manipulation in the computer. The
general format for these instructions is shown in figure 4-31.

OP-CODE [EXPRESSION]

There is no expression in the Operand field. except for the
SIN and· STOP instructions.
For SIN. the expression must be absolute and in the range
1 thru 6.

[COMMENTS]

For STOP. the expression must be absolute and in the range
1 thru 255.

Figure 4-31. Control Format

4.9.2 Processor Control Instructions

HLT HALT. Halts the computer.

NOP NO OPERATION. Performs no active function. Normally. used to reserve space
for other instructions:

STOP HALT WITH OPERAND. Halts computer with specified operand occupying
least significant 8 bits of I (instruction) register. Operand may be any
absolute expression in the range 0 through 255. As an example, STOP 5
would halt with: 0805 in I register.

4-36

15

WAIT WAIT FOR INTERRUPT. Executes as JMP $. Program loops on one location
waiting for an interrupt. After interrupt is serviced. return is made to WAIT
instruction to await further interrupts.

4.9. 3 Mode Control Instructions

SBM

SWM

SET BYTE MODE. Conditions computer to address byte (8 bit) operands
rather than word operands when executing Memory Reference instructions
(see paragraph 4.2.2) .

SET WORD MODE. Conditions computer to address word (16 bit) operands
rather than byte operands when executing Memory Reference instructions
(see paragraph 4.2.1). "Reset" condition of computer is Word mode.

4.9.4 Status Control Instructions

The format of the 8-bit Computer Status word is shown in figure 4-32:

14 13 12 11 10 9 8

NOTE

[~
6

OS
2

T

OS
1

4

SENSE REGISTER

3 2 1 0

O=OV RESET
1 - BYTE MODE
O-WORDMODE

Bits 3 thru 7 are zeros when no console is installed
Bits 8 thru 15 are reserved for future expansion

I' ~L-1.0VSET
1 - INTERRUPTS ENABLED
0= INTERRUPTS DISABLED
1 • SENSE INDICATOR ON
0= SENSE INDICATOR OFF

SIN

Figure 4-32. Computer Status Word Format

STATUS INHIBIT. Inhibits interrupts and places computer in Word mode
for number of succeeding instructions specified by operand. Operand may
be any absolute expression in range 1 through 6. As an example, execution
of SIN 4 instruction will force Word mode operation for four succeeding
instructions and will inhibit interrupt acknowledgement until after comple­
tion of five succeediFlg instructions since interrupts are serviced at end of
instruction execution.

NOTE

The following should be noted when using the SIN instruction in the LSI-2
computer.

1. Do not place a HLT instruction within a SIN instruction range.

4-:17

SIA

SIX

SOA

SOX

2. Do not attempt to step through a SIN range when the computer is in Step
mode. If an instruction sequence which falls within a SIN range must be
examined. press the RESET pushbutton ·first to clear the SIN counter.
The sequence can then be stepped through. Note that the computer will
revert to the Word· mode. .

STATUS INPUT TO A. Computer Status word is loaded into LS byte of A
~egister. Resets OV and places computer in Word mode. State of interrupts
IS unchanged. MS byte of A register is set to zero.

STATUS INPUT TO X. Computer Status word is loaded into MS byte of X
register. Resets OV and places computer in Word mode. State of interrupts
is unchanged. MS byte of X register is set to zero.

STATUS OUTPUT FROM A. Least significant byte of A register is loaded into
computer Status register. This instruction does not alter Interrupt Enable fiag.

STATUS OUTPUT FROM X. Least significant byte of X register is loaded into
computer status register. This instruction does not alter Interrupt Enable flag.

4. 9 • 5 Interrupt Control Instructions

EIN ENABLE INTERRUPTS. Enables recognition of external interrupts by the
computer. Interrupts will not be serviced for a minimum of one instruction
time following EIN and possibly as long as three instruction times (maximum).

DIN DISABLE INTERRUPTS. Pr.events Processor from responding to any interrupts.

CIE

cm

PFE

PFD

A special jumper option on processor option board allows Power Fail. Console
and Trap interrupt operation independent of DIN .

CONSOLE INTERRUPT ENABLE. Enables Console interrupts. Console
interrupts are generated each time INT switch is pressed when computer is in
RUN mode. Console interrupts are also under control of EIN/DIN instructions.
A special jumper option on processor option board allows Console interrupts
to be enabled independent of EIN/DIN instructions. Console interrupts are
disabled when a Console interrupt or TRAP is serviced.

CONSOLE INTERRUPT DISABLE. Disables Console interrupts.

POWER FAIL INTERRUPT ENABLE. When option placing Power Fail interrupt
outside EIN and DIN control is selected, Power Fail Interrupt Enable (PFE)
instruction allows recognition of Power Fail interrupts. If Power Fail interrupt
were disabled at issuance of PFE, PFE does not take effect until after two
succeeding instructions have been executed.

POW~R FAIL INTERRUPT DI~ABLE. When option placing Power Fail interrupts
outSIde EIN and DIN control IS selected, Power Fail Interrupt Disable (PFD)
instruction inhibits recognition of Power Fail interrupts.

4-38

TRP TRAP. Generates an interrupt to Console interrupt location if interrupts
are enabled or if special jumper option placing Power Fail. Console and
Trap interrupts outside EIN/DIN control is in use. In latter case. there is
no enable or disable instruction associated with Trap interrupts. Console
interrupt is disabled when TRAP is serviced. Interrupts will not be serviced
for a minimum of one instruction time following TRP.

4.10 INPUT/OUTPUT INSTRUCTIONS

Input/Output instructions are either single word or multiple word instructions. All
single word instructions use the same format (see figure 4-33). Multiple word formats
are described separately in paragraphs 4.10:4 and 4.10.5. AD 1/0 instructions ~ve 8
bits available Co:- addressing a particular peripheral device and a particular register or
function within a device. These 8 bits are arbitrarily divided into a 5-bit Device
Address field to address one of 32 devices and a 3-bit Function Code field to specify one
of 8 i'egisters or functions within a device. The device address and function code may be
expressed as either one or two self-defined (i.e. J numeric expressions) or absolute
expressions. If a single expression is used. it must be in the range : 0 through : FF and
it represents both the device address and function code. If two expressions are used.
the first must be the device address in the range : 0 through : IF and the second must be
the function code in the range: 0 through : 7 •

OP-CODE EXPRESSI~N l[. EXPRESSION ~ [COMMENTS]

If EXPRESSION 2 is not present. EXPRESSION I must be absolute
and in the range : 0 through : FF .
If EXPRESSION 2 is present. EXPRESSION I must be absolute and
in the range : 0 through : IF .
EXPRESSION 2 must be absolute and the range: 0 through: 7.

Figure 4-33. Single Word Input/Output Instruction Format

Both Word and Byte I/O instructions are available. Whether a full 16-bit word or an 8-bit
byte is transferred depends upon the instruction used and is not affected by the word/
byte addressing mode flip-flop (SWM/SBM) used by Memory Reference instructions.

4.10.1 Control Input/ Output Instructions

The Control I/O instructions are divided into Sense and Select instructions.~ Sense
instructions are used to test the status of a function within the addressed peripheral
device. Select instructions are used to control the operation of specific functions
within the addressed peripheral device. The functions tested or controlled depend upon
the individual peripheral device. Control I/O instructions use the Single Word I/O
instruction format shown in figure 4-33.

4-39

COWU11I AUlOMATION.INC. f3!
4. 10. 1.1 Sense Instructions

SEN

SSN

SENSE AND SKIP ON RESPONSE. Tests specified function in addressed
peripheral device. If a true response is obtained. next sequential instruction
is skipped. If a false response is obtained J next sequential. instruction is
executed.

SENSE AND SKIP ON NO RESPONSE. Tests specified function in addressed
peripheral device. If a false response is obtained. next sequential instruc­
tion is skipped. If a true repsonse is obtained; next sequential instruction
is executed.

4. 10.1. 2 Select Instructions

SEL SELECT FUNCTION. Transmits specified function code to addressed peri­
pheral device along with a Select Control signal. All zeros are placed on
Data bus. Any action generated is a function of peripheral device interface
design.

SEA SELECT AND PRESENT A. Transmits specified function code to addressed
peripheral device along with a Select Control signal. Contents of A register
are placed on Data bus. Any action generated is a function of peripheral
device interface design.

SEX SELECT AND PRESENT X. Transmits specified function code to addressed
peripheral device along with a Select Control signal. Contents of X register
are placed on Data bus. Any action generated is a function of peripheral
device interface design.

NOTE

When a Select type instruction is used to turn off interrupts that may be
pending. it should be preceded by a SIN 1 instruction to disable Processor
recognition of the pending interrupt. This is necessary since the Processor
examines interrupt requests prior to the Select taking effect and will there­
fore respond to the interrupt even though it is no longer pending.

4.10.2 Word Input/Output Instructions

Word I/O instructions transmit 16 bits of data at a time. They are divided into
Unconditional and Conditional instructions. Conditional instructions are automatically
repeated until a true sense response is obtained. at which time the data transmission
occurs and the next instruction in sequence is executed. Response to an interrupt
may occur "within" a conditional I/O instruction - i. e .• during a false sense response
an interrupt can be acknowledged and the computer will return to execution of the
conditional I/O instruction after servicing the interrupt. If a word input is requested
from an 8-bit device. the upper 8 bits will be input as zeros. If an output is performed
to an 8-bit device. the upper 8 bits will be ignored by the device.

4-40

COIIWtITER AUTOMATION. INC. f§!I

4.10.2.1 Uncondition&l Word Input/Output Instructions

INA

INAM

INX

INPUT TO A REGISTER. Unconditionally transfers a full IS-bit data word
from addressed peripheral device to A register.

INPUT TO A REGISTER MASKED. Unconditionally transfers a full IS-bit
data word from addressed peripheral device to Processor and logically
ANDs data word with contents of A register. Result replaces contents of
A register.

INPUT TO X REGISTER. Unconditionally transfers a full IS-bit data word
from addressed peripheral device to X register.

INXM INPUT TO X REGISTER MASKED. Unconditionally transfers a full 16-bit
data word from addressed peripheral device to Processor, and logically
ANDs data word with contents of X register. Result replaces contents
X register.

OTA OUTPUT A REGISTER. Unconditionally transfers full IS-bit contents of
A register to addressed peripheral device.

OTX OUTPUT X REGISTER. Unconditionally transfers full IS-bit contents of
X register to addressed peripheral device.

OTZ OUTPUT ZERO. Unconditionally transfers a IS-bit word containing all zeros
to addressed peripheral device.

4.10.2.2 Conditional Word Input/Output Instructions

RDA READ WORD TO A REGISTER. Tests specified function in addressed peri­
pheral device. If a false response is received, instruction is repeated (and
interrupts may be acknowledged). When a true response is received. a full
IS-bit data word is transferred from addressed device to A register.

-~. -- -. ---
RDAM READ WORD TO A REGISTER MASKED. Tests specified function in addressed

peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received,

RDX

a full I6-bit data word is transferred from addressed device to Processor
and logically ANDed with contents of A register. Result replaces contents of
A register.

READ WORD TO X REGISTER. Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received, a
full IS-bit data word is transferred from addressed device to X register.

4-41

COWUTU AUTOMATION,INC. f§!I

RDXM READ WORD TO X REGISTER MASKED. Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received,
a full 16-bit data word is transferred from addressed device to Processor and
logically ANDed with contents of X register. Result replaces contents of X
register.

WRA WRITE FROM A REGISTER. Tests specified function in addressed peripheral
device. If a false response is received, instruction is repeated (and inter­
rupts may be acknowledged). When a true response is received, full IS-bit
contents of A register are transferred to addressed device.

WRX

WRZ

WRITE FROM X REGISTER. Tests specified function in addressed peripheral
device. If a false response is received, instruction is repeated (and inter­
rupts may be acknowledged). When a true response is received, full IS-bit
contents of X register are transferred to addressed device.

WRITE ZERO. Tests specified function in addressed peripheral device. If
a false response is received, instruction is repeated (and interrupts may be
acknowledged). When a true response is received, a I6-bit word contain­
ing all zeros is transferred to addressed device.

4.10.3 Byte Input Instructions

Byte Input instructions input 8 bits of data to the LS byte of a target register leaving the
MS byte unchanged. They are divided into Unconditional and Conditional instructions.
Conditional instructions are automaticSlly repeated until a true sense response is
obtained, at which time the data transmission occurs and the next instruction in sequence
is executed. Re sponse to an interrupt may occur "within" a Conditional Byte Input
instruction - i. e. , during a false sense response an interrupt can be acknowledged and
the computer will return to execution of the conditional instruction after serviceing the
interrupt. Byte Input instructions use the Single Word Input/Output instruction format
as shown in figure 4-33.

4. 10.3.1 Unconditional Byte Input Instructions

IBA INPUT BYTE TO A REGISTER. Unconditionally transfers an 8-bit data byte
from addressed peripheral device to LS byte of A register. MS byte of A
register remains unchanged.

IBAM INPUT BYTE TO A REGISTER MASKED. Unconditionally transfers an 8-bit
data b~e from addressed peripheral device to Processor and logically ANDs
data byte with contents of LS byte of A register. Result replaces LS byte
of A register and MS byte of A register remains unchanged.

4-4:2

COMPUTER AlITOIWION,INC. f3:!

IBX INPUT BYTE TO X REGISTER. Unconditionally transfers an 8-bit data byte
from addressed peripheral device to LS byte of X register. MS byte of X
register remains unchanged.

IBXM INPUT BYTE TO X REGISTER MASKED. Unconditionally transfers an 8-bit
data byte from address peripheral device to Processor and logically ANDs
data byte with contents of LS byte of X register. Result replaces LS byte
of X register and MS byte of X register remains unchanged.

4.10.3.2 Conditional Byte Input Instructions

RBA READ BYTE TO A REGISTER. Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received,
an 8-bit data byte is transferred from addressed device to LS byte of A
register and MS byte of A register remains unchanged.

RBAM READ BYTE TO A REGISTER MASKED .. Tests specified function in addressed·
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged), When a true response is received,
an 8-bit data byte is transferred from addressed device to Processor and
logically ANDed with contents of LS byte of A register. Result replaces
LS byte of A register and MS byte of A register remains unchanged,

RBX READ BYTE TOX REGISTER. Tests specified function in addressed periph­
eral device. If a false response is received, instruction is repeated (and
interrupts may be acknowledged). When a true response is received, an
8-bit data byte is transferred from addressed device to LS byte of X register.
MS byte of X register remains unchanged.

RBXM READ BYTE TO X REGISTER MASKED. Tests specified function in addressed
peripheral device. If a false response is received. instruction is repeated
(and interrupts may be acknowledged). When a true response is received,
an 8-bit data byte is transferred from addressed device to Processor and
logically ANDed with contents of LS byte of X register. Result replaces LS
byte of X register and MS byte of X register remains unchanged.

4.10.4 Block Input/Output Instructions

The two instructions in this class provide for high-speed. full 16-bit data word t-~.,sfers
between Memory and the addressed peripheral device. The Processor is totally dedicated
to these instructions until the specified block of data has been completely transferred -
i. e. , no interrupts may be serviced until the instructions have been executed to comple­
tion.

COMPUTER AUTOMATION. INC. f3:!

The Block Transfer instructions are double-word instructions. The second word of the
instruction contains the base address minus one of the· associated memory data buffer.
The X register contains the (positive) number of words to be transferred - i.e .• the
length of the data buffer.. The ~emory location of each word transferred i8 obtained by
summing the base address rirlnus one and the contents of the X register. As each data
word is transmitted, the X register is decremented by one. Thus. the data butter 1s
output or input in descending order, beginning with the highest memory location and
ending with the lowest memory location (base address plus length -1). When the X
register is decremented to zero, the next instJ;"Uction in sequence is executed.

The format for the Block Transfer instructions is shown in figure 4-34.

OP-CODE

DATA

EXPRESSION 1 [EXPRESSION 2] [COMMENTS]

EXPRESSION 3 [COMMENTS]

If EXPRESSION 2 is not present, EXPRESSION 1 must be absolute and
in the range : 0 thru : FF .
If EXPRESSION 2 is present, EXPRESSION 1 must be absolute and in
the range : 0 thru : IF .
EXPRESSION 2 must be absolute and in the range : 0 thru : 1 .
EXPRESSION 3 is an absolute or relocatable expression giving the

. base address -1 of the buffer.

Figure 4-34. Block Input/Output Instruction Format

The expressions in the Operand field of these instructions must be either self-defining
(i. e .• numeric expressions) or absolute expressions. If ·only one expression is pres­
ent, it must be in the range: 0 through: FF. The high-order 5 bits represent the
peripheral device address and the low-order 3 bits represent the function cod!!. If two
expressions are present, the f"1l"st must be in the range : 0 through: 1F and the second
must be in the range : 0 through : 7. The first expression repr~sents a peripheral de­
vice address, and the second expression represents a function code.

The expression in the Operand field of the DATA statement must not be an indirect
address (no*). It represents the memory location less one Oow-order memoryloca­
tion) _of the data buffer.

BIN BLOCK IN. Tests specified function in addressed peripheral device and
transfers a full l6-bit data word from addressed device to memory data
buffer each time a true sense response is received. Instruction executes until
all data words have been input. Interrupts are not acknowledged until com­
pletion of instruction.

4-44

BOT BLOCK OUT. Tests speclftec1 function in addreased peripheral device and
transfers a full lI-blt data word from memory data buffer to addr d de­
vice each time a true Nnse response is received. Instruction executes
until aU data worda have been output. Interrupts are not acknowledged until
completion 01 instruction. -

4.10.5 Automatic Input/Output Instructions

The Automatic Input/Output instructions (Auto I/O) provide data transfers directly be­
tween Memory and peripheral devices without affecting the A and X registers. These
multiple word instructions effectively constitute complete I/O subroutines. thus facili­
tating their use as interrupt instructions. They increment a (negative) data word or
byte counter. increment a data word or byte pointer &J'ld transfer a data word or byte
between Memory and a peripheral device.

Each Auto I/O instrUction occupies three words in Memory. The first word contains the
instruction itself. the second word contains the two's complement (negative) of the word
or byte count for the data buffer. and the third word contains an addreu pointer speci­
fying the address minus one. of the ftrst Oower-order memory) location in the memory
data buffer. The data buffer is input or output in order of ascending meJllC)ry locations
Oow-ord.r to high-ord.r). The format for th ... instructions is shown in figure 4-35.

[LABEL] OP-CODE EXPRESSION 1 G EXPRESSION 2] [COMMENTS]

[LABEL] DATA EXPRESSION .3 [COMMENTS]'

[LABEL) {BAC}
D:~A

EXPRESSION 4 [COMMENTS]

If EXPRESSION 2 is not present. EXPRESSION I must -be absolute and
in the range: 0 thru : PP.
IF EXPRESSION 2 is present. EXPRESSION 1 must be present and in
the range : 0 thru : IP •
EXPRESSION 2 must be absolute and in the range: 0 thru : 7.
EXPRESSION 3 is the negative word or byte count of the data buffer.
EXPRESSION 4 is an absolute or relocatable expression defining the base
address -1 of the buffer.

Figure 4-35. Automatic Input/Output Instruction Format

The expressions in the Operand fields of the first two statements must be either self­
defined (1. e .• numeric expressions) or absolute expressions. If only one expression is
present in the operand field of the instruction. it must be in the range : 0 through : PF .
The high-order 5 bits represent the device address and 'the low order 3 bits represent
the function code. If two expressions are present. the first must be in the range: 0
through : IF • and the second must be in the ",nge : 0 through : 7. The first expression
represents a peripheral device address. and the second expression represents a function
code.

4-45

The absolute expression for the second word represents the negative (two's complement)
data word or byte count for the data buffer. This word is incremented once prior to
each data word or byte transfer and must be preset each time a block of data is to be
transferred .

The expression in the Operand field of the third word of the instruction ism addreas
pointer specifying the byte or word address minus one. of the data buffer starting
location: This word is incremented once prior to each data word or byte transferred
and must be preset each time a block of data is to be transferred.

Operation of Auto I/O instructions differs depending upon usage. When used as an
in-line program instruction. the Auto I/O instruction sequence is 8S shown in figure
4-36. Each time the instruction is executed. the word/byte count and address pointer
are incremented. one word or byte of data is transferred, and then the incremented .
word count is examined. If the word count has not yet reached zero. the next instruc­
tion executed is from location P+4. If the word count reached zero. the next instrllCtion
executed is at location P+3 (End-of-Block exit location). Since Auto I/O instructions
do not sense for the peripheral device to be ready prior to data transfer. a Sense (SEN)
instruction should be used prior to each execution (one word transferred) of the instruc­
tion. i.e .• to transfer a block location. P+4 would normally contain a jump back to a
Sense instruction prior to location P.

P Automatic I/O Instruction
P+l Word/Byte Counter (neative)
P+2 Word/Byte Address Pointer (start address -1)
P+3 End-of-Block Exit (Word Count = 0)
P+4 Next Instruction (Word Count ~ 0)

Figure 4-36. In-Une Auto I/O Instruction Sequence

Auto I/O instructons may also be used under interrupt control at an interrupt location
to implement a Direct Memory channel. In this application. the Auto I/O instruction is
executed once each time the peripheral device indicates thst it is ready for a data transfer
by interrupting to the location containing the Auto I/O instruction. Since the Auto I/O
instructions do not alter any processor registers. no jumping to an interrupt subroutine
to save registers, status. and return location is required. The Auto I/O instruction is.
in itself. a one instruction subroutine. When executed under interrupts. the skips after
execution are suppressed. Instead. if the word count has not reached zero alter a data
transfer. control is passed directly back to the main-line program at the point it was
interrupted. If the word count did reach zero. a special signal (ECHO-) is sent to the
peripheral device to indicate that it should atop requesting furth~r data transfers. The
Auto I/O instruction transfers control back to the main-line program whether the ECHO­
signal is true or false. Upon receipt of ECHO- • the peripheral device stops data transfer
requests. performs any stop action required (e. g .• CRC checking or generation for
magnetic tape). and then generates an End-of-Block interrupt so the program can
process the data block input or prepare another block for output. Although the End-

4-46

of-Block interrupt can be vectored to any location by the peripheral controller. it is
standard practice for the controller to vector this· interrupt to four locations beyoad
the data transfer interrupt location. Figure 4-3'1 Wustrate8 the typical usage of Auto
I/O instructions under interrupts.

Data Transfer Interrupt Location Automatic I/O Instruction
Word/Byte Counter (n_alive)
Word/Byte Addl'eaa Pointer (start addreaa -1)
Unused

End-of-Block Interrupt Location

1+1
1+2
1+3
1+4 JST BOB SUB (Jump and Store to End-of-Block

AIB

AIN

AOB

AOT

subroutine)

Figure 4-37. Interrupt Location Auto I/O Instruction Sequence

AUTOMATIC INPUT BYTE TO MEMORY. Increments byte counter and address
pointer, and unconditionally transfers an 8-bit data byte from addressed
peripheral device to updated byte location in memory data buffer. which is
addressed by addreaa pointer. When byte count is incremented to zero.
normal one-word skip after data transfer does not take place. or when used
as an interrupt instruction. an ECHO signal is sent to addressed device.

AUTOMATIC INPUT WORD TO MEMORY. Increments word counter and address
pointer. and unconditionally transfers a full 16-bit data word from addressed
peripheral device to updated word location in memory data buffer. which is
addressed by address pointer. When word count is incremented to zero.
normal one-word skip after data transfer does not take place. or when used
as an interrupt instruction, an ECHO signal is set to addressed device.

AUTOMATIC OUTPUT BYTE FROM MEMORY. Increments byte counter and
address pointer. and unconditionally transfers an 8-bit byte from updated
byte location in memory data buffer. which· is addressed by address pointer.
to addressed peripheral device. When byte count is incremented to zero,
normal one-word skip after data transfer does not take place, or when used
as an interrupt instruction. an ECHO signal is sent to addressed device.

AUTOMATIC OUTPUT· WORD FROM MEMORY. Increments word counter and
address pointer. and unconditionally outputs a full 16-bit data word from
updated word location in memory data buffer. which is addressed by address
pointer. to addressed peripheral device. When word count is incremented to
zero. normal one-word skip after data transfer does not take place. or when
used as an interrupt instruction. an ECHO signal is sent to addressed device.

4-47

4.11 ASSEMBLER CONTROL DIRECTIVES

The aaaembler control directive. provide for conditional assembly of source statements
and ~atablish and/or alter the contents and relocatabWty of the P register. If a label
is present on any of tbese control directives. it is generally assigned the current value
and relocation attribute of the assembler'. Working Location Counter. These directivea­
~~_~t genel'~e comp!I!er in~~~~ 1!c?'1'~~._

4.11.1 Conditional Assembly Controls

The IFF' (If False) and 1FT (If True) directives are provided to conditionally assemble
subsequent lines of source code. The format for these two instructions is shown in
figure 4-38.

[LABEL] OP-CODE EXPRESSION

EXPRESSION: must be an absolute value of zero (False.>
or non-zero (True)

Figure 4-38. Begin Conditiollal Assembly Directives Format-

The absolute expression must be previously defined (but not as an extern8I). The last
line affected must be an ENDC directive which signals the end of the conditional assem­
bly. The ENDC directive has the following format:

ENDC

There is no expression in the operand field.

Figure 4-39. End Conditional Assembly Directive Format

IFF and 1FT directiv .. lI'lust not be nested - i.e .• no other IFF or 1FT directive can
appear between a given IFF or 1FT directive and its associated BNJ)C directive. If
the value of the absolute expression is zero. it is defined as false. If it is not equal
to zero, it is defined as true. If the value of the expression satisfies the condition of
the directive (false for IFF and true for 1FT), the source lines between the directive
and its associated ENDC directives are assembled. If the conditions are not met, the
source lines are skipped (not assembled). The program END directive must not
appear between an IFF or 1FT directive and its associated ENDe directive.

4-48

must precede all data generating statements. If a label is present. it i.
assigned a zero value and a relative relocation attribute. No machine instruc­
tions are generated.

UTR EXTERNAL REFERENCE-SCRATCHPAD. Declares external symbols referenced
by current program. Obj~t loader links these declared external symbols
thl"ough scratchpad (first 256 words of memory) at load time. Each name or
symbol appearing in Operand field and also referenced by current program

REF

is output to object loader at load time. Since they are not defined within
current program, these symbols must not be used in multi-term expressions.
References to an EXTR-defined symbol must be direct, since usembler auto­
matically generates indirect references through scratchpad. If a label is pre­
sent, it is assigned current value and relocation attribute of the assembler's
Worldng Location Counter. No machine instructions are generated.

EXTERNAL REFERENCE-POINTER. Defines current location as linkage for
reference to external symbol contained in the Label field. At load Urne, address
assigned to external symbol is stored in m~mory location of REF directive.

4.14 SUBROUTINE DEFINITION DIRECTIVES

The following directives are provided primarily for documentation purposes. They are
used for calling and delimiting subroutines in assembler output Hstings. The formats
are described below in figure 4-44.

CALL EXPRESSION

LABEL ENT

RTN EXPRESSION

Figure 4-44. Subroutine Definition Directive Formats

[COMMENTS]

[COMMENTS]

[COMMENTS]

No Operand field is allowed for ENT. The expression for RTN may be any expression
defining the location of a subroutine return pointer (normally the label for the subroutine
ENT).

CALL

ENT

SUBROUTINE CALL. Causes assembler to generate a Jump and Store instruc­
tion to location specified by expression. It is provided primarily for documen­
tation purposes to facilitate recognition of subroutine Call instructions.

SUBROUTINE ENTRY. Reserves a word to hold return address from 'a subrou­
tine call (JST). Assembler generates a HLT instruction for this directive. Any
source statement which causes one word to be reserved could be used in its
place.

4-53

RTN SUBROUTINE RETURN. Generates an indirect Jump via symbol in Operand
field (.JMP ~xpresaion). Note that expressiOn is direct.

4.15 USTING FORMAT AND ASSEMBLER INPUT CONTROLS

The following controls are provided for the purpose of formatting assembler output Hst­
ings. With the exception of the TITL directive, these controls are simply special char­
acters in the first column or position of a source line. The format for the TITL directive
is shown below in figure 4-45.

I TITL (one blank) ANY COMBINATION OF ALPHANUMERIC CHARACTERS J
NOT EXCEEDING 51 CHARACTERS IN LENGTH

Figure 4-45. Title Directive Format

No label tleld i8 allowed for TITL.

TITL

(Period)

PAGE EJECT WITH TITLE. Generates a Top-of-Form to 88sembler listing
device. Page number is then printed, followed (on same line) by character
string specified in Operand field. Same character string is printed with
page number at top of each page until a new TlTL directive i8 encountered.
If these directives are to be used throughout a program, first TITL directive
should appear as first source line of program, ahead of comments, user
defined op code definitions, and origin statements.

PAGE EJECT. Generates a Top-of-Form to assembler lisJing device. This
control must appear as f"U'st character of a source statement. Remainder of
input line will be ignored. If a TITL directive has been previously processed ,
the title will be printed at the Top-of-Form as described under TITL. If no
TITL has been proCessed. 8 Top-of-Form is generated and a page number is
printed.

• COMMENT LINE. Allows source line comments to be exactly duplicated on
(Asterisk) assembler ~sting device . This control must appear as first character of

source statement. All characters following asterisk on source statement
are duplicated on output listing. Comment lines may appear anywhere in

(Up
Arrow)

a program.

PAUSE. Causes assembler to halt. Assembly is continued by pressing RUN
pushbuttom. This control is most useful when paper tape in~ut is u~. Up­
arrow must appear 88 first character of a source line. Remamder of mput
line will be ignored.

4-54

4.16 USER DEFINED OPERATION CODE DIRECTIVE

User defined operation code directives allow the user to name or define his own instruc­
tiOn mnemonics for the current assembly. If included in a program. user defined op
code directives must precede all source statements other than comments or TITL direc­
tives. The user is referred to the applicable Assembler Reference manual for a detailed
discussion of their usage.

4-55

Section 5

INPUT/OUTPUT AND INTERRUPT OPERATIONS

5.1 INTRODUCTION

5.1.1 Discussion of Input/Output Operations

Interfacing with the standard peripheral devices generally consists of operations
which can be treatec:L as members of three major categories - Control, Sense, and
Data Transmission. The precise definitions of the various instructions, function codes
and status words depend on the design of the individual peripheral interfaces.

5.1.1.1 Control

Control instructions prepare peripheral devices for data transmission. The instructions,
Select (SEL) and Select and Present (SEA and SEX), initialize, establish operating codes,
and control the status of the addressed peripheral device. The format for Control
instruction follows:

INST DA,FC

where:

INST = mnemonic of Control instruction (SEL. SEA. SEX)
DA = assigned address of device interface (: 01 thru : IF)
FC = anyone of eight function codes (: 0 thru : 7)

The SEL instruction commands the addressed peripheral device to perform some function
(initialization, etc.) according to the function code. SEL is used where no further
information, other than the function code, is required I so zeros are placed on the Data
bus.

The SEA and SEX instructions command the peripheral device to perform some function
where additional information, other than the function code. is required. For example,
if the device interface controller contains a status or address register which must be
set during initialization. the required information is first loaded into the A or X
register. Upon execution of the appropriate Select and Present instruction (SEA/SEX).
the contents of the A or X register are placed on the Data bus. An example of the use of
a Select and Present instruction is when the Teletype controller is initialized for Full­
duplex operation (SEA/SEX 7.4 with appropriate register. A or X, = 1) :

5-1

COMPU1tR AUTOMATION. INC. IE:§!1
5.1.1. 2 Sense

Once a peripheral device has been prepared for transmission. of data with the proper
commands. it is necessary to determine whether the device is ready to accept or send
the data. This is accomplished using the Sense and Skip on Response (SEN) and
Sense and SIdp on No Response (SSN) instructions. One or the other of these instruc­
tions should immediately precede an unconditional data transmission sequence such
that an appropriate Sense respOnse is det.ected prior to the data transfer.

or:

OPERANDS

SEN
JMP

DA,FC
$-1 \

Data Transmission

SSN DA.FC
Data Transmission

Figure 5-1. Sense Routines

Refer to figure 5-1. In the first example. the Sense instruction is executed until·a true
response is detected and the Jump instruction is skipped. The data transmission is
then performed. In the second example, the Sense instruction is executed only once.
If a false response is detected. the data transmission instruction is skipped.

5 .1. 1 . 3 Data Transmission

Unconditional data transmission is accomplished using t~e Input to Register (INA and
INX) and Output from Register (OTA. OTX and OTZ) instructions. (Refer to figure
5-2) .

INST

SEN
JMP
INA

or:
SEN
JMP
OTA

OPERANDS

DA,FC
$-1
DA.FC

DA.FC
$-1
DA,FC

Figure 5-2. Unconditional Data Transmission

5-2

When the Sense response is true. the Jump instruction is skipped and the data trans­
mission instruction is executed.

Conditional data transmission is accomplished by combining Sense operations with
data transmission using the Read to Register (RDA. RDX. RBA and RBX) and Write
from Reg:l.ster (WRA, WRX and WRZ) instructions. (Refer to ftgure 5-3.)

or:

.!!!!
RBA

WRX

OPERANDS

DA,FC

DA.FC

Figure 5-3. Conditional Data Transmission

These instructions are executed repeatedly until a true Sense response is received.
The data transmission then occurs and the next instruction in sequence is executed.
The Sense and unconditional data transfer operations can be combined in a conditional
data transfer instruction only when the function codes for the two operations are the
same. The conditional data transmission instructions are interruptable.

Block data transmissions are performed using the Block Input to Memory (BIN) and
Block Output from Memory (BOT) instructions. (Refer to figure 5-4.)

~ .!!!!!. OPERANDS

LXP COUNT
BIN DA,PC
DATA BUF - 1

or:
LXP COUNT
BOT DA,PC
DATA BUF - 1

BUF RES COUNT

Figure 5- 4. Block Data Transmission

These instructions are executed repeatedly. transmitting one word of data each time a
true Sense response is received. until all data has been transmitted. The data is trans­
mitted in reverse order (in order of decreasing addresses). The next instruction in
sequence is then executed. The function code associated with these instructions is the
same as the function code used by the incorporated Sense. The plock data transmission
instructions are not interruptable.

5-3

In-line automatic data transmissions are performed using the Automatic Input to Memory
(AIN and AlB) and Automatic Output·from Memory (AOT and AOB) instructions. (Refer
to figure 5;-5.)

SENSE

or:
SENSE

BUF

.m§I

SEN
JMP
AIN
DATA
DATA
JMP
JMP

SEN
JMP
AOB
DATA
BAC
JMP
JMP

RES

OPERANDS

DA,FC
$-1
DA,FC
Negative Data Count (Word)
BUP - 1 (Word)
EOB
SENSE

DA,FC
$-1
DA.FC
Negative Data Count (Byte)
BUF - 1 (Byte)
EOB
SENSE

COUNT

Figure 5-5. In-line Auto I/O Data Transmission

These instructions unconditionally transmit one word/byte of data each time they are
executed and are therefore preceded by an appropriate Sense command. In addition.
the Base Address pointer and the Negative Data Count are incremented. with the Data
Count eventually becoming zero and generating an exit to the End-of-Block processing
routine (EOB). Automatic I/O instructions may be used under interrupts. in which
case the Sense instruction is not required and the exits are replaced by a return to the
mairiIine program. A final interrupt. to a different (End-of-Block) location is generated
by the peripheral controller when the buffer is completely transferred.

5.1.2. Interrupt Operations

Interrupts constitute a means of reacting quickly to random. external stimuli ~thout
consuming valuable processing time in a continuous polling environment. PerIpheral
devices which are to be operated under interrupt control are assigned reserved memory
locations anywhere in Memory. These interrupt addresses are generated by the indi­
vidual peripheral controllers and generally have jumper selectable location~ within
the first 512 locations of Memory. Appendix B includes a table of standard mterrupt
address assignments.

5-4

When an interrupt is recognized, the instructioa at the aaeociatecl interrupt location la
executed. If the instruction does not modify the program counter, control is immediately
restored to the mainline program. Otherwise, pJ'OCessing continues at the location
specified by the new contents of the P register. Although any of the instructiona in the
ALPHA LSI's repertoire could be used in the reserved locations .. interrupt instructions,
only certain of them are generally useful - IMS, .lMP, JST and the Auto I/O inatructlone.
With 1.81-1 processors. any memory reference instruction performing relative to P bac1n,ardI
addressing should not be used 88 an interrupt instruction (the instruction would reference
the location one lower that the location actually programmed; i.e. ,$9 instead of $8).

Before a given peripheral device can be operated under interrupt control. the interrupts
for that devioe must be enableli. This enables the device to generate an interrupt request
when the associated event occurs. In addition. Processor interrupts must be enabled.
This is accomplished using the EIN instruction and allows the Processor to respond to
the interrupt request of the peripheral device.

5.1.2.1. Non-Input/Output

The Increment Memory and Skip on Zero (lMS) instruction is used in interrupt program­
ming as a counter or timer for external events. As interrupt instructions. increment
results "of zero do not generate skips. They generate. instead. a signal (ECHO) to the
peripheral interface which caused the interrupt. Usually this signal is used by the
device to generate a second interrupt to another reserved location at which a Jump and
Store (JST) instruction to a counter/timer maintenltnce subroutine would be located.

The JST instruction is used in interrupt programming aa a means of transferring con­
trol to an interrupt subroutine in a manner such that return to the mainline program at
the interrupted location can be aocomplished upon :!Ompletion of the operations required
by· the interrupt. JST is the only instruction which disables Processor interrupts when
it is used as an interrupt instruction. Before returning to the mainline program. the
Processor interrupts should be re-enabled. '

5.1. 2 . 2 Input/ Output

The Automatic Input to Memory (AIN and AlB) and Automatic Output from Memory (AOT
and AOB) instructions were specifically designed as interrupt instructions. Used to
transfer blocks of data/between Memory and the peripheral devices. these instructions
contain their own word/byte count and memory word/byte address. They do not affect
the A and X registers, the OV indicator or the P register when transferring data as
interrupt instructions. As each data word/byte is transmitted. the associated pointer
and counter are automatically incremented.

5.1. 2.3 End-of-Block Interrupts

When either the IMS or Auto I/O instructions are u sed as interrupt instructions, incre­
ment results of zero (any memory location for IMS and the negative word/byte count for
the Auto 110 instructions) produce ECHO signals which are typically used by the various
peripheral devices to generate End-or-Block interrupt requests to different reserved
interrupt locations.

5-5

(OWUIII JII1OIIA1ION.IK. e:!I
5.2 NON-INTBRRUPT INPUT/OUTPUT EXAMPLES

The examples shown in figures 5-6 through 5-10 are discussed in the paragraphs that
follow.

LABEL D!§1' OPERANDS COMMENTS

O~tional SEL 4.4 Initialize Line Printer

LDA CHAR A = Char to Print
SEN 4.1 Senae Line Printer Ready
JIIP $-1 (Not Ready)
OTA 4,1 Unconditionally Output A

Figure 5-6. Initialization and Unconditional Output to Line Printer

LABEL mn: OPERANDS COMMENTS

Optional SEL 7.4 Initialize Teletype

SEN 7.3 Sense Teletype Ready (not busy)
JMP $-1 (Not Ready)
SEL 7.2 Command Step Read
SEN 7.1 Sense Character Buffer Full
JMP $-1 (Not Full)
INA 7.0 Unconditionally Input Character to A

Figure 5-7. Unconditional Character Read from Teletype Paper Tape Rea<ier

LABEL INST OPERANDS COMMENTS

Optional SEL 4.4 Initialize Line" Printer

LXP :OC Top of Form Character
WRX 4,1 Output to Line Printer When Ready

Figure 5-8. Initialization and Conditional Control of Line Printer

5-6

COMPUY8t AU1OMA1ION. tNC. f§J
l

~ mST OPERANDS COMMENTS

Optional SEN 7,3 Sense Teletype Ready (not busy)
cTMP $-1 (Not Ready)

SEL 7.0 Enable Auto Echo

RBA 7,1 Input a Teletype Character to A When Ready
LLA 8 Shift to Most Significant 8 Bits
RBA 1.1 Input Another character to Least

Significant 8 Bits
SEL 7.4 Disable Auto Echo

Figure 5-9. Conditional Input from Teletype Keyboard with Auto Echo

~ INST OPERANDS COMMENTS

Optional SEL 4,4 Initialize Line Printer

LXP COUNT X = Word Buffer Length
BOT 4,1 Block Output to Line Printer
DATA BUF-l Character Buffer Address Less One

BlJF RES COUNT Data Buffer

Figure 5-10. Uninterruptable Block Output to Line Printer

5-7

COMM8l AU1OMA1ION... f§J

~ ~ OPERANDS COMMENTS

Optional SEN 5,~ Sense Card Reader Ready
JMP $-1 (Not Ready)
SEL 5.4 Initialize Card Reader-
SEL 5.3 Command Card Reader Read Card

LOOP SEN 5.0 Sense Input Character Ready .
JMP $-1 (Not Ready)
AIB 5.0 Automatic Input Cb8racter io Buffer
DATA ":'80 Buffer ByteCoWlt
BAC BUP-l Buffer Byte Address
JMP $+2· Zero Counter Reaults - Exit
JMp LOOP Loop on Non-Zero Counter ReSUlts

BUF RES 40 80 Character (Byte) Data Buffer

Figure 5-11. Automatic Byte Input from Card R~der

5. 2.1 Control Instructions

The SEL instruction is the most widely used con~l instruction for peripheral devices. -
It is used both for initializing the devices, as in figures 5-6. 5-7. 5-8, 5-10 and 5-11.,and
for causing the peripheral devices to perform specitic functions, as in ftgures 5-'1. 5-9
and the second SEL instruction in figure 5-11. Special characters are sometimes used,or
control functions (e. g .• the Line Printer Top of Form character in figure 5-3).

NOTE

When a Select type instruction is used to turn off interrupts that may
be pending, it should be preceded by a SIN 1 instruction to disable
Processor recognition of the pending interrupt. This is neceasary
since the Processor examines interrupt requests prior to the Select
taking effect and will therefore respond to the interrupt even though
it is no longer pending. .

The SEN instruction is used to test whether the specified data source or desti~~ti.oll ~
the addressed peripheral device is ready to transmit or receive data. Sometimes both
the peripheral device and a particular buffer within the device must be ready for data
transmission. as in figures 5-7 and 5-11. In many cases. the Sense function can be
incorporated into the Conditional I/O instructions, as in figures 5-8 and 5-9 .

. 5-8

COMPU1'ER AUTOMATION. INC. ~

5.2.2 Unconditional Instructions

Unconditional Input instructions consist of both word and byte instructions. While the
Word input instructions replace all 16 bits of the register (figure 5-7). the byte input
instructions affect only the lea~ significant 8 bits of the register. When byte-orientated
peripheral devices are used. these instructions allow the programmer to pack the input
data before storing it in Memory .

The Unconditional Output instructions are word-oriented instructions. Since byte­
oriented peripheral devices accept only the least significant 8 bits of data output from
a register, there is no need for byte Output instructions.

5 . 2 . 3 . Conditional Instructions

The Conditional I/O instructions incorporate both the Sense and data transmission
functions into one instruction. These instructions make sense, of course. only when
the function codes for the Sense and data transmission operations are the same.

The Conditional Input instructions consist of both word and byte instructions. While
the word input instructions replace a1116 bits 9f the register, the byte input instruc­
tions affect only the least significant 8 bits of the register. When byte-oriented
peripheral devices are used. these instruction$ allow the programmer to pack the
input data before storing it in Memory. as in figure 5-9.

The Conditional Output instructions are word-oriented instructions. Since byte­
oriented peripheral devices accept only the least significant 8 bits of data output from
a register, there is no need for byte-output instructions.

Interrupts may be acknowledged during the execution of a Conditional I/O instruction.

5.2.4 Block I/O Instructions

The Block I/O instructions allow high speed data" transmissions between Memory
and peripheral devices. They essentially access each data buffer memory location by
summing the contents of the X register and the data buffer pointer (buffer address - 1)

in the second word of the instruction. Each time the addressed peripheral device
generates a true Sense response, data is transmitted and the X register is decremented.
Thus, the data is transmitted from, or to, the end of the buffer (higher memory
locations) first. The last word transmitted accesses the start (lowest memory
location) of the buffer. Interrupts may be acknowledged only after the X register has
been decremented to zero and the instruction has been completed - i. e .. when all data
words have been input or output.

These instructions access word memory operands only (see figure 5-10). They do not
affect the contents of the A register.

5-9

COMP\J1Bl AUTOMATION,INC. ~

5.2.5 Automatic I/O Instructions

Although the Auto I/O instructions have been designed specifically as interrupt
instructions, they may also be used in non-interrupt, in-line programming. They are
three word instructions, with the second word containing the negative (two's complement)
word or byte count and the third word containing a word or byte address pointer (buffer
address - 1). Since they are unconditional transfer instructions, the specified data
source or destination in the addressed peripheral device must generate true Sense
responses before data transmission occurs. Each data transmission increments both the
data counter and the address pointer. Non-zero data counter increment results generate­
a one-word skip. Zero increment results cause the next instruction in sequence (the
instruction after the address pointer which is skipped by non-zero increment results)
to be executed (see figure 5-11). "

5.3 INTERRUPT STRUCTURE AND EXAMPLES

&.3. 1 General Interrupt Handling

External interrupts cause the computer to execute one instruction outside of the mainline '
program. If the instruction does not modify the P register. the computer continues with
the mainline program after executing the interrupt instruction. If the interrupt instru:<.-­
tion modifies the P register (either a JST or JMP) , the computer continues processing" at
the location specified by the new value in the P register. "

If a peripheral device is to operate under interrupt control, reserved locations in \~emory
are assigned to the device. The computer then executes the instruction at the reserved
location when the peripheral device generates an interrupt to the Processor. Each device
may be assigned one or more reserved locations. For example, a device moving blocks
of data to or from the computer may generate one interrupt for each word or byte of data
moved and a second interrupt when the entire block of data has been moved. The '
interrupt for each word or byte would require one location and the interrupt indicating
the end of the block of data would require another.

Before any interrupt can be recognized by the Processor. several conditions must be met:

1. Interrupts must be enabled, in general. If any interrupts are to bE
recognized, the Enable Interrupts (EIN) instruction must be executed.

2" The specific peripheral device interrupt must be enabled. SpecifIC inter-
rupts are enabled by setting an interrupt enable flag in the peripheral
device interface controller. Enable flags are generally set by executing a
Select (SEL) instruction with a device address and function code specifying
which interrupt is to be enabled. r sing interrupt enable flags. the programme!'
can selectively enable and disable interrupts.

3. The interrupt condition must exist (i. e" • the device must be ready to
accept or transmit data)" Many peripheral devices "remember" interrupt

5-10

conditions generated prior to enabling the interrupt enable flags. Care
should be taken to reset the peripheral device interrupts before enabling
the enable flag so that false interrupts do not occur immediately after
enabling the interrupts.

4. No higher priority interrupt must be waiting. Each peripheral interface
or computer option has a definite priority assignment. Interrupts are
processed according to priority if more than one interrupt is pending.

5. The computer must be in the RUN mode. Interrupts cannot be recognized
when the computer is halted. or during DMA operations.

5. 3.2 Examples of Initialization and Enabling Sequences

Initialization and interrupt enabling take place prior to the generation and use of the
interrupts. The examples below involving a Line Printer and the Real Time Clock
are typical ot initialization sequences.

SEN
JMP
SEL
SEL

- SEL
BIN

OPERANDS

4.1
$-1
4.7
4 .. ~
4.6

COMMENTS

Wait for Line Printer Buffer ready
(Not Ready)
Reset Interrupt Enable flags
EDable Word Interrupt Enable flag
Enable EOB Interrupt Enable nag
Enable Processor interrupts

Figure 5-12. Line Printer Interrupt Initialization Sequence

In addition to being reset by the SEL 4.7 instruction (figure 5-12). the interrupt enable
flags may also be reset by the Line Printer Initialization instruction (SEL 4.4). Note
that the Word interrupt enable flag is enabled before the End-of-Block (BOB) interrupt
enable flag. When specific actions in a peripheral device are additionally required to
generate interrupts (e.g .• a card reader must read a card). the instruction (SEL)
causing the action must be executed before the interrupt can take place. The sequence
in figure 5-12 is used in conjunction with ar. AOT or AOB instruction in the Word. interrupt
location and a JST instruction to an EOB routine at the EOB interrupt location. --- __ -

In addition to being reset by the SEL 8.3 instruction (figure 5-13). the interrupt enable
flags may also be reset by the Real Time Clock Initialization instruction (SEL 8.4).
Note that the Sync interrupt enable flag is armed before the Time and Sync interrupt
enable flags are enabled. This sequence is used in conjunction with an IMS instruction
in the Word interrupt location and a JST instruction to a Sync maintenance routine in
the Sync interrupt location.

5-11

INST

SEL
SEL
SEL

EIN

. OPERAND

8.3
8,2
8.0

COMMENTS

Reset -ere Interrupt Enable flags
Arm RTC Sync Interrupt Enable flag
Enable RTC Time and Sync "Interrupt Enable
flag
Enable Processor Interrupts

Figure 5-13. Real Time Clock Interrupt Initialization ~~uence

5 .3 . 3 Examples of Interrupt Instructions

The contents of the interrupt locations associated with the above example" are illustrated
in figures 5:"14 and S-iS. ---- -

LABELl lli!! OPERANDS COMMENTS
LOCATION

: 42 (Word) AOB 4,1 Automatic Output Byte Instruction
DATA -80 Negative Character Buffer Length

(BYte Counter)
BAC BUF-l Byte Address Pointer (Start-I)

: 46(EOB) JST SUB Jump to End-:-of-Block Routine.
Disable Processor Interrupts

Main Memo!:!
SUB

ENT

RTN SUB

BUF RES 40

Figure 5-14. Line Printer Interrupt Instructions

Since the byte counter and address pointer are modified during the data transmission.
they must be preset each time a line of characters is to be printed prior to execution of
the initialization sequence discussed in paragraph 5.3. 1. When all characters have
been transferred. the instruction at location : 46 is executed and control is transferred
to the EOB routine beginning at SUB. This routine might output a carriage return

5-12

character to cause the line to be printed. or perform any other line termination pro­
cessing required. The last character of the buffer might be a carriage return (see
Line Printer Driver documentation in Software manual) .

LABEL/
LOCATION INST

: 18 (Time) IMS

: lA (Sync) JST

Main Memorl:
SYNC ENT

SIN

STA
SIA
STA
STX
LAM
STA

LDX
LAP
AND
LRA
JAZ
SBM
SIN

LDA
EIN
RTN

OPERANDS

COUNT

SYNC

ASAVE

STATUS
XSAVE
100
COUNT

XSAVE
3
STATUS
1
$+2

ASAVE

SYNC

COMMENTS

Increment RTC Counter COUNT

Transfer to Sync Subroutine.
Disable Processor Interrupts

Save Main Program Return Location
Inhibit Status (Guarantee Word Mode)
to Save A Register
Save A Register

Save Status
Save X Register
Reset
RTC Counter COUNT

Perform Specified Maintenance Function

Restore X Register

Byte and OV Bits to A Register
Restore OV
Test Byte Mode
Restore Byte Mode
Inhibit Status (Guarantee Word Mode)
to Restore A Register
Restore A Register
Enable Processor Interrupts
Return to Mainline Program

Figure 5-15. Real Time Clock Interrupt Instructions

Each acknowledgement of a Time interrupt causes th'" RTC counter COUNT to be incre­
mented. When COUNT is incremented to zero. recognition of the Sync interrupt (at
location: lA) generates execution of the SYNC interrupt subroutine.

5-13 ._---------_._----------....

COMPUTER AU'IOMATION.INC. ~

Interrupts are automatically disabled by execution of the JST instruction, but the
addressing mode and the state of the overnow indicator are unchanged. Because the
computer might be in the Byte addressing mode when the interrupt occurs , the Word
mode is forced for one instruction so the full 16-bit contents of the A register can be
saved and the instruction address will be treated as a word address. When this is
done. the computer status is input. which also sets the addressing mode to the Word
mode and resets the overnow indicator. The Status and the contents of the X register
are then saved. The Real Time Clock counter COUNT is reset to a negative value as
part of the required maintenance operations.

Restoration of the contents of the X register begins the exit sequence of the subroutine.
The computer status is then restored and Byte mode inhibited for one instruction to
ensure restoration of the full I6-bit contents of the A register. The interrupts are
then re-enabled and the subroutine is exited prior to acknowledgement of any other
interrupt (since the EIN instruction inhibits recognition of interrupts for the duration
of the RTN SYNC instruction).

The save/restore sequences discussed here should be used at the beginning and end
of any interrupt subroutine to which a JST instruction at an interrupt locatior: refers.
The Real Time Clock counter COUNT should also be set to a negative value before the
initialization sequence discussed in paragraph 5.3.1 is executed.

5.4 INTERRUPT LATENCY

Recognition of an interrupt request from a perIpheral device by the computer is not
always instantaneous. The conditions discussed below delay acknowledgement of
interrupts.

5.4. 1 Interrupt Service

Interrupt ac¥n.)wledgement occurs "between" the execution of instructions - i. e .. iust
after the completion of a given instruction The Conditional Input/Output instructior;s
allow recognition of interrupts before their completion as long uS false (not ready)
Sense responses are obtained from the specified data source or destination. After the
interrupt is serviced. processing is resumed with the Conditional Input IOutput instruc­
tion. The Scan Memory (SCM) instruction similarly allows rec()gnitior: ,~f interrupts
after each specified word or byte of Memory is compared to the contents of the .~ register
If interrupts were off prior to issuing an instruction. the F1~ delays T'ecognition of any
interrupt until after the execution of from one (minimum ~ to three i :-:aximum) instruc­
tions. This allowb returT' from interrupt subroutines to the mair.line program before
'tcceptance of another interrupt. The Block Input/Output (BI~ and BOT) ir:structions.
the Status Inhibit (SIN) instruction and all shift instructions must be completed before
recognition of an interrupt may occur. Since their use in mainline p!'ograms rTlay
constitute non-trivial delays in the recognition of interrupts. the prograrmer should
use such instructions with care. In addition. when Direct Memory .-\('ce"'s (0'.1.\)

operations are in progress. recognition of interrupts is del.c:yed :':)1' H',' r:L:ration 01

data block transmission.
5-14 '--------- ------, ---- ~,----------- .. -.-"" --- ------

i
I
I

I
I
I
I

..J

5.4.2 Priority Resolution

Occasionally, multiple interrupt requests occur. When this happens, the interrupt
having the highest priority isackllowledged first. theii- the-next, and so forth down
t<?l.~~!nte~pt hav:.mg the l~e~t prior1ty. To avoi~ responding to the same interrupt
twice. one to three mainline program instructions will always be executed between
each recognition of an interrupt. The number of instructions expected depends on
the Processor type and the duration of the instructions executed. The standard
interrupt priorities are listed in figure '8-4:

5-15

Section 6

PROCESSOR OPTIONS

6.1 INTRODUCTION

This section describes how to use the various features of the Teletype/CRT/Modem con­
troller. Real Time Clock (RTC) , and Autoload (AL) options, and the Basic Variables (BV)
package which are contained on the Processor Option board (Figure 6-1). These features
are selectable by means of external jumpers on connectors located on the rear edge of the
board. In addition, the Power Fail/ Restart option contained in the Processor is also
described.

The most common operating modes require no external jumpers. Unjumpered mating con­
nectors are supplied with the Processor Option board.

6.2 REAR EDGE CONNECTORS (Figures 6- 2 and 6- 3}

The rear edge of the Processor Option board has two connectors designated Jl and J2.
Connector Jl is used to select various operating modes via external jumpers whUe con­
nector J2 is used to interface to a Teletype. CRT, or Modem.

Jl is designed to accept a 50-pin two-row edge connector. Identifying pin numbers sUk­
screened on the board apply to the Viking type 2VH25/1JN5 connector which is numbered
1-50 with the odd numbers (1-49) in one row and even numbered pins (2-50) in the other.
In some cases, connector type 3VH25 is used. Pin designations of this connector are A1
thru A25 in one row and pins B1 thru B25 in the other. Corresponding pins of the two
types of connector are shown in figure 6-2 along with signals and related options (in
parenthesis) .

J2 is designed to accommodate a 3S-pin Winchester connector (8BDJ185). The pin assign­
ments, signals, and related option (in parenthesis) for connector J2 are shown in figure
6-3. .

NOTE

All reserved pins listed in figures 6-2 and 6-3
are not to be used for any purpose.

?onnect?r Jl .mounts on the board with the row having pins Al thru A25 (or 1 thru 49)
mterfacmg wIth the component side of the board. The contacts for J2 are designated A
thr?ugh V and 1. thro.ugh 18. Pins A through V interface with the component side of the
optIon board whIle pms 1 through 18 interface with the solder side.

Connector J1 should be installed with connector pins Al and B1 (or 1 and 2) to the right
when viewed from the rear of the computer. Connector J2 has the signals brought out in
s~ch a ~ay that when interfacing with an ASR-33 teletype, the connector may be installed
rIght-SIde up or up-side down with no ill effects. When used with terminals other than
a Teletype, J2 must be installed with pins A and 1 to the right as viewed from the rear of
the computer.

6-1

COWUTEI AUTOMATION. INC. B!

6.3 TELETYPE/CRT/MODEM CONTROLLER

The Teletype/CRT /Modem (TTY/CRT) option interfaces a CRT, Modem, or modified
ASR-33 Teletype to the ALPHA LSI computer. It performs all of the data and control
signal conversion required for the computer to control the user terminal. An ASR';'33
Teletype provides four Input/Output features in one package: Keyboard Input. Page·

. Printer. Paper Tape Reader and Paper Tape Punch. A CRT provides keyboard entry
and display.

The interface contains a data buffer register which performs parallel-to-serial data
conversion for transferring data from the computer to the user terminal and serial­
to-parallel conversion when transferring data from the user terminal to the computer.
In addition. the interface has provisions for interrupt generation for both Word and
End-of-Block interrupts.

The TTY/CRT Interface option has been assigned a standard device address of 7 •

Output from the computer is printed on the TTY page printer or displayed on the
CRT. If the TTY punch is turned on. the output is also punched. The TTY punch
and page printer cannot be separately controlled by the computer. The TTY operator
must turn the punch on or off as desired.

Input to the computer is accomplished via the TTY/CRT keyboard or the TTY Paper
Tape Reader. They are controllable separately from the computer. The Paper Tape
Reader can read bytes one at a time or continuously. Automatic Echo is a feature
which allows any input to be echoed back to the TTY/CRT for printing or display.

The Teletype or CRT can be operated in either Half-duplex or Full-duplex mode. The
Initialize instruction (SEL 7.4) puts the controller in the Half-duplex mode. Execu­
tion of the Select and Present instructions (SEA 7.4 or SEX 7,4) with the register
contents equal to 1 puts the controller in Full-duplex mode.

The TTY/CRT controller has provisions for ten different baud rates, a variable length
word (with or without parity) • and either one or two stop bits. Additionally. the user
can select a current loop data path for teletypes. a TTL compatible data path, or an EIA
RS232C/CCITT data path for various terminals. The user should consult the terminal
manufacturers literature to determine the exact interface requirements of the terminal.

6.3.1 Baud Rate Selection

The TTY /CRT controller uses a variable format counter to provide internal clock timing
for the data channel. Two counter inputs (SLCT 1 and SLCT 2) determine the count
pattern to be employed. Eight counter outputs are brought out to connector J 1. One of
these outputs (CP006. CP013, CP026. CP052, CP104, CP208, CP416 or CP568) can be
jumpered to the TCLK terminal to provide the appropriate clock period.

6-2

0')
I
~

Figure 6-1. Processor Option Board

/

(RTC) TTLF

(TTY) SLCTl

(AU PFAL-

(TTY) SlCn

(RTCI CLKIN-

(TTY) CP026

(RESERVED)

ITTY) TTYOF-

(BV) DS03-

IBVI DS01-

(BV' OPT·

IBV) RST-

(RTC) 1KHZ

(BV) STRl

(BV) STR3

(TTY) PS

(TTY) WLS1

'TTY) PI

A

OPTION BOARD
CONNECTOR Jt

(ACCEPTS VIKING
3VH25/UN5)

1*

3 4

5 6

7 8

9

11

13

15 16

18

19 20

21 22

23 24

25 26

27 28

30

32

34

36

38

40

42

44

46

48

50

B

ssw- IBV)

OFST- IBV)

MAI- (BV)

TCLK-(TTY:

REMOTE AL- (Al)

INH-- (RTC)

CPO 1 3 (TTY)

CP052 (TTY)

CP4l6 (TTY)

RMDIS- (AL)

MEC (RTCI

GND

GNO

ENOSW- (BV)

(RESERVED)

SMOAT - (TTY)

0500- IBV)

0502- (BV)

10KHZ (RTC)

*Pin numbering system if type 2VH25 / IJN5 connector installed.

Figure 6-2. Option Board Connector Jl fin Assignments

6-4

lTTY)

GND

GND

(TTY) ORIN

,,,,U Al-

(BV) CINT-

TOAT

RCV

GND

MOT-

MOT+

CTS

SMDAT -

IgORA

COMPUTER AUTOMATION. INC. ~

OPTION BOARD
CONNECTOR J2

(ACCEPTS WINCHESTER
8BDJ18S)

IRDRA

DTDAT

EIAT--

RTS

MOT+

MOT-

GND

RCV

TO AT

CINT- (BV)

AL- (AL)

ORIN (TTY)

GND

GNO

(TTY)

Figure 6-3. Option Board Connector J2 Pin Assignments

6-5

COMPU1tR AUTOMATION. INC. ~

The SLCTI and SLCT2 signals are static control signals that are either grounded or
left open. Ground is available on pins 23 thru 26 of connnector Jl. The grounding
configurations for selecting the various baud rates are shown in table 6-1.

Table 6-1. Baud Rate Selection

BAUD RATE SLCTI (pin 3) SLCT2 (pin 9) JUMPER

75 GND OPEN Pin 8to 17
110 (standard) OPEN OPEN none

134.5 OPEN GND none
150 GND OPEN Pin 8 to 18
300 GND OPEN Pin 8 to 19
600 GND OPEN " Pin 8 to 15

1200 GND OPEN Pin 8 to 16
2400 GND OPEN Pin 8 to 13
4800 GND OPEN Pin 8 to 14
9600 GND OPEN Pin 8 to 7

6 .3 .2 Word Length Selection

The user may select either 5-. 6-. 7- or 8-bit character lengths for the controller to
process. Character length seleCtion is controlled by WLSI and WLS2 (pins JI-47 and
JI-48 respectively). These signals are static control signals that are either grounded
or left open. Ground is available on pins 23 through 26. The grounding configurations
for word length selections are shown in table 6-2.

Table 6-2. Word Length Selections

WORD LENGTH

5-bits
6-bits
7-bits
8-bits (standard)

6.3. 3 Parity Selection

WLSI (pin 47)

GND
OPEN
GND
OPEN

WLS 2 (pin 48)

GND
GND
OPEN
OPEN

The user can choose to have parity error proceSSing with parity error sensed by the
SEN 7.6 instruction. Two signals control parity in the controller. Parity Inhibit
(PI. Jl- 49) controls parity. When PI is open. parity is disabled. When PI is grounded.
the parity generation and check functions are enabled and a parity bit is inserted into
the transmitted word. When parity is enabled. the Parity Select signal (PS. Jl-45)
determines whether even or odd parity is generated by the transmit function and checked
by the receive function. When PS is open I even parity is selected. When PS is grounded
odd parity is selected.

6-6

"COMMa AlITOMATJON.INC. ~

6. 3 .4 Stop Bit Selection

All terminal equipment requires either one or two stop bits. The Stop Bit Select sig­
nal (SBS. Jl-5 0) provides this selection capability. When SBS is grounded. one stop
bit is inserted in the transmitted word. When SBS· is open. two stop bits are inserted
in the transmitted word. Note that the selection of two stOp bits when programming a
5-bit word generates 1. 5 stop bits.

6.3.5 Alternate Interrupt Locations

When using the TTY/CRT controller in the Half-duplex mode. the standard TTY/
CRT interrupt locations of : 0002 and : 0006 maybe changed to : 0022 and : 0026.
respectively by jumpering TTYOF- (Jl-29) to MEC (JI-22). Note that this feature
is automatically overridden when operating in the Full-duplex mode.

6.3 . 6 Data Interface Selection

The user has a choice of three types of data interface that can be used with a terminal
device. These interface types are current loop. RS232C/CCITT and TTL/DTL com­
patible.

6.3.6.1 Current Loop Interface (Figure 6-3)

The Current Loop interface utilizes a 3-wire ground common interface which is char­
acterized by the presence or absence of a 20 milliamp dc signalling· current. The
current loop interface converts logic signals to current signals and vice-versa as
follows:

Mark = 20 rnA current flow
Space = no current flow

The controller current loop transmit signal is TDAT! whil~ t~e oonfr.!?!ler recetv.!!- "
signal is RCV-. TDAT is available on connector J2 at pins H and 12. RCV- enters
the controller at J2 pins J and 11. A logic ground reference between the controller
and the terminal device is required and is available on J2 pins K and 10.

The controller current loop receive and transmit circuits have a 1500 ohm I 1 watt
resistor in series with their respective lines. These resistors are used to set the
current level on each line to 20 rnA dc. The current loop receive line also has a
built-in rolloff filter which limits baud rates to 150 baud maximum for use with teletypes.
For faster current-loop devices. the filter capacitor may be removed.

6-7

(0MPUlEI AUTOMATION. INC. f3!

RECEIVE
DATA

TRANSMIT
DATA

TTY/CRTIMODEM
CONTROLLER

MSTQP-

~ .> :::;:: ':lr-

>

-=:F

A A. A.
.. yy

1'1. A A yyy

~~

J

K

H

~ l."oiii

INTERFACE
CABLE

ReV

/'

GND

TOAT

r-

~

.......

Figure 6-4. Current Loop Interface

6.3.6.2 EIA RS232C/CCITT Interface (Figure 6-4)

I
I
I

nln ---.
5

6

1

4

8

7

--~

TELETYPE
(MODIFIED)

SEND

TRANSMIT
FUNCTION

+45

+

CURRENT
- SOURCE

+45

RECEIVE
I FUNCTION

RECEIVE

The EIA RS232C/CCITT EIA interface uses signal levels which vary between plus and
minus seven volts. The interface provides two control signals in addition to receive/
transmit data signals. The interface signal levels are as follows:

Data:

Control:

Mark = -7 Vdc
Space = +7 Vdc
True = +7 Vdc
False = -7 Vdc

The controller EIA receive signal is designated EIAR- and is available on J 2 pin S.
The EIA transmit signal is designated EIAT- and is available on J2 pin 3. The two EIA
control signals are Request to Send (RTS) and Clear to Send (CTS). RTS is available
at J2 pin 4 while CTS enters the interface at J2 pin T.

6-8

(0MPUTBt AUTOMA1'ION.1NC. f3!

The RTS and CTS lines from both the controller and terminal devices are defined for
operation with a modem. When operating without a modem (direct interface as shown
in figure 6-5a) , the RTS and CTS lines must be crossed.

With the RTS and CTS control lines crossed, Half-duplex switching from Receive mode
to Transmit mode and vice-versa is controlled by the controller RTS line. When the
controller RTS line is true, the terminal device transmits to the controller. When the
controller RTS line is false, the controller transmits to the terminal device. During
Full-duple~ operation, the RTS line of both the controller and the terminal device
mu st be true for simultaneous transmission.

When operating with a Half-duplex modem, carrier keying by means of the RTS sig­
nal is not used to switch from Transmit to Receive modes. Instead. End-of-Message
(EOM) character detection within the support software is used. When operating with
a Full-duplex modem, no special disciplines are required.

The RTS signal is generated by the controller Motor On/Off nip-flop. The Motor
On/Off flip-flop has delay circuitry which disables the controller Sense multiplexer for
600 ms after receipt of a Motor On command. When using the Motor On/Off flip-flop
with an EIA device, the delay circuitry must be disabled. The delay circuits are
disabled by grounding the ORIN- input, Jl pin 27 or J2 pins D and 15. Note that RTS and
Motor On are in opposite sense. That is. a Motor On instruction turns RTS off.

TTY/CRTI
MODEM

CONTROLLER

TTY/CRT/
'-IODEM

CONTROLLER

RTS

CTS

EIAT

EIAR

RTS

CTS

EIAT

EIAR

MOD:IA
(LOCAL!

a. Interface Without Modem

b. Interface With ~odem

~10DEM

'REMOTEl

Figure 6-5. EIA RS232C/CCITT Interface

6-9

RTS

CTS

TERMINAl.

RECEiVE

TRANSMIT

RTS

TERMI"'A.L
RECE'\E

T~A.-.;SMIT -

COMPU1ER AUTOMATION. INC. B!

6.3.6.3 TTL/DTL Compatible Interface (Figure 6-5)

The TTL/DTL Compatible (TTL) interface uses signal levels which vary from 0 to +5
volts dc. The interface signal levels are as follows:

Mark = 0.0 to +0.45 Vdc
Space = 2.4 to +5.0 Vdc

The TTL ~eceive signal is SMDAT= whiCh is avanable at J1 pin 32 and J2 pin U. SMDAT­
should be driven by an open-collector driver in the. terminal device. The controller
represents only one load to the driver. The controller provides a 1K ohm pull-up
resistor to +5 Vdc. The TTL transmit signal is DTDAT and is available on J1 pin 46
and J2 pin 2, DTDAT is driven by the controller with an open-collector driver which
is capable of 50 milliamps dc drive current . The terminal device must provide a pull-up
resistor to the terminal VCC supply which must not exceed 100 volts dc.

RECENE
DATA

+5V

DTOAT

Figure 6-6, TTL/DTL Interface

6-10

SEItDDATA

RECEIVE DATA

COWU'IO AUTOMATION, INC. B!

6.3,7 Special Teletype Controls

The Teletype/CRT controller contains provisions which permit user generated soft­
ware to control Paper Tape Reader and drive motor turnon and turnoff in specially
modified ASR-33 Teletype units.

The reader control signal is designated IRDRA and is avaUable at J2p~~_and_!.~
The motor control signals are referred to as MOT+ and MOT- and are available at J2
pins M and 8, and L and 9. respectively.

6.3.8 Half-Duplex Usage

Half-duplex controller operations involve either input from. or output to, the terminal
device, but not simultaneously. Use of the Auto Echo feature. causes input from the
device to be automatically "echoed" back for printing or display, thus eliminating
the necessity for echoing characters back under software control.

The following figures are examples of typical Half-duplex teletype I/O sequences:

INST OPERANDS COMMENTS

SBM Set Byte Addressing Mode
SEL 7,4 Initialize TTY Interface

LOOP LDAB *DATA Load Byte/Character into LS Byte
of A Register

IMS DATA Increment Byte Address Pointer
WRA 7,1 Output Byte when TTY is Ready
IMS COUNT Increment Negative Number of

Characters to be Transferred
JMP LOOP Continue Data Output if Non-zero

Increment Results
SEN 7,1 Wait for last character .to be printed
JMP $-1
SWM Restore Word Addressing Mode

/

Exit

Figure 6-7, Half-Duplex Program-Controlled Data Output

6-11

LOOP

.!!!!.

SBM
SEL

SEL

RBA
STAB

IMS
IMS

JMP

SEL

SWM

OPERANDS

7.0

7.3

7.1
*DATA

DATA
COUNT

LOOP

7.4

COMPUTER AUTOMATIOft INC. ~

COMMENTS

Set Byte Addressing Mode
Enable Auto Echo to Print Data
Being Input
Start the Paper Tape Reader in a
Continuous Read Mode
Input Byte when TTY is Ready
Store Character in Data Buffer in
Memory
Increment Byte Address Pointer
Increment Negative Number of
Characters to be Transferred
Continue Data Input if Non-zero
Increment Results
Initialize the TTY Interface to Stop
the Paper Tape Reader and Disable
the Auto Echo

Restore Word Addressing Mode

Figure 6-8. Program-Controlled TTY Reader Input

The standard Word interrupt location for Half-duplex operation is : 0002. The controller
interrupts to this location when the Word Transfer mask is set, interrupts are enabled.
and the terminal device is ready for either input or output. A jumper option allows this
interrupt location to be relocated to location: 0022. The standard End-of-Block interrupt
location for Half-duplex operation of the terminal device is location: 0006. The
controller interrupts to this location when the Block Transfer mask is set, interrupts
are enabled, and an ECHO signal (fr.om completion of an Auto I/O interrupt sequence) is
received from the Processor. A jumper option allows this interrupt location to be
relocated to location: 0026. An additional jumper option allows Processor mounted option
interrupts to be offset by : 0100 locations. The standard Half-duplex controller interrupts
can thus be relocated to locations: 0102 and: 0106 or : 0122 and: 0126.

6.3.9 Half-Duplex Controller Instructions

SEL 7,0

SEL 7,1

ENABLE AUTO ECHO. Places controller in Read mode and causes
all inputs to be echoed back to source terminal for printing or
display. Initialize instruction (SEL 7.4) turns Auto Echo off.

SELECT KEYBOARD. Places controller in Read mode.

6-12

SEL 7.2

SEL 7.3

SEL 7,4

SEL 7,5

SEL 7.6

SEL 7,7

SEN 0,4

SEN 7,1

SEN 7,2

SEN 7,3

SEN 7,4

STEP READ. Places controller in Read mode and causes character
under Paper Tape Reader read station to be read. Paper tape is then
advanced one character position. Reader switch must be in START
position.

CONTINUOUS READ. Places controller in Read mode and causes
TTY Paper Tape Reader to read continuously until reader is stopped
or tape runs out. Reader switch must be in START position.

INITIALIZE CONTROLLER. Places controller in Ha1f~uplex and
Write modes. and resets all control flags. Static marking condition
will be present.

ENABLE WORD TRANSFER INTERRUPTS. Sets appropriate interrupt
mask to enable generation of a Word interrupt' each time Buffer Ready
condition occurs

ENABLE END-OF-BLOCK INTERRUPT. Sets appropriate
interrupt mask to enable generation of an EOB interrupt
upon reception of ECHO signal from Processor. Instruction
must be executed after SEL 7.5 or immediate EOB interrupt
will occur.

DISABLE INTERRUPTS. Disable both Word and EOB interrupts
by resetting both interrupt enable masks.

SENSE TTY CONT~OLLER INSTALLED. Tests for presence of TTY
controller on Option board. If controller is installed, next sequential
instruction is skipped. If controller is not installed, next sequential
instruction is executed. (Used by diagnostic programs.)

SENSE BUFFER READY. Tests for Buffer Ready condition. If buffer
is ready, next sequential instruction is skipped. If buffer is not
ready. next sequential instruction is executed.

SENSE WORD TRANSi'ER INTERRUPTS ENABLED. Tests if Word
interrupts are enabled. If they are, next sequenUai instruction is
skipped. If they are not, next sequential instruction is executed.

SENSE CONTROLLER NOT BUSY. Tests busy state of controller.
If controller is not busy processing a character, next sequential
instruction is skipped. If controller is busy, next sequential
instruction is executed.

SENSE CLEAR TO SEND. Tests CTS line from a CRT or modem. If
signal is tl'ue, next sequential instruction is skipped. If signal is
false, next sequential instruction is executed. (This feature is
available only with EIA RS 232C/CCITT interface option.)

6-13

SEN

SEN

SEN

OTZ

OTZ

OTZ

OTZ

OTA
OTX

WRA
WRX

7.5

7.6

7.7

7.6

7,7

7.7

7.0
7.0

7,1
7.1

COMPUTEI AUlOMATION. INC. B!I

SENSE TTY MOTOR ON. Tests if TTY motor is on. If it is on.
next sequential instruction is skipped. If it is off. next sequential
instruction is executed.

SENSE PARITY ERROR. Tests for occurrenoe of parity error during
most recent input operation. If a parity error occurred. next
sequential instruction is skipped. If a parity error did not occur.
next sequential instruction is executed. (Requires prior strapping
of parity option at rear-edge connector.)

SENSE FULL DUPLEX MODE ENABLED. Tests if controller is in
Full-duplex mode. Ifft is. next sequential instruction is skipped.
If it is not. next sequential instruction is executed.

TURN MOTOR ON. Turns TTY motor on and places controller in
Write mode. Turning motor on introduces a 600 ms delay for all
controller Sense responses and interrupts to allow motor to come up
to speed. (This feature is only available if TTY has been modified
for remote motor on/off control.)

NOTE

Motor is unconditionally turned on whenever a
Power-up or System reset occurs.

CLEAR REQUEST TO SEND. When used with a CRT or modem. this
instruction turns off RTS signal and places controller in Write mode.
(This feature is available only with EIA RS232C/CCITT interface
option.)

TURN MOTOR OFF. Turns TTY motor off and places controller in
Write mode.

REQUEST TO SEND. When used with a CRT or modem. this instructidn
turns on RTS signal and places controller in Write mode. (This
feature is available only with EIA RS232C/CCITT interface option.)

OUTPUT A OR X REGISTER TO CONTROLLER. Unconditionally
transfers contents of LS byte of specified register to conf"roller and
causes character to be transmitted to terminal device.

WRITE FROM A OR X REGISTER TO CONTROLLER. Tests for Output
buffer empty condition. If buffer is empty, contents of LS byte of
specified register are transferred to controller and subsequently
transmitted to terminal device. If buffer is not empty. instruction is
continuously repeated until it becomes empty .

6-14

AOT

AOB

BOT

INA
INX

IBA
IBX

RnA
RDX

RBA
RBX

AIN

7.0

7.0

7.1

7.0
7,0

7.0
7.0

7.1
7.1·

7.1
7.1

7.0

COMPUTa·AU1CMAlION.INC. 13J' ---.

OUTPUT WORD FROM MEMORY TO CONTROLLER, AUTOMATICALLY.
Contents of LS byte of memory location addressed by updated AOT
address pointer are unconditionally transferred. to conU'o1Jc' 4IDd
subsequently transmitted to terminal device. (Refer to Auto l/O
instructiOns in section ".) .

OUTPUT BYTE FROM MEMORY TO CONTBOLLER. AUTOMATICALLY •.
Contents of memory byte looation addressed by updated AOB ad-"
pointer are unconditionally transferred to controller and aub.~
transmitted to terminal device. (Refer to Auto I/OiDstructions in
section 4.)

OUTPUT BLOCK FROM MEMORY TO CONTROLLER. Places controller
in Write mode and tests for Output buffer empty conclition. When
buffer is empty, contents of LS byte of effectiVe memory location are
transferred to controller. and subsequently transmitted to terDliDel
device. Word count is decremented by one. Instruction is repeated
continuOusly until word count is decremented to zero. (R-efer to
Block I/O instructions in section 4.)

INPUT WORD FROM CONTReLLER TO A Oil X REGlSTP.
Unconditionally transfers contents of Input buffeP to LS byte of
specified register. ~ byte of specified register is _ ,to .zero .

INPUT BYTE FROM CONTROLLER TO A OR X REGISTER.
Unconditionally transfers coritents of Input buffer to LS byte of
specified register. MS byte of register is unaffected.

READ WORD FROM CONTROLLER TO A OR X REGISTER. Tests for
Input buffet full condition. If buffer is full. contents are transferred
to LS byte of specified register. MS byte of specified register is set;
to zero. If buffer is not full. instruction is continuously repeated \
until it becomes full.

READ BYTE FROM CONTROLLER TO A OR X REGISTER. Tests for
Input buffer full condition. If buffer is full. contents are tr~sferred
to LS byte of specified register. MS byte of specified register is
unaffected·. If buffer is not full, instruction is continuously repeated
until it becomes full.

INPUT WORD FROM CONTROLLER TO MEMORY, AUTOMATICALLY.
Uncondition~y ctransfers contents of Input buffer to LS byte of -memory
location addresSed by updated AIN address pointer. MS byte of
memory locati('ln is set to zero. (Refer to Auto I/O instructions in
section 4.)

6-15-

AlB 7,0

BIN 7,1

CoMPtma AUlOMATION.INC. ~

INPUT BYTE FROM CONTROLLER TO MEMORY, AUTOMATICALLY.
Unconditionally transfers contents of Input buffer to memory byte
location addressed by updated AlB address pointer. (Refer to Auto
I/O instructions in section 4.)

INPUT BLOCK FROM CONTROLLER TO MEMORY. Tests for Input
buffer full condition. When buffer is full, contents are transfel"l'ed-
to LS byte of effective memory location. MS byte of memory location
is set to zero and word count is decremented by one. Instruction is
repeated continuously until word count is decremented to zero. Refer
to Block I/O instructions in section 4.)

6.3.10 Full-Duplex Usage

Full-duplex controller operations allow simultaneous input and output. The iRteriace
contains two data buffers in this mode -- one for input and one for output. Use of the
Auto Echo feature causes input from the device to be automatically "echoed" back tor
printing or display. thus eliminating the necessity for echoing characters back under
software control. When this feature is used, normal output data and echoed data can
be intermixed but care should be taken to assure that the resulting sequence of output
characters makes sense.

Full-duplex operation also allows use of a special "loop-back" diagnostic feature. This
mode is entered by executing the Select and Present instructions SEA 7,4 or SEX 7,4
with the appropriate register (A or X) contents equal to 3. This feature connects the
Output buffer to the Input buffer, allowing immediate comparison of transmitted data and
received data. Figure 6-9 is an example of full-duplex data-input under interrupts.

In the example, a 20-character "question" is transferred to the TTY. A one­
character "answer", entered at the keyboard is also printed but not before printing
of the question is complete.

If printing of the question is not completed when the answer is entered, the -1 byte
count is incremented to zero and the processor issues an ECHO-. Upon receiving
ECHO-, the controller generates an EOB interrupt to location : 26. Location: 26
contains a JST to the EOB routine (ENDA). The program then waits for completion
of the output byte transfer and the EOB interrupt. When it occurs, the A register
is cleared and the EOB routine for byte input initializes the output interrupt
sequence for output. The answer is then printed completing the example._

Output Word Transfer Interrupt
Output EOB Interrupt
Input Word Transfer Interrupt
Input EOB Interrupt

Standard
Location

6-16

: 0002
: 0006
: 0022
: 0026

Offset
Location

: 0102
: 0106
: 0122
: 0126

4
2
3

COWUIER auTOMAJION.lNC. ~

The jumper option for offsetting interrupt locations to : 0022 and: 0026 (or: 0122 and
: 0126) in the Half-duplex has no effect on the interrupt locations for Full-duplex
operation. Note that the EOB interrupts have priority over the word interrupts.

6.3.11 Full-Duplex Controller Instructions

SEL 7,0

SEL 7,1

SEI. 7,2

SEL 7,3

SEL 7,4

SEA 7.4
SEX 7.4
(A or X = 1)

SEA 7,4
SEX 7,4
(A or X = 3)

SEL 7,5

SEA 7,5
SEX 7,5
(A or X = 1)

SEL 7,6

ENABLE AUTO ECHO. Causes all inputs to be echoed back to
source terminal for printing or display. Initialize instructions
(SEL/SEA/SEX 7.4) turns Auto Echo off.

SELECT KEYBOARD. Turns ofC Paper Tape Reader if on. without
affecting any other operation.

STEP READ. Causes character UDder Paper Tape Reader read
station to be read. Paper tape is then advanced one character
position. Reader switch must be in START position.

CONTINUOUS READ. Cauaes TTY Paper Tape Reader to read
continuously until reader is stopped or tape runs out. Reader
switch must be in START position.

INITIALIZE CONTROLLER TO HALF-DUPLEX. Places controller in
Half-duplex and Write modes. and resets all control nags. - Static
marking condition will be present.

INITIALIZE CONTROLLER TO FULL-DUPLEX. Either instruction
(with appropriate r~ster =1) will place controller in Full-duplex
mode and reset all control nags.

INITIALIZE CONTROLLER TO FULL-DUPLEX DIAGNOSTIC. Either
instruction (with appropriate register = 3) will place controller in
Full-duplex mode and reset all cOntrol nags. In addition, the
Output buffer is connected to the Input buffer. Any character which
is output will be received by the Input buffer.

ENABLE OUTPUT WORD TRANSFER INTERRUPT. Sets appropriate
interrupt mask to enable generation of an Output Word interrupt
each time Output buffer empty condition occurs.

ENABLE INPUT WORD TRANSFER INTERRFPTS. Sets appropriate
interrupt mask to enable generation of Input Word interrupt each
time Input buffer full condition occu rs .

ENABLE OUTPUT END-OF-BLOCK INTERRt;PT. Sets appropriate
interrupt mask to enable generation of Output EOB interrupt upon
reception of ECHO signal from Processor, generated as a result of

6-17

COMPUTER AUTOMATION. INC. .~
LABELl

LOCATiON ~ OPERANDS COMMENTS

: 2 AOB 7.1 Automatic byte output
DATA -20 Negative byte count
BAC OBUF-1 Address of output buffer-1

: 6 ZAR End -of -block termination

: 22 AlB 7.0 Automatic byte input
DATA -1 Negative byte count
DATA IBUF-l Address of input buffer-l

:26 JST ENDA End-of-block termination

Main Memory
START LAP 1 Set A to +1
GO SEA 7.4 Set full duplex

SEL 7.5 Enable word output mask
SEL 7.6 Enable EOB output mask
SEA 7.5 Enable word input mask
SEA 7.6 Enable EOB input mask
EIN Enable interntpts
WAIT Wait for interrupts

ENDA ENT Entry for input done
EIN Enable interrupt
JAN $ Wait for line output interrupts
DIN Disable interrupt~
LAM 1 Setup automatic output or input character
STA : 3
LDA IBUFA
STA : 4
LDA DONE
STA 6
ZAR
JMP GO Go do it

FINISH ENT Done!
SEL 7,7 Turn off all masks
LAM 20 Re-setup output and input instructions
STA : 3

LDA OBUFA For next time
STA : 4
LDA ZAR
STA : 6
LDA IBUFA
STA : 24
LAM 1
STA : 23

IBUFA BAC IBUF-l
OBUFA SAC OBUF-l
ZAR ZAR
DONE JST FINISH

IBUF DATA $-$
OBUF 'SOURCE INPUT IS - "

DATA : BA8D CR and LF

Figure 6-9. Full-Duplex Auto-Input Under Interrupt

6-18

SEA 7,6
SEX 7,6
(A or X = 1)

SEL 7,7

SEA 7,7
SEX 7,7
(A or X = 1)

SEN 0,4

SEN 7,0

SEN 7,1

SEN 7.2

SEN 7,3

SEN 7,4

SEN 7,5

Output Word interrupt. Instruction must be executed atter
BEL 7,5 or immediate OUtput EOB interrupt will occur.

ENABLE INPUT END-OF-BLOCK INTERRUPT. Either instruction
(with appropriate register = 1) will set appropriate mask to enable
generation of Input EOB, interrupt upon reception ()f ECHO signal
from Processor, generated as a result of Input Word interrupt.
Instruction must be executed atter SEA/SEX 7,5 or an unmediate
Input EOB interrupt will occur .

DISABLE OUTPUT WORD TRANSFER AND END-OF-BLQCK
INTERRUPTS. Disables both Output Word and EOB interrupts by
resetting corresponding interrupt enable masks.

DISABLE INPUT WORD TRANSFER AND END-OF-BLOCK
INTERRUPTS. Either instl"Uction (with appropriate register = 1)
will disable both Input Word and EOB interrupts by resetting
corresponding tnterruPt enable masks.

SENSE TTY CONTROLLER INSTALLED. Tests for presence of TTY
controller on Option board • If controller is installed, next
sequential instruction is skipped. If controller is not installed.
next sequenttalinstructioa is executed. (Used by diagnostic
programs.) The buffer is full, next sequential instruction is skipped

SENSE INPUT BUFFER FULL . Tests for Input buffer full condition.
If buffer is not full, next sequential instruction is executed.

SENSE OUTPUT BUFFER EMPTY. Tests for Output buffer empty
condition. If buffer is empty, next sequential instruction is skipped.
If buffer is not empty. next sequential instruction is executed.

SENSE OUTPUT WORn TRANSFER INTERRUPTS ENABLED. Tests
if Output Word interrupts are enabled. If they are, next sequential
instruction is skipped. If they are not,. next sequential instruction
is executed.

SENSE CONTROLLER NOT BUSY. Tests busy state of controller.
If controller is not busy processing a character, next sequential
instruction is skipped. If controller is busy. next sequential
instruction is executed.

SENSE CLEAR TO SEND. Tests CTS Une from a CRT or modem.
If signal is true. next sequential instruction is skipped. If signal
is false, next sequential instruction is executed. (This feature is
available only with EIA RS232C/CCITT interface option.)

SENSE TTY MOTOR ON. Tests if TTY motor is on. If it is on. next
sequential instruction is skipped. If it is off. next sequential
instruction is, executed.

6-19

SEN

SEN

OTZ

OTZ

OTZ

OTZ

OTA
OTX

WRA
WRX

AOT

7,6

7,7

7.6

'1.6

'1.'1

'1,7

7.0
7,-0

7,1
7,1

7,0

SENSE PARITY ERROR. Tests for Occurrence of parity error during
MOst recent input operation. If a parity error occurred. next
sequential instruction is skipped. If a parity error did not occur,
next sequential instruction is exeCuted.· (Requires prior strapping
of parity option at rear-edge connector.)

SENSE FULL DUPLEX MODE ENABLED. Tests if controller is in
Full-duplex mode. If it is, next sequential instruction is skipped.
If it is not, next sequential instruction is executed.

TURN MOTOR ON. Turns TTY motor on. Turning motor on
introduces a 600 ms delay for all controller Sense responses and
interrupts to allow motor to come up to speed. (This feature is only
available if TTY has been modified for remote motor onloff control.)

NOTE

Motor is unconditionally turned on whenever a Power-up
or System reset occurs.

CLEAR REQUEST TO SEND. When used with a CRT or modem, this
instruction turns off RTS signal. (This feature is available only
with EIA RS232C/CCITT interface option.)

TURN MOTOR OFF. Turns TTY motor oft.

REQUEST TO SEND. When used with a CRT or modem. this
instruction turns on RTS signal. (This feature is available only
with EIA RS232C/CCITT interface option.)

OUTPUT A OR X REGISTER TO CONTROLLER. Unconditionally
transfers contents of LS byte of specified register to controller
Output buffer and causes character to be transmitted to terminal
device.

WRITE FROM A OR X REGISTER TO CONTROLLER. Tests for Output
buffer empty condition. If buffer is empty, contents of LS byte of
specified register are transferred to controller Output buffer and
subsequently transmitted to terminal device. If buffer is not empty.
instruction is continuously repeated until it becomes empty .

OUTPUT WORD FROM MEMORY TO CONTROLLER, AUTOMATICALLY.
Contents of LS byte of memory location addressed by updated AOT
address pointer are unconditionally transferred to controller Output
buffer and subsequently transmitted to terminal device. (Refer to
Auto I/O instructions in section 4.)

6-20

AOB

BOT

INA
INX

IBA
IBX

RDA
RDX

RBA
RBX

AIN

AlB

BIN

7,0

7.1

7.0
7.0

7.0
7.0

7,0
7,0

7,0
7,0

7,0

7.0

7.0

COMPU18 AUTOMATION. INC. B!
~UTPUT BYTE FROM MEMORY TO CONTROLLER. AUTOMATICALLY.
Contents of memory byte location addressed by updated AOB address
pointer· are unconditionally transferred to controller Output buffer
and subsequently transmitted to terminal device. (Refer to Auto
I/O instructions in section 4.)

OUTPUT BLOCK FROM MEMORY TO CONTROLLER. Tests for Output
buffer empty condition. When buffer is empty, contents of LS byte
of effective memory location are transferred to controller Output
buffer and subsequently transmitted to terminal device. Word count
is decremented by one. Instruction is repeated continuously until
word count is decremented to zero. (Refer to Block I/O instructions
in section 4.)

INPUT WORD FROM CONTROLLER TO A OR X REGISTER.
Unconditionally transfers contents of controller Input buffer to LS
byte of specified register. MS byte of specified register is set to zero.

INPUT BYTE FROM CONTROLLER TO A OR X REGISTER.
Unconditionally transfers contents of controller Input buffer to LS
byte of specified register. MS byte of register is unaffected.

READ WORD FROM CONTROLLER TO A OR X REGISTER. Tests for
Input buffer full condition.· If ~uffer is full, contents are transferred
to LS byte of specified register. MS byte of specified register is set
to zero. If buffer is not full, instruction is continuously repeated
until it becomes full.

READ BYTE FROM CONTROLLER TO A OR X REGISTER. Tests for
Input buffer full condition. If buffer is full. contents are transferred
to LS byte of specified register. MS byte of specified register is
unaffected. If buffer is not full. instruction is continuously repeated
until it becomes full.

INPUT WORD FROM CONTROLLER TO MEMORY, AUTOMATICALLY.
Unconditionally transfers contents of controller Input buffer to LS
byte of memory location addressed by updated AIN address pointer.
MS byte of memory location is set to zero. (Refer to Auto I/O
instruction in section 4.)

INPUT BYTE FROM CONTROLLER TO MEMORY, AUTOMATICALLY.
Unconditionally transfers contents of controller Input buffer to
memory byte location addressed by updated AlB address pointer.
(Refer .. o Auto I/O instructions in section 4.)

INPUT BLOCK FROM CONTROLLER TO MEMORY. Tests for Input
buffer full condition. When buffer is full, contents are transferred
to LS byte of effective memory location. MS byte of memory location
is set to zero and word count is decremented by one. Instruction is
repeated continuously until word count is decremented to zero.
(Refer to Block I/O instructions in section 4.)

6-21

6.4 REAL TIME CLOCK

The Real Time Clock (RTC) option provides a means to determine elapsed time and/or
creating a time-of-day cloc~. with software. The RTC keeps time by responding to
electrical pulses of a known frequency, such as the output of a crystal oscillator or the
input frequency of an ac power source. The standard configuration uses a 20 MHz
crystal oscillator as the basic timing source. The 20 MHz clock is applied to a counter
chain to produce 10 kHz. 1 kHz and 100 Hz clock sources (timing increments of 100 14S.
1 ms and 10 ms. respectively). In addition. a 120 Hz clock source is available (l00 Hz
when the computer is used with 50 Hz power source). The desired clock source is
selected by a jumper wire. An external timing source may be applied to the RTC option
if some source other than the crystal oscillator or twice the sc line frequency is desired.
This allows the use of almost any timing period.

6.4.1 Clock Source Selection

With no jumper installed. the RTC op~on operates from a built in 100Hz timing source.
The user can select four other timing sources (10 kHz, 1kHz. twice the ac line
frequency (TTLF) or' a TTL compatible external_timing source).

The RTC option represents only one TTL load to the external timing source. The
external timing source must be a TTL compatible logic signal with rise and fall times
of less than 50_ ns. With regard to duty cycle. the only requirement is that the s~
be ground true, with a minimum of 100 ns.

When the user desires to select an alternate timing source (other than the standard
100 Hz source), the 100 Hz clock source must be inhibited by grounding the INH­
input. Clock source selection can be accomplished at connector Jl using table 6-3.

Table 6~3. Clock Source Selection

CLOCK
SOURCE

100 Hz (standard)
1,000 Hz
10.000 Hz
TTLF
EXTERNAL *

INH­
(pin 12)

OPEN
GND
GND
GND
GND

JUMPER
CONNECTIONS

none
Pin 39 to pin 11
Pin 40 to pin 11
Pin 1 to pin 11
User Timing source to pin 11

*External timing source must be TTL/DTL compatible.

6. 4. 2 Discussion of Usage

If RTe interrupts are enabled. the RTC generates a Tim~ interrupt to the Processor
each time a clock pulse is detected from the clock source. This interrupt is usually

6-22

COMPUTER AUTOMATION. INC. ~

serviced by an IMS instruction at the interrupt location. Increment results of zero
cause the generation of an ECHO signal to the RTC, which in turn generates a Sync
interrupt to the Processor. The Sync interrupt is normally serviced by a JST
instruction to an interrupt subroutine. The RTC has been assigned a device address
of 8.

In the programming example shown in figure 6-10, an external device must be sampled
once a second, using a 10 ms clock source.

LABELl
LOCATION INST OPERANDS COMMENTS

(Time)
: 0018 or IMS COUNT Increment Timing Counter
: 0118

(Sync)
: 00lA or JST SYNC Jump and Store to Interrupt
: 011A Subroutine, Disable Interrupts.

Initialization
INIT LAM 100 Set Timing Count to -100.

STA COUNT
SEL 8,4 Initialize RTC and Clear

Unserviced Interrupt Requests.
SEL 8,2 Arm Sync-Allow Sync Interrupts

when ECHO is Received.
SEL 8,0 Enable RTC-Allow Generation

of Time and Sync Interrupts (Since
Sync is Armed).

Interrupt Subroutine
Reserved Location for Storage SYNC ENT
of P Register

Save Contents of Registers, Status,
etc. (see paragraph 5.3)

LAM 100 Reset Timing Counter to -100.
STA COUNT

EIN Enable Interrupts.
RTN SYNC Return to Mainline Program.

COUNT DATA 0

Figure 6-10. RTe I nterrupt Programming Example

6-23

COMPU1tI AUtOMATION. INC. ~

The timing counter COUNT becomes zero after being incremented 100 times, i.e.,
after 100 Time interrupts, each 10 ms apart. The RTC·responds to the resulting ~CHO
signal by generating a Sync interrupt which is serviced by the interrupt subrouhne
SYNC. The timing counter COUNT is reset to -100 and the external device is sampled.

6.4.3 Summary

6.4.3. 1 RTC Interrupt Locations

Time Interrupt location: : 0018 (offset = : 0118)
Sync Interrupt location: : OOlA (offset = : OllA)

6.4.3.2 RTC Instructions

SEI. 8,0

SEL 8,2

SEL 8,3

SEL 8,4

SEL 8,7

SEN 0,2

6.5 AUTOLOAD

ENABLE RTC. Allows Time and Sync interrupts to be generated
(if Sync is armed) .

ARM SYNC. Allows generation of Sync interrupts if RTC is enabled
and ECHO received.

CLEAR RTC INTERRUPTS. Resets both Time and Sync interrupt
requests. Does not disable or disarm interrupts. but instead
removes interrupt request history from RTC.

INITIALIZE RTC. Disarms, disables, and clears interrupt requests.

DISARM SYNC. Prevents Sync interrupts from being generated
without disabling Time interrupts.

SENSE RTC INSTALLED. Tests if RTC option is installed on Option
board. If it is, next sequential instruction is skipped. If it is not,
next sequential instruction is executed.

6.5. 1 De~cription

The Autoload option consists of a 256-word read-only memory (ROM) preprogrammed
with a binary loader and the necessary logic to execute the .loader. The autoload
program is a complete binary program loader for TTY and high-speed paper ta?e
(not just a bootstrap) and includes appropriate input format and data error checkmg.

6-24 .

(OWUTU AUTOMATION, INC. em
For bulk storage devices, Autoload provides a first record bootstrap. Autoload requires
the presence of the power fail/restart (PF /R) or automatic startup (ASU) processor
option.

Autoload uses main memory locations : 30 through : 3B for scratchpad. A program
occupying these addresses cannot be properly loaded using autoload.

The autoload sequence is initiated by depressing the console AUTO switch or. in
configurations not using a console, by momentarily grounding a pin on the option
board (see 6.5.7) . Upon execution, a binary program is automatically loaded
into computer main memory from anyone of the following input devices:

1 . Teletype paper tape reader
2. Iligh-speed paper tape reader
3. Nine-track magnetic tape unit
4. Cassette tape
5. Moving head disk

If more than one magnetic tape, cassette or disk drive device is used in the system,
autoload will load from the device designated as device zero.

When selecting autoload from the console, the computer must be in the Run Enable mode
(STOP indicator off) to enable the AUTO switch. AUTO is interlocked with the RUN
switch so that Run mode is selected as autoload is initiated. A remote autoload command
(grounding a pin on the option board) can be initiated at any time.

The presence of the autoload option can be sensed using the sense instruction with
device address zero and function code zero. This instruction is used primarily
by diagnostic and executive programs. The sense instruction takes the following
form:

SEN 0,0 SENSE AUTOLOAD INSTALLED. Tests if autoload option is installed.
If so, next sequential instruction is skipped. If autoload is not in­
stalled, the next sequential instruction is executed.

6.5.2 Device and Mode Selection

The input device and load mode (absolute or relocatable) is selected at the console
sense register. In computer configurations not having a console, the sense register
and certain console switch functions can be duplicated by the use of jumpers on the
option board (secondary console); see paragraphs 6.6.3 and 6.6.4. A hex code entered
into the sense register selects the following device and load mode:

6-25

COMPUTER AU'fOMATION,.. em
TTY HSPT MAG TAPE CASSETTE DISK

Load Absolute :0 : 1 : 2 :3 :4

Load Relocatable :8 :9 :A :B :C

If relocation is desired, the user enters the start address in the X register. If "load
and execute" is desired, the SENSE switch is set (ON); for "load only". the SENSE
switch must be reset (OFF).

6. 5 . 3 Autoload Sequence

When autoload is initiated, the processor is placed in word mode, interrupts are disabled ,
and the power up sequence of the PF /R or ASU option generates a reset and starts the
computer running at location : 0000. Autoload ROM address space is : 0000 through
: OOFF. Autoload logic causes all instruction cycles to fetch instructions from ROM (main
memory disabled) and all data cycles to access memory. The first instruction is fetched
from ROM location : 0000. As the loader is executed, the program being read from the
input device is treated as data and stored in memory .

6.5.4 Termination of Autoload

The action performed at the end ofa successful load is dependent on the type of input
device used and the position of the SENSE switch.

6.5.4.1 TTY and High-Speed Paper Tape Reader

Control is transferred to the start address of the loaded program if (1) the SENSE
switch is set, and (2) a valid start address was on the tape. If the SENSE switch is
reset or if no valid start address was on the tape, autoload halts with: 0800 in the I
register with the X register containing the next location available for loading. The
start address in the A register will be negative (: FFFF) if a valid start address was
not present.

6.5.4.2 Magnetic Tape, Cassette and Disk

Control is transferred to the start address of the loaded program if the SENSE switch
waS se't. If the SENSE switch was reset, autoload halts with: 0800 in the I register.

6-26

6.5.5 Error Detection

The standard autoload program detects checksum and format errors on paper tape
devices. If an invalid checksum or format error is detected, the program halts with
: 0801 in the I register. The program may be restarted with the depression of AUTO.
If an error occurs while attempting to load from paper tape, it is possible to backup
the tape one record and press AUTO to continue. However, it is recommended that
loads exhibiting errors be completely repeated.

If an error occurs whUe attempting to load from magnetic tape, cassette or disk,
autoload will halt with: 0801 in the I register, and may be retried by pressing AUTO.

6.5.6 Accessing Autoload ROM

The autoload ROM normally contains 256 words. but can be expanded to 512 words
for special autoload sequences or for use as a high-speed read-only memory. To
use it as a normal read-only memory or to read out the contents of ROM. the SEL
0, I instruction is used. When enabled under program control. the ROM occupies
addresses : 7800 through : 7FFF , modulo 512 (: 7800 through : 79FF. : 7 AOO. : 7BFF •
etc.). Any memory access in this range is automatically disabled when autoload
ROM is enabled.

An I/O instruction. SEL 0,0 is used to disable the autoload ROM. When disabling
ROM, one additional access to ROM is required before the ROM is actually disabled.
This allows a program resident in ROM to turn itself off and then jump to main memory.

A diagnostic feature allows verification of the autoload sequence. This is accomplished
by setting the sense register to : F (all bits on), programming a halt at location 31,
then initiating autoload. If autoload is sequencing properly, the program will exit
to location: 31 and halt. .

6 . 5.7 Remote Autoload Initiation

A momentary grounding (i. e. , a switch closure to ground) of pin 10 on connector
J1 on the option card, or pins E or 14 on connector J2, causes the system to reset
and an. autoload program to be initiated. The signal must be ground-true for a minimum
of 100 ns. This feature should be used only in conjunction with the secondary console
sense register (paragraph 6.6. 3) .

6-27

6.5.8 AutQmatic Autoload (Upon restoration of power)

An autoload sequence can be automatically initiated uWn restoration of power by
jumpering Jl pins 20 (RMDIS-) to Jl pin 5 (PFAL-). This feature is particularly
useful when using volatile memories without battery backup power in unattended
operation. With this feature .• memory is automatically reloaded with an operational
program from a peripheral storage device after power is restored. This feature should
be used only in conjunction with the secondary conso~e sense register (paragraph 6.6.3).

6.5.9 Autoload Operation Summary (ConsOle Operation)

Following is a summary of the procedures required to load programs into memory
using autoload. For details of console operation. see section 3.

a) Enable console.
b) Press STOP to halt ~he computer (STOP indicator on).
c) Press RESET
d) If relocation desired. enter start address into X register.
e) Enter proper hex code for device and load mode into

sense register.
f) If load and execute desired, set SENSE switch (on); if load

and halt desired. reset SENSE switch (om.
g) Ready the load device.
h) Press STOP to enable RUN mode (STOP indicator otr) ~
i) Press AUTO.

6.6 BASIC VARIABLES PACKAGE

The Basic Variables package permits the user to operate high priority (Processor)
interrupts independent of EIN /DIN control. offset interrupts. extend I/O transfer
timlJli. and perform certain console functions in the absence of a Console.

6.6.1 Independent Processor Interrupt Operation

In normal operation, the Power Fall, Console and Trap interrupts (referred to as
Processor generated interrupts) will not be recognized by the Processor if interr{ipts
are not enabled (DIN instruction has disabled recognition of ALL interrupts). The £IN
instruction must be executed before any interrupts can be processed.

By grounding the OPT- signal (JI pin 35) t the Processor generated interrupts can
obtain immediate recognition by the Processor when they are enabled .

With Jl-35 grounded. the PFE and PFD instructions control the Power Fail/Restart
interrupt whUe the cm and cm instructions control Console interrupts. There are
no control instructions for a Trap interrupt other than the TRP instruction itself.

6-28

6. 6 .2 Interrupt Offset

All interrupts (except Power-up) generated within the Processor and the Processor
Option board may be relocated (offset) trom the scratchpad area of Memory by : 100
locations to allow for more efficient utilization of the scratchpad area.

Two types of offset are available on connector J1. The high priority Pr<>gessor inter­
rupts (Power Fail. Console. and Trap) and the high priority user generated interrupts
(ILl and IL2) can be offset by grounding the OFST - signal (J1 pin 4). Likewise. the
low priority Teletype/CRT controller and Real Time Clock option interrupts can be
offset by grounding the MAl - signal (Jl pin 6).

6.6. 3 Secondary Console Sense Register

The Basic Variables package contains four jumpers which permit the user to simulate
the Console Sense register and develop a Console Sense word in the absence of 8

Console. The jumper inputs are DSOO- (J1 pin 34) • DSOl- (J1 pin 33). DS02- (Jl
pin 36) and DS03 (J1 pin -31). DSOo- is the least significant~it of the simulated
register. while DS03- is the most significant bit. Grounding a particular jumper
input introduces a logic 1 into the corresponding bit position ·of the Console Sense
word. A logic 0 is introduced when a given input is left open.

The entire simulated register fs enabled by grounding the ENDSW- signal which is
available at Jl pin 28. Note that all control logic required to respond to the ISA
(: 5801) and ISX (: 5AOl) instructions is also provided with this feature. This feature
cannot be used when a Console is installed.

6.6.4. Secondary Console Switch Functions

Secondary console SENSE, RESET and INT switch signals which duplicate the functions
ot the Console are available to the user .. The SSW- signal (J1 pin 2) duplicates the
SENSE switch. RST- (Jl pin 37) duplicates the RESET switch and CINT- (J1 pin 38
and J2 pins F and 13) duplicates the INT switch. These switch functions are generated
by taking the input pin to ground (momentarily). RST must be ground-tru~ a
minimum of 5 lAs. SSW- must remain at ground when the SENSE switch is active.
These signals are Collector-ORed with the corresponding ·console slglials.--

6.6.5 I/O Timing Extension

The Basic Variables package features an I/O stretch capability which permits the user
to £10W down the I/O transfer timing when driving the Maxi-Bus through multiolE"
expansion chassis or over long distances. Four strap connections (STRI. STlb.
STR3 and STR4) permit the user to specify 16 different increments of stretch. The
LSI-1 uses stretch increments of 200 ns while the LSI-2 has stretch increments of
100 ns. Based on these increments. the LSI-l stretch can range from 0 to 3000 ns
while the LSI-2 stretch can range from 0 to 1500 ns.

6-29

Note that whenever any stretch is inserted. aUI/O timing throughout the system is
slowed down. This can have an adverse effect on speed critical I/O devices and in
general reduces processor throughput. The stretch strapping scheme for both the
LSI-1 and LSI-2 is shown in table 6-4. Ground b avauable on pins 23 through 26
of connector J 1.

Table 6-4. I/O Stretch Selection

STRETCH ADDITION (Nsec) STRAP CONFIGURATION

STR4 STR3 STR2 STRl
LSI-1 LSI-2 (Jl-44) (JI-43) (Jl-42) (Jl-41)

0 0 OPEN OPEN OPEN OPEN
200 100 OPEN OPEN OPEN GND
400 200 OPEN OPEN GND OPEN
600 300 OPEN OPEN GND GND
808 400 OPEN GND OPEN OPEN

1000 500 OPEN GND . OPEN GND
1200 600 OPEN GND GND OPEN
1400 700 OPEN GND GND GND
1600 800 GND OPEN OPEN OPEN
1800 900 GND OPEN OPEN aND
2000 1000 GND OPEN GND OPEN
2200 1100 GND OPEN GND GND
2400 1200 GND GND OPEN OPEN
2600 1300 GND GND OPEN GND
2800 ·1400 OND GND GND OPEN
3000 1500 GND mm GND GND

6.7 POWER FAIL/RESTART

6.7.1 General

Power Fail/Restart (PFR) is an optional feature of the ALPHA LSI computer. Itallows the
computer to operate from unreliable ac power sources without. the requirement of
human monitors. A low power condition or a temporary power outage is detected in
time for the operating program to prepare for the power loss. When power returns to
normal, the computer is automatically restarted without loss of data or operating
position. Thus. unattended operation is possible.

6-30

8.".2 Power Pall

When a power failure is detected, a Power Fail interrupt is PIIerated to the Proceuor.
If the Power rail interrupt is enabled. the Processor is interrupted to a reserved
location in Memol7 Oocation : OOIC or : onc if offset). The Proceseor executes the
instruction (usually a .JST to a software power down routine) at that location. The
Processor has 0.9 ms to complete the power down routine, once it is started. before
the PFR option halts the computer and protects Memory from transient power conditions.

6.7.3 B!!!!!1

When PFR detects power restoration w an acceptable level. a power up sequence is
staJ'ted. PrR re-enables Memory, &eta the P retrister to : 0000, and generat .. a Run
signal to the computer. The C!OIDputer then executes the instruction (normally a JMP
to a software power up routine) at 1ecation : 0000. The c:omputer always undergoea
this sequence when power is applied. The software power up routine must be c0m­

pleted within 0.9 milliseconds to allow enough time to process a Power Pail interrupt
if one should occur immediately after power up. -

CAUTION

When the Power Fail/Restart option is installed.
the computer will start running at location : 0000
when power is applied whether the computer W88

running or not (1. e .• independent of Console
settlnr> prior to removal of power. To avoid
false starts. it is customary for the power down
subroutine to save a nag indicating that the COM­

puter was in fact running before power faUeeS.

6. 7 . 4 Interrupt Control Option

A hardware wiring option may place the Power Fail interrupt outside BIN/DIN control.
Under this option. it is necessary to execute the PFE or PFD instructions to enable or
disable the Power FaU interrupt. Without the option. the EIN or DIN instructions must
be executed and PFE and PFD have no effect.

6.7.5 Programming Examples

Figure 6-11 shows examples of simple Power Fail/Restart software routines.
In these examples. the contents of the A and X registers. the computer status and the
mainline program location at the time of the Power Fail interrupt are saved during
the power down sequence and restored during the power up sequence. Note that

6-31

COIIPUftI faD
the Power Fail interrupt i8 outside EIN/DIN control in this example. If the Power rail
interrupt were ineicle EIN/DIM contl'ol, the power up routine would not have to include a
PFE inatructton and the power down routine would not have to include a PFD instruction.

LABEL/
WCATION .!!!!!.

: 0000 .JMP

Interrupt Location
: OOIC or 1ST
: onc

DOWN ENT

PFD

SIN

STA

SlA

STA

ICA

STA

STX

IMS

WAIT

UP ZAR

OPERANDS

UP

DOWN

1

MAVE

STATUS

eSAVE

XSAVE

PSTP

COMME.NTS

Power Up Interrupt Location. Contains
Unconditional Jump to Power Up
Subroutine.

Power Down Interrupt Location.
Contams a .Jump 8J)d Store to Power
Dawn Subroutine; Using JST Auto­
matically Saves Contents of P Register
and Disables Interrupts.

Reaerved Location for Storage of P
Register when JST Instruction at Power
Down Inter~pt Location is Executed.

Disable Further Power Fail Interrupts .

InhlbU Byte Mode if Set.

Save A Rertater.

Read Computer Status Word to A
Register. Set Word Mode. and Reset
OV Indicator.

Save Computer Status Word.

Input Console Data Register to A

Register

Save Contents of Console Data Register.

Save X Register.

Save a Flag Indicating Computer Was
Stopped by a Power Failure.

Wait for Power Down to Complete.

.IMP Instruction at Power Up Interrupt
Location Enters Here.

Figure 6-11. Power Fail/Reatart Software Routines
6-32

ASAVE

CSAVE

XSAVE

STA.TUS

PSTP

EMA

JAN

HLT

LDX

LDA
OCA

LDA

SIN

_BO'A

LDA

PFE

EIN

JMP

DATA 0

DATA 0

DATA 0

DATA-O

DATA 0

PSTP

$+2

XSAVE

CSAVE

STATUS

5

ASAVE

*DOWN

Check Flag to See if Computer Was
Stopped By a Power Failure. Reset
Flag.

No - DoNat Restart.

Restore X Register.

Restore Contents of Console Data
Register.

Lo.ad Computer Status into A Register
then set Computer Sta,t1l;s (Sense
Switch. Data Switches. OV Indicator
and Address Mode) .

Inhibit Byte Mode if Bet •

Restore A Register.

Enable Power Fail.

Enable Interrupts.

Restart Main Program by Executing
an Indirect Jump to Location Specifi
by Saved Contents of P Register .

A Register Save Location.

Console Register Save Location.

X Register- Save Location .

Computer Status Word Save Location.

Flag Indicating Processor Was
By a Power Failure.

Figure 6-11. Power Fail/Restart Software Routines (Continued)

6-33

COMPUTa AUTOMAlION.INC. ~

6.8 AUTOMATIC START-UP (ASU)

Automatic Start-up is an optional feature that. like PFR. automatically ~tarts the pro­
cessor after a power failure .. It is for use in applications where it is not required to
save the processor conditions as they were prior to power fallure. OperatioJi"is simi-­
lar to that of PFR except that a power fail interrupt is not generated.

6.8.1 .!!!!!!!

When ASU detects power restoration to an acceptable level. a power up sequence is
started. ASU re-enables Memory. sets the P register to : 0000. and generates a Run
signal to the computer. The computer then executes the instruction (normally aJMP
to a software power-up routine) atlQCation : 0000 .. The computer always undergoes
this sequence when power is applied . The software power-up routine must be com­
pleted within 0.9 milUseconds to allow enough time to process a power fall interrupt
if one should occur immediately after power up.

1- -CAUTION I
When the ASU option is installed. the computer
will start running at location : 0000 when power
is applied whether the computer was runnin([or
not (i.e .• independent of Console setting) prior
to removal of power.

6-34

COWUTER AUTOMATION. INC. ~

Section 7

MEMORY INTERLEAVING AND BANKING

7. 1 INTRODUCTION

All LSI Series computers include provisions for Memory Interleaving and Memory Banking.

1 .1. 1 Memory Interlening

Memol'y Interleaving allows methory modules to be paired so that even and odd addresses
are. assigned in different memory modules. Since a relatively high percentage of memory
accesses are normally sequential, this feature allows alternate mernory accesses to ad­
dress different rnemory rnodules. The result of alternate rnodule accesses is that the
asynchronous Maxi-Bus can support 8 rnuch higher data rate than would be possible
without altel'nate accesses. DNA transfer rates for b.oth LSI-l and LSI-2. and execution
times for LSI-2. can be improved substantially by use of interleaving. Execution
time for LSI-l is limited by computer sp'eed rather than mernory access tirne. Therefore.
execution time in LSI-l is not affected by interleaving.

7 . 1.2 Mernory Banking

Mernory Banking allows an optional Memory Bank controller to switch rnernory rnodules
off and on so that up to 256K (K=1024) words of Memory can be used. Each rnemory
rnodule is individually controllable. A maximum of 32K words can be enabled at any
given time. Switching between rnernory modules occurs in a single instruction tirne.

7.2 INTERCONNECTIONS

Each rnernory rnodule includes a 16-pin integrated circuit socket(memory control connector)
near the rear edge of the board for jumpering interleaving controls and for connection to
an optional Memory Bank controller. Jumpering and cabling is done by using a standard
16-pin socket header. Pin-outs for the memory control connector are given in figure 7-1.

Four signals are used to control interleaving and banking. Memory modules operate in
their normal mode when no connection is made to any of the four control signals.

7.2.1 Memory Interleaving

When pin 5 (INTER-) is jumpered to pin 12 (GND). the memory module is set up to inter­
leave and store even addresses only. When pin 6 (ODD-) is jumpered to pin 11 (GN'D)
along with the pin 12 jumper, the memory module is set up to interleave and store odd

7-1

COMPU1O AUTOMATION. INC. ..e::g
addresses only. Mernory modules are always interleaved in pairs--one jumpered for
even (pin 5 to pin 12) and one for odd (pin 5 to pin 12 and pin 6 to pin 11).

7 .2 .2 Mernory Banking

Two enable signals allow the Mernory Bank controller to switch memory modules on and
off. The Memory Bank controller uses ei'ther high (+5 Volts) true enabling or low (0 Volts)
true enabling. depending upon the particular system configuration. For low true enabling,
the Memory Bank controller bank enable signal is connected to pin 7 (EN LO) on the memory
control connector, and pin'8 (EN HI) is strapped to pin 9 (GND). For high true enabling
the Memory Bank controller bank enable signal is connected to pin 8 (EN HI). Pins 9 and
10 may be used as a ground return When cabling to the Memory Bank controiler.

INTER-

000-

EN LO-

EN HI-

·~eserved - No Connection Allowed

Figure 7-1. Memory Contr_'l Connecto:'

7.3 USAGE AND INSTALLATION

The following paragraphs describe the usage and installation rules for Memory Inter­
leaving and Memory Banking.

7.3.1 Memory Interleaving (Figure 7-2)

Memory modules are always interleaved in pairs of equal capacity or equal groups.
When interleaving two equal sized modules. e.g .• two 8K memory modules, one is strap­
ped for\even interleaving and one is strapped for odd interleaving. The two modules
that are to be interleaved together must be installed in "adjacent" card slots with the
odd strapped module closest to the Processor. Memories are considered "adjacent" as
long as there is no intervening memory module and as long as theMBIN/MBOT. D.PIN/
DPOT and PRIN/PROT chains are properly chained through any intervening Input/Output
or DMA controllers. (The last slot of .the main chassis or expansion chassis is consi4ered
"adjacent" to the first slot in the next expansion chassis.)

It more than two equal sized memory modules are" to be interleaved. they are treated in
pairs with each pair strapped for one module interleaved odd and one module interleaved
even. Each pair of modules is then installed with the odd strapped module first in each
pair. It there is not an even number of equal sized memory modules to strap in pairs,
the left over module(s) may be installed in any position as long as paired groups are
not split. See figure 7-2 for examples of memory module installation.

Memory modules of unequal sizes may be interleaved together only when two or more
memory modules are grouped together as the even half of a pair. and their total capacity
is exactly equal to the capacity of the single module used as the odd haU of the pair. For
example. one ax, one 4K and two 2K modules may be interleaved together if the 4Kand
two 2K modules are all strapped for even interleaving and paired as a group with the 8K
module (see figure 7-2).

7.3.2 Memory Banking (Figure 7-3)

Memory Banking operation. memory installation rules. and cabling rules are discussed in
the following paragraphs.

7.3.2.1 Operstion

The operation of Memory Banking can best be understood by considering memory modules
to be organized in a two dimensional matrix as shown in figure 7-3. Normally memory
modules occupy unique address spans within the computer's total addressing range of
32K words. Memory Ban\ing allows multiple ~mory modules to occupy the same ad­
dress span at different times. A maximum of 32 memory modules may be attached to a
Processor. Modules are ()rganized as a matrix of Primary modules and Alternate mod­
ules. A maximum of 32K words of Memory may be assigned as Primary modules. The

7-3

A. Two 8K Modules

Processor

8KOOD

BKEVEN

B. Four 4K Modules

PrOCIISIOr

4KODD

4K EVEN

4KODD

4K EVEN

C. Three 8K Modules

Processor Processor

8KODD 8K NORMAL

8K EVEN OR 8KODD

8KNORMAL 8K EVEN

-- --

D. One 8K, one 4K, two 2K Modules

Processor

8KODD

4K EVEN

2K EVEN /

2K EVEN

Figure 7-2. Interleaved Memory Installation

7-4

(OMPUTER AUTOUATlON.IN<. ~

remaining memory modules are Alternate modules. At power up time, and following a
system RESET or Memory Bank controller initialization, the Primary Modules are all en­
abled and the Alternate modules are all disabled. The enabled modules can always be
operated as though they were the only modules installed.

In the example of figure 7-3, there are four Primary modules, two 4K's and two 8K's.
Following initialization, the computer therefore operates as a normal 24K computer using
these modules. The two 4K modules are interleaved in this example and designated as
Primary modules 00 odd and 00 even (POO ODD and POO EVEN). The two 8K modules are
not interleaved in the example and are designated Primary modules 10 and 20 (PlO and
P2 0). There are seven Alternate modules in this example. Each Alternate module can be
assigned as the Alternate module for only one Primary module. For example, modules
All. A12 or A13 are the first, second and third alternates for Primary module 10. Under
softwal'e control, the Memory Bank controller can disable PlO and enable All, A12 or
A13. Thus. a total of 32K words of Memory is available between addresses 8K and 16K,
but only 8K of the 32K is available at any given time.

In addition to providing for memory expansion beyond 32K, Memory Banking provides
a rapid context switching capability. For example, if module P20 contains an operating
program which uses four sets of data (Le .• four users) at different times, modules PlOt
All, A12 and Al3 could each contain one set of data. Now the operating program can
switch between data sets (users) in a single instruction. Detailed programming infor­
mation is provided with the Memory Banking controller.

7. 3.2.2 Memory Installation

When planning an installation using Memory Banking, a plan drawing similar to figure
7-3 should be prepared and each physical module assigned to a Primary module or Al­
ternate module position according to the following rules:

1. There may be, at most, 32K words of Primary modules.

2. Primary module capacities and corresponding Alternate module
capacities must be identical (e.g., PlO, All, Al2 and A13) or
Primary modules may be grouped. the sum of which has the same
capacity as the corresponding Alternate module (e. g. , POO ODD plus
POO EVEN matches A02) .

3. There may not be an Alternate module for which there is no
corresponding Primary module.

4. A Primary module cannot be paired with an Alternate module of
a different capacity, or with a group of smaller capacity modules,
even if the smaller alternates sum to the same capacity as the
Primary module. An exception is allowed for single alternates
smaller than the primary, but only for the last primary (e.g., A22).

7-5

COMP\JTH AUTOMATION. IN<. ~

ADDRESS

4K 4K
ODD 000

AOl POD -- -"- -- -- -- 8K

4K 4K
EVEN EVEN

A02 AOl POD 8K

-- -- -- -- 8K 8K 8K 8K

A13 A12 All Pl0 16K

4K

-- -- -- A22 8K 8K -- --
--

A22 A2l P20

-- -- -- -- -- -- -- --

32K
~ ____________________________ ~ ________________________________ A ____ ¥~ __ _

ALTERNATE MODULES

Figure 7-3. Memory Banking Example
7-6

PRIMARY
MODULES

COMPUla AUTOMAtION. INC. §!I

5. When interleaved modules are banked. they must be banked in pairs
(e. g .• POO consists of two interleaved 4K modules). Modules to be
banked may be interleaved and an interleaved pair may be banked
with a single module whose size is equal to the interleaved pair
(e. g .• AOI and POO are composed of two interleaved 4K modules
whUe A02 is a single 8K module) .

6. After module positions are assigned. they must be installed in
the following order beginning at the Processor:

a. All alternates to Primary module 00 (the .order of the
alternates is immaterial) .

b. Primary Module 00.

c . Remaining alternates and primaries with each set of al­
ternates preceding their primary .

1. Any interleaved modules must obey the rules for interleaving
given in paragraph 1 .3 .1.

1.3.2.3 Cab~

After modules are installed. they are cabled to the Memory Bank controller by connect­
ing either the EN HI or EN LO memory control connector pin of each memory module to a
control output of the Memory Bank controller. The following rules apply to cabling:

1. All Primary modules use EN LO.

2. All Alternate modules use EN m.

3. Each interleaved module pair must have the appropriate EN lines
connected together to a single Memory Bank controller output.

Cabling in this fashion guarantees that the Primary modules are selected at power up
and initialization time since the Memory Bank controller resets with all outputs low.

1-1

Section 8

MAXI-BUS CHARACTERISTICS

8.1 INTRODUCTION

This section describes the signals and electrical characteristics of the NAKED MINI LSI
Computer Maxi-Bus. Additionally. the distribution of the Maxi-Bus and the ALPHA LSI
computer motherboard are discussed.

The Maxi-Bus consists of 58 lines (plus power and ground) that are used to convey
address. data. and control information to or from the Processor. Memory. DMA controllers
and I/O controllers (see figure 8-1) .

Memory

1 K to 256K word!
High s.-<I
Dirtct MItnoty
Access COMAI

I :
.... ogrammed 1,10
Block I/O
Dna Memory

Chan IDMCI

Figure 8-1. Maxi-Bus Configuration

The Maxi-Bus provides a common transfer path for all system modules. Maxi-Bus
transfers involving Memory are asynchronous wherein the amount of time that signals
from a source device spend on the Maxi-Bus depends upon the access and cycle time of
the addressed memory module and not upon a fixed clock interval: All M'axi-Bus
operations between the Processor and I/O controller~ are synchronous and therefore
do not require timing generation within I/O controllers.

All address and data signals. as well as memory control signals from a source device.
must be driven by 32 mA tri-state drivers. Certain control signals that can be driven
simultaneously by more than one device must use 32 rnA open-collector drivers. Standard
TTL receivers can be used by all devices. Only one receiver per line per module is
permitted and thE! maximum receiver loading must not exceed 1.8 rnA per module.

Address and data lines are shared by Memory and I/O devices. During communication
intervals involving Memory • all bus drivers on these lines must'be tri-state. During
communication intervals involving standard I/O devices. blls drivers may be either tri­
state or open collector.

8-1

8.2 MAXI-BUS COMPONENTS (Figure 8-2)

The ALPHA LSI computer ,Maxl-Bus consists of three J'!lajor components: the Address
bus (A). the Data bus (0). and the Control bus (C).

8.2.1 Address Bus (A)

The Address bus consists of161ines (ABOO-through AB15-)that are time shared by
me Processor and DMA controllers.

The 'Processor and DMA controllers use the 15 bits of the A bus to address memory
l,ocatioJ'ls. The 16th A bus bit (MSB) is used to specify word or byte memory operation.
During I/O operations. the Processor uses the low order 8-bits of the A bus to convey
device address and function code information to I/O devices. The high order 8-bits
contain random information and are not normally used. The format of the low order
8-bits during I/O operations is as follows:

AB07- Device Address bit 4
AB06- Device Address bit 3
AB05- Device Address bit 2 P Field
AB04- Device Address bit 1
AB03- Device Address bit 0
AB02- Function Code bit 2
AB01- Function Code bit 1 F Field
ABOo- Function Code bit 0

NOTE

The eight lines devoted to the device address and function code are
arbitrarily divided into groups of five and three. respectively. They can be
divided differently to increase or decrease the number of device addresses
and function codes. For example. six lines can be devoted to the device
address and only two to the function code. This would increase the number
of device addresses to '64 and reduce the number of function codes to 4.

Throughout the remainder of this design guide. all examples which involve I/O
addresses assume the arbitrary five and three division.

8 . 2 . 2 Data Bus (D)

The D bus consists of 16 bidirectional lines (DBOO- through DBI5-) that are time
shared by the Processor. Memory. and I/O Interface controllers.

The Processor uses the D bus to read data from or write data into :\Jemory. Likewise •
the Processor uses the D bus to transfer data to or from an I/O controller'.

A DMA controller uses the D bus to read data from or write data into Memory .

8-2

~

K: A BUs (11 LINES)
~

...
K o BUS (18 LINES) .,

, EXEC- ~ ...
J!:: ~
2S.lI- ~
PLS- ~
RST- • CLK-

~
TYPl-

~
MOtS-

~ PROCESSOR
MOTHER· '4 SER-

BOARD '4 alD-
~I.- ~
eDlti;.. ~

'4 PROI-....
K calIS IUA- • IaR- ~ e,HO-

~
'4 11;1-

'4 IL2-

IZI~- ~
'4 OPOI-

'4 §!2-
~K- ~
PFI2- ~
~LB- • M~T- ~
Ro-

~
~'4 MACK ...

Figure 8-2. Maxi-Bus Components

8-3

...
:)

-yo

...
')

y

MEMORY·
VO

MODULES

L

27 LINES ') ,..

-

I/O controllers use the D bus to conVf11 an interrupt address to the Processor· during
interrupt processing. .

8.2.3 Control Bus (C)

The C bus consists of 27 unidirectional oontrollines which define the specit1c actiGn
that an interface device i8 to perform. 'Nineteen lines are outputs from the PrOeeuor
to.emory and I/O controllers whlle,e1ght fines are inputs from et~ 1i8niory or I/O
controU ... to the l'roce8aor. The 27 C busl:lnes are 81Ibdivk1e4 ... tour brOad
cateaorkta: 1/0 command. utility aigDals. interrupt sigDals.8nd·bMA-algDala.·;b.eIapt
as noteci'below. aU Processor generated or reCeived signals may also be ~ or
received by DMA cOntrollers du~g DMA operations.

8.2.3.1 I/O Commands

There are three signals in this category: EXEC-. IN- and OUT- . These signals defiDe
the type of I/O operation in process.

EXBC- Execute. Processor generated signal that indicates the·~ent instruction
is a Select or Select and Present instruction. EXEC- II used typically to
set or reset controls in the addressed I/O controller.

IN- Input. Processor generated signal that indicates the canent instruction
is an Input instruction and that the adC1reased I/O controller should place
input data on the D bus.

OUT- Output. Processor generated signal that indicates the current instruction is
an Output instruction and that the Processor has placed output data on tbe
D bus for the addressed I/O controller to accept. .

8.2.3. 2 Utility Signals

There are five signals in this category: PLSE-, RST-, CLK-, TYP1-, and SER-.

PtSE- Pulse. Processor generated signal which is used as a strobe pulse to load
reJisters during an output transfer. set or reset controls during a Select
instruction. reset data transfer controls during an input transfer, and to
reset Interrupt Stimulus Store controls upon recognition of an interrupt.

RST- . System Reset. Processor or Console generated signal which is used to reset
all controls in ALL interfaces to a known starting configuraton. RST- is
generated by the Processor in response to a power failure condition. an
Autoload initiation sequence, or when the Console RESET switch is
depressed. Note - not driven by DMA controllers.

8-4

eLK-Clock. Processor 18Ilerated. 1 megahertz I free-1'UJUlfng square wave allD81
that may be used a. a tiID1nc reference by I/O contl'ollera. It is not synch­
ronized to Proce81101' operation.. Rote that only the Proce88Ol'
thla alpal. DJlA controllers may DOt generate tbla slpa1.

TYPl- Type I Processor Installed. This signal is ground-true when the LSI-l
ProceslJOr is installed and open when the LSI-2 ProcealJOr ia 1natal1ed. This
s1pa1 permits DMA controllers to determine wbleb Proce8llOl' fa iDatalled
and perform q mocle transfers if necessary. The TYPI- a1pal ts ·struna
through the "200" stde of the motherboard orily (see paragraph 6":4) •

SER- Sense Response. Signal generated by addressed I/O controUer wb1ch , when
true I indicates a true response to an interrogation by tha Processor of lOIDe
function associated with the controller or device it controls. Interrogation
ia made when a Sen .. or Conditional I/O instruction is i88ued.

MDlS- Memory Disable. Processor generated signal wblch is active during power
up and power do .. sequences to assure no .purious memory cycle. wtn
occur during power trana1tions.

a. 2.3.3 Interrupt Sipals

There are nine signals associated with interrupt generation and processing. These
signals are: IUR-. IOCL- , PRIN-. PROT-. IUA-. IAR- , ECHO-. ILl-, and 1L2.

IUR- Interrupt Request. Multiplexed interrupt request line which multiple I/O
controllers use to request interrupt service. Interrupts requested via this
ltne are recognized on a priority basis. If two or more interflCes request
interrupt service at the BUDe time. recognition is given to the hiathest
priority interface via the priority string (PRIN- and PROT-).

10CL- I/O Clock. Processor generated signal which is used by I/O controllers to
synchronize IUR interrupt requests into the Processor. IOCL baa a minimum
duration of 150 ns; however I the duration varies with internal ProceslJOr
operation. When an interrupt is recognized by the Processor I IOCL is
inhibited to prevent the generation of additional lOR interrupt requests .
10CL remains inhibited until the Processor completes execution of the
interrupt instruction. DMA controllers may not generate this 8ignal.

PRIN- Priority In and Priority Out. PRIN- and PROT- form an interrupt priority
and chain which is strung serially through all I/O controllers and memory mod-
PROT- ules. PRlN- is the name given to the priority chain where it enters an interlace

If low, it allows the interface to generate interrupts. Each interface generates
a PROT- signal to indicate that neither it nor other upstream devices are
generating an interrupt. The PROT- signal from each I/O controller is the
PRIN- signal for the next downstream controller.

8-5

IUA- Interrupt Aclmo1rle4p. Processor eenerated ~ ,..blch 1088 true upon
reoopitlon of any IDterrupt and remains true during execution of the interrupt
instruction. DIIA controDera DUlY not Pneftte thia dpal ..

1AIt- Interrupt Address ReqQ8t. Proceuor pnerated ~ which is uaed to
request an interrUpt addreas froID an 1/0 controller in responSe to an interrupt
~eIrt. DMA controllers may not generate this signal:·

ECHO- Bcho. Signal generated by the Processor when an Auto 1/0 instruction has
transferred all data I or by an IMS tnatrU~ when the count overflow ••
ECRO- is typically used by the I/O controller to ~est an interrupt. This
interrupt vectors to a user-determined Ioeation in Memory which nonnally
contains a JST instruction to a subroutine. The Subroutine performs the
necessary housekeeping asaocJated with an End-of-Block or elapsed count
operation. Db controllers may not PIlerate this slgnal.

ILI­
and
ILl-

Interrupt Lines I and 2. 1/0 controller generated high priority interrupt
requeet Une •• blch iDterrupt to locationa : 0002 and : OOOf I rHp8Cti've1y.
Tbey are blgber priority than the IUR line. ILl has priority over IL2. ILl
and IL2 do not require interrupt vectoring by the Interface as does lOR.

8.1.3.4 DIIA Sipala

Nine signals are associated With DMA control and processing. These signals are: DPIN - I

DPOT-. STOP-, SACK-. PFD-:- , SLB- , MST-. RD- and JlACK-.

DPIN­
and
DPOT-

DIIA Priority In and DMA Priority Out. DPIN and DPOT form a DMA priority
chain which ia strung serially through all DIIA controllers and memOl'Y
modules. DPIN- is the name given to the priority chain where it enters a
DIIA controller. If low, it allows the controller to access Memory. Each
controller generates a DPOT- signal to tncUcate that neither it nor other
upstream controllers are communicating with Memory. The DPOT- signal
from each controll'er is the. DPIN- signal for the next downstream controller.
The DPIN- and DPOT- signals are strung through the "200" side of the
motherboard only (see paragraph 8.7) .

STOP- Stop Processor. DMA controller generated signal which stops the Processor
upon completion of its current machine cycle to permit the DMA controller to
gain control of the I/O bus. STOP- may be generated at any time and may
remain active for any length of time .

SACK- Stop Acknowledge. Processor generated signal which informs DMA controllers
that the Processor has relinquished control of the I/O bus to the DMA
controllers. SACK - will remain true until STOP- is removed.

PFD- Power Failure Detected. Power supply generated signal which, when active,
forces any DMA operations to terminate in order to permit the Processor to
shut down the system in an orderly manner.

8-6

SLB- Select Least Stptflcant Byte . Processor or DJiA controller generat8d signal
which is used for Byte Mode memory accesses. When SLB- is low. the least
signiftcant byte ~its 0 ithrough 1) of the addressed memory word is accessed.
When SLB- is hip. the most signiftcant byte (blta 8 throuah 15) of the
addreased memory word is accessed. SLB- is used to dtsable,Memory during
Autoload operations by forcing it low while AB15- is high (Word mode). --

MST- Memory Start. Processor or DMA controller generated signal which is used to
initiate a memory cycle.

RD- Read· Mode. Processor or DMA controller genirated signal winch. when low.
indicates the current memory cycle isa Read/Restore cycle. When high • RD­
indicates that t.he c~!,~en~ JDemory~~le .~s a Clear/Write cYc.!e. j _

MACK...;. Memory Acknowledge. Memory generated signal that is used'to infol'lD the
Processor or DMA controller that data is available on the Data bus during a
Read operation. or that data has. been accepted during a Write operation.

8.3 I/O TRANSFER TIMING

I/O transfer timing is the period during an I/O instruction when data is tramlferred
between the Processor and an I/O controller. (Refer to figure 8-3.)

NOTE

Unless otherwise noted. all timing intervals indicated in timing diagrams are
given in nanoseconds. All timing intervals. discussed in text are nominal.

ABXl(-

'''-, EXEC-, OUT-

OIl(X-(oun

oaxx- flNI*

PLSE-

SER-*

.'NTERFACE GENERATEO
Figure 8-3. I/O Transfer Timing

8-7

(0MPU18 AUlOMATION.INC. f3I
8.3.1 I/O Bus Considerations

The A bus is active for, non-I/O as well as I/O instructions. To guard against res­
poncUng to a non-I/O instruction. the I/O control signals (EXEC-. IN-. or OUT-)
should be used when interp~eting the A bus. The SER- signal is the only exception
and may be driven independent of EXEC-. IN-. or OUT-.

Data should never be placed on the D bus by an I/O controller except in the presence of
IN- or IAR-.

8.3.2 Sense Instruction Timing

No Maxi-Bus control signals are generated by the Processor during a Sense instruction.
The addressed I/O controller uses the function code information to determine which one
of eight possible functions are to be tested. The sense information is ~nt to the
Processor via the SER- line. If the Processor is looking for a Sense response, the SER­
signal is gated into the Processor. Otherwise it is ignored . The user has 275 ns to
stabWze the Sense response after receipt .of the Device Address signals.

8.3.3 Select .ftlstruction Timing

During Select or Select and Present instructions. the EXEC- signal is generated a
minimum of 75 ns after the A bus stabilizes. The D bus is selected for output as a
result of EXEC- and becomes stable a maximum Qf 150 ns after the leadin~bL
EXEC-. If a command register is used. the information on the D bus can be presented _
to the register by EXEC- and clocked in with PLSE-. The D bus contains all zeros
during the SEL instruction and is equal to the contents of the Processor A or X regis­
ter during the SEA or SEX instructions •. respecti"!ely .

The PLSE- signal is developed a minimum of 350 ns after EXEC-. PLSE- is generally
used to clock all control flip-flops in the I/O controller. Either the leading or
trailing edge of PLSE- may be used to set or reset control flip-flops.

8.3.4 Input Timing

All input sequences. regardless of the Input ins~ction type. appear basically the same
to an I/O c(;>ntroller.' For all Input instructions. the IN- signal is generated a minimum
of 75 ns after the A bus stabilizes., The D bus is selected for input as8 result of IN- .
The IN- signal is used by the controller to gate data onto the D bus. Data must be
present and stable on the D bus no later than 300 ns after IN- goes low.

The PLSE- signal is developed a minimum of 350 DS after IN- goes low. PLSE- is typically
used to reset the buffer ready control in the I/O controller. Either the leading or trailing
edge of PLSE- may be used to reset the buffer ready control. Note. 'however. that data on
the D bus must remain stable until the leading edge of PLSE- and must be removed no
later than 75 DS after the trailing edge of IN- ,

8-8

If the Input tnstruction issued is conditional. the SeIlse response (8ER-) must be stable
no later than 2'15 DB after the A bUB stabilises to guarantee 4etectioa of SBR- by the
ProceS8Gl'. If SER- is hltrh from the 2'1' ns point to the leading edge of PLSE-. the endre
input sequence is repeated for a Conditlonallnput or Block Input. withOut i88uing PLSB.
until the 8EIl-line goes low. If SEIl- i. low at the 275 ns point. the operadon is terminated
after the present cycle and PLSE- is pnerated to indicate the Processor hu accepted the
data. If SER-.changes·state betweentbe 275 ns point and the leading edge of PLSE-. the
Processor may or .paay not detect SEIl-:.

All Sense respoDBes are ignored by the Processor. when executing Unconditional Input
instructions.

8.3.5 Output Timiy

All Output instruction sequences. regardless of the Output instruction type. appear
buically the 88JDe to _I/O controller. Durin« aD Output instruction. the OUT- .gnal
is generated a minimum of 75 DB after the A bus stabilizes. The D bus is selected for
output u a result of OUT-. Once selected. the D bus stabilizes in a maximum of 150
nanoseconds after leading edge of OUT-.

The PLSE- signal is generated a minimum of 350 DB after OUT- goes low. PLSE- serves
two functions. The first is to clock output data into a receiving repster of the I/O
controller. The second function is to reset the· Output buffer empty control in the I/O
controller .

If the Output instruction is conditional. the Sense response must be stable no later than
275 ns after the A bus stabilizes to guarantee detection of SER- by the Proceaaor. If
SER- is high from the 275 DB point to the leading edge of PLSE-. the endre output
sequence is repeated. without issuing PLSE. until the SER- line goes low. If SEIl- is
low at the 275 ns point. the operation is terminated after the present cycle and PLSE-
is generated to indicate the availability of data to the controller. If SER- changes state
between the 275 ns point and the leading edge of PLSE-. the Processor may or may not
detect SEIl-.

Any Sense responses that are generated during an Unconditional Output instruction are
ignored by the Processor.

8. 3 . 6 Automatic Input and Output Timing

The Automatic Input and Output instructions haVe essentially the same transfer timing
as all other I/O instructions. The only difference is that when used 88 interrupt
instructions. Auto I/O instructions develop an ECHO- signal to the controller when the
last word of byte of data has been transferred. The ECHO- signal occurs a minimum of
350 ns after IN- or OUT- during the last transfer. ECHO- is typically used by the
interface to develop an End-of-Block interrupt. These instructions are unconditional and
do not require a Sense response.

8-9

8.3.7 I/O lnatrucdon List

Por the convenience of the user. table 8-1 provides a liSt althe hocessor I/O instructions.
The instructions are poouped into four major categories ~Sense. Select. Input and Output).
The Input and Output catego~".&re furtller divided into UncondldoDal. Automatic. Con­
ditional and Block sub-cateaories. The ConditIoDaI and Block sub~categorles require a
Sense response while the Uncond~tional and Automatic sub-categories do not.

Table 8-1. I/O Instruction List

FUNcnON MNEMONIC MACHINE CODE (HEX)

Sense SBN "'XX -- S8N tUX
Select SEL .ax

SEA MXX
SEX .f6XX

Uncondidonallnput INA 58XX
INX 5AXX
JBA 78XX
IBX 7AXX
IMAM 5CXX
IHDI SUX
IBAM 7CXX
IBDI 7EXX

Automatic Input Am 50D
AlB 54XX

Conditional Input RnA SUX
RDX 5BXX
RBA 79XX
RBX 7BXX
RDAII sma
BDDI 5rxx
RDAM TDXX
RDD 7FXX

Block InDUt BIN 71XX
Unconditional Output OTA sen:

OTX 6EXX
OTZ 68XX

Automatic Output AOT 60XX
AOB 64XX

Conditional Output WRA - 6DXX
WRX 6FXX
WRZ 69XX

Block Output BOT 75XX -XX deVIce address and function code

8-10

8.4 INTERRUPT CHARACTERISTICS

Minicomputers perform in a wide variety of applications where they communicate
with many different types of devic~~ . These devices operate at widely varying
speeds and generate events that Occur randomly rather than at evenly spaced time
intervals. If the events do occur at evenly spaced time intervals. these intervals
may be relatively far apart. For these reasons. a versatile and efficient computer
needs a priority interrupt-&ystem.

If a computer does not hs:ve a priority interrupt system _ the computer must poll
all of the external devices which may require service. The polling must be at
frequent enough intervals so that events are serviced within a reasonable time
after they occur. Polling consumes considerable time. and may not allow much
processing time between the handling of external events.

A priority interrupt system relieves the computer of the polling responsibility •
The computer may continue processing data between external events. and may
take time out from main program processing to handle external events as they
occur.

The ALPHA LSI computers feature five levels of interrupts. Each interrupt level
uses an interrupt request line to obtain attention from the Processor. "Upon obtain­
ing this attention. the source of the interrupt vectors the Processor to an interrupt
location in Memory. The interrupt location contains an interrupt instruction which
defines the specific action that the Processor is to take in processing the interrupt.

The five interrupt request lines are designated Power Fail Interrupt (PPI). Consolel
TRAP Interrupt (CINT). Interrupt Line 1 (ILl). Interrupt Line 2 (IL2). and Inter­
rupt Request (lOR). A priority level exists between each of these lines wherein
PFI has the highest priority. CINT is second. ILl is third. IL2 is fourth and IUR is
lowest in priority. PFI. CINT. ILl and IL2 are self-vectoring lines (the user does"
not have to supply the interrupt address). The IUR line is shared by multiple devices
and features a priority chain to resolve priority when two or more devices issue an
lOR interrupt request at the same time. Each of the multiple interrupt sources that
share the IUR line cause the Processor to be vectored to distinct locations that can
be anywhere in Memory .

8.4.1 Interrupt Lines

The characteristics of each of the five interrupt request lines are discussed in the
following paragraphs.

8-11

8.4. 1. 1 Power Fail Interrupt

The PFI line services the power "down interrupt only. PFI is the highest priority inter­
rupt line in the interrupt system" and is not accessible to the user via the Proceuor
Maxi-Bus. "

8. 4.1.2 Console (TRAP) Interrupt

The CINT line services the Console and Trap interrupts only. . CINT is the II8CCmct high­
est priority interrupt line and is not accessible to the user via the Proces80r Maxi-Bua.

8.4.1. 3 Interrupt Line 1

ILl vectors all interrupts to memory location : .0002. ILl do6s not provide external
priority resolution when servicing multiple devices. ILl is the third hJghest priority
interrupt line and is accessible to the user via the Processor Maxi-BUB.

8.4.1.4 Interrupt Line 2

IL2 vectors all interrupts to memory location : 0006. IL2 is the fourth highest priority
interrupt line and is accessible to the user via the Processor Maxi-Bus. t.tke ILl. IL2
does not provide external priority resolution to service multiple devi~s.

8. 4.1.5 Interrupt Request

The lOR line vectors interrupts to the Processor from a virtually unlimited number of
devices. The lOR line has a priority string associated withIt.-The PrioritY string
ensures that a device with a higherprlOrity" will be serviced before a lower- priority "
device when two or more lOR requests occur at the same time. When -ilie interraptini
device has priority, it must furnish an interrupt address "to the "Processor upon request.
In general. IUR interrupt addresses are user defined. There is a recommended list of
addresses. however (refer to appendix B) .

8.4.2 Processor Generated InterrUpts

The ALPHA LSI computer generates two standard and six optional interrupts. In addi­
tion. two optional pseudo interrupts are generated. Each of these interrupts are dis­
cussed briefly in the following paragraphs in order of priority .

8-12

COMPUTER AUTOMATION. INC. ~

8.4.2.1 Power Fail/Restart Interrupt (Optional)

The Power Fail/Restart (PF /R) option generates a power down interrupt to locatioil
: 001C whenever a low power condition exists. The power down interrupt has the
highest priority of any interrupt serviced by the Processor. When power is restored
to an acceptable level. the PF /R logic causes the P register to be set to location: 0000
and the RUN mode is established to restart the system. Although location : 0000 is the
power up location. it is not a true interrupt. location. but rather a pseudo interrupt
location since no interrupt processing is required to get to location : 0000 .

8.4.2 . 2 Autoload (Optional)

The Autoload option utilizes the PF /R logic to develop a pseudo interrupt to location
: 0000 of a special Autoload read-only-memory as a starting point for the Autoload
sequence.

8.4.2.3 Console Interrupt and Trap (Standard)

A Console interrupt can be developed when the Processor is in the RUN mode and the
INT switch on the Console is depressed. A Trap interrupt is developed when the
TRP instruction is executed. Both the Console and Trap interrupts share the second
highest interrupt priority and they both interrupt to location: OOlE.

8.4. 2 . 4 Real Time Clock (Optional)

The Real Time Clock (RTC) option generates a clock and sync interrupt. The Clock
and Sync interrupts share the first highest priority on the IUR line. The Clock
interrupt is vectored to location: 0018 While the Sync interrupt is vectored to loca­
tion : OOlA.

8.4.2.5 Teletype/CRT/Modem Controller (Optional)

The processor mounted TTY/CRT/Modem controller generates both Word and End-
of-Block (EOB) interrupts via the IUR line. The Word interrupt is vectored to location
: 0002 while the EOB interrupt is vectored to location: 0006. These interrupt vectors
are the same interrupt vectors that are used by the IL 1 and IL2 lines. Since ILl and
IL2 do not provide priority resolution and are of a higher priority than these interrupts.
the TTY Word and EOB interrupts should be displaced to alternate locations when ILl
and IL2 are used. A jumper option permits the Word and EOB interrupts to be displaced
to locations: 0022 and: 0026. respectively. When u sed in the Full Duplex mode. the
TTY controller generates four interrupts (locatons : 0002. : 0006. : 0022. and: 0026) .
The TTY interrupts share the second highest priority on the IUR line.

8.4.3 Offsetting Processor Generated Interrupts

Figure 8-4 lists. in the order of their absolute priority, the standard interrupt locations
for all Processor generated interrupts. These intern:pt locations are all located in the

8-13

ABSOLUTE PRIORITY

POWER FAIL (PFI)

2 TRAP INTERRUPT (CINT)

3 CONSOLE INTERRUPT (CINT)

4 INTERRUPT LINE 1 (ILl)

5 INTERRUPT LINE 2 (lL2)

6 RTC SYNC INTERRUPT (IUR)

7 CLOCK INTERRUPT (IUR)

8 TTY END-OF-BLOCK (lUR)

9 TTY WORD (lUR)

10 SLOT B200

COMPU1tR AUTOMATION. IN<. ~

INTERRUPT ADDRESS

: OOlC (: OIlC)

: 001E (: 011E)

: 001E (: 011E)

: 0002 (: 0102)

: 0006 (: 0106)

: 00lA (: 611A)

: 0018 (: 0118)

: 0006 (:0106);
OPTIONAL: 0026 (: 0126)
: 0002 (: 0102) •
OPTIONAL: 0022 (: 0122)

Slots B thro-ugh E accommodate
plug-in modules (either memory
or I/O). All I/O modules may
use the IUR line and must pro­
vide an interrupt address.
Modules with multiple interrupt
capabilities must have internal
priority resolution and multiple
addresses. The continuity of the
priority chain must not be broken.
If broken. interrupts below the
break may not be recognized or
~ay be recognized erroneously.

Figure 8 -4. ALPHA LSI Interrupt O::oganization

scr&tchpad area of Memory. A jumper option permits the user to offset these locations
by : 100 locations to place them outside the scratchpad area. This allows for more
efficient utilization of the scratch area. IUR interrupts generated by non-processor
mounted options may be individually offset to place them outside the ecratch area.

NOTE

The power up restart and autoload start up location Oocation : 0000)
is not affected by the offset jumper option.

8.4.4 Peripheral Generated Interrupts

Peripheral interface controllers may request i."lterrupt serVice via the ILl-. 1L2- or WR­
request lines. The techniques used to develop these interrupt requests are discussed in
detail in section 9 of this manual.

8. 4 . 5 Interrupt Transfer Timing (Figure 8-5)

For the purpose of priority resolution, all interrupts must be synchronized prior to being
generated. Synchronization can occur only during a mainline program instruction. This
is to ensure that when executing the interrupt instruction, no other interrupt can inter­
vene. When synchronization is obtained, the PROT- signal from the interrupting device
goes high (false) to disable all down-stream WR interrupts. When interupts of higher
priority than IDR are serviced, the Processor makes the PROT- signalh1gh to disable
all IUR interrupts.

If interrupts are enabled, the Processor recognizes an interrupt request when the
current mainline program instruction has finished execution. When recognition of
an interrupt is given, the Interrupt Acknowledge signal (IUA) is issued by the
Processor and IOCL is turned off to inhibit any change in interrupt request status
until the current interrupt operation is complete.

Approximately 2 II-S after IDA-goes low, the Processor generates the Interrupt Address
Request signal (lAR-) and selects the D bus for input. IAR- is used by the interrupting
controller to generate the interrupt address. The IAR - signal is low for approximately
750 ns. During this interval, the user generated interrupt address must be available
within 300 ns of IAR- and remain stable until the leading edge of PLSE-. PLSE- is used
in the more complex interrupt structures to reset the Interrupt Stimulus Store control.

IDA - will remain low until the interrupt instruction completes execution. The duration
(IUA low) is a function of the number of machine cycles that are required to execute
the interrupt instruction. When IUA - goes high, IOCL is re-enabled permitting subse­
quent interrupts to be generated.

8-15

IOCI.-

1U1I-.IL1-.I1.2-

'''R-

oexx-

I'LSI-

E~

A· IOCL-IS FOIIINnRRUI'T~ZAT_OIILY: PERIOD ISNOTCONSTAIIT
• - LATENCY - DUENDSOIICURREIIT INSfIlUCT10N IIIEOUENCE
C-PllIORITYRIPPLfllllE-2,._
D· INTERRUPT INSTRUCflON! DUIlATIOII- VAlUES WITN INSRIUCTfOII USED

Figure 8-5. Interrupt Transfer Timbig

8.4.6 Interrupt Operation Control

100_

Two levels of control are associated with· ILl , IL2. and IUR interrupt prOcessing--
primary and secondary. .

The primary control level is provided by the Enable Interrupt flip-flop (EIN) in the
PrOcessor. The EIN fliP:flop is accessible to the programmer and can be enabled 01'

disabled on command.: When enabled, EIN allows recog!iftion of any interrupt. Lik~­
wise. when EIN is disabled. interrupts will not be recognized.

The secondary control level is provided by an interrupt enable flip-fiop in each
I/O controller. The interrupt enable flip-flop enables or disables the interrupt structure
of the I/O controller. Like the EIN flip-flop discussed above. the interrupt enable flip­
flop in each controller can be enabled or disabled by means of a Select instruction
addressed to the specific I/O controller with the appropriate function code.

This dual system of interrupt control can be very useful to a programmer . With this
system, the programmer can control interrupts in general with the EIN nip-flop,
yet enable or disable interrupts from selected devices as conditions dictate.

Interrupts developed via the PF and CINT lines are somewhat dilferent In 'that they
can be generated outside EIN control. In normal operation (that is, when operating
under EIN control), the Power Fail, Console and Trap interrupts require that EIN
be enabled. Most interrupt subroutines disable interrupts ,during execution of the
subroutines causing high priority interrupts such as Power Fail to wait until}.IN is
re-enabled. A special jumper on the option board permits all interrupts generated
on the PF and CINT lines to be recognized regardless of the state pf EIN .

8-16

COMPUTBl AUTOMATION. INC. 81

When the jumper option is employed, two new instructions (PFE and PFD) are used to
control the Power Fail circuits. The PFE instruction must have been issued before a
Power Fail interrupt can be generated. Likewise, the PFn instruction disables the
generation of a Power Fail interrupt.

The Console interrupt is controlled by the CIE and cm instructions in the same way as
in normal operation. The Trap interrupt is generated in the same manner as in
normal operation. The only difference between normal operation and the jumper option
is that EIN does not have to be set to generate the Console and Trap interrupts.

Another useful programming feature is the SI~ instruction. The SIN instruction per­
mits the programmer to suppress recognition of all interrupts (and Byte mode opera­
tion) for up to six instructions.

Once an interrupt structure is enabled, an interrupt can be generated in five basic
steps:

Step 1 Stimulus Generation--The user generates the interrupt stimulus
in response to some event or condHioil.

Step 2 Interrupt Request Generation--The interrupt structure of the I/O controller,
if enabled, stores the interrupt stimulus and generates an interrupt request.

Step 3 Interrupt Recognition--The Processor upon receipt of the interrupt request
waits for the current instruction to complete execution, and if system
interrupts are enabled (EIN set), issues an interrupt address request.

Step 4 Interrupt I/O Address Generation--The interrupt structure of the I/O con­
troller responds to the interrupt address request by placing the interrupt
address on the D bus lines (except for ILl and IL2 interrupt) .

Step 5 Interrupt Instruction EXecution- -The Processor fetches and executes the
instruction from the interrupt location.

8.4.7 Interrupt Request Line Trade Offs

The user has a choice of three ir.terrupt request lines, ILl, IL2 and IUR. The trade offs
associated with each of these lines are discussed below.

The ILl and IL2 interrupt structures are the simplest structures to implement in terms
of hardware since they do not require interrupt address logic, Processor synchroniza­
tion logic, or down-stream priority disable logic. All of these functions are provided
in the Processor. The ILl and IL2 lines are intended for single device applications
where high speed devic~s require the highest available priority to minimize interrupt
latency.

8-17

COMPUTal AUTOMATION. INC. 81
The IUR line is for multiple devices where each device competes for service via the
priority chain. The priority of an I/O controller can be changed by simply removing
the controller from the computer chassis and relocating it in a higher or lower
priority card slot. An IUR generating controller has greater flexibility in terms of
address vectoring. If an address vector must be changed, the address may be offset
from its base location ot another location by means of address select lines.

8.5 DMA OPERATIONS

The ALPHA LSI computer has a direct memory access (DMA) port which permits
specially built controllers (referred to as DMA controllers) to transfer data via the
1\1axi-Bus at very high speed to or from :'lemory or other controllers.

8.5.1 General Characteristics

8.5.1.1 Processor Provisions

The ALPHA LSI Processor is designed to su:'render thE. :'laxi-Bus to a DMA controller
whenever a Stop command (STOP-) is receh' ed. t"pon receipt of the STOP- signal,
the Processor completes the current microcycle, stops, and sends a Stop Acknowledge
(SACK -) signal to the requesting DMA. controller (s). A DMA controller may hold STOP­
active for as long as necessary to complete requested data transfers. But once the
STOP- line is released. the Maxi-bus cannot be reacquired by the controller until
SACK- goes high (see 8.5.2.1).

8.5. 1 .2 Memory Operations

DMA controllers may communicate directly with ~emory. The D:'IIA controller must
emulate the Processor by generating a memory address and appropriate control signals.
Memory operations may be either Read (data accessed from Memory) or Write (data
written into Memory). Data cannot be read, modified and rewritten in one cycle. When
communicating with a single memory module, data transfer rates of up to 625,000 words
per second can be achieved with the standard 1.6 fAS Memories. When more than one
memory module is used in the computer, DMA transfer rates of up to twice the basic speed
of the memory modules can be achieved by making alternate memory accesses in different
modules. Memory interleaving straps allow even and odd addresses to be in separate
memory modules so that sequential addressing automatically alternates between modules.

In addition to word transfer capabilities, byte transfers may be performed by a DMA
controller. All byte packing and unpacking is done automatically by the memory modules
with all byte data transferred on the lower eight D bus lines (the upper eight D bus lines
are ignored during byte transfers) .

All memory modules contain data and addres~ registers to permit asynchronous operation.
During a Write operation. the source device furnishes an address and data along with a
memory start signal. As soon as the address and data is stored in its registers, the

8-13

memory issues an acknowledge signal and releases the bus even though it has not actually
finished the Write operation. During a Read operation. the memory accesses the
addressed location. places the data on the D bus. and then issues the memory acknow­
ledge signal. When the source device recognizes the memory acknowledge signal. it.
removes the start signal releasing the Maxi-Bus. Any memory restore operation or
ove~head interval does not tie up the Maxi-Bus and therefore frees the Processor or
DMA controller to perform another operation.

8.5.1.3 1/00perations

A DMA controller may emulate the I/O instructions of the Processor. The DMA controller
may issue Input. Output. Sense, Select, and Select and Present instructions. It may
perform conditional and unconditional I/O. AU I/O instructions and control lines of the
Maxi-Bus that are used by the Processor for I/O operations are available to a DMA con­
troller when the Processor is stopped.

8.5. 1. 4 Limitations

A DMA controller is not permitted to use the interrupt proceSSing capabilities of the
Processor. Interrupts are reserved for use by the Processor only. I/O controllers
that are under control of a DMA controller must have their interrupt facilities disabled.

When multiple DMA controllers are employed in a system. they must compete for control
of the Maxi-Bus on a priority basis. DMA Priority lines are strung serially through
the 200 series connectors of the ALPHA LSI motherboard. Therefore.DMA controllers
must be either full boards or half boards that are installed in the 200 series connectors
of the ALPHA LSI motherboard.

When using the standard expansion chassis buffer board. a DMA controller must be in
either the same chassis or in a chassis that is closer to the Processor than a memory
module or I/O controller that it must communicate with. This is because the expansion

. buffer board treats unidirectional lines (such as the A bus lines) as originating from
the Processor end of a chain of expansion chassis. Therefore, unidirectional signals
which normally originate from the Processor cannot be transmitted to an up-stream
memory module or I/O controller.

8.5.2 DMA 1'iming

The following paragraphs define DMA transfer timing. AU timing intervals shown in
timing diagrams are in nanoseconds and all timing intervals discussed in the text are
nominal. Times determined by memory access and cycle intervals are shown for the
standard 1.6 ",s memory modules and may be different for other memory modules.

8-19

COMPUTtR AUTOMATION. INC. f3]J

8.5.2.1 Maxi-Bus Acquisition Timing (Figure 8 .. 6)

Two sfgna1s are involved with Maxi-Bus acquisition: STOP- and SACK-. When a
DMA controller is ready to make a transfer. it drives the STOP- line low (ground­
true). The Proce8so~ upon seeing STOP- low. immediately begins preparing to va­
cate the Maxi-Bus. After performing the required internal housekeeping associated.
with stopping. the Processor drives the SACK- signal low (ground-true). The time
interval from the leading edge of STOP-to the leading edge of SACK-can be as much
as 4800ns,for the LSI-l Processor.

Once SACK-goes low. the DMA controller is free to commence the transfer operation.
Typically. DMA controllers operate on a r~uest basis wherein they make one transfer
for each request received from an associated peripheral. If the DMA controller .receives
another request prior to completion of the current transfer (Burst mode). it will keep
STOP- active. Otherwise it releases the STOP- line when the current operation is
completed. as signaled by the trailing edge of the Memory Acknowledge (MACK-) signal.

After releasing the STOP- line. the DMA controller may not attempt to reacquire the Maxi­
Bus before SACK-goes high. The LSI-l Processor can take up to 2400 ns to raise SACIt­
and restart programmed operation. Once SACK- goes high. the DMA controller is forced
to wait out the DMA acquisition period before acquiring the Maxi-Bus again. Therefore.
the worst case latency period ia 5600 ns for LSI-1 Processor. The LSI-2 Processor
DMA latency is a function of the type of memory module use~. The LSI-2 Processor
DMA latency times are as follows:

Core 980 = 1405 ns
Core 1200 = 1825 ns
Core 1600 = 25'15 ns
SC 1200 = 3025 ns

Latency time may be longer if a higher priority DMA controller is also requesting the
Maxi-Bus.

STOP-

SACK-

PROCESSOR
OPERATION

INITIAL
ACQUISITION

OIIA
aoERA.TION

PROCESSOR
RE-sYNC

OIIIA
OPERATION

~.,..---...... ,~ " ,'----~ ---1--48OIIMA.X---t 2400MA.X -t ... I • ...--a.IIAX-----i
","' __ ___ ,..-4/ • L

t-.... ---WORSTCASE LATENCY -I

Figure 8-6. Maxi-Bus Acquisition Timing

8-20

COMPUTER AUTOMATION. INC. ~

8.5.2.2 Memory Transfer Timing (Figure 8-7)

Memory modules of various speeds. sizes and technologies may be intermixed in a
system. The standard 4K core memory has a cycle time of 1600 ns which provides a
maximum data transfer rate of 625,000 words/bytes per second.

A memory cycle is divided into an access interval and an overhead interval. The access
interv8.l is the period when data is transferred to or from Memory. The overhead inter­
val is used for internal memory operations. For core memories, the overhead interval
is used to restore the contents of the word just read, or to write the word just transferred
For non-destructive readout memories, the overhead interval consists primarily of logic
recovery time. For dynamic MOS memories, the overhead also includes cycles stolen by
Memory to refresh dynamic storage. During the overhead interval, the Maxi-Bus is
available for other operations.

For DMA applications requiring data transfer rates in excess of 625.000 words/bytes per
second, memory interleaving can be employed. When alternate memory cycles address
different memory modules, each memory's overhead interval can be used to access another
memory module, yielding transfer rates up to twice that possible with a single memory
module. Each memory module features static control lines at the rear of the module
which permit the memory module to operate in the interleaved mode. Each memory module
can be config-<lred to respond to either even or odd memory addresses. This feature allows
sequentially addressed memory locations to automatically alternate between memory
modules.

MEMORY CYCLE N MEMORY CYCLE N+l

ACCESS OVERHEAD ACCESS OVERHEAD

A. NORMAL (ADDRESSING RANDOM)

MEMORY CYCLE N MEMORY CYCLE N+2

MEM A ACCESS OVERHEAD ACCESS OVERHEAD

MEMORY CYCLE N+l MEMORY CYC.LE N+3

MEM B ACCESS OVERHEAD ACCESS

B. INTERLEAVED

Figure 8-7. Memory Addressing Comparisons

8-21

COMPUTfR AUTOMATION. INC. ~

8.5.2.2.1 DMA Read Access Timing (Figure 8-8). A DMA read access sequence is
started by the DMA controller placing the desired memory address on the A bus.
A minimum of 75 ns is required for A bus settling and address recognition for all
memory modules before the DMA controller drives the Memory Start (MST-) signal
low. The Read (RD-) signal must be driven low no later than 25 ns after MST- goes low.

The addressed memory module begins execution of a memory cycle when MST- goes
low, and after it has finished any previous operation. When t~e addressed location has
been accessed (approximately 450 ns for standard 1600 n.s memories) , the contents of
the addressed· memory location ar(' placed on the D bus and the]\1ACK - signal is issued.
The information on the D bus will remain stable until MST- is removed.

Upon receipt of MACK -. the DMA controller is free to disengage the A bus. After
allowing for settling time on the D bus, the DMA controller strobes the contents of the
D bus into a receiving register and removes l\1ST- and RD-. The memory module
removes MACK- on the trailing edge ofMST- and disengages the D bus on the trailing
edge of MST- or RD-, whichever g.oes away first. The DMA controller must disengage
the A bus prior to, or coincident with, removal of MST- . The DMA controller may not
initiate another memory cycle until MACK-has been removed.

* INTERVAL DETERMINED BY CONTROLLER TO
ACCEPT MEMORY OAT:'

Figure 8-8. Read Access Timing

8.5.2.2.2 DMAWrit. Access Tfmm, (F1pre 8-9). A write access aequenceta _Bar
to a read access aequence except that the aD- signal i. held high and the write data is
presented to the addreued memory at the same Ume MST- is genented.

A writ. ecce .. Is started by placin. the memory addre.s on the A bus. After. Dlintmum
of '15 .. theMST- aIpalls 4rlveD low. The ltD- sipal is held bleb· and the write data
fa pled onto the D buB DO later tban 2$ DB after MST- pea low •. The memory mo4u1e
incUcatM acceptance of the write data by driviDI the IlACK- aipallow.

The DMA coatrollermuat ctiaengap the A bu. and the D bus and remove MST- wbeD
MACK- goa. low. MACK- is removed on the trafJing edge of MST- .at the memory module.

• . controller may remove MST -as soon IS
MACK- is rec:ognizad .

Figure 8-9. write Access Timing

8.5. 2 . 3 I/O Transfer Timing

A DMA controller may transfer data to or from another controller by emulating the Pro­
cessor's operations on the I/O control signals. A single exception to standard I/O trans­
fer sequencing involves generation of MACK- during I/O transfers under DMA control
that do not involve the use of Memory. In this case, the DMA controller must g~erate

8-23

MACK-for a minimum of 100 Il8 prior to-completion of the 1/0 trarusfer. Thia aUowe other
DMA controllers In the system to aynchraaize any pencUng Maxi-Bus requests and pl"O­
perly auction DMA priority (see paragraph 9.5.2.2) • -

8.6 ELECTRICAL CHARACTBRlS'l'lCS

The Mui-Bus--u. beat clusifted .. a hybrid tri-atate open-001lectol' (w1re-01l) bus.
untermiDated.

Moat processor drivers are tri~~ power elements. capable of alnldng 32 IlIA. at 0.4
Vdc muimWll and 84)urclng2. 0 mAst 2.4 :Vdc JDlnfmUID. 'In a few i8Olatec:l cMe8.opeD-
collector TTL drivers (32 mA ahlk at 0." V~) are used . .

ProcesSor receivers preaentone .tandardTTLload to the line <-:-1.6mA,at O.8V4c.
40 p.A at 2.4 Vdc). Depending on the nature otthe particular a1gn81. puUup reaiaton
to +5 Vdc are used. .

Open-collector drivers in I/O and memory modules are permitted on thoee bUa linea
for which pullup resistors are provided • Minimum required drive capability ta 31
rnA at O.4Vdc mo. Tri-state drivers electrically equivalent to the proceallOl"bua
drivers are also allowed. as long as the logic deaip of the system -paranteeatbat:
no two tri-state drivers connected to the same buallne are simultaneously enabled.
Receivers on I/O and memory modules may be any stancSuU 14 seriu m. ~! .. _

Only one such receiver per module is perDdtted. Maximum J.oadiDg sl)a11 not exceed_ I.e mA per module. -- - .. - - ... - --. - -- ----. ----

Logic Levels (Negative-true)

logic "1": +0.4 Vdc max.
logic "0": +2:4 Vdc min.

Table 8-2 summarizes the Maxi~Bus driver, receiver and pullup circuits.

8.7 MOTHERBOARD ORGANIZATION

Any slot (other than the slot dedicated to the NAKED MINI LSI Processor) can acc~t
either an 1/0 or memory module.

Figure 8-11 provides an illustration of the system motherboard. The motherboard
provides for six slots used as followa:

Slot Purpose

A
B
C
D
E
F

NAKED MINI LSI Processor
Universal (Memory or I/O)
Universal' (Memory or I/O)
Universal (Memory or I/O)
Universal (Memory or I/O)
Power Supply

8-.24

In aJl7 1lY- slot • .stileI' a full board (15· x 1'.5") or two WI boU'da (.... '.S· s 1'.S·)
ID87 be tutalled. ODe Idol caatams two connealoH. The connector Oft riPt (rear-
faelaC> Sa refened to u tile 100 leri .. CODDeCtoI' and COIltaIna piDa n'-bend 1. tbJrough
IN; 8lndlu1y. tile CODIlMIor Oft the left if relenred to u the 200-Hriea connector aDd
contain. piDa numbered 200 through 286.

With the exception of the priorit7 cbains. memory bank control. and two apecia1 pJ'O­
CftlOr' power aupp17 aipala, aIlaipala -are wired in a U faahiaa tbrouIbaJI ,baII:baUd '
eonnecton. AU esceptlona an deacribe4 below (shown In 'fipN'I"'3)'~

'.7.1 ,.lnterrupt Priortty

The datey 'chained interrupt priority atriDl (PRlN,-, PROT-) Sa wind in S, fuldon bqJn­
nlng at the l00-serl .. connector ofaJot A, across to the 200-aeriea CCIGDeCtGr, then in
reverse diredion aeros. the two B a10t connectors. etc., untO all aJota connected.
Both end. of the 'chain an connected to the expansion ccmnecton. Both PRIN- aDd PROT­
on processor connector AIOO are used to carry special sipala to the Coneo1e; the actual
orirn of the priority ~ i. slot A200.

'.7.2 Memo" Bank CGntrol. Diu Priority

Tbe Memory Bank control (MaIN, MBOT), DMA priority (DPIN-, DPOT-) and TYPI-liDe.
daley chain down the 20 .. ""es connectors. only. Therefore. meJDOl"J modul88 and DIIA
controllers must be either fulfboardll or half boards inatalled on tile 200 HJ'I .. aide only •

'.7.3 Processor Power SupplY Sicnal.

Two line. from the power sUpply. TTLF (Twice the Line Frequency) aDd +5 H (Hanl
Power) are wired directly between the power supply slot and proce880r slot AI00.

8.8 EXPANSION AND CONSOLE INTEftCOi\~CT '

'.:'0 facilitate expansion of the CIJ;.1PUtcr system beyonc the firat chaaais and to provide
for interconnect to the'ALPHA L~I Cc~sole. connectors are suppUed on the motherboerd
immediately above .lot A, Two connectors. J2 and .13. are provided for Maxi-Bua expan­
sion. and one connector, Jl. is p!'ov:dedto interconnect the Conde. FiIUJ'8 8-10 show.
the pin ... tlMlents for connector~ ·::2 and J3. and figure lO-7in aectIon 10-abows the
pin •• sipments for Jl.

8-25

12

ea,.IOIl··1iI

,..IN­
SMIlE'
IMIIE2
AI.I­
AI14-
Al1S­
SMIlE.
A112-
AlU..,.
M1D­
GIl)

GND
UCK­a.,­
DBI5-
0814-

IN­
OUT­
IOCL-

...... ~ --.. cuc-

Fipre 8-10. IIai-Bu. Expanaian Connector. Pin asatgnmenta

'.9 NAKED MINI LSIIIAXI-B08 REQUIRDIENTS

In applications whue the NAKED 1100 LSI computer is ueed without the system motMr­
board and is lDatead"'connected to I/O aD4/or memory modul .. via user-APPlied cabling,
printed circuit board, etc., the liDe len"" of each signal muat be-limited to 18 inches.

The user deliped MaXi-Bus interface Cabling,m\1at be deaiped to mlDlmize crosstalk.
renectiona , etc. t' 80 as to pre~rve aiinal ,bat-pity . Recommendations as to liDe teradna~
tion are available upon request. In general. cOn8u1tation with Computer Automation ia
recommended to ensure syatem performance.

8-10 TWO-MODOLE OPTIONS

A:n.y option requiring more than one PC board may not use the motherboard for inter­
connection. rnique interconnections maybe made via a jumper cable inata11ed on the
rear-ecJp of the two boards.

8-26

NOTE 2
NOTE 2
NOTE 4
NOTE 3

NOTE 3

NOTE 3
NOTE 3

NOTE 2
NOTE 2

Table 8-2. Maxi-Bus Load. Drive and Termination Summary

DEVICE TYPE(S) (REFER TO NOT! 1)

SIGNAL PIN CPU MEMORY 1/0 CONT DMA CONT CONSOLE BUFFER

GND 1
GND 2
+12V 3
+12V 4
+121/, 5
+12V 6
-12V 7
-12V 8
DPIN- 9

J] J]
5

DPOT- 10 4 •
EBSEL- 11

12
+5V 13
+5V 14
MST- 15 1.6 5 1 5 5
AL- 16
MACK- 17 5.6 1 5 1
RD- 18 2.6 5 2 5

"TYPl- 19 OPN'orGRD 2
SLB- 20 2,6 5 1 5
PFD- 21 5.6 5 •
MDlS- 22 3 5 5
AB08- 23 1 5 1 S
AB09- 24 1 5 1 5
AB10- 25 1 5 1 5
ABll- 26 1 5 1 5
GND 27
GND 28
AB12- 29 1 5 1 5
AB13- 30 1 5 1 5
AB14- 31 1 5 1 5
AB15- 32 1 5 1 5
DB16- 33 5~-6
OB17- 34
STOP- 35 5.6 2 2
SACK- 36 3 5 5
MBIN 37 5

J] J] MBOT 38 4 4 •
OBOO- 39 1,5,6 1.5 2.5 1,5 2,5 1.5
DB01- 40 1.5.6 1.5 2.5 1.5 2,5 1.5
DB02- 41 1.5.6 1.5 2,5 1.5 2.5 1.5
OB03- 42 1.5,6, 1.5 2.5 1.5 2.5 1.5
+5V 43

NOTES: 1. DEVICE TYPES ARE AS FOLLOWS-
1) TRI-STATE DRIVER. 32m. (883501" EQUIV.)
2) 32 MA OPEN-COLLECTOR DRIVER (743801" EQUIV.)
3) 32 MA TTL DRIVER (7437 OR EQUlV.)
4) 16 MA TTL DRIVER (7400 OR EQUIV.)
5) TTL RECEIVER (7404 OR EQUIV .)
6) PULL-UP .RESISTOR (1 KOHM)
J) JUMPER
*) STRAIGHT THRU SIGNAL (NO DEVICES IN ·SIGNAL PATH)

8-27

On.BD

5

2

2

5

5
5
5

1,2.5
1.2.5
1.2.5
1.2.5

SIGNAL

+5V
DB04-
DB05-
DB06-
DB07-
DB08-
DB09
DBIO-
DBll-
DB12-
DB13-
DB14-
DB15-
EXEC-
IN-
GND
GND
IOCL-
OUT-
CLK-
SER-
IUR-
IL1-
IAR-
IL2-
RST-
IUA-
PLSE-
ECHO-
+5V
+5V
AB03-
AB04-
AB05-
AB06-·
AB07-
ABOO-
AB01-
AB02-
PRIN-
PROT-
GND
GND

COMPUTER AUTOMATION. INC. ~

Table 8-2. Maxi-Bus Load, Drive and Termination Summary (Cont'd)

DEVICE TYPE (S) (REFER TO NOTE 1)

PIN CPU MEMORY I/O CONT DMA CONT CONS'OLE BUFFER OPT. RD

44
45 1,5.6 1.5 2.5 1.5 2.5 1.5 1.5
46 1,5.6 1.5 2.5 1.5 2.5 1.5 1.5
47 1,5.6 1.5 2.5 1.5 2.5 1.5 1.5
48 1,5 ;6 1,5 2.5 1.5 2.5 1.5 1.5
49 1.5.6 1.5 2.5 1.5 2.5 1.5 1
50 1.5.6 1.5 2.5 1.5 2.5 1.5 1
51 1,5.6 1.5 2.5 1.5 2,5 1.5 1
52 1.5.6 1,5 2.5 1.5 2.5 1.5 1
53 1.5,6 1.5 2.5 1.5 2.5 1.5 1
54 1.5.6 1.5 2.5 1.5 2.5 1.5 1
55 1.5.6 1,5 2.5 1,5 2.5 1.5 1
56 1,5,6 1,5 2.5 1,5 2.5 1.5 I
57 1.6 5 5 5 5 5
58 1.6 5 5 5 5 5
59
60
61 1.6 5 5 5 5 5
62 1.6 5 5 5 5 5
63 3 5 5 5 5
64 5.6 2 2 2 2
65 5.6 2 2 2 2
66 5,6 2 2 2
67 1,6. 5 5 5 5 5
68 5,6 2 2 2
69 2.5.6 5 5 2,5 2 5
70 1,6 5 5 5
71 1.6 5 5 5 5 5
72 1.6 5 5 5 5
73
74
75 1,6 5 5 1,5 5 5 5
76 1,6 5 5 1.5 5 5 5
77 1,6 5 5 1,5 5 5 5
78 1,6 5 5 1,5 5 5 5
79 1,6 5 5 1,5 5 5 5
80 1,6 5 5 1.5 5 5 5
81 1,6 5 5 1,5 5 5 5
82 1,6 5 5 1,5 5 5 5
83 J] 5 5 5
84 4 4 4 * 4
85
86

2. DPIN-, DPOT-. MBIN-, MBOT-, AND TYP1- ARE STRUNG THROUGH THE 200 SERIES CONNECTORS ONLY.
THESE PIN POSITIONS ARE UNASSIGNED ON THE 100 SERIES CONNECTORS AND ARE RESERVED FOR
FUTURE EXPANSION.

3. THESE PINS CARRY SPECIAL SIGNALS ON SLOT A100 AND ARE RESERVED FOR FUTURE EXPANSION ON
THE REMAINING 100 AND 200 SERIES CONNECTORS.

4. EBSEL-, PIN 211. IS USED FOR TEST ONLY.

8-28

J2 Jl J3
(EXPANSION BUFFER INTERFACE)

j
(CONSOLE INTERFACE) (EXPANSION BUFFER INTERFACE)

A200 •
B200 ., tt •• EEE!Z~Al00 ~ -+--- B 1 00

C200 .,

0200 .,
00
I
~ E200 .,
(0 El00

o

Fl00
(POWER SUPPLY INTERFACE)

Figure 8-11. ALPHA LSI Motherboard Slot Organization (Rear View)

Section 9

DEVICE INTERFACE CONTROLLER,
DESIGN TECHNIQUES

9.1 INTRODUCTION

This section describes how to design a device interface (I/O) controller that will be com­
patible with the I/O structure of the ALPHA LSI computer. The logic circuits described
here are from Computer Automation, Inc. standard interface products that are success­
fully performing at user installations throughout the world.

9.2 I/O CONTROL IMPLEMENTATION

The following paragraphs describe I/O controller design requirements for compatibility
with the I/O structure of the Processor.

9 . 2 .1 Device Address Decoder (Figure 9-1)

The Device Address decoder is a comparator circuit which compares the five-bit
Device Address field of an I/O instruction with the user assigned device address.

The example A address decoder uses an exclusive OR (EX OR) gate and an inverter
for each of the five device address bits to be decoded. The outputs of the inverters
are tied together to form a wired-AND address decoder output signal, DAXX.

Address decoding is controlled by the five Peripheral Select signals (PSO- through
PS4-). These signals are brought in from the device interface connector to
corresponding EX OR gates. . If a true Oow) address bit is to be decoded, the corre­
sponding address select signal must be externally wired to ground (ground = true).
Likewise, if a false address bit is to be decoded, the address select signal must be
left open permitting the pull-up resistor to provide the false (high) address select
signal.

When the device address bit agrees with the address select signal, the output of the
EX OR gate is low. All five device address bits must agree with the user defined
address selection. If agreement is obtained, the decoder output signal DAXX goes
high enabling recognition of I/O instructions.

Example B shows an address decoder which decodes Device Address 6. This type
of decoder is used only in dedicated applications and does not provide the flexibility
that the example A decoder offers. Refer to appendix B for standard device address
assignments.

9-1

COIIPU1II MJ'fOMAlIOIt... BI
,...------,

CAUTION

Device Addreu : 00 should not be used. This address
is reserved for Proceaor mounted options. the Coneo1e
and certain control instructions. Using it will cauae
improper operation of the Processor. Furthermore •
a device interface connector containing properly installed
device address jumpers must be appUed to tbe rear-
edge connector at all times. If it ia not. a default address
of : 00 will be assigned to the module • causing the same
problem referred to above.

9.2.2 Function Decoder (Figure 9-2)

The Function decoder uses an MSI chip, or a network comprised ot SSI chiPs. to
decode the contents of the Function field ot the Address bus. The result is a function
code (1 of 8 maximum) which performs lome function in the selected I/O controUer.

The choice of chipa depends upon the user's application. Figure 9-2 shows three
examples. A. B and C. of how to implement the Function decoder. When decoding
three or less functions. example C may be the most emdent. However, if chip
count ia a factor. example A or B is probably more efficient. In any case. where
more than three functions are to be decoded. example A or B is probably the moat
emetent.

9.2.2.1 Example A

Example A uses a TTL 7442 MSI chip which is a 4 to 10 Decoder. Inputs A, Band C
are the 2' • 22. and 23 inputs respectively. Input D is the 24 input. When high.
input D enables decoded output 8 or 9. However. only the first eight outputs of
the decoder (0 through 7) are normally used, since eight is the maximum capacity
of the three Function field lines in its normal configuration. D input is the enable
input for the first eight decoded outputs, and utilizes the DAXX- signal for this
purpose. When the device address is decoded, the DAXX- signal goes low. thus
enablipg the Function decoder.

Input lines from the Function field of the A bus are first unloaded by inverter gates and
then applied to the decoder. As an example, if all Function field lines were false (high,
implying Function Code 0), lows would be applied to inputs A, B and C. The
decode of all low inputs would be zero thus causing FCO- to go low. (Decoded
outputs of a 7442 are always low.) If a high signal is required, it can be obtained
by using a simple inverter gate, such as the TTL 7404 illustrated.

9 . 2 . 2 .2 Example B

Example B is the same as example A. except that the outputs are reversed (output
7 = FCD. output 6 = Fel. etc.). However. example H can only be used where the
Function field lines will not be applied to any other circuit on the same I/O controller.

9-2

mJ
A1GO-

A CIIII

• AIOl-
CltI

I AI02- C 1121

I DAXX- D

mJ
'/

•

I lit

"'-

I
k7t1MM-

PG-

PG-

llC

~~&:ER '

7442

EXAMI'LEA

FC2-

FC3-

FC4-

FC5-

Fca-

FC7-

}NOTU8ED

~
(801

A801-
(81)

A802-
(821

FOD-

FCl) AIIOIJ.. A
/801

AB01-
(811

AB02-
(82)

DAXX D

Figure 9-2. Function Decoder Configurations (Typical)

178IA807-

1181 ABO&-

17liIAB03-

1771 A_

OAXX-

DAXX
1781_

4TO 10
DECODER

7442

EXAMPLE B

Figure 9-1. Device Address Decoding Techniques

FC7-

FC7

FCfi-

FC4-

flCl-

FC2-

,FC1-

FCO-

} NOT USED

• I
en

FCO-

FCO

FC1-

FC2-

+5V

OA06

(\?
I

en

This complies with the rule that each controller represents no more than one load to
each 1/0 line.

9.2.2.3 EXJUnpie C

Example C can decode only three function codes. TTL 7410 3-input NAND gates are
the decoders. The three Function field signals are applied to the appropriate NAND
gates to produce FCO- through FC2-. If the decoded device address is to enable'
the function codes, TTL 7420 NAND gates can be used, with the DAXX signal
applied to the fourth input of each gate.

9.2 . 3 Select, Input or Output Instruction Decoding (Figure 9-4)

Similar to the Function decoder. the Select. Input or Output (I/O) instructions can be
decoded by an MSI chip or a network of SSI chips. Figure 9-4 shows two methods.
example A and B, of implementing this circuit. When the various instructions are
fully decoded using the Function field signals of the A bus. the Function decoder is not
generally needed.

9.2.3.1 Example A

Example A shows a TTL 7442 4 to 10 Decoder used as a Select, Input or Output instruction
decoder. Tht! u€l:oder also decodes the contents of the A bus Function field, but only for
the specific type of 110 instruction with which it is being used. Assume the decoder is
used as a Select instruction decoder. The contents of the Function field are applied to the
A. Band C inputs to produce the appropriate function code--any one of up to eight associ­
ated with the Select instruction. The decoder is enabled by NANDing DAXX (device
address decoded), EXEC and PLSE. The Select instruction and associated functions are
decoded by the one circuit. Refer to paragraph 6.4 for Select instruction timing.

9.2.3.2 Example B

Example B shows a decode network of SSI chips. This circuit can offer greater
efficiency than the 7442 chip, depending upon the application. For example, if
three types ofI/O instructions (Select, Input and Output) are used by a controller, and
less than three functions are associated with each type instruction, it is probably
more efficient to use decoders of this type, each utilizing the outputs of a single
Function decoder.

9.2.4 Initialization Implementation (Figure 9- 3)

Initialization circuitry establishes a known static state within an I/O controller. Initializa­
tion is started by executing a Select instruction with a function code dedicated to initial-

9-5

(0MPUlIIt MIlOMATION • .c. ~

isation (nominally Function Code 4) or when the RST- signal goes low (upon depression
of the RESET switch on the Console. or during a power fail/restart situation). Figure
9-3 shows a circuit contlguration for implementing initialization. When the device
address and function code of the Select instruction are 'decoded, the DAXX and FC4
signals go high to prime the 3-input NAND gate. EXEC goes high during the Select
instruction. enabling the pte to produce the lNZX - and INZX signals. These signals are
distributed throughout the controller to reset or set nip-flops, data registers. counters,
etc .• to establish the known static state.

FC4
EXEC
DAXX

INZX

X>--e------------INZX-

RST

Figure 9-3. Initialization Circuit

9.2 . 5 Sense Instruction Implementation (Figure 9-5)

The Sense instruction circuit can be implemented using an MSI chip or a network
comprised of SSI chips. As in the Function and I/O instruction decoders, application
determines the most efficient method. An MSI chip can accommodate up to eight
sense conditions. and provide its own function decoding. (Function code deter­
mines sense condition to be interrogated.)

The SSI network can be implemented more efficiently where three or less sense
conditions are to be interrogated. However, the circuit requires inputs from a
Function decoder. Both positive and negative, internal and external signals can
be sensed. An example of each is described below and illustrated in figure 9-5.

9 .2 . 5 .1 Positive Sensing

Example A shows positive sensing using a TTL 74151A MSI chip. The 74151A is an 8 to
1 Multiplexer that provides internal function code decoding and an enable input (EN).
It also provides both true and complement outputs. The top four inputs (0 through 3)
are shown accepting External Sense (ESO through ES 3) signals from the external device.
Pull-up resistors should be connected to each external input line (lOK typical). Internal
Sense (lS4 through 157) signals are applied to inputs 4 through 7. When the device
address is decoded. the multiplexer is enabled by DAXX - at the EN input. The outputs
of the A bus Function field unloading gates are applied to the decode input of the multi­
plexer (ADO, 1, and 2). The appropriate sense signal, as determined by the function
code. is then applied to the two outputs.

9-(;

mJ
~

I
I

1101·

I •. ..
IS7

DAXX-

10K

Ell)

1
I-INPUT
MULTIPLEXIR

a
OUT

74111"

IXAMPLE"

MOTE: fOIl EXAMPL£S B • D.
ALL fUNCI'IOH CODE
DECODE. MUST IE
DIYELOPIfD USING
DAXX AS IN FIO.I-2
IXAMPUS A ••.

HOT useD

I
74111A

00i~-----t
DAXX

EXAMPLE C

VDC 101(". ESO- 7404
F....---... __ "

SER-
1&1)

151- ~-4"""+-OSER-~1&l1

152_+,404" ==&-
7438 •

FC2

EXAMPLED

NEGATIVE SENSE

Figure 9-5. Positive and Negative Sense. Circuit Contigurations

PLSI­
(11)

EXEC­
(57)

A8OO-
1801

A801-
. 1811

AII02-
1821

I

IN- I I ~Nl
- 7404· --1
~ I I ~

TI
(82)- 1404 __ J

A

4T010
DECODER

EXP2-

exP3-

EXP4-

c
EXPI-

EXPI-

EXP7-

7442 } NOT USEO

EXAMPLE"

\

IXPO-

EXPO (SELECT COMO)
INPO (INPUT COMO)
OTPO (OUTPUT COMO)

(OUT)
(IN)
EXEC
OAXX-­PLSE--w..:. __

~~~ION1:: DECODER - -r-~L---I 

FC2-

EXAMPLE B 

Figure 9-4. Select. Input. or Output Instruction Decode Configurations 

expo 
(lNPOI 
(OTPo) 

eXPI 

EX!':! 



COMPUTER MJTOMATION.IK. ~ 

Only the high output (OUT) is used in this case. The signal is inverted and applied. 
to the Sense Response line (SER-) by the 7438 driver. When the OUT signalls high, 
the SER-llne goes low. When the OUT signal is low, the-SER- Une stays high. 

Example B shows positive sensing using SSI chips. Both external and internal 
sensing is again illustrated. A separate Function decoder is required to provide 
the necessary function codes. NAND gates combine the sense lines with the 
associated function codes. The outputs of the' NAND gates are connected in a 
wire-ORed configuration to the SER- line. 

9.2 .5.2 Negative Sensing 

Example C shows negative sensing using the 74151A MSI chip. Negative sensing is 
similar to positive sensing, except that the low output (OUT-) of the chip is employed 
rather than the high output, the EN input is grounded to permanently enable 
the chip.and DAXX is used to gate the multiplexer output onto the SER- line. As 
with positive sensing. all external sense lines should be provided with pull-up 
resistors. 

Example D shows negative sensing using SSI chips. The negative-true signals are 
inverted and applied to 7438 2-input NAND gate drivers. Function code signals enable 
the appropriate driver. The outputs of the drivers may be connected in a wire-ORed 
configuration- before being applied to the SER - line. 

9.3 DATA TRANSFER CONTROL IMPLEMENTATION (Figure 9-6) 

The efficient transfer of data between the Processor and I/O controller is controlled by 
the various buffer control circuits shown in figure 9-6. An Output Buffer Empty circuit 
controls the transfer of data from the Processor to the interface (examples A and B). 
An Input Buffer Full circuit controls the transfer of data from the interface to. the 
Processor (examples C and D). 

9.3.1 Example A 

Example A shows an Output Buffer Empty latch (OBE) comprised of two TTL 7400 
negative input OR gates. The latch is initially set upon execution of the Initialize 
instruction for the controller. The INZX signal goes high and is applied through the 
NOR gate to the set side of the latch. causing it to set. The OBE signal thus goes 
high and is applied to the Sense multiplexer from which it can be interrogated by 
Sense or Conditional Output instructions using the appropriate function code. The 
OBE signal can also cause an interrupt through implementation of interrupt logic. 
When data is transferred to the controller Output buffer. the DAXX. OUT and PLSE 
signals go high. enabling the NAND gate whose output is applied to the reset side 
of the latch. The latch now resets. inhibiting response to further interrogations 
by the Processor. When the data has been transmitted. a signal should be generated 

9-9 

to indicate completion of the transfer. (Data Transmitted--DXMT). DXMT is 
applied to the same NOR gate as INZX. causing the latch to set again and indicate 
that the buffer is ready for more data at the next Processor interrogation. 

9.3.2 Example B 

The circuit in example B does the same thing as example A. The only difference is 
a TTL 7474 D type flip-flop is used. rather than the dual NOR gate latch. INZX­
direct sets the flip-flop. The highOBE signal is then available for interrogation. 
When data is transferred to the Output buffer. the nip-flop is direct reset. When 
DXMT- goes true. the flip-flop is once again set to indicate the buffer is ready to 
accept more data. 

9.3.3 Example C 

Example C shows a latch configuration of an Input Buffer Full circuit (lBF). The 
latch is reset by INZX upon initialization of the controller. After data has been 
transferred to the Input buffer. a signal should be generated to indicate the com­
pletion of the transfer (Data Received--DRCV). DRCV- sets the latch. causing 
IBF to go high. The IBF signal is then applied to the Sense multiplexer where it 
can be interrogated by the Processor with Sense or Conditional Input instructions. 
IBF can also cause an interrupt when implemented in the interrupt logic. When 
the data is transferred to the Processor. the DAXX. IN and PLSE signals go high. 
resetting the latch. 

9.3.4 Example D 

Example D shows an Input Buffer Full circuit using a TTL 7474 D type flip-flop. 
The flip-flop is direct reset upon initialization. The flip-flop is set when data is 
received (DRCV goes high). The flip-flop is then direct reset when the data is 
transferred to the Processor (DAXX. IN and PLSE go true) . . 

9.4 PERIPHERAL DEVICE INTERRUPT IMPLEMENTATION 

The design requirements for various interrupt structures compatible with the ALPHA LSI 
computers are now discussed. 

9.4.1 Interrupt Address Rationale 

In general, interrupts are vectored to a location within the first 256 words of Memory . 
The main advantage for having interrupts vectored to this area of Memory is in the 
housekeeping associated with certain interrupt instructions. An Auto I/O instruction, 
for instance, must have the word/byte count and address pointer redefined after it has 
been moved. An IMS instruction must have the count value redefined <liter it has 

9-10 



!3! 
~ ... 
(D 

CiD 
I 

~ 

t:1 a 
l!:) 

~ ... 
~ 
DI z i§z (Dl N ... )C 

c 
0 
a e. 

t:I 
)( 
c .... 

Z 

~ 

~ 
III 
2 ... c :: 

g ct 
n ~ 

~ 
;; 

9-11 

Z 
~ ~ < I 

~ S 
C! .... 

~ 
'" ! 
-< 

0 
11 

.... --4 
OZo 
e~= 
n~~ 
~o 

!D 

overflowed. If the interrupt instructions are in the first 256 words of Memory. direct 
addressing can be used from anywhere in Memory to update the instruction parameters 
in anticipation of the next interrupt pa!Js. 

In applications where the use of the first 256 words of Memory for interrupts makes 
programming dUftcult. all interrupts can be offset: 100 locations into the next 258 
words of Memory • 

The number of memory locations that are reserved for interrupts varies with each 
I/O controller. If the I/O controller is intended to move data under Auto I/O interrupt 
control. four locations should be reserved for the Auto I/O instruction and two locations . 
for the End-of-:Block (EOB) interrupt. If a simple transfer of control is required. only 
two locations are required for a JST instruction. If external events are being counted. 
four locations must be reserved--two for the IMS instruction and two for the EOB interrupt. 

If multiple interrupts are developed by an interface. these interrupts are organized 
into a famUy. Referring to appendix A. the Real Time Clock option has a four word 
interrupt famUy and the 103 Data Set Controller has a IS-word family. Family size 
is strictly a function of the number of interrupts an interface develops and the nWD-
ber ·of locations required by each interrupt instruction. " 

To preserve compatibility throughout the ALPHA computer family. "I/O controllers 
are designed to interrupt to an even numbered address. If an I/O controller 
develops multiple interrupts. the base addresses of these inte~rupts are partitioned 
either two or four locations apart. The standard base addresses are: OXX2. : OXX6. 
: OXXA arid : OXXE. These standard ba~ addresses leave locations : OXXO and : OXX8 
available for special interrupts J if required. 

The Auto I/O instruction requires three locations while the IMS and JST instructions 
require one location each. The unused reserved locations may be used for address 
pointers. 

9.4.2 Single Interrupt Implementation Using IUR- (Figure 9-7) 

This structure features an " Interrupt Enable flip-flop (lNTE) J an Interrupt Stimulus 
Store flip-flop (lNTS). an Interrupt Pending flip-flop (lP!) J priority determination 
logic. priority out disable logic and an interrupt address generator. 

The lNTE nip-flop is a J-K type device which is synchronously set or reset by an 
addressed Select instruction. Function Code M (FCM) sets INTH while Function Code 
R (FCR) resets INTE. The INTS flip-flop is a D-type positive-edge triggered cir­
cuit. When enabled. lNTS sets on the positive excursion of the external stimulus 
signal (EXTS). 

9-12 



An optional feature is an edge detector consisting of an Exclusive-OR gate and an 
inverter. The edge detector permits the use of either a high or low stimulus signal. 
The polarity of EXTS is defined by RPOL (Request Polarity). If EXTS is a low signal 
when active. RPOL is grounded. Likewise. if EXTS is a high signal when active. 
RPOL is left open and the pull-up resistor provides the positive-logic level sipal. 
When both EXTS and RPOL are of the same polarity. the output of the edge detector 
will be high causing INTS to set. if enabled. Once both INTE and INTS are set. an 
interrupt request is generated. The Interrupt Pending flip-nop is enabled when 
INTEand INTS are both set. When enabled. IPI sets on the negative excursion of the 
processor I/O clock (lOCL). 

Once IPI is set. the structure must have priority before an IUR interrupt request can 
be generated. If up-stream devices are not generating interrupts. PRIN- (Priority 
In. pin 83) will be low. Both PRIN and IP! are ANDed to produce the Interrupt Request 
Pending (ME) signal. ME is used to develop the Interrupt Request (IGR-) signal and 
disable down-stream inten·upts by causing PROT- (Priority Out. pin 84) to go high. 

When the Processor recognizes the interrupt request. it responds by issuing the 
Interrupt Address Request (IAR) signal. If ME is still high (a higher priority interrupt 
may have been generated at the same time as this one, causing PRIN- to go high. 
disabling ME). IAR causes the interrupt address to be generated. 

The Interrupt Address generator develops a unique vectored interrupt address. The 
base address that is developed is : OXX2 . The Interrupt Address Select lines (E4-
through E25S-) permit the user to displace the base address anywhere in ttLe first 512 
words of Memory. Grounding a pa!.'ticular address select line adds a corresponding 
decimal value to all base addresses. For example. grounding E32- adds 32 d~im91 
locations to all interrupt addresses. 

This type of address generation permits the user tc redefine interrupt locations with 
a minimum of effort. In the event the user is limited by the murnber of pins available. 
specific data bus drive:'s can be used instead of the structure shown. 

When ME and L<\R are high (ADRR). the Data bus drive!'s are enabled and the interrupt 
address is transferred to the Processor. The Processor directs the contents of the D 
bus to the Memory Address register. After the "''fernory Address register is loaded. the 
PLSE signal is generated. The PLSE signal. NANDed with ADRR. will cause INTS to 
reset. 

At the end of the last cycle of the interrupt instruction. lOCL is re-enabled. With 
INTS reset and IOCL enabled. IPI resets on the negatiye excursion of IOCL terminating 
the IUR interrupt request. 

The only feature of the interrupt structure not mentioned previously is the initialize 
feature. Generally. all controllers have an initialize circuit which generates the INZX 
signal. INZX sets or resets all control l!ip-fJ.ops to a known condition. In this case. 
INTE and INTS are reset by INZX. INZX is typically generated in response to an 
addressed Select instruction with a function code of 4. or by the Processor generated 
System Reset signal. RST-. 

9-13 

~ 

"I! 

~ 
'1 
I'D 
co 

I 

~ 

til 
:; 
'a 
I'D 

a 
I'D 
'1 

2 
~ 

S 
'Eo 
~ 
I'D :a 
e-o· 1ft 

t = 

? c::: 
~ 

5" 
<Jq 

a 
~ 

I 

I 

~ ~ Z 

m 

¥ eo i iii 
'" z 

~ ~ ito 

, , .. ;0 ,. ;; s 
0; ; ~ 

! l! 

9-14 



COMPU1'EI AUTOMATION. 11K. em 
9.4.3 End-of-Block Interrupt Implementation Using IUR (Figure 9-10) 

Th~ interrupt structure shown in tlgure 9-8 develops two interrupts on the IUR- request 
line. 

The structure is similar to the IUR structure described in paragraph 9.4.2 except that 
an Echo Interrupt flip-Bop (ECBOI) is added. The interrupt request is developed as a 
result of ORing IPI and ECHOI. and two base addresses are developed (: OXX2 for lPt 
and : oxxe for ECH01) • 

ECHOI is enabled by lPl and PRIN. If the structure has priority at the instant an ECHO 
signal is developed by the Processor (upon determining the last word/byte of a data block 
has been transferred). ECHOt sets when ECHO is received. ECHOt1s·reset:iflP-ff~8-­
reset. if the structure has priority when IAR and PLSE are received . 

Note that IPt is set for the entire period of the interrupt instruction and that ECHOt 
is set only as long as required to obtain recognition from the Processor. 

9.4.4 Reentrant Interrupt Implementation (Figure 9-8) 

Reentrant interrupt programming permits an interrupt of higher priority to interrupt 
an interrupt Bubroutine. Interrupts of lower priority are not recognized. Reentrant 
interrupt programming requires that the Priority Out Disable latch be implemented in 
the user's interface hardware. When the latch is implemented. the generation of an 
interrupt sets the latch. which in turn disables the generation of PROT- to down-
stream devices. . 

The reentrant interrupt feature disables all lower priority interrupts tor the duration 
at an entire interrUpt subroutine. The reentrant interrupt circuit is shown in figure 
9-8. The circuit prevents the PROT- signal from being tra~smitted to the next lower 
priority controller until the subroutine has been completed. The PROT disable latch 
is initially set when the interrupt request is acknowledged with the lAB signal from the 
Processor. lAB is ANDed with ME to produce Address (ADRR) which enables the 
interrupt address drivers and also sets the PROT Disable latch. PROTD- thus goes low. 
disabling the 3-input NAND gate which normally produces the PROT- signal when MB­
goes false (high). Inhibiting the generation of PROT- prevents priority from being 
passed on to lower priority controllers until the latch is. re~et . 

The latch can be reset by issuing a Select instruction with 8 function code dedicated to 
resetting the latch. or by initializing the controller. When the Select instruction is 
decoded. the DEXP (combination ofDAXX. EXEC and PLSE signals) signal goes high. 
DEXP is NANDed with the appropriate function code (FCX) and is applied through a 
negatiye input OR gate to the reset side of the latch. The latch is thus reset and 
PROT- is passed on to lower priority devices (if PRIN- is low). 

9-15 

ADRR------------~ 

oexp 
FCX 

INZX--------' 

Figure 9-8. Reentrant Interrupt Implementation 

9.4.5 Single Interrupt Implementation Using ILl- or IL2- (Figure 9-9) 

PROT-(84) 

The structure shown in figure 9-9 consists of an Interrupt Enable (lNTE) nip-nop and 
and interrupt request driver. The INTE nip-flop is used to enable the driver. When the 
external stimulus is applied. an interrupt request is generated. This structure demands 
that the external stimulus remain active until some positive action takes place to move 
data or transfer control (the issuance of the IN-. OUT- or EXEC- control signals with the 
pro~r device address). 

FCM 

DAXX 
EXC 

PLSE 

FeR 

EXTS 

INTERRUPT 
ENABLE 

J a 
74107 

C 

K R a 

INZX-

INTE 

I 
I 

EXTS-o----------{;>-____ J 
Figure 9-9. Simple ILl-/IL2- Interrupt Structure 

9-16 

IL1-(66J 
OR 
1~68) 



9-17 

9.4.6 End-of-Block Interrupt Implementation Using ILl and IL2 (Figur.;! 9-12) 

The interrupt structure shown in figure 9-12 develops two interrupts which utilize 
the ILI- and IL2- request lines. Since this interrupt structure is designed to acco­
mmodate any ECHO signal generating instruction (the four Auto I/O instructions and the 
IMS instruction). no other devices may be attached to the ILl- and IL2- request lines. 
These lines are totally dedicated to this structure. 

This structure is essentially the same as the IUR- structure described in paragraphs 
9.4.2 and 9.4.3. The most significant difference is that the request flip-flops are 
distributed directly to the ILl- and IL2- drivers. The operation of this structure is 
essentially the same as the IUR structures, except during request termination. Once 
the interrupt request is generated, the request must be recognized by the Processor. 
The Processor recognizes the highest priority interrupt first and all other requests 
in their order of priority. Since there are three higher priority interrupts above ILl 
(Power Fail, Trap, and Console) and four above IL2- (the three just mentioned and 
ILl), the interrupt structure must be able to detect no higher priority interrupt activity 
before terminating the request. The only thing that the Power Fail, Trap, and Console 
interrupts have in common is that during the interrupt address request interval, they 
all cause bit 4 of the D bus to be low. If DB04- is low during JAR, the ILl request will 
not reset but will remain active since the Processor has not honored the requeSt. When 
no higher priority exists fu.~er generating the interr upt request, INTS is reset on the 
leading edge of the PLSE signal and terminates the interrupt request. To avoid retrig­
gering the INTS flip-flop, the interrupt stimulus should remain in the active condition 
until an addressed 1/0 instruction (Select, Input or Output) causes the source of the 
stimulus to reset. 

9.5 DIRECT MEMORY ACCESS IMPLEMENTATION 

DMA controllers generally have three basic phases of operation. These phases are 
initialization, execution, and termination. This section provides a general overview of 
each of these phases. A simple overview flow chart is shown in figure 9-11. 

9 . 5 . 1 Initialization 

The initialization phase is used to transfer task parameters from an operating program to 
the DMA controller. Typically I the task parameters define operating modes, data trans­
fer paths, the total number of transfers to be made, the starting memory address (if 
Memory is involved) and search parameters for items such as a disk or tape unit. The 
complexity of the task parameters is directly related to the complexity of the DMA 
controller and the various tasks it can perform. Depending on the DMA controller design, 
the task parameters can be transferred from Memory to the DMA controller's registers 
either by use of normal I/O instructions or by means of a task control hl'1r:k which is 
read from Memory by the DMA controller. 

9-18 



/' INITIALIZATION PHASE 
• Obtain T_ Pare"*-s 

From Operating Program 
!! 
'a 

IEiC • 
CD , I ::I"" ... 
~ 

tIJ i a 
i 

.~ 

, 
I f i 

!I~ EXECUTION PHASE 
• Maxi-Bus Acquisition i "'!; &g 
• Priority Auction 

'id • Data Transfer i 
I 
I 
! 

NO ! 
8 I X d 0 

t ~ 
GIl 

t= 
~ ! ... 

I 

TERMINATION PHASE ~ 
• Issue End-Of-()peration C. 

Interrupt t= 
• Provide Transfer Status to 

I 

,.. 
Figure 9-11. DMA Operational Phases j 

9-19 9-20 



Once the task parameters have been transferred, the DMA controller may begin data 
transfer execution. 

9.5.2 Execution (Figures 9-13 through 9-15) 

The execution phase is entered upon completion of initialization. When the associated 
peripheral logic is ready to transfer data, it generates a DMA transfer request. The 
DMA controller executes the DMA request in three stages. These stages are Maxi-Bus 
acquisition, priority auction. and data transfer. Figure 9-13 shows a typical imple­
mentation of the Maxi-Bus acquisition and priority auction logic. Figure 9-14 shows 
the state counter and decoder implementation. Figure 9-15 depicts the timing for both 
a Memory Write and Memory Read operation. 

9. 5. 2.1 Maxi - Bu s Acquisition 

Maxi-Bus acquisition is initiated upon receipt of a data transfer request. The Maxi-Bus 
acquisition logic consists of three control elements: a Request Store nip-flop (RQ), a 
Request Sync flip-flop (REQF) and a STOP- driver. 

The data transfer request is stored in the Request flop-flop. RQ remains set until the 
data transfer stage is entered. 

If no DMA operations aI'e currently in progress (processor Stop Acknowledge signal. 
SACK-. high). the Request Sync flip-flop is asynchronously set which causes STOP­
to go low requesting use of the Maxi-Bus. If a DMA operation is in progress (SACK­
low). the Request Sync flip-flop must be set synchronously with Memory Acknowledge 
(MACK-) to assure proper bus operation. 

9.5.2.2 Priority Auction 

Priority auction is required only if multiple DMA controllers are employed in the same 
system. Priority auction permits multiple DMA controllers to compete for use of the 
Maxi-Bus by means of the DMA priority string (DPIN- and DPOT-) . DPIN- is the name 
given to the priority chain as it enters a controller and DPOT- is the name given to the 
priority chain as it leaves each controller. The DPOT- of one controller is the DPIN­
of the next lowest priority controller. A DMA controller has priority if its DPIN- line 
is low. The number of DMA controllers which may be used within the system is limited 
only by priority ripple time on the priority string. :--.iominally. 200 ns are allocated to 
priority ripple. Where more than 200 ns is required for priority ripple. each DMA 
controller must be designed to abstain from beginning a transfer operation until 
sufficient time has elapsed for priority ripple. 

Priority auction occurs at two times: after the leading edge of SACK-and. if another 
request has been received. after the data transfer (after the trailing edge of MACK-). 
If only one DMA controller is installed in the system. or if only one DMA controller is 
allowed to be active at a time in multiple DMA configurations. then priority ripple time 
need not be allocated. 

9-21 

Within the DMA controller. priority auction is controlled by a DMA Start nip-flop 
(START). START is enabled by REQF (which indicates that a synchronized data trans­
fer request is pending) and is clocked by the leading edge of SACK- during initial 
Maxi - Bus acquisition. or by the trailing edge of MACK-during sequential DMA operations. 
When set. START inhibits downstream DMA Priority (DPOT-, high) and starts the DMA 
State counter. 

When two or more DMA controller START controls are set simultaneously. the highest 
priority controller inhibits priority to the down-stream controllers. The down-stream 
controllers. upon seeing DPIN - high, reset their START flip-flop and DMA ;State counter 
aborting the data transfer. An aborted transfer remains pending until all higher priority 
DMA requests have been serviced. 

Priority auction terminates when the auction interval (normally 200 ns) has been timed out. 

9 . 5 .2. 3 Data Transfer 

When the data transfer interval is entered, the DMA controller is free to initiate data 
transfers to or from Memory or another I/O controller. All data transfer timing is 
controlled by the DMA controller per paragraph 10.2.2 for memory transfers and per 
section 7 for transfers to/from another I/O controller. For each data transfer. the 
DMA controller must generally decrement a Word or Byte counter and increment an 
Address counter if transferring data to/from Memory. These overhead operations 
generally take place immediately after a data transfer to assure that address informa­
tion is stable during the next data transfer. When a data transfer is completed. the 
DMA controller enters the Priority Auction stage if more data transfers remain or 
enters the termination phase if all transfers are complete. 

The RST signal should never be used to clear the DMA Data Transfer logic since RST 
is an asynchronous signal and may occur in the middle of a memory cycle. To 
guarantee that the DMA Data Transfer logic is initiated in the proper state when 
power is first applied. the MDIS- signal should be used a~ shown in figure 9-13 and 9-14. 

9.5.3 Termination 

A DMA controller should provide for two types of termination: normal and abnormal. 
A normal termination occurs when the Word counter decrements to zero with no 
errors detected. An abnormal termination occurs if an error condition exists. Since 
DMA transfer operations can be terminated for a variety of reasons, termination nags 
should be used to store the reason for a termination. 

When a termination condition exists (either normal or abnormal) subsequent DMA 
transfer requests are inhibited. Maxi-Bus control is returned to the Processor, and 
an End-of-Operation (EOP) interrupt is developed by the DMA controllu. In some cases. 

9-22 



~ ____________________________________ nATI~IR ______________________ ~ __________________ -, 

IlIACI( 

Q3 

.... 
0 ... 

Q3~. 
WIlITE~so.o 

--IIrobI 

INCA~IIOIT 
WIlITE-~ 

o..r.-

~ QI 

~ 74HII Dltw 

.. 

F.igure t-14. State Counter an4 Deood .. 

t-----~------------~D 

111M 
ITMT 

UN 

110 

~-""-<)MiIT-1111 

.. 

"---~:J""" __ 

Figure '-13. Maxi-Bua Aoquilltlon ed Priority Auction Control. 
\ 

\ 



COMPUl8l AU1OMATION.INC. em COMPUTER AUTOMATION. INC. 8! 
~ , ~ i ~ I i , B B a g R ~ I ~ e i 'l' " :!: ~ it may be desirable to have the Processor periodically examine DMA controller status I 

rather than generate a termination interrupt. 

Typically. the EOP interrupt service routine will input the termination nags and any 
other pertinent status. and determine if the complete transfer was acceptable. If the 
data transfer was not acceptable. the software may retry the transfer operation if it 
deems it necessary. 

It is the responsibility of all DMA controllers to terminate with the current bus opera-
tion and not request further bus operations in the event of a power failure (PFD- low). 
This is necessary to allow the Power Fail/Restart circuitry to interrupt the Processor 

it so that a software power down subroutine can be executed. Normally a DMA control-; 
!) ler will set a termination flag in the event of a power failure during active operation a-

so that software will be aware of an incomplete operation. 

"2;1 9. 5 . 4 Basic DMA Controller Architecture 
~. 

A typical DMA controller interfaces between Memory and a high speed peripheral device. '1 
(I) 

It must be able to emUlate the Processor in terms of controlling Memory and making (&:I 
I block data transfers of any length. A typical DMA controller must be able to perform ... 
~ the following operations: 
0 ::: 1. Provide initialization sequencing by programmed I/O or > 

~ ~ f ~ ~ 
0 " ~ ~ e e a e ~ ~ ~ 

~ e DMA transfer. I-i !I ~ ~ cr » 
~ '1 "I' ~ 2. Stop the Processor to seize control of the Maxi-Bus. III 

3. Initiate a memory cycle. ::s 
CII 

CD' 4. Define either a Read or Write operation. 
'1 

5. Provide temporary data storage and asynchronous data I-i 
transfer to/from the associated peripheral. S· 

S- 6. Maintain the memory address for the current transfer and 
CIQ increment the address for the next transfer. 

7. Maintain a count of the number of remaining transfers. 
8. Provide error detection. 

/' 
9. Te~inate transfer operations (surrender Maxi-Bus to 

Processor) after the last transfer or upon an error indication. 
10. ProVide End-of-Operation interrupt or status response. 

A basic DMA controller features a Control section. a Word/Byte counter. an Address 
register/counter and a Data channel as shown in figure 9-16. 

9.5.4.1 Control Section 

The Control section consists of Initialization logic, a Mode Control register. Maxi-Bus 
acquisition controls. DMA Priority logic and a 3-bit State counter and decoder. 

The initialization logic is used to set up the DMA controller for subsequent operation. 
It generates load signals for the mode control flags. the Word counter and the Address 

9-25 ;'-:::6 



1'\ 1\ 

0 
CD 
C 
en 

>1j 
~. . ~ )-
~ ... V tD 
CD 

I .... 
m 

I:C 
I» 
(J) 

ir 0 
0 ~ 
:c -t 

.> > 
C') 

g ::r: 
~ 

a z z 

~ 
m 
r-

tD ... 
> ... 
t) 

e: 
~ 
!1 
~ 1\ ... 
tD 

C en m 
::u 
0 
~ 
-t 
> 

V 

9-27 

''', 

COWU1U AUtOMATION. INC. BJ 
~ 
> x 
T 
CD 
C en 

I'. 

'" ' V 

~ 

J 
~ 
i 
I 
• . , If'" 
5 

coMPu1a AUTOMAtION. INC. BJ 
register. Two techniques can be used to implement the Initialization logic. 'One 
technique involves the use of programmed I/O to set flags and load registers., . 
An alternate technique involves the use of a sequencer and the DMA control logic ·to 
access a task control block in Memory . 

The Maxi-Bus acquisition controls issue the PrOcessor STOP- signal in response to 
a DMA request. . 

The DMA Priority logic permits DMA operations between multiple DMA controllers. 
During each DMA cycle. the DMA priority is auctioned so that a higher priority.DMA 
controller can transfer data. • 

The 3-bit State counter is used to time all operations during a data transfer. The de­
coder network decodes specific states of the· CQunter to generate a Memory Start (MST-) 
signal, increment or decrement registers and. .gate data and address information to 
Memory. 

The Mode Control register has a minimum of I-bit storage for the Read/Write mode 
flag. If the user wishes to implement the Byte mode. a Byte mode nag is required to" 
distinguish word transfers from byte transfers. The register may beexpandect to 
accommodate other user defined flags as deemed necessary. \ 

9. 5 .4.2 Word/Byte Counter 

The Word/Byte counter is a IS-bit parallel-loaded binary counter. During initializa­
tion, the word/byte count that corresponds to the total number of words or bytes to 
be transferred is parallel loaded into the register. During execution. the Word/Byte 
counter is decremented with each DMA transfer to or from Memory. The counter also 
requires a word count equal-to-zero detection feature. This feature monitors the 
count during each transfer such that when the word count reaches zero. subsequent 
DMA requests are inhibited and termination operations are performed (typically an 
End-of-Operation interrupt) . 

9.5.4.3 Address Counter 

The Address counter is a I6-bit parallel-loaded b~nary counter. During initialization, 
the starting address of the memory area being accessed is parallel loaded into the 
low order 15 bits of the counter. The MSB of the counter is set faise for Word mode 
and true for Byte mode. During execution. the Address counter is incremented for 
each tr8nsfer(after MACK-is received). Dunng Byte mode opera,tions; the Select 
Least Significant Byte (SLB) flag is used as theLSB of the address count. When SLB- is 
low. the least significant byte of the transferred data word is read from or written into 
Memory. Likewise. when SLB- is high. the most significant byte of the transferred 
data word is used. SLB- must be high (or not used) during Word mode operation. 

9-28 



9.5.4.4 Data Channel 

The Data channel ia a temporary storage element that serves as a staging area for DMA 
data transfers to or from Memory. The complexity of the channel Is determined 
by two factors. The first factor is DMA latency. DMA latency is deftned as the time 
required, under worst case conditions, Cor the Processor to surrender the Maxi-Bus 
to 8 DMA controller. This worst case time for the NAKED MINI/LSI with the standard 
1600 ns Memory is 5.6 I-'S (this is the maximum time that the Processor requires to do 
internal housekeeping andrenerate a Stop Acknowledge (SACK-) signal. The second 
factor that determines Data channel complexity is the user's maximum data transfer . 
rate when writing into Memory. 

Using the 5.6 I-'s DMA latency as a constant, the numbe-r ofbutfers that would be required 
for temporary data storage in the Data channel is directly related to how many word 
transfers could be attempted prior to gaining control over Memory. For instance. if 
the user has a data transfer rate of 750 kilowords per second, 1.31'8 would be required 
for each data transfer. With a latency of 5.6118 and a transfer rate of 1.3"" a minimum 
of four words would be transferred and the transfer of a fifth word would have started 
before Memory was under control. Thus. five buft'ers would be required for a 750 
kiloword transfer rate. Furthermore, the memory capabiUty would have to operate in 
the interleaved mode. The number of buffers required for various transfer rates are 
summarized in the following chart: 

Data Transfers Up To 

178.571 worda/bytes/sec 
357.142 words/bytes/sec 
535,713 words/bytes/sec 
714.284 words/bytes/sec interleaved 
892.855 worda/bytes/see interleaved 

1,071.426 words/bytes/sec interleaved 
1.249,997 words/bytes/ sec interleaved 

Number of Buffers Required 

1 
2 
3 
4 
5 
6 
7 

The user can avoid the necessity of multiple buffers by use of a Hog Mode flip-flop. 
This flip-flop keeps the STOP- line active and disables down-stream priority even 
though transfer requests are not occurring at a sufficient rate to sust8in "Burst" mode. 
In the Burst mode, every memory cycle is dedicated to DMA transfers, i.e., 16-bit 
word transfer rate of 625 kHz (single memory module). The TYPl- signal on the mother 
board permits the DMA controller to sense which Processor is installed arid perform 
Hog mode transfers if necessary. TYP1- is ground when the LSI-lis installed and is 
open when the LSI-2 is installed. 

9.6 PRIORITY AND MEMORY BANKING PROPAGATION 

It is the users' responsibility to propagate the Interrupt priority. DMA priority. and 
Memor'Y- Banking chains regardless oC whether or not a module is associated with any oC 
these chains. If a module is not associated with any of these chains. the corresponding 
chain signals (namely PRIN- and PROT- for Interrupt priority. DPIN- and DPOT- for 
DMA priority. and MBIN and MBOT for Memory Banking) must be prjr:~'g~ted through 

9-29 

the module for use by down-stre8Pl modules. These signals should be jumpered together 
within the module. The ALPHA LSI motherboard input ..-d output pins for Interrupt and 
DMA priorities. and Memory Banking. are given in the chart below. 

·INPUT OUTPUT 
MNEMONIC PIN MNEMONIC PIN 

Interrupt Prionty PRIN- 1831 PROT- 184. 
283 284 

DMA Priority DPIN- 209 DPOT- 210 
Memory Banking MBIN 237 MBOT 238 

Modules associated with Interrupt or DMA priority. or Memory Banking. should use 
TTL gates Cor unloading and driving the corresponding chain signals. It is imperative 
that the propagation delays internal to the modules be minimized. A total or two micro­
seconds is allowed for signal propagation through all modules in a chain. The implemen­
tation of expansion chassis Buffer board look-ahead propagation limits the longest signal 
propagation path to the maximum number oC modules that can be installed in two chassis 
(20 half board modules). Signal propagation delays should therefore be held to less 
than 100 ns average per module. 

9. 'I I/O BUS LOADING RUt,ES 

For loading rules, see maxi-bUS electrical char~~stics. paragraph 8.6. 

9.8 POWER AND GROUND SYSTEM CONCEPTS 

The power supply that is furnished with the ALPHA LSI computer produces three 
voltages: +5 Vdc, +12 Vdc and -12 Vdc. The +5 volt supply is used to provide the 
Vec voltage for all integrated circuits in the Processor. Memory and I/O modules. 
The +12 and -12 volt supplies are used by the Processor and memory modules and 
are available to all I/O modules if needed. Typically. the +12 and -12 volt supplies 
provide power Cor analQg and communications type interfaces. All three regulated 
voltages share a common ground system referred to 88 logic ground. 

Power (+5. +12 and -12 Vdc) and logic ground are distributed from the system power 
module through the motherboard to all plug-in modules. Within a module, +5V and 
ground are distributed by means of bus bars. The power and ground pins on the 
motherboard are organized such that each bus bar can pick up a separate set of pins. 

A typical half board module has a density of 72 integrated circuits which are organized 
in six rows of 12 chips. A typical full board module has a density of 144 Ie's organized 
in 12 rows of 12 chips. Bus bars are mounted in between each row of chips and on the 
outside edges of a board. A half board module has seven bus bars while a full board 

9-30 



COMPUlU AUTOMATION. INC. ~ 

module has 13. Odd numbered bus bars are ground. even numbered bus bars are +5 Vdc. 

Most 14-pin chips use pin 14 for Vcc (+Vdc in this case) and pin 7 for logic ground. A 
typical 16-pin chip uses pin 16 for Vcc and pin 8 for logic ground. By alternating the 
pin 1 orientation of each row of chips. two rows 0 f chips can share a common +5 or 
ground bus bar. The Vcc pins of all chips in adjacent rows are routed to the nearest 
+5 bus bar mounting pad. Likewise. all ground pins in adjacent rows are routed to the 
nearest g110und bus bar mounting pad. 

The bus bar is designed such that when it is installed there is a .030 inch gap between 
the underside of the bus bar and the printed circuit board. This is to permit etched 
circuitry to pass beneath the bus bar without shorting. (Refer to figure 12-3. ) 

Table 9-1 lists all power and ground pin assignments that exist in the 100 and 200 series 
connectors of a typical motherboard slot. 

Table 9-1. Power and Ground Pin Assignments 

PIN SIGNAL PIN SIGNAL 

1.2 Ground 43.44 +5 Vdc 
3.4.5.6 +12 Vdc 59.60 Ground 
7.8 -12 Vdc 73.74 +5 Vdc 
13,14 +Vdc 85.86 Ground 
27.28 Ground 

There are two ground systems in the ALPHA LSI computer. They are logic ground and 
chassis ground. It is recommended that the user avoid tying these two ground systems 
together. The chassis ground system usually has more noise than the logic ground 
system can tolerate. In the event it is necessary to tie the two systems together. they 
should be tied together at only one point in the users' system. For personnel protection. 
the chassis ground system is tied to earth-ground via the third wire in the ae line cord. 

9.9 FILTERING TECHNIQUES 

Integl:-ated circuits introduce switching transients into the +5 V dc power supply which 
must be filtered out. It is recommended that both high frequency and low frequency 
filtering be employed. The low frequency filter consists of a2.2 ",F. 10%. 20 Vdc 
tantalum capacitor between +5V and ground for each row of 12 chips. The high fre-. 
quency filter consists of a .022 ",f, 25 Vdc ceramic capacitor between +5V and ground 
for every four chips in a given row of chips. Thus. a typical half board module 
would have 6 tantalum capacitors and 18 ceramic capacitors for transient filtering. 
Where a large number of MSI devices and Fairchild 9602 one-shots are used. it is 
recommended that a .022 J.LF ceramic capacitor be used for each device. 

The -12 Vdc supply is used by the inhibit drivers in Memory. The inhibit drivers 
introduce approximately .5 volts of transient noise into the -12 Vdc power supply. 
If the user cannot tolerate this much noise, an inductive type filter is recommended. 

9-31 

COWU1ER hUTOMATION.INC. f3]1 

9.10 STANDARD INTERFACE CONNECTOR 

The standard interface connector is a Viking 3VH50/IJN5 or equivalent. This con­
nector features two rows of 50 contacts designated Al through A50 and B1 through 
B50. Contacts Al throughA50 interface· with the contact strip on the solder side 
of the PC board. Contacts Bl through B50 interface with the component side of the 
board. The interface connector should be installed with pins Bl and Al to the left as 
viewed from the rear of the computer. 

9.11 NORMAL INTERFACE PINS 

The interface pin assignments normally used by CAl· for device address and 
interrupt address jumpers are listed in table 9-2. 

Table 9-2. Normal Interface Pins 

PIN SIGNAL PIN SIGNAL 

A01 PS4- BOI +5Vdc 
A02 PS3- B02 +5Vdc 
~03 PS2- B03 

I 
GND 

A04 PSl- B04 GND 
A05 PSO- B05 

I GND 
A06 E8- B06 mm 
A07 E16- B07 I GND 
fAOS E32- B08 f GND 
A09 E64- B09 I GND 
A10 E128- B10 

I 
mm 

All E256- Bll G~D 

9-32 



COMPU1IR AUTOMA11ON.INC. BI 

Section 10 

CONSOLE INTERFACE REQUIREMENTS 
10.1 INTRODUCTION 

A Console. be it the standard ALPHA/LSI Programming Console or a user designed 
Console. is an I/O device with a special set of dedicated I/O instructions having 
special mnemonics. 

The Console is assigned Device Address 0 (DAO) and shares this device address with 
the Power Fail/Restart option. the Autoload option and the Console interrupt and Trap 
controls of the Processor. 

The Console communicates with the Processor via the Maxi-Bus and uses a special set 
of control signals (not considered part of the Maxi-Bus) to stop. step. and start the 
Processor. 

This section provides a detailed discussion of interface signals. transfer timing. data 
formats. etc. This section also discusses the minimum requirements of a Console and 
how to add features to the minimum configuration Console. 

10.2 CONSOLE - PROCESSOR INTERFACE (Figure 10-1) 

The Console interfaces to the Processor via the Maxi-Bus. plus special control lines 
not generally considered to be part of the Maxi-Bus. The speciall1nes and the 
associated functions are described below. The signals are all ground-true. 

SERV-

IF-

" , 

C1>nsole Service. The SERV - signal is issued by the Coneole 
to COmmand the Processor to service the Console. The SERV­
line may be considered an interrupt line with priority over all 
interrupts. but superseded by DMA operations. The Processor 
responds to SERV - by performing a Console Control word (CCW) 
input (actually. an instruction fetch from the Console instead of 
Memory). The CCW determines the required servicing. 

Instruction Fetch. The IF- signal. issued by the Processor. 
envelops the instruction fetch cycle. In response to SERV -. the 
Processor performs an instruction fetch cycle. which in this case 
is a CCW fetch instead of the usual memory read cycle. The 
Console uses IF- to differentiate the CCW input cycle from a status 
word input cycle; both use Device Address and Function Code O. 
If SERV- is issued coincident with the leading edge of IF-
or later. the instruction fetch cycle will cause an instruc-
tion to be accessed from Memory and subsequently exe-

10-1 

START-

CINT-

ssw-

AL-

OV-

BM-

cuted before SERV- wlll be honored. SERV- must lead IF- by at least 
1.6 liS to guarantee the next IF- cycle will be a CCW input cycle. 

Start Processor. Signal START- is isaued by the Console to command 
the Processor to resume processing. START- must be a minimum of 
1.6 "" wide. The Processor resumes processing on the trailing edge 
of START-. Signal SERV- must precede the trailing edge of START­
by at least 1.6 liS to guarantee the Processor will immediately perform 
a CCW input instead of a memory read cycle when processing is resumed. 

Console Interrupt. CINT- is issued by the Console to interrupt normal 
processing. Signal CINT-. once issued. must be held true until signal 
IAR- Onterrupt Address Request) is true. 

Sense Switch. Signal SSW- issued by the Console. tracks the console 
SENSE switch. No synchronization is required. If the SENSE switch 
is set, signal SSW- is true. 

Autoload. Signal AL- is issued by the Console to command the optional 
Autoload logic to perform an "autoload sequence. The autoload sequence 
is initialized on the leading edge of AL- and commences on the trailing 
edge of AL-. The AL- pulse width must be 100 ns minimum. 

Overflow. The OV- signal is issued by the Proceaeor. OV- tracks the 
Overnow flip-nop intemal 'to the Proceseor. 

Byte Mode. The BM- signal is issued by the Processor. BM- tracks 
the Byte Mode nip-nop internal to the Processor. 

MAXI·BUS 

IF-

SERV-
START-
CINT-

PROCESSOR AL- CONSOLE 

ssw-
OV-
BM-

Figure 10-1. Processor/Console Interface 

10-2 



COMPUTER AUTOMATION. INC. ~ 

10.3 CONSOLE TRANSFER TIMING 

There are four basic functions (beyond normal I/O functions) that a console can I'er­
form. These are: establishment of the Stop mode. register entry and display. Step 
mode operation. and establishment of the Run mode. The timing requirements for 
each ot these functions are discussed in the following paragraphs. 

10.3.1 Establishment of Stop Mode (Figure 10-2) 

During the Run mode. the Processor Instruction Fetch signal (IF-) is ground-true 
when the Processor is fetching an instruction from Memory and is high during the 
execution of the instruction. The Console uses the trailing edge of the IF- signal to 
synchronize th~. generation of a Console Service Request (SERV - ) . 

The Stop mode js initiated by operator activation of the console STOP switch. With 
the STOP switch acthre. the SERV- signal is enabled. SERV- goes true during the 
execution period of the current instruction and remains true for the next instruction 
fetch. 

Upon seeing the SERV - signal active. the Processor fetches the next instruction from 
the Console rather than from Memory. When the Processor fetches the instruction 
from the Console. it addresses Device Address 0 and Function Code 0 and issues the IN­
control signal. The Console. upon seeing IF- low. Device Address and Function Code 
o and IN- low, places a Stop CCW word on the Data bus. 

The Processor vectors the Stop CCW'word to its instruction regis~er and executes 
the instruction. The CCW instruction algorithms cause the Processor to halt. 

INSTRUCTION N-l INSTRUCTIONN CCW INSTRUCTION 

STOP 

+V p ____________________________________________ ___ 

--------------""""'L STOP SW,,"" ACT'VATED 

+v 
• IF-

+V------------------------------~~ SERV-

DATA BUS A::~~~~~~~'"""'~. """''''''''''"'"''''~"''''"'''''''L.._·_l C-:OO _____ , (PROCESSOR STOPPED) 

• PROCESSOR GENERATED SIGNAL L STANDARD I/O 
TRANSFER TIMING 

__ Figure 10-2. Establishment of Stop Mode 
10-3 

(SEE FIG. 8-3) 

COWUTa AUTOMATION. INC. 8J 

10. 3. 2 Register Entry and Display (Figure 10-3) 

The register entry and display sequence can be performed only when the Processor i5 
stopped. The sequence is initiated by activation of a Register Select switch on the 
Console. The switch activation causes both SERV- and START- (Processor Start) to 
go low, simultaneously. Approximately 1600 ns later, the Processor resumes operation 
on the trailing edge of ST ART- . 

Upon resumption of operation, the Processor recognizes that the SERV- si~al is active 
and fetches the next instruction from the Console. The Console. upon seemg IF- , 
Device Address and Function Code 0, .and IN- low. places the CCW on the Data bus .. 

. The Processor executes the CCW instruction and transfers data between the Console 
and the target register or Memory (as defined by bits 0 thru 15 of the CCW). Upon 
completion of the transfer. the Processor stops. 

+v--___ ~~~~~~---------------------------------------------;STATIC CONDITION) STOP o 
REGISTER SELECT SWITCH ACTIVATED 

+V-----.... _ 
SERV-

+v ____ + .... 
START- o 

+v--------------~~ 
·IF- o 

DATA BiJS (PROCESSOR STOPPED) 

• PROCESSOR GENERATED SIGNAL 

Figure 10-3. Register Entry/Display Sequence 

10.3.3 Step Mode Operation (Figure 10-4) 

(PROCESSOR STOPPED) 

STANDARD I/O 
TRANSFER TIMING 
(SEE FIG. 8-3) 

The Step mode causes the Processor to fetch one instruction from Memory, execute the 
instruction and then stop. The Step mode operation can be performed only when the 
Processor is stopped and the console RUN switch is activated. Activation of the RUN 
switch causes the START- signal to go low. Approximately 1600 ns later, the Processor 
resumes operation on the trailing edge of START-. 

10-4 



COMPU1Bl AUTOMATION. INC. ~ 

The Processor. upon resumption of operation. fetches the next instruction from Memory 
(a8 defined by the current value of the P register) and executes it. The Console, upon 
seeing the trailing edge of.IF-, generates SERV-. Upon completion of the execution of 
the instruction fetched from Memory, the Processor fetches a Stop CCW from the Console. 
executes the instruction. and then stops. 

+V 

STOP 
0 

+V 

START-
0 

+V 

'IF-
0 

+V 

SERV- o 

DATA BUS 

r.1600 MIN---i 

RUN SWITCH 
ACTIVATED 

(PROCESSOR STOPPED) 

INSTRUCTION FETCH 
8c EXECUTION 

'PROCESSOR GENERATED SIGNAL FROM 
MEMORY 

Figure 10-4. Step Mode Sequence 

10.3.4 Establishment of Run Mode (Figure 10- 5) 

FROM 
CONS01.E 

STANDARD I/O 
TRANSFER TIMING 
(SEE FIG. 8-3) 

The Run mode is established by deactivation of the console STOP switch and activation 
of the console RUN switch. Activation of the RUN switch causes the ST ART- signal to 
go low. Approximately 1600 ns later. the Processor resumes operation on the trailing 
edge of ST ART- . 

10.4 CONSOLE WORD FORMATS (Figure 10-6) 

The NAKED MINI LSI uses four different word formats to convey information between 
the Console and the Processor. These word formats are as follows: 

1. Computer Status Word 
2. Console Sense Word 
3. Console Data Word 
4. Console Control Word 

10-5 

PROCESSOR STOPPED PROCESSOR RUNNING 

+V 
STOP 

0 STOP SWITCH L,~C-L----I200--M-IN---J-.-------'-----------
DEACTIVATED J -'..-- --. 

+V 
START-

0 

+V 
• IF-

0 

IJ 
RUN !>WITCH ACTIVATED .... ----t 

• Procestor Generated Signal 

Comput_ Status Word 

ConlOle Sen .. Word 

Console Data Word 

ConIoIe Control Word 

15 

\. 

Figure 10-5. Establishment of Run Mode 

8 7 3:1 0 

o 0 0 0 

~ 

SIA (:58001. SOA (:&COOI 
SIX (:5AOOI. SOX (:1E001 

RESERVED FOR EXPANSION INTERNAL PROCESSOR 
STATUS errS 

15 

10 0 0 0 0 0 o 0 OS os 
2 1 ,:1 

15 

15 

... 
RESERVED FOR EXPANSION 

16-BIT DATA WORD 

6 5 • 3 2 0 

o 0 01'llxIAH~'1 
~nese btu;;:; rnutUIJII'/ 
exclusive; on", one bit 
may be .. t at a trme 
for proper ()fJe<atiOn. 

Figure 10-6. Console Word Formats 

10-6 

ISA (:58021 
ISX (:511.01) 

ICA (:58041. OCA (:44041 
ICX (:511.041. OCX (:46041 

(:ICXXI 



COMPUTER AUTOMATION. INC •. ~ 

10.4.1 Computer Status Word 

The Computer Status word permits the program to store volatile Sense register data 
during a power failure and to restore the Sense register data during restart operations. 
This capability is required with the standard ALPHA LSI Console since the sense data 
is stored in a volatile storage register. If non-volatile toggle switches are used. this 
capability is not required. 

The Computer Status word is transferred between the Console and the Processor when 
IF- is false. using special unconditional Input or Output instructions with a device 
address and function code of O. During an SIA or SIX instruction. the Console copies 
the state-of the SENSE switch (SSW) into bit 3 of the word and the contents of the Sense 
register (DSO thru DS3) into bits 4 thru 7. respectively. The internal processor status 
(bits O. 1 and 2) is generated con.currently within the Processor. Upon input, the Com­
puter Status word is loaded into either the A or X register. Note that the Console can 
drive only bits 3 thru 7 during an SlA or SIX instruction. 

During an SOA or SOX instruction. bit 3 of the Computer Status word contains the new 
state of the SENSE switch and bits 4 through 7. respectively. contain the new state of 
DSO thru DS3. 

10 .4. 2 Console Sense Word 

The Console Sense word is transferred from the Console to the Processor in response 
to an unconditional Input instruction with Device Address 0 and Function Code I. During 
an input operation (ISA or ISX instructions). the contents of the console Sense register. 
DSO through DS3. are copied into data bits 0 through 3 of the Maxi-Bus. respectively. 
All other bits of the word are transferred as zeroes. No Output instructions are issued 
by the Processor in conjunction with the Console Sense word. 

10.4.3 Console Data Word 

The Console Data word is a full unsigned (absolute) 16-bit data word that is transferred 
between the Processor and Console in response to an unconditional Input or Output 
instruction with Device Address 0 and Function Code 4. 

During routine input operations (ICA or ICX instructions). the Console Data word is 
input to the Processor A or X register. Likewise. during routine output oper.ations 
(DCA or OCX instructions). the Console Data Word is transferred from the Processor 
to the Console. 

During a console service sequence. the Console Data word can be transferred to or 
from the Processor A. X. I or P registers as well as Memory . 

10.4.4 Console Control Word 

The Console Control word (CCW) is an instruction word rather than a data word. The 
CCW is generated by the Console during a console service sequence. The operation 
code of the CCW resides in bits 15 through 6 while bits 5 through 0 are modifiers. 

10-7 

COWUltR AUTOMATION. INC. ~ 

The NAKED MINI LSI is designed to respond to eleven different CCW codes. These 
codes are listed below: 

CCW CODE 

: lCOO 
: lC02 
: lC03 
: lC04 
: lC05 
: ICOS 
: lC09 
: lCI0 
: lCll 
:lC20 
: lC2l 

FUNCTION 

Stop Processor 
Read Data from Memory. Increment P and Halt 
Write Data into Memory. Increment P and Halt 
Output Data from A Register and Halt 
Input Data to A Register and Halt 
Output Data from X Register and Halt 
Input Data to X Register and Halt 
Output Data from I Register and Halt 
Input Data to I Register and Halt 
Output Data from ~ Register and Halt 
Input Data to P Register and Halt 

Note that bits I through 5 are mutually exclusive. namely. only one bit may be true at 
a time. 

10.5 MINIMUM CONSOLE REQUIREMENTS 

A minimal user designed Console should have facilities to stop. reset and stRrt t~· 
Processor as well as have system performance indicators. 

10.5.1 Stopping the Processor 

Stopping the Processor requires the issuance of a Console Service Request (SERV-) 
and the furnishing of a Stop Processor CCW to the Processor upon recognition of SERV-. 

The Processor will not recognize the Console Service Request until completion of the 
current instruction. Upon completion of the current instruction. the Processor recog­
nizes the Console Serivce Request by initiating a CCW instruction fetch from the Console 
rather than the normal instruction fetch from Memory. The CCW transfer timing is. 
discussed in paragraph 10.3. 

The users Console should be designed to furnish the CCW word during an input 
sequence with Device Address 0 and Function Code 0 ONLY when the instruction fetch 
signal (IF-) is true. Once the CCW is transferred to the Processor. the internal micr.o­
program algorithm of the Processor brings the Processor to a stopped condition. 

10.5.2 Resetting the System 

Resetting the system is accomplished by forcing the System Reset signal (RST-) ground­
true for a minimum of 5 J.LS. This can be accomplished with a switch or a TTL compa.tibl" 
open-collector signal capable of driving 32 rnA. It is not necessary to synchronize or 
debounce this signal. 

10-8 



COMPUTER AUTOMATION. INC. ~ 

10.5.3 Starting the System 

The system is started by issuance of the Start Processor signal (START-). STAR'l'­
is a ground-true signal that must have a minimum duration of 1.6J-ts. START- should 
be driven with a 32 rnA open collector TTL driver. 

10.5.4 Visual Indicators 

Visual indicators should be provided for ease in determining the operational status 
of the system. Indicators should be provided on the debounced STOP switch signal 
and the system RESET signal. A RUN indicator can be provided by use of a 500 J-ts 
retriggerable one-shot that is triggered by the Memory Start signal MST-. As long 
as the system is running. the Run one-shot will be retriggered each time Memory is 
accessed and will time out 500 J-tS after the last memory access following departure 
from the Run mode. The RUN indicator should light whenever the Run one-shot is set. 
The Byte ~10de signal (B!d-) and the Overflow signal (OV-) are available for display. 
If these sIgnals are applIed to lamp drivers and indicators. an additional performance 
monitor can be obtained. 

10.6 OPTIONAL CONSOLE FEATURES 

The minimal Console discussed in the previous paragraph can be expanded to include 
several additional features which are discussed in the following paragraphs. 

10. 6 . 1 Data Entry and Display 

The data entry and display feature provides the capability to enter data from the Con­
sol~ into the Processor registers or Memory. Likewise. data from the Processor 
regtsters. Memory. or a program can be stored and displayed for operator observation. 

The data entry and display feature requires that the Console generate the Console 
Data word. Generation of the Console Data word requires a 16-bit register and 16 
32 rnA o.pen-?ollector drivers to drive DBOO- through DBI5-. The entry switches can 
be apphe~ VIa the storage register to the drivers .. The drivers should be enabled only 
upon receIpt of an Input instruction with Device Address 0 and Function Code 4 (ICA or 
ICX). 

If the us~r desires to- accept data from the Processor. the Console must have 16 Data 
bus receIvers and a 16-bit holding register. The holding register must be clocked 
~nly w~en a Select and Present instruction with Device Address 0 and Function Code 4 
IS receIved (OCA or OCX) . 

Display indicators may be tied to the outputs of the storage register and should light 
"" hen a corresponding bit is true. 

10-9 

COMPUTER AUTOMATION. INC. ~ 

10.6.2 Register and Memory Display and Modification 

This feature permits the operator to transfer the Console Data word between the Con­
sole and the Processor A. X. I or P register or Memory . 

This feature requires that. in addition to other bits. the Console be able to drive 
DBOO- through DB05- during a Console Control word transfer. Bits 1 through 5 of the 
CCW must be mutually exclusive. i. e. only one bit may be true at a time. 

The Console logic should be designed such that when a registfi!r select SIgnal for bits 
1 through 5 of the CCW is generated. the SERV - and ST ART- signals are generated 
simultaneously. Furthermore. the generation of any CCW word. other than -the Stop 
Processor CCW (: lCOO) • must be enabled only when the Stop mode is established. This 
is to avoid possible alteration of volatile data in a user's program during Run mode. 

10.6.3 Sense Register Entry and Display 

The Sense register entry and display feature permits the operator to generate a 
Console Sense word. The generation of a Console Sense word requires that a 4-bit 
Sense register be applied to four 32 rnA open-collector data bus drivers (OBOO- through 
DB03-). The drivers should ,be enabled only upon receipt of an Input in~truction 
having Device Address 0 and Function Code 1. 

10.6.4 SENSE Switch Feature 

In addition to the four sense lines discussed above. the Processor will accept a SENSE 
switch signal (SSW-) that may be tested by program instructions. The SSW- signal 
must be ground-true when the SENSE switch is active. 

10.6.5 Console Interrupt Feature 

The Console interrupt feature permits the operator to interrupt normal processing. 
Console interrupts genE:rate signaiCINT- which is sent to the Processor. The only 
timing restriction on CINT- is that it must remain active until the Processor recognizes 
the CINT request (recognition is obtained when the Interrupt Address Request 
(IAR-) signal goes ground-true) . 

10.6.6 Autoload Initiation Controls 

The Autoload initiation controls permit the operator to command the Autoload option 
to perform an autoload sequence. Autoload initiation should only be permitted when 
the system is in the Run Enable mode (STOP and RU~ switches are reset or off) . 
Autoload initiation will take place whenever the AL- signal is forced ground-true. 
The signal must be ground-true for a minimum of 100 ns to guarantee a response from 
the Autoload option. 

10-10 



The user may use the AL- signal to set a flip-flop which. in turn. may drive an auto­
load indicator. A Select instruction with a device address and function code of 0 can 
be used to reset the flip-flop when loading is complete. 

10.6.7 Step Mode Feature 

The Step mode feature permits the operator to manually step through a program one 
instruction at a time. The Step mode is an extension of the Stop mode wherein. if 
the RUN switch is activated while in the Stop mode. the Processor will go into the 
Run mode, execute one instruction. recognize a console service request. process the 
request and then stop. Step mode timing is discussed in paragraph 10.3. 

10.7 USER CONSOLE INTERCONNECTION (Figure 10-7) 

A user designed Console can interface to the Processor in two different ways. II the 
user has the motherboard assembly, the Console can be interfaced at connector JI. 
II the motherboard is not employed in the users system. the Console can be interfaced 
directly to connector PI of the Processor. (lntercabling must be limited to 18 inches.) 

Motherboard connector JI will accept a 50-pin 3M connector (Part number 3451-0000). 
This connector is designed to accommodate a SCOTCHFLEX ™ ribbon cable (3M part 
number 3365-50). A PC board transition adapter (3M part number 3456) is also 
available for the console end of the ribbon cable. Note that power and ground are 
available at J1 in addition to all signals required for a Console. The pin assignments 
for connector J1 are shown on figure 10-7. 

In systems that do not have a motherboard, refer to paragraph 2 .3.3 of this manual. 

10.8 OPTION CARD CONSOLE ACCOMMODATIONS 

The NAKED MINI LSI Option board provides console skeleton logic. Included in the 
logic are the following capabilities: 

1. Secondary Console Sense register. Grounding four jumper pins 
introduces corresponding logic 1 bits in the ConSQle Sense 
register word for ISA and ISX instructions. Satisfies requirements 
of paragraph 10.6~3. 

2. Secondary Console SENSE switch. A ground jumper on the pin 
simulates the console SENSE switch in a set state for conditional 
jump instructions only. Satisfies requirements of 
paragraph 10.6.4. 

3. Secondary Console Interrupt switch. A momentary ground jumper 
simulates a Console interrupt. This jumper option is also available 
at the TTY interface connector. Satisfies requirements of 
paragraph 10.6.5. 

10-11 

CONSOLE CONNECTOR 
{3M 3415-0000} 

cuc-
IAR­

RST-

PLSE-

'OCL­

AB03-

AB04-

OUT-

SERV-

0814-

0813-

OB12-

OBl1-

0810-

0B09-

DBOB-

0807-

0B06-

0B05-

DB04-

0B03-. 

MST-

0801-

DBOO-

0802-

Figure 10-7. Motherboard/Console Connector (J1) Pin Assignments 

10-12 



COMPUTER AUTOMATION. INC. ~ 

4. Secondary Autoload switch. A momentary ground jumper simulates 
the console Autoload (AL-) signal and results in the execution of the auto­
load sequence. This jumper option is also available on the TTY 
interface connector. (Jumper is acti ve at all times and will first reset 
the computer if pressed while the computer is running.) Satisfies 
requirement of paragraph 10.6.6. 

5. Secondary Reset switch. A momentary ground jumper- simulates 
the console Reset (RST-) signal. Satisfies requirements of 
paragraph 10.5.2. 

Each of the abovE: capabilities and their implementation are describc:·d. in Section 6 of 
this manual. 

Table 10-1. Console Special Signal Load/Drive Summary 

SIGNAL CPU CONSOLE 

SSW- 5,6 2 
IF- 2,6 5 
AL- 5,6 2 
BM- 2,6 5 
OV- 2,6 5 
START- 2,5,6 2 
SERV- 2.5.6 2 
CINT 5,6 2 

Device types are as follows: 

2 = 32 rnA open-collector driver (7438 or equivalent) 
5 = TTL receiver (7400 or equivalent) 
6 = Pullup resistor (1 Kohm) 

10 . 3 



COWUTER AUTOMATION. INC. f3! 

Section 11 

POWER SUPPLY INTERFACE REQUIREMENTS 

11.1 INTRODUCTION 

This section discusses the requirements of a user furnished power supply. Among 
the items discussed are DC power requirements. power monitor facilities. an optional 
ae line synchronized timing source and interconnection requirements. Refer to 
figure 11-1 for a top and bottom view of the ALPHA LSI power supply. 

11.2 DC POWER REQUIREMENTS 

\ 
The user designed power supply must produce four voltages: +5Vde. +12Vdc. -12Vdc. 
and +5H (hangpower). The +5 volt supply provides the Vcc voltage for most integrated 
circuits in the processor, memory and I/O modules. The +12 and -12 volt supplies are 
used by the processor and memory modules and by the MOS LSI integrated circuits. 
~rtain analog and communications options use +12 and -12Vde. The +5H hangpower 
supply is used exclusi\rely by the Processor; a detailed discussion of the +5H supply 
is provided in paragraph 11.3. All four dc voltages share a common ground system 
referred to as logic ground. 

11.2.1 Estimating DC Current Requirements 

Before a user can design a power supply. the current requirements of each dc supply 
must be determined. The current load of most standard modules built by Computer 
Automation. Inc. are listed in table 11-1. The load currents listed are worst case for 
each module. The user can determine actual power requirements for his system con­
figuration by summing the load currents for each standard module (and multiples 
thereof) along with the load currents of any user designed controllers. 

11.2 .2 Overvoltage and Reverse Voltage Protection 

It is redommended that the +5Vdc power supply employ overvoltage and reverse volt­
age protection devices. The overvoltage device must prevent the +5V dc output from 
exceeding +6. 5 volts in the event of a power supply failure or an accidental application 
of a high voltage potential from an external source. Each supply output should have 
circuitry to prevent damage to its load or the supply itself in the event that one supply 
is shorted to another or to ground. 

11-1 

> 
C'tl 
C'tl 
~ 

Z 
o 

() 

~ 
(j 3: 
o 0 
~. Z ... 
0) 
o 
o 
a: 
(!) 

3 
o 
'1 
'< 

~~~"'~"''''~''''''''''''''''''''''''N'''''''''N~-N~~~~~ + 
o~o~~~~o~~~~~~~~~~~~~o~o~~~o~ ~

o ~ en en

~---t-1g ,:g 11000001
I I ••••• I
I 1 ~ 0 0 1
, I O~COUlUl 1
I' * ,

I I
, I
I I
I 1
1 I

1 101

: : 0 ~
• I ~ I
I I I

N" <;xl
t2:I
Z
...;

~--~>
11000001
, I ••••• ,
I I ~ 00 1
I I OUI co U'IU'I I

" * ,
2
~
(!)

ty,

I I
I ,
, I
, I
I I

101000""O~
I I I
I 1 1
1 I "" 1
1 1 I

11-2

000 ,-'

: c.n :"" ~ N
t...;. r..;. -..l to.;

::
_"tI
N~

<I'-

~

2:
(!)
I

COMPUTER AUTOMATION. INC. ~

Top View

.Bottom View

Figure 11- 1. ALPHA LSI Power Supply

11- 3

11.2 .3 Ripple and Noise Requirements

The regulator and output filter design of each power supply must be adequate to limit
ripple, noise and voltage transients to 50 mV peak-to-peak.

11.2 . 4 Turnon/Turnoff Overshoot

Tumon/turnoff overshoot should not exceed two percent (2%) of the nominal voltage
output of each dc power supply.

11. 2 . 5 Regulation Requirements

Each dc power supply should maintain a regulation envelope of :,2 percent of ~ominal
output voltage from 0 to 100 percent of full rated load over the expected range of input
line voltage and over a temperature range of O·C to SO·C.

These regulation requirements must be maintained at the processor module. Remote
sensing must be employed when voltage drops in the power supply wiring are of suf­
ficient magnitude to cause voltage regulation to exceed :,2 percent when the load cur­
rent is varied from no load to full load .

11.2.6 DC Power Storage

The +5Vdc. +12Vdc and -12Vdc power supplies must have sufficient storage in the reg­
ulation to insure regulated output for at least 2ms after a power failure has been detected
(refer to paragraph 11. 3 for details on power fail detection) .

11.3 POWER MONITOR FACILITIES (Figures 11-2 and 11-3)

The Power Monitor Facilities must develop a +5H (hangpower) voltage and a ground­
true Power Failure Detected signal (PFD-) for the exclusive use of the Processor.
These provisions are required whether the Processor Power Fail/Restart option is
used or not.

11. 3.1 +SH (Hangpower) Regulator

The +5H power supply must provide auxilliary +5Vdc power for use by the Processor
to assure proper startup and shutdown. The +5 H supply must be the first dc voltage
to come into regulation upon application or restoration of ac line power and the last
dc voltage to drop out of regulation upon loss or removal of ac line power.

The +5H supply must provide 200 rnA of dc current at +5 V dc and regulate this voltage
to within +5 percent of nominal. Ripple and noise must be within 50 mV peak-to-peak.
The +5H supply must be in regualtion at all times that the +5 Vdc and !,12 Vdc supplies
are above 10 percent of their specified values.

11-4

COMPUTER AUTOMATION... f§:g

11.3.2 Power Fail Detector

The Power Fall detector must sense when the nominal ac line voltage falls below its
minimum sustaining level. When this mJnimum sustaining level is sensed. the Power
FaU detector must generate ~ ground-true PFD- signal for use by the Processor.

The Power Fail detector must also have a timing function that turns off the +5, +12 and
-12V dc regulators a minimum of 2 ms after PFD- goes low.

When the ac line voltage rises above the minimum sustaining level. the Power Fail
detector must turn on the +5, +12 and -12Vdc regulators after allowing for a charge
buildup in the storage capacitors of each regulator. The PFD- signal must remain in
the ground-true state for a minimum of 2 ms after the +5. +12 and -12 V dc regulators
have reached 98 percent of their nominal values.

The PFD- signal driver must have a minimum drive capability of 20 mA dc and must be
collector-ORable. The driver may be implemented with either discrete elements or
with an integrated circuit. The logic levels for PFD- are as follows:

True = 0.0 to +0.45 Vdc
False = +2.4 to +5.0 Vdc

PART OF
POWER
TRANSFO RMER

~
>-,.

)

~
~

-...
... ...

' ..

1
-r- +5 HANG +SH

REGULATOR
1200MA)

.. ~

~

POWER'FAIL ~ ~~a~~~~::~:~~s
DETECTOR
(DETECTS
LINE VOLTAGE
AMPLITUDE) PFD-

-',

Figure 11-2. Pow'er Monitor Block Diagram

11-5

PROCESSOR

" .

PFD-

+5 VDC.
% 12 VDC

+SH

+V

COWUltR AUTOMATION. INC. ~

DOWN SEQUENCE UP SEQUENCE

m
Time - 2 milliseconds min. from falling edge of PFO- until first r"".ted wtt.ge drops out

8 +5 H IIOItage level undefined when +5 Y<lc and i 12 Y<lc are ~ 1~ of nominal

C Pfd· undefined when +5 H is ~ 96" of nominal

o Time- 2 milliseconds min. from 98'JI. point to rising edge of PFD-

Figure 11-3. Power Monitor Timing Requirements

11.4 AC LINE SYNCHRONIZED TIMING SOURCE (OPTIONAL)

The Processor Real Time Clock (RTC) option has provisions for a timing source input
which is twice the ac line frequency. The RTC option represents only one TTL load
to the timing source. The timing source output must be a TTL compatible logic signal
with rise and fall times of less than 50 ns. With regard to the duty cycle of the signal,
the only requirement is that the signal be ground-true a minimum of 100 ns. The
Processor refers to this timing signal as TTLF- (Twice the Line Frequency). The
logic levels for TTLF- are as follows:

True = 0.0 to +0.45 Vdc
False = +2.4 to +5.0 Vdc

11. 5 INTERCONNECTION REQUIREMENTS (Figures 11-4 and 11-5)

The user furnished power supply may be interfaced to the computer system in two
ways: at the m\jli.erboard or directly at the Processor.

11-6

COWUT£R AUTOMATION. INC. ~

11. 5 .1 Mothe rboard Interface Requirements

The user may interface to the motherboard at slot FIOO. The motherboard distributes
power and ground to all plug-in modules via the P100 connector. The FlOO connector
is a 36-pin connector with two rows of 18 pins. When viewed from the rear of the com­
puter, pin 101 is to the right on the upper row of contacts. The odd numbered contacts
(101 through 135) are in the upper row while the even numbered contacts are in the lower
row.

When interfacing to slot F100;the user must provide a special PC board transition
adaptor. A detailed drawing of this adapter, showing critical dimensions. is provided
in figure 11-4. The interface pin assignments are shown in figure 11-5.

11. 5 . 2 NAKED MINI LSI Power Connections

The user may di~tribute power directly to the NAKED MINI LSI computer. The Pro­
cessor has two connectors, designated PI and P2, which must be powered. Refer to
table 8-2 for the appropriate power and ground pin assignments.

CABLE INTER­
CONNECT AREA

-+-___ - -=----..J

CABLE STRAI N
RELIEF AREA

f
2.00 MAX

==r!:1
Jj~.oeo ,,-I-tf-t
j 1~::40 I I '-.56 WIN

~ 17 EQUAL SPACES ~ I
AT .1 56 ±.OO3 EQ. 2.652 I
TOL. NON-ACCU~ALATIVE

.50 i" 2.933 I
±.COS ,

3.94 ~i

Figure 11-4. User Power supply Transition Adapter

11-7

COMPUTER AUlOMATIOH.INC. f3!

SLOT Fl00
INTERFACE ADAPTER

{POWER SUPPLY MUST INTERFACE
TO ALL PINS AS SHOWN I

-12V

+12V

GND

Figure 11-5. Motherboard Power Adapter Pin Assignments

11-8

COMPUTER AUTOMATION. INC. l3I
Section 12

INTERFACE CONTROLLER
MECHANICAL CONSIDERATIONS

12.1 INTRODUCTION

This section discusses the mechanical design of a printed circuit (PC) board which can
be installed in an ALPHA LSI computer chassis.

Either full or half PC boards may be used. When half boards are used, two half boards
are joined together to form a full board.

All boards use bus bars to distribute power and ground to circuits. The bus bars
minimize the ground and power etch runs, leaving more space on the board for signal
etched circuit routing. The bus bar design permits etched circuitry to be routed be­
neath the bus bar with no danger of shorting.

Fiberglass or metal stiffeners are used on all full boards to eliminate sag and provide
improved structural integrity .

12.2 CHASSIS CONSTRAINTS

The computer chassis is designed to accommodate a PC board which has a width of 15
inches. All PC boards are installed in the horizontal position. When installed. the
chassis provides four-way support for the PC board. The PC board guides support
both sides of the board. the motherboard connectors support the front, and a board
retainer supports the rear edge.

The thickness of the PC board is determined by the motherboard connectors. A typical
board is .062 inch thick. The motherboard connector permits variations in thickness
ranging from . 054 to .071 inch.

All components, stiffeners, bus bars. etc. are mounted on one side of the board. This
side of a board is referred to as the "component side" while the other side is referred
to as the "solder siden • Boards are always installed with the component side up.

The chassis PC board guides are spaced on .75 inch centers. The height of components
on the component side of a board and the lead protrusion on the solder side of a board
must be minimized to permit unimpeded airflow and easier insertion and removal of PC
boards. All components should be no higher than .47 inch maximum. Lead protrusion
should be held to .06:1 inch maximum

The PC boara guides are an integral part of the computer chassis which is metal. To
prevent short circuits 01'\ 3 board. the user should not permit any etched circuit runs
closer than. 200 inch from !'ither ~dge of a board.

12-1

COMPUTER AUTOMATION. INC. l3I
12.3 PRINTED CIRCUIT BOARD CONSIDERATIONS (Figures 12-1 thru 12-3)

Figures 12-1 and 12-2 show the critical dimensions, hole patterns for bus bars, and
stiffener and integrated circuit layout \)rganization for a full and a half board, respectively.

The motherboard interface dimensions are extremely critical and must be adhered to
rigorously.

The rear edge of the full board has room for two interface connectors. The 1. 250 inch
dimension from each edge is the area:reserved for the board extractors (Part No.
40-06100-00). The .800 inch dimension at the center is the area reserved for the board
retainer. The remaining area along the rear edge is connector area. The 6. 350 inches
dimension is the maximum allowable area that the mating connector can occupy. The
overall length of a connector cannot exceed this dimen~ion.

The rear edge of a half board has room for only one interface connector. A distance
of 1.210 inches must be reserved for a modified board extractor (Part No. 00-00296-00).
This leaves 5.0$0 inches of useable connector area remaining. The 5 .080 dimension is
the inside contact dimension of the standard lOO-pin interface connector.

Half boards must provide for a board extractor at both rear corners although only one is
installed depending upon which way the board is st~pped to 8 second half board.

Figure 12-3 shows the standard PC board hardware. All dimensions are provided for
layout planning purposes. Connector data on the motherboard connector and various
rear edge interface connectors is also provided.

12.4 WIRE-WRAP BREADBOARD PC BOARD (Figure 12-4)

A wire-wrap breadboard PC board (half board configuration) is available from Computer
Automation, Inc. (part number 13234-00). This board features 72 IC sockets with wire­
wrap posts, ground and power busses. and filters. The board can be useful for proto­
type development and checkout prior to making a formal PC board design.

12.5 FILLER BOARD PC BOARD (Figure 12-5)

A filler board PC board (half board configuration) is available from Computer Automation
Inc. (Part number 10053-00). This board can be joined with a half board I/O module to
form a full board as recommended in section 2, paragraph 2.2.3. The !ill~r board does
not pass the priority chains. Therefore. it must be the last board in the chain.

12-2

2 PLACES@~

CHAMFER
• 18X45°
2 PLACES

14 PLACES~

-1-.-------'.,--\--14.000 --------.j

6.050

HOLE

I

_1 .. -
SEE DETAIL j.\

'-------- PIN 101 TYP
REF

r;..------------- 16.293 --------1
1'4'-----------16.886 -----------r

DETAIL j.\
~ES

COMPONENT 51 DE

WHEN STIFFENER
IS USED

. 030~:m
4 PLACES

@) THESE ARE DESIGN DIMENSIONS ONLY,
9. PLATED THRl OLES SHALL BE KEPT TO A MAXIMUM r:JF THREE DIFFERENT SI2ES.
8. THE STANDARDS DEPICTED ON THIS DRAWING ARE SUBJECT TO CHANGE UPON

WRITTEN APPROVAL FROM PROJECT ENGINEER AND DRAFTING SUPERVISOR.

7. FOR REF 10 :riEASS'tMBLY CONFIGURATION SEE LAYOUT NO. 69-20079-00.

A

B

HOLE SCHEDULE

FINISHED REMARKS aTY SYMBOL USAGE DIMENSION

+004 PLATED I~ REF tg~.J.Ci~t BL~1D'§A~N6EN~ .035-:001 THRU .028 DIA MAXIMUM

3 TOOLING HOLES Ril.RT OF STD
BOARD CONFIGURATION .

.140~:gg~ NO 12 • STIFFENER HOLES PART OF STD
PLATING 8()P;RD CONFIGURATION.

14 + ~1.fGGY H8t~~ ~'O~D_ ~Tf~~~Eg:OR

@) THIS AREA 10 BE FREE OF SOLDER BOTH SIDES.

9. SHEETS AS SPECIFIED BELOW (SH. I THRU 7) COMPRISE A COMPLETE 5ET OF
DOCUMENTS FOR FABRICATION OF A PCB.

SHEET 2 PAD MASTER.

I 3 COMPONENT SIDE A/W.
4 SOLDER SIDE A/W.
5 COMPONENT SIDE SILKSCREEN MASTER.
6 SOLDER SIDE SOLDER MASK.

SHEET 7 GROUND PLANE (IF REQUIRED) •

ill CONTACT FINGER PLATING AREA. o THESE DIMENSIONS ARE ESTABLISHED FROM THE ARTWORK •

6. STAMP REVISION NO., COLOR BLACK, CHARACTER HEIGHT .090 MINiML.M.
5. SILKSCREENING TO BE WHITE, COMPONENT SIDE PER SHEET 5.
4. ALL PLATED THRU HOLES TO CONFORM WITH 85-20017-00, SEC 3.5.5.
3. FINISH: ® SOLDER PLATE REMAINDER OF BOARD PER 85-20017-00, SEC. 3.62. -5.

® (6~~E~R~~~~ BOTH SIDES OF BOARD PER 85-20017-OC, SOC. 3.8,

© FINGERS TO BE GOLD OVER NICKEL PER 85-20017-OC, SEC. 3.c.I.3 & 3.15 .. 1:.

2. MATERIAL: .063 ~HICK COPPER-CLAD,2 SIDES, GLASS EPOXY. LAMI\AiE C,F :::::;1:.;.
2 02 AFTER PLATING.

I. FABRICATE PER .THIS DRAWING AND CAL SPECIFICATION 85-20017-00.

FABRICATION NOTt:S: THESE NOTES WILL APPEAR ON ALL DETAIL FAa :JKAV;~'.GS

6. AREA UNDER STIFFENER (DWG'S 72-10048-00 6. 72-20046-00) SHALL BE FREE OF COMPONENTS.

® ;~'bI~Sb~G Ji~~~R~;~ .~~~~~Eb~2C&.i'~~~fRdtD~T~H FREE AREA SHALL BE:
WHEN USING NON-STANQA~D"4 HAROWARE,,250 O.D.WASHER) ETCH FREE AREA SHALL BE

.320 DIA ON SOLDER SIDE,.250 DIA ON COMPONENT SIDE AND PROJECT ENGINEER
SHALL BE CONSULTED.

ETCH SHAll BE NO CLOSER THAN .050 TO ANY EDGE, CUTOUT. HOLE, ETC.

INTENDED TO MATE WITH CONNECTOR 17-49075-00 OR EQUIV.

INTENDED TO MATE WITH CONNECTOR 17-10035-01 OR EQUIV.

SHADED AREA SHALL 8E FREE OF FEED THRU HOLES AND ETCH.

DESIGN. INFORMATION NOTES

Figure 12-1. Full Board Design Guide

i
!~

,t-:)

I
~

,6.980

®

5.090
:t.005

1--------------.------- 13.200 @

104---------- 7.500@) ---------t-.l
~------ 5.100 @ -----~ @ 8 PLACES

--,--,..--1 ----- -'------------1--

~~----------------- 15.mO~ ------------------------------t~

@ THESE ARE DESIGN DIM~NS1ONS ONLY.
9. PLA:ED T"'~U HOLES S.,ALL BE KEPT 70 A ~1AXIMUt.' OF TriREE OI>.ERENT SIZES.

8. THE STAfIlDAROS DEPICTED ON THIS DRAWING ARE 5U9.IfCT TO C.,ANGE UPO,,"
WR'~~E'" Ai'PROVAL. FROM PROJECT ENGI"'EER AfIlD ORAFt'lN€ SUPERIIlse:=>..

7. I'O~ REF. ~c Tt-IE ASSEMBLY C(tJFIGURATION,SEE ~AvOUT NO.69-200<,S-CO.

-3 :;E:R~~!~~RC~~~~~~~s~()W(j'S 72-10048-00, 7~20046-00 AMO 00-00160-00) St4ALL

® ::\,'i,SI~~ ~t~~R~I;~ ~;,D~~R~~.3~~pg·N"t;~E~bf:CH F~EE AREA SHALL BE;
WHEN USING NO"l-STANDA~D "'4 HARC,,\lARE,l.250 O.D.ItlASHER) ETCH FP~E AREA SHAL.L BE:
.320 DIA ON SOLI>ER SIOE,.250 DIA Ofll COMI"ONENT SI9E AND ~ECT ENGINEER
SHALL BE CONSULTEC.

~
ETCH, SHALL BE NO C~OSE::' THAfIl .050 TO ,.t)NY EOG" , ('--'lOUT, HOLE, ETC.

3 :'.TENCED TO ~ATE w'r.., CONNECTOP 17-49075-')::' 0;:< EQUIV.

2 :i',7!:,,:ED TO MATE WITH (ONNECelR ,7_ 0035-01 01'1 EQUIV.

I SHADED AREJ- SriALL BE FREE OF FEED THP.J HOLES, ETCH & COMPONENTS.

DESIGN INFORMATION NOTES:

----.350

I
2 PLACES

I

(8J

7.480

I

I

WO@

HOLE SCHEDULE

t!l CO,,"ThCT FINGE" p"A-;M, AP.EA.

~ Tt"ESE DIME';SIOt-.S ':'''E ESTABL1S'-'EQ FF\OM THE ARTWORK.

6. STAMP "EvISION NC.,c:_::> =_AC CriAFlACTER HEIGHT .090 MI"'IIIIUM.
5. SILKSCP'£E ... ,~.C; ~C 9~ N- -:: ,CO:;'''PONE''IT SlOE PER SHEET S.
4. ALL PLATED '''''''l. ~:~~~ '"= :::'''oI'C>'IM iIIlTH 85-20017-00, SEC. 35.':.
3. ":NISH:

® SOLDE" :'_:'-E ::~ :. '.::~:; S" BOARD PEP. 8<;-2CCi7-CO, SEC. 3.6.2.-5_

.~ (3b;EI'C;"'~~~) c:-- ~ ::'::S OF BOARD PEP. e5-i"001?-C::'. Si:c. 3.8.

© Fif.'GE:;S "TC BE :.c_:. ::,::~ "J1CKEl PEr.. 85-2:0017-0O,5EC.3.6.1.3
AND 3.6.1.4.

~. ~~(::~~~,:2.:f;,,;:~gO<~i:p,:~:CL:.:, 2 SOES,G'_AS5 EPO!'. I.AM:t,AiE

I'I\8RiCAT£ PEfI ~~'s :'::";','. "C; Ai',: c,/U_ SPEC;!CATION Ct:.-2'h:7-CC.

Ft-6i=<ICAT,':'''' 'JC-'-ES; ~><c: '.OTE:: • ..:.. :';:;P~AR O~. ALL. FAB CETA,L ORAWINCS

Figure 12-2. Half Board Design Guide

!
I~
! I
1<:.11

I

MOTHERBOARD CONNECTOR.
(POWER SUPPLY CONNECTOR)

~1~-W
114-·111 I

_ 6.772 --------1~~
(2.933)

~~---------7~- oJ
roe-- (3.093i --------i~~

86 PIN PN 17·10035-01
(36 PIN PN 17-10035·02)

REAR EDGE CONNECTOR V ARIA TIONS

1=?7 -E=: -----S.080
at ~~~= ------ ---=~----------I~~

100 PIN
PN 17-IOOOI-50PO

~ n'«~
-tt:~.2&5---JL.079 I
C .. ------4.609 ------'

d too __ ----- ______ J ~ -- _n _______ J ~

56 PIN
PN 17-I0002-28PI

i .I~
~2.955 I
J L ________ - - - -- - __ J k

36 PIN
PN 17-I0002-18PI

BUS BAR (PIN 72-10054-XX)

1III~>----------_9'08 ___ --_--------------"0"11 ~1~~.816
14~---_----6.68-------------_0~2:1~~.6.12
\oII~------ 5.48 -----------~03 ~1~~.5.10

4.28 -------~.IPINS1.4.8

: -0: =.180 9 10 'I 12 13 14 15 16

1L--~A~.~~~,r-~r~r-,r~r-~~~~~~~-V--'(.180

T .030-__

.020 --IMI4-

.030 ---11_-

STIFFENER (PIN 72-10048-00)

F!.--r--_-_-_-~~~~~·....,.-~~~~~---------....,.-==-r--'4-.,S~~~i::::::::::o-r-~~~ ____ -_-_~-.....,-==-:~~~~~~~~~3---1·'
~ "t:.~TYP

-t;Jjl-
ai.200TVP

11 ~ 400TVP

7.SO

cL
2.85

cL
000

~

FULL BOARD CARD EXTRACTOR (PN40-06100-00NO)

...... ------------.... 1 NOTE: The half-board card ex­

1f7
TYP

V·08S0IA.

MOUNTING

Figure 12-3. Standard PC Board Hardware

tractor (PNOO-00296:-00) is the
same as the full-board extractor.
except .130 inches ot material
are removed from the tip of the
extractor.

COMPUTER AUTOMATION, INC. ~

Figure 12-4. Wire-Wrap Breadboard PC Board

t3!1 . ,- ," (" ,., ,
-'-,,~j'" " .. ~ ~"""' ... '"

V't "",,,! *'*1$i¥·f4

III '(}O~II (I
"N 1 I

Figure 12- 5. Filler Board PC Board

12-6

COWUTER AUTOMATION. INC. BI

Appendix A

HEXADECIMAL TABLES

Tables A-I and A-I are quick reference conversion tables that have been included
for the COnvenience of the user.

A-I

COMPUllR AUTOMATION. INC. -

Table A-:- 1. Hexadecimal-Decimal Conversions

This table is designed to facilitate convers~on of positive hexadecimal integers in standard
single-precision or double-pre~ision format to decimal equivalents. The fourth and eighth
digit positions therefore contain only values in the range : 0 through : 7.

DECIMAL EQUIVALENTS
DIGIT DIGIT DIGIT DIGIT DIGIT plGIT DIGIT DIGIT

HEXADECIMAL 8 7 6 5 4 3 2 1

1 134217728 8388608 524288 32768 4096 256 16 1

2 268435456 16777216 1048576 65536 8192 512 32 2

3 402653184 25165814 1572864 98304 12288 768 48 3

4 536870912 33554432 2097152 131072 16384 1024 64 4

5 671088640 41943040 2621440 163840 20480 1280 80 5
i

6 805306368 50331648 3145728 I 196608 24576 1536 96 6

7 939524096 28720256 3670016 I 229376 28672 1792 112 7

8 67108864 4194304

i
262144

I
2048 128 8

9 75497472 4718592 294912 2304 144 9

A 8388Ji080 5242880 327680 2560 160 10

B 92274688 5767168 360448 2816 176 11

C 100663296 6291456
I 393216 3072 192 12 I
I
I

D 109051904 6815744
I 425984 3328 208 13

E 117440512 7340032 458752 3584 224 14

-F 125829120 7864320 491520 3840 I 240 15
I

Hexadecimal to decimal conversion is accomplished by summing the decimal equivalents of
the hexadecimal digits. Decimal to hexadecimal conversion involves locating the next lower
decimal number and its hexadecimal equivalent and then taking the difference. Each dif-
ference is treated similarly until the entire hexadecimal number is developed.

A-2

COMPUTER MlTOMAT1ON.INC. t9
Table A-2. 8-BIT ASCU Teletype Codes

Hexadecimal Hexadecimal
Symbol Code Symbol Code

@ CO ¥ AO
A Cl Al
B C2 A2
C C3 t A~
D C4 $ A4
E C5 % A5
F C6 • AS
G C7 A7
H C8 (A8
I C9) A9
J. CA * AA
K CB + AB
L CC AC
M CD AD
N CE AE
0 CF I AF
p DO 0 BO·
Q Dl 1 Bl
R 02 2 B2
S 03 3 B3
T 04 4 B4
tJ 05 5 B5
V D6 6 B6
W D7 B7
X D8 8 B8
Y D9 9 B9
Z OA BA

DB BB
\ OC < BC
J DD BO

t OE > BE - DF BF
NULL 00 CR 8D
BELL 87 LF SA

RUBOUT FF

A-3

COMPUTER AUTOMATION. INC. ~

Appendix B

RECOMMENDED DEVICE AND

INTERRUPT ADDRESSES

Table B-1 and B-2 list recommended Device and Interrupt Addresses to prevent
possible conflict during future explmsion to other I/O modules.

B-1

(OMPUTtR AUTOMATION. INC. §:g.
Table B-1. Recommended Device Addresses

DEVICE ADDRESSES (HEXADECIMAL)
DEVICE STANDARD ACTUAL

Refer to Table B-3 00
01

Dual TTY/CRT (TTYI/CRTl) 02
Dual TTY/CRT (TTYO/CRTO) 03
Line Printer (LP) 04
Car~Reader (CR) 05
Paper Tape Punch (PTP) 06(17)
Paper Tape Reader (PTR) 06
Processor TTY· (TTY) 07
Real Time Clock· (RTC) 08
Magnetic Tape (Mag Tape) 09

OA
OB

Automatic Calling Unit Mux (ACUM) OC
Synchronous Modem Controller (SMC) OD
Asynchronous Modem Multiplexer (AMM) OE
Disc OF
Cassette 10
Floppy Disc 11
16-Bit I/O (AID System) 12

13
Plotter 14

15
32-Bit Relay In (RCIM) 16
Punch Alternate 17
16-Bit Input/Output (16-Bit I/O) 18
64-Bit Input (64-Bit In) 19
64-Bit Output (54-Bit Out) lA
Priority Interrupt Module (PIM) IB
32-Bit Relay Out (RCOM) lC
103 Data Set Controller (103 DSC) lD

I
Memory Bank Controller IE

IF

* Processor mounted options. Device Address non-alterable.
() Indicates suggested alternate.

B-2

A

C

A

c

E

COMPUTER AUTOMATION. INC. ~
Table B-2. Recommended Interrupt Address Map

OO-lF 20-3F 40-5F 60-7F

: 00· : 20·S4 -Bit : 40 : 60 ACD! Power
Up Out ACE 1

I. ·Addr ... cannot be changed.
2. BOB = End-of-Block

80-9F

: 80 :AO
PIlIHO)

PIM(l5)

AO-BF

Plotter
Word

.PLotter
EOB

RClM
Word

RCI~1

FOB

CO-DF EO-FF

:CO :EO

!>.!vIM

3. Split Address blocks and/or a/ indicate that this is the standard I/O vector for more than one device. Only one device may
use a vector in any given system.

4. Half Duplex
5. Full Duplex

B-3

.... ~

1-3 0
~ ~ '0
,..... -:":'

• • Q Q

Q
Q

e ~

A

C

!1l !1l

C
Z Z
~ c.n

""" """
~ ~
00 00
Q Q

~ e

COMPUTtI AUTOMATION. INC. ~

Ollj
00
I:='Z

en • ~ ~ Q trje
1-3
S
Z

0 00 :g ~ ~tI:1

~
!1l

;; 00 ~~
trj

><> I:=' trj &; ,.....
-:':' -:":' ;;' ~~ i 0 • •• • • ~

1-3 Q Q Q 0-
Q ~. = Q 0 0 .e QQ

~

~ •• e, ~ 0,...., is:
II)

~ 0-

I:='
!1l

-1-3 ~ S'~ !1l ::s 1-3 ::s ID trj

at< lae. as Z e. !!o. ~o !1l
-0 1-3 trj
ID ~ ~ s· ID II)

0 0.1-3 0.0.
ID 0 0 is: is: 6 '" 0 g ~ is:

0- ~ ID ~ ::s
9 I:='

~
0 !1l

'"
::t. o·
0 ::s ::s

00 snil !1l s:
><> ><> :;: '0

~~ ,.....""" ,..... c::
1-3

~g:
Con en en

0 >00 00
QQ QQ Q 0 •• Q s::,...., 'oJ,, . is:

!1l ~ >< I:=' ,..... !1l

~
Q

S

!1l !1l !1l !1l rJl !1l 0
Z Z Z Z Z 0 0

> 1-3 • ~ ~ Q

""" '0

""" """ """ """ """ ~
c::

~ ~ ~ ~ ~ 0 1-3
00 00 00 00 00 Q 0
Q Q Q Q Q ? 0 .e e e e c is: !1l

~ 0
>< ,..... I:='

m !1l

Q

S

-B-4

COMPUTER AUTOMATION. INC ~

Appendix C

INSTRUCTION SET BY CLASS

-

This appendix. contains the ALPHA LSI instruction set in class order. For each instruc­
tion. reference is made to one of the assembler syntax formats listed below.

OP-CODE [* I @ I *@] EXPRESSION [COMMENTS]

No Operator == Direct Addressing
* = Indirect Addressing (multi~level)
@ = Indexed Addressing

*@ = Indirect Post-Indexed Addressing
(multi-level)

Figure C-l. Class 1 ..;. Single-Word Memory Reference Instruction Format

OP-CODE [*] EXPRESSION 1 [. EXPRESSION 2] [COMMENTS]

No Operator = Direct Addressing
* = Indirect Addressing (multi-level)

EXPRESSION 1 represents an address to be
stored in the second word of the instruction.
EXPRESSION 2 is an optional absolute instruc­
tion count in the range 0 through 31 for NRM.

Figure C-2. Class 2 - Double-Word Memory Reference Instruction Format

[LABEL] OP-CODE OPERAND ~AM]

AM == No Operator = Direct access
- = PUSH (stack pointer decremented)

. -t = POP (stack pointer incremented)
@ = Indexed (single level)

[COMMENTS]

Figure C-3. Class 3 - Stack Instruction Format (LSI-2 only)

C-l

I

[LABEL] OP-CODE

COMPUTO AUTOMATION. INC. ~

EXPRESSION [COMMENTS]

EXPRESSION must be absolute and in the range
: 0 tp.rough : FF. This format is also used by the
STOP and SCM instructions.

Figure C- 4. Class 4 - Byte Immediate Instruction Format

OP-CODE EXPRESSION [COMMENTS]

EXPRESSION must represent a location within
- 63 through +64 words.

Figure C- 5. Class 5 - Conditional Jump Instruction Format

OP-CODE EXPRESSION [COMMENTS]

EXPRESSION must be absolute and in the range
1 through 8 (single register) or 1 through 16
(double register). This format is also used by
the SIN instruction with an upper range limit
of 6.

Figure C - 6. Class 6 - Register Shift Instruction Format

OP-CODE [EXPRESSION] [COMMENTS]

EXPRESSION: there are no expressions in the
operand field. except for BAO and BXO instruc­
tions. where it must be value in the range 0
through 15.

Figure C-7. Class 7 - Register Change and Control Instruction Format

OP-CODE EXPRESSION 1 [.EXPRESSION 2J [COMMENTS]

Both EXPRESSION 1 and expression 2 must be
absolute.
If EXPRESSION 2 is present. EXPRESSION 1 must
be in range: 0 through: IF.
If EXPRESSION 2 is not present. EXPRESSION 1
must be in the range: 0 through: FF .

Figure C- 8. Class 8 - Input/Output Instruction Format

C-2

1

COMPlJ1lR AUTOMAT1ON.INC. ~

EXPRESSION 1LEXPRESSION 2] [COMMENTS]

EXPRESSION 1 must be absolute and in the range
: 0 through : 3F •
EXPRESSION 2 must represent a location within
-63 through +64 words.

Figure. C- 9. Class 9 - JOC Jump-On-Condition Instruction Format

INSTRUCTION SET BY CLASS

Instruction Instruction
Mnemonic Description Skeleton in Hex Page

ME1\IORY REFERENCE (Class 1)

Arithmetic

ADD Add to A Register 8800 4-12
ADDB Add Byte to A 8800 4-12
SUB Subtract from A Register 9000 4-12
SUBB Subtract Byte from A 9000 4-12

Logical

AND AND to A 8000 4-12
ANDB AND Byte with A 8000 4-12
lOR Inclusive OR to A AOOO 4-12
IORB Inclusive OR Byte with A AOOO 4-12
XOR Exclusive OR to A A800 4-12
XORB Exclusive OR Byte with A A800 4-13

Data Transfer

LDA Load A BOOO 4-13
LDAB Load A with Byte BOOO 4-13
LDX LoRd X EOOO 4-13
LDXB Load X with Byte EOOO 4-13
STA Store A 9800 4-13
STAB Store Byte from A 9800 4-13
STX Store X E800 4-13
STXB Store Byte from X E800 4-13
EMA Exchange A and Memory B800 4-13
EMAB Exchange A and Memory Byte B800 4-13

C-3

COMPUTO AUTOMATION. INC. ~

INSTRUCTION SET BY CLASS (Cont'd)

Instruction
Mnemonic

Program Transfer

JMP
JST
IMS
SCM
SCMB
CMS
CMSB

Description

Unconditional Jump
Jump and Store P Counter
Increment Memory, Skip on Zero
Scan Memory .
Scan MemorY Byte
Compare A with Memory, Skip
Compare A with Memory Byte, Skip

DOUBLE WORD MEMORY REFERENCE (Class 2)

DVD
MPY
NRM

Divide
Multiply and Add
Normalize A and X

STACK CLASS (Class 3) (LSI:"2 only)

Arithmetic

ADDS Add Stack Element to A
SUBS Subtract Stack Element from A

Logical

ANDS AND Stack Element to A
IORS Inclusive OR Stack Element to A
XORS Exclusive OR Stack Element to A

Data Transfer

£MAS Exchange Stack Element and A
LDAS Load Stack Element into A
LDXS Load Stack Element into X
STAS Store A in Stack Element
STXS Store X in Stack Element

Program Transfer

CMSS Compare Stack Element to A and Skip if
High or Equal

IMSS Increment Stack Element and Skip on Zero
Result

C-4

Instruction
Skeleton in Hex

FOOO
F800
0800
CDOO
CDOO
0000
DOOO

1970
1960
1940

1438
1458

1418
1498
14B8

14F8
1408
1698
1478
16B8

1658

1672

4-14
4-14
4-14
4-14
4-15
4-13
4-14

4-16
4-16

·4-17

4-21
4-21

4-21
4-21
4-21

4-21
4-21
4-21
4-21
4-21

4-22

4-22

COMPtmR AUTOMATION. INC. ~

Instruction
Mnemonic

JMPS
JSTS

Stack Control

SLAS

INSTRUCTION SET BY CLASS (Cont'd)

Description

Jump Unconditional to Stack Element
Jump and Store to Stack Element

Stack Location to A

BYTE IMMEDIATE (Class 4)

AAI
AXI
SAl
SXI
CAt
eXI
LAP

LXP"
LAM
LXM

Add to A Register Immediate
Add to X Register Immediate
Subtract from A Register Immediate
Subtract from X Register Immediate
Compare to A Immediate. Skip if Not Equal
Compare to X Immediate, Skip of Not Equal
Load A Positive Immediate
Load X Positive Immediate
Load A Minus Immediate
Load X Minus Immediate

CONDITIONAL JUMP (Class 5 or 9)

Microcoded (Class 9)

Joe Jump on Condition Specified

Arithmetic (Class 5)

JAG
JAP
JAZ
JA.,,~

JAL
JA."
JXZ
JXN

Control (Class 5)

JSS
JSR
JOS
JOR

Jump if A Greater than Zero
Jump if A Positive
Jump if A Zero
Jump.if A Not Zero
Jump if A Less Than or Equal to Zero
Jump if A Minus
Jump if X Zero
Jump if X Not Zero

Jump if SENSE Indicator ON
Jump if SENSE Indicator OFF
Jump if OV Set
Jump if OV Reset

C-5

Instruction
Skeleton in Hex

16D8
16F8

1618

OBOO
C200
ODOO
C300
eooo
ClOO
C600
C400
C700
C500

2000

3180
3080
2100
3100
2180
2080
2800
3800

3400
2400
2200
3200

4-22
4-22

4-22

4-23
4-23
4-23
4-23
4-23
4-23
4-23
4-23
4-23
4-23

4-24

4-25
4-25
4-25
4-25
4-25
4-25
4-26
4-26

4-26
4-26
4-26
4-26

COMPUTER AUTOMATION. INC. ~

INSTRUCTION SET BY CLASS (Cont'd)

Instruction
Mnemonic Description

SHIFT CLASS (Class 6)

Single Register

Arithmetic

ARA Arithmetic Right A
·ARX Arithmetic Right X
ALA Arithmetic Left A
ALX Arithmetic Left X

Logical

LRA Logical Right A
LRX Logical Right X
LLA Logical Left A
LLX Logical Left X

Rotate

RRA Rotate Right A with OV
RRX Rotate Right X with OV
RLA Rotate Left A with OV
RLX Rotate Left X with OV

Double Register

Logical

LLL Long Logical Left
LLR Long Logical Right

Rotate

LRL Long Rotate Left with OV
LRR Long Rotate Right with OV

REGISTER CHANGE (Class 7)

Accumulator

ZAR Zero A Register
ARP Set A Register to Positive 1

C-6

Instruction
Skeleton in Hex

HJDO
10A8
1050
1028

13DO
13A8
1350
1328

11DO
11A8
1150
1128

IBOO
lB80

1900
1980

0110
0350

4-27
4-27
4-27
4-27

4-28
4-28
4-28
4-28

4-29
4-29
4-29
4-29

4-30
4-30

4-31
4-31

4-31
4-31

COMPUl£R AUTOMATION. INC. f§g COMPUTER AUTOMATION. INC. f§g

INSTRUCTION SET BY CLASS (Cont'd)
INSTRUCTION SET BY CLASS (Cont'd)

Instruction Instruction
Instruction Instruction Mnemonic Description Skeleton in Hex ~ Skeleton in Hex Page Mnemonic Description

lAX Increment A and put in X 0148 4-33
ARM Set A Register to Minu s 1 0010 4-31

lXA Increment X and put in A 0130 4-34
CAR Complement (1's) A Register 0210 4-31

IPX Increment P and put in X 0090 4-34
NAR Negate A Register 0310 4-31 DAX Decrement A and put in X OOC8 4":34
IAR Increment A Register 0150 4-31

DXA Decrement X and put in A OOBO 4-34
DAR Decrement A Register OODO 4-31

Index
Extended Multi-Register (LSI-2 only)

BeA Bit Clear A 06CA 4-34
iXR Zero X Register (nOS 4-32

BeX Bit Clear X 06e8 4-34
XRP Set X Register to Positive 1 0528 4-32

BSA Bit Set A 06SA 4-34
XRM Set X Register to Minus 1 0008 4-32

BSX Bit Set X 0688 4-34
CXR Complement (l's) X Register 0408 4-32

EIX Execute Instruction Pointed to By X 0218 4-34
NXR Negate X Register 0508 4-32
IXR Increment X Register 0128 4-32

Console Register
DXR Decrement X Register OOAS 4-32

IAH Input Console Data Register to A and Halt lC05 4-35
Overflow leA Input Console Data Register to A 5804 4-35

lex Input Console Data Register to X 5A04 4-35
SOY Set Overflow 1400 4-32

IIH Input Console Data Register to I and Halt lCll 4-35
ROV Reset Overflow 1200 4-32

IMH Input Console Data Register to Memory lC03 4-35
COY Complement Overflow 1600 4-32

and Halt
SAO Sign of A to OV 1340 4-32 IPH Input Console Data Register to P and Halt lC21 4-35
SXO Sign of X to OV 1320 4-32 ISA Input Console Sense Register to A 5801 4-35
LAO Least Significant Bit of A to OV l3CO 4-32 ISX Input Console Sense Register to X SAO! 4-35
LXO Least Significant Bit of X to 0\' l3AO 4-32 IXH Input Console Data Register to X and Halt 1C09 4-35
BAO Bit of A to OV 1340 4-32 OAH Output A to Console Data Register and Halt lC04 4-35
BXO Bit of X to OV 1320 4-32 OCA Output A to Console Data Register 4404 4-36

OCX Output X to Console Data Register 4604 4-36
Multi - Register OLH Output Location to Console Data Register lC10 4-36

and Halt
ZAX Zero A and X Register 0118 4-33 OMH Output Memory to Console Data Register ·lC02 4-36
AXP Set A and X Registers to Positive 1 0358 4-33 and Halt
AXM Set A and X Registers to Minus 1 0018 4-33

OPH Output P to Console Data Register and Halt lC20 4-36
TAX Transfer A to X 0048 4-33

OXH Output X to Console Data Register and Halt lCOB 4-35
TXA Transfer X to Z 0030 4-33
EAX Exchange A and X 0428 4-33

Processor
ANA AND of A and X to A 0070 4-33
A~X AND of A and X to X 0068 433

NOP No operation ')000 4-36
KRA NOR of A and X to A 0610 4-33

HLT Halt 0800 4-36
NRX }lOR of A and X to X 0608 4-33 STOP Halt with Operand 0800 4-36
CAX Complement A (1' s) and put in X 0208 4-33

WAIT Wait for Interrupts F600 4-3;
CXA Complement X (1' s) and put in A 0410 4-33
NAX Negate A and put in X 0308 4-33
NXA Negate X and put in A 0510 4-33

C-7 C-8

COMPUTBl AUTOMATION. INC. ~

INSTRUCTION SET BY CLASS (Cont'd)

Instruction
Mnemonic

Mode Control

SBM
SWM

Status

SIN
SIA·
SIX
SOA·
SOX

interrupts

EIN
DIN
CIE
CID
PFE
PFD
TRP

Description

Set Byte Operand Mode
Set Word Operand Mode

Status Inhibit
Status Input to A
Status Input to X
Status Output from A
Status Output from X

Enable Interrupts
Disable Interrupts
Console Interrupt Enable
Console Interrupt Disable
Power Fail Interrupt Enable
Power Fail Interrupt Disable
Trap

INPUT iOUTPUT (Class 8)

Contrd

SEL
SEA
SEX
SEN
SSN

. Select
Select and Present A
Select and Present X
Sense and Skip on Response
Sense and Skip on No Response

Unconditional Word

INA
INAM
INX
INXM
OTA
OTX
OTZ

Input Word to A
Input Word to A Masked
Input Word to X
Input Word to X Masked
Output A
Output X /
Output Zero' 8

C-9

Instruction
Skeleton in Hex ~

OEOO 4-37
OFOO 4-37

6800 4-37
5800· 4-38
5AOO 4-38
6COO 4-38
6EOO 4-38

OAOO 4-38
OCOO 4-38
4005 4-38
4006 4-38
4002 4-38
4003 4-38
4007 4-39

4000 4-40
4400 4-40
4600 4-40
4900 4-40
4800 4-40

5800 4-41
SCOO 4-41
SAOO 4-41
SEOO 4-41
6COO 4-41
6EOO 4-41
6800 4-41

'l'

COW\JTEl AUTOMATION. INC. ~

INSTRUCTION SET BY CLASS (Cont'd)

Instruction Instruction
Mnemonic Description Skeleton in Hex Page ----

Conditional Word

RDA Read Word to A 5900 4-41
RDAM Read Word to A Masked 5DOO 4-41
RDX Read Word to X 5BOO 4-41
RDXM Read Word to X Masked 5FOO 4-42
WRA Write A . 6DOO 4-42
WllX Write X 6FOO 4-42
WRZ Write Zero's 6900 4-42

Unconditional· Byte

IBA Input Byte to A 7800 4-42
IBAM Input Byte to A Masked 7COO 4-42
IBX Input Byte to X 7AOO 4-43
IBXM Input Byte to X Masked 7£00 4-43

Conditional Byte

RBA Read Byte to A 7900 4-43
RBAM Read Byte to A Masked 'iDOO 4-43
RBX Read Byte to X 7BOO 4-43
RBXM Read Byte to X Masked 7FOO 4-43

Block

BIN Input Block to Memory 7100 4-44
BOT Output Block from Memory 7500 4-45

Automatic

AlN Automatic Input Word to Memory 5000 4-47
AOT Automatic Output Word from Memory 6000 4-47
AlB Automatic Input Byte to Memory 5400 -4-47
AOB Automatic Output Byte from Memory 6400 4-47

C-IO

COMPUTER AUTOMATION. INC. ~

Appendix D

INSTRUCTION SET IN ALPHABETICAL ORDER

Thisapppndix contains the ALPHA LSI instruction set in alphabetical order by inst~ction
mnemonic. Those instructions which contain variable fields have been appended wIth an
asterisk (*). Those applying to LSI-2 only have been prefixed with an asterisk.

Instruction Instruction
Mnemonic Skeleton in Hex Descri~tion Page

AAI OBOO· Add to A Immediate; ,Direct 4-23

ADD 8800· Add to A; Direct. Scratchpad 4-12

ADD 8900* - Add to Ai Indirect, AP in Scratchpad 4-12

ADD SAOO* Add to A; ,Direct. Relative to P Forward 4-12

ADD 8BOO* Add to A; Indirect, AP Relative to P Forward 4-12

ADD 8COO* Add to A; Direct. Indexed 4-12

ADD 8DOO* Add to Ai Indirect. Indexed. AP in Scratchpad 4-12

ADD 8EOO* Add to A; Direct, Relative to P Backward 4-12

ADD 8EOO* Add to A; Indirect, AP Relative to P Backward 4-12

ADDB 8800* Add Byte; Direct, Scratchpad 4-12 .

ADDB 8900* Add Byte; Indirect, AP in Scratchpad 4-12

ADDB 8ADO* Add Byte 0; Direct, Relative to P Forward 4-12

ADDB 8BOO* Add Byte; Indirect, AP Relative to P Forward 4-12

ADDB 8COO· Add Byte; Direct. Indexed 4-12

ADDB 8DOO* Add Byte; Indirect. Indexed. AP in Scratchpad 4-12

ADDB 8EOO* Add Byte 1; Direc: Relative to P Forward 4-12

ADDB 8FOO* Add Byte; Indirect. AP Relative to P Bi1.ckward 4-12

D-l

Instruction
Mnemonic

*ADDS

*ADDS

*ADDS

*ADDS

AlB

AlN

ALA

ALX

ANA

AND

AND

AND

AND

AND

AND

AND

AND

ANDB

ANDB

ANDB

ANDB

ANDB

ANDB

COMPUTER AUTOMATION. INC. ~

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction
Skeleton in Hex Description

1438 Add Stack Element to A; Direct 4- 21

1439 Add Stack Eleement to A: Indexed 4-21

143A Add Stack Element to A; Auto- Postinc.xement 4- 21

143B Add Stack Element to A; Auto-Predecrernent 4-21

5400* Automatic Input Byte to Memory 4-47

5000· Automatic Input Word to Memory 4-47

1050* Arithmetic Shift A Left 4-27

1028* Arithmetic Shift X Left 4-27

0070 AJ..TI) of A and X to A 4-33

8000* AND to A; Direct, Scratchpad 4-12

8100'" AND to A; Indirect, AP in Scratchpad 4-12

8200* AND to A; Direct. Relative to P Forward 4-12

8300* AND to A; Indirect, AP Relative to P Forward 4-12

8400* AND to A; Direct. Indexed 4-12

8500* AND to A; Indirect, Indexed, A P in Scratchpad 4-12

8600* AND to A; Direct, Relative to P Backward 4-12

8700* A.~D to A; Indirect. AP Relative to P Backward 4-12

8000* AND Byte to A; Direct, Scratchpad 4-12

8100* AND Byte to A; Indirect, AP in SC!'atchpad 4-12

8200* A."\D Byte 0 to A; Direct, R<:lat~ve: tr; P Fr;I"ward 4-12

8300* AND Byte to A; Indirect. AP Relative: to P Forward 4-12

8400* AKD Byte to A; Direct. Indexed 4-12

3500* AND Byte to A; Indirect, Indexec, .!.P 1!",: 4-12

Scratchpad D-2

COWUltR MITOMATION.IIK. f3I (OMPUTEI AUTOMATfON.INC. eg-
INSTRUCTION SET IN ALPHABETtCAL ORDER (Cont'd) INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction Instruction Instruction
Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description Page

ANDB 8600 AND Byte 1 to A; Direct. Relative to P Forward 4-12 "BSX 0688 Bit Set X 4~3'4

/

ANDB 8700· AND Byte to A; Indirect. AP Relative to P 4-12 BXO 1320· Bit of X to Overflow 4-32
Backward

CAl COOO· Compare to A Immediate, ~kip if Unequal 4-23

·ANDS 1418 AND Stack Element to A; Direct 4-21

CAR 0210 Complement A (1 's) 4-31

·ANDS 1419 AND Stack Element to A; Indexed 4-21

CAX 0208 Complement A (l's) and Put in X 4-33

*ANDS l.clA AND Stack EletDent to A; Auto-Postincrement 4-21

cm 4006 Console Interrupt Disable 4-38
·ANDS 141B AND Stack Element to A; Auto-Predecrement 4-21

CIE 4005 Console Interrupt Enable 4-38

ANX 0068 AND of .-\ and X to X 4-33

CMS 0000'" Compare Memory to A and Skip if High or Equal; 4-13

AOB 6400· Automatic Output Byte from Memory 4-47 Direct, Scratchpad

AOT 6000· Automatic Output Word from Memory 4-47 CMS 0100· Compare Memory to A and Skip it High or Equal. 4-13

Arithmetic Shift A Right
Indirect, AP in Scratchpad

ARA 1000· 4-27

CMS 0200· Compare ~emory to A and Skip if High or Equal: 4-13

ARM 0010 Set A to)Iinul 1 4-31 Direct. "Relative to P Forward

ARP 0350 Set A to Plua 1 4-31 CMS 0300· Compare Memory to A and Skip if' High or Equal: 4-13

Indirect. AP Relative to P Forward
ARX 10AS· Arithmetic Shift X Right 4-21

CMS 0400· cOmpare Memory to A and Skip if High or Equal; 4-13

AXI C200· Add to X Immediate 4-23 Direct. IndeY::d

AD 0018 Set A and X to Minus 1 4-33 CMS D500· Compare Memory to A and Skip it High or Equal: 4-13
Indirect. Indexed. AP in Scratchpad

AXP 03S8 Set A and X to Plus 1 4-33
CMS D600· Compare Memory to A and Skip>u High or Equal; 4-13

BAO 1340· Bit of A to Overflow 4-32 Direct, Relative to P Backward

·BCA . 06CA Bit Clear A 4-34 CMS D700· Compare.Memory. to A and Skip if' High or Equal; . 4-13

Indirect, Relative to P BaCkward
-BeX He8 Bit Clear X 4-.34

CMSB DOOO· Compare Byte and Skip if High or Equal; Direct. 4-14

BIN 7100· Block Input to Memory 4-44 Scratchpad

BOT 7500· Block Output from Memory 4-45 CMSB 0100· Compare Byte and Skip if High or Equ;;~: Indirect. 4-14
AP in Scratchpad

*DBA OC8A Bit Set A 4-34
.......

D-3 0-4

(0WUIBt AUTOMATION. INC. ~ COWUTER AUTOMAtION. INC. ~

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction Instruction Instruction
Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description Page

CMSB D200* Compare Byte 0 and Skip if High or Equal; 4- 14 DXA OOBO Decrement X and Put in A 4-34
Direct. Relative to P Forward

DXR OOA8 Decrement X 4-32
CMSB D300* Compare Byte and Skip if High or Equal; Indirect. 4- 14

AP Relative to P Forward EAX 0428 Exchange A and X 4-33

CMSB D400· Compare Byte and Skip if High or Equal: Direct. 4-14 EIN OAOO Enable lnterrupts 4-38
Indexed

*EIX 0218 Execute Instruction Pointed to by X 4-34
eMSB D500* Compare Byte and Skip if High or Equal; Indirect. 4-14

Indexed. AP in Scratchpad EMA B800· Exchange Memory and A; Direct. Scratchpad 4-13

CMSB D600* Compare Byte 1 and Skip If High or Equal; Direct. 4- 14 EMA B900· Exchange Memory and A; Indirect. AP in 4-13
Relative to P Forward Scratchpad

CMSB D700* Compare Byte and Skip if High or Equal; Indirect. 4- 14 EMA BAOO* Exchange Memory and A; Direct. Relative to P 4-13
AP Relative to P Backward Forward

CMSS 1658 Compare Stack Element to A and Skip if High 4- 22 EMA BBOO Exchange Memory and A; Indirect. AP Relative 4-13
or Equal: D~rect to P Forward

CMSS 1659 Compare Stack Element to A and Skip if High 4-22 EMA BCOO Exchange Memory and A; Direct. Indexed 4-13
or Equal; Indexed

EMA BDOO* Exchange Memory and A; Indirect. Indexed. AP in 4-13
*CMSS 165A Compare Stack Element to A and Skip if High 4-22 Scratchpad

or Equal; Auto-Postincrement

EMAI BEOO* Exchange Memory and A; Direct. Relative to P 4-13
·CMSS 165B Compare Stack Element to A and Skip if High 4-22 Backward \

or Equal; Auto-Predecrement
/ EMA BFOO* Exchange Memory and A: Indirect. AP Relative to 4-13

COV 1600 Complement Overflow 4-32 P Backward

CXA 0410 Complement X (l's) and Put in A 4-33 EMAB B800* ~xchange Memory Byte and A; Direct. Scratchpad 4-13

CXI C100* Compare to X Immediate. Skip if Unequal 4-23 EMAB '8900* Exchange ~emory Byte and A; Indirect. AP in 4-13
Scratchpad

CXR 0408 Complement X (1's) 4-32 ~

EMAB BAOO* Exchange Memory Byte 0 and A; Direct I Relative 4-13
DAR 0000 Decrement A 4-31 to P Forward

DAX OOC8 Decrement A and Put in X 4-34 EMAB BBOO* Exchange ~ernc:-:; Byte and A; Indirect. AP 4-13
Relath'e to P ForwB:i'd

DIN OCOO Disable Interrupts 4-38
EMAB BGOO* Exchange ~femory Byte and A; Direct, Ir.dexed 4-13

DVD 1970* Divide 4-16

D-5 D-3

COMPUTER AUTOMATION,INC. ~ COMPUTER AUTOMATION, INC. ~

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)
INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction
Instruction Instruction Mnemonic Skeleton in Hex Description Page
Mnemonic Skeleton in Hex Description Page

IMS D900· Increment Memory and Skip on Zero Result; 4-14
EMAB BDOO* Exchange Memory Byte and A; Indirect. Indexed. 4-13 Indirect. AP in Scratchpad

AP in Scratchpad

IMS DAOO* Increment Memory and Skip on Zero Result; 4-14
EMAB BEOO· Exchange Memory Byte 1 and A; Direct. Relative 4-13 Direct. Relative to P Forward

toP Forward

IMS DBOO* Increment Memory and Skip on Zero result; 4-14
EMAB BFOO* Exchange Memory Byte and A; Indirect, AP 4- 13

Indirect. AP. Relative toP Forward
Relative· to P Backward

IMS DCOO* Increment Memory and Skip on Zero Result; 4-14
*EMAS 14t8 Exchange Stack Element and A; Direct 4- 21 Direct. Indexed

"'EM AS 14F9 Exchange Stack Element and A; Indexed 4- 21 IMS DDOO· Increment Memory and Skip on Zero Result; 4-14

*EMAS 14FA Exchange Stack Element and A; Auto- 4- 21
Indirect. Indexed. AP in Scratchpad

Postincrement IMS DEOO· Increment Memory and Skip on Zero Result; 4-14
Direct. Relative to P Backward

*£MAS 14FB Exchange Stack Element and A; Auto- 4- 21
Predecrement IMS DFOO* Increment Memory and Skip on Zero Result; 4-14

Indirect, AP Relative to P Backward
HLT 0800 Halt 4- 36

·IMSS 1678 Increment Stack Element and Skip on Zero; Direct 4-22
lAB 1C05 Input Console Data Register to A and Halt 4- 35

·IMSS 1879 Increment Stack Element and Skip on Zero; 4-22
IAR 0150 Increment A 4- 31 Indexed

lAX 0148 Increment A and Put in X 4--33
·IMSS 167A Increment Stack Element and Skip on Zero; 4-22

Auto-Postincrement
IBA 7800* Input Byte to A (Unconditionally) 4-42

·IMSS 167B Increment Stack Element and Skip on Zero; Auto- 4-22
IBAM 7COO· Input Byte to A, Masked .(Unconditionally) 4-42 Predecrement

IBX 7AOO· Input Byte to X (Unconditionally) 4-43 INA 5800'" Input Word to A (Unconditionally) 4-41

·lBXM 7EOO* Input Byte toX, Masked (Unconditionally) 4-43 INAM 5COO* Input Word to A. Masked (Unconditionally) 4-41

ICA 5804 Input Console Data Register to A 4-35 INX 5AOO· Input Word to X (Unconditionally) 4-41

ICX SA04 Input Console Data Register to X 4-35 INXM 5EOO* Input Word to X, Masked (Unconditionally) 4-41
jI

1m lCll Input Console Data Register to I and Halt 4-35 lOR AOOO· Inclusive OR to A; Direct, Scratchpad 4-12

IMH lC03 Input Console Data Register to Memory and Halt 4-35 lOR AI00* Inclusive OR to A; Indirect. AP in Scratchpad 4-12

IMS D800· Increment Memory and Skip on Zero Result; 4-14 lOR A200* Inclusive OR to A; Direct, Relative to P Forward 4-12
Direct. Scratchpad

D-8 D-7

COMPUllR AUTOMATION. INC ~ COMPUTER AUTOMATION. IN<. ~

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)
INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction
Instruction Instruction Mnemonic Skeleton in Hex Description Page
Mnemonic Skeleton in Hex Description Page

IPH IC21 Input Console Data Register to P and Halt 4-35
TOR A300· Inclusive OR to A: Indirect. AP Relative to P 4-12

Forward IPX 0090 Increment P and Put in X 4-34

lOR A400· Inclusive OR to A: Direct, Indexed 4-12 ISA 5801 Input Console Data Switches to A 4-35

lOR A500· Inclusive OR to A; Indirect, Indexed. AP in 4-12 ISX 5AOI Input Console Data Switches to X 4-35
Scratchpad

lXA 0130 Increment X and Put in A 4-34
lOR A600· Inclusive OR to A; Direct. Relative to P Backward 4-12

IXH lC09 Input Console Data Register to X and Halt 4-35
IOR A700· Inclusive OR to A; Indirect. AP Relative to P 4-12

Backward IXR 0128 Increment X 4-32

IORB AOOO· Inclusive OR Byte to A: Direct. Scratchpad 4-12 JAG Jump if A Positive and Not Equal to Zero 4-25
(A> 0)

IORB AIOO· Inclusive OR Byte to A; Indirect. AP in 4-12 3180· Forward Jump
Scratchpad 31CO· Backward Jump

IORB A200· Inclusive OR Byte 0 to A: Direct. Relative 4-12 JAL Jump if A Negative or Equal to Zero (A SO) 4-25
to P Forward 2180· Forward Jump

21CO· Backward Jump
IORB A300· Inclusive OR Byte to A; Indirect. AP Relative 4-12

to P Forward JAM Jump if A Negative (A<O) 4-25
2080· ForwlU'd Jump

IORB A400· Inclusive OR Byte to A; Direct. Indexed 4-12 20CO· Backward Jump

IORB A500· Inclusive OR Byte to A; Indirect. Indexed. 4-12 JAN Jump if A Not Zero (A~O) 4-25
AP in Scratchpad 3100· Forward Jump

3140· Backward Jump
IORB A600· Inclusive OR Byte 0 to A; Direct. Relative to P 4-12

Forward JAP Jump if A Positive or Equal to Zero (A~O) 4-25
3080· Forward Jump

IORB A700· Inclusive OR Byte to A; Indirect. AP Relative to 4-12 30CO· Backward Jump
P Backward

JAZ Jump if A Zero (A=O) 4-25
*IORS 1478 Inclusive OR Stack Element to A: Direct 4-21 2100· Forward Jump

2140* Backward Jump
·IORS 1479 Inclusive OR Stack Element to A; Indexed 4-21

JMP FOOO* Jump Unconditionally: Direct. Scratchpad 4-14
·IORS 147A Inclusive OR Stack Element to A; Auto- 4-21

Postincrement JMP F100· Jump Unconditionally; Indirect. AP in 4-14

·IORS 147B Inclusive OR Stack Element to A;
Scratchpad

Auto- 4-21
Predecrement JMP F200· Jump Unconditionally: Direct Relative to P 4-14

Forward
D-9 D-IO

COMPU1U AUTOMATION. INC. f3:! COWUlB AUTOMATION. INC. f3:!
INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction Instruction Instruction
Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description !!&!'

.IMP F300· Jump Unconditionally; Indirect AP Relative 4-14 JST F900· Jump and Store; Indirect. AP in Scratchpad 4-14
to P Forward

JST FAOO· Jump and Store; Direct. Relative to P Forw&rd 4-14
.IMP F400· Jump Unconditionally; Direct. Indexed 4-14

JST FBOO· Jump and Store; Indirect. AP Relative to P 4-14
JMP F500· Jump Uncondiqonally; Indirect. Indexed. AP 4-14 Forward

in Scratchpad

JST FCOO· Jump and Store; Direct. Indexed 4-14
JMP F600·, Jump Unconditionally, Direct. Relative to P 4-14

Backward ' JST FDOO· Jump and Store; Indirect. Indexed. AP in 4-14

JMP F700· Jump Unconditionally; Indirect. AP Relative 4-14
SCl'atchpad

to P Backward JST FEOO· Jump and Store; Direct. Relative to P Backward 4-14

·JMPS 16DS Jump to Stack Element Unconditional; Direct 4-22 JST FFOO· Jump and Store; Indirect. AP Relative to P 4-14
Backward

·JMPS 16»9 Jump to Stack Element Unconditional; Indexed 4-22

-.JSTS 16F8 Jump and Store to Stack Element: Direct 4-22
·JMPS 16DA Jump to Stack Element Unconditional; Auto- 4-22

Postincrement ·JSTS 16Ft Jump and Store to Stack Element; Indexed 4-22

-JMPS 16DB Jump to Stack Element Unconditional; Auto- 4-22 *.JSTS 16FA Jump and Store to Stack Element; Auto- 4-22
Predecrement Postincrement

JOC 2000 Jump on Condition Specified 4-24 *.JSTS 16FB Jump and Store to Stack Element; Auto- 4-22
Predecrement

JOR Jump if OverOow Reset (OV=O) 4-26
3200- Forward Jump JXN Jump if X Non-Zero (X~O) 4-26
3240- Backward Jump 3800- Forward Jump

3840- Backward Jump
JOS Jump if OverOow Set (OV=l) 4-26

2200- Forward Jump .TXZ Jump if X Equal to Zero {X=O) 4-26
2240- Backward Jump 2800- Forward· Jump

284~ Backward Jump
JSft Jump if Sense'Switch off. (55=0) 4-26

2400· Forward Jump LAM C700- Load A Minus Immediate '. 4-23
2440· Backward Jump

LAO 13CO LSBof A to OV 4-32
JS8 Jump if Sense Switch On (85=1) 4-26

3400· Forward Jump LAP C600- Load A Positive Immediate> 4-23
3440· Backward Jump

LDA BOOO· Load A; Direct. Scratchpad 4-13
JST F800- Jump and,Store; Direct. Scratchpad 4-14

LDA B100· Load .\; Indirect. AP m Scratchpad 4-13

D-11 0-12

COMPUTER AUTOMATION. INC. ~ COMPUT£R AUTOMATION. INC. ~

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)
INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction
Instruction Instruction

Mnemonic Skeleton in Hex Description Page
Mnemonic Skeleton in Hex Description Page

LDA B200* Load A; Dir~t. Relative to P Forward 4-13
LDX E300* Load X. Indirect. AP Relative to P Forward 4-13

·LDA B300* Load A: Indirect, AP Relative to P Forward 4-13
LDX E400· Load X; Direct. Indexed 4-13

LDA B400*· Load A: Direct, Indexed 4-13
LDX E500· Load X; Indirect, Indexed. AP in Scratchpad 4-13

LDA B500· Load A; Indirect, Indexed, AP in Scratchpad 4-13
LDX E600· Load X; Direct~, Relative to P B:lCkward . 4-13

LDA B600· Load A: Direct. Relative to P Backward 4-13
LDX E700· Load X: Indirect: AP Relative to P Backward 4-13

LDA B700· Load A: Indirect. AP Relative to P Backward 4-13
LDXB EOOO· Load X Byte: Direct. Scratchpad 4-13

LDAB BOOO· Load A Byte: Direct, Scratchpad 4-13
LDXB EI00· Load X Byte; Indirect. AP in Scratchpad 4-13

LDAB B100· Load A Byte; Indirect: AP in Scratchpad 4-13
LDXB E200· Load X Byte 0: Direct. Relative to P Forward 4-13

LDAB B200· Load A Byte 0: Direct, Relative to P Forward 4-13
LDXB E300· Load X Byte; Indirect. AP Relative to P Forward 4-13

LDAB B300· Load A Byte; Indirect. AP Relative to P 4-13
LDXB E400· Load X Byte: Direct. Indexed 4-13

Forward LDXB E500· Load X Byte; Indirect. Indexed, AP in 4-13

LDAB B400· Load A Byte; Direct, Indexed 4-13
Scratchpad

LDAB B500· Load A Byte; Indirect. Indexed, AP in 4-13
LDXB E600· Load X Byte I: Direct. Relative to P Forward 4-13

Scratchpad LDXB E700· Load X Byte: Indirect. AP Relative to P 4-13

LDAB B600· Load A Byte 1; Direct. Relative to P Forward 4-13
Backward

LDAB B700* Load A Byte; Indirect. AP Relative to P 4-13
*LDXS 1698 Load Stack Element into X: Direct 4-21

BackWard *LDXS 1699 Load Stack Element into X; Indexed 4-21

*LDAS 14D8 Load Stack Element into A; Direct 4-21 ·LOXS 169A Load Stack Element into X; Auto-Postincrement 4-21

*LDAS 1409 Load Stack Element into A; Indexed 4-21 *LDXS 169B Load Stack Element into X: Auto-Predecrement 4-21

*LDAS 14DA Load Stack Element into A; Auto-Postincrement 4-21 LLA 1350· Logical Shift A Left 4-28

·LDAS 140B Load Stack Element into A; Auto-Predecrement 4-21
LLL 1BOO· Long Logical Left Shift 4-30

LDX EOOO· Load X; Direct, Scratchpad 4-13 LLR 1B80· Long Logical Right Shift 4-30

LDX E100· Load X; Indirect. AP in Scratchpad 4-13 LLX 1328* Logical Shift X Left 4-28

LDX E200* Load X; Direct. Relative to P Forward 4-13 LRA 1300· Logical Shift A Right 4-28

D-13 0-14

COMPUTEI AII1OMA1ION.INC, §! COMPUT8t AI.1TOMA1ION.INC. §!

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction Instruction Instruction
Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description Page

LRL 1900· Long Rotate Left 4-31 OTX 6EOO· Output X Register (Unconditionally) 4-41

LIlR 1980· Lonl Rotate Rilht 4-31 OTZ 6800· Output Zero (Unconditionally) 4-41

LRX 13AS· Logical Shift X Rllht 4-28 OXH lCOe Output X to Console Data Register 4-35
(Unconditionally)

LD1 CiOO· Load X Minus Immediate 4-23

LXO 13AO LSB of X to OV 4-32
PFD 4003 Power Fail Interrupt Disable 4-38

IJep C400· Load X Positive Immediate 4-23
PFE 4002 Power Fail Interrupt Enable 4"-38

MPY 1960· Multiply and Add 4-16
RBA 1900· Read Byte to A Register 4-43

NAR 0310 Negate A Register 4-31
RBAM 1DOO· Read Byte to A Register. Masked 4-43

NAX 0308 Negate A and Put in X 4-33
RBX 7BOO· Read Byte to X Register 4-43

RBXM 1FOO· Read Byte to X Register. Masked 4-43
NOP 0000 No Operation 4-36

NRA 0610 NOR of A and X to A 4-33
RDA 5900· Read Word to A Register 4-41

NRM 1940· Normalize -,"A and X 4-11
RDAM 5DOO· Read Word to A Register. Masked 4-41

NRX 0608 NOR of A and X to X 4-33
RDX 5BOO· Read Word to X Register 4-41

NXA 0510 Negate X and Put in A 4-33
RDXM 5FOO· Read Word to X Register. Masked 4-42

RLA 1150· Rotate A Left with OV 4-29
NXR 0508 Nelate X Register 4-32

RLX 1128· Rotate X Left with OV 4-29
OAB le04 Output A to Console Data Register and Halt 4-35

ROV 1200 Reset Overflow 4-32
OCA 4404 Output A to Console Data R~gister 4-36

OCX 4604 Output X to Console Data RegiSter 4-36
BRA . llDO· Rotate A Right with OV 4-29

RRX lIAS· Rotate X Right with OV 4-29
OLH 1ClO Output Location to Console Data Register 4-36

and Halt SAl ODOO· Subtract from A Immediate 4-23

OMH lC02 Output Memory to Console'Data Register' 4-36 SAO 1340 Sign or A to OV 4-32
and Halt

OPH lC20 Output P to Console Data Register and Halt 4-36
SBM OEOO Set Byte Mode 4-37

OTA &COO· Output A Register (Unconditionally) 4-41
SCM CDOO· Scan Memory; Indirect. Indexed. AP in 4-14

Scratchpsd

D-15 D-16

COMPUTER AUlOMAtION.ltK. E3:m COMPUTER AUTOMATION.IK. E3:m
INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction Instruction Instruction

Mnemonic Skeleton in Hex Description !!I!.
Mnemonic Skeleton in Hex Description Page

SCMB CD 00· Scan Memory Bytei Indirect. Indexed. AP 4-15 STA 9EOO· Store A; Direct, Relative to P Backward 4-13

in Scratchpad
STA 9FOO· Store A; Indirect, AP Relative to P Backward 4-13

SEA 4400· Select and Present A 4-40
STAB 9800· Store A Byte; Direct, Scratcfipad 4-13

SEL 4000· Select Function 4-40
STAB 9900· Store A Byte; Indirect, AP in Scratchpad 4-.13

SEN 4900· Sense and Skip on Response 4-40
STAB 9AOO· Store A Byte 0; Direct, Relative to P Forward 4-13

SEX 4600· Select and Present X 4-40
STAB 9BOO· Store A Byte; Indirect, AP Relative to P 4-13

SIA 5800 Statue Input to A 4-38 Forward

SIN 6800 Status Inhibit 4-37 STAB 9COO· Store A Byte: Direct, Indexed 4-13

SIX 5AOO Status Input to X 4-38 STAB 9DOO· Store A Byte: Indirect, Indexed, AP in 4-13
Scratchpad

·SLAS 1618 Stack Element Address to Ai Direct 4-22
STAB 9EOO· Store A Byte 1; Direct, Relative to P Forward 4-13

·SLAS 1619 Stack Element Address to Ai Indexed 4-22
STAB 9FOO· Store A Byte: Indirect, AP Relative to P 4-13

·SLAS ISlA Stack Element Address to A; Auto-PosUncrement 4-22 Backward

·SLAS 161B Slack Element Address to A; Auto-Predecrement 4-22 ·STAS 1478 Store A in Stack Element; Direct 4-21

SOA 6COO Status Output from A 4-38 ·STAS 1479 Store A in Stack Element; Indexed 4-21

SOX 6EOO Status Output from X 4-38 *STAS 147A Store A in Stack Element: Auto-Postincrement 4-21

SOV 1400 Set Overflow 4-32 ·STAS 147B Store A in Stack Element: Auto- Predecrement 4-21

'SSN 4800· Sense and Skip and No Response . 4-40 STOP 0800· Halt with Operand 4-36

STA 9800· Store Ai Direct, Scratchpad 4-13 STX E800· Store X: Direct, Scratchpad 4-13

STA 9900· Store A: Indirect, AP in Scratchpad 4-13 STX E900· Store X: Indirect, AP in Scratchpad 4-13

STA 9AOO· Store A; Direct, Relative to P Forward 4-13 STX EAOO· Store X; Direct, Relative to P Forward 4-13

STA 9BOO· Store Ai Indirect, AP Relative to P Forward 4-13 STX EBOO· Store X: Indirect. AP Relative to P Forward 4-13

STA 9COO· Store A; Direct, Indexed 4-13 STX ECOO· Store X: Direct, Indexed 4-13

STA 9DOO· Store A; Indirect, Indexed, AP in Scratchpad 4-13 STX EDOO· Store X: Indirect. Indexed, AP in Scratchpad 4-13

D-17 D-1S

COMPUTtR AUTOMATION. IN<. ~ COMPUTER AUTOMATION INC. ~

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction Instruction Instruction

Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description Page

STX EEOO* Store X; Direct. Relative to P Backward 4-13 SUB 9600* Subtract from A; Direct. Relative to P Backward 4-12

STX EFOO* Store X; Indirect; AP Relative to P Backward 4-13 SUB 9700* Subtract from A; Indirect. AP Relative to P 4-12
Backward

STXB E800* Store X Byte; Direct. Scratchpad 4-13
SUBB 9000* Subtract Byte; Direct. Scratchpad 4-12

STXB E900* Store X Byte; Indirect. AP in Scratchpad 4-13
SUBS 9100* Subtract Byte; Indirect. AP in Scratchpad 4-12

STXB EAOO* Store X Byte 0; Direct. Relative to P Forward 4-13
SUBB 9200* Subtract Byte 0; Direct, Relative to P Forward 4-12

STXB EBOO* Store X Byte; Indirect. AP Relative to P 4-13
Forward SUBB 9300* Subtract Byte; Indirect. AP Relative to P 4-12

Forward

STXB ECOO* Store X Byte; Direct. Indexed 4-13
SUBB 9400* Subtract Byte; Direct. Indexed 4-12

STXB EDOO* Store X Byte; Indirect. Indexed. AP in 4-13·
Scratchpad SUBB 9500* Subtract Byte; Indirect. Indexed. AP in 4-12-

Scratchpad

STXB EEOO* Store X Byte 1; Direct. Relative to P Forward 4-13
SUBB 9600* Subtract Byte 1; Direct. Relative to P Forward 4-12

STXB EFOO* Store X Byte; Indirect. AP Relative to P 4-13
Backward SUBB 9700* Subtract Byte; Indirect. AP Relative to P 4-12

Backward

*STXS 16B8 Store X in Stack Element; Direct 4-21
*SUBS 1458 Subtract Stack Element from At Direct 4-21

*STXS 16B9 Store X in Stack Element; Indexed 4-21
*SUBS 1459 Subtract Stack Element from A; Indexed 4-21

*STXS 16BA Store X in Stack Element; Auto-Postincrement 4-21
*SUBS 145A Subtract Stack Element from A; Au1.o- 4-21

*STXS 16BB Store X in Stack Element; Auto-Predecrement 4-21 Postincrement

SUB 9000* Subtract from A; Direct, Scratchpad 4-12 *SUBS 145B Subtract Stack Element from A; Auto- 4-21
Predecrement

SUB 9100* Subtract'from A; Indirect. AP in Scratchpad 4-12
SWM OFOO Set Word Mode 4-37

SUB 9200* Subtract from A; Direct.. Relative to P Forward 4-12
SXI C300" Subtract from X Immediate 4-23

SUB 9300* ' Subtract fr.om A; Indi.rect.' AP Rel~tjye to 'P 4-12
For.ward. SXO 1320 Sign of X to OV 4-32

SUB 9400* Subtract from A; Direct. Indexed 4-12 TAX 0048 Transfer A to X 4-33

SUB .9500* Subtract from.A; Indirect. Indexed. AP in 4-12 TRP 4007 Trap 4-39

Scratchpad
TXA 0030 Transfer X to A 4-33

D-19 D-20

COMPUTtR AUTOMATION. INC. ~

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction
Mnemonic Skeleton in Hex Description

WAIT F600 Wait for Interrupts

WRA 6DOO· Write from A

WRX 6FOO· Write from X

WRZ 6900· Write Zeros

XOR A800· Exclusive OR to A; Direct. Scratchpad

XOR A900· Exclusive OR to A; Indirect. AP in Scratchpad

XOR AAOO· Exclusive OR to A; Direct. Relative to P Forward

XOR ABOO· Exclusive OR to A; AP Relative to P Forward.
Indirect

XOR ACOO· Exclusive OR to A; Direct. Indexed

XOR ADOO· Exclusive OR to A; Indirect. Indexed. AP in
Scratchpad

XOR AEOO· Exclusive OR to Ai Direct. Relative to P
Backward

XOR AFOO· Exclusive OR to A: Indirect, AP Relative to
P Backward

XORB A800· Exclusive OR Byte: Direct. Scratchpad'

XORB A900· Exclusive OR Byte; Indirect. AP in Scratchpad

XORB AAOO· Exclusive OR Byte 0; Direct. Relative to P
Forward

XORB ABOO· Exclusive OR Byte: Indirect. AP Relative to P
Forward

XORB ACOO· Exclusive OR Byte; Direct. Indexed

XORB ADOO* Exclusive OR Byte: Indirect. Indexed, AP in
Scratchpad

XORB AEOO· Exclusive OR Byte 1; Direct, Relative to P
Forward

D-21

Page

4-37

4-42

4-42

4-42

4-12

4-12

4-12

4-12

4-12

4-12

4-12

4-12

4-13

4-13

4-13

4-13

4-13

4-13

4-13

Instruction
Mnemonic

XORB

·XORS

·XORS

*XORS

*XORS

XRM

XRP

ZAR.

ZAX

ZXR.

(0W\lTER AUTOMATION. INC. ~

INSTRUCTION SET IN ALPHABETICAL ORDER. (Cont'd)

Instruction
Skeleton in Hex Description

AFOO. Exclusive OR Byte; Indirect. AP "qelative to P
Backward

14B8 Exclusive OR Stack Element to Ai Direct

14B9 Exclusive OR Stack Element to Ai Indexed

14BA Exclusive OR Stack Element to A; Auto­
Postincrement

l4BB

0008

0528

0110

0118

0108

Exclusive OR Stack Element to A; Auto­
Predecrement

Set X to Minus 1

Set X to Plus 1

Zero A Register

Zero A and X Registers

Zero X Register

D-22

Page

4-13

4-21

4-21

4- 21

4-21

4-32

4-32

4-31

4-33

4-32

COWUlU AUTOMATION. INC. f3:!
Appendix E

INSTRUCTION SET IN NUMERICAL ORDER

This appendix contains the ALPHA LSI instruction set in machine code in numerical order.
For each instruction. reference is made to one of the machine code formats listed below.
Instructions with variable fields (D. K. etc.) are followed by asterisks (.). Those
instructions which apply to LSI-2 only are prefixed with an asterisk.

D = Address Field (0 to 255)
I = Direct/Indirect Address Bit
M :: Address Mode Code

15 14 13 12 11 10 • • 7 • I 4 3 2 1 0

Y ::-Effective Address
(1 I OPCODE M I, I D

M .!. Word Mode (Word 02era'1d) Bl!e Mode (Bl!e 02!rand)

i)0 ·0 Y = (D). Words: 00-: FF Y = P). Bytes: OO-:FF
01 0 Y = (D) + (P) + 1 y= CD) + (P) 1, Byte 0
10 0 Y:: (D) + (X) y = CD) + (X)

11 0 Y:; (P) - CD) y = CD) + (P) + 1. Byte 1
00 1 AP:: CD). AP:: (AP) , Y = (AP) AP = (D), Y = (AP)
01 1 AP = (D) + (P) + 1. AP = (AP) • y + (AP) AP = CD) + (P) + 1. Y=(AP)
.10 1 AP :: (D). AP:: (AP) , Y:: (AP) + (X) AP = (D). Y = (AP) + (X)

11 1 AP = (P) - (D), AP = (AP) , Y:: (AP) AP = (P) - (D), Y:: (AP)

figure E-l. Single-Word Memory Reference Instruction Machine Code Format

11 14 13 12 11 10 9 • 7 • 5 4 3 2 1 0

1.1.1•1, I, 1·1.1, 1.1 OPCOOE I

Op Code = 100 for NO 0 through 15
, = 101 for NRM 16 through ·31
= 110 for MPY
= 111 for DVD

I = Indirect Addressing
1 = Indirect Address
o = Direct Address

K = Instruction Count

K

Figure E-2. Double-Word Memory Reference Instruction Machine Code Format

£-1

12

7-11

8

0-5

15 14 13 12 11 10 II· 8 7 6 5 4 3 2 1 0

" I 1 I 0 t 0 I 0 I OPCODE I D

D = 8-Bit Immediate Operand

Figure E-3. Byte Immediate Instruction Machine Code Format

11 14 13 12 11 10 8 • 7 • 5 4 3 2 1 0

'OIO','GI MICROCC»f fRI DFIELD

~

G

Conditions

R

D Field

Definition

Test Group Indicator:

G = 1 for AND Group
G = 0 for OR Group

Microcode of Test Conditions:

.!ill. AND Grou2 OR Groul2

7 It. Positive A Negative
8 AIO A = 0
9 OV Reset OV Set (Resets OV

. 10 Sense Indicator Sense Indicator
on off

11 XIO X=O

Jump Direction:

R = o for Forward Jump
R = 1 for Backward Jump

Jump Distance (-t3 to +64)

Fipre E-l. Conditional Jump Instruction Machine Code Format

E-2

(OMPUTtR AUTOMATION. IN<. ~

15 14 13 12 11 10. 9 8 7 6 5 4 3 2 1 0

101010(1101 OPCOO£ K

K = Shift Control Count. Shift Will Move 1 + K Bit Positions.
Op Code = Shift Control Code Which Selects Source. Type of Shift.

and Location of Results

Figure E-5. Single-Register Shift Instruction Machine Code Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I 0 I 0 I 0 l' l' I OP CODE K

Op Code = Shift Control Code Which Selects the Type of Long Shift to be Executed
K = Shift Count. Shift Will Move 1 + K Bit Positions

Figure £-6. Double-Register Shift Instruction Machine Code Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPCODE

Op Code = The Register Change Control Code which specifies the Source. Operation.
and Location of Results

Figure E-7. Register Change Instruction Machine Code Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

oPcooe OP CODE. 104 or SC

H = Halt ID Indicator
SC = Sin Instruction Count -

Figure £-8. Control Instruction Machine Code Format

E-3

(0MPU1U AU'IOMATION.INC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1'1 OPCODE I DEVICE I FU~~6~ONI ADDRESS

Function Code = Specifies which device function or register
Device Address = The device'S assigned address

Op Code = Operation Code Specifying One of the I/O Instructions

Figure E-9. Input/Output Instruction Machine Code Format

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

P 0
1 1 Cg:;E t 0 1 B I 0 I 0 I DEVICE IFUNCTION

ADDRESS CODE

P+l BYTEIWORD COUNTER. we (2'S COMPLEMENT)

P+2 0 ADDRESS POINTER. AP (START LOCATION -1)

Opcodej 01 = Input. 10 = Output
B = 0: Word Transfer
B = 1: Byte Transfer
Byte/Word Counter = Number of Executions Until Skip or Echo
Byte/Word Address Pointer = Memory Location of I/O Transaction

Figure E-10. Automatic Input/Output Instruction Machine Code Format

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

0 1 I OPCODE I DEVICE !FUNCTlO,,"
ADDRESS CODE

0 BASE ADDRESS ·1

Figure £-11. Block Input/Output Instruction ~lacJ-:ine C0de Furmat

E-4

COMPUTER AUTOMATION. INC. 8!

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
001 0 1' 10 1' 1 OPCODE 1,[,101 AM

o STACK POINTER ADDRESS !SPAI

AM = Addressing Mode

\ 00 = Direct Access to Stack
01 = Indexed Access to Stack
10 = Auto-increment Access to Stack (POP)
11 = Auto-decrement Access to Stack (PUSH)

Figure E-12. Stack Instruction Machine Code Format

INSTRUCTION SET IN NUMERICAL ORDER

Instruction Instruction Machine
Skeleton in Hex Mnemonic Description Code Format Page

0000 NOP No Operation 7 4-36

0008 XRM X Register to Minus One 7 4-32

0010 ARM A Register to Minus One 7 4-31

0018 AXM A and X Registers to Minus One 7 4-33

0030 TXA Transfer X to A 7 4-33

0048 TAX Transfer A to X 7 4-33

0068 ANX AND of A and X to X 7 4-33"

0070 ANA AND of A and X to A 7 4-33

0090 IPX Increment P to X 7 4-34

OOA8 DXR Decrement X Register 7 4-32

OOBO DXA Decrement X to A 7 4-34

00C8 DAX Decrement A to X 7 4-34

E-5.

(OMPUT£R AUTOMATION. INC. 8!
INSTRUCTION SET IN NUMERICAL ORDER (Cont'd)

Instruction Instruction Machine
Skeleton in Hex Mnemonic Description Code Format Page

OODO DAR Decrement A Register 7 4-31

0108 ZXR Zero X Register 7 4-32

0110 ZAR Zero A Register 7 4-31

0118 ZAX Zero A and X Registers 7 4-33

0128 lXR Increment X Register 7 4-32

0130 IXA Increment X to A 7 4-34

0148 lAX Increment A to X 7 4-41

0150 IAR Increment A Register 7 4-31

0208 CAX Complement of A to X 7 4-33

0210 CAR Complement A Register 7 4-31

0218 *ElX Execute Instruction Pointed to By X 7 4-34

0308 NAX Negate A to X 7 4-33

0310 NAR Negate A Register 7 4-31

0350 ARP A Register to Plus One 7 4-31

0358 AXP A and X Registers to Plus One 7 4-33

0408 CXR Complement X Register 7 4-32

0410 CXA Complement of X to A 7 4-33

"0428 EAX Exchange A and X 7 4-33

0508 NXR Negate X Regster 7 4-32

0510 NXA Negate X to A 7 4-33

0528 XRP X Register to Plus One 7 4-32

0608 NRX NOR of A and X to X 7 4-33

E-6

COMPUTER AUTOMATION. IN<. ~ (OMPUTER AUTOMATION. INC. ~

INSTRUCTION SET IN NUMERICAL ORDER (Cont'd) INSTRUCTION SET IN NUMERICAL ORDER (Cont'd)

Instruction Instruction Machine Instruction Instruction Machine
Skeleton in Hex Mnemonic DescriEtion Code Format Page Skeleton in Hex Mnemonic DescriEtion Code Format Page

0610 NRA NOR of A and X to A 7 4-33 1320 SXO Sign of X to Overflow 5 4-32

0688 ·*BSX Bit Set X 7 4-34 1328 LLX* Logical Shift X Left 5 4-28

068A *BSA Bit Set A 7 4-34 1340 BAO* Bit of A to Overflow 5 4-32

06C8 *BCX Bit Clear X 7 4-34 1340 SAO Sign of A to Overflow 5 4-32

06CA *BCA Bit Clear A 7 4-34 1350 LLA* Logical Shift A Left 5 4-28

0800 HLT Halt 8 4-36 13AO LXO LSB of X to Overflow 5 4-32

0800 STOP* Halt with Operand 8 4-36 13A8 LRX* Logical Shift X Right 5 4-28

OAOO EIN Enable Interrupts 8 4-38 13CO LAO LSB of A to Overflow 5 4-32

OBOO AAI* Add to A Immediate 3 4-23 13DO LRA* Logical Shift A Right 5 4-28

oeoo DIN Disable Interrupts 8 4-38 1400 SOY Set Overflow 5 4-32

ODOO SAI* Subtract from A Immediate 3 4-23 1418 *ANDS A..~O S tack Element to A 12 4-21

OEOO SBM Set Byte Mode 8 4-37 1438 *ADOS Add Stack Element to A 12 4-21

OFOO SWM Set Word Mode 8 4-37 14S8 ' *SUBS Subtract Stack Element from A 12 4-21

1028 ALX* Arithmetic Shift X Left 5 4-27 1478 *STAS Store A in Stack Element 12 4-21

0150 ALA * Arithmetic Shift A Left 5 4-27 1498 *IORS Inclusive OR Stack Element to A 12 4-21

10AS* ARX* Arithmetic Shift X Right 5 4-27 14B8 *XORS Exclusive OR Stack Element to A 12 4-21

10DO ARA* Arithmetic Shift A Right 5 4-27 1408 *LDAS Load Stack Element into A 12 4-21

1128 RLX* Rotate X Left with Overflow 5 4-29 14F8 *EMAS Exchange Stack Element and A 12 4-21

1150 RLA* Rotate A Left with Overflow 5 4-29 1600 COY Complement Overflow 5 4-22

llA8 RRX* Rotate X Right with Overflow 5 4-29 1618 *SLAS Stack Element Address to A 12 4-22

1100 RRA* Rotate A Right with Overflow 5 4-29 1658 *CMSS Compare Stack Element to A and Skip 12 4-22
if High or Equal

1200 ROV Reset Overflow 5 4-32

1678 *IMSS Increment Stack Element and Skip 12 4-22
1320 BXO* Bit of X to Overflow 4-32 on Zero Result

E-7 E-8

COWUTBt AUTOMATION. INC. ~ (OMPUltR AUTOMATION. INC_ ~

INSTRUCTION SET IN NUMERICAL ORDER (Cont'd) INSTRUCTION SET IN NUMERICAL ORDER (Cont'd)

Instruction Instruction Machine Instruction Instruction Machine
Skeleton in Hex Mnemonic Description Code Format Page Skeleton in Hex Mnemonic Description Code Format Page

4000 SEL· Select Function 9 4-40 5BOO RDX* Read Word to X Register 9 4-41

4002 PFE Power Fail Enable 9 4-38 5COO INAM.· Input to A Register Masked 9 -4-41

4003 PFD Power Fail Disable 9 4-38 5DOO RDAM* Read Word to A Register Masked 9 4-41

4005 CIE Console Interrupt Enable 9 4-38 5EOO INXM* Input to X Register Masked 9 4-41

4006 CID Console Interrupt Disable 9 4-38 5FOO RDXM· Read Word to X Register Masked 10 4-42

4007 TRP Trap 9 4-39 6000 AOT· Automatic Output Word from Memory 10 4-47

4400 SEA· Select and Present A 9 4-40 6400 AOB· Automatic Output Byte from Memory 10 4-47

4404 OCA Output A to Console Register Ii 4-36 6800 OTZ· Output Zero 9 4-41

4600 SEX* Select and Present X 9 4-40 6800 SIN- Status Inhibit 8 4-37

4604 OCX Output X to Console Register 9 4-36 6900 WRZ· Write Zero 9 4-42

4800 SSN* Sense and Skip On No Response 9 4-40 6COO OTA· Output A Register 9 4-41

4900 SEN· Sense and Skip On Response 9 4-40 6COO SOA Status Output from A 9 4-38

5000 AlN* Automatic Input Word to Memory 10 4-47 6DOO WRA· Write from A Register 9 4-42

5400 AlB· Automatic Input Byte to Memory 10 4-47 6EOO OTX* Output X Register 3 4-41

5800 INA· Input to A Register 9 4-41 6EOO SOX Status Output from X 9 4-38

5800 SIA Status Input to A 9 4-38 6FOO WRX· Write from X Register 3 4-42

5801 ISA Input Sense Register to A 9 4-35 7100 BIN- Block In 11 4-44

5804 ICA Input Console Register to A 9 4-35 7500 BOT· Block Out 11 4-45

5900 RDA* Read Word to A Register 9 4-41 7800 IBA- Input Byte to A Register 9 4-42

SAOO INX· Input to X Register 9 4-41 7900 RBA* Read Byte to A Register 9 4-43

SAOO SIX Status Input to X 9 4-38 7AOO IBX- Input Byte to X Register 9 4-43

5AOI ISX Input Sense Register to X 9 4-35 7BOO RBX· Read Byte to X Register 9 4-43

5A04 ICX Input Console Register to X 9 4-35 7COO IBAM- Input Byte to A Register Masked 9 4-42

E-ll E-12

a.u1II JU1OIIAJICIlIk. e! COWU1II MJ1OIWIOII. INC. e!
Dl8TBUCI'IOM SET IN MtJIORlCAL ORDER (Cont'd) INSTRUCTION SET IN NUMElUCAL ORDER (Cont'd)

.... l'~ In~ Machine Inatruction Instruction Machine

8keletDIl !e !!!! MD8IDDIIic D!eeripUon Code Format !!I!. Skeleton in Hex Mnemonic Deacription Code Format !!I.!.

'ID08 RBAII- Read Byte to A Begi8ter Masked 9 4-43 C400
~

LXP* Load X Positive Immediate 3 4-23

.,.OO IBDI· Input Byte to X Jteclater Maaked 9 4-43 C508 LXM- Load X Minus Immediate 3 4-23

,me DU· Read Byte to X Begi8ter IIulted 9 4-43 C600 LAP- wad A Positive Immediate 3 4-13

nOt AN1)4I AND toA 1 4-12 C700 LAM- wad A Minus Immediate 3 4-23

tOOl AMDB- AND Byte to A 1 4-12 CDOO SCM- Scan Memory 1 4-14 ' ADD· Add to A 1 4-12 CDOO SCMB- Scan Memory Byte 1 4-15

I~' ADDB· Add Byte to A 1 4-12 DOOO CMS· Compare and Skip if High or Equal 1 4-22

•• SUS· Subtract from A 1 4-12 DOOO CMSB· Compare Byte and Skip if High or Equal 4-14

IOOiO SUBB· Subtract Byte from A 1 4-12 D800 IMS· Increment Memory and Skip on Zero 1 4-14
Reault ... STA· Store A 1 4-13

£000 LDX· Load X 1 4-13

••• STAB· Store A Byte 1 4-13
BOlO LDXB- Load X Byte 1 4-13 .- lOR· Inclusive OR to A 1 4-12
£800 STX· Store X 4-13 .. 10RB· IDcluaive OR Byte to A 1 4-12
£800 STXB· Store X Byte 1 4-13 A_ xoa· Exclusive OR to A 1 4':'12
POOO .nIP. Jump Unecmditional 1 4-14

AIOG' xoas· bclusive OR Byte to A 1 4-13
P800 WAIT Wait for Interrupts 1 4-31

BIOI LOA· Loa4A 1 4-13
P810 JST· Jump and Store 1 4-14 s_

LOAB· Load'A Byte 1 4-13

8800 SMA· Exchange Memory and A 1 4-13

.. M EMAB· bcbange Memory' Byte ,md A 1 4-13

COO& CAl· Compare to A Immediate 3 4-23

Cl" CXI· ~pare to X Immediate 3 4-23

ClIO AXI· Add to X Immediate 3 ~23

ClOO 8X1· Subtract froID X Jmmedi .. 3 4-23

£-13 E-14

COMPUTER AUTOMATION. INC. ~

Appendix F

ALPHA LSI EXECUTION TIMES

F.l GENERAL

T his appendix defines the execution time of each instruction in the ALPHA LSI instruc­
tion set. Two Processors and a variety of Memories, with varying access times, are
offered with the ALPHA LSI. The variation in memory access time makes a tabulation
of execution times difficult. For this reason time calculation algorithms are provided.
These algorithms are useful with any memory access time by making the appropriate
memory parameter substitution.

F.2 MEMORY PARAMETERS

Currently. four Memories are offered in the ALPHA LSI family; three of these are core
Memories, while the fourth is a semiconductor Memory. Table F -1 lists the parameters
of these Memories. All times listed are in nanoseconds.

Table F-l. LSI Family Memory Parameters
Memory

Type ContilEUJ'ation C RA RO WA we M M' ROI WOI

Core 980 Add on 4K. 8K 980 310 600 180 100 800 400 220 420

Core 1200 Add on 16K 1200 400 800 200 1000 800 400 300 500

Core 1600 Add on or integral 4K. 8K 1600 450 1150 250 1350 600 400

SC 1200 Add on 2K. 4K. 8K 1200 500 700 200 1000 600 400
1 ntelP'al 2K. 4K

Parameters in nanoseconds are:

C = Cycle TillHl
RA = Read A"cess
RO = Read Overhead
WA = Write Access
WO ~ Write Overhead
M = LSI-l Effective Read Acces.
M' = LSI-l Effective .rlte Access
ROI = Interleaved Effective Read Overhead
WOI = Interleaved Effectiv .. Write Overhead

F-l

COMPlIT£R AUTOMATION. INC. ~

F.3 LSI-1 EXECUTION TIME ALGORITHMS

The LSI-l execution time algorithms are listed in table F-2. The algorithms are parti­
tioned by class and subclass. Numerous instructions have two times listed with the
reason for the dual listing given in parenthesis. All numeric values are in microsec­
onds. The value of A (address calculation time) is derived from the list of addressing
modes at the beginning of the table. The variables m and m' are derived from table
F-1 and are in nanoseconds.

The letter i stands for indirect address levels. Where indirect addressing is used, the
value (3.2 + m)i must be added for each level of indirect addressing that is employed.

The letter n denotes a shift. The value 1. Sn or 3. 2n must be added to the basic execu­
tion time of shift instructions for each bit shifted.

The letter w is used by the SCM and Block I/O instructions. The parenthetical expres­
sion which precedes the w is the time calculation on a per word basis.

Table F-2. LSI-1 Execution Time Algorithms

MEMORY REFERENCE CLASS

A = Address Calculation Time for Memory Reference Instructions:

DIRECT SCRATCHPAD 1.6+m
DIRECT RELATIVE 1.S+m
DIRECT INDEXED 3.2 + m
INDIRECT SeRA TCHP AD (3.2+m)i
INDIRECT REALTIVE 1.S+(3.2+m)i
INDIRECT INDEXED 1.6+(3.2+m)i

ARITHMETIC
ADD S.4+m+A

SUB 6.4+m+A

LOGICAL
AND 6.4+m+A
lOR 6.4+m+A

XOR 6.4+m+A

DATA TRA~SFER
LDA 4.8+m+A

LDX 4.8+m+A

STA 4.8+m'+A

STX 4.8+m'+A

EMA 8.0+m+m' +A

F-2

COMPUT£R AUTOMATION. INC. f3:!
Table F-2. LSI-l Execution Time Algorithms (Cont'd)

PROGRAM TRANSFER
JMP
JST (Non-Interrupt)
JST (Interrupt)
IMS
SCM
CMS

4.8 + A
8.0+m'+A
6.4 + m' + A
9.6 + m + m' +A

(12 . 8 + m + A) w
12.8+m+A

DOUBLE WORD MEMORY REFERENCE CLASS

DVD
MPY
NRM (count expires)
NRM (count does not expire)

118.4 + 3m + (3.2 + m) i
110.4 + 3m + (3.2 + m) i
17.6 + 3m + m' + 9.6n + (3.2 + m) i
20.8 + 3m + m' + 9.6n + (3.2 + m) i

BYTE IMMEDIATE CLASS

AAI
AXI
SAl
SXI
CAl
CXI
LAP
LXP
LAM
LXM

4.8 +m
4.8+ m
4.8 + m
4.8 + m
6.4 + m
6.4 + m
4.8 + m
4.8+m
4.8 +m
4.8 + m

CONDITIONAL JUMP CLASS

MICROCODED
(JOC)
ALL Double Register Tests
ALL Others

ARITHMETIC
JAG
JAP
JAZ
JAN
JAL
JAM
JXZ
JXN

14.4 + m
6.4+ III

6.4 + m

F-3

COMPUTER AUTOMATION. INC. f3:!
Table F-2. LSI-l Execution Time Algorithms (Cont'd)

CONTROL
JSS
JSR
JOS
JOR

ARITHMETIC SHIFTS
AKA
ARX
ALA
ALX

LOGICAL SHIFTS
LRA
LRX
LLA
LLX

ROTATE SHIFTS
RRA
RRX
RLA
RLX

}6.4+m

SHIFT CLASS

} 3.2 + m * 1.611

} 3.2 + m + 1.6n

DOUBLE REGISTER LOGICAL SHIFTS

~ } 3.2 + m + 3.2n

DOUBLE REGISTER ROTATE SHIFTS

!:: }3.2+m+3.2n

A REGISTER CHANGE
ZAR
ARP
ARM
CAll
NAR
fAR
DAR

REGISTER CHANGE CLASS

COtM'UTER AUTOMATION. INC. ~ COMPUTER AUTOMATION, INC. ~
Table F-2. LSI-l Executive Time Algorithms (Cont'd) Table F-2. LSI-l Executive Time Algorithms (Cont'd)

X REGISTER CHANGE
ZXR

}
CONTROL CLASS

XRP
XRM PROCESSOR CONTROLS

} CXR 4.8 + m NOP 4.8 + m
NXR HLT (STOP?
IXR
DXR MODE CONTROLS

SBM } 4.8 + m
OVERFLOW REGISTER CHANGE SWM

SOV 4.8+ m
ROV 4.8 + m STATUS CONTROLS

}
COV 4.8 + m SIN
SAO 6.4 + m SIA
SXO 6.4 +m SIX 5.6 + m
LAO 6.4 + m SOA
LXO 6.4 +m SOX
BAO 6.4 + m+ 1.6n
BXO 6.4 + m + 1.6n INTERRUPT CONTROLS

ElN 4.8 + m
MULTI-REGISTER CHANGE DIN 6.4 +m

ZAX 6.4 + m cm 5.6 +m
AXP 6.4 + m cm 5.6 +m
AXM 6.4 + m PFE 5.6+m
TAX 4.8 + m PFD 5.6 + m
TXA 4.8 + m TRP 5.6 + m
EAX 8.0 + m
ANA 4.8 + m
ANX 4.8 + m INPUT /OUTPUT CLASS
NRA 6.4 + m
NRX 6.4 + m CONTROL
CAX 4.8 + m SEL 5.6 + m
CXA 4.8 + m SEA 5.6 +m
NAX 4.8 + m SEX 5.6 + m
NXA 4.8 + m SEN 7.2 + m
lAX 4.8 + m SSN 7.2 + m
IXA 4.8 + m
IPX 4.8 +m UNCONDIT~ONAL WORD
DAX 4.8 + m INA 5.6 + m
DXA 4.8 + m INAN 7.2 + m

INX 5.6 +m
CONSOLE REGISTER INXM 7.2 + m

ICA

}
OTA 5.6 + m

ICX OTX 5.6 + m
ISA

5.6 +m OTZ 5.6 + m
ISX
OCA
OCX

F-5 F-6

(OWUTER AUTOMA11ON.INC. ~

Table F-2. LSI-l Execution Time Algorithms (Cont'd)

CONDITIONAL WORD
RDA
RDAM
RDX
RDXM
WRA
WRX
WRZ

UNCONDITIONAL BYTE
IBA
IBAM
IBX
IBXM

CONDITIONAL BYTE
RBA
RBAM
RBX
RBXM

BLOCK
BU{

BOT

AUTOMATIC
AIN
AIN (Under Interrupts)
AOT
AOT (Under Interrupts)
AlB
AlB (Under Interrupts)
AOB
AOB (unde:- Interrupts)

7.2 + m
10.4 + m
7.2 + m

10.4 + m
7.2 +m
7.2 + m
7.2 +m

7.2 + m
8.8 + m
7.2 +m
8.8 + m

10.4 + m
12.0 + m
10.4 + m
12.0 + m

11.2 + 2m + (7.2 + m) w
11.2+ 2m + (7.2 + m) w

23.2 + 2m + 3m'
20.0 + 2m + 3m'
23.2 + 3m + 2m'
20.0 + 3m + 2m'
23.2 + 2m + 3m'
20.0 + 2m + 3m'
23.2 + 3m + 2m'
20.0 + 3m + 2m'

F-7

F.4 LSI-2 EXECUTION TIME ALGORITHMS

The LSI-2 execution time algorithms are listed in table F-3. The algorithms are parti­
tioned by class and subclass as in table F-2.

The Memory Reference instruction address calculation times precede the instruction
execution algorithms. Note that four different sets of address calculations are provided.
The list of Memory Reference instructions have algorithms which list A , • A 2 • A 3 ,

or A 4. The appropriate address calculation variable should be used as indicated.

The Stack instruction address calculation times precede the Stack instruction execution
algorithms. Note that three different sets of address calculations are provided. The
list of Stack instructions have algorithms which list S 1 • S 2 • or S 3 • The appropriate
address calculation variable should be used as indicated.

All Memories may be interleaved to achieve higher transfer rates. Core 1600 and
Se1200 may be interleaved 100 percent to achieve twice the data transfer rate of a
single memory module. Core 1200 and Core 980 may be interleaved to achieve a
maximum transfer rate of 171 and 163 percent. respectively, of a single memory
module. _ Interleaving is always effective for DMA operation.

Overlapping is effective for LSI-2 as indicated by the execution time equations. Terms
of the form nlRO or m/WO mean that the larger of the two times indicated are to be used.
When overlapping is achieved by alternate memory accesses in different memory modules.
the overhead times are masked and the effective RO and WO become zero except for Core
980 and Core 1200 which have an overhead time even when interleaved.

As in table F-2. numerous instructions have several times listed to deilne variations
of an instruction. The symbols i. n. and W are described in paragraph F . 3 .

F-8

I

COMPUTER AUTOMATION,INC. ~

Table F-3. LSI-2 Execution Time Algorithms

PROCESSOR

MODE ADDRESSING MODE

direct scratchpad
direct relative forward
direct relative backward

WORD direct indexed
indirect scratchpad
indirect relative forward
indirect relative backward
indirect relative indexed

direct scratchpad
direct relative
direct indexed

BYTE indirect scratchpad
indirect relative forward
indirect relative backward

I indirect indexed

-r-

PROCESSOR
MODE ADDRESSING MODE

direct scratchpad
direct relative forward
direct relative backward

WORD direct indexed
indirect scratchpad
indirect relative forward
indirect relative backward
indirect relative indexed

direct scratchpad
direct relative
direct indexed

BYTE indirect scratchpad
indirect relative forward
indirect relative backward
indirect indexed

MEMORY REFERENCE CLASS

--

A

RA -+ 700/RO
RA + 700/RO
RA + 850/RO
RA + 700/RO
2RA + 700/RO + 400/
2RA + 700/RO + 400/
2RA + 700/RO + 400/
2RA + 700/RO + 700/

RA + 1000/RO
RA + 700/RO
RA + lOOO/RO
2RA + 700/RO + 700/
2RA + 700/RO + 700/
2RA + 700/RO + 700/
2RA + 700/RO + 900/

RO + (RA + 400/RO) (i-l)
RO + (RA + 400/RO) (i-l)
RO + (RA + 400/RO) (i-I)

RO + (RA + 400/RO) (i-1)

RO + (RA + 400/RO) (i-1)
RO + (RA + 400/RO) (i-I)
RO + (RA + 400/RO) (i-1)
RO + (RA + 400/RO) (i-1)

A3

RA + IOOO/RO
RA + 1000/RO
RA + 1150/RO
RA + 100O/RO
2RA + 700/RO + 700/RO + (RA + 400/RO) (i-I)
2RA + 700/RO + 700/RO + (RA + 400/RO) (i-I)
2RA + 700/RO + 700/RO + (RA + 400/RO) (i-I)
2RA + 700 .RO + 1200/RO + (RA + 400/RO) (i-I)

RA + 1300/RO
RA + IOOO/RO
RA + I300/RO
2RA + 700/RO + IOOO/RO + (RA + 400/RO) (i-I)
2RA + 700/RO + IOOO/RO + (RA + 400/RO) (i-I)
2RA + 700/RO + 1000/RO + (RA + 400/RO) (i-I)
2RA + 700/RO + 1200/RO + (RA + 400/RO) (i-I)

A1 is used with ADD. SUB. AND. lOR, XOR. EMA. LDA. LDX. CMS and IMS.

A2 is used with STA, STX and JST.

A3 is used by JMP only.

A4 is used by SCM only.

ARITHMETIC
ADD
SUB

RA + 800/RO
RA + 800/RO
RA + 950/RO
RA + 800/RO
2RA + 700/RO + 500/RO + (RA + 400/RO) (i-1)
2RA + 700/RO + 500/RO + (RA + 400/RO) (i-1)
2RA + 700/RO + SOO/RO + (RA + 400/KO) (i-1)

2RA + 700/RO + 800/RP + (RA + 4GO/RO) (i-l)

RA + llOO/RO
RA + 800/RO
RA + llOO/RO
2RA + 700/RO + 800/RO + (RA -+ 400/RO) (i-l)
2RA + 700/RO + 800/RO + (RA + 400/RO) (i-l)
2RA + 700/RO + 800/RO + (RA + 400/RO) (i--])
2RA + 700/RO + IOOO/RO + (RA + 400/RO) (i-l)

A4
---- ---------

RA + 1300/RO
RA + 1300/RO
RA + 1450/RO
RA + 1300/RO
2RA + 700/RO + lOOO/RO + (RA + 400/RO) (i-I)
2RA + 700/RO + IOOO/RO + (RA + 400/RO) (i-I)
2RA + 700/RO + IOOO/RO + (RA + 400/RO) (i-l)
2RA + 700/RO + 1500/RO + (RA + 400/RO) (i-I)

RA + 1600/RO
RA + 1300/RO
RA + 1600/RO
2RA + 700/RO + 1300/RO + (RA + 400/RO) (i-I)
2RA + 700/RO + 1300/RO + (RA + 400/RO) (i-I)
2RA + 700/RO + 1300/RO + (RA + 400/RO) (i-I)
2RA + 700/RO + 1500/RO + (RA + 400/RO) (i-I)

A, + RA + (400/RO)

LOGICAL
AND

lOR

XOR

F-9

COMPUTER AUTOMATION. INC. ~

Table F-3. LSI-2 Execution Time Algorithms (Cont'd)

DATA TRANSFER
LDA
LDX
STA
STX

"EMA

PROGRAM TRANSFER
JMP
JST (Non-Interrupt)
JST (Interrupt)
IMS

A, + RA + 400/RO
A, + RA + 400/RO
A2 + WA + 250/RO
A2 + WA + 250/RO
A, + RA + 500/RO* + WA + 550/WO

A3
A2 + WA + 550/WO
A2 + WA + 700/WO
A, + RA + (500/RO)* + WA

+ 700/RO ; 0 in line no skip
or + 1450/RO = 0 in line skip
or + 850/RO ; 0 interrupt no echo"
or + 1600/RO = 0 interrupt echo

SCM
CMS

A4 + RA + 550/RO + (RA + lS00/RO) (w-1)
A, + RA

.::JVD

lVIPY

NRM

+ 550/RO for A < Y
or + 850/RO for A = Y
or +1150/RO for A > Y

DOUBLE WORD MEMORY REFERENCE CLASS

2RA + 1000/RO + (RA + 400/RO) i
+ (2950 + 450n)/RO

2RA + 1000/RO + (RA + 400/RO) i
+ (3100** + 60On)/RO

2RA + 1000/RO + (RA + 400/RO) i
+ (1400 + 60On)/RO + WA + l750/WO

STACK CLASS

ADDRESSING MODE 5, S2 S3

direct access 3RA + 2(400/RO) + 550/RO S, + 100 S, + 300

indexed access 3RA + 2 (400/RO) + 850/RO 8, + 100 S, + 300

auto-postincrement 3RA + 2 (400/RO) + 500/RO· S, + 100 S, ... 300
Qr auto-predecrement + WA +"400/WO

*not effected by interleave

SI is used with ADDS. SUBS, ANDS, 10RS. XORS, EMAS, LDAS, LDXS,
CMSS and IMSS.

S2 is used with STAS, STXS, and JSTS.
Sa is used by JMPS and SLAS.

F-10

ARITHMETIC
ADDS
SUBS

LOGICAL
ANDS
10RS
XORS

DATA TRANSFER
LDAS
LDXS
STAS
STXS
EMAS

PROGRAM TRANSFER
JMPS
JSTS
IMSS

CMSS

STACK CONTROL
SLAS

COMPUTER AUTOMATION. INC. f3]1

SI + RA + 400/RO

81 + RA + 400/RO
SI + RA + 400/RO
S2 + WA + 250/RO
82 + WA + 250/RO
5, + RA + 500/RO* + WA + 5S0/WO

S3
S2 + WA + 550/WO
SI + RA + 500/RO* + WA

+ 700/RO f.: 0 in line, no skip
or + 1450/RO = 0 in line, skip
or + 850/RO f.: 0 interrupt, no echo
or + 160WRO = interrupt, echo
81 + RA

+ 550/RO A < Y
or+ 850/RO A = Y
or + 1150/RO A> Y

BYTE IMMEDIATE CLASS

AAI
AX!
SAl
SXI CAl}
CX!
LAP
LXP
LAM
LXM

* Not Affected By Interleave
** +300 for Negative Multiplier

RA + 1000/RO
RA + 700/RO
RA + 1000/110
RA + 700/RO

{
RA + 1000/RO skip
RA + 850/RO no skip
RA + 700/RO
RA + 700/RO
RA + 700/RO
RA + 700/RO

F-ll

COMPUTER AUTOMATION. INC. f3!
Table F-3. LSI-2 Execution Time Algorithms (Cont'd)

MICROCODED
JOC

ARITHMETIC
JAG
JAL
JAM
JAP
JAZ
JXN
JXZ

CONTROL
JOR
JOS
JSR
JSS

ARITHMETIC SHIFTS
ALA
ALX
ARA
ARX

LOGICAL SHIFTS
LLA
LLX
LRA
LRX

ROTATE SHIFTS

RLA
RLX
RRA
RRX

CONDITIONAL JUMP CLASS

RA + 700/RO = No Jump

RA + 1000/RO = Jump

SHIFT CLASS

RA + 1150 +. 15On/RO

F-12
/

Table F-3. LSI-2 Execution Time Algorithms (Cont'd)

DOUBLE REGISTER LOGICAL SHIFTS
LLL
LLR

DOUBLE REGISTER ROTATE SHIFTS
LRL
LRR

RA + 2350 + 15On/RO

REGISTER CHANGE CLASS

A REGISTER CHANGE
ZAR
ARP
ARM
CAR
NAR
JAR
DAR

X REGISTER CHANGE
ZXR
XRP
XRM
CXR
NXR
IXR
DXR

OVERFLOW REGISTER CHANGE
SOV
ROV
COV
SAO
SXO
LAO
LXO
BAO
BXO

RA + l000/RO

RA + lOOO/ftO

} RA + 8S0/ftO

} RA + 1300 + 15On/RO
n is number of bits away from 0 to 15

F-13

COMPVl£R AUTOMATION, IN<o ~
Table F-3. LSI-2 Execution Time Algorithms (Cont'd)

REGISTER CHANGE CLASS (Cont'd)

MULTI-REGISTER CHANGE
ZAX
AXP
AXM
TAX
TXA
EAX
ANA
ANX
NRA
NRX
CAX
eXA
NAX
NXA
lAX
lXA
IPX
DAX
DXA
BCA
BCX
BSA
BSX
EIX

CONSOLE REGISTER
leA
lex
ISA
ISX
~CA

OCX

PROCESSOR CONTROLS
HLT (STOP)
NOP

MODE CONTROLS
SBM
SWM

}

}
}

RA + l300/RO
RA + l300/RO
RA + l300/RO
RA + lOOO/RO
RA + lOOO/RO
RA + l300/RO
RA + lOOO/RO
RA +olOOO/RO
RA + lOOOo/RO
RA + IOOO/RO
RA 0+ lOOO/RO
RA + IOOO/RO
RA + l300/RO
RA + l300/RO
RA + lOOO/RO
RA + lQOO/RO
RA + lOOO/RO
RA + IOOO/RO
RA + lOOO/RO

} RA + 1300/RO

RA + 500/RO + normal time of instruction
executed

RA + 1600/RO

CONTROL.CLASS

oRA + 1150/RO

RA + IOOO/RO

F-14

COWUlER AUTOMATION,INC. ~

Table F-3. LSI-2 Execution Time Algorithms (Cont'd)

STATUS CONTROLS
SIA
SIX
SIN
SOA
SOX

INTERRUPT CONTROLS
CID
CIE

. DIN
EIN
PFE
PFE
TRP

CONTROL
SEN

SEA
SEL
SEX
SSN

UNCONDITIONAL WORD
INA
INAM
INX
INXM
OTA
OTX
OTZ

CONDITIONAL WORD
RDA
RDAM
RDX
RDXM
WRA
WRX
WRZ

UNCONDITIONAL BYTE
IBA
IBAM
IBX
IBXM

} RA + l600/RO

} RA + l600/RO

} RA + 850/RO

} RA + l600/RO

INPUT /OUTPUT CLASS

>

}

RA + 1550/RO no skip
RA + 1900/RO skip
RA + l600/RO
RA + l600/RO
RA + l600/RO
RA + 1900/RO no skip
RA + l700/RO skip

RA + 1600/RO

RA + 2050/RO successful

RA + 2000/RO unsuccessful repeat period

RA + l600/RO

F 15

~ AUTOMATION. INC. §g
Table F-3. LSI-2 Execution Time Algorithms (Cont'd)

CONDITIONAL BYTE
RBA
RBAM
RBX
RBXM H RA + 2050/RO successful

. RA + 2000/RO unsuccessful repeat period

SLOCK
BIN

BOT

2RA + 400/RO + 1550/ll0 + WA + 8S0/WO
+ (WA + 2000/WO) (W-I)

3KA + 2 (400/RO) + 1300/RO +
+ (RA + 2050/RO) (W-l)

NOTE
Time given assuming device sense response is present. U not present.
BIN and BOT retest tor ready every 850 ns.

AUTOMATIC
AIN/AIB

Am/AOD

• Not Affecteel By Interleave
•• (1050/WO) if WC = 0

3RA + 3WA + 400/RO + 8001RO
+ SaG/RO. + 550/WO + 1700/WO

+ 5S0/WO it iDline.
or + 4001.0 it interrupt

4RA + 2WA + 400/RO + 800/RO
+ SOOIRO. + 2(55O/W0)

+ 1150/ll0 mu-.
or + leCMr/110 if tmerrupt

F-16

F.5 ALPHA LSI FAMILY INSTRUCTION EXECUTION TIMES

The execution times of the ALPHA LSI instruction set 1s1i&ted in table F-7. The
Memory Reference instruction address calculation times for the LSI-l and LSI-2
are Hsted in tables F-4 and F-5. respectively. The LSI-2 Stack Instruction Address
calculation times are listed in table F-S.

F.6 MAXIMUM I/O TRANSFER RATES

The maximum I/O transfer rates for the LSI-l and LSI- 2 computers are listed in
table F-8.

Table F-4. LSI-I Memory Reference Instruction Address Calculation Times

DIRECT SCRATCHPAD
DIRECT BELA TIVE
DIRECT INDEXED
INDIRECT SCRATCHPAD
INDIRECT RELATIVE
INDIRECT INDEXED

F-17

2.2
2.2
3.8
3.81
I •• + 3.81
1.6 + 3.81

COMPUTER AUTOMATION. INC f3!:1
Table F-5. L81-2 Memory Reference Instruction Address Calculation Times

MEMORY
TYPE

COR) 1600

CORE 1200

CORE 980

SC1200

,RQCJi;SSOR ADDRESSING Al A2 A3
MODE MODE

direct scratchpad 1.6 1.6 1.6
direct relative forward 1.6 1.6].6
direct relative backward 1.6 1.6 1.6

WORD direct indexed 1.6 1.6 1.6
indirect scratchpad 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-l) 3.2 + 1. 6 (i-1)
indirect relative forward 3.2 + 1.6 (i-I) 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1)
indirect relative backward 3.2 + 1.6 (i-1) 3.2 + 1.6 (1-1) 3.2 + 1.6 (i-1)
indirect indexed 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1)

direct scratchpad 1.6 1.6 1. 75
direct relative 1.6 1.6 1.6
di:rect indexed 1.6 1.6 1. 75

BYTE indirect scratchpad 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-:-l) 3.2 + 1.6 (i-I)
indirect relative forward 3.2 + 1.6 (i-I) 3.2 + 1.6 (i-I) 3.2 + 1.6 (i-1)
indirect relative backward 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1)
indirect indexed 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1)

direct scratchpad 1.2 1.2 1.4
direct relative forward 1.2 1.2 1.4
direct relative backward 1.25 1.35 1.55

WORD direct indexed 1.2 1.2 1.4
indirect scratchpad 2.4 + 1.2 (i-I) 2.4 + 1.2 (i-I) 2.4+1.2 (i-1)
indirect relative forward 2.4 + 1.2 (i-I) 2.4 + 1. 2 (i-1) 2.4 + 1.2 (i-1)
indirect relative backward 2.4 + 1.2 (i-1) 2.4 + 1. 2 (i-1) 2.4 + 1. 2 (i-1)
indirect indexed 2.4 + 1.2 (i-I) 2.4 + 1.2 (i-1) 2.6 + 1.2 (i-1)

direct scratchpad 1.4 1.5 1.7
direct relative 1.2 1.2 1.4
direct indexed 1.4 1.5 1.7

BYTE indirect scratchpad 2 .4 + 1. 2 (i-1) 2.4+ 1.2 (i-1) 2.6 + 1. 2 (1-1)

indirect relative forward 2.4 + 1.2 (i-I) 2.4+ 1.2 (i-1) 2.6 + 1. 2 (i-1)
indirect relative backward 2.4 + 1.2 (i-I) 2 . 4 + 1. 2 (i-1) 2.6 + 1.2 (i-1)
indIrect indexed 2.5 + 1.2 (i-1) 2.6+ 1.2 (i-I) 2.8 + 1.2 (i-I)

direct scratchpad 1.08 1.18 1.38
direct relative forward 1.08 1.18 1.38
direct relative backward 1.23 1.33 1.53
direct indexed 1.08 1.18 1.38

WORD indirect scratchpad 2.06 + .98 (i-1) 2.06 + .98 (i-1) 2.16 + .98 (i'-O
indirect relative forward 2.06 + .98 (i-I) 2.06 + .98 (i-I) 2.16 + .98 (i-I)
indirect relative backward 2.06 + .98 (i-I) 2.06 + .98 (i-1) 2.16 + .98 (i-1)
indirect indexed 2.16 + .98 (i-1) 2.26 + .98 (i-I) 2.46 + .98 (i-1)

direct scratchpad 1.38 1.48 1.68
direct relative 1.08 1.18 1.38
direct indexed 1.38 1.48 1.68

BYTE indirect 8cratchpad 2.16 + .98 (i-1) 2.26 + .98 (i-I) 2.46 + .98 (i-I)
indirect relative forward 2.16 + .98 (i-1) 2.26 + .98 (i-1) 2 . 46 + . 98 (i-1)

indirect relative backward 2.16 + .98 (i-I) 2.26 + .98 (i-I) 2.46 + .98 (i-1)
indirect indexed 2 . 36 + .98 (i-1) 2 . 46 + . 98 (i-1) 2.66 + .98 (i-I)

direct 8cratchpad 1.2 1.3 1.5
direct relative forward 1.2 1.3 1.5
direct relative backward 1.35 1.45 1.65
direct indexed 1.2 1.3 1.5

WORD indirect scratchpad 2.4 + 1.2 (i-I) 2.4 + 1.2 (i-1) 2.4- + 1. 2 (i -1)
indirect relative forward 2.4 + 1.2 (i-I) 2.4 + 1.2 (i-1) 2 .. 4 + 1. 2 (i-1)
indirect relative backward 2.4 + 1.2 (i-1) 2.4 + 1. 2 (i-1) 2.4 + 1.2 (i-I)
indirect indexed 2.4 + 1.2 (i-1) 2.5 + 1.2 (i-1) 2.7+1.2 (i-l0

direct scratchpad 1.5 1.6 1.8
direct relative 1.2 1.3 1.5
direct indexed 1.5 1.& 1.8 .

BYTE indirect 8cratchpad 2.4 + 1.2 (i-1) 2.5 + 1.2 (i-1) 2.7 + 1.2 (i-1)
indirect relative forward 2.4 + 1.2 (i-I) 2.5 + 1. 2 (i-1) 2.7 + 1.2 (i-1)
indirect relative backward 2.4 + 1. 2 (i-I) 2.5+ 1.2 (i-1) 2.7 + 1.2 (i-I)

indirect indexed 2.6 + 1.2 (i-I) 2.7 + 1.2 (i-1) 2.9 + 1.2 (i-1)

A1 i8 used with ADD. SUB. AND. lOR. XOR. EMA. LDA. LDX. CMS and IMS .

A2 is used with ST A. STX and JST .

A3 is used by JMP QIlly.

A4 is used by SCM only.
F-18

A4

1. 75
1. 75
1.9
1. 75
3.2 + 1. 6 (i-1)
3.2 + 1.6 (i-1)
3.2 + 1. 6 (i-I)
3.35 + 1.6 (i-1)

2.05
1. 75
2.05
3.35 + 1.6 (i-1)
3.35 + 1. 6 (i-1)
3.35 + 1.6 (i-1)
3.55 + 1.6 (i-1)

1.7
1.7
1.85
1.7
2.6 + 1. 2 (i-1)
2.6 + 1.2 (i-1)
2.6 + 1.2 (i-1)
2.9 + 1.2 (i-I)

2.0
1.7
2.0
2.9 + 1. 2 (1-1)
2.9 + 1.2 (1-1)
2.9 + 1.2 (i-I)
3.1 + 1.2 (i-1)

1.68
1.68
1.83
1.68
2.46 + .98 (i-1)
2.46 + .98 (i-1)
2.46 + .98 (i-I)
2.76 + .98 (i-1)

1. 98
1.68
1.98
2.76 + .98 (i-l)
2.76 + .98 (i-I)
2.76 + .98 (i-1)
2.96 + .98 (i-I)

1.8
1.8
1.95
1.8
2.7+1.2(1-1)
2.7 + 1.2 (i-1)
2.7 + 1.2 (i-1)
3.0 + 1.2 (i-I)

2.1
1.8
2.1
3.0 + 1. 2 (i-1)
3.0 + 1.2 (i-I)
3.0 + 1.2 (1-1)
3.2 + 1.2 (i-1)

COIiIPU11:R AUTOMATION. INC. ~

Table F- 6. Stack Instruction Address Cnlculation Times

MEMORY ADDRESSING
TYPE MODE 81 82 83

direct access 4.8 4.9 5.1
CORE indexed access 4.8 4.9 5.1
1600 auto-postincrement 6.4 6.5 6.7

or auto-prcdccrement

direct access '3.6 3.7 3.9
CORE indexed access 3.65 3.75 3.95
1200 au to-postincrem cnt 4.8 4.9 5.1

or auto-predecrelnent

direct access 2.94 3.04 3.24
CORE indexed access 3.19 3.29 3.49
980 auto-postincrement 3.92 4.02 4.22

or auto-predecrement

direct access 3.6 3.7 3.9
SC indexed access 3.75 3.85 4.05
1200 auto-postincrement 4.8 4.9 5.1

or auto-predecrement

Sl is used with ADDS, SUBS, ANDS, IORS, XORS, EMAS, LDAS, LDXS, DMSS
and IMSS.

S2 is used with ST AS, STX8, and JSTS.

S3 is used by Jl\'IPS and SLAS .

F-19

Table F-7. ALPHA LSI Family Instruction Execution Times

LSI-l LSI-2
C1600

MNEMONIC C1200
C980 C1600 C1200 C980 SC1200
5C1200

MEMORY REFERENCE

Arithmetic
ADD A + 7
ADDB
SUB A+7
SUBB

Logic.
AND A+7
ANDB
lOR A+7 Al + 1.6 Al + 1.2 Ai + 0.98 Ai + 1.2
IORB
XOR A + 7
XORB

Data Transfer
"'%j LDA A + 5.4
I

N LDAB
<:> LDX A + 5.4

LDXB

-}
8 STA A + 5.2

STAB ~

STX A + 5.2 A2+ 1.6 A2+ 1.2 A2+ 0.98 A2+ 1.2 C!
STXB

-4
1ft
:10

EMA A+9 Ai + 3.2 Ai + 2.4 Al + 1.96 Ai + 2.4 ! EMAB Al + 3.2 Al + 2.4 Ai + 1.96 Al + 2.4 a
Program Trll)sfer ~

eMS A + 13.4 Al+ 1.6 Al + (1.2 or 1.55) Al + (0.98 or 1.53) Al + (1. 2 or 1.65) ~
CMS·B Al + 1.6 Al + (1.2 or 1.55) Al + (0.:98 or 1. 53) Ai + (1.2 or 1.·65) 0

~
IMSN A + 10.6 Al + (3.0 or 3.3) Al + (2.2 or 2.85) Al + (1.86 or 2.61) At + (2.Ior 2.85) Z
IMSI Al + (3.0 or 3.45) Al + (2.25 or 3.0) Al + (2. 01 or 2.76) Al + (2.25 or 3.0) !"'
JMP A + 4.8 A3 A3 Aa A3
JSTN A + 8.4 A2 + 1.6 A2+ 1.2 A2 + 0.98 A2 + 1.2

rm
JSTI A + 6.8 A2 + 1.6 A2+ 1.2 A2 + 0.98 A2+ 1.2
SCM A + 13.4 A4 + (1.6 + 2.05W) A4+ (1.2 + 2.0W) A4 + (0.98 + 1.98W) A.+ (1.2 + 2.1W)

.SCMB A4 + (1.6 + 2.05W) A4 + (1.2 + 2.0W) A4 + (.098 + 1. 9SW) A4+ (1.2 + 2.1W)

DOUBLE WORD MEMORY REFERENCE

.DVD 3.8i + 120.2 13.35 12.74 12.44 12.9
MPY 3.8i + 112.2 15.75 15.1 14.84 15.3

mtM~ 3.8i + 19.8 + 9.6n 7.05 + .6n 6.35 + .6n 6.07 + .6n 6.55 + .6n

N:1Uf2 3.8i + 23 + 9.6n

Table F-7. ALPHA LSI Family Instruction Set Execution Times

MNEMONIC

Arithmetic
ADDS
SUBS

Logic
ANDS
IORS
XORS

Data Transfer
·LDAS

LDXS
STAS
STXS
ElVIAS

C1600

S1 + 1.6

S + 1.6

s + 3.2

Program Transfer
CM5S Sl + 1.6
Il\i S S Sl + (3. 0 0 r 3. 3)
JlVIPS S3
JSTS S2<+ 1.6

Stack Control
SLAS

LSI-2
C1200

STACK

51 + 1.2

s + 1.2

S + 2.4

Sl + (1.2 or 1.55)
Sl' + (2.2 or 2.85)
S3
S2 + 1.2

e980

Sl + 0.98

S + 0.98

s + 1.96

81 + (0.98 or 1.53)
Sl + (1.86 or 2.61)
8 3

S2 + 0.98

SC1200

s, + 1.2

s + 1.2

s + 2.4

81 + (1.2 or 1.65)
S 1 + (2. 1 or 2.85)
S3
52 + 1.2

! MNEMONIC

AAI
AX)

SAl
SXI
CAl
CXl
LAP
LXP
LAM
LXII

Microcoded
JOCI
JOC2

Aritbmetic
JAG
JAP
JAZ
JAM
Jfd.
.JAIl

"XI
DR

CoDtrol
JOR
JOS
JSR
JIS

SiDale Register

Arithmetic Sbifta

LSI-l
CllOO
cnoo
C980
SCl200

5.4
5.4
5.4
5 ••
7 .,
5.4
5.4
5.4
1.4

15
7

.,
7
7 .,
7
7
7
7

7
7
7
7

ALA }
:: S.I+ 1. ..

Table F-7.

...

>

.J

ALPHA LSI Family Instruction Execution Times (Co~t'd)

LSI-2

Cl600 C120e C980 SC1200

BYTE DOIBDIATB

1.1 1.4 1.38 1.5
1.1 1.2 1.08 1.2
1.1 1.4 1.38 1.5
1.t 1.2 LOS . 1.2
1.1 1.2501' 1.4· 1.23 or 1.38 1.35 or 1.5
1.' 1.2501' 1.4 1.23 or 1.38 1.3501'1.5
1.. 1.2 1.08 1.2
1.' I .• 1.0. 1.2

1.' 1.2 1.08 1.2
1.' 1.2 1.08 1.2

COMDmoMAL .JUIIP

1.. 1.201'1.4 1.08 or 1.38 1.2 or 1.5 I
i
B
~

SHIF'l'

1.6 + .15n 1.55 + .15n 1.53 + .15n 1.65 + .15n

Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd)

LSI-I LSI-2
C1600

MNEMONIC C1200
C980 C1600 C1200 C980 SC1200
SC1200

SHIFTS (Cont'd)

Logical Shifts
LLA
LLX
LRA
LRX

3.8+ 1.6n 1.6 + .15n 1.55 + .15n 1.53 + .15n 1.65 + .15n
Rotate Shifts

RLA
RLX
RRA
RRX

Double Register

'"Ij
Logical

} \ LLL
N LLR 3.8+3.2n 2.8+.15n 2.75 + .1Sn 2.73+.1Sn 2.85 + .15n .,.,..,

LRL
LRR

8
REGISTER CHANGE i:

C!
-t

Accumulator
m
;a

ARM !
ARP 0 CAR i:
DAR ~
IAR (5
NAR !Z
ZAR Z

5.4 1.6 1.4 1.38 1.5 ~
Index

ZXR

HY
XRP
XRM
CXR
NXR
IXR
DXR

Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd)

LSI-l LSI-2
C16UO

MNEMONIC C1200
C9BO C1600 C1200 Ct80 SC1200
SC1200

REGISTER CHANGE

Overflow
SOy } ROV 5.4 1.6 1.25 1.2l 1.35
COV
SAO } SXO 7 1. 75 1.7 1.68 1.8
LAO
LXO
BAO) 5.4 -+- 1.6n 1. 75 + 15n 1. 7 + 1.5n 1.68 + 15n 1.8 + 15n
BXO

Multi-Register
ZAX
AXP 7 1. 75 1.7 1.68 1.8
AXM
TAX 5.4 1.6 1.4 1.38 1.5

t:tj TXA 5.4 1.6 1.4 1.38 1.5
~ EAX 8.6 1. 75 1.7 1.68 1.8 t-.)
~ ANA 5.4

} ANX 5;4
NRA 7.0

I NRX 7.0 1.6 1.4 1.38 1.5
CAX 5.4
CXA 5.4
NAX 5.4 1. 75 1.7 1.68 1.8 ,.
NXA 5.4 1. 75 1.7 1.68 1.8 ! lAX

} IXA i IP~ 5.4 1.6 1.4 1.38 1.5
DAX ~
DXA

~ BCA) BCX 1. 75 1.7 1.68 1.8 Z BSA
!" BSX

EIX 1.6 1.2 0.98 1.2

~ Console Register
ICA

} ICX
ISA 6.2 2.05 2 I.t8 2.1

ISX

~
OCA
OCX

---------------------_ .. - ... ,,--_. __ .. _--
Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd)

LSI-l LSI-2
C1600

MNEMONIC C1200
C980 C1600 C1200 C980 SC1200
SC1200

REGISTER CHANGE (Cont'd)

IAH
IIH
IMH
IPH
IXH

Indefinite
OAH
OLH
OMH
OPH
OXH

CONTROL

Processor
NOP } HLT 5.4 1.6 1. 55 1. 53 1.65

~
STOP

I WAIT Indefinite Indefinite Indefinite Indefinite Indefinite
t,j

c:.n Mode Control
SBM 5.4 1.6 1.4 1.38 1.5

8 SWM 5.4 1.6 1.4 1.38 1.5

Status ~
SIA

} ;;1
SIN

6.2 2.05 2 1. 98 2.1
~

SIX ~ SOA

i SOX

Interrupts !:
EIN 5.4 1.6 1. 25 1. 23 1.35 ~ DIN 7 1.6 1. 25 1. 23 l. 35
CIE

} Z cm r'
PFE 6.2 2.05 2 1.98 2.1
PFD

lrJ TRP

INPUT jOUTPUT

Control
SEN 7.8 2 or 2.35 1. 95 or 2.3 1.93 or 2.28 2.05 or 2.4
SSN 7.8 2.150r2.35 2.1 or 2.3 2.08 or 2.28 2.2 or 2.4
SEL } SEA 6.2 2.05 2 1.98 2.1
SEX

Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd)
f

LSI-l LSI-t
C1600

MNEMONIC C1200
C980 Cl600 C1200 c-. SC1200
SC1200

I
INPUT /OUTPUT (Cont'.d) I

1

Unconditional Word .
INA 6.2
INAM 7.8
INX 6.2
INXM 7.8 > 2.05 2 1. •• 1.1
OTA } OTX 6.2
OTZ

~

~W~;dl .
RDA '1.8
ROAM 11
RDX 7.8
ROAM 11 > 2.45 or 2.5 2.4 or 2.45 2.38 or 2.43 2.5 or 2.55

to%j WRA } , wax 1.8
to.:) WU C7) .. .

Unconditional Byte

} I IBA 7.8
IBAM 9.4 2.05 2 1.98 2.1
IBX 7.8
IBXM 9.4

Conditonal Byte

}
!

RDA 11 i RBAM 12.6 2.45 ort.5 2.4 or 2.45 2.38 or 2.43 2.5 or 2.55
RBX 11

a RBXM 12.6

Block
BIN -12.4+7.6W 5 + 2.25W 4.2+2.2W 3.94 + 2.1_ 4.3 + 2.B ~
BOT 12.4 + 7.8W 4.95 + 2.5W 4.1 + 2.45W 3.64 + 2.4_ 4.2 + 2.55W

Automatic ~ AlB 25.6 } AIBI 22.4 9.95 1.9 6.98 8
AIM 25.6
AIMI 22.4
AOB 25.8 10.2 8.15 7.23 '.35
AOBI 22.6 10.05 8 1.08 8.2
Aar 25.8 10.2 8.15 '1.23 '.35

AOTI 22.6 10.05 8 f.08 8.2
..

COMPUTER AUTOMATION. INC. ~

Table F-8. ALPHA LSI Family Maximum Data Transfer Rates

I/O MODE

DMA (Non Interleaved)

DMA (Interleaved)

Block In

Block Out

Programmed In (Cond) Word
Byte

Programmed Out (Cond) Word
Byte

Programmed In (Memory)

Programmed Out (Memory)

DMCIn

DMC Out

w Is :: words per seconds
b/s = bytes per seconds
w/b/s:: words or bytes per seconds

LSI-1
C1600
C1200
CII80 Cl800
SC1200

same as LSI-2 625,000 w/.

same as LSI - 2 1,25~OO w/s

131,579 w/s 444,444 w/s

131,579 w/s 400,000 w/s

34,247 w/s 112,369 w/s
34,247b/s 112,369 b/s •
34,247 w/s 112.994 w/s
34,247 bls 112,994 b/s

24.631 w/b/s 71.942 w/b/s

24,631 w/b/s 72,727 w/b/s

26,738 w/b/s 63,091 w/b/s

26,738 w/b/s 62,111 w/b/e

F-27

LSI-2

Cl200 C9110 SC1200

833,333 w/. 1,020,000 w /s 833,333 w/s

1,409,000 w/s 1,686,666 w/s 1,666,666 w/s

454,545 w/s 458,711 w/s 454,545 w /s

408,163 w Is 411,522 w/s 392,156 w/s

130,718 w/s 136.040 wls 124,223 w/s
125,896 bls 130,718 b/s 119,760 bls

131,578 w/s 135.135 w/s 126,582 w/s
126,582 b/s 129,870 b/s 122,222 b/s

85,106 w/b/s 92.678 w/b/s 82,987 w/b/s

82,440 w/b/s 90.570 wlbls 80,645 wlbls

74,627 w/bls 82,101 w/b/s 73,529 w/b/s

73,260 w/b/s 81,768 wible 71,684 w Ibis

-

COMPUTER AUTOMATION. INC. ~

Appendix G

SOFTWARE SUMMARY

G.1 INTRODUCTION

This appendix contains short usage summaries of the standard system support
software offered by Computer Automation. Inc.

Table G-l. Assembler Directives

ABS
Asterisk (*)
BAC
CALL
DATA
END
ENDC
ENT
EQU
EXTR
IFF
1FT
MACH
NAM
,ORG
Period (.)
REF
REL
RES
RTN
SAVE
SET
STOP
TEXT
TITL
Up Arrow (t)
WAIT

Define Absolute Assembly
Comment Line
Byte Address Constant
Subroutine Call
Data Definition (: Hex, 0 Octal, 'ASCn'. Address)
End of Assembly
End of Conditional Assembly
Subroutine Entry
Equate Symbol
External Reference - Scratchpad
Conditional Assembly if False
Conditional Assembly if True
Set Machine Assembly Mode
External Name Def"mition
Define Origin
Page Eject without Title
External Reference - Pointer
Define Relocatable Assembly
Reserve Storage
Subr.outine'Return
Save 'Presently Existing Symbol Table
Set Symbol Redefinable
Stop
'ASCII Message'
Page Eject with Title
Pause
Wait for Interrupt

0-1

G.2 BOOTSTRAP

To Enter:

Set P =: nFF8
Set WRITE mode
Enter Data}
Depress M Once per word

To Display:

Loc

:nFF8
:nFF9
:nFFA
:nFFB
:nFFC
:nFFD
:nFFE
:nFFF

Set P= :nFF8
Set READ mode
Depress M (Once per word)

TTY HSPT

403B 4033
7939 7931
1357 1357
7939 7931
9COO 9COO
0128 0128
3145 3145
0800 0800

G.3 SOFTWARE OPERATION SUMMARY

G. 3.1 Autoload

RESET

COMPUTER AUTOMATION. INC. ~

Enter option control value in Console Sense Register:

To relocate (Load Rei). set X = load address
For Load and Go. set SENSE Switch
Ready Device
AUTO

G-2

G. 3.4 Object Loader (LAMBDA)

lmld LAMBDA
G. 3.2 Binary Loader (BLD) Set P = first location of LAMBDA

Set A = Relocation Bias or zero
wad BLD Set X = Base Page Bias or zero
Set P = first location of BLD Enter option control value in Console Sense register:
To relocate. set X = load address; enter : 8 into Sense register
Ready tape in reader (TTY or HSPT)
RUN

G.3.3 Binary Dump/Verify (BDP/VER)

wad BDP/VER
Set P = first location of BDP /VER
Set A = Initial location
Set X = Last location
Enter option control value in Console Sense register:

~ Include EOF Suppress EOF
Mode TTY HSPT TTY H8PT

Punch Abs : 0 : I : 2 :3
ReI : 8 : 9 :A :8

Verify Abs :4 : 5 :6 : 7
ReI :C :D :E :F

Defined and

~IS Undefined
wad Mode TTY LP
Library : 0 : 1
Unconditional :8 :9

Ready tape in reader (TTY or HSPT)
RUN

G.3.5 BETA-4 Assembler

Load BETA-4
Set P = : 0100
RUN

Defined Undefined
Only Only

TTYILP TTY LP
:2 I : 3 : 4 :5
:A I:B :C :D

Enter option control m/mber in Console Sense Register:

Listing
Device TTY Line Printer

Punch Complete Error Complete Error
Device Listinsr: Only Listinsr Only

TTY :0 : 1 :2 :3
HSP :4 :5 :6 :--r
To repeat Pass 2. add : 6 I

Neither

: 6
:E

To nag out-of-range memory reference insqouctions. set SENSE switch.
Ready source in reader (TTY or HSPT) .

For transfer address. set SENSE switch
RUN
If Halt a = : 0802). set A = transfer address. RUN

G-3

RUN

G.3.6 BETA-8 Assembler

IDad BETA-8
Set P =: 0100
RUN

Select Options

~ Enter 81=
B BATCH
L Error
X Jhoror
0 Punch EOF
1 Keyboard
2 TTY
3 H8PT
4 Card Rdr.
5 Card Rdr.

LO= BO= 8D= PI:
Error Error Error Error
Error I.Jbrarv Error Error
Error Only N/A Error Error
No Llstinsr: NoBinarv No Save 1
TTY TTY MemorY 1
D.P. Error Unit 0 2
Cent. HS Unit I 1
Cent. TTY Unit 2 1
Cent. TTY Unit 3 1

G-4

...:..

COMPUTfR AUTOMATION. INC, ~

G. 3.7 OMEGA Conversational Assembler

Load OMEGA
Set P = : 0100
RUN

Command Summary (0 = space):

> AF . Add keyboard lines to buffer after last line.
> An. Add keyboard lines to buffer after line n.

>B.

>CInLnOn.
>CIO.

>DF.
>Dn.
>Dntm.

:>Eh.

>1.

:>LF.
>Ln.
>LnC:m.

>PLT0UIF.
:>PLtnC:m.
:>Ptn'im.
> PT (lnC!m •

>Qn.
>Rn.

>Sn.
>Sntm.

>T.
>Tn.

>XA.
>XE.
>XA2. or XE2.
>XLA. or XLE'.

Device Selection

Input: (I)

0= none
1 = Teletype Keyboard

Clear the buffer.

Connect devices.
Punch EOF.

Delete the last buffer line.
Delete buffer line n.
Delete buffer lines n through m .

Set end of buffer to h (hexadecimal) and intialize OMEGA.

Initialize OMEGA.

List the last buffer line.
List buffer line n.
List buffer lines n through m .

Punch the buffer with leader and trailer.
Punch buffer lines n through m with leader.
Punch buffer lines n through m .
Punch buffer lines n through m with trailer.

Set ADD function terminator character to n.,

Read source to line n and add to buffer.

Read source to line n-l, add to buffer, and skip line n.
Read source to line n-l, add to buffer and skip lines n
through m.

Reset tape line count to zero.
Reset tape line count to n.

Assemble.
Assemble with ERROR only listing.
Assemble starting with Pass 2.
S,uppress EOF for current assembly.

Object: (0) List: (L)

o = none 0 = none
1 = Teletype Paper Tape 1 = Teletype

2 = Teletype Paper Tape 2 = Error 2 = Data Products Printer
3 = High Speed Paper Tape 3 = Centronics Printer 3 = High Speed Paper Tape

4 = Card Reader
5 = Memory (assemble) G-5

COMPUTER AUTOMATION. INC. ~

G . 3 . 8 Source Tape Preparation Program

Load STP
Set P = first location of STP
RUN

Command Summary (@= space):

> AF.
> An.

> B.

> CTT.
> CRT.
> CRP.
> CTP.

> DF.
> On.
> DnOn.

> Eh.

>1.

> LF.
> Ln.
> LnOn.

> PLTel ..
> PL61On.
> POlC:m.
> PT61tm.

> Qn.

> Rn.

> Sn.
> SnOn.

> T.
> Tn.

Add keyboard lines to buffer after last line.
Add keyboard lines to buffer after line n.

Clear the buffer.

Connect teletype reader and teletype punch.
Connect high speed reader and teletype punch.
Connect high speed reader and high speed punch.
Connect teletype reader and high speed punch.

Delete the last buffer line.
Delete buffer line n.
Delete buffer lines n through m.

Set end of buffer to h (hexadecimal).

Initialize STP (clear buffer and set T to zero).

List the last buffer line ..
List buffer line n.
List buffer lines n through m.

Punch the buffer with leader and trailer.
Punch buffer lines n through m with leader.
Punch buffer lines n through m.
Punch buffer lines n through m with trailer.

Set ADD function termination character to n.

Read tape to line n and add to buffer.

Read tape to line 'n-l, add to buffer. and skip line n.
Read tape to line n-l, ,add to buffer. and skip lines n
through m.

Reset tape line count to zero.
Reset tape line count to n.

G-6

COWUTER AUTOMATION. INC. B!
G.3.9 Debug (DBG)

Debug is a 'binary relocatable' program and, as such, may be loaded any place in
memory. Transferring to the first location in Debug (enter start location of Debug
into the P register and depress RUN) will initialize Debug to accept any of the Debug
commands summarized below.

Command Summary (@ = space):

>A.
>Av.

>Ba.
>Ba,b.
> Batb.
>Baft>,c.

>Catb@c.

>Fatbttv.

"'>Ia.

>Ja.

>Latb.

>Ma.

>0.
>Ov.

> Patb.

>Rn.
> Rnv.

> Sa@:)tw.
> Sa@)fWOn.

>T.
>Tn.

>X.
>Xv.

Display pseudo A register;
Set pseudo A register to value v.

Continue breakpoint to location a.
Continue breakpoint to location (a or b) .
Breakpoint from location a to b.
Breakpoint from location a to location (b or c).

Copy locations a through b at c and following.

Fill locations a through b with value v.

Inspect location a.

Jump to location a.

List contents of locations a through b.

Modify memory starting at location a.

Display pseudo 0 register.
Set pseudo 0 register to value v.

Print locations a through b.

Display relocation register Rn.
Set relocation register Rn to value v.

Search locations a through b for value v.
Search for value v using mask word m.

Enable console interrupt (TRAP).
Enable console interrupt and enable interrupts

Display pseudo X register.
Set pseudo X register to value v.

G-7

G.3.10 Concordance (CONe)

Load CONC
Set P = : xlOO zero
RUN

Select Options:

SI=

R Repeat listing
B BATCH
1 Keyboard
2 TTY
3 HSR
4 CR
5 Unit 0
6 Unit 1
7 Unit 2
8 Unit 3

LO=

L List
1 TTY
2 D.P.
3 Cent.

G-8

COMPUTER AUTOMATION. INC. ~

G. 3 . 11 OS Command Summary (DOS. MTOS and COS)

COMMAND

1. lAS sign

2. I BAtch

3. I BEgin

4. I CAncel

5. I COmment

6.

7..

I DAte
*date

I EXec

8. IJOb
*date. time .

9. I LOad

10. I LIst
*date. time
*lu pu

U. INJob

RESPONSE

unit=device [. unit=device ... J
device

address [parameters ...]

[mm/dd/YY]

program-name [. parameters ... J

program-name

*JOB/NJOB time, current time

12. I REsume
~ime

(parameters .. .J

13. ISTatus

14v

15.

*program-name. base page limits, memory limits. flag. time
P register. A register. X register. CPU Status

ITIme
~ime

[hh:mm: ss J

/TYpe

0-9

~
ComputerAutomation

Naked Mini~ Division
18651 Von Karman, Irvine, Calif. 92664
Tel. 714-833-8830 TWX 910-595-1767

	0001
	0002
	0003
	0005
	0007
	0009
	0011
	0013
	0015
	0017
	0019
	0021
	01-01
	01-03
	01-05
	01-07
	01-09
	01-11
	01-13
	01-15
	02-01
	02-03
	02-05
	02-07
	02-09
	02-11
	02-13
	02-14
	03-01
	03-03
	03-04
	03-06
	03-08
	03-10
	03-12
	04-01
	04-03
	04-05
	04-07
	04-09
	04-11
	04-13
	04-15
	04-17
	04-19
	04-21
	04-23
	04-25
	04-27
	04-29
	04-31
	04-33
	04-35
	04-37
	04-39
	04-41
	04-43
	04-45
	04-47
	04-53
	04-55
	05-01
	05-03
	05-05
	05-07
	05-09
	05-11
	05-13
	05-15
	06-01
	06-03
	06-04
	06-06
	06-08
	06-10
	06-12
	06-14
	06-16
	06-18
	06-19
	06-21
	06-23
	06-25
	06-27
	06-29
	06-31
	06-33
	07-01
	07-03
	07-05
	07-07
	08-01
	08-03
	08-05
	08-07
	08-09
	08-11
	08-13
	08-15
	08-17
	08-19
	08-21
	08-23
	08-25
	08-27
	08-28
	08-29
	09-01
	09-03
	09-05
	09-07
	09-09
	09-11
	09-13
	09-15
	09-17
	09-19
	09-21
	09-23
	09-25
	09-27
	09-29
	09-31
	10-01
	10-03
	10-05
	10-07
	10-09
	10-11
	10-13
	11-01
	11-03
	11-04
	11-06
	11-08
	12-01
	12-03
	12-04
	12-05
	12-06
	A-01
	A-03
	B-01
	B-03
	C-01
	C-03
	C-05
	C-07
	C-09
	D-01
	D-03
	D-05
	D-07
	D-09
	D-11
	D-13
	D-15
	D-17
	D-19
	D-21
	E-01
	E-03
	E-05
	E-07
	E-09
	E-11
	E-13
	F-01
	F-03
	F-05
	F-07
	F-09
	F-10
	F-12
	F-14
	F-16
	F-18
	F-19
	F-20
	F-21
	F-22
	F-23
	F-24
	F-25
	F-26
	F-27
	G-01
	G-03
	G-05
	G-07
	G-09
	xBack

