COMPUTER AUTOMATION, INC.

COMPUTER AUTOMATION, INC.

ALPHA-16

BASIC REFERENCE MANUAL

Revised 15 May 1973

Copyright 1973, Computer Automation, Inc.

96500-01C0

TABLE OF CONTENTS

Section
Section 1 GENERAL INFORMATION
1.1 INTRODUCTION . .ottt it iii ittt ittt e iantnernnnannennns
1.1.1 Standard Features......... .ottt tenerenennnnn
1.1.2 Extended Features...........ciiiiiiiiiiiiiiniinennennnnns
1.1.3 Special Features.iiuiiiiiiiienerenteneeneeenennnennens
Section 2 OPERATING ENVIRONMENT
2.1 INTRODUCTION . ot v ittt ittt i iiesaneetinanassosaonnonns
2.2 OPERATING MODES . . ottt ittt ittt it tintieeeanaannoannns
2.3 LINE EDITING. ..ottt ittt ittt ittt tanotonnsessnacasanns
2.4 PROGRAM EDITINGttt iiiiitt ittt ennnaneenassosnnans
Section 3 ELEMENTS OF THE LANGUAGE
3.1 INTRODUCTION . .ttt ittt i iiiiein it enstnsncnnenennsnas
3.2 CONST AN T S . ottt ittt it eitettetnteensenessassnesnnsns
3.3 VARIABLESt iiiiiieiiiiiiinnnnns et
3.4 FUNCTION REFERENCE.......... et
3.5 OPERAT ORS . .. ittt ittt ittreesesteteaeesossoennnnnnaes
3.6 EXPRESSIONS........covvut e et e
3.7 EXPRESSION EVALUATIONttt ittt ineeeaeeeennn.
Section 4 BASIC STATEMENTS

4.1 INTRODUCTION . ..ttt iiineinentineneeesneneensnacnnnnns
4.2 BASIC-1 STATEMENT S . ..ottt ittt e i
4.2.1 READ Statement (Executable)...................
4.2.2 DATA Statement (Non-Executable).........................
4.2.3 RESTORE Statement (Executable).................... 0.,

iii

COMPUTER AUTOMATION, INC.

Page

Section

O ~3I O G

11
.12
.13
.14
.15
.16

L S L ol T S S)
DO BN DD B BN DN BN NN NN
[

(=]

W ~I O U bW N

L 0 W Lo W GO Lo GO GO Lo GO o Lo Lo LD Lo Lo Lo W W W W W
% 1o RO RO PO DO PO PO DD M e e e
=

.-Il\
COMPUTER AUTOMATION, INC. = -

TABLE OF CONTENTS (Cont'd)

Page
INPUT Statement (Executable), 4-4
PRINT Statement (Executable)ciiiiinnnn.. 4-4
LET Statement (Executable)ciiiiiii .. 4-6
GOTO Statement (Executable)ciiiviiiiinan.. 4-7
GOSUB and RETURN Statements (Executable).............. 4-17
FOR and NEXT Statements (Executable)................... 4-8
IF Statement (Executable)......... .ottt 4-9
ON Statement (Executable)c.ooviiiiinriirnennnens 4-10
STOP Statement (Executable)civiiiiiviiinnrenns 4-10
DIM Statement (Non-Executable).......... ..., 4-11
DEF Statement (Non-Executable) 4-11
REM Statement (Non-Executable) v, 4-12
END Statement (Executable) 4-12
BASIC-2 and BASIC-3 STATEMENT Sttt ennnn. 4-13
Matrix Statements. . ..ciiiiiiiiiiieirerrerrerereerennnnns 4-13
Matrix Replacement.............oiiiiiiiiiiiiiiin... 4-13
Matrix Addition............ et e et e 4-14
Matrix Subtraction.ttt ianeenenns 4-14
Matrix Multiplication.........cviiiiiniiriennernenenans 4-14
Scalar Multiplication...........ciiiiiiitnrirnnenennns 4-15
Matrix Transposition......... Lttt 4-15
Matrix INVersSion. . voviiiiterrrnreeeneroeeeneseennnnes 4-15
A=Y o T - & 4-15
Identity Matrix............oovuvunn et 4-16
Constant Matrix...ovuuiininie ittt nnennneenas 4-16
Print Matrix......... Cree ittt Crhter e e 4-16
Read MatriX....oviiiint ittt ieennenoennenennneenns 4-16
String Operations.......covviiiiiiiiiiiiiiiieineinernnenns 4-17
String Assignment Statement................. 4-18
String Relations.coiiiiiiiiiiniiiiiiniinnenena, 4-19
LEN Function......oovviieenevennnns et et 4-19
Strings in PRINT Statements..............cocvviinnnnn 4-19
Strings in DATA Statements........................... 4-19
Strings in READ Statements...............co0iiuvnnnn, 4-19
Strings in INPUT Statements...........c.covviiiienen.. 4-20
CALL Statement (Executable)...... ettt .
Section 5 BASIC COMMANDS
INTRODUCTION . . .ttt ittt tnenenerenennneneenesnoeoneennnnas 5-1
LIST COMMAND . .« ittt ittt i tete e nennsonononeneenseeoseas 5-1

iv

Section

5.3

5.5

0 00 00 00 00 00 0O O
I o

LW W W WD DD

DO e

[\

TABLE OF CONTENTS (Cont'd)

PUNCH COMMAND .ttt it iviitnenitnncnnesnnnernnneennnns

CLEAR COMMAND . . ottt ittt ittt ittt e snniennnnn.

FUNCTIONS . .ot i i et i ittt n e eannns

Section 8 OPERATING PROCEDURES

INTRODUCTION . .ttt ittt it ite ettt tenntennenennns
BASIC-1 Operating Procedure............coiiiiiennnn...
BASIC-2 Operating Procedure...........c.covviviunnnn...

BASIC-2 Absolute Binary Tape (96501-40).............
BASIC-2 Object TapesS. vt vttt ernttonneesesosnoneennns
BASIC-3 Operating Procedure..........coovitiiinnennnn..
BASIC-3 Absolute Binary Tape (96502-40)............
BASIC-3 0bject TapesS. . vuvvtinnrerineenernnrnnnnnnns
Table of User Numbers, Device Addresses and Interrupt
Locations Used in BASIC-3............. Ceeesaeaans e
Limitations on User Machine Language Subroutines Using

2 O P

Appendix A MACHINE LANGUAGE SUBROUTINES

INTRODUCTION . ..ttt ittt ittt ittt taannanannsens

q A
COMPUTER AUTOMATION, INC. = -

Page

5-1

6-1

7-1

7-1

|

ooooooolooooooooo
W W W DN = p e e

?
en

b

1.1.2 Extended Features

Extended features only available in the BASIC-2 and BASIC-3 Systems include:

1.

String Operations - This feature enables a user to perform operations on ASCII
character strings in many of the ways that numeric constants can be manipulated.
For example, one string can be substituted for another, two strings can be con-
catenated, or strings can be compared.

Matrix Operations - This feature permits a user to perform mathematical operations
on vectors and matrices.

The CALL Statement - This feature enables a user to call and pass parameters to
ALPHA-16 assembly language programs.

(BASIC-3 only) Multiple User Capability - This feature permits up to nine users,
on individual terminals, to run BASIC programs simultaneously.

1.1.3 Special Features

Special features are incorporated in all versions of the ALPHA-16 BASIC System for user
convenience, which are not commonly found in other BASIC System implementations.
Among these are:

1.

n dimensional arrays - The ability to define arrays with more than two dimensions.

Multiple Assignments - The ability to assign a value to two or more variables with-
in a single LET statement.

DIM and DEF Statement Relaxation - DIM or DEF statements may appear anywhere
within a program, and need not precede an array or function reference.

1-2

COMPUTER AUTOMATION, INC. = —_—

j A
COMPUTER AUTOMATION, INC. = -

Section 2

OPERATING ENVIRONMENT

2.1 INTRODUCTION

The ALPHA-16 BASIC System as presented here is an on-line program for use from

an ASR-33 Teletype Keyboard. (BASIC-3 will also run using a CRT as an I/0O terminal).
It can operate in either a 4K or 8K single-user configuration. BASIC-1 will operate

in a 4K environment; BASIC-2 and BASIC-3 require 8K of memory.

The remainder of this section describes the operating modes of the system, and the
user-terminal-system interface.

2.2 OPERATING MODES

After the BASIC System has been loaded into the ALPHA-16's memory, it enters the
"command mode". In this mode the system will execute user functions immediately
on entry. In the "command mode" the user may:

1. Perform program editing functions as described in Section 2.4,
2. Introduce BASIC commands (see Section 5), or
3. Request the immediate execution of one of the following BASIC statements:

PRINT
LET
GOTO

The above statements are distinguished by lack of their line number. Without a line
number, the statement is executed when the RETURN key is typed at the end of a line.
The result of the computation is stored for subsequent use, but the statement by which
the result was obtained is discarded. This method of operation is commonly referred
to as a "desk calculator" mode.

In the "command mode" the system will always prompt the user by typing an asterisk
(*) character. When the prompt character appears on a user terminal, this signals
that the system is ready to accept one line of input from that terminal.

The system will remain in the "command mode" until a user explicitly directs the system
to enter the "execution mode". This is accomplished by typing either a GOTO statement
for immediate execution or a RUN command.

The "execution mode" is the mode in which previously entered programs are executed.
Once the system enters the "execution mode" it will remain in this mode until one of
the following events occurs:

A STOP or END statement is executed
An error is detected
A user initiates a program interrupt by use of:

1. The Console Interrupt (AUTO) switch (BASIC-1 and BASIC-2)

2. The teletype or CRT "Break" key (BASIC-3)

Whenever the system detects any of the above conditions it will return to the "command
"mode" .

2.3 LINE EDITING

User input to the system is on the basis of one line at a time, where a line may consist
of a maximum of 72 characters and is terminated by a RETURN character. Since a
CRT or TTY keyboard is generally used for input, typing errors may occur. If the
user would like the system to ignore all of what he has typed on the current line

so that he can start the line afresh, he can terminate the line with a line-feed character
rather than the usual carriage-return.

If he would merely like to retype the immediately preceding n characters, leaving the
beginning of the line intact, he can type n left arrow (-——) characters followed by
the corrected characters. For example, if the following sequence of characters is typed
*¥1004 A PRUNA X++==INTA X, Y, A=~)~ (1)
it is equivalent to:

*¥100 A A PRINT A X,Y (1)

where A designates a blank character.

2.4 PROGRAM EDITING

The BASIC System manages a work area in the computer memory in which the user's
BASIC program is maintained. Program editing directives are used for entering

a BASIC program into the work area and modifying a program that has previously been
entered.

2-2

ﬂ A
COMPUTER AUTOMATION, INC. = - —

ﬂ
COMPUTER AUTOMATION, INC. = -

A program editing directive is one of the following formats: a line number (onc

to four digits) followed by a BASIC statement, a line number only, or two linc
numbers separated by a comma. The first format is a request to insert a ncw
statement or to replace an existing statement in the user's program. Replacement

is done if the supplied line number matches one already existing in the user's program;
ctherwise, the new statement is inserted in ascending statement number order

in the user's program. It is in this way that the user can build up a new program

in his work area by repeatedly entering program editing directives with different
line numbers. A program editing directive of the second or third format is a request
to delete a single existing statement (second format) or a range of existing statements
(third format) from the current program.

Thus, at any time when the System has prompted the user with an asterisk (*),
the user has the ability to add to, delete from, or otherwise modify his program
as it currently stands in his work area by entering a program cditing directivec.
Such modifications are always made on a line-by-line basis.

*500 REM LINE 1
*400 REM LINE 2
*450 REM LINE 3

the contents of the work area after entry of the third line would be:
400 REM LINE 2

450 REM LINE 3

500 REM LINE 1

If the user made the entry

*500 REM NEW LINE 1

the contents of the work area would be:

400 REM LINE 2

450 REM LINE 3
500 REM NEW LINE 1

2-3

ﬂ
COMPUTER AUTOMATION, INC. = oy

Section 3

ELEMENTS OF THE LANGUAGE

3.1 INTRODUCTION

A BASIC program consists of one or more BASIC lines. A BASIC line consists of
a line number followed by a BASIC statement, and terminated by a non-printing
carriage return character. A line number consists of from one to four decimal digits
in the range from 1 to 9999, and is used to establish the order of the lines in a pro-
gram. BASIC statements are executed in the ascending order of their line numbers
beginning with the lowest numbered executable statement and proceeding through
successively higher numbered executable statements except where specifically
directed otherwise by control statements such as GOTO, IF, or GOSUB. When
writing a BASIC program, it is advisable to number BASIC lines by fives or tens to
allow for the possible later insertion of new lines.

A BASIC statement is made up of a sequence of keywords, operands, and operators.

A keyword is a sequence of letters having special significance to the system. In the
statement definitions in Section 4, they are shown in capital letters. Examples of key-
words are PRINT, INPUT, and LET.

An operand is a variable, a constant, or a function reference. During execution of a
BASIC program an operand has a value which is a positive or negative real number
whose magnitude is either zero or in the approximate range 2.71 x 10720 t0 9.23 x
108 | This provides more than six decimal digits of accuracy.

Space characters may be freely used anywhere in a BASIC line to improve the appear-
ance and readability of the BASIC program.

3.2 CONSTANTS

A constant is an item whose value is always defined during execution of a program.
Constants may be expressed as integers, decimal numbers, or in exponential format,
i.e., a decimal number times some power of ten. A constant consists of a sequence
of digits possibly containing a decimal point (.), and possibly followed by a decimal
exponent consisting of the letter E, an optional sign, and one or two digits, in that
order. The following are examples of constants:

7 Integer
325 Integer
2.6 Decimal number
3.14 Decimal number
.000314E+4 Decimal number in exponential format
314E-02 Decimal number in exponential format

A
COMPUTER AUTOMATION, INC. :A

3.3 VARIABLES -

A variable is an item, represented by a symbol, that may be assigned a value.
A simple variable is either a letter or a letter followed by a digit. A subscripted
variable is a letter followed by one or more expressions enclosed in parentheses;
if multiple expressions are used, they are separated by commas. For example:

A Simple variable
B2 Simple variable
X(3) Subscripted variable
E (A*3) Subscripted variable
J(Y2,I+5) Subscripted variable

3.4 FUNCTION REFERENCE

A function reference consists of a three letter function name followed by a paren-
thesized list of arguments. If there is more than one argument they are separated
by commas. The number of arguments supplied in a function reference must agree
with the number of arguments supplied in the function definition. Reference to a
function produces a value which in general is dependent on (i.e., a function of)
the current values of the arguments. The system supports both user-defined and
system-defined functions as described in Section 6.

3.5 OPERATORS

An operator is a symbol used in forming an expression. There are two types of
operators as listed below:

ARITHMETIC OPERATORS

Symbol - Example Meaning
+ A+B Addition
- A-B Subtraction
* A*B Multiplication
/ A/B Division
'\ A}B Exponentiation

3-2

q A
COMPUTER AUTOMATION, INC. = -

RELATIONAL OPERATORS

Symbol Example Meaning

< A<B A less than B

> A>B A greater than B

<= A<=B A less than or equal to B
>= A>=B A greater than or equal

to B

= A=B A equal to B
<> A<>B A not equal to B

Operators are said to operate on operands; more precisely, they operate on the
current values of the operands.

3.6 EXPRESSIONS

An expression is a sequence of operands and operators, possibly grouped by
parentheses. An operand standing by itself is an expression, and if E and F
are expressions and @ is any operator, then E @ F, (E), +E, and -E are also
expressions.

3.7 EXPRESSION EVALUATION

Within an unparenthesized expression the order of evaluation is:

® Exponentiation

® Multiplication and division
® Addition and subtraction
® Relationals

Within a sequence of consecutive operators of the same type, evaluation is from
left to right.

Parentheses may be used to override this basic rule for order of evaluation.
Parenthesized portions of expressions are evaluated first. Nested parenthesized
groups are evaluated beginning with the inner-most grouping, working outward.

All expression evaluation is done in standard floating-point form as defined above.
When a pair of operands is operated on by a relational operator, the result is
either one or zero depending on whether the relation is true or false, respectively.

ﬂ
COMPUTER AUTOMATION, INC. = -

The following table shows examples of expressions and the values that would result
from their evaluation. It is assumed that the operands X, Y, and Z have the value
4, 3.14, and -2.7, respectively.

Exgression Value
X 4

Z+17 4.3
-2 -2
SGN (Z) -1

INT (Y+ABS (Z+1)) 4

X No*z+y -40.06
x A o* z+Y) 7.04
X<Y<Z 0

Note that relational operators are not restricted to use in IF statements. For
example, the statement

LET X = 5*¥(¥Y>0) + 4*¥<=0)

may be used to substitute for a sequence of several statements.

3-4

ﬂ
COMPUTER AUTOMATION, INC. = -

Section 4

BASIC STATEMENTS

4.1 INTRODUCTION

This section defines the general form and operation of the BASIC statements.
Section 4.2 defines those statements included in both the BASIC-1 and BASIC-2

Systems, whereas Section 4.3 defines the statements that are only applicable to
BASIC-2 Systems.

In the following presentation of the general form of each BASIC statement, the
following conventions apply:

1. Elements in capital letters, such as LET, THEN, and GOSUB, are required
and must appear exactly as shown,

2. Elements in lower-case are supplied by the user.
LET variable = expression

3. Square brackets surrounding an element of the language indicate that the
element is optional and may be included or omitted at the user's option.

INPUT variable [,variable]
4. A right square bracket followed by an ellipsis (...), indicates that the
enclosed element may be omitted or repeated an arbitrary number of

times.

DATA constant [, constant]

4.2 BASIC-1 STATEMENTS

The BASIC-1 language consists of 18 statements. There are two classes of
statements: Executable and non-executable.

Non-executable statements are used to specify data items and functions to be
used in a program, or to include comments concerning the purpose or operation
of a program. The non-executable statements include:

DATA - used to introduce a constant, or a series of constants, into a program.

DIM - used to reserve storage space for arrays.

DEF - used to specify user-defined functions.

4-1

REM - used to include program descriptive remarks.

Executable statements control the input and output of data, the evaluation of
mathematical formulas, and the control of the program flow. Executable state-
ments include:

READ - used to select constants from DATA statements and assign their values
to the variables supplied in READ statements.

INPUT - used to accept data from the input device.

PRINT - used to output formatted data to the output device.
RESTORE - used to permit DATA statement constants to be re-used.
LET - used to assign a value to a variable.

GOTO - used fo branch to a specified statement.

GOSUB - used to call a subroutine.

RETURN - used to return from a subroutine.

FOR - NEXT - used in combination to define a program loop.

IF - THEN - used for conditional branching.

ON - used to conditionally select the next statement for execution based on
the evaluation of an expression.

STOP - used to return the system to the command mode.

END - used to signify the end of program execution.

4.2.1 READ Statement (Executable)

The READ statement is used in conjunction with DATA statements to permit the
assignment of constants to variables as a program is executed. The general
form of the READ statement is:

READ variable [, variable]
For each variable in the list the next constant is obtained from the consolidated

DATA statement list, it is converted to internal floating-point form, and the
resulting value is assigned to the variable.

4-2

ﬂ
COMPUTER AUTOMATION. INC. = - —_—

ﬂ A
COMPUTER AUTOMATION, INC. = -

4.2.2 DATA Statement (Non-Executable)

The DATA statement is used to introduce a constant, or a series of constants,
into a program. The general form of the DATA statement is:

DATA signed constant [,signed constant]

DATA statements establish a sequence of values to be accessed by the READ state-
ments in the program. There may be any number of DATA statements in a program,
each containing any number of constants (within the constraints imposed by the
length of a BASIC line). When the last constant in a DATA statement has been
accessed by a READ statement, the next constant accessed by the same or a differ-
ent READ statement will be the first constant in the next DATA statement.

10 DATA 1, -2, 1.25

20 READ A, B, C, D, E

30 DATA 50

40 READ F, G

50 READ H

60 DATA 20.0E3, 0.155E-10, 252
70 END

In the preceding example, the READ statement at line 20 will assign the values 1,
-2, 1.25, 50, and 20,000 to the variables A, B, C, D, and E. The READ state-
ment at line 40 will assign the values 0.155 E-10 and 252 to the variables F and

G. The READ statement at line 50 attempts to access a value after the last constant
in the last DATA statement has been used. The BASIC System will then return an
error message, terminate program execution, and return to the command mode.

4.2.3 RESTORE Statement (Executable)

The RESTORE statement permits the re-use of DATA statement constants. The
general form of the RESTORE statement is:

RESTORE

Execution of this statement causes the series of constants defined by the DATA
statements of the program to be re-used. That is, the first value obtained by
the logically next READ statement will be derived from the first constant in the
physically first DATA statement in the program.

A
COMPUTER AUTOMATION, INC. "l

Example:

10 DATA . 0,1
20 READ A,B
30 PRINT A,B

40 RESTORE
50 READ E,F
60 END

The variables E and F will be assigned the values 0 and 1,
respectively.

4.2.4 INPUT Statement (Executable)

The INPUT statement is used to enter data from the input device while a program
is running. The general form of the INPUT statement is:

INPUT variable [variable]

When an INPUT statement is executed, the system prints a prompt character '?' at
the user's terminal to indicate that it is ready to accept a line of data. The user
then may type in one or more constants formatted exactly the same as specified
for the DATA statement (but without the keyword DATA), followed by a carriage-
return character. The system then converts the constants into internal floating-
point form and assigns the resulting values in order to the variables listed in the
INPUT statement. If the user supplies fewer constants than there are variables,
the system prints another prompt character and waits for another line of data. If
the user supplies more constants than there are variables in the INPUT statement,
the extra constants are ignored.

Example:

INPUT X1, X2, L(1), L(2), L(3)

4.2.5 PRINT Statement (Executable)

The PRINT statement is used to output formatted data on the output device. The
general form of the PRINT statement is:

PRINT [print element]
If there is no list following the keywbrd PRINT, a line is skipped on the user's

terminal. If there is a list, the items in it are formatted as described below and
printed on one or more lines on the user's terminal.

4-4

ﬂ
COMPUTER AUTOMATION, INC. : - [

Each print item consists of a print element followed by a print separator.

A print element is either an expression, a text message, or a TAB function.

A text message is a series of characters enclosed in quotation marks. (f

it is desired to use the quotation mark as one of the characters, a consecutive
pair of quotation marks should be used so as to distinguish it from the termin-
ating quotation mark. The system will recognize a pair of quotation marks
and interpret it internally as a single quotation msrk.) A TAB function is

of the form

TAB (expression)
It may only be used as a print item in a PRINT statement.

A print separator is either a comma (,) or a semicolon (;).

Each expression or text message in the list is translated into a field in a

print line. The first field of the first PRINT statement starts at column position
0, (print positions are numbered from 0 through 71). The beginning position
of subsequent fields depends on the previous print separator, which may have
been in the previous PRINT statement. If the separator was a comma, the

field begins in the next available zone. Zones begin at column positions

0, 15, 30, 45, and 60. If the separator was a semicolon, the field begins

at the next position following the end of the previous field. However, if

the print item is a TAB function, it overrides the effect of the following separator
and the truncated value of the expression becomes the beginning column position
of the next field. If the TAB value is greater than 71, the next field begins at
column position zero of the next line.

If the starting column position of a field is such that it cannot be completely
contained on the current line, it is printed beginning in column zero of the
next line.

The translation of a text message into a field in the print line is straightforward;
the character string is used verbatim except for the replacement of double
quotation marks by a single quotation mark.
The translation of an expression into a field in the print line is more complex.
The expression is evaluated. Then, if the resulting value is an integer of
a magnitude less than 10° , the following characters are placed in the field
from left to right:

e a minus sign (-) if the value is negative, or a space otherwise.

® one to six decimal digits representing the value of the expression.

e two spaces

q A
COMPUTER AUTOMATION, INC. = -

If the value is not an integer but its magnitude is greater than or equal to 0.1
and less than 106 , its output format is the same as for an integer but with a
decimal point inserted at the appropriate point within the string of decimal digits.

For other values the following sequence of characters is placed in the print line

from left to right:

a minus sign if the value is negative, or a space otherwise.
the most significant decimal digit of the value.
a decimal point(.).

the next five decimal digits of the decimally scaled value of the
expression.

the letter E.

a plus (+) or minus (-) sign depending on the sign of the
decimal exponent.

two decimal digits representing the value of the decimal exponent.
two spaces.
Examples:

10 LET X = 10.52
15 PRINT "X = "; X; TAB (14), X*1000, -X/1000

The preceding statements would cause the following printing
to be done:

XA = AA 10.52 AAAAA 10520AAAAAAAANA -1.052E-02

The deltas (A) represent space characters.

4.2.6 LET Statement (Executable)

The LET statement is used to assign a value to a variable. The general form of

the LET statement

is:

LET variable = [variable=] ...expression

4-6

A

COMPUTER AUTOMATION, INC. =—

The expression on the right is evaluated and the resulting value becomes the
current value for each of the variables appearing to the left of an equals sign.

Examples:

10 LET X=4+Z1

20 LET A(1)=A(2)=0
30 LET W=X=Y+Z

40 LET W=X+Y=Z

Note that in line 30 the second equals sign acts as a replacement (assignment)
operator, whereas in line 40 the second equals sign acts as a relational operator.

Expressions appearing as subscripts are evaluated before any value replacements
are done. For example, if the current value of J is 4, the assignment statement

LET X({J-1)=J=3

will replace the value of X(3), not X(2).

4.2.7 GOTO Statement (Executable)

The GOTO statement is used to unconditionally alter the sequence of statement
execution. The general form of the GOTO statement is:

GOTO line number

When control reaches a GOTO statement during the execution of the user's pro-
gram, control is unconditionally transferred to the statement having that line
number.

Example:

10 INPUT X

20 PRINT EXP (X)
30 GOTO 10

40 END

Execution of this program converts the user's terminal into a device which auto-
matically types out the value of eX each time a value (X) is typed in.

4.2.8 GOSUB and RETURN Statements (Executable)

The GOSUB and RETURN statements give the BASIC language a subroutine caps-
bility. The general form of the GOSUB and RETURN statements is:

GOSUB line number

RETURN

A
-

COMPUTER AUTOMATION, INC. :

Execution of a GOSUB statement transfers control to the specified line number.
Execution of a RETURN statement sends control to the first executable statement
following the most recently executed GOSUB statement for which a RETURN has not
yet been executed.

Example:

10 LET X=5
20 GOSUB 60
30 LET X=7
40 GOSUB 60
50 STOP

60 LET A =X
70 LET I=I+1
80 RETURN

Subroutines may also be nested; i.e., subroutines may contain calls to other sub-
routines. Such nesting can be carried to any level. The following example

illustrates subroutine nesting with a shared RETURN statement.

20 GOSUB 30

25 STOP
30 LET X=5
31 LET Y=7

32 GOSUB 40
33 LET X=X 2
34 LET Y=Y 2
35 GOSUB 40
36 LET X=X*5
37 LET Y=Y*9
40 PRINT X,Y
45 RETURN

4.2.9 FOR and NEXT Statements (Executable)

The FOR and NEXT statements are used to specify the beginning and ending points
of program loops. The general form of the FOR and NEXT statements is:

FOR simple variable=expression TO expression STEP expression
NEXT simple variable
The FOR statement in conjunction with the NEXT statement provides the user with a
convenient mechanism for defining program loops in which a simple variable varies

linearly as the loop proceeds. The association between FOR and NEXT statements is
established by the identifier of the simple variable. FOR and NEXT statements must

ﬂ A
COMPUTER AUTOMATION, INC. = -

be paired within a program, and the set of statements through which control
passes between them is called the range of the FOR statement. Referring to
the first, second, and third expressions in the FOR statement as X, Y, and
Z, respectively, X is the first initial value of the simple variable for the first
execution of the range. Z specifies the value to be added to the current value
of the simple variable each time control reaches the associated NEXT statement.
If Z is missing from the FOR statement a value of +1 is used. If Z is specified,
it must be preceded by the keyword STEP. Then if the quantity (Y-X)/Z is
not less than zero, control is passed to the first executable statement following
the FOR statement; otherwise, control passes to the first executable statement
following the NEXT statement. The values used are the ones obtained when
the FOR statement is first encountered. The range of the FOR statement is

always executed at least once even if the quantity (Y-X)/Z is less than zero
to start with.

The following is an example of nested FOR statements:

10 DIM A (20,20), B(20,10), C(10,20)
20 FOR I = 1 to 20

30 FOR J = 1 to 20

40 LET Ad,3)=0

50 FOR K = 1to 10

60 LET AdI,J)=Ad,J)+BI,K)*C(K,d)
70 NEXT K

80 NEXT J

90 NEXT I

100 END

4.2.10 IF Statement (Executable)

The IF statement is used to provide a conditional program branch. The general
form of the IF statement is:

IF expression THEN line number

When an IF statement is executed, the expression is evaluated and interpreted
as a logical value. If the value is false, control is transferred to the next exe-
cutable statement. If the value is true, control is transferred to the statement
having the specified line number. A value of zero is false; any non-zero value
is true.

The expression usually takes the form E@F, where @ is one of the relational
operators, and E and F are expressions.

ﬁ A
COMPUTER AUTOMATION, INC. = -

10 INPUT X

15 IF X <=0 THEN 30

20 PRINT LOG (X)

25 GOTO 10

30 PRINT "POSITIVE VALUES REQUIRED"
35 GOTO 10

40 END

4.2.11 ON Statement (Executable)

The ON statement is used as a conditional GOTO statement to alter the sequence
of statement execution. The general form of the ON statement is:

ON expression GOTO line number [,line number]

When an ON statement is executed, the expression is evaluated and the result is
truncated to an integer. The integer is then used as an index to select one of
the line numbers in the list. Control is transferred to the statement having the
selected line number. If the integer is less than one or greater than the number
of line numbers specified, control passes to the statement after the ON statement.

The ON statement gives the user a multi-directional switch capability.

2 INPUT X

4 ON SGN (X)+2 GOTO 6, 10, 14
6 PRINT "IMAGINARY"

8 GOTO 2

10 PRINT "UNDEFINED"

12 GOTO 2

14 PRINT LOG (X)

16 GOTO 2

4.2.12 STOP Statement (Executable)

The STOP statement is used to terminate program execution. The general form
of the STOP statement is:

STOP

Upon encountering a STOP statement during the execution of a program, execution
ceases and the system reverts to the command mode of operation. (See Section 2).

4-10

ﬂ
COMPUTER AUTOMATION, INC. = - —

STOP statements can be used anywhere in a program to designate the logical
rather than the physical end of a program. STOP is useful in debugging pro-
grams, and in suspending program execution at critical points where a user
may wish to display intermediate results, and then alter program execution
depending on the displayed results.

4.2.13 DIM Statement (Non-Executable)

The DIM statement is used to reserve storage space for data arrays. The general
form of the DIM statement is:

DIM letter (constant [,constant] ...) ,letter (constant [,constant] o)

The DIM statement defines the name and dimensionality of arrays. Each "letter"
appearing in a DIM statement becomes the name of an array, so that a maximum
of 26 arrays may be declared in a program. The dimensionality of an array is
determined by the number of constants in parentheses following the name. Each
constant must be a positive integer, and the value of the constant defines the
largest value that a subscript expression in that position may have. The mini-
mum value that any subscript expression may have is zero. Every reference to
an element of the array must contain exactly as many subscript expressions as
there are constants in the declaration of the array. For example, the statement

DIM P(5), Q(8,6,4), R(2,2,2,2,3)
defines three arrays, containing 6, 315, and 324 elements, respectively. Q is
a 9x7x5 array, and references elsewhere in the program to elements of Q must
carry a parenthesized list of three subscript expressions. The reference

Q(0,0,0) refers to the first element of Q. P is a one-dimensional array (vector).

It is permissible for an array name to be the same as the name of a simple
variable.

DIM statements may appear anywhere in the program, and they are not required
to precede references to the arrays they define.

4.2.14 DEF Statement (Non-Executable)

The DEF statement enables the introduction of a user defined function. The general
form of the DEF statement is:

DEF FN letter(simple variable [,simple variable ...)=expression

4-11

ﬂ A
COMPUTER AUTOMATION, INC. : -

The DEF statement gives the user a convenient means of avoiding rewriting
expressions which occur frequently in his program and differ only in their
operands. The "FN letter" combination becomes the name of an explicitly
defined function which may then be used whenever a function reference is
permitted. Such a reference causes the evaluation of the names shown in the
definition. The 'letter' in the function name may be any of the 26 alphabetic
characters, thus giving the user a potential repertoire of 26 explicitly defined

functions. :

The DEF statement which defines a function name need not precede the reference.

It is permissible (although not necessarily desirable) for the argument names in
the definition to be the same as names used elsewhere in the program.

Example:

Using the recursive definition

Xm #1533 Xy tY/ X)

make three iterations starting with X, =1.
10 DEF FNQ(C)=(C+Y/C)/2

20 LET Y=4
30 LET X=FNQ (FNQ (FNQ(1)))

4.2.15 REM Statement (Non-Executable)

The REM is used to insert notes and comments in user programs. The general
form of the REM statement is:

REM arbitrary character string

REM statements have no effect on the execution of a program, however, they do
take up storage space.

4.2.16 END Statement (Executable)

The END statement is used to designate the physical end of a program. The
general form of the END statement is:

END

4-12

ﬂ A
COMPUTER AUTOMATION, INC. —

If control reaches an END statement during the course of executing a program,
execution ceases and the System reverts to the command mode of operation. (See
Section 1.) For purposes of compatibility with other BASIC Systems, every program
should have an END statement and it should be the last statement in the program.
However, neither of these requirements is present in the ALPHA-16 BASIC System.

An END statement is operationally equivalent to a STOP statement.

4.3 BASIC-2 and BASIC-3 STATEMENTS

The BASIC-2 and BASIC-3 Systems include all of the BASIC-1 statements defined in
Section 4.1, plus the statements defined below. This includes twelve matrix statements,
and provisions for accepting string operands in the LET, PRINT, DATA, READ, and
INPUT statements.

4,3.1 DMatrix Statements

A matrix is a two-dimensional array. That is, a letter that appears in a DIM statement
with two constants in the following parentheses. Twelve different matrix statements
are available in the BASIC-2 and BASIC-3 Systems. Each of these statements performs
a complete matrix operation, thus relieving the user of the necessity of writing the
usual FOR/NEXT loops that would otherwise be required.

None of the matrix operations refer to row or column zero of the matrix operands.
They all operate on the matrices beginning at row and column one.

The general form and the effect of executing each of the twelve matrix statements
is defined below. The reader is presumed to have a knowledge of matrices and
matrix operations.
4.3.1.1 Matrix Replacement
General Form:

MAT matrix=matrix
Effect:

Each element of the first matrix is assigned the current value of the corresponding
element of the second matrix. The two matrices must have the same dimensions.

4-13

A
COMPUTER AUTOMATION, INC. :.’-‘-

4.3.1.2 Matrix Addition
General Form:

MAT matrix=matrix+matrix
Effect:
Each element of the first matrix is assigned a value which is the sum of the corre-
sponding elements of the other two matrices. All three matrices must have the
same dimensions.
4.3.1.3 Matrix Subtraction
General Form:

MAT matrix=matrix-matrix
Effect:
Each element of the first matrix is assigned a value which is the difference
between the corresponding elements of the second and third matrices. All three
matrices must have the same dimensions.
The preceding three kinds of matrix statements (replacement, addition, and
subtraction), may be used with matrices of any dimension as long as they
match.
4.3.1.4 Matrix Multiplication
General Form:

MAT matrix=matrix*matrix
Effect:
The elements of the first matrix are assigned values such that it is the product
of the other two matrices according to the usual rule for matrix multiplication.
The standard restrictions concerning the dimensions of the three matrices apply.

That is, if x, y, and z represent integer constants, then the following relation-
ship must exist between the dimensions of three matrices A, B, and C:

DIM A(x,2),B(x,y),C(y,2z)
MAT A=B*C

The matrix on the left side of the equals sign must not be the same as either of
the matrices on the right.

4-14

q A
COMPUTER AUTOMATION, INC. : -

4.3.1.5 Scalar Multiplication
General Form:
MAT matrix=(expression)*matrix
Effect:
Each element of the first matrix is assigned a value which is the product of the
value of the expression and the corresponding element of the second matrix.
The two matrices must have the same dimensions.
4.3.1.6 Matrix Transposition
General Form:
MAT matrix=TRN (matrix)
Effect:
The first matrix is made the transpose of the second matrix. The two matrices
must be square and have the same dimensions; they may be the same matrix.
4.3.1.7 Matrix Inversion
General Form:
MAT matrix=INV (matrix)
Effect:
The elements of the first matrix are assigned values such that it is the inverse
(in the usual mathematical sense) of the second matrix. The two matrices must
be square and have the same dimensions.
4.3.1.8 Zero Matrix
General Form:
MAT matrix=2ZER
Effect:

The value of each element of the matrix is set to zero.

4-15

ﬂ A
COMPUTER AUTOMATION, INC. = - —'j

4.3.1.9 Identity Matrix
General Form:
MAT matrix = IDN
Effect:
The value of every element of the matrix is set to zero except for the elements
on the principle diagonal which are set to one. The matrix must be square.
4.3.1.10 Constant Matrix
General Form:
MAT matrix=CON
Effect:

The value of each element of the matrix is set to one.

4.3.1.11 Print Matrix
General Form:

MAT PRINT matrix [separator matrix] ... separator
Effect:
The value of every element of each of the elements in the list is printed in the
format described under the PRINT statement. Each separator is either a comma
or a semicolon, and it governs the spacing on the print line between each matrix
element in the same way as for ordinary printing. The matrix elements are
ordered row-wise, and each row is started in a new line.
4.3.1.12 Read Matrix

General Form:

MAT READ matrix [,matrix] ...

4-16

ﬂ A
COMPUTER AUTOMATION, INC. = -

Effect:

Every element of each matrix in the list is assigned a value taken from a con-
stant in the consolidated DATA statement list. The matrix elements are ordered
row-wise.

4.3.2 String Operations

A string is a sequence of characters. The number of characters in the sequence
is the length of the string. The length of a string can vary dynamically during
the execution of a program as long as it does not exceed the maximum allowable
value. The maximum length of a string is specified in a DIM statement by a
single constant in parentheses after the string name. The length of a string may
not exceed 72.

A string operand is either a string constant, a string variable, or a partial
string. A string constant is a sequence of arbitrary characters preceded and
followed by quotation marks. (If it is desired to include the quotation mark
character in the string, it can be indicated by writing a pair of consecutive
quotation marks.) The length of a string constant is the number of characters
inside the delimiting quotation marks, interior double quotation marks counting
as a single character. A string variable is a letter followed by a dollar sign
($). A partial string is a string variable followed by one or two expressions
enclosed in parentheses. (Iftwo expressions are used they are separated by
a comma.) A partial string selects a consecutive sequence of characters from
the string variable as a substring. The truncated value of the first expression
specifies the character position of the last character of the substring. If the
second expression is missing, the substring extends to the current end of the
string variable. The first character of a string is referenced by a subscript
value of zero.

Examples:

"XYZ" "456" A seven-character string constant.

X$ A string variable.

P$4,8) A partial string consisting of character 4,
5,6, 7, and 8 from the string variable P$.

P$(65) A partial string taken from the end of the

string variable P$.

If n is the current working length of the string variable W$,
then a reference to W$ is the same as a reference to W$(1,n).

4-17

ﬂ
COMPUTER AUTOMATION, INC. = - —

A string expression is either a single string operand or a sequence of two or more
string operands separated by the concatenation operator (+). Two string operands
separated by a concatenation operator define a new string whose length is the sum
of the lengths of the two constituent strings. The character of which the new string
is composed are the characters from the string on the left side of the concatenation
operator followed by the characters from the string on the right side of the operator.

A string relation is a pair of string expressions separated by any one of the rela-
tional operators defined in Section 3. A string relation has a value one or zero
(true or false) depending on whether the relation is true or false. Strings are
compared one at a time beginning at the left end of each string and continuing
rightward until an unequal pair of characters is found. (If the end of one string
is reached before the end of the other, a space character is supplied to form the
pair instead of a character from the shorter string.) If the end of the longer string
is reached and no unequal character pairs are found, the strings are considered

to be "equal". If an unequal pair of characters is found, the characters are ranked
according to the collating sequence shown below, and the string contributing the
"higher" character is considered to be "greater" than the other string. The collating
sequence, from low values to high values, is:

/3" #$%&" O *+,-./0123456789: ; < = > ?QABCDEFGHIJKLMNOPQRSTUVWXYZY [/] t—

The BASIC-2 and BASIC-3 Systems provide the user with the following facilities:

4,3.2.1 String Assignment Statement
General Form:

LET string variable =string expression
Effect:

The string expression on the right is constructed and the resulting character
string is copied into the string variable beginning at the first character position.
The working length of the string variable on the left is set equal to the length
of the string expression unless this would increase it beyond its maximum. In
this case, the working length is set to the maximum and surplus characters are
truncated from the right end of the string expression.

The operand on the left of the equals sign may also be a partial string. Charac-
ters are moved into the partial string beginning at the character position specified
by the first expression and continuing rightward to the character position speci-

fied by the second expression or the last character of the string expression,

4-18

ﬁ A
COMPUTER AUTOMATION, INC. = L

whichever comes first. Space characters are supplied on the right if the length
of the string expression is less than the length of the partial string. If the
length of second expression in the partial string is greater than the current
working length of the string, the working length is set equal to the value of
the second expression; otherwise, the working length is left unchanged.

4.3.2.2 String Relations

A string relation, as defined above, may be used as an operand in an expression
in the same way as an arithmetic relation.

4.3.2.3 LEN Function

An additional function is available. Its name is LEN, its argument is a string
expression, and its value is the current working length of the string expres-
sion. The LEN function may be used just as any other function reference.

4.3.2.4 Strings in PRINT Statements

A string operand may be used as an element in a print list. The current work-
ing length of the string operand determines the number of characters placed on
the print line.

4.3.2.5 Strings in DATA Statements

A string constant may appear in the list of a DATA statement. The logic of the
program must be such as to pair the string constant with a string variable in a
READ statement, since it is not permitted to read a string constant into a numeric
variable.

4.3.2.6 Strings in READ Statements

A string variable or a partial string may appear as an element in a READ list.
The logic of the program must be such as to pair the string variable (or partial
string) with a string constant in a DATA statement, since it is not permitted to
read a numeric value (constant) into a string. The effect of executing a READ
statement containing a string operand is the same as executing a string assign-
ment statement with the string operand on the left and the string constant on
the right of the equals sign.

4-19

ﬂ A
COMPUTER AUTOMATION, INC. : -

4.3.2.7 Strings in INPUT Statements

String variables and partial strings may be used in an INPUT list just as in a
READ statement, with the same effect. They must be paired with string con-
stants in the input line typed in by the user.

4.3.3 CALL Statement (Executable)

The CALL statement is available to call and pass parameters to and from ALPHA-16
assembly language subroutines. The general form of the CALL statement is:

CALL (n Eexpression] L)

where n is an expression whose truncated value identifies a specific user written
machine language program previously linked to the BASIC-2 processor. When this
statement is executed, the expressions (if any) are evaluated and the resulting
values are supplied to the machine language program as arguments.

Refer to Appendix A - MACHINE LANGUAGE SUBROUTINES for a detailed descrip-
tion of their implementation and usage.

4-20

Section 5

BASIC COMMANDS

5.1 INTRODUCTION

The BASIC System accepts six commands for controlling a user's operating environ-
ment. Each command consists of a unique keyword of from three to five letters.
Commands are not preceded by a line number, and are always executed immediately
upon entry. Square brackets surrounding an element of the line indicate that para-
meter is optional and may be included or omitted as required. The six commands are:

LIST - List all or part of a user's program

PUNCH - Output all or part of a user's program to paper tape
CLEAR - Initialize a user's word area

RUN - Begin execution of a user's program

TAPE - Accept program input from paper tape

TYPE - Accept program input from the keyboard

5.2 LIST COMMAND

The LIST command is used to print all or part of a user's BASIC program as it
currently stands in a user's work area. The general form of the LIST command
is:

LIST [line number [, line number]]

If there are no line number parameters following the keyword, the entire program
is printed. If only a single line number is given, that line is printed. If the
command contains two line number parameters, that portion of the program whose
line numbers lie between the values is printed.

Although the user may have originally entered his program statements in any

order, they are maintained in the work area in order of ascending line number,
and this is the order in which they are listed.

5.3 PUNCH COMMAND

The PUNCH command is used to output all or part of a user's BASIC program as
it currently stands in the user's work area to paper tape. The general form of
the PUNCH command is:

PUNCH [line number [[line number]]

5-1

ﬂ
COMPUTER AUTOMATION, INC. : - ———

A
COMPUTER AUTOMATION, INC. :-’ﬁ

Setting DATA SWITCH 0 will cause punching on the high speed punch; resetting the
DATA SWITCH will cause punching on the teletype paper tape punch. (Note: This
applies to BASIC-1 and BASIC-2 only. BASIC-3 outputs to the teletype punch only.)

The format of the program on paper tape is such that it can be read back into the user's
work area at a later time for execution or further modification.

The rules for PUNCHing out part of a program are the same as for LISTing a user's
program.

5.4 CLEAR COMMAND

The CLEAR command is used to initialize a user's work area. The general form of
the CLEAR command is:

CLEAR
When a CLEAR command is entered a user's work area is cleared of all program text,
and his relation with the BASIC System is re-initialized. After execution of a CLEAR

command the only meaningful action on the part of the user is a series of program editing
directives to construct a new program in his work area.

5.5 RUN COMMAND

The RUN command is used to begin execution of a user's BASIC program. The
general form of the RUN command is:

RUN

Upon receiving a RUN command the BASIC System leaves the command mode of
operation and enters the execution mode. The user's program as it currently

stands in the work area is executed statement by statement, beginning with the

first (lowest numbered) executable statement, and continuing until a STOP or

END statement is encountered, or until an abnormal condition occurs. At this point
a message identifying the cause and location of the termination is printed, the System
re-enters the command mode of operation and prints the asterisk prompt character.

5.6 TAPE COMMAND

The TAPE command is used to inform the BASIC System that a BASIC program is
to be input from paper tape. The general form of the TAPE command is:

TAPE

5-2

ﬂ A
COMPUTER AUTOMATION, INC. : - —

Upon receiving this command the BASIC System will prepare to accept all subsequent
program input from a paper tape reader. Setting Data Switch 0 will cause reading

from the high speed reader; resetting the data switch will cause reading from the
teletype paper tape reader. (Note: This applies to BASIC-1 and BASIC-2 only. BASIC-
3 reads from the teletype tape reader only). ‘

9.7 TYPE COMMAND

The TYPE command is used to inform the BASIC System that a BASIC programis to be
input from a terminal keyboard. The general form of the TYPE command is:

TYPE

The BASIC System normally expects to receive program input from a terminal keyboard,
and so the TYPE command is only required during a user session following the use
of a TAPE command which has re-assigned the input source to a paper tape reader.

The keyboard mode of operation may be re-entered by depressing the console interrupt
(AUTO) Switch (BASIC-1 and BASIC-2), or the Teletype or CRT "BREAK" key (BASIC-3).

ﬂ A
COMPUTER AUTOMATION, INC. = -

Section 6

BASIC FUNCTIONS

6.1 FUNCTIONS

The BASIC System includes 13 pre-defined functions to perform mathematical
operations. A function reference consists of a three letter function name followed
by a parenthesized list of arguments. If there is more than one argument, they
are separated by commas. The number of arguments supplied in a function
reference must agree with the number of arguments specified in the function
definition. Reference to a function produces a value which in general is
dependent on (i.e., a function of) the current values of the arguments.

COMMON FUNCTIONS:

EXP 0.9) E raised to the X power

LOG x) Natural logarithm of X

ABS x) Absolute value of X

INT (0.9) The largest integer not greater than X
MOD X,Y) X modulo Y

SGN Xx) A value indicating the sign of X

SQR x) Square root of X

BASIC-2 and BASIC-3 FUNCTIONS:

SIN x) Sine of X (X is expressed in radians)

CcoSs x) Cosine of X (X is expressed in radians)

TAN x) Tangent of X (X is expressed in radians)

ATN x> Arctangent of X is returned as an angle in
radians in the range + %/2.

RND X) A random number between 0 and 1

LEN 0:€)) Return the length of the string variable X$

The arguments X and Y to the functions may be a constant, a variable, an expres—
sion, or another function.

The value of the argument to the RND function governs the generation of random
numbers in the following way: if the value is zero then the random number is
generated from the previously generated random number (or from a fixed value
if this is the first request for a random number within the current execution);

ﬂ A
COMPUTER AUTOMATION, INC. = -

if the value is non-zero then it takes the place of the previously generated num-
ber (or the fixed value) in the algorithm that produces the new random number.
In this way, the user has the option of always generating the same sequence of
random numbers (for check-out purposes, perhaps) or of generating a different
sequence for each execution of his program.

The SGN function returns the value -1, 0, or +1, depending on whether the
value of the argument is negative, zero, or positive.

In addition to the 13 pre-defined functions listed above, the ALPHA-16 BASIC

System supports user-defined functions, where the function reference is of the
form:

FNa x) User-defined function; a is any letter; and
the function must be defined in a DEF state-
ment.

ﬂ
COMPUTER AUTOMATION, INC. = - —

Section 7

ERROR MESSAGES

7.1 INTRODUCTION

When the BASIC System detects an error while scanning or processing a line
of input from the user or while executing a BASIC statement, it prints an error
message at the user's terminal (and reverts to the command mode of operation if it
was in the execute mode).

7.2 ERROR MESSAGE FORMAT

An error message has the following format:
//aa dd

The aa field is a two-letter code identifying the error detected (as shown in the
list below), and the dd field contains two decimal digits which locate the
character position within the line at which the error was detected. The BASIC
language statement containing the error is printed on the next line following the
error message. The list of possible error codes and their meanings is as follows:

AR Arrays not conformable. A matrix operation has been
specified and the dimensions of the matrix operands are
such that the operation is not possible.

CA No such CALL subroutine.

CN Constant missing in Data statement or input line.

DA Doubly-defined array.

DC List of DATA constants exhausted.

DF Doubly-defined function. The same function name has

appeared in more than one DEF statement.
DZ Division by zero attempted.

ER Syntax error. The statement or command does not
have the proper structure.

ET Program has reached end of text.

Al

EX

FA

FO

HL

IA

ID

IN

I0
IS
LG
LN

LS

M (

M)

MA

MM

ﬂ
COMPUTER AUTOMATION, INC. = -

Extraneous characters on line. The initial characters

on the line are interpretable as a legal statement or
command, but there are further unusable non-space
characters.

Function argument error. The number of arguments

in the function reference is not the same as in the function
definition.

Improper FOR variable. The operand following FOR must
be a simple variable.

Halt. A STOP or END statement has been encountered
during execution.

Illegal assignment.
Illegal dimension specifier.
Square matrix required.

Improperly formed constant. Most likely cause of this
error is missing digits in the exponent.

Illegal operator with string operand.

Illegal value for a statement number.

Negative or zero argument to LOG function.

Statement number not allowed.

LEN function requires a string argument.

No replacement operator in LET, DEF or FOR statement.

Unmatched right parenthesis. There is an excess of
left parentheses.

Unmatched left parenthesis. There is an excess of
right parentheses.

Unrecognized MAT statement.

Mode mixing between string and numeric data.

7-2

MO

MS

MT

NL
NO
NS

NX

ov

RT

SA

SM

SN

SO

SQ

SR

SS

ST

TD

No operand. The syntax of the statement requires an
operand in this position.

Missing statement. A reference to a non-existant line
number has been encountered in a GOTO, GOSUB, IF,
or ON statement.

No program text. A LIST or PUNCH command has been
given and there are no BASIC statements in the user's
work area.

Statement number required on this statement.

Overflow on conversion to integer format.

Deletion of non-existant statement number.

NEXT statement encountered without having executed an
associated FOR statement.

Numerical overflow. The value of a constant or an
intermediate value of an expression has exceeded the

maximum magnitude (approximately 9.23 x 101),

RETURN statement encountered while no GOSUB state-
ment is active.

Illegal string argument.

Attempted inversion of a singular or nearly singular
matrix.

Wrong number of subscripts in an array reference.

String overflow. The working length of a string has
exceeded the maximum length.

Negative argument to SQR function.

Subscript range error. A subscript has been encountered

which refers to an array element outside the array.
Substring subscripts contradictory. The second argu-
ment of a substring reference is less than the first
argument .

String operation not available.

Two-dimensional array required.
7-3

A
COMPUTER AUTOMATION, INC. : - e

UF

UM

UQ

Us

WA

XI

XP

ﬂ
COMPUTER AUTOMATION, INC. = -

Undefined function. A reference has been made to a
function which is not in the library and has not been
defined in a DEF statement.

Undefined matrix in MAT statement.
Unbalanced quotation marks.

The input line is not recognizable as either a statement
or command .

User's work area has been exhausted. If this error
occurs while attempting to add a new line to a pro-
gram, the only remedy is to reduce the size of the
program. If the error occurs during program exe-
cution, it may be possible to avoid it by breaking
up long expressions into two or more smaller
expressions or by reducing the size of arrays.

Excess input characters.

Expression not permitted here.

7-4

ﬂ A
COMPUTER AUTOMATION, INC. = -

Section 8

OPERATING PROCEDURES

8.1 INTRODUCTION

The BASIC Processor program must be loaded into the ALPHA-16 computer for execution.
This section describes the procedures required to load and execute the BASIC processors.

8.1.1 BASIC-1 Operating Procedure

The BASIC-1 Processor is delivered in absolute binary tape format and can be loaded by
BLD, LAMBDA, or AUTOLOAD. BASIC-1 requires a minimum of 4K words of memory .

1.

The BASIC-1 system tape (96500-40) is readied in the selected reader and
loaded with BLD, LAMBDA (set A =:100, X =:0) or AUTOLOAD.

Execution begins by entering : 0100 in the P register and depressing RUN.
(The STOP and SENSE switches must be up.)

BASIC will respond by printing its name on the teletypewriter, followed
by the asterisk (*) prompt character. Refer to section 2 (Operating
Environment) for command entry procedures.

The CLEAR command should be the first command of each BASIC Program to
"initialize" BASIC and insure sufficient buffer storage for the user program.

8.1.2 BASIC-2 Operating Procedure

The BASIC-2 System is delivered as both absolute binary (for convenient loading) and
relocatable object (for inclusion of machine language subroutines) tapes.

8.1.2.1

1.

BASIC-2 Absolute Binary Tape (96501-40)

The BASIC-2 system tape is readied in the selected reader and loaded with
BLD, LAMBDA (set A - :100, X =:0) or AUTOLOAD.

Execution begins by entering : 0100 in the P register and depressing RUN.
(The STOP and SENSE switches must be up.)

ﬂ A
COMPUTER AUTOMATION, INC. = -

3. BASIC will respond by printing its name on the teletypewriter, followed
by the asterisk (*) prompt character. Refer to section 2 (Operating
Environment) for command entry procedures.

4, The CLEAR command should be the first command of each BASIC Program to
"initialize" BASIC and insure sufficient buffer storage for the user program.

8.1.2.2 BASIC-2 Object Tapes

The BASIC-2 Processor is delivered as two object format tapes:

1. BASIC-2 Processor (96501-30)
2. IOC/EBASIC Module (96501-31)

and must be loaded with the LAMBDA Object Loader. BASIC-2 requires a minimum of 8K
words of memory, and will use any additional memory available.

The first program loaded is the BASIC-2 Processor (96501-30) , then the user's machine
language subroutines, if any, and finally, the IOC/EBASIC library tape (96501-31). A
machine language entry which is not resolved by loading a user subroutine will be listed
as undefined ('U' error), when the library tape is finished loading. This can be ignored,
the BASIC Processor will generate a "CA" error if these routines are referenced.

1. The BASIC-2 processor tape (96501-30) is readied in the selected reader
and the object program is loaded by LAMBDA (set A - ;100, X - : 65).

2. Any user written machine language subroutines may now be loaded.

3. Finally, the library mode BASIC-2 IOC/EBASIC tape (96501-31) is loaded.
There should now be no undefined references, except for unused ML machine
language routines.

4, Execution begins by entering : 0100 in the P register and depressing RUN,
(The STOP and SENSE switches must be up.)

5. BASIC-2 will respond by printing its name on the teletypewriter, followed by
the asterisk (*) prompt character. Refer to section 2 (Operating Environment)
for command entry procedures.

6. The CLEAR command should be the first command of each BASIC program to
"initialize" BASIC and insure sufficient buffer storage for the user program.

ﬂ A
COMPUTER AUTOMATION, INC. = -

8.1.3 BASIC-3 Operating Procedure

The BASIC-3 System is delivered in both absolute binary (for convenient loading) or
object (for inclusion of machine language subroutines) tapes.

8.1.3.1 BASIC-3 Absolute Binary Tape (96502-40)

1.

The BASIC-3 system tape is readied in the selected reader and loaded with
BLD, LAMBDA (set A - :100, X =:0) or AUTOLOAD.

Execution begins by entering : 0100 in the P register and depressing RUN.
(The STOP switch must be up.)

BASIC-3 will respond by printing its name on the console teletype or CRT,
followed by the query "INPUT USERS:". The user should respond by entering
the number, from 1 to 9, of each user who will access the BASIC-3 program.
(Refer to section 8.1.3.3 for the table of user numbers and their associated
device addresses and interrupt locations.) User numbers must be separated
by commas, and the response must be terminated with a carriage return. Input
of a carriage return only signifies that all nine users are to be on-line. Input
of an illegal character or separator will cause the query to be repeated.

Upon completion of user number input, the title "ALPHA-16 BASIC-3" is output
to each on-line terminal, followed by the asterisk (*) prompt character. Refer
to section 2 (Operating Environment) for command entry procedures.

The CLEAR command should be the first command of each BASIC program to
initialize BASIC and insure sufficient buffer storage for the user program.

8.1.3.2 BASIC-3 Object Tapes

The BASIC-3 system is delivered as four object format programs and must be loaded with
the LAMBDA Object Loader. BASIC-3 requires a minimum of 8K words of memory, and
will use any additional memory available.

The four delivered programs consist of:

1.

MONITOR/IOC Module (96502-31)
TUP (96014-30)
BASIC-3 Processor (96502-30)

EBASIC Module (96500-32)

ﬁ A
COMPUTER AUTOMATION, INC. = -

and should be loaded with LAMBDA in the order shown above. User machine-language
subroutines, if any, may be loaded any time after MONITOR/IOC and before EBASIC.

NOTE

See section 8.1.3.4 for limitations on user machine-language subroutines.

A machine language reference not resolved by loading a user subroutine will be listed
as undefined ('U' error) when the program tapes finish loading. This can be ignored,
and the BASIC processor will generate a "CA" error if these routines are referenced.

1.

The MONITOR/IOC tape (96502-31) is readied in the selected reader and the
object program is loaded by LAMBDA (set A =:100, X =:63).

Any user written machine language subroutines may be loaded now, or after
steps 3 or 4 (see section 8.1.3.4 for limitations on machine-language sub-
routines) .

The Teletype Utility Package (TUP) tape (96014-30) is loaded.
The BASIC-3 processor tape (96502-30) is loaded.

The EBASIC tape (96500-32) is loaded last. There should now be no undefined
references, except for unused ML machine language routines.

Execution begins by entering : 0100 in the P register and depressing RUN.
(The STOP switch must be up.)

BASIC will respond by printing its name on the Teletype or CRT, followed by
the query "INPUT USERS:". The user should respond by entering the number,
from 1 to 9, of each user who will access the BASIC-3 program. (Refer to
section 8.1.3.3 for the table of user numbers and their associated device
addresses and interrupt locations.) User numbers must be separated by
commas, and the response must be terminated with a carriage return. Input

of a carriage return only signifies that all nine users are to be on-line. Input
of an illegal character or separator will cause the query to be repeated.

Upon completion of user number input, the title "TALPHA-16 BASIC-3" is output
to each on-line terminal, followed by the asterisk (*) prompt character. Refer

to section 2 (Operating Environment) for command entry procedures.

The CLEAR command should be the first command of each BASIC program to
initialize BASIC and insure sufficient buffer storage for the user program.

8-4

A
COMPUTER AUTOMATION, INC. —_—

8.1.3.3 Table of User Numbers, Device Addresses and Interrupt Locations Used in

BASIC-3
User Device Interrupt Dual TTY Unit within
No. Address Location Controller Dual TTY Controller
1 1 07 : 02 (standard console teletype/CRT)
2 : 03 122 1 0
3 : 02 :2A 1 1
4 : 0A : 32 2 0
5 : 0B :3A 2 1
6 : 0C 142 3 0
7 : 0D :4A 3 1
8 115 :52 4 0
9 : 16 : 5A 4 1

This list designates the standard locations assumed by BASIC-3. Total base page
locations required by the program are:

:00-:01 Power-up interrupt locations
:02-:09 User #1 1/0 interrupt sequence

: 0A Contains highest address to be used as working storage
:18-:19 Real Time Clock interrupt locations
:1C Power Down interrupt location

122-:29 User #2 I/0 interrupt sequence
:2A -:31 User #3 I/0 interrupt sequence
:32-:39 User #4 I/0 interrupt sequence
:3A -:41 User #5 1/0 interrupt sequence
:42 - :49 User #6 I/0 interrupt sequence
:4A - :51 User #7 I/0 interrupt sequence
:52-:59 User #8 1/0 interrupt sequence
:5A - :61 User #9 I/0 interrupt sequence
:64-:FD BASIC-3 Processor Address Pointers

8.1.3.4 Limitations on User Machine Language Subroutines Using BASIC-3

A machine language subroutine loaded in conjunction with the BASIC-3 object tapes must
observe the following limitations:

1. The subroutine should avoid using the base page, as it is required by the
BASIC-3 processor and monitor for pointers and interrupt location routines.

A

COMPUTER AUTOMATION, INC. :—

NOTE

Base page locations can be made available to machine language
subroutines at the expense of one or more users, starting with user
9. For example, base page locations : 5A through : 61 are used by
MONITOR as the I/0 interrupt area for user #9. This area can be
made available to the LAMBDA loader to use for address pointers

if user #9 is not selected. (Note that the LAMBDA loader will decre-
ment the base page address passed to it (: 63 when loading BASIC-3)
downward toward location : 00 as it requires a new base page pointer.)
Since each user is allocated eight base page locations for its I/0
interrupt area, eight additional locations can be made available to
LAMBDA for every user (from user #9 down to user #2) which is

not selected.

WARNING

Once used by LAMBDA, a user's interrupt area may not
later be re-assigned to that user without reloading the
BASIC system.

The return address of any Jump-and-Store (JST) instructions between the
subroutine and the BASIC-3 processor should be saved by calls to PSH: and
POP: . If these sequences, or calls to IOC: , are used in the subroutine, the
subroutine is required to be re-entrant, as the POP: routine (and the I0C:
routine) will allow the next user in turn to take control of BASIC-3 (and
the machine language routine) if the current user's time slice is exhausted.

If the subroutine does not call either POP: or IOC: , no swapping of users
can take place, thus making it possible for all other users to "hang-up"
waiting for the subroutine to complete. For this reason, it is advisable
that the subroutine be as short as possible.

8-6

ﬂ
COMPUTER AUTOMATION, INC. : -

Appendix A

MACHINE LANGUAGE SUBROUTINES

A.1 INTRODUCTION

The BASIC-2 and BASIC-3 systems may be augmented by user written machine language
subroutines which can be referenced by the CALL statement (section 4.3.3). Such sub-
routines are written in ALPHA-16 assembly language and linked with the BASIC-2 or

BASIC-3 system prior to execution of the BASIC program. Refer to Section 8 - OPERATING
PROCEDURES for a more detailed discussion of the linkage procedure.

External references to multiple machine language subroutines, labeled ML1 through
ML20, exist in the BASIC-2 and BASIC-3 processors. During execution of a BASIC
program, the integerized value of the first argument of the CALL statement determines
the machine language subroutine executed. For example, if the first argument of a
particular CALL statement truncates to the integer 2, the machine language subroutine
ML2 will be executed; a value of 4 will cause ML4 to be executed; and so on. A CALL
to a non-existent subroutine will cause the "CA" error message to be produced and
the BASIC system to return to the command mode.

A.2 CODING THE MACHINE LANGUAGE SUBROUTINE

A subroutine which is to be CALLed by the BASIC-2 or BASIC-3 system must be written
in the ALPHA-16 machine language and assembled with the BETA or OMEGA assembler
prior to linking with the BASIC system,

The machine language subroutine must have each entry point defined on a NAM
directive, which corresponds to an existing BASIC external name (ML1 thru ML20).
Conversely, internal BASIC accumulators or routines must be defined as external
by use of the EXTR or REF directives.

NOTE

The BASIC-3 system normally does not allow base page usage by the
subroutine, and thus the EXTR directive should not be used. Refer
to section 8.1.3.4 for limitations on base page usage.

Each entry point should begin with an initial scratch word for storage of the P-register
(the CALL statement executes a jump-and-store instruction when entering the subrou-
tine) followed immediately with a call to the BASIC routine PSH: to save the return

COMPUTER AUTOMATION, INC. :

address. For example:

NAM ML2

EXTR PSH:
ML2 ENT

JST PSH:

Upon entry, any arguments which were present in the CALL statement are placed on
the BASIC operand stack and are available to the subroutine, in reverse order. That
is, if the CALL statement was

CALL (2,A,B,C)

then expression C would be the top (first available) operand on the operand stack,
expression B would be below it (available second), and expression A below it
(available third) .

The subroutine should verify the correct number of arguments supplied in the CALL
statement by a call to the BASIC routine VAC: . All arguments passed in the CALL
statement must be removed from the operand stack prior to returning to the BASIC
processor.

When processing is complete, the subroutine returns to the BASIC processor with a
jump to the POP: routine. For example:

EXTR POP:
.
JMP POP:
NOTE
The BASIC-3 system requires the machine-language subroutine to be re-

entrant. See section 8.1.3.4for a discussion of this and other limitations).

A.3 USING THE INTERNAL BASIC ROUTINES

The BASIC-2 and BASIC-3 processors contain internal routines which perform arithmetic
operations, operand processing, data manipulation and other related operations. Several
of these routines are of value to the machine language subroutine and are described in
detail in this section.

A.3.1 BASIC Variables

The BASIC processor's working accumulators are available to the subroutine and perform
arithmetic operations and argument transfers. These working accumulators are located
in the scratch pad area of memory, and are addressable by use of the EXTR directive.

A-2

A
COMPUTER AUTOMATION, INC. :-"-

A.3.1.1 ACC,BCC,CCC

These variables are used in pairs as floating point accumulators. The ACC accumu-
lator consists of two words, labeled ACC1 and ACC2; BCC and CCC are similarly
labeled. ACCI1 ordinarily contains the first word of a floating point value (the one
which contains the mantissa) and ACC2 contains the second word (the mantissa
extension). The BCC and CCC accumulators are similarly used.

As a rule, before a new value is placed in the ACC accumulator, the contents of the
BCC accumulator are moved to the CCC accumulator and the old contents of the ACC
accumulator are moved to the BCC accumulator. This can be accomplished by a call
to the STK: routine. Thus, the three double-word accumulators act as a push-down
stack.

Conversely, when a floating point value is removed from the ACC accumulator the
BCC accululator is moved to the ACC accumulator and the CCC accumulator is moved
to the BCC accumulator. This can be accomplished by a call to the RMV: routine.
A.3.1.2 FROM, TO, NW

These variables serve as arguments to the MOV: (MOVE) routine which is responsi-
ble for moving consecutive words from one section of core memory to another.

A.3.1.3 OPDEND

This variable points to the first (lowest) entry in the operand stack.

A.3.2 The BASIC Symbol Table

The BASIC processor maintains a symbol table in core memory which includes all
variable symbols defined or referenced in the BASIC program. The symbol table
entries are of variable length and new entries are always added at the end. A new
entry is added upon the first appearance (during program execution) of every
simple variable, array, string variable or DEF function.

A symbol table entry pointer always points to the topmost word of the entry.
The first (top) word of each entry contains its name. The second (next-to-top) word

of each entry is the length in words of the entire entry. Thereafter, the layout of an
entry depends on its type.

ﬂ A
COMPUTER AUTOMATION, INC. = -

In the following entry layouts, all two-word values are in standard floating-point
format with the first word (the one containing the characteristic) occupying the
bottom position and the second word (the one containing the mantissa extension)

occupying the top position.

Simple Variable Entry

letter - digit or space

4

mantissa continued

characteristic mantissa

name
length

current value

The entry for a simple variable used as a FOR loop control has an extended format:

letter

digit or space

9

Standard floating-point format

Standard floating-point format

Standard floating-point format

return point

name

length

current value

limit value

increment value

The entry format for a DEF function is:

L-4

L-5

'N' letter
4 + number of parameters
PNTR value of equals sign
BASE value of DEF statement
letter digit or space
letter digit or space
letter digit or space

ﬂ
COMPUTER AUTOMATION, INC. = - —_

name

length

location of
function formula
name of 1st param.

name of 2nd param.

etc.

name of last param.

The entry format for an array is:

A
COMPUTER AUTOMATION, INC. :-’-‘- -

Letter e

3 + 2* (# of dimensions + # of elements

Number of dimensions in binary

Standard floating-point format

Standard floating-point format

Standard floating-point format

Standard floating-point format

Standard floating-point format

name
length
dimension count

value of 1st
dimension +1

etc.

value of last
dimension +1

value of 1st
array element

value of 2nd
array element

ete.

value of last
array element

q A
COMPUTER AUTOMATION, INC. = -

Array elements are stored in the entry in row-wise order, that is, the topmost ele-

ment has the subscript (0,0,0,...,0) and the next lower element has the subscript
(1,0,0,...,0).

The entry format for a string variable is:

L Letter '$' 1 name
L-1 4 + (max size +1)/2 length
L-2 Current Working Size

L-3 Max Size

L-4 last character or filler

L-5

Current Value

3rd character 4th character

L-n 1st character 2nd character

The word size is used here to mean a binary character count. Max size is the value
specified by the user in the DIM statement for the string variable.

ﬂ A
COMPUTER AUTOMATION, INC. = -

A.3.3 The BASIC Operand Stack

The operand stack is used during the evaluation of expressions in the BASIC program
to save operands that have not yet been processed. It is a last-in, first-out stack with
new operands added and old operands removed from the top. The external label
OPDEND contains the address of the first (top) entry in the operand stack.

Every numeric operand entry in the stack is two words long. It is either a standard
floating-point value or a symbol table pointer. Note that it is possible to distinguish
these two cases by the following rule:

If the second word is zero, or if both words are non-
zero the operand is a floating-point value; otherwise,
the second word contains a word pointer to a symbol

table entry.

The format of a floating-point value is described in section 7.3.4.

String operand entries in the stack are of variable length and of three types: string
variable, partial string, and string constant. If the top word in the stack is zero,
then the operand is a string constant whose length in bytes is given by the next-to-
top word. For example, the string constant "PAX" would appear in the operand
stack as:

: 0000
: 0003
:D8XX
:DOC1

where XX represents an unused character position. If the top word is non-zero and
the next-to-top word is zero, then the operand is two words long and represents a
string variable. The value of the second (top) word is a symbol table pointer, just
as in the case of a numeric operand. If both the top two words in the stack are non-
zero, the operand is a partial string. In this case the second (top) word is again a
symbol table pointer, and the first (next-to-top) word contains the partial string
offset in its left byte and the partial string length in its right byte. For example, a
source language reference to the partial string S$(3,10) would result in the follow-
ing entry in the operand stack:

: 8888
: 0208

where ssss represents the symbol table pointer for the string variable S.

To summarize the analysis of an entry on the operand stack, let X and Y represent
non-zero values, and consider the top words on the stack:

ﬂ
COMPUTER AUTOMATION, INC. = -

Word 1 Word 2
0 0 This represents the floating-point value zero.

0 X This is a symbol table pointer. To distinguish
whether it represents a numeric variable or a
string variable it is necessary to look at the
symbol table entry pointed to by X (*X).

X 0 This is either a string constant or a floating-
point value. If bits 15 and 7 of X are both
zero it is a string constant whose length in
bytes is contained in bits 6 through 0 of X,
and the text of the constant is contained in
the next (X+1)/2 lower words in the stack.
If either bit 15 or 7 of X is on, the operand
is a floating-point value.

X Y This is either a partial string or a floating-
point value. If either bit 15 or 7 of X is on,
the operand is a floating-point value. Other-
wise, it is a partial string and bits 14 through
8 contain the string offset, bits 6 through 0
contain the length, and Y is a symbol table
pointer to the string variable.

This representation of operands in the operand stack makes use of the fact that a)
bits 15 and 7 of the first word of a floating-point value are never both zero unless the
value is identically zero, and that b) both the offset and length of a string can never
exceed 72.

A.3.4 The Internal Floating Point Format

The value of an operand is maintained internally in a floating point format occupying
an adjacent pair of computer words.

Bit 15 of the first word indicates the sign of the value (0 = positive, 1 = negative).
This is followed by a 7-bit biased binary exponent (characteristic) in the range 0 -
127 (: 00 - : 7F). The bias is 64, so that the actual range of the characteristic is -64
thru +63.

The characteristic is followed by a normalized 24-bit binary fraction (mantissa)
whose implied binary point is to the left of bit 7 of the first word. The value of the
mantissa is in the range of 0.5 thru 1 - 5724,

COMPUTER AUTOMATION, INC. =&

The value of zero is represented by a double-word of all zeros. A negative value is
represented by taking the two's complement of the left (high-order) word of the float-
ing point representation of the corresponding positive value as defined above.

Word 1 S Characteristic Mantissa
15 14 87 0
Word 2 Mantissa (Continuation)

A.3.5 The BASIC Utility Subroutine

All utility subroutines available in the BASIC processor are called by means of a JST
instruction, and all return control to the location immediately following that instruc-
tion unless an error is detected. In many cases, the A register is used to pass argu-
ments to/from the subroutines.

Several of the utility routines use a symbol table pointer either to access the current
value in the symbol table entry or to store a new value there. They all make the
assumption that the value is two words long and is located two words below the word
whose address is in the pointer. For example, if the value is located at N-3 and N-2,
with N-3 containing the high-order word of the two-word quantity. N normally points
to the first word (the one containing the name) of a standard 4-word symbol table
entry. However, this is not a requirement. If it is desired, for example, to reference
an arbitrary element of an array in the symbol table, all that is necessary is to set

N to 3 plus the address of the word containing the characteristic. The reference

need not even be in the symbol table. For example, if N is set to the address of ACC1
+ 3 then the floating-point value in ACC1,2 will be referenced. Symbol table pointers
that do not actually point to the first word of a symbol table entry all called pseudo
symbol table pointers.

A.3.5.1 Error Message Print (ERR:)
The ERR: routine will print the two character error messages on the user's console
and force control back to the command mode. ERR: is called with a JST, followed

immediately by the two ASCII characters to be printed; i.e.,

JST ERR:
DATA 'ML'

A-10

ﬂ
COMPUTER AUTOMATION, INC. = -

A.3.5.2 Evaluate Operand (EVL:)

EVL: removes the top operand from the operand stack and places its value in the ACC
accumulator, after having first moved the contents of the BCC accumulator to the CCC
accumulator and the previous contents of the ACC accumulator to the BCC accumulator.

A.3.5.3 Input/Output Control (I0C:)

The I0C: subroutine handles all transfers between the BASIC processor and the user's
terminal. Each call to IOC: transfers a sequence of one or more characters between
the buffer and the terminal.

The BASIC processor uses the A and X registers to transfer information to the super-
visor when it makes an I/O call. This information is not returned in the registers
when returning from IOC: .

The A register contains the word address of the buffer from which or into which data
is to be moved. This is always an address within the user's work area. If bit 15 of
the X register is on, then data is to be transferred to or from paper tape at the user's
terminal; if bit 15 of the X register is off, then data is to be transferred to the printer
or from the keyboard of the user's terminal. If bit 14 of the X register is on, then the
call is for input and bits 7 through 0 contain a prompt character (in ASCII) that is to
be printed at the user's terminal before a maximum of 72 bytes are transferred from the
terminal into the buffer. (The printing of the prompt character is bypassed if bit 15
of the X register is on.) If bit 14 of the X register is off, then the call is for output
and bits 7 through 0 contain a binary count of the number of bytes to be transferred
from the buffer to the terminal.

NOTE

In the BASIC-3 system, if a prompt character is to be output prior
to an input, it must be issued as a separate output call to IOC: .
A four-byte buffer is required, containing the following data:

: 8D : 8A : XX : 00

where : XX represents the 8-bit hex equivalent of the prompt
character. The length passed to I0C is 4 bytes.

For an output operation, no manipulation of the data is required; all necessary
carriage control characters are already provided in the buffer, and IOC: is not
expected to supply any automatically.

For input operations, some character-by-character editing is required. The left-

arrow character should be recognized as a backspace signal and the line-feed charac-
ter should be recognized as a line-erase signal. Normal termination of the input line

A-11

A
COMPUTER AUTOMATION, INC. o) -

is signaled by the appearance of a carriage-return character. The number of charac-
ters placed in the buffer (excluding the terminal carriage-return and any trailing
blank characters) should be made available in the A register when control is returned
to the BASIC processor.

For all I/0 operations, characters are packed in the buffer two characters per word,
and the internal representation is as specified in Table A-7 of the ALPHA-16 Computer
Reference Manual.

A.3.5.4 Move (MOV:)

The MOV: subroutine moves consecutive words from one region of memory into con-
secutive locations in another region of memory. Prior to calling MOV: , the variables
FROM and TO must be initialized to the lowest addresses of the sending and receiving
fields, and NW must contain the count of the number of words to be moved. The
sending and receiving fields may overlap.

A.3.5.5 Move Bytes (MVB:)

The MVB: subroutine moves consecutive bytes from one region of memory into con-
secutive locations in another region of memory. Prior to calling MVB: , the variables
FROM and TO must be initialized to the byte addresses of the sending and receiving
fields, and NW must contain the count of bytes to be moved.

A.3.5.6 Pointer Test (PTT:)

This subroutine determines if the top operand on the operand stack is a value or a
symbol table pointer. PTT: returns the A-register equal to zero if it is a symbol

table pointer and the A-register equal to -1 if a value.

A.3.5.7 Remove (RMV:)

The contents of the BCC accumulator are moved to the ACC accumulator and the contents
of the CCC accumulator are moved to the BCC accumulator.

A.3.5.8 Retrieve (RTV:)

RTV: is called to retrieve the value of a symbol. Upon entry to RTV:, the A-register
must contain a pointer to a true or pseudo symbol table. The value of the symbol
pointed to is placed into the ACC accumulator after first moving the contents of the BCC

accumulator to the CCC accumulator and the previous contents of the ACC accumulator
to the BCC accumulator,

A-12

ﬂ A
COMPUTER AUTOMATION, INC. = -

A.5.3.9 Stack (STK:)

This subroutine pushes down the entries in the working accumulator. The contents
of the BCC accumulator are moved to the CCC accumulator and the contents of the ACC
accumulator are moved to the BCC accumulator. '

A.3.5.10 Store (STR:)

The STR: subroutine stores the floating point number located in the ACC accumulator
into a symbol table entry. Upon entry to STR: the A-register must contain a pointer
to a real or pseudo symbol table entry. The contents of the ACC accumulator are then
moved to the value positions of this entry.

A.3.5.11 Verify Argument Count (VAC:)

This subroutine verifies the number of arguments passed (and on the operand stack)
is correct. Upon entry to VAC: , the A-register must contain a binary count of the
total number of fields (arguments plus subroutine number) expected in the CALL
statement. VAC: will return if the correct number of arguments exist, or issue an
"FA" error message if they do not.

»A.3.6 The BASIC Arithmetic Subroutine

The BASIC arithmetic subroutines provide Floating Point arithmetic operations to the
calling program. The floating point routines are called by means of a JST instruction
and all return control to the location immediately following that instruction, unless

an error is detected. Depending upon the subroutine called, the A-register, the
ACC accumulator and the BCC accumulator may be used for passing arguments
and/or results.

A.3.6.1 Fix (FIX:)

The FIX: subroutine converts the floating point number located in the ACC accumu-
lator to a signed 16-bit binary integer that is returned in the A-register and ACC1
(word 1 of the ACC accumulator). FIX: truncates any excess fractional bits and
returns a negative number in its 2's complement form. A number which can not be
represented in 15 bits will cause an "NO" error.

A.3.6.2 Floating Add (FAD:)
The FAD: subroutine adds the floating point number in the BCC accumulator to

the floating point number in the ACC accumulator, leaving the result in the ACC
accumulator. The contents of the CCC accumulator then replace the contents of

A-13

A
COMPUTER AUTOMATION, INC. =£ -

the BCC accumulator and FAD: exits. An "OV" error will be generated if the
magnitude of the result exceeds the maximum floating point number.

A.3.6.3 Floating Subtract (FSU:)

The FSU: subroutine subtracts the floating point number in the BCC accumulator from
the floating point number in the ACC accumulator, leaving the result in the ACC accu-
mulator. The contents of the CCC accumulator are then moved to the BCC accumulator
and FSU: exits. An "OV" error will be generated if the magnitude of the result exceeds
the maximum floating point number.

A.3.6.4 Floating Multiply (FMU:)

The FMU: subroutine multiplies the floating point number in the ACC accumulator by
the floating point number in the BCC accumulator, leaving the result in the ACC accu-
mulator. The contents of the CCC accumulator are then moved to the BCC accumulator
and FMU: exits. An "OV" error will be generated if the magnitude of the result exceeds
the maximum floating point number.

A.3.6.5 Floating Divide (FDV:)

The FDV: subroutine divides the floating point number in the ACC accumulator by the
floating point number in the BCC accumulator, leaving the result in the ACC accumulator.
The contents of the CCC accumulator are then moved to the BCCJ accumulator and FDV:
exits. An "OV" error will be generated if the magnitude of the result exceeds the maxi -
mum floating point number.

A-14

COMPUTER AUTOMATION, INC. :-’3

Appendix B - BASIC-2 'CALL' EXAMPLE

ALPHA-16 BASIC-2

*TAPE '

*LIST

10 REM BASIC °'CALL* STATEMENT EXAMPLE

20 LET A=B=C=D=E=F=0

30 REM ASK USER FOR TWO VALUES

40 INPUT A»B

50 PRINT '"PASSED: “3A3BICSDIESF

60 REM PASS VALUES (A»B) AND VARIABLES (C»Ds>EsF)
- 70 REM TO SUBROUTINE

80 CALL (2,A4,BsCsDsEs»F)

30 PRINT "EXPECTED: ";A3B3A+Bs;A-B;A*B;A/B

100 PRINT "RETURNED: "“3A3B3C5D3E>F

110 STOP
120 END
*RUN

2,4
PASSED: 2 0
EXPECTED: 2 4 6 =2 8
"RETURNED: 2 8
*

PAGE
enny
gRe2
0203
o004
gees
eeg6
0007
poes8
2009
goie
ot
g04i2
0213
2214
2215
Raie6
o117
oois
bei9
o02e
pa21
peg2
8023
0024
226
ge2e6
Bo27
ga2s
pR29
2239
0031
pgd2
8833
2234
035
P36
0037
ga3s
pes9
2040
o4y
bR42
8043
po44
0adas
er46
pe47
ed4s
2a49
0050
2851
gos2
@63
0054

2001

poee
eoat
o2
eRA3

0004
0eRs5
peoé
0007
Q0es8
Q029
PABA
o008
gaec
goep
PBGE
RAOF
0210

o1l
2212

o8on
FooQ
4.1 14
Fooe

C704
9A2B
B22C
9A2A
Foeeo
3125
FooQ
Ei00
B40@1
9824
DAZ3
DA2Y
F6@8

Fooo
Fooo

BASIC "CALL" STATEMENT EXAMPLE

»

NAM ML2
EXTR PSH:,VACs,PTTS,EVLS,STK3,STR:,ERR:,POP?
EXTR FADs,FSUs,FMUS,FDVS,0PDEND,ACCY,ACC2

(1222 XXX 2222222222222 X2 2222 X2 X 22X 0 X T

THIS SUBROUTINE EXPECTS TO BE CALLED
BY THE BASIC PROCESSOR WITH A "CALL"
STATEMENT OF THE FORM3

CALL (N,ARG1,ARG2,8YM3$,SYM2,8YM3,8YM4)

THIS SUBROUTINE WILL PERFORM FLOATING
POINT OPERATIONS AND RETURN THE RESULTS
IN THE PASSED SYMBOLS AS FOLLOWS:

ARG1 + ARG2
ARG1 = ARG2
ARGY *« ARG2
ARGY / ARG2

SYMi
SYM2
SYM3
SYM4

LB B BN BE BN B 2k B B BN BF BN NE B
aaaa

2322222222222 2222242282232 X222 X222 YY XY
*

ML2 ENTY
J8T PSH1 SAVE RETURN
LAP 7
JST VAC: VERIFY PARAMETER COUNT
*
* COLLECT THE SYMBOL TABLE POINTERS OF
v THE SYMBOLS PASSED,
*
* NOTE., PARAMETERS ON THE OPERAND STACK
* ARE RETRIEVED IN REVERSE ORDER,
*
LAM 4 COLLECT 4 POINTERS
STA CNY
LDA ASYMI
STA HWRK
SYMS JST PTTs VERIFY SYMBOL TABLE POINTER
JAN ERROR « NO, ERROR
J8T EVL: REMOVE FROM OPERAND STACK
LDX OPDEND COLLECT SYMBOL TABLE POINTER
LDA e}
STA *#WRK
IMS WRK
IM8 CNT COUNT DOWN
JMP SYMS o NOT END, DO AGAIN

»

COLLECT THE ARGUMENTS ON THE ACCUMULATORS

JST EVL: ARGY TO ACC
JST EVL: ARGY T0 BCC, ARG2 TO ACC

B-2

PAGE 0002

POBS * SAVE FOR CALCULATIONS
2056)
2057 @013 Bi102 L.LDA ACCH
2058 0014 9A23 STA ARGt
Be59 0018 Bi0G ..DA ACC2
2060 0216 9A22 STA ARGi+¢} =
26y 007 F9002 J8T 8TK: ARG2 TO BCC. AND CCC
Re62 . ,
RA63 * SYMi = ARGi + ARG2
2064 . L
RP65 0018 F9OQ JST RMV: RESTORE ACC
0066 @819 F900 - J8T FAD: ACC s ACC + BCC
P067 ©B01A B2iC _ L.DA SYMi
Q068 QO1B FoLO JST S8TR: STORE IN SYM}
2269 ’ .
2070 * SYM2 s ARGY = ARG2
0p7% ©BIC FABC JST RESTR RESTORE . ACC

- R@72 QOiD F90Q " JST FsuU: ACC = ACC » BCC
BB73 OQQLE BR217 LDA 8SYM2 ‘ _ ,
0074 QOLF F900 JST STR¢ STORE IN SyM2
pe7s * o
Ra76 * 8YM3 = ARG3 « ARG2
ee77 ”
Pp78 Q020 FADS8 JST RESTR RESTORE ACC
RR79 Q©21 F992 JS8T FMUs ACC = ACC =» BCC .
PQ80 ©p22 B2i2 LDA SYM3
2081 Q@23 Fo00 JST STR: STORE IN SYM3
o082 *
P83 * SYM4 s ARG / ARG2
no84 *
pO8S Q224 FAD4 J8T RESTR RESTORE ACC
2086 0025 F900 J8T FDV: ACC s ACC / BCC
2087 9026 B2@D LDA SYM4
2N88 . PR27 F900 JST STR: STORE IN SYM4
eess - - . *
2e9%p. - * RETURN TO BASIC
2291 *

2R92 2028 F100 “JMP POP3

PAGE
094
0095
296
en9?
po9s
099
2100
0101
p1o2
21083
0104
pios
406
eie7
o108
2109
pite
e1t1
pii2
g§43
P14
2115
2116

137
poen

0063

2029
0024
ooeB
0e2c
gean
Pa2E

0aeF
0o30

0031
o332
2033
Qo34
2035
0e3s
a3y
0038
039

ERRQORS

PAGE Q@04

X

M X X X

ACCY
CNT

FAD3
MLZ

PTT
STR3
SYM3

psoe
B2@D
9900
B2@c
9900
F705

Fooe
¢oce

00020
pooo
pel4
2009
0200
vo0e
0ee9
poRg
2000

2009
0034
poege
p200
0200
egos
0035

»x

RETORE ACC WITHM ARGH

R ENT
LDA
STA
LDA
STA
RTN

ARG!
ACC1
ARG1+}
ACC2
RESTR

ISSUE ERROR MESSAGE

R JS8T
DATA

DATA
DATA
i DATA
DATA
DATA
DATA
DATA
DATA

END

ACC2
ERROR
FDV1
OPDEND
RESTR
SYMS
SYM4

ERR3 PRINT A MESSAGE |

"ML ! . WHICH IS NOT A BASIC MSG

2 WORK CELL

2 WORK CELL

3YM4

g 8YMBOL TABLE POINTER STORAGE

)

2

2,0 ARG! STORAGE

2000 ARGL 2038 ASYMI @033
@02F X ERR% eeee X EVLi LY
9888 X FMU3 8800 X FSU1 LLT:
@008 X POP3 gepe X PSHi poeD
8029 X RMV3 20A2 X STK: 0000
ITE SYM{ 2237 SYM2 2036
@834 X VACS 2000 WRK 2032

Appendix C - BASIC-2 IOC: SUBROUTINE LISTING

X

=
Lad

AL FPHA-1S BRSTC 1.0 MODULFE CI00 3 C9SS8ae—1 1R800
CUORYRTGHT 2572 BY COMPUTER AUTOMATION. THC.
11717 A7

o
BRI e 1]
o

g
]

]
et

F3oy AT B B G T
R]
K]
fux]
=
Y

2
&l
4]
i
PO S S

LA U B PRI S PR T A 14

-
b

N

i

i

i

MEF IO
EsTRE BUFFER. BASE, FHNTR. ERR

-
(RN

A2
2o DD

A

X

Fud

stk THE TOG SUBROUITIME HAMDLES AL 170

G COFERATTIOMNS TO OR FROM THE USFES S TEREMTHAL.

RN EMTRY THE A REGISTER Lot HINS THE

MORD ADDRESS OF THE BUFFFR [HTO OF FROM
WHICH DETA IS T0 BE TREAMNSHERRED. THE X
REGISTER CONTATMS A BIT IMDICHATIMG MHE THER
THE OFERATION 15 FAFER THEFE OF MOT. ANOTHER
BIT THRICATING MHETHER THF OFERETION 1=
THFLIT OF OUTEUT. AN ETTHER M EPTE COUMT
FOR OUTRUT CFERATIONS OF A PROMPT

CHARACTER FOR IMPUT OPERATIONS. [0C
COMTAING THE LOGIC NECESSARY FOR RESEOMNDLMG
T THE BRACKSFACE. LINEFEED. AND CARRTSGE-
CETURM CHERACTERS DURIMG INFUT

B
(%1% Je Joecd
aa1=
AR 4
GRS

BT T LS B
EHEE =T Eoil =

= E T % R R F ¥ XX XX X F X FOE R

NI ErT

ST BTG REMEMEBFR WHETHER THFE OFR REFEYBROARD
1 T :

S BLE EYTE HDDRESS OF BUFFER

2 =

JUVE I0Cs IF IHMFUT REECLIE=T

i

o
~t
g

=t

o 15
V-

~
)

)

SN

oy
b’
=

P
L
XN

HES
Jdid T1HLS S TE COUNT = i
R
ST CHT SHVE MEGATIVE BYTE COUNT
Tinie ShM
PDHE #BUF POAD CURRENT CHARRCTEER
i
e =16 FEYEOARD OF FAFER THFE 7
. [-
o T F+E
1 Fitde JET KRB . EERBOARD
L JHE Fb
J=v 0 OTT . FAFER THFE
s BLUF THOCREMEMT BEYTE ARDEESS
M T
F g JrF IO LOOF UNTIL QUTFUT COMPLETE
' Tz JHFE T
4
FROCESS INFUT REQUEST
FOICE LARF 20
JET OEER DUTFUT CARRIAGE RETURN

;7% + FROCESS OUTELUT REMIEST

,
‘b

Fu]
I:«

(e ¥

T
L&
ELE R R

A
e

D B b
(8 B

SO

]
AREN]

Y Ty

o

z

e
-
= &
M
<
:
=

Tl
KR O

T T T

AEAd A6

B RS
1Ay

T
=
- ey
[
AR
oy
Tt

=
sl 4.!

)

™ T
AR e L

-

ok

[An

=

P

.’,
T

)

,.
ol
o
Al
L
-
~t
-,

oot b i

Lt e et ek bee e we T
band
s
e

.,.
C

DA BRI O,
Ty

] T
-4 i
[

Y

oy

[Rx]
p—
iy

x|
e~
o
]
R
— el
XN
T
U
i 0
mo

C-1

FAGE

\..
(%1
-
ey
L

1
Ty

1oihe

Ok ORCE MORE FOR TIMIMNG

A~
il

FHz
Baps IOl

P IR Y
-
P

TO0T IF FAFEE TRFE
Ok OUTHFUT FROMFT CHARACTER

LA i L 1

]
—
.

P

JEN iy

e
AR
-
I

ol
Y
T

it

CHT IMITIALIZE THFUT BYTE INDEX

i

XX EE:
B

| N

T 0

A
]

IO IF THPUT FROM TAFE
Ivg THEPLT FRrOM EEREYBOARD
T
IFT IHFUT FROM PAFER TAFE
D
JdME TiCle BYFASS LEADER
NN IR N =5
I
ISR TR S kT
Fels JEE
AT .
JME TS IF LEFT ARRCN
AT CFF
TOE IF RUBGUT
T

D IR]
]
b Y

,
Bl
ARl

i

7y Mt

B B

b

X

=
o
L

IF CARRIAGE-RETUREM

i

IF L THE-FEELD

AR

o
o

¥ =SRRCE
EEMEMEBER IHDEM OF MOMH-BILAMNE CHARRACTER

DEEE IMs PTR
OFERE Tl SEM
SR STHE ERLF STORE CHARACTER IM BUFFER

M CHT THCREMENT THPLUT CHRREACTER ITHDEX
PR T3

SUIED ONT

SR TR IF MO OVERFL O

LIoH RIUWFFER

STH BASE

ZHT

FHTE

EiFE

Sk

X IR AN IS

,..
R
Ry
iy

SXIREY B U S

U
-+
Ty A

.

r,
A

1By

ERF
3 T
Toanldeme LD OHT

-
-
™

k!

,_
3
&
e
]
3

T

ACERD LEPUT

At B T

SIS ;
RS Gl Tocs

]
O

&

3

el
AR
0

.,_
T
L

T T
LIRS BN
PR SR
o
.,J
1 o

e
STF CHT
JPE TO0E
InelE LDE S SIG
JEM IO
TR TZEUE LIME FEED
PR
TR
F

U

b

B
L
Ty

Elas Begn

81.26
a1
175 3
[R
£12d
8325
5N

SN R

DA

-
B I

]
‘ol
i ik be b ih b

-

ind

-y
-’

oo
od -t

B
-t

oy
ot

TS X8
oAl L
e e T

R BRI AN
R A et

SRS
SR
SR Raney
A5
1S
IR T
F15s
157
152
15
(SRS
(SRR
fles

2

28

T
Pk

*

a7 TRT

FETH

Pz

THFUT FROM EEYEOARD

ErT
SEL

=k
RE
IDR
SELL
FTH

CHITFLIT

EMT
SR
HRA
SEM
JHF
FTH

TTY. &8
TTY. 1
TTY. 1.
H=8

TTY. 4

IER

TTY. 4
TTY, =
TTY: 2
F~-1
O

AHLITO ECH

SELECT EEYBOARRD
IMFUT TO A

FORCE ¢ BIT Of4
TURM OFF ALITD ECHD

T3 KEYBOARD

IMNITIALIZE TTY
OLITFLUT
WATT UMTIL DOME

EXIT

THFUT PRFER TAFE
EMNT
1SR
CAT
JHF

R
TORE
FETH

1.
HER
TTY. &
TTH. 4.
IFTE

IFTE
TFTi

HEFT,

HZPT, 14

IFT4
TTY. 4
Hizg
IFT

PN

1

THFUT DATA SWITCHES
1 = READ FROM HSFT
STEF TTY READEF
BUFFER RERLY?
WES

TEY BIUUFFER
RETREY READER

STEF HEPT RERDER
IMFUT TO R

IMFUT TO H

CUTEUT TO FPRFER TRFE

EMT

| R

1

DTTYET
TTY. 4
TTH. 1
TTY: 1

CHECE, DHATH SWITUHES

1 = PUNCH O HSPT
IMITIALTIZE TTY

THITIRLLIZE HISFT

FirRCH

FRGE ooad
BETH FTE0 ETH OTT

sy
I M
NN
sy

ol

£ MY AR] CHE
FFE Rk Frd OHT+1

i

1

T

-
il

T T T
T

Fobia Fril FTR+1

B Erd SIG+1

Hized DHTAH -z
B

1-
)
D R R RN A S

~§ 7 %

P s
oD IRT KRR IS B S

i
fiad
Y
ok

ERRORS

i

w BLEFER
HEPT

oy
b’
AR

EF
MR
Tocaz
]
T06C5
I
IPTE
aTT
TTY

CHT
Ea1n)
I0ci4
I0Cza
I0Cs
IFPT
IFTS
FMNTR

X

‘ete”
T D
[B
LI

A
D X
RV

o
T
™
s

A%

A

(Y
"t

RS I R O P N R Y
T

“

.
r.

e

15

H
e
A
~

i

PRl

: T
I IO
1 IFTZ

- OTTET
F ST

PN

S T T
o T

-
<

Iy
R
ol

kot

Fix]

T 5 =

Toha @ T
oy D I D
=

BB I R I R

-,
=
T
st
-1

1

£
5
H

Eay)
}

TWT DI T

S R I Y
Dol B T Y I R
I (RS T Y TS B i

M

S

3 s

B0
ales
SESEE

L% 3 B e
1575]2
51618
aas2
BBa7
a1az
B3=s
3187
pilas
L5 1 %]
13 1% Bk
aaSE
205 bk
Bz
1515 g
g1z
a1z4
1%} BEA
ai44
9145
9124
5149
15 b R
BERan
Blee
G1a7
BezzE

SOURCE LIMES

BASE

BUF
BUFFER
CHNT

ERR :
HZFT
H=R
TEE
T0Z18
10312
I0C14
I0C1E
Iacis
Iz
I0CzA
10032
INCs
IOCS
108
10T
I0Ce
0
IFPT
IPTL
IPTZ
IFTZ=
IFPT4
OB
noTT
aTTPT
FHTE
FTR
=IG
TTY

i

Sl S R RS B B LS B]
* ¥

1
b

4

-

RN LI N S B Y BN R B Rt B e Bt B B LA WR LR L 5

&
(5]
i
i
5]
1
1
9

=l
%]
2
5]
5]
5]
&
i
p
5]
%]
5]
(%}
i
£
@
1
1

RSV VR B PR B N I VR PRI U SRR R B CX R RO I S St I LI el B

DB IO I Y LRy B I B U LA By bt BRI B BN R B B IR IR B A B B X]

by
2R

ALEE
1473
BB
B

PSR
ol e
.

Ay
o
&
3

[Axi Y]
51
1Ty
fua)

P]
[I)
DX S
=) & O

S5+
8157

BEEI*

$ HESEE

HE
G114
a144

& o
X

PR ¥r]

S
[ax]

s

%)
BEZR
Bass
BE S
Blee
BB
i B 2
|14z

~J 1o
*

ax]

C-5

fax]
&
fx)
ind
¥

]
5
=4
-, j
X}
]
ey

XK}
+*

{
oy
E

B1e8 ol

£3.63:1.

BESS

[
iy
.“j
fx)
D

&

i}

[]
PR

W

A

[

v

b}

]

i

BlEg

	001
	002
	003
	004
	005
	1-02
	2-01
	2-02
	2-03
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01
	5-02
	5-03
	6-01
	6-02
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05

